3dc6a53d91c0468a83cd70dc1e2a7fceadeb8e50
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946
947 /* TRUE if checks are suppressed for invalid branches between ISA modes.
948 Needed for broken assembly produced by some GCC versions and some
949 sloppy code out there, where branches to data labels are present. */
950 static bfd_boolean mips_ignore_branch_isa;
951 \f
952 /* The expansion of many macros depends on the type of symbol that
953 they refer to. For example, when generating position-dependent code,
954 a macro that refers to a symbol may have two different expansions,
955 one which uses GP-relative addresses and one which uses absolute
956 addresses. When generating SVR4-style PIC, a macro may have
957 different expansions for local and global symbols.
958
959 We handle these situations by generating both sequences and putting
960 them in variant frags. In position-dependent code, the first sequence
961 will be the GP-relative one and the second sequence will be the
962 absolute one. In SVR4 PIC, the first sequence will be for global
963 symbols and the second will be for local symbols.
964
965 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
966 SECOND are the lengths of the two sequences in bytes. These fields
967 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
968 the subtype has the following flags:
969
970 RELAX_PIC
971 Set if generating PIC code.
972
973 RELAX_USE_SECOND
974 Set if it has been decided that we should use the second
975 sequence instead of the first.
976
977 RELAX_SECOND_LONGER
978 Set in the first variant frag if the macro's second implementation
979 is longer than its first. This refers to the macro as a whole,
980 not an individual relaxation.
981
982 RELAX_NOMACRO
983 Set in the first variant frag if the macro appeared in a .set nomacro
984 block and if one alternative requires a warning but the other does not.
985
986 RELAX_DELAY_SLOT
987 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
988 delay slot.
989
990 RELAX_DELAY_SLOT_16BIT
991 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
992 16-bit instruction.
993
994 RELAX_DELAY_SLOT_SIZE_FIRST
995 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
996 the macro is of the wrong size for the branch delay slot.
997
998 RELAX_DELAY_SLOT_SIZE_SECOND
999 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1000 the macro is of the wrong size for the branch delay slot.
1001
1002 The frag's "opcode" points to the first fixup for relaxable code.
1003
1004 Relaxable macros are generated using a sequence such as:
1005
1006 relax_start (SYMBOL);
1007 ... generate first expansion ...
1008 relax_switch ();
1009 ... generate second expansion ...
1010 relax_end ();
1011
1012 The code and fixups for the unwanted alternative are discarded
1013 by md_convert_frag. */
1014 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1015 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1016
1017 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1018 #define RELAX_SECOND(X) ((X) & 0xff)
1019 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1020 #define RELAX_USE_SECOND 0x20000
1021 #define RELAX_SECOND_LONGER 0x40000
1022 #define RELAX_NOMACRO 0x80000
1023 #define RELAX_DELAY_SLOT 0x100000
1024 #define RELAX_DELAY_SLOT_16BIT 0x200000
1025 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1026 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1027
1028 /* Branch without likely bit. If label is out of range, we turn:
1029
1030 beq reg1, reg2, label
1031 delay slot
1032
1033 into
1034
1035 bne reg1, reg2, 0f
1036 nop
1037 j label
1038 0: delay slot
1039
1040 with the following opcode replacements:
1041
1042 beq <-> bne
1043 blez <-> bgtz
1044 bltz <-> bgez
1045 bc1f <-> bc1t
1046
1047 bltzal <-> bgezal (with jal label instead of j label)
1048
1049 Even though keeping the delay slot instruction in the delay slot of
1050 the branch would be more efficient, it would be very tricky to do
1051 correctly, because we'd have to introduce a variable frag *after*
1052 the delay slot instruction, and expand that instead. Let's do it
1053 the easy way for now, even if the branch-not-taken case now costs
1054 one additional instruction. Out-of-range branches are not supposed
1055 to be common, anyway.
1056
1057 Branch likely. If label is out of range, we turn:
1058
1059 beql reg1, reg2, label
1060 delay slot (annulled if branch not taken)
1061
1062 into
1063
1064 beql reg1, reg2, 1f
1065 nop
1066 beql $0, $0, 2f
1067 nop
1068 1: j[al] label
1069 delay slot (executed only if branch taken)
1070 2:
1071
1072 It would be possible to generate a shorter sequence by losing the
1073 likely bit, generating something like:
1074
1075 bne reg1, reg2, 0f
1076 nop
1077 j[al] label
1078 delay slot (executed only if branch taken)
1079 0:
1080
1081 beql -> bne
1082 bnel -> beq
1083 blezl -> bgtz
1084 bgtzl -> blez
1085 bltzl -> bgez
1086 bgezl -> bltz
1087 bc1fl -> bc1t
1088 bc1tl -> bc1f
1089
1090 bltzall -> bgezal (with jal label instead of j label)
1091 bgezall -> bltzal (ditto)
1092
1093
1094 but it's not clear that it would actually improve performance. */
1095 #define RELAX_BRANCH_ENCODE(at, pic, \
1096 uncond, likely, link, toofar) \
1097 ((relax_substateT) \
1098 (0xc0000000 \
1099 | ((at) & 0x1f) \
1100 | ((pic) ? 0x20 : 0) \
1101 | ((toofar) ? 0x40 : 0) \
1102 | ((link) ? 0x80 : 0) \
1103 | ((likely) ? 0x100 : 0) \
1104 | ((uncond) ? 0x200 : 0)))
1105 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1106 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1107 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1108 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1109 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1110 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1111 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1112
1113 /* For mips16 code, we use an entirely different form of relaxation.
1114 mips16 supports two versions of most instructions which take
1115 immediate values: a small one which takes some small value, and a
1116 larger one which takes a 16 bit value. Since branches also follow
1117 this pattern, relaxing these values is required.
1118
1119 We can assemble both mips16 and normal MIPS code in a single
1120 object. Therefore, we need to support this type of relaxation at
1121 the same time that we support the relaxation described above. We
1122 use the high bit of the subtype field to distinguish these cases.
1123
1124 The information we store for this type of relaxation is the
1125 argument code found in the opcode file for this relocation, whether
1126 the user explicitly requested a small or extended form, and whether
1127 the relocation is in a jump or jal delay slot. That tells us the
1128 size of the value, and how it should be stored. We also store
1129 whether the fragment is considered to be extended or not. We also
1130 store whether this is known to be a branch to a different section,
1131 whether we have tried to relax this frag yet, and whether we have
1132 ever extended a PC relative fragment because of a shift count. */
1133 #define RELAX_MIPS16_ENCODE(type, pic, sym32, nomacro, \
1134 small, ext, \
1135 dslot, jal_dslot) \
1136 (0x80000000 \
1137 | ((type) & 0xff) \
1138 | ((pic) ? 0x100 : 0) \
1139 | ((sym32) ? 0x200 : 0) \
1140 | ((nomacro) ? 0x400 : 0) \
1141 | ((small) ? 0x800 : 0) \
1142 | ((ext) ? 0x1000 : 0) \
1143 | ((dslot) ? 0x2000 : 0) \
1144 | ((jal_dslot) ? 0x4000 : 0))
1145
1146 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1147 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1148 #define RELAX_MIPS16_PIC(i) (((i) & 0x100) != 0)
1149 #define RELAX_MIPS16_SYM32(i) (((i) & 0x200) != 0)
1150 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x400) != 0)
1151 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x800) != 0)
1152 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x1000) != 0)
1153 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x2000) != 0)
1154 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x4000) != 0)
1155
1156 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x8000) != 0)
1157 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x8000)
1158 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x8000)
1159 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x10000) != 0)
1160 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x10000)
1161 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x10000)
1162 #define RELAX_MIPS16_MACRO(i) (((i) & 0x20000) != 0)
1163 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x20000)
1164 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x20000)
1165
1166 /* For microMIPS code, we use relaxation similar to one we use for
1167 MIPS16 code. Some instructions that take immediate values support
1168 two encodings: a small one which takes some small value, and a
1169 larger one which takes a 16 bit value. As some branches also follow
1170 this pattern, relaxing these values is required.
1171
1172 We can assemble both microMIPS and normal MIPS code in a single
1173 object. Therefore, we need to support this type of relaxation at
1174 the same time that we support the relaxation described above. We
1175 use one of the high bits of the subtype field to distinguish these
1176 cases.
1177
1178 The information we store for this type of relaxation is the argument
1179 code found in the opcode file for this relocation, the register
1180 selected as the assembler temporary, whether in the 32-bit
1181 instruction mode, whether the branch is unconditional, whether it is
1182 compact, whether there is no delay-slot instruction available to fill
1183 in, whether it stores the link address implicitly in $ra, whether
1184 relaxation of out-of-range 32-bit branches to a sequence of
1185 instructions is enabled, and whether the displacement of a branch is
1186 too large to fit as an immediate argument of a 16-bit and a 32-bit
1187 branch, respectively. */
1188 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1189 uncond, compact, link, nods, \
1190 relax32, toofar16, toofar32) \
1191 (0x40000000 \
1192 | ((type) & 0xff) \
1193 | (((at) & 0x1f) << 8) \
1194 | ((insn32) ? 0x2000 : 0) \
1195 | ((pic) ? 0x4000 : 0) \
1196 | ((uncond) ? 0x8000 : 0) \
1197 | ((compact) ? 0x10000 : 0) \
1198 | ((link) ? 0x20000 : 0) \
1199 | ((nods) ? 0x40000 : 0) \
1200 | ((relax32) ? 0x80000 : 0) \
1201 | ((toofar16) ? 0x100000 : 0) \
1202 | ((toofar32) ? 0x200000 : 0))
1203 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1204 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1205 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1206 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1207 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1208 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1209 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1210 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1211 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1212 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1213
1214 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1215 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1216 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1217 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1218 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1219 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1220
1221 /* Sign-extend 16-bit value X. */
1222 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1223
1224 /* Is the given value a sign-extended 32-bit value? */
1225 #define IS_SEXT_32BIT_NUM(x) \
1226 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1227 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1228
1229 /* Is the given value a sign-extended 16-bit value? */
1230 #define IS_SEXT_16BIT_NUM(x) \
1231 (((x) &~ (offsetT) 0x7fff) == 0 \
1232 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1233
1234 /* Is the given value a sign-extended 12-bit value? */
1235 #define IS_SEXT_12BIT_NUM(x) \
1236 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1237
1238 /* Is the given value a sign-extended 9-bit value? */
1239 #define IS_SEXT_9BIT_NUM(x) \
1240 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1241
1242 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1243 #define IS_ZEXT_32BIT_NUM(x) \
1244 (((x) &~ (offsetT) 0xffffffff) == 0 \
1245 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1246
1247 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1248 SHIFT places. */
1249 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1250 (((STRUCT) >> (SHIFT)) & (MASK))
1251
1252 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1253 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1254 (!(MICROMIPS) \
1255 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1256 : EXTRACT_BITS ((INSN).insn_opcode, \
1257 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1258 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1259 EXTRACT_BITS ((INSN).insn_opcode, \
1260 MIPS16OP_MASK_##FIELD, \
1261 MIPS16OP_SH_##FIELD)
1262
1263 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1264 #define MIPS16_EXTEND (0xf000U << 16)
1265 \f
1266 /* Whether or not we are emitting a branch-likely macro. */
1267 static bfd_boolean emit_branch_likely_macro = FALSE;
1268
1269 /* Global variables used when generating relaxable macros. See the
1270 comment above RELAX_ENCODE for more details about how relaxation
1271 is used. */
1272 static struct {
1273 /* 0 if we're not emitting a relaxable macro.
1274 1 if we're emitting the first of the two relaxation alternatives.
1275 2 if we're emitting the second alternative. */
1276 int sequence;
1277
1278 /* The first relaxable fixup in the current frag. (In other words,
1279 the first fixup that refers to relaxable code.) */
1280 fixS *first_fixup;
1281
1282 /* sizes[0] says how many bytes of the first alternative are stored in
1283 the current frag. Likewise sizes[1] for the second alternative. */
1284 unsigned int sizes[2];
1285
1286 /* The symbol on which the choice of sequence depends. */
1287 symbolS *symbol;
1288 } mips_relax;
1289 \f
1290 /* Global variables used to decide whether a macro needs a warning. */
1291 static struct {
1292 /* True if the macro is in a branch delay slot. */
1293 bfd_boolean delay_slot_p;
1294
1295 /* Set to the length in bytes required if the macro is in a delay slot
1296 that requires a specific length of instruction, otherwise zero. */
1297 unsigned int delay_slot_length;
1298
1299 /* For relaxable macros, sizes[0] is the length of the first alternative
1300 in bytes and sizes[1] is the length of the second alternative.
1301 For non-relaxable macros, both elements give the length of the
1302 macro in bytes. */
1303 unsigned int sizes[2];
1304
1305 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1306 instruction of the first alternative in bytes and first_insn_sizes[1]
1307 is the length of the first instruction of the second alternative.
1308 For non-relaxable macros, both elements give the length of the first
1309 instruction in bytes.
1310
1311 Set to zero if we haven't yet seen the first instruction. */
1312 unsigned int first_insn_sizes[2];
1313
1314 /* For relaxable macros, insns[0] is the number of instructions for the
1315 first alternative and insns[1] is the number of instructions for the
1316 second alternative.
1317
1318 For non-relaxable macros, both elements give the number of
1319 instructions for the macro. */
1320 unsigned int insns[2];
1321
1322 /* The first variant frag for this macro. */
1323 fragS *first_frag;
1324 } mips_macro_warning;
1325 \f
1326 /* Prototypes for static functions. */
1327
1328 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1329
1330 static void append_insn
1331 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1332 bfd_boolean expansionp);
1333 static void mips_no_prev_insn (void);
1334 static void macro_build (expressionS *, const char *, const char *, ...);
1335 static void mips16_macro_build
1336 (expressionS *, const char *, const char *, va_list *);
1337 static void load_register (int, expressionS *, int);
1338 static void macro_start (void);
1339 static void macro_end (void);
1340 static void macro (struct mips_cl_insn *ip, char *str);
1341 static void mips16_macro (struct mips_cl_insn * ip);
1342 static void mips_ip (char *str, struct mips_cl_insn * ip);
1343 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1344 static void mips16_immed
1345 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1346 unsigned int, unsigned long *);
1347 static size_t my_getSmallExpression
1348 (expressionS *, bfd_reloc_code_real_type *, char *);
1349 static void my_getExpression (expressionS *, char *);
1350 static void s_align (int);
1351 static void s_change_sec (int);
1352 static void s_change_section (int);
1353 static void s_cons (int);
1354 static void s_float_cons (int);
1355 static void s_mips_globl (int);
1356 static void s_option (int);
1357 static void s_mipsset (int);
1358 static void s_abicalls (int);
1359 static void s_cpload (int);
1360 static void s_cpsetup (int);
1361 static void s_cplocal (int);
1362 static void s_cprestore (int);
1363 static void s_cpreturn (int);
1364 static void s_dtprelword (int);
1365 static void s_dtpreldword (int);
1366 static void s_tprelword (int);
1367 static void s_tpreldword (int);
1368 static void s_gpvalue (int);
1369 static void s_gpword (int);
1370 static void s_gpdword (int);
1371 static void s_ehword (int);
1372 static void s_cpadd (int);
1373 static void s_insn (int);
1374 static void s_nan (int);
1375 static void s_module (int);
1376 static void s_mips_ent (int);
1377 static void s_mips_end (int);
1378 static void s_mips_frame (int);
1379 static void s_mips_mask (int reg_type);
1380 static void s_mips_stab (int);
1381 static void s_mips_weakext (int);
1382 static void s_mips_file (int);
1383 static void s_mips_loc (int);
1384 static bfd_boolean pic_need_relax (symbolS *);
1385 static int relaxed_branch_length (fragS *, asection *, int);
1386 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1387 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1388 static void file_mips_check_options (void);
1389
1390 /* Table and functions used to map between CPU/ISA names, and
1391 ISA levels, and CPU numbers. */
1392
1393 struct mips_cpu_info
1394 {
1395 const char *name; /* CPU or ISA name. */
1396 int flags; /* MIPS_CPU_* flags. */
1397 int ase; /* Set of ASEs implemented by the CPU. */
1398 int isa; /* ISA level. */
1399 int cpu; /* CPU number (default CPU if ISA). */
1400 };
1401
1402 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1403
1404 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1405 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1406 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1407 \f
1408 /* Command-line options. */
1409 const char *md_shortopts = "O::g::G:";
1410
1411 enum options
1412 {
1413 OPTION_MARCH = OPTION_MD_BASE,
1414 OPTION_MTUNE,
1415 OPTION_MIPS1,
1416 OPTION_MIPS2,
1417 OPTION_MIPS3,
1418 OPTION_MIPS4,
1419 OPTION_MIPS5,
1420 OPTION_MIPS32,
1421 OPTION_MIPS64,
1422 OPTION_MIPS32R2,
1423 OPTION_MIPS32R3,
1424 OPTION_MIPS32R5,
1425 OPTION_MIPS32R6,
1426 OPTION_MIPS64R2,
1427 OPTION_MIPS64R3,
1428 OPTION_MIPS64R5,
1429 OPTION_MIPS64R6,
1430 OPTION_MIPS16,
1431 OPTION_NO_MIPS16,
1432 OPTION_MIPS3D,
1433 OPTION_NO_MIPS3D,
1434 OPTION_MDMX,
1435 OPTION_NO_MDMX,
1436 OPTION_DSP,
1437 OPTION_NO_DSP,
1438 OPTION_MT,
1439 OPTION_NO_MT,
1440 OPTION_VIRT,
1441 OPTION_NO_VIRT,
1442 OPTION_MSA,
1443 OPTION_NO_MSA,
1444 OPTION_SMARTMIPS,
1445 OPTION_NO_SMARTMIPS,
1446 OPTION_DSPR2,
1447 OPTION_NO_DSPR2,
1448 OPTION_DSPR3,
1449 OPTION_NO_DSPR3,
1450 OPTION_EVA,
1451 OPTION_NO_EVA,
1452 OPTION_XPA,
1453 OPTION_NO_XPA,
1454 OPTION_MICROMIPS,
1455 OPTION_NO_MICROMIPS,
1456 OPTION_MCU,
1457 OPTION_NO_MCU,
1458 OPTION_COMPAT_ARCH_BASE,
1459 OPTION_M4650,
1460 OPTION_NO_M4650,
1461 OPTION_M4010,
1462 OPTION_NO_M4010,
1463 OPTION_M4100,
1464 OPTION_NO_M4100,
1465 OPTION_M3900,
1466 OPTION_NO_M3900,
1467 OPTION_M7000_HILO_FIX,
1468 OPTION_MNO_7000_HILO_FIX,
1469 OPTION_FIX_24K,
1470 OPTION_NO_FIX_24K,
1471 OPTION_FIX_RM7000,
1472 OPTION_NO_FIX_RM7000,
1473 OPTION_FIX_LOONGSON2F_JUMP,
1474 OPTION_NO_FIX_LOONGSON2F_JUMP,
1475 OPTION_FIX_LOONGSON2F_NOP,
1476 OPTION_NO_FIX_LOONGSON2F_NOP,
1477 OPTION_FIX_VR4120,
1478 OPTION_NO_FIX_VR4120,
1479 OPTION_FIX_VR4130,
1480 OPTION_NO_FIX_VR4130,
1481 OPTION_FIX_CN63XXP1,
1482 OPTION_NO_FIX_CN63XXP1,
1483 OPTION_TRAP,
1484 OPTION_BREAK,
1485 OPTION_EB,
1486 OPTION_EL,
1487 OPTION_FP32,
1488 OPTION_GP32,
1489 OPTION_CONSTRUCT_FLOATS,
1490 OPTION_NO_CONSTRUCT_FLOATS,
1491 OPTION_FP64,
1492 OPTION_FPXX,
1493 OPTION_GP64,
1494 OPTION_RELAX_BRANCH,
1495 OPTION_NO_RELAX_BRANCH,
1496 OPTION_IGNORE_BRANCH_ISA,
1497 OPTION_NO_IGNORE_BRANCH_ISA,
1498 OPTION_INSN32,
1499 OPTION_NO_INSN32,
1500 OPTION_MSHARED,
1501 OPTION_MNO_SHARED,
1502 OPTION_MSYM32,
1503 OPTION_MNO_SYM32,
1504 OPTION_SOFT_FLOAT,
1505 OPTION_HARD_FLOAT,
1506 OPTION_SINGLE_FLOAT,
1507 OPTION_DOUBLE_FLOAT,
1508 OPTION_32,
1509 OPTION_CALL_SHARED,
1510 OPTION_CALL_NONPIC,
1511 OPTION_NON_SHARED,
1512 OPTION_XGOT,
1513 OPTION_MABI,
1514 OPTION_N32,
1515 OPTION_64,
1516 OPTION_MDEBUG,
1517 OPTION_NO_MDEBUG,
1518 OPTION_PDR,
1519 OPTION_NO_PDR,
1520 OPTION_MVXWORKS_PIC,
1521 OPTION_NAN,
1522 OPTION_ODD_SPREG,
1523 OPTION_NO_ODD_SPREG,
1524 OPTION_END_OF_ENUM
1525 };
1526
1527 struct option md_longopts[] =
1528 {
1529 /* Options which specify architecture. */
1530 {"march", required_argument, NULL, OPTION_MARCH},
1531 {"mtune", required_argument, NULL, OPTION_MTUNE},
1532 {"mips0", no_argument, NULL, OPTION_MIPS1},
1533 {"mips1", no_argument, NULL, OPTION_MIPS1},
1534 {"mips2", no_argument, NULL, OPTION_MIPS2},
1535 {"mips3", no_argument, NULL, OPTION_MIPS3},
1536 {"mips4", no_argument, NULL, OPTION_MIPS4},
1537 {"mips5", no_argument, NULL, OPTION_MIPS5},
1538 {"mips32", no_argument, NULL, OPTION_MIPS32},
1539 {"mips64", no_argument, NULL, OPTION_MIPS64},
1540 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1541 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1542 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1543 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1544 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1545 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1546 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1547 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1548
1549 /* Options which specify Application Specific Extensions (ASEs). */
1550 {"mips16", no_argument, NULL, OPTION_MIPS16},
1551 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1552 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1553 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1554 {"mdmx", no_argument, NULL, OPTION_MDMX},
1555 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1556 {"mdsp", no_argument, NULL, OPTION_DSP},
1557 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1558 {"mmt", no_argument, NULL, OPTION_MT},
1559 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1560 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1561 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1562 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1563 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1564 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1565 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1566 {"meva", no_argument, NULL, OPTION_EVA},
1567 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1568 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1569 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1570 {"mmcu", no_argument, NULL, OPTION_MCU},
1571 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1572 {"mvirt", no_argument, NULL, OPTION_VIRT},
1573 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1574 {"mmsa", no_argument, NULL, OPTION_MSA},
1575 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1576 {"mxpa", no_argument, NULL, OPTION_XPA},
1577 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1578
1579 /* Old-style architecture options. Don't add more of these. */
1580 {"m4650", no_argument, NULL, OPTION_M4650},
1581 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1582 {"m4010", no_argument, NULL, OPTION_M4010},
1583 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1584 {"m4100", no_argument, NULL, OPTION_M4100},
1585 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1586 {"m3900", no_argument, NULL, OPTION_M3900},
1587 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1588
1589 /* Options which enable bug fixes. */
1590 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1591 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1592 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1593 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1594 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1595 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1596 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1597 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1598 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1599 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1600 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1601 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1602 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1603 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1604 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1605 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1606 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1607
1608 /* Miscellaneous options. */
1609 {"trap", no_argument, NULL, OPTION_TRAP},
1610 {"no-break", no_argument, NULL, OPTION_TRAP},
1611 {"break", no_argument, NULL, OPTION_BREAK},
1612 {"no-trap", no_argument, NULL, OPTION_BREAK},
1613 {"EB", no_argument, NULL, OPTION_EB},
1614 {"EL", no_argument, NULL, OPTION_EL},
1615 {"mfp32", no_argument, NULL, OPTION_FP32},
1616 {"mgp32", no_argument, NULL, OPTION_GP32},
1617 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1618 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1619 {"mfp64", no_argument, NULL, OPTION_FP64},
1620 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1621 {"mgp64", no_argument, NULL, OPTION_GP64},
1622 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1623 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1624 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1625 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1626 {"minsn32", no_argument, NULL, OPTION_INSN32},
1627 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1628 {"mshared", no_argument, NULL, OPTION_MSHARED},
1629 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1630 {"msym32", no_argument, NULL, OPTION_MSYM32},
1631 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1632 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1633 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1634 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1635 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1636 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1637 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1638
1639 /* Strictly speaking this next option is ELF specific,
1640 but we allow it for other ports as well in order to
1641 make testing easier. */
1642 {"32", no_argument, NULL, OPTION_32},
1643
1644 /* ELF-specific options. */
1645 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1646 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1647 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1648 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1649 {"xgot", no_argument, NULL, OPTION_XGOT},
1650 {"mabi", required_argument, NULL, OPTION_MABI},
1651 {"n32", no_argument, NULL, OPTION_N32},
1652 {"64", no_argument, NULL, OPTION_64},
1653 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1654 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1655 {"mpdr", no_argument, NULL, OPTION_PDR},
1656 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1657 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1658 {"mnan", required_argument, NULL, OPTION_NAN},
1659
1660 {NULL, no_argument, NULL, 0}
1661 };
1662 size_t md_longopts_size = sizeof (md_longopts);
1663 \f
1664 /* Information about either an Application Specific Extension or an
1665 optional architecture feature that, for simplicity, we treat in the
1666 same way as an ASE. */
1667 struct mips_ase
1668 {
1669 /* The name of the ASE, used in both the command-line and .set options. */
1670 const char *name;
1671
1672 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1673 and 64-bit architectures, the flags here refer to the subset that
1674 is available on both. */
1675 unsigned int flags;
1676
1677 /* The ASE_* flag used for instructions that are available on 64-bit
1678 architectures but that are not included in FLAGS. */
1679 unsigned int flags64;
1680
1681 /* The command-line options that turn the ASE on and off. */
1682 int option_on;
1683 int option_off;
1684
1685 /* The minimum required architecture revisions for MIPS32, MIPS64,
1686 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1687 int mips32_rev;
1688 int mips64_rev;
1689 int micromips32_rev;
1690 int micromips64_rev;
1691
1692 /* The architecture where the ASE was removed or -1 if the extension has not
1693 been removed. */
1694 int rem_rev;
1695 };
1696
1697 /* A table of all supported ASEs. */
1698 static const struct mips_ase mips_ases[] = {
1699 { "dsp", ASE_DSP, ASE_DSP64,
1700 OPTION_DSP, OPTION_NO_DSP,
1701 2, 2, 2, 2,
1702 -1 },
1703
1704 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1705 OPTION_DSPR2, OPTION_NO_DSPR2,
1706 2, 2, 2, 2,
1707 -1 },
1708
1709 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1710 OPTION_DSPR3, OPTION_NO_DSPR3,
1711 6, 6, -1, -1,
1712 -1 },
1713
1714 { "eva", ASE_EVA, 0,
1715 OPTION_EVA, OPTION_NO_EVA,
1716 2, 2, 2, 2,
1717 -1 },
1718
1719 { "mcu", ASE_MCU, 0,
1720 OPTION_MCU, OPTION_NO_MCU,
1721 2, 2, 2, 2,
1722 -1 },
1723
1724 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1725 { "mdmx", ASE_MDMX, 0,
1726 OPTION_MDMX, OPTION_NO_MDMX,
1727 -1, 1, -1, -1,
1728 6 },
1729
1730 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1731 { "mips3d", ASE_MIPS3D, 0,
1732 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1733 2, 1, -1, -1,
1734 6 },
1735
1736 { "mt", ASE_MT, 0,
1737 OPTION_MT, OPTION_NO_MT,
1738 2, 2, -1, -1,
1739 -1 },
1740
1741 { "smartmips", ASE_SMARTMIPS, 0,
1742 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1743 1, -1, -1, -1,
1744 6 },
1745
1746 { "virt", ASE_VIRT, ASE_VIRT64,
1747 OPTION_VIRT, OPTION_NO_VIRT,
1748 2, 2, 2, 2,
1749 -1 },
1750
1751 { "msa", ASE_MSA, ASE_MSA64,
1752 OPTION_MSA, OPTION_NO_MSA,
1753 2, 2, 2, 2,
1754 -1 },
1755
1756 { "xpa", ASE_XPA, 0,
1757 OPTION_XPA, OPTION_NO_XPA,
1758 2, 2, -1, -1,
1759 -1 },
1760 };
1761
1762 /* The set of ASEs that require -mfp64. */
1763 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1764
1765 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1766 static const unsigned int mips_ase_groups[] = {
1767 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1768 };
1769 \f
1770 /* Pseudo-op table.
1771
1772 The following pseudo-ops from the Kane and Heinrich MIPS book
1773 should be defined here, but are currently unsupported: .alias,
1774 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1775
1776 The following pseudo-ops from the Kane and Heinrich MIPS book are
1777 specific to the type of debugging information being generated, and
1778 should be defined by the object format: .aent, .begin, .bend,
1779 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1780 .vreg.
1781
1782 The following pseudo-ops from the Kane and Heinrich MIPS book are
1783 not MIPS CPU specific, but are also not specific to the object file
1784 format. This file is probably the best place to define them, but
1785 they are not currently supported: .asm0, .endr, .lab, .struct. */
1786
1787 static const pseudo_typeS mips_pseudo_table[] =
1788 {
1789 /* MIPS specific pseudo-ops. */
1790 {"option", s_option, 0},
1791 {"set", s_mipsset, 0},
1792 {"rdata", s_change_sec, 'r'},
1793 {"sdata", s_change_sec, 's'},
1794 {"livereg", s_ignore, 0},
1795 {"abicalls", s_abicalls, 0},
1796 {"cpload", s_cpload, 0},
1797 {"cpsetup", s_cpsetup, 0},
1798 {"cplocal", s_cplocal, 0},
1799 {"cprestore", s_cprestore, 0},
1800 {"cpreturn", s_cpreturn, 0},
1801 {"dtprelword", s_dtprelword, 0},
1802 {"dtpreldword", s_dtpreldword, 0},
1803 {"tprelword", s_tprelword, 0},
1804 {"tpreldword", s_tpreldword, 0},
1805 {"gpvalue", s_gpvalue, 0},
1806 {"gpword", s_gpword, 0},
1807 {"gpdword", s_gpdword, 0},
1808 {"ehword", s_ehword, 0},
1809 {"cpadd", s_cpadd, 0},
1810 {"insn", s_insn, 0},
1811 {"nan", s_nan, 0},
1812 {"module", s_module, 0},
1813
1814 /* Relatively generic pseudo-ops that happen to be used on MIPS
1815 chips. */
1816 {"asciiz", stringer, 8 + 1},
1817 {"bss", s_change_sec, 'b'},
1818 {"err", s_err, 0},
1819 {"half", s_cons, 1},
1820 {"dword", s_cons, 3},
1821 {"weakext", s_mips_weakext, 0},
1822 {"origin", s_org, 0},
1823 {"repeat", s_rept, 0},
1824
1825 /* For MIPS this is non-standard, but we define it for consistency. */
1826 {"sbss", s_change_sec, 'B'},
1827
1828 /* These pseudo-ops are defined in read.c, but must be overridden
1829 here for one reason or another. */
1830 {"align", s_align, 0},
1831 {"byte", s_cons, 0},
1832 {"data", s_change_sec, 'd'},
1833 {"double", s_float_cons, 'd'},
1834 {"float", s_float_cons, 'f'},
1835 {"globl", s_mips_globl, 0},
1836 {"global", s_mips_globl, 0},
1837 {"hword", s_cons, 1},
1838 {"int", s_cons, 2},
1839 {"long", s_cons, 2},
1840 {"octa", s_cons, 4},
1841 {"quad", s_cons, 3},
1842 {"section", s_change_section, 0},
1843 {"short", s_cons, 1},
1844 {"single", s_float_cons, 'f'},
1845 {"stabd", s_mips_stab, 'd'},
1846 {"stabn", s_mips_stab, 'n'},
1847 {"stabs", s_mips_stab, 's'},
1848 {"text", s_change_sec, 't'},
1849 {"word", s_cons, 2},
1850
1851 { "extern", ecoff_directive_extern, 0},
1852
1853 { NULL, NULL, 0 },
1854 };
1855
1856 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1857 {
1858 /* These pseudo-ops should be defined by the object file format.
1859 However, a.out doesn't support them, so we have versions here. */
1860 {"aent", s_mips_ent, 1},
1861 {"bgnb", s_ignore, 0},
1862 {"end", s_mips_end, 0},
1863 {"endb", s_ignore, 0},
1864 {"ent", s_mips_ent, 0},
1865 {"file", s_mips_file, 0},
1866 {"fmask", s_mips_mask, 'F'},
1867 {"frame", s_mips_frame, 0},
1868 {"loc", s_mips_loc, 0},
1869 {"mask", s_mips_mask, 'R'},
1870 {"verstamp", s_ignore, 0},
1871 { NULL, NULL, 0 },
1872 };
1873
1874 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1875 purpose of the `.dc.a' internal pseudo-op. */
1876
1877 int
1878 mips_address_bytes (void)
1879 {
1880 file_mips_check_options ();
1881 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1882 }
1883
1884 extern void pop_insert (const pseudo_typeS *);
1885
1886 void
1887 mips_pop_insert (void)
1888 {
1889 pop_insert (mips_pseudo_table);
1890 if (! ECOFF_DEBUGGING)
1891 pop_insert (mips_nonecoff_pseudo_table);
1892 }
1893 \f
1894 /* Symbols labelling the current insn. */
1895
1896 struct insn_label_list
1897 {
1898 struct insn_label_list *next;
1899 symbolS *label;
1900 };
1901
1902 static struct insn_label_list *free_insn_labels;
1903 #define label_list tc_segment_info_data.labels
1904
1905 static void mips_clear_insn_labels (void);
1906 static void mips_mark_labels (void);
1907 static void mips_compressed_mark_labels (void);
1908
1909 static inline void
1910 mips_clear_insn_labels (void)
1911 {
1912 struct insn_label_list **pl;
1913 segment_info_type *si;
1914
1915 if (now_seg)
1916 {
1917 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1918 ;
1919
1920 si = seg_info (now_seg);
1921 *pl = si->label_list;
1922 si->label_list = NULL;
1923 }
1924 }
1925
1926 /* Mark instruction labels in MIPS16/microMIPS mode. */
1927
1928 static inline void
1929 mips_mark_labels (void)
1930 {
1931 if (HAVE_CODE_COMPRESSION)
1932 mips_compressed_mark_labels ();
1933 }
1934 \f
1935 static char *expr_end;
1936
1937 /* An expression in a macro instruction. This is set by mips_ip and
1938 mips16_ip and when populated is always an O_constant. */
1939
1940 static expressionS imm_expr;
1941
1942 /* The relocatable field in an instruction and the relocs associated
1943 with it. These variables are used for instructions like LUI and
1944 JAL as well as true offsets. They are also used for address
1945 operands in macros. */
1946
1947 static expressionS offset_expr;
1948 static bfd_reloc_code_real_type offset_reloc[3]
1949 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1950
1951 /* This is set to the resulting size of the instruction to be produced
1952 by mips16_ip if an explicit extension is used or by mips_ip if an
1953 explicit size is supplied. */
1954
1955 static unsigned int forced_insn_length;
1956
1957 /* True if we are assembling an instruction. All dot symbols defined during
1958 this time should be treated as code labels. */
1959
1960 static bfd_boolean mips_assembling_insn;
1961
1962 /* The pdr segment for per procedure frame/regmask info. Not used for
1963 ECOFF debugging. */
1964
1965 static segT pdr_seg;
1966
1967 /* The default target format to use. */
1968
1969 #if defined (TE_FreeBSD)
1970 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1971 #elif defined (TE_TMIPS)
1972 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1973 #else
1974 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1975 #endif
1976
1977 const char *
1978 mips_target_format (void)
1979 {
1980 switch (OUTPUT_FLAVOR)
1981 {
1982 case bfd_target_elf_flavour:
1983 #ifdef TE_VXWORKS
1984 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1985 return (target_big_endian
1986 ? "elf32-bigmips-vxworks"
1987 : "elf32-littlemips-vxworks");
1988 #endif
1989 return (target_big_endian
1990 ? (HAVE_64BIT_OBJECTS
1991 ? ELF_TARGET ("elf64-", "big")
1992 : (HAVE_NEWABI
1993 ? ELF_TARGET ("elf32-n", "big")
1994 : ELF_TARGET ("elf32-", "big")))
1995 : (HAVE_64BIT_OBJECTS
1996 ? ELF_TARGET ("elf64-", "little")
1997 : (HAVE_NEWABI
1998 ? ELF_TARGET ("elf32-n", "little")
1999 : ELF_TARGET ("elf32-", "little"))));
2000 default:
2001 abort ();
2002 return NULL;
2003 }
2004 }
2005
2006 /* Return the ISA revision that is currently in use, or 0 if we are
2007 generating code for MIPS V or below. */
2008
2009 static int
2010 mips_isa_rev (void)
2011 {
2012 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2013 return 2;
2014
2015 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2016 return 3;
2017
2018 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2019 return 5;
2020
2021 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2022 return 6;
2023
2024 /* microMIPS implies revision 2 or above. */
2025 if (mips_opts.micromips)
2026 return 2;
2027
2028 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2029 return 1;
2030
2031 return 0;
2032 }
2033
2034 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2035
2036 static unsigned int
2037 mips_ase_mask (unsigned int flags)
2038 {
2039 unsigned int i;
2040
2041 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2042 if (flags & mips_ase_groups[i])
2043 flags |= mips_ase_groups[i];
2044 return flags;
2045 }
2046
2047 /* Check whether the current ISA supports ASE. Issue a warning if
2048 appropriate. */
2049
2050 static void
2051 mips_check_isa_supports_ase (const struct mips_ase *ase)
2052 {
2053 const char *base;
2054 int min_rev, size;
2055 static unsigned int warned_isa;
2056 static unsigned int warned_fp32;
2057
2058 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2059 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2060 else
2061 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2062 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2063 && (warned_isa & ase->flags) != ase->flags)
2064 {
2065 warned_isa |= ase->flags;
2066 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2067 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2068 if (min_rev < 0)
2069 as_warn (_("the %d-bit %s architecture does not support the"
2070 " `%s' extension"), size, base, ase->name);
2071 else
2072 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2073 ase->name, base, size, min_rev);
2074 }
2075 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2076 && (warned_isa & ase->flags) != ase->flags)
2077 {
2078 warned_isa |= ase->flags;
2079 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2080 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2081 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2082 ase->name, base, size, ase->rem_rev);
2083 }
2084
2085 if ((ase->flags & FP64_ASES)
2086 && mips_opts.fp != 64
2087 && (warned_fp32 & ase->flags) != ase->flags)
2088 {
2089 warned_fp32 |= ase->flags;
2090 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2091 }
2092 }
2093
2094 /* Check all enabled ASEs to see whether they are supported by the
2095 chosen architecture. */
2096
2097 static void
2098 mips_check_isa_supports_ases (void)
2099 {
2100 unsigned int i, mask;
2101
2102 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2103 {
2104 mask = mips_ase_mask (mips_ases[i].flags);
2105 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2106 mips_check_isa_supports_ase (&mips_ases[i]);
2107 }
2108 }
2109
2110 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2111 that were affected. */
2112
2113 static unsigned int
2114 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2115 bfd_boolean enabled_p)
2116 {
2117 unsigned int mask;
2118
2119 mask = mips_ase_mask (ase->flags);
2120 opts->ase &= ~mask;
2121 if (enabled_p)
2122 opts->ase |= ase->flags;
2123 return mask;
2124 }
2125
2126 /* Return the ASE called NAME, or null if none. */
2127
2128 static const struct mips_ase *
2129 mips_lookup_ase (const char *name)
2130 {
2131 unsigned int i;
2132
2133 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2134 if (strcmp (name, mips_ases[i].name) == 0)
2135 return &mips_ases[i];
2136 return NULL;
2137 }
2138
2139 /* Return the length of a microMIPS instruction in bytes. If bits of
2140 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2141 otherwise it is a 32-bit instruction. */
2142
2143 static inline unsigned int
2144 micromips_insn_length (const struct mips_opcode *mo)
2145 {
2146 return mips_opcode_32bit_p (mo) ? 4 : 2;
2147 }
2148
2149 /* Return the length of MIPS16 instruction OPCODE. */
2150
2151 static inline unsigned int
2152 mips16_opcode_length (unsigned long opcode)
2153 {
2154 return (opcode >> 16) == 0 ? 2 : 4;
2155 }
2156
2157 /* Return the length of instruction INSN. */
2158
2159 static inline unsigned int
2160 insn_length (const struct mips_cl_insn *insn)
2161 {
2162 if (mips_opts.micromips)
2163 return micromips_insn_length (insn->insn_mo);
2164 else if (mips_opts.mips16)
2165 return mips16_opcode_length (insn->insn_opcode);
2166 else
2167 return 4;
2168 }
2169
2170 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2171
2172 static void
2173 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2174 {
2175 size_t i;
2176
2177 insn->insn_mo = mo;
2178 insn->insn_opcode = mo->match;
2179 insn->frag = NULL;
2180 insn->where = 0;
2181 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2182 insn->fixp[i] = NULL;
2183 insn->fixed_p = (mips_opts.noreorder > 0);
2184 insn->noreorder_p = (mips_opts.noreorder > 0);
2185 insn->mips16_absolute_jump_p = 0;
2186 insn->complete_p = 0;
2187 insn->cleared_p = 0;
2188 }
2189
2190 /* Get a list of all the operands in INSN. */
2191
2192 static const struct mips_operand_array *
2193 insn_operands (const struct mips_cl_insn *insn)
2194 {
2195 if (insn->insn_mo >= &mips_opcodes[0]
2196 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2197 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2198
2199 if (insn->insn_mo >= &mips16_opcodes[0]
2200 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2201 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2202
2203 if (insn->insn_mo >= &micromips_opcodes[0]
2204 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2205 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2206
2207 abort ();
2208 }
2209
2210 /* Get a description of operand OPNO of INSN. */
2211
2212 static const struct mips_operand *
2213 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2214 {
2215 const struct mips_operand_array *operands;
2216
2217 operands = insn_operands (insn);
2218 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2219 abort ();
2220 return operands->operand[opno];
2221 }
2222
2223 /* Install UVAL as the value of OPERAND in INSN. */
2224
2225 static inline void
2226 insn_insert_operand (struct mips_cl_insn *insn,
2227 const struct mips_operand *operand, unsigned int uval)
2228 {
2229 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2230 }
2231
2232 /* Extract the value of OPERAND from INSN. */
2233
2234 static inline unsigned
2235 insn_extract_operand (const struct mips_cl_insn *insn,
2236 const struct mips_operand *operand)
2237 {
2238 return mips_extract_operand (operand, insn->insn_opcode);
2239 }
2240
2241 /* Record the current MIPS16/microMIPS mode in now_seg. */
2242
2243 static void
2244 mips_record_compressed_mode (void)
2245 {
2246 segment_info_type *si;
2247
2248 si = seg_info (now_seg);
2249 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2250 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2251 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2252 si->tc_segment_info_data.micromips = mips_opts.micromips;
2253 }
2254
2255 /* Read a standard MIPS instruction from BUF. */
2256
2257 static unsigned long
2258 read_insn (char *buf)
2259 {
2260 if (target_big_endian)
2261 return bfd_getb32 ((bfd_byte *) buf);
2262 else
2263 return bfd_getl32 ((bfd_byte *) buf);
2264 }
2265
2266 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2267 the next byte. */
2268
2269 static char *
2270 write_insn (char *buf, unsigned int insn)
2271 {
2272 md_number_to_chars (buf, insn, 4);
2273 return buf + 4;
2274 }
2275
2276 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2277 has length LENGTH. */
2278
2279 static unsigned long
2280 read_compressed_insn (char *buf, unsigned int length)
2281 {
2282 unsigned long insn;
2283 unsigned int i;
2284
2285 insn = 0;
2286 for (i = 0; i < length; i += 2)
2287 {
2288 insn <<= 16;
2289 if (target_big_endian)
2290 insn |= bfd_getb16 ((char *) buf);
2291 else
2292 insn |= bfd_getl16 ((char *) buf);
2293 buf += 2;
2294 }
2295 return insn;
2296 }
2297
2298 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2299 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2300
2301 static char *
2302 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2303 {
2304 unsigned int i;
2305
2306 for (i = 0; i < length; i += 2)
2307 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2308 return buf + length;
2309 }
2310
2311 /* Install INSN at the location specified by its "frag" and "where" fields. */
2312
2313 static void
2314 install_insn (const struct mips_cl_insn *insn)
2315 {
2316 char *f = insn->frag->fr_literal + insn->where;
2317 if (HAVE_CODE_COMPRESSION)
2318 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2319 else
2320 write_insn (f, insn->insn_opcode);
2321 mips_record_compressed_mode ();
2322 }
2323
2324 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2325 and install the opcode in the new location. */
2326
2327 static void
2328 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2329 {
2330 size_t i;
2331
2332 insn->frag = frag;
2333 insn->where = where;
2334 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2335 if (insn->fixp[i] != NULL)
2336 {
2337 insn->fixp[i]->fx_frag = frag;
2338 insn->fixp[i]->fx_where = where;
2339 }
2340 install_insn (insn);
2341 }
2342
2343 /* Add INSN to the end of the output. */
2344
2345 static void
2346 add_fixed_insn (struct mips_cl_insn *insn)
2347 {
2348 char *f = frag_more (insn_length (insn));
2349 move_insn (insn, frag_now, f - frag_now->fr_literal);
2350 }
2351
2352 /* Start a variant frag and move INSN to the start of the variant part,
2353 marking it as fixed. The other arguments are as for frag_var. */
2354
2355 static void
2356 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2357 relax_substateT subtype, symbolS *symbol, offsetT offset)
2358 {
2359 frag_grow (max_chars);
2360 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2361 insn->fixed_p = 1;
2362 frag_var (rs_machine_dependent, max_chars, var,
2363 subtype, symbol, offset, NULL);
2364 }
2365
2366 /* Insert N copies of INSN into the history buffer, starting at
2367 position FIRST. Neither FIRST nor N need to be clipped. */
2368
2369 static void
2370 insert_into_history (unsigned int first, unsigned int n,
2371 const struct mips_cl_insn *insn)
2372 {
2373 if (mips_relax.sequence != 2)
2374 {
2375 unsigned int i;
2376
2377 for (i = ARRAY_SIZE (history); i-- > first;)
2378 if (i >= first + n)
2379 history[i] = history[i - n];
2380 else
2381 history[i] = *insn;
2382 }
2383 }
2384
2385 /* Clear the error in insn_error. */
2386
2387 static void
2388 clear_insn_error (void)
2389 {
2390 memset (&insn_error, 0, sizeof (insn_error));
2391 }
2392
2393 /* Possibly record error message MSG for the current instruction.
2394 If the error is about a particular argument, ARGNUM is the 1-based
2395 number of that argument, otherwise it is 0. FORMAT is the format
2396 of MSG. Return true if MSG was used, false if the current message
2397 was kept. */
2398
2399 static bfd_boolean
2400 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2401 const char *msg)
2402 {
2403 if (argnum == 0)
2404 {
2405 /* Give priority to errors against specific arguments, and to
2406 the first whole-instruction message. */
2407 if (insn_error.msg)
2408 return FALSE;
2409 }
2410 else
2411 {
2412 /* Keep insn_error if it is against a later argument. */
2413 if (argnum < insn_error.min_argnum)
2414 return FALSE;
2415
2416 /* If both errors are against the same argument but are different,
2417 give up on reporting a specific error for this argument.
2418 See the comment about mips_insn_error for details. */
2419 if (argnum == insn_error.min_argnum
2420 && insn_error.msg
2421 && strcmp (insn_error.msg, msg) != 0)
2422 {
2423 insn_error.msg = 0;
2424 insn_error.min_argnum += 1;
2425 return FALSE;
2426 }
2427 }
2428 insn_error.min_argnum = argnum;
2429 insn_error.format = format;
2430 insn_error.msg = msg;
2431 return TRUE;
2432 }
2433
2434 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2435 as for set_insn_error_format. */
2436
2437 static void
2438 set_insn_error (int argnum, const char *msg)
2439 {
2440 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2441 }
2442
2443 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2444 as for set_insn_error_format. */
2445
2446 static void
2447 set_insn_error_i (int argnum, const char *msg, int i)
2448 {
2449 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2450 insn_error.u.i = i;
2451 }
2452
2453 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2454 are as for set_insn_error_format. */
2455
2456 static void
2457 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2458 {
2459 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2460 {
2461 insn_error.u.ss[0] = s1;
2462 insn_error.u.ss[1] = s2;
2463 }
2464 }
2465
2466 /* Report the error in insn_error, which is against assembly code STR. */
2467
2468 static void
2469 report_insn_error (const char *str)
2470 {
2471 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2472
2473 switch (insn_error.format)
2474 {
2475 case ERR_FMT_PLAIN:
2476 as_bad (msg, str);
2477 break;
2478
2479 case ERR_FMT_I:
2480 as_bad (msg, insn_error.u.i, str);
2481 break;
2482
2483 case ERR_FMT_SS:
2484 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2485 break;
2486 }
2487
2488 free ((char *) msg);
2489 }
2490
2491 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2492 the idea is to make it obvious at a glance that each errata is
2493 included. */
2494
2495 static void
2496 init_vr4120_conflicts (void)
2497 {
2498 #define CONFLICT(FIRST, SECOND) \
2499 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2500
2501 /* Errata 21 - [D]DIV[U] after [D]MACC */
2502 CONFLICT (MACC, DIV);
2503 CONFLICT (DMACC, DIV);
2504
2505 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2506 CONFLICT (DMULT, DMULT);
2507 CONFLICT (DMULT, DMACC);
2508 CONFLICT (DMACC, DMULT);
2509 CONFLICT (DMACC, DMACC);
2510
2511 /* Errata 24 - MT{LO,HI} after [D]MACC */
2512 CONFLICT (MACC, MTHILO);
2513 CONFLICT (DMACC, MTHILO);
2514
2515 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2516 instruction is executed immediately after a MACC or DMACC
2517 instruction, the result of [either instruction] is incorrect." */
2518 CONFLICT (MACC, MULT);
2519 CONFLICT (MACC, DMULT);
2520 CONFLICT (DMACC, MULT);
2521 CONFLICT (DMACC, DMULT);
2522
2523 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2524 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2525 DDIV or DDIVU instruction, the result of the MACC or
2526 DMACC instruction is incorrect.". */
2527 CONFLICT (DMULT, MACC);
2528 CONFLICT (DMULT, DMACC);
2529 CONFLICT (DIV, MACC);
2530 CONFLICT (DIV, DMACC);
2531
2532 #undef CONFLICT
2533 }
2534
2535 struct regname {
2536 const char *name;
2537 unsigned int num;
2538 };
2539
2540 #define RNUM_MASK 0x00000ff
2541 #define RTYPE_MASK 0x0ffff00
2542 #define RTYPE_NUM 0x0000100
2543 #define RTYPE_FPU 0x0000200
2544 #define RTYPE_FCC 0x0000400
2545 #define RTYPE_VEC 0x0000800
2546 #define RTYPE_GP 0x0001000
2547 #define RTYPE_CP0 0x0002000
2548 #define RTYPE_PC 0x0004000
2549 #define RTYPE_ACC 0x0008000
2550 #define RTYPE_CCC 0x0010000
2551 #define RTYPE_VI 0x0020000
2552 #define RTYPE_VF 0x0040000
2553 #define RTYPE_R5900_I 0x0080000
2554 #define RTYPE_R5900_Q 0x0100000
2555 #define RTYPE_R5900_R 0x0200000
2556 #define RTYPE_R5900_ACC 0x0400000
2557 #define RTYPE_MSA 0x0800000
2558 #define RWARN 0x8000000
2559
2560 #define GENERIC_REGISTER_NUMBERS \
2561 {"$0", RTYPE_NUM | 0}, \
2562 {"$1", RTYPE_NUM | 1}, \
2563 {"$2", RTYPE_NUM | 2}, \
2564 {"$3", RTYPE_NUM | 3}, \
2565 {"$4", RTYPE_NUM | 4}, \
2566 {"$5", RTYPE_NUM | 5}, \
2567 {"$6", RTYPE_NUM | 6}, \
2568 {"$7", RTYPE_NUM | 7}, \
2569 {"$8", RTYPE_NUM | 8}, \
2570 {"$9", RTYPE_NUM | 9}, \
2571 {"$10", RTYPE_NUM | 10}, \
2572 {"$11", RTYPE_NUM | 11}, \
2573 {"$12", RTYPE_NUM | 12}, \
2574 {"$13", RTYPE_NUM | 13}, \
2575 {"$14", RTYPE_NUM | 14}, \
2576 {"$15", RTYPE_NUM | 15}, \
2577 {"$16", RTYPE_NUM | 16}, \
2578 {"$17", RTYPE_NUM | 17}, \
2579 {"$18", RTYPE_NUM | 18}, \
2580 {"$19", RTYPE_NUM | 19}, \
2581 {"$20", RTYPE_NUM | 20}, \
2582 {"$21", RTYPE_NUM | 21}, \
2583 {"$22", RTYPE_NUM | 22}, \
2584 {"$23", RTYPE_NUM | 23}, \
2585 {"$24", RTYPE_NUM | 24}, \
2586 {"$25", RTYPE_NUM | 25}, \
2587 {"$26", RTYPE_NUM | 26}, \
2588 {"$27", RTYPE_NUM | 27}, \
2589 {"$28", RTYPE_NUM | 28}, \
2590 {"$29", RTYPE_NUM | 29}, \
2591 {"$30", RTYPE_NUM | 30}, \
2592 {"$31", RTYPE_NUM | 31}
2593
2594 #define FPU_REGISTER_NAMES \
2595 {"$f0", RTYPE_FPU | 0}, \
2596 {"$f1", RTYPE_FPU | 1}, \
2597 {"$f2", RTYPE_FPU | 2}, \
2598 {"$f3", RTYPE_FPU | 3}, \
2599 {"$f4", RTYPE_FPU | 4}, \
2600 {"$f5", RTYPE_FPU | 5}, \
2601 {"$f6", RTYPE_FPU | 6}, \
2602 {"$f7", RTYPE_FPU | 7}, \
2603 {"$f8", RTYPE_FPU | 8}, \
2604 {"$f9", RTYPE_FPU | 9}, \
2605 {"$f10", RTYPE_FPU | 10}, \
2606 {"$f11", RTYPE_FPU | 11}, \
2607 {"$f12", RTYPE_FPU | 12}, \
2608 {"$f13", RTYPE_FPU | 13}, \
2609 {"$f14", RTYPE_FPU | 14}, \
2610 {"$f15", RTYPE_FPU | 15}, \
2611 {"$f16", RTYPE_FPU | 16}, \
2612 {"$f17", RTYPE_FPU | 17}, \
2613 {"$f18", RTYPE_FPU | 18}, \
2614 {"$f19", RTYPE_FPU | 19}, \
2615 {"$f20", RTYPE_FPU | 20}, \
2616 {"$f21", RTYPE_FPU | 21}, \
2617 {"$f22", RTYPE_FPU | 22}, \
2618 {"$f23", RTYPE_FPU | 23}, \
2619 {"$f24", RTYPE_FPU | 24}, \
2620 {"$f25", RTYPE_FPU | 25}, \
2621 {"$f26", RTYPE_FPU | 26}, \
2622 {"$f27", RTYPE_FPU | 27}, \
2623 {"$f28", RTYPE_FPU | 28}, \
2624 {"$f29", RTYPE_FPU | 29}, \
2625 {"$f30", RTYPE_FPU | 30}, \
2626 {"$f31", RTYPE_FPU | 31}
2627
2628 #define FPU_CONDITION_CODE_NAMES \
2629 {"$fcc0", RTYPE_FCC | 0}, \
2630 {"$fcc1", RTYPE_FCC | 1}, \
2631 {"$fcc2", RTYPE_FCC | 2}, \
2632 {"$fcc3", RTYPE_FCC | 3}, \
2633 {"$fcc4", RTYPE_FCC | 4}, \
2634 {"$fcc5", RTYPE_FCC | 5}, \
2635 {"$fcc6", RTYPE_FCC | 6}, \
2636 {"$fcc7", RTYPE_FCC | 7}
2637
2638 #define COPROC_CONDITION_CODE_NAMES \
2639 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2640 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2641 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2642 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2643 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2644 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2645 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2646 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2647
2648 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2649 {"$a4", RTYPE_GP | 8}, \
2650 {"$a5", RTYPE_GP | 9}, \
2651 {"$a6", RTYPE_GP | 10}, \
2652 {"$a7", RTYPE_GP | 11}, \
2653 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2654 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2655 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2656 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2657 {"$t0", RTYPE_GP | 12}, \
2658 {"$t1", RTYPE_GP | 13}, \
2659 {"$t2", RTYPE_GP | 14}, \
2660 {"$t3", RTYPE_GP | 15}
2661
2662 #define O32_SYMBOLIC_REGISTER_NAMES \
2663 {"$t0", RTYPE_GP | 8}, \
2664 {"$t1", RTYPE_GP | 9}, \
2665 {"$t2", RTYPE_GP | 10}, \
2666 {"$t3", RTYPE_GP | 11}, \
2667 {"$t4", RTYPE_GP | 12}, \
2668 {"$t5", RTYPE_GP | 13}, \
2669 {"$t6", RTYPE_GP | 14}, \
2670 {"$t7", RTYPE_GP | 15}, \
2671 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2672 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2673 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2674 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2675
2676 /* Remaining symbolic register names */
2677 #define SYMBOLIC_REGISTER_NAMES \
2678 {"$zero", RTYPE_GP | 0}, \
2679 {"$at", RTYPE_GP | 1}, \
2680 {"$AT", RTYPE_GP | 1}, \
2681 {"$v0", RTYPE_GP | 2}, \
2682 {"$v1", RTYPE_GP | 3}, \
2683 {"$a0", RTYPE_GP | 4}, \
2684 {"$a1", RTYPE_GP | 5}, \
2685 {"$a2", RTYPE_GP | 6}, \
2686 {"$a3", RTYPE_GP | 7}, \
2687 {"$s0", RTYPE_GP | 16}, \
2688 {"$s1", RTYPE_GP | 17}, \
2689 {"$s2", RTYPE_GP | 18}, \
2690 {"$s3", RTYPE_GP | 19}, \
2691 {"$s4", RTYPE_GP | 20}, \
2692 {"$s5", RTYPE_GP | 21}, \
2693 {"$s6", RTYPE_GP | 22}, \
2694 {"$s7", RTYPE_GP | 23}, \
2695 {"$t8", RTYPE_GP | 24}, \
2696 {"$t9", RTYPE_GP | 25}, \
2697 {"$k0", RTYPE_GP | 26}, \
2698 {"$kt0", RTYPE_GP | 26}, \
2699 {"$k1", RTYPE_GP | 27}, \
2700 {"$kt1", RTYPE_GP | 27}, \
2701 {"$gp", RTYPE_GP | 28}, \
2702 {"$sp", RTYPE_GP | 29}, \
2703 {"$s8", RTYPE_GP | 30}, \
2704 {"$fp", RTYPE_GP | 30}, \
2705 {"$ra", RTYPE_GP | 31}
2706
2707 #define MIPS16_SPECIAL_REGISTER_NAMES \
2708 {"$pc", RTYPE_PC | 0}
2709
2710 #define MDMX_VECTOR_REGISTER_NAMES \
2711 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2712 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2713 {"$v2", RTYPE_VEC | 2}, \
2714 {"$v3", RTYPE_VEC | 3}, \
2715 {"$v4", RTYPE_VEC | 4}, \
2716 {"$v5", RTYPE_VEC | 5}, \
2717 {"$v6", RTYPE_VEC | 6}, \
2718 {"$v7", RTYPE_VEC | 7}, \
2719 {"$v8", RTYPE_VEC | 8}, \
2720 {"$v9", RTYPE_VEC | 9}, \
2721 {"$v10", RTYPE_VEC | 10}, \
2722 {"$v11", RTYPE_VEC | 11}, \
2723 {"$v12", RTYPE_VEC | 12}, \
2724 {"$v13", RTYPE_VEC | 13}, \
2725 {"$v14", RTYPE_VEC | 14}, \
2726 {"$v15", RTYPE_VEC | 15}, \
2727 {"$v16", RTYPE_VEC | 16}, \
2728 {"$v17", RTYPE_VEC | 17}, \
2729 {"$v18", RTYPE_VEC | 18}, \
2730 {"$v19", RTYPE_VEC | 19}, \
2731 {"$v20", RTYPE_VEC | 20}, \
2732 {"$v21", RTYPE_VEC | 21}, \
2733 {"$v22", RTYPE_VEC | 22}, \
2734 {"$v23", RTYPE_VEC | 23}, \
2735 {"$v24", RTYPE_VEC | 24}, \
2736 {"$v25", RTYPE_VEC | 25}, \
2737 {"$v26", RTYPE_VEC | 26}, \
2738 {"$v27", RTYPE_VEC | 27}, \
2739 {"$v28", RTYPE_VEC | 28}, \
2740 {"$v29", RTYPE_VEC | 29}, \
2741 {"$v30", RTYPE_VEC | 30}, \
2742 {"$v31", RTYPE_VEC | 31}
2743
2744 #define R5900_I_NAMES \
2745 {"$I", RTYPE_R5900_I | 0}
2746
2747 #define R5900_Q_NAMES \
2748 {"$Q", RTYPE_R5900_Q | 0}
2749
2750 #define R5900_R_NAMES \
2751 {"$R", RTYPE_R5900_R | 0}
2752
2753 #define R5900_ACC_NAMES \
2754 {"$ACC", RTYPE_R5900_ACC | 0 }
2755
2756 #define MIPS_DSP_ACCUMULATOR_NAMES \
2757 {"$ac0", RTYPE_ACC | 0}, \
2758 {"$ac1", RTYPE_ACC | 1}, \
2759 {"$ac2", RTYPE_ACC | 2}, \
2760 {"$ac3", RTYPE_ACC | 3}
2761
2762 static const struct regname reg_names[] = {
2763 GENERIC_REGISTER_NUMBERS,
2764 FPU_REGISTER_NAMES,
2765 FPU_CONDITION_CODE_NAMES,
2766 COPROC_CONDITION_CODE_NAMES,
2767
2768 /* The $txx registers depends on the abi,
2769 these will be added later into the symbol table from
2770 one of the tables below once mips_abi is set after
2771 parsing of arguments from the command line. */
2772 SYMBOLIC_REGISTER_NAMES,
2773
2774 MIPS16_SPECIAL_REGISTER_NAMES,
2775 MDMX_VECTOR_REGISTER_NAMES,
2776 R5900_I_NAMES,
2777 R5900_Q_NAMES,
2778 R5900_R_NAMES,
2779 R5900_ACC_NAMES,
2780 MIPS_DSP_ACCUMULATOR_NAMES,
2781 {0, 0}
2782 };
2783
2784 static const struct regname reg_names_o32[] = {
2785 O32_SYMBOLIC_REGISTER_NAMES,
2786 {0, 0}
2787 };
2788
2789 static const struct regname reg_names_n32n64[] = {
2790 N32N64_SYMBOLIC_REGISTER_NAMES,
2791 {0, 0}
2792 };
2793
2794 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2795 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2796 of these register symbols, return the associated vector register,
2797 otherwise return SYMVAL itself. */
2798
2799 static unsigned int
2800 mips_prefer_vec_regno (unsigned int symval)
2801 {
2802 if ((symval & -2) == (RTYPE_GP | 2))
2803 return RTYPE_VEC | (symval & 1);
2804 return symval;
2805 }
2806
2807 /* Return true if string [S, E) is a valid register name, storing its
2808 symbol value in *SYMVAL_PTR if so. */
2809
2810 static bfd_boolean
2811 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2812 {
2813 char save_c;
2814 symbolS *symbol;
2815
2816 /* Terminate name. */
2817 save_c = *e;
2818 *e = '\0';
2819
2820 /* Look up the name. */
2821 symbol = symbol_find (s);
2822 *e = save_c;
2823
2824 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2825 return FALSE;
2826
2827 *symval_ptr = S_GET_VALUE (symbol);
2828 return TRUE;
2829 }
2830
2831 /* Return true if the string at *SPTR is a valid register name. Allow it
2832 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2833 is nonnull.
2834
2835 When returning true, move *SPTR past the register, store the
2836 register's symbol value in *SYMVAL_PTR and the channel mask in
2837 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2838 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2839 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2840
2841 static bfd_boolean
2842 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2843 unsigned int *channels_ptr)
2844 {
2845 char *s, *e, *m;
2846 const char *q;
2847 unsigned int channels, symval, bit;
2848
2849 /* Find end of name. */
2850 s = e = *sptr;
2851 if (is_name_beginner (*e))
2852 ++e;
2853 while (is_part_of_name (*e))
2854 ++e;
2855
2856 channels = 0;
2857 if (!mips_parse_register_1 (s, e, &symval))
2858 {
2859 if (!channels_ptr)
2860 return FALSE;
2861
2862 /* Eat characters from the end of the string that are valid
2863 channel suffixes. The preceding register must be $ACC or
2864 end with a digit, so there is no ambiguity. */
2865 bit = 1;
2866 m = e;
2867 for (q = "wzyx"; *q; q++, bit <<= 1)
2868 if (m > s && m[-1] == *q)
2869 {
2870 --m;
2871 channels |= bit;
2872 }
2873
2874 if (channels == 0
2875 || !mips_parse_register_1 (s, m, &symval)
2876 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2877 return FALSE;
2878 }
2879
2880 *sptr = e;
2881 *symval_ptr = symval;
2882 if (channels_ptr)
2883 *channels_ptr = channels;
2884 return TRUE;
2885 }
2886
2887 /* Check if SPTR points at a valid register specifier according to TYPES.
2888 If so, then return 1, advance S to consume the specifier and store
2889 the register's number in REGNOP, otherwise return 0. */
2890
2891 static int
2892 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2893 {
2894 unsigned int regno;
2895
2896 if (mips_parse_register (s, &regno, NULL))
2897 {
2898 if (types & RTYPE_VEC)
2899 regno = mips_prefer_vec_regno (regno);
2900 if (regno & types)
2901 regno &= RNUM_MASK;
2902 else
2903 regno = ~0;
2904 }
2905 else
2906 {
2907 if (types & RWARN)
2908 as_warn (_("unrecognized register name `%s'"), *s);
2909 regno = ~0;
2910 }
2911 if (regnop)
2912 *regnop = regno;
2913 return regno <= RNUM_MASK;
2914 }
2915
2916 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2917 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2918
2919 static char *
2920 mips_parse_vu0_channels (char *s, unsigned int *channels)
2921 {
2922 unsigned int i;
2923
2924 *channels = 0;
2925 for (i = 0; i < 4; i++)
2926 if (*s == "xyzw"[i])
2927 {
2928 *channels |= 1 << (3 - i);
2929 ++s;
2930 }
2931 return s;
2932 }
2933
2934 /* Token types for parsed operand lists. */
2935 enum mips_operand_token_type {
2936 /* A plain register, e.g. $f2. */
2937 OT_REG,
2938
2939 /* A 4-bit XYZW channel mask. */
2940 OT_CHANNELS,
2941
2942 /* A constant vector index, e.g. [1]. */
2943 OT_INTEGER_INDEX,
2944
2945 /* A register vector index, e.g. [$2]. */
2946 OT_REG_INDEX,
2947
2948 /* A continuous range of registers, e.g. $s0-$s4. */
2949 OT_REG_RANGE,
2950
2951 /* A (possibly relocated) expression. */
2952 OT_INTEGER,
2953
2954 /* A floating-point value. */
2955 OT_FLOAT,
2956
2957 /* A single character. This can be '(', ')' or ',', but '(' only appears
2958 before OT_REGs. */
2959 OT_CHAR,
2960
2961 /* A doubled character, either "--" or "++". */
2962 OT_DOUBLE_CHAR,
2963
2964 /* The end of the operand list. */
2965 OT_END
2966 };
2967
2968 /* A parsed operand token. */
2969 struct mips_operand_token
2970 {
2971 /* The type of token. */
2972 enum mips_operand_token_type type;
2973 union
2974 {
2975 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2976 unsigned int regno;
2977
2978 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2979 unsigned int channels;
2980
2981 /* The integer value of an OT_INTEGER_INDEX. */
2982 addressT index;
2983
2984 /* The two register symbol values involved in an OT_REG_RANGE. */
2985 struct {
2986 unsigned int regno1;
2987 unsigned int regno2;
2988 } reg_range;
2989
2990 /* The value of an OT_INTEGER. The value is represented as an
2991 expression and the relocation operators that were applied to
2992 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2993 relocation operators were used. */
2994 struct {
2995 expressionS value;
2996 bfd_reloc_code_real_type relocs[3];
2997 } integer;
2998
2999 /* The binary data for an OT_FLOAT constant, and the number of bytes
3000 in the constant. */
3001 struct {
3002 unsigned char data[8];
3003 int length;
3004 } flt;
3005
3006 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3007 char ch;
3008 } u;
3009 };
3010
3011 /* An obstack used to construct lists of mips_operand_tokens. */
3012 static struct obstack mips_operand_tokens;
3013
3014 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3015
3016 static void
3017 mips_add_token (struct mips_operand_token *token,
3018 enum mips_operand_token_type type)
3019 {
3020 token->type = type;
3021 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3022 }
3023
3024 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3025 and OT_REG tokens for them if so, and return a pointer to the first
3026 unconsumed character. Return null otherwise. */
3027
3028 static char *
3029 mips_parse_base_start (char *s)
3030 {
3031 struct mips_operand_token token;
3032 unsigned int regno, channels;
3033 bfd_boolean decrement_p;
3034
3035 if (*s != '(')
3036 return 0;
3037
3038 ++s;
3039 SKIP_SPACE_TABS (s);
3040
3041 /* Only match "--" as part of a base expression. In other contexts "--X"
3042 is a double negative. */
3043 decrement_p = (s[0] == '-' && s[1] == '-');
3044 if (decrement_p)
3045 {
3046 s += 2;
3047 SKIP_SPACE_TABS (s);
3048 }
3049
3050 /* Allow a channel specifier because that leads to better error messages
3051 than treating something like "$vf0x++" as an expression. */
3052 if (!mips_parse_register (&s, &regno, &channels))
3053 return 0;
3054
3055 token.u.ch = '(';
3056 mips_add_token (&token, OT_CHAR);
3057
3058 if (decrement_p)
3059 {
3060 token.u.ch = '-';
3061 mips_add_token (&token, OT_DOUBLE_CHAR);
3062 }
3063
3064 token.u.regno = regno;
3065 mips_add_token (&token, OT_REG);
3066
3067 if (channels)
3068 {
3069 token.u.channels = channels;
3070 mips_add_token (&token, OT_CHANNELS);
3071 }
3072
3073 /* For consistency, only match "++" as part of base expressions too. */
3074 SKIP_SPACE_TABS (s);
3075 if (s[0] == '+' && s[1] == '+')
3076 {
3077 s += 2;
3078 token.u.ch = '+';
3079 mips_add_token (&token, OT_DOUBLE_CHAR);
3080 }
3081
3082 return s;
3083 }
3084
3085 /* Parse one or more tokens from S. Return a pointer to the first
3086 unconsumed character on success. Return null if an error was found
3087 and store the error text in insn_error. FLOAT_FORMAT is as for
3088 mips_parse_arguments. */
3089
3090 static char *
3091 mips_parse_argument_token (char *s, char float_format)
3092 {
3093 char *end, *save_in;
3094 const char *err;
3095 unsigned int regno1, regno2, channels;
3096 struct mips_operand_token token;
3097
3098 /* First look for "($reg", since we want to treat that as an
3099 OT_CHAR and OT_REG rather than an expression. */
3100 end = mips_parse_base_start (s);
3101 if (end)
3102 return end;
3103
3104 /* Handle other characters that end up as OT_CHARs. */
3105 if (*s == ')' || *s == ',')
3106 {
3107 token.u.ch = *s;
3108 mips_add_token (&token, OT_CHAR);
3109 ++s;
3110 return s;
3111 }
3112
3113 /* Handle tokens that start with a register. */
3114 if (mips_parse_register (&s, &regno1, &channels))
3115 {
3116 if (channels)
3117 {
3118 /* A register and a VU0 channel suffix. */
3119 token.u.regno = regno1;
3120 mips_add_token (&token, OT_REG);
3121
3122 token.u.channels = channels;
3123 mips_add_token (&token, OT_CHANNELS);
3124 return s;
3125 }
3126
3127 SKIP_SPACE_TABS (s);
3128 if (*s == '-')
3129 {
3130 /* A register range. */
3131 ++s;
3132 SKIP_SPACE_TABS (s);
3133 if (!mips_parse_register (&s, &regno2, NULL))
3134 {
3135 set_insn_error (0, _("invalid register range"));
3136 return 0;
3137 }
3138
3139 token.u.reg_range.regno1 = regno1;
3140 token.u.reg_range.regno2 = regno2;
3141 mips_add_token (&token, OT_REG_RANGE);
3142 return s;
3143 }
3144
3145 /* Add the register itself. */
3146 token.u.regno = regno1;
3147 mips_add_token (&token, OT_REG);
3148
3149 /* Check for a vector index. */
3150 if (*s == '[')
3151 {
3152 ++s;
3153 SKIP_SPACE_TABS (s);
3154 if (mips_parse_register (&s, &token.u.regno, NULL))
3155 mips_add_token (&token, OT_REG_INDEX);
3156 else
3157 {
3158 expressionS element;
3159
3160 my_getExpression (&element, s);
3161 if (element.X_op != O_constant)
3162 {
3163 set_insn_error (0, _("vector element must be constant"));
3164 return 0;
3165 }
3166 s = expr_end;
3167 token.u.index = element.X_add_number;
3168 mips_add_token (&token, OT_INTEGER_INDEX);
3169 }
3170 SKIP_SPACE_TABS (s);
3171 if (*s != ']')
3172 {
3173 set_insn_error (0, _("missing `]'"));
3174 return 0;
3175 }
3176 ++s;
3177 }
3178 return s;
3179 }
3180
3181 if (float_format)
3182 {
3183 /* First try to treat expressions as floats. */
3184 save_in = input_line_pointer;
3185 input_line_pointer = s;
3186 err = md_atof (float_format, (char *) token.u.flt.data,
3187 &token.u.flt.length);
3188 end = input_line_pointer;
3189 input_line_pointer = save_in;
3190 if (err && *err)
3191 {
3192 set_insn_error (0, err);
3193 return 0;
3194 }
3195 if (s != end)
3196 {
3197 mips_add_token (&token, OT_FLOAT);
3198 return end;
3199 }
3200 }
3201
3202 /* Treat everything else as an integer expression. */
3203 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3204 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3205 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3206 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3207 s = expr_end;
3208 mips_add_token (&token, OT_INTEGER);
3209 return s;
3210 }
3211
3212 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3213 if expressions should be treated as 32-bit floating-point constants,
3214 'd' if they should be treated as 64-bit floating-point constants,
3215 or 0 if they should be treated as integer expressions (the usual case).
3216
3217 Return a list of tokens on success, otherwise return 0. The caller
3218 must obstack_free the list after use. */
3219
3220 static struct mips_operand_token *
3221 mips_parse_arguments (char *s, char float_format)
3222 {
3223 struct mips_operand_token token;
3224
3225 SKIP_SPACE_TABS (s);
3226 while (*s)
3227 {
3228 s = mips_parse_argument_token (s, float_format);
3229 if (!s)
3230 {
3231 obstack_free (&mips_operand_tokens,
3232 obstack_finish (&mips_operand_tokens));
3233 return 0;
3234 }
3235 SKIP_SPACE_TABS (s);
3236 }
3237 mips_add_token (&token, OT_END);
3238 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3239 }
3240
3241 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3242 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3243
3244 static bfd_boolean
3245 is_opcode_valid (const struct mips_opcode *mo)
3246 {
3247 int isa = mips_opts.isa;
3248 int ase = mips_opts.ase;
3249 int fp_s, fp_d;
3250 unsigned int i;
3251
3252 if (ISA_HAS_64BIT_REGS (isa))
3253 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3254 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3255 ase |= mips_ases[i].flags64;
3256
3257 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3258 return FALSE;
3259
3260 /* Check whether the instruction or macro requires single-precision or
3261 double-precision floating-point support. Note that this information is
3262 stored differently in the opcode table for insns and macros. */
3263 if (mo->pinfo == INSN_MACRO)
3264 {
3265 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3266 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3267 }
3268 else
3269 {
3270 fp_s = mo->pinfo & FP_S;
3271 fp_d = mo->pinfo & FP_D;
3272 }
3273
3274 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3275 return FALSE;
3276
3277 if (fp_s && mips_opts.soft_float)
3278 return FALSE;
3279
3280 return TRUE;
3281 }
3282
3283 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3284 selected ISA and architecture. */
3285
3286 static bfd_boolean
3287 is_opcode_valid_16 (const struct mips_opcode *mo)
3288 {
3289 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3290 }
3291
3292 /* Return TRUE if the size of the microMIPS opcode MO matches one
3293 explicitly requested. Always TRUE in the standard MIPS mode.
3294 Use is_size_valid_16 for MIPS16 opcodes. */
3295
3296 static bfd_boolean
3297 is_size_valid (const struct mips_opcode *mo)
3298 {
3299 if (!mips_opts.micromips)
3300 return TRUE;
3301
3302 if (mips_opts.insn32)
3303 {
3304 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3305 return FALSE;
3306 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3307 return FALSE;
3308 }
3309 if (!forced_insn_length)
3310 return TRUE;
3311 if (mo->pinfo == INSN_MACRO)
3312 return FALSE;
3313 return forced_insn_length == micromips_insn_length (mo);
3314 }
3315
3316 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3317 explicitly requested. */
3318
3319 static bfd_boolean
3320 is_size_valid_16 (const struct mips_opcode *mo)
3321 {
3322 if (!forced_insn_length)
3323 return TRUE;
3324 if (mo->pinfo == INSN_MACRO)
3325 return FALSE;
3326 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3327 return FALSE;
3328 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3329 return FALSE;
3330 return TRUE;
3331 }
3332
3333 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3334 of the preceding instruction. Always TRUE in the standard MIPS mode.
3335
3336 We don't accept macros in 16-bit delay slots to avoid a case where
3337 a macro expansion fails because it relies on a preceding 32-bit real
3338 instruction to have matched and does not handle the operands correctly.
3339 The only macros that may expand to 16-bit instructions are JAL that
3340 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3341 and BGT (that likewise cannot be placed in a delay slot) that decay to
3342 a NOP. In all these cases the macros precede any corresponding real
3343 instruction definitions in the opcode table, so they will match in the
3344 second pass where the size of the delay slot is ignored and therefore
3345 produce correct code. */
3346
3347 static bfd_boolean
3348 is_delay_slot_valid (const struct mips_opcode *mo)
3349 {
3350 if (!mips_opts.micromips)
3351 return TRUE;
3352
3353 if (mo->pinfo == INSN_MACRO)
3354 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3355 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3356 && micromips_insn_length (mo) != 4)
3357 return FALSE;
3358 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3359 && micromips_insn_length (mo) != 2)
3360 return FALSE;
3361
3362 return TRUE;
3363 }
3364
3365 /* For consistency checking, verify that all bits of OPCODE are specified
3366 either by the match/mask part of the instruction definition, or by the
3367 operand list. Also build up a list of operands in OPERANDS.
3368
3369 INSN_BITS says which bits of the instruction are significant.
3370 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3371 provides the mips_operand description of each operand. DECODE_OPERAND
3372 is null for MIPS16 instructions. */
3373
3374 static int
3375 validate_mips_insn (const struct mips_opcode *opcode,
3376 unsigned long insn_bits,
3377 const struct mips_operand *(*decode_operand) (const char *),
3378 struct mips_operand_array *operands)
3379 {
3380 const char *s;
3381 unsigned long used_bits, doubled, undefined, opno, mask;
3382 const struct mips_operand *operand;
3383
3384 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3385 if ((mask & opcode->match) != opcode->match)
3386 {
3387 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3388 opcode->name, opcode->args);
3389 return 0;
3390 }
3391 used_bits = 0;
3392 opno = 0;
3393 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3394 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3395 for (s = opcode->args; *s; ++s)
3396 switch (*s)
3397 {
3398 case ',':
3399 case '(':
3400 case ')':
3401 break;
3402
3403 case '#':
3404 s++;
3405 break;
3406
3407 default:
3408 if (!decode_operand)
3409 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3410 else
3411 operand = decode_operand (s);
3412 if (!operand && opcode->pinfo != INSN_MACRO)
3413 {
3414 as_bad (_("internal: unknown operand type: %s %s"),
3415 opcode->name, opcode->args);
3416 return 0;
3417 }
3418 gas_assert (opno < MAX_OPERANDS);
3419 operands->operand[opno] = operand;
3420 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3421 {
3422 used_bits = mips_insert_operand (operand, used_bits, -1);
3423 if (operand->type == OP_MDMX_IMM_REG)
3424 /* Bit 5 is the format selector (OB vs QH). The opcode table
3425 has separate entries for each format. */
3426 used_bits &= ~(1 << (operand->lsb + 5));
3427 if (operand->type == OP_ENTRY_EXIT_LIST)
3428 used_bits &= ~(mask & 0x700);
3429 }
3430 /* Skip prefix characters. */
3431 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3432 ++s;
3433 opno += 1;
3434 break;
3435 }
3436 doubled = used_bits & mask & insn_bits;
3437 if (doubled)
3438 {
3439 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3440 " %s %s"), doubled, opcode->name, opcode->args);
3441 return 0;
3442 }
3443 used_bits |= mask;
3444 undefined = ~used_bits & insn_bits;
3445 if (opcode->pinfo != INSN_MACRO && undefined)
3446 {
3447 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3448 undefined, opcode->name, opcode->args);
3449 return 0;
3450 }
3451 used_bits &= ~insn_bits;
3452 if (used_bits)
3453 {
3454 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3455 used_bits, opcode->name, opcode->args);
3456 return 0;
3457 }
3458 return 1;
3459 }
3460
3461 /* The MIPS16 version of validate_mips_insn. */
3462
3463 static int
3464 validate_mips16_insn (const struct mips_opcode *opcode,
3465 struct mips_operand_array *operands)
3466 {
3467 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3468
3469 return validate_mips_insn (opcode, insn_bits, 0, operands);
3470 }
3471
3472 /* The microMIPS version of validate_mips_insn. */
3473
3474 static int
3475 validate_micromips_insn (const struct mips_opcode *opc,
3476 struct mips_operand_array *operands)
3477 {
3478 unsigned long insn_bits;
3479 unsigned long major;
3480 unsigned int length;
3481
3482 if (opc->pinfo == INSN_MACRO)
3483 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3484 operands);
3485
3486 length = micromips_insn_length (opc);
3487 if (length != 2 && length != 4)
3488 {
3489 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3490 "%s %s"), length, opc->name, opc->args);
3491 return 0;
3492 }
3493 major = opc->match >> (10 + 8 * (length - 2));
3494 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3495 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3496 {
3497 as_bad (_("internal error: bad microMIPS opcode "
3498 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3499 return 0;
3500 }
3501
3502 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3503 insn_bits = 1 << 4 * length;
3504 insn_bits <<= 4 * length;
3505 insn_bits -= 1;
3506 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3507 operands);
3508 }
3509
3510 /* This function is called once, at assembler startup time. It should set up
3511 all the tables, etc. that the MD part of the assembler will need. */
3512
3513 void
3514 md_begin (void)
3515 {
3516 const char *retval = NULL;
3517 int i = 0;
3518 int broken = 0;
3519
3520 if (mips_pic != NO_PIC)
3521 {
3522 if (g_switch_seen && g_switch_value != 0)
3523 as_bad (_("-G may not be used in position-independent code"));
3524 g_switch_value = 0;
3525 }
3526 else if (mips_abicalls)
3527 {
3528 if (g_switch_seen && g_switch_value != 0)
3529 as_bad (_("-G may not be used with abicalls"));
3530 g_switch_value = 0;
3531 }
3532
3533 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3534 as_warn (_("could not set architecture and machine"));
3535
3536 op_hash = hash_new ();
3537
3538 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3539 for (i = 0; i < NUMOPCODES;)
3540 {
3541 const char *name = mips_opcodes[i].name;
3542
3543 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3544 if (retval != NULL)
3545 {
3546 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3547 mips_opcodes[i].name, retval);
3548 /* Probably a memory allocation problem? Give up now. */
3549 as_fatal (_("broken assembler, no assembly attempted"));
3550 }
3551 do
3552 {
3553 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3554 decode_mips_operand, &mips_operands[i]))
3555 broken = 1;
3556 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3557 {
3558 create_insn (&nop_insn, mips_opcodes + i);
3559 if (mips_fix_loongson2f_nop)
3560 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3561 nop_insn.fixed_p = 1;
3562 }
3563 ++i;
3564 }
3565 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3566 }
3567
3568 mips16_op_hash = hash_new ();
3569 mips16_operands = XCNEWVEC (struct mips_operand_array,
3570 bfd_mips16_num_opcodes);
3571
3572 i = 0;
3573 while (i < bfd_mips16_num_opcodes)
3574 {
3575 const char *name = mips16_opcodes[i].name;
3576
3577 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3578 if (retval != NULL)
3579 as_fatal (_("internal: can't hash `%s': %s"),
3580 mips16_opcodes[i].name, retval);
3581 do
3582 {
3583 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3584 broken = 1;
3585 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3586 {
3587 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3588 mips16_nop_insn.fixed_p = 1;
3589 }
3590 ++i;
3591 }
3592 while (i < bfd_mips16_num_opcodes
3593 && strcmp (mips16_opcodes[i].name, name) == 0);
3594 }
3595
3596 micromips_op_hash = hash_new ();
3597 micromips_operands = XCNEWVEC (struct mips_operand_array,
3598 bfd_micromips_num_opcodes);
3599
3600 i = 0;
3601 while (i < bfd_micromips_num_opcodes)
3602 {
3603 const char *name = micromips_opcodes[i].name;
3604
3605 retval = hash_insert (micromips_op_hash, name,
3606 (void *) &micromips_opcodes[i]);
3607 if (retval != NULL)
3608 as_fatal (_("internal: can't hash `%s': %s"),
3609 micromips_opcodes[i].name, retval);
3610 do
3611 {
3612 struct mips_cl_insn *micromips_nop_insn;
3613
3614 if (!validate_micromips_insn (&micromips_opcodes[i],
3615 &micromips_operands[i]))
3616 broken = 1;
3617
3618 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3619 {
3620 if (micromips_insn_length (micromips_opcodes + i) == 2)
3621 micromips_nop_insn = &micromips_nop16_insn;
3622 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3623 micromips_nop_insn = &micromips_nop32_insn;
3624 else
3625 continue;
3626
3627 if (micromips_nop_insn->insn_mo == NULL
3628 && strcmp (name, "nop") == 0)
3629 {
3630 create_insn (micromips_nop_insn, micromips_opcodes + i);
3631 micromips_nop_insn->fixed_p = 1;
3632 }
3633 }
3634 }
3635 while (++i < bfd_micromips_num_opcodes
3636 && strcmp (micromips_opcodes[i].name, name) == 0);
3637 }
3638
3639 if (broken)
3640 as_fatal (_("broken assembler, no assembly attempted"));
3641
3642 /* We add all the general register names to the symbol table. This
3643 helps us detect invalid uses of them. */
3644 for (i = 0; reg_names[i].name; i++)
3645 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3646 reg_names[i].num, /* & RNUM_MASK, */
3647 &zero_address_frag));
3648 if (HAVE_NEWABI)
3649 for (i = 0; reg_names_n32n64[i].name; i++)
3650 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3651 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3652 &zero_address_frag));
3653 else
3654 for (i = 0; reg_names_o32[i].name; i++)
3655 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3656 reg_names_o32[i].num, /* & RNUM_MASK, */
3657 &zero_address_frag));
3658
3659 for (i = 0; i < 32; i++)
3660 {
3661 char regname[6];
3662
3663 /* R5900 VU0 floating-point register. */
3664 sprintf (regname, "$vf%d", i);
3665 symbol_table_insert (symbol_new (regname, reg_section,
3666 RTYPE_VF | i, &zero_address_frag));
3667
3668 /* R5900 VU0 integer register. */
3669 sprintf (regname, "$vi%d", i);
3670 symbol_table_insert (symbol_new (regname, reg_section,
3671 RTYPE_VI | i, &zero_address_frag));
3672
3673 /* MSA register. */
3674 sprintf (regname, "$w%d", i);
3675 symbol_table_insert (symbol_new (regname, reg_section,
3676 RTYPE_MSA | i, &zero_address_frag));
3677 }
3678
3679 obstack_init (&mips_operand_tokens);
3680
3681 mips_no_prev_insn ();
3682
3683 mips_gprmask = 0;
3684 mips_cprmask[0] = 0;
3685 mips_cprmask[1] = 0;
3686 mips_cprmask[2] = 0;
3687 mips_cprmask[3] = 0;
3688
3689 /* set the default alignment for the text section (2**2) */
3690 record_alignment (text_section, 2);
3691
3692 bfd_set_gp_size (stdoutput, g_switch_value);
3693
3694 /* On a native system other than VxWorks, sections must be aligned
3695 to 16 byte boundaries. When configured for an embedded ELF
3696 target, we don't bother. */
3697 if (strncmp (TARGET_OS, "elf", 3) != 0
3698 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3699 {
3700 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3701 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3702 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3703 }
3704
3705 /* Create a .reginfo section for register masks and a .mdebug
3706 section for debugging information. */
3707 {
3708 segT seg;
3709 subsegT subseg;
3710 flagword flags;
3711 segT sec;
3712
3713 seg = now_seg;
3714 subseg = now_subseg;
3715
3716 /* The ABI says this section should be loaded so that the
3717 running program can access it. However, we don't load it
3718 if we are configured for an embedded target */
3719 flags = SEC_READONLY | SEC_DATA;
3720 if (strncmp (TARGET_OS, "elf", 3) != 0)
3721 flags |= SEC_ALLOC | SEC_LOAD;
3722
3723 if (mips_abi != N64_ABI)
3724 {
3725 sec = subseg_new (".reginfo", (subsegT) 0);
3726
3727 bfd_set_section_flags (stdoutput, sec, flags);
3728 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3729
3730 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3731 }
3732 else
3733 {
3734 /* The 64-bit ABI uses a .MIPS.options section rather than
3735 .reginfo section. */
3736 sec = subseg_new (".MIPS.options", (subsegT) 0);
3737 bfd_set_section_flags (stdoutput, sec, flags);
3738 bfd_set_section_alignment (stdoutput, sec, 3);
3739
3740 /* Set up the option header. */
3741 {
3742 Elf_Internal_Options opthdr;
3743 char *f;
3744
3745 opthdr.kind = ODK_REGINFO;
3746 opthdr.size = (sizeof (Elf_External_Options)
3747 + sizeof (Elf64_External_RegInfo));
3748 opthdr.section = 0;
3749 opthdr.info = 0;
3750 f = frag_more (sizeof (Elf_External_Options));
3751 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3752 (Elf_External_Options *) f);
3753
3754 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3755 }
3756 }
3757
3758 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3759 bfd_set_section_flags (stdoutput, sec,
3760 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3761 bfd_set_section_alignment (stdoutput, sec, 3);
3762 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3763
3764 if (ECOFF_DEBUGGING)
3765 {
3766 sec = subseg_new (".mdebug", (subsegT) 0);
3767 (void) bfd_set_section_flags (stdoutput, sec,
3768 SEC_HAS_CONTENTS | SEC_READONLY);
3769 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3770 }
3771 else if (mips_flag_pdr)
3772 {
3773 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3774 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3775 SEC_READONLY | SEC_RELOC
3776 | SEC_DEBUGGING);
3777 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3778 }
3779
3780 subseg_set (seg, subseg);
3781 }
3782
3783 if (mips_fix_vr4120)
3784 init_vr4120_conflicts ();
3785 }
3786
3787 static inline void
3788 fpabi_incompatible_with (int fpabi, const char *what)
3789 {
3790 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3791 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3792 }
3793
3794 static inline void
3795 fpabi_requires (int fpabi, const char *what)
3796 {
3797 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3798 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3799 }
3800
3801 /* Check -mabi and register sizes against the specified FP ABI. */
3802 static void
3803 check_fpabi (int fpabi)
3804 {
3805 switch (fpabi)
3806 {
3807 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3808 if (file_mips_opts.soft_float)
3809 fpabi_incompatible_with (fpabi, "softfloat");
3810 else if (file_mips_opts.single_float)
3811 fpabi_incompatible_with (fpabi, "singlefloat");
3812 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3813 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3814 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3815 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3816 break;
3817
3818 case Val_GNU_MIPS_ABI_FP_XX:
3819 if (mips_abi != O32_ABI)
3820 fpabi_requires (fpabi, "-mabi=32");
3821 else if (file_mips_opts.soft_float)
3822 fpabi_incompatible_with (fpabi, "softfloat");
3823 else if (file_mips_opts.single_float)
3824 fpabi_incompatible_with (fpabi, "singlefloat");
3825 else if (file_mips_opts.fp != 0)
3826 fpabi_requires (fpabi, "fp=xx");
3827 break;
3828
3829 case Val_GNU_MIPS_ABI_FP_64A:
3830 case Val_GNU_MIPS_ABI_FP_64:
3831 if (mips_abi != O32_ABI)
3832 fpabi_requires (fpabi, "-mabi=32");
3833 else if (file_mips_opts.soft_float)
3834 fpabi_incompatible_with (fpabi, "softfloat");
3835 else if (file_mips_opts.single_float)
3836 fpabi_incompatible_with (fpabi, "singlefloat");
3837 else if (file_mips_opts.fp != 64)
3838 fpabi_requires (fpabi, "fp=64");
3839 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3840 fpabi_incompatible_with (fpabi, "nooddspreg");
3841 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3842 fpabi_requires (fpabi, "nooddspreg");
3843 break;
3844
3845 case Val_GNU_MIPS_ABI_FP_SINGLE:
3846 if (file_mips_opts.soft_float)
3847 fpabi_incompatible_with (fpabi, "softfloat");
3848 else if (!file_mips_opts.single_float)
3849 fpabi_requires (fpabi, "singlefloat");
3850 break;
3851
3852 case Val_GNU_MIPS_ABI_FP_SOFT:
3853 if (!file_mips_opts.soft_float)
3854 fpabi_requires (fpabi, "softfloat");
3855 break;
3856
3857 case Val_GNU_MIPS_ABI_FP_OLD_64:
3858 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3859 Tag_GNU_MIPS_ABI_FP, fpabi);
3860 break;
3861
3862 case Val_GNU_MIPS_ABI_FP_NAN2008:
3863 /* Silently ignore compatibility value. */
3864 break;
3865
3866 default:
3867 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3868 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3869 break;
3870 }
3871 }
3872
3873 /* Perform consistency checks on the current options. */
3874
3875 static void
3876 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3877 {
3878 /* Check the size of integer registers agrees with the ABI and ISA. */
3879 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3880 as_bad (_("`gp=64' used with a 32-bit processor"));
3881 else if (abi_checks
3882 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3883 as_bad (_("`gp=32' used with a 64-bit ABI"));
3884 else if (abi_checks
3885 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3886 as_bad (_("`gp=64' used with a 32-bit ABI"));
3887
3888 /* Check the size of the float registers agrees with the ABI and ISA. */
3889 switch (opts->fp)
3890 {
3891 case 0:
3892 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3893 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3894 else if (opts->single_float == 1)
3895 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3896 break;
3897 case 64:
3898 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3899 as_bad (_("`fp=64' used with a 32-bit fpu"));
3900 else if (abi_checks
3901 && ABI_NEEDS_32BIT_REGS (mips_abi)
3902 && !ISA_HAS_MXHC1 (opts->isa))
3903 as_warn (_("`fp=64' used with a 32-bit ABI"));
3904 break;
3905 case 32:
3906 if (abi_checks
3907 && ABI_NEEDS_64BIT_REGS (mips_abi))
3908 as_warn (_("`fp=32' used with a 64-bit ABI"));
3909 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3910 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3911 break;
3912 default:
3913 as_bad (_("Unknown size of floating point registers"));
3914 break;
3915 }
3916
3917 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3918 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3919
3920 if (opts->micromips == 1 && opts->mips16 == 1)
3921 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3922 else if (ISA_IS_R6 (opts->isa)
3923 && (opts->micromips == 1
3924 || opts->mips16 == 1))
3925 as_fatal (_("`%s' cannot be used with `%s'"),
3926 opts->micromips ? "micromips" : "mips16",
3927 mips_cpu_info_from_isa (opts->isa)->name);
3928
3929 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3930 as_fatal (_("branch relaxation is not supported in `%s'"),
3931 mips_cpu_info_from_isa (opts->isa)->name);
3932 }
3933
3934 /* Perform consistency checks on the module level options exactly once.
3935 This is a deferred check that happens:
3936 at the first .set directive
3937 or, at the first pseudo op that generates code (inc .dc.a)
3938 or, at the first instruction
3939 or, at the end. */
3940
3941 static void
3942 file_mips_check_options (void)
3943 {
3944 const struct mips_cpu_info *arch_info = 0;
3945
3946 if (file_mips_opts_checked)
3947 return;
3948
3949 /* The following code determines the register size.
3950 Similar code was added to GCC 3.3 (see override_options() in
3951 config/mips/mips.c). The GAS and GCC code should be kept in sync
3952 as much as possible. */
3953
3954 if (file_mips_opts.gp < 0)
3955 {
3956 /* Infer the integer register size from the ABI and processor.
3957 Restrict ourselves to 32-bit registers if that's all the
3958 processor has, or if the ABI cannot handle 64-bit registers. */
3959 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3960 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3961 ? 32 : 64;
3962 }
3963
3964 if (file_mips_opts.fp < 0)
3965 {
3966 /* No user specified float register size.
3967 ??? GAS treats single-float processors as though they had 64-bit
3968 float registers (although it complains when double-precision
3969 instructions are used). As things stand, saying they have 32-bit
3970 registers would lead to spurious "register must be even" messages.
3971 So here we assume float registers are never smaller than the
3972 integer ones. */
3973 if (file_mips_opts.gp == 64)
3974 /* 64-bit integer registers implies 64-bit float registers. */
3975 file_mips_opts.fp = 64;
3976 else if ((file_mips_opts.ase & FP64_ASES)
3977 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3978 /* Handle ASEs that require 64-bit float registers, if possible. */
3979 file_mips_opts.fp = 64;
3980 else if (ISA_IS_R6 (mips_opts.isa))
3981 /* R6 implies 64-bit float registers. */
3982 file_mips_opts.fp = 64;
3983 else
3984 /* 32-bit float registers. */
3985 file_mips_opts.fp = 32;
3986 }
3987
3988 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3989
3990 /* Disable operations on odd-numbered floating-point registers by default
3991 when using the FPXX ABI. */
3992 if (file_mips_opts.oddspreg < 0)
3993 {
3994 if (file_mips_opts.fp == 0)
3995 file_mips_opts.oddspreg = 0;
3996 else
3997 file_mips_opts.oddspreg = 1;
3998 }
3999
4000 /* End of GCC-shared inference code. */
4001
4002 /* This flag is set when we have a 64-bit capable CPU but use only
4003 32-bit wide registers. Note that EABI does not use it. */
4004 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4005 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4006 || mips_abi == O32_ABI))
4007 mips_32bitmode = 1;
4008
4009 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4010 as_bad (_("trap exception not supported at ISA 1"));
4011
4012 /* If the selected architecture includes support for ASEs, enable
4013 generation of code for them. */
4014 if (file_mips_opts.mips16 == -1)
4015 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4016 if (file_mips_opts.micromips == -1)
4017 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4018 ? 1 : 0;
4019
4020 if (mips_nan2008 == -1)
4021 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4022 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4023 as_fatal (_("`%s' does not support legacy NaN"),
4024 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4025
4026 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4027 being selected implicitly. */
4028 if (file_mips_opts.fp != 64)
4029 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4030
4031 /* If the user didn't explicitly select or deselect a particular ASE,
4032 use the default setting for the CPU. */
4033 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4034
4035 /* Set up the current options. These may change throughout assembly. */
4036 mips_opts = file_mips_opts;
4037
4038 mips_check_isa_supports_ases ();
4039 mips_check_options (&file_mips_opts, TRUE);
4040 file_mips_opts_checked = TRUE;
4041
4042 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4043 as_warn (_("could not set architecture and machine"));
4044 }
4045
4046 void
4047 md_assemble (char *str)
4048 {
4049 struct mips_cl_insn insn;
4050 bfd_reloc_code_real_type unused_reloc[3]
4051 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4052
4053 file_mips_check_options ();
4054
4055 imm_expr.X_op = O_absent;
4056 offset_expr.X_op = O_absent;
4057 offset_reloc[0] = BFD_RELOC_UNUSED;
4058 offset_reloc[1] = BFD_RELOC_UNUSED;
4059 offset_reloc[2] = BFD_RELOC_UNUSED;
4060
4061 mips_mark_labels ();
4062 mips_assembling_insn = TRUE;
4063 clear_insn_error ();
4064
4065 if (mips_opts.mips16)
4066 mips16_ip (str, &insn);
4067 else
4068 {
4069 mips_ip (str, &insn);
4070 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4071 str, insn.insn_opcode));
4072 }
4073
4074 if (insn_error.msg)
4075 report_insn_error (str);
4076 else if (insn.insn_mo->pinfo == INSN_MACRO)
4077 {
4078 macro_start ();
4079 if (mips_opts.mips16)
4080 mips16_macro (&insn);
4081 else
4082 macro (&insn, str);
4083 macro_end ();
4084 }
4085 else
4086 {
4087 if (offset_expr.X_op != O_absent)
4088 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4089 else
4090 append_insn (&insn, NULL, unused_reloc, FALSE);
4091 }
4092
4093 mips_assembling_insn = FALSE;
4094 }
4095
4096 /* Convenience functions for abstracting away the differences between
4097 MIPS16 and non-MIPS16 relocations. */
4098
4099 static inline bfd_boolean
4100 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4101 {
4102 switch (reloc)
4103 {
4104 case BFD_RELOC_MIPS16_JMP:
4105 case BFD_RELOC_MIPS16_GPREL:
4106 case BFD_RELOC_MIPS16_GOT16:
4107 case BFD_RELOC_MIPS16_CALL16:
4108 case BFD_RELOC_MIPS16_HI16_S:
4109 case BFD_RELOC_MIPS16_HI16:
4110 case BFD_RELOC_MIPS16_LO16:
4111 case BFD_RELOC_MIPS16_16_PCREL_S1:
4112 return TRUE;
4113
4114 default:
4115 return FALSE;
4116 }
4117 }
4118
4119 static inline bfd_boolean
4120 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4121 {
4122 switch (reloc)
4123 {
4124 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4125 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4126 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4127 case BFD_RELOC_MICROMIPS_GPREL16:
4128 case BFD_RELOC_MICROMIPS_JMP:
4129 case BFD_RELOC_MICROMIPS_HI16:
4130 case BFD_RELOC_MICROMIPS_HI16_S:
4131 case BFD_RELOC_MICROMIPS_LO16:
4132 case BFD_RELOC_MICROMIPS_LITERAL:
4133 case BFD_RELOC_MICROMIPS_GOT16:
4134 case BFD_RELOC_MICROMIPS_CALL16:
4135 case BFD_RELOC_MICROMIPS_GOT_HI16:
4136 case BFD_RELOC_MICROMIPS_GOT_LO16:
4137 case BFD_RELOC_MICROMIPS_CALL_HI16:
4138 case BFD_RELOC_MICROMIPS_CALL_LO16:
4139 case BFD_RELOC_MICROMIPS_SUB:
4140 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4141 case BFD_RELOC_MICROMIPS_GOT_OFST:
4142 case BFD_RELOC_MICROMIPS_GOT_DISP:
4143 case BFD_RELOC_MICROMIPS_HIGHEST:
4144 case BFD_RELOC_MICROMIPS_HIGHER:
4145 case BFD_RELOC_MICROMIPS_SCN_DISP:
4146 case BFD_RELOC_MICROMIPS_JALR:
4147 return TRUE;
4148
4149 default:
4150 return FALSE;
4151 }
4152 }
4153
4154 static inline bfd_boolean
4155 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4156 {
4157 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4158 }
4159
4160 static inline bfd_boolean
4161 b_reloc_p (bfd_reloc_code_real_type reloc)
4162 {
4163 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4164 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4165 || reloc == BFD_RELOC_16_PCREL_S2
4166 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4167 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4168 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4169 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4170 }
4171
4172 static inline bfd_boolean
4173 got16_reloc_p (bfd_reloc_code_real_type reloc)
4174 {
4175 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4176 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4177 }
4178
4179 static inline bfd_boolean
4180 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4181 {
4182 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4183 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4184 }
4185
4186 static inline bfd_boolean
4187 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4188 {
4189 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4190 || reloc == BFD_RELOC_MICROMIPS_LO16);
4191 }
4192
4193 static inline bfd_boolean
4194 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4195 {
4196 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4197 }
4198
4199 static inline bfd_boolean
4200 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4201 {
4202 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4203 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4204 }
4205
4206 /* Return true if RELOC is a PC-relative relocation that does not have
4207 full address range. */
4208
4209 static inline bfd_boolean
4210 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4211 {
4212 switch (reloc)
4213 {
4214 case BFD_RELOC_16_PCREL_S2:
4215 case BFD_RELOC_MIPS16_16_PCREL_S1:
4216 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4217 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4218 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4219 case BFD_RELOC_MIPS_21_PCREL_S2:
4220 case BFD_RELOC_MIPS_26_PCREL_S2:
4221 case BFD_RELOC_MIPS_18_PCREL_S3:
4222 case BFD_RELOC_MIPS_19_PCREL_S2:
4223 return TRUE;
4224
4225 case BFD_RELOC_32_PCREL:
4226 case BFD_RELOC_HI16_S_PCREL:
4227 case BFD_RELOC_LO16_PCREL:
4228 return HAVE_64BIT_ADDRESSES;
4229
4230 default:
4231 return FALSE;
4232 }
4233 }
4234
4235 /* Return true if the given relocation might need a matching %lo().
4236 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4237 need a matching %lo() when applied to local symbols. */
4238
4239 static inline bfd_boolean
4240 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4241 {
4242 return (HAVE_IN_PLACE_ADDENDS
4243 && (hi16_reloc_p (reloc)
4244 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4245 all GOT16 relocations evaluate to "G". */
4246 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4247 }
4248
4249 /* Return the type of %lo() reloc needed by RELOC, given that
4250 reloc_needs_lo_p. */
4251
4252 static inline bfd_reloc_code_real_type
4253 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4254 {
4255 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4256 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4257 : BFD_RELOC_LO16));
4258 }
4259
4260 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4261 relocation. */
4262
4263 static inline bfd_boolean
4264 fixup_has_matching_lo_p (fixS *fixp)
4265 {
4266 return (fixp->fx_next != NULL
4267 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4268 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4269 && fixp->fx_offset == fixp->fx_next->fx_offset);
4270 }
4271
4272 /* Move all labels in LABELS to the current insertion point. TEXT_P
4273 says whether the labels refer to text or data. */
4274
4275 static void
4276 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4277 {
4278 struct insn_label_list *l;
4279 valueT val;
4280
4281 for (l = labels; l != NULL; l = l->next)
4282 {
4283 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4284 symbol_set_frag (l->label, frag_now);
4285 val = (valueT) frag_now_fix ();
4286 /* MIPS16/microMIPS text labels are stored as odd. */
4287 if (text_p && HAVE_CODE_COMPRESSION)
4288 ++val;
4289 S_SET_VALUE (l->label, val);
4290 }
4291 }
4292
4293 /* Move all labels in insn_labels to the current insertion point
4294 and treat them as text labels. */
4295
4296 static void
4297 mips_move_text_labels (void)
4298 {
4299 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4300 }
4301
4302 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4303
4304 static bfd_boolean
4305 s_is_linkonce (symbolS *sym, segT from_seg)
4306 {
4307 bfd_boolean linkonce = FALSE;
4308 segT symseg = S_GET_SEGMENT (sym);
4309
4310 if (symseg != from_seg && !S_IS_LOCAL (sym))
4311 {
4312 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4313 linkonce = TRUE;
4314 /* The GNU toolchain uses an extension for ELF: a section
4315 beginning with the magic string .gnu.linkonce is a
4316 linkonce section. */
4317 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4318 sizeof ".gnu.linkonce" - 1) == 0)
4319 linkonce = TRUE;
4320 }
4321 return linkonce;
4322 }
4323
4324 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4325 linker to handle them specially, such as generating jalx instructions
4326 when needed. We also make them odd for the duration of the assembly,
4327 in order to generate the right sort of code. We will make them even
4328 in the adjust_symtab routine, while leaving them marked. This is
4329 convenient for the debugger and the disassembler. The linker knows
4330 to make them odd again. */
4331
4332 static void
4333 mips_compressed_mark_label (symbolS *label)
4334 {
4335 gas_assert (HAVE_CODE_COMPRESSION);
4336
4337 if (mips_opts.mips16)
4338 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4339 else
4340 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4341 if ((S_GET_VALUE (label) & 1) == 0
4342 /* Don't adjust the address if the label is global or weak, or
4343 in a link-once section, since we'll be emitting symbol reloc
4344 references to it which will be patched up by the linker, and
4345 the final value of the symbol may or may not be MIPS16/microMIPS. */
4346 && !S_IS_WEAK (label)
4347 && !S_IS_EXTERNAL (label)
4348 && !s_is_linkonce (label, now_seg))
4349 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4350 }
4351
4352 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4353
4354 static void
4355 mips_compressed_mark_labels (void)
4356 {
4357 struct insn_label_list *l;
4358
4359 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4360 mips_compressed_mark_label (l->label);
4361 }
4362
4363 /* End the current frag. Make it a variant frag and record the
4364 relaxation info. */
4365
4366 static void
4367 relax_close_frag (void)
4368 {
4369 mips_macro_warning.first_frag = frag_now;
4370 frag_var (rs_machine_dependent, 0, 0,
4371 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4372 mips_pic != NO_PIC),
4373 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4374
4375 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4376 mips_relax.first_fixup = 0;
4377 }
4378
4379 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4380 See the comment above RELAX_ENCODE for more details. */
4381
4382 static void
4383 relax_start (symbolS *symbol)
4384 {
4385 gas_assert (mips_relax.sequence == 0);
4386 mips_relax.sequence = 1;
4387 mips_relax.symbol = symbol;
4388 }
4389
4390 /* Start generating the second version of a relaxable sequence.
4391 See the comment above RELAX_ENCODE for more details. */
4392
4393 static void
4394 relax_switch (void)
4395 {
4396 gas_assert (mips_relax.sequence == 1);
4397 mips_relax.sequence = 2;
4398 }
4399
4400 /* End the current relaxable sequence. */
4401
4402 static void
4403 relax_end (void)
4404 {
4405 gas_assert (mips_relax.sequence == 2);
4406 relax_close_frag ();
4407 mips_relax.sequence = 0;
4408 }
4409
4410 /* Return true if IP is a delayed branch or jump. */
4411
4412 static inline bfd_boolean
4413 delayed_branch_p (const struct mips_cl_insn *ip)
4414 {
4415 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4416 | INSN_COND_BRANCH_DELAY
4417 | INSN_COND_BRANCH_LIKELY)) != 0;
4418 }
4419
4420 /* Return true if IP is a compact branch or jump. */
4421
4422 static inline bfd_boolean
4423 compact_branch_p (const struct mips_cl_insn *ip)
4424 {
4425 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4426 | INSN2_COND_BRANCH)) != 0;
4427 }
4428
4429 /* Return true if IP is an unconditional branch or jump. */
4430
4431 static inline bfd_boolean
4432 uncond_branch_p (const struct mips_cl_insn *ip)
4433 {
4434 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4435 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4436 }
4437
4438 /* Return true if IP is a branch-likely instruction. */
4439
4440 static inline bfd_boolean
4441 branch_likely_p (const struct mips_cl_insn *ip)
4442 {
4443 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4444 }
4445
4446 /* Return the type of nop that should be used to fill the delay slot
4447 of delayed branch IP. */
4448
4449 static struct mips_cl_insn *
4450 get_delay_slot_nop (const struct mips_cl_insn *ip)
4451 {
4452 if (mips_opts.micromips
4453 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4454 return &micromips_nop32_insn;
4455 return NOP_INSN;
4456 }
4457
4458 /* Return a mask that has bit N set if OPCODE reads the register(s)
4459 in operand N. */
4460
4461 static unsigned int
4462 insn_read_mask (const struct mips_opcode *opcode)
4463 {
4464 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4465 }
4466
4467 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4468 in operand N. */
4469
4470 static unsigned int
4471 insn_write_mask (const struct mips_opcode *opcode)
4472 {
4473 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4474 }
4475
4476 /* Return a mask of the registers specified by operand OPERAND of INSN.
4477 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4478 is set. */
4479
4480 static unsigned int
4481 operand_reg_mask (const struct mips_cl_insn *insn,
4482 const struct mips_operand *operand,
4483 unsigned int type_mask)
4484 {
4485 unsigned int uval, vsel;
4486
4487 switch (operand->type)
4488 {
4489 case OP_INT:
4490 case OP_MAPPED_INT:
4491 case OP_MSB:
4492 case OP_PCREL:
4493 case OP_PERF_REG:
4494 case OP_ADDIUSP_INT:
4495 case OP_ENTRY_EXIT_LIST:
4496 case OP_REPEAT_DEST_REG:
4497 case OP_REPEAT_PREV_REG:
4498 case OP_PC:
4499 case OP_VU0_SUFFIX:
4500 case OP_VU0_MATCH_SUFFIX:
4501 case OP_IMM_INDEX:
4502 abort ();
4503
4504 case OP_REG:
4505 case OP_OPTIONAL_REG:
4506 {
4507 const struct mips_reg_operand *reg_op;
4508
4509 reg_op = (const struct mips_reg_operand *) operand;
4510 if (!(type_mask & (1 << reg_op->reg_type)))
4511 return 0;
4512 uval = insn_extract_operand (insn, operand);
4513 return 1 << mips_decode_reg_operand (reg_op, uval);
4514 }
4515
4516 case OP_REG_PAIR:
4517 {
4518 const struct mips_reg_pair_operand *pair_op;
4519
4520 pair_op = (const struct mips_reg_pair_operand *) operand;
4521 if (!(type_mask & (1 << pair_op->reg_type)))
4522 return 0;
4523 uval = insn_extract_operand (insn, operand);
4524 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4525 }
4526
4527 case OP_CLO_CLZ_DEST:
4528 if (!(type_mask & (1 << OP_REG_GP)))
4529 return 0;
4530 uval = insn_extract_operand (insn, operand);
4531 return (1 << (uval & 31)) | (1 << (uval >> 5));
4532
4533 case OP_SAME_RS_RT:
4534 if (!(type_mask & (1 << OP_REG_GP)))
4535 return 0;
4536 uval = insn_extract_operand (insn, operand);
4537 gas_assert ((uval & 31) == (uval >> 5));
4538 return 1 << (uval & 31);
4539
4540 case OP_CHECK_PREV:
4541 case OP_NON_ZERO_REG:
4542 if (!(type_mask & (1 << OP_REG_GP)))
4543 return 0;
4544 uval = insn_extract_operand (insn, operand);
4545 return 1 << (uval & 31);
4546
4547 case OP_LWM_SWM_LIST:
4548 abort ();
4549
4550 case OP_SAVE_RESTORE_LIST:
4551 abort ();
4552
4553 case OP_MDMX_IMM_REG:
4554 if (!(type_mask & (1 << OP_REG_VEC)))
4555 return 0;
4556 uval = insn_extract_operand (insn, operand);
4557 vsel = uval >> 5;
4558 if ((vsel & 0x18) == 0x18)
4559 return 0;
4560 return 1 << (uval & 31);
4561
4562 case OP_REG_INDEX:
4563 if (!(type_mask & (1 << OP_REG_GP)))
4564 return 0;
4565 return 1 << insn_extract_operand (insn, operand);
4566 }
4567 abort ();
4568 }
4569
4570 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4571 where bit N of OPNO_MASK is set if operand N should be included.
4572 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4573 is set. */
4574
4575 static unsigned int
4576 insn_reg_mask (const struct mips_cl_insn *insn,
4577 unsigned int type_mask, unsigned int opno_mask)
4578 {
4579 unsigned int opno, reg_mask;
4580
4581 opno = 0;
4582 reg_mask = 0;
4583 while (opno_mask != 0)
4584 {
4585 if (opno_mask & 1)
4586 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4587 opno_mask >>= 1;
4588 opno += 1;
4589 }
4590 return reg_mask;
4591 }
4592
4593 /* Return the mask of core registers that IP reads. */
4594
4595 static unsigned int
4596 gpr_read_mask (const struct mips_cl_insn *ip)
4597 {
4598 unsigned long pinfo, pinfo2;
4599 unsigned int mask;
4600
4601 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4602 pinfo = ip->insn_mo->pinfo;
4603 pinfo2 = ip->insn_mo->pinfo2;
4604 if (pinfo & INSN_UDI)
4605 {
4606 /* UDI instructions have traditionally been assumed to read RS
4607 and RT. */
4608 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4609 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4610 }
4611 if (pinfo & INSN_READ_GPR_24)
4612 mask |= 1 << 24;
4613 if (pinfo2 & INSN2_READ_GPR_16)
4614 mask |= 1 << 16;
4615 if (pinfo2 & INSN2_READ_SP)
4616 mask |= 1 << SP;
4617 if (pinfo2 & INSN2_READ_GPR_31)
4618 mask |= 1 << 31;
4619 /* Don't include register 0. */
4620 return mask & ~1;
4621 }
4622
4623 /* Return the mask of core registers that IP writes. */
4624
4625 static unsigned int
4626 gpr_write_mask (const struct mips_cl_insn *ip)
4627 {
4628 unsigned long pinfo, pinfo2;
4629 unsigned int mask;
4630
4631 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4632 pinfo = ip->insn_mo->pinfo;
4633 pinfo2 = ip->insn_mo->pinfo2;
4634 if (pinfo & INSN_WRITE_GPR_24)
4635 mask |= 1 << 24;
4636 if (pinfo & INSN_WRITE_GPR_31)
4637 mask |= 1 << 31;
4638 if (pinfo & INSN_UDI)
4639 /* UDI instructions have traditionally been assumed to write to RD. */
4640 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4641 if (pinfo2 & INSN2_WRITE_SP)
4642 mask |= 1 << SP;
4643 /* Don't include register 0. */
4644 return mask & ~1;
4645 }
4646
4647 /* Return the mask of floating-point registers that IP reads. */
4648
4649 static unsigned int
4650 fpr_read_mask (const struct mips_cl_insn *ip)
4651 {
4652 unsigned long pinfo;
4653 unsigned int mask;
4654
4655 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4656 | (1 << OP_REG_MSA)),
4657 insn_read_mask (ip->insn_mo));
4658 pinfo = ip->insn_mo->pinfo;
4659 /* Conservatively treat all operands to an FP_D instruction are doubles.
4660 (This is overly pessimistic for things like cvt.d.s.) */
4661 if (FPR_SIZE != 64 && (pinfo & FP_D))
4662 mask |= mask << 1;
4663 return mask;
4664 }
4665
4666 /* Return the mask of floating-point registers that IP writes. */
4667
4668 static unsigned int
4669 fpr_write_mask (const struct mips_cl_insn *ip)
4670 {
4671 unsigned long pinfo;
4672 unsigned int mask;
4673
4674 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4675 | (1 << OP_REG_MSA)),
4676 insn_write_mask (ip->insn_mo));
4677 pinfo = ip->insn_mo->pinfo;
4678 /* Conservatively treat all operands to an FP_D instruction are doubles.
4679 (This is overly pessimistic for things like cvt.s.d.) */
4680 if (FPR_SIZE != 64 && (pinfo & FP_D))
4681 mask |= mask << 1;
4682 return mask;
4683 }
4684
4685 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4686 Check whether that is allowed. */
4687
4688 static bfd_boolean
4689 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4690 {
4691 const char *s = insn->name;
4692 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4693 || FPR_SIZE == 64)
4694 && mips_opts.oddspreg;
4695
4696 if (insn->pinfo == INSN_MACRO)
4697 /* Let a macro pass, we'll catch it later when it is expanded. */
4698 return TRUE;
4699
4700 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4701 otherwise it depends on oddspreg. */
4702 if ((insn->pinfo & FP_S)
4703 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4704 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4705 return FPR_SIZE == 32 || oddspreg;
4706
4707 /* Allow odd registers for single-precision ops and double-precision if the
4708 floating-point registers are 64-bit wide. */
4709 switch (insn->pinfo & (FP_S | FP_D))
4710 {
4711 case FP_S:
4712 case 0:
4713 return oddspreg;
4714 case FP_D:
4715 return FPR_SIZE == 64;
4716 default:
4717 break;
4718 }
4719
4720 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4721 s = strchr (insn->name, '.');
4722 if (s != NULL && opnum == 2)
4723 s = strchr (s + 1, '.');
4724 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4725 return oddspreg;
4726
4727 return FPR_SIZE == 64;
4728 }
4729
4730 /* Information about an instruction argument that we're trying to match. */
4731 struct mips_arg_info
4732 {
4733 /* The instruction so far. */
4734 struct mips_cl_insn *insn;
4735
4736 /* The first unconsumed operand token. */
4737 struct mips_operand_token *token;
4738
4739 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4740 int opnum;
4741
4742 /* The 1-based argument number, for error reporting. This does not
4743 count elided optional registers, etc.. */
4744 int argnum;
4745
4746 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4747 unsigned int last_regno;
4748
4749 /* If the first operand was an OP_REG, this is the register that it
4750 specified, otherwise it is ILLEGAL_REG. */
4751 unsigned int dest_regno;
4752
4753 /* The value of the last OP_INT operand. Only used for OP_MSB,
4754 where it gives the lsb position. */
4755 unsigned int last_op_int;
4756
4757 /* If true, match routines should assume that no later instruction
4758 alternative matches and should therefore be as accommodating as
4759 possible. Match routines should not report errors if something
4760 is only invalid for !LAX_MATCH. */
4761 bfd_boolean lax_match;
4762
4763 /* True if a reference to the current AT register was seen. */
4764 bfd_boolean seen_at;
4765 };
4766
4767 /* Record that the argument is out of range. */
4768
4769 static void
4770 match_out_of_range (struct mips_arg_info *arg)
4771 {
4772 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4773 }
4774
4775 /* Record that the argument isn't constant but needs to be. */
4776
4777 static void
4778 match_not_constant (struct mips_arg_info *arg)
4779 {
4780 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4781 arg->argnum);
4782 }
4783
4784 /* Try to match an OT_CHAR token for character CH. Consume the token
4785 and return true on success, otherwise return false. */
4786
4787 static bfd_boolean
4788 match_char (struct mips_arg_info *arg, char ch)
4789 {
4790 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4791 {
4792 ++arg->token;
4793 if (ch == ',')
4794 arg->argnum += 1;
4795 return TRUE;
4796 }
4797 return FALSE;
4798 }
4799
4800 /* Try to get an expression from the next tokens in ARG. Consume the
4801 tokens and return true on success, storing the expression value in
4802 VALUE and relocation types in R. */
4803
4804 static bfd_boolean
4805 match_expression (struct mips_arg_info *arg, expressionS *value,
4806 bfd_reloc_code_real_type *r)
4807 {
4808 /* If the next token is a '(' that was parsed as being part of a base
4809 expression, assume we have an elided offset. The later match will fail
4810 if this turns out to be wrong. */
4811 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4812 {
4813 value->X_op = O_constant;
4814 value->X_add_number = 0;
4815 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4816 return TRUE;
4817 }
4818
4819 /* Reject register-based expressions such as "0+$2" and "(($2))".
4820 For plain registers the default error seems more appropriate. */
4821 if (arg->token->type == OT_INTEGER
4822 && arg->token->u.integer.value.X_op == O_register)
4823 {
4824 set_insn_error (arg->argnum, _("register value used as expression"));
4825 return FALSE;
4826 }
4827
4828 if (arg->token->type == OT_INTEGER)
4829 {
4830 *value = arg->token->u.integer.value;
4831 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4832 ++arg->token;
4833 return TRUE;
4834 }
4835
4836 set_insn_error_i
4837 (arg->argnum, _("operand %d must be an immediate expression"),
4838 arg->argnum);
4839 return FALSE;
4840 }
4841
4842 /* Try to get a constant expression from the next tokens in ARG. Consume
4843 the tokens and return return true on success, storing the constant value
4844 in *VALUE. */
4845
4846 static bfd_boolean
4847 match_const_int (struct mips_arg_info *arg, offsetT *value)
4848 {
4849 expressionS ex;
4850 bfd_reloc_code_real_type r[3];
4851
4852 if (!match_expression (arg, &ex, r))
4853 return FALSE;
4854
4855 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4856 *value = ex.X_add_number;
4857 else
4858 {
4859 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
4860 match_out_of_range (arg);
4861 else
4862 match_not_constant (arg);
4863 return FALSE;
4864 }
4865 return TRUE;
4866 }
4867
4868 /* Return the RTYPE_* flags for a register operand of type TYPE that
4869 appears in instruction OPCODE. */
4870
4871 static unsigned int
4872 convert_reg_type (const struct mips_opcode *opcode,
4873 enum mips_reg_operand_type type)
4874 {
4875 switch (type)
4876 {
4877 case OP_REG_GP:
4878 return RTYPE_NUM | RTYPE_GP;
4879
4880 case OP_REG_FP:
4881 /* Allow vector register names for MDMX if the instruction is a 64-bit
4882 FPR load, store or move (including moves to and from GPRs). */
4883 if ((mips_opts.ase & ASE_MDMX)
4884 && (opcode->pinfo & FP_D)
4885 && (opcode->pinfo & (INSN_COPROC_MOVE
4886 | INSN_COPROC_MEMORY_DELAY
4887 | INSN_LOAD_COPROC
4888 | INSN_LOAD_MEMORY
4889 | INSN_STORE_MEMORY)))
4890 return RTYPE_FPU | RTYPE_VEC;
4891 return RTYPE_FPU;
4892
4893 case OP_REG_CCC:
4894 if (opcode->pinfo & (FP_D | FP_S))
4895 return RTYPE_CCC | RTYPE_FCC;
4896 return RTYPE_CCC;
4897
4898 case OP_REG_VEC:
4899 if (opcode->membership & INSN_5400)
4900 return RTYPE_FPU;
4901 return RTYPE_FPU | RTYPE_VEC;
4902
4903 case OP_REG_ACC:
4904 return RTYPE_ACC;
4905
4906 case OP_REG_COPRO:
4907 if (opcode->name[strlen (opcode->name) - 1] == '0')
4908 return RTYPE_NUM | RTYPE_CP0;
4909 return RTYPE_NUM;
4910
4911 case OP_REG_HW:
4912 return RTYPE_NUM;
4913
4914 case OP_REG_VI:
4915 return RTYPE_NUM | RTYPE_VI;
4916
4917 case OP_REG_VF:
4918 return RTYPE_NUM | RTYPE_VF;
4919
4920 case OP_REG_R5900_I:
4921 return RTYPE_R5900_I;
4922
4923 case OP_REG_R5900_Q:
4924 return RTYPE_R5900_Q;
4925
4926 case OP_REG_R5900_R:
4927 return RTYPE_R5900_R;
4928
4929 case OP_REG_R5900_ACC:
4930 return RTYPE_R5900_ACC;
4931
4932 case OP_REG_MSA:
4933 return RTYPE_MSA;
4934
4935 case OP_REG_MSA_CTRL:
4936 return RTYPE_NUM;
4937 }
4938 abort ();
4939 }
4940
4941 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4942
4943 static void
4944 check_regno (struct mips_arg_info *arg,
4945 enum mips_reg_operand_type type, unsigned int regno)
4946 {
4947 if (AT && type == OP_REG_GP && regno == AT)
4948 arg->seen_at = TRUE;
4949
4950 if (type == OP_REG_FP
4951 && (regno & 1) != 0
4952 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4953 {
4954 /* This was a warning prior to introducing O32 FPXX and FP64 support
4955 so maintain a warning for FP32 but raise an error for the new
4956 cases. */
4957 if (FPR_SIZE == 32)
4958 as_warn (_("float register should be even, was %d"), regno);
4959 else
4960 as_bad (_("float register should be even, was %d"), regno);
4961 }
4962
4963 if (type == OP_REG_CCC)
4964 {
4965 const char *name;
4966 size_t length;
4967
4968 name = arg->insn->insn_mo->name;
4969 length = strlen (name);
4970 if ((regno & 1) != 0
4971 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4972 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4973 as_warn (_("condition code register should be even for %s, was %d"),
4974 name, regno);
4975
4976 if ((regno & 3) != 0
4977 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4978 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4979 name, regno);
4980 }
4981 }
4982
4983 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4984 a register of type TYPE. Return true on success, storing the register
4985 number in *REGNO and warning about any dubious uses. */
4986
4987 static bfd_boolean
4988 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4989 unsigned int symval, unsigned int *regno)
4990 {
4991 if (type == OP_REG_VEC)
4992 symval = mips_prefer_vec_regno (symval);
4993 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4994 return FALSE;
4995
4996 *regno = symval & RNUM_MASK;
4997 check_regno (arg, type, *regno);
4998 return TRUE;
4999 }
5000
5001 /* Try to interpret the next token in ARG as a register of type TYPE.
5002 Consume the token and return true on success, storing the register
5003 number in *REGNO. Return false on failure. */
5004
5005 static bfd_boolean
5006 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5007 unsigned int *regno)
5008 {
5009 if (arg->token->type == OT_REG
5010 && match_regno (arg, type, arg->token->u.regno, regno))
5011 {
5012 ++arg->token;
5013 return TRUE;
5014 }
5015 return FALSE;
5016 }
5017
5018 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5019 Consume the token and return true on success, storing the register numbers
5020 in *REGNO1 and *REGNO2. Return false on failure. */
5021
5022 static bfd_boolean
5023 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5024 unsigned int *regno1, unsigned int *regno2)
5025 {
5026 if (match_reg (arg, type, regno1))
5027 {
5028 *regno2 = *regno1;
5029 return TRUE;
5030 }
5031 if (arg->token->type == OT_REG_RANGE
5032 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5033 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5034 && *regno1 <= *regno2)
5035 {
5036 ++arg->token;
5037 return TRUE;
5038 }
5039 return FALSE;
5040 }
5041
5042 /* OP_INT matcher. */
5043
5044 static bfd_boolean
5045 match_int_operand (struct mips_arg_info *arg,
5046 const struct mips_operand *operand_base)
5047 {
5048 const struct mips_int_operand *operand;
5049 unsigned int uval;
5050 int min_val, max_val, factor;
5051 offsetT sval;
5052
5053 operand = (const struct mips_int_operand *) operand_base;
5054 factor = 1 << operand->shift;
5055 min_val = mips_int_operand_min (operand);
5056 max_val = mips_int_operand_max (operand);
5057
5058 if (operand_base->lsb == 0
5059 && operand_base->size == 16
5060 && operand->shift == 0
5061 && operand->bias == 0
5062 && (operand->max_val == 32767 || operand->max_val == 65535))
5063 {
5064 /* The operand can be relocated. */
5065 if (!match_expression (arg, &offset_expr, offset_reloc))
5066 return FALSE;
5067
5068 if (offset_expr.X_op == O_big)
5069 {
5070 match_out_of_range (arg);
5071 return FALSE;
5072 }
5073
5074 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5075 /* Relocation operators were used. Accept the argument and
5076 leave the relocation value in offset_expr and offset_relocs
5077 for the caller to process. */
5078 return TRUE;
5079
5080 if (offset_expr.X_op != O_constant)
5081 {
5082 /* Accept non-constant operands if no later alternative matches,
5083 leaving it for the caller to process. */
5084 if (!arg->lax_match)
5085 {
5086 match_not_constant (arg);
5087 return FALSE;
5088 }
5089 offset_reloc[0] = BFD_RELOC_LO16;
5090 return TRUE;
5091 }
5092
5093 /* Clear the global state; we're going to install the operand
5094 ourselves. */
5095 sval = offset_expr.X_add_number;
5096 offset_expr.X_op = O_absent;
5097
5098 /* For compatibility with older assemblers, we accept
5099 0x8000-0xffff as signed 16-bit numbers when only
5100 signed numbers are allowed. */
5101 if (sval > max_val)
5102 {
5103 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5104 if (!arg->lax_match && sval <= max_val)
5105 return FALSE;
5106 }
5107 }
5108 else
5109 {
5110 if (!match_const_int (arg, &sval))
5111 return FALSE;
5112 }
5113
5114 arg->last_op_int = sval;
5115
5116 if (sval < min_val || sval > max_val || sval % factor)
5117 {
5118 match_out_of_range (arg);
5119 return FALSE;
5120 }
5121
5122 uval = (unsigned int) sval >> operand->shift;
5123 uval -= operand->bias;
5124
5125 /* Handle -mfix-cn63xxp1. */
5126 if (arg->opnum == 1
5127 && mips_fix_cn63xxp1
5128 && !mips_opts.micromips
5129 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5130 switch (uval)
5131 {
5132 case 5:
5133 case 25:
5134 case 26:
5135 case 27:
5136 case 28:
5137 case 29:
5138 case 30:
5139 case 31:
5140 /* These are ok. */
5141 break;
5142
5143 default:
5144 /* The rest must be changed to 28. */
5145 uval = 28;
5146 break;
5147 }
5148
5149 insn_insert_operand (arg->insn, operand_base, uval);
5150 return TRUE;
5151 }
5152
5153 /* OP_MAPPED_INT matcher. */
5154
5155 static bfd_boolean
5156 match_mapped_int_operand (struct mips_arg_info *arg,
5157 const struct mips_operand *operand_base)
5158 {
5159 const struct mips_mapped_int_operand *operand;
5160 unsigned int uval, num_vals;
5161 offsetT sval;
5162
5163 operand = (const struct mips_mapped_int_operand *) operand_base;
5164 if (!match_const_int (arg, &sval))
5165 return FALSE;
5166
5167 num_vals = 1 << operand_base->size;
5168 for (uval = 0; uval < num_vals; uval++)
5169 if (operand->int_map[uval] == sval)
5170 break;
5171 if (uval == num_vals)
5172 {
5173 match_out_of_range (arg);
5174 return FALSE;
5175 }
5176
5177 insn_insert_operand (arg->insn, operand_base, uval);
5178 return TRUE;
5179 }
5180
5181 /* OP_MSB matcher. */
5182
5183 static bfd_boolean
5184 match_msb_operand (struct mips_arg_info *arg,
5185 const struct mips_operand *operand_base)
5186 {
5187 const struct mips_msb_operand *operand;
5188 int min_val, max_val, max_high;
5189 offsetT size, sval, high;
5190
5191 operand = (const struct mips_msb_operand *) operand_base;
5192 min_val = operand->bias;
5193 max_val = min_val + (1 << operand_base->size) - 1;
5194 max_high = operand->opsize;
5195
5196 if (!match_const_int (arg, &size))
5197 return FALSE;
5198
5199 high = size + arg->last_op_int;
5200 sval = operand->add_lsb ? high : size;
5201
5202 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5203 {
5204 match_out_of_range (arg);
5205 return FALSE;
5206 }
5207 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5208 return TRUE;
5209 }
5210
5211 /* OP_REG matcher. */
5212
5213 static bfd_boolean
5214 match_reg_operand (struct mips_arg_info *arg,
5215 const struct mips_operand *operand_base)
5216 {
5217 const struct mips_reg_operand *operand;
5218 unsigned int regno, uval, num_vals;
5219
5220 operand = (const struct mips_reg_operand *) operand_base;
5221 if (!match_reg (arg, operand->reg_type, &regno))
5222 return FALSE;
5223
5224 if (operand->reg_map)
5225 {
5226 num_vals = 1 << operand->root.size;
5227 for (uval = 0; uval < num_vals; uval++)
5228 if (operand->reg_map[uval] == regno)
5229 break;
5230 if (num_vals == uval)
5231 return FALSE;
5232 }
5233 else
5234 uval = regno;
5235
5236 arg->last_regno = regno;
5237 if (arg->opnum == 1)
5238 arg->dest_regno = regno;
5239 insn_insert_operand (arg->insn, operand_base, uval);
5240 return TRUE;
5241 }
5242
5243 /* OP_REG_PAIR matcher. */
5244
5245 static bfd_boolean
5246 match_reg_pair_operand (struct mips_arg_info *arg,
5247 const struct mips_operand *operand_base)
5248 {
5249 const struct mips_reg_pair_operand *operand;
5250 unsigned int regno1, regno2, uval, num_vals;
5251
5252 operand = (const struct mips_reg_pair_operand *) operand_base;
5253 if (!match_reg (arg, operand->reg_type, &regno1)
5254 || !match_char (arg, ',')
5255 || !match_reg (arg, operand->reg_type, &regno2))
5256 return FALSE;
5257
5258 num_vals = 1 << operand_base->size;
5259 for (uval = 0; uval < num_vals; uval++)
5260 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5261 break;
5262 if (uval == num_vals)
5263 return FALSE;
5264
5265 insn_insert_operand (arg->insn, operand_base, uval);
5266 return TRUE;
5267 }
5268
5269 /* OP_PCREL matcher. The caller chooses the relocation type. */
5270
5271 static bfd_boolean
5272 match_pcrel_operand (struct mips_arg_info *arg)
5273 {
5274 bfd_reloc_code_real_type r[3];
5275
5276 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5277 }
5278
5279 /* OP_PERF_REG matcher. */
5280
5281 static bfd_boolean
5282 match_perf_reg_operand (struct mips_arg_info *arg,
5283 const struct mips_operand *operand)
5284 {
5285 offsetT sval;
5286
5287 if (!match_const_int (arg, &sval))
5288 return FALSE;
5289
5290 if (sval != 0
5291 && (sval != 1
5292 || (mips_opts.arch == CPU_R5900
5293 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5294 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5295 {
5296 set_insn_error (arg->argnum, _("invalid performance register"));
5297 return FALSE;
5298 }
5299
5300 insn_insert_operand (arg->insn, operand, sval);
5301 return TRUE;
5302 }
5303
5304 /* OP_ADDIUSP matcher. */
5305
5306 static bfd_boolean
5307 match_addiusp_operand (struct mips_arg_info *arg,
5308 const struct mips_operand *operand)
5309 {
5310 offsetT sval;
5311 unsigned int uval;
5312
5313 if (!match_const_int (arg, &sval))
5314 return FALSE;
5315
5316 if (sval % 4)
5317 {
5318 match_out_of_range (arg);
5319 return FALSE;
5320 }
5321
5322 sval /= 4;
5323 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5324 {
5325 match_out_of_range (arg);
5326 return FALSE;
5327 }
5328
5329 uval = (unsigned int) sval;
5330 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5331 insn_insert_operand (arg->insn, operand, uval);
5332 return TRUE;
5333 }
5334
5335 /* OP_CLO_CLZ_DEST matcher. */
5336
5337 static bfd_boolean
5338 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5339 const struct mips_operand *operand)
5340 {
5341 unsigned int regno;
5342
5343 if (!match_reg (arg, OP_REG_GP, &regno))
5344 return FALSE;
5345
5346 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5347 return TRUE;
5348 }
5349
5350 /* OP_CHECK_PREV matcher. */
5351
5352 static bfd_boolean
5353 match_check_prev_operand (struct mips_arg_info *arg,
5354 const struct mips_operand *operand_base)
5355 {
5356 const struct mips_check_prev_operand *operand;
5357 unsigned int regno;
5358
5359 operand = (const struct mips_check_prev_operand *) operand_base;
5360
5361 if (!match_reg (arg, OP_REG_GP, &regno))
5362 return FALSE;
5363
5364 if (!operand->zero_ok && regno == 0)
5365 return FALSE;
5366
5367 if ((operand->less_than_ok && regno < arg->last_regno)
5368 || (operand->greater_than_ok && regno > arg->last_regno)
5369 || (operand->equal_ok && regno == arg->last_regno))
5370 {
5371 arg->last_regno = regno;
5372 insn_insert_operand (arg->insn, operand_base, regno);
5373 return TRUE;
5374 }
5375
5376 return FALSE;
5377 }
5378
5379 /* OP_SAME_RS_RT matcher. */
5380
5381 static bfd_boolean
5382 match_same_rs_rt_operand (struct mips_arg_info *arg,
5383 const struct mips_operand *operand)
5384 {
5385 unsigned int regno;
5386
5387 if (!match_reg (arg, OP_REG_GP, &regno))
5388 return FALSE;
5389
5390 if (regno == 0)
5391 {
5392 set_insn_error (arg->argnum, _("the source register must not be $0"));
5393 return FALSE;
5394 }
5395
5396 arg->last_regno = regno;
5397
5398 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5399 return TRUE;
5400 }
5401
5402 /* OP_LWM_SWM_LIST matcher. */
5403
5404 static bfd_boolean
5405 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5406 const struct mips_operand *operand)
5407 {
5408 unsigned int reglist, sregs, ra, regno1, regno2;
5409 struct mips_arg_info reset;
5410
5411 reglist = 0;
5412 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5413 return FALSE;
5414 do
5415 {
5416 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5417 {
5418 reglist |= 1 << FP;
5419 regno2 = S7;
5420 }
5421 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5422 reset = *arg;
5423 }
5424 while (match_char (arg, ',')
5425 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5426 *arg = reset;
5427
5428 if (operand->size == 2)
5429 {
5430 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5431
5432 s0, ra
5433 s0, s1, ra, s2, s3
5434 s0-s2, ra
5435
5436 and any permutations of these. */
5437 if ((reglist & 0xfff1ffff) != 0x80010000)
5438 return FALSE;
5439
5440 sregs = (reglist >> 17) & 7;
5441 ra = 0;
5442 }
5443 else
5444 {
5445 /* The list must include at least one of ra and s0-sN,
5446 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5447 which are $23 and $30 respectively.) E.g.:
5448
5449 ra
5450 s0
5451 ra, s0, s1, s2
5452 s0-s8
5453 s0-s5, ra
5454
5455 and any permutations of these. */
5456 if ((reglist & 0x3f00ffff) != 0)
5457 return FALSE;
5458
5459 ra = (reglist >> 27) & 0x10;
5460 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5461 }
5462 sregs += 1;
5463 if ((sregs & -sregs) != sregs)
5464 return FALSE;
5465
5466 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5467 return TRUE;
5468 }
5469
5470 /* OP_ENTRY_EXIT_LIST matcher. */
5471
5472 static unsigned int
5473 match_entry_exit_operand (struct mips_arg_info *arg,
5474 const struct mips_operand *operand)
5475 {
5476 unsigned int mask;
5477 bfd_boolean is_exit;
5478
5479 /* The format is the same for both ENTRY and EXIT, but the constraints
5480 are different. */
5481 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5482 mask = (is_exit ? 7 << 3 : 0);
5483 do
5484 {
5485 unsigned int regno1, regno2;
5486 bfd_boolean is_freg;
5487
5488 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5489 is_freg = FALSE;
5490 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5491 is_freg = TRUE;
5492 else
5493 return FALSE;
5494
5495 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5496 {
5497 mask &= ~(7 << 3);
5498 mask |= (5 + regno2) << 3;
5499 }
5500 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5501 mask |= (regno2 - 3) << 3;
5502 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5503 mask |= (regno2 - 15) << 1;
5504 else if (regno1 == RA && regno2 == RA)
5505 mask |= 1;
5506 else
5507 return FALSE;
5508 }
5509 while (match_char (arg, ','));
5510
5511 insn_insert_operand (arg->insn, operand, mask);
5512 return TRUE;
5513 }
5514
5515 /* OP_SAVE_RESTORE_LIST matcher. */
5516
5517 static bfd_boolean
5518 match_save_restore_list_operand (struct mips_arg_info *arg)
5519 {
5520 unsigned int opcode, args, statics, sregs;
5521 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5522 offsetT frame_size;
5523
5524 opcode = arg->insn->insn_opcode;
5525 frame_size = 0;
5526 num_frame_sizes = 0;
5527 args = 0;
5528 statics = 0;
5529 sregs = 0;
5530 do
5531 {
5532 unsigned int regno1, regno2;
5533
5534 if (arg->token->type == OT_INTEGER)
5535 {
5536 /* Handle the frame size. */
5537 if (!match_const_int (arg, &frame_size))
5538 return FALSE;
5539 num_frame_sizes += 1;
5540 }
5541 else
5542 {
5543 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5544 return FALSE;
5545
5546 while (regno1 <= regno2)
5547 {
5548 if (regno1 >= 4 && regno1 <= 7)
5549 {
5550 if (num_frame_sizes == 0)
5551 /* args $a0-$a3 */
5552 args |= 1 << (regno1 - 4);
5553 else
5554 /* statics $a0-$a3 */
5555 statics |= 1 << (regno1 - 4);
5556 }
5557 else if (regno1 >= 16 && regno1 <= 23)
5558 /* $s0-$s7 */
5559 sregs |= 1 << (regno1 - 16);
5560 else if (regno1 == 30)
5561 /* $s8 */
5562 sregs |= 1 << 8;
5563 else if (regno1 == 31)
5564 /* Add $ra to insn. */
5565 opcode |= 0x40;
5566 else
5567 return FALSE;
5568 regno1 += 1;
5569 if (regno1 == 24)
5570 regno1 = 30;
5571 }
5572 }
5573 }
5574 while (match_char (arg, ','));
5575
5576 /* Encode args/statics combination. */
5577 if (args & statics)
5578 return FALSE;
5579 else if (args == 0xf)
5580 /* All $a0-$a3 are args. */
5581 opcode |= MIPS16_ALL_ARGS << 16;
5582 else if (statics == 0xf)
5583 /* All $a0-$a3 are statics. */
5584 opcode |= MIPS16_ALL_STATICS << 16;
5585 else
5586 {
5587 /* Count arg registers. */
5588 num_args = 0;
5589 while (args & 0x1)
5590 {
5591 args >>= 1;
5592 num_args += 1;
5593 }
5594 if (args != 0)
5595 return FALSE;
5596
5597 /* Count static registers. */
5598 num_statics = 0;
5599 while (statics & 0x8)
5600 {
5601 statics = (statics << 1) & 0xf;
5602 num_statics += 1;
5603 }
5604 if (statics != 0)
5605 return FALSE;
5606
5607 /* Encode args/statics. */
5608 opcode |= ((num_args << 2) | num_statics) << 16;
5609 }
5610
5611 /* Encode $s0/$s1. */
5612 if (sregs & (1 << 0)) /* $s0 */
5613 opcode |= 0x20;
5614 if (sregs & (1 << 1)) /* $s1 */
5615 opcode |= 0x10;
5616 sregs >>= 2;
5617
5618 /* Encode $s2-$s8. */
5619 num_sregs = 0;
5620 while (sregs & 1)
5621 {
5622 sregs >>= 1;
5623 num_sregs += 1;
5624 }
5625 if (sregs != 0)
5626 return FALSE;
5627 opcode |= num_sregs << 24;
5628
5629 /* Encode frame size. */
5630 if (num_frame_sizes == 0)
5631 {
5632 set_insn_error (arg->argnum, _("missing frame size"));
5633 return FALSE;
5634 }
5635 if (num_frame_sizes > 1)
5636 {
5637 set_insn_error (arg->argnum, _("frame size specified twice"));
5638 return FALSE;
5639 }
5640 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5641 {
5642 set_insn_error (arg->argnum, _("invalid frame size"));
5643 return FALSE;
5644 }
5645 if (frame_size != 128 || (opcode >> 16) != 0)
5646 {
5647 frame_size /= 8;
5648 opcode |= (((frame_size & 0xf0) << 16)
5649 | (frame_size & 0x0f));
5650 }
5651
5652 /* Finally build the instruction. */
5653 if ((opcode >> 16) != 0 || frame_size == 0)
5654 opcode |= MIPS16_EXTEND;
5655 arg->insn->insn_opcode = opcode;
5656 return TRUE;
5657 }
5658
5659 /* OP_MDMX_IMM_REG matcher. */
5660
5661 static bfd_boolean
5662 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5663 const struct mips_operand *operand)
5664 {
5665 unsigned int regno, uval;
5666 bfd_boolean is_qh;
5667 const struct mips_opcode *opcode;
5668
5669 /* The mips_opcode records whether this is an octobyte or quadhalf
5670 instruction. Start out with that bit in place. */
5671 opcode = arg->insn->insn_mo;
5672 uval = mips_extract_operand (operand, opcode->match);
5673 is_qh = (uval != 0);
5674
5675 if (arg->token->type == OT_REG)
5676 {
5677 if ((opcode->membership & INSN_5400)
5678 && strcmp (opcode->name, "rzu.ob") == 0)
5679 {
5680 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5681 arg->argnum);
5682 return FALSE;
5683 }
5684
5685 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5686 return FALSE;
5687 ++arg->token;
5688
5689 /* Check whether this is a vector register or a broadcast of
5690 a single element. */
5691 if (arg->token->type == OT_INTEGER_INDEX)
5692 {
5693 if (arg->token->u.index > (is_qh ? 3 : 7))
5694 {
5695 set_insn_error (arg->argnum, _("invalid element selector"));
5696 return FALSE;
5697 }
5698 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5699 ++arg->token;
5700 }
5701 else
5702 {
5703 /* A full vector. */
5704 if ((opcode->membership & INSN_5400)
5705 && (strcmp (opcode->name, "sll.ob") == 0
5706 || strcmp (opcode->name, "srl.ob") == 0))
5707 {
5708 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5709 arg->argnum);
5710 return FALSE;
5711 }
5712
5713 if (is_qh)
5714 uval |= MDMX_FMTSEL_VEC_QH << 5;
5715 else
5716 uval |= MDMX_FMTSEL_VEC_OB << 5;
5717 }
5718 uval |= regno;
5719 }
5720 else
5721 {
5722 offsetT sval;
5723
5724 if (!match_const_int (arg, &sval))
5725 return FALSE;
5726 if (sval < 0 || sval > 31)
5727 {
5728 match_out_of_range (arg);
5729 return FALSE;
5730 }
5731 uval |= (sval & 31);
5732 if (is_qh)
5733 uval |= MDMX_FMTSEL_IMM_QH << 5;
5734 else
5735 uval |= MDMX_FMTSEL_IMM_OB << 5;
5736 }
5737 insn_insert_operand (arg->insn, operand, uval);
5738 return TRUE;
5739 }
5740
5741 /* OP_IMM_INDEX matcher. */
5742
5743 static bfd_boolean
5744 match_imm_index_operand (struct mips_arg_info *arg,
5745 const struct mips_operand *operand)
5746 {
5747 unsigned int max_val;
5748
5749 if (arg->token->type != OT_INTEGER_INDEX)
5750 return FALSE;
5751
5752 max_val = (1 << operand->size) - 1;
5753 if (arg->token->u.index > max_val)
5754 {
5755 match_out_of_range (arg);
5756 return FALSE;
5757 }
5758 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5759 ++arg->token;
5760 return TRUE;
5761 }
5762
5763 /* OP_REG_INDEX matcher. */
5764
5765 static bfd_boolean
5766 match_reg_index_operand (struct mips_arg_info *arg,
5767 const struct mips_operand *operand)
5768 {
5769 unsigned int regno;
5770
5771 if (arg->token->type != OT_REG_INDEX)
5772 return FALSE;
5773
5774 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5775 return FALSE;
5776
5777 insn_insert_operand (arg->insn, operand, regno);
5778 ++arg->token;
5779 return TRUE;
5780 }
5781
5782 /* OP_PC matcher. */
5783
5784 static bfd_boolean
5785 match_pc_operand (struct mips_arg_info *arg)
5786 {
5787 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5788 {
5789 ++arg->token;
5790 return TRUE;
5791 }
5792 return FALSE;
5793 }
5794
5795 /* OP_NON_ZERO_REG matcher. */
5796
5797 static bfd_boolean
5798 match_non_zero_reg_operand (struct mips_arg_info *arg,
5799 const struct mips_operand *operand)
5800 {
5801 unsigned int regno;
5802
5803 if (!match_reg (arg, OP_REG_GP, &regno))
5804 return FALSE;
5805
5806 if (regno == 0)
5807 return FALSE;
5808
5809 arg->last_regno = regno;
5810 insn_insert_operand (arg->insn, operand, regno);
5811 return TRUE;
5812 }
5813
5814 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5815 register that we need to match. */
5816
5817 static bfd_boolean
5818 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5819 {
5820 unsigned int regno;
5821
5822 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5823 }
5824
5825 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5826 the length of the value in bytes (4 for float, 8 for double) and
5827 USING_GPRS says whether the destination is a GPR rather than an FPR.
5828
5829 Return the constant in IMM and OFFSET as follows:
5830
5831 - If the constant should be loaded via memory, set IMM to O_absent and
5832 OFFSET to the memory address.
5833
5834 - Otherwise, if the constant should be loaded into two 32-bit registers,
5835 set IMM to the O_constant to load into the high register and OFFSET
5836 to the corresponding value for the low register.
5837
5838 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5839
5840 These constants only appear as the last operand in an instruction,
5841 and every instruction that accepts them in any variant accepts them
5842 in all variants. This means we don't have to worry about backing out
5843 any changes if the instruction does not match. We just match
5844 unconditionally and report an error if the constant is invalid. */
5845
5846 static bfd_boolean
5847 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5848 expressionS *offset, int length, bfd_boolean using_gprs)
5849 {
5850 char *p;
5851 segT seg, new_seg;
5852 subsegT subseg;
5853 const char *newname;
5854 unsigned char *data;
5855
5856 /* Where the constant is placed is based on how the MIPS assembler
5857 does things:
5858
5859 length == 4 && using_gprs -- immediate value only
5860 length == 8 && using_gprs -- .rdata or immediate value
5861 length == 4 && !using_gprs -- .lit4 or immediate value
5862 length == 8 && !using_gprs -- .lit8 or immediate value
5863
5864 The .lit4 and .lit8 sections are only used if permitted by the
5865 -G argument. */
5866 if (arg->token->type != OT_FLOAT)
5867 {
5868 set_insn_error (arg->argnum, _("floating-point expression required"));
5869 return FALSE;
5870 }
5871
5872 gas_assert (arg->token->u.flt.length == length);
5873 data = arg->token->u.flt.data;
5874 ++arg->token;
5875
5876 /* Handle 32-bit constants for which an immediate value is best. */
5877 if (length == 4
5878 && (using_gprs
5879 || g_switch_value < 4
5880 || (data[0] == 0 && data[1] == 0)
5881 || (data[2] == 0 && data[3] == 0)))
5882 {
5883 imm->X_op = O_constant;
5884 if (!target_big_endian)
5885 imm->X_add_number = bfd_getl32 (data);
5886 else
5887 imm->X_add_number = bfd_getb32 (data);
5888 offset->X_op = O_absent;
5889 return TRUE;
5890 }
5891
5892 /* Handle 64-bit constants for which an immediate value is best. */
5893 if (length == 8
5894 && !mips_disable_float_construction
5895 /* Constants can only be constructed in GPRs and copied to FPRs if the
5896 GPRs are at least as wide as the FPRs or MTHC1 is available.
5897 Unlike most tests for 32-bit floating-point registers this check
5898 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5899 permit 64-bit moves without MXHC1.
5900 Force the constant into memory otherwise. */
5901 && (using_gprs
5902 || GPR_SIZE == 64
5903 || ISA_HAS_MXHC1 (mips_opts.isa)
5904 || FPR_SIZE == 32)
5905 && ((data[0] == 0 && data[1] == 0)
5906 || (data[2] == 0 && data[3] == 0))
5907 && ((data[4] == 0 && data[5] == 0)
5908 || (data[6] == 0 && data[7] == 0)))
5909 {
5910 /* The value is simple enough to load with a couple of instructions.
5911 If using 32-bit registers, set IMM to the high order 32 bits and
5912 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5913 64 bit constant. */
5914 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5915 {
5916 imm->X_op = O_constant;
5917 offset->X_op = O_constant;
5918 if (!target_big_endian)
5919 {
5920 imm->X_add_number = bfd_getl32 (data + 4);
5921 offset->X_add_number = bfd_getl32 (data);
5922 }
5923 else
5924 {
5925 imm->X_add_number = bfd_getb32 (data);
5926 offset->X_add_number = bfd_getb32 (data + 4);
5927 }
5928 if (offset->X_add_number == 0)
5929 offset->X_op = O_absent;
5930 }
5931 else
5932 {
5933 imm->X_op = O_constant;
5934 if (!target_big_endian)
5935 imm->X_add_number = bfd_getl64 (data);
5936 else
5937 imm->X_add_number = bfd_getb64 (data);
5938 offset->X_op = O_absent;
5939 }
5940 return TRUE;
5941 }
5942
5943 /* Switch to the right section. */
5944 seg = now_seg;
5945 subseg = now_subseg;
5946 if (length == 4)
5947 {
5948 gas_assert (!using_gprs && g_switch_value >= 4);
5949 newname = ".lit4";
5950 }
5951 else
5952 {
5953 if (using_gprs || g_switch_value < 8)
5954 newname = RDATA_SECTION_NAME;
5955 else
5956 newname = ".lit8";
5957 }
5958
5959 new_seg = subseg_new (newname, (subsegT) 0);
5960 bfd_set_section_flags (stdoutput, new_seg,
5961 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5962 frag_align (length == 4 ? 2 : 3, 0, 0);
5963 if (strncmp (TARGET_OS, "elf", 3) != 0)
5964 record_alignment (new_seg, 4);
5965 else
5966 record_alignment (new_seg, length == 4 ? 2 : 3);
5967 if (seg == now_seg)
5968 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5969
5970 /* Set the argument to the current address in the section. */
5971 imm->X_op = O_absent;
5972 offset->X_op = O_symbol;
5973 offset->X_add_symbol = symbol_temp_new_now ();
5974 offset->X_add_number = 0;
5975
5976 /* Put the floating point number into the section. */
5977 p = frag_more (length);
5978 memcpy (p, data, length);
5979
5980 /* Switch back to the original section. */
5981 subseg_set (seg, subseg);
5982 return TRUE;
5983 }
5984
5985 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5986 them. */
5987
5988 static bfd_boolean
5989 match_vu0_suffix_operand (struct mips_arg_info *arg,
5990 const struct mips_operand *operand,
5991 bfd_boolean match_p)
5992 {
5993 unsigned int uval;
5994
5995 /* The operand can be an XYZW mask or a single 2-bit channel index
5996 (with X being 0). */
5997 gas_assert (operand->size == 2 || operand->size == 4);
5998
5999 /* The suffix can be omitted when it is already part of the opcode. */
6000 if (arg->token->type != OT_CHANNELS)
6001 return match_p;
6002
6003 uval = arg->token->u.channels;
6004 if (operand->size == 2)
6005 {
6006 /* Check that a single bit is set and convert it into a 2-bit index. */
6007 if ((uval & -uval) != uval)
6008 return FALSE;
6009 uval = 4 - ffs (uval);
6010 }
6011
6012 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6013 return FALSE;
6014
6015 ++arg->token;
6016 if (!match_p)
6017 insn_insert_operand (arg->insn, operand, uval);
6018 return TRUE;
6019 }
6020
6021 /* S is the text seen for ARG. Match it against OPERAND. Return the end
6022 of the argument text if the match is successful, otherwise return null. */
6023
6024 static bfd_boolean
6025 match_operand (struct mips_arg_info *arg,
6026 const struct mips_operand *operand)
6027 {
6028 switch (operand->type)
6029 {
6030 case OP_INT:
6031 return match_int_operand (arg, operand);
6032
6033 case OP_MAPPED_INT:
6034 return match_mapped_int_operand (arg, operand);
6035
6036 case OP_MSB:
6037 return match_msb_operand (arg, operand);
6038
6039 case OP_REG:
6040 case OP_OPTIONAL_REG:
6041 return match_reg_operand (arg, operand);
6042
6043 case OP_REG_PAIR:
6044 return match_reg_pair_operand (arg, operand);
6045
6046 case OP_PCREL:
6047 return match_pcrel_operand (arg);
6048
6049 case OP_PERF_REG:
6050 return match_perf_reg_operand (arg, operand);
6051
6052 case OP_ADDIUSP_INT:
6053 return match_addiusp_operand (arg, operand);
6054
6055 case OP_CLO_CLZ_DEST:
6056 return match_clo_clz_dest_operand (arg, operand);
6057
6058 case OP_LWM_SWM_LIST:
6059 return match_lwm_swm_list_operand (arg, operand);
6060
6061 case OP_ENTRY_EXIT_LIST:
6062 return match_entry_exit_operand (arg, operand);
6063
6064 case OP_SAVE_RESTORE_LIST:
6065 return match_save_restore_list_operand (arg);
6066
6067 case OP_MDMX_IMM_REG:
6068 return match_mdmx_imm_reg_operand (arg, operand);
6069
6070 case OP_REPEAT_DEST_REG:
6071 return match_tied_reg_operand (arg, arg->dest_regno);
6072
6073 case OP_REPEAT_PREV_REG:
6074 return match_tied_reg_operand (arg, arg->last_regno);
6075
6076 case OP_PC:
6077 return match_pc_operand (arg);
6078
6079 case OP_VU0_SUFFIX:
6080 return match_vu0_suffix_operand (arg, operand, FALSE);
6081
6082 case OP_VU0_MATCH_SUFFIX:
6083 return match_vu0_suffix_operand (arg, operand, TRUE);
6084
6085 case OP_IMM_INDEX:
6086 return match_imm_index_operand (arg, operand);
6087
6088 case OP_REG_INDEX:
6089 return match_reg_index_operand (arg, operand);
6090
6091 case OP_SAME_RS_RT:
6092 return match_same_rs_rt_operand (arg, operand);
6093
6094 case OP_CHECK_PREV:
6095 return match_check_prev_operand (arg, operand);
6096
6097 case OP_NON_ZERO_REG:
6098 return match_non_zero_reg_operand (arg, operand);
6099 }
6100 abort ();
6101 }
6102
6103 /* ARG is the state after successfully matching an instruction.
6104 Issue any queued-up warnings. */
6105
6106 static void
6107 check_completed_insn (struct mips_arg_info *arg)
6108 {
6109 if (arg->seen_at)
6110 {
6111 if (AT == ATREG)
6112 as_warn (_("used $at without \".set noat\""));
6113 else
6114 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6115 }
6116 }
6117
6118 /* Return true if modifying general-purpose register REG needs a delay. */
6119
6120 static bfd_boolean
6121 reg_needs_delay (unsigned int reg)
6122 {
6123 unsigned long prev_pinfo;
6124
6125 prev_pinfo = history[0].insn_mo->pinfo;
6126 if (!mips_opts.noreorder
6127 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6128 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6129 && (gpr_write_mask (&history[0]) & (1 << reg)))
6130 return TRUE;
6131
6132 return FALSE;
6133 }
6134
6135 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6136 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6137 by VR4120 errata. */
6138
6139 static unsigned int
6140 classify_vr4120_insn (const char *name)
6141 {
6142 if (strncmp (name, "macc", 4) == 0)
6143 return FIX_VR4120_MACC;
6144 if (strncmp (name, "dmacc", 5) == 0)
6145 return FIX_VR4120_DMACC;
6146 if (strncmp (name, "mult", 4) == 0)
6147 return FIX_VR4120_MULT;
6148 if (strncmp (name, "dmult", 5) == 0)
6149 return FIX_VR4120_DMULT;
6150 if (strstr (name, "div"))
6151 return FIX_VR4120_DIV;
6152 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6153 return FIX_VR4120_MTHILO;
6154 return NUM_FIX_VR4120_CLASSES;
6155 }
6156
6157 #define INSN_ERET 0x42000018
6158 #define INSN_DERET 0x4200001f
6159 #define INSN_DMULT 0x1c
6160 #define INSN_DMULTU 0x1d
6161
6162 /* Return the number of instructions that must separate INSN1 and INSN2,
6163 where INSN1 is the earlier instruction. Return the worst-case value
6164 for any INSN2 if INSN2 is null. */
6165
6166 static unsigned int
6167 insns_between (const struct mips_cl_insn *insn1,
6168 const struct mips_cl_insn *insn2)
6169 {
6170 unsigned long pinfo1, pinfo2;
6171 unsigned int mask;
6172
6173 /* If INFO2 is null, pessimistically assume that all flags are set for
6174 the second instruction. */
6175 pinfo1 = insn1->insn_mo->pinfo;
6176 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6177
6178 /* For most targets, write-after-read dependencies on the HI and LO
6179 registers must be separated by at least two instructions. */
6180 if (!hilo_interlocks)
6181 {
6182 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6183 return 2;
6184 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6185 return 2;
6186 }
6187
6188 /* If we're working around r7000 errata, there must be two instructions
6189 between an mfhi or mflo and any instruction that uses the result. */
6190 if (mips_7000_hilo_fix
6191 && !mips_opts.micromips
6192 && MF_HILO_INSN (pinfo1)
6193 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6194 return 2;
6195
6196 /* If we're working around 24K errata, one instruction is required
6197 if an ERET or DERET is followed by a branch instruction. */
6198 if (mips_fix_24k && !mips_opts.micromips)
6199 {
6200 if (insn1->insn_opcode == INSN_ERET
6201 || insn1->insn_opcode == INSN_DERET)
6202 {
6203 if (insn2 == NULL
6204 || insn2->insn_opcode == INSN_ERET
6205 || insn2->insn_opcode == INSN_DERET
6206 || delayed_branch_p (insn2))
6207 return 1;
6208 }
6209 }
6210
6211 /* If we're working around PMC RM7000 errata, there must be three
6212 nops between a dmult and a load instruction. */
6213 if (mips_fix_rm7000 && !mips_opts.micromips)
6214 {
6215 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6216 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6217 {
6218 if (pinfo2 & INSN_LOAD_MEMORY)
6219 return 3;
6220 }
6221 }
6222
6223 /* If working around VR4120 errata, check for combinations that need
6224 a single intervening instruction. */
6225 if (mips_fix_vr4120 && !mips_opts.micromips)
6226 {
6227 unsigned int class1, class2;
6228
6229 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6230 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6231 {
6232 if (insn2 == NULL)
6233 return 1;
6234 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6235 if (vr4120_conflicts[class1] & (1 << class2))
6236 return 1;
6237 }
6238 }
6239
6240 if (!HAVE_CODE_COMPRESSION)
6241 {
6242 /* Check for GPR or coprocessor load delays. All such delays
6243 are on the RT register. */
6244 /* Itbl support may require additional care here. */
6245 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6246 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6247 {
6248 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6249 return 1;
6250 }
6251
6252 /* Check for generic coprocessor hazards.
6253
6254 This case is not handled very well. There is no special
6255 knowledge of CP0 handling, and the coprocessors other than
6256 the floating point unit are not distinguished at all. */
6257 /* Itbl support may require additional care here. FIXME!
6258 Need to modify this to include knowledge about
6259 user specified delays! */
6260 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6261 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6262 {
6263 /* Handle cases where INSN1 writes to a known general coprocessor
6264 register. There must be a one instruction delay before INSN2
6265 if INSN2 reads that register, otherwise no delay is needed. */
6266 mask = fpr_write_mask (insn1);
6267 if (mask != 0)
6268 {
6269 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6270 return 1;
6271 }
6272 else
6273 {
6274 /* Read-after-write dependencies on the control registers
6275 require a two-instruction gap. */
6276 if ((pinfo1 & INSN_WRITE_COND_CODE)
6277 && (pinfo2 & INSN_READ_COND_CODE))
6278 return 2;
6279
6280 /* We don't know exactly what INSN1 does. If INSN2 is
6281 also a coprocessor instruction, assume there must be
6282 a one instruction gap. */
6283 if (pinfo2 & INSN_COP)
6284 return 1;
6285 }
6286 }
6287
6288 /* Check for read-after-write dependencies on the coprocessor
6289 control registers in cases where INSN1 does not need a general
6290 coprocessor delay. This means that INSN1 is a floating point
6291 comparison instruction. */
6292 /* Itbl support may require additional care here. */
6293 else if (!cop_interlocks
6294 && (pinfo1 & INSN_WRITE_COND_CODE)
6295 && (pinfo2 & INSN_READ_COND_CODE))
6296 return 1;
6297 }
6298
6299 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6300 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6301 and pause. */
6302 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6303 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6304 || (insn2 && delayed_branch_p (insn2))))
6305 return 1;
6306
6307 return 0;
6308 }
6309
6310 /* Return the number of nops that would be needed to work around the
6311 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6312 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6313 that are contained within the first IGNORE instructions of HIST. */
6314
6315 static int
6316 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6317 const struct mips_cl_insn *insn)
6318 {
6319 int i, j;
6320 unsigned int mask;
6321
6322 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6323 are not affected by the errata. */
6324 if (insn != 0
6325 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6326 || strcmp (insn->insn_mo->name, "mtlo") == 0
6327 || strcmp (insn->insn_mo->name, "mthi") == 0))
6328 return 0;
6329
6330 /* Search for the first MFLO or MFHI. */
6331 for (i = 0; i < MAX_VR4130_NOPS; i++)
6332 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6333 {
6334 /* Extract the destination register. */
6335 mask = gpr_write_mask (&hist[i]);
6336
6337 /* No nops are needed if INSN reads that register. */
6338 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6339 return 0;
6340
6341 /* ...or if any of the intervening instructions do. */
6342 for (j = 0; j < i; j++)
6343 if (gpr_read_mask (&hist[j]) & mask)
6344 return 0;
6345
6346 if (i >= ignore)
6347 return MAX_VR4130_NOPS - i;
6348 }
6349 return 0;
6350 }
6351
6352 #define BASE_REG_EQ(INSN1, INSN2) \
6353 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6354 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6355
6356 /* Return the minimum alignment for this store instruction. */
6357
6358 static int
6359 fix_24k_align_to (const struct mips_opcode *mo)
6360 {
6361 if (strcmp (mo->name, "sh") == 0)
6362 return 2;
6363
6364 if (strcmp (mo->name, "swc1") == 0
6365 || strcmp (mo->name, "swc2") == 0
6366 || strcmp (mo->name, "sw") == 0
6367 || strcmp (mo->name, "sc") == 0
6368 || strcmp (mo->name, "s.s") == 0)
6369 return 4;
6370
6371 if (strcmp (mo->name, "sdc1") == 0
6372 || strcmp (mo->name, "sdc2") == 0
6373 || strcmp (mo->name, "s.d") == 0)
6374 return 8;
6375
6376 /* sb, swl, swr */
6377 return 1;
6378 }
6379
6380 struct fix_24k_store_info
6381 {
6382 /* Immediate offset, if any, for this store instruction. */
6383 short off;
6384 /* Alignment required by this store instruction. */
6385 int align_to;
6386 /* True for register offsets. */
6387 int register_offset;
6388 };
6389
6390 /* Comparison function used by qsort. */
6391
6392 static int
6393 fix_24k_sort (const void *a, const void *b)
6394 {
6395 const struct fix_24k_store_info *pos1 = a;
6396 const struct fix_24k_store_info *pos2 = b;
6397
6398 return (pos1->off - pos2->off);
6399 }
6400
6401 /* INSN is a store instruction. Try to record the store information
6402 in STINFO. Return false if the information isn't known. */
6403
6404 static bfd_boolean
6405 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6406 const struct mips_cl_insn *insn)
6407 {
6408 /* The instruction must have a known offset. */
6409 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6410 return FALSE;
6411
6412 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6413 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6414 return TRUE;
6415 }
6416
6417 /* Return the number of nops that would be needed to work around the 24k
6418 "lost data on stores during refill" errata if instruction INSN
6419 immediately followed the 2 instructions described by HIST.
6420 Ignore hazards that are contained within the first IGNORE
6421 instructions of HIST.
6422
6423 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6424 for the data cache refills and store data. The following describes
6425 the scenario where the store data could be lost.
6426
6427 * A data cache miss, due to either a load or a store, causing fill
6428 data to be supplied by the memory subsystem
6429 * The first three doublewords of fill data are returned and written
6430 into the cache
6431 * A sequence of four stores occurs in consecutive cycles around the
6432 final doubleword of the fill:
6433 * Store A
6434 * Store B
6435 * Store C
6436 * Zero, One or more instructions
6437 * Store D
6438
6439 The four stores A-D must be to different doublewords of the line that
6440 is being filled. The fourth instruction in the sequence above permits
6441 the fill of the final doubleword to be transferred from the FSB into
6442 the cache. In the sequence above, the stores may be either integer
6443 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6444 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6445 different doublewords on the line. If the floating point unit is
6446 running in 1:2 mode, it is not possible to create the sequence above
6447 using only floating point store instructions.
6448
6449 In this case, the cache line being filled is incorrectly marked
6450 invalid, thereby losing the data from any store to the line that
6451 occurs between the original miss and the completion of the five
6452 cycle sequence shown above.
6453
6454 The workarounds are:
6455
6456 * Run the data cache in write-through mode.
6457 * Insert a non-store instruction between
6458 Store A and Store B or Store B and Store C. */
6459
6460 static int
6461 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6462 const struct mips_cl_insn *insn)
6463 {
6464 struct fix_24k_store_info pos[3];
6465 int align, i, base_offset;
6466
6467 if (ignore >= 2)
6468 return 0;
6469
6470 /* If the previous instruction wasn't a store, there's nothing to
6471 worry about. */
6472 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6473 return 0;
6474
6475 /* If the instructions after the previous one are unknown, we have
6476 to assume the worst. */
6477 if (!insn)
6478 return 1;
6479
6480 /* Check whether we are dealing with three consecutive stores. */
6481 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6482 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6483 return 0;
6484
6485 /* If we don't know the relationship between the store addresses,
6486 assume the worst. */
6487 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6488 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6489 return 1;
6490
6491 if (!fix_24k_record_store_info (&pos[0], insn)
6492 || !fix_24k_record_store_info (&pos[1], &hist[0])
6493 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6494 return 1;
6495
6496 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6497
6498 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6499 X bytes and such that the base register + X is known to be aligned
6500 to align bytes. */
6501
6502 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6503 align = 8;
6504 else
6505 {
6506 align = pos[0].align_to;
6507 base_offset = pos[0].off;
6508 for (i = 1; i < 3; i++)
6509 if (align < pos[i].align_to)
6510 {
6511 align = pos[i].align_to;
6512 base_offset = pos[i].off;
6513 }
6514 for (i = 0; i < 3; i++)
6515 pos[i].off -= base_offset;
6516 }
6517
6518 pos[0].off &= ~align + 1;
6519 pos[1].off &= ~align + 1;
6520 pos[2].off &= ~align + 1;
6521
6522 /* If any two stores write to the same chunk, they also write to the
6523 same doubleword. The offsets are still sorted at this point. */
6524 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6525 return 0;
6526
6527 /* A range of at least 9 bytes is needed for the stores to be in
6528 non-overlapping doublewords. */
6529 if (pos[2].off - pos[0].off <= 8)
6530 return 0;
6531
6532 if (pos[2].off - pos[1].off >= 24
6533 || pos[1].off - pos[0].off >= 24
6534 || pos[2].off - pos[0].off >= 32)
6535 return 0;
6536
6537 return 1;
6538 }
6539
6540 /* Return the number of nops that would be needed if instruction INSN
6541 immediately followed the MAX_NOPS instructions given by HIST,
6542 where HIST[0] is the most recent instruction. Ignore hazards
6543 between INSN and the first IGNORE instructions in HIST.
6544
6545 If INSN is null, return the worse-case number of nops for any
6546 instruction. */
6547
6548 static int
6549 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6550 const struct mips_cl_insn *insn)
6551 {
6552 int i, nops, tmp_nops;
6553
6554 nops = 0;
6555 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6556 {
6557 tmp_nops = insns_between (hist + i, insn) - i;
6558 if (tmp_nops > nops)
6559 nops = tmp_nops;
6560 }
6561
6562 if (mips_fix_vr4130 && !mips_opts.micromips)
6563 {
6564 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6565 if (tmp_nops > nops)
6566 nops = tmp_nops;
6567 }
6568
6569 if (mips_fix_24k && !mips_opts.micromips)
6570 {
6571 tmp_nops = nops_for_24k (ignore, hist, insn);
6572 if (tmp_nops > nops)
6573 nops = tmp_nops;
6574 }
6575
6576 return nops;
6577 }
6578
6579 /* The variable arguments provide NUM_INSNS extra instructions that
6580 might be added to HIST. Return the largest number of nops that
6581 would be needed after the extended sequence, ignoring hazards
6582 in the first IGNORE instructions. */
6583
6584 static int
6585 nops_for_sequence (int num_insns, int ignore,
6586 const struct mips_cl_insn *hist, ...)
6587 {
6588 va_list args;
6589 struct mips_cl_insn buffer[MAX_NOPS];
6590 struct mips_cl_insn *cursor;
6591 int nops;
6592
6593 va_start (args, hist);
6594 cursor = buffer + num_insns;
6595 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6596 while (cursor > buffer)
6597 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6598
6599 nops = nops_for_insn (ignore, buffer, NULL);
6600 va_end (args);
6601 return nops;
6602 }
6603
6604 /* Like nops_for_insn, but if INSN is a branch, take into account the
6605 worst-case delay for the branch target. */
6606
6607 static int
6608 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6609 const struct mips_cl_insn *insn)
6610 {
6611 int nops, tmp_nops;
6612
6613 nops = nops_for_insn (ignore, hist, insn);
6614 if (delayed_branch_p (insn))
6615 {
6616 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6617 hist, insn, get_delay_slot_nop (insn));
6618 if (tmp_nops > nops)
6619 nops = tmp_nops;
6620 }
6621 else if (compact_branch_p (insn))
6622 {
6623 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6624 if (tmp_nops > nops)
6625 nops = tmp_nops;
6626 }
6627 return nops;
6628 }
6629
6630 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6631
6632 static void
6633 fix_loongson2f_nop (struct mips_cl_insn * ip)
6634 {
6635 gas_assert (!HAVE_CODE_COMPRESSION);
6636 if (strcmp (ip->insn_mo->name, "nop") == 0)
6637 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6638 }
6639
6640 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6641 jr target pc &= 'hffff_ffff_cfff_ffff. */
6642
6643 static void
6644 fix_loongson2f_jump (struct mips_cl_insn * ip)
6645 {
6646 gas_assert (!HAVE_CODE_COMPRESSION);
6647 if (strcmp (ip->insn_mo->name, "j") == 0
6648 || strcmp (ip->insn_mo->name, "jr") == 0
6649 || strcmp (ip->insn_mo->name, "jalr") == 0)
6650 {
6651 int sreg;
6652 expressionS ep;
6653
6654 if (! mips_opts.at)
6655 return;
6656
6657 sreg = EXTRACT_OPERAND (0, RS, *ip);
6658 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6659 return;
6660
6661 ep.X_op = O_constant;
6662 ep.X_add_number = 0xcfff0000;
6663 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6664 ep.X_add_number = 0xffff;
6665 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6666 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6667 }
6668 }
6669
6670 static void
6671 fix_loongson2f (struct mips_cl_insn * ip)
6672 {
6673 if (mips_fix_loongson2f_nop)
6674 fix_loongson2f_nop (ip);
6675
6676 if (mips_fix_loongson2f_jump)
6677 fix_loongson2f_jump (ip);
6678 }
6679
6680 /* IP is a branch that has a delay slot, and we need to fill it
6681 automatically. Return true if we can do that by swapping IP
6682 with the previous instruction.
6683 ADDRESS_EXPR is an operand of the instruction to be used with
6684 RELOC_TYPE. */
6685
6686 static bfd_boolean
6687 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6688 bfd_reloc_code_real_type *reloc_type)
6689 {
6690 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6691 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6692 unsigned int fpr_read, prev_fpr_write;
6693
6694 /* -O2 and above is required for this optimization. */
6695 if (mips_optimize < 2)
6696 return FALSE;
6697
6698 /* If we have seen .set volatile or .set nomove, don't optimize. */
6699 if (mips_opts.nomove)
6700 return FALSE;
6701
6702 /* We can't swap if the previous instruction's position is fixed. */
6703 if (history[0].fixed_p)
6704 return FALSE;
6705
6706 /* If the previous previous insn was in a .set noreorder, we can't
6707 swap. Actually, the MIPS assembler will swap in this situation.
6708 However, gcc configured -with-gnu-as will generate code like
6709
6710 .set noreorder
6711 lw $4,XXX
6712 .set reorder
6713 INSN
6714 bne $4,$0,foo
6715
6716 in which we can not swap the bne and INSN. If gcc is not configured
6717 -with-gnu-as, it does not output the .set pseudo-ops. */
6718 if (history[1].noreorder_p)
6719 return FALSE;
6720
6721 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6722 This means that the previous instruction was a 4-byte one anyhow. */
6723 if (mips_opts.mips16 && history[0].fixp[0])
6724 return FALSE;
6725
6726 /* If the branch is itself the target of a branch, we can not swap.
6727 We cheat on this; all we check for is whether there is a label on
6728 this instruction. If there are any branches to anything other than
6729 a label, users must use .set noreorder. */
6730 if (seg_info (now_seg)->label_list)
6731 return FALSE;
6732
6733 /* If the previous instruction is in a variant frag other than this
6734 branch's one, we cannot do the swap. This does not apply to
6735 MIPS16 code, which uses variant frags for different purposes. */
6736 if (!mips_opts.mips16
6737 && history[0].frag
6738 && history[0].frag->fr_type == rs_machine_dependent)
6739 return FALSE;
6740
6741 /* We do not swap with instructions that cannot architecturally
6742 be placed in a branch delay slot, such as SYNC or ERET. We
6743 also refrain from swapping with a trap instruction, since it
6744 complicates trap handlers to have the trap instruction be in
6745 a delay slot. */
6746 prev_pinfo = history[0].insn_mo->pinfo;
6747 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6748 return FALSE;
6749
6750 /* Check for conflicts between the branch and the instructions
6751 before the candidate delay slot. */
6752 if (nops_for_insn (0, history + 1, ip) > 0)
6753 return FALSE;
6754
6755 /* Check for conflicts between the swapped sequence and the
6756 target of the branch. */
6757 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6758 return FALSE;
6759
6760 /* If the branch reads a register that the previous
6761 instruction sets, we can not swap. */
6762 gpr_read = gpr_read_mask (ip);
6763 prev_gpr_write = gpr_write_mask (&history[0]);
6764 if (gpr_read & prev_gpr_write)
6765 return FALSE;
6766
6767 fpr_read = fpr_read_mask (ip);
6768 prev_fpr_write = fpr_write_mask (&history[0]);
6769 if (fpr_read & prev_fpr_write)
6770 return FALSE;
6771
6772 /* If the branch writes a register that the previous
6773 instruction sets, we can not swap. */
6774 gpr_write = gpr_write_mask (ip);
6775 if (gpr_write & prev_gpr_write)
6776 return FALSE;
6777
6778 /* If the branch writes a register that the previous
6779 instruction reads, we can not swap. */
6780 prev_gpr_read = gpr_read_mask (&history[0]);
6781 if (gpr_write & prev_gpr_read)
6782 return FALSE;
6783
6784 /* If one instruction sets a condition code and the
6785 other one uses a condition code, we can not swap. */
6786 pinfo = ip->insn_mo->pinfo;
6787 if ((pinfo & INSN_READ_COND_CODE)
6788 && (prev_pinfo & INSN_WRITE_COND_CODE))
6789 return FALSE;
6790 if ((pinfo & INSN_WRITE_COND_CODE)
6791 && (prev_pinfo & INSN_READ_COND_CODE))
6792 return FALSE;
6793
6794 /* If the previous instruction uses the PC, we can not swap. */
6795 prev_pinfo2 = history[0].insn_mo->pinfo2;
6796 if (prev_pinfo2 & INSN2_READ_PC)
6797 return FALSE;
6798
6799 /* If the previous instruction has an incorrect size for a fixed
6800 branch delay slot in microMIPS mode, we cannot swap. */
6801 pinfo2 = ip->insn_mo->pinfo2;
6802 if (mips_opts.micromips
6803 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6804 && insn_length (history) != 2)
6805 return FALSE;
6806 if (mips_opts.micromips
6807 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6808 && insn_length (history) != 4)
6809 return FALSE;
6810
6811 /* On R5900 short loops need to be fixed by inserting a nop in
6812 the branch delay slots.
6813 A short loop can be terminated too early. */
6814 if (mips_opts.arch == CPU_R5900
6815 /* Check if instruction has a parameter, ignore "j $31". */
6816 && (address_expr != NULL)
6817 /* Parameter must be 16 bit. */
6818 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6819 /* Branch to same segment. */
6820 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6821 /* Branch to same code fragment. */
6822 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6823 /* Can only calculate branch offset if value is known. */
6824 && symbol_constant_p (address_expr->X_add_symbol)
6825 /* Check if branch is really conditional. */
6826 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6827 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6828 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6829 {
6830 int distance;
6831 /* Check if loop is shorter than 6 instructions including
6832 branch and delay slot. */
6833 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6834 if (distance <= 20)
6835 {
6836 int i;
6837 int rv;
6838
6839 rv = FALSE;
6840 /* When the loop includes branches or jumps,
6841 it is not a short loop. */
6842 for (i = 0; i < (distance / 4); i++)
6843 {
6844 if ((history[i].cleared_p)
6845 || delayed_branch_p (&history[i]))
6846 {
6847 rv = TRUE;
6848 break;
6849 }
6850 }
6851 if (rv == FALSE)
6852 {
6853 /* Insert nop after branch to fix short loop. */
6854 return FALSE;
6855 }
6856 }
6857 }
6858
6859 return TRUE;
6860 }
6861
6862 /* Decide how we should add IP to the instruction stream.
6863 ADDRESS_EXPR is an operand of the instruction to be used with
6864 RELOC_TYPE. */
6865
6866 static enum append_method
6867 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6868 bfd_reloc_code_real_type *reloc_type)
6869 {
6870 /* The relaxed version of a macro sequence must be inherently
6871 hazard-free. */
6872 if (mips_relax.sequence == 2)
6873 return APPEND_ADD;
6874
6875 /* We must not dabble with instructions in a ".set noreorder" block. */
6876 if (mips_opts.noreorder)
6877 return APPEND_ADD;
6878
6879 /* Otherwise, it's our responsibility to fill branch delay slots. */
6880 if (delayed_branch_p (ip))
6881 {
6882 if (!branch_likely_p (ip)
6883 && can_swap_branch_p (ip, address_expr, reloc_type))
6884 return APPEND_SWAP;
6885
6886 if (mips_opts.mips16
6887 && ISA_SUPPORTS_MIPS16E
6888 && gpr_read_mask (ip) != 0)
6889 return APPEND_ADD_COMPACT;
6890
6891 if (mips_opts.micromips
6892 && ((ip->insn_opcode & 0xffe0) == 0x4580
6893 || (!forced_insn_length
6894 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6895 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6896 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6897 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6898 return APPEND_ADD_COMPACT;
6899
6900 return APPEND_ADD_WITH_NOP;
6901 }
6902
6903 return APPEND_ADD;
6904 }
6905
6906 /* IP is an instruction whose opcode we have just changed, END points
6907 to the end of the opcode table processed. Point IP->insn_mo to the
6908 new opcode's definition. */
6909
6910 static void
6911 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
6912 {
6913 const struct mips_opcode *mo;
6914
6915 for (mo = ip->insn_mo; mo < end; mo++)
6916 if (mo->pinfo != INSN_MACRO
6917 && (ip->insn_opcode & mo->mask) == mo->match)
6918 {
6919 ip->insn_mo = mo;
6920 return;
6921 }
6922 abort ();
6923 }
6924
6925 /* IP is a MIPS16 instruction whose opcode we have just changed.
6926 Point IP->insn_mo to the new opcode's definition. */
6927
6928 static void
6929 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6930 {
6931 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6932 }
6933
6934 /* IP is a microMIPS instruction whose opcode we have just changed.
6935 Point IP->insn_mo to the new opcode's definition. */
6936
6937 static void
6938 find_altered_micromips_opcode (struct mips_cl_insn *ip)
6939 {
6940 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6941 }
6942
6943 /* For microMIPS macros, we need to generate a local number label
6944 as the target of branches. */
6945 #define MICROMIPS_LABEL_CHAR '\037'
6946 static unsigned long micromips_target_label;
6947 static char micromips_target_name[32];
6948
6949 static char *
6950 micromips_label_name (void)
6951 {
6952 char *p = micromips_target_name;
6953 char symbol_name_temporary[24];
6954 unsigned long l;
6955 int i;
6956
6957 if (*p)
6958 return p;
6959
6960 i = 0;
6961 l = micromips_target_label;
6962 #ifdef LOCAL_LABEL_PREFIX
6963 *p++ = LOCAL_LABEL_PREFIX;
6964 #endif
6965 *p++ = 'L';
6966 *p++ = MICROMIPS_LABEL_CHAR;
6967 do
6968 {
6969 symbol_name_temporary[i++] = l % 10 + '0';
6970 l /= 10;
6971 }
6972 while (l != 0);
6973 while (i > 0)
6974 *p++ = symbol_name_temporary[--i];
6975 *p = '\0';
6976
6977 return micromips_target_name;
6978 }
6979
6980 static void
6981 micromips_label_expr (expressionS *label_expr)
6982 {
6983 label_expr->X_op = O_symbol;
6984 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6985 label_expr->X_add_number = 0;
6986 }
6987
6988 static void
6989 micromips_label_inc (void)
6990 {
6991 micromips_target_label++;
6992 *micromips_target_name = '\0';
6993 }
6994
6995 static void
6996 micromips_add_label (void)
6997 {
6998 symbolS *s;
6999
7000 s = colon (micromips_label_name ());
7001 micromips_label_inc ();
7002 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
7003 }
7004
7005 /* If assembling microMIPS code, then return the microMIPS reloc
7006 corresponding to the requested one if any. Otherwise return
7007 the reloc unchanged. */
7008
7009 static bfd_reloc_code_real_type
7010 micromips_map_reloc (bfd_reloc_code_real_type reloc)
7011 {
7012 static const bfd_reloc_code_real_type relocs[][2] =
7013 {
7014 /* Keep sorted incrementally by the left-hand key. */
7015 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7016 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7017 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7018 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7019 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7020 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7021 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7022 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7023 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7024 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7025 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7026 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7027 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7028 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7029 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7030 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7031 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7032 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7033 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7034 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7035 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7036 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7037 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7038 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7039 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7040 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7041 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7042 };
7043 bfd_reloc_code_real_type r;
7044 size_t i;
7045
7046 if (!mips_opts.micromips)
7047 return reloc;
7048 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7049 {
7050 r = relocs[i][0];
7051 if (r > reloc)
7052 return reloc;
7053 if (r == reloc)
7054 return relocs[i][1];
7055 }
7056 return reloc;
7057 }
7058
7059 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7060 Return true on success, storing the resolved value in RESULT. */
7061
7062 static bfd_boolean
7063 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7064 offsetT *result)
7065 {
7066 switch (reloc)
7067 {
7068 case BFD_RELOC_MIPS_HIGHEST:
7069 case BFD_RELOC_MICROMIPS_HIGHEST:
7070 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7071 return TRUE;
7072
7073 case BFD_RELOC_MIPS_HIGHER:
7074 case BFD_RELOC_MICROMIPS_HIGHER:
7075 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7076 return TRUE;
7077
7078 case BFD_RELOC_HI16_S:
7079 case BFD_RELOC_HI16_S_PCREL:
7080 case BFD_RELOC_MICROMIPS_HI16_S:
7081 case BFD_RELOC_MIPS16_HI16_S:
7082 *result = ((operand + 0x8000) >> 16) & 0xffff;
7083 return TRUE;
7084
7085 case BFD_RELOC_HI16:
7086 case BFD_RELOC_MICROMIPS_HI16:
7087 case BFD_RELOC_MIPS16_HI16:
7088 *result = (operand >> 16) & 0xffff;
7089 return TRUE;
7090
7091 case BFD_RELOC_LO16:
7092 case BFD_RELOC_LO16_PCREL:
7093 case BFD_RELOC_MICROMIPS_LO16:
7094 case BFD_RELOC_MIPS16_LO16:
7095 *result = operand & 0xffff;
7096 return TRUE;
7097
7098 case BFD_RELOC_UNUSED:
7099 *result = operand;
7100 return TRUE;
7101
7102 default:
7103 return FALSE;
7104 }
7105 }
7106
7107 /* Output an instruction. IP is the instruction information.
7108 ADDRESS_EXPR is an operand of the instruction to be used with
7109 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7110 a macro expansion. */
7111
7112 static void
7113 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7114 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7115 {
7116 unsigned long prev_pinfo2, pinfo;
7117 bfd_boolean relaxed_branch = FALSE;
7118 enum append_method method;
7119 bfd_boolean relax32;
7120 int branch_disp;
7121
7122 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7123 fix_loongson2f (ip);
7124
7125 file_ase_mips16 |= mips_opts.mips16;
7126 file_ase_micromips |= mips_opts.micromips;
7127
7128 prev_pinfo2 = history[0].insn_mo->pinfo2;
7129 pinfo = ip->insn_mo->pinfo;
7130
7131 /* Don't raise alarm about `nods' frags as they'll fill in the right
7132 kind of nop in relaxation if required. */
7133 if (mips_opts.micromips
7134 && !expansionp
7135 && !(history[0].frag
7136 && history[0].frag->fr_type == rs_machine_dependent
7137 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7138 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7139 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7140 && micromips_insn_length (ip->insn_mo) != 2)
7141 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7142 && micromips_insn_length (ip->insn_mo) != 4)))
7143 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7144 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7145
7146 if (address_expr == NULL)
7147 ip->complete_p = 1;
7148 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7149 && reloc_type[1] == BFD_RELOC_UNUSED
7150 && reloc_type[2] == BFD_RELOC_UNUSED
7151 && address_expr->X_op == O_constant)
7152 {
7153 switch (*reloc_type)
7154 {
7155 case BFD_RELOC_MIPS_JMP:
7156 {
7157 int shift;
7158
7159 /* Shift is 2, unusually, for microMIPS JALX. */
7160 shift = (mips_opts.micromips
7161 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7162 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7163 as_bad (_("jump to misaligned address (0x%lx)"),
7164 (unsigned long) address_expr->X_add_number);
7165 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7166 & 0x3ffffff);
7167 ip->complete_p = 1;
7168 }
7169 break;
7170
7171 case BFD_RELOC_MIPS16_JMP:
7172 if ((address_expr->X_add_number & 3) != 0)
7173 as_bad (_("jump to misaligned address (0x%lx)"),
7174 (unsigned long) address_expr->X_add_number);
7175 ip->insn_opcode |=
7176 (((address_expr->X_add_number & 0x7c0000) << 3)
7177 | ((address_expr->X_add_number & 0xf800000) >> 7)
7178 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7179 ip->complete_p = 1;
7180 break;
7181
7182 case BFD_RELOC_16_PCREL_S2:
7183 {
7184 int shift;
7185
7186 shift = mips_opts.micromips ? 1 : 2;
7187 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7188 as_bad (_("branch to misaligned address (0x%lx)"),
7189 (unsigned long) address_expr->X_add_number);
7190 if (!mips_relax_branch)
7191 {
7192 if ((address_expr->X_add_number + (1 << (shift + 15)))
7193 & ~((1 << (shift + 16)) - 1))
7194 as_bad (_("branch address range overflow (0x%lx)"),
7195 (unsigned long) address_expr->X_add_number);
7196 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7197 & 0xffff);
7198 }
7199 }
7200 break;
7201
7202 case BFD_RELOC_MIPS_21_PCREL_S2:
7203 {
7204 int shift;
7205
7206 shift = 2;
7207 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7208 as_bad (_("branch to misaligned address (0x%lx)"),
7209 (unsigned long) address_expr->X_add_number);
7210 if ((address_expr->X_add_number + (1 << (shift + 20)))
7211 & ~((1 << (shift + 21)) - 1))
7212 as_bad (_("branch address range overflow (0x%lx)"),
7213 (unsigned long) address_expr->X_add_number);
7214 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7215 & 0x1fffff);
7216 }
7217 break;
7218
7219 case BFD_RELOC_MIPS_26_PCREL_S2:
7220 {
7221 int shift;
7222
7223 shift = 2;
7224 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7225 as_bad (_("branch to misaligned address (0x%lx)"),
7226 (unsigned long) address_expr->X_add_number);
7227 if ((address_expr->X_add_number + (1 << (shift + 25)))
7228 & ~((1 << (shift + 26)) - 1))
7229 as_bad (_("branch address range overflow (0x%lx)"),
7230 (unsigned long) address_expr->X_add_number);
7231 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7232 & 0x3ffffff);
7233 }
7234 break;
7235
7236 default:
7237 {
7238 offsetT value;
7239
7240 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7241 &value))
7242 {
7243 ip->insn_opcode |= value & 0xffff;
7244 ip->complete_p = 1;
7245 }
7246 }
7247 break;
7248 }
7249 }
7250
7251 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7252 {
7253 /* There are a lot of optimizations we could do that we don't.
7254 In particular, we do not, in general, reorder instructions.
7255 If you use gcc with optimization, it will reorder
7256 instructions and generally do much more optimization then we
7257 do here; repeating all that work in the assembler would only
7258 benefit hand written assembly code, and does not seem worth
7259 it. */
7260 int nops = (mips_optimize == 0
7261 ? nops_for_insn (0, history, NULL)
7262 : nops_for_insn_or_target (0, history, ip));
7263 if (nops > 0)
7264 {
7265 fragS *old_frag;
7266 unsigned long old_frag_offset;
7267 int i;
7268
7269 old_frag = frag_now;
7270 old_frag_offset = frag_now_fix ();
7271
7272 for (i = 0; i < nops; i++)
7273 add_fixed_insn (NOP_INSN);
7274 insert_into_history (0, nops, NOP_INSN);
7275
7276 if (listing)
7277 {
7278 listing_prev_line ();
7279 /* We may be at the start of a variant frag. In case we
7280 are, make sure there is enough space for the frag
7281 after the frags created by listing_prev_line. The
7282 argument to frag_grow here must be at least as large
7283 as the argument to all other calls to frag_grow in
7284 this file. We don't have to worry about being in the
7285 middle of a variant frag, because the variants insert
7286 all needed nop instructions themselves. */
7287 frag_grow (40);
7288 }
7289
7290 mips_move_text_labels ();
7291
7292 #ifndef NO_ECOFF_DEBUGGING
7293 if (ECOFF_DEBUGGING)
7294 ecoff_fix_loc (old_frag, old_frag_offset);
7295 #endif
7296 }
7297 }
7298 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7299 {
7300 int nops;
7301
7302 /* Work out how many nops in prev_nop_frag are needed by IP,
7303 ignoring hazards generated by the first prev_nop_frag_since
7304 instructions. */
7305 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7306 gas_assert (nops <= prev_nop_frag_holds);
7307
7308 /* Enforce NOPS as a minimum. */
7309 if (nops > prev_nop_frag_required)
7310 prev_nop_frag_required = nops;
7311
7312 if (prev_nop_frag_holds == prev_nop_frag_required)
7313 {
7314 /* Settle for the current number of nops. Update the history
7315 accordingly (for the benefit of any future .set reorder code). */
7316 prev_nop_frag = NULL;
7317 insert_into_history (prev_nop_frag_since,
7318 prev_nop_frag_holds, NOP_INSN);
7319 }
7320 else
7321 {
7322 /* Allow this instruction to replace one of the nops that was
7323 tentatively added to prev_nop_frag. */
7324 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7325 prev_nop_frag_holds--;
7326 prev_nop_frag_since++;
7327 }
7328 }
7329
7330 method = get_append_method (ip, address_expr, reloc_type);
7331 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7332
7333 dwarf2_emit_insn (0);
7334 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7335 so "move" the instruction address accordingly.
7336
7337 Also, it doesn't seem appropriate for the assembler to reorder .loc
7338 entries. If this instruction is a branch that we are going to swap
7339 with the previous instruction, the two instructions should be
7340 treated as a unit, and the debug information for both instructions
7341 should refer to the start of the branch sequence. Using the
7342 current position is certainly wrong when swapping a 32-bit branch
7343 and a 16-bit delay slot, since the current position would then be
7344 in the middle of a branch. */
7345 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7346
7347 relax32 = (mips_relax_branch
7348 /* Don't try branch relaxation within .set nomacro, or within
7349 .set noat if we use $at for PIC computations. If it turns
7350 out that the branch was out-of-range, we'll get an error. */
7351 && !mips_opts.warn_about_macros
7352 && (mips_opts.at || mips_pic == NO_PIC)
7353 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7354 as they have no complementing branches. */
7355 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7356
7357 if (!HAVE_CODE_COMPRESSION
7358 && address_expr
7359 && relax32
7360 && *reloc_type == BFD_RELOC_16_PCREL_S2
7361 && delayed_branch_p (ip))
7362 {
7363 relaxed_branch = TRUE;
7364 add_relaxed_insn (ip, (relaxed_branch_length
7365 (NULL, NULL,
7366 uncond_branch_p (ip) ? -1
7367 : branch_likely_p (ip) ? 1
7368 : 0)), 4,
7369 RELAX_BRANCH_ENCODE
7370 (AT, mips_pic != NO_PIC,
7371 uncond_branch_p (ip),
7372 branch_likely_p (ip),
7373 pinfo & INSN_WRITE_GPR_31,
7374 0),
7375 address_expr->X_add_symbol,
7376 address_expr->X_add_number);
7377 *reloc_type = BFD_RELOC_UNUSED;
7378 }
7379 else if (mips_opts.micromips
7380 && address_expr
7381 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7382 || *reloc_type > BFD_RELOC_UNUSED)
7383 && (delayed_branch_p (ip) || compact_branch_p (ip))
7384 /* Don't try branch relaxation when users specify
7385 16-bit/32-bit instructions. */
7386 && !forced_insn_length)
7387 {
7388 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7389 && *reloc_type > BFD_RELOC_UNUSED);
7390 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7391 int uncond = uncond_branch_p (ip) ? -1 : 0;
7392 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7393 int nods = method == APPEND_ADD_WITH_NOP;
7394 int al = pinfo & INSN_WRITE_GPR_31;
7395 int length32 = nods ? 8 : 4;
7396
7397 gas_assert (address_expr != NULL);
7398 gas_assert (!mips_relax.sequence);
7399
7400 relaxed_branch = TRUE;
7401 if (nods)
7402 method = APPEND_ADD;
7403 if (relax32)
7404 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7405 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7406 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7407 mips_pic != NO_PIC,
7408 uncond, compact, al, nods,
7409 relax32, 0, 0),
7410 address_expr->X_add_symbol,
7411 address_expr->X_add_number);
7412 *reloc_type = BFD_RELOC_UNUSED;
7413 }
7414 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7415 {
7416 bfd_boolean require_unextended;
7417 bfd_boolean require_extended;
7418 symbolS *symbol;
7419 offsetT offset;
7420
7421 if (forced_insn_length != 0)
7422 {
7423 require_unextended = forced_insn_length == 2;
7424 require_extended = forced_insn_length == 4;
7425 }
7426 else
7427 {
7428 require_unextended = (mips_opts.noautoextend
7429 && !mips_opcode_32bit_p (ip->insn_mo));
7430 require_extended = 0;
7431 }
7432
7433 /* We need to set up a variant frag. */
7434 gas_assert (address_expr != NULL);
7435 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7436 symbol created by `make_expr_symbol' may not get a necessary
7437 external relocation produced. */
7438 if (address_expr->X_op == O_symbol)
7439 {
7440 symbol = address_expr->X_add_symbol;
7441 offset = address_expr->X_add_number;
7442 }
7443 else
7444 {
7445 symbol = make_expr_symbol (address_expr);
7446 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7447 offset = 0;
7448 }
7449 add_relaxed_insn (ip, 12, 0,
7450 RELAX_MIPS16_ENCODE
7451 (*reloc_type - BFD_RELOC_UNUSED,
7452 mips_pic != NO_PIC,
7453 HAVE_32BIT_SYMBOLS,
7454 mips_opts.warn_about_macros,
7455 require_unextended, require_extended,
7456 delayed_branch_p (&history[0]),
7457 history[0].mips16_absolute_jump_p),
7458 symbol, offset);
7459 }
7460 else if (mips_opts.mips16 && insn_length (ip) == 2)
7461 {
7462 if (!delayed_branch_p (ip))
7463 /* Make sure there is enough room to swap this instruction with
7464 a following jump instruction. */
7465 frag_grow (6);
7466 add_fixed_insn (ip);
7467 }
7468 else
7469 {
7470 if (mips_opts.mips16
7471 && mips_opts.noreorder
7472 && delayed_branch_p (&history[0]))
7473 as_warn (_("extended instruction in delay slot"));
7474
7475 if (mips_relax.sequence)
7476 {
7477 /* If we've reached the end of this frag, turn it into a variant
7478 frag and record the information for the instructions we've
7479 written so far. */
7480 if (frag_room () < 4)
7481 relax_close_frag ();
7482 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7483 }
7484
7485 if (mips_relax.sequence != 2)
7486 {
7487 if (mips_macro_warning.first_insn_sizes[0] == 0)
7488 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7489 mips_macro_warning.sizes[0] += insn_length (ip);
7490 mips_macro_warning.insns[0]++;
7491 }
7492 if (mips_relax.sequence != 1)
7493 {
7494 if (mips_macro_warning.first_insn_sizes[1] == 0)
7495 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7496 mips_macro_warning.sizes[1] += insn_length (ip);
7497 mips_macro_warning.insns[1]++;
7498 }
7499
7500 if (mips_opts.mips16)
7501 {
7502 ip->fixed_p = 1;
7503 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7504 }
7505 add_fixed_insn (ip);
7506 }
7507
7508 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7509 {
7510 bfd_reloc_code_real_type final_type[3];
7511 reloc_howto_type *howto0;
7512 reloc_howto_type *howto;
7513 int i;
7514
7515 /* Perform any necessary conversion to microMIPS relocations
7516 and find out how many relocations there actually are. */
7517 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7518 final_type[i] = micromips_map_reloc (reloc_type[i]);
7519
7520 /* In a compound relocation, it is the final (outermost)
7521 operator that determines the relocated field. */
7522 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7523 if (!howto)
7524 abort ();
7525
7526 if (i > 1)
7527 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7528 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7529 bfd_get_reloc_size (howto),
7530 address_expr,
7531 howto0 && howto0->pc_relative,
7532 final_type[0]);
7533 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7534 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7535
7536 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7537 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7538 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7539
7540 /* These relocations can have an addend that won't fit in
7541 4 octets for 64bit assembly. */
7542 if (GPR_SIZE == 64
7543 && ! howto->partial_inplace
7544 && (reloc_type[0] == BFD_RELOC_16
7545 || reloc_type[0] == BFD_RELOC_32
7546 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7547 || reloc_type[0] == BFD_RELOC_GPREL16
7548 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7549 || reloc_type[0] == BFD_RELOC_GPREL32
7550 || reloc_type[0] == BFD_RELOC_64
7551 || reloc_type[0] == BFD_RELOC_CTOR
7552 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7553 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7554 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7555 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7556 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7557 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7558 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7559 || hi16_reloc_p (reloc_type[0])
7560 || lo16_reloc_p (reloc_type[0])))
7561 ip->fixp[0]->fx_no_overflow = 1;
7562
7563 /* These relocations can have an addend that won't fit in 2 octets. */
7564 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7565 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7566 ip->fixp[0]->fx_no_overflow = 1;
7567
7568 if (mips_relax.sequence)
7569 {
7570 if (mips_relax.first_fixup == 0)
7571 mips_relax.first_fixup = ip->fixp[0];
7572 }
7573 else if (reloc_needs_lo_p (*reloc_type))
7574 {
7575 struct mips_hi_fixup *hi_fixup;
7576
7577 /* Reuse the last entry if it already has a matching %lo. */
7578 hi_fixup = mips_hi_fixup_list;
7579 if (hi_fixup == 0
7580 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7581 {
7582 hi_fixup = XNEW (struct mips_hi_fixup);
7583 hi_fixup->next = mips_hi_fixup_list;
7584 mips_hi_fixup_list = hi_fixup;
7585 }
7586 hi_fixup->fixp = ip->fixp[0];
7587 hi_fixup->seg = now_seg;
7588 }
7589
7590 /* Add fixups for the second and third relocations, if given.
7591 Note that the ABI allows the second relocation to be
7592 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7593 moment we only use RSS_UNDEF, but we could add support
7594 for the others if it ever becomes necessary. */
7595 for (i = 1; i < 3; i++)
7596 if (reloc_type[i] != BFD_RELOC_UNUSED)
7597 {
7598 ip->fixp[i] = fix_new (ip->frag, ip->where,
7599 ip->fixp[0]->fx_size, NULL, 0,
7600 FALSE, final_type[i]);
7601
7602 /* Use fx_tcbit to mark compound relocs. */
7603 ip->fixp[0]->fx_tcbit = 1;
7604 ip->fixp[i]->fx_tcbit = 1;
7605 }
7606 }
7607
7608 /* Update the register mask information. */
7609 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7610 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7611
7612 switch (method)
7613 {
7614 case APPEND_ADD:
7615 insert_into_history (0, 1, ip);
7616 break;
7617
7618 case APPEND_ADD_WITH_NOP:
7619 {
7620 struct mips_cl_insn *nop;
7621
7622 insert_into_history (0, 1, ip);
7623 nop = get_delay_slot_nop (ip);
7624 add_fixed_insn (nop);
7625 insert_into_history (0, 1, nop);
7626 if (mips_relax.sequence)
7627 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7628 }
7629 break;
7630
7631 case APPEND_ADD_COMPACT:
7632 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7633 if (mips_opts.mips16)
7634 {
7635 ip->insn_opcode |= 0x0080;
7636 find_altered_mips16_opcode (ip);
7637 }
7638 /* Convert microMIPS instructions. */
7639 else if (mips_opts.micromips)
7640 {
7641 /* jr16->jrc */
7642 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7643 ip->insn_opcode |= 0x0020;
7644 /* b16->bc */
7645 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7646 ip->insn_opcode = 0x40e00000;
7647 /* beqz16->beqzc, bnez16->bnezc */
7648 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7649 {
7650 unsigned long regno;
7651
7652 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7653 regno &= MICROMIPSOP_MASK_MD;
7654 regno = micromips_to_32_reg_d_map[regno];
7655 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7656 | (regno << MICROMIPSOP_SH_RS)
7657 | 0x40a00000) ^ 0x00400000;
7658 }
7659 /* beqz->beqzc, bnez->bnezc */
7660 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7661 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7662 | ((ip->insn_opcode >> 7) & 0x00400000)
7663 | 0x40a00000) ^ 0x00400000;
7664 /* beq $0->beqzc, bne $0->bnezc */
7665 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7666 ip->insn_opcode = (((ip->insn_opcode >>
7667 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7668 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7669 | ((ip->insn_opcode >> 7) & 0x00400000)
7670 | 0x40a00000) ^ 0x00400000;
7671 else
7672 abort ();
7673 find_altered_micromips_opcode (ip);
7674 }
7675 else
7676 abort ();
7677 install_insn (ip);
7678 insert_into_history (0, 1, ip);
7679 break;
7680
7681 case APPEND_SWAP:
7682 {
7683 struct mips_cl_insn delay = history[0];
7684
7685 if (relaxed_branch || delay.frag != ip->frag)
7686 {
7687 /* Add the delay slot instruction to the end of the
7688 current frag and shrink the fixed part of the
7689 original frag. If the branch occupies the tail of
7690 the latter, move it backwards to cover the gap. */
7691 delay.frag->fr_fix -= branch_disp;
7692 if (delay.frag == ip->frag)
7693 move_insn (ip, ip->frag, ip->where - branch_disp);
7694 add_fixed_insn (&delay);
7695 }
7696 else
7697 {
7698 /* If this is not a relaxed branch and we are in the
7699 same frag, then just swap the instructions. */
7700 move_insn (ip, delay.frag, delay.where);
7701 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7702 }
7703 history[0] = *ip;
7704 delay.fixed_p = 1;
7705 insert_into_history (0, 1, &delay);
7706 }
7707 break;
7708 }
7709
7710 /* If we have just completed an unconditional branch, clear the history. */
7711 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7712 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7713 {
7714 unsigned int i;
7715
7716 mips_no_prev_insn ();
7717
7718 for (i = 0; i < ARRAY_SIZE (history); i++)
7719 history[i].cleared_p = 1;
7720 }
7721
7722 /* We need to emit a label at the end of branch-likely macros. */
7723 if (emit_branch_likely_macro)
7724 {
7725 emit_branch_likely_macro = FALSE;
7726 micromips_add_label ();
7727 }
7728
7729 /* We just output an insn, so the next one doesn't have a label. */
7730 mips_clear_insn_labels ();
7731 }
7732
7733 /* Forget that there was any previous instruction or label.
7734 When BRANCH is true, the branch history is also flushed. */
7735
7736 static void
7737 mips_no_prev_insn (void)
7738 {
7739 prev_nop_frag = NULL;
7740 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7741 mips_clear_insn_labels ();
7742 }
7743
7744 /* This function must be called before we emit something other than
7745 instructions. It is like mips_no_prev_insn except that it inserts
7746 any NOPS that might be needed by previous instructions. */
7747
7748 void
7749 mips_emit_delays (void)
7750 {
7751 if (! mips_opts.noreorder)
7752 {
7753 int nops = nops_for_insn (0, history, NULL);
7754 if (nops > 0)
7755 {
7756 while (nops-- > 0)
7757 add_fixed_insn (NOP_INSN);
7758 mips_move_text_labels ();
7759 }
7760 }
7761 mips_no_prev_insn ();
7762 }
7763
7764 /* Start a (possibly nested) noreorder block. */
7765
7766 static void
7767 start_noreorder (void)
7768 {
7769 if (mips_opts.noreorder == 0)
7770 {
7771 unsigned int i;
7772 int nops;
7773
7774 /* None of the instructions before the .set noreorder can be moved. */
7775 for (i = 0; i < ARRAY_SIZE (history); i++)
7776 history[i].fixed_p = 1;
7777
7778 /* Insert any nops that might be needed between the .set noreorder
7779 block and the previous instructions. We will later remove any
7780 nops that turn out not to be needed. */
7781 nops = nops_for_insn (0, history, NULL);
7782 if (nops > 0)
7783 {
7784 if (mips_optimize != 0)
7785 {
7786 /* Record the frag which holds the nop instructions, so
7787 that we can remove them if we don't need them. */
7788 frag_grow (nops * NOP_INSN_SIZE);
7789 prev_nop_frag = frag_now;
7790 prev_nop_frag_holds = nops;
7791 prev_nop_frag_required = 0;
7792 prev_nop_frag_since = 0;
7793 }
7794
7795 for (; nops > 0; --nops)
7796 add_fixed_insn (NOP_INSN);
7797
7798 /* Move on to a new frag, so that it is safe to simply
7799 decrease the size of prev_nop_frag. */
7800 frag_wane (frag_now);
7801 frag_new (0);
7802 mips_move_text_labels ();
7803 }
7804 mips_mark_labels ();
7805 mips_clear_insn_labels ();
7806 }
7807 mips_opts.noreorder++;
7808 mips_any_noreorder = 1;
7809 }
7810
7811 /* End a nested noreorder block. */
7812
7813 static void
7814 end_noreorder (void)
7815 {
7816 mips_opts.noreorder--;
7817 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7818 {
7819 /* Commit to inserting prev_nop_frag_required nops and go back to
7820 handling nop insertion the .set reorder way. */
7821 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7822 * NOP_INSN_SIZE);
7823 insert_into_history (prev_nop_frag_since,
7824 prev_nop_frag_required, NOP_INSN);
7825 prev_nop_frag = NULL;
7826 }
7827 }
7828
7829 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7830 higher bits unset. */
7831
7832 static void
7833 normalize_constant_expr (expressionS *ex)
7834 {
7835 if (ex->X_op == O_constant
7836 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7837 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7838 - 0x80000000);
7839 }
7840
7841 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7842 all higher bits unset. */
7843
7844 static void
7845 normalize_address_expr (expressionS *ex)
7846 {
7847 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7848 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7849 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7850 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7851 - 0x80000000);
7852 }
7853
7854 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7855 Return true if the match was successful.
7856
7857 OPCODE_EXTRA is a value that should be ORed into the opcode
7858 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7859 there are more alternatives after OPCODE and SOFT_MATCH is
7860 as for mips_arg_info. */
7861
7862 static bfd_boolean
7863 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7864 struct mips_operand_token *tokens, unsigned int opcode_extra,
7865 bfd_boolean lax_match, bfd_boolean complete_p)
7866 {
7867 const char *args;
7868 struct mips_arg_info arg;
7869 const struct mips_operand *operand;
7870 char c;
7871
7872 imm_expr.X_op = O_absent;
7873 offset_expr.X_op = O_absent;
7874 offset_reloc[0] = BFD_RELOC_UNUSED;
7875 offset_reloc[1] = BFD_RELOC_UNUSED;
7876 offset_reloc[2] = BFD_RELOC_UNUSED;
7877
7878 create_insn (insn, opcode);
7879 /* When no opcode suffix is specified, assume ".xyzw". */
7880 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7881 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7882 else
7883 insn->insn_opcode |= opcode_extra;
7884 memset (&arg, 0, sizeof (arg));
7885 arg.insn = insn;
7886 arg.token = tokens;
7887 arg.argnum = 1;
7888 arg.last_regno = ILLEGAL_REG;
7889 arg.dest_regno = ILLEGAL_REG;
7890 arg.lax_match = lax_match;
7891 for (args = opcode->args;; ++args)
7892 {
7893 if (arg.token->type == OT_END)
7894 {
7895 /* Handle unary instructions in which only one operand is given.
7896 The source is then the same as the destination. */
7897 if (arg.opnum == 1 && *args == ',')
7898 {
7899 operand = (mips_opts.micromips
7900 ? decode_micromips_operand (args + 1)
7901 : decode_mips_operand (args + 1));
7902 if (operand && mips_optional_operand_p (operand))
7903 {
7904 arg.token = tokens;
7905 arg.argnum = 1;
7906 continue;
7907 }
7908 }
7909
7910 /* Treat elided base registers as $0. */
7911 if (strcmp (args, "(b)") == 0)
7912 args += 3;
7913
7914 if (args[0] == '+')
7915 switch (args[1])
7916 {
7917 case 'K':
7918 case 'N':
7919 /* The register suffix is optional. */
7920 args += 2;
7921 break;
7922 }
7923
7924 /* Fail the match if there were too few operands. */
7925 if (*args)
7926 return FALSE;
7927
7928 /* Successful match. */
7929 if (!complete_p)
7930 return TRUE;
7931 clear_insn_error ();
7932 if (arg.dest_regno == arg.last_regno
7933 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7934 {
7935 if (arg.opnum == 2)
7936 set_insn_error
7937 (0, _("source and destination must be different"));
7938 else if (arg.last_regno == 31)
7939 set_insn_error
7940 (0, _("a destination register must be supplied"));
7941 }
7942 else if (arg.last_regno == 31
7943 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7944 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7945 set_insn_error (0, _("the source register must not be $31"));
7946 check_completed_insn (&arg);
7947 return TRUE;
7948 }
7949
7950 /* Fail the match if the line has too many operands. */
7951 if (*args == 0)
7952 return FALSE;
7953
7954 /* Handle characters that need to match exactly. */
7955 if (*args == '(' || *args == ')' || *args == ',')
7956 {
7957 if (match_char (&arg, *args))
7958 continue;
7959 return FALSE;
7960 }
7961 if (*args == '#')
7962 {
7963 ++args;
7964 if (arg.token->type == OT_DOUBLE_CHAR
7965 && arg.token->u.ch == *args)
7966 {
7967 ++arg.token;
7968 continue;
7969 }
7970 return FALSE;
7971 }
7972
7973 /* Handle special macro operands. Work out the properties of
7974 other operands. */
7975 arg.opnum += 1;
7976 switch (*args)
7977 {
7978 case '-':
7979 switch (args[1])
7980 {
7981 case 'A':
7982 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7983 break;
7984
7985 case 'B':
7986 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7987 break;
7988 }
7989 break;
7990
7991 case '+':
7992 switch (args[1])
7993 {
7994 case 'i':
7995 *offset_reloc = BFD_RELOC_MIPS_JMP;
7996 break;
7997
7998 case '\'':
7999 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8000 break;
8001
8002 case '\"':
8003 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8004 break;
8005 }
8006 break;
8007
8008 case 'I':
8009 if (!match_const_int (&arg, &imm_expr.X_add_number))
8010 return FALSE;
8011 imm_expr.X_op = O_constant;
8012 if (GPR_SIZE == 32)
8013 normalize_constant_expr (&imm_expr);
8014 continue;
8015
8016 case 'A':
8017 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8018 {
8019 /* Assume that the offset has been elided and that what
8020 we saw was a base register. The match will fail later
8021 if that assumption turns out to be wrong. */
8022 offset_expr.X_op = O_constant;
8023 offset_expr.X_add_number = 0;
8024 }
8025 else
8026 {
8027 if (!match_expression (&arg, &offset_expr, offset_reloc))
8028 return FALSE;
8029 normalize_address_expr (&offset_expr);
8030 }
8031 continue;
8032
8033 case 'F':
8034 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8035 8, TRUE))
8036 return FALSE;
8037 continue;
8038
8039 case 'L':
8040 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8041 8, FALSE))
8042 return FALSE;
8043 continue;
8044
8045 case 'f':
8046 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8047 4, TRUE))
8048 return FALSE;
8049 continue;
8050
8051 case 'l':
8052 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8053 4, FALSE))
8054 return FALSE;
8055 continue;
8056
8057 case 'p':
8058 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8059 break;
8060
8061 case 'a':
8062 *offset_reloc = BFD_RELOC_MIPS_JMP;
8063 break;
8064
8065 case 'm':
8066 gas_assert (mips_opts.micromips);
8067 c = args[1];
8068 switch (c)
8069 {
8070 case 'D':
8071 case 'E':
8072 if (!forced_insn_length)
8073 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8074 else if (c == 'D')
8075 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8076 else
8077 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8078 break;
8079 }
8080 break;
8081 }
8082
8083 operand = (mips_opts.micromips
8084 ? decode_micromips_operand (args)
8085 : decode_mips_operand (args));
8086 if (!operand)
8087 abort ();
8088
8089 /* Skip prefixes. */
8090 if (*args == '+' || *args == 'm' || *args == '-')
8091 args++;
8092
8093 if (mips_optional_operand_p (operand)
8094 && args[1] == ','
8095 && (arg.token[0].type != OT_REG
8096 || arg.token[1].type == OT_END))
8097 {
8098 /* Assume that the register has been elided and is the
8099 same as the first operand. */
8100 arg.token = tokens;
8101 arg.argnum = 1;
8102 }
8103
8104 if (!match_operand (&arg, operand))
8105 return FALSE;
8106 }
8107 }
8108
8109 /* Like match_insn, but for MIPS16. */
8110
8111 static bfd_boolean
8112 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8113 struct mips_operand_token *tokens)
8114 {
8115 const char *args;
8116 const struct mips_operand *operand;
8117 const struct mips_operand *ext_operand;
8118 bfd_boolean pcrel = FALSE;
8119 int required_insn_length;
8120 struct mips_arg_info arg;
8121 int relax_char;
8122
8123 if (forced_insn_length)
8124 required_insn_length = forced_insn_length;
8125 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8126 required_insn_length = 2;
8127 else
8128 required_insn_length = 0;
8129
8130 create_insn (insn, opcode);
8131 imm_expr.X_op = O_absent;
8132 offset_expr.X_op = O_absent;
8133 offset_reloc[0] = BFD_RELOC_UNUSED;
8134 offset_reloc[1] = BFD_RELOC_UNUSED;
8135 offset_reloc[2] = BFD_RELOC_UNUSED;
8136 relax_char = 0;
8137
8138 memset (&arg, 0, sizeof (arg));
8139 arg.insn = insn;
8140 arg.token = tokens;
8141 arg.argnum = 1;
8142 arg.last_regno = ILLEGAL_REG;
8143 arg.dest_regno = ILLEGAL_REG;
8144 relax_char = 0;
8145 for (args = opcode->args;; ++args)
8146 {
8147 int c;
8148
8149 if (arg.token->type == OT_END)
8150 {
8151 offsetT value;
8152
8153 /* Handle unary instructions in which only one operand is given.
8154 The source is then the same as the destination. */
8155 if (arg.opnum == 1 && *args == ',')
8156 {
8157 operand = decode_mips16_operand (args[1], FALSE);
8158 if (operand && mips_optional_operand_p (operand))
8159 {
8160 arg.token = tokens;
8161 arg.argnum = 1;
8162 continue;
8163 }
8164 }
8165
8166 /* Fail the match if there were too few operands. */
8167 if (*args)
8168 return FALSE;
8169
8170 /* Successful match. Stuff the immediate value in now, if
8171 we can. */
8172 clear_insn_error ();
8173 if (opcode->pinfo == INSN_MACRO)
8174 {
8175 gas_assert (relax_char == 0 || relax_char == 'p');
8176 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8177 }
8178 else if (relax_char
8179 && offset_expr.X_op == O_constant
8180 && !pcrel
8181 && calculate_reloc (*offset_reloc,
8182 offset_expr.X_add_number,
8183 &value))
8184 {
8185 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8186 required_insn_length, &insn->insn_opcode);
8187 offset_expr.X_op = O_absent;
8188 *offset_reloc = BFD_RELOC_UNUSED;
8189 }
8190 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8191 {
8192 if (required_insn_length == 2)
8193 set_insn_error (0, _("invalid unextended operand value"));
8194 else
8195 {
8196 forced_insn_length = 4;
8197 insn->insn_opcode |= MIPS16_EXTEND;
8198 }
8199 }
8200 else if (relax_char)
8201 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8202
8203 check_completed_insn (&arg);
8204 return TRUE;
8205 }
8206
8207 /* Fail the match if the line has too many operands. */
8208 if (*args == 0)
8209 return FALSE;
8210
8211 /* Handle characters that need to match exactly. */
8212 if (*args == '(' || *args == ')' || *args == ',')
8213 {
8214 if (match_char (&arg, *args))
8215 continue;
8216 return FALSE;
8217 }
8218
8219 arg.opnum += 1;
8220 c = *args;
8221 switch (c)
8222 {
8223 case 'p':
8224 case 'q':
8225 case 'A':
8226 case 'B':
8227 case 'E':
8228 relax_char = c;
8229 break;
8230
8231 case 'I':
8232 if (!match_const_int (&arg, &imm_expr.X_add_number))
8233 return FALSE;
8234 imm_expr.X_op = O_constant;
8235 if (GPR_SIZE == 32)
8236 normalize_constant_expr (&imm_expr);
8237 continue;
8238
8239 case 'a':
8240 case 'i':
8241 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8242 break;
8243 }
8244
8245 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8246 if (!operand)
8247 abort ();
8248
8249 if (operand->type == OP_PCREL)
8250 pcrel = TRUE;
8251 else
8252 {
8253 ext_operand = decode_mips16_operand (c, TRUE);
8254 if (operand != ext_operand)
8255 {
8256 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8257 {
8258 offset_expr.X_op = O_constant;
8259 offset_expr.X_add_number = 0;
8260 relax_char = c;
8261 continue;
8262 }
8263
8264 if (!match_expression (&arg, &offset_expr, offset_reloc))
8265 return FALSE;
8266
8267 /* '8' is used for SLTI(U) and has traditionally not
8268 been allowed to take relocation operators. */
8269 if (offset_reloc[0] != BFD_RELOC_UNUSED
8270 && (ext_operand->size != 16 || c == '8'))
8271 {
8272 match_not_constant (&arg);
8273 return FALSE;
8274 }
8275
8276 if (offset_expr.X_op == O_big)
8277 {
8278 match_out_of_range (&arg);
8279 return FALSE;
8280 }
8281
8282 relax_char = c;
8283 continue;
8284 }
8285 }
8286
8287 if (mips_optional_operand_p (operand)
8288 && args[1] == ','
8289 && (arg.token[0].type != OT_REG
8290 || arg.token[1].type == OT_END))
8291 {
8292 /* Assume that the register has been elided and is the
8293 same as the first operand. */
8294 arg.token = tokens;
8295 arg.argnum = 1;
8296 }
8297
8298 if (!match_operand (&arg, operand))
8299 return FALSE;
8300 }
8301 }
8302
8303 /* Record that the current instruction is invalid for the current ISA. */
8304
8305 static void
8306 match_invalid_for_isa (void)
8307 {
8308 set_insn_error_ss
8309 (0, _("opcode not supported on this processor: %s (%s)"),
8310 mips_cpu_info_from_arch (mips_opts.arch)->name,
8311 mips_cpu_info_from_isa (mips_opts.isa)->name);
8312 }
8313
8314 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8315 Return true if a definite match or failure was found, storing any match
8316 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8317 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8318 tried and failed to match under normal conditions and now want to try a
8319 more relaxed match. */
8320
8321 static bfd_boolean
8322 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8323 const struct mips_opcode *past, struct mips_operand_token *tokens,
8324 int opcode_extra, bfd_boolean lax_match)
8325 {
8326 const struct mips_opcode *opcode;
8327 const struct mips_opcode *invalid_delay_slot;
8328 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8329
8330 /* Search for a match, ignoring alternatives that don't satisfy the
8331 current ISA or forced_length. */
8332 invalid_delay_slot = 0;
8333 seen_valid_for_isa = FALSE;
8334 seen_valid_for_size = FALSE;
8335 opcode = first;
8336 do
8337 {
8338 gas_assert (strcmp (opcode->name, first->name) == 0);
8339 if (is_opcode_valid (opcode))
8340 {
8341 seen_valid_for_isa = TRUE;
8342 if (is_size_valid (opcode))
8343 {
8344 bfd_boolean delay_slot_ok;
8345
8346 seen_valid_for_size = TRUE;
8347 delay_slot_ok = is_delay_slot_valid (opcode);
8348 if (match_insn (insn, opcode, tokens, opcode_extra,
8349 lax_match, delay_slot_ok))
8350 {
8351 if (!delay_slot_ok)
8352 {
8353 if (!invalid_delay_slot)
8354 invalid_delay_slot = opcode;
8355 }
8356 else
8357 return TRUE;
8358 }
8359 }
8360 }
8361 ++opcode;
8362 }
8363 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8364
8365 /* If the only matches we found had the wrong length for the delay slot,
8366 pick the first such match. We'll issue an appropriate warning later. */
8367 if (invalid_delay_slot)
8368 {
8369 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8370 lax_match, TRUE))
8371 return TRUE;
8372 abort ();
8373 }
8374
8375 /* Handle the case where we didn't try to match an instruction because
8376 all the alternatives were incompatible with the current ISA. */
8377 if (!seen_valid_for_isa)
8378 {
8379 match_invalid_for_isa ();
8380 return TRUE;
8381 }
8382
8383 /* Handle the case where we didn't try to match an instruction because
8384 all the alternatives were of the wrong size. */
8385 if (!seen_valid_for_size)
8386 {
8387 if (mips_opts.insn32)
8388 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8389 else
8390 set_insn_error_i
8391 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8392 8 * forced_insn_length);
8393 return TRUE;
8394 }
8395
8396 return FALSE;
8397 }
8398
8399 /* Like match_insns, but for MIPS16. */
8400
8401 static bfd_boolean
8402 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8403 struct mips_operand_token *tokens)
8404 {
8405 const struct mips_opcode *opcode;
8406 bfd_boolean seen_valid_for_isa;
8407 bfd_boolean seen_valid_for_size;
8408
8409 /* Search for a match, ignoring alternatives that don't satisfy the
8410 current ISA. There are no separate entries for extended forms so
8411 we deal with forced_length later. */
8412 seen_valid_for_isa = FALSE;
8413 seen_valid_for_size = FALSE;
8414 opcode = first;
8415 do
8416 {
8417 gas_assert (strcmp (opcode->name, first->name) == 0);
8418 if (is_opcode_valid_16 (opcode))
8419 {
8420 seen_valid_for_isa = TRUE;
8421 if (is_size_valid_16 (opcode))
8422 {
8423 seen_valid_for_size = TRUE;
8424 if (match_mips16_insn (insn, opcode, tokens))
8425 return TRUE;
8426 }
8427 }
8428 ++opcode;
8429 }
8430 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8431 && strcmp (opcode->name, first->name) == 0);
8432
8433 /* Handle the case where we didn't try to match an instruction because
8434 all the alternatives were incompatible with the current ISA. */
8435 if (!seen_valid_for_isa)
8436 {
8437 match_invalid_for_isa ();
8438 return TRUE;
8439 }
8440
8441 /* Handle the case where we didn't try to match an instruction because
8442 all the alternatives were of the wrong size. */
8443 if (!seen_valid_for_size)
8444 {
8445 if (forced_insn_length == 2)
8446 set_insn_error
8447 (0, _("unrecognized unextended version of MIPS16 opcode"));
8448 else
8449 set_insn_error
8450 (0, _("unrecognized extended version of MIPS16 opcode"));
8451 return TRUE;
8452 }
8453
8454 return FALSE;
8455 }
8456
8457 /* Set up global variables for the start of a new macro. */
8458
8459 static void
8460 macro_start (void)
8461 {
8462 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8463 memset (&mips_macro_warning.first_insn_sizes, 0,
8464 sizeof (mips_macro_warning.first_insn_sizes));
8465 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8466 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8467 && delayed_branch_p (&history[0]));
8468 if (history[0].frag
8469 && history[0].frag->fr_type == rs_machine_dependent
8470 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8471 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8472 mips_macro_warning.delay_slot_length = 0;
8473 else
8474 switch (history[0].insn_mo->pinfo2
8475 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8476 {
8477 case INSN2_BRANCH_DELAY_32BIT:
8478 mips_macro_warning.delay_slot_length = 4;
8479 break;
8480 case INSN2_BRANCH_DELAY_16BIT:
8481 mips_macro_warning.delay_slot_length = 2;
8482 break;
8483 default:
8484 mips_macro_warning.delay_slot_length = 0;
8485 break;
8486 }
8487 mips_macro_warning.first_frag = NULL;
8488 }
8489
8490 /* Given that a macro is longer than one instruction or of the wrong size,
8491 return the appropriate warning for it. Return null if no warning is
8492 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8493 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8494 and RELAX_NOMACRO. */
8495
8496 static const char *
8497 macro_warning (relax_substateT subtype)
8498 {
8499 if (subtype & RELAX_DELAY_SLOT)
8500 return _("macro instruction expanded into multiple instructions"
8501 " in a branch delay slot");
8502 else if (subtype & RELAX_NOMACRO)
8503 return _("macro instruction expanded into multiple instructions");
8504 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8505 | RELAX_DELAY_SLOT_SIZE_SECOND))
8506 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8507 ? _("macro instruction expanded into a wrong size instruction"
8508 " in a 16-bit branch delay slot")
8509 : _("macro instruction expanded into a wrong size instruction"
8510 " in a 32-bit branch delay slot"));
8511 else
8512 return 0;
8513 }
8514
8515 /* Finish up a macro. Emit warnings as appropriate. */
8516
8517 static void
8518 macro_end (void)
8519 {
8520 /* Relaxation warning flags. */
8521 relax_substateT subtype = 0;
8522
8523 /* Check delay slot size requirements. */
8524 if (mips_macro_warning.delay_slot_length == 2)
8525 subtype |= RELAX_DELAY_SLOT_16BIT;
8526 if (mips_macro_warning.delay_slot_length != 0)
8527 {
8528 if (mips_macro_warning.delay_slot_length
8529 != mips_macro_warning.first_insn_sizes[0])
8530 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8531 if (mips_macro_warning.delay_slot_length
8532 != mips_macro_warning.first_insn_sizes[1])
8533 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8534 }
8535
8536 /* Check instruction count requirements. */
8537 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8538 {
8539 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8540 subtype |= RELAX_SECOND_LONGER;
8541 if (mips_opts.warn_about_macros)
8542 subtype |= RELAX_NOMACRO;
8543 if (mips_macro_warning.delay_slot_p)
8544 subtype |= RELAX_DELAY_SLOT;
8545 }
8546
8547 /* If both alternatives fail to fill a delay slot correctly,
8548 emit the warning now. */
8549 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8550 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8551 {
8552 relax_substateT s;
8553 const char *msg;
8554
8555 s = subtype & (RELAX_DELAY_SLOT_16BIT
8556 | RELAX_DELAY_SLOT_SIZE_FIRST
8557 | RELAX_DELAY_SLOT_SIZE_SECOND);
8558 msg = macro_warning (s);
8559 if (msg != NULL)
8560 as_warn ("%s", msg);
8561 subtype &= ~s;
8562 }
8563
8564 /* If both implementations are longer than 1 instruction, then emit the
8565 warning now. */
8566 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8567 {
8568 relax_substateT s;
8569 const char *msg;
8570
8571 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8572 msg = macro_warning (s);
8573 if (msg != NULL)
8574 as_warn ("%s", msg);
8575 subtype &= ~s;
8576 }
8577
8578 /* If any flags still set, then one implementation might need a warning
8579 and the other either will need one of a different kind or none at all.
8580 Pass any remaining flags over to relaxation. */
8581 if (mips_macro_warning.first_frag != NULL)
8582 mips_macro_warning.first_frag->fr_subtype |= subtype;
8583 }
8584
8585 /* Instruction operand formats used in macros that vary between
8586 standard MIPS and microMIPS code. */
8587
8588 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8589 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8590 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8591 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8592 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8593 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8594 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8595 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8596
8597 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8598 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8599 : cop12_fmt[mips_opts.micromips])
8600 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8601 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8602 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8603 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8604 : mem12_fmt[mips_opts.micromips])
8605 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8606 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8607 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8608
8609 /* Read a macro's relocation codes from *ARGS and store them in *R.
8610 The first argument in *ARGS will be either the code for a single
8611 relocation or -1 followed by the three codes that make up a
8612 composite relocation. */
8613
8614 static void
8615 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8616 {
8617 int i, next;
8618
8619 next = va_arg (*args, int);
8620 if (next >= 0)
8621 r[0] = (bfd_reloc_code_real_type) next;
8622 else
8623 {
8624 for (i = 0; i < 3; i++)
8625 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8626 /* This function is only used for 16-bit relocation fields.
8627 To make the macro code simpler, treat an unrelocated value
8628 in the same way as BFD_RELOC_LO16. */
8629 if (r[0] == BFD_RELOC_UNUSED)
8630 r[0] = BFD_RELOC_LO16;
8631 }
8632 }
8633
8634 /* Build an instruction created by a macro expansion. This is passed
8635 a pointer to the count of instructions created so far, an
8636 expression, the name of the instruction to build, an operand format
8637 string, and corresponding arguments. */
8638
8639 static void
8640 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8641 {
8642 const struct mips_opcode *mo = NULL;
8643 bfd_reloc_code_real_type r[3];
8644 const struct mips_opcode *amo;
8645 const struct mips_operand *operand;
8646 struct hash_control *hash;
8647 struct mips_cl_insn insn;
8648 va_list args;
8649 unsigned int uval;
8650
8651 va_start (args, fmt);
8652
8653 if (mips_opts.mips16)
8654 {
8655 mips16_macro_build (ep, name, fmt, &args);
8656 va_end (args);
8657 return;
8658 }
8659
8660 r[0] = BFD_RELOC_UNUSED;
8661 r[1] = BFD_RELOC_UNUSED;
8662 r[2] = BFD_RELOC_UNUSED;
8663 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8664 amo = (struct mips_opcode *) hash_find (hash, name);
8665 gas_assert (amo);
8666 gas_assert (strcmp (name, amo->name) == 0);
8667
8668 do
8669 {
8670 /* Search until we get a match for NAME. It is assumed here that
8671 macros will never generate MDMX, MIPS-3D, or MT instructions.
8672 We try to match an instruction that fulfills the branch delay
8673 slot instruction length requirement (if any) of the previous
8674 instruction. While doing this we record the first instruction
8675 seen that matches all the other conditions and use it anyway
8676 if the requirement cannot be met; we will issue an appropriate
8677 warning later on. */
8678 if (strcmp (fmt, amo->args) == 0
8679 && amo->pinfo != INSN_MACRO
8680 && is_opcode_valid (amo)
8681 && is_size_valid (amo))
8682 {
8683 if (is_delay_slot_valid (amo))
8684 {
8685 mo = amo;
8686 break;
8687 }
8688 else if (!mo)
8689 mo = amo;
8690 }
8691
8692 ++amo;
8693 gas_assert (amo->name);
8694 }
8695 while (strcmp (name, amo->name) == 0);
8696
8697 gas_assert (mo);
8698 create_insn (&insn, mo);
8699 for (; *fmt; ++fmt)
8700 {
8701 switch (*fmt)
8702 {
8703 case ',':
8704 case '(':
8705 case ')':
8706 case 'z':
8707 break;
8708
8709 case 'i':
8710 case 'j':
8711 macro_read_relocs (&args, r);
8712 gas_assert (*r == BFD_RELOC_GPREL16
8713 || *r == BFD_RELOC_MIPS_HIGHER
8714 || *r == BFD_RELOC_HI16_S
8715 || *r == BFD_RELOC_LO16
8716 || *r == BFD_RELOC_MIPS_GOT_OFST);
8717 break;
8718
8719 case 'o':
8720 macro_read_relocs (&args, r);
8721 break;
8722
8723 case 'u':
8724 macro_read_relocs (&args, r);
8725 gas_assert (ep != NULL
8726 && (ep->X_op == O_constant
8727 || (ep->X_op == O_symbol
8728 && (*r == BFD_RELOC_MIPS_HIGHEST
8729 || *r == BFD_RELOC_HI16_S
8730 || *r == BFD_RELOC_HI16
8731 || *r == BFD_RELOC_GPREL16
8732 || *r == BFD_RELOC_MIPS_GOT_HI16
8733 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8734 break;
8735
8736 case 'p':
8737 gas_assert (ep != NULL);
8738
8739 /*
8740 * This allows macro() to pass an immediate expression for
8741 * creating short branches without creating a symbol.
8742 *
8743 * We don't allow branch relaxation for these branches, as
8744 * they should only appear in ".set nomacro" anyway.
8745 */
8746 if (ep->X_op == O_constant)
8747 {
8748 /* For microMIPS we always use relocations for branches.
8749 So we should not resolve immediate values. */
8750 gas_assert (!mips_opts.micromips);
8751
8752 if ((ep->X_add_number & 3) != 0)
8753 as_bad (_("branch to misaligned address (0x%lx)"),
8754 (unsigned long) ep->X_add_number);
8755 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8756 as_bad (_("branch address range overflow (0x%lx)"),
8757 (unsigned long) ep->X_add_number);
8758 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8759 ep = NULL;
8760 }
8761 else
8762 *r = BFD_RELOC_16_PCREL_S2;
8763 break;
8764
8765 case 'a':
8766 gas_assert (ep != NULL);
8767 *r = BFD_RELOC_MIPS_JMP;
8768 break;
8769
8770 default:
8771 operand = (mips_opts.micromips
8772 ? decode_micromips_operand (fmt)
8773 : decode_mips_operand (fmt));
8774 if (!operand)
8775 abort ();
8776
8777 uval = va_arg (args, int);
8778 if (operand->type == OP_CLO_CLZ_DEST)
8779 uval |= (uval << 5);
8780 insn_insert_operand (&insn, operand, uval);
8781
8782 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8783 ++fmt;
8784 break;
8785 }
8786 }
8787 va_end (args);
8788 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8789
8790 append_insn (&insn, ep, r, TRUE);
8791 }
8792
8793 static void
8794 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8795 va_list *args)
8796 {
8797 struct mips_opcode *mo;
8798 struct mips_cl_insn insn;
8799 const struct mips_operand *operand;
8800 bfd_reloc_code_real_type r[3]
8801 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8802
8803 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8804 gas_assert (mo);
8805 gas_assert (strcmp (name, mo->name) == 0);
8806
8807 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8808 {
8809 ++mo;
8810 gas_assert (mo->name);
8811 gas_assert (strcmp (name, mo->name) == 0);
8812 }
8813
8814 create_insn (&insn, mo);
8815 for (; *fmt; ++fmt)
8816 {
8817 int c;
8818
8819 c = *fmt;
8820 switch (c)
8821 {
8822 case ',':
8823 case '(':
8824 case ')':
8825 break;
8826
8827 case '.':
8828 case 'S':
8829 case 'P':
8830 case 'R':
8831 break;
8832
8833 case '<':
8834 case '5':
8835 case 'F':
8836 case 'H':
8837 case 'W':
8838 case 'D':
8839 case 'j':
8840 case '8':
8841 case 'V':
8842 case 'C':
8843 case 'U':
8844 case 'k':
8845 case 'K':
8846 case 'p':
8847 case 'q':
8848 {
8849 offsetT value;
8850
8851 gas_assert (ep != NULL);
8852
8853 if (ep->X_op != O_constant)
8854 *r = (int) BFD_RELOC_UNUSED + c;
8855 else if (calculate_reloc (*r, ep->X_add_number, &value))
8856 {
8857 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8858 ep = NULL;
8859 *r = BFD_RELOC_UNUSED;
8860 }
8861 }
8862 break;
8863
8864 default:
8865 operand = decode_mips16_operand (c, FALSE);
8866 if (!operand)
8867 abort ();
8868
8869 insn_insert_operand (&insn, operand, va_arg (*args, int));
8870 break;
8871 }
8872 }
8873
8874 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8875
8876 append_insn (&insn, ep, r, TRUE);
8877 }
8878
8879 /*
8880 * Generate a "jalr" instruction with a relocation hint to the called
8881 * function. This occurs in NewABI PIC code.
8882 */
8883 static void
8884 macro_build_jalr (expressionS *ep, int cprestore)
8885 {
8886 static const bfd_reloc_code_real_type jalr_relocs[2]
8887 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8888 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8889 const char *jalr;
8890 char *f = NULL;
8891
8892 if (MIPS_JALR_HINT_P (ep))
8893 {
8894 frag_grow (8);
8895 f = frag_more (0);
8896 }
8897 if (mips_opts.micromips)
8898 {
8899 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8900 ? "jalr" : "jalrs");
8901 if (MIPS_JALR_HINT_P (ep)
8902 || mips_opts.insn32
8903 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8904 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8905 else
8906 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8907 }
8908 else
8909 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8910 if (MIPS_JALR_HINT_P (ep))
8911 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8912 }
8913
8914 /*
8915 * Generate a "lui" instruction.
8916 */
8917 static void
8918 macro_build_lui (expressionS *ep, int regnum)
8919 {
8920 gas_assert (! mips_opts.mips16);
8921
8922 if (ep->X_op != O_constant)
8923 {
8924 gas_assert (ep->X_op == O_symbol);
8925 /* _gp_disp is a special case, used from s_cpload.
8926 __gnu_local_gp is used if mips_no_shared. */
8927 gas_assert (mips_pic == NO_PIC
8928 || (! HAVE_NEWABI
8929 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8930 || (! mips_in_shared
8931 && strcmp (S_GET_NAME (ep->X_add_symbol),
8932 "__gnu_local_gp") == 0));
8933 }
8934
8935 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8936 }
8937
8938 /* Generate a sequence of instructions to do a load or store from a constant
8939 offset off of a base register (breg) into/from a target register (treg),
8940 using AT if necessary. */
8941 static void
8942 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8943 int treg, int breg, int dbl)
8944 {
8945 gas_assert (ep->X_op == O_constant);
8946
8947 /* Sign-extending 32-bit constants makes their handling easier. */
8948 if (!dbl)
8949 normalize_constant_expr (ep);
8950
8951 /* Right now, this routine can only handle signed 32-bit constants. */
8952 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8953 as_warn (_("operand overflow"));
8954
8955 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8956 {
8957 /* Signed 16-bit offset will fit in the op. Easy! */
8958 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8959 }
8960 else
8961 {
8962 /* 32-bit offset, need multiple instructions and AT, like:
8963 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8964 addu $tempreg,$tempreg,$breg
8965 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8966 to handle the complete offset. */
8967 macro_build_lui (ep, AT);
8968 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8969 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8970
8971 if (!mips_opts.at)
8972 as_bad (_("macro used $at after \".set noat\""));
8973 }
8974 }
8975
8976 /* set_at()
8977 * Generates code to set the $at register to true (one)
8978 * if reg is less than the immediate expression.
8979 */
8980 static void
8981 set_at (int reg, int unsignedp)
8982 {
8983 if (imm_expr.X_add_number >= -0x8000
8984 && imm_expr.X_add_number < 0x8000)
8985 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8986 AT, reg, BFD_RELOC_LO16);
8987 else
8988 {
8989 load_register (AT, &imm_expr, GPR_SIZE == 64);
8990 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8991 }
8992 }
8993
8994 /* Count the leading zeroes by performing a binary chop. This is a
8995 bulky bit of source, but performance is a LOT better for the
8996 majority of values than a simple loop to count the bits:
8997 for (lcnt = 0; (lcnt < 32); lcnt++)
8998 if ((v) & (1 << (31 - lcnt)))
8999 break;
9000 However it is not code size friendly, and the gain will drop a bit
9001 on certain cached systems.
9002 */
9003 #define COUNT_TOP_ZEROES(v) \
9004 (((v) & ~0xffff) == 0 \
9005 ? ((v) & ~0xff) == 0 \
9006 ? ((v) & ~0xf) == 0 \
9007 ? ((v) & ~0x3) == 0 \
9008 ? ((v) & ~0x1) == 0 \
9009 ? !(v) \
9010 ? 32 \
9011 : 31 \
9012 : 30 \
9013 : ((v) & ~0x7) == 0 \
9014 ? 29 \
9015 : 28 \
9016 : ((v) & ~0x3f) == 0 \
9017 ? ((v) & ~0x1f) == 0 \
9018 ? 27 \
9019 : 26 \
9020 : ((v) & ~0x7f) == 0 \
9021 ? 25 \
9022 : 24 \
9023 : ((v) & ~0xfff) == 0 \
9024 ? ((v) & ~0x3ff) == 0 \
9025 ? ((v) & ~0x1ff) == 0 \
9026 ? 23 \
9027 : 22 \
9028 : ((v) & ~0x7ff) == 0 \
9029 ? 21 \
9030 : 20 \
9031 : ((v) & ~0x3fff) == 0 \
9032 ? ((v) & ~0x1fff) == 0 \
9033 ? 19 \
9034 : 18 \
9035 : ((v) & ~0x7fff) == 0 \
9036 ? 17 \
9037 : 16 \
9038 : ((v) & ~0xffffff) == 0 \
9039 ? ((v) & ~0xfffff) == 0 \
9040 ? ((v) & ~0x3ffff) == 0 \
9041 ? ((v) & ~0x1ffff) == 0 \
9042 ? 15 \
9043 : 14 \
9044 : ((v) & ~0x7ffff) == 0 \
9045 ? 13 \
9046 : 12 \
9047 : ((v) & ~0x3fffff) == 0 \
9048 ? ((v) & ~0x1fffff) == 0 \
9049 ? 11 \
9050 : 10 \
9051 : ((v) & ~0x7fffff) == 0 \
9052 ? 9 \
9053 : 8 \
9054 : ((v) & ~0xfffffff) == 0 \
9055 ? ((v) & ~0x3ffffff) == 0 \
9056 ? ((v) & ~0x1ffffff) == 0 \
9057 ? 7 \
9058 : 6 \
9059 : ((v) & ~0x7ffffff) == 0 \
9060 ? 5 \
9061 : 4 \
9062 : ((v) & ~0x3fffffff) == 0 \
9063 ? ((v) & ~0x1fffffff) == 0 \
9064 ? 3 \
9065 : 2 \
9066 : ((v) & ~0x7fffffff) == 0 \
9067 ? 1 \
9068 : 0)
9069
9070 /* load_register()
9071 * This routine generates the least number of instructions necessary to load
9072 * an absolute expression value into a register.
9073 */
9074 static void
9075 load_register (int reg, expressionS *ep, int dbl)
9076 {
9077 int freg;
9078 expressionS hi32, lo32;
9079
9080 if (ep->X_op != O_big)
9081 {
9082 gas_assert (ep->X_op == O_constant);
9083
9084 /* Sign-extending 32-bit constants makes their handling easier. */
9085 if (!dbl)
9086 normalize_constant_expr (ep);
9087
9088 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9089 {
9090 /* We can handle 16 bit signed values with an addiu to
9091 $zero. No need to ever use daddiu here, since $zero and
9092 the result are always correct in 32 bit mode. */
9093 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9094 return;
9095 }
9096 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9097 {
9098 /* We can handle 16 bit unsigned values with an ori to
9099 $zero. */
9100 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9101 return;
9102 }
9103 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9104 {
9105 /* 32 bit values require an lui. */
9106 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9107 if ((ep->X_add_number & 0xffff) != 0)
9108 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9109 return;
9110 }
9111 }
9112
9113 /* The value is larger than 32 bits. */
9114
9115 if (!dbl || GPR_SIZE == 32)
9116 {
9117 char value[32];
9118
9119 sprintf_vma (value, ep->X_add_number);
9120 as_bad (_("number (0x%s) larger than 32 bits"), value);
9121 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9122 return;
9123 }
9124
9125 if (ep->X_op != O_big)
9126 {
9127 hi32 = *ep;
9128 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9129 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9130 hi32.X_add_number &= 0xffffffff;
9131 lo32 = *ep;
9132 lo32.X_add_number &= 0xffffffff;
9133 }
9134 else
9135 {
9136 gas_assert (ep->X_add_number > 2);
9137 if (ep->X_add_number == 3)
9138 generic_bignum[3] = 0;
9139 else if (ep->X_add_number > 4)
9140 as_bad (_("number larger than 64 bits"));
9141 lo32.X_op = O_constant;
9142 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9143 hi32.X_op = O_constant;
9144 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9145 }
9146
9147 if (hi32.X_add_number == 0)
9148 freg = 0;
9149 else
9150 {
9151 int shift, bit;
9152 unsigned long hi, lo;
9153
9154 if (hi32.X_add_number == (offsetT) 0xffffffff)
9155 {
9156 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9157 {
9158 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9159 return;
9160 }
9161 if (lo32.X_add_number & 0x80000000)
9162 {
9163 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9164 if (lo32.X_add_number & 0xffff)
9165 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9166 return;
9167 }
9168 }
9169
9170 /* Check for 16bit shifted constant. We know that hi32 is
9171 non-zero, so start the mask on the first bit of the hi32
9172 value. */
9173 shift = 17;
9174 do
9175 {
9176 unsigned long himask, lomask;
9177
9178 if (shift < 32)
9179 {
9180 himask = 0xffff >> (32 - shift);
9181 lomask = (0xffff << shift) & 0xffffffff;
9182 }
9183 else
9184 {
9185 himask = 0xffff << (shift - 32);
9186 lomask = 0;
9187 }
9188 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9189 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9190 {
9191 expressionS tmp;
9192
9193 tmp.X_op = O_constant;
9194 if (shift < 32)
9195 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9196 | (lo32.X_add_number >> shift));
9197 else
9198 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9199 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9200 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9201 reg, reg, (shift >= 32) ? shift - 32 : shift);
9202 return;
9203 }
9204 ++shift;
9205 }
9206 while (shift <= (64 - 16));
9207
9208 /* Find the bit number of the lowest one bit, and store the
9209 shifted value in hi/lo. */
9210 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9211 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9212 if (lo != 0)
9213 {
9214 bit = 0;
9215 while ((lo & 1) == 0)
9216 {
9217 lo >>= 1;
9218 ++bit;
9219 }
9220 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9221 hi >>= bit;
9222 }
9223 else
9224 {
9225 bit = 32;
9226 while ((hi & 1) == 0)
9227 {
9228 hi >>= 1;
9229 ++bit;
9230 }
9231 lo = hi;
9232 hi = 0;
9233 }
9234
9235 /* Optimize if the shifted value is a (power of 2) - 1. */
9236 if ((hi == 0 && ((lo + 1) & lo) == 0)
9237 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9238 {
9239 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9240 if (shift != 0)
9241 {
9242 expressionS tmp;
9243
9244 /* This instruction will set the register to be all
9245 ones. */
9246 tmp.X_op = O_constant;
9247 tmp.X_add_number = (offsetT) -1;
9248 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9249 if (bit != 0)
9250 {
9251 bit += shift;
9252 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9253 reg, reg, (bit >= 32) ? bit - 32 : bit);
9254 }
9255 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9256 reg, reg, (shift >= 32) ? shift - 32 : shift);
9257 return;
9258 }
9259 }
9260
9261 /* Sign extend hi32 before calling load_register, because we can
9262 generally get better code when we load a sign extended value. */
9263 if ((hi32.X_add_number & 0x80000000) != 0)
9264 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9265 load_register (reg, &hi32, 0);
9266 freg = reg;
9267 }
9268 if ((lo32.X_add_number & 0xffff0000) == 0)
9269 {
9270 if (freg != 0)
9271 {
9272 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9273 freg = reg;
9274 }
9275 }
9276 else
9277 {
9278 expressionS mid16;
9279
9280 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9281 {
9282 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9283 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9284 return;
9285 }
9286
9287 if (freg != 0)
9288 {
9289 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9290 freg = reg;
9291 }
9292 mid16 = lo32;
9293 mid16.X_add_number >>= 16;
9294 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9295 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9296 freg = reg;
9297 }
9298 if ((lo32.X_add_number & 0xffff) != 0)
9299 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9300 }
9301
9302 static inline void
9303 load_delay_nop (void)
9304 {
9305 if (!gpr_interlocks)
9306 macro_build (NULL, "nop", "");
9307 }
9308
9309 /* Load an address into a register. */
9310
9311 static void
9312 load_address (int reg, expressionS *ep, int *used_at)
9313 {
9314 if (ep->X_op != O_constant
9315 && ep->X_op != O_symbol)
9316 {
9317 as_bad (_("expression too complex"));
9318 ep->X_op = O_constant;
9319 }
9320
9321 if (ep->X_op == O_constant)
9322 {
9323 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9324 return;
9325 }
9326
9327 if (mips_pic == NO_PIC)
9328 {
9329 /* If this is a reference to a GP relative symbol, we want
9330 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9331 Otherwise we want
9332 lui $reg,<sym> (BFD_RELOC_HI16_S)
9333 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9334 If we have an addend, we always use the latter form.
9335
9336 With 64bit address space and a usable $at we want
9337 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9338 lui $at,<sym> (BFD_RELOC_HI16_S)
9339 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9340 daddiu $at,<sym> (BFD_RELOC_LO16)
9341 dsll32 $reg,0
9342 daddu $reg,$reg,$at
9343
9344 If $at is already in use, we use a path which is suboptimal
9345 on superscalar processors.
9346 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9347 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9348 dsll $reg,16
9349 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9350 dsll $reg,16
9351 daddiu $reg,<sym> (BFD_RELOC_LO16)
9352
9353 For GP relative symbols in 64bit address space we can use
9354 the same sequence as in 32bit address space. */
9355 if (HAVE_64BIT_SYMBOLS)
9356 {
9357 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9358 && !nopic_need_relax (ep->X_add_symbol, 1))
9359 {
9360 relax_start (ep->X_add_symbol);
9361 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9362 mips_gp_register, BFD_RELOC_GPREL16);
9363 relax_switch ();
9364 }
9365
9366 if (*used_at == 0 && mips_opts.at)
9367 {
9368 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9369 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9370 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9371 BFD_RELOC_MIPS_HIGHER);
9372 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9373 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9374 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9375 *used_at = 1;
9376 }
9377 else
9378 {
9379 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9380 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9381 BFD_RELOC_MIPS_HIGHER);
9382 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9383 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9384 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9385 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9386 }
9387
9388 if (mips_relax.sequence)
9389 relax_end ();
9390 }
9391 else
9392 {
9393 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9394 && !nopic_need_relax (ep->X_add_symbol, 1))
9395 {
9396 relax_start (ep->X_add_symbol);
9397 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9398 mips_gp_register, BFD_RELOC_GPREL16);
9399 relax_switch ();
9400 }
9401 macro_build_lui (ep, reg);
9402 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9403 reg, reg, BFD_RELOC_LO16);
9404 if (mips_relax.sequence)
9405 relax_end ();
9406 }
9407 }
9408 else if (!mips_big_got)
9409 {
9410 expressionS ex;
9411
9412 /* If this is a reference to an external symbol, we want
9413 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9414 Otherwise we want
9415 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9416 nop
9417 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9418 If there is a constant, it must be added in after.
9419
9420 If we have NewABI, we want
9421 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9422 unless we're referencing a global symbol with a non-zero
9423 offset, in which case cst must be added separately. */
9424 if (HAVE_NEWABI)
9425 {
9426 if (ep->X_add_number)
9427 {
9428 ex.X_add_number = ep->X_add_number;
9429 ep->X_add_number = 0;
9430 relax_start (ep->X_add_symbol);
9431 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9432 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9433 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9434 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9435 ex.X_op = O_constant;
9436 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9437 reg, reg, BFD_RELOC_LO16);
9438 ep->X_add_number = ex.X_add_number;
9439 relax_switch ();
9440 }
9441 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9442 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9443 if (mips_relax.sequence)
9444 relax_end ();
9445 }
9446 else
9447 {
9448 ex.X_add_number = ep->X_add_number;
9449 ep->X_add_number = 0;
9450 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9451 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9452 load_delay_nop ();
9453 relax_start (ep->X_add_symbol);
9454 relax_switch ();
9455 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9456 BFD_RELOC_LO16);
9457 relax_end ();
9458
9459 if (ex.X_add_number != 0)
9460 {
9461 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9462 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9463 ex.X_op = O_constant;
9464 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9465 reg, reg, BFD_RELOC_LO16);
9466 }
9467 }
9468 }
9469 else if (mips_big_got)
9470 {
9471 expressionS ex;
9472
9473 /* This is the large GOT case. If this is a reference to an
9474 external symbol, we want
9475 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9476 addu $reg,$reg,$gp
9477 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9478
9479 Otherwise, for a reference to a local symbol in old ABI, we want
9480 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9481 nop
9482 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9483 If there is a constant, it must be added in after.
9484
9485 In the NewABI, for local symbols, with or without offsets, we want:
9486 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9487 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9488 */
9489 if (HAVE_NEWABI)
9490 {
9491 ex.X_add_number = ep->X_add_number;
9492 ep->X_add_number = 0;
9493 relax_start (ep->X_add_symbol);
9494 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9495 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9496 reg, reg, mips_gp_register);
9497 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9498 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9499 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9500 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9501 else if (ex.X_add_number)
9502 {
9503 ex.X_op = O_constant;
9504 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9505 BFD_RELOC_LO16);
9506 }
9507
9508 ep->X_add_number = ex.X_add_number;
9509 relax_switch ();
9510 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9511 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9512 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9513 BFD_RELOC_MIPS_GOT_OFST);
9514 relax_end ();
9515 }
9516 else
9517 {
9518 ex.X_add_number = ep->X_add_number;
9519 ep->X_add_number = 0;
9520 relax_start (ep->X_add_symbol);
9521 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9522 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9523 reg, reg, mips_gp_register);
9524 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9525 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9526 relax_switch ();
9527 if (reg_needs_delay (mips_gp_register))
9528 {
9529 /* We need a nop before loading from $gp. This special
9530 check is required because the lui which starts the main
9531 instruction stream does not refer to $gp, and so will not
9532 insert the nop which may be required. */
9533 macro_build (NULL, "nop", "");
9534 }
9535 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9536 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9537 load_delay_nop ();
9538 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9539 BFD_RELOC_LO16);
9540 relax_end ();
9541
9542 if (ex.X_add_number != 0)
9543 {
9544 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9545 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9546 ex.X_op = O_constant;
9547 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9548 BFD_RELOC_LO16);
9549 }
9550 }
9551 }
9552 else
9553 abort ();
9554
9555 if (!mips_opts.at && *used_at == 1)
9556 as_bad (_("macro used $at after \".set noat\""));
9557 }
9558
9559 /* Move the contents of register SOURCE into register DEST. */
9560
9561 static void
9562 move_register (int dest, int source)
9563 {
9564 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9565 instruction specifically requires a 32-bit one. */
9566 if (mips_opts.micromips
9567 && !mips_opts.insn32
9568 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9569 macro_build (NULL, "move", "mp,mj", dest, source);
9570 else
9571 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9572 }
9573
9574 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9575 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9576 The two alternatives are:
9577
9578 Global symbol Local symbol
9579 ------------- ------------
9580 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9581 ... ...
9582 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9583
9584 load_got_offset emits the first instruction and add_got_offset
9585 emits the second for a 16-bit offset or add_got_offset_hilo emits
9586 a sequence to add a 32-bit offset using a scratch register. */
9587
9588 static void
9589 load_got_offset (int dest, expressionS *local)
9590 {
9591 expressionS global;
9592
9593 global = *local;
9594 global.X_add_number = 0;
9595
9596 relax_start (local->X_add_symbol);
9597 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9598 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9599 relax_switch ();
9600 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9601 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9602 relax_end ();
9603 }
9604
9605 static void
9606 add_got_offset (int dest, expressionS *local)
9607 {
9608 expressionS global;
9609
9610 global.X_op = O_constant;
9611 global.X_op_symbol = NULL;
9612 global.X_add_symbol = NULL;
9613 global.X_add_number = local->X_add_number;
9614
9615 relax_start (local->X_add_symbol);
9616 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9617 dest, dest, BFD_RELOC_LO16);
9618 relax_switch ();
9619 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9620 relax_end ();
9621 }
9622
9623 static void
9624 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9625 {
9626 expressionS global;
9627 int hold_mips_optimize;
9628
9629 global.X_op = O_constant;
9630 global.X_op_symbol = NULL;
9631 global.X_add_symbol = NULL;
9632 global.X_add_number = local->X_add_number;
9633
9634 relax_start (local->X_add_symbol);
9635 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9636 relax_switch ();
9637 /* Set mips_optimize around the lui instruction to avoid
9638 inserting an unnecessary nop after the lw. */
9639 hold_mips_optimize = mips_optimize;
9640 mips_optimize = 2;
9641 macro_build_lui (&global, tmp);
9642 mips_optimize = hold_mips_optimize;
9643 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9644 relax_end ();
9645
9646 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9647 }
9648
9649 /* Emit a sequence of instructions to emulate a branch likely operation.
9650 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9651 is its complementing branch with the original condition negated.
9652 CALL is set if the original branch specified the link operation.
9653 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9654
9655 Code like this is produced in the noreorder mode:
9656
9657 BRNEG <args>, 1f
9658 nop
9659 b <sym>
9660 delay slot (executed only if branch taken)
9661 1:
9662
9663 or, if CALL is set:
9664
9665 BRNEG <args>, 1f
9666 nop
9667 bal <sym>
9668 delay slot (executed only if branch taken)
9669 1:
9670
9671 In the reorder mode the delay slot would be filled with a nop anyway,
9672 so code produced is simply:
9673
9674 BR <args>, <sym>
9675 nop
9676
9677 This function is used when producing code for the microMIPS ASE that
9678 does not implement branch likely instructions in hardware. */
9679
9680 static void
9681 macro_build_branch_likely (const char *br, const char *brneg,
9682 int call, expressionS *ep, const char *fmt,
9683 unsigned int sreg, unsigned int treg)
9684 {
9685 int noreorder = mips_opts.noreorder;
9686 expressionS expr1;
9687
9688 gas_assert (mips_opts.micromips);
9689 start_noreorder ();
9690 if (noreorder)
9691 {
9692 micromips_label_expr (&expr1);
9693 macro_build (&expr1, brneg, fmt, sreg, treg);
9694 macro_build (NULL, "nop", "");
9695 macro_build (ep, call ? "bal" : "b", "p");
9696
9697 /* Set to true so that append_insn adds a label. */
9698 emit_branch_likely_macro = TRUE;
9699 }
9700 else
9701 {
9702 macro_build (ep, br, fmt, sreg, treg);
9703 macro_build (NULL, "nop", "");
9704 }
9705 end_noreorder ();
9706 }
9707
9708 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9709 the condition code tested. EP specifies the branch target. */
9710
9711 static void
9712 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9713 {
9714 const int call = 0;
9715 const char *brneg;
9716 const char *br;
9717
9718 switch (type)
9719 {
9720 case M_BC1FL:
9721 br = "bc1f";
9722 brneg = "bc1t";
9723 break;
9724 case M_BC1TL:
9725 br = "bc1t";
9726 brneg = "bc1f";
9727 break;
9728 case M_BC2FL:
9729 br = "bc2f";
9730 brneg = "bc2t";
9731 break;
9732 case M_BC2TL:
9733 br = "bc2t";
9734 brneg = "bc2f";
9735 break;
9736 default:
9737 abort ();
9738 }
9739 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9740 }
9741
9742 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9743 the register tested. EP specifies the branch target. */
9744
9745 static void
9746 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9747 {
9748 const char *brneg = NULL;
9749 const char *br;
9750 int call = 0;
9751
9752 switch (type)
9753 {
9754 case M_BGEZ:
9755 br = "bgez";
9756 break;
9757 case M_BGEZL:
9758 br = mips_opts.micromips ? "bgez" : "bgezl";
9759 brneg = "bltz";
9760 break;
9761 case M_BGEZALL:
9762 gas_assert (mips_opts.micromips);
9763 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9764 brneg = "bltz";
9765 call = 1;
9766 break;
9767 case M_BGTZ:
9768 br = "bgtz";
9769 break;
9770 case M_BGTZL:
9771 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9772 brneg = "blez";
9773 break;
9774 case M_BLEZ:
9775 br = "blez";
9776 break;
9777 case M_BLEZL:
9778 br = mips_opts.micromips ? "blez" : "blezl";
9779 brneg = "bgtz";
9780 break;
9781 case M_BLTZ:
9782 br = "bltz";
9783 break;
9784 case M_BLTZL:
9785 br = mips_opts.micromips ? "bltz" : "bltzl";
9786 brneg = "bgez";
9787 break;
9788 case M_BLTZALL:
9789 gas_assert (mips_opts.micromips);
9790 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9791 brneg = "bgez";
9792 call = 1;
9793 break;
9794 default:
9795 abort ();
9796 }
9797 if (mips_opts.micromips && brneg)
9798 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9799 else
9800 macro_build (ep, br, "s,p", sreg);
9801 }
9802
9803 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9804 TREG as the registers tested. EP specifies the branch target. */
9805
9806 static void
9807 macro_build_branch_rsrt (int type, expressionS *ep,
9808 unsigned int sreg, unsigned int treg)
9809 {
9810 const char *brneg = NULL;
9811 const int call = 0;
9812 const char *br;
9813
9814 switch (type)
9815 {
9816 case M_BEQ:
9817 case M_BEQ_I:
9818 br = "beq";
9819 break;
9820 case M_BEQL:
9821 case M_BEQL_I:
9822 br = mips_opts.micromips ? "beq" : "beql";
9823 brneg = "bne";
9824 break;
9825 case M_BNE:
9826 case M_BNE_I:
9827 br = "bne";
9828 break;
9829 case M_BNEL:
9830 case M_BNEL_I:
9831 br = mips_opts.micromips ? "bne" : "bnel";
9832 brneg = "beq";
9833 break;
9834 default:
9835 abort ();
9836 }
9837 if (mips_opts.micromips && brneg)
9838 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9839 else
9840 macro_build (ep, br, "s,t,p", sreg, treg);
9841 }
9842
9843 /* Return the high part that should be loaded in order to make the low
9844 part of VALUE accessible using an offset of OFFBITS bits. */
9845
9846 static offsetT
9847 offset_high_part (offsetT value, unsigned int offbits)
9848 {
9849 offsetT bias;
9850 addressT low_mask;
9851
9852 if (offbits == 0)
9853 return value;
9854 bias = 1 << (offbits - 1);
9855 low_mask = bias * 2 - 1;
9856 return (value + bias) & ~low_mask;
9857 }
9858
9859 /* Return true if the value stored in offset_expr and offset_reloc
9860 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9861 amount that the caller wants to add without inducing overflow
9862 and ALIGN is the known alignment of the value in bytes. */
9863
9864 static bfd_boolean
9865 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9866 {
9867 if (offbits == 16)
9868 {
9869 /* Accept any relocation operator if overflow isn't a concern. */
9870 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9871 return TRUE;
9872
9873 /* These relocations are guaranteed not to overflow in correct links. */
9874 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9875 || gprel16_reloc_p (*offset_reloc))
9876 return TRUE;
9877 }
9878 if (offset_expr.X_op == O_constant
9879 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9880 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9881 return TRUE;
9882 return FALSE;
9883 }
9884
9885 /*
9886 * Build macros
9887 * This routine implements the seemingly endless macro or synthesized
9888 * instructions and addressing modes in the mips assembly language. Many
9889 * of these macros are simple and are similar to each other. These could
9890 * probably be handled by some kind of table or grammar approach instead of
9891 * this verbose method. Others are not simple macros but are more like
9892 * optimizing code generation.
9893 * One interesting optimization is when several store macros appear
9894 * consecutively that would load AT with the upper half of the same address.
9895 * The ensuing load upper instructions are omitted. This implies some kind
9896 * of global optimization. We currently only optimize within a single macro.
9897 * For many of the load and store macros if the address is specified as a
9898 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9899 * first load register 'at' with zero and use it as the base register. The
9900 * mips assembler simply uses register $zero. Just one tiny optimization
9901 * we're missing.
9902 */
9903 static void
9904 macro (struct mips_cl_insn *ip, char *str)
9905 {
9906 const struct mips_operand_array *operands;
9907 unsigned int breg, i;
9908 unsigned int tempreg;
9909 int mask;
9910 int used_at = 0;
9911 expressionS label_expr;
9912 expressionS expr1;
9913 expressionS *ep;
9914 const char *s;
9915 const char *s2;
9916 const char *fmt;
9917 int likely = 0;
9918 int coproc = 0;
9919 int offbits = 16;
9920 int call = 0;
9921 int jals = 0;
9922 int dbl = 0;
9923 int imm = 0;
9924 int ust = 0;
9925 int lp = 0;
9926 bfd_boolean large_offset;
9927 int off;
9928 int hold_mips_optimize;
9929 unsigned int align;
9930 unsigned int op[MAX_OPERANDS];
9931
9932 gas_assert (! mips_opts.mips16);
9933
9934 operands = insn_operands (ip);
9935 for (i = 0; i < MAX_OPERANDS; i++)
9936 if (operands->operand[i])
9937 op[i] = insn_extract_operand (ip, operands->operand[i]);
9938 else
9939 op[i] = -1;
9940
9941 mask = ip->insn_mo->mask;
9942
9943 label_expr.X_op = O_constant;
9944 label_expr.X_op_symbol = NULL;
9945 label_expr.X_add_symbol = NULL;
9946 label_expr.X_add_number = 0;
9947
9948 expr1.X_op = O_constant;
9949 expr1.X_op_symbol = NULL;
9950 expr1.X_add_symbol = NULL;
9951 expr1.X_add_number = 1;
9952 align = 1;
9953
9954 switch (mask)
9955 {
9956 case M_DABS:
9957 dbl = 1;
9958 /* Fall through. */
9959 case M_ABS:
9960 /* bgez $a0,1f
9961 move v0,$a0
9962 sub v0,$zero,$a0
9963 1:
9964 */
9965
9966 start_noreorder ();
9967
9968 if (mips_opts.micromips)
9969 micromips_label_expr (&label_expr);
9970 else
9971 label_expr.X_add_number = 8;
9972 macro_build (&label_expr, "bgez", "s,p", op[1]);
9973 if (op[0] == op[1])
9974 macro_build (NULL, "nop", "");
9975 else
9976 move_register (op[0], op[1]);
9977 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9978 if (mips_opts.micromips)
9979 micromips_add_label ();
9980
9981 end_noreorder ();
9982 break;
9983
9984 case M_ADD_I:
9985 s = "addi";
9986 s2 = "add";
9987 goto do_addi;
9988 case M_ADDU_I:
9989 s = "addiu";
9990 s2 = "addu";
9991 goto do_addi;
9992 case M_DADD_I:
9993 dbl = 1;
9994 s = "daddi";
9995 s2 = "dadd";
9996 if (!mips_opts.micromips)
9997 goto do_addi;
9998 if (imm_expr.X_add_number >= -0x200
9999 && imm_expr.X_add_number < 0x200)
10000 {
10001 macro_build (NULL, s, "t,r,.", op[0], op[1],
10002 (int) imm_expr.X_add_number);
10003 break;
10004 }
10005 goto do_addi_i;
10006 case M_DADDU_I:
10007 dbl = 1;
10008 s = "daddiu";
10009 s2 = "daddu";
10010 do_addi:
10011 if (imm_expr.X_add_number >= -0x8000
10012 && imm_expr.X_add_number < 0x8000)
10013 {
10014 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
10015 break;
10016 }
10017 do_addi_i:
10018 used_at = 1;
10019 load_register (AT, &imm_expr, dbl);
10020 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10021 break;
10022
10023 case M_AND_I:
10024 s = "andi";
10025 s2 = "and";
10026 goto do_bit;
10027 case M_OR_I:
10028 s = "ori";
10029 s2 = "or";
10030 goto do_bit;
10031 case M_NOR_I:
10032 s = "";
10033 s2 = "nor";
10034 goto do_bit;
10035 case M_XOR_I:
10036 s = "xori";
10037 s2 = "xor";
10038 do_bit:
10039 if (imm_expr.X_add_number >= 0
10040 && imm_expr.X_add_number < 0x10000)
10041 {
10042 if (mask != M_NOR_I)
10043 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10044 else
10045 {
10046 macro_build (&imm_expr, "ori", "t,r,i",
10047 op[0], op[1], BFD_RELOC_LO16);
10048 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10049 }
10050 break;
10051 }
10052
10053 used_at = 1;
10054 load_register (AT, &imm_expr, GPR_SIZE == 64);
10055 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10056 break;
10057
10058 case M_BALIGN:
10059 switch (imm_expr.X_add_number)
10060 {
10061 case 0:
10062 macro_build (NULL, "nop", "");
10063 break;
10064 case 2:
10065 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10066 break;
10067 case 1:
10068 case 3:
10069 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10070 (int) imm_expr.X_add_number);
10071 break;
10072 default:
10073 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10074 (unsigned long) imm_expr.X_add_number);
10075 break;
10076 }
10077 break;
10078
10079 case M_BC1FL:
10080 case M_BC1TL:
10081 case M_BC2FL:
10082 case M_BC2TL:
10083 gas_assert (mips_opts.micromips);
10084 macro_build_branch_ccl (mask, &offset_expr,
10085 EXTRACT_OPERAND (1, BCC, *ip));
10086 break;
10087
10088 case M_BEQ_I:
10089 case M_BEQL_I:
10090 case M_BNE_I:
10091 case M_BNEL_I:
10092 if (imm_expr.X_add_number == 0)
10093 op[1] = 0;
10094 else
10095 {
10096 op[1] = AT;
10097 used_at = 1;
10098 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10099 }
10100 /* Fall through. */
10101 case M_BEQL:
10102 case M_BNEL:
10103 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10104 break;
10105
10106 case M_BGEL:
10107 likely = 1;
10108 /* Fall through. */
10109 case M_BGE:
10110 if (op[1] == 0)
10111 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10112 else if (op[0] == 0)
10113 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10114 else
10115 {
10116 used_at = 1;
10117 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10118 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10119 &offset_expr, AT, ZERO);
10120 }
10121 break;
10122
10123 case M_BGEZL:
10124 case M_BGEZALL:
10125 case M_BGTZL:
10126 case M_BLEZL:
10127 case M_BLTZL:
10128 case M_BLTZALL:
10129 macro_build_branch_rs (mask, &offset_expr, op[0]);
10130 break;
10131
10132 case M_BGTL_I:
10133 likely = 1;
10134 /* Fall through. */
10135 case M_BGT_I:
10136 /* Check for > max integer. */
10137 if (imm_expr.X_add_number >= GPR_SMAX)
10138 {
10139 do_false:
10140 /* Result is always false. */
10141 if (! likely)
10142 macro_build (NULL, "nop", "");
10143 else
10144 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10145 break;
10146 }
10147 ++imm_expr.X_add_number;
10148 /* FALLTHROUGH */
10149 case M_BGE_I:
10150 case M_BGEL_I:
10151 if (mask == M_BGEL_I)
10152 likely = 1;
10153 if (imm_expr.X_add_number == 0)
10154 {
10155 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10156 &offset_expr, op[0]);
10157 break;
10158 }
10159 if (imm_expr.X_add_number == 1)
10160 {
10161 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10162 &offset_expr, op[0]);
10163 break;
10164 }
10165 if (imm_expr.X_add_number <= GPR_SMIN)
10166 {
10167 do_true:
10168 /* result is always true */
10169 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10170 macro_build (&offset_expr, "b", "p");
10171 break;
10172 }
10173 used_at = 1;
10174 set_at (op[0], 0);
10175 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10176 &offset_expr, AT, ZERO);
10177 break;
10178
10179 case M_BGEUL:
10180 likely = 1;
10181 /* Fall through. */
10182 case M_BGEU:
10183 if (op[1] == 0)
10184 goto do_true;
10185 else if (op[0] == 0)
10186 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10187 &offset_expr, ZERO, op[1]);
10188 else
10189 {
10190 used_at = 1;
10191 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10192 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10193 &offset_expr, AT, ZERO);
10194 }
10195 break;
10196
10197 case M_BGTUL_I:
10198 likely = 1;
10199 /* Fall through. */
10200 case M_BGTU_I:
10201 if (op[0] == 0
10202 || (GPR_SIZE == 32
10203 && imm_expr.X_add_number == -1))
10204 goto do_false;
10205 ++imm_expr.X_add_number;
10206 /* FALLTHROUGH */
10207 case M_BGEU_I:
10208 case M_BGEUL_I:
10209 if (mask == M_BGEUL_I)
10210 likely = 1;
10211 if (imm_expr.X_add_number == 0)
10212 goto do_true;
10213 else if (imm_expr.X_add_number == 1)
10214 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10215 &offset_expr, op[0], ZERO);
10216 else
10217 {
10218 used_at = 1;
10219 set_at (op[0], 1);
10220 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10221 &offset_expr, AT, ZERO);
10222 }
10223 break;
10224
10225 case M_BGTL:
10226 likely = 1;
10227 /* Fall through. */
10228 case M_BGT:
10229 if (op[1] == 0)
10230 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10231 else if (op[0] == 0)
10232 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10233 else
10234 {
10235 used_at = 1;
10236 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10237 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10238 &offset_expr, AT, ZERO);
10239 }
10240 break;
10241
10242 case M_BGTUL:
10243 likely = 1;
10244 /* Fall through. */
10245 case M_BGTU:
10246 if (op[1] == 0)
10247 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10248 &offset_expr, op[0], ZERO);
10249 else if (op[0] == 0)
10250 goto do_false;
10251 else
10252 {
10253 used_at = 1;
10254 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10255 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10256 &offset_expr, AT, ZERO);
10257 }
10258 break;
10259
10260 case M_BLEL:
10261 likely = 1;
10262 /* Fall through. */
10263 case M_BLE:
10264 if (op[1] == 0)
10265 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10266 else if (op[0] == 0)
10267 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10268 else
10269 {
10270 used_at = 1;
10271 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10272 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10273 &offset_expr, AT, ZERO);
10274 }
10275 break;
10276
10277 case M_BLEL_I:
10278 likely = 1;
10279 /* Fall through. */
10280 case M_BLE_I:
10281 if (imm_expr.X_add_number >= GPR_SMAX)
10282 goto do_true;
10283 ++imm_expr.X_add_number;
10284 /* FALLTHROUGH */
10285 case M_BLT_I:
10286 case M_BLTL_I:
10287 if (mask == M_BLTL_I)
10288 likely = 1;
10289 if (imm_expr.X_add_number == 0)
10290 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10291 else if (imm_expr.X_add_number == 1)
10292 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10293 else
10294 {
10295 used_at = 1;
10296 set_at (op[0], 0);
10297 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10298 &offset_expr, AT, ZERO);
10299 }
10300 break;
10301
10302 case M_BLEUL:
10303 likely = 1;
10304 /* Fall through. */
10305 case M_BLEU:
10306 if (op[1] == 0)
10307 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10308 &offset_expr, op[0], ZERO);
10309 else if (op[0] == 0)
10310 goto do_true;
10311 else
10312 {
10313 used_at = 1;
10314 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10315 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10316 &offset_expr, AT, ZERO);
10317 }
10318 break;
10319
10320 case M_BLEUL_I:
10321 likely = 1;
10322 /* Fall through. */
10323 case M_BLEU_I:
10324 if (op[0] == 0
10325 || (GPR_SIZE == 32
10326 && imm_expr.X_add_number == -1))
10327 goto do_true;
10328 ++imm_expr.X_add_number;
10329 /* FALLTHROUGH */
10330 case M_BLTU_I:
10331 case M_BLTUL_I:
10332 if (mask == M_BLTUL_I)
10333 likely = 1;
10334 if (imm_expr.X_add_number == 0)
10335 goto do_false;
10336 else if (imm_expr.X_add_number == 1)
10337 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10338 &offset_expr, op[0], ZERO);
10339 else
10340 {
10341 used_at = 1;
10342 set_at (op[0], 1);
10343 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10344 &offset_expr, AT, ZERO);
10345 }
10346 break;
10347
10348 case M_BLTL:
10349 likely = 1;
10350 /* Fall through. */
10351 case M_BLT:
10352 if (op[1] == 0)
10353 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10354 else if (op[0] == 0)
10355 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10356 else
10357 {
10358 used_at = 1;
10359 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10360 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10361 &offset_expr, AT, ZERO);
10362 }
10363 break;
10364
10365 case M_BLTUL:
10366 likely = 1;
10367 /* Fall through. */
10368 case M_BLTU:
10369 if (op[1] == 0)
10370 goto do_false;
10371 else if (op[0] == 0)
10372 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10373 &offset_expr, ZERO, op[1]);
10374 else
10375 {
10376 used_at = 1;
10377 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10378 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10379 &offset_expr, AT, ZERO);
10380 }
10381 break;
10382
10383 case M_DDIV_3:
10384 dbl = 1;
10385 /* Fall through. */
10386 case M_DIV_3:
10387 s = "mflo";
10388 goto do_div3;
10389 case M_DREM_3:
10390 dbl = 1;
10391 /* Fall through. */
10392 case M_REM_3:
10393 s = "mfhi";
10394 do_div3:
10395 if (op[2] == 0)
10396 {
10397 as_warn (_("divide by zero"));
10398 if (mips_trap)
10399 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10400 else
10401 macro_build (NULL, "break", BRK_FMT, 7);
10402 break;
10403 }
10404
10405 start_noreorder ();
10406 if (mips_trap)
10407 {
10408 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10409 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10410 }
10411 else
10412 {
10413 if (mips_opts.micromips)
10414 micromips_label_expr (&label_expr);
10415 else
10416 label_expr.X_add_number = 8;
10417 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10418 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10419 macro_build (NULL, "break", BRK_FMT, 7);
10420 if (mips_opts.micromips)
10421 micromips_add_label ();
10422 }
10423 expr1.X_add_number = -1;
10424 used_at = 1;
10425 load_register (AT, &expr1, dbl);
10426 if (mips_opts.micromips)
10427 micromips_label_expr (&label_expr);
10428 else
10429 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10430 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10431 if (dbl)
10432 {
10433 expr1.X_add_number = 1;
10434 load_register (AT, &expr1, dbl);
10435 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10436 }
10437 else
10438 {
10439 expr1.X_add_number = 0x80000000;
10440 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10441 }
10442 if (mips_trap)
10443 {
10444 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10445 /* We want to close the noreorder block as soon as possible, so
10446 that later insns are available for delay slot filling. */
10447 end_noreorder ();
10448 }
10449 else
10450 {
10451 if (mips_opts.micromips)
10452 micromips_label_expr (&label_expr);
10453 else
10454 label_expr.X_add_number = 8;
10455 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10456 macro_build (NULL, "nop", "");
10457
10458 /* We want to close the noreorder block as soon as possible, so
10459 that later insns are available for delay slot filling. */
10460 end_noreorder ();
10461
10462 macro_build (NULL, "break", BRK_FMT, 6);
10463 }
10464 if (mips_opts.micromips)
10465 micromips_add_label ();
10466 macro_build (NULL, s, MFHL_FMT, op[0]);
10467 break;
10468
10469 case M_DIV_3I:
10470 s = "div";
10471 s2 = "mflo";
10472 goto do_divi;
10473 case M_DIVU_3I:
10474 s = "divu";
10475 s2 = "mflo";
10476 goto do_divi;
10477 case M_REM_3I:
10478 s = "div";
10479 s2 = "mfhi";
10480 goto do_divi;
10481 case M_REMU_3I:
10482 s = "divu";
10483 s2 = "mfhi";
10484 goto do_divi;
10485 case M_DDIV_3I:
10486 dbl = 1;
10487 s = "ddiv";
10488 s2 = "mflo";
10489 goto do_divi;
10490 case M_DDIVU_3I:
10491 dbl = 1;
10492 s = "ddivu";
10493 s2 = "mflo";
10494 goto do_divi;
10495 case M_DREM_3I:
10496 dbl = 1;
10497 s = "ddiv";
10498 s2 = "mfhi";
10499 goto do_divi;
10500 case M_DREMU_3I:
10501 dbl = 1;
10502 s = "ddivu";
10503 s2 = "mfhi";
10504 do_divi:
10505 if (imm_expr.X_add_number == 0)
10506 {
10507 as_warn (_("divide by zero"));
10508 if (mips_trap)
10509 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10510 else
10511 macro_build (NULL, "break", BRK_FMT, 7);
10512 break;
10513 }
10514 if (imm_expr.X_add_number == 1)
10515 {
10516 if (strcmp (s2, "mflo") == 0)
10517 move_register (op[0], op[1]);
10518 else
10519 move_register (op[0], ZERO);
10520 break;
10521 }
10522 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10523 {
10524 if (strcmp (s2, "mflo") == 0)
10525 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10526 else
10527 move_register (op[0], ZERO);
10528 break;
10529 }
10530
10531 used_at = 1;
10532 load_register (AT, &imm_expr, dbl);
10533 macro_build (NULL, s, "z,s,t", op[1], AT);
10534 macro_build (NULL, s2, MFHL_FMT, op[0]);
10535 break;
10536
10537 case M_DIVU_3:
10538 s = "divu";
10539 s2 = "mflo";
10540 goto do_divu3;
10541 case M_REMU_3:
10542 s = "divu";
10543 s2 = "mfhi";
10544 goto do_divu3;
10545 case M_DDIVU_3:
10546 s = "ddivu";
10547 s2 = "mflo";
10548 goto do_divu3;
10549 case M_DREMU_3:
10550 s = "ddivu";
10551 s2 = "mfhi";
10552 do_divu3:
10553 start_noreorder ();
10554 if (mips_trap)
10555 {
10556 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10557 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10558 /* We want to close the noreorder block as soon as possible, so
10559 that later insns are available for delay slot filling. */
10560 end_noreorder ();
10561 }
10562 else
10563 {
10564 if (mips_opts.micromips)
10565 micromips_label_expr (&label_expr);
10566 else
10567 label_expr.X_add_number = 8;
10568 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10569 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10570
10571 /* We want to close the noreorder block as soon as possible, so
10572 that later insns are available for delay slot filling. */
10573 end_noreorder ();
10574 macro_build (NULL, "break", BRK_FMT, 7);
10575 if (mips_opts.micromips)
10576 micromips_add_label ();
10577 }
10578 macro_build (NULL, s2, MFHL_FMT, op[0]);
10579 break;
10580
10581 case M_DLCA_AB:
10582 dbl = 1;
10583 /* Fall through. */
10584 case M_LCA_AB:
10585 call = 1;
10586 goto do_la;
10587 case M_DLA_AB:
10588 dbl = 1;
10589 /* Fall through. */
10590 case M_LA_AB:
10591 do_la:
10592 /* Load the address of a symbol into a register. If breg is not
10593 zero, we then add a base register to it. */
10594
10595 breg = op[2];
10596 if (dbl && GPR_SIZE == 32)
10597 as_warn (_("dla used to load 32-bit register; recommend using la "
10598 "instead"));
10599
10600 if (!dbl && HAVE_64BIT_OBJECTS)
10601 as_warn (_("la used to load 64-bit address; recommend using dla "
10602 "instead"));
10603
10604 if (small_offset_p (0, align, 16))
10605 {
10606 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10607 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10608 break;
10609 }
10610
10611 if (mips_opts.at && (op[0] == breg))
10612 {
10613 tempreg = AT;
10614 used_at = 1;
10615 }
10616 else
10617 tempreg = op[0];
10618
10619 if (offset_expr.X_op != O_symbol
10620 && offset_expr.X_op != O_constant)
10621 {
10622 as_bad (_("expression too complex"));
10623 offset_expr.X_op = O_constant;
10624 }
10625
10626 if (offset_expr.X_op == O_constant)
10627 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10628 else if (mips_pic == NO_PIC)
10629 {
10630 /* If this is a reference to a GP relative symbol, we want
10631 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10632 Otherwise we want
10633 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10634 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10635 If we have a constant, we need two instructions anyhow,
10636 so we may as well always use the latter form.
10637
10638 With 64bit address space and a usable $at we want
10639 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10640 lui $at,<sym> (BFD_RELOC_HI16_S)
10641 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10642 daddiu $at,<sym> (BFD_RELOC_LO16)
10643 dsll32 $tempreg,0
10644 daddu $tempreg,$tempreg,$at
10645
10646 If $at is already in use, we use a path which is suboptimal
10647 on superscalar processors.
10648 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10649 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10650 dsll $tempreg,16
10651 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10652 dsll $tempreg,16
10653 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10654
10655 For GP relative symbols in 64bit address space we can use
10656 the same sequence as in 32bit address space. */
10657 if (HAVE_64BIT_SYMBOLS)
10658 {
10659 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10660 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10661 {
10662 relax_start (offset_expr.X_add_symbol);
10663 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10664 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10665 relax_switch ();
10666 }
10667
10668 if (used_at == 0 && mips_opts.at)
10669 {
10670 macro_build (&offset_expr, "lui", LUI_FMT,
10671 tempreg, BFD_RELOC_MIPS_HIGHEST);
10672 macro_build (&offset_expr, "lui", LUI_FMT,
10673 AT, BFD_RELOC_HI16_S);
10674 macro_build (&offset_expr, "daddiu", "t,r,j",
10675 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10676 macro_build (&offset_expr, "daddiu", "t,r,j",
10677 AT, AT, BFD_RELOC_LO16);
10678 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10679 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10680 used_at = 1;
10681 }
10682 else
10683 {
10684 macro_build (&offset_expr, "lui", LUI_FMT,
10685 tempreg, BFD_RELOC_MIPS_HIGHEST);
10686 macro_build (&offset_expr, "daddiu", "t,r,j",
10687 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10688 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10689 macro_build (&offset_expr, "daddiu", "t,r,j",
10690 tempreg, tempreg, BFD_RELOC_HI16_S);
10691 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10692 macro_build (&offset_expr, "daddiu", "t,r,j",
10693 tempreg, tempreg, BFD_RELOC_LO16);
10694 }
10695
10696 if (mips_relax.sequence)
10697 relax_end ();
10698 }
10699 else
10700 {
10701 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10702 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10703 {
10704 relax_start (offset_expr.X_add_symbol);
10705 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10706 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10707 relax_switch ();
10708 }
10709 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10710 as_bad (_("offset too large"));
10711 macro_build_lui (&offset_expr, tempreg);
10712 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10713 tempreg, tempreg, BFD_RELOC_LO16);
10714 if (mips_relax.sequence)
10715 relax_end ();
10716 }
10717 }
10718 else if (!mips_big_got && !HAVE_NEWABI)
10719 {
10720 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10721
10722 /* If this is a reference to an external symbol, and there
10723 is no constant, we want
10724 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10725 or for lca or if tempreg is PIC_CALL_REG
10726 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10727 For a local symbol, we want
10728 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10729 nop
10730 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10731
10732 If we have a small constant, and this is a reference to
10733 an external symbol, we want
10734 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10735 nop
10736 addiu $tempreg,$tempreg,<constant>
10737 For a local symbol, we want the same instruction
10738 sequence, but we output a BFD_RELOC_LO16 reloc on the
10739 addiu instruction.
10740
10741 If we have a large constant, and this is a reference to
10742 an external symbol, we want
10743 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10744 lui $at,<hiconstant>
10745 addiu $at,$at,<loconstant>
10746 addu $tempreg,$tempreg,$at
10747 For a local symbol, we want the same instruction
10748 sequence, but we output a BFD_RELOC_LO16 reloc on the
10749 addiu instruction.
10750 */
10751
10752 if (offset_expr.X_add_number == 0)
10753 {
10754 if (mips_pic == SVR4_PIC
10755 && breg == 0
10756 && (call || tempreg == PIC_CALL_REG))
10757 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10758
10759 relax_start (offset_expr.X_add_symbol);
10760 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10761 lw_reloc_type, mips_gp_register);
10762 if (breg != 0)
10763 {
10764 /* We're going to put in an addu instruction using
10765 tempreg, so we may as well insert the nop right
10766 now. */
10767 load_delay_nop ();
10768 }
10769 relax_switch ();
10770 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10771 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10772 load_delay_nop ();
10773 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10774 tempreg, tempreg, BFD_RELOC_LO16);
10775 relax_end ();
10776 /* FIXME: If breg == 0, and the next instruction uses
10777 $tempreg, then if this variant case is used an extra
10778 nop will be generated. */
10779 }
10780 else if (offset_expr.X_add_number >= -0x8000
10781 && offset_expr.X_add_number < 0x8000)
10782 {
10783 load_got_offset (tempreg, &offset_expr);
10784 load_delay_nop ();
10785 add_got_offset (tempreg, &offset_expr);
10786 }
10787 else
10788 {
10789 expr1.X_add_number = offset_expr.X_add_number;
10790 offset_expr.X_add_number =
10791 SEXT_16BIT (offset_expr.X_add_number);
10792 load_got_offset (tempreg, &offset_expr);
10793 offset_expr.X_add_number = expr1.X_add_number;
10794 /* If we are going to add in a base register, and the
10795 target register and the base register are the same,
10796 then we are using AT as a temporary register. Since
10797 we want to load the constant into AT, we add our
10798 current AT (from the global offset table) and the
10799 register into the register now, and pretend we were
10800 not using a base register. */
10801 if (breg == op[0])
10802 {
10803 load_delay_nop ();
10804 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10805 op[0], AT, breg);
10806 breg = 0;
10807 tempreg = op[0];
10808 }
10809 add_got_offset_hilo (tempreg, &offset_expr, AT);
10810 used_at = 1;
10811 }
10812 }
10813 else if (!mips_big_got && HAVE_NEWABI)
10814 {
10815 int add_breg_early = 0;
10816
10817 /* If this is a reference to an external, and there is no
10818 constant, or local symbol (*), with or without a
10819 constant, we want
10820 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10821 or for lca or if tempreg is PIC_CALL_REG
10822 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10823
10824 If we have a small constant, and this is a reference to
10825 an external symbol, we want
10826 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10827 addiu $tempreg,$tempreg,<constant>
10828
10829 If we have a large constant, and this is a reference to
10830 an external symbol, we want
10831 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10832 lui $at,<hiconstant>
10833 addiu $at,$at,<loconstant>
10834 addu $tempreg,$tempreg,$at
10835
10836 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10837 local symbols, even though it introduces an additional
10838 instruction. */
10839
10840 if (offset_expr.X_add_number)
10841 {
10842 expr1.X_add_number = offset_expr.X_add_number;
10843 offset_expr.X_add_number = 0;
10844
10845 relax_start (offset_expr.X_add_symbol);
10846 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10847 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10848
10849 if (expr1.X_add_number >= -0x8000
10850 && expr1.X_add_number < 0x8000)
10851 {
10852 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10853 tempreg, tempreg, BFD_RELOC_LO16);
10854 }
10855 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10856 {
10857 unsigned int dreg;
10858
10859 /* If we are going to add in a base register, and the
10860 target register and the base register are the same,
10861 then we are using AT as a temporary register. Since
10862 we want to load the constant into AT, we add our
10863 current AT (from the global offset table) and the
10864 register into the register now, and pretend we were
10865 not using a base register. */
10866 if (breg != op[0])
10867 dreg = tempreg;
10868 else
10869 {
10870 gas_assert (tempreg == AT);
10871 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10872 op[0], AT, breg);
10873 dreg = op[0];
10874 add_breg_early = 1;
10875 }
10876
10877 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10878 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10879 dreg, dreg, AT);
10880
10881 used_at = 1;
10882 }
10883 else
10884 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10885
10886 relax_switch ();
10887 offset_expr.X_add_number = expr1.X_add_number;
10888
10889 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10890 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10891 if (add_breg_early)
10892 {
10893 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10894 op[0], tempreg, breg);
10895 breg = 0;
10896 tempreg = op[0];
10897 }
10898 relax_end ();
10899 }
10900 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10901 {
10902 relax_start (offset_expr.X_add_symbol);
10903 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10904 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10905 relax_switch ();
10906 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10907 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10908 relax_end ();
10909 }
10910 else
10911 {
10912 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10913 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10914 }
10915 }
10916 else if (mips_big_got && !HAVE_NEWABI)
10917 {
10918 int gpdelay;
10919 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10920 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10921 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10922
10923 /* This is the large GOT case. If this is a reference to an
10924 external symbol, and there is no constant, we want
10925 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10926 addu $tempreg,$tempreg,$gp
10927 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10928 or for lca or if tempreg is PIC_CALL_REG
10929 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10930 addu $tempreg,$tempreg,$gp
10931 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10932 For a local symbol, we want
10933 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10934 nop
10935 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10936
10937 If we have a small constant, and this is a reference to
10938 an external symbol, we want
10939 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10940 addu $tempreg,$tempreg,$gp
10941 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10942 nop
10943 addiu $tempreg,$tempreg,<constant>
10944 For a local symbol, we want
10945 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10946 nop
10947 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10948
10949 If we have a large constant, and this is a reference to
10950 an external symbol, we want
10951 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10952 addu $tempreg,$tempreg,$gp
10953 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10954 lui $at,<hiconstant>
10955 addiu $at,$at,<loconstant>
10956 addu $tempreg,$tempreg,$at
10957 For a local symbol, we want
10958 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10959 lui $at,<hiconstant>
10960 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10961 addu $tempreg,$tempreg,$at
10962 */
10963
10964 expr1.X_add_number = offset_expr.X_add_number;
10965 offset_expr.X_add_number = 0;
10966 relax_start (offset_expr.X_add_symbol);
10967 gpdelay = reg_needs_delay (mips_gp_register);
10968 if (expr1.X_add_number == 0 && breg == 0
10969 && (call || tempreg == PIC_CALL_REG))
10970 {
10971 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10972 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10973 }
10974 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10975 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10976 tempreg, tempreg, mips_gp_register);
10977 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10978 tempreg, lw_reloc_type, tempreg);
10979 if (expr1.X_add_number == 0)
10980 {
10981 if (breg != 0)
10982 {
10983 /* We're going to put in an addu instruction using
10984 tempreg, so we may as well insert the nop right
10985 now. */
10986 load_delay_nop ();
10987 }
10988 }
10989 else if (expr1.X_add_number >= -0x8000
10990 && expr1.X_add_number < 0x8000)
10991 {
10992 load_delay_nop ();
10993 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10994 tempreg, tempreg, BFD_RELOC_LO16);
10995 }
10996 else
10997 {
10998 unsigned int dreg;
10999
11000 /* If we are going to add in a base register, and the
11001 target register and the base register are the same,
11002 then we are using AT as a temporary register. Since
11003 we want to load the constant into AT, we add our
11004 current AT (from the global offset table) and the
11005 register into the register now, and pretend we were
11006 not using a base register. */
11007 if (breg != op[0])
11008 dreg = tempreg;
11009 else
11010 {
11011 gas_assert (tempreg == AT);
11012 load_delay_nop ();
11013 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11014 op[0], AT, breg);
11015 dreg = op[0];
11016 }
11017
11018 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11019 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11020
11021 used_at = 1;
11022 }
11023 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11024 relax_switch ();
11025
11026 if (gpdelay)
11027 {
11028 /* This is needed because this instruction uses $gp, but
11029 the first instruction on the main stream does not. */
11030 macro_build (NULL, "nop", "");
11031 }
11032
11033 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11034 local_reloc_type, mips_gp_register);
11035 if (expr1.X_add_number >= -0x8000
11036 && expr1.X_add_number < 0x8000)
11037 {
11038 load_delay_nop ();
11039 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11040 tempreg, tempreg, BFD_RELOC_LO16);
11041 /* FIXME: If add_number is 0, and there was no base
11042 register, the external symbol case ended with a load,
11043 so if the symbol turns out to not be external, and
11044 the next instruction uses tempreg, an unnecessary nop
11045 will be inserted. */
11046 }
11047 else
11048 {
11049 if (breg == op[0])
11050 {
11051 /* We must add in the base register now, as in the
11052 external symbol case. */
11053 gas_assert (tempreg == AT);
11054 load_delay_nop ();
11055 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11056 op[0], AT, breg);
11057 tempreg = op[0];
11058 /* We set breg to 0 because we have arranged to add
11059 it in in both cases. */
11060 breg = 0;
11061 }
11062
11063 macro_build_lui (&expr1, AT);
11064 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11065 AT, AT, BFD_RELOC_LO16);
11066 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11067 tempreg, tempreg, AT);
11068 used_at = 1;
11069 }
11070 relax_end ();
11071 }
11072 else if (mips_big_got && HAVE_NEWABI)
11073 {
11074 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11075 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11076 int add_breg_early = 0;
11077
11078 /* This is the large GOT case. If this is a reference to an
11079 external symbol, and there is no constant, we want
11080 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11081 add $tempreg,$tempreg,$gp
11082 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11083 or for lca or if tempreg is PIC_CALL_REG
11084 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11085 add $tempreg,$tempreg,$gp
11086 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11087
11088 If we have a small constant, and this is a reference to
11089 an external symbol, we want
11090 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11091 add $tempreg,$tempreg,$gp
11092 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11093 addi $tempreg,$tempreg,<constant>
11094
11095 If we have a large constant, and this is a reference to
11096 an external symbol, we want
11097 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11098 addu $tempreg,$tempreg,$gp
11099 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11100 lui $at,<hiconstant>
11101 addi $at,$at,<loconstant>
11102 add $tempreg,$tempreg,$at
11103
11104 If we have NewABI, and we know it's a local symbol, we want
11105 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11106 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11107 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11108
11109 relax_start (offset_expr.X_add_symbol);
11110
11111 expr1.X_add_number = offset_expr.X_add_number;
11112 offset_expr.X_add_number = 0;
11113
11114 if (expr1.X_add_number == 0 && breg == 0
11115 && (call || tempreg == PIC_CALL_REG))
11116 {
11117 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11118 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11119 }
11120 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11122 tempreg, tempreg, mips_gp_register);
11123 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11124 tempreg, lw_reloc_type, tempreg);
11125
11126 if (expr1.X_add_number == 0)
11127 ;
11128 else if (expr1.X_add_number >= -0x8000
11129 && expr1.X_add_number < 0x8000)
11130 {
11131 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11132 tempreg, tempreg, BFD_RELOC_LO16);
11133 }
11134 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11135 {
11136 unsigned int dreg;
11137
11138 /* If we are going to add in a base register, and the
11139 target register and the base register are the same,
11140 then we are using AT as a temporary register. Since
11141 we want to load the constant into AT, we add our
11142 current AT (from the global offset table) and the
11143 register into the register now, and pretend we were
11144 not using a base register. */
11145 if (breg != op[0])
11146 dreg = tempreg;
11147 else
11148 {
11149 gas_assert (tempreg == AT);
11150 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11151 op[0], AT, breg);
11152 dreg = op[0];
11153 add_breg_early = 1;
11154 }
11155
11156 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11157 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11158
11159 used_at = 1;
11160 }
11161 else
11162 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11163
11164 relax_switch ();
11165 offset_expr.X_add_number = expr1.X_add_number;
11166 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11167 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11168 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11169 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11170 if (add_breg_early)
11171 {
11172 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11173 op[0], tempreg, breg);
11174 breg = 0;
11175 tempreg = op[0];
11176 }
11177 relax_end ();
11178 }
11179 else
11180 abort ();
11181
11182 if (breg != 0)
11183 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11184 break;
11185
11186 case M_MSGSND:
11187 gas_assert (!mips_opts.micromips);
11188 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11189 break;
11190
11191 case M_MSGLD:
11192 gas_assert (!mips_opts.micromips);
11193 macro_build (NULL, "c2", "C", 0x02);
11194 break;
11195
11196 case M_MSGLD_T:
11197 gas_assert (!mips_opts.micromips);
11198 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11199 break;
11200
11201 case M_MSGWAIT:
11202 gas_assert (!mips_opts.micromips);
11203 macro_build (NULL, "c2", "C", 3);
11204 break;
11205
11206 case M_MSGWAIT_T:
11207 gas_assert (!mips_opts.micromips);
11208 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11209 break;
11210
11211 case M_J_A:
11212 /* The j instruction may not be used in PIC code, since it
11213 requires an absolute address. We convert it to a b
11214 instruction. */
11215 if (mips_pic == NO_PIC)
11216 macro_build (&offset_expr, "j", "a");
11217 else
11218 macro_build (&offset_expr, "b", "p");
11219 break;
11220
11221 /* The jal instructions must be handled as macros because when
11222 generating PIC code they expand to multi-instruction
11223 sequences. Normally they are simple instructions. */
11224 case M_JALS_1:
11225 op[1] = op[0];
11226 op[0] = RA;
11227 /* Fall through. */
11228 case M_JALS_2:
11229 gas_assert (mips_opts.micromips);
11230 if (mips_opts.insn32)
11231 {
11232 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11233 break;
11234 }
11235 jals = 1;
11236 goto jal;
11237 case M_JAL_1:
11238 op[1] = op[0];
11239 op[0] = RA;
11240 /* Fall through. */
11241 case M_JAL_2:
11242 jal:
11243 if (mips_pic == NO_PIC)
11244 {
11245 s = jals ? "jalrs" : "jalr";
11246 if (mips_opts.micromips
11247 && !mips_opts.insn32
11248 && op[0] == RA
11249 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11250 macro_build (NULL, s, "mj", op[1]);
11251 else
11252 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11253 }
11254 else
11255 {
11256 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11257 && mips_cprestore_offset >= 0);
11258
11259 if (op[1] != PIC_CALL_REG)
11260 as_warn (_("MIPS PIC call to register other than $25"));
11261
11262 s = ((mips_opts.micromips
11263 && !mips_opts.insn32
11264 && (!mips_opts.noreorder || cprestore))
11265 ? "jalrs" : "jalr");
11266 if (mips_opts.micromips
11267 && !mips_opts.insn32
11268 && op[0] == RA
11269 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11270 macro_build (NULL, s, "mj", op[1]);
11271 else
11272 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11273 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11274 {
11275 if (mips_cprestore_offset < 0)
11276 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11277 else
11278 {
11279 if (!mips_frame_reg_valid)
11280 {
11281 as_warn (_("no .frame pseudo-op used in PIC code"));
11282 /* Quiet this warning. */
11283 mips_frame_reg_valid = 1;
11284 }
11285 if (!mips_cprestore_valid)
11286 {
11287 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11288 /* Quiet this warning. */
11289 mips_cprestore_valid = 1;
11290 }
11291 if (mips_opts.noreorder)
11292 macro_build (NULL, "nop", "");
11293 expr1.X_add_number = mips_cprestore_offset;
11294 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11295 mips_gp_register,
11296 mips_frame_reg,
11297 HAVE_64BIT_ADDRESSES);
11298 }
11299 }
11300 }
11301
11302 break;
11303
11304 case M_JALS_A:
11305 gas_assert (mips_opts.micromips);
11306 if (mips_opts.insn32)
11307 {
11308 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11309 break;
11310 }
11311 jals = 1;
11312 /* Fall through. */
11313 case M_JAL_A:
11314 if (mips_pic == NO_PIC)
11315 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11316 else if (mips_pic == SVR4_PIC)
11317 {
11318 /* If this is a reference to an external symbol, and we are
11319 using a small GOT, we want
11320 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11321 nop
11322 jalr $ra,$25
11323 nop
11324 lw $gp,cprestore($sp)
11325 The cprestore value is set using the .cprestore
11326 pseudo-op. If we are using a big GOT, we want
11327 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11328 addu $25,$25,$gp
11329 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11330 nop
11331 jalr $ra,$25
11332 nop
11333 lw $gp,cprestore($sp)
11334 If the symbol is not external, we want
11335 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11336 nop
11337 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11338 jalr $ra,$25
11339 nop
11340 lw $gp,cprestore($sp)
11341
11342 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11343 sequences above, minus nops, unless the symbol is local,
11344 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11345 GOT_DISP. */
11346 if (HAVE_NEWABI)
11347 {
11348 if (!mips_big_got)
11349 {
11350 relax_start (offset_expr.X_add_symbol);
11351 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11352 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11353 mips_gp_register);
11354 relax_switch ();
11355 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11356 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11357 mips_gp_register);
11358 relax_end ();
11359 }
11360 else
11361 {
11362 relax_start (offset_expr.X_add_symbol);
11363 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11364 BFD_RELOC_MIPS_CALL_HI16);
11365 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11366 PIC_CALL_REG, mips_gp_register);
11367 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11368 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11369 PIC_CALL_REG);
11370 relax_switch ();
11371 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11372 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11373 mips_gp_register);
11374 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11375 PIC_CALL_REG, PIC_CALL_REG,
11376 BFD_RELOC_MIPS_GOT_OFST);
11377 relax_end ();
11378 }
11379
11380 macro_build_jalr (&offset_expr, 0);
11381 }
11382 else
11383 {
11384 relax_start (offset_expr.X_add_symbol);
11385 if (!mips_big_got)
11386 {
11387 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11388 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11389 mips_gp_register);
11390 load_delay_nop ();
11391 relax_switch ();
11392 }
11393 else
11394 {
11395 int gpdelay;
11396
11397 gpdelay = reg_needs_delay (mips_gp_register);
11398 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11399 BFD_RELOC_MIPS_CALL_HI16);
11400 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11401 PIC_CALL_REG, mips_gp_register);
11402 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11403 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11404 PIC_CALL_REG);
11405 load_delay_nop ();
11406 relax_switch ();
11407 if (gpdelay)
11408 macro_build (NULL, "nop", "");
11409 }
11410 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11411 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11412 mips_gp_register);
11413 load_delay_nop ();
11414 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11415 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11416 relax_end ();
11417 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11418
11419 if (mips_cprestore_offset < 0)
11420 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11421 else
11422 {
11423 if (!mips_frame_reg_valid)
11424 {
11425 as_warn (_("no .frame pseudo-op used in PIC code"));
11426 /* Quiet this warning. */
11427 mips_frame_reg_valid = 1;
11428 }
11429 if (!mips_cprestore_valid)
11430 {
11431 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11432 /* Quiet this warning. */
11433 mips_cprestore_valid = 1;
11434 }
11435 if (mips_opts.noreorder)
11436 macro_build (NULL, "nop", "");
11437 expr1.X_add_number = mips_cprestore_offset;
11438 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11439 mips_gp_register,
11440 mips_frame_reg,
11441 HAVE_64BIT_ADDRESSES);
11442 }
11443 }
11444 }
11445 else if (mips_pic == VXWORKS_PIC)
11446 as_bad (_("non-PIC jump used in PIC library"));
11447 else
11448 abort ();
11449
11450 break;
11451
11452 case M_LBUE_AB:
11453 s = "lbue";
11454 fmt = "t,+j(b)";
11455 offbits = 9;
11456 goto ld_st;
11457 case M_LHUE_AB:
11458 s = "lhue";
11459 fmt = "t,+j(b)";
11460 offbits = 9;
11461 goto ld_st;
11462 case M_LBE_AB:
11463 s = "lbe";
11464 fmt = "t,+j(b)";
11465 offbits = 9;
11466 goto ld_st;
11467 case M_LHE_AB:
11468 s = "lhe";
11469 fmt = "t,+j(b)";
11470 offbits = 9;
11471 goto ld_st;
11472 case M_LLE_AB:
11473 s = "lle";
11474 fmt = "t,+j(b)";
11475 offbits = 9;
11476 goto ld_st;
11477 case M_LWE_AB:
11478 s = "lwe";
11479 fmt = "t,+j(b)";
11480 offbits = 9;
11481 goto ld_st;
11482 case M_LWLE_AB:
11483 s = "lwle";
11484 fmt = "t,+j(b)";
11485 offbits = 9;
11486 goto ld_st;
11487 case M_LWRE_AB:
11488 s = "lwre";
11489 fmt = "t,+j(b)";
11490 offbits = 9;
11491 goto ld_st;
11492 case M_SBE_AB:
11493 s = "sbe";
11494 fmt = "t,+j(b)";
11495 offbits = 9;
11496 goto ld_st;
11497 case M_SCE_AB:
11498 s = "sce";
11499 fmt = "t,+j(b)";
11500 offbits = 9;
11501 goto ld_st;
11502 case M_SHE_AB:
11503 s = "she";
11504 fmt = "t,+j(b)";
11505 offbits = 9;
11506 goto ld_st;
11507 case M_SWE_AB:
11508 s = "swe";
11509 fmt = "t,+j(b)";
11510 offbits = 9;
11511 goto ld_st;
11512 case M_SWLE_AB:
11513 s = "swle";
11514 fmt = "t,+j(b)";
11515 offbits = 9;
11516 goto ld_st;
11517 case M_SWRE_AB:
11518 s = "swre";
11519 fmt = "t,+j(b)";
11520 offbits = 9;
11521 goto ld_st;
11522 case M_ACLR_AB:
11523 s = "aclr";
11524 fmt = "\\,~(b)";
11525 offbits = 12;
11526 goto ld_st;
11527 case M_ASET_AB:
11528 s = "aset";
11529 fmt = "\\,~(b)";
11530 offbits = 12;
11531 goto ld_st;
11532 case M_LB_AB:
11533 s = "lb";
11534 fmt = "t,o(b)";
11535 goto ld;
11536 case M_LBU_AB:
11537 s = "lbu";
11538 fmt = "t,o(b)";
11539 goto ld;
11540 case M_LH_AB:
11541 s = "lh";
11542 fmt = "t,o(b)";
11543 goto ld;
11544 case M_LHU_AB:
11545 s = "lhu";
11546 fmt = "t,o(b)";
11547 goto ld;
11548 case M_LW_AB:
11549 s = "lw";
11550 fmt = "t,o(b)";
11551 goto ld;
11552 case M_LWC0_AB:
11553 gas_assert (!mips_opts.micromips);
11554 s = "lwc0";
11555 fmt = "E,o(b)";
11556 /* Itbl support may require additional care here. */
11557 coproc = 1;
11558 goto ld_st;
11559 case M_LWC1_AB:
11560 s = "lwc1";
11561 fmt = "T,o(b)";
11562 /* Itbl support may require additional care here. */
11563 coproc = 1;
11564 goto ld_st;
11565 case M_LWC2_AB:
11566 s = "lwc2";
11567 fmt = COP12_FMT;
11568 offbits = (mips_opts.micromips ? 12
11569 : ISA_IS_R6 (mips_opts.isa) ? 11
11570 : 16);
11571 /* Itbl support may require additional care here. */
11572 coproc = 1;
11573 goto ld_st;
11574 case M_LWC3_AB:
11575 gas_assert (!mips_opts.micromips);
11576 s = "lwc3";
11577 fmt = "E,o(b)";
11578 /* Itbl support may require additional care here. */
11579 coproc = 1;
11580 goto ld_st;
11581 case M_LWL_AB:
11582 s = "lwl";
11583 fmt = MEM12_FMT;
11584 offbits = (mips_opts.micromips ? 12 : 16);
11585 goto ld_st;
11586 case M_LWR_AB:
11587 s = "lwr";
11588 fmt = MEM12_FMT;
11589 offbits = (mips_opts.micromips ? 12 : 16);
11590 goto ld_st;
11591 case M_LDC1_AB:
11592 s = "ldc1";
11593 fmt = "T,o(b)";
11594 /* Itbl support may require additional care here. */
11595 coproc = 1;
11596 goto ld_st;
11597 case M_LDC2_AB:
11598 s = "ldc2";
11599 fmt = COP12_FMT;
11600 offbits = (mips_opts.micromips ? 12
11601 : ISA_IS_R6 (mips_opts.isa) ? 11
11602 : 16);
11603 /* Itbl support may require additional care here. */
11604 coproc = 1;
11605 goto ld_st;
11606 case M_LQC2_AB:
11607 s = "lqc2";
11608 fmt = "+7,o(b)";
11609 /* Itbl support may require additional care here. */
11610 coproc = 1;
11611 goto ld_st;
11612 case M_LDC3_AB:
11613 s = "ldc3";
11614 fmt = "E,o(b)";
11615 /* Itbl support may require additional care here. */
11616 coproc = 1;
11617 goto ld_st;
11618 case M_LDL_AB:
11619 s = "ldl";
11620 fmt = MEM12_FMT;
11621 offbits = (mips_opts.micromips ? 12 : 16);
11622 goto ld_st;
11623 case M_LDR_AB:
11624 s = "ldr";
11625 fmt = MEM12_FMT;
11626 offbits = (mips_opts.micromips ? 12 : 16);
11627 goto ld_st;
11628 case M_LL_AB:
11629 s = "ll";
11630 fmt = LL_SC_FMT;
11631 offbits = (mips_opts.micromips ? 12
11632 : ISA_IS_R6 (mips_opts.isa) ? 9
11633 : 16);
11634 goto ld;
11635 case M_LLD_AB:
11636 s = "lld";
11637 fmt = LL_SC_FMT;
11638 offbits = (mips_opts.micromips ? 12
11639 : ISA_IS_R6 (mips_opts.isa) ? 9
11640 : 16);
11641 goto ld;
11642 case M_LWU_AB:
11643 s = "lwu";
11644 fmt = MEM12_FMT;
11645 offbits = (mips_opts.micromips ? 12 : 16);
11646 goto ld;
11647 case M_LWP_AB:
11648 gas_assert (mips_opts.micromips);
11649 s = "lwp";
11650 fmt = "t,~(b)";
11651 offbits = 12;
11652 lp = 1;
11653 goto ld;
11654 case M_LDP_AB:
11655 gas_assert (mips_opts.micromips);
11656 s = "ldp";
11657 fmt = "t,~(b)";
11658 offbits = 12;
11659 lp = 1;
11660 goto ld;
11661 case M_LWM_AB:
11662 gas_assert (mips_opts.micromips);
11663 s = "lwm";
11664 fmt = "n,~(b)";
11665 offbits = 12;
11666 goto ld_st;
11667 case M_LDM_AB:
11668 gas_assert (mips_opts.micromips);
11669 s = "ldm";
11670 fmt = "n,~(b)";
11671 offbits = 12;
11672 goto ld_st;
11673
11674 ld:
11675 /* We don't want to use $0 as tempreg. */
11676 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11677 goto ld_st;
11678 else
11679 tempreg = op[0] + lp;
11680 goto ld_noat;
11681
11682 case M_SB_AB:
11683 s = "sb";
11684 fmt = "t,o(b)";
11685 goto ld_st;
11686 case M_SH_AB:
11687 s = "sh";
11688 fmt = "t,o(b)";
11689 goto ld_st;
11690 case M_SW_AB:
11691 s = "sw";
11692 fmt = "t,o(b)";
11693 goto ld_st;
11694 case M_SWC0_AB:
11695 gas_assert (!mips_opts.micromips);
11696 s = "swc0";
11697 fmt = "E,o(b)";
11698 /* Itbl support may require additional care here. */
11699 coproc = 1;
11700 goto ld_st;
11701 case M_SWC1_AB:
11702 s = "swc1";
11703 fmt = "T,o(b)";
11704 /* Itbl support may require additional care here. */
11705 coproc = 1;
11706 goto ld_st;
11707 case M_SWC2_AB:
11708 s = "swc2";
11709 fmt = COP12_FMT;
11710 offbits = (mips_opts.micromips ? 12
11711 : ISA_IS_R6 (mips_opts.isa) ? 11
11712 : 16);
11713 /* Itbl support may require additional care here. */
11714 coproc = 1;
11715 goto ld_st;
11716 case M_SWC3_AB:
11717 gas_assert (!mips_opts.micromips);
11718 s = "swc3";
11719 fmt = "E,o(b)";
11720 /* Itbl support may require additional care here. */
11721 coproc = 1;
11722 goto ld_st;
11723 case M_SWL_AB:
11724 s = "swl";
11725 fmt = MEM12_FMT;
11726 offbits = (mips_opts.micromips ? 12 : 16);
11727 goto ld_st;
11728 case M_SWR_AB:
11729 s = "swr";
11730 fmt = MEM12_FMT;
11731 offbits = (mips_opts.micromips ? 12 : 16);
11732 goto ld_st;
11733 case M_SC_AB:
11734 s = "sc";
11735 fmt = LL_SC_FMT;
11736 offbits = (mips_opts.micromips ? 12
11737 : ISA_IS_R6 (mips_opts.isa) ? 9
11738 : 16);
11739 goto ld_st;
11740 case M_SCD_AB:
11741 s = "scd";
11742 fmt = LL_SC_FMT;
11743 offbits = (mips_opts.micromips ? 12
11744 : ISA_IS_R6 (mips_opts.isa) ? 9
11745 : 16);
11746 goto ld_st;
11747 case M_CACHE_AB:
11748 s = "cache";
11749 fmt = (mips_opts.micromips ? "k,~(b)"
11750 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11751 : "k,o(b)");
11752 offbits = (mips_opts.micromips ? 12
11753 : ISA_IS_R6 (mips_opts.isa) ? 9
11754 : 16);
11755 goto ld_st;
11756 case M_CACHEE_AB:
11757 s = "cachee";
11758 fmt = "k,+j(b)";
11759 offbits = 9;
11760 goto ld_st;
11761 case M_PREF_AB:
11762 s = "pref";
11763 fmt = (mips_opts.micromips ? "k,~(b)"
11764 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11765 : "k,o(b)");
11766 offbits = (mips_opts.micromips ? 12
11767 : ISA_IS_R6 (mips_opts.isa) ? 9
11768 : 16);
11769 goto ld_st;
11770 case M_PREFE_AB:
11771 s = "prefe";
11772 fmt = "k,+j(b)";
11773 offbits = 9;
11774 goto ld_st;
11775 case M_SDC1_AB:
11776 s = "sdc1";
11777 fmt = "T,o(b)";
11778 coproc = 1;
11779 /* Itbl support may require additional care here. */
11780 goto ld_st;
11781 case M_SDC2_AB:
11782 s = "sdc2";
11783 fmt = COP12_FMT;
11784 offbits = (mips_opts.micromips ? 12
11785 : ISA_IS_R6 (mips_opts.isa) ? 11
11786 : 16);
11787 /* Itbl support may require additional care here. */
11788 coproc = 1;
11789 goto ld_st;
11790 case M_SQC2_AB:
11791 s = "sqc2";
11792 fmt = "+7,o(b)";
11793 /* Itbl support may require additional care here. */
11794 coproc = 1;
11795 goto ld_st;
11796 case M_SDC3_AB:
11797 gas_assert (!mips_opts.micromips);
11798 s = "sdc3";
11799 fmt = "E,o(b)";
11800 /* Itbl support may require additional care here. */
11801 coproc = 1;
11802 goto ld_st;
11803 case M_SDL_AB:
11804 s = "sdl";
11805 fmt = MEM12_FMT;
11806 offbits = (mips_opts.micromips ? 12 : 16);
11807 goto ld_st;
11808 case M_SDR_AB:
11809 s = "sdr";
11810 fmt = MEM12_FMT;
11811 offbits = (mips_opts.micromips ? 12 : 16);
11812 goto ld_st;
11813 case M_SWP_AB:
11814 gas_assert (mips_opts.micromips);
11815 s = "swp";
11816 fmt = "t,~(b)";
11817 offbits = 12;
11818 goto ld_st;
11819 case M_SDP_AB:
11820 gas_assert (mips_opts.micromips);
11821 s = "sdp";
11822 fmt = "t,~(b)";
11823 offbits = 12;
11824 goto ld_st;
11825 case M_SWM_AB:
11826 gas_assert (mips_opts.micromips);
11827 s = "swm";
11828 fmt = "n,~(b)";
11829 offbits = 12;
11830 goto ld_st;
11831 case M_SDM_AB:
11832 gas_assert (mips_opts.micromips);
11833 s = "sdm";
11834 fmt = "n,~(b)";
11835 offbits = 12;
11836
11837 ld_st:
11838 tempreg = AT;
11839 ld_noat:
11840 breg = op[2];
11841 if (small_offset_p (0, align, 16))
11842 {
11843 /* The first case exists for M_LD_AB and M_SD_AB, which are
11844 macros for o32 but which should act like normal instructions
11845 otherwise. */
11846 if (offbits == 16)
11847 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11848 offset_reloc[1], offset_reloc[2], breg);
11849 else if (small_offset_p (0, align, offbits))
11850 {
11851 if (offbits == 0)
11852 macro_build (NULL, s, fmt, op[0], breg);
11853 else
11854 macro_build (NULL, s, fmt, op[0],
11855 (int) offset_expr.X_add_number, breg);
11856 }
11857 else
11858 {
11859 if (tempreg == AT)
11860 used_at = 1;
11861 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11862 tempreg, breg, -1, offset_reloc[0],
11863 offset_reloc[1], offset_reloc[2]);
11864 if (offbits == 0)
11865 macro_build (NULL, s, fmt, op[0], tempreg);
11866 else
11867 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11868 }
11869 break;
11870 }
11871
11872 if (tempreg == AT)
11873 used_at = 1;
11874
11875 if (offset_expr.X_op != O_constant
11876 && offset_expr.X_op != O_symbol)
11877 {
11878 as_bad (_("expression too complex"));
11879 offset_expr.X_op = O_constant;
11880 }
11881
11882 if (HAVE_32BIT_ADDRESSES
11883 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11884 {
11885 char value [32];
11886
11887 sprintf_vma (value, offset_expr.X_add_number);
11888 as_bad (_("number (0x%s) larger than 32 bits"), value);
11889 }
11890
11891 /* A constant expression in PIC code can be handled just as it
11892 is in non PIC code. */
11893 if (offset_expr.X_op == O_constant)
11894 {
11895 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11896 offbits == 0 ? 16 : offbits);
11897 offset_expr.X_add_number -= expr1.X_add_number;
11898
11899 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11900 if (breg != 0)
11901 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11902 tempreg, tempreg, breg);
11903 if (offbits == 0)
11904 {
11905 if (offset_expr.X_add_number != 0)
11906 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11907 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11908 macro_build (NULL, s, fmt, op[0], tempreg);
11909 }
11910 else if (offbits == 16)
11911 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11912 else
11913 macro_build (NULL, s, fmt, op[0],
11914 (int) offset_expr.X_add_number, tempreg);
11915 }
11916 else if (offbits != 16)
11917 {
11918 /* The offset field is too narrow to be used for a low-part
11919 relocation, so load the whole address into the auxiliary
11920 register. */
11921 load_address (tempreg, &offset_expr, &used_at);
11922 if (breg != 0)
11923 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11924 tempreg, tempreg, breg);
11925 if (offbits == 0)
11926 macro_build (NULL, s, fmt, op[0], tempreg);
11927 else
11928 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11929 }
11930 else if (mips_pic == NO_PIC)
11931 {
11932 /* If this is a reference to a GP relative symbol, and there
11933 is no base register, we want
11934 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11935 Otherwise, if there is no base register, we want
11936 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11937 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11938 If we have a constant, we need two instructions anyhow,
11939 so we always use the latter form.
11940
11941 If we have a base register, and this is a reference to a
11942 GP relative symbol, we want
11943 addu $tempreg,$breg,$gp
11944 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11945 Otherwise we want
11946 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11947 addu $tempreg,$tempreg,$breg
11948 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11949 With a constant we always use the latter case.
11950
11951 With 64bit address space and no base register and $at usable,
11952 we want
11953 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11954 lui $at,<sym> (BFD_RELOC_HI16_S)
11955 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11956 dsll32 $tempreg,0
11957 daddu $tempreg,$at
11958 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11959 If we have a base register, we want
11960 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11961 lui $at,<sym> (BFD_RELOC_HI16_S)
11962 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11963 daddu $at,$breg
11964 dsll32 $tempreg,0
11965 daddu $tempreg,$at
11966 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11967
11968 Without $at we can't generate the optimal path for superscalar
11969 processors here since this would require two temporary registers.
11970 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11971 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11972 dsll $tempreg,16
11973 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11974 dsll $tempreg,16
11975 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11976 If we have a base register, we want
11977 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11978 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11979 dsll $tempreg,16
11980 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11981 dsll $tempreg,16
11982 daddu $tempreg,$tempreg,$breg
11983 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11984
11985 For GP relative symbols in 64bit address space we can use
11986 the same sequence as in 32bit address space. */
11987 if (HAVE_64BIT_SYMBOLS)
11988 {
11989 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11990 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11991 {
11992 relax_start (offset_expr.X_add_symbol);
11993 if (breg == 0)
11994 {
11995 macro_build (&offset_expr, s, fmt, op[0],
11996 BFD_RELOC_GPREL16, mips_gp_register);
11997 }
11998 else
11999 {
12000 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12001 tempreg, breg, mips_gp_register);
12002 macro_build (&offset_expr, s, fmt, op[0],
12003 BFD_RELOC_GPREL16, tempreg);
12004 }
12005 relax_switch ();
12006 }
12007
12008 if (used_at == 0 && mips_opts.at)
12009 {
12010 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12011 BFD_RELOC_MIPS_HIGHEST);
12012 macro_build (&offset_expr, "lui", LUI_FMT, AT,
12013 BFD_RELOC_HI16_S);
12014 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12015 tempreg, BFD_RELOC_MIPS_HIGHER);
12016 if (breg != 0)
12017 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12018 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12019 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12020 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12021 tempreg);
12022 used_at = 1;
12023 }
12024 else
12025 {
12026 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12027 BFD_RELOC_MIPS_HIGHEST);
12028 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12029 tempreg, BFD_RELOC_MIPS_HIGHER);
12030 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12031 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12032 tempreg, BFD_RELOC_HI16_S);
12033 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12034 if (breg != 0)
12035 macro_build (NULL, "daddu", "d,v,t",
12036 tempreg, tempreg, breg);
12037 macro_build (&offset_expr, s, fmt, op[0],
12038 BFD_RELOC_LO16, tempreg);
12039 }
12040
12041 if (mips_relax.sequence)
12042 relax_end ();
12043 break;
12044 }
12045
12046 if (breg == 0)
12047 {
12048 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12049 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12050 {
12051 relax_start (offset_expr.X_add_symbol);
12052 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12053 mips_gp_register);
12054 relax_switch ();
12055 }
12056 macro_build_lui (&offset_expr, tempreg);
12057 macro_build (&offset_expr, s, fmt, op[0],
12058 BFD_RELOC_LO16, tempreg);
12059 if (mips_relax.sequence)
12060 relax_end ();
12061 }
12062 else
12063 {
12064 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12065 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12066 {
12067 relax_start (offset_expr.X_add_symbol);
12068 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12069 tempreg, breg, mips_gp_register);
12070 macro_build (&offset_expr, s, fmt, op[0],
12071 BFD_RELOC_GPREL16, tempreg);
12072 relax_switch ();
12073 }
12074 macro_build_lui (&offset_expr, tempreg);
12075 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12076 tempreg, tempreg, breg);
12077 macro_build (&offset_expr, s, fmt, op[0],
12078 BFD_RELOC_LO16, tempreg);
12079 if (mips_relax.sequence)
12080 relax_end ();
12081 }
12082 }
12083 else if (!mips_big_got)
12084 {
12085 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12086
12087 /* If this is a reference to an external symbol, we want
12088 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12089 nop
12090 <op> op[0],0($tempreg)
12091 Otherwise we want
12092 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12093 nop
12094 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12095 <op> op[0],0($tempreg)
12096
12097 For NewABI, we want
12098 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12099 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12100
12101 If there is a base register, we add it to $tempreg before
12102 the <op>. If there is a constant, we stick it in the
12103 <op> instruction. We don't handle constants larger than
12104 16 bits, because we have no way to load the upper 16 bits
12105 (actually, we could handle them for the subset of cases
12106 in which we are not using $at). */
12107 gas_assert (offset_expr.X_op == O_symbol);
12108 if (HAVE_NEWABI)
12109 {
12110 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12111 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12112 if (breg != 0)
12113 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12114 tempreg, tempreg, breg);
12115 macro_build (&offset_expr, s, fmt, op[0],
12116 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12117 break;
12118 }
12119 expr1.X_add_number = offset_expr.X_add_number;
12120 offset_expr.X_add_number = 0;
12121 if (expr1.X_add_number < -0x8000
12122 || expr1.X_add_number >= 0x8000)
12123 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12124 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12125 lw_reloc_type, mips_gp_register);
12126 load_delay_nop ();
12127 relax_start (offset_expr.X_add_symbol);
12128 relax_switch ();
12129 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12130 tempreg, BFD_RELOC_LO16);
12131 relax_end ();
12132 if (breg != 0)
12133 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12134 tempreg, tempreg, breg);
12135 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12136 }
12137 else if (mips_big_got && !HAVE_NEWABI)
12138 {
12139 int gpdelay;
12140
12141 /* If this is a reference to an external symbol, we want
12142 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12143 addu $tempreg,$tempreg,$gp
12144 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12145 <op> op[0],0($tempreg)
12146 Otherwise we want
12147 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12148 nop
12149 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12150 <op> op[0],0($tempreg)
12151 If there is a base register, we add it to $tempreg before
12152 the <op>. If there is a constant, we stick it in the
12153 <op> instruction. We don't handle constants larger than
12154 16 bits, because we have no way to load the upper 16 bits
12155 (actually, we could handle them for the subset of cases
12156 in which we are not using $at). */
12157 gas_assert (offset_expr.X_op == O_symbol);
12158 expr1.X_add_number = offset_expr.X_add_number;
12159 offset_expr.X_add_number = 0;
12160 if (expr1.X_add_number < -0x8000
12161 || expr1.X_add_number >= 0x8000)
12162 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12163 gpdelay = reg_needs_delay (mips_gp_register);
12164 relax_start (offset_expr.X_add_symbol);
12165 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12166 BFD_RELOC_MIPS_GOT_HI16);
12167 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12168 mips_gp_register);
12169 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12170 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12171 relax_switch ();
12172 if (gpdelay)
12173 macro_build (NULL, "nop", "");
12174 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12175 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12176 load_delay_nop ();
12177 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12178 tempreg, BFD_RELOC_LO16);
12179 relax_end ();
12180
12181 if (breg != 0)
12182 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12183 tempreg, tempreg, breg);
12184 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12185 }
12186 else if (mips_big_got && HAVE_NEWABI)
12187 {
12188 /* If this is a reference to an external symbol, we want
12189 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12190 add $tempreg,$tempreg,$gp
12191 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12192 <op> op[0],<ofst>($tempreg)
12193 Otherwise, for local symbols, we want:
12194 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12195 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12196 gas_assert (offset_expr.X_op == O_symbol);
12197 expr1.X_add_number = offset_expr.X_add_number;
12198 offset_expr.X_add_number = 0;
12199 if (expr1.X_add_number < -0x8000
12200 || expr1.X_add_number >= 0x8000)
12201 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12202 relax_start (offset_expr.X_add_symbol);
12203 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12204 BFD_RELOC_MIPS_GOT_HI16);
12205 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12206 mips_gp_register);
12207 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12208 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12209 if (breg != 0)
12210 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12211 tempreg, tempreg, breg);
12212 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12213
12214 relax_switch ();
12215 offset_expr.X_add_number = expr1.X_add_number;
12216 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12217 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12218 if (breg != 0)
12219 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12220 tempreg, tempreg, breg);
12221 macro_build (&offset_expr, s, fmt, op[0],
12222 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12223 relax_end ();
12224 }
12225 else
12226 abort ();
12227
12228 break;
12229
12230 case M_JRADDIUSP:
12231 gas_assert (mips_opts.micromips);
12232 gas_assert (mips_opts.insn32);
12233 start_noreorder ();
12234 macro_build (NULL, "jr", "s", RA);
12235 expr1.X_add_number = op[0] << 2;
12236 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12237 end_noreorder ();
12238 break;
12239
12240 case M_JRC:
12241 gas_assert (mips_opts.micromips);
12242 gas_assert (mips_opts.insn32);
12243 macro_build (NULL, "jr", "s", op[0]);
12244 if (mips_opts.noreorder)
12245 macro_build (NULL, "nop", "");
12246 break;
12247
12248 case M_LI:
12249 case M_LI_S:
12250 load_register (op[0], &imm_expr, 0);
12251 break;
12252
12253 case M_DLI:
12254 load_register (op[0], &imm_expr, 1);
12255 break;
12256
12257 case M_LI_SS:
12258 if (imm_expr.X_op == O_constant)
12259 {
12260 used_at = 1;
12261 load_register (AT, &imm_expr, 0);
12262 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12263 break;
12264 }
12265 else
12266 {
12267 gas_assert (imm_expr.X_op == O_absent
12268 && offset_expr.X_op == O_symbol
12269 && strcmp (segment_name (S_GET_SEGMENT
12270 (offset_expr.X_add_symbol)),
12271 ".lit4") == 0
12272 && offset_expr.X_add_number == 0);
12273 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12274 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12275 break;
12276 }
12277
12278 case M_LI_D:
12279 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12280 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12281 order 32 bits of the value and the low order 32 bits are either
12282 zero or in OFFSET_EXPR. */
12283 if (imm_expr.X_op == O_constant)
12284 {
12285 if (GPR_SIZE == 64)
12286 load_register (op[0], &imm_expr, 1);
12287 else
12288 {
12289 int hreg, lreg;
12290
12291 if (target_big_endian)
12292 {
12293 hreg = op[0];
12294 lreg = op[0] + 1;
12295 }
12296 else
12297 {
12298 hreg = op[0] + 1;
12299 lreg = op[0];
12300 }
12301
12302 if (hreg <= 31)
12303 load_register (hreg, &imm_expr, 0);
12304 if (lreg <= 31)
12305 {
12306 if (offset_expr.X_op == O_absent)
12307 move_register (lreg, 0);
12308 else
12309 {
12310 gas_assert (offset_expr.X_op == O_constant);
12311 load_register (lreg, &offset_expr, 0);
12312 }
12313 }
12314 }
12315 break;
12316 }
12317 gas_assert (imm_expr.X_op == O_absent);
12318
12319 /* We know that sym is in the .rdata section. First we get the
12320 upper 16 bits of the address. */
12321 if (mips_pic == NO_PIC)
12322 {
12323 macro_build_lui (&offset_expr, AT);
12324 used_at = 1;
12325 }
12326 else
12327 {
12328 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12329 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12330 used_at = 1;
12331 }
12332
12333 /* Now we load the register(s). */
12334 if (GPR_SIZE == 64)
12335 {
12336 used_at = 1;
12337 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12338 BFD_RELOC_LO16, AT);
12339 }
12340 else
12341 {
12342 used_at = 1;
12343 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12344 BFD_RELOC_LO16, AT);
12345 if (op[0] != RA)
12346 {
12347 /* FIXME: How in the world do we deal with the possible
12348 overflow here? */
12349 offset_expr.X_add_number += 4;
12350 macro_build (&offset_expr, "lw", "t,o(b)",
12351 op[0] + 1, BFD_RELOC_LO16, AT);
12352 }
12353 }
12354 break;
12355
12356 case M_LI_DD:
12357 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12358 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12359 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12360 the value and the low order 32 bits are either zero or in
12361 OFFSET_EXPR. */
12362 if (imm_expr.X_op == O_constant)
12363 {
12364 used_at = 1;
12365 load_register (AT, &imm_expr, FPR_SIZE == 64);
12366 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12367 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12368 else
12369 {
12370 if (ISA_HAS_MXHC1 (mips_opts.isa))
12371 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12372 else if (FPR_SIZE != 32)
12373 as_bad (_("Unable to generate `%s' compliant code "
12374 "without mthc1"),
12375 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12376 else
12377 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12378 if (offset_expr.X_op == O_absent)
12379 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12380 else
12381 {
12382 gas_assert (offset_expr.X_op == O_constant);
12383 load_register (AT, &offset_expr, 0);
12384 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12385 }
12386 }
12387 break;
12388 }
12389
12390 gas_assert (imm_expr.X_op == O_absent
12391 && offset_expr.X_op == O_symbol
12392 && offset_expr.X_add_number == 0);
12393 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12394 if (strcmp (s, ".lit8") == 0)
12395 {
12396 op[2] = mips_gp_register;
12397 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12398 offset_reloc[1] = BFD_RELOC_UNUSED;
12399 offset_reloc[2] = BFD_RELOC_UNUSED;
12400 }
12401 else
12402 {
12403 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12404 used_at = 1;
12405 if (mips_pic != NO_PIC)
12406 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12407 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12408 else
12409 {
12410 /* FIXME: This won't work for a 64 bit address. */
12411 macro_build_lui (&offset_expr, AT);
12412 }
12413
12414 op[2] = AT;
12415 offset_reloc[0] = BFD_RELOC_LO16;
12416 offset_reloc[1] = BFD_RELOC_UNUSED;
12417 offset_reloc[2] = BFD_RELOC_UNUSED;
12418 }
12419 align = 8;
12420 /* Fall through */
12421
12422 case M_L_DAB:
12423 /*
12424 * The MIPS assembler seems to check for X_add_number not
12425 * being double aligned and generating:
12426 * lui at,%hi(foo+1)
12427 * addu at,at,v1
12428 * addiu at,at,%lo(foo+1)
12429 * lwc1 f2,0(at)
12430 * lwc1 f3,4(at)
12431 * But, the resulting address is the same after relocation so why
12432 * generate the extra instruction?
12433 */
12434 /* Itbl support may require additional care here. */
12435 coproc = 1;
12436 fmt = "T,o(b)";
12437 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12438 {
12439 s = "ldc1";
12440 goto ld_st;
12441 }
12442 s = "lwc1";
12443 goto ldd_std;
12444
12445 case M_S_DAB:
12446 gas_assert (!mips_opts.micromips);
12447 /* Itbl support may require additional care here. */
12448 coproc = 1;
12449 fmt = "T,o(b)";
12450 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12451 {
12452 s = "sdc1";
12453 goto ld_st;
12454 }
12455 s = "swc1";
12456 goto ldd_std;
12457
12458 case M_LQ_AB:
12459 fmt = "t,o(b)";
12460 s = "lq";
12461 goto ld;
12462
12463 case M_SQ_AB:
12464 fmt = "t,o(b)";
12465 s = "sq";
12466 goto ld_st;
12467
12468 case M_LD_AB:
12469 fmt = "t,o(b)";
12470 if (GPR_SIZE == 64)
12471 {
12472 s = "ld";
12473 goto ld;
12474 }
12475 s = "lw";
12476 goto ldd_std;
12477
12478 case M_SD_AB:
12479 fmt = "t,o(b)";
12480 if (GPR_SIZE == 64)
12481 {
12482 s = "sd";
12483 goto ld_st;
12484 }
12485 s = "sw";
12486
12487 ldd_std:
12488 /* Even on a big endian machine $fn comes before $fn+1. We have
12489 to adjust when loading from memory. We set coproc if we must
12490 load $fn+1 first. */
12491 /* Itbl support may require additional care here. */
12492 if (!target_big_endian)
12493 coproc = 0;
12494
12495 breg = op[2];
12496 if (small_offset_p (0, align, 16))
12497 {
12498 ep = &offset_expr;
12499 if (!small_offset_p (4, align, 16))
12500 {
12501 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12502 -1, offset_reloc[0], offset_reloc[1],
12503 offset_reloc[2]);
12504 expr1.X_add_number = 0;
12505 ep = &expr1;
12506 breg = AT;
12507 used_at = 1;
12508 offset_reloc[0] = BFD_RELOC_LO16;
12509 offset_reloc[1] = BFD_RELOC_UNUSED;
12510 offset_reloc[2] = BFD_RELOC_UNUSED;
12511 }
12512 if (strcmp (s, "lw") == 0 && op[0] == breg)
12513 {
12514 ep->X_add_number += 4;
12515 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12516 offset_reloc[1], offset_reloc[2], breg);
12517 ep->X_add_number -= 4;
12518 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12519 offset_reloc[1], offset_reloc[2], breg);
12520 }
12521 else
12522 {
12523 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12524 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12525 breg);
12526 ep->X_add_number += 4;
12527 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12528 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12529 breg);
12530 }
12531 break;
12532 }
12533
12534 if (offset_expr.X_op != O_symbol
12535 && offset_expr.X_op != O_constant)
12536 {
12537 as_bad (_("expression too complex"));
12538 offset_expr.X_op = O_constant;
12539 }
12540
12541 if (HAVE_32BIT_ADDRESSES
12542 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12543 {
12544 char value [32];
12545
12546 sprintf_vma (value, offset_expr.X_add_number);
12547 as_bad (_("number (0x%s) larger than 32 bits"), value);
12548 }
12549
12550 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12551 {
12552 /* If this is a reference to a GP relative symbol, we want
12553 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12554 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12555 If we have a base register, we use this
12556 addu $at,$breg,$gp
12557 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12558 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12559 If this is not a GP relative symbol, we want
12560 lui $at,<sym> (BFD_RELOC_HI16_S)
12561 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12562 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12563 If there is a base register, we add it to $at after the
12564 lui instruction. If there is a constant, we always use
12565 the last case. */
12566 if (offset_expr.X_op == O_symbol
12567 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12568 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12569 {
12570 relax_start (offset_expr.X_add_symbol);
12571 if (breg == 0)
12572 {
12573 tempreg = mips_gp_register;
12574 }
12575 else
12576 {
12577 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12578 AT, breg, mips_gp_register);
12579 tempreg = AT;
12580 used_at = 1;
12581 }
12582
12583 /* Itbl support may require additional care here. */
12584 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12585 BFD_RELOC_GPREL16, tempreg);
12586 offset_expr.X_add_number += 4;
12587
12588 /* Set mips_optimize to 2 to avoid inserting an
12589 undesired nop. */
12590 hold_mips_optimize = mips_optimize;
12591 mips_optimize = 2;
12592 /* Itbl support may require additional care here. */
12593 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12594 BFD_RELOC_GPREL16, tempreg);
12595 mips_optimize = hold_mips_optimize;
12596
12597 relax_switch ();
12598
12599 offset_expr.X_add_number -= 4;
12600 }
12601 used_at = 1;
12602 if (offset_high_part (offset_expr.X_add_number, 16)
12603 != offset_high_part (offset_expr.X_add_number + 4, 16))
12604 {
12605 load_address (AT, &offset_expr, &used_at);
12606 offset_expr.X_op = O_constant;
12607 offset_expr.X_add_number = 0;
12608 }
12609 else
12610 macro_build_lui (&offset_expr, AT);
12611 if (breg != 0)
12612 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12613 /* Itbl support may require additional care here. */
12614 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12615 BFD_RELOC_LO16, AT);
12616 /* FIXME: How do we handle overflow here? */
12617 offset_expr.X_add_number += 4;
12618 /* Itbl support may require additional care here. */
12619 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12620 BFD_RELOC_LO16, AT);
12621 if (mips_relax.sequence)
12622 relax_end ();
12623 }
12624 else if (!mips_big_got)
12625 {
12626 /* If this is a reference to an external symbol, we want
12627 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12628 nop
12629 <op> op[0],0($at)
12630 <op> op[0]+1,4($at)
12631 Otherwise we want
12632 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12633 nop
12634 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12635 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12636 If there is a base register we add it to $at before the
12637 lwc1 instructions. If there is a constant we include it
12638 in the lwc1 instructions. */
12639 used_at = 1;
12640 expr1.X_add_number = offset_expr.X_add_number;
12641 if (expr1.X_add_number < -0x8000
12642 || expr1.X_add_number >= 0x8000 - 4)
12643 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12644 load_got_offset (AT, &offset_expr);
12645 load_delay_nop ();
12646 if (breg != 0)
12647 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12648
12649 /* Set mips_optimize to 2 to avoid inserting an undesired
12650 nop. */
12651 hold_mips_optimize = mips_optimize;
12652 mips_optimize = 2;
12653
12654 /* Itbl support may require additional care here. */
12655 relax_start (offset_expr.X_add_symbol);
12656 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12657 BFD_RELOC_LO16, AT);
12658 expr1.X_add_number += 4;
12659 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12660 BFD_RELOC_LO16, AT);
12661 relax_switch ();
12662 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12663 BFD_RELOC_LO16, AT);
12664 offset_expr.X_add_number += 4;
12665 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12666 BFD_RELOC_LO16, AT);
12667 relax_end ();
12668
12669 mips_optimize = hold_mips_optimize;
12670 }
12671 else if (mips_big_got)
12672 {
12673 int gpdelay;
12674
12675 /* If this is a reference to an external symbol, we want
12676 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12677 addu $at,$at,$gp
12678 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12679 nop
12680 <op> op[0],0($at)
12681 <op> op[0]+1,4($at)
12682 Otherwise we want
12683 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12684 nop
12685 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12686 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12687 If there is a base register we add it to $at before the
12688 lwc1 instructions. If there is a constant we include it
12689 in the lwc1 instructions. */
12690 used_at = 1;
12691 expr1.X_add_number = offset_expr.X_add_number;
12692 offset_expr.X_add_number = 0;
12693 if (expr1.X_add_number < -0x8000
12694 || expr1.X_add_number >= 0x8000 - 4)
12695 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12696 gpdelay = reg_needs_delay (mips_gp_register);
12697 relax_start (offset_expr.X_add_symbol);
12698 macro_build (&offset_expr, "lui", LUI_FMT,
12699 AT, BFD_RELOC_MIPS_GOT_HI16);
12700 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12701 AT, AT, mips_gp_register);
12702 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12703 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12704 load_delay_nop ();
12705 if (breg != 0)
12706 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12707 /* Itbl support may require additional care here. */
12708 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12709 BFD_RELOC_LO16, AT);
12710 expr1.X_add_number += 4;
12711
12712 /* Set mips_optimize to 2 to avoid inserting an undesired
12713 nop. */
12714 hold_mips_optimize = mips_optimize;
12715 mips_optimize = 2;
12716 /* Itbl support may require additional care here. */
12717 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12718 BFD_RELOC_LO16, AT);
12719 mips_optimize = hold_mips_optimize;
12720 expr1.X_add_number -= 4;
12721
12722 relax_switch ();
12723 offset_expr.X_add_number = expr1.X_add_number;
12724 if (gpdelay)
12725 macro_build (NULL, "nop", "");
12726 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12727 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12728 load_delay_nop ();
12729 if (breg != 0)
12730 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12731 /* Itbl support may require additional care here. */
12732 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12733 BFD_RELOC_LO16, AT);
12734 offset_expr.X_add_number += 4;
12735
12736 /* Set mips_optimize to 2 to avoid inserting an undesired
12737 nop. */
12738 hold_mips_optimize = mips_optimize;
12739 mips_optimize = 2;
12740 /* Itbl support may require additional care here. */
12741 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12742 BFD_RELOC_LO16, AT);
12743 mips_optimize = hold_mips_optimize;
12744 relax_end ();
12745 }
12746 else
12747 abort ();
12748
12749 break;
12750
12751 case M_SAA_AB:
12752 s = "saa";
12753 goto saa_saad;
12754 case M_SAAD_AB:
12755 s = "saad";
12756 saa_saad:
12757 gas_assert (!mips_opts.micromips);
12758 offbits = 0;
12759 fmt = "t,(b)";
12760 goto ld_st;
12761
12762 /* New code added to support COPZ instructions.
12763 This code builds table entries out of the macros in mip_opcodes.
12764 R4000 uses interlocks to handle coproc delays.
12765 Other chips (like the R3000) require nops to be inserted for delays.
12766
12767 FIXME: Currently, we require that the user handle delays.
12768 In order to fill delay slots for non-interlocked chips,
12769 we must have a way to specify delays based on the coprocessor.
12770 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12771 What are the side-effects of the cop instruction?
12772 What cache support might we have and what are its effects?
12773 Both coprocessor & memory require delays. how long???
12774 What registers are read/set/modified?
12775
12776 If an itbl is provided to interpret cop instructions,
12777 this knowledge can be encoded in the itbl spec. */
12778
12779 case M_COP0:
12780 s = "c0";
12781 goto copz;
12782 case M_COP1:
12783 s = "c1";
12784 goto copz;
12785 case M_COP2:
12786 s = "c2";
12787 goto copz;
12788 case M_COP3:
12789 s = "c3";
12790 copz:
12791 gas_assert (!mips_opts.micromips);
12792 /* For now we just do C (same as Cz). The parameter will be
12793 stored in insn_opcode by mips_ip. */
12794 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12795 break;
12796
12797 case M_MOVE:
12798 move_register (op[0], op[1]);
12799 break;
12800
12801 case M_MOVEP:
12802 gas_assert (mips_opts.micromips);
12803 gas_assert (mips_opts.insn32);
12804 move_register (micromips_to_32_reg_h_map1[op[0]],
12805 micromips_to_32_reg_m_map[op[1]]);
12806 move_register (micromips_to_32_reg_h_map2[op[0]],
12807 micromips_to_32_reg_n_map[op[2]]);
12808 break;
12809
12810 case M_DMUL:
12811 dbl = 1;
12812 /* Fall through. */
12813 case M_MUL:
12814 if (mips_opts.arch == CPU_R5900)
12815 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12816 op[2]);
12817 else
12818 {
12819 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12820 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12821 }
12822 break;
12823
12824 case M_DMUL_I:
12825 dbl = 1;
12826 /* Fall through. */
12827 case M_MUL_I:
12828 /* The MIPS assembler some times generates shifts and adds. I'm
12829 not trying to be that fancy. GCC should do this for us
12830 anyway. */
12831 used_at = 1;
12832 load_register (AT, &imm_expr, dbl);
12833 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12834 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12835 break;
12836
12837 case M_DMULO_I:
12838 dbl = 1;
12839 /* Fall through. */
12840 case M_MULO_I:
12841 imm = 1;
12842 goto do_mulo;
12843
12844 case M_DMULO:
12845 dbl = 1;
12846 /* Fall through. */
12847 case M_MULO:
12848 do_mulo:
12849 start_noreorder ();
12850 used_at = 1;
12851 if (imm)
12852 load_register (AT, &imm_expr, dbl);
12853 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12854 op[1], imm ? AT : op[2]);
12855 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12856 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12857 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12858 if (mips_trap)
12859 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12860 else
12861 {
12862 if (mips_opts.micromips)
12863 micromips_label_expr (&label_expr);
12864 else
12865 label_expr.X_add_number = 8;
12866 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12867 macro_build (NULL, "nop", "");
12868 macro_build (NULL, "break", BRK_FMT, 6);
12869 if (mips_opts.micromips)
12870 micromips_add_label ();
12871 }
12872 end_noreorder ();
12873 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12874 break;
12875
12876 case M_DMULOU_I:
12877 dbl = 1;
12878 /* Fall through. */
12879 case M_MULOU_I:
12880 imm = 1;
12881 goto do_mulou;
12882
12883 case M_DMULOU:
12884 dbl = 1;
12885 /* Fall through. */
12886 case M_MULOU:
12887 do_mulou:
12888 start_noreorder ();
12889 used_at = 1;
12890 if (imm)
12891 load_register (AT, &imm_expr, dbl);
12892 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12893 op[1], imm ? AT : op[2]);
12894 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12895 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12896 if (mips_trap)
12897 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12898 else
12899 {
12900 if (mips_opts.micromips)
12901 micromips_label_expr (&label_expr);
12902 else
12903 label_expr.X_add_number = 8;
12904 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12905 macro_build (NULL, "nop", "");
12906 macro_build (NULL, "break", BRK_FMT, 6);
12907 if (mips_opts.micromips)
12908 micromips_add_label ();
12909 }
12910 end_noreorder ();
12911 break;
12912
12913 case M_DROL:
12914 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12915 {
12916 if (op[0] == op[1])
12917 {
12918 tempreg = AT;
12919 used_at = 1;
12920 }
12921 else
12922 tempreg = op[0];
12923 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12924 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12925 break;
12926 }
12927 used_at = 1;
12928 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12929 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12930 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12931 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12932 break;
12933
12934 case M_ROL:
12935 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12936 {
12937 if (op[0] == op[1])
12938 {
12939 tempreg = AT;
12940 used_at = 1;
12941 }
12942 else
12943 tempreg = op[0];
12944 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12945 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12946 break;
12947 }
12948 used_at = 1;
12949 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12950 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12951 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12952 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12953 break;
12954
12955 case M_DROL_I:
12956 {
12957 unsigned int rot;
12958 const char *l;
12959 const char *rr;
12960
12961 rot = imm_expr.X_add_number & 0x3f;
12962 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12963 {
12964 rot = (64 - rot) & 0x3f;
12965 if (rot >= 32)
12966 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12967 else
12968 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12969 break;
12970 }
12971 if (rot == 0)
12972 {
12973 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12974 break;
12975 }
12976 l = (rot < 0x20) ? "dsll" : "dsll32";
12977 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12978 rot &= 0x1f;
12979 used_at = 1;
12980 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12981 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12982 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12983 }
12984 break;
12985
12986 case M_ROL_I:
12987 {
12988 unsigned int rot;
12989
12990 rot = imm_expr.X_add_number & 0x1f;
12991 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12992 {
12993 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12994 (32 - rot) & 0x1f);
12995 break;
12996 }
12997 if (rot == 0)
12998 {
12999 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13000 break;
13001 }
13002 used_at = 1;
13003 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13004 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13005 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13006 }
13007 break;
13008
13009 case M_DROR:
13010 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13011 {
13012 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
13013 break;
13014 }
13015 used_at = 1;
13016 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13017 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13018 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13019 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13020 break;
13021
13022 case M_ROR:
13023 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13024 {
13025 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13026 break;
13027 }
13028 used_at = 1;
13029 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13030 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13031 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13032 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13033 break;
13034
13035 case M_DROR_I:
13036 {
13037 unsigned int rot;
13038 const char *l;
13039 const char *rr;
13040
13041 rot = imm_expr.X_add_number & 0x3f;
13042 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13043 {
13044 if (rot >= 32)
13045 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13046 else
13047 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13048 break;
13049 }
13050 if (rot == 0)
13051 {
13052 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13053 break;
13054 }
13055 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13056 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13057 rot &= 0x1f;
13058 used_at = 1;
13059 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13060 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13061 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13062 }
13063 break;
13064
13065 case M_ROR_I:
13066 {
13067 unsigned int rot;
13068
13069 rot = imm_expr.X_add_number & 0x1f;
13070 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13071 {
13072 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13073 break;
13074 }
13075 if (rot == 0)
13076 {
13077 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13078 break;
13079 }
13080 used_at = 1;
13081 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13082 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13083 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13084 }
13085 break;
13086
13087 case M_SEQ:
13088 if (op[1] == 0)
13089 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13090 else if (op[2] == 0)
13091 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13092 else
13093 {
13094 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13095 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13096 }
13097 break;
13098
13099 case M_SEQ_I:
13100 if (imm_expr.X_add_number == 0)
13101 {
13102 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13103 break;
13104 }
13105 if (op[1] == 0)
13106 {
13107 as_warn (_("instruction %s: result is always false"),
13108 ip->insn_mo->name);
13109 move_register (op[0], 0);
13110 break;
13111 }
13112 if (CPU_HAS_SEQ (mips_opts.arch)
13113 && -512 <= imm_expr.X_add_number
13114 && imm_expr.X_add_number < 512)
13115 {
13116 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13117 (int) imm_expr.X_add_number);
13118 break;
13119 }
13120 if (imm_expr.X_add_number >= 0
13121 && imm_expr.X_add_number < 0x10000)
13122 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13123 else if (imm_expr.X_add_number > -0x8000
13124 && imm_expr.X_add_number < 0)
13125 {
13126 imm_expr.X_add_number = -imm_expr.X_add_number;
13127 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13128 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13129 }
13130 else if (CPU_HAS_SEQ (mips_opts.arch))
13131 {
13132 used_at = 1;
13133 load_register (AT, &imm_expr, GPR_SIZE == 64);
13134 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13135 break;
13136 }
13137 else
13138 {
13139 load_register (AT, &imm_expr, GPR_SIZE == 64);
13140 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13141 used_at = 1;
13142 }
13143 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13144 break;
13145
13146 case M_SGE: /* X >= Y <==> not (X < Y) */
13147 s = "slt";
13148 goto sge;
13149 case M_SGEU:
13150 s = "sltu";
13151 sge:
13152 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13153 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13154 break;
13155
13156 case M_SGE_I: /* X >= I <==> not (X < I) */
13157 case M_SGEU_I:
13158 if (imm_expr.X_add_number >= -0x8000
13159 && imm_expr.X_add_number < 0x8000)
13160 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13161 op[0], op[1], BFD_RELOC_LO16);
13162 else
13163 {
13164 load_register (AT, &imm_expr, GPR_SIZE == 64);
13165 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13166 op[0], op[1], AT);
13167 used_at = 1;
13168 }
13169 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13170 break;
13171
13172 case M_SGT: /* X > Y <==> Y < X */
13173 s = "slt";
13174 goto sgt;
13175 case M_SGTU:
13176 s = "sltu";
13177 sgt:
13178 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13179 break;
13180
13181 case M_SGT_I: /* X > I <==> I < X */
13182 s = "slt";
13183 goto sgti;
13184 case M_SGTU_I:
13185 s = "sltu";
13186 sgti:
13187 used_at = 1;
13188 load_register (AT, &imm_expr, GPR_SIZE == 64);
13189 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13190 break;
13191
13192 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13193 s = "slt";
13194 goto sle;
13195 case M_SLEU:
13196 s = "sltu";
13197 sle:
13198 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13199 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13200 break;
13201
13202 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13203 s = "slt";
13204 goto slei;
13205 case M_SLEU_I:
13206 s = "sltu";
13207 slei:
13208 used_at = 1;
13209 load_register (AT, &imm_expr, GPR_SIZE == 64);
13210 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13211 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13212 break;
13213
13214 case M_SLT_I:
13215 if (imm_expr.X_add_number >= -0x8000
13216 && imm_expr.X_add_number < 0x8000)
13217 {
13218 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13219 BFD_RELOC_LO16);
13220 break;
13221 }
13222 used_at = 1;
13223 load_register (AT, &imm_expr, GPR_SIZE == 64);
13224 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13225 break;
13226
13227 case M_SLTU_I:
13228 if (imm_expr.X_add_number >= -0x8000
13229 && imm_expr.X_add_number < 0x8000)
13230 {
13231 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13232 BFD_RELOC_LO16);
13233 break;
13234 }
13235 used_at = 1;
13236 load_register (AT, &imm_expr, GPR_SIZE == 64);
13237 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13238 break;
13239
13240 case M_SNE:
13241 if (op[1] == 0)
13242 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13243 else if (op[2] == 0)
13244 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13245 else
13246 {
13247 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13248 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13249 }
13250 break;
13251
13252 case M_SNE_I:
13253 if (imm_expr.X_add_number == 0)
13254 {
13255 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13256 break;
13257 }
13258 if (op[1] == 0)
13259 {
13260 as_warn (_("instruction %s: result is always true"),
13261 ip->insn_mo->name);
13262 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13263 op[0], 0, BFD_RELOC_LO16);
13264 break;
13265 }
13266 if (CPU_HAS_SEQ (mips_opts.arch)
13267 && -512 <= imm_expr.X_add_number
13268 && imm_expr.X_add_number < 512)
13269 {
13270 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13271 (int) imm_expr.X_add_number);
13272 break;
13273 }
13274 if (imm_expr.X_add_number >= 0
13275 && imm_expr.X_add_number < 0x10000)
13276 {
13277 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13278 BFD_RELOC_LO16);
13279 }
13280 else if (imm_expr.X_add_number > -0x8000
13281 && imm_expr.X_add_number < 0)
13282 {
13283 imm_expr.X_add_number = -imm_expr.X_add_number;
13284 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13285 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13286 }
13287 else if (CPU_HAS_SEQ (mips_opts.arch))
13288 {
13289 used_at = 1;
13290 load_register (AT, &imm_expr, GPR_SIZE == 64);
13291 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13292 break;
13293 }
13294 else
13295 {
13296 load_register (AT, &imm_expr, GPR_SIZE == 64);
13297 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13298 used_at = 1;
13299 }
13300 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13301 break;
13302
13303 case M_SUB_I:
13304 s = "addi";
13305 s2 = "sub";
13306 goto do_subi;
13307 case M_SUBU_I:
13308 s = "addiu";
13309 s2 = "subu";
13310 goto do_subi;
13311 case M_DSUB_I:
13312 dbl = 1;
13313 s = "daddi";
13314 s2 = "dsub";
13315 if (!mips_opts.micromips)
13316 goto do_subi;
13317 if (imm_expr.X_add_number > -0x200
13318 && imm_expr.X_add_number <= 0x200)
13319 {
13320 macro_build (NULL, s, "t,r,.", op[0], op[1],
13321 (int) -imm_expr.X_add_number);
13322 break;
13323 }
13324 goto do_subi_i;
13325 case M_DSUBU_I:
13326 dbl = 1;
13327 s = "daddiu";
13328 s2 = "dsubu";
13329 do_subi:
13330 if (imm_expr.X_add_number > -0x8000
13331 && imm_expr.X_add_number <= 0x8000)
13332 {
13333 imm_expr.X_add_number = -imm_expr.X_add_number;
13334 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13335 break;
13336 }
13337 do_subi_i:
13338 used_at = 1;
13339 load_register (AT, &imm_expr, dbl);
13340 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13341 break;
13342
13343 case M_TEQ_I:
13344 s = "teq";
13345 goto trap;
13346 case M_TGE_I:
13347 s = "tge";
13348 goto trap;
13349 case M_TGEU_I:
13350 s = "tgeu";
13351 goto trap;
13352 case M_TLT_I:
13353 s = "tlt";
13354 goto trap;
13355 case M_TLTU_I:
13356 s = "tltu";
13357 goto trap;
13358 case M_TNE_I:
13359 s = "tne";
13360 trap:
13361 used_at = 1;
13362 load_register (AT, &imm_expr, GPR_SIZE == 64);
13363 macro_build (NULL, s, "s,t", op[0], AT);
13364 break;
13365
13366 case M_TRUNCWS:
13367 case M_TRUNCWD:
13368 gas_assert (!mips_opts.micromips);
13369 gas_assert (mips_opts.isa == ISA_MIPS1);
13370 used_at = 1;
13371
13372 /*
13373 * Is the double cfc1 instruction a bug in the mips assembler;
13374 * or is there a reason for it?
13375 */
13376 start_noreorder ();
13377 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13378 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13379 macro_build (NULL, "nop", "");
13380 expr1.X_add_number = 3;
13381 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13382 expr1.X_add_number = 2;
13383 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13384 macro_build (NULL, "ctc1", "t,G", AT, RA);
13385 macro_build (NULL, "nop", "");
13386 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13387 op[0], op[1]);
13388 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13389 macro_build (NULL, "nop", "");
13390 end_noreorder ();
13391 break;
13392
13393 case M_ULH_AB:
13394 s = "lb";
13395 s2 = "lbu";
13396 off = 1;
13397 goto uld_st;
13398 case M_ULHU_AB:
13399 s = "lbu";
13400 s2 = "lbu";
13401 off = 1;
13402 goto uld_st;
13403 case M_ULW_AB:
13404 s = "lwl";
13405 s2 = "lwr";
13406 offbits = (mips_opts.micromips ? 12 : 16);
13407 off = 3;
13408 goto uld_st;
13409 case M_ULD_AB:
13410 s = "ldl";
13411 s2 = "ldr";
13412 offbits = (mips_opts.micromips ? 12 : 16);
13413 off = 7;
13414 goto uld_st;
13415 case M_USH_AB:
13416 s = "sb";
13417 s2 = "sb";
13418 off = 1;
13419 ust = 1;
13420 goto uld_st;
13421 case M_USW_AB:
13422 s = "swl";
13423 s2 = "swr";
13424 offbits = (mips_opts.micromips ? 12 : 16);
13425 off = 3;
13426 ust = 1;
13427 goto uld_st;
13428 case M_USD_AB:
13429 s = "sdl";
13430 s2 = "sdr";
13431 offbits = (mips_opts.micromips ? 12 : 16);
13432 off = 7;
13433 ust = 1;
13434
13435 uld_st:
13436 breg = op[2];
13437 large_offset = !small_offset_p (off, align, offbits);
13438 ep = &offset_expr;
13439 expr1.X_add_number = 0;
13440 if (large_offset)
13441 {
13442 used_at = 1;
13443 tempreg = AT;
13444 if (small_offset_p (0, align, 16))
13445 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13446 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13447 else
13448 {
13449 load_address (tempreg, ep, &used_at);
13450 if (breg != 0)
13451 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13452 tempreg, tempreg, breg);
13453 }
13454 offset_reloc[0] = BFD_RELOC_LO16;
13455 offset_reloc[1] = BFD_RELOC_UNUSED;
13456 offset_reloc[2] = BFD_RELOC_UNUSED;
13457 breg = tempreg;
13458 tempreg = op[0];
13459 ep = &expr1;
13460 }
13461 else if (!ust && op[0] == breg)
13462 {
13463 used_at = 1;
13464 tempreg = AT;
13465 }
13466 else
13467 tempreg = op[0];
13468
13469 if (off == 1)
13470 goto ulh_sh;
13471
13472 if (!target_big_endian)
13473 ep->X_add_number += off;
13474 if (offbits == 12)
13475 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13476 else
13477 macro_build (ep, s, "t,o(b)", tempreg, -1,
13478 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13479
13480 if (!target_big_endian)
13481 ep->X_add_number -= off;
13482 else
13483 ep->X_add_number += off;
13484 if (offbits == 12)
13485 macro_build (NULL, s2, "t,~(b)",
13486 tempreg, (int) ep->X_add_number, breg);
13487 else
13488 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13489 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13490
13491 /* If necessary, move the result in tempreg to the final destination. */
13492 if (!ust && op[0] != tempreg)
13493 {
13494 /* Protect second load's delay slot. */
13495 load_delay_nop ();
13496 move_register (op[0], tempreg);
13497 }
13498 break;
13499
13500 ulh_sh:
13501 used_at = 1;
13502 if (target_big_endian == ust)
13503 ep->X_add_number += off;
13504 tempreg = ust || large_offset ? op[0] : AT;
13505 macro_build (ep, s, "t,o(b)", tempreg, -1,
13506 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13507
13508 /* For halfword transfers we need a temporary register to shuffle
13509 bytes. Unfortunately for M_USH_A we have none available before
13510 the next store as AT holds the base address. We deal with this
13511 case by clobbering TREG and then restoring it as with ULH. */
13512 tempreg = ust == large_offset ? op[0] : AT;
13513 if (ust)
13514 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13515
13516 if (target_big_endian == ust)
13517 ep->X_add_number -= off;
13518 else
13519 ep->X_add_number += off;
13520 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13521 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13522
13523 /* For M_USH_A re-retrieve the LSB. */
13524 if (ust && large_offset)
13525 {
13526 if (target_big_endian)
13527 ep->X_add_number += off;
13528 else
13529 ep->X_add_number -= off;
13530 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13531 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13532 }
13533 /* For ULH and M_USH_A OR the LSB in. */
13534 if (!ust || large_offset)
13535 {
13536 tempreg = !large_offset ? AT : op[0];
13537 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13538 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13539 }
13540 break;
13541
13542 default:
13543 /* FIXME: Check if this is one of the itbl macros, since they
13544 are added dynamically. */
13545 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13546 break;
13547 }
13548 if (!mips_opts.at && used_at)
13549 as_bad (_("macro used $at after \".set noat\""));
13550 }
13551
13552 /* Implement macros in mips16 mode. */
13553
13554 static void
13555 mips16_macro (struct mips_cl_insn *ip)
13556 {
13557 const struct mips_operand_array *operands;
13558 int mask;
13559 int tmp;
13560 expressionS expr1;
13561 int dbl;
13562 const char *s, *s2, *s3;
13563 unsigned int op[MAX_OPERANDS];
13564 unsigned int i;
13565
13566 mask = ip->insn_mo->mask;
13567
13568 operands = insn_operands (ip);
13569 for (i = 0; i < MAX_OPERANDS; i++)
13570 if (operands->operand[i])
13571 op[i] = insn_extract_operand (ip, operands->operand[i]);
13572 else
13573 op[i] = -1;
13574
13575 expr1.X_op = O_constant;
13576 expr1.X_op_symbol = NULL;
13577 expr1.X_add_symbol = NULL;
13578 expr1.X_add_number = 1;
13579
13580 dbl = 0;
13581
13582 switch (mask)
13583 {
13584 default:
13585 abort ();
13586
13587 case M_DDIV_3:
13588 dbl = 1;
13589 /* Fall through. */
13590 case M_DIV_3:
13591 s = "mflo";
13592 goto do_div3;
13593 case M_DREM_3:
13594 dbl = 1;
13595 /* Fall through. */
13596 case M_REM_3:
13597 s = "mfhi";
13598 do_div3:
13599 start_noreorder ();
13600 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13601 expr1.X_add_number = 2;
13602 macro_build (&expr1, "bnez", "x,p", op[2]);
13603 macro_build (NULL, "break", "6", 7);
13604
13605 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13606 since that causes an overflow. We should do that as well,
13607 but I don't see how to do the comparisons without a temporary
13608 register. */
13609 end_noreorder ();
13610 macro_build (NULL, s, "x", op[0]);
13611 break;
13612
13613 case M_DIVU_3:
13614 s = "divu";
13615 s2 = "mflo";
13616 goto do_divu3;
13617 case M_REMU_3:
13618 s = "divu";
13619 s2 = "mfhi";
13620 goto do_divu3;
13621 case M_DDIVU_3:
13622 s = "ddivu";
13623 s2 = "mflo";
13624 goto do_divu3;
13625 case M_DREMU_3:
13626 s = "ddivu";
13627 s2 = "mfhi";
13628 do_divu3:
13629 start_noreorder ();
13630 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13631 expr1.X_add_number = 2;
13632 macro_build (&expr1, "bnez", "x,p", op[2]);
13633 macro_build (NULL, "break", "6", 7);
13634 end_noreorder ();
13635 macro_build (NULL, s2, "x", op[0]);
13636 break;
13637
13638 case M_DMUL:
13639 dbl = 1;
13640 /* Fall through. */
13641 case M_MUL:
13642 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13643 macro_build (NULL, "mflo", "x", op[0]);
13644 break;
13645
13646 case M_DSUBU_I:
13647 dbl = 1;
13648 goto do_subu;
13649 case M_SUBU_I:
13650 do_subu:
13651 imm_expr.X_add_number = -imm_expr.X_add_number;
13652 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
13653 break;
13654
13655 case M_SUBU_I_2:
13656 imm_expr.X_add_number = -imm_expr.X_add_number;
13657 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13658 break;
13659
13660 case M_DSUBU_I_2:
13661 imm_expr.X_add_number = -imm_expr.X_add_number;
13662 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13663 break;
13664
13665 case M_BEQ:
13666 s = "cmp";
13667 s2 = "bteqz";
13668 goto do_branch;
13669 case M_BNE:
13670 s = "cmp";
13671 s2 = "btnez";
13672 goto do_branch;
13673 case M_BLT:
13674 s = "slt";
13675 s2 = "btnez";
13676 goto do_branch;
13677 case M_BLTU:
13678 s = "sltu";
13679 s2 = "btnez";
13680 goto do_branch;
13681 case M_BLE:
13682 s = "slt";
13683 s2 = "bteqz";
13684 goto do_reverse_branch;
13685 case M_BLEU:
13686 s = "sltu";
13687 s2 = "bteqz";
13688 goto do_reverse_branch;
13689 case M_BGE:
13690 s = "slt";
13691 s2 = "bteqz";
13692 goto do_branch;
13693 case M_BGEU:
13694 s = "sltu";
13695 s2 = "bteqz";
13696 goto do_branch;
13697 case M_BGT:
13698 s = "slt";
13699 s2 = "btnez";
13700 goto do_reverse_branch;
13701 case M_BGTU:
13702 s = "sltu";
13703 s2 = "btnez";
13704
13705 do_reverse_branch:
13706 tmp = op[1];
13707 op[1] = op[0];
13708 op[0] = tmp;
13709
13710 do_branch:
13711 macro_build (NULL, s, "x,y", op[0], op[1]);
13712 macro_build (&offset_expr, s2, "p");
13713 break;
13714
13715 case M_BEQ_I:
13716 s = "cmpi";
13717 s2 = "bteqz";
13718 s3 = "x,U";
13719 goto do_branch_i;
13720 case M_BNE_I:
13721 s = "cmpi";
13722 s2 = "btnez";
13723 s3 = "x,U";
13724 goto do_branch_i;
13725 case M_BLT_I:
13726 s = "slti";
13727 s2 = "btnez";
13728 s3 = "x,8";
13729 goto do_branch_i;
13730 case M_BLTU_I:
13731 s = "sltiu";
13732 s2 = "btnez";
13733 s3 = "x,8";
13734 goto do_branch_i;
13735 case M_BLE_I:
13736 s = "slti";
13737 s2 = "btnez";
13738 s3 = "x,8";
13739 goto do_addone_branch_i;
13740 case M_BLEU_I:
13741 s = "sltiu";
13742 s2 = "btnez";
13743 s3 = "x,8";
13744 goto do_addone_branch_i;
13745 case M_BGE_I:
13746 s = "slti";
13747 s2 = "bteqz";
13748 s3 = "x,8";
13749 goto do_branch_i;
13750 case M_BGEU_I:
13751 s = "sltiu";
13752 s2 = "bteqz";
13753 s3 = "x,8";
13754 goto do_branch_i;
13755 case M_BGT_I:
13756 s = "slti";
13757 s2 = "bteqz";
13758 s3 = "x,8";
13759 goto do_addone_branch_i;
13760 case M_BGTU_I:
13761 s = "sltiu";
13762 s2 = "bteqz";
13763 s3 = "x,8";
13764
13765 do_addone_branch_i:
13766 ++imm_expr.X_add_number;
13767
13768 do_branch_i:
13769 macro_build (&imm_expr, s, s3, op[0]);
13770 macro_build (&offset_expr, s2, "p");
13771 break;
13772
13773 case M_ABS:
13774 expr1.X_add_number = 0;
13775 macro_build (&expr1, "slti", "x,8", op[1]);
13776 if (op[0] != op[1])
13777 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13778 expr1.X_add_number = 2;
13779 macro_build (&expr1, "bteqz", "p");
13780 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13781 break;
13782 }
13783 }
13784
13785 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13786 opcode bits in *OPCODE_EXTRA. */
13787
13788 static struct mips_opcode *
13789 mips_lookup_insn (struct hash_control *hash, const char *start,
13790 ssize_t length, unsigned int *opcode_extra)
13791 {
13792 char *name, *dot, *p;
13793 unsigned int mask, suffix;
13794 ssize_t opend;
13795 struct mips_opcode *insn;
13796
13797 /* Make a copy of the instruction so that we can fiddle with it. */
13798 name = xstrndup (start, length);
13799
13800 /* Look up the instruction as-is. */
13801 insn = (struct mips_opcode *) hash_find (hash, name);
13802 if (insn)
13803 goto end;
13804
13805 dot = strchr (name, '.');
13806 if (dot && dot[1])
13807 {
13808 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13809 p = mips_parse_vu0_channels (dot + 1, &mask);
13810 if (*p == 0 && mask != 0)
13811 {
13812 *dot = 0;
13813 insn = (struct mips_opcode *) hash_find (hash, name);
13814 *dot = '.';
13815 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13816 {
13817 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13818 goto end;
13819 }
13820 }
13821 }
13822
13823 if (mips_opts.micromips)
13824 {
13825 /* See if there's an instruction size override suffix,
13826 either `16' or `32', at the end of the mnemonic proper,
13827 that defines the operation, i.e. before the first `.'
13828 character if any. Strip it and retry. */
13829 opend = dot != NULL ? dot - name : length;
13830 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13831 suffix = 2;
13832 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13833 suffix = 4;
13834 else
13835 suffix = 0;
13836 if (suffix)
13837 {
13838 memcpy (name + opend - 2, name + opend, length - opend + 1);
13839 insn = (struct mips_opcode *) hash_find (hash, name);
13840 if (insn)
13841 {
13842 forced_insn_length = suffix;
13843 goto end;
13844 }
13845 }
13846 }
13847
13848 insn = NULL;
13849 end:
13850 free (name);
13851 return insn;
13852 }
13853
13854 /* Assemble an instruction into its binary format. If the instruction
13855 is a macro, set imm_expr and offset_expr to the values associated
13856 with "I" and "A" operands respectively. Otherwise store the value
13857 of the relocatable field (if any) in offset_expr. In both cases
13858 set offset_reloc to the relocation operators applied to offset_expr. */
13859
13860 static void
13861 mips_ip (char *str, struct mips_cl_insn *insn)
13862 {
13863 const struct mips_opcode *first, *past;
13864 struct hash_control *hash;
13865 char format;
13866 size_t end;
13867 struct mips_operand_token *tokens;
13868 unsigned int opcode_extra;
13869
13870 if (mips_opts.micromips)
13871 {
13872 hash = micromips_op_hash;
13873 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13874 }
13875 else
13876 {
13877 hash = op_hash;
13878 past = &mips_opcodes[NUMOPCODES];
13879 }
13880 forced_insn_length = 0;
13881 opcode_extra = 0;
13882
13883 /* We first try to match an instruction up to a space or to the end. */
13884 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13885 continue;
13886
13887 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13888 if (first == NULL)
13889 {
13890 set_insn_error (0, _("unrecognized opcode"));
13891 return;
13892 }
13893
13894 if (strcmp (first->name, "li.s") == 0)
13895 format = 'f';
13896 else if (strcmp (first->name, "li.d") == 0)
13897 format = 'd';
13898 else
13899 format = 0;
13900 tokens = mips_parse_arguments (str + end, format);
13901 if (!tokens)
13902 return;
13903
13904 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13905 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13906 set_insn_error (0, _("invalid operands"));
13907
13908 obstack_free (&mips_operand_tokens, tokens);
13909 }
13910
13911 /* As for mips_ip, but used when assembling MIPS16 code.
13912 Also set forced_insn_length to the resulting instruction size in
13913 bytes if the user explicitly requested a small or extended instruction. */
13914
13915 static void
13916 mips16_ip (char *str, struct mips_cl_insn *insn)
13917 {
13918 char *end, *s, c;
13919 struct mips_opcode *first;
13920 struct mips_operand_token *tokens;
13921 unsigned int l;
13922
13923 for (s = str; ISLOWER (*s); ++s)
13924 ;
13925 end = s;
13926 c = *end;
13927
13928 l = 0;
13929 switch (c)
13930 {
13931 case '\0':
13932 break;
13933
13934 case ' ':
13935 s++;
13936 break;
13937
13938 case '.':
13939 s++;
13940 if (*s == 't')
13941 {
13942 l = 2;
13943 s++;
13944 }
13945 else if (*s == 'e')
13946 {
13947 l = 4;
13948 s++;
13949 }
13950 if (*s == '\0')
13951 break;
13952 else if (*s++ == ' ')
13953 break;
13954 /* Fall through. */
13955 default:
13956 set_insn_error (0, _("unrecognized opcode"));
13957 return;
13958 }
13959 forced_insn_length = l;
13960
13961 *end = 0;
13962 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13963 *end = c;
13964
13965 if (!first)
13966 {
13967 set_insn_error (0, _("unrecognized opcode"));
13968 return;
13969 }
13970
13971 tokens = mips_parse_arguments (s, 0);
13972 if (!tokens)
13973 return;
13974
13975 if (!match_mips16_insns (insn, first, tokens))
13976 set_insn_error (0, _("invalid operands"));
13977
13978 obstack_free (&mips_operand_tokens, tokens);
13979 }
13980
13981 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13982 NBITS is the number of significant bits in VAL. */
13983
13984 static unsigned long
13985 mips16_immed_extend (offsetT val, unsigned int nbits)
13986 {
13987 int extval;
13988 if (nbits == 16)
13989 {
13990 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13991 val &= 0x1f;
13992 }
13993 else if (nbits == 15)
13994 {
13995 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13996 val &= 0xf;
13997 }
13998 else
13999 {
14000 extval = ((val & 0x1f) << 6) | (val & 0x20);
14001 val = 0;
14002 }
14003 return (extval << 16) | val;
14004 }
14005
14006 /* Like decode_mips16_operand, but require the operand to be defined and
14007 require it to be an integer. */
14008
14009 static const struct mips_int_operand *
14010 mips16_immed_operand (int type, bfd_boolean extended_p)
14011 {
14012 const struct mips_operand *operand;
14013
14014 operand = decode_mips16_operand (type, extended_p);
14015 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14016 abort ();
14017 return (const struct mips_int_operand *) operand;
14018 }
14019
14020 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14021
14022 static bfd_boolean
14023 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14024 bfd_reloc_code_real_type reloc, offsetT sval)
14025 {
14026 int min_val, max_val;
14027
14028 min_val = mips_int_operand_min (operand);
14029 max_val = mips_int_operand_max (operand);
14030 if (reloc != BFD_RELOC_UNUSED)
14031 {
14032 if (min_val < 0)
14033 sval = SEXT_16BIT (sval);
14034 else
14035 sval &= 0xffff;
14036 }
14037
14038 return (sval >= min_val
14039 && sval <= max_val
14040 && (sval & ((1 << operand->shift) - 1)) == 0);
14041 }
14042
14043 /* Install immediate value VAL into MIPS16 instruction *INSN,
14044 extending it if necessary. The instruction in *INSN may
14045 already be extended.
14046
14047 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14048 if none. In the former case, VAL is a 16-bit number with no
14049 defined signedness.
14050
14051 TYPE is the type of the immediate field. USER_INSN_LENGTH
14052 is the length that the user requested, or 0 if none. */
14053
14054 static void
14055 mips16_immed (const char *file, unsigned int line, int type,
14056 bfd_reloc_code_real_type reloc, offsetT val,
14057 unsigned int user_insn_length, unsigned long *insn)
14058 {
14059 const struct mips_int_operand *operand;
14060 unsigned int uval, length;
14061
14062 operand = mips16_immed_operand (type, FALSE);
14063 if (!mips16_immed_in_range_p (operand, reloc, val))
14064 {
14065 /* We need an extended instruction. */
14066 if (user_insn_length == 2)
14067 as_bad_where (file, line, _("invalid unextended operand value"));
14068 else
14069 *insn |= MIPS16_EXTEND;
14070 }
14071 else if (user_insn_length == 4)
14072 {
14073 /* The operand doesn't force an unextended instruction to be extended.
14074 Warn if the user wanted an extended instruction anyway. */
14075 *insn |= MIPS16_EXTEND;
14076 as_warn_where (file, line,
14077 _("extended operand requested but not required"));
14078 }
14079
14080 length = mips16_opcode_length (*insn);
14081 if (length == 4)
14082 {
14083 operand = mips16_immed_operand (type, TRUE);
14084 if (!mips16_immed_in_range_p (operand, reloc, val))
14085 as_bad_where (file, line,
14086 _("operand value out of range for instruction"));
14087 }
14088 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14089 if (length == 2 || operand->root.lsb != 0)
14090 *insn = mips_insert_operand (&operand->root, *insn, uval);
14091 else
14092 *insn |= mips16_immed_extend (uval, operand->root.size);
14093 }
14094 \f
14095 struct percent_op_match
14096 {
14097 const char *str;
14098 bfd_reloc_code_real_type reloc;
14099 };
14100
14101 static const struct percent_op_match mips_percent_op[] =
14102 {
14103 {"%lo", BFD_RELOC_LO16},
14104 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14105 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14106 {"%call16", BFD_RELOC_MIPS_CALL16},
14107 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14108 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14109 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14110 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14111 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14112 {"%got", BFD_RELOC_MIPS_GOT16},
14113 {"%gp_rel", BFD_RELOC_GPREL16},
14114 {"%gprel", BFD_RELOC_GPREL16},
14115 {"%half", BFD_RELOC_16},
14116 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14117 {"%higher", BFD_RELOC_MIPS_HIGHER},
14118 {"%neg", BFD_RELOC_MIPS_SUB},
14119 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14120 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14121 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14122 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14123 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14124 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14125 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14126 {"%hi", BFD_RELOC_HI16_S},
14127 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14128 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14129 };
14130
14131 static const struct percent_op_match mips16_percent_op[] =
14132 {
14133 {"%lo", BFD_RELOC_MIPS16_LO16},
14134 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14135 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14136 {"%got", BFD_RELOC_MIPS16_GOT16},
14137 {"%call16", BFD_RELOC_MIPS16_CALL16},
14138 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14139 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14140 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14141 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14142 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14143 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14144 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14145 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14146 };
14147
14148
14149 /* Return true if *STR points to a relocation operator. When returning true,
14150 move *STR over the operator and store its relocation code in *RELOC.
14151 Leave both *STR and *RELOC alone when returning false. */
14152
14153 static bfd_boolean
14154 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14155 {
14156 const struct percent_op_match *percent_op;
14157 size_t limit, i;
14158
14159 if (mips_opts.mips16)
14160 {
14161 percent_op = mips16_percent_op;
14162 limit = ARRAY_SIZE (mips16_percent_op);
14163 }
14164 else
14165 {
14166 percent_op = mips_percent_op;
14167 limit = ARRAY_SIZE (mips_percent_op);
14168 }
14169
14170 for (i = 0; i < limit; i++)
14171 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14172 {
14173 int len = strlen (percent_op[i].str);
14174
14175 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14176 continue;
14177
14178 *str += strlen (percent_op[i].str);
14179 *reloc = percent_op[i].reloc;
14180
14181 /* Check whether the output BFD supports this relocation.
14182 If not, issue an error and fall back on something safe. */
14183 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14184 {
14185 as_bad (_("relocation %s isn't supported by the current ABI"),
14186 percent_op[i].str);
14187 *reloc = BFD_RELOC_UNUSED;
14188 }
14189 return TRUE;
14190 }
14191 return FALSE;
14192 }
14193
14194
14195 /* Parse string STR as a 16-bit relocatable operand. Store the
14196 expression in *EP and the relocations in the array starting
14197 at RELOC. Return the number of relocation operators used.
14198
14199 On exit, EXPR_END points to the first character after the expression. */
14200
14201 static size_t
14202 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14203 char *str)
14204 {
14205 bfd_reloc_code_real_type reversed_reloc[3];
14206 size_t reloc_index, i;
14207 int crux_depth, str_depth;
14208 char *crux;
14209
14210 /* Search for the start of the main expression, recoding relocations
14211 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14212 of the main expression and with CRUX_DEPTH containing the number
14213 of open brackets at that point. */
14214 reloc_index = -1;
14215 str_depth = 0;
14216 do
14217 {
14218 reloc_index++;
14219 crux = str;
14220 crux_depth = str_depth;
14221
14222 /* Skip over whitespace and brackets, keeping count of the number
14223 of brackets. */
14224 while (*str == ' ' || *str == '\t' || *str == '(')
14225 if (*str++ == '(')
14226 str_depth++;
14227 }
14228 while (*str == '%'
14229 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14230 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14231
14232 my_getExpression (ep, crux);
14233 str = expr_end;
14234
14235 /* Match every open bracket. */
14236 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14237 if (*str++ == ')')
14238 crux_depth--;
14239
14240 if (crux_depth > 0)
14241 as_bad (_("unclosed '('"));
14242
14243 expr_end = str;
14244
14245 if (reloc_index != 0)
14246 {
14247 prev_reloc_op_frag = frag_now;
14248 for (i = 0; i < reloc_index; i++)
14249 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14250 }
14251
14252 return reloc_index;
14253 }
14254
14255 static void
14256 my_getExpression (expressionS *ep, char *str)
14257 {
14258 char *save_in;
14259
14260 save_in = input_line_pointer;
14261 input_line_pointer = str;
14262 expression (ep);
14263 expr_end = input_line_pointer;
14264 input_line_pointer = save_in;
14265 }
14266
14267 const char *
14268 md_atof (int type, char *litP, int *sizeP)
14269 {
14270 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14271 }
14272
14273 void
14274 md_number_to_chars (char *buf, valueT val, int n)
14275 {
14276 if (target_big_endian)
14277 number_to_chars_bigendian (buf, val, n);
14278 else
14279 number_to_chars_littleendian (buf, val, n);
14280 }
14281 \f
14282 static int support_64bit_objects(void)
14283 {
14284 const char **list, **l;
14285 int yes;
14286
14287 list = bfd_target_list ();
14288 for (l = list; *l != NULL; l++)
14289 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14290 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14291 break;
14292 yes = (*l != NULL);
14293 free (list);
14294 return yes;
14295 }
14296
14297 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14298 NEW_VALUE. Warn if another value was already specified. Note:
14299 we have to defer parsing the -march and -mtune arguments in order
14300 to handle 'from-abi' correctly, since the ABI might be specified
14301 in a later argument. */
14302
14303 static void
14304 mips_set_option_string (const char **string_ptr, const char *new_value)
14305 {
14306 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14307 as_warn (_("a different %s was already specified, is now %s"),
14308 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14309 new_value);
14310
14311 *string_ptr = new_value;
14312 }
14313
14314 int
14315 md_parse_option (int c, const char *arg)
14316 {
14317 unsigned int i;
14318
14319 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14320 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14321 {
14322 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14323 c == mips_ases[i].option_on);
14324 return 1;
14325 }
14326
14327 switch (c)
14328 {
14329 case OPTION_CONSTRUCT_FLOATS:
14330 mips_disable_float_construction = 0;
14331 break;
14332
14333 case OPTION_NO_CONSTRUCT_FLOATS:
14334 mips_disable_float_construction = 1;
14335 break;
14336
14337 case OPTION_TRAP:
14338 mips_trap = 1;
14339 break;
14340
14341 case OPTION_BREAK:
14342 mips_trap = 0;
14343 break;
14344
14345 case OPTION_EB:
14346 target_big_endian = 1;
14347 break;
14348
14349 case OPTION_EL:
14350 target_big_endian = 0;
14351 break;
14352
14353 case 'O':
14354 if (arg == NULL)
14355 mips_optimize = 1;
14356 else if (arg[0] == '0')
14357 mips_optimize = 0;
14358 else if (arg[0] == '1')
14359 mips_optimize = 1;
14360 else
14361 mips_optimize = 2;
14362 break;
14363
14364 case 'g':
14365 if (arg == NULL)
14366 mips_debug = 2;
14367 else
14368 mips_debug = atoi (arg);
14369 break;
14370
14371 case OPTION_MIPS1:
14372 file_mips_opts.isa = ISA_MIPS1;
14373 break;
14374
14375 case OPTION_MIPS2:
14376 file_mips_opts.isa = ISA_MIPS2;
14377 break;
14378
14379 case OPTION_MIPS3:
14380 file_mips_opts.isa = ISA_MIPS3;
14381 break;
14382
14383 case OPTION_MIPS4:
14384 file_mips_opts.isa = ISA_MIPS4;
14385 break;
14386
14387 case OPTION_MIPS5:
14388 file_mips_opts.isa = ISA_MIPS5;
14389 break;
14390
14391 case OPTION_MIPS32:
14392 file_mips_opts.isa = ISA_MIPS32;
14393 break;
14394
14395 case OPTION_MIPS32R2:
14396 file_mips_opts.isa = ISA_MIPS32R2;
14397 break;
14398
14399 case OPTION_MIPS32R3:
14400 file_mips_opts.isa = ISA_MIPS32R3;
14401 break;
14402
14403 case OPTION_MIPS32R5:
14404 file_mips_opts.isa = ISA_MIPS32R5;
14405 break;
14406
14407 case OPTION_MIPS32R6:
14408 file_mips_opts.isa = ISA_MIPS32R6;
14409 break;
14410
14411 case OPTION_MIPS64R2:
14412 file_mips_opts.isa = ISA_MIPS64R2;
14413 break;
14414
14415 case OPTION_MIPS64R3:
14416 file_mips_opts.isa = ISA_MIPS64R3;
14417 break;
14418
14419 case OPTION_MIPS64R5:
14420 file_mips_opts.isa = ISA_MIPS64R5;
14421 break;
14422
14423 case OPTION_MIPS64R6:
14424 file_mips_opts.isa = ISA_MIPS64R6;
14425 break;
14426
14427 case OPTION_MIPS64:
14428 file_mips_opts.isa = ISA_MIPS64;
14429 break;
14430
14431 case OPTION_MTUNE:
14432 mips_set_option_string (&mips_tune_string, arg);
14433 break;
14434
14435 case OPTION_MARCH:
14436 mips_set_option_string (&mips_arch_string, arg);
14437 break;
14438
14439 case OPTION_M4650:
14440 mips_set_option_string (&mips_arch_string, "4650");
14441 mips_set_option_string (&mips_tune_string, "4650");
14442 break;
14443
14444 case OPTION_NO_M4650:
14445 break;
14446
14447 case OPTION_M4010:
14448 mips_set_option_string (&mips_arch_string, "4010");
14449 mips_set_option_string (&mips_tune_string, "4010");
14450 break;
14451
14452 case OPTION_NO_M4010:
14453 break;
14454
14455 case OPTION_M4100:
14456 mips_set_option_string (&mips_arch_string, "4100");
14457 mips_set_option_string (&mips_tune_string, "4100");
14458 break;
14459
14460 case OPTION_NO_M4100:
14461 break;
14462
14463 case OPTION_M3900:
14464 mips_set_option_string (&mips_arch_string, "3900");
14465 mips_set_option_string (&mips_tune_string, "3900");
14466 break;
14467
14468 case OPTION_NO_M3900:
14469 break;
14470
14471 case OPTION_MICROMIPS:
14472 if (file_mips_opts.mips16 == 1)
14473 {
14474 as_bad (_("-mmicromips cannot be used with -mips16"));
14475 return 0;
14476 }
14477 file_mips_opts.micromips = 1;
14478 mips_no_prev_insn ();
14479 break;
14480
14481 case OPTION_NO_MICROMIPS:
14482 file_mips_opts.micromips = 0;
14483 mips_no_prev_insn ();
14484 break;
14485
14486 case OPTION_MIPS16:
14487 if (file_mips_opts.micromips == 1)
14488 {
14489 as_bad (_("-mips16 cannot be used with -micromips"));
14490 return 0;
14491 }
14492 file_mips_opts.mips16 = 1;
14493 mips_no_prev_insn ();
14494 break;
14495
14496 case OPTION_NO_MIPS16:
14497 file_mips_opts.mips16 = 0;
14498 mips_no_prev_insn ();
14499 break;
14500
14501 case OPTION_FIX_24K:
14502 mips_fix_24k = 1;
14503 break;
14504
14505 case OPTION_NO_FIX_24K:
14506 mips_fix_24k = 0;
14507 break;
14508
14509 case OPTION_FIX_RM7000:
14510 mips_fix_rm7000 = 1;
14511 break;
14512
14513 case OPTION_NO_FIX_RM7000:
14514 mips_fix_rm7000 = 0;
14515 break;
14516
14517 case OPTION_FIX_LOONGSON2F_JUMP:
14518 mips_fix_loongson2f_jump = TRUE;
14519 break;
14520
14521 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14522 mips_fix_loongson2f_jump = FALSE;
14523 break;
14524
14525 case OPTION_FIX_LOONGSON2F_NOP:
14526 mips_fix_loongson2f_nop = TRUE;
14527 break;
14528
14529 case OPTION_NO_FIX_LOONGSON2F_NOP:
14530 mips_fix_loongson2f_nop = FALSE;
14531 break;
14532
14533 case OPTION_FIX_VR4120:
14534 mips_fix_vr4120 = 1;
14535 break;
14536
14537 case OPTION_NO_FIX_VR4120:
14538 mips_fix_vr4120 = 0;
14539 break;
14540
14541 case OPTION_FIX_VR4130:
14542 mips_fix_vr4130 = 1;
14543 break;
14544
14545 case OPTION_NO_FIX_VR4130:
14546 mips_fix_vr4130 = 0;
14547 break;
14548
14549 case OPTION_FIX_CN63XXP1:
14550 mips_fix_cn63xxp1 = TRUE;
14551 break;
14552
14553 case OPTION_NO_FIX_CN63XXP1:
14554 mips_fix_cn63xxp1 = FALSE;
14555 break;
14556
14557 case OPTION_RELAX_BRANCH:
14558 mips_relax_branch = 1;
14559 break;
14560
14561 case OPTION_NO_RELAX_BRANCH:
14562 mips_relax_branch = 0;
14563 break;
14564
14565 case OPTION_IGNORE_BRANCH_ISA:
14566 mips_ignore_branch_isa = TRUE;
14567 break;
14568
14569 case OPTION_NO_IGNORE_BRANCH_ISA:
14570 mips_ignore_branch_isa = FALSE;
14571 break;
14572
14573 case OPTION_INSN32:
14574 file_mips_opts.insn32 = TRUE;
14575 break;
14576
14577 case OPTION_NO_INSN32:
14578 file_mips_opts.insn32 = FALSE;
14579 break;
14580
14581 case OPTION_MSHARED:
14582 mips_in_shared = TRUE;
14583 break;
14584
14585 case OPTION_MNO_SHARED:
14586 mips_in_shared = FALSE;
14587 break;
14588
14589 case OPTION_MSYM32:
14590 file_mips_opts.sym32 = TRUE;
14591 break;
14592
14593 case OPTION_MNO_SYM32:
14594 file_mips_opts.sym32 = FALSE;
14595 break;
14596
14597 /* When generating ELF code, we permit -KPIC and -call_shared to
14598 select SVR4_PIC, and -non_shared to select no PIC. This is
14599 intended to be compatible with Irix 5. */
14600 case OPTION_CALL_SHARED:
14601 mips_pic = SVR4_PIC;
14602 mips_abicalls = TRUE;
14603 break;
14604
14605 case OPTION_CALL_NONPIC:
14606 mips_pic = NO_PIC;
14607 mips_abicalls = TRUE;
14608 break;
14609
14610 case OPTION_NON_SHARED:
14611 mips_pic = NO_PIC;
14612 mips_abicalls = FALSE;
14613 break;
14614
14615 /* The -xgot option tells the assembler to use 32 bit offsets
14616 when accessing the got in SVR4_PIC mode. It is for Irix
14617 compatibility. */
14618 case OPTION_XGOT:
14619 mips_big_got = 1;
14620 break;
14621
14622 case 'G':
14623 g_switch_value = atoi (arg);
14624 g_switch_seen = 1;
14625 break;
14626
14627 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14628 and -mabi=64. */
14629 case OPTION_32:
14630 mips_abi = O32_ABI;
14631 break;
14632
14633 case OPTION_N32:
14634 mips_abi = N32_ABI;
14635 break;
14636
14637 case OPTION_64:
14638 mips_abi = N64_ABI;
14639 if (!support_64bit_objects())
14640 as_fatal (_("no compiled in support for 64 bit object file format"));
14641 break;
14642
14643 case OPTION_GP32:
14644 file_mips_opts.gp = 32;
14645 break;
14646
14647 case OPTION_GP64:
14648 file_mips_opts.gp = 64;
14649 break;
14650
14651 case OPTION_FP32:
14652 file_mips_opts.fp = 32;
14653 break;
14654
14655 case OPTION_FPXX:
14656 file_mips_opts.fp = 0;
14657 break;
14658
14659 case OPTION_FP64:
14660 file_mips_opts.fp = 64;
14661 break;
14662
14663 case OPTION_ODD_SPREG:
14664 file_mips_opts.oddspreg = 1;
14665 break;
14666
14667 case OPTION_NO_ODD_SPREG:
14668 file_mips_opts.oddspreg = 0;
14669 break;
14670
14671 case OPTION_SINGLE_FLOAT:
14672 file_mips_opts.single_float = 1;
14673 break;
14674
14675 case OPTION_DOUBLE_FLOAT:
14676 file_mips_opts.single_float = 0;
14677 break;
14678
14679 case OPTION_SOFT_FLOAT:
14680 file_mips_opts.soft_float = 1;
14681 break;
14682
14683 case OPTION_HARD_FLOAT:
14684 file_mips_opts.soft_float = 0;
14685 break;
14686
14687 case OPTION_MABI:
14688 if (strcmp (arg, "32") == 0)
14689 mips_abi = O32_ABI;
14690 else if (strcmp (arg, "o64") == 0)
14691 mips_abi = O64_ABI;
14692 else if (strcmp (arg, "n32") == 0)
14693 mips_abi = N32_ABI;
14694 else if (strcmp (arg, "64") == 0)
14695 {
14696 mips_abi = N64_ABI;
14697 if (! support_64bit_objects())
14698 as_fatal (_("no compiled in support for 64 bit object file "
14699 "format"));
14700 }
14701 else if (strcmp (arg, "eabi") == 0)
14702 mips_abi = EABI_ABI;
14703 else
14704 {
14705 as_fatal (_("invalid abi -mabi=%s"), arg);
14706 return 0;
14707 }
14708 break;
14709
14710 case OPTION_M7000_HILO_FIX:
14711 mips_7000_hilo_fix = TRUE;
14712 break;
14713
14714 case OPTION_MNO_7000_HILO_FIX:
14715 mips_7000_hilo_fix = FALSE;
14716 break;
14717
14718 case OPTION_MDEBUG:
14719 mips_flag_mdebug = TRUE;
14720 break;
14721
14722 case OPTION_NO_MDEBUG:
14723 mips_flag_mdebug = FALSE;
14724 break;
14725
14726 case OPTION_PDR:
14727 mips_flag_pdr = TRUE;
14728 break;
14729
14730 case OPTION_NO_PDR:
14731 mips_flag_pdr = FALSE;
14732 break;
14733
14734 case OPTION_MVXWORKS_PIC:
14735 mips_pic = VXWORKS_PIC;
14736 break;
14737
14738 case OPTION_NAN:
14739 if (strcmp (arg, "2008") == 0)
14740 mips_nan2008 = 1;
14741 else if (strcmp (arg, "legacy") == 0)
14742 mips_nan2008 = 0;
14743 else
14744 {
14745 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14746 return 0;
14747 }
14748 break;
14749
14750 default:
14751 return 0;
14752 }
14753
14754 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14755
14756 return 1;
14757 }
14758 \f
14759 /* Set up globals to tune for the ISA or processor described by INFO. */
14760
14761 static void
14762 mips_set_tune (const struct mips_cpu_info *info)
14763 {
14764 if (info != 0)
14765 mips_tune = info->cpu;
14766 }
14767
14768
14769 void
14770 mips_after_parse_args (void)
14771 {
14772 const struct mips_cpu_info *arch_info = 0;
14773 const struct mips_cpu_info *tune_info = 0;
14774
14775 /* GP relative stuff not working for PE */
14776 if (strncmp (TARGET_OS, "pe", 2) == 0)
14777 {
14778 if (g_switch_seen && g_switch_value != 0)
14779 as_bad (_("-G not supported in this configuration"));
14780 g_switch_value = 0;
14781 }
14782
14783 if (mips_abi == NO_ABI)
14784 mips_abi = MIPS_DEFAULT_ABI;
14785
14786 /* The following code determines the architecture.
14787 Similar code was added to GCC 3.3 (see override_options() in
14788 config/mips/mips.c). The GAS and GCC code should be kept in sync
14789 as much as possible. */
14790
14791 if (mips_arch_string != 0)
14792 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14793
14794 if (file_mips_opts.isa != ISA_UNKNOWN)
14795 {
14796 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14797 ISA level specified by -mipsN, while arch_info->isa contains
14798 the -march selection (if any). */
14799 if (arch_info != 0)
14800 {
14801 /* -march takes precedence over -mipsN, since it is more descriptive.
14802 There's no harm in specifying both as long as the ISA levels
14803 are the same. */
14804 if (file_mips_opts.isa != arch_info->isa)
14805 as_bad (_("-%s conflicts with the other architecture options,"
14806 " which imply -%s"),
14807 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14808 mips_cpu_info_from_isa (arch_info->isa)->name);
14809 }
14810 else
14811 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14812 }
14813
14814 if (arch_info == 0)
14815 {
14816 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14817 gas_assert (arch_info);
14818 }
14819
14820 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14821 as_bad (_("-march=%s is not compatible with the selected ABI"),
14822 arch_info->name);
14823
14824 file_mips_opts.arch = arch_info->cpu;
14825 file_mips_opts.isa = arch_info->isa;
14826
14827 /* Set up initial mips_opts state. */
14828 mips_opts = file_mips_opts;
14829
14830 /* The register size inference code is now placed in
14831 file_mips_check_options. */
14832
14833 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14834 processor. */
14835 if (mips_tune_string != 0)
14836 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14837
14838 if (tune_info == 0)
14839 mips_set_tune (arch_info);
14840 else
14841 mips_set_tune (tune_info);
14842
14843 if (mips_flag_mdebug < 0)
14844 mips_flag_mdebug = 0;
14845 }
14846 \f
14847 void
14848 mips_init_after_args (void)
14849 {
14850 /* initialize opcodes */
14851 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14852 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14853 }
14854
14855 long
14856 md_pcrel_from (fixS *fixP)
14857 {
14858 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14859 switch (fixP->fx_r_type)
14860 {
14861 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14862 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14863 /* Return the address of the delay slot. */
14864 return addr + 2;
14865
14866 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14867 case BFD_RELOC_MICROMIPS_JMP:
14868 case BFD_RELOC_MIPS16_16_PCREL_S1:
14869 case BFD_RELOC_16_PCREL_S2:
14870 case BFD_RELOC_MIPS_21_PCREL_S2:
14871 case BFD_RELOC_MIPS_26_PCREL_S2:
14872 case BFD_RELOC_MIPS_JMP:
14873 /* Return the address of the delay slot. */
14874 return addr + 4;
14875
14876 case BFD_RELOC_MIPS_18_PCREL_S3:
14877 /* Return the aligned address of the doubleword containing
14878 the instruction. */
14879 return addr & ~7;
14880
14881 default:
14882 return addr;
14883 }
14884 }
14885
14886 /* This is called before the symbol table is processed. In order to
14887 work with gcc when using mips-tfile, we must keep all local labels.
14888 However, in other cases, we want to discard them. If we were
14889 called with -g, but we didn't see any debugging information, it may
14890 mean that gcc is smuggling debugging information through to
14891 mips-tfile, in which case we must generate all local labels. */
14892
14893 void
14894 mips_frob_file_before_adjust (void)
14895 {
14896 #ifndef NO_ECOFF_DEBUGGING
14897 if (ECOFF_DEBUGGING
14898 && mips_debug != 0
14899 && ! ecoff_debugging_seen)
14900 flag_keep_locals = 1;
14901 #endif
14902 }
14903
14904 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14905 the corresponding LO16 reloc. This is called before md_apply_fix and
14906 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14907 relocation operators.
14908
14909 For our purposes, a %lo() expression matches a %got() or %hi()
14910 expression if:
14911
14912 (a) it refers to the same symbol; and
14913 (b) the offset applied in the %lo() expression is no lower than
14914 the offset applied in the %got() or %hi().
14915
14916 (b) allows us to cope with code like:
14917
14918 lui $4,%hi(foo)
14919 lh $4,%lo(foo+2)($4)
14920
14921 ...which is legal on RELA targets, and has a well-defined behaviour
14922 if the user knows that adding 2 to "foo" will not induce a carry to
14923 the high 16 bits.
14924
14925 When several %lo()s match a particular %got() or %hi(), we use the
14926 following rules to distinguish them:
14927
14928 (1) %lo()s with smaller offsets are a better match than %lo()s with
14929 higher offsets.
14930
14931 (2) %lo()s with no matching %got() or %hi() are better than those
14932 that already have a matching %got() or %hi().
14933
14934 (3) later %lo()s are better than earlier %lo()s.
14935
14936 These rules are applied in order.
14937
14938 (1) means, among other things, that %lo()s with identical offsets are
14939 chosen if they exist.
14940
14941 (2) means that we won't associate several high-part relocations with
14942 the same low-part relocation unless there's no alternative. Having
14943 several high parts for the same low part is a GNU extension; this rule
14944 allows careful users to avoid it.
14945
14946 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14947 with the last high-part relocation being at the front of the list.
14948 It therefore makes sense to choose the last matching low-part
14949 relocation, all other things being equal. It's also easier
14950 to code that way. */
14951
14952 void
14953 mips_frob_file (void)
14954 {
14955 struct mips_hi_fixup *l;
14956 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14957
14958 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14959 {
14960 segment_info_type *seginfo;
14961 bfd_boolean matched_lo_p;
14962 fixS **hi_pos, **lo_pos, **pos;
14963
14964 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14965
14966 /* If a GOT16 relocation turns out to be against a global symbol,
14967 there isn't supposed to be a matching LO. Ignore %gots against
14968 constants; we'll report an error for those later. */
14969 if (got16_reloc_p (l->fixp->fx_r_type)
14970 && !(l->fixp->fx_addsy
14971 && pic_need_relax (l->fixp->fx_addsy)))
14972 continue;
14973
14974 /* Check quickly whether the next fixup happens to be a matching %lo. */
14975 if (fixup_has_matching_lo_p (l->fixp))
14976 continue;
14977
14978 seginfo = seg_info (l->seg);
14979
14980 /* Set HI_POS to the position of this relocation in the chain.
14981 Set LO_POS to the position of the chosen low-part relocation.
14982 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14983 relocation that matches an immediately-preceding high-part
14984 relocation. */
14985 hi_pos = NULL;
14986 lo_pos = NULL;
14987 matched_lo_p = FALSE;
14988 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14989
14990 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14991 {
14992 if (*pos == l->fixp)
14993 hi_pos = pos;
14994
14995 if ((*pos)->fx_r_type == looking_for_rtype
14996 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14997 && (*pos)->fx_offset >= l->fixp->fx_offset
14998 && (lo_pos == NULL
14999 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15000 || (!matched_lo_p
15001 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15002 lo_pos = pos;
15003
15004 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15005 && fixup_has_matching_lo_p (*pos));
15006 }
15007
15008 /* If we found a match, remove the high-part relocation from its
15009 current position and insert it before the low-part relocation.
15010 Make the offsets match so that fixup_has_matching_lo_p()
15011 will return true.
15012
15013 We don't warn about unmatched high-part relocations since some
15014 versions of gcc have been known to emit dead "lui ...%hi(...)"
15015 instructions. */
15016 if (lo_pos != NULL)
15017 {
15018 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15019 if (l->fixp->fx_next != *lo_pos)
15020 {
15021 *hi_pos = l->fixp->fx_next;
15022 l->fixp->fx_next = *lo_pos;
15023 *lo_pos = l->fixp;
15024 }
15025 }
15026 }
15027 }
15028
15029 int
15030 mips_force_relocation (fixS *fixp)
15031 {
15032 if (generic_force_reloc (fixp))
15033 return 1;
15034
15035 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15036 so that the linker relaxation can update targets. */
15037 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15038 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15039 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15040 return 1;
15041
15042 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15043 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15044 microMIPS symbols so that we can do cross-mode branch diagnostics
15045 and BAL to JALX conversion by the linker. */
15046 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15047 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15048 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15049 && fixp->fx_addsy
15050 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15051 return 1;
15052
15053 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15054 if (ISA_IS_R6 (file_mips_opts.isa)
15055 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15056 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15057 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15058 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15059 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15060 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15061 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15062 return 1;
15063
15064 return 0;
15065 }
15066
15067 /* Implement TC_FORCE_RELOCATION_ABS. */
15068
15069 bfd_boolean
15070 mips_force_relocation_abs (fixS *fixp)
15071 {
15072 if (generic_force_reloc (fixp))
15073 return TRUE;
15074
15075 /* These relocations do not have enough bits in the in-place addend
15076 to hold an arbitrary absolute section's offset. */
15077 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15078 return TRUE;
15079
15080 return FALSE;
15081 }
15082
15083 /* Read the instruction associated with RELOC from BUF. */
15084
15085 static unsigned int
15086 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15087 {
15088 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15089 return read_compressed_insn (buf, 4);
15090 else
15091 return read_insn (buf);
15092 }
15093
15094 /* Write instruction INSN to BUF, given that it has been relocated
15095 by RELOC. */
15096
15097 static void
15098 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15099 unsigned long insn)
15100 {
15101 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15102 write_compressed_insn (buf, insn, 4);
15103 else
15104 write_insn (buf, insn);
15105 }
15106
15107 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15108 to a symbol in another ISA mode, which cannot be converted to JALX. */
15109
15110 static bfd_boolean
15111 fix_bad_cross_mode_jump_p (fixS *fixP)
15112 {
15113 unsigned long opcode;
15114 int other;
15115 char *buf;
15116
15117 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15118 return FALSE;
15119
15120 other = S_GET_OTHER (fixP->fx_addsy);
15121 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15122 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15123 switch (fixP->fx_r_type)
15124 {
15125 case BFD_RELOC_MIPS_JMP:
15126 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15127 case BFD_RELOC_MICROMIPS_JMP:
15128 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15129 default:
15130 return FALSE;
15131 }
15132 }
15133
15134 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15135 jump to a symbol in the same ISA mode. */
15136
15137 static bfd_boolean
15138 fix_bad_same_mode_jalx_p (fixS *fixP)
15139 {
15140 unsigned long opcode;
15141 int other;
15142 char *buf;
15143
15144 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15145 return FALSE;
15146
15147 other = S_GET_OTHER (fixP->fx_addsy);
15148 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15149 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15150 switch (fixP->fx_r_type)
15151 {
15152 case BFD_RELOC_MIPS_JMP:
15153 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15154 case BFD_RELOC_MIPS16_JMP:
15155 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15156 case BFD_RELOC_MICROMIPS_JMP:
15157 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15158 default:
15159 return FALSE;
15160 }
15161 }
15162
15163 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15164 to a symbol whose value plus addend is not aligned according to the
15165 ultimate (after linker relaxation) jump instruction's immediate field
15166 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15167 regular MIPS code, to (1 << 2). */
15168
15169 static bfd_boolean
15170 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15171 {
15172 bfd_boolean micro_to_mips_p;
15173 valueT val;
15174 int other;
15175
15176 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15177 return FALSE;
15178
15179 other = S_GET_OTHER (fixP->fx_addsy);
15180 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15181 val += fixP->fx_offset;
15182 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15183 && !ELF_ST_IS_MICROMIPS (other));
15184 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15185 != ELF_ST_IS_COMPRESSED (other));
15186 }
15187
15188 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15189 to a symbol whose annotation indicates another ISA mode. For absolute
15190 symbols check the ISA bit instead.
15191
15192 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15193 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15194 MIPS symbols and associated with BAL instructions as these instructions
15195 may be be converted to JALX by the linker. */
15196
15197 static bfd_boolean
15198 fix_bad_cross_mode_branch_p (fixS *fixP)
15199 {
15200 bfd_boolean absolute_p;
15201 unsigned long opcode;
15202 asection *symsec;
15203 valueT val;
15204 int other;
15205 char *buf;
15206
15207 if (mips_ignore_branch_isa)
15208 return FALSE;
15209
15210 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15211 return FALSE;
15212
15213 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15214 absolute_p = bfd_is_abs_section (symsec);
15215
15216 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15217 other = S_GET_OTHER (fixP->fx_addsy);
15218
15219 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15220 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15221 switch (fixP->fx_r_type)
15222 {
15223 case BFD_RELOC_16_PCREL_S2:
15224 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15225 && opcode != 0x0411);
15226 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15227 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15228 && opcode != 0x4060);
15229 case BFD_RELOC_MIPS_21_PCREL_S2:
15230 case BFD_RELOC_MIPS_26_PCREL_S2:
15231 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15232 case BFD_RELOC_MIPS16_16_PCREL_S1:
15233 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15234 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15235 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15236 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15237 default:
15238 abort ();
15239 }
15240 }
15241
15242 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15243 branch instruction pointed to by FIXP is not aligned according to the
15244 branch instruction's immediate field requirement. We need the addend
15245 to preserve the ISA bit and also the sum must not have bit 2 set. We
15246 must explicitly OR in the ISA bit from symbol annotation as the bit
15247 won't be set in the symbol's value then. */
15248
15249 static bfd_boolean
15250 fix_bad_misaligned_branch_p (fixS *fixP)
15251 {
15252 bfd_boolean absolute_p;
15253 asection *symsec;
15254 valueT isa_bit;
15255 valueT val;
15256 valueT off;
15257 int other;
15258
15259 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15260 return FALSE;
15261
15262 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15263 absolute_p = bfd_is_abs_section (symsec);
15264
15265 val = S_GET_VALUE (fixP->fx_addsy);
15266 other = S_GET_OTHER (fixP->fx_addsy);
15267 off = fixP->fx_offset;
15268
15269 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15270 val |= ELF_ST_IS_COMPRESSED (other);
15271 val += off;
15272 return (val & 0x3) != isa_bit;
15273 }
15274
15275 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15276 and its calculated value VAL. */
15277
15278 static void
15279 fix_validate_branch (fixS *fixP, valueT val)
15280 {
15281 if (fixP->fx_done && (val & 0x3) != 0)
15282 as_bad_where (fixP->fx_file, fixP->fx_line,
15283 _("branch to misaligned address (0x%lx)"),
15284 (long) (val + md_pcrel_from (fixP)));
15285 else if (fix_bad_cross_mode_branch_p (fixP))
15286 as_bad_where (fixP->fx_file, fixP->fx_line,
15287 _("branch to a symbol in another ISA mode"));
15288 else if (fix_bad_misaligned_branch_p (fixP))
15289 as_bad_where (fixP->fx_file, fixP->fx_line,
15290 _("branch to misaligned address (0x%lx)"),
15291 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15292 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15293 as_bad_where (fixP->fx_file, fixP->fx_line,
15294 _("cannot encode misaligned addend "
15295 "in the relocatable field (0x%lx)"),
15296 (long) fixP->fx_offset);
15297 }
15298
15299 /* Apply a fixup to the object file. */
15300
15301 void
15302 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15303 {
15304 char *buf;
15305 unsigned long insn;
15306 reloc_howto_type *howto;
15307
15308 if (fixP->fx_pcrel)
15309 switch (fixP->fx_r_type)
15310 {
15311 case BFD_RELOC_16_PCREL_S2:
15312 case BFD_RELOC_MIPS16_16_PCREL_S1:
15313 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15314 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15315 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15316 case BFD_RELOC_32_PCREL:
15317 case BFD_RELOC_MIPS_21_PCREL_S2:
15318 case BFD_RELOC_MIPS_26_PCREL_S2:
15319 case BFD_RELOC_MIPS_18_PCREL_S3:
15320 case BFD_RELOC_MIPS_19_PCREL_S2:
15321 case BFD_RELOC_HI16_S_PCREL:
15322 case BFD_RELOC_LO16_PCREL:
15323 break;
15324
15325 case BFD_RELOC_32:
15326 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15327 break;
15328
15329 default:
15330 as_bad_where (fixP->fx_file, fixP->fx_line,
15331 _("PC-relative reference to a different section"));
15332 break;
15333 }
15334
15335 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15336 that have no MIPS ELF equivalent. */
15337 if (fixP->fx_r_type != BFD_RELOC_8)
15338 {
15339 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15340 if (!howto)
15341 return;
15342 }
15343
15344 gas_assert (fixP->fx_size == 2
15345 || fixP->fx_size == 4
15346 || fixP->fx_r_type == BFD_RELOC_8
15347 || fixP->fx_r_type == BFD_RELOC_16
15348 || fixP->fx_r_type == BFD_RELOC_64
15349 || fixP->fx_r_type == BFD_RELOC_CTOR
15350 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15351 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15352 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15353 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15354 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15355 || fixP->fx_r_type == BFD_RELOC_NONE);
15356
15357 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15358
15359 /* Don't treat parts of a composite relocation as done. There are two
15360 reasons for this:
15361
15362 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15363 should nevertheless be emitted if the first part is.
15364
15365 (2) In normal usage, composite relocations are never assembly-time
15366 constants. The easiest way of dealing with the pathological
15367 exceptions is to generate a relocation against STN_UNDEF and
15368 leave everything up to the linker. */
15369 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15370 fixP->fx_done = 1;
15371
15372 switch (fixP->fx_r_type)
15373 {
15374 case BFD_RELOC_MIPS_TLS_GD:
15375 case BFD_RELOC_MIPS_TLS_LDM:
15376 case BFD_RELOC_MIPS_TLS_DTPREL32:
15377 case BFD_RELOC_MIPS_TLS_DTPREL64:
15378 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15379 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15380 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15381 case BFD_RELOC_MIPS_TLS_TPREL32:
15382 case BFD_RELOC_MIPS_TLS_TPREL64:
15383 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15384 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15385 case BFD_RELOC_MICROMIPS_TLS_GD:
15386 case BFD_RELOC_MICROMIPS_TLS_LDM:
15387 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15388 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15389 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15390 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15391 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15392 case BFD_RELOC_MIPS16_TLS_GD:
15393 case BFD_RELOC_MIPS16_TLS_LDM:
15394 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15395 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15396 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15397 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15398 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15399 if (fixP->fx_addsy)
15400 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15401 else
15402 as_bad_where (fixP->fx_file, fixP->fx_line,
15403 _("TLS relocation against a constant"));
15404 break;
15405
15406 case BFD_RELOC_MIPS_JMP:
15407 case BFD_RELOC_MIPS16_JMP:
15408 case BFD_RELOC_MICROMIPS_JMP:
15409 {
15410 int shift;
15411
15412 gas_assert (!fixP->fx_done);
15413
15414 /* Shift is 2, unusually, for microMIPS JALX. */
15415 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15416 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15417 shift = 1;
15418 else
15419 shift = 2;
15420
15421 if (fix_bad_cross_mode_jump_p (fixP))
15422 as_bad_where (fixP->fx_file, fixP->fx_line,
15423 _("jump to a symbol in another ISA mode"));
15424 else if (fix_bad_same_mode_jalx_p (fixP))
15425 as_bad_where (fixP->fx_file, fixP->fx_line,
15426 _("JALX to a symbol in the same ISA mode"));
15427 else if (fix_bad_misaligned_jump_p (fixP, shift))
15428 as_bad_where (fixP->fx_file, fixP->fx_line,
15429 _("jump to misaligned address (0x%lx)"),
15430 (long) (S_GET_VALUE (fixP->fx_addsy)
15431 + fixP->fx_offset));
15432 else if (HAVE_IN_PLACE_ADDENDS
15433 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15434 as_bad_where (fixP->fx_file, fixP->fx_line,
15435 _("cannot encode misaligned addend "
15436 "in the relocatable field (0x%lx)"),
15437 (long) fixP->fx_offset);
15438 }
15439 /* Fall through. */
15440
15441 case BFD_RELOC_MIPS_SHIFT5:
15442 case BFD_RELOC_MIPS_SHIFT6:
15443 case BFD_RELOC_MIPS_GOT_DISP:
15444 case BFD_RELOC_MIPS_GOT_PAGE:
15445 case BFD_RELOC_MIPS_GOT_OFST:
15446 case BFD_RELOC_MIPS_SUB:
15447 case BFD_RELOC_MIPS_INSERT_A:
15448 case BFD_RELOC_MIPS_INSERT_B:
15449 case BFD_RELOC_MIPS_DELETE:
15450 case BFD_RELOC_MIPS_HIGHEST:
15451 case BFD_RELOC_MIPS_HIGHER:
15452 case BFD_RELOC_MIPS_SCN_DISP:
15453 case BFD_RELOC_MIPS_REL16:
15454 case BFD_RELOC_MIPS_RELGOT:
15455 case BFD_RELOC_MIPS_JALR:
15456 case BFD_RELOC_HI16:
15457 case BFD_RELOC_HI16_S:
15458 case BFD_RELOC_LO16:
15459 case BFD_RELOC_GPREL16:
15460 case BFD_RELOC_MIPS_LITERAL:
15461 case BFD_RELOC_MIPS_CALL16:
15462 case BFD_RELOC_MIPS_GOT16:
15463 case BFD_RELOC_GPREL32:
15464 case BFD_RELOC_MIPS_GOT_HI16:
15465 case BFD_RELOC_MIPS_GOT_LO16:
15466 case BFD_RELOC_MIPS_CALL_HI16:
15467 case BFD_RELOC_MIPS_CALL_LO16:
15468 case BFD_RELOC_HI16_S_PCREL:
15469 case BFD_RELOC_LO16_PCREL:
15470 case BFD_RELOC_MIPS16_GPREL:
15471 case BFD_RELOC_MIPS16_GOT16:
15472 case BFD_RELOC_MIPS16_CALL16:
15473 case BFD_RELOC_MIPS16_HI16:
15474 case BFD_RELOC_MIPS16_HI16_S:
15475 case BFD_RELOC_MIPS16_LO16:
15476 case BFD_RELOC_MICROMIPS_GOT_DISP:
15477 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15478 case BFD_RELOC_MICROMIPS_GOT_OFST:
15479 case BFD_RELOC_MICROMIPS_SUB:
15480 case BFD_RELOC_MICROMIPS_HIGHEST:
15481 case BFD_RELOC_MICROMIPS_HIGHER:
15482 case BFD_RELOC_MICROMIPS_SCN_DISP:
15483 case BFD_RELOC_MICROMIPS_JALR:
15484 case BFD_RELOC_MICROMIPS_HI16:
15485 case BFD_RELOC_MICROMIPS_HI16_S:
15486 case BFD_RELOC_MICROMIPS_LO16:
15487 case BFD_RELOC_MICROMIPS_GPREL16:
15488 case BFD_RELOC_MICROMIPS_LITERAL:
15489 case BFD_RELOC_MICROMIPS_CALL16:
15490 case BFD_RELOC_MICROMIPS_GOT16:
15491 case BFD_RELOC_MICROMIPS_GOT_HI16:
15492 case BFD_RELOC_MICROMIPS_GOT_LO16:
15493 case BFD_RELOC_MICROMIPS_CALL_HI16:
15494 case BFD_RELOC_MICROMIPS_CALL_LO16:
15495 case BFD_RELOC_MIPS_EH:
15496 if (fixP->fx_done)
15497 {
15498 offsetT value;
15499
15500 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15501 {
15502 insn = read_reloc_insn (buf, fixP->fx_r_type);
15503 if (mips16_reloc_p (fixP->fx_r_type))
15504 insn |= mips16_immed_extend (value, 16);
15505 else
15506 insn |= (value & 0xffff);
15507 write_reloc_insn (buf, fixP->fx_r_type, insn);
15508 }
15509 else
15510 as_bad_where (fixP->fx_file, fixP->fx_line,
15511 _("unsupported constant in relocation"));
15512 }
15513 break;
15514
15515 case BFD_RELOC_64:
15516 /* This is handled like BFD_RELOC_32, but we output a sign
15517 extended value if we are only 32 bits. */
15518 if (fixP->fx_done)
15519 {
15520 if (8 <= sizeof (valueT))
15521 md_number_to_chars (buf, *valP, 8);
15522 else
15523 {
15524 valueT hiv;
15525
15526 if ((*valP & 0x80000000) != 0)
15527 hiv = 0xffffffff;
15528 else
15529 hiv = 0;
15530 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15531 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15532 }
15533 }
15534 break;
15535
15536 case BFD_RELOC_RVA:
15537 case BFD_RELOC_32:
15538 case BFD_RELOC_32_PCREL:
15539 case BFD_RELOC_16:
15540 case BFD_RELOC_8:
15541 /* If we are deleting this reloc entry, we must fill in the
15542 value now. This can happen if we have a .word which is not
15543 resolved when it appears but is later defined. */
15544 if (fixP->fx_done)
15545 md_number_to_chars (buf, *valP, fixP->fx_size);
15546 break;
15547
15548 case BFD_RELOC_MIPS_21_PCREL_S2:
15549 fix_validate_branch (fixP, *valP);
15550 if (!fixP->fx_done)
15551 break;
15552
15553 if (*valP + 0x400000 <= 0x7fffff)
15554 {
15555 insn = read_insn (buf);
15556 insn |= (*valP >> 2) & 0x1fffff;
15557 write_insn (buf, insn);
15558 }
15559 else
15560 as_bad_where (fixP->fx_file, fixP->fx_line,
15561 _("branch out of range"));
15562 break;
15563
15564 case BFD_RELOC_MIPS_26_PCREL_S2:
15565 fix_validate_branch (fixP, *valP);
15566 if (!fixP->fx_done)
15567 break;
15568
15569 if (*valP + 0x8000000 <= 0xfffffff)
15570 {
15571 insn = read_insn (buf);
15572 insn |= (*valP >> 2) & 0x3ffffff;
15573 write_insn (buf, insn);
15574 }
15575 else
15576 as_bad_where (fixP->fx_file, fixP->fx_line,
15577 _("branch out of range"));
15578 break;
15579
15580 case BFD_RELOC_MIPS_18_PCREL_S3:
15581 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15582 as_bad_where (fixP->fx_file, fixP->fx_line,
15583 _("PC-relative access using misaligned symbol (%lx)"),
15584 (long) S_GET_VALUE (fixP->fx_addsy));
15585 if ((fixP->fx_offset & 0x7) != 0)
15586 as_bad_where (fixP->fx_file, fixP->fx_line,
15587 _("PC-relative access using misaligned offset (%lx)"),
15588 (long) fixP->fx_offset);
15589 if (!fixP->fx_done)
15590 break;
15591
15592 if (*valP + 0x100000 <= 0x1fffff)
15593 {
15594 insn = read_insn (buf);
15595 insn |= (*valP >> 3) & 0x3ffff;
15596 write_insn (buf, insn);
15597 }
15598 else
15599 as_bad_where (fixP->fx_file, fixP->fx_line,
15600 _("PC-relative access out of range"));
15601 break;
15602
15603 case BFD_RELOC_MIPS_19_PCREL_S2:
15604 if ((*valP & 0x3) != 0)
15605 as_bad_where (fixP->fx_file, fixP->fx_line,
15606 _("PC-relative access to misaligned address (%lx)"),
15607 (long) *valP);
15608 if (!fixP->fx_done)
15609 break;
15610
15611 if (*valP + 0x100000 <= 0x1fffff)
15612 {
15613 insn = read_insn (buf);
15614 insn |= (*valP >> 2) & 0x7ffff;
15615 write_insn (buf, insn);
15616 }
15617 else
15618 as_bad_where (fixP->fx_file, fixP->fx_line,
15619 _("PC-relative access out of range"));
15620 break;
15621
15622 case BFD_RELOC_16_PCREL_S2:
15623 fix_validate_branch (fixP, *valP);
15624
15625 /* We need to save the bits in the instruction since fixup_segment()
15626 might be deleting the relocation entry (i.e., a branch within
15627 the current segment). */
15628 if (! fixP->fx_done)
15629 break;
15630
15631 /* Update old instruction data. */
15632 insn = read_insn (buf);
15633
15634 if (*valP + 0x20000 <= 0x3ffff)
15635 {
15636 insn |= (*valP >> 2) & 0xffff;
15637 write_insn (buf, insn);
15638 }
15639 else if (fixP->fx_tcbit2
15640 && fixP->fx_done
15641 && fixP->fx_frag->fr_address >= text_section->vma
15642 && (fixP->fx_frag->fr_address
15643 < text_section->vma + bfd_get_section_size (text_section))
15644 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15645 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15646 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15647 {
15648 /* The branch offset is too large. If this is an
15649 unconditional branch, and we are not generating PIC code,
15650 we can convert it to an absolute jump instruction. */
15651 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15652 insn = 0x0c000000; /* jal */
15653 else
15654 insn = 0x08000000; /* j */
15655 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15656 fixP->fx_done = 0;
15657 fixP->fx_addsy = section_symbol (text_section);
15658 *valP += md_pcrel_from (fixP);
15659 write_insn (buf, insn);
15660 }
15661 else
15662 {
15663 /* If we got here, we have branch-relaxation disabled,
15664 and there's nothing we can do to fix this instruction
15665 without turning it into a longer sequence. */
15666 as_bad_where (fixP->fx_file, fixP->fx_line,
15667 _("branch out of range"));
15668 }
15669 break;
15670
15671 case BFD_RELOC_MIPS16_16_PCREL_S1:
15672 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15673 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15674 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15675 gas_assert (!fixP->fx_done);
15676 if (fix_bad_cross_mode_branch_p (fixP))
15677 as_bad_where (fixP->fx_file, fixP->fx_line,
15678 _("branch to a symbol in another ISA mode"));
15679 else if (fixP->fx_addsy
15680 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15681 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15682 && (fixP->fx_offset & 0x1) != 0)
15683 as_bad_where (fixP->fx_file, fixP->fx_line,
15684 _("branch to misaligned address (0x%lx)"),
15685 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15686 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15687 as_bad_where (fixP->fx_file, fixP->fx_line,
15688 _("cannot encode misaligned addend "
15689 "in the relocatable field (0x%lx)"),
15690 (long) fixP->fx_offset);
15691 break;
15692
15693 case BFD_RELOC_VTABLE_INHERIT:
15694 fixP->fx_done = 0;
15695 if (fixP->fx_addsy
15696 && !S_IS_DEFINED (fixP->fx_addsy)
15697 && !S_IS_WEAK (fixP->fx_addsy))
15698 S_SET_WEAK (fixP->fx_addsy);
15699 break;
15700
15701 case BFD_RELOC_NONE:
15702 case BFD_RELOC_VTABLE_ENTRY:
15703 fixP->fx_done = 0;
15704 break;
15705
15706 default:
15707 abort ();
15708 }
15709
15710 /* Remember value for tc_gen_reloc. */
15711 fixP->fx_addnumber = *valP;
15712 }
15713
15714 static symbolS *
15715 get_symbol (void)
15716 {
15717 int c;
15718 char *name;
15719 symbolS *p;
15720
15721 c = get_symbol_name (&name);
15722 p = (symbolS *) symbol_find_or_make (name);
15723 (void) restore_line_pointer (c);
15724 return p;
15725 }
15726
15727 /* Align the current frag to a given power of two. If a particular
15728 fill byte should be used, FILL points to an integer that contains
15729 that byte, otherwise FILL is null.
15730
15731 This function used to have the comment:
15732
15733 The MIPS assembler also automatically adjusts any preceding label.
15734
15735 The implementation therefore applied the adjustment to a maximum of
15736 one label. However, other label adjustments are applied to batches
15737 of labels, and adjusting just one caused problems when new labels
15738 were added for the sake of debugging or unwind information.
15739 We therefore adjust all preceding labels (given as LABELS) instead. */
15740
15741 static void
15742 mips_align (int to, int *fill, struct insn_label_list *labels)
15743 {
15744 mips_emit_delays ();
15745 mips_record_compressed_mode ();
15746 if (fill == NULL && subseg_text_p (now_seg))
15747 frag_align_code (to, 0);
15748 else
15749 frag_align (to, fill ? *fill : 0, 0);
15750 record_alignment (now_seg, to);
15751 mips_move_labels (labels, FALSE);
15752 }
15753
15754 /* Align to a given power of two. .align 0 turns off the automatic
15755 alignment used by the data creating pseudo-ops. */
15756
15757 static void
15758 s_align (int x ATTRIBUTE_UNUSED)
15759 {
15760 int temp, fill_value, *fill_ptr;
15761 long max_alignment = 28;
15762
15763 /* o Note that the assembler pulls down any immediately preceding label
15764 to the aligned address.
15765 o It's not documented but auto alignment is reinstated by
15766 a .align pseudo instruction.
15767 o Note also that after auto alignment is turned off the mips assembler
15768 issues an error on attempt to assemble an improperly aligned data item.
15769 We don't. */
15770
15771 temp = get_absolute_expression ();
15772 if (temp > max_alignment)
15773 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15774 else if (temp < 0)
15775 {
15776 as_warn (_("alignment negative, 0 assumed"));
15777 temp = 0;
15778 }
15779 if (*input_line_pointer == ',')
15780 {
15781 ++input_line_pointer;
15782 fill_value = get_absolute_expression ();
15783 fill_ptr = &fill_value;
15784 }
15785 else
15786 fill_ptr = 0;
15787 if (temp)
15788 {
15789 segment_info_type *si = seg_info (now_seg);
15790 struct insn_label_list *l = si->label_list;
15791 /* Auto alignment should be switched on by next section change. */
15792 auto_align = 1;
15793 mips_align (temp, fill_ptr, l);
15794 }
15795 else
15796 {
15797 auto_align = 0;
15798 }
15799
15800 demand_empty_rest_of_line ();
15801 }
15802
15803 static void
15804 s_change_sec (int sec)
15805 {
15806 segT seg;
15807
15808 /* The ELF backend needs to know that we are changing sections, so
15809 that .previous works correctly. We could do something like check
15810 for an obj_section_change_hook macro, but that might be confusing
15811 as it would not be appropriate to use it in the section changing
15812 functions in read.c, since obj-elf.c intercepts those. FIXME:
15813 This should be cleaner, somehow. */
15814 obj_elf_section_change_hook ();
15815
15816 mips_emit_delays ();
15817
15818 switch (sec)
15819 {
15820 case 't':
15821 s_text (0);
15822 break;
15823 case 'd':
15824 s_data (0);
15825 break;
15826 case 'b':
15827 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15828 demand_empty_rest_of_line ();
15829 break;
15830
15831 case 'r':
15832 seg = subseg_new (RDATA_SECTION_NAME,
15833 (subsegT) get_absolute_expression ());
15834 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15835 | SEC_READONLY | SEC_RELOC
15836 | SEC_DATA));
15837 if (strncmp (TARGET_OS, "elf", 3) != 0)
15838 record_alignment (seg, 4);
15839 demand_empty_rest_of_line ();
15840 break;
15841
15842 case 's':
15843 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15844 bfd_set_section_flags (stdoutput, seg,
15845 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15846 if (strncmp (TARGET_OS, "elf", 3) != 0)
15847 record_alignment (seg, 4);
15848 demand_empty_rest_of_line ();
15849 break;
15850
15851 case 'B':
15852 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15853 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15854 if (strncmp (TARGET_OS, "elf", 3) != 0)
15855 record_alignment (seg, 4);
15856 demand_empty_rest_of_line ();
15857 break;
15858 }
15859
15860 auto_align = 1;
15861 }
15862
15863 void
15864 s_change_section (int ignore ATTRIBUTE_UNUSED)
15865 {
15866 char *saved_ilp;
15867 char *section_name;
15868 char c, endc;
15869 char next_c = 0;
15870 int section_type;
15871 int section_flag;
15872 int section_entry_size;
15873 int section_alignment;
15874
15875 saved_ilp = input_line_pointer;
15876 endc = get_symbol_name (&section_name);
15877 c = (endc == '"' ? input_line_pointer[1] : endc);
15878 if (c)
15879 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15880
15881 /* Do we have .section Name<,"flags">? */
15882 if (c != ',' || (c == ',' && next_c == '"'))
15883 {
15884 /* Just after name is now '\0'. */
15885 (void) restore_line_pointer (endc);
15886 input_line_pointer = saved_ilp;
15887 obj_elf_section (ignore);
15888 return;
15889 }
15890
15891 section_name = xstrdup (section_name);
15892 c = restore_line_pointer (endc);
15893
15894 input_line_pointer++;
15895
15896 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15897 if (c == ',')
15898 section_type = get_absolute_expression ();
15899 else
15900 section_type = 0;
15901
15902 if (*input_line_pointer++ == ',')
15903 section_flag = get_absolute_expression ();
15904 else
15905 section_flag = 0;
15906
15907 if (*input_line_pointer++ == ',')
15908 section_entry_size = get_absolute_expression ();
15909 else
15910 section_entry_size = 0;
15911
15912 if (*input_line_pointer++ == ',')
15913 section_alignment = get_absolute_expression ();
15914 else
15915 section_alignment = 0;
15916
15917 /* FIXME: really ignore? */
15918 (void) section_alignment;
15919
15920 /* When using the generic form of .section (as implemented by obj-elf.c),
15921 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15922 traditionally had to fall back on the more common @progbits instead.
15923
15924 There's nothing really harmful in this, since bfd will correct
15925 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15926 means that, for backwards compatibility, the special_section entries
15927 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15928
15929 Even so, we shouldn't force users of the MIPS .section syntax to
15930 incorrectly label the sections as SHT_PROGBITS. The best compromise
15931 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15932 generic type-checking code. */
15933 if (section_type == SHT_MIPS_DWARF)
15934 section_type = SHT_PROGBITS;
15935
15936 obj_elf_change_section (section_name, section_type, 0, section_flag,
15937 section_entry_size, 0, 0, 0);
15938
15939 if (now_seg->name != section_name)
15940 free (section_name);
15941 }
15942
15943 void
15944 mips_enable_auto_align (void)
15945 {
15946 auto_align = 1;
15947 }
15948
15949 static void
15950 s_cons (int log_size)
15951 {
15952 segment_info_type *si = seg_info (now_seg);
15953 struct insn_label_list *l = si->label_list;
15954
15955 mips_emit_delays ();
15956 if (log_size > 0 && auto_align)
15957 mips_align (log_size, 0, l);
15958 cons (1 << log_size);
15959 mips_clear_insn_labels ();
15960 }
15961
15962 static void
15963 s_float_cons (int type)
15964 {
15965 segment_info_type *si = seg_info (now_seg);
15966 struct insn_label_list *l = si->label_list;
15967
15968 mips_emit_delays ();
15969
15970 if (auto_align)
15971 {
15972 if (type == 'd')
15973 mips_align (3, 0, l);
15974 else
15975 mips_align (2, 0, l);
15976 }
15977
15978 float_cons (type);
15979 mips_clear_insn_labels ();
15980 }
15981
15982 /* Handle .globl. We need to override it because on Irix 5 you are
15983 permitted to say
15984 .globl foo .text
15985 where foo is an undefined symbol, to mean that foo should be
15986 considered to be the address of a function. */
15987
15988 static void
15989 s_mips_globl (int x ATTRIBUTE_UNUSED)
15990 {
15991 char *name;
15992 int c;
15993 symbolS *symbolP;
15994 flagword flag;
15995
15996 do
15997 {
15998 c = get_symbol_name (&name);
15999 symbolP = symbol_find_or_make (name);
16000 S_SET_EXTERNAL (symbolP);
16001
16002 *input_line_pointer = c;
16003 SKIP_WHITESPACE_AFTER_NAME ();
16004
16005 /* On Irix 5, every global symbol that is not explicitly labelled as
16006 being a function is apparently labelled as being an object. */
16007 flag = BSF_OBJECT;
16008
16009 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16010 && (*input_line_pointer != ','))
16011 {
16012 char *secname;
16013 asection *sec;
16014
16015 c = get_symbol_name (&secname);
16016 sec = bfd_get_section_by_name (stdoutput, secname);
16017 if (sec == NULL)
16018 as_bad (_("%s: no such section"), secname);
16019 (void) restore_line_pointer (c);
16020
16021 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16022 flag = BSF_FUNCTION;
16023 }
16024
16025 symbol_get_bfdsym (symbolP)->flags |= flag;
16026
16027 c = *input_line_pointer;
16028 if (c == ',')
16029 {
16030 input_line_pointer++;
16031 SKIP_WHITESPACE ();
16032 if (is_end_of_line[(unsigned char) *input_line_pointer])
16033 c = '\n';
16034 }
16035 }
16036 while (c == ',');
16037
16038 demand_empty_rest_of_line ();
16039 }
16040
16041 static void
16042 s_option (int x ATTRIBUTE_UNUSED)
16043 {
16044 char *opt;
16045 char c;
16046
16047 c = get_symbol_name (&opt);
16048
16049 if (*opt == 'O')
16050 {
16051 /* FIXME: What does this mean? */
16052 }
16053 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16054 {
16055 int i;
16056
16057 i = atoi (opt + 3);
16058 if (i != 0 && i != 2)
16059 as_bad (_(".option pic%d not supported"), i);
16060 else if (mips_pic == VXWORKS_PIC)
16061 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16062 else if (i == 0)
16063 mips_pic = NO_PIC;
16064 else if (i == 2)
16065 {
16066 mips_pic = SVR4_PIC;
16067 mips_abicalls = TRUE;
16068 }
16069
16070 if (mips_pic == SVR4_PIC)
16071 {
16072 if (g_switch_seen && g_switch_value != 0)
16073 as_warn (_("-G may not be used with SVR4 PIC code"));
16074 g_switch_value = 0;
16075 bfd_set_gp_size (stdoutput, 0);
16076 }
16077 }
16078 else
16079 as_warn (_("unrecognized option \"%s\""), opt);
16080
16081 (void) restore_line_pointer (c);
16082 demand_empty_rest_of_line ();
16083 }
16084
16085 /* This structure is used to hold a stack of .set values. */
16086
16087 struct mips_option_stack
16088 {
16089 struct mips_option_stack *next;
16090 struct mips_set_options options;
16091 };
16092
16093 static struct mips_option_stack *mips_opts_stack;
16094
16095 /* Return status for .set/.module option handling. */
16096
16097 enum code_option_type
16098 {
16099 /* Unrecognized option. */
16100 OPTION_TYPE_BAD = -1,
16101
16102 /* Ordinary option. */
16103 OPTION_TYPE_NORMAL,
16104
16105 /* ISA changing option. */
16106 OPTION_TYPE_ISA
16107 };
16108
16109 /* Handle common .set/.module options. Return status indicating option
16110 type. */
16111
16112 static enum code_option_type
16113 parse_code_option (char * name)
16114 {
16115 bfd_boolean isa_set = FALSE;
16116 const struct mips_ase *ase;
16117
16118 if (strncmp (name, "at=", 3) == 0)
16119 {
16120 char *s = name + 3;
16121
16122 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16123 as_bad (_("unrecognized register name `%s'"), s);
16124 }
16125 else if (strcmp (name, "at") == 0)
16126 mips_opts.at = ATREG;
16127 else if (strcmp (name, "noat") == 0)
16128 mips_opts.at = ZERO;
16129 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16130 mips_opts.nomove = 0;
16131 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16132 mips_opts.nomove = 1;
16133 else if (strcmp (name, "bopt") == 0)
16134 mips_opts.nobopt = 0;
16135 else if (strcmp (name, "nobopt") == 0)
16136 mips_opts.nobopt = 1;
16137 else if (strcmp (name, "gp=32") == 0)
16138 mips_opts.gp = 32;
16139 else if (strcmp (name, "gp=64") == 0)
16140 mips_opts.gp = 64;
16141 else if (strcmp (name, "fp=32") == 0)
16142 mips_opts.fp = 32;
16143 else if (strcmp (name, "fp=xx") == 0)
16144 mips_opts.fp = 0;
16145 else if (strcmp (name, "fp=64") == 0)
16146 mips_opts.fp = 64;
16147 else if (strcmp (name, "softfloat") == 0)
16148 mips_opts.soft_float = 1;
16149 else if (strcmp (name, "hardfloat") == 0)
16150 mips_opts.soft_float = 0;
16151 else if (strcmp (name, "singlefloat") == 0)
16152 mips_opts.single_float = 1;
16153 else if (strcmp (name, "doublefloat") == 0)
16154 mips_opts.single_float = 0;
16155 else if (strcmp (name, "nooddspreg") == 0)
16156 mips_opts.oddspreg = 0;
16157 else if (strcmp (name, "oddspreg") == 0)
16158 mips_opts.oddspreg = 1;
16159 else if (strcmp (name, "mips16") == 0
16160 || strcmp (name, "MIPS-16") == 0)
16161 mips_opts.mips16 = 1;
16162 else if (strcmp (name, "nomips16") == 0
16163 || strcmp (name, "noMIPS-16") == 0)
16164 mips_opts.mips16 = 0;
16165 else if (strcmp (name, "micromips") == 0)
16166 mips_opts.micromips = 1;
16167 else if (strcmp (name, "nomicromips") == 0)
16168 mips_opts.micromips = 0;
16169 else if (name[0] == 'n'
16170 && name[1] == 'o'
16171 && (ase = mips_lookup_ase (name + 2)))
16172 mips_set_ase (ase, &mips_opts, FALSE);
16173 else if ((ase = mips_lookup_ase (name)))
16174 mips_set_ase (ase, &mips_opts, TRUE);
16175 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16176 {
16177 /* Permit the user to change the ISA and architecture on the fly.
16178 Needless to say, misuse can cause serious problems. */
16179 if (strncmp (name, "arch=", 5) == 0)
16180 {
16181 const struct mips_cpu_info *p;
16182
16183 p = mips_parse_cpu ("internal use", name + 5);
16184 if (!p)
16185 as_bad (_("unknown architecture %s"), name + 5);
16186 else
16187 {
16188 mips_opts.arch = p->cpu;
16189 mips_opts.isa = p->isa;
16190 isa_set = TRUE;
16191 }
16192 }
16193 else if (strncmp (name, "mips", 4) == 0)
16194 {
16195 const struct mips_cpu_info *p;
16196
16197 p = mips_parse_cpu ("internal use", name);
16198 if (!p)
16199 as_bad (_("unknown ISA level %s"), name + 4);
16200 else
16201 {
16202 mips_opts.arch = p->cpu;
16203 mips_opts.isa = p->isa;
16204 isa_set = TRUE;
16205 }
16206 }
16207 else
16208 as_bad (_("unknown ISA or architecture %s"), name);
16209 }
16210 else if (strcmp (name, "autoextend") == 0)
16211 mips_opts.noautoextend = 0;
16212 else if (strcmp (name, "noautoextend") == 0)
16213 mips_opts.noautoextend = 1;
16214 else if (strcmp (name, "insn32") == 0)
16215 mips_opts.insn32 = TRUE;
16216 else if (strcmp (name, "noinsn32") == 0)
16217 mips_opts.insn32 = FALSE;
16218 else if (strcmp (name, "sym32") == 0)
16219 mips_opts.sym32 = TRUE;
16220 else if (strcmp (name, "nosym32") == 0)
16221 mips_opts.sym32 = FALSE;
16222 else
16223 return OPTION_TYPE_BAD;
16224
16225 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16226 }
16227
16228 /* Handle the .set pseudo-op. */
16229
16230 static void
16231 s_mipsset (int x ATTRIBUTE_UNUSED)
16232 {
16233 enum code_option_type type = OPTION_TYPE_NORMAL;
16234 char *name = input_line_pointer, ch;
16235
16236 file_mips_check_options ();
16237
16238 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16239 ++input_line_pointer;
16240 ch = *input_line_pointer;
16241 *input_line_pointer = '\0';
16242
16243 if (strchr (name, ','))
16244 {
16245 /* Generic ".set" directive; use the generic handler. */
16246 *input_line_pointer = ch;
16247 input_line_pointer = name;
16248 s_set (0);
16249 return;
16250 }
16251
16252 if (strcmp (name, "reorder") == 0)
16253 {
16254 if (mips_opts.noreorder)
16255 end_noreorder ();
16256 }
16257 else if (strcmp (name, "noreorder") == 0)
16258 {
16259 if (!mips_opts.noreorder)
16260 start_noreorder ();
16261 }
16262 else if (strcmp (name, "macro") == 0)
16263 mips_opts.warn_about_macros = 0;
16264 else if (strcmp (name, "nomacro") == 0)
16265 {
16266 if (mips_opts.noreorder == 0)
16267 as_bad (_("`noreorder' must be set before `nomacro'"));
16268 mips_opts.warn_about_macros = 1;
16269 }
16270 else if (strcmp (name, "gp=default") == 0)
16271 mips_opts.gp = file_mips_opts.gp;
16272 else if (strcmp (name, "fp=default") == 0)
16273 mips_opts.fp = file_mips_opts.fp;
16274 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16275 {
16276 mips_opts.isa = file_mips_opts.isa;
16277 mips_opts.arch = file_mips_opts.arch;
16278 mips_opts.gp = file_mips_opts.gp;
16279 mips_opts.fp = file_mips_opts.fp;
16280 }
16281 else if (strcmp (name, "push") == 0)
16282 {
16283 struct mips_option_stack *s;
16284
16285 s = XNEW (struct mips_option_stack);
16286 s->next = mips_opts_stack;
16287 s->options = mips_opts;
16288 mips_opts_stack = s;
16289 }
16290 else if (strcmp (name, "pop") == 0)
16291 {
16292 struct mips_option_stack *s;
16293
16294 s = mips_opts_stack;
16295 if (s == NULL)
16296 as_bad (_(".set pop with no .set push"));
16297 else
16298 {
16299 /* If we're changing the reorder mode we need to handle
16300 delay slots correctly. */
16301 if (s->options.noreorder && ! mips_opts.noreorder)
16302 start_noreorder ();
16303 else if (! s->options.noreorder && mips_opts.noreorder)
16304 end_noreorder ();
16305
16306 mips_opts = s->options;
16307 mips_opts_stack = s->next;
16308 free (s);
16309 }
16310 }
16311 else
16312 {
16313 type = parse_code_option (name);
16314 if (type == OPTION_TYPE_BAD)
16315 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16316 }
16317
16318 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16319 registers based on what is supported by the arch/cpu. */
16320 if (type == OPTION_TYPE_ISA)
16321 {
16322 switch (mips_opts.isa)
16323 {
16324 case 0:
16325 break;
16326 case ISA_MIPS1:
16327 /* MIPS I cannot support FPXX. */
16328 mips_opts.fp = 32;
16329 /* fall-through. */
16330 case ISA_MIPS2:
16331 case ISA_MIPS32:
16332 case ISA_MIPS32R2:
16333 case ISA_MIPS32R3:
16334 case ISA_MIPS32R5:
16335 mips_opts.gp = 32;
16336 if (mips_opts.fp != 0)
16337 mips_opts.fp = 32;
16338 break;
16339 case ISA_MIPS32R6:
16340 mips_opts.gp = 32;
16341 mips_opts.fp = 64;
16342 break;
16343 case ISA_MIPS3:
16344 case ISA_MIPS4:
16345 case ISA_MIPS5:
16346 case ISA_MIPS64:
16347 case ISA_MIPS64R2:
16348 case ISA_MIPS64R3:
16349 case ISA_MIPS64R5:
16350 case ISA_MIPS64R6:
16351 mips_opts.gp = 64;
16352 if (mips_opts.fp != 0)
16353 {
16354 if (mips_opts.arch == CPU_R5900)
16355 mips_opts.fp = 32;
16356 else
16357 mips_opts.fp = 64;
16358 }
16359 break;
16360 default:
16361 as_bad (_("unknown ISA level %s"), name + 4);
16362 break;
16363 }
16364 }
16365
16366 mips_check_options (&mips_opts, FALSE);
16367
16368 mips_check_isa_supports_ases ();
16369 *input_line_pointer = ch;
16370 demand_empty_rest_of_line ();
16371 }
16372
16373 /* Handle the .module pseudo-op. */
16374
16375 static void
16376 s_module (int ignore ATTRIBUTE_UNUSED)
16377 {
16378 char *name = input_line_pointer, ch;
16379
16380 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16381 ++input_line_pointer;
16382 ch = *input_line_pointer;
16383 *input_line_pointer = '\0';
16384
16385 if (!file_mips_opts_checked)
16386 {
16387 if (parse_code_option (name) == OPTION_TYPE_BAD)
16388 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16389
16390 /* Update module level settings from mips_opts. */
16391 file_mips_opts = mips_opts;
16392 }
16393 else
16394 as_bad (_(".module is not permitted after generating code"));
16395
16396 *input_line_pointer = ch;
16397 demand_empty_rest_of_line ();
16398 }
16399
16400 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16401 .option pic2. It means to generate SVR4 PIC calls. */
16402
16403 static void
16404 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16405 {
16406 mips_pic = SVR4_PIC;
16407 mips_abicalls = TRUE;
16408
16409 if (g_switch_seen && g_switch_value != 0)
16410 as_warn (_("-G may not be used with SVR4 PIC code"));
16411 g_switch_value = 0;
16412
16413 bfd_set_gp_size (stdoutput, 0);
16414 demand_empty_rest_of_line ();
16415 }
16416
16417 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16418 PIC code. It sets the $gp register for the function based on the
16419 function address, which is in the register named in the argument.
16420 This uses a relocation against _gp_disp, which is handled specially
16421 by the linker. The result is:
16422 lui $gp,%hi(_gp_disp)
16423 addiu $gp,$gp,%lo(_gp_disp)
16424 addu $gp,$gp,.cpload argument
16425 The .cpload argument is normally $25 == $t9.
16426
16427 The -mno-shared option changes this to:
16428 lui $gp,%hi(__gnu_local_gp)
16429 addiu $gp,$gp,%lo(__gnu_local_gp)
16430 and the argument is ignored. This saves an instruction, but the
16431 resulting code is not position independent; it uses an absolute
16432 address for __gnu_local_gp. Thus code assembled with -mno-shared
16433 can go into an ordinary executable, but not into a shared library. */
16434
16435 static void
16436 s_cpload (int ignore ATTRIBUTE_UNUSED)
16437 {
16438 expressionS ex;
16439 int reg;
16440 int in_shared;
16441
16442 file_mips_check_options ();
16443
16444 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16445 .cpload is ignored. */
16446 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16447 {
16448 s_ignore (0);
16449 return;
16450 }
16451
16452 if (mips_opts.mips16)
16453 {
16454 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16455 ignore_rest_of_line ();
16456 return;
16457 }
16458
16459 /* .cpload should be in a .set noreorder section. */
16460 if (mips_opts.noreorder == 0)
16461 as_warn (_(".cpload not in noreorder section"));
16462
16463 reg = tc_get_register (0);
16464
16465 /* If we need to produce a 64-bit address, we are better off using
16466 the default instruction sequence. */
16467 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16468
16469 ex.X_op = O_symbol;
16470 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16471 "__gnu_local_gp");
16472 ex.X_op_symbol = NULL;
16473 ex.X_add_number = 0;
16474
16475 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16476 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16477
16478 mips_mark_labels ();
16479 mips_assembling_insn = TRUE;
16480
16481 macro_start ();
16482 macro_build_lui (&ex, mips_gp_register);
16483 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16484 mips_gp_register, BFD_RELOC_LO16);
16485 if (in_shared)
16486 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16487 mips_gp_register, reg);
16488 macro_end ();
16489
16490 mips_assembling_insn = FALSE;
16491 demand_empty_rest_of_line ();
16492 }
16493
16494 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16495 .cpsetup $reg1, offset|$reg2, label
16496
16497 If offset is given, this results in:
16498 sd $gp, offset($sp)
16499 lui $gp, %hi(%neg(%gp_rel(label)))
16500 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16501 daddu $gp, $gp, $reg1
16502
16503 If $reg2 is given, this results in:
16504 or $reg2, $gp, $0
16505 lui $gp, %hi(%neg(%gp_rel(label)))
16506 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16507 daddu $gp, $gp, $reg1
16508 $reg1 is normally $25 == $t9.
16509
16510 The -mno-shared option replaces the last three instructions with
16511 lui $gp,%hi(_gp)
16512 addiu $gp,$gp,%lo(_gp) */
16513
16514 static void
16515 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16516 {
16517 expressionS ex_off;
16518 expressionS ex_sym;
16519 int reg1;
16520
16521 file_mips_check_options ();
16522
16523 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16524 We also need NewABI support. */
16525 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16526 {
16527 s_ignore (0);
16528 return;
16529 }
16530
16531 if (mips_opts.mips16)
16532 {
16533 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16534 ignore_rest_of_line ();
16535 return;
16536 }
16537
16538 reg1 = tc_get_register (0);
16539 SKIP_WHITESPACE ();
16540 if (*input_line_pointer != ',')
16541 {
16542 as_bad (_("missing argument separator ',' for .cpsetup"));
16543 return;
16544 }
16545 else
16546 ++input_line_pointer;
16547 SKIP_WHITESPACE ();
16548 if (*input_line_pointer == '$')
16549 {
16550 mips_cpreturn_register = tc_get_register (0);
16551 mips_cpreturn_offset = -1;
16552 }
16553 else
16554 {
16555 mips_cpreturn_offset = get_absolute_expression ();
16556 mips_cpreturn_register = -1;
16557 }
16558 SKIP_WHITESPACE ();
16559 if (*input_line_pointer != ',')
16560 {
16561 as_bad (_("missing argument separator ',' for .cpsetup"));
16562 return;
16563 }
16564 else
16565 ++input_line_pointer;
16566 SKIP_WHITESPACE ();
16567 expression (&ex_sym);
16568
16569 mips_mark_labels ();
16570 mips_assembling_insn = TRUE;
16571
16572 macro_start ();
16573 if (mips_cpreturn_register == -1)
16574 {
16575 ex_off.X_op = O_constant;
16576 ex_off.X_add_symbol = NULL;
16577 ex_off.X_op_symbol = NULL;
16578 ex_off.X_add_number = mips_cpreturn_offset;
16579
16580 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16581 BFD_RELOC_LO16, SP);
16582 }
16583 else
16584 move_register (mips_cpreturn_register, mips_gp_register);
16585
16586 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16587 {
16588 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16589 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16590 BFD_RELOC_HI16_S);
16591
16592 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16593 mips_gp_register, -1, BFD_RELOC_GPREL16,
16594 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16595
16596 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16597 mips_gp_register, reg1);
16598 }
16599 else
16600 {
16601 expressionS ex;
16602
16603 ex.X_op = O_symbol;
16604 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16605 ex.X_op_symbol = NULL;
16606 ex.X_add_number = 0;
16607
16608 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16609 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16610
16611 macro_build_lui (&ex, mips_gp_register);
16612 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16613 mips_gp_register, BFD_RELOC_LO16);
16614 }
16615
16616 macro_end ();
16617
16618 mips_assembling_insn = FALSE;
16619 demand_empty_rest_of_line ();
16620 }
16621
16622 static void
16623 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16624 {
16625 file_mips_check_options ();
16626
16627 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16628 .cplocal is ignored. */
16629 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16630 {
16631 s_ignore (0);
16632 return;
16633 }
16634
16635 if (mips_opts.mips16)
16636 {
16637 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16638 ignore_rest_of_line ();
16639 return;
16640 }
16641
16642 mips_gp_register = tc_get_register (0);
16643 demand_empty_rest_of_line ();
16644 }
16645
16646 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16647 offset from $sp. The offset is remembered, and after making a PIC
16648 call $gp is restored from that location. */
16649
16650 static void
16651 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16652 {
16653 expressionS ex;
16654
16655 file_mips_check_options ();
16656
16657 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16658 .cprestore is ignored. */
16659 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16660 {
16661 s_ignore (0);
16662 return;
16663 }
16664
16665 if (mips_opts.mips16)
16666 {
16667 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16668 ignore_rest_of_line ();
16669 return;
16670 }
16671
16672 mips_cprestore_offset = get_absolute_expression ();
16673 mips_cprestore_valid = 1;
16674
16675 ex.X_op = O_constant;
16676 ex.X_add_symbol = NULL;
16677 ex.X_op_symbol = NULL;
16678 ex.X_add_number = mips_cprestore_offset;
16679
16680 mips_mark_labels ();
16681 mips_assembling_insn = TRUE;
16682
16683 macro_start ();
16684 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16685 SP, HAVE_64BIT_ADDRESSES);
16686 macro_end ();
16687
16688 mips_assembling_insn = FALSE;
16689 demand_empty_rest_of_line ();
16690 }
16691
16692 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16693 was given in the preceding .cpsetup, it results in:
16694 ld $gp, offset($sp)
16695
16696 If a register $reg2 was given there, it results in:
16697 or $gp, $reg2, $0 */
16698
16699 static void
16700 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16701 {
16702 expressionS ex;
16703
16704 file_mips_check_options ();
16705
16706 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16707 We also need NewABI support. */
16708 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16709 {
16710 s_ignore (0);
16711 return;
16712 }
16713
16714 if (mips_opts.mips16)
16715 {
16716 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16717 ignore_rest_of_line ();
16718 return;
16719 }
16720
16721 mips_mark_labels ();
16722 mips_assembling_insn = TRUE;
16723
16724 macro_start ();
16725 if (mips_cpreturn_register == -1)
16726 {
16727 ex.X_op = O_constant;
16728 ex.X_add_symbol = NULL;
16729 ex.X_op_symbol = NULL;
16730 ex.X_add_number = mips_cpreturn_offset;
16731
16732 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16733 }
16734 else
16735 move_register (mips_gp_register, mips_cpreturn_register);
16736
16737 macro_end ();
16738
16739 mips_assembling_insn = FALSE;
16740 demand_empty_rest_of_line ();
16741 }
16742
16743 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16744 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16745 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16746 debug information or MIPS16 TLS. */
16747
16748 static void
16749 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16750 bfd_reloc_code_real_type rtype)
16751 {
16752 expressionS ex;
16753 char *p;
16754
16755 expression (&ex);
16756
16757 if (ex.X_op != O_symbol)
16758 {
16759 as_bad (_("unsupported use of %s"), dirstr);
16760 ignore_rest_of_line ();
16761 }
16762
16763 p = frag_more (bytes);
16764 md_number_to_chars (p, 0, bytes);
16765 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16766 demand_empty_rest_of_line ();
16767 mips_clear_insn_labels ();
16768 }
16769
16770 /* Handle .dtprelword. */
16771
16772 static void
16773 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16774 {
16775 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16776 }
16777
16778 /* Handle .dtpreldword. */
16779
16780 static void
16781 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16782 {
16783 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16784 }
16785
16786 /* Handle .tprelword. */
16787
16788 static void
16789 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16790 {
16791 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16792 }
16793
16794 /* Handle .tpreldword. */
16795
16796 static void
16797 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16798 {
16799 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16800 }
16801
16802 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16803 code. It sets the offset to use in gp_rel relocations. */
16804
16805 static void
16806 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16807 {
16808 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16809 We also need NewABI support. */
16810 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16811 {
16812 s_ignore (0);
16813 return;
16814 }
16815
16816 mips_gprel_offset = get_absolute_expression ();
16817
16818 demand_empty_rest_of_line ();
16819 }
16820
16821 /* Handle the .gpword pseudo-op. This is used when generating PIC
16822 code. It generates a 32 bit GP relative reloc. */
16823
16824 static void
16825 s_gpword (int ignore ATTRIBUTE_UNUSED)
16826 {
16827 segment_info_type *si;
16828 struct insn_label_list *l;
16829 expressionS ex;
16830 char *p;
16831
16832 /* When not generating PIC code, this is treated as .word. */
16833 if (mips_pic != SVR4_PIC)
16834 {
16835 s_cons (2);
16836 return;
16837 }
16838
16839 si = seg_info (now_seg);
16840 l = si->label_list;
16841 mips_emit_delays ();
16842 if (auto_align)
16843 mips_align (2, 0, l);
16844
16845 expression (&ex);
16846 mips_clear_insn_labels ();
16847
16848 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16849 {
16850 as_bad (_("unsupported use of .gpword"));
16851 ignore_rest_of_line ();
16852 }
16853
16854 p = frag_more (4);
16855 md_number_to_chars (p, 0, 4);
16856 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16857 BFD_RELOC_GPREL32);
16858
16859 demand_empty_rest_of_line ();
16860 }
16861
16862 static void
16863 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16864 {
16865 segment_info_type *si;
16866 struct insn_label_list *l;
16867 expressionS ex;
16868 char *p;
16869
16870 /* When not generating PIC code, this is treated as .dword. */
16871 if (mips_pic != SVR4_PIC)
16872 {
16873 s_cons (3);
16874 return;
16875 }
16876
16877 si = seg_info (now_seg);
16878 l = si->label_list;
16879 mips_emit_delays ();
16880 if (auto_align)
16881 mips_align (3, 0, l);
16882
16883 expression (&ex);
16884 mips_clear_insn_labels ();
16885
16886 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16887 {
16888 as_bad (_("unsupported use of .gpdword"));
16889 ignore_rest_of_line ();
16890 }
16891
16892 p = frag_more (8);
16893 md_number_to_chars (p, 0, 8);
16894 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16895 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16896
16897 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16898 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16899 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16900
16901 demand_empty_rest_of_line ();
16902 }
16903
16904 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16905 tables. It generates a R_MIPS_EH reloc. */
16906
16907 static void
16908 s_ehword (int ignore ATTRIBUTE_UNUSED)
16909 {
16910 expressionS ex;
16911 char *p;
16912
16913 mips_emit_delays ();
16914
16915 expression (&ex);
16916 mips_clear_insn_labels ();
16917
16918 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16919 {
16920 as_bad (_("unsupported use of .ehword"));
16921 ignore_rest_of_line ();
16922 }
16923
16924 p = frag_more (4);
16925 md_number_to_chars (p, 0, 4);
16926 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16927 BFD_RELOC_32_PCREL);
16928
16929 demand_empty_rest_of_line ();
16930 }
16931
16932 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16933 tables in SVR4 PIC code. */
16934
16935 static void
16936 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16937 {
16938 int reg;
16939
16940 file_mips_check_options ();
16941
16942 /* This is ignored when not generating SVR4 PIC code. */
16943 if (mips_pic != SVR4_PIC)
16944 {
16945 s_ignore (0);
16946 return;
16947 }
16948
16949 mips_mark_labels ();
16950 mips_assembling_insn = TRUE;
16951
16952 /* Add $gp to the register named as an argument. */
16953 macro_start ();
16954 reg = tc_get_register (0);
16955 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16956 macro_end ();
16957
16958 mips_assembling_insn = FALSE;
16959 demand_empty_rest_of_line ();
16960 }
16961
16962 /* Handle the .insn pseudo-op. This marks instruction labels in
16963 mips16/micromips mode. This permits the linker to handle them specially,
16964 such as generating jalx instructions when needed. We also make
16965 them odd for the duration of the assembly, in order to generate the
16966 right sort of code. We will make them even in the adjust_symtab
16967 routine, while leaving them marked. This is convenient for the
16968 debugger and the disassembler. The linker knows to make them odd
16969 again. */
16970
16971 static void
16972 s_insn (int ignore ATTRIBUTE_UNUSED)
16973 {
16974 file_mips_check_options ();
16975 file_ase_mips16 |= mips_opts.mips16;
16976 file_ase_micromips |= mips_opts.micromips;
16977
16978 mips_mark_labels ();
16979
16980 demand_empty_rest_of_line ();
16981 }
16982
16983 /* Handle the .nan pseudo-op. */
16984
16985 static void
16986 s_nan (int ignore ATTRIBUTE_UNUSED)
16987 {
16988 static const char str_legacy[] = "legacy";
16989 static const char str_2008[] = "2008";
16990 size_t i;
16991
16992 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16993
16994 if (i == sizeof (str_2008) - 1
16995 && memcmp (input_line_pointer, str_2008, i) == 0)
16996 mips_nan2008 = 1;
16997 else if (i == sizeof (str_legacy) - 1
16998 && memcmp (input_line_pointer, str_legacy, i) == 0)
16999 {
17000 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17001 mips_nan2008 = 0;
17002 else
17003 as_bad (_("`%s' does not support legacy NaN"),
17004 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17005 }
17006 else
17007 as_bad (_("bad .nan directive"));
17008
17009 input_line_pointer += i;
17010 demand_empty_rest_of_line ();
17011 }
17012
17013 /* Handle a .stab[snd] directive. Ideally these directives would be
17014 implemented in a transparent way, so that removing them would not
17015 have any effect on the generated instructions. However, s_stab
17016 internally changes the section, so in practice we need to decide
17017 now whether the preceding label marks compressed code. We do not
17018 support changing the compression mode of a label after a .stab*
17019 directive, such as in:
17020
17021 foo:
17022 .stabs ...
17023 .set mips16
17024
17025 so the current mode wins. */
17026
17027 static void
17028 s_mips_stab (int type)
17029 {
17030 mips_mark_labels ();
17031 s_stab (type);
17032 }
17033
17034 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17035
17036 static void
17037 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17038 {
17039 char *name;
17040 int c;
17041 symbolS *symbolP;
17042 expressionS exp;
17043
17044 c = get_symbol_name (&name);
17045 symbolP = symbol_find_or_make (name);
17046 S_SET_WEAK (symbolP);
17047 *input_line_pointer = c;
17048
17049 SKIP_WHITESPACE_AFTER_NAME ();
17050
17051 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17052 {
17053 if (S_IS_DEFINED (symbolP))
17054 {
17055 as_bad (_("ignoring attempt to redefine symbol %s"),
17056 S_GET_NAME (symbolP));
17057 ignore_rest_of_line ();
17058 return;
17059 }
17060
17061 if (*input_line_pointer == ',')
17062 {
17063 ++input_line_pointer;
17064 SKIP_WHITESPACE ();
17065 }
17066
17067 expression (&exp);
17068 if (exp.X_op != O_symbol)
17069 {
17070 as_bad (_("bad .weakext directive"));
17071 ignore_rest_of_line ();
17072 return;
17073 }
17074 symbol_set_value_expression (symbolP, &exp);
17075 }
17076
17077 demand_empty_rest_of_line ();
17078 }
17079
17080 /* Parse a register string into a number. Called from the ECOFF code
17081 to parse .frame. The argument is non-zero if this is the frame
17082 register, so that we can record it in mips_frame_reg. */
17083
17084 int
17085 tc_get_register (int frame)
17086 {
17087 unsigned int reg;
17088
17089 SKIP_WHITESPACE ();
17090 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17091 reg = 0;
17092 if (frame)
17093 {
17094 mips_frame_reg = reg != 0 ? reg : SP;
17095 mips_frame_reg_valid = 1;
17096 mips_cprestore_valid = 0;
17097 }
17098 return reg;
17099 }
17100
17101 valueT
17102 md_section_align (asection *seg, valueT addr)
17103 {
17104 int align = bfd_get_section_alignment (stdoutput, seg);
17105
17106 /* We don't need to align ELF sections to the full alignment.
17107 However, Irix 5 may prefer that we align them at least to a 16
17108 byte boundary. We don't bother to align the sections if we
17109 are targeted for an embedded system. */
17110 if (strncmp (TARGET_OS, "elf", 3) == 0)
17111 return addr;
17112 if (align > 4)
17113 align = 4;
17114
17115 return ((addr + (1 << align) - 1) & -(1 << align));
17116 }
17117
17118 /* Utility routine, called from above as well. If called while the
17119 input file is still being read, it's only an approximation. (For
17120 example, a symbol may later become defined which appeared to be
17121 undefined earlier.) */
17122
17123 static int
17124 nopic_need_relax (symbolS *sym, int before_relaxing)
17125 {
17126 if (sym == 0)
17127 return 0;
17128
17129 if (g_switch_value > 0)
17130 {
17131 const char *symname;
17132 int change;
17133
17134 /* Find out whether this symbol can be referenced off the $gp
17135 register. It can be if it is smaller than the -G size or if
17136 it is in the .sdata or .sbss section. Certain symbols can
17137 not be referenced off the $gp, although it appears as though
17138 they can. */
17139 symname = S_GET_NAME (sym);
17140 if (symname != (const char *) NULL
17141 && (strcmp (symname, "eprol") == 0
17142 || strcmp (symname, "etext") == 0
17143 || strcmp (symname, "_gp") == 0
17144 || strcmp (symname, "edata") == 0
17145 || strcmp (symname, "_fbss") == 0
17146 || strcmp (symname, "_fdata") == 0
17147 || strcmp (symname, "_ftext") == 0
17148 || strcmp (symname, "end") == 0
17149 || strcmp (symname, "_gp_disp") == 0))
17150 change = 1;
17151 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17152 && (0
17153 #ifndef NO_ECOFF_DEBUGGING
17154 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17155 && (symbol_get_obj (sym)->ecoff_extern_size
17156 <= g_switch_value))
17157 #endif
17158 /* We must defer this decision until after the whole
17159 file has been read, since there might be a .extern
17160 after the first use of this symbol. */
17161 || (before_relaxing
17162 #ifndef NO_ECOFF_DEBUGGING
17163 && symbol_get_obj (sym)->ecoff_extern_size == 0
17164 #endif
17165 && S_GET_VALUE (sym) == 0)
17166 || (S_GET_VALUE (sym) != 0
17167 && S_GET_VALUE (sym) <= g_switch_value)))
17168 change = 0;
17169 else
17170 {
17171 const char *segname;
17172
17173 segname = segment_name (S_GET_SEGMENT (sym));
17174 gas_assert (strcmp (segname, ".lit8") != 0
17175 && strcmp (segname, ".lit4") != 0);
17176 change = (strcmp (segname, ".sdata") != 0
17177 && strcmp (segname, ".sbss") != 0
17178 && strncmp (segname, ".sdata.", 7) != 0
17179 && strncmp (segname, ".sbss.", 6) != 0
17180 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17181 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17182 }
17183 return change;
17184 }
17185 else
17186 /* We are not optimizing for the $gp register. */
17187 return 1;
17188 }
17189
17190
17191 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17192
17193 static bfd_boolean
17194 pic_need_relax (symbolS *sym)
17195 {
17196 asection *symsec;
17197
17198 /* Handle the case of a symbol equated to another symbol. */
17199 while (symbol_equated_reloc_p (sym))
17200 {
17201 symbolS *n;
17202
17203 /* It's possible to get a loop here in a badly written program. */
17204 n = symbol_get_value_expression (sym)->X_add_symbol;
17205 if (n == sym)
17206 break;
17207 sym = n;
17208 }
17209
17210 if (symbol_section_p (sym))
17211 return TRUE;
17212
17213 symsec = S_GET_SEGMENT (sym);
17214
17215 /* This must duplicate the test in adjust_reloc_syms. */
17216 return (!bfd_is_und_section (symsec)
17217 && !bfd_is_abs_section (symsec)
17218 && !bfd_is_com_section (symsec)
17219 /* A global or weak symbol is treated as external. */
17220 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17221 }
17222 \f
17223 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17224 convert a section-relative value VAL to the equivalent PC-relative
17225 value. */
17226
17227 static offsetT
17228 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17229 offsetT val, long stretch)
17230 {
17231 fragS *sym_frag;
17232 addressT addr;
17233
17234 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17235
17236 sym_frag = symbol_get_frag (fragp->fr_symbol);
17237
17238 /* If the relax_marker of the symbol fragment differs from the
17239 relax_marker of this fragment, we have not yet adjusted the
17240 symbol fragment fr_address. We want to add in STRETCH in
17241 order to get a better estimate of the address. This
17242 particularly matters because of the shift bits. */
17243 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17244 {
17245 fragS *f;
17246
17247 /* Adjust stretch for any alignment frag. Note that if have
17248 been expanding the earlier code, the symbol may be
17249 defined in what appears to be an earlier frag. FIXME:
17250 This doesn't handle the fr_subtype field, which specifies
17251 a maximum number of bytes to skip when doing an
17252 alignment. */
17253 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17254 {
17255 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17256 {
17257 if (stretch < 0)
17258 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17259 else
17260 stretch &= ~((1 << (int) f->fr_offset) - 1);
17261 if (stretch == 0)
17262 break;
17263 }
17264 }
17265 if (f != NULL)
17266 val += stretch;
17267 }
17268
17269 addr = fragp->fr_address + fragp->fr_fix;
17270
17271 /* The base address rules are complicated. The base address of
17272 a branch is the following instruction. The base address of a
17273 PC relative load or add is the instruction itself, but if it
17274 is in a delay slot (in which case it can not be extended) use
17275 the address of the instruction whose delay slot it is in. */
17276 if (pcrel_op->include_isa_bit)
17277 {
17278 addr += 2;
17279
17280 /* If we are currently assuming that this frag should be
17281 extended, then the current address is two bytes higher. */
17282 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17283 addr += 2;
17284
17285 /* Ignore the low bit in the target, since it will be set
17286 for a text label. */
17287 val &= -2;
17288 }
17289 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17290 addr -= 4;
17291 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17292 addr -= 2;
17293
17294 val -= addr & -(1 << pcrel_op->align_log2);
17295
17296 return val;
17297 }
17298
17299 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17300 extended opcode. SEC is the section the frag is in. */
17301
17302 static int
17303 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17304 {
17305 const struct mips_int_operand *operand;
17306 offsetT val;
17307 segT symsec;
17308 int type;
17309
17310 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17311 return 0;
17312 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17313 return 1;
17314
17315 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17316 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17317 operand = mips16_immed_operand (type, FALSE);
17318 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17319 || (operand->root.type == OP_PCREL
17320 ? sec != symsec
17321 : !bfd_is_abs_section (symsec)))
17322 return 1;
17323
17324 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17325
17326 if (operand->root.type == OP_PCREL)
17327 {
17328 const struct mips_pcrel_operand *pcrel_op;
17329 offsetT maxtiny;
17330
17331 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17332 return 1;
17333
17334 pcrel_op = (const struct mips_pcrel_operand *) operand;
17335 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17336
17337 /* If any of the shifted bits are set, we must use an extended
17338 opcode. If the address depends on the size of this
17339 instruction, this can lead to a loop, so we arrange to always
17340 use an extended opcode. */
17341 if ((val & ((1 << operand->shift) - 1)) != 0)
17342 {
17343 fragp->fr_subtype =
17344 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17345 return 1;
17346 }
17347
17348 /* If we are about to mark a frag as extended because the value
17349 is precisely the next value above maxtiny, then there is a
17350 chance of an infinite loop as in the following code:
17351 la $4,foo
17352 .skip 1020
17353 .align 2
17354 foo:
17355 In this case when the la is extended, foo is 0x3fc bytes
17356 away, so the la can be shrunk, but then foo is 0x400 away, so
17357 the la must be extended. To avoid this loop, we mark the
17358 frag as extended if it was small, and is about to become
17359 extended with the next value above maxtiny. */
17360 maxtiny = mips_int_operand_max (operand);
17361 if (val == maxtiny + (1 << operand->shift)
17362 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17363 {
17364 fragp->fr_subtype =
17365 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17366 return 1;
17367 }
17368 }
17369
17370 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17371 }
17372
17373 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17374 macro expansion. SEC is the section the frag is in. We only
17375 support PC-relative instructions (LA, DLA, LW, LD) here, in
17376 non-PIC code using 32-bit addressing. */
17377
17378 static int
17379 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17380 {
17381 const struct mips_pcrel_operand *pcrel_op;
17382 const struct mips_int_operand *operand;
17383 offsetT val;
17384 segT symsec;
17385 int type;
17386
17387 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17388
17389 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17390 return 0;
17391 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17392 return 0;
17393
17394 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17395 switch (type)
17396 {
17397 case 'A':
17398 case 'B':
17399 case 'E':
17400 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17401 if (bfd_is_abs_section (symsec))
17402 return 1;
17403 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17404 return 0;
17405 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17406 return 1;
17407
17408 operand = mips16_immed_operand (type, TRUE);
17409 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17410 pcrel_op = (const struct mips_pcrel_operand *) operand;
17411 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17412
17413 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17414
17415 default:
17416 return 0;
17417 }
17418 }
17419
17420 /* Compute the length of a branch sequence, and adjust the
17421 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17422 worst-case length is computed, with UPDATE being used to indicate
17423 whether an unconditional (-1), branch-likely (+1) or regular (0)
17424 branch is to be computed. */
17425 static int
17426 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17427 {
17428 bfd_boolean toofar;
17429 int length;
17430
17431 if (fragp
17432 && S_IS_DEFINED (fragp->fr_symbol)
17433 && !S_IS_WEAK (fragp->fr_symbol)
17434 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17435 {
17436 addressT addr;
17437 offsetT val;
17438
17439 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17440
17441 addr = fragp->fr_address + fragp->fr_fix + 4;
17442
17443 val -= addr;
17444
17445 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17446 }
17447 else
17448 /* If the symbol is not defined or it's in a different segment,
17449 we emit the long sequence. */
17450 toofar = TRUE;
17451
17452 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17453 fragp->fr_subtype
17454 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17455 RELAX_BRANCH_PIC (fragp->fr_subtype),
17456 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17457 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17458 RELAX_BRANCH_LINK (fragp->fr_subtype),
17459 toofar);
17460
17461 length = 4;
17462 if (toofar)
17463 {
17464 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17465 length += 8;
17466
17467 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17468 {
17469 /* Additional space for PIC loading of target address. */
17470 length += 8;
17471 if (mips_opts.isa == ISA_MIPS1)
17472 /* Additional space for $at-stabilizing nop. */
17473 length += 4;
17474 }
17475
17476 /* If branch is conditional. */
17477 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17478 length += 8;
17479 }
17480
17481 return length;
17482 }
17483
17484 /* Get a FRAG's branch instruction delay slot size, either from the
17485 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17486 or SHORT_INSN_SIZE otherwise. */
17487
17488 static int
17489 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17490 {
17491 char *buf = fragp->fr_literal + fragp->fr_fix;
17492
17493 if (al)
17494 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17495 else
17496 return short_insn_size;
17497 }
17498
17499 /* Compute the length of a branch sequence, and adjust the
17500 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17501 worst-case length is computed, with UPDATE being used to indicate
17502 whether an unconditional (-1), or regular (0) branch is to be
17503 computed. */
17504
17505 static int
17506 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17507 {
17508 bfd_boolean insn32 = TRUE;
17509 bfd_boolean nods = TRUE;
17510 bfd_boolean pic = TRUE;
17511 bfd_boolean al = TRUE;
17512 int short_insn_size;
17513 bfd_boolean toofar;
17514 int length;
17515
17516 if (fragp)
17517 {
17518 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17519 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17520 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
17521 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17522 }
17523 short_insn_size = insn32 ? 4 : 2;
17524
17525 if (fragp
17526 && S_IS_DEFINED (fragp->fr_symbol)
17527 && !S_IS_WEAK (fragp->fr_symbol)
17528 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17529 {
17530 addressT addr;
17531 offsetT val;
17532
17533 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17534 /* Ignore the low bit in the target, since it will be set
17535 for a text label. */
17536 if ((val & 1) != 0)
17537 --val;
17538
17539 addr = fragp->fr_address + fragp->fr_fix + 4;
17540
17541 val -= addr;
17542
17543 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17544 }
17545 else
17546 /* If the symbol is not defined or it's in a different segment,
17547 we emit the long sequence. */
17548 toofar = TRUE;
17549
17550 if (fragp && update
17551 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17552 fragp->fr_subtype = (toofar
17553 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17554 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17555
17556 length = 4;
17557 if (toofar)
17558 {
17559 bfd_boolean compact_known = fragp != NULL;
17560 bfd_boolean compact = FALSE;
17561 bfd_boolean uncond;
17562
17563 if (fragp)
17564 {
17565 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17566 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17567 }
17568 else
17569 uncond = update < 0;
17570
17571 /* If label is out of range, we turn branch <br>:
17572
17573 <br> label # 4 bytes
17574 0:
17575
17576 into:
17577
17578 j label # 4 bytes
17579 nop # 2/4 bytes if
17580 # compact && (!PIC || insn32)
17581 0:
17582 */
17583 if ((!pic || insn32) && (!compact_known || compact))
17584 length += short_insn_size;
17585
17586 /* If assembling PIC code, we further turn:
17587
17588 j label # 4 bytes
17589
17590 into:
17591
17592 lw/ld at, %got(label)(gp) # 4 bytes
17593 d/addiu at, %lo(label) # 4 bytes
17594 jr/c at # 2/4 bytes
17595 */
17596 if (pic)
17597 length += 4 + short_insn_size;
17598
17599 /* Add an extra nop if the jump has no compact form and we need
17600 to fill the delay slot. */
17601 if ((!pic || al) && nods)
17602 length += (fragp
17603 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17604 : short_insn_size);
17605
17606 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17607
17608 <brneg> 0f # 4 bytes
17609 nop # 2/4 bytes if !compact
17610 */
17611 if (!uncond)
17612 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17613 }
17614 else if (nods)
17615 {
17616 /* Add an extra nop to fill the delay slot. */
17617 gas_assert (fragp);
17618 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17619 }
17620
17621 return length;
17622 }
17623
17624 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17625 bit accordingly. */
17626
17627 static int
17628 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17629 {
17630 bfd_boolean toofar;
17631
17632 if (fragp
17633 && S_IS_DEFINED (fragp->fr_symbol)
17634 && !S_IS_WEAK (fragp->fr_symbol)
17635 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17636 {
17637 addressT addr;
17638 offsetT val;
17639 int type;
17640
17641 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17642 /* Ignore the low bit in the target, since it will be set
17643 for a text label. */
17644 if ((val & 1) != 0)
17645 --val;
17646
17647 /* Assume this is a 2-byte branch. */
17648 addr = fragp->fr_address + fragp->fr_fix + 2;
17649
17650 /* We try to avoid the infinite loop by not adding 2 more bytes for
17651 long branches. */
17652
17653 val -= addr;
17654
17655 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17656 if (type == 'D')
17657 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17658 else if (type == 'E')
17659 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17660 else
17661 abort ();
17662 }
17663 else
17664 /* If the symbol is not defined or it's in a different segment,
17665 we emit a normal 32-bit branch. */
17666 toofar = TRUE;
17667
17668 if (fragp && update
17669 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17670 fragp->fr_subtype
17671 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17672 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17673
17674 if (toofar)
17675 return 4;
17676
17677 return 2;
17678 }
17679
17680 /* Estimate the size of a frag before relaxing. Unless this is the
17681 mips16, we are not really relaxing here, and the final size is
17682 encoded in the subtype information. For the mips16, we have to
17683 decide whether we are using an extended opcode or not. */
17684
17685 int
17686 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17687 {
17688 int change;
17689
17690 if (RELAX_BRANCH_P (fragp->fr_subtype))
17691 {
17692
17693 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17694
17695 return fragp->fr_var;
17696 }
17697
17698 if (RELAX_MIPS16_P (fragp->fr_subtype))
17699 {
17700 /* We don't want to modify the EXTENDED bit here; it might get us
17701 into infinite loops. We change it only in mips_relax_frag(). */
17702 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17703 return 12;
17704 else
17705 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
17706 }
17707
17708 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17709 {
17710 int length = 4;
17711
17712 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17713 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17714 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17715 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17716 fragp->fr_var = length;
17717
17718 return length;
17719 }
17720
17721 if (mips_pic == VXWORKS_PIC)
17722 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17723 change = 0;
17724 else if (RELAX_PIC (fragp->fr_subtype))
17725 change = pic_need_relax (fragp->fr_symbol);
17726 else
17727 change = nopic_need_relax (fragp->fr_symbol, 0);
17728
17729 if (change)
17730 {
17731 fragp->fr_subtype |= RELAX_USE_SECOND;
17732 return -RELAX_FIRST (fragp->fr_subtype);
17733 }
17734 else
17735 return -RELAX_SECOND (fragp->fr_subtype);
17736 }
17737
17738 /* This is called to see whether a reloc against a defined symbol
17739 should be converted into a reloc against a section. */
17740
17741 int
17742 mips_fix_adjustable (fixS *fixp)
17743 {
17744 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17745 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17746 return 0;
17747
17748 if (fixp->fx_addsy == NULL)
17749 return 1;
17750
17751 /* Allow relocs used for EH tables. */
17752 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17753 return 1;
17754
17755 /* If symbol SYM is in a mergeable section, relocations of the form
17756 SYM + 0 can usually be made section-relative. The mergeable data
17757 is then identified by the section offset rather than by the symbol.
17758
17759 However, if we're generating REL LO16 relocations, the offset is split
17760 between the LO16 and partnering high part relocation. The linker will
17761 need to recalculate the complete offset in order to correctly identify
17762 the merge data.
17763
17764 The linker has traditionally not looked for the partnering high part
17765 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17766 placed anywhere. Rather than break backwards compatibility by changing
17767 this, it seems better not to force the issue, and instead keep the
17768 original symbol. This will work with either linker behavior. */
17769 if ((lo16_reloc_p (fixp->fx_r_type)
17770 || reloc_needs_lo_p (fixp->fx_r_type))
17771 && HAVE_IN_PLACE_ADDENDS
17772 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17773 return 0;
17774
17775 /* There is no place to store an in-place offset for JALR relocations. */
17776 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17777 return 0;
17778
17779 /* Likewise an in-range offset of limited PC-relative relocations may
17780 overflow the in-place relocatable field if recalculated against the
17781 start address of the symbol's containing section.
17782
17783 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17784 section relative to allow linker relaxations to be performed later on. */
17785 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17786 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17787 return 0;
17788
17789 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17790 to a floating-point stub. The same is true for non-R_MIPS16_26
17791 relocations against MIPS16 functions; in this case, the stub becomes
17792 the function's canonical address.
17793
17794 Floating-point stubs are stored in unique .mips16.call.* or
17795 .mips16.fn.* sections. If a stub T for function F is in section S,
17796 the first relocation in section S must be against F; this is how the
17797 linker determines the target function. All relocations that might
17798 resolve to T must also be against F. We therefore have the following
17799 restrictions, which are given in an intentionally-redundant way:
17800
17801 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17802 symbols.
17803
17804 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17805 if that stub might be used.
17806
17807 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17808 symbols.
17809
17810 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17811 that stub might be used.
17812
17813 There is a further restriction:
17814
17815 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17816 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17817 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17818 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17819 against MIPS16 or microMIPS symbols because we need to keep the
17820 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17821 detection and JAL or BAL to JALX instruction conversion in the
17822 linker.
17823
17824 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17825 against a MIPS16 symbol. We deal with (5) by additionally leaving
17826 alone any jump and branch relocations against a microMIPS symbol.
17827
17828 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17829 relocation against some symbol R, no relocation against R may be
17830 reduced. (Note that this deals with (2) as well as (1) because
17831 relocations against global symbols will never be reduced on ELF
17832 targets.) This approach is a little simpler than trying to detect
17833 stub sections, and gives the "all or nothing" per-symbol consistency
17834 that we have for MIPS16 symbols. */
17835 if (fixp->fx_subsy == NULL
17836 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17837 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17838 && (jmp_reloc_p (fixp->fx_r_type)
17839 || b_reloc_p (fixp->fx_r_type)))
17840 || *symbol_get_tc (fixp->fx_addsy)))
17841 return 0;
17842
17843 return 1;
17844 }
17845
17846 /* Translate internal representation of relocation info to BFD target
17847 format. */
17848
17849 arelent **
17850 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17851 {
17852 static arelent *retval[4];
17853 arelent *reloc;
17854 bfd_reloc_code_real_type code;
17855
17856 memset (retval, 0, sizeof(retval));
17857 reloc = retval[0] = XCNEW (arelent);
17858 reloc->sym_ptr_ptr = XNEW (asymbol *);
17859 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17860 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17861
17862 if (fixp->fx_pcrel)
17863 {
17864 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17865 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17866 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17867 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17868 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17869 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17870 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17871 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17872 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17873 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17874 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17875 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17876
17877 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17878 Relocations want only the symbol offset. */
17879 switch (fixp->fx_r_type)
17880 {
17881 case BFD_RELOC_MIPS_18_PCREL_S3:
17882 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17883 break;
17884 default:
17885 reloc->addend = fixp->fx_addnumber + reloc->address;
17886 break;
17887 }
17888 }
17889 else if (HAVE_IN_PLACE_ADDENDS
17890 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17891 && (read_compressed_insn (fixp->fx_frag->fr_literal
17892 + fixp->fx_where, 4) >> 26) == 0x3c)
17893 {
17894 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17895 addend accordingly. */
17896 reloc->addend = fixp->fx_addnumber >> 1;
17897 }
17898 else
17899 reloc->addend = fixp->fx_addnumber;
17900
17901 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17902 entry to be used in the relocation's section offset. */
17903 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17904 {
17905 reloc->address = reloc->addend;
17906 reloc->addend = 0;
17907 }
17908
17909 code = fixp->fx_r_type;
17910
17911 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17912 if (reloc->howto == NULL)
17913 {
17914 as_bad_where (fixp->fx_file, fixp->fx_line,
17915 _("cannot represent %s relocation in this object file"
17916 " format"),
17917 bfd_get_reloc_code_name (code));
17918 retval[0] = NULL;
17919 }
17920
17921 return retval;
17922 }
17923
17924 /* Relax a machine dependent frag. This returns the amount by which
17925 the current size of the frag should change. */
17926
17927 int
17928 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17929 {
17930 if (RELAX_BRANCH_P (fragp->fr_subtype))
17931 {
17932 offsetT old_var = fragp->fr_var;
17933
17934 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17935
17936 return fragp->fr_var - old_var;
17937 }
17938
17939 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17940 {
17941 offsetT old_var = fragp->fr_var;
17942 offsetT new_var = 4;
17943
17944 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17945 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17946 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17947 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17948 fragp->fr_var = new_var;
17949
17950 return new_var - old_var;
17951 }
17952
17953 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17954 return 0;
17955
17956 if (!mips16_extended_frag (fragp, sec, stretch))
17957 {
17958 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17959 {
17960 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
17961 return -10;
17962 }
17963 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17964 {
17965 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17966 return -2;
17967 }
17968 else
17969 return 0;
17970 }
17971 else if (!mips16_macro_frag (fragp, sec, stretch))
17972 {
17973 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17974 {
17975 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
17976 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17977 return -8;
17978 }
17979 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17980 {
17981 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17982 return 2;
17983 }
17984 else
17985 return 0;
17986 }
17987 else
17988 {
17989 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17990 return 0;
17991 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17992 {
17993 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17994 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
17995 return 8;
17996 }
17997 else
17998 {
17999 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18000 return 10;
18001 }
18002 }
18003
18004 return 0;
18005 }
18006
18007 /* Convert a machine dependent frag. */
18008
18009 void
18010 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18011 {
18012 if (RELAX_BRANCH_P (fragp->fr_subtype))
18013 {
18014 char *buf;
18015 unsigned long insn;
18016 expressionS exp;
18017 fixS *fixp;
18018
18019 buf = fragp->fr_literal + fragp->fr_fix;
18020 insn = read_insn (buf);
18021
18022 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18023 {
18024 /* We generate a fixup instead of applying it right now
18025 because, if there are linker relaxations, we're going to
18026 need the relocations. */
18027 exp.X_op = O_symbol;
18028 exp.X_add_symbol = fragp->fr_symbol;
18029 exp.X_add_number = fragp->fr_offset;
18030
18031 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18032 BFD_RELOC_16_PCREL_S2);
18033 fixp->fx_file = fragp->fr_file;
18034 fixp->fx_line = fragp->fr_line;
18035
18036 buf = write_insn (buf, insn);
18037 }
18038 else
18039 {
18040 int i;
18041
18042 as_warn_where (fragp->fr_file, fragp->fr_line,
18043 _("relaxed out-of-range branch into a jump"));
18044
18045 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18046 goto uncond;
18047
18048 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18049 {
18050 /* Reverse the branch. */
18051 switch ((insn >> 28) & 0xf)
18052 {
18053 case 4:
18054 if ((insn & 0xff000000) == 0x47000000
18055 || (insn & 0xff600000) == 0x45600000)
18056 {
18057 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18058 reversed by tweaking bit 23. */
18059 insn ^= 0x00800000;
18060 }
18061 else
18062 {
18063 /* bc[0-3][tf]l? instructions can have the condition
18064 reversed by tweaking a single TF bit, and their
18065 opcodes all have 0x4???????. */
18066 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18067 insn ^= 0x00010000;
18068 }
18069 break;
18070
18071 case 0:
18072 /* bltz 0x04000000 bgez 0x04010000
18073 bltzal 0x04100000 bgezal 0x04110000 */
18074 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18075 insn ^= 0x00010000;
18076 break;
18077
18078 case 1:
18079 /* beq 0x10000000 bne 0x14000000
18080 blez 0x18000000 bgtz 0x1c000000 */
18081 insn ^= 0x04000000;
18082 break;
18083
18084 default:
18085 abort ();
18086 }
18087 }
18088
18089 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18090 {
18091 /* Clear the and-link bit. */
18092 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18093
18094 /* bltzal 0x04100000 bgezal 0x04110000
18095 bltzall 0x04120000 bgezall 0x04130000 */
18096 insn &= ~0x00100000;
18097 }
18098
18099 /* Branch over the branch (if the branch was likely) or the
18100 full jump (not likely case). Compute the offset from the
18101 current instruction to branch to. */
18102 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18103 i = 16;
18104 else
18105 {
18106 /* How many bytes in instructions we've already emitted? */
18107 i = buf - fragp->fr_literal - fragp->fr_fix;
18108 /* How many bytes in instructions from here to the end? */
18109 i = fragp->fr_var - i;
18110 }
18111 /* Convert to instruction count. */
18112 i >>= 2;
18113 /* Branch counts from the next instruction. */
18114 i--;
18115 insn |= i;
18116 /* Branch over the jump. */
18117 buf = write_insn (buf, insn);
18118
18119 /* nop */
18120 buf = write_insn (buf, 0);
18121
18122 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18123 {
18124 /* beql $0, $0, 2f */
18125 insn = 0x50000000;
18126 /* Compute the PC offset from the current instruction to
18127 the end of the variable frag. */
18128 /* How many bytes in instructions we've already emitted? */
18129 i = buf - fragp->fr_literal - fragp->fr_fix;
18130 /* How many bytes in instructions from here to the end? */
18131 i = fragp->fr_var - i;
18132 /* Convert to instruction count. */
18133 i >>= 2;
18134 /* Don't decrement i, because we want to branch over the
18135 delay slot. */
18136 insn |= i;
18137
18138 buf = write_insn (buf, insn);
18139 buf = write_insn (buf, 0);
18140 }
18141
18142 uncond:
18143 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18144 {
18145 /* j or jal. */
18146 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18147 ? 0x0c000000 : 0x08000000);
18148 exp.X_op = O_symbol;
18149 exp.X_add_symbol = fragp->fr_symbol;
18150 exp.X_add_number = fragp->fr_offset;
18151
18152 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18153 FALSE, BFD_RELOC_MIPS_JMP);
18154 fixp->fx_file = fragp->fr_file;
18155 fixp->fx_line = fragp->fr_line;
18156
18157 buf = write_insn (buf, insn);
18158 }
18159 else
18160 {
18161 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18162
18163 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18164 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18165 insn |= at << OP_SH_RT;
18166 exp.X_op = O_symbol;
18167 exp.X_add_symbol = fragp->fr_symbol;
18168 exp.X_add_number = fragp->fr_offset;
18169
18170 if (fragp->fr_offset)
18171 {
18172 exp.X_add_symbol = make_expr_symbol (&exp);
18173 exp.X_add_number = 0;
18174 }
18175
18176 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18177 FALSE, BFD_RELOC_MIPS_GOT16);
18178 fixp->fx_file = fragp->fr_file;
18179 fixp->fx_line = fragp->fr_line;
18180
18181 buf = write_insn (buf, insn);
18182
18183 if (mips_opts.isa == ISA_MIPS1)
18184 /* nop */
18185 buf = write_insn (buf, 0);
18186
18187 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18188 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18189 insn |= at << OP_SH_RS | at << OP_SH_RT;
18190
18191 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18192 FALSE, BFD_RELOC_LO16);
18193 fixp->fx_file = fragp->fr_file;
18194 fixp->fx_line = fragp->fr_line;
18195
18196 buf = write_insn (buf, insn);
18197
18198 /* j(al)r $at. */
18199 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18200 insn = 0x0000f809;
18201 else
18202 insn = 0x00000008;
18203 insn |= at << OP_SH_RS;
18204
18205 buf = write_insn (buf, insn);
18206 }
18207 }
18208
18209 fragp->fr_fix += fragp->fr_var;
18210 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18211 return;
18212 }
18213
18214 /* Relax microMIPS branches. */
18215 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18216 {
18217 char *buf = fragp->fr_literal + fragp->fr_fix;
18218 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18219 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18220 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18221 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18222 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18223 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18224 bfd_boolean short_ds;
18225 unsigned long insn;
18226 expressionS exp;
18227 fixS *fixp;
18228
18229 exp.X_op = O_symbol;
18230 exp.X_add_symbol = fragp->fr_symbol;
18231 exp.X_add_number = fragp->fr_offset;
18232
18233 fragp->fr_fix += fragp->fr_var;
18234
18235 /* Handle 16-bit branches that fit or are forced to fit. */
18236 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18237 {
18238 /* We generate a fixup instead of applying it right now,
18239 because if there is linker relaxation, we're going to
18240 need the relocations. */
18241 if (type == 'D')
18242 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18243 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18244 else if (type == 'E')
18245 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18246 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18247 else
18248 abort ();
18249
18250 fixp->fx_file = fragp->fr_file;
18251 fixp->fx_line = fragp->fr_line;
18252
18253 /* These relocations can have an addend that won't fit in
18254 2 octets. */
18255 fixp->fx_no_overflow = 1;
18256
18257 return;
18258 }
18259
18260 /* Handle 32-bit branches that fit or are forced to fit. */
18261 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18262 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18263 {
18264 /* We generate a fixup instead of applying it right now,
18265 because if there is linker relaxation, we're going to
18266 need the relocations. */
18267 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18268 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18269 fixp->fx_file = fragp->fr_file;
18270 fixp->fx_line = fragp->fr_line;
18271
18272 if (type == 0)
18273 {
18274 insn = read_compressed_insn (buf, 4);
18275 buf += 4;
18276
18277 if (nods)
18278 {
18279 /* Check the short-delay-slot bit. */
18280 if (!al || (insn & 0x02000000) != 0)
18281 buf = write_compressed_insn (buf, 0x0c00, 2);
18282 else
18283 buf = write_compressed_insn (buf, 0x00000000, 4);
18284 }
18285
18286 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18287 return;
18288 }
18289 }
18290
18291 /* Relax 16-bit branches to 32-bit branches. */
18292 if (type != 0)
18293 {
18294 insn = read_compressed_insn (buf, 2);
18295
18296 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18297 insn = 0x94000000; /* beq */
18298 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18299 {
18300 unsigned long regno;
18301
18302 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18303 regno = micromips_to_32_reg_d_map [regno];
18304 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18305 insn |= regno << MICROMIPSOP_SH_RS;
18306 }
18307 else
18308 abort ();
18309
18310 /* Nothing else to do, just write it out. */
18311 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18312 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18313 {
18314 buf = write_compressed_insn (buf, insn, 4);
18315 if (nods)
18316 buf = write_compressed_insn (buf, 0x0c00, 2);
18317 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18318 return;
18319 }
18320 }
18321 else
18322 insn = read_compressed_insn (buf, 4);
18323
18324 /* Relax 32-bit branches to a sequence of instructions. */
18325 as_warn_where (fragp->fr_file, fragp->fr_line,
18326 _("relaxed out-of-range branch into a jump"));
18327
18328 /* Set the short-delay-slot bit. */
18329 short_ds = !al || (insn & 0x02000000) != 0;
18330
18331 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18332 {
18333 symbolS *l;
18334
18335 /* Reverse the branch. */
18336 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18337 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18338 insn ^= 0x20000000;
18339 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18340 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18341 || (insn & 0xffe00000) == 0x40800000 /* blez */
18342 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18343 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18344 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18345 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18346 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18347 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18348 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18349 insn ^= 0x00400000;
18350 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18351 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18352 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18353 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18354 insn ^= 0x00200000;
18355 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18356 BNZ.df */
18357 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18358 BNZ.V */
18359 insn ^= 0x00800000;
18360 else
18361 abort ();
18362
18363 if (al)
18364 {
18365 /* Clear the and-link and short-delay-slot bits. */
18366 gas_assert ((insn & 0xfda00000) == 0x40200000);
18367
18368 /* bltzal 0x40200000 bgezal 0x40600000 */
18369 /* bltzals 0x42200000 bgezals 0x42600000 */
18370 insn &= ~0x02200000;
18371 }
18372
18373 /* Make a label at the end for use with the branch. */
18374 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18375 micromips_label_inc ();
18376 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18377
18378 /* Refer to it. */
18379 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18380 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18381 fixp->fx_file = fragp->fr_file;
18382 fixp->fx_line = fragp->fr_line;
18383
18384 /* Branch over the jump. */
18385 buf = write_compressed_insn (buf, insn, 4);
18386
18387 if (!compact)
18388 {
18389 /* nop */
18390 if (insn32)
18391 buf = write_compressed_insn (buf, 0x00000000, 4);
18392 else
18393 buf = write_compressed_insn (buf, 0x0c00, 2);
18394 }
18395 }
18396
18397 if (!pic)
18398 {
18399 unsigned long jal = (short_ds || nods
18400 ? 0x74000000 : 0xf4000000); /* jal/s */
18401
18402 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18403 insn = al ? jal : 0xd4000000;
18404
18405 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18406 BFD_RELOC_MICROMIPS_JMP);
18407 fixp->fx_file = fragp->fr_file;
18408 fixp->fx_line = fragp->fr_line;
18409
18410 buf = write_compressed_insn (buf, insn, 4);
18411
18412 if (compact || nods)
18413 {
18414 /* nop */
18415 if (insn32)
18416 buf = write_compressed_insn (buf, 0x00000000, 4);
18417 else
18418 buf = write_compressed_insn (buf, 0x0c00, 2);
18419 }
18420 }
18421 else
18422 {
18423 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18424
18425 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18426 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18427 insn |= at << MICROMIPSOP_SH_RT;
18428
18429 if (exp.X_add_number)
18430 {
18431 exp.X_add_symbol = make_expr_symbol (&exp);
18432 exp.X_add_number = 0;
18433 }
18434
18435 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18436 BFD_RELOC_MICROMIPS_GOT16);
18437 fixp->fx_file = fragp->fr_file;
18438 fixp->fx_line = fragp->fr_line;
18439
18440 buf = write_compressed_insn (buf, insn, 4);
18441
18442 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18443 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18444 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18445
18446 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18447 BFD_RELOC_MICROMIPS_LO16);
18448 fixp->fx_file = fragp->fr_file;
18449 fixp->fx_line = fragp->fr_line;
18450
18451 buf = write_compressed_insn (buf, insn, 4);
18452
18453 if (insn32)
18454 {
18455 /* jr/jalr $at */
18456 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18457 insn |= at << MICROMIPSOP_SH_RS;
18458
18459 buf = write_compressed_insn (buf, insn, 4);
18460
18461 if (compact || nods)
18462 /* nop */
18463 buf = write_compressed_insn (buf, 0x00000000, 4);
18464 }
18465 else
18466 {
18467 /* jr/jrc/jalr/jalrs $at */
18468 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18469 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18470
18471 insn = al ? jalr : jr;
18472 insn |= at << MICROMIPSOP_SH_MJ;
18473
18474 buf = write_compressed_insn (buf, insn, 2);
18475 if (al && nods)
18476 {
18477 /* nop */
18478 if (short_ds)
18479 buf = write_compressed_insn (buf, 0x0c00, 2);
18480 else
18481 buf = write_compressed_insn (buf, 0x00000000, 4);
18482 }
18483 }
18484 }
18485
18486 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18487 return;
18488 }
18489
18490 if (RELAX_MIPS16_P (fragp->fr_subtype))
18491 {
18492 int type;
18493 const struct mips_int_operand *operand;
18494 offsetT val;
18495 char *buf;
18496 unsigned int user_length;
18497 bfd_boolean need_reloc;
18498 unsigned long insn;
18499 bfd_boolean mac;
18500 bfd_boolean ext;
18501 segT symsec;
18502
18503 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18504 operand = mips16_immed_operand (type, FALSE);
18505
18506 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
18507 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18508 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18509
18510 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18511 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18512 || (operand->root.type == OP_PCREL && !mac
18513 ? asec != symsec
18514 : !bfd_is_abs_section (symsec)));
18515
18516 if (operand->root.type == OP_PCREL && !mac)
18517 {
18518 const struct mips_pcrel_operand *pcrel_op;
18519
18520 pcrel_op = (const struct mips_pcrel_operand *) operand;
18521
18522 if (pcrel_op->include_isa_bit && !need_reloc)
18523 {
18524 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18525 as_bad_where (fragp->fr_file, fragp->fr_line,
18526 _("branch to a symbol in another ISA mode"));
18527 else if ((fragp->fr_offset & 0x1) != 0)
18528 as_bad_where (fragp->fr_file, fragp->fr_line,
18529 _("branch to misaligned address (0x%lx)"),
18530 (long) val);
18531 }
18532
18533 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
18534
18535 /* Make sure the section winds up with the alignment we have
18536 assumed. */
18537 if (operand->shift > 0)
18538 record_alignment (asec, operand->shift);
18539 }
18540
18541 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18542 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18543 {
18544 if (mac)
18545 as_warn_where (fragp->fr_file, fragp->fr_line,
18546 _("macro instruction expanded into multiple "
18547 "instructions in a branch delay slot"));
18548 else if (ext)
18549 as_warn_where (fragp->fr_file, fragp->fr_line,
18550 _("extended instruction in a branch delay slot"));
18551 }
18552 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
18553 as_warn_where (fragp->fr_file, fragp->fr_line,
18554 _("macro instruction expanded into multiple "
18555 "instructions"));
18556
18557 buf = fragp->fr_literal + fragp->fr_fix;
18558
18559 insn = read_compressed_insn (buf, 2);
18560 if (ext)
18561 insn |= MIPS16_EXTEND;
18562
18563 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18564 user_length = 4;
18565 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18566 user_length = 2;
18567 else
18568 user_length = 0;
18569
18570 if (mac)
18571 {
18572 unsigned long reg;
18573 unsigned long new;
18574 unsigned long op;
18575
18576 gas_assert (type == 'A' || type == 'B' || type == 'E');
18577 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
18578
18579 if (need_reloc)
18580 {
18581 fixS *fixp;
18582
18583 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18584
18585 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18586 fragp->fr_symbol, fragp->fr_offset,
18587 FALSE, BFD_RELOC_MIPS16_HI16_S);
18588 fixp->fx_file = fragp->fr_file;
18589 fixp->fx_line = fragp->fr_line;
18590
18591 fixp = fix_new (fragp, buf - fragp->fr_literal + 8, 4,
18592 fragp->fr_symbol, fragp->fr_offset,
18593 FALSE, BFD_RELOC_MIPS16_LO16);
18594 fixp->fx_file = fragp->fr_file;
18595 fixp->fx_line = fragp->fr_line;
18596
18597 val = 0;
18598 }
18599
18600 switch (insn & 0xf800)
18601 {
18602 case 0x0800: /* ADDIU */
18603 reg = (insn >> 8) & 0x7;
18604 op = 0xf0004800 | (reg << 8);
18605 break;
18606 case 0xb000: /* LW */
18607 reg = (insn >> 8) & 0x7;
18608 op = 0xf0009800 | (reg << 8) | (reg << 5);
18609 break;
18610 case 0xf800: /* I64 */
18611 reg = (insn >> 5) & 0x7;
18612 switch (insn & 0x0700)
18613 {
18614 case 0x0400: /* LD */
18615 op = 0xf0003800 | (reg << 8) | (reg << 5);
18616 break;
18617 case 0x0600: /* DADDIU */
18618 op = 0xf000fd00 | (reg << 5);
18619 break;
18620 default:
18621 abort ();
18622 }
18623 break;
18624 default:
18625 abort ();
18626 }
18627
18628 new = 0xf0006800 | (reg << 8); /* LI */
18629 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
18630 buf = write_compressed_insn (buf, new, 4);
18631 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
18632 buf = write_compressed_insn (buf, new, 4);
18633 op |= mips16_immed_extend (val, 16);
18634 buf = write_compressed_insn (buf, op, 4);
18635
18636 fragp->fr_fix += 12;
18637 }
18638 else
18639 {
18640 unsigned int length = ext ? 4 : 2;
18641
18642 if (need_reloc)
18643 {
18644 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18645 expressionS exp;
18646 fixS *fixp;
18647
18648 switch (type)
18649 {
18650 case 'p':
18651 case 'q':
18652 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18653 break;
18654 default:
18655 break;
18656 }
18657 if (mac || reloc == BFD_RELOC_NONE)
18658 as_bad_where (fragp->fr_file, fragp->fr_line,
18659 _("unsupported relocation"));
18660 else if (ext)
18661 {
18662 exp.X_op = O_symbol;
18663 exp.X_add_symbol = fragp->fr_symbol;
18664 exp.X_add_number = fragp->fr_offset;
18665
18666 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18667 TRUE, reloc);
18668
18669 fixp->fx_file = fragp->fr_file;
18670 fixp->fx_line = fragp->fr_line;
18671 }
18672 else
18673 as_bad_where (fragp->fr_file, fragp->fr_line,
18674 _("invalid unextended operand value"));
18675 }
18676 else
18677 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18678 BFD_RELOC_UNUSED, val, user_length, &insn);
18679
18680 gas_assert (mips16_opcode_length (insn) == length);
18681 write_compressed_insn (buf, insn, length);
18682 fragp->fr_fix += length;
18683 }
18684 }
18685 else
18686 {
18687 relax_substateT subtype = fragp->fr_subtype;
18688 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18689 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18690 int first, second;
18691 fixS *fixp;
18692
18693 first = RELAX_FIRST (subtype);
18694 second = RELAX_SECOND (subtype);
18695 fixp = (fixS *) fragp->fr_opcode;
18696
18697 /* If the delay slot chosen does not match the size of the instruction,
18698 then emit a warning. */
18699 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18700 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18701 {
18702 relax_substateT s;
18703 const char *msg;
18704
18705 s = subtype & (RELAX_DELAY_SLOT_16BIT
18706 | RELAX_DELAY_SLOT_SIZE_FIRST
18707 | RELAX_DELAY_SLOT_SIZE_SECOND);
18708 msg = macro_warning (s);
18709 if (msg != NULL)
18710 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18711 subtype &= ~s;
18712 }
18713
18714 /* Possibly emit a warning if we've chosen the longer option. */
18715 if (use_second == second_longer)
18716 {
18717 relax_substateT s;
18718 const char *msg;
18719
18720 s = (subtype
18721 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18722 msg = macro_warning (s);
18723 if (msg != NULL)
18724 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18725 subtype &= ~s;
18726 }
18727
18728 /* Go through all the fixups for the first sequence. Disable them
18729 (by marking them as done) if we're going to use the second
18730 sequence instead. */
18731 while (fixp
18732 && fixp->fx_frag == fragp
18733 && fixp->fx_where < fragp->fr_fix - second)
18734 {
18735 if (subtype & RELAX_USE_SECOND)
18736 fixp->fx_done = 1;
18737 fixp = fixp->fx_next;
18738 }
18739
18740 /* Go through the fixups for the second sequence. Disable them if
18741 we're going to use the first sequence, otherwise adjust their
18742 addresses to account for the relaxation. */
18743 while (fixp && fixp->fx_frag == fragp)
18744 {
18745 if (subtype & RELAX_USE_SECOND)
18746 fixp->fx_where -= first;
18747 else
18748 fixp->fx_done = 1;
18749 fixp = fixp->fx_next;
18750 }
18751
18752 /* Now modify the frag contents. */
18753 if (subtype & RELAX_USE_SECOND)
18754 {
18755 char *start;
18756
18757 start = fragp->fr_literal + fragp->fr_fix - first - second;
18758 memmove (start, start + first, second);
18759 fragp->fr_fix -= first;
18760 }
18761 else
18762 fragp->fr_fix -= second;
18763 }
18764 }
18765
18766 /* This function is called after the relocs have been generated.
18767 We've been storing mips16 text labels as odd. Here we convert them
18768 back to even for the convenience of the debugger. */
18769
18770 void
18771 mips_frob_file_after_relocs (void)
18772 {
18773 asymbol **syms;
18774 unsigned int count, i;
18775
18776 syms = bfd_get_outsymbols (stdoutput);
18777 count = bfd_get_symcount (stdoutput);
18778 for (i = 0; i < count; i++, syms++)
18779 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18780 && ((*syms)->value & 1) != 0)
18781 {
18782 (*syms)->value &= ~1;
18783 /* If the symbol has an odd size, it was probably computed
18784 incorrectly, so adjust that as well. */
18785 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18786 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18787 }
18788 }
18789
18790 /* This function is called whenever a label is defined, including fake
18791 labels instantiated off the dot special symbol. It is used when
18792 handling branch delays; if a branch has a label, we assume we cannot
18793 move it. This also bumps the value of the symbol by 1 in compressed
18794 code. */
18795
18796 static void
18797 mips_record_label (symbolS *sym)
18798 {
18799 segment_info_type *si = seg_info (now_seg);
18800 struct insn_label_list *l;
18801
18802 if (free_insn_labels == NULL)
18803 l = XNEW (struct insn_label_list);
18804 else
18805 {
18806 l = free_insn_labels;
18807 free_insn_labels = l->next;
18808 }
18809
18810 l->label = sym;
18811 l->next = si->label_list;
18812 si->label_list = l;
18813 }
18814
18815 /* This function is called as tc_frob_label() whenever a label is defined
18816 and adds a DWARF-2 record we only want for true labels. */
18817
18818 void
18819 mips_define_label (symbolS *sym)
18820 {
18821 mips_record_label (sym);
18822 dwarf2_emit_label (sym);
18823 }
18824
18825 /* This function is called by tc_new_dot_label whenever a new dot symbol
18826 is defined. */
18827
18828 void
18829 mips_add_dot_label (symbolS *sym)
18830 {
18831 mips_record_label (sym);
18832 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18833 mips_compressed_mark_label (sym);
18834 }
18835 \f
18836 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18837 static unsigned int
18838 mips_convert_ase_flags (int ase)
18839 {
18840 unsigned int ext_ases = 0;
18841
18842 if (ase & ASE_DSP)
18843 ext_ases |= AFL_ASE_DSP;
18844 if (ase & ASE_DSPR2)
18845 ext_ases |= AFL_ASE_DSPR2;
18846 if (ase & ASE_DSPR3)
18847 ext_ases |= AFL_ASE_DSPR3;
18848 if (ase & ASE_EVA)
18849 ext_ases |= AFL_ASE_EVA;
18850 if (ase & ASE_MCU)
18851 ext_ases |= AFL_ASE_MCU;
18852 if (ase & ASE_MDMX)
18853 ext_ases |= AFL_ASE_MDMX;
18854 if (ase & ASE_MIPS3D)
18855 ext_ases |= AFL_ASE_MIPS3D;
18856 if (ase & ASE_MT)
18857 ext_ases |= AFL_ASE_MT;
18858 if (ase & ASE_SMARTMIPS)
18859 ext_ases |= AFL_ASE_SMARTMIPS;
18860 if (ase & ASE_VIRT)
18861 ext_ases |= AFL_ASE_VIRT;
18862 if (ase & ASE_MSA)
18863 ext_ases |= AFL_ASE_MSA;
18864 if (ase & ASE_XPA)
18865 ext_ases |= AFL_ASE_XPA;
18866
18867 return ext_ases;
18868 }
18869 /* Some special processing for a MIPS ELF file. */
18870
18871 void
18872 mips_elf_final_processing (void)
18873 {
18874 int fpabi;
18875 Elf_Internal_ABIFlags_v0 flags;
18876
18877 flags.version = 0;
18878 flags.isa_rev = 0;
18879 switch (file_mips_opts.isa)
18880 {
18881 case INSN_ISA1:
18882 flags.isa_level = 1;
18883 break;
18884 case INSN_ISA2:
18885 flags.isa_level = 2;
18886 break;
18887 case INSN_ISA3:
18888 flags.isa_level = 3;
18889 break;
18890 case INSN_ISA4:
18891 flags.isa_level = 4;
18892 break;
18893 case INSN_ISA5:
18894 flags.isa_level = 5;
18895 break;
18896 case INSN_ISA32:
18897 flags.isa_level = 32;
18898 flags.isa_rev = 1;
18899 break;
18900 case INSN_ISA32R2:
18901 flags.isa_level = 32;
18902 flags.isa_rev = 2;
18903 break;
18904 case INSN_ISA32R3:
18905 flags.isa_level = 32;
18906 flags.isa_rev = 3;
18907 break;
18908 case INSN_ISA32R5:
18909 flags.isa_level = 32;
18910 flags.isa_rev = 5;
18911 break;
18912 case INSN_ISA32R6:
18913 flags.isa_level = 32;
18914 flags.isa_rev = 6;
18915 break;
18916 case INSN_ISA64:
18917 flags.isa_level = 64;
18918 flags.isa_rev = 1;
18919 break;
18920 case INSN_ISA64R2:
18921 flags.isa_level = 64;
18922 flags.isa_rev = 2;
18923 break;
18924 case INSN_ISA64R3:
18925 flags.isa_level = 64;
18926 flags.isa_rev = 3;
18927 break;
18928 case INSN_ISA64R5:
18929 flags.isa_level = 64;
18930 flags.isa_rev = 5;
18931 break;
18932 case INSN_ISA64R6:
18933 flags.isa_level = 64;
18934 flags.isa_rev = 6;
18935 break;
18936 }
18937
18938 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18939 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18940 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18941 : (file_mips_opts.fp == 64) ? AFL_REG_64
18942 : AFL_REG_32;
18943 flags.cpr2_size = AFL_REG_NONE;
18944 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18945 Tag_GNU_MIPS_ABI_FP);
18946 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18947 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18948 if (file_ase_mips16)
18949 flags.ases |= AFL_ASE_MIPS16;
18950 if (file_ase_micromips)
18951 flags.ases |= AFL_ASE_MICROMIPS;
18952 flags.flags1 = 0;
18953 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18954 || file_mips_opts.fp == 64)
18955 && file_mips_opts.oddspreg)
18956 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18957 flags.flags2 = 0;
18958
18959 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18960 ((Elf_External_ABIFlags_v0 *)
18961 mips_flags_frag));
18962
18963 /* Write out the register information. */
18964 if (mips_abi != N64_ABI)
18965 {
18966 Elf32_RegInfo s;
18967
18968 s.ri_gprmask = mips_gprmask;
18969 s.ri_cprmask[0] = mips_cprmask[0];
18970 s.ri_cprmask[1] = mips_cprmask[1];
18971 s.ri_cprmask[2] = mips_cprmask[2];
18972 s.ri_cprmask[3] = mips_cprmask[3];
18973 /* The gp_value field is set by the MIPS ELF backend. */
18974
18975 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18976 ((Elf32_External_RegInfo *)
18977 mips_regmask_frag));
18978 }
18979 else
18980 {
18981 Elf64_Internal_RegInfo s;
18982
18983 s.ri_gprmask = mips_gprmask;
18984 s.ri_pad = 0;
18985 s.ri_cprmask[0] = mips_cprmask[0];
18986 s.ri_cprmask[1] = mips_cprmask[1];
18987 s.ri_cprmask[2] = mips_cprmask[2];
18988 s.ri_cprmask[3] = mips_cprmask[3];
18989 /* The gp_value field is set by the MIPS ELF backend. */
18990
18991 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18992 ((Elf64_External_RegInfo *)
18993 mips_regmask_frag));
18994 }
18995
18996 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18997 sort of BFD interface for this. */
18998 if (mips_any_noreorder)
18999 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19000 if (mips_pic != NO_PIC)
19001 {
19002 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
19003 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19004 }
19005 if (mips_abicalls)
19006 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19007
19008 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19009 defined at present; this might need to change in future. */
19010 if (file_ase_mips16)
19011 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
19012 if (file_ase_micromips)
19013 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
19014 if (file_mips_opts.ase & ASE_MDMX)
19015 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
19016
19017 /* Set the MIPS ELF ABI flags. */
19018 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
19019 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
19020 else if (mips_abi == O64_ABI)
19021 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
19022 else if (mips_abi == EABI_ABI)
19023 {
19024 if (file_mips_opts.gp == 64)
19025 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19026 else
19027 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19028 }
19029 else if (mips_abi == N32_ABI)
19030 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
19031
19032 /* Nothing to do for N64_ABI. */
19033
19034 if (mips_32bitmode)
19035 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19036
19037 if (mips_nan2008 == 1)
19038 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19039
19040 /* 32 bit code with 64 bit FP registers. */
19041 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19042 Tag_GNU_MIPS_ABI_FP);
19043 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19044 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19045 }
19046 \f
19047 typedef struct proc {
19048 symbolS *func_sym;
19049 symbolS *func_end_sym;
19050 unsigned long reg_mask;
19051 unsigned long reg_offset;
19052 unsigned long fpreg_mask;
19053 unsigned long fpreg_offset;
19054 unsigned long frame_offset;
19055 unsigned long frame_reg;
19056 unsigned long pc_reg;
19057 } procS;
19058
19059 static procS cur_proc;
19060 static procS *cur_proc_ptr;
19061 static int numprocs;
19062
19063 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19064 as "2", and a normal nop as "0". */
19065
19066 #define NOP_OPCODE_MIPS 0
19067 #define NOP_OPCODE_MIPS16 1
19068 #define NOP_OPCODE_MICROMIPS 2
19069
19070 char
19071 mips_nop_opcode (void)
19072 {
19073 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19074 return NOP_OPCODE_MICROMIPS;
19075 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19076 return NOP_OPCODE_MIPS16;
19077 else
19078 return NOP_OPCODE_MIPS;
19079 }
19080
19081 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19082 32-bit microMIPS NOPs here (if applicable). */
19083
19084 void
19085 mips_handle_align (fragS *fragp)
19086 {
19087 char nop_opcode;
19088 char *p;
19089 int bytes, size, excess;
19090 valueT opcode;
19091
19092 if (fragp->fr_type != rs_align_code)
19093 return;
19094
19095 p = fragp->fr_literal + fragp->fr_fix;
19096 nop_opcode = *p;
19097 switch (nop_opcode)
19098 {
19099 case NOP_OPCODE_MICROMIPS:
19100 opcode = micromips_nop32_insn.insn_opcode;
19101 size = 4;
19102 break;
19103 case NOP_OPCODE_MIPS16:
19104 opcode = mips16_nop_insn.insn_opcode;
19105 size = 2;
19106 break;
19107 case NOP_OPCODE_MIPS:
19108 default:
19109 opcode = nop_insn.insn_opcode;
19110 size = 4;
19111 break;
19112 }
19113
19114 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19115 excess = bytes % size;
19116
19117 /* Handle the leading part if we're not inserting a whole number of
19118 instructions, and make it the end of the fixed part of the frag.
19119 Try to fit in a short microMIPS NOP if applicable and possible,
19120 and use zeroes otherwise. */
19121 gas_assert (excess < 4);
19122 fragp->fr_fix += excess;
19123 switch (excess)
19124 {
19125 case 3:
19126 *p++ = '\0';
19127 /* Fall through. */
19128 case 2:
19129 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19130 {
19131 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19132 break;
19133 }
19134 *p++ = '\0';
19135 /* Fall through. */
19136 case 1:
19137 *p++ = '\0';
19138 /* Fall through. */
19139 case 0:
19140 break;
19141 }
19142
19143 md_number_to_chars (p, opcode, size);
19144 fragp->fr_var = size;
19145 }
19146
19147 static long
19148 get_number (void)
19149 {
19150 int negative = 0;
19151 long val = 0;
19152
19153 if (*input_line_pointer == '-')
19154 {
19155 ++input_line_pointer;
19156 negative = 1;
19157 }
19158 if (!ISDIGIT (*input_line_pointer))
19159 as_bad (_("expected simple number"));
19160 if (input_line_pointer[0] == '0')
19161 {
19162 if (input_line_pointer[1] == 'x')
19163 {
19164 input_line_pointer += 2;
19165 while (ISXDIGIT (*input_line_pointer))
19166 {
19167 val <<= 4;
19168 val |= hex_value (*input_line_pointer++);
19169 }
19170 return negative ? -val : val;
19171 }
19172 else
19173 {
19174 ++input_line_pointer;
19175 while (ISDIGIT (*input_line_pointer))
19176 {
19177 val <<= 3;
19178 val |= *input_line_pointer++ - '0';
19179 }
19180 return negative ? -val : val;
19181 }
19182 }
19183 if (!ISDIGIT (*input_line_pointer))
19184 {
19185 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19186 *input_line_pointer, *input_line_pointer);
19187 as_warn (_("invalid number"));
19188 return -1;
19189 }
19190 while (ISDIGIT (*input_line_pointer))
19191 {
19192 val *= 10;
19193 val += *input_line_pointer++ - '0';
19194 }
19195 return negative ? -val : val;
19196 }
19197
19198 /* The .file directive; just like the usual .file directive, but there
19199 is an initial number which is the ECOFF file index. In the non-ECOFF
19200 case .file implies DWARF-2. */
19201
19202 static void
19203 s_mips_file (int x ATTRIBUTE_UNUSED)
19204 {
19205 static int first_file_directive = 0;
19206
19207 if (ECOFF_DEBUGGING)
19208 {
19209 get_number ();
19210 s_app_file (0);
19211 }
19212 else
19213 {
19214 char *filename;
19215
19216 filename = dwarf2_directive_file (0);
19217
19218 /* Versions of GCC up to 3.1 start files with a ".file"
19219 directive even for stabs output. Make sure that this
19220 ".file" is handled. Note that you need a version of GCC
19221 after 3.1 in order to support DWARF-2 on MIPS. */
19222 if (filename != NULL && ! first_file_directive)
19223 {
19224 (void) new_logical_line (filename, -1);
19225 s_app_file_string (filename, 0);
19226 }
19227 first_file_directive = 1;
19228 }
19229 }
19230
19231 /* The .loc directive, implying DWARF-2. */
19232
19233 static void
19234 s_mips_loc (int x ATTRIBUTE_UNUSED)
19235 {
19236 if (!ECOFF_DEBUGGING)
19237 dwarf2_directive_loc (0);
19238 }
19239
19240 /* The .end directive. */
19241
19242 static void
19243 s_mips_end (int x ATTRIBUTE_UNUSED)
19244 {
19245 symbolS *p;
19246
19247 /* Following functions need their own .frame and .cprestore directives. */
19248 mips_frame_reg_valid = 0;
19249 mips_cprestore_valid = 0;
19250
19251 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19252 {
19253 p = get_symbol ();
19254 demand_empty_rest_of_line ();
19255 }
19256 else
19257 p = NULL;
19258
19259 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19260 as_warn (_(".end not in text section"));
19261
19262 if (!cur_proc_ptr)
19263 {
19264 as_warn (_(".end directive without a preceding .ent directive"));
19265 demand_empty_rest_of_line ();
19266 return;
19267 }
19268
19269 if (p != NULL)
19270 {
19271 gas_assert (S_GET_NAME (p));
19272 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19273 as_warn (_(".end symbol does not match .ent symbol"));
19274
19275 if (debug_type == DEBUG_STABS)
19276 stabs_generate_asm_endfunc (S_GET_NAME (p),
19277 S_GET_NAME (p));
19278 }
19279 else
19280 as_warn (_(".end directive missing or unknown symbol"));
19281
19282 /* Create an expression to calculate the size of the function. */
19283 if (p && cur_proc_ptr)
19284 {
19285 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19286 expressionS *exp = XNEW (expressionS);
19287
19288 obj->size = exp;
19289 exp->X_op = O_subtract;
19290 exp->X_add_symbol = symbol_temp_new_now ();
19291 exp->X_op_symbol = p;
19292 exp->X_add_number = 0;
19293
19294 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19295 }
19296
19297 #ifdef md_flush_pending_output
19298 md_flush_pending_output ();
19299 #endif
19300
19301 /* Generate a .pdr section. */
19302 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19303 {
19304 segT saved_seg = now_seg;
19305 subsegT saved_subseg = now_subseg;
19306 expressionS exp;
19307 char *fragp;
19308
19309 gas_assert (pdr_seg);
19310 subseg_set (pdr_seg, 0);
19311
19312 /* Write the symbol. */
19313 exp.X_op = O_symbol;
19314 exp.X_add_symbol = p;
19315 exp.X_add_number = 0;
19316 emit_expr (&exp, 4);
19317
19318 fragp = frag_more (7 * 4);
19319
19320 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19321 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19322 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19323 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19324 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19325 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19326 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19327
19328 subseg_set (saved_seg, saved_subseg);
19329 }
19330
19331 cur_proc_ptr = NULL;
19332 }
19333
19334 /* The .aent and .ent directives. */
19335
19336 static void
19337 s_mips_ent (int aent)
19338 {
19339 symbolS *symbolP;
19340
19341 symbolP = get_symbol ();
19342 if (*input_line_pointer == ',')
19343 ++input_line_pointer;
19344 SKIP_WHITESPACE ();
19345 if (ISDIGIT (*input_line_pointer)
19346 || *input_line_pointer == '-')
19347 get_number ();
19348
19349 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19350 as_warn (_(".ent or .aent not in text section"));
19351
19352 if (!aent && cur_proc_ptr)
19353 as_warn (_("missing .end"));
19354
19355 if (!aent)
19356 {
19357 /* This function needs its own .frame and .cprestore directives. */
19358 mips_frame_reg_valid = 0;
19359 mips_cprestore_valid = 0;
19360
19361 cur_proc_ptr = &cur_proc;
19362 memset (cur_proc_ptr, '\0', sizeof (procS));
19363
19364 cur_proc_ptr->func_sym = symbolP;
19365
19366 ++numprocs;
19367
19368 if (debug_type == DEBUG_STABS)
19369 stabs_generate_asm_func (S_GET_NAME (symbolP),
19370 S_GET_NAME (symbolP));
19371 }
19372
19373 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19374
19375 demand_empty_rest_of_line ();
19376 }
19377
19378 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19379 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19380 s_mips_frame is used so that we can set the PDR information correctly.
19381 We can't use the ecoff routines because they make reference to the ecoff
19382 symbol table (in the mdebug section). */
19383
19384 static void
19385 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19386 {
19387 if (ECOFF_DEBUGGING)
19388 s_ignore (ignore);
19389 else
19390 {
19391 long val;
19392
19393 if (cur_proc_ptr == (procS *) NULL)
19394 {
19395 as_warn (_(".frame outside of .ent"));
19396 demand_empty_rest_of_line ();
19397 return;
19398 }
19399
19400 cur_proc_ptr->frame_reg = tc_get_register (1);
19401
19402 SKIP_WHITESPACE ();
19403 if (*input_line_pointer++ != ','
19404 || get_absolute_expression_and_terminator (&val) != ',')
19405 {
19406 as_warn (_("bad .frame directive"));
19407 --input_line_pointer;
19408 demand_empty_rest_of_line ();
19409 return;
19410 }
19411
19412 cur_proc_ptr->frame_offset = val;
19413 cur_proc_ptr->pc_reg = tc_get_register (0);
19414
19415 demand_empty_rest_of_line ();
19416 }
19417 }
19418
19419 /* The .fmask and .mask directives. If the mdebug section is present
19420 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19421 embedded targets, s_mips_mask is used so that we can set the PDR
19422 information correctly. We can't use the ecoff routines because they
19423 make reference to the ecoff symbol table (in the mdebug section). */
19424
19425 static void
19426 s_mips_mask (int reg_type)
19427 {
19428 if (ECOFF_DEBUGGING)
19429 s_ignore (reg_type);
19430 else
19431 {
19432 long mask, off;
19433
19434 if (cur_proc_ptr == (procS *) NULL)
19435 {
19436 as_warn (_(".mask/.fmask outside of .ent"));
19437 demand_empty_rest_of_line ();
19438 return;
19439 }
19440
19441 if (get_absolute_expression_and_terminator (&mask) != ',')
19442 {
19443 as_warn (_("bad .mask/.fmask directive"));
19444 --input_line_pointer;
19445 demand_empty_rest_of_line ();
19446 return;
19447 }
19448
19449 off = get_absolute_expression ();
19450
19451 if (reg_type == 'F')
19452 {
19453 cur_proc_ptr->fpreg_mask = mask;
19454 cur_proc_ptr->fpreg_offset = off;
19455 }
19456 else
19457 {
19458 cur_proc_ptr->reg_mask = mask;
19459 cur_proc_ptr->reg_offset = off;
19460 }
19461
19462 demand_empty_rest_of_line ();
19463 }
19464 }
19465
19466 /* A table describing all the processors gas knows about. Names are
19467 matched in the order listed.
19468
19469 To ease comparison, please keep this table in the same order as
19470 gcc's mips_cpu_info_table[]. */
19471 static const struct mips_cpu_info mips_cpu_info_table[] =
19472 {
19473 /* Entries for generic ISAs */
19474 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19475 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19476 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19477 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19478 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19479 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19480 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19481 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19482 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19483 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19484 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19485 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19486 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19487 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19488 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19489
19490 /* MIPS I */
19491 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19492 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19493 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19494
19495 /* MIPS II */
19496 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19497
19498 /* MIPS III */
19499 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19500 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19501 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19502 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19503 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19504 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19505 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19506 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19507 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19508 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19509 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19510 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19511 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19512 /* ST Microelectronics Loongson 2E and 2F cores */
19513 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19514 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19515
19516 /* MIPS IV */
19517 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19518 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19519 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19520 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19521 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19522 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19523 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19524 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19525 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19526 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19527 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19528 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19529 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19530 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19531 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19532
19533 /* MIPS 32 */
19534 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19535 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19536 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19537 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19538
19539 /* MIPS 32 Release 2 */
19540 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19541 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19542 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19543 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19544 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19545 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19546 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19547 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19548 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19549 ISA_MIPS32R2, CPU_MIPS32R2 },
19550 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19551 ISA_MIPS32R2, CPU_MIPS32R2 },
19552 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19553 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19554 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19555 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19556 /* Deprecated forms of the above. */
19557 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19558 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19559 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19560 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19561 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19562 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19563 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19564 /* Deprecated forms of the above. */
19565 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19566 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19567 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19568 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19569 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19570 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19571 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19572 /* Deprecated forms of the above. */
19573 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19574 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19575 /* 34Kn is a 34kc without DSP. */
19576 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19577 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19578 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19579 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19580 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19581 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19582 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19583 /* Deprecated forms of the above. */
19584 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19585 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19586 /* 1004K cores are multiprocessor versions of the 34K. */
19587 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19588 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19589 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19590 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19591 /* interaptiv is the new name for 1004kf */
19592 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19593 /* M5100 family */
19594 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19595 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19596 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19597 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19598
19599 /* MIPS 64 */
19600 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19601 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19602 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19603 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19604
19605 /* Broadcom SB-1 CPU core */
19606 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19607 /* Broadcom SB-1A CPU core */
19608 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19609
19610 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19611
19612 /* MIPS 64 Release 2 */
19613
19614 /* Cavium Networks Octeon CPU core */
19615 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19616 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19617 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19618 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19619
19620 /* RMI Xlr */
19621 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19622
19623 /* Broadcom XLP.
19624 XLP is mostly like XLR, with the prominent exception that it is
19625 MIPS64R2 rather than MIPS64. */
19626 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19627
19628 /* MIPS 64 Release 6 */
19629 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19630 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19631
19632 /* End marker */
19633 { NULL, 0, 0, 0, 0 }
19634 };
19635
19636
19637 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19638 with a final "000" replaced by "k". Ignore case.
19639
19640 Note: this function is shared between GCC and GAS. */
19641
19642 static bfd_boolean
19643 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19644 {
19645 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19646 given++, canonical++;
19647
19648 return ((*given == 0 && *canonical == 0)
19649 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19650 }
19651
19652
19653 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19654 CPU name. We've traditionally allowed a lot of variation here.
19655
19656 Note: this function is shared between GCC and GAS. */
19657
19658 static bfd_boolean
19659 mips_matching_cpu_name_p (const char *canonical, const char *given)
19660 {
19661 /* First see if the name matches exactly, or with a final "000"
19662 turned into "k". */
19663 if (mips_strict_matching_cpu_name_p (canonical, given))
19664 return TRUE;
19665
19666 /* If not, try comparing based on numerical designation alone.
19667 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19668 if (TOLOWER (*given) == 'r')
19669 given++;
19670 if (!ISDIGIT (*given))
19671 return FALSE;
19672
19673 /* Skip over some well-known prefixes in the canonical name,
19674 hoping to find a number there too. */
19675 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19676 canonical += 2;
19677 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19678 canonical += 2;
19679 else if (TOLOWER (canonical[0]) == 'r')
19680 canonical += 1;
19681
19682 return mips_strict_matching_cpu_name_p (canonical, given);
19683 }
19684
19685
19686 /* Parse an option that takes the name of a processor as its argument.
19687 OPTION is the name of the option and CPU_STRING is the argument.
19688 Return the corresponding processor enumeration if the CPU_STRING is
19689 recognized, otherwise report an error and return null.
19690
19691 A similar function exists in GCC. */
19692
19693 static const struct mips_cpu_info *
19694 mips_parse_cpu (const char *option, const char *cpu_string)
19695 {
19696 const struct mips_cpu_info *p;
19697
19698 /* 'from-abi' selects the most compatible architecture for the given
19699 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19700 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19701 version. Look first at the -mgp options, if given, otherwise base
19702 the choice on MIPS_DEFAULT_64BIT.
19703
19704 Treat NO_ABI like the EABIs. One reason to do this is that the
19705 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19706 architecture. This code picks MIPS I for 'mips' and MIPS III for
19707 'mips64', just as we did in the days before 'from-abi'. */
19708 if (strcasecmp (cpu_string, "from-abi") == 0)
19709 {
19710 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19711 return mips_cpu_info_from_isa (ISA_MIPS1);
19712
19713 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19714 return mips_cpu_info_from_isa (ISA_MIPS3);
19715
19716 if (file_mips_opts.gp >= 0)
19717 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19718 ? ISA_MIPS1 : ISA_MIPS3);
19719
19720 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19721 ? ISA_MIPS3
19722 : ISA_MIPS1);
19723 }
19724
19725 /* 'default' has traditionally been a no-op. Probably not very useful. */
19726 if (strcasecmp (cpu_string, "default") == 0)
19727 return 0;
19728
19729 for (p = mips_cpu_info_table; p->name != 0; p++)
19730 if (mips_matching_cpu_name_p (p->name, cpu_string))
19731 return p;
19732
19733 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19734 return 0;
19735 }
19736
19737 /* Return the canonical processor information for ISA (a member of the
19738 ISA_MIPS* enumeration). */
19739
19740 static const struct mips_cpu_info *
19741 mips_cpu_info_from_isa (int isa)
19742 {
19743 int i;
19744
19745 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19746 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19747 && isa == mips_cpu_info_table[i].isa)
19748 return (&mips_cpu_info_table[i]);
19749
19750 return NULL;
19751 }
19752
19753 static const struct mips_cpu_info *
19754 mips_cpu_info_from_arch (int arch)
19755 {
19756 int i;
19757
19758 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19759 if (arch == mips_cpu_info_table[i].cpu)
19760 return (&mips_cpu_info_table[i]);
19761
19762 return NULL;
19763 }
19764 \f
19765 static void
19766 show (FILE *stream, const char *string, int *col_p, int *first_p)
19767 {
19768 if (*first_p)
19769 {
19770 fprintf (stream, "%24s", "");
19771 *col_p = 24;
19772 }
19773 else
19774 {
19775 fprintf (stream, ", ");
19776 *col_p += 2;
19777 }
19778
19779 if (*col_p + strlen (string) > 72)
19780 {
19781 fprintf (stream, "\n%24s", "");
19782 *col_p = 24;
19783 }
19784
19785 fprintf (stream, "%s", string);
19786 *col_p += strlen (string);
19787
19788 *first_p = 0;
19789 }
19790
19791 void
19792 md_show_usage (FILE *stream)
19793 {
19794 int column, first;
19795 size_t i;
19796
19797 fprintf (stream, _("\
19798 MIPS options:\n\
19799 -EB generate big endian output\n\
19800 -EL generate little endian output\n\
19801 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19802 -G NUM allow referencing objects up to NUM bytes\n\
19803 implicitly with the gp register [default 8]\n"));
19804 fprintf (stream, _("\
19805 -mips1 generate MIPS ISA I instructions\n\
19806 -mips2 generate MIPS ISA II instructions\n\
19807 -mips3 generate MIPS ISA III instructions\n\
19808 -mips4 generate MIPS ISA IV instructions\n\
19809 -mips5 generate MIPS ISA V instructions\n\
19810 -mips32 generate MIPS32 ISA instructions\n\
19811 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19812 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19813 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19814 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19815 -mips64 generate MIPS64 ISA instructions\n\
19816 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19817 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19818 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19819 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19820 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19821
19822 first = 1;
19823
19824 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19825 show (stream, mips_cpu_info_table[i].name, &column, &first);
19826 show (stream, "from-abi", &column, &first);
19827 fputc ('\n', stream);
19828
19829 fprintf (stream, _("\
19830 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19831 -no-mCPU don't generate code specific to CPU.\n\
19832 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19833
19834 first = 1;
19835
19836 show (stream, "3900", &column, &first);
19837 show (stream, "4010", &column, &first);
19838 show (stream, "4100", &column, &first);
19839 show (stream, "4650", &column, &first);
19840 fputc ('\n', stream);
19841
19842 fprintf (stream, _("\
19843 -mips16 generate mips16 instructions\n\
19844 -no-mips16 do not generate mips16 instructions\n"));
19845 fprintf (stream, _("\
19846 -mmicromips generate microMIPS instructions\n\
19847 -mno-micromips do not generate microMIPS instructions\n"));
19848 fprintf (stream, _("\
19849 -msmartmips generate smartmips instructions\n\
19850 -mno-smartmips do not generate smartmips instructions\n"));
19851 fprintf (stream, _("\
19852 -mdsp generate DSP instructions\n\
19853 -mno-dsp do not generate DSP instructions\n"));
19854 fprintf (stream, _("\
19855 -mdspr2 generate DSP R2 instructions\n\
19856 -mno-dspr2 do not generate DSP R2 instructions\n"));
19857 fprintf (stream, _("\
19858 -mdspr3 generate DSP R3 instructions\n\
19859 -mno-dspr3 do not generate DSP R3 instructions\n"));
19860 fprintf (stream, _("\
19861 -mmt generate MT instructions\n\
19862 -mno-mt do not generate MT instructions\n"));
19863 fprintf (stream, _("\
19864 -mmcu generate MCU instructions\n\
19865 -mno-mcu do not generate MCU instructions\n"));
19866 fprintf (stream, _("\
19867 -mmsa generate MSA instructions\n\
19868 -mno-msa do not generate MSA instructions\n"));
19869 fprintf (stream, _("\
19870 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19871 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19872 fprintf (stream, _("\
19873 -mvirt generate Virtualization instructions\n\
19874 -mno-virt do not generate Virtualization instructions\n"));
19875 fprintf (stream, _("\
19876 -minsn32 only generate 32-bit microMIPS instructions\n\
19877 -mno-insn32 generate all microMIPS instructions\n"));
19878 fprintf (stream, _("\
19879 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19880 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19881 -mfix-vr4120 work around certain VR4120 errata\n\
19882 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19883 -mfix-24k insert a nop after ERET and DERET instructions\n\
19884 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19885 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19886 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19887 -msym32 assume all symbols have 32-bit values\n\
19888 -O0 remove unneeded NOPs, do not swap branches\n\
19889 -O remove unneeded NOPs and swap branches\n\
19890 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19891 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19892 fprintf (stream, _("\
19893 -mhard-float allow floating-point instructions\n\
19894 -msoft-float do not allow floating-point instructions\n\
19895 -msingle-float only allow 32-bit floating-point operations\n\
19896 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19897 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19898 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19899 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
19900 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
19901 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19902
19903 first = 1;
19904
19905 show (stream, "legacy", &column, &first);
19906 show (stream, "2008", &column, &first);
19907
19908 fputc ('\n', stream);
19909
19910 fprintf (stream, _("\
19911 -KPIC, -call_shared generate SVR4 position independent code\n\
19912 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19913 -mvxworks-pic generate VxWorks position independent code\n\
19914 -non_shared do not generate code that can operate with DSOs\n\
19915 -xgot assume a 32 bit GOT\n\
19916 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19917 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19918 position dependent (non shared) code\n\
19919 -mabi=ABI create ABI conformant object file for:\n"));
19920
19921 first = 1;
19922
19923 show (stream, "32", &column, &first);
19924 show (stream, "o64", &column, &first);
19925 show (stream, "n32", &column, &first);
19926 show (stream, "64", &column, &first);
19927 show (stream, "eabi", &column, &first);
19928
19929 fputc ('\n', stream);
19930
19931 fprintf (stream, _("\
19932 -32 create o32 ABI object file (default)\n\
19933 -n32 create n32 ABI object file\n\
19934 -64 create 64 ABI object file\n"));
19935 }
19936
19937 #ifdef TE_IRIX
19938 enum dwarf2_format
19939 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19940 {
19941 if (HAVE_64BIT_SYMBOLS)
19942 return dwarf2_format_64bit_irix;
19943 else
19944 return dwarf2_format_32bit;
19945 }
19946 #endif
19947
19948 int
19949 mips_dwarf2_addr_size (void)
19950 {
19951 if (HAVE_64BIT_OBJECTS)
19952 return 8;
19953 else
19954 return 4;
19955 }
19956
19957 /* Standard calling conventions leave the CFA at SP on entry. */
19958 void
19959 mips_cfi_frame_initial_instructions (void)
19960 {
19961 cfi_add_CFA_def_cfa_register (SP);
19962 }
19963
19964 int
19965 tc_mips_regname_to_dw2regnum (char *regname)
19966 {
19967 unsigned int regnum = -1;
19968 unsigned int reg;
19969
19970 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19971 regnum = reg;
19972
19973 return regnum;
19974 }
19975
19976 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19977 Given a symbolic attribute NAME, return the proper integer value.
19978 Returns -1 if the attribute is not known. */
19979
19980 int
19981 mips_convert_symbolic_attribute (const char *name)
19982 {
19983 static const struct
19984 {
19985 const char * name;
19986 const int tag;
19987 }
19988 attribute_table[] =
19989 {
19990 #define T(tag) {#tag, tag}
19991 T (Tag_GNU_MIPS_ABI_FP),
19992 T (Tag_GNU_MIPS_ABI_MSA),
19993 #undef T
19994 };
19995 unsigned int i;
19996
19997 if (name == NULL)
19998 return -1;
19999
20000 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20001 if (streq (name, attribute_table[i].name))
20002 return attribute_table[i].tag;
20003
20004 return -1;
20005 }
20006
20007 void
20008 md_mips_end (void)
20009 {
20010 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20011
20012 mips_emit_delays ();
20013 if (cur_proc_ptr)
20014 as_warn (_("missing .end at end of assembly"));
20015
20016 /* Just in case no code was emitted, do the consistency check. */
20017 file_mips_check_options ();
20018
20019 /* Set a floating-point ABI if the user did not. */
20020 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20021 {
20022 /* Perform consistency checks on the floating-point ABI. */
20023 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20024 Tag_GNU_MIPS_ABI_FP);
20025 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20026 check_fpabi (fpabi);
20027 }
20028 else
20029 {
20030 /* Soft-float gets precedence over single-float, the two options should
20031 not be used together so this should not matter. */
20032 if (file_mips_opts.soft_float == 1)
20033 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20034 /* Single-float gets precedence over all double_float cases. */
20035 else if (file_mips_opts.single_float == 1)
20036 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20037 else
20038 {
20039 switch (file_mips_opts.fp)
20040 {
20041 case 32:
20042 if (file_mips_opts.gp == 32)
20043 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20044 break;
20045 case 0:
20046 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20047 break;
20048 case 64:
20049 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20050 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20051 else if (file_mips_opts.gp == 32)
20052 fpabi = Val_GNU_MIPS_ABI_FP_64;
20053 else
20054 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20055 break;
20056 }
20057 }
20058
20059 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20060 Tag_GNU_MIPS_ABI_FP, fpabi);
20061 }
20062 }
20063
20064 /* Returns the relocation type required for a particular CFI encoding. */
20065
20066 bfd_reloc_code_real_type
20067 mips_cfi_reloc_for_encoding (int encoding)
20068 {
20069 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20070 return BFD_RELOC_32_PCREL;
20071 else return BFD_RELOC_NONE;
20072 }
This page took 0.457804 seconds and 4 git commands to generate.