gas/
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define ATREG 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
102
103 #define ILLEGAL_REG (32)
104
105 #define AT mips_opts.at
106
107 /* Allow override of standard little-endian ECOFF format. */
108
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
111 #endif
112
113 extern int target_big_endian;
114
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
123
124 /* Information about an instruction, including its format, operands
125 and fixups. */
126 struct mips_cl_insn
127 {
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
130
131 /* True if this is a mips16 instruction and if we want the extended
132 form of INSN_MO. */
133 bfd_boolean use_extend;
134
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
141
142 /* The frag that contains the instruction. */
143 struct frag *frag;
144
145 /* The offset into FRAG of the first instruction byte. */
146 long where;
147
148 /* The relocs associated with the instruction, if any. */
149 fixS *fixp[3];
150
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
153
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
156
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
159
160 /* True if this instruction is complete. */
161 unsigned int complete_p : 1;
162 };
163
164 /* The ABI to use. */
165 enum mips_abi_level
166 {
167 NO_ABI = 0,
168 O32_ABI,
169 O64_ABI,
170 N32_ABI,
171 N64_ABI,
172 EABI_ABI
173 };
174
175 /* MIPS ABI we are using for this output file. */
176 static enum mips_abi_level mips_abi = NO_ABI;
177
178 /* Whether or not we have code that can call pic code. */
179 int mips_abicalls = FALSE;
180
181 /* Whether or not we have code which can be put into a shared
182 library. */
183 static bfd_boolean mips_in_shared = TRUE;
184
185 /* This is the set of options which may be modified by the .set
186 pseudo-op. We use a struct so that .set push and .set pop are more
187 reliable. */
188
189 struct mips_set_options
190 {
191 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
192 if it has not been initialized. Changed by `.set mipsN', and the
193 -mipsN command line option, and the default CPU. */
194 int isa;
195 /* Enabled Application Specific Extensions (ASEs). These are set to -1
196 if they have not been initialized. Changed by `.set <asename>', by
197 command line options, and based on the default architecture. */
198 int ase_mips3d;
199 int ase_mdmx;
200 int ase_smartmips;
201 int ase_dsp;
202 int ase_dspr2;
203 int ase_mt;
204 /* Whether we are assembling for the mips16 processor. 0 if we are
205 not, 1 if we are, and -1 if the value has not been initialized.
206 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
207 -nomips16 command line options, and the default CPU. */
208 int mips16;
209 /* Non-zero if we should not reorder instructions. Changed by `.set
210 reorder' and `.set noreorder'. */
211 int noreorder;
212 /* Non-zero if we should not permit the register designated "assembler
213 temporary" to be used in instructions. The value is the register
214 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
215 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
216 unsigned int at;
217 /* Non-zero if we should warn when a macro instruction expands into
218 more than one machine instruction. Changed by `.set nomacro' and
219 `.set macro'. */
220 int warn_about_macros;
221 /* Non-zero if we should not move instructions. Changed by `.set
222 move', `.set volatile', `.set nomove', and `.set novolatile'. */
223 int nomove;
224 /* Non-zero if we should not optimize branches by moving the target
225 of the branch into the delay slot. Actually, we don't perform
226 this optimization anyhow. Changed by `.set bopt' and `.set
227 nobopt'. */
228 int nobopt;
229 /* Non-zero if we should not autoextend mips16 instructions.
230 Changed by `.set autoextend' and `.set noautoextend'. */
231 int noautoextend;
232 /* Restrict general purpose registers and floating point registers
233 to 32 bit. This is initially determined when -mgp32 or -mfp32
234 is passed but can changed if the assembler code uses .set mipsN. */
235 int gp32;
236 int fp32;
237 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
238 command line option, and the default CPU. */
239 int arch;
240 /* True if ".set sym32" is in effect. */
241 bfd_boolean sym32;
242 /* True if floating-point operations are not allowed. Changed by .set
243 softfloat or .set hardfloat, by command line options -msoft-float or
244 -mhard-float. The default is false. */
245 bfd_boolean soft_float;
246
247 /* True if only single-precision floating-point operations are allowed.
248 Changed by .set singlefloat or .set doublefloat, command-line options
249 -msingle-float or -mdouble-float. The default is false. */
250 bfd_boolean single_float;
251 };
252
253 /* This is the struct we use to hold the current set of options. Note
254 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
255 -1 to indicate that they have not been initialized. */
256
257 /* True if -mgp32 was passed. */
258 static int file_mips_gp32 = -1;
259
260 /* True if -mfp32 was passed. */
261 static int file_mips_fp32 = -1;
262
263 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
264 static int file_mips_soft_float = 0;
265
266 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
267 static int file_mips_single_float = 0;
268
269 static struct mips_set_options mips_opts =
270 {
271 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
272 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
273 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
274 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
275 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
276 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
277 };
278
279 /* These variables are filled in with the masks of registers used.
280 The object format code reads them and puts them in the appropriate
281 place. */
282 unsigned long mips_gprmask;
283 unsigned long mips_cprmask[4];
284
285 /* MIPS ISA we are using for this output file. */
286 static int file_mips_isa = ISA_UNKNOWN;
287
288 /* True if any MIPS16 code was produced. */
289 static int file_ase_mips16;
290
291 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
292 || mips_opts.isa == ISA_MIPS32R2 \
293 || mips_opts.isa == ISA_MIPS64 \
294 || mips_opts.isa == ISA_MIPS64R2)
295
296 /* True if we want to create R_MIPS_JALR for jalr $25. */
297 #ifdef TE_IRIX
298 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
299 #else
300 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
301 because there's no place for any addend, the only acceptable
302 expression is a bare symbol. */
303 #define MIPS_JALR_HINT_P(EXPR) \
304 (!HAVE_IN_PLACE_ADDENDS \
305 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
306 #endif
307
308 /* True if -mips3d was passed or implied by arguments passed on the
309 command line (e.g., by -march). */
310 static int file_ase_mips3d;
311
312 /* True if -mdmx was passed or implied by arguments passed on the
313 command line (e.g., by -march). */
314 static int file_ase_mdmx;
315
316 /* True if -msmartmips was passed or implied by arguments passed on the
317 command line (e.g., by -march). */
318 static int file_ase_smartmips;
319
320 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
321 || mips_opts.isa == ISA_MIPS32R2)
322
323 /* True if -mdsp was passed or implied by arguments passed on the
324 command line (e.g., by -march). */
325 static int file_ase_dsp;
326
327 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
328 || mips_opts.isa == ISA_MIPS64R2)
329
330 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
331
332 /* True if -mdspr2 was passed or implied by arguments passed on the
333 command line (e.g., by -march). */
334 static int file_ase_dspr2;
335
336 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
337 || mips_opts.isa == ISA_MIPS64R2)
338
339 /* True if -mmt was passed or implied by arguments passed on the
340 command line (e.g., by -march). */
341 static int file_ase_mt;
342
343 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
344 || mips_opts.isa == ISA_MIPS64R2)
345
346 /* The argument of the -march= flag. The architecture we are assembling. */
347 static int file_mips_arch = CPU_UNKNOWN;
348 static const char *mips_arch_string;
349
350 /* The argument of the -mtune= flag. The architecture for which we
351 are optimizing. */
352 static int mips_tune = CPU_UNKNOWN;
353 static const char *mips_tune_string;
354
355 /* True when generating 32-bit code for a 64-bit processor. */
356 static int mips_32bitmode = 0;
357
358 /* True if the given ABI requires 32-bit registers. */
359 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
360
361 /* Likewise 64-bit registers. */
362 #define ABI_NEEDS_64BIT_REGS(ABI) \
363 ((ABI) == N32_ABI \
364 || (ABI) == N64_ABI \
365 || (ABI) == O64_ABI)
366
367 /* Return true if ISA supports 64 bit wide gp registers. */
368 #define ISA_HAS_64BIT_REGS(ISA) \
369 ((ISA) == ISA_MIPS3 \
370 || (ISA) == ISA_MIPS4 \
371 || (ISA) == ISA_MIPS5 \
372 || (ISA) == ISA_MIPS64 \
373 || (ISA) == ISA_MIPS64R2)
374
375 /* Return true if ISA supports 64 bit wide float registers. */
376 #define ISA_HAS_64BIT_FPRS(ISA) \
377 ((ISA) == ISA_MIPS3 \
378 || (ISA) == ISA_MIPS4 \
379 || (ISA) == ISA_MIPS5 \
380 || (ISA) == ISA_MIPS32R2 \
381 || (ISA) == ISA_MIPS64 \
382 || (ISA) == ISA_MIPS64R2)
383
384 /* Return true if ISA supports 64-bit right rotate (dror et al.)
385 instructions. */
386 #define ISA_HAS_DROR(ISA) \
387 ((ISA) == ISA_MIPS64R2)
388
389 /* Return true if ISA supports 32-bit right rotate (ror et al.)
390 instructions. */
391 #define ISA_HAS_ROR(ISA) \
392 ((ISA) == ISA_MIPS32R2 \
393 || (ISA) == ISA_MIPS64R2 \
394 || mips_opts.ase_smartmips)
395
396 /* Return true if ISA supports single-precision floats in odd registers. */
397 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
398 ((ISA) == ISA_MIPS32 \
399 || (ISA) == ISA_MIPS32R2 \
400 || (ISA) == ISA_MIPS64 \
401 || (ISA) == ISA_MIPS64R2)
402
403 /* Return true if ISA supports move to/from high part of a 64-bit
404 floating-point register. */
405 #define ISA_HAS_MXHC1(ISA) \
406 ((ISA) == ISA_MIPS32R2 \
407 || (ISA) == ISA_MIPS64R2)
408
409 #define HAVE_32BIT_GPRS \
410 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
411
412 #define HAVE_32BIT_FPRS \
413 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
414
415 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
416 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
417
418 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
419
420 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
421
422 /* True if relocations are stored in-place. */
423 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
424
425 /* The ABI-derived address size. */
426 #define HAVE_64BIT_ADDRESSES \
427 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
428 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
429
430 /* The size of symbolic constants (i.e., expressions of the form
431 "SYMBOL" or "SYMBOL + OFFSET"). */
432 #define HAVE_32BIT_SYMBOLS \
433 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
434 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
435
436 /* Addresses are loaded in different ways, depending on the address size
437 in use. The n32 ABI Documentation also mandates the use of additions
438 with overflow checking, but existing implementations don't follow it. */
439 #define ADDRESS_ADD_INSN \
440 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
441
442 #define ADDRESS_ADDI_INSN \
443 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
444
445 #define ADDRESS_LOAD_INSN \
446 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
447
448 #define ADDRESS_STORE_INSN \
449 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
450
451 /* Return true if the given CPU supports the MIPS16 ASE. */
452 #define CPU_HAS_MIPS16(cpu) \
453 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
454 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
455
456 /* True if CPU has a dror instruction. */
457 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
458
459 /* True if CPU has a ror instruction. */
460 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
461
462 /* True if CPU has seq/sne and seqi/snei instructions. */
463 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
464
465 /* True if CPU does not implement the all the coprocessor insns. For these
466 CPUs only those COP insns are accepted that are explicitly marked to be
467 available on the CPU. ISA membership for COP insns is ignored. */
468 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
469
470 /* True if mflo and mfhi can be immediately followed by instructions
471 which write to the HI and LO registers.
472
473 According to MIPS specifications, MIPS ISAs I, II, and III need
474 (at least) two instructions between the reads of HI/LO and
475 instructions which write them, and later ISAs do not. Contradicting
476 the MIPS specifications, some MIPS IV processor user manuals (e.g.
477 the UM for the NEC Vr5000) document needing the instructions between
478 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
479 MIPS64 and later ISAs to have the interlocks, plus any specific
480 earlier-ISA CPUs for which CPU documentation declares that the
481 instructions are really interlocked. */
482 #define hilo_interlocks \
483 (mips_opts.isa == ISA_MIPS32 \
484 || mips_opts.isa == ISA_MIPS32R2 \
485 || mips_opts.isa == ISA_MIPS64 \
486 || mips_opts.isa == ISA_MIPS64R2 \
487 || mips_opts.arch == CPU_R4010 \
488 || mips_opts.arch == CPU_R10000 \
489 || mips_opts.arch == CPU_R12000 \
490 || mips_opts.arch == CPU_R14000 \
491 || mips_opts.arch == CPU_R16000 \
492 || mips_opts.arch == CPU_RM7000 \
493 || mips_opts.arch == CPU_VR5500 \
494 )
495
496 /* Whether the processor uses hardware interlocks to protect reads
497 from the GPRs after they are loaded from memory, and thus does not
498 require nops to be inserted. This applies to instructions marked
499 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
500 level I. */
501 #define gpr_interlocks \
502 (mips_opts.isa != ISA_MIPS1 \
503 || mips_opts.arch == CPU_R3900)
504
505 /* Whether the processor uses hardware interlocks to avoid delays
506 required by coprocessor instructions, and thus does not require
507 nops to be inserted. This applies to instructions marked
508 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
509 between instructions marked INSN_WRITE_COND_CODE and ones marked
510 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
511 levels I, II, and III. */
512 /* Itbl support may require additional care here. */
513 #define cop_interlocks \
514 ((mips_opts.isa != ISA_MIPS1 \
515 && mips_opts.isa != ISA_MIPS2 \
516 && mips_opts.isa != ISA_MIPS3) \
517 || mips_opts.arch == CPU_R4300 \
518 )
519
520 /* Whether the processor uses hardware interlocks to protect reads
521 from coprocessor registers after they are loaded from memory, and
522 thus does not require nops to be inserted. This applies to
523 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
524 requires at MIPS ISA level I. */
525 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
526
527 /* Is this a mfhi or mflo instruction? */
528 #define MF_HILO_INSN(PINFO) \
529 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
530
531 /* Returns true for a (non floating-point) coprocessor instruction. Reading
532 or writing the condition code is only possible on the coprocessors and
533 these insns are not marked with INSN_COP. Thus for these insns use the
534 condition-code flags. */
535 #define COP_INSN(PINFO) \
536 (PINFO != INSN_MACRO \
537 && ((PINFO) & (FP_S | FP_D)) == 0 \
538 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
539
540 /* MIPS PIC level. */
541
542 enum mips_pic_level mips_pic;
543
544 /* 1 if we should generate 32 bit offsets from the $gp register in
545 SVR4_PIC mode. Currently has no meaning in other modes. */
546 static int mips_big_got = 0;
547
548 /* 1 if trap instructions should used for overflow rather than break
549 instructions. */
550 static int mips_trap = 0;
551
552 /* 1 if double width floating point constants should not be constructed
553 by assembling two single width halves into two single width floating
554 point registers which just happen to alias the double width destination
555 register. On some architectures this aliasing can be disabled by a bit
556 in the status register, and the setting of this bit cannot be determined
557 automatically at assemble time. */
558 static int mips_disable_float_construction;
559
560 /* Non-zero if any .set noreorder directives were used. */
561
562 static int mips_any_noreorder;
563
564 /* Non-zero if nops should be inserted when the register referenced in
565 an mfhi/mflo instruction is read in the next two instructions. */
566 static int mips_7000_hilo_fix;
567
568 /* The size of objects in the small data section. */
569 static unsigned int g_switch_value = 8;
570 /* Whether the -G option was used. */
571 static int g_switch_seen = 0;
572
573 #define N_RMASK 0xc4
574 #define N_VFP 0xd4
575
576 /* If we can determine in advance that GP optimization won't be
577 possible, we can skip the relaxation stuff that tries to produce
578 GP-relative references. This makes delay slot optimization work
579 better.
580
581 This function can only provide a guess, but it seems to work for
582 gcc output. It needs to guess right for gcc, otherwise gcc
583 will put what it thinks is a GP-relative instruction in a branch
584 delay slot.
585
586 I don't know if a fix is needed for the SVR4_PIC mode. I've only
587 fixed it for the non-PIC mode. KR 95/04/07 */
588 static int nopic_need_relax (symbolS *, int);
589
590 /* handle of the OPCODE hash table */
591 static struct hash_control *op_hash = NULL;
592
593 /* The opcode hash table we use for the mips16. */
594 static struct hash_control *mips16_op_hash = NULL;
595
596 /* This array holds the chars that always start a comment. If the
597 pre-processor is disabled, these aren't very useful */
598 const char comment_chars[] = "#";
599
600 /* This array holds the chars that only start a comment at the beginning of
601 a line. If the line seems to have the form '# 123 filename'
602 .line and .file directives will appear in the pre-processed output */
603 /* Note that input_file.c hand checks for '#' at the beginning of the
604 first line of the input file. This is because the compiler outputs
605 #NO_APP at the beginning of its output. */
606 /* Also note that C style comments are always supported. */
607 const char line_comment_chars[] = "#";
608
609 /* This array holds machine specific line separator characters. */
610 const char line_separator_chars[] = ";";
611
612 /* Chars that can be used to separate mant from exp in floating point nums */
613 const char EXP_CHARS[] = "eE";
614
615 /* Chars that mean this number is a floating point constant */
616 /* As in 0f12.456 */
617 /* or 0d1.2345e12 */
618 const char FLT_CHARS[] = "rRsSfFdDxXpP";
619
620 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
621 changed in read.c . Ideally it shouldn't have to know about it at all,
622 but nothing is ideal around here.
623 */
624
625 static char *insn_error;
626
627 static int auto_align = 1;
628
629 /* When outputting SVR4 PIC code, the assembler needs to know the
630 offset in the stack frame from which to restore the $gp register.
631 This is set by the .cprestore pseudo-op, and saved in this
632 variable. */
633 static offsetT mips_cprestore_offset = -1;
634
635 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
636 more optimizations, it can use a register value instead of a memory-saved
637 offset and even an other register than $gp as global pointer. */
638 static offsetT mips_cpreturn_offset = -1;
639 static int mips_cpreturn_register = -1;
640 static int mips_gp_register = GP;
641 static int mips_gprel_offset = 0;
642
643 /* Whether mips_cprestore_offset has been set in the current function
644 (or whether it has already been warned about, if not). */
645 static int mips_cprestore_valid = 0;
646
647 /* This is the register which holds the stack frame, as set by the
648 .frame pseudo-op. This is needed to implement .cprestore. */
649 static int mips_frame_reg = SP;
650
651 /* Whether mips_frame_reg has been set in the current function
652 (or whether it has already been warned about, if not). */
653 static int mips_frame_reg_valid = 0;
654
655 /* To output NOP instructions correctly, we need to keep information
656 about the previous two instructions. */
657
658 /* Whether we are optimizing. The default value of 2 means to remove
659 unneeded NOPs and swap branch instructions when possible. A value
660 of 1 means to not swap branches. A value of 0 means to always
661 insert NOPs. */
662 static int mips_optimize = 2;
663
664 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
665 equivalent to seeing no -g option at all. */
666 static int mips_debug = 0;
667
668 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
669 #define MAX_VR4130_NOPS 4
670
671 /* The maximum number of NOPs needed to fill delay slots. */
672 #define MAX_DELAY_NOPS 2
673
674 /* The maximum number of NOPs needed for any purpose. */
675 #define MAX_NOPS 4
676
677 /* A list of previous instructions, with index 0 being the most recent.
678 We need to look back MAX_NOPS instructions when filling delay slots
679 or working around processor errata. We need to look back one
680 instruction further if we're thinking about using history[0] to
681 fill a branch delay slot. */
682 static struct mips_cl_insn history[1 + MAX_NOPS];
683
684 /* Nop instructions used by emit_nop. */
685 static struct mips_cl_insn nop_insn, mips16_nop_insn;
686
687 /* The appropriate nop for the current mode. */
688 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
689
690 /* If this is set, it points to a frag holding nop instructions which
691 were inserted before the start of a noreorder section. If those
692 nops turn out to be unnecessary, the size of the frag can be
693 decreased. */
694 static fragS *prev_nop_frag;
695
696 /* The number of nop instructions we created in prev_nop_frag. */
697 static int prev_nop_frag_holds;
698
699 /* The number of nop instructions that we know we need in
700 prev_nop_frag. */
701 static int prev_nop_frag_required;
702
703 /* The number of instructions we've seen since prev_nop_frag. */
704 static int prev_nop_frag_since;
705
706 /* For ECOFF and ELF, relocations against symbols are done in two
707 parts, with a HI relocation and a LO relocation. Each relocation
708 has only 16 bits of space to store an addend. This means that in
709 order for the linker to handle carries correctly, it must be able
710 to locate both the HI and the LO relocation. This means that the
711 relocations must appear in order in the relocation table.
712
713 In order to implement this, we keep track of each unmatched HI
714 relocation. We then sort them so that they immediately precede the
715 corresponding LO relocation. */
716
717 struct mips_hi_fixup
718 {
719 /* Next HI fixup. */
720 struct mips_hi_fixup *next;
721 /* This fixup. */
722 fixS *fixp;
723 /* The section this fixup is in. */
724 segT seg;
725 };
726
727 /* The list of unmatched HI relocs. */
728
729 static struct mips_hi_fixup *mips_hi_fixup_list;
730
731 /* The frag containing the last explicit relocation operator.
732 Null if explicit relocations have not been used. */
733
734 static fragS *prev_reloc_op_frag;
735
736 /* Map normal MIPS register numbers to mips16 register numbers. */
737
738 #define X ILLEGAL_REG
739 static const int mips32_to_16_reg_map[] =
740 {
741 X, X, 2, 3, 4, 5, 6, 7,
742 X, X, X, X, X, X, X, X,
743 0, 1, X, X, X, X, X, X,
744 X, X, X, X, X, X, X, X
745 };
746 #undef X
747
748 /* Map mips16 register numbers to normal MIPS register numbers. */
749
750 static const unsigned int mips16_to_32_reg_map[] =
751 {
752 16, 17, 2, 3, 4, 5, 6, 7
753 };
754
755 /* Classifies the kind of instructions we're interested in when
756 implementing -mfix-vr4120. */
757 enum fix_vr4120_class
758 {
759 FIX_VR4120_MACC,
760 FIX_VR4120_DMACC,
761 FIX_VR4120_MULT,
762 FIX_VR4120_DMULT,
763 FIX_VR4120_DIV,
764 FIX_VR4120_MTHILO,
765 NUM_FIX_VR4120_CLASSES
766 };
767
768 /* ...likewise -mfix-loongson2f-jump. */
769 static bfd_boolean mips_fix_loongson2f_jump;
770
771 /* ...likewise -mfix-loongson2f-nop. */
772 static bfd_boolean mips_fix_loongson2f_nop;
773
774 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
775 static bfd_boolean mips_fix_loongson2f;
776
777 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
778 there must be at least one other instruction between an instruction
779 of type X and an instruction of type Y. */
780 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
781
782 /* True if -mfix-vr4120 is in force. */
783 static int mips_fix_vr4120;
784
785 /* ...likewise -mfix-vr4130. */
786 static int mips_fix_vr4130;
787
788 /* ...likewise -mfix-24k. */
789 static int mips_fix_24k;
790
791 /* ...likewise -mfix-cn63xxp1 */
792 static bfd_boolean mips_fix_cn63xxp1;
793
794 /* We don't relax branches by default, since this causes us to expand
795 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
796 fail to compute the offset before expanding the macro to the most
797 efficient expansion. */
798
799 static int mips_relax_branch;
800 \f
801 /* The expansion of many macros depends on the type of symbol that
802 they refer to. For example, when generating position-dependent code,
803 a macro that refers to a symbol may have two different expansions,
804 one which uses GP-relative addresses and one which uses absolute
805 addresses. When generating SVR4-style PIC, a macro may have
806 different expansions for local and global symbols.
807
808 We handle these situations by generating both sequences and putting
809 them in variant frags. In position-dependent code, the first sequence
810 will be the GP-relative one and the second sequence will be the
811 absolute one. In SVR4 PIC, the first sequence will be for global
812 symbols and the second will be for local symbols.
813
814 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
815 SECOND are the lengths of the two sequences in bytes. These fields
816 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
817 the subtype has the following flags:
818
819 RELAX_USE_SECOND
820 Set if it has been decided that we should use the second
821 sequence instead of the first.
822
823 RELAX_SECOND_LONGER
824 Set in the first variant frag if the macro's second implementation
825 is longer than its first. This refers to the macro as a whole,
826 not an individual relaxation.
827
828 RELAX_NOMACRO
829 Set in the first variant frag if the macro appeared in a .set nomacro
830 block and if one alternative requires a warning but the other does not.
831
832 RELAX_DELAY_SLOT
833 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
834 delay slot.
835
836 The frag's "opcode" points to the first fixup for relaxable code.
837
838 Relaxable macros are generated using a sequence such as:
839
840 relax_start (SYMBOL);
841 ... generate first expansion ...
842 relax_switch ();
843 ... generate second expansion ...
844 relax_end ();
845
846 The code and fixups for the unwanted alternative are discarded
847 by md_convert_frag. */
848 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
849
850 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
851 #define RELAX_SECOND(X) ((X) & 0xff)
852 #define RELAX_USE_SECOND 0x10000
853 #define RELAX_SECOND_LONGER 0x20000
854 #define RELAX_NOMACRO 0x40000
855 #define RELAX_DELAY_SLOT 0x80000
856
857 /* Branch without likely bit. If label is out of range, we turn:
858
859 beq reg1, reg2, label
860 delay slot
861
862 into
863
864 bne reg1, reg2, 0f
865 nop
866 j label
867 0: delay slot
868
869 with the following opcode replacements:
870
871 beq <-> bne
872 blez <-> bgtz
873 bltz <-> bgez
874 bc1f <-> bc1t
875
876 bltzal <-> bgezal (with jal label instead of j label)
877
878 Even though keeping the delay slot instruction in the delay slot of
879 the branch would be more efficient, it would be very tricky to do
880 correctly, because we'd have to introduce a variable frag *after*
881 the delay slot instruction, and expand that instead. Let's do it
882 the easy way for now, even if the branch-not-taken case now costs
883 one additional instruction. Out-of-range branches are not supposed
884 to be common, anyway.
885
886 Branch likely. If label is out of range, we turn:
887
888 beql reg1, reg2, label
889 delay slot (annulled if branch not taken)
890
891 into
892
893 beql reg1, reg2, 1f
894 nop
895 beql $0, $0, 2f
896 nop
897 1: j[al] label
898 delay slot (executed only if branch taken)
899 2:
900
901 It would be possible to generate a shorter sequence by losing the
902 likely bit, generating something like:
903
904 bne reg1, reg2, 0f
905 nop
906 j[al] label
907 delay slot (executed only if branch taken)
908 0:
909
910 beql -> bne
911 bnel -> beq
912 blezl -> bgtz
913 bgtzl -> blez
914 bltzl -> bgez
915 bgezl -> bltz
916 bc1fl -> bc1t
917 bc1tl -> bc1f
918
919 bltzall -> bgezal (with jal label instead of j label)
920 bgezall -> bltzal (ditto)
921
922
923 but it's not clear that it would actually improve performance. */
924 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
925 ((relax_substateT) \
926 (0xc0000000 \
927 | ((at) & 0x1f) \
928 | ((toofar) ? 0x20 : 0) \
929 | ((link) ? 0x40 : 0) \
930 | ((likely) ? 0x80 : 0) \
931 | ((uncond) ? 0x100 : 0)))
932 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
933 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
934 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
935 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
936 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
937 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
938
939 /* For mips16 code, we use an entirely different form of relaxation.
940 mips16 supports two versions of most instructions which take
941 immediate values: a small one which takes some small value, and a
942 larger one which takes a 16 bit value. Since branches also follow
943 this pattern, relaxing these values is required.
944
945 We can assemble both mips16 and normal MIPS code in a single
946 object. Therefore, we need to support this type of relaxation at
947 the same time that we support the relaxation described above. We
948 use the high bit of the subtype field to distinguish these cases.
949
950 The information we store for this type of relaxation is the
951 argument code found in the opcode file for this relocation, whether
952 the user explicitly requested a small or extended form, and whether
953 the relocation is in a jump or jal delay slot. That tells us the
954 size of the value, and how it should be stored. We also store
955 whether the fragment is considered to be extended or not. We also
956 store whether this is known to be a branch to a different section,
957 whether we have tried to relax this frag yet, and whether we have
958 ever extended a PC relative fragment because of a shift count. */
959 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
960 (0x80000000 \
961 | ((type) & 0xff) \
962 | ((small) ? 0x100 : 0) \
963 | ((ext) ? 0x200 : 0) \
964 | ((dslot) ? 0x400 : 0) \
965 | ((jal_dslot) ? 0x800 : 0))
966 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
967 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
968 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
969 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
970 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
971 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
972 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
973 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
974 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
975 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
976 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
977 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
978
979 /* Is the given value a sign-extended 32-bit value? */
980 #define IS_SEXT_32BIT_NUM(x) \
981 (((x) &~ (offsetT) 0x7fffffff) == 0 \
982 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
983
984 /* Is the given value a sign-extended 16-bit value? */
985 #define IS_SEXT_16BIT_NUM(x) \
986 (((x) &~ (offsetT) 0x7fff) == 0 \
987 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
988
989 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
990 #define IS_ZEXT_32BIT_NUM(x) \
991 (((x) &~ (offsetT) 0xffffffff) == 0 \
992 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
993
994 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
995 VALUE << SHIFT. VALUE is evaluated exactly once. */
996 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
997 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
998 | (((VALUE) & (MASK)) << (SHIFT)))
999
1000 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1001 SHIFT places. */
1002 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1003 (((STRUCT) >> (SHIFT)) & (MASK))
1004
1005 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1006 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1007
1008 include/opcode/mips.h specifies operand fields using the macros
1009 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1010 with "MIPS16OP" instead of "OP". */
1011 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1012 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1013 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1014 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1015 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1016
1017 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1018 #define EXTRACT_OPERAND(FIELD, INSN) \
1019 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1020 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1021 EXTRACT_BITS ((INSN).insn_opcode, \
1022 MIPS16OP_MASK_##FIELD, \
1023 MIPS16OP_SH_##FIELD)
1024 \f
1025 /* Global variables used when generating relaxable macros. See the
1026 comment above RELAX_ENCODE for more details about how relaxation
1027 is used. */
1028 static struct {
1029 /* 0 if we're not emitting a relaxable macro.
1030 1 if we're emitting the first of the two relaxation alternatives.
1031 2 if we're emitting the second alternative. */
1032 int sequence;
1033
1034 /* The first relaxable fixup in the current frag. (In other words,
1035 the first fixup that refers to relaxable code.) */
1036 fixS *first_fixup;
1037
1038 /* sizes[0] says how many bytes of the first alternative are stored in
1039 the current frag. Likewise sizes[1] for the second alternative. */
1040 unsigned int sizes[2];
1041
1042 /* The symbol on which the choice of sequence depends. */
1043 symbolS *symbol;
1044 } mips_relax;
1045 \f
1046 /* Global variables used to decide whether a macro needs a warning. */
1047 static struct {
1048 /* True if the macro is in a branch delay slot. */
1049 bfd_boolean delay_slot_p;
1050
1051 /* For relaxable macros, sizes[0] is the length of the first alternative
1052 in bytes and sizes[1] is the length of the second alternative.
1053 For non-relaxable macros, both elements give the length of the
1054 macro in bytes. */
1055 unsigned int sizes[2];
1056
1057 /* The first variant frag for this macro. */
1058 fragS *first_frag;
1059 } mips_macro_warning;
1060 \f
1061 /* Prototypes for static functions. */
1062
1063 #define internalError() \
1064 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1065
1066 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1067
1068 static void append_insn
1069 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1070 static void mips_no_prev_insn (void);
1071 static void macro_build (expressionS *, const char *, const char *, ...);
1072 static void mips16_macro_build
1073 (expressionS *, const char *, const char *, va_list *);
1074 static void load_register (int, expressionS *, int);
1075 static void macro_start (void);
1076 static void macro_end (void);
1077 static void macro (struct mips_cl_insn * ip);
1078 static void mips16_macro (struct mips_cl_insn * ip);
1079 static void mips_ip (char *str, struct mips_cl_insn * ip);
1080 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1081 static void mips16_immed
1082 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1083 unsigned long *, bfd_boolean *, unsigned short *);
1084 static size_t my_getSmallExpression
1085 (expressionS *, bfd_reloc_code_real_type *, char *);
1086 static void my_getExpression (expressionS *, char *);
1087 static void s_align (int);
1088 static void s_change_sec (int);
1089 static void s_change_section (int);
1090 static void s_cons (int);
1091 static void s_float_cons (int);
1092 static void s_mips_globl (int);
1093 static void s_option (int);
1094 static void s_mipsset (int);
1095 static void s_abicalls (int);
1096 static void s_cpload (int);
1097 static void s_cpsetup (int);
1098 static void s_cplocal (int);
1099 static void s_cprestore (int);
1100 static void s_cpreturn (int);
1101 static void s_dtprelword (int);
1102 static void s_dtpreldword (int);
1103 static void s_gpvalue (int);
1104 static void s_gpword (int);
1105 static void s_gpdword (int);
1106 static void s_cpadd (int);
1107 static void s_insn (int);
1108 static void md_obj_begin (void);
1109 static void md_obj_end (void);
1110 static void s_mips_ent (int);
1111 static void s_mips_end (int);
1112 static void s_mips_frame (int);
1113 static void s_mips_mask (int reg_type);
1114 static void s_mips_stab (int);
1115 static void s_mips_weakext (int);
1116 static void s_mips_file (int);
1117 static void s_mips_loc (int);
1118 static bfd_boolean pic_need_relax (symbolS *, asection *);
1119 static int relaxed_branch_length (fragS *, asection *, int);
1120 static int validate_mips_insn (const struct mips_opcode *);
1121
1122 /* Table and functions used to map between CPU/ISA names, and
1123 ISA levels, and CPU numbers. */
1124
1125 struct mips_cpu_info
1126 {
1127 const char *name; /* CPU or ISA name. */
1128 int flags; /* ASEs available, or ISA flag. */
1129 int isa; /* ISA level. */
1130 int cpu; /* CPU number (default CPU if ISA). */
1131 };
1132
1133 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1134 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1135 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1136 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1137 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1138 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1139 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1140
1141 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1142 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1143 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1144 \f
1145 /* Pseudo-op table.
1146
1147 The following pseudo-ops from the Kane and Heinrich MIPS book
1148 should be defined here, but are currently unsupported: .alias,
1149 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1150
1151 The following pseudo-ops from the Kane and Heinrich MIPS book are
1152 specific to the type of debugging information being generated, and
1153 should be defined by the object format: .aent, .begin, .bend,
1154 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1155 .vreg.
1156
1157 The following pseudo-ops from the Kane and Heinrich MIPS book are
1158 not MIPS CPU specific, but are also not specific to the object file
1159 format. This file is probably the best place to define them, but
1160 they are not currently supported: .asm0, .endr, .lab, .struct. */
1161
1162 static const pseudo_typeS mips_pseudo_table[] =
1163 {
1164 /* MIPS specific pseudo-ops. */
1165 {"option", s_option, 0},
1166 {"set", s_mipsset, 0},
1167 {"rdata", s_change_sec, 'r'},
1168 {"sdata", s_change_sec, 's'},
1169 {"livereg", s_ignore, 0},
1170 {"abicalls", s_abicalls, 0},
1171 {"cpload", s_cpload, 0},
1172 {"cpsetup", s_cpsetup, 0},
1173 {"cplocal", s_cplocal, 0},
1174 {"cprestore", s_cprestore, 0},
1175 {"cpreturn", s_cpreturn, 0},
1176 {"dtprelword", s_dtprelword, 0},
1177 {"dtpreldword", s_dtpreldword, 0},
1178 {"gpvalue", s_gpvalue, 0},
1179 {"gpword", s_gpword, 0},
1180 {"gpdword", s_gpdword, 0},
1181 {"cpadd", s_cpadd, 0},
1182 {"insn", s_insn, 0},
1183
1184 /* Relatively generic pseudo-ops that happen to be used on MIPS
1185 chips. */
1186 {"asciiz", stringer, 8 + 1},
1187 {"bss", s_change_sec, 'b'},
1188 {"err", s_err, 0},
1189 {"half", s_cons, 1},
1190 {"dword", s_cons, 3},
1191 {"weakext", s_mips_weakext, 0},
1192 {"origin", s_org, 0},
1193 {"repeat", s_rept, 0},
1194
1195 /* For MIPS this is non-standard, but we define it for consistency. */
1196 {"sbss", s_change_sec, 'B'},
1197
1198 /* These pseudo-ops are defined in read.c, but must be overridden
1199 here for one reason or another. */
1200 {"align", s_align, 0},
1201 {"byte", s_cons, 0},
1202 {"data", s_change_sec, 'd'},
1203 {"double", s_float_cons, 'd'},
1204 {"float", s_float_cons, 'f'},
1205 {"globl", s_mips_globl, 0},
1206 {"global", s_mips_globl, 0},
1207 {"hword", s_cons, 1},
1208 {"int", s_cons, 2},
1209 {"long", s_cons, 2},
1210 {"octa", s_cons, 4},
1211 {"quad", s_cons, 3},
1212 {"section", s_change_section, 0},
1213 {"short", s_cons, 1},
1214 {"single", s_float_cons, 'f'},
1215 {"stabn", s_mips_stab, 'n'},
1216 {"text", s_change_sec, 't'},
1217 {"word", s_cons, 2},
1218
1219 { "extern", ecoff_directive_extern, 0},
1220
1221 { NULL, NULL, 0 },
1222 };
1223
1224 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1225 {
1226 /* These pseudo-ops should be defined by the object file format.
1227 However, a.out doesn't support them, so we have versions here. */
1228 {"aent", s_mips_ent, 1},
1229 {"bgnb", s_ignore, 0},
1230 {"end", s_mips_end, 0},
1231 {"endb", s_ignore, 0},
1232 {"ent", s_mips_ent, 0},
1233 {"file", s_mips_file, 0},
1234 {"fmask", s_mips_mask, 'F'},
1235 {"frame", s_mips_frame, 0},
1236 {"loc", s_mips_loc, 0},
1237 {"mask", s_mips_mask, 'R'},
1238 {"verstamp", s_ignore, 0},
1239 { NULL, NULL, 0 },
1240 };
1241
1242 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1243 purpose of the `.dc.a' internal pseudo-op. */
1244
1245 int
1246 mips_address_bytes (void)
1247 {
1248 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1249 }
1250
1251 extern void pop_insert (const pseudo_typeS *);
1252
1253 void
1254 mips_pop_insert (void)
1255 {
1256 pop_insert (mips_pseudo_table);
1257 if (! ECOFF_DEBUGGING)
1258 pop_insert (mips_nonecoff_pseudo_table);
1259 }
1260 \f
1261 /* Symbols labelling the current insn. */
1262
1263 struct insn_label_list
1264 {
1265 struct insn_label_list *next;
1266 symbolS *label;
1267 };
1268
1269 static struct insn_label_list *free_insn_labels;
1270 #define label_list tc_segment_info_data.labels
1271
1272 static void mips_clear_insn_labels (void);
1273
1274 static inline void
1275 mips_clear_insn_labels (void)
1276 {
1277 register struct insn_label_list **pl;
1278 segment_info_type *si;
1279
1280 if (now_seg)
1281 {
1282 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1283 ;
1284
1285 si = seg_info (now_seg);
1286 *pl = si->label_list;
1287 si->label_list = NULL;
1288 }
1289 }
1290
1291 \f
1292 static char *expr_end;
1293
1294 /* Expressions which appear in instructions. These are set by
1295 mips_ip. */
1296
1297 static expressionS imm_expr;
1298 static expressionS imm2_expr;
1299 static expressionS offset_expr;
1300
1301 /* Relocs associated with imm_expr and offset_expr. */
1302
1303 static bfd_reloc_code_real_type imm_reloc[3]
1304 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1305 static bfd_reloc_code_real_type offset_reloc[3]
1306 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1307
1308 /* These are set by mips16_ip if an explicit extension is used. */
1309
1310 static bfd_boolean mips16_small, mips16_ext;
1311
1312 #ifdef OBJ_ELF
1313 /* The pdr segment for per procedure frame/regmask info. Not used for
1314 ECOFF debugging. */
1315
1316 static segT pdr_seg;
1317 #endif
1318
1319 /* The default target format to use. */
1320
1321 #if defined (TE_FreeBSD)
1322 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1323 #elif defined (TE_TMIPS)
1324 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1325 #else
1326 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1327 #endif
1328
1329 const char *
1330 mips_target_format (void)
1331 {
1332 switch (OUTPUT_FLAVOR)
1333 {
1334 case bfd_target_ecoff_flavour:
1335 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1336 case bfd_target_coff_flavour:
1337 return "pe-mips";
1338 case bfd_target_elf_flavour:
1339 #ifdef TE_VXWORKS
1340 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1341 return (target_big_endian
1342 ? "elf32-bigmips-vxworks"
1343 : "elf32-littlemips-vxworks");
1344 #endif
1345 return (target_big_endian
1346 ? (HAVE_64BIT_OBJECTS
1347 ? ELF_TARGET ("elf64-", "big")
1348 : (HAVE_NEWABI
1349 ? ELF_TARGET ("elf32-n", "big")
1350 : ELF_TARGET ("elf32-", "big")))
1351 : (HAVE_64BIT_OBJECTS
1352 ? ELF_TARGET ("elf64-", "little")
1353 : (HAVE_NEWABI
1354 ? ELF_TARGET ("elf32-n", "little")
1355 : ELF_TARGET ("elf32-", "little"))));
1356 default:
1357 abort ();
1358 return NULL;
1359 }
1360 }
1361
1362 /* Return the length of instruction INSN. */
1363
1364 static inline unsigned int
1365 insn_length (const struct mips_cl_insn *insn)
1366 {
1367 if (!mips_opts.mips16)
1368 return 4;
1369 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1370 }
1371
1372 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1373
1374 static void
1375 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1376 {
1377 size_t i;
1378
1379 insn->insn_mo = mo;
1380 insn->use_extend = FALSE;
1381 insn->extend = 0;
1382 insn->insn_opcode = mo->match;
1383 insn->frag = NULL;
1384 insn->where = 0;
1385 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1386 insn->fixp[i] = NULL;
1387 insn->fixed_p = (mips_opts.noreorder > 0);
1388 insn->noreorder_p = (mips_opts.noreorder > 0);
1389 insn->mips16_absolute_jump_p = 0;
1390 insn->complete_p = 0;
1391 }
1392
1393 /* Record the current MIPS16 mode in now_seg. */
1394
1395 static void
1396 mips_record_mips16_mode (void)
1397 {
1398 segment_info_type *si;
1399
1400 si = seg_info (now_seg);
1401 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1402 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1403 }
1404
1405 /* Install INSN at the location specified by its "frag" and "where" fields. */
1406
1407 static void
1408 install_insn (const struct mips_cl_insn *insn)
1409 {
1410 char *f = insn->frag->fr_literal + insn->where;
1411 if (!mips_opts.mips16)
1412 md_number_to_chars (f, insn->insn_opcode, 4);
1413 else if (insn->mips16_absolute_jump_p)
1414 {
1415 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1416 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1417 }
1418 else
1419 {
1420 if (insn->use_extend)
1421 {
1422 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1423 f += 2;
1424 }
1425 md_number_to_chars (f, insn->insn_opcode, 2);
1426 }
1427 mips_record_mips16_mode ();
1428 }
1429
1430 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1431 and install the opcode in the new location. */
1432
1433 static void
1434 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1435 {
1436 size_t i;
1437
1438 insn->frag = frag;
1439 insn->where = where;
1440 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1441 if (insn->fixp[i] != NULL)
1442 {
1443 insn->fixp[i]->fx_frag = frag;
1444 insn->fixp[i]->fx_where = where;
1445 }
1446 install_insn (insn);
1447 }
1448
1449 /* Add INSN to the end of the output. */
1450
1451 static void
1452 add_fixed_insn (struct mips_cl_insn *insn)
1453 {
1454 char *f = frag_more (insn_length (insn));
1455 move_insn (insn, frag_now, f - frag_now->fr_literal);
1456 }
1457
1458 /* Start a variant frag and move INSN to the start of the variant part,
1459 marking it as fixed. The other arguments are as for frag_var. */
1460
1461 static void
1462 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1463 relax_substateT subtype, symbolS *symbol, offsetT offset)
1464 {
1465 frag_grow (max_chars);
1466 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1467 insn->fixed_p = 1;
1468 frag_var (rs_machine_dependent, max_chars, var,
1469 subtype, symbol, offset, NULL);
1470 }
1471
1472 /* Insert N copies of INSN into the history buffer, starting at
1473 position FIRST. Neither FIRST nor N need to be clipped. */
1474
1475 static void
1476 insert_into_history (unsigned int first, unsigned int n,
1477 const struct mips_cl_insn *insn)
1478 {
1479 if (mips_relax.sequence != 2)
1480 {
1481 unsigned int i;
1482
1483 for (i = ARRAY_SIZE (history); i-- > first;)
1484 if (i >= first + n)
1485 history[i] = history[i - n];
1486 else
1487 history[i] = *insn;
1488 }
1489 }
1490
1491 /* Emit a nop instruction, recording it in the history buffer. */
1492
1493 static void
1494 emit_nop (void)
1495 {
1496 add_fixed_insn (NOP_INSN);
1497 insert_into_history (0, 1, NOP_INSN);
1498 }
1499
1500 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1501 the idea is to make it obvious at a glance that each errata is
1502 included. */
1503
1504 static void
1505 init_vr4120_conflicts (void)
1506 {
1507 #define CONFLICT(FIRST, SECOND) \
1508 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1509
1510 /* Errata 21 - [D]DIV[U] after [D]MACC */
1511 CONFLICT (MACC, DIV);
1512 CONFLICT (DMACC, DIV);
1513
1514 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1515 CONFLICT (DMULT, DMULT);
1516 CONFLICT (DMULT, DMACC);
1517 CONFLICT (DMACC, DMULT);
1518 CONFLICT (DMACC, DMACC);
1519
1520 /* Errata 24 - MT{LO,HI} after [D]MACC */
1521 CONFLICT (MACC, MTHILO);
1522 CONFLICT (DMACC, MTHILO);
1523
1524 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1525 instruction is executed immediately after a MACC or DMACC
1526 instruction, the result of [either instruction] is incorrect." */
1527 CONFLICT (MACC, MULT);
1528 CONFLICT (MACC, DMULT);
1529 CONFLICT (DMACC, MULT);
1530 CONFLICT (DMACC, DMULT);
1531
1532 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1533 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1534 DDIV or DDIVU instruction, the result of the MACC or
1535 DMACC instruction is incorrect.". */
1536 CONFLICT (DMULT, MACC);
1537 CONFLICT (DMULT, DMACC);
1538 CONFLICT (DIV, MACC);
1539 CONFLICT (DIV, DMACC);
1540
1541 #undef CONFLICT
1542 }
1543
1544 struct regname {
1545 const char *name;
1546 unsigned int num;
1547 };
1548
1549 #define RTYPE_MASK 0x1ff00
1550 #define RTYPE_NUM 0x00100
1551 #define RTYPE_FPU 0x00200
1552 #define RTYPE_FCC 0x00400
1553 #define RTYPE_VEC 0x00800
1554 #define RTYPE_GP 0x01000
1555 #define RTYPE_CP0 0x02000
1556 #define RTYPE_PC 0x04000
1557 #define RTYPE_ACC 0x08000
1558 #define RTYPE_CCC 0x10000
1559 #define RNUM_MASK 0x000ff
1560 #define RWARN 0x80000
1561
1562 #define GENERIC_REGISTER_NUMBERS \
1563 {"$0", RTYPE_NUM | 0}, \
1564 {"$1", RTYPE_NUM | 1}, \
1565 {"$2", RTYPE_NUM | 2}, \
1566 {"$3", RTYPE_NUM | 3}, \
1567 {"$4", RTYPE_NUM | 4}, \
1568 {"$5", RTYPE_NUM | 5}, \
1569 {"$6", RTYPE_NUM | 6}, \
1570 {"$7", RTYPE_NUM | 7}, \
1571 {"$8", RTYPE_NUM | 8}, \
1572 {"$9", RTYPE_NUM | 9}, \
1573 {"$10", RTYPE_NUM | 10}, \
1574 {"$11", RTYPE_NUM | 11}, \
1575 {"$12", RTYPE_NUM | 12}, \
1576 {"$13", RTYPE_NUM | 13}, \
1577 {"$14", RTYPE_NUM | 14}, \
1578 {"$15", RTYPE_NUM | 15}, \
1579 {"$16", RTYPE_NUM | 16}, \
1580 {"$17", RTYPE_NUM | 17}, \
1581 {"$18", RTYPE_NUM | 18}, \
1582 {"$19", RTYPE_NUM | 19}, \
1583 {"$20", RTYPE_NUM | 20}, \
1584 {"$21", RTYPE_NUM | 21}, \
1585 {"$22", RTYPE_NUM | 22}, \
1586 {"$23", RTYPE_NUM | 23}, \
1587 {"$24", RTYPE_NUM | 24}, \
1588 {"$25", RTYPE_NUM | 25}, \
1589 {"$26", RTYPE_NUM | 26}, \
1590 {"$27", RTYPE_NUM | 27}, \
1591 {"$28", RTYPE_NUM | 28}, \
1592 {"$29", RTYPE_NUM | 29}, \
1593 {"$30", RTYPE_NUM | 30}, \
1594 {"$31", RTYPE_NUM | 31}
1595
1596 #define FPU_REGISTER_NAMES \
1597 {"$f0", RTYPE_FPU | 0}, \
1598 {"$f1", RTYPE_FPU | 1}, \
1599 {"$f2", RTYPE_FPU | 2}, \
1600 {"$f3", RTYPE_FPU | 3}, \
1601 {"$f4", RTYPE_FPU | 4}, \
1602 {"$f5", RTYPE_FPU | 5}, \
1603 {"$f6", RTYPE_FPU | 6}, \
1604 {"$f7", RTYPE_FPU | 7}, \
1605 {"$f8", RTYPE_FPU | 8}, \
1606 {"$f9", RTYPE_FPU | 9}, \
1607 {"$f10", RTYPE_FPU | 10}, \
1608 {"$f11", RTYPE_FPU | 11}, \
1609 {"$f12", RTYPE_FPU | 12}, \
1610 {"$f13", RTYPE_FPU | 13}, \
1611 {"$f14", RTYPE_FPU | 14}, \
1612 {"$f15", RTYPE_FPU | 15}, \
1613 {"$f16", RTYPE_FPU | 16}, \
1614 {"$f17", RTYPE_FPU | 17}, \
1615 {"$f18", RTYPE_FPU | 18}, \
1616 {"$f19", RTYPE_FPU | 19}, \
1617 {"$f20", RTYPE_FPU | 20}, \
1618 {"$f21", RTYPE_FPU | 21}, \
1619 {"$f22", RTYPE_FPU | 22}, \
1620 {"$f23", RTYPE_FPU | 23}, \
1621 {"$f24", RTYPE_FPU | 24}, \
1622 {"$f25", RTYPE_FPU | 25}, \
1623 {"$f26", RTYPE_FPU | 26}, \
1624 {"$f27", RTYPE_FPU | 27}, \
1625 {"$f28", RTYPE_FPU | 28}, \
1626 {"$f29", RTYPE_FPU | 29}, \
1627 {"$f30", RTYPE_FPU | 30}, \
1628 {"$f31", RTYPE_FPU | 31}
1629
1630 #define FPU_CONDITION_CODE_NAMES \
1631 {"$fcc0", RTYPE_FCC | 0}, \
1632 {"$fcc1", RTYPE_FCC | 1}, \
1633 {"$fcc2", RTYPE_FCC | 2}, \
1634 {"$fcc3", RTYPE_FCC | 3}, \
1635 {"$fcc4", RTYPE_FCC | 4}, \
1636 {"$fcc5", RTYPE_FCC | 5}, \
1637 {"$fcc6", RTYPE_FCC | 6}, \
1638 {"$fcc7", RTYPE_FCC | 7}
1639
1640 #define COPROC_CONDITION_CODE_NAMES \
1641 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1642 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1643 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1644 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1645 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1646 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1647 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1648 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1649
1650 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1651 {"$a4", RTYPE_GP | 8}, \
1652 {"$a5", RTYPE_GP | 9}, \
1653 {"$a6", RTYPE_GP | 10}, \
1654 {"$a7", RTYPE_GP | 11}, \
1655 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1656 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1657 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1658 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1659 {"$t0", RTYPE_GP | 12}, \
1660 {"$t1", RTYPE_GP | 13}, \
1661 {"$t2", RTYPE_GP | 14}, \
1662 {"$t3", RTYPE_GP | 15}
1663
1664 #define O32_SYMBOLIC_REGISTER_NAMES \
1665 {"$t0", RTYPE_GP | 8}, \
1666 {"$t1", RTYPE_GP | 9}, \
1667 {"$t2", RTYPE_GP | 10}, \
1668 {"$t3", RTYPE_GP | 11}, \
1669 {"$t4", RTYPE_GP | 12}, \
1670 {"$t5", RTYPE_GP | 13}, \
1671 {"$t6", RTYPE_GP | 14}, \
1672 {"$t7", RTYPE_GP | 15}, \
1673 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1674 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1675 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1676 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1677
1678 /* Remaining symbolic register names */
1679 #define SYMBOLIC_REGISTER_NAMES \
1680 {"$zero", RTYPE_GP | 0}, \
1681 {"$at", RTYPE_GP | 1}, \
1682 {"$AT", RTYPE_GP | 1}, \
1683 {"$v0", RTYPE_GP | 2}, \
1684 {"$v1", RTYPE_GP | 3}, \
1685 {"$a0", RTYPE_GP | 4}, \
1686 {"$a1", RTYPE_GP | 5}, \
1687 {"$a2", RTYPE_GP | 6}, \
1688 {"$a3", RTYPE_GP | 7}, \
1689 {"$s0", RTYPE_GP | 16}, \
1690 {"$s1", RTYPE_GP | 17}, \
1691 {"$s2", RTYPE_GP | 18}, \
1692 {"$s3", RTYPE_GP | 19}, \
1693 {"$s4", RTYPE_GP | 20}, \
1694 {"$s5", RTYPE_GP | 21}, \
1695 {"$s6", RTYPE_GP | 22}, \
1696 {"$s7", RTYPE_GP | 23}, \
1697 {"$t8", RTYPE_GP | 24}, \
1698 {"$t9", RTYPE_GP | 25}, \
1699 {"$k0", RTYPE_GP | 26}, \
1700 {"$kt0", RTYPE_GP | 26}, \
1701 {"$k1", RTYPE_GP | 27}, \
1702 {"$kt1", RTYPE_GP | 27}, \
1703 {"$gp", RTYPE_GP | 28}, \
1704 {"$sp", RTYPE_GP | 29}, \
1705 {"$s8", RTYPE_GP | 30}, \
1706 {"$fp", RTYPE_GP | 30}, \
1707 {"$ra", RTYPE_GP | 31}
1708
1709 #define MIPS16_SPECIAL_REGISTER_NAMES \
1710 {"$pc", RTYPE_PC | 0}
1711
1712 #define MDMX_VECTOR_REGISTER_NAMES \
1713 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1714 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1715 {"$v2", RTYPE_VEC | 2}, \
1716 {"$v3", RTYPE_VEC | 3}, \
1717 {"$v4", RTYPE_VEC | 4}, \
1718 {"$v5", RTYPE_VEC | 5}, \
1719 {"$v6", RTYPE_VEC | 6}, \
1720 {"$v7", RTYPE_VEC | 7}, \
1721 {"$v8", RTYPE_VEC | 8}, \
1722 {"$v9", RTYPE_VEC | 9}, \
1723 {"$v10", RTYPE_VEC | 10}, \
1724 {"$v11", RTYPE_VEC | 11}, \
1725 {"$v12", RTYPE_VEC | 12}, \
1726 {"$v13", RTYPE_VEC | 13}, \
1727 {"$v14", RTYPE_VEC | 14}, \
1728 {"$v15", RTYPE_VEC | 15}, \
1729 {"$v16", RTYPE_VEC | 16}, \
1730 {"$v17", RTYPE_VEC | 17}, \
1731 {"$v18", RTYPE_VEC | 18}, \
1732 {"$v19", RTYPE_VEC | 19}, \
1733 {"$v20", RTYPE_VEC | 20}, \
1734 {"$v21", RTYPE_VEC | 21}, \
1735 {"$v22", RTYPE_VEC | 22}, \
1736 {"$v23", RTYPE_VEC | 23}, \
1737 {"$v24", RTYPE_VEC | 24}, \
1738 {"$v25", RTYPE_VEC | 25}, \
1739 {"$v26", RTYPE_VEC | 26}, \
1740 {"$v27", RTYPE_VEC | 27}, \
1741 {"$v28", RTYPE_VEC | 28}, \
1742 {"$v29", RTYPE_VEC | 29}, \
1743 {"$v30", RTYPE_VEC | 30}, \
1744 {"$v31", RTYPE_VEC | 31}
1745
1746 #define MIPS_DSP_ACCUMULATOR_NAMES \
1747 {"$ac0", RTYPE_ACC | 0}, \
1748 {"$ac1", RTYPE_ACC | 1}, \
1749 {"$ac2", RTYPE_ACC | 2}, \
1750 {"$ac3", RTYPE_ACC | 3}
1751
1752 static const struct regname reg_names[] = {
1753 GENERIC_REGISTER_NUMBERS,
1754 FPU_REGISTER_NAMES,
1755 FPU_CONDITION_CODE_NAMES,
1756 COPROC_CONDITION_CODE_NAMES,
1757
1758 /* The $txx registers depends on the abi,
1759 these will be added later into the symbol table from
1760 one of the tables below once mips_abi is set after
1761 parsing of arguments from the command line. */
1762 SYMBOLIC_REGISTER_NAMES,
1763
1764 MIPS16_SPECIAL_REGISTER_NAMES,
1765 MDMX_VECTOR_REGISTER_NAMES,
1766 MIPS_DSP_ACCUMULATOR_NAMES,
1767 {0, 0}
1768 };
1769
1770 static const struct regname reg_names_o32[] = {
1771 O32_SYMBOLIC_REGISTER_NAMES,
1772 {0, 0}
1773 };
1774
1775 static const struct regname reg_names_n32n64[] = {
1776 N32N64_SYMBOLIC_REGISTER_NAMES,
1777 {0, 0}
1778 };
1779
1780 static int
1781 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1782 {
1783 symbolS *symbolP;
1784 char *e;
1785 char save_c;
1786 int reg = -1;
1787
1788 /* Find end of name. */
1789 e = *s;
1790 if (is_name_beginner (*e))
1791 ++e;
1792 while (is_part_of_name (*e))
1793 ++e;
1794
1795 /* Terminate name. */
1796 save_c = *e;
1797 *e = '\0';
1798
1799 /* Look for a register symbol. */
1800 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1801 {
1802 int r = S_GET_VALUE (symbolP);
1803 if (r & types)
1804 reg = r & RNUM_MASK;
1805 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1806 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1807 reg = (r & RNUM_MASK) - 2;
1808 }
1809 /* Else see if this is a register defined in an itbl entry. */
1810 else if ((types & RTYPE_GP) && itbl_have_entries)
1811 {
1812 char *n = *s;
1813 unsigned long r;
1814
1815 if (*n == '$')
1816 ++n;
1817 if (itbl_get_reg_val (n, &r))
1818 reg = r & RNUM_MASK;
1819 }
1820
1821 /* Advance to next token if a register was recognised. */
1822 if (reg >= 0)
1823 *s = e;
1824 else if (types & RWARN)
1825 as_warn (_("Unrecognized register name `%s'"), *s);
1826
1827 *e = save_c;
1828 if (regnop)
1829 *regnop = reg;
1830 return reg >= 0;
1831 }
1832
1833 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1834 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1835
1836 static bfd_boolean
1837 is_opcode_valid (const struct mips_opcode *mo)
1838 {
1839 int isa = mips_opts.isa;
1840 int fp_s, fp_d;
1841
1842 if (mips_opts.ase_mdmx)
1843 isa |= INSN_MDMX;
1844 if (mips_opts.ase_dsp)
1845 isa |= INSN_DSP;
1846 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1847 isa |= INSN_DSP64;
1848 if (mips_opts.ase_dspr2)
1849 isa |= INSN_DSPR2;
1850 if (mips_opts.ase_mt)
1851 isa |= INSN_MT;
1852 if (mips_opts.ase_mips3d)
1853 isa |= INSN_MIPS3D;
1854 if (mips_opts.ase_smartmips)
1855 isa |= INSN_SMARTMIPS;
1856
1857 /* Don't accept instructions based on the ISA if the CPU does not implement
1858 all the coprocessor insns. */
1859 if (NO_ISA_COP (mips_opts.arch)
1860 && COP_INSN (mo->pinfo))
1861 isa = 0;
1862
1863 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1864 return FALSE;
1865
1866 /* Check whether the instruction or macro requires single-precision or
1867 double-precision floating-point support. Note that this information is
1868 stored differently in the opcode table for insns and macros. */
1869 if (mo->pinfo == INSN_MACRO)
1870 {
1871 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1872 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1873 }
1874 else
1875 {
1876 fp_s = mo->pinfo & FP_S;
1877 fp_d = mo->pinfo & FP_D;
1878 }
1879
1880 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1881 return FALSE;
1882
1883 if (fp_s && mips_opts.soft_float)
1884 return FALSE;
1885
1886 return TRUE;
1887 }
1888
1889 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1890 selected ISA and architecture. */
1891
1892 static bfd_boolean
1893 is_opcode_valid_16 (const struct mips_opcode *mo)
1894 {
1895 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1896 }
1897
1898 /* This function is called once, at assembler startup time. It should set up
1899 all the tables, etc. that the MD part of the assembler will need. */
1900
1901 void
1902 md_begin (void)
1903 {
1904 const char *retval = NULL;
1905 int i = 0;
1906 int broken = 0;
1907
1908 if (mips_pic != NO_PIC)
1909 {
1910 if (g_switch_seen && g_switch_value != 0)
1911 as_bad (_("-G may not be used in position-independent code"));
1912 g_switch_value = 0;
1913 }
1914
1915 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1916 as_warn (_("Could not set architecture and machine"));
1917
1918 op_hash = hash_new ();
1919
1920 for (i = 0; i < NUMOPCODES;)
1921 {
1922 const char *name = mips_opcodes[i].name;
1923
1924 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1925 if (retval != NULL)
1926 {
1927 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1928 mips_opcodes[i].name, retval);
1929 /* Probably a memory allocation problem? Give up now. */
1930 as_fatal (_("Broken assembler. No assembly attempted."));
1931 }
1932 do
1933 {
1934 if (mips_opcodes[i].pinfo != INSN_MACRO)
1935 {
1936 if (!validate_mips_insn (&mips_opcodes[i]))
1937 broken = 1;
1938 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1939 {
1940 create_insn (&nop_insn, mips_opcodes + i);
1941 if (mips_fix_loongson2f_nop)
1942 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1943 nop_insn.fixed_p = 1;
1944 }
1945 }
1946 ++i;
1947 }
1948 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1949 }
1950
1951 mips16_op_hash = hash_new ();
1952
1953 i = 0;
1954 while (i < bfd_mips16_num_opcodes)
1955 {
1956 const char *name = mips16_opcodes[i].name;
1957
1958 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1959 if (retval != NULL)
1960 as_fatal (_("internal: can't hash `%s': %s"),
1961 mips16_opcodes[i].name, retval);
1962 do
1963 {
1964 if (mips16_opcodes[i].pinfo != INSN_MACRO
1965 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1966 != mips16_opcodes[i].match))
1967 {
1968 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1969 mips16_opcodes[i].name, mips16_opcodes[i].args);
1970 broken = 1;
1971 }
1972 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1973 {
1974 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1975 mips16_nop_insn.fixed_p = 1;
1976 }
1977 ++i;
1978 }
1979 while (i < bfd_mips16_num_opcodes
1980 && strcmp (mips16_opcodes[i].name, name) == 0);
1981 }
1982
1983 if (broken)
1984 as_fatal (_("Broken assembler. No assembly attempted."));
1985
1986 /* We add all the general register names to the symbol table. This
1987 helps us detect invalid uses of them. */
1988 for (i = 0; reg_names[i].name; i++)
1989 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1990 reg_names[i].num, /* & RNUM_MASK, */
1991 &zero_address_frag));
1992 if (HAVE_NEWABI)
1993 for (i = 0; reg_names_n32n64[i].name; i++)
1994 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1995 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1996 &zero_address_frag));
1997 else
1998 for (i = 0; reg_names_o32[i].name; i++)
1999 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
2000 reg_names_o32[i].num, /* & RNUM_MASK, */
2001 &zero_address_frag));
2002
2003 mips_no_prev_insn ();
2004
2005 mips_gprmask = 0;
2006 mips_cprmask[0] = 0;
2007 mips_cprmask[1] = 0;
2008 mips_cprmask[2] = 0;
2009 mips_cprmask[3] = 0;
2010
2011 /* set the default alignment for the text section (2**2) */
2012 record_alignment (text_section, 2);
2013
2014 bfd_set_gp_size (stdoutput, g_switch_value);
2015
2016 #ifdef OBJ_ELF
2017 if (IS_ELF)
2018 {
2019 /* On a native system other than VxWorks, sections must be aligned
2020 to 16 byte boundaries. When configured for an embedded ELF
2021 target, we don't bother. */
2022 if (strncmp (TARGET_OS, "elf", 3) != 0
2023 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2024 {
2025 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2026 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2027 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2028 }
2029
2030 /* Create a .reginfo section for register masks and a .mdebug
2031 section for debugging information. */
2032 {
2033 segT seg;
2034 subsegT subseg;
2035 flagword flags;
2036 segT sec;
2037
2038 seg = now_seg;
2039 subseg = now_subseg;
2040
2041 /* The ABI says this section should be loaded so that the
2042 running program can access it. However, we don't load it
2043 if we are configured for an embedded target */
2044 flags = SEC_READONLY | SEC_DATA;
2045 if (strncmp (TARGET_OS, "elf", 3) != 0)
2046 flags |= SEC_ALLOC | SEC_LOAD;
2047
2048 if (mips_abi != N64_ABI)
2049 {
2050 sec = subseg_new (".reginfo", (subsegT) 0);
2051
2052 bfd_set_section_flags (stdoutput, sec, flags);
2053 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2054
2055 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2056 }
2057 else
2058 {
2059 /* The 64-bit ABI uses a .MIPS.options section rather than
2060 .reginfo section. */
2061 sec = subseg_new (".MIPS.options", (subsegT) 0);
2062 bfd_set_section_flags (stdoutput, sec, flags);
2063 bfd_set_section_alignment (stdoutput, sec, 3);
2064
2065 /* Set up the option header. */
2066 {
2067 Elf_Internal_Options opthdr;
2068 char *f;
2069
2070 opthdr.kind = ODK_REGINFO;
2071 opthdr.size = (sizeof (Elf_External_Options)
2072 + sizeof (Elf64_External_RegInfo));
2073 opthdr.section = 0;
2074 opthdr.info = 0;
2075 f = frag_more (sizeof (Elf_External_Options));
2076 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2077 (Elf_External_Options *) f);
2078
2079 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2080 }
2081 }
2082
2083 if (ECOFF_DEBUGGING)
2084 {
2085 sec = subseg_new (".mdebug", (subsegT) 0);
2086 (void) bfd_set_section_flags (stdoutput, sec,
2087 SEC_HAS_CONTENTS | SEC_READONLY);
2088 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2089 }
2090 else if (mips_flag_pdr)
2091 {
2092 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2093 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2094 SEC_READONLY | SEC_RELOC
2095 | SEC_DEBUGGING);
2096 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2097 }
2098
2099 subseg_set (seg, subseg);
2100 }
2101 }
2102 #endif /* OBJ_ELF */
2103
2104 if (! ECOFF_DEBUGGING)
2105 md_obj_begin ();
2106
2107 if (mips_fix_vr4120)
2108 init_vr4120_conflicts ();
2109 }
2110
2111 void
2112 md_mips_end (void)
2113 {
2114 mips_emit_delays ();
2115 if (! ECOFF_DEBUGGING)
2116 md_obj_end ();
2117 }
2118
2119 void
2120 md_assemble (char *str)
2121 {
2122 struct mips_cl_insn insn;
2123 bfd_reloc_code_real_type unused_reloc[3]
2124 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2125
2126 imm_expr.X_op = O_absent;
2127 imm2_expr.X_op = O_absent;
2128 offset_expr.X_op = O_absent;
2129 imm_reloc[0] = BFD_RELOC_UNUSED;
2130 imm_reloc[1] = BFD_RELOC_UNUSED;
2131 imm_reloc[2] = BFD_RELOC_UNUSED;
2132 offset_reloc[0] = BFD_RELOC_UNUSED;
2133 offset_reloc[1] = BFD_RELOC_UNUSED;
2134 offset_reloc[2] = BFD_RELOC_UNUSED;
2135
2136 if (mips_opts.mips16)
2137 mips16_ip (str, &insn);
2138 else
2139 {
2140 mips_ip (str, &insn);
2141 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2142 str, insn.insn_opcode));
2143 }
2144
2145 if (insn_error)
2146 {
2147 as_bad ("%s `%s'", insn_error, str);
2148 return;
2149 }
2150
2151 if (insn.insn_mo->pinfo == INSN_MACRO)
2152 {
2153 macro_start ();
2154 if (mips_opts.mips16)
2155 mips16_macro (&insn);
2156 else
2157 macro (&insn);
2158 macro_end ();
2159 }
2160 else
2161 {
2162 if (imm_expr.X_op != O_absent)
2163 append_insn (&insn, &imm_expr, imm_reloc);
2164 else if (offset_expr.X_op != O_absent)
2165 append_insn (&insn, &offset_expr, offset_reloc);
2166 else
2167 append_insn (&insn, NULL, unused_reloc);
2168 }
2169 }
2170
2171 /* Convenience functions for abstracting away the differences between
2172 MIPS16 and non-MIPS16 relocations. */
2173
2174 static inline bfd_boolean
2175 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2176 {
2177 switch (reloc)
2178 {
2179 case BFD_RELOC_MIPS16_JMP:
2180 case BFD_RELOC_MIPS16_GPREL:
2181 case BFD_RELOC_MIPS16_GOT16:
2182 case BFD_RELOC_MIPS16_CALL16:
2183 case BFD_RELOC_MIPS16_HI16_S:
2184 case BFD_RELOC_MIPS16_HI16:
2185 case BFD_RELOC_MIPS16_LO16:
2186 return TRUE;
2187
2188 default:
2189 return FALSE;
2190 }
2191 }
2192
2193 static inline bfd_boolean
2194 got16_reloc_p (bfd_reloc_code_real_type reloc)
2195 {
2196 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2197 }
2198
2199 static inline bfd_boolean
2200 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2201 {
2202 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2203 }
2204
2205 static inline bfd_boolean
2206 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2207 {
2208 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2209 }
2210
2211 /* Return true if the given relocation might need a matching %lo().
2212 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2213 need a matching %lo() when applied to local symbols. */
2214
2215 static inline bfd_boolean
2216 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2217 {
2218 return (HAVE_IN_PLACE_ADDENDS
2219 && (hi16_reloc_p (reloc)
2220 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2221 all GOT16 relocations evaluate to "G". */
2222 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2223 }
2224
2225 /* Return the type of %lo() reloc needed by RELOC, given that
2226 reloc_needs_lo_p. */
2227
2228 static inline bfd_reloc_code_real_type
2229 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2230 {
2231 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2232 }
2233
2234 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2235 relocation. */
2236
2237 static inline bfd_boolean
2238 fixup_has_matching_lo_p (fixS *fixp)
2239 {
2240 return (fixp->fx_next != NULL
2241 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2242 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2243 && fixp->fx_offset == fixp->fx_next->fx_offset);
2244 }
2245
2246 /* This function returns true if modifying a register requires a
2247 delay. */
2248
2249 static int
2250 reg_needs_delay (unsigned int reg)
2251 {
2252 unsigned long prev_pinfo;
2253
2254 prev_pinfo = history[0].insn_mo->pinfo;
2255 if (! mips_opts.noreorder
2256 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2257 && ! gpr_interlocks)
2258 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2259 && ! cop_interlocks)))
2260 {
2261 /* A load from a coprocessor or from memory. All load delays
2262 delay the use of general register rt for one instruction. */
2263 /* Itbl support may require additional care here. */
2264 know (prev_pinfo & INSN_WRITE_GPR_T);
2265 if (reg == EXTRACT_OPERAND (RT, history[0]))
2266 return 1;
2267 }
2268
2269 return 0;
2270 }
2271
2272 /* Move all labels in insn_labels to the current insertion point. */
2273
2274 static void
2275 mips_move_labels (void)
2276 {
2277 segment_info_type *si = seg_info (now_seg);
2278 struct insn_label_list *l;
2279 valueT val;
2280
2281 for (l = si->label_list; l != NULL; l = l->next)
2282 {
2283 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2284 symbol_set_frag (l->label, frag_now);
2285 val = (valueT) frag_now_fix ();
2286 /* mips16 text labels are stored as odd. */
2287 if (mips_opts.mips16)
2288 ++val;
2289 S_SET_VALUE (l->label, val);
2290 }
2291 }
2292
2293 static bfd_boolean
2294 s_is_linkonce (symbolS *sym, segT from_seg)
2295 {
2296 bfd_boolean linkonce = FALSE;
2297 segT symseg = S_GET_SEGMENT (sym);
2298
2299 if (symseg != from_seg && !S_IS_LOCAL (sym))
2300 {
2301 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2302 linkonce = TRUE;
2303 #ifdef OBJ_ELF
2304 /* The GNU toolchain uses an extension for ELF: a section
2305 beginning with the magic string .gnu.linkonce is a
2306 linkonce section. */
2307 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2308 sizeof ".gnu.linkonce" - 1) == 0)
2309 linkonce = TRUE;
2310 #endif
2311 }
2312 return linkonce;
2313 }
2314
2315 /* Mark instruction labels in mips16 mode. This permits the linker to
2316 handle them specially, such as generating jalx instructions when
2317 needed. We also make them odd for the duration of the assembly, in
2318 order to generate the right sort of code. We will make them even
2319 in the adjust_symtab routine, while leaving them marked. This is
2320 convenient for the debugger and the disassembler. The linker knows
2321 to make them odd again. */
2322
2323 static void
2324 mips16_mark_labels (void)
2325 {
2326 segment_info_type *si = seg_info (now_seg);
2327 struct insn_label_list *l;
2328
2329 if (!mips_opts.mips16)
2330 return;
2331
2332 for (l = si->label_list; l != NULL; l = l->next)
2333 {
2334 symbolS *label = l->label;
2335
2336 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2337 if (IS_ELF)
2338 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2339 #endif
2340 if ((S_GET_VALUE (label) & 1) == 0
2341 /* Don't adjust the address if the label is global or weak, or
2342 in a link-once section, since we'll be emitting symbol reloc
2343 references to it which will be patched up by the linker, and
2344 the final value of the symbol may or may not be MIPS16. */
2345 && ! S_IS_WEAK (label)
2346 && ! S_IS_EXTERNAL (label)
2347 && ! s_is_linkonce (label, now_seg))
2348 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2349 }
2350 }
2351
2352 /* End the current frag. Make it a variant frag and record the
2353 relaxation info. */
2354
2355 static void
2356 relax_close_frag (void)
2357 {
2358 mips_macro_warning.first_frag = frag_now;
2359 frag_var (rs_machine_dependent, 0, 0,
2360 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2361 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2362
2363 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2364 mips_relax.first_fixup = 0;
2365 }
2366
2367 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2368 See the comment above RELAX_ENCODE for more details. */
2369
2370 static void
2371 relax_start (symbolS *symbol)
2372 {
2373 gas_assert (mips_relax.sequence == 0);
2374 mips_relax.sequence = 1;
2375 mips_relax.symbol = symbol;
2376 }
2377
2378 /* Start generating the second version of a relaxable sequence.
2379 See the comment above RELAX_ENCODE for more details. */
2380
2381 static void
2382 relax_switch (void)
2383 {
2384 gas_assert (mips_relax.sequence == 1);
2385 mips_relax.sequence = 2;
2386 }
2387
2388 /* End the current relaxable sequence. */
2389
2390 static void
2391 relax_end (void)
2392 {
2393 gas_assert (mips_relax.sequence == 2);
2394 relax_close_frag ();
2395 mips_relax.sequence = 0;
2396 }
2397
2398 /* Return the mask of core registers that IP reads. */
2399
2400 static unsigned int
2401 gpr_read_mask (const struct mips_cl_insn *ip)
2402 {
2403 unsigned long pinfo, pinfo2;
2404 unsigned int mask;
2405
2406 mask = 0;
2407 pinfo = ip->insn_mo->pinfo;
2408 pinfo2 = ip->insn_mo->pinfo2;
2409 if (mips_opts.mips16)
2410 {
2411 if (pinfo & MIPS16_INSN_READ_X)
2412 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
2413 if (pinfo & MIPS16_INSN_READ_Y)
2414 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
2415 if (pinfo & MIPS16_INSN_READ_T)
2416 mask |= 1 << TREG;
2417 if (pinfo & MIPS16_INSN_READ_SP)
2418 mask |= 1 << SP;
2419 if (pinfo & MIPS16_INSN_READ_31)
2420 mask |= 1 << RA;
2421 if (pinfo & MIPS16_INSN_READ_Z)
2422 mask |= 1 << (mips16_to_32_reg_map
2423 [MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]);
2424 if (pinfo & MIPS16_INSN_READ_GPR_X)
2425 mask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
2426 }
2427 else
2428 {
2429 if (pinfo2 & INSN2_READ_GPR_D)
2430 mask |= 1 << EXTRACT_OPERAND (RD, *ip);
2431 if (pinfo & INSN_READ_GPR_T)
2432 mask |= 1 << EXTRACT_OPERAND (RT, *ip);
2433 if (pinfo & INSN_READ_GPR_S)
2434 mask |= 1 << EXTRACT_OPERAND (RS, *ip);
2435 if (pinfo2 & INSN2_READ_GPR_Z)
2436 mask |= 1 << EXTRACT_OPERAND (RZ, *ip);
2437 }
2438 return mask & ~0;
2439 }
2440
2441 /* Return the mask of core registers that IP writes. */
2442
2443 static unsigned int
2444 gpr_write_mask (const struct mips_cl_insn *ip)
2445 {
2446 unsigned long pinfo, pinfo2;
2447 unsigned int mask;
2448
2449 mask = 0;
2450 pinfo = ip->insn_mo->pinfo;
2451 pinfo2 = ip->insn_mo->pinfo2;
2452 if (mips_opts.mips16)
2453 {
2454 if (pinfo & MIPS16_INSN_WRITE_X)
2455 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
2456 if (pinfo & MIPS16_INSN_WRITE_Y)
2457 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
2458 if (pinfo & MIPS16_INSN_WRITE_Z)
2459 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RZ, *ip)];
2460 if (pinfo & MIPS16_INSN_WRITE_T)
2461 mask |= 1 << TREG;
2462 if (pinfo & MIPS16_INSN_WRITE_SP)
2463 mask |= 1 << SP;
2464 if (pinfo & MIPS16_INSN_WRITE_31)
2465 mask |= 1 << RA;
2466 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
2467 mask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
2468 }
2469 else
2470 {
2471 if (pinfo & INSN_WRITE_GPR_D)
2472 mask |= 1 << EXTRACT_OPERAND (RD, *ip);
2473 if (pinfo & INSN_WRITE_GPR_T)
2474 mask |= 1 << EXTRACT_OPERAND (RT, *ip);
2475 if (pinfo & INSN_WRITE_GPR_31)
2476 mask |= 1 << RA;
2477 if (pinfo2 & INSN2_WRITE_GPR_Z)
2478 mask |= 1 << EXTRACT_OPERAND (RZ, *ip);
2479 }
2480 return mask & ~0;
2481 }
2482
2483 /* Return the mask of floating-point registers that IP reads. */
2484
2485 static unsigned int
2486 fpr_read_mask (const struct mips_cl_insn *ip)
2487 {
2488 unsigned long pinfo, pinfo2;
2489 unsigned int mask;
2490
2491 mask = 0;
2492 pinfo = ip->insn_mo->pinfo;
2493 pinfo2 = ip->insn_mo->pinfo2;
2494 if (!mips_opts.mips16)
2495 {
2496 if (pinfo & INSN_READ_FPR_S)
2497 mask |= 1 << EXTRACT_OPERAND (FS, *ip);
2498 if (pinfo & INSN_READ_FPR_T)
2499 mask |= 1 << EXTRACT_OPERAND (FT, *ip);
2500 if (pinfo & INSN_READ_FPR_R)
2501 mask |= 1 << EXTRACT_OPERAND (FR, *ip);
2502 if (pinfo2 & INSN2_READ_FPR_Z)
2503 mask |= 1 << EXTRACT_OPERAND (FZ, *ip);
2504 }
2505 /* Conservatively treat all operands to an FP_D instruction are doubles.
2506 (This is overly pessimistic for things like cvt.d.s.) */
2507 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
2508 mask |= mask << 1;
2509 return mask;
2510 }
2511
2512 /* Return the mask of floating-point registers that IP writes. */
2513
2514 static unsigned int
2515 fpr_write_mask (const struct mips_cl_insn *ip)
2516 {
2517 unsigned long pinfo, pinfo2;
2518 unsigned int mask;
2519
2520 mask = 0;
2521 pinfo = ip->insn_mo->pinfo;
2522 pinfo2 = ip->insn_mo->pinfo2;
2523 if (!mips_opts.mips16)
2524 {
2525 if (pinfo & INSN_WRITE_FPR_D)
2526 mask |= 1 << EXTRACT_OPERAND (FD, *ip);
2527 if (pinfo & INSN_WRITE_FPR_S)
2528 mask |= 1 << EXTRACT_OPERAND (FS, *ip);
2529 if (pinfo & INSN_WRITE_FPR_T)
2530 mask |= 1 << EXTRACT_OPERAND (FT, *ip);
2531 if (pinfo2 & INSN2_WRITE_FPR_Z)
2532 mask |= 1 << EXTRACT_OPERAND (FZ, *ip);
2533 }
2534 /* Conservatively treat all operands to an FP_D instruction are doubles.
2535 (This is overly pessimistic for things like cvt.s.d.) */
2536 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
2537 mask |= mask << 1;
2538 return mask;
2539 }
2540
2541 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2542 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2543 by VR4120 errata. */
2544
2545 static unsigned int
2546 classify_vr4120_insn (const char *name)
2547 {
2548 if (strncmp (name, "macc", 4) == 0)
2549 return FIX_VR4120_MACC;
2550 if (strncmp (name, "dmacc", 5) == 0)
2551 return FIX_VR4120_DMACC;
2552 if (strncmp (name, "mult", 4) == 0)
2553 return FIX_VR4120_MULT;
2554 if (strncmp (name, "dmult", 5) == 0)
2555 return FIX_VR4120_DMULT;
2556 if (strstr (name, "div"))
2557 return FIX_VR4120_DIV;
2558 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2559 return FIX_VR4120_MTHILO;
2560 return NUM_FIX_VR4120_CLASSES;
2561 }
2562
2563 #define INSN_ERET 0x42000018
2564 #define INSN_DERET 0x4200001f
2565
2566 /* Return the number of instructions that must separate INSN1 and INSN2,
2567 where INSN1 is the earlier instruction. Return the worst-case value
2568 for any INSN2 if INSN2 is null. */
2569
2570 static unsigned int
2571 insns_between (const struct mips_cl_insn *insn1,
2572 const struct mips_cl_insn *insn2)
2573 {
2574 unsigned long pinfo1, pinfo2;
2575 unsigned int mask;
2576
2577 /* This function needs to know which pinfo flags are set for INSN2
2578 and which registers INSN2 uses. The former is stored in PINFO2 and
2579 the latter is tested via INSN2_USES_GPR. If INSN2 is null, PINFO2
2580 will have every flag set and INSN2_USES_GPR will always return true. */
2581 pinfo1 = insn1->insn_mo->pinfo;
2582 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2583
2584 #define INSN2_USES_GPR(REG) \
2585 (insn2 == NULL || (gpr_read_mask (insn2) & (1U << (REG))) != 0)
2586
2587 /* For most targets, write-after-read dependencies on the HI and LO
2588 registers must be separated by at least two instructions. */
2589 if (!hilo_interlocks)
2590 {
2591 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2592 return 2;
2593 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2594 return 2;
2595 }
2596
2597 /* If we're working around r7000 errata, there must be two instructions
2598 between an mfhi or mflo and any instruction that uses the result. */
2599 if (mips_7000_hilo_fix
2600 && MF_HILO_INSN (pinfo1)
2601 && INSN2_USES_GPR (EXTRACT_OPERAND (RD, *insn1)))
2602 return 2;
2603
2604 /* If we're working around 24K errata, one instruction is required
2605 if an ERET or DERET is followed by a branch instruction. */
2606 if (mips_fix_24k)
2607 {
2608 if (insn1->insn_opcode == INSN_ERET
2609 || insn1->insn_opcode == INSN_DERET)
2610 {
2611 if (insn2 == NULL
2612 || insn2->insn_opcode == INSN_ERET
2613 || insn2->insn_opcode == INSN_DERET
2614 || (insn2->insn_mo->pinfo
2615 & (INSN_UNCOND_BRANCH_DELAY
2616 | INSN_COND_BRANCH_DELAY
2617 | INSN_COND_BRANCH_LIKELY)) != 0)
2618 return 1;
2619 }
2620 }
2621
2622 /* If working around VR4120 errata, check for combinations that need
2623 a single intervening instruction. */
2624 if (mips_fix_vr4120)
2625 {
2626 unsigned int class1, class2;
2627
2628 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2629 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2630 {
2631 if (insn2 == NULL)
2632 return 1;
2633 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2634 if (vr4120_conflicts[class1] & (1 << class2))
2635 return 1;
2636 }
2637 }
2638
2639 if (!mips_opts.mips16)
2640 {
2641 /* Check for GPR or coprocessor load delays. All such delays
2642 are on the RT register. */
2643 /* Itbl support may require additional care here. */
2644 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2645 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2646 {
2647 know (pinfo1 & INSN_WRITE_GPR_T);
2648 if (INSN2_USES_GPR (EXTRACT_OPERAND (RT, *insn1)))
2649 return 1;
2650 }
2651
2652 /* Check for generic coprocessor hazards.
2653
2654 This case is not handled very well. There is no special
2655 knowledge of CP0 handling, and the coprocessors other than
2656 the floating point unit are not distinguished at all. */
2657 /* Itbl support may require additional care here. FIXME!
2658 Need to modify this to include knowledge about
2659 user specified delays! */
2660 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2661 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2662 {
2663 /* Handle cases where INSN1 writes to a known general coprocessor
2664 register. There must be a one instruction delay before INSN2
2665 if INSN2 reads that register, otherwise no delay is needed. */
2666 mask = fpr_write_mask (insn1);
2667 if (mask != 0)
2668 {
2669 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
2670 return 1;
2671 }
2672 else
2673 {
2674 /* Read-after-write dependencies on the control registers
2675 require a two-instruction gap. */
2676 if ((pinfo1 & INSN_WRITE_COND_CODE)
2677 && (pinfo2 & INSN_READ_COND_CODE))
2678 return 2;
2679
2680 /* We don't know exactly what INSN1 does. If INSN2 is
2681 also a coprocessor instruction, assume there must be
2682 a one instruction gap. */
2683 if (pinfo2 & INSN_COP)
2684 return 1;
2685 }
2686 }
2687
2688 /* Check for read-after-write dependencies on the coprocessor
2689 control registers in cases where INSN1 does not need a general
2690 coprocessor delay. This means that INSN1 is a floating point
2691 comparison instruction. */
2692 /* Itbl support may require additional care here. */
2693 else if (!cop_interlocks
2694 && (pinfo1 & INSN_WRITE_COND_CODE)
2695 && (pinfo2 & INSN_READ_COND_CODE))
2696 return 1;
2697 }
2698
2699 #undef INSN2_USES_GPR
2700
2701 return 0;
2702 }
2703
2704 /* Return the number of nops that would be needed to work around the
2705 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2706 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
2707 that are contained within the first IGNORE instructions of HIST. */
2708
2709 static int
2710 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
2711 const struct mips_cl_insn *insn)
2712 {
2713 int i, j;
2714 unsigned int mask;
2715
2716 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2717 are not affected by the errata. */
2718 if (insn != 0
2719 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2720 || strcmp (insn->insn_mo->name, "mtlo") == 0
2721 || strcmp (insn->insn_mo->name, "mthi") == 0))
2722 return 0;
2723
2724 /* Search for the first MFLO or MFHI. */
2725 for (i = 0; i < MAX_VR4130_NOPS; i++)
2726 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2727 {
2728 /* Extract the destination register. */
2729 mask = gpr_write_mask (&hist[i]);
2730
2731 /* No nops are needed if INSN reads that register. */
2732 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
2733 return 0;
2734
2735 /* ...or if any of the intervening instructions do. */
2736 for (j = 0; j < i; j++)
2737 if (gpr_read_mask (&hist[j]) & mask)
2738 return 0;
2739
2740 if (i >= ignore)
2741 return MAX_VR4130_NOPS - i;
2742 }
2743 return 0;
2744 }
2745
2746 #define BASE_REG_EQ(INSN1, INSN2) \
2747 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
2748 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
2749
2750 /* Return the minimum alignment for this store instruction. */
2751
2752 static int
2753 fix_24k_align_to (const struct mips_opcode *mo)
2754 {
2755 if (strcmp (mo->name, "sh") == 0)
2756 return 2;
2757
2758 if (strcmp (mo->name, "swc1") == 0
2759 || strcmp (mo->name, "swc2") == 0
2760 || strcmp (mo->name, "sw") == 0
2761 || strcmp (mo->name, "sc") == 0
2762 || strcmp (mo->name, "s.s") == 0)
2763 return 4;
2764
2765 if (strcmp (mo->name, "sdc1") == 0
2766 || strcmp (mo->name, "sdc2") == 0
2767 || strcmp (mo->name, "s.d") == 0)
2768 return 8;
2769
2770 /* sb, swl, swr */
2771 return 1;
2772 }
2773
2774 struct fix_24k_store_info
2775 {
2776 /* Immediate offset, if any, for this store instruction. */
2777 short off;
2778 /* Alignment required by this store instruction. */
2779 int align_to;
2780 /* True for register offsets. */
2781 int register_offset;
2782 };
2783
2784 /* Comparison function used by qsort. */
2785
2786 static int
2787 fix_24k_sort (const void *a, const void *b)
2788 {
2789 const struct fix_24k_store_info *pos1 = a;
2790 const struct fix_24k_store_info *pos2 = b;
2791
2792 return (pos1->off - pos2->off);
2793 }
2794
2795 /* INSN is a store instruction. Try to record the store information
2796 in STINFO. Return false if the information isn't known. */
2797
2798 static bfd_boolean
2799 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
2800 const struct mips_cl_insn *insn)
2801 {
2802 /* The instruction must have a known offset. */
2803 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
2804 return FALSE;
2805
2806 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
2807 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
2808 return TRUE;
2809 }
2810
2811 /* Return the number of nops that would be needed to work around the 24k
2812 "lost data on stores during refill" errata if instruction INSN
2813 immediately followed the 2 instructions described by HIST.
2814 Ignore hazards that are contained within the first IGNORE
2815 instructions of HIST.
2816
2817 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
2818 for the data cache refills and store data. The following describes
2819 the scenario where the store data could be lost.
2820
2821 * A data cache miss, due to either a load or a store, causing fill
2822 data to be supplied by the memory subsystem
2823 * The first three doublewords of fill data are returned and written
2824 into the cache
2825 * A sequence of four stores occurs in consecutive cycles around the
2826 final doubleword of the fill:
2827 * Store A
2828 * Store B
2829 * Store C
2830 * Zero, One or more instructions
2831 * Store D
2832
2833 The four stores A-D must be to different doublewords of the line that
2834 is being filled. The fourth instruction in the sequence above permits
2835 the fill of the final doubleword to be transferred from the FSB into
2836 the cache. In the sequence above, the stores may be either integer
2837 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
2838 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
2839 different doublewords on the line. If the floating point unit is
2840 running in 1:2 mode, it is not possible to create the sequence above
2841 using only floating point store instructions.
2842
2843 In this case, the cache line being filled is incorrectly marked
2844 invalid, thereby losing the data from any store to the line that
2845 occurs between the original miss and the completion of the five
2846 cycle sequence shown above.
2847
2848 The workarounds are:
2849
2850 * Run the data cache in write-through mode.
2851 * Insert a non-store instruction between
2852 Store A and Store B or Store B and Store C. */
2853
2854 static int
2855 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
2856 const struct mips_cl_insn *insn)
2857 {
2858 struct fix_24k_store_info pos[3];
2859 int align, i, base_offset;
2860
2861 if (ignore >= 2)
2862 return 0;
2863
2864 /* If the previous instruction wasn't a store, there's nothing to
2865 worry about. */
2866 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
2867 return 0;
2868
2869 /* If the instructions after the previous one are unknown, we have
2870 to assume the worst. */
2871 if (!insn)
2872 return 1;
2873
2874 /* Check whether we are dealing with three consecutive stores. */
2875 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
2876 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
2877 return 0;
2878
2879 /* If we don't know the relationship between the store addresses,
2880 assume the worst. */
2881 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
2882 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
2883 return 1;
2884
2885 if (!fix_24k_record_store_info (&pos[0], insn)
2886 || !fix_24k_record_store_info (&pos[1], &hist[0])
2887 || !fix_24k_record_store_info (&pos[2], &hist[1]))
2888 return 1;
2889
2890 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
2891
2892 /* Pick a value of ALIGN and X such that all offsets are adjusted by
2893 X bytes and such that the base register + X is known to be aligned
2894 to align bytes. */
2895
2896 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
2897 align = 8;
2898 else
2899 {
2900 align = pos[0].align_to;
2901 base_offset = pos[0].off;
2902 for (i = 1; i < 3; i++)
2903 if (align < pos[i].align_to)
2904 {
2905 align = pos[i].align_to;
2906 base_offset = pos[i].off;
2907 }
2908 for (i = 0; i < 3; i++)
2909 pos[i].off -= base_offset;
2910 }
2911
2912 pos[0].off &= ~align + 1;
2913 pos[1].off &= ~align + 1;
2914 pos[2].off &= ~align + 1;
2915
2916 /* If any two stores write to the same chunk, they also write to the
2917 same doubleword. The offsets are still sorted at this point. */
2918 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
2919 return 0;
2920
2921 /* A range of at least 9 bytes is needed for the stores to be in
2922 non-overlapping doublewords. */
2923 if (pos[2].off - pos[0].off <= 8)
2924 return 0;
2925
2926 if (pos[2].off - pos[1].off >= 24
2927 || pos[1].off - pos[0].off >= 24
2928 || pos[2].off - pos[0].off >= 32)
2929 return 0;
2930
2931 return 1;
2932 }
2933
2934 /* Return the number of nops that would be needed if instruction INSN
2935 immediately followed the MAX_NOPS instructions given by HIST,
2936 where HIST[0] is the most recent instruction. Ignore hazards
2937 between INSN and the first IGNORE instructions in HIST.
2938
2939 If INSN is null, return the worse-case number of nops for any
2940 instruction. */
2941
2942 static int
2943 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
2944 const struct mips_cl_insn *insn)
2945 {
2946 int i, nops, tmp_nops;
2947
2948 nops = 0;
2949 for (i = ignore; i < MAX_DELAY_NOPS; i++)
2950 {
2951 tmp_nops = insns_between (hist + i, insn) - i;
2952 if (tmp_nops > nops)
2953 nops = tmp_nops;
2954 }
2955
2956 if (mips_fix_vr4130)
2957 {
2958 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
2959 if (tmp_nops > nops)
2960 nops = tmp_nops;
2961 }
2962
2963 if (mips_fix_24k)
2964 {
2965 tmp_nops = nops_for_24k (ignore, hist, insn);
2966 if (tmp_nops > nops)
2967 nops = tmp_nops;
2968 }
2969
2970 return nops;
2971 }
2972
2973 /* The variable arguments provide NUM_INSNS extra instructions that
2974 might be added to HIST. Return the largest number of nops that
2975 would be needed after the extended sequence, ignoring hazards
2976 in the first IGNORE instructions. */
2977
2978 static int
2979 nops_for_sequence (int num_insns, int ignore,
2980 const struct mips_cl_insn *hist, ...)
2981 {
2982 va_list args;
2983 struct mips_cl_insn buffer[MAX_NOPS];
2984 struct mips_cl_insn *cursor;
2985 int nops;
2986
2987 va_start (args, hist);
2988 cursor = buffer + num_insns;
2989 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2990 while (cursor > buffer)
2991 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2992
2993 nops = nops_for_insn (ignore, buffer, NULL);
2994 va_end (args);
2995 return nops;
2996 }
2997
2998 /* Like nops_for_insn, but if INSN is a branch, take into account the
2999 worst-case delay for the branch target. */
3000
3001 static int
3002 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
3003 const struct mips_cl_insn *insn)
3004 {
3005 int nops, tmp_nops;
3006
3007 nops = nops_for_insn (ignore, hist, insn);
3008 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
3009 | INSN_COND_BRANCH_DELAY
3010 | INSN_COND_BRANCH_LIKELY))
3011 {
3012 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
3013 hist, insn, NOP_INSN);
3014 if (tmp_nops > nops)
3015 nops = tmp_nops;
3016 }
3017 else if (mips_opts.mips16
3018 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
3019 | MIPS16_INSN_COND_BRANCH)))
3020 {
3021 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
3022 if (tmp_nops > nops)
3023 nops = tmp_nops;
3024 }
3025 return nops;
3026 }
3027
3028 /* Fix NOP issue: Replace nops by "or at,at,zero". */
3029
3030 static void
3031 fix_loongson2f_nop (struct mips_cl_insn * ip)
3032 {
3033 if (strcmp (ip->insn_mo->name, "nop") == 0)
3034 ip->insn_opcode = LOONGSON2F_NOP_INSN;
3035 }
3036
3037 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
3038 jr target pc &= 'hffff_ffff_cfff_ffff. */
3039
3040 static void
3041 fix_loongson2f_jump (struct mips_cl_insn * ip)
3042 {
3043 if (strcmp (ip->insn_mo->name, "j") == 0
3044 || strcmp (ip->insn_mo->name, "jr") == 0
3045 || strcmp (ip->insn_mo->name, "jalr") == 0)
3046 {
3047 int sreg;
3048 expressionS ep;
3049
3050 if (! mips_opts.at)
3051 return;
3052
3053 sreg = EXTRACT_OPERAND (RS, *ip);
3054 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
3055 return;
3056
3057 ep.X_op = O_constant;
3058 ep.X_add_number = 0xcfff0000;
3059 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
3060 ep.X_add_number = 0xffff;
3061 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
3062 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
3063 }
3064 }
3065
3066 static void
3067 fix_loongson2f (struct mips_cl_insn * ip)
3068 {
3069 if (mips_fix_loongson2f_nop)
3070 fix_loongson2f_nop (ip);
3071
3072 if (mips_fix_loongson2f_jump)
3073 fix_loongson2f_jump (ip);
3074 }
3075
3076 /* Output an instruction. IP is the instruction information.
3077 ADDRESS_EXPR is an operand of the instruction to be used with
3078 RELOC_TYPE. */
3079
3080 static void
3081 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
3082 bfd_reloc_code_real_type *reloc_type)
3083 {
3084 unsigned long prev_pinfo, pinfo;
3085 unsigned long prev_pinfo2, pinfo2;
3086 relax_stateT prev_insn_frag_type = 0;
3087 bfd_boolean relaxed_branch = FALSE;
3088 segment_info_type *si = seg_info (now_seg);
3089
3090 if (mips_fix_loongson2f)
3091 fix_loongson2f (ip);
3092
3093 /* Mark instruction labels in mips16 mode. */
3094 mips16_mark_labels ();
3095
3096 file_ase_mips16 |= mips_opts.mips16;
3097
3098 prev_pinfo = history[0].insn_mo->pinfo;
3099 prev_pinfo2 = history[0].insn_mo->pinfo2;
3100 pinfo = ip->insn_mo->pinfo;
3101 pinfo2 = ip->insn_mo->pinfo2;
3102
3103 if (address_expr == NULL)
3104 ip->complete_p = 1;
3105 else if (*reloc_type <= BFD_RELOC_UNUSED
3106 && address_expr->X_op == O_constant)
3107 {
3108 unsigned int tmp;
3109
3110 ip->complete_p = 1;
3111 switch (*reloc_type)
3112 {
3113 case BFD_RELOC_32:
3114 ip->insn_opcode |= address_expr->X_add_number;
3115 break;
3116
3117 case BFD_RELOC_MIPS_HIGHEST:
3118 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
3119 ip->insn_opcode |= tmp & 0xffff;
3120 break;
3121
3122 case BFD_RELOC_MIPS_HIGHER:
3123 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3124 ip->insn_opcode |= tmp & 0xffff;
3125 break;
3126
3127 case BFD_RELOC_HI16_S:
3128 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3129 ip->insn_opcode |= tmp & 0xffff;
3130 break;
3131
3132 case BFD_RELOC_HI16:
3133 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3134 break;
3135
3136 case BFD_RELOC_UNUSED:
3137 case BFD_RELOC_LO16:
3138 case BFD_RELOC_MIPS_GOT_DISP:
3139 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3140 break;
3141
3142 case BFD_RELOC_MIPS_JMP:
3143 if ((address_expr->X_add_number & 3) != 0)
3144 as_bad (_("jump to misaligned address (0x%lx)"),
3145 (unsigned long) address_expr->X_add_number);
3146 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3147 ip->complete_p = 0;
3148 break;
3149
3150 case BFD_RELOC_MIPS16_JMP:
3151 if ((address_expr->X_add_number & 3) != 0)
3152 as_bad (_("jump to misaligned address (0x%lx)"),
3153 (unsigned long) address_expr->X_add_number);
3154 ip->insn_opcode |=
3155 (((address_expr->X_add_number & 0x7c0000) << 3)
3156 | ((address_expr->X_add_number & 0xf800000) >> 7)
3157 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3158 ip->complete_p = 0;
3159 break;
3160
3161 case BFD_RELOC_16_PCREL_S2:
3162 if ((address_expr->X_add_number & 3) != 0)
3163 as_bad (_("branch to misaligned address (0x%lx)"),
3164 (unsigned long) address_expr->X_add_number);
3165 if (mips_relax_branch)
3166 goto need_reloc;
3167 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3168 as_bad (_("branch address range overflow (0x%lx)"),
3169 (unsigned long) address_expr->X_add_number);
3170 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3171 ip->complete_p = 0;
3172 break;
3173
3174 default:
3175 internalError ();
3176 }
3177 }
3178
3179 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3180 {
3181 /* There are a lot of optimizations we could do that we don't.
3182 In particular, we do not, in general, reorder instructions.
3183 If you use gcc with optimization, it will reorder
3184 instructions and generally do much more optimization then we
3185 do here; repeating all that work in the assembler would only
3186 benefit hand written assembly code, and does not seem worth
3187 it. */
3188 int nops = (mips_optimize == 0
3189 ? nops_for_insn (0, history, NULL)
3190 : nops_for_insn_or_target (0, history, ip));
3191 if (nops > 0)
3192 {
3193 fragS *old_frag;
3194 unsigned long old_frag_offset;
3195 int i;
3196
3197 old_frag = frag_now;
3198 old_frag_offset = frag_now_fix ();
3199
3200 for (i = 0; i < nops; i++)
3201 emit_nop ();
3202
3203 if (listing)
3204 {
3205 listing_prev_line ();
3206 /* We may be at the start of a variant frag. In case we
3207 are, make sure there is enough space for the frag
3208 after the frags created by listing_prev_line. The
3209 argument to frag_grow here must be at least as large
3210 as the argument to all other calls to frag_grow in
3211 this file. We don't have to worry about being in the
3212 middle of a variant frag, because the variants insert
3213 all needed nop instructions themselves. */
3214 frag_grow (40);
3215 }
3216
3217 mips_move_labels ();
3218
3219 #ifndef NO_ECOFF_DEBUGGING
3220 if (ECOFF_DEBUGGING)
3221 ecoff_fix_loc (old_frag, old_frag_offset);
3222 #endif
3223 }
3224 }
3225 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
3226 {
3227 int nops;
3228
3229 /* Work out how many nops in prev_nop_frag are needed by IP,
3230 ignoring hazards generated by the first prev_nop_frag_since
3231 instructions. */
3232 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
3233 gas_assert (nops <= prev_nop_frag_holds);
3234
3235 /* Enforce NOPS as a minimum. */
3236 if (nops > prev_nop_frag_required)
3237 prev_nop_frag_required = nops;
3238
3239 if (prev_nop_frag_holds == prev_nop_frag_required)
3240 {
3241 /* Settle for the current number of nops. Update the history
3242 accordingly (for the benefit of any future .set reorder code). */
3243 prev_nop_frag = NULL;
3244 insert_into_history (prev_nop_frag_since,
3245 prev_nop_frag_holds, NOP_INSN);
3246 }
3247 else
3248 {
3249 /* Allow this instruction to replace one of the nops that was
3250 tentatively added to prev_nop_frag. */
3251 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
3252 prev_nop_frag_holds--;
3253 prev_nop_frag_since++;
3254 }
3255 }
3256
3257 #ifdef OBJ_ELF
3258 /* The value passed to dwarf2_emit_insn is the distance between
3259 the beginning of the current instruction and the address that
3260 should be recorded in the debug tables. For MIPS16 debug info
3261 we want to use ISA-encoded addresses, so we pass -1 for an
3262 address higher by one than the current. */
3263 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
3264 #endif
3265
3266 /* Record the frag type before frag_var. */
3267 if (history[0].frag)
3268 prev_insn_frag_type = history[0].frag->fr_type;
3269
3270 if (address_expr
3271 && *reloc_type == BFD_RELOC_16_PCREL_S2
3272 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
3273 || pinfo & INSN_COND_BRANCH_LIKELY)
3274 && mips_relax_branch
3275 /* Don't try branch relaxation within .set nomacro, or within
3276 .set noat if we use $at for PIC computations. If it turns
3277 out that the branch was out-of-range, we'll get an error. */
3278 && !mips_opts.warn_about_macros
3279 && (mips_opts.at || mips_pic == NO_PIC)
3280 /* Don't relax BPOSGE32/64 as they have no complementing branches. */
3281 && !(ip->insn_mo->membership & (INSN_DSP64 | INSN_DSP))
3282 && !mips_opts.mips16)
3283 {
3284 relaxed_branch = TRUE;
3285 add_relaxed_insn (ip, (relaxed_branch_length
3286 (NULL, NULL,
3287 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
3288 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
3289 : 0)), 4,
3290 RELAX_BRANCH_ENCODE
3291 (AT,
3292 pinfo & INSN_UNCOND_BRANCH_DELAY,
3293 pinfo & INSN_COND_BRANCH_LIKELY,
3294 pinfo & INSN_WRITE_GPR_31,
3295 0),
3296 address_expr->X_add_symbol,
3297 address_expr->X_add_number);
3298 *reloc_type = BFD_RELOC_UNUSED;
3299 }
3300 else if (*reloc_type > BFD_RELOC_UNUSED)
3301 {
3302 /* We need to set up a variant frag. */
3303 gas_assert (mips_opts.mips16 && address_expr != NULL);
3304 add_relaxed_insn (ip, 4, 0,
3305 RELAX_MIPS16_ENCODE
3306 (*reloc_type - BFD_RELOC_UNUSED,
3307 mips16_small, mips16_ext,
3308 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
3309 history[0].mips16_absolute_jump_p),
3310 make_expr_symbol (address_expr), 0);
3311 }
3312 else if (mips_opts.mips16
3313 && ! ip->use_extend
3314 && *reloc_type != BFD_RELOC_MIPS16_JMP)
3315 {
3316 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
3317 /* Make sure there is enough room to swap this instruction with
3318 a following jump instruction. */
3319 frag_grow (6);
3320 add_fixed_insn (ip);
3321 }
3322 else
3323 {
3324 if (mips_opts.mips16
3325 && mips_opts.noreorder
3326 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
3327 as_warn (_("extended instruction in delay slot"));
3328
3329 if (mips_relax.sequence)
3330 {
3331 /* If we've reached the end of this frag, turn it into a variant
3332 frag and record the information for the instructions we've
3333 written so far. */
3334 if (frag_room () < 4)
3335 relax_close_frag ();
3336 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3337 }
3338
3339 if (mips_relax.sequence != 2)
3340 mips_macro_warning.sizes[0] += 4;
3341 if (mips_relax.sequence != 1)
3342 mips_macro_warning.sizes[1] += 4;
3343
3344 if (mips_opts.mips16)
3345 {
3346 ip->fixed_p = 1;
3347 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
3348 }
3349 add_fixed_insn (ip);
3350 }
3351
3352 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
3353 {
3354 if (!ip->complete_p
3355 && *reloc_type < BFD_RELOC_UNUSED)
3356 need_reloc:
3357 {
3358 reloc_howto_type *howto;
3359 int i;
3360
3361 /* In a compound relocation, it is the final (outermost)
3362 operator that determines the relocated field. */
3363 for (i = 1; i < 3; i++)
3364 if (reloc_type[i] == BFD_RELOC_UNUSED)
3365 break;
3366
3367 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3368 if (howto == NULL)
3369 {
3370 /* To reproduce this failure try assembling gas/testsuites/
3371 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3372 assembler. */
3373 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3374 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3375 }
3376
3377 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3378 bfd_get_reloc_size (howto),
3379 address_expr,
3380 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3381 reloc_type[0]);
3382
3383 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3384 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3385 && ip->fixp[0]->fx_addsy)
3386 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3387
3388 /* These relocations can have an addend that won't fit in
3389 4 octets for 64bit assembly. */
3390 if (HAVE_64BIT_GPRS
3391 && ! howto->partial_inplace
3392 && (reloc_type[0] == BFD_RELOC_16
3393 || reloc_type[0] == BFD_RELOC_32
3394 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3395 || reloc_type[0] == BFD_RELOC_GPREL16
3396 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3397 || reloc_type[0] == BFD_RELOC_GPREL32
3398 || reloc_type[0] == BFD_RELOC_64
3399 || reloc_type[0] == BFD_RELOC_CTOR
3400 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3401 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3402 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3403 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3404 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3405 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3406 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3407 || hi16_reloc_p (reloc_type[0])
3408 || lo16_reloc_p (reloc_type[0])))
3409 ip->fixp[0]->fx_no_overflow = 1;
3410
3411 if (mips_relax.sequence)
3412 {
3413 if (mips_relax.first_fixup == 0)
3414 mips_relax.first_fixup = ip->fixp[0];
3415 }
3416 else if (reloc_needs_lo_p (*reloc_type))
3417 {
3418 struct mips_hi_fixup *hi_fixup;
3419
3420 /* Reuse the last entry if it already has a matching %lo. */
3421 hi_fixup = mips_hi_fixup_list;
3422 if (hi_fixup == 0
3423 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3424 {
3425 hi_fixup = ((struct mips_hi_fixup *)
3426 xmalloc (sizeof (struct mips_hi_fixup)));
3427 hi_fixup->next = mips_hi_fixup_list;
3428 mips_hi_fixup_list = hi_fixup;
3429 }
3430 hi_fixup->fixp = ip->fixp[0];
3431 hi_fixup->seg = now_seg;
3432 }
3433
3434 /* Add fixups for the second and third relocations, if given.
3435 Note that the ABI allows the second relocation to be
3436 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3437 moment we only use RSS_UNDEF, but we could add support
3438 for the others if it ever becomes necessary. */
3439 for (i = 1; i < 3; i++)
3440 if (reloc_type[i] != BFD_RELOC_UNUSED)
3441 {
3442 ip->fixp[i] = fix_new (ip->frag, ip->where,
3443 ip->fixp[0]->fx_size, NULL, 0,
3444 FALSE, reloc_type[i]);
3445
3446 /* Use fx_tcbit to mark compound relocs. */
3447 ip->fixp[0]->fx_tcbit = 1;
3448 ip->fixp[i]->fx_tcbit = 1;
3449 }
3450 }
3451 }
3452 install_insn (ip);
3453
3454 /* Update the register mask information. */
3455 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
3456 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
3457
3458 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3459 {
3460 /* Filling the branch delay slot is more complex. We try to
3461 switch the branch with the previous instruction, which we can
3462 do if the previous instruction does not set up a condition
3463 that the branch tests and if the branch is not itself the
3464 target of any branch. */
3465 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3466 || (pinfo & INSN_COND_BRANCH_DELAY))
3467 {
3468 if (mips_optimize < 2
3469 /* If we have seen .set volatile or .set nomove, don't
3470 optimize. */
3471 || mips_opts.nomove != 0
3472 /* We can't swap if the previous instruction's position
3473 is fixed. */
3474 || history[0].fixed_p
3475 /* If the previous previous insn was in a .set
3476 noreorder, we can't swap. Actually, the MIPS
3477 assembler will swap in this situation. However, gcc
3478 configured -with-gnu-as will generate code like
3479 .set noreorder
3480 lw $4,XXX
3481 .set reorder
3482 INSN
3483 bne $4,$0,foo
3484 in which we can not swap the bne and INSN. If gcc is
3485 not configured -with-gnu-as, it does not output the
3486 .set pseudo-ops. */
3487 || history[1].noreorder_p
3488 /* If the branch is itself the target of a branch, we
3489 can not swap. We cheat on this; all we check for is
3490 whether there is a label on this instruction. If
3491 there are any branches to anything other than a
3492 label, users must use .set noreorder. */
3493 || si->label_list != NULL
3494 /* If the previous instruction is in a variant frag
3495 other than this branch's one, we cannot do the swap.
3496 This does not apply to the mips16, which uses variant
3497 frags for different purposes. */
3498 || (! mips_opts.mips16
3499 && prev_insn_frag_type == rs_machine_dependent)
3500 /* Check for conflicts between the branch and the instructions
3501 before the candidate delay slot. */
3502 || nops_for_insn (0, history + 1, ip) > 0
3503 /* Check for conflicts between the swapped sequence and the
3504 target of the branch. */
3505 || nops_for_sequence (2, 0, history + 1, ip, history) > 0
3506 /* We do not swap with a trap instruction, since it
3507 complicates trap handlers to have the trap
3508 instruction be in a delay slot. */
3509 || (prev_pinfo & INSN_TRAP)
3510 /* If the branch reads a register that the previous
3511 instruction sets, we can not swap. */
3512 || (gpr_read_mask (ip) & gpr_write_mask (&history[0])) != 0
3513 /* If the branch writes a register that the previous
3514 instruction sets, we can not swap. */
3515 || (gpr_write_mask (ip) & gpr_write_mask (&history[0])) != 0
3516 /* If the branch writes a register that the previous
3517 instruction reads, we can not swap. */
3518 || (gpr_write_mask (ip) & gpr_read_mask (&history[0])) != 0
3519 /* If one instruction sets a condition code and the
3520 other one uses a condition code, we can not swap. */
3521 || ((pinfo & INSN_READ_COND_CODE)
3522 && (prev_pinfo & INSN_WRITE_COND_CODE))
3523 || ((pinfo & INSN_WRITE_COND_CODE)
3524 && (prev_pinfo & INSN_READ_COND_CODE))
3525 /* If the previous instruction uses the PC, we can not
3526 swap. */
3527 || (mips_opts.mips16
3528 && (prev_pinfo & MIPS16_INSN_READ_PC))
3529 /* If the previous instruction had a fixup in mips16
3530 mode, we can not swap. This normally means that the
3531 previous instruction was a 4 byte branch anyhow. */
3532 || (mips_opts.mips16 && history[0].fixp[0])
3533 /* If the previous instruction is a sync, sync.l, or
3534 sync.p, we can not swap. */
3535 || (prev_pinfo & INSN_SYNC)
3536 /* If the previous instruction is an ERET or
3537 DERET, avoid the swap. */
3538 || (history[0].insn_opcode == INSN_ERET)
3539 || (history[0].insn_opcode == INSN_DERET))
3540 {
3541 if (mips_opts.mips16
3542 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3543 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3544 && ISA_SUPPORTS_MIPS16E)
3545 {
3546 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3547 ip->insn_opcode |= 0x0080;
3548 install_insn (ip);
3549 insert_into_history (0, 1, ip);
3550 }
3551 else
3552 {
3553 /* We could do even better for unconditional branches to
3554 portions of this object file; we could pick up the
3555 instruction at the destination, put it in the delay
3556 slot, and bump the destination address. */
3557 insert_into_history (0, 1, ip);
3558 emit_nop ();
3559 }
3560
3561 if (mips_relax.sequence)
3562 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3563 }
3564 else
3565 {
3566 /* It looks like we can actually do the swap. */
3567 struct mips_cl_insn delay = history[0];
3568 if (mips_opts.mips16)
3569 {
3570 know (delay.frag == ip->frag);
3571 move_insn (ip, delay.frag, delay.where);
3572 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3573 }
3574 else if (relaxed_branch)
3575 {
3576 /* Add the delay slot instruction to the end of the
3577 current frag and shrink the fixed part of the
3578 original frag. If the branch occupies the tail of
3579 the latter, move it backwards to cover the gap. */
3580 delay.frag->fr_fix -= 4;
3581 if (delay.frag == ip->frag)
3582 move_insn (ip, ip->frag, ip->where - 4);
3583 add_fixed_insn (&delay);
3584 }
3585 else
3586 {
3587 move_insn (&delay, ip->frag, ip->where);
3588 move_insn (ip, history[0].frag, history[0].where);
3589 }
3590 history[0] = *ip;
3591 delay.fixed_p = 1;
3592 insert_into_history (0, 1, &delay);
3593 }
3594
3595 /* If that was an unconditional branch, forget the previous
3596 insn information. */
3597 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3598 {
3599 mips_no_prev_insn ();
3600 }
3601 }
3602 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3603 {
3604 /* We don't yet optimize a branch likely. What we should do
3605 is look at the target, copy the instruction found there
3606 into the delay slot, and increment the branch to jump to
3607 the next instruction. */
3608 insert_into_history (0, 1, ip);
3609 emit_nop ();
3610 }
3611 else
3612 insert_into_history (0, 1, ip);
3613 }
3614 else
3615 insert_into_history (0, 1, ip);
3616
3617 /* We just output an insn, so the next one doesn't have a label. */
3618 mips_clear_insn_labels ();
3619 }
3620
3621 /* Forget that there was any previous instruction or label. */
3622
3623 static void
3624 mips_no_prev_insn (void)
3625 {
3626 prev_nop_frag = NULL;
3627 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3628 mips_clear_insn_labels ();
3629 }
3630
3631 /* This function must be called before we emit something other than
3632 instructions. It is like mips_no_prev_insn except that it inserts
3633 any NOPS that might be needed by previous instructions. */
3634
3635 void
3636 mips_emit_delays (void)
3637 {
3638 if (! mips_opts.noreorder)
3639 {
3640 int nops = nops_for_insn (0, history, NULL);
3641 if (nops > 0)
3642 {
3643 while (nops-- > 0)
3644 add_fixed_insn (NOP_INSN);
3645 mips_move_labels ();
3646 }
3647 }
3648 mips_no_prev_insn ();
3649 }
3650
3651 /* Start a (possibly nested) noreorder block. */
3652
3653 static void
3654 start_noreorder (void)
3655 {
3656 if (mips_opts.noreorder == 0)
3657 {
3658 unsigned int i;
3659 int nops;
3660
3661 /* None of the instructions before the .set noreorder can be moved. */
3662 for (i = 0; i < ARRAY_SIZE (history); i++)
3663 history[i].fixed_p = 1;
3664
3665 /* Insert any nops that might be needed between the .set noreorder
3666 block and the previous instructions. We will later remove any
3667 nops that turn out not to be needed. */
3668 nops = nops_for_insn (0, history, NULL);
3669 if (nops > 0)
3670 {
3671 if (mips_optimize != 0)
3672 {
3673 /* Record the frag which holds the nop instructions, so
3674 that we can remove them if we don't need them. */
3675 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3676 prev_nop_frag = frag_now;
3677 prev_nop_frag_holds = nops;
3678 prev_nop_frag_required = 0;
3679 prev_nop_frag_since = 0;
3680 }
3681
3682 for (; nops > 0; --nops)
3683 add_fixed_insn (NOP_INSN);
3684
3685 /* Move on to a new frag, so that it is safe to simply
3686 decrease the size of prev_nop_frag. */
3687 frag_wane (frag_now);
3688 frag_new (0);
3689 mips_move_labels ();
3690 }
3691 mips16_mark_labels ();
3692 mips_clear_insn_labels ();
3693 }
3694 mips_opts.noreorder++;
3695 mips_any_noreorder = 1;
3696 }
3697
3698 /* End a nested noreorder block. */
3699
3700 static void
3701 end_noreorder (void)
3702 {
3703
3704 mips_opts.noreorder--;
3705 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3706 {
3707 /* Commit to inserting prev_nop_frag_required nops and go back to
3708 handling nop insertion the .set reorder way. */
3709 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3710 * (mips_opts.mips16 ? 2 : 4));
3711 insert_into_history (prev_nop_frag_since,
3712 prev_nop_frag_required, NOP_INSN);
3713 prev_nop_frag = NULL;
3714 }
3715 }
3716
3717 /* Set up global variables for the start of a new macro. */
3718
3719 static void
3720 macro_start (void)
3721 {
3722 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3723 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3724 && (history[0].insn_mo->pinfo
3725 & (INSN_UNCOND_BRANCH_DELAY
3726 | INSN_COND_BRANCH_DELAY
3727 | INSN_COND_BRANCH_LIKELY)) != 0);
3728 }
3729
3730 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3731 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3732 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3733
3734 static const char *
3735 macro_warning (relax_substateT subtype)
3736 {
3737 if (subtype & RELAX_DELAY_SLOT)
3738 return _("Macro instruction expanded into multiple instructions"
3739 " in a branch delay slot");
3740 else if (subtype & RELAX_NOMACRO)
3741 return _("Macro instruction expanded into multiple instructions");
3742 else
3743 return 0;
3744 }
3745
3746 /* Finish up a macro. Emit warnings as appropriate. */
3747
3748 static void
3749 macro_end (void)
3750 {
3751 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3752 {
3753 relax_substateT subtype;
3754
3755 /* Set up the relaxation warning flags. */
3756 subtype = 0;
3757 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3758 subtype |= RELAX_SECOND_LONGER;
3759 if (mips_opts.warn_about_macros)
3760 subtype |= RELAX_NOMACRO;
3761 if (mips_macro_warning.delay_slot_p)
3762 subtype |= RELAX_DELAY_SLOT;
3763
3764 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3765 {
3766 /* Either the macro has a single implementation or both
3767 implementations are longer than 4 bytes. Emit the
3768 warning now. */
3769 const char *msg = macro_warning (subtype);
3770 if (msg != 0)
3771 as_warn ("%s", msg);
3772 }
3773 else
3774 {
3775 /* One implementation might need a warning but the other
3776 definitely doesn't. */
3777 mips_macro_warning.first_frag->fr_subtype |= subtype;
3778 }
3779 }
3780 }
3781
3782 /* Read a macro's relocation codes from *ARGS and store them in *R.
3783 The first argument in *ARGS will be either the code for a single
3784 relocation or -1 followed by the three codes that make up a
3785 composite relocation. */
3786
3787 static void
3788 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3789 {
3790 int i, next;
3791
3792 next = va_arg (*args, int);
3793 if (next >= 0)
3794 r[0] = (bfd_reloc_code_real_type) next;
3795 else
3796 for (i = 0; i < 3; i++)
3797 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3798 }
3799
3800 /* Build an instruction created by a macro expansion. This is passed
3801 a pointer to the count of instructions created so far, an
3802 expression, the name of the instruction to build, an operand format
3803 string, and corresponding arguments. */
3804
3805 static void
3806 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3807 {
3808 const struct mips_opcode *mo;
3809 struct mips_cl_insn insn;
3810 bfd_reloc_code_real_type r[3];
3811 va_list args;
3812
3813 va_start (args, fmt);
3814
3815 if (mips_opts.mips16)
3816 {
3817 mips16_macro_build (ep, name, fmt, &args);
3818 va_end (args);
3819 return;
3820 }
3821
3822 r[0] = BFD_RELOC_UNUSED;
3823 r[1] = BFD_RELOC_UNUSED;
3824 r[2] = BFD_RELOC_UNUSED;
3825 mo = (struct mips_opcode *) hash_find (op_hash, name);
3826 gas_assert (mo);
3827 gas_assert (strcmp (name, mo->name) == 0);
3828
3829 while (1)
3830 {
3831 /* Search until we get a match for NAME. It is assumed here that
3832 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3833 if (strcmp (fmt, mo->args) == 0
3834 && mo->pinfo != INSN_MACRO
3835 && is_opcode_valid (mo))
3836 break;
3837
3838 ++mo;
3839 gas_assert (mo->name);
3840 gas_assert (strcmp (name, mo->name) == 0);
3841 }
3842
3843 create_insn (&insn, mo);
3844 for (;;)
3845 {
3846 switch (*fmt++)
3847 {
3848 case '\0':
3849 break;
3850
3851 case ',':
3852 case '(':
3853 case ')':
3854 continue;
3855
3856 case '+':
3857 switch (*fmt++)
3858 {
3859 case 'A':
3860 case 'E':
3861 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3862 continue;
3863
3864 case 'B':
3865 case 'F':
3866 /* Note that in the macro case, these arguments are already
3867 in MSB form. (When handling the instruction in the
3868 non-macro case, these arguments are sizes from which
3869 MSB values must be calculated.) */
3870 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3871 continue;
3872
3873 case 'C':
3874 case 'G':
3875 case 'H':
3876 /* Note that in the macro case, these arguments are already
3877 in MSBD form. (When handling the instruction in the
3878 non-macro case, these arguments are sizes from which
3879 MSBD values must be calculated.) */
3880 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3881 continue;
3882
3883 case 'Q':
3884 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3885 continue;
3886
3887 default:
3888 internalError ();
3889 }
3890 continue;
3891
3892 case '2':
3893 INSERT_OPERAND (BP, insn, va_arg (args, int));
3894 continue;
3895
3896 case 't':
3897 case 'w':
3898 case 'E':
3899 INSERT_OPERAND (RT, insn, va_arg (args, int));
3900 continue;
3901
3902 case 'c':
3903 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3904 continue;
3905
3906 case 'T':
3907 case 'W':
3908 INSERT_OPERAND (FT, insn, va_arg (args, int));
3909 continue;
3910
3911 case 'd':
3912 case 'G':
3913 case 'K':
3914 INSERT_OPERAND (RD, insn, va_arg (args, int));
3915 continue;
3916
3917 case 'U':
3918 {
3919 int tmp = va_arg (args, int);
3920
3921 INSERT_OPERAND (RT, insn, tmp);
3922 INSERT_OPERAND (RD, insn, tmp);
3923 continue;
3924 }
3925
3926 case 'V':
3927 case 'S':
3928 INSERT_OPERAND (FS, insn, va_arg (args, int));
3929 continue;
3930
3931 case 'z':
3932 continue;
3933
3934 case '<':
3935 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3936 continue;
3937
3938 case 'D':
3939 INSERT_OPERAND (FD, insn, va_arg (args, int));
3940 continue;
3941
3942 case 'B':
3943 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3944 continue;
3945
3946 case 'J':
3947 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3948 continue;
3949
3950 case 'q':
3951 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3952 continue;
3953
3954 case 'b':
3955 case 's':
3956 case 'r':
3957 case 'v':
3958 INSERT_OPERAND (RS, insn, va_arg (args, int));
3959 continue;
3960
3961 case 'i':
3962 case 'j':
3963 macro_read_relocs (&args, r);
3964 gas_assert (*r == BFD_RELOC_GPREL16
3965 || *r == BFD_RELOC_MIPS_HIGHER
3966 || *r == BFD_RELOC_HI16_S
3967 || *r == BFD_RELOC_LO16
3968 || *r == BFD_RELOC_MIPS_GOT_OFST);
3969 continue;
3970
3971 case 'o':
3972 macro_read_relocs (&args, r);
3973 continue;
3974
3975 case 'u':
3976 macro_read_relocs (&args, r);
3977 gas_assert (ep != NULL
3978 && (ep->X_op == O_constant
3979 || (ep->X_op == O_symbol
3980 && (*r == BFD_RELOC_MIPS_HIGHEST
3981 || *r == BFD_RELOC_HI16_S
3982 || *r == BFD_RELOC_HI16
3983 || *r == BFD_RELOC_GPREL16
3984 || *r == BFD_RELOC_MIPS_GOT_HI16
3985 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3986 continue;
3987
3988 case 'p':
3989 gas_assert (ep != NULL);
3990
3991 /*
3992 * This allows macro() to pass an immediate expression for
3993 * creating short branches without creating a symbol.
3994 *
3995 * We don't allow branch relaxation for these branches, as
3996 * they should only appear in ".set nomacro" anyway.
3997 */
3998 if (ep->X_op == O_constant)
3999 {
4000 if ((ep->X_add_number & 3) != 0)
4001 as_bad (_("branch to misaligned address (0x%lx)"),
4002 (unsigned long) ep->X_add_number);
4003 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
4004 as_bad (_("branch address range overflow (0x%lx)"),
4005 (unsigned long) ep->X_add_number);
4006 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
4007 ep = NULL;
4008 }
4009 else
4010 *r = BFD_RELOC_16_PCREL_S2;
4011 continue;
4012
4013 case 'a':
4014 gas_assert (ep != NULL);
4015 *r = BFD_RELOC_MIPS_JMP;
4016 continue;
4017
4018 case 'C':
4019 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
4020 continue;
4021
4022 case 'k':
4023 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
4024 continue;
4025
4026 default:
4027 internalError ();
4028 }
4029 break;
4030 }
4031 va_end (args);
4032 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
4033
4034 append_insn (&insn, ep, r);
4035 }
4036
4037 static void
4038 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
4039 va_list *args)
4040 {
4041 struct mips_opcode *mo;
4042 struct mips_cl_insn insn;
4043 bfd_reloc_code_real_type r[3]
4044 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4045
4046 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
4047 gas_assert (mo);
4048 gas_assert (strcmp (name, mo->name) == 0);
4049
4050 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
4051 {
4052 ++mo;
4053 gas_assert (mo->name);
4054 gas_assert (strcmp (name, mo->name) == 0);
4055 }
4056
4057 create_insn (&insn, mo);
4058 for (;;)
4059 {
4060 int c;
4061
4062 c = *fmt++;
4063 switch (c)
4064 {
4065 case '\0':
4066 break;
4067
4068 case ',':
4069 case '(':
4070 case ')':
4071 continue;
4072
4073 case 'y':
4074 case 'w':
4075 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
4076 continue;
4077
4078 case 'x':
4079 case 'v':
4080 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
4081 continue;
4082
4083 case 'z':
4084 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
4085 continue;
4086
4087 case 'Z':
4088 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
4089 continue;
4090
4091 case '0':
4092 case 'S':
4093 case 'P':
4094 case 'R':
4095 continue;
4096
4097 case 'X':
4098 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
4099 continue;
4100
4101 case 'Y':
4102 {
4103 int regno;
4104
4105 regno = va_arg (*args, int);
4106 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
4107 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
4108 }
4109 continue;
4110
4111 case '<':
4112 case '>':
4113 case '4':
4114 case '5':
4115 case 'H':
4116 case 'W':
4117 case 'D':
4118 case 'j':
4119 case '8':
4120 case 'V':
4121 case 'C':
4122 case 'U':
4123 case 'k':
4124 case 'K':
4125 case 'p':
4126 case 'q':
4127 {
4128 gas_assert (ep != NULL);
4129
4130 if (ep->X_op != O_constant)
4131 *r = (int) BFD_RELOC_UNUSED + c;
4132 else
4133 {
4134 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
4135 FALSE, &insn.insn_opcode, &insn.use_extend,
4136 &insn.extend);
4137 ep = NULL;
4138 *r = BFD_RELOC_UNUSED;
4139 }
4140 }
4141 continue;
4142
4143 case '6':
4144 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
4145 continue;
4146 }
4147
4148 break;
4149 }
4150
4151 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
4152
4153 append_insn (&insn, ep, r);
4154 }
4155
4156 /*
4157 * Sign-extend 32-bit mode constants that have bit 31 set and all
4158 * higher bits unset.
4159 */
4160 static void
4161 normalize_constant_expr (expressionS *ex)
4162 {
4163 if (ex->X_op == O_constant
4164 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
4165 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
4166 - 0x80000000);
4167 }
4168
4169 /*
4170 * Sign-extend 32-bit mode address offsets that have bit 31 set and
4171 * all higher bits unset.
4172 */
4173 static void
4174 normalize_address_expr (expressionS *ex)
4175 {
4176 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
4177 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
4178 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
4179 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
4180 - 0x80000000);
4181 }
4182
4183 /*
4184 * Generate a "jalr" instruction with a relocation hint to the called
4185 * function. This occurs in NewABI PIC code.
4186 */
4187 static void
4188 macro_build_jalr (expressionS *ep)
4189 {
4190 char *f = NULL;
4191
4192 if (MIPS_JALR_HINT_P (ep))
4193 {
4194 frag_grow (8);
4195 f = frag_more (0);
4196 }
4197 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4198 if (MIPS_JALR_HINT_P (ep))
4199 fix_new_exp (frag_now, f - frag_now->fr_literal,
4200 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4201 }
4202
4203 /*
4204 * Generate a "lui" instruction.
4205 */
4206 static void
4207 macro_build_lui (expressionS *ep, int regnum)
4208 {
4209 expressionS high_expr;
4210 const struct mips_opcode *mo;
4211 struct mips_cl_insn insn;
4212 bfd_reloc_code_real_type r[3]
4213 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4214 const char *name = "lui";
4215 const char *fmt = "t,u";
4216
4217 gas_assert (! mips_opts.mips16);
4218
4219 high_expr = *ep;
4220
4221 if (high_expr.X_op == O_constant)
4222 {
4223 /* We can compute the instruction now without a relocation entry. */
4224 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4225 >> 16) & 0xffff;
4226 *r = BFD_RELOC_UNUSED;
4227 }
4228 else
4229 {
4230 gas_assert (ep->X_op == O_symbol);
4231 /* _gp_disp is a special case, used from s_cpload.
4232 __gnu_local_gp is used if mips_no_shared. */
4233 gas_assert (mips_pic == NO_PIC
4234 || (! HAVE_NEWABI
4235 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4236 || (! mips_in_shared
4237 && strcmp (S_GET_NAME (ep->X_add_symbol),
4238 "__gnu_local_gp") == 0));
4239 *r = BFD_RELOC_HI16_S;
4240 }
4241
4242 mo = hash_find (op_hash, name);
4243 gas_assert (strcmp (name, mo->name) == 0);
4244 gas_assert (strcmp (fmt, mo->args) == 0);
4245 create_insn (&insn, mo);
4246
4247 insn.insn_opcode = insn.insn_mo->match;
4248 INSERT_OPERAND (RT, insn, regnum);
4249 if (*r == BFD_RELOC_UNUSED)
4250 {
4251 insn.insn_opcode |= high_expr.X_add_number;
4252 append_insn (&insn, NULL, r);
4253 }
4254 else
4255 append_insn (&insn, &high_expr, r);
4256 }
4257
4258 /* Generate a sequence of instructions to do a load or store from a constant
4259 offset off of a base register (breg) into/from a target register (treg),
4260 using AT if necessary. */
4261 static void
4262 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4263 int treg, int breg, int dbl)
4264 {
4265 gas_assert (ep->X_op == O_constant);
4266
4267 /* Sign-extending 32-bit constants makes their handling easier. */
4268 if (!dbl)
4269 normalize_constant_expr (ep);
4270
4271 /* Right now, this routine can only handle signed 32-bit constants. */
4272 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4273 as_warn (_("operand overflow"));
4274
4275 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4276 {
4277 /* Signed 16-bit offset will fit in the op. Easy! */
4278 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4279 }
4280 else
4281 {
4282 /* 32-bit offset, need multiple instructions and AT, like:
4283 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4284 addu $tempreg,$tempreg,$breg
4285 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4286 to handle the complete offset. */
4287 macro_build_lui (ep, AT);
4288 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4289 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4290
4291 if (!mips_opts.at)
4292 as_bad (_("Macro used $at after \".set noat\""));
4293 }
4294 }
4295
4296 /* set_at()
4297 * Generates code to set the $at register to true (one)
4298 * if reg is less than the immediate expression.
4299 */
4300 static void
4301 set_at (int reg, int unsignedp)
4302 {
4303 if (imm_expr.X_op == O_constant
4304 && imm_expr.X_add_number >= -0x8000
4305 && imm_expr.X_add_number < 0x8000)
4306 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4307 AT, reg, BFD_RELOC_LO16);
4308 else
4309 {
4310 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4311 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4312 }
4313 }
4314
4315 /* Warn if an expression is not a constant. */
4316
4317 static void
4318 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4319 {
4320 if (ex->X_op == O_big)
4321 as_bad (_("unsupported large constant"));
4322 else if (ex->X_op != O_constant)
4323 as_bad (_("Instruction %s requires absolute expression"),
4324 ip->insn_mo->name);
4325
4326 if (HAVE_32BIT_GPRS)
4327 normalize_constant_expr (ex);
4328 }
4329
4330 /* Count the leading zeroes by performing a binary chop. This is a
4331 bulky bit of source, but performance is a LOT better for the
4332 majority of values than a simple loop to count the bits:
4333 for (lcnt = 0; (lcnt < 32); lcnt++)
4334 if ((v) & (1 << (31 - lcnt)))
4335 break;
4336 However it is not code size friendly, and the gain will drop a bit
4337 on certain cached systems.
4338 */
4339 #define COUNT_TOP_ZEROES(v) \
4340 (((v) & ~0xffff) == 0 \
4341 ? ((v) & ~0xff) == 0 \
4342 ? ((v) & ~0xf) == 0 \
4343 ? ((v) & ~0x3) == 0 \
4344 ? ((v) & ~0x1) == 0 \
4345 ? !(v) \
4346 ? 32 \
4347 : 31 \
4348 : 30 \
4349 : ((v) & ~0x7) == 0 \
4350 ? 29 \
4351 : 28 \
4352 : ((v) & ~0x3f) == 0 \
4353 ? ((v) & ~0x1f) == 0 \
4354 ? 27 \
4355 : 26 \
4356 : ((v) & ~0x7f) == 0 \
4357 ? 25 \
4358 : 24 \
4359 : ((v) & ~0xfff) == 0 \
4360 ? ((v) & ~0x3ff) == 0 \
4361 ? ((v) & ~0x1ff) == 0 \
4362 ? 23 \
4363 : 22 \
4364 : ((v) & ~0x7ff) == 0 \
4365 ? 21 \
4366 : 20 \
4367 : ((v) & ~0x3fff) == 0 \
4368 ? ((v) & ~0x1fff) == 0 \
4369 ? 19 \
4370 : 18 \
4371 : ((v) & ~0x7fff) == 0 \
4372 ? 17 \
4373 : 16 \
4374 : ((v) & ~0xffffff) == 0 \
4375 ? ((v) & ~0xfffff) == 0 \
4376 ? ((v) & ~0x3ffff) == 0 \
4377 ? ((v) & ~0x1ffff) == 0 \
4378 ? 15 \
4379 : 14 \
4380 : ((v) & ~0x7ffff) == 0 \
4381 ? 13 \
4382 : 12 \
4383 : ((v) & ~0x3fffff) == 0 \
4384 ? ((v) & ~0x1fffff) == 0 \
4385 ? 11 \
4386 : 10 \
4387 : ((v) & ~0x7fffff) == 0 \
4388 ? 9 \
4389 : 8 \
4390 : ((v) & ~0xfffffff) == 0 \
4391 ? ((v) & ~0x3ffffff) == 0 \
4392 ? ((v) & ~0x1ffffff) == 0 \
4393 ? 7 \
4394 : 6 \
4395 : ((v) & ~0x7ffffff) == 0 \
4396 ? 5 \
4397 : 4 \
4398 : ((v) & ~0x3fffffff) == 0 \
4399 ? ((v) & ~0x1fffffff) == 0 \
4400 ? 3 \
4401 : 2 \
4402 : ((v) & ~0x7fffffff) == 0 \
4403 ? 1 \
4404 : 0)
4405
4406 /* load_register()
4407 * This routine generates the least number of instructions necessary to load
4408 * an absolute expression value into a register.
4409 */
4410 static void
4411 load_register (int reg, expressionS *ep, int dbl)
4412 {
4413 int freg;
4414 expressionS hi32, lo32;
4415
4416 if (ep->X_op != O_big)
4417 {
4418 gas_assert (ep->X_op == O_constant);
4419
4420 /* Sign-extending 32-bit constants makes their handling easier. */
4421 if (!dbl)
4422 normalize_constant_expr (ep);
4423
4424 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4425 {
4426 /* We can handle 16 bit signed values with an addiu to
4427 $zero. No need to ever use daddiu here, since $zero and
4428 the result are always correct in 32 bit mode. */
4429 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4430 return;
4431 }
4432 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4433 {
4434 /* We can handle 16 bit unsigned values with an ori to
4435 $zero. */
4436 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4437 return;
4438 }
4439 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4440 {
4441 /* 32 bit values require an lui. */
4442 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4443 if ((ep->X_add_number & 0xffff) != 0)
4444 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4445 return;
4446 }
4447 }
4448
4449 /* The value is larger than 32 bits. */
4450
4451 if (!dbl || HAVE_32BIT_GPRS)
4452 {
4453 char value[32];
4454
4455 sprintf_vma (value, ep->X_add_number);
4456 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4457 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4458 return;
4459 }
4460
4461 if (ep->X_op != O_big)
4462 {
4463 hi32 = *ep;
4464 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4465 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4466 hi32.X_add_number &= 0xffffffff;
4467 lo32 = *ep;
4468 lo32.X_add_number &= 0xffffffff;
4469 }
4470 else
4471 {
4472 gas_assert (ep->X_add_number > 2);
4473 if (ep->X_add_number == 3)
4474 generic_bignum[3] = 0;
4475 else if (ep->X_add_number > 4)
4476 as_bad (_("Number larger than 64 bits"));
4477 lo32.X_op = O_constant;
4478 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4479 hi32.X_op = O_constant;
4480 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4481 }
4482
4483 if (hi32.X_add_number == 0)
4484 freg = 0;
4485 else
4486 {
4487 int shift, bit;
4488 unsigned long hi, lo;
4489
4490 if (hi32.X_add_number == (offsetT) 0xffffffff)
4491 {
4492 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4493 {
4494 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4495 return;
4496 }
4497 if (lo32.X_add_number & 0x80000000)
4498 {
4499 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4500 if (lo32.X_add_number & 0xffff)
4501 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4502 return;
4503 }
4504 }
4505
4506 /* Check for 16bit shifted constant. We know that hi32 is
4507 non-zero, so start the mask on the first bit of the hi32
4508 value. */
4509 shift = 17;
4510 do
4511 {
4512 unsigned long himask, lomask;
4513
4514 if (shift < 32)
4515 {
4516 himask = 0xffff >> (32 - shift);
4517 lomask = (0xffff << shift) & 0xffffffff;
4518 }
4519 else
4520 {
4521 himask = 0xffff << (shift - 32);
4522 lomask = 0;
4523 }
4524 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4525 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4526 {
4527 expressionS tmp;
4528
4529 tmp.X_op = O_constant;
4530 if (shift < 32)
4531 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4532 | (lo32.X_add_number >> shift));
4533 else
4534 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4535 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4536 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4537 reg, reg, (shift >= 32) ? shift - 32 : shift);
4538 return;
4539 }
4540 ++shift;
4541 }
4542 while (shift <= (64 - 16));
4543
4544 /* Find the bit number of the lowest one bit, and store the
4545 shifted value in hi/lo. */
4546 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4547 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4548 if (lo != 0)
4549 {
4550 bit = 0;
4551 while ((lo & 1) == 0)
4552 {
4553 lo >>= 1;
4554 ++bit;
4555 }
4556 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4557 hi >>= bit;
4558 }
4559 else
4560 {
4561 bit = 32;
4562 while ((hi & 1) == 0)
4563 {
4564 hi >>= 1;
4565 ++bit;
4566 }
4567 lo = hi;
4568 hi = 0;
4569 }
4570
4571 /* Optimize if the shifted value is a (power of 2) - 1. */
4572 if ((hi == 0 && ((lo + 1) & lo) == 0)
4573 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4574 {
4575 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4576 if (shift != 0)
4577 {
4578 expressionS tmp;
4579
4580 /* This instruction will set the register to be all
4581 ones. */
4582 tmp.X_op = O_constant;
4583 tmp.X_add_number = (offsetT) -1;
4584 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4585 if (bit != 0)
4586 {
4587 bit += shift;
4588 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4589 reg, reg, (bit >= 32) ? bit - 32 : bit);
4590 }
4591 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4592 reg, reg, (shift >= 32) ? shift - 32 : shift);
4593 return;
4594 }
4595 }
4596
4597 /* Sign extend hi32 before calling load_register, because we can
4598 generally get better code when we load a sign extended value. */
4599 if ((hi32.X_add_number & 0x80000000) != 0)
4600 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4601 load_register (reg, &hi32, 0);
4602 freg = reg;
4603 }
4604 if ((lo32.X_add_number & 0xffff0000) == 0)
4605 {
4606 if (freg != 0)
4607 {
4608 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4609 freg = reg;
4610 }
4611 }
4612 else
4613 {
4614 expressionS mid16;
4615
4616 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4617 {
4618 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4619 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4620 return;
4621 }
4622
4623 if (freg != 0)
4624 {
4625 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4626 freg = reg;
4627 }
4628 mid16 = lo32;
4629 mid16.X_add_number >>= 16;
4630 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4631 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4632 freg = reg;
4633 }
4634 if ((lo32.X_add_number & 0xffff) != 0)
4635 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4636 }
4637
4638 static inline void
4639 load_delay_nop (void)
4640 {
4641 if (!gpr_interlocks)
4642 macro_build (NULL, "nop", "");
4643 }
4644
4645 /* Load an address into a register. */
4646
4647 static void
4648 load_address (int reg, expressionS *ep, int *used_at)
4649 {
4650 if (ep->X_op != O_constant
4651 && ep->X_op != O_symbol)
4652 {
4653 as_bad (_("expression too complex"));
4654 ep->X_op = O_constant;
4655 }
4656
4657 if (ep->X_op == O_constant)
4658 {
4659 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4660 return;
4661 }
4662
4663 if (mips_pic == NO_PIC)
4664 {
4665 /* If this is a reference to a GP relative symbol, we want
4666 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4667 Otherwise we want
4668 lui $reg,<sym> (BFD_RELOC_HI16_S)
4669 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4670 If we have an addend, we always use the latter form.
4671
4672 With 64bit address space and a usable $at we want
4673 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4674 lui $at,<sym> (BFD_RELOC_HI16_S)
4675 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4676 daddiu $at,<sym> (BFD_RELOC_LO16)
4677 dsll32 $reg,0
4678 daddu $reg,$reg,$at
4679
4680 If $at is already in use, we use a path which is suboptimal
4681 on superscalar processors.
4682 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4683 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4684 dsll $reg,16
4685 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4686 dsll $reg,16
4687 daddiu $reg,<sym> (BFD_RELOC_LO16)
4688
4689 For GP relative symbols in 64bit address space we can use
4690 the same sequence as in 32bit address space. */
4691 if (HAVE_64BIT_SYMBOLS)
4692 {
4693 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4694 && !nopic_need_relax (ep->X_add_symbol, 1))
4695 {
4696 relax_start (ep->X_add_symbol);
4697 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4698 mips_gp_register, BFD_RELOC_GPREL16);
4699 relax_switch ();
4700 }
4701
4702 if (*used_at == 0 && mips_opts.at)
4703 {
4704 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4705 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4706 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4707 BFD_RELOC_MIPS_HIGHER);
4708 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4709 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4710 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4711 *used_at = 1;
4712 }
4713 else
4714 {
4715 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4716 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4717 BFD_RELOC_MIPS_HIGHER);
4718 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4719 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4720 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4721 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4722 }
4723
4724 if (mips_relax.sequence)
4725 relax_end ();
4726 }
4727 else
4728 {
4729 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4730 && !nopic_need_relax (ep->X_add_symbol, 1))
4731 {
4732 relax_start (ep->X_add_symbol);
4733 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4734 mips_gp_register, BFD_RELOC_GPREL16);
4735 relax_switch ();
4736 }
4737 macro_build_lui (ep, reg);
4738 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4739 reg, reg, BFD_RELOC_LO16);
4740 if (mips_relax.sequence)
4741 relax_end ();
4742 }
4743 }
4744 else if (!mips_big_got)
4745 {
4746 expressionS ex;
4747
4748 /* If this is a reference to an external symbol, we want
4749 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4750 Otherwise we want
4751 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4752 nop
4753 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4754 If there is a constant, it must be added in after.
4755
4756 If we have NewABI, we want
4757 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4758 unless we're referencing a global symbol with a non-zero
4759 offset, in which case cst must be added separately. */
4760 if (HAVE_NEWABI)
4761 {
4762 if (ep->X_add_number)
4763 {
4764 ex.X_add_number = ep->X_add_number;
4765 ep->X_add_number = 0;
4766 relax_start (ep->X_add_symbol);
4767 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4768 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4769 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4770 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4771 ex.X_op = O_constant;
4772 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4773 reg, reg, BFD_RELOC_LO16);
4774 ep->X_add_number = ex.X_add_number;
4775 relax_switch ();
4776 }
4777 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4778 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4779 if (mips_relax.sequence)
4780 relax_end ();
4781 }
4782 else
4783 {
4784 ex.X_add_number = ep->X_add_number;
4785 ep->X_add_number = 0;
4786 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4787 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4788 load_delay_nop ();
4789 relax_start (ep->X_add_symbol);
4790 relax_switch ();
4791 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4792 BFD_RELOC_LO16);
4793 relax_end ();
4794
4795 if (ex.X_add_number != 0)
4796 {
4797 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4798 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4799 ex.X_op = O_constant;
4800 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4801 reg, reg, BFD_RELOC_LO16);
4802 }
4803 }
4804 }
4805 else if (mips_big_got)
4806 {
4807 expressionS ex;
4808
4809 /* This is the large GOT case. If this is a reference to an
4810 external symbol, we want
4811 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4812 addu $reg,$reg,$gp
4813 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4814
4815 Otherwise, for a reference to a local symbol in old ABI, we want
4816 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4817 nop
4818 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4819 If there is a constant, it must be added in after.
4820
4821 In the NewABI, for local symbols, with or without offsets, we want:
4822 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4823 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4824 */
4825 if (HAVE_NEWABI)
4826 {
4827 ex.X_add_number = ep->X_add_number;
4828 ep->X_add_number = 0;
4829 relax_start (ep->X_add_symbol);
4830 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4831 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4832 reg, reg, mips_gp_register);
4833 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4834 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4835 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4836 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4837 else if (ex.X_add_number)
4838 {
4839 ex.X_op = O_constant;
4840 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4841 BFD_RELOC_LO16);
4842 }
4843
4844 ep->X_add_number = ex.X_add_number;
4845 relax_switch ();
4846 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4847 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4848 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4849 BFD_RELOC_MIPS_GOT_OFST);
4850 relax_end ();
4851 }
4852 else
4853 {
4854 ex.X_add_number = ep->X_add_number;
4855 ep->X_add_number = 0;
4856 relax_start (ep->X_add_symbol);
4857 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4859 reg, reg, mips_gp_register);
4860 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4861 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4862 relax_switch ();
4863 if (reg_needs_delay (mips_gp_register))
4864 {
4865 /* We need a nop before loading from $gp. This special
4866 check is required because the lui which starts the main
4867 instruction stream does not refer to $gp, and so will not
4868 insert the nop which may be required. */
4869 macro_build (NULL, "nop", "");
4870 }
4871 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4872 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4873 load_delay_nop ();
4874 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4875 BFD_RELOC_LO16);
4876 relax_end ();
4877
4878 if (ex.X_add_number != 0)
4879 {
4880 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4881 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4882 ex.X_op = O_constant;
4883 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4884 BFD_RELOC_LO16);
4885 }
4886 }
4887 }
4888 else
4889 abort ();
4890
4891 if (!mips_opts.at && *used_at == 1)
4892 as_bad (_("Macro used $at after \".set noat\""));
4893 }
4894
4895 /* Move the contents of register SOURCE into register DEST. */
4896
4897 static void
4898 move_register (int dest, int source)
4899 {
4900 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4901 dest, source, 0);
4902 }
4903
4904 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4905 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4906 The two alternatives are:
4907
4908 Global symbol Local sybmol
4909 ------------- ------------
4910 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4911 ... ...
4912 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4913
4914 load_got_offset emits the first instruction and add_got_offset
4915 emits the second for a 16-bit offset or add_got_offset_hilo emits
4916 a sequence to add a 32-bit offset using a scratch register. */
4917
4918 static void
4919 load_got_offset (int dest, expressionS *local)
4920 {
4921 expressionS global;
4922
4923 global = *local;
4924 global.X_add_number = 0;
4925
4926 relax_start (local->X_add_symbol);
4927 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4928 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4929 relax_switch ();
4930 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4931 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4932 relax_end ();
4933 }
4934
4935 static void
4936 add_got_offset (int dest, expressionS *local)
4937 {
4938 expressionS global;
4939
4940 global.X_op = O_constant;
4941 global.X_op_symbol = NULL;
4942 global.X_add_symbol = NULL;
4943 global.X_add_number = local->X_add_number;
4944
4945 relax_start (local->X_add_symbol);
4946 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4947 dest, dest, BFD_RELOC_LO16);
4948 relax_switch ();
4949 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4950 relax_end ();
4951 }
4952
4953 static void
4954 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4955 {
4956 expressionS global;
4957 int hold_mips_optimize;
4958
4959 global.X_op = O_constant;
4960 global.X_op_symbol = NULL;
4961 global.X_add_symbol = NULL;
4962 global.X_add_number = local->X_add_number;
4963
4964 relax_start (local->X_add_symbol);
4965 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4966 relax_switch ();
4967 /* Set mips_optimize around the lui instruction to avoid
4968 inserting an unnecessary nop after the lw. */
4969 hold_mips_optimize = mips_optimize;
4970 mips_optimize = 2;
4971 macro_build_lui (&global, tmp);
4972 mips_optimize = hold_mips_optimize;
4973 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4974 relax_end ();
4975
4976 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4977 }
4978
4979 /*
4980 * Build macros
4981 * This routine implements the seemingly endless macro or synthesized
4982 * instructions and addressing modes in the mips assembly language. Many
4983 * of these macros are simple and are similar to each other. These could
4984 * probably be handled by some kind of table or grammar approach instead of
4985 * this verbose method. Others are not simple macros but are more like
4986 * optimizing code generation.
4987 * One interesting optimization is when several store macros appear
4988 * consecutively that would load AT with the upper half of the same address.
4989 * The ensuing load upper instructions are ommited. This implies some kind
4990 * of global optimization. We currently only optimize within a single macro.
4991 * For many of the load and store macros if the address is specified as a
4992 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4993 * first load register 'at' with zero and use it as the base register. The
4994 * mips assembler simply uses register $zero. Just one tiny optimization
4995 * we're missing.
4996 */
4997 static void
4998 macro (struct mips_cl_insn *ip)
4999 {
5000 unsigned int treg, sreg, dreg, breg;
5001 unsigned int tempreg;
5002 int mask;
5003 int used_at = 0;
5004 expressionS expr1;
5005 const char *s;
5006 const char *s2;
5007 const char *fmt;
5008 int likely = 0;
5009 int dbl = 0;
5010 int coproc = 0;
5011 int lr = 0;
5012 int imm = 0;
5013 int call = 0;
5014 int off;
5015 offsetT maxnum;
5016 bfd_reloc_code_real_type r;
5017 int hold_mips_optimize;
5018
5019 gas_assert (! mips_opts.mips16);
5020
5021 treg = EXTRACT_OPERAND (RT, *ip);
5022 dreg = EXTRACT_OPERAND (RD, *ip);
5023 sreg = breg = EXTRACT_OPERAND (RS, *ip);
5024 mask = ip->insn_mo->mask;
5025
5026 expr1.X_op = O_constant;
5027 expr1.X_op_symbol = NULL;
5028 expr1.X_add_symbol = NULL;
5029 expr1.X_add_number = 1;
5030
5031 switch (mask)
5032 {
5033 case M_DABS:
5034 dbl = 1;
5035 case M_ABS:
5036 /* bgez $a0,.+12
5037 move v0,$a0
5038 sub v0,$zero,$a0
5039 */
5040
5041 start_noreorder ();
5042
5043 expr1.X_add_number = 8;
5044 macro_build (&expr1, "bgez", "s,p", sreg);
5045 if (dreg == sreg)
5046 macro_build (NULL, "nop", "");
5047 else
5048 move_register (dreg, sreg);
5049 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
5050
5051 end_noreorder ();
5052 break;
5053
5054 case M_ADD_I:
5055 s = "addi";
5056 s2 = "add";
5057 goto do_addi;
5058 case M_ADDU_I:
5059 s = "addiu";
5060 s2 = "addu";
5061 goto do_addi;
5062 case M_DADD_I:
5063 dbl = 1;
5064 s = "daddi";
5065 s2 = "dadd";
5066 goto do_addi;
5067 case M_DADDU_I:
5068 dbl = 1;
5069 s = "daddiu";
5070 s2 = "daddu";
5071 do_addi:
5072 if (imm_expr.X_op == O_constant
5073 && imm_expr.X_add_number >= -0x8000
5074 && imm_expr.X_add_number < 0x8000)
5075 {
5076 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
5077 break;
5078 }
5079 used_at = 1;
5080 load_register (AT, &imm_expr, dbl);
5081 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
5082 break;
5083
5084 case M_AND_I:
5085 s = "andi";
5086 s2 = "and";
5087 goto do_bit;
5088 case M_OR_I:
5089 s = "ori";
5090 s2 = "or";
5091 goto do_bit;
5092 case M_NOR_I:
5093 s = "";
5094 s2 = "nor";
5095 goto do_bit;
5096 case M_XOR_I:
5097 s = "xori";
5098 s2 = "xor";
5099 do_bit:
5100 if (imm_expr.X_op == O_constant
5101 && imm_expr.X_add_number >= 0
5102 && imm_expr.X_add_number < 0x10000)
5103 {
5104 if (mask != M_NOR_I)
5105 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
5106 else
5107 {
5108 macro_build (&imm_expr, "ori", "t,r,i",
5109 treg, sreg, BFD_RELOC_LO16);
5110 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
5111 }
5112 break;
5113 }
5114
5115 used_at = 1;
5116 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
5117 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
5118 break;
5119
5120 case M_BALIGN:
5121 switch (imm_expr.X_add_number)
5122 {
5123 case 0:
5124 macro_build (NULL, "nop", "");
5125 break;
5126 case 2:
5127 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
5128 break;
5129 default:
5130 macro_build (NULL, "balign", "t,s,2", treg, sreg,
5131 (int) imm_expr.X_add_number);
5132 break;
5133 }
5134 break;
5135
5136 case M_BEQ_I:
5137 s = "beq";
5138 goto beq_i;
5139 case M_BEQL_I:
5140 s = "beql";
5141 likely = 1;
5142 goto beq_i;
5143 case M_BNE_I:
5144 s = "bne";
5145 goto beq_i;
5146 case M_BNEL_I:
5147 s = "bnel";
5148 likely = 1;
5149 beq_i:
5150 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5151 {
5152 macro_build (&offset_expr, s, "s,t,p", sreg, ZERO);
5153 break;
5154 }
5155 used_at = 1;
5156 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
5157 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
5158 break;
5159
5160 case M_BGEL:
5161 likely = 1;
5162 case M_BGE:
5163 if (treg == 0)
5164 {
5165 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5166 break;
5167 }
5168 if (sreg == 0)
5169 {
5170 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
5171 break;
5172 }
5173 used_at = 1;
5174 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5175 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5176 break;
5177
5178 case M_BGTL_I:
5179 likely = 1;
5180 case M_BGT_I:
5181 /* Check for > max integer. */
5182 maxnum = 0x7fffffff;
5183 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5184 {
5185 maxnum <<= 16;
5186 maxnum |= 0xffff;
5187 maxnum <<= 16;
5188 maxnum |= 0xffff;
5189 }
5190 if (imm_expr.X_op == O_constant
5191 && imm_expr.X_add_number >= maxnum
5192 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5193 {
5194 do_false:
5195 /* Result is always false. */
5196 if (! likely)
5197 macro_build (NULL, "nop", "");
5198 else
5199 macro_build (&offset_expr, "bnel", "s,t,p", ZERO, ZERO);
5200 break;
5201 }
5202 if (imm_expr.X_op != O_constant)
5203 as_bad (_("Unsupported large constant"));
5204 ++imm_expr.X_add_number;
5205 /* FALLTHROUGH */
5206 case M_BGE_I:
5207 case M_BGEL_I:
5208 if (mask == M_BGEL_I)
5209 likely = 1;
5210 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5211 {
5212 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5213 break;
5214 }
5215 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5216 {
5217 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5218 break;
5219 }
5220 maxnum = 0x7fffffff;
5221 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5222 {
5223 maxnum <<= 16;
5224 maxnum |= 0xffff;
5225 maxnum <<= 16;
5226 maxnum |= 0xffff;
5227 }
5228 maxnum = - maxnum - 1;
5229 if (imm_expr.X_op == O_constant
5230 && imm_expr.X_add_number <= maxnum
5231 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5232 {
5233 do_true:
5234 /* result is always true */
5235 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5236 macro_build (&offset_expr, "b", "p");
5237 break;
5238 }
5239 used_at = 1;
5240 set_at (sreg, 0);
5241 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5242 break;
5243
5244 case M_BGEUL:
5245 likely = 1;
5246 case M_BGEU:
5247 if (treg == 0)
5248 goto do_true;
5249 if (sreg == 0)
5250 {
5251 macro_build (&offset_expr, likely ? "beql" : "beq",
5252 "s,t,p", ZERO, treg);
5253 break;
5254 }
5255 used_at = 1;
5256 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5257 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5258 break;
5259
5260 case M_BGTUL_I:
5261 likely = 1;
5262 case M_BGTU_I:
5263 if (sreg == 0
5264 || (HAVE_32BIT_GPRS
5265 && imm_expr.X_op == O_constant
5266 && imm_expr.X_add_number == -1))
5267 goto do_false;
5268 if (imm_expr.X_op != O_constant)
5269 as_bad (_("Unsupported large constant"));
5270 ++imm_expr.X_add_number;
5271 /* FALLTHROUGH */
5272 case M_BGEU_I:
5273 case M_BGEUL_I:
5274 if (mask == M_BGEUL_I)
5275 likely = 1;
5276 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5277 goto do_true;
5278 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5279 {
5280 macro_build (&offset_expr, likely ? "bnel" : "bne",
5281 "s,t,p", sreg, ZERO);
5282 break;
5283 }
5284 used_at = 1;
5285 set_at (sreg, 1);
5286 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5287 break;
5288
5289 case M_BGTL:
5290 likely = 1;
5291 case M_BGT:
5292 if (treg == 0)
5293 {
5294 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5295 break;
5296 }
5297 if (sreg == 0)
5298 {
5299 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5300 break;
5301 }
5302 used_at = 1;
5303 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5304 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5305 break;
5306
5307 case M_BGTUL:
5308 likely = 1;
5309 case M_BGTU:
5310 if (treg == 0)
5311 {
5312 macro_build (&offset_expr, likely ? "bnel" : "bne",
5313 "s,t,p", sreg, ZERO);
5314 break;
5315 }
5316 if (sreg == 0)
5317 goto do_false;
5318 used_at = 1;
5319 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5320 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5321 break;
5322
5323 case M_BLEL:
5324 likely = 1;
5325 case M_BLE:
5326 if (treg == 0)
5327 {
5328 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5329 break;
5330 }
5331 if (sreg == 0)
5332 {
5333 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5334 break;
5335 }
5336 used_at = 1;
5337 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5338 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5339 break;
5340
5341 case M_BLEL_I:
5342 likely = 1;
5343 case M_BLE_I:
5344 maxnum = 0x7fffffff;
5345 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5346 {
5347 maxnum <<= 16;
5348 maxnum |= 0xffff;
5349 maxnum <<= 16;
5350 maxnum |= 0xffff;
5351 }
5352 if (imm_expr.X_op == O_constant
5353 && imm_expr.X_add_number >= maxnum
5354 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5355 goto do_true;
5356 if (imm_expr.X_op != O_constant)
5357 as_bad (_("Unsupported large constant"));
5358 ++imm_expr.X_add_number;
5359 /* FALLTHROUGH */
5360 case M_BLT_I:
5361 case M_BLTL_I:
5362 if (mask == M_BLTL_I)
5363 likely = 1;
5364 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5365 {
5366 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5367 break;
5368 }
5369 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5370 {
5371 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5372 break;
5373 }
5374 used_at = 1;
5375 set_at (sreg, 0);
5376 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5377 break;
5378
5379 case M_BLEUL:
5380 likely = 1;
5381 case M_BLEU:
5382 if (treg == 0)
5383 {
5384 macro_build (&offset_expr, likely ? "beql" : "beq",
5385 "s,t,p", sreg, ZERO);
5386 break;
5387 }
5388 if (sreg == 0)
5389 goto do_true;
5390 used_at = 1;
5391 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5392 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5393 break;
5394
5395 case M_BLEUL_I:
5396 likely = 1;
5397 case M_BLEU_I:
5398 if (sreg == 0
5399 || (HAVE_32BIT_GPRS
5400 && imm_expr.X_op == O_constant
5401 && imm_expr.X_add_number == -1))
5402 goto do_true;
5403 if (imm_expr.X_op != O_constant)
5404 as_bad (_("Unsupported large constant"));
5405 ++imm_expr.X_add_number;
5406 /* FALLTHROUGH */
5407 case M_BLTU_I:
5408 case M_BLTUL_I:
5409 if (mask == M_BLTUL_I)
5410 likely = 1;
5411 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5412 goto do_false;
5413 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5414 {
5415 macro_build (&offset_expr, likely ? "beql" : "beq",
5416 "s,t,p", sreg, ZERO);
5417 break;
5418 }
5419 used_at = 1;
5420 set_at (sreg, 1);
5421 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5422 break;
5423
5424 case M_BLTL:
5425 likely = 1;
5426 case M_BLT:
5427 if (treg == 0)
5428 {
5429 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5430 break;
5431 }
5432 if (sreg == 0)
5433 {
5434 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5435 break;
5436 }
5437 used_at = 1;
5438 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5439 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5440 break;
5441
5442 case M_BLTUL:
5443 likely = 1;
5444 case M_BLTU:
5445 if (treg == 0)
5446 goto do_false;
5447 if (sreg == 0)
5448 {
5449 macro_build (&offset_expr, likely ? "bnel" : "bne",
5450 "s,t,p", ZERO, treg);
5451 break;
5452 }
5453 used_at = 1;
5454 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5455 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5456 break;
5457
5458 case M_DEXT:
5459 {
5460 /* Use unsigned arithmetic. */
5461 addressT pos;
5462 addressT size;
5463
5464 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5465 {
5466 as_bad (_("Unsupported large constant"));
5467 pos = size = 1;
5468 }
5469 else
5470 {
5471 pos = imm_expr.X_add_number;
5472 size = imm2_expr.X_add_number;
5473 }
5474
5475 if (pos > 63)
5476 {
5477 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5478 pos = 1;
5479 }
5480 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5481 {
5482 as_bad (_("Improper extract size (%lu, position %lu)"),
5483 (unsigned long) size, (unsigned long) pos);
5484 size = 1;
5485 }
5486
5487 if (size <= 32 && pos < 32)
5488 {
5489 s = "dext";
5490 fmt = "t,r,+A,+C";
5491 }
5492 else if (size <= 32)
5493 {
5494 s = "dextu";
5495 fmt = "t,r,+E,+H";
5496 }
5497 else
5498 {
5499 s = "dextm";
5500 fmt = "t,r,+A,+G";
5501 }
5502 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5503 (int) (size - 1));
5504 }
5505 break;
5506
5507 case M_DINS:
5508 {
5509 /* Use unsigned arithmetic. */
5510 addressT pos;
5511 addressT size;
5512
5513 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5514 {
5515 as_bad (_("Unsupported large constant"));
5516 pos = size = 1;
5517 }
5518 else
5519 {
5520 pos = imm_expr.X_add_number;
5521 size = imm2_expr.X_add_number;
5522 }
5523
5524 if (pos > 63)
5525 {
5526 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5527 pos = 1;
5528 }
5529 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5530 {
5531 as_bad (_("Improper insert size (%lu, position %lu)"),
5532 (unsigned long) size, (unsigned long) pos);
5533 size = 1;
5534 }
5535
5536 if (pos < 32 && (pos + size - 1) < 32)
5537 {
5538 s = "dins";
5539 fmt = "t,r,+A,+B";
5540 }
5541 else if (pos >= 32)
5542 {
5543 s = "dinsu";
5544 fmt = "t,r,+E,+F";
5545 }
5546 else
5547 {
5548 s = "dinsm";
5549 fmt = "t,r,+A,+F";
5550 }
5551 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5552 (int) (pos + size - 1));
5553 }
5554 break;
5555
5556 case M_DDIV_3:
5557 dbl = 1;
5558 case M_DIV_3:
5559 s = "mflo";
5560 goto do_div3;
5561 case M_DREM_3:
5562 dbl = 1;
5563 case M_REM_3:
5564 s = "mfhi";
5565 do_div3:
5566 if (treg == 0)
5567 {
5568 as_warn (_("Divide by zero."));
5569 if (mips_trap)
5570 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5571 else
5572 macro_build (NULL, "break", "c", 7);
5573 break;
5574 }
5575
5576 start_noreorder ();
5577 if (mips_trap)
5578 {
5579 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5580 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5581 }
5582 else
5583 {
5584 expr1.X_add_number = 8;
5585 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5586 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5587 macro_build (NULL, "break", "c", 7);
5588 }
5589 expr1.X_add_number = -1;
5590 used_at = 1;
5591 load_register (AT, &expr1, dbl);
5592 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5593 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5594 if (dbl)
5595 {
5596 expr1.X_add_number = 1;
5597 load_register (AT, &expr1, dbl);
5598 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5599 }
5600 else
5601 {
5602 expr1.X_add_number = 0x80000000;
5603 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5604 }
5605 if (mips_trap)
5606 {
5607 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5608 /* We want to close the noreorder block as soon as possible, so
5609 that later insns are available for delay slot filling. */
5610 end_noreorder ();
5611 }
5612 else
5613 {
5614 expr1.X_add_number = 8;
5615 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5616 macro_build (NULL, "nop", "");
5617
5618 /* We want to close the noreorder block as soon as possible, so
5619 that later insns are available for delay slot filling. */
5620 end_noreorder ();
5621
5622 macro_build (NULL, "break", "c", 6);
5623 }
5624 macro_build (NULL, s, "d", dreg);
5625 break;
5626
5627 case M_DIV_3I:
5628 s = "div";
5629 s2 = "mflo";
5630 goto do_divi;
5631 case M_DIVU_3I:
5632 s = "divu";
5633 s2 = "mflo";
5634 goto do_divi;
5635 case M_REM_3I:
5636 s = "div";
5637 s2 = "mfhi";
5638 goto do_divi;
5639 case M_REMU_3I:
5640 s = "divu";
5641 s2 = "mfhi";
5642 goto do_divi;
5643 case M_DDIV_3I:
5644 dbl = 1;
5645 s = "ddiv";
5646 s2 = "mflo";
5647 goto do_divi;
5648 case M_DDIVU_3I:
5649 dbl = 1;
5650 s = "ddivu";
5651 s2 = "mflo";
5652 goto do_divi;
5653 case M_DREM_3I:
5654 dbl = 1;
5655 s = "ddiv";
5656 s2 = "mfhi";
5657 goto do_divi;
5658 case M_DREMU_3I:
5659 dbl = 1;
5660 s = "ddivu";
5661 s2 = "mfhi";
5662 do_divi:
5663 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5664 {
5665 as_warn (_("Divide by zero."));
5666 if (mips_trap)
5667 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5668 else
5669 macro_build (NULL, "break", "c", 7);
5670 break;
5671 }
5672 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5673 {
5674 if (strcmp (s2, "mflo") == 0)
5675 move_register (dreg, sreg);
5676 else
5677 move_register (dreg, ZERO);
5678 break;
5679 }
5680 if (imm_expr.X_op == O_constant
5681 && imm_expr.X_add_number == -1
5682 && s[strlen (s) - 1] != 'u')
5683 {
5684 if (strcmp (s2, "mflo") == 0)
5685 {
5686 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5687 }
5688 else
5689 move_register (dreg, ZERO);
5690 break;
5691 }
5692
5693 used_at = 1;
5694 load_register (AT, &imm_expr, dbl);
5695 macro_build (NULL, s, "z,s,t", sreg, AT);
5696 macro_build (NULL, s2, "d", dreg);
5697 break;
5698
5699 case M_DIVU_3:
5700 s = "divu";
5701 s2 = "mflo";
5702 goto do_divu3;
5703 case M_REMU_3:
5704 s = "divu";
5705 s2 = "mfhi";
5706 goto do_divu3;
5707 case M_DDIVU_3:
5708 s = "ddivu";
5709 s2 = "mflo";
5710 goto do_divu3;
5711 case M_DREMU_3:
5712 s = "ddivu";
5713 s2 = "mfhi";
5714 do_divu3:
5715 start_noreorder ();
5716 if (mips_trap)
5717 {
5718 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5719 macro_build (NULL, s, "z,s,t", sreg, treg);
5720 /* We want to close the noreorder block as soon as possible, so
5721 that later insns are available for delay slot filling. */
5722 end_noreorder ();
5723 }
5724 else
5725 {
5726 expr1.X_add_number = 8;
5727 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5728 macro_build (NULL, s, "z,s,t", sreg, treg);
5729
5730 /* We want to close the noreorder block as soon as possible, so
5731 that later insns are available for delay slot filling. */
5732 end_noreorder ();
5733 macro_build (NULL, "break", "c", 7);
5734 }
5735 macro_build (NULL, s2, "d", dreg);
5736 break;
5737
5738 case M_DLCA_AB:
5739 dbl = 1;
5740 case M_LCA_AB:
5741 call = 1;
5742 goto do_la;
5743 case M_DLA_AB:
5744 dbl = 1;
5745 case M_LA_AB:
5746 do_la:
5747 /* Load the address of a symbol into a register. If breg is not
5748 zero, we then add a base register to it. */
5749
5750 if (dbl && HAVE_32BIT_GPRS)
5751 as_warn (_("dla used to load 32-bit register"));
5752
5753 if (!dbl && HAVE_64BIT_OBJECTS)
5754 as_warn (_("la used to load 64-bit address"));
5755
5756 if (offset_expr.X_op == O_constant
5757 && offset_expr.X_add_number >= -0x8000
5758 && offset_expr.X_add_number < 0x8000)
5759 {
5760 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5761 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5762 break;
5763 }
5764
5765 if (mips_opts.at && (treg == breg))
5766 {
5767 tempreg = AT;
5768 used_at = 1;
5769 }
5770 else
5771 {
5772 tempreg = treg;
5773 }
5774
5775 if (offset_expr.X_op != O_symbol
5776 && offset_expr.X_op != O_constant)
5777 {
5778 as_bad (_("Expression too complex"));
5779 offset_expr.X_op = O_constant;
5780 }
5781
5782 if (offset_expr.X_op == O_constant)
5783 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5784 else if (mips_pic == NO_PIC)
5785 {
5786 /* If this is a reference to a GP relative symbol, we want
5787 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5788 Otherwise we want
5789 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5790 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5791 If we have a constant, we need two instructions anyhow,
5792 so we may as well always use the latter form.
5793
5794 With 64bit address space and a usable $at we want
5795 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5796 lui $at,<sym> (BFD_RELOC_HI16_S)
5797 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5798 daddiu $at,<sym> (BFD_RELOC_LO16)
5799 dsll32 $tempreg,0
5800 daddu $tempreg,$tempreg,$at
5801
5802 If $at is already in use, we use a path which is suboptimal
5803 on superscalar processors.
5804 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5805 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5806 dsll $tempreg,16
5807 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5808 dsll $tempreg,16
5809 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5810
5811 For GP relative symbols in 64bit address space we can use
5812 the same sequence as in 32bit address space. */
5813 if (HAVE_64BIT_SYMBOLS)
5814 {
5815 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5816 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5817 {
5818 relax_start (offset_expr.X_add_symbol);
5819 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5820 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5821 relax_switch ();
5822 }
5823
5824 if (used_at == 0 && mips_opts.at)
5825 {
5826 macro_build (&offset_expr, "lui", "t,u",
5827 tempreg, BFD_RELOC_MIPS_HIGHEST);
5828 macro_build (&offset_expr, "lui", "t,u",
5829 AT, BFD_RELOC_HI16_S);
5830 macro_build (&offset_expr, "daddiu", "t,r,j",
5831 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5832 macro_build (&offset_expr, "daddiu", "t,r,j",
5833 AT, AT, BFD_RELOC_LO16);
5834 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5835 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5836 used_at = 1;
5837 }
5838 else
5839 {
5840 macro_build (&offset_expr, "lui", "t,u",
5841 tempreg, BFD_RELOC_MIPS_HIGHEST);
5842 macro_build (&offset_expr, "daddiu", "t,r,j",
5843 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5844 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5845 macro_build (&offset_expr, "daddiu", "t,r,j",
5846 tempreg, tempreg, BFD_RELOC_HI16_S);
5847 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5848 macro_build (&offset_expr, "daddiu", "t,r,j",
5849 tempreg, tempreg, BFD_RELOC_LO16);
5850 }
5851
5852 if (mips_relax.sequence)
5853 relax_end ();
5854 }
5855 else
5856 {
5857 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5858 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5859 {
5860 relax_start (offset_expr.X_add_symbol);
5861 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5862 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5863 relax_switch ();
5864 }
5865 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5866 as_bad (_("Offset too large"));
5867 macro_build_lui (&offset_expr, tempreg);
5868 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5869 tempreg, tempreg, BFD_RELOC_LO16);
5870 if (mips_relax.sequence)
5871 relax_end ();
5872 }
5873 }
5874 else if (!mips_big_got && !HAVE_NEWABI)
5875 {
5876 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5877
5878 /* If this is a reference to an external symbol, and there
5879 is no constant, we want
5880 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5881 or for lca or if tempreg is PIC_CALL_REG
5882 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5883 For a local symbol, we want
5884 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5885 nop
5886 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5887
5888 If we have a small constant, and this is a reference to
5889 an external symbol, we want
5890 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5891 nop
5892 addiu $tempreg,$tempreg,<constant>
5893 For a local symbol, we want the same instruction
5894 sequence, but we output a BFD_RELOC_LO16 reloc on the
5895 addiu instruction.
5896
5897 If we have a large constant, and this is a reference to
5898 an external symbol, we want
5899 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5900 lui $at,<hiconstant>
5901 addiu $at,$at,<loconstant>
5902 addu $tempreg,$tempreg,$at
5903 For a local symbol, we want the same instruction
5904 sequence, but we output a BFD_RELOC_LO16 reloc on the
5905 addiu instruction.
5906 */
5907
5908 if (offset_expr.X_add_number == 0)
5909 {
5910 if (mips_pic == SVR4_PIC
5911 && breg == 0
5912 && (call || tempreg == PIC_CALL_REG))
5913 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5914
5915 relax_start (offset_expr.X_add_symbol);
5916 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5917 lw_reloc_type, mips_gp_register);
5918 if (breg != 0)
5919 {
5920 /* We're going to put in an addu instruction using
5921 tempreg, so we may as well insert the nop right
5922 now. */
5923 load_delay_nop ();
5924 }
5925 relax_switch ();
5926 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5927 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5928 load_delay_nop ();
5929 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5930 tempreg, tempreg, BFD_RELOC_LO16);
5931 relax_end ();
5932 /* FIXME: If breg == 0, and the next instruction uses
5933 $tempreg, then if this variant case is used an extra
5934 nop will be generated. */
5935 }
5936 else if (offset_expr.X_add_number >= -0x8000
5937 && offset_expr.X_add_number < 0x8000)
5938 {
5939 load_got_offset (tempreg, &offset_expr);
5940 load_delay_nop ();
5941 add_got_offset (tempreg, &offset_expr);
5942 }
5943 else
5944 {
5945 expr1.X_add_number = offset_expr.X_add_number;
5946 offset_expr.X_add_number =
5947 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5948 load_got_offset (tempreg, &offset_expr);
5949 offset_expr.X_add_number = expr1.X_add_number;
5950 /* If we are going to add in a base register, and the
5951 target register and the base register are the same,
5952 then we are using AT as a temporary register. Since
5953 we want to load the constant into AT, we add our
5954 current AT (from the global offset table) and the
5955 register into the register now, and pretend we were
5956 not using a base register. */
5957 if (breg == treg)
5958 {
5959 load_delay_nop ();
5960 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5961 treg, AT, breg);
5962 breg = 0;
5963 tempreg = treg;
5964 }
5965 add_got_offset_hilo (tempreg, &offset_expr, AT);
5966 used_at = 1;
5967 }
5968 }
5969 else if (!mips_big_got && HAVE_NEWABI)
5970 {
5971 int add_breg_early = 0;
5972
5973 /* If this is a reference to an external, and there is no
5974 constant, or local symbol (*), with or without a
5975 constant, we want
5976 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5977 or for lca or if tempreg is PIC_CALL_REG
5978 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5979
5980 If we have a small constant, and this is a reference to
5981 an external symbol, we want
5982 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5983 addiu $tempreg,$tempreg,<constant>
5984
5985 If we have a large constant, and this is a reference to
5986 an external symbol, we want
5987 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5988 lui $at,<hiconstant>
5989 addiu $at,$at,<loconstant>
5990 addu $tempreg,$tempreg,$at
5991
5992 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5993 local symbols, even though it introduces an additional
5994 instruction. */
5995
5996 if (offset_expr.X_add_number)
5997 {
5998 expr1.X_add_number = offset_expr.X_add_number;
5999 offset_expr.X_add_number = 0;
6000
6001 relax_start (offset_expr.X_add_symbol);
6002 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6003 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
6004
6005 if (expr1.X_add_number >= -0x8000
6006 && expr1.X_add_number < 0x8000)
6007 {
6008 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6009 tempreg, tempreg, BFD_RELOC_LO16);
6010 }
6011 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6012 {
6013 /* If we are going to add in a base register, and the
6014 target register and the base register are the same,
6015 then we are using AT as a temporary register. Since
6016 we want to load the constant into AT, we add our
6017 current AT (from the global offset table) and the
6018 register into the register now, and pretend we were
6019 not using a base register. */
6020 if (breg != treg)
6021 dreg = tempreg;
6022 else
6023 {
6024 gas_assert (tempreg == AT);
6025 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6026 treg, AT, breg);
6027 dreg = treg;
6028 add_breg_early = 1;
6029 }
6030
6031 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6032 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6033 dreg, dreg, AT);
6034
6035 used_at = 1;
6036 }
6037 else
6038 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6039
6040 relax_switch ();
6041 offset_expr.X_add_number = expr1.X_add_number;
6042
6043 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6044 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
6045 if (add_breg_early)
6046 {
6047 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6048 treg, tempreg, breg);
6049 breg = 0;
6050 tempreg = treg;
6051 }
6052 relax_end ();
6053 }
6054 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
6055 {
6056 relax_start (offset_expr.X_add_symbol);
6057 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6058 BFD_RELOC_MIPS_CALL16, mips_gp_register);
6059 relax_switch ();
6060 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6061 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
6062 relax_end ();
6063 }
6064 else
6065 {
6066 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6067 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
6068 }
6069 }
6070 else if (mips_big_got && !HAVE_NEWABI)
6071 {
6072 int gpdelay;
6073 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6074 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6075 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6076
6077 /* This is the large GOT case. If this is a reference to an
6078 external symbol, and there is no constant, we want
6079 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6080 addu $tempreg,$tempreg,$gp
6081 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6082 or for lca or if tempreg is PIC_CALL_REG
6083 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6084 addu $tempreg,$tempreg,$gp
6085 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6086 For a local symbol, we want
6087 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6088 nop
6089 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6090
6091 If we have a small constant, and this is a reference to
6092 an external symbol, we want
6093 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6094 addu $tempreg,$tempreg,$gp
6095 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6096 nop
6097 addiu $tempreg,$tempreg,<constant>
6098 For a local symbol, we want
6099 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6100 nop
6101 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
6102
6103 If we have a large constant, and this is a reference to
6104 an external symbol, we want
6105 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6106 addu $tempreg,$tempreg,$gp
6107 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6108 lui $at,<hiconstant>
6109 addiu $at,$at,<loconstant>
6110 addu $tempreg,$tempreg,$at
6111 For a local symbol, we want
6112 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6113 lui $at,<hiconstant>
6114 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
6115 addu $tempreg,$tempreg,$at
6116 */
6117
6118 expr1.X_add_number = offset_expr.X_add_number;
6119 offset_expr.X_add_number = 0;
6120 relax_start (offset_expr.X_add_symbol);
6121 gpdelay = reg_needs_delay (mips_gp_register);
6122 if (expr1.X_add_number == 0 && breg == 0
6123 && (call || tempreg == PIC_CALL_REG))
6124 {
6125 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6126 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6127 }
6128 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6129 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6130 tempreg, tempreg, mips_gp_register);
6131 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6132 tempreg, lw_reloc_type, tempreg);
6133 if (expr1.X_add_number == 0)
6134 {
6135 if (breg != 0)
6136 {
6137 /* We're going to put in an addu instruction using
6138 tempreg, so we may as well insert the nop right
6139 now. */
6140 load_delay_nop ();
6141 }
6142 }
6143 else if (expr1.X_add_number >= -0x8000
6144 && expr1.X_add_number < 0x8000)
6145 {
6146 load_delay_nop ();
6147 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6148 tempreg, tempreg, BFD_RELOC_LO16);
6149 }
6150 else
6151 {
6152 /* If we are going to add in a base register, and the
6153 target register and the base register are the same,
6154 then we are using AT as a temporary register. Since
6155 we want to load the constant into AT, we add our
6156 current AT (from the global offset table) and the
6157 register into the register now, and pretend we were
6158 not using a base register. */
6159 if (breg != treg)
6160 dreg = tempreg;
6161 else
6162 {
6163 gas_assert (tempreg == AT);
6164 load_delay_nop ();
6165 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6166 treg, AT, breg);
6167 dreg = treg;
6168 }
6169
6170 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6171 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6172
6173 used_at = 1;
6174 }
6175 offset_expr.X_add_number =
6176 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
6177 relax_switch ();
6178
6179 if (gpdelay)
6180 {
6181 /* This is needed because this instruction uses $gp, but
6182 the first instruction on the main stream does not. */
6183 macro_build (NULL, "nop", "");
6184 }
6185
6186 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6187 local_reloc_type, mips_gp_register);
6188 if (expr1.X_add_number >= -0x8000
6189 && expr1.X_add_number < 0x8000)
6190 {
6191 load_delay_nop ();
6192 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6193 tempreg, tempreg, BFD_RELOC_LO16);
6194 /* FIXME: If add_number is 0, and there was no base
6195 register, the external symbol case ended with a load,
6196 so if the symbol turns out to not be external, and
6197 the next instruction uses tempreg, an unnecessary nop
6198 will be inserted. */
6199 }
6200 else
6201 {
6202 if (breg == treg)
6203 {
6204 /* We must add in the base register now, as in the
6205 external symbol case. */
6206 gas_assert (tempreg == AT);
6207 load_delay_nop ();
6208 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6209 treg, AT, breg);
6210 tempreg = treg;
6211 /* We set breg to 0 because we have arranged to add
6212 it in in both cases. */
6213 breg = 0;
6214 }
6215
6216 macro_build_lui (&expr1, AT);
6217 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6218 AT, AT, BFD_RELOC_LO16);
6219 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6220 tempreg, tempreg, AT);
6221 used_at = 1;
6222 }
6223 relax_end ();
6224 }
6225 else if (mips_big_got && HAVE_NEWABI)
6226 {
6227 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6228 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6229 int add_breg_early = 0;
6230
6231 /* This is the large GOT case. If this is a reference to an
6232 external symbol, and there is no constant, we want
6233 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6234 add $tempreg,$tempreg,$gp
6235 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6236 or for lca or if tempreg is PIC_CALL_REG
6237 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6238 add $tempreg,$tempreg,$gp
6239 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6240
6241 If we have a small constant, and this is a reference to
6242 an external symbol, we want
6243 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6244 add $tempreg,$tempreg,$gp
6245 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6246 addi $tempreg,$tempreg,<constant>
6247
6248 If we have a large constant, and this is a reference to
6249 an external symbol, we want
6250 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6251 addu $tempreg,$tempreg,$gp
6252 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6253 lui $at,<hiconstant>
6254 addi $at,$at,<loconstant>
6255 add $tempreg,$tempreg,$at
6256
6257 If we have NewABI, and we know it's a local symbol, we want
6258 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6259 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6260 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6261
6262 relax_start (offset_expr.X_add_symbol);
6263
6264 expr1.X_add_number = offset_expr.X_add_number;
6265 offset_expr.X_add_number = 0;
6266
6267 if (expr1.X_add_number == 0 && breg == 0
6268 && (call || tempreg == PIC_CALL_REG))
6269 {
6270 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6271 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6272 }
6273 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6274 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6275 tempreg, tempreg, mips_gp_register);
6276 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6277 tempreg, lw_reloc_type, tempreg);
6278
6279 if (expr1.X_add_number == 0)
6280 ;
6281 else if (expr1.X_add_number >= -0x8000
6282 && expr1.X_add_number < 0x8000)
6283 {
6284 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6285 tempreg, tempreg, BFD_RELOC_LO16);
6286 }
6287 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6288 {
6289 /* If we are going to add in a base register, and the
6290 target register and the base register are the same,
6291 then we are using AT as a temporary register. Since
6292 we want to load the constant into AT, we add our
6293 current AT (from the global offset table) and the
6294 register into the register now, and pretend we were
6295 not using a base register. */
6296 if (breg != treg)
6297 dreg = tempreg;
6298 else
6299 {
6300 gas_assert (tempreg == AT);
6301 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6302 treg, AT, breg);
6303 dreg = treg;
6304 add_breg_early = 1;
6305 }
6306
6307 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6308 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6309
6310 used_at = 1;
6311 }
6312 else
6313 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6314
6315 relax_switch ();
6316 offset_expr.X_add_number = expr1.X_add_number;
6317 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6318 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6319 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6320 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6321 if (add_breg_early)
6322 {
6323 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6324 treg, tempreg, breg);
6325 breg = 0;
6326 tempreg = treg;
6327 }
6328 relax_end ();
6329 }
6330 else
6331 abort ();
6332
6333 if (breg != 0)
6334 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6335 break;
6336
6337 case M_MSGSND:
6338 {
6339 unsigned long temp = (treg << 16) | (0x01);
6340 macro_build (NULL, "c2", "C", temp);
6341 }
6342 break;
6343
6344 case M_MSGLD:
6345 {
6346 unsigned long temp = (0x02);
6347 macro_build (NULL, "c2", "C", temp);
6348 }
6349 break;
6350
6351 case M_MSGLD_T:
6352 {
6353 unsigned long temp = (treg << 16) | (0x02);
6354 macro_build (NULL, "c2", "C", temp);
6355 }
6356 break;
6357
6358 case M_MSGWAIT:
6359 macro_build (NULL, "c2", "C", 3);
6360 break;
6361
6362 case M_MSGWAIT_T:
6363 {
6364 unsigned long temp = (treg << 16) | 0x03;
6365 macro_build (NULL, "c2", "C", temp);
6366 }
6367 break;
6368
6369 case M_J_A:
6370 /* The j instruction may not be used in PIC code, since it
6371 requires an absolute address. We convert it to a b
6372 instruction. */
6373 if (mips_pic == NO_PIC)
6374 macro_build (&offset_expr, "j", "a");
6375 else
6376 macro_build (&offset_expr, "b", "p");
6377 break;
6378
6379 /* The jal instructions must be handled as macros because when
6380 generating PIC code they expand to multi-instruction
6381 sequences. Normally they are simple instructions. */
6382 case M_JAL_1:
6383 dreg = RA;
6384 /* Fall through. */
6385 case M_JAL_2:
6386 if (mips_pic == NO_PIC)
6387 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6388 else
6389 {
6390 if (sreg != PIC_CALL_REG)
6391 as_warn (_("MIPS PIC call to register other than $25"));
6392
6393 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6394 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6395 {
6396 if (mips_cprestore_offset < 0)
6397 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6398 else
6399 {
6400 if (!mips_frame_reg_valid)
6401 {
6402 as_warn (_("No .frame pseudo-op used in PIC code"));
6403 /* Quiet this warning. */
6404 mips_frame_reg_valid = 1;
6405 }
6406 if (!mips_cprestore_valid)
6407 {
6408 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6409 /* Quiet this warning. */
6410 mips_cprestore_valid = 1;
6411 }
6412 if (mips_opts.noreorder)
6413 macro_build (NULL, "nop", "");
6414 expr1.X_add_number = mips_cprestore_offset;
6415 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6416 mips_gp_register,
6417 mips_frame_reg,
6418 HAVE_64BIT_ADDRESSES);
6419 }
6420 }
6421 }
6422
6423 break;
6424
6425 case M_JAL_A:
6426 if (mips_pic == NO_PIC)
6427 macro_build (&offset_expr, "jal", "a");
6428 else if (mips_pic == SVR4_PIC)
6429 {
6430 /* If this is a reference to an external symbol, and we are
6431 using a small GOT, we want
6432 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6433 nop
6434 jalr $ra,$25
6435 nop
6436 lw $gp,cprestore($sp)
6437 The cprestore value is set using the .cprestore
6438 pseudo-op. If we are using a big GOT, we want
6439 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6440 addu $25,$25,$gp
6441 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6442 nop
6443 jalr $ra,$25
6444 nop
6445 lw $gp,cprestore($sp)
6446 If the symbol is not external, we want
6447 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6448 nop
6449 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6450 jalr $ra,$25
6451 nop
6452 lw $gp,cprestore($sp)
6453
6454 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6455 sequences above, minus nops, unless the symbol is local,
6456 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6457 GOT_DISP. */
6458 if (HAVE_NEWABI)
6459 {
6460 if (!mips_big_got)
6461 {
6462 relax_start (offset_expr.X_add_symbol);
6463 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6464 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6465 mips_gp_register);
6466 relax_switch ();
6467 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6468 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6469 mips_gp_register);
6470 relax_end ();
6471 }
6472 else
6473 {
6474 relax_start (offset_expr.X_add_symbol);
6475 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6476 BFD_RELOC_MIPS_CALL_HI16);
6477 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6478 PIC_CALL_REG, mips_gp_register);
6479 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6480 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6481 PIC_CALL_REG);
6482 relax_switch ();
6483 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6484 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6485 mips_gp_register);
6486 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6487 PIC_CALL_REG, PIC_CALL_REG,
6488 BFD_RELOC_MIPS_GOT_OFST);
6489 relax_end ();
6490 }
6491
6492 macro_build_jalr (&offset_expr);
6493 }
6494 else
6495 {
6496 relax_start (offset_expr.X_add_symbol);
6497 if (!mips_big_got)
6498 {
6499 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6500 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6501 mips_gp_register);
6502 load_delay_nop ();
6503 relax_switch ();
6504 }
6505 else
6506 {
6507 int gpdelay;
6508
6509 gpdelay = reg_needs_delay (mips_gp_register);
6510 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6511 BFD_RELOC_MIPS_CALL_HI16);
6512 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6513 PIC_CALL_REG, mips_gp_register);
6514 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6515 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6516 PIC_CALL_REG);
6517 load_delay_nop ();
6518 relax_switch ();
6519 if (gpdelay)
6520 macro_build (NULL, "nop", "");
6521 }
6522 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6523 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6524 mips_gp_register);
6525 load_delay_nop ();
6526 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6527 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6528 relax_end ();
6529 macro_build_jalr (&offset_expr);
6530
6531 if (mips_cprestore_offset < 0)
6532 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6533 else
6534 {
6535 if (!mips_frame_reg_valid)
6536 {
6537 as_warn (_("No .frame pseudo-op used in PIC code"));
6538 /* Quiet this warning. */
6539 mips_frame_reg_valid = 1;
6540 }
6541 if (!mips_cprestore_valid)
6542 {
6543 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6544 /* Quiet this warning. */
6545 mips_cprestore_valid = 1;
6546 }
6547 if (mips_opts.noreorder)
6548 macro_build (NULL, "nop", "");
6549 expr1.X_add_number = mips_cprestore_offset;
6550 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6551 mips_gp_register,
6552 mips_frame_reg,
6553 HAVE_64BIT_ADDRESSES);
6554 }
6555 }
6556 }
6557 else if (mips_pic == VXWORKS_PIC)
6558 as_bad (_("Non-PIC jump used in PIC library"));
6559 else
6560 abort ();
6561
6562 break;
6563
6564 case M_LB_AB:
6565 s = "lb";
6566 goto ld;
6567 case M_LBU_AB:
6568 s = "lbu";
6569 goto ld;
6570 case M_LH_AB:
6571 s = "lh";
6572 goto ld;
6573 case M_LHU_AB:
6574 s = "lhu";
6575 goto ld;
6576 case M_LW_AB:
6577 s = "lw";
6578 goto ld;
6579 case M_LWC0_AB:
6580 s = "lwc0";
6581 /* Itbl support may require additional care here. */
6582 coproc = 1;
6583 goto ld;
6584 case M_LWC1_AB:
6585 s = "lwc1";
6586 /* Itbl support may require additional care here. */
6587 coproc = 1;
6588 goto ld;
6589 case M_LWC2_AB:
6590 s = "lwc2";
6591 /* Itbl support may require additional care here. */
6592 coproc = 1;
6593 goto ld;
6594 case M_LWC3_AB:
6595 s = "lwc3";
6596 /* Itbl support may require additional care here. */
6597 coproc = 1;
6598 goto ld;
6599 case M_LWL_AB:
6600 s = "lwl";
6601 lr = 1;
6602 goto ld;
6603 case M_LWR_AB:
6604 s = "lwr";
6605 lr = 1;
6606 goto ld;
6607 case M_LDC1_AB:
6608 s = "ldc1";
6609 /* Itbl support may require additional care here. */
6610 coproc = 1;
6611 goto ld;
6612 case M_LDC2_AB:
6613 s = "ldc2";
6614 /* Itbl support may require additional care here. */
6615 coproc = 1;
6616 goto ld;
6617 case M_LDC3_AB:
6618 s = "ldc3";
6619 /* Itbl support may require additional care here. */
6620 coproc = 1;
6621 goto ld;
6622 case M_LDL_AB:
6623 s = "ldl";
6624 lr = 1;
6625 goto ld;
6626 case M_LDR_AB:
6627 s = "ldr";
6628 lr = 1;
6629 goto ld;
6630 case M_LL_AB:
6631 s = "ll";
6632 goto ld;
6633 case M_LLD_AB:
6634 s = "lld";
6635 goto ld;
6636 case M_LWU_AB:
6637 s = "lwu";
6638 ld:
6639 if (breg == treg || coproc || lr)
6640 {
6641 tempreg = AT;
6642 used_at = 1;
6643 }
6644 else
6645 {
6646 tempreg = treg;
6647 }
6648 goto ld_st;
6649 case M_SB_AB:
6650 s = "sb";
6651 goto st;
6652 case M_SH_AB:
6653 s = "sh";
6654 goto st;
6655 case M_SW_AB:
6656 s = "sw";
6657 goto st;
6658 case M_SWC0_AB:
6659 s = "swc0";
6660 /* Itbl support may require additional care here. */
6661 coproc = 1;
6662 goto st;
6663 case M_SWC1_AB:
6664 s = "swc1";
6665 /* Itbl support may require additional care here. */
6666 coproc = 1;
6667 goto st;
6668 case M_SWC2_AB:
6669 s = "swc2";
6670 /* Itbl support may require additional care here. */
6671 coproc = 1;
6672 goto st;
6673 case M_SWC3_AB:
6674 s = "swc3";
6675 /* Itbl support may require additional care here. */
6676 coproc = 1;
6677 goto st;
6678 case M_SWL_AB:
6679 s = "swl";
6680 goto st;
6681 case M_SWR_AB:
6682 s = "swr";
6683 goto st;
6684 case M_SC_AB:
6685 s = "sc";
6686 goto st;
6687 case M_SCD_AB:
6688 s = "scd";
6689 goto st;
6690 case M_CACHE_AB:
6691 s = "cache";
6692 goto st;
6693 case M_PREF_AB:
6694 s = "pref";
6695 goto st;
6696 case M_SDC1_AB:
6697 s = "sdc1";
6698 coproc = 1;
6699 /* Itbl support may require additional care here. */
6700 goto st;
6701 case M_SDC2_AB:
6702 s = "sdc2";
6703 /* Itbl support may require additional care here. */
6704 coproc = 1;
6705 goto st;
6706 case M_SDC3_AB:
6707 s = "sdc3";
6708 /* Itbl support may require additional care here. */
6709 coproc = 1;
6710 goto st;
6711 case M_SDL_AB:
6712 s = "sdl";
6713 goto st;
6714 case M_SDR_AB:
6715 s = "sdr";
6716 st:
6717 tempreg = AT;
6718 used_at = 1;
6719 ld_st:
6720 if (coproc
6721 && NO_ISA_COP (mips_opts.arch)
6722 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6723 {
6724 as_bad (_("Opcode not supported on this processor: %s"),
6725 mips_cpu_info_from_arch (mips_opts.arch)->name);
6726 break;
6727 }
6728
6729 /* Itbl support may require additional care here. */
6730 if (mask == M_LWC1_AB
6731 || mask == M_SWC1_AB
6732 || mask == M_LDC1_AB
6733 || mask == M_SDC1_AB
6734 || mask == M_L_DAB
6735 || mask == M_S_DAB)
6736 fmt = "T,o(b)";
6737 else if (mask == M_CACHE_AB || mask == M_PREF_AB)
6738 fmt = "k,o(b)";
6739 else if (coproc)
6740 fmt = "E,o(b)";
6741 else
6742 fmt = "t,o(b)";
6743
6744 if (offset_expr.X_op != O_constant
6745 && offset_expr.X_op != O_symbol)
6746 {
6747 as_bad (_("Expression too complex"));
6748 offset_expr.X_op = O_constant;
6749 }
6750
6751 if (HAVE_32BIT_ADDRESSES
6752 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6753 {
6754 char value [32];
6755
6756 sprintf_vma (value, offset_expr.X_add_number);
6757 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6758 }
6759
6760 /* A constant expression in PIC code can be handled just as it
6761 is in non PIC code. */
6762 if (offset_expr.X_op == O_constant)
6763 {
6764 expr1.X_add_number = offset_expr.X_add_number;
6765 normalize_address_expr (&expr1);
6766 if (!IS_SEXT_16BIT_NUM (expr1.X_add_number))
6767 {
6768 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
6769 & ~(bfd_vma) 0xffff);
6770 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6771 if (breg != 0)
6772 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6773 tempreg, tempreg, breg);
6774 breg = tempreg;
6775 }
6776 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
6777 }
6778 else if (mips_pic == NO_PIC)
6779 {
6780 /* If this is a reference to a GP relative symbol, and there
6781 is no base register, we want
6782 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6783 Otherwise, if there is no base register, we want
6784 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6785 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6786 If we have a constant, we need two instructions anyhow,
6787 so we always use the latter form.
6788
6789 If we have a base register, and this is a reference to a
6790 GP relative symbol, we want
6791 addu $tempreg,$breg,$gp
6792 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6793 Otherwise we want
6794 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6795 addu $tempreg,$tempreg,$breg
6796 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6797 With a constant we always use the latter case.
6798
6799 With 64bit address space and no base register and $at usable,
6800 we want
6801 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6802 lui $at,<sym> (BFD_RELOC_HI16_S)
6803 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6804 dsll32 $tempreg,0
6805 daddu $tempreg,$at
6806 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6807 If we have a base register, we want
6808 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6809 lui $at,<sym> (BFD_RELOC_HI16_S)
6810 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6811 daddu $at,$breg
6812 dsll32 $tempreg,0
6813 daddu $tempreg,$at
6814 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6815
6816 Without $at we can't generate the optimal path for superscalar
6817 processors here since this would require two temporary registers.
6818 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6819 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6820 dsll $tempreg,16
6821 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6822 dsll $tempreg,16
6823 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6824 If we have a base register, we want
6825 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6826 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6827 dsll $tempreg,16
6828 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6829 dsll $tempreg,16
6830 daddu $tempreg,$tempreg,$breg
6831 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6832
6833 For GP relative symbols in 64bit address space we can use
6834 the same sequence as in 32bit address space. */
6835 if (HAVE_64BIT_SYMBOLS)
6836 {
6837 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6838 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6839 {
6840 relax_start (offset_expr.X_add_symbol);
6841 if (breg == 0)
6842 {
6843 macro_build (&offset_expr, s, fmt, treg,
6844 BFD_RELOC_GPREL16, mips_gp_register);
6845 }
6846 else
6847 {
6848 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6849 tempreg, breg, mips_gp_register);
6850 macro_build (&offset_expr, s, fmt, treg,
6851 BFD_RELOC_GPREL16, tempreg);
6852 }
6853 relax_switch ();
6854 }
6855
6856 if (used_at == 0 && mips_opts.at)
6857 {
6858 macro_build (&offset_expr, "lui", "t,u", tempreg,
6859 BFD_RELOC_MIPS_HIGHEST);
6860 macro_build (&offset_expr, "lui", "t,u", AT,
6861 BFD_RELOC_HI16_S);
6862 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6863 tempreg, BFD_RELOC_MIPS_HIGHER);
6864 if (breg != 0)
6865 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6866 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6867 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6868 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6869 tempreg);
6870 used_at = 1;
6871 }
6872 else
6873 {
6874 macro_build (&offset_expr, "lui", "t,u", tempreg,
6875 BFD_RELOC_MIPS_HIGHEST);
6876 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6877 tempreg, BFD_RELOC_MIPS_HIGHER);
6878 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6879 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6880 tempreg, BFD_RELOC_HI16_S);
6881 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6882 if (breg != 0)
6883 macro_build (NULL, "daddu", "d,v,t",
6884 tempreg, tempreg, breg);
6885 macro_build (&offset_expr, s, fmt, treg,
6886 BFD_RELOC_LO16, tempreg);
6887 }
6888
6889 if (mips_relax.sequence)
6890 relax_end ();
6891 break;
6892 }
6893
6894 if (breg == 0)
6895 {
6896 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6897 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6898 {
6899 relax_start (offset_expr.X_add_symbol);
6900 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6901 mips_gp_register);
6902 relax_switch ();
6903 }
6904 macro_build_lui (&offset_expr, tempreg);
6905 macro_build (&offset_expr, s, fmt, treg,
6906 BFD_RELOC_LO16, tempreg);
6907 if (mips_relax.sequence)
6908 relax_end ();
6909 }
6910 else
6911 {
6912 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6913 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6914 {
6915 relax_start (offset_expr.X_add_symbol);
6916 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6917 tempreg, breg, mips_gp_register);
6918 macro_build (&offset_expr, s, fmt, treg,
6919 BFD_RELOC_GPREL16, tempreg);
6920 relax_switch ();
6921 }
6922 macro_build_lui (&offset_expr, tempreg);
6923 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6924 tempreg, tempreg, breg);
6925 macro_build (&offset_expr, s, fmt, treg,
6926 BFD_RELOC_LO16, tempreg);
6927 if (mips_relax.sequence)
6928 relax_end ();
6929 }
6930 }
6931 else if (!mips_big_got)
6932 {
6933 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6934
6935 /* If this is a reference to an external symbol, we want
6936 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6937 nop
6938 <op> $treg,0($tempreg)
6939 Otherwise we want
6940 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6941 nop
6942 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6943 <op> $treg,0($tempreg)
6944
6945 For NewABI, we want
6946 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6947 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6948
6949 If there is a base register, we add it to $tempreg before
6950 the <op>. If there is a constant, we stick it in the
6951 <op> instruction. We don't handle constants larger than
6952 16 bits, because we have no way to load the upper 16 bits
6953 (actually, we could handle them for the subset of cases
6954 in which we are not using $at). */
6955 gas_assert (offset_expr.X_op == O_symbol);
6956 if (HAVE_NEWABI)
6957 {
6958 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6959 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6960 if (breg != 0)
6961 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6962 tempreg, tempreg, breg);
6963 macro_build (&offset_expr, s, fmt, treg,
6964 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6965 break;
6966 }
6967 expr1.X_add_number = offset_expr.X_add_number;
6968 offset_expr.X_add_number = 0;
6969 if (expr1.X_add_number < -0x8000
6970 || expr1.X_add_number >= 0x8000)
6971 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6972 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6973 lw_reloc_type, mips_gp_register);
6974 load_delay_nop ();
6975 relax_start (offset_expr.X_add_symbol);
6976 relax_switch ();
6977 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6978 tempreg, BFD_RELOC_LO16);
6979 relax_end ();
6980 if (breg != 0)
6981 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6982 tempreg, tempreg, breg);
6983 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6984 }
6985 else if (mips_big_got && !HAVE_NEWABI)
6986 {
6987 int gpdelay;
6988
6989 /* If this is a reference to an external symbol, we want
6990 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6991 addu $tempreg,$tempreg,$gp
6992 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6993 <op> $treg,0($tempreg)
6994 Otherwise we want
6995 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6996 nop
6997 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6998 <op> $treg,0($tempreg)
6999 If there is a base register, we add it to $tempreg before
7000 the <op>. If there is a constant, we stick it in the
7001 <op> instruction. We don't handle constants larger than
7002 16 bits, because we have no way to load the upper 16 bits
7003 (actually, we could handle them for the subset of cases
7004 in which we are not using $at). */
7005 gas_assert (offset_expr.X_op == O_symbol);
7006 expr1.X_add_number = offset_expr.X_add_number;
7007 offset_expr.X_add_number = 0;
7008 if (expr1.X_add_number < -0x8000
7009 || expr1.X_add_number >= 0x8000)
7010 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7011 gpdelay = reg_needs_delay (mips_gp_register);
7012 relax_start (offset_expr.X_add_symbol);
7013 macro_build (&offset_expr, "lui", "t,u", tempreg,
7014 BFD_RELOC_MIPS_GOT_HI16);
7015 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
7016 mips_gp_register);
7017 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7018 BFD_RELOC_MIPS_GOT_LO16, tempreg);
7019 relax_switch ();
7020 if (gpdelay)
7021 macro_build (NULL, "nop", "");
7022 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7023 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7024 load_delay_nop ();
7025 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
7026 tempreg, BFD_RELOC_LO16);
7027 relax_end ();
7028
7029 if (breg != 0)
7030 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7031 tempreg, tempreg, breg);
7032 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
7033 }
7034 else if (mips_big_got && HAVE_NEWABI)
7035 {
7036 /* If this is a reference to an external symbol, we want
7037 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7038 add $tempreg,$tempreg,$gp
7039 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
7040 <op> $treg,<ofst>($tempreg)
7041 Otherwise, for local symbols, we want:
7042 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
7043 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
7044 gas_assert (offset_expr.X_op == O_symbol);
7045 expr1.X_add_number = offset_expr.X_add_number;
7046 offset_expr.X_add_number = 0;
7047 if (expr1.X_add_number < -0x8000
7048 || expr1.X_add_number >= 0x8000)
7049 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7050 relax_start (offset_expr.X_add_symbol);
7051 macro_build (&offset_expr, "lui", "t,u", tempreg,
7052 BFD_RELOC_MIPS_GOT_HI16);
7053 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
7054 mips_gp_register);
7055 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7056 BFD_RELOC_MIPS_GOT_LO16, tempreg);
7057 if (breg != 0)
7058 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7059 tempreg, tempreg, breg);
7060 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
7061
7062 relax_switch ();
7063 offset_expr.X_add_number = expr1.X_add_number;
7064 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
7065 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
7066 if (breg != 0)
7067 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7068 tempreg, tempreg, breg);
7069 macro_build (&offset_expr, s, fmt, treg,
7070 BFD_RELOC_MIPS_GOT_OFST, tempreg);
7071 relax_end ();
7072 }
7073 else
7074 abort ();
7075
7076 break;
7077
7078 case M_LI:
7079 case M_LI_S:
7080 load_register (treg, &imm_expr, 0);
7081 break;
7082
7083 case M_DLI:
7084 load_register (treg, &imm_expr, 1);
7085 break;
7086
7087 case M_LI_SS:
7088 if (imm_expr.X_op == O_constant)
7089 {
7090 used_at = 1;
7091 load_register (AT, &imm_expr, 0);
7092 macro_build (NULL, "mtc1", "t,G", AT, treg);
7093 break;
7094 }
7095 else
7096 {
7097 gas_assert (offset_expr.X_op == O_symbol
7098 && strcmp (segment_name (S_GET_SEGMENT
7099 (offset_expr.X_add_symbol)),
7100 ".lit4") == 0
7101 && offset_expr.X_add_number == 0);
7102 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
7103 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7104 break;
7105 }
7106
7107 case M_LI_D:
7108 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
7109 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
7110 order 32 bits of the value and the low order 32 bits are either
7111 zero or in OFFSET_EXPR. */
7112 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
7113 {
7114 if (HAVE_64BIT_GPRS)
7115 load_register (treg, &imm_expr, 1);
7116 else
7117 {
7118 int hreg, lreg;
7119
7120 if (target_big_endian)
7121 {
7122 hreg = treg;
7123 lreg = treg + 1;
7124 }
7125 else
7126 {
7127 hreg = treg + 1;
7128 lreg = treg;
7129 }
7130
7131 if (hreg <= 31)
7132 load_register (hreg, &imm_expr, 0);
7133 if (lreg <= 31)
7134 {
7135 if (offset_expr.X_op == O_absent)
7136 move_register (lreg, 0);
7137 else
7138 {
7139 gas_assert (offset_expr.X_op == O_constant);
7140 load_register (lreg, &offset_expr, 0);
7141 }
7142 }
7143 }
7144 break;
7145 }
7146
7147 /* We know that sym is in the .rdata section. First we get the
7148 upper 16 bits of the address. */
7149 if (mips_pic == NO_PIC)
7150 {
7151 macro_build_lui (&offset_expr, AT);
7152 used_at = 1;
7153 }
7154 else
7155 {
7156 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7157 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7158 used_at = 1;
7159 }
7160
7161 /* Now we load the register(s). */
7162 if (HAVE_64BIT_GPRS)
7163 {
7164 used_at = 1;
7165 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7166 }
7167 else
7168 {
7169 used_at = 1;
7170 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7171 if (treg != RA)
7172 {
7173 /* FIXME: How in the world do we deal with the possible
7174 overflow here? */
7175 offset_expr.X_add_number += 4;
7176 macro_build (&offset_expr, "lw", "t,o(b)",
7177 treg + 1, BFD_RELOC_LO16, AT);
7178 }
7179 }
7180 break;
7181
7182 case M_LI_DD:
7183 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
7184 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
7185 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
7186 the value and the low order 32 bits are either zero or in
7187 OFFSET_EXPR. */
7188 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
7189 {
7190 used_at = 1;
7191 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
7192 if (HAVE_64BIT_FPRS)
7193 {
7194 gas_assert (HAVE_64BIT_GPRS);
7195 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7196 }
7197 else
7198 {
7199 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7200 if (offset_expr.X_op == O_absent)
7201 macro_build (NULL, "mtc1", "t,G", 0, treg);
7202 else
7203 {
7204 gas_assert (offset_expr.X_op == O_constant);
7205 load_register (AT, &offset_expr, 0);
7206 macro_build (NULL, "mtc1", "t,G", AT, treg);
7207 }
7208 }
7209 break;
7210 }
7211
7212 gas_assert (offset_expr.X_op == O_symbol
7213 && offset_expr.X_add_number == 0);
7214 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7215 if (strcmp (s, ".lit8") == 0)
7216 {
7217 if (mips_opts.isa != ISA_MIPS1)
7218 {
7219 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7220 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7221 break;
7222 }
7223 breg = mips_gp_register;
7224 r = BFD_RELOC_MIPS_LITERAL;
7225 goto dob;
7226 }
7227 else
7228 {
7229 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7230 used_at = 1;
7231 if (mips_pic != NO_PIC)
7232 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7233 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7234 else
7235 {
7236 /* FIXME: This won't work for a 64 bit address. */
7237 macro_build_lui (&offset_expr, AT);
7238 }
7239
7240 if (mips_opts.isa != ISA_MIPS1)
7241 {
7242 macro_build (&offset_expr, "ldc1", "T,o(b)",
7243 treg, BFD_RELOC_LO16, AT);
7244 break;
7245 }
7246 breg = AT;
7247 r = BFD_RELOC_LO16;
7248 goto dob;
7249 }
7250
7251 case M_L_DOB:
7252 /* Even on a big endian machine $fn comes before $fn+1. We have
7253 to adjust when loading from memory. */
7254 r = BFD_RELOC_LO16;
7255 dob:
7256 gas_assert (mips_opts.isa == ISA_MIPS1);
7257 macro_build (&offset_expr, "lwc1", "T,o(b)",
7258 target_big_endian ? treg + 1 : treg, r, breg);
7259 /* FIXME: A possible overflow which I don't know how to deal
7260 with. */
7261 offset_expr.X_add_number += 4;
7262 macro_build (&offset_expr, "lwc1", "T,o(b)",
7263 target_big_endian ? treg : treg + 1, r, breg);
7264 break;
7265
7266 case M_S_DOB:
7267 gas_assert (mips_opts.isa == ISA_MIPS1);
7268 /* Even on a big endian machine $fn comes before $fn+1. We have
7269 to adjust when storing to memory. */
7270 macro_build (&offset_expr, "swc1", "T,o(b)",
7271 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7272 offset_expr.X_add_number += 4;
7273 macro_build (&offset_expr, "swc1", "T,o(b)",
7274 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7275 break;
7276
7277 case M_L_DAB:
7278 /*
7279 * The MIPS assembler seems to check for X_add_number not
7280 * being double aligned and generating:
7281 * lui at,%hi(foo+1)
7282 * addu at,at,v1
7283 * addiu at,at,%lo(foo+1)
7284 * lwc1 f2,0(at)
7285 * lwc1 f3,4(at)
7286 * But, the resulting address is the same after relocation so why
7287 * generate the extra instruction?
7288 */
7289 /* Itbl support may require additional care here. */
7290 coproc = 1;
7291 if (mips_opts.isa != ISA_MIPS1)
7292 {
7293 s = "ldc1";
7294 goto ld;
7295 }
7296
7297 s = "lwc1";
7298 fmt = "T,o(b)";
7299 goto ldd_std;
7300
7301 case M_S_DAB:
7302 if (mips_opts.isa != ISA_MIPS1)
7303 {
7304 s = "sdc1";
7305 goto st;
7306 }
7307
7308 s = "swc1";
7309 fmt = "T,o(b)";
7310 /* Itbl support may require additional care here. */
7311 coproc = 1;
7312 goto ldd_std;
7313
7314 case M_LD_AB:
7315 if (HAVE_64BIT_GPRS)
7316 {
7317 s = "ld";
7318 goto ld;
7319 }
7320
7321 s = "lw";
7322 fmt = "t,o(b)";
7323 goto ldd_std;
7324
7325 case M_SD_AB:
7326 if (HAVE_64BIT_GPRS)
7327 {
7328 s = "sd";
7329 goto st;
7330 }
7331
7332 s = "sw";
7333 fmt = "t,o(b)";
7334
7335 ldd_std:
7336 if (offset_expr.X_op != O_symbol
7337 && offset_expr.X_op != O_constant)
7338 {
7339 as_bad (_("Expression too complex"));
7340 offset_expr.X_op = O_constant;
7341 }
7342
7343 if (HAVE_32BIT_ADDRESSES
7344 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7345 {
7346 char value [32];
7347
7348 sprintf_vma (value, offset_expr.X_add_number);
7349 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7350 }
7351
7352 /* Even on a big endian machine $fn comes before $fn+1. We have
7353 to adjust when loading from memory. We set coproc if we must
7354 load $fn+1 first. */
7355 /* Itbl support may require additional care here. */
7356 if (!target_big_endian)
7357 coproc = 0;
7358
7359 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
7360 {
7361 /* If this is a reference to a GP relative symbol, we want
7362 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7363 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7364 If we have a base register, we use this
7365 addu $at,$breg,$gp
7366 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7367 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7368 If this is not a GP relative symbol, we want
7369 lui $at,<sym> (BFD_RELOC_HI16_S)
7370 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7371 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7372 If there is a base register, we add it to $at after the
7373 lui instruction. If there is a constant, we always use
7374 the last case. */
7375 if (offset_expr.X_op == O_symbol
7376 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7377 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7378 {
7379 relax_start (offset_expr.X_add_symbol);
7380 if (breg == 0)
7381 {
7382 tempreg = mips_gp_register;
7383 }
7384 else
7385 {
7386 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7387 AT, breg, mips_gp_register);
7388 tempreg = AT;
7389 used_at = 1;
7390 }
7391
7392 /* Itbl support may require additional care here. */
7393 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7394 BFD_RELOC_GPREL16, tempreg);
7395 offset_expr.X_add_number += 4;
7396
7397 /* Set mips_optimize to 2 to avoid inserting an
7398 undesired nop. */
7399 hold_mips_optimize = mips_optimize;
7400 mips_optimize = 2;
7401 /* Itbl support may require additional care here. */
7402 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7403 BFD_RELOC_GPREL16, tempreg);
7404 mips_optimize = hold_mips_optimize;
7405
7406 relax_switch ();
7407
7408 offset_expr.X_add_number -= 4;
7409 }
7410 used_at = 1;
7411 macro_build_lui (&offset_expr, AT);
7412 if (breg != 0)
7413 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7414 /* Itbl support may require additional care here. */
7415 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7416 BFD_RELOC_LO16, AT);
7417 /* FIXME: How do we handle overflow here? */
7418 offset_expr.X_add_number += 4;
7419 /* Itbl support may require additional care here. */
7420 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7421 BFD_RELOC_LO16, AT);
7422 if (mips_relax.sequence)
7423 relax_end ();
7424 }
7425 else if (!mips_big_got)
7426 {
7427 /* If this is a reference to an external symbol, we want
7428 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7429 nop
7430 <op> $treg,0($at)
7431 <op> $treg+1,4($at)
7432 Otherwise we want
7433 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7434 nop
7435 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7436 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7437 If there is a base register we add it to $at before the
7438 lwc1 instructions. If there is a constant we include it
7439 in the lwc1 instructions. */
7440 used_at = 1;
7441 expr1.X_add_number = offset_expr.X_add_number;
7442 if (expr1.X_add_number < -0x8000
7443 || expr1.X_add_number >= 0x8000 - 4)
7444 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7445 load_got_offset (AT, &offset_expr);
7446 load_delay_nop ();
7447 if (breg != 0)
7448 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7449
7450 /* Set mips_optimize to 2 to avoid inserting an undesired
7451 nop. */
7452 hold_mips_optimize = mips_optimize;
7453 mips_optimize = 2;
7454
7455 /* Itbl support may require additional care here. */
7456 relax_start (offset_expr.X_add_symbol);
7457 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7458 BFD_RELOC_LO16, AT);
7459 expr1.X_add_number += 4;
7460 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7461 BFD_RELOC_LO16, AT);
7462 relax_switch ();
7463 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7464 BFD_RELOC_LO16, AT);
7465 offset_expr.X_add_number += 4;
7466 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7467 BFD_RELOC_LO16, AT);
7468 relax_end ();
7469
7470 mips_optimize = hold_mips_optimize;
7471 }
7472 else if (mips_big_got)
7473 {
7474 int gpdelay;
7475
7476 /* If this is a reference to an external symbol, we want
7477 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7478 addu $at,$at,$gp
7479 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7480 nop
7481 <op> $treg,0($at)
7482 <op> $treg+1,4($at)
7483 Otherwise we want
7484 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7485 nop
7486 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7487 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7488 If there is a base register we add it to $at before the
7489 lwc1 instructions. If there is a constant we include it
7490 in the lwc1 instructions. */
7491 used_at = 1;
7492 expr1.X_add_number = offset_expr.X_add_number;
7493 offset_expr.X_add_number = 0;
7494 if (expr1.X_add_number < -0x8000
7495 || expr1.X_add_number >= 0x8000 - 4)
7496 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7497 gpdelay = reg_needs_delay (mips_gp_register);
7498 relax_start (offset_expr.X_add_symbol);
7499 macro_build (&offset_expr, "lui", "t,u",
7500 AT, BFD_RELOC_MIPS_GOT_HI16);
7501 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7502 AT, AT, mips_gp_register);
7503 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7504 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7505 load_delay_nop ();
7506 if (breg != 0)
7507 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7508 /* Itbl support may require additional care here. */
7509 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7510 BFD_RELOC_LO16, AT);
7511 expr1.X_add_number += 4;
7512
7513 /* Set mips_optimize to 2 to avoid inserting an undesired
7514 nop. */
7515 hold_mips_optimize = mips_optimize;
7516 mips_optimize = 2;
7517 /* Itbl support may require additional care here. */
7518 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7519 BFD_RELOC_LO16, AT);
7520 mips_optimize = hold_mips_optimize;
7521 expr1.X_add_number -= 4;
7522
7523 relax_switch ();
7524 offset_expr.X_add_number = expr1.X_add_number;
7525 if (gpdelay)
7526 macro_build (NULL, "nop", "");
7527 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7528 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7529 load_delay_nop ();
7530 if (breg != 0)
7531 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7532 /* Itbl support may require additional care here. */
7533 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7534 BFD_RELOC_LO16, AT);
7535 offset_expr.X_add_number += 4;
7536
7537 /* Set mips_optimize to 2 to avoid inserting an undesired
7538 nop. */
7539 hold_mips_optimize = mips_optimize;
7540 mips_optimize = 2;
7541 /* Itbl support may require additional care here. */
7542 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7543 BFD_RELOC_LO16, AT);
7544 mips_optimize = hold_mips_optimize;
7545 relax_end ();
7546 }
7547 else
7548 abort ();
7549
7550 break;
7551
7552 case M_LD_OB:
7553 s = HAVE_64BIT_GPRS ? "ld" : "lw";
7554 goto sd_ob;
7555 case M_SD_OB:
7556 s = HAVE_64BIT_GPRS ? "sd" : "sw";
7557 sd_ob:
7558 macro_build (&offset_expr, s, "t,o(b)", treg,
7559 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7560 breg);
7561 if (!HAVE_64BIT_GPRS)
7562 {
7563 offset_expr.X_add_number += 4;
7564 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
7565 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7566 breg);
7567 }
7568 break;
7569
7570 /* New code added to support COPZ instructions.
7571 This code builds table entries out of the macros in mip_opcodes.
7572 R4000 uses interlocks to handle coproc delays.
7573 Other chips (like the R3000) require nops to be inserted for delays.
7574
7575 FIXME: Currently, we require that the user handle delays.
7576 In order to fill delay slots for non-interlocked chips,
7577 we must have a way to specify delays based on the coprocessor.
7578 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7579 What are the side-effects of the cop instruction?
7580 What cache support might we have and what are its effects?
7581 Both coprocessor & memory require delays. how long???
7582 What registers are read/set/modified?
7583
7584 If an itbl is provided to interpret cop instructions,
7585 this knowledge can be encoded in the itbl spec. */
7586
7587 case M_COP0:
7588 s = "c0";
7589 goto copz;
7590 case M_COP1:
7591 s = "c1";
7592 goto copz;
7593 case M_COP2:
7594 s = "c2";
7595 goto copz;
7596 case M_COP3:
7597 s = "c3";
7598 copz:
7599 if (NO_ISA_COP (mips_opts.arch)
7600 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7601 {
7602 as_bad (_("opcode not supported on this processor: %s"),
7603 mips_cpu_info_from_arch (mips_opts.arch)->name);
7604 break;
7605 }
7606
7607 /* For now we just do C (same as Cz). The parameter will be
7608 stored in insn_opcode by mips_ip. */
7609 macro_build (NULL, s, "C", ip->insn_opcode);
7610 break;
7611
7612 case M_MOVE:
7613 move_register (dreg, sreg);
7614 break;
7615
7616 case M_DMUL:
7617 dbl = 1;
7618 case M_MUL:
7619 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7620 macro_build (NULL, "mflo", "d", dreg);
7621 break;
7622
7623 case M_DMUL_I:
7624 dbl = 1;
7625 case M_MUL_I:
7626 /* The MIPS assembler some times generates shifts and adds. I'm
7627 not trying to be that fancy. GCC should do this for us
7628 anyway. */
7629 used_at = 1;
7630 load_register (AT, &imm_expr, dbl);
7631 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7632 macro_build (NULL, "mflo", "d", dreg);
7633 break;
7634
7635 case M_DMULO_I:
7636 dbl = 1;
7637 case M_MULO_I:
7638 imm = 1;
7639 goto do_mulo;
7640
7641 case M_DMULO:
7642 dbl = 1;
7643 case M_MULO:
7644 do_mulo:
7645 start_noreorder ();
7646 used_at = 1;
7647 if (imm)
7648 load_register (AT, &imm_expr, dbl);
7649 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7650 macro_build (NULL, "mflo", "d", dreg);
7651 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7652 macro_build (NULL, "mfhi", "d", AT);
7653 if (mips_trap)
7654 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7655 else
7656 {
7657 expr1.X_add_number = 8;
7658 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7659 macro_build (NULL, "nop", "");
7660 macro_build (NULL, "break", "c", 6);
7661 }
7662 end_noreorder ();
7663 macro_build (NULL, "mflo", "d", dreg);
7664 break;
7665
7666 case M_DMULOU_I:
7667 dbl = 1;
7668 case M_MULOU_I:
7669 imm = 1;
7670 goto do_mulou;
7671
7672 case M_DMULOU:
7673 dbl = 1;
7674 case M_MULOU:
7675 do_mulou:
7676 start_noreorder ();
7677 used_at = 1;
7678 if (imm)
7679 load_register (AT, &imm_expr, dbl);
7680 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7681 sreg, imm ? AT : treg);
7682 macro_build (NULL, "mfhi", "d", AT);
7683 macro_build (NULL, "mflo", "d", dreg);
7684 if (mips_trap)
7685 macro_build (NULL, "tne", "s,t,q", AT, ZERO, 6);
7686 else
7687 {
7688 expr1.X_add_number = 8;
7689 macro_build (&expr1, "beq", "s,t,p", AT, ZERO);
7690 macro_build (NULL, "nop", "");
7691 macro_build (NULL, "break", "c", 6);
7692 }
7693 end_noreorder ();
7694 break;
7695
7696 case M_DROL:
7697 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7698 {
7699 if (dreg == sreg)
7700 {
7701 tempreg = AT;
7702 used_at = 1;
7703 }
7704 else
7705 {
7706 tempreg = dreg;
7707 }
7708 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7709 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7710 break;
7711 }
7712 used_at = 1;
7713 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7714 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7715 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7716 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7717 break;
7718
7719 case M_ROL:
7720 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7721 {
7722 if (dreg == sreg)
7723 {
7724 tempreg = AT;
7725 used_at = 1;
7726 }
7727 else
7728 {
7729 tempreg = dreg;
7730 }
7731 macro_build (NULL, "negu", "d,w", tempreg, treg);
7732 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7733 break;
7734 }
7735 used_at = 1;
7736 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7737 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7738 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7739 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7740 break;
7741
7742 case M_DROL_I:
7743 {
7744 unsigned int rot;
7745 char *l;
7746 char *rr;
7747
7748 if (imm_expr.X_op != O_constant)
7749 as_bad (_("Improper rotate count"));
7750 rot = imm_expr.X_add_number & 0x3f;
7751 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7752 {
7753 rot = (64 - rot) & 0x3f;
7754 if (rot >= 32)
7755 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7756 else
7757 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7758 break;
7759 }
7760 if (rot == 0)
7761 {
7762 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7763 break;
7764 }
7765 l = (rot < 0x20) ? "dsll" : "dsll32";
7766 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7767 rot &= 0x1f;
7768 used_at = 1;
7769 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7770 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7771 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7772 }
7773 break;
7774
7775 case M_ROL_I:
7776 {
7777 unsigned int rot;
7778
7779 if (imm_expr.X_op != O_constant)
7780 as_bad (_("Improper rotate count"));
7781 rot = imm_expr.X_add_number & 0x1f;
7782 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7783 {
7784 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7785 break;
7786 }
7787 if (rot == 0)
7788 {
7789 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7790 break;
7791 }
7792 used_at = 1;
7793 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7794 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7795 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7796 }
7797 break;
7798
7799 case M_DROR:
7800 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7801 {
7802 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7803 break;
7804 }
7805 used_at = 1;
7806 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7807 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7808 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7809 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7810 break;
7811
7812 case M_ROR:
7813 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7814 {
7815 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7816 break;
7817 }
7818 used_at = 1;
7819 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7820 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7821 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7822 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7823 break;
7824
7825 case M_DROR_I:
7826 {
7827 unsigned int rot;
7828 char *l;
7829 char *rr;
7830
7831 if (imm_expr.X_op != O_constant)
7832 as_bad (_("Improper rotate count"));
7833 rot = imm_expr.X_add_number & 0x3f;
7834 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7835 {
7836 if (rot >= 32)
7837 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7838 else
7839 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7840 break;
7841 }
7842 if (rot == 0)
7843 {
7844 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7845 break;
7846 }
7847 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7848 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7849 rot &= 0x1f;
7850 used_at = 1;
7851 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7852 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7853 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7854 }
7855 break;
7856
7857 case M_ROR_I:
7858 {
7859 unsigned int rot;
7860
7861 if (imm_expr.X_op != O_constant)
7862 as_bad (_("Improper rotate count"));
7863 rot = imm_expr.X_add_number & 0x1f;
7864 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7865 {
7866 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7867 break;
7868 }
7869 if (rot == 0)
7870 {
7871 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7872 break;
7873 }
7874 used_at = 1;
7875 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7876 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7877 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7878 }
7879 break;
7880
7881 case M_SEQ:
7882 if (sreg == 0)
7883 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7884 else if (treg == 0)
7885 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7886 else
7887 {
7888 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7889 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7890 }
7891 break;
7892
7893 case M_SEQ_I:
7894 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7895 {
7896 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7897 break;
7898 }
7899 if (sreg == 0)
7900 {
7901 as_warn (_("Instruction %s: result is always false"),
7902 ip->insn_mo->name);
7903 move_register (dreg, 0);
7904 break;
7905 }
7906 if (CPU_HAS_SEQ (mips_opts.arch)
7907 && -512 <= imm_expr.X_add_number
7908 && imm_expr.X_add_number < 512)
7909 {
7910 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7911 (int) imm_expr.X_add_number);
7912 break;
7913 }
7914 if (imm_expr.X_op == O_constant
7915 && imm_expr.X_add_number >= 0
7916 && imm_expr.X_add_number < 0x10000)
7917 {
7918 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7919 }
7920 else if (imm_expr.X_op == O_constant
7921 && imm_expr.X_add_number > -0x8000
7922 && imm_expr.X_add_number < 0)
7923 {
7924 imm_expr.X_add_number = -imm_expr.X_add_number;
7925 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7926 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7927 }
7928 else if (CPU_HAS_SEQ (mips_opts.arch))
7929 {
7930 used_at = 1;
7931 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7932 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7933 break;
7934 }
7935 else
7936 {
7937 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7938 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7939 used_at = 1;
7940 }
7941 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7942 break;
7943
7944 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7945 s = "slt";
7946 goto sge;
7947 case M_SGEU:
7948 s = "sltu";
7949 sge:
7950 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7951 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7952 break;
7953
7954 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7955 case M_SGEU_I:
7956 if (imm_expr.X_op == O_constant
7957 && imm_expr.X_add_number >= -0x8000
7958 && imm_expr.X_add_number < 0x8000)
7959 {
7960 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7961 dreg, sreg, BFD_RELOC_LO16);
7962 }
7963 else
7964 {
7965 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7966 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7967 dreg, sreg, AT);
7968 used_at = 1;
7969 }
7970 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7971 break;
7972
7973 case M_SGT: /* sreg > treg <==> treg < sreg */
7974 s = "slt";
7975 goto sgt;
7976 case M_SGTU:
7977 s = "sltu";
7978 sgt:
7979 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7980 break;
7981
7982 case M_SGT_I: /* sreg > I <==> I < sreg */
7983 s = "slt";
7984 goto sgti;
7985 case M_SGTU_I:
7986 s = "sltu";
7987 sgti:
7988 used_at = 1;
7989 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7990 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7991 break;
7992
7993 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7994 s = "slt";
7995 goto sle;
7996 case M_SLEU:
7997 s = "sltu";
7998 sle:
7999 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
8000 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
8001 break;
8002
8003 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
8004 s = "slt";
8005 goto slei;
8006 case M_SLEU_I:
8007 s = "sltu";
8008 slei:
8009 used_at = 1;
8010 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8011 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
8012 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
8013 break;
8014
8015 case M_SLT_I:
8016 if (imm_expr.X_op == O_constant
8017 && imm_expr.X_add_number >= -0x8000
8018 && imm_expr.X_add_number < 0x8000)
8019 {
8020 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
8021 break;
8022 }
8023 used_at = 1;
8024 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8025 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
8026 break;
8027
8028 case M_SLTU_I:
8029 if (imm_expr.X_op == O_constant
8030 && imm_expr.X_add_number >= -0x8000
8031 && imm_expr.X_add_number < 0x8000)
8032 {
8033 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
8034 BFD_RELOC_LO16);
8035 break;
8036 }
8037 used_at = 1;
8038 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8039 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
8040 break;
8041
8042 case M_SNE:
8043 if (sreg == 0)
8044 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
8045 else if (treg == 0)
8046 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
8047 else
8048 {
8049 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
8050 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
8051 }
8052 break;
8053
8054 case M_SNE_I:
8055 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
8056 {
8057 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
8058 break;
8059 }
8060 if (sreg == 0)
8061 {
8062 as_warn (_("Instruction %s: result is always true"),
8063 ip->insn_mo->name);
8064 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
8065 dreg, 0, BFD_RELOC_LO16);
8066 break;
8067 }
8068 if (CPU_HAS_SEQ (mips_opts.arch)
8069 && -512 <= imm_expr.X_add_number
8070 && imm_expr.X_add_number < 512)
8071 {
8072 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
8073 (int) imm_expr.X_add_number);
8074 break;
8075 }
8076 if (imm_expr.X_op == O_constant
8077 && imm_expr.X_add_number >= 0
8078 && imm_expr.X_add_number < 0x10000)
8079 {
8080 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
8081 }
8082 else if (imm_expr.X_op == O_constant
8083 && imm_expr.X_add_number > -0x8000
8084 && imm_expr.X_add_number < 0)
8085 {
8086 imm_expr.X_add_number = -imm_expr.X_add_number;
8087 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
8088 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
8089 }
8090 else if (CPU_HAS_SEQ (mips_opts.arch))
8091 {
8092 used_at = 1;
8093 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8094 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
8095 break;
8096 }
8097 else
8098 {
8099 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8100 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
8101 used_at = 1;
8102 }
8103 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
8104 break;
8105
8106 case M_DSUB_I:
8107 dbl = 1;
8108 case M_SUB_I:
8109 if (imm_expr.X_op == O_constant
8110 && imm_expr.X_add_number > -0x8000
8111 && imm_expr.X_add_number <= 0x8000)
8112 {
8113 imm_expr.X_add_number = -imm_expr.X_add_number;
8114 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
8115 dreg, sreg, BFD_RELOC_LO16);
8116 break;
8117 }
8118 used_at = 1;
8119 load_register (AT, &imm_expr, dbl);
8120 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
8121 break;
8122
8123 case M_DSUBU_I:
8124 dbl = 1;
8125 case M_SUBU_I:
8126 if (imm_expr.X_op == O_constant
8127 && imm_expr.X_add_number > -0x8000
8128 && imm_expr.X_add_number <= 0x8000)
8129 {
8130 imm_expr.X_add_number = -imm_expr.X_add_number;
8131 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
8132 dreg, sreg, BFD_RELOC_LO16);
8133 break;
8134 }
8135 used_at = 1;
8136 load_register (AT, &imm_expr, dbl);
8137 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
8138 break;
8139
8140 case M_TEQ_I:
8141 s = "teq";
8142 goto trap;
8143 case M_TGE_I:
8144 s = "tge";
8145 goto trap;
8146 case M_TGEU_I:
8147 s = "tgeu";
8148 goto trap;
8149 case M_TLT_I:
8150 s = "tlt";
8151 goto trap;
8152 case M_TLTU_I:
8153 s = "tltu";
8154 goto trap;
8155 case M_TNE_I:
8156 s = "tne";
8157 trap:
8158 used_at = 1;
8159 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8160 macro_build (NULL, s, "s,t", sreg, AT);
8161 break;
8162
8163 case M_TRUNCWS:
8164 case M_TRUNCWD:
8165 gas_assert (mips_opts.isa == ISA_MIPS1);
8166 used_at = 1;
8167 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
8168 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
8169
8170 /*
8171 * Is the double cfc1 instruction a bug in the mips assembler;
8172 * or is there a reason for it?
8173 */
8174 start_noreorder ();
8175 macro_build (NULL, "cfc1", "t,G", treg, RA);
8176 macro_build (NULL, "cfc1", "t,G", treg, RA);
8177 macro_build (NULL, "nop", "");
8178 expr1.X_add_number = 3;
8179 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
8180 expr1.X_add_number = 2;
8181 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
8182 macro_build (NULL, "ctc1", "t,G", AT, RA);
8183 macro_build (NULL, "nop", "");
8184 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
8185 dreg, sreg);
8186 macro_build (NULL, "ctc1", "t,G", treg, RA);
8187 macro_build (NULL, "nop", "");
8188 end_noreorder ();
8189 break;
8190
8191 case M_ULH:
8192 s = "lb";
8193 goto ulh;
8194 case M_ULHU:
8195 s = "lbu";
8196 ulh:
8197 used_at = 1;
8198 if (offset_expr.X_add_number >= 0x7fff)
8199 as_bad (_("Operand overflow"));
8200 if (!target_big_endian)
8201 ++offset_expr.X_add_number;
8202 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8203 if (!target_big_endian)
8204 --offset_expr.X_add_number;
8205 else
8206 ++offset_expr.X_add_number;
8207 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8208 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8209 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8210 break;
8211
8212 case M_ULD:
8213 s = "ldl";
8214 s2 = "ldr";
8215 off = 7;
8216 goto ulw;
8217 case M_ULW:
8218 s = "lwl";
8219 s2 = "lwr";
8220 off = 3;
8221 ulw:
8222 if (offset_expr.X_add_number >= 0x8000 - off)
8223 as_bad (_("Operand overflow"));
8224 if (treg != breg)
8225 tempreg = treg;
8226 else
8227 {
8228 used_at = 1;
8229 tempreg = AT;
8230 }
8231 if (!target_big_endian)
8232 offset_expr.X_add_number += off;
8233 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8234 if (!target_big_endian)
8235 offset_expr.X_add_number -= off;
8236 else
8237 offset_expr.X_add_number += off;
8238 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8239
8240 /* If necessary, move the result in tempreg to the final destination. */
8241 if (treg == tempreg)
8242 break;
8243 /* Protect second load's delay slot. */
8244 load_delay_nop ();
8245 move_register (treg, tempreg);
8246 break;
8247
8248 case M_ULD_A:
8249 s = "ldl";
8250 s2 = "ldr";
8251 off = 7;
8252 goto ulwa;
8253 case M_ULW_A:
8254 s = "lwl";
8255 s2 = "lwr";
8256 off = 3;
8257 ulwa:
8258 used_at = 1;
8259 load_address (AT, &offset_expr, &used_at);
8260 if (breg != 0)
8261 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8262 if (!target_big_endian)
8263 expr1.X_add_number = off;
8264 else
8265 expr1.X_add_number = 0;
8266 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8267 if (!target_big_endian)
8268 expr1.X_add_number = 0;
8269 else
8270 expr1.X_add_number = off;
8271 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8272 break;
8273
8274 case M_ULH_A:
8275 case M_ULHU_A:
8276 used_at = 1;
8277 load_address (AT, &offset_expr, &used_at);
8278 if (breg != 0)
8279 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8280 if (target_big_endian)
8281 expr1.X_add_number = 0;
8282 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8283 treg, BFD_RELOC_LO16, AT);
8284 if (target_big_endian)
8285 expr1.X_add_number = 1;
8286 else
8287 expr1.X_add_number = 0;
8288 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8289 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8290 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8291 break;
8292
8293 case M_USH:
8294 used_at = 1;
8295 if (offset_expr.X_add_number >= 0x7fff)
8296 as_bad (_("Operand overflow"));
8297 if (target_big_endian)
8298 ++offset_expr.X_add_number;
8299 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8300 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8301 if (target_big_endian)
8302 --offset_expr.X_add_number;
8303 else
8304 ++offset_expr.X_add_number;
8305 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8306 break;
8307
8308 case M_USD:
8309 s = "sdl";
8310 s2 = "sdr";
8311 off = 7;
8312 goto usw;
8313 case M_USW:
8314 s = "swl";
8315 s2 = "swr";
8316 off = 3;
8317 usw:
8318 if (offset_expr.X_add_number >= 0x8000 - off)
8319 as_bad (_("Operand overflow"));
8320 if (!target_big_endian)
8321 offset_expr.X_add_number += off;
8322 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8323 if (!target_big_endian)
8324 offset_expr.X_add_number -= off;
8325 else
8326 offset_expr.X_add_number += off;
8327 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8328 break;
8329
8330 case M_USD_A:
8331 s = "sdl";
8332 s2 = "sdr";
8333 off = 7;
8334 goto uswa;
8335 case M_USW_A:
8336 s = "swl";
8337 s2 = "swr";
8338 off = 3;
8339 uswa:
8340 used_at = 1;
8341 load_address (AT, &offset_expr, &used_at);
8342 if (breg != 0)
8343 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8344 if (!target_big_endian)
8345 expr1.X_add_number = off;
8346 else
8347 expr1.X_add_number = 0;
8348 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8349 if (!target_big_endian)
8350 expr1.X_add_number = 0;
8351 else
8352 expr1.X_add_number = off;
8353 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8354 break;
8355
8356 case M_USH_A:
8357 used_at = 1;
8358 load_address (AT, &offset_expr, &used_at);
8359 if (breg != 0)
8360 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8361 if (!target_big_endian)
8362 expr1.X_add_number = 0;
8363 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8364 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8365 if (!target_big_endian)
8366 expr1.X_add_number = 1;
8367 else
8368 expr1.X_add_number = 0;
8369 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8370 if (!target_big_endian)
8371 expr1.X_add_number = 0;
8372 else
8373 expr1.X_add_number = 1;
8374 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8375 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8376 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8377 break;
8378
8379 default:
8380 /* FIXME: Check if this is one of the itbl macros, since they
8381 are added dynamically. */
8382 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8383 break;
8384 }
8385 if (!mips_opts.at && used_at)
8386 as_bad (_("Macro used $at after \".set noat\""));
8387 }
8388
8389 /* Implement macros in mips16 mode. */
8390
8391 static void
8392 mips16_macro (struct mips_cl_insn *ip)
8393 {
8394 int mask;
8395 int xreg, yreg, zreg, tmp;
8396 expressionS expr1;
8397 int dbl;
8398 const char *s, *s2, *s3;
8399
8400 mask = ip->insn_mo->mask;
8401
8402 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8403 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8404 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8405
8406 expr1.X_op = O_constant;
8407 expr1.X_op_symbol = NULL;
8408 expr1.X_add_symbol = NULL;
8409 expr1.X_add_number = 1;
8410
8411 dbl = 0;
8412
8413 switch (mask)
8414 {
8415 default:
8416 internalError ();
8417
8418 case M_DDIV_3:
8419 dbl = 1;
8420 case M_DIV_3:
8421 s = "mflo";
8422 goto do_div3;
8423 case M_DREM_3:
8424 dbl = 1;
8425 case M_REM_3:
8426 s = "mfhi";
8427 do_div3:
8428 start_noreorder ();
8429 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8430 expr1.X_add_number = 2;
8431 macro_build (&expr1, "bnez", "x,p", yreg);
8432 macro_build (NULL, "break", "6", 7);
8433
8434 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8435 since that causes an overflow. We should do that as well,
8436 but I don't see how to do the comparisons without a temporary
8437 register. */
8438 end_noreorder ();
8439 macro_build (NULL, s, "x", zreg);
8440 break;
8441
8442 case M_DIVU_3:
8443 s = "divu";
8444 s2 = "mflo";
8445 goto do_divu3;
8446 case M_REMU_3:
8447 s = "divu";
8448 s2 = "mfhi";
8449 goto do_divu3;
8450 case M_DDIVU_3:
8451 s = "ddivu";
8452 s2 = "mflo";
8453 goto do_divu3;
8454 case M_DREMU_3:
8455 s = "ddivu";
8456 s2 = "mfhi";
8457 do_divu3:
8458 start_noreorder ();
8459 macro_build (NULL, s, "0,x,y", xreg, yreg);
8460 expr1.X_add_number = 2;
8461 macro_build (&expr1, "bnez", "x,p", yreg);
8462 macro_build (NULL, "break", "6", 7);
8463 end_noreorder ();
8464 macro_build (NULL, s2, "x", zreg);
8465 break;
8466
8467 case M_DMUL:
8468 dbl = 1;
8469 case M_MUL:
8470 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8471 macro_build (NULL, "mflo", "x", zreg);
8472 break;
8473
8474 case M_DSUBU_I:
8475 dbl = 1;
8476 goto do_subu;
8477 case M_SUBU_I:
8478 do_subu:
8479 if (imm_expr.X_op != O_constant)
8480 as_bad (_("Unsupported large constant"));
8481 imm_expr.X_add_number = -imm_expr.X_add_number;
8482 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8483 break;
8484
8485 case M_SUBU_I_2:
8486 if (imm_expr.X_op != O_constant)
8487 as_bad (_("Unsupported large constant"));
8488 imm_expr.X_add_number = -imm_expr.X_add_number;
8489 macro_build (&imm_expr, "addiu", "x,k", xreg);
8490 break;
8491
8492 case M_DSUBU_I_2:
8493 if (imm_expr.X_op != O_constant)
8494 as_bad (_("Unsupported large constant"));
8495 imm_expr.X_add_number = -imm_expr.X_add_number;
8496 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8497 break;
8498
8499 case M_BEQ:
8500 s = "cmp";
8501 s2 = "bteqz";
8502 goto do_branch;
8503 case M_BNE:
8504 s = "cmp";
8505 s2 = "btnez";
8506 goto do_branch;
8507 case M_BLT:
8508 s = "slt";
8509 s2 = "btnez";
8510 goto do_branch;
8511 case M_BLTU:
8512 s = "sltu";
8513 s2 = "btnez";
8514 goto do_branch;
8515 case M_BLE:
8516 s = "slt";
8517 s2 = "bteqz";
8518 goto do_reverse_branch;
8519 case M_BLEU:
8520 s = "sltu";
8521 s2 = "bteqz";
8522 goto do_reverse_branch;
8523 case M_BGE:
8524 s = "slt";
8525 s2 = "bteqz";
8526 goto do_branch;
8527 case M_BGEU:
8528 s = "sltu";
8529 s2 = "bteqz";
8530 goto do_branch;
8531 case M_BGT:
8532 s = "slt";
8533 s2 = "btnez";
8534 goto do_reverse_branch;
8535 case M_BGTU:
8536 s = "sltu";
8537 s2 = "btnez";
8538
8539 do_reverse_branch:
8540 tmp = xreg;
8541 xreg = yreg;
8542 yreg = tmp;
8543
8544 do_branch:
8545 macro_build (NULL, s, "x,y", xreg, yreg);
8546 macro_build (&offset_expr, s2, "p");
8547 break;
8548
8549 case M_BEQ_I:
8550 s = "cmpi";
8551 s2 = "bteqz";
8552 s3 = "x,U";
8553 goto do_branch_i;
8554 case M_BNE_I:
8555 s = "cmpi";
8556 s2 = "btnez";
8557 s3 = "x,U";
8558 goto do_branch_i;
8559 case M_BLT_I:
8560 s = "slti";
8561 s2 = "btnez";
8562 s3 = "x,8";
8563 goto do_branch_i;
8564 case M_BLTU_I:
8565 s = "sltiu";
8566 s2 = "btnez";
8567 s3 = "x,8";
8568 goto do_branch_i;
8569 case M_BLE_I:
8570 s = "slti";
8571 s2 = "btnez";
8572 s3 = "x,8";
8573 goto do_addone_branch_i;
8574 case M_BLEU_I:
8575 s = "sltiu";
8576 s2 = "btnez";
8577 s3 = "x,8";
8578 goto do_addone_branch_i;
8579 case M_BGE_I:
8580 s = "slti";
8581 s2 = "bteqz";
8582 s3 = "x,8";
8583 goto do_branch_i;
8584 case M_BGEU_I:
8585 s = "sltiu";
8586 s2 = "bteqz";
8587 s3 = "x,8";
8588 goto do_branch_i;
8589 case M_BGT_I:
8590 s = "slti";
8591 s2 = "bteqz";
8592 s3 = "x,8";
8593 goto do_addone_branch_i;
8594 case M_BGTU_I:
8595 s = "sltiu";
8596 s2 = "bteqz";
8597 s3 = "x,8";
8598
8599 do_addone_branch_i:
8600 if (imm_expr.X_op != O_constant)
8601 as_bad (_("Unsupported large constant"));
8602 ++imm_expr.X_add_number;
8603
8604 do_branch_i:
8605 macro_build (&imm_expr, s, s3, xreg);
8606 macro_build (&offset_expr, s2, "p");
8607 break;
8608
8609 case M_ABS:
8610 expr1.X_add_number = 0;
8611 macro_build (&expr1, "slti", "x,8", yreg);
8612 if (xreg != yreg)
8613 move_register (xreg, yreg);
8614 expr1.X_add_number = 2;
8615 macro_build (&expr1, "bteqz", "p");
8616 macro_build (NULL, "neg", "x,w", xreg, xreg);
8617 }
8618 }
8619
8620 /* For consistency checking, verify that all bits are specified either
8621 by the match/mask part of the instruction definition, or by the
8622 operand list. */
8623 static int
8624 validate_mips_insn (const struct mips_opcode *opc)
8625 {
8626 const char *p = opc->args;
8627 char c;
8628 unsigned long used_bits = opc->mask;
8629
8630 if ((used_bits & opc->match) != opc->match)
8631 {
8632 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8633 opc->name, opc->args);
8634 return 0;
8635 }
8636 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8637 while (*p)
8638 switch (c = *p++)
8639 {
8640 case ',': break;
8641 case '(': break;
8642 case ')': break;
8643 case '+':
8644 switch (c = *p++)
8645 {
8646 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8647 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8648 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8649 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8650 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8651 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8652 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8653 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8654 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8655 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8656 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8657 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8658 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8659 case 'I': break;
8660 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8661 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8662 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8663 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8664 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8665 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8666 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8667 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8668 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8669 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8670 case 'z': USE_BITS (OP_MASK_RZ, OP_SH_RZ); break;
8671 case 'Z': USE_BITS (OP_MASK_FZ, OP_SH_FZ); break;
8672 case 'a': USE_BITS (OP_MASK_OFFSET_A, OP_SH_OFFSET_A); break;
8673 case 'b': USE_BITS (OP_MASK_OFFSET_B, OP_SH_OFFSET_B); break;
8674 case 'c': USE_BITS (OP_MASK_OFFSET_C, OP_SH_OFFSET_C); break;
8675
8676 default:
8677 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8678 c, opc->name, opc->args);
8679 return 0;
8680 }
8681 break;
8682 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8683 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8684 case 'A': break;
8685 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8686 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8687 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8688 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8689 case 'F': break;
8690 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8691 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8692 case 'I': break;
8693 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8694 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8695 case 'L': break;
8696 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8697 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8698 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8699 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8700 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8701 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8702 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8703 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8704 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8705 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8706 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8707 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8708 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8709 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8710 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8711 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8712 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8713 case 'f': break;
8714 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8715 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8716 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8717 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8718 case 'l': break;
8719 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8720 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8721 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8722 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8723 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8724 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8725 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8726 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8727 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8728 case 'x': break;
8729 case 'z': break;
8730 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8731 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8732 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8733 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8734 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8735 case '[': break;
8736 case ']': break;
8737 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8738 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8739 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8740 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8741 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8742 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8743 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8744 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8745 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8746 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8747 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8748 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8749 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8750 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8751 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8752 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8753 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8754 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8755 default:
8756 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8757 c, opc->name, opc->args);
8758 return 0;
8759 }
8760 #undef USE_BITS
8761 if (used_bits != 0xffffffff)
8762 {
8763 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8764 ~used_bits & 0xffffffff, opc->name, opc->args);
8765 return 0;
8766 }
8767 return 1;
8768 }
8769
8770 /* UDI immediates. */
8771 struct mips_immed {
8772 char type;
8773 unsigned int shift;
8774 unsigned long mask;
8775 const char * desc;
8776 };
8777
8778 static const struct mips_immed mips_immed[] = {
8779 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8780 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8781 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8782 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8783 { 0,0,0,0 }
8784 };
8785
8786 /* Check whether an odd floating-point register is allowed. */
8787 static int
8788 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8789 {
8790 const char *s = insn->name;
8791
8792 if (insn->pinfo == INSN_MACRO)
8793 /* Let a macro pass, we'll catch it later when it is expanded. */
8794 return 1;
8795
8796 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8797 {
8798 /* Allow odd registers for single-precision ops. */
8799 switch (insn->pinfo & (FP_S | FP_D))
8800 {
8801 case FP_S:
8802 case 0:
8803 return 1; /* both single precision - ok */
8804 case FP_D:
8805 return 0; /* both double precision - fail */
8806 default:
8807 break;
8808 }
8809
8810 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8811 s = strchr (insn->name, '.');
8812 if (argnum == 2)
8813 s = s != NULL ? strchr (s + 1, '.') : NULL;
8814 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8815 }
8816
8817 /* Single-precision coprocessor loads and moves are OK too. */
8818 if ((insn->pinfo & FP_S)
8819 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8820 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8821 return 1;
8822
8823 return 0;
8824 }
8825
8826 /* This routine assembles an instruction into its binary format. As a
8827 side effect, it sets one of the global variables imm_reloc or
8828 offset_reloc to the type of relocation to do if one of the operands
8829 is an address expression. */
8830
8831 static void
8832 mips_ip (char *str, struct mips_cl_insn *ip)
8833 {
8834 char *s;
8835 const char *args;
8836 char c = 0;
8837 struct mips_opcode *insn;
8838 char *argsStart;
8839 unsigned int regno;
8840 unsigned int lastregno;
8841 unsigned int lastpos = 0;
8842 unsigned int limlo, limhi;
8843 char *s_reset;
8844 char save_c = 0;
8845 offsetT min_range, max_range;
8846 int argnum;
8847 unsigned int rtype;
8848
8849 insn_error = NULL;
8850
8851 /* If the instruction contains a '.', we first try to match an instruction
8852 including the '.'. Then we try again without the '.'. */
8853 insn = NULL;
8854 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8855 continue;
8856
8857 /* If we stopped on whitespace, then replace the whitespace with null for
8858 the call to hash_find. Save the character we replaced just in case we
8859 have to re-parse the instruction. */
8860 if (ISSPACE (*s))
8861 {
8862 save_c = *s;
8863 *s++ = '\0';
8864 }
8865
8866 insn = (struct mips_opcode *) hash_find (op_hash, str);
8867
8868 /* If we didn't find the instruction in the opcode table, try again, but
8869 this time with just the instruction up to, but not including the
8870 first '.'. */
8871 if (insn == NULL)
8872 {
8873 /* Restore the character we overwrite above (if any). */
8874 if (save_c)
8875 *(--s) = save_c;
8876
8877 /* Scan up to the first '.' or whitespace. */
8878 for (s = str;
8879 *s != '\0' && *s != '.' && !ISSPACE (*s);
8880 ++s)
8881 continue;
8882
8883 /* If we did not find a '.', then we can quit now. */
8884 if (*s != '.')
8885 {
8886 insn_error = _("Unrecognized opcode");
8887 return;
8888 }
8889
8890 /* Lookup the instruction in the hash table. */
8891 *s++ = '\0';
8892 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8893 {
8894 insn_error = _("Unrecognized opcode");
8895 return;
8896 }
8897 }
8898
8899 argsStart = s;
8900 for (;;)
8901 {
8902 bfd_boolean ok;
8903
8904 gas_assert (strcmp (insn->name, str) == 0);
8905
8906 ok = is_opcode_valid (insn);
8907 if (! ok)
8908 {
8909 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8910 && strcmp (insn->name, insn[1].name) == 0)
8911 {
8912 ++insn;
8913 continue;
8914 }
8915 else
8916 {
8917 if (!insn_error)
8918 {
8919 static char buf[100];
8920 sprintf (buf,
8921 _("opcode not supported on this processor: %s (%s)"),
8922 mips_cpu_info_from_arch (mips_opts.arch)->name,
8923 mips_cpu_info_from_isa (mips_opts.isa)->name);
8924 insn_error = buf;
8925 }
8926 if (save_c)
8927 *(--s) = save_c;
8928 return;
8929 }
8930 }
8931
8932 create_insn (ip, insn);
8933 insn_error = NULL;
8934 argnum = 1;
8935 lastregno = 0xffffffff;
8936 for (args = insn->args;; ++args)
8937 {
8938 int is_mdmx;
8939
8940 s += strspn (s, " \t");
8941 is_mdmx = 0;
8942 switch (*args)
8943 {
8944 case '\0': /* end of args */
8945 if (*s == '\0')
8946 return;
8947 break;
8948
8949 case '2': /* DSP 2-bit unsigned immediate in bit 11. */
8950 my_getExpression (&imm_expr, s);
8951 check_absolute_expr (ip, &imm_expr);
8952 if ((unsigned long) imm_expr.X_add_number != 1
8953 && (unsigned long) imm_expr.X_add_number != 3)
8954 {
8955 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8956 (unsigned long) imm_expr.X_add_number);
8957 }
8958 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8959 imm_expr.X_op = O_absent;
8960 s = expr_end;
8961 continue;
8962
8963 case '3': /* DSP 3-bit unsigned immediate in bit 21. */
8964 my_getExpression (&imm_expr, s);
8965 check_absolute_expr (ip, &imm_expr);
8966 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8967 {
8968 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8969 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8970 }
8971 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8972 imm_expr.X_op = O_absent;
8973 s = expr_end;
8974 continue;
8975
8976 case '4': /* DSP 4-bit unsigned immediate in bit 21. */
8977 my_getExpression (&imm_expr, s);
8978 check_absolute_expr (ip, &imm_expr);
8979 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8980 {
8981 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8982 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8983 }
8984 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8985 imm_expr.X_op = O_absent;
8986 s = expr_end;
8987 continue;
8988
8989 case '5': /* DSP 8-bit unsigned immediate in bit 16. */
8990 my_getExpression (&imm_expr, s);
8991 check_absolute_expr (ip, &imm_expr);
8992 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8993 {
8994 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8995 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8996 }
8997 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8998 imm_expr.X_op = O_absent;
8999 s = expr_end;
9000 continue;
9001
9002 case '6': /* DSP 5-bit unsigned immediate in bit 21. */
9003 my_getExpression (&imm_expr, s);
9004 check_absolute_expr (ip, &imm_expr);
9005 if (imm_expr.X_add_number & ~OP_MASK_RS)
9006 {
9007 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
9008 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
9009 }
9010 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
9011 imm_expr.X_op = O_absent;
9012 s = expr_end;
9013 continue;
9014
9015 case '7': /* Four DSP accumulators in bits 11,12. */
9016 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9017 s[3] >= '0' && s[3] <= '3')
9018 {
9019 regno = s[3] - '0';
9020 s += 4;
9021 INSERT_OPERAND (DSPACC, *ip, regno);
9022 continue;
9023 }
9024 else
9025 as_bad (_("Invalid dsp acc register"));
9026 break;
9027
9028 case '8': /* DSP 6-bit unsigned immediate in bit 11. */
9029 my_getExpression (&imm_expr, s);
9030 check_absolute_expr (ip, &imm_expr);
9031 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
9032 {
9033 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
9034 OP_MASK_WRDSP,
9035 (unsigned long) imm_expr.X_add_number);
9036 }
9037 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
9038 imm_expr.X_op = O_absent;
9039 s = expr_end;
9040 continue;
9041
9042 case '9': /* Four DSP accumulators in bits 21,22. */
9043 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9044 s[3] >= '0' && s[3] <= '3')
9045 {
9046 regno = s[3] - '0';
9047 s += 4;
9048 INSERT_OPERAND (DSPACC_S, *ip, regno);
9049 continue;
9050 }
9051 else
9052 as_bad (_("Invalid dsp acc register"));
9053 break;
9054
9055 case '0': /* DSP 6-bit signed immediate in bit 20. */
9056 my_getExpression (&imm_expr, s);
9057 check_absolute_expr (ip, &imm_expr);
9058 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
9059 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
9060 if (imm_expr.X_add_number < min_range ||
9061 imm_expr.X_add_number > max_range)
9062 {
9063 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
9064 (long) min_range, (long) max_range,
9065 (long) imm_expr.X_add_number);
9066 }
9067 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
9068 imm_expr.X_op = O_absent;
9069 s = expr_end;
9070 continue;
9071
9072 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
9073 my_getExpression (&imm_expr, s);
9074 check_absolute_expr (ip, &imm_expr);
9075 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
9076 {
9077 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
9078 OP_MASK_RDDSP,
9079 (unsigned long) imm_expr.X_add_number);
9080 }
9081 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
9082 imm_expr.X_op = O_absent;
9083 s = expr_end;
9084 continue;
9085
9086 case ':': /* DSP 7-bit signed immediate in bit 19. */
9087 my_getExpression (&imm_expr, s);
9088 check_absolute_expr (ip, &imm_expr);
9089 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
9090 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
9091 if (imm_expr.X_add_number < min_range ||
9092 imm_expr.X_add_number > max_range)
9093 {
9094 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
9095 (long) min_range, (long) max_range,
9096 (long) imm_expr.X_add_number);
9097 }
9098 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
9099 imm_expr.X_op = O_absent;
9100 s = expr_end;
9101 continue;
9102
9103 case '@': /* DSP 10-bit signed immediate in bit 16. */
9104 my_getExpression (&imm_expr, s);
9105 check_absolute_expr (ip, &imm_expr);
9106 min_range = -((OP_MASK_IMM10 + 1) >> 1);
9107 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
9108 if (imm_expr.X_add_number < min_range ||
9109 imm_expr.X_add_number > max_range)
9110 {
9111 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
9112 (long) min_range, (long) max_range,
9113 (long) imm_expr.X_add_number);
9114 }
9115 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
9116 imm_expr.X_op = O_absent;
9117 s = expr_end;
9118 continue;
9119
9120 case '!': /* MT usermode flag bit. */
9121 my_getExpression (&imm_expr, s);
9122 check_absolute_expr (ip, &imm_expr);
9123 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
9124 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
9125 (unsigned long) imm_expr.X_add_number);
9126 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
9127 imm_expr.X_op = O_absent;
9128 s = expr_end;
9129 continue;
9130
9131 case '$': /* MT load high flag bit. */
9132 my_getExpression (&imm_expr, s);
9133 check_absolute_expr (ip, &imm_expr);
9134 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
9135 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
9136 (unsigned long) imm_expr.X_add_number);
9137 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
9138 imm_expr.X_op = O_absent;
9139 s = expr_end;
9140 continue;
9141
9142 case '*': /* Four DSP accumulators in bits 18,19. */
9143 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9144 s[3] >= '0' && s[3] <= '3')
9145 {
9146 regno = s[3] - '0';
9147 s += 4;
9148 INSERT_OPERAND (MTACC_T, *ip, regno);
9149 continue;
9150 }
9151 else
9152 as_bad (_("Invalid dsp/smartmips acc register"));
9153 break;
9154
9155 case '&': /* Four DSP accumulators in bits 13,14. */
9156 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9157 s[3] >= '0' && s[3] <= '3')
9158 {
9159 regno = s[3] - '0';
9160 s += 4;
9161 INSERT_OPERAND (MTACC_D, *ip, regno);
9162 continue;
9163 }
9164 else
9165 as_bad (_("Invalid dsp/smartmips acc register"));
9166 break;
9167
9168 case ',':
9169 ++argnum;
9170 if (*s++ == *args)
9171 continue;
9172 s--;
9173 switch (*++args)
9174 {
9175 case 'r':
9176 case 'v':
9177 INSERT_OPERAND (RS, *ip, lastregno);
9178 continue;
9179
9180 case 'w':
9181 INSERT_OPERAND (RT, *ip, lastregno);
9182 continue;
9183
9184 case 'W':
9185 INSERT_OPERAND (FT, *ip, lastregno);
9186 continue;
9187
9188 case 'V':
9189 INSERT_OPERAND (FS, *ip, lastregno);
9190 continue;
9191 }
9192 break;
9193
9194 case '(':
9195 /* Handle optional base register.
9196 Either the base register is omitted or
9197 we must have a left paren. */
9198 /* This is dependent on the next operand specifier
9199 is a base register specification. */
9200 gas_assert (args[1] == 'b');
9201 if (*s == '\0')
9202 return;
9203
9204 case ')': /* These must match exactly. */
9205 case '[':
9206 case ']':
9207 if (*s++ == *args)
9208 continue;
9209 break;
9210
9211 case '+': /* Opcode extension character. */
9212 switch (*++args)
9213 {
9214 case '1': /* UDI immediates. */
9215 case '2':
9216 case '3':
9217 case '4':
9218 {
9219 const struct mips_immed *imm = mips_immed;
9220
9221 while (imm->type && imm->type != *args)
9222 ++imm;
9223 if (! imm->type)
9224 internalError ();
9225 my_getExpression (&imm_expr, s);
9226 check_absolute_expr (ip, &imm_expr);
9227 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9228 {
9229 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9230 imm->desc ? imm->desc : ip->insn_mo->name,
9231 (unsigned long) imm_expr.X_add_number,
9232 (unsigned long) imm_expr.X_add_number);
9233 imm_expr.X_add_number &= imm->mask;
9234 }
9235 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9236 << imm->shift);
9237 imm_expr.X_op = O_absent;
9238 s = expr_end;
9239 }
9240 continue;
9241
9242 case 'A': /* ins/ext position, becomes LSB. */
9243 limlo = 0;
9244 limhi = 31;
9245 goto do_lsb;
9246 case 'E':
9247 limlo = 32;
9248 limhi = 63;
9249 goto do_lsb;
9250 do_lsb:
9251 my_getExpression (&imm_expr, s);
9252 check_absolute_expr (ip, &imm_expr);
9253 if ((unsigned long) imm_expr.X_add_number < limlo
9254 || (unsigned long) imm_expr.X_add_number > limhi)
9255 {
9256 as_bad (_("Improper position (%lu)"),
9257 (unsigned long) imm_expr.X_add_number);
9258 imm_expr.X_add_number = limlo;
9259 }
9260 lastpos = imm_expr.X_add_number;
9261 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9262 imm_expr.X_op = O_absent;
9263 s = expr_end;
9264 continue;
9265
9266 case 'B': /* ins size, becomes MSB. */
9267 limlo = 1;
9268 limhi = 32;
9269 goto do_msb;
9270 case 'F':
9271 limlo = 33;
9272 limhi = 64;
9273 goto do_msb;
9274 do_msb:
9275 my_getExpression (&imm_expr, s);
9276 check_absolute_expr (ip, &imm_expr);
9277 /* Check for negative input so that small negative numbers
9278 will not succeed incorrectly. The checks against
9279 (pos+size) transitively check "size" itself,
9280 assuming that "pos" is reasonable. */
9281 if ((long) imm_expr.X_add_number < 0
9282 || ((unsigned long) imm_expr.X_add_number
9283 + lastpos) < limlo
9284 || ((unsigned long) imm_expr.X_add_number
9285 + lastpos) > limhi)
9286 {
9287 as_bad (_("Improper insert size (%lu, position %lu)"),
9288 (unsigned long) imm_expr.X_add_number,
9289 (unsigned long) lastpos);
9290 imm_expr.X_add_number = limlo - lastpos;
9291 }
9292 INSERT_OPERAND (INSMSB, *ip,
9293 lastpos + imm_expr.X_add_number - 1);
9294 imm_expr.X_op = O_absent;
9295 s = expr_end;
9296 continue;
9297
9298 case 'C': /* ext size, becomes MSBD. */
9299 limlo = 1;
9300 limhi = 32;
9301 goto do_msbd;
9302 case 'G':
9303 limlo = 33;
9304 limhi = 64;
9305 goto do_msbd;
9306 case 'H':
9307 limlo = 33;
9308 limhi = 64;
9309 goto do_msbd;
9310 do_msbd:
9311 my_getExpression (&imm_expr, s);
9312 check_absolute_expr (ip, &imm_expr);
9313 /* Check for negative input so that small negative numbers
9314 will not succeed incorrectly. The checks against
9315 (pos+size) transitively check "size" itself,
9316 assuming that "pos" is reasonable. */
9317 if ((long) imm_expr.X_add_number < 0
9318 || ((unsigned long) imm_expr.X_add_number
9319 + lastpos) < limlo
9320 || ((unsigned long) imm_expr.X_add_number
9321 + lastpos) > limhi)
9322 {
9323 as_bad (_("Improper extract size (%lu, position %lu)"),
9324 (unsigned long) imm_expr.X_add_number,
9325 (unsigned long) lastpos);
9326 imm_expr.X_add_number = limlo - lastpos;
9327 }
9328 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9329 imm_expr.X_op = O_absent;
9330 s = expr_end;
9331 continue;
9332
9333 case 'D':
9334 /* +D is for disassembly only; never match. */
9335 break;
9336
9337 case 'I':
9338 /* "+I" is like "I", except that imm2_expr is used. */
9339 my_getExpression (&imm2_expr, s);
9340 if (imm2_expr.X_op != O_big
9341 && imm2_expr.X_op != O_constant)
9342 insn_error = _("absolute expression required");
9343 if (HAVE_32BIT_GPRS)
9344 normalize_constant_expr (&imm2_expr);
9345 s = expr_end;
9346 continue;
9347
9348 case 'T': /* Coprocessor register. */
9349 /* +T is for disassembly only; never match. */
9350 break;
9351
9352 case 't': /* Coprocessor register number. */
9353 if (s[0] == '$' && ISDIGIT (s[1]))
9354 {
9355 ++s;
9356 regno = 0;
9357 do
9358 {
9359 regno *= 10;
9360 regno += *s - '0';
9361 ++s;
9362 }
9363 while (ISDIGIT (*s));
9364 if (regno > 31)
9365 as_bad (_("Invalid register number (%d)"), regno);
9366 else
9367 {
9368 INSERT_OPERAND (RT, *ip, regno);
9369 continue;
9370 }
9371 }
9372 else
9373 as_bad (_("Invalid coprocessor 0 register number"));
9374 break;
9375
9376 case 'x':
9377 /* bbit[01] and bbit[01]32 bit index. Give error if index
9378 is not in the valid range. */
9379 my_getExpression (&imm_expr, s);
9380 check_absolute_expr (ip, &imm_expr);
9381 if ((unsigned) imm_expr.X_add_number > 31)
9382 {
9383 as_bad (_("Improper bit index (%lu)"),
9384 (unsigned long) imm_expr.X_add_number);
9385 imm_expr.X_add_number = 0;
9386 }
9387 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9388 imm_expr.X_op = O_absent;
9389 s = expr_end;
9390 continue;
9391
9392 case 'X':
9393 /* bbit[01] bit index when bbit is used but we generate
9394 bbit[01]32 because the index is over 32. Move to the
9395 next candidate if index is not in the valid range. */
9396 my_getExpression (&imm_expr, s);
9397 check_absolute_expr (ip, &imm_expr);
9398 if ((unsigned) imm_expr.X_add_number < 32
9399 || (unsigned) imm_expr.X_add_number > 63)
9400 break;
9401 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9402 imm_expr.X_op = O_absent;
9403 s = expr_end;
9404 continue;
9405
9406 case 'p':
9407 /* cins, cins32, exts and exts32 position field. Give error
9408 if it's not in the valid range. */
9409 my_getExpression (&imm_expr, s);
9410 check_absolute_expr (ip, &imm_expr);
9411 if ((unsigned) imm_expr.X_add_number > 31)
9412 {
9413 as_bad (_("Improper position (%lu)"),
9414 (unsigned long) imm_expr.X_add_number);
9415 imm_expr.X_add_number = 0;
9416 }
9417 /* Make the pos explicit to simplify +S. */
9418 lastpos = imm_expr.X_add_number + 32;
9419 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9420 imm_expr.X_op = O_absent;
9421 s = expr_end;
9422 continue;
9423
9424 case 'P':
9425 /* cins, cins32, exts and exts32 position field. Move to
9426 the next candidate if it's not in the valid range. */
9427 my_getExpression (&imm_expr, s);
9428 check_absolute_expr (ip, &imm_expr);
9429 if ((unsigned) imm_expr.X_add_number < 32
9430 || (unsigned) imm_expr.X_add_number > 63)
9431 break;
9432 lastpos = imm_expr.X_add_number;
9433 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9434 imm_expr.X_op = O_absent;
9435 s = expr_end;
9436 continue;
9437
9438 case 's':
9439 /* cins and exts length-minus-one field. */
9440 my_getExpression (&imm_expr, s);
9441 check_absolute_expr (ip, &imm_expr);
9442 if ((unsigned long) imm_expr.X_add_number > 31)
9443 {
9444 as_bad (_("Improper size (%lu)"),
9445 (unsigned long) imm_expr.X_add_number);
9446 imm_expr.X_add_number = 0;
9447 }
9448 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9449 imm_expr.X_op = O_absent;
9450 s = expr_end;
9451 continue;
9452
9453 case 'S':
9454 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9455 length-minus-one field. */
9456 my_getExpression (&imm_expr, s);
9457 check_absolute_expr (ip, &imm_expr);
9458 if ((long) imm_expr.X_add_number < 0
9459 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9460 {
9461 as_bad (_("Improper size (%lu)"),
9462 (unsigned long) imm_expr.X_add_number);
9463 imm_expr.X_add_number = 0;
9464 }
9465 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9466 imm_expr.X_op = O_absent;
9467 s = expr_end;
9468 continue;
9469
9470 case 'Q':
9471 /* seqi/snei immediate field. */
9472 my_getExpression (&imm_expr, s);
9473 check_absolute_expr (ip, &imm_expr);
9474 if ((long) imm_expr.X_add_number < -512
9475 || (long) imm_expr.X_add_number >= 512)
9476 {
9477 as_bad (_("Improper immediate (%ld)"),
9478 (long) imm_expr.X_add_number);
9479 imm_expr.X_add_number = 0;
9480 }
9481 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9482 imm_expr.X_op = O_absent;
9483 s = expr_end;
9484 continue;
9485
9486 case 'a': /* 8-bit signed offset in bit 6 */
9487 my_getExpression (&imm_expr, s);
9488 check_absolute_expr (ip, &imm_expr);
9489 min_range = -((OP_MASK_OFFSET_A + 1) >> 1);
9490 max_range = ((OP_MASK_OFFSET_A + 1) >> 1) - 1;
9491 if (imm_expr.X_add_number < min_range
9492 || imm_expr.X_add_number > max_range)
9493 {
9494 as_bad (_("Offset not in range %ld..%ld (%ld)"),
9495 (long) min_range, (long) max_range,
9496 (long) imm_expr.X_add_number);
9497 }
9498 INSERT_OPERAND (OFFSET_A, *ip, imm_expr.X_add_number);
9499 imm_expr.X_op = O_absent;
9500 s = expr_end;
9501 continue;
9502
9503 case 'b': /* 8-bit signed offset in bit 3 */
9504 my_getExpression (&imm_expr, s);
9505 check_absolute_expr (ip, &imm_expr);
9506 min_range = -((OP_MASK_OFFSET_B + 1) >> 1);
9507 max_range = ((OP_MASK_OFFSET_B + 1) >> 1) - 1;
9508 if (imm_expr.X_add_number < min_range
9509 || imm_expr.X_add_number > max_range)
9510 {
9511 as_bad (_("Offset not in range %ld..%ld (%ld)"),
9512 (long) min_range, (long) max_range,
9513 (long) imm_expr.X_add_number);
9514 }
9515 INSERT_OPERAND (OFFSET_B, *ip, imm_expr.X_add_number);
9516 imm_expr.X_op = O_absent;
9517 s = expr_end;
9518 continue;
9519
9520 case 'c': /* 9-bit signed offset in bit 6 */
9521 my_getExpression (&imm_expr, s);
9522 check_absolute_expr (ip, &imm_expr);
9523 min_range = -((OP_MASK_OFFSET_C + 1) >> 1);
9524 max_range = ((OP_MASK_OFFSET_C + 1) >> 1) - 1;
9525 /* We check the offset range before adjusted. */
9526 min_range <<= 4;
9527 max_range <<= 4;
9528 if (imm_expr.X_add_number < min_range
9529 || imm_expr.X_add_number > max_range)
9530 {
9531 as_bad (_("Offset not in range %ld..%ld (%ld)"),
9532 (long) min_range, (long) max_range,
9533 (long) imm_expr.X_add_number);
9534 }
9535 if (imm_expr.X_add_number & 0xf)
9536 {
9537 as_bad (_("Offset not 16 bytes alignment (%ld)"),
9538 (long) imm_expr.X_add_number);
9539 }
9540 /* Right shift 4 bits to adjust the offset operand. */
9541 INSERT_OPERAND (OFFSET_C, *ip, imm_expr.X_add_number >> 4);
9542 imm_expr.X_op = O_absent;
9543 s = expr_end;
9544 continue;
9545
9546 case 'z':
9547 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
9548 break;
9549 if (regno == AT && mips_opts.at)
9550 {
9551 if (mips_opts.at == ATREG)
9552 as_warn (_("used $at without \".set noat\""));
9553 else
9554 as_warn (_("used $%u with \".set at=$%u\""),
9555 regno, mips_opts.at);
9556 }
9557 INSERT_OPERAND (RZ, *ip, regno);
9558 continue;
9559
9560 case 'Z':
9561 if (!reg_lookup (&s, RTYPE_FPU, &regno))
9562 break;
9563 INSERT_OPERAND (FZ, *ip, regno);
9564 continue;
9565
9566 default:
9567 as_bad (_("Internal error: bad mips opcode "
9568 "(unknown extension operand type `+%c'): %s %s"),
9569 *args, insn->name, insn->args);
9570 /* Further processing is fruitless. */
9571 return;
9572 }
9573 break;
9574
9575 case '<': /* must be at least one digit */
9576 /*
9577 * According to the manual, if the shift amount is greater
9578 * than 31 or less than 0, then the shift amount should be
9579 * mod 32. In reality the mips assembler issues an error.
9580 * We issue a warning and mask out all but the low 5 bits.
9581 */
9582 my_getExpression (&imm_expr, s);
9583 check_absolute_expr (ip, &imm_expr);
9584 if ((unsigned long) imm_expr.X_add_number > 31)
9585 as_warn (_("Improper shift amount (%lu)"),
9586 (unsigned long) imm_expr.X_add_number);
9587 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9588 imm_expr.X_op = O_absent;
9589 s = expr_end;
9590 continue;
9591
9592 case '>': /* shift amount minus 32 */
9593 my_getExpression (&imm_expr, s);
9594 check_absolute_expr (ip, &imm_expr);
9595 if ((unsigned long) imm_expr.X_add_number < 32
9596 || (unsigned long) imm_expr.X_add_number > 63)
9597 break;
9598 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9599 imm_expr.X_op = O_absent;
9600 s = expr_end;
9601 continue;
9602
9603 case 'k': /* CACHE code. */
9604 case 'h': /* PREFX code. */
9605 case '1': /* SYNC type. */
9606 my_getExpression (&imm_expr, s);
9607 check_absolute_expr (ip, &imm_expr);
9608 if ((unsigned long) imm_expr.X_add_number > 31)
9609 as_warn (_("Invalid value for `%s' (%lu)"),
9610 ip->insn_mo->name,
9611 (unsigned long) imm_expr.X_add_number);
9612 if (*args == 'k')
9613 {
9614 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9615 switch (imm_expr.X_add_number)
9616 {
9617 case 5:
9618 case 25:
9619 case 26:
9620 case 27:
9621 case 28:
9622 case 29:
9623 case 30:
9624 case 31: /* These are ok. */
9625 break;
9626
9627 default: /* The rest must be changed to 28. */
9628 imm_expr.X_add_number = 28;
9629 break;
9630 }
9631 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9632 }
9633 else if (*args == 'h')
9634 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9635 else
9636 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9637 imm_expr.X_op = O_absent;
9638 s = expr_end;
9639 continue;
9640
9641 case 'c': /* BREAK code. */
9642 my_getExpression (&imm_expr, s);
9643 check_absolute_expr (ip, &imm_expr);
9644 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9645 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9646 ip->insn_mo->name,
9647 (unsigned long) imm_expr.X_add_number);
9648 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9649 imm_expr.X_op = O_absent;
9650 s = expr_end;
9651 continue;
9652
9653 case 'q': /* Lower BREAK code. */
9654 my_getExpression (&imm_expr, s);
9655 check_absolute_expr (ip, &imm_expr);
9656 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9657 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9658 ip->insn_mo->name,
9659 (unsigned long) imm_expr.X_add_number);
9660 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9661 imm_expr.X_op = O_absent;
9662 s = expr_end;
9663 continue;
9664
9665 case 'B': /* 20-bit SYSCALL/BREAK code. */
9666 my_getExpression (&imm_expr, s);
9667 check_absolute_expr (ip, &imm_expr);
9668 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9669 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9670 ip->insn_mo->name,
9671 (unsigned long) imm_expr.X_add_number);
9672 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9673 imm_expr.X_op = O_absent;
9674 s = expr_end;
9675 continue;
9676
9677 case 'C': /* Coprocessor code. */
9678 my_getExpression (&imm_expr, s);
9679 check_absolute_expr (ip, &imm_expr);
9680 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9681 {
9682 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9683 (unsigned long) imm_expr.X_add_number);
9684 imm_expr.X_add_number &= OP_MASK_COPZ;
9685 }
9686 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9687 imm_expr.X_op = O_absent;
9688 s = expr_end;
9689 continue;
9690
9691 case 'J': /* 19-bit WAIT code. */
9692 my_getExpression (&imm_expr, s);
9693 check_absolute_expr (ip, &imm_expr);
9694 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9695 {
9696 as_warn (_("Illegal 19-bit code (%lu)"),
9697 (unsigned long) imm_expr.X_add_number);
9698 imm_expr.X_add_number &= OP_MASK_CODE19;
9699 }
9700 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9701 imm_expr.X_op = O_absent;
9702 s = expr_end;
9703 continue;
9704
9705 case 'P': /* Performance register. */
9706 my_getExpression (&imm_expr, s);
9707 check_absolute_expr (ip, &imm_expr);
9708 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9709 as_warn (_("Invalid performance register (%lu)"),
9710 (unsigned long) imm_expr.X_add_number);
9711 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9712 imm_expr.X_op = O_absent;
9713 s = expr_end;
9714 continue;
9715
9716 case 'G': /* Coprocessor destination register. */
9717 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9718 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9719 else
9720 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9721 INSERT_OPERAND (RD, *ip, regno);
9722 if (ok)
9723 {
9724 lastregno = regno;
9725 continue;
9726 }
9727 else
9728 break;
9729
9730 case 'b': /* Base register. */
9731 case 'd': /* Destination register. */
9732 case 's': /* Source register. */
9733 case 't': /* Target register. */
9734 case 'r': /* Both target and source. */
9735 case 'v': /* Both dest and source. */
9736 case 'w': /* Both dest and target. */
9737 case 'E': /* Coprocessor target register. */
9738 case 'K': /* RDHWR destination register. */
9739 case 'x': /* Ignore register name. */
9740 case 'z': /* Must be zero register. */
9741 case 'U': /* Destination register (CLO/CLZ). */
9742 case 'g': /* Coprocessor destination register. */
9743 s_reset = s;
9744 if (*args == 'E' || *args == 'K')
9745 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9746 else
9747 {
9748 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9749 if (regno == AT && mips_opts.at)
9750 {
9751 if (mips_opts.at == ATREG)
9752 as_warn (_("Used $at without \".set noat\""));
9753 else
9754 as_warn (_("Used $%u with \".set at=$%u\""),
9755 regno, mips_opts.at);
9756 }
9757 }
9758 if (ok)
9759 {
9760 c = *args;
9761 if (*s == ' ')
9762 ++s;
9763 if (args[1] != *s)
9764 {
9765 if (c == 'r' || c == 'v' || c == 'w')
9766 {
9767 regno = lastregno;
9768 s = s_reset;
9769 ++args;
9770 }
9771 }
9772 /* 'z' only matches $0. */
9773 if (c == 'z' && regno != 0)
9774 break;
9775
9776 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9777 {
9778 if (regno == lastregno)
9779 {
9780 insn_error
9781 = _("Source and destination must be different");
9782 continue;
9783 }
9784 if (regno == 31 && lastregno == 0xffffffff)
9785 {
9786 insn_error
9787 = _("A destination register must be supplied");
9788 continue;
9789 }
9790 }
9791 /* Now that we have assembled one operand, we use the args
9792 string to figure out where it goes in the instruction. */
9793 switch (c)
9794 {
9795 case 'r':
9796 case 's':
9797 case 'v':
9798 case 'b':
9799 INSERT_OPERAND (RS, *ip, regno);
9800 break;
9801 case 'd':
9802 case 'K':
9803 case 'g':
9804 INSERT_OPERAND (RD, *ip, regno);
9805 break;
9806 case 'U':
9807 INSERT_OPERAND (RD, *ip, regno);
9808 INSERT_OPERAND (RT, *ip, regno);
9809 break;
9810 case 'w':
9811 case 't':
9812 case 'E':
9813 INSERT_OPERAND (RT, *ip, regno);
9814 break;
9815 case 'x':
9816 /* This case exists because on the r3000 trunc
9817 expands into a macro which requires a gp
9818 register. On the r6000 or r4000 it is
9819 assembled into a single instruction which
9820 ignores the register. Thus the insn version
9821 is MIPS_ISA2 and uses 'x', and the macro
9822 version is MIPS_ISA1 and uses 't'. */
9823 break;
9824 case 'z':
9825 /* This case is for the div instruction, which
9826 acts differently if the destination argument
9827 is $0. This only matches $0, and is checked
9828 outside the switch. */
9829 break;
9830 }
9831 lastregno = regno;
9832 continue;
9833 }
9834 switch (*args++)
9835 {
9836 case 'r':
9837 case 'v':
9838 INSERT_OPERAND (RS, *ip, lastregno);
9839 continue;
9840 case 'w':
9841 INSERT_OPERAND (RT, *ip, lastregno);
9842 continue;
9843 }
9844 break;
9845
9846 case 'O': /* MDMX alignment immediate constant. */
9847 my_getExpression (&imm_expr, s);
9848 check_absolute_expr (ip, &imm_expr);
9849 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9850 as_warn (_("Improper align amount (%ld), using low bits"),
9851 (long) imm_expr.X_add_number);
9852 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9853 imm_expr.X_op = O_absent;
9854 s = expr_end;
9855 continue;
9856
9857 case 'Q': /* MDMX vector, element sel, or const. */
9858 if (s[0] != '$')
9859 {
9860 /* MDMX Immediate. */
9861 my_getExpression (&imm_expr, s);
9862 check_absolute_expr (ip, &imm_expr);
9863 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9864 as_warn (_("Invalid MDMX Immediate (%ld)"),
9865 (long) imm_expr.X_add_number);
9866 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9867 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9868 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9869 else
9870 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9871 imm_expr.X_op = O_absent;
9872 s = expr_end;
9873 continue;
9874 }
9875 /* Not MDMX Immediate. Fall through. */
9876 case 'X': /* MDMX destination register. */
9877 case 'Y': /* MDMX source register. */
9878 case 'Z': /* MDMX target register. */
9879 is_mdmx = 1;
9880 case 'D': /* Floating point destination register. */
9881 case 'S': /* Floating point source register. */
9882 case 'T': /* Floating point target register. */
9883 case 'R': /* Floating point source register. */
9884 case 'V':
9885 case 'W':
9886 rtype = RTYPE_FPU;
9887 if (is_mdmx
9888 || (mips_opts.ase_mdmx
9889 && (ip->insn_mo->pinfo & FP_D)
9890 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9891 | INSN_COPROC_MEMORY_DELAY
9892 | INSN_LOAD_COPROC_DELAY
9893 | INSN_LOAD_MEMORY_DELAY
9894 | INSN_STORE_MEMORY))))
9895 rtype |= RTYPE_VEC;
9896 s_reset = s;
9897 if (reg_lookup (&s, rtype, &regno))
9898 {
9899 if ((regno & 1) != 0
9900 && HAVE_32BIT_FPRS
9901 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
9902 as_warn (_("Float register should be even, was %d"),
9903 regno);
9904
9905 c = *args;
9906 if (*s == ' ')
9907 ++s;
9908 if (args[1] != *s)
9909 {
9910 if (c == 'V' || c == 'W')
9911 {
9912 regno = lastregno;
9913 s = s_reset;
9914 ++args;
9915 }
9916 }
9917 switch (c)
9918 {
9919 case 'D':
9920 case 'X':
9921 INSERT_OPERAND (FD, *ip, regno);
9922 break;
9923 case 'V':
9924 case 'S':
9925 case 'Y':
9926 INSERT_OPERAND (FS, *ip, regno);
9927 break;
9928 case 'Q':
9929 /* This is like 'Z', but also needs to fix the MDMX
9930 vector/scalar select bits. Note that the
9931 scalar immediate case is handled above. */
9932 if (*s == '[')
9933 {
9934 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9935 int max_el = (is_qh ? 3 : 7);
9936 s++;
9937 my_getExpression(&imm_expr, s);
9938 check_absolute_expr (ip, &imm_expr);
9939 s = expr_end;
9940 if (imm_expr.X_add_number > max_el)
9941 as_bad (_("Bad element selector %ld"),
9942 (long) imm_expr.X_add_number);
9943 imm_expr.X_add_number &= max_el;
9944 ip->insn_opcode |= (imm_expr.X_add_number
9945 << (OP_SH_VSEL +
9946 (is_qh ? 2 : 1)));
9947 imm_expr.X_op = O_absent;
9948 if (*s != ']')
9949 as_warn (_("Expecting ']' found '%s'"), s);
9950 else
9951 s++;
9952 }
9953 else
9954 {
9955 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9956 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9957 << OP_SH_VSEL);
9958 else
9959 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9960 OP_SH_VSEL);
9961 }
9962 /* Fall through. */
9963 case 'W':
9964 case 'T':
9965 case 'Z':
9966 INSERT_OPERAND (FT, *ip, regno);
9967 break;
9968 case 'R':
9969 INSERT_OPERAND (FR, *ip, regno);
9970 break;
9971 }
9972 lastregno = regno;
9973 continue;
9974 }
9975
9976 switch (*args++)
9977 {
9978 case 'V':
9979 INSERT_OPERAND (FS, *ip, lastregno);
9980 continue;
9981 case 'W':
9982 INSERT_OPERAND (FT, *ip, lastregno);
9983 continue;
9984 }
9985 break;
9986
9987 case 'I':
9988 my_getExpression (&imm_expr, s);
9989 if (imm_expr.X_op != O_big
9990 && imm_expr.X_op != O_constant)
9991 insn_error = _("absolute expression required");
9992 if (HAVE_32BIT_GPRS)
9993 normalize_constant_expr (&imm_expr);
9994 s = expr_end;
9995 continue;
9996
9997 case 'A':
9998 my_getExpression (&offset_expr, s);
9999 normalize_address_expr (&offset_expr);
10000 *imm_reloc = BFD_RELOC_32;
10001 s = expr_end;
10002 continue;
10003
10004 case 'F':
10005 case 'L':
10006 case 'f':
10007 case 'l':
10008 {
10009 int f64;
10010 int using_gprs;
10011 char *save_in;
10012 char *err;
10013 unsigned char temp[8];
10014 int len;
10015 unsigned int length;
10016 segT seg;
10017 subsegT subseg;
10018 char *p;
10019
10020 /* These only appear as the last operand in an
10021 instruction, and every instruction that accepts
10022 them in any variant accepts them in all variants.
10023 This means we don't have to worry about backing out
10024 any changes if the instruction does not match.
10025
10026 The difference between them is the size of the
10027 floating point constant and where it goes. For 'F'
10028 and 'L' the constant is 64 bits; for 'f' and 'l' it
10029 is 32 bits. Where the constant is placed is based
10030 on how the MIPS assembler does things:
10031 F -- .rdata
10032 L -- .lit8
10033 f -- immediate value
10034 l -- .lit4
10035
10036 The .lit4 and .lit8 sections are only used if
10037 permitted by the -G argument.
10038
10039 The code below needs to know whether the target register
10040 is 32 or 64 bits wide. It relies on the fact 'f' and
10041 'F' are used with GPR-based instructions and 'l' and
10042 'L' are used with FPR-based instructions. */
10043
10044 f64 = *args == 'F' || *args == 'L';
10045 using_gprs = *args == 'F' || *args == 'f';
10046
10047 save_in = input_line_pointer;
10048 input_line_pointer = s;
10049 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
10050 length = len;
10051 s = input_line_pointer;
10052 input_line_pointer = save_in;
10053 if (err != NULL && *err != '\0')
10054 {
10055 as_bad (_("Bad floating point constant: %s"), err);
10056 memset (temp, '\0', sizeof temp);
10057 length = f64 ? 8 : 4;
10058 }
10059
10060 gas_assert (length == (unsigned) (f64 ? 8 : 4));
10061
10062 if (*args == 'f'
10063 || (*args == 'l'
10064 && (g_switch_value < 4
10065 || (temp[0] == 0 && temp[1] == 0)
10066 || (temp[2] == 0 && temp[3] == 0))))
10067 {
10068 imm_expr.X_op = O_constant;
10069 if (!target_big_endian)
10070 imm_expr.X_add_number = bfd_getl32 (temp);
10071 else
10072 imm_expr.X_add_number = bfd_getb32 (temp);
10073 }
10074 else if (length > 4
10075 && !mips_disable_float_construction
10076 /* Constants can only be constructed in GPRs and
10077 copied to FPRs if the GPRs are at least as wide
10078 as the FPRs. Force the constant into memory if
10079 we are using 64-bit FPRs but the GPRs are only
10080 32 bits wide. */
10081 && (using_gprs
10082 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
10083 && ((temp[0] == 0 && temp[1] == 0)
10084 || (temp[2] == 0 && temp[3] == 0))
10085 && ((temp[4] == 0 && temp[5] == 0)
10086 || (temp[6] == 0 && temp[7] == 0)))
10087 {
10088 /* The value is simple enough to load with a couple of
10089 instructions. If using 32-bit registers, set
10090 imm_expr to the high order 32 bits and offset_expr to
10091 the low order 32 bits. Otherwise, set imm_expr to
10092 the entire 64 bit constant. */
10093 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
10094 {
10095 imm_expr.X_op = O_constant;
10096 offset_expr.X_op = O_constant;
10097 if (!target_big_endian)
10098 {
10099 imm_expr.X_add_number = bfd_getl32 (temp + 4);
10100 offset_expr.X_add_number = bfd_getl32 (temp);
10101 }
10102 else
10103 {
10104 imm_expr.X_add_number = bfd_getb32 (temp);
10105 offset_expr.X_add_number = bfd_getb32 (temp + 4);
10106 }
10107 if (offset_expr.X_add_number == 0)
10108 offset_expr.X_op = O_absent;
10109 }
10110 else if (sizeof (imm_expr.X_add_number) > 4)
10111 {
10112 imm_expr.X_op = O_constant;
10113 if (!target_big_endian)
10114 imm_expr.X_add_number = bfd_getl64 (temp);
10115 else
10116 imm_expr.X_add_number = bfd_getb64 (temp);
10117 }
10118 else
10119 {
10120 imm_expr.X_op = O_big;
10121 imm_expr.X_add_number = 4;
10122 if (!target_big_endian)
10123 {
10124 generic_bignum[0] = bfd_getl16 (temp);
10125 generic_bignum[1] = bfd_getl16 (temp + 2);
10126 generic_bignum[2] = bfd_getl16 (temp + 4);
10127 generic_bignum[3] = bfd_getl16 (temp + 6);
10128 }
10129 else
10130 {
10131 generic_bignum[0] = bfd_getb16 (temp + 6);
10132 generic_bignum[1] = bfd_getb16 (temp + 4);
10133 generic_bignum[2] = bfd_getb16 (temp + 2);
10134 generic_bignum[3] = bfd_getb16 (temp);
10135 }
10136 }
10137 }
10138 else
10139 {
10140 const char *newname;
10141 segT new_seg;
10142
10143 /* Switch to the right section. */
10144 seg = now_seg;
10145 subseg = now_subseg;
10146 switch (*args)
10147 {
10148 default: /* unused default case avoids warnings. */
10149 case 'L':
10150 newname = RDATA_SECTION_NAME;
10151 if (g_switch_value >= 8)
10152 newname = ".lit8";
10153 break;
10154 case 'F':
10155 newname = RDATA_SECTION_NAME;
10156 break;
10157 case 'l':
10158 gas_assert (g_switch_value >= 4);
10159 newname = ".lit4";
10160 break;
10161 }
10162 new_seg = subseg_new (newname, (subsegT) 0);
10163 if (IS_ELF)
10164 bfd_set_section_flags (stdoutput, new_seg,
10165 (SEC_ALLOC
10166 | SEC_LOAD
10167 | SEC_READONLY
10168 | SEC_DATA));
10169 frag_align (*args == 'l' ? 2 : 3, 0, 0);
10170 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
10171 record_alignment (new_seg, 4);
10172 else
10173 record_alignment (new_seg, *args == 'l' ? 2 : 3);
10174 if (seg == now_seg)
10175 as_bad (_("Can't use floating point insn in this section"));
10176
10177 /* Set the argument to the current address in the
10178 section. */
10179 offset_expr.X_op = O_symbol;
10180 offset_expr.X_add_symbol = symbol_temp_new_now ();
10181 offset_expr.X_add_number = 0;
10182
10183 /* Put the floating point number into the section. */
10184 p = frag_more ((int) length);
10185 memcpy (p, temp, length);
10186
10187 /* Switch back to the original section. */
10188 subseg_set (seg, subseg);
10189 }
10190 }
10191 continue;
10192
10193 case 'i': /* 16-bit unsigned immediate. */
10194 case 'j': /* 16-bit signed immediate. */
10195 *imm_reloc = BFD_RELOC_LO16;
10196 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
10197 {
10198 int more;
10199 offsetT minval, maxval;
10200
10201 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
10202 && strcmp (insn->name, insn[1].name) == 0);
10203
10204 /* If the expression was written as an unsigned number,
10205 only treat it as signed if there are no more
10206 alternatives. */
10207 if (more
10208 && *args == 'j'
10209 && sizeof (imm_expr.X_add_number) <= 4
10210 && imm_expr.X_op == O_constant
10211 && imm_expr.X_add_number < 0
10212 && imm_expr.X_unsigned
10213 && HAVE_64BIT_GPRS)
10214 break;
10215
10216 /* For compatibility with older assemblers, we accept
10217 0x8000-0xffff as signed 16-bit numbers when only
10218 signed numbers are allowed. */
10219 if (*args == 'i')
10220 minval = 0, maxval = 0xffff;
10221 else if (more)
10222 minval = -0x8000, maxval = 0x7fff;
10223 else
10224 minval = -0x8000, maxval = 0xffff;
10225
10226 if (imm_expr.X_op != O_constant
10227 || imm_expr.X_add_number < minval
10228 || imm_expr.X_add_number > maxval)
10229 {
10230 if (more)
10231 break;
10232 if (imm_expr.X_op == O_constant
10233 || imm_expr.X_op == O_big)
10234 as_bad (_("Expression out of range"));
10235 }
10236 }
10237 s = expr_end;
10238 continue;
10239
10240 case 'o': /* 16-bit offset. */
10241 offset_reloc[0] = BFD_RELOC_LO16;
10242 offset_reloc[1] = BFD_RELOC_UNUSED;
10243 offset_reloc[2] = BFD_RELOC_UNUSED;
10244
10245 /* Check whether there is only a single bracketed expression
10246 left. If so, it must be the base register and the
10247 constant must be zero. */
10248 if (*s == '(' && strchr (s + 1, '(') == 0)
10249 {
10250 offset_expr.X_op = O_constant;
10251 offset_expr.X_add_number = 0;
10252 continue;
10253 }
10254
10255 /* If this value won't fit into a 16 bit offset, then go
10256 find a macro that will generate the 32 bit offset
10257 code pattern. */
10258 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
10259 && (offset_expr.X_op != O_constant
10260 || offset_expr.X_add_number >= 0x8000
10261 || offset_expr.X_add_number < -0x8000))
10262 break;
10263
10264 s = expr_end;
10265 continue;
10266
10267 case 'p': /* PC-relative offset. */
10268 *offset_reloc = BFD_RELOC_16_PCREL_S2;
10269 my_getExpression (&offset_expr, s);
10270 s = expr_end;
10271 continue;
10272
10273 case 'u': /* Upper 16 bits. */
10274 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
10275 && imm_expr.X_op == O_constant
10276 && (imm_expr.X_add_number < 0
10277 || imm_expr.X_add_number >= 0x10000))
10278 as_bad (_("lui expression (%lu) not in range 0..65535"),
10279 (unsigned long) imm_expr.X_add_number);
10280 s = expr_end;
10281 continue;
10282
10283 case 'a': /* 26-bit address. */
10284 my_getExpression (&offset_expr, s);
10285 s = expr_end;
10286 *offset_reloc = BFD_RELOC_MIPS_JMP;
10287 continue;
10288
10289 case 'N': /* 3-bit branch condition code. */
10290 case 'M': /* 3-bit compare condition code. */
10291 rtype = RTYPE_CCC;
10292 if (ip->insn_mo->pinfo & (FP_D | FP_S))
10293 rtype |= RTYPE_FCC;
10294 if (!reg_lookup (&s, rtype, &regno))
10295 break;
10296 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
10297 || strcmp (str + strlen (str) - 5, "any2f") == 0
10298 || strcmp (str + strlen (str) - 5, "any2t") == 0)
10299 && (regno & 1) != 0)
10300 as_warn (_("Condition code register should be even for %s, "
10301 "was %d"),
10302 str, regno);
10303 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
10304 || strcmp (str + strlen (str) - 5, "any4t") == 0)
10305 && (regno & 3) != 0)
10306 as_warn (_("Condition code register should be 0 or 4 for %s, "
10307 "was %d"),
10308 str, regno);
10309 if (*args == 'N')
10310 INSERT_OPERAND (BCC, *ip, regno);
10311 else
10312 INSERT_OPERAND (CCC, *ip, regno);
10313 continue;
10314
10315 case 'H':
10316 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10317 s += 2;
10318 if (ISDIGIT (*s))
10319 {
10320 c = 0;
10321 do
10322 {
10323 c *= 10;
10324 c += *s - '0';
10325 ++s;
10326 }
10327 while (ISDIGIT (*s));
10328 }
10329 else
10330 c = 8; /* Invalid sel value. */
10331
10332 if (c > 7)
10333 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
10334 ip->insn_opcode |= c;
10335 continue;
10336
10337 case 'e':
10338 /* Must be at least one digit. */
10339 my_getExpression (&imm_expr, s);
10340 check_absolute_expr (ip, &imm_expr);
10341
10342 if ((unsigned long) imm_expr.X_add_number
10343 > (unsigned long) OP_MASK_VECBYTE)
10344 {
10345 as_bad (_("bad byte vector index (%ld)"),
10346 (long) imm_expr.X_add_number);
10347 imm_expr.X_add_number = 0;
10348 }
10349
10350 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10351 imm_expr.X_op = O_absent;
10352 s = expr_end;
10353 continue;
10354
10355 case '%':
10356 my_getExpression (&imm_expr, s);
10357 check_absolute_expr (ip, &imm_expr);
10358
10359 if ((unsigned long) imm_expr.X_add_number
10360 > (unsigned long) OP_MASK_VECALIGN)
10361 {
10362 as_bad (_("bad byte vector index (%ld)"),
10363 (long) imm_expr.X_add_number);
10364 imm_expr.X_add_number = 0;
10365 }
10366
10367 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10368 imm_expr.X_op = O_absent;
10369 s = expr_end;
10370 continue;
10371
10372 default:
10373 as_bad (_("Bad char = '%c'\n"), *args);
10374 internalError ();
10375 }
10376 break;
10377 }
10378 /* Args don't match. */
10379 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10380 !strcmp (insn->name, insn[1].name))
10381 {
10382 ++insn;
10383 s = argsStart;
10384 insn_error = _("Illegal operands");
10385 continue;
10386 }
10387 if (save_c)
10388 *(--argsStart) = save_c;
10389 insn_error = _("Illegal operands");
10390 return;
10391 }
10392 }
10393
10394 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10395
10396 /* This routine assembles an instruction into its binary format when
10397 assembling for the mips16. As a side effect, it sets one of the
10398 global variables imm_reloc or offset_reloc to the type of
10399 relocation to do if one of the operands is an address expression.
10400 It also sets mips16_small and mips16_ext if the user explicitly
10401 requested a small or extended instruction. */
10402
10403 static void
10404 mips16_ip (char *str, struct mips_cl_insn *ip)
10405 {
10406 char *s;
10407 const char *args;
10408 struct mips_opcode *insn;
10409 char *argsstart;
10410 unsigned int regno;
10411 unsigned int lastregno = 0;
10412 char *s_reset;
10413 size_t i;
10414
10415 insn_error = NULL;
10416
10417 mips16_small = FALSE;
10418 mips16_ext = FALSE;
10419
10420 for (s = str; ISLOWER (*s); ++s)
10421 ;
10422 switch (*s)
10423 {
10424 case '\0':
10425 break;
10426
10427 case ' ':
10428 *s++ = '\0';
10429 break;
10430
10431 case '.':
10432 if (s[1] == 't' && s[2] == ' ')
10433 {
10434 *s = '\0';
10435 mips16_small = TRUE;
10436 s += 3;
10437 break;
10438 }
10439 else if (s[1] == 'e' && s[2] == ' ')
10440 {
10441 *s = '\0';
10442 mips16_ext = TRUE;
10443 s += 3;
10444 break;
10445 }
10446 /* Fall through. */
10447 default:
10448 insn_error = _("unknown opcode");
10449 return;
10450 }
10451
10452 if (mips_opts.noautoextend && ! mips16_ext)
10453 mips16_small = TRUE;
10454
10455 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10456 {
10457 insn_error = _("unrecognized opcode");
10458 return;
10459 }
10460
10461 argsstart = s;
10462 for (;;)
10463 {
10464 bfd_boolean ok;
10465
10466 gas_assert (strcmp (insn->name, str) == 0);
10467
10468 ok = is_opcode_valid_16 (insn);
10469 if (! ok)
10470 {
10471 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10472 && strcmp (insn->name, insn[1].name) == 0)
10473 {
10474 ++insn;
10475 continue;
10476 }
10477 else
10478 {
10479 if (!insn_error)
10480 {
10481 static char buf[100];
10482 sprintf (buf,
10483 _("opcode not supported on this processor: %s (%s)"),
10484 mips_cpu_info_from_arch (mips_opts.arch)->name,
10485 mips_cpu_info_from_isa (mips_opts.isa)->name);
10486 insn_error = buf;
10487 }
10488 return;
10489 }
10490 }
10491
10492 create_insn (ip, insn);
10493 imm_expr.X_op = O_absent;
10494 imm_reloc[0] = BFD_RELOC_UNUSED;
10495 imm_reloc[1] = BFD_RELOC_UNUSED;
10496 imm_reloc[2] = BFD_RELOC_UNUSED;
10497 imm2_expr.X_op = O_absent;
10498 offset_expr.X_op = O_absent;
10499 offset_reloc[0] = BFD_RELOC_UNUSED;
10500 offset_reloc[1] = BFD_RELOC_UNUSED;
10501 offset_reloc[2] = BFD_RELOC_UNUSED;
10502 for (args = insn->args; 1; ++args)
10503 {
10504 int c;
10505
10506 if (*s == ' ')
10507 ++s;
10508
10509 /* In this switch statement we call break if we did not find
10510 a match, continue if we did find a match, or return if we
10511 are done. */
10512
10513 c = *args;
10514 switch (c)
10515 {
10516 case '\0':
10517 if (*s == '\0')
10518 {
10519 /* Stuff the immediate value in now, if we can. */
10520 if (imm_expr.X_op == O_constant
10521 && *imm_reloc > BFD_RELOC_UNUSED
10522 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10523 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10524 && insn->pinfo != INSN_MACRO)
10525 {
10526 valueT tmp;
10527
10528 switch (*offset_reloc)
10529 {
10530 case BFD_RELOC_MIPS16_HI16_S:
10531 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10532 break;
10533
10534 case BFD_RELOC_MIPS16_HI16:
10535 tmp = imm_expr.X_add_number >> 16;
10536 break;
10537
10538 case BFD_RELOC_MIPS16_LO16:
10539 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10540 - 0x8000;
10541 break;
10542
10543 case BFD_RELOC_UNUSED:
10544 tmp = imm_expr.X_add_number;
10545 break;
10546
10547 default:
10548 internalError ();
10549 }
10550 *offset_reloc = BFD_RELOC_UNUSED;
10551
10552 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10553 tmp, TRUE, mips16_small,
10554 mips16_ext, &ip->insn_opcode,
10555 &ip->use_extend, &ip->extend);
10556 imm_expr.X_op = O_absent;
10557 *imm_reloc = BFD_RELOC_UNUSED;
10558 }
10559
10560 return;
10561 }
10562 break;
10563
10564 case ',':
10565 if (*s++ == c)
10566 continue;
10567 s--;
10568 switch (*++args)
10569 {
10570 case 'v':
10571 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10572 continue;
10573 case 'w':
10574 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10575 continue;
10576 }
10577 break;
10578
10579 case '(':
10580 case ')':
10581 if (*s++ == c)
10582 continue;
10583 break;
10584
10585 case 'v':
10586 case 'w':
10587 if (s[0] != '$')
10588 {
10589 if (c == 'v')
10590 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10591 else
10592 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10593 ++args;
10594 continue;
10595 }
10596 /* Fall through. */
10597 case 'x':
10598 case 'y':
10599 case 'z':
10600 case 'Z':
10601 case '0':
10602 case 'S':
10603 case 'R':
10604 case 'X':
10605 case 'Y':
10606 s_reset = s;
10607 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10608 {
10609 if (c == 'v' || c == 'w')
10610 {
10611 if (c == 'v')
10612 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10613 else
10614 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10615 ++args;
10616 continue;
10617 }
10618 break;
10619 }
10620
10621 if (*s == ' ')
10622 ++s;
10623 if (args[1] != *s)
10624 {
10625 if (c == 'v' || c == 'w')
10626 {
10627 regno = mips16_to_32_reg_map[lastregno];
10628 s = s_reset;
10629 ++args;
10630 }
10631 }
10632
10633 switch (c)
10634 {
10635 case 'x':
10636 case 'y':
10637 case 'z':
10638 case 'v':
10639 case 'w':
10640 case 'Z':
10641 regno = mips32_to_16_reg_map[regno];
10642 break;
10643
10644 case '0':
10645 if (regno != 0)
10646 regno = ILLEGAL_REG;
10647 break;
10648
10649 case 'S':
10650 if (regno != SP)
10651 regno = ILLEGAL_REG;
10652 break;
10653
10654 case 'R':
10655 if (regno != RA)
10656 regno = ILLEGAL_REG;
10657 break;
10658
10659 case 'X':
10660 case 'Y':
10661 if (regno == AT && mips_opts.at)
10662 {
10663 if (mips_opts.at == ATREG)
10664 as_warn (_("used $at without \".set noat\""));
10665 else
10666 as_warn (_("used $%u with \".set at=$%u\""),
10667 regno, mips_opts.at);
10668 }
10669 break;
10670
10671 default:
10672 internalError ();
10673 }
10674
10675 if (regno == ILLEGAL_REG)
10676 break;
10677
10678 switch (c)
10679 {
10680 case 'x':
10681 case 'v':
10682 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10683 break;
10684 case 'y':
10685 case 'w':
10686 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10687 break;
10688 case 'z':
10689 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10690 break;
10691 case 'Z':
10692 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10693 case '0':
10694 case 'S':
10695 case 'R':
10696 break;
10697 case 'X':
10698 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10699 break;
10700 case 'Y':
10701 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10702 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10703 break;
10704 default:
10705 internalError ();
10706 }
10707
10708 lastregno = regno;
10709 continue;
10710
10711 case 'P':
10712 if (strncmp (s, "$pc", 3) == 0)
10713 {
10714 s += 3;
10715 continue;
10716 }
10717 break;
10718
10719 case '5':
10720 case 'H':
10721 case 'W':
10722 case 'D':
10723 case 'j':
10724 case 'V':
10725 case 'C':
10726 case 'U':
10727 case 'k':
10728 case 'K':
10729 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10730 if (i > 0)
10731 {
10732 if (imm_expr.X_op != O_constant)
10733 {
10734 mips16_ext = TRUE;
10735 ip->use_extend = TRUE;
10736 ip->extend = 0;
10737 }
10738 else
10739 {
10740 /* We need to relax this instruction. */
10741 *offset_reloc = *imm_reloc;
10742 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10743 }
10744 s = expr_end;
10745 continue;
10746 }
10747 *imm_reloc = BFD_RELOC_UNUSED;
10748 /* Fall through. */
10749 case '<':
10750 case '>':
10751 case '[':
10752 case ']':
10753 case '4':
10754 case '8':
10755 my_getExpression (&imm_expr, s);
10756 if (imm_expr.X_op == O_register)
10757 {
10758 /* What we thought was an expression turned out to
10759 be a register. */
10760
10761 if (s[0] == '(' && args[1] == '(')
10762 {
10763 /* It looks like the expression was omitted
10764 before a register indirection, which means
10765 that the expression is implicitly zero. We
10766 still set up imm_expr, so that we handle
10767 explicit extensions correctly. */
10768 imm_expr.X_op = O_constant;
10769 imm_expr.X_add_number = 0;
10770 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10771 continue;
10772 }
10773
10774 break;
10775 }
10776
10777 /* We need to relax this instruction. */
10778 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10779 s = expr_end;
10780 continue;
10781
10782 case 'p':
10783 case 'q':
10784 case 'A':
10785 case 'B':
10786 case 'E':
10787 /* We use offset_reloc rather than imm_reloc for the PC
10788 relative operands. This lets macros with both
10789 immediate and address operands work correctly. */
10790 my_getExpression (&offset_expr, s);
10791
10792 if (offset_expr.X_op == O_register)
10793 break;
10794
10795 /* We need to relax this instruction. */
10796 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10797 s = expr_end;
10798 continue;
10799
10800 case '6': /* break code */
10801 my_getExpression (&imm_expr, s);
10802 check_absolute_expr (ip, &imm_expr);
10803 if ((unsigned long) imm_expr.X_add_number > 63)
10804 as_warn (_("Invalid value for `%s' (%lu)"),
10805 ip->insn_mo->name,
10806 (unsigned long) imm_expr.X_add_number);
10807 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10808 imm_expr.X_op = O_absent;
10809 s = expr_end;
10810 continue;
10811
10812 case 'a': /* 26 bit address */
10813 my_getExpression (&offset_expr, s);
10814 s = expr_end;
10815 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10816 ip->insn_opcode <<= 16;
10817 continue;
10818
10819 case 'l': /* register list for entry macro */
10820 case 'L': /* register list for exit macro */
10821 {
10822 int mask;
10823
10824 if (c == 'l')
10825 mask = 0;
10826 else
10827 mask = 7 << 3;
10828 while (*s != '\0')
10829 {
10830 unsigned int freg, reg1, reg2;
10831
10832 while (*s == ' ' || *s == ',')
10833 ++s;
10834 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10835 freg = 0;
10836 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10837 freg = 1;
10838 else
10839 {
10840 as_bad (_("can't parse register list"));
10841 break;
10842 }
10843 if (*s == ' ')
10844 ++s;
10845 if (*s != '-')
10846 reg2 = reg1;
10847 else
10848 {
10849 ++s;
10850 if (!reg_lookup (&s, freg ? RTYPE_FPU
10851 : (RTYPE_GP | RTYPE_NUM), &reg2))
10852 {
10853 as_bad (_("invalid register list"));
10854 break;
10855 }
10856 }
10857 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10858 {
10859 mask &= ~ (7 << 3);
10860 mask |= 5 << 3;
10861 }
10862 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10863 {
10864 mask &= ~ (7 << 3);
10865 mask |= 6 << 3;
10866 }
10867 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10868 mask |= (reg2 - 3) << 3;
10869 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10870 mask |= (reg2 - 15) << 1;
10871 else if (reg1 == RA && reg2 == RA)
10872 mask |= 1;
10873 else
10874 {
10875 as_bad (_("invalid register list"));
10876 break;
10877 }
10878 }
10879 /* The mask is filled in in the opcode table for the
10880 benefit of the disassembler. We remove it before
10881 applying the actual mask. */
10882 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10883 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10884 }
10885 continue;
10886
10887 case 'm': /* Register list for save insn. */
10888 case 'M': /* Register list for restore insn. */
10889 {
10890 int opcode = 0;
10891 int framesz = 0, seen_framesz = 0;
10892 int nargs = 0, statics = 0, sregs = 0;
10893
10894 while (*s != '\0')
10895 {
10896 unsigned int reg1, reg2;
10897
10898 SKIP_SPACE_TABS (s);
10899 while (*s == ',')
10900 ++s;
10901 SKIP_SPACE_TABS (s);
10902
10903 my_getExpression (&imm_expr, s);
10904 if (imm_expr.X_op == O_constant)
10905 {
10906 /* Handle the frame size. */
10907 if (seen_framesz)
10908 {
10909 as_bad (_("more than one frame size in list"));
10910 break;
10911 }
10912 seen_framesz = 1;
10913 framesz = imm_expr.X_add_number;
10914 imm_expr.X_op = O_absent;
10915 s = expr_end;
10916 continue;
10917 }
10918
10919 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10920 {
10921 as_bad (_("can't parse register list"));
10922 break;
10923 }
10924
10925 while (*s == ' ')
10926 ++s;
10927
10928 if (*s != '-')
10929 reg2 = reg1;
10930 else
10931 {
10932 ++s;
10933 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10934 || reg2 < reg1)
10935 {
10936 as_bad (_("can't parse register list"));
10937 break;
10938 }
10939 }
10940
10941 while (reg1 <= reg2)
10942 {
10943 if (reg1 >= 4 && reg1 <= 7)
10944 {
10945 if (!seen_framesz)
10946 /* args $a0-$a3 */
10947 nargs |= 1 << (reg1 - 4);
10948 else
10949 /* statics $a0-$a3 */
10950 statics |= 1 << (reg1 - 4);
10951 }
10952 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10953 {
10954 /* $s0-$s8 */
10955 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10956 }
10957 else if (reg1 == 31)
10958 {
10959 /* Add $ra to insn. */
10960 opcode |= 0x40;
10961 }
10962 else
10963 {
10964 as_bad (_("unexpected register in list"));
10965 break;
10966 }
10967 if (++reg1 == 24)
10968 reg1 = 30;
10969 }
10970 }
10971
10972 /* Encode args/statics combination. */
10973 if (nargs & statics)
10974 as_bad (_("arg/static registers overlap"));
10975 else if (nargs == 0xf)
10976 /* All $a0-$a3 are args. */
10977 opcode |= MIPS16_ALL_ARGS << 16;
10978 else if (statics == 0xf)
10979 /* All $a0-$a3 are statics. */
10980 opcode |= MIPS16_ALL_STATICS << 16;
10981 else
10982 {
10983 int narg = 0, nstat = 0;
10984
10985 /* Count arg registers. */
10986 while (nargs & 0x1)
10987 {
10988 nargs >>= 1;
10989 narg++;
10990 }
10991 if (nargs != 0)
10992 as_bad (_("invalid arg register list"));
10993
10994 /* Count static registers. */
10995 while (statics & 0x8)
10996 {
10997 statics = (statics << 1) & 0xf;
10998 nstat++;
10999 }
11000 if (statics != 0)
11001 as_bad (_("invalid static register list"));
11002
11003 /* Encode args/statics. */
11004 opcode |= ((narg << 2) | nstat) << 16;
11005 }
11006
11007 /* Encode $s0/$s1. */
11008 if (sregs & (1 << 0)) /* $s0 */
11009 opcode |= 0x20;
11010 if (sregs & (1 << 1)) /* $s1 */
11011 opcode |= 0x10;
11012 sregs >>= 2;
11013
11014 if (sregs != 0)
11015 {
11016 /* Count regs $s2-$s8. */
11017 int nsreg = 0;
11018 while (sregs & 1)
11019 {
11020 sregs >>= 1;
11021 nsreg++;
11022 }
11023 if (sregs != 0)
11024 as_bad (_("invalid static register list"));
11025 /* Encode $s2-$s8. */
11026 opcode |= nsreg << 24;
11027 }
11028
11029 /* Encode frame size. */
11030 if (!seen_framesz)
11031 as_bad (_("missing frame size"));
11032 else if ((framesz & 7) != 0 || framesz < 0
11033 || framesz > 0xff * 8)
11034 as_bad (_("invalid frame size"));
11035 else if (framesz != 128 || (opcode >> 16) != 0)
11036 {
11037 framesz /= 8;
11038 opcode |= (((framesz & 0xf0) << 16)
11039 | (framesz & 0x0f));
11040 }
11041
11042 /* Finally build the instruction. */
11043 if ((opcode >> 16) != 0 || framesz == 0)
11044 {
11045 ip->use_extend = TRUE;
11046 ip->extend = opcode >> 16;
11047 }
11048 ip->insn_opcode |= opcode & 0x7f;
11049 }
11050 continue;
11051
11052 case 'e': /* extend code */
11053 my_getExpression (&imm_expr, s);
11054 check_absolute_expr (ip, &imm_expr);
11055 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
11056 {
11057 as_warn (_("Invalid value for `%s' (%lu)"),
11058 ip->insn_mo->name,
11059 (unsigned long) imm_expr.X_add_number);
11060 imm_expr.X_add_number &= 0x7ff;
11061 }
11062 ip->insn_opcode |= imm_expr.X_add_number;
11063 imm_expr.X_op = O_absent;
11064 s = expr_end;
11065 continue;
11066
11067 default:
11068 internalError ();
11069 }
11070 break;
11071 }
11072
11073 /* Args don't match. */
11074 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
11075 strcmp (insn->name, insn[1].name) == 0)
11076 {
11077 ++insn;
11078 s = argsstart;
11079 continue;
11080 }
11081
11082 insn_error = _("illegal operands");
11083
11084 return;
11085 }
11086 }
11087
11088 /* This structure holds information we know about a mips16 immediate
11089 argument type. */
11090
11091 struct mips16_immed_operand
11092 {
11093 /* The type code used in the argument string in the opcode table. */
11094 int type;
11095 /* The number of bits in the short form of the opcode. */
11096 int nbits;
11097 /* The number of bits in the extended form of the opcode. */
11098 int extbits;
11099 /* The amount by which the short form is shifted when it is used;
11100 for example, the sw instruction has a shift count of 2. */
11101 int shift;
11102 /* The amount by which the short form is shifted when it is stored
11103 into the instruction code. */
11104 int op_shift;
11105 /* Non-zero if the short form is unsigned. */
11106 int unsp;
11107 /* Non-zero if the extended form is unsigned. */
11108 int extu;
11109 /* Non-zero if the value is PC relative. */
11110 int pcrel;
11111 };
11112
11113 /* The mips16 immediate operand types. */
11114
11115 static const struct mips16_immed_operand mips16_immed_operands[] =
11116 {
11117 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
11118 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
11119 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
11120 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
11121 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
11122 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
11123 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
11124 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
11125 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
11126 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
11127 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
11128 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
11129 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
11130 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
11131 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
11132 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
11133 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
11134 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
11135 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
11136 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
11137 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
11138 };
11139
11140 #define MIPS16_NUM_IMMED \
11141 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
11142
11143 /* Handle a mips16 instruction with an immediate value. This or's the
11144 small immediate value into *INSN. It sets *USE_EXTEND to indicate
11145 whether an extended value is needed; if one is needed, it sets
11146 *EXTEND to the value. The argument type is TYPE. The value is VAL.
11147 If SMALL is true, an unextended opcode was explicitly requested.
11148 If EXT is true, an extended opcode was explicitly requested. If
11149 WARN is true, warn if EXT does not match reality. */
11150
11151 static void
11152 mips16_immed (char *file, unsigned int line, int type, offsetT val,
11153 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
11154 unsigned long *insn, bfd_boolean *use_extend,
11155 unsigned short *extend)
11156 {
11157 const struct mips16_immed_operand *op;
11158 int mintiny, maxtiny;
11159 bfd_boolean needext;
11160
11161 op = mips16_immed_operands;
11162 while (op->type != type)
11163 {
11164 ++op;
11165 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
11166 }
11167
11168 if (op->unsp)
11169 {
11170 if (type == '<' || type == '>' || type == '[' || type == ']')
11171 {
11172 mintiny = 1;
11173 maxtiny = 1 << op->nbits;
11174 }
11175 else
11176 {
11177 mintiny = 0;
11178 maxtiny = (1 << op->nbits) - 1;
11179 }
11180 }
11181 else
11182 {
11183 mintiny = - (1 << (op->nbits - 1));
11184 maxtiny = (1 << (op->nbits - 1)) - 1;
11185 }
11186
11187 /* Branch offsets have an implicit 0 in the lowest bit. */
11188 if (type == 'p' || type == 'q')
11189 val /= 2;
11190
11191 if ((val & ((1 << op->shift) - 1)) != 0
11192 || val < (mintiny << op->shift)
11193 || val > (maxtiny << op->shift))
11194 needext = TRUE;
11195 else
11196 needext = FALSE;
11197
11198 if (warn && ext && ! needext)
11199 as_warn_where (file, line,
11200 _("extended operand requested but not required"));
11201 if (small && needext)
11202 as_bad_where (file, line, _("invalid unextended operand value"));
11203
11204 if (small || (! ext && ! needext))
11205 {
11206 int insnval;
11207
11208 *use_extend = FALSE;
11209 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
11210 insnval <<= op->op_shift;
11211 *insn |= insnval;
11212 }
11213 else
11214 {
11215 long minext, maxext;
11216 int extval;
11217
11218 if (op->extu)
11219 {
11220 minext = 0;
11221 maxext = (1 << op->extbits) - 1;
11222 }
11223 else
11224 {
11225 minext = - (1 << (op->extbits - 1));
11226 maxext = (1 << (op->extbits - 1)) - 1;
11227 }
11228 if (val < minext || val > maxext)
11229 as_bad_where (file, line,
11230 _("operand value out of range for instruction"));
11231
11232 *use_extend = TRUE;
11233 if (op->extbits == 16)
11234 {
11235 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
11236 val &= 0x1f;
11237 }
11238 else if (op->extbits == 15)
11239 {
11240 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
11241 val &= 0xf;
11242 }
11243 else
11244 {
11245 extval = ((val & 0x1f) << 6) | (val & 0x20);
11246 val = 0;
11247 }
11248
11249 *extend = (unsigned short) extval;
11250 *insn |= val;
11251 }
11252 }
11253 \f
11254 struct percent_op_match
11255 {
11256 const char *str;
11257 bfd_reloc_code_real_type reloc;
11258 };
11259
11260 static const struct percent_op_match mips_percent_op[] =
11261 {
11262 {"%lo", BFD_RELOC_LO16},
11263 #ifdef OBJ_ELF
11264 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
11265 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
11266 {"%call16", BFD_RELOC_MIPS_CALL16},
11267 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
11268 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
11269 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
11270 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
11271 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
11272 {"%got", BFD_RELOC_MIPS_GOT16},
11273 {"%gp_rel", BFD_RELOC_GPREL16},
11274 {"%half", BFD_RELOC_16},
11275 {"%highest", BFD_RELOC_MIPS_HIGHEST},
11276 {"%higher", BFD_RELOC_MIPS_HIGHER},
11277 {"%neg", BFD_RELOC_MIPS_SUB},
11278 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11279 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11280 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11281 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11282 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11283 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11284 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11285 #endif
11286 {"%hi", BFD_RELOC_HI16_S}
11287 };
11288
11289 static const struct percent_op_match mips16_percent_op[] =
11290 {
11291 {"%lo", BFD_RELOC_MIPS16_LO16},
11292 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11293 {"%got", BFD_RELOC_MIPS16_GOT16},
11294 {"%call16", BFD_RELOC_MIPS16_CALL16},
11295 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11296 };
11297
11298
11299 /* Return true if *STR points to a relocation operator. When returning true,
11300 move *STR over the operator and store its relocation code in *RELOC.
11301 Leave both *STR and *RELOC alone when returning false. */
11302
11303 static bfd_boolean
11304 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11305 {
11306 const struct percent_op_match *percent_op;
11307 size_t limit, i;
11308
11309 if (mips_opts.mips16)
11310 {
11311 percent_op = mips16_percent_op;
11312 limit = ARRAY_SIZE (mips16_percent_op);
11313 }
11314 else
11315 {
11316 percent_op = mips_percent_op;
11317 limit = ARRAY_SIZE (mips_percent_op);
11318 }
11319
11320 for (i = 0; i < limit; i++)
11321 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11322 {
11323 int len = strlen (percent_op[i].str);
11324
11325 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11326 continue;
11327
11328 *str += strlen (percent_op[i].str);
11329 *reloc = percent_op[i].reloc;
11330
11331 /* Check whether the output BFD supports this relocation.
11332 If not, issue an error and fall back on something safe. */
11333 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11334 {
11335 as_bad (_("relocation %s isn't supported by the current ABI"),
11336 percent_op[i].str);
11337 *reloc = BFD_RELOC_UNUSED;
11338 }
11339 return TRUE;
11340 }
11341 return FALSE;
11342 }
11343
11344
11345 /* Parse string STR as a 16-bit relocatable operand. Store the
11346 expression in *EP and the relocations in the array starting
11347 at RELOC. Return the number of relocation operators used.
11348
11349 On exit, EXPR_END points to the first character after the expression. */
11350
11351 static size_t
11352 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11353 char *str)
11354 {
11355 bfd_reloc_code_real_type reversed_reloc[3];
11356 size_t reloc_index, i;
11357 int crux_depth, str_depth;
11358 char *crux;
11359
11360 /* Search for the start of the main expression, recoding relocations
11361 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11362 of the main expression and with CRUX_DEPTH containing the number
11363 of open brackets at that point. */
11364 reloc_index = -1;
11365 str_depth = 0;
11366 do
11367 {
11368 reloc_index++;
11369 crux = str;
11370 crux_depth = str_depth;
11371
11372 /* Skip over whitespace and brackets, keeping count of the number
11373 of brackets. */
11374 while (*str == ' ' || *str == '\t' || *str == '(')
11375 if (*str++ == '(')
11376 str_depth++;
11377 }
11378 while (*str == '%'
11379 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11380 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11381
11382 my_getExpression (ep, crux);
11383 str = expr_end;
11384
11385 /* Match every open bracket. */
11386 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11387 if (*str++ == ')')
11388 crux_depth--;
11389
11390 if (crux_depth > 0)
11391 as_bad (_("unclosed '('"));
11392
11393 expr_end = str;
11394
11395 if (reloc_index != 0)
11396 {
11397 prev_reloc_op_frag = frag_now;
11398 for (i = 0; i < reloc_index; i++)
11399 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11400 }
11401
11402 return reloc_index;
11403 }
11404
11405 static void
11406 my_getExpression (expressionS *ep, char *str)
11407 {
11408 char *save_in;
11409
11410 save_in = input_line_pointer;
11411 input_line_pointer = str;
11412 expression (ep);
11413 expr_end = input_line_pointer;
11414 input_line_pointer = save_in;
11415 }
11416
11417 char *
11418 md_atof (int type, char *litP, int *sizeP)
11419 {
11420 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11421 }
11422
11423 void
11424 md_number_to_chars (char *buf, valueT val, int n)
11425 {
11426 if (target_big_endian)
11427 number_to_chars_bigendian (buf, val, n);
11428 else
11429 number_to_chars_littleendian (buf, val, n);
11430 }
11431 \f
11432 #ifdef OBJ_ELF
11433 static int support_64bit_objects(void)
11434 {
11435 const char **list, **l;
11436 int yes;
11437
11438 list = bfd_target_list ();
11439 for (l = list; *l != NULL; l++)
11440 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
11441 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
11442 break;
11443 yes = (*l != NULL);
11444 free (list);
11445 return yes;
11446 }
11447 #endif /* OBJ_ELF */
11448
11449 const char *md_shortopts = "O::g::G:";
11450
11451 enum options
11452 {
11453 OPTION_MARCH = OPTION_MD_BASE,
11454 OPTION_MTUNE,
11455 OPTION_MIPS1,
11456 OPTION_MIPS2,
11457 OPTION_MIPS3,
11458 OPTION_MIPS4,
11459 OPTION_MIPS5,
11460 OPTION_MIPS32,
11461 OPTION_MIPS64,
11462 OPTION_MIPS32R2,
11463 OPTION_MIPS64R2,
11464 OPTION_MIPS16,
11465 OPTION_NO_MIPS16,
11466 OPTION_MIPS3D,
11467 OPTION_NO_MIPS3D,
11468 OPTION_MDMX,
11469 OPTION_NO_MDMX,
11470 OPTION_DSP,
11471 OPTION_NO_DSP,
11472 OPTION_MT,
11473 OPTION_NO_MT,
11474 OPTION_SMARTMIPS,
11475 OPTION_NO_SMARTMIPS,
11476 OPTION_DSPR2,
11477 OPTION_NO_DSPR2,
11478 OPTION_COMPAT_ARCH_BASE,
11479 OPTION_M4650,
11480 OPTION_NO_M4650,
11481 OPTION_M4010,
11482 OPTION_NO_M4010,
11483 OPTION_M4100,
11484 OPTION_NO_M4100,
11485 OPTION_M3900,
11486 OPTION_NO_M3900,
11487 OPTION_M7000_HILO_FIX,
11488 OPTION_MNO_7000_HILO_FIX,
11489 OPTION_FIX_24K,
11490 OPTION_NO_FIX_24K,
11491 OPTION_FIX_LOONGSON2F_JUMP,
11492 OPTION_NO_FIX_LOONGSON2F_JUMP,
11493 OPTION_FIX_LOONGSON2F_NOP,
11494 OPTION_NO_FIX_LOONGSON2F_NOP,
11495 OPTION_FIX_VR4120,
11496 OPTION_NO_FIX_VR4120,
11497 OPTION_FIX_VR4130,
11498 OPTION_NO_FIX_VR4130,
11499 OPTION_FIX_CN63XXP1,
11500 OPTION_NO_FIX_CN63XXP1,
11501 OPTION_TRAP,
11502 OPTION_BREAK,
11503 OPTION_EB,
11504 OPTION_EL,
11505 OPTION_FP32,
11506 OPTION_GP32,
11507 OPTION_CONSTRUCT_FLOATS,
11508 OPTION_NO_CONSTRUCT_FLOATS,
11509 OPTION_FP64,
11510 OPTION_GP64,
11511 OPTION_RELAX_BRANCH,
11512 OPTION_NO_RELAX_BRANCH,
11513 OPTION_MSHARED,
11514 OPTION_MNO_SHARED,
11515 OPTION_MSYM32,
11516 OPTION_MNO_SYM32,
11517 OPTION_SOFT_FLOAT,
11518 OPTION_HARD_FLOAT,
11519 OPTION_SINGLE_FLOAT,
11520 OPTION_DOUBLE_FLOAT,
11521 OPTION_32,
11522 #ifdef OBJ_ELF
11523 OPTION_CALL_SHARED,
11524 OPTION_CALL_NONPIC,
11525 OPTION_NON_SHARED,
11526 OPTION_XGOT,
11527 OPTION_MABI,
11528 OPTION_N32,
11529 OPTION_64,
11530 OPTION_MDEBUG,
11531 OPTION_NO_MDEBUG,
11532 OPTION_PDR,
11533 OPTION_NO_PDR,
11534 OPTION_MVXWORKS_PIC,
11535 #endif /* OBJ_ELF */
11536 OPTION_END_OF_ENUM
11537 };
11538
11539 struct option md_longopts[] =
11540 {
11541 /* Options which specify architecture. */
11542 {"march", required_argument, NULL, OPTION_MARCH},
11543 {"mtune", required_argument, NULL, OPTION_MTUNE},
11544 {"mips0", no_argument, NULL, OPTION_MIPS1},
11545 {"mips1", no_argument, NULL, OPTION_MIPS1},
11546 {"mips2", no_argument, NULL, OPTION_MIPS2},
11547 {"mips3", no_argument, NULL, OPTION_MIPS3},
11548 {"mips4", no_argument, NULL, OPTION_MIPS4},
11549 {"mips5", no_argument, NULL, OPTION_MIPS5},
11550 {"mips32", no_argument, NULL, OPTION_MIPS32},
11551 {"mips64", no_argument, NULL, OPTION_MIPS64},
11552 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11553 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11554
11555 /* Options which specify Application Specific Extensions (ASEs). */
11556 {"mips16", no_argument, NULL, OPTION_MIPS16},
11557 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11558 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11559 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11560 {"mdmx", no_argument, NULL, OPTION_MDMX},
11561 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11562 {"mdsp", no_argument, NULL, OPTION_DSP},
11563 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11564 {"mmt", no_argument, NULL, OPTION_MT},
11565 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11566 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11567 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11568 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11569 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11570
11571 /* Old-style architecture options. Don't add more of these. */
11572 {"m4650", no_argument, NULL, OPTION_M4650},
11573 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11574 {"m4010", no_argument, NULL, OPTION_M4010},
11575 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11576 {"m4100", no_argument, NULL, OPTION_M4100},
11577 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11578 {"m3900", no_argument, NULL, OPTION_M3900},
11579 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11580
11581 /* Options which enable bug fixes. */
11582 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11583 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11584 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11585 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11586 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11587 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11588 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11589 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11590 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11591 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11592 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11593 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11594 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11595 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11596 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11597
11598 /* Miscellaneous options. */
11599 {"trap", no_argument, NULL, OPTION_TRAP},
11600 {"no-break", no_argument, NULL, OPTION_TRAP},
11601 {"break", no_argument, NULL, OPTION_BREAK},
11602 {"no-trap", no_argument, NULL, OPTION_BREAK},
11603 {"EB", no_argument, NULL, OPTION_EB},
11604 {"EL", no_argument, NULL, OPTION_EL},
11605 {"mfp32", no_argument, NULL, OPTION_FP32},
11606 {"mgp32", no_argument, NULL, OPTION_GP32},
11607 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11608 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11609 {"mfp64", no_argument, NULL, OPTION_FP64},
11610 {"mgp64", no_argument, NULL, OPTION_GP64},
11611 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11612 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11613 {"mshared", no_argument, NULL, OPTION_MSHARED},
11614 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11615 {"msym32", no_argument, NULL, OPTION_MSYM32},
11616 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11617 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11618 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11619 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11620 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11621
11622 /* Strictly speaking this next option is ELF specific,
11623 but we allow it for other ports as well in order to
11624 make testing easier. */
11625 {"32", no_argument, NULL, OPTION_32},
11626
11627 /* ELF-specific options. */
11628 #ifdef OBJ_ELF
11629 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11630 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11631 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11632 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11633 {"xgot", no_argument, NULL, OPTION_XGOT},
11634 {"mabi", required_argument, NULL, OPTION_MABI},
11635 {"n32", no_argument, NULL, OPTION_N32},
11636 {"64", no_argument, NULL, OPTION_64},
11637 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11638 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11639 {"mpdr", no_argument, NULL, OPTION_PDR},
11640 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11641 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11642 #endif /* OBJ_ELF */
11643
11644 {NULL, no_argument, NULL, 0}
11645 };
11646 size_t md_longopts_size = sizeof (md_longopts);
11647
11648 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11649 NEW_VALUE. Warn if another value was already specified. Note:
11650 we have to defer parsing the -march and -mtune arguments in order
11651 to handle 'from-abi' correctly, since the ABI might be specified
11652 in a later argument. */
11653
11654 static void
11655 mips_set_option_string (const char **string_ptr, const char *new_value)
11656 {
11657 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11658 as_warn (_("A different %s was already specified, is now %s"),
11659 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11660 new_value);
11661
11662 *string_ptr = new_value;
11663 }
11664
11665 int
11666 md_parse_option (int c, char *arg)
11667 {
11668 switch (c)
11669 {
11670 case OPTION_CONSTRUCT_FLOATS:
11671 mips_disable_float_construction = 0;
11672 break;
11673
11674 case OPTION_NO_CONSTRUCT_FLOATS:
11675 mips_disable_float_construction = 1;
11676 break;
11677
11678 case OPTION_TRAP:
11679 mips_trap = 1;
11680 break;
11681
11682 case OPTION_BREAK:
11683 mips_trap = 0;
11684 break;
11685
11686 case OPTION_EB:
11687 target_big_endian = 1;
11688 break;
11689
11690 case OPTION_EL:
11691 target_big_endian = 0;
11692 break;
11693
11694 case 'O':
11695 if (arg == NULL)
11696 mips_optimize = 1;
11697 else if (arg[0] == '0')
11698 mips_optimize = 0;
11699 else if (arg[0] == '1')
11700 mips_optimize = 1;
11701 else
11702 mips_optimize = 2;
11703 break;
11704
11705 case 'g':
11706 if (arg == NULL)
11707 mips_debug = 2;
11708 else
11709 mips_debug = atoi (arg);
11710 break;
11711
11712 case OPTION_MIPS1:
11713 file_mips_isa = ISA_MIPS1;
11714 break;
11715
11716 case OPTION_MIPS2:
11717 file_mips_isa = ISA_MIPS2;
11718 break;
11719
11720 case OPTION_MIPS3:
11721 file_mips_isa = ISA_MIPS3;
11722 break;
11723
11724 case OPTION_MIPS4:
11725 file_mips_isa = ISA_MIPS4;
11726 break;
11727
11728 case OPTION_MIPS5:
11729 file_mips_isa = ISA_MIPS5;
11730 break;
11731
11732 case OPTION_MIPS32:
11733 file_mips_isa = ISA_MIPS32;
11734 break;
11735
11736 case OPTION_MIPS32R2:
11737 file_mips_isa = ISA_MIPS32R2;
11738 break;
11739
11740 case OPTION_MIPS64R2:
11741 file_mips_isa = ISA_MIPS64R2;
11742 break;
11743
11744 case OPTION_MIPS64:
11745 file_mips_isa = ISA_MIPS64;
11746 break;
11747
11748 case OPTION_MTUNE:
11749 mips_set_option_string (&mips_tune_string, arg);
11750 break;
11751
11752 case OPTION_MARCH:
11753 mips_set_option_string (&mips_arch_string, arg);
11754 break;
11755
11756 case OPTION_M4650:
11757 mips_set_option_string (&mips_arch_string, "4650");
11758 mips_set_option_string (&mips_tune_string, "4650");
11759 break;
11760
11761 case OPTION_NO_M4650:
11762 break;
11763
11764 case OPTION_M4010:
11765 mips_set_option_string (&mips_arch_string, "4010");
11766 mips_set_option_string (&mips_tune_string, "4010");
11767 break;
11768
11769 case OPTION_NO_M4010:
11770 break;
11771
11772 case OPTION_M4100:
11773 mips_set_option_string (&mips_arch_string, "4100");
11774 mips_set_option_string (&mips_tune_string, "4100");
11775 break;
11776
11777 case OPTION_NO_M4100:
11778 break;
11779
11780 case OPTION_M3900:
11781 mips_set_option_string (&mips_arch_string, "3900");
11782 mips_set_option_string (&mips_tune_string, "3900");
11783 break;
11784
11785 case OPTION_NO_M3900:
11786 break;
11787
11788 case OPTION_MDMX:
11789 mips_opts.ase_mdmx = 1;
11790 break;
11791
11792 case OPTION_NO_MDMX:
11793 mips_opts.ase_mdmx = 0;
11794 break;
11795
11796 case OPTION_DSP:
11797 mips_opts.ase_dsp = 1;
11798 mips_opts.ase_dspr2 = 0;
11799 break;
11800
11801 case OPTION_NO_DSP:
11802 mips_opts.ase_dsp = 0;
11803 mips_opts.ase_dspr2 = 0;
11804 break;
11805
11806 case OPTION_DSPR2:
11807 mips_opts.ase_dspr2 = 1;
11808 mips_opts.ase_dsp = 1;
11809 break;
11810
11811 case OPTION_NO_DSPR2:
11812 mips_opts.ase_dspr2 = 0;
11813 mips_opts.ase_dsp = 0;
11814 break;
11815
11816 case OPTION_MT:
11817 mips_opts.ase_mt = 1;
11818 break;
11819
11820 case OPTION_NO_MT:
11821 mips_opts.ase_mt = 0;
11822 break;
11823
11824 case OPTION_MIPS16:
11825 mips_opts.mips16 = 1;
11826 mips_no_prev_insn ();
11827 break;
11828
11829 case OPTION_NO_MIPS16:
11830 mips_opts.mips16 = 0;
11831 mips_no_prev_insn ();
11832 break;
11833
11834 case OPTION_MIPS3D:
11835 mips_opts.ase_mips3d = 1;
11836 break;
11837
11838 case OPTION_NO_MIPS3D:
11839 mips_opts.ase_mips3d = 0;
11840 break;
11841
11842 case OPTION_SMARTMIPS:
11843 mips_opts.ase_smartmips = 1;
11844 break;
11845
11846 case OPTION_NO_SMARTMIPS:
11847 mips_opts.ase_smartmips = 0;
11848 break;
11849
11850 case OPTION_FIX_24K:
11851 mips_fix_24k = 1;
11852 break;
11853
11854 case OPTION_NO_FIX_24K:
11855 mips_fix_24k = 0;
11856 break;
11857
11858 case OPTION_FIX_LOONGSON2F_JUMP:
11859 mips_fix_loongson2f_jump = TRUE;
11860 break;
11861
11862 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11863 mips_fix_loongson2f_jump = FALSE;
11864 break;
11865
11866 case OPTION_FIX_LOONGSON2F_NOP:
11867 mips_fix_loongson2f_nop = TRUE;
11868 break;
11869
11870 case OPTION_NO_FIX_LOONGSON2F_NOP:
11871 mips_fix_loongson2f_nop = FALSE;
11872 break;
11873
11874 case OPTION_FIX_VR4120:
11875 mips_fix_vr4120 = 1;
11876 break;
11877
11878 case OPTION_NO_FIX_VR4120:
11879 mips_fix_vr4120 = 0;
11880 break;
11881
11882 case OPTION_FIX_VR4130:
11883 mips_fix_vr4130 = 1;
11884 break;
11885
11886 case OPTION_NO_FIX_VR4130:
11887 mips_fix_vr4130 = 0;
11888 break;
11889
11890 case OPTION_FIX_CN63XXP1:
11891 mips_fix_cn63xxp1 = TRUE;
11892 break;
11893
11894 case OPTION_NO_FIX_CN63XXP1:
11895 mips_fix_cn63xxp1 = FALSE;
11896 break;
11897
11898 case OPTION_RELAX_BRANCH:
11899 mips_relax_branch = 1;
11900 break;
11901
11902 case OPTION_NO_RELAX_BRANCH:
11903 mips_relax_branch = 0;
11904 break;
11905
11906 case OPTION_MSHARED:
11907 mips_in_shared = TRUE;
11908 break;
11909
11910 case OPTION_MNO_SHARED:
11911 mips_in_shared = FALSE;
11912 break;
11913
11914 case OPTION_MSYM32:
11915 mips_opts.sym32 = TRUE;
11916 break;
11917
11918 case OPTION_MNO_SYM32:
11919 mips_opts.sym32 = FALSE;
11920 break;
11921
11922 #ifdef OBJ_ELF
11923 /* When generating ELF code, we permit -KPIC and -call_shared to
11924 select SVR4_PIC, and -non_shared to select no PIC. This is
11925 intended to be compatible with Irix 5. */
11926 case OPTION_CALL_SHARED:
11927 if (!IS_ELF)
11928 {
11929 as_bad (_("-call_shared is supported only for ELF format"));
11930 return 0;
11931 }
11932 mips_pic = SVR4_PIC;
11933 mips_abicalls = TRUE;
11934 break;
11935
11936 case OPTION_CALL_NONPIC:
11937 if (!IS_ELF)
11938 {
11939 as_bad (_("-call_nonpic is supported only for ELF format"));
11940 return 0;
11941 }
11942 mips_pic = NO_PIC;
11943 mips_abicalls = TRUE;
11944 break;
11945
11946 case OPTION_NON_SHARED:
11947 if (!IS_ELF)
11948 {
11949 as_bad (_("-non_shared is supported only for ELF format"));
11950 return 0;
11951 }
11952 mips_pic = NO_PIC;
11953 mips_abicalls = FALSE;
11954 break;
11955
11956 /* The -xgot option tells the assembler to use 32 bit offsets
11957 when accessing the got in SVR4_PIC mode. It is for Irix
11958 compatibility. */
11959 case OPTION_XGOT:
11960 mips_big_got = 1;
11961 break;
11962 #endif /* OBJ_ELF */
11963
11964 case 'G':
11965 g_switch_value = atoi (arg);
11966 g_switch_seen = 1;
11967 break;
11968
11969 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11970 and -mabi=64. */
11971 case OPTION_32:
11972 if (IS_ELF)
11973 mips_abi = O32_ABI;
11974 /* We silently ignore -32 for non-ELF targets. This greatly
11975 simplifies the construction of the MIPS GAS test cases. */
11976 break;
11977
11978 #ifdef OBJ_ELF
11979 case OPTION_N32:
11980 if (!IS_ELF)
11981 {
11982 as_bad (_("-n32 is supported for ELF format only"));
11983 return 0;
11984 }
11985 mips_abi = N32_ABI;
11986 break;
11987
11988 case OPTION_64:
11989 if (!IS_ELF)
11990 {
11991 as_bad (_("-64 is supported for ELF format only"));
11992 return 0;
11993 }
11994 mips_abi = N64_ABI;
11995 if (!support_64bit_objects())
11996 as_fatal (_("No compiled in support for 64 bit object file format"));
11997 break;
11998 #endif /* OBJ_ELF */
11999
12000 case OPTION_GP32:
12001 file_mips_gp32 = 1;
12002 break;
12003
12004 case OPTION_GP64:
12005 file_mips_gp32 = 0;
12006 break;
12007
12008 case OPTION_FP32:
12009 file_mips_fp32 = 1;
12010 break;
12011
12012 case OPTION_FP64:
12013 file_mips_fp32 = 0;
12014 break;
12015
12016 case OPTION_SINGLE_FLOAT:
12017 file_mips_single_float = 1;
12018 break;
12019
12020 case OPTION_DOUBLE_FLOAT:
12021 file_mips_single_float = 0;
12022 break;
12023
12024 case OPTION_SOFT_FLOAT:
12025 file_mips_soft_float = 1;
12026 break;
12027
12028 case OPTION_HARD_FLOAT:
12029 file_mips_soft_float = 0;
12030 break;
12031
12032 #ifdef OBJ_ELF
12033 case OPTION_MABI:
12034 if (!IS_ELF)
12035 {
12036 as_bad (_("-mabi is supported for ELF format only"));
12037 return 0;
12038 }
12039 if (strcmp (arg, "32") == 0)
12040 mips_abi = O32_ABI;
12041 else if (strcmp (arg, "o64") == 0)
12042 mips_abi = O64_ABI;
12043 else if (strcmp (arg, "n32") == 0)
12044 mips_abi = N32_ABI;
12045 else if (strcmp (arg, "64") == 0)
12046 {
12047 mips_abi = N64_ABI;
12048 if (! support_64bit_objects())
12049 as_fatal (_("No compiled in support for 64 bit object file "
12050 "format"));
12051 }
12052 else if (strcmp (arg, "eabi") == 0)
12053 mips_abi = EABI_ABI;
12054 else
12055 {
12056 as_fatal (_("invalid abi -mabi=%s"), arg);
12057 return 0;
12058 }
12059 break;
12060 #endif /* OBJ_ELF */
12061
12062 case OPTION_M7000_HILO_FIX:
12063 mips_7000_hilo_fix = TRUE;
12064 break;
12065
12066 case OPTION_MNO_7000_HILO_FIX:
12067 mips_7000_hilo_fix = FALSE;
12068 break;
12069
12070 #ifdef OBJ_ELF
12071 case OPTION_MDEBUG:
12072 mips_flag_mdebug = TRUE;
12073 break;
12074
12075 case OPTION_NO_MDEBUG:
12076 mips_flag_mdebug = FALSE;
12077 break;
12078
12079 case OPTION_PDR:
12080 mips_flag_pdr = TRUE;
12081 break;
12082
12083 case OPTION_NO_PDR:
12084 mips_flag_pdr = FALSE;
12085 break;
12086
12087 case OPTION_MVXWORKS_PIC:
12088 mips_pic = VXWORKS_PIC;
12089 break;
12090 #endif /* OBJ_ELF */
12091
12092 default:
12093 return 0;
12094 }
12095
12096 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
12097
12098 return 1;
12099 }
12100 \f
12101 /* Set up globals to generate code for the ISA or processor
12102 described by INFO. */
12103
12104 static void
12105 mips_set_architecture (const struct mips_cpu_info *info)
12106 {
12107 if (info != 0)
12108 {
12109 file_mips_arch = info->cpu;
12110 mips_opts.arch = info->cpu;
12111 mips_opts.isa = info->isa;
12112 }
12113 }
12114
12115
12116 /* Likewise for tuning. */
12117
12118 static void
12119 mips_set_tune (const struct mips_cpu_info *info)
12120 {
12121 if (info != 0)
12122 mips_tune = info->cpu;
12123 }
12124
12125
12126 void
12127 mips_after_parse_args (void)
12128 {
12129 const struct mips_cpu_info *arch_info = 0;
12130 const struct mips_cpu_info *tune_info = 0;
12131
12132 /* GP relative stuff not working for PE */
12133 if (strncmp (TARGET_OS, "pe", 2) == 0)
12134 {
12135 if (g_switch_seen && g_switch_value != 0)
12136 as_bad (_("-G not supported in this configuration."));
12137 g_switch_value = 0;
12138 }
12139
12140 if (mips_abi == NO_ABI)
12141 mips_abi = MIPS_DEFAULT_ABI;
12142
12143 /* The following code determines the architecture and register size.
12144 Similar code was added to GCC 3.3 (see override_options() in
12145 config/mips/mips.c). The GAS and GCC code should be kept in sync
12146 as much as possible. */
12147
12148 if (mips_arch_string != 0)
12149 arch_info = mips_parse_cpu ("-march", mips_arch_string);
12150
12151 if (file_mips_isa != ISA_UNKNOWN)
12152 {
12153 /* Handle -mipsN. At this point, file_mips_isa contains the
12154 ISA level specified by -mipsN, while arch_info->isa contains
12155 the -march selection (if any). */
12156 if (arch_info != 0)
12157 {
12158 /* -march takes precedence over -mipsN, since it is more descriptive.
12159 There's no harm in specifying both as long as the ISA levels
12160 are the same. */
12161 if (file_mips_isa != arch_info->isa)
12162 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
12163 mips_cpu_info_from_isa (file_mips_isa)->name,
12164 mips_cpu_info_from_isa (arch_info->isa)->name);
12165 }
12166 else
12167 arch_info = mips_cpu_info_from_isa (file_mips_isa);
12168 }
12169
12170 if (arch_info == 0)
12171 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
12172
12173 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
12174 as_bad (_("-march=%s is not compatible with the selected ABI"),
12175 arch_info->name);
12176
12177 mips_set_architecture (arch_info);
12178
12179 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
12180 if (mips_tune_string != 0)
12181 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
12182
12183 if (tune_info == 0)
12184 mips_set_tune (arch_info);
12185 else
12186 mips_set_tune (tune_info);
12187
12188 if (file_mips_gp32 >= 0)
12189 {
12190 /* The user specified the size of the integer registers. Make sure
12191 it agrees with the ABI and ISA. */
12192 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
12193 as_bad (_("-mgp64 used with a 32-bit processor"));
12194 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
12195 as_bad (_("-mgp32 used with a 64-bit ABI"));
12196 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
12197 as_bad (_("-mgp64 used with a 32-bit ABI"));
12198 }
12199 else
12200 {
12201 /* Infer the integer register size from the ABI and processor.
12202 Restrict ourselves to 32-bit registers if that's all the
12203 processor has, or if the ABI cannot handle 64-bit registers. */
12204 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
12205 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
12206 }
12207
12208 switch (file_mips_fp32)
12209 {
12210 default:
12211 case -1:
12212 /* No user specified float register size.
12213 ??? GAS treats single-float processors as though they had 64-bit
12214 float registers (although it complains when double-precision
12215 instructions are used). As things stand, saying they have 32-bit
12216 registers would lead to spurious "register must be even" messages.
12217 So here we assume float registers are never smaller than the
12218 integer ones. */
12219 if (file_mips_gp32 == 0)
12220 /* 64-bit integer registers implies 64-bit float registers. */
12221 file_mips_fp32 = 0;
12222 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
12223 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
12224 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
12225 file_mips_fp32 = 0;
12226 else
12227 /* 32-bit float registers. */
12228 file_mips_fp32 = 1;
12229 break;
12230
12231 /* The user specified the size of the float registers. Check if it
12232 agrees with the ABI and ISA. */
12233 case 0:
12234 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12235 as_bad (_("-mfp64 used with a 32-bit fpu"));
12236 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
12237 && !ISA_HAS_MXHC1 (mips_opts.isa))
12238 as_warn (_("-mfp64 used with a 32-bit ABI"));
12239 break;
12240 case 1:
12241 if (ABI_NEEDS_64BIT_REGS (mips_abi))
12242 as_warn (_("-mfp32 used with a 64-bit ABI"));
12243 break;
12244 }
12245
12246 /* End of GCC-shared inference code. */
12247
12248 /* This flag is set when we have a 64-bit capable CPU but use only
12249 32-bit wide registers. Note that EABI does not use it. */
12250 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
12251 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
12252 || mips_abi == O32_ABI))
12253 mips_32bitmode = 1;
12254
12255 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
12256 as_bad (_("trap exception not supported at ISA 1"));
12257
12258 /* If the selected architecture includes support for ASEs, enable
12259 generation of code for them. */
12260 if (mips_opts.mips16 == -1)
12261 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12262 if (mips_opts.ase_mips3d == -1)
12263 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12264 && file_mips_fp32 == 0) ? 1 : 0;
12265 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12266 as_bad (_("-mfp32 used with -mips3d"));
12267
12268 if (mips_opts.ase_mdmx == -1)
12269 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12270 && file_mips_fp32 == 0) ? 1 : 0;
12271 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12272 as_bad (_("-mfp32 used with -mdmx"));
12273
12274 if (mips_opts.ase_smartmips == -1)
12275 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12276 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12277 as_warn (_("%s ISA does not support SmartMIPS"),
12278 mips_cpu_info_from_isa (mips_opts.isa)->name);
12279
12280 if (mips_opts.ase_dsp == -1)
12281 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12282 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12283 as_warn (_("%s ISA does not support DSP ASE"),
12284 mips_cpu_info_from_isa (mips_opts.isa)->name);
12285
12286 if (mips_opts.ase_dspr2 == -1)
12287 {
12288 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12289 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12290 }
12291 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12292 as_warn (_("%s ISA does not support DSP R2 ASE"),
12293 mips_cpu_info_from_isa (mips_opts.isa)->name);
12294
12295 if (mips_opts.ase_mt == -1)
12296 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12297 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12298 as_warn (_("%s ISA does not support MT ASE"),
12299 mips_cpu_info_from_isa (mips_opts.isa)->name);
12300
12301 file_mips_isa = mips_opts.isa;
12302 file_ase_mips3d = mips_opts.ase_mips3d;
12303 file_ase_mdmx = mips_opts.ase_mdmx;
12304 file_ase_smartmips = mips_opts.ase_smartmips;
12305 file_ase_dsp = mips_opts.ase_dsp;
12306 file_ase_dspr2 = mips_opts.ase_dspr2;
12307 file_ase_mt = mips_opts.ase_mt;
12308 mips_opts.gp32 = file_mips_gp32;
12309 mips_opts.fp32 = file_mips_fp32;
12310 mips_opts.soft_float = file_mips_soft_float;
12311 mips_opts.single_float = file_mips_single_float;
12312
12313 if (mips_flag_mdebug < 0)
12314 {
12315 #ifdef OBJ_MAYBE_ECOFF
12316 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12317 mips_flag_mdebug = 1;
12318 else
12319 #endif /* OBJ_MAYBE_ECOFF */
12320 mips_flag_mdebug = 0;
12321 }
12322 }
12323 \f
12324 void
12325 mips_init_after_args (void)
12326 {
12327 /* initialize opcodes */
12328 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12329 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12330 }
12331
12332 long
12333 md_pcrel_from (fixS *fixP)
12334 {
12335 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12336 switch (fixP->fx_r_type)
12337 {
12338 case BFD_RELOC_16_PCREL_S2:
12339 case BFD_RELOC_MIPS_JMP:
12340 /* Return the address of the delay slot. */
12341 return addr + 4;
12342 default:
12343 /* We have no relocation type for PC relative MIPS16 instructions. */
12344 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12345 as_bad_where (fixP->fx_file, fixP->fx_line,
12346 _("PC relative MIPS16 instruction references a different section"));
12347 return addr;
12348 }
12349 }
12350
12351 /* This is called before the symbol table is processed. In order to
12352 work with gcc when using mips-tfile, we must keep all local labels.
12353 However, in other cases, we want to discard them. If we were
12354 called with -g, but we didn't see any debugging information, it may
12355 mean that gcc is smuggling debugging information through to
12356 mips-tfile, in which case we must generate all local labels. */
12357
12358 void
12359 mips_frob_file_before_adjust (void)
12360 {
12361 #ifndef NO_ECOFF_DEBUGGING
12362 if (ECOFF_DEBUGGING
12363 && mips_debug != 0
12364 && ! ecoff_debugging_seen)
12365 flag_keep_locals = 1;
12366 #endif
12367 }
12368
12369 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12370 the corresponding LO16 reloc. This is called before md_apply_fix and
12371 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12372 relocation operators.
12373
12374 For our purposes, a %lo() expression matches a %got() or %hi()
12375 expression if:
12376
12377 (a) it refers to the same symbol; and
12378 (b) the offset applied in the %lo() expression is no lower than
12379 the offset applied in the %got() or %hi().
12380
12381 (b) allows us to cope with code like:
12382
12383 lui $4,%hi(foo)
12384 lh $4,%lo(foo+2)($4)
12385
12386 ...which is legal on RELA targets, and has a well-defined behaviour
12387 if the user knows that adding 2 to "foo" will not induce a carry to
12388 the high 16 bits.
12389
12390 When several %lo()s match a particular %got() or %hi(), we use the
12391 following rules to distinguish them:
12392
12393 (1) %lo()s with smaller offsets are a better match than %lo()s with
12394 higher offsets.
12395
12396 (2) %lo()s with no matching %got() or %hi() are better than those
12397 that already have a matching %got() or %hi().
12398
12399 (3) later %lo()s are better than earlier %lo()s.
12400
12401 These rules are applied in order.
12402
12403 (1) means, among other things, that %lo()s with identical offsets are
12404 chosen if they exist.
12405
12406 (2) means that we won't associate several high-part relocations with
12407 the same low-part relocation unless there's no alternative. Having
12408 several high parts for the same low part is a GNU extension; this rule
12409 allows careful users to avoid it.
12410
12411 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12412 with the last high-part relocation being at the front of the list.
12413 It therefore makes sense to choose the last matching low-part
12414 relocation, all other things being equal. It's also easier
12415 to code that way. */
12416
12417 void
12418 mips_frob_file (void)
12419 {
12420 struct mips_hi_fixup *l;
12421 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12422
12423 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12424 {
12425 segment_info_type *seginfo;
12426 bfd_boolean matched_lo_p;
12427 fixS **hi_pos, **lo_pos, **pos;
12428
12429 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12430
12431 /* If a GOT16 relocation turns out to be against a global symbol,
12432 there isn't supposed to be a matching LO. */
12433 if (got16_reloc_p (l->fixp->fx_r_type)
12434 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12435 continue;
12436
12437 /* Check quickly whether the next fixup happens to be a matching %lo. */
12438 if (fixup_has_matching_lo_p (l->fixp))
12439 continue;
12440
12441 seginfo = seg_info (l->seg);
12442
12443 /* Set HI_POS to the position of this relocation in the chain.
12444 Set LO_POS to the position of the chosen low-part relocation.
12445 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12446 relocation that matches an immediately-preceding high-part
12447 relocation. */
12448 hi_pos = NULL;
12449 lo_pos = NULL;
12450 matched_lo_p = FALSE;
12451 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12452
12453 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12454 {
12455 if (*pos == l->fixp)
12456 hi_pos = pos;
12457
12458 if ((*pos)->fx_r_type == looking_for_rtype
12459 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12460 && (*pos)->fx_offset >= l->fixp->fx_offset
12461 && (lo_pos == NULL
12462 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12463 || (!matched_lo_p
12464 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12465 lo_pos = pos;
12466
12467 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12468 && fixup_has_matching_lo_p (*pos));
12469 }
12470
12471 /* If we found a match, remove the high-part relocation from its
12472 current position and insert it before the low-part relocation.
12473 Make the offsets match so that fixup_has_matching_lo_p()
12474 will return true.
12475
12476 We don't warn about unmatched high-part relocations since some
12477 versions of gcc have been known to emit dead "lui ...%hi(...)"
12478 instructions. */
12479 if (lo_pos != NULL)
12480 {
12481 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12482 if (l->fixp->fx_next != *lo_pos)
12483 {
12484 *hi_pos = l->fixp->fx_next;
12485 l->fixp->fx_next = *lo_pos;
12486 *lo_pos = l->fixp;
12487 }
12488 }
12489 }
12490 }
12491
12492 /* We may have combined relocations without symbols in the N32/N64 ABI.
12493 We have to prevent gas from dropping them. */
12494
12495 int
12496 mips_force_relocation (fixS *fixp)
12497 {
12498 if (generic_force_reloc (fixp))
12499 return 1;
12500
12501 if (HAVE_NEWABI
12502 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12503 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12504 || hi16_reloc_p (fixp->fx_r_type)
12505 || lo16_reloc_p (fixp->fx_r_type)))
12506 return 1;
12507
12508 return 0;
12509 }
12510
12511 /* Apply a fixup to the object file. */
12512
12513 void
12514 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12515 {
12516 bfd_byte *buf;
12517 long insn;
12518 reloc_howto_type *howto;
12519
12520 /* We ignore generic BFD relocations we don't know about. */
12521 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12522 if (! howto)
12523 return;
12524
12525 gas_assert (fixP->fx_size == 4
12526 || fixP->fx_r_type == BFD_RELOC_16
12527 || fixP->fx_r_type == BFD_RELOC_64
12528 || fixP->fx_r_type == BFD_RELOC_CTOR
12529 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12530 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12531 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12532 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12533
12534 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12535
12536 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12537
12538 /* Don't treat parts of a composite relocation as done. There are two
12539 reasons for this:
12540
12541 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12542 should nevertheless be emitted if the first part is.
12543
12544 (2) In normal usage, composite relocations are never assembly-time
12545 constants. The easiest way of dealing with the pathological
12546 exceptions is to generate a relocation against STN_UNDEF and
12547 leave everything up to the linker. */
12548 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12549 fixP->fx_done = 1;
12550
12551 switch (fixP->fx_r_type)
12552 {
12553 case BFD_RELOC_MIPS_TLS_GD:
12554 case BFD_RELOC_MIPS_TLS_LDM:
12555 case BFD_RELOC_MIPS_TLS_DTPREL32:
12556 case BFD_RELOC_MIPS_TLS_DTPREL64:
12557 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12558 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12559 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12560 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12561 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12562 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12563 /* fall through */
12564
12565 case BFD_RELOC_MIPS_JMP:
12566 case BFD_RELOC_MIPS_SHIFT5:
12567 case BFD_RELOC_MIPS_SHIFT6:
12568 case BFD_RELOC_MIPS_GOT_DISP:
12569 case BFD_RELOC_MIPS_GOT_PAGE:
12570 case BFD_RELOC_MIPS_GOT_OFST:
12571 case BFD_RELOC_MIPS_SUB:
12572 case BFD_RELOC_MIPS_INSERT_A:
12573 case BFD_RELOC_MIPS_INSERT_B:
12574 case BFD_RELOC_MIPS_DELETE:
12575 case BFD_RELOC_MIPS_HIGHEST:
12576 case BFD_RELOC_MIPS_HIGHER:
12577 case BFD_RELOC_MIPS_SCN_DISP:
12578 case BFD_RELOC_MIPS_REL16:
12579 case BFD_RELOC_MIPS_RELGOT:
12580 case BFD_RELOC_MIPS_JALR:
12581 case BFD_RELOC_HI16:
12582 case BFD_RELOC_HI16_S:
12583 case BFD_RELOC_GPREL16:
12584 case BFD_RELOC_MIPS_LITERAL:
12585 case BFD_RELOC_MIPS_CALL16:
12586 case BFD_RELOC_MIPS_GOT16:
12587 case BFD_RELOC_GPREL32:
12588 case BFD_RELOC_MIPS_GOT_HI16:
12589 case BFD_RELOC_MIPS_GOT_LO16:
12590 case BFD_RELOC_MIPS_CALL_HI16:
12591 case BFD_RELOC_MIPS_CALL_LO16:
12592 case BFD_RELOC_MIPS16_GPREL:
12593 case BFD_RELOC_MIPS16_GOT16:
12594 case BFD_RELOC_MIPS16_CALL16:
12595 case BFD_RELOC_MIPS16_HI16:
12596 case BFD_RELOC_MIPS16_HI16_S:
12597 case BFD_RELOC_MIPS16_JMP:
12598 /* Nothing needed to do. The value comes from the reloc entry. */
12599 break;
12600
12601 case BFD_RELOC_64:
12602 /* This is handled like BFD_RELOC_32, but we output a sign
12603 extended value if we are only 32 bits. */
12604 if (fixP->fx_done)
12605 {
12606 if (8 <= sizeof (valueT))
12607 md_number_to_chars ((char *) buf, *valP, 8);
12608 else
12609 {
12610 valueT hiv;
12611
12612 if ((*valP & 0x80000000) != 0)
12613 hiv = 0xffffffff;
12614 else
12615 hiv = 0;
12616 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12617 *valP, 4);
12618 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12619 hiv, 4);
12620 }
12621 }
12622 break;
12623
12624 case BFD_RELOC_RVA:
12625 case BFD_RELOC_32:
12626 case BFD_RELOC_16:
12627 /* If we are deleting this reloc entry, we must fill in the
12628 value now. This can happen if we have a .word which is not
12629 resolved when it appears but is later defined. */
12630 if (fixP->fx_done)
12631 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12632 break;
12633
12634 case BFD_RELOC_LO16:
12635 case BFD_RELOC_MIPS16_LO16:
12636 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12637 may be safe to remove, but if so it's not obvious. */
12638 /* When handling an embedded PIC switch statement, we can wind
12639 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12640 if (fixP->fx_done)
12641 {
12642 if (*valP + 0x8000 > 0xffff)
12643 as_bad_where (fixP->fx_file, fixP->fx_line,
12644 _("relocation overflow"));
12645 if (target_big_endian)
12646 buf += 2;
12647 md_number_to_chars ((char *) buf, *valP, 2);
12648 }
12649 break;
12650
12651 case BFD_RELOC_16_PCREL_S2:
12652 if ((*valP & 0x3) != 0)
12653 as_bad_where (fixP->fx_file, fixP->fx_line,
12654 _("Branch to misaligned address (%lx)"), (long) *valP);
12655
12656 /* We need to save the bits in the instruction since fixup_segment()
12657 might be deleting the relocation entry (i.e., a branch within
12658 the current segment). */
12659 if (! fixP->fx_done)
12660 break;
12661
12662 /* Update old instruction data. */
12663 if (target_big_endian)
12664 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12665 else
12666 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12667
12668 if (*valP + 0x20000 <= 0x3ffff)
12669 {
12670 insn |= (*valP >> 2) & 0xffff;
12671 md_number_to_chars ((char *) buf, insn, 4);
12672 }
12673 else if (mips_pic == NO_PIC
12674 && fixP->fx_done
12675 && fixP->fx_frag->fr_address >= text_section->vma
12676 && (fixP->fx_frag->fr_address
12677 < text_section->vma + bfd_get_section_size (text_section))
12678 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12679 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12680 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12681 {
12682 /* The branch offset is too large. If this is an
12683 unconditional branch, and we are not generating PIC code,
12684 we can convert it to an absolute jump instruction. */
12685 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12686 insn = 0x0c000000; /* jal */
12687 else
12688 insn = 0x08000000; /* j */
12689 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12690 fixP->fx_done = 0;
12691 fixP->fx_addsy = section_symbol (text_section);
12692 *valP += md_pcrel_from (fixP);
12693 md_number_to_chars ((char *) buf, insn, 4);
12694 }
12695 else
12696 {
12697 /* If we got here, we have branch-relaxation disabled,
12698 and there's nothing we can do to fix this instruction
12699 without turning it into a longer sequence. */
12700 as_bad_where (fixP->fx_file, fixP->fx_line,
12701 _("Branch out of range"));
12702 }
12703 break;
12704
12705 case BFD_RELOC_VTABLE_INHERIT:
12706 fixP->fx_done = 0;
12707 if (fixP->fx_addsy
12708 && !S_IS_DEFINED (fixP->fx_addsy)
12709 && !S_IS_WEAK (fixP->fx_addsy))
12710 S_SET_WEAK (fixP->fx_addsy);
12711 break;
12712
12713 case BFD_RELOC_VTABLE_ENTRY:
12714 fixP->fx_done = 0;
12715 break;
12716
12717 default:
12718 internalError ();
12719 }
12720
12721 /* Remember value for tc_gen_reloc. */
12722 fixP->fx_addnumber = *valP;
12723 }
12724
12725 static symbolS *
12726 get_symbol (void)
12727 {
12728 int c;
12729 char *name;
12730 symbolS *p;
12731
12732 name = input_line_pointer;
12733 c = get_symbol_end ();
12734 p = (symbolS *) symbol_find_or_make (name);
12735 *input_line_pointer = c;
12736 return p;
12737 }
12738
12739 /* Align the current frag to a given power of two. If a particular
12740 fill byte should be used, FILL points to an integer that contains
12741 that byte, otherwise FILL is null.
12742
12743 The MIPS assembler also automatically adjusts any preceding
12744 label. */
12745
12746 static void
12747 mips_align (int to, int *fill, symbolS *label)
12748 {
12749 mips_emit_delays ();
12750 mips_record_mips16_mode ();
12751 if (fill == NULL && subseg_text_p (now_seg))
12752 frag_align_code (to, 0);
12753 else
12754 frag_align (to, fill ? *fill : 0, 0);
12755 record_alignment (now_seg, to);
12756 if (label != NULL)
12757 {
12758 gas_assert (S_GET_SEGMENT (label) == now_seg);
12759 symbol_set_frag (label, frag_now);
12760 S_SET_VALUE (label, (valueT) frag_now_fix ());
12761 }
12762 }
12763
12764 /* Align to a given power of two. .align 0 turns off the automatic
12765 alignment used by the data creating pseudo-ops. */
12766
12767 static void
12768 s_align (int x ATTRIBUTE_UNUSED)
12769 {
12770 int temp, fill_value, *fill_ptr;
12771 long max_alignment = 28;
12772
12773 /* o Note that the assembler pulls down any immediately preceding label
12774 to the aligned address.
12775 o It's not documented but auto alignment is reinstated by
12776 a .align pseudo instruction.
12777 o Note also that after auto alignment is turned off the mips assembler
12778 issues an error on attempt to assemble an improperly aligned data item.
12779 We don't. */
12780
12781 temp = get_absolute_expression ();
12782 if (temp > max_alignment)
12783 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12784 else if (temp < 0)
12785 {
12786 as_warn (_("Alignment negative: 0 assumed."));
12787 temp = 0;
12788 }
12789 if (*input_line_pointer == ',')
12790 {
12791 ++input_line_pointer;
12792 fill_value = get_absolute_expression ();
12793 fill_ptr = &fill_value;
12794 }
12795 else
12796 fill_ptr = 0;
12797 if (temp)
12798 {
12799 segment_info_type *si = seg_info (now_seg);
12800 struct insn_label_list *l = si->label_list;
12801 /* Auto alignment should be switched on by next section change. */
12802 auto_align = 1;
12803 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12804 }
12805 else
12806 {
12807 auto_align = 0;
12808 }
12809
12810 demand_empty_rest_of_line ();
12811 }
12812
12813 static void
12814 s_change_sec (int sec)
12815 {
12816 segT seg;
12817
12818 #ifdef OBJ_ELF
12819 /* The ELF backend needs to know that we are changing sections, so
12820 that .previous works correctly. We could do something like check
12821 for an obj_section_change_hook macro, but that might be confusing
12822 as it would not be appropriate to use it in the section changing
12823 functions in read.c, since obj-elf.c intercepts those. FIXME:
12824 This should be cleaner, somehow. */
12825 if (IS_ELF)
12826 obj_elf_section_change_hook ();
12827 #endif
12828
12829 mips_emit_delays ();
12830
12831 switch (sec)
12832 {
12833 case 't':
12834 s_text (0);
12835 break;
12836 case 'd':
12837 s_data (0);
12838 break;
12839 case 'b':
12840 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12841 demand_empty_rest_of_line ();
12842 break;
12843
12844 case 'r':
12845 seg = subseg_new (RDATA_SECTION_NAME,
12846 (subsegT) get_absolute_expression ());
12847 if (IS_ELF)
12848 {
12849 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12850 | SEC_READONLY | SEC_RELOC
12851 | SEC_DATA));
12852 if (strncmp (TARGET_OS, "elf", 3) != 0)
12853 record_alignment (seg, 4);
12854 }
12855 demand_empty_rest_of_line ();
12856 break;
12857
12858 case 's':
12859 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12860 if (IS_ELF)
12861 {
12862 bfd_set_section_flags (stdoutput, seg,
12863 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12864 if (strncmp (TARGET_OS, "elf", 3) != 0)
12865 record_alignment (seg, 4);
12866 }
12867 demand_empty_rest_of_line ();
12868 break;
12869
12870 case 'B':
12871 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
12872 if (IS_ELF)
12873 {
12874 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
12875 if (strncmp (TARGET_OS, "elf", 3) != 0)
12876 record_alignment (seg, 4);
12877 }
12878 demand_empty_rest_of_line ();
12879 break;
12880 }
12881
12882 auto_align = 1;
12883 }
12884
12885 void
12886 s_change_section (int ignore ATTRIBUTE_UNUSED)
12887 {
12888 #ifdef OBJ_ELF
12889 char *section_name;
12890 char c;
12891 char next_c = 0;
12892 int section_type;
12893 int section_flag;
12894 int section_entry_size;
12895 int section_alignment;
12896
12897 if (!IS_ELF)
12898 return;
12899
12900 section_name = input_line_pointer;
12901 c = get_symbol_end ();
12902 if (c)
12903 next_c = *(input_line_pointer + 1);
12904
12905 /* Do we have .section Name<,"flags">? */
12906 if (c != ',' || (c == ',' && next_c == '"'))
12907 {
12908 /* just after name is now '\0'. */
12909 *input_line_pointer = c;
12910 input_line_pointer = section_name;
12911 obj_elf_section (ignore);
12912 return;
12913 }
12914 input_line_pointer++;
12915
12916 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12917 if (c == ',')
12918 section_type = get_absolute_expression ();
12919 else
12920 section_type = 0;
12921 if (*input_line_pointer++ == ',')
12922 section_flag = get_absolute_expression ();
12923 else
12924 section_flag = 0;
12925 if (*input_line_pointer++ == ',')
12926 section_entry_size = get_absolute_expression ();
12927 else
12928 section_entry_size = 0;
12929 if (*input_line_pointer++ == ',')
12930 section_alignment = get_absolute_expression ();
12931 else
12932 section_alignment = 0;
12933 /* FIXME: really ignore? */
12934 (void) section_alignment;
12935
12936 section_name = xstrdup (section_name);
12937
12938 /* When using the generic form of .section (as implemented by obj-elf.c),
12939 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12940 traditionally had to fall back on the more common @progbits instead.
12941
12942 There's nothing really harmful in this, since bfd will correct
12943 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12944 means that, for backwards compatibility, the special_section entries
12945 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12946
12947 Even so, we shouldn't force users of the MIPS .section syntax to
12948 incorrectly label the sections as SHT_PROGBITS. The best compromise
12949 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12950 generic type-checking code. */
12951 if (section_type == SHT_MIPS_DWARF)
12952 section_type = SHT_PROGBITS;
12953
12954 obj_elf_change_section (section_name, section_type, section_flag,
12955 section_entry_size, 0, 0, 0);
12956
12957 if (now_seg->name != section_name)
12958 free (section_name);
12959 #endif /* OBJ_ELF */
12960 }
12961
12962 void
12963 mips_enable_auto_align (void)
12964 {
12965 auto_align = 1;
12966 }
12967
12968 static void
12969 s_cons (int log_size)
12970 {
12971 segment_info_type *si = seg_info (now_seg);
12972 struct insn_label_list *l = si->label_list;
12973 symbolS *label;
12974
12975 label = l != NULL ? l->label : NULL;
12976 mips_emit_delays ();
12977 if (log_size > 0 && auto_align)
12978 mips_align (log_size, 0, label);
12979 cons (1 << log_size);
12980 mips_clear_insn_labels ();
12981 }
12982
12983 static void
12984 s_float_cons (int type)
12985 {
12986 segment_info_type *si = seg_info (now_seg);
12987 struct insn_label_list *l = si->label_list;
12988 symbolS *label;
12989
12990 label = l != NULL ? l->label : NULL;
12991
12992 mips_emit_delays ();
12993
12994 if (auto_align)
12995 {
12996 if (type == 'd')
12997 mips_align (3, 0, label);
12998 else
12999 mips_align (2, 0, label);
13000 }
13001
13002 float_cons (type);
13003 mips_clear_insn_labels ();
13004 }
13005
13006 /* Handle .globl. We need to override it because on Irix 5 you are
13007 permitted to say
13008 .globl foo .text
13009 where foo is an undefined symbol, to mean that foo should be
13010 considered to be the address of a function. */
13011
13012 static void
13013 s_mips_globl (int x ATTRIBUTE_UNUSED)
13014 {
13015 char *name;
13016 int c;
13017 symbolS *symbolP;
13018 flagword flag;
13019
13020 do
13021 {
13022 name = input_line_pointer;
13023 c = get_symbol_end ();
13024 symbolP = symbol_find_or_make (name);
13025 S_SET_EXTERNAL (symbolP);
13026
13027 *input_line_pointer = c;
13028 SKIP_WHITESPACE ();
13029
13030 /* On Irix 5, every global symbol that is not explicitly labelled as
13031 being a function is apparently labelled as being an object. */
13032 flag = BSF_OBJECT;
13033
13034 if (!is_end_of_line[(unsigned char) *input_line_pointer]
13035 && (*input_line_pointer != ','))
13036 {
13037 char *secname;
13038 asection *sec;
13039
13040 secname = input_line_pointer;
13041 c = get_symbol_end ();
13042 sec = bfd_get_section_by_name (stdoutput, secname);
13043 if (sec == NULL)
13044 as_bad (_("%s: no such section"), secname);
13045 *input_line_pointer = c;
13046
13047 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
13048 flag = BSF_FUNCTION;
13049 }
13050
13051 symbol_get_bfdsym (symbolP)->flags |= flag;
13052
13053 c = *input_line_pointer;
13054 if (c == ',')
13055 {
13056 input_line_pointer++;
13057 SKIP_WHITESPACE ();
13058 if (is_end_of_line[(unsigned char) *input_line_pointer])
13059 c = '\n';
13060 }
13061 }
13062 while (c == ',');
13063
13064 demand_empty_rest_of_line ();
13065 }
13066
13067 static void
13068 s_option (int x ATTRIBUTE_UNUSED)
13069 {
13070 char *opt;
13071 char c;
13072
13073 opt = input_line_pointer;
13074 c = get_symbol_end ();
13075
13076 if (*opt == 'O')
13077 {
13078 /* FIXME: What does this mean? */
13079 }
13080 else if (strncmp (opt, "pic", 3) == 0)
13081 {
13082 int i;
13083
13084 i = atoi (opt + 3);
13085 if (i == 0)
13086 mips_pic = NO_PIC;
13087 else if (i == 2)
13088 {
13089 mips_pic = SVR4_PIC;
13090 mips_abicalls = TRUE;
13091 }
13092 else
13093 as_bad (_(".option pic%d not supported"), i);
13094
13095 if (mips_pic == SVR4_PIC)
13096 {
13097 if (g_switch_seen && g_switch_value != 0)
13098 as_warn (_("-G may not be used with SVR4 PIC code"));
13099 g_switch_value = 0;
13100 bfd_set_gp_size (stdoutput, 0);
13101 }
13102 }
13103 else
13104 as_warn (_("Unrecognized option \"%s\""), opt);
13105
13106 *input_line_pointer = c;
13107 demand_empty_rest_of_line ();
13108 }
13109
13110 /* This structure is used to hold a stack of .set values. */
13111
13112 struct mips_option_stack
13113 {
13114 struct mips_option_stack *next;
13115 struct mips_set_options options;
13116 };
13117
13118 static struct mips_option_stack *mips_opts_stack;
13119
13120 /* Handle the .set pseudo-op. */
13121
13122 static void
13123 s_mipsset (int x ATTRIBUTE_UNUSED)
13124 {
13125 char *name = input_line_pointer, ch;
13126
13127 while (!is_end_of_line[(unsigned char) *input_line_pointer])
13128 ++input_line_pointer;
13129 ch = *input_line_pointer;
13130 *input_line_pointer = '\0';
13131
13132 if (strcmp (name, "reorder") == 0)
13133 {
13134 if (mips_opts.noreorder)
13135 end_noreorder ();
13136 }
13137 else if (strcmp (name, "noreorder") == 0)
13138 {
13139 if (!mips_opts.noreorder)
13140 start_noreorder ();
13141 }
13142 else if (strncmp (name, "at=", 3) == 0)
13143 {
13144 char *s = name + 3;
13145
13146 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
13147 as_bad (_("Unrecognized register name `%s'"), s);
13148 }
13149 else if (strcmp (name, "at") == 0)
13150 {
13151 mips_opts.at = ATREG;
13152 }
13153 else if (strcmp (name, "noat") == 0)
13154 {
13155 mips_opts.at = ZERO;
13156 }
13157 else if (strcmp (name, "macro") == 0)
13158 {
13159 mips_opts.warn_about_macros = 0;
13160 }
13161 else if (strcmp (name, "nomacro") == 0)
13162 {
13163 if (mips_opts.noreorder == 0)
13164 as_bad (_("`noreorder' must be set before `nomacro'"));
13165 mips_opts.warn_about_macros = 1;
13166 }
13167 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
13168 {
13169 mips_opts.nomove = 0;
13170 }
13171 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
13172 {
13173 mips_opts.nomove = 1;
13174 }
13175 else if (strcmp (name, "bopt") == 0)
13176 {
13177 mips_opts.nobopt = 0;
13178 }
13179 else if (strcmp (name, "nobopt") == 0)
13180 {
13181 mips_opts.nobopt = 1;
13182 }
13183 else if (strcmp (name, "gp=default") == 0)
13184 mips_opts.gp32 = file_mips_gp32;
13185 else if (strcmp (name, "gp=32") == 0)
13186 mips_opts.gp32 = 1;
13187 else if (strcmp (name, "gp=64") == 0)
13188 {
13189 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
13190 as_warn (_("%s isa does not support 64-bit registers"),
13191 mips_cpu_info_from_isa (mips_opts.isa)->name);
13192 mips_opts.gp32 = 0;
13193 }
13194 else if (strcmp (name, "fp=default") == 0)
13195 mips_opts.fp32 = file_mips_fp32;
13196 else if (strcmp (name, "fp=32") == 0)
13197 mips_opts.fp32 = 1;
13198 else if (strcmp (name, "fp=64") == 0)
13199 {
13200 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13201 as_warn (_("%s isa does not support 64-bit floating point registers"),
13202 mips_cpu_info_from_isa (mips_opts.isa)->name);
13203 mips_opts.fp32 = 0;
13204 }
13205 else if (strcmp (name, "softfloat") == 0)
13206 mips_opts.soft_float = 1;
13207 else if (strcmp (name, "hardfloat") == 0)
13208 mips_opts.soft_float = 0;
13209 else if (strcmp (name, "singlefloat") == 0)
13210 mips_opts.single_float = 1;
13211 else if (strcmp (name, "doublefloat") == 0)
13212 mips_opts.single_float = 0;
13213 else if (strcmp (name, "mips16") == 0
13214 || strcmp (name, "MIPS-16") == 0)
13215 mips_opts.mips16 = 1;
13216 else if (strcmp (name, "nomips16") == 0
13217 || strcmp (name, "noMIPS-16") == 0)
13218 mips_opts.mips16 = 0;
13219 else if (strcmp (name, "smartmips") == 0)
13220 {
13221 if (!ISA_SUPPORTS_SMARTMIPS)
13222 as_warn (_("%s ISA does not support SmartMIPS ASE"),
13223 mips_cpu_info_from_isa (mips_opts.isa)->name);
13224 mips_opts.ase_smartmips = 1;
13225 }
13226 else if (strcmp (name, "nosmartmips") == 0)
13227 mips_opts.ase_smartmips = 0;
13228 else if (strcmp (name, "mips3d") == 0)
13229 mips_opts.ase_mips3d = 1;
13230 else if (strcmp (name, "nomips3d") == 0)
13231 mips_opts.ase_mips3d = 0;
13232 else if (strcmp (name, "mdmx") == 0)
13233 mips_opts.ase_mdmx = 1;
13234 else if (strcmp (name, "nomdmx") == 0)
13235 mips_opts.ase_mdmx = 0;
13236 else if (strcmp (name, "dsp") == 0)
13237 {
13238 if (!ISA_SUPPORTS_DSP_ASE)
13239 as_warn (_("%s ISA does not support DSP ASE"),
13240 mips_cpu_info_from_isa (mips_opts.isa)->name);
13241 mips_opts.ase_dsp = 1;
13242 mips_opts.ase_dspr2 = 0;
13243 }
13244 else if (strcmp (name, "nodsp") == 0)
13245 {
13246 mips_opts.ase_dsp = 0;
13247 mips_opts.ase_dspr2 = 0;
13248 }
13249 else if (strcmp (name, "dspr2") == 0)
13250 {
13251 if (!ISA_SUPPORTS_DSPR2_ASE)
13252 as_warn (_("%s ISA does not support DSP R2 ASE"),
13253 mips_cpu_info_from_isa (mips_opts.isa)->name);
13254 mips_opts.ase_dspr2 = 1;
13255 mips_opts.ase_dsp = 1;
13256 }
13257 else if (strcmp (name, "nodspr2") == 0)
13258 {
13259 mips_opts.ase_dspr2 = 0;
13260 mips_opts.ase_dsp = 0;
13261 }
13262 else if (strcmp (name, "mt") == 0)
13263 {
13264 if (!ISA_SUPPORTS_MT_ASE)
13265 as_warn (_("%s ISA does not support MT ASE"),
13266 mips_cpu_info_from_isa (mips_opts.isa)->name);
13267 mips_opts.ase_mt = 1;
13268 }
13269 else if (strcmp (name, "nomt") == 0)
13270 mips_opts.ase_mt = 0;
13271 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13272 {
13273 int reset = 0;
13274
13275 /* Permit the user to change the ISA and architecture on the fly.
13276 Needless to say, misuse can cause serious problems. */
13277 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13278 {
13279 reset = 1;
13280 mips_opts.isa = file_mips_isa;
13281 mips_opts.arch = file_mips_arch;
13282 }
13283 else if (strncmp (name, "arch=", 5) == 0)
13284 {
13285 const struct mips_cpu_info *p;
13286
13287 p = mips_parse_cpu("internal use", name + 5);
13288 if (!p)
13289 as_bad (_("unknown architecture %s"), name + 5);
13290 else
13291 {
13292 mips_opts.arch = p->cpu;
13293 mips_opts.isa = p->isa;
13294 }
13295 }
13296 else if (strncmp (name, "mips", 4) == 0)
13297 {
13298 const struct mips_cpu_info *p;
13299
13300 p = mips_parse_cpu("internal use", name);
13301 if (!p)
13302 as_bad (_("unknown ISA level %s"), name + 4);
13303 else
13304 {
13305 mips_opts.arch = p->cpu;
13306 mips_opts.isa = p->isa;
13307 }
13308 }
13309 else
13310 as_bad (_("unknown ISA or architecture %s"), name);
13311
13312 switch (mips_opts.isa)
13313 {
13314 case 0:
13315 break;
13316 case ISA_MIPS1:
13317 case ISA_MIPS2:
13318 case ISA_MIPS32:
13319 case ISA_MIPS32R2:
13320 mips_opts.gp32 = 1;
13321 mips_opts.fp32 = 1;
13322 break;
13323 case ISA_MIPS3:
13324 case ISA_MIPS4:
13325 case ISA_MIPS5:
13326 case ISA_MIPS64:
13327 case ISA_MIPS64R2:
13328 mips_opts.gp32 = 0;
13329 mips_opts.fp32 = 0;
13330 break;
13331 default:
13332 as_bad (_("unknown ISA level %s"), name + 4);
13333 break;
13334 }
13335 if (reset)
13336 {
13337 mips_opts.gp32 = file_mips_gp32;
13338 mips_opts.fp32 = file_mips_fp32;
13339 }
13340 }
13341 else if (strcmp (name, "autoextend") == 0)
13342 mips_opts.noautoextend = 0;
13343 else if (strcmp (name, "noautoextend") == 0)
13344 mips_opts.noautoextend = 1;
13345 else if (strcmp (name, "push") == 0)
13346 {
13347 struct mips_option_stack *s;
13348
13349 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13350 s->next = mips_opts_stack;
13351 s->options = mips_opts;
13352 mips_opts_stack = s;
13353 }
13354 else if (strcmp (name, "pop") == 0)
13355 {
13356 struct mips_option_stack *s;
13357
13358 s = mips_opts_stack;
13359 if (s == NULL)
13360 as_bad (_(".set pop with no .set push"));
13361 else
13362 {
13363 /* If we're changing the reorder mode we need to handle
13364 delay slots correctly. */
13365 if (s->options.noreorder && ! mips_opts.noreorder)
13366 start_noreorder ();
13367 else if (! s->options.noreorder && mips_opts.noreorder)
13368 end_noreorder ();
13369
13370 mips_opts = s->options;
13371 mips_opts_stack = s->next;
13372 free (s);
13373 }
13374 }
13375 else if (strcmp (name, "sym32") == 0)
13376 mips_opts.sym32 = TRUE;
13377 else if (strcmp (name, "nosym32") == 0)
13378 mips_opts.sym32 = FALSE;
13379 else if (strchr (name, ','))
13380 {
13381 /* Generic ".set" directive; use the generic handler. */
13382 *input_line_pointer = ch;
13383 input_line_pointer = name;
13384 s_set (0);
13385 return;
13386 }
13387 else
13388 {
13389 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13390 }
13391 *input_line_pointer = ch;
13392 demand_empty_rest_of_line ();
13393 }
13394
13395 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13396 .option pic2. It means to generate SVR4 PIC calls. */
13397
13398 static void
13399 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13400 {
13401 mips_pic = SVR4_PIC;
13402 mips_abicalls = TRUE;
13403
13404 if (g_switch_seen && g_switch_value != 0)
13405 as_warn (_("-G may not be used with SVR4 PIC code"));
13406 g_switch_value = 0;
13407
13408 bfd_set_gp_size (stdoutput, 0);
13409 demand_empty_rest_of_line ();
13410 }
13411
13412 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13413 PIC code. It sets the $gp register for the function based on the
13414 function address, which is in the register named in the argument.
13415 This uses a relocation against _gp_disp, which is handled specially
13416 by the linker. The result is:
13417 lui $gp,%hi(_gp_disp)
13418 addiu $gp,$gp,%lo(_gp_disp)
13419 addu $gp,$gp,.cpload argument
13420 The .cpload argument is normally $25 == $t9.
13421
13422 The -mno-shared option changes this to:
13423 lui $gp,%hi(__gnu_local_gp)
13424 addiu $gp,$gp,%lo(__gnu_local_gp)
13425 and the argument is ignored. This saves an instruction, but the
13426 resulting code is not position independent; it uses an absolute
13427 address for __gnu_local_gp. Thus code assembled with -mno-shared
13428 can go into an ordinary executable, but not into a shared library. */
13429
13430 static void
13431 s_cpload (int ignore ATTRIBUTE_UNUSED)
13432 {
13433 expressionS ex;
13434 int reg;
13435 int in_shared;
13436
13437 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13438 .cpload is ignored. */
13439 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13440 {
13441 s_ignore (0);
13442 return;
13443 }
13444
13445 /* .cpload should be in a .set noreorder section. */
13446 if (mips_opts.noreorder == 0)
13447 as_warn (_(".cpload not in noreorder section"));
13448
13449 reg = tc_get_register (0);
13450
13451 /* If we need to produce a 64-bit address, we are better off using
13452 the default instruction sequence. */
13453 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13454
13455 ex.X_op = O_symbol;
13456 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13457 "__gnu_local_gp");
13458 ex.X_op_symbol = NULL;
13459 ex.X_add_number = 0;
13460
13461 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13462 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13463
13464 macro_start ();
13465 macro_build_lui (&ex, mips_gp_register);
13466 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13467 mips_gp_register, BFD_RELOC_LO16);
13468 if (in_shared)
13469 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13470 mips_gp_register, reg);
13471 macro_end ();
13472
13473 demand_empty_rest_of_line ();
13474 }
13475
13476 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13477 .cpsetup $reg1, offset|$reg2, label
13478
13479 If offset is given, this results in:
13480 sd $gp, offset($sp)
13481 lui $gp, %hi(%neg(%gp_rel(label)))
13482 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13483 daddu $gp, $gp, $reg1
13484
13485 If $reg2 is given, this results in:
13486 daddu $reg2, $gp, $0
13487 lui $gp, %hi(%neg(%gp_rel(label)))
13488 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13489 daddu $gp, $gp, $reg1
13490 $reg1 is normally $25 == $t9.
13491
13492 The -mno-shared option replaces the last three instructions with
13493 lui $gp,%hi(_gp)
13494 addiu $gp,$gp,%lo(_gp) */
13495
13496 static void
13497 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13498 {
13499 expressionS ex_off;
13500 expressionS ex_sym;
13501 int reg1;
13502
13503 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13504 We also need NewABI support. */
13505 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13506 {
13507 s_ignore (0);
13508 return;
13509 }
13510
13511 reg1 = tc_get_register (0);
13512 SKIP_WHITESPACE ();
13513 if (*input_line_pointer != ',')
13514 {
13515 as_bad (_("missing argument separator ',' for .cpsetup"));
13516 return;
13517 }
13518 else
13519 ++input_line_pointer;
13520 SKIP_WHITESPACE ();
13521 if (*input_line_pointer == '$')
13522 {
13523 mips_cpreturn_register = tc_get_register (0);
13524 mips_cpreturn_offset = -1;
13525 }
13526 else
13527 {
13528 mips_cpreturn_offset = get_absolute_expression ();
13529 mips_cpreturn_register = -1;
13530 }
13531 SKIP_WHITESPACE ();
13532 if (*input_line_pointer != ',')
13533 {
13534 as_bad (_("missing argument separator ',' for .cpsetup"));
13535 return;
13536 }
13537 else
13538 ++input_line_pointer;
13539 SKIP_WHITESPACE ();
13540 expression (&ex_sym);
13541
13542 macro_start ();
13543 if (mips_cpreturn_register == -1)
13544 {
13545 ex_off.X_op = O_constant;
13546 ex_off.X_add_symbol = NULL;
13547 ex_off.X_op_symbol = NULL;
13548 ex_off.X_add_number = mips_cpreturn_offset;
13549
13550 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13551 BFD_RELOC_LO16, SP);
13552 }
13553 else
13554 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13555 mips_gp_register, 0);
13556
13557 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13558 {
13559 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13560 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13561 BFD_RELOC_HI16_S);
13562
13563 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13564 mips_gp_register, -1, BFD_RELOC_GPREL16,
13565 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13566
13567 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13568 mips_gp_register, reg1);
13569 }
13570 else
13571 {
13572 expressionS ex;
13573
13574 ex.X_op = O_symbol;
13575 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13576 ex.X_op_symbol = NULL;
13577 ex.X_add_number = 0;
13578
13579 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13580 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13581
13582 macro_build_lui (&ex, mips_gp_register);
13583 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13584 mips_gp_register, BFD_RELOC_LO16);
13585 }
13586
13587 macro_end ();
13588
13589 demand_empty_rest_of_line ();
13590 }
13591
13592 static void
13593 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13594 {
13595 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13596 .cplocal is ignored. */
13597 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13598 {
13599 s_ignore (0);
13600 return;
13601 }
13602
13603 mips_gp_register = tc_get_register (0);
13604 demand_empty_rest_of_line ();
13605 }
13606
13607 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13608 offset from $sp. The offset is remembered, and after making a PIC
13609 call $gp is restored from that location. */
13610
13611 static void
13612 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13613 {
13614 expressionS ex;
13615
13616 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13617 .cprestore is ignored. */
13618 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13619 {
13620 s_ignore (0);
13621 return;
13622 }
13623
13624 mips_cprestore_offset = get_absolute_expression ();
13625 mips_cprestore_valid = 1;
13626
13627 ex.X_op = O_constant;
13628 ex.X_add_symbol = NULL;
13629 ex.X_op_symbol = NULL;
13630 ex.X_add_number = mips_cprestore_offset;
13631
13632 macro_start ();
13633 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13634 SP, HAVE_64BIT_ADDRESSES);
13635 macro_end ();
13636
13637 demand_empty_rest_of_line ();
13638 }
13639
13640 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13641 was given in the preceding .cpsetup, it results in:
13642 ld $gp, offset($sp)
13643
13644 If a register $reg2 was given there, it results in:
13645 daddu $gp, $reg2, $0 */
13646
13647 static void
13648 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13649 {
13650 expressionS ex;
13651
13652 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13653 We also need NewABI support. */
13654 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13655 {
13656 s_ignore (0);
13657 return;
13658 }
13659
13660 macro_start ();
13661 if (mips_cpreturn_register == -1)
13662 {
13663 ex.X_op = O_constant;
13664 ex.X_add_symbol = NULL;
13665 ex.X_op_symbol = NULL;
13666 ex.X_add_number = mips_cpreturn_offset;
13667
13668 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13669 }
13670 else
13671 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13672 mips_cpreturn_register, 0);
13673 macro_end ();
13674
13675 demand_empty_rest_of_line ();
13676 }
13677
13678 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13679 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13680 use in DWARF debug information. */
13681
13682 static void
13683 s_dtprel_internal (size_t bytes)
13684 {
13685 expressionS ex;
13686 char *p;
13687
13688 expression (&ex);
13689
13690 if (ex.X_op != O_symbol)
13691 {
13692 as_bad (_("Unsupported use of %s"), (bytes == 8
13693 ? ".dtpreldword"
13694 : ".dtprelword"));
13695 ignore_rest_of_line ();
13696 }
13697
13698 p = frag_more (bytes);
13699 md_number_to_chars (p, 0, bytes);
13700 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13701 (bytes == 8
13702 ? BFD_RELOC_MIPS_TLS_DTPREL64
13703 : BFD_RELOC_MIPS_TLS_DTPREL32));
13704
13705 demand_empty_rest_of_line ();
13706 }
13707
13708 /* Handle .dtprelword. */
13709
13710 static void
13711 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13712 {
13713 s_dtprel_internal (4);
13714 }
13715
13716 /* Handle .dtpreldword. */
13717
13718 static void
13719 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13720 {
13721 s_dtprel_internal (8);
13722 }
13723
13724 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13725 code. It sets the offset to use in gp_rel relocations. */
13726
13727 static void
13728 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13729 {
13730 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13731 We also need NewABI support. */
13732 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13733 {
13734 s_ignore (0);
13735 return;
13736 }
13737
13738 mips_gprel_offset = get_absolute_expression ();
13739
13740 demand_empty_rest_of_line ();
13741 }
13742
13743 /* Handle the .gpword pseudo-op. This is used when generating PIC
13744 code. It generates a 32 bit GP relative reloc. */
13745
13746 static void
13747 s_gpword (int ignore ATTRIBUTE_UNUSED)
13748 {
13749 segment_info_type *si;
13750 struct insn_label_list *l;
13751 symbolS *label;
13752 expressionS ex;
13753 char *p;
13754
13755 /* When not generating PIC code, this is treated as .word. */
13756 if (mips_pic != SVR4_PIC)
13757 {
13758 s_cons (2);
13759 return;
13760 }
13761
13762 si = seg_info (now_seg);
13763 l = si->label_list;
13764 label = l != NULL ? l->label : NULL;
13765 mips_emit_delays ();
13766 if (auto_align)
13767 mips_align (2, 0, label);
13768
13769 expression (&ex);
13770 mips_clear_insn_labels ();
13771
13772 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13773 {
13774 as_bad (_("Unsupported use of .gpword"));
13775 ignore_rest_of_line ();
13776 }
13777
13778 p = frag_more (4);
13779 md_number_to_chars (p, 0, 4);
13780 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13781 BFD_RELOC_GPREL32);
13782
13783 demand_empty_rest_of_line ();
13784 }
13785
13786 static void
13787 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13788 {
13789 segment_info_type *si;
13790 struct insn_label_list *l;
13791 symbolS *label;
13792 expressionS ex;
13793 char *p;
13794
13795 /* When not generating PIC code, this is treated as .dword. */
13796 if (mips_pic != SVR4_PIC)
13797 {
13798 s_cons (3);
13799 return;
13800 }
13801
13802 si = seg_info (now_seg);
13803 l = si->label_list;
13804 label = l != NULL ? l->label : NULL;
13805 mips_emit_delays ();
13806 if (auto_align)
13807 mips_align (3, 0, label);
13808
13809 expression (&ex);
13810 mips_clear_insn_labels ();
13811
13812 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13813 {
13814 as_bad (_("Unsupported use of .gpdword"));
13815 ignore_rest_of_line ();
13816 }
13817
13818 p = frag_more (8);
13819 md_number_to_chars (p, 0, 8);
13820 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13821 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13822
13823 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13824 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13825 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13826
13827 demand_empty_rest_of_line ();
13828 }
13829
13830 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13831 tables in SVR4 PIC code. */
13832
13833 static void
13834 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13835 {
13836 int reg;
13837
13838 /* This is ignored when not generating SVR4 PIC code. */
13839 if (mips_pic != SVR4_PIC)
13840 {
13841 s_ignore (0);
13842 return;
13843 }
13844
13845 /* Add $gp to the register named as an argument. */
13846 macro_start ();
13847 reg = tc_get_register (0);
13848 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13849 macro_end ();
13850
13851 demand_empty_rest_of_line ();
13852 }
13853
13854 /* Handle the .insn pseudo-op. This marks instruction labels in
13855 mips16 mode. This permits the linker to handle them specially,
13856 such as generating jalx instructions when needed. We also make
13857 them odd for the duration of the assembly, in order to generate the
13858 right sort of code. We will make them even in the adjust_symtab
13859 routine, while leaving them marked. This is convenient for the
13860 debugger and the disassembler. The linker knows to make them odd
13861 again. */
13862
13863 static void
13864 s_insn (int ignore ATTRIBUTE_UNUSED)
13865 {
13866 mips16_mark_labels ();
13867
13868 demand_empty_rest_of_line ();
13869 }
13870
13871 /* Handle a .stabn directive. We need these in order to mark a label
13872 as being a mips16 text label correctly. Sometimes the compiler
13873 will emit a label, followed by a .stabn, and then switch sections.
13874 If the label and .stabn are in mips16 mode, then the label is
13875 really a mips16 text label. */
13876
13877 static void
13878 s_mips_stab (int type)
13879 {
13880 if (type == 'n')
13881 mips16_mark_labels ();
13882
13883 s_stab (type);
13884 }
13885
13886 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13887
13888 static void
13889 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13890 {
13891 char *name;
13892 int c;
13893 symbolS *symbolP;
13894 expressionS exp;
13895
13896 name = input_line_pointer;
13897 c = get_symbol_end ();
13898 symbolP = symbol_find_or_make (name);
13899 S_SET_WEAK (symbolP);
13900 *input_line_pointer = c;
13901
13902 SKIP_WHITESPACE ();
13903
13904 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13905 {
13906 if (S_IS_DEFINED (symbolP))
13907 {
13908 as_bad (_("ignoring attempt to redefine symbol %s"),
13909 S_GET_NAME (symbolP));
13910 ignore_rest_of_line ();
13911 return;
13912 }
13913
13914 if (*input_line_pointer == ',')
13915 {
13916 ++input_line_pointer;
13917 SKIP_WHITESPACE ();
13918 }
13919
13920 expression (&exp);
13921 if (exp.X_op != O_symbol)
13922 {
13923 as_bad (_("bad .weakext directive"));
13924 ignore_rest_of_line ();
13925 return;
13926 }
13927 symbol_set_value_expression (symbolP, &exp);
13928 }
13929
13930 demand_empty_rest_of_line ();
13931 }
13932
13933 /* Parse a register string into a number. Called from the ECOFF code
13934 to parse .frame. The argument is non-zero if this is the frame
13935 register, so that we can record it in mips_frame_reg. */
13936
13937 int
13938 tc_get_register (int frame)
13939 {
13940 unsigned int reg;
13941
13942 SKIP_WHITESPACE ();
13943 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13944 reg = 0;
13945 if (frame)
13946 {
13947 mips_frame_reg = reg != 0 ? reg : SP;
13948 mips_frame_reg_valid = 1;
13949 mips_cprestore_valid = 0;
13950 }
13951 return reg;
13952 }
13953
13954 valueT
13955 md_section_align (asection *seg, valueT addr)
13956 {
13957 int align = bfd_get_section_alignment (stdoutput, seg);
13958
13959 if (IS_ELF)
13960 {
13961 /* We don't need to align ELF sections to the full alignment.
13962 However, Irix 5 may prefer that we align them at least to a 16
13963 byte boundary. We don't bother to align the sections if we
13964 are targeted for an embedded system. */
13965 if (strncmp (TARGET_OS, "elf", 3) == 0)
13966 return addr;
13967 if (align > 4)
13968 align = 4;
13969 }
13970
13971 return ((addr + (1 << align) - 1) & (-1 << align));
13972 }
13973
13974 /* Utility routine, called from above as well. If called while the
13975 input file is still being read, it's only an approximation. (For
13976 example, a symbol may later become defined which appeared to be
13977 undefined earlier.) */
13978
13979 static int
13980 nopic_need_relax (symbolS *sym, int before_relaxing)
13981 {
13982 if (sym == 0)
13983 return 0;
13984
13985 if (g_switch_value > 0)
13986 {
13987 const char *symname;
13988 int change;
13989
13990 /* Find out whether this symbol can be referenced off the $gp
13991 register. It can be if it is smaller than the -G size or if
13992 it is in the .sdata or .sbss section. Certain symbols can
13993 not be referenced off the $gp, although it appears as though
13994 they can. */
13995 symname = S_GET_NAME (sym);
13996 if (symname != (const char *) NULL
13997 && (strcmp (symname, "eprol") == 0
13998 || strcmp (symname, "etext") == 0
13999 || strcmp (symname, "_gp") == 0
14000 || strcmp (symname, "edata") == 0
14001 || strcmp (symname, "_fbss") == 0
14002 || strcmp (symname, "_fdata") == 0
14003 || strcmp (symname, "_ftext") == 0
14004 || strcmp (symname, "end") == 0
14005 || strcmp (symname, "_gp_disp") == 0))
14006 change = 1;
14007 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
14008 && (0
14009 #ifndef NO_ECOFF_DEBUGGING
14010 || (symbol_get_obj (sym)->ecoff_extern_size != 0
14011 && (symbol_get_obj (sym)->ecoff_extern_size
14012 <= g_switch_value))
14013 #endif
14014 /* We must defer this decision until after the whole
14015 file has been read, since there might be a .extern
14016 after the first use of this symbol. */
14017 || (before_relaxing
14018 #ifndef NO_ECOFF_DEBUGGING
14019 && symbol_get_obj (sym)->ecoff_extern_size == 0
14020 #endif
14021 && S_GET_VALUE (sym) == 0)
14022 || (S_GET_VALUE (sym) != 0
14023 && S_GET_VALUE (sym) <= g_switch_value)))
14024 change = 0;
14025 else
14026 {
14027 const char *segname;
14028
14029 segname = segment_name (S_GET_SEGMENT (sym));
14030 gas_assert (strcmp (segname, ".lit8") != 0
14031 && strcmp (segname, ".lit4") != 0);
14032 change = (strcmp (segname, ".sdata") != 0
14033 && strcmp (segname, ".sbss") != 0
14034 && strncmp (segname, ".sdata.", 7) != 0
14035 && strncmp (segname, ".sbss.", 6) != 0
14036 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
14037 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
14038 }
14039 return change;
14040 }
14041 else
14042 /* We are not optimizing for the $gp register. */
14043 return 1;
14044 }
14045
14046
14047 /* Return true if the given symbol should be considered local for SVR4 PIC. */
14048
14049 static bfd_boolean
14050 pic_need_relax (symbolS *sym, asection *segtype)
14051 {
14052 asection *symsec;
14053
14054 /* Handle the case of a symbol equated to another symbol. */
14055 while (symbol_equated_reloc_p (sym))
14056 {
14057 symbolS *n;
14058
14059 /* It's possible to get a loop here in a badly written program. */
14060 n = symbol_get_value_expression (sym)->X_add_symbol;
14061 if (n == sym)
14062 break;
14063 sym = n;
14064 }
14065
14066 if (symbol_section_p (sym))
14067 return TRUE;
14068
14069 symsec = S_GET_SEGMENT (sym);
14070
14071 /* This must duplicate the test in adjust_reloc_syms. */
14072 return (symsec != &bfd_und_section
14073 && symsec != &bfd_abs_section
14074 && !bfd_is_com_section (symsec)
14075 && !s_is_linkonce (sym, segtype)
14076 #ifdef OBJ_ELF
14077 /* A global or weak symbol is treated as external. */
14078 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
14079 #endif
14080 );
14081 }
14082
14083
14084 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
14085 extended opcode. SEC is the section the frag is in. */
14086
14087 static int
14088 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
14089 {
14090 int type;
14091 const struct mips16_immed_operand *op;
14092 offsetT val;
14093 int mintiny, maxtiny;
14094 segT symsec;
14095 fragS *sym_frag;
14096
14097 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
14098 return 0;
14099 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
14100 return 1;
14101
14102 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14103 op = mips16_immed_operands;
14104 while (op->type != type)
14105 {
14106 ++op;
14107 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
14108 }
14109
14110 if (op->unsp)
14111 {
14112 if (type == '<' || type == '>' || type == '[' || type == ']')
14113 {
14114 mintiny = 1;
14115 maxtiny = 1 << op->nbits;
14116 }
14117 else
14118 {
14119 mintiny = 0;
14120 maxtiny = (1 << op->nbits) - 1;
14121 }
14122 }
14123 else
14124 {
14125 mintiny = - (1 << (op->nbits - 1));
14126 maxtiny = (1 << (op->nbits - 1)) - 1;
14127 }
14128
14129 sym_frag = symbol_get_frag (fragp->fr_symbol);
14130 val = S_GET_VALUE (fragp->fr_symbol);
14131 symsec = S_GET_SEGMENT (fragp->fr_symbol);
14132
14133 if (op->pcrel)
14134 {
14135 addressT addr;
14136
14137 /* We won't have the section when we are called from
14138 mips_relax_frag. However, we will always have been called
14139 from md_estimate_size_before_relax first. If this is a
14140 branch to a different section, we mark it as such. If SEC is
14141 NULL, and the frag is not marked, then it must be a branch to
14142 the same section. */
14143 if (sec == NULL)
14144 {
14145 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
14146 return 1;
14147 }
14148 else
14149 {
14150 /* Must have been called from md_estimate_size_before_relax. */
14151 if (symsec != sec)
14152 {
14153 fragp->fr_subtype =
14154 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14155
14156 /* FIXME: We should support this, and let the linker
14157 catch branches and loads that are out of range. */
14158 as_bad_where (fragp->fr_file, fragp->fr_line,
14159 _("unsupported PC relative reference to different section"));
14160
14161 return 1;
14162 }
14163 if (fragp != sym_frag && sym_frag->fr_address == 0)
14164 /* Assume non-extended on the first relaxation pass.
14165 The address we have calculated will be bogus if this is
14166 a forward branch to another frag, as the forward frag
14167 will have fr_address == 0. */
14168 return 0;
14169 }
14170
14171 /* In this case, we know for sure that the symbol fragment is in
14172 the same section. If the relax_marker of the symbol fragment
14173 differs from the relax_marker of this fragment, we have not
14174 yet adjusted the symbol fragment fr_address. We want to add
14175 in STRETCH in order to get a better estimate of the address.
14176 This particularly matters because of the shift bits. */
14177 if (stretch != 0
14178 && sym_frag->relax_marker != fragp->relax_marker)
14179 {
14180 fragS *f;
14181
14182 /* Adjust stretch for any alignment frag. Note that if have
14183 been expanding the earlier code, the symbol may be
14184 defined in what appears to be an earlier frag. FIXME:
14185 This doesn't handle the fr_subtype field, which specifies
14186 a maximum number of bytes to skip when doing an
14187 alignment. */
14188 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
14189 {
14190 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
14191 {
14192 if (stretch < 0)
14193 stretch = - ((- stretch)
14194 & ~ ((1 << (int) f->fr_offset) - 1));
14195 else
14196 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
14197 if (stretch == 0)
14198 break;
14199 }
14200 }
14201 if (f != NULL)
14202 val += stretch;
14203 }
14204
14205 addr = fragp->fr_address + fragp->fr_fix;
14206
14207 /* The base address rules are complicated. The base address of
14208 a branch is the following instruction. The base address of a
14209 PC relative load or add is the instruction itself, but if it
14210 is in a delay slot (in which case it can not be extended) use
14211 the address of the instruction whose delay slot it is in. */
14212 if (type == 'p' || type == 'q')
14213 {
14214 addr += 2;
14215
14216 /* If we are currently assuming that this frag should be
14217 extended, then, the current address is two bytes
14218 higher. */
14219 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14220 addr += 2;
14221
14222 /* Ignore the low bit in the target, since it will be set
14223 for a text label. */
14224 if ((val & 1) != 0)
14225 --val;
14226 }
14227 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14228 addr -= 4;
14229 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14230 addr -= 2;
14231
14232 val -= addr & ~ ((1 << op->shift) - 1);
14233
14234 /* Branch offsets have an implicit 0 in the lowest bit. */
14235 if (type == 'p' || type == 'q')
14236 val /= 2;
14237
14238 /* If any of the shifted bits are set, we must use an extended
14239 opcode. If the address depends on the size of this
14240 instruction, this can lead to a loop, so we arrange to always
14241 use an extended opcode. We only check this when we are in
14242 the main relaxation loop, when SEC is NULL. */
14243 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
14244 {
14245 fragp->fr_subtype =
14246 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14247 return 1;
14248 }
14249
14250 /* If we are about to mark a frag as extended because the value
14251 is precisely maxtiny + 1, then there is a chance of an
14252 infinite loop as in the following code:
14253 la $4,foo
14254 .skip 1020
14255 .align 2
14256 foo:
14257 In this case when the la is extended, foo is 0x3fc bytes
14258 away, so the la can be shrunk, but then foo is 0x400 away, so
14259 the la must be extended. To avoid this loop, we mark the
14260 frag as extended if it was small, and is about to become
14261 extended with a value of maxtiny + 1. */
14262 if (val == ((maxtiny + 1) << op->shift)
14263 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14264 && sec == NULL)
14265 {
14266 fragp->fr_subtype =
14267 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14268 return 1;
14269 }
14270 }
14271 else if (symsec != absolute_section && sec != NULL)
14272 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14273
14274 if ((val & ((1 << op->shift) - 1)) != 0
14275 || val < (mintiny << op->shift)
14276 || val > (maxtiny << op->shift))
14277 return 1;
14278 else
14279 return 0;
14280 }
14281
14282 /* Compute the length of a branch sequence, and adjust the
14283 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14284 worst-case length is computed, with UPDATE being used to indicate
14285 whether an unconditional (-1), branch-likely (+1) or regular (0)
14286 branch is to be computed. */
14287 static int
14288 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14289 {
14290 bfd_boolean toofar;
14291 int length;
14292
14293 if (fragp
14294 && S_IS_DEFINED (fragp->fr_symbol)
14295 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14296 {
14297 addressT addr;
14298 offsetT val;
14299
14300 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14301
14302 addr = fragp->fr_address + fragp->fr_fix + 4;
14303
14304 val -= addr;
14305
14306 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14307 }
14308 else if (fragp)
14309 /* If the symbol is not defined or it's in a different segment,
14310 assume the user knows what's going on and emit a short
14311 branch. */
14312 toofar = FALSE;
14313 else
14314 toofar = TRUE;
14315
14316 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14317 fragp->fr_subtype
14318 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
14319 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14320 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14321 RELAX_BRANCH_LINK (fragp->fr_subtype),
14322 toofar);
14323
14324 length = 4;
14325 if (toofar)
14326 {
14327 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14328 length += 8;
14329
14330 if (mips_pic != NO_PIC)
14331 {
14332 /* Additional space for PIC loading of target address. */
14333 length += 8;
14334 if (mips_opts.isa == ISA_MIPS1)
14335 /* Additional space for $at-stabilizing nop. */
14336 length += 4;
14337 }
14338
14339 /* If branch is conditional. */
14340 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14341 length += 8;
14342 }
14343
14344 return length;
14345 }
14346
14347 /* Estimate the size of a frag before relaxing. Unless this is the
14348 mips16, we are not really relaxing here, and the final size is
14349 encoded in the subtype information. For the mips16, we have to
14350 decide whether we are using an extended opcode or not. */
14351
14352 int
14353 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14354 {
14355 int change;
14356
14357 if (RELAX_BRANCH_P (fragp->fr_subtype))
14358 {
14359
14360 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14361
14362 return fragp->fr_var;
14363 }
14364
14365 if (RELAX_MIPS16_P (fragp->fr_subtype))
14366 /* We don't want to modify the EXTENDED bit here; it might get us
14367 into infinite loops. We change it only in mips_relax_frag(). */
14368 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14369
14370 if (mips_pic == NO_PIC)
14371 change = nopic_need_relax (fragp->fr_symbol, 0);
14372 else if (mips_pic == SVR4_PIC)
14373 change = pic_need_relax (fragp->fr_symbol, segtype);
14374 else if (mips_pic == VXWORKS_PIC)
14375 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14376 change = 0;
14377 else
14378 abort ();
14379
14380 if (change)
14381 {
14382 fragp->fr_subtype |= RELAX_USE_SECOND;
14383 return -RELAX_FIRST (fragp->fr_subtype);
14384 }
14385 else
14386 return -RELAX_SECOND (fragp->fr_subtype);
14387 }
14388
14389 /* This is called to see whether a reloc against a defined symbol
14390 should be converted into a reloc against a section. */
14391
14392 int
14393 mips_fix_adjustable (fixS *fixp)
14394 {
14395 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14396 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14397 return 0;
14398
14399 if (fixp->fx_addsy == NULL)
14400 return 1;
14401
14402 /* If symbol SYM is in a mergeable section, relocations of the form
14403 SYM + 0 can usually be made section-relative. The mergeable data
14404 is then identified by the section offset rather than by the symbol.
14405
14406 However, if we're generating REL LO16 relocations, the offset is split
14407 between the LO16 and parterning high part relocation. The linker will
14408 need to recalculate the complete offset in order to correctly identify
14409 the merge data.
14410
14411 The linker has traditionally not looked for the parterning high part
14412 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14413 placed anywhere. Rather than break backwards compatibility by changing
14414 this, it seems better not to force the issue, and instead keep the
14415 original symbol. This will work with either linker behavior. */
14416 if ((lo16_reloc_p (fixp->fx_r_type)
14417 || reloc_needs_lo_p (fixp->fx_r_type))
14418 && HAVE_IN_PLACE_ADDENDS
14419 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14420 return 0;
14421
14422 /* There is no place to store an in-place offset for JALR relocations.
14423 Likewise an in-range offset of PC-relative relocations may overflow
14424 the in-place relocatable field if recalculated against the start
14425 address of the symbol's containing section. */
14426 if (HAVE_IN_PLACE_ADDENDS
14427 && (fixp->fx_pcrel || fixp->fx_r_type == BFD_RELOC_MIPS_JALR))
14428 return 0;
14429
14430 #ifdef OBJ_ELF
14431 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14432 to a floating-point stub. The same is true for non-R_MIPS16_26
14433 relocations against MIPS16 functions; in this case, the stub becomes
14434 the function's canonical address.
14435
14436 Floating-point stubs are stored in unique .mips16.call.* or
14437 .mips16.fn.* sections. If a stub T for function F is in section S,
14438 the first relocation in section S must be against F; this is how the
14439 linker determines the target function. All relocations that might
14440 resolve to T must also be against F. We therefore have the following
14441 restrictions, which are given in an intentionally-redundant way:
14442
14443 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14444 symbols.
14445
14446 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14447 if that stub might be used.
14448
14449 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14450 symbols.
14451
14452 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14453 that stub might be used.
14454
14455 There is a further restriction:
14456
14457 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14458 on targets with in-place addends; the relocation field cannot
14459 encode the low bit.
14460
14461 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14462 against a MIPS16 symbol.
14463
14464 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14465 relocation against some symbol R, no relocation against R may be
14466 reduced. (Note that this deals with (2) as well as (1) because
14467 relocations against global symbols will never be reduced on ELF
14468 targets.) This approach is a little simpler than trying to detect
14469 stub sections, and gives the "all or nothing" per-symbol consistency
14470 that we have for MIPS16 symbols. */
14471 if (IS_ELF
14472 && fixp->fx_subsy == NULL
14473 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14474 || *symbol_get_tc (fixp->fx_addsy)))
14475 return 0;
14476 #endif
14477
14478 return 1;
14479 }
14480
14481 /* Translate internal representation of relocation info to BFD target
14482 format. */
14483
14484 arelent **
14485 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14486 {
14487 static arelent *retval[4];
14488 arelent *reloc;
14489 bfd_reloc_code_real_type code;
14490
14491 memset (retval, 0, sizeof(retval));
14492 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14493 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14494 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14495 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14496
14497 if (fixp->fx_pcrel)
14498 {
14499 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14500
14501 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14502 Relocations want only the symbol offset. */
14503 reloc->addend = fixp->fx_addnumber + reloc->address;
14504 if (!IS_ELF)
14505 {
14506 /* A gruesome hack which is a result of the gruesome gas
14507 reloc handling. What's worse, for COFF (as opposed to
14508 ECOFF), we might need yet another copy of reloc->address.
14509 See bfd_install_relocation. */
14510 reloc->addend += reloc->address;
14511 }
14512 }
14513 else
14514 reloc->addend = fixp->fx_addnumber;
14515
14516 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14517 entry to be used in the relocation's section offset. */
14518 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14519 {
14520 reloc->address = reloc->addend;
14521 reloc->addend = 0;
14522 }
14523
14524 code = fixp->fx_r_type;
14525
14526 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14527 if (reloc->howto == NULL)
14528 {
14529 as_bad_where (fixp->fx_file, fixp->fx_line,
14530 _("Can not represent %s relocation in this object file format"),
14531 bfd_get_reloc_code_name (code));
14532 retval[0] = NULL;
14533 }
14534
14535 return retval;
14536 }
14537
14538 /* Relax a machine dependent frag. This returns the amount by which
14539 the current size of the frag should change. */
14540
14541 int
14542 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14543 {
14544 if (RELAX_BRANCH_P (fragp->fr_subtype))
14545 {
14546 offsetT old_var = fragp->fr_var;
14547
14548 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14549
14550 return fragp->fr_var - old_var;
14551 }
14552
14553 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14554 return 0;
14555
14556 if (mips16_extended_frag (fragp, NULL, stretch))
14557 {
14558 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14559 return 0;
14560 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14561 return 2;
14562 }
14563 else
14564 {
14565 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14566 return 0;
14567 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14568 return -2;
14569 }
14570
14571 return 0;
14572 }
14573
14574 /* Convert a machine dependent frag. */
14575
14576 void
14577 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14578 {
14579 if (RELAX_BRANCH_P (fragp->fr_subtype))
14580 {
14581 bfd_byte *buf;
14582 unsigned long insn;
14583 expressionS exp;
14584 fixS *fixp;
14585
14586 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14587
14588 if (target_big_endian)
14589 insn = bfd_getb32 (buf);
14590 else
14591 insn = bfd_getl32 (buf);
14592
14593 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14594 {
14595 /* We generate a fixup instead of applying it right now
14596 because, if there are linker relaxations, we're going to
14597 need the relocations. */
14598 exp.X_op = O_symbol;
14599 exp.X_add_symbol = fragp->fr_symbol;
14600 exp.X_add_number = fragp->fr_offset;
14601
14602 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14603 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14604 fixp->fx_file = fragp->fr_file;
14605 fixp->fx_line = fragp->fr_line;
14606
14607 md_number_to_chars ((char *) buf, insn, 4);
14608 buf += 4;
14609 }
14610 else
14611 {
14612 int i;
14613
14614 as_warn_where (fragp->fr_file, fragp->fr_line,
14615 _("Relaxed out-of-range branch into a jump"));
14616
14617 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14618 goto uncond;
14619
14620 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14621 {
14622 /* Reverse the branch. */
14623 switch ((insn >> 28) & 0xf)
14624 {
14625 case 4:
14626 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14627 have the condition reversed by tweaking a single
14628 bit, and their opcodes all have 0x4???????. */
14629 gas_assert ((insn & 0xf1000000) == 0x41000000);
14630 insn ^= 0x00010000;
14631 break;
14632
14633 case 0:
14634 /* bltz 0x04000000 bgez 0x04010000
14635 bltzal 0x04100000 bgezal 0x04110000 */
14636 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14637 insn ^= 0x00010000;
14638 break;
14639
14640 case 1:
14641 /* beq 0x10000000 bne 0x14000000
14642 blez 0x18000000 bgtz 0x1c000000 */
14643 insn ^= 0x04000000;
14644 break;
14645
14646 default:
14647 abort ();
14648 }
14649 }
14650
14651 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14652 {
14653 /* Clear the and-link bit. */
14654 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14655
14656 /* bltzal 0x04100000 bgezal 0x04110000
14657 bltzall 0x04120000 bgezall 0x04130000 */
14658 insn &= ~0x00100000;
14659 }
14660
14661 /* Branch over the branch (if the branch was likely) or the
14662 full jump (not likely case). Compute the offset from the
14663 current instruction to branch to. */
14664 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14665 i = 16;
14666 else
14667 {
14668 /* How many bytes in instructions we've already emitted? */
14669 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14670 /* How many bytes in instructions from here to the end? */
14671 i = fragp->fr_var - i;
14672 }
14673 /* Convert to instruction count. */
14674 i >>= 2;
14675 /* Branch counts from the next instruction. */
14676 i--;
14677 insn |= i;
14678 /* Branch over the jump. */
14679 md_number_to_chars ((char *) buf, insn, 4);
14680 buf += 4;
14681
14682 /* nop */
14683 md_number_to_chars ((char *) buf, 0, 4);
14684 buf += 4;
14685
14686 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14687 {
14688 /* beql $0, $0, 2f */
14689 insn = 0x50000000;
14690 /* Compute the PC offset from the current instruction to
14691 the end of the variable frag. */
14692 /* How many bytes in instructions we've already emitted? */
14693 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14694 /* How many bytes in instructions from here to the end? */
14695 i = fragp->fr_var - i;
14696 /* Convert to instruction count. */
14697 i >>= 2;
14698 /* Don't decrement i, because we want to branch over the
14699 delay slot. */
14700
14701 insn |= i;
14702 md_number_to_chars ((char *) buf, insn, 4);
14703 buf += 4;
14704
14705 md_number_to_chars ((char *) buf, 0, 4);
14706 buf += 4;
14707 }
14708
14709 uncond:
14710 if (mips_pic == NO_PIC)
14711 {
14712 /* j or jal. */
14713 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14714 ? 0x0c000000 : 0x08000000);
14715 exp.X_op = O_symbol;
14716 exp.X_add_symbol = fragp->fr_symbol;
14717 exp.X_add_number = fragp->fr_offset;
14718
14719 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14720 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14721 fixp->fx_file = fragp->fr_file;
14722 fixp->fx_line = fragp->fr_line;
14723
14724 md_number_to_chars ((char *) buf, insn, 4);
14725 buf += 4;
14726 }
14727 else
14728 {
14729 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
14730
14731 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14732 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
14733 insn |= at << OP_SH_RT;
14734 exp.X_op = O_symbol;
14735 exp.X_add_symbol = fragp->fr_symbol;
14736 exp.X_add_number = fragp->fr_offset;
14737
14738 if (fragp->fr_offset)
14739 {
14740 exp.X_add_symbol = make_expr_symbol (&exp);
14741 exp.X_add_number = 0;
14742 }
14743
14744 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14745 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14746 fixp->fx_file = fragp->fr_file;
14747 fixp->fx_line = fragp->fr_line;
14748
14749 md_number_to_chars ((char *) buf, insn, 4);
14750 buf += 4;
14751
14752 if (mips_opts.isa == ISA_MIPS1)
14753 {
14754 /* nop */
14755 md_number_to_chars ((char *) buf, 0, 4);
14756 buf += 4;
14757 }
14758
14759 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14760 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
14761 insn |= at << OP_SH_RS | at << OP_SH_RT;
14762
14763 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14764 4, &exp, FALSE, BFD_RELOC_LO16);
14765 fixp->fx_file = fragp->fr_file;
14766 fixp->fx_line = fragp->fr_line;
14767
14768 md_number_to_chars ((char *) buf, insn, 4);
14769 buf += 4;
14770
14771 /* j(al)r $at. */
14772 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14773 insn = 0x0000f809;
14774 else
14775 insn = 0x00000008;
14776 insn |= at << OP_SH_RS;
14777
14778 md_number_to_chars ((char *) buf, insn, 4);
14779 buf += 4;
14780 }
14781 }
14782
14783 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14784 + fragp->fr_fix + fragp->fr_var);
14785
14786 fragp->fr_fix += fragp->fr_var;
14787
14788 return;
14789 }
14790
14791 if (RELAX_MIPS16_P (fragp->fr_subtype))
14792 {
14793 int type;
14794 const struct mips16_immed_operand *op;
14795 bfd_boolean small, ext;
14796 offsetT val;
14797 bfd_byte *buf;
14798 unsigned long insn;
14799 bfd_boolean use_extend;
14800 unsigned short extend;
14801
14802 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14803 op = mips16_immed_operands;
14804 while (op->type != type)
14805 ++op;
14806
14807 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14808 {
14809 small = FALSE;
14810 ext = TRUE;
14811 }
14812 else
14813 {
14814 small = TRUE;
14815 ext = FALSE;
14816 }
14817
14818 val = resolve_symbol_value (fragp->fr_symbol);
14819 if (op->pcrel)
14820 {
14821 addressT addr;
14822
14823 addr = fragp->fr_address + fragp->fr_fix;
14824
14825 /* The rules for the base address of a PC relative reloc are
14826 complicated; see mips16_extended_frag. */
14827 if (type == 'p' || type == 'q')
14828 {
14829 addr += 2;
14830 if (ext)
14831 addr += 2;
14832 /* Ignore the low bit in the target, since it will be
14833 set for a text label. */
14834 if ((val & 1) != 0)
14835 --val;
14836 }
14837 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14838 addr -= 4;
14839 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14840 addr -= 2;
14841
14842 addr &= ~ (addressT) ((1 << op->shift) - 1);
14843 val -= addr;
14844
14845 /* Make sure the section winds up with the alignment we have
14846 assumed. */
14847 if (op->shift > 0)
14848 record_alignment (asec, op->shift);
14849 }
14850
14851 if (ext
14852 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14853 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14854 as_warn_where (fragp->fr_file, fragp->fr_line,
14855 _("extended instruction in delay slot"));
14856
14857 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14858
14859 if (target_big_endian)
14860 insn = bfd_getb16 (buf);
14861 else
14862 insn = bfd_getl16 (buf);
14863
14864 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14865 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14866 small, ext, &insn, &use_extend, &extend);
14867
14868 if (use_extend)
14869 {
14870 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14871 fragp->fr_fix += 2;
14872 buf += 2;
14873 }
14874
14875 md_number_to_chars ((char *) buf, insn, 2);
14876 fragp->fr_fix += 2;
14877 buf += 2;
14878 }
14879 else
14880 {
14881 int first, second;
14882 fixS *fixp;
14883
14884 first = RELAX_FIRST (fragp->fr_subtype);
14885 second = RELAX_SECOND (fragp->fr_subtype);
14886 fixp = (fixS *) fragp->fr_opcode;
14887
14888 /* Possibly emit a warning if we've chosen the longer option. */
14889 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14890 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14891 {
14892 const char *msg = macro_warning (fragp->fr_subtype);
14893 if (msg != 0)
14894 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14895 }
14896
14897 /* Go through all the fixups for the first sequence. Disable them
14898 (by marking them as done) if we're going to use the second
14899 sequence instead. */
14900 while (fixp
14901 && fixp->fx_frag == fragp
14902 && fixp->fx_where < fragp->fr_fix - second)
14903 {
14904 if (fragp->fr_subtype & RELAX_USE_SECOND)
14905 fixp->fx_done = 1;
14906 fixp = fixp->fx_next;
14907 }
14908
14909 /* Go through the fixups for the second sequence. Disable them if
14910 we're going to use the first sequence, otherwise adjust their
14911 addresses to account for the relaxation. */
14912 while (fixp && fixp->fx_frag == fragp)
14913 {
14914 if (fragp->fr_subtype & RELAX_USE_SECOND)
14915 fixp->fx_where -= first;
14916 else
14917 fixp->fx_done = 1;
14918 fixp = fixp->fx_next;
14919 }
14920
14921 /* Now modify the frag contents. */
14922 if (fragp->fr_subtype & RELAX_USE_SECOND)
14923 {
14924 char *start;
14925
14926 start = fragp->fr_literal + fragp->fr_fix - first - second;
14927 memmove (start, start + first, second);
14928 fragp->fr_fix -= first;
14929 }
14930 else
14931 fragp->fr_fix -= second;
14932 }
14933 }
14934
14935 #ifdef OBJ_ELF
14936
14937 /* This function is called after the relocs have been generated.
14938 We've been storing mips16 text labels as odd. Here we convert them
14939 back to even for the convenience of the debugger. */
14940
14941 void
14942 mips_frob_file_after_relocs (void)
14943 {
14944 asymbol **syms;
14945 unsigned int count, i;
14946
14947 if (!IS_ELF)
14948 return;
14949
14950 syms = bfd_get_outsymbols (stdoutput);
14951 count = bfd_get_symcount (stdoutput);
14952 for (i = 0; i < count; i++, syms++)
14953 {
14954 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14955 && ((*syms)->value & 1) != 0)
14956 {
14957 (*syms)->value &= ~1;
14958 /* If the symbol has an odd size, it was probably computed
14959 incorrectly, so adjust that as well. */
14960 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14961 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14962 }
14963 }
14964 }
14965
14966 #endif
14967
14968 /* This function is called whenever a label is defined, including fake
14969 labels instantiated off the dot special symbol. It is used when
14970 handling branch delays; if a branch has a label, we assume we cannot
14971 move it. This also bumps the value of the symbol by 1 in compressed
14972 code. */
14973
14974 void
14975 mips_record_label (symbolS *sym)
14976 {
14977 segment_info_type *si = seg_info (now_seg);
14978 struct insn_label_list *l;
14979
14980 if (free_insn_labels == NULL)
14981 l = (struct insn_label_list *) xmalloc (sizeof *l);
14982 else
14983 {
14984 l = free_insn_labels;
14985 free_insn_labels = l->next;
14986 }
14987
14988 l->label = sym;
14989 l->next = si->label_list;
14990 si->label_list = l;
14991 }
14992
14993 /* This function is called as tc_frob_label() whenever a label is defined
14994 and adds a DWARF-2 record we only want for true labels. */
14995
14996 void
14997 mips_define_label (symbolS *sym)
14998 {
14999 mips_record_label (sym);
15000 #ifdef OBJ_ELF
15001 dwarf2_emit_label (sym);
15002 #endif
15003 }
15004 \f
15005 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
15006
15007 /* Some special processing for a MIPS ELF file. */
15008
15009 void
15010 mips_elf_final_processing (void)
15011 {
15012 /* Write out the register information. */
15013 if (mips_abi != N64_ABI)
15014 {
15015 Elf32_RegInfo s;
15016
15017 s.ri_gprmask = mips_gprmask;
15018 s.ri_cprmask[0] = mips_cprmask[0];
15019 s.ri_cprmask[1] = mips_cprmask[1];
15020 s.ri_cprmask[2] = mips_cprmask[2];
15021 s.ri_cprmask[3] = mips_cprmask[3];
15022 /* The gp_value field is set by the MIPS ELF backend. */
15023
15024 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
15025 ((Elf32_External_RegInfo *)
15026 mips_regmask_frag));
15027 }
15028 else
15029 {
15030 Elf64_Internal_RegInfo s;
15031
15032 s.ri_gprmask = mips_gprmask;
15033 s.ri_pad = 0;
15034 s.ri_cprmask[0] = mips_cprmask[0];
15035 s.ri_cprmask[1] = mips_cprmask[1];
15036 s.ri_cprmask[2] = mips_cprmask[2];
15037 s.ri_cprmask[3] = mips_cprmask[3];
15038 /* The gp_value field is set by the MIPS ELF backend. */
15039
15040 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
15041 ((Elf64_External_RegInfo *)
15042 mips_regmask_frag));
15043 }
15044
15045 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
15046 sort of BFD interface for this. */
15047 if (mips_any_noreorder)
15048 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
15049 if (mips_pic != NO_PIC)
15050 {
15051 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
15052 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
15053 }
15054 if (mips_abicalls)
15055 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
15056
15057 /* Set MIPS ELF flags for ASEs. */
15058 /* We may need to define a new flag for DSP ASE, and set this flag when
15059 file_ase_dsp is true. */
15060 /* Same for DSP R2. */
15061 /* We may need to define a new flag for MT ASE, and set this flag when
15062 file_ase_mt is true. */
15063 if (file_ase_mips16)
15064 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
15065 #if 0 /* XXX FIXME */
15066 if (file_ase_mips3d)
15067 elf_elfheader (stdoutput)->e_flags |= ???;
15068 #endif
15069 if (file_ase_mdmx)
15070 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
15071
15072 /* Set the MIPS ELF ABI flags. */
15073 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
15074 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
15075 else if (mips_abi == O64_ABI)
15076 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
15077 else if (mips_abi == EABI_ABI)
15078 {
15079 if (!file_mips_gp32)
15080 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
15081 else
15082 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
15083 }
15084 else if (mips_abi == N32_ABI)
15085 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
15086
15087 /* Nothing to do for N64_ABI. */
15088
15089 if (mips_32bitmode)
15090 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
15091
15092 #if 0 /* XXX FIXME */
15093 /* 32 bit code with 64 bit FP registers. */
15094 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
15095 elf_elfheader (stdoutput)->e_flags |= ???;
15096 #endif
15097 }
15098
15099 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
15100 \f
15101 typedef struct proc {
15102 symbolS *func_sym;
15103 symbolS *func_end_sym;
15104 unsigned long reg_mask;
15105 unsigned long reg_offset;
15106 unsigned long fpreg_mask;
15107 unsigned long fpreg_offset;
15108 unsigned long frame_offset;
15109 unsigned long frame_reg;
15110 unsigned long pc_reg;
15111 } procS;
15112
15113 static procS cur_proc;
15114 static procS *cur_proc_ptr;
15115 static int numprocs;
15116
15117 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
15118 nop as "0". */
15119
15120 char
15121 mips_nop_opcode (void)
15122 {
15123 return seg_info (now_seg)->tc_segment_info_data.mips16;
15124 }
15125
15126 /* Fill in an rs_align_code fragment. This only needs to do something
15127 for MIPS16 code, where 0 is not a nop. */
15128
15129 void
15130 mips_handle_align (fragS *fragp)
15131 {
15132 char *p;
15133 int bytes, size, excess;
15134 valueT opcode;
15135
15136 if (fragp->fr_type != rs_align_code)
15137 return;
15138
15139 p = fragp->fr_literal + fragp->fr_fix;
15140 if (*p)
15141 {
15142 opcode = mips16_nop_insn.insn_opcode;
15143 size = 2;
15144 }
15145 else
15146 {
15147 opcode = nop_insn.insn_opcode;
15148 size = 4;
15149 }
15150
15151 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
15152 excess = bytes % size;
15153 if (excess != 0)
15154 {
15155 /* If we're not inserting a whole number of instructions,
15156 pad the end of the fixed part of the frag with zeros. */
15157 memset (p, 0, excess);
15158 p += excess;
15159 fragp->fr_fix += excess;
15160 }
15161
15162 md_number_to_chars (p, opcode, size);
15163 fragp->fr_var = size;
15164 }
15165
15166 static void
15167 md_obj_begin (void)
15168 {
15169 }
15170
15171 static void
15172 md_obj_end (void)
15173 {
15174 /* Check for premature end, nesting errors, etc. */
15175 if (cur_proc_ptr)
15176 as_warn (_("missing .end at end of assembly"));
15177 }
15178
15179 static long
15180 get_number (void)
15181 {
15182 int negative = 0;
15183 long val = 0;
15184
15185 if (*input_line_pointer == '-')
15186 {
15187 ++input_line_pointer;
15188 negative = 1;
15189 }
15190 if (!ISDIGIT (*input_line_pointer))
15191 as_bad (_("expected simple number"));
15192 if (input_line_pointer[0] == '0')
15193 {
15194 if (input_line_pointer[1] == 'x')
15195 {
15196 input_line_pointer += 2;
15197 while (ISXDIGIT (*input_line_pointer))
15198 {
15199 val <<= 4;
15200 val |= hex_value (*input_line_pointer++);
15201 }
15202 return negative ? -val : val;
15203 }
15204 else
15205 {
15206 ++input_line_pointer;
15207 while (ISDIGIT (*input_line_pointer))
15208 {
15209 val <<= 3;
15210 val |= *input_line_pointer++ - '0';
15211 }
15212 return negative ? -val : val;
15213 }
15214 }
15215 if (!ISDIGIT (*input_line_pointer))
15216 {
15217 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
15218 *input_line_pointer, *input_line_pointer);
15219 as_warn (_("invalid number"));
15220 return -1;
15221 }
15222 while (ISDIGIT (*input_line_pointer))
15223 {
15224 val *= 10;
15225 val += *input_line_pointer++ - '0';
15226 }
15227 return negative ? -val : val;
15228 }
15229
15230 /* The .file directive; just like the usual .file directive, but there
15231 is an initial number which is the ECOFF file index. In the non-ECOFF
15232 case .file implies DWARF-2. */
15233
15234 static void
15235 s_mips_file (int x ATTRIBUTE_UNUSED)
15236 {
15237 static int first_file_directive = 0;
15238
15239 if (ECOFF_DEBUGGING)
15240 {
15241 get_number ();
15242 s_app_file (0);
15243 }
15244 else
15245 {
15246 char *filename;
15247
15248 filename = dwarf2_directive_file (0);
15249
15250 /* Versions of GCC up to 3.1 start files with a ".file"
15251 directive even for stabs output. Make sure that this
15252 ".file" is handled. Note that you need a version of GCC
15253 after 3.1 in order to support DWARF-2 on MIPS. */
15254 if (filename != NULL && ! first_file_directive)
15255 {
15256 (void) new_logical_line (filename, -1);
15257 s_app_file_string (filename, 0);
15258 }
15259 first_file_directive = 1;
15260 }
15261 }
15262
15263 /* The .loc directive, implying DWARF-2. */
15264
15265 static void
15266 s_mips_loc (int x ATTRIBUTE_UNUSED)
15267 {
15268 if (!ECOFF_DEBUGGING)
15269 dwarf2_directive_loc (0);
15270 }
15271
15272 /* The .end directive. */
15273
15274 static void
15275 s_mips_end (int x ATTRIBUTE_UNUSED)
15276 {
15277 symbolS *p;
15278
15279 /* Following functions need their own .frame and .cprestore directives. */
15280 mips_frame_reg_valid = 0;
15281 mips_cprestore_valid = 0;
15282
15283 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15284 {
15285 p = get_symbol ();
15286 demand_empty_rest_of_line ();
15287 }
15288 else
15289 p = NULL;
15290
15291 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15292 as_warn (_(".end not in text section"));
15293
15294 if (!cur_proc_ptr)
15295 {
15296 as_warn (_(".end directive without a preceding .ent directive."));
15297 demand_empty_rest_of_line ();
15298 return;
15299 }
15300
15301 if (p != NULL)
15302 {
15303 gas_assert (S_GET_NAME (p));
15304 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15305 as_warn (_(".end symbol does not match .ent symbol."));
15306
15307 if (debug_type == DEBUG_STABS)
15308 stabs_generate_asm_endfunc (S_GET_NAME (p),
15309 S_GET_NAME (p));
15310 }
15311 else
15312 as_warn (_(".end directive missing or unknown symbol"));
15313
15314 #ifdef OBJ_ELF
15315 /* Create an expression to calculate the size of the function. */
15316 if (p && cur_proc_ptr)
15317 {
15318 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15319 expressionS *exp = xmalloc (sizeof (expressionS));
15320
15321 obj->size = exp;
15322 exp->X_op = O_subtract;
15323 exp->X_add_symbol = symbol_temp_new_now ();
15324 exp->X_op_symbol = p;
15325 exp->X_add_number = 0;
15326
15327 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15328 }
15329
15330 /* Generate a .pdr section. */
15331 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15332 {
15333 segT saved_seg = now_seg;
15334 subsegT saved_subseg = now_subseg;
15335 expressionS exp;
15336 char *fragp;
15337
15338 #ifdef md_flush_pending_output
15339 md_flush_pending_output ();
15340 #endif
15341
15342 gas_assert (pdr_seg);
15343 subseg_set (pdr_seg, 0);
15344
15345 /* Write the symbol. */
15346 exp.X_op = O_symbol;
15347 exp.X_add_symbol = p;
15348 exp.X_add_number = 0;
15349 emit_expr (&exp, 4);
15350
15351 fragp = frag_more (7 * 4);
15352
15353 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15354 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15355 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15356 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15357 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15358 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15359 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15360
15361 subseg_set (saved_seg, saved_subseg);
15362 }
15363 #endif /* OBJ_ELF */
15364
15365 cur_proc_ptr = NULL;
15366 }
15367
15368 /* The .aent and .ent directives. */
15369
15370 static void
15371 s_mips_ent (int aent)
15372 {
15373 symbolS *symbolP;
15374
15375 symbolP = get_symbol ();
15376 if (*input_line_pointer == ',')
15377 ++input_line_pointer;
15378 SKIP_WHITESPACE ();
15379 if (ISDIGIT (*input_line_pointer)
15380 || *input_line_pointer == '-')
15381 get_number ();
15382
15383 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15384 as_warn (_(".ent or .aent not in text section."));
15385
15386 if (!aent && cur_proc_ptr)
15387 as_warn (_("missing .end"));
15388
15389 if (!aent)
15390 {
15391 /* This function needs its own .frame and .cprestore directives. */
15392 mips_frame_reg_valid = 0;
15393 mips_cprestore_valid = 0;
15394
15395 cur_proc_ptr = &cur_proc;
15396 memset (cur_proc_ptr, '\0', sizeof (procS));
15397
15398 cur_proc_ptr->func_sym = symbolP;
15399
15400 ++numprocs;
15401
15402 if (debug_type == DEBUG_STABS)
15403 stabs_generate_asm_func (S_GET_NAME (symbolP),
15404 S_GET_NAME (symbolP));
15405 }
15406
15407 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15408
15409 demand_empty_rest_of_line ();
15410 }
15411
15412 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15413 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15414 s_mips_frame is used so that we can set the PDR information correctly.
15415 We can't use the ecoff routines because they make reference to the ecoff
15416 symbol table (in the mdebug section). */
15417
15418 static void
15419 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15420 {
15421 #ifdef OBJ_ELF
15422 if (IS_ELF && !ECOFF_DEBUGGING)
15423 {
15424 long val;
15425
15426 if (cur_proc_ptr == (procS *) NULL)
15427 {
15428 as_warn (_(".frame outside of .ent"));
15429 demand_empty_rest_of_line ();
15430 return;
15431 }
15432
15433 cur_proc_ptr->frame_reg = tc_get_register (1);
15434
15435 SKIP_WHITESPACE ();
15436 if (*input_line_pointer++ != ','
15437 || get_absolute_expression_and_terminator (&val) != ',')
15438 {
15439 as_warn (_("Bad .frame directive"));
15440 --input_line_pointer;
15441 demand_empty_rest_of_line ();
15442 return;
15443 }
15444
15445 cur_proc_ptr->frame_offset = val;
15446 cur_proc_ptr->pc_reg = tc_get_register (0);
15447
15448 demand_empty_rest_of_line ();
15449 }
15450 else
15451 #endif /* OBJ_ELF */
15452 s_ignore (ignore);
15453 }
15454
15455 /* The .fmask and .mask directives. If the mdebug section is present
15456 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15457 embedded targets, s_mips_mask is used so that we can set the PDR
15458 information correctly. We can't use the ecoff routines because they
15459 make reference to the ecoff symbol table (in the mdebug section). */
15460
15461 static void
15462 s_mips_mask (int reg_type)
15463 {
15464 #ifdef OBJ_ELF
15465 if (IS_ELF && !ECOFF_DEBUGGING)
15466 {
15467 long mask, off;
15468
15469 if (cur_proc_ptr == (procS *) NULL)
15470 {
15471 as_warn (_(".mask/.fmask outside of .ent"));
15472 demand_empty_rest_of_line ();
15473 return;
15474 }
15475
15476 if (get_absolute_expression_and_terminator (&mask) != ',')
15477 {
15478 as_warn (_("Bad .mask/.fmask directive"));
15479 --input_line_pointer;
15480 demand_empty_rest_of_line ();
15481 return;
15482 }
15483
15484 off = get_absolute_expression ();
15485
15486 if (reg_type == 'F')
15487 {
15488 cur_proc_ptr->fpreg_mask = mask;
15489 cur_proc_ptr->fpreg_offset = off;
15490 }
15491 else
15492 {
15493 cur_proc_ptr->reg_mask = mask;
15494 cur_proc_ptr->reg_offset = off;
15495 }
15496
15497 demand_empty_rest_of_line ();
15498 }
15499 else
15500 #endif /* OBJ_ELF */
15501 s_ignore (reg_type);
15502 }
15503
15504 /* A table describing all the processors gas knows about. Names are
15505 matched in the order listed.
15506
15507 To ease comparison, please keep this table in the same order as
15508 gcc's mips_cpu_info_table[]. */
15509 static const struct mips_cpu_info mips_cpu_info_table[] =
15510 {
15511 /* Entries for generic ISAs */
15512 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15513 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15514 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15515 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15516 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15517 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15518 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15519 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15520 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15521
15522 /* MIPS I */
15523 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15524 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15525 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15526
15527 /* MIPS II */
15528 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15529
15530 /* MIPS III */
15531 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15532 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15533 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15534 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15535 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15536 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15537 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15538 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15539 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15540 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15541 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15542 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15543 /* ST Microelectronics Loongson 2E and 2F cores */
15544 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15545 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15546
15547 /* MIPS IV */
15548 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15549 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15550 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15551 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15552 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15553 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15554 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15555 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15556 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15557 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15558 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15559 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15560 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15561 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15562 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15563
15564 /* MIPS 32 */
15565 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15566 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15567 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15568 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15569
15570 /* MIPS 32 Release 2 */
15571 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15572 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15573 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15574 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15575 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15576 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15577 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15578 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15579 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15580 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15581 /* Deprecated forms of the above. */
15582 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15583 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15584 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15585 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15586 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15587 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15588 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15589 /* Deprecated forms of the above. */
15590 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15591 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15592 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15593 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15594 ISA_MIPS32R2, CPU_MIPS32R2 },
15595 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15596 ISA_MIPS32R2, CPU_MIPS32R2 },
15597 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15598 ISA_MIPS32R2, CPU_MIPS32R2 },
15599 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15600 ISA_MIPS32R2, CPU_MIPS32R2 },
15601 /* Deprecated forms of the above. */
15602 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15603 ISA_MIPS32R2, CPU_MIPS32R2 },
15604 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15605 ISA_MIPS32R2, CPU_MIPS32R2 },
15606 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15607 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15608 ISA_MIPS32R2, CPU_MIPS32R2 },
15609 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15610 ISA_MIPS32R2, CPU_MIPS32R2 },
15611 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15612 ISA_MIPS32R2, CPU_MIPS32R2 },
15613 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15614 ISA_MIPS32R2, CPU_MIPS32R2 },
15615 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15616 ISA_MIPS32R2, CPU_MIPS32R2 },
15617 /* Deprecated forms of the above. */
15618 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15619 ISA_MIPS32R2, CPU_MIPS32R2 },
15620 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15621 ISA_MIPS32R2, CPU_MIPS32R2 },
15622 /* 1004K cores are multiprocessor versions of the 34K. */
15623 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15624 ISA_MIPS32R2, CPU_MIPS32R2 },
15625 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15626 ISA_MIPS32R2, CPU_MIPS32R2 },
15627 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15628 ISA_MIPS32R2, CPU_MIPS32R2 },
15629 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15630 ISA_MIPS32R2, CPU_MIPS32R2 },
15631
15632 /* MIPS 64 */
15633 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15634 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15635 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15636 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15637
15638 /* Broadcom SB-1 CPU core */
15639 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15640 ISA_MIPS64, CPU_SB1 },
15641 /* Broadcom SB-1A CPU core */
15642 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15643 ISA_MIPS64, CPU_SB1 },
15644
15645 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
15646
15647 /* MIPS 64 Release 2 */
15648
15649 /* Cavium Networks Octeon CPU core */
15650 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15651
15652 /* RMI Xlr */
15653 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15654
15655 /* End marker */
15656 { NULL, 0, 0, 0 }
15657 };
15658
15659
15660 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15661 with a final "000" replaced by "k". Ignore case.
15662
15663 Note: this function is shared between GCC and GAS. */
15664
15665 static bfd_boolean
15666 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15667 {
15668 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15669 given++, canonical++;
15670
15671 return ((*given == 0 && *canonical == 0)
15672 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15673 }
15674
15675
15676 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15677 CPU name. We've traditionally allowed a lot of variation here.
15678
15679 Note: this function is shared between GCC and GAS. */
15680
15681 static bfd_boolean
15682 mips_matching_cpu_name_p (const char *canonical, const char *given)
15683 {
15684 /* First see if the name matches exactly, or with a final "000"
15685 turned into "k". */
15686 if (mips_strict_matching_cpu_name_p (canonical, given))
15687 return TRUE;
15688
15689 /* If not, try comparing based on numerical designation alone.
15690 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15691 if (TOLOWER (*given) == 'r')
15692 given++;
15693 if (!ISDIGIT (*given))
15694 return FALSE;
15695
15696 /* Skip over some well-known prefixes in the canonical name,
15697 hoping to find a number there too. */
15698 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15699 canonical += 2;
15700 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15701 canonical += 2;
15702 else if (TOLOWER (canonical[0]) == 'r')
15703 canonical += 1;
15704
15705 return mips_strict_matching_cpu_name_p (canonical, given);
15706 }
15707
15708
15709 /* Parse an option that takes the name of a processor as its argument.
15710 OPTION is the name of the option and CPU_STRING is the argument.
15711 Return the corresponding processor enumeration if the CPU_STRING is
15712 recognized, otherwise report an error and return null.
15713
15714 A similar function exists in GCC. */
15715
15716 static const struct mips_cpu_info *
15717 mips_parse_cpu (const char *option, const char *cpu_string)
15718 {
15719 const struct mips_cpu_info *p;
15720
15721 /* 'from-abi' selects the most compatible architecture for the given
15722 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15723 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15724 version. Look first at the -mgp options, if given, otherwise base
15725 the choice on MIPS_DEFAULT_64BIT.
15726
15727 Treat NO_ABI like the EABIs. One reason to do this is that the
15728 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15729 architecture. This code picks MIPS I for 'mips' and MIPS III for
15730 'mips64', just as we did in the days before 'from-abi'. */
15731 if (strcasecmp (cpu_string, "from-abi") == 0)
15732 {
15733 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15734 return mips_cpu_info_from_isa (ISA_MIPS1);
15735
15736 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15737 return mips_cpu_info_from_isa (ISA_MIPS3);
15738
15739 if (file_mips_gp32 >= 0)
15740 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15741
15742 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15743 ? ISA_MIPS3
15744 : ISA_MIPS1);
15745 }
15746
15747 /* 'default' has traditionally been a no-op. Probably not very useful. */
15748 if (strcasecmp (cpu_string, "default") == 0)
15749 return 0;
15750
15751 for (p = mips_cpu_info_table; p->name != 0; p++)
15752 if (mips_matching_cpu_name_p (p->name, cpu_string))
15753 return p;
15754
15755 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15756 return 0;
15757 }
15758
15759 /* Return the canonical processor information for ISA (a member of the
15760 ISA_MIPS* enumeration). */
15761
15762 static const struct mips_cpu_info *
15763 mips_cpu_info_from_isa (int isa)
15764 {
15765 int i;
15766
15767 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15768 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15769 && isa == mips_cpu_info_table[i].isa)
15770 return (&mips_cpu_info_table[i]);
15771
15772 return NULL;
15773 }
15774
15775 static const struct mips_cpu_info *
15776 mips_cpu_info_from_arch (int arch)
15777 {
15778 int i;
15779
15780 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15781 if (arch == mips_cpu_info_table[i].cpu)
15782 return (&mips_cpu_info_table[i]);
15783
15784 return NULL;
15785 }
15786 \f
15787 static void
15788 show (FILE *stream, const char *string, int *col_p, int *first_p)
15789 {
15790 if (*first_p)
15791 {
15792 fprintf (stream, "%24s", "");
15793 *col_p = 24;
15794 }
15795 else
15796 {
15797 fprintf (stream, ", ");
15798 *col_p += 2;
15799 }
15800
15801 if (*col_p + strlen (string) > 72)
15802 {
15803 fprintf (stream, "\n%24s", "");
15804 *col_p = 24;
15805 }
15806
15807 fprintf (stream, "%s", string);
15808 *col_p += strlen (string);
15809
15810 *first_p = 0;
15811 }
15812
15813 void
15814 md_show_usage (FILE *stream)
15815 {
15816 int column, first;
15817 size_t i;
15818
15819 fprintf (stream, _("\
15820 MIPS options:\n\
15821 -EB generate big endian output\n\
15822 -EL generate little endian output\n\
15823 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15824 -G NUM allow referencing objects up to NUM bytes\n\
15825 implicitly with the gp register [default 8]\n"));
15826 fprintf (stream, _("\
15827 -mips1 generate MIPS ISA I instructions\n\
15828 -mips2 generate MIPS ISA II instructions\n\
15829 -mips3 generate MIPS ISA III instructions\n\
15830 -mips4 generate MIPS ISA IV instructions\n\
15831 -mips5 generate MIPS ISA V instructions\n\
15832 -mips32 generate MIPS32 ISA instructions\n\
15833 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15834 -mips64 generate MIPS64 ISA instructions\n\
15835 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15836 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15837
15838 first = 1;
15839
15840 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15841 show (stream, mips_cpu_info_table[i].name, &column, &first);
15842 show (stream, "from-abi", &column, &first);
15843 fputc ('\n', stream);
15844
15845 fprintf (stream, _("\
15846 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15847 -no-mCPU don't generate code specific to CPU.\n\
15848 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15849
15850 first = 1;
15851
15852 show (stream, "3900", &column, &first);
15853 show (stream, "4010", &column, &first);
15854 show (stream, "4100", &column, &first);
15855 show (stream, "4650", &column, &first);
15856 fputc ('\n', stream);
15857
15858 fprintf (stream, _("\
15859 -mips16 generate mips16 instructions\n\
15860 -no-mips16 do not generate mips16 instructions\n"));
15861 fprintf (stream, _("\
15862 -msmartmips generate smartmips instructions\n\
15863 -mno-smartmips do not generate smartmips instructions\n"));
15864 fprintf (stream, _("\
15865 -mdsp generate DSP instructions\n\
15866 -mno-dsp do not generate DSP instructions\n"));
15867 fprintf (stream, _("\
15868 -mdspr2 generate DSP R2 instructions\n\
15869 -mno-dspr2 do not generate DSP R2 instructions\n"));
15870 fprintf (stream, _("\
15871 -mmt generate MT instructions\n\
15872 -mno-mt do not generate MT instructions\n"));
15873 fprintf (stream, _("\
15874 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15875 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15876 -mfix-vr4120 work around certain VR4120 errata\n\
15877 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15878 -mfix-24k insert a nop after ERET and DERET instructions\n\
15879 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15880 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15881 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15882 -msym32 assume all symbols have 32-bit values\n\
15883 -O0 remove unneeded NOPs, do not swap branches\n\
15884 -O remove unneeded NOPs and swap branches\n\
15885 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15886 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15887 fprintf (stream, _("\
15888 -mhard-float allow floating-point instructions\n\
15889 -msoft-float do not allow floating-point instructions\n\
15890 -msingle-float only allow 32-bit floating-point operations\n\
15891 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15892 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15893 ));
15894 #ifdef OBJ_ELF
15895 fprintf (stream, _("\
15896 -KPIC, -call_shared generate SVR4 position independent code\n\
15897 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15898 -mvxworks-pic generate VxWorks position independent code\n\
15899 -non_shared do not generate code that can operate with DSOs\n\
15900 -xgot assume a 32 bit GOT\n\
15901 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15902 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15903 position dependent (non shared) code\n\
15904 -mabi=ABI create ABI conformant object file for:\n"));
15905
15906 first = 1;
15907
15908 show (stream, "32", &column, &first);
15909 show (stream, "o64", &column, &first);
15910 show (stream, "n32", &column, &first);
15911 show (stream, "64", &column, &first);
15912 show (stream, "eabi", &column, &first);
15913
15914 fputc ('\n', stream);
15915
15916 fprintf (stream, _("\
15917 -32 create o32 ABI object file (default)\n\
15918 -n32 create n32 ABI object file\n\
15919 -64 create 64 ABI object file\n"));
15920 #endif
15921 }
15922
15923 #ifdef TE_IRIX
15924 enum dwarf2_format
15925 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15926 {
15927 if (HAVE_64BIT_SYMBOLS)
15928 return dwarf2_format_64bit_irix;
15929 else
15930 return dwarf2_format_32bit;
15931 }
15932 #endif
15933
15934 int
15935 mips_dwarf2_addr_size (void)
15936 {
15937 if (HAVE_64BIT_OBJECTS)
15938 return 8;
15939 else
15940 return 4;
15941 }
15942
15943 /* Standard calling conventions leave the CFA at SP on entry. */
15944 void
15945 mips_cfi_frame_initial_instructions (void)
15946 {
15947 cfi_add_CFA_def_cfa_register (SP);
15948 }
15949
15950 int
15951 tc_mips_regname_to_dw2regnum (char *regname)
15952 {
15953 unsigned int regnum = -1;
15954 unsigned int reg;
15955
15956 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15957 regnum = reg;
15958
15959 return regnum;
15960 }
This page took 0.38474 seconds and 4 git commands to generate.