MIPS/gas: Fix order of instructions in LI macro expansion
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The name if this is an label. */
145 char label[16];
146
147 /* The target label name if this is an branch. */
148 char target[16];
149
150 /* The frag that contains the instruction. */
151 struct frag *frag;
152
153 /* The offset into FRAG of the first instruction byte. */
154 long where;
155
156 /* The relocs associated with the instruction, if any. */
157 fixS *fixp[3];
158
159 /* True if this entry cannot be moved from its current position. */
160 unsigned int fixed_p : 1;
161
162 /* True if this instruction occurred in a .set noreorder block. */
163 unsigned int noreorder_p : 1;
164
165 /* True for mips16 instructions that jump to an absolute address. */
166 unsigned int mips16_absolute_jump_p : 1;
167
168 /* True if this instruction is complete. */
169 unsigned int complete_p : 1;
170
171 /* True if this instruction is cleared from history by unconditional
172 branch. */
173 unsigned int cleared_p : 1;
174 };
175
176 /* The ABI to use. */
177 enum mips_abi_level
178 {
179 NO_ABI = 0,
180 O32_ABI,
181 O64_ABI,
182 N32_ABI,
183 N64_ABI,
184 EABI_ABI
185 };
186
187 /* MIPS ABI we are using for this output file. */
188 static enum mips_abi_level mips_abi = NO_ABI;
189
190 /* Whether or not we have code that can call pic code. */
191 int mips_abicalls = FALSE;
192
193 /* Whether or not we have code which can be put into a shared
194 library. */
195 static bfd_boolean mips_in_shared = TRUE;
196
197 /* This is the set of options which may be modified by the .set
198 pseudo-op. We use a struct so that .set push and .set pop are more
199 reliable. */
200
201 struct mips_set_options
202 {
203 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
204 if it has not been initialized. Changed by `.set mipsN', and the
205 -mipsN command line option, and the default CPU. */
206 int isa;
207 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
208 <asename>', by command line options, and based on the default
209 architecture. */
210 int ase;
211 /* Whether we are assembling for the mips16 processor. 0 if we are
212 not, 1 if we are, and -1 if the value has not been initialized.
213 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
214 -nomips16 command line options, and the default CPU. */
215 int mips16;
216 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
217 1 if we are, and -1 if the value has not been initialized. Changed
218 by `.set micromips' and `.set nomicromips', and the -mmicromips
219 and -mno-micromips command line options, and the default CPU. */
220 int micromips;
221 /* Non-zero if we should not reorder instructions. Changed by `.set
222 reorder' and `.set noreorder'. */
223 int noreorder;
224 /* Non-zero if we should not permit the register designated "assembler
225 temporary" to be used in instructions. The value is the register
226 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
227 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
228 unsigned int at;
229 /* Non-zero if we should warn when a macro instruction expands into
230 more than one machine instruction. Changed by `.set nomacro' and
231 `.set macro'. */
232 int warn_about_macros;
233 /* Non-zero if we should not move instructions. Changed by `.set
234 move', `.set volatile', `.set nomove', and `.set novolatile'. */
235 int nomove;
236 /* Non-zero if we should not optimize branches by moving the target
237 of the branch into the delay slot. Actually, we don't perform
238 this optimization anyhow. Changed by `.set bopt' and `.set
239 nobopt'. */
240 int nobopt;
241 /* Non-zero if we should not autoextend mips16 instructions.
242 Changed by `.set autoextend' and `.set noautoextend'. */
243 int noautoextend;
244 /* True if we should only emit 32-bit microMIPS instructions.
245 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
246 and -mno-insn32 command line options. */
247 bfd_boolean insn32;
248 /* Restrict general purpose registers and floating point registers
249 to 32 bit. This is initially determined when -mgp32 or -mfp32
250 is passed but can changed if the assembler code uses .set mipsN. */
251 int gp;
252 int fp;
253 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
254 command line option, and the default CPU. */
255 int arch;
256 /* True if ".set sym32" is in effect. */
257 bfd_boolean sym32;
258 /* True if floating-point operations are not allowed. Changed by .set
259 softfloat or .set hardfloat, by command line options -msoft-float or
260 -mhard-float. The default is false. */
261 bfd_boolean soft_float;
262
263 /* True if only single-precision floating-point operations are allowed.
264 Changed by .set singlefloat or .set doublefloat, command-line options
265 -msingle-float or -mdouble-float. The default is false. */
266 bfd_boolean single_float;
267
268 /* 1 if single-precision operations on odd-numbered registers are
269 allowed. */
270 int oddspreg;
271
272 /* The set of ASEs that should be enabled for the user specified
273 architecture. This cannot be inferred from 'arch' for all cores
274 as processors only have a unique 'arch' if they add architecture
275 specific instructions (UDI). */
276 int init_ase;
277 };
278
279 /* Specifies whether module level options have been checked yet. */
280 static bfd_boolean file_mips_opts_checked = FALSE;
281
282 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
283 value has not been initialized. Changed by `.nan legacy' and
284 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
285 options, and the default CPU. */
286 static int mips_nan2008 = -1;
287
288 /* This is the struct we use to hold the module level set of options.
289 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
290 fp fields to -1 to indicate that they have not been initialized. */
291
292 static struct mips_set_options file_mips_opts =
293 {
294 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
295 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
296 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
297 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
298 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1,
299 /* init_ase */ 0
300 };
301
302 /* This is similar to file_mips_opts, but for the current set of options. */
303
304 static struct mips_set_options mips_opts =
305 {
306 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
307 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
308 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
309 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
310 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1,
311 /* init_ase */ 0
312 };
313
314 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
315 static unsigned int file_ase_explicit;
316
317 /* These variables are filled in with the masks of registers used.
318 The object format code reads them and puts them in the appropriate
319 place. */
320 unsigned long mips_gprmask;
321 unsigned long mips_cprmask[4];
322
323 /* True if any MIPS16 code was produced. */
324 static int file_ase_mips16;
325
326 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
327 || mips_opts.isa == ISA_MIPS32R2 \
328 || mips_opts.isa == ISA_MIPS32R3 \
329 || mips_opts.isa == ISA_MIPS32R5 \
330 || mips_opts.isa == ISA_MIPS64 \
331 || mips_opts.isa == ISA_MIPS64R2 \
332 || mips_opts.isa == ISA_MIPS64R3 \
333 || mips_opts.isa == ISA_MIPS64R5)
334
335 /* True if any microMIPS code was produced. */
336 static int file_ase_micromips;
337
338 /* True if we want to create R_MIPS_JALR for jalr $25. */
339 #ifdef TE_IRIX
340 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
341 #else
342 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
343 because there's no place for any addend, the only acceptable
344 expression is a bare symbol. */
345 #define MIPS_JALR_HINT_P(EXPR) \
346 (!HAVE_IN_PLACE_ADDENDS \
347 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
348 #endif
349
350 /* The argument of the -march= flag. The architecture we are assembling. */
351 static const char *mips_arch_string;
352
353 /* The argument of the -mtune= flag. The architecture for which we
354 are optimizing. */
355 static int mips_tune = CPU_UNKNOWN;
356 static const char *mips_tune_string;
357
358 /* True when generating 32-bit code for a 64-bit processor. */
359 static int mips_32bitmode = 0;
360
361 /* True if the given ABI requires 32-bit registers. */
362 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
363
364 /* Likewise 64-bit registers. */
365 #define ABI_NEEDS_64BIT_REGS(ABI) \
366 ((ABI) == N32_ABI \
367 || (ABI) == N64_ABI \
368 || (ABI) == O64_ABI)
369
370 #define ISA_IS_R6(ISA) \
371 ((ISA) == ISA_MIPS32R6 \
372 || (ISA) == ISA_MIPS64R6)
373
374 /* Return true if ISA supports 64 bit wide gp registers. */
375 #define ISA_HAS_64BIT_REGS(ISA) \
376 ((ISA) == ISA_MIPS3 \
377 || (ISA) == ISA_MIPS4 \
378 || (ISA) == ISA_MIPS5 \
379 || (ISA) == ISA_MIPS64 \
380 || (ISA) == ISA_MIPS64R2 \
381 || (ISA) == ISA_MIPS64R3 \
382 || (ISA) == ISA_MIPS64R5 \
383 || (ISA) == ISA_MIPS64R6)
384
385 /* Return true if ISA supports 64 bit wide float registers. */
386 #define ISA_HAS_64BIT_FPRS(ISA) \
387 ((ISA) == ISA_MIPS3 \
388 || (ISA) == ISA_MIPS4 \
389 || (ISA) == ISA_MIPS5 \
390 || (ISA) == ISA_MIPS32R2 \
391 || (ISA) == ISA_MIPS32R3 \
392 || (ISA) == ISA_MIPS32R5 \
393 || (ISA) == ISA_MIPS32R6 \
394 || (ISA) == ISA_MIPS64 \
395 || (ISA) == ISA_MIPS64R2 \
396 || (ISA) == ISA_MIPS64R3 \
397 || (ISA) == ISA_MIPS64R5 \
398 || (ISA) == ISA_MIPS64R6)
399
400 /* Return true if ISA supports 64-bit right rotate (dror et al.)
401 instructions. */
402 #define ISA_HAS_DROR(ISA) \
403 ((ISA) == ISA_MIPS64R2 \
404 || (ISA) == ISA_MIPS64R3 \
405 || (ISA) == ISA_MIPS64R5 \
406 || (ISA) == ISA_MIPS64R6 \
407 || (mips_opts.micromips \
408 && ISA_HAS_64BIT_REGS (ISA)) \
409 )
410
411 /* Return true if ISA supports 32-bit right rotate (ror et al.)
412 instructions. */
413 #define ISA_HAS_ROR(ISA) \
414 ((ISA) == ISA_MIPS32R2 \
415 || (ISA) == ISA_MIPS32R3 \
416 || (ISA) == ISA_MIPS32R5 \
417 || (ISA) == ISA_MIPS32R6 \
418 || (ISA) == ISA_MIPS64R2 \
419 || (ISA) == ISA_MIPS64R3 \
420 || (ISA) == ISA_MIPS64R5 \
421 || (ISA) == ISA_MIPS64R6 \
422 || (mips_opts.ase & ASE_SMARTMIPS) \
423 || mips_opts.micromips \
424 )
425
426 /* Return true if ISA supports single-precision floats in odd registers. */
427 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
428 (((ISA) == ISA_MIPS32 \
429 || (ISA) == ISA_MIPS32R2 \
430 || (ISA) == ISA_MIPS32R3 \
431 || (ISA) == ISA_MIPS32R5 \
432 || (ISA) == ISA_MIPS32R6 \
433 || (ISA) == ISA_MIPS64 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6 \
438 || (CPU) == CPU_R5900) \
439 && ((CPU) != CPU_GS464 \
440 || (CPU) != CPU_GS464E \
441 || (CPU) != CPU_GS264E))
442
443 /* Return true if ISA supports move to/from high part of a 64-bit
444 floating-point register. */
445 #define ISA_HAS_MXHC1(ISA) \
446 ((ISA) == ISA_MIPS32R2 \
447 || (ISA) == ISA_MIPS32R3 \
448 || (ISA) == ISA_MIPS32R5 \
449 || (ISA) == ISA_MIPS32R6 \
450 || (ISA) == ISA_MIPS64R2 \
451 || (ISA) == ISA_MIPS64R3 \
452 || (ISA) == ISA_MIPS64R5 \
453 || (ISA) == ISA_MIPS64R6)
454
455 /* Return true if ISA supports legacy NAN. */
456 #define ISA_HAS_LEGACY_NAN(ISA) \
457 ((ISA) == ISA_MIPS1 \
458 || (ISA) == ISA_MIPS2 \
459 || (ISA) == ISA_MIPS3 \
460 || (ISA) == ISA_MIPS4 \
461 || (ISA) == ISA_MIPS5 \
462 || (ISA) == ISA_MIPS32 \
463 || (ISA) == ISA_MIPS32R2 \
464 || (ISA) == ISA_MIPS32R3 \
465 || (ISA) == ISA_MIPS32R5 \
466 || (ISA) == ISA_MIPS64 \
467 || (ISA) == ISA_MIPS64R2 \
468 || (ISA) == ISA_MIPS64R3 \
469 || (ISA) == ISA_MIPS64R5)
470
471 #define GPR_SIZE \
472 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
473 ? 32 \
474 : mips_opts.gp)
475
476 #define FPR_SIZE \
477 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
478 ? 32 \
479 : mips_opts.fp)
480
481 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
482
483 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
484
485 /* True if relocations are stored in-place. */
486 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
487
488 /* The ABI-derived address size. */
489 #define HAVE_64BIT_ADDRESSES \
490 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
491 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
492
493 /* The size of symbolic constants (i.e., expressions of the form
494 "SYMBOL" or "SYMBOL + OFFSET"). */
495 #define HAVE_32BIT_SYMBOLS \
496 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
497 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
498
499 /* Addresses are loaded in different ways, depending on the address size
500 in use. The n32 ABI Documentation also mandates the use of additions
501 with overflow checking, but existing implementations don't follow it. */
502 #define ADDRESS_ADD_INSN \
503 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
504
505 #define ADDRESS_ADDI_INSN \
506 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
507
508 #define ADDRESS_LOAD_INSN \
509 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
510
511 #define ADDRESS_STORE_INSN \
512 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
513
514 /* Return true if the given CPU supports the MIPS16 ASE. */
515 #define CPU_HAS_MIPS16(cpu) \
516 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
517 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
518
519 /* Return true if the given CPU supports the microMIPS ASE. */
520 #define CPU_HAS_MICROMIPS(cpu) 0
521
522 /* True if CPU has a dror instruction. */
523 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
524
525 /* True if CPU has a ror instruction. */
526 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
527
528 /* True if CPU is in the Octeon family. */
529 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
530 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
531
532 /* True if CPU has seq/sne and seqi/snei instructions. */
533 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
534
535 /* True, if CPU has support for ldc1 and sdc1. */
536 #define CPU_HAS_LDC1_SDC1(CPU) \
537 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
538
539 /* True if mflo and mfhi can be immediately followed by instructions
540 which write to the HI and LO registers.
541
542 According to MIPS specifications, MIPS ISAs I, II, and III need
543 (at least) two instructions between the reads of HI/LO and
544 instructions which write them, and later ISAs do not. Contradicting
545 the MIPS specifications, some MIPS IV processor user manuals (e.g.
546 the UM for the NEC Vr5000) document needing the instructions between
547 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
548 MIPS64 and later ISAs to have the interlocks, plus any specific
549 earlier-ISA CPUs for which CPU documentation declares that the
550 instructions are really interlocked. */
551 #define hilo_interlocks \
552 (mips_opts.isa == ISA_MIPS32 \
553 || mips_opts.isa == ISA_MIPS32R2 \
554 || mips_opts.isa == ISA_MIPS32R3 \
555 || mips_opts.isa == ISA_MIPS32R5 \
556 || mips_opts.isa == ISA_MIPS32R6 \
557 || mips_opts.isa == ISA_MIPS64 \
558 || mips_opts.isa == ISA_MIPS64R2 \
559 || mips_opts.isa == ISA_MIPS64R3 \
560 || mips_opts.isa == ISA_MIPS64R5 \
561 || mips_opts.isa == ISA_MIPS64R6 \
562 || mips_opts.arch == CPU_R4010 \
563 || mips_opts.arch == CPU_R5900 \
564 || mips_opts.arch == CPU_R10000 \
565 || mips_opts.arch == CPU_R12000 \
566 || mips_opts.arch == CPU_R14000 \
567 || mips_opts.arch == CPU_R16000 \
568 || mips_opts.arch == CPU_RM7000 \
569 || mips_opts.arch == CPU_VR5500 \
570 || mips_opts.micromips \
571 )
572
573 /* Whether the processor uses hardware interlocks to protect reads
574 from the GPRs after they are loaded from memory, and thus does not
575 require nops to be inserted. This applies to instructions marked
576 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
577 level I and microMIPS mode instructions are always interlocked. */
578 #define gpr_interlocks \
579 (mips_opts.isa != ISA_MIPS1 \
580 || mips_opts.arch == CPU_R3900 \
581 || mips_opts.arch == CPU_R5900 \
582 || mips_opts.micromips \
583 )
584
585 /* Whether the processor uses hardware interlocks to avoid delays
586 required by coprocessor instructions, and thus does not require
587 nops to be inserted. This applies to instructions marked
588 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
589 instructions marked INSN_WRITE_COND_CODE and ones marked
590 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
591 levels I, II, and III and microMIPS mode instructions are always
592 interlocked. */
593 /* Itbl support may require additional care here. */
594 #define cop_interlocks \
595 ((mips_opts.isa != ISA_MIPS1 \
596 && mips_opts.isa != ISA_MIPS2 \
597 && mips_opts.isa != ISA_MIPS3) \
598 || mips_opts.arch == CPU_R4300 \
599 || mips_opts.micromips \
600 )
601
602 /* Whether the processor uses hardware interlocks to protect reads
603 from coprocessor registers after they are loaded from memory, and
604 thus does not require nops to be inserted. This applies to
605 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
606 requires at MIPS ISA level I and microMIPS mode instructions are
607 always interlocked. */
608 #define cop_mem_interlocks \
609 (mips_opts.isa != ISA_MIPS1 \
610 || mips_opts.micromips \
611 )
612
613 /* Is this a mfhi or mflo instruction? */
614 #define MF_HILO_INSN(PINFO) \
615 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
616
617 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
618 has been selected. This implies, in particular, that addresses of text
619 labels have their LSB set. */
620 #define HAVE_CODE_COMPRESSION \
621 ((mips_opts.mips16 | mips_opts.micromips) != 0)
622
623 /* The minimum and maximum signed values that can be stored in a GPR. */
624 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
625 #define GPR_SMIN (-GPR_SMAX - 1)
626
627 /* MIPS PIC level. */
628
629 enum mips_pic_level mips_pic;
630
631 /* 1 if we should generate 32 bit offsets from the $gp register in
632 SVR4_PIC mode. Currently has no meaning in other modes. */
633 static int mips_big_got = 0;
634
635 /* 1 if trap instructions should used for overflow rather than break
636 instructions. */
637 static int mips_trap = 0;
638
639 /* 1 if double width floating point constants should not be constructed
640 by assembling two single width halves into two single width floating
641 point registers which just happen to alias the double width destination
642 register. On some architectures this aliasing can be disabled by a bit
643 in the status register, and the setting of this bit cannot be determined
644 automatically at assemble time. */
645 static int mips_disable_float_construction;
646
647 /* Non-zero if any .set noreorder directives were used. */
648
649 static int mips_any_noreorder;
650
651 /* Non-zero if nops should be inserted when the register referenced in
652 an mfhi/mflo instruction is read in the next two instructions. */
653 static int mips_7000_hilo_fix;
654
655 /* The size of objects in the small data section. */
656 static unsigned int g_switch_value = 8;
657 /* Whether the -G option was used. */
658 static int g_switch_seen = 0;
659
660 #define N_RMASK 0xc4
661 #define N_VFP 0xd4
662
663 /* If we can determine in advance that GP optimization won't be
664 possible, we can skip the relaxation stuff that tries to produce
665 GP-relative references. This makes delay slot optimization work
666 better.
667
668 This function can only provide a guess, but it seems to work for
669 gcc output. It needs to guess right for gcc, otherwise gcc
670 will put what it thinks is a GP-relative instruction in a branch
671 delay slot.
672
673 I don't know if a fix is needed for the SVR4_PIC mode. I've only
674 fixed it for the non-PIC mode. KR 95/04/07 */
675 static int nopic_need_relax (symbolS *, int);
676
677 /* Handle of the OPCODE hash table. */
678 static struct hash_control *op_hash = NULL;
679
680 /* The opcode hash table we use for the mips16. */
681 static struct hash_control *mips16_op_hash = NULL;
682
683 /* The opcode hash table we use for the microMIPS ASE. */
684 static struct hash_control *micromips_op_hash = NULL;
685
686 /* This array holds the chars that always start a comment. If the
687 pre-processor is disabled, these aren't very useful. */
688 const char comment_chars[] = "#";
689
690 /* This array holds the chars that only start a comment at the beginning of
691 a line. If the line seems to have the form '# 123 filename'
692 .line and .file directives will appear in the pre-processed output. */
693 /* Note that input_file.c hand checks for '#' at the beginning of the
694 first line of the input file. This is because the compiler outputs
695 #NO_APP at the beginning of its output. */
696 /* Also note that C style comments are always supported. */
697 const char line_comment_chars[] = "#";
698
699 /* This array holds machine specific line separator characters. */
700 const char line_separator_chars[] = ";";
701
702 /* Chars that can be used to separate mant from exp in floating point nums. */
703 const char EXP_CHARS[] = "eE";
704
705 /* Chars that mean this number is a floating point constant.
706 As in 0f12.456
707 or 0d1.2345e12. */
708 const char FLT_CHARS[] = "rRsSfFdDxXpP";
709
710 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
711 changed in read.c . Ideally it shouldn't have to know about it at all,
712 but nothing is ideal around here. */
713
714 /* Types of printf format used for instruction-related error messages.
715 "I" means int ("%d") and "S" means string ("%s"). */
716 enum mips_insn_error_format
717 {
718 ERR_FMT_PLAIN,
719 ERR_FMT_I,
720 ERR_FMT_SS,
721 };
722
723 /* Information about an error that was found while assembling the current
724 instruction. */
725 struct mips_insn_error
726 {
727 /* We sometimes need to match an instruction against more than one
728 opcode table entry. Errors found during this matching are reported
729 against a particular syntactic argument rather than against the
730 instruction as a whole. We grade these messages so that errors
731 against argument N have a greater priority than an error against
732 any argument < N, since the former implies that arguments up to N
733 were acceptable and that the opcode entry was therefore a closer match.
734 If several matches report an error against the same argument,
735 we only use that error if it is the same in all cases.
736
737 min_argnum is the minimum argument number for which an error message
738 should be accepted. It is 0 if MSG is against the instruction as
739 a whole. */
740 int min_argnum;
741
742 /* The printf()-style message, including its format and arguments. */
743 enum mips_insn_error_format format;
744 const char *msg;
745 union
746 {
747 int i;
748 const char *ss[2];
749 } u;
750 };
751
752 /* The error that should be reported for the current instruction. */
753 static struct mips_insn_error insn_error;
754
755 static int auto_align = 1;
756
757 /* When outputting SVR4 PIC code, the assembler needs to know the
758 offset in the stack frame from which to restore the $gp register.
759 This is set by the .cprestore pseudo-op, and saved in this
760 variable. */
761 static offsetT mips_cprestore_offset = -1;
762
763 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
764 more optimizations, it can use a register value instead of a memory-saved
765 offset and even an other register than $gp as global pointer. */
766 static offsetT mips_cpreturn_offset = -1;
767 static int mips_cpreturn_register = -1;
768 static int mips_gp_register = GP;
769 static int mips_gprel_offset = 0;
770
771 /* Whether mips_cprestore_offset has been set in the current function
772 (or whether it has already been warned about, if not). */
773 static int mips_cprestore_valid = 0;
774
775 /* This is the register which holds the stack frame, as set by the
776 .frame pseudo-op. This is needed to implement .cprestore. */
777 static int mips_frame_reg = SP;
778
779 /* Whether mips_frame_reg has been set in the current function
780 (or whether it has already been warned about, if not). */
781 static int mips_frame_reg_valid = 0;
782
783 /* To output NOP instructions correctly, we need to keep information
784 about the previous two instructions. */
785
786 /* Whether we are optimizing. The default value of 2 means to remove
787 unneeded NOPs and swap branch instructions when possible. A value
788 of 1 means to not swap branches. A value of 0 means to always
789 insert NOPs. */
790 static int mips_optimize = 2;
791
792 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
793 equivalent to seeing no -g option at all. */
794 static int mips_debug = 0;
795
796 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
797 #define MAX_VR4130_NOPS 4
798
799 /* The maximum number of NOPs needed to fill delay slots. */
800 #define MAX_DELAY_NOPS 2
801
802 /* The maximum number of NOPs needed for any purpose. */
803 #define MAX_NOPS 4
804
805 /* The maximum range of context length of ll/sc. */
806 #define MAX_LLSC_RANGE 20
807
808 /* A list of previous instructions, with index 0 being the most recent.
809 We need to look back MAX_NOPS instructions when filling delay slots
810 or working around processor errata. We need to look back one
811 instruction further if we're thinking about using history[0] to
812 fill a branch delay slot. */
813 static struct mips_cl_insn history[1 + MAX_NOPS + MAX_LLSC_RANGE];
814
815 /* Arrays of operands for each instruction. */
816 #define MAX_OPERANDS 6
817 struct mips_operand_array
818 {
819 const struct mips_operand *operand[MAX_OPERANDS];
820 };
821 static struct mips_operand_array *mips_operands;
822 static struct mips_operand_array *mips16_operands;
823 static struct mips_operand_array *micromips_operands;
824
825 /* Nop instructions used by emit_nop. */
826 static struct mips_cl_insn nop_insn;
827 static struct mips_cl_insn mips16_nop_insn;
828 static struct mips_cl_insn micromips_nop16_insn;
829 static struct mips_cl_insn micromips_nop32_insn;
830
831 /* Sync instructions used by insert sync. */
832 static struct mips_cl_insn sync_insn;
833
834 /* The appropriate nop for the current mode. */
835 #define NOP_INSN (mips_opts.mips16 \
836 ? &mips16_nop_insn \
837 : (mips_opts.micromips \
838 ? (mips_opts.insn32 \
839 ? &micromips_nop32_insn \
840 : &micromips_nop16_insn) \
841 : &nop_insn))
842
843 /* The size of NOP_INSN in bytes. */
844 #define NOP_INSN_SIZE ((mips_opts.mips16 \
845 || (mips_opts.micromips && !mips_opts.insn32)) \
846 ? 2 : 4)
847
848 /* If this is set, it points to a frag holding nop instructions which
849 were inserted before the start of a noreorder section. If those
850 nops turn out to be unnecessary, the size of the frag can be
851 decreased. */
852 static fragS *prev_nop_frag;
853
854 /* The number of nop instructions we created in prev_nop_frag. */
855 static int prev_nop_frag_holds;
856
857 /* The number of nop instructions that we know we need in
858 prev_nop_frag. */
859 static int prev_nop_frag_required;
860
861 /* The number of instructions we've seen since prev_nop_frag. */
862 static int prev_nop_frag_since;
863
864 /* Relocations against symbols are sometimes done in two parts, with a HI
865 relocation and a LO relocation. Each relocation has only 16 bits of
866 space to store an addend. This means that in order for the linker to
867 handle carries correctly, it must be able to locate both the HI and
868 the LO relocation. This means that the relocations must appear in
869 order in the relocation table.
870
871 In order to implement this, we keep track of each unmatched HI
872 relocation. We then sort them so that they immediately precede the
873 corresponding LO relocation. */
874
875 struct mips_hi_fixup
876 {
877 /* Next HI fixup. */
878 struct mips_hi_fixup *next;
879 /* This fixup. */
880 fixS *fixp;
881 /* The section this fixup is in. */
882 segT seg;
883 };
884
885 /* The list of unmatched HI relocs. */
886
887 static struct mips_hi_fixup *mips_hi_fixup_list;
888
889 /* The frag containing the last explicit relocation operator.
890 Null if explicit relocations have not been used. */
891
892 static fragS *prev_reloc_op_frag;
893
894 /* Map mips16 register numbers to normal MIPS register numbers. */
895
896 static const unsigned int mips16_to_32_reg_map[] =
897 {
898 16, 17, 2, 3, 4, 5, 6, 7
899 };
900
901 /* Map microMIPS register numbers to normal MIPS register numbers. */
902
903 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
904
905 /* The microMIPS registers with type h. */
906 static const unsigned int micromips_to_32_reg_h_map1[] =
907 {
908 5, 5, 6, 4, 4, 4, 4, 4
909 };
910 static const unsigned int micromips_to_32_reg_h_map2[] =
911 {
912 6, 7, 7, 21, 22, 5, 6, 7
913 };
914
915 /* The microMIPS registers with type m. */
916 static const unsigned int micromips_to_32_reg_m_map[] =
917 {
918 0, 17, 2, 3, 16, 18, 19, 20
919 };
920
921 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
922
923 /* Classifies the kind of instructions we're interested in when
924 implementing -mfix-vr4120. */
925 enum fix_vr4120_class
926 {
927 FIX_VR4120_MACC,
928 FIX_VR4120_DMACC,
929 FIX_VR4120_MULT,
930 FIX_VR4120_DMULT,
931 FIX_VR4120_DIV,
932 FIX_VR4120_MTHILO,
933 NUM_FIX_VR4120_CLASSES
934 };
935
936 /* ...likewise -mfix-loongson2f-jump. */
937 static bfd_boolean mips_fix_loongson2f_jump;
938
939 /* ...likewise -mfix-loongson2f-nop. */
940 static bfd_boolean mips_fix_loongson2f_nop;
941
942 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
943 static bfd_boolean mips_fix_loongson2f;
944
945 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
946 there must be at least one other instruction between an instruction
947 of type X and an instruction of type Y. */
948 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
949
950 /* True if -mfix-vr4120 is in force. */
951 static int mips_fix_vr4120;
952
953 /* ...likewise -mfix-vr4130. */
954 static int mips_fix_vr4130;
955
956 /* ...likewise -mfix-24k. */
957 static int mips_fix_24k;
958
959 /* ...likewise -mfix-rm7000 */
960 static int mips_fix_rm7000;
961
962 /* ...likewise -mfix-cn63xxp1 */
963 static bfd_boolean mips_fix_cn63xxp1;
964
965 /* ...likewise -mfix-r5900 */
966 static bfd_boolean mips_fix_r5900;
967 static bfd_boolean mips_fix_r5900_explicit;
968
969 /* ...likewise -mfix-loongson3-llsc. */
970 static bfd_boolean mips_fix_loongson3_llsc = DEFAULT_MIPS_FIX_LOONGSON3_LLSC;
971
972 /* We don't relax branches by default, since this causes us to expand
973 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
974 fail to compute the offset before expanding the macro to the most
975 efficient expansion. */
976
977 static int mips_relax_branch;
978
979 /* TRUE if checks are suppressed for invalid branches between ISA modes.
980 Needed for broken assembly produced by some GCC versions and some
981 sloppy code out there, where branches to data labels are present. */
982 static bfd_boolean mips_ignore_branch_isa;
983 \f
984 /* The expansion of many macros depends on the type of symbol that
985 they refer to. For example, when generating position-dependent code,
986 a macro that refers to a symbol may have two different expansions,
987 one which uses GP-relative addresses and one which uses absolute
988 addresses. When generating SVR4-style PIC, a macro may have
989 different expansions for local and global symbols.
990
991 We handle these situations by generating both sequences and putting
992 them in variant frags. In position-dependent code, the first sequence
993 will be the GP-relative one and the second sequence will be the
994 absolute one. In SVR4 PIC, the first sequence will be for global
995 symbols and the second will be for local symbols.
996
997 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
998 SECOND are the lengths of the two sequences in bytes. These fields
999 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
1000 the subtype has the following flags:
1001
1002 RELAX_PIC
1003 Set if generating PIC code.
1004
1005 RELAX_USE_SECOND
1006 Set if it has been decided that we should use the second
1007 sequence instead of the first.
1008
1009 RELAX_SECOND_LONGER
1010 Set in the first variant frag if the macro's second implementation
1011 is longer than its first. This refers to the macro as a whole,
1012 not an individual relaxation.
1013
1014 RELAX_NOMACRO
1015 Set in the first variant frag if the macro appeared in a .set nomacro
1016 block and if one alternative requires a warning but the other does not.
1017
1018 RELAX_DELAY_SLOT
1019 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
1020 delay slot.
1021
1022 RELAX_DELAY_SLOT_16BIT
1023 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
1024 16-bit instruction.
1025
1026 RELAX_DELAY_SLOT_SIZE_FIRST
1027 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
1028 the macro is of the wrong size for the branch delay slot.
1029
1030 RELAX_DELAY_SLOT_SIZE_SECOND
1031 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1032 the macro is of the wrong size for the branch delay slot.
1033
1034 The frag's "opcode" points to the first fixup for relaxable code.
1035
1036 Relaxable macros are generated using a sequence such as:
1037
1038 relax_start (SYMBOL);
1039 ... generate first expansion ...
1040 relax_switch ();
1041 ... generate second expansion ...
1042 relax_end ();
1043
1044 The code and fixups for the unwanted alternative are discarded
1045 by md_convert_frag. */
1046 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1047 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1048
1049 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1050 #define RELAX_SECOND(X) ((X) & 0xff)
1051 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1052 #define RELAX_USE_SECOND 0x20000
1053 #define RELAX_SECOND_LONGER 0x40000
1054 #define RELAX_NOMACRO 0x80000
1055 #define RELAX_DELAY_SLOT 0x100000
1056 #define RELAX_DELAY_SLOT_16BIT 0x200000
1057 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1058 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1059
1060 /* Branch without likely bit. If label is out of range, we turn:
1061
1062 beq reg1, reg2, label
1063 delay slot
1064
1065 into
1066
1067 bne reg1, reg2, 0f
1068 nop
1069 j label
1070 0: delay slot
1071
1072 with the following opcode replacements:
1073
1074 beq <-> bne
1075 blez <-> bgtz
1076 bltz <-> bgez
1077 bc1f <-> bc1t
1078
1079 bltzal <-> bgezal (with jal label instead of j label)
1080
1081 Even though keeping the delay slot instruction in the delay slot of
1082 the branch would be more efficient, it would be very tricky to do
1083 correctly, because we'd have to introduce a variable frag *after*
1084 the delay slot instruction, and expand that instead. Let's do it
1085 the easy way for now, even if the branch-not-taken case now costs
1086 one additional instruction. Out-of-range branches are not supposed
1087 to be common, anyway.
1088
1089 Branch likely. If label is out of range, we turn:
1090
1091 beql reg1, reg2, label
1092 delay slot (annulled if branch not taken)
1093
1094 into
1095
1096 beql reg1, reg2, 1f
1097 nop
1098 beql $0, $0, 2f
1099 nop
1100 1: j[al] label
1101 delay slot (executed only if branch taken)
1102 2:
1103
1104 It would be possible to generate a shorter sequence by losing the
1105 likely bit, generating something like:
1106
1107 bne reg1, reg2, 0f
1108 nop
1109 j[al] label
1110 delay slot (executed only if branch taken)
1111 0:
1112
1113 beql -> bne
1114 bnel -> beq
1115 blezl -> bgtz
1116 bgtzl -> blez
1117 bltzl -> bgez
1118 bgezl -> bltz
1119 bc1fl -> bc1t
1120 bc1tl -> bc1f
1121
1122 bltzall -> bgezal (with jal label instead of j label)
1123 bgezall -> bltzal (ditto)
1124
1125
1126 but it's not clear that it would actually improve performance. */
1127 #define RELAX_BRANCH_ENCODE(at, pic, \
1128 uncond, likely, link, toofar) \
1129 ((relax_substateT) \
1130 (0xc0000000 \
1131 | ((at) & 0x1f) \
1132 | ((pic) ? 0x20 : 0) \
1133 | ((toofar) ? 0x40 : 0) \
1134 | ((link) ? 0x80 : 0) \
1135 | ((likely) ? 0x100 : 0) \
1136 | ((uncond) ? 0x200 : 0)))
1137 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1138 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1139 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1140 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1141 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1142 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1143 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1144
1145 /* For mips16 code, we use an entirely different form of relaxation.
1146 mips16 supports two versions of most instructions which take
1147 immediate values: a small one which takes some small value, and a
1148 larger one which takes a 16 bit value. Since branches also follow
1149 this pattern, relaxing these values is required.
1150
1151 We can assemble both mips16 and normal MIPS code in a single
1152 object. Therefore, we need to support this type of relaxation at
1153 the same time that we support the relaxation described above. We
1154 use the high bit of the subtype field to distinguish these cases.
1155
1156 The information we store for this type of relaxation is the
1157 argument code found in the opcode file for this relocation, whether
1158 the user explicitly requested a small or extended form, and whether
1159 the relocation is in a jump or jal delay slot. That tells us the
1160 size of the value, and how it should be stored. We also store
1161 whether the fragment is considered to be extended or not. We also
1162 store whether this is known to be a branch to a different section,
1163 whether we have tried to relax this frag yet, and whether we have
1164 ever extended a PC relative fragment because of a shift count. */
1165 #define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
1166 small, ext, \
1167 dslot, jal_dslot) \
1168 (0x80000000 \
1169 | ((type) & 0xff) \
1170 | ((e2) ? 0x100 : 0) \
1171 | ((pic) ? 0x200 : 0) \
1172 | ((sym32) ? 0x400 : 0) \
1173 | ((nomacro) ? 0x800 : 0) \
1174 | ((small) ? 0x1000 : 0) \
1175 | ((ext) ? 0x2000 : 0) \
1176 | ((dslot) ? 0x4000 : 0) \
1177 | ((jal_dslot) ? 0x8000 : 0))
1178
1179 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1180 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1181 #define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1182 #define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1183 #define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1184 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1185 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1186 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1187 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1188 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1189
1190 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1191 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1192 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1193 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1194 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1195 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1196 #define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1197 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1198 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
1199
1200 /* For microMIPS code, we use relaxation similar to one we use for
1201 MIPS16 code. Some instructions that take immediate values support
1202 two encodings: a small one which takes some small value, and a
1203 larger one which takes a 16 bit value. As some branches also follow
1204 this pattern, relaxing these values is required.
1205
1206 We can assemble both microMIPS and normal MIPS code in a single
1207 object. Therefore, we need to support this type of relaxation at
1208 the same time that we support the relaxation described above. We
1209 use one of the high bits of the subtype field to distinguish these
1210 cases.
1211
1212 The information we store for this type of relaxation is the argument
1213 code found in the opcode file for this relocation, the register
1214 selected as the assembler temporary, whether in the 32-bit
1215 instruction mode, whether the branch is unconditional, whether it is
1216 compact, whether there is no delay-slot instruction available to fill
1217 in, whether it stores the link address implicitly in $ra, whether
1218 relaxation of out-of-range 32-bit branches to a sequence of
1219 instructions is enabled, and whether the displacement of a branch is
1220 too large to fit as an immediate argument of a 16-bit and a 32-bit
1221 branch, respectively. */
1222 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1223 uncond, compact, link, nods, \
1224 relax32, toofar16, toofar32) \
1225 (0x40000000 \
1226 | ((type) & 0xff) \
1227 | (((at) & 0x1f) << 8) \
1228 | ((insn32) ? 0x2000 : 0) \
1229 | ((pic) ? 0x4000 : 0) \
1230 | ((uncond) ? 0x8000 : 0) \
1231 | ((compact) ? 0x10000 : 0) \
1232 | ((link) ? 0x20000 : 0) \
1233 | ((nods) ? 0x40000 : 0) \
1234 | ((relax32) ? 0x80000 : 0) \
1235 | ((toofar16) ? 0x100000 : 0) \
1236 | ((toofar32) ? 0x200000 : 0))
1237 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1238 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1239 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1240 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1241 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1242 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1243 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1244 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1245 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1246 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1247
1248 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1249 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1250 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1251 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1252 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1253 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1254
1255 /* Sign-extend 16-bit value X. */
1256 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1257
1258 /* Is the given value a sign-extended 32-bit value? */
1259 #define IS_SEXT_32BIT_NUM(x) \
1260 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1261 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1262
1263 /* Is the given value a sign-extended 16-bit value? */
1264 #define IS_SEXT_16BIT_NUM(x) \
1265 (((x) &~ (offsetT) 0x7fff) == 0 \
1266 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1267
1268 /* Is the given value a sign-extended 12-bit value? */
1269 #define IS_SEXT_12BIT_NUM(x) \
1270 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1271
1272 /* Is the given value a sign-extended 9-bit value? */
1273 #define IS_SEXT_9BIT_NUM(x) \
1274 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1275
1276 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1277 #define IS_ZEXT_32BIT_NUM(x) \
1278 (((x) &~ (offsetT) 0xffffffff) == 0 \
1279 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1280
1281 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1282 SHIFT places. */
1283 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1284 (((STRUCT) >> (SHIFT)) & (MASK))
1285
1286 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1287 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1288 (!(MICROMIPS) \
1289 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1290 : EXTRACT_BITS ((INSN).insn_opcode, \
1291 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1292 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1293 EXTRACT_BITS ((INSN).insn_opcode, \
1294 MIPS16OP_MASK_##FIELD, \
1295 MIPS16OP_SH_##FIELD)
1296
1297 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1298 #define MIPS16_EXTEND (0xf000U << 16)
1299 \f
1300 /* Whether or not we are emitting a branch-likely macro. */
1301 static bfd_boolean emit_branch_likely_macro = FALSE;
1302
1303 /* Global variables used when generating relaxable macros. See the
1304 comment above RELAX_ENCODE for more details about how relaxation
1305 is used. */
1306 static struct {
1307 /* 0 if we're not emitting a relaxable macro.
1308 1 if we're emitting the first of the two relaxation alternatives.
1309 2 if we're emitting the second alternative. */
1310 int sequence;
1311
1312 /* The first relaxable fixup in the current frag. (In other words,
1313 the first fixup that refers to relaxable code.) */
1314 fixS *first_fixup;
1315
1316 /* sizes[0] says how many bytes of the first alternative are stored in
1317 the current frag. Likewise sizes[1] for the second alternative. */
1318 unsigned int sizes[2];
1319
1320 /* The symbol on which the choice of sequence depends. */
1321 symbolS *symbol;
1322 } mips_relax;
1323 \f
1324 /* Global variables used to decide whether a macro needs a warning. */
1325 static struct {
1326 /* True if the macro is in a branch delay slot. */
1327 bfd_boolean delay_slot_p;
1328
1329 /* Set to the length in bytes required if the macro is in a delay slot
1330 that requires a specific length of instruction, otherwise zero. */
1331 unsigned int delay_slot_length;
1332
1333 /* For relaxable macros, sizes[0] is the length of the first alternative
1334 in bytes and sizes[1] is the length of the second alternative.
1335 For non-relaxable macros, both elements give the length of the
1336 macro in bytes. */
1337 unsigned int sizes[2];
1338
1339 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1340 instruction of the first alternative in bytes and first_insn_sizes[1]
1341 is the length of the first instruction of the second alternative.
1342 For non-relaxable macros, both elements give the length of the first
1343 instruction in bytes.
1344
1345 Set to zero if we haven't yet seen the first instruction. */
1346 unsigned int first_insn_sizes[2];
1347
1348 /* For relaxable macros, insns[0] is the number of instructions for the
1349 first alternative and insns[1] is the number of instructions for the
1350 second alternative.
1351
1352 For non-relaxable macros, both elements give the number of
1353 instructions for the macro. */
1354 unsigned int insns[2];
1355
1356 /* The first variant frag for this macro. */
1357 fragS *first_frag;
1358 } mips_macro_warning;
1359 \f
1360 /* Prototypes for static functions. */
1361
1362 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1363
1364 static void append_insn
1365 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1366 bfd_boolean expansionp);
1367 static void mips_no_prev_insn (void);
1368 static void macro_build (expressionS *, const char *, const char *, ...);
1369 static void mips16_macro_build
1370 (expressionS *, const char *, const char *, va_list *);
1371 static void load_register (int, expressionS *, int);
1372 static void macro_start (void);
1373 static void macro_end (void);
1374 static void macro (struct mips_cl_insn *ip, char *str);
1375 static void mips16_macro (struct mips_cl_insn * ip);
1376 static void mips_ip (char *str, struct mips_cl_insn * ip);
1377 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1378 static unsigned long mips16_immed_extend (offsetT, unsigned int);
1379 static void mips16_immed
1380 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1381 unsigned int, unsigned long *);
1382 static size_t my_getSmallExpression
1383 (expressionS *, bfd_reloc_code_real_type *, char *);
1384 static void my_getExpression (expressionS *, char *);
1385 static void s_align (int);
1386 static void s_change_sec (int);
1387 static void s_change_section (int);
1388 static void s_cons (int);
1389 static void s_float_cons (int);
1390 static void s_mips_globl (int);
1391 static void s_option (int);
1392 static void s_mipsset (int);
1393 static void s_abicalls (int);
1394 static void s_cpload (int);
1395 static void s_cpsetup (int);
1396 static void s_cplocal (int);
1397 static void s_cprestore (int);
1398 static void s_cpreturn (int);
1399 static void s_dtprelword (int);
1400 static void s_dtpreldword (int);
1401 static void s_tprelword (int);
1402 static void s_tpreldword (int);
1403 static void s_gpvalue (int);
1404 static void s_gpword (int);
1405 static void s_gpdword (int);
1406 static void s_ehword (int);
1407 static void s_cpadd (int);
1408 static void s_insn (int);
1409 static void s_nan (int);
1410 static void s_module (int);
1411 static void s_mips_ent (int);
1412 static void s_mips_end (int);
1413 static void s_mips_frame (int);
1414 static void s_mips_mask (int reg_type);
1415 static void s_mips_stab (int);
1416 static void s_mips_weakext (int);
1417 static void s_mips_file (int);
1418 static void s_mips_loc (int);
1419 static bfd_boolean pic_need_relax (symbolS *);
1420 static int relaxed_branch_length (fragS *, asection *, int);
1421 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1422 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1423 static void file_mips_check_options (void);
1424
1425 /* Table and functions used to map between CPU/ISA names, and
1426 ISA levels, and CPU numbers. */
1427
1428 struct mips_cpu_info
1429 {
1430 const char *name; /* CPU or ISA name. */
1431 int flags; /* MIPS_CPU_* flags. */
1432 int ase; /* Set of ASEs implemented by the CPU. */
1433 int isa; /* ISA level. */
1434 int cpu; /* CPU number (default CPU if ISA). */
1435 };
1436
1437 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1438
1439 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1440 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1441 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1442 \f
1443 /* Command-line options. */
1444 const char *md_shortopts = "O::g::G:";
1445
1446 enum options
1447 {
1448 OPTION_MARCH = OPTION_MD_BASE,
1449 OPTION_MTUNE,
1450 OPTION_MIPS1,
1451 OPTION_MIPS2,
1452 OPTION_MIPS3,
1453 OPTION_MIPS4,
1454 OPTION_MIPS5,
1455 OPTION_MIPS32,
1456 OPTION_MIPS64,
1457 OPTION_MIPS32R2,
1458 OPTION_MIPS32R3,
1459 OPTION_MIPS32R5,
1460 OPTION_MIPS32R6,
1461 OPTION_MIPS64R2,
1462 OPTION_MIPS64R3,
1463 OPTION_MIPS64R5,
1464 OPTION_MIPS64R6,
1465 OPTION_MIPS16,
1466 OPTION_NO_MIPS16,
1467 OPTION_MIPS3D,
1468 OPTION_NO_MIPS3D,
1469 OPTION_MDMX,
1470 OPTION_NO_MDMX,
1471 OPTION_DSP,
1472 OPTION_NO_DSP,
1473 OPTION_MT,
1474 OPTION_NO_MT,
1475 OPTION_VIRT,
1476 OPTION_NO_VIRT,
1477 OPTION_MSA,
1478 OPTION_NO_MSA,
1479 OPTION_SMARTMIPS,
1480 OPTION_NO_SMARTMIPS,
1481 OPTION_DSPR2,
1482 OPTION_NO_DSPR2,
1483 OPTION_DSPR3,
1484 OPTION_NO_DSPR3,
1485 OPTION_EVA,
1486 OPTION_NO_EVA,
1487 OPTION_XPA,
1488 OPTION_NO_XPA,
1489 OPTION_MICROMIPS,
1490 OPTION_NO_MICROMIPS,
1491 OPTION_MCU,
1492 OPTION_NO_MCU,
1493 OPTION_MIPS16E2,
1494 OPTION_NO_MIPS16E2,
1495 OPTION_CRC,
1496 OPTION_NO_CRC,
1497 OPTION_M4650,
1498 OPTION_NO_M4650,
1499 OPTION_M4010,
1500 OPTION_NO_M4010,
1501 OPTION_M4100,
1502 OPTION_NO_M4100,
1503 OPTION_M3900,
1504 OPTION_NO_M3900,
1505 OPTION_M7000_HILO_FIX,
1506 OPTION_MNO_7000_HILO_FIX,
1507 OPTION_FIX_24K,
1508 OPTION_NO_FIX_24K,
1509 OPTION_FIX_RM7000,
1510 OPTION_NO_FIX_RM7000,
1511 OPTION_FIX_LOONGSON3_LLSC,
1512 OPTION_NO_FIX_LOONGSON3_LLSC,
1513 OPTION_FIX_LOONGSON2F_JUMP,
1514 OPTION_NO_FIX_LOONGSON2F_JUMP,
1515 OPTION_FIX_LOONGSON2F_NOP,
1516 OPTION_NO_FIX_LOONGSON2F_NOP,
1517 OPTION_FIX_VR4120,
1518 OPTION_NO_FIX_VR4120,
1519 OPTION_FIX_VR4130,
1520 OPTION_NO_FIX_VR4130,
1521 OPTION_FIX_CN63XXP1,
1522 OPTION_NO_FIX_CN63XXP1,
1523 OPTION_FIX_R5900,
1524 OPTION_NO_FIX_R5900,
1525 OPTION_TRAP,
1526 OPTION_BREAK,
1527 OPTION_EB,
1528 OPTION_EL,
1529 OPTION_FP32,
1530 OPTION_GP32,
1531 OPTION_CONSTRUCT_FLOATS,
1532 OPTION_NO_CONSTRUCT_FLOATS,
1533 OPTION_FP64,
1534 OPTION_FPXX,
1535 OPTION_GP64,
1536 OPTION_RELAX_BRANCH,
1537 OPTION_NO_RELAX_BRANCH,
1538 OPTION_IGNORE_BRANCH_ISA,
1539 OPTION_NO_IGNORE_BRANCH_ISA,
1540 OPTION_INSN32,
1541 OPTION_NO_INSN32,
1542 OPTION_MSHARED,
1543 OPTION_MNO_SHARED,
1544 OPTION_MSYM32,
1545 OPTION_MNO_SYM32,
1546 OPTION_SOFT_FLOAT,
1547 OPTION_HARD_FLOAT,
1548 OPTION_SINGLE_FLOAT,
1549 OPTION_DOUBLE_FLOAT,
1550 OPTION_32,
1551 OPTION_CALL_SHARED,
1552 OPTION_CALL_NONPIC,
1553 OPTION_NON_SHARED,
1554 OPTION_XGOT,
1555 OPTION_MABI,
1556 OPTION_N32,
1557 OPTION_64,
1558 OPTION_MDEBUG,
1559 OPTION_NO_MDEBUG,
1560 OPTION_PDR,
1561 OPTION_NO_PDR,
1562 OPTION_MVXWORKS_PIC,
1563 OPTION_NAN,
1564 OPTION_ODD_SPREG,
1565 OPTION_NO_ODD_SPREG,
1566 OPTION_GINV,
1567 OPTION_NO_GINV,
1568 OPTION_LOONGSON_MMI,
1569 OPTION_NO_LOONGSON_MMI,
1570 OPTION_LOONGSON_CAM,
1571 OPTION_NO_LOONGSON_CAM,
1572 OPTION_LOONGSON_EXT,
1573 OPTION_NO_LOONGSON_EXT,
1574 OPTION_LOONGSON_EXT2,
1575 OPTION_NO_LOONGSON_EXT2,
1576 OPTION_END_OF_ENUM
1577 };
1578
1579 struct option md_longopts[] =
1580 {
1581 /* Options which specify architecture. */
1582 {"march", required_argument, NULL, OPTION_MARCH},
1583 {"mtune", required_argument, NULL, OPTION_MTUNE},
1584 {"mips0", no_argument, NULL, OPTION_MIPS1},
1585 {"mips1", no_argument, NULL, OPTION_MIPS1},
1586 {"mips2", no_argument, NULL, OPTION_MIPS2},
1587 {"mips3", no_argument, NULL, OPTION_MIPS3},
1588 {"mips4", no_argument, NULL, OPTION_MIPS4},
1589 {"mips5", no_argument, NULL, OPTION_MIPS5},
1590 {"mips32", no_argument, NULL, OPTION_MIPS32},
1591 {"mips64", no_argument, NULL, OPTION_MIPS64},
1592 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1593 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1594 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1595 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1596 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1597 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1598 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1599 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1600
1601 /* Options which specify Application Specific Extensions (ASEs). */
1602 {"mips16", no_argument, NULL, OPTION_MIPS16},
1603 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1604 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1605 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1606 {"mdmx", no_argument, NULL, OPTION_MDMX},
1607 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1608 {"mdsp", no_argument, NULL, OPTION_DSP},
1609 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1610 {"mmt", no_argument, NULL, OPTION_MT},
1611 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1612 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1613 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1614 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1615 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1616 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1617 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1618 {"meva", no_argument, NULL, OPTION_EVA},
1619 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1620 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1621 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1622 {"mmcu", no_argument, NULL, OPTION_MCU},
1623 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1624 {"mvirt", no_argument, NULL, OPTION_VIRT},
1625 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1626 {"mmsa", no_argument, NULL, OPTION_MSA},
1627 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1628 {"mxpa", no_argument, NULL, OPTION_XPA},
1629 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1630 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1631 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
1632 {"mcrc", no_argument, NULL, OPTION_CRC},
1633 {"mno-crc", no_argument, NULL, OPTION_NO_CRC},
1634 {"mginv", no_argument, NULL, OPTION_GINV},
1635 {"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
1636 {"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
1637 {"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
1638 {"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
1639 {"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
1640 {"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
1641 {"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
1642 {"mloongson-ext2", no_argument, NULL, OPTION_LOONGSON_EXT2},
1643 {"mno-loongson-ext2", no_argument, NULL, OPTION_NO_LOONGSON_EXT2},
1644
1645 /* Old-style architecture options. Don't add more of these. */
1646 {"m4650", no_argument, NULL, OPTION_M4650},
1647 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1648 {"m4010", no_argument, NULL, OPTION_M4010},
1649 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1650 {"m4100", no_argument, NULL, OPTION_M4100},
1651 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1652 {"m3900", no_argument, NULL, OPTION_M3900},
1653 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1654
1655 /* Options which enable bug fixes. */
1656 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1657 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1658 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1659 {"mfix-loongson3-llsc", no_argument, NULL, OPTION_FIX_LOONGSON3_LLSC},
1660 {"mno-fix-loongson3-llsc", no_argument, NULL, OPTION_NO_FIX_LOONGSON3_LLSC},
1661 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1662 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1663 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1664 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1665 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1666 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1667 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1668 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1669 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1670 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1671 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1672 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1673 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1674 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1675 {"mfix-r5900", no_argument, NULL, OPTION_FIX_R5900},
1676 {"mno-fix-r5900", no_argument, NULL, OPTION_NO_FIX_R5900},
1677
1678 /* Miscellaneous options. */
1679 {"trap", no_argument, NULL, OPTION_TRAP},
1680 {"no-break", no_argument, NULL, OPTION_TRAP},
1681 {"break", no_argument, NULL, OPTION_BREAK},
1682 {"no-trap", no_argument, NULL, OPTION_BREAK},
1683 {"EB", no_argument, NULL, OPTION_EB},
1684 {"EL", no_argument, NULL, OPTION_EL},
1685 {"mfp32", no_argument, NULL, OPTION_FP32},
1686 {"mgp32", no_argument, NULL, OPTION_GP32},
1687 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1688 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1689 {"mfp64", no_argument, NULL, OPTION_FP64},
1690 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1691 {"mgp64", no_argument, NULL, OPTION_GP64},
1692 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1693 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1694 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1695 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1696 {"minsn32", no_argument, NULL, OPTION_INSN32},
1697 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1698 {"mshared", no_argument, NULL, OPTION_MSHARED},
1699 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1700 {"msym32", no_argument, NULL, OPTION_MSYM32},
1701 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1702 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1703 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1704 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1705 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1706 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1707 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1708
1709 /* Strictly speaking this next option is ELF specific,
1710 but we allow it for other ports as well in order to
1711 make testing easier. */
1712 {"32", no_argument, NULL, OPTION_32},
1713
1714 /* ELF-specific options. */
1715 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1716 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1717 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1718 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1719 {"xgot", no_argument, NULL, OPTION_XGOT},
1720 {"mabi", required_argument, NULL, OPTION_MABI},
1721 {"n32", no_argument, NULL, OPTION_N32},
1722 {"64", no_argument, NULL, OPTION_64},
1723 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1724 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1725 {"mpdr", no_argument, NULL, OPTION_PDR},
1726 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1727 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1728 {"mnan", required_argument, NULL, OPTION_NAN},
1729
1730 {NULL, no_argument, NULL, 0}
1731 };
1732 size_t md_longopts_size = sizeof (md_longopts);
1733 \f
1734 /* Information about either an Application Specific Extension or an
1735 optional architecture feature that, for simplicity, we treat in the
1736 same way as an ASE. */
1737 struct mips_ase
1738 {
1739 /* The name of the ASE, used in both the command-line and .set options. */
1740 const char *name;
1741
1742 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1743 and 64-bit architectures, the flags here refer to the subset that
1744 is available on both. */
1745 unsigned int flags;
1746
1747 /* The ASE_* flag used for instructions that are available on 64-bit
1748 architectures but that are not included in FLAGS. */
1749 unsigned int flags64;
1750
1751 /* The command-line options that turn the ASE on and off. */
1752 int option_on;
1753 int option_off;
1754
1755 /* The minimum required architecture revisions for MIPS32, MIPS64,
1756 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1757 int mips32_rev;
1758 int mips64_rev;
1759 int micromips32_rev;
1760 int micromips64_rev;
1761
1762 /* The architecture where the ASE was removed or -1 if the extension has not
1763 been removed. */
1764 int rem_rev;
1765 };
1766
1767 /* A table of all supported ASEs. */
1768 static const struct mips_ase mips_ases[] = {
1769 { "dsp", ASE_DSP, ASE_DSP64,
1770 OPTION_DSP, OPTION_NO_DSP,
1771 2, 2, 2, 2,
1772 -1 },
1773
1774 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1775 OPTION_DSPR2, OPTION_NO_DSPR2,
1776 2, 2, 2, 2,
1777 -1 },
1778
1779 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1780 OPTION_DSPR3, OPTION_NO_DSPR3,
1781 6, 6, -1, -1,
1782 -1 },
1783
1784 { "eva", ASE_EVA, 0,
1785 OPTION_EVA, OPTION_NO_EVA,
1786 2, 2, 2, 2,
1787 -1 },
1788
1789 { "mcu", ASE_MCU, 0,
1790 OPTION_MCU, OPTION_NO_MCU,
1791 2, 2, 2, 2,
1792 -1 },
1793
1794 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1795 { "mdmx", ASE_MDMX, 0,
1796 OPTION_MDMX, OPTION_NO_MDMX,
1797 -1, 1, -1, -1,
1798 6 },
1799
1800 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1801 { "mips3d", ASE_MIPS3D, 0,
1802 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1803 2, 1, -1, -1,
1804 6 },
1805
1806 { "mt", ASE_MT, 0,
1807 OPTION_MT, OPTION_NO_MT,
1808 2, 2, -1, -1,
1809 -1 },
1810
1811 { "smartmips", ASE_SMARTMIPS, 0,
1812 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1813 1, -1, -1, -1,
1814 6 },
1815
1816 { "virt", ASE_VIRT, ASE_VIRT64,
1817 OPTION_VIRT, OPTION_NO_VIRT,
1818 2, 2, 2, 2,
1819 -1 },
1820
1821 { "msa", ASE_MSA, ASE_MSA64,
1822 OPTION_MSA, OPTION_NO_MSA,
1823 2, 2, 2, 2,
1824 -1 },
1825
1826 { "xpa", ASE_XPA, 0,
1827 OPTION_XPA, OPTION_NO_XPA,
1828 2, 2, 2, 2,
1829 -1 },
1830
1831 { "mips16e2", ASE_MIPS16E2, 0,
1832 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1833 2, 2, -1, -1,
1834 6 },
1835
1836 { "crc", ASE_CRC, ASE_CRC64,
1837 OPTION_CRC, OPTION_NO_CRC,
1838 6, 6, -1, -1,
1839 -1 },
1840
1841 { "ginv", ASE_GINV, 0,
1842 OPTION_GINV, OPTION_NO_GINV,
1843 6, 6, 6, 6,
1844 -1 },
1845
1846 { "loongson-mmi", ASE_LOONGSON_MMI, 0,
1847 OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
1848 0, 0, -1, -1,
1849 -1 },
1850
1851 { "loongson-cam", ASE_LOONGSON_CAM, 0,
1852 OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
1853 0, 0, -1, -1,
1854 -1 },
1855
1856 { "loongson-ext", ASE_LOONGSON_EXT, 0,
1857 OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
1858 0, 0, -1, -1,
1859 -1 },
1860
1861 { "loongson-ext2", ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2, 0,
1862 OPTION_LOONGSON_EXT2, OPTION_NO_LOONGSON_EXT2,
1863 0, 0, -1, -1,
1864 -1 },
1865 };
1866
1867 /* The set of ASEs that require -mfp64. */
1868 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1869
1870 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1871 static const unsigned int mips_ase_groups[] = {
1872 ASE_DSP | ASE_DSPR2 | ASE_DSPR3,
1873 ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2
1874 };
1875 \f
1876 /* Pseudo-op table.
1877
1878 The following pseudo-ops from the Kane and Heinrich MIPS book
1879 should be defined here, but are currently unsupported: .alias,
1880 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1881
1882 The following pseudo-ops from the Kane and Heinrich MIPS book are
1883 specific to the type of debugging information being generated, and
1884 should be defined by the object format: .aent, .begin, .bend,
1885 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1886 .vreg.
1887
1888 The following pseudo-ops from the Kane and Heinrich MIPS book are
1889 not MIPS CPU specific, but are also not specific to the object file
1890 format. This file is probably the best place to define them, but
1891 they are not currently supported: .asm0, .endr, .lab, .struct. */
1892
1893 static const pseudo_typeS mips_pseudo_table[] =
1894 {
1895 /* MIPS specific pseudo-ops. */
1896 {"option", s_option, 0},
1897 {"set", s_mipsset, 0},
1898 {"rdata", s_change_sec, 'r'},
1899 {"sdata", s_change_sec, 's'},
1900 {"livereg", s_ignore, 0},
1901 {"abicalls", s_abicalls, 0},
1902 {"cpload", s_cpload, 0},
1903 {"cpsetup", s_cpsetup, 0},
1904 {"cplocal", s_cplocal, 0},
1905 {"cprestore", s_cprestore, 0},
1906 {"cpreturn", s_cpreturn, 0},
1907 {"dtprelword", s_dtprelword, 0},
1908 {"dtpreldword", s_dtpreldword, 0},
1909 {"tprelword", s_tprelword, 0},
1910 {"tpreldword", s_tpreldword, 0},
1911 {"gpvalue", s_gpvalue, 0},
1912 {"gpword", s_gpword, 0},
1913 {"gpdword", s_gpdword, 0},
1914 {"ehword", s_ehword, 0},
1915 {"cpadd", s_cpadd, 0},
1916 {"insn", s_insn, 0},
1917 {"nan", s_nan, 0},
1918 {"module", s_module, 0},
1919
1920 /* Relatively generic pseudo-ops that happen to be used on MIPS
1921 chips. */
1922 {"asciiz", stringer, 8 + 1},
1923 {"bss", s_change_sec, 'b'},
1924 {"err", s_err, 0},
1925 {"half", s_cons, 1},
1926 {"dword", s_cons, 3},
1927 {"weakext", s_mips_weakext, 0},
1928 {"origin", s_org, 0},
1929 {"repeat", s_rept, 0},
1930
1931 /* For MIPS this is non-standard, but we define it for consistency. */
1932 {"sbss", s_change_sec, 'B'},
1933
1934 /* These pseudo-ops are defined in read.c, but must be overridden
1935 here for one reason or another. */
1936 {"align", s_align, 0},
1937 {"byte", s_cons, 0},
1938 {"data", s_change_sec, 'd'},
1939 {"double", s_float_cons, 'd'},
1940 {"float", s_float_cons, 'f'},
1941 {"globl", s_mips_globl, 0},
1942 {"global", s_mips_globl, 0},
1943 {"hword", s_cons, 1},
1944 {"int", s_cons, 2},
1945 {"long", s_cons, 2},
1946 {"octa", s_cons, 4},
1947 {"quad", s_cons, 3},
1948 {"section", s_change_section, 0},
1949 {"short", s_cons, 1},
1950 {"single", s_float_cons, 'f'},
1951 {"stabd", s_mips_stab, 'd'},
1952 {"stabn", s_mips_stab, 'n'},
1953 {"stabs", s_mips_stab, 's'},
1954 {"text", s_change_sec, 't'},
1955 {"word", s_cons, 2},
1956
1957 { "extern", ecoff_directive_extern, 0},
1958
1959 { NULL, NULL, 0 },
1960 };
1961
1962 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1963 {
1964 /* These pseudo-ops should be defined by the object file format.
1965 However, a.out doesn't support them, so we have versions here. */
1966 {"aent", s_mips_ent, 1},
1967 {"bgnb", s_ignore, 0},
1968 {"end", s_mips_end, 0},
1969 {"endb", s_ignore, 0},
1970 {"ent", s_mips_ent, 0},
1971 {"file", s_mips_file, 0},
1972 {"fmask", s_mips_mask, 'F'},
1973 {"frame", s_mips_frame, 0},
1974 {"loc", s_mips_loc, 0},
1975 {"mask", s_mips_mask, 'R'},
1976 {"verstamp", s_ignore, 0},
1977 { NULL, NULL, 0 },
1978 };
1979
1980 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1981 purpose of the `.dc.a' internal pseudo-op. */
1982
1983 int
1984 mips_address_bytes (void)
1985 {
1986 file_mips_check_options ();
1987 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1988 }
1989
1990 extern void pop_insert (const pseudo_typeS *);
1991
1992 void
1993 mips_pop_insert (void)
1994 {
1995 pop_insert (mips_pseudo_table);
1996 if (! ECOFF_DEBUGGING)
1997 pop_insert (mips_nonecoff_pseudo_table);
1998 }
1999 \f
2000 /* Symbols labelling the current insn. */
2001
2002 struct insn_label_list
2003 {
2004 struct insn_label_list *next;
2005 symbolS *label;
2006 };
2007
2008 static struct insn_label_list *free_insn_labels;
2009 #define label_list tc_segment_info_data.labels
2010
2011 static void mips_clear_insn_labels (void);
2012 static void mips_mark_labels (void);
2013 static void mips_compressed_mark_labels (void);
2014
2015 static inline void
2016 mips_clear_insn_labels (void)
2017 {
2018 struct insn_label_list **pl;
2019 segment_info_type *si;
2020
2021 if (now_seg)
2022 {
2023 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
2024 ;
2025
2026 si = seg_info (now_seg);
2027 *pl = si->label_list;
2028 si->label_list = NULL;
2029 }
2030 }
2031
2032 /* Mark instruction labels in MIPS16/microMIPS mode. */
2033
2034 static inline void
2035 mips_mark_labels (void)
2036 {
2037 if (HAVE_CODE_COMPRESSION)
2038 mips_compressed_mark_labels ();
2039 }
2040 \f
2041 static char *expr_end;
2042
2043 /* An expression in a macro instruction. This is set by mips_ip and
2044 mips16_ip and when populated is always an O_constant. */
2045
2046 static expressionS imm_expr;
2047
2048 /* The relocatable field in an instruction and the relocs associated
2049 with it. These variables are used for instructions like LUI and
2050 JAL as well as true offsets. They are also used for address
2051 operands in macros. */
2052
2053 static expressionS offset_expr;
2054 static bfd_reloc_code_real_type offset_reloc[3]
2055 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2056
2057 /* This is set to the resulting size of the instruction to be produced
2058 by mips16_ip if an explicit extension is used or by mips_ip if an
2059 explicit size is supplied. */
2060
2061 static unsigned int forced_insn_length;
2062
2063 /* True if we are assembling an instruction. All dot symbols defined during
2064 this time should be treated as code labels. */
2065
2066 static bfd_boolean mips_assembling_insn;
2067
2068 /* The pdr segment for per procedure frame/regmask info. Not used for
2069 ECOFF debugging. */
2070
2071 static segT pdr_seg;
2072
2073 /* The default target format to use. */
2074
2075 #if defined (TE_FreeBSD)
2076 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
2077 #elif defined (TE_TMIPS)
2078 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
2079 #else
2080 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
2081 #endif
2082
2083 const char *
2084 mips_target_format (void)
2085 {
2086 switch (OUTPUT_FLAVOR)
2087 {
2088 case bfd_target_elf_flavour:
2089 #ifdef TE_VXWORKS
2090 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
2091 return (target_big_endian
2092 ? "elf32-bigmips-vxworks"
2093 : "elf32-littlemips-vxworks");
2094 #endif
2095 return (target_big_endian
2096 ? (HAVE_64BIT_OBJECTS
2097 ? ELF_TARGET ("elf64-", "big")
2098 : (HAVE_NEWABI
2099 ? ELF_TARGET ("elf32-n", "big")
2100 : ELF_TARGET ("elf32-", "big")))
2101 : (HAVE_64BIT_OBJECTS
2102 ? ELF_TARGET ("elf64-", "little")
2103 : (HAVE_NEWABI
2104 ? ELF_TARGET ("elf32-n", "little")
2105 : ELF_TARGET ("elf32-", "little"))));
2106 default:
2107 abort ();
2108 return NULL;
2109 }
2110 }
2111
2112 /* Return the ISA revision that is currently in use, or 0 if we are
2113 generating code for MIPS V or below. */
2114
2115 static int
2116 mips_isa_rev (void)
2117 {
2118 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2119 return 2;
2120
2121 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2122 return 3;
2123
2124 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2125 return 5;
2126
2127 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2128 return 6;
2129
2130 /* microMIPS implies revision 2 or above. */
2131 if (mips_opts.micromips)
2132 return 2;
2133
2134 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2135 return 1;
2136
2137 return 0;
2138 }
2139
2140 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2141
2142 static unsigned int
2143 mips_ase_mask (unsigned int flags)
2144 {
2145 unsigned int i;
2146
2147 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2148 if (flags & mips_ase_groups[i])
2149 flags |= mips_ase_groups[i];
2150 return flags;
2151 }
2152
2153 /* Check whether the current ISA supports ASE. Issue a warning if
2154 appropriate. */
2155
2156 static void
2157 mips_check_isa_supports_ase (const struct mips_ase *ase)
2158 {
2159 const char *base;
2160 int min_rev, size;
2161 static unsigned int warned_isa;
2162 static unsigned int warned_fp32;
2163
2164 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2165 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2166 else
2167 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2168 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2169 && (warned_isa & ase->flags) != ase->flags)
2170 {
2171 warned_isa |= ase->flags;
2172 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2173 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2174 if (min_rev < 0)
2175 as_warn (_("the %d-bit %s architecture does not support the"
2176 " `%s' extension"), size, base, ase->name);
2177 else
2178 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2179 ase->name, base, size, min_rev);
2180 }
2181 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2182 && (warned_isa & ase->flags) != ase->flags)
2183 {
2184 warned_isa |= ase->flags;
2185 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2186 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2187 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2188 ase->name, base, size, ase->rem_rev);
2189 }
2190
2191 if ((ase->flags & FP64_ASES)
2192 && mips_opts.fp != 64
2193 && (warned_fp32 & ase->flags) != ase->flags)
2194 {
2195 warned_fp32 |= ase->flags;
2196 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2197 }
2198 }
2199
2200 /* Check all enabled ASEs to see whether they are supported by the
2201 chosen architecture. */
2202
2203 static void
2204 mips_check_isa_supports_ases (void)
2205 {
2206 unsigned int i, mask;
2207
2208 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2209 {
2210 mask = mips_ase_mask (mips_ases[i].flags);
2211 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2212 mips_check_isa_supports_ase (&mips_ases[i]);
2213 }
2214 }
2215
2216 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2217 that were affected. */
2218
2219 static unsigned int
2220 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2221 bfd_boolean enabled_p)
2222 {
2223 unsigned int mask;
2224
2225 mask = mips_ase_mask (ase->flags);
2226 opts->ase &= ~mask;
2227
2228 /* Clear combination ASE flags, which need to be recalculated based on
2229 updated regular ASE settings. */
2230 opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT | ASE_EVA_R6);
2231
2232 if (enabled_p)
2233 opts->ase |= ase->flags;
2234
2235 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2236 instructions which are only valid when both ASEs are enabled.
2237 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2238 if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
2239 {
2240 opts->ase |= ASE_XPA_VIRT;
2241 mask |= ASE_XPA_VIRT;
2242 }
2243 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2244 {
2245 opts->ase |= ASE_MIPS16E2_MT;
2246 mask |= ASE_MIPS16E2_MT;
2247 }
2248
2249 /* The EVA Extension has instructions which are only valid when the R6 ISA
2250 is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
2251 present. */
2252 if (((opts->ase & ASE_EVA) != 0) && ISA_IS_R6 (opts->isa))
2253 {
2254 opts->ase |= ASE_EVA_R6;
2255 mask |= ASE_EVA_R6;
2256 }
2257
2258 return mask;
2259 }
2260
2261 /* Return the ASE called NAME, or null if none. */
2262
2263 static const struct mips_ase *
2264 mips_lookup_ase (const char *name)
2265 {
2266 unsigned int i;
2267
2268 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2269 if (strcmp (name, mips_ases[i].name) == 0)
2270 return &mips_ases[i];
2271 return NULL;
2272 }
2273
2274 /* Return the length of a microMIPS instruction in bytes. If bits of
2275 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2276 otherwise it is a 32-bit instruction. */
2277
2278 static inline unsigned int
2279 micromips_insn_length (const struct mips_opcode *mo)
2280 {
2281 return mips_opcode_32bit_p (mo) ? 4 : 2;
2282 }
2283
2284 /* Return the length of MIPS16 instruction OPCODE. */
2285
2286 static inline unsigned int
2287 mips16_opcode_length (unsigned long opcode)
2288 {
2289 return (opcode >> 16) == 0 ? 2 : 4;
2290 }
2291
2292 /* Return the length of instruction INSN. */
2293
2294 static inline unsigned int
2295 insn_length (const struct mips_cl_insn *insn)
2296 {
2297 if (mips_opts.micromips)
2298 return micromips_insn_length (insn->insn_mo);
2299 else if (mips_opts.mips16)
2300 return mips16_opcode_length (insn->insn_opcode);
2301 else
2302 return 4;
2303 }
2304
2305 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2306
2307 static void
2308 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2309 {
2310 size_t i;
2311
2312 insn->insn_mo = mo;
2313 insn->insn_opcode = mo->match;
2314 insn->frag = NULL;
2315 insn->where = 0;
2316 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2317 insn->fixp[i] = NULL;
2318 insn->fixed_p = (mips_opts.noreorder > 0);
2319 insn->noreorder_p = (mips_opts.noreorder > 0);
2320 insn->mips16_absolute_jump_p = 0;
2321 insn->complete_p = 0;
2322 insn->cleared_p = 0;
2323 }
2324
2325 /* Get a list of all the operands in INSN. */
2326
2327 static const struct mips_operand_array *
2328 insn_operands (const struct mips_cl_insn *insn)
2329 {
2330 if (insn->insn_mo >= &mips_opcodes[0]
2331 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2332 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2333
2334 if (insn->insn_mo >= &mips16_opcodes[0]
2335 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2336 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2337
2338 if (insn->insn_mo >= &micromips_opcodes[0]
2339 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2340 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2341
2342 abort ();
2343 }
2344
2345 /* Get a description of operand OPNO of INSN. */
2346
2347 static const struct mips_operand *
2348 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2349 {
2350 const struct mips_operand_array *operands;
2351
2352 operands = insn_operands (insn);
2353 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2354 abort ();
2355 return operands->operand[opno];
2356 }
2357
2358 /* Install UVAL as the value of OPERAND in INSN. */
2359
2360 static inline void
2361 insn_insert_operand (struct mips_cl_insn *insn,
2362 const struct mips_operand *operand, unsigned int uval)
2363 {
2364 if (mips_opts.mips16
2365 && operand->type == OP_INT && operand->lsb == 0
2366 && mips_opcode_32bit_p (insn->insn_mo))
2367 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2368 else
2369 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2370 }
2371
2372 /* Extract the value of OPERAND from INSN. */
2373
2374 static inline unsigned
2375 insn_extract_operand (const struct mips_cl_insn *insn,
2376 const struct mips_operand *operand)
2377 {
2378 return mips_extract_operand (operand, insn->insn_opcode);
2379 }
2380
2381 /* Record the current MIPS16/microMIPS mode in now_seg. */
2382
2383 static void
2384 mips_record_compressed_mode (void)
2385 {
2386 segment_info_type *si;
2387
2388 si = seg_info (now_seg);
2389 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2390 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2391 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2392 si->tc_segment_info_data.micromips = mips_opts.micromips;
2393 }
2394
2395 /* Read a standard MIPS instruction from BUF. */
2396
2397 static unsigned long
2398 read_insn (char *buf)
2399 {
2400 if (target_big_endian)
2401 return bfd_getb32 ((bfd_byte *) buf);
2402 else
2403 return bfd_getl32 ((bfd_byte *) buf);
2404 }
2405
2406 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2407 the next byte. */
2408
2409 static char *
2410 write_insn (char *buf, unsigned int insn)
2411 {
2412 md_number_to_chars (buf, insn, 4);
2413 return buf + 4;
2414 }
2415
2416 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2417 has length LENGTH. */
2418
2419 static unsigned long
2420 read_compressed_insn (char *buf, unsigned int length)
2421 {
2422 unsigned long insn;
2423 unsigned int i;
2424
2425 insn = 0;
2426 for (i = 0; i < length; i += 2)
2427 {
2428 insn <<= 16;
2429 if (target_big_endian)
2430 insn |= bfd_getb16 ((char *) buf);
2431 else
2432 insn |= bfd_getl16 ((char *) buf);
2433 buf += 2;
2434 }
2435 return insn;
2436 }
2437
2438 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2439 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2440
2441 static char *
2442 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2443 {
2444 unsigned int i;
2445
2446 for (i = 0; i < length; i += 2)
2447 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2448 return buf + length;
2449 }
2450
2451 /* Install INSN at the location specified by its "frag" and "where" fields. */
2452
2453 static void
2454 install_insn (const struct mips_cl_insn *insn)
2455 {
2456 char *f = insn->frag->fr_literal + insn->where;
2457 if (HAVE_CODE_COMPRESSION)
2458 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2459 else
2460 write_insn (f, insn->insn_opcode);
2461 mips_record_compressed_mode ();
2462 }
2463
2464 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2465 and install the opcode in the new location. */
2466
2467 static void
2468 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2469 {
2470 size_t i;
2471
2472 insn->frag = frag;
2473 insn->where = where;
2474 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2475 if (insn->fixp[i] != NULL)
2476 {
2477 insn->fixp[i]->fx_frag = frag;
2478 insn->fixp[i]->fx_where = where;
2479 }
2480 install_insn (insn);
2481 }
2482
2483 /* Add INSN to the end of the output. */
2484
2485 static void
2486 add_fixed_insn (struct mips_cl_insn *insn)
2487 {
2488 char *f = frag_more (insn_length (insn));
2489 move_insn (insn, frag_now, f - frag_now->fr_literal);
2490 }
2491
2492 /* Start a variant frag and move INSN to the start of the variant part,
2493 marking it as fixed. The other arguments are as for frag_var. */
2494
2495 static void
2496 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2497 relax_substateT subtype, symbolS *symbol, offsetT offset)
2498 {
2499 frag_grow (max_chars);
2500 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2501 insn->fixed_p = 1;
2502 frag_var (rs_machine_dependent, max_chars, var,
2503 subtype, symbol, offset, NULL);
2504 }
2505
2506 /* Insert N copies of INSN into the history buffer, starting at
2507 position FIRST. Neither FIRST nor N need to be clipped. */
2508
2509 static void
2510 insert_into_history (unsigned int first, unsigned int n,
2511 const struct mips_cl_insn *insn)
2512 {
2513 if (mips_relax.sequence != 2)
2514 {
2515 unsigned int i;
2516
2517 for (i = ARRAY_SIZE (history); i-- > first;)
2518 if (i >= first + n)
2519 history[i] = history[i - n];
2520 else
2521 history[i] = *insn;
2522 }
2523 }
2524
2525 /* Clear the error in insn_error. */
2526
2527 static void
2528 clear_insn_error (void)
2529 {
2530 memset (&insn_error, 0, sizeof (insn_error));
2531 }
2532
2533 /* Possibly record error message MSG for the current instruction.
2534 If the error is about a particular argument, ARGNUM is the 1-based
2535 number of that argument, otherwise it is 0. FORMAT is the format
2536 of MSG. Return true if MSG was used, false if the current message
2537 was kept. */
2538
2539 static bfd_boolean
2540 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2541 const char *msg)
2542 {
2543 if (argnum == 0)
2544 {
2545 /* Give priority to errors against specific arguments, and to
2546 the first whole-instruction message. */
2547 if (insn_error.msg)
2548 return FALSE;
2549 }
2550 else
2551 {
2552 /* Keep insn_error if it is against a later argument. */
2553 if (argnum < insn_error.min_argnum)
2554 return FALSE;
2555
2556 /* If both errors are against the same argument but are different,
2557 give up on reporting a specific error for this argument.
2558 See the comment about mips_insn_error for details. */
2559 if (argnum == insn_error.min_argnum
2560 && insn_error.msg
2561 && strcmp (insn_error.msg, msg) != 0)
2562 {
2563 insn_error.msg = 0;
2564 insn_error.min_argnum += 1;
2565 return FALSE;
2566 }
2567 }
2568 insn_error.min_argnum = argnum;
2569 insn_error.format = format;
2570 insn_error.msg = msg;
2571 return TRUE;
2572 }
2573
2574 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2575 as for set_insn_error_format. */
2576
2577 static void
2578 set_insn_error (int argnum, const char *msg)
2579 {
2580 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2581 }
2582
2583 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2584 as for set_insn_error_format. */
2585
2586 static void
2587 set_insn_error_i (int argnum, const char *msg, int i)
2588 {
2589 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2590 insn_error.u.i = i;
2591 }
2592
2593 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2594 are as for set_insn_error_format. */
2595
2596 static void
2597 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2598 {
2599 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2600 {
2601 insn_error.u.ss[0] = s1;
2602 insn_error.u.ss[1] = s2;
2603 }
2604 }
2605
2606 /* Report the error in insn_error, which is against assembly code STR. */
2607
2608 static void
2609 report_insn_error (const char *str)
2610 {
2611 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2612
2613 switch (insn_error.format)
2614 {
2615 case ERR_FMT_PLAIN:
2616 as_bad (msg, str);
2617 break;
2618
2619 case ERR_FMT_I:
2620 as_bad (msg, insn_error.u.i, str);
2621 break;
2622
2623 case ERR_FMT_SS:
2624 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2625 break;
2626 }
2627
2628 free ((char *) msg);
2629 }
2630
2631 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2632 the idea is to make it obvious at a glance that each errata is
2633 included. */
2634
2635 static void
2636 init_vr4120_conflicts (void)
2637 {
2638 #define CONFLICT(FIRST, SECOND) \
2639 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2640
2641 /* Errata 21 - [D]DIV[U] after [D]MACC */
2642 CONFLICT (MACC, DIV);
2643 CONFLICT (DMACC, DIV);
2644
2645 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2646 CONFLICT (DMULT, DMULT);
2647 CONFLICT (DMULT, DMACC);
2648 CONFLICT (DMACC, DMULT);
2649 CONFLICT (DMACC, DMACC);
2650
2651 /* Errata 24 - MT{LO,HI} after [D]MACC */
2652 CONFLICT (MACC, MTHILO);
2653 CONFLICT (DMACC, MTHILO);
2654
2655 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2656 instruction is executed immediately after a MACC or DMACC
2657 instruction, the result of [either instruction] is incorrect." */
2658 CONFLICT (MACC, MULT);
2659 CONFLICT (MACC, DMULT);
2660 CONFLICT (DMACC, MULT);
2661 CONFLICT (DMACC, DMULT);
2662
2663 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2664 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2665 DDIV or DDIVU instruction, the result of the MACC or
2666 DMACC instruction is incorrect.". */
2667 CONFLICT (DMULT, MACC);
2668 CONFLICT (DMULT, DMACC);
2669 CONFLICT (DIV, MACC);
2670 CONFLICT (DIV, DMACC);
2671
2672 #undef CONFLICT
2673 }
2674
2675 struct regname {
2676 const char *name;
2677 unsigned int num;
2678 };
2679
2680 #define RNUM_MASK 0x00000ff
2681 #define RTYPE_MASK 0x0ffff00
2682 #define RTYPE_NUM 0x0000100
2683 #define RTYPE_FPU 0x0000200
2684 #define RTYPE_FCC 0x0000400
2685 #define RTYPE_VEC 0x0000800
2686 #define RTYPE_GP 0x0001000
2687 #define RTYPE_CP0 0x0002000
2688 #define RTYPE_PC 0x0004000
2689 #define RTYPE_ACC 0x0008000
2690 #define RTYPE_CCC 0x0010000
2691 #define RTYPE_VI 0x0020000
2692 #define RTYPE_VF 0x0040000
2693 #define RTYPE_R5900_I 0x0080000
2694 #define RTYPE_R5900_Q 0x0100000
2695 #define RTYPE_R5900_R 0x0200000
2696 #define RTYPE_R5900_ACC 0x0400000
2697 #define RTYPE_MSA 0x0800000
2698 #define RWARN 0x8000000
2699
2700 #define GENERIC_REGISTER_NUMBERS \
2701 {"$0", RTYPE_NUM | 0}, \
2702 {"$1", RTYPE_NUM | 1}, \
2703 {"$2", RTYPE_NUM | 2}, \
2704 {"$3", RTYPE_NUM | 3}, \
2705 {"$4", RTYPE_NUM | 4}, \
2706 {"$5", RTYPE_NUM | 5}, \
2707 {"$6", RTYPE_NUM | 6}, \
2708 {"$7", RTYPE_NUM | 7}, \
2709 {"$8", RTYPE_NUM | 8}, \
2710 {"$9", RTYPE_NUM | 9}, \
2711 {"$10", RTYPE_NUM | 10}, \
2712 {"$11", RTYPE_NUM | 11}, \
2713 {"$12", RTYPE_NUM | 12}, \
2714 {"$13", RTYPE_NUM | 13}, \
2715 {"$14", RTYPE_NUM | 14}, \
2716 {"$15", RTYPE_NUM | 15}, \
2717 {"$16", RTYPE_NUM | 16}, \
2718 {"$17", RTYPE_NUM | 17}, \
2719 {"$18", RTYPE_NUM | 18}, \
2720 {"$19", RTYPE_NUM | 19}, \
2721 {"$20", RTYPE_NUM | 20}, \
2722 {"$21", RTYPE_NUM | 21}, \
2723 {"$22", RTYPE_NUM | 22}, \
2724 {"$23", RTYPE_NUM | 23}, \
2725 {"$24", RTYPE_NUM | 24}, \
2726 {"$25", RTYPE_NUM | 25}, \
2727 {"$26", RTYPE_NUM | 26}, \
2728 {"$27", RTYPE_NUM | 27}, \
2729 {"$28", RTYPE_NUM | 28}, \
2730 {"$29", RTYPE_NUM | 29}, \
2731 {"$30", RTYPE_NUM | 30}, \
2732 {"$31", RTYPE_NUM | 31}
2733
2734 #define FPU_REGISTER_NAMES \
2735 {"$f0", RTYPE_FPU | 0}, \
2736 {"$f1", RTYPE_FPU | 1}, \
2737 {"$f2", RTYPE_FPU | 2}, \
2738 {"$f3", RTYPE_FPU | 3}, \
2739 {"$f4", RTYPE_FPU | 4}, \
2740 {"$f5", RTYPE_FPU | 5}, \
2741 {"$f6", RTYPE_FPU | 6}, \
2742 {"$f7", RTYPE_FPU | 7}, \
2743 {"$f8", RTYPE_FPU | 8}, \
2744 {"$f9", RTYPE_FPU | 9}, \
2745 {"$f10", RTYPE_FPU | 10}, \
2746 {"$f11", RTYPE_FPU | 11}, \
2747 {"$f12", RTYPE_FPU | 12}, \
2748 {"$f13", RTYPE_FPU | 13}, \
2749 {"$f14", RTYPE_FPU | 14}, \
2750 {"$f15", RTYPE_FPU | 15}, \
2751 {"$f16", RTYPE_FPU | 16}, \
2752 {"$f17", RTYPE_FPU | 17}, \
2753 {"$f18", RTYPE_FPU | 18}, \
2754 {"$f19", RTYPE_FPU | 19}, \
2755 {"$f20", RTYPE_FPU | 20}, \
2756 {"$f21", RTYPE_FPU | 21}, \
2757 {"$f22", RTYPE_FPU | 22}, \
2758 {"$f23", RTYPE_FPU | 23}, \
2759 {"$f24", RTYPE_FPU | 24}, \
2760 {"$f25", RTYPE_FPU | 25}, \
2761 {"$f26", RTYPE_FPU | 26}, \
2762 {"$f27", RTYPE_FPU | 27}, \
2763 {"$f28", RTYPE_FPU | 28}, \
2764 {"$f29", RTYPE_FPU | 29}, \
2765 {"$f30", RTYPE_FPU | 30}, \
2766 {"$f31", RTYPE_FPU | 31}
2767
2768 #define FPU_CONDITION_CODE_NAMES \
2769 {"$fcc0", RTYPE_FCC | 0}, \
2770 {"$fcc1", RTYPE_FCC | 1}, \
2771 {"$fcc2", RTYPE_FCC | 2}, \
2772 {"$fcc3", RTYPE_FCC | 3}, \
2773 {"$fcc4", RTYPE_FCC | 4}, \
2774 {"$fcc5", RTYPE_FCC | 5}, \
2775 {"$fcc6", RTYPE_FCC | 6}, \
2776 {"$fcc7", RTYPE_FCC | 7}
2777
2778 #define COPROC_CONDITION_CODE_NAMES \
2779 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2780 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2781 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2782 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2783 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2784 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2785 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2786 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2787
2788 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2789 {"$a4", RTYPE_GP | 8}, \
2790 {"$a5", RTYPE_GP | 9}, \
2791 {"$a6", RTYPE_GP | 10}, \
2792 {"$a7", RTYPE_GP | 11}, \
2793 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2794 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2795 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2796 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2797 {"$t0", RTYPE_GP | 12}, \
2798 {"$t1", RTYPE_GP | 13}, \
2799 {"$t2", RTYPE_GP | 14}, \
2800 {"$t3", RTYPE_GP | 15}
2801
2802 #define O32_SYMBOLIC_REGISTER_NAMES \
2803 {"$t0", RTYPE_GP | 8}, \
2804 {"$t1", RTYPE_GP | 9}, \
2805 {"$t2", RTYPE_GP | 10}, \
2806 {"$t3", RTYPE_GP | 11}, \
2807 {"$t4", RTYPE_GP | 12}, \
2808 {"$t5", RTYPE_GP | 13}, \
2809 {"$t6", RTYPE_GP | 14}, \
2810 {"$t7", RTYPE_GP | 15}, \
2811 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2812 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2813 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2814 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2815
2816 /* Remaining symbolic register names. */
2817 #define SYMBOLIC_REGISTER_NAMES \
2818 {"$zero", RTYPE_GP | 0}, \
2819 {"$at", RTYPE_GP | 1}, \
2820 {"$AT", RTYPE_GP | 1}, \
2821 {"$v0", RTYPE_GP | 2}, \
2822 {"$v1", RTYPE_GP | 3}, \
2823 {"$a0", RTYPE_GP | 4}, \
2824 {"$a1", RTYPE_GP | 5}, \
2825 {"$a2", RTYPE_GP | 6}, \
2826 {"$a3", RTYPE_GP | 7}, \
2827 {"$s0", RTYPE_GP | 16}, \
2828 {"$s1", RTYPE_GP | 17}, \
2829 {"$s2", RTYPE_GP | 18}, \
2830 {"$s3", RTYPE_GP | 19}, \
2831 {"$s4", RTYPE_GP | 20}, \
2832 {"$s5", RTYPE_GP | 21}, \
2833 {"$s6", RTYPE_GP | 22}, \
2834 {"$s7", RTYPE_GP | 23}, \
2835 {"$t8", RTYPE_GP | 24}, \
2836 {"$t9", RTYPE_GP | 25}, \
2837 {"$k0", RTYPE_GP | 26}, \
2838 {"$kt0", RTYPE_GP | 26}, \
2839 {"$k1", RTYPE_GP | 27}, \
2840 {"$kt1", RTYPE_GP | 27}, \
2841 {"$gp", RTYPE_GP | 28}, \
2842 {"$sp", RTYPE_GP | 29}, \
2843 {"$s8", RTYPE_GP | 30}, \
2844 {"$fp", RTYPE_GP | 30}, \
2845 {"$ra", RTYPE_GP | 31}
2846
2847 #define MIPS16_SPECIAL_REGISTER_NAMES \
2848 {"$pc", RTYPE_PC | 0}
2849
2850 #define MDMX_VECTOR_REGISTER_NAMES \
2851 /* {"$v0", RTYPE_VEC | 0}, Clash with REG 2 above. */ \
2852 /* {"$v1", RTYPE_VEC | 1}, Clash with REG 3 above. */ \
2853 {"$v2", RTYPE_VEC | 2}, \
2854 {"$v3", RTYPE_VEC | 3}, \
2855 {"$v4", RTYPE_VEC | 4}, \
2856 {"$v5", RTYPE_VEC | 5}, \
2857 {"$v6", RTYPE_VEC | 6}, \
2858 {"$v7", RTYPE_VEC | 7}, \
2859 {"$v8", RTYPE_VEC | 8}, \
2860 {"$v9", RTYPE_VEC | 9}, \
2861 {"$v10", RTYPE_VEC | 10}, \
2862 {"$v11", RTYPE_VEC | 11}, \
2863 {"$v12", RTYPE_VEC | 12}, \
2864 {"$v13", RTYPE_VEC | 13}, \
2865 {"$v14", RTYPE_VEC | 14}, \
2866 {"$v15", RTYPE_VEC | 15}, \
2867 {"$v16", RTYPE_VEC | 16}, \
2868 {"$v17", RTYPE_VEC | 17}, \
2869 {"$v18", RTYPE_VEC | 18}, \
2870 {"$v19", RTYPE_VEC | 19}, \
2871 {"$v20", RTYPE_VEC | 20}, \
2872 {"$v21", RTYPE_VEC | 21}, \
2873 {"$v22", RTYPE_VEC | 22}, \
2874 {"$v23", RTYPE_VEC | 23}, \
2875 {"$v24", RTYPE_VEC | 24}, \
2876 {"$v25", RTYPE_VEC | 25}, \
2877 {"$v26", RTYPE_VEC | 26}, \
2878 {"$v27", RTYPE_VEC | 27}, \
2879 {"$v28", RTYPE_VEC | 28}, \
2880 {"$v29", RTYPE_VEC | 29}, \
2881 {"$v30", RTYPE_VEC | 30}, \
2882 {"$v31", RTYPE_VEC | 31}
2883
2884 #define R5900_I_NAMES \
2885 {"$I", RTYPE_R5900_I | 0}
2886
2887 #define R5900_Q_NAMES \
2888 {"$Q", RTYPE_R5900_Q | 0}
2889
2890 #define R5900_R_NAMES \
2891 {"$R", RTYPE_R5900_R | 0}
2892
2893 #define R5900_ACC_NAMES \
2894 {"$ACC", RTYPE_R5900_ACC | 0 }
2895
2896 #define MIPS_DSP_ACCUMULATOR_NAMES \
2897 {"$ac0", RTYPE_ACC | 0}, \
2898 {"$ac1", RTYPE_ACC | 1}, \
2899 {"$ac2", RTYPE_ACC | 2}, \
2900 {"$ac3", RTYPE_ACC | 3}
2901
2902 static const struct regname reg_names[] = {
2903 GENERIC_REGISTER_NUMBERS,
2904 FPU_REGISTER_NAMES,
2905 FPU_CONDITION_CODE_NAMES,
2906 COPROC_CONDITION_CODE_NAMES,
2907
2908 /* The $txx registers depends on the abi,
2909 these will be added later into the symbol table from
2910 one of the tables below once mips_abi is set after
2911 parsing of arguments from the command line. */
2912 SYMBOLIC_REGISTER_NAMES,
2913
2914 MIPS16_SPECIAL_REGISTER_NAMES,
2915 MDMX_VECTOR_REGISTER_NAMES,
2916 R5900_I_NAMES,
2917 R5900_Q_NAMES,
2918 R5900_R_NAMES,
2919 R5900_ACC_NAMES,
2920 MIPS_DSP_ACCUMULATOR_NAMES,
2921 {0, 0}
2922 };
2923
2924 static const struct regname reg_names_o32[] = {
2925 O32_SYMBOLIC_REGISTER_NAMES,
2926 {0, 0}
2927 };
2928
2929 static const struct regname reg_names_n32n64[] = {
2930 N32N64_SYMBOLIC_REGISTER_NAMES,
2931 {0, 0}
2932 };
2933
2934 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2935 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2936 of these register symbols, return the associated vector register,
2937 otherwise return SYMVAL itself. */
2938
2939 static unsigned int
2940 mips_prefer_vec_regno (unsigned int symval)
2941 {
2942 if ((symval & -2) == (RTYPE_GP | 2))
2943 return RTYPE_VEC | (symval & 1);
2944 return symval;
2945 }
2946
2947 /* Return true if string [S, E) is a valid register name, storing its
2948 symbol value in *SYMVAL_PTR if so. */
2949
2950 static bfd_boolean
2951 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2952 {
2953 char save_c;
2954 symbolS *symbol;
2955
2956 /* Terminate name. */
2957 save_c = *e;
2958 *e = '\0';
2959
2960 /* Look up the name. */
2961 symbol = symbol_find (s);
2962 *e = save_c;
2963
2964 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2965 return FALSE;
2966
2967 *symval_ptr = S_GET_VALUE (symbol);
2968 return TRUE;
2969 }
2970
2971 /* Return true if the string at *SPTR is a valid register name. Allow it
2972 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2973 is nonnull.
2974
2975 When returning true, move *SPTR past the register, store the
2976 register's symbol value in *SYMVAL_PTR and the channel mask in
2977 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2978 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2979 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2980
2981 static bfd_boolean
2982 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2983 unsigned int *channels_ptr)
2984 {
2985 char *s, *e, *m;
2986 const char *q;
2987 unsigned int channels, symval, bit;
2988
2989 /* Find end of name. */
2990 s = e = *sptr;
2991 if (is_name_beginner (*e))
2992 ++e;
2993 while (is_part_of_name (*e))
2994 ++e;
2995
2996 channels = 0;
2997 if (!mips_parse_register_1 (s, e, &symval))
2998 {
2999 if (!channels_ptr)
3000 return FALSE;
3001
3002 /* Eat characters from the end of the string that are valid
3003 channel suffixes. The preceding register must be $ACC or
3004 end with a digit, so there is no ambiguity. */
3005 bit = 1;
3006 m = e;
3007 for (q = "wzyx"; *q; q++, bit <<= 1)
3008 if (m > s && m[-1] == *q)
3009 {
3010 --m;
3011 channels |= bit;
3012 }
3013
3014 if (channels == 0
3015 || !mips_parse_register_1 (s, m, &symval)
3016 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
3017 return FALSE;
3018 }
3019
3020 *sptr = e;
3021 *symval_ptr = symval;
3022 if (channels_ptr)
3023 *channels_ptr = channels;
3024 return TRUE;
3025 }
3026
3027 /* Check if SPTR points at a valid register specifier according to TYPES.
3028 If so, then return 1, advance S to consume the specifier and store
3029 the register's number in REGNOP, otherwise return 0. */
3030
3031 static int
3032 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
3033 {
3034 unsigned int regno;
3035
3036 if (mips_parse_register (s, &regno, NULL))
3037 {
3038 if (types & RTYPE_VEC)
3039 regno = mips_prefer_vec_regno (regno);
3040 if (regno & types)
3041 regno &= RNUM_MASK;
3042 else
3043 regno = ~0;
3044 }
3045 else
3046 {
3047 if (types & RWARN)
3048 as_warn (_("unrecognized register name `%s'"), *s);
3049 regno = ~0;
3050 }
3051 if (regnop)
3052 *regnop = regno;
3053 return regno <= RNUM_MASK;
3054 }
3055
3056 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
3057 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
3058
3059 static char *
3060 mips_parse_vu0_channels (char *s, unsigned int *channels)
3061 {
3062 unsigned int i;
3063
3064 *channels = 0;
3065 for (i = 0; i < 4; i++)
3066 if (*s == "xyzw"[i])
3067 {
3068 *channels |= 1 << (3 - i);
3069 ++s;
3070 }
3071 return s;
3072 }
3073
3074 /* Token types for parsed operand lists. */
3075 enum mips_operand_token_type {
3076 /* A plain register, e.g. $f2. */
3077 OT_REG,
3078
3079 /* A 4-bit XYZW channel mask. */
3080 OT_CHANNELS,
3081
3082 /* A constant vector index, e.g. [1]. */
3083 OT_INTEGER_INDEX,
3084
3085 /* A register vector index, e.g. [$2]. */
3086 OT_REG_INDEX,
3087
3088 /* A continuous range of registers, e.g. $s0-$s4. */
3089 OT_REG_RANGE,
3090
3091 /* A (possibly relocated) expression. */
3092 OT_INTEGER,
3093
3094 /* A floating-point value. */
3095 OT_FLOAT,
3096
3097 /* A single character. This can be '(', ')' or ',', but '(' only appears
3098 before OT_REGs. */
3099 OT_CHAR,
3100
3101 /* A doubled character, either "--" or "++". */
3102 OT_DOUBLE_CHAR,
3103
3104 /* The end of the operand list. */
3105 OT_END
3106 };
3107
3108 /* A parsed operand token. */
3109 struct mips_operand_token
3110 {
3111 /* The type of token. */
3112 enum mips_operand_token_type type;
3113 union
3114 {
3115 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
3116 unsigned int regno;
3117
3118 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3119 unsigned int channels;
3120
3121 /* The integer value of an OT_INTEGER_INDEX. */
3122 addressT index;
3123
3124 /* The two register symbol values involved in an OT_REG_RANGE. */
3125 struct {
3126 unsigned int regno1;
3127 unsigned int regno2;
3128 } reg_range;
3129
3130 /* The value of an OT_INTEGER. The value is represented as an
3131 expression and the relocation operators that were applied to
3132 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3133 relocation operators were used. */
3134 struct {
3135 expressionS value;
3136 bfd_reloc_code_real_type relocs[3];
3137 } integer;
3138
3139 /* The binary data for an OT_FLOAT constant, and the number of bytes
3140 in the constant. */
3141 struct {
3142 unsigned char data[8];
3143 int length;
3144 } flt;
3145
3146 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3147 char ch;
3148 } u;
3149 };
3150
3151 /* An obstack used to construct lists of mips_operand_tokens. */
3152 static struct obstack mips_operand_tokens;
3153
3154 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3155
3156 static void
3157 mips_add_token (struct mips_operand_token *token,
3158 enum mips_operand_token_type type)
3159 {
3160 token->type = type;
3161 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3162 }
3163
3164 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3165 and OT_REG tokens for them if so, and return a pointer to the first
3166 unconsumed character. Return null otherwise. */
3167
3168 static char *
3169 mips_parse_base_start (char *s)
3170 {
3171 struct mips_operand_token token;
3172 unsigned int regno, channels;
3173 bfd_boolean decrement_p;
3174
3175 if (*s != '(')
3176 return 0;
3177
3178 ++s;
3179 SKIP_SPACE_TABS (s);
3180
3181 /* Only match "--" as part of a base expression. In other contexts "--X"
3182 is a double negative. */
3183 decrement_p = (s[0] == '-' && s[1] == '-');
3184 if (decrement_p)
3185 {
3186 s += 2;
3187 SKIP_SPACE_TABS (s);
3188 }
3189
3190 /* Allow a channel specifier because that leads to better error messages
3191 than treating something like "$vf0x++" as an expression. */
3192 if (!mips_parse_register (&s, &regno, &channels))
3193 return 0;
3194
3195 token.u.ch = '(';
3196 mips_add_token (&token, OT_CHAR);
3197
3198 if (decrement_p)
3199 {
3200 token.u.ch = '-';
3201 mips_add_token (&token, OT_DOUBLE_CHAR);
3202 }
3203
3204 token.u.regno = regno;
3205 mips_add_token (&token, OT_REG);
3206
3207 if (channels)
3208 {
3209 token.u.channels = channels;
3210 mips_add_token (&token, OT_CHANNELS);
3211 }
3212
3213 /* For consistency, only match "++" as part of base expressions too. */
3214 SKIP_SPACE_TABS (s);
3215 if (s[0] == '+' && s[1] == '+')
3216 {
3217 s += 2;
3218 token.u.ch = '+';
3219 mips_add_token (&token, OT_DOUBLE_CHAR);
3220 }
3221
3222 return s;
3223 }
3224
3225 /* Parse one or more tokens from S. Return a pointer to the first
3226 unconsumed character on success. Return null if an error was found
3227 and store the error text in insn_error. FLOAT_FORMAT is as for
3228 mips_parse_arguments. */
3229
3230 static char *
3231 mips_parse_argument_token (char *s, char float_format)
3232 {
3233 char *end, *save_in;
3234 const char *err;
3235 unsigned int regno1, regno2, channels;
3236 struct mips_operand_token token;
3237
3238 /* First look for "($reg", since we want to treat that as an
3239 OT_CHAR and OT_REG rather than an expression. */
3240 end = mips_parse_base_start (s);
3241 if (end)
3242 return end;
3243
3244 /* Handle other characters that end up as OT_CHARs. */
3245 if (*s == ')' || *s == ',')
3246 {
3247 token.u.ch = *s;
3248 mips_add_token (&token, OT_CHAR);
3249 ++s;
3250 return s;
3251 }
3252
3253 /* Handle tokens that start with a register. */
3254 if (mips_parse_register (&s, &regno1, &channels))
3255 {
3256 if (channels)
3257 {
3258 /* A register and a VU0 channel suffix. */
3259 token.u.regno = regno1;
3260 mips_add_token (&token, OT_REG);
3261
3262 token.u.channels = channels;
3263 mips_add_token (&token, OT_CHANNELS);
3264 return s;
3265 }
3266
3267 SKIP_SPACE_TABS (s);
3268 if (*s == '-')
3269 {
3270 /* A register range. */
3271 ++s;
3272 SKIP_SPACE_TABS (s);
3273 if (!mips_parse_register (&s, &regno2, NULL))
3274 {
3275 set_insn_error (0, _("invalid register range"));
3276 return 0;
3277 }
3278
3279 token.u.reg_range.regno1 = regno1;
3280 token.u.reg_range.regno2 = regno2;
3281 mips_add_token (&token, OT_REG_RANGE);
3282 return s;
3283 }
3284
3285 /* Add the register itself. */
3286 token.u.regno = regno1;
3287 mips_add_token (&token, OT_REG);
3288
3289 /* Check for a vector index. */
3290 if (*s == '[')
3291 {
3292 ++s;
3293 SKIP_SPACE_TABS (s);
3294 if (mips_parse_register (&s, &token.u.regno, NULL))
3295 mips_add_token (&token, OT_REG_INDEX);
3296 else
3297 {
3298 expressionS element;
3299
3300 my_getExpression (&element, s);
3301 if (element.X_op != O_constant)
3302 {
3303 set_insn_error (0, _("vector element must be constant"));
3304 return 0;
3305 }
3306 s = expr_end;
3307 token.u.index = element.X_add_number;
3308 mips_add_token (&token, OT_INTEGER_INDEX);
3309 }
3310 SKIP_SPACE_TABS (s);
3311 if (*s != ']')
3312 {
3313 set_insn_error (0, _("missing `]'"));
3314 return 0;
3315 }
3316 ++s;
3317 }
3318 return s;
3319 }
3320
3321 if (float_format)
3322 {
3323 /* First try to treat expressions as floats. */
3324 save_in = input_line_pointer;
3325 input_line_pointer = s;
3326 err = md_atof (float_format, (char *) token.u.flt.data,
3327 &token.u.flt.length);
3328 end = input_line_pointer;
3329 input_line_pointer = save_in;
3330 if (err && *err)
3331 {
3332 set_insn_error (0, err);
3333 return 0;
3334 }
3335 if (s != end)
3336 {
3337 mips_add_token (&token, OT_FLOAT);
3338 return end;
3339 }
3340 }
3341
3342 /* Treat everything else as an integer expression. */
3343 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3344 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3345 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3346 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3347 s = expr_end;
3348 mips_add_token (&token, OT_INTEGER);
3349 return s;
3350 }
3351
3352 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3353 if expressions should be treated as 32-bit floating-point constants,
3354 'd' if they should be treated as 64-bit floating-point constants,
3355 or 0 if they should be treated as integer expressions (the usual case).
3356
3357 Return a list of tokens on success, otherwise return 0. The caller
3358 must obstack_free the list after use. */
3359
3360 static struct mips_operand_token *
3361 mips_parse_arguments (char *s, char float_format)
3362 {
3363 struct mips_operand_token token;
3364
3365 SKIP_SPACE_TABS (s);
3366 while (*s)
3367 {
3368 s = mips_parse_argument_token (s, float_format);
3369 if (!s)
3370 {
3371 obstack_free (&mips_operand_tokens,
3372 obstack_finish (&mips_operand_tokens));
3373 return 0;
3374 }
3375 SKIP_SPACE_TABS (s);
3376 }
3377 mips_add_token (&token, OT_END);
3378 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3379 }
3380
3381 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3382 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3383
3384 static bfd_boolean
3385 is_opcode_valid (const struct mips_opcode *mo)
3386 {
3387 int isa = mips_opts.isa;
3388 int ase = mips_opts.ase;
3389 int fp_s, fp_d;
3390 unsigned int i;
3391
3392 if (ISA_HAS_64BIT_REGS (isa))
3393 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3394 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3395 ase |= mips_ases[i].flags64;
3396
3397 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3398 return FALSE;
3399
3400 /* Check whether the instruction or macro requires single-precision or
3401 double-precision floating-point support. Note that this information is
3402 stored differently in the opcode table for insns and macros. */
3403 if (mo->pinfo == INSN_MACRO)
3404 {
3405 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3406 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3407 }
3408 else
3409 {
3410 fp_s = mo->pinfo & FP_S;
3411 fp_d = mo->pinfo & FP_D;
3412 }
3413
3414 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3415 return FALSE;
3416
3417 if (fp_s && mips_opts.soft_float)
3418 return FALSE;
3419
3420 return TRUE;
3421 }
3422
3423 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3424 selected ISA and architecture. */
3425
3426 static bfd_boolean
3427 is_opcode_valid_16 (const struct mips_opcode *mo)
3428 {
3429 int isa = mips_opts.isa;
3430 int ase = mips_opts.ase;
3431 unsigned int i;
3432
3433 if (ISA_HAS_64BIT_REGS (isa))
3434 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3435 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3436 ase |= mips_ases[i].flags64;
3437
3438 return opcode_is_member (mo, isa, ase, mips_opts.arch);
3439 }
3440
3441 /* Return TRUE if the size of the microMIPS opcode MO matches one
3442 explicitly requested. Always TRUE in the standard MIPS mode.
3443 Use is_size_valid_16 for MIPS16 opcodes. */
3444
3445 static bfd_boolean
3446 is_size_valid (const struct mips_opcode *mo)
3447 {
3448 if (!mips_opts.micromips)
3449 return TRUE;
3450
3451 if (mips_opts.insn32)
3452 {
3453 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3454 return FALSE;
3455 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3456 return FALSE;
3457 }
3458 if (!forced_insn_length)
3459 return TRUE;
3460 if (mo->pinfo == INSN_MACRO)
3461 return FALSE;
3462 return forced_insn_length == micromips_insn_length (mo);
3463 }
3464
3465 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3466 explicitly requested. */
3467
3468 static bfd_boolean
3469 is_size_valid_16 (const struct mips_opcode *mo)
3470 {
3471 if (!forced_insn_length)
3472 return TRUE;
3473 if (mo->pinfo == INSN_MACRO)
3474 return FALSE;
3475 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3476 return FALSE;
3477 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3478 return FALSE;
3479 return TRUE;
3480 }
3481
3482 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3483 of the preceding instruction. Always TRUE in the standard MIPS mode.
3484
3485 We don't accept macros in 16-bit delay slots to avoid a case where
3486 a macro expansion fails because it relies on a preceding 32-bit real
3487 instruction to have matched and does not handle the operands correctly.
3488 The only macros that may expand to 16-bit instructions are JAL that
3489 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3490 and BGT (that likewise cannot be placed in a delay slot) that decay to
3491 a NOP. In all these cases the macros precede any corresponding real
3492 instruction definitions in the opcode table, so they will match in the
3493 second pass where the size of the delay slot is ignored and therefore
3494 produce correct code. */
3495
3496 static bfd_boolean
3497 is_delay_slot_valid (const struct mips_opcode *mo)
3498 {
3499 if (!mips_opts.micromips)
3500 return TRUE;
3501
3502 if (mo->pinfo == INSN_MACRO)
3503 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3504 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3505 && micromips_insn_length (mo) != 4)
3506 return FALSE;
3507 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3508 && micromips_insn_length (mo) != 2)
3509 return FALSE;
3510
3511 return TRUE;
3512 }
3513
3514 /* For consistency checking, verify that all bits of OPCODE are specified
3515 either by the match/mask part of the instruction definition, or by the
3516 operand list. Also build up a list of operands in OPERANDS.
3517
3518 INSN_BITS says which bits of the instruction are significant.
3519 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3520 provides the mips_operand description of each operand. DECODE_OPERAND
3521 is null for MIPS16 instructions. */
3522
3523 static int
3524 validate_mips_insn (const struct mips_opcode *opcode,
3525 unsigned long insn_bits,
3526 const struct mips_operand *(*decode_operand) (const char *),
3527 struct mips_operand_array *operands)
3528 {
3529 const char *s;
3530 unsigned long used_bits, doubled, undefined, opno, mask;
3531 const struct mips_operand *operand;
3532
3533 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3534 if ((mask & opcode->match) != opcode->match)
3535 {
3536 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3537 opcode->name, opcode->args);
3538 return 0;
3539 }
3540 used_bits = 0;
3541 opno = 0;
3542 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3543 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3544 for (s = opcode->args; *s; ++s)
3545 switch (*s)
3546 {
3547 case ',':
3548 case '(':
3549 case ')':
3550 break;
3551
3552 case '#':
3553 s++;
3554 break;
3555
3556 default:
3557 if (!decode_operand)
3558 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3559 else
3560 operand = decode_operand (s);
3561 if (!operand && opcode->pinfo != INSN_MACRO)
3562 {
3563 as_bad (_("internal: unknown operand type: %s %s"),
3564 opcode->name, opcode->args);
3565 return 0;
3566 }
3567 gas_assert (opno < MAX_OPERANDS);
3568 operands->operand[opno] = operand;
3569 if (!decode_operand && operand
3570 && operand->type == OP_INT && operand->lsb == 0
3571 && mips_opcode_32bit_p (opcode))
3572 used_bits |= mips16_immed_extend (-1, operand->size);
3573 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3574 {
3575 used_bits = mips_insert_operand (operand, used_bits, -1);
3576 if (operand->type == OP_MDMX_IMM_REG)
3577 /* Bit 5 is the format selector (OB vs QH). The opcode table
3578 has separate entries for each format. */
3579 used_bits &= ~(1 << (operand->lsb + 5));
3580 if (operand->type == OP_ENTRY_EXIT_LIST)
3581 used_bits &= ~(mask & 0x700);
3582 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3583 operand field that cannot be fully described with LSB/SIZE. */
3584 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3585 used_bits &= ~0x6000;
3586 }
3587 /* Skip prefix characters. */
3588 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3589 ++s;
3590 opno += 1;
3591 break;
3592 }
3593 doubled = used_bits & mask & insn_bits;
3594 if (doubled)
3595 {
3596 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3597 " %s %s"), doubled, opcode->name, opcode->args);
3598 return 0;
3599 }
3600 used_bits |= mask;
3601 undefined = ~used_bits & insn_bits;
3602 if (opcode->pinfo != INSN_MACRO && undefined)
3603 {
3604 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3605 undefined, opcode->name, opcode->args);
3606 return 0;
3607 }
3608 used_bits &= ~insn_bits;
3609 if (used_bits)
3610 {
3611 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3612 used_bits, opcode->name, opcode->args);
3613 return 0;
3614 }
3615 return 1;
3616 }
3617
3618 /* The MIPS16 version of validate_mips_insn. */
3619
3620 static int
3621 validate_mips16_insn (const struct mips_opcode *opcode,
3622 struct mips_operand_array *operands)
3623 {
3624 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3625
3626 return validate_mips_insn (opcode, insn_bits, 0, operands);
3627 }
3628
3629 /* The microMIPS version of validate_mips_insn. */
3630
3631 static int
3632 validate_micromips_insn (const struct mips_opcode *opc,
3633 struct mips_operand_array *operands)
3634 {
3635 unsigned long insn_bits;
3636 unsigned long major;
3637 unsigned int length;
3638
3639 if (opc->pinfo == INSN_MACRO)
3640 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3641 operands);
3642
3643 length = micromips_insn_length (opc);
3644 if (length != 2 && length != 4)
3645 {
3646 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3647 "%s %s"), length, opc->name, opc->args);
3648 return 0;
3649 }
3650 major = opc->match >> (10 + 8 * (length - 2));
3651 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3652 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3653 {
3654 as_bad (_("internal error: bad microMIPS opcode "
3655 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3656 return 0;
3657 }
3658
3659 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3660 insn_bits = 1 << 4 * length;
3661 insn_bits <<= 4 * length;
3662 insn_bits -= 1;
3663 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3664 operands);
3665 }
3666
3667 /* This function is called once, at assembler startup time. It should set up
3668 all the tables, etc. that the MD part of the assembler will need. */
3669
3670 void
3671 md_begin (void)
3672 {
3673 const char *retval = NULL;
3674 int i = 0;
3675 int broken = 0;
3676
3677 if (mips_pic != NO_PIC)
3678 {
3679 if (g_switch_seen && g_switch_value != 0)
3680 as_bad (_("-G may not be used in position-independent code"));
3681 g_switch_value = 0;
3682 }
3683 else if (mips_abicalls)
3684 {
3685 if (g_switch_seen && g_switch_value != 0)
3686 as_bad (_("-G may not be used with abicalls"));
3687 g_switch_value = 0;
3688 }
3689
3690 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3691 as_warn (_("could not set architecture and machine"));
3692
3693 op_hash = hash_new ();
3694
3695 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3696 for (i = 0; i < NUMOPCODES;)
3697 {
3698 const char *name = mips_opcodes[i].name;
3699
3700 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3701 if (retval != NULL)
3702 {
3703 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3704 mips_opcodes[i].name, retval);
3705 /* Probably a memory allocation problem? Give up now. */
3706 as_fatal (_("broken assembler, no assembly attempted"));
3707 }
3708 do
3709 {
3710 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3711 decode_mips_operand, &mips_operands[i]))
3712 broken = 1;
3713
3714 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3715 {
3716 create_insn (&nop_insn, mips_opcodes + i);
3717 if (mips_fix_loongson2f_nop)
3718 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3719 nop_insn.fixed_p = 1;
3720 }
3721
3722 if (sync_insn.insn_mo == NULL && strcmp (name, "sync") == 0)
3723 create_insn (&sync_insn, mips_opcodes + i);
3724
3725 ++i;
3726 }
3727 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3728 }
3729
3730 mips16_op_hash = hash_new ();
3731 mips16_operands = XCNEWVEC (struct mips_operand_array,
3732 bfd_mips16_num_opcodes);
3733
3734 i = 0;
3735 while (i < bfd_mips16_num_opcodes)
3736 {
3737 const char *name = mips16_opcodes[i].name;
3738
3739 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3740 if (retval != NULL)
3741 as_fatal (_("internal: can't hash `%s': %s"),
3742 mips16_opcodes[i].name, retval);
3743 do
3744 {
3745 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3746 broken = 1;
3747 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3748 {
3749 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3750 mips16_nop_insn.fixed_p = 1;
3751 }
3752 ++i;
3753 }
3754 while (i < bfd_mips16_num_opcodes
3755 && strcmp (mips16_opcodes[i].name, name) == 0);
3756 }
3757
3758 micromips_op_hash = hash_new ();
3759 micromips_operands = XCNEWVEC (struct mips_operand_array,
3760 bfd_micromips_num_opcodes);
3761
3762 i = 0;
3763 while (i < bfd_micromips_num_opcodes)
3764 {
3765 const char *name = micromips_opcodes[i].name;
3766
3767 retval = hash_insert (micromips_op_hash, name,
3768 (void *) &micromips_opcodes[i]);
3769 if (retval != NULL)
3770 as_fatal (_("internal: can't hash `%s': %s"),
3771 micromips_opcodes[i].name, retval);
3772 do
3773 {
3774 struct mips_cl_insn *micromips_nop_insn;
3775
3776 if (!validate_micromips_insn (&micromips_opcodes[i],
3777 &micromips_operands[i]))
3778 broken = 1;
3779
3780 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3781 {
3782 if (micromips_insn_length (micromips_opcodes + i) == 2)
3783 micromips_nop_insn = &micromips_nop16_insn;
3784 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3785 micromips_nop_insn = &micromips_nop32_insn;
3786 else
3787 continue;
3788
3789 if (micromips_nop_insn->insn_mo == NULL
3790 && strcmp (name, "nop") == 0)
3791 {
3792 create_insn (micromips_nop_insn, micromips_opcodes + i);
3793 micromips_nop_insn->fixed_p = 1;
3794 }
3795 }
3796 }
3797 while (++i < bfd_micromips_num_opcodes
3798 && strcmp (micromips_opcodes[i].name, name) == 0);
3799 }
3800
3801 if (broken)
3802 as_fatal (_("broken assembler, no assembly attempted"));
3803
3804 /* We add all the general register names to the symbol table. This
3805 helps us detect invalid uses of them. */
3806 for (i = 0; reg_names[i].name; i++)
3807 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3808 reg_names[i].num, /* & RNUM_MASK, */
3809 &zero_address_frag));
3810 if (HAVE_NEWABI)
3811 for (i = 0; reg_names_n32n64[i].name; i++)
3812 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3813 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3814 &zero_address_frag));
3815 else
3816 for (i = 0; reg_names_o32[i].name; i++)
3817 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3818 reg_names_o32[i].num, /* & RNUM_MASK, */
3819 &zero_address_frag));
3820
3821 for (i = 0; i < 32; i++)
3822 {
3823 char regname[6];
3824
3825 /* R5900 VU0 floating-point register. */
3826 sprintf (regname, "$vf%d", i);
3827 symbol_table_insert (symbol_new (regname, reg_section,
3828 RTYPE_VF | i, &zero_address_frag));
3829
3830 /* R5900 VU0 integer register. */
3831 sprintf (regname, "$vi%d", i);
3832 symbol_table_insert (symbol_new (regname, reg_section,
3833 RTYPE_VI | i, &zero_address_frag));
3834
3835 /* MSA register. */
3836 sprintf (regname, "$w%d", i);
3837 symbol_table_insert (symbol_new (regname, reg_section,
3838 RTYPE_MSA | i, &zero_address_frag));
3839 }
3840
3841 obstack_init (&mips_operand_tokens);
3842
3843 mips_no_prev_insn ();
3844
3845 mips_gprmask = 0;
3846 mips_cprmask[0] = 0;
3847 mips_cprmask[1] = 0;
3848 mips_cprmask[2] = 0;
3849 mips_cprmask[3] = 0;
3850
3851 /* set the default alignment for the text section (2**2) */
3852 record_alignment (text_section, 2);
3853
3854 bfd_set_gp_size (stdoutput, g_switch_value);
3855
3856 /* On a native system other than VxWorks, sections must be aligned
3857 to 16 byte boundaries. When configured for an embedded ELF
3858 target, we don't bother. */
3859 if (strncmp (TARGET_OS, "elf", 3) != 0
3860 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3861 {
3862 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3863 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3864 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3865 }
3866
3867 /* Create a .reginfo section for register masks and a .mdebug
3868 section for debugging information. */
3869 {
3870 segT seg;
3871 subsegT subseg;
3872 flagword flags;
3873 segT sec;
3874
3875 seg = now_seg;
3876 subseg = now_subseg;
3877
3878 /* The ABI says this section should be loaded so that the
3879 running program can access it. However, we don't load it
3880 if we are configured for an embedded target. */
3881 flags = SEC_READONLY | SEC_DATA;
3882 if (strncmp (TARGET_OS, "elf", 3) != 0)
3883 flags |= SEC_ALLOC | SEC_LOAD;
3884
3885 if (mips_abi != N64_ABI)
3886 {
3887 sec = subseg_new (".reginfo", (subsegT) 0);
3888
3889 bfd_set_section_flags (stdoutput, sec, flags);
3890 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3891
3892 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3893 }
3894 else
3895 {
3896 /* The 64-bit ABI uses a .MIPS.options section rather than
3897 .reginfo section. */
3898 sec = subseg_new (".MIPS.options", (subsegT) 0);
3899 bfd_set_section_flags (stdoutput, sec, flags);
3900 bfd_set_section_alignment (stdoutput, sec, 3);
3901
3902 /* Set up the option header. */
3903 {
3904 Elf_Internal_Options opthdr;
3905 char *f;
3906
3907 opthdr.kind = ODK_REGINFO;
3908 opthdr.size = (sizeof (Elf_External_Options)
3909 + sizeof (Elf64_External_RegInfo));
3910 opthdr.section = 0;
3911 opthdr.info = 0;
3912 f = frag_more (sizeof (Elf_External_Options));
3913 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3914 (Elf_External_Options *) f);
3915
3916 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3917 }
3918 }
3919
3920 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3921 bfd_set_section_flags (stdoutput, sec,
3922 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3923 bfd_set_section_alignment (stdoutput, sec, 3);
3924 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3925
3926 if (ECOFF_DEBUGGING)
3927 {
3928 sec = subseg_new (".mdebug", (subsegT) 0);
3929 (void) bfd_set_section_flags (stdoutput, sec,
3930 SEC_HAS_CONTENTS | SEC_READONLY);
3931 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3932 }
3933 else if (mips_flag_pdr)
3934 {
3935 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3936 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3937 SEC_READONLY | SEC_RELOC
3938 | SEC_DEBUGGING);
3939 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3940 }
3941
3942 subseg_set (seg, subseg);
3943 }
3944
3945 if (mips_fix_vr4120)
3946 init_vr4120_conflicts ();
3947 }
3948
3949 static inline void
3950 fpabi_incompatible_with (int fpabi, const char *what)
3951 {
3952 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3953 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3954 }
3955
3956 static inline void
3957 fpabi_requires (int fpabi, const char *what)
3958 {
3959 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3960 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3961 }
3962
3963 /* Check -mabi and register sizes against the specified FP ABI. */
3964 static void
3965 check_fpabi (int fpabi)
3966 {
3967 switch (fpabi)
3968 {
3969 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3970 if (file_mips_opts.soft_float)
3971 fpabi_incompatible_with (fpabi, "softfloat");
3972 else if (file_mips_opts.single_float)
3973 fpabi_incompatible_with (fpabi, "singlefloat");
3974 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3975 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3976 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3977 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3978 break;
3979
3980 case Val_GNU_MIPS_ABI_FP_XX:
3981 if (mips_abi != O32_ABI)
3982 fpabi_requires (fpabi, "-mabi=32");
3983 else if (file_mips_opts.soft_float)
3984 fpabi_incompatible_with (fpabi, "softfloat");
3985 else if (file_mips_opts.single_float)
3986 fpabi_incompatible_with (fpabi, "singlefloat");
3987 else if (file_mips_opts.fp != 0)
3988 fpabi_requires (fpabi, "fp=xx");
3989 break;
3990
3991 case Val_GNU_MIPS_ABI_FP_64A:
3992 case Val_GNU_MIPS_ABI_FP_64:
3993 if (mips_abi != O32_ABI)
3994 fpabi_requires (fpabi, "-mabi=32");
3995 else if (file_mips_opts.soft_float)
3996 fpabi_incompatible_with (fpabi, "softfloat");
3997 else if (file_mips_opts.single_float)
3998 fpabi_incompatible_with (fpabi, "singlefloat");
3999 else if (file_mips_opts.fp != 64)
4000 fpabi_requires (fpabi, "fp=64");
4001 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
4002 fpabi_incompatible_with (fpabi, "nooddspreg");
4003 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
4004 fpabi_requires (fpabi, "nooddspreg");
4005 break;
4006
4007 case Val_GNU_MIPS_ABI_FP_SINGLE:
4008 if (file_mips_opts.soft_float)
4009 fpabi_incompatible_with (fpabi, "softfloat");
4010 else if (!file_mips_opts.single_float)
4011 fpabi_requires (fpabi, "singlefloat");
4012 break;
4013
4014 case Val_GNU_MIPS_ABI_FP_SOFT:
4015 if (!file_mips_opts.soft_float)
4016 fpabi_requires (fpabi, "softfloat");
4017 break;
4018
4019 case Val_GNU_MIPS_ABI_FP_OLD_64:
4020 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
4021 Tag_GNU_MIPS_ABI_FP, fpabi);
4022 break;
4023
4024 case Val_GNU_MIPS_ABI_FP_NAN2008:
4025 /* Silently ignore compatibility value. */
4026 break;
4027
4028 default:
4029 as_warn (_(".gnu_attribute %d,%d is not a recognized"
4030 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
4031 break;
4032 }
4033 }
4034
4035 /* Perform consistency checks on the current options. */
4036
4037 static void
4038 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
4039 {
4040 /* Check the size of integer registers agrees with the ABI and ISA. */
4041 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
4042 as_bad (_("`gp=64' used with a 32-bit processor"));
4043 else if (abi_checks
4044 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
4045 as_bad (_("`gp=32' used with a 64-bit ABI"));
4046 else if (abi_checks
4047 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
4048 as_bad (_("`gp=64' used with a 32-bit ABI"));
4049
4050 /* Check the size of the float registers agrees with the ABI and ISA. */
4051 switch (opts->fp)
4052 {
4053 case 0:
4054 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
4055 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
4056 else if (opts->single_float == 1)
4057 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
4058 break;
4059 case 64:
4060 if (!ISA_HAS_64BIT_FPRS (opts->isa))
4061 as_bad (_("`fp=64' used with a 32-bit fpu"));
4062 else if (abi_checks
4063 && ABI_NEEDS_32BIT_REGS (mips_abi)
4064 && !ISA_HAS_MXHC1 (opts->isa))
4065 as_warn (_("`fp=64' used with a 32-bit ABI"));
4066 break;
4067 case 32:
4068 if (abi_checks
4069 && ABI_NEEDS_64BIT_REGS (mips_abi))
4070 as_warn (_("`fp=32' used with a 64-bit ABI"));
4071 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
4072 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
4073 break;
4074 default:
4075 as_bad (_("Unknown size of floating point registers"));
4076 break;
4077 }
4078
4079 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
4080 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
4081
4082 if (opts->micromips == 1 && opts->mips16 == 1)
4083 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
4084 else if (ISA_IS_R6 (opts->isa)
4085 && (opts->micromips == 1
4086 || opts->mips16 == 1))
4087 as_fatal (_("`%s' cannot be used with `%s'"),
4088 opts->micromips ? "micromips" : "mips16",
4089 mips_cpu_info_from_isa (opts->isa)->name);
4090
4091 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
4092 as_fatal (_("branch relaxation is not supported in `%s'"),
4093 mips_cpu_info_from_isa (opts->isa)->name);
4094 }
4095
4096 /* Perform consistency checks on the module level options exactly once.
4097 This is a deferred check that happens:
4098 at the first .set directive
4099 or, at the first pseudo op that generates code (inc .dc.a)
4100 or, at the first instruction
4101 or, at the end. */
4102
4103 static void
4104 file_mips_check_options (void)
4105 {
4106 if (file_mips_opts_checked)
4107 return;
4108
4109 /* The following code determines the register size.
4110 Similar code was added to GCC 3.3 (see override_options() in
4111 config/mips/mips.c). The GAS and GCC code should be kept in sync
4112 as much as possible. */
4113
4114 if (file_mips_opts.gp < 0)
4115 {
4116 /* Infer the integer register size from the ABI and processor.
4117 Restrict ourselves to 32-bit registers if that's all the
4118 processor has, or if the ABI cannot handle 64-bit registers. */
4119 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4120 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4121 ? 32 : 64;
4122 }
4123
4124 if (file_mips_opts.fp < 0)
4125 {
4126 /* No user specified float register size.
4127 ??? GAS treats single-float processors as though they had 64-bit
4128 float registers (although it complains when double-precision
4129 instructions are used). As things stand, saying they have 32-bit
4130 registers would lead to spurious "register must be even" messages.
4131 So here we assume float registers are never smaller than the
4132 integer ones. */
4133 if (file_mips_opts.gp == 64)
4134 /* 64-bit integer registers implies 64-bit float registers. */
4135 file_mips_opts.fp = 64;
4136 else if ((file_mips_opts.ase & FP64_ASES)
4137 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4138 /* Handle ASEs that require 64-bit float registers, if possible. */
4139 file_mips_opts.fp = 64;
4140 else if (ISA_IS_R6 (mips_opts.isa))
4141 /* R6 implies 64-bit float registers. */
4142 file_mips_opts.fp = 64;
4143 else
4144 /* 32-bit float registers. */
4145 file_mips_opts.fp = 32;
4146 }
4147
4148 /* Disable operations on odd-numbered floating-point registers by default
4149 when using the FPXX ABI. */
4150 if (file_mips_opts.oddspreg < 0)
4151 {
4152 if (file_mips_opts.fp == 0)
4153 file_mips_opts.oddspreg = 0;
4154 else
4155 file_mips_opts.oddspreg = 1;
4156 }
4157
4158 /* End of GCC-shared inference code. */
4159
4160 /* This flag is set when we have a 64-bit capable CPU but use only
4161 32-bit wide registers. Note that EABI does not use it. */
4162 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4163 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4164 || mips_abi == O32_ABI))
4165 mips_32bitmode = 1;
4166
4167 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4168 as_bad (_("trap exception not supported at ISA 1"));
4169
4170 /* If the selected architecture includes support for ASEs, enable
4171 generation of code for them. */
4172 if (file_mips_opts.mips16 == -1)
4173 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4174 if (file_mips_opts.micromips == -1)
4175 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4176 ? 1 : 0;
4177
4178 if (mips_nan2008 == -1)
4179 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4180 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4181 as_fatal (_("`%s' does not support legacy NaN"),
4182 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4183
4184 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4185 being selected implicitly. */
4186 if (file_mips_opts.fp != 64)
4187 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4188
4189 /* If the user didn't explicitly select or deselect a particular ASE,
4190 use the default setting for the CPU. */
4191 file_mips_opts.ase |= (file_mips_opts.init_ase & ~file_ase_explicit);
4192
4193 /* Set up the current options. These may change throughout assembly. */
4194 mips_opts = file_mips_opts;
4195
4196 mips_check_isa_supports_ases ();
4197 mips_check_options (&file_mips_opts, TRUE);
4198 file_mips_opts_checked = TRUE;
4199
4200 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4201 as_warn (_("could not set architecture and machine"));
4202 }
4203
4204 void
4205 md_assemble (char *str)
4206 {
4207 struct mips_cl_insn insn;
4208 bfd_reloc_code_real_type unused_reloc[3]
4209 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4210
4211 file_mips_check_options ();
4212
4213 imm_expr.X_op = O_absent;
4214 offset_expr.X_op = O_absent;
4215 offset_reloc[0] = BFD_RELOC_UNUSED;
4216 offset_reloc[1] = BFD_RELOC_UNUSED;
4217 offset_reloc[2] = BFD_RELOC_UNUSED;
4218
4219 mips_mark_labels ();
4220 mips_assembling_insn = TRUE;
4221 clear_insn_error ();
4222
4223 if (mips_opts.mips16)
4224 mips16_ip (str, &insn);
4225 else
4226 {
4227 mips_ip (str, &insn);
4228 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4229 str, insn.insn_opcode));
4230 }
4231
4232 if (insn_error.msg)
4233 report_insn_error (str);
4234 else if (insn.insn_mo->pinfo == INSN_MACRO)
4235 {
4236 macro_start ();
4237 if (mips_opts.mips16)
4238 mips16_macro (&insn);
4239 else
4240 macro (&insn, str);
4241 macro_end ();
4242 }
4243 else
4244 {
4245 if (offset_expr.X_op != O_absent)
4246 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4247 else
4248 append_insn (&insn, NULL, unused_reloc, FALSE);
4249 }
4250
4251 mips_assembling_insn = FALSE;
4252 }
4253
4254 /* Convenience functions for abstracting away the differences between
4255 MIPS16 and non-MIPS16 relocations. */
4256
4257 static inline bfd_boolean
4258 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4259 {
4260 switch (reloc)
4261 {
4262 case BFD_RELOC_MIPS16_JMP:
4263 case BFD_RELOC_MIPS16_GPREL:
4264 case BFD_RELOC_MIPS16_GOT16:
4265 case BFD_RELOC_MIPS16_CALL16:
4266 case BFD_RELOC_MIPS16_HI16_S:
4267 case BFD_RELOC_MIPS16_HI16:
4268 case BFD_RELOC_MIPS16_LO16:
4269 case BFD_RELOC_MIPS16_16_PCREL_S1:
4270 return TRUE;
4271
4272 default:
4273 return FALSE;
4274 }
4275 }
4276
4277 static inline bfd_boolean
4278 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4279 {
4280 switch (reloc)
4281 {
4282 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4283 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4284 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4285 case BFD_RELOC_MICROMIPS_GPREL16:
4286 case BFD_RELOC_MICROMIPS_JMP:
4287 case BFD_RELOC_MICROMIPS_HI16:
4288 case BFD_RELOC_MICROMIPS_HI16_S:
4289 case BFD_RELOC_MICROMIPS_LO16:
4290 case BFD_RELOC_MICROMIPS_LITERAL:
4291 case BFD_RELOC_MICROMIPS_GOT16:
4292 case BFD_RELOC_MICROMIPS_CALL16:
4293 case BFD_RELOC_MICROMIPS_GOT_HI16:
4294 case BFD_RELOC_MICROMIPS_GOT_LO16:
4295 case BFD_RELOC_MICROMIPS_CALL_HI16:
4296 case BFD_RELOC_MICROMIPS_CALL_LO16:
4297 case BFD_RELOC_MICROMIPS_SUB:
4298 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4299 case BFD_RELOC_MICROMIPS_GOT_OFST:
4300 case BFD_RELOC_MICROMIPS_GOT_DISP:
4301 case BFD_RELOC_MICROMIPS_HIGHEST:
4302 case BFD_RELOC_MICROMIPS_HIGHER:
4303 case BFD_RELOC_MICROMIPS_SCN_DISP:
4304 case BFD_RELOC_MICROMIPS_JALR:
4305 return TRUE;
4306
4307 default:
4308 return FALSE;
4309 }
4310 }
4311
4312 static inline bfd_boolean
4313 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4314 {
4315 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4316 }
4317
4318 static inline bfd_boolean
4319 b_reloc_p (bfd_reloc_code_real_type reloc)
4320 {
4321 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4322 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4323 || reloc == BFD_RELOC_16_PCREL_S2
4324 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4325 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4326 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4327 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4328 }
4329
4330 static inline bfd_boolean
4331 got16_reloc_p (bfd_reloc_code_real_type reloc)
4332 {
4333 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4334 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4335 }
4336
4337 static inline bfd_boolean
4338 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4339 {
4340 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4341 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4342 }
4343
4344 static inline bfd_boolean
4345 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4346 {
4347 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4348 || reloc == BFD_RELOC_MICROMIPS_LO16);
4349 }
4350
4351 static inline bfd_boolean
4352 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4353 {
4354 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4355 }
4356
4357 static inline bfd_boolean
4358 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4359 {
4360 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4361 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4362 }
4363
4364 /* Return true if RELOC is a PC-relative relocation that does not have
4365 full address range. */
4366
4367 static inline bfd_boolean
4368 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4369 {
4370 switch (reloc)
4371 {
4372 case BFD_RELOC_16_PCREL_S2:
4373 case BFD_RELOC_MIPS16_16_PCREL_S1:
4374 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4375 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4376 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4377 case BFD_RELOC_MIPS_21_PCREL_S2:
4378 case BFD_RELOC_MIPS_26_PCREL_S2:
4379 case BFD_RELOC_MIPS_18_PCREL_S3:
4380 case BFD_RELOC_MIPS_19_PCREL_S2:
4381 return TRUE;
4382
4383 case BFD_RELOC_32_PCREL:
4384 case BFD_RELOC_HI16_S_PCREL:
4385 case BFD_RELOC_LO16_PCREL:
4386 return HAVE_64BIT_ADDRESSES;
4387
4388 default:
4389 return FALSE;
4390 }
4391 }
4392
4393 /* Return true if the given relocation might need a matching %lo().
4394 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4395 need a matching %lo() when applied to local symbols. */
4396
4397 static inline bfd_boolean
4398 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4399 {
4400 return (HAVE_IN_PLACE_ADDENDS
4401 && (hi16_reloc_p (reloc)
4402 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4403 all GOT16 relocations evaluate to "G". */
4404 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4405 }
4406
4407 /* Return the type of %lo() reloc needed by RELOC, given that
4408 reloc_needs_lo_p. */
4409
4410 static inline bfd_reloc_code_real_type
4411 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4412 {
4413 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4414 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4415 : BFD_RELOC_LO16));
4416 }
4417
4418 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4419 relocation. */
4420
4421 static inline bfd_boolean
4422 fixup_has_matching_lo_p (fixS *fixp)
4423 {
4424 return (fixp->fx_next != NULL
4425 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4426 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4427 && fixp->fx_offset == fixp->fx_next->fx_offset);
4428 }
4429
4430 /* Move all labels in LABELS to the current insertion point. TEXT_P
4431 says whether the labels refer to text or data. */
4432
4433 static void
4434 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4435 {
4436 struct insn_label_list *l;
4437 valueT val;
4438
4439 for (l = labels; l != NULL; l = l->next)
4440 {
4441 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4442 symbol_set_frag (l->label, frag_now);
4443 val = (valueT) frag_now_fix ();
4444 /* MIPS16/microMIPS text labels are stored as odd. */
4445 if (text_p && HAVE_CODE_COMPRESSION)
4446 ++val;
4447 S_SET_VALUE (l->label, val);
4448 }
4449 }
4450
4451 /* Move all labels in insn_labels to the current insertion point
4452 and treat them as text labels. */
4453
4454 static void
4455 mips_move_text_labels (void)
4456 {
4457 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4458 }
4459
4460 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4461
4462 static bfd_boolean
4463 s_is_linkonce (symbolS *sym, segT from_seg)
4464 {
4465 bfd_boolean linkonce = FALSE;
4466 segT symseg = S_GET_SEGMENT (sym);
4467
4468 if (symseg != from_seg && !S_IS_LOCAL (sym))
4469 {
4470 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4471 linkonce = TRUE;
4472 /* The GNU toolchain uses an extension for ELF: a section
4473 beginning with the magic string .gnu.linkonce is a
4474 linkonce section. */
4475 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4476 sizeof ".gnu.linkonce" - 1) == 0)
4477 linkonce = TRUE;
4478 }
4479 return linkonce;
4480 }
4481
4482 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4483 linker to handle them specially, such as generating jalx instructions
4484 when needed. We also make them odd for the duration of the assembly,
4485 in order to generate the right sort of code. We will make them even
4486 in the adjust_symtab routine, while leaving them marked. This is
4487 convenient for the debugger and the disassembler. The linker knows
4488 to make them odd again. */
4489
4490 static void
4491 mips_compressed_mark_label (symbolS *label)
4492 {
4493 gas_assert (HAVE_CODE_COMPRESSION);
4494
4495 if (mips_opts.mips16)
4496 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4497 else
4498 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4499 if ((S_GET_VALUE (label) & 1) == 0
4500 /* Don't adjust the address if the label is global or weak, or
4501 in a link-once section, since we'll be emitting symbol reloc
4502 references to it which will be patched up by the linker, and
4503 the final value of the symbol may or may not be MIPS16/microMIPS. */
4504 && !S_IS_WEAK (label)
4505 && !S_IS_EXTERNAL (label)
4506 && !s_is_linkonce (label, now_seg))
4507 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4508 }
4509
4510 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4511
4512 static void
4513 mips_compressed_mark_labels (void)
4514 {
4515 struct insn_label_list *l;
4516
4517 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4518 mips_compressed_mark_label (l->label);
4519 }
4520
4521 /* End the current frag. Make it a variant frag and record the
4522 relaxation info. */
4523
4524 static void
4525 relax_close_frag (void)
4526 {
4527 mips_macro_warning.first_frag = frag_now;
4528 frag_var (rs_machine_dependent, 0, 0,
4529 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4530 mips_pic != NO_PIC),
4531 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4532
4533 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4534 mips_relax.first_fixup = 0;
4535 }
4536
4537 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4538 See the comment above RELAX_ENCODE for more details. */
4539
4540 static void
4541 relax_start (symbolS *symbol)
4542 {
4543 gas_assert (mips_relax.sequence == 0);
4544 mips_relax.sequence = 1;
4545 mips_relax.symbol = symbol;
4546 }
4547
4548 /* Start generating the second version of a relaxable sequence.
4549 See the comment above RELAX_ENCODE for more details. */
4550
4551 static void
4552 relax_switch (void)
4553 {
4554 gas_assert (mips_relax.sequence == 1);
4555 mips_relax.sequence = 2;
4556 }
4557
4558 /* End the current relaxable sequence. */
4559
4560 static void
4561 relax_end (void)
4562 {
4563 gas_assert (mips_relax.sequence == 2);
4564 relax_close_frag ();
4565 mips_relax.sequence = 0;
4566 }
4567
4568 /* Return true if IP is a delayed branch or jump. */
4569
4570 static inline bfd_boolean
4571 delayed_branch_p (const struct mips_cl_insn *ip)
4572 {
4573 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4574 | INSN_COND_BRANCH_DELAY
4575 | INSN_COND_BRANCH_LIKELY)) != 0;
4576 }
4577
4578 /* Return true if IP is a compact branch or jump. */
4579
4580 static inline bfd_boolean
4581 compact_branch_p (const struct mips_cl_insn *ip)
4582 {
4583 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4584 | INSN2_COND_BRANCH)) != 0;
4585 }
4586
4587 /* Return true if IP is an unconditional branch or jump. */
4588
4589 static inline bfd_boolean
4590 uncond_branch_p (const struct mips_cl_insn *ip)
4591 {
4592 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4593 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4594 }
4595
4596 /* Return true if IP is a branch-likely instruction. */
4597
4598 static inline bfd_boolean
4599 branch_likely_p (const struct mips_cl_insn *ip)
4600 {
4601 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4602 }
4603
4604 /* Return the type of nop that should be used to fill the delay slot
4605 of delayed branch IP. */
4606
4607 static struct mips_cl_insn *
4608 get_delay_slot_nop (const struct mips_cl_insn *ip)
4609 {
4610 if (mips_opts.micromips
4611 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4612 return &micromips_nop32_insn;
4613 return NOP_INSN;
4614 }
4615
4616 /* Return a mask that has bit N set if OPCODE reads the register(s)
4617 in operand N. */
4618
4619 static unsigned int
4620 insn_read_mask (const struct mips_opcode *opcode)
4621 {
4622 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4623 }
4624
4625 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4626 in operand N. */
4627
4628 static unsigned int
4629 insn_write_mask (const struct mips_opcode *opcode)
4630 {
4631 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4632 }
4633
4634 /* Return a mask of the registers specified by operand OPERAND of INSN.
4635 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4636 is set. */
4637
4638 static unsigned int
4639 operand_reg_mask (const struct mips_cl_insn *insn,
4640 const struct mips_operand *operand,
4641 unsigned int type_mask)
4642 {
4643 unsigned int uval, vsel;
4644
4645 switch (operand->type)
4646 {
4647 case OP_INT:
4648 case OP_MAPPED_INT:
4649 case OP_MSB:
4650 case OP_PCREL:
4651 case OP_PERF_REG:
4652 case OP_ADDIUSP_INT:
4653 case OP_ENTRY_EXIT_LIST:
4654 case OP_REPEAT_DEST_REG:
4655 case OP_REPEAT_PREV_REG:
4656 case OP_PC:
4657 case OP_VU0_SUFFIX:
4658 case OP_VU0_MATCH_SUFFIX:
4659 case OP_IMM_INDEX:
4660 abort ();
4661
4662 case OP_REG28:
4663 return 1 << 28;
4664
4665 case OP_REG:
4666 case OP_OPTIONAL_REG:
4667 {
4668 const struct mips_reg_operand *reg_op;
4669
4670 reg_op = (const struct mips_reg_operand *) operand;
4671 if (!(type_mask & (1 << reg_op->reg_type)))
4672 return 0;
4673 uval = insn_extract_operand (insn, operand);
4674 return 1 << mips_decode_reg_operand (reg_op, uval);
4675 }
4676
4677 case OP_REG_PAIR:
4678 {
4679 const struct mips_reg_pair_operand *pair_op;
4680
4681 pair_op = (const struct mips_reg_pair_operand *) operand;
4682 if (!(type_mask & (1 << pair_op->reg_type)))
4683 return 0;
4684 uval = insn_extract_operand (insn, operand);
4685 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4686 }
4687
4688 case OP_CLO_CLZ_DEST:
4689 if (!(type_mask & (1 << OP_REG_GP)))
4690 return 0;
4691 uval = insn_extract_operand (insn, operand);
4692 return (1 << (uval & 31)) | (1 << (uval >> 5));
4693
4694 case OP_SAME_RS_RT:
4695 if (!(type_mask & (1 << OP_REG_GP)))
4696 return 0;
4697 uval = insn_extract_operand (insn, operand);
4698 gas_assert ((uval & 31) == (uval >> 5));
4699 return 1 << (uval & 31);
4700
4701 case OP_CHECK_PREV:
4702 case OP_NON_ZERO_REG:
4703 if (!(type_mask & (1 << OP_REG_GP)))
4704 return 0;
4705 uval = insn_extract_operand (insn, operand);
4706 return 1 << (uval & 31);
4707
4708 case OP_LWM_SWM_LIST:
4709 abort ();
4710
4711 case OP_SAVE_RESTORE_LIST:
4712 abort ();
4713
4714 case OP_MDMX_IMM_REG:
4715 if (!(type_mask & (1 << OP_REG_VEC)))
4716 return 0;
4717 uval = insn_extract_operand (insn, operand);
4718 vsel = uval >> 5;
4719 if ((vsel & 0x18) == 0x18)
4720 return 0;
4721 return 1 << (uval & 31);
4722
4723 case OP_REG_INDEX:
4724 if (!(type_mask & (1 << OP_REG_GP)))
4725 return 0;
4726 return 1 << insn_extract_operand (insn, operand);
4727 }
4728 abort ();
4729 }
4730
4731 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4732 where bit N of OPNO_MASK is set if operand N should be included.
4733 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4734 is set. */
4735
4736 static unsigned int
4737 insn_reg_mask (const struct mips_cl_insn *insn,
4738 unsigned int type_mask, unsigned int opno_mask)
4739 {
4740 unsigned int opno, reg_mask;
4741
4742 opno = 0;
4743 reg_mask = 0;
4744 while (opno_mask != 0)
4745 {
4746 if (opno_mask & 1)
4747 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4748 opno_mask >>= 1;
4749 opno += 1;
4750 }
4751 return reg_mask;
4752 }
4753
4754 /* Return the mask of core registers that IP reads. */
4755
4756 static unsigned int
4757 gpr_read_mask (const struct mips_cl_insn *ip)
4758 {
4759 unsigned long pinfo, pinfo2;
4760 unsigned int mask;
4761
4762 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4763 pinfo = ip->insn_mo->pinfo;
4764 pinfo2 = ip->insn_mo->pinfo2;
4765 if (pinfo & INSN_UDI)
4766 {
4767 /* UDI instructions have traditionally been assumed to read RS
4768 and RT. */
4769 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4770 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4771 }
4772 if (pinfo & INSN_READ_GPR_24)
4773 mask |= 1 << 24;
4774 if (pinfo2 & INSN2_READ_GPR_16)
4775 mask |= 1 << 16;
4776 if (pinfo2 & INSN2_READ_SP)
4777 mask |= 1 << SP;
4778 if (pinfo2 & INSN2_READ_GPR_31)
4779 mask |= 1 << 31;
4780 /* Don't include register 0. */
4781 return mask & ~1;
4782 }
4783
4784 /* Return the mask of core registers that IP writes. */
4785
4786 static unsigned int
4787 gpr_write_mask (const struct mips_cl_insn *ip)
4788 {
4789 unsigned long pinfo, pinfo2;
4790 unsigned int mask;
4791
4792 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4793 pinfo = ip->insn_mo->pinfo;
4794 pinfo2 = ip->insn_mo->pinfo2;
4795 if (pinfo & INSN_WRITE_GPR_24)
4796 mask |= 1 << 24;
4797 if (pinfo & INSN_WRITE_GPR_31)
4798 mask |= 1 << 31;
4799 if (pinfo & INSN_UDI)
4800 /* UDI instructions have traditionally been assumed to write to RD. */
4801 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4802 if (pinfo2 & INSN2_WRITE_SP)
4803 mask |= 1 << SP;
4804 /* Don't include register 0. */
4805 return mask & ~1;
4806 }
4807
4808 /* Return the mask of floating-point registers that IP reads. */
4809
4810 static unsigned int
4811 fpr_read_mask (const struct mips_cl_insn *ip)
4812 {
4813 unsigned long pinfo;
4814 unsigned int mask;
4815
4816 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4817 | (1 << OP_REG_MSA)),
4818 insn_read_mask (ip->insn_mo));
4819 pinfo = ip->insn_mo->pinfo;
4820 /* Conservatively treat all operands to an FP_D instruction are doubles.
4821 (This is overly pessimistic for things like cvt.d.s.) */
4822 if (FPR_SIZE != 64 && (pinfo & FP_D))
4823 mask |= mask << 1;
4824 return mask;
4825 }
4826
4827 /* Return the mask of floating-point registers that IP writes. */
4828
4829 static unsigned int
4830 fpr_write_mask (const struct mips_cl_insn *ip)
4831 {
4832 unsigned long pinfo;
4833 unsigned int mask;
4834
4835 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4836 | (1 << OP_REG_MSA)),
4837 insn_write_mask (ip->insn_mo));
4838 pinfo = ip->insn_mo->pinfo;
4839 /* Conservatively treat all operands to an FP_D instruction are doubles.
4840 (This is overly pessimistic for things like cvt.s.d.) */
4841 if (FPR_SIZE != 64 && (pinfo & FP_D))
4842 mask |= mask << 1;
4843 return mask;
4844 }
4845
4846 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4847 Check whether that is allowed. */
4848
4849 static bfd_boolean
4850 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4851 {
4852 const char *s = insn->name;
4853 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4854 || FPR_SIZE == 64)
4855 && mips_opts.oddspreg;
4856
4857 if (insn->pinfo == INSN_MACRO)
4858 /* Let a macro pass, we'll catch it later when it is expanded. */
4859 return TRUE;
4860
4861 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4862 otherwise it depends on oddspreg. */
4863 if ((insn->pinfo & FP_S)
4864 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4865 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4866 return FPR_SIZE == 32 || oddspreg;
4867
4868 /* Allow odd registers for single-precision ops and double-precision if the
4869 floating-point registers are 64-bit wide. */
4870 switch (insn->pinfo & (FP_S | FP_D))
4871 {
4872 case FP_S:
4873 case 0:
4874 return oddspreg;
4875 case FP_D:
4876 return FPR_SIZE == 64;
4877 default:
4878 break;
4879 }
4880
4881 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4882 s = strchr (insn->name, '.');
4883 if (s != NULL && opnum == 2)
4884 s = strchr (s + 1, '.');
4885 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4886 return oddspreg;
4887
4888 return FPR_SIZE == 64;
4889 }
4890
4891 /* Information about an instruction argument that we're trying to match. */
4892 struct mips_arg_info
4893 {
4894 /* The instruction so far. */
4895 struct mips_cl_insn *insn;
4896
4897 /* The first unconsumed operand token. */
4898 struct mips_operand_token *token;
4899
4900 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4901 int opnum;
4902
4903 /* The 1-based argument number, for error reporting. This does not
4904 count elided optional registers, etc.. */
4905 int argnum;
4906
4907 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4908 unsigned int last_regno;
4909
4910 /* If the first operand was an OP_REG, this is the register that it
4911 specified, otherwise it is ILLEGAL_REG. */
4912 unsigned int dest_regno;
4913
4914 /* The value of the last OP_INT operand. Only used for OP_MSB,
4915 where it gives the lsb position. */
4916 unsigned int last_op_int;
4917
4918 /* If true, match routines should assume that no later instruction
4919 alternative matches and should therefore be as accommodating as
4920 possible. Match routines should not report errors if something
4921 is only invalid for !LAX_MATCH. */
4922 bfd_boolean lax_match;
4923
4924 /* True if a reference to the current AT register was seen. */
4925 bfd_boolean seen_at;
4926 };
4927
4928 /* Record that the argument is out of range. */
4929
4930 static void
4931 match_out_of_range (struct mips_arg_info *arg)
4932 {
4933 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4934 }
4935
4936 /* Record that the argument isn't constant but needs to be. */
4937
4938 static void
4939 match_not_constant (struct mips_arg_info *arg)
4940 {
4941 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4942 arg->argnum);
4943 }
4944
4945 /* Try to match an OT_CHAR token for character CH. Consume the token
4946 and return true on success, otherwise return false. */
4947
4948 static bfd_boolean
4949 match_char (struct mips_arg_info *arg, char ch)
4950 {
4951 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4952 {
4953 ++arg->token;
4954 if (ch == ',')
4955 arg->argnum += 1;
4956 return TRUE;
4957 }
4958 return FALSE;
4959 }
4960
4961 /* Try to get an expression from the next tokens in ARG. Consume the
4962 tokens and return true on success, storing the expression value in
4963 VALUE and relocation types in R. */
4964
4965 static bfd_boolean
4966 match_expression (struct mips_arg_info *arg, expressionS *value,
4967 bfd_reloc_code_real_type *r)
4968 {
4969 /* If the next token is a '(' that was parsed as being part of a base
4970 expression, assume we have an elided offset. The later match will fail
4971 if this turns out to be wrong. */
4972 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4973 {
4974 value->X_op = O_constant;
4975 value->X_add_number = 0;
4976 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4977 return TRUE;
4978 }
4979
4980 /* Reject register-based expressions such as "0+$2" and "(($2))".
4981 For plain registers the default error seems more appropriate. */
4982 if (arg->token->type == OT_INTEGER
4983 && arg->token->u.integer.value.X_op == O_register)
4984 {
4985 set_insn_error (arg->argnum, _("register value used as expression"));
4986 return FALSE;
4987 }
4988
4989 if (arg->token->type == OT_INTEGER)
4990 {
4991 *value = arg->token->u.integer.value;
4992 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4993 ++arg->token;
4994 return TRUE;
4995 }
4996
4997 set_insn_error_i
4998 (arg->argnum, _("operand %d must be an immediate expression"),
4999 arg->argnum);
5000 return FALSE;
5001 }
5002
5003 /* Try to get a constant expression from the next tokens in ARG. Consume
5004 the tokens and return true on success, storing the constant value
5005 in *VALUE. */
5006
5007 static bfd_boolean
5008 match_const_int (struct mips_arg_info *arg, offsetT *value)
5009 {
5010 expressionS ex;
5011 bfd_reloc_code_real_type r[3];
5012
5013 if (!match_expression (arg, &ex, r))
5014 return FALSE;
5015
5016 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
5017 *value = ex.X_add_number;
5018 else
5019 {
5020 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
5021 match_out_of_range (arg);
5022 else
5023 match_not_constant (arg);
5024 return FALSE;
5025 }
5026 return TRUE;
5027 }
5028
5029 /* Return the RTYPE_* flags for a register operand of type TYPE that
5030 appears in instruction OPCODE. */
5031
5032 static unsigned int
5033 convert_reg_type (const struct mips_opcode *opcode,
5034 enum mips_reg_operand_type type)
5035 {
5036 switch (type)
5037 {
5038 case OP_REG_GP:
5039 return RTYPE_NUM | RTYPE_GP;
5040
5041 case OP_REG_FP:
5042 /* Allow vector register names for MDMX if the instruction is a 64-bit
5043 FPR load, store or move (including moves to and from GPRs). */
5044 if ((mips_opts.ase & ASE_MDMX)
5045 && (opcode->pinfo & FP_D)
5046 && (opcode->pinfo & (INSN_COPROC_MOVE
5047 | INSN_COPROC_MEMORY_DELAY
5048 | INSN_LOAD_COPROC
5049 | INSN_LOAD_MEMORY
5050 | INSN_STORE_MEMORY)))
5051 return RTYPE_FPU | RTYPE_VEC;
5052 return RTYPE_FPU;
5053
5054 case OP_REG_CCC:
5055 if (opcode->pinfo & (FP_D | FP_S))
5056 return RTYPE_CCC | RTYPE_FCC;
5057 return RTYPE_CCC;
5058
5059 case OP_REG_VEC:
5060 if (opcode->membership & INSN_5400)
5061 return RTYPE_FPU;
5062 return RTYPE_FPU | RTYPE_VEC;
5063
5064 case OP_REG_ACC:
5065 return RTYPE_ACC;
5066
5067 case OP_REG_COPRO:
5068 if (opcode->name[strlen (opcode->name) - 1] == '0')
5069 return RTYPE_NUM | RTYPE_CP0;
5070 return RTYPE_NUM;
5071
5072 case OP_REG_HW:
5073 return RTYPE_NUM;
5074
5075 case OP_REG_VI:
5076 return RTYPE_NUM | RTYPE_VI;
5077
5078 case OP_REG_VF:
5079 return RTYPE_NUM | RTYPE_VF;
5080
5081 case OP_REG_R5900_I:
5082 return RTYPE_R5900_I;
5083
5084 case OP_REG_R5900_Q:
5085 return RTYPE_R5900_Q;
5086
5087 case OP_REG_R5900_R:
5088 return RTYPE_R5900_R;
5089
5090 case OP_REG_R5900_ACC:
5091 return RTYPE_R5900_ACC;
5092
5093 case OP_REG_MSA:
5094 return RTYPE_MSA;
5095
5096 case OP_REG_MSA_CTRL:
5097 return RTYPE_NUM;
5098 }
5099 abort ();
5100 }
5101
5102 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
5103
5104 static void
5105 check_regno (struct mips_arg_info *arg,
5106 enum mips_reg_operand_type type, unsigned int regno)
5107 {
5108 if (AT && type == OP_REG_GP && regno == AT)
5109 arg->seen_at = TRUE;
5110
5111 if (type == OP_REG_FP
5112 && (regno & 1) != 0
5113 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
5114 {
5115 /* This was a warning prior to introducing O32 FPXX and FP64 support
5116 so maintain a warning for FP32 but raise an error for the new
5117 cases. */
5118 if (FPR_SIZE == 32)
5119 as_warn (_("float register should be even, was %d"), regno);
5120 else
5121 as_bad (_("float register should be even, was %d"), regno);
5122 }
5123
5124 if (type == OP_REG_CCC)
5125 {
5126 const char *name;
5127 size_t length;
5128
5129 name = arg->insn->insn_mo->name;
5130 length = strlen (name);
5131 if ((regno & 1) != 0
5132 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5133 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
5134 as_warn (_("condition code register should be even for %s, was %d"),
5135 name, regno);
5136
5137 if ((regno & 3) != 0
5138 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
5139 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
5140 name, regno);
5141 }
5142 }
5143
5144 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
5145 a register of type TYPE. Return true on success, storing the register
5146 number in *REGNO and warning about any dubious uses. */
5147
5148 static bfd_boolean
5149 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5150 unsigned int symval, unsigned int *regno)
5151 {
5152 if (type == OP_REG_VEC)
5153 symval = mips_prefer_vec_regno (symval);
5154 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5155 return FALSE;
5156
5157 *regno = symval & RNUM_MASK;
5158 check_regno (arg, type, *regno);
5159 return TRUE;
5160 }
5161
5162 /* Try to interpret the next token in ARG as a register of type TYPE.
5163 Consume the token and return true on success, storing the register
5164 number in *REGNO. Return false on failure. */
5165
5166 static bfd_boolean
5167 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5168 unsigned int *regno)
5169 {
5170 if (arg->token->type == OT_REG
5171 && match_regno (arg, type, arg->token->u.regno, regno))
5172 {
5173 ++arg->token;
5174 return TRUE;
5175 }
5176 return FALSE;
5177 }
5178
5179 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5180 Consume the token and return true on success, storing the register numbers
5181 in *REGNO1 and *REGNO2. Return false on failure. */
5182
5183 static bfd_boolean
5184 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5185 unsigned int *regno1, unsigned int *regno2)
5186 {
5187 if (match_reg (arg, type, regno1))
5188 {
5189 *regno2 = *regno1;
5190 return TRUE;
5191 }
5192 if (arg->token->type == OT_REG_RANGE
5193 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5194 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5195 && *regno1 <= *regno2)
5196 {
5197 ++arg->token;
5198 return TRUE;
5199 }
5200 return FALSE;
5201 }
5202
5203 /* OP_INT matcher. */
5204
5205 static bfd_boolean
5206 match_int_operand (struct mips_arg_info *arg,
5207 const struct mips_operand *operand_base)
5208 {
5209 const struct mips_int_operand *operand;
5210 unsigned int uval;
5211 int min_val, max_val, factor;
5212 offsetT sval;
5213
5214 operand = (const struct mips_int_operand *) operand_base;
5215 factor = 1 << operand->shift;
5216 min_val = mips_int_operand_min (operand);
5217 max_val = mips_int_operand_max (operand);
5218
5219 if (operand_base->lsb == 0
5220 && operand_base->size == 16
5221 && operand->shift == 0
5222 && operand->bias == 0
5223 && (operand->max_val == 32767 || operand->max_val == 65535))
5224 {
5225 /* The operand can be relocated. */
5226 if (!match_expression (arg, &offset_expr, offset_reloc))
5227 return FALSE;
5228
5229 if (offset_expr.X_op == O_big)
5230 {
5231 match_out_of_range (arg);
5232 return FALSE;
5233 }
5234
5235 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5236 /* Relocation operators were used. Accept the argument and
5237 leave the relocation value in offset_expr and offset_relocs
5238 for the caller to process. */
5239 return TRUE;
5240
5241 if (offset_expr.X_op != O_constant)
5242 {
5243 /* Accept non-constant operands if no later alternative matches,
5244 leaving it for the caller to process. */
5245 if (!arg->lax_match)
5246 {
5247 match_not_constant (arg);
5248 return FALSE;
5249 }
5250 offset_reloc[0] = BFD_RELOC_LO16;
5251 return TRUE;
5252 }
5253
5254 /* Clear the global state; we're going to install the operand
5255 ourselves. */
5256 sval = offset_expr.X_add_number;
5257 offset_expr.X_op = O_absent;
5258
5259 /* For compatibility with older assemblers, we accept
5260 0x8000-0xffff as signed 16-bit numbers when only
5261 signed numbers are allowed. */
5262 if (sval > max_val)
5263 {
5264 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5265 if (!arg->lax_match && sval <= max_val)
5266 {
5267 match_out_of_range (arg);
5268 return FALSE;
5269 }
5270 }
5271 }
5272 else
5273 {
5274 if (!match_const_int (arg, &sval))
5275 return FALSE;
5276 }
5277
5278 arg->last_op_int = sval;
5279
5280 if (sval < min_val || sval > max_val || sval % factor)
5281 {
5282 match_out_of_range (arg);
5283 return FALSE;
5284 }
5285
5286 uval = (unsigned int) sval >> operand->shift;
5287 uval -= operand->bias;
5288
5289 /* Handle -mfix-cn63xxp1. */
5290 if (arg->opnum == 1
5291 && mips_fix_cn63xxp1
5292 && !mips_opts.micromips
5293 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5294 switch (uval)
5295 {
5296 case 5:
5297 case 25:
5298 case 26:
5299 case 27:
5300 case 28:
5301 case 29:
5302 case 30:
5303 case 31:
5304 /* These are ok. */
5305 break;
5306
5307 default:
5308 /* The rest must be changed to 28. */
5309 uval = 28;
5310 break;
5311 }
5312
5313 insn_insert_operand (arg->insn, operand_base, uval);
5314 return TRUE;
5315 }
5316
5317 /* OP_MAPPED_INT matcher. */
5318
5319 static bfd_boolean
5320 match_mapped_int_operand (struct mips_arg_info *arg,
5321 const struct mips_operand *operand_base)
5322 {
5323 const struct mips_mapped_int_operand *operand;
5324 unsigned int uval, num_vals;
5325 offsetT sval;
5326
5327 operand = (const struct mips_mapped_int_operand *) operand_base;
5328 if (!match_const_int (arg, &sval))
5329 return FALSE;
5330
5331 num_vals = 1 << operand_base->size;
5332 for (uval = 0; uval < num_vals; uval++)
5333 if (operand->int_map[uval] == sval)
5334 break;
5335 if (uval == num_vals)
5336 {
5337 match_out_of_range (arg);
5338 return FALSE;
5339 }
5340
5341 insn_insert_operand (arg->insn, operand_base, uval);
5342 return TRUE;
5343 }
5344
5345 /* OP_MSB matcher. */
5346
5347 static bfd_boolean
5348 match_msb_operand (struct mips_arg_info *arg,
5349 const struct mips_operand *operand_base)
5350 {
5351 const struct mips_msb_operand *operand;
5352 int min_val, max_val, max_high;
5353 offsetT size, sval, high;
5354
5355 operand = (const struct mips_msb_operand *) operand_base;
5356 min_val = operand->bias;
5357 max_val = min_val + (1 << operand_base->size) - 1;
5358 max_high = operand->opsize;
5359
5360 if (!match_const_int (arg, &size))
5361 return FALSE;
5362
5363 high = size + arg->last_op_int;
5364 sval = operand->add_lsb ? high : size;
5365
5366 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5367 {
5368 match_out_of_range (arg);
5369 return FALSE;
5370 }
5371 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5372 return TRUE;
5373 }
5374
5375 /* OP_REG matcher. */
5376
5377 static bfd_boolean
5378 match_reg_operand (struct mips_arg_info *arg,
5379 const struct mips_operand *operand_base)
5380 {
5381 const struct mips_reg_operand *operand;
5382 unsigned int regno, uval, num_vals;
5383
5384 operand = (const struct mips_reg_operand *) operand_base;
5385 if (!match_reg (arg, operand->reg_type, &regno))
5386 return FALSE;
5387
5388 if (operand->reg_map)
5389 {
5390 num_vals = 1 << operand->root.size;
5391 for (uval = 0; uval < num_vals; uval++)
5392 if (operand->reg_map[uval] == regno)
5393 break;
5394 if (num_vals == uval)
5395 return FALSE;
5396 }
5397 else
5398 uval = regno;
5399
5400 arg->last_regno = regno;
5401 if (arg->opnum == 1)
5402 arg->dest_regno = regno;
5403 insn_insert_operand (arg->insn, operand_base, uval);
5404 return TRUE;
5405 }
5406
5407 /* OP_REG_PAIR matcher. */
5408
5409 static bfd_boolean
5410 match_reg_pair_operand (struct mips_arg_info *arg,
5411 const struct mips_operand *operand_base)
5412 {
5413 const struct mips_reg_pair_operand *operand;
5414 unsigned int regno1, regno2, uval, num_vals;
5415
5416 operand = (const struct mips_reg_pair_operand *) operand_base;
5417 if (!match_reg (arg, operand->reg_type, &regno1)
5418 || !match_char (arg, ',')
5419 || !match_reg (arg, operand->reg_type, &regno2))
5420 return FALSE;
5421
5422 num_vals = 1 << operand_base->size;
5423 for (uval = 0; uval < num_vals; uval++)
5424 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5425 break;
5426 if (uval == num_vals)
5427 return FALSE;
5428
5429 insn_insert_operand (arg->insn, operand_base, uval);
5430 return TRUE;
5431 }
5432
5433 /* OP_PCREL matcher. The caller chooses the relocation type. */
5434
5435 static bfd_boolean
5436 match_pcrel_operand (struct mips_arg_info *arg)
5437 {
5438 bfd_reloc_code_real_type r[3];
5439
5440 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5441 }
5442
5443 /* OP_PERF_REG matcher. */
5444
5445 static bfd_boolean
5446 match_perf_reg_operand (struct mips_arg_info *arg,
5447 const struct mips_operand *operand)
5448 {
5449 offsetT sval;
5450
5451 if (!match_const_int (arg, &sval))
5452 return FALSE;
5453
5454 if (sval != 0
5455 && (sval != 1
5456 || (mips_opts.arch == CPU_R5900
5457 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5458 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5459 {
5460 set_insn_error (arg->argnum, _("invalid performance register"));
5461 return FALSE;
5462 }
5463
5464 insn_insert_operand (arg->insn, operand, sval);
5465 return TRUE;
5466 }
5467
5468 /* OP_ADDIUSP matcher. */
5469
5470 static bfd_boolean
5471 match_addiusp_operand (struct mips_arg_info *arg,
5472 const struct mips_operand *operand)
5473 {
5474 offsetT sval;
5475 unsigned int uval;
5476
5477 if (!match_const_int (arg, &sval))
5478 return FALSE;
5479
5480 if (sval % 4)
5481 {
5482 match_out_of_range (arg);
5483 return FALSE;
5484 }
5485
5486 sval /= 4;
5487 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5488 {
5489 match_out_of_range (arg);
5490 return FALSE;
5491 }
5492
5493 uval = (unsigned int) sval;
5494 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5495 insn_insert_operand (arg->insn, operand, uval);
5496 return TRUE;
5497 }
5498
5499 /* OP_CLO_CLZ_DEST matcher. */
5500
5501 static bfd_boolean
5502 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5503 const struct mips_operand *operand)
5504 {
5505 unsigned int regno;
5506
5507 if (!match_reg (arg, OP_REG_GP, &regno))
5508 return FALSE;
5509
5510 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5511 return TRUE;
5512 }
5513
5514 /* OP_CHECK_PREV matcher. */
5515
5516 static bfd_boolean
5517 match_check_prev_operand (struct mips_arg_info *arg,
5518 const struct mips_operand *operand_base)
5519 {
5520 const struct mips_check_prev_operand *operand;
5521 unsigned int regno;
5522
5523 operand = (const struct mips_check_prev_operand *) operand_base;
5524
5525 if (!match_reg (arg, OP_REG_GP, &regno))
5526 return FALSE;
5527
5528 if (!operand->zero_ok && regno == 0)
5529 return FALSE;
5530
5531 if ((operand->less_than_ok && regno < arg->last_regno)
5532 || (operand->greater_than_ok && regno > arg->last_regno)
5533 || (operand->equal_ok && regno == arg->last_regno))
5534 {
5535 arg->last_regno = regno;
5536 insn_insert_operand (arg->insn, operand_base, regno);
5537 return TRUE;
5538 }
5539
5540 return FALSE;
5541 }
5542
5543 /* OP_SAME_RS_RT matcher. */
5544
5545 static bfd_boolean
5546 match_same_rs_rt_operand (struct mips_arg_info *arg,
5547 const struct mips_operand *operand)
5548 {
5549 unsigned int regno;
5550
5551 if (!match_reg (arg, OP_REG_GP, &regno))
5552 return FALSE;
5553
5554 if (regno == 0)
5555 {
5556 set_insn_error (arg->argnum, _("the source register must not be $0"));
5557 return FALSE;
5558 }
5559
5560 arg->last_regno = regno;
5561
5562 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5563 return TRUE;
5564 }
5565
5566 /* OP_LWM_SWM_LIST matcher. */
5567
5568 static bfd_boolean
5569 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5570 const struct mips_operand *operand)
5571 {
5572 unsigned int reglist, sregs, ra, regno1, regno2;
5573 struct mips_arg_info reset;
5574
5575 reglist = 0;
5576 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5577 return FALSE;
5578 do
5579 {
5580 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5581 {
5582 reglist |= 1 << FP;
5583 regno2 = S7;
5584 }
5585 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5586 reset = *arg;
5587 }
5588 while (match_char (arg, ',')
5589 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5590 *arg = reset;
5591
5592 if (operand->size == 2)
5593 {
5594 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5595
5596 s0, ra
5597 s0, s1, ra, s2, s3
5598 s0-s2, ra
5599
5600 and any permutations of these. */
5601 if ((reglist & 0xfff1ffff) != 0x80010000)
5602 return FALSE;
5603
5604 sregs = (reglist >> 17) & 7;
5605 ra = 0;
5606 }
5607 else
5608 {
5609 /* The list must include at least one of ra and s0-sN,
5610 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5611 which are $23 and $30 respectively.) E.g.:
5612
5613 ra
5614 s0
5615 ra, s0, s1, s2
5616 s0-s8
5617 s0-s5, ra
5618
5619 and any permutations of these. */
5620 if ((reglist & 0x3f00ffff) != 0)
5621 return FALSE;
5622
5623 ra = (reglist >> 27) & 0x10;
5624 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5625 }
5626 sregs += 1;
5627 if ((sregs & -sregs) != sregs)
5628 return FALSE;
5629
5630 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5631 return TRUE;
5632 }
5633
5634 /* OP_ENTRY_EXIT_LIST matcher. */
5635
5636 static unsigned int
5637 match_entry_exit_operand (struct mips_arg_info *arg,
5638 const struct mips_operand *operand)
5639 {
5640 unsigned int mask;
5641 bfd_boolean is_exit;
5642
5643 /* The format is the same for both ENTRY and EXIT, but the constraints
5644 are different. */
5645 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5646 mask = (is_exit ? 7 << 3 : 0);
5647 do
5648 {
5649 unsigned int regno1, regno2;
5650 bfd_boolean is_freg;
5651
5652 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5653 is_freg = FALSE;
5654 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5655 is_freg = TRUE;
5656 else
5657 return FALSE;
5658
5659 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5660 {
5661 mask &= ~(7 << 3);
5662 mask |= (5 + regno2) << 3;
5663 }
5664 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5665 mask |= (regno2 - 3) << 3;
5666 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5667 mask |= (regno2 - 15) << 1;
5668 else if (regno1 == RA && regno2 == RA)
5669 mask |= 1;
5670 else
5671 return FALSE;
5672 }
5673 while (match_char (arg, ','));
5674
5675 insn_insert_operand (arg->insn, operand, mask);
5676 return TRUE;
5677 }
5678
5679 /* Encode regular MIPS SAVE/RESTORE instruction operands according to
5680 the argument register mask AMASK, the number of static registers
5681 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5682 respectively, and the frame size FRAME_SIZE. */
5683
5684 static unsigned int
5685 mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5686 unsigned int ra, unsigned int s0, unsigned int s1,
5687 unsigned int frame_size)
5688 {
5689 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5690 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5691 }
5692
5693 /* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5694 argument register mask AMASK, the number of static registers saved
5695 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5696 respectively, and the frame size FRAME_SIZE. */
5697
5698 static unsigned int
5699 mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5700 unsigned int ra, unsigned int s0, unsigned int s1,
5701 unsigned int frame_size)
5702 {
5703 unsigned int args;
5704
5705 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5706 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5707 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5708 | ((frame_size & 0xf0) << 16));
5709 return args;
5710 }
5711
5712 /* OP_SAVE_RESTORE_LIST matcher. */
5713
5714 static bfd_boolean
5715 match_save_restore_list_operand (struct mips_arg_info *arg)
5716 {
5717 unsigned int opcode, args, statics, sregs;
5718 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5719 unsigned int arg_mask, ra, s0, s1;
5720 offsetT frame_size;
5721
5722 opcode = arg->insn->insn_opcode;
5723 frame_size = 0;
5724 num_frame_sizes = 0;
5725 args = 0;
5726 statics = 0;
5727 sregs = 0;
5728 ra = 0;
5729 s0 = 0;
5730 s1 = 0;
5731 do
5732 {
5733 unsigned int regno1, regno2;
5734
5735 if (arg->token->type == OT_INTEGER)
5736 {
5737 /* Handle the frame size. */
5738 if (!match_const_int (arg, &frame_size))
5739 return FALSE;
5740 num_frame_sizes += 1;
5741 }
5742 else
5743 {
5744 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5745 return FALSE;
5746
5747 while (regno1 <= regno2)
5748 {
5749 if (regno1 >= 4 && regno1 <= 7)
5750 {
5751 if (num_frame_sizes == 0)
5752 /* args $a0-$a3 */
5753 args |= 1 << (regno1 - 4);
5754 else
5755 /* statics $a0-$a3 */
5756 statics |= 1 << (regno1 - 4);
5757 }
5758 else if (regno1 >= 16 && regno1 <= 23)
5759 /* $s0-$s7 */
5760 sregs |= 1 << (regno1 - 16);
5761 else if (regno1 == 30)
5762 /* $s8 */
5763 sregs |= 1 << 8;
5764 else if (regno1 == 31)
5765 /* Add $ra to insn. */
5766 ra = 1;
5767 else
5768 return FALSE;
5769 regno1 += 1;
5770 if (regno1 == 24)
5771 regno1 = 30;
5772 }
5773 }
5774 }
5775 while (match_char (arg, ','));
5776
5777 /* Encode args/statics combination. */
5778 if (args & statics)
5779 return FALSE;
5780 else if (args == 0xf)
5781 /* All $a0-$a3 are args. */
5782 arg_mask = MIPS_SVRS_ALL_ARGS;
5783 else if (statics == 0xf)
5784 /* All $a0-$a3 are statics. */
5785 arg_mask = MIPS_SVRS_ALL_STATICS;
5786 else
5787 {
5788 /* Count arg registers. */
5789 num_args = 0;
5790 while (args & 0x1)
5791 {
5792 args >>= 1;
5793 num_args += 1;
5794 }
5795 if (args != 0)
5796 return FALSE;
5797
5798 /* Count static registers. */
5799 num_statics = 0;
5800 while (statics & 0x8)
5801 {
5802 statics = (statics << 1) & 0xf;
5803 num_statics += 1;
5804 }
5805 if (statics != 0)
5806 return FALSE;
5807
5808 /* Encode args/statics. */
5809 arg_mask = (num_args << 2) | num_statics;
5810 }
5811
5812 /* Encode $s0/$s1. */
5813 if (sregs & (1 << 0)) /* $s0 */
5814 s0 = 1;
5815 if (sregs & (1 << 1)) /* $s1 */
5816 s1 = 1;
5817 sregs >>= 2;
5818
5819 /* Encode $s2-$s8. */
5820 num_sregs = 0;
5821 while (sregs & 1)
5822 {
5823 sregs >>= 1;
5824 num_sregs += 1;
5825 }
5826 if (sregs != 0)
5827 return FALSE;
5828
5829 /* Encode frame size. */
5830 if (num_frame_sizes == 0)
5831 {
5832 set_insn_error (arg->argnum, _("missing frame size"));
5833 return FALSE;
5834 }
5835 if (num_frame_sizes > 1)
5836 {
5837 set_insn_error (arg->argnum, _("frame size specified twice"));
5838 return FALSE;
5839 }
5840 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5841 {
5842 set_insn_error (arg->argnum, _("invalid frame size"));
5843 return FALSE;
5844 }
5845 frame_size /= 8;
5846
5847 /* Finally build the instruction. */
5848 if (mips_opts.mips16)
5849 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5850 frame_size);
5851 else if (!mips_opts.micromips)
5852 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5853 frame_size);
5854 else
5855 abort ();
5856
5857 arg->insn->insn_opcode = opcode;
5858 return TRUE;
5859 }
5860
5861 /* OP_MDMX_IMM_REG matcher. */
5862
5863 static bfd_boolean
5864 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5865 const struct mips_operand *operand)
5866 {
5867 unsigned int regno, uval;
5868 bfd_boolean is_qh;
5869 const struct mips_opcode *opcode;
5870
5871 /* The mips_opcode records whether this is an octobyte or quadhalf
5872 instruction. Start out with that bit in place. */
5873 opcode = arg->insn->insn_mo;
5874 uval = mips_extract_operand (operand, opcode->match);
5875 is_qh = (uval != 0);
5876
5877 if (arg->token->type == OT_REG)
5878 {
5879 if ((opcode->membership & INSN_5400)
5880 && strcmp (opcode->name, "rzu.ob") == 0)
5881 {
5882 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5883 arg->argnum);
5884 return FALSE;
5885 }
5886
5887 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5888 return FALSE;
5889 ++arg->token;
5890
5891 /* Check whether this is a vector register or a broadcast of
5892 a single element. */
5893 if (arg->token->type == OT_INTEGER_INDEX)
5894 {
5895 if (arg->token->u.index > (is_qh ? 3 : 7))
5896 {
5897 set_insn_error (arg->argnum, _("invalid element selector"));
5898 return FALSE;
5899 }
5900 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5901 ++arg->token;
5902 }
5903 else
5904 {
5905 /* A full vector. */
5906 if ((opcode->membership & INSN_5400)
5907 && (strcmp (opcode->name, "sll.ob") == 0
5908 || strcmp (opcode->name, "srl.ob") == 0))
5909 {
5910 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5911 arg->argnum);
5912 return FALSE;
5913 }
5914
5915 if (is_qh)
5916 uval |= MDMX_FMTSEL_VEC_QH << 5;
5917 else
5918 uval |= MDMX_FMTSEL_VEC_OB << 5;
5919 }
5920 uval |= regno;
5921 }
5922 else
5923 {
5924 offsetT sval;
5925
5926 if (!match_const_int (arg, &sval))
5927 return FALSE;
5928 if (sval < 0 || sval > 31)
5929 {
5930 match_out_of_range (arg);
5931 return FALSE;
5932 }
5933 uval |= (sval & 31);
5934 if (is_qh)
5935 uval |= MDMX_FMTSEL_IMM_QH << 5;
5936 else
5937 uval |= MDMX_FMTSEL_IMM_OB << 5;
5938 }
5939 insn_insert_operand (arg->insn, operand, uval);
5940 return TRUE;
5941 }
5942
5943 /* OP_IMM_INDEX matcher. */
5944
5945 static bfd_boolean
5946 match_imm_index_operand (struct mips_arg_info *arg,
5947 const struct mips_operand *operand)
5948 {
5949 unsigned int max_val;
5950
5951 if (arg->token->type != OT_INTEGER_INDEX)
5952 return FALSE;
5953
5954 max_val = (1 << operand->size) - 1;
5955 if (arg->token->u.index > max_val)
5956 {
5957 match_out_of_range (arg);
5958 return FALSE;
5959 }
5960 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5961 ++arg->token;
5962 return TRUE;
5963 }
5964
5965 /* OP_REG_INDEX matcher. */
5966
5967 static bfd_boolean
5968 match_reg_index_operand (struct mips_arg_info *arg,
5969 const struct mips_operand *operand)
5970 {
5971 unsigned int regno;
5972
5973 if (arg->token->type != OT_REG_INDEX)
5974 return FALSE;
5975
5976 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5977 return FALSE;
5978
5979 insn_insert_operand (arg->insn, operand, regno);
5980 ++arg->token;
5981 return TRUE;
5982 }
5983
5984 /* OP_PC matcher. */
5985
5986 static bfd_boolean
5987 match_pc_operand (struct mips_arg_info *arg)
5988 {
5989 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5990 {
5991 ++arg->token;
5992 return TRUE;
5993 }
5994 return FALSE;
5995 }
5996
5997 /* OP_REG28 matcher. */
5998
5999 static bfd_boolean
6000 match_reg28_operand (struct mips_arg_info *arg)
6001 {
6002 unsigned int regno;
6003
6004 if (arg->token->type == OT_REG
6005 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
6006 && regno == GP)
6007 {
6008 ++arg->token;
6009 return TRUE;
6010 }
6011 return FALSE;
6012 }
6013
6014 /* OP_NON_ZERO_REG matcher. */
6015
6016 static bfd_boolean
6017 match_non_zero_reg_operand (struct mips_arg_info *arg,
6018 const struct mips_operand *operand)
6019 {
6020 unsigned int regno;
6021
6022 if (!match_reg (arg, OP_REG_GP, &regno))
6023 return FALSE;
6024
6025 if (regno == 0)
6026 {
6027 set_insn_error (arg->argnum, _("the source register must not be $0"));
6028 return FALSE;
6029 }
6030
6031 arg->last_regno = regno;
6032 insn_insert_operand (arg->insn, operand, regno);
6033 return TRUE;
6034 }
6035
6036 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
6037 register that we need to match. */
6038
6039 static bfd_boolean
6040 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
6041 {
6042 unsigned int regno;
6043
6044 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
6045 }
6046
6047 /* Try to match a floating-point constant from ARG for LI.S or LI.D.
6048 LENGTH is the length of the value in bytes (4 for float, 8 for double)
6049 and USING_GPRS says whether the destination is a GPR rather than an FPR.
6050
6051 Return the constant in IMM and OFFSET as follows:
6052
6053 - If the constant should be loaded via memory, set IMM to O_absent and
6054 OFFSET to the memory address.
6055
6056 - Otherwise, if the constant should be loaded into two 32-bit registers,
6057 set IMM to the O_constant to load into the high register and OFFSET
6058 to the corresponding value for the low register.
6059
6060 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
6061
6062 These constants only appear as the last operand in an instruction,
6063 and every instruction that accepts them in any variant accepts them
6064 in all variants. This means we don't have to worry about backing out
6065 any changes if the instruction does not match. We just match
6066 unconditionally and report an error if the constant is invalid. */
6067
6068 static bfd_boolean
6069 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
6070 expressionS *offset, int length, bfd_boolean using_gprs)
6071 {
6072 char *p;
6073 segT seg, new_seg;
6074 subsegT subseg;
6075 const char *newname;
6076 unsigned char *data;
6077
6078 /* Where the constant is placed is based on how the MIPS assembler
6079 does things:
6080
6081 length == 4 && using_gprs -- immediate value only
6082 length == 8 && using_gprs -- .rdata or immediate value
6083 length == 4 && !using_gprs -- .lit4 or immediate value
6084 length == 8 && !using_gprs -- .lit8 or immediate value
6085
6086 The .lit4 and .lit8 sections are only used if permitted by the
6087 -G argument. */
6088 if (arg->token->type != OT_FLOAT)
6089 {
6090 set_insn_error (arg->argnum, _("floating-point expression required"));
6091 return FALSE;
6092 }
6093
6094 gas_assert (arg->token->u.flt.length == length);
6095 data = arg->token->u.flt.data;
6096 ++arg->token;
6097
6098 /* Handle 32-bit constants for which an immediate value is best. */
6099 if (length == 4
6100 && (using_gprs
6101 || g_switch_value < 4
6102 || (data[0] == 0 && data[1] == 0)
6103 || (data[2] == 0 && data[3] == 0)))
6104 {
6105 imm->X_op = O_constant;
6106 if (!target_big_endian)
6107 imm->X_add_number = bfd_getl32 (data);
6108 else
6109 imm->X_add_number = bfd_getb32 (data);
6110 offset->X_op = O_absent;
6111 return TRUE;
6112 }
6113
6114 /* Handle 64-bit constants for which an immediate value is best. */
6115 if (length == 8
6116 && !mips_disable_float_construction
6117 /* Constants can only be constructed in GPRs and copied to FPRs if the
6118 GPRs are at least as wide as the FPRs or MTHC1 is available.
6119 Unlike most tests for 32-bit floating-point registers this check
6120 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6121 permit 64-bit moves without MXHC1.
6122 Force the constant into memory otherwise. */
6123 && (using_gprs
6124 || GPR_SIZE == 64
6125 || ISA_HAS_MXHC1 (mips_opts.isa)
6126 || FPR_SIZE == 32)
6127 && ((data[0] == 0 && data[1] == 0)
6128 || (data[2] == 0 && data[3] == 0))
6129 && ((data[4] == 0 && data[5] == 0)
6130 || (data[6] == 0 && data[7] == 0)))
6131 {
6132 /* The value is simple enough to load with a couple of instructions.
6133 If using 32-bit registers, set IMM to the high order 32 bits and
6134 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6135 64 bit constant. */
6136 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
6137 {
6138 imm->X_op = O_constant;
6139 offset->X_op = O_constant;
6140 if (!target_big_endian)
6141 {
6142 imm->X_add_number = bfd_getl32 (data + 4);
6143 offset->X_add_number = bfd_getl32 (data);
6144 }
6145 else
6146 {
6147 imm->X_add_number = bfd_getb32 (data);
6148 offset->X_add_number = bfd_getb32 (data + 4);
6149 }
6150 if (offset->X_add_number == 0)
6151 offset->X_op = O_absent;
6152 }
6153 else
6154 {
6155 imm->X_op = O_constant;
6156 if (!target_big_endian)
6157 imm->X_add_number = bfd_getl64 (data);
6158 else
6159 imm->X_add_number = bfd_getb64 (data);
6160 offset->X_op = O_absent;
6161 }
6162 return TRUE;
6163 }
6164
6165 /* Switch to the right section. */
6166 seg = now_seg;
6167 subseg = now_subseg;
6168 if (length == 4)
6169 {
6170 gas_assert (!using_gprs && g_switch_value >= 4);
6171 newname = ".lit4";
6172 }
6173 else
6174 {
6175 if (using_gprs || g_switch_value < 8)
6176 newname = RDATA_SECTION_NAME;
6177 else
6178 newname = ".lit8";
6179 }
6180
6181 new_seg = subseg_new (newname, (subsegT) 0);
6182 bfd_set_section_flags (stdoutput, new_seg,
6183 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6184 frag_align (length == 4 ? 2 : 3, 0, 0);
6185 if (strncmp (TARGET_OS, "elf", 3) != 0)
6186 record_alignment (new_seg, 4);
6187 else
6188 record_alignment (new_seg, length == 4 ? 2 : 3);
6189 if (seg == now_seg)
6190 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
6191
6192 /* Set the argument to the current address in the section. */
6193 imm->X_op = O_absent;
6194 offset->X_op = O_symbol;
6195 offset->X_add_symbol = symbol_temp_new_now ();
6196 offset->X_add_number = 0;
6197
6198 /* Put the floating point number into the section. */
6199 p = frag_more (length);
6200 memcpy (p, data, length);
6201
6202 /* Switch back to the original section. */
6203 subseg_set (seg, subseg);
6204 return TRUE;
6205 }
6206
6207 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6208 them. */
6209
6210 static bfd_boolean
6211 match_vu0_suffix_operand (struct mips_arg_info *arg,
6212 const struct mips_operand *operand,
6213 bfd_boolean match_p)
6214 {
6215 unsigned int uval;
6216
6217 /* The operand can be an XYZW mask or a single 2-bit channel index
6218 (with X being 0). */
6219 gas_assert (operand->size == 2 || operand->size == 4);
6220
6221 /* The suffix can be omitted when it is already part of the opcode. */
6222 if (arg->token->type != OT_CHANNELS)
6223 return match_p;
6224
6225 uval = arg->token->u.channels;
6226 if (operand->size == 2)
6227 {
6228 /* Check that a single bit is set and convert it into a 2-bit index. */
6229 if ((uval & -uval) != uval)
6230 return FALSE;
6231 uval = 4 - ffs (uval);
6232 }
6233
6234 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6235 return FALSE;
6236
6237 ++arg->token;
6238 if (!match_p)
6239 insn_insert_operand (arg->insn, operand, uval);
6240 return TRUE;
6241 }
6242
6243 /* Try to match a token from ARG against OPERAND. Consume the token
6244 and return true on success, otherwise return false. */
6245
6246 static bfd_boolean
6247 match_operand (struct mips_arg_info *arg,
6248 const struct mips_operand *operand)
6249 {
6250 switch (operand->type)
6251 {
6252 case OP_INT:
6253 return match_int_operand (arg, operand);
6254
6255 case OP_MAPPED_INT:
6256 return match_mapped_int_operand (arg, operand);
6257
6258 case OP_MSB:
6259 return match_msb_operand (arg, operand);
6260
6261 case OP_REG:
6262 case OP_OPTIONAL_REG:
6263 return match_reg_operand (arg, operand);
6264
6265 case OP_REG_PAIR:
6266 return match_reg_pair_operand (arg, operand);
6267
6268 case OP_PCREL:
6269 return match_pcrel_operand (arg);
6270
6271 case OP_PERF_REG:
6272 return match_perf_reg_operand (arg, operand);
6273
6274 case OP_ADDIUSP_INT:
6275 return match_addiusp_operand (arg, operand);
6276
6277 case OP_CLO_CLZ_DEST:
6278 return match_clo_clz_dest_operand (arg, operand);
6279
6280 case OP_LWM_SWM_LIST:
6281 return match_lwm_swm_list_operand (arg, operand);
6282
6283 case OP_ENTRY_EXIT_LIST:
6284 return match_entry_exit_operand (arg, operand);
6285
6286 case OP_SAVE_RESTORE_LIST:
6287 return match_save_restore_list_operand (arg);
6288
6289 case OP_MDMX_IMM_REG:
6290 return match_mdmx_imm_reg_operand (arg, operand);
6291
6292 case OP_REPEAT_DEST_REG:
6293 return match_tied_reg_operand (arg, arg->dest_regno);
6294
6295 case OP_REPEAT_PREV_REG:
6296 return match_tied_reg_operand (arg, arg->last_regno);
6297
6298 case OP_PC:
6299 return match_pc_operand (arg);
6300
6301 case OP_REG28:
6302 return match_reg28_operand (arg);
6303
6304 case OP_VU0_SUFFIX:
6305 return match_vu0_suffix_operand (arg, operand, FALSE);
6306
6307 case OP_VU0_MATCH_SUFFIX:
6308 return match_vu0_suffix_operand (arg, operand, TRUE);
6309
6310 case OP_IMM_INDEX:
6311 return match_imm_index_operand (arg, operand);
6312
6313 case OP_REG_INDEX:
6314 return match_reg_index_operand (arg, operand);
6315
6316 case OP_SAME_RS_RT:
6317 return match_same_rs_rt_operand (arg, operand);
6318
6319 case OP_CHECK_PREV:
6320 return match_check_prev_operand (arg, operand);
6321
6322 case OP_NON_ZERO_REG:
6323 return match_non_zero_reg_operand (arg, operand);
6324 }
6325 abort ();
6326 }
6327
6328 /* ARG is the state after successfully matching an instruction.
6329 Issue any queued-up warnings. */
6330
6331 static void
6332 check_completed_insn (struct mips_arg_info *arg)
6333 {
6334 if (arg->seen_at)
6335 {
6336 if (AT == ATREG)
6337 as_warn (_("used $at without \".set noat\""));
6338 else
6339 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6340 }
6341 }
6342
6343 /* Return true if modifying general-purpose register REG needs a delay. */
6344
6345 static bfd_boolean
6346 reg_needs_delay (unsigned int reg)
6347 {
6348 unsigned long prev_pinfo;
6349
6350 prev_pinfo = history[0].insn_mo->pinfo;
6351 if (!mips_opts.noreorder
6352 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6353 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6354 && (gpr_write_mask (&history[0]) & (1 << reg)))
6355 return TRUE;
6356
6357 return FALSE;
6358 }
6359
6360 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6361 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6362 by VR4120 errata. */
6363
6364 static unsigned int
6365 classify_vr4120_insn (const char *name)
6366 {
6367 if (strncmp (name, "macc", 4) == 0)
6368 return FIX_VR4120_MACC;
6369 if (strncmp (name, "dmacc", 5) == 0)
6370 return FIX_VR4120_DMACC;
6371 if (strncmp (name, "mult", 4) == 0)
6372 return FIX_VR4120_MULT;
6373 if (strncmp (name, "dmult", 5) == 0)
6374 return FIX_VR4120_DMULT;
6375 if (strstr (name, "div"))
6376 return FIX_VR4120_DIV;
6377 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6378 return FIX_VR4120_MTHILO;
6379 return NUM_FIX_VR4120_CLASSES;
6380 }
6381
6382 #define INSN_ERET 0x42000018
6383 #define INSN_DERET 0x4200001f
6384 #define INSN_DMULT 0x1c
6385 #define INSN_DMULTU 0x1d
6386
6387 /* Return the number of instructions that must separate INSN1 and INSN2,
6388 where INSN1 is the earlier instruction. Return the worst-case value
6389 for any INSN2 if INSN2 is null. */
6390
6391 static unsigned int
6392 insns_between (const struct mips_cl_insn *insn1,
6393 const struct mips_cl_insn *insn2)
6394 {
6395 unsigned long pinfo1, pinfo2;
6396 unsigned int mask;
6397
6398 /* If INFO2 is null, pessimistically assume that all flags are set for
6399 the second instruction. */
6400 pinfo1 = insn1->insn_mo->pinfo;
6401 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6402
6403 /* For most targets, write-after-read dependencies on the HI and LO
6404 registers must be separated by at least two instructions. */
6405 if (!hilo_interlocks)
6406 {
6407 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6408 return 2;
6409 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6410 return 2;
6411 }
6412
6413 /* If we're working around r7000 errata, there must be two instructions
6414 between an mfhi or mflo and any instruction that uses the result. */
6415 if (mips_7000_hilo_fix
6416 && !mips_opts.micromips
6417 && MF_HILO_INSN (pinfo1)
6418 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6419 return 2;
6420
6421 /* If we're working around 24K errata, one instruction is required
6422 if an ERET or DERET is followed by a branch instruction. */
6423 if (mips_fix_24k && !mips_opts.micromips)
6424 {
6425 if (insn1->insn_opcode == INSN_ERET
6426 || insn1->insn_opcode == INSN_DERET)
6427 {
6428 if (insn2 == NULL
6429 || insn2->insn_opcode == INSN_ERET
6430 || insn2->insn_opcode == INSN_DERET
6431 || delayed_branch_p (insn2))
6432 return 1;
6433 }
6434 }
6435
6436 /* If we're working around PMC RM7000 errata, there must be three
6437 nops between a dmult and a load instruction. */
6438 if (mips_fix_rm7000 && !mips_opts.micromips)
6439 {
6440 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6441 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6442 {
6443 if (pinfo2 & INSN_LOAD_MEMORY)
6444 return 3;
6445 }
6446 }
6447
6448 /* If working around VR4120 errata, check for combinations that need
6449 a single intervening instruction. */
6450 if (mips_fix_vr4120 && !mips_opts.micromips)
6451 {
6452 unsigned int class1, class2;
6453
6454 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6455 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6456 {
6457 if (insn2 == NULL)
6458 return 1;
6459 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6460 if (vr4120_conflicts[class1] & (1 << class2))
6461 return 1;
6462 }
6463 }
6464
6465 if (!HAVE_CODE_COMPRESSION)
6466 {
6467 /* Check for GPR or coprocessor load delays. All such delays
6468 are on the RT register. */
6469 /* Itbl support may require additional care here. */
6470 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6471 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6472 {
6473 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6474 return 1;
6475 }
6476
6477 /* Check for generic coprocessor hazards.
6478
6479 This case is not handled very well. There is no special
6480 knowledge of CP0 handling, and the coprocessors other than
6481 the floating point unit are not distinguished at all. */
6482 /* Itbl support may require additional care here. FIXME!
6483 Need to modify this to include knowledge about
6484 user specified delays! */
6485 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6486 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6487 {
6488 /* Handle cases where INSN1 writes to a known general coprocessor
6489 register. There must be a one instruction delay before INSN2
6490 if INSN2 reads that register, otherwise no delay is needed. */
6491 mask = fpr_write_mask (insn1);
6492 if (mask != 0)
6493 {
6494 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6495 return 1;
6496 }
6497 else
6498 {
6499 /* Read-after-write dependencies on the control registers
6500 require a two-instruction gap. */
6501 if ((pinfo1 & INSN_WRITE_COND_CODE)
6502 && (pinfo2 & INSN_READ_COND_CODE))
6503 return 2;
6504
6505 /* We don't know exactly what INSN1 does. If INSN2 is
6506 also a coprocessor instruction, assume there must be
6507 a one instruction gap. */
6508 if (pinfo2 & INSN_COP)
6509 return 1;
6510 }
6511 }
6512
6513 /* Check for read-after-write dependencies on the coprocessor
6514 control registers in cases where INSN1 does not need a general
6515 coprocessor delay. This means that INSN1 is a floating point
6516 comparison instruction. */
6517 /* Itbl support may require additional care here. */
6518 else if (!cop_interlocks
6519 && (pinfo1 & INSN_WRITE_COND_CODE)
6520 && (pinfo2 & INSN_READ_COND_CODE))
6521 return 1;
6522 }
6523
6524 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6525 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6526 and pause. */
6527 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6528 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6529 || (insn2 && delayed_branch_p (insn2))))
6530 return 1;
6531
6532 return 0;
6533 }
6534
6535 /* Return the number of nops that would be needed to work around the
6536 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6537 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6538 that are contained within the first IGNORE instructions of HIST. */
6539
6540 static int
6541 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6542 const struct mips_cl_insn *insn)
6543 {
6544 int i, j;
6545 unsigned int mask;
6546
6547 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6548 are not affected by the errata. */
6549 if (insn != 0
6550 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6551 || strcmp (insn->insn_mo->name, "mtlo") == 0
6552 || strcmp (insn->insn_mo->name, "mthi") == 0))
6553 return 0;
6554
6555 /* Search for the first MFLO or MFHI. */
6556 for (i = 0; i < MAX_VR4130_NOPS; i++)
6557 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6558 {
6559 /* Extract the destination register. */
6560 mask = gpr_write_mask (&hist[i]);
6561
6562 /* No nops are needed if INSN reads that register. */
6563 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6564 return 0;
6565
6566 /* ...or if any of the intervening instructions do. */
6567 for (j = 0; j < i; j++)
6568 if (gpr_read_mask (&hist[j]) & mask)
6569 return 0;
6570
6571 if (i >= ignore)
6572 return MAX_VR4130_NOPS - i;
6573 }
6574 return 0;
6575 }
6576
6577 #define BASE_REG_EQ(INSN1, INSN2) \
6578 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6579 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6580
6581 /* Return the minimum alignment for this store instruction. */
6582
6583 static int
6584 fix_24k_align_to (const struct mips_opcode *mo)
6585 {
6586 if (strcmp (mo->name, "sh") == 0)
6587 return 2;
6588
6589 if (strcmp (mo->name, "swc1") == 0
6590 || strcmp (mo->name, "swc2") == 0
6591 || strcmp (mo->name, "sw") == 0
6592 || strcmp (mo->name, "sc") == 0
6593 || strcmp (mo->name, "s.s") == 0)
6594 return 4;
6595
6596 if (strcmp (mo->name, "sdc1") == 0
6597 || strcmp (mo->name, "sdc2") == 0
6598 || strcmp (mo->name, "s.d") == 0)
6599 return 8;
6600
6601 /* sb, swl, swr */
6602 return 1;
6603 }
6604
6605 struct fix_24k_store_info
6606 {
6607 /* Immediate offset, if any, for this store instruction. */
6608 short off;
6609 /* Alignment required by this store instruction. */
6610 int align_to;
6611 /* True for register offsets. */
6612 int register_offset;
6613 };
6614
6615 /* Comparison function used by qsort. */
6616
6617 static int
6618 fix_24k_sort (const void *a, const void *b)
6619 {
6620 const struct fix_24k_store_info *pos1 = a;
6621 const struct fix_24k_store_info *pos2 = b;
6622
6623 return (pos1->off - pos2->off);
6624 }
6625
6626 /* INSN is a store instruction. Try to record the store information
6627 in STINFO. Return false if the information isn't known. */
6628
6629 static bfd_boolean
6630 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6631 const struct mips_cl_insn *insn)
6632 {
6633 /* The instruction must have a known offset. */
6634 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6635 return FALSE;
6636
6637 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6638 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6639 return TRUE;
6640 }
6641
6642 /* Return the number of nops that would be needed to work around the 24k
6643 "lost data on stores during refill" errata if instruction INSN
6644 immediately followed the 2 instructions described by HIST.
6645 Ignore hazards that are contained within the first IGNORE
6646 instructions of HIST.
6647
6648 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6649 for the data cache refills and store data. The following describes
6650 the scenario where the store data could be lost.
6651
6652 * A data cache miss, due to either a load or a store, causing fill
6653 data to be supplied by the memory subsystem
6654 * The first three doublewords of fill data are returned and written
6655 into the cache
6656 * A sequence of four stores occurs in consecutive cycles around the
6657 final doubleword of the fill:
6658 * Store A
6659 * Store B
6660 * Store C
6661 * Zero, One or more instructions
6662 * Store D
6663
6664 The four stores A-D must be to different doublewords of the line that
6665 is being filled. The fourth instruction in the sequence above permits
6666 the fill of the final doubleword to be transferred from the FSB into
6667 the cache. In the sequence above, the stores may be either integer
6668 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6669 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6670 different doublewords on the line. If the floating point unit is
6671 running in 1:2 mode, it is not possible to create the sequence above
6672 using only floating point store instructions.
6673
6674 In this case, the cache line being filled is incorrectly marked
6675 invalid, thereby losing the data from any store to the line that
6676 occurs between the original miss and the completion of the five
6677 cycle sequence shown above.
6678
6679 The workarounds are:
6680
6681 * Run the data cache in write-through mode.
6682 * Insert a non-store instruction between
6683 Store A and Store B or Store B and Store C. */
6684
6685 static int
6686 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6687 const struct mips_cl_insn *insn)
6688 {
6689 struct fix_24k_store_info pos[3];
6690 int align, i, base_offset;
6691
6692 if (ignore >= 2)
6693 return 0;
6694
6695 /* If the previous instruction wasn't a store, there's nothing to
6696 worry about. */
6697 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6698 return 0;
6699
6700 /* If the instructions after the previous one are unknown, we have
6701 to assume the worst. */
6702 if (!insn)
6703 return 1;
6704
6705 /* Check whether we are dealing with three consecutive stores. */
6706 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6707 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6708 return 0;
6709
6710 /* If we don't know the relationship between the store addresses,
6711 assume the worst. */
6712 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6713 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6714 return 1;
6715
6716 if (!fix_24k_record_store_info (&pos[0], insn)
6717 || !fix_24k_record_store_info (&pos[1], &hist[0])
6718 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6719 return 1;
6720
6721 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6722
6723 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6724 X bytes and such that the base register + X is known to be aligned
6725 to align bytes. */
6726
6727 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6728 align = 8;
6729 else
6730 {
6731 align = pos[0].align_to;
6732 base_offset = pos[0].off;
6733 for (i = 1; i < 3; i++)
6734 if (align < pos[i].align_to)
6735 {
6736 align = pos[i].align_to;
6737 base_offset = pos[i].off;
6738 }
6739 for (i = 0; i < 3; i++)
6740 pos[i].off -= base_offset;
6741 }
6742
6743 pos[0].off &= ~align + 1;
6744 pos[1].off &= ~align + 1;
6745 pos[2].off &= ~align + 1;
6746
6747 /* If any two stores write to the same chunk, they also write to the
6748 same doubleword. The offsets are still sorted at this point. */
6749 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6750 return 0;
6751
6752 /* A range of at least 9 bytes is needed for the stores to be in
6753 non-overlapping doublewords. */
6754 if (pos[2].off - pos[0].off <= 8)
6755 return 0;
6756
6757 if (pos[2].off - pos[1].off >= 24
6758 || pos[1].off - pos[0].off >= 24
6759 || pos[2].off - pos[0].off >= 32)
6760 return 0;
6761
6762 return 1;
6763 }
6764
6765 /* Return the number of nops that would be needed if instruction INSN
6766 immediately followed the MAX_NOPS instructions given by HIST,
6767 where HIST[0] is the most recent instruction. Ignore hazards
6768 between INSN and the first IGNORE instructions in HIST.
6769
6770 If INSN is null, return the worse-case number of nops for any
6771 instruction. */
6772
6773 static int
6774 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6775 const struct mips_cl_insn *insn)
6776 {
6777 int i, nops, tmp_nops;
6778
6779 nops = 0;
6780 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6781 {
6782 tmp_nops = insns_between (hist + i, insn) - i;
6783 if (tmp_nops > nops)
6784 nops = tmp_nops;
6785 }
6786
6787 if (mips_fix_vr4130 && !mips_opts.micromips)
6788 {
6789 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6790 if (tmp_nops > nops)
6791 nops = tmp_nops;
6792 }
6793
6794 if (mips_fix_24k && !mips_opts.micromips)
6795 {
6796 tmp_nops = nops_for_24k (ignore, hist, insn);
6797 if (tmp_nops > nops)
6798 nops = tmp_nops;
6799 }
6800
6801 return nops;
6802 }
6803
6804 /* The variable arguments provide NUM_INSNS extra instructions that
6805 might be added to HIST. Return the largest number of nops that
6806 would be needed after the extended sequence, ignoring hazards
6807 in the first IGNORE instructions. */
6808
6809 static int
6810 nops_for_sequence (int num_insns, int ignore,
6811 const struct mips_cl_insn *hist, ...)
6812 {
6813 va_list args;
6814 struct mips_cl_insn buffer[MAX_NOPS];
6815 struct mips_cl_insn *cursor;
6816 int nops;
6817
6818 va_start (args, hist);
6819 cursor = buffer + num_insns;
6820 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6821 while (cursor > buffer)
6822 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6823
6824 nops = nops_for_insn (ignore, buffer, NULL);
6825 va_end (args);
6826 return nops;
6827 }
6828
6829 /* Like nops_for_insn, but if INSN is a branch, take into account the
6830 worst-case delay for the branch target. */
6831
6832 static int
6833 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6834 const struct mips_cl_insn *insn)
6835 {
6836 int nops, tmp_nops;
6837
6838 nops = nops_for_insn (ignore, hist, insn);
6839 if (delayed_branch_p (insn))
6840 {
6841 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6842 hist, insn, get_delay_slot_nop (insn));
6843 if (tmp_nops > nops)
6844 nops = tmp_nops;
6845 }
6846 else if (compact_branch_p (insn))
6847 {
6848 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6849 if (tmp_nops > nops)
6850 nops = tmp_nops;
6851 }
6852 return nops;
6853 }
6854
6855 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6856
6857 static void
6858 fix_loongson2f_nop (struct mips_cl_insn * ip)
6859 {
6860 gas_assert (!HAVE_CODE_COMPRESSION);
6861 if (strcmp (ip->insn_mo->name, "nop") == 0)
6862 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6863 }
6864
6865 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6866 jr target pc &= 'hffff_ffff_cfff_ffff. */
6867
6868 static void
6869 fix_loongson2f_jump (struct mips_cl_insn * ip)
6870 {
6871 gas_assert (!HAVE_CODE_COMPRESSION);
6872 if (strcmp (ip->insn_mo->name, "j") == 0
6873 || strcmp (ip->insn_mo->name, "jr") == 0
6874 || strcmp (ip->insn_mo->name, "jalr") == 0)
6875 {
6876 int sreg;
6877 expressionS ep;
6878
6879 if (! mips_opts.at)
6880 return;
6881
6882 sreg = EXTRACT_OPERAND (0, RS, *ip);
6883 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6884 return;
6885
6886 ep.X_op = O_constant;
6887 ep.X_add_number = 0xcfff0000;
6888 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6889 ep.X_add_number = 0xffff;
6890 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6891 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6892 }
6893 }
6894
6895 static void
6896 fix_loongson2f (struct mips_cl_insn * ip)
6897 {
6898 if (mips_fix_loongson2f_nop)
6899 fix_loongson2f_nop (ip);
6900
6901 if (mips_fix_loongson2f_jump)
6902 fix_loongson2f_jump (ip);
6903 }
6904
6905 /* Fix loongson3 llsc errata: Insert sync before ll/lld. */
6906
6907 static void
6908 fix_loongson3_llsc (struct mips_cl_insn * ip)
6909 {
6910 gas_assert (!HAVE_CODE_COMPRESSION);
6911
6912 /* If is an local label and the insn is not sync,
6913 look forward that whether an branch between ll/sc jump to here
6914 if so, insert a sync. */
6915 if (seg_info (now_seg)->label_list
6916 && S_IS_LOCAL (seg_info (now_seg)->label_list->label)
6917 && (strcmp (ip->insn_mo->name, "sync") != 0))
6918 {
6919 const char *label_name = S_GET_NAME (seg_info (now_seg)->label_list->label);
6920 unsigned long lookback = ARRAY_SIZE (history);
6921 unsigned long i;
6922
6923 for (i = 0; i < lookback; i++)
6924 {
6925 if (streq (history[i].insn_mo->name, "ll")
6926 || streq (history[i].insn_mo->name, "lld"))
6927 break;
6928
6929 if (streq (history[i].insn_mo->name, "sc")
6930 || streq (history[i].insn_mo->name, "scd"))
6931 {
6932 unsigned long j;
6933
6934 for (j = i + 1; j < lookback; j++)
6935 {
6936 if (streq (history[i].insn_mo->name, "ll")
6937 || streq (history[i].insn_mo->name, "lld"))
6938 break;
6939
6940 if (delayed_branch_p (&history[j]))
6941 {
6942 if (streq (history[j].target, label_name))
6943 {
6944 add_fixed_insn (&sync_insn);
6945 insert_into_history (0, 1, &sync_insn);
6946 i = lookback;
6947 break;
6948 }
6949 }
6950 }
6951 }
6952 }
6953 }
6954 /* If we find a sc, we look forward to look for an branch insn,
6955 and see whether it jump back and out of ll/sc. */
6956 else if (streq(ip->insn_mo->name, "sc") || streq(ip->insn_mo->name, "scd"))
6957 {
6958 unsigned long lookback = ARRAY_SIZE (history) - 1;
6959 unsigned long i;
6960
6961 for (i = 0; i < lookback; i++)
6962 {
6963 if (streq (history[i].insn_mo->name, "ll")
6964 || streq (history[i].insn_mo->name, "lld"))
6965 break;
6966
6967 if (delayed_branch_p (&history[i]))
6968 {
6969 unsigned long j;
6970
6971 for (j = i + 1; j < lookback; j++)
6972 {
6973 if (streq (history[j].insn_mo->name, "ll")
6974 || streq (history[i].insn_mo->name, "lld"))
6975 break;
6976 }
6977
6978 for (; j < lookback; j++)
6979 {
6980 if (history[j].label[0] != '\0'
6981 && streq (history[j].label, history[i].target)
6982 && strcmp (history[j+1].insn_mo->name, "sync") != 0)
6983 {
6984 add_fixed_insn (&sync_insn);
6985 insert_into_history (++j, 1, &sync_insn);
6986 }
6987 }
6988 }
6989 }
6990 }
6991
6992 /* Skip if there is a sync before ll/lld. */
6993 if ((strcmp (ip->insn_mo->name, "ll") == 0
6994 || strcmp (ip->insn_mo->name, "lld") == 0)
6995 && (strcmp (history[0].insn_mo->name, "sync") != 0))
6996 {
6997 add_fixed_insn (&sync_insn);
6998 insert_into_history (0, 1, &sync_insn);
6999 }
7000 }
7001
7002 /* IP is a branch that has a delay slot, and we need to fill it
7003 automatically. Return true if we can do that by swapping IP
7004 with the previous instruction.
7005 ADDRESS_EXPR is an operand of the instruction to be used with
7006 RELOC_TYPE. */
7007
7008 static bfd_boolean
7009 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
7010 bfd_reloc_code_real_type *reloc_type)
7011 {
7012 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
7013 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
7014 unsigned int fpr_read, prev_fpr_write;
7015
7016 /* -O2 and above is required for this optimization. */
7017 if (mips_optimize < 2)
7018 return FALSE;
7019
7020 /* If we have seen .set volatile or .set nomove, don't optimize. */
7021 if (mips_opts.nomove)
7022 return FALSE;
7023
7024 /* We can't swap if the previous instruction's position is fixed. */
7025 if (history[0].fixed_p)
7026 return FALSE;
7027
7028 /* If the previous previous insn was in a .set noreorder, we can't
7029 swap. Actually, the MIPS assembler will swap in this situation.
7030 However, gcc configured -with-gnu-as will generate code like
7031
7032 .set noreorder
7033 lw $4,XXX
7034 .set reorder
7035 INSN
7036 bne $4,$0,foo
7037
7038 in which we can not swap the bne and INSN. If gcc is not configured
7039 -with-gnu-as, it does not output the .set pseudo-ops. */
7040 if (history[1].noreorder_p)
7041 return FALSE;
7042
7043 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
7044 This means that the previous instruction was a 4-byte one anyhow. */
7045 if (mips_opts.mips16 && history[0].fixp[0])
7046 return FALSE;
7047
7048 /* If the branch is itself the target of a branch, we can not swap.
7049 We cheat on this; all we check for is whether there is a label on
7050 this instruction. If there are any branches to anything other than
7051 a label, users must use .set noreorder. */
7052 if (seg_info (now_seg)->label_list)
7053 return FALSE;
7054
7055 /* If the previous instruction is in a variant frag other than this
7056 branch's one, we cannot do the swap. This does not apply to
7057 MIPS16 code, which uses variant frags for different purposes. */
7058 if (!mips_opts.mips16
7059 && history[0].frag
7060 && history[0].frag->fr_type == rs_machine_dependent)
7061 return FALSE;
7062
7063 /* We do not swap with instructions that cannot architecturally
7064 be placed in a branch delay slot, such as SYNC or ERET. We
7065 also refrain from swapping with a trap instruction, since it
7066 complicates trap handlers to have the trap instruction be in
7067 a delay slot. */
7068 prev_pinfo = history[0].insn_mo->pinfo;
7069 if (prev_pinfo & INSN_NO_DELAY_SLOT)
7070 return FALSE;
7071
7072 /* Check for conflicts between the branch and the instructions
7073 before the candidate delay slot. */
7074 if (nops_for_insn (0, history + 1, ip) > 0)
7075 return FALSE;
7076
7077 /* Check for conflicts between the swapped sequence and the
7078 target of the branch. */
7079 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
7080 return FALSE;
7081
7082 /* If the branch reads a register that the previous
7083 instruction sets, we can not swap. */
7084 gpr_read = gpr_read_mask (ip);
7085 prev_gpr_write = gpr_write_mask (&history[0]);
7086 if (gpr_read & prev_gpr_write)
7087 return FALSE;
7088
7089 fpr_read = fpr_read_mask (ip);
7090 prev_fpr_write = fpr_write_mask (&history[0]);
7091 if (fpr_read & prev_fpr_write)
7092 return FALSE;
7093
7094 /* If the branch writes a register that the previous
7095 instruction sets, we can not swap. */
7096 gpr_write = gpr_write_mask (ip);
7097 if (gpr_write & prev_gpr_write)
7098 return FALSE;
7099
7100 /* If the branch writes a register that the previous
7101 instruction reads, we can not swap. */
7102 prev_gpr_read = gpr_read_mask (&history[0]);
7103 if (gpr_write & prev_gpr_read)
7104 return FALSE;
7105
7106 /* If one instruction sets a condition code and the
7107 other one uses a condition code, we can not swap. */
7108 pinfo = ip->insn_mo->pinfo;
7109 if ((pinfo & INSN_READ_COND_CODE)
7110 && (prev_pinfo & INSN_WRITE_COND_CODE))
7111 return FALSE;
7112 if ((pinfo & INSN_WRITE_COND_CODE)
7113 && (prev_pinfo & INSN_READ_COND_CODE))
7114 return FALSE;
7115
7116 /* If the previous instruction uses the PC, we can not swap. */
7117 prev_pinfo2 = history[0].insn_mo->pinfo2;
7118 if (prev_pinfo2 & INSN2_READ_PC)
7119 return FALSE;
7120
7121 /* If the previous instruction has an incorrect size for a fixed
7122 branch delay slot in microMIPS mode, we cannot swap. */
7123 pinfo2 = ip->insn_mo->pinfo2;
7124 if (mips_opts.micromips
7125 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
7126 && insn_length (history) != 2)
7127 return FALSE;
7128 if (mips_opts.micromips
7129 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
7130 && insn_length (history) != 4)
7131 return FALSE;
7132
7133 /* On the R5900 short loops need to be fixed by inserting a NOP in the
7134 branch delay slot.
7135
7136 The short loop bug under certain conditions causes loops to execute
7137 only once or twice. We must ensure that the assembler never
7138 generates loops that satisfy all of the following conditions:
7139
7140 - a loop consists of less than or equal to six instructions
7141 (including the branch delay slot);
7142 - a loop contains only one conditional branch instruction at the end
7143 of the loop;
7144 - a loop does not contain any other branch or jump instructions;
7145 - a branch delay slot of the loop is not NOP (EE 2.9 or later).
7146
7147 We need to do this because of a hardware bug in the R5900 chip. */
7148 if (mips_fix_r5900
7149 /* Check if instruction has a parameter, ignore "j $31". */
7150 && (address_expr != NULL)
7151 /* Parameter must be 16 bit. */
7152 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
7153 /* Branch to same segment. */
7154 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
7155 /* Branch to same code fragment. */
7156 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
7157 /* Can only calculate branch offset if value is known. */
7158 && symbol_constant_p (address_expr->X_add_symbol)
7159 /* Check if branch is really conditional. */
7160 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
7161 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
7162 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
7163 {
7164 int distance;
7165 /* Check if loop is shorter than or equal to 6 instructions
7166 including branch and delay slot. */
7167 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
7168 if (distance <= 20)
7169 {
7170 int i;
7171 int rv;
7172
7173 rv = FALSE;
7174 /* When the loop includes branches or jumps,
7175 it is not a short loop. */
7176 for (i = 0; i < (distance / 4); i++)
7177 {
7178 if ((history[i].cleared_p)
7179 || delayed_branch_p (&history[i]))
7180 {
7181 rv = TRUE;
7182 break;
7183 }
7184 }
7185 if (!rv)
7186 {
7187 /* Insert nop after branch to fix short loop. */
7188 return FALSE;
7189 }
7190 }
7191 }
7192
7193 return TRUE;
7194 }
7195
7196 /* Decide how we should add IP to the instruction stream.
7197 ADDRESS_EXPR is an operand of the instruction to be used with
7198 RELOC_TYPE. */
7199
7200 static enum append_method
7201 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
7202 bfd_reloc_code_real_type *reloc_type)
7203 {
7204 /* The relaxed version of a macro sequence must be inherently
7205 hazard-free. */
7206 if (mips_relax.sequence == 2)
7207 return APPEND_ADD;
7208
7209 /* We must not dabble with instructions in a ".set noreorder" block. */
7210 if (mips_opts.noreorder)
7211 return APPEND_ADD;
7212
7213 /* Otherwise, it's our responsibility to fill branch delay slots. */
7214 if (delayed_branch_p (ip))
7215 {
7216 if (!branch_likely_p (ip)
7217 && can_swap_branch_p (ip, address_expr, reloc_type))
7218 return APPEND_SWAP;
7219
7220 if (mips_opts.mips16
7221 && ISA_SUPPORTS_MIPS16E
7222 && gpr_read_mask (ip) != 0)
7223 return APPEND_ADD_COMPACT;
7224
7225 if (mips_opts.micromips
7226 && ((ip->insn_opcode & 0xffe0) == 0x4580
7227 || (!forced_insn_length
7228 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7229 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7230 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7231 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7232 return APPEND_ADD_COMPACT;
7233
7234 return APPEND_ADD_WITH_NOP;
7235 }
7236
7237 return APPEND_ADD;
7238 }
7239
7240 /* IP is an instruction whose opcode we have just changed, END points
7241 to the end of the opcode table processed. Point IP->insn_mo to the
7242 new opcode's definition. */
7243
7244 static void
7245 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
7246 {
7247 const struct mips_opcode *mo;
7248
7249 for (mo = ip->insn_mo; mo < end; mo++)
7250 if (mo->pinfo != INSN_MACRO
7251 && (ip->insn_opcode & mo->mask) == mo->match)
7252 {
7253 ip->insn_mo = mo;
7254 return;
7255 }
7256 abort ();
7257 }
7258
7259 /* IP is a MIPS16 instruction whose opcode we have just changed.
7260 Point IP->insn_mo to the new opcode's definition. */
7261
7262 static void
7263 find_altered_mips16_opcode (struct mips_cl_insn *ip)
7264 {
7265 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7266 }
7267
7268 /* IP is a microMIPS instruction whose opcode we have just changed.
7269 Point IP->insn_mo to the new opcode's definition. */
7270
7271 static void
7272 find_altered_micromips_opcode (struct mips_cl_insn *ip)
7273 {
7274 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7275 }
7276
7277 /* For microMIPS macros, we need to generate a local number label
7278 as the target of branches. */
7279 #define MICROMIPS_LABEL_CHAR '\037'
7280 static unsigned long micromips_target_label;
7281 static char micromips_target_name[32];
7282
7283 static char *
7284 micromips_label_name (void)
7285 {
7286 char *p = micromips_target_name;
7287 char symbol_name_temporary[24];
7288 unsigned long l;
7289 int i;
7290
7291 if (*p)
7292 return p;
7293
7294 i = 0;
7295 l = micromips_target_label;
7296 #ifdef LOCAL_LABEL_PREFIX
7297 *p++ = LOCAL_LABEL_PREFIX;
7298 #endif
7299 *p++ = 'L';
7300 *p++ = MICROMIPS_LABEL_CHAR;
7301 do
7302 {
7303 symbol_name_temporary[i++] = l % 10 + '0';
7304 l /= 10;
7305 }
7306 while (l != 0);
7307 while (i > 0)
7308 *p++ = symbol_name_temporary[--i];
7309 *p = '\0';
7310
7311 return micromips_target_name;
7312 }
7313
7314 static void
7315 micromips_label_expr (expressionS *label_expr)
7316 {
7317 label_expr->X_op = O_symbol;
7318 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7319 label_expr->X_add_number = 0;
7320 }
7321
7322 static void
7323 micromips_label_inc (void)
7324 {
7325 micromips_target_label++;
7326 *micromips_target_name = '\0';
7327 }
7328
7329 static void
7330 micromips_add_label (void)
7331 {
7332 symbolS *s;
7333
7334 s = colon (micromips_label_name ());
7335 micromips_label_inc ();
7336 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
7337 }
7338
7339 /* If assembling microMIPS code, then return the microMIPS reloc
7340 corresponding to the requested one if any. Otherwise return
7341 the reloc unchanged. */
7342
7343 static bfd_reloc_code_real_type
7344 micromips_map_reloc (bfd_reloc_code_real_type reloc)
7345 {
7346 static const bfd_reloc_code_real_type relocs[][2] =
7347 {
7348 /* Keep sorted incrementally by the left-hand key. */
7349 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7350 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7351 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7352 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7353 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7354 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7355 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7356 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7357 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7358 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7359 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7360 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7361 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7362 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7363 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7364 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7365 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7366 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7367 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7368 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7369 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7370 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7371 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7372 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7373 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7374 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7375 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7376 };
7377 bfd_reloc_code_real_type r;
7378 size_t i;
7379
7380 if (!mips_opts.micromips)
7381 return reloc;
7382 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7383 {
7384 r = relocs[i][0];
7385 if (r > reloc)
7386 return reloc;
7387 if (r == reloc)
7388 return relocs[i][1];
7389 }
7390 return reloc;
7391 }
7392
7393 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7394 Return true on success, storing the resolved value in RESULT. */
7395
7396 static bfd_boolean
7397 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7398 offsetT *result)
7399 {
7400 switch (reloc)
7401 {
7402 case BFD_RELOC_MIPS_HIGHEST:
7403 case BFD_RELOC_MICROMIPS_HIGHEST:
7404 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7405 return TRUE;
7406
7407 case BFD_RELOC_MIPS_HIGHER:
7408 case BFD_RELOC_MICROMIPS_HIGHER:
7409 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7410 return TRUE;
7411
7412 case BFD_RELOC_HI16_S:
7413 case BFD_RELOC_HI16_S_PCREL:
7414 case BFD_RELOC_MICROMIPS_HI16_S:
7415 case BFD_RELOC_MIPS16_HI16_S:
7416 *result = ((operand + 0x8000) >> 16) & 0xffff;
7417 return TRUE;
7418
7419 case BFD_RELOC_HI16:
7420 case BFD_RELOC_MICROMIPS_HI16:
7421 case BFD_RELOC_MIPS16_HI16:
7422 *result = (operand >> 16) & 0xffff;
7423 return TRUE;
7424
7425 case BFD_RELOC_LO16:
7426 case BFD_RELOC_LO16_PCREL:
7427 case BFD_RELOC_MICROMIPS_LO16:
7428 case BFD_RELOC_MIPS16_LO16:
7429 *result = operand & 0xffff;
7430 return TRUE;
7431
7432 case BFD_RELOC_UNUSED:
7433 *result = operand;
7434 return TRUE;
7435
7436 default:
7437 return FALSE;
7438 }
7439 }
7440
7441 /* Output an instruction. IP is the instruction information.
7442 ADDRESS_EXPR is an operand of the instruction to be used with
7443 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7444 a macro expansion. */
7445
7446 static void
7447 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7448 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7449 {
7450 unsigned long prev_pinfo2, pinfo;
7451 bfd_boolean relaxed_branch = FALSE;
7452 enum append_method method;
7453 bfd_boolean relax32;
7454 int branch_disp;
7455
7456 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7457 fix_loongson2f (ip);
7458
7459 ip->target[0] = '\0';
7460 if (offset_expr.X_op == O_symbol)
7461 strncpy (ip->target, S_GET_NAME (offset_expr.X_add_symbol), 15);
7462 ip->label[0] = '\0';
7463 if (seg_info (now_seg)->label_list)
7464 strncpy (ip->label, S_GET_NAME (seg_info (now_seg)->label_list->label), 15);
7465 if (mips_fix_loongson3_llsc && !HAVE_CODE_COMPRESSION)
7466 fix_loongson3_llsc (ip);
7467
7468 file_ase_mips16 |= mips_opts.mips16;
7469 file_ase_micromips |= mips_opts.micromips;
7470
7471 prev_pinfo2 = history[0].insn_mo->pinfo2;
7472 pinfo = ip->insn_mo->pinfo;
7473
7474 /* Don't raise alarm about `nods' frags as they'll fill in the right
7475 kind of nop in relaxation if required. */
7476 if (mips_opts.micromips
7477 && !expansionp
7478 && !(history[0].frag
7479 && history[0].frag->fr_type == rs_machine_dependent
7480 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7481 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7482 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7483 && micromips_insn_length (ip->insn_mo) != 2)
7484 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7485 && micromips_insn_length (ip->insn_mo) != 4)))
7486 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7487 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7488
7489 if (address_expr == NULL)
7490 ip->complete_p = 1;
7491 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7492 && reloc_type[1] == BFD_RELOC_UNUSED
7493 && reloc_type[2] == BFD_RELOC_UNUSED
7494 && address_expr->X_op == O_constant)
7495 {
7496 switch (*reloc_type)
7497 {
7498 case BFD_RELOC_MIPS_JMP:
7499 {
7500 int shift;
7501
7502 /* Shift is 2, unusually, for microMIPS JALX. */
7503 shift = (mips_opts.micromips
7504 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7505 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7506 as_bad (_("jump to misaligned address (0x%lx)"),
7507 (unsigned long) address_expr->X_add_number);
7508 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7509 & 0x3ffffff);
7510 ip->complete_p = 1;
7511 }
7512 break;
7513
7514 case BFD_RELOC_MIPS16_JMP:
7515 if ((address_expr->X_add_number & 3) != 0)
7516 as_bad (_("jump to misaligned address (0x%lx)"),
7517 (unsigned long) address_expr->X_add_number);
7518 ip->insn_opcode |=
7519 (((address_expr->X_add_number & 0x7c0000) << 3)
7520 | ((address_expr->X_add_number & 0xf800000) >> 7)
7521 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7522 ip->complete_p = 1;
7523 break;
7524
7525 case BFD_RELOC_16_PCREL_S2:
7526 {
7527 int shift;
7528
7529 shift = mips_opts.micromips ? 1 : 2;
7530 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7531 as_bad (_("branch to misaligned address (0x%lx)"),
7532 (unsigned long) address_expr->X_add_number);
7533 if (!mips_relax_branch)
7534 {
7535 if ((address_expr->X_add_number + (1 << (shift + 15)))
7536 & ~((1 << (shift + 16)) - 1))
7537 as_bad (_("branch address range overflow (0x%lx)"),
7538 (unsigned long) address_expr->X_add_number);
7539 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7540 & 0xffff);
7541 }
7542 }
7543 break;
7544
7545 case BFD_RELOC_MIPS_21_PCREL_S2:
7546 {
7547 int shift;
7548
7549 shift = 2;
7550 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7551 as_bad (_("branch to misaligned address (0x%lx)"),
7552 (unsigned long) address_expr->X_add_number);
7553 if ((address_expr->X_add_number + (1 << (shift + 20)))
7554 & ~((1 << (shift + 21)) - 1))
7555 as_bad (_("branch address range overflow (0x%lx)"),
7556 (unsigned long) address_expr->X_add_number);
7557 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7558 & 0x1fffff);
7559 }
7560 break;
7561
7562 case BFD_RELOC_MIPS_26_PCREL_S2:
7563 {
7564 int shift;
7565
7566 shift = 2;
7567 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7568 as_bad (_("branch to misaligned address (0x%lx)"),
7569 (unsigned long) address_expr->X_add_number);
7570 if ((address_expr->X_add_number + (1 << (shift + 25)))
7571 & ~((1 << (shift + 26)) - 1))
7572 as_bad (_("branch address range overflow (0x%lx)"),
7573 (unsigned long) address_expr->X_add_number);
7574 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7575 & 0x3ffffff);
7576 }
7577 break;
7578
7579 default:
7580 {
7581 offsetT value;
7582
7583 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7584 &value))
7585 {
7586 ip->insn_opcode |= value & 0xffff;
7587 ip->complete_p = 1;
7588 }
7589 }
7590 break;
7591 }
7592 }
7593
7594 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7595 {
7596 /* There are a lot of optimizations we could do that we don't.
7597 In particular, we do not, in general, reorder instructions.
7598 If you use gcc with optimization, it will reorder
7599 instructions and generally do much more optimization then we
7600 do here; repeating all that work in the assembler would only
7601 benefit hand written assembly code, and does not seem worth
7602 it. */
7603 int nops = (mips_optimize == 0
7604 ? nops_for_insn (0, history, NULL)
7605 : nops_for_insn_or_target (0, history, ip));
7606 if (nops > 0)
7607 {
7608 fragS *old_frag;
7609 unsigned long old_frag_offset;
7610 int i;
7611
7612 old_frag = frag_now;
7613 old_frag_offset = frag_now_fix ();
7614
7615 for (i = 0; i < nops; i++)
7616 add_fixed_insn (NOP_INSN);
7617 insert_into_history (0, nops, NOP_INSN);
7618
7619 if (listing)
7620 {
7621 listing_prev_line ();
7622 /* We may be at the start of a variant frag. In case we
7623 are, make sure there is enough space for the frag
7624 after the frags created by listing_prev_line. The
7625 argument to frag_grow here must be at least as large
7626 as the argument to all other calls to frag_grow in
7627 this file. We don't have to worry about being in the
7628 middle of a variant frag, because the variants insert
7629 all needed nop instructions themselves. */
7630 frag_grow (40);
7631 }
7632
7633 mips_move_text_labels ();
7634
7635 #ifndef NO_ECOFF_DEBUGGING
7636 if (ECOFF_DEBUGGING)
7637 ecoff_fix_loc (old_frag, old_frag_offset);
7638 #endif
7639 }
7640 }
7641 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7642 {
7643 int nops;
7644
7645 /* Work out how many nops in prev_nop_frag are needed by IP,
7646 ignoring hazards generated by the first prev_nop_frag_since
7647 instructions. */
7648 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7649 gas_assert (nops <= prev_nop_frag_holds);
7650
7651 /* Enforce NOPS as a minimum. */
7652 if (nops > prev_nop_frag_required)
7653 prev_nop_frag_required = nops;
7654
7655 if (prev_nop_frag_holds == prev_nop_frag_required)
7656 {
7657 /* Settle for the current number of nops. Update the history
7658 accordingly (for the benefit of any future .set reorder code). */
7659 prev_nop_frag = NULL;
7660 insert_into_history (prev_nop_frag_since,
7661 prev_nop_frag_holds, NOP_INSN);
7662 }
7663 else
7664 {
7665 /* Allow this instruction to replace one of the nops that was
7666 tentatively added to prev_nop_frag. */
7667 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7668 prev_nop_frag_holds--;
7669 prev_nop_frag_since++;
7670 }
7671 }
7672
7673 method = get_append_method (ip, address_expr, reloc_type);
7674 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7675
7676 dwarf2_emit_insn (0);
7677 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7678 so "move" the instruction address accordingly.
7679
7680 Also, it doesn't seem appropriate for the assembler to reorder .loc
7681 entries. If this instruction is a branch that we are going to swap
7682 with the previous instruction, the two instructions should be
7683 treated as a unit, and the debug information for both instructions
7684 should refer to the start of the branch sequence. Using the
7685 current position is certainly wrong when swapping a 32-bit branch
7686 and a 16-bit delay slot, since the current position would then be
7687 in the middle of a branch. */
7688 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7689
7690 relax32 = (mips_relax_branch
7691 /* Don't try branch relaxation within .set nomacro, or within
7692 .set noat if we use $at for PIC computations. If it turns
7693 out that the branch was out-of-range, we'll get an error. */
7694 && !mips_opts.warn_about_macros
7695 && (mips_opts.at || mips_pic == NO_PIC)
7696 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7697 as they have no complementing branches. */
7698 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7699
7700 if (!HAVE_CODE_COMPRESSION
7701 && address_expr
7702 && relax32
7703 && *reloc_type == BFD_RELOC_16_PCREL_S2
7704 && delayed_branch_p (ip))
7705 {
7706 relaxed_branch = TRUE;
7707 add_relaxed_insn (ip, (relaxed_branch_length
7708 (NULL, NULL,
7709 uncond_branch_p (ip) ? -1
7710 : branch_likely_p (ip) ? 1
7711 : 0)), 4,
7712 RELAX_BRANCH_ENCODE
7713 (AT, mips_pic != NO_PIC,
7714 uncond_branch_p (ip),
7715 branch_likely_p (ip),
7716 pinfo & INSN_WRITE_GPR_31,
7717 0),
7718 address_expr->X_add_symbol,
7719 address_expr->X_add_number);
7720 *reloc_type = BFD_RELOC_UNUSED;
7721 }
7722 else if (mips_opts.micromips
7723 && address_expr
7724 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7725 || *reloc_type > BFD_RELOC_UNUSED)
7726 && (delayed_branch_p (ip) || compact_branch_p (ip))
7727 /* Don't try branch relaxation when users specify
7728 16-bit/32-bit instructions. */
7729 && !forced_insn_length)
7730 {
7731 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7732 && *reloc_type > BFD_RELOC_UNUSED);
7733 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7734 int uncond = uncond_branch_p (ip) ? -1 : 0;
7735 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7736 int nods = method == APPEND_ADD_WITH_NOP;
7737 int al = pinfo & INSN_WRITE_GPR_31;
7738 int length32 = nods ? 8 : 4;
7739
7740 gas_assert (address_expr != NULL);
7741 gas_assert (!mips_relax.sequence);
7742
7743 relaxed_branch = TRUE;
7744 if (nods)
7745 method = APPEND_ADD;
7746 if (relax32)
7747 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7748 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7749 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7750 mips_pic != NO_PIC,
7751 uncond, compact, al, nods,
7752 relax32, 0, 0),
7753 address_expr->X_add_symbol,
7754 address_expr->X_add_number);
7755 *reloc_type = BFD_RELOC_UNUSED;
7756 }
7757 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7758 {
7759 bfd_boolean require_unextended;
7760 bfd_boolean require_extended;
7761 symbolS *symbol;
7762 offsetT offset;
7763
7764 if (forced_insn_length != 0)
7765 {
7766 require_unextended = forced_insn_length == 2;
7767 require_extended = forced_insn_length == 4;
7768 }
7769 else
7770 {
7771 require_unextended = (mips_opts.noautoextend
7772 && !mips_opcode_32bit_p (ip->insn_mo));
7773 require_extended = 0;
7774 }
7775
7776 /* We need to set up a variant frag. */
7777 gas_assert (address_expr != NULL);
7778 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7779 symbol created by `make_expr_symbol' may not get a necessary
7780 external relocation produced. */
7781 if (address_expr->X_op == O_symbol)
7782 {
7783 symbol = address_expr->X_add_symbol;
7784 offset = address_expr->X_add_number;
7785 }
7786 else
7787 {
7788 symbol = make_expr_symbol (address_expr);
7789 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7790 offset = 0;
7791 }
7792 add_relaxed_insn (ip, 12, 0,
7793 RELAX_MIPS16_ENCODE
7794 (*reloc_type - BFD_RELOC_UNUSED,
7795 mips_opts.ase & ASE_MIPS16E2,
7796 mips_pic != NO_PIC,
7797 HAVE_32BIT_SYMBOLS,
7798 mips_opts.warn_about_macros,
7799 require_unextended, require_extended,
7800 delayed_branch_p (&history[0]),
7801 history[0].mips16_absolute_jump_p),
7802 symbol, offset);
7803 }
7804 else if (mips_opts.mips16 && insn_length (ip) == 2)
7805 {
7806 if (!delayed_branch_p (ip))
7807 /* Make sure there is enough room to swap this instruction with
7808 a following jump instruction. */
7809 frag_grow (6);
7810 add_fixed_insn (ip);
7811 }
7812 else
7813 {
7814 if (mips_opts.mips16
7815 && mips_opts.noreorder
7816 && delayed_branch_p (&history[0]))
7817 as_warn (_("extended instruction in delay slot"));
7818
7819 if (mips_relax.sequence)
7820 {
7821 /* If we've reached the end of this frag, turn it into a variant
7822 frag and record the information for the instructions we've
7823 written so far. */
7824 if (frag_room () < 4)
7825 relax_close_frag ();
7826 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7827 }
7828
7829 if (mips_relax.sequence != 2)
7830 {
7831 if (mips_macro_warning.first_insn_sizes[0] == 0)
7832 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7833 mips_macro_warning.sizes[0] += insn_length (ip);
7834 mips_macro_warning.insns[0]++;
7835 }
7836 if (mips_relax.sequence != 1)
7837 {
7838 if (mips_macro_warning.first_insn_sizes[1] == 0)
7839 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7840 mips_macro_warning.sizes[1] += insn_length (ip);
7841 mips_macro_warning.insns[1]++;
7842 }
7843
7844 if (mips_opts.mips16)
7845 {
7846 ip->fixed_p = 1;
7847 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7848 }
7849 add_fixed_insn (ip);
7850 }
7851
7852 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7853 {
7854 bfd_reloc_code_real_type final_type[3];
7855 reloc_howto_type *howto0;
7856 reloc_howto_type *howto;
7857 int i;
7858
7859 /* Perform any necessary conversion to microMIPS relocations
7860 and find out how many relocations there actually are. */
7861 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7862 final_type[i] = micromips_map_reloc (reloc_type[i]);
7863
7864 /* In a compound relocation, it is the final (outermost)
7865 operator that determines the relocated field. */
7866 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7867 if (!howto)
7868 abort ();
7869
7870 if (i > 1)
7871 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7872 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7873 bfd_get_reloc_size (howto),
7874 address_expr,
7875 howto0 && howto0->pc_relative,
7876 final_type[0]);
7877 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7878 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7879
7880 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7881 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7882 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7883
7884 /* These relocations can have an addend that won't fit in
7885 4 octets for 64bit assembly. */
7886 if (GPR_SIZE == 64
7887 && ! howto->partial_inplace
7888 && (reloc_type[0] == BFD_RELOC_16
7889 || reloc_type[0] == BFD_RELOC_32
7890 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7891 || reloc_type[0] == BFD_RELOC_GPREL16
7892 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7893 || reloc_type[0] == BFD_RELOC_GPREL32
7894 || reloc_type[0] == BFD_RELOC_64
7895 || reloc_type[0] == BFD_RELOC_CTOR
7896 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7897 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7898 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7899 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7900 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7901 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7902 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7903 || hi16_reloc_p (reloc_type[0])
7904 || lo16_reloc_p (reloc_type[0])))
7905 ip->fixp[0]->fx_no_overflow = 1;
7906
7907 /* These relocations can have an addend that won't fit in 2 octets. */
7908 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7909 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7910 ip->fixp[0]->fx_no_overflow = 1;
7911
7912 if (mips_relax.sequence)
7913 {
7914 if (mips_relax.first_fixup == 0)
7915 mips_relax.first_fixup = ip->fixp[0];
7916 }
7917 else if (reloc_needs_lo_p (*reloc_type))
7918 {
7919 struct mips_hi_fixup *hi_fixup;
7920
7921 /* Reuse the last entry if it already has a matching %lo. */
7922 hi_fixup = mips_hi_fixup_list;
7923 if (hi_fixup == 0
7924 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7925 {
7926 hi_fixup = XNEW (struct mips_hi_fixup);
7927 hi_fixup->next = mips_hi_fixup_list;
7928 mips_hi_fixup_list = hi_fixup;
7929 }
7930 hi_fixup->fixp = ip->fixp[0];
7931 hi_fixup->seg = now_seg;
7932 }
7933
7934 /* Add fixups for the second and third relocations, if given.
7935 Note that the ABI allows the second relocation to be
7936 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7937 moment we only use RSS_UNDEF, but we could add support
7938 for the others if it ever becomes necessary. */
7939 for (i = 1; i < 3; i++)
7940 if (reloc_type[i] != BFD_RELOC_UNUSED)
7941 {
7942 ip->fixp[i] = fix_new (ip->frag, ip->where,
7943 ip->fixp[0]->fx_size, NULL, 0,
7944 FALSE, final_type[i]);
7945
7946 /* Use fx_tcbit to mark compound relocs. */
7947 ip->fixp[0]->fx_tcbit = 1;
7948 ip->fixp[i]->fx_tcbit = 1;
7949 }
7950 }
7951
7952 /* Update the register mask information. */
7953 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7954 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7955
7956 switch (method)
7957 {
7958 case APPEND_ADD:
7959 insert_into_history (0, 1, ip);
7960 break;
7961
7962 case APPEND_ADD_WITH_NOP:
7963 {
7964 struct mips_cl_insn *nop;
7965
7966 insert_into_history (0, 1, ip);
7967 nop = get_delay_slot_nop (ip);
7968 add_fixed_insn (nop);
7969 insert_into_history (0, 1, nop);
7970 if (mips_relax.sequence)
7971 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7972 }
7973 break;
7974
7975 case APPEND_ADD_COMPACT:
7976 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7977 if (mips_opts.mips16)
7978 {
7979 ip->insn_opcode |= 0x0080;
7980 find_altered_mips16_opcode (ip);
7981 }
7982 /* Convert microMIPS instructions. */
7983 else if (mips_opts.micromips)
7984 {
7985 /* jr16->jrc */
7986 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7987 ip->insn_opcode |= 0x0020;
7988 /* b16->bc */
7989 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7990 ip->insn_opcode = 0x40e00000;
7991 /* beqz16->beqzc, bnez16->bnezc */
7992 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7993 {
7994 unsigned long regno;
7995
7996 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7997 regno &= MICROMIPSOP_MASK_MD;
7998 regno = micromips_to_32_reg_d_map[regno];
7999 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
8000 | (regno << MICROMIPSOP_SH_RS)
8001 | 0x40a00000) ^ 0x00400000;
8002 }
8003 /* beqz->beqzc, bnez->bnezc */
8004 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
8005 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
8006 | ((ip->insn_opcode >> 7) & 0x00400000)
8007 | 0x40a00000) ^ 0x00400000;
8008 /* beq $0->beqzc, bne $0->bnezc */
8009 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
8010 ip->insn_opcode = (((ip->insn_opcode >>
8011 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
8012 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
8013 | ((ip->insn_opcode >> 7) & 0x00400000)
8014 | 0x40a00000) ^ 0x00400000;
8015 else
8016 abort ();
8017 find_altered_micromips_opcode (ip);
8018 }
8019 else
8020 abort ();
8021 install_insn (ip);
8022 insert_into_history (0, 1, ip);
8023 break;
8024
8025 case APPEND_SWAP:
8026 {
8027 struct mips_cl_insn delay = history[0];
8028
8029 if (relaxed_branch || delay.frag != ip->frag)
8030 {
8031 /* Add the delay slot instruction to the end of the
8032 current frag and shrink the fixed part of the
8033 original frag. If the branch occupies the tail of
8034 the latter, move it backwards to cover the gap. */
8035 delay.frag->fr_fix -= branch_disp;
8036 if (delay.frag == ip->frag)
8037 move_insn (ip, ip->frag, ip->where - branch_disp);
8038 add_fixed_insn (&delay);
8039 }
8040 else
8041 {
8042 /* If this is not a relaxed branch and we are in the
8043 same frag, then just swap the instructions. */
8044 move_insn (ip, delay.frag, delay.where);
8045 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
8046 }
8047 history[0] = *ip;
8048 delay.fixed_p = 1;
8049 insert_into_history (0, 1, &delay);
8050 }
8051 break;
8052 }
8053
8054 /* If we have just completed an unconditional branch, clear the history. */
8055 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
8056 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
8057 {
8058 unsigned int i;
8059
8060 mips_no_prev_insn ();
8061
8062 for (i = 0; i < ARRAY_SIZE (history); i++)
8063 history[i].cleared_p = 1;
8064 }
8065
8066 /* We need to emit a label at the end of branch-likely macros. */
8067 if (emit_branch_likely_macro)
8068 {
8069 emit_branch_likely_macro = FALSE;
8070 micromips_add_label ();
8071 }
8072
8073 /* We just output an insn, so the next one doesn't have a label. */
8074 mips_clear_insn_labels ();
8075 }
8076
8077 /* Forget that there was any previous instruction or label.
8078 When BRANCH is true, the branch history is also flushed. */
8079
8080 static void
8081 mips_no_prev_insn (void)
8082 {
8083 prev_nop_frag = NULL;
8084 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
8085 mips_clear_insn_labels ();
8086 }
8087
8088 /* This function must be called before we emit something other than
8089 instructions. It is like mips_no_prev_insn except that it inserts
8090 any NOPS that might be needed by previous instructions. */
8091
8092 void
8093 mips_emit_delays (void)
8094 {
8095 if (! mips_opts.noreorder)
8096 {
8097 int nops = nops_for_insn (0, history, NULL);
8098 if (nops > 0)
8099 {
8100 while (nops-- > 0)
8101 add_fixed_insn (NOP_INSN);
8102 mips_move_text_labels ();
8103 }
8104 }
8105 mips_no_prev_insn ();
8106 }
8107
8108 /* Start a (possibly nested) noreorder block. */
8109
8110 static void
8111 start_noreorder (void)
8112 {
8113 if (mips_opts.noreorder == 0)
8114 {
8115 unsigned int i;
8116 int nops;
8117
8118 /* None of the instructions before the .set noreorder can be moved. */
8119 for (i = 0; i < ARRAY_SIZE (history); i++)
8120 history[i].fixed_p = 1;
8121
8122 /* Insert any nops that might be needed between the .set noreorder
8123 block and the previous instructions. We will later remove any
8124 nops that turn out not to be needed. */
8125 nops = nops_for_insn (0, history, NULL);
8126 if (nops > 0)
8127 {
8128 if (mips_optimize != 0)
8129 {
8130 /* Record the frag which holds the nop instructions, so
8131 that we can remove them if we don't need them. */
8132 frag_grow (nops * NOP_INSN_SIZE);
8133 prev_nop_frag = frag_now;
8134 prev_nop_frag_holds = nops;
8135 prev_nop_frag_required = 0;
8136 prev_nop_frag_since = 0;
8137 }
8138
8139 for (; nops > 0; --nops)
8140 add_fixed_insn (NOP_INSN);
8141
8142 /* Move on to a new frag, so that it is safe to simply
8143 decrease the size of prev_nop_frag. */
8144 frag_wane (frag_now);
8145 frag_new (0);
8146 mips_move_text_labels ();
8147 }
8148 mips_mark_labels ();
8149 mips_clear_insn_labels ();
8150 }
8151 mips_opts.noreorder++;
8152 mips_any_noreorder = 1;
8153 }
8154
8155 /* End a nested noreorder block. */
8156
8157 static void
8158 end_noreorder (void)
8159 {
8160 mips_opts.noreorder--;
8161 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
8162 {
8163 /* Commit to inserting prev_nop_frag_required nops and go back to
8164 handling nop insertion the .set reorder way. */
8165 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
8166 * NOP_INSN_SIZE);
8167 insert_into_history (prev_nop_frag_since,
8168 prev_nop_frag_required, NOP_INSN);
8169 prev_nop_frag = NULL;
8170 }
8171 }
8172
8173 /* Sign-extend 32-bit mode constants that have bit 31 set and all
8174 higher bits unset. */
8175
8176 static void
8177 normalize_constant_expr (expressionS *ex)
8178 {
8179 if (ex->X_op == O_constant
8180 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8181 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8182 - 0x80000000);
8183 }
8184
8185 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
8186 all higher bits unset. */
8187
8188 static void
8189 normalize_address_expr (expressionS *ex)
8190 {
8191 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
8192 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
8193 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8194 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8195 - 0x80000000);
8196 }
8197
8198 /* Try to match TOKENS against OPCODE, storing the result in INSN.
8199 Return true if the match was successful.
8200
8201 OPCODE_EXTRA is a value that should be ORed into the opcode
8202 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
8203 there are more alternatives after OPCODE and SOFT_MATCH is
8204 as for mips_arg_info. */
8205
8206 static bfd_boolean
8207 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8208 struct mips_operand_token *tokens, unsigned int opcode_extra,
8209 bfd_boolean lax_match, bfd_boolean complete_p)
8210 {
8211 const char *args;
8212 struct mips_arg_info arg;
8213 const struct mips_operand *operand;
8214 char c;
8215
8216 imm_expr.X_op = O_absent;
8217 offset_expr.X_op = O_absent;
8218 offset_reloc[0] = BFD_RELOC_UNUSED;
8219 offset_reloc[1] = BFD_RELOC_UNUSED;
8220 offset_reloc[2] = BFD_RELOC_UNUSED;
8221
8222 create_insn (insn, opcode);
8223 /* When no opcode suffix is specified, assume ".xyzw". */
8224 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
8225 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
8226 else
8227 insn->insn_opcode |= opcode_extra;
8228 memset (&arg, 0, sizeof (arg));
8229 arg.insn = insn;
8230 arg.token = tokens;
8231 arg.argnum = 1;
8232 arg.last_regno = ILLEGAL_REG;
8233 arg.dest_regno = ILLEGAL_REG;
8234 arg.lax_match = lax_match;
8235 for (args = opcode->args;; ++args)
8236 {
8237 if (arg.token->type == OT_END)
8238 {
8239 /* Handle unary instructions in which only one operand is given.
8240 The source is then the same as the destination. */
8241 if (arg.opnum == 1 && *args == ',')
8242 {
8243 operand = (mips_opts.micromips
8244 ? decode_micromips_operand (args + 1)
8245 : decode_mips_operand (args + 1));
8246 if (operand && mips_optional_operand_p (operand))
8247 {
8248 arg.token = tokens;
8249 arg.argnum = 1;
8250 continue;
8251 }
8252 }
8253
8254 /* Treat elided base registers as $0. */
8255 if (strcmp (args, "(b)") == 0)
8256 args += 3;
8257
8258 if (args[0] == '+')
8259 switch (args[1])
8260 {
8261 case 'K':
8262 case 'N':
8263 /* The register suffix is optional. */
8264 args += 2;
8265 break;
8266 }
8267
8268 /* Fail the match if there were too few operands. */
8269 if (*args)
8270 return FALSE;
8271
8272 /* Successful match. */
8273 if (!complete_p)
8274 return TRUE;
8275 clear_insn_error ();
8276 if (arg.dest_regno == arg.last_regno
8277 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
8278 {
8279 if (arg.opnum == 2)
8280 set_insn_error
8281 (0, _("source and destination must be different"));
8282 else if (arg.last_regno == 31)
8283 set_insn_error
8284 (0, _("a destination register must be supplied"));
8285 }
8286 else if (arg.last_regno == 31
8287 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
8288 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
8289 set_insn_error (0, _("the source register must not be $31"));
8290 check_completed_insn (&arg);
8291 return TRUE;
8292 }
8293
8294 /* Fail the match if the line has too many operands. */
8295 if (*args == 0)
8296 return FALSE;
8297
8298 /* Handle characters that need to match exactly. */
8299 if (*args == '(' || *args == ')' || *args == ',')
8300 {
8301 if (match_char (&arg, *args))
8302 continue;
8303 return FALSE;
8304 }
8305 if (*args == '#')
8306 {
8307 ++args;
8308 if (arg.token->type == OT_DOUBLE_CHAR
8309 && arg.token->u.ch == *args)
8310 {
8311 ++arg.token;
8312 continue;
8313 }
8314 return FALSE;
8315 }
8316
8317 /* Handle special macro operands. Work out the properties of
8318 other operands. */
8319 arg.opnum += 1;
8320 switch (*args)
8321 {
8322 case '-':
8323 switch (args[1])
8324 {
8325 case 'A':
8326 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8327 break;
8328
8329 case 'B':
8330 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8331 break;
8332 }
8333 break;
8334
8335 case '+':
8336 switch (args[1])
8337 {
8338 case 'i':
8339 *offset_reloc = BFD_RELOC_MIPS_JMP;
8340 break;
8341
8342 case '\'':
8343 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8344 break;
8345
8346 case '\"':
8347 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8348 break;
8349 }
8350 break;
8351
8352 case 'I':
8353 if (!match_const_int (&arg, &imm_expr.X_add_number))
8354 return FALSE;
8355 imm_expr.X_op = O_constant;
8356 if (GPR_SIZE == 32)
8357 normalize_constant_expr (&imm_expr);
8358 continue;
8359
8360 case 'A':
8361 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8362 {
8363 /* Assume that the offset has been elided and that what
8364 we saw was a base register. The match will fail later
8365 if that assumption turns out to be wrong. */
8366 offset_expr.X_op = O_constant;
8367 offset_expr.X_add_number = 0;
8368 }
8369 else
8370 {
8371 if (!match_expression (&arg, &offset_expr, offset_reloc))
8372 return FALSE;
8373 normalize_address_expr (&offset_expr);
8374 }
8375 continue;
8376
8377 case 'F':
8378 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8379 8, TRUE))
8380 return FALSE;
8381 continue;
8382
8383 case 'L':
8384 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8385 8, FALSE))
8386 return FALSE;
8387 continue;
8388
8389 case 'f':
8390 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8391 4, TRUE))
8392 return FALSE;
8393 continue;
8394
8395 case 'l':
8396 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8397 4, FALSE))
8398 return FALSE;
8399 continue;
8400
8401 case 'p':
8402 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8403 break;
8404
8405 case 'a':
8406 *offset_reloc = BFD_RELOC_MIPS_JMP;
8407 break;
8408
8409 case 'm':
8410 gas_assert (mips_opts.micromips);
8411 c = args[1];
8412 switch (c)
8413 {
8414 case 'D':
8415 case 'E':
8416 if (!forced_insn_length)
8417 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8418 else if (c == 'D')
8419 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8420 else
8421 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8422 break;
8423 }
8424 break;
8425 }
8426
8427 operand = (mips_opts.micromips
8428 ? decode_micromips_operand (args)
8429 : decode_mips_operand (args));
8430 if (!operand)
8431 abort ();
8432
8433 /* Skip prefixes. */
8434 if (*args == '+' || *args == 'm' || *args == '-')
8435 args++;
8436
8437 if (mips_optional_operand_p (operand)
8438 && args[1] == ','
8439 && (arg.token[0].type != OT_REG
8440 || arg.token[1].type == OT_END))
8441 {
8442 /* Assume that the register has been elided and is the
8443 same as the first operand. */
8444 arg.token = tokens;
8445 arg.argnum = 1;
8446 }
8447
8448 if (!match_operand (&arg, operand))
8449 return FALSE;
8450 }
8451 }
8452
8453 /* Like match_insn, but for MIPS16. */
8454
8455 static bfd_boolean
8456 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8457 struct mips_operand_token *tokens)
8458 {
8459 const char *args;
8460 const struct mips_operand *operand;
8461 const struct mips_operand *ext_operand;
8462 bfd_boolean pcrel = FALSE;
8463 int required_insn_length;
8464 struct mips_arg_info arg;
8465 int relax_char;
8466
8467 if (forced_insn_length)
8468 required_insn_length = forced_insn_length;
8469 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8470 required_insn_length = 2;
8471 else
8472 required_insn_length = 0;
8473
8474 create_insn (insn, opcode);
8475 imm_expr.X_op = O_absent;
8476 offset_expr.X_op = O_absent;
8477 offset_reloc[0] = BFD_RELOC_UNUSED;
8478 offset_reloc[1] = BFD_RELOC_UNUSED;
8479 offset_reloc[2] = BFD_RELOC_UNUSED;
8480 relax_char = 0;
8481
8482 memset (&arg, 0, sizeof (arg));
8483 arg.insn = insn;
8484 arg.token = tokens;
8485 arg.argnum = 1;
8486 arg.last_regno = ILLEGAL_REG;
8487 arg.dest_regno = ILLEGAL_REG;
8488 relax_char = 0;
8489 for (args = opcode->args;; ++args)
8490 {
8491 int c;
8492
8493 if (arg.token->type == OT_END)
8494 {
8495 offsetT value;
8496
8497 /* Handle unary instructions in which only one operand is given.
8498 The source is then the same as the destination. */
8499 if (arg.opnum == 1 && *args == ',')
8500 {
8501 operand = decode_mips16_operand (args[1], FALSE);
8502 if (operand && mips_optional_operand_p (operand))
8503 {
8504 arg.token = tokens;
8505 arg.argnum = 1;
8506 continue;
8507 }
8508 }
8509
8510 /* Fail the match if there were too few operands. */
8511 if (*args)
8512 return FALSE;
8513
8514 /* Successful match. Stuff the immediate value in now, if
8515 we can. */
8516 clear_insn_error ();
8517 if (opcode->pinfo == INSN_MACRO)
8518 {
8519 gas_assert (relax_char == 0 || relax_char == 'p');
8520 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8521 }
8522 else if (relax_char
8523 && offset_expr.X_op == O_constant
8524 && !pcrel
8525 && calculate_reloc (*offset_reloc,
8526 offset_expr.X_add_number,
8527 &value))
8528 {
8529 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8530 required_insn_length, &insn->insn_opcode);
8531 offset_expr.X_op = O_absent;
8532 *offset_reloc = BFD_RELOC_UNUSED;
8533 }
8534 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8535 {
8536 if (required_insn_length == 2)
8537 set_insn_error (0, _("invalid unextended operand value"));
8538 else if (!mips_opcode_32bit_p (opcode))
8539 {
8540 forced_insn_length = 4;
8541 insn->insn_opcode |= MIPS16_EXTEND;
8542 }
8543 }
8544 else if (relax_char)
8545 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8546
8547 check_completed_insn (&arg);
8548 return TRUE;
8549 }
8550
8551 /* Fail the match if the line has too many operands. */
8552 if (*args == 0)
8553 return FALSE;
8554
8555 /* Handle characters that need to match exactly. */
8556 if (*args == '(' || *args == ')' || *args == ',')
8557 {
8558 if (match_char (&arg, *args))
8559 continue;
8560 return FALSE;
8561 }
8562
8563 arg.opnum += 1;
8564 c = *args;
8565 switch (c)
8566 {
8567 case 'p':
8568 case 'q':
8569 case 'A':
8570 case 'B':
8571 case 'E':
8572 case 'V':
8573 case 'u':
8574 relax_char = c;
8575 break;
8576
8577 case 'I':
8578 if (!match_const_int (&arg, &imm_expr.X_add_number))
8579 return FALSE;
8580 imm_expr.X_op = O_constant;
8581 if (GPR_SIZE == 32)
8582 normalize_constant_expr (&imm_expr);
8583 continue;
8584
8585 case 'a':
8586 case 'i':
8587 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8588 break;
8589 }
8590
8591 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8592 if (!operand)
8593 abort ();
8594
8595 if (operand->type == OP_PCREL)
8596 pcrel = TRUE;
8597 else
8598 {
8599 ext_operand = decode_mips16_operand (c, TRUE);
8600 if (operand != ext_operand)
8601 {
8602 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8603 {
8604 offset_expr.X_op = O_constant;
8605 offset_expr.X_add_number = 0;
8606 relax_char = c;
8607 continue;
8608 }
8609
8610 if (!match_expression (&arg, &offset_expr, offset_reloc))
8611 return FALSE;
8612
8613 /* '8' is used for SLTI(U) and has traditionally not
8614 been allowed to take relocation operators. */
8615 if (offset_reloc[0] != BFD_RELOC_UNUSED
8616 && (ext_operand->size != 16 || c == '8'))
8617 {
8618 match_not_constant (&arg);
8619 return FALSE;
8620 }
8621
8622 if (offset_expr.X_op == O_big)
8623 {
8624 match_out_of_range (&arg);
8625 return FALSE;
8626 }
8627
8628 relax_char = c;
8629 continue;
8630 }
8631 }
8632
8633 if (mips_optional_operand_p (operand)
8634 && args[1] == ','
8635 && (arg.token[0].type != OT_REG
8636 || arg.token[1].type == OT_END))
8637 {
8638 /* Assume that the register has been elided and is the
8639 same as the first operand. */
8640 arg.token = tokens;
8641 arg.argnum = 1;
8642 }
8643
8644 if (!match_operand (&arg, operand))
8645 return FALSE;
8646 }
8647 }
8648
8649 /* Record that the current instruction is invalid for the current ISA. */
8650
8651 static void
8652 match_invalid_for_isa (void)
8653 {
8654 set_insn_error_ss
8655 (0, _("opcode not supported on this processor: %s (%s)"),
8656 mips_cpu_info_from_arch (mips_opts.arch)->name,
8657 mips_cpu_info_from_isa (mips_opts.isa)->name);
8658 }
8659
8660 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8661 Return true if a definite match or failure was found, storing any match
8662 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8663 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8664 tried and failed to match under normal conditions and now want to try a
8665 more relaxed match. */
8666
8667 static bfd_boolean
8668 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8669 const struct mips_opcode *past, struct mips_operand_token *tokens,
8670 int opcode_extra, bfd_boolean lax_match)
8671 {
8672 const struct mips_opcode *opcode;
8673 const struct mips_opcode *invalid_delay_slot;
8674 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8675
8676 /* Search for a match, ignoring alternatives that don't satisfy the
8677 current ISA or forced_length. */
8678 invalid_delay_slot = 0;
8679 seen_valid_for_isa = FALSE;
8680 seen_valid_for_size = FALSE;
8681 opcode = first;
8682 do
8683 {
8684 gas_assert (strcmp (opcode->name, first->name) == 0);
8685 if (is_opcode_valid (opcode))
8686 {
8687 seen_valid_for_isa = TRUE;
8688 if (is_size_valid (opcode))
8689 {
8690 bfd_boolean delay_slot_ok;
8691
8692 seen_valid_for_size = TRUE;
8693 delay_slot_ok = is_delay_slot_valid (opcode);
8694 if (match_insn (insn, opcode, tokens, opcode_extra,
8695 lax_match, delay_slot_ok))
8696 {
8697 if (!delay_slot_ok)
8698 {
8699 if (!invalid_delay_slot)
8700 invalid_delay_slot = opcode;
8701 }
8702 else
8703 return TRUE;
8704 }
8705 }
8706 }
8707 ++opcode;
8708 }
8709 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8710
8711 /* If the only matches we found had the wrong length for the delay slot,
8712 pick the first such match. We'll issue an appropriate warning later. */
8713 if (invalid_delay_slot)
8714 {
8715 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8716 lax_match, TRUE))
8717 return TRUE;
8718 abort ();
8719 }
8720
8721 /* Handle the case where we didn't try to match an instruction because
8722 all the alternatives were incompatible with the current ISA. */
8723 if (!seen_valid_for_isa)
8724 {
8725 match_invalid_for_isa ();
8726 return TRUE;
8727 }
8728
8729 /* Handle the case where we didn't try to match an instruction because
8730 all the alternatives were of the wrong size. */
8731 if (!seen_valid_for_size)
8732 {
8733 if (mips_opts.insn32)
8734 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8735 else
8736 set_insn_error_i
8737 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8738 8 * forced_insn_length);
8739 return TRUE;
8740 }
8741
8742 return FALSE;
8743 }
8744
8745 /* Like match_insns, but for MIPS16. */
8746
8747 static bfd_boolean
8748 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8749 struct mips_operand_token *tokens)
8750 {
8751 const struct mips_opcode *opcode;
8752 bfd_boolean seen_valid_for_isa;
8753 bfd_boolean seen_valid_for_size;
8754
8755 /* Search for a match, ignoring alternatives that don't satisfy the
8756 current ISA. There are no separate entries for extended forms so
8757 we deal with forced_length later. */
8758 seen_valid_for_isa = FALSE;
8759 seen_valid_for_size = FALSE;
8760 opcode = first;
8761 do
8762 {
8763 gas_assert (strcmp (opcode->name, first->name) == 0);
8764 if (is_opcode_valid_16 (opcode))
8765 {
8766 seen_valid_for_isa = TRUE;
8767 if (is_size_valid_16 (opcode))
8768 {
8769 seen_valid_for_size = TRUE;
8770 if (match_mips16_insn (insn, opcode, tokens))
8771 return TRUE;
8772 }
8773 }
8774 ++opcode;
8775 }
8776 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8777 && strcmp (opcode->name, first->name) == 0);
8778
8779 /* Handle the case where we didn't try to match an instruction because
8780 all the alternatives were incompatible with the current ISA. */
8781 if (!seen_valid_for_isa)
8782 {
8783 match_invalid_for_isa ();
8784 return TRUE;
8785 }
8786
8787 /* Handle the case where we didn't try to match an instruction because
8788 all the alternatives were of the wrong size. */
8789 if (!seen_valid_for_size)
8790 {
8791 if (forced_insn_length == 2)
8792 set_insn_error
8793 (0, _("unrecognized unextended version of MIPS16 opcode"));
8794 else
8795 set_insn_error
8796 (0, _("unrecognized extended version of MIPS16 opcode"));
8797 return TRUE;
8798 }
8799
8800 return FALSE;
8801 }
8802
8803 /* Set up global variables for the start of a new macro. */
8804
8805 static void
8806 macro_start (void)
8807 {
8808 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8809 memset (&mips_macro_warning.first_insn_sizes, 0,
8810 sizeof (mips_macro_warning.first_insn_sizes));
8811 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8812 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8813 && delayed_branch_p (&history[0]));
8814 if (history[0].frag
8815 && history[0].frag->fr_type == rs_machine_dependent
8816 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8817 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8818 mips_macro_warning.delay_slot_length = 0;
8819 else
8820 switch (history[0].insn_mo->pinfo2
8821 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8822 {
8823 case INSN2_BRANCH_DELAY_32BIT:
8824 mips_macro_warning.delay_slot_length = 4;
8825 break;
8826 case INSN2_BRANCH_DELAY_16BIT:
8827 mips_macro_warning.delay_slot_length = 2;
8828 break;
8829 default:
8830 mips_macro_warning.delay_slot_length = 0;
8831 break;
8832 }
8833 mips_macro_warning.first_frag = NULL;
8834 }
8835
8836 /* Given that a macro is longer than one instruction or of the wrong size,
8837 return the appropriate warning for it. Return null if no warning is
8838 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8839 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8840 and RELAX_NOMACRO. */
8841
8842 static const char *
8843 macro_warning (relax_substateT subtype)
8844 {
8845 if (subtype & RELAX_DELAY_SLOT)
8846 return _("macro instruction expanded into multiple instructions"
8847 " in a branch delay slot");
8848 else if (subtype & RELAX_NOMACRO)
8849 return _("macro instruction expanded into multiple instructions");
8850 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8851 | RELAX_DELAY_SLOT_SIZE_SECOND))
8852 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8853 ? _("macro instruction expanded into a wrong size instruction"
8854 " in a 16-bit branch delay slot")
8855 : _("macro instruction expanded into a wrong size instruction"
8856 " in a 32-bit branch delay slot"));
8857 else
8858 return 0;
8859 }
8860
8861 /* Finish up a macro. Emit warnings as appropriate. */
8862
8863 static void
8864 macro_end (void)
8865 {
8866 /* Relaxation warning flags. */
8867 relax_substateT subtype = 0;
8868
8869 /* Check delay slot size requirements. */
8870 if (mips_macro_warning.delay_slot_length == 2)
8871 subtype |= RELAX_DELAY_SLOT_16BIT;
8872 if (mips_macro_warning.delay_slot_length != 0)
8873 {
8874 if (mips_macro_warning.delay_slot_length
8875 != mips_macro_warning.first_insn_sizes[0])
8876 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8877 if (mips_macro_warning.delay_slot_length
8878 != mips_macro_warning.first_insn_sizes[1])
8879 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8880 }
8881
8882 /* Check instruction count requirements. */
8883 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8884 {
8885 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8886 subtype |= RELAX_SECOND_LONGER;
8887 if (mips_opts.warn_about_macros)
8888 subtype |= RELAX_NOMACRO;
8889 if (mips_macro_warning.delay_slot_p)
8890 subtype |= RELAX_DELAY_SLOT;
8891 }
8892
8893 /* If both alternatives fail to fill a delay slot correctly,
8894 emit the warning now. */
8895 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8896 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8897 {
8898 relax_substateT s;
8899 const char *msg;
8900
8901 s = subtype & (RELAX_DELAY_SLOT_16BIT
8902 | RELAX_DELAY_SLOT_SIZE_FIRST
8903 | RELAX_DELAY_SLOT_SIZE_SECOND);
8904 msg = macro_warning (s);
8905 if (msg != NULL)
8906 as_warn ("%s", msg);
8907 subtype &= ~s;
8908 }
8909
8910 /* If both implementations are longer than 1 instruction, then emit the
8911 warning now. */
8912 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8913 {
8914 relax_substateT s;
8915 const char *msg;
8916
8917 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8918 msg = macro_warning (s);
8919 if (msg != NULL)
8920 as_warn ("%s", msg);
8921 subtype &= ~s;
8922 }
8923
8924 /* If any flags still set, then one implementation might need a warning
8925 and the other either will need one of a different kind or none at all.
8926 Pass any remaining flags over to relaxation. */
8927 if (mips_macro_warning.first_frag != NULL)
8928 mips_macro_warning.first_frag->fr_subtype |= subtype;
8929 }
8930
8931 /* Instruction operand formats used in macros that vary between
8932 standard MIPS and microMIPS code. */
8933
8934 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8935 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8936 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8937 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8938 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8939 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8940 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8941 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8942
8943 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8944 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8945 : cop12_fmt[mips_opts.micromips])
8946 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8947 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8948 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8949 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8950 : mem12_fmt[mips_opts.micromips])
8951 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8952 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8953 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8954
8955 /* Read a macro's relocation codes from *ARGS and store them in *R.
8956 The first argument in *ARGS will be either the code for a single
8957 relocation or -1 followed by the three codes that make up a
8958 composite relocation. */
8959
8960 static void
8961 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8962 {
8963 int i, next;
8964
8965 next = va_arg (*args, int);
8966 if (next >= 0)
8967 r[0] = (bfd_reloc_code_real_type) next;
8968 else
8969 {
8970 for (i = 0; i < 3; i++)
8971 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8972 /* This function is only used for 16-bit relocation fields.
8973 To make the macro code simpler, treat an unrelocated value
8974 in the same way as BFD_RELOC_LO16. */
8975 if (r[0] == BFD_RELOC_UNUSED)
8976 r[0] = BFD_RELOC_LO16;
8977 }
8978 }
8979
8980 /* Build an instruction created by a macro expansion. This is passed
8981 a pointer to the count of instructions created so far, an
8982 expression, the name of the instruction to build, an operand format
8983 string, and corresponding arguments. */
8984
8985 static void
8986 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8987 {
8988 const struct mips_opcode *mo = NULL;
8989 bfd_reloc_code_real_type r[3];
8990 const struct mips_opcode *amo;
8991 const struct mips_operand *operand;
8992 struct hash_control *hash;
8993 struct mips_cl_insn insn;
8994 va_list args;
8995 unsigned int uval;
8996
8997 va_start (args, fmt);
8998
8999 if (mips_opts.mips16)
9000 {
9001 mips16_macro_build (ep, name, fmt, &args);
9002 va_end (args);
9003 return;
9004 }
9005
9006 r[0] = BFD_RELOC_UNUSED;
9007 r[1] = BFD_RELOC_UNUSED;
9008 r[2] = BFD_RELOC_UNUSED;
9009 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
9010 amo = (struct mips_opcode *) hash_find (hash, name);
9011 gas_assert (amo);
9012 gas_assert (strcmp (name, amo->name) == 0);
9013
9014 do
9015 {
9016 /* Search until we get a match for NAME. It is assumed here that
9017 macros will never generate MDMX, MIPS-3D, or MT instructions.
9018 We try to match an instruction that fulfills the branch delay
9019 slot instruction length requirement (if any) of the previous
9020 instruction. While doing this we record the first instruction
9021 seen that matches all the other conditions and use it anyway
9022 if the requirement cannot be met; we will issue an appropriate
9023 warning later on. */
9024 if (strcmp (fmt, amo->args) == 0
9025 && amo->pinfo != INSN_MACRO
9026 && is_opcode_valid (amo)
9027 && is_size_valid (amo))
9028 {
9029 if (is_delay_slot_valid (amo))
9030 {
9031 mo = amo;
9032 break;
9033 }
9034 else if (!mo)
9035 mo = amo;
9036 }
9037
9038 ++amo;
9039 gas_assert (amo->name);
9040 }
9041 while (strcmp (name, amo->name) == 0);
9042
9043 gas_assert (mo);
9044 create_insn (&insn, mo);
9045 for (; *fmt; ++fmt)
9046 {
9047 switch (*fmt)
9048 {
9049 case ',':
9050 case '(':
9051 case ')':
9052 case 'z':
9053 break;
9054
9055 case 'i':
9056 case 'j':
9057 macro_read_relocs (&args, r);
9058 gas_assert (*r == BFD_RELOC_GPREL16
9059 || *r == BFD_RELOC_MIPS_HIGHER
9060 || *r == BFD_RELOC_HI16_S
9061 || *r == BFD_RELOC_LO16
9062 || *r == BFD_RELOC_MIPS_GOT_OFST
9063 || (mips_opts.micromips
9064 && (*r == BFD_RELOC_16
9065 || *r == BFD_RELOC_MIPS_GOT16
9066 || *r == BFD_RELOC_MIPS_CALL16
9067 || *r == BFD_RELOC_MIPS_GOT_HI16
9068 || *r == BFD_RELOC_MIPS_GOT_LO16
9069 || *r == BFD_RELOC_MIPS_CALL_HI16
9070 || *r == BFD_RELOC_MIPS_CALL_LO16
9071 || *r == BFD_RELOC_MIPS_SUB
9072 || *r == BFD_RELOC_MIPS_GOT_PAGE
9073 || *r == BFD_RELOC_MIPS_HIGHEST
9074 || *r == BFD_RELOC_MIPS_GOT_DISP
9075 || *r == BFD_RELOC_MIPS_TLS_GD
9076 || *r == BFD_RELOC_MIPS_TLS_LDM
9077 || *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
9078 || *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
9079 || *r == BFD_RELOC_MIPS_TLS_GOTTPREL
9080 || *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
9081 || *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
9082 break;
9083
9084 case 'o':
9085 macro_read_relocs (&args, r);
9086 break;
9087
9088 case 'u':
9089 macro_read_relocs (&args, r);
9090 gas_assert (ep != NULL
9091 && (ep->X_op == O_constant
9092 || (ep->X_op == O_symbol
9093 && (*r == BFD_RELOC_MIPS_HIGHEST
9094 || *r == BFD_RELOC_HI16_S
9095 || *r == BFD_RELOC_HI16
9096 || *r == BFD_RELOC_GPREL16
9097 || *r == BFD_RELOC_MIPS_GOT_HI16
9098 || *r == BFD_RELOC_MIPS_CALL_HI16))));
9099 break;
9100
9101 case 'p':
9102 gas_assert (ep != NULL);
9103
9104 /*
9105 * This allows macro() to pass an immediate expression for
9106 * creating short branches without creating a symbol.
9107 *
9108 * We don't allow branch relaxation for these branches, as
9109 * they should only appear in ".set nomacro" anyway.
9110 */
9111 if (ep->X_op == O_constant)
9112 {
9113 /* For microMIPS we always use relocations for branches.
9114 So we should not resolve immediate values. */
9115 gas_assert (!mips_opts.micromips);
9116
9117 if ((ep->X_add_number & 3) != 0)
9118 as_bad (_("branch to misaligned address (0x%lx)"),
9119 (unsigned long) ep->X_add_number);
9120 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
9121 as_bad (_("branch address range overflow (0x%lx)"),
9122 (unsigned long) ep->X_add_number);
9123 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
9124 ep = NULL;
9125 }
9126 else
9127 *r = BFD_RELOC_16_PCREL_S2;
9128 break;
9129
9130 case 'a':
9131 gas_assert (ep != NULL);
9132 *r = BFD_RELOC_MIPS_JMP;
9133 break;
9134
9135 default:
9136 operand = (mips_opts.micromips
9137 ? decode_micromips_operand (fmt)
9138 : decode_mips_operand (fmt));
9139 if (!operand)
9140 abort ();
9141
9142 uval = va_arg (args, int);
9143 if (operand->type == OP_CLO_CLZ_DEST)
9144 uval |= (uval << 5);
9145 insn_insert_operand (&insn, operand, uval);
9146
9147 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
9148 ++fmt;
9149 break;
9150 }
9151 }
9152 va_end (args);
9153 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
9154
9155 append_insn (&insn, ep, r, TRUE);
9156 }
9157
9158 static void
9159 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
9160 va_list *args)
9161 {
9162 struct mips_opcode *mo;
9163 struct mips_cl_insn insn;
9164 const struct mips_operand *operand;
9165 bfd_reloc_code_real_type r[3]
9166 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
9167
9168 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9169 gas_assert (mo);
9170 gas_assert (strcmp (name, mo->name) == 0);
9171
9172 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
9173 {
9174 ++mo;
9175 gas_assert (mo->name);
9176 gas_assert (strcmp (name, mo->name) == 0);
9177 }
9178
9179 create_insn (&insn, mo);
9180 for (; *fmt; ++fmt)
9181 {
9182 int c;
9183
9184 c = *fmt;
9185 switch (c)
9186 {
9187 case ',':
9188 case '(':
9189 case ')':
9190 break;
9191
9192 case '.':
9193 case 'S':
9194 case 'P':
9195 case 'R':
9196 break;
9197
9198 case '<':
9199 case '5':
9200 case 'F':
9201 case 'H':
9202 case 'W':
9203 case 'D':
9204 case 'j':
9205 case '8':
9206 case 'V':
9207 case 'C':
9208 case 'U':
9209 case 'k':
9210 case 'K':
9211 case 'p':
9212 case 'q':
9213 {
9214 offsetT value;
9215
9216 gas_assert (ep != NULL);
9217
9218 if (ep->X_op != O_constant)
9219 *r = (int) BFD_RELOC_UNUSED + c;
9220 else if (calculate_reloc (*r, ep->X_add_number, &value))
9221 {
9222 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
9223 ep = NULL;
9224 *r = BFD_RELOC_UNUSED;
9225 }
9226 }
9227 break;
9228
9229 default:
9230 operand = decode_mips16_operand (c, FALSE);
9231 if (!operand)
9232 abort ();
9233
9234 insn_insert_operand (&insn, operand, va_arg (*args, int));
9235 break;
9236 }
9237 }
9238
9239 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
9240
9241 append_insn (&insn, ep, r, TRUE);
9242 }
9243
9244 /*
9245 * Generate a "jalr" instruction with a relocation hint to the called
9246 * function. This occurs in NewABI PIC code.
9247 */
9248 static void
9249 macro_build_jalr (expressionS *ep, int cprestore)
9250 {
9251 static const bfd_reloc_code_real_type jalr_relocs[2]
9252 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
9253 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
9254 const char *jalr;
9255 char *f = NULL;
9256
9257 if (MIPS_JALR_HINT_P (ep))
9258 {
9259 frag_grow (8);
9260 f = frag_more (0);
9261 }
9262 if (mips_opts.micromips)
9263 {
9264 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9265 ? "jalr" : "jalrs");
9266 if (MIPS_JALR_HINT_P (ep)
9267 || mips_opts.insn32
9268 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9269 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9270 else
9271 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9272 }
9273 else
9274 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
9275 if (MIPS_JALR_HINT_P (ep))
9276 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
9277 }
9278
9279 /*
9280 * Generate a "lui" instruction.
9281 */
9282 static void
9283 macro_build_lui (expressionS *ep, int regnum)
9284 {
9285 gas_assert (! mips_opts.mips16);
9286
9287 if (ep->X_op != O_constant)
9288 {
9289 gas_assert (ep->X_op == O_symbol);
9290 /* _gp_disp is a special case, used from s_cpload.
9291 __gnu_local_gp is used if mips_no_shared. */
9292 gas_assert (mips_pic == NO_PIC
9293 || (! HAVE_NEWABI
9294 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9295 || (! mips_in_shared
9296 && strcmp (S_GET_NAME (ep->X_add_symbol),
9297 "__gnu_local_gp") == 0));
9298 }
9299
9300 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
9301 }
9302
9303 /* Generate a sequence of instructions to do a load or store from a constant
9304 offset off of a base register (breg) into/from a target register (treg),
9305 using AT if necessary. */
9306 static void
9307 macro_build_ldst_constoffset (expressionS *ep, const char *op,
9308 int treg, int breg, int dbl)
9309 {
9310 gas_assert (ep->X_op == O_constant);
9311
9312 /* Sign-extending 32-bit constants makes their handling easier. */
9313 if (!dbl)
9314 normalize_constant_expr (ep);
9315
9316 /* Right now, this routine can only handle signed 32-bit constants. */
9317 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
9318 as_warn (_("operand overflow"));
9319
9320 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9321 {
9322 /* Signed 16-bit offset will fit in the op. Easy! */
9323 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
9324 }
9325 else
9326 {
9327 /* 32-bit offset, need multiple instructions and AT, like:
9328 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9329 addu $tempreg,$tempreg,$breg
9330 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9331 to handle the complete offset. */
9332 macro_build_lui (ep, AT);
9333 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9334 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
9335
9336 if (!mips_opts.at)
9337 as_bad (_("macro used $at after \".set noat\""));
9338 }
9339 }
9340
9341 /* set_at()
9342 * Generates code to set the $at register to true (one)
9343 * if reg is less than the immediate expression.
9344 */
9345 static void
9346 set_at (int reg, int unsignedp)
9347 {
9348 if (imm_expr.X_add_number >= -0x8000
9349 && imm_expr.X_add_number < 0x8000)
9350 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9351 AT, reg, BFD_RELOC_LO16);
9352 else
9353 {
9354 load_register (AT, &imm_expr, GPR_SIZE == 64);
9355 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
9356 }
9357 }
9358
9359 /* Count the leading zeroes by performing a binary chop. This is a
9360 bulky bit of source, but performance is a LOT better for the
9361 majority of values than a simple loop to count the bits:
9362 for (lcnt = 0; (lcnt < 32); lcnt++)
9363 if ((v) & (1 << (31 - lcnt)))
9364 break;
9365 However it is not code size friendly, and the gain will drop a bit
9366 on certain cached systems.
9367 */
9368 #define COUNT_TOP_ZEROES(v) \
9369 (((v) & ~0xffff) == 0 \
9370 ? ((v) & ~0xff) == 0 \
9371 ? ((v) & ~0xf) == 0 \
9372 ? ((v) & ~0x3) == 0 \
9373 ? ((v) & ~0x1) == 0 \
9374 ? !(v) \
9375 ? 32 \
9376 : 31 \
9377 : 30 \
9378 : ((v) & ~0x7) == 0 \
9379 ? 29 \
9380 : 28 \
9381 : ((v) & ~0x3f) == 0 \
9382 ? ((v) & ~0x1f) == 0 \
9383 ? 27 \
9384 : 26 \
9385 : ((v) & ~0x7f) == 0 \
9386 ? 25 \
9387 : 24 \
9388 : ((v) & ~0xfff) == 0 \
9389 ? ((v) & ~0x3ff) == 0 \
9390 ? ((v) & ~0x1ff) == 0 \
9391 ? 23 \
9392 : 22 \
9393 : ((v) & ~0x7ff) == 0 \
9394 ? 21 \
9395 : 20 \
9396 : ((v) & ~0x3fff) == 0 \
9397 ? ((v) & ~0x1fff) == 0 \
9398 ? 19 \
9399 : 18 \
9400 : ((v) & ~0x7fff) == 0 \
9401 ? 17 \
9402 : 16 \
9403 : ((v) & ~0xffffff) == 0 \
9404 ? ((v) & ~0xfffff) == 0 \
9405 ? ((v) & ~0x3ffff) == 0 \
9406 ? ((v) & ~0x1ffff) == 0 \
9407 ? 15 \
9408 : 14 \
9409 : ((v) & ~0x7ffff) == 0 \
9410 ? 13 \
9411 : 12 \
9412 : ((v) & ~0x3fffff) == 0 \
9413 ? ((v) & ~0x1fffff) == 0 \
9414 ? 11 \
9415 : 10 \
9416 : ((v) & ~0x7fffff) == 0 \
9417 ? 9 \
9418 : 8 \
9419 : ((v) & ~0xfffffff) == 0 \
9420 ? ((v) & ~0x3ffffff) == 0 \
9421 ? ((v) & ~0x1ffffff) == 0 \
9422 ? 7 \
9423 : 6 \
9424 : ((v) & ~0x7ffffff) == 0 \
9425 ? 5 \
9426 : 4 \
9427 : ((v) & ~0x3fffffff) == 0 \
9428 ? ((v) & ~0x1fffffff) == 0 \
9429 ? 3 \
9430 : 2 \
9431 : ((v) & ~0x7fffffff) == 0 \
9432 ? 1 \
9433 : 0)
9434
9435 /* load_register()
9436 * This routine generates the least number of instructions necessary to load
9437 * an absolute expression value into a register.
9438 */
9439 static void
9440 load_register (int reg, expressionS *ep, int dbl)
9441 {
9442 int freg;
9443 expressionS hi32, lo32;
9444
9445 if (ep->X_op != O_big)
9446 {
9447 gas_assert (ep->X_op == O_constant);
9448
9449 /* Sign-extending 32-bit constants makes their handling easier. */
9450 if (!dbl)
9451 normalize_constant_expr (ep);
9452
9453 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9454 {
9455 /* We can handle 16 bit signed values with an addiu to
9456 $zero. No need to ever use daddiu here, since $zero and
9457 the result are always correct in 32 bit mode. */
9458 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9459 return;
9460 }
9461 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9462 {
9463 /* We can handle 16 bit unsigned values with an ori to
9464 $zero. */
9465 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9466 return;
9467 }
9468 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9469 {
9470 /* 32 bit values require an lui. */
9471 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9472 if ((ep->X_add_number & 0xffff) != 0)
9473 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9474 return;
9475 }
9476 }
9477
9478 /* The value is larger than 32 bits. */
9479
9480 if (!dbl || GPR_SIZE == 32)
9481 {
9482 char value[32];
9483
9484 sprintf_vma (value, ep->X_add_number);
9485 as_bad (_("number (0x%s) larger than 32 bits"), value);
9486 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9487 return;
9488 }
9489
9490 if (ep->X_op != O_big)
9491 {
9492 hi32 = *ep;
9493 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9494 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9495 hi32.X_add_number &= 0xffffffff;
9496 lo32 = *ep;
9497 lo32.X_add_number &= 0xffffffff;
9498 }
9499 else
9500 {
9501 gas_assert (ep->X_add_number > 2);
9502 if (ep->X_add_number == 3)
9503 generic_bignum[3] = 0;
9504 else if (ep->X_add_number > 4)
9505 as_bad (_("number larger than 64 bits"));
9506 lo32.X_op = O_constant;
9507 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9508 hi32.X_op = O_constant;
9509 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9510 }
9511
9512 if (hi32.X_add_number == 0)
9513 freg = 0;
9514 else
9515 {
9516 int shift, bit;
9517 unsigned long hi, lo;
9518
9519 if (hi32.X_add_number == (offsetT) 0xffffffff)
9520 {
9521 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9522 {
9523 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9524 return;
9525 }
9526 if (lo32.X_add_number & 0x80000000)
9527 {
9528 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9529 if (lo32.X_add_number & 0xffff)
9530 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9531 return;
9532 }
9533 }
9534
9535 /* Check for 16bit shifted constant. We know that hi32 is
9536 non-zero, so start the mask on the first bit of the hi32
9537 value. */
9538 shift = 17;
9539 do
9540 {
9541 unsigned long himask, lomask;
9542
9543 if (shift < 32)
9544 {
9545 himask = 0xffff >> (32 - shift);
9546 lomask = (0xffff << shift) & 0xffffffff;
9547 }
9548 else
9549 {
9550 himask = 0xffff << (shift - 32);
9551 lomask = 0;
9552 }
9553 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9554 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9555 {
9556 expressionS tmp;
9557
9558 tmp.X_op = O_constant;
9559 if (shift < 32)
9560 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9561 | (lo32.X_add_number >> shift));
9562 else
9563 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9564 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9565 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9566 reg, reg, (shift >= 32) ? shift - 32 : shift);
9567 return;
9568 }
9569 ++shift;
9570 }
9571 while (shift <= (64 - 16));
9572
9573 /* Find the bit number of the lowest one bit, and store the
9574 shifted value in hi/lo. */
9575 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9576 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9577 if (lo != 0)
9578 {
9579 bit = 0;
9580 while ((lo & 1) == 0)
9581 {
9582 lo >>= 1;
9583 ++bit;
9584 }
9585 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9586 hi >>= bit;
9587 }
9588 else
9589 {
9590 bit = 32;
9591 while ((hi & 1) == 0)
9592 {
9593 hi >>= 1;
9594 ++bit;
9595 }
9596 lo = hi;
9597 hi = 0;
9598 }
9599
9600 /* Optimize if the shifted value is a (power of 2) - 1. */
9601 if ((hi == 0 && ((lo + 1) & lo) == 0)
9602 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9603 {
9604 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9605 if (shift != 0)
9606 {
9607 expressionS tmp;
9608
9609 /* This instruction will set the register to be all
9610 ones. */
9611 tmp.X_op = O_constant;
9612 tmp.X_add_number = (offsetT) -1;
9613 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9614 if (bit != 0)
9615 {
9616 bit += shift;
9617 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9618 reg, reg, (bit >= 32) ? bit - 32 : bit);
9619 }
9620 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9621 reg, reg, (shift >= 32) ? shift - 32 : shift);
9622 return;
9623 }
9624 }
9625
9626 /* Sign extend hi32 before calling load_register, because we can
9627 generally get better code when we load a sign extended value. */
9628 if ((hi32.X_add_number & 0x80000000) != 0)
9629 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9630 load_register (reg, &hi32, 0);
9631 freg = reg;
9632 }
9633 if ((lo32.X_add_number & 0xffff0000) == 0)
9634 {
9635 if (freg != 0)
9636 {
9637 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9638 freg = reg;
9639 }
9640 }
9641 else
9642 {
9643 expressionS mid16;
9644
9645 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9646 {
9647 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9648 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9649 return;
9650 }
9651
9652 if (freg != 0)
9653 {
9654 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9655 freg = reg;
9656 }
9657 mid16 = lo32;
9658 mid16.X_add_number >>= 16;
9659 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9660 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9661 freg = reg;
9662 }
9663 if ((lo32.X_add_number & 0xffff) != 0)
9664 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9665 }
9666
9667 static inline void
9668 load_delay_nop (void)
9669 {
9670 if (!gpr_interlocks)
9671 macro_build (NULL, "nop", "");
9672 }
9673
9674 /* Load an address into a register. */
9675
9676 static void
9677 load_address (int reg, expressionS *ep, int *used_at)
9678 {
9679 if (ep->X_op != O_constant
9680 && ep->X_op != O_symbol)
9681 {
9682 as_bad (_("expression too complex"));
9683 ep->X_op = O_constant;
9684 }
9685
9686 if (ep->X_op == O_constant)
9687 {
9688 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9689 return;
9690 }
9691
9692 if (mips_pic == NO_PIC)
9693 {
9694 /* If this is a reference to a GP relative symbol, we want
9695 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9696 Otherwise we want
9697 lui $reg,<sym> (BFD_RELOC_HI16_S)
9698 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9699 If we have an addend, we always use the latter form.
9700
9701 With 64bit address space and a usable $at we want
9702 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9703 lui $at,<sym> (BFD_RELOC_HI16_S)
9704 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9705 daddiu $at,<sym> (BFD_RELOC_LO16)
9706 dsll32 $reg,0
9707 daddu $reg,$reg,$at
9708
9709 If $at is already in use, we use a path which is suboptimal
9710 on superscalar processors.
9711 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9712 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9713 dsll $reg,16
9714 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9715 dsll $reg,16
9716 daddiu $reg,<sym> (BFD_RELOC_LO16)
9717
9718 For GP relative symbols in 64bit address space we can use
9719 the same sequence as in 32bit address space. */
9720 if (HAVE_64BIT_SYMBOLS)
9721 {
9722 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9723 && !nopic_need_relax (ep->X_add_symbol, 1))
9724 {
9725 relax_start (ep->X_add_symbol);
9726 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9727 mips_gp_register, BFD_RELOC_GPREL16);
9728 relax_switch ();
9729 }
9730
9731 if (*used_at == 0 && mips_opts.at)
9732 {
9733 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9734 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9735 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9736 BFD_RELOC_MIPS_HIGHER);
9737 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9738 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9739 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9740 *used_at = 1;
9741 }
9742 else
9743 {
9744 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9745 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9746 BFD_RELOC_MIPS_HIGHER);
9747 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9748 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9749 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9750 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9751 }
9752
9753 if (mips_relax.sequence)
9754 relax_end ();
9755 }
9756 else
9757 {
9758 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9759 && !nopic_need_relax (ep->X_add_symbol, 1))
9760 {
9761 relax_start (ep->X_add_symbol);
9762 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9763 mips_gp_register, BFD_RELOC_GPREL16);
9764 relax_switch ();
9765 }
9766 macro_build_lui (ep, reg);
9767 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9768 reg, reg, BFD_RELOC_LO16);
9769 if (mips_relax.sequence)
9770 relax_end ();
9771 }
9772 }
9773 else if (!mips_big_got)
9774 {
9775 expressionS ex;
9776
9777 /* If this is a reference to an external symbol, we want
9778 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9779 Otherwise we want
9780 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9781 nop
9782 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9783 If there is a constant, it must be added in after.
9784
9785 If we have NewABI, we want
9786 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9787 unless we're referencing a global symbol with a non-zero
9788 offset, in which case cst must be added separately. */
9789 if (HAVE_NEWABI)
9790 {
9791 if (ep->X_add_number)
9792 {
9793 ex.X_add_number = ep->X_add_number;
9794 ep->X_add_number = 0;
9795 relax_start (ep->X_add_symbol);
9796 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9797 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9798 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9799 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9800 ex.X_op = O_constant;
9801 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9802 reg, reg, BFD_RELOC_LO16);
9803 ep->X_add_number = ex.X_add_number;
9804 relax_switch ();
9805 }
9806 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9807 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9808 if (mips_relax.sequence)
9809 relax_end ();
9810 }
9811 else
9812 {
9813 ex.X_add_number = ep->X_add_number;
9814 ep->X_add_number = 0;
9815 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9816 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9817 load_delay_nop ();
9818 relax_start (ep->X_add_symbol);
9819 relax_switch ();
9820 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9821 BFD_RELOC_LO16);
9822 relax_end ();
9823
9824 if (ex.X_add_number != 0)
9825 {
9826 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9827 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9828 ex.X_op = O_constant;
9829 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9830 reg, reg, BFD_RELOC_LO16);
9831 }
9832 }
9833 }
9834 else if (mips_big_got)
9835 {
9836 expressionS ex;
9837
9838 /* This is the large GOT case. If this is a reference to an
9839 external symbol, we want
9840 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9841 addu $reg,$reg,$gp
9842 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9843
9844 Otherwise, for a reference to a local symbol in old ABI, we want
9845 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9846 nop
9847 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9848 If there is a constant, it must be added in after.
9849
9850 In the NewABI, for local symbols, with or without offsets, we want:
9851 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9852 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9853 */
9854 if (HAVE_NEWABI)
9855 {
9856 ex.X_add_number = ep->X_add_number;
9857 ep->X_add_number = 0;
9858 relax_start (ep->X_add_symbol);
9859 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9860 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9861 reg, reg, mips_gp_register);
9862 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9863 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9864 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9865 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9866 else if (ex.X_add_number)
9867 {
9868 ex.X_op = O_constant;
9869 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9870 BFD_RELOC_LO16);
9871 }
9872
9873 ep->X_add_number = ex.X_add_number;
9874 relax_switch ();
9875 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9876 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9877 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9878 BFD_RELOC_MIPS_GOT_OFST);
9879 relax_end ();
9880 }
9881 else
9882 {
9883 ex.X_add_number = ep->X_add_number;
9884 ep->X_add_number = 0;
9885 relax_start (ep->X_add_symbol);
9886 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9887 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9888 reg, reg, mips_gp_register);
9889 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9890 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9891 relax_switch ();
9892 if (reg_needs_delay (mips_gp_register))
9893 {
9894 /* We need a nop before loading from $gp. This special
9895 check is required because the lui which starts the main
9896 instruction stream does not refer to $gp, and so will not
9897 insert the nop which may be required. */
9898 macro_build (NULL, "nop", "");
9899 }
9900 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9901 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9902 load_delay_nop ();
9903 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9904 BFD_RELOC_LO16);
9905 relax_end ();
9906
9907 if (ex.X_add_number != 0)
9908 {
9909 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9910 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9911 ex.X_op = O_constant;
9912 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9913 BFD_RELOC_LO16);
9914 }
9915 }
9916 }
9917 else
9918 abort ();
9919
9920 if (!mips_opts.at && *used_at == 1)
9921 as_bad (_("macro used $at after \".set noat\""));
9922 }
9923
9924 /* Move the contents of register SOURCE into register DEST. */
9925
9926 static void
9927 move_register (int dest, int source)
9928 {
9929 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9930 instruction specifically requires a 32-bit one. */
9931 if (mips_opts.micromips
9932 && !mips_opts.insn32
9933 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9934 macro_build (NULL, "move", "mp,mj", dest, source);
9935 else
9936 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9937 }
9938
9939 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9940 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9941 The two alternatives are:
9942
9943 Global symbol Local symbol
9944 ------------- ------------
9945 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9946 ... ...
9947 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9948
9949 load_got_offset emits the first instruction and add_got_offset
9950 emits the second for a 16-bit offset or add_got_offset_hilo emits
9951 a sequence to add a 32-bit offset using a scratch register. */
9952
9953 static void
9954 load_got_offset (int dest, expressionS *local)
9955 {
9956 expressionS global;
9957
9958 global = *local;
9959 global.X_add_number = 0;
9960
9961 relax_start (local->X_add_symbol);
9962 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9963 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9964 relax_switch ();
9965 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9966 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9967 relax_end ();
9968 }
9969
9970 static void
9971 add_got_offset (int dest, expressionS *local)
9972 {
9973 expressionS global;
9974
9975 global.X_op = O_constant;
9976 global.X_op_symbol = NULL;
9977 global.X_add_symbol = NULL;
9978 global.X_add_number = local->X_add_number;
9979
9980 relax_start (local->X_add_symbol);
9981 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9982 dest, dest, BFD_RELOC_LO16);
9983 relax_switch ();
9984 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9985 relax_end ();
9986 }
9987
9988 static void
9989 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9990 {
9991 expressionS global;
9992 int hold_mips_optimize;
9993
9994 global.X_op = O_constant;
9995 global.X_op_symbol = NULL;
9996 global.X_add_symbol = NULL;
9997 global.X_add_number = local->X_add_number;
9998
9999 relax_start (local->X_add_symbol);
10000 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
10001 relax_switch ();
10002 /* Set mips_optimize around the lui instruction to avoid
10003 inserting an unnecessary nop after the lw. */
10004 hold_mips_optimize = mips_optimize;
10005 mips_optimize = 2;
10006 macro_build_lui (&global, tmp);
10007 mips_optimize = hold_mips_optimize;
10008 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
10009 relax_end ();
10010
10011 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
10012 }
10013
10014 /* Emit a sequence of instructions to emulate a branch likely operation.
10015 BR is an ordinary branch corresponding to one to be emulated. BRNEG
10016 is its complementing branch with the original condition negated.
10017 CALL is set if the original branch specified the link operation.
10018 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
10019
10020 Code like this is produced in the noreorder mode:
10021
10022 BRNEG <args>, 1f
10023 nop
10024 b <sym>
10025 delay slot (executed only if branch taken)
10026 1:
10027
10028 or, if CALL is set:
10029
10030 BRNEG <args>, 1f
10031 nop
10032 bal <sym>
10033 delay slot (executed only if branch taken)
10034 1:
10035
10036 In the reorder mode the delay slot would be filled with a nop anyway,
10037 so code produced is simply:
10038
10039 BR <args>, <sym>
10040 nop
10041
10042 This function is used when producing code for the microMIPS ASE that
10043 does not implement branch likely instructions in hardware. */
10044
10045 static void
10046 macro_build_branch_likely (const char *br, const char *brneg,
10047 int call, expressionS *ep, const char *fmt,
10048 unsigned int sreg, unsigned int treg)
10049 {
10050 int noreorder = mips_opts.noreorder;
10051 expressionS expr1;
10052
10053 gas_assert (mips_opts.micromips);
10054 start_noreorder ();
10055 if (noreorder)
10056 {
10057 micromips_label_expr (&expr1);
10058 macro_build (&expr1, brneg, fmt, sreg, treg);
10059 macro_build (NULL, "nop", "");
10060 macro_build (ep, call ? "bal" : "b", "p");
10061
10062 /* Set to true so that append_insn adds a label. */
10063 emit_branch_likely_macro = TRUE;
10064 }
10065 else
10066 {
10067 macro_build (ep, br, fmt, sreg, treg);
10068 macro_build (NULL, "nop", "");
10069 }
10070 end_noreorder ();
10071 }
10072
10073 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
10074 the condition code tested. EP specifies the branch target. */
10075
10076 static void
10077 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
10078 {
10079 const int call = 0;
10080 const char *brneg;
10081 const char *br;
10082
10083 switch (type)
10084 {
10085 case M_BC1FL:
10086 br = "bc1f";
10087 brneg = "bc1t";
10088 break;
10089 case M_BC1TL:
10090 br = "bc1t";
10091 brneg = "bc1f";
10092 break;
10093 case M_BC2FL:
10094 br = "bc2f";
10095 brneg = "bc2t";
10096 break;
10097 case M_BC2TL:
10098 br = "bc2t";
10099 brneg = "bc2f";
10100 break;
10101 default:
10102 abort ();
10103 }
10104 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
10105 }
10106
10107 /* Emit a two-argument branch macro specified by TYPE, using SREG as
10108 the register tested. EP specifies the branch target. */
10109
10110 static void
10111 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
10112 {
10113 const char *brneg = NULL;
10114 const char *br;
10115 int call = 0;
10116
10117 switch (type)
10118 {
10119 case M_BGEZ:
10120 br = "bgez";
10121 break;
10122 case M_BGEZL:
10123 br = mips_opts.micromips ? "bgez" : "bgezl";
10124 brneg = "bltz";
10125 break;
10126 case M_BGEZALL:
10127 gas_assert (mips_opts.micromips);
10128 br = mips_opts.insn32 ? "bgezal" : "bgezals";
10129 brneg = "bltz";
10130 call = 1;
10131 break;
10132 case M_BGTZ:
10133 br = "bgtz";
10134 break;
10135 case M_BGTZL:
10136 br = mips_opts.micromips ? "bgtz" : "bgtzl";
10137 brneg = "blez";
10138 break;
10139 case M_BLEZ:
10140 br = "blez";
10141 break;
10142 case M_BLEZL:
10143 br = mips_opts.micromips ? "blez" : "blezl";
10144 brneg = "bgtz";
10145 break;
10146 case M_BLTZ:
10147 br = "bltz";
10148 break;
10149 case M_BLTZL:
10150 br = mips_opts.micromips ? "bltz" : "bltzl";
10151 brneg = "bgez";
10152 break;
10153 case M_BLTZALL:
10154 gas_assert (mips_opts.micromips);
10155 br = mips_opts.insn32 ? "bltzal" : "bltzals";
10156 brneg = "bgez";
10157 call = 1;
10158 break;
10159 default:
10160 abort ();
10161 }
10162 if (mips_opts.micromips && brneg)
10163 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
10164 else
10165 macro_build (ep, br, "s,p", sreg);
10166 }
10167
10168 /* Emit a three-argument branch macro specified by TYPE, using SREG and
10169 TREG as the registers tested. EP specifies the branch target. */
10170
10171 static void
10172 macro_build_branch_rsrt (int type, expressionS *ep,
10173 unsigned int sreg, unsigned int treg)
10174 {
10175 const char *brneg = NULL;
10176 const int call = 0;
10177 const char *br;
10178
10179 switch (type)
10180 {
10181 case M_BEQ:
10182 case M_BEQ_I:
10183 br = "beq";
10184 break;
10185 case M_BEQL:
10186 case M_BEQL_I:
10187 br = mips_opts.micromips ? "beq" : "beql";
10188 brneg = "bne";
10189 break;
10190 case M_BNE:
10191 case M_BNE_I:
10192 br = "bne";
10193 break;
10194 case M_BNEL:
10195 case M_BNEL_I:
10196 br = mips_opts.micromips ? "bne" : "bnel";
10197 brneg = "beq";
10198 break;
10199 default:
10200 abort ();
10201 }
10202 if (mips_opts.micromips && brneg)
10203 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
10204 else
10205 macro_build (ep, br, "s,t,p", sreg, treg);
10206 }
10207
10208 /* Return the high part that should be loaded in order to make the low
10209 part of VALUE accessible using an offset of OFFBITS bits. */
10210
10211 static offsetT
10212 offset_high_part (offsetT value, unsigned int offbits)
10213 {
10214 offsetT bias;
10215 addressT low_mask;
10216
10217 if (offbits == 0)
10218 return value;
10219 bias = 1 << (offbits - 1);
10220 low_mask = bias * 2 - 1;
10221 return (value + bias) & ~low_mask;
10222 }
10223
10224 /* Return true if the value stored in offset_expr and offset_reloc
10225 fits into a signed offset of OFFBITS bits. RANGE is the maximum
10226 amount that the caller wants to add without inducing overflow
10227 and ALIGN is the known alignment of the value in bytes. */
10228
10229 static bfd_boolean
10230 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
10231 {
10232 if (offbits == 16)
10233 {
10234 /* Accept any relocation operator if overflow isn't a concern. */
10235 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
10236 return TRUE;
10237
10238 /* These relocations are guaranteed not to overflow in correct links. */
10239 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
10240 || gprel16_reloc_p (*offset_reloc))
10241 return TRUE;
10242 }
10243 if (offset_expr.X_op == O_constant
10244 && offset_high_part (offset_expr.X_add_number, offbits) == 0
10245 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
10246 return TRUE;
10247 return FALSE;
10248 }
10249
10250 /*
10251 * Build macros
10252 * This routine implements the seemingly endless macro or synthesized
10253 * instructions and addressing modes in the mips assembly language. Many
10254 * of these macros are simple and are similar to each other. These could
10255 * probably be handled by some kind of table or grammar approach instead of
10256 * this verbose method. Others are not simple macros but are more like
10257 * optimizing code generation.
10258 * One interesting optimization is when several store macros appear
10259 * consecutively that would load AT with the upper half of the same address.
10260 * The ensuing load upper instructions are omitted. This implies some kind
10261 * of global optimization. We currently only optimize within a single macro.
10262 * For many of the load and store macros if the address is specified as a
10263 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10264 * first load register 'at' with zero and use it as the base register. The
10265 * mips assembler simply uses register $zero. Just one tiny optimization
10266 * we're missing.
10267 */
10268 static void
10269 macro (struct mips_cl_insn *ip, char *str)
10270 {
10271 const struct mips_operand_array *operands;
10272 unsigned int breg, i;
10273 unsigned int tempreg;
10274 int mask;
10275 int used_at = 0;
10276 expressionS label_expr;
10277 expressionS expr1;
10278 expressionS *ep;
10279 const char *s;
10280 const char *s2;
10281 const char *fmt;
10282 int likely = 0;
10283 int coproc = 0;
10284 int offbits = 16;
10285 int call = 0;
10286 int jals = 0;
10287 int dbl = 0;
10288 int imm = 0;
10289 int ust = 0;
10290 int lp = 0;
10291 int ll_sc_paired = 0;
10292 bfd_boolean large_offset;
10293 int off;
10294 int hold_mips_optimize;
10295 unsigned int align;
10296 unsigned int op[MAX_OPERANDS];
10297
10298 gas_assert (! mips_opts.mips16);
10299
10300 operands = insn_operands (ip);
10301 for (i = 0; i < MAX_OPERANDS; i++)
10302 if (operands->operand[i])
10303 op[i] = insn_extract_operand (ip, operands->operand[i]);
10304 else
10305 op[i] = -1;
10306
10307 mask = ip->insn_mo->mask;
10308
10309 label_expr.X_op = O_constant;
10310 label_expr.X_op_symbol = NULL;
10311 label_expr.X_add_symbol = NULL;
10312 label_expr.X_add_number = 0;
10313
10314 expr1.X_op = O_constant;
10315 expr1.X_op_symbol = NULL;
10316 expr1.X_add_symbol = NULL;
10317 expr1.X_add_number = 1;
10318 align = 1;
10319
10320 switch (mask)
10321 {
10322 case M_DABS:
10323 dbl = 1;
10324 /* Fall through. */
10325 case M_ABS:
10326 /* bgez $a0,1f
10327 move v0,$a0
10328 sub v0,$zero,$a0
10329 1:
10330 */
10331
10332 start_noreorder ();
10333
10334 if (mips_opts.micromips)
10335 micromips_label_expr (&label_expr);
10336 else
10337 label_expr.X_add_number = 8;
10338 macro_build (&label_expr, "bgez", "s,p", op[1]);
10339 if (op[0] == op[1])
10340 macro_build (NULL, "nop", "");
10341 else
10342 move_register (op[0], op[1]);
10343 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
10344 if (mips_opts.micromips)
10345 micromips_add_label ();
10346
10347 end_noreorder ();
10348 break;
10349
10350 case M_ADD_I:
10351 s = "addi";
10352 s2 = "add";
10353 if (ISA_IS_R6 (mips_opts.isa))
10354 goto do_addi_i;
10355 else
10356 goto do_addi;
10357 case M_ADDU_I:
10358 s = "addiu";
10359 s2 = "addu";
10360 goto do_addi;
10361 case M_DADD_I:
10362 dbl = 1;
10363 s = "daddi";
10364 s2 = "dadd";
10365 if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
10366 goto do_addi;
10367 if (imm_expr.X_add_number >= -0x200
10368 && imm_expr.X_add_number < 0x200
10369 && !ISA_IS_R6 (mips_opts.isa))
10370 {
10371 macro_build (NULL, s, "t,r,.", op[0], op[1],
10372 (int) imm_expr.X_add_number);
10373 break;
10374 }
10375 goto do_addi_i;
10376 case M_DADDU_I:
10377 dbl = 1;
10378 s = "daddiu";
10379 s2 = "daddu";
10380 do_addi:
10381 if (imm_expr.X_add_number >= -0x8000
10382 && imm_expr.X_add_number < 0x8000)
10383 {
10384 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
10385 break;
10386 }
10387 do_addi_i:
10388 used_at = 1;
10389 load_register (AT, &imm_expr, dbl);
10390 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10391 break;
10392
10393 case M_AND_I:
10394 s = "andi";
10395 s2 = "and";
10396 goto do_bit;
10397 case M_OR_I:
10398 s = "ori";
10399 s2 = "or";
10400 goto do_bit;
10401 case M_NOR_I:
10402 s = "";
10403 s2 = "nor";
10404 goto do_bit;
10405 case M_XOR_I:
10406 s = "xori";
10407 s2 = "xor";
10408 do_bit:
10409 if (imm_expr.X_add_number >= 0
10410 && imm_expr.X_add_number < 0x10000)
10411 {
10412 if (mask != M_NOR_I)
10413 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10414 else
10415 {
10416 macro_build (&imm_expr, "ori", "t,r,i",
10417 op[0], op[1], BFD_RELOC_LO16);
10418 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10419 }
10420 break;
10421 }
10422
10423 used_at = 1;
10424 load_register (AT, &imm_expr, GPR_SIZE == 64);
10425 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10426 break;
10427
10428 case M_BALIGN:
10429 switch (imm_expr.X_add_number)
10430 {
10431 case 0:
10432 macro_build (NULL, "nop", "");
10433 break;
10434 case 2:
10435 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10436 break;
10437 case 1:
10438 case 3:
10439 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10440 (int) imm_expr.X_add_number);
10441 break;
10442 default:
10443 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10444 (unsigned long) imm_expr.X_add_number);
10445 break;
10446 }
10447 break;
10448
10449 case M_BC1FL:
10450 case M_BC1TL:
10451 case M_BC2FL:
10452 case M_BC2TL:
10453 gas_assert (mips_opts.micromips);
10454 macro_build_branch_ccl (mask, &offset_expr,
10455 EXTRACT_OPERAND (1, BCC, *ip));
10456 break;
10457
10458 case M_BEQ_I:
10459 case M_BEQL_I:
10460 case M_BNE_I:
10461 case M_BNEL_I:
10462 if (imm_expr.X_add_number == 0)
10463 op[1] = 0;
10464 else
10465 {
10466 op[1] = AT;
10467 used_at = 1;
10468 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10469 }
10470 /* Fall through. */
10471 case M_BEQL:
10472 case M_BNEL:
10473 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10474 break;
10475
10476 case M_BGEL:
10477 likely = 1;
10478 /* Fall through. */
10479 case M_BGE:
10480 if (op[1] == 0)
10481 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10482 else if (op[0] == 0)
10483 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10484 else
10485 {
10486 used_at = 1;
10487 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10488 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10489 &offset_expr, AT, ZERO);
10490 }
10491 break;
10492
10493 case M_BGEZL:
10494 case M_BGEZALL:
10495 case M_BGTZL:
10496 case M_BLEZL:
10497 case M_BLTZL:
10498 case M_BLTZALL:
10499 macro_build_branch_rs (mask, &offset_expr, op[0]);
10500 break;
10501
10502 case M_BGTL_I:
10503 likely = 1;
10504 /* Fall through. */
10505 case M_BGT_I:
10506 /* Check for > max integer. */
10507 if (imm_expr.X_add_number >= GPR_SMAX)
10508 {
10509 do_false:
10510 /* Result is always false. */
10511 if (! likely)
10512 macro_build (NULL, "nop", "");
10513 else
10514 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10515 break;
10516 }
10517 ++imm_expr.X_add_number;
10518 /* Fall through. */
10519 case M_BGE_I:
10520 case M_BGEL_I:
10521 if (mask == M_BGEL_I)
10522 likely = 1;
10523 if (imm_expr.X_add_number == 0)
10524 {
10525 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10526 &offset_expr, op[0]);
10527 break;
10528 }
10529 if (imm_expr.X_add_number == 1)
10530 {
10531 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10532 &offset_expr, op[0]);
10533 break;
10534 }
10535 if (imm_expr.X_add_number <= GPR_SMIN)
10536 {
10537 do_true:
10538 /* Result is always true. */
10539 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10540 macro_build (&offset_expr, "b", "p");
10541 break;
10542 }
10543 used_at = 1;
10544 set_at (op[0], 0);
10545 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10546 &offset_expr, AT, ZERO);
10547 break;
10548
10549 case M_BGEUL:
10550 likely = 1;
10551 /* Fall through. */
10552 case M_BGEU:
10553 if (op[1] == 0)
10554 goto do_true;
10555 else if (op[0] == 0)
10556 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10557 &offset_expr, ZERO, op[1]);
10558 else
10559 {
10560 used_at = 1;
10561 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10562 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10563 &offset_expr, AT, ZERO);
10564 }
10565 break;
10566
10567 case M_BGTUL_I:
10568 likely = 1;
10569 /* Fall through. */
10570 case M_BGTU_I:
10571 if (op[0] == 0
10572 || (GPR_SIZE == 32
10573 && imm_expr.X_add_number == -1))
10574 goto do_false;
10575 ++imm_expr.X_add_number;
10576 /* Fall through. */
10577 case M_BGEU_I:
10578 case M_BGEUL_I:
10579 if (mask == M_BGEUL_I)
10580 likely = 1;
10581 if (imm_expr.X_add_number == 0)
10582 goto do_true;
10583 else if (imm_expr.X_add_number == 1)
10584 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10585 &offset_expr, op[0], ZERO);
10586 else
10587 {
10588 used_at = 1;
10589 set_at (op[0], 1);
10590 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10591 &offset_expr, AT, ZERO);
10592 }
10593 break;
10594
10595 case M_BGTL:
10596 likely = 1;
10597 /* Fall through. */
10598 case M_BGT:
10599 if (op[1] == 0)
10600 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10601 else if (op[0] == 0)
10602 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10603 else
10604 {
10605 used_at = 1;
10606 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10607 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10608 &offset_expr, AT, ZERO);
10609 }
10610 break;
10611
10612 case M_BGTUL:
10613 likely = 1;
10614 /* Fall through. */
10615 case M_BGTU:
10616 if (op[1] == 0)
10617 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10618 &offset_expr, op[0], ZERO);
10619 else if (op[0] == 0)
10620 goto do_false;
10621 else
10622 {
10623 used_at = 1;
10624 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10625 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10626 &offset_expr, AT, ZERO);
10627 }
10628 break;
10629
10630 case M_BLEL:
10631 likely = 1;
10632 /* Fall through. */
10633 case M_BLE:
10634 if (op[1] == 0)
10635 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10636 else if (op[0] == 0)
10637 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10638 else
10639 {
10640 used_at = 1;
10641 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10642 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10643 &offset_expr, AT, ZERO);
10644 }
10645 break;
10646
10647 case M_BLEL_I:
10648 likely = 1;
10649 /* Fall through. */
10650 case M_BLE_I:
10651 if (imm_expr.X_add_number >= GPR_SMAX)
10652 goto do_true;
10653 ++imm_expr.X_add_number;
10654 /* Fall through. */
10655 case M_BLT_I:
10656 case M_BLTL_I:
10657 if (mask == M_BLTL_I)
10658 likely = 1;
10659 if (imm_expr.X_add_number == 0)
10660 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10661 else if (imm_expr.X_add_number == 1)
10662 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10663 else
10664 {
10665 used_at = 1;
10666 set_at (op[0], 0);
10667 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10668 &offset_expr, AT, ZERO);
10669 }
10670 break;
10671
10672 case M_BLEUL:
10673 likely = 1;
10674 /* Fall through. */
10675 case M_BLEU:
10676 if (op[1] == 0)
10677 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10678 &offset_expr, op[0], ZERO);
10679 else if (op[0] == 0)
10680 goto do_true;
10681 else
10682 {
10683 used_at = 1;
10684 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10685 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10686 &offset_expr, AT, ZERO);
10687 }
10688 break;
10689
10690 case M_BLEUL_I:
10691 likely = 1;
10692 /* Fall through. */
10693 case M_BLEU_I:
10694 if (op[0] == 0
10695 || (GPR_SIZE == 32
10696 && imm_expr.X_add_number == -1))
10697 goto do_true;
10698 ++imm_expr.X_add_number;
10699 /* Fall through. */
10700 case M_BLTU_I:
10701 case M_BLTUL_I:
10702 if (mask == M_BLTUL_I)
10703 likely = 1;
10704 if (imm_expr.X_add_number == 0)
10705 goto do_false;
10706 else if (imm_expr.X_add_number == 1)
10707 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10708 &offset_expr, op[0], ZERO);
10709 else
10710 {
10711 used_at = 1;
10712 set_at (op[0], 1);
10713 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10714 &offset_expr, AT, ZERO);
10715 }
10716 break;
10717
10718 case M_BLTL:
10719 likely = 1;
10720 /* Fall through. */
10721 case M_BLT:
10722 if (op[1] == 0)
10723 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10724 else if (op[0] == 0)
10725 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10726 else
10727 {
10728 used_at = 1;
10729 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10730 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10731 &offset_expr, AT, ZERO);
10732 }
10733 break;
10734
10735 case M_BLTUL:
10736 likely = 1;
10737 /* Fall through. */
10738 case M_BLTU:
10739 if (op[1] == 0)
10740 goto do_false;
10741 else if (op[0] == 0)
10742 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10743 &offset_expr, ZERO, op[1]);
10744 else
10745 {
10746 used_at = 1;
10747 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10748 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10749 &offset_expr, AT, ZERO);
10750 }
10751 break;
10752
10753 case M_DDIV_3:
10754 dbl = 1;
10755 /* Fall through. */
10756 case M_DIV_3:
10757 s = "mflo";
10758 goto do_div3;
10759 case M_DREM_3:
10760 dbl = 1;
10761 /* Fall through. */
10762 case M_REM_3:
10763 s = "mfhi";
10764 do_div3:
10765 if (op[2] == 0)
10766 {
10767 as_warn (_("divide by zero"));
10768 if (mips_trap)
10769 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10770 else
10771 macro_build (NULL, "break", BRK_FMT, 7);
10772 break;
10773 }
10774
10775 start_noreorder ();
10776 if (mips_trap)
10777 {
10778 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10779 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10780 }
10781 else
10782 {
10783 if (mips_opts.micromips)
10784 micromips_label_expr (&label_expr);
10785 else
10786 label_expr.X_add_number = 8;
10787 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10788 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10789 macro_build (NULL, "break", BRK_FMT, 7);
10790 if (mips_opts.micromips)
10791 micromips_add_label ();
10792 }
10793 expr1.X_add_number = -1;
10794 used_at = 1;
10795 load_register (AT, &expr1, dbl);
10796 if (mips_opts.micromips)
10797 micromips_label_expr (&label_expr);
10798 else
10799 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10800 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10801 if (dbl)
10802 {
10803 expr1.X_add_number = 1;
10804 load_register (AT, &expr1, dbl);
10805 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10806 }
10807 else
10808 {
10809 expr1.X_add_number = 0x80000000;
10810 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10811 }
10812 if (mips_trap)
10813 {
10814 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10815 /* We want to close the noreorder block as soon as possible, so
10816 that later insns are available for delay slot filling. */
10817 end_noreorder ();
10818 }
10819 else
10820 {
10821 if (mips_opts.micromips)
10822 micromips_label_expr (&label_expr);
10823 else
10824 label_expr.X_add_number = 8;
10825 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10826 macro_build (NULL, "nop", "");
10827
10828 /* We want to close the noreorder block as soon as possible, so
10829 that later insns are available for delay slot filling. */
10830 end_noreorder ();
10831
10832 macro_build (NULL, "break", BRK_FMT, 6);
10833 }
10834 if (mips_opts.micromips)
10835 micromips_add_label ();
10836 macro_build (NULL, s, MFHL_FMT, op[0]);
10837 break;
10838
10839 case M_DIV_3I:
10840 s = "div";
10841 s2 = "mflo";
10842 goto do_divi;
10843 case M_DIVU_3I:
10844 s = "divu";
10845 s2 = "mflo";
10846 goto do_divi;
10847 case M_REM_3I:
10848 s = "div";
10849 s2 = "mfhi";
10850 goto do_divi;
10851 case M_REMU_3I:
10852 s = "divu";
10853 s2 = "mfhi";
10854 goto do_divi;
10855 case M_DDIV_3I:
10856 dbl = 1;
10857 s = "ddiv";
10858 s2 = "mflo";
10859 goto do_divi;
10860 case M_DDIVU_3I:
10861 dbl = 1;
10862 s = "ddivu";
10863 s2 = "mflo";
10864 goto do_divi;
10865 case M_DREM_3I:
10866 dbl = 1;
10867 s = "ddiv";
10868 s2 = "mfhi";
10869 goto do_divi;
10870 case M_DREMU_3I:
10871 dbl = 1;
10872 s = "ddivu";
10873 s2 = "mfhi";
10874 do_divi:
10875 if (imm_expr.X_add_number == 0)
10876 {
10877 as_warn (_("divide by zero"));
10878 if (mips_trap)
10879 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10880 else
10881 macro_build (NULL, "break", BRK_FMT, 7);
10882 break;
10883 }
10884 if (imm_expr.X_add_number == 1)
10885 {
10886 if (strcmp (s2, "mflo") == 0)
10887 move_register (op[0], op[1]);
10888 else
10889 move_register (op[0], ZERO);
10890 break;
10891 }
10892 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10893 {
10894 if (strcmp (s2, "mflo") == 0)
10895 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10896 else
10897 move_register (op[0], ZERO);
10898 break;
10899 }
10900
10901 used_at = 1;
10902 load_register (AT, &imm_expr, dbl);
10903 macro_build (NULL, s, "z,s,t", op[1], AT);
10904 macro_build (NULL, s2, MFHL_FMT, op[0]);
10905 break;
10906
10907 case M_DIVU_3:
10908 s = "divu";
10909 s2 = "mflo";
10910 goto do_divu3;
10911 case M_REMU_3:
10912 s = "divu";
10913 s2 = "mfhi";
10914 goto do_divu3;
10915 case M_DDIVU_3:
10916 s = "ddivu";
10917 s2 = "mflo";
10918 goto do_divu3;
10919 case M_DREMU_3:
10920 s = "ddivu";
10921 s2 = "mfhi";
10922 do_divu3:
10923 start_noreorder ();
10924 if (mips_trap)
10925 {
10926 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10927 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10928 /* We want to close the noreorder block as soon as possible, so
10929 that later insns are available for delay slot filling. */
10930 end_noreorder ();
10931 }
10932 else
10933 {
10934 if (mips_opts.micromips)
10935 micromips_label_expr (&label_expr);
10936 else
10937 label_expr.X_add_number = 8;
10938 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10939 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10940
10941 /* We want to close the noreorder block as soon as possible, so
10942 that later insns are available for delay slot filling. */
10943 end_noreorder ();
10944 macro_build (NULL, "break", BRK_FMT, 7);
10945 if (mips_opts.micromips)
10946 micromips_add_label ();
10947 }
10948 macro_build (NULL, s2, MFHL_FMT, op[0]);
10949 break;
10950
10951 case M_DLCA_AB:
10952 dbl = 1;
10953 /* Fall through. */
10954 case M_LCA_AB:
10955 call = 1;
10956 goto do_la;
10957 case M_DLA_AB:
10958 dbl = 1;
10959 /* Fall through. */
10960 case M_LA_AB:
10961 do_la:
10962 /* Load the address of a symbol into a register. If breg is not
10963 zero, we then add a base register to it. */
10964
10965 breg = op[2];
10966 if (dbl && GPR_SIZE == 32)
10967 as_warn (_("dla used to load 32-bit register; recommend using la "
10968 "instead"));
10969
10970 if (!dbl && HAVE_64BIT_OBJECTS)
10971 as_warn (_("la used to load 64-bit address; recommend using dla "
10972 "instead"));
10973
10974 if (small_offset_p (0, align, 16))
10975 {
10976 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10977 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10978 break;
10979 }
10980
10981 if (mips_opts.at && (op[0] == breg))
10982 {
10983 tempreg = AT;
10984 used_at = 1;
10985 }
10986 else
10987 tempreg = op[0];
10988
10989 if (offset_expr.X_op != O_symbol
10990 && offset_expr.X_op != O_constant)
10991 {
10992 as_bad (_("expression too complex"));
10993 offset_expr.X_op = O_constant;
10994 }
10995
10996 if (offset_expr.X_op == O_constant)
10997 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10998 else if (mips_pic == NO_PIC)
10999 {
11000 /* If this is a reference to a GP relative symbol, we want
11001 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
11002 Otherwise we want
11003 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11004 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11005 If we have a constant, we need two instructions anyhow,
11006 so we may as well always use the latter form.
11007
11008 With 64bit address space and a usable $at we want
11009 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11010 lui $at,<sym> (BFD_RELOC_HI16_S)
11011 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11012 daddiu $at,<sym> (BFD_RELOC_LO16)
11013 dsll32 $tempreg,0
11014 daddu $tempreg,$tempreg,$at
11015
11016 If $at is already in use, we use a path which is suboptimal
11017 on superscalar processors.
11018 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11019 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11020 dsll $tempreg,16
11021 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11022 dsll $tempreg,16
11023 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
11024
11025 For GP relative symbols in 64bit address space we can use
11026 the same sequence as in 32bit address space. */
11027 if (HAVE_64BIT_SYMBOLS)
11028 {
11029 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11030 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11031 {
11032 relax_start (offset_expr.X_add_symbol);
11033 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11034 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
11035 relax_switch ();
11036 }
11037
11038 if (used_at == 0 && mips_opts.at)
11039 {
11040 macro_build (&offset_expr, "lui", LUI_FMT,
11041 tempreg, BFD_RELOC_MIPS_HIGHEST);
11042 macro_build (&offset_expr, "lui", LUI_FMT,
11043 AT, BFD_RELOC_HI16_S);
11044 macro_build (&offset_expr, "daddiu", "t,r,j",
11045 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
11046 macro_build (&offset_expr, "daddiu", "t,r,j",
11047 AT, AT, BFD_RELOC_LO16);
11048 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11049 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11050 used_at = 1;
11051 }
11052 else
11053 {
11054 macro_build (&offset_expr, "lui", LUI_FMT,
11055 tempreg, BFD_RELOC_MIPS_HIGHEST);
11056 macro_build (&offset_expr, "daddiu", "t,r,j",
11057 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
11058 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11059 macro_build (&offset_expr, "daddiu", "t,r,j",
11060 tempreg, tempreg, BFD_RELOC_HI16_S);
11061 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11062 macro_build (&offset_expr, "daddiu", "t,r,j",
11063 tempreg, tempreg, BFD_RELOC_LO16);
11064 }
11065
11066 if (mips_relax.sequence)
11067 relax_end ();
11068 }
11069 else
11070 {
11071 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11072 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11073 {
11074 relax_start (offset_expr.X_add_symbol);
11075 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11076 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
11077 relax_switch ();
11078 }
11079 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11080 as_bad (_("offset too large"));
11081 macro_build_lui (&offset_expr, tempreg);
11082 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11083 tempreg, tempreg, BFD_RELOC_LO16);
11084 if (mips_relax.sequence)
11085 relax_end ();
11086 }
11087 }
11088 else if (!mips_big_got && !HAVE_NEWABI)
11089 {
11090 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11091
11092 /* If this is a reference to an external symbol, and there
11093 is no constant, we want
11094 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11095 or for lca or if tempreg is PIC_CALL_REG
11096 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11097 For a local symbol, we want
11098 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11099 nop
11100 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11101
11102 If we have a small constant, and this is a reference to
11103 an external symbol, we want
11104 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11105 nop
11106 addiu $tempreg,$tempreg,<constant>
11107 For a local symbol, we want the same instruction
11108 sequence, but we output a BFD_RELOC_LO16 reloc on the
11109 addiu instruction.
11110
11111 If we have a large constant, and this is a reference to
11112 an external symbol, we want
11113 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11114 lui $at,<hiconstant>
11115 addiu $at,$at,<loconstant>
11116 addu $tempreg,$tempreg,$at
11117 For a local symbol, we want the same instruction
11118 sequence, but we output a BFD_RELOC_LO16 reloc on the
11119 addiu instruction.
11120 */
11121
11122 if (offset_expr.X_add_number == 0)
11123 {
11124 if (mips_pic == SVR4_PIC
11125 && breg == 0
11126 && (call || tempreg == PIC_CALL_REG))
11127 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
11128
11129 relax_start (offset_expr.X_add_symbol);
11130 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11131 lw_reloc_type, mips_gp_register);
11132 if (breg != 0)
11133 {
11134 /* We're going to put in an addu instruction using
11135 tempreg, so we may as well insert the nop right
11136 now. */
11137 load_delay_nop ();
11138 }
11139 relax_switch ();
11140 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11141 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
11142 load_delay_nop ();
11143 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11144 tempreg, tempreg, BFD_RELOC_LO16);
11145 relax_end ();
11146 /* FIXME: If breg == 0, and the next instruction uses
11147 $tempreg, then if this variant case is used an extra
11148 nop will be generated. */
11149 }
11150 else if (offset_expr.X_add_number >= -0x8000
11151 && offset_expr.X_add_number < 0x8000)
11152 {
11153 load_got_offset (tempreg, &offset_expr);
11154 load_delay_nop ();
11155 add_got_offset (tempreg, &offset_expr);
11156 }
11157 else
11158 {
11159 expr1.X_add_number = offset_expr.X_add_number;
11160 offset_expr.X_add_number =
11161 SEXT_16BIT (offset_expr.X_add_number);
11162 load_got_offset (tempreg, &offset_expr);
11163 offset_expr.X_add_number = expr1.X_add_number;
11164 /* If we are going to add in a base register, and the
11165 target register and the base register are the same,
11166 then we are using AT as a temporary register. Since
11167 we want to load the constant into AT, we add our
11168 current AT (from the global offset table) and the
11169 register into the register now, and pretend we were
11170 not using a base register. */
11171 if (breg == op[0])
11172 {
11173 load_delay_nop ();
11174 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11175 op[0], AT, breg);
11176 breg = 0;
11177 tempreg = op[0];
11178 }
11179 add_got_offset_hilo (tempreg, &offset_expr, AT);
11180 used_at = 1;
11181 }
11182 }
11183 else if (!mips_big_got && HAVE_NEWABI)
11184 {
11185 int add_breg_early = 0;
11186
11187 /* If this is a reference to an external, and there is no
11188 constant, or local symbol (*), with or without a
11189 constant, we want
11190 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11191 or for lca or if tempreg is PIC_CALL_REG
11192 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11193
11194 If we have a small constant, and this is a reference to
11195 an external symbol, we want
11196 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11197 addiu $tempreg,$tempreg,<constant>
11198
11199 If we have a large constant, and this is a reference to
11200 an external symbol, we want
11201 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11202 lui $at,<hiconstant>
11203 addiu $at,$at,<loconstant>
11204 addu $tempreg,$tempreg,$at
11205
11206 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
11207 local symbols, even though it introduces an additional
11208 instruction. */
11209
11210 if (offset_expr.X_add_number)
11211 {
11212 expr1.X_add_number = offset_expr.X_add_number;
11213 offset_expr.X_add_number = 0;
11214
11215 relax_start (offset_expr.X_add_symbol);
11216 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11217 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11218
11219 if (expr1.X_add_number >= -0x8000
11220 && expr1.X_add_number < 0x8000)
11221 {
11222 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11223 tempreg, tempreg, BFD_RELOC_LO16);
11224 }
11225 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11226 {
11227 unsigned int dreg;
11228
11229 /* If we are going to add in a base register, and the
11230 target register and the base register are the same,
11231 then we are using AT as a temporary register. Since
11232 we want to load the constant into AT, we add our
11233 current AT (from the global offset table) and the
11234 register into the register now, and pretend we were
11235 not using a base register. */
11236 if (breg != op[0])
11237 dreg = tempreg;
11238 else
11239 {
11240 gas_assert (tempreg == AT);
11241 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11242 op[0], AT, breg);
11243 dreg = op[0];
11244 add_breg_early = 1;
11245 }
11246
11247 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11248 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11249 dreg, dreg, AT);
11250
11251 used_at = 1;
11252 }
11253 else
11254 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11255
11256 relax_switch ();
11257 offset_expr.X_add_number = expr1.X_add_number;
11258
11259 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11260 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11261 if (add_breg_early)
11262 {
11263 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11264 op[0], tempreg, breg);
11265 breg = 0;
11266 tempreg = op[0];
11267 }
11268 relax_end ();
11269 }
11270 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
11271 {
11272 relax_start (offset_expr.X_add_symbol);
11273 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11274 BFD_RELOC_MIPS_CALL16, mips_gp_register);
11275 relax_switch ();
11276 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11277 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11278 relax_end ();
11279 }
11280 else
11281 {
11282 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11283 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11284 }
11285 }
11286 else if (mips_big_got && !HAVE_NEWABI)
11287 {
11288 int gpdelay;
11289 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11290 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11291 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11292
11293 /* This is the large GOT case. If this is a reference to an
11294 external symbol, and there is no constant, we want
11295 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11296 addu $tempreg,$tempreg,$gp
11297 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11298 or for lca or if tempreg is PIC_CALL_REG
11299 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11300 addu $tempreg,$tempreg,$gp
11301 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11302 For a local symbol, we want
11303 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11304 nop
11305 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11306
11307 If we have a small constant, and this is a reference to
11308 an external symbol, we want
11309 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11310 addu $tempreg,$tempreg,$gp
11311 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11312 nop
11313 addiu $tempreg,$tempreg,<constant>
11314 For a local symbol, we want
11315 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11316 nop
11317 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11318
11319 If we have a large constant, and this is a reference to
11320 an external symbol, we want
11321 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11322 addu $tempreg,$tempreg,$gp
11323 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11324 lui $at,<hiconstant>
11325 addiu $at,$at,<loconstant>
11326 addu $tempreg,$tempreg,$at
11327 For a local symbol, we want
11328 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11329 lui $at,<hiconstant>
11330 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11331 addu $tempreg,$tempreg,$at
11332 */
11333
11334 expr1.X_add_number = offset_expr.X_add_number;
11335 offset_expr.X_add_number = 0;
11336 relax_start (offset_expr.X_add_symbol);
11337 gpdelay = reg_needs_delay (mips_gp_register);
11338 if (expr1.X_add_number == 0 && breg == 0
11339 && (call || tempreg == PIC_CALL_REG))
11340 {
11341 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11342 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11343 }
11344 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11345 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11346 tempreg, tempreg, mips_gp_register);
11347 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11348 tempreg, lw_reloc_type, tempreg);
11349 if (expr1.X_add_number == 0)
11350 {
11351 if (breg != 0)
11352 {
11353 /* We're going to put in an addu instruction using
11354 tempreg, so we may as well insert the nop right
11355 now. */
11356 load_delay_nop ();
11357 }
11358 }
11359 else if (expr1.X_add_number >= -0x8000
11360 && expr1.X_add_number < 0x8000)
11361 {
11362 load_delay_nop ();
11363 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11364 tempreg, tempreg, BFD_RELOC_LO16);
11365 }
11366 else
11367 {
11368 unsigned int dreg;
11369
11370 /* If we are going to add in a base register, and the
11371 target register and the base register are the same,
11372 then we are using AT as a temporary register. Since
11373 we want to load the constant into AT, we add our
11374 current AT (from the global offset table) and the
11375 register into the register now, and pretend we were
11376 not using a base register. */
11377 if (breg != op[0])
11378 dreg = tempreg;
11379 else
11380 {
11381 gas_assert (tempreg == AT);
11382 load_delay_nop ();
11383 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11384 op[0], AT, breg);
11385 dreg = op[0];
11386 }
11387
11388 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11389 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11390
11391 used_at = 1;
11392 }
11393 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11394 relax_switch ();
11395
11396 if (gpdelay)
11397 {
11398 /* This is needed because this instruction uses $gp, but
11399 the first instruction on the main stream does not. */
11400 macro_build (NULL, "nop", "");
11401 }
11402
11403 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11404 local_reloc_type, mips_gp_register);
11405 if (expr1.X_add_number >= -0x8000
11406 && expr1.X_add_number < 0x8000)
11407 {
11408 load_delay_nop ();
11409 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11410 tempreg, tempreg, BFD_RELOC_LO16);
11411 /* FIXME: If add_number is 0, and there was no base
11412 register, the external symbol case ended with a load,
11413 so if the symbol turns out to not be external, and
11414 the next instruction uses tempreg, an unnecessary nop
11415 will be inserted. */
11416 }
11417 else
11418 {
11419 if (breg == op[0])
11420 {
11421 /* We must add in the base register now, as in the
11422 external symbol case. */
11423 gas_assert (tempreg == AT);
11424 load_delay_nop ();
11425 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11426 op[0], AT, breg);
11427 tempreg = op[0];
11428 /* We set breg to 0 because we have arranged to add
11429 it in in both cases. */
11430 breg = 0;
11431 }
11432
11433 macro_build_lui (&expr1, AT);
11434 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11435 AT, AT, BFD_RELOC_LO16);
11436 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11437 tempreg, tempreg, AT);
11438 used_at = 1;
11439 }
11440 relax_end ();
11441 }
11442 else if (mips_big_got && HAVE_NEWABI)
11443 {
11444 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11445 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11446 int add_breg_early = 0;
11447
11448 /* This is the large GOT case. If this is a reference to an
11449 external symbol, and there is no constant, we want
11450 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11451 add $tempreg,$tempreg,$gp
11452 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11453 or for lca or if tempreg is PIC_CALL_REG
11454 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11455 add $tempreg,$tempreg,$gp
11456 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11457
11458 If we have a small constant, and this is a reference to
11459 an external symbol, we want
11460 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11461 add $tempreg,$tempreg,$gp
11462 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11463 addi $tempreg,$tempreg,<constant>
11464
11465 If we have a large constant, and this is a reference to
11466 an external symbol, we want
11467 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11468 addu $tempreg,$tempreg,$gp
11469 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11470 lui $at,<hiconstant>
11471 addi $at,$at,<loconstant>
11472 add $tempreg,$tempreg,$at
11473
11474 If we have NewABI, and we know it's a local symbol, we want
11475 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11476 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11477 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11478
11479 relax_start (offset_expr.X_add_symbol);
11480
11481 expr1.X_add_number = offset_expr.X_add_number;
11482 offset_expr.X_add_number = 0;
11483
11484 if (expr1.X_add_number == 0 && breg == 0
11485 && (call || tempreg == PIC_CALL_REG))
11486 {
11487 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11488 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11489 }
11490 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11491 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11492 tempreg, tempreg, mips_gp_register);
11493 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11494 tempreg, lw_reloc_type, tempreg);
11495
11496 if (expr1.X_add_number == 0)
11497 ;
11498 else if (expr1.X_add_number >= -0x8000
11499 && expr1.X_add_number < 0x8000)
11500 {
11501 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11502 tempreg, tempreg, BFD_RELOC_LO16);
11503 }
11504 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11505 {
11506 unsigned int dreg;
11507
11508 /* If we are going to add in a base register, and the
11509 target register and the base register are the same,
11510 then we are using AT as a temporary register. Since
11511 we want to load the constant into AT, we add our
11512 current AT (from the global offset table) and the
11513 register into the register now, and pretend we were
11514 not using a base register. */
11515 if (breg != op[0])
11516 dreg = tempreg;
11517 else
11518 {
11519 gas_assert (tempreg == AT);
11520 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11521 op[0], AT, breg);
11522 dreg = op[0];
11523 add_breg_early = 1;
11524 }
11525
11526 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11527 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11528
11529 used_at = 1;
11530 }
11531 else
11532 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11533
11534 relax_switch ();
11535 offset_expr.X_add_number = expr1.X_add_number;
11536 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11537 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11538 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11539 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11540 if (add_breg_early)
11541 {
11542 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11543 op[0], tempreg, breg);
11544 breg = 0;
11545 tempreg = op[0];
11546 }
11547 relax_end ();
11548 }
11549 else
11550 abort ();
11551
11552 if (breg != 0)
11553 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11554 break;
11555
11556 case M_MSGSND:
11557 gas_assert (!mips_opts.micromips);
11558 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11559 break;
11560
11561 case M_MSGLD:
11562 gas_assert (!mips_opts.micromips);
11563 macro_build (NULL, "c2", "C", 0x02);
11564 break;
11565
11566 case M_MSGLD_T:
11567 gas_assert (!mips_opts.micromips);
11568 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11569 break;
11570
11571 case M_MSGWAIT:
11572 gas_assert (!mips_opts.micromips);
11573 macro_build (NULL, "c2", "C", 3);
11574 break;
11575
11576 case M_MSGWAIT_T:
11577 gas_assert (!mips_opts.micromips);
11578 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11579 break;
11580
11581 case M_J_A:
11582 /* The j instruction may not be used in PIC code, since it
11583 requires an absolute address. We convert it to a b
11584 instruction. */
11585 if (mips_pic == NO_PIC)
11586 macro_build (&offset_expr, "j", "a");
11587 else
11588 macro_build (&offset_expr, "b", "p");
11589 break;
11590
11591 /* The jal instructions must be handled as macros because when
11592 generating PIC code they expand to multi-instruction
11593 sequences. Normally they are simple instructions. */
11594 case M_JALS_1:
11595 op[1] = op[0];
11596 op[0] = RA;
11597 /* Fall through. */
11598 case M_JALS_2:
11599 gas_assert (mips_opts.micromips);
11600 if (mips_opts.insn32)
11601 {
11602 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11603 break;
11604 }
11605 jals = 1;
11606 goto jal;
11607 case M_JAL_1:
11608 op[1] = op[0];
11609 op[0] = RA;
11610 /* Fall through. */
11611 case M_JAL_2:
11612 jal:
11613 if (mips_pic == NO_PIC)
11614 {
11615 s = jals ? "jalrs" : "jalr";
11616 if (mips_opts.micromips
11617 && !mips_opts.insn32
11618 && op[0] == RA
11619 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11620 macro_build (NULL, s, "mj", op[1]);
11621 else
11622 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11623 }
11624 else
11625 {
11626 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11627 && mips_cprestore_offset >= 0);
11628
11629 if (op[1] != PIC_CALL_REG)
11630 as_warn (_("MIPS PIC call to register other than $25"));
11631
11632 s = ((mips_opts.micromips
11633 && !mips_opts.insn32
11634 && (!mips_opts.noreorder || cprestore))
11635 ? "jalrs" : "jalr");
11636 if (mips_opts.micromips
11637 && !mips_opts.insn32
11638 && op[0] == RA
11639 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11640 macro_build (NULL, s, "mj", op[1]);
11641 else
11642 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11643 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11644 {
11645 if (mips_cprestore_offset < 0)
11646 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11647 else
11648 {
11649 if (!mips_frame_reg_valid)
11650 {
11651 as_warn (_("no .frame pseudo-op used in PIC code"));
11652 /* Quiet this warning. */
11653 mips_frame_reg_valid = 1;
11654 }
11655 if (!mips_cprestore_valid)
11656 {
11657 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11658 /* Quiet this warning. */
11659 mips_cprestore_valid = 1;
11660 }
11661 if (mips_opts.noreorder)
11662 macro_build (NULL, "nop", "");
11663 expr1.X_add_number = mips_cprestore_offset;
11664 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11665 mips_gp_register,
11666 mips_frame_reg,
11667 HAVE_64BIT_ADDRESSES);
11668 }
11669 }
11670 }
11671
11672 break;
11673
11674 case M_JALS_A:
11675 gas_assert (mips_opts.micromips);
11676 if (mips_opts.insn32)
11677 {
11678 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11679 break;
11680 }
11681 jals = 1;
11682 /* Fall through. */
11683 case M_JAL_A:
11684 if (mips_pic == NO_PIC)
11685 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11686 else if (mips_pic == SVR4_PIC)
11687 {
11688 /* If this is a reference to an external symbol, and we are
11689 using a small GOT, we want
11690 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11691 nop
11692 jalr $ra,$25
11693 nop
11694 lw $gp,cprestore($sp)
11695 The cprestore value is set using the .cprestore
11696 pseudo-op. If we are using a big GOT, we want
11697 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11698 addu $25,$25,$gp
11699 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11700 nop
11701 jalr $ra,$25
11702 nop
11703 lw $gp,cprestore($sp)
11704 If the symbol is not external, we want
11705 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11706 nop
11707 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11708 jalr $ra,$25
11709 nop
11710 lw $gp,cprestore($sp)
11711
11712 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11713 sequences above, minus nops, unless the symbol is local,
11714 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11715 GOT_DISP. */
11716 if (HAVE_NEWABI)
11717 {
11718 if (!mips_big_got)
11719 {
11720 relax_start (offset_expr.X_add_symbol);
11721 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11722 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11723 mips_gp_register);
11724 relax_switch ();
11725 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11726 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11727 mips_gp_register);
11728 relax_end ();
11729 }
11730 else
11731 {
11732 relax_start (offset_expr.X_add_symbol);
11733 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11734 BFD_RELOC_MIPS_CALL_HI16);
11735 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11736 PIC_CALL_REG, mips_gp_register);
11737 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11738 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11739 PIC_CALL_REG);
11740 relax_switch ();
11741 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11742 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11743 mips_gp_register);
11744 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11745 PIC_CALL_REG, PIC_CALL_REG,
11746 BFD_RELOC_MIPS_GOT_OFST);
11747 relax_end ();
11748 }
11749
11750 macro_build_jalr (&offset_expr, 0);
11751 }
11752 else
11753 {
11754 relax_start (offset_expr.X_add_symbol);
11755 if (!mips_big_got)
11756 {
11757 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11758 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11759 mips_gp_register);
11760 load_delay_nop ();
11761 relax_switch ();
11762 }
11763 else
11764 {
11765 int gpdelay;
11766
11767 gpdelay = reg_needs_delay (mips_gp_register);
11768 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11769 BFD_RELOC_MIPS_CALL_HI16);
11770 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11771 PIC_CALL_REG, mips_gp_register);
11772 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11773 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11774 PIC_CALL_REG);
11775 load_delay_nop ();
11776 relax_switch ();
11777 if (gpdelay)
11778 macro_build (NULL, "nop", "");
11779 }
11780 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11781 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11782 mips_gp_register);
11783 load_delay_nop ();
11784 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11785 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11786 relax_end ();
11787 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11788
11789 if (mips_cprestore_offset < 0)
11790 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11791 else
11792 {
11793 if (!mips_frame_reg_valid)
11794 {
11795 as_warn (_("no .frame pseudo-op used in PIC code"));
11796 /* Quiet this warning. */
11797 mips_frame_reg_valid = 1;
11798 }
11799 if (!mips_cprestore_valid)
11800 {
11801 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11802 /* Quiet this warning. */
11803 mips_cprestore_valid = 1;
11804 }
11805 if (mips_opts.noreorder)
11806 macro_build (NULL, "nop", "");
11807 expr1.X_add_number = mips_cprestore_offset;
11808 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11809 mips_gp_register,
11810 mips_frame_reg,
11811 HAVE_64BIT_ADDRESSES);
11812 }
11813 }
11814 }
11815 else if (mips_pic == VXWORKS_PIC)
11816 as_bad (_("non-PIC jump used in PIC library"));
11817 else
11818 abort ();
11819
11820 break;
11821
11822 case M_LBUE_AB:
11823 s = "lbue";
11824 fmt = "t,+j(b)";
11825 offbits = 9;
11826 goto ld_st;
11827 case M_LHUE_AB:
11828 s = "lhue";
11829 fmt = "t,+j(b)";
11830 offbits = 9;
11831 goto ld_st;
11832 case M_LBE_AB:
11833 s = "lbe";
11834 fmt = "t,+j(b)";
11835 offbits = 9;
11836 goto ld_st;
11837 case M_LHE_AB:
11838 s = "lhe";
11839 fmt = "t,+j(b)";
11840 offbits = 9;
11841 goto ld_st;
11842 case M_LLE_AB:
11843 s = "lle";
11844 fmt = "t,+j(b)";
11845 offbits = 9;
11846 goto ld_st;
11847 case M_LWE_AB:
11848 s = "lwe";
11849 fmt = "t,+j(b)";
11850 offbits = 9;
11851 goto ld_st;
11852 case M_LWLE_AB:
11853 s = "lwle";
11854 fmt = "t,+j(b)";
11855 offbits = 9;
11856 goto ld_st;
11857 case M_LWRE_AB:
11858 s = "lwre";
11859 fmt = "t,+j(b)";
11860 offbits = 9;
11861 goto ld_st;
11862 case M_SBE_AB:
11863 s = "sbe";
11864 fmt = "t,+j(b)";
11865 offbits = 9;
11866 goto ld_st;
11867 case M_SCE_AB:
11868 s = "sce";
11869 fmt = "t,+j(b)";
11870 offbits = 9;
11871 goto ld_st;
11872 case M_SHE_AB:
11873 s = "she";
11874 fmt = "t,+j(b)";
11875 offbits = 9;
11876 goto ld_st;
11877 case M_SWE_AB:
11878 s = "swe";
11879 fmt = "t,+j(b)";
11880 offbits = 9;
11881 goto ld_st;
11882 case M_SWLE_AB:
11883 s = "swle";
11884 fmt = "t,+j(b)";
11885 offbits = 9;
11886 goto ld_st;
11887 case M_SWRE_AB:
11888 s = "swre";
11889 fmt = "t,+j(b)";
11890 offbits = 9;
11891 goto ld_st;
11892 case M_ACLR_AB:
11893 s = "aclr";
11894 fmt = "\\,~(b)";
11895 offbits = 12;
11896 goto ld_st;
11897 case M_ASET_AB:
11898 s = "aset";
11899 fmt = "\\,~(b)";
11900 offbits = 12;
11901 goto ld_st;
11902 case M_LB_AB:
11903 s = "lb";
11904 fmt = "t,o(b)";
11905 goto ld;
11906 case M_LBU_AB:
11907 s = "lbu";
11908 fmt = "t,o(b)";
11909 goto ld;
11910 case M_LH_AB:
11911 s = "lh";
11912 fmt = "t,o(b)";
11913 goto ld;
11914 case M_LHU_AB:
11915 s = "lhu";
11916 fmt = "t,o(b)";
11917 goto ld;
11918 case M_LW_AB:
11919 s = "lw";
11920 fmt = "t,o(b)";
11921 goto ld;
11922 case M_LWC0_AB:
11923 gas_assert (!mips_opts.micromips);
11924 s = "lwc0";
11925 fmt = "E,o(b)";
11926 /* Itbl support may require additional care here. */
11927 coproc = 1;
11928 goto ld_st;
11929 case M_LWC1_AB:
11930 s = "lwc1";
11931 fmt = "T,o(b)";
11932 /* Itbl support may require additional care here. */
11933 coproc = 1;
11934 goto ld_st;
11935 case M_LWC2_AB:
11936 s = "lwc2";
11937 fmt = COP12_FMT;
11938 offbits = (mips_opts.micromips ? 12
11939 : ISA_IS_R6 (mips_opts.isa) ? 11
11940 : 16);
11941 /* Itbl support may require additional care here. */
11942 coproc = 1;
11943 goto ld_st;
11944 case M_LWC3_AB:
11945 gas_assert (!mips_opts.micromips);
11946 s = "lwc3";
11947 fmt = "E,o(b)";
11948 /* Itbl support may require additional care here. */
11949 coproc = 1;
11950 goto ld_st;
11951 case M_LWL_AB:
11952 s = "lwl";
11953 fmt = MEM12_FMT;
11954 offbits = (mips_opts.micromips ? 12 : 16);
11955 goto ld_st;
11956 case M_LWR_AB:
11957 s = "lwr";
11958 fmt = MEM12_FMT;
11959 offbits = (mips_opts.micromips ? 12 : 16);
11960 goto ld_st;
11961 case M_LDC1_AB:
11962 s = "ldc1";
11963 fmt = "T,o(b)";
11964 /* Itbl support may require additional care here. */
11965 coproc = 1;
11966 goto ld_st;
11967 case M_LDC2_AB:
11968 s = "ldc2";
11969 fmt = COP12_FMT;
11970 offbits = (mips_opts.micromips ? 12
11971 : ISA_IS_R6 (mips_opts.isa) ? 11
11972 : 16);
11973 /* Itbl support may require additional care here. */
11974 coproc = 1;
11975 goto ld_st;
11976 case M_LQC2_AB:
11977 s = "lqc2";
11978 fmt = "+7,o(b)";
11979 /* Itbl support may require additional care here. */
11980 coproc = 1;
11981 goto ld_st;
11982 case M_LDC3_AB:
11983 s = "ldc3";
11984 fmt = "E,o(b)";
11985 /* Itbl support may require additional care here. */
11986 coproc = 1;
11987 goto ld_st;
11988 case M_LDL_AB:
11989 s = "ldl";
11990 fmt = MEM12_FMT;
11991 offbits = (mips_opts.micromips ? 12 : 16);
11992 goto ld_st;
11993 case M_LDR_AB:
11994 s = "ldr";
11995 fmt = MEM12_FMT;
11996 offbits = (mips_opts.micromips ? 12 : 16);
11997 goto ld_st;
11998 case M_LL_AB:
11999 s = "ll";
12000 fmt = LL_SC_FMT;
12001 offbits = (mips_opts.micromips ? 12
12002 : ISA_IS_R6 (mips_opts.isa) ? 9
12003 : 16);
12004 goto ld;
12005 case M_LLD_AB:
12006 s = "lld";
12007 fmt = LL_SC_FMT;
12008 offbits = (mips_opts.micromips ? 12
12009 : ISA_IS_R6 (mips_opts.isa) ? 9
12010 : 16);
12011 goto ld;
12012 case M_LWU_AB:
12013 s = "lwu";
12014 fmt = MEM12_FMT;
12015 offbits = (mips_opts.micromips ? 12 : 16);
12016 goto ld;
12017 case M_LWP_AB:
12018 gas_assert (mips_opts.micromips);
12019 s = "lwp";
12020 fmt = "t,~(b)";
12021 offbits = 12;
12022 lp = 1;
12023 goto ld;
12024 case M_LDP_AB:
12025 gas_assert (mips_opts.micromips);
12026 s = "ldp";
12027 fmt = "t,~(b)";
12028 offbits = 12;
12029 lp = 1;
12030 goto ld;
12031 case M_LLDP_AB:
12032 case M_LLWP_AB:
12033 case M_LLWPE_AB:
12034 s = ip->insn_mo->name;
12035 fmt = "t,d,s";
12036 ll_sc_paired = 1;
12037 offbits = 0;
12038 goto ld;
12039 case M_LWM_AB:
12040 gas_assert (mips_opts.micromips);
12041 s = "lwm";
12042 fmt = "n,~(b)";
12043 offbits = 12;
12044 goto ld_st;
12045 case M_LDM_AB:
12046 gas_assert (mips_opts.micromips);
12047 s = "ldm";
12048 fmt = "n,~(b)";
12049 offbits = 12;
12050 goto ld_st;
12051
12052 ld:
12053 /* Try to use one the the load registers to compute the base address.
12054 We don't want to use $0 as tempreg. */
12055 if (ll_sc_paired)
12056 {
12057 if ((op[0] == ZERO && op[3] == op[1])
12058 || (op[1] == ZERO && op[3] == op[0])
12059 || (op[0] == ZERO && op[1] == ZERO))
12060 goto ld_st;
12061 else if (op[0] != op[3] && op[0] != ZERO)
12062 tempreg = op[0];
12063 else
12064 tempreg = op[1];
12065 }
12066 else
12067 {
12068 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
12069 goto ld_st;
12070 else
12071 tempreg = op[0] + lp;
12072 }
12073 goto ld_noat;
12074
12075 case M_SB_AB:
12076 s = "sb";
12077 fmt = "t,o(b)";
12078 goto ld_st;
12079 case M_SH_AB:
12080 s = "sh";
12081 fmt = "t,o(b)";
12082 goto ld_st;
12083 case M_SW_AB:
12084 s = "sw";
12085 fmt = "t,o(b)";
12086 goto ld_st;
12087 case M_SWC0_AB:
12088 gas_assert (!mips_opts.micromips);
12089 s = "swc0";
12090 fmt = "E,o(b)";
12091 /* Itbl support may require additional care here. */
12092 coproc = 1;
12093 goto ld_st;
12094 case M_SWC1_AB:
12095 s = "swc1";
12096 fmt = "T,o(b)";
12097 /* Itbl support may require additional care here. */
12098 coproc = 1;
12099 goto ld_st;
12100 case M_SWC2_AB:
12101 s = "swc2";
12102 fmt = COP12_FMT;
12103 offbits = (mips_opts.micromips ? 12
12104 : ISA_IS_R6 (mips_opts.isa) ? 11
12105 : 16);
12106 /* Itbl support may require additional care here. */
12107 coproc = 1;
12108 goto ld_st;
12109 case M_SWC3_AB:
12110 gas_assert (!mips_opts.micromips);
12111 s = "swc3";
12112 fmt = "E,o(b)";
12113 /* Itbl support may require additional care here. */
12114 coproc = 1;
12115 goto ld_st;
12116 case M_SWL_AB:
12117 s = "swl";
12118 fmt = MEM12_FMT;
12119 offbits = (mips_opts.micromips ? 12 : 16);
12120 goto ld_st;
12121 case M_SWR_AB:
12122 s = "swr";
12123 fmt = MEM12_FMT;
12124 offbits = (mips_opts.micromips ? 12 : 16);
12125 goto ld_st;
12126 case M_SC_AB:
12127 s = "sc";
12128 fmt = LL_SC_FMT;
12129 offbits = (mips_opts.micromips ? 12
12130 : ISA_IS_R6 (mips_opts.isa) ? 9
12131 : 16);
12132 goto ld_st;
12133 case M_SCD_AB:
12134 s = "scd";
12135 fmt = LL_SC_FMT;
12136 offbits = (mips_opts.micromips ? 12
12137 : ISA_IS_R6 (mips_opts.isa) ? 9
12138 : 16);
12139 goto ld_st;
12140 case M_SCDP_AB:
12141 case M_SCWP_AB:
12142 case M_SCWPE_AB:
12143 s = ip->insn_mo->name;
12144 fmt = "t,d,s";
12145 ll_sc_paired = 1;
12146 offbits = 0;
12147 goto ld_st;
12148 case M_CACHE_AB:
12149 s = "cache";
12150 fmt = (mips_opts.micromips ? "k,~(b)"
12151 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
12152 : "k,o(b)");
12153 offbits = (mips_opts.micromips ? 12
12154 : ISA_IS_R6 (mips_opts.isa) ? 9
12155 : 16);
12156 goto ld_st;
12157 case M_CACHEE_AB:
12158 s = "cachee";
12159 fmt = "k,+j(b)";
12160 offbits = 9;
12161 goto ld_st;
12162 case M_PREF_AB:
12163 s = "pref";
12164 fmt = (mips_opts.micromips ? "k,~(b)"
12165 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
12166 : "k,o(b)");
12167 offbits = (mips_opts.micromips ? 12
12168 : ISA_IS_R6 (mips_opts.isa) ? 9
12169 : 16);
12170 goto ld_st;
12171 case M_PREFE_AB:
12172 s = "prefe";
12173 fmt = "k,+j(b)";
12174 offbits = 9;
12175 goto ld_st;
12176 case M_SDC1_AB:
12177 s = "sdc1";
12178 fmt = "T,o(b)";
12179 coproc = 1;
12180 /* Itbl support may require additional care here. */
12181 goto ld_st;
12182 case M_SDC2_AB:
12183 s = "sdc2";
12184 fmt = COP12_FMT;
12185 offbits = (mips_opts.micromips ? 12
12186 : ISA_IS_R6 (mips_opts.isa) ? 11
12187 : 16);
12188 /* Itbl support may require additional care here. */
12189 coproc = 1;
12190 goto ld_st;
12191 case M_SQC2_AB:
12192 s = "sqc2";
12193 fmt = "+7,o(b)";
12194 /* Itbl support may require additional care here. */
12195 coproc = 1;
12196 goto ld_st;
12197 case M_SDC3_AB:
12198 gas_assert (!mips_opts.micromips);
12199 s = "sdc3";
12200 fmt = "E,o(b)";
12201 /* Itbl support may require additional care here. */
12202 coproc = 1;
12203 goto ld_st;
12204 case M_SDL_AB:
12205 s = "sdl";
12206 fmt = MEM12_FMT;
12207 offbits = (mips_opts.micromips ? 12 : 16);
12208 goto ld_st;
12209 case M_SDR_AB:
12210 s = "sdr";
12211 fmt = MEM12_FMT;
12212 offbits = (mips_opts.micromips ? 12 : 16);
12213 goto ld_st;
12214 case M_SWP_AB:
12215 gas_assert (mips_opts.micromips);
12216 s = "swp";
12217 fmt = "t,~(b)";
12218 offbits = 12;
12219 goto ld_st;
12220 case M_SDP_AB:
12221 gas_assert (mips_opts.micromips);
12222 s = "sdp";
12223 fmt = "t,~(b)";
12224 offbits = 12;
12225 goto ld_st;
12226 case M_SWM_AB:
12227 gas_assert (mips_opts.micromips);
12228 s = "swm";
12229 fmt = "n,~(b)";
12230 offbits = 12;
12231 goto ld_st;
12232 case M_SDM_AB:
12233 gas_assert (mips_opts.micromips);
12234 s = "sdm";
12235 fmt = "n,~(b)";
12236 offbits = 12;
12237
12238 ld_st:
12239 tempreg = AT;
12240 ld_noat:
12241 breg = ll_sc_paired ? op[3] : op[2];
12242 if (small_offset_p (0, align, 16))
12243 {
12244 /* The first case exists for M_LD_AB and M_SD_AB, which are
12245 macros for o32 but which should act like normal instructions
12246 otherwise. */
12247 if (offbits == 16)
12248 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
12249 offset_reloc[1], offset_reloc[2], breg);
12250 else if (small_offset_p (0, align, offbits))
12251 {
12252 if (offbits == 0)
12253 {
12254 if (ll_sc_paired)
12255 macro_build (NULL, s, fmt, op[0], op[1], breg);
12256 else
12257 macro_build (NULL, s, fmt, op[0], breg);
12258 }
12259 else
12260 macro_build (NULL, s, fmt, op[0],
12261 (int) offset_expr.X_add_number, breg);
12262 }
12263 else
12264 {
12265 if (tempreg == AT)
12266 used_at = 1;
12267 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
12268 tempreg, breg, -1, offset_reloc[0],
12269 offset_reloc[1], offset_reloc[2]);
12270 if (offbits == 0)
12271 {
12272 if (ll_sc_paired)
12273 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12274 else
12275 macro_build (NULL, s, fmt, op[0], tempreg);
12276 }
12277 else
12278 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12279 }
12280 break;
12281 }
12282
12283 if (tempreg == AT)
12284 used_at = 1;
12285
12286 if (offset_expr.X_op != O_constant
12287 && offset_expr.X_op != O_symbol)
12288 {
12289 as_bad (_("expression too complex"));
12290 offset_expr.X_op = O_constant;
12291 }
12292
12293 if (HAVE_32BIT_ADDRESSES
12294 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12295 {
12296 char value [32];
12297
12298 sprintf_vma (value, offset_expr.X_add_number);
12299 as_bad (_("number (0x%s) larger than 32 bits"), value);
12300 }
12301
12302 /* A constant expression in PIC code can be handled just as it
12303 is in non PIC code. */
12304 if (offset_expr.X_op == O_constant)
12305 {
12306 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12307 offbits == 0 ? 16 : offbits);
12308 offset_expr.X_add_number -= expr1.X_add_number;
12309
12310 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12311 if (breg != 0)
12312 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12313 tempreg, tempreg, breg);
12314 if (offbits == 0)
12315 {
12316 if (offset_expr.X_add_number != 0)
12317 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
12318 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
12319 if (ll_sc_paired)
12320 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12321 else
12322 macro_build (NULL, s, fmt, op[0], tempreg);
12323 }
12324 else if (offbits == 16)
12325 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12326 else
12327 macro_build (NULL, s, fmt, op[0],
12328 (int) offset_expr.X_add_number, tempreg);
12329 }
12330 else if (offbits != 16)
12331 {
12332 /* The offset field is too narrow to be used for a low-part
12333 relocation, so load the whole address into the auxiliary
12334 register. */
12335 load_address (tempreg, &offset_expr, &used_at);
12336 if (breg != 0)
12337 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12338 tempreg, tempreg, breg);
12339 if (offbits == 0)
12340 {
12341 if (ll_sc_paired)
12342 macro_build (NULL, s, fmt, op[0], op[1], tempreg);
12343 else
12344 macro_build (NULL, s, fmt, op[0], tempreg);
12345 }
12346 else
12347 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12348 }
12349 else if (mips_pic == NO_PIC)
12350 {
12351 /* If this is a reference to a GP relative symbol, and there
12352 is no base register, we want
12353 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12354 Otherwise, if there is no base register, we want
12355 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12356 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12357 If we have a constant, we need two instructions anyhow,
12358 so we always use the latter form.
12359
12360 If we have a base register, and this is a reference to a
12361 GP relative symbol, we want
12362 addu $tempreg,$breg,$gp
12363 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
12364 Otherwise we want
12365 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12366 addu $tempreg,$tempreg,$breg
12367 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12368 With a constant we always use the latter case.
12369
12370 With 64bit address space and no base register and $at usable,
12371 we want
12372 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12373 lui $at,<sym> (BFD_RELOC_HI16_S)
12374 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12375 dsll32 $tempreg,0
12376 daddu $tempreg,$at
12377 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12378 If we have a base register, we want
12379 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12380 lui $at,<sym> (BFD_RELOC_HI16_S)
12381 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12382 daddu $at,$breg
12383 dsll32 $tempreg,0
12384 daddu $tempreg,$at
12385 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12386
12387 Without $at we can't generate the optimal path for superscalar
12388 processors here since this would require two temporary registers.
12389 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12390 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12391 dsll $tempreg,16
12392 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12393 dsll $tempreg,16
12394 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12395 If we have a base register, we want
12396 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12397 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12398 dsll $tempreg,16
12399 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12400 dsll $tempreg,16
12401 daddu $tempreg,$tempreg,$breg
12402 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12403
12404 For GP relative symbols in 64bit address space we can use
12405 the same sequence as in 32bit address space. */
12406 if (HAVE_64BIT_SYMBOLS)
12407 {
12408 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12409 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12410 {
12411 relax_start (offset_expr.X_add_symbol);
12412 if (breg == 0)
12413 {
12414 macro_build (&offset_expr, s, fmt, op[0],
12415 BFD_RELOC_GPREL16, mips_gp_register);
12416 }
12417 else
12418 {
12419 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12420 tempreg, breg, mips_gp_register);
12421 macro_build (&offset_expr, s, fmt, op[0],
12422 BFD_RELOC_GPREL16, tempreg);
12423 }
12424 relax_switch ();
12425 }
12426
12427 if (used_at == 0 && mips_opts.at)
12428 {
12429 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12430 BFD_RELOC_MIPS_HIGHEST);
12431 macro_build (&offset_expr, "lui", LUI_FMT, AT,
12432 BFD_RELOC_HI16_S);
12433 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12434 tempreg, BFD_RELOC_MIPS_HIGHER);
12435 if (breg != 0)
12436 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12437 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12438 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12439 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12440 tempreg);
12441 used_at = 1;
12442 }
12443 else
12444 {
12445 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12446 BFD_RELOC_MIPS_HIGHEST);
12447 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12448 tempreg, BFD_RELOC_MIPS_HIGHER);
12449 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12450 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12451 tempreg, BFD_RELOC_HI16_S);
12452 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12453 if (breg != 0)
12454 macro_build (NULL, "daddu", "d,v,t",
12455 tempreg, tempreg, breg);
12456 macro_build (&offset_expr, s, fmt, op[0],
12457 BFD_RELOC_LO16, tempreg);
12458 }
12459
12460 if (mips_relax.sequence)
12461 relax_end ();
12462 break;
12463 }
12464
12465 if (breg == 0)
12466 {
12467 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12468 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12469 {
12470 relax_start (offset_expr.X_add_symbol);
12471 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12472 mips_gp_register);
12473 relax_switch ();
12474 }
12475 macro_build_lui (&offset_expr, tempreg);
12476 macro_build (&offset_expr, s, fmt, op[0],
12477 BFD_RELOC_LO16, tempreg);
12478 if (mips_relax.sequence)
12479 relax_end ();
12480 }
12481 else
12482 {
12483 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12484 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12485 {
12486 relax_start (offset_expr.X_add_symbol);
12487 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12488 tempreg, breg, mips_gp_register);
12489 macro_build (&offset_expr, s, fmt, op[0],
12490 BFD_RELOC_GPREL16, tempreg);
12491 relax_switch ();
12492 }
12493 macro_build_lui (&offset_expr, tempreg);
12494 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12495 tempreg, tempreg, breg);
12496 macro_build (&offset_expr, s, fmt, op[0],
12497 BFD_RELOC_LO16, tempreg);
12498 if (mips_relax.sequence)
12499 relax_end ();
12500 }
12501 }
12502 else if (!mips_big_got)
12503 {
12504 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12505
12506 /* If this is a reference to an external symbol, we want
12507 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12508 nop
12509 <op> op[0],0($tempreg)
12510 Otherwise we want
12511 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12512 nop
12513 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12514 <op> op[0],0($tempreg)
12515
12516 For NewABI, we want
12517 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12518 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12519
12520 If there is a base register, we add it to $tempreg before
12521 the <op>. If there is a constant, we stick it in the
12522 <op> instruction. We don't handle constants larger than
12523 16 bits, because we have no way to load the upper 16 bits
12524 (actually, we could handle them for the subset of cases
12525 in which we are not using $at). */
12526 gas_assert (offset_expr.X_op == O_symbol);
12527 if (HAVE_NEWABI)
12528 {
12529 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12530 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12531 if (breg != 0)
12532 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12533 tempreg, tempreg, breg);
12534 macro_build (&offset_expr, s, fmt, op[0],
12535 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12536 break;
12537 }
12538 expr1.X_add_number = offset_expr.X_add_number;
12539 offset_expr.X_add_number = 0;
12540 if (expr1.X_add_number < -0x8000
12541 || expr1.X_add_number >= 0x8000)
12542 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12543 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12544 lw_reloc_type, mips_gp_register);
12545 load_delay_nop ();
12546 relax_start (offset_expr.X_add_symbol);
12547 relax_switch ();
12548 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12549 tempreg, BFD_RELOC_LO16);
12550 relax_end ();
12551 if (breg != 0)
12552 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12553 tempreg, tempreg, breg);
12554 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12555 }
12556 else if (mips_big_got && !HAVE_NEWABI)
12557 {
12558 int gpdelay;
12559
12560 /* If this is a reference to an external symbol, we want
12561 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12562 addu $tempreg,$tempreg,$gp
12563 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12564 <op> op[0],0($tempreg)
12565 Otherwise we want
12566 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12567 nop
12568 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12569 <op> op[0],0($tempreg)
12570 If there is a base register, we add it to $tempreg before
12571 the <op>. If there is a constant, we stick it in the
12572 <op> instruction. We don't handle constants larger than
12573 16 bits, because we have no way to load the upper 16 bits
12574 (actually, we could handle them for the subset of cases
12575 in which we are not using $at). */
12576 gas_assert (offset_expr.X_op == O_symbol);
12577 expr1.X_add_number = offset_expr.X_add_number;
12578 offset_expr.X_add_number = 0;
12579 if (expr1.X_add_number < -0x8000
12580 || expr1.X_add_number >= 0x8000)
12581 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12582 gpdelay = reg_needs_delay (mips_gp_register);
12583 relax_start (offset_expr.X_add_symbol);
12584 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12585 BFD_RELOC_MIPS_GOT_HI16);
12586 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12587 mips_gp_register);
12588 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12589 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12590 relax_switch ();
12591 if (gpdelay)
12592 macro_build (NULL, "nop", "");
12593 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12594 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12595 load_delay_nop ();
12596 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12597 tempreg, BFD_RELOC_LO16);
12598 relax_end ();
12599
12600 if (breg != 0)
12601 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12602 tempreg, tempreg, breg);
12603 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12604 }
12605 else if (mips_big_got && HAVE_NEWABI)
12606 {
12607 /* If this is a reference to an external symbol, we want
12608 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12609 add $tempreg,$tempreg,$gp
12610 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12611 <op> op[0],<ofst>($tempreg)
12612 Otherwise, for local symbols, we want:
12613 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12614 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12615 gas_assert (offset_expr.X_op == O_symbol);
12616 expr1.X_add_number = offset_expr.X_add_number;
12617 offset_expr.X_add_number = 0;
12618 if (expr1.X_add_number < -0x8000
12619 || expr1.X_add_number >= 0x8000)
12620 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12621 relax_start (offset_expr.X_add_symbol);
12622 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12623 BFD_RELOC_MIPS_GOT_HI16);
12624 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12625 mips_gp_register);
12626 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12627 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12628 if (breg != 0)
12629 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12630 tempreg, tempreg, breg);
12631 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12632
12633 relax_switch ();
12634 offset_expr.X_add_number = expr1.X_add_number;
12635 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12636 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12637 if (breg != 0)
12638 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12639 tempreg, tempreg, breg);
12640 macro_build (&offset_expr, s, fmt, op[0],
12641 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12642 relax_end ();
12643 }
12644 else
12645 abort ();
12646
12647 break;
12648
12649 case M_JRADDIUSP:
12650 gas_assert (mips_opts.micromips);
12651 gas_assert (mips_opts.insn32);
12652 start_noreorder ();
12653 macro_build (NULL, "jr", "s", RA);
12654 expr1.X_add_number = op[0] << 2;
12655 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12656 end_noreorder ();
12657 break;
12658
12659 case M_JRC:
12660 gas_assert (mips_opts.micromips);
12661 gas_assert (mips_opts.insn32);
12662 macro_build (NULL, "jr", "s", op[0]);
12663 if (mips_opts.noreorder)
12664 macro_build (NULL, "nop", "");
12665 break;
12666
12667 case M_LI:
12668 case M_LI_S:
12669 load_register (op[0], &imm_expr, 0);
12670 break;
12671
12672 case M_DLI:
12673 load_register (op[0], &imm_expr, 1);
12674 break;
12675
12676 case M_LI_SS:
12677 if (imm_expr.X_op == O_constant)
12678 {
12679 used_at = 1;
12680 load_register (AT, &imm_expr, 0);
12681 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12682 break;
12683 }
12684 else
12685 {
12686 gas_assert (imm_expr.X_op == O_absent
12687 && offset_expr.X_op == O_symbol
12688 && strcmp (segment_name (S_GET_SEGMENT
12689 (offset_expr.X_add_symbol)),
12690 ".lit4") == 0
12691 && offset_expr.X_add_number == 0);
12692 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12693 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12694 break;
12695 }
12696
12697 case M_LI_D:
12698 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12699 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12700 order 32 bits of the value and the low order 32 bits are either
12701 zero or in OFFSET_EXPR. */
12702 if (imm_expr.X_op == O_constant)
12703 {
12704 if (GPR_SIZE == 64)
12705 load_register (op[0], &imm_expr, 1);
12706 else
12707 {
12708 int hreg, lreg;
12709
12710 if (target_big_endian)
12711 {
12712 hreg = op[0];
12713 lreg = op[0] + 1;
12714 }
12715 else
12716 {
12717 hreg = op[0] + 1;
12718 lreg = op[0];
12719 }
12720
12721 if (hreg <= 31)
12722 load_register (hreg, &imm_expr, 0);
12723 if (lreg <= 31)
12724 {
12725 if (offset_expr.X_op == O_absent)
12726 move_register (lreg, 0);
12727 else
12728 {
12729 gas_assert (offset_expr.X_op == O_constant);
12730 load_register (lreg, &offset_expr, 0);
12731 }
12732 }
12733 }
12734 break;
12735 }
12736 gas_assert (imm_expr.X_op == O_absent);
12737
12738 /* We know that sym is in the .rdata section. First we get the
12739 upper 16 bits of the address. */
12740 if (mips_pic == NO_PIC)
12741 {
12742 macro_build_lui (&offset_expr, AT);
12743 used_at = 1;
12744 }
12745 else
12746 {
12747 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12748 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12749 used_at = 1;
12750 }
12751
12752 /* Now we load the register(s). */
12753 if (GPR_SIZE == 64)
12754 {
12755 used_at = 1;
12756 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12757 BFD_RELOC_LO16, AT);
12758 }
12759 else
12760 {
12761 used_at = 1;
12762 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12763 BFD_RELOC_LO16, AT);
12764 if (op[0] != RA)
12765 {
12766 /* FIXME: How in the world do we deal with the possible
12767 overflow here? */
12768 offset_expr.X_add_number += 4;
12769 macro_build (&offset_expr, "lw", "t,o(b)",
12770 op[0] + 1, BFD_RELOC_LO16, AT);
12771 }
12772 }
12773 break;
12774
12775 case M_LI_DD:
12776 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12777 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12778 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12779 the value and the low order 32 bits are either zero or in
12780 OFFSET_EXPR. */
12781 if (imm_expr.X_op == O_constant)
12782 {
12783 tempreg = ZERO;
12784 if (((FPR_SIZE == 64 && GPR_SIZE == 64)
12785 || !ISA_HAS_MXHC1 (mips_opts.isa))
12786 && imm_expr.X_add_number != 0)
12787 {
12788 used_at = 1;
12789 tempreg = AT;
12790 load_register (AT, &imm_expr, FPR_SIZE == 64);
12791 }
12792 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12793 macro_build (NULL, "dmtc1", "t,S", tempreg, op[0]);
12794 else
12795 {
12796 if (!ISA_HAS_MXHC1 (mips_opts.isa))
12797 {
12798 if (FPR_SIZE != 32)
12799 as_bad (_("Unable to generate `%s' compliant code "
12800 "without mthc1"),
12801 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12802 else
12803 macro_build (NULL, "mtc1", "t,G", tempreg, op[0] + 1);
12804 }
12805 if (offset_expr.X_op == O_absent)
12806 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12807 else
12808 {
12809 gas_assert (offset_expr.X_op == O_constant);
12810 load_register (AT, &offset_expr, 0);
12811 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12812 }
12813 if (ISA_HAS_MXHC1 (mips_opts.isa))
12814 {
12815 if (imm_expr.X_add_number != 0)
12816 {
12817 used_at = 1;
12818 tempreg = AT;
12819 load_register (AT, &imm_expr, 0);
12820 }
12821 macro_build (NULL, "mthc1", "t,G", tempreg, op[0]);
12822 }
12823 }
12824 break;
12825 }
12826
12827 gas_assert (imm_expr.X_op == O_absent
12828 && offset_expr.X_op == O_symbol
12829 && offset_expr.X_add_number == 0);
12830 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12831 if (strcmp (s, ".lit8") == 0)
12832 {
12833 op[2] = mips_gp_register;
12834 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12835 offset_reloc[1] = BFD_RELOC_UNUSED;
12836 offset_reloc[2] = BFD_RELOC_UNUSED;
12837 }
12838 else
12839 {
12840 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12841 used_at = 1;
12842 if (mips_pic != NO_PIC)
12843 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12844 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12845 else
12846 {
12847 /* FIXME: This won't work for a 64 bit address. */
12848 macro_build_lui (&offset_expr, AT);
12849 }
12850
12851 op[2] = AT;
12852 offset_reloc[0] = BFD_RELOC_LO16;
12853 offset_reloc[1] = BFD_RELOC_UNUSED;
12854 offset_reloc[2] = BFD_RELOC_UNUSED;
12855 }
12856 align = 8;
12857 /* Fall through. */
12858
12859 case M_L_DAB:
12860 /* The MIPS assembler seems to check for X_add_number not
12861 being double aligned and generating:
12862 lui at,%hi(foo+1)
12863 addu at,at,v1
12864 addiu at,at,%lo(foo+1)
12865 lwc1 f2,0(at)
12866 lwc1 f3,4(at)
12867 But, the resulting address is the same after relocation so why
12868 generate the extra instruction? */
12869 /* Itbl support may require additional care here. */
12870 coproc = 1;
12871 fmt = "T,o(b)";
12872 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12873 {
12874 s = "ldc1";
12875 goto ld_st;
12876 }
12877 s = "lwc1";
12878 goto ldd_std;
12879
12880 case M_S_DAB:
12881 gas_assert (!mips_opts.micromips);
12882 /* Itbl support may require additional care here. */
12883 coproc = 1;
12884 fmt = "T,o(b)";
12885 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12886 {
12887 s = "sdc1";
12888 goto ld_st;
12889 }
12890 s = "swc1";
12891 goto ldd_std;
12892
12893 case M_LQ_AB:
12894 fmt = "t,o(b)";
12895 s = "lq";
12896 goto ld;
12897
12898 case M_SQ_AB:
12899 fmt = "t,o(b)";
12900 s = "sq";
12901 goto ld_st;
12902
12903 case M_LD_AB:
12904 fmt = "t,o(b)";
12905 if (GPR_SIZE == 64)
12906 {
12907 s = "ld";
12908 goto ld;
12909 }
12910 s = "lw";
12911 goto ldd_std;
12912
12913 case M_SD_AB:
12914 fmt = "t,o(b)";
12915 if (GPR_SIZE == 64)
12916 {
12917 s = "sd";
12918 goto ld_st;
12919 }
12920 s = "sw";
12921
12922 ldd_std:
12923 /* Even on a big endian machine $fn comes before $fn+1. We have
12924 to adjust when loading from memory. We set coproc if we must
12925 load $fn+1 first. */
12926 /* Itbl support may require additional care here. */
12927 if (!target_big_endian)
12928 coproc = 0;
12929
12930 breg = op[2];
12931 if (small_offset_p (0, align, 16))
12932 {
12933 ep = &offset_expr;
12934 if (!small_offset_p (4, align, 16))
12935 {
12936 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12937 -1, offset_reloc[0], offset_reloc[1],
12938 offset_reloc[2]);
12939 expr1.X_add_number = 0;
12940 ep = &expr1;
12941 breg = AT;
12942 used_at = 1;
12943 offset_reloc[0] = BFD_RELOC_LO16;
12944 offset_reloc[1] = BFD_RELOC_UNUSED;
12945 offset_reloc[2] = BFD_RELOC_UNUSED;
12946 }
12947 if (strcmp (s, "lw") == 0 && op[0] == breg)
12948 {
12949 ep->X_add_number += 4;
12950 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12951 offset_reloc[1], offset_reloc[2], breg);
12952 ep->X_add_number -= 4;
12953 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12954 offset_reloc[1], offset_reloc[2], breg);
12955 }
12956 else
12957 {
12958 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12959 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12960 breg);
12961 ep->X_add_number += 4;
12962 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12963 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12964 breg);
12965 }
12966 break;
12967 }
12968
12969 if (offset_expr.X_op != O_symbol
12970 && offset_expr.X_op != O_constant)
12971 {
12972 as_bad (_("expression too complex"));
12973 offset_expr.X_op = O_constant;
12974 }
12975
12976 if (HAVE_32BIT_ADDRESSES
12977 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12978 {
12979 char value [32];
12980
12981 sprintf_vma (value, offset_expr.X_add_number);
12982 as_bad (_("number (0x%s) larger than 32 bits"), value);
12983 }
12984
12985 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12986 {
12987 /* If this is a reference to a GP relative symbol, we want
12988 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12989 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12990 If we have a base register, we use this
12991 addu $at,$breg,$gp
12992 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12993 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12994 If this is not a GP relative symbol, we want
12995 lui $at,<sym> (BFD_RELOC_HI16_S)
12996 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12997 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12998 If there is a base register, we add it to $at after the
12999 lui instruction. If there is a constant, we always use
13000 the last case. */
13001 if (offset_expr.X_op == O_symbol
13002 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
13003 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
13004 {
13005 relax_start (offset_expr.X_add_symbol);
13006 if (breg == 0)
13007 {
13008 tempreg = mips_gp_register;
13009 }
13010 else
13011 {
13012 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13013 AT, breg, mips_gp_register);
13014 tempreg = AT;
13015 used_at = 1;
13016 }
13017
13018 /* Itbl support may require additional care here. */
13019 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
13020 BFD_RELOC_GPREL16, tempreg);
13021 offset_expr.X_add_number += 4;
13022
13023 /* Set mips_optimize to 2 to avoid inserting an
13024 undesired nop. */
13025 hold_mips_optimize = mips_optimize;
13026 mips_optimize = 2;
13027 /* Itbl support may require additional care here. */
13028 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
13029 BFD_RELOC_GPREL16, tempreg);
13030 mips_optimize = hold_mips_optimize;
13031
13032 relax_switch ();
13033
13034 offset_expr.X_add_number -= 4;
13035 }
13036 used_at = 1;
13037 if (offset_high_part (offset_expr.X_add_number, 16)
13038 != offset_high_part (offset_expr.X_add_number + 4, 16))
13039 {
13040 load_address (AT, &offset_expr, &used_at);
13041 offset_expr.X_op = O_constant;
13042 offset_expr.X_add_number = 0;
13043 }
13044 else
13045 macro_build_lui (&offset_expr, AT);
13046 if (breg != 0)
13047 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
13048 /* Itbl support may require additional care here. */
13049 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
13050 BFD_RELOC_LO16, AT);
13051 /* FIXME: How do we handle overflow here? */
13052 offset_expr.X_add_number += 4;
13053 /* Itbl support may require additional care here. */
13054 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
13055 BFD_RELOC_LO16, AT);
13056 if (mips_relax.sequence)
13057 relax_end ();
13058 }
13059 else if (!mips_big_got)
13060 {
13061 /* If this is a reference to an external symbol, we want
13062 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13063 nop
13064 <op> op[0],0($at)
13065 <op> op[0]+1,4($at)
13066 Otherwise we want
13067 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13068 nop
13069 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13070 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
13071 If there is a base register we add it to $at before the
13072 lwc1 instructions. If there is a constant we include it
13073 in the lwc1 instructions. */
13074 used_at = 1;
13075 expr1.X_add_number = offset_expr.X_add_number;
13076 if (expr1.X_add_number < -0x8000
13077 || expr1.X_add_number >= 0x8000 - 4)
13078 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
13079 load_got_offset (AT, &offset_expr);
13080 load_delay_nop ();
13081 if (breg != 0)
13082 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
13083
13084 /* Set mips_optimize to 2 to avoid inserting an undesired
13085 nop. */
13086 hold_mips_optimize = mips_optimize;
13087 mips_optimize = 2;
13088
13089 /* Itbl support may require additional care here. */
13090 relax_start (offset_expr.X_add_symbol);
13091 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
13092 BFD_RELOC_LO16, AT);
13093 expr1.X_add_number += 4;
13094 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
13095 BFD_RELOC_LO16, AT);
13096 relax_switch ();
13097 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
13098 BFD_RELOC_LO16, AT);
13099 offset_expr.X_add_number += 4;
13100 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
13101 BFD_RELOC_LO16, AT);
13102 relax_end ();
13103
13104 mips_optimize = hold_mips_optimize;
13105 }
13106 else if (mips_big_got)
13107 {
13108 int gpdelay;
13109
13110 /* If this is a reference to an external symbol, we want
13111 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
13112 addu $at,$at,$gp
13113 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
13114 nop
13115 <op> op[0],0($at)
13116 <op> op[0]+1,4($at)
13117 Otherwise we want
13118 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13119 nop
13120 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13121 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
13122 If there is a base register we add it to $at before the
13123 lwc1 instructions. If there is a constant we include it
13124 in the lwc1 instructions. */
13125 used_at = 1;
13126 expr1.X_add_number = offset_expr.X_add_number;
13127 offset_expr.X_add_number = 0;
13128 if (expr1.X_add_number < -0x8000
13129 || expr1.X_add_number >= 0x8000 - 4)
13130 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
13131 gpdelay = reg_needs_delay (mips_gp_register);
13132 relax_start (offset_expr.X_add_symbol);
13133 macro_build (&offset_expr, "lui", LUI_FMT,
13134 AT, BFD_RELOC_MIPS_GOT_HI16);
13135 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13136 AT, AT, mips_gp_register);
13137 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
13138 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
13139 load_delay_nop ();
13140 if (breg != 0)
13141 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
13142 /* Itbl support may require additional care here. */
13143 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
13144 BFD_RELOC_LO16, AT);
13145 expr1.X_add_number += 4;
13146
13147 /* Set mips_optimize to 2 to avoid inserting an undesired
13148 nop. */
13149 hold_mips_optimize = mips_optimize;
13150 mips_optimize = 2;
13151 /* Itbl support may require additional care here. */
13152 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
13153 BFD_RELOC_LO16, AT);
13154 mips_optimize = hold_mips_optimize;
13155 expr1.X_add_number -= 4;
13156
13157 relax_switch ();
13158 offset_expr.X_add_number = expr1.X_add_number;
13159 if (gpdelay)
13160 macro_build (NULL, "nop", "");
13161 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
13162 BFD_RELOC_MIPS_GOT16, mips_gp_register);
13163 load_delay_nop ();
13164 if (breg != 0)
13165 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
13166 /* Itbl support may require additional care here. */
13167 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
13168 BFD_RELOC_LO16, AT);
13169 offset_expr.X_add_number += 4;
13170
13171 /* Set mips_optimize to 2 to avoid inserting an undesired
13172 nop. */
13173 hold_mips_optimize = mips_optimize;
13174 mips_optimize = 2;
13175 /* Itbl support may require additional care here. */
13176 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
13177 BFD_RELOC_LO16, AT);
13178 mips_optimize = hold_mips_optimize;
13179 relax_end ();
13180 }
13181 else
13182 abort ();
13183
13184 break;
13185
13186 case M_SAA_AB:
13187 s = "saa";
13188 goto saa_saad;
13189 case M_SAAD_AB:
13190 s = "saad";
13191 saa_saad:
13192 gas_assert (!mips_opts.micromips);
13193 offbits = 0;
13194 fmt = "t,(b)";
13195 goto ld_st;
13196
13197 /* New code added to support COPZ instructions.
13198 This code builds table entries out of the macros in mip_opcodes.
13199 R4000 uses interlocks to handle coproc delays.
13200 Other chips (like the R3000) require nops to be inserted for delays.
13201
13202 FIXME: Currently, we require that the user handle delays.
13203 In order to fill delay slots for non-interlocked chips,
13204 we must have a way to specify delays based on the coprocessor.
13205 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
13206 What are the side-effects of the cop instruction?
13207 What cache support might we have and what are its effects?
13208 Both coprocessor & memory require delays. how long???
13209 What registers are read/set/modified?
13210
13211 If an itbl is provided to interpret cop instructions,
13212 this knowledge can be encoded in the itbl spec. */
13213
13214 case M_COP0:
13215 s = "c0";
13216 goto copz;
13217 case M_COP1:
13218 s = "c1";
13219 goto copz;
13220 case M_COP2:
13221 s = "c2";
13222 goto copz;
13223 case M_COP3:
13224 s = "c3";
13225 copz:
13226 gas_assert (!mips_opts.micromips);
13227 /* For now we just do C (same as Cz). The parameter will be
13228 stored in insn_opcode by mips_ip. */
13229 macro_build (NULL, s, "C", (int) ip->insn_opcode);
13230 break;
13231
13232 case M_MOVE:
13233 move_register (op[0], op[1]);
13234 break;
13235
13236 case M_MOVEP:
13237 gas_assert (mips_opts.micromips);
13238 gas_assert (mips_opts.insn32);
13239 move_register (micromips_to_32_reg_h_map1[op[0]],
13240 micromips_to_32_reg_m_map[op[1]]);
13241 move_register (micromips_to_32_reg_h_map2[op[0]],
13242 micromips_to_32_reg_n_map[op[2]]);
13243 break;
13244
13245 case M_DMUL:
13246 dbl = 1;
13247 /* Fall through. */
13248 case M_MUL:
13249 if (mips_opts.arch == CPU_R5900)
13250 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
13251 op[2]);
13252 else
13253 {
13254 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
13255 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13256 }
13257 break;
13258
13259 case M_DMUL_I:
13260 dbl = 1;
13261 /* Fall through. */
13262 case M_MUL_I:
13263 /* The MIPS assembler some times generates shifts and adds. I'm
13264 not trying to be that fancy. GCC should do this for us
13265 anyway. */
13266 used_at = 1;
13267 load_register (AT, &imm_expr, dbl);
13268 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
13269 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13270 break;
13271
13272 case M_DMULO_I:
13273 dbl = 1;
13274 /* Fall through. */
13275 case M_MULO_I:
13276 imm = 1;
13277 goto do_mulo;
13278
13279 case M_DMULO:
13280 dbl = 1;
13281 /* Fall through. */
13282 case M_MULO:
13283 do_mulo:
13284 start_noreorder ();
13285 used_at = 1;
13286 if (imm)
13287 load_register (AT, &imm_expr, dbl);
13288 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
13289 op[1], imm ? AT : op[2]);
13290 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13291 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
13292 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13293 if (mips_trap)
13294 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
13295 else
13296 {
13297 if (mips_opts.micromips)
13298 micromips_label_expr (&label_expr);
13299 else
13300 label_expr.X_add_number = 8;
13301 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
13302 macro_build (NULL, "nop", "");
13303 macro_build (NULL, "break", BRK_FMT, 6);
13304 if (mips_opts.micromips)
13305 micromips_add_label ();
13306 }
13307 end_noreorder ();
13308 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13309 break;
13310
13311 case M_DMULOU_I:
13312 dbl = 1;
13313 /* Fall through. */
13314 case M_MULOU_I:
13315 imm = 1;
13316 goto do_mulou;
13317
13318 case M_DMULOU:
13319 dbl = 1;
13320 /* Fall through. */
13321 case M_MULOU:
13322 do_mulou:
13323 start_noreorder ();
13324 used_at = 1;
13325 if (imm)
13326 load_register (AT, &imm_expr, dbl);
13327 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
13328 op[1], imm ? AT : op[2]);
13329 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13330 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13331 if (mips_trap)
13332 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
13333 else
13334 {
13335 if (mips_opts.micromips)
13336 micromips_label_expr (&label_expr);
13337 else
13338 label_expr.X_add_number = 8;
13339 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
13340 macro_build (NULL, "nop", "");
13341 macro_build (NULL, "break", BRK_FMT, 6);
13342 if (mips_opts.micromips)
13343 micromips_add_label ();
13344 }
13345 end_noreorder ();
13346 break;
13347
13348 case M_DROL:
13349 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13350 {
13351 if (op[0] == op[1])
13352 {
13353 tempreg = AT;
13354 used_at = 1;
13355 }
13356 else
13357 tempreg = op[0];
13358 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13359 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
13360 break;
13361 }
13362 used_at = 1;
13363 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13364 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13365 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13366 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13367 break;
13368
13369 case M_ROL:
13370 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13371 {
13372 if (op[0] == op[1])
13373 {
13374 tempreg = AT;
13375 used_at = 1;
13376 }
13377 else
13378 tempreg = op[0];
13379 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13380 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
13381 break;
13382 }
13383 used_at = 1;
13384 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13385 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13386 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13387 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13388 break;
13389
13390 case M_DROL_I:
13391 {
13392 unsigned int rot;
13393 const char *l;
13394 const char *rr;
13395
13396 rot = imm_expr.X_add_number & 0x3f;
13397 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13398 {
13399 rot = (64 - rot) & 0x3f;
13400 if (rot >= 32)
13401 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13402 else
13403 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13404 break;
13405 }
13406 if (rot == 0)
13407 {
13408 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13409 break;
13410 }
13411 l = (rot < 0x20) ? "dsll" : "dsll32";
13412 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
13413 rot &= 0x1f;
13414 used_at = 1;
13415 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13416 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13417 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13418 }
13419 break;
13420
13421 case M_ROL_I:
13422 {
13423 unsigned int rot;
13424
13425 rot = imm_expr.X_add_number & 0x1f;
13426 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13427 {
13428 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13429 (32 - rot) & 0x1f);
13430 break;
13431 }
13432 if (rot == 0)
13433 {
13434 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13435 break;
13436 }
13437 used_at = 1;
13438 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13439 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13440 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13441 }
13442 break;
13443
13444 case M_DROR:
13445 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13446 {
13447 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
13448 break;
13449 }
13450 used_at = 1;
13451 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13452 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13453 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13454 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13455 break;
13456
13457 case M_ROR:
13458 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13459 {
13460 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13461 break;
13462 }
13463 used_at = 1;
13464 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13465 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13466 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13467 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13468 break;
13469
13470 case M_DROR_I:
13471 {
13472 unsigned int rot;
13473 const char *l;
13474 const char *rr;
13475
13476 rot = imm_expr.X_add_number & 0x3f;
13477 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13478 {
13479 if (rot >= 32)
13480 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13481 else
13482 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13483 break;
13484 }
13485 if (rot == 0)
13486 {
13487 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13488 break;
13489 }
13490 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13491 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13492 rot &= 0x1f;
13493 used_at = 1;
13494 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13495 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13496 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13497 }
13498 break;
13499
13500 case M_ROR_I:
13501 {
13502 unsigned int rot;
13503
13504 rot = imm_expr.X_add_number & 0x1f;
13505 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13506 {
13507 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13508 break;
13509 }
13510 if (rot == 0)
13511 {
13512 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13513 break;
13514 }
13515 used_at = 1;
13516 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13517 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13518 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13519 }
13520 break;
13521
13522 case M_SEQ:
13523 if (op[1] == 0)
13524 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13525 else if (op[2] == 0)
13526 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13527 else
13528 {
13529 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13530 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13531 }
13532 break;
13533
13534 case M_SEQ_I:
13535 if (imm_expr.X_add_number == 0)
13536 {
13537 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13538 break;
13539 }
13540 if (op[1] == 0)
13541 {
13542 as_warn (_("instruction %s: result is always false"),
13543 ip->insn_mo->name);
13544 move_register (op[0], 0);
13545 break;
13546 }
13547 if (CPU_HAS_SEQ (mips_opts.arch)
13548 && -512 <= imm_expr.X_add_number
13549 && imm_expr.X_add_number < 512)
13550 {
13551 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13552 (int) imm_expr.X_add_number);
13553 break;
13554 }
13555 if (imm_expr.X_add_number >= 0
13556 && imm_expr.X_add_number < 0x10000)
13557 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13558 else if (imm_expr.X_add_number > -0x8000
13559 && imm_expr.X_add_number < 0)
13560 {
13561 imm_expr.X_add_number = -imm_expr.X_add_number;
13562 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13563 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13564 }
13565 else if (CPU_HAS_SEQ (mips_opts.arch))
13566 {
13567 used_at = 1;
13568 load_register (AT, &imm_expr, GPR_SIZE == 64);
13569 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13570 break;
13571 }
13572 else
13573 {
13574 load_register (AT, &imm_expr, GPR_SIZE == 64);
13575 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13576 used_at = 1;
13577 }
13578 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13579 break;
13580
13581 case M_SGE: /* X >= Y <==> not (X < Y) */
13582 s = "slt";
13583 goto sge;
13584 case M_SGEU:
13585 s = "sltu";
13586 sge:
13587 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13588 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13589 break;
13590
13591 case M_SGE_I: /* X >= I <==> not (X < I). */
13592 case M_SGEU_I:
13593 if (imm_expr.X_add_number >= -0x8000
13594 && imm_expr.X_add_number < 0x8000)
13595 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13596 op[0], op[1], BFD_RELOC_LO16);
13597 else
13598 {
13599 load_register (AT, &imm_expr, GPR_SIZE == 64);
13600 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13601 op[0], op[1], AT);
13602 used_at = 1;
13603 }
13604 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13605 break;
13606
13607 case M_SGT: /* X > Y <==> Y < X. */
13608 s = "slt";
13609 goto sgt;
13610 case M_SGTU:
13611 s = "sltu";
13612 sgt:
13613 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13614 break;
13615
13616 case M_SGT_I: /* X > I <==> I < X. */
13617 s = "slt";
13618 goto sgti;
13619 case M_SGTU_I:
13620 s = "sltu";
13621 sgti:
13622 used_at = 1;
13623 load_register (AT, &imm_expr, GPR_SIZE == 64);
13624 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13625 break;
13626
13627 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X). */
13628 s = "slt";
13629 goto sle;
13630 case M_SLEU:
13631 s = "sltu";
13632 sle:
13633 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13634 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13635 break;
13636
13637 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13638 s = "slt";
13639 goto slei;
13640 case M_SLEU_I:
13641 s = "sltu";
13642 slei:
13643 used_at = 1;
13644 load_register (AT, &imm_expr, GPR_SIZE == 64);
13645 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13646 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13647 break;
13648
13649 case M_SLT_I:
13650 if (imm_expr.X_add_number >= -0x8000
13651 && imm_expr.X_add_number < 0x8000)
13652 {
13653 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13654 BFD_RELOC_LO16);
13655 break;
13656 }
13657 used_at = 1;
13658 load_register (AT, &imm_expr, GPR_SIZE == 64);
13659 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13660 break;
13661
13662 case M_SLTU_I:
13663 if (imm_expr.X_add_number >= -0x8000
13664 && imm_expr.X_add_number < 0x8000)
13665 {
13666 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13667 BFD_RELOC_LO16);
13668 break;
13669 }
13670 used_at = 1;
13671 load_register (AT, &imm_expr, GPR_SIZE == 64);
13672 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13673 break;
13674
13675 case M_SNE:
13676 if (op[1] == 0)
13677 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13678 else if (op[2] == 0)
13679 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13680 else
13681 {
13682 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13683 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13684 }
13685 break;
13686
13687 case M_SNE_I:
13688 if (imm_expr.X_add_number == 0)
13689 {
13690 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13691 break;
13692 }
13693 if (op[1] == 0)
13694 {
13695 as_warn (_("instruction %s: result is always true"),
13696 ip->insn_mo->name);
13697 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13698 op[0], 0, BFD_RELOC_LO16);
13699 break;
13700 }
13701 if (CPU_HAS_SEQ (mips_opts.arch)
13702 && -512 <= imm_expr.X_add_number
13703 && imm_expr.X_add_number < 512)
13704 {
13705 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13706 (int) imm_expr.X_add_number);
13707 break;
13708 }
13709 if (imm_expr.X_add_number >= 0
13710 && imm_expr.X_add_number < 0x10000)
13711 {
13712 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13713 BFD_RELOC_LO16);
13714 }
13715 else if (imm_expr.X_add_number > -0x8000
13716 && imm_expr.X_add_number < 0)
13717 {
13718 imm_expr.X_add_number = -imm_expr.X_add_number;
13719 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13720 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13721 }
13722 else if (CPU_HAS_SEQ (mips_opts.arch))
13723 {
13724 used_at = 1;
13725 load_register (AT, &imm_expr, GPR_SIZE == 64);
13726 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13727 break;
13728 }
13729 else
13730 {
13731 load_register (AT, &imm_expr, GPR_SIZE == 64);
13732 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13733 used_at = 1;
13734 }
13735 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13736 break;
13737
13738 case M_SUB_I:
13739 s = "addi";
13740 s2 = "sub";
13741 if (ISA_IS_R6 (mips_opts.isa))
13742 goto do_subi_i;
13743 else
13744 goto do_subi;
13745 case M_SUBU_I:
13746 s = "addiu";
13747 s2 = "subu";
13748 goto do_subi;
13749 case M_DSUB_I:
13750 dbl = 1;
13751 s = "daddi";
13752 s2 = "dsub";
13753 if (!mips_opts.micromips && !ISA_IS_R6 (mips_opts.isa))
13754 goto do_subi;
13755 if (imm_expr.X_add_number > -0x200
13756 && imm_expr.X_add_number <= 0x200
13757 && !ISA_IS_R6 (mips_opts.isa))
13758 {
13759 macro_build (NULL, s, "t,r,.", op[0], op[1],
13760 (int) -imm_expr.X_add_number);
13761 break;
13762 }
13763 goto do_subi_i;
13764 case M_DSUBU_I:
13765 dbl = 1;
13766 s = "daddiu";
13767 s2 = "dsubu";
13768 do_subi:
13769 if (imm_expr.X_add_number > -0x8000
13770 && imm_expr.X_add_number <= 0x8000)
13771 {
13772 imm_expr.X_add_number = -imm_expr.X_add_number;
13773 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13774 break;
13775 }
13776 do_subi_i:
13777 used_at = 1;
13778 load_register (AT, &imm_expr, dbl);
13779 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13780 break;
13781
13782 case M_TEQ_I:
13783 s = "teq";
13784 goto trap;
13785 case M_TGE_I:
13786 s = "tge";
13787 goto trap;
13788 case M_TGEU_I:
13789 s = "tgeu";
13790 goto trap;
13791 case M_TLT_I:
13792 s = "tlt";
13793 goto trap;
13794 case M_TLTU_I:
13795 s = "tltu";
13796 goto trap;
13797 case M_TNE_I:
13798 s = "tne";
13799 trap:
13800 used_at = 1;
13801 load_register (AT, &imm_expr, GPR_SIZE == 64);
13802 macro_build (NULL, s, "s,t", op[0], AT);
13803 break;
13804
13805 case M_TRUNCWS:
13806 case M_TRUNCWD:
13807 gas_assert (!mips_opts.micromips);
13808 gas_assert (mips_opts.isa == ISA_MIPS1);
13809 used_at = 1;
13810
13811 /*
13812 * Is the double cfc1 instruction a bug in the mips assembler;
13813 * or is there a reason for it?
13814 */
13815 start_noreorder ();
13816 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13817 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13818 macro_build (NULL, "nop", "");
13819 expr1.X_add_number = 3;
13820 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13821 expr1.X_add_number = 2;
13822 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13823 macro_build (NULL, "ctc1", "t,G", AT, RA);
13824 macro_build (NULL, "nop", "");
13825 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13826 op[0], op[1]);
13827 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13828 macro_build (NULL, "nop", "");
13829 end_noreorder ();
13830 break;
13831
13832 case M_ULH_AB:
13833 s = "lb";
13834 s2 = "lbu";
13835 off = 1;
13836 goto uld_st;
13837 case M_ULHU_AB:
13838 s = "lbu";
13839 s2 = "lbu";
13840 off = 1;
13841 goto uld_st;
13842 case M_ULW_AB:
13843 s = "lwl";
13844 s2 = "lwr";
13845 offbits = (mips_opts.micromips ? 12 : 16);
13846 off = 3;
13847 goto uld_st;
13848 case M_ULD_AB:
13849 s = "ldl";
13850 s2 = "ldr";
13851 offbits = (mips_opts.micromips ? 12 : 16);
13852 off = 7;
13853 goto uld_st;
13854 case M_USH_AB:
13855 s = "sb";
13856 s2 = "sb";
13857 off = 1;
13858 ust = 1;
13859 goto uld_st;
13860 case M_USW_AB:
13861 s = "swl";
13862 s2 = "swr";
13863 offbits = (mips_opts.micromips ? 12 : 16);
13864 off = 3;
13865 ust = 1;
13866 goto uld_st;
13867 case M_USD_AB:
13868 s = "sdl";
13869 s2 = "sdr";
13870 offbits = (mips_opts.micromips ? 12 : 16);
13871 off = 7;
13872 ust = 1;
13873
13874 uld_st:
13875 breg = op[2];
13876 large_offset = !small_offset_p (off, align, offbits);
13877 ep = &offset_expr;
13878 expr1.X_add_number = 0;
13879 if (large_offset)
13880 {
13881 used_at = 1;
13882 tempreg = AT;
13883 if (small_offset_p (0, align, 16))
13884 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13885 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13886 else
13887 {
13888 load_address (tempreg, ep, &used_at);
13889 if (breg != 0)
13890 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13891 tempreg, tempreg, breg);
13892 }
13893 offset_reloc[0] = BFD_RELOC_LO16;
13894 offset_reloc[1] = BFD_RELOC_UNUSED;
13895 offset_reloc[2] = BFD_RELOC_UNUSED;
13896 breg = tempreg;
13897 tempreg = op[0];
13898 ep = &expr1;
13899 }
13900 else if (!ust && op[0] == breg)
13901 {
13902 used_at = 1;
13903 tempreg = AT;
13904 }
13905 else
13906 tempreg = op[0];
13907
13908 if (off == 1)
13909 goto ulh_sh;
13910
13911 if (!target_big_endian)
13912 ep->X_add_number += off;
13913 if (offbits == 12)
13914 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13915 else
13916 macro_build (ep, s, "t,o(b)", tempreg, -1,
13917 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13918
13919 if (!target_big_endian)
13920 ep->X_add_number -= off;
13921 else
13922 ep->X_add_number += off;
13923 if (offbits == 12)
13924 macro_build (NULL, s2, "t,~(b)",
13925 tempreg, (int) ep->X_add_number, breg);
13926 else
13927 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13928 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13929
13930 /* If necessary, move the result in tempreg to the final destination. */
13931 if (!ust && op[0] != tempreg)
13932 {
13933 /* Protect second load's delay slot. */
13934 load_delay_nop ();
13935 move_register (op[0], tempreg);
13936 }
13937 break;
13938
13939 ulh_sh:
13940 used_at = 1;
13941 if (target_big_endian == ust)
13942 ep->X_add_number += off;
13943 tempreg = ust || large_offset ? op[0] : AT;
13944 macro_build (ep, s, "t,o(b)", tempreg, -1,
13945 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13946
13947 /* For halfword transfers we need a temporary register to shuffle
13948 bytes. Unfortunately for M_USH_A we have none available before
13949 the next store as AT holds the base address. We deal with this
13950 case by clobbering TREG and then restoring it as with ULH. */
13951 tempreg = ust == large_offset ? op[0] : AT;
13952 if (ust)
13953 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13954
13955 if (target_big_endian == ust)
13956 ep->X_add_number -= off;
13957 else
13958 ep->X_add_number += off;
13959 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13960 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13961
13962 /* For M_USH_A re-retrieve the LSB. */
13963 if (ust && large_offset)
13964 {
13965 if (target_big_endian)
13966 ep->X_add_number += off;
13967 else
13968 ep->X_add_number -= off;
13969 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13970 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13971 }
13972 /* For ULH and M_USH_A OR the LSB in. */
13973 if (!ust || large_offset)
13974 {
13975 tempreg = !large_offset ? AT : op[0];
13976 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13977 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13978 }
13979 break;
13980
13981 default:
13982 /* FIXME: Check if this is one of the itbl macros, since they
13983 are added dynamically. */
13984 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13985 break;
13986 }
13987 if (!mips_opts.at && used_at)
13988 as_bad (_("macro used $at after \".set noat\""));
13989 }
13990
13991 /* Implement macros in mips16 mode. */
13992
13993 static void
13994 mips16_macro (struct mips_cl_insn *ip)
13995 {
13996 const struct mips_operand_array *operands;
13997 int mask;
13998 int tmp;
13999 expressionS expr1;
14000 int dbl;
14001 const char *s, *s2, *s3;
14002 unsigned int op[MAX_OPERANDS];
14003 unsigned int i;
14004
14005 mask = ip->insn_mo->mask;
14006
14007 operands = insn_operands (ip);
14008 for (i = 0; i < MAX_OPERANDS; i++)
14009 if (operands->operand[i])
14010 op[i] = insn_extract_operand (ip, operands->operand[i]);
14011 else
14012 op[i] = -1;
14013
14014 expr1.X_op = O_constant;
14015 expr1.X_op_symbol = NULL;
14016 expr1.X_add_symbol = NULL;
14017 expr1.X_add_number = 1;
14018
14019 dbl = 0;
14020
14021 switch (mask)
14022 {
14023 default:
14024 abort ();
14025
14026 case M_DDIV_3:
14027 dbl = 1;
14028 /* Fall through. */
14029 case M_DIV_3:
14030 s = "mflo";
14031 goto do_div3;
14032 case M_DREM_3:
14033 dbl = 1;
14034 /* Fall through. */
14035 case M_REM_3:
14036 s = "mfhi";
14037 do_div3:
14038 start_noreorder ();
14039 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
14040 expr1.X_add_number = 2;
14041 macro_build (&expr1, "bnez", "x,p", op[2]);
14042 macro_build (NULL, "break", "6", 7);
14043
14044 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
14045 since that causes an overflow. We should do that as well,
14046 but I don't see how to do the comparisons without a temporary
14047 register. */
14048 end_noreorder ();
14049 macro_build (NULL, s, "x", op[0]);
14050 break;
14051
14052 case M_DIVU_3:
14053 s = "divu";
14054 s2 = "mflo";
14055 goto do_divu3;
14056 case M_REMU_3:
14057 s = "divu";
14058 s2 = "mfhi";
14059 goto do_divu3;
14060 case M_DDIVU_3:
14061 s = "ddivu";
14062 s2 = "mflo";
14063 goto do_divu3;
14064 case M_DREMU_3:
14065 s = "ddivu";
14066 s2 = "mfhi";
14067 do_divu3:
14068 start_noreorder ();
14069 macro_build (NULL, s, ".,x,y", op[1], op[2]);
14070 expr1.X_add_number = 2;
14071 macro_build (&expr1, "bnez", "x,p", op[2]);
14072 macro_build (NULL, "break", "6", 7);
14073 end_noreorder ();
14074 macro_build (NULL, s2, "x", op[0]);
14075 break;
14076
14077 case M_DMUL:
14078 dbl = 1;
14079 /* Fall through. */
14080 case M_MUL:
14081 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
14082 macro_build (NULL, "mflo", "x", op[0]);
14083 break;
14084
14085 case M_DSUBU_I:
14086 dbl = 1;
14087 goto do_subu;
14088 case M_SUBU_I:
14089 do_subu:
14090 imm_expr.X_add_number = -imm_expr.X_add_number;
14091 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
14092 break;
14093
14094 case M_SUBU_I_2:
14095 imm_expr.X_add_number = -imm_expr.X_add_number;
14096 macro_build (&imm_expr, "addiu", "x,k", op[0]);
14097 break;
14098
14099 case M_DSUBU_I_2:
14100 imm_expr.X_add_number = -imm_expr.X_add_number;
14101 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
14102 break;
14103
14104 case M_BEQ:
14105 s = "cmp";
14106 s2 = "bteqz";
14107 goto do_branch;
14108 case M_BNE:
14109 s = "cmp";
14110 s2 = "btnez";
14111 goto do_branch;
14112 case M_BLT:
14113 s = "slt";
14114 s2 = "btnez";
14115 goto do_branch;
14116 case M_BLTU:
14117 s = "sltu";
14118 s2 = "btnez";
14119 goto do_branch;
14120 case M_BLE:
14121 s = "slt";
14122 s2 = "bteqz";
14123 goto do_reverse_branch;
14124 case M_BLEU:
14125 s = "sltu";
14126 s2 = "bteqz";
14127 goto do_reverse_branch;
14128 case M_BGE:
14129 s = "slt";
14130 s2 = "bteqz";
14131 goto do_branch;
14132 case M_BGEU:
14133 s = "sltu";
14134 s2 = "bteqz";
14135 goto do_branch;
14136 case M_BGT:
14137 s = "slt";
14138 s2 = "btnez";
14139 goto do_reverse_branch;
14140 case M_BGTU:
14141 s = "sltu";
14142 s2 = "btnez";
14143
14144 do_reverse_branch:
14145 tmp = op[1];
14146 op[1] = op[0];
14147 op[0] = tmp;
14148
14149 do_branch:
14150 macro_build (NULL, s, "x,y", op[0], op[1]);
14151 macro_build (&offset_expr, s2, "p");
14152 break;
14153
14154 case M_BEQ_I:
14155 s = "cmpi";
14156 s2 = "bteqz";
14157 s3 = "x,U";
14158 goto do_branch_i;
14159 case M_BNE_I:
14160 s = "cmpi";
14161 s2 = "btnez";
14162 s3 = "x,U";
14163 goto do_branch_i;
14164 case M_BLT_I:
14165 s = "slti";
14166 s2 = "btnez";
14167 s3 = "x,8";
14168 goto do_branch_i;
14169 case M_BLTU_I:
14170 s = "sltiu";
14171 s2 = "btnez";
14172 s3 = "x,8";
14173 goto do_branch_i;
14174 case M_BLE_I:
14175 s = "slti";
14176 s2 = "btnez";
14177 s3 = "x,8";
14178 goto do_addone_branch_i;
14179 case M_BLEU_I:
14180 s = "sltiu";
14181 s2 = "btnez";
14182 s3 = "x,8";
14183 goto do_addone_branch_i;
14184 case M_BGE_I:
14185 s = "slti";
14186 s2 = "bteqz";
14187 s3 = "x,8";
14188 goto do_branch_i;
14189 case M_BGEU_I:
14190 s = "sltiu";
14191 s2 = "bteqz";
14192 s3 = "x,8";
14193 goto do_branch_i;
14194 case M_BGT_I:
14195 s = "slti";
14196 s2 = "bteqz";
14197 s3 = "x,8";
14198 goto do_addone_branch_i;
14199 case M_BGTU_I:
14200 s = "sltiu";
14201 s2 = "bteqz";
14202 s3 = "x,8";
14203
14204 do_addone_branch_i:
14205 ++imm_expr.X_add_number;
14206
14207 do_branch_i:
14208 macro_build (&imm_expr, s, s3, op[0]);
14209 macro_build (&offset_expr, s2, "p");
14210 break;
14211
14212 case M_ABS:
14213 expr1.X_add_number = 0;
14214 macro_build (&expr1, "slti", "x,8", op[1]);
14215 if (op[0] != op[1])
14216 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
14217 expr1.X_add_number = 2;
14218 macro_build (&expr1, "bteqz", "p");
14219 macro_build (NULL, "neg", "x,w", op[0], op[0]);
14220 break;
14221 }
14222 }
14223
14224 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
14225 opcode bits in *OPCODE_EXTRA. */
14226
14227 static struct mips_opcode *
14228 mips_lookup_insn (struct hash_control *hash, const char *start,
14229 ssize_t length, unsigned int *opcode_extra)
14230 {
14231 char *name, *dot, *p;
14232 unsigned int mask, suffix;
14233 ssize_t opend;
14234 struct mips_opcode *insn;
14235
14236 /* Make a copy of the instruction so that we can fiddle with it. */
14237 name = xstrndup (start, length);
14238
14239 /* Look up the instruction as-is. */
14240 insn = (struct mips_opcode *) hash_find (hash, name);
14241 if (insn)
14242 goto end;
14243
14244 dot = strchr (name, '.');
14245 if (dot && dot[1])
14246 {
14247 /* Try to interpret the text after the dot as a VU0 channel suffix. */
14248 p = mips_parse_vu0_channels (dot + 1, &mask);
14249 if (*p == 0 && mask != 0)
14250 {
14251 *dot = 0;
14252 insn = (struct mips_opcode *) hash_find (hash, name);
14253 *dot = '.';
14254 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
14255 {
14256 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
14257 goto end;
14258 }
14259 }
14260 }
14261
14262 if (mips_opts.micromips)
14263 {
14264 /* See if there's an instruction size override suffix,
14265 either `16' or `32', at the end of the mnemonic proper,
14266 that defines the operation, i.e. before the first `.'
14267 character if any. Strip it and retry. */
14268 opend = dot != NULL ? dot - name : length;
14269 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
14270 suffix = 2;
14271 else if (opend >= 2 && name[opend - 2] == '3' && name[opend - 1] == '2')
14272 suffix = 4;
14273 else
14274 suffix = 0;
14275 if (suffix)
14276 {
14277 memmove (name + opend - 2, name + opend, length - opend + 1);
14278 insn = (struct mips_opcode *) hash_find (hash, name);
14279 if (insn)
14280 {
14281 forced_insn_length = suffix;
14282 goto end;
14283 }
14284 }
14285 }
14286
14287 insn = NULL;
14288 end:
14289 free (name);
14290 return insn;
14291 }
14292
14293 /* Assemble an instruction into its binary format. If the instruction
14294 is a macro, set imm_expr and offset_expr to the values associated
14295 with "I" and "A" operands respectively. Otherwise store the value
14296 of the relocatable field (if any) in offset_expr. In both cases
14297 set offset_reloc to the relocation operators applied to offset_expr. */
14298
14299 static void
14300 mips_ip (char *str, struct mips_cl_insn *insn)
14301 {
14302 const struct mips_opcode *first, *past;
14303 struct hash_control *hash;
14304 char format;
14305 size_t end;
14306 struct mips_operand_token *tokens;
14307 unsigned int opcode_extra;
14308
14309 if (mips_opts.micromips)
14310 {
14311 hash = micromips_op_hash;
14312 past = &micromips_opcodes[bfd_micromips_num_opcodes];
14313 }
14314 else
14315 {
14316 hash = op_hash;
14317 past = &mips_opcodes[NUMOPCODES];
14318 }
14319 forced_insn_length = 0;
14320 opcode_extra = 0;
14321
14322 /* We first try to match an instruction up to a space or to the end. */
14323 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
14324 continue;
14325
14326 first = mips_lookup_insn (hash, str, end, &opcode_extra);
14327 if (first == NULL)
14328 {
14329 set_insn_error (0, _("unrecognized opcode"));
14330 return;
14331 }
14332
14333 if (strcmp (first->name, "li.s") == 0)
14334 format = 'f';
14335 else if (strcmp (first->name, "li.d") == 0)
14336 format = 'd';
14337 else
14338 format = 0;
14339 tokens = mips_parse_arguments (str + end, format);
14340 if (!tokens)
14341 return;
14342
14343 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
14344 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
14345 set_insn_error (0, _("invalid operands"));
14346
14347 obstack_free (&mips_operand_tokens, tokens);
14348 }
14349
14350 /* As for mips_ip, but used when assembling MIPS16 code.
14351 Also set forced_insn_length to the resulting instruction size in
14352 bytes if the user explicitly requested a small or extended instruction. */
14353
14354 static void
14355 mips16_ip (char *str, struct mips_cl_insn *insn)
14356 {
14357 char *end, *s, c;
14358 struct mips_opcode *first;
14359 struct mips_operand_token *tokens;
14360 unsigned int l;
14361
14362 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
14363 ;
14364 end = s;
14365 c = *end;
14366
14367 l = 0;
14368 switch (c)
14369 {
14370 case '\0':
14371 break;
14372
14373 case ' ':
14374 s++;
14375 break;
14376
14377 case '.':
14378 s++;
14379 if (*s == 't')
14380 {
14381 l = 2;
14382 s++;
14383 }
14384 else if (*s == 'e')
14385 {
14386 l = 4;
14387 s++;
14388 }
14389 if (*s == '\0')
14390 break;
14391 else if (*s++ == ' ')
14392 break;
14393 set_insn_error (0, _("unrecognized opcode"));
14394 return;
14395 }
14396 forced_insn_length = l;
14397
14398 *end = 0;
14399 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
14400 *end = c;
14401
14402 if (!first)
14403 {
14404 set_insn_error (0, _("unrecognized opcode"));
14405 return;
14406 }
14407
14408 tokens = mips_parse_arguments (s, 0);
14409 if (!tokens)
14410 return;
14411
14412 if (!match_mips16_insns (insn, first, tokens))
14413 set_insn_error (0, _("invalid operands"));
14414
14415 obstack_free (&mips_operand_tokens, tokens);
14416 }
14417
14418 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14419 NBITS is the number of significant bits in VAL. */
14420
14421 static unsigned long
14422 mips16_immed_extend (offsetT val, unsigned int nbits)
14423 {
14424 int extval;
14425
14426 extval = 0;
14427 val &= (1U << nbits) - 1;
14428 if (nbits == 16 || nbits == 9)
14429 {
14430 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14431 val &= 0x1f;
14432 }
14433 else if (nbits == 15)
14434 {
14435 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14436 val &= 0xf;
14437 }
14438 else if (nbits == 6)
14439 {
14440 extval = ((val & 0x1f) << 6) | (val & 0x20);
14441 val = 0;
14442 }
14443 return (extval << 16) | val;
14444 }
14445
14446 /* Like decode_mips16_operand, but require the operand to be defined and
14447 require it to be an integer. */
14448
14449 static const struct mips_int_operand *
14450 mips16_immed_operand (int type, bfd_boolean extended_p)
14451 {
14452 const struct mips_operand *operand;
14453
14454 operand = decode_mips16_operand (type, extended_p);
14455 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14456 abort ();
14457 return (const struct mips_int_operand *) operand;
14458 }
14459
14460 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14461
14462 static bfd_boolean
14463 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14464 bfd_reloc_code_real_type reloc, offsetT sval)
14465 {
14466 int min_val, max_val;
14467
14468 min_val = mips_int_operand_min (operand);
14469 max_val = mips_int_operand_max (operand);
14470 if (reloc != BFD_RELOC_UNUSED)
14471 {
14472 if (min_val < 0)
14473 sval = SEXT_16BIT (sval);
14474 else
14475 sval &= 0xffff;
14476 }
14477
14478 return (sval >= min_val
14479 && sval <= max_val
14480 && (sval & ((1 << operand->shift) - 1)) == 0);
14481 }
14482
14483 /* Install immediate value VAL into MIPS16 instruction *INSN,
14484 extending it if necessary. The instruction in *INSN may
14485 already be extended.
14486
14487 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14488 if none. In the former case, VAL is a 16-bit number with no
14489 defined signedness.
14490
14491 TYPE is the type of the immediate field. USER_INSN_LENGTH
14492 is the length that the user requested, or 0 if none. */
14493
14494 static void
14495 mips16_immed (const char *file, unsigned int line, int type,
14496 bfd_reloc_code_real_type reloc, offsetT val,
14497 unsigned int user_insn_length, unsigned long *insn)
14498 {
14499 const struct mips_int_operand *operand;
14500 unsigned int uval, length;
14501
14502 operand = mips16_immed_operand (type, FALSE);
14503 if (!mips16_immed_in_range_p (operand, reloc, val))
14504 {
14505 /* We need an extended instruction. */
14506 if (user_insn_length == 2)
14507 as_bad_where (file, line, _("invalid unextended operand value"));
14508 else
14509 *insn |= MIPS16_EXTEND;
14510 }
14511 else if (user_insn_length == 4)
14512 {
14513 /* The operand doesn't force an unextended instruction to be extended.
14514 Warn if the user wanted an extended instruction anyway. */
14515 *insn |= MIPS16_EXTEND;
14516 as_warn_where (file, line,
14517 _("extended operand requested but not required"));
14518 }
14519
14520 length = mips16_opcode_length (*insn);
14521 if (length == 4)
14522 {
14523 operand = mips16_immed_operand (type, TRUE);
14524 if (!mips16_immed_in_range_p (operand, reloc, val))
14525 as_bad_where (file, line,
14526 _("operand value out of range for instruction"));
14527 }
14528 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14529 if (length == 2 || operand->root.lsb != 0)
14530 *insn = mips_insert_operand (&operand->root, *insn, uval);
14531 else
14532 *insn |= mips16_immed_extend (uval, operand->root.size);
14533 }
14534 \f
14535 struct percent_op_match
14536 {
14537 const char *str;
14538 bfd_reloc_code_real_type reloc;
14539 };
14540
14541 static const struct percent_op_match mips_percent_op[] =
14542 {
14543 {"%lo", BFD_RELOC_LO16},
14544 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14545 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14546 {"%call16", BFD_RELOC_MIPS_CALL16},
14547 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14548 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14549 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14550 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14551 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14552 {"%got", BFD_RELOC_MIPS_GOT16},
14553 {"%gp_rel", BFD_RELOC_GPREL16},
14554 {"%gprel", BFD_RELOC_GPREL16},
14555 {"%half", BFD_RELOC_16},
14556 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14557 {"%higher", BFD_RELOC_MIPS_HIGHER},
14558 {"%neg", BFD_RELOC_MIPS_SUB},
14559 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14560 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14561 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14562 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14563 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14564 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14565 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14566 {"%hi", BFD_RELOC_HI16_S},
14567 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14568 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14569 };
14570
14571 static const struct percent_op_match mips16_percent_op[] =
14572 {
14573 {"%lo", BFD_RELOC_MIPS16_LO16},
14574 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14575 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14576 {"%got", BFD_RELOC_MIPS16_GOT16},
14577 {"%call16", BFD_RELOC_MIPS16_CALL16},
14578 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14579 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14580 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14581 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14582 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14583 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14584 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14585 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14586 };
14587
14588
14589 /* Return true if *STR points to a relocation operator. When returning true,
14590 move *STR over the operator and store its relocation code in *RELOC.
14591 Leave both *STR and *RELOC alone when returning false. */
14592
14593 static bfd_boolean
14594 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14595 {
14596 const struct percent_op_match *percent_op;
14597 size_t limit, i;
14598
14599 if (mips_opts.mips16)
14600 {
14601 percent_op = mips16_percent_op;
14602 limit = ARRAY_SIZE (mips16_percent_op);
14603 }
14604 else
14605 {
14606 percent_op = mips_percent_op;
14607 limit = ARRAY_SIZE (mips_percent_op);
14608 }
14609
14610 for (i = 0; i < limit; i++)
14611 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14612 {
14613 int len = strlen (percent_op[i].str);
14614
14615 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14616 continue;
14617
14618 *str += strlen (percent_op[i].str);
14619 *reloc = percent_op[i].reloc;
14620
14621 /* Check whether the output BFD supports this relocation.
14622 If not, issue an error and fall back on something safe. */
14623 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14624 {
14625 as_bad (_("relocation %s isn't supported by the current ABI"),
14626 percent_op[i].str);
14627 *reloc = BFD_RELOC_UNUSED;
14628 }
14629 return TRUE;
14630 }
14631 return FALSE;
14632 }
14633
14634
14635 /* Parse string STR as a 16-bit relocatable operand. Store the
14636 expression in *EP and the relocations in the array starting
14637 at RELOC. Return the number of relocation operators used.
14638
14639 On exit, EXPR_END points to the first character after the expression. */
14640
14641 static size_t
14642 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14643 char *str)
14644 {
14645 bfd_reloc_code_real_type reversed_reloc[3];
14646 size_t reloc_index, i;
14647 int crux_depth, str_depth;
14648 char *crux;
14649
14650 /* Search for the start of the main expression, recoding relocations
14651 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14652 of the main expression and with CRUX_DEPTH containing the number
14653 of open brackets at that point. */
14654 reloc_index = -1;
14655 str_depth = 0;
14656 do
14657 {
14658 reloc_index++;
14659 crux = str;
14660 crux_depth = str_depth;
14661
14662 /* Skip over whitespace and brackets, keeping count of the number
14663 of brackets. */
14664 while (*str == ' ' || *str == '\t' || *str == '(')
14665 if (*str++ == '(')
14666 str_depth++;
14667 }
14668 while (*str == '%'
14669 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14670 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14671
14672 my_getExpression (ep, crux);
14673 str = expr_end;
14674
14675 /* Match every open bracket. */
14676 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14677 if (*str++ == ')')
14678 crux_depth--;
14679
14680 if (crux_depth > 0)
14681 as_bad (_("unclosed '('"));
14682
14683 expr_end = str;
14684
14685 if (reloc_index != 0)
14686 {
14687 prev_reloc_op_frag = frag_now;
14688 for (i = 0; i < reloc_index; i++)
14689 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14690 }
14691
14692 return reloc_index;
14693 }
14694
14695 static void
14696 my_getExpression (expressionS *ep, char *str)
14697 {
14698 char *save_in;
14699
14700 save_in = input_line_pointer;
14701 input_line_pointer = str;
14702 expression (ep);
14703 expr_end = input_line_pointer;
14704 input_line_pointer = save_in;
14705 }
14706
14707 const char *
14708 md_atof (int type, char *litP, int *sizeP)
14709 {
14710 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14711 }
14712
14713 void
14714 md_number_to_chars (char *buf, valueT val, int n)
14715 {
14716 if (target_big_endian)
14717 number_to_chars_bigendian (buf, val, n);
14718 else
14719 number_to_chars_littleendian (buf, val, n);
14720 }
14721 \f
14722 static int support_64bit_objects(void)
14723 {
14724 const char **list, **l;
14725 int yes;
14726
14727 list = bfd_target_list ();
14728 for (l = list; *l != NULL; l++)
14729 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14730 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14731 break;
14732 yes = (*l != NULL);
14733 free (list);
14734 return yes;
14735 }
14736
14737 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14738 NEW_VALUE. Warn if another value was already specified. Note:
14739 we have to defer parsing the -march and -mtune arguments in order
14740 to handle 'from-abi' correctly, since the ABI might be specified
14741 in a later argument. */
14742
14743 static void
14744 mips_set_option_string (const char **string_ptr, const char *new_value)
14745 {
14746 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14747 as_warn (_("a different %s was already specified, is now %s"),
14748 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14749 new_value);
14750
14751 *string_ptr = new_value;
14752 }
14753
14754 int
14755 md_parse_option (int c, const char *arg)
14756 {
14757 unsigned int i;
14758
14759 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14760 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14761 {
14762 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14763 c == mips_ases[i].option_on);
14764 return 1;
14765 }
14766
14767 switch (c)
14768 {
14769 case OPTION_CONSTRUCT_FLOATS:
14770 mips_disable_float_construction = 0;
14771 break;
14772
14773 case OPTION_NO_CONSTRUCT_FLOATS:
14774 mips_disable_float_construction = 1;
14775 break;
14776
14777 case OPTION_TRAP:
14778 mips_trap = 1;
14779 break;
14780
14781 case OPTION_BREAK:
14782 mips_trap = 0;
14783 break;
14784
14785 case OPTION_EB:
14786 target_big_endian = 1;
14787 break;
14788
14789 case OPTION_EL:
14790 target_big_endian = 0;
14791 break;
14792
14793 case 'O':
14794 if (arg == NULL)
14795 mips_optimize = 1;
14796 else if (arg[0] == '0')
14797 mips_optimize = 0;
14798 else if (arg[0] == '1')
14799 mips_optimize = 1;
14800 else
14801 mips_optimize = 2;
14802 break;
14803
14804 case 'g':
14805 if (arg == NULL)
14806 mips_debug = 2;
14807 else
14808 mips_debug = atoi (arg);
14809 break;
14810
14811 case OPTION_MIPS1:
14812 file_mips_opts.isa = ISA_MIPS1;
14813 break;
14814
14815 case OPTION_MIPS2:
14816 file_mips_opts.isa = ISA_MIPS2;
14817 break;
14818
14819 case OPTION_MIPS3:
14820 file_mips_opts.isa = ISA_MIPS3;
14821 break;
14822
14823 case OPTION_MIPS4:
14824 file_mips_opts.isa = ISA_MIPS4;
14825 break;
14826
14827 case OPTION_MIPS5:
14828 file_mips_opts.isa = ISA_MIPS5;
14829 break;
14830
14831 case OPTION_MIPS32:
14832 file_mips_opts.isa = ISA_MIPS32;
14833 break;
14834
14835 case OPTION_MIPS32R2:
14836 file_mips_opts.isa = ISA_MIPS32R2;
14837 break;
14838
14839 case OPTION_MIPS32R3:
14840 file_mips_opts.isa = ISA_MIPS32R3;
14841 break;
14842
14843 case OPTION_MIPS32R5:
14844 file_mips_opts.isa = ISA_MIPS32R5;
14845 break;
14846
14847 case OPTION_MIPS32R6:
14848 file_mips_opts.isa = ISA_MIPS32R6;
14849 break;
14850
14851 case OPTION_MIPS64R2:
14852 file_mips_opts.isa = ISA_MIPS64R2;
14853 break;
14854
14855 case OPTION_MIPS64R3:
14856 file_mips_opts.isa = ISA_MIPS64R3;
14857 break;
14858
14859 case OPTION_MIPS64R5:
14860 file_mips_opts.isa = ISA_MIPS64R5;
14861 break;
14862
14863 case OPTION_MIPS64R6:
14864 file_mips_opts.isa = ISA_MIPS64R6;
14865 break;
14866
14867 case OPTION_MIPS64:
14868 file_mips_opts.isa = ISA_MIPS64;
14869 break;
14870
14871 case OPTION_MTUNE:
14872 mips_set_option_string (&mips_tune_string, arg);
14873 break;
14874
14875 case OPTION_MARCH:
14876 mips_set_option_string (&mips_arch_string, arg);
14877 break;
14878
14879 case OPTION_M4650:
14880 mips_set_option_string (&mips_arch_string, "4650");
14881 mips_set_option_string (&mips_tune_string, "4650");
14882 break;
14883
14884 case OPTION_NO_M4650:
14885 break;
14886
14887 case OPTION_M4010:
14888 mips_set_option_string (&mips_arch_string, "4010");
14889 mips_set_option_string (&mips_tune_string, "4010");
14890 break;
14891
14892 case OPTION_NO_M4010:
14893 break;
14894
14895 case OPTION_M4100:
14896 mips_set_option_string (&mips_arch_string, "4100");
14897 mips_set_option_string (&mips_tune_string, "4100");
14898 break;
14899
14900 case OPTION_NO_M4100:
14901 break;
14902
14903 case OPTION_M3900:
14904 mips_set_option_string (&mips_arch_string, "3900");
14905 mips_set_option_string (&mips_tune_string, "3900");
14906 break;
14907
14908 case OPTION_NO_M3900:
14909 break;
14910
14911 case OPTION_MICROMIPS:
14912 if (file_mips_opts.mips16 == 1)
14913 {
14914 as_bad (_("-mmicromips cannot be used with -mips16"));
14915 return 0;
14916 }
14917 file_mips_opts.micromips = 1;
14918 mips_no_prev_insn ();
14919 break;
14920
14921 case OPTION_NO_MICROMIPS:
14922 file_mips_opts.micromips = 0;
14923 mips_no_prev_insn ();
14924 break;
14925
14926 case OPTION_MIPS16:
14927 if (file_mips_opts.micromips == 1)
14928 {
14929 as_bad (_("-mips16 cannot be used with -micromips"));
14930 return 0;
14931 }
14932 file_mips_opts.mips16 = 1;
14933 mips_no_prev_insn ();
14934 break;
14935
14936 case OPTION_NO_MIPS16:
14937 file_mips_opts.mips16 = 0;
14938 mips_no_prev_insn ();
14939 break;
14940
14941 case OPTION_FIX_24K:
14942 mips_fix_24k = 1;
14943 break;
14944
14945 case OPTION_NO_FIX_24K:
14946 mips_fix_24k = 0;
14947 break;
14948
14949 case OPTION_FIX_RM7000:
14950 mips_fix_rm7000 = 1;
14951 break;
14952
14953 case OPTION_NO_FIX_RM7000:
14954 mips_fix_rm7000 = 0;
14955 break;
14956
14957 case OPTION_FIX_LOONGSON3_LLSC:
14958 mips_fix_loongson3_llsc = TRUE;
14959 break;
14960
14961 case OPTION_NO_FIX_LOONGSON3_LLSC:
14962 mips_fix_loongson3_llsc = FALSE;
14963 break;
14964
14965 case OPTION_FIX_LOONGSON2F_JUMP:
14966 mips_fix_loongson2f_jump = TRUE;
14967 break;
14968
14969 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14970 mips_fix_loongson2f_jump = FALSE;
14971 break;
14972
14973 case OPTION_FIX_LOONGSON2F_NOP:
14974 mips_fix_loongson2f_nop = TRUE;
14975 break;
14976
14977 case OPTION_NO_FIX_LOONGSON2F_NOP:
14978 mips_fix_loongson2f_nop = FALSE;
14979 break;
14980
14981 case OPTION_FIX_VR4120:
14982 mips_fix_vr4120 = 1;
14983 break;
14984
14985 case OPTION_NO_FIX_VR4120:
14986 mips_fix_vr4120 = 0;
14987 break;
14988
14989 case OPTION_FIX_VR4130:
14990 mips_fix_vr4130 = 1;
14991 break;
14992
14993 case OPTION_NO_FIX_VR4130:
14994 mips_fix_vr4130 = 0;
14995 break;
14996
14997 case OPTION_FIX_CN63XXP1:
14998 mips_fix_cn63xxp1 = TRUE;
14999 break;
15000
15001 case OPTION_NO_FIX_CN63XXP1:
15002 mips_fix_cn63xxp1 = FALSE;
15003 break;
15004
15005 case OPTION_FIX_R5900:
15006 mips_fix_r5900 = TRUE;
15007 mips_fix_r5900_explicit = TRUE;
15008 break;
15009
15010 case OPTION_NO_FIX_R5900:
15011 mips_fix_r5900 = FALSE;
15012 mips_fix_r5900_explicit = TRUE;
15013 break;
15014
15015 case OPTION_RELAX_BRANCH:
15016 mips_relax_branch = 1;
15017 break;
15018
15019 case OPTION_NO_RELAX_BRANCH:
15020 mips_relax_branch = 0;
15021 break;
15022
15023 case OPTION_IGNORE_BRANCH_ISA:
15024 mips_ignore_branch_isa = TRUE;
15025 break;
15026
15027 case OPTION_NO_IGNORE_BRANCH_ISA:
15028 mips_ignore_branch_isa = FALSE;
15029 break;
15030
15031 case OPTION_INSN32:
15032 file_mips_opts.insn32 = TRUE;
15033 break;
15034
15035 case OPTION_NO_INSN32:
15036 file_mips_opts.insn32 = FALSE;
15037 break;
15038
15039 case OPTION_MSHARED:
15040 mips_in_shared = TRUE;
15041 break;
15042
15043 case OPTION_MNO_SHARED:
15044 mips_in_shared = FALSE;
15045 break;
15046
15047 case OPTION_MSYM32:
15048 file_mips_opts.sym32 = TRUE;
15049 break;
15050
15051 case OPTION_MNO_SYM32:
15052 file_mips_opts.sym32 = FALSE;
15053 break;
15054
15055 /* When generating ELF code, we permit -KPIC and -call_shared to
15056 select SVR4_PIC, and -non_shared to select no PIC. This is
15057 intended to be compatible with Irix 5. */
15058 case OPTION_CALL_SHARED:
15059 mips_pic = SVR4_PIC;
15060 mips_abicalls = TRUE;
15061 break;
15062
15063 case OPTION_CALL_NONPIC:
15064 mips_pic = NO_PIC;
15065 mips_abicalls = TRUE;
15066 break;
15067
15068 case OPTION_NON_SHARED:
15069 mips_pic = NO_PIC;
15070 mips_abicalls = FALSE;
15071 break;
15072
15073 /* The -xgot option tells the assembler to use 32 bit offsets
15074 when accessing the got in SVR4_PIC mode. It is for Irix
15075 compatibility. */
15076 case OPTION_XGOT:
15077 mips_big_got = 1;
15078 break;
15079
15080 case 'G':
15081 g_switch_value = atoi (arg);
15082 g_switch_seen = 1;
15083 break;
15084
15085 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
15086 and -mabi=64. */
15087 case OPTION_32:
15088 mips_abi = O32_ABI;
15089 break;
15090
15091 case OPTION_N32:
15092 mips_abi = N32_ABI;
15093 break;
15094
15095 case OPTION_64:
15096 mips_abi = N64_ABI;
15097 if (!support_64bit_objects())
15098 as_fatal (_("no compiled in support for 64 bit object file format"));
15099 break;
15100
15101 case OPTION_GP32:
15102 file_mips_opts.gp = 32;
15103 break;
15104
15105 case OPTION_GP64:
15106 file_mips_opts.gp = 64;
15107 break;
15108
15109 case OPTION_FP32:
15110 file_mips_opts.fp = 32;
15111 break;
15112
15113 case OPTION_FPXX:
15114 file_mips_opts.fp = 0;
15115 break;
15116
15117 case OPTION_FP64:
15118 file_mips_opts.fp = 64;
15119 break;
15120
15121 case OPTION_ODD_SPREG:
15122 file_mips_opts.oddspreg = 1;
15123 break;
15124
15125 case OPTION_NO_ODD_SPREG:
15126 file_mips_opts.oddspreg = 0;
15127 break;
15128
15129 case OPTION_SINGLE_FLOAT:
15130 file_mips_opts.single_float = 1;
15131 break;
15132
15133 case OPTION_DOUBLE_FLOAT:
15134 file_mips_opts.single_float = 0;
15135 break;
15136
15137 case OPTION_SOFT_FLOAT:
15138 file_mips_opts.soft_float = 1;
15139 break;
15140
15141 case OPTION_HARD_FLOAT:
15142 file_mips_opts.soft_float = 0;
15143 break;
15144
15145 case OPTION_MABI:
15146 if (strcmp (arg, "32") == 0)
15147 mips_abi = O32_ABI;
15148 else if (strcmp (arg, "o64") == 0)
15149 mips_abi = O64_ABI;
15150 else if (strcmp (arg, "n32") == 0)
15151 mips_abi = N32_ABI;
15152 else if (strcmp (arg, "64") == 0)
15153 {
15154 mips_abi = N64_ABI;
15155 if (! support_64bit_objects())
15156 as_fatal (_("no compiled in support for 64 bit object file "
15157 "format"));
15158 }
15159 else if (strcmp (arg, "eabi") == 0)
15160 mips_abi = EABI_ABI;
15161 else
15162 {
15163 as_fatal (_("invalid abi -mabi=%s"), arg);
15164 return 0;
15165 }
15166 break;
15167
15168 case OPTION_M7000_HILO_FIX:
15169 mips_7000_hilo_fix = TRUE;
15170 break;
15171
15172 case OPTION_MNO_7000_HILO_FIX:
15173 mips_7000_hilo_fix = FALSE;
15174 break;
15175
15176 case OPTION_MDEBUG:
15177 mips_flag_mdebug = TRUE;
15178 break;
15179
15180 case OPTION_NO_MDEBUG:
15181 mips_flag_mdebug = FALSE;
15182 break;
15183
15184 case OPTION_PDR:
15185 mips_flag_pdr = TRUE;
15186 break;
15187
15188 case OPTION_NO_PDR:
15189 mips_flag_pdr = FALSE;
15190 break;
15191
15192 case OPTION_MVXWORKS_PIC:
15193 mips_pic = VXWORKS_PIC;
15194 break;
15195
15196 case OPTION_NAN:
15197 if (strcmp (arg, "2008") == 0)
15198 mips_nan2008 = 1;
15199 else if (strcmp (arg, "legacy") == 0)
15200 mips_nan2008 = 0;
15201 else
15202 {
15203 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
15204 return 0;
15205 }
15206 break;
15207
15208 default:
15209 return 0;
15210 }
15211
15212 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
15213
15214 return 1;
15215 }
15216 \f
15217 /* Set up globals to tune for the ISA or processor described by INFO. */
15218
15219 static void
15220 mips_set_tune (const struct mips_cpu_info *info)
15221 {
15222 if (info != 0)
15223 mips_tune = info->cpu;
15224 }
15225
15226
15227 void
15228 mips_after_parse_args (void)
15229 {
15230 const struct mips_cpu_info *arch_info = 0;
15231 const struct mips_cpu_info *tune_info = 0;
15232
15233 /* GP relative stuff not working for PE. */
15234 if (strncmp (TARGET_OS, "pe", 2) == 0)
15235 {
15236 if (g_switch_seen && g_switch_value != 0)
15237 as_bad (_("-G not supported in this configuration"));
15238 g_switch_value = 0;
15239 }
15240
15241 if (mips_abi == NO_ABI)
15242 mips_abi = MIPS_DEFAULT_ABI;
15243
15244 /* The following code determines the architecture.
15245 Similar code was added to GCC 3.3 (see override_options() in
15246 config/mips/mips.c). The GAS and GCC code should be kept in sync
15247 as much as possible. */
15248
15249 if (mips_arch_string != 0)
15250 arch_info = mips_parse_cpu ("-march", mips_arch_string);
15251
15252 if (file_mips_opts.isa != ISA_UNKNOWN)
15253 {
15254 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
15255 ISA level specified by -mipsN, while arch_info->isa contains
15256 the -march selection (if any). */
15257 if (arch_info != 0)
15258 {
15259 /* -march takes precedence over -mipsN, since it is more descriptive.
15260 There's no harm in specifying both as long as the ISA levels
15261 are the same. */
15262 if (file_mips_opts.isa != arch_info->isa)
15263 as_bad (_("-%s conflicts with the other architecture options,"
15264 " which imply -%s"),
15265 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
15266 mips_cpu_info_from_isa (arch_info->isa)->name);
15267 }
15268 else
15269 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
15270 }
15271
15272 if (arch_info == 0)
15273 {
15274 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15275 gas_assert (arch_info);
15276 }
15277
15278 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15279 as_bad (_("-march=%s is not compatible with the selected ABI"),
15280 arch_info->name);
15281
15282 file_mips_opts.arch = arch_info->cpu;
15283 file_mips_opts.isa = arch_info->isa;
15284 file_mips_opts.init_ase = arch_info->ase;
15285
15286 /* The EVA Extension has instructions which are only valid when the R6 ISA
15287 is enabled. This sets the ASE_EVA_R6 flag when both EVA and R6 ISA are
15288 present. */
15289 if (((file_mips_opts.ase & ASE_EVA) != 0) && ISA_IS_R6 (file_mips_opts.isa))
15290 file_mips_opts.ase |= ASE_EVA_R6;
15291
15292 /* Set up initial mips_opts state. */
15293 mips_opts = file_mips_opts;
15294
15295 /* For the R5900 default to `-mfix-r5900' unless the user told otherwise. */
15296 if (!mips_fix_r5900_explicit)
15297 mips_fix_r5900 = file_mips_opts.arch == CPU_R5900;
15298
15299 /* The register size inference code is now placed in
15300 file_mips_check_options. */
15301
15302 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
15303 processor. */
15304 if (mips_tune_string != 0)
15305 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15306
15307 if (tune_info == 0)
15308 mips_set_tune (arch_info);
15309 else
15310 mips_set_tune (tune_info);
15311
15312 if (mips_flag_mdebug < 0)
15313 mips_flag_mdebug = 0;
15314 }
15315 \f
15316 void
15317 mips_init_after_args (void)
15318 {
15319 /* Initialize opcodes. */
15320 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15321 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15322 }
15323
15324 long
15325 md_pcrel_from (fixS *fixP)
15326 {
15327 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15328
15329 switch (fixP->fx_r_type)
15330 {
15331 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15332 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15333 /* Return the address of the delay slot. */
15334 return addr + 2;
15335
15336 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15337 case BFD_RELOC_MICROMIPS_JMP:
15338 case BFD_RELOC_MIPS16_16_PCREL_S1:
15339 case BFD_RELOC_16_PCREL_S2:
15340 case BFD_RELOC_MIPS_21_PCREL_S2:
15341 case BFD_RELOC_MIPS_26_PCREL_S2:
15342 case BFD_RELOC_MIPS_JMP:
15343 /* Return the address of the delay slot. */
15344 return addr + 4;
15345
15346 case BFD_RELOC_MIPS_18_PCREL_S3:
15347 /* Return the aligned address of the doubleword containing
15348 the instruction. */
15349 return addr & ~7;
15350
15351 default:
15352 return addr;
15353 }
15354 }
15355
15356 /* This is called before the symbol table is processed. In order to
15357 work with gcc when using mips-tfile, we must keep all local labels.
15358 However, in other cases, we want to discard them. If we were
15359 called with -g, but we didn't see any debugging information, it may
15360 mean that gcc is smuggling debugging information through to
15361 mips-tfile, in which case we must generate all local labels. */
15362
15363 void
15364 mips_frob_file_before_adjust (void)
15365 {
15366 #ifndef NO_ECOFF_DEBUGGING
15367 if (ECOFF_DEBUGGING
15368 && mips_debug != 0
15369 && ! ecoff_debugging_seen)
15370 flag_keep_locals = 1;
15371 #endif
15372 }
15373
15374 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15375 the corresponding LO16 reloc. This is called before md_apply_fix and
15376 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15377 relocation operators.
15378
15379 For our purposes, a %lo() expression matches a %got() or %hi()
15380 expression if:
15381
15382 (a) it refers to the same symbol; and
15383 (b) the offset applied in the %lo() expression is no lower than
15384 the offset applied in the %got() or %hi().
15385
15386 (b) allows us to cope with code like:
15387
15388 lui $4,%hi(foo)
15389 lh $4,%lo(foo+2)($4)
15390
15391 ...which is legal on RELA targets, and has a well-defined behaviour
15392 if the user knows that adding 2 to "foo" will not induce a carry to
15393 the high 16 bits.
15394
15395 When several %lo()s match a particular %got() or %hi(), we use the
15396 following rules to distinguish them:
15397
15398 (1) %lo()s with smaller offsets are a better match than %lo()s with
15399 higher offsets.
15400
15401 (2) %lo()s with no matching %got() or %hi() are better than those
15402 that already have a matching %got() or %hi().
15403
15404 (3) later %lo()s are better than earlier %lo()s.
15405
15406 These rules are applied in order.
15407
15408 (1) means, among other things, that %lo()s with identical offsets are
15409 chosen if they exist.
15410
15411 (2) means that we won't associate several high-part relocations with
15412 the same low-part relocation unless there's no alternative. Having
15413 several high parts for the same low part is a GNU extension; this rule
15414 allows careful users to avoid it.
15415
15416 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15417 with the last high-part relocation being at the front of the list.
15418 It therefore makes sense to choose the last matching low-part
15419 relocation, all other things being equal. It's also easier
15420 to code that way. */
15421
15422 void
15423 mips_frob_file (void)
15424 {
15425 struct mips_hi_fixup *l;
15426 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15427
15428 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15429 {
15430 segment_info_type *seginfo;
15431 bfd_boolean matched_lo_p;
15432 fixS **hi_pos, **lo_pos, **pos;
15433
15434 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15435
15436 /* If a GOT16 relocation turns out to be against a global symbol,
15437 there isn't supposed to be a matching LO. Ignore %gots against
15438 constants; we'll report an error for those later. */
15439 if (got16_reloc_p (l->fixp->fx_r_type)
15440 && !(l->fixp->fx_addsy
15441 && pic_need_relax (l->fixp->fx_addsy)))
15442 continue;
15443
15444 /* Check quickly whether the next fixup happens to be a matching %lo. */
15445 if (fixup_has_matching_lo_p (l->fixp))
15446 continue;
15447
15448 seginfo = seg_info (l->seg);
15449
15450 /* Set HI_POS to the position of this relocation in the chain.
15451 Set LO_POS to the position of the chosen low-part relocation.
15452 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15453 relocation that matches an immediately-preceding high-part
15454 relocation. */
15455 hi_pos = NULL;
15456 lo_pos = NULL;
15457 matched_lo_p = FALSE;
15458 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15459
15460 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15461 {
15462 if (*pos == l->fixp)
15463 hi_pos = pos;
15464
15465 if ((*pos)->fx_r_type == looking_for_rtype
15466 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15467 && (*pos)->fx_offset >= l->fixp->fx_offset
15468 && (lo_pos == NULL
15469 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15470 || (!matched_lo_p
15471 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15472 lo_pos = pos;
15473
15474 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15475 && fixup_has_matching_lo_p (*pos));
15476 }
15477
15478 /* If we found a match, remove the high-part relocation from its
15479 current position and insert it before the low-part relocation.
15480 Make the offsets match so that fixup_has_matching_lo_p()
15481 will return true.
15482
15483 We don't warn about unmatched high-part relocations since some
15484 versions of gcc have been known to emit dead "lui ...%hi(...)"
15485 instructions. */
15486 if (lo_pos != NULL)
15487 {
15488 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15489 if (l->fixp->fx_next != *lo_pos)
15490 {
15491 *hi_pos = l->fixp->fx_next;
15492 l->fixp->fx_next = *lo_pos;
15493 *lo_pos = l->fixp;
15494 }
15495 }
15496 }
15497 }
15498
15499 int
15500 mips_force_relocation (fixS *fixp)
15501 {
15502 if (generic_force_reloc (fixp))
15503 return 1;
15504
15505 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15506 so that the linker relaxation can update targets. */
15507 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15508 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15509 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15510 return 1;
15511
15512 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15513 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15514 microMIPS symbols so that we can do cross-mode branch diagnostics
15515 and BAL to JALX conversion by the linker. */
15516 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15517 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15518 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15519 && fixp->fx_addsy
15520 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15521 return 1;
15522
15523 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15524 if (ISA_IS_R6 (file_mips_opts.isa)
15525 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15526 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15527 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15528 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15529 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15530 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15531 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15532 return 1;
15533
15534 return 0;
15535 }
15536
15537 /* Implement TC_FORCE_RELOCATION_ABS. */
15538
15539 bfd_boolean
15540 mips_force_relocation_abs (fixS *fixp)
15541 {
15542 if (generic_force_reloc (fixp))
15543 return TRUE;
15544
15545 /* These relocations do not have enough bits in the in-place addend
15546 to hold an arbitrary absolute section's offset. */
15547 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15548 return TRUE;
15549
15550 return FALSE;
15551 }
15552
15553 /* Read the instruction associated with RELOC from BUF. */
15554
15555 static unsigned int
15556 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15557 {
15558 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15559 return read_compressed_insn (buf, 4);
15560 else
15561 return read_insn (buf);
15562 }
15563
15564 /* Write instruction INSN to BUF, given that it has been relocated
15565 by RELOC. */
15566
15567 static void
15568 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15569 unsigned long insn)
15570 {
15571 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15572 write_compressed_insn (buf, insn, 4);
15573 else
15574 write_insn (buf, insn);
15575 }
15576
15577 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15578 to a symbol in another ISA mode, which cannot be converted to JALX. */
15579
15580 static bfd_boolean
15581 fix_bad_cross_mode_jump_p (fixS *fixP)
15582 {
15583 unsigned long opcode;
15584 int other;
15585 char *buf;
15586
15587 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15588 return FALSE;
15589
15590 other = S_GET_OTHER (fixP->fx_addsy);
15591 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15592 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15593 switch (fixP->fx_r_type)
15594 {
15595 case BFD_RELOC_MIPS_JMP:
15596 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15597 case BFD_RELOC_MICROMIPS_JMP:
15598 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15599 default:
15600 return FALSE;
15601 }
15602 }
15603
15604 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15605 jump to a symbol in the same ISA mode. */
15606
15607 static bfd_boolean
15608 fix_bad_same_mode_jalx_p (fixS *fixP)
15609 {
15610 unsigned long opcode;
15611 int other;
15612 char *buf;
15613
15614 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15615 return FALSE;
15616
15617 other = S_GET_OTHER (fixP->fx_addsy);
15618 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15619 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15620 switch (fixP->fx_r_type)
15621 {
15622 case BFD_RELOC_MIPS_JMP:
15623 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15624 case BFD_RELOC_MIPS16_JMP:
15625 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15626 case BFD_RELOC_MICROMIPS_JMP:
15627 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15628 default:
15629 return FALSE;
15630 }
15631 }
15632
15633 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15634 to a symbol whose value plus addend is not aligned according to the
15635 ultimate (after linker relaxation) jump instruction's immediate field
15636 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15637 regular MIPS code, to (1 << 2). */
15638
15639 static bfd_boolean
15640 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15641 {
15642 bfd_boolean micro_to_mips_p;
15643 valueT val;
15644 int other;
15645
15646 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15647 return FALSE;
15648
15649 other = S_GET_OTHER (fixP->fx_addsy);
15650 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15651 val += fixP->fx_offset;
15652 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15653 && !ELF_ST_IS_MICROMIPS (other));
15654 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15655 != ELF_ST_IS_COMPRESSED (other));
15656 }
15657
15658 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15659 to a symbol whose annotation indicates another ISA mode. For absolute
15660 symbols check the ISA bit instead.
15661
15662 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15663 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15664 MIPS symbols and associated with BAL instructions as these instructions
15665 may be converted to JALX by the linker. */
15666
15667 static bfd_boolean
15668 fix_bad_cross_mode_branch_p (fixS *fixP)
15669 {
15670 bfd_boolean absolute_p;
15671 unsigned long opcode;
15672 asection *symsec;
15673 valueT val;
15674 int other;
15675 char *buf;
15676
15677 if (mips_ignore_branch_isa)
15678 return FALSE;
15679
15680 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15681 return FALSE;
15682
15683 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15684 absolute_p = bfd_is_abs_section (symsec);
15685
15686 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15687 other = S_GET_OTHER (fixP->fx_addsy);
15688
15689 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15690 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15691 switch (fixP->fx_r_type)
15692 {
15693 case BFD_RELOC_16_PCREL_S2:
15694 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15695 && opcode != 0x0411);
15696 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15697 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15698 && opcode != 0x4060);
15699 case BFD_RELOC_MIPS_21_PCREL_S2:
15700 case BFD_RELOC_MIPS_26_PCREL_S2:
15701 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15702 case BFD_RELOC_MIPS16_16_PCREL_S1:
15703 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15704 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15705 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15706 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15707 default:
15708 abort ();
15709 }
15710 }
15711
15712 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15713 branch instruction pointed to by FIXP is not aligned according to the
15714 branch instruction's immediate field requirement. We need the addend
15715 to preserve the ISA bit and also the sum must not have bit 2 set. We
15716 must explicitly OR in the ISA bit from symbol annotation as the bit
15717 won't be set in the symbol's value then. */
15718
15719 static bfd_boolean
15720 fix_bad_misaligned_branch_p (fixS *fixP)
15721 {
15722 bfd_boolean absolute_p;
15723 asection *symsec;
15724 valueT isa_bit;
15725 valueT val;
15726 valueT off;
15727 int other;
15728
15729 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15730 return FALSE;
15731
15732 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15733 absolute_p = bfd_is_abs_section (symsec);
15734
15735 val = S_GET_VALUE (fixP->fx_addsy);
15736 other = S_GET_OTHER (fixP->fx_addsy);
15737 off = fixP->fx_offset;
15738
15739 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15740 val |= ELF_ST_IS_COMPRESSED (other);
15741 val += off;
15742 return (val & 0x3) != isa_bit;
15743 }
15744
15745 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15746 and its calculated value VAL. */
15747
15748 static void
15749 fix_validate_branch (fixS *fixP, valueT val)
15750 {
15751 if (fixP->fx_done && (val & 0x3) != 0)
15752 as_bad_where (fixP->fx_file, fixP->fx_line,
15753 _("branch to misaligned address (0x%lx)"),
15754 (long) (val + md_pcrel_from (fixP)));
15755 else if (fix_bad_cross_mode_branch_p (fixP))
15756 as_bad_where (fixP->fx_file, fixP->fx_line,
15757 _("branch to a symbol in another ISA mode"));
15758 else if (fix_bad_misaligned_branch_p (fixP))
15759 as_bad_where (fixP->fx_file, fixP->fx_line,
15760 _("branch to misaligned address (0x%lx)"),
15761 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15762 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15763 as_bad_where (fixP->fx_file, fixP->fx_line,
15764 _("cannot encode misaligned addend "
15765 "in the relocatable field (0x%lx)"),
15766 (long) fixP->fx_offset);
15767 }
15768
15769 /* Apply a fixup to the object file. */
15770
15771 void
15772 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15773 {
15774 char *buf;
15775 unsigned long insn;
15776 reloc_howto_type *howto;
15777
15778 if (fixP->fx_pcrel)
15779 switch (fixP->fx_r_type)
15780 {
15781 case BFD_RELOC_16_PCREL_S2:
15782 case BFD_RELOC_MIPS16_16_PCREL_S1:
15783 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15784 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15785 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15786 case BFD_RELOC_32_PCREL:
15787 case BFD_RELOC_MIPS_21_PCREL_S2:
15788 case BFD_RELOC_MIPS_26_PCREL_S2:
15789 case BFD_RELOC_MIPS_18_PCREL_S3:
15790 case BFD_RELOC_MIPS_19_PCREL_S2:
15791 case BFD_RELOC_HI16_S_PCREL:
15792 case BFD_RELOC_LO16_PCREL:
15793 break;
15794
15795 case BFD_RELOC_32:
15796 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15797 break;
15798
15799 default:
15800 as_bad_where (fixP->fx_file, fixP->fx_line,
15801 _("PC-relative reference to a different section"));
15802 break;
15803 }
15804
15805 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15806 that have no MIPS ELF equivalent. */
15807 if (fixP->fx_r_type != BFD_RELOC_8)
15808 {
15809 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15810 if (!howto)
15811 return;
15812 }
15813
15814 gas_assert (fixP->fx_size == 2
15815 || fixP->fx_size == 4
15816 || fixP->fx_r_type == BFD_RELOC_8
15817 || fixP->fx_r_type == BFD_RELOC_16
15818 || fixP->fx_r_type == BFD_RELOC_64
15819 || fixP->fx_r_type == BFD_RELOC_CTOR
15820 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15821 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15822 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15823 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15824 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15825 || fixP->fx_r_type == BFD_RELOC_NONE);
15826
15827 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15828
15829 /* Don't treat parts of a composite relocation as done. There are two
15830 reasons for this:
15831
15832 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15833 should nevertheless be emitted if the first part is.
15834
15835 (2) In normal usage, composite relocations are never assembly-time
15836 constants. The easiest way of dealing with the pathological
15837 exceptions is to generate a relocation against STN_UNDEF and
15838 leave everything up to the linker. */
15839 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15840 fixP->fx_done = 1;
15841
15842 switch (fixP->fx_r_type)
15843 {
15844 case BFD_RELOC_MIPS_TLS_GD:
15845 case BFD_RELOC_MIPS_TLS_LDM:
15846 case BFD_RELOC_MIPS_TLS_DTPREL32:
15847 case BFD_RELOC_MIPS_TLS_DTPREL64:
15848 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15849 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15850 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15851 case BFD_RELOC_MIPS_TLS_TPREL32:
15852 case BFD_RELOC_MIPS_TLS_TPREL64:
15853 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15854 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15855 case BFD_RELOC_MICROMIPS_TLS_GD:
15856 case BFD_RELOC_MICROMIPS_TLS_LDM:
15857 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15858 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15859 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15860 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15861 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15862 case BFD_RELOC_MIPS16_TLS_GD:
15863 case BFD_RELOC_MIPS16_TLS_LDM:
15864 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15865 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15866 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15867 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15868 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15869 if (fixP->fx_addsy)
15870 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15871 else
15872 as_bad_where (fixP->fx_file, fixP->fx_line,
15873 _("TLS relocation against a constant"));
15874 break;
15875
15876 case BFD_RELOC_MIPS_JMP:
15877 case BFD_RELOC_MIPS16_JMP:
15878 case BFD_RELOC_MICROMIPS_JMP:
15879 {
15880 int shift;
15881
15882 gas_assert (!fixP->fx_done);
15883
15884 /* Shift is 2, unusually, for microMIPS JALX. */
15885 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15886 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15887 shift = 1;
15888 else
15889 shift = 2;
15890
15891 if (fix_bad_cross_mode_jump_p (fixP))
15892 as_bad_where (fixP->fx_file, fixP->fx_line,
15893 _("jump to a symbol in another ISA mode"));
15894 else if (fix_bad_same_mode_jalx_p (fixP))
15895 as_bad_where (fixP->fx_file, fixP->fx_line,
15896 _("JALX to a symbol in the same ISA mode"));
15897 else if (fix_bad_misaligned_jump_p (fixP, shift))
15898 as_bad_where (fixP->fx_file, fixP->fx_line,
15899 _("jump to misaligned address (0x%lx)"),
15900 (long) (S_GET_VALUE (fixP->fx_addsy)
15901 + fixP->fx_offset));
15902 else if (HAVE_IN_PLACE_ADDENDS
15903 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15904 as_bad_where (fixP->fx_file, fixP->fx_line,
15905 _("cannot encode misaligned addend "
15906 "in the relocatable field (0x%lx)"),
15907 (long) fixP->fx_offset);
15908 }
15909 /* Fall through. */
15910
15911 case BFD_RELOC_MIPS_SHIFT5:
15912 case BFD_RELOC_MIPS_SHIFT6:
15913 case BFD_RELOC_MIPS_GOT_DISP:
15914 case BFD_RELOC_MIPS_GOT_PAGE:
15915 case BFD_RELOC_MIPS_GOT_OFST:
15916 case BFD_RELOC_MIPS_SUB:
15917 case BFD_RELOC_MIPS_INSERT_A:
15918 case BFD_RELOC_MIPS_INSERT_B:
15919 case BFD_RELOC_MIPS_DELETE:
15920 case BFD_RELOC_MIPS_HIGHEST:
15921 case BFD_RELOC_MIPS_HIGHER:
15922 case BFD_RELOC_MIPS_SCN_DISP:
15923 case BFD_RELOC_MIPS_REL16:
15924 case BFD_RELOC_MIPS_RELGOT:
15925 case BFD_RELOC_MIPS_JALR:
15926 case BFD_RELOC_HI16:
15927 case BFD_RELOC_HI16_S:
15928 case BFD_RELOC_LO16:
15929 case BFD_RELOC_GPREL16:
15930 case BFD_RELOC_MIPS_LITERAL:
15931 case BFD_RELOC_MIPS_CALL16:
15932 case BFD_RELOC_MIPS_GOT16:
15933 case BFD_RELOC_GPREL32:
15934 case BFD_RELOC_MIPS_GOT_HI16:
15935 case BFD_RELOC_MIPS_GOT_LO16:
15936 case BFD_RELOC_MIPS_CALL_HI16:
15937 case BFD_RELOC_MIPS_CALL_LO16:
15938 case BFD_RELOC_HI16_S_PCREL:
15939 case BFD_RELOC_LO16_PCREL:
15940 case BFD_RELOC_MIPS16_GPREL:
15941 case BFD_RELOC_MIPS16_GOT16:
15942 case BFD_RELOC_MIPS16_CALL16:
15943 case BFD_RELOC_MIPS16_HI16:
15944 case BFD_RELOC_MIPS16_HI16_S:
15945 case BFD_RELOC_MIPS16_LO16:
15946 case BFD_RELOC_MICROMIPS_GOT_DISP:
15947 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15948 case BFD_RELOC_MICROMIPS_GOT_OFST:
15949 case BFD_RELOC_MICROMIPS_SUB:
15950 case BFD_RELOC_MICROMIPS_HIGHEST:
15951 case BFD_RELOC_MICROMIPS_HIGHER:
15952 case BFD_RELOC_MICROMIPS_SCN_DISP:
15953 case BFD_RELOC_MICROMIPS_JALR:
15954 case BFD_RELOC_MICROMIPS_HI16:
15955 case BFD_RELOC_MICROMIPS_HI16_S:
15956 case BFD_RELOC_MICROMIPS_LO16:
15957 case BFD_RELOC_MICROMIPS_GPREL16:
15958 case BFD_RELOC_MICROMIPS_LITERAL:
15959 case BFD_RELOC_MICROMIPS_CALL16:
15960 case BFD_RELOC_MICROMIPS_GOT16:
15961 case BFD_RELOC_MICROMIPS_GOT_HI16:
15962 case BFD_RELOC_MICROMIPS_GOT_LO16:
15963 case BFD_RELOC_MICROMIPS_CALL_HI16:
15964 case BFD_RELOC_MICROMIPS_CALL_LO16:
15965 case BFD_RELOC_MIPS_EH:
15966 if (fixP->fx_done)
15967 {
15968 offsetT value;
15969
15970 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15971 {
15972 insn = read_reloc_insn (buf, fixP->fx_r_type);
15973 if (mips16_reloc_p (fixP->fx_r_type))
15974 insn |= mips16_immed_extend (value, 16);
15975 else
15976 insn |= (value & 0xffff);
15977 write_reloc_insn (buf, fixP->fx_r_type, insn);
15978 }
15979 else
15980 as_bad_where (fixP->fx_file, fixP->fx_line,
15981 _("unsupported constant in relocation"));
15982 }
15983 break;
15984
15985 case BFD_RELOC_64:
15986 /* This is handled like BFD_RELOC_32, but we output a sign
15987 extended value if we are only 32 bits. */
15988 if (fixP->fx_done)
15989 {
15990 if (8 <= sizeof (valueT))
15991 md_number_to_chars (buf, *valP, 8);
15992 else
15993 {
15994 valueT hiv;
15995
15996 if ((*valP & 0x80000000) != 0)
15997 hiv = 0xffffffff;
15998 else
15999 hiv = 0;
16000 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
16001 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
16002 }
16003 }
16004 break;
16005
16006 case BFD_RELOC_RVA:
16007 case BFD_RELOC_32:
16008 case BFD_RELOC_32_PCREL:
16009 case BFD_RELOC_16:
16010 case BFD_RELOC_8:
16011 /* If we are deleting this reloc entry, we must fill in the
16012 value now. This can happen if we have a .word which is not
16013 resolved when it appears but is later defined. */
16014 if (fixP->fx_done)
16015 md_number_to_chars (buf, *valP, fixP->fx_size);
16016 break;
16017
16018 case BFD_RELOC_MIPS_21_PCREL_S2:
16019 fix_validate_branch (fixP, *valP);
16020 if (!fixP->fx_done)
16021 break;
16022
16023 if (*valP + 0x400000 <= 0x7fffff)
16024 {
16025 insn = read_insn (buf);
16026 insn |= (*valP >> 2) & 0x1fffff;
16027 write_insn (buf, insn);
16028 }
16029 else
16030 as_bad_where (fixP->fx_file, fixP->fx_line,
16031 _("branch out of range"));
16032 break;
16033
16034 case BFD_RELOC_MIPS_26_PCREL_S2:
16035 fix_validate_branch (fixP, *valP);
16036 if (!fixP->fx_done)
16037 break;
16038
16039 if (*valP + 0x8000000 <= 0xfffffff)
16040 {
16041 insn = read_insn (buf);
16042 insn |= (*valP >> 2) & 0x3ffffff;
16043 write_insn (buf, insn);
16044 }
16045 else
16046 as_bad_where (fixP->fx_file, fixP->fx_line,
16047 _("branch out of range"));
16048 break;
16049
16050 case BFD_RELOC_MIPS_18_PCREL_S3:
16051 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
16052 as_bad_where (fixP->fx_file, fixP->fx_line,
16053 _("PC-relative access using misaligned symbol (%lx)"),
16054 (long) S_GET_VALUE (fixP->fx_addsy));
16055 if ((fixP->fx_offset & 0x7) != 0)
16056 as_bad_where (fixP->fx_file, fixP->fx_line,
16057 _("PC-relative access using misaligned offset (%lx)"),
16058 (long) fixP->fx_offset);
16059 if (!fixP->fx_done)
16060 break;
16061
16062 if (*valP + 0x100000 <= 0x1fffff)
16063 {
16064 insn = read_insn (buf);
16065 insn |= (*valP >> 3) & 0x3ffff;
16066 write_insn (buf, insn);
16067 }
16068 else
16069 as_bad_where (fixP->fx_file, fixP->fx_line,
16070 _("PC-relative access out of range"));
16071 break;
16072
16073 case BFD_RELOC_MIPS_19_PCREL_S2:
16074 if ((*valP & 0x3) != 0)
16075 as_bad_where (fixP->fx_file, fixP->fx_line,
16076 _("PC-relative access to misaligned address (%lx)"),
16077 (long) *valP);
16078 if (!fixP->fx_done)
16079 break;
16080
16081 if (*valP + 0x100000 <= 0x1fffff)
16082 {
16083 insn = read_insn (buf);
16084 insn |= (*valP >> 2) & 0x7ffff;
16085 write_insn (buf, insn);
16086 }
16087 else
16088 as_bad_where (fixP->fx_file, fixP->fx_line,
16089 _("PC-relative access out of range"));
16090 break;
16091
16092 case BFD_RELOC_16_PCREL_S2:
16093 fix_validate_branch (fixP, *valP);
16094
16095 /* We need to save the bits in the instruction since fixup_segment()
16096 might be deleting the relocation entry (i.e., a branch within
16097 the current segment). */
16098 if (! fixP->fx_done)
16099 break;
16100
16101 /* Update old instruction data. */
16102 insn = read_insn (buf);
16103
16104 if (*valP + 0x20000 <= 0x3ffff)
16105 {
16106 insn |= (*valP >> 2) & 0xffff;
16107 write_insn (buf, insn);
16108 }
16109 else if (fixP->fx_tcbit2
16110 && fixP->fx_done
16111 && fixP->fx_frag->fr_address >= text_section->vma
16112 && (fixP->fx_frag->fr_address
16113 < text_section->vma + bfd_get_section_size (text_section))
16114 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
16115 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
16116 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
16117 {
16118 /* The branch offset is too large. If this is an
16119 unconditional branch, and we are not generating PIC code,
16120 we can convert it to an absolute jump instruction. */
16121 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
16122 insn = 0x0c000000; /* jal */
16123 else
16124 insn = 0x08000000; /* j */
16125 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
16126 fixP->fx_done = 0;
16127 fixP->fx_addsy = section_symbol (text_section);
16128 *valP += md_pcrel_from (fixP);
16129 write_insn (buf, insn);
16130 }
16131 else
16132 {
16133 /* If we got here, we have branch-relaxation disabled,
16134 and there's nothing we can do to fix this instruction
16135 without turning it into a longer sequence. */
16136 as_bad_where (fixP->fx_file, fixP->fx_line,
16137 _("branch out of range"));
16138 }
16139 break;
16140
16141 case BFD_RELOC_MIPS16_16_PCREL_S1:
16142 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
16143 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
16144 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
16145 gas_assert (!fixP->fx_done);
16146 if (fix_bad_cross_mode_branch_p (fixP))
16147 as_bad_where (fixP->fx_file, fixP->fx_line,
16148 _("branch to a symbol in another ISA mode"));
16149 else if (fixP->fx_addsy
16150 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
16151 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
16152 && (fixP->fx_offset & 0x1) != 0)
16153 as_bad_where (fixP->fx_file, fixP->fx_line,
16154 _("branch to misaligned address (0x%lx)"),
16155 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
16156 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
16157 as_bad_where (fixP->fx_file, fixP->fx_line,
16158 _("cannot encode misaligned addend "
16159 "in the relocatable field (0x%lx)"),
16160 (long) fixP->fx_offset);
16161 break;
16162
16163 case BFD_RELOC_VTABLE_INHERIT:
16164 fixP->fx_done = 0;
16165 if (fixP->fx_addsy
16166 && !S_IS_DEFINED (fixP->fx_addsy)
16167 && !S_IS_WEAK (fixP->fx_addsy))
16168 S_SET_WEAK (fixP->fx_addsy);
16169 break;
16170
16171 case BFD_RELOC_NONE:
16172 case BFD_RELOC_VTABLE_ENTRY:
16173 fixP->fx_done = 0;
16174 break;
16175
16176 default:
16177 abort ();
16178 }
16179
16180 /* Remember value for tc_gen_reloc. */
16181 fixP->fx_addnumber = *valP;
16182 }
16183
16184 static symbolS *
16185 get_symbol (void)
16186 {
16187 int c;
16188 char *name;
16189 symbolS *p;
16190
16191 c = get_symbol_name (&name);
16192 p = (symbolS *) symbol_find_or_make (name);
16193 (void) restore_line_pointer (c);
16194 return p;
16195 }
16196
16197 /* Align the current frag to a given power of two. If a particular
16198 fill byte should be used, FILL points to an integer that contains
16199 that byte, otherwise FILL is null.
16200
16201 This function used to have the comment:
16202
16203 The MIPS assembler also automatically adjusts any preceding label.
16204
16205 The implementation therefore applied the adjustment to a maximum of
16206 one label. However, other label adjustments are applied to batches
16207 of labels, and adjusting just one caused problems when new labels
16208 were added for the sake of debugging or unwind information.
16209 We therefore adjust all preceding labels (given as LABELS) instead. */
16210
16211 static void
16212 mips_align (int to, int *fill, struct insn_label_list *labels)
16213 {
16214 mips_emit_delays ();
16215 mips_record_compressed_mode ();
16216 if (fill == NULL && subseg_text_p (now_seg))
16217 frag_align_code (to, 0);
16218 else
16219 frag_align (to, fill ? *fill : 0, 0);
16220 record_alignment (now_seg, to);
16221 mips_move_labels (labels, FALSE);
16222 }
16223
16224 /* Align to a given power of two. .align 0 turns off the automatic
16225 alignment used by the data creating pseudo-ops. */
16226
16227 static void
16228 s_align (int x ATTRIBUTE_UNUSED)
16229 {
16230 int temp, fill_value, *fill_ptr;
16231 long max_alignment = 28;
16232
16233 /* o Note that the assembler pulls down any immediately preceding label
16234 to the aligned address.
16235 o It's not documented but auto alignment is reinstated by
16236 a .align pseudo instruction.
16237 o Note also that after auto alignment is turned off the mips assembler
16238 issues an error on attempt to assemble an improperly aligned data item.
16239 We don't. */
16240
16241 temp = get_absolute_expression ();
16242 if (temp > max_alignment)
16243 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
16244 else if (temp < 0)
16245 {
16246 as_warn (_("alignment negative, 0 assumed"));
16247 temp = 0;
16248 }
16249 if (*input_line_pointer == ',')
16250 {
16251 ++input_line_pointer;
16252 fill_value = get_absolute_expression ();
16253 fill_ptr = &fill_value;
16254 }
16255 else
16256 fill_ptr = 0;
16257 if (temp)
16258 {
16259 segment_info_type *si = seg_info (now_seg);
16260 struct insn_label_list *l = si->label_list;
16261 /* Auto alignment should be switched on by next section change. */
16262 auto_align = 1;
16263 mips_align (temp, fill_ptr, l);
16264 }
16265 else
16266 {
16267 auto_align = 0;
16268 }
16269
16270 demand_empty_rest_of_line ();
16271 }
16272
16273 static void
16274 s_change_sec (int sec)
16275 {
16276 segT seg;
16277
16278 /* The ELF backend needs to know that we are changing sections, so
16279 that .previous works correctly. We could do something like check
16280 for an obj_section_change_hook macro, but that might be confusing
16281 as it would not be appropriate to use it in the section changing
16282 functions in read.c, since obj-elf.c intercepts those. FIXME:
16283 This should be cleaner, somehow. */
16284 obj_elf_section_change_hook ();
16285
16286 mips_emit_delays ();
16287
16288 switch (sec)
16289 {
16290 case 't':
16291 s_text (0);
16292 break;
16293 case 'd':
16294 s_data (0);
16295 break;
16296 case 'b':
16297 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16298 demand_empty_rest_of_line ();
16299 break;
16300
16301 case 'r':
16302 seg = subseg_new (RDATA_SECTION_NAME,
16303 (subsegT) get_absolute_expression ());
16304 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
16305 | SEC_READONLY | SEC_RELOC
16306 | SEC_DATA));
16307 if (strncmp (TARGET_OS, "elf", 3) != 0)
16308 record_alignment (seg, 4);
16309 demand_empty_rest_of_line ();
16310 break;
16311
16312 case 's':
16313 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
16314 bfd_set_section_flags (stdoutput, seg,
16315 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16316 if (strncmp (TARGET_OS, "elf", 3) != 0)
16317 record_alignment (seg, 4);
16318 demand_empty_rest_of_line ();
16319 break;
16320
16321 case 'B':
16322 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16323 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16324 if (strncmp (TARGET_OS, "elf", 3) != 0)
16325 record_alignment (seg, 4);
16326 demand_empty_rest_of_line ();
16327 break;
16328 }
16329
16330 auto_align = 1;
16331 }
16332
16333 void
16334 s_change_section (int ignore ATTRIBUTE_UNUSED)
16335 {
16336 char *saved_ilp;
16337 char *section_name;
16338 char c, endc;
16339 char next_c = 0;
16340 int section_type;
16341 int section_flag;
16342 int section_entry_size;
16343 int section_alignment;
16344
16345 saved_ilp = input_line_pointer;
16346 endc = get_symbol_name (&section_name);
16347 c = (endc == '"' ? input_line_pointer[1] : endc);
16348 if (c)
16349 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
16350
16351 /* Do we have .section Name<,"flags">? */
16352 if (c != ',' || (c == ',' && next_c == '"'))
16353 {
16354 /* Just after name is now '\0'. */
16355 (void) restore_line_pointer (endc);
16356 input_line_pointer = saved_ilp;
16357 obj_elf_section (ignore);
16358 return;
16359 }
16360
16361 section_name = xstrdup (section_name);
16362 c = restore_line_pointer (endc);
16363
16364 input_line_pointer++;
16365
16366 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16367 if (c == ',')
16368 section_type = get_absolute_expression ();
16369 else
16370 section_type = 0;
16371
16372 if (*input_line_pointer++ == ',')
16373 section_flag = get_absolute_expression ();
16374 else
16375 section_flag = 0;
16376
16377 if (*input_line_pointer++ == ',')
16378 section_entry_size = get_absolute_expression ();
16379 else
16380 section_entry_size = 0;
16381
16382 if (*input_line_pointer++ == ',')
16383 section_alignment = get_absolute_expression ();
16384 else
16385 section_alignment = 0;
16386
16387 /* FIXME: really ignore? */
16388 (void) section_alignment;
16389
16390 /* When using the generic form of .section (as implemented by obj-elf.c),
16391 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16392 traditionally had to fall back on the more common @progbits instead.
16393
16394 There's nothing really harmful in this, since bfd will correct
16395 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16396 means that, for backwards compatibility, the special_section entries
16397 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16398
16399 Even so, we shouldn't force users of the MIPS .section syntax to
16400 incorrectly label the sections as SHT_PROGBITS. The best compromise
16401 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16402 generic type-checking code. */
16403 if (section_type == SHT_MIPS_DWARF)
16404 section_type = SHT_PROGBITS;
16405
16406 obj_elf_change_section (section_name, section_type, 0, section_flag,
16407 section_entry_size, 0, 0, 0);
16408
16409 if (now_seg->name != section_name)
16410 free (section_name);
16411 }
16412
16413 void
16414 mips_enable_auto_align (void)
16415 {
16416 auto_align = 1;
16417 }
16418
16419 static void
16420 s_cons (int log_size)
16421 {
16422 segment_info_type *si = seg_info (now_seg);
16423 struct insn_label_list *l = si->label_list;
16424
16425 mips_emit_delays ();
16426 if (log_size > 0 && auto_align)
16427 mips_align (log_size, 0, l);
16428 cons (1 << log_size);
16429 mips_clear_insn_labels ();
16430 }
16431
16432 static void
16433 s_float_cons (int type)
16434 {
16435 segment_info_type *si = seg_info (now_seg);
16436 struct insn_label_list *l = si->label_list;
16437
16438 mips_emit_delays ();
16439
16440 if (auto_align)
16441 {
16442 if (type == 'd')
16443 mips_align (3, 0, l);
16444 else
16445 mips_align (2, 0, l);
16446 }
16447
16448 float_cons (type);
16449 mips_clear_insn_labels ();
16450 }
16451
16452 /* Handle .globl. We need to override it because on Irix 5 you are
16453 permitted to say
16454 .globl foo .text
16455 where foo is an undefined symbol, to mean that foo should be
16456 considered to be the address of a function. */
16457
16458 static void
16459 s_mips_globl (int x ATTRIBUTE_UNUSED)
16460 {
16461 char *name;
16462 int c;
16463 symbolS *symbolP;
16464 flagword flag;
16465
16466 do
16467 {
16468 c = get_symbol_name (&name);
16469 symbolP = symbol_find_or_make (name);
16470 S_SET_EXTERNAL (symbolP);
16471
16472 *input_line_pointer = c;
16473 SKIP_WHITESPACE_AFTER_NAME ();
16474
16475 #ifdef TE_IRIX
16476 /* On Irix 5, every global symbol that is not explicitly labelled as
16477 being a function is apparently labelled as being an object. */
16478 flag = BSF_OBJECT;
16479 #else
16480 flag = BSF_NO_FLAGS;
16481 #endif
16482
16483 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16484 && (*input_line_pointer != ','))
16485 {
16486 char *secname;
16487 asection *sec;
16488
16489 c = get_symbol_name (&secname);
16490 sec = bfd_get_section_by_name (stdoutput, secname);
16491 if (sec == NULL)
16492 as_bad (_("%s: no such section"), secname);
16493 (void) restore_line_pointer (c);
16494
16495 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16496 flag = BSF_FUNCTION;
16497 }
16498
16499 symbol_get_bfdsym (symbolP)->flags |= flag;
16500
16501 c = *input_line_pointer;
16502 if (c == ',')
16503 {
16504 input_line_pointer++;
16505 SKIP_WHITESPACE ();
16506 if (is_end_of_line[(unsigned char) *input_line_pointer])
16507 c = '\n';
16508 }
16509 }
16510 while (c == ',');
16511
16512 demand_empty_rest_of_line ();
16513 }
16514
16515 static void
16516 s_option (int x ATTRIBUTE_UNUSED)
16517 {
16518 char *opt;
16519 char c;
16520
16521 c = get_symbol_name (&opt);
16522
16523 if (*opt == 'O')
16524 {
16525 /* FIXME: What does this mean? */
16526 }
16527 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16528 {
16529 int i;
16530
16531 i = atoi (opt + 3);
16532 if (i != 0 && i != 2)
16533 as_bad (_(".option pic%d not supported"), i);
16534 else if (mips_pic == VXWORKS_PIC)
16535 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16536 else if (i == 0)
16537 mips_pic = NO_PIC;
16538 else if (i == 2)
16539 {
16540 mips_pic = SVR4_PIC;
16541 mips_abicalls = TRUE;
16542 }
16543
16544 if (mips_pic == SVR4_PIC)
16545 {
16546 if (g_switch_seen && g_switch_value != 0)
16547 as_warn (_("-G may not be used with SVR4 PIC code"));
16548 g_switch_value = 0;
16549 bfd_set_gp_size (stdoutput, 0);
16550 }
16551 }
16552 else
16553 as_warn (_("unrecognized option \"%s\""), opt);
16554
16555 (void) restore_line_pointer (c);
16556 demand_empty_rest_of_line ();
16557 }
16558
16559 /* This structure is used to hold a stack of .set values. */
16560
16561 struct mips_option_stack
16562 {
16563 struct mips_option_stack *next;
16564 struct mips_set_options options;
16565 };
16566
16567 static struct mips_option_stack *mips_opts_stack;
16568
16569 /* Return status for .set/.module option handling. */
16570
16571 enum code_option_type
16572 {
16573 /* Unrecognized option. */
16574 OPTION_TYPE_BAD = -1,
16575
16576 /* Ordinary option. */
16577 OPTION_TYPE_NORMAL,
16578
16579 /* ISA changing option. */
16580 OPTION_TYPE_ISA
16581 };
16582
16583 /* Handle common .set/.module options. Return status indicating option
16584 type. */
16585
16586 static enum code_option_type
16587 parse_code_option (char * name)
16588 {
16589 bfd_boolean isa_set = FALSE;
16590 const struct mips_ase *ase;
16591
16592 if (strncmp (name, "at=", 3) == 0)
16593 {
16594 char *s = name + 3;
16595
16596 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16597 as_bad (_("unrecognized register name `%s'"), s);
16598 }
16599 else if (strcmp (name, "at") == 0)
16600 mips_opts.at = ATREG;
16601 else if (strcmp (name, "noat") == 0)
16602 mips_opts.at = ZERO;
16603 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16604 mips_opts.nomove = 0;
16605 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16606 mips_opts.nomove = 1;
16607 else if (strcmp (name, "bopt") == 0)
16608 mips_opts.nobopt = 0;
16609 else if (strcmp (name, "nobopt") == 0)
16610 mips_opts.nobopt = 1;
16611 else if (strcmp (name, "gp=32") == 0)
16612 mips_opts.gp = 32;
16613 else if (strcmp (name, "gp=64") == 0)
16614 mips_opts.gp = 64;
16615 else if (strcmp (name, "fp=32") == 0)
16616 mips_opts.fp = 32;
16617 else if (strcmp (name, "fp=xx") == 0)
16618 mips_opts.fp = 0;
16619 else if (strcmp (name, "fp=64") == 0)
16620 mips_opts.fp = 64;
16621 else if (strcmp (name, "softfloat") == 0)
16622 mips_opts.soft_float = 1;
16623 else if (strcmp (name, "hardfloat") == 0)
16624 mips_opts.soft_float = 0;
16625 else if (strcmp (name, "singlefloat") == 0)
16626 mips_opts.single_float = 1;
16627 else if (strcmp (name, "doublefloat") == 0)
16628 mips_opts.single_float = 0;
16629 else if (strcmp (name, "nooddspreg") == 0)
16630 mips_opts.oddspreg = 0;
16631 else if (strcmp (name, "oddspreg") == 0)
16632 mips_opts.oddspreg = 1;
16633 else if (strcmp (name, "mips16") == 0
16634 || strcmp (name, "MIPS-16") == 0)
16635 mips_opts.mips16 = 1;
16636 else if (strcmp (name, "nomips16") == 0
16637 || strcmp (name, "noMIPS-16") == 0)
16638 mips_opts.mips16 = 0;
16639 else if (strcmp (name, "micromips") == 0)
16640 mips_opts.micromips = 1;
16641 else if (strcmp (name, "nomicromips") == 0)
16642 mips_opts.micromips = 0;
16643 else if (name[0] == 'n'
16644 && name[1] == 'o'
16645 && (ase = mips_lookup_ase (name + 2)))
16646 mips_set_ase (ase, &mips_opts, FALSE);
16647 else if ((ase = mips_lookup_ase (name)))
16648 mips_set_ase (ase, &mips_opts, TRUE);
16649 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16650 {
16651 /* Permit the user to change the ISA and architecture on the fly.
16652 Needless to say, misuse can cause serious problems. */
16653 if (strncmp (name, "arch=", 5) == 0)
16654 {
16655 const struct mips_cpu_info *p;
16656
16657 p = mips_parse_cpu ("internal use", name + 5);
16658 if (!p)
16659 as_bad (_("unknown architecture %s"), name + 5);
16660 else
16661 {
16662 mips_opts.arch = p->cpu;
16663 mips_opts.isa = p->isa;
16664 isa_set = TRUE;
16665 mips_opts.init_ase = p->ase;
16666 }
16667 }
16668 else if (strncmp (name, "mips", 4) == 0)
16669 {
16670 const struct mips_cpu_info *p;
16671
16672 p = mips_parse_cpu ("internal use", name);
16673 if (!p)
16674 as_bad (_("unknown ISA level %s"), name + 4);
16675 else
16676 {
16677 mips_opts.arch = p->cpu;
16678 mips_opts.isa = p->isa;
16679 isa_set = TRUE;
16680 mips_opts.init_ase = p->ase;
16681 }
16682 }
16683 else
16684 as_bad (_("unknown ISA or architecture %s"), name);
16685 }
16686 else if (strcmp (name, "autoextend") == 0)
16687 mips_opts.noautoextend = 0;
16688 else if (strcmp (name, "noautoextend") == 0)
16689 mips_opts.noautoextend = 1;
16690 else if (strcmp (name, "insn32") == 0)
16691 mips_opts.insn32 = TRUE;
16692 else if (strcmp (name, "noinsn32") == 0)
16693 mips_opts.insn32 = FALSE;
16694 else if (strcmp (name, "sym32") == 0)
16695 mips_opts.sym32 = TRUE;
16696 else if (strcmp (name, "nosym32") == 0)
16697 mips_opts.sym32 = FALSE;
16698 else
16699 return OPTION_TYPE_BAD;
16700
16701 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16702 }
16703
16704 /* Handle the .set pseudo-op. */
16705
16706 static void
16707 s_mipsset (int x ATTRIBUTE_UNUSED)
16708 {
16709 enum code_option_type type = OPTION_TYPE_NORMAL;
16710 char *name = input_line_pointer, ch;
16711
16712 file_mips_check_options ();
16713
16714 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16715 ++input_line_pointer;
16716 ch = *input_line_pointer;
16717 *input_line_pointer = '\0';
16718
16719 if (strchr (name, ','))
16720 {
16721 /* Generic ".set" directive; use the generic handler. */
16722 *input_line_pointer = ch;
16723 input_line_pointer = name;
16724 s_set (0);
16725 return;
16726 }
16727
16728 if (strcmp (name, "reorder") == 0)
16729 {
16730 if (mips_opts.noreorder)
16731 end_noreorder ();
16732 }
16733 else if (strcmp (name, "noreorder") == 0)
16734 {
16735 if (!mips_opts.noreorder)
16736 start_noreorder ();
16737 }
16738 else if (strcmp (name, "macro") == 0)
16739 mips_opts.warn_about_macros = 0;
16740 else if (strcmp (name, "nomacro") == 0)
16741 {
16742 if (mips_opts.noreorder == 0)
16743 as_bad (_("`noreorder' must be set before `nomacro'"));
16744 mips_opts.warn_about_macros = 1;
16745 }
16746 else if (strcmp (name, "gp=default") == 0)
16747 mips_opts.gp = file_mips_opts.gp;
16748 else if (strcmp (name, "fp=default") == 0)
16749 mips_opts.fp = file_mips_opts.fp;
16750 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16751 {
16752 mips_opts.isa = file_mips_opts.isa;
16753 mips_opts.arch = file_mips_opts.arch;
16754 mips_opts.init_ase = file_mips_opts.init_ase;
16755 mips_opts.gp = file_mips_opts.gp;
16756 mips_opts.fp = file_mips_opts.fp;
16757 }
16758 else if (strcmp (name, "push") == 0)
16759 {
16760 struct mips_option_stack *s;
16761
16762 s = XNEW (struct mips_option_stack);
16763 s->next = mips_opts_stack;
16764 s->options = mips_opts;
16765 mips_opts_stack = s;
16766 }
16767 else if (strcmp (name, "pop") == 0)
16768 {
16769 struct mips_option_stack *s;
16770
16771 s = mips_opts_stack;
16772 if (s == NULL)
16773 as_bad (_(".set pop with no .set push"));
16774 else
16775 {
16776 /* If we're changing the reorder mode we need to handle
16777 delay slots correctly. */
16778 if (s->options.noreorder && ! mips_opts.noreorder)
16779 start_noreorder ();
16780 else if (! s->options.noreorder && mips_opts.noreorder)
16781 end_noreorder ();
16782
16783 mips_opts = s->options;
16784 mips_opts_stack = s->next;
16785 free (s);
16786 }
16787 }
16788 else
16789 {
16790 type = parse_code_option (name);
16791 if (type == OPTION_TYPE_BAD)
16792 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16793 }
16794
16795 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16796 registers based on what is supported by the arch/cpu. */
16797 if (type == OPTION_TYPE_ISA)
16798 {
16799 switch (mips_opts.isa)
16800 {
16801 case 0:
16802 break;
16803 case ISA_MIPS1:
16804 /* MIPS I cannot support FPXX. */
16805 mips_opts.fp = 32;
16806 /* fall-through. */
16807 case ISA_MIPS2:
16808 case ISA_MIPS32:
16809 case ISA_MIPS32R2:
16810 case ISA_MIPS32R3:
16811 case ISA_MIPS32R5:
16812 mips_opts.gp = 32;
16813 if (mips_opts.fp != 0)
16814 mips_opts.fp = 32;
16815 break;
16816 case ISA_MIPS32R6:
16817 mips_opts.gp = 32;
16818 mips_opts.fp = 64;
16819 break;
16820 case ISA_MIPS3:
16821 case ISA_MIPS4:
16822 case ISA_MIPS5:
16823 case ISA_MIPS64:
16824 case ISA_MIPS64R2:
16825 case ISA_MIPS64R3:
16826 case ISA_MIPS64R5:
16827 case ISA_MIPS64R6:
16828 mips_opts.gp = 64;
16829 if (mips_opts.fp != 0)
16830 {
16831 if (mips_opts.arch == CPU_R5900)
16832 mips_opts.fp = 32;
16833 else
16834 mips_opts.fp = 64;
16835 }
16836 break;
16837 default:
16838 as_bad (_("unknown ISA level %s"), name + 4);
16839 break;
16840 }
16841 }
16842
16843 mips_check_options (&mips_opts, FALSE);
16844
16845 mips_check_isa_supports_ases ();
16846 *input_line_pointer = ch;
16847 demand_empty_rest_of_line ();
16848 }
16849
16850 /* Handle the .module pseudo-op. */
16851
16852 static void
16853 s_module (int ignore ATTRIBUTE_UNUSED)
16854 {
16855 char *name = input_line_pointer, ch;
16856
16857 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16858 ++input_line_pointer;
16859 ch = *input_line_pointer;
16860 *input_line_pointer = '\0';
16861
16862 if (!file_mips_opts_checked)
16863 {
16864 if (parse_code_option (name) == OPTION_TYPE_BAD)
16865 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16866
16867 /* Update module level settings from mips_opts. */
16868 file_mips_opts = mips_opts;
16869 }
16870 else
16871 as_bad (_(".module is not permitted after generating code"));
16872
16873 *input_line_pointer = ch;
16874 demand_empty_rest_of_line ();
16875 }
16876
16877 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16878 .option pic2. It means to generate SVR4 PIC calls. */
16879
16880 static void
16881 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16882 {
16883 mips_pic = SVR4_PIC;
16884 mips_abicalls = TRUE;
16885
16886 if (g_switch_seen && g_switch_value != 0)
16887 as_warn (_("-G may not be used with SVR4 PIC code"));
16888 g_switch_value = 0;
16889
16890 bfd_set_gp_size (stdoutput, 0);
16891 demand_empty_rest_of_line ();
16892 }
16893
16894 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16895 PIC code. It sets the $gp register for the function based on the
16896 function address, which is in the register named in the argument.
16897 This uses a relocation against _gp_disp, which is handled specially
16898 by the linker. The result is:
16899 lui $gp,%hi(_gp_disp)
16900 addiu $gp,$gp,%lo(_gp_disp)
16901 addu $gp,$gp,.cpload argument
16902 The .cpload argument is normally $25 == $t9.
16903
16904 The -mno-shared option changes this to:
16905 lui $gp,%hi(__gnu_local_gp)
16906 addiu $gp,$gp,%lo(__gnu_local_gp)
16907 and the argument is ignored. This saves an instruction, but the
16908 resulting code is not position independent; it uses an absolute
16909 address for __gnu_local_gp. Thus code assembled with -mno-shared
16910 can go into an ordinary executable, but not into a shared library. */
16911
16912 static void
16913 s_cpload (int ignore ATTRIBUTE_UNUSED)
16914 {
16915 expressionS ex;
16916 int reg;
16917 int in_shared;
16918
16919 file_mips_check_options ();
16920
16921 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16922 .cpload is ignored. */
16923 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16924 {
16925 s_ignore (0);
16926 return;
16927 }
16928
16929 if (mips_opts.mips16)
16930 {
16931 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16932 ignore_rest_of_line ();
16933 return;
16934 }
16935
16936 /* .cpload should be in a .set noreorder section. */
16937 if (mips_opts.noreorder == 0)
16938 as_warn (_(".cpload not in noreorder section"));
16939
16940 reg = tc_get_register (0);
16941
16942 /* If we need to produce a 64-bit address, we are better off using
16943 the default instruction sequence. */
16944 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16945
16946 ex.X_op = O_symbol;
16947 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16948 "__gnu_local_gp");
16949 ex.X_op_symbol = NULL;
16950 ex.X_add_number = 0;
16951
16952 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16953 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16954
16955 mips_mark_labels ();
16956 mips_assembling_insn = TRUE;
16957
16958 macro_start ();
16959 macro_build_lui (&ex, mips_gp_register);
16960 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16961 mips_gp_register, BFD_RELOC_LO16);
16962 if (in_shared)
16963 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16964 mips_gp_register, reg);
16965 macro_end ();
16966
16967 mips_assembling_insn = FALSE;
16968 demand_empty_rest_of_line ();
16969 }
16970
16971 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16972 .cpsetup $reg1, offset|$reg2, label
16973
16974 If offset is given, this results in:
16975 sd $gp, offset($sp)
16976 lui $gp, %hi(%neg(%gp_rel(label)))
16977 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16978 daddu $gp, $gp, $reg1
16979
16980 If $reg2 is given, this results in:
16981 or $reg2, $gp, $0
16982 lui $gp, %hi(%neg(%gp_rel(label)))
16983 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16984 daddu $gp, $gp, $reg1
16985 $reg1 is normally $25 == $t9.
16986
16987 The -mno-shared option replaces the last three instructions with
16988 lui $gp,%hi(_gp)
16989 addiu $gp,$gp,%lo(_gp) */
16990
16991 static void
16992 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16993 {
16994 expressionS ex_off;
16995 expressionS ex_sym;
16996 int reg1;
16997
16998 file_mips_check_options ();
16999
17000 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
17001 We also need NewABI support. */
17002 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17003 {
17004 s_ignore (0);
17005 return;
17006 }
17007
17008 if (mips_opts.mips16)
17009 {
17010 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
17011 ignore_rest_of_line ();
17012 return;
17013 }
17014
17015 reg1 = tc_get_register (0);
17016 SKIP_WHITESPACE ();
17017 if (*input_line_pointer != ',')
17018 {
17019 as_bad (_("missing argument separator ',' for .cpsetup"));
17020 return;
17021 }
17022 else
17023 ++input_line_pointer;
17024 SKIP_WHITESPACE ();
17025 if (*input_line_pointer == '$')
17026 {
17027 mips_cpreturn_register = tc_get_register (0);
17028 mips_cpreturn_offset = -1;
17029 }
17030 else
17031 {
17032 mips_cpreturn_offset = get_absolute_expression ();
17033 mips_cpreturn_register = -1;
17034 }
17035 SKIP_WHITESPACE ();
17036 if (*input_line_pointer != ',')
17037 {
17038 as_bad (_("missing argument separator ',' for .cpsetup"));
17039 return;
17040 }
17041 else
17042 ++input_line_pointer;
17043 SKIP_WHITESPACE ();
17044 expression (&ex_sym);
17045
17046 mips_mark_labels ();
17047 mips_assembling_insn = TRUE;
17048
17049 macro_start ();
17050 if (mips_cpreturn_register == -1)
17051 {
17052 ex_off.X_op = O_constant;
17053 ex_off.X_add_symbol = NULL;
17054 ex_off.X_op_symbol = NULL;
17055 ex_off.X_add_number = mips_cpreturn_offset;
17056
17057 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
17058 BFD_RELOC_LO16, SP);
17059 }
17060 else
17061 move_register (mips_cpreturn_register, mips_gp_register);
17062
17063 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
17064 {
17065 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
17066 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
17067 BFD_RELOC_HI16_S);
17068
17069 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
17070 mips_gp_register, -1, BFD_RELOC_GPREL16,
17071 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
17072
17073 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
17074 mips_gp_register, reg1);
17075 }
17076 else
17077 {
17078 expressionS ex;
17079
17080 ex.X_op = O_symbol;
17081 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
17082 ex.X_op_symbol = NULL;
17083 ex.X_add_number = 0;
17084
17085 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
17086 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
17087
17088 macro_build_lui (&ex, mips_gp_register);
17089 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
17090 mips_gp_register, BFD_RELOC_LO16);
17091 }
17092
17093 macro_end ();
17094
17095 mips_assembling_insn = FALSE;
17096 demand_empty_rest_of_line ();
17097 }
17098
17099 static void
17100 s_cplocal (int ignore ATTRIBUTE_UNUSED)
17101 {
17102 file_mips_check_options ();
17103
17104 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
17105 .cplocal is ignored. */
17106 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17107 {
17108 s_ignore (0);
17109 return;
17110 }
17111
17112 if (mips_opts.mips16)
17113 {
17114 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
17115 ignore_rest_of_line ();
17116 return;
17117 }
17118
17119 mips_gp_register = tc_get_register (0);
17120 demand_empty_rest_of_line ();
17121 }
17122
17123 /* Handle the .cprestore pseudo-op. This stores $gp into a given
17124 offset from $sp. The offset is remembered, and after making a PIC
17125 call $gp is restored from that location. */
17126
17127 static void
17128 s_cprestore (int ignore ATTRIBUTE_UNUSED)
17129 {
17130 expressionS ex;
17131
17132 file_mips_check_options ();
17133
17134 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
17135 .cprestore is ignored. */
17136 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
17137 {
17138 s_ignore (0);
17139 return;
17140 }
17141
17142 if (mips_opts.mips16)
17143 {
17144 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
17145 ignore_rest_of_line ();
17146 return;
17147 }
17148
17149 mips_cprestore_offset = get_absolute_expression ();
17150 mips_cprestore_valid = 1;
17151
17152 ex.X_op = O_constant;
17153 ex.X_add_symbol = NULL;
17154 ex.X_op_symbol = NULL;
17155 ex.X_add_number = mips_cprestore_offset;
17156
17157 mips_mark_labels ();
17158 mips_assembling_insn = TRUE;
17159
17160 macro_start ();
17161 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
17162 SP, HAVE_64BIT_ADDRESSES);
17163 macro_end ();
17164
17165 mips_assembling_insn = FALSE;
17166 demand_empty_rest_of_line ();
17167 }
17168
17169 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
17170 was given in the preceding .cpsetup, it results in:
17171 ld $gp, offset($sp)
17172
17173 If a register $reg2 was given there, it results in:
17174 or $gp, $reg2, $0 */
17175
17176 static void
17177 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
17178 {
17179 expressionS ex;
17180
17181 file_mips_check_options ();
17182
17183 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
17184 We also need NewABI support. */
17185 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17186 {
17187 s_ignore (0);
17188 return;
17189 }
17190
17191 if (mips_opts.mips16)
17192 {
17193 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
17194 ignore_rest_of_line ();
17195 return;
17196 }
17197
17198 mips_mark_labels ();
17199 mips_assembling_insn = TRUE;
17200
17201 macro_start ();
17202 if (mips_cpreturn_register == -1)
17203 {
17204 ex.X_op = O_constant;
17205 ex.X_add_symbol = NULL;
17206 ex.X_op_symbol = NULL;
17207 ex.X_add_number = mips_cpreturn_offset;
17208
17209 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
17210 }
17211 else
17212 move_register (mips_gp_register, mips_cpreturn_register);
17213
17214 macro_end ();
17215
17216 mips_assembling_insn = FALSE;
17217 demand_empty_rest_of_line ();
17218 }
17219
17220 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
17221 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
17222 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
17223 debug information or MIPS16 TLS. */
17224
17225 static void
17226 s_tls_rel_directive (const size_t bytes, const char *dirstr,
17227 bfd_reloc_code_real_type rtype)
17228 {
17229 expressionS ex;
17230 char *p;
17231
17232 expression (&ex);
17233
17234 if (ex.X_op != O_symbol)
17235 {
17236 as_bad (_("unsupported use of %s"), dirstr);
17237 ignore_rest_of_line ();
17238 }
17239
17240 p = frag_more (bytes);
17241 md_number_to_chars (p, 0, bytes);
17242 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
17243 demand_empty_rest_of_line ();
17244 mips_clear_insn_labels ();
17245 }
17246
17247 /* Handle .dtprelword. */
17248
17249 static void
17250 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
17251 {
17252 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
17253 }
17254
17255 /* Handle .dtpreldword. */
17256
17257 static void
17258 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
17259 {
17260 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
17261 }
17262
17263 /* Handle .tprelword. */
17264
17265 static void
17266 s_tprelword (int ignore ATTRIBUTE_UNUSED)
17267 {
17268 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
17269 }
17270
17271 /* Handle .tpreldword. */
17272
17273 static void
17274 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
17275 {
17276 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
17277 }
17278
17279 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17280 code. It sets the offset to use in gp_rel relocations. */
17281
17282 static void
17283 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
17284 {
17285 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17286 We also need NewABI support. */
17287 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17288 {
17289 s_ignore (0);
17290 return;
17291 }
17292
17293 mips_gprel_offset = get_absolute_expression ();
17294
17295 demand_empty_rest_of_line ();
17296 }
17297
17298 /* Handle the .gpword pseudo-op. This is used when generating PIC
17299 code. It generates a 32 bit GP relative reloc. */
17300
17301 static void
17302 s_gpword (int ignore ATTRIBUTE_UNUSED)
17303 {
17304 segment_info_type *si;
17305 struct insn_label_list *l;
17306 expressionS ex;
17307 char *p;
17308
17309 /* When not generating PIC code, this is treated as .word. */
17310 if (mips_pic != SVR4_PIC)
17311 {
17312 s_cons (2);
17313 return;
17314 }
17315
17316 si = seg_info (now_seg);
17317 l = si->label_list;
17318 mips_emit_delays ();
17319 if (auto_align)
17320 mips_align (2, 0, l);
17321
17322 expression (&ex);
17323 mips_clear_insn_labels ();
17324
17325 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17326 {
17327 as_bad (_("unsupported use of .gpword"));
17328 ignore_rest_of_line ();
17329 }
17330
17331 p = frag_more (4);
17332 md_number_to_chars (p, 0, 4);
17333 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17334 BFD_RELOC_GPREL32);
17335
17336 demand_empty_rest_of_line ();
17337 }
17338
17339 static void
17340 s_gpdword (int ignore ATTRIBUTE_UNUSED)
17341 {
17342 segment_info_type *si;
17343 struct insn_label_list *l;
17344 expressionS ex;
17345 char *p;
17346
17347 /* When not generating PIC code, this is treated as .dword. */
17348 if (mips_pic != SVR4_PIC)
17349 {
17350 s_cons (3);
17351 return;
17352 }
17353
17354 si = seg_info (now_seg);
17355 l = si->label_list;
17356 mips_emit_delays ();
17357 if (auto_align)
17358 mips_align (3, 0, l);
17359
17360 expression (&ex);
17361 mips_clear_insn_labels ();
17362
17363 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17364 {
17365 as_bad (_("unsupported use of .gpdword"));
17366 ignore_rest_of_line ();
17367 }
17368
17369 p = frag_more (8);
17370 md_number_to_chars (p, 0, 8);
17371 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17372 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17373
17374 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17375 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17376 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17377
17378 demand_empty_rest_of_line ();
17379 }
17380
17381 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17382 tables. It generates a R_MIPS_EH reloc. */
17383
17384 static void
17385 s_ehword (int ignore ATTRIBUTE_UNUSED)
17386 {
17387 expressionS ex;
17388 char *p;
17389
17390 mips_emit_delays ();
17391
17392 expression (&ex);
17393 mips_clear_insn_labels ();
17394
17395 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17396 {
17397 as_bad (_("unsupported use of .ehword"));
17398 ignore_rest_of_line ();
17399 }
17400
17401 p = frag_more (4);
17402 md_number_to_chars (p, 0, 4);
17403 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17404 BFD_RELOC_32_PCREL);
17405
17406 demand_empty_rest_of_line ();
17407 }
17408
17409 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17410 tables in SVR4 PIC code. */
17411
17412 static void
17413 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17414 {
17415 int reg;
17416
17417 file_mips_check_options ();
17418
17419 /* This is ignored when not generating SVR4 PIC code. */
17420 if (mips_pic != SVR4_PIC)
17421 {
17422 s_ignore (0);
17423 return;
17424 }
17425
17426 mips_mark_labels ();
17427 mips_assembling_insn = TRUE;
17428
17429 /* Add $gp to the register named as an argument. */
17430 macro_start ();
17431 reg = tc_get_register (0);
17432 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17433 macro_end ();
17434
17435 mips_assembling_insn = FALSE;
17436 demand_empty_rest_of_line ();
17437 }
17438
17439 /* Handle the .insn pseudo-op. This marks instruction labels in
17440 mips16/micromips mode. This permits the linker to handle them specially,
17441 such as generating jalx instructions when needed. We also make
17442 them odd for the duration of the assembly, in order to generate the
17443 right sort of code. We will make them even in the adjust_symtab
17444 routine, while leaving them marked. This is convenient for the
17445 debugger and the disassembler. The linker knows to make them odd
17446 again. */
17447
17448 static void
17449 s_insn (int ignore ATTRIBUTE_UNUSED)
17450 {
17451 file_mips_check_options ();
17452 file_ase_mips16 |= mips_opts.mips16;
17453 file_ase_micromips |= mips_opts.micromips;
17454
17455 mips_mark_labels ();
17456
17457 demand_empty_rest_of_line ();
17458 }
17459
17460 /* Handle the .nan pseudo-op. */
17461
17462 static void
17463 s_nan (int ignore ATTRIBUTE_UNUSED)
17464 {
17465 static const char str_legacy[] = "legacy";
17466 static const char str_2008[] = "2008";
17467 size_t i;
17468
17469 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17470
17471 if (i == sizeof (str_2008) - 1
17472 && memcmp (input_line_pointer, str_2008, i) == 0)
17473 mips_nan2008 = 1;
17474 else if (i == sizeof (str_legacy) - 1
17475 && memcmp (input_line_pointer, str_legacy, i) == 0)
17476 {
17477 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17478 mips_nan2008 = 0;
17479 else
17480 as_bad (_("`%s' does not support legacy NaN"),
17481 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17482 }
17483 else
17484 as_bad (_("bad .nan directive"));
17485
17486 input_line_pointer += i;
17487 demand_empty_rest_of_line ();
17488 }
17489
17490 /* Handle a .stab[snd] directive. Ideally these directives would be
17491 implemented in a transparent way, so that removing them would not
17492 have any effect on the generated instructions. However, s_stab
17493 internally changes the section, so in practice we need to decide
17494 now whether the preceding label marks compressed code. We do not
17495 support changing the compression mode of a label after a .stab*
17496 directive, such as in:
17497
17498 foo:
17499 .stabs ...
17500 .set mips16
17501
17502 so the current mode wins. */
17503
17504 static void
17505 s_mips_stab (int type)
17506 {
17507 file_mips_check_options ();
17508 mips_mark_labels ();
17509 s_stab (type);
17510 }
17511
17512 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17513
17514 static void
17515 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17516 {
17517 char *name;
17518 int c;
17519 symbolS *symbolP;
17520 expressionS exp;
17521
17522 c = get_symbol_name (&name);
17523 symbolP = symbol_find_or_make (name);
17524 S_SET_WEAK (symbolP);
17525 *input_line_pointer = c;
17526
17527 SKIP_WHITESPACE_AFTER_NAME ();
17528
17529 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17530 {
17531 if (S_IS_DEFINED (symbolP))
17532 {
17533 as_bad (_("ignoring attempt to redefine symbol %s"),
17534 S_GET_NAME (symbolP));
17535 ignore_rest_of_line ();
17536 return;
17537 }
17538
17539 if (*input_line_pointer == ',')
17540 {
17541 ++input_line_pointer;
17542 SKIP_WHITESPACE ();
17543 }
17544
17545 expression (&exp);
17546 if (exp.X_op != O_symbol)
17547 {
17548 as_bad (_("bad .weakext directive"));
17549 ignore_rest_of_line ();
17550 return;
17551 }
17552 symbol_set_value_expression (symbolP, &exp);
17553 }
17554
17555 demand_empty_rest_of_line ();
17556 }
17557
17558 /* Parse a register string into a number. Called from the ECOFF code
17559 to parse .frame. The argument is non-zero if this is the frame
17560 register, so that we can record it in mips_frame_reg. */
17561
17562 int
17563 tc_get_register (int frame)
17564 {
17565 unsigned int reg;
17566
17567 SKIP_WHITESPACE ();
17568 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17569 reg = 0;
17570 if (frame)
17571 {
17572 mips_frame_reg = reg != 0 ? reg : SP;
17573 mips_frame_reg_valid = 1;
17574 mips_cprestore_valid = 0;
17575 }
17576 return reg;
17577 }
17578
17579 valueT
17580 md_section_align (asection *seg, valueT addr)
17581 {
17582 int align = bfd_get_section_alignment (stdoutput, seg);
17583
17584 /* We don't need to align ELF sections to the full alignment.
17585 However, Irix 5 may prefer that we align them at least to a 16
17586 byte boundary. We don't bother to align the sections if we
17587 are targeted for an embedded system. */
17588 if (strncmp (TARGET_OS, "elf", 3) == 0)
17589 return addr;
17590 if (align > 4)
17591 align = 4;
17592
17593 return ((addr + (1 << align) - 1) & -(1 << align));
17594 }
17595
17596 /* Utility routine, called from above as well. If called while the
17597 input file is still being read, it's only an approximation. (For
17598 example, a symbol may later become defined which appeared to be
17599 undefined earlier.) */
17600
17601 static int
17602 nopic_need_relax (symbolS *sym, int before_relaxing)
17603 {
17604 if (sym == 0)
17605 return 0;
17606
17607 if (g_switch_value > 0)
17608 {
17609 const char *symname;
17610 int change;
17611
17612 /* Find out whether this symbol can be referenced off the $gp
17613 register. It can be if it is smaller than the -G size or if
17614 it is in the .sdata or .sbss section. Certain symbols can
17615 not be referenced off the $gp, although it appears as though
17616 they can. */
17617 symname = S_GET_NAME (sym);
17618 if (symname != (const char *) NULL
17619 && (strcmp (symname, "eprol") == 0
17620 || strcmp (symname, "etext") == 0
17621 || strcmp (symname, "_gp") == 0
17622 || strcmp (symname, "edata") == 0
17623 || strcmp (symname, "_fbss") == 0
17624 || strcmp (symname, "_fdata") == 0
17625 || strcmp (symname, "_ftext") == 0
17626 || strcmp (symname, "end") == 0
17627 || strcmp (symname, "_gp_disp") == 0))
17628 change = 1;
17629 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17630 && (0
17631 #ifndef NO_ECOFF_DEBUGGING
17632 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17633 && (symbol_get_obj (sym)->ecoff_extern_size
17634 <= g_switch_value))
17635 #endif
17636 /* We must defer this decision until after the whole
17637 file has been read, since there might be a .extern
17638 after the first use of this symbol. */
17639 || (before_relaxing
17640 #ifndef NO_ECOFF_DEBUGGING
17641 && symbol_get_obj (sym)->ecoff_extern_size == 0
17642 #endif
17643 && S_GET_VALUE (sym) == 0)
17644 || (S_GET_VALUE (sym) != 0
17645 && S_GET_VALUE (sym) <= g_switch_value)))
17646 change = 0;
17647 else
17648 {
17649 const char *segname;
17650
17651 segname = segment_name (S_GET_SEGMENT (sym));
17652 gas_assert (strcmp (segname, ".lit8") != 0
17653 && strcmp (segname, ".lit4") != 0);
17654 change = (strcmp (segname, ".sdata") != 0
17655 && strcmp (segname, ".sbss") != 0
17656 && strncmp (segname, ".sdata.", 7) != 0
17657 && strncmp (segname, ".sbss.", 6) != 0
17658 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17659 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17660 }
17661 return change;
17662 }
17663 else
17664 /* We are not optimizing for the $gp register. */
17665 return 1;
17666 }
17667
17668
17669 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17670
17671 static bfd_boolean
17672 pic_need_relax (symbolS *sym)
17673 {
17674 asection *symsec;
17675
17676 /* Handle the case of a symbol equated to another symbol. */
17677 while (symbol_equated_reloc_p (sym))
17678 {
17679 symbolS *n;
17680
17681 /* It's possible to get a loop here in a badly written program. */
17682 n = symbol_get_value_expression (sym)->X_add_symbol;
17683 if (n == sym)
17684 break;
17685 sym = n;
17686 }
17687
17688 if (symbol_section_p (sym))
17689 return TRUE;
17690
17691 symsec = S_GET_SEGMENT (sym);
17692
17693 /* This must duplicate the test in adjust_reloc_syms. */
17694 return (!bfd_is_und_section (symsec)
17695 && !bfd_is_abs_section (symsec)
17696 && !bfd_is_com_section (symsec)
17697 /* A global or weak symbol is treated as external. */
17698 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17699 }
17700 \f
17701 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17702 convert a section-relative value VAL to the equivalent PC-relative
17703 value. */
17704
17705 static offsetT
17706 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17707 offsetT val, long stretch)
17708 {
17709 fragS *sym_frag;
17710 addressT addr;
17711
17712 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17713
17714 sym_frag = symbol_get_frag (fragp->fr_symbol);
17715
17716 /* If the relax_marker of the symbol fragment differs from the
17717 relax_marker of this fragment, we have not yet adjusted the
17718 symbol fragment fr_address. We want to add in STRETCH in
17719 order to get a better estimate of the address. This
17720 particularly matters because of the shift bits. */
17721 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17722 {
17723 fragS *f;
17724
17725 /* Adjust stretch for any alignment frag. Note that if have
17726 been expanding the earlier code, the symbol may be
17727 defined in what appears to be an earlier frag. FIXME:
17728 This doesn't handle the fr_subtype field, which specifies
17729 a maximum number of bytes to skip when doing an
17730 alignment. */
17731 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17732 {
17733 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17734 {
17735 if (stretch < 0)
17736 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17737 else
17738 stretch &= ~((1 << (int) f->fr_offset) - 1);
17739 if (stretch == 0)
17740 break;
17741 }
17742 }
17743 if (f != NULL)
17744 val += stretch;
17745 }
17746
17747 addr = fragp->fr_address + fragp->fr_fix;
17748
17749 /* The base address rules are complicated. The base address of
17750 a branch is the following instruction. The base address of a
17751 PC relative load or add is the instruction itself, but if it
17752 is in a delay slot (in which case it can not be extended) use
17753 the address of the instruction whose delay slot it is in. */
17754 if (pcrel_op->include_isa_bit)
17755 {
17756 addr += 2;
17757
17758 /* If we are currently assuming that this frag should be
17759 extended, then the current address is two bytes higher. */
17760 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17761 addr += 2;
17762
17763 /* Ignore the low bit in the target, since it will be set
17764 for a text label. */
17765 val &= -2;
17766 }
17767 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17768 addr -= 4;
17769 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17770 addr -= 2;
17771
17772 val -= addr & -(1 << pcrel_op->align_log2);
17773
17774 return val;
17775 }
17776
17777 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17778 extended opcode. SEC is the section the frag is in. */
17779
17780 static int
17781 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17782 {
17783 const struct mips_int_operand *operand;
17784 offsetT val;
17785 segT symsec;
17786 int type;
17787
17788 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17789 return 0;
17790 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17791 return 1;
17792
17793 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17794 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17795 operand = mips16_immed_operand (type, FALSE);
17796 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17797 || (operand->root.type == OP_PCREL
17798 ? sec != symsec
17799 : !bfd_is_abs_section (symsec)))
17800 return 1;
17801
17802 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17803
17804 if (operand->root.type == OP_PCREL)
17805 {
17806 const struct mips_pcrel_operand *pcrel_op;
17807 offsetT maxtiny;
17808
17809 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17810 return 1;
17811
17812 pcrel_op = (const struct mips_pcrel_operand *) operand;
17813 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17814
17815 /* If any of the shifted bits are set, we must use an extended
17816 opcode. If the address depends on the size of this
17817 instruction, this can lead to a loop, so we arrange to always
17818 use an extended opcode. */
17819 if ((val & ((1 << operand->shift) - 1)) != 0)
17820 {
17821 fragp->fr_subtype =
17822 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17823 return 1;
17824 }
17825
17826 /* If we are about to mark a frag as extended because the value
17827 is precisely the next value above maxtiny, then there is a
17828 chance of an infinite loop as in the following code:
17829 la $4,foo
17830 .skip 1020
17831 .align 2
17832 foo:
17833 In this case when the la is extended, foo is 0x3fc bytes
17834 away, so the la can be shrunk, but then foo is 0x400 away, so
17835 the la must be extended. To avoid this loop, we mark the
17836 frag as extended if it was small, and is about to become
17837 extended with the next value above maxtiny. */
17838 maxtiny = mips_int_operand_max (operand);
17839 if (val == maxtiny + (1 << operand->shift)
17840 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17841 {
17842 fragp->fr_subtype =
17843 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17844 return 1;
17845 }
17846 }
17847
17848 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17849 }
17850
17851 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17852 macro expansion. SEC is the section the frag is in. We only
17853 support PC-relative instructions (LA, DLA, LW, LD) here, in
17854 non-PIC code using 32-bit addressing. */
17855
17856 static int
17857 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17858 {
17859 const struct mips_pcrel_operand *pcrel_op;
17860 const struct mips_int_operand *operand;
17861 offsetT val;
17862 segT symsec;
17863 int type;
17864
17865 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17866
17867 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17868 return 0;
17869 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17870 return 0;
17871
17872 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17873 switch (type)
17874 {
17875 case 'A':
17876 case 'B':
17877 case 'E':
17878 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17879 if (bfd_is_abs_section (symsec))
17880 return 1;
17881 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17882 return 0;
17883 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17884 return 1;
17885
17886 operand = mips16_immed_operand (type, TRUE);
17887 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17888 pcrel_op = (const struct mips_pcrel_operand *) operand;
17889 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17890
17891 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17892
17893 default:
17894 return 0;
17895 }
17896 }
17897
17898 /* Compute the length of a branch sequence, and adjust the
17899 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17900 worst-case length is computed, with UPDATE being used to indicate
17901 whether an unconditional (-1), branch-likely (+1) or regular (0)
17902 branch is to be computed. */
17903 static int
17904 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17905 {
17906 bfd_boolean toofar;
17907 int length;
17908
17909 if (fragp
17910 && S_IS_DEFINED (fragp->fr_symbol)
17911 && !S_IS_WEAK (fragp->fr_symbol)
17912 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17913 {
17914 addressT addr;
17915 offsetT val;
17916
17917 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17918
17919 addr = fragp->fr_address + fragp->fr_fix + 4;
17920
17921 val -= addr;
17922
17923 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17924 }
17925 else
17926 /* If the symbol is not defined or it's in a different segment,
17927 we emit the long sequence. */
17928 toofar = TRUE;
17929
17930 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17931 fragp->fr_subtype
17932 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17933 RELAX_BRANCH_PIC (fragp->fr_subtype),
17934 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17935 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17936 RELAX_BRANCH_LINK (fragp->fr_subtype),
17937 toofar);
17938
17939 length = 4;
17940 if (toofar)
17941 {
17942 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17943 length += 8;
17944
17945 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17946 {
17947 /* Additional space for PIC loading of target address. */
17948 length += 8;
17949 if (mips_opts.isa == ISA_MIPS1)
17950 /* Additional space for $at-stabilizing nop. */
17951 length += 4;
17952 }
17953
17954 /* If branch is conditional. */
17955 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17956 length += 8;
17957 }
17958
17959 return length;
17960 }
17961
17962 /* Get a FRAG's branch instruction delay slot size, either from the
17963 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17964 or SHORT_INSN_SIZE otherwise. */
17965
17966 static int
17967 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17968 {
17969 char *buf = fragp->fr_literal + fragp->fr_fix;
17970
17971 if (al)
17972 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17973 else
17974 return short_insn_size;
17975 }
17976
17977 /* Compute the length of a branch sequence, and adjust the
17978 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17979 worst-case length is computed, with UPDATE being used to indicate
17980 whether an unconditional (-1), or regular (0) branch is to be
17981 computed. */
17982
17983 static int
17984 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17985 {
17986 bfd_boolean insn32 = TRUE;
17987 bfd_boolean nods = TRUE;
17988 bfd_boolean pic = TRUE;
17989 bfd_boolean al = TRUE;
17990 int short_insn_size;
17991 bfd_boolean toofar;
17992 int length;
17993
17994 if (fragp)
17995 {
17996 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17997 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17998 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
17999 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18000 }
18001 short_insn_size = insn32 ? 4 : 2;
18002
18003 if (fragp
18004 && S_IS_DEFINED (fragp->fr_symbol)
18005 && !S_IS_WEAK (fragp->fr_symbol)
18006 && sec == S_GET_SEGMENT (fragp->fr_symbol))
18007 {
18008 addressT addr;
18009 offsetT val;
18010
18011 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
18012 /* Ignore the low bit in the target, since it will be set
18013 for a text label. */
18014 if ((val & 1) != 0)
18015 --val;
18016
18017 addr = fragp->fr_address + fragp->fr_fix + 4;
18018
18019 val -= addr;
18020
18021 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
18022 }
18023 else
18024 /* If the symbol is not defined or it's in a different segment,
18025 we emit the long sequence. */
18026 toofar = TRUE;
18027
18028 if (fragp && update
18029 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18030 fragp->fr_subtype = (toofar
18031 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
18032 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
18033
18034 length = 4;
18035 if (toofar)
18036 {
18037 bfd_boolean compact_known = fragp != NULL;
18038 bfd_boolean compact = FALSE;
18039 bfd_boolean uncond;
18040
18041 if (fragp)
18042 {
18043 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18044 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
18045 }
18046 else
18047 uncond = update < 0;
18048
18049 /* If label is out of range, we turn branch <br>:
18050
18051 <br> label # 4 bytes
18052 0:
18053
18054 into:
18055
18056 j label # 4 bytes
18057 nop # 2/4 bytes if
18058 # compact && (!PIC || insn32)
18059 0:
18060 */
18061 if ((!pic || insn32) && (!compact_known || compact))
18062 length += short_insn_size;
18063
18064 /* If assembling PIC code, we further turn:
18065
18066 j label # 4 bytes
18067
18068 into:
18069
18070 lw/ld at, %got(label)(gp) # 4 bytes
18071 d/addiu at, %lo(label) # 4 bytes
18072 jr/c at # 2/4 bytes
18073 */
18074 if (pic)
18075 length += 4 + short_insn_size;
18076
18077 /* Add an extra nop if the jump has no compact form and we need
18078 to fill the delay slot. */
18079 if ((!pic || al) && nods)
18080 length += (fragp
18081 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
18082 : short_insn_size);
18083
18084 /* If branch <br> is conditional, we prepend negated branch <brneg>:
18085
18086 <brneg> 0f # 4 bytes
18087 nop # 2/4 bytes if !compact
18088 */
18089 if (!uncond)
18090 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
18091 }
18092 else if (nods)
18093 {
18094 /* Add an extra nop to fill the delay slot. */
18095 gas_assert (fragp);
18096 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
18097 }
18098
18099 return length;
18100 }
18101
18102 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
18103 bit accordingly. */
18104
18105 static int
18106 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
18107 {
18108 bfd_boolean toofar;
18109
18110 if (fragp
18111 && S_IS_DEFINED (fragp->fr_symbol)
18112 && !S_IS_WEAK (fragp->fr_symbol)
18113 && sec == S_GET_SEGMENT (fragp->fr_symbol))
18114 {
18115 addressT addr;
18116 offsetT val;
18117 int type;
18118
18119 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
18120 /* Ignore the low bit in the target, since it will be set
18121 for a text label. */
18122 if ((val & 1) != 0)
18123 --val;
18124
18125 /* Assume this is a 2-byte branch. */
18126 addr = fragp->fr_address + fragp->fr_fix + 2;
18127
18128 /* We try to avoid the infinite loop by not adding 2 more bytes for
18129 long branches. */
18130
18131 val -= addr;
18132
18133 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18134 if (type == 'D')
18135 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
18136 else if (type == 'E')
18137 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
18138 else
18139 abort ();
18140 }
18141 else
18142 /* If the symbol is not defined or it's in a different segment,
18143 we emit a normal 32-bit branch. */
18144 toofar = TRUE;
18145
18146 if (fragp && update
18147 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18148 fragp->fr_subtype
18149 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
18150 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
18151
18152 if (toofar)
18153 return 4;
18154
18155 return 2;
18156 }
18157
18158 /* Estimate the size of a frag before relaxing. Unless this is the
18159 mips16, we are not really relaxing here, and the final size is
18160 encoded in the subtype information. For the mips16, we have to
18161 decide whether we are using an extended opcode or not. */
18162
18163 int
18164 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
18165 {
18166 int change;
18167
18168 if (RELAX_BRANCH_P (fragp->fr_subtype))
18169 {
18170
18171 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
18172
18173 return fragp->fr_var;
18174 }
18175
18176 if (RELAX_MIPS16_P (fragp->fr_subtype))
18177 {
18178 /* We don't want to modify the EXTENDED bit here; it might get us
18179 into infinite loops. We change it only in mips_relax_frag(). */
18180 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18181 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
18182 else
18183 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
18184 }
18185
18186 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18187 {
18188 int length = 4;
18189
18190 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18191 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
18192 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18193 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
18194 fragp->fr_var = length;
18195
18196 return length;
18197 }
18198
18199 if (mips_pic == VXWORKS_PIC)
18200 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
18201 change = 0;
18202 else if (RELAX_PIC (fragp->fr_subtype))
18203 change = pic_need_relax (fragp->fr_symbol);
18204 else
18205 change = nopic_need_relax (fragp->fr_symbol, 0);
18206
18207 if (change)
18208 {
18209 fragp->fr_subtype |= RELAX_USE_SECOND;
18210 return -RELAX_FIRST (fragp->fr_subtype);
18211 }
18212 else
18213 return -RELAX_SECOND (fragp->fr_subtype);
18214 }
18215
18216 /* This is called to see whether a reloc against a defined symbol
18217 should be converted into a reloc against a section. */
18218
18219 int
18220 mips_fix_adjustable (fixS *fixp)
18221 {
18222 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
18223 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18224 return 0;
18225
18226 if (fixp->fx_addsy == NULL)
18227 return 1;
18228
18229 /* Allow relocs used for EH tables. */
18230 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
18231 return 1;
18232
18233 /* If symbol SYM is in a mergeable section, relocations of the form
18234 SYM + 0 can usually be made section-relative. The mergeable data
18235 is then identified by the section offset rather than by the symbol.
18236
18237 However, if we're generating REL LO16 relocations, the offset is split
18238 between the LO16 and partnering high part relocation. The linker will
18239 need to recalculate the complete offset in order to correctly identify
18240 the merge data.
18241
18242 The linker has traditionally not looked for the partnering high part
18243 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
18244 placed anywhere. Rather than break backwards compatibility by changing
18245 this, it seems better not to force the issue, and instead keep the
18246 original symbol. This will work with either linker behavior. */
18247 if ((lo16_reloc_p (fixp->fx_r_type)
18248 || reloc_needs_lo_p (fixp->fx_r_type))
18249 && HAVE_IN_PLACE_ADDENDS
18250 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
18251 return 0;
18252
18253 /* There is no place to store an in-place offset for JALR relocations. */
18254 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
18255 return 0;
18256
18257 /* Likewise an in-range offset of limited PC-relative relocations may
18258 overflow the in-place relocatable field if recalculated against the
18259 start address of the symbol's containing section.
18260
18261 Also, PC relative relocations for MIPS R6 need to be symbol rather than
18262 section relative to allow linker relaxations to be performed later on. */
18263 if (limited_pcrel_reloc_p (fixp->fx_r_type)
18264 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
18265 return 0;
18266
18267 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
18268 to a floating-point stub. The same is true for non-R_MIPS16_26
18269 relocations against MIPS16 functions; in this case, the stub becomes
18270 the function's canonical address.
18271
18272 Floating-point stubs are stored in unique .mips16.call.* or
18273 .mips16.fn.* sections. If a stub T for function F is in section S,
18274 the first relocation in section S must be against F; this is how the
18275 linker determines the target function. All relocations that might
18276 resolve to T must also be against F. We therefore have the following
18277 restrictions, which are given in an intentionally-redundant way:
18278
18279 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
18280 symbols.
18281
18282 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
18283 if that stub might be used.
18284
18285 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
18286 symbols.
18287
18288 4. We cannot reduce a stub's relocations against MIPS16 symbols if
18289 that stub might be used.
18290
18291 There is a further restriction:
18292
18293 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
18294 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
18295 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
18296 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
18297 against MIPS16 or microMIPS symbols because we need to keep the
18298 MIPS16 or microMIPS symbol for the purpose of mode mismatch
18299 detection and JAL or BAL to JALX instruction conversion in the
18300 linker.
18301
18302 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
18303 against a MIPS16 symbol. We deal with (5) by additionally leaving
18304 alone any jump and branch relocations against a microMIPS symbol.
18305
18306 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18307 relocation against some symbol R, no relocation against R may be
18308 reduced. (Note that this deals with (2) as well as (1) because
18309 relocations against global symbols will never be reduced on ELF
18310 targets.) This approach is a little simpler than trying to detect
18311 stub sections, and gives the "all or nothing" per-symbol consistency
18312 that we have for MIPS16 symbols. */
18313 if (fixp->fx_subsy == NULL
18314 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
18315 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
18316 && (jmp_reloc_p (fixp->fx_r_type)
18317 || b_reloc_p (fixp->fx_r_type)))
18318 || *symbol_get_tc (fixp->fx_addsy)))
18319 return 0;
18320
18321 return 1;
18322 }
18323
18324 /* Translate internal representation of relocation info to BFD target
18325 format. */
18326
18327 arelent **
18328 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
18329 {
18330 static arelent *retval[4];
18331 arelent *reloc;
18332 bfd_reloc_code_real_type code;
18333
18334 memset (retval, 0, sizeof(retval));
18335 reloc = retval[0] = XCNEW (arelent);
18336 reloc->sym_ptr_ptr = XNEW (asymbol *);
18337 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18338 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18339
18340 if (fixp->fx_pcrel)
18341 {
18342 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
18343 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
18344 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18345 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
18346 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
18347 || fixp->fx_r_type == BFD_RELOC_32_PCREL
18348 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
18349 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
18350 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
18351 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
18352 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
18353 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
18354
18355 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18356 Relocations want only the symbol offset. */
18357 switch (fixp->fx_r_type)
18358 {
18359 case BFD_RELOC_MIPS_18_PCREL_S3:
18360 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
18361 break;
18362 default:
18363 reloc->addend = fixp->fx_addnumber + reloc->address;
18364 break;
18365 }
18366 }
18367 else if (HAVE_IN_PLACE_ADDENDS
18368 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18369 && (read_compressed_insn (fixp->fx_frag->fr_literal
18370 + fixp->fx_where, 4) >> 26) == 0x3c)
18371 {
18372 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18373 addend accordingly. */
18374 reloc->addend = fixp->fx_addnumber >> 1;
18375 }
18376 else
18377 reloc->addend = fixp->fx_addnumber;
18378
18379 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18380 entry to be used in the relocation's section offset. */
18381 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18382 {
18383 reloc->address = reloc->addend;
18384 reloc->addend = 0;
18385 }
18386
18387 code = fixp->fx_r_type;
18388
18389 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18390 if (reloc->howto == NULL)
18391 {
18392 as_bad_where (fixp->fx_file, fixp->fx_line,
18393 _("cannot represent %s relocation in this object file"
18394 " format"),
18395 bfd_get_reloc_code_name (code));
18396 retval[0] = NULL;
18397 }
18398
18399 return retval;
18400 }
18401
18402 /* Relax a machine dependent frag. This returns the amount by which
18403 the current size of the frag should change. */
18404
18405 int
18406 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18407 {
18408 if (RELAX_BRANCH_P (fragp->fr_subtype))
18409 {
18410 offsetT old_var = fragp->fr_var;
18411
18412 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18413
18414 return fragp->fr_var - old_var;
18415 }
18416
18417 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18418 {
18419 offsetT old_var = fragp->fr_var;
18420 offsetT new_var = 4;
18421
18422 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18423 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18424 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18425 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18426 fragp->fr_var = new_var;
18427
18428 return new_var - old_var;
18429 }
18430
18431 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18432 return 0;
18433
18434 if (!mips16_extended_frag (fragp, sec, stretch))
18435 {
18436 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18437 {
18438 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18439 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
18440 }
18441 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18442 {
18443 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18444 return -2;
18445 }
18446 else
18447 return 0;
18448 }
18449 else if (!mips16_macro_frag (fragp, sec, stretch))
18450 {
18451 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18452 {
18453 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18454 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18455 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
18456 }
18457 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18458 {
18459 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18460 return 2;
18461 }
18462 else
18463 return 0;
18464 }
18465 else
18466 {
18467 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18468 return 0;
18469 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18470 {
18471 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18472 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18473 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
18474 }
18475 else
18476 {
18477 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18478 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
18479 }
18480 }
18481
18482 return 0;
18483 }
18484
18485 /* Convert a machine dependent frag. */
18486
18487 void
18488 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18489 {
18490 if (RELAX_BRANCH_P (fragp->fr_subtype))
18491 {
18492 char *buf;
18493 unsigned long insn;
18494 fixS *fixp;
18495
18496 buf = fragp->fr_literal + fragp->fr_fix;
18497 insn = read_insn (buf);
18498
18499 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18500 {
18501 /* We generate a fixup instead of applying it right now
18502 because, if there are linker relaxations, we're going to
18503 need the relocations. */
18504 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18505 fragp->fr_symbol, fragp->fr_offset,
18506 TRUE, BFD_RELOC_16_PCREL_S2);
18507 fixp->fx_file = fragp->fr_file;
18508 fixp->fx_line = fragp->fr_line;
18509
18510 buf = write_insn (buf, insn);
18511 }
18512 else
18513 {
18514 int i;
18515
18516 as_warn_where (fragp->fr_file, fragp->fr_line,
18517 _("relaxed out-of-range branch into a jump"));
18518
18519 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18520 goto uncond;
18521
18522 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18523 {
18524 /* Reverse the branch. */
18525 switch ((insn >> 28) & 0xf)
18526 {
18527 case 4:
18528 if ((insn & 0xff000000) == 0x47000000
18529 || (insn & 0xff600000) == 0x45600000)
18530 {
18531 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18532 reversed by tweaking bit 23. */
18533 insn ^= 0x00800000;
18534 }
18535 else
18536 {
18537 /* bc[0-3][tf]l? instructions can have the condition
18538 reversed by tweaking a single TF bit, and their
18539 opcodes all have 0x4???????. */
18540 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18541 insn ^= 0x00010000;
18542 }
18543 break;
18544
18545 case 0:
18546 /* bltz 0x04000000 bgez 0x04010000
18547 bltzal 0x04100000 bgezal 0x04110000 */
18548 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18549 insn ^= 0x00010000;
18550 break;
18551
18552 case 1:
18553 /* beq 0x10000000 bne 0x14000000
18554 blez 0x18000000 bgtz 0x1c000000 */
18555 insn ^= 0x04000000;
18556 break;
18557
18558 default:
18559 abort ();
18560 }
18561 }
18562
18563 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18564 {
18565 /* Clear the and-link bit. */
18566 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18567
18568 /* bltzal 0x04100000 bgezal 0x04110000
18569 bltzall 0x04120000 bgezall 0x04130000 */
18570 insn &= ~0x00100000;
18571 }
18572
18573 /* Branch over the branch (if the branch was likely) or the
18574 full jump (not likely case). Compute the offset from the
18575 current instruction to branch to. */
18576 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18577 i = 16;
18578 else
18579 {
18580 /* How many bytes in instructions we've already emitted? */
18581 i = buf - fragp->fr_literal - fragp->fr_fix;
18582 /* How many bytes in instructions from here to the end? */
18583 i = fragp->fr_var - i;
18584 }
18585 /* Convert to instruction count. */
18586 i >>= 2;
18587 /* Branch counts from the next instruction. */
18588 i--;
18589 insn |= i;
18590 /* Branch over the jump. */
18591 buf = write_insn (buf, insn);
18592
18593 /* nop */
18594 buf = write_insn (buf, 0);
18595
18596 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18597 {
18598 /* beql $0, $0, 2f */
18599 insn = 0x50000000;
18600 /* Compute the PC offset from the current instruction to
18601 the end of the variable frag. */
18602 /* How many bytes in instructions we've already emitted? */
18603 i = buf - fragp->fr_literal - fragp->fr_fix;
18604 /* How many bytes in instructions from here to the end? */
18605 i = fragp->fr_var - i;
18606 /* Convert to instruction count. */
18607 i >>= 2;
18608 /* Don't decrement i, because we want to branch over the
18609 delay slot. */
18610 insn |= i;
18611
18612 buf = write_insn (buf, insn);
18613 buf = write_insn (buf, 0);
18614 }
18615
18616 uncond:
18617 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18618 {
18619 /* j or jal. */
18620 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18621 ? 0x0c000000 : 0x08000000);
18622
18623 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18624 fragp->fr_symbol, fragp->fr_offset,
18625 FALSE, BFD_RELOC_MIPS_JMP);
18626 fixp->fx_file = fragp->fr_file;
18627 fixp->fx_line = fragp->fr_line;
18628
18629 buf = write_insn (buf, insn);
18630 }
18631 else
18632 {
18633 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18634
18635 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18636 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18637 insn |= at << OP_SH_RT;
18638
18639 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18640 fragp->fr_symbol, fragp->fr_offset,
18641 FALSE, BFD_RELOC_MIPS_GOT16);
18642 fixp->fx_file = fragp->fr_file;
18643 fixp->fx_line = fragp->fr_line;
18644
18645 buf = write_insn (buf, insn);
18646
18647 if (mips_opts.isa == ISA_MIPS1)
18648 /* nop */
18649 buf = write_insn (buf, 0);
18650
18651 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18652 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18653 insn |= at << OP_SH_RS | at << OP_SH_RT;
18654
18655 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18656 fragp->fr_symbol, fragp->fr_offset,
18657 FALSE, BFD_RELOC_LO16);
18658 fixp->fx_file = fragp->fr_file;
18659 fixp->fx_line = fragp->fr_line;
18660
18661 buf = write_insn (buf, insn);
18662
18663 /* j(al)r $at. */
18664 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18665 insn = 0x0000f809;
18666 else
18667 insn = 0x00000008;
18668 insn |= at << OP_SH_RS;
18669
18670 buf = write_insn (buf, insn);
18671 }
18672 }
18673
18674 fragp->fr_fix += fragp->fr_var;
18675 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18676 return;
18677 }
18678
18679 /* Relax microMIPS branches. */
18680 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18681 {
18682 char *buf = fragp->fr_literal + fragp->fr_fix;
18683 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18684 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18685 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18686 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18687 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18688 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18689 bfd_boolean short_ds;
18690 unsigned long insn;
18691 fixS *fixp;
18692
18693 fragp->fr_fix += fragp->fr_var;
18694
18695 /* Handle 16-bit branches that fit or are forced to fit. */
18696 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18697 {
18698 /* We generate a fixup instead of applying it right now,
18699 because if there is linker relaxation, we're going to
18700 need the relocations. */
18701 switch (type)
18702 {
18703 case 'D':
18704 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18705 fragp->fr_symbol, fragp->fr_offset,
18706 TRUE, BFD_RELOC_MICROMIPS_10_PCREL_S1);
18707 break;
18708 case 'E':
18709 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18710 fragp->fr_symbol, fragp->fr_offset,
18711 TRUE, BFD_RELOC_MICROMIPS_7_PCREL_S1);
18712 break;
18713 default:
18714 abort ();
18715 }
18716
18717 fixp->fx_file = fragp->fr_file;
18718 fixp->fx_line = fragp->fr_line;
18719
18720 /* These relocations can have an addend that won't fit in
18721 2 octets. */
18722 fixp->fx_no_overflow = 1;
18723
18724 return;
18725 }
18726
18727 /* Handle 32-bit branches that fit or are forced to fit. */
18728 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18729 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18730 {
18731 /* We generate a fixup instead of applying it right now,
18732 because if there is linker relaxation, we're going to
18733 need the relocations. */
18734 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18735 fragp->fr_symbol, fragp->fr_offset,
18736 TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
18737 fixp->fx_file = fragp->fr_file;
18738 fixp->fx_line = fragp->fr_line;
18739
18740 if (type == 0)
18741 {
18742 insn = read_compressed_insn (buf, 4);
18743 buf += 4;
18744
18745 if (nods)
18746 {
18747 /* Check the short-delay-slot bit. */
18748 if (!al || (insn & 0x02000000) != 0)
18749 buf = write_compressed_insn (buf, 0x0c00, 2);
18750 else
18751 buf = write_compressed_insn (buf, 0x00000000, 4);
18752 }
18753
18754 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18755 return;
18756 }
18757 }
18758
18759 /* Relax 16-bit branches to 32-bit branches. */
18760 if (type != 0)
18761 {
18762 insn = read_compressed_insn (buf, 2);
18763
18764 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18765 insn = 0x94000000; /* beq */
18766 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18767 {
18768 unsigned long regno;
18769
18770 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18771 regno = micromips_to_32_reg_d_map [regno];
18772 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18773 insn |= regno << MICROMIPSOP_SH_RS;
18774 }
18775 else
18776 abort ();
18777
18778 /* Nothing else to do, just write it out. */
18779 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18780 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18781 {
18782 buf = write_compressed_insn (buf, insn, 4);
18783 if (nods)
18784 buf = write_compressed_insn (buf, 0x0c00, 2);
18785 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18786 return;
18787 }
18788 }
18789 else
18790 insn = read_compressed_insn (buf, 4);
18791
18792 /* Relax 32-bit branches to a sequence of instructions. */
18793 as_warn_where (fragp->fr_file, fragp->fr_line,
18794 _("relaxed out-of-range branch into a jump"));
18795
18796 /* Set the short-delay-slot bit. */
18797 short_ds = !al || (insn & 0x02000000) != 0;
18798
18799 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18800 {
18801 symbolS *l;
18802
18803 /* Reverse the branch. */
18804 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18805 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18806 insn ^= 0x20000000;
18807 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18808 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18809 || (insn & 0xffe00000) == 0x40800000 /* blez */
18810 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18811 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18812 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18813 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18814 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18815 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18816 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18817 insn ^= 0x00400000;
18818 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18819 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18820 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18821 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18822 insn ^= 0x00200000;
18823 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18824 BNZ.df */
18825 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18826 BNZ.V */
18827 insn ^= 0x00800000;
18828 else
18829 abort ();
18830
18831 if (al)
18832 {
18833 /* Clear the and-link and short-delay-slot bits. */
18834 gas_assert ((insn & 0xfda00000) == 0x40200000);
18835
18836 /* bltzal 0x40200000 bgezal 0x40600000 */
18837 /* bltzals 0x42200000 bgezals 0x42600000 */
18838 insn &= ~0x02200000;
18839 }
18840
18841 /* Make a label at the end for use with the branch. */
18842 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18843 micromips_label_inc ();
18844 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18845
18846 /* Refer to it. */
18847 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18848 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18849 fixp->fx_file = fragp->fr_file;
18850 fixp->fx_line = fragp->fr_line;
18851
18852 /* Branch over the jump. */
18853 buf = write_compressed_insn (buf, insn, 4);
18854
18855 if (!compact)
18856 {
18857 /* nop */
18858 if (insn32)
18859 buf = write_compressed_insn (buf, 0x00000000, 4);
18860 else
18861 buf = write_compressed_insn (buf, 0x0c00, 2);
18862 }
18863 }
18864
18865 if (!pic)
18866 {
18867 unsigned long jal = (short_ds || nods
18868 ? 0x74000000 : 0xf4000000); /* jal/s */
18869
18870 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18871 insn = al ? jal : 0xd4000000;
18872
18873 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18874 fragp->fr_symbol, fragp->fr_offset,
18875 FALSE, BFD_RELOC_MICROMIPS_JMP);
18876 fixp->fx_file = fragp->fr_file;
18877 fixp->fx_line = fragp->fr_line;
18878
18879 buf = write_compressed_insn (buf, insn, 4);
18880
18881 if (compact || nods)
18882 {
18883 /* nop */
18884 if (insn32)
18885 buf = write_compressed_insn (buf, 0x00000000, 4);
18886 else
18887 buf = write_compressed_insn (buf, 0x0c00, 2);
18888 }
18889 }
18890 else
18891 {
18892 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18893
18894 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18895 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18896 insn |= at << MICROMIPSOP_SH_RT;
18897
18898 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18899 fragp->fr_symbol, fragp->fr_offset,
18900 FALSE, BFD_RELOC_MICROMIPS_GOT16);
18901 fixp->fx_file = fragp->fr_file;
18902 fixp->fx_line = fragp->fr_line;
18903
18904 buf = write_compressed_insn (buf, insn, 4);
18905
18906 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18907 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18908 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18909
18910 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18911 fragp->fr_symbol, fragp->fr_offset,
18912 FALSE, BFD_RELOC_MICROMIPS_LO16);
18913 fixp->fx_file = fragp->fr_file;
18914 fixp->fx_line = fragp->fr_line;
18915
18916 buf = write_compressed_insn (buf, insn, 4);
18917
18918 if (insn32)
18919 {
18920 /* jr/jalr $at */
18921 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18922 insn |= at << MICROMIPSOP_SH_RS;
18923
18924 buf = write_compressed_insn (buf, insn, 4);
18925
18926 if (compact || nods)
18927 /* nop */
18928 buf = write_compressed_insn (buf, 0x00000000, 4);
18929 }
18930 else
18931 {
18932 /* jr/jrc/jalr/jalrs $at */
18933 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18934 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18935
18936 insn = al ? jalr : jr;
18937 insn |= at << MICROMIPSOP_SH_MJ;
18938
18939 buf = write_compressed_insn (buf, insn, 2);
18940 if (al && nods)
18941 {
18942 /* nop */
18943 if (short_ds)
18944 buf = write_compressed_insn (buf, 0x0c00, 2);
18945 else
18946 buf = write_compressed_insn (buf, 0x00000000, 4);
18947 }
18948 }
18949 }
18950
18951 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18952 return;
18953 }
18954
18955 if (RELAX_MIPS16_P (fragp->fr_subtype))
18956 {
18957 int type;
18958 const struct mips_int_operand *operand;
18959 offsetT val;
18960 char *buf;
18961 unsigned int user_length;
18962 bfd_boolean need_reloc;
18963 unsigned long insn;
18964 bfd_boolean mac;
18965 bfd_boolean ext;
18966 segT symsec;
18967
18968 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18969 operand = mips16_immed_operand (type, FALSE);
18970
18971 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
18972 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18973 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18974
18975 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18976 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18977 || (operand->root.type == OP_PCREL && !mac
18978 ? asec != symsec
18979 : !bfd_is_abs_section (symsec)));
18980
18981 if (operand->root.type == OP_PCREL && !mac)
18982 {
18983 const struct mips_pcrel_operand *pcrel_op;
18984
18985 pcrel_op = (const struct mips_pcrel_operand *) operand;
18986
18987 if (pcrel_op->include_isa_bit && !need_reloc)
18988 {
18989 if (!mips_ignore_branch_isa
18990 && !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18991 as_bad_where (fragp->fr_file, fragp->fr_line,
18992 _("branch to a symbol in another ISA mode"));
18993 else if ((fragp->fr_offset & 0x1) != 0)
18994 as_bad_where (fragp->fr_file, fragp->fr_line,
18995 _("branch to misaligned address (0x%lx)"),
18996 (long) val);
18997 }
18998
18999 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
19000
19001 /* Make sure the section winds up with the alignment we have
19002 assumed. */
19003 if (operand->shift > 0)
19004 record_alignment (asec, operand->shift);
19005 }
19006
19007 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
19008 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
19009 {
19010 if (mac)
19011 as_warn_where (fragp->fr_file, fragp->fr_line,
19012 _("macro instruction expanded into multiple "
19013 "instructions in a branch delay slot"));
19014 else if (ext)
19015 as_warn_where (fragp->fr_file, fragp->fr_line,
19016 _("extended instruction in a branch delay slot"));
19017 }
19018 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
19019 as_warn_where (fragp->fr_file, fragp->fr_line,
19020 _("macro instruction expanded into multiple "
19021 "instructions"));
19022
19023 buf = fragp->fr_literal + fragp->fr_fix;
19024
19025 insn = read_compressed_insn (buf, 2);
19026 if (ext)
19027 insn |= MIPS16_EXTEND;
19028
19029 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
19030 user_length = 4;
19031 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
19032 user_length = 2;
19033 else
19034 user_length = 0;
19035
19036 if (mac)
19037 {
19038 unsigned long reg;
19039 unsigned long new;
19040 unsigned long op;
19041 bfd_boolean e2;
19042
19043 gas_assert (type == 'A' || type == 'B' || type == 'E');
19044 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
19045
19046 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
19047
19048 if (need_reloc)
19049 {
19050 fixS *fixp;
19051
19052 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
19053
19054 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
19055 fragp->fr_symbol, fragp->fr_offset,
19056 FALSE, BFD_RELOC_MIPS16_HI16_S);
19057 fixp->fx_file = fragp->fr_file;
19058 fixp->fx_line = fragp->fr_line;
19059
19060 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
19061 fragp->fr_symbol, fragp->fr_offset,
19062 FALSE, BFD_RELOC_MIPS16_LO16);
19063 fixp->fx_file = fragp->fr_file;
19064 fixp->fx_line = fragp->fr_line;
19065
19066 val = 0;
19067 }
19068
19069 switch (insn & 0xf800)
19070 {
19071 case 0x0800: /* ADDIU */
19072 reg = (insn >> 8) & 0x7;
19073 op = 0xf0004800 | (reg << 8);
19074 break;
19075 case 0xb000: /* LW */
19076 reg = (insn >> 8) & 0x7;
19077 op = 0xf0009800 | (reg << 8) | (reg << 5);
19078 break;
19079 case 0xf800: /* I64 */
19080 reg = (insn >> 5) & 0x7;
19081 switch (insn & 0x0700)
19082 {
19083 case 0x0400: /* LD */
19084 op = 0xf0003800 | (reg << 8) | (reg << 5);
19085 break;
19086 case 0x0600: /* DADDIU */
19087 op = 0xf000fd00 | (reg << 5);
19088 break;
19089 default:
19090 abort ();
19091 }
19092 break;
19093 default:
19094 abort ();
19095 }
19096
19097 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
19098 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
19099 buf = write_compressed_insn (buf, new, 4);
19100 if (!e2)
19101 {
19102 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
19103 buf = write_compressed_insn (buf, new, 4);
19104 }
19105 op |= mips16_immed_extend (val, 16);
19106 buf = write_compressed_insn (buf, op, 4);
19107
19108 fragp->fr_fix += e2 ? 8 : 12;
19109 }
19110 else
19111 {
19112 unsigned int length = ext ? 4 : 2;
19113
19114 if (need_reloc)
19115 {
19116 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
19117 fixS *fixp;
19118
19119 switch (type)
19120 {
19121 case 'p':
19122 case 'q':
19123 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
19124 break;
19125 default:
19126 break;
19127 }
19128 if (mac || reloc == BFD_RELOC_NONE)
19129 as_bad_where (fragp->fr_file, fragp->fr_line,
19130 _("unsupported relocation"));
19131 else if (ext)
19132 {
19133 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
19134 fragp->fr_symbol, fragp->fr_offset,
19135 TRUE, reloc);
19136 fixp->fx_file = fragp->fr_file;
19137 fixp->fx_line = fragp->fr_line;
19138 }
19139 else
19140 as_bad_where (fragp->fr_file, fragp->fr_line,
19141 _("invalid unextended operand value"));
19142 }
19143 else
19144 mips16_immed (fragp->fr_file, fragp->fr_line, type,
19145 BFD_RELOC_UNUSED, val, user_length, &insn);
19146
19147 gas_assert (mips16_opcode_length (insn) == length);
19148 write_compressed_insn (buf, insn, length);
19149 fragp->fr_fix += length;
19150 }
19151 }
19152 else
19153 {
19154 relax_substateT subtype = fragp->fr_subtype;
19155 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
19156 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
19157 unsigned int first, second;
19158 fixS *fixp;
19159
19160 first = RELAX_FIRST (subtype);
19161 second = RELAX_SECOND (subtype);
19162 fixp = (fixS *) fragp->fr_opcode;
19163
19164 /* If the delay slot chosen does not match the size of the instruction,
19165 then emit a warning. */
19166 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
19167 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
19168 {
19169 relax_substateT s;
19170 const char *msg;
19171
19172 s = subtype & (RELAX_DELAY_SLOT_16BIT
19173 | RELAX_DELAY_SLOT_SIZE_FIRST
19174 | RELAX_DELAY_SLOT_SIZE_SECOND);
19175 msg = macro_warning (s);
19176 if (msg != NULL)
19177 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
19178 subtype &= ~s;
19179 }
19180
19181 /* Possibly emit a warning if we've chosen the longer option. */
19182 if (use_second == second_longer)
19183 {
19184 relax_substateT s;
19185 const char *msg;
19186
19187 s = (subtype
19188 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
19189 msg = macro_warning (s);
19190 if (msg != NULL)
19191 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
19192 subtype &= ~s;
19193 }
19194
19195 /* Go through all the fixups for the first sequence. Disable them
19196 (by marking them as done) if we're going to use the second
19197 sequence instead. */
19198 while (fixp
19199 && fixp->fx_frag == fragp
19200 && fixp->fx_where + second < fragp->fr_fix)
19201 {
19202 if (subtype & RELAX_USE_SECOND)
19203 fixp->fx_done = 1;
19204 fixp = fixp->fx_next;
19205 }
19206
19207 /* Go through the fixups for the second sequence. Disable them if
19208 we're going to use the first sequence, otherwise adjust their
19209 addresses to account for the relaxation. */
19210 while (fixp && fixp->fx_frag == fragp)
19211 {
19212 if (subtype & RELAX_USE_SECOND)
19213 fixp->fx_where -= first;
19214 else
19215 fixp->fx_done = 1;
19216 fixp = fixp->fx_next;
19217 }
19218
19219 /* Now modify the frag contents. */
19220 if (subtype & RELAX_USE_SECOND)
19221 {
19222 char *start;
19223
19224 start = fragp->fr_literal + fragp->fr_fix - first - second;
19225 memmove (start, start + first, second);
19226 fragp->fr_fix -= first;
19227 }
19228 else
19229 fragp->fr_fix -= second;
19230 }
19231 }
19232
19233 /* This function is called after the relocs have been generated.
19234 We've been storing mips16 text labels as odd. Here we convert them
19235 back to even for the convenience of the debugger. */
19236
19237 void
19238 mips_frob_file_after_relocs (void)
19239 {
19240 asymbol **syms;
19241 unsigned int count, i;
19242
19243 syms = bfd_get_outsymbols (stdoutput);
19244 count = bfd_get_symcount (stdoutput);
19245 for (i = 0; i < count; i++, syms++)
19246 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
19247 && ((*syms)->value & 1) != 0)
19248 {
19249 (*syms)->value &= ~1;
19250 /* If the symbol has an odd size, it was probably computed
19251 incorrectly, so adjust that as well. */
19252 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
19253 ++elf_symbol (*syms)->internal_elf_sym.st_size;
19254 }
19255 }
19256
19257 /* This function is called whenever a label is defined, including fake
19258 labels instantiated off the dot special symbol. It is used when
19259 handling branch delays; if a branch has a label, we assume we cannot
19260 move it. This also bumps the value of the symbol by 1 in compressed
19261 code. */
19262
19263 static void
19264 mips_record_label (symbolS *sym)
19265 {
19266 segment_info_type *si = seg_info (now_seg);
19267 struct insn_label_list *l;
19268
19269 if (free_insn_labels == NULL)
19270 l = XNEW (struct insn_label_list);
19271 else
19272 {
19273 l = free_insn_labels;
19274 free_insn_labels = l->next;
19275 }
19276
19277 l->label = sym;
19278 l->next = si->label_list;
19279 si->label_list = l;
19280 }
19281
19282 /* This function is called as tc_frob_label() whenever a label is defined
19283 and adds a DWARF-2 record we only want for true labels. */
19284
19285 void
19286 mips_define_label (symbolS *sym)
19287 {
19288 mips_record_label (sym);
19289 dwarf2_emit_label (sym);
19290 }
19291
19292 /* This function is called by tc_new_dot_label whenever a new dot symbol
19293 is defined. */
19294
19295 void
19296 mips_add_dot_label (symbolS *sym)
19297 {
19298 mips_record_label (sym);
19299 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
19300 mips_compressed_mark_label (sym);
19301 }
19302 \f
19303 /* Converting ASE flags from internal to .MIPS.abiflags values. */
19304 static unsigned int
19305 mips_convert_ase_flags (int ase)
19306 {
19307 unsigned int ext_ases = 0;
19308
19309 if (ase & ASE_DSP)
19310 ext_ases |= AFL_ASE_DSP;
19311 if (ase & ASE_DSPR2)
19312 ext_ases |= AFL_ASE_DSPR2;
19313 if (ase & ASE_DSPR3)
19314 ext_ases |= AFL_ASE_DSPR3;
19315 if (ase & ASE_EVA)
19316 ext_ases |= AFL_ASE_EVA;
19317 if (ase & ASE_MCU)
19318 ext_ases |= AFL_ASE_MCU;
19319 if (ase & ASE_MDMX)
19320 ext_ases |= AFL_ASE_MDMX;
19321 if (ase & ASE_MIPS3D)
19322 ext_ases |= AFL_ASE_MIPS3D;
19323 if (ase & ASE_MT)
19324 ext_ases |= AFL_ASE_MT;
19325 if (ase & ASE_SMARTMIPS)
19326 ext_ases |= AFL_ASE_SMARTMIPS;
19327 if (ase & ASE_VIRT)
19328 ext_ases |= AFL_ASE_VIRT;
19329 if (ase & ASE_MSA)
19330 ext_ases |= AFL_ASE_MSA;
19331 if (ase & ASE_XPA)
19332 ext_ases |= AFL_ASE_XPA;
19333 if (ase & ASE_MIPS16E2)
19334 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
19335 if (ase & ASE_CRC)
19336 ext_ases |= AFL_ASE_CRC;
19337 if (ase & ASE_GINV)
19338 ext_ases |= AFL_ASE_GINV;
19339 if (ase & ASE_LOONGSON_MMI)
19340 ext_ases |= AFL_ASE_LOONGSON_MMI;
19341 if (ase & ASE_LOONGSON_CAM)
19342 ext_ases |= AFL_ASE_LOONGSON_CAM;
19343 if (ase & ASE_LOONGSON_EXT)
19344 ext_ases |= AFL_ASE_LOONGSON_EXT;
19345 if (ase & ASE_LOONGSON_EXT2)
19346 ext_ases |= AFL_ASE_LOONGSON_EXT2;
19347
19348 return ext_ases;
19349 }
19350 /* Some special processing for a MIPS ELF file. */
19351
19352 void
19353 mips_elf_final_processing (void)
19354 {
19355 int fpabi;
19356 Elf_Internal_ABIFlags_v0 flags;
19357
19358 flags.version = 0;
19359 flags.isa_rev = 0;
19360 switch (file_mips_opts.isa)
19361 {
19362 case INSN_ISA1:
19363 flags.isa_level = 1;
19364 break;
19365 case INSN_ISA2:
19366 flags.isa_level = 2;
19367 break;
19368 case INSN_ISA3:
19369 flags.isa_level = 3;
19370 break;
19371 case INSN_ISA4:
19372 flags.isa_level = 4;
19373 break;
19374 case INSN_ISA5:
19375 flags.isa_level = 5;
19376 break;
19377 case INSN_ISA32:
19378 flags.isa_level = 32;
19379 flags.isa_rev = 1;
19380 break;
19381 case INSN_ISA32R2:
19382 flags.isa_level = 32;
19383 flags.isa_rev = 2;
19384 break;
19385 case INSN_ISA32R3:
19386 flags.isa_level = 32;
19387 flags.isa_rev = 3;
19388 break;
19389 case INSN_ISA32R5:
19390 flags.isa_level = 32;
19391 flags.isa_rev = 5;
19392 break;
19393 case INSN_ISA32R6:
19394 flags.isa_level = 32;
19395 flags.isa_rev = 6;
19396 break;
19397 case INSN_ISA64:
19398 flags.isa_level = 64;
19399 flags.isa_rev = 1;
19400 break;
19401 case INSN_ISA64R2:
19402 flags.isa_level = 64;
19403 flags.isa_rev = 2;
19404 break;
19405 case INSN_ISA64R3:
19406 flags.isa_level = 64;
19407 flags.isa_rev = 3;
19408 break;
19409 case INSN_ISA64R5:
19410 flags.isa_level = 64;
19411 flags.isa_rev = 5;
19412 break;
19413 case INSN_ISA64R6:
19414 flags.isa_level = 64;
19415 flags.isa_rev = 6;
19416 break;
19417 }
19418
19419 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19420 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19421 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19422 : (file_mips_opts.fp == 64) ? AFL_REG_64
19423 : AFL_REG_32;
19424 flags.cpr2_size = AFL_REG_NONE;
19425 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19426 Tag_GNU_MIPS_ABI_FP);
19427 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19428 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19429 if (file_ase_mips16)
19430 flags.ases |= AFL_ASE_MIPS16;
19431 if (file_ase_micromips)
19432 flags.ases |= AFL_ASE_MICROMIPS;
19433 flags.flags1 = 0;
19434 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19435 || file_mips_opts.fp == 64)
19436 && file_mips_opts.oddspreg)
19437 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19438 flags.flags2 = 0;
19439
19440 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19441 ((Elf_External_ABIFlags_v0 *)
19442 mips_flags_frag));
19443
19444 /* Write out the register information. */
19445 if (mips_abi != N64_ABI)
19446 {
19447 Elf32_RegInfo s;
19448
19449 s.ri_gprmask = mips_gprmask;
19450 s.ri_cprmask[0] = mips_cprmask[0];
19451 s.ri_cprmask[1] = mips_cprmask[1];
19452 s.ri_cprmask[2] = mips_cprmask[2];
19453 s.ri_cprmask[3] = mips_cprmask[3];
19454 /* The gp_value field is set by the MIPS ELF backend. */
19455
19456 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19457 ((Elf32_External_RegInfo *)
19458 mips_regmask_frag));
19459 }
19460 else
19461 {
19462 Elf64_Internal_RegInfo s;
19463
19464 s.ri_gprmask = mips_gprmask;
19465 s.ri_pad = 0;
19466 s.ri_cprmask[0] = mips_cprmask[0];
19467 s.ri_cprmask[1] = mips_cprmask[1];
19468 s.ri_cprmask[2] = mips_cprmask[2];
19469 s.ri_cprmask[3] = mips_cprmask[3];
19470 /* The gp_value field is set by the MIPS ELF backend. */
19471
19472 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19473 ((Elf64_External_RegInfo *)
19474 mips_regmask_frag));
19475 }
19476
19477 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19478 sort of BFD interface for this. */
19479 if (mips_any_noreorder)
19480 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19481 if (mips_pic != NO_PIC)
19482 {
19483 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
19484 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19485 }
19486 if (mips_abicalls)
19487 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19488
19489 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19490 defined at present; this might need to change in future. */
19491 if (file_ase_mips16)
19492 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
19493 if (file_ase_micromips)
19494 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
19495 if (file_mips_opts.ase & ASE_MDMX)
19496 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
19497
19498 /* Set the MIPS ELF ABI flags. */
19499 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
19500 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
19501 else if (mips_abi == O64_ABI)
19502 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
19503 else if (mips_abi == EABI_ABI)
19504 {
19505 if (file_mips_opts.gp == 64)
19506 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19507 else
19508 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19509 }
19510
19511 /* Nothing to do for N32_ABI or N64_ABI. */
19512
19513 if (mips_32bitmode)
19514 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19515
19516 if (mips_nan2008 == 1)
19517 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19518
19519 /* 32 bit code with 64 bit FP registers. */
19520 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19521 Tag_GNU_MIPS_ABI_FP);
19522 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19523 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19524 }
19525 \f
19526 typedef struct proc {
19527 symbolS *func_sym;
19528 symbolS *func_end_sym;
19529 unsigned long reg_mask;
19530 unsigned long reg_offset;
19531 unsigned long fpreg_mask;
19532 unsigned long fpreg_offset;
19533 unsigned long frame_offset;
19534 unsigned long frame_reg;
19535 unsigned long pc_reg;
19536 } procS;
19537
19538 static procS cur_proc;
19539 static procS *cur_proc_ptr;
19540 static int numprocs;
19541
19542 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19543 as "2", and a normal nop as "0". */
19544
19545 #define NOP_OPCODE_MIPS 0
19546 #define NOP_OPCODE_MIPS16 1
19547 #define NOP_OPCODE_MICROMIPS 2
19548
19549 char
19550 mips_nop_opcode (void)
19551 {
19552 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19553 return NOP_OPCODE_MICROMIPS;
19554 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19555 return NOP_OPCODE_MIPS16;
19556 else
19557 return NOP_OPCODE_MIPS;
19558 }
19559
19560 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19561 32-bit microMIPS NOPs here (if applicable). */
19562
19563 void
19564 mips_handle_align (fragS *fragp)
19565 {
19566 char nop_opcode;
19567 char *p;
19568 int bytes, size, excess;
19569 valueT opcode;
19570
19571 if (fragp->fr_type != rs_align_code)
19572 return;
19573
19574 p = fragp->fr_literal + fragp->fr_fix;
19575 nop_opcode = *p;
19576 switch (nop_opcode)
19577 {
19578 case NOP_OPCODE_MICROMIPS:
19579 opcode = micromips_nop32_insn.insn_opcode;
19580 size = 4;
19581 break;
19582 case NOP_OPCODE_MIPS16:
19583 opcode = mips16_nop_insn.insn_opcode;
19584 size = 2;
19585 break;
19586 case NOP_OPCODE_MIPS:
19587 default:
19588 opcode = nop_insn.insn_opcode;
19589 size = 4;
19590 break;
19591 }
19592
19593 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19594 excess = bytes % size;
19595
19596 /* Handle the leading part if we're not inserting a whole number of
19597 instructions, and make it the end of the fixed part of the frag.
19598 Try to fit in a short microMIPS NOP if applicable and possible,
19599 and use zeroes otherwise. */
19600 gas_assert (excess < 4);
19601 fragp->fr_fix += excess;
19602 switch (excess)
19603 {
19604 case 3:
19605 *p++ = '\0';
19606 /* Fall through. */
19607 case 2:
19608 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19609 {
19610 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19611 break;
19612 }
19613 *p++ = '\0';
19614 /* Fall through. */
19615 case 1:
19616 *p++ = '\0';
19617 /* Fall through. */
19618 case 0:
19619 break;
19620 }
19621
19622 md_number_to_chars (p, opcode, size);
19623 fragp->fr_var = size;
19624 }
19625
19626 static long
19627 get_number (void)
19628 {
19629 int negative = 0;
19630 long val = 0;
19631
19632 if (*input_line_pointer == '-')
19633 {
19634 ++input_line_pointer;
19635 negative = 1;
19636 }
19637 if (!ISDIGIT (*input_line_pointer))
19638 as_bad (_("expected simple number"));
19639 if (input_line_pointer[0] == '0')
19640 {
19641 if (input_line_pointer[1] == 'x')
19642 {
19643 input_line_pointer += 2;
19644 while (ISXDIGIT (*input_line_pointer))
19645 {
19646 val <<= 4;
19647 val |= hex_value (*input_line_pointer++);
19648 }
19649 return negative ? -val : val;
19650 }
19651 else
19652 {
19653 ++input_line_pointer;
19654 while (ISDIGIT (*input_line_pointer))
19655 {
19656 val <<= 3;
19657 val |= *input_line_pointer++ - '0';
19658 }
19659 return negative ? -val : val;
19660 }
19661 }
19662 if (!ISDIGIT (*input_line_pointer))
19663 {
19664 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19665 *input_line_pointer, *input_line_pointer);
19666 as_warn (_("invalid number"));
19667 return -1;
19668 }
19669 while (ISDIGIT (*input_line_pointer))
19670 {
19671 val *= 10;
19672 val += *input_line_pointer++ - '0';
19673 }
19674 return negative ? -val : val;
19675 }
19676
19677 /* The .file directive; just like the usual .file directive, but there
19678 is an initial number which is the ECOFF file index. In the non-ECOFF
19679 case .file implies DWARF-2. */
19680
19681 static void
19682 s_mips_file (int x ATTRIBUTE_UNUSED)
19683 {
19684 static int first_file_directive = 0;
19685
19686 if (ECOFF_DEBUGGING)
19687 {
19688 get_number ();
19689 s_app_file (0);
19690 }
19691 else
19692 {
19693 char *filename;
19694
19695 filename = dwarf2_directive_filename ();
19696
19697 /* Versions of GCC up to 3.1 start files with a ".file"
19698 directive even for stabs output. Make sure that this
19699 ".file" is handled. Note that you need a version of GCC
19700 after 3.1 in order to support DWARF-2 on MIPS. */
19701 if (filename != NULL && ! first_file_directive)
19702 {
19703 (void) new_logical_line (filename, -1);
19704 s_app_file_string (filename, 0);
19705 }
19706 first_file_directive = 1;
19707 }
19708 }
19709
19710 /* The .loc directive, implying DWARF-2. */
19711
19712 static void
19713 s_mips_loc (int x ATTRIBUTE_UNUSED)
19714 {
19715 if (!ECOFF_DEBUGGING)
19716 dwarf2_directive_loc (0);
19717 }
19718
19719 /* The .end directive. */
19720
19721 static void
19722 s_mips_end (int x ATTRIBUTE_UNUSED)
19723 {
19724 symbolS *p;
19725
19726 /* Following functions need their own .frame and .cprestore directives. */
19727 mips_frame_reg_valid = 0;
19728 mips_cprestore_valid = 0;
19729
19730 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19731 {
19732 p = get_symbol ();
19733 demand_empty_rest_of_line ();
19734 }
19735 else
19736 p = NULL;
19737
19738 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19739 as_warn (_(".end not in text section"));
19740
19741 if (!cur_proc_ptr)
19742 {
19743 as_warn (_(".end directive without a preceding .ent directive"));
19744 demand_empty_rest_of_line ();
19745 return;
19746 }
19747
19748 if (p != NULL)
19749 {
19750 gas_assert (S_GET_NAME (p));
19751 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19752 as_warn (_(".end symbol does not match .ent symbol"));
19753
19754 if (debug_type == DEBUG_STABS)
19755 stabs_generate_asm_endfunc (S_GET_NAME (p),
19756 S_GET_NAME (p));
19757 }
19758 else
19759 as_warn (_(".end directive missing or unknown symbol"));
19760
19761 /* Create an expression to calculate the size of the function. */
19762 if (p && cur_proc_ptr)
19763 {
19764 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19765 expressionS *exp = XNEW (expressionS);
19766
19767 obj->size = exp;
19768 exp->X_op = O_subtract;
19769 exp->X_add_symbol = symbol_temp_new_now ();
19770 exp->X_op_symbol = p;
19771 exp->X_add_number = 0;
19772
19773 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19774 }
19775
19776 #ifdef md_flush_pending_output
19777 md_flush_pending_output ();
19778 #endif
19779
19780 /* Generate a .pdr section. */
19781 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19782 {
19783 segT saved_seg = now_seg;
19784 subsegT saved_subseg = now_subseg;
19785 expressionS exp;
19786 char *fragp;
19787
19788 gas_assert (pdr_seg);
19789 subseg_set (pdr_seg, 0);
19790
19791 /* Write the symbol. */
19792 exp.X_op = O_symbol;
19793 exp.X_add_symbol = p;
19794 exp.X_add_number = 0;
19795 emit_expr (&exp, 4);
19796
19797 fragp = frag_more (7 * 4);
19798
19799 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19800 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19801 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19802 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19803 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19804 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19805 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19806
19807 subseg_set (saved_seg, saved_subseg);
19808 }
19809
19810 cur_proc_ptr = NULL;
19811 }
19812
19813 /* The .aent and .ent directives. */
19814
19815 static void
19816 s_mips_ent (int aent)
19817 {
19818 symbolS *symbolP;
19819
19820 symbolP = get_symbol ();
19821 if (*input_line_pointer == ',')
19822 ++input_line_pointer;
19823 SKIP_WHITESPACE ();
19824 if (ISDIGIT (*input_line_pointer)
19825 || *input_line_pointer == '-')
19826 get_number ();
19827
19828 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19829 as_warn (_(".ent or .aent not in text section"));
19830
19831 if (!aent && cur_proc_ptr)
19832 as_warn (_("missing .end"));
19833
19834 if (!aent)
19835 {
19836 /* This function needs its own .frame and .cprestore directives. */
19837 mips_frame_reg_valid = 0;
19838 mips_cprestore_valid = 0;
19839
19840 cur_proc_ptr = &cur_proc;
19841 memset (cur_proc_ptr, '\0', sizeof (procS));
19842
19843 cur_proc_ptr->func_sym = symbolP;
19844
19845 ++numprocs;
19846
19847 if (debug_type == DEBUG_STABS)
19848 stabs_generate_asm_func (S_GET_NAME (symbolP),
19849 S_GET_NAME (symbolP));
19850 }
19851
19852 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19853
19854 demand_empty_rest_of_line ();
19855 }
19856
19857 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19858 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19859 s_mips_frame is used so that we can set the PDR information correctly.
19860 We can't use the ecoff routines because they make reference to the ecoff
19861 symbol table (in the mdebug section). */
19862
19863 static void
19864 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19865 {
19866 if (ECOFF_DEBUGGING)
19867 s_ignore (ignore);
19868 else
19869 {
19870 long val;
19871
19872 if (cur_proc_ptr == (procS *) NULL)
19873 {
19874 as_warn (_(".frame outside of .ent"));
19875 demand_empty_rest_of_line ();
19876 return;
19877 }
19878
19879 cur_proc_ptr->frame_reg = tc_get_register (1);
19880
19881 SKIP_WHITESPACE ();
19882 if (*input_line_pointer++ != ','
19883 || get_absolute_expression_and_terminator (&val) != ',')
19884 {
19885 as_warn (_("bad .frame directive"));
19886 --input_line_pointer;
19887 demand_empty_rest_of_line ();
19888 return;
19889 }
19890
19891 cur_proc_ptr->frame_offset = val;
19892 cur_proc_ptr->pc_reg = tc_get_register (0);
19893
19894 demand_empty_rest_of_line ();
19895 }
19896 }
19897
19898 /* The .fmask and .mask directives. If the mdebug section is present
19899 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19900 embedded targets, s_mips_mask is used so that we can set the PDR
19901 information correctly. We can't use the ecoff routines because they
19902 make reference to the ecoff symbol table (in the mdebug section). */
19903
19904 static void
19905 s_mips_mask (int reg_type)
19906 {
19907 if (ECOFF_DEBUGGING)
19908 s_ignore (reg_type);
19909 else
19910 {
19911 long mask, off;
19912
19913 if (cur_proc_ptr == (procS *) NULL)
19914 {
19915 as_warn (_(".mask/.fmask outside of .ent"));
19916 demand_empty_rest_of_line ();
19917 return;
19918 }
19919
19920 if (get_absolute_expression_and_terminator (&mask) != ',')
19921 {
19922 as_warn (_("bad .mask/.fmask directive"));
19923 --input_line_pointer;
19924 demand_empty_rest_of_line ();
19925 return;
19926 }
19927
19928 off = get_absolute_expression ();
19929
19930 if (reg_type == 'F')
19931 {
19932 cur_proc_ptr->fpreg_mask = mask;
19933 cur_proc_ptr->fpreg_offset = off;
19934 }
19935 else
19936 {
19937 cur_proc_ptr->reg_mask = mask;
19938 cur_proc_ptr->reg_offset = off;
19939 }
19940
19941 demand_empty_rest_of_line ();
19942 }
19943 }
19944
19945 /* A table describing all the processors gas knows about. Names are
19946 matched in the order listed.
19947
19948 To ease comparison, please keep this table in the same order as
19949 gcc's mips_cpu_info_table[]. */
19950 static const struct mips_cpu_info mips_cpu_info_table[] =
19951 {
19952 /* Entries for generic ISAs. */
19953 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19954 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19955 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19956 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19957 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19958 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19959 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19960 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19961 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19962 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19963 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19964 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19965 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19966 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19967 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19968
19969 /* MIPS I */
19970 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19971 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19972 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19973
19974 /* MIPS II */
19975 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19976
19977 /* MIPS III */
19978 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19979 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19980 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19981 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19982 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19983 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19984 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19985 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19986 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19987 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19988 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19989 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19990 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19991 /* ST Microelectronics Loongson 2E and 2F cores. */
19992 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19993 { "loongson2f", 0, ASE_LOONGSON_MMI, ISA_MIPS3, CPU_LOONGSON_2F },
19994
19995 /* MIPS IV */
19996 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19997 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19998 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19999 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
20000 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
20001 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
20002 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
20003 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
20004 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
20005 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
20006 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
20007 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
20008 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
20009 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
20010 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
20011
20012 /* MIPS 32 */
20013 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
20014 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
20015 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
20016 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
20017
20018 /* MIPS 32 Release 2 */
20019 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20020 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20021 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20022 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
20023 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20024 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20025 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
20026 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
20027 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
20028 ISA_MIPS32R2, CPU_MIPS32R2 },
20029 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
20030 ISA_MIPS32R2, CPU_MIPS32R2 },
20031 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20032 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20033 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20034 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20035 /* Deprecated forms of the above. */
20036 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20037 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
20038 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
20039 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20040 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20041 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20042 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20043 /* Deprecated forms of the above. */
20044 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20045 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
20046 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
20047 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20048 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20049 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20050 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20051 /* Deprecated forms of the above. */
20052 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20053 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20054 /* 34Kn is a 34kc without DSP. */
20055 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20056 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
20057 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20058 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20059 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20060 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20061 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20062 /* Deprecated forms of the above. */
20063 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20064 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
20065 /* 1004K cores are multiprocessor versions of the 34K. */
20066 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20067 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20068 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20069 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20070 /* interaptiv is the new name for 1004kf. */
20071 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
20072 { "interaptiv-mr2", 0,
20073 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
20074 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
20075 /* M5100 family. */
20076 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
20077 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
20078 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
20079 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
20080
20081 /* MIPS 64 */
20082 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
20083 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
20084 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
20085 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
20086
20087 /* Broadcom SB-1 CPU core. */
20088 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
20089 /* Broadcom SB-1A CPU core. */
20090 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
20091
20092 /* MIPS 64 Release 2. */
20093 /* Loongson CPU core. */
20094 /* -march=loongson3a is an alias of -march=gs464 for compatibility. */
20095 { "loongson3a", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
20096 ISA_MIPS64R2, CPU_GS464 },
20097 { "gs464", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
20098 ISA_MIPS64R2, CPU_GS464 },
20099 { "gs464e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
20100 | ASE_LOONGSON_EXT2, ISA_MIPS64R2, CPU_GS464E },
20101 { "gs264e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
20102 | ASE_LOONGSON_EXT2 | ASE_MSA | ASE_MSA64, ISA_MIPS64R2, CPU_GS264E },
20103
20104 /* Cavium Networks Octeon CPU core. */
20105 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
20106 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
20107 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
20108 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
20109
20110 /* RMI Xlr */
20111 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
20112
20113 /* Broadcom XLP.
20114 XLP is mostly like XLR, with the prominent exception that it is
20115 MIPS64R2 rather than MIPS64. */
20116 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
20117
20118 /* MIPS 64 Release 6. */
20119 { "i6400", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
20120 { "i6500", 0, ASE_VIRT | ASE_MSA | ASE_CRC | ASE_GINV,
20121 ISA_MIPS64R6, CPU_MIPS64R6},
20122 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
20123
20124 /* End marker. */
20125 { NULL, 0, 0, 0, 0 }
20126 };
20127
20128
20129 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
20130 with a final "000" replaced by "k". Ignore case.
20131
20132 Note: this function is shared between GCC and GAS. */
20133
20134 static bfd_boolean
20135 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
20136 {
20137 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
20138 given++, canonical++;
20139
20140 return ((*given == 0 && *canonical == 0)
20141 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
20142 }
20143
20144
20145 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
20146 CPU name. We've traditionally allowed a lot of variation here.
20147
20148 Note: this function is shared between GCC and GAS. */
20149
20150 static bfd_boolean
20151 mips_matching_cpu_name_p (const char *canonical, const char *given)
20152 {
20153 /* First see if the name matches exactly, or with a final "000"
20154 turned into "k". */
20155 if (mips_strict_matching_cpu_name_p (canonical, given))
20156 return TRUE;
20157
20158 /* If not, try comparing based on numerical designation alone.
20159 See if GIVEN is an unadorned number, or 'r' followed by a number. */
20160 if (TOLOWER (*given) == 'r')
20161 given++;
20162 if (!ISDIGIT (*given))
20163 return FALSE;
20164
20165 /* Skip over some well-known prefixes in the canonical name,
20166 hoping to find a number there too. */
20167 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
20168 canonical += 2;
20169 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
20170 canonical += 2;
20171 else if (TOLOWER (canonical[0]) == 'r')
20172 canonical += 1;
20173
20174 return mips_strict_matching_cpu_name_p (canonical, given);
20175 }
20176
20177
20178 /* Parse an option that takes the name of a processor as its argument.
20179 OPTION is the name of the option and CPU_STRING is the argument.
20180 Return the corresponding processor enumeration if the CPU_STRING is
20181 recognized, otherwise report an error and return null.
20182
20183 A similar function exists in GCC. */
20184
20185 static const struct mips_cpu_info *
20186 mips_parse_cpu (const char *option, const char *cpu_string)
20187 {
20188 const struct mips_cpu_info *p;
20189
20190 /* 'from-abi' selects the most compatible architecture for the given
20191 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
20192 EABIs, we have to decide whether we're using the 32-bit or 64-bit
20193 version. Look first at the -mgp options, if given, otherwise base
20194 the choice on MIPS_DEFAULT_64BIT.
20195
20196 Treat NO_ABI like the EABIs. One reason to do this is that the
20197 plain 'mips' and 'mips64' configs have 'from-abi' as their default
20198 architecture. This code picks MIPS I for 'mips' and MIPS III for
20199 'mips64', just as we did in the days before 'from-abi'. */
20200 if (strcasecmp (cpu_string, "from-abi") == 0)
20201 {
20202 if (ABI_NEEDS_32BIT_REGS (mips_abi))
20203 return mips_cpu_info_from_isa (ISA_MIPS1);
20204
20205 if (ABI_NEEDS_64BIT_REGS (mips_abi))
20206 return mips_cpu_info_from_isa (ISA_MIPS3);
20207
20208 if (file_mips_opts.gp >= 0)
20209 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
20210 ? ISA_MIPS1 : ISA_MIPS3);
20211
20212 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
20213 ? ISA_MIPS3
20214 : ISA_MIPS1);
20215 }
20216
20217 /* 'default' has traditionally been a no-op. Probably not very useful. */
20218 if (strcasecmp (cpu_string, "default") == 0)
20219 return 0;
20220
20221 for (p = mips_cpu_info_table; p->name != 0; p++)
20222 if (mips_matching_cpu_name_p (p->name, cpu_string))
20223 return p;
20224
20225 as_bad (_("bad value (%s) for %s"), cpu_string, option);
20226 return 0;
20227 }
20228
20229 /* Return the canonical processor information for ISA (a member of the
20230 ISA_MIPS* enumeration). */
20231
20232 static const struct mips_cpu_info *
20233 mips_cpu_info_from_isa (int isa)
20234 {
20235 int i;
20236
20237 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20238 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
20239 && isa == mips_cpu_info_table[i].isa)
20240 return (&mips_cpu_info_table[i]);
20241
20242 return NULL;
20243 }
20244
20245 static const struct mips_cpu_info *
20246 mips_cpu_info_from_arch (int arch)
20247 {
20248 int i;
20249
20250 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20251 if (arch == mips_cpu_info_table[i].cpu)
20252 return (&mips_cpu_info_table[i]);
20253
20254 return NULL;
20255 }
20256 \f
20257 static void
20258 show (FILE *stream, const char *string, int *col_p, int *first_p)
20259 {
20260 if (*first_p)
20261 {
20262 fprintf (stream, "%24s", "");
20263 *col_p = 24;
20264 }
20265 else
20266 {
20267 fprintf (stream, ", ");
20268 *col_p += 2;
20269 }
20270
20271 if (*col_p + strlen (string) > 72)
20272 {
20273 fprintf (stream, "\n%24s", "");
20274 *col_p = 24;
20275 }
20276
20277 fprintf (stream, "%s", string);
20278 *col_p += strlen (string);
20279
20280 *first_p = 0;
20281 }
20282
20283 void
20284 md_show_usage (FILE *stream)
20285 {
20286 int column, first;
20287 size_t i;
20288
20289 fprintf (stream, _("\
20290 MIPS options:\n\
20291 -EB generate big endian output\n\
20292 -EL generate little endian output\n\
20293 -g, -g2 do not remove unneeded NOPs or swap branches\n\
20294 -G NUM allow referencing objects up to NUM bytes\n\
20295 implicitly with the gp register [default 8]\n"));
20296 fprintf (stream, _("\
20297 -mips1 generate MIPS ISA I instructions\n\
20298 -mips2 generate MIPS ISA II instructions\n\
20299 -mips3 generate MIPS ISA III instructions\n\
20300 -mips4 generate MIPS ISA IV instructions\n\
20301 -mips5 generate MIPS ISA V instructions\n\
20302 -mips32 generate MIPS32 ISA instructions\n\
20303 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
20304 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
20305 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
20306 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
20307 -mips64 generate MIPS64 ISA instructions\n\
20308 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
20309 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
20310 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
20311 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
20312 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
20313
20314 first = 1;
20315
20316 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20317 show (stream, mips_cpu_info_table[i].name, &column, &first);
20318 show (stream, "from-abi", &column, &first);
20319 fputc ('\n', stream);
20320
20321 fprintf (stream, _("\
20322 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
20323 -no-mCPU don't generate code specific to CPU.\n\
20324 For -mCPU and -no-mCPU, CPU must be one of:\n"));
20325
20326 first = 1;
20327
20328 show (stream, "3900", &column, &first);
20329 show (stream, "4010", &column, &first);
20330 show (stream, "4100", &column, &first);
20331 show (stream, "4650", &column, &first);
20332 fputc ('\n', stream);
20333
20334 fprintf (stream, _("\
20335 -mips16 generate mips16 instructions\n\
20336 -no-mips16 do not generate mips16 instructions\n"));
20337 fprintf (stream, _("\
20338 -mmips16e2 generate MIPS16e2 instructions\n\
20339 -mno-mips16e2 do not generate MIPS16e2 instructions\n"));
20340 fprintf (stream, _("\
20341 -mmicromips generate microMIPS instructions\n\
20342 -mno-micromips do not generate microMIPS instructions\n"));
20343 fprintf (stream, _("\
20344 -msmartmips generate smartmips instructions\n\
20345 -mno-smartmips do not generate smartmips instructions\n"));
20346 fprintf (stream, _("\
20347 -mdsp generate DSP instructions\n\
20348 -mno-dsp do not generate DSP instructions\n"));
20349 fprintf (stream, _("\
20350 -mdspr2 generate DSP R2 instructions\n\
20351 -mno-dspr2 do not generate DSP R2 instructions\n"));
20352 fprintf (stream, _("\
20353 -mdspr3 generate DSP R3 instructions\n\
20354 -mno-dspr3 do not generate DSP R3 instructions\n"));
20355 fprintf (stream, _("\
20356 -mmt generate MT instructions\n\
20357 -mno-mt do not generate MT instructions\n"));
20358 fprintf (stream, _("\
20359 -mmcu generate MCU instructions\n\
20360 -mno-mcu do not generate MCU instructions\n"));
20361 fprintf (stream, _("\
20362 -mmsa generate MSA instructions\n\
20363 -mno-msa do not generate MSA instructions\n"));
20364 fprintf (stream, _("\
20365 -mxpa generate eXtended Physical Address (XPA) instructions\n\
20366 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20367 fprintf (stream, _("\
20368 -mvirt generate Virtualization instructions\n\
20369 -mno-virt do not generate Virtualization instructions\n"));
20370 fprintf (stream, _("\
20371 -mcrc generate CRC instructions\n\
20372 -mno-crc do not generate CRC instructions\n"));
20373 fprintf (stream, _("\
20374 -mginv generate Global INValidate (GINV) instructions\n\
20375 -mno-ginv do not generate Global INValidate instructions\n"));
20376 fprintf (stream, _("\
20377 -mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
20378 -mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
20379 fprintf (stream, _("\
20380 -mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
20381 -mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
20382 fprintf (stream, _("\
20383 -mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
20384 -mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
20385 fprintf (stream, _("\
20386 -mloongson-ext2 generate Loongson EXTensions R2 (EXT2) instructions\n\
20387 -mno-loongson-ext2 do not generate Loongson EXTensions R2 Instructions\n"));
20388 fprintf (stream, _("\
20389 -minsn32 only generate 32-bit microMIPS instructions\n\
20390 -mno-insn32 generate all microMIPS instructions\n"));
20391 #if DEFAULT_MIPS_FIX_LOONGSON3_LLSC
20392 fprintf (stream, _("\
20393 -mfix-loongson3-llsc work around Loongson3 LL/SC errata, default\n\
20394 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n"));
20395 #else
20396 fprintf (stream, _("\
20397 -mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20398 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata, default\n"));
20399 #endif
20400 fprintf (stream, _("\
20401 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20402 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
20403 -mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20404 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n\
20405 -mfix-vr4120 work around certain VR4120 errata\n\
20406 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
20407 -mfix-24k insert a nop after ERET and DERET instructions\n\
20408 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
20409 -mfix-r5900 work around R5900 short loop errata\n\
20410 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20411 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
20412 -msym32 assume all symbols have 32-bit values\n\
20413 -O0 do not remove unneeded NOPs, do not swap branches\n\
20414 -O, -O1 remove unneeded NOPs, do not swap branches\n\
20415 -O2 remove unneeded NOPs and swap branches\n\
20416 --trap, --no-break trap exception on div by 0 and mult overflow\n\
20417 --break, --no-trap break exception on div by 0 and mult overflow\n"));
20418 fprintf (stream, _("\
20419 -mhard-float allow floating-point instructions\n\
20420 -msoft-float do not allow floating-point instructions\n\
20421 -msingle-float only allow 32-bit floating-point operations\n\
20422 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
20423 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
20424 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
20425 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20426 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
20427 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20428
20429 first = 1;
20430
20431 show (stream, "legacy", &column, &first);
20432 show (stream, "2008", &column, &first);
20433
20434 fputc ('\n', stream);
20435
20436 fprintf (stream, _("\
20437 -KPIC, -call_shared generate SVR4 position independent code\n\
20438 -call_nonpic generate non-PIC code that can operate with DSOs\n\
20439 -mvxworks-pic generate VxWorks position independent code\n\
20440 -non_shared do not generate code that can operate with DSOs\n\
20441 -xgot assume a 32 bit GOT\n\
20442 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
20443 -mshared, -mno-shared disable/enable .cpload optimization for\n\
20444 position dependent (non shared) code\n\
20445 -mabi=ABI create ABI conformant object file for:\n"));
20446
20447 first = 1;
20448
20449 show (stream, "32", &column, &first);
20450 show (stream, "o64", &column, &first);
20451 show (stream, "n32", &column, &first);
20452 show (stream, "64", &column, &first);
20453 show (stream, "eabi", &column, &first);
20454
20455 fputc ('\n', stream);
20456
20457 fprintf (stream, _("\
20458 -32 create o32 ABI object file%s\n"),
20459 MIPS_DEFAULT_ABI == O32_ABI ? _(" (default)") : "");
20460 fprintf (stream, _("\
20461 -n32 create n32 ABI object file%s\n"),
20462 MIPS_DEFAULT_ABI == N32_ABI ? _(" (default)") : "");
20463 fprintf (stream, _("\
20464 -64 create 64 ABI object file%s\n"),
20465 MIPS_DEFAULT_ABI == N64_ABI ? _(" (default)") : "");
20466 }
20467
20468 #ifdef TE_IRIX
20469 enum dwarf2_format
20470 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
20471 {
20472 if (HAVE_64BIT_SYMBOLS)
20473 return dwarf2_format_64bit_irix;
20474 else
20475 return dwarf2_format_32bit;
20476 }
20477 #endif
20478
20479 int
20480 mips_dwarf2_addr_size (void)
20481 {
20482 if (HAVE_64BIT_OBJECTS)
20483 return 8;
20484 else
20485 return 4;
20486 }
20487
20488 /* Standard calling conventions leave the CFA at SP on entry. */
20489 void
20490 mips_cfi_frame_initial_instructions (void)
20491 {
20492 cfi_add_CFA_def_cfa_register (SP);
20493 }
20494
20495 int
20496 tc_mips_regname_to_dw2regnum (char *regname)
20497 {
20498 unsigned int regnum = -1;
20499 unsigned int reg;
20500
20501 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20502 regnum = reg;
20503
20504 return regnum;
20505 }
20506
20507 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20508 Given a symbolic attribute NAME, return the proper integer value.
20509 Returns -1 if the attribute is not known. */
20510
20511 int
20512 mips_convert_symbolic_attribute (const char *name)
20513 {
20514 static const struct
20515 {
20516 const char * name;
20517 const int tag;
20518 }
20519 attribute_table[] =
20520 {
20521 #define T(tag) {#tag, tag}
20522 T (Tag_GNU_MIPS_ABI_FP),
20523 T (Tag_GNU_MIPS_ABI_MSA),
20524 #undef T
20525 };
20526 unsigned int i;
20527
20528 if (name == NULL)
20529 return -1;
20530
20531 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20532 if (streq (name, attribute_table[i].name))
20533 return attribute_table[i].tag;
20534
20535 return -1;
20536 }
20537
20538 void
20539 md_mips_end (void)
20540 {
20541 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20542
20543 mips_emit_delays ();
20544 if (cur_proc_ptr)
20545 as_warn (_("missing .end at end of assembly"));
20546
20547 /* Just in case no code was emitted, do the consistency check. */
20548 file_mips_check_options ();
20549
20550 /* Set a floating-point ABI if the user did not. */
20551 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20552 {
20553 /* Perform consistency checks on the floating-point ABI. */
20554 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20555 Tag_GNU_MIPS_ABI_FP);
20556 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20557 check_fpabi (fpabi);
20558 }
20559 else
20560 {
20561 /* Soft-float gets precedence over single-float, the two options should
20562 not be used together so this should not matter. */
20563 if (file_mips_opts.soft_float == 1)
20564 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20565 /* Single-float gets precedence over all double_float cases. */
20566 else if (file_mips_opts.single_float == 1)
20567 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20568 else
20569 {
20570 switch (file_mips_opts.fp)
20571 {
20572 case 32:
20573 if (file_mips_opts.gp == 32)
20574 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20575 break;
20576 case 0:
20577 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20578 break;
20579 case 64:
20580 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20581 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20582 else if (file_mips_opts.gp == 32)
20583 fpabi = Val_GNU_MIPS_ABI_FP_64;
20584 else
20585 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20586 break;
20587 }
20588 }
20589
20590 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20591 Tag_GNU_MIPS_ABI_FP, fpabi);
20592 }
20593 }
20594
20595 /* Returns the relocation type required for a particular CFI encoding. */
20596
20597 bfd_reloc_code_real_type
20598 mips_cfi_reloc_for_encoding (int encoding)
20599 {
20600 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20601 return BFD_RELOC_32_PCREL;
20602 else return BFD_RELOC_NONE;
20603 }
This page took 0.497864 seconds and 4 git commands to generate.