X86: Update opcode-suffix.d
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether in the 32-bit
1155 instruction mode, whether the branch is unconditional, whether it is
1156 compact, whether there is no delay-slot instruction available to fill
1157 in, whether it stores the link address implicitly in $ra, whether
1158 relaxation of out-of-range 32-bit branches to a sequence of
1159 instructions is enabled, and whether the displacement of a branch is
1160 too large to fit as an immediate argument of a 16-bit and a 32-bit
1161 branch, respectively. */
1162 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, \
1163 uncond, compact, link, nods, \
1164 relax32, toofar16, toofar32) \
1165 (0x40000000 \
1166 | ((type) & 0xff) \
1167 | (((at) & 0x1f) << 8) \
1168 | ((insn32) ? 0x2000 : 0) \
1169 | ((uncond) ? 0x4000 : 0) \
1170 | ((compact) ? 0x8000 : 0) \
1171 | ((link) ? 0x10000 : 0) \
1172 | ((nods) ? 0x20000 : 0) \
1173 | ((relax32) ? 0x40000 : 0) \
1174 | ((toofar16) ? 0x80000 : 0) \
1175 | ((toofar32) ? 0x100000 : 0))
1176 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1177 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1178 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1179 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1180 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x4000) != 0)
1181 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x8000) != 0)
1182 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x10000) != 0)
1183 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x20000) != 0)
1184 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x40000) != 0)
1185
1186 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x80000) != 0)
1187 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x80000)
1188 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x80000)
1189 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x100000) != 0)
1190 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x100000)
1191 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x100000)
1192
1193 /* Sign-extend 16-bit value X. */
1194 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1195
1196 /* Is the given value a sign-extended 32-bit value? */
1197 #define IS_SEXT_32BIT_NUM(x) \
1198 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1199 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1200
1201 /* Is the given value a sign-extended 16-bit value? */
1202 #define IS_SEXT_16BIT_NUM(x) \
1203 (((x) &~ (offsetT) 0x7fff) == 0 \
1204 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1205
1206 /* Is the given value a sign-extended 12-bit value? */
1207 #define IS_SEXT_12BIT_NUM(x) \
1208 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1209
1210 /* Is the given value a sign-extended 9-bit value? */
1211 #define IS_SEXT_9BIT_NUM(x) \
1212 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1213
1214 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1215 #define IS_ZEXT_32BIT_NUM(x) \
1216 (((x) &~ (offsetT) 0xffffffff) == 0 \
1217 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1218
1219 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1220 SHIFT places. */
1221 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1222 (((STRUCT) >> (SHIFT)) & (MASK))
1223
1224 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1225 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1226 (!(MICROMIPS) \
1227 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1228 : EXTRACT_BITS ((INSN).insn_opcode, \
1229 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1230 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1231 EXTRACT_BITS ((INSN).insn_opcode, \
1232 MIPS16OP_MASK_##FIELD, \
1233 MIPS16OP_SH_##FIELD)
1234
1235 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1236 #define MIPS16_EXTEND (0xf000U << 16)
1237 \f
1238 /* Whether or not we are emitting a branch-likely macro. */
1239 static bfd_boolean emit_branch_likely_macro = FALSE;
1240
1241 /* Global variables used when generating relaxable macros. See the
1242 comment above RELAX_ENCODE for more details about how relaxation
1243 is used. */
1244 static struct {
1245 /* 0 if we're not emitting a relaxable macro.
1246 1 if we're emitting the first of the two relaxation alternatives.
1247 2 if we're emitting the second alternative. */
1248 int sequence;
1249
1250 /* The first relaxable fixup in the current frag. (In other words,
1251 the first fixup that refers to relaxable code.) */
1252 fixS *first_fixup;
1253
1254 /* sizes[0] says how many bytes of the first alternative are stored in
1255 the current frag. Likewise sizes[1] for the second alternative. */
1256 unsigned int sizes[2];
1257
1258 /* The symbol on which the choice of sequence depends. */
1259 symbolS *symbol;
1260 } mips_relax;
1261 \f
1262 /* Global variables used to decide whether a macro needs a warning. */
1263 static struct {
1264 /* True if the macro is in a branch delay slot. */
1265 bfd_boolean delay_slot_p;
1266
1267 /* Set to the length in bytes required if the macro is in a delay slot
1268 that requires a specific length of instruction, otherwise zero. */
1269 unsigned int delay_slot_length;
1270
1271 /* For relaxable macros, sizes[0] is the length of the first alternative
1272 in bytes and sizes[1] is the length of the second alternative.
1273 For non-relaxable macros, both elements give the length of the
1274 macro in bytes. */
1275 unsigned int sizes[2];
1276
1277 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1278 instruction of the first alternative in bytes and first_insn_sizes[1]
1279 is the length of the first instruction of the second alternative.
1280 For non-relaxable macros, both elements give the length of the first
1281 instruction in bytes.
1282
1283 Set to zero if we haven't yet seen the first instruction. */
1284 unsigned int first_insn_sizes[2];
1285
1286 /* For relaxable macros, insns[0] is the number of instructions for the
1287 first alternative and insns[1] is the number of instructions for the
1288 second alternative.
1289
1290 For non-relaxable macros, both elements give the number of
1291 instructions for the macro. */
1292 unsigned int insns[2];
1293
1294 /* The first variant frag for this macro. */
1295 fragS *first_frag;
1296 } mips_macro_warning;
1297 \f
1298 /* Prototypes for static functions. */
1299
1300 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1301
1302 static void append_insn
1303 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1304 bfd_boolean expansionp);
1305 static void mips_no_prev_insn (void);
1306 static void macro_build (expressionS *, const char *, const char *, ...);
1307 static void mips16_macro_build
1308 (expressionS *, const char *, const char *, va_list *);
1309 static void load_register (int, expressionS *, int);
1310 static void macro_start (void);
1311 static void macro_end (void);
1312 static void macro (struct mips_cl_insn *ip, char *str);
1313 static void mips16_macro (struct mips_cl_insn * ip);
1314 static void mips_ip (char *str, struct mips_cl_insn * ip);
1315 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1316 static void mips16_immed
1317 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1318 unsigned int, unsigned long *);
1319 static size_t my_getSmallExpression
1320 (expressionS *, bfd_reloc_code_real_type *, char *);
1321 static void my_getExpression (expressionS *, char *);
1322 static void s_align (int);
1323 static void s_change_sec (int);
1324 static void s_change_section (int);
1325 static void s_cons (int);
1326 static void s_float_cons (int);
1327 static void s_mips_globl (int);
1328 static void s_option (int);
1329 static void s_mipsset (int);
1330 static void s_abicalls (int);
1331 static void s_cpload (int);
1332 static void s_cpsetup (int);
1333 static void s_cplocal (int);
1334 static void s_cprestore (int);
1335 static void s_cpreturn (int);
1336 static void s_dtprelword (int);
1337 static void s_dtpreldword (int);
1338 static void s_tprelword (int);
1339 static void s_tpreldword (int);
1340 static void s_gpvalue (int);
1341 static void s_gpword (int);
1342 static void s_gpdword (int);
1343 static void s_ehword (int);
1344 static void s_cpadd (int);
1345 static void s_insn (int);
1346 static void s_nan (int);
1347 static void s_module (int);
1348 static void s_mips_ent (int);
1349 static void s_mips_end (int);
1350 static void s_mips_frame (int);
1351 static void s_mips_mask (int reg_type);
1352 static void s_mips_stab (int);
1353 static void s_mips_weakext (int);
1354 static void s_mips_file (int);
1355 static void s_mips_loc (int);
1356 static bfd_boolean pic_need_relax (symbolS *, asection *);
1357 static int relaxed_branch_length (fragS *, asection *, int);
1358 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1359 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1360 static void file_mips_check_options (void);
1361
1362 /* Table and functions used to map between CPU/ISA names, and
1363 ISA levels, and CPU numbers. */
1364
1365 struct mips_cpu_info
1366 {
1367 const char *name; /* CPU or ISA name. */
1368 int flags; /* MIPS_CPU_* flags. */
1369 int ase; /* Set of ASEs implemented by the CPU. */
1370 int isa; /* ISA level. */
1371 int cpu; /* CPU number (default CPU if ISA). */
1372 };
1373
1374 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1375
1376 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1377 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1378 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1379 \f
1380 /* Command-line options. */
1381 const char *md_shortopts = "O::g::G:";
1382
1383 enum options
1384 {
1385 OPTION_MARCH = OPTION_MD_BASE,
1386 OPTION_MTUNE,
1387 OPTION_MIPS1,
1388 OPTION_MIPS2,
1389 OPTION_MIPS3,
1390 OPTION_MIPS4,
1391 OPTION_MIPS5,
1392 OPTION_MIPS32,
1393 OPTION_MIPS64,
1394 OPTION_MIPS32R2,
1395 OPTION_MIPS32R3,
1396 OPTION_MIPS32R5,
1397 OPTION_MIPS32R6,
1398 OPTION_MIPS64R2,
1399 OPTION_MIPS64R3,
1400 OPTION_MIPS64R5,
1401 OPTION_MIPS64R6,
1402 OPTION_MIPS16,
1403 OPTION_NO_MIPS16,
1404 OPTION_MIPS3D,
1405 OPTION_NO_MIPS3D,
1406 OPTION_MDMX,
1407 OPTION_NO_MDMX,
1408 OPTION_DSP,
1409 OPTION_NO_DSP,
1410 OPTION_MT,
1411 OPTION_NO_MT,
1412 OPTION_VIRT,
1413 OPTION_NO_VIRT,
1414 OPTION_MSA,
1415 OPTION_NO_MSA,
1416 OPTION_SMARTMIPS,
1417 OPTION_NO_SMARTMIPS,
1418 OPTION_DSPR2,
1419 OPTION_NO_DSPR2,
1420 OPTION_DSPR3,
1421 OPTION_NO_DSPR3,
1422 OPTION_EVA,
1423 OPTION_NO_EVA,
1424 OPTION_XPA,
1425 OPTION_NO_XPA,
1426 OPTION_MICROMIPS,
1427 OPTION_NO_MICROMIPS,
1428 OPTION_MCU,
1429 OPTION_NO_MCU,
1430 OPTION_COMPAT_ARCH_BASE,
1431 OPTION_M4650,
1432 OPTION_NO_M4650,
1433 OPTION_M4010,
1434 OPTION_NO_M4010,
1435 OPTION_M4100,
1436 OPTION_NO_M4100,
1437 OPTION_M3900,
1438 OPTION_NO_M3900,
1439 OPTION_M7000_HILO_FIX,
1440 OPTION_MNO_7000_HILO_FIX,
1441 OPTION_FIX_24K,
1442 OPTION_NO_FIX_24K,
1443 OPTION_FIX_RM7000,
1444 OPTION_NO_FIX_RM7000,
1445 OPTION_FIX_LOONGSON2F_JUMP,
1446 OPTION_NO_FIX_LOONGSON2F_JUMP,
1447 OPTION_FIX_LOONGSON2F_NOP,
1448 OPTION_NO_FIX_LOONGSON2F_NOP,
1449 OPTION_FIX_VR4120,
1450 OPTION_NO_FIX_VR4120,
1451 OPTION_FIX_VR4130,
1452 OPTION_NO_FIX_VR4130,
1453 OPTION_FIX_CN63XXP1,
1454 OPTION_NO_FIX_CN63XXP1,
1455 OPTION_TRAP,
1456 OPTION_BREAK,
1457 OPTION_EB,
1458 OPTION_EL,
1459 OPTION_FP32,
1460 OPTION_GP32,
1461 OPTION_CONSTRUCT_FLOATS,
1462 OPTION_NO_CONSTRUCT_FLOATS,
1463 OPTION_FP64,
1464 OPTION_FPXX,
1465 OPTION_GP64,
1466 OPTION_RELAX_BRANCH,
1467 OPTION_NO_RELAX_BRANCH,
1468 OPTION_INSN32,
1469 OPTION_NO_INSN32,
1470 OPTION_MSHARED,
1471 OPTION_MNO_SHARED,
1472 OPTION_MSYM32,
1473 OPTION_MNO_SYM32,
1474 OPTION_SOFT_FLOAT,
1475 OPTION_HARD_FLOAT,
1476 OPTION_SINGLE_FLOAT,
1477 OPTION_DOUBLE_FLOAT,
1478 OPTION_32,
1479 OPTION_CALL_SHARED,
1480 OPTION_CALL_NONPIC,
1481 OPTION_NON_SHARED,
1482 OPTION_XGOT,
1483 OPTION_MABI,
1484 OPTION_N32,
1485 OPTION_64,
1486 OPTION_MDEBUG,
1487 OPTION_NO_MDEBUG,
1488 OPTION_PDR,
1489 OPTION_NO_PDR,
1490 OPTION_MVXWORKS_PIC,
1491 OPTION_NAN,
1492 OPTION_ODD_SPREG,
1493 OPTION_NO_ODD_SPREG,
1494 OPTION_END_OF_ENUM
1495 };
1496
1497 struct option md_longopts[] =
1498 {
1499 /* Options which specify architecture. */
1500 {"march", required_argument, NULL, OPTION_MARCH},
1501 {"mtune", required_argument, NULL, OPTION_MTUNE},
1502 {"mips0", no_argument, NULL, OPTION_MIPS1},
1503 {"mips1", no_argument, NULL, OPTION_MIPS1},
1504 {"mips2", no_argument, NULL, OPTION_MIPS2},
1505 {"mips3", no_argument, NULL, OPTION_MIPS3},
1506 {"mips4", no_argument, NULL, OPTION_MIPS4},
1507 {"mips5", no_argument, NULL, OPTION_MIPS5},
1508 {"mips32", no_argument, NULL, OPTION_MIPS32},
1509 {"mips64", no_argument, NULL, OPTION_MIPS64},
1510 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1511 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1512 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1513 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1514 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1515 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1516 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1517 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1518
1519 /* Options which specify Application Specific Extensions (ASEs). */
1520 {"mips16", no_argument, NULL, OPTION_MIPS16},
1521 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1522 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1523 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1524 {"mdmx", no_argument, NULL, OPTION_MDMX},
1525 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1526 {"mdsp", no_argument, NULL, OPTION_DSP},
1527 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1528 {"mmt", no_argument, NULL, OPTION_MT},
1529 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1530 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1531 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1532 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1533 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1534 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1535 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1536 {"meva", no_argument, NULL, OPTION_EVA},
1537 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1538 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1539 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1540 {"mmcu", no_argument, NULL, OPTION_MCU},
1541 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1542 {"mvirt", no_argument, NULL, OPTION_VIRT},
1543 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1544 {"mmsa", no_argument, NULL, OPTION_MSA},
1545 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1546 {"mxpa", no_argument, NULL, OPTION_XPA},
1547 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1548
1549 /* Old-style architecture options. Don't add more of these. */
1550 {"m4650", no_argument, NULL, OPTION_M4650},
1551 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1552 {"m4010", no_argument, NULL, OPTION_M4010},
1553 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1554 {"m4100", no_argument, NULL, OPTION_M4100},
1555 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1556 {"m3900", no_argument, NULL, OPTION_M3900},
1557 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1558
1559 /* Options which enable bug fixes. */
1560 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1561 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1562 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1563 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1564 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1565 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1566 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1567 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1568 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1569 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1570 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1571 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1572 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1573 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1574 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1575 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1576 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1577
1578 /* Miscellaneous options. */
1579 {"trap", no_argument, NULL, OPTION_TRAP},
1580 {"no-break", no_argument, NULL, OPTION_TRAP},
1581 {"break", no_argument, NULL, OPTION_BREAK},
1582 {"no-trap", no_argument, NULL, OPTION_BREAK},
1583 {"EB", no_argument, NULL, OPTION_EB},
1584 {"EL", no_argument, NULL, OPTION_EL},
1585 {"mfp32", no_argument, NULL, OPTION_FP32},
1586 {"mgp32", no_argument, NULL, OPTION_GP32},
1587 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1588 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1589 {"mfp64", no_argument, NULL, OPTION_FP64},
1590 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1591 {"mgp64", no_argument, NULL, OPTION_GP64},
1592 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1593 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1594 {"minsn32", no_argument, NULL, OPTION_INSN32},
1595 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1596 {"mshared", no_argument, NULL, OPTION_MSHARED},
1597 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1598 {"msym32", no_argument, NULL, OPTION_MSYM32},
1599 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1600 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1601 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1602 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1603 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1604 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1605 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1606
1607 /* Strictly speaking this next option is ELF specific,
1608 but we allow it for other ports as well in order to
1609 make testing easier. */
1610 {"32", no_argument, NULL, OPTION_32},
1611
1612 /* ELF-specific options. */
1613 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1614 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1615 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1616 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1617 {"xgot", no_argument, NULL, OPTION_XGOT},
1618 {"mabi", required_argument, NULL, OPTION_MABI},
1619 {"n32", no_argument, NULL, OPTION_N32},
1620 {"64", no_argument, NULL, OPTION_64},
1621 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1622 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1623 {"mpdr", no_argument, NULL, OPTION_PDR},
1624 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1625 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1626 {"mnan", required_argument, NULL, OPTION_NAN},
1627
1628 {NULL, no_argument, NULL, 0}
1629 };
1630 size_t md_longopts_size = sizeof (md_longopts);
1631 \f
1632 /* Information about either an Application Specific Extension or an
1633 optional architecture feature that, for simplicity, we treat in the
1634 same way as an ASE. */
1635 struct mips_ase
1636 {
1637 /* The name of the ASE, used in both the command-line and .set options. */
1638 const char *name;
1639
1640 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1641 and 64-bit architectures, the flags here refer to the subset that
1642 is available on both. */
1643 unsigned int flags;
1644
1645 /* The ASE_* flag used for instructions that are available on 64-bit
1646 architectures but that are not included in FLAGS. */
1647 unsigned int flags64;
1648
1649 /* The command-line options that turn the ASE on and off. */
1650 int option_on;
1651 int option_off;
1652
1653 /* The minimum required architecture revisions for MIPS32, MIPS64,
1654 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1655 int mips32_rev;
1656 int mips64_rev;
1657 int micromips32_rev;
1658 int micromips64_rev;
1659
1660 /* The architecture where the ASE was removed or -1 if the extension has not
1661 been removed. */
1662 int rem_rev;
1663 };
1664
1665 /* A table of all supported ASEs. */
1666 static const struct mips_ase mips_ases[] = {
1667 { "dsp", ASE_DSP, ASE_DSP64,
1668 OPTION_DSP, OPTION_NO_DSP,
1669 2, 2, 2, 2,
1670 -1 },
1671
1672 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1673 OPTION_DSPR2, OPTION_NO_DSPR2,
1674 2, 2, 2, 2,
1675 -1 },
1676
1677 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1678 OPTION_DSPR3, OPTION_NO_DSPR3,
1679 6, 6, -1, -1,
1680 -1 },
1681
1682 { "eva", ASE_EVA, 0,
1683 OPTION_EVA, OPTION_NO_EVA,
1684 2, 2, 2, 2,
1685 -1 },
1686
1687 { "mcu", ASE_MCU, 0,
1688 OPTION_MCU, OPTION_NO_MCU,
1689 2, 2, 2, 2,
1690 -1 },
1691
1692 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1693 { "mdmx", ASE_MDMX, 0,
1694 OPTION_MDMX, OPTION_NO_MDMX,
1695 -1, 1, -1, -1,
1696 6 },
1697
1698 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1699 { "mips3d", ASE_MIPS3D, 0,
1700 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1701 2, 1, -1, -1,
1702 6 },
1703
1704 { "mt", ASE_MT, 0,
1705 OPTION_MT, OPTION_NO_MT,
1706 2, 2, -1, -1,
1707 -1 },
1708
1709 { "smartmips", ASE_SMARTMIPS, 0,
1710 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1711 1, -1, -1, -1,
1712 6 },
1713
1714 { "virt", ASE_VIRT, ASE_VIRT64,
1715 OPTION_VIRT, OPTION_NO_VIRT,
1716 2, 2, 2, 2,
1717 -1 },
1718
1719 { "msa", ASE_MSA, ASE_MSA64,
1720 OPTION_MSA, OPTION_NO_MSA,
1721 2, 2, 2, 2,
1722 -1 },
1723
1724 { "xpa", ASE_XPA, 0,
1725 OPTION_XPA, OPTION_NO_XPA,
1726 2, 2, -1, -1,
1727 -1 },
1728 };
1729
1730 /* The set of ASEs that require -mfp64. */
1731 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1732
1733 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1734 static const unsigned int mips_ase_groups[] = {
1735 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1736 };
1737 \f
1738 /* Pseudo-op table.
1739
1740 The following pseudo-ops from the Kane and Heinrich MIPS book
1741 should be defined here, but are currently unsupported: .alias,
1742 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1743
1744 The following pseudo-ops from the Kane and Heinrich MIPS book are
1745 specific to the type of debugging information being generated, and
1746 should be defined by the object format: .aent, .begin, .bend,
1747 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1748 .vreg.
1749
1750 The following pseudo-ops from the Kane and Heinrich MIPS book are
1751 not MIPS CPU specific, but are also not specific to the object file
1752 format. This file is probably the best place to define them, but
1753 they are not currently supported: .asm0, .endr, .lab, .struct. */
1754
1755 static const pseudo_typeS mips_pseudo_table[] =
1756 {
1757 /* MIPS specific pseudo-ops. */
1758 {"option", s_option, 0},
1759 {"set", s_mipsset, 0},
1760 {"rdata", s_change_sec, 'r'},
1761 {"sdata", s_change_sec, 's'},
1762 {"livereg", s_ignore, 0},
1763 {"abicalls", s_abicalls, 0},
1764 {"cpload", s_cpload, 0},
1765 {"cpsetup", s_cpsetup, 0},
1766 {"cplocal", s_cplocal, 0},
1767 {"cprestore", s_cprestore, 0},
1768 {"cpreturn", s_cpreturn, 0},
1769 {"dtprelword", s_dtprelword, 0},
1770 {"dtpreldword", s_dtpreldword, 0},
1771 {"tprelword", s_tprelword, 0},
1772 {"tpreldword", s_tpreldword, 0},
1773 {"gpvalue", s_gpvalue, 0},
1774 {"gpword", s_gpword, 0},
1775 {"gpdword", s_gpdword, 0},
1776 {"ehword", s_ehword, 0},
1777 {"cpadd", s_cpadd, 0},
1778 {"insn", s_insn, 0},
1779 {"nan", s_nan, 0},
1780 {"module", s_module, 0},
1781
1782 /* Relatively generic pseudo-ops that happen to be used on MIPS
1783 chips. */
1784 {"asciiz", stringer, 8 + 1},
1785 {"bss", s_change_sec, 'b'},
1786 {"err", s_err, 0},
1787 {"half", s_cons, 1},
1788 {"dword", s_cons, 3},
1789 {"weakext", s_mips_weakext, 0},
1790 {"origin", s_org, 0},
1791 {"repeat", s_rept, 0},
1792
1793 /* For MIPS this is non-standard, but we define it for consistency. */
1794 {"sbss", s_change_sec, 'B'},
1795
1796 /* These pseudo-ops are defined in read.c, but must be overridden
1797 here for one reason or another. */
1798 {"align", s_align, 0},
1799 {"byte", s_cons, 0},
1800 {"data", s_change_sec, 'd'},
1801 {"double", s_float_cons, 'd'},
1802 {"float", s_float_cons, 'f'},
1803 {"globl", s_mips_globl, 0},
1804 {"global", s_mips_globl, 0},
1805 {"hword", s_cons, 1},
1806 {"int", s_cons, 2},
1807 {"long", s_cons, 2},
1808 {"octa", s_cons, 4},
1809 {"quad", s_cons, 3},
1810 {"section", s_change_section, 0},
1811 {"short", s_cons, 1},
1812 {"single", s_float_cons, 'f'},
1813 {"stabd", s_mips_stab, 'd'},
1814 {"stabn", s_mips_stab, 'n'},
1815 {"stabs", s_mips_stab, 's'},
1816 {"text", s_change_sec, 't'},
1817 {"word", s_cons, 2},
1818
1819 { "extern", ecoff_directive_extern, 0},
1820
1821 { NULL, NULL, 0 },
1822 };
1823
1824 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1825 {
1826 /* These pseudo-ops should be defined by the object file format.
1827 However, a.out doesn't support them, so we have versions here. */
1828 {"aent", s_mips_ent, 1},
1829 {"bgnb", s_ignore, 0},
1830 {"end", s_mips_end, 0},
1831 {"endb", s_ignore, 0},
1832 {"ent", s_mips_ent, 0},
1833 {"file", s_mips_file, 0},
1834 {"fmask", s_mips_mask, 'F'},
1835 {"frame", s_mips_frame, 0},
1836 {"loc", s_mips_loc, 0},
1837 {"mask", s_mips_mask, 'R'},
1838 {"verstamp", s_ignore, 0},
1839 { NULL, NULL, 0 },
1840 };
1841
1842 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1843 purpose of the `.dc.a' internal pseudo-op. */
1844
1845 int
1846 mips_address_bytes (void)
1847 {
1848 file_mips_check_options ();
1849 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1850 }
1851
1852 extern void pop_insert (const pseudo_typeS *);
1853
1854 void
1855 mips_pop_insert (void)
1856 {
1857 pop_insert (mips_pseudo_table);
1858 if (! ECOFF_DEBUGGING)
1859 pop_insert (mips_nonecoff_pseudo_table);
1860 }
1861 \f
1862 /* Symbols labelling the current insn. */
1863
1864 struct insn_label_list
1865 {
1866 struct insn_label_list *next;
1867 symbolS *label;
1868 };
1869
1870 static struct insn_label_list *free_insn_labels;
1871 #define label_list tc_segment_info_data.labels
1872
1873 static void mips_clear_insn_labels (void);
1874 static void mips_mark_labels (void);
1875 static void mips_compressed_mark_labels (void);
1876
1877 static inline void
1878 mips_clear_insn_labels (void)
1879 {
1880 struct insn_label_list **pl;
1881 segment_info_type *si;
1882
1883 if (now_seg)
1884 {
1885 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1886 ;
1887
1888 si = seg_info (now_seg);
1889 *pl = si->label_list;
1890 si->label_list = NULL;
1891 }
1892 }
1893
1894 /* Mark instruction labels in MIPS16/microMIPS mode. */
1895
1896 static inline void
1897 mips_mark_labels (void)
1898 {
1899 if (HAVE_CODE_COMPRESSION)
1900 mips_compressed_mark_labels ();
1901 }
1902 \f
1903 static char *expr_end;
1904
1905 /* An expression in a macro instruction. This is set by mips_ip and
1906 mips16_ip and when populated is always an O_constant. */
1907
1908 static expressionS imm_expr;
1909
1910 /* The relocatable field in an instruction and the relocs associated
1911 with it. These variables are used for instructions like LUI and
1912 JAL as well as true offsets. They are also used for address
1913 operands in macros. */
1914
1915 static expressionS offset_expr;
1916 static bfd_reloc_code_real_type offset_reloc[3]
1917 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1918
1919 /* This is set to the resulting size of the instruction to be produced
1920 by mips16_ip if an explicit extension is used or by mips_ip if an
1921 explicit size is supplied. */
1922
1923 static unsigned int forced_insn_length;
1924
1925 /* True if we are assembling an instruction. All dot symbols defined during
1926 this time should be treated as code labels. */
1927
1928 static bfd_boolean mips_assembling_insn;
1929
1930 /* The pdr segment for per procedure frame/regmask info. Not used for
1931 ECOFF debugging. */
1932
1933 static segT pdr_seg;
1934
1935 /* The default target format to use. */
1936
1937 #if defined (TE_FreeBSD)
1938 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1939 #elif defined (TE_TMIPS)
1940 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1941 #else
1942 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1943 #endif
1944
1945 const char *
1946 mips_target_format (void)
1947 {
1948 switch (OUTPUT_FLAVOR)
1949 {
1950 case bfd_target_elf_flavour:
1951 #ifdef TE_VXWORKS
1952 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1953 return (target_big_endian
1954 ? "elf32-bigmips-vxworks"
1955 : "elf32-littlemips-vxworks");
1956 #endif
1957 return (target_big_endian
1958 ? (HAVE_64BIT_OBJECTS
1959 ? ELF_TARGET ("elf64-", "big")
1960 : (HAVE_NEWABI
1961 ? ELF_TARGET ("elf32-n", "big")
1962 : ELF_TARGET ("elf32-", "big")))
1963 : (HAVE_64BIT_OBJECTS
1964 ? ELF_TARGET ("elf64-", "little")
1965 : (HAVE_NEWABI
1966 ? ELF_TARGET ("elf32-n", "little")
1967 : ELF_TARGET ("elf32-", "little"))));
1968 default:
1969 abort ();
1970 return NULL;
1971 }
1972 }
1973
1974 /* Return the ISA revision that is currently in use, or 0 if we are
1975 generating code for MIPS V or below. */
1976
1977 static int
1978 mips_isa_rev (void)
1979 {
1980 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1981 return 2;
1982
1983 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1984 return 3;
1985
1986 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1987 return 5;
1988
1989 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1990 return 6;
1991
1992 /* microMIPS implies revision 2 or above. */
1993 if (mips_opts.micromips)
1994 return 2;
1995
1996 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1997 return 1;
1998
1999 return 0;
2000 }
2001
2002 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2003
2004 static unsigned int
2005 mips_ase_mask (unsigned int flags)
2006 {
2007 unsigned int i;
2008
2009 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2010 if (flags & mips_ase_groups[i])
2011 flags |= mips_ase_groups[i];
2012 return flags;
2013 }
2014
2015 /* Check whether the current ISA supports ASE. Issue a warning if
2016 appropriate. */
2017
2018 static void
2019 mips_check_isa_supports_ase (const struct mips_ase *ase)
2020 {
2021 const char *base;
2022 int min_rev, size;
2023 static unsigned int warned_isa;
2024 static unsigned int warned_fp32;
2025
2026 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2027 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2028 else
2029 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2030 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2031 && (warned_isa & ase->flags) != ase->flags)
2032 {
2033 warned_isa |= ase->flags;
2034 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2035 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2036 if (min_rev < 0)
2037 as_warn (_("the %d-bit %s architecture does not support the"
2038 " `%s' extension"), size, base, ase->name);
2039 else
2040 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2041 ase->name, base, size, min_rev);
2042 }
2043 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2044 && (warned_isa & ase->flags) != ase->flags)
2045 {
2046 warned_isa |= ase->flags;
2047 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2048 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2049 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2050 ase->name, base, size, ase->rem_rev);
2051 }
2052
2053 if ((ase->flags & FP64_ASES)
2054 && mips_opts.fp != 64
2055 && (warned_fp32 & ase->flags) != ase->flags)
2056 {
2057 warned_fp32 |= ase->flags;
2058 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2059 }
2060 }
2061
2062 /* Check all enabled ASEs to see whether they are supported by the
2063 chosen architecture. */
2064
2065 static void
2066 mips_check_isa_supports_ases (void)
2067 {
2068 unsigned int i, mask;
2069
2070 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2071 {
2072 mask = mips_ase_mask (mips_ases[i].flags);
2073 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2074 mips_check_isa_supports_ase (&mips_ases[i]);
2075 }
2076 }
2077
2078 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2079 that were affected. */
2080
2081 static unsigned int
2082 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2083 bfd_boolean enabled_p)
2084 {
2085 unsigned int mask;
2086
2087 mask = mips_ase_mask (ase->flags);
2088 opts->ase &= ~mask;
2089 if (enabled_p)
2090 opts->ase |= ase->flags;
2091 return mask;
2092 }
2093
2094 /* Return the ASE called NAME, or null if none. */
2095
2096 static const struct mips_ase *
2097 mips_lookup_ase (const char *name)
2098 {
2099 unsigned int i;
2100
2101 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2102 if (strcmp (name, mips_ases[i].name) == 0)
2103 return &mips_ases[i];
2104 return NULL;
2105 }
2106
2107 /* Return the length of a microMIPS instruction in bytes. If bits of
2108 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2109 otherwise it is a 32-bit instruction. */
2110
2111 static inline unsigned int
2112 micromips_insn_length (const struct mips_opcode *mo)
2113 {
2114 return (mo->mask >> 16) == 0 ? 2 : 4;
2115 }
2116
2117 /* Return the length of MIPS16 instruction OPCODE. */
2118
2119 static inline unsigned int
2120 mips16_opcode_length (unsigned long opcode)
2121 {
2122 return (opcode >> 16) == 0 ? 2 : 4;
2123 }
2124
2125 /* Return the length of instruction INSN. */
2126
2127 static inline unsigned int
2128 insn_length (const struct mips_cl_insn *insn)
2129 {
2130 if (mips_opts.micromips)
2131 return micromips_insn_length (insn->insn_mo);
2132 else if (mips_opts.mips16)
2133 return mips16_opcode_length (insn->insn_opcode);
2134 else
2135 return 4;
2136 }
2137
2138 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2139
2140 static void
2141 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2142 {
2143 size_t i;
2144
2145 insn->insn_mo = mo;
2146 insn->insn_opcode = mo->match;
2147 insn->frag = NULL;
2148 insn->where = 0;
2149 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2150 insn->fixp[i] = NULL;
2151 insn->fixed_p = (mips_opts.noreorder > 0);
2152 insn->noreorder_p = (mips_opts.noreorder > 0);
2153 insn->mips16_absolute_jump_p = 0;
2154 insn->complete_p = 0;
2155 insn->cleared_p = 0;
2156 }
2157
2158 /* Get a list of all the operands in INSN. */
2159
2160 static const struct mips_operand_array *
2161 insn_operands (const struct mips_cl_insn *insn)
2162 {
2163 if (insn->insn_mo >= &mips_opcodes[0]
2164 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2165 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2166
2167 if (insn->insn_mo >= &mips16_opcodes[0]
2168 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2169 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2170
2171 if (insn->insn_mo >= &micromips_opcodes[0]
2172 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2173 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2174
2175 abort ();
2176 }
2177
2178 /* Get a description of operand OPNO of INSN. */
2179
2180 static const struct mips_operand *
2181 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2182 {
2183 const struct mips_operand_array *operands;
2184
2185 operands = insn_operands (insn);
2186 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2187 abort ();
2188 return operands->operand[opno];
2189 }
2190
2191 /* Install UVAL as the value of OPERAND in INSN. */
2192
2193 static inline void
2194 insn_insert_operand (struct mips_cl_insn *insn,
2195 const struct mips_operand *operand, unsigned int uval)
2196 {
2197 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2198 }
2199
2200 /* Extract the value of OPERAND from INSN. */
2201
2202 static inline unsigned
2203 insn_extract_operand (const struct mips_cl_insn *insn,
2204 const struct mips_operand *operand)
2205 {
2206 return mips_extract_operand (operand, insn->insn_opcode);
2207 }
2208
2209 /* Record the current MIPS16/microMIPS mode in now_seg. */
2210
2211 static void
2212 mips_record_compressed_mode (void)
2213 {
2214 segment_info_type *si;
2215
2216 si = seg_info (now_seg);
2217 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2218 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2219 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2220 si->tc_segment_info_data.micromips = mips_opts.micromips;
2221 }
2222
2223 /* Read a standard MIPS instruction from BUF. */
2224
2225 static unsigned long
2226 read_insn (char *buf)
2227 {
2228 if (target_big_endian)
2229 return bfd_getb32 ((bfd_byte *) buf);
2230 else
2231 return bfd_getl32 ((bfd_byte *) buf);
2232 }
2233
2234 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2235 the next byte. */
2236
2237 static char *
2238 write_insn (char *buf, unsigned int insn)
2239 {
2240 md_number_to_chars (buf, insn, 4);
2241 return buf + 4;
2242 }
2243
2244 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2245 has length LENGTH. */
2246
2247 static unsigned long
2248 read_compressed_insn (char *buf, unsigned int length)
2249 {
2250 unsigned long insn;
2251 unsigned int i;
2252
2253 insn = 0;
2254 for (i = 0; i < length; i += 2)
2255 {
2256 insn <<= 16;
2257 if (target_big_endian)
2258 insn |= bfd_getb16 ((char *) buf);
2259 else
2260 insn |= bfd_getl16 ((char *) buf);
2261 buf += 2;
2262 }
2263 return insn;
2264 }
2265
2266 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2267 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2268
2269 static char *
2270 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2271 {
2272 unsigned int i;
2273
2274 for (i = 0; i < length; i += 2)
2275 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2276 return buf + length;
2277 }
2278
2279 /* Install INSN at the location specified by its "frag" and "where" fields. */
2280
2281 static void
2282 install_insn (const struct mips_cl_insn *insn)
2283 {
2284 char *f = insn->frag->fr_literal + insn->where;
2285 if (HAVE_CODE_COMPRESSION)
2286 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2287 else
2288 write_insn (f, insn->insn_opcode);
2289 mips_record_compressed_mode ();
2290 }
2291
2292 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2293 and install the opcode in the new location. */
2294
2295 static void
2296 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2297 {
2298 size_t i;
2299
2300 insn->frag = frag;
2301 insn->where = where;
2302 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2303 if (insn->fixp[i] != NULL)
2304 {
2305 insn->fixp[i]->fx_frag = frag;
2306 insn->fixp[i]->fx_where = where;
2307 }
2308 install_insn (insn);
2309 }
2310
2311 /* Add INSN to the end of the output. */
2312
2313 static void
2314 add_fixed_insn (struct mips_cl_insn *insn)
2315 {
2316 char *f = frag_more (insn_length (insn));
2317 move_insn (insn, frag_now, f - frag_now->fr_literal);
2318 }
2319
2320 /* Start a variant frag and move INSN to the start of the variant part,
2321 marking it as fixed. The other arguments are as for frag_var. */
2322
2323 static void
2324 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2325 relax_substateT subtype, symbolS *symbol, offsetT offset)
2326 {
2327 frag_grow (max_chars);
2328 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2329 insn->fixed_p = 1;
2330 frag_var (rs_machine_dependent, max_chars, var,
2331 subtype, symbol, offset, NULL);
2332 }
2333
2334 /* Insert N copies of INSN into the history buffer, starting at
2335 position FIRST. Neither FIRST nor N need to be clipped. */
2336
2337 static void
2338 insert_into_history (unsigned int first, unsigned int n,
2339 const struct mips_cl_insn *insn)
2340 {
2341 if (mips_relax.sequence != 2)
2342 {
2343 unsigned int i;
2344
2345 for (i = ARRAY_SIZE (history); i-- > first;)
2346 if (i >= first + n)
2347 history[i] = history[i - n];
2348 else
2349 history[i] = *insn;
2350 }
2351 }
2352
2353 /* Clear the error in insn_error. */
2354
2355 static void
2356 clear_insn_error (void)
2357 {
2358 memset (&insn_error, 0, sizeof (insn_error));
2359 }
2360
2361 /* Possibly record error message MSG for the current instruction.
2362 If the error is about a particular argument, ARGNUM is the 1-based
2363 number of that argument, otherwise it is 0. FORMAT is the format
2364 of MSG. Return true if MSG was used, false if the current message
2365 was kept. */
2366
2367 static bfd_boolean
2368 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2369 const char *msg)
2370 {
2371 if (argnum == 0)
2372 {
2373 /* Give priority to errors against specific arguments, and to
2374 the first whole-instruction message. */
2375 if (insn_error.msg)
2376 return FALSE;
2377 }
2378 else
2379 {
2380 /* Keep insn_error if it is against a later argument. */
2381 if (argnum < insn_error.min_argnum)
2382 return FALSE;
2383
2384 /* If both errors are against the same argument but are different,
2385 give up on reporting a specific error for this argument.
2386 See the comment about mips_insn_error for details. */
2387 if (argnum == insn_error.min_argnum
2388 && insn_error.msg
2389 && strcmp (insn_error.msg, msg) != 0)
2390 {
2391 insn_error.msg = 0;
2392 insn_error.min_argnum += 1;
2393 return FALSE;
2394 }
2395 }
2396 insn_error.min_argnum = argnum;
2397 insn_error.format = format;
2398 insn_error.msg = msg;
2399 return TRUE;
2400 }
2401
2402 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2403 as for set_insn_error_format. */
2404
2405 static void
2406 set_insn_error (int argnum, const char *msg)
2407 {
2408 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2409 }
2410
2411 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2412 as for set_insn_error_format. */
2413
2414 static void
2415 set_insn_error_i (int argnum, const char *msg, int i)
2416 {
2417 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2418 insn_error.u.i = i;
2419 }
2420
2421 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2422 are as for set_insn_error_format. */
2423
2424 static void
2425 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2426 {
2427 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2428 {
2429 insn_error.u.ss[0] = s1;
2430 insn_error.u.ss[1] = s2;
2431 }
2432 }
2433
2434 /* Report the error in insn_error, which is against assembly code STR. */
2435
2436 static void
2437 report_insn_error (const char *str)
2438 {
2439 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2440
2441 switch (insn_error.format)
2442 {
2443 case ERR_FMT_PLAIN:
2444 as_bad (msg, str);
2445 break;
2446
2447 case ERR_FMT_I:
2448 as_bad (msg, insn_error.u.i, str);
2449 break;
2450
2451 case ERR_FMT_SS:
2452 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2453 break;
2454 }
2455
2456 free ((char *) msg);
2457 }
2458
2459 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2460 the idea is to make it obvious at a glance that each errata is
2461 included. */
2462
2463 static void
2464 init_vr4120_conflicts (void)
2465 {
2466 #define CONFLICT(FIRST, SECOND) \
2467 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2468
2469 /* Errata 21 - [D]DIV[U] after [D]MACC */
2470 CONFLICT (MACC, DIV);
2471 CONFLICT (DMACC, DIV);
2472
2473 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2474 CONFLICT (DMULT, DMULT);
2475 CONFLICT (DMULT, DMACC);
2476 CONFLICT (DMACC, DMULT);
2477 CONFLICT (DMACC, DMACC);
2478
2479 /* Errata 24 - MT{LO,HI} after [D]MACC */
2480 CONFLICT (MACC, MTHILO);
2481 CONFLICT (DMACC, MTHILO);
2482
2483 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2484 instruction is executed immediately after a MACC or DMACC
2485 instruction, the result of [either instruction] is incorrect." */
2486 CONFLICT (MACC, MULT);
2487 CONFLICT (MACC, DMULT);
2488 CONFLICT (DMACC, MULT);
2489 CONFLICT (DMACC, DMULT);
2490
2491 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2492 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2493 DDIV or DDIVU instruction, the result of the MACC or
2494 DMACC instruction is incorrect.". */
2495 CONFLICT (DMULT, MACC);
2496 CONFLICT (DMULT, DMACC);
2497 CONFLICT (DIV, MACC);
2498 CONFLICT (DIV, DMACC);
2499
2500 #undef CONFLICT
2501 }
2502
2503 struct regname {
2504 const char *name;
2505 unsigned int num;
2506 };
2507
2508 #define RNUM_MASK 0x00000ff
2509 #define RTYPE_MASK 0x0ffff00
2510 #define RTYPE_NUM 0x0000100
2511 #define RTYPE_FPU 0x0000200
2512 #define RTYPE_FCC 0x0000400
2513 #define RTYPE_VEC 0x0000800
2514 #define RTYPE_GP 0x0001000
2515 #define RTYPE_CP0 0x0002000
2516 #define RTYPE_PC 0x0004000
2517 #define RTYPE_ACC 0x0008000
2518 #define RTYPE_CCC 0x0010000
2519 #define RTYPE_VI 0x0020000
2520 #define RTYPE_VF 0x0040000
2521 #define RTYPE_R5900_I 0x0080000
2522 #define RTYPE_R5900_Q 0x0100000
2523 #define RTYPE_R5900_R 0x0200000
2524 #define RTYPE_R5900_ACC 0x0400000
2525 #define RTYPE_MSA 0x0800000
2526 #define RWARN 0x8000000
2527
2528 #define GENERIC_REGISTER_NUMBERS \
2529 {"$0", RTYPE_NUM | 0}, \
2530 {"$1", RTYPE_NUM | 1}, \
2531 {"$2", RTYPE_NUM | 2}, \
2532 {"$3", RTYPE_NUM | 3}, \
2533 {"$4", RTYPE_NUM | 4}, \
2534 {"$5", RTYPE_NUM | 5}, \
2535 {"$6", RTYPE_NUM | 6}, \
2536 {"$7", RTYPE_NUM | 7}, \
2537 {"$8", RTYPE_NUM | 8}, \
2538 {"$9", RTYPE_NUM | 9}, \
2539 {"$10", RTYPE_NUM | 10}, \
2540 {"$11", RTYPE_NUM | 11}, \
2541 {"$12", RTYPE_NUM | 12}, \
2542 {"$13", RTYPE_NUM | 13}, \
2543 {"$14", RTYPE_NUM | 14}, \
2544 {"$15", RTYPE_NUM | 15}, \
2545 {"$16", RTYPE_NUM | 16}, \
2546 {"$17", RTYPE_NUM | 17}, \
2547 {"$18", RTYPE_NUM | 18}, \
2548 {"$19", RTYPE_NUM | 19}, \
2549 {"$20", RTYPE_NUM | 20}, \
2550 {"$21", RTYPE_NUM | 21}, \
2551 {"$22", RTYPE_NUM | 22}, \
2552 {"$23", RTYPE_NUM | 23}, \
2553 {"$24", RTYPE_NUM | 24}, \
2554 {"$25", RTYPE_NUM | 25}, \
2555 {"$26", RTYPE_NUM | 26}, \
2556 {"$27", RTYPE_NUM | 27}, \
2557 {"$28", RTYPE_NUM | 28}, \
2558 {"$29", RTYPE_NUM | 29}, \
2559 {"$30", RTYPE_NUM | 30}, \
2560 {"$31", RTYPE_NUM | 31}
2561
2562 #define FPU_REGISTER_NAMES \
2563 {"$f0", RTYPE_FPU | 0}, \
2564 {"$f1", RTYPE_FPU | 1}, \
2565 {"$f2", RTYPE_FPU | 2}, \
2566 {"$f3", RTYPE_FPU | 3}, \
2567 {"$f4", RTYPE_FPU | 4}, \
2568 {"$f5", RTYPE_FPU | 5}, \
2569 {"$f6", RTYPE_FPU | 6}, \
2570 {"$f7", RTYPE_FPU | 7}, \
2571 {"$f8", RTYPE_FPU | 8}, \
2572 {"$f9", RTYPE_FPU | 9}, \
2573 {"$f10", RTYPE_FPU | 10}, \
2574 {"$f11", RTYPE_FPU | 11}, \
2575 {"$f12", RTYPE_FPU | 12}, \
2576 {"$f13", RTYPE_FPU | 13}, \
2577 {"$f14", RTYPE_FPU | 14}, \
2578 {"$f15", RTYPE_FPU | 15}, \
2579 {"$f16", RTYPE_FPU | 16}, \
2580 {"$f17", RTYPE_FPU | 17}, \
2581 {"$f18", RTYPE_FPU | 18}, \
2582 {"$f19", RTYPE_FPU | 19}, \
2583 {"$f20", RTYPE_FPU | 20}, \
2584 {"$f21", RTYPE_FPU | 21}, \
2585 {"$f22", RTYPE_FPU | 22}, \
2586 {"$f23", RTYPE_FPU | 23}, \
2587 {"$f24", RTYPE_FPU | 24}, \
2588 {"$f25", RTYPE_FPU | 25}, \
2589 {"$f26", RTYPE_FPU | 26}, \
2590 {"$f27", RTYPE_FPU | 27}, \
2591 {"$f28", RTYPE_FPU | 28}, \
2592 {"$f29", RTYPE_FPU | 29}, \
2593 {"$f30", RTYPE_FPU | 30}, \
2594 {"$f31", RTYPE_FPU | 31}
2595
2596 #define FPU_CONDITION_CODE_NAMES \
2597 {"$fcc0", RTYPE_FCC | 0}, \
2598 {"$fcc1", RTYPE_FCC | 1}, \
2599 {"$fcc2", RTYPE_FCC | 2}, \
2600 {"$fcc3", RTYPE_FCC | 3}, \
2601 {"$fcc4", RTYPE_FCC | 4}, \
2602 {"$fcc5", RTYPE_FCC | 5}, \
2603 {"$fcc6", RTYPE_FCC | 6}, \
2604 {"$fcc7", RTYPE_FCC | 7}
2605
2606 #define COPROC_CONDITION_CODE_NAMES \
2607 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2608 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2609 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2610 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2611 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2612 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2613 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2614 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2615
2616 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2617 {"$a4", RTYPE_GP | 8}, \
2618 {"$a5", RTYPE_GP | 9}, \
2619 {"$a6", RTYPE_GP | 10}, \
2620 {"$a7", RTYPE_GP | 11}, \
2621 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2622 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2623 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2624 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2625 {"$t0", RTYPE_GP | 12}, \
2626 {"$t1", RTYPE_GP | 13}, \
2627 {"$t2", RTYPE_GP | 14}, \
2628 {"$t3", RTYPE_GP | 15}
2629
2630 #define O32_SYMBOLIC_REGISTER_NAMES \
2631 {"$t0", RTYPE_GP | 8}, \
2632 {"$t1", RTYPE_GP | 9}, \
2633 {"$t2", RTYPE_GP | 10}, \
2634 {"$t3", RTYPE_GP | 11}, \
2635 {"$t4", RTYPE_GP | 12}, \
2636 {"$t5", RTYPE_GP | 13}, \
2637 {"$t6", RTYPE_GP | 14}, \
2638 {"$t7", RTYPE_GP | 15}, \
2639 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2640 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2641 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2642 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2643
2644 /* Remaining symbolic register names */
2645 #define SYMBOLIC_REGISTER_NAMES \
2646 {"$zero", RTYPE_GP | 0}, \
2647 {"$at", RTYPE_GP | 1}, \
2648 {"$AT", RTYPE_GP | 1}, \
2649 {"$v0", RTYPE_GP | 2}, \
2650 {"$v1", RTYPE_GP | 3}, \
2651 {"$a0", RTYPE_GP | 4}, \
2652 {"$a1", RTYPE_GP | 5}, \
2653 {"$a2", RTYPE_GP | 6}, \
2654 {"$a3", RTYPE_GP | 7}, \
2655 {"$s0", RTYPE_GP | 16}, \
2656 {"$s1", RTYPE_GP | 17}, \
2657 {"$s2", RTYPE_GP | 18}, \
2658 {"$s3", RTYPE_GP | 19}, \
2659 {"$s4", RTYPE_GP | 20}, \
2660 {"$s5", RTYPE_GP | 21}, \
2661 {"$s6", RTYPE_GP | 22}, \
2662 {"$s7", RTYPE_GP | 23}, \
2663 {"$t8", RTYPE_GP | 24}, \
2664 {"$t9", RTYPE_GP | 25}, \
2665 {"$k0", RTYPE_GP | 26}, \
2666 {"$kt0", RTYPE_GP | 26}, \
2667 {"$k1", RTYPE_GP | 27}, \
2668 {"$kt1", RTYPE_GP | 27}, \
2669 {"$gp", RTYPE_GP | 28}, \
2670 {"$sp", RTYPE_GP | 29}, \
2671 {"$s8", RTYPE_GP | 30}, \
2672 {"$fp", RTYPE_GP | 30}, \
2673 {"$ra", RTYPE_GP | 31}
2674
2675 #define MIPS16_SPECIAL_REGISTER_NAMES \
2676 {"$pc", RTYPE_PC | 0}
2677
2678 #define MDMX_VECTOR_REGISTER_NAMES \
2679 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2680 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2681 {"$v2", RTYPE_VEC | 2}, \
2682 {"$v3", RTYPE_VEC | 3}, \
2683 {"$v4", RTYPE_VEC | 4}, \
2684 {"$v5", RTYPE_VEC | 5}, \
2685 {"$v6", RTYPE_VEC | 6}, \
2686 {"$v7", RTYPE_VEC | 7}, \
2687 {"$v8", RTYPE_VEC | 8}, \
2688 {"$v9", RTYPE_VEC | 9}, \
2689 {"$v10", RTYPE_VEC | 10}, \
2690 {"$v11", RTYPE_VEC | 11}, \
2691 {"$v12", RTYPE_VEC | 12}, \
2692 {"$v13", RTYPE_VEC | 13}, \
2693 {"$v14", RTYPE_VEC | 14}, \
2694 {"$v15", RTYPE_VEC | 15}, \
2695 {"$v16", RTYPE_VEC | 16}, \
2696 {"$v17", RTYPE_VEC | 17}, \
2697 {"$v18", RTYPE_VEC | 18}, \
2698 {"$v19", RTYPE_VEC | 19}, \
2699 {"$v20", RTYPE_VEC | 20}, \
2700 {"$v21", RTYPE_VEC | 21}, \
2701 {"$v22", RTYPE_VEC | 22}, \
2702 {"$v23", RTYPE_VEC | 23}, \
2703 {"$v24", RTYPE_VEC | 24}, \
2704 {"$v25", RTYPE_VEC | 25}, \
2705 {"$v26", RTYPE_VEC | 26}, \
2706 {"$v27", RTYPE_VEC | 27}, \
2707 {"$v28", RTYPE_VEC | 28}, \
2708 {"$v29", RTYPE_VEC | 29}, \
2709 {"$v30", RTYPE_VEC | 30}, \
2710 {"$v31", RTYPE_VEC | 31}
2711
2712 #define R5900_I_NAMES \
2713 {"$I", RTYPE_R5900_I | 0}
2714
2715 #define R5900_Q_NAMES \
2716 {"$Q", RTYPE_R5900_Q | 0}
2717
2718 #define R5900_R_NAMES \
2719 {"$R", RTYPE_R5900_R | 0}
2720
2721 #define R5900_ACC_NAMES \
2722 {"$ACC", RTYPE_R5900_ACC | 0 }
2723
2724 #define MIPS_DSP_ACCUMULATOR_NAMES \
2725 {"$ac0", RTYPE_ACC | 0}, \
2726 {"$ac1", RTYPE_ACC | 1}, \
2727 {"$ac2", RTYPE_ACC | 2}, \
2728 {"$ac3", RTYPE_ACC | 3}
2729
2730 static const struct regname reg_names[] = {
2731 GENERIC_REGISTER_NUMBERS,
2732 FPU_REGISTER_NAMES,
2733 FPU_CONDITION_CODE_NAMES,
2734 COPROC_CONDITION_CODE_NAMES,
2735
2736 /* The $txx registers depends on the abi,
2737 these will be added later into the symbol table from
2738 one of the tables below once mips_abi is set after
2739 parsing of arguments from the command line. */
2740 SYMBOLIC_REGISTER_NAMES,
2741
2742 MIPS16_SPECIAL_REGISTER_NAMES,
2743 MDMX_VECTOR_REGISTER_NAMES,
2744 R5900_I_NAMES,
2745 R5900_Q_NAMES,
2746 R5900_R_NAMES,
2747 R5900_ACC_NAMES,
2748 MIPS_DSP_ACCUMULATOR_NAMES,
2749 {0, 0}
2750 };
2751
2752 static const struct regname reg_names_o32[] = {
2753 O32_SYMBOLIC_REGISTER_NAMES,
2754 {0, 0}
2755 };
2756
2757 static const struct regname reg_names_n32n64[] = {
2758 N32N64_SYMBOLIC_REGISTER_NAMES,
2759 {0, 0}
2760 };
2761
2762 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2763 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2764 of these register symbols, return the associated vector register,
2765 otherwise return SYMVAL itself. */
2766
2767 static unsigned int
2768 mips_prefer_vec_regno (unsigned int symval)
2769 {
2770 if ((symval & -2) == (RTYPE_GP | 2))
2771 return RTYPE_VEC | (symval & 1);
2772 return symval;
2773 }
2774
2775 /* Return true if string [S, E) is a valid register name, storing its
2776 symbol value in *SYMVAL_PTR if so. */
2777
2778 static bfd_boolean
2779 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2780 {
2781 char save_c;
2782 symbolS *symbol;
2783
2784 /* Terminate name. */
2785 save_c = *e;
2786 *e = '\0';
2787
2788 /* Look up the name. */
2789 symbol = symbol_find (s);
2790 *e = save_c;
2791
2792 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2793 return FALSE;
2794
2795 *symval_ptr = S_GET_VALUE (symbol);
2796 return TRUE;
2797 }
2798
2799 /* Return true if the string at *SPTR is a valid register name. Allow it
2800 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2801 is nonnull.
2802
2803 When returning true, move *SPTR past the register, store the
2804 register's symbol value in *SYMVAL_PTR and the channel mask in
2805 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2806 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2807 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2808
2809 static bfd_boolean
2810 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2811 unsigned int *channels_ptr)
2812 {
2813 char *s, *e, *m;
2814 const char *q;
2815 unsigned int channels, symval, bit;
2816
2817 /* Find end of name. */
2818 s = e = *sptr;
2819 if (is_name_beginner (*e))
2820 ++e;
2821 while (is_part_of_name (*e))
2822 ++e;
2823
2824 channels = 0;
2825 if (!mips_parse_register_1 (s, e, &symval))
2826 {
2827 if (!channels_ptr)
2828 return FALSE;
2829
2830 /* Eat characters from the end of the string that are valid
2831 channel suffixes. The preceding register must be $ACC or
2832 end with a digit, so there is no ambiguity. */
2833 bit = 1;
2834 m = e;
2835 for (q = "wzyx"; *q; q++, bit <<= 1)
2836 if (m > s && m[-1] == *q)
2837 {
2838 --m;
2839 channels |= bit;
2840 }
2841
2842 if (channels == 0
2843 || !mips_parse_register_1 (s, m, &symval)
2844 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2845 return FALSE;
2846 }
2847
2848 *sptr = e;
2849 *symval_ptr = symval;
2850 if (channels_ptr)
2851 *channels_ptr = channels;
2852 return TRUE;
2853 }
2854
2855 /* Check if SPTR points at a valid register specifier according to TYPES.
2856 If so, then return 1, advance S to consume the specifier and store
2857 the register's number in REGNOP, otherwise return 0. */
2858
2859 static int
2860 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2861 {
2862 unsigned int regno;
2863
2864 if (mips_parse_register (s, &regno, NULL))
2865 {
2866 if (types & RTYPE_VEC)
2867 regno = mips_prefer_vec_regno (regno);
2868 if (regno & types)
2869 regno &= RNUM_MASK;
2870 else
2871 regno = ~0;
2872 }
2873 else
2874 {
2875 if (types & RWARN)
2876 as_warn (_("unrecognized register name `%s'"), *s);
2877 regno = ~0;
2878 }
2879 if (regnop)
2880 *regnop = regno;
2881 return regno <= RNUM_MASK;
2882 }
2883
2884 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2885 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2886
2887 static char *
2888 mips_parse_vu0_channels (char *s, unsigned int *channels)
2889 {
2890 unsigned int i;
2891
2892 *channels = 0;
2893 for (i = 0; i < 4; i++)
2894 if (*s == "xyzw"[i])
2895 {
2896 *channels |= 1 << (3 - i);
2897 ++s;
2898 }
2899 return s;
2900 }
2901
2902 /* Token types for parsed operand lists. */
2903 enum mips_operand_token_type {
2904 /* A plain register, e.g. $f2. */
2905 OT_REG,
2906
2907 /* A 4-bit XYZW channel mask. */
2908 OT_CHANNELS,
2909
2910 /* A constant vector index, e.g. [1]. */
2911 OT_INTEGER_INDEX,
2912
2913 /* A register vector index, e.g. [$2]. */
2914 OT_REG_INDEX,
2915
2916 /* A continuous range of registers, e.g. $s0-$s4. */
2917 OT_REG_RANGE,
2918
2919 /* A (possibly relocated) expression. */
2920 OT_INTEGER,
2921
2922 /* A floating-point value. */
2923 OT_FLOAT,
2924
2925 /* A single character. This can be '(', ')' or ',', but '(' only appears
2926 before OT_REGs. */
2927 OT_CHAR,
2928
2929 /* A doubled character, either "--" or "++". */
2930 OT_DOUBLE_CHAR,
2931
2932 /* The end of the operand list. */
2933 OT_END
2934 };
2935
2936 /* A parsed operand token. */
2937 struct mips_operand_token
2938 {
2939 /* The type of token. */
2940 enum mips_operand_token_type type;
2941 union
2942 {
2943 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2944 unsigned int regno;
2945
2946 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2947 unsigned int channels;
2948
2949 /* The integer value of an OT_INTEGER_INDEX. */
2950 addressT index;
2951
2952 /* The two register symbol values involved in an OT_REG_RANGE. */
2953 struct {
2954 unsigned int regno1;
2955 unsigned int regno2;
2956 } reg_range;
2957
2958 /* The value of an OT_INTEGER. The value is represented as an
2959 expression and the relocation operators that were applied to
2960 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2961 relocation operators were used. */
2962 struct {
2963 expressionS value;
2964 bfd_reloc_code_real_type relocs[3];
2965 } integer;
2966
2967 /* The binary data for an OT_FLOAT constant, and the number of bytes
2968 in the constant. */
2969 struct {
2970 unsigned char data[8];
2971 int length;
2972 } flt;
2973
2974 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2975 char ch;
2976 } u;
2977 };
2978
2979 /* An obstack used to construct lists of mips_operand_tokens. */
2980 static struct obstack mips_operand_tokens;
2981
2982 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2983
2984 static void
2985 mips_add_token (struct mips_operand_token *token,
2986 enum mips_operand_token_type type)
2987 {
2988 token->type = type;
2989 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2990 }
2991
2992 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2993 and OT_REG tokens for them if so, and return a pointer to the first
2994 unconsumed character. Return null otherwise. */
2995
2996 static char *
2997 mips_parse_base_start (char *s)
2998 {
2999 struct mips_operand_token token;
3000 unsigned int regno, channels;
3001 bfd_boolean decrement_p;
3002
3003 if (*s != '(')
3004 return 0;
3005
3006 ++s;
3007 SKIP_SPACE_TABS (s);
3008
3009 /* Only match "--" as part of a base expression. In other contexts "--X"
3010 is a double negative. */
3011 decrement_p = (s[0] == '-' && s[1] == '-');
3012 if (decrement_p)
3013 {
3014 s += 2;
3015 SKIP_SPACE_TABS (s);
3016 }
3017
3018 /* Allow a channel specifier because that leads to better error messages
3019 than treating something like "$vf0x++" as an expression. */
3020 if (!mips_parse_register (&s, &regno, &channels))
3021 return 0;
3022
3023 token.u.ch = '(';
3024 mips_add_token (&token, OT_CHAR);
3025
3026 if (decrement_p)
3027 {
3028 token.u.ch = '-';
3029 mips_add_token (&token, OT_DOUBLE_CHAR);
3030 }
3031
3032 token.u.regno = regno;
3033 mips_add_token (&token, OT_REG);
3034
3035 if (channels)
3036 {
3037 token.u.channels = channels;
3038 mips_add_token (&token, OT_CHANNELS);
3039 }
3040
3041 /* For consistency, only match "++" as part of base expressions too. */
3042 SKIP_SPACE_TABS (s);
3043 if (s[0] == '+' && s[1] == '+')
3044 {
3045 s += 2;
3046 token.u.ch = '+';
3047 mips_add_token (&token, OT_DOUBLE_CHAR);
3048 }
3049
3050 return s;
3051 }
3052
3053 /* Parse one or more tokens from S. Return a pointer to the first
3054 unconsumed character on success. Return null if an error was found
3055 and store the error text in insn_error. FLOAT_FORMAT is as for
3056 mips_parse_arguments. */
3057
3058 static char *
3059 mips_parse_argument_token (char *s, char float_format)
3060 {
3061 char *end, *save_in;
3062 const char *err;
3063 unsigned int regno1, regno2, channels;
3064 struct mips_operand_token token;
3065
3066 /* First look for "($reg", since we want to treat that as an
3067 OT_CHAR and OT_REG rather than an expression. */
3068 end = mips_parse_base_start (s);
3069 if (end)
3070 return end;
3071
3072 /* Handle other characters that end up as OT_CHARs. */
3073 if (*s == ')' || *s == ',')
3074 {
3075 token.u.ch = *s;
3076 mips_add_token (&token, OT_CHAR);
3077 ++s;
3078 return s;
3079 }
3080
3081 /* Handle tokens that start with a register. */
3082 if (mips_parse_register (&s, &regno1, &channels))
3083 {
3084 if (channels)
3085 {
3086 /* A register and a VU0 channel suffix. */
3087 token.u.regno = regno1;
3088 mips_add_token (&token, OT_REG);
3089
3090 token.u.channels = channels;
3091 mips_add_token (&token, OT_CHANNELS);
3092 return s;
3093 }
3094
3095 SKIP_SPACE_TABS (s);
3096 if (*s == '-')
3097 {
3098 /* A register range. */
3099 ++s;
3100 SKIP_SPACE_TABS (s);
3101 if (!mips_parse_register (&s, &regno2, NULL))
3102 {
3103 set_insn_error (0, _("invalid register range"));
3104 return 0;
3105 }
3106
3107 token.u.reg_range.regno1 = regno1;
3108 token.u.reg_range.regno2 = regno2;
3109 mips_add_token (&token, OT_REG_RANGE);
3110 return s;
3111 }
3112
3113 /* Add the register itself. */
3114 token.u.regno = regno1;
3115 mips_add_token (&token, OT_REG);
3116
3117 /* Check for a vector index. */
3118 if (*s == '[')
3119 {
3120 ++s;
3121 SKIP_SPACE_TABS (s);
3122 if (mips_parse_register (&s, &token.u.regno, NULL))
3123 mips_add_token (&token, OT_REG_INDEX);
3124 else
3125 {
3126 expressionS element;
3127
3128 my_getExpression (&element, s);
3129 if (element.X_op != O_constant)
3130 {
3131 set_insn_error (0, _("vector element must be constant"));
3132 return 0;
3133 }
3134 s = expr_end;
3135 token.u.index = element.X_add_number;
3136 mips_add_token (&token, OT_INTEGER_INDEX);
3137 }
3138 SKIP_SPACE_TABS (s);
3139 if (*s != ']')
3140 {
3141 set_insn_error (0, _("missing `]'"));
3142 return 0;
3143 }
3144 ++s;
3145 }
3146 return s;
3147 }
3148
3149 if (float_format)
3150 {
3151 /* First try to treat expressions as floats. */
3152 save_in = input_line_pointer;
3153 input_line_pointer = s;
3154 err = md_atof (float_format, (char *) token.u.flt.data,
3155 &token.u.flt.length);
3156 end = input_line_pointer;
3157 input_line_pointer = save_in;
3158 if (err && *err)
3159 {
3160 set_insn_error (0, err);
3161 return 0;
3162 }
3163 if (s != end)
3164 {
3165 mips_add_token (&token, OT_FLOAT);
3166 return end;
3167 }
3168 }
3169
3170 /* Treat everything else as an integer expression. */
3171 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3172 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3173 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3174 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3175 s = expr_end;
3176 mips_add_token (&token, OT_INTEGER);
3177 return s;
3178 }
3179
3180 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3181 if expressions should be treated as 32-bit floating-point constants,
3182 'd' if they should be treated as 64-bit floating-point constants,
3183 or 0 if they should be treated as integer expressions (the usual case).
3184
3185 Return a list of tokens on success, otherwise return 0. The caller
3186 must obstack_free the list after use. */
3187
3188 static struct mips_operand_token *
3189 mips_parse_arguments (char *s, char float_format)
3190 {
3191 struct mips_operand_token token;
3192
3193 SKIP_SPACE_TABS (s);
3194 while (*s)
3195 {
3196 s = mips_parse_argument_token (s, float_format);
3197 if (!s)
3198 {
3199 obstack_free (&mips_operand_tokens,
3200 obstack_finish (&mips_operand_tokens));
3201 return 0;
3202 }
3203 SKIP_SPACE_TABS (s);
3204 }
3205 mips_add_token (&token, OT_END);
3206 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3207 }
3208
3209 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3210 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3211
3212 static bfd_boolean
3213 is_opcode_valid (const struct mips_opcode *mo)
3214 {
3215 int isa = mips_opts.isa;
3216 int ase = mips_opts.ase;
3217 int fp_s, fp_d;
3218 unsigned int i;
3219
3220 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3221 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3222 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3223 ase |= mips_ases[i].flags64;
3224
3225 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3226 return FALSE;
3227
3228 /* Check whether the instruction or macro requires single-precision or
3229 double-precision floating-point support. Note that this information is
3230 stored differently in the opcode table for insns and macros. */
3231 if (mo->pinfo == INSN_MACRO)
3232 {
3233 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3234 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3235 }
3236 else
3237 {
3238 fp_s = mo->pinfo & FP_S;
3239 fp_d = mo->pinfo & FP_D;
3240 }
3241
3242 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3243 return FALSE;
3244
3245 if (fp_s && mips_opts.soft_float)
3246 return FALSE;
3247
3248 return TRUE;
3249 }
3250
3251 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3252 selected ISA and architecture. */
3253
3254 static bfd_boolean
3255 is_opcode_valid_16 (const struct mips_opcode *mo)
3256 {
3257 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3258 }
3259
3260 /* Return TRUE if the size of the microMIPS opcode MO matches one
3261 explicitly requested. Always TRUE in the standard MIPS mode. */
3262
3263 static bfd_boolean
3264 is_size_valid (const struct mips_opcode *mo)
3265 {
3266 if (!mips_opts.micromips)
3267 return TRUE;
3268
3269 if (mips_opts.insn32)
3270 {
3271 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3272 return FALSE;
3273 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3274 return FALSE;
3275 }
3276 if (!forced_insn_length)
3277 return TRUE;
3278 if (mo->pinfo == INSN_MACRO)
3279 return FALSE;
3280 return forced_insn_length == micromips_insn_length (mo);
3281 }
3282
3283 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3284 of the preceding instruction. Always TRUE in the standard MIPS mode.
3285
3286 We don't accept macros in 16-bit delay slots to avoid a case where
3287 a macro expansion fails because it relies on a preceding 32-bit real
3288 instruction to have matched and does not handle the operands correctly.
3289 The only macros that may expand to 16-bit instructions are JAL that
3290 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3291 and BGT (that likewise cannot be placed in a delay slot) that decay to
3292 a NOP. In all these cases the macros precede any corresponding real
3293 instruction definitions in the opcode table, so they will match in the
3294 second pass where the size of the delay slot is ignored and therefore
3295 produce correct code. */
3296
3297 static bfd_boolean
3298 is_delay_slot_valid (const struct mips_opcode *mo)
3299 {
3300 if (!mips_opts.micromips)
3301 return TRUE;
3302
3303 if (mo->pinfo == INSN_MACRO)
3304 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3305 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3306 && micromips_insn_length (mo) != 4)
3307 return FALSE;
3308 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3309 && micromips_insn_length (mo) != 2)
3310 return FALSE;
3311
3312 return TRUE;
3313 }
3314
3315 /* For consistency checking, verify that all bits of OPCODE are specified
3316 either by the match/mask part of the instruction definition, or by the
3317 operand list. Also build up a list of operands in OPERANDS.
3318
3319 INSN_BITS says which bits of the instruction are significant.
3320 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3321 provides the mips_operand description of each operand. DECODE_OPERAND
3322 is null for MIPS16 instructions. */
3323
3324 static int
3325 validate_mips_insn (const struct mips_opcode *opcode,
3326 unsigned long insn_bits,
3327 const struct mips_operand *(*decode_operand) (const char *),
3328 struct mips_operand_array *operands)
3329 {
3330 const char *s;
3331 unsigned long used_bits, doubled, undefined, opno, mask;
3332 const struct mips_operand *operand;
3333
3334 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3335 if ((mask & opcode->match) != opcode->match)
3336 {
3337 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3338 opcode->name, opcode->args);
3339 return 0;
3340 }
3341 used_bits = 0;
3342 opno = 0;
3343 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3344 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3345 for (s = opcode->args; *s; ++s)
3346 switch (*s)
3347 {
3348 case ',':
3349 case '(':
3350 case ')':
3351 break;
3352
3353 case '#':
3354 s++;
3355 break;
3356
3357 default:
3358 if (!decode_operand)
3359 operand = decode_mips16_operand (*s, FALSE);
3360 else
3361 operand = decode_operand (s);
3362 if (!operand && opcode->pinfo != INSN_MACRO)
3363 {
3364 as_bad (_("internal: unknown operand type: %s %s"),
3365 opcode->name, opcode->args);
3366 return 0;
3367 }
3368 gas_assert (opno < MAX_OPERANDS);
3369 operands->operand[opno] = operand;
3370 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3371 {
3372 used_bits = mips_insert_operand (operand, used_bits, -1);
3373 if (operand->type == OP_MDMX_IMM_REG)
3374 /* Bit 5 is the format selector (OB vs QH). The opcode table
3375 has separate entries for each format. */
3376 used_bits &= ~(1 << (operand->lsb + 5));
3377 if (operand->type == OP_ENTRY_EXIT_LIST)
3378 used_bits &= ~(mask & 0x700);
3379 }
3380 /* Skip prefix characters. */
3381 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3382 ++s;
3383 opno += 1;
3384 break;
3385 }
3386 doubled = used_bits & mask & insn_bits;
3387 if (doubled)
3388 {
3389 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3390 " %s %s"), doubled, opcode->name, opcode->args);
3391 return 0;
3392 }
3393 used_bits |= mask;
3394 undefined = ~used_bits & insn_bits;
3395 if (opcode->pinfo != INSN_MACRO && undefined)
3396 {
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3398 undefined, opcode->name, opcode->args);
3399 return 0;
3400 }
3401 used_bits &= ~insn_bits;
3402 if (used_bits)
3403 {
3404 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3405 used_bits, opcode->name, opcode->args);
3406 return 0;
3407 }
3408 return 1;
3409 }
3410
3411 /* The MIPS16 version of validate_mips_insn. */
3412
3413 static int
3414 validate_mips16_insn (const struct mips_opcode *opcode,
3415 struct mips_operand_array *operands)
3416 {
3417 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3418 {
3419 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3420 instruction. Use TMP to describe the full instruction. */
3421 struct mips_opcode tmp;
3422
3423 tmp = *opcode;
3424 tmp.match <<= 16;
3425 tmp.mask <<= 16;
3426 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3427 }
3428 return validate_mips_insn (opcode, 0xffff, 0, operands);
3429 }
3430
3431 /* The microMIPS version of validate_mips_insn. */
3432
3433 static int
3434 validate_micromips_insn (const struct mips_opcode *opc,
3435 struct mips_operand_array *operands)
3436 {
3437 unsigned long insn_bits;
3438 unsigned long major;
3439 unsigned int length;
3440
3441 if (opc->pinfo == INSN_MACRO)
3442 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3443 operands);
3444
3445 length = micromips_insn_length (opc);
3446 if (length != 2 && length != 4)
3447 {
3448 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3449 "%s %s"), length, opc->name, opc->args);
3450 return 0;
3451 }
3452 major = opc->match >> (10 + 8 * (length - 2));
3453 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3454 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3455 {
3456 as_bad (_("internal error: bad microMIPS opcode "
3457 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3458 return 0;
3459 }
3460
3461 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3462 insn_bits = 1 << 4 * length;
3463 insn_bits <<= 4 * length;
3464 insn_bits -= 1;
3465 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3466 operands);
3467 }
3468
3469 /* This function is called once, at assembler startup time. It should set up
3470 all the tables, etc. that the MD part of the assembler will need. */
3471
3472 void
3473 md_begin (void)
3474 {
3475 const char *retval = NULL;
3476 int i = 0;
3477 int broken = 0;
3478
3479 if (mips_pic != NO_PIC)
3480 {
3481 if (g_switch_seen && g_switch_value != 0)
3482 as_bad (_("-G may not be used in position-independent code"));
3483 g_switch_value = 0;
3484 }
3485 else if (mips_abicalls)
3486 {
3487 if (g_switch_seen && g_switch_value != 0)
3488 as_bad (_("-G may not be used with abicalls"));
3489 g_switch_value = 0;
3490 }
3491
3492 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3493 as_warn (_("could not set architecture and machine"));
3494
3495 op_hash = hash_new ();
3496
3497 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3498 for (i = 0; i < NUMOPCODES;)
3499 {
3500 const char *name = mips_opcodes[i].name;
3501
3502 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3503 if (retval != NULL)
3504 {
3505 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3506 mips_opcodes[i].name, retval);
3507 /* Probably a memory allocation problem? Give up now. */
3508 as_fatal (_("broken assembler, no assembly attempted"));
3509 }
3510 do
3511 {
3512 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3513 decode_mips_operand, &mips_operands[i]))
3514 broken = 1;
3515 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3516 {
3517 create_insn (&nop_insn, mips_opcodes + i);
3518 if (mips_fix_loongson2f_nop)
3519 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3520 nop_insn.fixed_p = 1;
3521 }
3522 ++i;
3523 }
3524 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3525 }
3526
3527 mips16_op_hash = hash_new ();
3528 mips16_operands = XCNEWVEC (struct mips_operand_array,
3529 bfd_mips16_num_opcodes);
3530
3531 i = 0;
3532 while (i < bfd_mips16_num_opcodes)
3533 {
3534 const char *name = mips16_opcodes[i].name;
3535
3536 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3537 if (retval != NULL)
3538 as_fatal (_("internal: can't hash `%s': %s"),
3539 mips16_opcodes[i].name, retval);
3540 do
3541 {
3542 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3543 broken = 1;
3544 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3545 {
3546 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3547 mips16_nop_insn.fixed_p = 1;
3548 }
3549 ++i;
3550 }
3551 while (i < bfd_mips16_num_opcodes
3552 && strcmp (mips16_opcodes[i].name, name) == 0);
3553 }
3554
3555 micromips_op_hash = hash_new ();
3556 micromips_operands = XCNEWVEC (struct mips_operand_array,
3557 bfd_micromips_num_opcodes);
3558
3559 i = 0;
3560 while (i < bfd_micromips_num_opcodes)
3561 {
3562 const char *name = micromips_opcodes[i].name;
3563
3564 retval = hash_insert (micromips_op_hash, name,
3565 (void *) &micromips_opcodes[i]);
3566 if (retval != NULL)
3567 as_fatal (_("internal: can't hash `%s': %s"),
3568 micromips_opcodes[i].name, retval);
3569 do
3570 {
3571 struct mips_cl_insn *micromips_nop_insn;
3572
3573 if (!validate_micromips_insn (&micromips_opcodes[i],
3574 &micromips_operands[i]))
3575 broken = 1;
3576
3577 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3578 {
3579 if (micromips_insn_length (micromips_opcodes + i) == 2)
3580 micromips_nop_insn = &micromips_nop16_insn;
3581 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3582 micromips_nop_insn = &micromips_nop32_insn;
3583 else
3584 continue;
3585
3586 if (micromips_nop_insn->insn_mo == NULL
3587 && strcmp (name, "nop") == 0)
3588 {
3589 create_insn (micromips_nop_insn, micromips_opcodes + i);
3590 micromips_nop_insn->fixed_p = 1;
3591 }
3592 }
3593 }
3594 while (++i < bfd_micromips_num_opcodes
3595 && strcmp (micromips_opcodes[i].name, name) == 0);
3596 }
3597
3598 if (broken)
3599 as_fatal (_("broken assembler, no assembly attempted"));
3600
3601 /* We add all the general register names to the symbol table. This
3602 helps us detect invalid uses of them. */
3603 for (i = 0; reg_names[i].name; i++)
3604 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3605 reg_names[i].num, /* & RNUM_MASK, */
3606 &zero_address_frag));
3607 if (HAVE_NEWABI)
3608 for (i = 0; reg_names_n32n64[i].name; i++)
3609 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3610 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3611 &zero_address_frag));
3612 else
3613 for (i = 0; reg_names_o32[i].name; i++)
3614 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3615 reg_names_o32[i].num, /* & RNUM_MASK, */
3616 &zero_address_frag));
3617
3618 for (i = 0; i < 32; i++)
3619 {
3620 char regname[6];
3621
3622 /* R5900 VU0 floating-point register. */
3623 sprintf (regname, "$vf%d", i);
3624 symbol_table_insert (symbol_new (regname, reg_section,
3625 RTYPE_VF | i, &zero_address_frag));
3626
3627 /* R5900 VU0 integer register. */
3628 sprintf (regname, "$vi%d", i);
3629 symbol_table_insert (symbol_new (regname, reg_section,
3630 RTYPE_VI | i, &zero_address_frag));
3631
3632 /* MSA register. */
3633 sprintf (regname, "$w%d", i);
3634 symbol_table_insert (symbol_new (regname, reg_section,
3635 RTYPE_MSA | i, &zero_address_frag));
3636 }
3637
3638 obstack_init (&mips_operand_tokens);
3639
3640 mips_no_prev_insn ();
3641
3642 mips_gprmask = 0;
3643 mips_cprmask[0] = 0;
3644 mips_cprmask[1] = 0;
3645 mips_cprmask[2] = 0;
3646 mips_cprmask[3] = 0;
3647
3648 /* set the default alignment for the text section (2**2) */
3649 record_alignment (text_section, 2);
3650
3651 bfd_set_gp_size (stdoutput, g_switch_value);
3652
3653 /* On a native system other than VxWorks, sections must be aligned
3654 to 16 byte boundaries. When configured for an embedded ELF
3655 target, we don't bother. */
3656 if (strncmp (TARGET_OS, "elf", 3) != 0
3657 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3658 {
3659 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3660 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3661 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3662 }
3663
3664 /* Create a .reginfo section for register masks and a .mdebug
3665 section for debugging information. */
3666 {
3667 segT seg;
3668 subsegT subseg;
3669 flagword flags;
3670 segT sec;
3671
3672 seg = now_seg;
3673 subseg = now_subseg;
3674
3675 /* The ABI says this section should be loaded so that the
3676 running program can access it. However, we don't load it
3677 if we are configured for an embedded target */
3678 flags = SEC_READONLY | SEC_DATA;
3679 if (strncmp (TARGET_OS, "elf", 3) != 0)
3680 flags |= SEC_ALLOC | SEC_LOAD;
3681
3682 if (mips_abi != N64_ABI)
3683 {
3684 sec = subseg_new (".reginfo", (subsegT) 0);
3685
3686 bfd_set_section_flags (stdoutput, sec, flags);
3687 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3688
3689 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3690 }
3691 else
3692 {
3693 /* The 64-bit ABI uses a .MIPS.options section rather than
3694 .reginfo section. */
3695 sec = subseg_new (".MIPS.options", (subsegT) 0);
3696 bfd_set_section_flags (stdoutput, sec, flags);
3697 bfd_set_section_alignment (stdoutput, sec, 3);
3698
3699 /* Set up the option header. */
3700 {
3701 Elf_Internal_Options opthdr;
3702 char *f;
3703
3704 opthdr.kind = ODK_REGINFO;
3705 opthdr.size = (sizeof (Elf_External_Options)
3706 + sizeof (Elf64_External_RegInfo));
3707 opthdr.section = 0;
3708 opthdr.info = 0;
3709 f = frag_more (sizeof (Elf_External_Options));
3710 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3711 (Elf_External_Options *) f);
3712
3713 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3714 }
3715 }
3716
3717 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3718 bfd_set_section_flags (stdoutput, sec,
3719 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3720 bfd_set_section_alignment (stdoutput, sec, 3);
3721 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3722
3723 if (ECOFF_DEBUGGING)
3724 {
3725 sec = subseg_new (".mdebug", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, sec,
3727 SEC_HAS_CONTENTS | SEC_READONLY);
3728 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3729 }
3730 else if (mips_flag_pdr)
3731 {
3732 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3733 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3734 SEC_READONLY | SEC_RELOC
3735 | SEC_DEBUGGING);
3736 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3737 }
3738
3739 subseg_set (seg, subseg);
3740 }
3741
3742 if (mips_fix_vr4120)
3743 init_vr4120_conflicts ();
3744 }
3745
3746 static inline void
3747 fpabi_incompatible_with (int fpabi, const char *what)
3748 {
3749 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3751 }
3752
3753 static inline void
3754 fpabi_requires (int fpabi, const char *what)
3755 {
3756 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3757 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3758 }
3759
3760 /* Check -mabi and register sizes against the specified FP ABI. */
3761 static void
3762 check_fpabi (int fpabi)
3763 {
3764 switch (fpabi)
3765 {
3766 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3767 if (file_mips_opts.soft_float)
3768 fpabi_incompatible_with (fpabi, "softfloat");
3769 else if (file_mips_opts.single_float)
3770 fpabi_incompatible_with (fpabi, "singlefloat");
3771 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3772 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3773 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3774 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3775 break;
3776
3777 case Val_GNU_MIPS_ABI_FP_XX:
3778 if (mips_abi != O32_ABI)
3779 fpabi_requires (fpabi, "-mabi=32");
3780 else if (file_mips_opts.soft_float)
3781 fpabi_incompatible_with (fpabi, "softfloat");
3782 else if (file_mips_opts.single_float)
3783 fpabi_incompatible_with (fpabi, "singlefloat");
3784 else if (file_mips_opts.fp != 0)
3785 fpabi_requires (fpabi, "fp=xx");
3786 break;
3787
3788 case Val_GNU_MIPS_ABI_FP_64A:
3789 case Val_GNU_MIPS_ABI_FP_64:
3790 if (mips_abi != O32_ABI)
3791 fpabi_requires (fpabi, "-mabi=32");
3792 else if (file_mips_opts.soft_float)
3793 fpabi_incompatible_with (fpabi, "softfloat");
3794 else if (file_mips_opts.single_float)
3795 fpabi_incompatible_with (fpabi, "singlefloat");
3796 else if (file_mips_opts.fp != 64)
3797 fpabi_requires (fpabi, "fp=64");
3798 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3799 fpabi_incompatible_with (fpabi, "nooddspreg");
3800 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3801 fpabi_requires (fpabi, "nooddspreg");
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_SINGLE:
3805 if (file_mips_opts.soft_float)
3806 fpabi_incompatible_with (fpabi, "softfloat");
3807 else if (!file_mips_opts.single_float)
3808 fpabi_requires (fpabi, "singlefloat");
3809 break;
3810
3811 case Val_GNU_MIPS_ABI_FP_SOFT:
3812 if (!file_mips_opts.soft_float)
3813 fpabi_requires (fpabi, "softfloat");
3814 break;
3815
3816 case Val_GNU_MIPS_ABI_FP_OLD_64:
3817 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3818 Tag_GNU_MIPS_ABI_FP, fpabi);
3819 break;
3820
3821 case Val_GNU_MIPS_ABI_FP_NAN2008:
3822 /* Silently ignore compatibility value. */
3823 break;
3824
3825 default:
3826 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3827 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3828 break;
3829 }
3830 }
3831
3832 /* Perform consistency checks on the current options. */
3833
3834 static void
3835 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3836 {
3837 /* Check the size of integer registers agrees with the ABI and ISA. */
3838 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3839 as_bad (_("`gp=64' used with a 32-bit processor"));
3840 else if (abi_checks
3841 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3842 as_bad (_("`gp=32' used with a 64-bit ABI"));
3843 else if (abi_checks
3844 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3845 as_bad (_("`gp=64' used with a 32-bit ABI"));
3846
3847 /* Check the size of the float registers agrees with the ABI and ISA. */
3848 switch (opts->fp)
3849 {
3850 case 0:
3851 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3852 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3853 else if (opts->single_float == 1)
3854 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3855 break;
3856 case 64:
3857 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3858 as_bad (_("`fp=64' used with a 32-bit fpu"));
3859 else if (abi_checks
3860 && ABI_NEEDS_32BIT_REGS (mips_abi)
3861 && !ISA_HAS_MXHC1 (opts->isa))
3862 as_warn (_("`fp=64' used with a 32-bit ABI"));
3863 break;
3864 case 32:
3865 if (abi_checks
3866 && ABI_NEEDS_64BIT_REGS (mips_abi))
3867 as_warn (_("`fp=32' used with a 64-bit ABI"));
3868 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3869 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3870 break;
3871 default:
3872 as_bad (_("Unknown size of floating point registers"));
3873 break;
3874 }
3875
3876 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3877 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3878
3879 if (opts->micromips == 1 && opts->mips16 == 1)
3880 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3881 else if (ISA_IS_R6 (opts->isa)
3882 && (opts->micromips == 1
3883 || opts->mips16 == 1))
3884 as_fatal (_("`%s' cannot be used with `%s'"),
3885 opts->micromips ? "micromips" : "mips16",
3886 mips_cpu_info_from_isa (opts->isa)->name);
3887
3888 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3889 as_fatal (_("branch relaxation is not supported in `%s'"),
3890 mips_cpu_info_from_isa (opts->isa)->name);
3891 }
3892
3893 /* Perform consistency checks on the module level options exactly once.
3894 This is a deferred check that happens:
3895 at the first .set directive
3896 or, at the first pseudo op that generates code (inc .dc.a)
3897 or, at the first instruction
3898 or, at the end. */
3899
3900 static void
3901 file_mips_check_options (void)
3902 {
3903 const struct mips_cpu_info *arch_info = 0;
3904
3905 if (file_mips_opts_checked)
3906 return;
3907
3908 /* The following code determines the register size.
3909 Similar code was added to GCC 3.3 (see override_options() in
3910 config/mips/mips.c). The GAS and GCC code should be kept in sync
3911 as much as possible. */
3912
3913 if (file_mips_opts.gp < 0)
3914 {
3915 /* Infer the integer register size from the ABI and processor.
3916 Restrict ourselves to 32-bit registers if that's all the
3917 processor has, or if the ABI cannot handle 64-bit registers. */
3918 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3919 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3920 ? 32 : 64;
3921 }
3922
3923 if (file_mips_opts.fp < 0)
3924 {
3925 /* No user specified float register size.
3926 ??? GAS treats single-float processors as though they had 64-bit
3927 float registers (although it complains when double-precision
3928 instructions are used). As things stand, saying they have 32-bit
3929 registers would lead to spurious "register must be even" messages.
3930 So here we assume float registers are never smaller than the
3931 integer ones. */
3932 if (file_mips_opts.gp == 64)
3933 /* 64-bit integer registers implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
3935 else if ((file_mips_opts.ase & FP64_ASES)
3936 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3937 /* Handle ASEs that require 64-bit float registers, if possible. */
3938 file_mips_opts.fp = 64;
3939 else if (ISA_IS_R6 (mips_opts.isa))
3940 /* R6 implies 64-bit float registers. */
3941 file_mips_opts.fp = 64;
3942 else
3943 /* 32-bit float registers. */
3944 file_mips_opts.fp = 32;
3945 }
3946
3947 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3948
3949 /* Disable operations on odd-numbered floating-point registers by default
3950 when using the FPXX ABI. */
3951 if (file_mips_opts.oddspreg < 0)
3952 {
3953 if (file_mips_opts.fp == 0)
3954 file_mips_opts.oddspreg = 0;
3955 else
3956 file_mips_opts.oddspreg = 1;
3957 }
3958
3959 /* End of GCC-shared inference code. */
3960
3961 /* This flag is set when we have a 64-bit capable CPU but use only
3962 32-bit wide registers. Note that EABI does not use it. */
3963 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3964 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3965 || mips_abi == O32_ABI))
3966 mips_32bitmode = 1;
3967
3968 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3969 as_bad (_("trap exception not supported at ISA 1"));
3970
3971 /* If the selected architecture includes support for ASEs, enable
3972 generation of code for them. */
3973 if (file_mips_opts.mips16 == -1)
3974 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3975 if (file_mips_opts.micromips == -1)
3976 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3977 ? 1 : 0;
3978
3979 if (mips_nan2008 == -1)
3980 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3981 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3982 as_fatal (_("`%s' does not support legacy NaN"),
3983 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3984
3985 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3986 being selected implicitly. */
3987 if (file_mips_opts.fp != 64)
3988 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3989
3990 /* If the user didn't explicitly select or deselect a particular ASE,
3991 use the default setting for the CPU. */
3992 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3993
3994 /* Set up the current options. These may change throughout assembly. */
3995 mips_opts = file_mips_opts;
3996
3997 mips_check_isa_supports_ases ();
3998 mips_check_options (&file_mips_opts, TRUE);
3999 file_mips_opts_checked = TRUE;
4000
4001 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4002 as_warn (_("could not set architecture and machine"));
4003 }
4004
4005 void
4006 md_assemble (char *str)
4007 {
4008 struct mips_cl_insn insn;
4009 bfd_reloc_code_real_type unused_reloc[3]
4010 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4011
4012 file_mips_check_options ();
4013
4014 imm_expr.X_op = O_absent;
4015 offset_expr.X_op = O_absent;
4016 offset_reloc[0] = BFD_RELOC_UNUSED;
4017 offset_reloc[1] = BFD_RELOC_UNUSED;
4018 offset_reloc[2] = BFD_RELOC_UNUSED;
4019
4020 mips_mark_labels ();
4021 mips_assembling_insn = TRUE;
4022 clear_insn_error ();
4023
4024 if (mips_opts.mips16)
4025 mips16_ip (str, &insn);
4026 else
4027 {
4028 mips_ip (str, &insn);
4029 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4030 str, insn.insn_opcode));
4031 }
4032
4033 if (insn_error.msg)
4034 report_insn_error (str);
4035 else if (insn.insn_mo->pinfo == INSN_MACRO)
4036 {
4037 macro_start ();
4038 if (mips_opts.mips16)
4039 mips16_macro (&insn);
4040 else
4041 macro (&insn, str);
4042 macro_end ();
4043 }
4044 else
4045 {
4046 if (offset_expr.X_op != O_absent)
4047 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4048 else
4049 append_insn (&insn, NULL, unused_reloc, FALSE);
4050 }
4051
4052 mips_assembling_insn = FALSE;
4053 }
4054
4055 /* Convenience functions for abstracting away the differences between
4056 MIPS16 and non-MIPS16 relocations. */
4057
4058 static inline bfd_boolean
4059 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4060 {
4061 switch (reloc)
4062 {
4063 case BFD_RELOC_MIPS16_JMP:
4064 case BFD_RELOC_MIPS16_GPREL:
4065 case BFD_RELOC_MIPS16_GOT16:
4066 case BFD_RELOC_MIPS16_CALL16:
4067 case BFD_RELOC_MIPS16_HI16_S:
4068 case BFD_RELOC_MIPS16_HI16:
4069 case BFD_RELOC_MIPS16_LO16:
4070 case BFD_RELOC_MIPS16_16_PCREL_S1:
4071 return TRUE;
4072
4073 default:
4074 return FALSE;
4075 }
4076 }
4077
4078 static inline bfd_boolean
4079 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4080 {
4081 switch (reloc)
4082 {
4083 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4084 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4085 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4086 case BFD_RELOC_MICROMIPS_GPREL16:
4087 case BFD_RELOC_MICROMIPS_JMP:
4088 case BFD_RELOC_MICROMIPS_HI16:
4089 case BFD_RELOC_MICROMIPS_HI16_S:
4090 case BFD_RELOC_MICROMIPS_LO16:
4091 case BFD_RELOC_MICROMIPS_LITERAL:
4092 case BFD_RELOC_MICROMIPS_GOT16:
4093 case BFD_RELOC_MICROMIPS_CALL16:
4094 case BFD_RELOC_MICROMIPS_GOT_HI16:
4095 case BFD_RELOC_MICROMIPS_GOT_LO16:
4096 case BFD_RELOC_MICROMIPS_CALL_HI16:
4097 case BFD_RELOC_MICROMIPS_CALL_LO16:
4098 case BFD_RELOC_MICROMIPS_SUB:
4099 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4100 case BFD_RELOC_MICROMIPS_GOT_OFST:
4101 case BFD_RELOC_MICROMIPS_GOT_DISP:
4102 case BFD_RELOC_MICROMIPS_HIGHEST:
4103 case BFD_RELOC_MICROMIPS_HIGHER:
4104 case BFD_RELOC_MICROMIPS_SCN_DISP:
4105 case BFD_RELOC_MICROMIPS_JALR:
4106 return TRUE;
4107
4108 default:
4109 return FALSE;
4110 }
4111 }
4112
4113 static inline bfd_boolean
4114 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4115 {
4116 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4117 }
4118
4119 static inline bfd_boolean
4120 b_reloc_p (bfd_reloc_code_real_type reloc)
4121 {
4122 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4123 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4124 || reloc == BFD_RELOC_16_PCREL_S2
4125 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4126 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4127 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4128 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4129 }
4130
4131 static inline bfd_boolean
4132 got16_reloc_p (bfd_reloc_code_real_type reloc)
4133 {
4134 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4135 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4136 }
4137
4138 static inline bfd_boolean
4139 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4140 {
4141 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4142 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4143 }
4144
4145 static inline bfd_boolean
4146 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4147 {
4148 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4149 || reloc == BFD_RELOC_MICROMIPS_LO16);
4150 }
4151
4152 static inline bfd_boolean
4153 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4154 {
4155 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4156 }
4157
4158 static inline bfd_boolean
4159 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4160 {
4161 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4162 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4163 }
4164
4165 /* Return true if RELOC is a PC-relative relocation that does not have
4166 full address range. */
4167
4168 static inline bfd_boolean
4169 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4170 {
4171 switch (reloc)
4172 {
4173 case BFD_RELOC_16_PCREL_S2:
4174 case BFD_RELOC_MIPS16_16_PCREL_S1:
4175 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4176 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4177 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4178 case BFD_RELOC_MIPS_21_PCREL_S2:
4179 case BFD_RELOC_MIPS_26_PCREL_S2:
4180 case BFD_RELOC_MIPS_18_PCREL_S3:
4181 case BFD_RELOC_MIPS_19_PCREL_S2:
4182 return TRUE;
4183
4184 case BFD_RELOC_32_PCREL:
4185 case BFD_RELOC_HI16_S_PCREL:
4186 case BFD_RELOC_LO16_PCREL:
4187 return HAVE_64BIT_ADDRESSES;
4188
4189 default:
4190 return FALSE;
4191 }
4192 }
4193
4194 /* Return true if the given relocation might need a matching %lo().
4195 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4196 need a matching %lo() when applied to local symbols. */
4197
4198 static inline bfd_boolean
4199 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4200 {
4201 return (HAVE_IN_PLACE_ADDENDS
4202 && (hi16_reloc_p (reloc)
4203 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4204 all GOT16 relocations evaluate to "G". */
4205 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4206 }
4207
4208 /* Return the type of %lo() reloc needed by RELOC, given that
4209 reloc_needs_lo_p. */
4210
4211 static inline bfd_reloc_code_real_type
4212 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4213 {
4214 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4215 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4216 : BFD_RELOC_LO16));
4217 }
4218
4219 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4220 relocation. */
4221
4222 static inline bfd_boolean
4223 fixup_has_matching_lo_p (fixS *fixp)
4224 {
4225 return (fixp->fx_next != NULL
4226 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4227 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4228 && fixp->fx_offset == fixp->fx_next->fx_offset);
4229 }
4230
4231 /* Move all labels in LABELS to the current insertion point. TEXT_P
4232 says whether the labels refer to text or data. */
4233
4234 static void
4235 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4236 {
4237 struct insn_label_list *l;
4238 valueT val;
4239
4240 for (l = labels; l != NULL; l = l->next)
4241 {
4242 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4243 symbol_set_frag (l->label, frag_now);
4244 val = (valueT) frag_now_fix ();
4245 /* MIPS16/microMIPS text labels are stored as odd. */
4246 if (text_p && HAVE_CODE_COMPRESSION)
4247 ++val;
4248 S_SET_VALUE (l->label, val);
4249 }
4250 }
4251
4252 /* Move all labels in insn_labels to the current insertion point
4253 and treat them as text labels. */
4254
4255 static void
4256 mips_move_text_labels (void)
4257 {
4258 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4259 }
4260
4261 static bfd_boolean
4262 s_is_linkonce (symbolS *sym, segT from_seg)
4263 {
4264 bfd_boolean linkonce = FALSE;
4265 segT symseg = S_GET_SEGMENT (sym);
4266
4267 if (symseg != from_seg && !S_IS_LOCAL (sym))
4268 {
4269 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4270 linkonce = TRUE;
4271 /* The GNU toolchain uses an extension for ELF: a section
4272 beginning with the magic string .gnu.linkonce is a
4273 linkonce section. */
4274 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4275 sizeof ".gnu.linkonce" - 1) == 0)
4276 linkonce = TRUE;
4277 }
4278 return linkonce;
4279 }
4280
4281 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4282 linker to handle them specially, such as generating jalx instructions
4283 when needed. We also make them odd for the duration of the assembly,
4284 in order to generate the right sort of code. We will make them even
4285 in the adjust_symtab routine, while leaving them marked. This is
4286 convenient for the debugger and the disassembler. The linker knows
4287 to make them odd again. */
4288
4289 static void
4290 mips_compressed_mark_label (symbolS *label)
4291 {
4292 gas_assert (HAVE_CODE_COMPRESSION);
4293
4294 if (mips_opts.mips16)
4295 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4296 else
4297 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4298 if ((S_GET_VALUE (label) & 1) == 0
4299 /* Don't adjust the address if the label is global or weak, or
4300 in a link-once section, since we'll be emitting symbol reloc
4301 references to it which will be patched up by the linker, and
4302 the final value of the symbol may or may not be MIPS16/microMIPS. */
4303 && !S_IS_WEAK (label)
4304 && !S_IS_EXTERNAL (label)
4305 && !s_is_linkonce (label, now_seg))
4306 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4307 }
4308
4309 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4310
4311 static void
4312 mips_compressed_mark_labels (void)
4313 {
4314 struct insn_label_list *l;
4315
4316 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4317 mips_compressed_mark_label (l->label);
4318 }
4319
4320 /* End the current frag. Make it a variant frag and record the
4321 relaxation info. */
4322
4323 static void
4324 relax_close_frag (void)
4325 {
4326 mips_macro_warning.first_frag = frag_now;
4327 frag_var (rs_machine_dependent, 0, 0,
4328 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4329 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4330
4331 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4332 mips_relax.first_fixup = 0;
4333 }
4334
4335 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4336 See the comment above RELAX_ENCODE for more details. */
4337
4338 static void
4339 relax_start (symbolS *symbol)
4340 {
4341 gas_assert (mips_relax.sequence == 0);
4342 mips_relax.sequence = 1;
4343 mips_relax.symbol = symbol;
4344 }
4345
4346 /* Start generating the second version of a relaxable sequence.
4347 See the comment above RELAX_ENCODE for more details. */
4348
4349 static void
4350 relax_switch (void)
4351 {
4352 gas_assert (mips_relax.sequence == 1);
4353 mips_relax.sequence = 2;
4354 }
4355
4356 /* End the current relaxable sequence. */
4357
4358 static void
4359 relax_end (void)
4360 {
4361 gas_assert (mips_relax.sequence == 2);
4362 relax_close_frag ();
4363 mips_relax.sequence = 0;
4364 }
4365
4366 /* Return true if IP is a delayed branch or jump. */
4367
4368 static inline bfd_boolean
4369 delayed_branch_p (const struct mips_cl_insn *ip)
4370 {
4371 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4372 | INSN_COND_BRANCH_DELAY
4373 | INSN_COND_BRANCH_LIKELY)) != 0;
4374 }
4375
4376 /* Return true if IP is a compact branch or jump. */
4377
4378 static inline bfd_boolean
4379 compact_branch_p (const struct mips_cl_insn *ip)
4380 {
4381 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4382 | INSN2_COND_BRANCH)) != 0;
4383 }
4384
4385 /* Return true if IP is an unconditional branch or jump. */
4386
4387 static inline bfd_boolean
4388 uncond_branch_p (const struct mips_cl_insn *ip)
4389 {
4390 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4391 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4392 }
4393
4394 /* Return true if IP is a branch-likely instruction. */
4395
4396 static inline bfd_boolean
4397 branch_likely_p (const struct mips_cl_insn *ip)
4398 {
4399 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4400 }
4401
4402 /* Return the type of nop that should be used to fill the delay slot
4403 of delayed branch IP. */
4404
4405 static struct mips_cl_insn *
4406 get_delay_slot_nop (const struct mips_cl_insn *ip)
4407 {
4408 if (mips_opts.micromips
4409 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4410 return &micromips_nop32_insn;
4411 return NOP_INSN;
4412 }
4413
4414 /* Return a mask that has bit N set if OPCODE reads the register(s)
4415 in operand N. */
4416
4417 static unsigned int
4418 insn_read_mask (const struct mips_opcode *opcode)
4419 {
4420 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4421 }
4422
4423 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4424 in operand N. */
4425
4426 static unsigned int
4427 insn_write_mask (const struct mips_opcode *opcode)
4428 {
4429 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4430 }
4431
4432 /* Return a mask of the registers specified by operand OPERAND of INSN.
4433 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4434 is set. */
4435
4436 static unsigned int
4437 operand_reg_mask (const struct mips_cl_insn *insn,
4438 const struct mips_operand *operand,
4439 unsigned int type_mask)
4440 {
4441 unsigned int uval, vsel;
4442
4443 switch (operand->type)
4444 {
4445 case OP_INT:
4446 case OP_MAPPED_INT:
4447 case OP_MSB:
4448 case OP_PCREL:
4449 case OP_PERF_REG:
4450 case OP_ADDIUSP_INT:
4451 case OP_ENTRY_EXIT_LIST:
4452 case OP_REPEAT_DEST_REG:
4453 case OP_REPEAT_PREV_REG:
4454 case OP_PC:
4455 case OP_VU0_SUFFIX:
4456 case OP_VU0_MATCH_SUFFIX:
4457 case OP_IMM_INDEX:
4458 abort ();
4459
4460 case OP_REG:
4461 case OP_OPTIONAL_REG:
4462 {
4463 const struct mips_reg_operand *reg_op;
4464
4465 reg_op = (const struct mips_reg_operand *) operand;
4466 if (!(type_mask & (1 << reg_op->reg_type)))
4467 return 0;
4468 uval = insn_extract_operand (insn, operand);
4469 return 1 << mips_decode_reg_operand (reg_op, uval);
4470 }
4471
4472 case OP_REG_PAIR:
4473 {
4474 const struct mips_reg_pair_operand *pair_op;
4475
4476 pair_op = (const struct mips_reg_pair_operand *) operand;
4477 if (!(type_mask & (1 << pair_op->reg_type)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4481 }
4482
4483 case OP_CLO_CLZ_DEST:
4484 if (!(type_mask & (1 << OP_REG_GP)))
4485 return 0;
4486 uval = insn_extract_operand (insn, operand);
4487 return (1 << (uval & 31)) | (1 << (uval >> 5));
4488
4489 case OP_SAME_RS_RT:
4490 if (!(type_mask & (1 << OP_REG_GP)))
4491 return 0;
4492 uval = insn_extract_operand (insn, operand);
4493 gas_assert ((uval & 31) == (uval >> 5));
4494 return 1 << (uval & 31);
4495
4496 case OP_CHECK_PREV:
4497 case OP_NON_ZERO_REG:
4498 if (!(type_mask & (1 << OP_REG_GP)))
4499 return 0;
4500 uval = insn_extract_operand (insn, operand);
4501 return 1 << (uval & 31);
4502
4503 case OP_LWM_SWM_LIST:
4504 abort ();
4505
4506 case OP_SAVE_RESTORE_LIST:
4507 abort ();
4508
4509 case OP_MDMX_IMM_REG:
4510 if (!(type_mask & (1 << OP_REG_VEC)))
4511 return 0;
4512 uval = insn_extract_operand (insn, operand);
4513 vsel = uval >> 5;
4514 if ((vsel & 0x18) == 0x18)
4515 return 0;
4516 return 1 << (uval & 31);
4517
4518 case OP_REG_INDEX:
4519 if (!(type_mask & (1 << OP_REG_GP)))
4520 return 0;
4521 return 1 << insn_extract_operand (insn, operand);
4522 }
4523 abort ();
4524 }
4525
4526 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4527 where bit N of OPNO_MASK is set if operand N should be included.
4528 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4529 is set. */
4530
4531 static unsigned int
4532 insn_reg_mask (const struct mips_cl_insn *insn,
4533 unsigned int type_mask, unsigned int opno_mask)
4534 {
4535 unsigned int opno, reg_mask;
4536
4537 opno = 0;
4538 reg_mask = 0;
4539 while (opno_mask != 0)
4540 {
4541 if (opno_mask & 1)
4542 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4543 opno_mask >>= 1;
4544 opno += 1;
4545 }
4546 return reg_mask;
4547 }
4548
4549 /* Return the mask of core registers that IP reads. */
4550
4551 static unsigned int
4552 gpr_read_mask (const struct mips_cl_insn *ip)
4553 {
4554 unsigned long pinfo, pinfo2;
4555 unsigned int mask;
4556
4557 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4558 pinfo = ip->insn_mo->pinfo;
4559 pinfo2 = ip->insn_mo->pinfo2;
4560 if (pinfo & INSN_UDI)
4561 {
4562 /* UDI instructions have traditionally been assumed to read RS
4563 and RT. */
4564 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4565 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4566 }
4567 if (pinfo & INSN_READ_GPR_24)
4568 mask |= 1 << 24;
4569 if (pinfo2 & INSN2_READ_GPR_16)
4570 mask |= 1 << 16;
4571 if (pinfo2 & INSN2_READ_SP)
4572 mask |= 1 << SP;
4573 if (pinfo2 & INSN2_READ_GPR_31)
4574 mask |= 1 << 31;
4575 /* Don't include register 0. */
4576 return mask & ~1;
4577 }
4578
4579 /* Return the mask of core registers that IP writes. */
4580
4581 static unsigned int
4582 gpr_write_mask (const struct mips_cl_insn *ip)
4583 {
4584 unsigned long pinfo, pinfo2;
4585 unsigned int mask;
4586
4587 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4588 pinfo = ip->insn_mo->pinfo;
4589 pinfo2 = ip->insn_mo->pinfo2;
4590 if (pinfo & INSN_WRITE_GPR_24)
4591 mask |= 1 << 24;
4592 if (pinfo & INSN_WRITE_GPR_31)
4593 mask |= 1 << 31;
4594 if (pinfo & INSN_UDI)
4595 /* UDI instructions have traditionally been assumed to write to RD. */
4596 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4597 if (pinfo2 & INSN2_WRITE_SP)
4598 mask |= 1 << SP;
4599 /* Don't include register 0. */
4600 return mask & ~1;
4601 }
4602
4603 /* Return the mask of floating-point registers that IP reads. */
4604
4605 static unsigned int
4606 fpr_read_mask (const struct mips_cl_insn *ip)
4607 {
4608 unsigned long pinfo;
4609 unsigned int mask;
4610
4611 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4612 | (1 << OP_REG_MSA)),
4613 insn_read_mask (ip->insn_mo));
4614 pinfo = ip->insn_mo->pinfo;
4615 /* Conservatively treat all operands to an FP_D instruction are doubles.
4616 (This is overly pessimistic for things like cvt.d.s.) */
4617 if (FPR_SIZE != 64 && (pinfo & FP_D))
4618 mask |= mask << 1;
4619 return mask;
4620 }
4621
4622 /* Return the mask of floating-point registers that IP writes. */
4623
4624 static unsigned int
4625 fpr_write_mask (const struct mips_cl_insn *ip)
4626 {
4627 unsigned long pinfo;
4628 unsigned int mask;
4629
4630 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4631 | (1 << OP_REG_MSA)),
4632 insn_write_mask (ip->insn_mo));
4633 pinfo = ip->insn_mo->pinfo;
4634 /* Conservatively treat all operands to an FP_D instruction are doubles.
4635 (This is overly pessimistic for things like cvt.s.d.) */
4636 if (FPR_SIZE != 64 && (pinfo & FP_D))
4637 mask |= mask << 1;
4638 return mask;
4639 }
4640
4641 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4642 Check whether that is allowed. */
4643
4644 static bfd_boolean
4645 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4646 {
4647 const char *s = insn->name;
4648 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4649 || FPR_SIZE == 64)
4650 && mips_opts.oddspreg;
4651
4652 if (insn->pinfo == INSN_MACRO)
4653 /* Let a macro pass, we'll catch it later when it is expanded. */
4654 return TRUE;
4655
4656 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4657 otherwise it depends on oddspreg. */
4658 if ((insn->pinfo & FP_S)
4659 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4660 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4661 return FPR_SIZE == 32 || oddspreg;
4662
4663 /* Allow odd registers for single-precision ops and double-precision if the
4664 floating-point registers are 64-bit wide. */
4665 switch (insn->pinfo & (FP_S | FP_D))
4666 {
4667 case FP_S:
4668 case 0:
4669 return oddspreg;
4670 case FP_D:
4671 return FPR_SIZE == 64;
4672 default:
4673 break;
4674 }
4675
4676 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4677 s = strchr (insn->name, '.');
4678 if (s != NULL && opnum == 2)
4679 s = strchr (s + 1, '.');
4680 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4681 return oddspreg;
4682
4683 return FPR_SIZE == 64;
4684 }
4685
4686 /* Information about an instruction argument that we're trying to match. */
4687 struct mips_arg_info
4688 {
4689 /* The instruction so far. */
4690 struct mips_cl_insn *insn;
4691
4692 /* The first unconsumed operand token. */
4693 struct mips_operand_token *token;
4694
4695 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4696 int opnum;
4697
4698 /* The 1-based argument number, for error reporting. This does not
4699 count elided optional registers, etc.. */
4700 int argnum;
4701
4702 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4703 unsigned int last_regno;
4704
4705 /* If the first operand was an OP_REG, this is the register that it
4706 specified, otherwise it is ILLEGAL_REG. */
4707 unsigned int dest_regno;
4708
4709 /* The value of the last OP_INT operand. Only used for OP_MSB,
4710 where it gives the lsb position. */
4711 unsigned int last_op_int;
4712
4713 /* If true, match routines should assume that no later instruction
4714 alternative matches and should therefore be as accomodating as
4715 possible. Match routines should not report errors if something
4716 is only invalid for !LAX_MATCH. */
4717 bfd_boolean lax_match;
4718
4719 /* True if a reference to the current AT register was seen. */
4720 bfd_boolean seen_at;
4721 };
4722
4723 /* Record that the argument is out of range. */
4724
4725 static void
4726 match_out_of_range (struct mips_arg_info *arg)
4727 {
4728 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4729 }
4730
4731 /* Record that the argument isn't constant but needs to be. */
4732
4733 static void
4734 match_not_constant (struct mips_arg_info *arg)
4735 {
4736 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4737 arg->argnum);
4738 }
4739
4740 /* Try to match an OT_CHAR token for character CH. Consume the token
4741 and return true on success, otherwise return false. */
4742
4743 static bfd_boolean
4744 match_char (struct mips_arg_info *arg, char ch)
4745 {
4746 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4747 {
4748 ++arg->token;
4749 if (ch == ',')
4750 arg->argnum += 1;
4751 return TRUE;
4752 }
4753 return FALSE;
4754 }
4755
4756 /* Try to get an expression from the next tokens in ARG. Consume the
4757 tokens and return true on success, storing the expression value in
4758 VALUE and relocation types in R. */
4759
4760 static bfd_boolean
4761 match_expression (struct mips_arg_info *arg, expressionS *value,
4762 bfd_reloc_code_real_type *r)
4763 {
4764 /* If the next token is a '(' that was parsed as being part of a base
4765 expression, assume we have an elided offset. The later match will fail
4766 if this turns out to be wrong. */
4767 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4768 {
4769 value->X_op = O_constant;
4770 value->X_add_number = 0;
4771 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4772 return TRUE;
4773 }
4774
4775 /* Reject register-based expressions such as "0+$2" and "(($2))".
4776 For plain registers the default error seems more appropriate. */
4777 if (arg->token->type == OT_INTEGER
4778 && arg->token->u.integer.value.X_op == O_register)
4779 {
4780 set_insn_error (arg->argnum, _("register value used as expression"));
4781 return FALSE;
4782 }
4783
4784 if (arg->token->type == OT_INTEGER)
4785 {
4786 *value = arg->token->u.integer.value;
4787 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4788 ++arg->token;
4789 return TRUE;
4790 }
4791
4792 set_insn_error_i
4793 (arg->argnum, _("operand %d must be an immediate expression"),
4794 arg->argnum);
4795 return FALSE;
4796 }
4797
4798 /* Try to get a constant expression from the next tokens in ARG. Consume
4799 the tokens and return return true on success, storing the constant value
4800 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4801 error. */
4802
4803 static bfd_boolean
4804 match_const_int (struct mips_arg_info *arg, offsetT *value)
4805 {
4806 expressionS ex;
4807 bfd_reloc_code_real_type r[3];
4808
4809 if (!match_expression (arg, &ex, r))
4810 return FALSE;
4811
4812 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4813 *value = ex.X_add_number;
4814 else
4815 {
4816 match_not_constant (arg);
4817 return FALSE;
4818 }
4819 return TRUE;
4820 }
4821
4822 /* Return the RTYPE_* flags for a register operand of type TYPE that
4823 appears in instruction OPCODE. */
4824
4825 static unsigned int
4826 convert_reg_type (const struct mips_opcode *opcode,
4827 enum mips_reg_operand_type type)
4828 {
4829 switch (type)
4830 {
4831 case OP_REG_GP:
4832 return RTYPE_NUM | RTYPE_GP;
4833
4834 case OP_REG_FP:
4835 /* Allow vector register names for MDMX if the instruction is a 64-bit
4836 FPR load, store or move (including moves to and from GPRs). */
4837 if ((mips_opts.ase & ASE_MDMX)
4838 && (opcode->pinfo & FP_D)
4839 && (opcode->pinfo & (INSN_COPROC_MOVE
4840 | INSN_COPROC_MEMORY_DELAY
4841 | INSN_LOAD_COPROC
4842 | INSN_LOAD_MEMORY
4843 | INSN_STORE_MEMORY)))
4844 return RTYPE_FPU | RTYPE_VEC;
4845 return RTYPE_FPU;
4846
4847 case OP_REG_CCC:
4848 if (opcode->pinfo & (FP_D | FP_S))
4849 return RTYPE_CCC | RTYPE_FCC;
4850 return RTYPE_CCC;
4851
4852 case OP_REG_VEC:
4853 if (opcode->membership & INSN_5400)
4854 return RTYPE_FPU;
4855 return RTYPE_FPU | RTYPE_VEC;
4856
4857 case OP_REG_ACC:
4858 return RTYPE_ACC;
4859
4860 case OP_REG_COPRO:
4861 if (opcode->name[strlen (opcode->name) - 1] == '0')
4862 return RTYPE_NUM | RTYPE_CP0;
4863 return RTYPE_NUM;
4864
4865 case OP_REG_HW:
4866 return RTYPE_NUM;
4867
4868 case OP_REG_VI:
4869 return RTYPE_NUM | RTYPE_VI;
4870
4871 case OP_REG_VF:
4872 return RTYPE_NUM | RTYPE_VF;
4873
4874 case OP_REG_R5900_I:
4875 return RTYPE_R5900_I;
4876
4877 case OP_REG_R5900_Q:
4878 return RTYPE_R5900_Q;
4879
4880 case OP_REG_R5900_R:
4881 return RTYPE_R5900_R;
4882
4883 case OP_REG_R5900_ACC:
4884 return RTYPE_R5900_ACC;
4885
4886 case OP_REG_MSA:
4887 return RTYPE_MSA;
4888
4889 case OP_REG_MSA_CTRL:
4890 return RTYPE_NUM;
4891 }
4892 abort ();
4893 }
4894
4895 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4896
4897 static void
4898 check_regno (struct mips_arg_info *arg,
4899 enum mips_reg_operand_type type, unsigned int regno)
4900 {
4901 if (AT && type == OP_REG_GP && regno == AT)
4902 arg->seen_at = TRUE;
4903
4904 if (type == OP_REG_FP
4905 && (regno & 1) != 0
4906 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4907 {
4908 /* This was a warning prior to introducing O32 FPXX and FP64 support
4909 so maintain a warning for FP32 but raise an error for the new
4910 cases. */
4911 if (FPR_SIZE == 32)
4912 as_warn (_("float register should be even, was %d"), regno);
4913 else
4914 as_bad (_("float register should be even, was %d"), regno);
4915 }
4916
4917 if (type == OP_REG_CCC)
4918 {
4919 const char *name;
4920 size_t length;
4921
4922 name = arg->insn->insn_mo->name;
4923 length = strlen (name);
4924 if ((regno & 1) != 0
4925 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4926 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4927 as_warn (_("condition code register should be even for %s, was %d"),
4928 name, regno);
4929
4930 if ((regno & 3) != 0
4931 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4932 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4933 name, regno);
4934 }
4935 }
4936
4937 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4938 a register of type TYPE. Return true on success, storing the register
4939 number in *REGNO and warning about any dubious uses. */
4940
4941 static bfd_boolean
4942 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4943 unsigned int symval, unsigned int *regno)
4944 {
4945 if (type == OP_REG_VEC)
4946 symval = mips_prefer_vec_regno (symval);
4947 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4948 return FALSE;
4949
4950 *regno = symval & RNUM_MASK;
4951 check_regno (arg, type, *regno);
4952 return TRUE;
4953 }
4954
4955 /* Try to interpret the next token in ARG as a register of type TYPE.
4956 Consume the token and return true on success, storing the register
4957 number in *REGNO. Return false on failure. */
4958
4959 static bfd_boolean
4960 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4961 unsigned int *regno)
4962 {
4963 if (arg->token->type == OT_REG
4964 && match_regno (arg, type, arg->token->u.regno, regno))
4965 {
4966 ++arg->token;
4967 return TRUE;
4968 }
4969 return FALSE;
4970 }
4971
4972 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4973 Consume the token and return true on success, storing the register numbers
4974 in *REGNO1 and *REGNO2. Return false on failure. */
4975
4976 static bfd_boolean
4977 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4978 unsigned int *regno1, unsigned int *regno2)
4979 {
4980 if (match_reg (arg, type, regno1))
4981 {
4982 *regno2 = *regno1;
4983 return TRUE;
4984 }
4985 if (arg->token->type == OT_REG_RANGE
4986 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4987 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4988 && *regno1 <= *regno2)
4989 {
4990 ++arg->token;
4991 return TRUE;
4992 }
4993 return FALSE;
4994 }
4995
4996 /* OP_INT matcher. */
4997
4998 static bfd_boolean
4999 match_int_operand (struct mips_arg_info *arg,
5000 const struct mips_operand *operand_base)
5001 {
5002 const struct mips_int_operand *operand;
5003 unsigned int uval;
5004 int min_val, max_val, factor;
5005 offsetT sval;
5006
5007 operand = (const struct mips_int_operand *) operand_base;
5008 factor = 1 << operand->shift;
5009 min_val = mips_int_operand_min (operand);
5010 max_val = mips_int_operand_max (operand);
5011
5012 if (operand_base->lsb == 0
5013 && operand_base->size == 16
5014 && operand->shift == 0
5015 && operand->bias == 0
5016 && (operand->max_val == 32767 || operand->max_val == 65535))
5017 {
5018 /* The operand can be relocated. */
5019 if (!match_expression (arg, &offset_expr, offset_reloc))
5020 return FALSE;
5021
5022 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5023 /* Relocation operators were used. Accept the arguent and
5024 leave the relocation value in offset_expr and offset_relocs
5025 for the caller to process. */
5026 return TRUE;
5027
5028 if (offset_expr.X_op != O_constant)
5029 {
5030 /* Accept non-constant operands if no later alternative matches,
5031 leaving it for the caller to process. */
5032 if (!arg->lax_match)
5033 return FALSE;
5034 offset_reloc[0] = BFD_RELOC_LO16;
5035 return TRUE;
5036 }
5037
5038 /* Clear the global state; we're going to install the operand
5039 ourselves. */
5040 sval = offset_expr.X_add_number;
5041 offset_expr.X_op = O_absent;
5042
5043 /* For compatibility with older assemblers, we accept
5044 0x8000-0xffff as signed 16-bit numbers when only
5045 signed numbers are allowed. */
5046 if (sval > max_val)
5047 {
5048 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5049 if (!arg->lax_match && sval <= max_val)
5050 return FALSE;
5051 }
5052 }
5053 else
5054 {
5055 if (!match_const_int (arg, &sval))
5056 return FALSE;
5057 }
5058
5059 arg->last_op_int = sval;
5060
5061 if (sval < min_val || sval > max_val || sval % factor)
5062 {
5063 match_out_of_range (arg);
5064 return FALSE;
5065 }
5066
5067 uval = (unsigned int) sval >> operand->shift;
5068 uval -= operand->bias;
5069
5070 /* Handle -mfix-cn63xxp1. */
5071 if (arg->opnum == 1
5072 && mips_fix_cn63xxp1
5073 && !mips_opts.micromips
5074 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5075 switch (uval)
5076 {
5077 case 5:
5078 case 25:
5079 case 26:
5080 case 27:
5081 case 28:
5082 case 29:
5083 case 30:
5084 case 31:
5085 /* These are ok. */
5086 break;
5087
5088 default:
5089 /* The rest must be changed to 28. */
5090 uval = 28;
5091 break;
5092 }
5093
5094 insn_insert_operand (arg->insn, operand_base, uval);
5095 return TRUE;
5096 }
5097
5098 /* OP_MAPPED_INT matcher. */
5099
5100 static bfd_boolean
5101 match_mapped_int_operand (struct mips_arg_info *arg,
5102 const struct mips_operand *operand_base)
5103 {
5104 const struct mips_mapped_int_operand *operand;
5105 unsigned int uval, num_vals;
5106 offsetT sval;
5107
5108 operand = (const struct mips_mapped_int_operand *) operand_base;
5109 if (!match_const_int (arg, &sval))
5110 return FALSE;
5111
5112 num_vals = 1 << operand_base->size;
5113 for (uval = 0; uval < num_vals; uval++)
5114 if (operand->int_map[uval] == sval)
5115 break;
5116 if (uval == num_vals)
5117 {
5118 match_out_of_range (arg);
5119 return FALSE;
5120 }
5121
5122 insn_insert_operand (arg->insn, operand_base, uval);
5123 return TRUE;
5124 }
5125
5126 /* OP_MSB matcher. */
5127
5128 static bfd_boolean
5129 match_msb_operand (struct mips_arg_info *arg,
5130 const struct mips_operand *operand_base)
5131 {
5132 const struct mips_msb_operand *operand;
5133 int min_val, max_val, max_high;
5134 offsetT size, sval, high;
5135
5136 operand = (const struct mips_msb_operand *) operand_base;
5137 min_val = operand->bias;
5138 max_val = min_val + (1 << operand_base->size) - 1;
5139 max_high = operand->opsize;
5140
5141 if (!match_const_int (arg, &size))
5142 return FALSE;
5143
5144 high = size + arg->last_op_int;
5145 sval = operand->add_lsb ? high : size;
5146
5147 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5148 {
5149 match_out_of_range (arg);
5150 return FALSE;
5151 }
5152 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5153 return TRUE;
5154 }
5155
5156 /* OP_REG matcher. */
5157
5158 static bfd_boolean
5159 match_reg_operand (struct mips_arg_info *arg,
5160 const struct mips_operand *operand_base)
5161 {
5162 const struct mips_reg_operand *operand;
5163 unsigned int regno, uval, num_vals;
5164
5165 operand = (const struct mips_reg_operand *) operand_base;
5166 if (!match_reg (arg, operand->reg_type, &regno))
5167 return FALSE;
5168
5169 if (operand->reg_map)
5170 {
5171 num_vals = 1 << operand->root.size;
5172 for (uval = 0; uval < num_vals; uval++)
5173 if (operand->reg_map[uval] == regno)
5174 break;
5175 if (num_vals == uval)
5176 return FALSE;
5177 }
5178 else
5179 uval = regno;
5180
5181 arg->last_regno = regno;
5182 if (arg->opnum == 1)
5183 arg->dest_regno = regno;
5184 insn_insert_operand (arg->insn, operand_base, uval);
5185 return TRUE;
5186 }
5187
5188 /* OP_REG_PAIR matcher. */
5189
5190 static bfd_boolean
5191 match_reg_pair_operand (struct mips_arg_info *arg,
5192 const struct mips_operand *operand_base)
5193 {
5194 const struct mips_reg_pair_operand *operand;
5195 unsigned int regno1, regno2, uval, num_vals;
5196
5197 operand = (const struct mips_reg_pair_operand *) operand_base;
5198 if (!match_reg (arg, operand->reg_type, &regno1)
5199 || !match_char (arg, ',')
5200 || !match_reg (arg, operand->reg_type, &regno2))
5201 return FALSE;
5202
5203 num_vals = 1 << operand_base->size;
5204 for (uval = 0; uval < num_vals; uval++)
5205 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5206 break;
5207 if (uval == num_vals)
5208 return FALSE;
5209
5210 insn_insert_operand (arg->insn, operand_base, uval);
5211 return TRUE;
5212 }
5213
5214 /* OP_PCREL matcher. The caller chooses the relocation type. */
5215
5216 static bfd_boolean
5217 match_pcrel_operand (struct mips_arg_info *arg)
5218 {
5219 bfd_reloc_code_real_type r[3];
5220
5221 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5222 }
5223
5224 /* OP_PERF_REG matcher. */
5225
5226 static bfd_boolean
5227 match_perf_reg_operand (struct mips_arg_info *arg,
5228 const struct mips_operand *operand)
5229 {
5230 offsetT sval;
5231
5232 if (!match_const_int (arg, &sval))
5233 return FALSE;
5234
5235 if (sval != 0
5236 && (sval != 1
5237 || (mips_opts.arch == CPU_R5900
5238 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5239 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5240 {
5241 set_insn_error (arg->argnum, _("invalid performance register"));
5242 return FALSE;
5243 }
5244
5245 insn_insert_operand (arg->insn, operand, sval);
5246 return TRUE;
5247 }
5248
5249 /* OP_ADDIUSP matcher. */
5250
5251 static bfd_boolean
5252 match_addiusp_operand (struct mips_arg_info *arg,
5253 const struct mips_operand *operand)
5254 {
5255 offsetT sval;
5256 unsigned int uval;
5257
5258 if (!match_const_int (arg, &sval))
5259 return FALSE;
5260
5261 if (sval % 4)
5262 {
5263 match_out_of_range (arg);
5264 return FALSE;
5265 }
5266
5267 sval /= 4;
5268 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5269 {
5270 match_out_of_range (arg);
5271 return FALSE;
5272 }
5273
5274 uval = (unsigned int) sval;
5275 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5276 insn_insert_operand (arg->insn, operand, uval);
5277 return TRUE;
5278 }
5279
5280 /* OP_CLO_CLZ_DEST matcher. */
5281
5282 static bfd_boolean
5283 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5284 const struct mips_operand *operand)
5285 {
5286 unsigned int regno;
5287
5288 if (!match_reg (arg, OP_REG_GP, &regno))
5289 return FALSE;
5290
5291 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5292 return TRUE;
5293 }
5294
5295 /* OP_CHECK_PREV matcher. */
5296
5297 static bfd_boolean
5298 match_check_prev_operand (struct mips_arg_info *arg,
5299 const struct mips_operand *operand_base)
5300 {
5301 const struct mips_check_prev_operand *operand;
5302 unsigned int regno;
5303
5304 operand = (const struct mips_check_prev_operand *) operand_base;
5305
5306 if (!match_reg (arg, OP_REG_GP, &regno))
5307 return FALSE;
5308
5309 if (!operand->zero_ok && regno == 0)
5310 return FALSE;
5311
5312 if ((operand->less_than_ok && regno < arg->last_regno)
5313 || (operand->greater_than_ok && regno > arg->last_regno)
5314 || (operand->equal_ok && regno == arg->last_regno))
5315 {
5316 arg->last_regno = regno;
5317 insn_insert_operand (arg->insn, operand_base, regno);
5318 return TRUE;
5319 }
5320
5321 return FALSE;
5322 }
5323
5324 /* OP_SAME_RS_RT matcher. */
5325
5326 static bfd_boolean
5327 match_same_rs_rt_operand (struct mips_arg_info *arg,
5328 const struct mips_operand *operand)
5329 {
5330 unsigned int regno;
5331
5332 if (!match_reg (arg, OP_REG_GP, &regno))
5333 return FALSE;
5334
5335 if (regno == 0)
5336 {
5337 set_insn_error (arg->argnum, _("the source register must not be $0"));
5338 return FALSE;
5339 }
5340
5341 arg->last_regno = regno;
5342
5343 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5344 return TRUE;
5345 }
5346
5347 /* OP_LWM_SWM_LIST matcher. */
5348
5349 static bfd_boolean
5350 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5351 const struct mips_operand *operand)
5352 {
5353 unsigned int reglist, sregs, ra, regno1, regno2;
5354 struct mips_arg_info reset;
5355
5356 reglist = 0;
5357 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5358 return FALSE;
5359 do
5360 {
5361 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5362 {
5363 reglist |= 1 << FP;
5364 regno2 = S7;
5365 }
5366 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5367 reset = *arg;
5368 }
5369 while (match_char (arg, ',')
5370 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5371 *arg = reset;
5372
5373 if (operand->size == 2)
5374 {
5375 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5376
5377 s0, ra
5378 s0, s1, ra, s2, s3
5379 s0-s2, ra
5380
5381 and any permutations of these. */
5382 if ((reglist & 0xfff1ffff) != 0x80010000)
5383 return FALSE;
5384
5385 sregs = (reglist >> 17) & 7;
5386 ra = 0;
5387 }
5388 else
5389 {
5390 /* The list must include at least one of ra and s0-sN,
5391 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5392 which are $23 and $30 respectively.) E.g.:
5393
5394 ra
5395 s0
5396 ra, s0, s1, s2
5397 s0-s8
5398 s0-s5, ra
5399
5400 and any permutations of these. */
5401 if ((reglist & 0x3f00ffff) != 0)
5402 return FALSE;
5403
5404 ra = (reglist >> 27) & 0x10;
5405 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5406 }
5407 sregs += 1;
5408 if ((sregs & -sregs) != sregs)
5409 return FALSE;
5410
5411 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5412 return TRUE;
5413 }
5414
5415 /* OP_ENTRY_EXIT_LIST matcher. */
5416
5417 static unsigned int
5418 match_entry_exit_operand (struct mips_arg_info *arg,
5419 const struct mips_operand *operand)
5420 {
5421 unsigned int mask;
5422 bfd_boolean is_exit;
5423
5424 /* The format is the same for both ENTRY and EXIT, but the constraints
5425 are different. */
5426 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5427 mask = (is_exit ? 7 << 3 : 0);
5428 do
5429 {
5430 unsigned int regno1, regno2;
5431 bfd_boolean is_freg;
5432
5433 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5434 is_freg = FALSE;
5435 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5436 is_freg = TRUE;
5437 else
5438 return FALSE;
5439
5440 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5441 {
5442 mask &= ~(7 << 3);
5443 mask |= (5 + regno2) << 3;
5444 }
5445 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5446 mask |= (regno2 - 3) << 3;
5447 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5448 mask |= (regno2 - 15) << 1;
5449 else if (regno1 == RA && regno2 == RA)
5450 mask |= 1;
5451 else
5452 return FALSE;
5453 }
5454 while (match_char (arg, ','));
5455
5456 insn_insert_operand (arg->insn, operand, mask);
5457 return TRUE;
5458 }
5459
5460 /* OP_SAVE_RESTORE_LIST matcher. */
5461
5462 static bfd_boolean
5463 match_save_restore_list_operand (struct mips_arg_info *arg)
5464 {
5465 unsigned int opcode, args, statics, sregs;
5466 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5467 offsetT frame_size;
5468
5469 opcode = arg->insn->insn_opcode;
5470 frame_size = 0;
5471 num_frame_sizes = 0;
5472 args = 0;
5473 statics = 0;
5474 sregs = 0;
5475 do
5476 {
5477 unsigned int regno1, regno2;
5478
5479 if (arg->token->type == OT_INTEGER)
5480 {
5481 /* Handle the frame size. */
5482 if (!match_const_int (arg, &frame_size))
5483 return FALSE;
5484 num_frame_sizes += 1;
5485 }
5486 else
5487 {
5488 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5489 return FALSE;
5490
5491 while (regno1 <= regno2)
5492 {
5493 if (regno1 >= 4 && regno1 <= 7)
5494 {
5495 if (num_frame_sizes == 0)
5496 /* args $a0-$a3 */
5497 args |= 1 << (regno1 - 4);
5498 else
5499 /* statics $a0-$a3 */
5500 statics |= 1 << (regno1 - 4);
5501 }
5502 else if (regno1 >= 16 && regno1 <= 23)
5503 /* $s0-$s7 */
5504 sregs |= 1 << (regno1 - 16);
5505 else if (regno1 == 30)
5506 /* $s8 */
5507 sregs |= 1 << 8;
5508 else if (regno1 == 31)
5509 /* Add $ra to insn. */
5510 opcode |= 0x40;
5511 else
5512 return FALSE;
5513 regno1 += 1;
5514 if (regno1 == 24)
5515 regno1 = 30;
5516 }
5517 }
5518 }
5519 while (match_char (arg, ','));
5520
5521 /* Encode args/statics combination. */
5522 if (args & statics)
5523 return FALSE;
5524 else if (args == 0xf)
5525 /* All $a0-$a3 are args. */
5526 opcode |= MIPS16_ALL_ARGS << 16;
5527 else if (statics == 0xf)
5528 /* All $a0-$a3 are statics. */
5529 opcode |= MIPS16_ALL_STATICS << 16;
5530 else
5531 {
5532 /* Count arg registers. */
5533 num_args = 0;
5534 while (args & 0x1)
5535 {
5536 args >>= 1;
5537 num_args += 1;
5538 }
5539 if (args != 0)
5540 return FALSE;
5541
5542 /* Count static registers. */
5543 num_statics = 0;
5544 while (statics & 0x8)
5545 {
5546 statics = (statics << 1) & 0xf;
5547 num_statics += 1;
5548 }
5549 if (statics != 0)
5550 return FALSE;
5551
5552 /* Encode args/statics. */
5553 opcode |= ((num_args << 2) | num_statics) << 16;
5554 }
5555
5556 /* Encode $s0/$s1. */
5557 if (sregs & (1 << 0)) /* $s0 */
5558 opcode |= 0x20;
5559 if (sregs & (1 << 1)) /* $s1 */
5560 opcode |= 0x10;
5561 sregs >>= 2;
5562
5563 /* Encode $s2-$s8. */
5564 num_sregs = 0;
5565 while (sregs & 1)
5566 {
5567 sregs >>= 1;
5568 num_sregs += 1;
5569 }
5570 if (sregs != 0)
5571 return FALSE;
5572 opcode |= num_sregs << 24;
5573
5574 /* Encode frame size. */
5575 if (num_frame_sizes == 0)
5576 {
5577 set_insn_error (arg->argnum, _("missing frame size"));
5578 return FALSE;
5579 }
5580 if (num_frame_sizes > 1)
5581 {
5582 set_insn_error (arg->argnum, _("frame size specified twice"));
5583 return FALSE;
5584 }
5585 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5586 {
5587 set_insn_error (arg->argnum, _("invalid frame size"));
5588 return FALSE;
5589 }
5590 if (frame_size != 128 || (opcode >> 16) != 0)
5591 {
5592 frame_size /= 8;
5593 opcode |= (((frame_size & 0xf0) << 16)
5594 | (frame_size & 0x0f));
5595 }
5596
5597 /* Finally build the instruction. */
5598 if ((opcode >> 16) != 0 || frame_size == 0)
5599 opcode |= MIPS16_EXTEND;
5600 arg->insn->insn_opcode = opcode;
5601 return TRUE;
5602 }
5603
5604 /* OP_MDMX_IMM_REG matcher. */
5605
5606 static bfd_boolean
5607 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5608 const struct mips_operand *operand)
5609 {
5610 unsigned int regno, uval;
5611 bfd_boolean is_qh;
5612 const struct mips_opcode *opcode;
5613
5614 /* The mips_opcode records whether this is an octobyte or quadhalf
5615 instruction. Start out with that bit in place. */
5616 opcode = arg->insn->insn_mo;
5617 uval = mips_extract_operand (operand, opcode->match);
5618 is_qh = (uval != 0);
5619
5620 if (arg->token->type == OT_REG)
5621 {
5622 if ((opcode->membership & INSN_5400)
5623 && strcmp (opcode->name, "rzu.ob") == 0)
5624 {
5625 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5626 arg->argnum);
5627 return FALSE;
5628 }
5629
5630 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5631 return FALSE;
5632 ++arg->token;
5633
5634 /* Check whether this is a vector register or a broadcast of
5635 a single element. */
5636 if (arg->token->type == OT_INTEGER_INDEX)
5637 {
5638 if (arg->token->u.index > (is_qh ? 3 : 7))
5639 {
5640 set_insn_error (arg->argnum, _("invalid element selector"));
5641 return FALSE;
5642 }
5643 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5644 ++arg->token;
5645 }
5646 else
5647 {
5648 /* A full vector. */
5649 if ((opcode->membership & INSN_5400)
5650 && (strcmp (opcode->name, "sll.ob") == 0
5651 || strcmp (opcode->name, "srl.ob") == 0))
5652 {
5653 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5654 arg->argnum);
5655 return FALSE;
5656 }
5657
5658 if (is_qh)
5659 uval |= MDMX_FMTSEL_VEC_QH << 5;
5660 else
5661 uval |= MDMX_FMTSEL_VEC_OB << 5;
5662 }
5663 uval |= regno;
5664 }
5665 else
5666 {
5667 offsetT sval;
5668
5669 if (!match_const_int (arg, &sval))
5670 return FALSE;
5671 if (sval < 0 || sval > 31)
5672 {
5673 match_out_of_range (arg);
5674 return FALSE;
5675 }
5676 uval |= (sval & 31);
5677 if (is_qh)
5678 uval |= MDMX_FMTSEL_IMM_QH << 5;
5679 else
5680 uval |= MDMX_FMTSEL_IMM_OB << 5;
5681 }
5682 insn_insert_operand (arg->insn, operand, uval);
5683 return TRUE;
5684 }
5685
5686 /* OP_IMM_INDEX matcher. */
5687
5688 static bfd_boolean
5689 match_imm_index_operand (struct mips_arg_info *arg,
5690 const struct mips_operand *operand)
5691 {
5692 unsigned int max_val;
5693
5694 if (arg->token->type != OT_INTEGER_INDEX)
5695 return FALSE;
5696
5697 max_val = (1 << operand->size) - 1;
5698 if (arg->token->u.index > max_val)
5699 {
5700 match_out_of_range (arg);
5701 return FALSE;
5702 }
5703 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5704 ++arg->token;
5705 return TRUE;
5706 }
5707
5708 /* OP_REG_INDEX matcher. */
5709
5710 static bfd_boolean
5711 match_reg_index_operand (struct mips_arg_info *arg,
5712 const struct mips_operand *operand)
5713 {
5714 unsigned int regno;
5715
5716 if (arg->token->type != OT_REG_INDEX)
5717 return FALSE;
5718
5719 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5720 return FALSE;
5721
5722 insn_insert_operand (arg->insn, operand, regno);
5723 ++arg->token;
5724 return TRUE;
5725 }
5726
5727 /* OP_PC matcher. */
5728
5729 static bfd_boolean
5730 match_pc_operand (struct mips_arg_info *arg)
5731 {
5732 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5733 {
5734 ++arg->token;
5735 return TRUE;
5736 }
5737 return FALSE;
5738 }
5739
5740 /* OP_NON_ZERO_REG matcher. */
5741
5742 static bfd_boolean
5743 match_non_zero_reg_operand (struct mips_arg_info *arg,
5744 const struct mips_operand *operand)
5745 {
5746 unsigned int regno;
5747
5748 if (!match_reg (arg, OP_REG_GP, &regno))
5749 return FALSE;
5750
5751 if (regno == 0)
5752 return FALSE;
5753
5754 arg->last_regno = regno;
5755 insn_insert_operand (arg->insn, operand, regno);
5756 return TRUE;
5757 }
5758
5759 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5760 register that we need to match. */
5761
5762 static bfd_boolean
5763 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5764 {
5765 unsigned int regno;
5766
5767 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5768 }
5769
5770 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5771 the length of the value in bytes (4 for float, 8 for double) and
5772 USING_GPRS says whether the destination is a GPR rather than an FPR.
5773
5774 Return the constant in IMM and OFFSET as follows:
5775
5776 - If the constant should be loaded via memory, set IMM to O_absent and
5777 OFFSET to the memory address.
5778
5779 - Otherwise, if the constant should be loaded into two 32-bit registers,
5780 set IMM to the O_constant to load into the high register and OFFSET
5781 to the corresponding value for the low register.
5782
5783 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5784
5785 These constants only appear as the last operand in an instruction,
5786 and every instruction that accepts them in any variant accepts them
5787 in all variants. This means we don't have to worry about backing out
5788 any changes if the instruction does not match. We just match
5789 unconditionally and report an error if the constant is invalid. */
5790
5791 static bfd_boolean
5792 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5793 expressionS *offset, int length, bfd_boolean using_gprs)
5794 {
5795 char *p;
5796 segT seg, new_seg;
5797 subsegT subseg;
5798 const char *newname;
5799 unsigned char *data;
5800
5801 /* Where the constant is placed is based on how the MIPS assembler
5802 does things:
5803
5804 length == 4 && using_gprs -- immediate value only
5805 length == 8 && using_gprs -- .rdata or immediate value
5806 length == 4 && !using_gprs -- .lit4 or immediate value
5807 length == 8 && !using_gprs -- .lit8 or immediate value
5808
5809 The .lit4 and .lit8 sections are only used if permitted by the
5810 -G argument. */
5811 if (arg->token->type != OT_FLOAT)
5812 {
5813 set_insn_error (arg->argnum, _("floating-point expression required"));
5814 return FALSE;
5815 }
5816
5817 gas_assert (arg->token->u.flt.length == length);
5818 data = arg->token->u.flt.data;
5819 ++arg->token;
5820
5821 /* Handle 32-bit constants for which an immediate value is best. */
5822 if (length == 4
5823 && (using_gprs
5824 || g_switch_value < 4
5825 || (data[0] == 0 && data[1] == 0)
5826 || (data[2] == 0 && data[3] == 0)))
5827 {
5828 imm->X_op = O_constant;
5829 if (!target_big_endian)
5830 imm->X_add_number = bfd_getl32 (data);
5831 else
5832 imm->X_add_number = bfd_getb32 (data);
5833 offset->X_op = O_absent;
5834 return TRUE;
5835 }
5836
5837 /* Handle 64-bit constants for which an immediate value is best. */
5838 if (length == 8
5839 && !mips_disable_float_construction
5840 /* Constants can only be constructed in GPRs and copied to FPRs if the
5841 GPRs are at least as wide as the FPRs or MTHC1 is available.
5842 Unlike most tests for 32-bit floating-point registers this check
5843 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5844 permit 64-bit moves without MXHC1.
5845 Force the constant into memory otherwise. */
5846 && (using_gprs
5847 || GPR_SIZE == 64
5848 || ISA_HAS_MXHC1 (mips_opts.isa)
5849 || FPR_SIZE == 32)
5850 && ((data[0] == 0 && data[1] == 0)
5851 || (data[2] == 0 && data[3] == 0))
5852 && ((data[4] == 0 && data[5] == 0)
5853 || (data[6] == 0 && data[7] == 0)))
5854 {
5855 /* The value is simple enough to load with a couple of instructions.
5856 If using 32-bit registers, set IMM to the high order 32 bits and
5857 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5858 64 bit constant. */
5859 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5860 {
5861 imm->X_op = O_constant;
5862 offset->X_op = O_constant;
5863 if (!target_big_endian)
5864 {
5865 imm->X_add_number = bfd_getl32 (data + 4);
5866 offset->X_add_number = bfd_getl32 (data);
5867 }
5868 else
5869 {
5870 imm->X_add_number = bfd_getb32 (data);
5871 offset->X_add_number = bfd_getb32 (data + 4);
5872 }
5873 if (offset->X_add_number == 0)
5874 offset->X_op = O_absent;
5875 }
5876 else
5877 {
5878 imm->X_op = O_constant;
5879 if (!target_big_endian)
5880 imm->X_add_number = bfd_getl64 (data);
5881 else
5882 imm->X_add_number = bfd_getb64 (data);
5883 offset->X_op = O_absent;
5884 }
5885 return TRUE;
5886 }
5887
5888 /* Switch to the right section. */
5889 seg = now_seg;
5890 subseg = now_subseg;
5891 if (length == 4)
5892 {
5893 gas_assert (!using_gprs && g_switch_value >= 4);
5894 newname = ".lit4";
5895 }
5896 else
5897 {
5898 if (using_gprs || g_switch_value < 8)
5899 newname = RDATA_SECTION_NAME;
5900 else
5901 newname = ".lit8";
5902 }
5903
5904 new_seg = subseg_new (newname, (subsegT) 0);
5905 bfd_set_section_flags (stdoutput, new_seg,
5906 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5907 frag_align (length == 4 ? 2 : 3, 0, 0);
5908 if (strncmp (TARGET_OS, "elf", 3) != 0)
5909 record_alignment (new_seg, 4);
5910 else
5911 record_alignment (new_seg, length == 4 ? 2 : 3);
5912 if (seg == now_seg)
5913 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5914
5915 /* Set the argument to the current address in the section. */
5916 imm->X_op = O_absent;
5917 offset->X_op = O_symbol;
5918 offset->X_add_symbol = symbol_temp_new_now ();
5919 offset->X_add_number = 0;
5920
5921 /* Put the floating point number into the section. */
5922 p = frag_more (length);
5923 memcpy (p, data, length);
5924
5925 /* Switch back to the original section. */
5926 subseg_set (seg, subseg);
5927 return TRUE;
5928 }
5929
5930 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5931 them. */
5932
5933 static bfd_boolean
5934 match_vu0_suffix_operand (struct mips_arg_info *arg,
5935 const struct mips_operand *operand,
5936 bfd_boolean match_p)
5937 {
5938 unsigned int uval;
5939
5940 /* The operand can be an XYZW mask or a single 2-bit channel index
5941 (with X being 0). */
5942 gas_assert (operand->size == 2 || operand->size == 4);
5943
5944 /* The suffix can be omitted when it is already part of the opcode. */
5945 if (arg->token->type != OT_CHANNELS)
5946 return match_p;
5947
5948 uval = arg->token->u.channels;
5949 if (operand->size == 2)
5950 {
5951 /* Check that a single bit is set and convert it into a 2-bit index. */
5952 if ((uval & -uval) != uval)
5953 return FALSE;
5954 uval = 4 - ffs (uval);
5955 }
5956
5957 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5958 return FALSE;
5959
5960 ++arg->token;
5961 if (!match_p)
5962 insn_insert_operand (arg->insn, operand, uval);
5963 return TRUE;
5964 }
5965
5966 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5967 of the argument text if the match is successful, otherwise return null. */
5968
5969 static bfd_boolean
5970 match_operand (struct mips_arg_info *arg,
5971 const struct mips_operand *operand)
5972 {
5973 switch (operand->type)
5974 {
5975 case OP_INT:
5976 return match_int_operand (arg, operand);
5977
5978 case OP_MAPPED_INT:
5979 return match_mapped_int_operand (arg, operand);
5980
5981 case OP_MSB:
5982 return match_msb_operand (arg, operand);
5983
5984 case OP_REG:
5985 case OP_OPTIONAL_REG:
5986 return match_reg_operand (arg, operand);
5987
5988 case OP_REG_PAIR:
5989 return match_reg_pair_operand (arg, operand);
5990
5991 case OP_PCREL:
5992 return match_pcrel_operand (arg);
5993
5994 case OP_PERF_REG:
5995 return match_perf_reg_operand (arg, operand);
5996
5997 case OP_ADDIUSP_INT:
5998 return match_addiusp_operand (arg, operand);
5999
6000 case OP_CLO_CLZ_DEST:
6001 return match_clo_clz_dest_operand (arg, operand);
6002
6003 case OP_LWM_SWM_LIST:
6004 return match_lwm_swm_list_operand (arg, operand);
6005
6006 case OP_ENTRY_EXIT_LIST:
6007 return match_entry_exit_operand (arg, operand);
6008
6009 case OP_SAVE_RESTORE_LIST:
6010 return match_save_restore_list_operand (arg);
6011
6012 case OP_MDMX_IMM_REG:
6013 return match_mdmx_imm_reg_operand (arg, operand);
6014
6015 case OP_REPEAT_DEST_REG:
6016 return match_tied_reg_operand (arg, arg->dest_regno);
6017
6018 case OP_REPEAT_PREV_REG:
6019 return match_tied_reg_operand (arg, arg->last_regno);
6020
6021 case OP_PC:
6022 return match_pc_operand (arg);
6023
6024 case OP_VU0_SUFFIX:
6025 return match_vu0_suffix_operand (arg, operand, FALSE);
6026
6027 case OP_VU0_MATCH_SUFFIX:
6028 return match_vu0_suffix_operand (arg, operand, TRUE);
6029
6030 case OP_IMM_INDEX:
6031 return match_imm_index_operand (arg, operand);
6032
6033 case OP_REG_INDEX:
6034 return match_reg_index_operand (arg, operand);
6035
6036 case OP_SAME_RS_RT:
6037 return match_same_rs_rt_operand (arg, operand);
6038
6039 case OP_CHECK_PREV:
6040 return match_check_prev_operand (arg, operand);
6041
6042 case OP_NON_ZERO_REG:
6043 return match_non_zero_reg_operand (arg, operand);
6044 }
6045 abort ();
6046 }
6047
6048 /* ARG is the state after successfully matching an instruction.
6049 Issue any queued-up warnings. */
6050
6051 static void
6052 check_completed_insn (struct mips_arg_info *arg)
6053 {
6054 if (arg->seen_at)
6055 {
6056 if (AT == ATREG)
6057 as_warn (_("used $at without \".set noat\""));
6058 else
6059 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6060 }
6061 }
6062
6063 /* Return true if modifying general-purpose register REG needs a delay. */
6064
6065 static bfd_boolean
6066 reg_needs_delay (unsigned int reg)
6067 {
6068 unsigned long prev_pinfo;
6069
6070 prev_pinfo = history[0].insn_mo->pinfo;
6071 if (!mips_opts.noreorder
6072 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6073 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6074 && (gpr_write_mask (&history[0]) & (1 << reg)))
6075 return TRUE;
6076
6077 return FALSE;
6078 }
6079
6080 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6081 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6082 by VR4120 errata. */
6083
6084 static unsigned int
6085 classify_vr4120_insn (const char *name)
6086 {
6087 if (strncmp (name, "macc", 4) == 0)
6088 return FIX_VR4120_MACC;
6089 if (strncmp (name, "dmacc", 5) == 0)
6090 return FIX_VR4120_DMACC;
6091 if (strncmp (name, "mult", 4) == 0)
6092 return FIX_VR4120_MULT;
6093 if (strncmp (name, "dmult", 5) == 0)
6094 return FIX_VR4120_DMULT;
6095 if (strstr (name, "div"))
6096 return FIX_VR4120_DIV;
6097 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6098 return FIX_VR4120_MTHILO;
6099 return NUM_FIX_VR4120_CLASSES;
6100 }
6101
6102 #define INSN_ERET 0x42000018
6103 #define INSN_DERET 0x4200001f
6104 #define INSN_DMULT 0x1c
6105 #define INSN_DMULTU 0x1d
6106
6107 /* Return the number of instructions that must separate INSN1 and INSN2,
6108 where INSN1 is the earlier instruction. Return the worst-case value
6109 for any INSN2 if INSN2 is null. */
6110
6111 static unsigned int
6112 insns_between (const struct mips_cl_insn *insn1,
6113 const struct mips_cl_insn *insn2)
6114 {
6115 unsigned long pinfo1, pinfo2;
6116 unsigned int mask;
6117
6118 /* If INFO2 is null, pessimistically assume that all flags are set for
6119 the second instruction. */
6120 pinfo1 = insn1->insn_mo->pinfo;
6121 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6122
6123 /* For most targets, write-after-read dependencies on the HI and LO
6124 registers must be separated by at least two instructions. */
6125 if (!hilo_interlocks)
6126 {
6127 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6128 return 2;
6129 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6130 return 2;
6131 }
6132
6133 /* If we're working around r7000 errata, there must be two instructions
6134 between an mfhi or mflo and any instruction that uses the result. */
6135 if (mips_7000_hilo_fix
6136 && !mips_opts.micromips
6137 && MF_HILO_INSN (pinfo1)
6138 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6139 return 2;
6140
6141 /* If we're working around 24K errata, one instruction is required
6142 if an ERET or DERET is followed by a branch instruction. */
6143 if (mips_fix_24k && !mips_opts.micromips)
6144 {
6145 if (insn1->insn_opcode == INSN_ERET
6146 || insn1->insn_opcode == INSN_DERET)
6147 {
6148 if (insn2 == NULL
6149 || insn2->insn_opcode == INSN_ERET
6150 || insn2->insn_opcode == INSN_DERET
6151 || delayed_branch_p (insn2))
6152 return 1;
6153 }
6154 }
6155
6156 /* If we're working around PMC RM7000 errata, there must be three
6157 nops between a dmult and a load instruction. */
6158 if (mips_fix_rm7000 && !mips_opts.micromips)
6159 {
6160 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6161 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6162 {
6163 if (pinfo2 & INSN_LOAD_MEMORY)
6164 return 3;
6165 }
6166 }
6167
6168 /* If working around VR4120 errata, check for combinations that need
6169 a single intervening instruction. */
6170 if (mips_fix_vr4120 && !mips_opts.micromips)
6171 {
6172 unsigned int class1, class2;
6173
6174 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6175 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6176 {
6177 if (insn2 == NULL)
6178 return 1;
6179 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6180 if (vr4120_conflicts[class1] & (1 << class2))
6181 return 1;
6182 }
6183 }
6184
6185 if (!HAVE_CODE_COMPRESSION)
6186 {
6187 /* Check for GPR or coprocessor load delays. All such delays
6188 are on the RT register. */
6189 /* Itbl support may require additional care here. */
6190 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6191 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6192 {
6193 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6194 return 1;
6195 }
6196
6197 /* Check for generic coprocessor hazards.
6198
6199 This case is not handled very well. There is no special
6200 knowledge of CP0 handling, and the coprocessors other than
6201 the floating point unit are not distinguished at all. */
6202 /* Itbl support may require additional care here. FIXME!
6203 Need to modify this to include knowledge about
6204 user specified delays! */
6205 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6206 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6207 {
6208 /* Handle cases where INSN1 writes to a known general coprocessor
6209 register. There must be a one instruction delay before INSN2
6210 if INSN2 reads that register, otherwise no delay is needed. */
6211 mask = fpr_write_mask (insn1);
6212 if (mask != 0)
6213 {
6214 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6215 return 1;
6216 }
6217 else
6218 {
6219 /* Read-after-write dependencies on the control registers
6220 require a two-instruction gap. */
6221 if ((pinfo1 & INSN_WRITE_COND_CODE)
6222 && (pinfo2 & INSN_READ_COND_CODE))
6223 return 2;
6224
6225 /* We don't know exactly what INSN1 does. If INSN2 is
6226 also a coprocessor instruction, assume there must be
6227 a one instruction gap. */
6228 if (pinfo2 & INSN_COP)
6229 return 1;
6230 }
6231 }
6232
6233 /* Check for read-after-write dependencies on the coprocessor
6234 control registers in cases where INSN1 does not need a general
6235 coprocessor delay. This means that INSN1 is a floating point
6236 comparison instruction. */
6237 /* Itbl support may require additional care here. */
6238 else if (!cop_interlocks
6239 && (pinfo1 & INSN_WRITE_COND_CODE)
6240 && (pinfo2 & INSN_READ_COND_CODE))
6241 return 1;
6242 }
6243
6244 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6245 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6246 and pause. */
6247 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6248 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6249 || (insn2 && delayed_branch_p (insn2))))
6250 return 1;
6251
6252 return 0;
6253 }
6254
6255 /* Return the number of nops that would be needed to work around the
6256 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6257 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6258 that are contained within the first IGNORE instructions of HIST. */
6259
6260 static int
6261 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6262 const struct mips_cl_insn *insn)
6263 {
6264 int i, j;
6265 unsigned int mask;
6266
6267 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6268 are not affected by the errata. */
6269 if (insn != 0
6270 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6271 || strcmp (insn->insn_mo->name, "mtlo") == 0
6272 || strcmp (insn->insn_mo->name, "mthi") == 0))
6273 return 0;
6274
6275 /* Search for the first MFLO or MFHI. */
6276 for (i = 0; i < MAX_VR4130_NOPS; i++)
6277 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6278 {
6279 /* Extract the destination register. */
6280 mask = gpr_write_mask (&hist[i]);
6281
6282 /* No nops are needed if INSN reads that register. */
6283 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6284 return 0;
6285
6286 /* ...or if any of the intervening instructions do. */
6287 for (j = 0; j < i; j++)
6288 if (gpr_read_mask (&hist[j]) & mask)
6289 return 0;
6290
6291 if (i >= ignore)
6292 return MAX_VR4130_NOPS - i;
6293 }
6294 return 0;
6295 }
6296
6297 #define BASE_REG_EQ(INSN1, INSN2) \
6298 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6299 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6300
6301 /* Return the minimum alignment for this store instruction. */
6302
6303 static int
6304 fix_24k_align_to (const struct mips_opcode *mo)
6305 {
6306 if (strcmp (mo->name, "sh") == 0)
6307 return 2;
6308
6309 if (strcmp (mo->name, "swc1") == 0
6310 || strcmp (mo->name, "swc2") == 0
6311 || strcmp (mo->name, "sw") == 0
6312 || strcmp (mo->name, "sc") == 0
6313 || strcmp (mo->name, "s.s") == 0)
6314 return 4;
6315
6316 if (strcmp (mo->name, "sdc1") == 0
6317 || strcmp (mo->name, "sdc2") == 0
6318 || strcmp (mo->name, "s.d") == 0)
6319 return 8;
6320
6321 /* sb, swl, swr */
6322 return 1;
6323 }
6324
6325 struct fix_24k_store_info
6326 {
6327 /* Immediate offset, if any, for this store instruction. */
6328 short off;
6329 /* Alignment required by this store instruction. */
6330 int align_to;
6331 /* True for register offsets. */
6332 int register_offset;
6333 };
6334
6335 /* Comparison function used by qsort. */
6336
6337 static int
6338 fix_24k_sort (const void *a, const void *b)
6339 {
6340 const struct fix_24k_store_info *pos1 = a;
6341 const struct fix_24k_store_info *pos2 = b;
6342
6343 return (pos1->off - pos2->off);
6344 }
6345
6346 /* INSN is a store instruction. Try to record the store information
6347 in STINFO. Return false if the information isn't known. */
6348
6349 static bfd_boolean
6350 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6351 const struct mips_cl_insn *insn)
6352 {
6353 /* The instruction must have a known offset. */
6354 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6355 return FALSE;
6356
6357 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6358 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6359 return TRUE;
6360 }
6361
6362 /* Return the number of nops that would be needed to work around the 24k
6363 "lost data on stores during refill" errata if instruction INSN
6364 immediately followed the 2 instructions described by HIST.
6365 Ignore hazards that are contained within the first IGNORE
6366 instructions of HIST.
6367
6368 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6369 for the data cache refills and store data. The following describes
6370 the scenario where the store data could be lost.
6371
6372 * A data cache miss, due to either a load or a store, causing fill
6373 data to be supplied by the memory subsystem
6374 * The first three doublewords of fill data are returned and written
6375 into the cache
6376 * A sequence of four stores occurs in consecutive cycles around the
6377 final doubleword of the fill:
6378 * Store A
6379 * Store B
6380 * Store C
6381 * Zero, One or more instructions
6382 * Store D
6383
6384 The four stores A-D must be to different doublewords of the line that
6385 is being filled. The fourth instruction in the sequence above permits
6386 the fill of the final doubleword to be transferred from the FSB into
6387 the cache. In the sequence above, the stores may be either integer
6388 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6389 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6390 different doublewords on the line. If the floating point unit is
6391 running in 1:2 mode, it is not possible to create the sequence above
6392 using only floating point store instructions.
6393
6394 In this case, the cache line being filled is incorrectly marked
6395 invalid, thereby losing the data from any store to the line that
6396 occurs between the original miss and the completion of the five
6397 cycle sequence shown above.
6398
6399 The workarounds are:
6400
6401 * Run the data cache in write-through mode.
6402 * Insert a non-store instruction between
6403 Store A and Store B or Store B and Store C. */
6404
6405 static int
6406 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6407 const struct mips_cl_insn *insn)
6408 {
6409 struct fix_24k_store_info pos[3];
6410 int align, i, base_offset;
6411
6412 if (ignore >= 2)
6413 return 0;
6414
6415 /* If the previous instruction wasn't a store, there's nothing to
6416 worry about. */
6417 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6418 return 0;
6419
6420 /* If the instructions after the previous one are unknown, we have
6421 to assume the worst. */
6422 if (!insn)
6423 return 1;
6424
6425 /* Check whether we are dealing with three consecutive stores. */
6426 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6427 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6428 return 0;
6429
6430 /* If we don't know the relationship between the store addresses,
6431 assume the worst. */
6432 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6433 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6434 return 1;
6435
6436 if (!fix_24k_record_store_info (&pos[0], insn)
6437 || !fix_24k_record_store_info (&pos[1], &hist[0])
6438 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6439 return 1;
6440
6441 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6442
6443 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6444 X bytes and such that the base register + X is known to be aligned
6445 to align bytes. */
6446
6447 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6448 align = 8;
6449 else
6450 {
6451 align = pos[0].align_to;
6452 base_offset = pos[0].off;
6453 for (i = 1; i < 3; i++)
6454 if (align < pos[i].align_to)
6455 {
6456 align = pos[i].align_to;
6457 base_offset = pos[i].off;
6458 }
6459 for (i = 0; i < 3; i++)
6460 pos[i].off -= base_offset;
6461 }
6462
6463 pos[0].off &= ~align + 1;
6464 pos[1].off &= ~align + 1;
6465 pos[2].off &= ~align + 1;
6466
6467 /* If any two stores write to the same chunk, they also write to the
6468 same doubleword. The offsets are still sorted at this point. */
6469 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6470 return 0;
6471
6472 /* A range of at least 9 bytes is needed for the stores to be in
6473 non-overlapping doublewords. */
6474 if (pos[2].off - pos[0].off <= 8)
6475 return 0;
6476
6477 if (pos[2].off - pos[1].off >= 24
6478 || pos[1].off - pos[0].off >= 24
6479 || pos[2].off - pos[0].off >= 32)
6480 return 0;
6481
6482 return 1;
6483 }
6484
6485 /* Return the number of nops that would be needed if instruction INSN
6486 immediately followed the MAX_NOPS instructions given by HIST,
6487 where HIST[0] is the most recent instruction. Ignore hazards
6488 between INSN and the first IGNORE instructions in HIST.
6489
6490 If INSN is null, return the worse-case number of nops for any
6491 instruction. */
6492
6493 static int
6494 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6495 const struct mips_cl_insn *insn)
6496 {
6497 int i, nops, tmp_nops;
6498
6499 nops = 0;
6500 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6501 {
6502 tmp_nops = insns_between (hist + i, insn) - i;
6503 if (tmp_nops > nops)
6504 nops = tmp_nops;
6505 }
6506
6507 if (mips_fix_vr4130 && !mips_opts.micromips)
6508 {
6509 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6510 if (tmp_nops > nops)
6511 nops = tmp_nops;
6512 }
6513
6514 if (mips_fix_24k && !mips_opts.micromips)
6515 {
6516 tmp_nops = nops_for_24k (ignore, hist, insn);
6517 if (tmp_nops > nops)
6518 nops = tmp_nops;
6519 }
6520
6521 return nops;
6522 }
6523
6524 /* The variable arguments provide NUM_INSNS extra instructions that
6525 might be added to HIST. Return the largest number of nops that
6526 would be needed after the extended sequence, ignoring hazards
6527 in the first IGNORE instructions. */
6528
6529 static int
6530 nops_for_sequence (int num_insns, int ignore,
6531 const struct mips_cl_insn *hist, ...)
6532 {
6533 va_list args;
6534 struct mips_cl_insn buffer[MAX_NOPS];
6535 struct mips_cl_insn *cursor;
6536 int nops;
6537
6538 va_start (args, hist);
6539 cursor = buffer + num_insns;
6540 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6541 while (cursor > buffer)
6542 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6543
6544 nops = nops_for_insn (ignore, buffer, NULL);
6545 va_end (args);
6546 return nops;
6547 }
6548
6549 /* Like nops_for_insn, but if INSN is a branch, take into account the
6550 worst-case delay for the branch target. */
6551
6552 static int
6553 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6554 const struct mips_cl_insn *insn)
6555 {
6556 int nops, tmp_nops;
6557
6558 nops = nops_for_insn (ignore, hist, insn);
6559 if (delayed_branch_p (insn))
6560 {
6561 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6562 hist, insn, get_delay_slot_nop (insn));
6563 if (tmp_nops > nops)
6564 nops = tmp_nops;
6565 }
6566 else if (compact_branch_p (insn))
6567 {
6568 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6569 if (tmp_nops > nops)
6570 nops = tmp_nops;
6571 }
6572 return nops;
6573 }
6574
6575 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6576
6577 static void
6578 fix_loongson2f_nop (struct mips_cl_insn * ip)
6579 {
6580 gas_assert (!HAVE_CODE_COMPRESSION);
6581 if (strcmp (ip->insn_mo->name, "nop") == 0)
6582 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6583 }
6584
6585 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6586 jr target pc &= 'hffff_ffff_cfff_ffff. */
6587
6588 static void
6589 fix_loongson2f_jump (struct mips_cl_insn * ip)
6590 {
6591 gas_assert (!HAVE_CODE_COMPRESSION);
6592 if (strcmp (ip->insn_mo->name, "j") == 0
6593 || strcmp (ip->insn_mo->name, "jr") == 0
6594 || strcmp (ip->insn_mo->name, "jalr") == 0)
6595 {
6596 int sreg;
6597 expressionS ep;
6598
6599 if (! mips_opts.at)
6600 return;
6601
6602 sreg = EXTRACT_OPERAND (0, RS, *ip);
6603 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6604 return;
6605
6606 ep.X_op = O_constant;
6607 ep.X_add_number = 0xcfff0000;
6608 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6609 ep.X_add_number = 0xffff;
6610 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6611 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6612 }
6613 }
6614
6615 static void
6616 fix_loongson2f (struct mips_cl_insn * ip)
6617 {
6618 if (mips_fix_loongson2f_nop)
6619 fix_loongson2f_nop (ip);
6620
6621 if (mips_fix_loongson2f_jump)
6622 fix_loongson2f_jump (ip);
6623 }
6624
6625 /* IP is a branch that has a delay slot, and we need to fill it
6626 automatically. Return true if we can do that by swapping IP
6627 with the previous instruction.
6628 ADDRESS_EXPR is an operand of the instruction to be used with
6629 RELOC_TYPE. */
6630
6631 static bfd_boolean
6632 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6633 bfd_reloc_code_real_type *reloc_type)
6634 {
6635 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6636 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6637 unsigned int fpr_read, prev_fpr_write;
6638
6639 /* -O2 and above is required for this optimization. */
6640 if (mips_optimize < 2)
6641 return FALSE;
6642
6643 /* If we have seen .set volatile or .set nomove, don't optimize. */
6644 if (mips_opts.nomove)
6645 return FALSE;
6646
6647 /* We can't swap if the previous instruction's position is fixed. */
6648 if (history[0].fixed_p)
6649 return FALSE;
6650
6651 /* If the previous previous insn was in a .set noreorder, we can't
6652 swap. Actually, the MIPS assembler will swap in this situation.
6653 However, gcc configured -with-gnu-as will generate code like
6654
6655 .set noreorder
6656 lw $4,XXX
6657 .set reorder
6658 INSN
6659 bne $4,$0,foo
6660
6661 in which we can not swap the bne and INSN. If gcc is not configured
6662 -with-gnu-as, it does not output the .set pseudo-ops. */
6663 if (history[1].noreorder_p)
6664 return FALSE;
6665
6666 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6667 This means that the previous instruction was a 4-byte one anyhow. */
6668 if (mips_opts.mips16 && history[0].fixp[0])
6669 return FALSE;
6670
6671 /* If the branch is itself the target of a branch, we can not swap.
6672 We cheat on this; all we check for is whether there is a label on
6673 this instruction. If there are any branches to anything other than
6674 a label, users must use .set noreorder. */
6675 if (seg_info (now_seg)->label_list)
6676 return FALSE;
6677
6678 /* If the previous instruction is in a variant frag other than this
6679 branch's one, we cannot do the swap. This does not apply to
6680 MIPS16 code, which uses variant frags for different purposes. */
6681 if (!mips_opts.mips16
6682 && history[0].frag
6683 && history[0].frag->fr_type == rs_machine_dependent)
6684 return FALSE;
6685
6686 /* We do not swap with instructions that cannot architecturally
6687 be placed in a branch delay slot, such as SYNC or ERET. We
6688 also refrain from swapping with a trap instruction, since it
6689 complicates trap handlers to have the trap instruction be in
6690 a delay slot. */
6691 prev_pinfo = history[0].insn_mo->pinfo;
6692 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6693 return FALSE;
6694
6695 /* Check for conflicts between the branch and the instructions
6696 before the candidate delay slot. */
6697 if (nops_for_insn (0, history + 1, ip) > 0)
6698 return FALSE;
6699
6700 /* Check for conflicts between the swapped sequence and the
6701 target of the branch. */
6702 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6703 return FALSE;
6704
6705 /* If the branch reads a register that the previous
6706 instruction sets, we can not swap. */
6707 gpr_read = gpr_read_mask (ip);
6708 prev_gpr_write = gpr_write_mask (&history[0]);
6709 if (gpr_read & prev_gpr_write)
6710 return FALSE;
6711
6712 fpr_read = fpr_read_mask (ip);
6713 prev_fpr_write = fpr_write_mask (&history[0]);
6714 if (fpr_read & prev_fpr_write)
6715 return FALSE;
6716
6717 /* If the branch writes a register that the previous
6718 instruction sets, we can not swap. */
6719 gpr_write = gpr_write_mask (ip);
6720 if (gpr_write & prev_gpr_write)
6721 return FALSE;
6722
6723 /* If the branch writes a register that the previous
6724 instruction reads, we can not swap. */
6725 prev_gpr_read = gpr_read_mask (&history[0]);
6726 if (gpr_write & prev_gpr_read)
6727 return FALSE;
6728
6729 /* If one instruction sets a condition code and the
6730 other one uses a condition code, we can not swap. */
6731 pinfo = ip->insn_mo->pinfo;
6732 if ((pinfo & INSN_READ_COND_CODE)
6733 && (prev_pinfo & INSN_WRITE_COND_CODE))
6734 return FALSE;
6735 if ((pinfo & INSN_WRITE_COND_CODE)
6736 && (prev_pinfo & INSN_READ_COND_CODE))
6737 return FALSE;
6738
6739 /* If the previous instruction uses the PC, we can not swap. */
6740 prev_pinfo2 = history[0].insn_mo->pinfo2;
6741 if (prev_pinfo2 & INSN2_READ_PC)
6742 return FALSE;
6743
6744 /* If the previous instruction has an incorrect size for a fixed
6745 branch delay slot in microMIPS mode, we cannot swap. */
6746 pinfo2 = ip->insn_mo->pinfo2;
6747 if (mips_opts.micromips
6748 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6749 && insn_length (history) != 2)
6750 return FALSE;
6751 if (mips_opts.micromips
6752 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6753 && insn_length (history) != 4)
6754 return FALSE;
6755
6756 /* On R5900 short loops need to be fixed by inserting a nop in
6757 the branch delay slots.
6758 A short loop can be terminated too early. */
6759 if (mips_opts.arch == CPU_R5900
6760 /* Check if instruction has a parameter, ignore "j $31". */
6761 && (address_expr != NULL)
6762 /* Parameter must be 16 bit. */
6763 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6764 /* Branch to same segment. */
6765 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6766 /* Branch to same code fragment. */
6767 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6768 /* Can only calculate branch offset if value is known. */
6769 && symbol_constant_p (address_expr->X_add_symbol)
6770 /* Check if branch is really conditional. */
6771 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6772 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6773 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6774 {
6775 int distance;
6776 /* Check if loop is shorter than 6 instructions including
6777 branch and delay slot. */
6778 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6779 if (distance <= 20)
6780 {
6781 int i;
6782 int rv;
6783
6784 rv = FALSE;
6785 /* When the loop includes branches or jumps,
6786 it is not a short loop. */
6787 for (i = 0; i < (distance / 4); i++)
6788 {
6789 if ((history[i].cleared_p)
6790 || delayed_branch_p (&history[i]))
6791 {
6792 rv = TRUE;
6793 break;
6794 }
6795 }
6796 if (rv == FALSE)
6797 {
6798 /* Insert nop after branch to fix short loop. */
6799 return FALSE;
6800 }
6801 }
6802 }
6803
6804 return TRUE;
6805 }
6806
6807 /* Decide how we should add IP to the instruction stream.
6808 ADDRESS_EXPR is an operand of the instruction to be used with
6809 RELOC_TYPE. */
6810
6811 static enum append_method
6812 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6813 bfd_reloc_code_real_type *reloc_type)
6814 {
6815 /* The relaxed version of a macro sequence must be inherently
6816 hazard-free. */
6817 if (mips_relax.sequence == 2)
6818 return APPEND_ADD;
6819
6820 /* We must not dabble with instructions in a ".set noreorder" block. */
6821 if (mips_opts.noreorder)
6822 return APPEND_ADD;
6823
6824 /* Otherwise, it's our responsibility to fill branch delay slots. */
6825 if (delayed_branch_p (ip))
6826 {
6827 if (!branch_likely_p (ip)
6828 && can_swap_branch_p (ip, address_expr, reloc_type))
6829 return APPEND_SWAP;
6830
6831 if (mips_opts.mips16
6832 && ISA_SUPPORTS_MIPS16E
6833 && gpr_read_mask (ip) != 0)
6834 return APPEND_ADD_COMPACT;
6835
6836 if (mips_opts.micromips
6837 && ((ip->insn_opcode & 0xffe0) == 0x4580
6838 || (!forced_insn_length
6839 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6840 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6841 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6842 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6843 return APPEND_ADD_COMPACT;
6844
6845 return APPEND_ADD_WITH_NOP;
6846 }
6847
6848 return APPEND_ADD;
6849 }
6850
6851 /* IP is an instruction whose opcode we have just changed, END points
6852 to the end of the opcode table processed. Point IP->insn_mo to the
6853 new opcode's definition. */
6854
6855 static void
6856 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
6857 {
6858 const struct mips_opcode *mo;
6859
6860 for (mo = ip->insn_mo; mo < end; mo++)
6861 if (mo->pinfo != INSN_MACRO
6862 && (ip->insn_opcode & mo->mask) == mo->match)
6863 {
6864 ip->insn_mo = mo;
6865 return;
6866 }
6867 abort ();
6868 }
6869
6870 /* IP is a MIPS16 instruction whose opcode we have just changed.
6871 Point IP->insn_mo to the new opcode's definition. */
6872
6873 static void
6874 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6875 {
6876 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6877 }
6878
6879 /* IP is a microMIPS instruction whose opcode we have just changed.
6880 Point IP->insn_mo to the new opcode's definition. */
6881
6882 static void
6883 find_altered_micromips_opcode (struct mips_cl_insn *ip)
6884 {
6885 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6886 }
6887
6888 /* For microMIPS macros, we need to generate a local number label
6889 as the target of branches. */
6890 #define MICROMIPS_LABEL_CHAR '\037'
6891 static unsigned long micromips_target_label;
6892 static char micromips_target_name[32];
6893
6894 static char *
6895 micromips_label_name (void)
6896 {
6897 char *p = micromips_target_name;
6898 char symbol_name_temporary[24];
6899 unsigned long l;
6900 int i;
6901
6902 if (*p)
6903 return p;
6904
6905 i = 0;
6906 l = micromips_target_label;
6907 #ifdef LOCAL_LABEL_PREFIX
6908 *p++ = LOCAL_LABEL_PREFIX;
6909 #endif
6910 *p++ = 'L';
6911 *p++ = MICROMIPS_LABEL_CHAR;
6912 do
6913 {
6914 symbol_name_temporary[i++] = l % 10 + '0';
6915 l /= 10;
6916 }
6917 while (l != 0);
6918 while (i > 0)
6919 *p++ = symbol_name_temporary[--i];
6920 *p = '\0';
6921
6922 return micromips_target_name;
6923 }
6924
6925 static void
6926 micromips_label_expr (expressionS *label_expr)
6927 {
6928 label_expr->X_op = O_symbol;
6929 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6930 label_expr->X_add_number = 0;
6931 }
6932
6933 static void
6934 micromips_label_inc (void)
6935 {
6936 micromips_target_label++;
6937 *micromips_target_name = '\0';
6938 }
6939
6940 static void
6941 micromips_add_label (void)
6942 {
6943 symbolS *s;
6944
6945 s = colon (micromips_label_name ());
6946 micromips_label_inc ();
6947 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6948 }
6949
6950 /* If assembling microMIPS code, then return the microMIPS reloc
6951 corresponding to the requested one if any. Otherwise return
6952 the reloc unchanged. */
6953
6954 static bfd_reloc_code_real_type
6955 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6956 {
6957 static const bfd_reloc_code_real_type relocs[][2] =
6958 {
6959 /* Keep sorted incrementally by the left-hand key. */
6960 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6961 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6962 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6963 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6964 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6965 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6966 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6967 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6968 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6969 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6970 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6971 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6972 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6973 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6974 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6975 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6976 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6977 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6978 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6979 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6980 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6981 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6982 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6983 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6984 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6985 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6986 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6987 };
6988 bfd_reloc_code_real_type r;
6989 size_t i;
6990
6991 if (!mips_opts.micromips)
6992 return reloc;
6993 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6994 {
6995 r = relocs[i][0];
6996 if (r > reloc)
6997 return reloc;
6998 if (r == reloc)
6999 return relocs[i][1];
7000 }
7001 return reloc;
7002 }
7003
7004 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7005 Return true on success, storing the resolved value in RESULT. */
7006
7007 static bfd_boolean
7008 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7009 offsetT *result)
7010 {
7011 switch (reloc)
7012 {
7013 case BFD_RELOC_MIPS_HIGHEST:
7014 case BFD_RELOC_MICROMIPS_HIGHEST:
7015 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7016 return TRUE;
7017
7018 case BFD_RELOC_MIPS_HIGHER:
7019 case BFD_RELOC_MICROMIPS_HIGHER:
7020 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7021 return TRUE;
7022
7023 case BFD_RELOC_HI16_S:
7024 case BFD_RELOC_HI16_S_PCREL:
7025 case BFD_RELOC_MICROMIPS_HI16_S:
7026 case BFD_RELOC_MIPS16_HI16_S:
7027 *result = ((operand + 0x8000) >> 16) & 0xffff;
7028 return TRUE;
7029
7030 case BFD_RELOC_HI16:
7031 case BFD_RELOC_MICROMIPS_HI16:
7032 case BFD_RELOC_MIPS16_HI16:
7033 *result = (operand >> 16) & 0xffff;
7034 return TRUE;
7035
7036 case BFD_RELOC_LO16:
7037 case BFD_RELOC_LO16_PCREL:
7038 case BFD_RELOC_MICROMIPS_LO16:
7039 case BFD_RELOC_MIPS16_LO16:
7040 *result = operand & 0xffff;
7041 return TRUE;
7042
7043 case BFD_RELOC_UNUSED:
7044 *result = operand;
7045 return TRUE;
7046
7047 default:
7048 return FALSE;
7049 }
7050 }
7051
7052 /* Output an instruction. IP is the instruction information.
7053 ADDRESS_EXPR is an operand of the instruction to be used with
7054 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7055 a macro expansion. */
7056
7057 static void
7058 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7059 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7060 {
7061 unsigned long prev_pinfo2, pinfo;
7062 bfd_boolean relaxed_branch = FALSE;
7063 enum append_method method;
7064 bfd_boolean relax32;
7065 int branch_disp;
7066
7067 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7068 fix_loongson2f (ip);
7069
7070 file_ase_mips16 |= mips_opts.mips16;
7071 file_ase_micromips |= mips_opts.micromips;
7072
7073 prev_pinfo2 = history[0].insn_mo->pinfo2;
7074 pinfo = ip->insn_mo->pinfo;
7075
7076 /* Don't raise alarm about `nods' frags as they'll fill in the right
7077 kind of nop in relaxation if required. */
7078 if (mips_opts.micromips
7079 && !expansionp
7080 && !(history[0].frag
7081 && history[0].frag->fr_type == rs_machine_dependent
7082 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7083 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7084 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7085 && micromips_insn_length (ip->insn_mo) != 2)
7086 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7087 && micromips_insn_length (ip->insn_mo) != 4)))
7088 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7089 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7090
7091 if (address_expr == NULL)
7092 ip->complete_p = 1;
7093 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7094 && reloc_type[1] == BFD_RELOC_UNUSED
7095 && reloc_type[2] == BFD_RELOC_UNUSED
7096 && address_expr->X_op == O_constant)
7097 {
7098 switch (*reloc_type)
7099 {
7100 case BFD_RELOC_MIPS_JMP:
7101 {
7102 int shift;
7103
7104 /* Shift is 2, unusually, for microMIPS JALX. */
7105 shift = (mips_opts.micromips
7106 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7107 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7108 as_bad (_("jump to misaligned address (0x%lx)"),
7109 (unsigned long) address_expr->X_add_number);
7110 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7111 & 0x3ffffff);
7112 ip->complete_p = 1;
7113 }
7114 break;
7115
7116 case BFD_RELOC_MIPS16_JMP:
7117 if ((address_expr->X_add_number & 3) != 0)
7118 as_bad (_("jump to misaligned address (0x%lx)"),
7119 (unsigned long) address_expr->X_add_number);
7120 ip->insn_opcode |=
7121 (((address_expr->X_add_number & 0x7c0000) << 3)
7122 | ((address_expr->X_add_number & 0xf800000) >> 7)
7123 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7124 ip->complete_p = 1;
7125 break;
7126
7127 case BFD_RELOC_16_PCREL_S2:
7128 {
7129 int shift;
7130
7131 shift = mips_opts.micromips ? 1 : 2;
7132 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7133 as_bad (_("branch to misaligned address (0x%lx)"),
7134 (unsigned long) address_expr->X_add_number);
7135 if (!mips_relax_branch)
7136 {
7137 if ((address_expr->X_add_number + (1 << (shift + 15)))
7138 & ~((1 << (shift + 16)) - 1))
7139 as_bad (_("branch address range overflow (0x%lx)"),
7140 (unsigned long) address_expr->X_add_number);
7141 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7142 & 0xffff);
7143 }
7144 }
7145 break;
7146
7147 case BFD_RELOC_MIPS_21_PCREL_S2:
7148 {
7149 int shift;
7150
7151 shift = 2;
7152 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7153 as_bad (_("branch to misaligned address (0x%lx)"),
7154 (unsigned long) address_expr->X_add_number);
7155 if ((address_expr->X_add_number + (1 << (shift + 20)))
7156 & ~((1 << (shift + 21)) - 1))
7157 as_bad (_("branch address range overflow (0x%lx)"),
7158 (unsigned long) address_expr->X_add_number);
7159 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7160 & 0x1fffff);
7161 }
7162 break;
7163
7164 case BFD_RELOC_MIPS_26_PCREL_S2:
7165 {
7166 int shift;
7167
7168 shift = 2;
7169 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7170 as_bad (_("branch to misaligned address (0x%lx)"),
7171 (unsigned long) address_expr->X_add_number);
7172 if ((address_expr->X_add_number + (1 << (shift + 25)))
7173 & ~((1 << (shift + 26)) - 1))
7174 as_bad (_("branch address range overflow (0x%lx)"),
7175 (unsigned long) address_expr->X_add_number);
7176 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7177 & 0x3ffffff);
7178 }
7179 break;
7180
7181 default:
7182 {
7183 offsetT value;
7184
7185 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7186 &value))
7187 {
7188 ip->insn_opcode |= value & 0xffff;
7189 ip->complete_p = 1;
7190 }
7191 }
7192 break;
7193 }
7194 }
7195
7196 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7197 {
7198 /* There are a lot of optimizations we could do that we don't.
7199 In particular, we do not, in general, reorder instructions.
7200 If you use gcc with optimization, it will reorder
7201 instructions and generally do much more optimization then we
7202 do here; repeating all that work in the assembler would only
7203 benefit hand written assembly code, and does not seem worth
7204 it. */
7205 int nops = (mips_optimize == 0
7206 ? nops_for_insn (0, history, NULL)
7207 : nops_for_insn_or_target (0, history, ip));
7208 if (nops > 0)
7209 {
7210 fragS *old_frag;
7211 unsigned long old_frag_offset;
7212 int i;
7213
7214 old_frag = frag_now;
7215 old_frag_offset = frag_now_fix ();
7216
7217 for (i = 0; i < nops; i++)
7218 add_fixed_insn (NOP_INSN);
7219 insert_into_history (0, nops, NOP_INSN);
7220
7221 if (listing)
7222 {
7223 listing_prev_line ();
7224 /* We may be at the start of a variant frag. In case we
7225 are, make sure there is enough space for the frag
7226 after the frags created by listing_prev_line. The
7227 argument to frag_grow here must be at least as large
7228 as the argument to all other calls to frag_grow in
7229 this file. We don't have to worry about being in the
7230 middle of a variant frag, because the variants insert
7231 all needed nop instructions themselves. */
7232 frag_grow (40);
7233 }
7234
7235 mips_move_text_labels ();
7236
7237 #ifndef NO_ECOFF_DEBUGGING
7238 if (ECOFF_DEBUGGING)
7239 ecoff_fix_loc (old_frag, old_frag_offset);
7240 #endif
7241 }
7242 }
7243 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7244 {
7245 int nops;
7246
7247 /* Work out how many nops in prev_nop_frag are needed by IP,
7248 ignoring hazards generated by the first prev_nop_frag_since
7249 instructions. */
7250 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7251 gas_assert (nops <= prev_nop_frag_holds);
7252
7253 /* Enforce NOPS as a minimum. */
7254 if (nops > prev_nop_frag_required)
7255 prev_nop_frag_required = nops;
7256
7257 if (prev_nop_frag_holds == prev_nop_frag_required)
7258 {
7259 /* Settle for the current number of nops. Update the history
7260 accordingly (for the benefit of any future .set reorder code). */
7261 prev_nop_frag = NULL;
7262 insert_into_history (prev_nop_frag_since,
7263 prev_nop_frag_holds, NOP_INSN);
7264 }
7265 else
7266 {
7267 /* Allow this instruction to replace one of the nops that was
7268 tentatively added to prev_nop_frag. */
7269 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7270 prev_nop_frag_holds--;
7271 prev_nop_frag_since++;
7272 }
7273 }
7274
7275 method = get_append_method (ip, address_expr, reloc_type);
7276 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7277
7278 dwarf2_emit_insn (0);
7279 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7280 so "move" the instruction address accordingly.
7281
7282 Also, it doesn't seem appropriate for the assembler to reorder .loc
7283 entries. If this instruction is a branch that we are going to swap
7284 with the previous instruction, the two instructions should be
7285 treated as a unit, and the debug information for both instructions
7286 should refer to the start of the branch sequence. Using the
7287 current position is certainly wrong when swapping a 32-bit branch
7288 and a 16-bit delay slot, since the current position would then be
7289 in the middle of a branch. */
7290 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7291
7292 relax32 = (mips_relax_branch
7293 /* Don't try branch relaxation within .set nomacro, or within
7294 .set noat if we use $at for PIC computations. If it turns
7295 out that the branch was out-of-range, we'll get an error. */
7296 && !mips_opts.warn_about_macros
7297 && (mips_opts.at || mips_pic == NO_PIC)
7298 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7299 as they have no complementing branches. */
7300 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7301
7302 if (!HAVE_CODE_COMPRESSION
7303 && address_expr
7304 && relax32
7305 && *reloc_type == BFD_RELOC_16_PCREL_S2
7306 && delayed_branch_p (ip))
7307 {
7308 relaxed_branch = TRUE;
7309 add_relaxed_insn (ip, (relaxed_branch_length
7310 (NULL, NULL,
7311 uncond_branch_p (ip) ? -1
7312 : branch_likely_p (ip) ? 1
7313 : 0)), 4,
7314 RELAX_BRANCH_ENCODE
7315 (AT,
7316 uncond_branch_p (ip),
7317 branch_likely_p (ip),
7318 pinfo & INSN_WRITE_GPR_31,
7319 0),
7320 address_expr->X_add_symbol,
7321 address_expr->X_add_number);
7322 *reloc_type = BFD_RELOC_UNUSED;
7323 }
7324 else if (mips_opts.micromips
7325 && address_expr
7326 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7327 || *reloc_type > BFD_RELOC_UNUSED)
7328 && (delayed_branch_p (ip) || compact_branch_p (ip))
7329 /* Don't try branch relaxation when users specify
7330 16-bit/32-bit instructions. */
7331 && !forced_insn_length)
7332 {
7333 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7334 && *reloc_type > BFD_RELOC_UNUSED);
7335 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7336 int uncond = uncond_branch_p (ip) ? -1 : 0;
7337 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7338 int nods = method == APPEND_ADD_WITH_NOP;
7339 int al = pinfo & INSN_WRITE_GPR_31;
7340 int length32 = nods ? 8 : 4;
7341
7342 gas_assert (address_expr != NULL);
7343 gas_assert (!mips_relax.sequence);
7344
7345 relaxed_branch = TRUE;
7346 if (nods)
7347 method = APPEND_ADD;
7348 if (relax32)
7349 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7350 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7351 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7352 uncond, compact, al, nods,
7353 relax32, 0, 0),
7354 address_expr->X_add_symbol,
7355 address_expr->X_add_number);
7356 *reloc_type = BFD_RELOC_UNUSED;
7357 }
7358 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7359 {
7360 symbolS *symbol;
7361 offsetT offset;
7362
7363 /* We need to set up a variant frag. */
7364 gas_assert (address_expr != NULL);
7365 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7366 symbol created by `make_expr_symbol' may not get a necessary
7367 external relocation produced. */
7368 if (address_expr->X_op == O_symbol)
7369 {
7370 symbol = address_expr->X_add_symbol;
7371 offset = address_expr->X_add_number;
7372 }
7373 else
7374 {
7375 symbol = make_expr_symbol (address_expr);
7376 offset = 0;
7377 }
7378 add_relaxed_insn (ip, 4, 0,
7379 RELAX_MIPS16_ENCODE
7380 (*reloc_type - BFD_RELOC_UNUSED,
7381 forced_insn_length == 2, forced_insn_length == 4,
7382 delayed_branch_p (&history[0]),
7383 history[0].mips16_absolute_jump_p),
7384 symbol, offset);
7385 }
7386 else if (mips_opts.mips16 && insn_length (ip) == 2)
7387 {
7388 if (!delayed_branch_p (ip))
7389 /* Make sure there is enough room to swap this instruction with
7390 a following jump instruction. */
7391 frag_grow (6);
7392 add_fixed_insn (ip);
7393 }
7394 else
7395 {
7396 if (mips_opts.mips16
7397 && mips_opts.noreorder
7398 && delayed_branch_p (&history[0]))
7399 as_warn (_("extended instruction in delay slot"));
7400
7401 if (mips_relax.sequence)
7402 {
7403 /* If we've reached the end of this frag, turn it into a variant
7404 frag and record the information for the instructions we've
7405 written so far. */
7406 if (frag_room () < 4)
7407 relax_close_frag ();
7408 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7409 }
7410
7411 if (mips_relax.sequence != 2)
7412 {
7413 if (mips_macro_warning.first_insn_sizes[0] == 0)
7414 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7415 mips_macro_warning.sizes[0] += insn_length (ip);
7416 mips_macro_warning.insns[0]++;
7417 }
7418 if (mips_relax.sequence != 1)
7419 {
7420 if (mips_macro_warning.first_insn_sizes[1] == 0)
7421 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7422 mips_macro_warning.sizes[1] += insn_length (ip);
7423 mips_macro_warning.insns[1]++;
7424 }
7425
7426 if (mips_opts.mips16)
7427 {
7428 ip->fixed_p = 1;
7429 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7430 }
7431 add_fixed_insn (ip);
7432 }
7433
7434 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7435 {
7436 bfd_reloc_code_real_type final_type[3];
7437 reloc_howto_type *howto0;
7438 reloc_howto_type *howto;
7439 int i;
7440
7441 /* Perform any necessary conversion to microMIPS relocations
7442 and find out how many relocations there actually are. */
7443 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7444 final_type[i] = micromips_map_reloc (reloc_type[i]);
7445
7446 /* In a compound relocation, it is the final (outermost)
7447 operator that determines the relocated field. */
7448 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7449 if (!howto)
7450 abort ();
7451
7452 if (i > 1)
7453 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7454 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7455 bfd_get_reloc_size (howto),
7456 address_expr,
7457 howto0 && howto0->pc_relative,
7458 final_type[0]);
7459
7460 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7461 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7462 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7463
7464 /* These relocations can have an addend that won't fit in
7465 4 octets for 64bit assembly. */
7466 if (GPR_SIZE == 64
7467 && ! howto->partial_inplace
7468 && (reloc_type[0] == BFD_RELOC_16
7469 || reloc_type[0] == BFD_RELOC_32
7470 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7471 || reloc_type[0] == BFD_RELOC_GPREL16
7472 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7473 || reloc_type[0] == BFD_RELOC_GPREL32
7474 || reloc_type[0] == BFD_RELOC_64
7475 || reloc_type[0] == BFD_RELOC_CTOR
7476 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7477 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7478 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7479 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7480 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7481 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7482 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7483 || hi16_reloc_p (reloc_type[0])
7484 || lo16_reloc_p (reloc_type[0])))
7485 ip->fixp[0]->fx_no_overflow = 1;
7486
7487 /* These relocations can have an addend that won't fit in 2 octets. */
7488 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7489 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7490 ip->fixp[0]->fx_no_overflow = 1;
7491
7492 if (mips_relax.sequence)
7493 {
7494 if (mips_relax.first_fixup == 0)
7495 mips_relax.first_fixup = ip->fixp[0];
7496 }
7497 else if (reloc_needs_lo_p (*reloc_type))
7498 {
7499 struct mips_hi_fixup *hi_fixup;
7500
7501 /* Reuse the last entry if it already has a matching %lo. */
7502 hi_fixup = mips_hi_fixup_list;
7503 if (hi_fixup == 0
7504 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7505 {
7506 hi_fixup = XNEW (struct mips_hi_fixup);
7507 hi_fixup->next = mips_hi_fixup_list;
7508 mips_hi_fixup_list = hi_fixup;
7509 }
7510 hi_fixup->fixp = ip->fixp[0];
7511 hi_fixup->seg = now_seg;
7512 }
7513
7514 /* Add fixups for the second and third relocations, if given.
7515 Note that the ABI allows the second relocation to be
7516 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7517 moment we only use RSS_UNDEF, but we could add support
7518 for the others if it ever becomes necessary. */
7519 for (i = 1; i < 3; i++)
7520 if (reloc_type[i] != BFD_RELOC_UNUSED)
7521 {
7522 ip->fixp[i] = fix_new (ip->frag, ip->where,
7523 ip->fixp[0]->fx_size, NULL, 0,
7524 FALSE, final_type[i]);
7525
7526 /* Use fx_tcbit to mark compound relocs. */
7527 ip->fixp[0]->fx_tcbit = 1;
7528 ip->fixp[i]->fx_tcbit = 1;
7529 }
7530 }
7531
7532 /* Update the register mask information. */
7533 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7534 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7535
7536 switch (method)
7537 {
7538 case APPEND_ADD:
7539 insert_into_history (0, 1, ip);
7540 break;
7541
7542 case APPEND_ADD_WITH_NOP:
7543 {
7544 struct mips_cl_insn *nop;
7545
7546 insert_into_history (0, 1, ip);
7547 nop = get_delay_slot_nop (ip);
7548 add_fixed_insn (nop);
7549 insert_into_history (0, 1, nop);
7550 if (mips_relax.sequence)
7551 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7552 }
7553 break;
7554
7555 case APPEND_ADD_COMPACT:
7556 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7557 if (mips_opts.mips16)
7558 {
7559 ip->insn_opcode |= 0x0080;
7560 find_altered_mips16_opcode (ip);
7561 }
7562 /* Convert microMIPS instructions. */
7563 else if (mips_opts.micromips)
7564 {
7565 /* jr16->jrc */
7566 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7567 ip->insn_opcode |= 0x0020;
7568 /* b16->bc */
7569 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7570 ip->insn_opcode = 0x40e00000;
7571 /* beqz16->beqzc, bnez16->bnezc */
7572 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7573 {
7574 unsigned long regno;
7575
7576 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7577 regno &= MICROMIPSOP_MASK_MD;
7578 regno = micromips_to_32_reg_d_map[regno];
7579 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7580 | (regno << MICROMIPSOP_SH_RS)
7581 | 0x40a00000) ^ 0x00400000;
7582 }
7583 /* beqz->beqzc, bnez->bnezc */
7584 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7585 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7586 | ((ip->insn_opcode >> 7) & 0x00400000)
7587 | 0x40a00000) ^ 0x00400000;
7588 /* beq $0->beqzc, bne $0->bnezc */
7589 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7590 ip->insn_opcode = (((ip->insn_opcode >>
7591 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7592 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7593 | ((ip->insn_opcode >> 7) & 0x00400000)
7594 | 0x40a00000) ^ 0x00400000;
7595 else
7596 abort ();
7597 find_altered_micromips_opcode (ip);
7598 }
7599 else
7600 abort ();
7601 install_insn (ip);
7602 insert_into_history (0, 1, ip);
7603 break;
7604
7605 case APPEND_SWAP:
7606 {
7607 struct mips_cl_insn delay = history[0];
7608
7609 if (relaxed_branch || delay.frag != ip->frag)
7610 {
7611 /* Add the delay slot instruction to the end of the
7612 current frag and shrink the fixed part of the
7613 original frag. If the branch occupies the tail of
7614 the latter, move it backwards to cover the gap. */
7615 delay.frag->fr_fix -= branch_disp;
7616 if (delay.frag == ip->frag)
7617 move_insn (ip, ip->frag, ip->where - branch_disp);
7618 add_fixed_insn (&delay);
7619 }
7620 else
7621 {
7622 /* If this is not a relaxed branch and we are in the
7623 same frag, then just swap the instructions. */
7624 move_insn (ip, delay.frag, delay.where);
7625 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7626 }
7627 history[0] = *ip;
7628 delay.fixed_p = 1;
7629 insert_into_history (0, 1, &delay);
7630 }
7631 break;
7632 }
7633
7634 /* If we have just completed an unconditional branch, clear the history. */
7635 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7636 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7637 {
7638 unsigned int i;
7639
7640 mips_no_prev_insn ();
7641
7642 for (i = 0; i < ARRAY_SIZE (history); i++)
7643 history[i].cleared_p = 1;
7644 }
7645
7646 /* We need to emit a label at the end of branch-likely macros. */
7647 if (emit_branch_likely_macro)
7648 {
7649 emit_branch_likely_macro = FALSE;
7650 micromips_add_label ();
7651 }
7652
7653 /* We just output an insn, so the next one doesn't have a label. */
7654 mips_clear_insn_labels ();
7655 }
7656
7657 /* Forget that there was any previous instruction or label.
7658 When BRANCH is true, the branch history is also flushed. */
7659
7660 static void
7661 mips_no_prev_insn (void)
7662 {
7663 prev_nop_frag = NULL;
7664 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7665 mips_clear_insn_labels ();
7666 }
7667
7668 /* This function must be called before we emit something other than
7669 instructions. It is like mips_no_prev_insn except that it inserts
7670 any NOPS that might be needed by previous instructions. */
7671
7672 void
7673 mips_emit_delays (void)
7674 {
7675 if (! mips_opts.noreorder)
7676 {
7677 int nops = nops_for_insn (0, history, NULL);
7678 if (nops > 0)
7679 {
7680 while (nops-- > 0)
7681 add_fixed_insn (NOP_INSN);
7682 mips_move_text_labels ();
7683 }
7684 }
7685 mips_no_prev_insn ();
7686 }
7687
7688 /* Start a (possibly nested) noreorder block. */
7689
7690 static void
7691 start_noreorder (void)
7692 {
7693 if (mips_opts.noreorder == 0)
7694 {
7695 unsigned int i;
7696 int nops;
7697
7698 /* None of the instructions before the .set noreorder can be moved. */
7699 for (i = 0; i < ARRAY_SIZE (history); i++)
7700 history[i].fixed_p = 1;
7701
7702 /* Insert any nops that might be needed between the .set noreorder
7703 block and the previous instructions. We will later remove any
7704 nops that turn out not to be needed. */
7705 nops = nops_for_insn (0, history, NULL);
7706 if (nops > 0)
7707 {
7708 if (mips_optimize != 0)
7709 {
7710 /* Record the frag which holds the nop instructions, so
7711 that we can remove them if we don't need them. */
7712 frag_grow (nops * NOP_INSN_SIZE);
7713 prev_nop_frag = frag_now;
7714 prev_nop_frag_holds = nops;
7715 prev_nop_frag_required = 0;
7716 prev_nop_frag_since = 0;
7717 }
7718
7719 for (; nops > 0; --nops)
7720 add_fixed_insn (NOP_INSN);
7721
7722 /* Move on to a new frag, so that it is safe to simply
7723 decrease the size of prev_nop_frag. */
7724 frag_wane (frag_now);
7725 frag_new (0);
7726 mips_move_text_labels ();
7727 }
7728 mips_mark_labels ();
7729 mips_clear_insn_labels ();
7730 }
7731 mips_opts.noreorder++;
7732 mips_any_noreorder = 1;
7733 }
7734
7735 /* End a nested noreorder block. */
7736
7737 static void
7738 end_noreorder (void)
7739 {
7740 mips_opts.noreorder--;
7741 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7742 {
7743 /* Commit to inserting prev_nop_frag_required nops and go back to
7744 handling nop insertion the .set reorder way. */
7745 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7746 * NOP_INSN_SIZE);
7747 insert_into_history (prev_nop_frag_since,
7748 prev_nop_frag_required, NOP_INSN);
7749 prev_nop_frag = NULL;
7750 }
7751 }
7752
7753 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7754 higher bits unset. */
7755
7756 static void
7757 normalize_constant_expr (expressionS *ex)
7758 {
7759 if (ex->X_op == O_constant
7760 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7761 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7762 - 0x80000000);
7763 }
7764
7765 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7766 all higher bits unset. */
7767
7768 static void
7769 normalize_address_expr (expressionS *ex)
7770 {
7771 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7772 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7773 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7774 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7775 - 0x80000000);
7776 }
7777
7778 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7779 Return true if the match was successful.
7780
7781 OPCODE_EXTRA is a value that should be ORed into the opcode
7782 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7783 there are more alternatives after OPCODE and SOFT_MATCH is
7784 as for mips_arg_info. */
7785
7786 static bfd_boolean
7787 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7788 struct mips_operand_token *tokens, unsigned int opcode_extra,
7789 bfd_boolean lax_match, bfd_boolean complete_p)
7790 {
7791 const char *args;
7792 struct mips_arg_info arg;
7793 const struct mips_operand *operand;
7794 char c;
7795
7796 imm_expr.X_op = O_absent;
7797 offset_expr.X_op = O_absent;
7798 offset_reloc[0] = BFD_RELOC_UNUSED;
7799 offset_reloc[1] = BFD_RELOC_UNUSED;
7800 offset_reloc[2] = BFD_RELOC_UNUSED;
7801
7802 create_insn (insn, opcode);
7803 /* When no opcode suffix is specified, assume ".xyzw". */
7804 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7805 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7806 else
7807 insn->insn_opcode |= opcode_extra;
7808 memset (&arg, 0, sizeof (arg));
7809 arg.insn = insn;
7810 arg.token = tokens;
7811 arg.argnum = 1;
7812 arg.last_regno = ILLEGAL_REG;
7813 arg.dest_regno = ILLEGAL_REG;
7814 arg.lax_match = lax_match;
7815 for (args = opcode->args;; ++args)
7816 {
7817 if (arg.token->type == OT_END)
7818 {
7819 /* Handle unary instructions in which only one operand is given.
7820 The source is then the same as the destination. */
7821 if (arg.opnum == 1 && *args == ',')
7822 {
7823 operand = (mips_opts.micromips
7824 ? decode_micromips_operand (args + 1)
7825 : decode_mips_operand (args + 1));
7826 if (operand && mips_optional_operand_p (operand))
7827 {
7828 arg.token = tokens;
7829 arg.argnum = 1;
7830 continue;
7831 }
7832 }
7833
7834 /* Treat elided base registers as $0. */
7835 if (strcmp (args, "(b)") == 0)
7836 args += 3;
7837
7838 if (args[0] == '+')
7839 switch (args[1])
7840 {
7841 case 'K':
7842 case 'N':
7843 /* The register suffix is optional. */
7844 args += 2;
7845 break;
7846 }
7847
7848 /* Fail the match if there were too few operands. */
7849 if (*args)
7850 return FALSE;
7851
7852 /* Successful match. */
7853 if (!complete_p)
7854 return TRUE;
7855 clear_insn_error ();
7856 if (arg.dest_regno == arg.last_regno
7857 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7858 {
7859 if (arg.opnum == 2)
7860 set_insn_error
7861 (0, _("source and destination must be different"));
7862 else if (arg.last_regno == 31)
7863 set_insn_error
7864 (0, _("a destination register must be supplied"));
7865 }
7866 else if (arg.last_regno == 31
7867 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7868 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7869 set_insn_error (0, _("the source register must not be $31"));
7870 check_completed_insn (&arg);
7871 return TRUE;
7872 }
7873
7874 /* Fail the match if the line has too many operands. */
7875 if (*args == 0)
7876 return FALSE;
7877
7878 /* Handle characters that need to match exactly. */
7879 if (*args == '(' || *args == ')' || *args == ',')
7880 {
7881 if (match_char (&arg, *args))
7882 continue;
7883 return FALSE;
7884 }
7885 if (*args == '#')
7886 {
7887 ++args;
7888 if (arg.token->type == OT_DOUBLE_CHAR
7889 && arg.token->u.ch == *args)
7890 {
7891 ++arg.token;
7892 continue;
7893 }
7894 return FALSE;
7895 }
7896
7897 /* Handle special macro operands. Work out the properties of
7898 other operands. */
7899 arg.opnum += 1;
7900 switch (*args)
7901 {
7902 case '-':
7903 switch (args[1])
7904 {
7905 case 'A':
7906 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7907 break;
7908
7909 case 'B':
7910 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7911 break;
7912 }
7913 break;
7914
7915 case '+':
7916 switch (args[1])
7917 {
7918 case 'i':
7919 *offset_reloc = BFD_RELOC_MIPS_JMP;
7920 break;
7921
7922 case '\'':
7923 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7924 break;
7925
7926 case '\"':
7927 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7928 break;
7929 }
7930 break;
7931
7932 case 'I':
7933 if (!match_const_int (&arg, &imm_expr.X_add_number))
7934 return FALSE;
7935 imm_expr.X_op = O_constant;
7936 if (GPR_SIZE == 32)
7937 normalize_constant_expr (&imm_expr);
7938 continue;
7939
7940 case 'A':
7941 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7942 {
7943 /* Assume that the offset has been elided and that what
7944 we saw was a base register. The match will fail later
7945 if that assumption turns out to be wrong. */
7946 offset_expr.X_op = O_constant;
7947 offset_expr.X_add_number = 0;
7948 }
7949 else
7950 {
7951 if (!match_expression (&arg, &offset_expr, offset_reloc))
7952 return FALSE;
7953 normalize_address_expr (&offset_expr);
7954 }
7955 continue;
7956
7957 case 'F':
7958 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7959 8, TRUE))
7960 return FALSE;
7961 continue;
7962
7963 case 'L':
7964 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7965 8, FALSE))
7966 return FALSE;
7967 continue;
7968
7969 case 'f':
7970 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7971 4, TRUE))
7972 return FALSE;
7973 continue;
7974
7975 case 'l':
7976 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7977 4, FALSE))
7978 return FALSE;
7979 continue;
7980
7981 case 'p':
7982 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7983 break;
7984
7985 case 'a':
7986 *offset_reloc = BFD_RELOC_MIPS_JMP;
7987 break;
7988
7989 case 'm':
7990 gas_assert (mips_opts.micromips);
7991 c = args[1];
7992 switch (c)
7993 {
7994 case 'D':
7995 case 'E':
7996 if (!forced_insn_length)
7997 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7998 else if (c == 'D')
7999 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8000 else
8001 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8002 break;
8003 }
8004 break;
8005 }
8006
8007 operand = (mips_opts.micromips
8008 ? decode_micromips_operand (args)
8009 : decode_mips_operand (args));
8010 if (!operand)
8011 abort ();
8012
8013 /* Skip prefixes. */
8014 if (*args == '+' || *args == 'm' || *args == '-')
8015 args++;
8016
8017 if (mips_optional_operand_p (operand)
8018 && args[1] == ','
8019 && (arg.token[0].type != OT_REG
8020 || arg.token[1].type == OT_END))
8021 {
8022 /* Assume that the register has been elided and is the
8023 same as the first operand. */
8024 arg.token = tokens;
8025 arg.argnum = 1;
8026 }
8027
8028 if (!match_operand (&arg, operand))
8029 return FALSE;
8030 }
8031 }
8032
8033 /* Like match_insn, but for MIPS16. */
8034
8035 static bfd_boolean
8036 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8037 struct mips_operand_token *tokens)
8038 {
8039 const char *args;
8040 const struct mips_operand *operand;
8041 const struct mips_operand *ext_operand;
8042 struct mips_arg_info arg;
8043 int relax_char;
8044
8045 create_insn (insn, opcode);
8046 imm_expr.X_op = O_absent;
8047 offset_expr.X_op = O_absent;
8048 offset_reloc[0] = BFD_RELOC_UNUSED;
8049 offset_reloc[1] = BFD_RELOC_UNUSED;
8050 offset_reloc[2] = BFD_RELOC_UNUSED;
8051 relax_char = 0;
8052
8053 memset (&arg, 0, sizeof (arg));
8054 arg.insn = insn;
8055 arg.token = tokens;
8056 arg.argnum = 1;
8057 arg.last_regno = ILLEGAL_REG;
8058 arg.dest_regno = ILLEGAL_REG;
8059 relax_char = 0;
8060 for (args = opcode->args;; ++args)
8061 {
8062 int c;
8063
8064 if (arg.token->type == OT_END)
8065 {
8066 offsetT value;
8067
8068 /* Handle unary instructions in which only one operand is given.
8069 The source is then the same as the destination. */
8070 if (arg.opnum == 1 && *args == ',')
8071 {
8072 operand = decode_mips16_operand (args[1], FALSE);
8073 if (operand && mips_optional_operand_p (operand))
8074 {
8075 arg.token = tokens;
8076 arg.argnum = 1;
8077 continue;
8078 }
8079 }
8080
8081 /* Fail the match if there were too few operands. */
8082 if (*args)
8083 return FALSE;
8084
8085 /* Successful match. Stuff the immediate value in now, if
8086 we can. */
8087 clear_insn_error ();
8088 if (opcode->pinfo == INSN_MACRO)
8089 {
8090 gas_assert (relax_char == 0 || relax_char == 'p');
8091 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8092 }
8093 else if (relax_char
8094 && offset_expr.X_op == O_constant
8095 && calculate_reloc (*offset_reloc,
8096 offset_expr.X_add_number,
8097 &value))
8098 {
8099 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8100 forced_insn_length, &insn->insn_opcode);
8101 offset_expr.X_op = O_absent;
8102 *offset_reloc = BFD_RELOC_UNUSED;
8103 }
8104 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8105 {
8106 if (forced_insn_length == 2)
8107 set_insn_error (0, _("invalid unextended operand value"));
8108 forced_insn_length = 4;
8109 insn->insn_opcode |= MIPS16_EXTEND;
8110 }
8111 else if (relax_char)
8112 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8113
8114 check_completed_insn (&arg);
8115 return TRUE;
8116 }
8117
8118 /* Fail the match if the line has too many operands. */
8119 if (*args == 0)
8120 return FALSE;
8121
8122 /* Handle characters that need to match exactly. */
8123 if (*args == '(' || *args == ')' || *args == ',')
8124 {
8125 if (match_char (&arg, *args))
8126 continue;
8127 return FALSE;
8128 }
8129
8130 arg.opnum += 1;
8131 c = *args;
8132 switch (c)
8133 {
8134 case 'p':
8135 case 'q':
8136 case 'A':
8137 case 'B':
8138 case 'E':
8139 relax_char = c;
8140 break;
8141
8142 case 'I':
8143 if (!match_const_int (&arg, &imm_expr.X_add_number))
8144 return FALSE;
8145 imm_expr.X_op = O_constant;
8146 if (GPR_SIZE == 32)
8147 normalize_constant_expr (&imm_expr);
8148 continue;
8149
8150 case 'a':
8151 case 'i':
8152 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8153 insn->insn_opcode <<= 16;
8154 break;
8155 }
8156
8157 operand = decode_mips16_operand (c, FALSE);
8158 if (!operand)
8159 abort ();
8160
8161 /* '6' is a special case. It is used for BREAK and SDBBP,
8162 whose operands are only meaningful to the software that decodes
8163 them. This means that there is no architectural reason why
8164 they cannot be prefixed by EXTEND, but in practice,
8165 exception handlers will only look at the instruction
8166 itself. We therefore allow '6' to be extended when
8167 disassembling but not when assembling. */
8168 if (operand->type != OP_PCREL && c != '6')
8169 {
8170 ext_operand = decode_mips16_operand (c, TRUE);
8171 if (operand != ext_operand)
8172 {
8173 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8174 {
8175 offset_expr.X_op = O_constant;
8176 offset_expr.X_add_number = 0;
8177 relax_char = c;
8178 continue;
8179 }
8180
8181 /* We need the OT_INTEGER check because some MIPS16
8182 immediate variants are listed before the register ones. */
8183 if (arg.token->type != OT_INTEGER
8184 || !match_expression (&arg, &offset_expr, offset_reloc))
8185 return FALSE;
8186
8187 /* '8' is used for SLTI(U) and has traditionally not
8188 been allowed to take relocation operators. */
8189 if (offset_reloc[0] != BFD_RELOC_UNUSED
8190 && (ext_operand->size != 16 || c == '8'))
8191 return FALSE;
8192
8193 relax_char = c;
8194 continue;
8195 }
8196 }
8197
8198 if (mips_optional_operand_p (operand)
8199 && args[1] == ','
8200 && (arg.token[0].type != OT_REG
8201 || arg.token[1].type == OT_END))
8202 {
8203 /* Assume that the register has been elided and is the
8204 same as the first operand. */
8205 arg.token = tokens;
8206 arg.argnum = 1;
8207 }
8208
8209 if (!match_operand (&arg, operand))
8210 return FALSE;
8211 }
8212 }
8213
8214 /* Record that the current instruction is invalid for the current ISA. */
8215
8216 static void
8217 match_invalid_for_isa (void)
8218 {
8219 set_insn_error_ss
8220 (0, _("opcode not supported on this processor: %s (%s)"),
8221 mips_cpu_info_from_arch (mips_opts.arch)->name,
8222 mips_cpu_info_from_isa (mips_opts.isa)->name);
8223 }
8224
8225 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8226 Return true if a definite match or failure was found, storing any match
8227 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8228 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8229 tried and failed to match under normal conditions and now want to try a
8230 more relaxed match. */
8231
8232 static bfd_boolean
8233 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8234 const struct mips_opcode *past, struct mips_operand_token *tokens,
8235 int opcode_extra, bfd_boolean lax_match)
8236 {
8237 const struct mips_opcode *opcode;
8238 const struct mips_opcode *invalid_delay_slot;
8239 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8240
8241 /* Search for a match, ignoring alternatives that don't satisfy the
8242 current ISA or forced_length. */
8243 invalid_delay_slot = 0;
8244 seen_valid_for_isa = FALSE;
8245 seen_valid_for_size = FALSE;
8246 opcode = first;
8247 do
8248 {
8249 gas_assert (strcmp (opcode->name, first->name) == 0);
8250 if (is_opcode_valid (opcode))
8251 {
8252 seen_valid_for_isa = TRUE;
8253 if (is_size_valid (opcode))
8254 {
8255 bfd_boolean delay_slot_ok;
8256
8257 seen_valid_for_size = TRUE;
8258 delay_slot_ok = is_delay_slot_valid (opcode);
8259 if (match_insn (insn, opcode, tokens, opcode_extra,
8260 lax_match, delay_slot_ok))
8261 {
8262 if (!delay_slot_ok)
8263 {
8264 if (!invalid_delay_slot)
8265 invalid_delay_slot = opcode;
8266 }
8267 else
8268 return TRUE;
8269 }
8270 }
8271 }
8272 ++opcode;
8273 }
8274 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8275
8276 /* If the only matches we found had the wrong length for the delay slot,
8277 pick the first such match. We'll issue an appropriate warning later. */
8278 if (invalid_delay_slot)
8279 {
8280 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8281 lax_match, TRUE))
8282 return TRUE;
8283 abort ();
8284 }
8285
8286 /* Handle the case where we didn't try to match an instruction because
8287 all the alternatives were incompatible with the current ISA. */
8288 if (!seen_valid_for_isa)
8289 {
8290 match_invalid_for_isa ();
8291 return TRUE;
8292 }
8293
8294 /* Handle the case where we didn't try to match an instruction because
8295 all the alternatives were of the wrong size. */
8296 if (!seen_valid_for_size)
8297 {
8298 if (mips_opts.insn32)
8299 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8300 else
8301 set_insn_error_i
8302 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8303 8 * forced_insn_length);
8304 return TRUE;
8305 }
8306
8307 return FALSE;
8308 }
8309
8310 /* Like match_insns, but for MIPS16. */
8311
8312 static bfd_boolean
8313 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8314 struct mips_operand_token *tokens)
8315 {
8316 const struct mips_opcode *opcode;
8317 bfd_boolean seen_valid_for_isa;
8318
8319 /* Search for a match, ignoring alternatives that don't satisfy the
8320 current ISA. There are no separate entries for extended forms so
8321 we deal with forced_length later. */
8322 seen_valid_for_isa = FALSE;
8323 opcode = first;
8324 do
8325 {
8326 gas_assert (strcmp (opcode->name, first->name) == 0);
8327 if (is_opcode_valid_16 (opcode))
8328 {
8329 seen_valid_for_isa = TRUE;
8330 if (match_mips16_insn (insn, opcode, tokens))
8331 return TRUE;
8332 }
8333 ++opcode;
8334 }
8335 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8336 && strcmp (opcode->name, first->name) == 0);
8337
8338 /* Handle the case where we didn't try to match an instruction because
8339 all the alternatives were incompatible with the current ISA. */
8340 if (!seen_valid_for_isa)
8341 {
8342 match_invalid_for_isa ();
8343 return TRUE;
8344 }
8345
8346 return FALSE;
8347 }
8348
8349 /* Set up global variables for the start of a new macro. */
8350
8351 static void
8352 macro_start (void)
8353 {
8354 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8355 memset (&mips_macro_warning.first_insn_sizes, 0,
8356 sizeof (mips_macro_warning.first_insn_sizes));
8357 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8358 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8359 && delayed_branch_p (&history[0]));
8360 if (history[0].frag
8361 && history[0].frag->fr_type == rs_machine_dependent
8362 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8363 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8364 mips_macro_warning.delay_slot_length = 0;
8365 else
8366 switch (history[0].insn_mo->pinfo2
8367 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8368 {
8369 case INSN2_BRANCH_DELAY_32BIT:
8370 mips_macro_warning.delay_slot_length = 4;
8371 break;
8372 case INSN2_BRANCH_DELAY_16BIT:
8373 mips_macro_warning.delay_slot_length = 2;
8374 break;
8375 default:
8376 mips_macro_warning.delay_slot_length = 0;
8377 break;
8378 }
8379 mips_macro_warning.first_frag = NULL;
8380 }
8381
8382 /* Given that a macro is longer than one instruction or of the wrong size,
8383 return the appropriate warning for it. Return null if no warning is
8384 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8385 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8386 and RELAX_NOMACRO. */
8387
8388 static const char *
8389 macro_warning (relax_substateT subtype)
8390 {
8391 if (subtype & RELAX_DELAY_SLOT)
8392 return _("macro instruction expanded into multiple instructions"
8393 " in a branch delay slot");
8394 else if (subtype & RELAX_NOMACRO)
8395 return _("macro instruction expanded into multiple instructions");
8396 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8397 | RELAX_DELAY_SLOT_SIZE_SECOND))
8398 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8399 ? _("macro instruction expanded into a wrong size instruction"
8400 " in a 16-bit branch delay slot")
8401 : _("macro instruction expanded into a wrong size instruction"
8402 " in a 32-bit branch delay slot"));
8403 else
8404 return 0;
8405 }
8406
8407 /* Finish up a macro. Emit warnings as appropriate. */
8408
8409 static void
8410 macro_end (void)
8411 {
8412 /* Relaxation warning flags. */
8413 relax_substateT subtype = 0;
8414
8415 /* Check delay slot size requirements. */
8416 if (mips_macro_warning.delay_slot_length == 2)
8417 subtype |= RELAX_DELAY_SLOT_16BIT;
8418 if (mips_macro_warning.delay_slot_length != 0)
8419 {
8420 if (mips_macro_warning.delay_slot_length
8421 != mips_macro_warning.first_insn_sizes[0])
8422 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8423 if (mips_macro_warning.delay_slot_length
8424 != mips_macro_warning.first_insn_sizes[1])
8425 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8426 }
8427
8428 /* Check instruction count requirements. */
8429 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8430 {
8431 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8432 subtype |= RELAX_SECOND_LONGER;
8433 if (mips_opts.warn_about_macros)
8434 subtype |= RELAX_NOMACRO;
8435 if (mips_macro_warning.delay_slot_p)
8436 subtype |= RELAX_DELAY_SLOT;
8437 }
8438
8439 /* If both alternatives fail to fill a delay slot correctly,
8440 emit the warning now. */
8441 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8442 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8443 {
8444 relax_substateT s;
8445 const char *msg;
8446
8447 s = subtype & (RELAX_DELAY_SLOT_16BIT
8448 | RELAX_DELAY_SLOT_SIZE_FIRST
8449 | RELAX_DELAY_SLOT_SIZE_SECOND);
8450 msg = macro_warning (s);
8451 if (msg != NULL)
8452 as_warn ("%s", msg);
8453 subtype &= ~s;
8454 }
8455
8456 /* If both implementations are longer than 1 instruction, then emit the
8457 warning now. */
8458 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8459 {
8460 relax_substateT s;
8461 const char *msg;
8462
8463 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8464 msg = macro_warning (s);
8465 if (msg != NULL)
8466 as_warn ("%s", msg);
8467 subtype &= ~s;
8468 }
8469
8470 /* If any flags still set, then one implementation might need a warning
8471 and the other either will need one of a different kind or none at all.
8472 Pass any remaining flags over to relaxation. */
8473 if (mips_macro_warning.first_frag != NULL)
8474 mips_macro_warning.first_frag->fr_subtype |= subtype;
8475 }
8476
8477 /* Instruction operand formats used in macros that vary between
8478 standard MIPS and microMIPS code. */
8479
8480 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8481 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8482 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8483 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8484 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8485 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8486 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8487 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8488
8489 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8490 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8491 : cop12_fmt[mips_opts.micromips])
8492 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8493 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8494 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8495 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8496 : mem12_fmt[mips_opts.micromips])
8497 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8498 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8499 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8500
8501 /* Read a macro's relocation codes from *ARGS and store them in *R.
8502 The first argument in *ARGS will be either the code for a single
8503 relocation or -1 followed by the three codes that make up a
8504 composite relocation. */
8505
8506 static void
8507 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8508 {
8509 int i, next;
8510
8511 next = va_arg (*args, int);
8512 if (next >= 0)
8513 r[0] = (bfd_reloc_code_real_type) next;
8514 else
8515 {
8516 for (i = 0; i < 3; i++)
8517 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8518 /* This function is only used for 16-bit relocation fields.
8519 To make the macro code simpler, treat an unrelocated value
8520 in the same way as BFD_RELOC_LO16. */
8521 if (r[0] == BFD_RELOC_UNUSED)
8522 r[0] = BFD_RELOC_LO16;
8523 }
8524 }
8525
8526 /* Build an instruction created by a macro expansion. This is passed
8527 a pointer to the count of instructions created so far, an
8528 expression, the name of the instruction to build, an operand format
8529 string, and corresponding arguments. */
8530
8531 static void
8532 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8533 {
8534 const struct mips_opcode *mo = NULL;
8535 bfd_reloc_code_real_type r[3];
8536 const struct mips_opcode *amo;
8537 const struct mips_operand *operand;
8538 struct hash_control *hash;
8539 struct mips_cl_insn insn;
8540 va_list args;
8541 unsigned int uval;
8542
8543 va_start (args, fmt);
8544
8545 if (mips_opts.mips16)
8546 {
8547 mips16_macro_build (ep, name, fmt, &args);
8548 va_end (args);
8549 return;
8550 }
8551
8552 r[0] = BFD_RELOC_UNUSED;
8553 r[1] = BFD_RELOC_UNUSED;
8554 r[2] = BFD_RELOC_UNUSED;
8555 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8556 amo = (struct mips_opcode *) hash_find (hash, name);
8557 gas_assert (amo);
8558 gas_assert (strcmp (name, amo->name) == 0);
8559
8560 do
8561 {
8562 /* Search until we get a match for NAME. It is assumed here that
8563 macros will never generate MDMX, MIPS-3D, or MT instructions.
8564 We try to match an instruction that fulfils the branch delay
8565 slot instruction length requirement (if any) of the previous
8566 instruction. While doing this we record the first instruction
8567 seen that matches all the other conditions and use it anyway
8568 if the requirement cannot be met; we will issue an appropriate
8569 warning later on. */
8570 if (strcmp (fmt, amo->args) == 0
8571 && amo->pinfo != INSN_MACRO
8572 && is_opcode_valid (amo)
8573 && is_size_valid (amo))
8574 {
8575 if (is_delay_slot_valid (amo))
8576 {
8577 mo = amo;
8578 break;
8579 }
8580 else if (!mo)
8581 mo = amo;
8582 }
8583
8584 ++amo;
8585 gas_assert (amo->name);
8586 }
8587 while (strcmp (name, amo->name) == 0);
8588
8589 gas_assert (mo);
8590 create_insn (&insn, mo);
8591 for (; *fmt; ++fmt)
8592 {
8593 switch (*fmt)
8594 {
8595 case ',':
8596 case '(':
8597 case ')':
8598 case 'z':
8599 break;
8600
8601 case 'i':
8602 case 'j':
8603 macro_read_relocs (&args, r);
8604 gas_assert (*r == BFD_RELOC_GPREL16
8605 || *r == BFD_RELOC_MIPS_HIGHER
8606 || *r == BFD_RELOC_HI16_S
8607 || *r == BFD_RELOC_LO16
8608 || *r == BFD_RELOC_MIPS_GOT_OFST);
8609 break;
8610
8611 case 'o':
8612 macro_read_relocs (&args, r);
8613 break;
8614
8615 case 'u':
8616 macro_read_relocs (&args, r);
8617 gas_assert (ep != NULL
8618 && (ep->X_op == O_constant
8619 || (ep->X_op == O_symbol
8620 && (*r == BFD_RELOC_MIPS_HIGHEST
8621 || *r == BFD_RELOC_HI16_S
8622 || *r == BFD_RELOC_HI16
8623 || *r == BFD_RELOC_GPREL16
8624 || *r == BFD_RELOC_MIPS_GOT_HI16
8625 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8626 break;
8627
8628 case 'p':
8629 gas_assert (ep != NULL);
8630
8631 /*
8632 * This allows macro() to pass an immediate expression for
8633 * creating short branches without creating a symbol.
8634 *
8635 * We don't allow branch relaxation for these branches, as
8636 * they should only appear in ".set nomacro" anyway.
8637 */
8638 if (ep->X_op == O_constant)
8639 {
8640 /* For microMIPS we always use relocations for branches.
8641 So we should not resolve immediate values. */
8642 gas_assert (!mips_opts.micromips);
8643
8644 if ((ep->X_add_number & 3) != 0)
8645 as_bad (_("branch to misaligned address (0x%lx)"),
8646 (unsigned long) ep->X_add_number);
8647 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8648 as_bad (_("branch address range overflow (0x%lx)"),
8649 (unsigned long) ep->X_add_number);
8650 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8651 ep = NULL;
8652 }
8653 else
8654 *r = BFD_RELOC_16_PCREL_S2;
8655 break;
8656
8657 case 'a':
8658 gas_assert (ep != NULL);
8659 *r = BFD_RELOC_MIPS_JMP;
8660 break;
8661
8662 default:
8663 operand = (mips_opts.micromips
8664 ? decode_micromips_operand (fmt)
8665 : decode_mips_operand (fmt));
8666 if (!operand)
8667 abort ();
8668
8669 uval = va_arg (args, int);
8670 if (operand->type == OP_CLO_CLZ_DEST)
8671 uval |= (uval << 5);
8672 insn_insert_operand (&insn, operand, uval);
8673
8674 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8675 ++fmt;
8676 break;
8677 }
8678 }
8679 va_end (args);
8680 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8681
8682 append_insn (&insn, ep, r, TRUE);
8683 }
8684
8685 static void
8686 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8687 va_list *args)
8688 {
8689 struct mips_opcode *mo;
8690 struct mips_cl_insn insn;
8691 const struct mips_operand *operand;
8692 bfd_reloc_code_real_type r[3]
8693 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8694
8695 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8696 gas_assert (mo);
8697 gas_assert (strcmp (name, mo->name) == 0);
8698
8699 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8700 {
8701 ++mo;
8702 gas_assert (mo->name);
8703 gas_assert (strcmp (name, mo->name) == 0);
8704 }
8705
8706 create_insn (&insn, mo);
8707 for (; *fmt; ++fmt)
8708 {
8709 int c;
8710
8711 c = *fmt;
8712 switch (c)
8713 {
8714 case ',':
8715 case '(':
8716 case ')':
8717 break;
8718
8719 case '0':
8720 case 'S':
8721 case 'P':
8722 case 'R':
8723 break;
8724
8725 case '<':
8726 case '>':
8727 case '4':
8728 case '5':
8729 case 'H':
8730 case 'W':
8731 case 'D':
8732 case 'j':
8733 case '8':
8734 case 'V':
8735 case 'C':
8736 case 'U':
8737 case 'k':
8738 case 'K':
8739 case 'p':
8740 case 'q':
8741 {
8742 offsetT value;
8743
8744 gas_assert (ep != NULL);
8745
8746 if (ep->X_op != O_constant)
8747 *r = (int) BFD_RELOC_UNUSED + c;
8748 else if (calculate_reloc (*r, ep->X_add_number, &value))
8749 {
8750 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8751 ep = NULL;
8752 *r = BFD_RELOC_UNUSED;
8753 }
8754 }
8755 break;
8756
8757 default:
8758 operand = decode_mips16_operand (c, FALSE);
8759 if (!operand)
8760 abort ();
8761
8762 insn_insert_operand (&insn, operand, va_arg (*args, int));
8763 break;
8764 }
8765 }
8766
8767 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8768
8769 append_insn (&insn, ep, r, TRUE);
8770 }
8771
8772 /*
8773 * Generate a "jalr" instruction with a relocation hint to the called
8774 * function. This occurs in NewABI PIC code.
8775 */
8776 static void
8777 macro_build_jalr (expressionS *ep, int cprestore)
8778 {
8779 static const bfd_reloc_code_real_type jalr_relocs[2]
8780 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8781 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8782 const char *jalr;
8783 char *f = NULL;
8784
8785 if (MIPS_JALR_HINT_P (ep))
8786 {
8787 frag_grow (8);
8788 f = frag_more (0);
8789 }
8790 if (mips_opts.micromips)
8791 {
8792 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8793 ? "jalr" : "jalrs");
8794 if (MIPS_JALR_HINT_P (ep)
8795 || mips_opts.insn32
8796 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8797 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8798 else
8799 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8800 }
8801 else
8802 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8803 if (MIPS_JALR_HINT_P (ep))
8804 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8805 }
8806
8807 /*
8808 * Generate a "lui" instruction.
8809 */
8810 static void
8811 macro_build_lui (expressionS *ep, int regnum)
8812 {
8813 gas_assert (! mips_opts.mips16);
8814
8815 if (ep->X_op != O_constant)
8816 {
8817 gas_assert (ep->X_op == O_symbol);
8818 /* _gp_disp is a special case, used from s_cpload.
8819 __gnu_local_gp is used if mips_no_shared. */
8820 gas_assert (mips_pic == NO_PIC
8821 || (! HAVE_NEWABI
8822 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8823 || (! mips_in_shared
8824 && strcmp (S_GET_NAME (ep->X_add_symbol),
8825 "__gnu_local_gp") == 0));
8826 }
8827
8828 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8829 }
8830
8831 /* Generate a sequence of instructions to do a load or store from a constant
8832 offset off of a base register (breg) into/from a target register (treg),
8833 using AT if necessary. */
8834 static void
8835 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8836 int treg, int breg, int dbl)
8837 {
8838 gas_assert (ep->X_op == O_constant);
8839
8840 /* Sign-extending 32-bit constants makes their handling easier. */
8841 if (!dbl)
8842 normalize_constant_expr (ep);
8843
8844 /* Right now, this routine can only handle signed 32-bit constants. */
8845 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8846 as_warn (_("operand overflow"));
8847
8848 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8849 {
8850 /* Signed 16-bit offset will fit in the op. Easy! */
8851 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8852 }
8853 else
8854 {
8855 /* 32-bit offset, need multiple instructions and AT, like:
8856 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8857 addu $tempreg,$tempreg,$breg
8858 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8859 to handle the complete offset. */
8860 macro_build_lui (ep, AT);
8861 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8862 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8863
8864 if (!mips_opts.at)
8865 as_bad (_("macro used $at after \".set noat\""));
8866 }
8867 }
8868
8869 /* set_at()
8870 * Generates code to set the $at register to true (one)
8871 * if reg is less than the immediate expression.
8872 */
8873 static void
8874 set_at (int reg, int unsignedp)
8875 {
8876 if (imm_expr.X_add_number >= -0x8000
8877 && imm_expr.X_add_number < 0x8000)
8878 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8879 AT, reg, BFD_RELOC_LO16);
8880 else
8881 {
8882 load_register (AT, &imm_expr, GPR_SIZE == 64);
8883 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8884 }
8885 }
8886
8887 /* Count the leading zeroes by performing a binary chop. This is a
8888 bulky bit of source, but performance is a LOT better for the
8889 majority of values than a simple loop to count the bits:
8890 for (lcnt = 0; (lcnt < 32); lcnt++)
8891 if ((v) & (1 << (31 - lcnt)))
8892 break;
8893 However it is not code size friendly, and the gain will drop a bit
8894 on certain cached systems.
8895 */
8896 #define COUNT_TOP_ZEROES(v) \
8897 (((v) & ~0xffff) == 0 \
8898 ? ((v) & ~0xff) == 0 \
8899 ? ((v) & ~0xf) == 0 \
8900 ? ((v) & ~0x3) == 0 \
8901 ? ((v) & ~0x1) == 0 \
8902 ? !(v) \
8903 ? 32 \
8904 : 31 \
8905 : 30 \
8906 : ((v) & ~0x7) == 0 \
8907 ? 29 \
8908 : 28 \
8909 : ((v) & ~0x3f) == 0 \
8910 ? ((v) & ~0x1f) == 0 \
8911 ? 27 \
8912 : 26 \
8913 : ((v) & ~0x7f) == 0 \
8914 ? 25 \
8915 : 24 \
8916 : ((v) & ~0xfff) == 0 \
8917 ? ((v) & ~0x3ff) == 0 \
8918 ? ((v) & ~0x1ff) == 0 \
8919 ? 23 \
8920 : 22 \
8921 : ((v) & ~0x7ff) == 0 \
8922 ? 21 \
8923 : 20 \
8924 : ((v) & ~0x3fff) == 0 \
8925 ? ((v) & ~0x1fff) == 0 \
8926 ? 19 \
8927 : 18 \
8928 : ((v) & ~0x7fff) == 0 \
8929 ? 17 \
8930 : 16 \
8931 : ((v) & ~0xffffff) == 0 \
8932 ? ((v) & ~0xfffff) == 0 \
8933 ? ((v) & ~0x3ffff) == 0 \
8934 ? ((v) & ~0x1ffff) == 0 \
8935 ? 15 \
8936 : 14 \
8937 : ((v) & ~0x7ffff) == 0 \
8938 ? 13 \
8939 : 12 \
8940 : ((v) & ~0x3fffff) == 0 \
8941 ? ((v) & ~0x1fffff) == 0 \
8942 ? 11 \
8943 : 10 \
8944 : ((v) & ~0x7fffff) == 0 \
8945 ? 9 \
8946 : 8 \
8947 : ((v) & ~0xfffffff) == 0 \
8948 ? ((v) & ~0x3ffffff) == 0 \
8949 ? ((v) & ~0x1ffffff) == 0 \
8950 ? 7 \
8951 : 6 \
8952 : ((v) & ~0x7ffffff) == 0 \
8953 ? 5 \
8954 : 4 \
8955 : ((v) & ~0x3fffffff) == 0 \
8956 ? ((v) & ~0x1fffffff) == 0 \
8957 ? 3 \
8958 : 2 \
8959 : ((v) & ~0x7fffffff) == 0 \
8960 ? 1 \
8961 : 0)
8962
8963 /* load_register()
8964 * This routine generates the least number of instructions necessary to load
8965 * an absolute expression value into a register.
8966 */
8967 static void
8968 load_register (int reg, expressionS *ep, int dbl)
8969 {
8970 int freg;
8971 expressionS hi32, lo32;
8972
8973 if (ep->X_op != O_big)
8974 {
8975 gas_assert (ep->X_op == O_constant);
8976
8977 /* Sign-extending 32-bit constants makes their handling easier. */
8978 if (!dbl)
8979 normalize_constant_expr (ep);
8980
8981 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8982 {
8983 /* We can handle 16 bit signed values with an addiu to
8984 $zero. No need to ever use daddiu here, since $zero and
8985 the result are always correct in 32 bit mode. */
8986 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8987 return;
8988 }
8989 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8990 {
8991 /* We can handle 16 bit unsigned values with an ori to
8992 $zero. */
8993 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8994 return;
8995 }
8996 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8997 {
8998 /* 32 bit values require an lui. */
8999 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9000 if ((ep->X_add_number & 0xffff) != 0)
9001 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9002 return;
9003 }
9004 }
9005
9006 /* The value is larger than 32 bits. */
9007
9008 if (!dbl || GPR_SIZE == 32)
9009 {
9010 char value[32];
9011
9012 sprintf_vma (value, ep->X_add_number);
9013 as_bad (_("number (0x%s) larger than 32 bits"), value);
9014 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9015 return;
9016 }
9017
9018 if (ep->X_op != O_big)
9019 {
9020 hi32 = *ep;
9021 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9022 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9023 hi32.X_add_number &= 0xffffffff;
9024 lo32 = *ep;
9025 lo32.X_add_number &= 0xffffffff;
9026 }
9027 else
9028 {
9029 gas_assert (ep->X_add_number > 2);
9030 if (ep->X_add_number == 3)
9031 generic_bignum[3] = 0;
9032 else if (ep->X_add_number > 4)
9033 as_bad (_("number larger than 64 bits"));
9034 lo32.X_op = O_constant;
9035 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9036 hi32.X_op = O_constant;
9037 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9038 }
9039
9040 if (hi32.X_add_number == 0)
9041 freg = 0;
9042 else
9043 {
9044 int shift, bit;
9045 unsigned long hi, lo;
9046
9047 if (hi32.X_add_number == (offsetT) 0xffffffff)
9048 {
9049 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9050 {
9051 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9052 return;
9053 }
9054 if (lo32.X_add_number & 0x80000000)
9055 {
9056 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9057 if (lo32.X_add_number & 0xffff)
9058 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9059 return;
9060 }
9061 }
9062
9063 /* Check for 16bit shifted constant. We know that hi32 is
9064 non-zero, so start the mask on the first bit of the hi32
9065 value. */
9066 shift = 17;
9067 do
9068 {
9069 unsigned long himask, lomask;
9070
9071 if (shift < 32)
9072 {
9073 himask = 0xffff >> (32 - shift);
9074 lomask = (0xffff << shift) & 0xffffffff;
9075 }
9076 else
9077 {
9078 himask = 0xffff << (shift - 32);
9079 lomask = 0;
9080 }
9081 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9082 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9083 {
9084 expressionS tmp;
9085
9086 tmp.X_op = O_constant;
9087 if (shift < 32)
9088 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9089 | (lo32.X_add_number >> shift));
9090 else
9091 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9092 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9093 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9094 reg, reg, (shift >= 32) ? shift - 32 : shift);
9095 return;
9096 }
9097 ++shift;
9098 }
9099 while (shift <= (64 - 16));
9100
9101 /* Find the bit number of the lowest one bit, and store the
9102 shifted value in hi/lo. */
9103 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9104 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9105 if (lo != 0)
9106 {
9107 bit = 0;
9108 while ((lo & 1) == 0)
9109 {
9110 lo >>= 1;
9111 ++bit;
9112 }
9113 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9114 hi >>= bit;
9115 }
9116 else
9117 {
9118 bit = 32;
9119 while ((hi & 1) == 0)
9120 {
9121 hi >>= 1;
9122 ++bit;
9123 }
9124 lo = hi;
9125 hi = 0;
9126 }
9127
9128 /* Optimize if the shifted value is a (power of 2) - 1. */
9129 if ((hi == 0 && ((lo + 1) & lo) == 0)
9130 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9131 {
9132 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9133 if (shift != 0)
9134 {
9135 expressionS tmp;
9136
9137 /* This instruction will set the register to be all
9138 ones. */
9139 tmp.X_op = O_constant;
9140 tmp.X_add_number = (offsetT) -1;
9141 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9142 if (bit != 0)
9143 {
9144 bit += shift;
9145 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9146 reg, reg, (bit >= 32) ? bit - 32 : bit);
9147 }
9148 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9149 reg, reg, (shift >= 32) ? shift - 32 : shift);
9150 return;
9151 }
9152 }
9153
9154 /* Sign extend hi32 before calling load_register, because we can
9155 generally get better code when we load a sign extended value. */
9156 if ((hi32.X_add_number & 0x80000000) != 0)
9157 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9158 load_register (reg, &hi32, 0);
9159 freg = reg;
9160 }
9161 if ((lo32.X_add_number & 0xffff0000) == 0)
9162 {
9163 if (freg != 0)
9164 {
9165 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9166 freg = reg;
9167 }
9168 }
9169 else
9170 {
9171 expressionS mid16;
9172
9173 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9174 {
9175 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9176 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9177 return;
9178 }
9179
9180 if (freg != 0)
9181 {
9182 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9183 freg = reg;
9184 }
9185 mid16 = lo32;
9186 mid16.X_add_number >>= 16;
9187 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9188 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9189 freg = reg;
9190 }
9191 if ((lo32.X_add_number & 0xffff) != 0)
9192 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9193 }
9194
9195 static inline void
9196 load_delay_nop (void)
9197 {
9198 if (!gpr_interlocks)
9199 macro_build (NULL, "nop", "");
9200 }
9201
9202 /* Load an address into a register. */
9203
9204 static void
9205 load_address (int reg, expressionS *ep, int *used_at)
9206 {
9207 if (ep->X_op != O_constant
9208 && ep->X_op != O_symbol)
9209 {
9210 as_bad (_("expression too complex"));
9211 ep->X_op = O_constant;
9212 }
9213
9214 if (ep->X_op == O_constant)
9215 {
9216 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9217 return;
9218 }
9219
9220 if (mips_pic == NO_PIC)
9221 {
9222 /* If this is a reference to a GP relative symbol, we want
9223 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9224 Otherwise we want
9225 lui $reg,<sym> (BFD_RELOC_HI16_S)
9226 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9227 If we have an addend, we always use the latter form.
9228
9229 With 64bit address space and a usable $at we want
9230 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9231 lui $at,<sym> (BFD_RELOC_HI16_S)
9232 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9233 daddiu $at,<sym> (BFD_RELOC_LO16)
9234 dsll32 $reg,0
9235 daddu $reg,$reg,$at
9236
9237 If $at is already in use, we use a path which is suboptimal
9238 on superscalar processors.
9239 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9240 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9241 dsll $reg,16
9242 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9243 dsll $reg,16
9244 daddiu $reg,<sym> (BFD_RELOC_LO16)
9245
9246 For GP relative symbols in 64bit address space we can use
9247 the same sequence as in 32bit address space. */
9248 if (HAVE_64BIT_SYMBOLS)
9249 {
9250 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9251 && !nopic_need_relax (ep->X_add_symbol, 1))
9252 {
9253 relax_start (ep->X_add_symbol);
9254 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9255 mips_gp_register, BFD_RELOC_GPREL16);
9256 relax_switch ();
9257 }
9258
9259 if (*used_at == 0 && mips_opts.at)
9260 {
9261 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9262 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9263 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9264 BFD_RELOC_MIPS_HIGHER);
9265 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9266 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9267 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9268 *used_at = 1;
9269 }
9270 else
9271 {
9272 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9273 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9274 BFD_RELOC_MIPS_HIGHER);
9275 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9276 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9277 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9278 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9279 }
9280
9281 if (mips_relax.sequence)
9282 relax_end ();
9283 }
9284 else
9285 {
9286 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9287 && !nopic_need_relax (ep->X_add_symbol, 1))
9288 {
9289 relax_start (ep->X_add_symbol);
9290 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9291 mips_gp_register, BFD_RELOC_GPREL16);
9292 relax_switch ();
9293 }
9294 macro_build_lui (ep, reg);
9295 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9296 reg, reg, BFD_RELOC_LO16);
9297 if (mips_relax.sequence)
9298 relax_end ();
9299 }
9300 }
9301 else if (!mips_big_got)
9302 {
9303 expressionS ex;
9304
9305 /* If this is a reference to an external symbol, we want
9306 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9307 Otherwise we want
9308 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9309 nop
9310 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9311 If there is a constant, it must be added in after.
9312
9313 If we have NewABI, we want
9314 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9315 unless we're referencing a global symbol with a non-zero
9316 offset, in which case cst must be added separately. */
9317 if (HAVE_NEWABI)
9318 {
9319 if (ep->X_add_number)
9320 {
9321 ex.X_add_number = ep->X_add_number;
9322 ep->X_add_number = 0;
9323 relax_start (ep->X_add_symbol);
9324 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9325 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9326 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9327 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9328 ex.X_op = O_constant;
9329 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9330 reg, reg, BFD_RELOC_LO16);
9331 ep->X_add_number = ex.X_add_number;
9332 relax_switch ();
9333 }
9334 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9335 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9336 if (mips_relax.sequence)
9337 relax_end ();
9338 }
9339 else
9340 {
9341 ex.X_add_number = ep->X_add_number;
9342 ep->X_add_number = 0;
9343 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9344 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9345 load_delay_nop ();
9346 relax_start (ep->X_add_symbol);
9347 relax_switch ();
9348 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9349 BFD_RELOC_LO16);
9350 relax_end ();
9351
9352 if (ex.X_add_number != 0)
9353 {
9354 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9355 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9356 ex.X_op = O_constant;
9357 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9358 reg, reg, BFD_RELOC_LO16);
9359 }
9360 }
9361 }
9362 else if (mips_big_got)
9363 {
9364 expressionS ex;
9365
9366 /* This is the large GOT case. If this is a reference to an
9367 external symbol, we want
9368 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9369 addu $reg,$reg,$gp
9370 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9371
9372 Otherwise, for a reference to a local symbol in old ABI, we want
9373 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9374 nop
9375 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9376 If there is a constant, it must be added in after.
9377
9378 In the NewABI, for local symbols, with or without offsets, we want:
9379 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9380 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9381 */
9382 if (HAVE_NEWABI)
9383 {
9384 ex.X_add_number = ep->X_add_number;
9385 ep->X_add_number = 0;
9386 relax_start (ep->X_add_symbol);
9387 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9388 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9389 reg, reg, mips_gp_register);
9390 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9391 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9392 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9393 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9394 else if (ex.X_add_number)
9395 {
9396 ex.X_op = O_constant;
9397 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9398 BFD_RELOC_LO16);
9399 }
9400
9401 ep->X_add_number = ex.X_add_number;
9402 relax_switch ();
9403 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9404 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9405 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9406 BFD_RELOC_MIPS_GOT_OFST);
9407 relax_end ();
9408 }
9409 else
9410 {
9411 ex.X_add_number = ep->X_add_number;
9412 ep->X_add_number = 0;
9413 relax_start (ep->X_add_symbol);
9414 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9415 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9416 reg, reg, mips_gp_register);
9417 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9418 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9419 relax_switch ();
9420 if (reg_needs_delay (mips_gp_register))
9421 {
9422 /* We need a nop before loading from $gp. This special
9423 check is required because the lui which starts the main
9424 instruction stream does not refer to $gp, and so will not
9425 insert the nop which may be required. */
9426 macro_build (NULL, "nop", "");
9427 }
9428 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9429 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9430 load_delay_nop ();
9431 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9432 BFD_RELOC_LO16);
9433 relax_end ();
9434
9435 if (ex.X_add_number != 0)
9436 {
9437 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9438 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9439 ex.X_op = O_constant;
9440 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9441 BFD_RELOC_LO16);
9442 }
9443 }
9444 }
9445 else
9446 abort ();
9447
9448 if (!mips_opts.at && *used_at == 1)
9449 as_bad (_("macro used $at after \".set noat\""));
9450 }
9451
9452 /* Move the contents of register SOURCE into register DEST. */
9453
9454 static void
9455 move_register (int dest, int source)
9456 {
9457 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9458 instruction specifically requires a 32-bit one. */
9459 if (mips_opts.micromips
9460 && !mips_opts.insn32
9461 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9462 macro_build (NULL, "move", "mp,mj", dest, source);
9463 else
9464 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9465 }
9466
9467 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9468 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9469 The two alternatives are:
9470
9471 Global symbol Local sybmol
9472 ------------- ------------
9473 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9474 ... ...
9475 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9476
9477 load_got_offset emits the first instruction and add_got_offset
9478 emits the second for a 16-bit offset or add_got_offset_hilo emits
9479 a sequence to add a 32-bit offset using a scratch register. */
9480
9481 static void
9482 load_got_offset (int dest, expressionS *local)
9483 {
9484 expressionS global;
9485
9486 global = *local;
9487 global.X_add_number = 0;
9488
9489 relax_start (local->X_add_symbol);
9490 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9491 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9492 relax_switch ();
9493 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9494 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9495 relax_end ();
9496 }
9497
9498 static void
9499 add_got_offset (int dest, expressionS *local)
9500 {
9501 expressionS global;
9502
9503 global.X_op = O_constant;
9504 global.X_op_symbol = NULL;
9505 global.X_add_symbol = NULL;
9506 global.X_add_number = local->X_add_number;
9507
9508 relax_start (local->X_add_symbol);
9509 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9510 dest, dest, BFD_RELOC_LO16);
9511 relax_switch ();
9512 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9513 relax_end ();
9514 }
9515
9516 static void
9517 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9518 {
9519 expressionS global;
9520 int hold_mips_optimize;
9521
9522 global.X_op = O_constant;
9523 global.X_op_symbol = NULL;
9524 global.X_add_symbol = NULL;
9525 global.X_add_number = local->X_add_number;
9526
9527 relax_start (local->X_add_symbol);
9528 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9529 relax_switch ();
9530 /* Set mips_optimize around the lui instruction to avoid
9531 inserting an unnecessary nop after the lw. */
9532 hold_mips_optimize = mips_optimize;
9533 mips_optimize = 2;
9534 macro_build_lui (&global, tmp);
9535 mips_optimize = hold_mips_optimize;
9536 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9537 relax_end ();
9538
9539 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9540 }
9541
9542 /* Emit a sequence of instructions to emulate a branch likely operation.
9543 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9544 is its complementing branch with the original condition negated.
9545 CALL is set if the original branch specified the link operation.
9546 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9547
9548 Code like this is produced in the noreorder mode:
9549
9550 BRNEG <args>, 1f
9551 nop
9552 b <sym>
9553 delay slot (executed only if branch taken)
9554 1:
9555
9556 or, if CALL is set:
9557
9558 BRNEG <args>, 1f
9559 nop
9560 bal <sym>
9561 delay slot (executed only if branch taken)
9562 1:
9563
9564 In the reorder mode the delay slot would be filled with a nop anyway,
9565 so code produced is simply:
9566
9567 BR <args>, <sym>
9568 nop
9569
9570 This function is used when producing code for the microMIPS ASE that
9571 does not implement branch likely instructions in hardware. */
9572
9573 static void
9574 macro_build_branch_likely (const char *br, const char *brneg,
9575 int call, expressionS *ep, const char *fmt,
9576 unsigned int sreg, unsigned int treg)
9577 {
9578 int noreorder = mips_opts.noreorder;
9579 expressionS expr1;
9580
9581 gas_assert (mips_opts.micromips);
9582 start_noreorder ();
9583 if (noreorder)
9584 {
9585 micromips_label_expr (&expr1);
9586 macro_build (&expr1, brneg, fmt, sreg, treg);
9587 macro_build (NULL, "nop", "");
9588 macro_build (ep, call ? "bal" : "b", "p");
9589
9590 /* Set to true so that append_insn adds a label. */
9591 emit_branch_likely_macro = TRUE;
9592 }
9593 else
9594 {
9595 macro_build (ep, br, fmt, sreg, treg);
9596 macro_build (NULL, "nop", "");
9597 }
9598 end_noreorder ();
9599 }
9600
9601 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9602 the condition code tested. EP specifies the branch target. */
9603
9604 static void
9605 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9606 {
9607 const int call = 0;
9608 const char *brneg;
9609 const char *br;
9610
9611 switch (type)
9612 {
9613 case M_BC1FL:
9614 br = "bc1f";
9615 brneg = "bc1t";
9616 break;
9617 case M_BC1TL:
9618 br = "bc1t";
9619 brneg = "bc1f";
9620 break;
9621 case M_BC2FL:
9622 br = "bc2f";
9623 brneg = "bc2t";
9624 break;
9625 case M_BC2TL:
9626 br = "bc2t";
9627 brneg = "bc2f";
9628 break;
9629 default:
9630 abort ();
9631 }
9632 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9633 }
9634
9635 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9636 the register tested. EP specifies the branch target. */
9637
9638 static void
9639 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9640 {
9641 const char *brneg = NULL;
9642 const char *br;
9643 int call = 0;
9644
9645 switch (type)
9646 {
9647 case M_BGEZ:
9648 br = "bgez";
9649 break;
9650 case M_BGEZL:
9651 br = mips_opts.micromips ? "bgez" : "bgezl";
9652 brneg = "bltz";
9653 break;
9654 case M_BGEZALL:
9655 gas_assert (mips_opts.micromips);
9656 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9657 brneg = "bltz";
9658 call = 1;
9659 break;
9660 case M_BGTZ:
9661 br = "bgtz";
9662 break;
9663 case M_BGTZL:
9664 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9665 brneg = "blez";
9666 break;
9667 case M_BLEZ:
9668 br = "blez";
9669 break;
9670 case M_BLEZL:
9671 br = mips_opts.micromips ? "blez" : "blezl";
9672 brneg = "bgtz";
9673 break;
9674 case M_BLTZ:
9675 br = "bltz";
9676 break;
9677 case M_BLTZL:
9678 br = mips_opts.micromips ? "bltz" : "bltzl";
9679 brneg = "bgez";
9680 break;
9681 case M_BLTZALL:
9682 gas_assert (mips_opts.micromips);
9683 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9684 brneg = "bgez";
9685 call = 1;
9686 break;
9687 default:
9688 abort ();
9689 }
9690 if (mips_opts.micromips && brneg)
9691 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9692 else
9693 macro_build (ep, br, "s,p", sreg);
9694 }
9695
9696 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9697 TREG as the registers tested. EP specifies the branch target. */
9698
9699 static void
9700 macro_build_branch_rsrt (int type, expressionS *ep,
9701 unsigned int sreg, unsigned int treg)
9702 {
9703 const char *brneg = NULL;
9704 const int call = 0;
9705 const char *br;
9706
9707 switch (type)
9708 {
9709 case M_BEQ:
9710 case M_BEQ_I:
9711 br = "beq";
9712 break;
9713 case M_BEQL:
9714 case M_BEQL_I:
9715 br = mips_opts.micromips ? "beq" : "beql";
9716 brneg = "bne";
9717 break;
9718 case M_BNE:
9719 case M_BNE_I:
9720 br = "bne";
9721 break;
9722 case M_BNEL:
9723 case M_BNEL_I:
9724 br = mips_opts.micromips ? "bne" : "bnel";
9725 brneg = "beq";
9726 break;
9727 default:
9728 abort ();
9729 }
9730 if (mips_opts.micromips && brneg)
9731 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9732 else
9733 macro_build (ep, br, "s,t,p", sreg, treg);
9734 }
9735
9736 /* Return the high part that should be loaded in order to make the low
9737 part of VALUE accessible using an offset of OFFBITS bits. */
9738
9739 static offsetT
9740 offset_high_part (offsetT value, unsigned int offbits)
9741 {
9742 offsetT bias;
9743 addressT low_mask;
9744
9745 if (offbits == 0)
9746 return value;
9747 bias = 1 << (offbits - 1);
9748 low_mask = bias * 2 - 1;
9749 return (value + bias) & ~low_mask;
9750 }
9751
9752 /* Return true if the value stored in offset_expr and offset_reloc
9753 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9754 amount that the caller wants to add without inducing overflow
9755 and ALIGN is the known alignment of the value in bytes. */
9756
9757 static bfd_boolean
9758 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9759 {
9760 if (offbits == 16)
9761 {
9762 /* Accept any relocation operator if overflow isn't a concern. */
9763 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9764 return TRUE;
9765
9766 /* These relocations are guaranteed not to overflow in correct links. */
9767 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9768 || gprel16_reloc_p (*offset_reloc))
9769 return TRUE;
9770 }
9771 if (offset_expr.X_op == O_constant
9772 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9773 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9774 return TRUE;
9775 return FALSE;
9776 }
9777
9778 /*
9779 * Build macros
9780 * This routine implements the seemingly endless macro or synthesized
9781 * instructions and addressing modes in the mips assembly language. Many
9782 * of these macros are simple and are similar to each other. These could
9783 * probably be handled by some kind of table or grammar approach instead of
9784 * this verbose method. Others are not simple macros but are more like
9785 * optimizing code generation.
9786 * One interesting optimization is when several store macros appear
9787 * consecutively that would load AT with the upper half of the same address.
9788 * The ensuing load upper instructions are ommited. This implies some kind
9789 * of global optimization. We currently only optimize within a single macro.
9790 * For many of the load and store macros if the address is specified as a
9791 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9792 * first load register 'at' with zero and use it as the base register. The
9793 * mips assembler simply uses register $zero. Just one tiny optimization
9794 * we're missing.
9795 */
9796 static void
9797 macro (struct mips_cl_insn *ip, char *str)
9798 {
9799 const struct mips_operand_array *operands;
9800 unsigned int breg, i;
9801 unsigned int tempreg;
9802 int mask;
9803 int used_at = 0;
9804 expressionS label_expr;
9805 expressionS expr1;
9806 expressionS *ep;
9807 const char *s;
9808 const char *s2;
9809 const char *fmt;
9810 int likely = 0;
9811 int coproc = 0;
9812 int offbits = 16;
9813 int call = 0;
9814 int jals = 0;
9815 int dbl = 0;
9816 int imm = 0;
9817 int ust = 0;
9818 int lp = 0;
9819 bfd_boolean large_offset;
9820 int off;
9821 int hold_mips_optimize;
9822 unsigned int align;
9823 unsigned int op[MAX_OPERANDS];
9824
9825 gas_assert (! mips_opts.mips16);
9826
9827 operands = insn_operands (ip);
9828 for (i = 0; i < MAX_OPERANDS; i++)
9829 if (operands->operand[i])
9830 op[i] = insn_extract_operand (ip, operands->operand[i]);
9831 else
9832 op[i] = -1;
9833
9834 mask = ip->insn_mo->mask;
9835
9836 label_expr.X_op = O_constant;
9837 label_expr.X_op_symbol = NULL;
9838 label_expr.X_add_symbol = NULL;
9839 label_expr.X_add_number = 0;
9840
9841 expr1.X_op = O_constant;
9842 expr1.X_op_symbol = NULL;
9843 expr1.X_add_symbol = NULL;
9844 expr1.X_add_number = 1;
9845 align = 1;
9846
9847 switch (mask)
9848 {
9849 case M_DABS:
9850 dbl = 1;
9851 /* Fall through. */
9852 case M_ABS:
9853 /* bgez $a0,1f
9854 move v0,$a0
9855 sub v0,$zero,$a0
9856 1:
9857 */
9858
9859 start_noreorder ();
9860
9861 if (mips_opts.micromips)
9862 micromips_label_expr (&label_expr);
9863 else
9864 label_expr.X_add_number = 8;
9865 macro_build (&label_expr, "bgez", "s,p", op[1]);
9866 if (op[0] == op[1])
9867 macro_build (NULL, "nop", "");
9868 else
9869 move_register (op[0], op[1]);
9870 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9871 if (mips_opts.micromips)
9872 micromips_add_label ();
9873
9874 end_noreorder ();
9875 break;
9876
9877 case M_ADD_I:
9878 s = "addi";
9879 s2 = "add";
9880 goto do_addi;
9881 case M_ADDU_I:
9882 s = "addiu";
9883 s2 = "addu";
9884 goto do_addi;
9885 case M_DADD_I:
9886 dbl = 1;
9887 s = "daddi";
9888 s2 = "dadd";
9889 if (!mips_opts.micromips)
9890 goto do_addi;
9891 if (imm_expr.X_add_number >= -0x200
9892 && imm_expr.X_add_number < 0x200)
9893 {
9894 macro_build (NULL, s, "t,r,.", op[0], op[1],
9895 (int) imm_expr.X_add_number);
9896 break;
9897 }
9898 goto do_addi_i;
9899 case M_DADDU_I:
9900 dbl = 1;
9901 s = "daddiu";
9902 s2 = "daddu";
9903 do_addi:
9904 if (imm_expr.X_add_number >= -0x8000
9905 && imm_expr.X_add_number < 0x8000)
9906 {
9907 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9908 break;
9909 }
9910 do_addi_i:
9911 used_at = 1;
9912 load_register (AT, &imm_expr, dbl);
9913 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9914 break;
9915
9916 case M_AND_I:
9917 s = "andi";
9918 s2 = "and";
9919 goto do_bit;
9920 case M_OR_I:
9921 s = "ori";
9922 s2 = "or";
9923 goto do_bit;
9924 case M_NOR_I:
9925 s = "";
9926 s2 = "nor";
9927 goto do_bit;
9928 case M_XOR_I:
9929 s = "xori";
9930 s2 = "xor";
9931 do_bit:
9932 if (imm_expr.X_add_number >= 0
9933 && imm_expr.X_add_number < 0x10000)
9934 {
9935 if (mask != M_NOR_I)
9936 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9937 else
9938 {
9939 macro_build (&imm_expr, "ori", "t,r,i",
9940 op[0], op[1], BFD_RELOC_LO16);
9941 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9942 }
9943 break;
9944 }
9945
9946 used_at = 1;
9947 load_register (AT, &imm_expr, GPR_SIZE == 64);
9948 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9949 break;
9950
9951 case M_BALIGN:
9952 switch (imm_expr.X_add_number)
9953 {
9954 case 0:
9955 macro_build (NULL, "nop", "");
9956 break;
9957 case 2:
9958 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9959 break;
9960 case 1:
9961 case 3:
9962 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9963 (int) imm_expr.X_add_number);
9964 break;
9965 default:
9966 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9967 (unsigned long) imm_expr.X_add_number);
9968 break;
9969 }
9970 break;
9971
9972 case M_BC1FL:
9973 case M_BC1TL:
9974 case M_BC2FL:
9975 case M_BC2TL:
9976 gas_assert (mips_opts.micromips);
9977 macro_build_branch_ccl (mask, &offset_expr,
9978 EXTRACT_OPERAND (1, BCC, *ip));
9979 break;
9980
9981 case M_BEQ_I:
9982 case M_BEQL_I:
9983 case M_BNE_I:
9984 case M_BNEL_I:
9985 if (imm_expr.X_add_number == 0)
9986 op[1] = 0;
9987 else
9988 {
9989 op[1] = AT;
9990 used_at = 1;
9991 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9992 }
9993 /* Fall through. */
9994 case M_BEQL:
9995 case M_BNEL:
9996 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9997 break;
9998
9999 case M_BGEL:
10000 likely = 1;
10001 /* Fall through. */
10002 case M_BGE:
10003 if (op[1] == 0)
10004 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10005 else if (op[0] == 0)
10006 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10007 else
10008 {
10009 used_at = 1;
10010 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10011 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10012 &offset_expr, AT, ZERO);
10013 }
10014 break;
10015
10016 case M_BGEZL:
10017 case M_BGEZALL:
10018 case M_BGTZL:
10019 case M_BLEZL:
10020 case M_BLTZL:
10021 case M_BLTZALL:
10022 macro_build_branch_rs (mask, &offset_expr, op[0]);
10023 break;
10024
10025 case M_BGTL_I:
10026 likely = 1;
10027 /* Fall through. */
10028 case M_BGT_I:
10029 /* Check for > max integer. */
10030 if (imm_expr.X_add_number >= GPR_SMAX)
10031 {
10032 do_false:
10033 /* Result is always false. */
10034 if (! likely)
10035 macro_build (NULL, "nop", "");
10036 else
10037 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10038 break;
10039 }
10040 ++imm_expr.X_add_number;
10041 /* FALLTHROUGH */
10042 case M_BGE_I:
10043 case M_BGEL_I:
10044 if (mask == M_BGEL_I)
10045 likely = 1;
10046 if (imm_expr.X_add_number == 0)
10047 {
10048 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10049 &offset_expr, op[0]);
10050 break;
10051 }
10052 if (imm_expr.X_add_number == 1)
10053 {
10054 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10055 &offset_expr, op[0]);
10056 break;
10057 }
10058 if (imm_expr.X_add_number <= GPR_SMIN)
10059 {
10060 do_true:
10061 /* result is always true */
10062 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10063 macro_build (&offset_expr, "b", "p");
10064 break;
10065 }
10066 used_at = 1;
10067 set_at (op[0], 0);
10068 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10069 &offset_expr, AT, ZERO);
10070 break;
10071
10072 case M_BGEUL:
10073 likely = 1;
10074 /* Fall through. */
10075 case M_BGEU:
10076 if (op[1] == 0)
10077 goto do_true;
10078 else if (op[0] == 0)
10079 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10080 &offset_expr, ZERO, op[1]);
10081 else
10082 {
10083 used_at = 1;
10084 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10085 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10086 &offset_expr, AT, ZERO);
10087 }
10088 break;
10089
10090 case M_BGTUL_I:
10091 likely = 1;
10092 /* Fall through. */
10093 case M_BGTU_I:
10094 if (op[0] == 0
10095 || (GPR_SIZE == 32
10096 && imm_expr.X_add_number == -1))
10097 goto do_false;
10098 ++imm_expr.X_add_number;
10099 /* FALLTHROUGH */
10100 case M_BGEU_I:
10101 case M_BGEUL_I:
10102 if (mask == M_BGEUL_I)
10103 likely = 1;
10104 if (imm_expr.X_add_number == 0)
10105 goto do_true;
10106 else if (imm_expr.X_add_number == 1)
10107 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10108 &offset_expr, op[0], ZERO);
10109 else
10110 {
10111 used_at = 1;
10112 set_at (op[0], 1);
10113 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10114 &offset_expr, AT, ZERO);
10115 }
10116 break;
10117
10118 case M_BGTL:
10119 likely = 1;
10120 /* Fall through. */
10121 case M_BGT:
10122 if (op[1] == 0)
10123 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10124 else if (op[0] == 0)
10125 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10126 else
10127 {
10128 used_at = 1;
10129 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10130 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10131 &offset_expr, AT, ZERO);
10132 }
10133 break;
10134
10135 case M_BGTUL:
10136 likely = 1;
10137 /* Fall through. */
10138 case M_BGTU:
10139 if (op[1] == 0)
10140 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10141 &offset_expr, op[0], ZERO);
10142 else if (op[0] == 0)
10143 goto do_false;
10144 else
10145 {
10146 used_at = 1;
10147 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10148 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10149 &offset_expr, AT, ZERO);
10150 }
10151 break;
10152
10153 case M_BLEL:
10154 likely = 1;
10155 /* Fall through. */
10156 case M_BLE:
10157 if (op[1] == 0)
10158 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10159 else if (op[0] == 0)
10160 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10161 else
10162 {
10163 used_at = 1;
10164 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10165 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10166 &offset_expr, AT, ZERO);
10167 }
10168 break;
10169
10170 case M_BLEL_I:
10171 likely = 1;
10172 /* Fall through. */
10173 case M_BLE_I:
10174 if (imm_expr.X_add_number >= GPR_SMAX)
10175 goto do_true;
10176 ++imm_expr.X_add_number;
10177 /* FALLTHROUGH */
10178 case M_BLT_I:
10179 case M_BLTL_I:
10180 if (mask == M_BLTL_I)
10181 likely = 1;
10182 if (imm_expr.X_add_number == 0)
10183 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10184 else if (imm_expr.X_add_number == 1)
10185 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10186 else
10187 {
10188 used_at = 1;
10189 set_at (op[0], 0);
10190 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10191 &offset_expr, AT, ZERO);
10192 }
10193 break;
10194
10195 case M_BLEUL:
10196 likely = 1;
10197 /* Fall through. */
10198 case M_BLEU:
10199 if (op[1] == 0)
10200 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10201 &offset_expr, op[0], ZERO);
10202 else if (op[0] == 0)
10203 goto do_true;
10204 else
10205 {
10206 used_at = 1;
10207 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10208 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10209 &offset_expr, AT, ZERO);
10210 }
10211 break;
10212
10213 case M_BLEUL_I:
10214 likely = 1;
10215 /* Fall through. */
10216 case M_BLEU_I:
10217 if (op[0] == 0
10218 || (GPR_SIZE == 32
10219 && imm_expr.X_add_number == -1))
10220 goto do_true;
10221 ++imm_expr.X_add_number;
10222 /* FALLTHROUGH */
10223 case M_BLTU_I:
10224 case M_BLTUL_I:
10225 if (mask == M_BLTUL_I)
10226 likely = 1;
10227 if (imm_expr.X_add_number == 0)
10228 goto do_false;
10229 else if (imm_expr.X_add_number == 1)
10230 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10231 &offset_expr, op[0], ZERO);
10232 else
10233 {
10234 used_at = 1;
10235 set_at (op[0], 1);
10236 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10237 &offset_expr, AT, ZERO);
10238 }
10239 break;
10240
10241 case M_BLTL:
10242 likely = 1;
10243 /* Fall through. */
10244 case M_BLT:
10245 if (op[1] == 0)
10246 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10247 else if (op[0] == 0)
10248 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10249 else
10250 {
10251 used_at = 1;
10252 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10253 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10254 &offset_expr, AT, ZERO);
10255 }
10256 break;
10257
10258 case M_BLTUL:
10259 likely = 1;
10260 /* Fall through. */
10261 case M_BLTU:
10262 if (op[1] == 0)
10263 goto do_false;
10264 else if (op[0] == 0)
10265 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10266 &offset_expr, ZERO, op[1]);
10267 else
10268 {
10269 used_at = 1;
10270 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10271 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10272 &offset_expr, AT, ZERO);
10273 }
10274 break;
10275
10276 case M_DDIV_3:
10277 dbl = 1;
10278 /* Fall through. */
10279 case M_DIV_3:
10280 s = "mflo";
10281 goto do_div3;
10282 case M_DREM_3:
10283 dbl = 1;
10284 /* Fall through. */
10285 case M_REM_3:
10286 s = "mfhi";
10287 do_div3:
10288 if (op[2] == 0)
10289 {
10290 as_warn (_("divide by zero"));
10291 if (mips_trap)
10292 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10293 else
10294 macro_build (NULL, "break", BRK_FMT, 7);
10295 break;
10296 }
10297
10298 start_noreorder ();
10299 if (mips_trap)
10300 {
10301 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10302 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10303 }
10304 else
10305 {
10306 if (mips_opts.micromips)
10307 micromips_label_expr (&label_expr);
10308 else
10309 label_expr.X_add_number = 8;
10310 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10311 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10312 macro_build (NULL, "break", BRK_FMT, 7);
10313 if (mips_opts.micromips)
10314 micromips_add_label ();
10315 }
10316 expr1.X_add_number = -1;
10317 used_at = 1;
10318 load_register (AT, &expr1, dbl);
10319 if (mips_opts.micromips)
10320 micromips_label_expr (&label_expr);
10321 else
10322 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10323 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10324 if (dbl)
10325 {
10326 expr1.X_add_number = 1;
10327 load_register (AT, &expr1, dbl);
10328 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10329 }
10330 else
10331 {
10332 expr1.X_add_number = 0x80000000;
10333 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10334 }
10335 if (mips_trap)
10336 {
10337 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10338 /* We want to close the noreorder block as soon as possible, so
10339 that later insns are available for delay slot filling. */
10340 end_noreorder ();
10341 }
10342 else
10343 {
10344 if (mips_opts.micromips)
10345 micromips_label_expr (&label_expr);
10346 else
10347 label_expr.X_add_number = 8;
10348 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10349 macro_build (NULL, "nop", "");
10350
10351 /* We want to close the noreorder block as soon as possible, so
10352 that later insns are available for delay slot filling. */
10353 end_noreorder ();
10354
10355 macro_build (NULL, "break", BRK_FMT, 6);
10356 }
10357 if (mips_opts.micromips)
10358 micromips_add_label ();
10359 macro_build (NULL, s, MFHL_FMT, op[0]);
10360 break;
10361
10362 case M_DIV_3I:
10363 s = "div";
10364 s2 = "mflo";
10365 goto do_divi;
10366 case M_DIVU_3I:
10367 s = "divu";
10368 s2 = "mflo";
10369 goto do_divi;
10370 case M_REM_3I:
10371 s = "div";
10372 s2 = "mfhi";
10373 goto do_divi;
10374 case M_REMU_3I:
10375 s = "divu";
10376 s2 = "mfhi";
10377 goto do_divi;
10378 case M_DDIV_3I:
10379 dbl = 1;
10380 s = "ddiv";
10381 s2 = "mflo";
10382 goto do_divi;
10383 case M_DDIVU_3I:
10384 dbl = 1;
10385 s = "ddivu";
10386 s2 = "mflo";
10387 goto do_divi;
10388 case M_DREM_3I:
10389 dbl = 1;
10390 s = "ddiv";
10391 s2 = "mfhi";
10392 goto do_divi;
10393 case M_DREMU_3I:
10394 dbl = 1;
10395 s = "ddivu";
10396 s2 = "mfhi";
10397 do_divi:
10398 if (imm_expr.X_add_number == 0)
10399 {
10400 as_warn (_("divide by zero"));
10401 if (mips_trap)
10402 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10403 else
10404 macro_build (NULL, "break", BRK_FMT, 7);
10405 break;
10406 }
10407 if (imm_expr.X_add_number == 1)
10408 {
10409 if (strcmp (s2, "mflo") == 0)
10410 move_register (op[0], op[1]);
10411 else
10412 move_register (op[0], ZERO);
10413 break;
10414 }
10415 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10416 {
10417 if (strcmp (s2, "mflo") == 0)
10418 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10419 else
10420 move_register (op[0], ZERO);
10421 break;
10422 }
10423
10424 used_at = 1;
10425 load_register (AT, &imm_expr, dbl);
10426 macro_build (NULL, s, "z,s,t", op[1], AT);
10427 macro_build (NULL, s2, MFHL_FMT, op[0]);
10428 break;
10429
10430 case M_DIVU_3:
10431 s = "divu";
10432 s2 = "mflo";
10433 goto do_divu3;
10434 case M_REMU_3:
10435 s = "divu";
10436 s2 = "mfhi";
10437 goto do_divu3;
10438 case M_DDIVU_3:
10439 s = "ddivu";
10440 s2 = "mflo";
10441 goto do_divu3;
10442 case M_DREMU_3:
10443 s = "ddivu";
10444 s2 = "mfhi";
10445 do_divu3:
10446 start_noreorder ();
10447 if (mips_trap)
10448 {
10449 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10450 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10451 /* We want to close the noreorder block as soon as possible, so
10452 that later insns are available for delay slot filling. */
10453 end_noreorder ();
10454 }
10455 else
10456 {
10457 if (mips_opts.micromips)
10458 micromips_label_expr (&label_expr);
10459 else
10460 label_expr.X_add_number = 8;
10461 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10462 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10463
10464 /* We want to close the noreorder block as soon as possible, so
10465 that later insns are available for delay slot filling. */
10466 end_noreorder ();
10467 macro_build (NULL, "break", BRK_FMT, 7);
10468 if (mips_opts.micromips)
10469 micromips_add_label ();
10470 }
10471 macro_build (NULL, s2, MFHL_FMT, op[0]);
10472 break;
10473
10474 case M_DLCA_AB:
10475 dbl = 1;
10476 /* Fall through. */
10477 case M_LCA_AB:
10478 call = 1;
10479 goto do_la;
10480 case M_DLA_AB:
10481 dbl = 1;
10482 /* Fall through. */
10483 case M_LA_AB:
10484 do_la:
10485 /* Load the address of a symbol into a register. If breg is not
10486 zero, we then add a base register to it. */
10487
10488 breg = op[2];
10489 if (dbl && GPR_SIZE == 32)
10490 as_warn (_("dla used to load 32-bit register; recommend using la "
10491 "instead"));
10492
10493 if (!dbl && HAVE_64BIT_OBJECTS)
10494 as_warn (_("la used to load 64-bit address; recommend using dla "
10495 "instead"));
10496
10497 if (small_offset_p (0, align, 16))
10498 {
10499 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10500 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10501 break;
10502 }
10503
10504 if (mips_opts.at && (op[0] == breg))
10505 {
10506 tempreg = AT;
10507 used_at = 1;
10508 }
10509 else
10510 tempreg = op[0];
10511
10512 if (offset_expr.X_op != O_symbol
10513 && offset_expr.X_op != O_constant)
10514 {
10515 as_bad (_("expression too complex"));
10516 offset_expr.X_op = O_constant;
10517 }
10518
10519 if (offset_expr.X_op == O_constant)
10520 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10521 else if (mips_pic == NO_PIC)
10522 {
10523 /* If this is a reference to a GP relative symbol, we want
10524 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10525 Otherwise we want
10526 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10527 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10528 If we have a constant, we need two instructions anyhow,
10529 so we may as well always use the latter form.
10530
10531 With 64bit address space and a usable $at we want
10532 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10533 lui $at,<sym> (BFD_RELOC_HI16_S)
10534 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10535 daddiu $at,<sym> (BFD_RELOC_LO16)
10536 dsll32 $tempreg,0
10537 daddu $tempreg,$tempreg,$at
10538
10539 If $at is already in use, we use a path which is suboptimal
10540 on superscalar processors.
10541 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10542 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10543 dsll $tempreg,16
10544 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10545 dsll $tempreg,16
10546 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10547
10548 For GP relative symbols in 64bit address space we can use
10549 the same sequence as in 32bit address space. */
10550 if (HAVE_64BIT_SYMBOLS)
10551 {
10552 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10553 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10554 {
10555 relax_start (offset_expr.X_add_symbol);
10556 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10557 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10558 relax_switch ();
10559 }
10560
10561 if (used_at == 0 && mips_opts.at)
10562 {
10563 macro_build (&offset_expr, "lui", LUI_FMT,
10564 tempreg, BFD_RELOC_MIPS_HIGHEST);
10565 macro_build (&offset_expr, "lui", LUI_FMT,
10566 AT, BFD_RELOC_HI16_S);
10567 macro_build (&offset_expr, "daddiu", "t,r,j",
10568 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10569 macro_build (&offset_expr, "daddiu", "t,r,j",
10570 AT, AT, BFD_RELOC_LO16);
10571 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10572 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10573 used_at = 1;
10574 }
10575 else
10576 {
10577 macro_build (&offset_expr, "lui", LUI_FMT,
10578 tempreg, BFD_RELOC_MIPS_HIGHEST);
10579 macro_build (&offset_expr, "daddiu", "t,r,j",
10580 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10581 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10582 macro_build (&offset_expr, "daddiu", "t,r,j",
10583 tempreg, tempreg, BFD_RELOC_HI16_S);
10584 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10585 macro_build (&offset_expr, "daddiu", "t,r,j",
10586 tempreg, tempreg, BFD_RELOC_LO16);
10587 }
10588
10589 if (mips_relax.sequence)
10590 relax_end ();
10591 }
10592 else
10593 {
10594 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10595 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10596 {
10597 relax_start (offset_expr.X_add_symbol);
10598 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10599 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10600 relax_switch ();
10601 }
10602 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10603 as_bad (_("offset too large"));
10604 macro_build_lui (&offset_expr, tempreg);
10605 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10606 tempreg, tempreg, BFD_RELOC_LO16);
10607 if (mips_relax.sequence)
10608 relax_end ();
10609 }
10610 }
10611 else if (!mips_big_got && !HAVE_NEWABI)
10612 {
10613 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10614
10615 /* If this is a reference to an external symbol, and there
10616 is no constant, we want
10617 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10618 or for lca or if tempreg is PIC_CALL_REG
10619 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10620 For a local symbol, we want
10621 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10622 nop
10623 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10624
10625 If we have a small constant, and this is a reference to
10626 an external symbol, we want
10627 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10628 nop
10629 addiu $tempreg,$tempreg,<constant>
10630 For a local symbol, we want the same instruction
10631 sequence, but we output a BFD_RELOC_LO16 reloc on the
10632 addiu instruction.
10633
10634 If we have a large constant, and this is a reference to
10635 an external symbol, we want
10636 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10637 lui $at,<hiconstant>
10638 addiu $at,$at,<loconstant>
10639 addu $tempreg,$tempreg,$at
10640 For a local symbol, we want the same instruction
10641 sequence, but we output a BFD_RELOC_LO16 reloc on the
10642 addiu instruction.
10643 */
10644
10645 if (offset_expr.X_add_number == 0)
10646 {
10647 if (mips_pic == SVR4_PIC
10648 && breg == 0
10649 && (call || tempreg == PIC_CALL_REG))
10650 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10651
10652 relax_start (offset_expr.X_add_symbol);
10653 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10654 lw_reloc_type, mips_gp_register);
10655 if (breg != 0)
10656 {
10657 /* We're going to put in an addu instruction using
10658 tempreg, so we may as well insert the nop right
10659 now. */
10660 load_delay_nop ();
10661 }
10662 relax_switch ();
10663 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10664 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10665 load_delay_nop ();
10666 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10667 tempreg, tempreg, BFD_RELOC_LO16);
10668 relax_end ();
10669 /* FIXME: If breg == 0, and the next instruction uses
10670 $tempreg, then if this variant case is used an extra
10671 nop will be generated. */
10672 }
10673 else if (offset_expr.X_add_number >= -0x8000
10674 && offset_expr.X_add_number < 0x8000)
10675 {
10676 load_got_offset (tempreg, &offset_expr);
10677 load_delay_nop ();
10678 add_got_offset (tempreg, &offset_expr);
10679 }
10680 else
10681 {
10682 expr1.X_add_number = offset_expr.X_add_number;
10683 offset_expr.X_add_number =
10684 SEXT_16BIT (offset_expr.X_add_number);
10685 load_got_offset (tempreg, &offset_expr);
10686 offset_expr.X_add_number = expr1.X_add_number;
10687 /* If we are going to add in a base register, and the
10688 target register and the base register are the same,
10689 then we are using AT as a temporary register. Since
10690 we want to load the constant into AT, we add our
10691 current AT (from the global offset table) and the
10692 register into the register now, and pretend we were
10693 not using a base register. */
10694 if (breg == op[0])
10695 {
10696 load_delay_nop ();
10697 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10698 op[0], AT, breg);
10699 breg = 0;
10700 tempreg = op[0];
10701 }
10702 add_got_offset_hilo (tempreg, &offset_expr, AT);
10703 used_at = 1;
10704 }
10705 }
10706 else if (!mips_big_got && HAVE_NEWABI)
10707 {
10708 int add_breg_early = 0;
10709
10710 /* If this is a reference to an external, and there is no
10711 constant, or local symbol (*), with or without a
10712 constant, we want
10713 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10714 or for lca or if tempreg is PIC_CALL_REG
10715 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10716
10717 If we have a small constant, and this is a reference to
10718 an external symbol, we want
10719 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10720 addiu $tempreg,$tempreg,<constant>
10721
10722 If we have a large constant, and this is a reference to
10723 an external symbol, we want
10724 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10725 lui $at,<hiconstant>
10726 addiu $at,$at,<loconstant>
10727 addu $tempreg,$tempreg,$at
10728
10729 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10730 local symbols, even though it introduces an additional
10731 instruction. */
10732
10733 if (offset_expr.X_add_number)
10734 {
10735 expr1.X_add_number = offset_expr.X_add_number;
10736 offset_expr.X_add_number = 0;
10737
10738 relax_start (offset_expr.X_add_symbol);
10739 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10740 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10741
10742 if (expr1.X_add_number >= -0x8000
10743 && expr1.X_add_number < 0x8000)
10744 {
10745 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10746 tempreg, tempreg, BFD_RELOC_LO16);
10747 }
10748 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10749 {
10750 unsigned int dreg;
10751
10752 /* If we are going to add in a base register, and the
10753 target register and the base register are the same,
10754 then we are using AT as a temporary register. Since
10755 we want to load the constant into AT, we add our
10756 current AT (from the global offset table) and the
10757 register into the register now, and pretend we were
10758 not using a base register. */
10759 if (breg != op[0])
10760 dreg = tempreg;
10761 else
10762 {
10763 gas_assert (tempreg == AT);
10764 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10765 op[0], AT, breg);
10766 dreg = op[0];
10767 add_breg_early = 1;
10768 }
10769
10770 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10771 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10772 dreg, dreg, AT);
10773
10774 used_at = 1;
10775 }
10776 else
10777 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10778
10779 relax_switch ();
10780 offset_expr.X_add_number = expr1.X_add_number;
10781
10782 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10783 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10784 if (add_breg_early)
10785 {
10786 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10787 op[0], tempreg, breg);
10788 breg = 0;
10789 tempreg = op[0];
10790 }
10791 relax_end ();
10792 }
10793 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10794 {
10795 relax_start (offset_expr.X_add_symbol);
10796 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10797 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10798 relax_switch ();
10799 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10800 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10801 relax_end ();
10802 }
10803 else
10804 {
10805 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10806 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10807 }
10808 }
10809 else if (mips_big_got && !HAVE_NEWABI)
10810 {
10811 int gpdelay;
10812 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10813 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10814 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10815
10816 /* This is the large GOT case. If this is a reference to an
10817 external symbol, and there is no constant, we want
10818 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10819 addu $tempreg,$tempreg,$gp
10820 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10821 or for lca or if tempreg is PIC_CALL_REG
10822 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10823 addu $tempreg,$tempreg,$gp
10824 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10825 For a local symbol, we want
10826 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10827 nop
10828 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10829
10830 If we have a small constant, and this is a reference to
10831 an external symbol, we want
10832 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10833 addu $tempreg,$tempreg,$gp
10834 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10835 nop
10836 addiu $tempreg,$tempreg,<constant>
10837 For a local symbol, we want
10838 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10839 nop
10840 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10841
10842 If we have a large constant, and this is a reference to
10843 an external symbol, we want
10844 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10845 addu $tempreg,$tempreg,$gp
10846 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10847 lui $at,<hiconstant>
10848 addiu $at,$at,<loconstant>
10849 addu $tempreg,$tempreg,$at
10850 For a local symbol, we want
10851 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10852 lui $at,<hiconstant>
10853 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10854 addu $tempreg,$tempreg,$at
10855 */
10856
10857 expr1.X_add_number = offset_expr.X_add_number;
10858 offset_expr.X_add_number = 0;
10859 relax_start (offset_expr.X_add_symbol);
10860 gpdelay = reg_needs_delay (mips_gp_register);
10861 if (expr1.X_add_number == 0 && breg == 0
10862 && (call || tempreg == PIC_CALL_REG))
10863 {
10864 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10865 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10866 }
10867 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10868 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10869 tempreg, tempreg, mips_gp_register);
10870 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10871 tempreg, lw_reloc_type, tempreg);
10872 if (expr1.X_add_number == 0)
10873 {
10874 if (breg != 0)
10875 {
10876 /* We're going to put in an addu instruction using
10877 tempreg, so we may as well insert the nop right
10878 now. */
10879 load_delay_nop ();
10880 }
10881 }
10882 else if (expr1.X_add_number >= -0x8000
10883 && expr1.X_add_number < 0x8000)
10884 {
10885 load_delay_nop ();
10886 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10887 tempreg, tempreg, BFD_RELOC_LO16);
10888 }
10889 else
10890 {
10891 unsigned int dreg;
10892
10893 /* If we are going to add in a base register, and the
10894 target register and the base register are the same,
10895 then we are using AT as a temporary register. Since
10896 we want to load the constant into AT, we add our
10897 current AT (from the global offset table) and the
10898 register into the register now, and pretend we were
10899 not using a base register. */
10900 if (breg != op[0])
10901 dreg = tempreg;
10902 else
10903 {
10904 gas_assert (tempreg == AT);
10905 load_delay_nop ();
10906 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10907 op[0], AT, breg);
10908 dreg = op[0];
10909 }
10910
10911 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10912 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10913
10914 used_at = 1;
10915 }
10916 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10917 relax_switch ();
10918
10919 if (gpdelay)
10920 {
10921 /* This is needed because this instruction uses $gp, but
10922 the first instruction on the main stream does not. */
10923 macro_build (NULL, "nop", "");
10924 }
10925
10926 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10927 local_reloc_type, mips_gp_register);
10928 if (expr1.X_add_number >= -0x8000
10929 && expr1.X_add_number < 0x8000)
10930 {
10931 load_delay_nop ();
10932 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10933 tempreg, tempreg, BFD_RELOC_LO16);
10934 /* FIXME: If add_number is 0, and there was no base
10935 register, the external symbol case ended with a load,
10936 so if the symbol turns out to not be external, and
10937 the next instruction uses tempreg, an unnecessary nop
10938 will be inserted. */
10939 }
10940 else
10941 {
10942 if (breg == op[0])
10943 {
10944 /* We must add in the base register now, as in the
10945 external symbol case. */
10946 gas_assert (tempreg == AT);
10947 load_delay_nop ();
10948 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10949 op[0], AT, breg);
10950 tempreg = op[0];
10951 /* We set breg to 0 because we have arranged to add
10952 it in in both cases. */
10953 breg = 0;
10954 }
10955
10956 macro_build_lui (&expr1, AT);
10957 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10958 AT, AT, BFD_RELOC_LO16);
10959 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10960 tempreg, tempreg, AT);
10961 used_at = 1;
10962 }
10963 relax_end ();
10964 }
10965 else if (mips_big_got && HAVE_NEWABI)
10966 {
10967 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10968 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10969 int add_breg_early = 0;
10970
10971 /* This is the large GOT case. If this is a reference to an
10972 external symbol, and there is no constant, we want
10973 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10974 add $tempreg,$tempreg,$gp
10975 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10976 or for lca or if tempreg is PIC_CALL_REG
10977 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10978 add $tempreg,$tempreg,$gp
10979 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10980
10981 If we have a small constant, and this is a reference to
10982 an external symbol, we want
10983 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10984 add $tempreg,$tempreg,$gp
10985 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10986 addi $tempreg,$tempreg,<constant>
10987
10988 If we have a large constant, and this is a reference to
10989 an external symbol, we want
10990 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10991 addu $tempreg,$tempreg,$gp
10992 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10993 lui $at,<hiconstant>
10994 addi $at,$at,<loconstant>
10995 add $tempreg,$tempreg,$at
10996
10997 If we have NewABI, and we know it's a local symbol, we want
10998 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10999 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11000 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11001
11002 relax_start (offset_expr.X_add_symbol);
11003
11004 expr1.X_add_number = offset_expr.X_add_number;
11005 offset_expr.X_add_number = 0;
11006
11007 if (expr1.X_add_number == 0 && breg == 0
11008 && (call || tempreg == PIC_CALL_REG))
11009 {
11010 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11011 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11012 }
11013 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11014 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11015 tempreg, tempreg, mips_gp_register);
11016 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11017 tempreg, lw_reloc_type, tempreg);
11018
11019 if (expr1.X_add_number == 0)
11020 ;
11021 else if (expr1.X_add_number >= -0x8000
11022 && expr1.X_add_number < 0x8000)
11023 {
11024 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11025 tempreg, tempreg, BFD_RELOC_LO16);
11026 }
11027 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11028 {
11029 unsigned int dreg;
11030
11031 /* If we are going to add in a base register, and the
11032 target register and the base register are the same,
11033 then we are using AT as a temporary register. Since
11034 we want to load the constant into AT, we add our
11035 current AT (from the global offset table) and the
11036 register into the register now, and pretend we were
11037 not using a base register. */
11038 if (breg != op[0])
11039 dreg = tempreg;
11040 else
11041 {
11042 gas_assert (tempreg == AT);
11043 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11044 op[0], AT, breg);
11045 dreg = op[0];
11046 add_breg_early = 1;
11047 }
11048
11049 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11050 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11051
11052 used_at = 1;
11053 }
11054 else
11055 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11056
11057 relax_switch ();
11058 offset_expr.X_add_number = expr1.X_add_number;
11059 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11060 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11061 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11062 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11063 if (add_breg_early)
11064 {
11065 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11066 op[0], tempreg, breg);
11067 breg = 0;
11068 tempreg = op[0];
11069 }
11070 relax_end ();
11071 }
11072 else
11073 abort ();
11074
11075 if (breg != 0)
11076 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11077 break;
11078
11079 case M_MSGSND:
11080 gas_assert (!mips_opts.micromips);
11081 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11082 break;
11083
11084 case M_MSGLD:
11085 gas_assert (!mips_opts.micromips);
11086 macro_build (NULL, "c2", "C", 0x02);
11087 break;
11088
11089 case M_MSGLD_T:
11090 gas_assert (!mips_opts.micromips);
11091 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11092 break;
11093
11094 case M_MSGWAIT:
11095 gas_assert (!mips_opts.micromips);
11096 macro_build (NULL, "c2", "C", 3);
11097 break;
11098
11099 case M_MSGWAIT_T:
11100 gas_assert (!mips_opts.micromips);
11101 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11102 break;
11103
11104 case M_J_A:
11105 /* The j instruction may not be used in PIC code, since it
11106 requires an absolute address. We convert it to a b
11107 instruction. */
11108 if (mips_pic == NO_PIC)
11109 macro_build (&offset_expr, "j", "a");
11110 else
11111 macro_build (&offset_expr, "b", "p");
11112 break;
11113
11114 /* The jal instructions must be handled as macros because when
11115 generating PIC code they expand to multi-instruction
11116 sequences. Normally they are simple instructions. */
11117 case M_JALS_1:
11118 op[1] = op[0];
11119 op[0] = RA;
11120 /* Fall through. */
11121 case M_JALS_2:
11122 gas_assert (mips_opts.micromips);
11123 if (mips_opts.insn32)
11124 {
11125 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11126 break;
11127 }
11128 jals = 1;
11129 goto jal;
11130 case M_JAL_1:
11131 op[1] = op[0];
11132 op[0] = RA;
11133 /* Fall through. */
11134 case M_JAL_2:
11135 jal:
11136 if (mips_pic == NO_PIC)
11137 {
11138 s = jals ? "jalrs" : "jalr";
11139 if (mips_opts.micromips
11140 && !mips_opts.insn32
11141 && op[0] == RA
11142 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11143 macro_build (NULL, s, "mj", op[1]);
11144 else
11145 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11146 }
11147 else
11148 {
11149 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11150 && mips_cprestore_offset >= 0);
11151
11152 if (op[1] != PIC_CALL_REG)
11153 as_warn (_("MIPS PIC call to register other than $25"));
11154
11155 s = ((mips_opts.micromips
11156 && !mips_opts.insn32
11157 && (!mips_opts.noreorder || cprestore))
11158 ? "jalrs" : "jalr");
11159 if (mips_opts.micromips
11160 && !mips_opts.insn32
11161 && op[0] == RA
11162 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11163 macro_build (NULL, s, "mj", op[1]);
11164 else
11165 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11166 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11167 {
11168 if (mips_cprestore_offset < 0)
11169 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11170 else
11171 {
11172 if (!mips_frame_reg_valid)
11173 {
11174 as_warn (_("no .frame pseudo-op used in PIC code"));
11175 /* Quiet this warning. */
11176 mips_frame_reg_valid = 1;
11177 }
11178 if (!mips_cprestore_valid)
11179 {
11180 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11181 /* Quiet this warning. */
11182 mips_cprestore_valid = 1;
11183 }
11184 if (mips_opts.noreorder)
11185 macro_build (NULL, "nop", "");
11186 expr1.X_add_number = mips_cprestore_offset;
11187 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11188 mips_gp_register,
11189 mips_frame_reg,
11190 HAVE_64BIT_ADDRESSES);
11191 }
11192 }
11193 }
11194
11195 break;
11196
11197 case M_JALS_A:
11198 gas_assert (mips_opts.micromips);
11199 if (mips_opts.insn32)
11200 {
11201 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11202 break;
11203 }
11204 jals = 1;
11205 /* Fall through. */
11206 case M_JAL_A:
11207 if (mips_pic == NO_PIC)
11208 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11209 else if (mips_pic == SVR4_PIC)
11210 {
11211 /* If this is a reference to an external symbol, and we are
11212 using a small GOT, we want
11213 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11214 nop
11215 jalr $ra,$25
11216 nop
11217 lw $gp,cprestore($sp)
11218 The cprestore value is set using the .cprestore
11219 pseudo-op. If we are using a big GOT, we want
11220 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11221 addu $25,$25,$gp
11222 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11223 nop
11224 jalr $ra,$25
11225 nop
11226 lw $gp,cprestore($sp)
11227 If the symbol is not external, we want
11228 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11229 nop
11230 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11231 jalr $ra,$25
11232 nop
11233 lw $gp,cprestore($sp)
11234
11235 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11236 sequences above, minus nops, unless the symbol is local,
11237 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11238 GOT_DISP. */
11239 if (HAVE_NEWABI)
11240 {
11241 if (!mips_big_got)
11242 {
11243 relax_start (offset_expr.X_add_symbol);
11244 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11245 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11246 mips_gp_register);
11247 relax_switch ();
11248 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11249 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11250 mips_gp_register);
11251 relax_end ();
11252 }
11253 else
11254 {
11255 relax_start (offset_expr.X_add_symbol);
11256 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11257 BFD_RELOC_MIPS_CALL_HI16);
11258 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11259 PIC_CALL_REG, mips_gp_register);
11260 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11261 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11262 PIC_CALL_REG);
11263 relax_switch ();
11264 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11265 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11266 mips_gp_register);
11267 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11268 PIC_CALL_REG, PIC_CALL_REG,
11269 BFD_RELOC_MIPS_GOT_OFST);
11270 relax_end ();
11271 }
11272
11273 macro_build_jalr (&offset_expr, 0);
11274 }
11275 else
11276 {
11277 relax_start (offset_expr.X_add_symbol);
11278 if (!mips_big_got)
11279 {
11280 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11281 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11282 mips_gp_register);
11283 load_delay_nop ();
11284 relax_switch ();
11285 }
11286 else
11287 {
11288 int gpdelay;
11289
11290 gpdelay = reg_needs_delay (mips_gp_register);
11291 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11292 BFD_RELOC_MIPS_CALL_HI16);
11293 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11294 PIC_CALL_REG, mips_gp_register);
11295 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11296 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11297 PIC_CALL_REG);
11298 load_delay_nop ();
11299 relax_switch ();
11300 if (gpdelay)
11301 macro_build (NULL, "nop", "");
11302 }
11303 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11304 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11305 mips_gp_register);
11306 load_delay_nop ();
11307 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11308 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11309 relax_end ();
11310 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11311
11312 if (mips_cprestore_offset < 0)
11313 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11314 else
11315 {
11316 if (!mips_frame_reg_valid)
11317 {
11318 as_warn (_("no .frame pseudo-op used in PIC code"));
11319 /* Quiet this warning. */
11320 mips_frame_reg_valid = 1;
11321 }
11322 if (!mips_cprestore_valid)
11323 {
11324 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11325 /* Quiet this warning. */
11326 mips_cprestore_valid = 1;
11327 }
11328 if (mips_opts.noreorder)
11329 macro_build (NULL, "nop", "");
11330 expr1.X_add_number = mips_cprestore_offset;
11331 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11332 mips_gp_register,
11333 mips_frame_reg,
11334 HAVE_64BIT_ADDRESSES);
11335 }
11336 }
11337 }
11338 else if (mips_pic == VXWORKS_PIC)
11339 as_bad (_("non-PIC jump used in PIC library"));
11340 else
11341 abort ();
11342
11343 break;
11344
11345 case M_LBUE_AB:
11346 s = "lbue";
11347 fmt = "t,+j(b)";
11348 offbits = 9;
11349 goto ld_st;
11350 case M_LHUE_AB:
11351 s = "lhue";
11352 fmt = "t,+j(b)";
11353 offbits = 9;
11354 goto ld_st;
11355 case M_LBE_AB:
11356 s = "lbe";
11357 fmt = "t,+j(b)";
11358 offbits = 9;
11359 goto ld_st;
11360 case M_LHE_AB:
11361 s = "lhe";
11362 fmt = "t,+j(b)";
11363 offbits = 9;
11364 goto ld_st;
11365 case M_LLE_AB:
11366 s = "lle";
11367 fmt = "t,+j(b)";
11368 offbits = 9;
11369 goto ld_st;
11370 case M_LWE_AB:
11371 s = "lwe";
11372 fmt = "t,+j(b)";
11373 offbits = 9;
11374 goto ld_st;
11375 case M_LWLE_AB:
11376 s = "lwle";
11377 fmt = "t,+j(b)";
11378 offbits = 9;
11379 goto ld_st;
11380 case M_LWRE_AB:
11381 s = "lwre";
11382 fmt = "t,+j(b)";
11383 offbits = 9;
11384 goto ld_st;
11385 case M_SBE_AB:
11386 s = "sbe";
11387 fmt = "t,+j(b)";
11388 offbits = 9;
11389 goto ld_st;
11390 case M_SCE_AB:
11391 s = "sce";
11392 fmt = "t,+j(b)";
11393 offbits = 9;
11394 goto ld_st;
11395 case M_SHE_AB:
11396 s = "she";
11397 fmt = "t,+j(b)";
11398 offbits = 9;
11399 goto ld_st;
11400 case M_SWE_AB:
11401 s = "swe";
11402 fmt = "t,+j(b)";
11403 offbits = 9;
11404 goto ld_st;
11405 case M_SWLE_AB:
11406 s = "swle";
11407 fmt = "t,+j(b)";
11408 offbits = 9;
11409 goto ld_st;
11410 case M_SWRE_AB:
11411 s = "swre";
11412 fmt = "t,+j(b)";
11413 offbits = 9;
11414 goto ld_st;
11415 case M_ACLR_AB:
11416 s = "aclr";
11417 fmt = "\\,~(b)";
11418 offbits = 12;
11419 goto ld_st;
11420 case M_ASET_AB:
11421 s = "aset";
11422 fmt = "\\,~(b)";
11423 offbits = 12;
11424 goto ld_st;
11425 case M_LB_AB:
11426 s = "lb";
11427 fmt = "t,o(b)";
11428 goto ld;
11429 case M_LBU_AB:
11430 s = "lbu";
11431 fmt = "t,o(b)";
11432 goto ld;
11433 case M_LH_AB:
11434 s = "lh";
11435 fmt = "t,o(b)";
11436 goto ld;
11437 case M_LHU_AB:
11438 s = "lhu";
11439 fmt = "t,o(b)";
11440 goto ld;
11441 case M_LW_AB:
11442 s = "lw";
11443 fmt = "t,o(b)";
11444 goto ld;
11445 case M_LWC0_AB:
11446 gas_assert (!mips_opts.micromips);
11447 s = "lwc0";
11448 fmt = "E,o(b)";
11449 /* Itbl support may require additional care here. */
11450 coproc = 1;
11451 goto ld_st;
11452 case M_LWC1_AB:
11453 s = "lwc1";
11454 fmt = "T,o(b)";
11455 /* Itbl support may require additional care here. */
11456 coproc = 1;
11457 goto ld_st;
11458 case M_LWC2_AB:
11459 s = "lwc2";
11460 fmt = COP12_FMT;
11461 offbits = (mips_opts.micromips ? 12
11462 : ISA_IS_R6 (mips_opts.isa) ? 11
11463 : 16);
11464 /* Itbl support may require additional care here. */
11465 coproc = 1;
11466 goto ld_st;
11467 case M_LWC3_AB:
11468 gas_assert (!mips_opts.micromips);
11469 s = "lwc3";
11470 fmt = "E,o(b)";
11471 /* Itbl support may require additional care here. */
11472 coproc = 1;
11473 goto ld_st;
11474 case M_LWL_AB:
11475 s = "lwl";
11476 fmt = MEM12_FMT;
11477 offbits = (mips_opts.micromips ? 12 : 16);
11478 goto ld_st;
11479 case M_LWR_AB:
11480 s = "lwr";
11481 fmt = MEM12_FMT;
11482 offbits = (mips_opts.micromips ? 12 : 16);
11483 goto ld_st;
11484 case M_LDC1_AB:
11485 s = "ldc1";
11486 fmt = "T,o(b)";
11487 /* Itbl support may require additional care here. */
11488 coproc = 1;
11489 goto ld_st;
11490 case M_LDC2_AB:
11491 s = "ldc2";
11492 fmt = COP12_FMT;
11493 offbits = (mips_opts.micromips ? 12
11494 : ISA_IS_R6 (mips_opts.isa) ? 11
11495 : 16);
11496 /* Itbl support may require additional care here. */
11497 coproc = 1;
11498 goto ld_st;
11499 case M_LQC2_AB:
11500 s = "lqc2";
11501 fmt = "+7,o(b)";
11502 /* Itbl support may require additional care here. */
11503 coproc = 1;
11504 goto ld_st;
11505 case M_LDC3_AB:
11506 s = "ldc3";
11507 fmt = "E,o(b)";
11508 /* Itbl support may require additional care here. */
11509 coproc = 1;
11510 goto ld_st;
11511 case M_LDL_AB:
11512 s = "ldl";
11513 fmt = MEM12_FMT;
11514 offbits = (mips_opts.micromips ? 12 : 16);
11515 goto ld_st;
11516 case M_LDR_AB:
11517 s = "ldr";
11518 fmt = MEM12_FMT;
11519 offbits = (mips_opts.micromips ? 12 : 16);
11520 goto ld_st;
11521 case M_LL_AB:
11522 s = "ll";
11523 fmt = LL_SC_FMT;
11524 offbits = (mips_opts.micromips ? 12
11525 : ISA_IS_R6 (mips_opts.isa) ? 9
11526 : 16);
11527 goto ld;
11528 case M_LLD_AB:
11529 s = "lld";
11530 fmt = LL_SC_FMT;
11531 offbits = (mips_opts.micromips ? 12
11532 : ISA_IS_R6 (mips_opts.isa) ? 9
11533 : 16);
11534 goto ld;
11535 case M_LWU_AB:
11536 s = "lwu";
11537 fmt = MEM12_FMT;
11538 offbits = (mips_opts.micromips ? 12 : 16);
11539 goto ld;
11540 case M_LWP_AB:
11541 gas_assert (mips_opts.micromips);
11542 s = "lwp";
11543 fmt = "t,~(b)";
11544 offbits = 12;
11545 lp = 1;
11546 goto ld;
11547 case M_LDP_AB:
11548 gas_assert (mips_opts.micromips);
11549 s = "ldp";
11550 fmt = "t,~(b)";
11551 offbits = 12;
11552 lp = 1;
11553 goto ld;
11554 case M_LWM_AB:
11555 gas_assert (mips_opts.micromips);
11556 s = "lwm";
11557 fmt = "n,~(b)";
11558 offbits = 12;
11559 goto ld_st;
11560 case M_LDM_AB:
11561 gas_assert (mips_opts.micromips);
11562 s = "ldm";
11563 fmt = "n,~(b)";
11564 offbits = 12;
11565 goto ld_st;
11566
11567 ld:
11568 /* We don't want to use $0 as tempreg. */
11569 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11570 goto ld_st;
11571 else
11572 tempreg = op[0] + lp;
11573 goto ld_noat;
11574
11575 case M_SB_AB:
11576 s = "sb";
11577 fmt = "t,o(b)";
11578 goto ld_st;
11579 case M_SH_AB:
11580 s = "sh";
11581 fmt = "t,o(b)";
11582 goto ld_st;
11583 case M_SW_AB:
11584 s = "sw";
11585 fmt = "t,o(b)";
11586 goto ld_st;
11587 case M_SWC0_AB:
11588 gas_assert (!mips_opts.micromips);
11589 s = "swc0";
11590 fmt = "E,o(b)";
11591 /* Itbl support may require additional care here. */
11592 coproc = 1;
11593 goto ld_st;
11594 case M_SWC1_AB:
11595 s = "swc1";
11596 fmt = "T,o(b)";
11597 /* Itbl support may require additional care here. */
11598 coproc = 1;
11599 goto ld_st;
11600 case M_SWC2_AB:
11601 s = "swc2";
11602 fmt = COP12_FMT;
11603 offbits = (mips_opts.micromips ? 12
11604 : ISA_IS_R6 (mips_opts.isa) ? 11
11605 : 16);
11606 /* Itbl support may require additional care here. */
11607 coproc = 1;
11608 goto ld_st;
11609 case M_SWC3_AB:
11610 gas_assert (!mips_opts.micromips);
11611 s = "swc3";
11612 fmt = "E,o(b)";
11613 /* Itbl support may require additional care here. */
11614 coproc = 1;
11615 goto ld_st;
11616 case M_SWL_AB:
11617 s = "swl";
11618 fmt = MEM12_FMT;
11619 offbits = (mips_opts.micromips ? 12 : 16);
11620 goto ld_st;
11621 case M_SWR_AB:
11622 s = "swr";
11623 fmt = MEM12_FMT;
11624 offbits = (mips_opts.micromips ? 12 : 16);
11625 goto ld_st;
11626 case M_SC_AB:
11627 s = "sc";
11628 fmt = LL_SC_FMT;
11629 offbits = (mips_opts.micromips ? 12
11630 : ISA_IS_R6 (mips_opts.isa) ? 9
11631 : 16);
11632 goto ld_st;
11633 case M_SCD_AB:
11634 s = "scd";
11635 fmt = LL_SC_FMT;
11636 offbits = (mips_opts.micromips ? 12
11637 : ISA_IS_R6 (mips_opts.isa) ? 9
11638 : 16);
11639 goto ld_st;
11640 case M_CACHE_AB:
11641 s = "cache";
11642 fmt = (mips_opts.micromips ? "k,~(b)"
11643 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11644 : "k,o(b)");
11645 offbits = (mips_opts.micromips ? 12
11646 : ISA_IS_R6 (mips_opts.isa) ? 9
11647 : 16);
11648 goto ld_st;
11649 case M_CACHEE_AB:
11650 s = "cachee";
11651 fmt = "k,+j(b)";
11652 offbits = 9;
11653 goto ld_st;
11654 case M_PREF_AB:
11655 s = "pref";
11656 fmt = (mips_opts.micromips ? "k,~(b)"
11657 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11658 : "k,o(b)");
11659 offbits = (mips_opts.micromips ? 12
11660 : ISA_IS_R6 (mips_opts.isa) ? 9
11661 : 16);
11662 goto ld_st;
11663 case M_PREFE_AB:
11664 s = "prefe";
11665 fmt = "k,+j(b)";
11666 offbits = 9;
11667 goto ld_st;
11668 case M_SDC1_AB:
11669 s = "sdc1";
11670 fmt = "T,o(b)";
11671 coproc = 1;
11672 /* Itbl support may require additional care here. */
11673 goto ld_st;
11674 case M_SDC2_AB:
11675 s = "sdc2";
11676 fmt = COP12_FMT;
11677 offbits = (mips_opts.micromips ? 12
11678 : ISA_IS_R6 (mips_opts.isa) ? 11
11679 : 16);
11680 /* Itbl support may require additional care here. */
11681 coproc = 1;
11682 goto ld_st;
11683 case M_SQC2_AB:
11684 s = "sqc2";
11685 fmt = "+7,o(b)";
11686 /* Itbl support may require additional care here. */
11687 coproc = 1;
11688 goto ld_st;
11689 case M_SDC3_AB:
11690 gas_assert (!mips_opts.micromips);
11691 s = "sdc3";
11692 fmt = "E,o(b)";
11693 /* Itbl support may require additional care here. */
11694 coproc = 1;
11695 goto ld_st;
11696 case M_SDL_AB:
11697 s = "sdl";
11698 fmt = MEM12_FMT;
11699 offbits = (mips_opts.micromips ? 12 : 16);
11700 goto ld_st;
11701 case M_SDR_AB:
11702 s = "sdr";
11703 fmt = MEM12_FMT;
11704 offbits = (mips_opts.micromips ? 12 : 16);
11705 goto ld_st;
11706 case M_SWP_AB:
11707 gas_assert (mips_opts.micromips);
11708 s = "swp";
11709 fmt = "t,~(b)";
11710 offbits = 12;
11711 goto ld_st;
11712 case M_SDP_AB:
11713 gas_assert (mips_opts.micromips);
11714 s = "sdp";
11715 fmt = "t,~(b)";
11716 offbits = 12;
11717 goto ld_st;
11718 case M_SWM_AB:
11719 gas_assert (mips_opts.micromips);
11720 s = "swm";
11721 fmt = "n,~(b)";
11722 offbits = 12;
11723 goto ld_st;
11724 case M_SDM_AB:
11725 gas_assert (mips_opts.micromips);
11726 s = "sdm";
11727 fmt = "n,~(b)";
11728 offbits = 12;
11729
11730 ld_st:
11731 tempreg = AT;
11732 ld_noat:
11733 breg = op[2];
11734 if (small_offset_p (0, align, 16))
11735 {
11736 /* The first case exists for M_LD_AB and M_SD_AB, which are
11737 macros for o32 but which should act like normal instructions
11738 otherwise. */
11739 if (offbits == 16)
11740 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11741 offset_reloc[1], offset_reloc[2], breg);
11742 else if (small_offset_p (0, align, offbits))
11743 {
11744 if (offbits == 0)
11745 macro_build (NULL, s, fmt, op[0], breg);
11746 else
11747 macro_build (NULL, s, fmt, op[0],
11748 (int) offset_expr.X_add_number, breg);
11749 }
11750 else
11751 {
11752 if (tempreg == AT)
11753 used_at = 1;
11754 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11755 tempreg, breg, -1, offset_reloc[0],
11756 offset_reloc[1], offset_reloc[2]);
11757 if (offbits == 0)
11758 macro_build (NULL, s, fmt, op[0], tempreg);
11759 else
11760 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11761 }
11762 break;
11763 }
11764
11765 if (tempreg == AT)
11766 used_at = 1;
11767
11768 if (offset_expr.X_op != O_constant
11769 && offset_expr.X_op != O_symbol)
11770 {
11771 as_bad (_("expression too complex"));
11772 offset_expr.X_op = O_constant;
11773 }
11774
11775 if (HAVE_32BIT_ADDRESSES
11776 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11777 {
11778 char value [32];
11779
11780 sprintf_vma (value, offset_expr.X_add_number);
11781 as_bad (_("number (0x%s) larger than 32 bits"), value);
11782 }
11783
11784 /* A constant expression in PIC code can be handled just as it
11785 is in non PIC code. */
11786 if (offset_expr.X_op == O_constant)
11787 {
11788 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11789 offbits == 0 ? 16 : offbits);
11790 offset_expr.X_add_number -= expr1.X_add_number;
11791
11792 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11793 if (breg != 0)
11794 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11795 tempreg, tempreg, breg);
11796 if (offbits == 0)
11797 {
11798 if (offset_expr.X_add_number != 0)
11799 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11800 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11801 macro_build (NULL, s, fmt, op[0], tempreg);
11802 }
11803 else if (offbits == 16)
11804 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11805 else
11806 macro_build (NULL, s, fmt, op[0],
11807 (int) offset_expr.X_add_number, tempreg);
11808 }
11809 else if (offbits != 16)
11810 {
11811 /* The offset field is too narrow to be used for a low-part
11812 relocation, so load the whole address into the auxillary
11813 register. */
11814 load_address (tempreg, &offset_expr, &used_at);
11815 if (breg != 0)
11816 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11817 tempreg, tempreg, breg);
11818 if (offbits == 0)
11819 macro_build (NULL, s, fmt, op[0], tempreg);
11820 else
11821 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11822 }
11823 else if (mips_pic == NO_PIC)
11824 {
11825 /* If this is a reference to a GP relative symbol, and there
11826 is no base register, we want
11827 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11828 Otherwise, if there is no base register, we want
11829 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11830 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11831 If we have a constant, we need two instructions anyhow,
11832 so we always use the latter form.
11833
11834 If we have a base register, and this is a reference to a
11835 GP relative symbol, we want
11836 addu $tempreg,$breg,$gp
11837 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11838 Otherwise we want
11839 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11840 addu $tempreg,$tempreg,$breg
11841 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11842 With a constant we always use the latter case.
11843
11844 With 64bit address space and no base register and $at usable,
11845 we want
11846 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11847 lui $at,<sym> (BFD_RELOC_HI16_S)
11848 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11849 dsll32 $tempreg,0
11850 daddu $tempreg,$at
11851 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11852 If we have a base register, we want
11853 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11854 lui $at,<sym> (BFD_RELOC_HI16_S)
11855 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11856 daddu $at,$breg
11857 dsll32 $tempreg,0
11858 daddu $tempreg,$at
11859 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11860
11861 Without $at we can't generate the optimal path for superscalar
11862 processors here since this would require two temporary registers.
11863 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11864 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11865 dsll $tempreg,16
11866 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11867 dsll $tempreg,16
11868 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11869 If we have a base register, we want
11870 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11871 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11872 dsll $tempreg,16
11873 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11874 dsll $tempreg,16
11875 daddu $tempreg,$tempreg,$breg
11876 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11877
11878 For GP relative symbols in 64bit address space we can use
11879 the same sequence as in 32bit address space. */
11880 if (HAVE_64BIT_SYMBOLS)
11881 {
11882 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11883 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11884 {
11885 relax_start (offset_expr.X_add_symbol);
11886 if (breg == 0)
11887 {
11888 macro_build (&offset_expr, s, fmt, op[0],
11889 BFD_RELOC_GPREL16, mips_gp_register);
11890 }
11891 else
11892 {
11893 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11894 tempreg, breg, mips_gp_register);
11895 macro_build (&offset_expr, s, fmt, op[0],
11896 BFD_RELOC_GPREL16, tempreg);
11897 }
11898 relax_switch ();
11899 }
11900
11901 if (used_at == 0 && mips_opts.at)
11902 {
11903 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11904 BFD_RELOC_MIPS_HIGHEST);
11905 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11906 BFD_RELOC_HI16_S);
11907 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11908 tempreg, BFD_RELOC_MIPS_HIGHER);
11909 if (breg != 0)
11910 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11911 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11912 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11913 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11914 tempreg);
11915 used_at = 1;
11916 }
11917 else
11918 {
11919 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11920 BFD_RELOC_MIPS_HIGHEST);
11921 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11922 tempreg, BFD_RELOC_MIPS_HIGHER);
11923 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11924 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11925 tempreg, BFD_RELOC_HI16_S);
11926 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11927 if (breg != 0)
11928 macro_build (NULL, "daddu", "d,v,t",
11929 tempreg, tempreg, breg);
11930 macro_build (&offset_expr, s, fmt, op[0],
11931 BFD_RELOC_LO16, tempreg);
11932 }
11933
11934 if (mips_relax.sequence)
11935 relax_end ();
11936 break;
11937 }
11938
11939 if (breg == 0)
11940 {
11941 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11942 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11943 {
11944 relax_start (offset_expr.X_add_symbol);
11945 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11946 mips_gp_register);
11947 relax_switch ();
11948 }
11949 macro_build_lui (&offset_expr, tempreg);
11950 macro_build (&offset_expr, s, fmt, op[0],
11951 BFD_RELOC_LO16, tempreg);
11952 if (mips_relax.sequence)
11953 relax_end ();
11954 }
11955 else
11956 {
11957 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11958 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11959 {
11960 relax_start (offset_expr.X_add_symbol);
11961 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11962 tempreg, breg, mips_gp_register);
11963 macro_build (&offset_expr, s, fmt, op[0],
11964 BFD_RELOC_GPREL16, tempreg);
11965 relax_switch ();
11966 }
11967 macro_build_lui (&offset_expr, tempreg);
11968 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11969 tempreg, tempreg, breg);
11970 macro_build (&offset_expr, s, fmt, op[0],
11971 BFD_RELOC_LO16, tempreg);
11972 if (mips_relax.sequence)
11973 relax_end ();
11974 }
11975 }
11976 else if (!mips_big_got)
11977 {
11978 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11979
11980 /* If this is a reference to an external symbol, we want
11981 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11982 nop
11983 <op> op[0],0($tempreg)
11984 Otherwise we want
11985 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11986 nop
11987 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11988 <op> op[0],0($tempreg)
11989
11990 For NewABI, we want
11991 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11992 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11993
11994 If there is a base register, we add it to $tempreg before
11995 the <op>. If there is a constant, we stick it in the
11996 <op> instruction. We don't handle constants larger than
11997 16 bits, because we have no way to load the upper 16 bits
11998 (actually, we could handle them for the subset of cases
11999 in which we are not using $at). */
12000 gas_assert (offset_expr.X_op == O_symbol);
12001 if (HAVE_NEWABI)
12002 {
12003 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12004 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12005 if (breg != 0)
12006 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12007 tempreg, tempreg, breg);
12008 macro_build (&offset_expr, s, fmt, op[0],
12009 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12010 break;
12011 }
12012 expr1.X_add_number = offset_expr.X_add_number;
12013 offset_expr.X_add_number = 0;
12014 if (expr1.X_add_number < -0x8000
12015 || expr1.X_add_number >= 0x8000)
12016 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12017 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12018 lw_reloc_type, mips_gp_register);
12019 load_delay_nop ();
12020 relax_start (offset_expr.X_add_symbol);
12021 relax_switch ();
12022 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12023 tempreg, BFD_RELOC_LO16);
12024 relax_end ();
12025 if (breg != 0)
12026 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12027 tempreg, tempreg, breg);
12028 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12029 }
12030 else if (mips_big_got && !HAVE_NEWABI)
12031 {
12032 int gpdelay;
12033
12034 /* If this is a reference to an external symbol, we want
12035 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12036 addu $tempreg,$tempreg,$gp
12037 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12038 <op> op[0],0($tempreg)
12039 Otherwise we want
12040 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12041 nop
12042 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12043 <op> op[0],0($tempreg)
12044 If there is a base register, we add it to $tempreg before
12045 the <op>. If there is a constant, we stick it in the
12046 <op> instruction. We don't handle constants larger than
12047 16 bits, because we have no way to load the upper 16 bits
12048 (actually, we could handle them for the subset of cases
12049 in which we are not using $at). */
12050 gas_assert (offset_expr.X_op == O_symbol);
12051 expr1.X_add_number = offset_expr.X_add_number;
12052 offset_expr.X_add_number = 0;
12053 if (expr1.X_add_number < -0x8000
12054 || expr1.X_add_number >= 0x8000)
12055 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12056 gpdelay = reg_needs_delay (mips_gp_register);
12057 relax_start (offset_expr.X_add_symbol);
12058 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12059 BFD_RELOC_MIPS_GOT_HI16);
12060 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12061 mips_gp_register);
12062 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12063 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12064 relax_switch ();
12065 if (gpdelay)
12066 macro_build (NULL, "nop", "");
12067 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12068 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12069 load_delay_nop ();
12070 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12071 tempreg, BFD_RELOC_LO16);
12072 relax_end ();
12073
12074 if (breg != 0)
12075 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12076 tempreg, tempreg, breg);
12077 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12078 }
12079 else if (mips_big_got && HAVE_NEWABI)
12080 {
12081 /* If this is a reference to an external symbol, we want
12082 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12083 add $tempreg,$tempreg,$gp
12084 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12085 <op> op[0],<ofst>($tempreg)
12086 Otherwise, for local symbols, we want:
12087 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12088 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12089 gas_assert (offset_expr.X_op == O_symbol);
12090 expr1.X_add_number = offset_expr.X_add_number;
12091 offset_expr.X_add_number = 0;
12092 if (expr1.X_add_number < -0x8000
12093 || expr1.X_add_number >= 0x8000)
12094 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12095 relax_start (offset_expr.X_add_symbol);
12096 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12097 BFD_RELOC_MIPS_GOT_HI16);
12098 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12099 mips_gp_register);
12100 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12101 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12102 if (breg != 0)
12103 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12104 tempreg, tempreg, breg);
12105 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12106
12107 relax_switch ();
12108 offset_expr.X_add_number = expr1.X_add_number;
12109 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12110 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12111 if (breg != 0)
12112 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12113 tempreg, tempreg, breg);
12114 macro_build (&offset_expr, s, fmt, op[0],
12115 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12116 relax_end ();
12117 }
12118 else
12119 abort ();
12120
12121 break;
12122
12123 case M_JRADDIUSP:
12124 gas_assert (mips_opts.micromips);
12125 gas_assert (mips_opts.insn32);
12126 start_noreorder ();
12127 macro_build (NULL, "jr", "s", RA);
12128 expr1.X_add_number = op[0] << 2;
12129 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12130 end_noreorder ();
12131 break;
12132
12133 case M_JRC:
12134 gas_assert (mips_opts.micromips);
12135 gas_assert (mips_opts.insn32);
12136 macro_build (NULL, "jr", "s", op[0]);
12137 if (mips_opts.noreorder)
12138 macro_build (NULL, "nop", "");
12139 break;
12140
12141 case M_LI:
12142 case M_LI_S:
12143 load_register (op[0], &imm_expr, 0);
12144 break;
12145
12146 case M_DLI:
12147 load_register (op[0], &imm_expr, 1);
12148 break;
12149
12150 case M_LI_SS:
12151 if (imm_expr.X_op == O_constant)
12152 {
12153 used_at = 1;
12154 load_register (AT, &imm_expr, 0);
12155 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12156 break;
12157 }
12158 else
12159 {
12160 gas_assert (imm_expr.X_op == O_absent
12161 && offset_expr.X_op == O_symbol
12162 && strcmp (segment_name (S_GET_SEGMENT
12163 (offset_expr.X_add_symbol)),
12164 ".lit4") == 0
12165 && offset_expr.X_add_number == 0);
12166 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12167 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12168 break;
12169 }
12170
12171 case M_LI_D:
12172 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12173 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12174 order 32 bits of the value and the low order 32 bits are either
12175 zero or in OFFSET_EXPR. */
12176 if (imm_expr.X_op == O_constant)
12177 {
12178 if (GPR_SIZE == 64)
12179 load_register (op[0], &imm_expr, 1);
12180 else
12181 {
12182 int hreg, lreg;
12183
12184 if (target_big_endian)
12185 {
12186 hreg = op[0];
12187 lreg = op[0] + 1;
12188 }
12189 else
12190 {
12191 hreg = op[0] + 1;
12192 lreg = op[0];
12193 }
12194
12195 if (hreg <= 31)
12196 load_register (hreg, &imm_expr, 0);
12197 if (lreg <= 31)
12198 {
12199 if (offset_expr.X_op == O_absent)
12200 move_register (lreg, 0);
12201 else
12202 {
12203 gas_assert (offset_expr.X_op == O_constant);
12204 load_register (lreg, &offset_expr, 0);
12205 }
12206 }
12207 }
12208 break;
12209 }
12210 gas_assert (imm_expr.X_op == O_absent);
12211
12212 /* We know that sym is in the .rdata section. First we get the
12213 upper 16 bits of the address. */
12214 if (mips_pic == NO_PIC)
12215 {
12216 macro_build_lui (&offset_expr, AT);
12217 used_at = 1;
12218 }
12219 else
12220 {
12221 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12222 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12223 used_at = 1;
12224 }
12225
12226 /* Now we load the register(s). */
12227 if (GPR_SIZE == 64)
12228 {
12229 used_at = 1;
12230 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12231 BFD_RELOC_LO16, AT);
12232 }
12233 else
12234 {
12235 used_at = 1;
12236 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12237 BFD_RELOC_LO16, AT);
12238 if (op[0] != RA)
12239 {
12240 /* FIXME: How in the world do we deal with the possible
12241 overflow here? */
12242 offset_expr.X_add_number += 4;
12243 macro_build (&offset_expr, "lw", "t,o(b)",
12244 op[0] + 1, BFD_RELOC_LO16, AT);
12245 }
12246 }
12247 break;
12248
12249 case M_LI_DD:
12250 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12251 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12252 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12253 the value and the low order 32 bits are either zero or in
12254 OFFSET_EXPR. */
12255 if (imm_expr.X_op == O_constant)
12256 {
12257 used_at = 1;
12258 load_register (AT, &imm_expr, FPR_SIZE == 64);
12259 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12260 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12261 else
12262 {
12263 if (ISA_HAS_MXHC1 (mips_opts.isa))
12264 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12265 else if (FPR_SIZE != 32)
12266 as_bad (_("Unable to generate `%s' compliant code "
12267 "without mthc1"),
12268 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12269 else
12270 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12271 if (offset_expr.X_op == O_absent)
12272 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12273 else
12274 {
12275 gas_assert (offset_expr.X_op == O_constant);
12276 load_register (AT, &offset_expr, 0);
12277 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12278 }
12279 }
12280 break;
12281 }
12282
12283 gas_assert (imm_expr.X_op == O_absent
12284 && offset_expr.X_op == O_symbol
12285 && offset_expr.X_add_number == 0);
12286 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12287 if (strcmp (s, ".lit8") == 0)
12288 {
12289 op[2] = mips_gp_register;
12290 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12291 offset_reloc[1] = BFD_RELOC_UNUSED;
12292 offset_reloc[2] = BFD_RELOC_UNUSED;
12293 }
12294 else
12295 {
12296 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12297 used_at = 1;
12298 if (mips_pic != NO_PIC)
12299 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12300 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12301 else
12302 {
12303 /* FIXME: This won't work for a 64 bit address. */
12304 macro_build_lui (&offset_expr, AT);
12305 }
12306
12307 op[2] = AT;
12308 offset_reloc[0] = BFD_RELOC_LO16;
12309 offset_reloc[1] = BFD_RELOC_UNUSED;
12310 offset_reloc[2] = BFD_RELOC_UNUSED;
12311 }
12312 align = 8;
12313 /* Fall through */
12314
12315 case M_L_DAB:
12316 /*
12317 * The MIPS assembler seems to check for X_add_number not
12318 * being double aligned and generating:
12319 * lui at,%hi(foo+1)
12320 * addu at,at,v1
12321 * addiu at,at,%lo(foo+1)
12322 * lwc1 f2,0(at)
12323 * lwc1 f3,4(at)
12324 * But, the resulting address is the same after relocation so why
12325 * generate the extra instruction?
12326 */
12327 /* Itbl support may require additional care here. */
12328 coproc = 1;
12329 fmt = "T,o(b)";
12330 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12331 {
12332 s = "ldc1";
12333 goto ld_st;
12334 }
12335 s = "lwc1";
12336 goto ldd_std;
12337
12338 case M_S_DAB:
12339 gas_assert (!mips_opts.micromips);
12340 /* Itbl support may require additional care here. */
12341 coproc = 1;
12342 fmt = "T,o(b)";
12343 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12344 {
12345 s = "sdc1";
12346 goto ld_st;
12347 }
12348 s = "swc1";
12349 goto ldd_std;
12350
12351 case M_LQ_AB:
12352 fmt = "t,o(b)";
12353 s = "lq";
12354 goto ld;
12355
12356 case M_SQ_AB:
12357 fmt = "t,o(b)";
12358 s = "sq";
12359 goto ld_st;
12360
12361 case M_LD_AB:
12362 fmt = "t,o(b)";
12363 if (GPR_SIZE == 64)
12364 {
12365 s = "ld";
12366 goto ld;
12367 }
12368 s = "lw";
12369 goto ldd_std;
12370
12371 case M_SD_AB:
12372 fmt = "t,o(b)";
12373 if (GPR_SIZE == 64)
12374 {
12375 s = "sd";
12376 goto ld_st;
12377 }
12378 s = "sw";
12379
12380 ldd_std:
12381 /* Even on a big endian machine $fn comes before $fn+1. We have
12382 to adjust when loading from memory. We set coproc if we must
12383 load $fn+1 first. */
12384 /* Itbl support may require additional care here. */
12385 if (!target_big_endian)
12386 coproc = 0;
12387
12388 breg = op[2];
12389 if (small_offset_p (0, align, 16))
12390 {
12391 ep = &offset_expr;
12392 if (!small_offset_p (4, align, 16))
12393 {
12394 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12395 -1, offset_reloc[0], offset_reloc[1],
12396 offset_reloc[2]);
12397 expr1.X_add_number = 0;
12398 ep = &expr1;
12399 breg = AT;
12400 used_at = 1;
12401 offset_reloc[0] = BFD_RELOC_LO16;
12402 offset_reloc[1] = BFD_RELOC_UNUSED;
12403 offset_reloc[2] = BFD_RELOC_UNUSED;
12404 }
12405 if (strcmp (s, "lw") == 0 && op[0] == breg)
12406 {
12407 ep->X_add_number += 4;
12408 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12409 offset_reloc[1], offset_reloc[2], breg);
12410 ep->X_add_number -= 4;
12411 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12412 offset_reloc[1], offset_reloc[2], breg);
12413 }
12414 else
12415 {
12416 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12417 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12418 breg);
12419 ep->X_add_number += 4;
12420 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12421 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12422 breg);
12423 }
12424 break;
12425 }
12426
12427 if (offset_expr.X_op != O_symbol
12428 && offset_expr.X_op != O_constant)
12429 {
12430 as_bad (_("expression too complex"));
12431 offset_expr.X_op = O_constant;
12432 }
12433
12434 if (HAVE_32BIT_ADDRESSES
12435 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12436 {
12437 char value [32];
12438
12439 sprintf_vma (value, offset_expr.X_add_number);
12440 as_bad (_("number (0x%s) larger than 32 bits"), value);
12441 }
12442
12443 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12444 {
12445 /* If this is a reference to a GP relative symbol, we want
12446 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12447 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12448 If we have a base register, we use this
12449 addu $at,$breg,$gp
12450 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12451 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12452 If this is not a GP relative symbol, we want
12453 lui $at,<sym> (BFD_RELOC_HI16_S)
12454 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12455 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12456 If there is a base register, we add it to $at after the
12457 lui instruction. If there is a constant, we always use
12458 the last case. */
12459 if (offset_expr.X_op == O_symbol
12460 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12461 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12462 {
12463 relax_start (offset_expr.X_add_symbol);
12464 if (breg == 0)
12465 {
12466 tempreg = mips_gp_register;
12467 }
12468 else
12469 {
12470 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12471 AT, breg, mips_gp_register);
12472 tempreg = AT;
12473 used_at = 1;
12474 }
12475
12476 /* Itbl support may require additional care here. */
12477 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12478 BFD_RELOC_GPREL16, tempreg);
12479 offset_expr.X_add_number += 4;
12480
12481 /* Set mips_optimize to 2 to avoid inserting an
12482 undesired nop. */
12483 hold_mips_optimize = mips_optimize;
12484 mips_optimize = 2;
12485 /* Itbl support may require additional care here. */
12486 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12487 BFD_RELOC_GPREL16, tempreg);
12488 mips_optimize = hold_mips_optimize;
12489
12490 relax_switch ();
12491
12492 offset_expr.X_add_number -= 4;
12493 }
12494 used_at = 1;
12495 if (offset_high_part (offset_expr.X_add_number, 16)
12496 != offset_high_part (offset_expr.X_add_number + 4, 16))
12497 {
12498 load_address (AT, &offset_expr, &used_at);
12499 offset_expr.X_op = O_constant;
12500 offset_expr.X_add_number = 0;
12501 }
12502 else
12503 macro_build_lui (&offset_expr, AT);
12504 if (breg != 0)
12505 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12506 /* Itbl support may require additional care here. */
12507 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12508 BFD_RELOC_LO16, AT);
12509 /* FIXME: How do we handle overflow here? */
12510 offset_expr.X_add_number += 4;
12511 /* Itbl support may require additional care here. */
12512 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12513 BFD_RELOC_LO16, AT);
12514 if (mips_relax.sequence)
12515 relax_end ();
12516 }
12517 else if (!mips_big_got)
12518 {
12519 /* If this is a reference to an external symbol, we want
12520 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12521 nop
12522 <op> op[0],0($at)
12523 <op> op[0]+1,4($at)
12524 Otherwise we want
12525 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12526 nop
12527 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12528 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12529 If there is a base register we add it to $at before the
12530 lwc1 instructions. If there is a constant we include it
12531 in the lwc1 instructions. */
12532 used_at = 1;
12533 expr1.X_add_number = offset_expr.X_add_number;
12534 if (expr1.X_add_number < -0x8000
12535 || expr1.X_add_number >= 0x8000 - 4)
12536 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12537 load_got_offset (AT, &offset_expr);
12538 load_delay_nop ();
12539 if (breg != 0)
12540 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12541
12542 /* Set mips_optimize to 2 to avoid inserting an undesired
12543 nop. */
12544 hold_mips_optimize = mips_optimize;
12545 mips_optimize = 2;
12546
12547 /* Itbl support may require additional care here. */
12548 relax_start (offset_expr.X_add_symbol);
12549 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12550 BFD_RELOC_LO16, AT);
12551 expr1.X_add_number += 4;
12552 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12553 BFD_RELOC_LO16, AT);
12554 relax_switch ();
12555 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12556 BFD_RELOC_LO16, AT);
12557 offset_expr.X_add_number += 4;
12558 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12559 BFD_RELOC_LO16, AT);
12560 relax_end ();
12561
12562 mips_optimize = hold_mips_optimize;
12563 }
12564 else if (mips_big_got)
12565 {
12566 int gpdelay;
12567
12568 /* If this is a reference to an external symbol, we want
12569 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12570 addu $at,$at,$gp
12571 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12572 nop
12573 <op> op[0],0($at)
12574 <op> op[0]+1,4($at)
12575 Otherwise we want
12576 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12577 nop
12578 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12579 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12580 If there is a base register we add it to $at before the
12581 lwc1 instructions. If there is a constant we include it
12582 in the lwc1 instructions. */
12583 used_at = 1;
12584 expr1.X_add_number = offset_expr.X_add_number;
12585 offset_expr.X_add_number = 0;
12586 if (expr1.X_add_number < -0x8000
12587 || expr1.X_add_number >= 0x8000 - 4)
12588 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12589 gpdelay = reg_needs_delay (mips_gp_register);
12590 relax_start (offset_expr.X_add_symbol);
12591 macro_build (&offset_expr, "lui", LUI_FMT,
12592 AT, BFD_RELOC_MIPS_GOT_HI16);
12593 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12594 AT, AT, mips_gp_register);
12595 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12596 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12597 load_delay_nop ();
12598 if (breg != 0)
12599 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12600 /* Itbl support may require additional care here. */
12601 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12602 BFD_RELOC_LO16, AT);
12603 expr1.X_add_number += 4;
12604
12605 /* Set mips_optimize to 2 to avoid inserting an undesired
12606 nop. */
12607 hold_mips_optimize = mips_optimize;
12608 mips_optimize = 2;
12609 /* Itbl support may require additional care here. */
12610 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12611 BFD_RELOC_LO16, AT);
12612 mips_optimize = hold_mips_optimize;
12613 expr1.X_add_number -= 4;
12614
12615 relax_switch ();
12616 offset_expr.X_add_number = expr1.X_add_number;
12617 if (gpdelay)
12618 macro_build (NULL, "nop", "");
12619 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12620 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12621 load_delay_nop ();
12622 if (breg != 0)
12623 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12624 /* Itbl support may require additional care here. */
12625 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12626 BFD_RELOC_LO16, AT);
12627 offset_expr.X_add_number += 4;
12628
12629 /* Set mips_optimize to 2 to avoid inserting an undesired
12630 nop. */
12631 hold_mips_optimize = mips_optimize;
12632 mips_optimize = 2;
12633 /* Itbl support may require additional care here. */
12634 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12635 BFD_RELOC_LO16, AT);
12636 mips_optimize = hold_mips_optimize;
12637 relax_end ();
12638 }
12639 else
12640 abort ();
12641
12642 break;
12643
12644 case M_SAA_AB:
12645 s = "saa";
12646 goto saa_saad;
12647 case M_SAAD_AB:
12648 s = "saad";
12649 saa_saad:
12650 gas_assert (!mips_opts.micromips);
12651 offbits = 0;
12652 fmt = "t,(b)";
12653 goto ld_st;
12654
12655 /* New code added to support COPZ instructions.
12656 This code builds table entries out of the macros in mip_opcodes.
12657 R4000 uses interlocks to handle coproc delays.
12658 Other chips (like the R3000) require nops to be inserted for delays.
12659
12660 FIXME: Currently, we require that the user handle delays.
12661 In order to fill delay slots for non-interlocked chips,
12662 we must have a way to specify delays based on the coprocessor.
12663 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12664 What are the side-effects of the cop instruction?
12665 What cache support might we have and what are its effects?
12666 Both coprocessor & memory require delays. how long???
12667 What registers are read/set/modified?
12668
12669 If an itbl is provided to interpret cop instructions,
12670 this knowledge can be encoded in the itbl spec. */
12671
12672 case M_COP0:
12673 s = "c0";
12674 goto copz;
12675 case M_COP1:
12676 s = "c1";
12677 goto copz;
12678 case M_COP2:
12679 s = "c2";
12680 goto copz;
12681 case M_COP3:
12682 s = "c3";
12683 copz:
12684 gas_assert (!mips_opts.micromips);
12685 /* For now we just do C (same as Cz). The parameter will be
12686 stored in insn_opcode by mips_ip. */
12687 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12688 break;
12689
12690 case M_MOVE:
12691 move_register (op[0], op[1]);
12692 break;
12693
12694 case M_MOVEP:
12695 gas_assert (mips_opts.micromips);
12696 gas_assert (mips_opts.insn32);
12697 move_register (micromips_to_32_reg_h_map1[op[0]],
12698 micromips_to_32_reg_m_map[op[1]]);
12699 move_register (micromips_to_32_reg_h_map2[op[0]],
12700 micromips_to_32_reg_n_map[op[2]]);
12701 break;
12702
12703 case M_DMUL:
12704 dbl = 1;
12705 /* Fall through. */
12706 case M_MUL:
12707 if (mips_opts.arch == CPU_R5900)
12708 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12709 op[2]);
12710 else
12711 {
12712 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12713 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12714 }
12715 break;
12716
12717 case M_DMUL_I:
12718 dbl = 1;
12719 /* Fall through. */
12720 case M_MUL_I:
12721 /* The MIPS assembler some times generates shifts and adds. I'm
12722 not trying to be that fancy. GCC should do this for us
12723 anyway. */
12724 used_at = 1;
12725 load_register (AT, &imm_expr, dbl);
12726 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12727 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12728 break;
12729
12730 case M_DMULO_I:
12731 dbl = 1;
12732 /* Fall through. */
12733 case M_MULO_I:
12734 imm = 1;
12735 goto do_mulo;
12736
12737 case M_DMULO:
12738 dbl = 1;
12739 /* Fall through. */
12740 case M_MULO:
12741 do_mulo:
12742 start_noreorder ();
12743 used_at = 1;
12744 if (imm)
12745 load_register (AT, &imm_expr, dbl);
12746 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12747 op[1], imm ? AT : op[2]);
12748 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12749 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12750 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12751 if (mips_trap)
12752 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12753 else
12754 {
12755 if (mips_opts.micromips)
12756 micromips_label_expr (&label_expr);
12757 else
12758 label_expr.X_add_number = 8;
12759 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12760 macro_build (NULL, "nop", "");
12761 macro_build (NULL, "break", BRK_FMT, 6);
12762 if (mips_opts.micromips)
12763 micromips_add_label ();
12764 }
12765 end_noreorder ();
12766 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12767 break;
12768
12769 case M_DMULOU_I:
12770 dbl = 1;
12771 /* Fall through. */
12772 case M_MULOU_I:
12773 imm = 1;
12774 goto do_mulou;
12775
12776 case M_DMULOU:
12777 dbl = 1;
12778 /* Fall through. */
12779 case M_MULOU:
12780 do_mulou:
12781 start_noreorder ();
12782 used_at = 1;
12783 if (imm)
12784 load_register (AT, &imm_expr, dbl);
12785 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12786 op[1], imm ? AT : op[2]);
12787 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12788 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12789 if (mips_trap)
12790 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12791 else
12792 {
12793 if (mips_opts.micromips)
12794 micromips_label_expr (&label_expr);
12795 else
12796 label_expr.X_add_number = 8;
12797 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12798 macro_build (NULL, "nop", "");
12799 macro_build (NULL, "break", BRK_FMT, 6);
12800 if (mips_opts.micromips)
12801 micromips_add_label ();
12802 }
12803 end_noreorder ();
12804 break;
12805
12806 case M_DROL:
12807 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12808 {
12809 if (op[0] == op[1])
12810 {
12811 tempreg = AT;
12812 used_at = 1;
12813 }
12814 else
12815 tempreg = op[0];
12816 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12817 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12818 break;
12819 }
12820 used_at = 1;
12821 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12822 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12823 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12824 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12825 break;
12826
12827 case M_ROL:
12828 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12829 {
12830 if (op[0] == op[1])
12831 {
12832 tempreg = AT;
12833 used_at = 1;
12834 }
12835 else
12836 tempreg = op[0];
12837 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12838 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12839 break;
12840 }
12841 used_at = 1;
12842 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12843 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12844 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12845 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12846 break;
12847
12848 case M_DROL_I:
12849 {
12850 unsigned int rot;
12851 const char *l;
12852 const char *rr;
12853
12854 rot = imm_expr.X_add_number & 0x3f;
12855 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12856 {
12857 rot = (64 - rot) & 0x3f;
12858 if (rot >= 32)
12859 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12860 else
12861 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12862 break;
12863 }
12864 if (rot == 0)
12865 {
12866 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12867 break;
12868 }
12869 l = (rot < 0x20) ? "dsll" : "dsll32";
12870 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12871 rot &= 0x1f;
12872 used_at = 1;
12873 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12874 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12875 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12876 }
12877 break;
12878
12879 case M_ROL_I:
12880 {
12881 unsigned int rot;
12882
12883 rot = imm_expr.X_add_number & 0x1f;
12884 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12885 {
12886 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12887 (32 - rot) & 0x1f);
12888 break;
12889 }
12890 if (rot == 0)
12891 {
12892 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12893 break;
12894 }
12895 used_at = 1;
12896 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12897 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12898 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12899 }
12900 break;
12901
12902 case M_DROR:
12903 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12904 {
12905 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12906 break;
12907 }
12908 used_at = 1;
12909 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12910 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12911 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12912 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12913 break;
12914
12915 case M_ROR:
12916 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12917 {
12918 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12919 break;
12920 }
12921 used_at = 1;
12922 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12923 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12924 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12925 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12926 break;
12927
12928 case M_DROR_I:
12929 {
12930 unsigned int rot;
12931 const char *l;
12932 const char *rr;
12933
12934 rot = imm_expr.X_add_number & 0x3f;
12935 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12936 {
12937 if (rot >= 32)
12938 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12939 else
12940 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12941 break;
12942 }
12943 if (rot == 0)
12944 {
12945 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12946 break;
12947 }
12948 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12949 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12950 rot &= 0x1f;
12951 used_at = 1;
12952 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12953 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12954 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12955 }
12956 break;
12957
12958 case M_ROR_I:
12959 {
12960 unsigned int rot;
12961
12962 rot = imm_expr.X_add_number & 0x1f;
12963 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12964 {
12965 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12966 break;
12967 }
12968 if (rot == 0)
12969 {
12970 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12971 break;
12972 }
12973 used_at = 1;
12974 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12975 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12976 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12977 }
12978 break;
12979
12980 case M_SEQ:
12981 if (op[1] == 0)
12982 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12983 else if (op[2] == 0)
12984 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12985 else
12986 {
12987 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12988 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12989 }
12990 break;
12991
12992 case M_SEQ_I:
12993 if (imm_expr.X_add_number == 0)
12994 {
12995 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12996 break;
12997 }
12998 if (op[1] == 0)
12999 {
13000 as_warn (_("instruction %s: result is always false"),
13001 ip->insn_mo->name);
13002 move_register (op[0], 0);
13003 break;
13004 }
13005 if (CPU_HAS_SEQ (mips_opts.arch)
13006 && -512 <= imm_expr.X_add_number
13007 && imm_expr.X_add_number < 512)
13008 {
13009 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13010 (int) imm_expr.X_add_number);
13011 break;
13012 }
13013 if (imm_expr.X_add_number >= 0
13014 && imm_expr.X_add_number < 0x10000)
13015 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13016 else if (imm_expr.X_add_number > -0x8000
13017 && imm_expr.X_add_number < 0)
13018 {
13019 imm_expr.X_add_number = -imm_expr.X_add_number;
13020 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13021 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13022 }
13023 else if (CPU_HAS_SEQ (mips_opts.arch))
13024 {
13025 used_at = 1;
13026 load_register (AT, &imm_expr, GPR_SIZE == 64);
13027 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13028 break;
13029 }
13030 else
13031 {
13032 load_register (AT, &imm_expr, GPR_SIZE == 64);
13033 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13034 used_at = 1;
13035 }
13036 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13037 break;
13038
13039 case M_SGE: /* X >= Y <==> not (X < Y) */
13040 s = "slt";
13041 goto sge;
13042 case M_SGEU:
13043 s = "sltu";
13044 sge:
13045 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13046 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13047 break;
13048
13049 case M_SGE_I: /* X >= I <==> not (X < I) */
13050 case M_SGEU_I:
13051 if (imm_expr.X_add_number >= -0x8000
13052 && imm_expr.X_add_number < 0x8000)
13053 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13054 op[0], op[1], BFD_RELOC_LO16);
13055 else
13056 {
13057 load_register (AT, &imm_expr, GPR_SIZE == 64);
13058 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13059 op[0], op[1], AT);
13060 used_at = 1;
13061 }
13062 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13063 break;
13064
13065 case M_SGT: /* X > Y <==> Y < X */
13066 s = "slt";
13067 goto sgt;
13068 case M_SGTU:
13069 s = "sltu";
13070 sgt:
13071 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13072 break;
13073
13074 case M_SGT_I: /* X > I <==> I < X */
13075 s = "slt";
13076 goto sgti;
13077 case M_SGTU_I:
13078 s = "sltu";
13079 sgti:
13080 used_at = 1;
13081 load_register (AT, &imm_expr, GPR_SIZE == 64);
13082 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13083 break;
13084
13085 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13086 s = "slt";
13087 goto sle;
13088 case M_SLEU:
13089 s = "sltu";
13090 sle:
13091 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13092 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13093 break;
13094
13095 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13096 s = "slt";
13097 goto slei;
13098 case M_SLEU_I:
13099 s = "sltu";
13100 slei:
13101 used_at = 1;
13102 load_register (AT, &imm_expr, GPR_SIZE == 64);
13103 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13104 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13105 break;
13106
13107 case M_SLT_I:
13108 if (imm_expr.X_add_number >= -0x8000
13109 && imm_expr.X_add_number < 0x8000)
13110 {
13111 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13112 BFD_RELOC_LO16);
13113 break;
13114 }
13115 used_at = 1;
13116 load_register (AT, &imm_expr, GPR_SIZE == 64);
13117 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13118 break;
13119
13120 case M_SLTU_I:
13121 if (imm_expr.X_add_number >= -0x8000
13122 && imm_expr.X_add_number < 0x8000)
13123 {
13124 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13125 BFD_RELOC_LO16);
13126 break;
13127 }
13128 used_at = 1;
13129 load_register (AT, &imm_expr, GPR_SIZE == 64);
13130 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13131 break;
13132
13133 case M_SNE:
13134 if (op[1] == 0)
13135 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13136 else if (op[2] == 0)
13137 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13138 else
13139 {
13140 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13141 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13142 }
13143 break;
13144
13145 case M_SNE_I:
13146 if (imm_expr.X_add_number == 0)
13147 {
13148 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13149 break;
13150 }
13151 if (op[1] == 0)
13152 {
13153 as_warn (_("instruction %s: result is always true"),
13154 ip->insn_mo->name);
13155 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13156 op[0], 0, BFD_RELOC_LO16);
13157 break;
13158 }
13159 if (CPU_HAS_SEQ (mips_opts.arch)
13160 && -512 <= imm_expr.X_add_number
13161 && imm_expr.X_add_number < 512)
13162 {
13163 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13164 (int) imm_expr.X_add_number);
13165 break;
13166 }
13167 if (imm_expr.X_add_number >= 0
13168 && imm_expr.X_add_number < 0x10000)
13169 {
13170 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13171 BFD_RELOC_LO16);
13172 }
13173 else if (imm_expr.X_add_number > -0x8000
13174 && imm_expr.X_add_number < 0)
13175 {
13176 imm_expr.X_add_number = -imm_expr.X_add_number;
13177 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13178 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13179 }
13180 else if (CPU_HAS_SEQ (mips_opts.arch))
13181 {
13182 used_at = 1;
13183 load_register (AT, &imm_expr, GPR_SIZE == 64);
13184 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13185 break;
13186 }
13187 else
13188 {
13189 load_register (AT, &imm_expr, GPR_SIZE == 64);
13190 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13191 used_at = 1;
13192 }
13193 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13194 break;
13195
13196 case M_SUB_I:
13197 s = "addi";
13198 s2 = "sub";
13199 goto do_subi;
13200 case M_SUBU_I:
13201 s = "addiu";
13202 s2 = "subu";
13203 goto do_subi;
13204 case M_DSUB_I:
13205 dbl = 1;
13206 s = "daddi";
13207 s2 = "dsub";
13208 if (!mips_opts.micromips)
13209 goto do_subi;
13210 if (imm_expr.X_add_number > -0x200
13211 && imm_expr.X_add_number <= 0x200)
13212 {
13213 macro_build (NULL, s, "t,r,.", op[0], op[1],
13214 (int) -imm_expr.X_add_number);
13215 break;
13216 }
13217 goto do_subi_i;
13218 case M_DSUBU_I:
13219 dbl = 1;
13220 s = "daddiu";
13221 s2 = "dsubu";
13222 do_subi:
13223 if (imm_expr.X_add_number > -0x8000
13224 && imm_expr.X_add_number <= 0x8000)
13225 {
13226 imm_expr.X_add_number = -imm_expr.X_add_number;
13227 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13228 break;
13229 }
13230 do_subi_i:
13231 used_at = 1;
13232 load_register (AT, &imm_expr, dbl);
13233 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13234 break;
13235
13236 case M_TEQ_I:
13237 s = "teq";
13238 goto trap;
13239 case M_TGE_I:
13240 s = "tge";
13241 goto trap;
13242 case M_TGEU_I:
13243 s = "tgeu";
13244 goto trap;
13245 case M_TLT_I:
13246 s = "tlt";
13247 goto trap;
13248 case M_TLTU_I:
13249 s = "tltu";
13250 goto trap;
13251 case M_TNE_I:
13252 s = "tne";
13253 trap:
13254 used_at = 1;
13255 load_register (AT, &imm_expr, GPR_SIZE == 64);
13256 macro_build (NULL, s, "s,t", op[0], AT);
13257 break;
13258
13259 case M_TRUNCWS:
13260 case M_TRUNCWD:
13261 gas_assert (!mips_opts.micromips);
13262 gas_assert (mips_opts.isa == ISA_MIPS1);
13263 used_at = 1;
13264
13265 /*
13266 * Is the double cfc1 instruction a bug in the mips assembler;
13267 * or is there a reason for it?
13268 */
13269 start_noreorder ();
13270 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13271 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13272 macro_build (NULL, "nop", "");
13273 expr1.X_add_number = 3;
13274 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13275 expr1.X_add_number = 2;
13276 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13277 macro_build (NULL, "ctc1", "t,G", AT, RA);
13278 macro_build (NULL, "nop", "");
13279 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13280 op[0], op[1]);
13281 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13282 macro_build (NULL, "nop", "");
13283 end_noreorder ();
13284 break;
13285
13286 case M_ULH_AB:
13287 s = "lb";
13288 s2 = "lbu";
13289 off = 1;
13290 goto uld_st;
13291 case M_ULHU_AB:
13292 s = "lbu";
13293 s2 = "lbu";
13294 off = 1;
13295 goto uld_st;
13296 case M_ULW_AB:
13297 s = "lwl";
13298 s2 = "lwr";
13299 offbits = (mips_opts.micromips ? 12 : 16);
13300 off = 3;
13301 goto uld_st;
13302 case M_ULD_AB:
13303 s = "ldl";
13304 s2 = "ldr";
13305 offbits = (mips_opts.micromips ? 12 : 16);
13306 off = 7;
13307 goto uld_st;
13308 case M_USH_AB:
13309 s = "sb";
13310 s2 = "sb";
13311 off = 1;
13312 ust = 1;
13313 goto uld_st;
13314 case M_USW_AB:
13315 s = "swl";
13316 s2 = "swr";
13317 offbits = (mips_opts.micromips ? 12 : 16);
13318 off = 3;
13319 ust = 1;
13320 goto uld_st;
13321 case M_USD_AB:
13322 s = "sdl";
13323 s2 = "sdr";
13324 offbits = (mips_opts.micromips ? 12 : 16);
13325 off = 7;
13326 ust = 1;
13327
13328 uld_st:
13329 breg = op[2];
13330 large_offset = !small_offset_p (off, align, offbits);
13331 ep = &offset_expr;
13332 expr1.X_add_number = 0;
13333 if (large_offset)
13334 {
13335 used_at = 1;
13336 tempreg = AT;
13337 if (small_offset_p (0, align, 16))
13338 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13339 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13340 else
13341 {
13342 load_address (tempreg, ep, &used_at);
13343 if (breg != 0)
13344 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13345 tempreg, tempreg, breg);
13346 }
13347 offset_reloc[0] = BFD_RELOC_LO16;
13348 offset_reloc[1] = BFD_RELOC_UNUSED;
13349 offset_reloc[2] = BFD_RELOC_UNUSED;
13350 breg = tempreg;
13351 tempreg = op[0];
13352 ep = &expr1;
13353 }
13354 else if (!ust && op[0] == breg)
13355 {
13356 used_at = 1;
13357 tempreg = AT;
13358 }
13359 else
13360 tempreg = op[0];
13361
13362 if (off == 1)
13363 goto ulh_sh;
13364
13365 if (!target_big_endian)
13366 ep->X_add_number += off;
13367 if (offbits == 12)
13368 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13369 else
13370 macro_build (ep, s, "t,o(b)", tempreg, -1,
13371 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13372
13373 if (!target_big_endian)
13374 ep->X_add_number -= off;
13375 else
13376 ep->X_add_number += off;
13377 if (offbits == 12)
13378 macro_build (NULL, s2, "t,~(b)",
13379 tempreg, (int) ep->X_add_number, breg);
13380 else
13381 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13382 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13383
13384 /* If necessary, move the result in tempreg to the final destination. */
13385 if (!ust && op[0] != tempreg)
13386 {
13387 /* Protect second load's delay slot. */
13388 load_delay_nop ();
13389 move_register (op[0], tempreg);
13390 }
13391 break;
13392
13393 ulh_sh:
13394 used_at = 1;
13395 if (target_big_endian == ust)
13396 ep->X_add_number += off;
13397 tempreg = ust || large_offset ? op[0] : AT;
13398 macro_build (ep, s, "t,o(b)", tempreg, -1,
13399 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13400
13401 /* For halfword transfers we need a temporary register to shuffle
13402 bytes. Unfortunately for M_USH_A we have none available before
13403 the next store as AT holds the base address. We deal with this
13404 case by clobbering TREG and then restoring it as with ULH. */
13405 tempreg = ust == large_offset ? op[0] : AT;
13406 if (ust)
13407 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13408
13409 if (target_big_endian == ust)
13410 ep->X_add_number -= off;
13411 else
13412 ep->X_add_number += off;
13413 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13414 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13415
13416 /* For M_USH_A re-retrieve the LSB. */
13417 if (ust && large_offset)
13418 {
13419 if (target_big_endian)
13420 ep->X_add_number += off;
13421 else
13422 ep->X_add_number -= off;
13423 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13424 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13425 }
13426 /* For ULH and M_USH_A OR the LSB in. */
13427 if (!ust || large_offset)
13428 {
13429 tempreg = !large_offset ? AT : op[0];
13430 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13431 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13432 }
13433 break;
13434
13435 default:
13436 /* FIXME: Check if this is one of the itbl macros, since they
13437 are added dynamically. */
13438 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13439 break;
13440 }
13441 if (!mips_opts.at && used_at)
13442 as_bad (_("macro used $at after \".set noat\""));
13443 }
13444
13445 /* Implement macros in mips16 mode. */
13446
13447 static void
13448 mips16_macro (struct mips_cl_insn *ip)
13449 {
13450 const struct mips_operand_array *operands;
13451 int mask;
13452 int tmp;
13453 expressionS expr1;
13454 int dbl;
13455 const char *s, *s2, *s3;
13456 unsigned int op[MAX_OPERANDS];
13457 unsigned int i;
13458
13459 mask = ip->insn_mo->mask;
13460
13461 operands = insn_operands (ip);
13462 for (i = 0; i < MAX_OPERANDS; i++)
13463 if (operands->operand[i])
13464 op[i] = insn_extract_operand (ip, operands->operand[i]);
13465 else
13466 op[i] = -1;
13467
13468 expr1.X_op = O_constant;
13469 expr1.X_op_symbol = NULL;
13470 expr1.X_add_symbol = NULL;
13471 expr1.X_add_number = 1;
13472
13473 dbl = 0;
13474
13475 switch (mask)
13476 {
13477 default:
13478 abort ();
13479
13480 case M_DDIV_3:
13481 dbl = 1;
13482 /* Fall through. */
13483 case M_DIV_3:
13484 s = "mflo";
13485 goto do_div3;
13486 case M_DREM_3:
13487 dbl = 1;
13488 /* Fall through. */
13489 case M_REM_3:
13490 s = "mfhi";
13491 do_div3:
13492 start_noreorder ();
13493 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13494 expr1.X_add_number = 2;
13495 macro_build (&expr1, "bnez", "x,p", op[2]);
13496 macro_build (NULL, "break", "6", 7);
13497
13498 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13499 since that causes an overflow. We should do that as well,
13500 but I don't see how to do the comparisons without a temporary
13501 register. */
13502 end_noreorder ();
13503 macro_build (NULL, s, "x", op[0]);
13504 break;
13505
13506 case M_DIVU_3:
13507 s = "divu";
13508 s2 = "mflo";
13509 goto do_divu3;
13510 case M_REMU_3:
13511 s = "divu";
13512 s2 = "mfhi";
13513 goto do_divu3;
13514 case M_DDIVU_3:
13515 s = "ddivu";
13516 s2 = "mflo";
13517 goto do_divu3;
13518 case M_DREMU_3:
13519 s = "ddivu";
13520 s2 = "mfhi";
13521 do_divu3:
13522 start_noreorder ();
13523 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13524 expr1.X_add_number = 2;
13525 macro_build (&expr1, "bnez", "x,p", op[2]);
13526 macro_build (NULL, "break", "6", 7);
13527 end_noreorder ();
13528 macro_build (NULL, s2, "x", op[0]);
13529 break;
13530
13531 case M_DMUL:
13532 dbl = 1;
13533 /* Fall through. */
13534 case M_MUL:
13535 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13536 macro_build (NULL, "mflo", "x", op[0]);
13537 break;
13538
13539 case M_DSUBU_I:
13540 dbl = 1;
13541 goto do_subu;
13542 case M_SUBU_I:
13543 do_subu:
13544 imm_expr.X_add_number = -imm_expr.X_add_number;
13545 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13546 break;
13547
13548 case M_SUBU_I_2:
13549 imm_expr.X_add_number = -imm_expr.X_add_number;
13550 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13551 break;
13552
13553 case M_DSUBU_I_2:
13554 imm_expr.X_add_number = -imm_expr.X_add_number;
13555 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13556 break;
13557
13558 case M_BEQ:
13559 s = "cmp";
13560 s2 = "bteqz";
13561 goto do_branch;
13562 case M_BNE:
13563 s = "cmp";
13564 s2 = "btnez";
13565 goto do_branch;
13566 case M_BLT:
13567 s = "slt";
13568 s2 = "btnez";
13569 goto do_branch;
13570 case M_BLTU:
13571 s = "sltu";
13572 s2 = "btnez";
13573 goto do_branch;
13574 case M_BLE:
13575 s = "slt";
13576 s2 = "bteqz";
13577 goto do_reverse_branch;
13578 case M_BLEU:
13579 s = "sltu";
13580 s2 = "bteqz";
13581 goto do_reverse_branch;
13582 case M_BGE:
13583 s = "slt";
13584 s2 = "bteqz";
13585 goto do_branch;
13586 case M_BGEU:
13587 s = "sltu";
13588 s2 = "bteqz";
13589 goto do_branch;
13590 case M_BGT:
13591 s = "slt";
13592 s2 = "btnez";
13593 goto do_reverse_branch;
13594 case M_BGTU:
13595 s = "sltu";
13596 s2 = "btnez";
13597
13598 do_reverse_branch:
13599 tmp = op[1];
13600 op[1] = op[0];
13601 op[0] = tmp;
13602
13603 do_branch:
13604 macro_build (NULL, s, "x,y", op[0], op[1]);
13605 macro_build (&offset_expr, s2, "p");
13606 break;
13607
13608 case M_BEQ_I:
13609 s = "cmpi";
13610 s2 = "bteqz";
13611 s3 = "x,U";
13612 goto do_branch_i;
13613 case M_BNE_I:
13614 s = "cmpi";
13615 s2 = "btnez";
13616 s3 = "x,U";
13617 goto do_branch_i;
13618 case M_BLT_I:
13619 s = "slti";
13620 s2 = "btnez";
13621 s3 = "x,8";
13622 goto do_branch_i;
13623 case M_BLTU_I:
13624 s = "sltiu";
13625 s2 = "btnez";
13626 s3 = "x,8";
13627 goto do_branch_i;
13628 case M_BLE_I:
13629 s = "slti";
13630 s2 = "btnez";
13631 s3 = "x,8";
13632 goto do_addone_branch_i;
13633 case M_BLEU_I:
13634 s = "sltiu";
13635 s2 = "btnez";
13636 s3 = "x,8";
13637 goto do_addone_branch_i;
13638 case M_BGE_I:
13639 s = "slti";
13640 s2 = "bteqz";
13641 s3 = "x,8";
13642 goto do_branch_i;
13643 case M_BGEU_I:
13644 s = "sltiu";
13645 s2 = "bteqz";
13646 s3 = "x,8";
13647 goto do_branch_i;
13648 case M_BGT_I:
13649 s = "slti";
13650 s2 = "bteqz";
13651 s3 = "x,8";
13652 goto do_addone_branch_i;
13653 case M_BGTU_I:
13654 s = "sltiu";
13655 s2 = "bteqz";
13656 s3 = "x,8";
13657
13658 do_addone_branch_i:
13659 ++imm_expr.X_add_number;
13660
13661 do_branch_i:
13662 macro_build (&imm_expr, s, s3, op[0]);
13663 macro_build (&offset_expr, s2, "p");
13664 break;
13665
13666 case M_ABS:
13667 expr1.X_add_number = 0;
13668 macro_build (&expr1, "slti", "x,8", op[1]);
13669 if (op[0] != op[1])
13670 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13671 expr1.X_add_number = 2;
13672 macro_build (&expr1, "bteqz", "p");
13673 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13674 break;
13675 }
13676 }
13677
13678 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13679 opcode bits in *OPCODE_EXTRA. */
13680
13681 static struct mips_opcode *
13682 mips_lookup_insn (struct hash_control *hash, const char *start,
13683 ssize_t length, unsigned int *opcode_extra)
13684 {
13685 char *name, *dot, *p;
13686 unsigned int mask, suffix;
13687 ssize_t opend;
13688 struct mips_opcode *insn;
13689
13690 /* Make a copy of the instruction so that we can fiddle with it. */
13691 name = xstrndup (start, length);
13692
13693 /* Look up the instruction as-is. */
13694 insn = (struct mips_opcode *) hash_find (hash, name);
13695 if (insn)
13696 goto end;
13697
13698 dot = strchr (name, '.');
13699 if (dot && dot[1])
13700 {
13701 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13702 p = mips_parse_vu0_channels (dot + 1, &mask);
13703 if (*p == 0 && mask != 0)
13704 {
13705 *dot = 0;
13706 insn = (struct mips_opcode *) hash_find (hash, name);
13707 *dot = '.';
13708 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13709 {
13710 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13711 goto end;
13712 }
13713 }
13714 }
13715
13716 if (mips_opts.micromips)
13717 {
13718 /* See if there's an instruction size override suffix,
13719 either `16' or `32', at the end of the mnemonic proper,
13720 that defines the operation, i.e. before the first `.'
13721 character if any. Strip it and retry. */
13722 opend = dot != NULL ? dot - name : length;
13723 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13724 suffix = 2;
13725 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13726 suffix = 4;
13727 else
13728 suffix = 0;
13729 if (suffix)
13730 {
13731 memcpy (name + opend - 2, name + opend, length - opend + 1);
13732 insn = (struct mips_opcode *) hash_find (hash, name);
13733 if (insn)
13734 {
13735 forced_insn_length = suffix;
13736 goto end;
13737 }
13738 }
13739 }
13740
13741 insn = NULL;
13742 end:
13743 free (name);
13744 return insn;
13745 }
13746
13747 /* Assemble an instruction into its binary format. If the instruction
13748 is a macro, set imm_expr and offset_expr to the values associated
13749 with "I" and "A" operands respectively. Otherwise store the value
13750 of the relocatable field (if any) in offset_expr. In both cases
13751 set offset_reloc to the relocation operators applied to offset_expr. */
13752
13753 static void
13754 mips_ip (char *str, struct mips_cl_insn *insn)
13755 {
13756 const struct mips_opcode *first, *past;
13757 struct hash_control *hash;
13758 char format;
13759 size_t end;
13760 struct mips_operand_token *tokens;
13761 unsigned int opcode_extra;
13762
13763 if (mips_opts.micromips)
13764 {
13765 hash = micromips_op_hash;
13766 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13767 }
13768 else
13769 {
13770 hash = op_hash;
13771 past = &mips_opcodes[NUMOPCODES];
13772 }
13773 forced_insn_length = 0;
13774 opcode_extra = 0;
13775
13776 /* We first try to match an instruction up to a space or to the end. */
13777 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13778 continue;
13779
13780 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13781 if (first == NULL)
13782 {
13783 set_insn_error (0, _("unrecognized opcode"));
13784 return;
13785 }
13786
13787 if (strcmp (first->name, "li.s") == 0)
13788 format = 'f';
13789 else if (strcmp (first->name, "li.d") == 0)
13790 format = 'd';
13791 else
13792 format = 0;
13793 tokens = mips_parse_arguments (str + end, format);
13794 if (!tokens)
13795 return;
13796
13797 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13798 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13799 set_insn_error (0, _("invalid operands"));
13800
13801 obstack_free (&mips_operand_tokens, tokens);
13802 }
13803
13804 /* As for mips_ip, but used when assembling MIPS16 code.
13805 Also set forced_insn_length to the resulting instruction size in
13806 bytes if the user explicitly requested a small or extended instruction. */
13807
13808 static void
13809 mips16_ip (char *str, struct mips_cl_insn *insn)
13810 {
13811 char *end, *s, c;
13812 struct mips_opcode *first;
13813 struct mips_operand_token *tokens;
13814
13815 forced_insn_length = 0;
13816
13817 for (s = str; ISLOWER (*s); ++s)
13818 ;
13819 end = s;
13820 c = *end;
13821 switch (c)
13822 {
13823 case '\0':
13824 break;
13825
13826 case ' ':
13827 s++;
13828 break;
13829
13830 case '.':
13831 if (s[1] == 't' && s[2] == ' ')
13832 {
13833 forced_insn_length = 2;
13834 s += 3;
13835 break;
13836 }
13837 else if (s[1] == 'e' && s[2] == ' ')
13838 {
13839 forced_insn_length = 4;
13840 s += 3;
13841 break;
13842 }
13843 /* Fall through. */
13844 default:
13845 set_insn_error (0, _("unrecognized opcode"));
13846 return;
13847 }
13848
13849 if (mips_opts.noautoextend && !forced_insn_length)
13850 forced_insn_length = 2;
13851
13852 *end = 0;
13853 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13854 *end = c;
13855
13856 if (!first)
13857 {
13858 set_insn_error (0, _("unrecognized opcode"));
13859 return;
13860 }
13861
13862 tokens = mips_parse_arguments (s, 0);
13863 if (!tokens)
13864 return;
13865
13866 if (!match_mips16_insns (insn, first, tokens))
13867 set_insn_error (0, _("invalid operands"));
13868
13869 obstack_free (&mips_operand_tokens, tokens);
13870 }
13871
13872 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13873 NBITS is the number of significant bits in VAL. */
13874
13875 static unsigned long
13876 mips16_immed_extend (offsetT val, unsigned int nbits)
13877 {
13878 int extval;
13879 if (nbits == 16)
13880 {
13881 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13882 val &= 0x1f;
13883 }
13884 else if (nbits == 15)
13885 {
13886 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13887 val &= 0xf;
13888 }
13889 else
13890 {
13891 extval = ((val & 0x1f) << 6) | (val & 0x20);
13892 val = 0;
13893 }
13894 return (extval << 16) | val;
13895 }
13896
13897 /* Like decode_mips16_operand, but require the operand to be defined and
13898 require it to be an integer. */
13899
13900 static const struct mips_int_operand *
13901 mips16_immed_operand (int type, bfd_boolean extended_p)
13902 {
13903 const struct mips_operand *operand;
13904
13905 operand = decode_mips16_operand (type, extended_p);
13906 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13907 abort ();
13908 return (const struct mips_int_operand *) operand;
13909 }
13910
13911 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13912
13913 static bfd_boolean
13914 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13915 bfd_reloc_code_real_type reloc, offsetT sval)
13916 {
13917 int min_val, max_val;
13918
13919 min_val = mips_int_operand_min (operand);
13920 max_val = mips_int_operand_max (operand);
13921 if (reloc != BFD_RELOC_UNUSED)
13922 {
13923 if (min_val < 0)
13924 sval = SEXT_16BIT (sval);
13925 else
13926 sval &= 0xffff;
13927 }
13928
13929 return (sval >= min_val
13930 && sval <= max_val
13931 && (sval & ((1 << operand->shift) - 1)) == 0);
13932 }
13933
13934 /* Install immediate value VAL into MIPS16 instruction *INSN,
13935 extending it if necessary. The instruction in *INSN may
13936 already be extended.
13937
13938 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13939 if none. In the former case, VAL is a 16-bit number with no
13940 defined signedness.
13941
13942 TYPE is the type of the immediate field. USER_INSN_LENGTH
13943 is the length that the user requested, or 0 if none. */
13944
13945 static void
13946 mips16_immed (const char *file, unsigned int line, int type,
13947 bfd_reloc_code_real_type reloc, offsetT val,
13948 unsigned int user_insn_length, unsigned long *insn)
13949 {
13950 const struct mips_int_operand *operand;
13951 unsigned int uval, length;
13952
13953 operand = mips16_immed_operand (type, FALSE);
13954 if (!mips16_immed_in_range_p (operand, reloc, val))
13955 {
13956 /* We need an extended instruction. */
13957 if (user_insn_length == 2)
13958 as_bad_where (file, line, _("invalid unextended operand value"));
13959 else
13960 *insn |= MIPS16_EXTEND;
13961 }
13962 else if (user_insn_length == 4)
13963 {
13964 /* The operand doesn't force an unextended instruction to be extended.
13965 Warn if the user wanted an extended instruction anyway. */
13966 *insn |= MIPS16_EXTEND;
13967 as_warn_where (file, line,
13968 _("extended operand requested but not required"));
13969 }
13970
13971 length = mips16_opcode_length (*insn);
13972 if (length == 4)
13973 {
13974 operand = mips16_immed_operand (type, TRUE);
13975 if (!mips16_immed_in_range_p (operand, reloc, val))
13976 as_bad_where (file, line,
13977 _("operand value out of range for instruction"));
13978 }
13979 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13980 if (length == 2)
13981 *insn = mips_insert_operand (&operand->root, *insn, uval);
13982 else
13983 *insn |= mips16_immed_extend (uval, operand->root.size);
13984 }
13985 \f
13986 struct percent_op_match
13987 {
13988 const char *str;
13989 bfd_reloc_code_real_type reloc;
13990 };
13991
13992 static const struct percent_op_match mips_percent_op[] =
13993 {
13994 {"%lo", BFD_RELOC_LO16},
13995 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13996 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13997 {"%call16", BFD_RELOC_MIPS_CALL16},
13998 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13999 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14000 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14001 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14002 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14003 {"%got", BFD_RELOC_MIPS_GOT16},
14004 {"%gp_rel", BFD_RELOC_GPREL16},
14005 {"%half", BFD_RELOC_16},
14006 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14007 {"%higher", BFD_RELOC_MIPS_HIGHER},
14008 {"%neg", BFD_RELOC_MIPS_SUB},
14009 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14010 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14011 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14012 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14013 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14014 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14015 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14016 {"%hi", BFD_RELOC_HI16_S},
14017 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14018 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14019 };
14020
14021 static const struct percent_op_match mips16_percent_op[] =
14022 {
14023 {"%lo", BFD_RELOC_MIPS16_LO16},
14024 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14025 {"%got", BFD_RELOC_MIPS16_GOT16},
14026 {"%call16", BFD_RELOC_MIPS16_CALL16},
14027 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14028 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14029 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14030 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14031 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14032 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14033 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14034 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14035 };
14036
14037
14038 /* Return true if *STR points to a relocation operator. When returning true,
14039 move *STR over the operator and store its relocation code in *RELOC.
14040 Leave both *STR and *RELOC alone when returning false. */
14041
14042 static bfd_boolean
14043 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14044 {
14045 const struct percent_op_match *percent_op;
14046 size_t limit, i;
14047
14048 if (mips_opts.mips16)
14049 {
14050 percent_op = mips16_percent_op;
14051 limit = ARRAY_SIZE (mips16_percent_op);
14052 }
14053 else
14054 {
14055 percent_op = mips_percent_op;
14056 limit = ARRAY_SIZE (mips_percent_op);
14057 }
14058
14059 for (i = 0; i < limit; i++)
14060 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14061 {
14062 int len = strlen (percent_op[i].str);
14063
14064 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14065 continue;
14066
14067 *str += strlen (percent_op[i].str);
14068 *reloc = percent_op[i].reloc;
14069
14070 /* Check whether the output BFD supports this relocation.
14071 If not, issue an error and fall back on something safe. */
14072 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14073 {
14074 as_bad (_("relocation %s isn't supported by the current ABI"),
14075 percent_op[i].str);
14076 *reloc = BFD_RELOC_UNUSED;
14077 }
14078 return TRUE;
14079 }
14080 return FALSE;
14081 }
14082
14083
14084 /* Parse string STR as a 16-bit relocatable operand. Store the
14085 expression in *EP and the relocations in the array starting
14086 at RELOC. Return the number of relocation operators used.
14087
14088 On exit, EXPR_END points to the first character after the expression. */
14089
14090 static size_t
14091 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14092 char *str)
14093 {
14094 bfd_reloc_code_real_type reversed_reloc[3];
14095 size_t reloc_index, i;
14096 int crux_depth, str_depth;
14097 char *crux;
14098
14099 /* Search for the start of the main expression, recoding relocations
14100 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14101 of the main expression and with CRUX_DEPTH containing the number
14102 of open brackets at that point. */
14103 reloc_index = -1;
14104 str_depth = 0;
14105 do
14106 {
14107 reloc_index++;
14108 crux = str;
14109 crux_depth = str_depth;
14110
14111 /* Skip over whitespace and brackets, keeping count of the number
14112 of brackets. */
14113 while (*str == ' ' || *str == '\t' || *str == '(')
14114 if (*str++ == '(')
14115 str_depth++;
14116 }
14117 while (*str == '%'
14118 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14119 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14120
14121 my_getExpression (ep, crux);
14122 str = expr_end;
14123
14124 /* Match every open bracket. */
14125 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14126 if (*str++ == ')')
14127 crux_depth--;
14128
14129 if (crux_depth > 0)
14130 as_bad (_("unclosed '('"));
14131
14132 expr_end = str;
14133
14134 if (reloc_index != 0)
14135 {
14136 prev_reloc_op_frag = frag_now;
14137 for (i = 0; i < reloc_index; i++)
14138 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14139 }
14140
14141 return reloc_index;
14142 }
14143
14144 static void
14145 my_getExpression (expressionS *ep, char *str)
14146 {
14147 char *save_in;
14148
14149 save_in = input_line_pointer;
14150 input_line_pointer = str;
14151 expression (ep);
14152 expr_end = input_line_pointer;
14153 input_line_pointer = save_in;
14154 }
14155
14156 const char *
14157 md_atof (int type, char *litP, int *sizeP)
14158 {
14159 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14160 }
14161
14162 void
14163 md_number_to_chars (char *buf, valueT val, int n)
14164 {
14165 if (target_big_endian)
14166 number_to_chars_bigendian (buf, val, n);
14167 else
14168 number_to_chars_littleendian (buf, val, n);
14169 }
14170 \f
14171 static int support_64bit_objects(void)
14172 {
14173 const char **list, **l;
14174 int yes;
14175
14176 list = bfd_target_list ();
14177 for (l = list; *l != NULL; l++)
14178 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14179 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14180 break;
14181 yes = (*l != NULL);
14182 free (list);
14183 return yes;
14184 }
14185
14186 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14187 NEW_VALUE. Warn if another value was already specified. Note:
14188 we have to defer parsing the -march and -mtune arguments in order
14189 to handle 'from-abi' correctly, since the ABI might be specified
14190 in a later argument. */
14191
14192 static void
14193 mips_set_option_string (const char **string_ptr, const char *new_value)
14194 {
14195 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14196 as_warn (_("a different %s was already specified, is now %s"),
14197 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14198 new_value);
14199
14200 *string_ptr = new_value;
14201 }
14202
14203 int
14204 md_parse_option (int c, const char *arg)
14205 {
14206 unsigned int i;
14207
14208 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14209 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14210 {
14211 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14212 c == mips_ases[i].option_on);
14213 return 1;
14214 }
14215
14216 switch (c)
14217 {
14218 case OPTION_CONSTRUCT_FLOATS:
14219 mips_disable_float_construction = 0;
14220 break;
14221
14222 case OPTION_NO_CONSTRUCT_FLOATS:
14223 mips_disable_float_construction = 1;
14224 break;
14225
14226 case OPTION_TRAP:
14227 mips_trap = 1;
14228 break;
14229
14230 case OPTION_BREAK:
14231 mips_trap = 0;
14232 break;
14233
14234 case OPTION_EB:
14235 target_big_endian = 1;
14236 break;
14237
14238 case OPTION_EL:
14239 target_big_endian = 0;
14240 break;
14241
14242 case 'O':
14243 if (arg == NULL)
14244 mips_optimize = 1;
14245 else if (arg[0] == '0')
14246 mips_optimize = 0;
14247 else if (arg[0] == '1')
14248 mips_optimize = 1;
14249 else
14250 mips_optimize = 2;
14251 break;
14252
14253 case 'g':
14254 if (arg == NULL)
14255 mips_debug = 2;
14256 else
14257 mips_debug = atoi (arg);
14258 break;
14259
14260 case OPTION_MIPS1:
14261 file_mips_opts.isa = ISA_MIPS1;
14262 break;
14263
14264 case OPTION_MIPS2:
14265 file_mips_opts.isa = ISA_MIPS2;
14266 break;
14267
14268 case OPTION_MIPS3:
14269 file_mips_opts.isa = ISA_MIPS3;
14270 break;
14271
14272 case OPTION_MIPS4:
14273 file_mips_opts.isa = ISA_MIPS4;
14274 break;
14275
14276 case OPTION_MIPS5:
14277 file_mips_opts.isa = ISA_MIPS5;
14278 break;
14279
14280 case OPTION_MIPS32:
14281 file_mips_opts.isa = ISA_MIPS32;
14282 break;
14283
14284 case OPTION_MIPS32R2:
14285 file_mips_opts.isa = ISA_MIPS32R2;
14286 break;
14287
14288 case OPTION_MIPS32R3:
14289 file_mips_opts.isa = ISA_MIPS32R3;
14290 break;
14291
14292 case OPTION_MIPS32R5:
14293 file_mips_opts.isa = ISA_MIPS32R5;
14294 break;
14295
14296 case OPTION_MIPS32R6:
14297 file_mips_opts.isa = ISA_MIPS32R6;
14298 break;
14299
14300 case OPTION_MIPS64R2:
14301 file_mips_opts.isa = ISA_MIPS64R2;
14302 break;
14303
14304 case OPTION_MIPS64R3:
14305 file_mips_opts.isa = ISA_MIPS64R3;
14306 break;
14307
14308 case OPTION_MIPS64R5:
14309 file_mips_opts.isa = ISA_MIPS64R5;
14310 break;
14311
14312 case OPTION_MIPS64R6:
14313 file_mips_opts.isa = ISA_MIPS64R6;
14314 break;
14315
14316 case OPTION_MIPS64:
14317 file_mips_opts.isa = ISA_MIPS64;
14318 break;
14319
14320 case OPTION_MTUNE:
14321 mips_set_option_string (&mips_tune_string, arg);
14322 break;
14323
14324 case OPTION_MARCH:
14325 mips_set_option_string (&mips_arch_string, arg);
14326 break;
14327
14328 case OPTION_M4650:
14329 mips_set_option_string (&mips_arch_string, "4650");
14330 mips_set_option_string (&mips_tune_string, "4650");
14331 break;
14332
14333 case OPTION_NO_M4650:
14334 break;
14335
14336 case OPTION_M4010:
14337 mips_set_option_string (&mips_arch_string, "4010");
14338 mips_set_option_string (&mips_tune_string, "4010");
14339 break;
14340
14341 case OPTION_NO_M4010:
14342 break;
14343
14344 case OPTION_M4100:
14345 mips_set_option_string (&mips_arch_string, "4100");
14346 mips_set_option_string (&mips_tune_string, "4100");
14347 break;
14348
14349 case OPTION_NO_M4100:
14350 break;
14351
14352 case OPTION_M3900:
14353 mips_set_option_string (&mips_arch_string, "3900");
14354 mips_set_option_string (&mips_tune_string, "3900");
14355 break;
14356
14357 case OPTION_NO_M3900:
14358 break;
14359
14360 case OPTION_MICROMIPS:
14361 if (file_mips_opts.mips16 == 1)
14362 {
14363 as_bad (_("-mmicromips cannot be used with -mips16"));
14364 return 0;
14365 }
14366 file_mips_opts.micromips = 1;
14367 mips_no_prev_insn ();
14368 break;
14369
14370 case OPTION_NO_MICROMIPS:
14371 file_mips_opts.micromips = 0;
14372 mips_no_prev_insn ();
14373 break;
14374
14375 case OPTION_MIPS16:
14376 if (file_mips_opts.micromips == 1)
14377 {
14378 as_bad (_("-mips16 cannot be used with -micromips"));
14379 return 0;
14380 }
14381 file_mips_opts.mips16 = 1;
14382 mips_no_prev_insn ();
14383 break;
14384
14385 case OPTION_NO_MIPS16:
14386 file_mips_opts.mips16 = 0;
14387 mips_no_prev_insn ();
14388 break;
14389
14390 case OPTION_FIX_24K:
14391 mips_fix_24k = 1;
14392 break;
14393
14394 case OPTION_NO_FIX_24K:
14395 mips_fix_24k = 0;
14396 break;
14397
14398 case OPTION_FIX_RM7000:
14399 mips_fix_rm7000 = 1;
14400 break;
14401
14402 case OPTION_NO_FIX_RM7000:
14403 mips_fix_rm7000 = 0;
14404 break;
14405
14406 case OPTION_FIX_LOONGSON2F_JUMP:
14407 mips_fix_loongson2f_jump = TRUE;
14408 break;
14409
14410 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14411 mips_fix_loongson2f_jump = FALSE;
14412 break;
14413
14414 case OPTION_FIX_LOONGSON2F_NOP:
14415 mips_fix_loongson2f_nop = TRUE;
14416 break;
14417
14418 case OPTION_NO_FIX_LOONGSON2F_NOP:
14419 mips_fix_loongson2f_nop = FALSE;
14420 break;
14421
14422 case OPTION_FIX_VR4120:
14423 mips_fix_vr4120 = 1;
14424 break;
14425
14426 case OPTION_NO_FIX_VR4120:
14427 mips_fix_vr4120 = 0;
14428 break;
14429
14430 case OPTION_FIX_VR4130:
14431 mips_fix_vr4130 = 1;
14432 break;
14433
14434 case OPTION_NO_FIX_VR4130:
14435 mips_fix_vr4130 = 0;
14436 break;
14437
14438 case OPTION_FIX_CN63XXP1:
14439 mips_fix_cn63xxp1 = TRUE;
14440 break;
14441
14442 case OPTION_NO_FIX_CN63XXP1:
14443 mips_fix_cn63xxp1 = FALSE;
14444 break;
14445
14446 case OPTION_RELAX_BRANCH:
14447 mips_relax_branch = 1;
14448 break;
14449
14450 case OPTION_NO_RELAX_BRANCH:
14451 mips_relax_branch = 0;
14452 break;
14453
14454 case OPTION_INSN32:
14455 file_mips_opts.insn32 = TRUE;
14456 break;
14457
14458 case OPTION_NO_INSN32:
14459 file_mips_opts.insn32 = FALSE;
14460 break;
14461
14462 case OPTION_MSHARED:
14463 mips_in_shared = TRUE;
14464 break;
14465
14466 case OPTION_MNO_SHARED:
14467 mips_in_shared = FALSE;
14468 break;
14469
14470 case OPTION_MSYM32:
14471 file_mips_opts.sym32 = TRUE;
14472 break;
14473
14474 case OPTION_MNO_SYM32:
14475 file_mips_opts.sym32 = FALSE;
14476 break;
14477
14478 /* When generating ELF code, we permit -KPIC and -call_shared to
14479 select SVR4_PIC, and -non_shared to select no PIC. This is
14480 intended to be compatible with Irix 5. */
14481 case OPTION_CALL_SHARED:
14482 mips_pic = SVR4_PIC;
14483 mips_abicalls = TRUE;
14484 break;
14485
14486 case OPTION_CALL_NONPIC:
14487 mips_pic = NO_PIC;
14488 mips_abicalls = TRUE;
14489 break;
14490
14491 case OPTION_NON_SHARED:
14492 mips_pic = NO_PIC;
14493 mips_abicalls = FALSE;
14494 break;
14495
14496 /* The -xgot option tells the assembler to use 32 bit offsets
14497 when accessing the got in SVR4_PIC mode. It is for Irix
14498 compatibility. */
14499 case OPTION_XGOT:
14500 mips_big_got = 1;
14501 break;
14502
14503 case 'G':
14504 g_switch_value = atoi (arg);
14505 g_switch_seen = 1;
14506 break;
14507
14508 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14509 and -mabi=64. */
14510 case OPTION_32:
14511 mips_abi = O32_ABI;
14512 break;
14513
14514 case OPTION_N32:
14515 mips_abi = N32_ABI;
14516 break;
14517
14518 case OPTION_64:
14519 mips_abi = N64_ABI;
14520 if (!support_64bit_objects())
14521 as_fatal (_("no compiled in support for 64 bit object file format"));
14522 break;
14523
14524 case OPTION_GP32:
14525 file_mips_opts.gp = 32;
14526 break;
14527
14528 case OPTION_GP64:
14529 file_mips_opts.gp = 64;
14530 break;
14531
14532 case OPTION_FP32:
14533 file_mips_opts.fp = 32;
14534 break;
14535
14536 case OPTION_FPXX:
14537 file_mips_opts.fp = 0;
14538 break;
14539
14540 case OPTION_FP64:
14541 file_mips_opts.fp = 64;
14542 break;
14543
14544 case OPTION_ODD_SPREG:
14545 file_mips_opts.oddspreg = 1;
14546 break;
14547
14548 case OPTION_NO_ODD_SPREG:
14549 file_mips_opts.oddspreg = 0;
14550 break;
14551
14552 case OPTION_SINGLE_FLOAT:
14553 file_mips_opts.single_float = 1;
14554 break;
14555
14556 case OPTION_DOUBLE_FLOAT:
14557 file_mips_opts.single_float = 0;
14558 break;
14559
14560 case OPTION_SOFT_FLOAT:
14561 file_mips_opts.soft_float = 1;
14562 break;
14563
14564 case OPTION_HARD_FLOAT:
14565 file_mips_opts.soft_float = 0;
14566 break;
14567
14568 case OPTION_MABI:
14569 if (strcmp (arg, "32") == 0)
14570 mips_abi = O32_ABI;
14571 else if (strcmp (arg, "o64") == 0)
14572 mips_abi = O64_ABI;
14573 else if (strcmp (arg, "n32") == 0)
14574 mips_abi = N32_ABI;
14575 else if (strcmp (arg, "64") == 0)
14576 {
14577 mips_abi = N64_ABI;
14578 if (! support_64bit_objects())
14579 as_fatal (_("no compiled in support for 64 bit object file "
14580 "format"));
14581 }
14582 else if (strcmp (arg, "eabi") == 0)
14583 mips_abi = EABI_ABI;
14584 else
14585 {
14586 as_fatal (_("invalid abi -mabi=%s"), arg);
14587 return 0;
14588 }
14589 break;
14590
14591 case OPTION_M7000_HILO_FIX:
14592 mips_7000_hilo_fix = TRUE;
14593 break;
14594
14595 case OPTION_MNO_7000_HILO_FIX:
14596 mips_7000_hilo_fix = FALSE;
14597 break;
14598
14599 case OPTION_MDEBUG:
14600 mips_flag_mdebug = TRUE;
14601 break;
14602
14603 case OPTION_NO_MDEBUG:
14604 mips_flag_mdebug = FALSE;
14605 break;
14606
14607 case OPTION_PDR:
14608 mips_flag_pdr = TRUE;
14609 break;
14610
14611 case OPTION_NO_PDR:
14612 mips_flag_pdr = FALSE;
14613 break;
14614
14615 case OPTION_MVXWORKS_PIC:
14616 mips_pic = VXWORKS_PIC;
14617 break;
14618
14619 case OPTION_NAN:
14620 if (strcmp (arg, "2008") == 0)
14621 mips_nan2008 = 1;
14622 else if (strcmp (arg, "legacy") == 0)
14623 mips_nan2008 = 0;
14624 else
14625 {
14626 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14627 return 0;
14628 }
14629 break;
14630
14631 default:
14632 return 0;
14633 }
14634
14635 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14636
14637 return 1;
14638 }
14639 \f
14640 /* Set up globals to tune for the ISA or processor described by INFO. */
14641
14642 static void
14643 mips_set_tune (const struct mips_cpu_info *info)
14644 {
14645 if (info != 0)
14646 mips_tune = info->cpu;
14647 }
14648
14649
14650 void
14651 mips_after_parse_args (void)
14652 {
14653 const struct mips_cpu_info *arch_info = 0;
14654 const struct mips_cpu_info *tune_info = 0;
14655
14656 /* GP relative stuff not working for PE */
14657 if (strncmp (TARGET_OS, "pe", 2) == 0)
14658 {
14659 if (g_switch_seen && g_switch_value != 0)
14660 as_bad (_("-G not supported in this configuration"));
14661 g_switch_value = 0;
14662 }
14663
14664 if (mips_abi == NO_ABI)
14665 mips_abi = MIPS_DEFAULT_ABI;
14666
14667 /* The following code determines the architecture.
14668 Similar code was added to GCC 3.3 (see override_options() in
14669 config/mips/mips.c). The GAS and GCC code should be kept in sync
14670 as much as possible. */
14671
14672 if (mips_arch_string != 0)
14673 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14674
14675 if (file_mips_opts.isa != ISA_UNKNOWN)
14676 {
14677 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14678 ISA level specified by -mipsN, while arch_info->isa contains
14679 the -march selection (if any). */
14680 if (arch_info != 0)
14681 {
14682 /* -march takes precedence over -mipsN, since it is more descriptive.
14683 There's no harm in specifying both as long as the ISA levels
14684 are the same. */
14685 if (file_mips_opts.isa != arch_info->isa)
14686 as_bad (_("-%s conflicts with the other architecture options,"
14687 " which imply -%s"),
14688 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14689 mips_cpu_info_from_isa (arch_info->isa)->name);
14690 }
14691 else
14692 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14693 }
14694
14695 if (arch_info == 0)
14696 {
14697 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14698 gas_assert (arch_info);
14699 }
14700
14701 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14702 as_bad (_("-march=%s is not compatible with the selected ABI"),
14703 arch_info->name);
14704
14705 file_mips_opts.arch = arch_info->cpu;
14706 file_mips_opts.isa = arch_info->isa;
14707
14708 /* Set up initial mips_opts state. */
14709 mips_opts = file_mips_opts;
14710
14711 /* The register size inference code is now placed in
14712 file_mips_check_options. */
14713
14714 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14715 processor. */
14716 if (mips_tune_string != 0)
14717 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14718
14719 if (tune_info == 0)
14720 mips_set_tune (arch_info);
14721 else
14722 mips_set_tune (tune_info);
14723
14724 if (mips_flag_mdebug < 0)
14725 mips_flag_mdebug = 0;
14726 }
14727 \f
14728 void
14729 mips_init_after_args (void)
14730 {
14731 /* initialize opcodes */
14732 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14733 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14734 }
14735
14736 long
14737 md_pcrel_from (fixS *fixP)
14738 {
14739 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14740 switch (fixP->fx_r_type)
14741 {
14742 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14743 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14744 /* Return the address of the delay slot. */
14745 return addr + 2;
14746
14747 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14748 case BFD_RELOC_MICROMIPS_JMP:
14749 case BFD_RELOC_MIPS16_16_PCREL_S1:
14750 case BFD_RELOC_16_PCREL_S2:
14751 case BFD_RELOC_MIPS_21_PCREL_S2:
14752 case BFD_RELOC_MIPS_26_PCREL_S2:
14753 case BFD_RELOC_MIPS_JMP:
14754 /* Return the address of the delay slot. */
14755 return addr + 4;
14756
14757 case BFD_RELOC_MIPS_18_PCREL_S3:
14758 /* Return the aligned address of the doubleword containing
14759 the instruction. */
14760 return addr & ~7;
14761
14762 default:
14763 return addr;
14764 }
14765 }
14766
14767 /* This is called before the symbol table is processed. In order to
14768 work with gcc when using mips-tfile, we must keep all local labels.
14769 However, in other cases, we want to discard them. If we were
14770 called with -g, but we didn't see any debugging information, it may
14771 mean that gcc is smuggling debugging information through to
14772 mips-tfile, in which case we must generate all local labels. */
14773
14774 void
14775 mips_frob_file_before_adjust (void)
14776 {
14777 #ifndef NO_ECOFF_DEBUGGING
14778 if (ECOFF_DEBUGGING
14779 && mips_debug != 0
14780 && ! ecoff_debugging_seen)
14781 flag_keep_locals = 1;
14782 #endif
14783 }
14784
14785 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14786 the corresponding LO16 reloc. This is called before md_apply_fix and
14787 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14788 relocation operators.
14789
14790 For our purposes, a %lo() expression matches a %got() or %hi()
14791 expression if:
14792
14793 (a) it refers to the same symbol; and
14794 (b) the offset applied in the %lo() expression is no lower than
14795 the offset applied in the %got() or %hi().
14796
14797 (b) allows us to cope with code like:
14798
14799 lui $4,%hi(foo)
14800 lh $4,%lo(foo+2)($4)
14801
14802 ...which is legal on RELA targets, and has a well-defined behaviour
14803 if the user knows that adding 2 to "foo" will not induce a carry to
14804 the high 16 bits.
14805
14806 When several %lo()s match a particular %got() or %hi(), we use the
14807 following rules to distinguish them:
14808
14809 (1) %lo()s with smaller offsets are a better match than %lo()s with
14810 higher offsets.
14811
14812 (2) %lo()s with no matching %got() or %hi() are better than those
14813 that already have a matching %got() or %hi().
14814
14815 (3) later %lo()s are better than earlier %lo()s.
14816
14817 These rules are applied in order.
14818
14819 (1) means, among other things, that %lo()s with identical offsets are
14820 chosen if they exist.
14821
14822 (2) means that we won't associate several high-part relocations with
14823 the same low-part relocation unless there's no alternative. Having
14824 several high parts for the same low part is a GNU extension; this rule
14825 allows careful users to avoid it.
14826
14827 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14828 with the last high-part relocation being at the front of the list.
14829 It therefore makes sense to choose the last matching low-part
14830 relocation, all other things being equal. It's also easier
14831 to code that way. */
14832
14833 void
14834 mips_frob_file (void)
14835 {
14836 struct mips_hi_fixup *l;
14837 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14838
14839 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14840 {
14841 segment_info_type *seginfo;
14842 bfd_boolean matched_lo_p;
14843 fixS **hi_pos, **lo_pos, **pos;
14844
14845 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14846
14847 /* If a GOT16 relocation turns out to be against a global symbol,
14848 there isn't supposed to be a matching LO. Ignore %gots against
14849 constants; we'll report an error for those later. */
14850 if (got16_reloc_p (l->fixp->fx_r_type)
14851 && !(l->fixp->fx_addsy
14852 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14853 continue;
14854
14855 /* Check quickly whether the next fixup happens to be a matching %lo. */
14856 if (fixup_has_matching_lo_p (l->fixp))
14857 continue;
14858
14859 seginfo = seg_info (l->seg);
14860
14861 /* Set HI_POS to the position of this relocation in the chain.
14862 Set LO_POS to the position of the chosen low-part relocation.
14863 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14864 relocation that matches an immediately-preceding high-part
14865 relocation. */
14866 hi_pos = NULL;
14867 lo_pos = NULL;
14868 matched_lo_p = FALSE;
14869 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14870
14871 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14872 {
14873 if (*pos == l->fixp)
14874 hi_pos = pos;
14875
14876 if ((*pos)->fx_r_type == looking_for_rtype
14877 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14878 && (*pos)->fx_offset >= l->fixp->fx_offset
14879 && (lo_pos == NULL
14880 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14881 || (!matched_lo_p
14882 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14883 lo_pos = pos;
14884
14885 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14886 && fixup_has_matching_lo_p (*pos));
14887 }
14888
14889 /* If we found a match, remove the high-part relocation from its
14890 current position and insert it before the low-part relocation.
14891 Make the offsets match so that fixup_has_matching_lo_p()
14892 will return true.
14893
14894 We don't warn about unmatched high-part relocations since some
14895 versions of gcc have been known to emit dead "lui ...%hi(...)"
14896 instructions. */
14897 if (lo_pos != NULL)
14898 {
14899 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14900 if (l->fixp->fx_next != *lo_pos)
14901 {
14902 *hi_pos = l->fixp->fx_next;
14903 l->fixp->fx_next = *lo_pos;
14904 *lo_pos = l->fixp;
14905 }
14906 }
14907 }
14908 }
14909
14910 int
14911 mips_force_relocation (fixS *fixp)
14912 {
14913 if (generic_force_reloc (fixp))
14914 return 1;
14915
14916 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14917 so that the linker relaxation can update targets. */
14918 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14919 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14920 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14921 return 1;
14922
14923 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
14924 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
14925 microMIPS symbols so that we can do cross-mode branch diagnostics
14926 and BAL to JALX conversion by the linker. */
14927 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14928 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14929 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
14930 && fixp->fx_addsy
14931 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
14932 return 1;
14933
14934 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14935 if (ISA_IS_R6 (file_mips_opts.isa)
14936 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14937 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14938 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14939 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14940 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14941 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14942 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14943 return 1;
14944
14945 return 0;
14946 }
14947
14948 /* Implement TC_FORCE_RELOCATION_ABS. */
14949
14950 bfd_boolean
14951 mips_force_relocation_abs (fixS *fixp)
14952 {
14953 if (generic_force_reloc (fixp))
14954 return TRUE;
14955
14956 /* These relocations do not have enough bits in the in-place addend
14957 to hold an arbitrary absolute section's offset. */
14958 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
14959 return TRUE;
14960
14961 return FALSE;
14962 }
14963
14964 /* Read the instruction associated with RELOC from BUF. */
14965
14966 static unsigned int
14967 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14968 {
14969 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14970 return read_compressed_insn (buf, 4);
14971 else
14972 return read_insn (buf);
14973 }
14974
14975 /* Write instruction INSN to BUF, given that it has been relocated
14976 by RELOC. */
14977
14978 static void
14979 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14980 unsigned long insn)
14981 {
14982 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14983 write_compressed_insn (buf, insn, 4);
14984 else
14985 write_insn (buf, insn);
14986 }
14987
14988 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
14989 to a symbol in another ISA mode, which cannot be converted to JALX. */
14990
14991 static bfd_boolean
14992 fix_bad_cross_mode_jump_p (fixS *fixP)
14993 {
14994 unsigned long opcode;
14995 int other;
14996 char *buf;
14997
14998 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
14999 return FALSE;
15000
15001 other = S_GET_OTHER (fixP->fx_addsy);
15002 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15003 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15004 switch (fixP->fx_r_type)
15005 {
15006 case BFD_RELOC_MIPS_JMP:
15007 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15008 case BFD_RELOC_MICROMIPS_JMP:
15009 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15010 default:
15011 return FALSE;
15012 }
15013 }
15014
15015 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15016 jump to a symbol in the same ISA mode. */
15017
15018 static bfd_boolean
15019 fix_bad_same_mode_jalx_p (fixS *fixP)
15020 {
15021 unsigned long opcode;
15022 int other;
15023 char *buf;
15024
15025 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15026 return FALSE;
15027
15028 other = S_GET_OTHER (fixP->fx_addsy);
15029 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15030 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15031 switch (fixP->fx_r_type)
15032 {
15033 case BFD_RELOC_MIPS_JMP:
15034 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15035 case BFD_RELOC_MIPS16_JMP:
15036 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15037 case BFD_RELOC_MICROMIPS_JMP:
15038 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15039 default:
15040 return FALSE;
15041 }
15042 }
15043
15044 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15045 to a symbol whose value plus addend is not aligned according to the
15046 ultimate (after linker relaxation) jump instruction's immediate field
15047 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15048 regular MIPS code, to (1 << 2). */
15049
15050 static bfd_boolean
15051 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15052 {
15053 bfd_boolean micro_to_mips_p;
15054 valueT val;
15055 int other;
15056
15057 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15058 return FALSE;
15059
15060 other = S_GET_OTHER (fixP->fx_addsy);
15061 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15062 val += fixP->fx_offset;
15063 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15064 && !ELF_ST_IS_MICROMIPS (other));
15065 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15066 != ELF_ST_IS_COMPRESSED (other));
15067 }
15068
15069 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15070 to a symbol whose annotation indicates another ISA mode. For absolute
15071 symbols check the ISA bit instead.
15072
15073 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15074 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15075 MIPS symbols and associated with BAL instructions as these instructions
15076 may be be converted to JALX by the linker. */
15077
15078 static bfd_boolean
15079 fix_bad_cross_mode_branch_p (fixS *fixP)
15080 {
15081 bfd_boolean absolute_p;
15082 unsigned long opcode;
15083 asection *symsec;
15084 valueT val;
15085 int other;
15086 char *buf;
15087
15088 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15089 return FALSE;
15090
15091 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15092 absolute_p = bfd_is_abs_section (symsec);
15093
15094 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15095 other = S_GET_OTHER (fixP->fx_addsy);
15096
15097 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15098 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15099 switch (fixP->fx_r_type)
15100 {
15101 case BFD_RELOC_16_PCREL_S2:
15102 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15103 && opcode != 0x0411);
15104 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15105 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15106 && opcode != 0x4060);
15107 case BFD_RELOC_MIPS_21_PCREL_S2:
15108 case BFD_RELOC_MIPS_26_PCREL_S2:
15109 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15110 case BFD_RELOC_MIPS16_16_PCREL_S1:
15111 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15112 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15113 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15114 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15115 default:
15116 abort ();
15117 }
15118 }
15119
15120 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15121 branch instruction pointed to by FIXP is not aligned according to the
15122 branch instruction's immediate field requirement. We need the addend
15123 to preserve the ISA bit and also the sum must not have bit 2 set. We
15124 must explicitly OR in the ISA bit from symbol annotation as the bit
15125 won't be set in the symbol's value then. */
15126
15127 static bfd_boolean
15128 fix_bad_misaligned_branch_p (fixS *fixP)
15129 {
15130 bfd_boolean absolute_p;
15131 asection *symsec;
15132 valueT isa_bit;
15133 valueT val;
15134 valueT off;
15135 int other;
15136
15137 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15138 return FALSE;
15139
15140 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15141 absolute_p = bfd_is_abs_section (symsec);
15142
15143 val = S_GET_VALUE (fixP->fx_addsy);
15144 other = S_GET_OTHER (fixP->fx_addsy);
15145 off = fixP->fx_offset;
15146
15147 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15148 val |= ELF_ST_IS_COMPRESSED (other);
15149 val += off;
15150 return (val & 0x3) != isa_bit;
15151 }
15152
15153 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15154 and its calculated value VAL. */
15155
15156 static void
15157 fix_validate_branch (fixS *fixP, valueT val)
15158 {
15159 if (fixP->fx_done && (val & 0x3) != 0)
15160 as_bad_where (fixP->fx_file, fixP->fx_line,
15161 _("branch to misaligned address (0x%lx)"),
15162 (long) (val + md_pcrel_from (fixP)));
15163 else if (fix_bad_cross_mode_branch_p (fixP))
15164 as_bad_where (fixP->fx_file, fixP->fx_line,
15165 _("branch to a symbol in another ISA mode"));
15166 else if (fix_bad_misaligned_branch_p (fixP))
15167 as_bad_where (fixP->fx_file, fixP->fx_line,
15168 _("branch to misaligned address (0x%lx)"),
15169 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15170 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15171 as_bad_where (fixP->fx_file, fixP->fx_line,
15172 _("cannot encode misaligned addend "
15173 "in the relocatable field (0x%lx)"),
15174 (long) fixP->fx_offset);
15175 }
15176
15177 /* Apply a fixup to the object file. */
15178
15179 void
15180 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15181 {
15182 char *buf;
15183 unsigned long insn;
15184 reloc_howto_type *howto;
15185
15186 if (fixP->fx_pcrel)
15187 switch (fixP->fx_r_type)
15188 {
15189 case BFD_RELOC_16_PCREL_S2:
15190 case BFD_RELOC_MIPS16_16_PCREL_S1:
15191 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15192 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15193 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15194 case BFD_RELOC_32_PCREL:
15195 case BFD_RELOC_MIPS_21_PCREL_S2:
15196 case BFD_RELOC_MIPS_26_PCREL_S2:
15197 case BFD_RELOC_MIPS_18_PCREL_S3:
15198 case BFD_RELOC_MIPS_19_PCREL_S2:
15199 case BFD_RELOC_HI16_S_PCREL:
15200 case BFD_RELOC_LO16_PCREL:
15201 break;
15202
15203 case BFD_RELOC_32:
15204 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15205 break;
15206
15207 default:
15208 as_bad_where (fixP->fx_file, fixP->fx_line,
15209 _("PC-relative reference to a different section"));
15210 break;
15211 }
15212
15213 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15214 that have no MIPS ELF equivalent. */
15215 if (fixP->fx_r_type != BFD_RELOC_8)
15216 {
15217 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15218 if (!howto)
15219 return;
15220 }
15221
15222 gas_assert (fixP->fx_size == 2
15223 || fixP->fx_size == 4
15224 || fixP->fx_r_type == BFD_RELOC_8
15225 || fixP->fx_r_type == BFD_RELOC_16
15226 || fixP->fx_r_type == BFD_RELOC_64
15227 || fixP->fx_r_type == BFD_RELOC_CTOR
15228 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15229 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15230 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15231 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15232 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15233 || fixP->fx_r_type == BFD_RELOC_NONE);
15234
15235 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15236
15237 /* Don't treat parts of a composite relocation as done. There are two
15238 reasons for this:
15239
15240 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15241 should nevertheless be emitted if the first part is.
15242
15243 (2) In normal usage, composite relocations are never assembly-time
15244 constants. The easiest way of dealing with the pathological
15245 exceptions is to generate a relocation against STN_UNDEF and
15246 leave everything up to the linker. */
15247 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15248 fixP->fx_done = 1;
15249
15250 switch (fixP->fx_r_type)
15251 {
15252 case BFD_RELOC_MIPS_TLS_GD:
15253 case BFD_RELOC_MIPS_TLS_LDM:
15254 case BFD_RELOC_MIPS_TLS_DTPREL32:
15255 case BFD_RELOC_MIPS_TLS_DTPREL64:
15256 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15257 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15258 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15259 case BFD_RELOC_MIPS_TLS_TPREL32:
15260 case BFD_RELOC_MIPS_TLS_TPREL64:
15261 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15262 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15263 case BFD_RELOC_MICROMIPS_TLS_GD:
15264 case BFD_RELOC_MICROMIPS_TLS_LDM:
15265 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15266 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15267 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15268 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15269 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15270 case BFD_RELOC_MIPS16_TLS_GD:
15271 case BFD_RELOC_MIPS16_TLS_LDM:
15272 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15273 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15274 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15275 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15276 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15277 if (fixP->fx_addsy)
15278 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15279 else
15280 as_bad_where (fixP->fx_file, fixP->fx_line,
15281 _("TLS relocation against a constant"));
15282 break;
15283
15284 case BFD_RELOC_MIPS_JMP:
15285 case BFD_RELOC_MIPS16_JMP:
15286 case BFD_RELOC_MICROMIPS_JMP:
15287 {
15288 int shift;
15289
15290 gas_assert (!fixP->fx_done);
15291
15292 /* Shift is 2, unusually, for microMIPS JALX. */
15293 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15294 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15295 shift = 1;
15296 else
15297 shift = 2;
15298
15299 if (fix_bad_cross_mode_jump_p (fixP))
15300 as_bad_where (fixP->fx_file, fixP->fx_line,
15301 _("jump to a symbol in another ISA mode"));
15302 else if (fix_bad_same_mode_jalx_p (fixP))
15303 as_bad_where (fixP->fx_file, fixP->fx_line,
15304 _("JALX to a symbol in the same ISA mode"));
15305 else if (fix_bad_misaligned_jump_p (fixP, shift))
15306 as_bad_where (fixP->fx_file, fixP->fx_line,
15307 _("jump to misaligned address (0x%lx)"),
15308 (long) (S_GET_VALUE (fixP->fx_addsy)
15309 + fixP->fx_offset));
15310 else if (HAVE_IN_PLACE_ADDENDS
15311 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15312 as_bad_where (fixP->fx_file, fixP->fx_line,
15313 _("cannot encode misaligned addend "
15314 "in the relocatable field (0x%lx)"),
15315 (long) fixP->fx_offset);
15316 }
15317 /* Fall through. */
15318
15319 case BFD_RELOC_MIPS_SHIFT5:
15320 case BFD_RELOC_MIPS_SHIFT6:
15321 case BFD_RELOC_MIPS_GOT_DISP:
15322 case BFD_RELOC_MIPS_GOT_PAGE:
15323 case BFD_RELOC_MIPS_GOT_OFST:
15324 case BFD_RELOC_MIPS_SUB:
15325 case BFD_RELOC_MIPS_INSERT_A:
15326 case BFD_RELOC_MIPS_INSERT_B:
15327 case BFD_RELOC_MIPS_DELETE:
15328 case BFD_RELOC_MIPS_HIGHEST:
15329 case BFD_RELOC_MIPS_HIGHER:
15330 case BFD_RELOC_MIPS_SCN_DISP:
15331 case BFD_RELOC_MIPS_REL16:
15332 case BFD_RELOC_MIPS_RELGOT:
15333 case BFD_RELOC_MIPS_JALR:
15334 case BFD_RELOC_HI16:
15335 case BFD_RELOC_HI16_S:
15336 case BFD_RELOC_LO16:
15337 case BFD_RELOC_GPREL16:
15338 case BFD_RELOC_MIPS_LITERAL:
15339 case BFD_RELOC_MIPS_CALL16:
15340 case BFD_RELOC_MIPS_GOT16:
15341 case BFD_RELOC_GPREL32:
15342 case BFD_RELOC_MIPS_GOT_HI16:
15343 case BFD_RELOC_MIPS_GOT_LO16:
15344 case BFD_RELOC_MIPS_CALL_HI16:
15345 case BFD_RELOC_MIPS_CALL_LO16:
15346 case BFD_RELOC_HI16_S_PCREL:
15347 case BFD_RELOC_LO16_PCREL:
15348 case BFD_RELOC_MIPS16_GPREL:
15349 case BFD_RELOC_MIPS16_GOT16:
15350 case BFD_RELOC_MIPS16_CALL16:
15351 case BFD_RELOC_MIPS16_HI16:
15352 case BFD_RELOC_MIPS16_HI16_S:
15353 case BFD_RELOC_MIPS16_LO16:
15354 case BFD_RELOC_MICROMIPS_GOT_DISP:
15355 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15356 case BFD_RELOC_MICROMIPS_GOT_OFST:
15357 case BFD_RELOC_MICROMIPS_SUB:
15358 case BFD_RELOC_MICROMIPS_HIGHEST:
15359 case BFD_RELOC_MICROMIPS_HIGHER:
15360 case BFD_RELOC_MICROMIPS_SCN_DISP:
15361 case BFD_RELOC_MICROMIPS_JALR:
15362 case BFD_RELOC_MICROMIPS_HI16:
15363 case BFD_RELOC_MICROMIPS_HI16_S:
15364 case BFD_RELOC_MICROMIPS_LO16:
15365 case BFD_RELOC_MICROMIPS_GPREL16:
15366 case BFD_RELOC_MICROMIPS_LITERAL:
15367 case BFD_RELOC_MICROMIPS_CALL16:
15368 case BFD_RELOC_MICROMIPS_GOT16:
15369 case BFD_RELOC_MICROMIPS_GOT_HI16:
15370 case BFD_RELOC_MICROMIPS_GOT_LO16:
15371 case BFD_RELOC_MICROMIPS_CALL_HI16:
15372 case BFD_RELOC_MICROMIPS_CALL_LO16:
15373 case BFD_RELOC_MIPS_EH:
15374 if (fixP->fx_done)
15375 {
15376 offsetT value;
15377
15378 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15379 {
15380 insn = read_reloc_insn (buf, fixP->fx_r_type);
15381 if (mips16_reloc_p (fixP->fx_r_type))
15382 insn |= mips16_immed_extend (value, 16);
15383 else
15384 insn |= (value & 0xffff);
15385 write_reloc_insn (buf, fixP->fx_r_type, insn);
15386 }
15387 else
15388 as_bad_where (fixP->fx_file, fixP->fx_line,
15389 _("unsupported constant in relocation"));
15390 }
15391 break;
15392
15393 case BFD_RELOC_64:
15394 /* This is handled like BFD_RELOC_32, but we output a sign
15395 extended value if we are only 32 bits. */
15396 if (fixP->fx_done)
15397 {
15398 if (8 <= sizeof (valueT))
15399 md_number_to_chars (buf, *valP, 8);
15400 else
15401 {
15402 valueT hiv;
15403
15404 if ((*valP & 0x80000000) != 0)
15405 hiv = 0xffffffff;
15406 else
15407 hiv = 0;
15408 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15409 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15410 }
15411 }
15412 break;
15413
15414 case BFD_RELOC_RVA:
15415 case BFD_RELOC_32:
15416 case BFD_RELOC_32_PCREL:
15417 case BFD_RELOC_16:
15418 case BFD_RELOC_8:
15419 /* If we are deleting this reloc entry, we must fill in the
15420 value now. This can happen if we have a .word which is not
15421 resolved when it appears but is later defined. */
15422 if (fixP->fx_done)
15423 md_number_to_chars (buf, *valP, fixP->fx_size);
15424 break;
15425
15426 case BFD_RELOC_MIPS_21_PCREL_S2:
15427 fix_validate_branch (fixP, *valP);
15428 if (!fixP->fx_done)
15429 break;
15430
15431 if (*valP + 0x400000 <= 0x7fffff)
15432 {
15433 insn = read_insn (buf);
15434 insn |= (*valP >> 2) & 0x1fffff;
15435 write_insn (buf, insn);
15436 }
15437 else
15438 as_bad_where (fixP->fx_file, fixP->fx_line,
15439 _("branch out of range"));
15440 break;
15441
15442 case BFD_RELOC_MIPS_26_PCREL_S2:
15443 fix_validate_branch (fixP, *valP);
15444 if (!fixP->fx_done)
15445 break;
15446
15447 if (*valP + 0x8000000 <= 0xfffffff)
15448 {
15449 insn = read_insn (buf);
15450 insn |= (*valP >> 2) & 0x3ffffff;
15451 write_insn (buf, insn);
15452 }
15453 else
15454 as_bad_where (fixP->fx_file, fixP->fx_line,
15455 _("branch out of range"));
15456 break;
15457
15458 case BFD_RELOC_MIPS_18_PCREL_S3:
15459 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15460 as_bad_where (fixP->fx_file, fixP->fx_line,
15461 _("PC-relative access using misaligned symbol (%lx)"),
15462 (long) S_GET_VALUE (fixP->fx_addsy));
15463 if ((fixP->fx_offset & 0x7) != 0)
15464 as_bad_where (fixP->fx_file, fixP->fx_line,
15465 _("PC-relative access using misaligned offset (%lx)"),
15466 (long) fixP->fx_offset);
15467 if (!fixP->fx_done)
15468 break;
15469
15470 if (*valP + 0x100000 <= 0x1fffff)
15471 {
15472 insn = read_insn (buf);
15473 insn |= (*valP >> 3) & 0x3ffff;
15474 write_insn (buf, insn);
15475 }
15476 else
15477 as_bad_where (fixP->fx_file, fixP->fx_line,
15478 _("PC-relative access out of range"));
15479 break;
15480
15481 case BFD_RELOC_MIPS_19_PCREL_S2:
15482 if ((*valP & 0x3) != 0)
15483 as_bad_where (fixP->fx_file, fixP->fx_line,
15484 _("PC-relative access to misaligned address (%lx)"),
15485 (long) *valP);
15486 if (!fixP->fx_done)
15487 break;
15488
15489 if (*valP + 0x100000 <= 0x1fffff)
15490 {
15491 insn = read_insn (buf);
15492 insn |= (*valP >> 2) & 0x7ffff;
15493 write_insn (buf, insn);
15494 }
15495 else
15496 as_bad_where (fixP->fx_file, fixP->fx_line,
15497 _("PC-relative access out of range"));
15498 break;
15499
15500 case BFD_RELOC_16_PCREL_S2:
15501 fix_validate_branch (fixP, *valP);
15502
15503 /* We need to save the bits in the instruction since fixup_segment()
15504 might be deleting the relocation entry (i.e., a branch within
15505 the current segment). */
15506 if (! fixP->fx_done)
15507 break;
15508
15509 /* Update old instruction data. */
15510 insn = read_insn (buf);
15511
15512 if (*valP + 0x20000 <= 0x3ffff)
15513 {
15514 insn |= (*valP >> 2) & 0xffff;
15515 write_insn (buf, insn);
15516 }
15517 else if (mips_pic == NO_PIC
15518 && fixP->fx_done
15519 && fixP->fx_frag->fr_address >= text_section->vma
15520 && (fixP->fx_frag->fr_address
15521 < text_section->vma + bfd_get_section_size (text_section))
15522 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15523 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15524 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15525 {
15526 /* The branch offset is too large. If this is an
15527 unconditional branch, and we are not generating PIC code,
15528 we can convert it to an absolute jump instruction. */
15529 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15530 insn = 0x0c000000; /* jal */
15531 else
15532 insn = 0x08000000; /* j */
15533 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15534 fixP->fx_done = 0;
15535 fixP->fx_addsy = section_symbol (text_section);
15536 *valP += md_pcrel_from (fixP);
15537 write_insn (buf, insn);
15538 }
15539 else
15540 {
15541 /* If we got here, we have branch-relaxation disabled,
15542 and there's nothing we can do to fix this instruction
15543 without turning it into a longer sequence. */
15544 as_bad_where (fixP->fx_file, fixP->fx_line,
15545 _("branch out of range"));
15546 }
15547 break;
15548
15549 case BFD_RELOC_MIPS16_16_PCREL_S1:
15550 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15551 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15552 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15553 gas_assert (!fixP->fx_done);
15554 if (fix_bad_cross_mode_branch_p (fixP))
15555 as_bad_where (fixP->fx_file, fixP->fx_line,
15556 _("branch to a symbol in another ISA mode"));
15557 else if (fixP->fx_addsy
15558 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15559 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15560 && (fixP->fx_offset & 0x1) != 0)
15561 as_bad_where (fixP->fx_file, fixP->fx_line,
15562 _("branch to misaligned address (0x%lx)"),
15563 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15564 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15565 as_bad_where (fixP->fx_file, fixP->fx_line,
15566 _("cannot encode misaligned addend "
15567 "in the relocatable field (0x%lx)"),
15568 (long) fixP->fx_offset);
15569 break;
15570
15571 case BFD_RELOC_VTABLE_INHERIT:
15572 fixP->fx_done = 0;
15573 if (fixP->fx_addsy
15574 && !S_IS_DEFINED (fixP->fx_addsy)
15575 && !S_IS_WEAK (fixP->fx_addsy))
15576 S_SET_WEAK (fixP->fx_addsy);
15577 break;
15578
15579 case BFD_RELOC_NONE:
15580 case BFD_RELOC_VTABLE_ENTRY:
15581 fixP->fx_done = 0;
15582 break;
15583
15584 default:
15585 abort ();
15586 }
15587
15588 /* Remember value for tc_gen_reloc. */
15589 fixP->fx_addnumber = *valP;
15590 }
15591
15592 static symbolS *
15593 get_symbol (void)
15594 {
15595 int c;
15596 char *name;
15597 symbolS *p;
15598
15599 c = get_symbol_name (&name);
15600 p = (symbolS *) symbol_find_or_make (name);
15601 (void) restore_line_pointer (c);
15602 return p;
15603 }
15604
15605 /* Align the current frag to a given power of two. If a particular
15606 fill byte should be used, FILL points to an integer that contains
15607 that byte, otherwise FILL is null.
15608
15609 This function used to have the comment:
15610
15611 The MIPS assembler also automatically adjusts any preceding label.
15612
15613 The implementation therefore applied the adjustment to a maximum of
15614 one label. However, other label adjustments are applied to batches
15615 of labels, and adjusting just one caused problems when new labels
15616 were added for the sake of debugging or unwind information.
15617 We therefore adjust all preceding labels (given as LABELS) instead. */
15618
15619 static void
15620 mips_align (int to, int *fill, struct insn_label_list *labels)
15621 {
15622 mips_emit_delays ();
15623 mips_record_compressed_mode ();
15624 if (fill == NULL && subseg_text_p (now_seg))
15625 frag_align_code (to, 0);
15626 else
15627 frag_align (to, fill ? *fill : 0, 0);
15628 record_alignment (now_seg, to);
15629 mips_move_labels (labels, FALSE);
15630 }
15631
15632 /* Align to a given power of two. .align 0 turns off the automatic
15633 alignment used by the data creating pseudo-ops. */
15634
15635 static void
15636 s_align (int x ATTRIBUTE_UNUSED)
15637 {
15638 int temp, fill_value, *fill_ptr;
15639 long max_alignment = 28;
15640
15641 /* o Note that the assembler pulls down any immediately preceding label
15642 to the aligned address.
15643 o It's not documented but auto alignment is reinstated by
15644 a .align pseudo instruction.
15645 o Note also that after auto alignment is turned off the mips assembler
15646 issues an error on attempt to assemble an improperly aligned data item.
15647 We don't. */
15648
15649 temp = get_absolute_expression ();
15650 if (temp > max_alignment)
15651 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15652 else if (temp < 0)
15653 {
15654 as_warn (_("alignment negative, 0 assumed"));
15655 temp = 0;
15656 }
15657 if (*input_line_pointer == ',')
15658 {
15659 ++input_line_pointer;
15660 fill_value = get_absolute_expression ();
15661 fill_ptr = &fill_value;
15662 }
15663 else
15664 fill_ptr = 0;
15665 if (temp)
15666 {
15667 segment_info_type *si = seg_info (now_seg);
15668 struct insn_label_list *l = si->label_list;
15669 /* Auto alignment should be switched on by next section change. */
15670 auto_align = 1;
15671 mips_align (temp, fill_ptr, l);
15672 }
15673 else
15674 {
15675 auto_align = 0;
15676 }
15677
15678 demand_empty_rest_of_line ();
15679 }
15680
15681 static void
15682 s_change_sec (int sec)
15683 {
15684 segT seg;
15685
15686 /* The ELF backend needs to know that we are changing sections, so
15687 that .previous works correctly. We could do something like check
15688 for an obj_section_change_hook macro, but that might be confusing
15689 as it would not be appropriate to use it in the section changing
15690 functions in read.c, since obj-elf.c intercepts those. FIXME:
15691 This should be cleaner, somehow. */
15692 obj_elf_section_change_hook ();
15693
15694 mips_emit_delays ();
15695
15696 switch (sec)
15697 {
15698 case 't':
15699 s_text (0);
15700 break;
15701 case 'd':
15702 s_data (0);
15703 break;
15704 case 'b':
15705 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15706 demand_empty_rest_of_line ();
15707 break;
15708
15709 case 'r':
15710 seg = subseg_new (RDATA_SECTION_NAME,
15711 (subsegT) get_absolute_expression ());
15712 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15713 | SEC_READONLY | SEC_RELOC
15714 | SEC_DATA));
15715 if (strncmp (TARGET_OS, "elf", 3) != 0)
15716 record_alignment (seg, 4);
15717 demand_empty_rest_of_line ();
15718 break;
15719
15720 case 's':
15721 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15722 bfd_set_section_flags (stdoutput, seg,
15723 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15724 if (strncmp (TARGET_OS, "elf", 3) != 0)
15725 record_alignment (seg, 4);
15726 demand_empty_rest_of_line ();
15727 break;
15728
15729 case 'B':
15730 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15731 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15732 if (strncmp (TARGET_OS, "elf", 3) != 0)
15733 record_alignment (seg, 4);
15734 demand_empty_rest_of_line ();
15735 break;
15736 }
15737
15738 auto_align = 1;
15739 }
15740
15741 void
15742 s_change_section (int ignore ATTRIBUTE_UNUSED)
15743 {
15744 char *saved_ilp;
15745 char *section_name;
15746 char c, endc;
15747 char next_c = 0;
15748 int section_type;
15749 int section_flag;
15750 int section_entry_size;
15751 int section_alignment;
15752
15753 saved_ilp = input_line_pointer;
15754 endc = get_symbol_name (&section_name);
15755 c = (endc == '"' ? input_line_pointer[1] : endc);
15756 if (c)
15757 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15758
15759 /* Do we have .section Name<,"flags">? */
15760 if (c != ',' || (c == ',' && next_c == '"'))
15761 {
15762 /* Just after name is now '\0'. */
15763 (void) restore_line_pointer (endc);
15764 input_line_pointer = saved_ilp;
15765 obj_elf_section (ignore);
15766 return;
15767 }
15768
15769 section_name = xstrdup (section_name);
15770 c = restore_line_pointer (endc);
15771
15772 input_line_pointer++;
15773
15774 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15775 if (c == ',')
15776 section_type = get_absolute_expression ();
15777 else
15778 section_type = 0;
15779
15780 if (*input_line_pointer++ == ',')
15781 section_flag = get_absolute_expression ();
15782 else
15783 section_flag = 0;
15784
15785 if (*input_line_pointer++ == ',')
15786 section_entry_size = get_absolute_expression ();
15787 else
15788 section_entry_size = 0;
15789
15790 if (*input_line_pointer++ == ',')
15791 section_alignment = get_absolute_expression ();
15792 else
15793 section_alignment = 0;
15794
15795 /* FIXME: really ignore? */
15796 (void) section_alignment;
15797
15798 /* When using the generic form of .section (as implemented by obj-elf.c),
15799 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15800 traditionally had to fall back on the more common @progbits instead.
15801
15802 There's nothing really harmful in this, since bfd will correct
15803 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15804 means that, for backwards compatibility, the special_section entries
15805 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15806
15807 Even so, we shouldn't force users of the MIPS .section syntax to
15808 incorrectly label the sections as SHT_PROGBITS. The best compromise
15809 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15810 generic type-checking code. */
15811 if (section_type == SHT_MIPS_DWARF)
15812 section_type = SHT_PROGBITS;
15813
15814 obj_elf_change_section (section_name, section_type, section_flag,
15815 section_entry_size, 0, 0, 0);
15816
15817 if (now_seg->name != section_name)
15818 free (section_name);
15819 }
15820
15821 void
15822 mips_enable_auto_align (void)
15823 {
15824 auto_align = 1;
15825 }
15826
15827 static void
15828 s_cons (int log_size)
15829 {
15830 segment_info_type *si = seg_info (now_seg);
15831 struct insn_label_list *l = si->label_list;
15832
15833 mips_emit_delays ();
15834 if (log_size > 0 && auto_align)
15835 mips_align (log_size, 0, l);
15836 cons (1 << log_size);
15837 mips_clear_insn_labels ();
15838 }
15839
15840 static void
15841 s_float_cons (int type)
15842 {
15843 segment_info_type *si = seg_info (now_seg);
15844 struct insn_label_list *l = si->label_list;
15845
15846 mips_emit_delays ();
15847
15848 if (auto_align)
15849 {
15850 if (type == 'd')
15851 mips_align (3, 0, l);
15852 else
15853 mips_align (2, 0, l);
15854 }
15855
15856 float_cons (type);
15857 mips_clear_insn_labels ();
15858 }
15859
15860 /* Handle .globl. We need to override it because on Irix 5 you are
15861 permitted to say
15862 .globl foo .text
15863 where foo is an undefined symbol, to mean that foo should be
15864 considered to be the address of a function. */
15865
15866 static void
15867 s_mips_globl (int x ATTRIBUTE_UNUSED)
15868 {
15869 char *name;
15870 int c;
15871 symbolS *symbolP;
15872 flagword flag;
15873
15874 do
15875 {
15876 c = get_symbol_name (&name);
15877 symbolP = symbol_find_or_make (name);
15878 S_SET_EXTERNAL (symbolP);
15879
15880 *input_line_pointer = c;
15881 SKIP_WHITESPACE_AFTER_NAME ();
15882
15883 /* On Irix 5, every global symbol that is not explicitly labelled as
15884 being a function is apparently labelled as being an object. */
15885 flag = BSF_OBJECT;
15886
15887 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15888 && (*input_line_pointer != ','))
15889 {
15890 char *secname;
15891 asection *sec;
15892
15893 c = get_symbol_name (&secname);
15894 sec = bfd_get_section_by_name (stdoutput, secname);
15895 if (sec == NULL)
15896 as_bad (_("%s: no such section"), secname);
15897 (void) restore_line_pointer (c);
15898
15899 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15900 flag = BSF_FUNCTION;
15901 }
15902
15903 symbol_get_bfdsym (symbolP)->flags |= flag;
15904
15905 c = *input_line_pointer;
15906 if (c == ',')
15907 {
15908 input_line_pointer++;
15909 SKIP_WHITESPACE ();
15910 if (is_end_of_line[(unsigned char) *input_line_pointer])
15911 c = '\n';
15912 }
15913 }
15914 while (c == ',');
15915
15916 demand_empty_rest_of_line ();
15917 }
15918
15919 static void
15920 s_option (int x ATTRIBUTE_UNUSED)
15921 {
15922 char *opt;
15923 char c;
15924
15925 c = get_symbol_name (&opt);
15926
15927 if (*opt == 'O')
15928 {
15929 /* FIXME: What does this mean? */
15930 }
15931 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15932 {
15933 int i;
15934
15935 i = atoi (opt + 3);
15936 if (i != 0 && i != 2)
15937 as_bad (_(".option pic%d not supported"), i);
15938 else if (mips_pic == VXWORKS_PIC)
15939 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15940 else if (i == 0)
15941 mips_pic = NO_PIC;
15942 else if (i == 2)
15943 {
15944 mips_pic = SVR4_PIC;
15945 mips_abicalls = TRUE;
15946 }
15947
15948 if (mips_pic == SVR4_PIC)
15949 {
15950 if (g_switch_seen && g_switch_value != 0)
15951 as_warn (_("-G may not be used with SVR4 PIC code"));
15952 g_switch_value = 0;
15953 bfd_set_gp_size (stdoutput, 0);
15954 }
15955 }
15956 else
15957 as_warn (_("unrecognized option \"%s\""), opt);
15958
15959 (void) restore_line_pointer (c);
15960 demand_empty_rest_of_line ();
15961 }
15962
15963 /* This structure is used to hold a stack of .set values. */
15964
15965 struct mips_option_stack
15966 {
15967 struct mips_option_stack *next;
15968 struct mips_set_options options;
15969 };
15970
15971 static struct mips_option_stack *mips_opts_stack;
15972
15973 /* Return status for .set/.module option handling. */
15974
15975 enum code_option_type
15976 {
15977 /* Unrecognized option. */
15978 OPTION_TYPE_BAD = -1,
15979
15980 /* Ordinary option. */
15981 OPTION_TYPE_NORMAL,
15982
15983 /* ISA changing option. */
15984 OPTION_TYPE_ISA
15985 };
15986
15987 /* Handle common .set/.module options. Return status indicating option
15988 type. */
15989
15990 static enum code_option_type
15991 parse_code_option (char * name)
15992 {
15993 bfd_boolean isa_set = FALSE;
15994 const struct mips_ase *ase;
15995
15996 if (strncmp (name, "at=", 3) == 0)
15997 {
15998 char *s = name + 3;
15999
16000 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16001 as_bad (_("unrecognized register name `%s'"), s);
16002 }
16003 else if (strcmp (name, "at") == 0)
16004 mips_opts.at = ATREG;
16005 else if (strcmp (name, "noat") == 0)
16006 mips_opts.at = ZERO;
16007 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16008 mips_opts.nomove = 0;
16009 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16010 mips_opts.nomove = 1;
16011 else if (strcmp (name, "bopt") == 0)
16012 mips_opts.nobopt = 0;
16013 else if (strcmp (name, "nobopt") == 0)
16014 mips_opts.nobopt = 1;
16015 else if (strcmp (name, "gp=32") == 0)
16016 mips_opts.gp = 32;
16017 else if (strcmp (name, "gp=64") == 0)
16018 mips_opts.gp = 64;
16019 else if (strcmp (name, "fp=32") == 0)
16020 mips_opts.fp = 32;
16021 else if (strcmp (name, "fp=xx") == 0)
16022 mips_opts.fp = 0;
16023 else if (strcmp (name, "fp=64") == 0)
16024 mips_opts.fp = 64;
16025 else if (strcmp (name, "softfloat") == 0)
16026 mips_opts.soft_float = 1;
16027 else if (strcmp (name, "hardfloat") == 0)
16028 mips_opts.soft_float = 0;
16029 else if (strcmp (name, "singlefloat") == 0)
16030 mips_opts.single_float = 1;
16031 else if (strcmp (name, "doublefloat") == 0)
16032 mips_opts.single_float = 0;
16033 else if (strcmp (name, "nooddspreg") == 0)
16034 mips_opts.oddspreg = 0;
16035 else if (strcmp (name, "oddspreg") == 0)
16036 mips_opts.oddspreg = 1;
16037 else if (strcmp (name, "mips16") == 0
16038 || strcmp (name, "MIPS-16") == 0)
16039 mips_opts.mips16 = 1;
16040 else if (strcmp (name, "nomips16") == 0
16041 || strcmp (name, "noMIPS-16") == 0)
16042 mips_opts.mips16 = 0;
16043 else if (strcmp (name, "micromips") == 0)
16044 mips_opts.micromips = 1;
16045 else if (strcmp (name, "nomicromips") == 0)
16046 mips_opts.micromips = 0;
16047 else if (name[0] == 'n'
16048 && name[1] == 'o'
16049 && (ase = mips_lookup_ase (name + 2)))
16050 mips_set_ase (ase, &mips_opts, FALSE);
16051 else if ((ase = mips_lookup_ase (name)))
16052 mips_set_ase (ase, &mips_opts, TRUE);
16053 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16054 {
16055 /* Permit the user to change the ISA and architecture on the fly.
16056 Needless to say, misuse can cause serious problems. */
16057 if (strncmp (name, "arch=", 5) == 0)
16058 {
16059 const struct mips_cpu_info *p;
16060
16061 p = mips_parse_cpu ("internal use", name + 5);
16062 if (!p)
16063 as_bad (_("unknown architecture %s"), name + 5);
16064 else
16065 {
16066 mips_opts.arch = p->cpu;
16067 mips_opts.isa = p->isa;
16068 isa_set = TRUE;
16069 }
16070 }
16071 else if (strncmp (name, "mips", 4) == 0)
16072 {
16073 const struct mips_cpu_info *p;
16074
16075 p = mips_parse_cpu ("internal use", name);
16076 if (!p)
16077 as_bad (_("unknown ISA level %s"), name + 4);
16078 else
16079 {
16080 mips_opts.arch = p->cpu;
16081 mips_opts.isa = p->isa;
16082 isa_set = TRUE;
16083 }
16084 }
16085 else
16086 as_bad (_("unknown ISA or architecture %s"), name);
16087 }
16088 else if (strcmp (name, "autoextend") == 0)
16089 mips_opts.noautoextend = 0;
16090 else if (strcmp (name, "noautoextend") == 0)
16091 mips_opts.noautoextend = 1;
16092 else if (strcmp (name, "insn32") == 0)
16093 mips_opts.insn32 = TRUE;
16094 else if (strcmp (name, "noinsn32") == 0)
16095 mips_opts.insn32 = FALSE;
16096 else if (strcmp (name, "sym32") == 0)
16097 mips_opts.sym32 = TRUE;
16098 else if (strcmp (name, "nosym32") == 0)
16099 mips_opts.sym32 = FALSE;
16100 else
16101 return OPTION_TYPE_BAD;
16102
16103 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16104 }
16105
16106 /* Handle the .set pseudo-op. */
16107
16108 static void
16109 s_mipsset (int x ATTRIBUTE_UNUSED)
16110 {
16111 enum code_option_type type = OPTION_TYPE_NORMAL;
16112 char *name = input_line_pointer, ch;
16113
16114 file_mips_check_options ();
16115
16116 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16117 ++input_line_pointer;
16118 ch = *input_line_pointer;
16119 *input_line_pointer = '\0';
16120
16121 if (strchr (name, ','))
16122 {
16123 /* Generic ".set" directive; use the generic handler. */
16124 *input_line_pointer = ch;
16125 input_line_pointer = name;
16126 s_set (0);
16127 return;
16128 }
16129
16130 if (strcmp (name, "reorder") == 0)
16131 {
16132 if (mips_opts.noreorder)
16133 end_noreorder ();
16134 }
16135 else if (strcmp (name, "noreorder") == 0)
16136 {
16137 if (!mips_opts.noreorder)
16138 start_noreorder ();
16139 }
16140 else if (strcmp (name, "macro") == 0)
16141 mips_opts.warn_about_macros = 0;
16142 else if (strcmp (name, "nomacro") == 0)
16143 {
16144 if (mips_opts.noreorder == 0)
16145 as_bad (_("`noreorder' must be set before `nomacro'"));
16146 mips_opts.warn_about_macros = 1;
16147 }
16148 else if (strcmp (name, "gp=default") == 0)
16149 mips_opts.gp = file_mips_opts.gp;
16150 else if (strcmp (name, "fp=default") == 0)
16151 mips_opts.fp = file_mips_opts.fp;
16152 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16153 {
16154 mips_opts.isa = file_mips_opts.isa;
16155 mips_opts.arch = file_mips_opts.arch;
16156 mips_opts.gp = file_mips_opts.gp;
16157 mips_opts.fp = file_mips_opts.fp;
16158 }
16159 else if (strcmp (name, "push") == 0)
16160 {
16161 struct mips_option_stack *s;
16162
16163 s = XNEW (struct mips_option_stack);
16164 s->next = mips_opts_stack;
16165 s->options = mips_opts;
16166 mips_opts_stack = s;
16167 }
16168 else if (strcmp (name, "pop") == 0)
16169 {
16170 struct mips_option_stack *s;
16171
16172 s = mips_opts_stack;
16173 if (s == NULL)
16174 as_bad (_(".set pop with no .set push"));
16175 else
16176 {
16177 /* If we're changing the reorder mode we need to handle
16178 delay slots correctly. */
16179 if (s->options.noreorder && ! mips_opts.noreorder)
16180 start_noreorder ();
16181 else if (! s->options.noreorder && mips_opts.noreorder)
16182 end_noreorder ();
16183
16184 mips_opts = s->options;
16185 mips_opts_stack = s->next;
16186 free (s);
16187 }
16188 }
16189 else
16190 {
16191 type = parse_code_option (name);
16192 if (type == OPTION_TYPE_BAD)
16193 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16194 }
16195
16196 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16197 registers based on what is supported by the arch/cpu. */
16198 if (type == OPTION_TYPE_ISA)
16199 {
16200 switch (mips_opts.isa)
16201 {
16202 case 0:
16203 break;
16204 case ISA_MIPS1:
16205 /* MIPS I cannot support FPXX. */
16206 mips_opts.fp = 32;
16207 /* fall-through. */
16208 case ISA_MIPS2:
16209 case ISA_MIPS32:
16210 case ISA_MIPS32R2:
16211 case ISA_MIPS32R3:
16212 case ISA_MIPS32R5:
16213 mips_opts.gp = 32;
16214 if (mips_opts.fp != 0)
16215 mips_opts.fp = 32;
16216 break;
16217 case ISA_MIPS32R6:
16218 mips_opts.gp = 32;
16219 mips_opts.fp = 64;
16220 break;
16221 case ISA_MIPS3:
16222 case ISA_MIPS4:
16223 case ISA_MIPS5:
16224 case ISA_MIPS64:
16225 case ISA_MIPS64R2:
16226 case ISA_MIPS64R3:
16227 case ISA_MIPS64R5:
16228 case ISA_MIPS64R6:
16229 mips_opts.gp = 64;
16230 if (mips_opts.fp != 0)
16231 {
16232 if (mips_opts.arch == CPU_R5900)
16233 mips_opts.fp = 32;
16234 else
16235 mips_opts.fp = 64;
16236 }
16237 break;
16238 default:
16239 as_bad (_("unknown ISA level %s"), name + 4);
16240 break;
16241 }
16242 }
16243
16244 mips_check_options (&mips_opts, FALSE);
16245
16246 mips_check_isa_supports_ases ();
16247 *input_line_pointer = ch;
16248 demand_empty_rest_of_line ();
16249 }
16250
16251 /* Handle the .module pseudo-op. */
16252
16253 static void
16254 s_module (int ignore ATTRIBUTE_UNUSED)
16255 {
16256 char *name = input_line_pointer, ch;
16257
16258 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16259 ++input_line_pointer;
16260 ch = *input_line_pointer;
16261 *input_line_pointer = '\0';
16262
16263 if (!file_mips_opts_checked)
16264 {
16265 if (parse_code_option (name) == OPTION_TYPE_BAD)
16266 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16267
16268 /* Update module level settings from mips_opts. */
16269 file_mips_opts = mips_opts;
16270 }
16271 else
16272 as_bad (_(".module is not permitted after generating code"));
16273
16274 *input_line_pointer = ch;
16275 demand_empty_rest_of_line ();
16276 }
16277
16278 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16279 .option pic2. It means to generate SVR4 PIC calls. */
16280
16281 static void
16282 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16283 {
16284 mips_pic = SVR4_PIC;
16285 mips_abicalls = TRUE;
16286
16287 if (g_switch_seen && g_switch_value != 0)
16288 as_warn (_("-G may not be used with SVR4 PIC code"));
16289 g_switch_value = 0;
16290
16291 bfd_set_gp_size (stdoutput, 0);
16292 demand_empty_rest_of_line ();
16293 }
16294
16295 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16296 PIC code. It sets the $gp register for the function based on the
16297 function address, which is in the register named in the argument.
16298 This uses a relocation against _gp_disp, which is handled specially
16299 by the linker. The result is:
16300 lui $gp,%hi(_gp_disp)
16301 addiu $gp,$gp,%lo(_gp_disp)
16302 addu $gp,$gp,.cpload argument
16303 The .cpload argument is normally $25 == $t9.
16304
16305 The -mno-shared option changes this to:
16306 lui $gp,%hi(__gnu_local_gp)
16307 addiu $gp,$gp,%lo(__gnu_local_gp)
16308 and the argument is ignored. This saves an instruction, but the
16309 resulting code is not position independent; it uses an absolute
16310 address for __gnu_local_gp. Thus code assembled with -mno-shared
16311 can go into an ordinary executable, but not into a shared library. */
16312
16313 static void
16314 s_cpload (int ignore ATTRIBUTE_UNUSED)
16315 {
16316 expressionS ex;
16317 int reg;
16318 int in_shared;
16319
16320 file_mips_check_options ();
16321
16322 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16323 .cpload is ignored. */
16324 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16325 {
16326 s_ignore (0);
16327 return;
16328 }
16329
16330 if (mips_opts.mips16)
16331 {
16332 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16333 ignore_rest_of_line ();
16334 return;
16335 }
16336
16337 /* .cpload should be in a .set noreorder section. */
16338 if (mips_opts.noreorder == 0)
16339 as_warn (_(".cpload not in noreorder section"));
16340
16341 reg = tc_get_register (0);
16342
16343 /* If we need to produce a 64-bit address, we are better off using
16344 the default instruction sequence. */
16345 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16346
16347 ex.X_op = O_symbol;
16348 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16349 "__gnu_local_gp");
16350 ex.X_op_symbol = NULL;
16351 ex.X_add_number = 0;
16352
16353 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16354 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16355
16356 mips_mark_labels ();
16357 mips_assembling_insn = TRUE;
16358
16359 macro_start ();
16360 macro_build_lui (&ex, mips_gp_register);
16361 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16362 mips_gp_register, BFD_RELOC_LO16);
16363 if (in_shared)
16364 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16365 mips_gp_register, reg);
16366 macro_end ();
16367
16368 mips_assembling_insn = FALSE;
16369 demand_empty_rest_of_line ();
16370 }
16371
16372 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16373 .cpsetup $reg1, offset|$reg2, label
16374
16375 If offset is given, this results in:
16376 sd $gp, offset($sp)
16377 lui $gp, %hi(%neg(%gp_rel(label)))
16378 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16379 daddu $gp, $gp, $reg1
16380
16381 If $reg2 is given, this results in:
16382 or $reg2, $gp, $0
16383 lui $gp, %hi(%neg(%gp_rel(label)))
16384 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16385 daddu $gp, $gp, $reg1
16386 $reg1 is normally $25 == $t9.
16387
16388 The -mno-shared option replaces the last three instructions with
16389 lui $gp,%hi(_gp)
16390 addiu $gp,$gp,%lo(_gp) */
16391
16392 static void
16393 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16394 {
16395 expressionS ex_off;
16396 expressionS ex_sym;
16397 int reg1;
16398
16399 file_mips_check_options ();
16400
16401 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16402 We also need NewABI support. */
16403 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16404 {
16405 s_ignore (0);
16406 return;
16407 }
16408
16409 if (mips_opts.mips16)
16410 {
16411 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16412 ignore_rest_of_line ();
16413 return;
16414 }
16415
16416 reg1 = tc_get_register (0);
16417 SKIP_WHITESPACE ();
16418 if (*input_line_pointer != ',')
16419 {
16420 as_bad (_("missing argument separator ',' for .cpsetup"));
16421 return;
16422 }
16423 else
16424 ++input_line_pointer;
16425 SKIP_WHITESPACE ();
16426 if (*input_line_pointer == '$')
16427 {
16428 mips_cpreturn_register = tc_get_register (0);
16429 mips_cpreturn_offset = -1;
16430 }
16431 else
16432 {
16433 mips_cpreturn_offset = get_absolute_expression ();
16434 mips_cpreturn_register = -1;
16435 }
16436 SKIP_WHITESPACE ();
16437 if (*input_line_pointer != ',')
16438 {
16439 as_bad (_("missing argument separator ',' for .cpsetup"));
16440 return;
16441 }
16442 else
16443 ++input_line_pointer;
16444 SKIP_WHITESPACE ();
16445 expression (&ex_sym);
16446
16447 mips_mark_labels ();
16448 mips_assembling_insn = TRUE;
16449
16450 macro_start ();
16451 if (mips_cpreturn_register == -1)
16452 {
16453 ex_off.X_op = O_constant;
16454 ex_off.X_add_symbol = NULL;
16455 ex_off.X_op_symbol = NULL;
16456 ex_off.X_add_number = mips_cpreturn_offset;
16457
16458 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16459 BFD_RELOC_LO16, SP);
16460 }
16461 else
16462 move_register (mips_cpreturn_register, mips_gp_register);
16463
16464 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16465 {
16466 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16467 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16468 BFD_RELOC_HI16_S);
16469
16470 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16471 mips_gp_register, -1, BFD_RELOC_GPREL16,
16472 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16473
16474 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16475 mips_gp_register, reg1);
16476 }
16477 else
16478 {
16479 expressionS ex;
16480
16481 ex.X_op = O_symbol;
16482 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16483 ex.X_op_symbol = NULL;
16484 ex.X_add_number = 0;
16485
16486 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16487 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16488
16489 macro_build_lui (&ex, mips_gp_register);
16490 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16491 mips_gp_register, BFD_RELOC_LO16);
16492 }
16493
16494 macro_end ();
16495
16496 mips_assembling_insn = FALSE;
16497 demand_empty_rest_of_line ();
16498 }
16499
16500 static void
16501 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16502 {
16503 file_mips_check_options ();
16504
16505 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16506 .cplocal is ignored. */
16507 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16508 {
16509 s_ignore (0);
16510 return;
16511 }
16512
16513 if (mips_opts.mips16)
16514 {
16515 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16516 ignore_rest_of_line ();
16517 return;
16518 }
16519
16520 mips_gp_register = tc_get_register (0);
16521 demand_empty_rest_of_line ();
16522 }
16523
16524 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16525 offset from $sp. The offset is remembered, and after making a PIC
16526 call $gp is restored from that location. */
16527
16528 static void
16529 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16530 {
16531 expressionS ex;
16532
16533 file_mips_check_options ();
16534
16535 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16536 .cprestore is ignored. */
16537 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16538 {
16539 s_ignore (0);
16540 return;
16541 }
16542
16543 if (mips_opts.mips16)
16544 {
16545 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16546 ignore_rest_of_line ();
16547 return;
16548 }
16549
16550 mips_cprestore_offset = get_absolute_expression ();
16551 mips_cprestore_valid = 1;
16552
16553 ex.X_op = O_constant;
16554 ex.X_add_symbol = NULL;
16555 ex.X_op_symbol = NULL;
16556 ex.X_add_number = mips_cprestore_offset;
16557
16558 mips_mark_labels ();
16559 mips_assembling_insn = TRUE;
16560
16561 macro_start ();
16562 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16563 SP, HAVE_64BIT_ADDRESSES);
16564 macro_end ();
16565
16566 mips_assembling_insn = FALSE;
16567 demand_empty_rest_of_line ();
16568 }
16569
16570 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16571 was given in the preceding .cpsetup, it results in:
16572 ld $gp, offset($sp)
16573
16574 If a register $reg2 was given there, it results in:
16575 or $gp, $reg2, $0 */
16576
16577 static void
16578 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16579 {
16580 expressionS ex;
16581
16582 file_mips_check_options ();
16583
16584 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16585 We also need NewABI support. */
16586 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16587 {
16588 s_ignore (0);
16589 return;
16590 }
16591
16592 if (mips_opts.mips16)
16593 {
16594 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16595 ignore_rest_of_line ();
16596 return;
16597 }
16598
16599 mips_mark_labels ();
16600 mips_assembling_insn = TRUE;
16601
16602 macro_start ();
16603 if (mips_cpreturn_register == -1)
16604 {
16605 ex.X_op = O_constant;
16606 ex.X_add_symbol = NULL;
16607 ex.X_op_symbol = NULL;
16608 ex.X_add_number = mips_cpreturn_offset;
16609
16610 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16611 }
16612 else
16613 move_register (mips_gp_register, mips_cpreturn_register);
16614
16615 macro_end ();
16616
16617 mips_assembling_insn = FALSE;
16618 demand_empty_rest_of_line ();
16619 }
16620
16621 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16622 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16623 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16624 debug information or MIPS16 TLS. */
16625
16626 static void
16627 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16628 bfd_reloc_code_real_type rtype)
16629 {
16630 expressionS ex;
16631 char *p;
16632
16633 expression (&ex);
16634
16635 if (ex.X_op != O_symbol)
16636 {
16637 as_bad (_("unsupported use of %s"), dirstr);
16638 ignore_rest_of_line ();
16639 }
16640
16641 p = frag_more (bytes);
16642 md_number_to_chars (p, 0, bytes);
16643 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16644 demand_empty_rest_of_line ();
16645 mips_clear_insn_labels ();
16646 }
16647
16648 /* Handle .dtprelword. */
16649
16650 static void
16651 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16652 {
16653 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16654 }
16655
16656 /* Handle .dtpreldword. */
16657
16658 static void
16659 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16660 {
16661 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16662 }
16663
16664 /* Handle .tprelword. */
16665
16666 static void
16667 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16668 {
16669 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16670 }
16671
16672 /* Handle .tpreldword. */
16673
16674 static void
16675 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16676 {
16677 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16678 }
16679
16680 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16681 code. It sets the offset to use in gp_rel relocations. */
16682
16683 static void
16684 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16685 {
16686 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16687 We also need NewABI support. */
16688 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16689 {
16690 s_ignore (0);
16691 return;
16692 }
16693
16694 mips_gprel_offset = get_absolute_expression ();
16695
16696 demand_empty_rest_of_line ();
16697 }
16698
16699 /* Handle the .gpword pseudo-op. This is used when generating PIC
16700 code. It generates a 32 bit GP relative reloc. */
16701
16702 static void
16703 s_gpword (int ignore ATTRIBUTE_UNUSED)
16704 {
16705 segment_info_type *si;
16706 struct insn_label_list *l;
16707 expressionS ex;
16708 char *p;
16709
16710 /* When not generating PIC code, this is treated as .word. */
16711 if (mips_pic != SVR4_PIC)
16712 {
16713 s_cons (2);
16714 return;
16715 }
16716
16717 si = seg_info (now_seg);
16718 l = si->label_list;
16719 mips_emit_delays ();
16720 if (auto_align)
16721 mips_align (2, 0, l);
16722
16723 expression (&ex);
16724 mips_clear_insn_labels ();
16725
16726 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16727 {
16728 as_bad (_("unsupported use of .gpword"));
16729 ignore_rest_of_line ();
16730 }
16731
16732 p = frag_more (4);
16733 md_number_to_chars (p, 0, 4);
16734 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16735 BFD_RELOC_GPREL32);
16736
16737 demand_empty_rest_of_line ();
16738 }
16739
16740 static void
16741 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16742 {
16743 segment_info_type *si;
16744 struct insn_label_list *l;
16745 expressionS ex;
16746 char *p;
16747
16748 /* When not generating PIC code, this is treated as .dword. */
16749 if (mips_pic != SVR4_PIC)
16750 {
16751 s_cons (3);
16752 return;
16753 }
16754
16755 si = seg_info (now_seg);
16756 l = si->label_list;
16757 mips_emit_delays ();
16758 if (auto_align)
16759 mips_align (3, 0, l);
16760
16761 expression (&ex);
16762 mips_clear_insn_labels ();
16763
16764 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16765 {
16766 as_bad (_("unsupported use of .gpdword"));
16767 ignore_rest_of_line ();
16768 }
16769
16770 p = frag_more (8);
16771 md_number_to_chars (p, 0, 8);
16772 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16773 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16774
16775 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16776 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16777 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16778
16779 demand_empty_rest_of_line ();
16780 }
16781
16782 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16783 tables. It generates a R_MIPS_EH reloc. */
16784
16785 static void
16786 s_ehword (int ignore ATTRIBUTE_UNUSED)
16787 {
16788 expressionS ex;
16789 char *p;
16790
16791 mips_emit_delays ();
16792
16793 expression (&ex);
16794 mips_clear_insn_labels ();
16795
16796 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16797 {
16798 as_bad (_("unsupported use of .ehword"));
16799 ignore_rest_of_line ();
16800 }
16801
16802 p = frag_more (4);
16803 md_number_to_chars (p, 0, 4);
16804 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16805 BFD_RELOC_32_PCREL);
16806
16807 demand_empty_rest_of_line ();
16808 }
16809
16810 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16811 tables in SVR4 PIC code. */
16812
16813 static void
16814 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16815 {
16816 int reg;
16817
16818 file_mips_check_options ();
16819
16820 /* This is ignored when not generating SVR4 PIC code. */
16821 if (mips_pic != SVR4_PIC)
16822 {
16823 s_ignore (0);
16824 return;
16825 }
16826
16827 mips_mark_labels ();
16828 mips_assembling_insn = TRUE;
16829
16830 /* Add $gp to the register named as an argument. */
16831 macro_start ();
16832 reg = tc_get_register (0);
16833 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16834 macro_end ();
16835
16836 mips_assembling_insn = FALSE;
16837 demand_empty_rest_of_line ();
16838 }
16839
16840 /* Handle the .insn pseudo-op. This marks instruction labels in
16841 mips16/micromips mode. This permits the linker to handle them specially,
16842 such as generating jalx instructions when needed. We also make
16843 them odd for the duration of the assembly, in order to generate the
16844 right sort of code. We will make them even in the adjust_symtab
16845 routine, while leaving them marked. This is convenient for the
16846 debugger and the disassembler. The linker knows to make them odd
16847 again. */
16848
16849 static void
16850 s_insn (int ignore ATTRIBUTE_UNUSED)
16851 {
16852 file_mips_check_options ();
16853 file_ase_mips16 |= mips_opts.mips16;
16854 file_ase_micromips |= mips_opts.micromips;
16855
16856 mips_mark_labels ();
16857
16858 demand_empty_rest_of_line ();
16859 }
16860
16861 /* Handle the .nan pseudo-op. */
16862
16863 static void
16864 s_nan (int ignore ATTRIBUTE_UNUSED)
16865 {
16866 static const char str_legacy[] = "legacy";
16867 static const char str_2008[] = "2008";
16868 size_t i;
16869
16870 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16871
16872 if (i == sizeof (str_2008) - 1
16873 && memcmp (input_line_pointer, str_2008, i) == 0)
16874 mips_nan2008 = 1;
16875 else if (i == sizeof (str_legacy) - 1
16876 && memcmp (input_line_pointer, str_legacy, i) == 0)
16877 {
16878 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16879 mips_nan2008 = 0;
16880 else
16881 as_bad (_("`%s' does not support legacy NaN"),
16882 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16883 }
16884 else
16885 as_bad (_("bad .nan directive"));
16886
16887 input_line_pointer += i;
16888 demand_empty_rest_of_line ();
16889 }
16890
16891 /* Handle a .stab[snd] directive. Ideally these directives would be
16892 implemented in a transparent way, so that removing them would not
16893 have any effect on the generated instructions. However, s_stab
16894 internally changes the section, so in practice we need to decide
16895 now whether the preceding label marks compressed code. We do not
16896 support changing the compression mode of a label after a .stab*
16897 directive, such as in:
16898
16899 foo:
16900 .stabs ...
16901 .set mips16
16902
16903 so the current mode wins. */
16904
16905 static void
16906 s_mips_stab (int type)
16907 {
16908 mips_mark_labels ();
16909 s_stab (type);
16910 }
16911
16912 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16913
16914 static void
16915 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16916 {
16917 char *name;
16918 int c;
16919 symbolS *symbolP;
16920 expressionS exp;
16921
16922 c = get_symbol_name (&name);
16923 symbolP = symbol_find_or_make (name);
16924 S_SET_WEAK (symbolP);
16925 *input_line_pointer = c;
16926
16927 SKIP_WHITESPACE_AFTER_NAME ();
16928
16929 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16930 {
16931 if (S_IS_DEFINED (symbolP))
16932 {
16933 as_bad (_("ignoring attempt to redefine symbol %s"),
16934 S_GET_NAME (symbolP));
16935 ignore_rest_of_line ();
16936 return;
16937 }
16938
16939 if (*input_line_pointer == ',')
16940 {
16941 ++input_line_pointer;
16942 SKIP_WHITESPACE ();
16943 }
16944
16945 expression (&exp);
16946 if (exp.X_op != O_symbol)
16947 {
16948 as_bad (_("bad .weakext directive"));
16949 ignore_rest_of_line ();
16950 return;
16951 }
16952 symbol_set_value_expression (symbolP, &exp);
16953 }
16954
16955 demand_empty_rest_of_line ();
16956 }
16957
16958 /* Parse a register string into a number. Called from the ECOFF code
16959 to parse .frame. The argument is non-zero if this is the frame
16960 register, so that we can record it in mips_frame_reg. */
16961
16962 int
16963 tc_get_register (int frame)
16964 {
16965 unsigned int reg;
16966
16967 SKIP_WHITESPACE ();
16968 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16969 reg = 0;
16970 if (frame)
16971 {
16972 mips_frame_reg = reg != 0 ? reg : SP;
16973 mips_frame_reg_valid = 1;
16974 mips_cprestore_valid = 0;
16975 }
16976 return reg;
16977 }
16978
16979 valueT
16980 md_section_align (asection *seg, valueT addr)
16981 {
16982 int align = bfd_get_section_alignment (stdoutput, seg);
16983
16984 /* We don't need to align ELF sections to the full alignment.
16985 However, Irix 5 may prefer that we align them at least to a 16
16986 byte boundary. We don't bother to align the sections if we
16987 are targeted for an embedded system. */
16988 if (strncmp (TARGET_OS, "elf", 3) == 0)
16989 return addr;
16990 if (align > 4)
16991 align = 4;
16992
16993 return ((addr + (1 << align) - 1) & -(1 << align));
16994 }
16995
16996 /* Utility routine, called from above as well. If called while the
16997 input file is still being read, it's only an approximation. (For
16998 example, a symbol may later become defined which appeared to be
16999 undefined earlier.) */
17000
17001 static int
17002 nopic_need_relax (symbolS *sym, int before_relaxing)
17003 {
17004 if (sym == 0)
17005 return 0;
17006
17007 if (g_switch_value > 0)
17008 {
17009 const char *symname;
17010 int change;
17011
17012 /* Find out whether this symbol can be referenced off the $gp
17013 register. It can be if it is smaller than the -G size or if
17014 it is in the .sdata or .sbss section. Certain symbols can
17015 not be referenced off the $gp, although it appears as though
17016 they can. */
17017 symname = S_GET_NAME (sym);
17018 if (symname != (const char *) NULL
17019 && (strcmp (symname, "eprol") == 0
17020 || strcmp (symname, "etext") == 0
17021 || strcmp (symname, "_gp") == 0
17022 || strcmp (symname, "edata") == 0
17023 || strcmp (symname, "_fbss") == 0
17024 || strcmp (symname, "_fdata") == 0
17025 || strcmp (symname, "_ftext") == 0
17026 || strcmp (symname, "end") == 0
17027 || strcmp (symname, "_gp_disp") == 0))
17028 change = 1;
17029 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17030 && (0
17031 #ifndef NO_ECOFF_DEBUGGING
17032 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17033 && (symbol_get_obj (sym)->ecoff_extern_size
17034 <= g_switch_value))
17035 #endif
17036 /* We must defer this decision until after the whole
17037 file has been read, since there might be a .extern
17038 after the first use of this symbol. */
17039 || (before_relaxing
17040 #ifndef NO_ECOFF_DEBUGGING
17041 && symbol_get_obj (sym)->ecoff_extern_size == 0
17042 #endif
17043 && S_GET_VALUE (sym) == 0)
17044 || (S_GET_VALUE (sym) != 0
17045 && S_GET_VALUE (sym) <= g_switch_value)))
17046 change = 0;
17047 else
17048 {
17049 const char *segname;
17050
17051 segname = segment_name (S_GET_SEGMENT (sym));
17052 gas_assert (strcmp (segname, ".lit8") != 0
17053 && strcmp (segname, ".lit4") != 0);
17054 change = (strcmp (segname, ".sdata") != 0
17055 && strcmp (segname, ".sbss") != 0
17056 && strncmp (segname, ".sdata.", 7) != 0
17057 && strncmp (segname, ".sbss.", 6) != 0
17058 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17059 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17060 }
17061 return change;
17062 }
17063 else
17064 /* We are not optimizing for the $gp register. */
17065 return 1;
17066 }
17067
17068
17069 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17070
17071 static bfd_boolean
17072 pic_need_relax (symbolS *sym, asection *segtype)
17073 {
17074 asection *symsec;
17075
17076 /* Handle the case of a symbol equated to another symbol. */
17077 while (symbol_equated_reloc_p (sym))
17078 {
17079 symbolS *n;
17080
17081 /* It's possible to get a loop here in a badly written program. */
17082 n = symbol_get_value_expression (sym)->X_add_symbol;
17083 if (n == sym)
17084 break;
17085 sym = n;
17086 }
17087
17088 if (symbol_section_p (sym))
17089 return TRUE;
17090
17091 symsec = S_GET_SEGMENT (sym);
17092
17093 /* This must duplicate the test in adjust_reloc_syms. */
17094 return (!bfd_is_und_section (symsec)
17095 && !bfd_is_abs_section (symsec)
17096 && !bfd_is_com_section (symsec)
17097 && !s_is_linkonce (sym, segtype)
17098 /* A global or weak symbol is treated as external. */
17099 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17100 }
17101
17102
17103 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17104 extended opcode. SEC is the section the frag is in. */
17105
17106 static int
17107 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17108 {
17109 int type;
17110 const struct mips_int_operand *operand;
17111 offsetT val;
17112 segT symsec;
17113 fragS *sym_frag;
17114
17115 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17116 return 0;
17117 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17118 return 1;
17119
17120 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17121 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17122 operand = mips16_immed_operand (type, FALSE);
17123 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17124 || (operand->root.type == OP_PCREL
17125 ? sec != symsec
17126 : !bfd_is_abs_section (symsec)))
17127 return 1;
17128
17129 sym_frag = symbol_get_frag (fragp->fr_symbol);
17130 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17131
17132 if (operand->root.type == OP_PCREL)
17133 {
17134 const struct mips_pcrel_operand *pcrel_op;
17135 addressT addr;
17136 offsetT maxtiny;
17137
17138 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
17139 return 1;
17140
17141 pcrel_op = (const struct mips_pcrel_operand *) operand;
17142
17143 /* If the relax_marker of the symbol fragment differs from the
17144 relax_marker of this fragment, we have not yet adjusted the
17145 symbol fragment fr_address. We want to add in STRETCH in
17146 order to get a better estimate of the address. This
17147 particularly matters because of the shift bits. */
17148 if (stretch != 0
17149 && sym_frag->relax_marker != fragp->relax_marker)
17150 {
17151 fragS *f;
17152
17153 /* Adjust stretch for any alignment frag. Note that if have
17154 been expanding the earlier code, the symbol may be
17155 defined in what appears to be an earlier frag. FIXME:
17156 This doesn't handle the fr_subtype field, which specifies
17157 a maximum number of bytes to skip when doing an
17158 alignment. */
17159 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17160 {
17161 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17162 {
17163 if (stretch < 0)
17164 stretch = - ((- stretch)
17165 & ~ ((1 << (int) f->fr_offset) - 1));
17166 else
17167 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
17168 if (stretch == 0)
17169 break;
17170 }
17171 }
17172 if (f != NULL)
17173 val += stretch;
17174 }
17175
17176 addr = fragp->fr_address + fragp->fr_fix;
17177
17178 /* The base address rules are complicated. The base address of
17179 a branch is the following instruction. The base address of a
17180 PC relative load or add is the instruction itself, but if it
17181 is in a delay slot (in which case it can not be extended) use
17182 the address of the instruction whose delay slot it is in. */
17183 if (pcrel_op->include_isa_bit)
17184 {
17185 addr += 2;
17186
17187 /* If we are currently assuming that this frag should be
17188 extended, then, the current address is two bytes
17189 higher. */
17190 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17191 addr += 2;
17192
17193 /* Ignore the low bit in the target, since it will be set
17194 for a text label. */
17195 val &= -2;
17196 }
17197 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17198 addr -= 4;
17199 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17200 addr -= 2;
17201
17202 val -= addr & -(1 << pcrel_op->align_log2);
17203
17204 /* If any of the shifted bits are set, we must use an extended
17205 opcode. If the address depends on the size of this
17206 instruction, this can lead to a loop, so we arrange to always
17207 use an extended opcode. */
17208 if ((val & ((1 << operand->shift) - 1)) != 0)
17209 {
17210 fragp->fr_subtype =
17211 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17212 return 1;
17213 }
17214
17215 /* If we are about to mark a frag as extended because the value
17216 is precisely the next value above maxtiny, then there is a
17217 chance of an infinite loop as in the following code:
17218 la $4,foo
17219 .skip 1020
17220 .align 2
17221 foo:
17222 In this case when the la is extended, foo is 0x3fc bytes
17223 away, so the la can be shrunk, but then foo is 0x400 away, so
17224 the la must be extended. To avoid this loop, we mark the
17225 frag as extended if it was small, and is about to become
17226 extended with the next value above maxtiny. */
17227 maxtiny = mips_int_operand_max (operand);
17228 if (val == maxtiny + (1 << operand->shift)
17229 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17230 {
17231 fragp->fr_subtype =
17232 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
17233 return 1;
17234 }
17235 }
17236
17237 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17238 }
17239
17240 /* Compute the length of a branch sequence, and adjust the
17241 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17242 worst-case length is computed, with UPDATE being used to indicate
17243 whether an unconditional (-1), branch-likely (+1) or regular (0)
17244 branch is to be computed. */
17245 static int
17246 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17247 {
17248 bfd_boolean toofar;
17249 int length;
17250
17251 if (fragp
17252 && S_IS_DEFINED (fragp->fr_symbol)
17253 && !S_IS_WEAK (fragp->fr_symbol)
17254 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17255 {
17256 addressT addr;
17257 offsetT val;
17258
17259 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17260
17261 addr = fragp->fr_address + fragp->fr_fix + 4;
17262
17263 val -= addr;
17264
17265 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17266 }
17267 else
17268 /* If the symbol is not defined or it's in a different segment,
17269 we emit the long sequence. */
17270 toofar = TRUE;
17271
17272 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17273 fragp->fr_subtype
17274 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17275 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17276 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17277 RELAX_BRANCH_LINK (fragp->fr_subtype),
17278 toofar);
17279
17280 length = 4;
17281 if (toofar)
17282 {
17283 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17284 length += 8;
17285
17286 if (mips_pic != NO_PIC)
17287 {
17288 /* Additional space for PIC loading of target address. */
17289 length += 8;
17290 if (mips_opts.isa == ISA_MIPS1)
17291 /* Additional space for $at-stabilizing nop. */
17292 length += 4;
17293 }
17294
17295 /* If branch is conditional. */
17296 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17297 length += 8;
17298 }
17299
17300 return length;
17301 }
17302
17303 /* Get a FRAG's branch instruction delay slot size, either from the
17304 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17305 or SHORT_INSN_SIZE otherwise. */
17306
17307 static int
17308 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17309 {
17310 char *buf = fragp->fr_literal + fragp->fr_fix;
17311
17312 if (al)
17313 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17314 else
17315 return short_insn_size;
17316 }
17317
17318 /* Compute the length of a branch sequence, and adjust the
17319 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17320 worst-case length is computed, with UPDATE being used to indicate
17321 whether an unconditional (-1), or regular (0) branch is to be
17322 computed. */
17323
17324 static int
17325 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17326 {
17327 bfd_boolean insn32 = TRUE;
17328 bfd_boolean nods = TRUE;
17329 bfd_boolean al = TRUE;
17330 int short_insn_size;
17331 bfd_boolean toofar;
17332 int length;
17333
17334 if (fragp)
17335 {
17336 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17337 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17338 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17339 }
17340 short_insn_size = insn32 ? 4 : 2;
17341
17342 if (fragp
17343 && S_IS_DEFINED (fragp->fr_symbol)
17344 && !S_IS_WEAK (fragp->fr_symbol)
17345 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17346 {
17347 addressT addr;
17348 offsetT val;
17349
17350 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17351 /* Ignore the low bit in the target, since it will be set
17352 for a text label. */
17353 if ((val & 1) != 0)
17354 --val;
17355
17356 addr = fragp->fr_address + fragp->fr_fix + 4;
17357
17358 val -= addr;
17359
17360 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17361 }
17362 else
17363 /* If the symbol is not defined or it's in a different segment,
17364 we emit the long sequence. */
17365 toofar = TRUE;
17366
17367 if (fragp && update
17368 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17369 fragp->fr_subtype = (toofar
17370 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17371 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17372
17373 length = 4;
17374 if (toofar)
17375 {
17376 bfd_boolean compact_known = fragp != NULL;
17377 bfd_boolean compact = FALSE;
17378 bfd_boolean uncond;
17379
17380 if (fragp)
17381 {
17382 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17383 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17384 }
17385 else
17386 uncond = update < 0;
17387
17388 /* If label is out of range, we turn branch <br>:
17389
17390 <br> label # 4 bytes
17391 0:
17392
17393 into:
17394
17395 j label # 4 bytes
17396 nop # 2/4 bytes if
17397 # compact && (!PIC || insn32)
17398 0:
17399 */
17400 if ((mips_pic == NO_PIC || insn32) && (!compact_known || compact))
17401 length += short_insn_size;
17402
17403 /* If assembling PIC code, we further turn:
17404
17405 j label # 4 bytes
17406
17407 into:
17408
17409 lw/ld at, %got(label)(gp) # 4 bytes
17410 d/addiu at, %lo(label) # 4 bytes
17411 jr/c at # 2/4 bytes
17412 */
17413 if (mips_pic != NO_PIC)
17414 length += 4 + short_insn_size;
17415
17416 /* Add an extra nop if the jump has no compact form and we need
17417 to fill the delay slot. */
17418 if ((mips_pic == NO_PIC || al) && nods)
17419 length += (fragp
17420 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17421 : short_insn_size);
17422
17423 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17424
17425 <brneg> 0f # 4 bytes
17426 nop # 2/4 bytes if !compact
17427 */
17428 if (!uncond)
17429 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17430 }
17431 else if (nods)
17432 {
17433 /* Add an extra nop to fill the delay slot. */
17434 gas_assert (fragp);
17435 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17436 }
17437
17438 return length;
17439 }
17440
17441 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17442 bit accordingly. */
17443
17444 static int
17445 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17446 {
17447 bfd_boolean toofar;
17448
17449 if (fragp
17450 && S_IS_DEFINED (fragp->fr_symbol)
17451 && !S_IS_WEAK (fragp->fr_symbol)
17452 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17453 {
17454 addressT addr;
17455 offsetT val;
17456 int type;
17457
17458 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17459 /* Ignore the low bit in the target, since it will be set
17460 for a text label. */
17461 if ((val & 1) != 0)
17462 --val;
17463
17464 /* Assume this is a 2-byte branch. */
17465 addr = fragp->fr_address + fragp->fr_fix + 2;
17466
17467 /* We try to avoid the infinite loop by not adding 2 more bytes for
17468 long branches. */
17469
17470 val -= addr;
17471
17472 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17473 if (type == 'D')
17474 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17475 else if (type == 'E')
17476 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17477 else
17478 abort ();
17479 }
17480 else
17481 /* If the symbol is not defined or it's in a different segment,
17482 we emit a normal 32-bit branch. */
17483 toofar = TRUE;
17484
17485 if (fragp && update
17486 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17487 fragp->fr_subtype
17488 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17489 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17490
17491 if (toofar)
17492 return 4;
17493
17494 return 2;
17495 }
17496
17497 /* Estimate the size of a frag before relaxing. Unless this is the
17498 mips16, we are not really relaxing here, and the final size is
17499 encoded in the subtype information. For the mips16, we have to
17500 decide whether we are using an extended opcode or not. */
17501
17502 int
17503 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17504 {
17505 int change;
17506
17507 if (RELAX_BRANCH_P (fragp->fr_subtype))
17508 {
17509
17510 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17511
17512 return fragp->fr_var;
17513 }
17514
17515 if (RELAX_MIPS16_P (fragp->fr_subtype))
17516 /* We don't want to modify the EXTENDED bit here; it might get us
17517 into infinite loops. We change it only in mips_relax_frag(). */
17518 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17519
17520 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17521 {
17522 int length = 4;
17523
17524 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17525 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17526 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17527 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17528 fragp->fr_var = length;
17529
17530 return length;
17531 }
17532
17533 if (mips_pic == NO_PIC)
17534 change = nopic_need_relax (fragp->fr_symbol, 0);
17535 else if (mips_pic == SVR4_PIC)
17536 change = pic_need_relax (fragp->fr_symbol, segtype);
17537 else if (mips_pic == VXWORKS_PIC)
17538 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17539 change = 0;
17540 else
17541 abort ();
17542
17543 if (change)
17544 {
17545 fragp->fr_subtype |= RELAX_USE_SECOND;
17546 return -RELAX_FIRST (fragp->fr_subtype);
17547 }
17548 else
17549 return -RELAX_SECOND (fragp->fr_subtype);
17550 }
17551
17552 /* This is called to see whether a reloc against a defined symbol
17553 should be converted into a reloc against a section. */
17554
17555 int
17556 mips_fix_adjustable (fixS *fixp)
17557 {
17558 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17559 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17560 return 0;
17561
17562 if (fixp->fx_addsy == NULL)
17563 return 1;
17564
17565 /* Allow relocs used for EH tables. */
17566 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17567 return 1;
17568
17569 /* If symbol SYM is in a mergeable section, relocations of the form
17570 SYM + 0 can usually be made section-relative. The mergeable data
17571 is then identified by the section offset rather than by the symbol.
17572
17573 However, if we're generating REL LO16 relocations, the offset is split
17574 between the LO16 and parterning high part relocation. The linker will
17575 need to recalculate the complete offset in order to correctly identify
17576 the merge data.
17577
17578 The linker has traditionally not looked for the parterning high part
17579 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17580 placed anywhere. Rather than break backwards compatibility by changing
17581 this, it seems better not to force the issue, and instead keep the
17582 original symbol. This will work with either linker behavior. */
17583 if ((lo16_reloc_p (fixp->fx_r_type)
17584 || reloc_needs_lo_p (fixp->fx_r_type))
17585 && HAVE_IN_PLACE_ADDENDS
17586 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17587 return 0;
17588
17589 /* There is no place to store an in-place offset for JALR relocations. */
17590 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17591 return 0;
17592
17593 /* Likewise an in-range offset of limited PC-relative relocations may
17594 overflow the in-place relocatable field if recalculated against the
17595 start address of the symbol's containing section.
17596
17597 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17598 section relative to allow linker relaxations to be performed later on. */
17599 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17600 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17601 return 0;
17602
17603 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17604 to a floating-point stub. The same is true for non-R_MIPS16_26
17605 relocations against MIPS16 functions; in this case, the stub becomes
17606 the function's canonical address.
17607
17608 Floating-point stubs are stored in unique .mips16.call.* or
17609 .mips16.fn.* sections. If a stub T for function F is in section S,
17610 the first relocation in section S must be against F; this is how the
17611 linker determines the target function. All relocations that might
17612 resolve to T must also be against F. We therefore have the following
17613 restrictions, which are given in an intentionally-redundant way:
17614
17615 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17616 symbols.
17617
17618 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17619 if that stub might be used.
17620
17621 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17622 symbols.
17623
17624 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17625 that stub might be used.
17626
17627 There is a further restriction:
17628
17629 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17630 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17631 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17632 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17633 against MIPS16 or microMIPS symbols because we need to keep the
17634 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17635 detection and JAL or BAL to JALX instruction conversion in the
17636 linker.
17637
17638 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17639 against a MIPS16 symbol. We deal with (5) by additionally leaving
17640 alone any jump and branch relocations against a microMIPS symbol.
17641
17642 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17643 relocation against some symbol R, no relocation against R may be
17644 reduced. (Note that this deals with (2) as well as (1) because
17645 relocations against global symbols will never be reduced on ELF
17646 targets.) This approach is a little simpler than trying to detect
17647 stub sections, and gives the "all or nothing" per-symbol consistency
17648 that we have for MIPS16 symbols. */
17649 if (fixp->fx_subsy == NULL
17650 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17651 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17652 && (jmp_reloc_p (fixp->fx_r_type)
17653 || b_reloc_p (fixp->fx_r_type)))
17654 || *symbol_get_tc (fixp->fx_addsy)))
17655 return 0;
17656
17657 return 1;
17658 }
17659
17660 /* Translate internal representation of relocation info to BFD target
17661 format. */
17662
17663 arelent **
17664 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17665 {
17666 static arelent *retval[4];
17667 arelent *reloc;
17668 bfd_reloc_code_real_type code;
17669
17670 memset (retval, 0, sizeof(retval));
17671 reloc = retval[0] = XCNEW (arelent);
17672 reloc->sym_ptr_ptr = XNEW (asymbol *);
17673 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17674 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17675
17676 if (fixp->fx_pcrel)
17677 {
17678 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17679 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17680 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17681 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17682 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17683 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17684 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17685 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17686 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17687 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17688 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17689 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17690
17691 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17692 Relocations want only the symbol offset. */
17693 switch (fixp->fx_r_type)
17694 {
17695 case BFD_RELOC_MIPS_18_PCREL_S3:
17696 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17697 break;
17698 default:
17699 reloc->addend = fixp->fx_addnumber + reloc->address;
17700 break;
17701 }
17702 }
17703 else if (HAVE_IN_PLACE_ADDENDS
17704 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17705 && (read_compressed_insn (fixp->fx_frag->fr_literal
17706 + fixp->fx_where, 4) >> 26) == 0x3c)
17707 {
17708 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17709 addend accordingly. */
17710 reloc->addend = fixp->fx_addnumber >> 1;
17711 }
17712 else
17713 reloc->addend = fixp->fx_addnumber;
17714
17715 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17716 entry to be used in the relocation's section offset. */
17717 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17718 {
17719 reloc->address = reloc->addend;
17720 reloc->addend = 0;
17721 }
17722
17723 code = fixp->fx_r_type;
17724
17725 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17726 if (reloc->howto == NULL)
17727 {
17728 as_bad_where (fixp->fx_file, fixp->fx_line,
17729 _("cannot represent %s relocation in this object file"
17730 " format"),
17731 bfd_get_reloc_code_name (code));
17732 retval[0] = NULL;
17733 }
17734
17735 return retval;
17736 }
17737
17738 /* Relax a machine dependent frag. This returns the amount by which
17739 the current size of the frag should change. */
17740
17741 int
17742 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17743 {
17744 if (RELAX_BRANCH_P (fragp->fr_subtype))
17745 {
17746 offsetT old_var = fragp->fr_var;
17747
17748 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17749
17750 return fragp->fr_var - old_var;
17751 }
17752
17753 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17754 {
17755 offsetT old_var = fragp->fr_var;
17756 offsetT new_var = 4;
17757
17758 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17759 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17760 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17761 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17762 fragp->fr_var = new_var;
17763
17764 return new_var - old_var;
17765 }
17766
17767 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17768 return 0;
17769
17770 if (mips16_extended_frag (fragp, sec, stretch))
17771 {
17772 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17773 return 0;
17774 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17775 return 2;
17776 }
17777 else
17778 {
17779 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17780 return 0;
17781 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17782 return -2;
17783 }
17784
17785 return 0;
17786 }
17787
17788 /* Convert a machine dependent frag. */
17789
17790 void
17791 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17792 {
17793 if (RELAX_BRANCH_P (fragp->fr_subtype))
17794 {
17795 char *buf;
17796 unsigned long insn;
17797 expressionS exp;
17798 fixS *fixp;
17799
17800 buf = fragp->fr_literal + fragp->fr_fix;
17801 insn = read_insn (buf);
17802
17803 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17804 {
17805 /* We generate a fixup instead of applying it right now
17806 because, if there are linker relaxations, we're going to
17807 need the relocations. */
17808 exp.X_op = O_symbol;
17809 exp.X_add_symbol = fragp->fr_symbol;
17810 exp.X_add_number = fragp->fr_offset;
17811
17812 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17813 BFD_RELOC_16_PCREL_S2);
17814 fixp->fx_file = fragp->fr_file;
17815 fixp->fx_line = fragp->fr_line;
17816
17817 buf = write_insn (buf, insn);
17818 }
17819 else
17820 {
17821 int i;
17822
17823 as_warn_where (fragp->fr_file, fragp->fr_line,
17824 _("relaxed out-of-range branch into a jump"));
17825
17826 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17827 goto uncond;
17828
17829 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17830 {
17831 /* Reverse the branch. */
17832 switch ((insn >> 28) & 0xf)
17833 {
17834 case 4:
17835 if ((insn & 0xff000000) == 0x47000000
17836 || (insn & 0xff600000) == 0x45600000)
17837 {
17838 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17839 reversed by tweaking bit 23. */
17840 insn ^= 0x00800000;
17841 }
17842 else
17843 {
17844 /* bc[0-3][tf]l? instructions can have the condition
17845 reversed by tweaking a single TF bit, and their
17846 opcodes all have 0x4???????. */
17847 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17848 insn ^= 0x00010000;
17849 }
17850 break;
17851
17852 case 0:
17853 /* bltz 0x04000000 bgez 0x04010000
17854 bltzal 0x04100000 bgezal 0x04110000 */
17855 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17856 insn ^= 0x00010000;
17857 break;
17858
17859 case 1:
17860 /* beq 0x10000000 bne 0x14000000
17861 blez 0x18000000 bgtz 0x1c000000 */
17862 insn ^= 0x04000000;
17863 break;
17864
17865 default:
17866 abort ();
17867 }
17868 }
17869
17870 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17871 {
17872 /* Clear the and-link bit. */
17873 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17874
17875 /* bltzal 0x04100000 bgezal 0x04110000
17876 bltzall 0x04120000 bgezall 0x04130000 */
17877 insn &= ~0x00100000;
17878 }
17879
17880 /* Branch over the branch (if the branch was likely) or the
17881 full jump (not likely case). Compute the offset from the
17882 current instruction to branch to. */
17883 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17884 i = 16;
17885 else
17886 {
17887 /* How many bytes in instructions we've already emitted? */
17888 i = buf - fragp->fr_literal - fragp->fr_fix;
17889 /* How many bytes in instructions from here to the end? */
17890 i = fragp->fr_var - i;
17891 }
17892 /* Convert to instruction count. */
17893 i >>= 2;
17894 /* Branch counts from the next instruction. */
17895 i--;
17896 insn |= i;
17897 /* Branch over the jump. */
17898 buf = write_insn (buf, insn);
17899
17900 /* nop */
17901 buf = write_insn (buf, 0);
17902
17903 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17904 {
17905 /* beql $0, $0, 2f */
17906 insn = 0x50000000;
17907 /* Compute the PC offset from the current instruction to
17908 the end of the variable frag. */
17909 /* How many bytes in instructions we've already emitted? */
17910 i = buf - fragp->fr_literal - fragp->fr_fix;
17911 /* How many bytes in instructions from here to the end? */
17912 i = fragp->fr_var - i;
17913 /* Convert to instruction count. */
17914 i >>= 2;
17915 /* Don't decrement i, because we want to branch over the
17916 delay slot. */
17917 insn |= i;
17918
17919 buf = write_insn (buf, insn);
17920 buf = write_insn (buf, 0);
17921 }
17922
17923 uncond:
17924 if (mips_pic == NO_PIC)
17925 {
17926 /* j or jal. */
17927 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17928 ? 0x0c000000 : 0x08000000);
17929 exp.X_op = O_symbol;
17930 exp.X_add_symbol = fragp->fr_symbol;
17931 exp.X_add_number = fragp->fr_offset;
17932
17933 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17934 FALSE, BFD_RELOC_MIPS_JMP);
17935 fixp->fx_file = fragp->fr_file;
17936 fixp->fx_line = fragp->fr_line;
17937
17938 buf = write_insn (buf, insn);
17939 }
17940 else
17941 {
17942 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17943
17944 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17945 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17946 insn |= at << OP_SH_RT;
17947 exp.X_op = O_symbol;
17948 exp.X_add_symbol = fragp->fr_symbol;
17949 exp.X_add_number = fragp->fr_offset;
17950
17951 if (fragp->fr_offset)
17952 {
17953 exp.X_add_symbol = make_expr_symbol (&exp);
17954 exp.X_add_number = 0;
17955 }
17956
17957 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17958 FALSE, BFD_RELOC_MIPS_GOT16);
17959 fixp->fx_file = fragp->fr_file;
17960 fixp->fx_line = fragp->fr_line;
17961
17962 buf = write_insn (buf, insn);
17963
17964 if (mips_opts.isa == ISA_MIPS1)
17965 /* nop */
17966 buf = write_insn (buf, 0);
17967
17968 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17969 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17970 insn |= at << OP_SH_RS | at << OP_SH_RT;
17971
17972 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17973 FALSE, BFD_RELOC_LO16);
17974 fixp->fx_file = fragp->fr_file;
17975 fixp->fx_line = fragp->fr_line;
17976
17977 buf = write_insn (buf, insn);
17978
17979 /* j(al)r $at. */
17980 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17981 insn = 0x0000f809;
17982 else
17983 insn = 0x00000008;
17984 insn |= at << OP_SH_RS;
17985
17986 buf = write_insn (buf, insn);
17987 }
17988 }
17989
17990 fragp->fr_fix += fragp->fr_var;
17991 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17992 return;
17993 }
17994
17995 /* Relax microMIPS branches. */
17996 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17997 {
17998 char *buf = fragp->fr_literal + fragp->fr_fix;
17999 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18000 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18001 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18002 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18003 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18004 bfd_boolean short_ds;
18005 unsigned long insn;
18006 expressionS exp;
18007 fixS *fixp;
18008
18009 exp.X_op = O_symbol;
18010 exp.X_add_symbol = fragp->fr_symbol;
18011 exp.X_add_number = fragp->fr_offset;
18012
18013 fragp->fr_fix += fragp->fr_var;
18014
18015 /* Handle 16-bit branches that fit or are forced to fit. */
18016 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18017 {
18018 /* We generate a fixup instead of applying it right now,
18019 because if there is linker relaxation, we're going to
18020 need the relocations. */
18021 if (type == 'D')
18022 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18023 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18024 else if (type == 'E')
18025 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18026 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18027 else
18028 abort ();
18029
18030 fixp->fx_file = fragp->fr_file;
18031 fixp->fx_line = fragp->fr_line;
18032
18033 /* These relocations can have an addend that won't fit in
18034 2 octets. */
18035 fixp->fx_no_overflow = 1;
18036
18037 return;
18038 }
18039
18040 /* Handle 32-bit branches that fit or are forced to fit. */
18041 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18042 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18043 {
18044 /* We generate a fixup instead of applying it right now,
18045 because if there is linker relaxation, we're going to
18046 need the relocations. */
18047 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18048 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18049 fixp->fx_file = fragp->fr_file;
18050 fixp->fx_line = fragp->fr_line;
18051
18052 if (type == 0)
18053 {
18054 insn = read_compressed_insn (buf, 4);
18055 buf += 4;
18056
18057 if (nods)
18058 {
18059 /* Check the short-delay-slot bit. */
18060 if (!al || (insn & 0x02000000) != 0)
18061 buf = write_compressed_insn (buf, 0x0c00, 2);
18062 else
18063 buf = write_compressed_insn (buf, 0x00000000, 4);
18064 }
18065
18066 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18067 return;
18068 }
18069 }
18070
18071 /* Relax 16-bit branches to 32-bit branches. */
18072 if (type != 0)
18073 {
18074 insn = read_compressed_insn (buf, 2);
18075
18076 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18077 insn = 0x94000000; /* beq */
18078 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18079 {
18080 unsigned long regno;
18081
18082 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18083 regno = micromips_to_32_reg_d_map [regno];
18084 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18085 insn |= regno << MICROMIPSOP_SH_RS;
18086 }
18087 else
18088 abort ();
18089
18090 /* Nothing else to do, just write it out. */
18091 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18092 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18093 {
18094 buf = write_compressed_insn (buf, insn, 4);
18095 if (nods)
18096 buf = write_compressed_insn (buf, 0x0c00, 2);
18097 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18098 return;
18099 }
18100 }
18101 else
18102 insn = read_compressed_insn (buf, 4);
18103
18104 /* Relax 32-bit branches to a sequence of instructions. */
18105 as_warn_where (fragp->fr_file, fragp->fr_line,
18106 _("relaxed out-of-range branch into a jump"));
18107
18108 /* Set the short-delay-slot bit. */
18109 short_ds = !al || (insn & 0x02000000) != 0;
18110
18111 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18112 {
18113 symbolS *l;
18114
18115 /* Reverse the branch. */
18116 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18117 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18118 insn ^= 0x20000000;
18119 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18120 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18121 || (insn & 0xffe00000) == 0x40800000 /* blez */
18122 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18123 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18124 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18125 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18126 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18127 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18128 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18129 insn ^= 0x00400000;
18130 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18131 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18132 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18133 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18134 insn ^= 0x00200000;
18135 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18136 BNZ.df */
18137 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18138 BNZ.V */
18139 insn ^= 0x00800000;
18140 else
18141 abort ();
18142
18143 if (al)
18144 {
18145 /* Clear the and-link and short-delay-slot bits. */
18146 gas_assert ((insn & 0xfda00000) == 0x40200000);
18147
18148 /* bltzal 0x40200000 bgezal 0x40600000 */
18149 /* bltzals 0x42200000 bgezals 0x42600000 */
18150 insn &= ~0x02200000;
18151 }
18152
18153 /* Make a label at the end for use with the branch. */
18154 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18155 micromips_label_inc ();
18156 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18157
18158 /* Refer to it. */
18159 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18160 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18161 fixp->fx_file = fragp->fr_file;
18162 fixp->fx_line = fragp->fr_line;
18163
18164 /* Branch over the jump. */
18165 buf = write_compressed_insn (buf, insn, 4);
18166
18167 if (!compact)
18168 {
18169 /* nop */
18170 if (insn32)
18171 buf = write_compressed_insn (buf, 0x00000000, 4);
18172 else
18173 buf = write_compressed_insn (buf, 0x0c00, 2);
18174 }
18175 }
18176
18177 if (mips_pic == NO_PIC)
18178 {
18179 unsigned long jal = (short_ds || nods
18180 ? 0x74000000 : 0xf4000000); /* jal/s */
18181
18182 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18183 insn = al ? jal : 0xd4000000;
18184
18185 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18186 BFD_RELOC_MICROMIPS_JMP);
18187 fixp->fx_file = fragp->fr_file;
18188 fixp->fx_line = fragp->fr_line;
18189
18190 buf = write_compressed_insn (buf, insn, 4);
18191
18192 if (compact || nods)
18193 {
18194 /* nop */
18195 if (insn32)
18196 buf = write_compressed_insn (buf, 0x00000000, 4);
18197 else
18198 buf = write_compressed_insn (buf, 0x0c00, 2);
18199 }
18200 }
18201 else
18202 {
18203 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18204
18205 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18206 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18207 insn |= at << MICROMIPSOP_SH_RT;
18208
18209 if (exp.X_add_number)
18210 {
18211 exp.X_add_symbol = make_expr_symbol (&exp);
18212 exp.X_add_number = 0;
18213 }
18214
18215 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18216 BFD_RELOC_MICROMIPS_GOT16);
18217 fixp->fx_file = fragp->fr_file;
18218 fixp->fx_line = fragp->fr_line;
18219
18220 buf = write_compressed_insn (buf, insn, 4);
18221
18222 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18223 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18224 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18225
18226 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18227 BFD_RELOC_MICROMIPS_LO16);
18228 fixp->fx_file = fragp->fr_file;
18229 fixp->fx_line = fragp->fr_line;
18230
18231 buf = write_compressed_insn (buf, insn, 4);
18232
18233 if (insn32)
18234 {
18235 /* jr/jalr $at */
18236 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18237 insn |= at << MICROMIPSOP_SH_RS;
18238
18239 buf = write_compressed_insn (buf, insn, 4);
18240
18241 if (compact || nods)
18242 /* nop */
18243 buf = write_compressed_insn (buf, 0x00000000, 4);
18244 }
18245 else
18246 {
18247 /* jr/jrc/jalr/jalrs $at */
18248 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18249 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18250
18251 insn = al ? jalr : jr;
18252 insn |= at << MICROMIPSOP_SH_MJ;
18253
18254 buf = write_compressed_insn (buf, insn, 2);
18255 if (al && nods)
18256 {
18257 /* nop */
18258 if (short_ds)
18259 buf = write_compressed_insn (buf, 0x0c00, 2);
18260 else
18261 buf = write_compressed_insn (buf, 0x00000000, 4);
18262 }
18263 }
18264 }
18265
18266 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18267 return;
18268 }
18269
18270 if (RELAX_MIPS16_P (fragp->fr_subtype))
18271 {
18272 int type;
18273 const struct mips_int_operand *operand;
18274 offsetT val;
18275 char *buf;
18276 unsigned int user_length, length;
18277 bfd_boolean need_reloc;
18278 unsigned long insn;
18279 bfd_boolean ext;
18280 segT symsec;
18281
18282 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18283 operand = mips16_immed_operand (type, FALSE);
18284
18285 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18286 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18287
18288 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18289 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18290 || (operand->root.type == OP_PCREL
18291 ? asec != symsec
18292 : !bfd_is_abs_section (symsec)));
18293
18294 if (operand->root.type == OP_PCREL)
18295 {
18296 const struct mips_pcrel_operand *pcrel_op;
18297 addressT addr;
18298
18299 pcrel_op = (const struct mips_pcrel_operand *) operand;
18300 addr = fragp->fr_address + fragp->fr_fix;
18301
18302 /* The rules for the base address of a PC relative reloc are
18303 complicated; see mips16_extended_frag. */
18304 if (pcrel_op->include_isa_bit)
18305 {
18306 if (!need_reloc)
18307 {
18308 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18309 as_bad_where (fragp->fr_file, fragp->fr_line,
18310 _("branch to a symbol in another ISA mode"));
18311 else if ((fragp->fr_offset & 0x1) != 0)
18312 as_bad_where (fragp->fr_file, fragp->fr_line,
18313 _("branch to misaligned address (0x%lx)"),
18314 (long) val);
18315 }
18316 addr += 2;
18317 if (ext)
18318 addr += 2;
18319 /* Ignore the low bit in the target, since it will be
18320 set for a text label. */
18321 val &= -2;
18322 }
18323 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
18324 addr -= 4;
18325 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18326 addr -= 2;
18327
18328 addr &= -(1 << pcrel_op->align_log2);
18329 val -= addr;
18330
18331 /* Make sure the section winds up with the alignment we have
18332 assumed. */
18333 if (operand->shift > 0)
18334 record_alignment (asec, operand->shift);
18335 }
18336
18337 if (ext
18338 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18339 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
18340 as_warn_where (fragp->fr_file, fragp->fr_line,
18341 _("extended instruction in delay slot"));
18342
18343 buf = fragp->fr_literal + fragp->fr_fix;
18344
18345 insn = read_compressed_insn (buf, 2);
18346 if (ext)
18347 insn |= MIPS16_EXTEND;
18348
18349 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18350 user_length = 4;
18351 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18352 user_length = 2;
18353 else
18354 user_length = 0;
18355
18356 if (need_reloc)
18357 {
18358 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18359 expressionS exp;
18360 fixS *fixp;
18361
18362 switch (type)
18363 {
18364 case 'p':
18365 case 'q':
18366 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18367 break;
18368 default:
18369 as_bad_where (fragp->fr_file, fragp->fr_line,
18370 _("unsupported relocation"));
18371 break;
18372 }
18373 if (reloc != BFD_RELOC_NONE)
18374 {
18375 gas_assert (ext);
18376
18377 exp.X_op = O_symbol;
18378 exp.X_add_symbol = fragp->fr_symbol;
18379 exp.X_add_number = fragp->fr_offset;
18380
18381 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
18382 TRUE, reloc);
18383
18384 fixp->fx_file = fragp->fr_file;
18385 fixp->fx_line = fragp->fr_line;
18386
18387 /* These relocations can have an addend that won't fit
18388 in 2 octets. */
18389 fixp->fx_no_overflow = 1;
18390 }
18391 }
18392 else
18393 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18394 BFD_RELOC_UNUSED, val, user_length, &insn);
18395
18396 length = (ext ? 4 : 2);
18397 gas_assert (mips16_opcode_length (insn) == length);
18398 write_compressed_insn (buf, insn, length);
18399 fragp->fr_fix += length;
18400 }
18401 else
18402 {
18403 relax_substateT subtype = fragp->fr_subtype;
18404 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18405 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18406 int first, second;
18407 fixS *fixp;
18408
18409 first = RELAX_FIRST (subtype);
18410 second = RELAX_SECOND (subtype);
18411 fixp = (fixS *) fragp->fr_opcode;
18412
18413 /* If the delay slot chosen does not match the size of the instruction,
18414 then emit a warning. */
18415 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18416 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18417 {
18418 relax_substateT s;
18419 const char *msg;
18420
18421 s = subtype & (RELAX_DELAY_SLOT_16BIT
18422 | RELAX_DELAY_SLOT_SIZE_FIRST
18423 | RELAX_DELAY_SLOT_SIZE_SECOND);
18424 msg = macro_warning (s);
18425 if (msg != NULL)
18426 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18427 subtype &= ~s;
18428 }
18429
18430 /* Possibly emit a warning if we've chosen the longer option. */
18431 if (use_second == second_longer)
18432 {
18433 relax_substateT s;
18434 const char *msg;
18435
18436 s = (subtype
18437 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18438 msg = macro_warning (s);
18439 if (msg != NULL)
18440 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18441 subtype &= ~s;
18442 }
18443
18444 /* Go through all the fixups for the first sequence. Disable them
18445 (by marking them as done) if we're going to use the second
18446 sequence instead. */
18447 while (fixp
18448 && fixp->fx_frag == fragp
18449 && fixp->fx_where < fragp->fr_fix - second)
18450 {
18451 if (subtype & RELAX_USE_SECOND)
18452 fixp->fx_done = 1;
18453 fixp = fixp->fx_next;
18454 }
18455
18456 /* Go through the fixups for the second sequence. Disable them if
18457 we're going to use the first sequence, otherwise adjust their
18458 addresses to account for the relaxation. */
18459 while (fixp && fixp->fx_frag == fragp)
18460 {
18461 if (subtype & RELAX_USE_SECOND)
18462 fixp->fx_where -= first;
18463 else
18464 fixp->fx_done = 1;
18465 fixp = fixp->fx_next;
18466 }
18467
18468 /* Now modify the frag contents. */
18469 if (subtype & RELAX_USE_SECOND)
18470 {
18471 char *start;
18472
18473 start = fragp->fr_literal + fragp->fr_fix - first - second;
18474 memmove (start, start + first, second);
18475 fragp->fr_fix -= first;
18476 }
18477 else
18478 fragp->fr_fix -= second;
18479 }
18480 }
18481
18482 /* This function is called after the relocs have been generated.
18483 We've been storing mips16 text labels as odd. Here we convert them
18484 back to even for the convenience of the debugger. */
18485
18486 void
18487 mips_frob_file_after_relocs (void)
18488 {
18489 asymbol **syms;
18490 unsigned int count, i;
18491
18492 syms = bfd_get_outsymbols (stdoutput);
18493 count = bfd_get_symcount (stdoutput);
18494 for (i = 0; i < count; i++, syms++)
18495 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18496 && ((*syms)->value & 1) != 0)
18497 {
18498 (*syms)->value &= ~1;
18499 /* If the symbol has an odd size, it was probably computed
18500 incorrectly, so adjust that as well. */
18501 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18502 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18503 }
18504 }
18505
18506 /* This function is called whenever a label is defined, including fake
18507 labels instantiated off the dot special symbol. It is used when
18508 handling branch delays; if a branch has a label, we assume we cannot
18509 move it. This also bumps the value of the symbol by 1 in compressed
18510 code. */
18511
18512 static void
18513 mips_record_label (symbolS *sym)
18514 {
18515 segment_info_type *si = seg_info (now_seg);
18516 struct insn_label_list *l;
18517
18518 if (free_insn_labels == NULL)
18519 l = XNEW (struct insn_label_list);
18520 else
18521 {
18522 l = free_insn_labels;
18523 free_insn_labels = l->next;
18524 }
18525
18526 l->label = sym;
18527 l->next = si->label_list;
18528 si->label_list = l;
18529 }
18530
18531 /* This function is called as tc_frob_label() whenever a label is defined
18532 and adds a DWARF-2 record we only want for true labels. */
18533
18534 void
18535 mips_define_label (symbolS *sym)
18536 {
18537 mips_record_label (sym);
18538 dwarf2_emit_label (sym);
18539 }
18540
18541 /* This function is called by tc_new_dot_label whenever a new dot symbol
18542 is defined. */
18543
18544 void
18545 mips_add_dot_label (symbolS *sym)
18546 {
18547 mips_record_label (sym);
18548 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18549 mips_compressed_mark_label (sym);
18550 }
18551 \f
18552 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18553 static unsigned int
18554 mips_convert_ase_flags (int ase)
18555 {
18556 unsigned int ext_ases = 0;
18557
18558 if (ase & ASE_DSP)
18559 ext_ases |= AFL_ASE_DSP;
18560 if (ase & ASE_DSPR2)
18561 ext_ases |= AFL_ASE_DSPR2;
18562 if (ase & ASE_DSPR3)
18563 ext_ases |= AFL_ASE_DSPR3;
18564 if (ase & ASE_EVA)
18565 ext_ases |= AFL_ASE_EVA;
18566 if (ase & ASE_MCU)
18567 ext_ases |= AFL_ASE_MCU;
18568 if (ase & ASE_MDMX)
18569 ext_ases |= AFL_ASE_MDMX;
18570 if (ase & ASE_MIPS3D)
18571 ext_ases |= AFL_ASE_MIPS3D;
18572 if (ase & ASE_MT)
18573 ext_ases |= AFL_ASE_MT;
18574 if (ase & ASE_SMARTMIPS)
18575 ext_ases |= AFL_ASE_SMARTMIPS;
18576 if (ase & ASE_VIRT)
18577 ext_ases |= AFL_ASE_VIRT;
18578 if (ase & ASE_MSA)
18579 ext_ases |= AFL_ASE_MSA;
18580 if (ase & ASE_XPA)
18581 ext_ases |= AFL_ASE_XPA;
18582
18583 return ext_ases;
18584 }
18585 /* Some special processing for a MIPS ELF file. */
18586
18587 void
18588 mips_elf_final_processing (void)
18589 {
18590 int fpabi;
18591 Elf_Internal_ABIFlags_v0 flags;
18592
18593 flags.version = 0;
18594 flags.isa_rev = 0;
18595 switch (file_mips_opts.isa)
18596 {
18597 case INSN_ISA1:
18598 flags.isa_level = 1;
18599 break;
18600 case INSN_ISA2:
18601 flags.isa_level = 2;
18602 break;
18603 case INSN_ISA3:
18604 flags.isa_level = 3;
18605 break;
18606 case INSN_ISA4:
18607 flags.isa_level = 4;
18608 break;
18609 case INSN_ISA5:
18610 flags.isa_level = 5;
18611 break;
18612 case INSN_ISA32:
18613 flags.isa_level = 32;
18614 flags.isa_rev = 1;
18615 break;
18616 case INSN_ISA32R2:
18617 flags.isa_level = 32;
18618 flags.isa_rev = 2;
18619 break;
18620 case INSN_ISA32R3:
18621 flags.isa_level = 32;
18622 flags.isa_rev = 3;
18623 break;
18624 case INSN_ISA32R5:
18625 flags.isa_level = 32;
18626 flags.isa_rev = 5;
18627 break;
18628 case INSN_ISA32R6:
18629 flags.isa_level = 32;
18630 flags.isa_rev = 6;
18631 break;
18632 case INSN_ISA64:
18633 flags.isa_level = 64;
18634 flags.isa_rev = 1;
18635 break;
18636 case INSN_ISA64R2:
18637 flags.isa_level = 64;
18638 flags.isa_rev = 2;
18639 break;
18640 case INSN_ISA64R3:
18641 flags.isa_level = 64;
18642 flags.isa_rev = 3;
18643 break;
18644 case INSN_ISA64R5:
18645 flags.isa_level = 64;
18646 flags.isa_rev = 5;
18647 break;
18648 case INSN_ISA64R6:
18649 flags.isa_level = 64;
18650 flags.isa_rev = 6;
18651 break;
18652 }
18653
18654 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18655 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18656 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18657 : (file_mips_opts.fp == 64) ? AFL_REG_64
18658 : AFL_REG_32;
18659 flags.cpr2_size = AFL_REG_NONE;
18660 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18661 Tag_GNU_MIPS_ABI_FP);
18662 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18663 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18664 if (file_ase_mips16)
18665 flags.ases |= AFL_ASE_MIPS16;
18666 if (file_ase_micromips)
18667 flags.ases |= AFL_ASE_MICROMIPS;
18668 flags.flags1 = 0;
18669 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18670 || file_mips_opts.fp == 64)
18671 && file_mips_opts.oddspreg)
18672 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18673 flags.flags2 = 0;
18674
18675 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18676 ((Elf_External_ABIFlags_v0 *)
18677 mips_flags_frag));
18678
18679 /* Write out the register information. */
18680 if (mips_abi != N64_ABI)
18681 {
18682 Elf32_RegInfo s;
18683
18684 s.ri_gprmask = mips_gprmask;
18685 s.ri_cprmask[0] = mips_cprmask[0];
18686 s.ri_cprmask[1] = mips_cprmask[1];
18687 s.ri_cprmask[2] = mips_cprmask[2];
18688 s.ri_cprmask[3] = mips_cprmask[3];
18689 /* The gp_value field is set by the MIPS ELF backend. */
18690
18691 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18692 ((Elf32_External_RegInfo *)
18693 mips_regmask_frag));
18694 }
18695 else
18696 {
18697 Elf64_Internal_RegInfo s;
18698
18699 s.ri_gprmask = mips_gprmask;
18700 s.ri_pad = 0;
18701 s.ri_cprmask[0] = mips_cprmask[0];
18702 s.ri_cprmask[1] = mips_cprmask[1];
18703 s.ri_cprmask[2] = mips_cprmask[2];
18704 s.ri_cprmask[3] = mips_cprmask[3];
18705 /* The gp_value field is set by the MIPS ELF backend. */
18706
18707 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18708 ((Elf64_External_RegInfo *)
18709 mips_regmask_frag));
18710 }
18711
18712 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18713 sort of BFD interface for this. */
18714 if (mips_any_noreorder)
18715 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18716 if (mips_pic != NO_PIC)
18717 {
18718 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18719 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18720 }
18721 if (mips_abicalls)
18722 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18723
18724 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18725 defined at present; this might need to change in future. */
18726 if (file_ase_mips16)
18727 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18728 if (file_ase_micromips)
18729 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18730 if (file_mips_opts.ase & ASE_MDMX)
18731 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18732
18733 /* Set the MIPS ELF ABI flags. */
18734 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18735 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18736 else if (mips_abi == O64_ABI)
18737 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18738 else if (mips_abi == EABI_ABI)
18739 {
18740 if (file_mips_opts.gp == 64)
18741 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18742 else
18743 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18744 }
18745 else if (mips_abi == N32_ABI)
18746 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18747
18748 /* Nothing to do for N64_ABI. */
18749
18750 if (mips_32bitmode)
18751 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18752
18753 if (mips_nan2008 == 1)
18754 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18755
18756 /* 32 bit code with 64 bit FP registers. */
18757 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18758 Tag_GNU_MIPS_ABI_FP);
18759 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18760 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18761 }
18762 \f
18763 typedef struct proc {
18764 symbolS *func_sym;
18765 symbolS *func_end_sym;
18766 unsigned long reg_mask;
18767 unsigned long reg_offset;
18768 unsigned long fpreg_mask;
18769 unsigned long fpreg_offset;
18770 unsigned long frame_offset;
18771 unsigned long frame_reg;
18772 unsigned long pc_reg;
18773 } procS;
18774
18775 static procS cur_proc;
18776 static procS *cur_proc_ptr;
18777 static int numprocs;
18778
18779 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18780 as "2", and a normal nop as "0". */
18781
18782 #define NOP_OPCODE_MIPS 0
18783 #define NOP_OPCODE_MIPS16 1
18784 #define NOP_OPCODE_MICROMIPS 2
18785
18786 char
18787 mips_nop_opcode (void)
18788 {
18789 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18790 return NOP_OPCODE_MICROMIPS;
18791 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18792 return NOP_OPCODE_MIPS16;
18793 else
18794 return NOP_OPCODE_MIPS;
18795 }
18796
18797 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18798 32-bit microMIPS NOPs here (if applicable). */
18799
18800 void
18801 mips_handle_align (fragS *fragp)
18802 {
18803 char nop_opcode;
18804 char *p;
18805 int bytes, size, excess;
18806 valueT opcode;
18807
18808 if (fragp->fr_type != rs_align_code)
18809 return;
18810
18811 p = fragp->fr_literal + fragp->fr_fix;
18812 nop_opcode = *p;
18813 switch (nop_opcode)
18814 {
18815 case NOP_OPCODE_MICROMIPS:
18816 opcode = micromips_nop32_insn.insn_opcode;
18817 size = 4;
18818 break;
18819 case NOP_OPCODE_MIPS16:
18820 opcode = mips16_nop_insn.insn_opcode;
18821 size = 2;
18822 break;
18823 case NOP_OPCODE_MIPS:
18824 default:
18825 opcode = nop_insn.insn_opcode;
18826 size = 4;
18827 break;
18828 }
18829
18830 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18831 excess = bytes % size;
18832
18833 /* Handle the leading part if we're not inserting a whole number of
18834 instructions, and make it the end of the fixed part of the frag.
18835 Try to fit in a short microMIPS NOP if applicable and possible,
18836 and use zeroes otherwise. */
18837 gas_assert (excess < 4);
18838 fragp->fr_fix += excess;
18839 switch (excess)
18840 {
18841 case 3:
18842 *p++ = '\0';
18843 /* Fall through. */
18844 case 2:
18845 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18846 {
18847 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18848 break;
18849 }
18850 *p++ = '\0';
18851 /* Fall through. */
18852 case 1:
18853 *p++ = '\0';
18854 /* Fall through. */
18855 case 0:
18856 break;
18857 }
18858
18859 md_number_to_chars (p, opcode, size);
18860 fragp->fr_var = size;
18861 }
18862
18863 static long
18864 get_number (void)
18865 {
18866 int negative = 0;
18867 long val = 0;
18868
18869 if (*input_line_pointer == '-')
18870 {
18871 ++input_line_pointer;
18872 negative = 1;
18873 }
18874 if (!ISDIGIT (*input_line_pointer))
18875 as_bad (_("expected simple number"));
18876 if (input_line_pointer[0] == '0')
18877 {
18878 if (input_line_pointer[1] == 'x')
18879 {
18880 input_line_pointer += 2;
18881 while (ISXDIGIT (*input_line_pointer))
18882 {
18883 val <<= 4;
18884 val |= hex_value (*input_line_pointer++);
18885 }
18886 return negative ? -val : val;
18887 }
18888 else
18889 {
18890 ++input_line_pointer;
18891 while (ISDIGIT (*input_line_pointer))
18892 {
18893 val <<= 3;
18894 val |= *input_line_pointer++ - '0';
18895 }
18896 return negative ? -val : val;
18897 }
18898 }
18899 if (!ISDIGIT (*input_line_pointer))
18900 {
18901 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18902 *input_line_pointer, *input_line_pointer);
18903 as_warn (_("invalid number"));
18904 return -1;
18905 }
18906 while (ISDIGIT (*input_line_pointer))
18907 {
18908 val *= 10;
18909 val += *input_line_pointer++ - '0';
18910 }
18911 return negative ? -val : val;
18912 }
18913
18914 /* The .file directive; just like the usual .file directive, but there
18915 is an initial number which is the ECOFF file index. In the non-ECOFF
18916 case .file implies DWARF-2. */
18917
18918 static void
18919 s_mips_file (int x ATTRIBUTE_UNUSED)
18920 {
18921 static int first_file_directive = 0;
18922
18923 if (ECOFF_DEBUGGING)
18924 {
18925 get_number ();
18926 s_app_file (0);
18927 }
18928 else
18929 {
18930 char *filename;
18931
18932 filename = dwarf2_directive_file (0);
18933
18934 /* Versions of GCC up to 3.1 start files with a ".file"
18935 directive even for stabs output. Make sure that this
18936 ".file" is handled. Note that you need a version of GCC
18937 after 3.1 in order to support DWARF-2 on MIPS. */
18938 if (filename != NULL && ! first_file_directive)
18939 {
18940 (void) new_logical_line (filename, -1);
18941 s_app_file_string (filename, 0);
18942 }
18943 first_file_directive = 1;
18944 }
18945 }
18946
18947 /* The .loc directive, implying DWARF-2. */
18948
18949 static void
18950 s_mips_loc (int x ATTRIBUTE_UNUSED)
18951 {
18952 if (!ECOFF_DEBUGGING)
18953 dwarf2_directive_loc (0);
18954 }
18955
18956 /* The .end directive. */
18957
18958 static void
18959 s_mips_end (int x ATTRIBUTE_UNUSED)
18960 {
18961 symbolS *p;
18962
18963 /* Following functions need their own .frame and .cprestore directives. */
18964 mips_frame_reg_valid = 0;
18965 mips_cprestore_valid = 0;
18966
18967 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18968 {
18969 p = get_symbol ();
18970 demand_empty_rest_of_line ();
18971 }
18972 else
18973 p = NULL;
18974
18975 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18976 as_warn (_(".end not in text section"));
18977
18978 if (!cur_proc_ptr)
18979 {
18980 as_warn (_(".end directive without a preceding .ent directive"));
18981 demand_empty_rest_of_line ();
18982 return;
18983 }
18984
18985 if (p != NULL)
18986 {
18987 gas_assert (S_GET_NAME (p));
18988 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18989 as_warn (_(".end symbol does not match .ent symbol"));
18990
18991 if (debug_type == DEBUG_STABS)
18992 stabs_generate_asm_endfunc (S_GET_NAME (p),
18993 S_GET_NAME (p));
18994 }
18995 else
18996 as_warn (_(".end directive missing or unknown symbol"));
18997
18998 /* Create an expression to calculate the size of the function. */
18999 if (p && cur_proc_ptr)
19000 {
19001 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19002 expressionS *exp = XNEW (expressionS);
19003
19004 obj->size = exp;
19005 exp->X_op = O_subtract;
19006 exp->X_add_symbol = symbol_temp_new_now ();
19007 exp->X_op_symbol = p;
19008 exp->X_add_number = 0;
19009
19010 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19011 }
19012
19013 /* Generate a .pdr section. */
19014 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19015 {
19016 segT saved_seg = now_seg;
19017 subsegT saved_subseg = now_subseg;
19018 expressionS exp;
19019 char *fragp;
19020
19021 #ifdef md_flush_pending_output
19022 md_flush_pending_output ();
19023 #endif
19024
19025 gas_assert (pdr_seg);
19026 subseg_set (pdr_seg, 0);
19027
19028 /* Write the symbol. */
19029 exp.X_op = O_symbol;
19030 exp.X_add_symbol = p;
19031 exp.X_add_number = 0;
19032 emit_expr (&exp, 4);
19033
19034 fragp = frag_more (7 * 4);
19035
19036 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19037 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19038 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19039 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19040 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19041 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19042 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19043
19044 subseg_set (saved_seg, saved_subseg);
19045 }
19046
19047 cur_proc_ptr = NULL;
19048 }
19049
19050 /* The .aent and .ent directives. */
19051
19052 static void
19053 s_mips_ent (int aent)
19054 {
19055 symbolS *symbolP;
19056
19057 symbolP = get_symbol ();
19058 if (*input_line_pointer == ',')
19059 ++input_line_pointer;
19060 SKIP_WHITESPACE ();
19061 if (ISDIGIT (*input_line_pointer)
19062 || *input_line_pointer == '-')
19063 get_number ();
19064
19065 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19066 as_warn (_(".ent or .aent not in text section"));
19067
19068 if (!aent && cur_proc_ptr)
19069 as_warn (_("missing .end"));
19070
19071 if (!aent)
19072 {
19073 /* This function needs its own .frame and .cprestore directives. */
19074 mips_frame_reg_valid = 0;
19075 mips_cprestore_valid = 0;
19076
19077 cur_proc_ptr = &cur_proc;
19078 memset (cur_proc_ptr, '\0', sizeof (procS));
19079
19080 cur_proc_ptr->func_sym = symbolP;
19081
19082 ++numprocs;
19083
19084 if (debug_type == DEBUG_STABS)
19085 stabs_generate_asm_func (S_GET_NAME (symbolP),
19086 S_GET_NAME (symbolP));
19087 }
19088
19089 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19090
19091 demand_empty_rest_of_line ();
19092 }
19093
19094 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19095 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19096 s_mips_frame is used so that we can set the PDR information correctly.
19097 We can't use the ecoff routines because they make reference to the ecoff
19098 symbol table (in the mdebug section). */
19099
19100 static void
19101 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19102 {
19103 if (ECOFF_DEBUGGING)
19104 s_ignore (ignore);
19105 else
19106 {
19107 long val;
19108
19109 if (cur_proc_ptr == (procS *) NULL)
19110 {
19111 as_warn (_(".frame outside of .ent"));
19112 demand_empty_rest_of_line ();
19113 return;
19114 }
19115
19116 cur_proc_ptr->frame_reg = tc_get_register (1);
19117
19118 SKIP_WHITESPACE ();
19119 if (*input_line_pointer++ != ','
19120 || get_absolute_expression_and_terminator (&val) != ',')
19121 {
19122 as_warn (_("bad .frame directive"));
19123 --input_line_pointer;
19124 demand_empty_rest_of_line ();
19125 return;
19126 }
19127
19128 cur_proc_ptr->frame_offset = val;
19129 cur_proc_ptr->pc_reg = tc_get_register (0);
19130
19131 demand_empty_rest_of_line ();
19132 }
19133 }
19134
19135 /* The .fmask and .mask directives. If the mdebug section is present
19136 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19137 embedded targets, s_mips_mask is used so that we can set the PDR
19138 information correctly. We can't use the ecoff routines because they
19139 make reference to the ecoff symbol table (in the mdebug section). */
19140
19141 static void
19142 s_mips_mask (int reg_type)
19143 {
19144 if (ECOFF_DEBUGGING)
19145 s_ignore (reg_type);
19146 else
19147 {
19148 long mask, off;
19149
19150 if (cur_proc_ptr == (procS *) NULL)
19151 {
19152 as_warn (_(".mask/.fmask outside of .ent"));
19153 demand_empty_rest_of_line ();
19154 return;
19155 }
19156
19157 if (get_absolute_expression_and_terminator (&mask) != ',')
19158 {
19159 as_warn (_("bad .mask/.fmask directive"));
19160 --input_line_pointer;
19161 demand_empty_rest_of_line ();
19162 return;
19163 }
19164
19165 off = get_absolute_expression ();
19166
19167 if (reg_type == 'F')
19168 {
19169 cur_proc_ptr->fpreg_mask = mask;
19170 cur_proc_ptr->fpreg_offset = off;
19171 }
19172 else
19173 {
19174 cur_proc_ptr->reg_mask = mask;
19175 cur_proc_ptr->reg_offset = off;
19176 }
19177
19178 demand_empty_rest_of_line ();
19179 }
19180 }
19181
19182 /* A table describing all the processors gas knows about. Names are
19183 matched in the order listed.
19184
19185 To ease comparison, please keep this table in the same order as
19186 gcc's mips_cpu_info_table[]. */
19187 static const struct mips_cpu_info mips_cpu_info_table[] =
19188 {
19189 /* Entries for generic ISAs */
19190 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19191 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19192 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19193 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19194 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19195 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19196 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19197 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19198 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19199 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19200 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19201 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19202 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19203 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19204 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19205
19206 /* MIPS I */
19207 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19208 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19209 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19210
19211 /* MIPS II */
19212 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19213
19214 /* MIPS III */
19215 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19216 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19217 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19218 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19219 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19220 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19221 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19222 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19223 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19224 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19225 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19226 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19227 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19228 /* ST Microelectronics Loongson 2E and 2F cores */
19229 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19230 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19231
19232 /* MIPS IV */
19233 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19234 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19235 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19236 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19237 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19238 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19239 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19240 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19241 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19242 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19243 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19244 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19245 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19246 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19247 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19248
19249 /* MIPS 32 */
19250 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19251 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19252 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19253 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19254
19255 /* MIPS 32 Release 2 */
19256 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19257 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19258 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19259 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19260 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19261 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19262 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19263 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19264 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19265 ISA_MIPS32R2, CPU_MIPS32R2 },
19266 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19267 ISA_MIPS32R2, CPU_MIPS32R2 },
19268 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19269 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19270 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19271 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19272 /* Deprecated forms of the above. */
19273 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19274 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19275 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19276 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19277 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19278 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19279 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19280 /* Deprecated forms of the above. */
19281 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19282 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19283 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19284 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19285 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19286 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19287 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19288 /* Deprecated forms of the above. */
19289 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19290 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19291 /* 34Kn is a 34kc without DSP. */
19292 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19293 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19294 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19295 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19296 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19297 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19298 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19299 /* Deprecated forms of the above. */
19300 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19301 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19302 /* 1004K cores are multiprocessor versions of the 34K. */
19303 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19304 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19305 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19306 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19307 /* interaptiv is the new name for 1004kf */
19308 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19309 /* M5100 family */
19310 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19311 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19312 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19313 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19314
19315 /* MIPS 64 */
19316 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19317 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19318 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19319 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19320
19321 /* Broadcom SB-1 CPU core */
19322 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19323 /* Broadcom SB-1A CPU core */
19324 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19325
19326 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19327
19328 /* MIPS 64 Release 2 */
19329
19330 /* Cavium Networks Octeon CPU core */
19331 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19332 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19333 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19334 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19335
19336 /* RMI Xlr */
19337 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19338
19339 /* Broadcom XLP.
19340 XLP is mostly like XLR, with the prominent exception that it is
19341 MIPS64R2 rather than MIPS64. */
19342 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19343
19344 /* MIPS 64 Release 6 */
19345 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19346 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19347
19348 /* End marker */
19349 { NULL, 0, 0, 0, 0 }
19350 };
19351
19352
19353 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19354 with a final "000" replaced by "k". Ignore case.
19355
19356 Note: this function is shared between GCC and GAS. */
19357
19358 static bfd_boolean
19359 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19360 {
19361 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19362 given++, canonical++;
19363
19364 return ((*given == 0 && *canonical == 0)
19365 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19366 }
19367
19368
19369 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19370 CPU name. We've traditionally allowed a lot of variation here.
19371
19372 Note: this function is shared between GCC and GAS. */
19373
19374 static bfd_boolean
19375 mips_matching_cpu_name_p (const char *canonical, const char *given)
19376 {
19377 /* First see if the name matches exactly, or with a final "000"
19378 turned into "k". */
19379 if (mips_strict_matching_cpu_name_p (canonical, given))
19380 return TRUE;
19381
19382 /* If not, try comparing based on numerical designation alone.
19383 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19384 if (TOLOWER (*given) == 'r')
19385 given++;
19386 if (!ISDIGIT (*given))
19387 return FALSE;
19388
19389 /* Skip over some well-known prefixes in the canonical name,
19390 hoping to find a number there too. */
19391 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19392 canonical += 2;
19393 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19394 canonical += 2;
19395 else if (TOLOWER (canonical[0]) == 'r')
19396 canonical += 1;
19397
19398 return mips_strict_matching_cpu_name_p (canonical, given);
19399 }
19400
19401
19402 /* Parse an option that takes the name of a processor as its argument.
19403 OPTION is the name of the option and CPU_STRING is the argument.
19404 Return the corresponding processor enumeration if the CPU_STRING is
19405 recognized, otherwise report an error and return null.
19406
19407 A similar function exists in GCC. */
19408
19409 static const struct mips_cpu_info *
19410 mips_parse_cpu (const char *option, const char *cpu_string)
19411 {
19412 const struct mips_cpu_info *p;
19413
19414 /* 'from-abi' selects the most compatible architecture for the given
19415 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19416 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19417 version. Look first at the -mgp options, if given, otherwise base
19418 the choice on MIPS_DEFAULT_64BIT.
19419
19420 Treat NO_ABI like the EABIs. One reason to do this is that the
19421 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19422 architecture. This code picks MIPS I for 'mips' and MIPS III for
19423 'mips64', just as we did in the days before 'from-abi'. */
19424 if (strcasecmp (cpu_string, "from-abi") == 0)
19425 {
19426 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19427 return mips_cpu_info_from_isa (ISA_MIPS1);
19428
19429 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19430 return mips_cpu_info_from_isa (ISA_MIPS3);
19431
19432 if (file_mips_opts.gp >= 0)
19433 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19434 ? ISA_MIPS1 : ISA_MIPS3);
19435
19436 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19437 ? ISA_MIPS3
19438 : ISA_MIPS1);
19439 }
19440
19441 /* 'default' has traditionally been a no-op. Probably not very useful. */
19442 if (strcasecmp (cpu_string, "default") == 0)
19443 return 0;
19444
19445 for (p = mips_cpu_info_table; p->name != 0; p++)
19446 if (mips_matching_cpu_name_p (p->name, cpu_string))
19447 return p;
19448
19449 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19450 return 0;
19451 }
19452
19453 /* Return the canonical processor information for ISA (a member of the
19454 ISA_MIPS* enumeration). */
19455
19456 static const struct mips_cpu_info *
19457 mips_cpu_info_from_isa (int isa)
19458 {
19459 int i;
19460
19461 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19462 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19463 && isa == mips_cpu_info_table[i].isa)
19464 return (&mips_cpu_info_table[i]);
19465
19466 return NULL;
19467 }
19468
19469 static const struct mips_cpu_info *
19470 mips_cpu_info_from_arch (int arch)
19471 {
19472 int i;
19473
19474 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19475 if (arch == mips_cpu_info_table[i].cpu)
19476 return (&mips_cpu_info_table[i]);
19477
19478 return NULL;
19479 }
19480 \f
19481 static void
19482 show (FILE *stream, const char *string, int *col_p, int *first_p)
19483 {
19484 if (*first_p)
19485 {
19486 fprintf (stream, "%24s", "");
19487 *col_p = 24;
19488 }
19489 else
19490 {
19491 fprintf (stream, ", ");
19492 *col_p += 2;
19493 }
19494
19495 if (*col_p + strlen (string) > 72)
19496 {
19497 fprintf (stream, "\n%24s", "");
19498 *col_p = 24;
19499 }
19500
19501 fprintf (stream, "%s", string);
19502 *col_p += strlen (string);
19503
19504 *first_p = 0;
19505 }
19506
19507 void
19508 md_show_usage (FILE *stream)
19509 {
19510 int column, first;
19511 size_t i;
19512
19513 fprintf (stream, _("\
19514 MIPS options:\n\
19515 -EB generate big endian output\n\
19516 -EL generate little endian output\n\
19517 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19518 -G NUM allow referencing objects up to NUM bytes\n\
19519 implicitly with the gp register [default 8]\n"));
19520 fprintf (stream, _("\
19521 -mips1 generate MIPS ISA I instructions\n\
19522 -mips2 generate MIPS ISA II instructions\n\
19523 -mips3 generate MIPS ISA III instructions\n\
19524 -mips4 generate MIPS ISA IV instructions\n\
19525 -mips5 generate MIPS ISA V instructions\n\
19526 -mips32 generate MIPS32 ISA instructions\n\
19527 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19528 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19529 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19530 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19531 -mips64 generate MIPS64 ISA instructions\n\
19532 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19533 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19534 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19535 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19536 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19537
19538 first = 1;
19539
19540 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19541 show (stream, mips_cpu_info_table[i].name, &column, &first);
19542 show (stream, "from-abi", &column, &first);
19543 fputc ('\n', stream);
19544
19545 fprintf (stream, _("\
19546 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19547 -no-mCPU don't generate code specific to CPU.\n\
19548 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19549
19550 first = 1;
19551
19552 show (stream, "3900", &column, &first);
19553 show (stream, "4010", &column, &first);
19554 show (stream, "4100", &column, &first);
19555 show (stream, "4650", &column, &first);
19556 fputc ('\n', stream);
19557
19558 fprintf (stream, _("\
19559 -mips16 generate mips16 instructions\n\
19560 -no-mips16 do not generate mips16 instructions\n"));
19561 fprintf (stream, _("\
19562 -mmicromips generate microMIPS instructions\n\
19563 -mno-micromips do not generate microMIPS instructions\n"));
19564 fprintf (stream, _("\
19565 -msmartmips generate smartmips instructions\n\
19566 -mno-smartmips do not generate smartmips instructions\n"));
19567 fprintf (stream, _("\
19568 -mdsp generate DSP instructions\n\
19569 -mno-dsp do not generate DSP instructions\n"));
19570 fprintf (stream, _("\
19571 -mdspr2 generate DSP R2 instructions\n\
19572 -mno-dspr2 do not generate DSP R2 instructions\n"));
19573 fprintf (stream, _("\
19574 -mdspr3 generate DSP R3 instructions\n\
19575 -mno-dspr3 do not generate DSP R3 instructions\n"));
19576 fprintf (stream, _("\
19577 -mmt generate MT instructions\n\
19578 -mno-mt do not generate MT instructions\n"));
19579 fprintf (stream, _("\
19580 -mmcu generate MCU instructions\n\
19581 -mno-mcu do not generate MCU instructions\n"));
19582 fprintf (stream, _("\
19583 -mmsa generate MSA instructions\n\
19584 -mno-msa do not generate MSA instructions\n"));
19585 fprintf (stream, _("\
19586 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19587 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19588 fprintf (stream, _("\
19589 -mvirt generate Virtualization instructions\n\
19590 -mno-virt do not generate Virtualization instructions\n"));
19591 fprintf (stream, _("\
19592 -minsn32 only generate 32-bit microMIPS instructions\n\
19593 -mno-insn32 generate all microMIPS instructions\n"));
19594 fprintf (stream, _("\
19595 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19596 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19597 -mfix-vr4120 work around certain VR4120 errata\n\
19598 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19599 -mfix-24k insert a nop after ERET and DERET instructions\n\
19600 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19601 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19602 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19603 -msym32 assume all symbols have 32-bit values\n\
19604 -O0 remove unneeded NOPs, do not swap branches\n\
19605 -O remove unneeded NOPs and swap branches\n\
19606 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19607 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19608 fprintf (stream, _("\
19609 -mhard-float allow floating-point instructions\n\
19610 -msoft-float do not allow floating-point instructions\n\
19611 -msingle-float only allow 32-bit floating-point operations\n\
19612 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19613 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19614 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19615 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19616
19617 first = 1;
19618
19619 show (stream, "legacy", &column, &first);
19620 show (stream, "2008", &column, &first);
19621
19622 fputc ('\n', stream);
19623
19624 fprintf (stream, _("\
19625 -KPIC, -call_shared generate SVR4 position independent code\n\
19626 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19627 -mvxworks-pic generate VxWorks position independent code\n\
19628 -non_shared do not generate code that can operate with DSOs\n\
19629 -xgot assume a 32 bit GOT\n\
19630 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19631 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19632 position dependent (non shared) code\n\
19633 -mabi=ABI create ABI conformant object file for:\n"));
19634
19635 first = 1;
19636
19637 show (stream, "32", &column, &first);
19638 show (stream, "o64", &column, &first);
19639 show (stream, "n32", &column, &first);
19640 show (stream, "64", &column, &first);
19641 show (stream, "eabi", &column, &first);
19642
19643 fputc ('\n', stream);
19644
19645 fprintf (stream, _("\
19646 -32 create o32 ABI object file (default)\n\
19647 -n32 create n32 ABI object file\n\
19648 -64 create 64 ABI object file\n"));
19649 }
19650
19651 #ifdef TE_IRIX
19652 enum dwarf2_format
19653 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19654 {
19655 if (HAVE_64BIT_SYMBOLS)
19656 return dwarf2_format_64bit_irix;
19657 else
19658 return dwarf2_format_32bit;
19659 }
19660 #endif
19661
19662 int
19663 mips_dwarf2_addr_size (void)
19664 {
19665 if (HAVE_64BIT_OBJECTS)
19666 return 8;
19667 else
19668 return 4;
19669 }
19670
19671 /* Standard calling conventions leave the CFA at SP on entry. */
19672 void
19673 mips_cfi_frame_initial_instructions (void)
19674 {
19675 cfi_add_CFA_def_cfa_register (SP);
19676 }
19677
19678 int
19679 tc_mips_regname_to_dw2regnum (char *regname)
19680 {
19681 unsigned int regnum = -1;
19682 unsigned int reg;
19683
19684 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19685 regnum = reg;
19686
19687 return regnum;
19688 }
19689
19690 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19691 Given a symbolic attribute NAME, return the proper integer value.
19692 Returns -1 if the attribute is not known. */
19693
19694 int
19695 mips_convert_symbolic_attribute (const char *name)
19696 {
19697 static const struct
19698 {
19699 const char * name;
19700 const int tag;
19701 }
19702 attribute_table[] =
19703 {
19704 #define T(tag) {#tag, tag}
19705 T (Tag_GNU_MIPS_ABI_FP),
19706 T (Tag_GNU_MIPS_ABI_MSA),
19707 #undef T
19708 };
19709 unsigned int i;
19710
19711 if (name == NULL)
19712 return -1;
19713
19714 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19715 if (streq (name, attribute_table[i].name))
19716 return attribute_table[i].tag;
19717
19718 return -1;
19719 }
19720
19721 void
19722 md_mips_end (void)
19723 {
19724 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19725
19726 mips_emit_delays ();
19727 if (cur_proc_ptr)
19728 as_warn (_("missing .end at end of assembly"));
19729
19730 /* Just in case no code was emitted, do the consistency check. */
19731 file_mips_check_options ();
19732
19733 /* Set a floating-point ABI if the user did not. */
19734 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19735 {
19736 /* Perform consistency checks on the floating-point ABI. */
19737 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19738 Tag_GNU_MIPS_ABI_FP);
19739 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19740 check_fpabi (fpabi);
19741 }
19742 else
19743 {
19744 /* Soft-float gets precedence over single-float, the two options should
19745 not be used together so this should not matter. */
19746 if (file_mips_opts.soft_float == 1)
19747 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19748 /* Single-float gets precedence over all double_float cases. */
19749 else if (file_mips_opts.single_float == 1)
19750 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19751 else
19752 {
19753 switch (file_mips_opts.fp)
19754 {
19755 case 32:
19756 if (file_mips_opts.gp == 32)
19757 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19758 break;
19759 case 0:
19760 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19761 break;
19762 case 64:
19763 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19764 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19765 else if (file_mips_opts.gp == 32)
19766 fpabi = Val_GNU_MIPS_ABI_FP_64;
19767 else
19768 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19769 break;
19770 }
19771 }
19772
19773 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19774 Tag_GNU_MIPS_ABI_FP, fpabi);
19775 }
19776 }
19777
19778 /* Returns the relocation type required for a particular CFI encoding. */
19779
19780 bfd_reloc_code_real_type
19781 mips_cfi_reloc_for_encoding (int encoding)
19782 {
19783 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19784 return BFD_RELOC_32_PCREL;
19785 else return BFD_RELOC_NONE;
19786 }
This page took 0.471485 seconds and 4 git commands to generate.