opcodes/
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 /* Check assumptions made in this file. */
38 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
39 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
40
41 #ifdef DEBUG
42 #define DBG(x) printf x
43 #else
44 #define DBG(x)
45 #endif
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92
93 #define ZERO 0
94 #define ATREG 1
95 #define S0 16
96 #define S7 23
97 #define TREG 24
98 #define PIC_CALL_REG 25
99 #define KT0 26
100 #define KT1 27
101 #define GP 28
102 #define SP 29
103 #define FP 30
104 #define RA 31
105
106 #define ILLEGAL_REG (32)
107
108 #define AT mips_opts.at
109
110 extern int target_big_endian;
111
112 /* The name of the readonly data section. */
113 #define RDATA_SECTION_NAME ".rodata"
114
115 /* Ways in which an instruction can be "appended" to the output. */
116 enum append_method {
117 /* Just add it normally. */
118 APPEND_ADD,
119
120 /* Add it normally and then add a nop. */
121 APPEND_ADD_WITH_NOP,
122
123 /* Turn an instruction with a delay slot into a "compact" version. */
124 APPEND_ADD_COMPACT,
125
126 /* Insert the instruction before the last one. */
127 APPEND_SWAP
128 };
129
130 /* Information about an instruction, including its format, operands
131 and fixups. */
132 struct mips_cl_insn
133 {
134 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
135 const struct mips_opcode *insn_mo;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. If we have
139 decided to use an extended MIPS16 instruction, this includes the
140 extension. */
141 unsigned long insn_opcode;
142
143 /* The frag that contains the instruction. */
144 struct frag *frag;
145
146 /* The offset into FRAG of the first instruction byte. */
147 long where;
148
149 /* The relocs associated with the instruction, if any. */
150 fixS *fixp[3];
151
152 /* True if this entry cannot be moved from its current position. */
153 unsigned int fixed_p : 1;
154
155 /* True if this instruction occurred in a .set noreorder block. */
156 unsigned int noreorder_p : 1;
157
158 /* True for mips16 instructions that jump to an absolute address. */
159 unsigned int mips16_absolute_jump_p : 1;
160
161 /* True if this instruction is complete. */
162 unsigned int complete_p : 1;
163
164 /* True if this instruction is cleared from history by unconditional
165 branch. */
166 unsigned int cleared_p : 1;
167 };
168
169 /* The ABI to use. */
170 enum mips_abi_level
171 {
172 NO_ABI = 0,
173 O32_ABI,
174 O64_ABI,
175 N32_ABI,
176 N64_ABI,
177 EABI_ABI
178 };
179
180 /* MIPS ABI we are using for this output file. */
181 static enum mips_abi_level mips_abi = NO_ABI;
182
183 /* Whether or not we have code that can call pic code. */
184 int mips_abicalls = FALSE;
185
186 /* Whether or not we have code which can be put into a shared
187 library. */
188 static bfd_boolean mips_in_shared = TRUE;
189
190 /* This is the set of options which may be modified by the .set
191 pseudo-op. We use a struct so that .set push and .set pop are more
192 reliable. */
193
194 struct mips_set_options
195 {
196 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
197 if it has not been initialized. Changed by `.set mipsN', and the
198 -mipsN command line option, and the default CPU. */
199 int isa;
200 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
201 <asename>', by command line options, and based on the default
202 architecture. */
203 int ase;
204 /* Whether we are assembling for the mips16 processor. 0 if we are
205 not, 1 if we are, and -1 if the value has not been initialized.
206 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
207 -nomips16 command line options, and the default CPU. */
208 int mips16;
209 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
210 1 if we are, and -1 if the value has not been initialized. Changed
211 by `.set micromips' and `.set nomicromips', and the -mmicromips
212 and -mno-micromips command line options, and the default CPU. */
213 int micromips;
214 /* Non-zero if we should not reorder instructions. Changed by `.set
215 reorder' and `.set noreorder'. */
216 int noreorder;
217 /* Non-zero if we should not permit the register designated "assembler
218 temporary" to be used in instructions. The value is the register
219 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
220 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
221 unsigned int at;
222 /* Non-zero if we should warn when a macro instruction expands into
223 more than one machine instruction. Changed by `.set nomacro' and
224 `.set macro'. */
225 int warn_about_macros;
226 /* Non-zero if we should not move instructions. Changed by `.set
227 move', `.set volatile', `.set nomove', and `.set novolatile'. */
228 int nomove;
229 /* Non-zero if we should not optimize branches by moving the target
230 of the branch into the delay slot. Actually, we don't perform
231 this optimization anyhow. Changed by `.set bopt' and `.set
232 nobopt'. */
233 int nobopt;
234 /* Non-zero if we should not autoextend mips16 instructions.
235 Changed by `.set autoextend' and `.set noautoextend'. */
236 int noautoextend;
237 /* True if we should only emit 32-bit microMIPS instructions.
238 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
239 and -mno-insn32 command line options. */
240 bfd_boolean insn32;
241 /* Restrict general purpose registers and floating point registers
242 to 32 bit. This is initially determined when -mgp32 or -mfp32
243 is passed but can changed if the assembler code uses .set mipsN. */
244 int gp32;
245 int fp32;
246 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
247 command line option, and the default CPU. */
248 int arch;
249 /* True if ".set sym32" is in effect. */
250 bfd_boolean sym32;
251 /* True if floating-point operations are not allowed. Changed by .set
252 softfloat or .set hardfloat, by command line options -msoft-float or
253 -mhard-float. The default is false. */
254 bfd_boolean soft_float;
255
256 /* True if only single-precision floating-point operations are allowed.
257 Changed by .set singlefloat or .set doublefloat, command-line options
258 -msingle-float or -mdouble-float. The default is false. */
259 bfd_boolean single_float;
260 };
261
262 /* This is the struct we use to hold the current set of options. Note
263 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
264 -1 to indicate that they have not been initialized. */
265
266 /* True if -mgp32 was passed. */
267 static int file_mips_gp32 = -1;
268
269 /* True if -mfp32 was passed. */
270 static int file_mips_fp32 = -1;
271
272 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
273 static int file_mips_soft_float = 0;
274
275 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
276 static int file_mips_single_float = 0;
277
278 /* True if -mnan=2008, false if -mnan=legacy. */
279 static bfd_boolean mips_flag_nan2008 = FALSE;
280
281 static struct mips_set_options mips_opts =
282 {
283 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
284 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
285 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
286 /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
287 /* soft_float */ FALSE, /* single_float */ FALSE
288 };
289
290 /* The set of ASEs that were selected on the command line, either
291 explicitly via ASE options or implicitly through things like -march. */
292 static unsigned int file_ase;
293
294 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
295 static unsigned int file_ase_explicit;
296
297 /* These variables are filled in with the masks of registers used.
298 The object format code reads them and puts them in the appropriate
299 place. */
300 unsigned long mips_gprmask;
301 unsigned long mips_cprmask[4];
302
303 /* MIPS ISA we are using for this output file. */
304 static int file_mips_isa = ISA_UNKNOWN;
305
306 /* True if any MIPS16 code was produced. */
307 static int file_ase_mips16;
308
309 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
310 || mips_opts.isa == ISA_MIPS32R2 \
311 || mips_opts.isa == ISA_MIPS64 \
312 || mips_opts.isa == ISA_MIPS64R2)
313
314 /* True if any microMIPS code was produced. */
315 static int file_ase_micromips;
316
317 /* True if we want to create R_MIPS_JALR for jalr $25. */
318 #ifdef TE_IRIX
319 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
320 #else
321 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
322 because there's no place for any addend, the only acceptable
323 expression is a bare symbol. */
324 #define MIPS_JALR_HINT_P(EXPR) \
325 (!HAVE_IN_PLACE_ADDENDS \
326 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
327 #endif
328
329 /* The argument of the -march= flag. The architecture we are assembling. */
330 static int file_mips_arch = CPU_UNKNOWN;
331 static const char *mips_arch_string;
332
333 /* The argument of the -mtune= flag. The architecture for which we
334 are optimizing. */
335 static int mips_tune = CPU_UNKNOWN;
336 static const char *mips_tune_string;
337
338 /* True when generating 32-bit code for a 64-bit processor. */
339 static int mips_32bitmode = 0;
340
341 /* True if the given ABI requires 32-bit registers. */
342 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
343
344 /* Likewise 64-bit registers. */
345 #define ABI_NEEDS_64BIT_REGS(ABI) \
346 ((ABI) == N32_ABI \
347 || (ABI) == N64_ABI \
348 || (ABI) == O64_ABI)
349
350 /* Return true if ISA supports 64 bit wide gp registers. */
351 #define ISA_HAS_64BIT_REGS(ISA) \
352 ((ISA) == ISA_MIPS3 \
353 || (ISA) == ISA_MIPS4 \
354 || (ISA) == ISA_MIPS5 \
355 || (ISA) == ISA_MIPS64 \
356 || (ISA) == ISA_MIPS64R2)
357
358 /* Return true if ISA supports 64 bit wide float registers. */
359 #define ISA_HAS_64BIT_FPRS(ISA) \
360 ((ISA) == ISA_MIPS3 \
361 || (ISA) == ISA_MIPS4 \
362 || (ISA) == ISA_MIPS5 \
363 || (ISA) == ISA_MIPS32R2 \
364 || (ISA) == ISA_MIPS64 \
365 || (ISA) == ISA_MIPS64R2)
366
367 /* Return true if ISA supports 64-bit right rotate (dror et al.)
368 instructions. */
369 #define ISA_HAS_DROR(ISA) \
370 ((ISA) == ISA_MIPS64R2 \
371 || (mips_opts.micromips \
372 && ISA_HAS_64BIT_REGS (ISA)) \
373 )
374
375 /* Return true if ISA supports 32-bit right rotate (ror et al.)
376 instructions. */
377 #define ISA_HAS_ROR(ISA) \
378 ((ISA) == ISA_MIPS32R2 \
379 || (ISA) == ISA_MIPS64R2 \
380 || (mips_opts.ase & ASE_SMARTMIPS) \
381 || mips_opts.micromips \
382 )
383
384 /* Return true if ISA supports single-precision floats in odd registers. */
385 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
386 ((ISA) == ISA_MIPS32 \
387 || (ISA) == ISA_MIPS32R2 \
388 || (ISA) == ISA_MIPS64 \
389 || (ISA) == ISA_MIPS64R2)
390
391 /* Return true if ISA supports move to/from high part of a 64-bit
392 floating-point register. */
393 #define ISA_HAS_MXHC1(ISA) \
394 ((ISA) == ISA_MIPS32R2 \
395 || (ISA) == ISA_MIPS64R2)
396
397 #define HAVE_32BIT_GPRS \
398 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
399
400 #define HAVE_32BIT_FPRS \
401 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
402
403 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
404 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
405
406 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
407
408 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
409
410 /* True if relocations are stored in-place. */
411 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
412
413 /* The ABI-derived address size. */
414 #define HAVE_64BIT_ADDRESSES \
415 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
416 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
417
418 /* The size of symbolic constants (i.e., expressions of the form
419 "SYMBOL" or "SYMBOL + OFFSET"). */
420 #define HAVE_32BIT_SYMBOLS \
421 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
422 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
423
424 /* Addresses are loaded in different ways, depending on the address size
425 in use. The n32 ABI Documentation also mandates the use of additions
426 with overflow checking, but existing implementations don't follow it. */
427 #define ADDRESS_ADD_INSN \
428 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
429
430 #define ADDRESS_ADDI_INSN \
431 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
432
433 #define ADDRESS_LOAD_INSN \
434 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
435
436 #define ADDRESS_STORE_INSN \
437 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
438
439 /* Return true if the given CPU supports the MIPS16 ASE. */
440 #define CPU_HAS_MIPS16(cpu) \
441 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
442 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
443
444 /* Return true if the given CPU supports the microMIPS ASE. */
445 #define CPU_HAS_MICROMIPS(cpu) 0
446
447 /* True if CPU has a dror instruction. */
448 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
449
450 /* True if CPU has a ror instruction. */
451 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
452
453 /* True if CPU is in the Octeon family */
454 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP || (CPU) == CPU_OCTEON2)
455
456 /* True if CPU has seq/sne and seqi/snei instructions. */
457 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
458
459 /* True, if CPU has support for ldc1 and sdc1. */
460 #define CPU_HAS_LDC1_SDC1(CPU) \
461 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
462
463 /* True if mflo and mfhi can be immediately followed by instructions
464 which write to the HI and LO registers.
465
466 According to MIPS specifications, MIPS ISAs I, II, and III need
467 (at least) two instructions between the reads of HI/LO and
468 instructions which write them, and later ISAs do not. Contradicting
469 the MIPS specifications, some MIPS IV processor user manuals (e.g.
470 the UM for the NEC Vr5000) document needing the instructions between
471 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
472 MIPS64 and later ISAs to have the interlocks, plus any specific
473 earlier-ISA CPUs for which CPU documentation declares that the
474 instructions are really interlocked. */
475 #define hilo_interlocks \
476 (mips_opts.isa == ISA_MIPS32 \
477 || mips_opts.isa == ISA_MIPS32R2 \
478 || mips_opts.isa == ISA_MIPS64 \
479 || mips_opts.isa == ISA_MIPS64R2 \
480 || mips_opts.arch == CPU_R4010 \
481 || mips_opts.arch == CPU_R5900 \
482 || mips_opts.arch == CPU_R10000 \
483 || mips_opts.arch == CPU_R12000 \
484 || mips_opts.arch == CPU_R14000 \
485 || mips_opts.arch == CPU_R16000 \
486 || mips_opts.arch == CPU_RM7000 \
487 || mips_opts.arch == CPU_VR5500 \
488 || mips_opts.micromips \
489 )
490
491 /* Whether the processor uses hardware interlocks to protect reads
492 from the GPRs after they are loaded from memory, and thus does not
493 require nops to be inserted. This applies to instructions marked
494 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
495 level I and microMIPS mode instructions are always interlocked. */
496 #define gpr_interlocks \
497 (mips_opts.isa != ISA_MIPS1 \
498 || mips_opts.arch == CPU_R3900 \
499 || mips_opts.arch == CPU_R5900 \
500 || mips_opts.micromips \
501 )
502
503 /* Whether the processor uses hardware interlocks to avoid delays
504 required by coprocessor instructions, and thus does not require
505 nops to be inserted. This applies to instructions marked
506 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
507 between instructions marked INSN_WRITE_COND_CODE and ones marked
508 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
509 levels I, II, and III and microMIPS mode instructions are always
510 interlocked. */
511 /* Itbl support may require additional care here. */
512 #define cop_interlocks \
513 ((mips_opts.isa != ISA_MIPS1 \
514 && mips_opts.isa != ISA_MIPS2 \
515 && mips_opts.isa != ISA_MIPS3) \
516 || mips_opts.arch == CPU_R4300 \
517 || mips_opts.micromips \
518 )
519
520 /* Whether the processor uses hardware interlocks to protect reads
521 from coprocessor registers after they are loaded from memory, and
522 thus does not require nops to be inserted. This applies to
523 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
524 requires at MIPS ISA level I and microMIPS mode instructions are
525 always interlocked. */
526 #define cop_mem_interlocks \
527 (mips_opts.isa != ISA_MIPS1 \
528 || mips_opts.micromips \
529 )
530
531 /* Is this a mfhi or mflo instruction? */
532 #define MF_HILO_INSN(PINFO) \
533 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
534
535 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
536 has been selected. This implies, in particular, that addresses of text
537 labels have their LSB set. */
538 #define HAVE_CODE_COMPRESSION \
539 ((mips_opts.mips16 | mips_opts.micromips) != 0)
540
541 /* The minimum and maximum signed values that can be stored in a GPR. */
542 #define GPR_SMAX ((offsetT) (((valueT) 1 << (HAVE_64BIT_GPRS ? 63 : 31)) - 1))
543 #define GPR_SMIN (-GPR_SMAX - 1)
544
545 /* MIPS PIC level. */
546
547 enum mips_pic_level mips_pic;
548
549 /* 1 if we should generate 32 bit offsets from the $gp register in
550 SVR4_PIC mode. Currently has no meaning in other modes. */
551 static int mips_big_got = 0;
552
553 /* 1 if trap instructions should used for overflow rather than break
554 instructions. */
555 static int mips_trap = 0;
556
557 /* 1 if double width floating point constants should not be constructed
558 by assembling two single width halves into two single width floating
559 point registers which just happen to alias the double width destination
560 register. On some architectures this aliasing can be disabled by a bit
561 in the status register, and the setting of this bit cannot be determined
562 automatically at assemble time. */
563 static int mips_disable_float_construction;
564
565 /* Non-zero if any .set noreorder directives were used. */
566
567 static int mips_any_noreorder;
568
569 /* Non-zero if nops should be inserted when the register referenced in
570 an mfhi/mflo instruction is read in the next two instructions. */
571 static int mips_7000_hilo_fix;
572
573 /* The size of objects in the small data section. */
574 static unsigned int g_switch_value = 8;
575 /* Whether the -G option was used. */
576 static int g_switch_seen = 0;
577
578 #define N_RMASK 0xc4
579 #define N_VFP 0xd4
580
581 /* If we can determine in advance that GP optimization won't be
582 possible, we can skip the relaxation stuff that tries to produce
583 GP-relative references. This makes delay slot optimization work
584 better.
585
586 This function can only provide a guess, but it seems to work for
587 gcc output. It needs to guess right for gcc, otherwise gcc
588 will put what it thinks is a GP-relative instruction in a branch
589 delay slot.
590
591 I don't know if a fix is needed for the SVR4_PIC mode. I've only
592 fixed it for the non-PIC mode. KR 95/04/07 */
593 static int nopic_need_relax (symbolS *, int);
594
595 /* handle of the OPCODE hash table */
596 static struct hash_control *op_hash = NULL;
597
598 /* The opcode hash table we use for the mips16. */
599 static struct hash_control *mips16_op_hash = NULL;
600
601 /* The opcode hash table we use for the microMIPS ASE. */
602 static struct hash_control *micromips_op_hash = NULL;
603
604 /* This array holds the chars that always start a comment. If the
605 pre-processor is disabled, these aren't very useful */
606 const char comment_chars[] = "#";
607
608 /* This array holds the chars that only start a comment at the beginning of
609 a line. If the line seems to have the form '# 123 filename'
610 .line and .file directives will appear in the pre-processed output */
611 /* Note that input_file.c hand checks for '#' at the beginning of the
612 first line of the input file. This is because the compiler outputs
613 #NO_APP at the beginning of its output. */
614 /* Also note that C style comments are always supported. */
615 const char line_comment_chars[] = "#";
616
617 /* This array holds machine specific line separator characters. */
618 const char line_separator_chars[] = ";";
619
620 /* Chars that can be used to separate mant from exp in floating point nums */
621 const char EXP_CHARS[] = "eE";
622
623 /* Chars that mean this number is a floating point constant */
624 /* As in 0f12.456 */
625 /* or 0d1.2345e12 */
626 const char FLT_CHARS[] = "rRsSfFdDxXpP";
627
628 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
629 changed in read.c . Ideally it shouldn't have to know about it at all,
630 but nothing is ideal around here.
631 */
632
633 static char *insn_error;
634
635 static int auto_align = 1;
636
637 /* When outputting SVR4 PIC code, the assembler needs to know the
638 offset in the stack frame from which to restore the $gp register.
639 This is set by the .cprestore pseudo-op, and saved in this
640 variable. */
641 static offsetT mips_cprestore_offset = -1;
642
643 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
644 more optimizations, it can use a register value instead of a memory-saved
645 offset and even an other register than $gp as global pointer. */
646 static offsetT mips_cpreturn_offset = -1;
647 static int mips_cpreturn_register = -1;
648 static int mips_gp_register = GP;
649 static int mips_gprel_offset = 0;
650
651 /* Whether mips_cprestore_offset has been set in the current function
652 (or whether it has already been warned about, if not). */
653 static int mips_cprestore_valid = 0;
654
655 /* This is the register which holds the stack frame, as set by the
656 .frame pseudo-op. This is needed to implement .cprestore. */
657 static int mips_frame_reg = SP;
658
659 /* Whether mips_frame_reg has been set in the current function
660 (or whether it has already been warned about, if not). */
661 static int mips_frame_reg_valid = 0;
662
663 /* To output NOP instructions correctly, we need to keep information
664 about the previous two instructions. */
665
666 /* Whether we are optimizing. The default value of 2 means to remove
667 unneeded NOPs and swap branch instructions when possible. A value
668 of 1 means to not swap branches. A value of 0 means to always
669 insert NOPs. */
670 static int mips_optimize = 2;
671
672 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
673 equivalent to seeing no -g option at all. */
674 static int mips_debug = 0;
675
676 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
677 #define MAX_VR4130_NOPS 4
678
679 /* The maximum number of NOPs needed to fill delay slots. */
680 #define MAX_DELAY_NOPS 2
681
682 /* The maximum number of NOPs needed for any purpose. */
683 #define MAX_NOPS 4
684
685 /* A list of previous instructions, with index 0 being the most recent.
686 We need to look back MAX_NOPS instructions when filling delay slots
687 or working around processor errata. We need to look back one
688 instruction further if we're thinking about using history[0] to
689 fill a branch delay slot. */
690 static struct mips_cl_insn history[1 + MAX_NOPS];
691
692 /* Nop instructions used by emit_nop. */
693 static struct mips_cl_insn nop_insn;
694 static struct mips_cl_insn mips16_nop_insn;
695 static struct mips_cl_insn micromips_nop16_insn;
696 static struct mips_cl_insn micromips_nop32_insn;
697
698 /* The appropriate nop for the current mode. */
699 #define NOP_INSN (mips_opts.mips16 \
700 ? &mips16_nop_insn \
701 : (mips_opts.micromips \
702 ? (mips_opts.insn32 \
703 ? &micromips_nop32_insn \
704 : &micromips_nop16_insn) \
705 : &nop_insn))
706
707 /* The size of NOP_INSN in bytes. */
708 #define NOP_INSN_SIZE ((mips_opts.mips16 \
709 || (mips_opts.micromips && !mips_opts.insn32)) \
710 ? 2 : 4)
711
712 /* If this is set, it points to a frag holding nop instructions which
713 were inserted before the start of a noreorder section. If those
714 nops turn out to be unnecessary, the size of the frag can be
715 decreased. */
716 static fragS *prev_nop_frag;
717
718 /* The number of nop instructions we created in prev_nop_frag. */
719 static int prev_nop_frag_holds;
720
721 /* The number of nop instructions that we know we need in
722 prev_nop_frag. */
723 static int prev_nop_frag_required;
724
725 /* The number of instructions we've seen since prev_nop_frag. */
726 static int prev_nop_frag_since;
727
728 /* Relocations against symbols are sometimes done in two parts, with a HI
729 relocation and a LO relocation. Each relocation has only 16 bits of
730 space to store an addend. This means that in order for the linker to
731 handle carries correctly, it must be able to locate both the HI and
732 the LO relocation. This means that the relocations must appear in
733 order in the relocation table.
734
735 In order to implement this, we keep track of each unmatched HI
736 relocation. We then sort them so that they immediately precede the
737 corresponding LO relocation. */
738
739 struct mips_hi_fixup
740 {
741 /* Next HI fixup. */
742 struct mips_hi_fixup *next;
743 /* This fixup. */
744 fixS *fixp;
745 /* The section this fixup is in. */
746 segT seg;
747 };
748
749 /* The list of unmatched HI relocs. */
750
751 static struct mips_hi_fixup *mips_hi_fixup_list;
752
753 /* The frag containing the last explicit relocation operator.
754 Null if explicit relocations have not been used. */
755
756 static fragS *prev_reloc_op_frag;
757
758 /* Map mips16 register numbers to normal MIPS register numbers. */
759
760 static const unsigned int mips16_to_32_reg_map[] =
761 {
762 16, 17, 2, 3, 4, 5, 6, 7
763 };
764
765 /* Map microMIPS register numbers to normal MIPS register numbers. */
766
767 #define micromips_to_32_reg_b_map mips16_to_32_reg_map
768 #define micromips_to_32_reg_c_map mips16_to_32_reg_map
769 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
770 #define micromips_to_32_reg_e_map mips16_to_32_reg_map
771 #define micromips_to_32_reg_f_map mips16_to_32_reg_map
772 #define micromips_to_32_reg_g_map mips16_to_32_reg_map
773
774 /* The microMIPS registers with type h. */
775 static const unsigned int micromips_to_32_reg_h_map1[] =
776 {
777 5, 5, 6, 4, 4, 4, 4, 4
778 };
779 static const unsigned int micromips_to_32_reg_h_map2[] =
780 {
781 6, 7, 7, 21, 22, 5, 6, 7
782 };
783
784 #define micromips_to_32_reg_l_map mips16_to_32_reg_map
785
786 /* The microMIPS registers with type m. */
787 static const unsigned int micromips_to_32_reg_m_map[] =
788 {
789 0, 17, 2, 3, 16, 18, 19, 20
790 };
791
792 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
793
794 /* The microMIPS registers with type q. */
795 static const unsigned int micromips_to_32_reg_q_map[] =
796 {
797 0, 17, 2, 3, 4, 5, 6, 7
798 };
799
800 /* Classifies the kind of instructions we're interested in when
801 implementing -mfix-vr4120. */
802 enum fix_vr4120_class
803 {
804 FIX_VR4120_MACC,
805 FIX_VR4120_DMACC,
806 FIX_VR4120_MULT,
807 FIX_VR4120_DMULT,
808 FIX_VR4120_DIV,
809 FIX_VR4120_MTHILO,
810 NUM_FIX_VR4120_CLASSES
811 };
812
813 /* ...likewise -mfix-loongson2f-jump. */
814 static bfd_boolean mips_fix_loongson2f_jump;
815
816 /* ...likewise -mfix-loongson2f-nop. */
817 static bfd_boolean mips_fix_loongson2f_nop;
818
819 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
820 static bfd_boolean mips_fix_loongson2f;
821
822 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
823 there must be at least one other instruction between an instruction
824 of type X and an instruction of type Y. */
825 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
826
827 /* True if -mfix-vr4120 is in force. */
828 static int mips_fix_vr4120;
829
830 /* ...likewise -mfix-vr4130. */
831 static int mips_fix_vr4130;
832
833 /* ...likewise -mfix-24k. */
834 static int mips_fix_24k;
835
836 /* ...likewise -mfix-cn63xxp1 */
837 static bfd_boolean mips_fix_cn63xxp1;
838
839 /* We don't relax branches by default, since this causes us to expand
840 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
841 fail to compute the offset before expanding the macro to the most
842 efficient expansion. */
843
844 static int mips_relax_branch;
845 \f
846 /* The expansion of many macros depends on the type of symbol that
847 they refer to. For example, when generating position-dependent code,
848 a macro that refers to a symbol may have two different expansions,
849 one which uses GP-relative addresses and one which uses absolute
850 addresses. When generating SVR4-style PIC, a macro may have
851 different expansions for local and global symbols.
852
853 We handle these situations by generating both sequences and putting
854 them in variant frags. In position-dependent code, the first sequence
855 will be the GP-relative one and the second sequence will be the
856 absolute one. In SVR4 PIC, the first sequence will be for global
857 symbols and the second will be for local symbols.
858
859 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
860 SECOND are the lengths of the two sequences in bytes. These fields
861 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
862 the subtype has the following flags:
863
864 RELAX_USE_SECOND
865 Set if it has been decided that we should use the second
866 sequence instead of the first.
867
868 RELAX_SECOND_LONGER
869 Set in the first variant frag if the macro's second implementation
870 is longer than its first. This refers to the macro as a whole,
871 not an individual relaxation.
872
873 RELAX_NOMACRO
874 Set in the first variant frag if the macro appeared in a .set nomacro
875 block and if one alternative requires a warning but the other does not.
876
877 RELAX_DELAY_SLOT
878 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
879 delay slot.
880
881 RELAX_DELAY_SLOT_16BIT
882 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
883 16-bit instruction.
884
885 RELAX_DELAY_SLOT_SIZE_FIRST
886 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
887 the macro is of the wrong size for the branch delay slot.
888
889 RELAX_DELAY_SLOT_SIZE_SECOND
890 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
891 the macro is of the wrong size for the branch delay slot.
892
893 The frag's "opcode" points to the first fixup for relaxable code.
894
895 Relaxable macros are generated using a sequence such as:
896
897 relax_start (SYMBOL);
898 ... generate first expansion ...
899 relax_switch ();
900 ... generate second expansion ...
901 relax_end ();
902
903 The code and fixups for the unwanted alternative are discarded
904 by md_convert_frag. */
905 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
906
907 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
908 #define RELAX_SECOND(X) ((X) & 0xff)
909 #define RELAX_USE_SECOND 0x10000
910 #define RELAX_SECOND_LONGER 0x20000
911 #define RELAX_NOMACRO 0x40000
912 #define RELAX_DELAY_SLOT 0x80000
913 #define RELAX_DELAY_SLOT_16BIT 0x100000
914 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
915 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
916
917 /* Branch without likely bit. If label is out of range, we turn:
918
919 beq reg1, reg2, label
920 delay slot
921
922 into
923
924 bne reg1, reg2, 0f
925 nop
926 j label
927 0: delay slot
928
929 with the following opcode replacements:
930
931 beq <-> bne
932 blez <-> bgtz
933 bltz <-> bgez
934 bc1f <-> bc1t
935
936 bltzal <-> bgezal (with jal label instead of j label)
937
938 Even though keeping the delay slot instruction in the delay slot of
939 the branch would be more efficient, it would be very tricky to do
940 correctly, because we'd have to introduce a variable frag *after*
941 the delay slot instruction, and expand that instead. Let's do it
942 the easy way for now, even if the branch-not-taken case now costs
943 one additional instruction. Out-of-range branches are not supposed
944 to be common, anyway.
945
946 Branch likely. If label is out of range, we turn:
947
948 beql reg1, reg2, label
949 delay slot (annulled if branch not taken)
950
951 into
952
953 beql reg1, reg2, 1f
954 nop
955 beql $0, $0, 2f
956 nop
957 1: j[al] label
958 delay slot (executed only if branch taken)
959 2:
960
961 It would be possible to generate a shorter sequence by losing the
962 likely bit, generating something like:
963
964 bne reg1, reg2, 0f
965 nop
966 j[al] label
967 delay slot (executed only if branch taken)
968 0:
969
970 beql -> bne
971 bnel -> beq
972 blezl -> bgtz
973 bgtzl -> blez
974 bltzl -> bgez
975 bgezl -> bltz
976 bc1fl -> bc1t
977 bc1tl -> bc1f
978
979 bltzall -> bgezal (with jal label instead of j label)
980 bgezall -> bltzal (ditto)
981
982
983 but it's not clear that it would actually improve performance. */
984 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
985 ((relax_substateT) \
986 (0xc0000000 \
987 | ((at) & 0x1f) \
988 | ((toofar) ? 0x20 : 0) \
989 | ((link) ? 0x40 : 0) \
990 | ((likely) ? 0x80 : 0) \
991 | ((uncond) ? 0x100 : 0)))
992 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
993 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
994 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
995 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
996 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
997 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
998
999 /* For mips16 code, we use an entirely different form of relaxation.
1000 mips16 supports two versions of most instructions which take
1001 immediate values: a small one which takes some small value, and a
1002 larger one which takes a 16 bit value. Since branches also follow
1003 this pattern, relaxing these values is required.
1004
1005 We can assemble both mips16 and normal MIPS code in a single
1006 object. Therefore, we need to support this type of relaxation at
1007 the same time that we support the relaxation described above. We
1008 use the high bit of the subtype field to distinguish these cases.
1009
1010 The information we store for this type of relaxation is the
1011 argument code found in the opcode file for this relocation, whether
1012 the user explicitly requested a small or extended form, and whether
1013 the relocation is in a jump or jal delay slot. That tells us the
1014 size of the value, and how it should be stored. We also store
1015 whether the fragment is considered to be extended or not. We also
1016 store whether this is known to be a branch to a different section,
1017 whether we have tried to relax this frag yet, and whether we have
1018 ever extended a PC relative fragment because of a shift count. */
1019 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1020 (0x80000000 \
1021 | ((type) & 0xff) \
1022 | ((small) ? 0x100 : 0) \
1023 | ((ext) ? 0x200 : 0) \
1024 | ((dslot) ? 0x400 : 0) \
1025 | ((jal_dslot) ? 0x800 : 0))
1026 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1027 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1028 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1029 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1030 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1031 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1032 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1033 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1034 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1035 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1036 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1037 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1038
1039 /* For microMIPS code, we use relaxation similar to one we use for
1040 MIPS16 code. Some instructions that take immediate values support
1041 two encodings: a small one which takes some small value, and a
1042 larger one which takes a 16 bit value. As some branches also follow
1043 this pattern, relaxing these values is required.
1044
1045 We can assemble both microMIPS and normal MIPS code in a single
1046 object. Therefore, we need to support this type of relaxation at
1047 the same time that we support the relaxation described above. We
1048 use one of the high bits of the subtype field to distinguish these
1049 cases.
1050
1051 The information we store for this type of relaxation is the argument
1052 code found in the opcode file for this relocation, the register
1053 selected as the assembler temporary, whether the branch is
1054 unconditional, whether it is compact, whether it stores the link
1055 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1056 branches to a sequence of instructions is enabled, and whether the
1057 displacement of a branch is too large to fit as an immediate argument
1058 of a 16-bit and a 32-bit branch, respectively. */
1059 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1060 relax32, toofar16, toofar32) \
1061 (0x40000000 \
1062 | ((type) & 0xff) \
1063 | (((at) & 0x1f) << 8) \
1064 | ((uncond) ? 0x2000 : 0) \
1065 | ((compact) ? 0x4000 : 0) \
1066 | ((link) ? 0x8000 : 0) \
1067 | ((relax32) ? 0x10000 : 0) \
1068 | ((toofar16) ? 0x20000 : 0) \
1069 | ((toofar32) ? 0x40000 : 0))
1070 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1071 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1072 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1073 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1074 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1075 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1076 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1077
1078 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1079 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1080 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1081 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1082 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1083 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1084
1085 /* Sign-extend 16-bit value X. */
1086 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1087
1088 /* Is the given value a sign-extended 32-bit value? */
1089 #define IS_SEXT_32BIT_NUM(x) \
1090 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1091 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1092
1093 /* Is the given value a sign-extended 16-bit value? */
1094 #define IS_SEXT_16BIT_NUM(x) \
1095 (((x) &~ (offsetT) 0x7fff) == 0 \
1096 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1097
1098 /* Is the given value a sign-extended 12-bit value? */
1099 #define IS_SEXT_12BIT_NUM(x) \
1100 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1101
1102 /* Is the given value a sign-extended 9-bit value? */
1103 #define IS_SEXT_9BIT_NUM(x) \
1104 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1105
1106 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1107 #define IS_ZEXT_32BIT_NUM(x) \
1108 (((x) &~ (offsetT) 0xffffffff) == 0 \
1109 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1110
1111 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1112 SHIFT places. */
1113 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1114 (((STRUCT) >> (SHIFT)) & (MASK))
1115
1116 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1117 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1118 (!(MICROMIPS) \
1119 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1120 : EXTRACT_BITS ((INSN).insn_opcode, \
1121 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1122 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1123 EXTRACT_BITS ((INSN).insn_opcode, \
1124 MIPS16OP_MASK_##FIELD, \
1125 MIPS16OP_SH_##FIELD)
1126
1127 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1128 #define MIPS16_EXTEND (0xf000U << 16)
1129 \f
1130 /* Whether or not we are emitting a branch-likely macro. */
1131 static bfd_boolean emit_branch_likely_macro = FALSE;
1132
1133 /* Global variables used when generating relaxable macros. See the
1134 comment above RELAX_ENCODE for more details about how relaxation
1135 is used. */
1136 static struct {
1137 /* 0 if we're not emitting a relaxable macro.
1138 1 if we're emitting the first of the two relaxation alternatives.
1139 2 if we're emitting the second alternative. */
1140 int sequence;
1141
1142 /* The first relaxable fixup in the current frag. (In other words,
1143 the first fixup that refers to relaxable code.) */
1144 fixS *first_fixup;
1145
1146 /* sizes[0] says how many bytes of the first alternative are stored in
1147 the current frag. Likewise sizes[1] for the second alternative. */
1148 unsigned int sizes[2];
1149
1150 /* The symbol on which the choice of sequence depends. */
1151 symbolS *symbol;
1152 } mips_relax;
1153 \f
1154 /* Global variables used to decide whether a macro needs a warning. */
1155 static struct {
1156 /* True if the macro is in a branch delay slot. */
1157 bfd_boolean delay_slot_p;
1158
1159 /* Set to the length in bytes required if the macro is in a delay slot
1160 that requires a specific length of instruction, otherwise zero. */
1161 unsigned int delay_slot_length;
1162
1163 /* For relaxable macros, sizes[0] is the length of the first alternative
1164 in bytes and sizes[1] is the length of the second alternative.
1165 For non-relaxable macros, both elements give the length of the
1166 macro in bytes. */
1167 unsigned int sizes[2];
1168
1169 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1170 instruction of the first alternative in bytes and first_insn_sizes[1]
1171 is the length of the first instruction of the second alternative.
1172 For non-relaxable macros, both elements give the length of the first
1173 instruction in bytes.
1174
1175 Set to zero if we haven't yet seen the first instruction. */
1176 unsigned int first_insn_sizes[2];
1177
1178 /* For relaxable macros, insns[0] is the number of instructions for the
1179 first alternative and insns[1] is the number of instructions for the
1180 second alternative.
1181
1182 For non-relaxable macros, both elements give the number of
1183 instructions for the macro. */
1184 unsigned int insns[2];
1185
1186 /* The first variant frag for this macro. */
1187 fragS *first_frag;
1188 } mips_macro_warning;
1189 \f
1190 /* Prototypes for static functions. */
1191
1192 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1193
1194 static void append_insn
1195 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1196 bfd_boolean expansionp);
1197 static void mips_no_prev_insn (void);
1198 static void macro_build (expressionS *, const char *, const char *, ...);
1199 static void mips16_macro_build
1200 (expressionS *, const char *, const char *, va_list *);
1201 static void load_register (int, expressionS *, int);
1202 static void macro_start (void);
1203 static void macro_end (void);
1204 static void macro (struct mips_cl_insn *ip, char *str);
1205 static void mips16_macro (struct mips_cl_insn * ip);
1206 static void mips_ip (char *str, struct mips_cl_insn * ip);
1207 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1208 static void mips16_immed
1209 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1210 unsigned int, unsigned long *);
1211 static size_t my_getSmallExpression
1212 (expressionS *, bfd_reloc_code_real_type *, char *);
1213 static void my_getExpression (expressionS *, char *);
1214 static void s_align (int);
1215 static void s_change_sec (int);
1216 static void s_change_section (int);
1217 static void s_cons (int);
1218 static void s_float_cons (int);
1219 static void s_mips_globl (int);
1220 static void s_option (int);
1221 static void s_mipsset (int);
1222 static void s_abicalls (int);
1223 static void s_cpload (int);
1224 static void s_cpsetup (int);
1225 static void s_cplocal (int);
1226 static void s_cprestore (int);
1227 static void s_cpreturn (int);
1228 static void s_dtprelword (int);
1229 static void s_dtpreldword (int);
1230 static void s_tprelword (int);
1231 static void s_tpreldword (int);
1232 static void s_gpvalue (int);
1233 static void s_gpword (int);
1234 static void s_gpdword (int);
1235 static void s_ehword (int);
1236 static void s_cpadd (int);
1237 static void s_insn (int);
1238 static void s_nan (int);
1239 static void md_obj_begin (void);
1240 static void md_obj_end (void);
1241 static void s_mips_ent (int);
1242 static void s_mips_end (int);
1243 static void s_mips_frame (int);
1244 static void s_mips_mask (int reg_type);
1245 static void s_mips_stab (int);
1246 static void s_mips_weakext (int);
1247 static void s_mips_file (int);
1248 static void s_mips_loc (int);
1249 static bfd_boolean pic_need_relax (symbolS *, asection *);
1250 static int relaxed_branch_length (fragS *, asection *, int);
1251 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1252 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1253
1254 /* Table and functions used to map between CPU/ISA names, and
1255 ISA levels, and CPU numbers. */
1256
1257 struct mips_cpu_info
1258 {
1259 const char *name; /* CPU or ISA name. */
1260 int flags; /* MIPS_CPU_* flags. */
1261 int ase; /* Set of ASEs implemented by the CPU. */
1262 int isa; /* ISA level. */
1263 int cpu; /* CPU number (default CPU if ISA). */
1264 };
1265
1266 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1267
1268 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1269 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1270 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1271 \f
1272 /* Command-line options. */
1273 const char *md_shortopts = "O::g::G:";
1274
1275 enum options
1276 {
1277 OPTION_MARCH = OPTION_MD_BASE,
1278 OPTION_MTUNE,
1279 OPTION_MIPS1,
1280 OPTION_MIPS2,
1281 OPTION_MIPS3,
1282 OPTION_MIPS4,
1283 OPTION_MIPS5,
1284 OPTION_MIPS32,
1285 OPTION_MIPS64,
1286 OPTION_MIPS32R2,
1287 OPTION_MIPS64R2,
1288 OPTION_MIPS16,
1289 OPTION_NO_MIPS16,
1290 OPTION_MIPS3D,
1291 OPTION_NO_MIPS3D,
1292 OPTION_MDMX,
1293 OPTION_NO_MDMX,
1294 OPTION_DSP,
1295 OPTION_NO_DSP,
1296 OPTION_MT,
1297 OPTION_NO_MT,
1298 OPTION_VIRT,
1299 OPTION_NO_VIRT,
1300 OPTION_SMARTMIPS,
1301 OPTION_NO_SMARTMIPS,
1302 OPTION_DSPR2,
1303 OPTION_NO_DSPR2,
1304 OPTION_EVA,
1305 OPTION_NO_EVA,
1306 OPTION_MICROMIPS,
1307 OPTION_NO_MICROMIPS,
1308 OPTION_MCU,
1309 OPTION_NO_MCU,
1310 OPTION_COMPAT_ARCH_BASE,
1311 OPTION_M4650,
1312 OPTION_NO_M4650,
1313 OPTION_M4010,
1314 OPTION_NO_M4010,
1315 OPTION_M4100,
1316 OPTION_NO_M4100,
1317 OPTION_M3900,
1318 OPTION_NO_M3900,
1319 OPTION_M7000_HILO_FIX,
1320 OPTION_MNO_7000_HILO_FIX,
1321 OPTION_FIX_24K,
1322 OPTION_NO_FIX_24K,
1323 OPTION_FIX_LOONGSON2F_JUMP,
1324 OPTION_NO_FIX_LOONGSON2F_JUMP,
1325 OPTION_FIX_LOONGSON2F_NOP,
1326 OPTION_NO_FIX_LOONGSON2F_NOP,
1327 OPTION_FIX_VR4120,
1328 OPTION_NO_FIX_VR4120,
1329 OPTION_FIX_VR4130,
1330 OPTION_NO_FIX_VR4130,
1331 OPTION_FIX_CN63XXP1,
1332 OPTION_NO_FIX_CN63XXP1,
1333 OPTION_TRAP,
1334 OPTION_BREAK,
1335 OPTION_EB,
1336 OPTION_EL,
1337 OPTION_FP32,
1338 OPTION_GP32,
1339 OPTION_CONSTRUCT_FLOATS,
1340 OPTION_NO_CONSTRUCT_FLOATS,
1341 OPTION_FP64,
1342 OPTION_GP64,
1343 OPTION_RELAX_BRANCH,
1344 OPTION_NO_RELAX_BRANCH,
1345 OPTION_INSN32,
1346 OPTION_NO_INSN32,
1347 OPTION_MSHARED,
1348 OPTION_MNO_SHARED,
1349 OPTION_MSYM32,
1350 OPTION_MNO_SYM32,
1351 OPTION_SOFT_FLOAT,
1352 OPTION_HARD_FLOAT,
1353 OPTION_SINGLE_FLOAT,
1354 OPTION_DOUBLE_FLOAT,
1355 OPTION_32,
1356 OPTION_CALL_SHARED,
1357 OPTION_CALL_NONPIC,
1358 OPTION_NON_SHARED,
1359 OPTION_XGOT,
1360 OPTION_MABI,
1361 OPTION_N32,
1362 OPTION_64,
1363 OPTION_MDEBUG,
1364 OPTION_NO_MDEBUG,
1365 OPTION_PDR,
1366 OPTION_NO_PDR,
1367 OPTION_MVXWORKS_PIC,
1368 OPTION_NAN,
1369 OPTION_END_OF_ENUM
1370 };
1371
1372 struct option md_longopts[] =
1373 {
1374 /* Options which specify architecture. */
1375 {"march", required_argument, NULL, OPTION_MARCH},
1376 {"mtune", required_argument, NULL, OPTION_MTUNE},
1377 {"mips0", no_argument, NULL, OPTION_MIPS1},
1378 {"mips1", no_argument, NULL, OPTION_MIPS1},
1379 {"mips2", no_argument, NULL, OPTION_MIPS2},
1380 {"mips3", no_argument, NULL, OPTION_MIPS3},
1381 {"mips4", no_argument, NULL, OPTION_MIPS4},
1382 {"mips5", no_argument, NULL, OPTION_MIPS5},
1383 {"mips32", no_argument, NULL, OPTION_MIPS32},
1384 {"mips64", no_argument, NULL, OPTION_MIPS64},
1385 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1386 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1387
1388 /* Options which specify Application Specific Extensions (ASEs). */
1389 {"mips16", no_argument, NULL, OPTION_MIPS16},
1390 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1391 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1392 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1393 {"mdmx", no_argument, NULL, OPTION_MDMX},
1394 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1395 {"mdsp", no_argument, NULL, OPTION_DSP},
1396 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1397 {"mmt", no_argument, NULL, OPTION_MT},
1398 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1399 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1400 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1401 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1402 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1403 {"meva", no_argument, NULL, OPTION_EVA},
1404 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1405 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1406 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1407 {"mmcu", no_argument, NULL, OPTION_MCU},
1408 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1409 {"mvirt", no_argument, NULL, OPTION_VIRT},
1410 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1411
1412 /* Old-style architecture options. Don't add more of these. */
1413 {"m4650", no_argument, NULL, OPTION_M4650},
1414 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1415 {"m4010", no_argument, NULL, OPTION_M4010},
1416 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1417 {"m4100", no_argument, NULL, OPTION_M4100},
1418 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1419 {"m3900", no_argument, NULL, OPTION_M3900},
1420 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1421
1422 /* Options which enable bug fixes. */
1423 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1424 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1425 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1426 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1427 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1428 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1429 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1430 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1431 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1432 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1433 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1434 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1435 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1436 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1437 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1438
1439 /* Miscellaneous options. */
1440 {"trap", no_argument, NULL, OPTION_TRAP},
1441 {"no-break", no_argument, NULL, OPTION_TRAP},
1442 {"break", no_argument, NULL, OPTION_BREAK},
1443 {"no-trap", no_argument, NULL, OPTION_BREAK},
1444 {"EB", no_argument, NULL, OPTION_EB},
1445 {"EL", no_argument, NULL, OPTION_EL},
1446 {"mfp32", no_argument, NULL, OPTION_FP32},
1447 {"mgp32", no_argument, NULL, OPTION_GP32},
1448 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1449 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1450 {"mfp64", no_argument, NULL, OPTION_FP64},
1451 {"mgp64", no_argument, NULL, OPTION_GP64},
1452 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1453 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1454 {"minsn32", no_argument, NULL, OPTION_INSN32},
1455 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1456 {"mshared", no_argument, NULL, OPTION_MSHARED},
1457 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1458 {"msym32", no_argument, NULL, OPTION_MSYM32},
1459 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1460 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1461 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1462 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1463 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1464
1465 /* Strictly speaking this next option is ELF specific,
1466 but we allow it for other ports as well in order to
1467 make testing easier. */
1468 {"32", no_argument, NULL, OPTION_32},
1469
1470 /* ELF-specific options. */
1471 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1472 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1473 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1474 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1475 {"xgot", no_argument, NULL, OPTION_XGOT},
1476 {"mabi", required_argument, NULL, OPTION_MABI},
1477 {"n32", no_argument, NULL, OPTION_N32},
1478 {"64", no_argument, NULL, OPTION_64},
1479 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1480 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1481 {"mpdr", no_argument, NULL, OPTION_PDR},
1482 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1483 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1484 {"mnan", required_argument, NULL, OPTION_NAN},
1485
1486 {NULL, no_argument, NULL, 0}
1487 };
1488 size_t md_longopts_size = sizeof (md_longopts);
1489 \f
1490 /* Information about either an Application Specific Extension or an
1491 optional architecture feature that, for simplicity, we treat in the
1492 same way as an ASE. */
1493 struct mips_ase
1494 {
1495 /* The name of the ASE, used in both the command-line and .set options. */
1496 const char *name;
1497
1498 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1499 and 64-bit architectures, the flags here refer to the subset that
1500 is available on both. */
1501 unsigned int flags;
1502
1503 /* The ASE_* flag used for instructions that are available on 64-bit
1504 architectures but that are not included in FLAGS. */
1505 unsigned int flags64;
1506
1507 /* The command-line options that turn the ASE on and off. */
1508 int option_on;
1509 int option_off;
1510
1511 /* The minimum required architecture revisions for MIPS32, MIPS64,
1512 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1513 int mips32_rev;
1514 int mips64_rev;
1515 int micromips32_rev;
1516 int micromips64_rev;
1517 };
1518
1519 /* A table of all supported ASEs. */
1520 static const struct mips_ase mips_ases[] = {
1521 { "dsp", ASE_DSP, ASE_DSP64,
1522 OPTION_DSP, OPTION_NO_DSP,
1523 2, 2, 2, 2 },
1524
1525 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1526 OPTION_DSPR2, OPTION_NO_DSPR2,
1527 2, 2, 2, 2 },
1528
1529 { "eva", ASE_EVA, 0,
1530 OPTION_EVA, OPTION_NO_EVA,
1531 2, 2, 2, 2 },
1532
1533 { "mcu", ASE_MCU, 0,
1534 OPTION_MCU, OPTION_NO_MCU,
1535 2, 2, 2, 2 },
1536
1537 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1538 { "mdmx", ASE_MDMX, 0,
1539 OPTION_MDMX, OPTION_NO_MDMX,
1540 -1, 1, -1, -1 },
1541
1542 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1543 { "mips3d", ASE_MIPS3D, 0,
1544 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1545 2, 1, -1, -1 },
1546
1547 { "mt", ASE_MT, 0,
1548 OPTION_MT, OPTION_NO_MT,
1549 2, 2, -1, -1 },
1550
1551 { "smartmips", ASE_SMARTMIPS, 0,
1552 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1553 1, -1, -1, -1 },
1554
1555 { "virt", ASE_VIRT, ASE_VIRT64,
1556 OPTION_VIRT, OPTION_NO_VIRT,
1557 2, 2, 2, 2 }
1558 };
1559
1560 /* The set of ASEs that require -mfp64. */
1561 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX)
1562
1563 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1564 static const unsigned int mips_ase_groups[] = {
1565 ASE_DSP | ASE_DSPR2
1566 };
1567 \f
1568 /* Pseudo-op table.
1569
1570 The following pseudo-ops from the Kane and Heinrich MIPS book
1571 should be defined here, but are currently unsupported: .alias,
1572 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1573
1574 The following pseudo-ops from the Kane and Heinrich MIPS book are
1575 specific to the type of debugging information being generated, and
1576 should be defined by the object format: .aent, .begin, .bend,
1577 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1578 .vreg.
1579
1580 The following pseudo-ops from the Kane and Heinrich MIPS book are
1581 not MIPS CPU specific, but are also not specific to the object file
1582 format. This file is probably the best place to define them, but
1583 they are not currently supported: .asm0, .endr, .lab, .struct. */
1584
1585 static const pseudo_typeS mips_pseudo_table[] =
1586 {
1587 /* MIPS specific pseudo-ops. */
1588 {"option", s_option, 0},
1589 {"set", s_mipsset, 0},
1590 {"rdata", s_change_sec, 'r'},
1591 {"sdata", s_change_sec, 's'},
1592 {"livereg", s_ignore, 0},
1593 {"abicalls", s_abicalls, 0},
1594 {"cpload", s_cpload, 0},
1595 {"cpsetup", s_cpsetup, 0},
1596 {"cplocal", s_cplocal, 0},
1597 {"cprestore", s_cprestore, 0},
1598 {"cpreturn", s_cpreturn, 0},
1599 {"dtprelword", s_dtprelword, 0},
1600 {"dtpreldword", s_dtpreldword, 0},
1601 {"tprelword", s_tprelword, 0},
1602 {"tpreldword", s_tpreldword, 0},
1603 {"gpvalue", s_gpvalue, 0},
1604 {"gpword", s_gpword, 0},
1605 {"gpdword", s_gpdword, 0},
1606 {"ehword", s_ehword, 0},
1607 {"cpadd", s_cpadd, 0},
1608 {"insn", s_insn, 0},
1609 {"nan", s_nan, 0},
1610
1611 /* Relatively generic pseudo-ops that happen to be used on MIPS
1612 chips. */
1613 {"asciiz", stringer, 8 + 1},
1614 {"bss", s_change_sec, 'b'},
1615 {"err", s_err, 0},
1616 {"half", s_cons, 1},
1617 {"dword", s_cons, 3},
1618 {"weakext", s_mips_weakext, 0},
1619 {"origin", s_org, 0},
1620 {"repeat", s_rept, 0},
1621
1622 /* For MIPS this is non-standard, but we define it for consistency. */
1623 {"sbss", s_change_sec, 'B'},
1624
1625 /* These pseudo-ops are defined in read.c, but must be overridden
1626 here for one reason or another. */
1627 {"align", s_align, 0},
1628 {"byte", s_cons, 0},
1629 {"data", s_change_sec, 'd'},
1630 {"double", s_float_cons, 'd'},
1631 {"float", s_float_cons, 'f'},
1632 {"globl", s_mips_globl, 0},
1633 {"global", s_mips_globl, 0},
1634 {"hword", s_cons, 1},
1635 {"int", s_cons, 2},
1636 {"long", s_cons, 2},
1637 {"octa", s_cons, 4},
1638 {"quad", s_cons, 3},
1639 {"section", s_change_section, 0},
1640 {"short", s_cons, 1},
1641 {"single", s_float_cons, 'f'},
1642 {"stabd", s_mips_stab, 'd'},
1643 {"stabn", s_mips_stab, 'n'},
1644 {"stabs", s_mips_stab, 's'},
1645 {"text", s_change_sec, 't'},
1646 {"word", s_cons, 2},
1647
1648 { "extern", ecoff_directive_extern, 0},
1649
1650 { NULL, NULL, 0 },
1651 };
1652
1653 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1654 {
1655 /* These pseudo-ops should be defined by the object file format.
1656 However, a.out doesn't support them, so we have versions here. */
1657 {"aent", s_mips_ent, 1},
1658 {"bgnb", s_ignore, 0},
1659 {"end", s_mips_end, 0},
1660 {"endb", s_ignore, 0},
1661 {"ent", s_mips_ent, 0},
1662 {"file", s_mips_file, 0},
1663 {"fmask", s_mips_mask, 'F'},
1664 {"frame", s_mips_frame, 0},
1665 {"loc", s_mips_loc, 0},
1666 {"mask", s_mips_mask, 'R'},
1667 {"verstamp", s_ignore, 0},
1668 { NULL, NULL, 0 },
1669 };
1670
1671 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1672 purpose of the `.dc.a' internal pseudo-op. */
1673
1674 int
1675 mips_address_bytes (void)
1676 {
1677 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1678 }
1679
1680 extern void pop_insert (const pseudo_typeS *);
1681
1682 void
1683 mips_pop_insert (void)
1684 {
1685 pop_insert (mips_pseudo_table);
1686 if (! ECOFF_DEBUGGING)
1687 pop_insert (mips_nonecoff_pseudo_table);
1688 }
1689 \f
1690 /* Symbols labelling the current insn. */
1691
1692 struct insn_label_list
1693 {
1694 struct insn_label_list *next;
1695 symbolS *label;
1696 };
1697
1698 static struct insn_label_list *free_insn_labels;
1699 #define label_list tc_segment_info_data.labels
1700
1701 static void mips_clear_insn_labels (void);
1702 static void mips_mark_labels (void);
1703 static void mips_compressed_mark_labels (void);
1704
1705 static inline void
1706 mips_clear_insn_labels (void)
1707 {
1708 register struct insn_label_list **pl;
1709 segment_info_type *si;
1710
1711 if (now_seg)
1712 {
1713 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1714 ;
1715
1716 si = seg_info (now_seg);
1717 *pl = si->label_list;
1718 si->label_list = NULL;
1719 }
1720 }
1721
1722 /* Mark instruction labels in MIPS16/microMIPS mode. */
1723
1724 static inline void
1725 mips_mark_labels (void)
1726 {
1727 if (HAVE_CODE_COMPRESSION)
1728 mips_compressed_mark_labels ();
1729 }
1730 \f
1731 static char *expr_end;
1732
1733 /* Expressions which appear in macro instructions. These are set by
1734 mips_ip and read by macro. */
1735
1736 static expressionS imm_expr;
1737 static expressionS imm2_expr;
1738
1739 /* The relocatable field in an instruction and the relocs associated
1740 with it. These variables are used for instructions like LUI and
1741 JAL as well as true offsets. They are also used for address
1742 operands in macros. */
1743
1744 static expressionS offset_expr;
1745 static bfd_reloc_code_real_type offset_reloc[3]
1746 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1747
1748 /* This is set to the resulting size of the instruction to be produced
1749 by mips16_ip if an explicit extension is used or by mips_ip if an
1750 explicit size is supplied. */
1751
1752 static unsigned int forced_insn_length;
1753
1754 /* True if we are assembling an instruction. All dot symbols defined during
1755 this time should be treated as code labels. */
1756
1757 static bfd_boolean mips_assembling_insn;
1758
1759 /* The pdr segment for per procedure frame/regmask info. Not used for
1760 ECOFF debugging. */
1761
1762 static segT pdr_seg;
1763
1764 /* The default target format to use. */
1765
1766 #if defined (TE_FreeBSD)
1767 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1768 #elif defined (TE_TMIPS)
1769 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1770 #else
1771 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1772 #endif
1773
1774 const char *
1775 mips_target_format (void)
1776 {
1777 switch (OUTPUT_FLAVOR)
1778 {
1779 case bfd_target_elf_flavour:
1780 #ifdef TE_VXWORKS
1781 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1782 return (target_big_endian
1783 ? "elf32-bigmips-vxworks"
1784 : "elf32-littlemips-vxworks");
1785 #endif
1786 return (target_big_endian
1787 ? (HAVE_64BIT_OBJECTS
1788 ? ELF_TARGET ("elf64-", "big")
1789 : (HAVE_NEWABI
1790 ? ELF_TARGET ("elf32-n", "big")
1791 : ELF_TARGET ("elf32-", "big")))
1792 : (HAVE_64BIT_OBJECTS
1793 ? ELF_TARGET ("elf64-", "little")
1794 : (HAVE_NEWABI
1795 ? ELF_TARGET ("elf32-n", "little")
1796 : ELF_TARGET ("elf32-", "little"))));
1797 default:
1798 abort ();
1799 return NULL;
1800 }
1801 }
1802
1803 /* Return the ISA revision that is currently in use, or 0 if we are
1804 generating code for MIPS V or below. */
1805
1806 static int
1807 mips_isa_rev (void)
1808 {
1809 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1810 return 2;
1811
1812 /* microMIPS implies revision 2 or above. */
1813 if (mips_opts.micromips)
1814 return 2;
1815
1816 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1817 return 1;
1818
1819 return 0;
1820 }
1821
1822 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1823
1824 static unsigned int
1825 mips_ase_mask (unsigned int flags)
1826 {
1827 unsigned int i;
1828
1829 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1830 if (flags & mips_ase_groups[i])
1831 flags |= mips_ase_groups[i];
1832 return flags;
1833 }
1834
1835 /* Check whether the current ISA supports ASE. Issue a warning if
1836 appropriate. */
1837
1838 static void
1839 mips_check_isa_supports_ase (const struct mips_ase *ase)
1840 {
1841 const char *base;
1842 int min_rev, size;
1843 static unsigned int warned_isa;
1844 static unsigned int warned_fp32;
1845
1846 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
1847 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
1848 else
1849 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
1850 if ((min_rev < 0 || mips_isa_rev () < min_rev)
1851 && (warned_isa & ase->flags) != ase->flags)
1852 {
1853 warned_isa |= ase->flags;
1854 base = mips_opts.micromips ? "microMIPS" : "MIPS";
1855 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
1856 if (min_rev < 0)
1857 as_warn (_("The %d-bit %s architecture does not support the"
1858 " `%s' extension"), size, base, ase->name);
1859 else
1860 as_warn (_("The `%s' extension requires %s%d revision %d or greater"),
1861 ase->name, base, size, min_rev);
1862 }
1863 if ((ase->flags & FP64_ASES)
1864 && mips_opts.fp32
1865 && (warned_fp32 & ase->flags) != ase->flags)
1866 {
1867 warned_fp32 |= ase->flags;
1868 as_warn (_("The `%s' extension requires 64-bit FPRs"), ase->name);
1869 }
1870 }
1871
1872 /* Check all enabled ASEs to see whether they are supported by the
1873 chosen architecture. */
1874
1875 static void
1876 mips_check_isa_supports_ases (void)
1877 {
1878 unsigned int i, mask;
1879
1880 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1881 {
1882 mask = mips_ase_mask (mips_ases[i].flags);
1883 if ((mips_opts.ase & mask) == mips_ases[i].flags)
1884 mips_check_isa_supports_ase (&mips_ases[i]);
1885 }
1886 }
1887
1888 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
1889 that were affected. */
1890
1891 static unsigned int
1892 mips_set_ase (const struct mips_ase *ase, bfd_boolean enabled_p)
1893 {
1894 unsigned int mask;
1895
1896 mask = mips_ase_mask (ase->flags);
1897 mips_opts.ase &= ~mask;
1898 if (enabled_p)
1899 mips_opts.ase |= ase->flags;
1900 return mask;
1901 }
1902
1903 /* Return the ASE called NAME, or null if none. */
1904
1905 static const struct mips_ase *
1906 mips_lookup_ase (const char *name)
1907 {
1908 unsigned int i;
1909
1910 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
1911 if (strcmp (name, mips_ases[i].name) == 0)
1912 return &mips_ases[i];
1913 return NULL;
1914 }
1915
1916 /* Return the length of a microMIPS instruction in bytes. If bits of
1917 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
1918 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
1919 major opcode) will require further modifications to the opcode
1920 table. */
1921
1922 static inline unsigned int
1923 micromips_insn_length (const struct mips_opcode *mo)
1924 {
1925 return (mo->mask >> 16) == 0 ? 2 : 4;
1926 }
1927
1928 /* Return the length of MIPS16 instruction OPCODE. */
1929
1930 static inline unsigned int
1931 mips16_opcode_length (unsigned long opcode)
1932 {
1933 return (opcode >> 16) == 0 ? 2 : 4;
1934 }
1935
1936 /* Return the length of instruction INSN. */
1937
1938 static inline unsigned int
1939 insn_length (const struct mips_cl_insn *insn)
1940 {
1941 if (mips_opts.micromips)
1942 return micromips_insn_length (insn->insn_mo);
1943 else if (mips_opts.mips16)
1944 return mips16_opcode_length (insn->insn_opcode);
1945 else
1946 return 4;
1947 }
1948
1949 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1950
1951 static void
1952 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1953 {
1954 size_t i;
1955
1956 insn->insn_mo = mo;
1957 insn->insn_opcode = mo->match;
1958 insn->frag = NULL;
1959 insn->where = 0;
1960 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1961 insn->fixp[i] = NULL;
1962 insn->fixed_p = (mips_opts.noreorder > 0);
1963 insn->noreorder_p = (mips_opts.noreorder > 0);
1964 insn->mips16_absolute_jump_p = 0;
1965 insn->complete_p = 0;
1966 insn->cleared_p = 0;
1967 }
1968
1969 /* Install UVAL as the value of OPERAND in INSN. */
1970
1971 static inline void
1972 insn_insert_operand (struct mips_cl_insn *insn,
1973 const struct mips_operand *operand, unsigned int uval)
1974 {
1975 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
1976 }
1977
1978 /* Record the current MIPS16/microMIPS mode in now_seg. */
1979
1980 static void
1981 mips_record_compressed_mode (void)
1982 {
1983 segment_info_type *si;
1984
1985 si = seg_info (now_seg);
1986 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1987 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1988 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
1989 si->tc_segment_info_data.micromips = mips_opts.micromips;
1990 }
1991
1992 /* Read a standard MIPS instruction from BUF. */
1993
1994 static unsigned long
1995 read_insn (char *buf)
1996 {
1997 if (target_big_endian)
1998 return bfd_getb32 ((bfd_byte *) buf);
1999 else
2000 return bfd_getl32 ((bfd_byte *) buf);
2001 }
2002
2003 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2004 the next byte. */
2005
2006 static char *
2007 write_insn (char *buf, unsigned int insn)
2008 {
2009 md_number_to_chars (buf, insn, 4);
2010 return buf + 4;
2011 }
2012
2013 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2014 has length LENGTH. */
2015
2016 static unsigned long
2017 read_compressed_insn (char *buf, unsigned int length)
2018 {
2019 unsigned long insn;
2020 unsigned int i;
2021
2022 insn = 0;
2023 for (i = 0; i < length; i += 2)
2024 {
2025 insn <<= 16;
2026 if (target_big_endian)
2027 insn |= bfd_getb16 ((char *) buf);
2028 else
2029 insn |= bfd_getl16 ((char *) buf);
2030 buf += 2;
2031 }
2032 return insn;
2033 }
2034
2035 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2036 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2037
2038 static char *
2039 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2040 {
2041 unsigned int i;
2042
2043 for (i = 0; i < length; i += 2)
2044 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2045 return buf + length;
2046 }
2047
2048 /* Install INSN at the location specified by its "frag" and "where" fields. */
2049
2050 static void
2051 install_insn (const struct mips_cl_insn *insn)
2052 {
2053 char *f = insn->frag->fr_literal + insn->where;
2054 if (HAVE_CODE_COMPRESSION)
2055 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2056 else
2057 write_insn (f, insn->insn_opcode);
2058 mips_record_compressed_mode ();
2059 }
2060
2061 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2062 and install the opcode in the new location. */
2063
2064 static void
2065 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2066 {
2067 size_t i;
2068
2069 insn->frag = frag;
2070 insn->where = where;
2071 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2072 if (insn->fixp[i] != NULL)
2073 {
2074 insn->fixp[i]->fx_frag = frag;
2075 insn->fixp[i]->fx_where = where;
2076 }
2077 install_insn (insn);
2078 }
2079
2080 /* Add INSN to the end of the output. */
2081
2082 static void
2083 add_fixed_insn (struct mips_cl_insn *insn)
2084 {
2085 char *f = frag_more (insn_length (insn));
2086 move_insn (insn, frag_now, f - frag_now->fr_literal);
2087 }
2088
2089 /* Start a variant frag and move INSN to the start of the variant part,
2090 marking it as fixed. The other arguments are as for frag_var. */
2091
2092 static void
2093 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2094 relax_substateT subtype, symbolS *symbol, offsetT offset)
2095 {
2096 frag_grow (max_chars);
2097 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2098 insn->fixed_p = 1;
2099 frag_var (rs_machine_dependent, max_chars, var,
2100 subtype, symbol, offset, NULL);
2101 }
2102
2103 /* Insert N copies of INSN into the history buffer, starting at
2104 position FIRST. Neither FIRST nor N need to be clipped. */
2105
2106 static void
2107 insert_into_history (unsigned int first, unsigned int n,
2108 const struct mips_cl_insn *insn)
2109 {
2110 if (mips_relax.sequence != 2)
2111 {
2112 unsigned int i;
2113
2114 for (i = ARRAY_SIZE (history); i-- > first;)
2115 if (i >= first + n)
2116 history[i] = history[i - n];
2117 else
2118 history[i] = *insn;
2119 }
2120 }
2121
2122 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2123 the idea is to make it obvious at a glance that each errata is
2124 included. */
2125
2126 static void
2127 init_vr4120_conflicts (void)
2128 {
2129 #define CONFLICT(FIRST, SECOND) \
2130 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2131
2132 /* Errata 21 - [D]DIV[U] after [D]MACC */
2133 CONFLICT (MACC, DIV);
2134 CONFLICT (DMACC, DIV);
2135
2136 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2137 CONFLICT (DMULT, DMULT);
2138 CONFLICT (DMULT, DMACC);
2139 CONFLICT (DMACC, DMULT);
2140 CONFLICT (DMACC, DMACC);
2141
2142 /* Errata 24 - MT{LO,HI} after [D]MACC */
2143 CONFLICT (MACC, MTHILO);
2144 CONFLICT (DMACC, MTHILO);
2145
2146 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2147 instruction is executed immediately after a MACC or DMACC
2148 instruction, the result of [either instruction] is incorrect." */
2149 CONFLICT (MACC, MULT);
2150 CONFLICT (MACC, DMULT);
2151 CONFLICT (DMACC, MULT);
2152 CONFLICT (DMACC, DMULT);
2153
2154 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2155 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2156 DDIV or DDIVU instruction, the result of the MACC or
2157 DMACC instruction is incorrect.". */
2158 CONFLICT (DMULT, MACC);
2159 CONFLICT (DMULT, DMACC);
2160 CONFLICT (DIV, MACC);
2161 CONFLICT (DIV, DMACC);
2162
2163 #undef CONFLICT
2164 }
2165
2166 struct regname {
2167 const char *name;
2168 unsigned int num;
2169 };
2170
2171 #define RTYPE_MASK 0x1ff00
2172 #define RTYPE_NUM 0x00100
2173 #define RTYPE_FPU 0x00200
2174 #define RTYPE_FCC 0x00400
2175 #define RTYPE_VEC 0x00800
2176 #define RTYPE_GP 0x01000
2177 #define RTYPE_CP0 0x02000
2178 #define RTYPE_PC 0x04000
2179 #define RTYPE_ACC 0x08000
2180 #define RTYPE_CCC 0x10000
2181 #define RNUM_MASK 0x000ff
2182 #define RWARN 0x80000
2183
2184 #define GENERIC_REGISTER_NUMBERS \
2185 {"$0", RTYPE_NUM | 0}, \
2186 {"$1", RTYPE_NUM | 1}, \
2187 {"$2", RTYPE_NUM | 2}, \
2188 {"$3", RTYPE_NUM | 3}, \
2189 {"$4", RTYPE_NUM | 4}, \
2190 {"$5", RTYPE_NUM | 5}, \
2191 {"$6", RTYPE_NUM | 6}, \
2192 {"$7", RTYPE_NUM | 7}, \
2193 {"$8", RTYPE_NUM | 8}, \
2194 {"$9", RTYPE_NUM | 9}, \
2195 {"$10", RTYPE_NUM | 10}, \
2196 {"$11", RTYPE_NUM | 11}, \
2197 {"$12", RTYPE_NUM | 12}, \
2198 {"$13", RTYPE_NUM | 13}, \
2199 {"$14", RTYPE_NUM | 14}, \
2200 {"$15", RTYPE_NUM | 15}, \
2201 {"$16", RTYPE_NUM | 16}, \
2202 {"$17", RTYPE_NUM | 17}, \
2203 {"$18", RTYPE_NUM | 18}, \
2204 {"$19", RTYPE_NUM | 19}, \
2205 {"$20", RTYPE_NUM | 20}, \
2206 {"$21", RTYPE_NUM | 21}, \
2207 {"$22", RTYPE_NUM | 22}, \
2208 {"$23", RTYPE_NUM | 23}, \
2209 {"$24", RTYPE_NUM | 24}, \
2210 {"$25", RTYPE_NUM | 25}, \
2211 {"$26", RTYPE_NUM | 26}, \
2212 {"$27", RTYPE_NUM | 27}, \
2213 {"$28", RTYPE_NUM | 28}, \
2214 {"$29", RTYPE_NUM | 29}, \
2215 {"$30", RTYPE_NUM | 30}, \
2216 {"$31", RTYPE_NUM | 31}
2217
2218 #define FPU_REGISTER_NAMES \
2219 {"$f0", RTYPE_FPU | 0}, \
2220 {"$f1", RTYPE_FPU | 1}, \
2221 {"$f2", RTYPE_FPU | 2}, \
2222 {"$f3", RTYPE_FPU | 3}, \
2223 {"$f4", RTYPE_FPU | 4}, \
2224 {"$f5", RTYPE_FPU | 5}, \
2225 {"$f6", RTYPE_FPU | 6}, \
2226 {"$f7", RTYPE_FPU | 7}, \
2227 {"$f8", RTYPE_FPU | 8}, \
2228 {"$f9", RTYPE_FPU | 9}, \
2229 {"$f10", RTYPE_FPU | 10}, \
2230 {"$f11", RTYPE_FPU | 11}, \
2231 {"$f12", RTYPE_FPU | 12}, \
2232 {"$f13", RTYPE_FPU | 13}, \
2233 {"$f14", RTYPE_FPU | 14}, \
2234 {"$f15", RTYPE_FPU | 15}, \
2235 {"$f16", RTYPE_FPU | 16}, \
2236 {"$f17", RTYPE_FPU | 17}, \
2237 {"$f18", RTYPE_FPU | 18}, \
2238 {"$f19", RTYPE_FPU | 19}, \
2239 {"$f20", RTYPE_FPU | 20}, \
2240 {"$f21", RTYPE_FPU | 21}, \
2241 {"$f22", RTYPE_FPU | 22}, \
2242 {"$f23", RTYPE_FPU | 23}, \
2243 {"$f24", RTYPE_FPU | 24}, \
2244 {"$f25", RTYPE_FPU | 25}, \
2245 {"$f26", RTYPE_FPU | 26}, \
2246 {"$f27", RTYPE_FPU | 27}, \
2247 {"$f28", RTYPE_FPU | 28}, \
2248 {"$f29", RTYPE_FPU | 29}, \
2249 {"$f30", RTYPE_FPU | 30}, \
2250 {"$f31", RTYPE_FPU | 31}
2251
2252 #define FPU_CONDITION_CODE_NAMES \
2253 {"$fcc0", RTYPE_FCC | 0}, \
2254 {"$fcc1", RTYPE_FCC | 1}, \
2255 {"$fcc2", RTYPE_FCC | 2}, \
2256 {"$fcc3", RTYPE_FCC | 3}, \
2257 {"$fcc4", RTYPE_FCC | 4}, \
2258 {"$fcc5", RTYPE_FCC | 5}, \
2259 {"$fcc6", RTYPE_FCC | 6}, \
2260 {"$fcc7", RTYPE_FCC | 7}
2261
2262 #define COPROC_CONDITION_CODE_NAMES \
2263 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2264 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2265 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2266 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2267 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2268 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2269 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2270 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2271
2272 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2273 {"$a4", RTYPE_GP | 8}, \
2274 {"$a5", RTYPE_GP | 9}, \
2275 {"$a6", RTYPE_GP | 10}, \
2276 {"$a7", RTYPE_GP | 11}, \
2277 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2278 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2279 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2280 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2281 {"$t0", RTYPE_GP | 12}, \
2282 {"$t1", RTYPE_GP | 13}, \
2283 {"$t2", RTYPE_GP | 14}, \
2284 {"$t3", RTYPE_GP | 15}
2285
2286 #define O32_SYMBOLIC_REGISTER_NAMES \
2287 {"$t0", RTYPE_GP | 8}, \
2288 {"$t1", RTYPE_GP | 9}, \
2289 {"$t2", RTYPE_GP | 10}, \
2290 {"$t3", RTYPE_GP | 11}, \
2291 {"$t4", RTYPE_GP | 12}, \
2292 {"$t5", RTYPE_GP | 13}, \
2293 {"$t6", RTYPE_GP | 14}, \
2294 {"$t7", RTYPE_GP | 15}, \
2295 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2296 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2297 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2298 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2299
2300 /* Remaining symbolic register names */
2301 #define SYMBOLIC_REGISTER_NAMES \
2302 {"$zero", RTYPE_GP | 0}, \
2303 {"$at", RTYPE_GP | 1}, \
2304 {"$AT", RTYPE_GP | 1}, \
2305 {"$v0", RTYPE_GP | 2}, \
2306 {"$v1", RTYPE_GP | 3}, \
2307 {"$a0", RTYPE_GP | 4}, \
2308 {"$a1", RTYPE_GP | 5}, \
2309 {"$a2", RTYPE_GP | 6}, \
2310 {"$a3", RTYPE_GP | 7}, \
2311 {"$s0", RTYPE_GP | 16}, \
2312 {"$s1", RTYPE_GP | 17}, \
2313 {"$s2", RTYPE_GP | 18}, \
2314 {"$s3", RTYPE_GP | 19}, \
2315 {"$s4", RTYPE_GP | 20}, \
2316 {"$s5", RTYPE_GP | 21}, \
2317 {"$s6", RTYPE_GP | 22}, \
2318 {"$s7", RTYPE_GP | 23}, \
2319 {"$t8", RTYPE_GP | 24}, \
2320 {"$t9", RTYPE_GP | 25}, \
2321 {"$k0", RTYPE_GP | 26}, \
2322 {"$kt0", RTYPE_GP | 26}, \
2323 {"$k1", RTYPE_GP | 27}, \
2324 {"$kt1", RTYPE_GP | 27}, \
2325 {"$gp", RTYPE_GP | 28}, \
2326 {"$sp", RTYPE_GP | 29}, \
2327 {"$s8", RTYPE_GP | 30}, \
2328 {"$fp", RTYPE_GP | 30}, \
2329 {"$ra", RTYPE_GP | 31}
2330
2331 #define MIPS16_SPECIAL_REGISTER_NAMES \
2332 {"$pc", RTYPE_PC | 0}
2333
2334 #define MDMX_VECTOR_REGISTER_NAMES \
2335 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2336 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2337 {"$v2", RTYPE_VEC | 2}, \
2338 {"$v3", RTYPE_VEC | 3}, \
2339 {"$v4", RTYPE_VEC | 4}, \
2340 {"$v5", RTYPE_VEC | 5}, \
2341 {"$v6", RTYPE_VEC | 6}, \
2342 {"$v7", RTYPE_VEC | 7}, \
2343 {"$v8", RTYPE_VEC | 8}, \
2344 {"$v9", RTYPE_VEC | 9}, \
2345 {"$v10", RTYPE_VEC | 10}, \
2346 {"$v11", RTYPE_VEC | 11}, \
2347 {"$v12", RTYPE_VEC | 12}, \
2348 {"$v13", RTYPE_VEC | 13}, \
2349 {"$v14", RTYPE_VEC | 14}, \
2350 {"$v15", RTYPE_VEC | 15}, \
2351 {"$v16", RTYPE_VEC | 16}, \
2352 {"$v17", RTYPE_VEC | 17}, \
2353 {"$v18", RTYPE_VEC | 18}, \
2354 {"$v19", RTYPE_VEC | 19}, \
2355 {"$v20", RTYPE_VEC | 20}, \
2356 {"$v21", RTYPE_VEC | 21}, \
2357 {"$v22", RTYPE_VEC | 22}, \
2358 {"$v23", RTYPE_VEC | 23}, \
2359 {"$v24", RTYPE_VEC | 24}, \
2360 {"$v25", RTYPE_VEC | 25}, \
2361 {"$v26", RTYPE_VEC | 26}, \
2362 {"$v27", RTYPE_VEC | 27}, \
2363 {"$v28", RTYPE_VEC | 28}, \
2364 {"$v29", RTYPE_VEC | 29}, \
2365 {"$v30", RTYPE_VEC | 30}, \
2366 {"$v31", RTYPE_VEC | 31}
2367
2368 #define MIPS_DSP_ACCUMULATOR_NAMES \
2369 {"$ac0", RTYPE_ACC | 0}, \
2370 {"$ac1", RTYPE_ACC | 1}, \
2371 {"$ac2", RTYPE_ACC | 2}, \
2372 {"$ac3", RTYPE_ACC | 3}
2373
2374 static const struct regname reg_names[] = {
2375 GENERIC_REGISTER_NUMBERS,
2376 FPU_REGISTER_NAMES,
2377 FPU_CONDITION_CODE_NAMES,
2378 COPROC_CONDITION_CODE_NAMES,
2379
2380 /* The $txx registers depends on the abi,
2381 these will be added later into the symbol table from
2382 one of the tables below once mips_abi is set after
2383 parsing of arguments from the command line. */
2384 SYMBOLIC_REGISTER_NAMES,
2385
2386 MIPS16_SPECIAL_REGISTER_NAMES,
2387 MDMX_VECTOR_REGISTER_NAMES,
2388 MIPS_DSP_ACCUMULATOR_NAMES,
2389 {0, 0}
2390 };
2391
2392 static const struct regname reg_names_o32[] = {
2393 O32_SYMBOLIC_REGISTER_NAMES,
2394 {0, 0}
2395 };
2396
2397 static const struct regname reg_names_n32n64[] = {
2398 N32N64_SYMBOLIC_REGISTER_NAMES,
2399 {0, 0}
2400 };
2401
2402 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2403 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2404 of these register symbols, return the associated vector register,
2405 otherwise return SYMVAL itself. */
2406
2407 static unsigned int
2408 mips_prefer_vec_regno (unsigned int symval)
2409 {
2410 if ((symval & -2) == (RTYPE_GP | 2))
2411 return RTYPE_VEC | (symval & 1);
2412 return symval;
2413 }
2414
2415 /* Return true if the string at *SPTR is a valid register name. If so,
2416 move *SPTR past the register and store the register's symbol value
2417 in *SYMVAL. This symbol value includes the register number
2418 (RNUM_MASK) and register type (RTYPE_MASK). */
2419
2420 static bfd_boolean
2421 mips_parse_register (char **sptr, unsigned int *symval)
2422 {
2423 symbolS *symbol;
2424 char *s, *e;
2425 char save_c;
2426
2427 /* Find end of name. */
2428 s = e = *sptr;
2429 if (is_name_beginner (*e))
2430 ++e;
2431 while (is_part_of_name (*e))
2432 ++e;
2433
2434 /* Terminate name. */
2435 save_c = *e;
2436 *e = '\0';
2437
2438 /* Look up the name. */
2439 symbol = symbol_find (s);
2440 *e = save_c;
2441
2442 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2443 return FALSE;
2444
2445 *sptr = e;
2446 *symval = S_GET_VALUE (symbol);
2447 return TRUE;
2448 }
2449
2450 /* Check if SPTR points at a valid register specifier according to TYPES.
2451 If so, then return 1, advance S to consume the specifier and store
2452 the register's number in REGNOP, otherwise return 0. */
2453
2454 static int
2455 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2456 {
2457 unsigned int regno;
2458
2459 if (mips_parse_register (s, &regno))
2460 {
2461 if (types & RTYPE_VEC)
2462 regno = mips_prefer_vec_regno (regno);
2463 if (regno & types)
2464 regno &= RNUM_MASK;
2465 else
2466 regno = ~0;
2467 }
2468 else
2469 {
2470 if (types & RWARN)
2471 as_warn (_("Unrecognized register name `%s'"), *s);
2472 regno = ~0;
2473 }
2474 if (regnop)
2475 *regnop = regno;
2476 return regno <= RNUM_MASK;
2477 }
2478
2479 /* Token types for parsed operand lists. */
2480 enum mips_operand_token_type {
2481 /* A plain register, e.g. $f2. */
2482 OT_REG,
2483
2484 /* An element of a vector, e.g. $v0[1]. */
2485 OT_REG_ELEMENT,
2486
2487 /* A continuous range of registers, e.g. $s0-$s4. */
2488 OT_REG_RANGE,
2489
2490 /* A (possibly relocated) expression. */
2491 OT_INTEGER,
2492
2493 /* A floating-point value. */
2494 OT_FLOAT,
2495
2496 /* A single character. This can be '(', ')' or ',', but '(' only appears
2497 before OT_REGs. */
2498 OT_CHAR,
2499
2500 /* The end of the operand list. */
2501 OT_END
2502 };
2503
2504 /* A parsed operand token. */
2505 struct mips_operand_token
2506 {
2507 /* The type of token. */
2508 enum mips_operand_token_type type;
2509 union
2510 {
2511 /* The register symbol value for an OT_REG. */
2512 unsigned int regno;
2513
2514 /* The register symbol value and index for an OT_REG_ELEMENT. */
2515 struct {
2516 unsigned int regno;
2517 addressT index;
2518 } reg_element;
2519
2520 /* The two register symbol values involved in an OT_REG_RANGE. */
2521 struct {
2522 unsigned int regno1;
2523 unsigned int regno2;
2524 } reg_range;
2525
2526 /* The value of an OT_INTEGER. The value is represented as an
2527 expression and the relocation operators that were applied to
2528 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2529 relocation operators were used. */
2530 struct {
2531 expressionS value;
2532 bfd_reloc_code_real_type relocs[3];
2533 } integer;
2534
2535 /* The binary data for an OT_FLOAT constant, and the number of bytes
2536 in the constant. */
2537 struct {
2538 unsigned char data[8];
2539 int length;
2540 } flt;
2541
2542 /* The character represented by an OT_CHAR. */
2543 char ch;
2544 } u;
2545 };
2546
2547 /* An obstack used to construct lists of mips_operand_tokens. */
2548 static struct obstack mips_operand_tokens;
2549
2550 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2551
2552 static void
2553 mips_add_token (struct mips_operand_token *token,
2554 enum mips_operand_token_type type)
2555 {
2556 token->type = type;
2557 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2558 }
2559
2560 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2561 and OT_REG tokens for them if so, and return a pointer to the first
2562 unconsumed character. Return null otherwise. */
2563
2564 static char *
2565 mips_parse_base_start (char *s)
2566 {
2567 struct mips_operand_token token;
2568 unsigned int regno;
2569
2570 if (*s != '(')
2571 return 0;
2572
2573 ++s;
2574 SKIP_SPACE_TABS (s);
2575 if (!mips_parse_register (&s, &regno))
2576 return 0;
2577
2578 token.u.ch = '(';
2579 mips_add_token (&token, OT_CHAR);
2580
2581 token.u.regno = regno;
2582 mips_add_token (&token, OT_REG);
2583
2584 return s;
2585 }
2586
2587 /* Parse one or more tokens from S. Return a pointer to the first
2588 unconsumed character on success. Return null if an error was found
2589 and store the error text in insn_error. FLOAT_FORMAT is as for
2590 mips_parse_arguments. */
2591
2592 static char *
2593 mips_parse_argument_token (char *s, char float_format)
2594 {
2595 char *end, *save_in, *err;
2596 unsigned int regno1, regno2;
2597 struct mips_operand_token token;
2598
2599 /* First look for "($reg", since we want to treat that as an
2600 OT_CHAR and OT_REG rather than an expression. */
2601 end = mips_parse_base_start (s);
2602 if (end)
2603 return end;
2604
2605 /* Handle other characters that end up as OT_CHARs. */
2606 if (*s == ')' || *s == ',')
2607 {
2608 token.u.ch = *s;
2609 mips_add_token (&token, OT_CHAR);
2610 ++s;
2611 return s;
2612 }
2613
2614 /* Handle tokens that start with a register. */
2615 if (mips_parse_register (&s, &regno1))
2616 {
2617 SKIP_SPACE_TABS (s);
2618 if (*s == '-')
2619 {
2620 /* A register range. */
2621 ++s;
2622 SKIP_SPACE_TABS (s);
2623 if (!mips_parse_register (&s, &regno2))
2624 {
2625 insn_error = _("Invalid register range");
2626 return 0;
2627 }
2628
2629 token.u.reg_range.regno1 = regno1;
2630 token.u.reg_range.regno2 = regno2;
2631 mips_add_token (&token, OT_REG_RANGE);
2632 return s;
2633 }
2634 else if (*s == '[')
2635 {
2636 /* A vector element. */
2637 expressionS element;
2638
2639 ++s;
2640 SKIP_SPACE_TABS (s);
2641 my_getExpression (&element, s);
2642 if (element.X_op != O_constant)
2643 {
2644 insn_error = _("Vector element must be constant");
2645 return 0;
2646 }
2647 s = expr_end;
2648 SKIP_SPACE_TABS (s);
2649 if (*s != ']')
2650 {
2651 insn_error = _("Missing `]'");
2652 return 0;
2653 }
2654 ++s;
2655
2656 token.u.reg_element.regno = regno1;
2657 token.u.reg_element.index = element.X_add_number;
2658 mips_add_token (&token, OT_REG_ELEMENT);
2659 return s;
2660 }
2661
2662 /* Looks like just a plain register. */
2663 token.u.regno = regno1;
2664 mips_add_token (&token, OT_REG);
2665 return s;
2666 }
2667
2668 if (float_format)
2669 {
2670 /* First try to treat expressions as floats. */
2671 save_in = input_line_pointer;
2672 input_line_pointer = s;
2673 err = md_atof (float_format, (char *) token.u.flt.data,
2674 &token.u.flt.length);
2675 end = input_line_pointer;
2676 input_line_pointer = save_in;
2677 if (err && *err)
2678 {
2679 insn_error = err;
2680 return 0;
2681 }
2682 if (s != end)
2683 {
2684 mips_add_token (&token, OT_FLOAT);
2685 return end;
2686 }
2687 }
2688
2689 /* Treat everything else as an integer expression. */
2690 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
2691 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
2692 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
2693 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
2694 s = expr_end;
2695 mips_add_token (&token, OT_INTEGER);
2696 return s;
2697 }
2698
2699 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
2700 if expressions should be treated as 32-bit floating-point constants,
2701 'd' if they should be treated as 64-bit floating-point constants,
2702 or 0 if they should be treated as integer expressions (the usual case).
2703
2704 Return a list of tokens on success, otherwise return 0. The caller
2705 must obstack_free the list after use. */
2706
2707 static struct mips_operand_token *
2708 mips_parse_arguments (char *s, char float_format)
2709 {
2710 struct mips_operand_token token;
2711
2712 SKIP_SPACE_TABS (s);
2713 while (*s)
2714 {
2715 s = mips_parse_argument_token (s, float_format);
2716 if (!s)
2717 {
2718 obstack_free (&mips_operand_tokens,
2719 obstack_finish (&mips_operand_tokens));
2720 return 0;
2721 }
2722 SKIP_SPACE_TABS (s);
2723 }
2724 mips_add_token (&token, OT_END);
2725 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
2726 }
2727
2728 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
2729 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
2730
2731 static bfd_boolean
2732 is_opcode_valid (const struct mips_opcode *mo)
2733 {
2734 int isa = mips_opts.isa;
2735 int ase = mips_opts.ase;
2736 int fp_s, fp_d;
2737 unsigned int i;
2738
2739 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2740 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2741 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
2742 ase |= mips_ases[i].flags64;
2743
2744 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
2745 return FALSE;
2746
2747 /* Check whether the instruction or macro requires single-precision or
2748 double-precision floating-point support. Note that this information is
2749 stored differently in the opcode table for insns and macros. */
2750 if (mo->pinfo == INSN_MACRO)
2751 {
2752 fp_s = mo->pinfo2 & INSN2_M_FP_S;
2753 fp_d = mo->pinfo2 & INSN2_M_FP_D;
2754 }
2755 else
2756 {
2757 fp_s = mo->pinfo & FP_S;
2758 fp_d = mo->pinfo & FP_D;
2759 }
2760
2761 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
2762 return FALSE;
2763
2764 if (fp_s && mips_opts.soft_float)
2765 return FALSE;
2766
2767 return TRUE;
2768 }
2769
2770 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
2771 selected ISA and architecture. */
2772
2773 static bfd_boolean
2774 is_opcode_valid_16 (const struct mips_opcode *mo)
2775 {
2776 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
2777 }
2778
2779 /* Return TRUE if the size of the microMIPS opcode MO matches one
2780 explicitly requested. Always TRUE in the standard MIPS mode. */
2781
2782 static bfd_boolean
2783 is_size_valid (const struct mips_opcode *mo)
2784 {
2785 if (!mips_opts.micromips)
2786 return TRUE;
2787
2788 if (mips_opts.insn32)
2789 {
2790 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
2791 return FALSE;
2792 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
2793 return FALSE;
2794 }
2795 if (!forced_insn_length)
2796 return TRUE;
2797 if (mo->pinfo == INSN_MACRO)
2798 return FALSE;
2799 return forced_insn_length == micromips_insn_length (mo);
2800 }
2801
2802 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
2803 of the preceding instruction. Always TRUE in the standard MIPS mode.
2804
2805 We don't accept macros in 16-bit delay slots to avoid a case where
2806 a macro expansion fails because it relies on a preceding 32-bit real
2807 instruction to have matched and does not handle the operands correctly.
2808 The only macros that may expand to 16-bit instructions are JAL that
2809 cannot be placed in a delay slot anyway, and corner cases of BALIGN
2810 and BGT (that likewise cannot be placed in a delay slot) that decay to
2811 a NOP. In all these cases the macros precede any corresponding real
2812 instruction definitions in the opcode table, so they will match in the
2813 second pass where the size of the delay slot is ignored and therefore
2814 produce correct code. */
2815
2816 static bfd_boolean
2817 is_delay_slot_valid (const struct mips_opcode *mo)
2818 {
2819 if (!mips_opts.micromips)
2820 return TRUE;
2821
2822 if (mo->pinfo == INSN_MACRO)
2823 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
2824 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
2825 && micromips_insn_length (mo) != 4)
2826 return FALSE;
2827 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
2828 && micromips_insn_length (mo) != 2)
2829 return FALSE;
2830
2831 return TRUE;
2832 }
2833
2834 /* For consistency checking, verify that all bits of OPCODE are
2835 specified either by the match/mask part of the instruction
2836 definition, or by the operand list. INSN_BITS says which
2837 bits of the instruction are significant and DECODE_OPERAND
2838 provides the mips_operand description of each operand. */
2839
2840 static int
2841 validate_mips_insn (const struct mips_opcode *opcode,
2842 unsigned long insn_bits,
2843 const struct mips_operand *(*decode_operand) (const char *))
2844 {
2845 const char *s;
2846 unsigned long used_bits, doubled, undefined;
2847 const struct mips_operand *operand;
2848
2849 if ((opcode->mask & opcode->match) != opcode->match)
2850 {
2851 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
2852 opcode->name, opcode->args);
2853 return 0;
2854 }
2855 used_bits = 0;
2856 for (s = opcode->args; *s; ++s)
2857 switch (*s)
2858 {
2859 case ',':
2860 case '(':
2861 case ')':
2862 break;
2863
2864 default:
2865 operand = decode_operand (s);
2866 if (!operand)
2867 {
2868 as_bad (_("internal: unknown operand type: %s %s"),
2869 opcode->name, opcode->args);
2870 return 0;
2871 }
2872 used_bits |= ((1 << operand->size) - 1) << operand->lsb;
2873 if (operand->type == OP_MDMX_IMM_REG)
2874 /* Bit 5 is the format selector (OB vs QH). The opcode table
2875 has separate entries for each format. */
2876 used_bits &= ~(1 << (operand->lsb + 5));
2877 /* Skip prefix characters. */
2878 if (*s == '+' || *s == 'm')
2879 ++s;
2880 break;
2881 }
2882 doubled = used_bits & opcode->mask & insn_bits;
2883 if (doubled)
2884 {
2885 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
2886 " %s %s"), doubled, opcode->name, opcode->args);
2887 return 0;
2888 }
2889 used_bits |= opcode->mask;
2890 undefined = ~used_bits & insn_bits;
2891 if (undefined)
2892 {
2893 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
2894 undefined, opcode->name, opcode->args);
2895 return 0;
2896 }
2897 used_bits &= ~insn_bits;
2898 if (used_bits)
2899 {
2900 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
2901 used_bits, opcode->name, opcode->args);
2902 return 0;
2903 }
2904 return 1;
2905 }
2906
2907 /* The microMIPS version of validate_mips_insn. */
2908
2909 static int
2910 validate_micromips_insn (const struct mips_opcode *opc)
2911 {
2912 unsigned long insn_bits;
2913 unsigned long major;
2914 unsigned int length;
2915
2916 length = micromips_insn_length (opc);
2917 if (length != 2 && length != 4)
2918 {
2919 as_bad (_("Internal error: bad microMIPS opcode (incorrect length: %u): "
2920 "%s %s"), length, opc->name, opc->args);
2921 return 0;
2922 }
2923 major = opc->match >> (10 + 8 * (length - 2));
2924 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
2925 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
2926 {
2927 as_bad (_("Internal error: bad microMIPS opcode "
2928 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
2929 return 0;
2930 }
2931
2932 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
2933 insn_bits = 1 << 4 * length;
2934 insn_bits <<= 4 * length;
2935 insn_bits -= 1;
2936 return validate_mips_insn (opc, insn_bits, decode_micromips_operand);
2937 }
2938
2939 /* This function is called once, at assembler startup time. It should set up
2940 all the tables, etc. that the MD part of the assembler will need. */
2941
2942 void
2943 md_begin (void)
2944 {
2945 const char *retval = NULL;
2946 int i = 0;
2947 int broken = 0;
2948
2949 if (mips_pic != NO_PIC)
2950 {
2951 if (g_switch_seen && g_switch_value != 0)
2952 as_bad (_("-G may not be used in position-independent code"));
2953 g_switch_value = 0;
2954 }
2955
2956 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
2957 as_warn (_("Could not set architecture and machine"));
2958
2959 op_hash = hash_new ();
2960
2961 for (i = 0; i < NUMOPCODES;)
2962 {
2963 const char *name = mips_opcodes[i].name;
2964
2965 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
2966 if (retval != NULL)
2967 {
2968 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
2969 mips_opcodes[i].name, retval);
2970 /* Probably a memory allocation problem? Give up now. */
2971 as_fatal (_("Broken assembler. No assembly attempted."));
2972 }
2973 do
2974 {
2975 if (mips_opcodes[i].pinfo != INSN_MACRO)
2976 {
2977 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
2978 decode_mips_operand))
2979 broken = 1;
2980 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
2981 {
2982 create_insn (&nop_insn, mips_opcodes + i);
2983 if (mips_fix_loongson2f_nop)
2984 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
2985 nop_insn.fixed_p = 1;
2986 }
2987 }
2988 ++i;
2989 }
2990 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
2991 }
2992
2993 mips16_op_hash = hash_new ();
2994
2995 i = 0;
2996 while (i < bfd_mips16_num_opcodes)
2997 {
2998 const char *name = mips16_opcodes[i].name;
2999
3000 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3001 if (retval != NULL)
3002 as_fatal (_("internal: can't hash `%s': %s"),
3003 mips16_opcodes[i].name, retval);
3004 do
3005 {
3006 if (mips16_opcodes[i].pinfo != INSN_MACRO
3007 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
3008 != mips16_opcodes[i].match))
3009 {
3010 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
3011 mips16_opcodes[i].name, mips16_opcodes[i].args);
3012 broken = 1;
3013 }
3014 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3015 {
3016 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3017 mips16_nop_insn.fixed_p = 1;
3018 }
3019 ++i;
3020 }
3021 while (i < bfd_mips16_num_opcodes
3022 && strcmp (mips16_opcodes[i].name, name) == 0);
3023 }
3024
3025 micromips_op_hash = hash_new ();
3026
3027 i = 0;
3028 while (i < bfd_micromips_num_opcodes)
3029 {
3030 const char *name = micromips_opcodes[i].name;
3031
3032 retval = hash_insert (micromips_op_hash, name,
3033 (void *) &micromips_opcodes[i]);
3034 if (retval != NULL)
3035 as_fatal (_("internal: can't hash `%s': %s"),
3036 micromips_opcodes[i].name, retval);
3037 do
3038 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3039 {
3040 struct mips_cl_insn *micromips_nop_insn;
3041
3042 if (!validate_micromips_insn (&micromips_opcodes[i]))
3043 broken = 1;
3044
3045 if (micromips_insn_length (micromips_opcodes + i) == 2)
3046 micromips_nop_insn = &micromips_nop16_insn;
3047 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3048 micromips_nop_insn = &micromips_nop32_insn;
3049 else
3050 continue;
3051
3052 if (micromips_nop_insn->insn_mo == NULL
3053 && strcmp (name, "nop") == 0)
3054 {
3055 create_insn (micromips_nop_insn, micromips_opcodes + i);
3056 micromips_nop_insn->fixed_p = 1;
3057 }
3058 }
3059 while (++i < bfd_micromips_num_opcodes
3060 && strcmp (micromips_opcodes[i].name, name) == 0);
3061 }
3062
3063 if (broken)
3064 as_fatal (_("Broken assembler. No assembly attempted."));
3065
3066 /* We add all the general register names to the symbol table. This
3067 helps us detect invalid uses of them. */
3068 for (i = 0; reg_names[i].name; i++)
3069 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3070 reg_names[i].num, /* & RNUM_MASK, */
3071 &zero_address_frag));
3072 if (HAVE_NEWABI)
3073 for (i = 0; reg_names_n32n64[i].name; i++)
3074 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3075 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3076 &zero_address_frag));
3077 else
3078 for (i = 0; reg_names_o32[i].name; i++)
3079 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3080 reg_names_o32[i].num, /* & RNUM_MASK, */
3081 &zero_address_frag));
3082
3083 obstack_init (&mips_operand_tokens);
3084
3085 mips_no_prev_insn ();
3086
3087 mips_gprmask = 0;
3088 mips_cprmask[0] = 0;
3089 mips_cprmask[1] = 0;
3090 mips_cprmask[2] = 0;
3091 mips_cprmask[3] = 0;
3092
3093 /* set the default alignment for the text section (2**2) */
3094 record_alignment (text_section, 2);
3095
3096 bfd_set_gp_size (stdoutput, g_switch_value);
3097
3098 /* On a native system other than VxWorks, sections must be aligned
3099 to 16 byte boundaries. When configured for an embedded ELF
3100 target, we don't bother. */
3101 if (strncmp (TARGET_OS, "elf", 3) != 0
3102 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3103 {
3104 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3105 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3106 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3107 }
3108
3109 /* Create a .reginfo section for register masks and a .mdebug
3110 section for debugging information. */
3111 {
3112 segT seg;
3113 subsegT subseg;
3114 flagword flags;
3115 segT sec;
3116
3117 seg = now_seg;
3118 subseg = now_subseg;
3119
3120 /* The ABI says this section should be loaded so that the
3121 running program can access it. However, we don't load it
3122 if we are configured for an embedded target */
3123 flags = SEC_READONLY | SEC_DATA;
3124 if (strncmp (TARGET_OS, "elf", 3) != 0)
3125 flags |= SEC_ALLOC | SEC_LOAD;
3126
3127 if (mips_abi != N64_ABI)
3128 {
3129 sec = subseg_new (".reginfo", (subsegT) 0);
3130
3131 bfd_set_section_flags (stdoutput, sec, flags);
3132 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3133
3134 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3135 }
3136 else
3137 {
3138 /* The 64-bit ABI uses a .MIPS.options section rather than
3139 .reginfo section. */
3140 sec = subseg_new (".MIPS.options", (subsegT) 0);
3141 bfd_set_section_flags (stdoutput, sec, flags);
3142 bfd_set_section_alignment (stdoutput, sec, 3);
3143
3144 /* Set up the option header. */
3145 {
3146 Elf_Internal_Options opthdr;
3147 char *f;
3148
3149 opthdr.kind = ODK_REGINFO;
3150 opthdr.size = (sizeof (Elf_External_Options)
3151 + sizeof (Elf64_External_RegInfo));
3152 opthdr.section = 0;
3153 opthdr.info = 0;
3154 f = frag_more (sizeof (Elf_External_Options));
3155 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3156 (Elf_External_Options *) f);
3157
3158 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3159 }
3160 }
3161
3162 if (ECOFF_DEBUGGING)
3163 {
3164 sec = subseg_new (".mdebug", (subsegT) 0);
3165 (void) bfd_set_section_flags (stdoutput, sec,
3166 SEC_HAS_CONTENTS | SEC_READONLY);
3167 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3168 }
3169 else if (mips_flag_pdr)
3170 {
3171 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3172 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3173 SEC_READONLY | SEC_RELOC
3174 | SEC_DEBUGGING);
3175 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3176 }
3177
3178 subseg_set (seg, subseg);
3179 }
3180
3181 if (! ECOFF_DEBUGGING)
3182 md_obj_begin ();
3183
3184 if (mips_fix_vr4120)
3185 init_vr4120_conflicts ();
3186 }
3187
3188 void
3189 md_mips_end (void)
3190 {
3191 mips_emit_delays ();
3192 if (! ECOFF_DEBUGGING)
3193 md_obj_end ();
3194 }
3195
3196 void
3197 md_assemble (char *str)
3198 {
3199 struct mips_cl_insn insn;
3200 bfd_reloc_code_real_type unused_reloc[3]
3201 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3202
3203 imm_expr.X_op = O_absent;
3204 imm2_expr.X_op = O_absent;
3205 offset_expr.X_op = O_absent;
3206 offset_reloc[0] = BFD_RELOC_UNUSED;
3207 offset_reloc[1] = BFD_RELOC_UNUSED;
3208 offset_reloc[2] = BFD_RELOC_UNUSED;
3209
3210 mips_mark_labels ();
3211 mips_assembling_insn = TRUE;
3212
3213 if (mips_opts.mips16)
3214 mips16_ip (str, &insn);
3215 else
3216 {
3217 mips_ip (str, &insn);
3218 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
3219 str, insn.insn_opcode));
3220 }
3221
3222 if (insn_error)
3223 as_bad ("%s `%s'", insn_error, str);
3224 else if (insn.insn_mo->pinfo == INSN_MACRO)
3225 {
3226 macro_start ();
3227 if (mips_opts.mips16)
3228 mips16_macro (&insn);
3229 else
3230 macro (&insn, str);
3231 macro_end ();
3232 }
3233 else
3234 {
3235 if (offset_expr.X_op != O_absent)
3236 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
3237 else
3238 append_insn (&insn, NULL, unused_reloc, FALSE);
3239 }
3240
3241 mips_assembling_insn = FALSE;
3242 }
3243
3244 /* Convenience functions for abstracting away the differences between
3245 MIPS16 and non-MIPS16 relocations. */
3246
3247 static inline bfd_boolean
3248 mips16_reloc_p (bfd_reloc_code_real_type reloc)
3249 {
3250 switch (reloc)
3251 {
3252 case BFD_RELOC_MIPS16_JMP:
3253 case BFD_RELOC_MIPS16_GPREL:
3254 case BFD_RELOC_MIPS16_GOT16:
3255 case BFD_RELOC_MIPS16_CALL16:
3256 case BFD_RELOC_MIPS16_HI16_S:
3257 case BFD_RELOC_MIPS16_HI16:
3258 case BFD_RELOC_MIPS16_LO16:
3259 return TRUE;
3260
3261 default:
3262 return FALSE;
3263 }
3264 }
3265
3266 static inline bfd_boolean
3267 micromips_reloc_p (bfd_reloc_code_real_type reloc)
3268 {
3269 switch (reloc)
3270 {
3271 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3272 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3273 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3274 case BFD_RELOC_MICROMIPS_GPREL16:
3275 case BFD_RELOC_MICROMIPS_JMP:
3276 case BFD_RELOC_MICROMIPS_HI16:
3277 case BFD_RELOC_MICROMIPS_HI16_S:
3278 case BFD_RELOC_MICROMIPS_LO16:
3279 case BFD_RELOC_MICROMIPS_LITERAL:
3280 case BFD_RELOC_MICROMIPS_GOT16:
3281 case BFD_RELOC_MICROMIPS_CALL16:
3282 case BFD_RELOC_MICROMIPS_GOT_HI16:
3283 case BFD_RELOC_MICROMIPS_GOT_LO16:
3284 case BFD_RELOC_MICROMIPS_CALL_HI16:
3285 case BFD_RELOC_MICROMIPS_CALL_LO16:
3286 case BFD_RELOC_MICROMIPS_SUB:
3287 case BFD_RELOC_MICROMIPS_GOT_PAGE:
3288 case BFD_RELOC_MICROMIPS_GOT_OFST:
3289 case BFD_RELOC_MICROMIPS_GOT_DISP:
3290 case BFD_RELOC_MICROMIPS_HIGHEST:
3291 case BFD_RELOC_MICROMIPS_HIGHER:
3292 case BFD_RELOC_MICROMIPS_SCN_DISP:
3293 case BFD_RELOC_MICROMIPS_JALR:
3294 return TRUE;
3295
3296 default:
3297 return FALSE;
3298 }
3299 }
3300
3301 static inline bfd_boolean
3302 jmp_reloc_p (bfd_reloc_code_real_type reloc)
3303 {
3304 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
3305 }
3306
3307 static inline bfd_boolean
3308 got16_reloc_p (bfd_reloc_code_real_type reloc)
3309 {
3310 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
3311 || reloc == BFD_RELOC_MICROMIPS_GOT16);
3312 }
3313
3314 static inline bfd_boolean
3315 hi16_reloc_p (bfd_reloc_code_real_type reloc)
3316 {
3317 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
3318 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
3319 }
3320
3321 static inline bfd_boolean
3322 lo16_reloc_p (bfd_reloc_code_real_type reloc)
3323 {
3324 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
3325 || reloc == BFD_RELOC_MICROMIPS_LO16);
3326 }
3327
3328 static inline bfd_boolean
3329 jalr_reloc_p (bfd_reloc_code_real_type reloc)
3330 {
3331 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
3332 }
3333
3334 static inline bfd_boolean
3335 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
3336 {
3337 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
3338 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
3339 }
3340
3341 /* Return true if RELOC is a PC-relative relocation that does not have
3342 full address range. */
3343
3344 static inline bfd_boolean
3345 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
3346 {
3347 switch (reloc)
3348 {
3349 case BFD_RELOC_16_PCREL_S2:
3350 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
3351 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
3352 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
3353 return TRUE;
3354
3355 case BFD_RELOC_32_PCREL:
3356 return HAVE_64BIT_ADDRESSES;
3357
3358 default:
3359 return FALSE;
3360 }
3361 }
3362
3363 /* Return true if the given relocation might need a matching %lo().
3364 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
3365 need a matching %lo() when applied to local symbols. */
3366
3367 static inline bfd_boolean
3368 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
3369 {
3370 return (HAVE_IN_PLACE_ADDENDS
3371 && (hi16_reloc_p (reloc)
3372 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
3373 all GOT16 relocations evaluate to "G". */
3374 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
3375 }
3376
3377 /* Return the type of %lo() reloc needed by RELOC, given that
3378 reloc_needs_lo_p. */
3379
3380 static inline bfd_reloc_code_real_type
3381 matching_lo_reloc (bfd_reloc_code_real_type reloc)
3382 {
3383 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
3384 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
3385 : BFD_RELOC_LO16));
3386 }
3387
3388 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
3389 relocation. */
3390
3391 static inline bfd_boolean
3392 fixup_has_matching_lo_p (fixS *fixp)
3393 {
3394 return (fixp->fx_next != NULL
3395 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
3396 && fixp->fx_addsy == fixp->fx_next->fx_addsy
3397 && fixp->fx_offset == fixp->fx_next->fx_offset);
3398 }
3399
3400 /* Move all labels in LABELS to the current insertion point. TEXT_P
3401 says whether the labels refer to text or data. */
3402
3403 static void
3404 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
3405 {
3406 struct insn_label_list *l;
3407 valueT val;
3408
3409 for (l = labels; l != NULL; l = l->next)
3410 {
3411 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
3412 symbol_set_frag (l->label, frag_now);
3413 val = (valueT) frag_now_fix ();
3414 /* MIPS16/microMIPS text labels are stored as odd. */
3415 if (text_p && HAVE_CODE_COMPRESSION)
3416 ++val;
3417 S_SET_VALUE (l->label, val);
3418 }
3419 }
3420
3421 /* Move all labels in insn_labels to the current insertion point
3422 and treat them as text labels. */
3423
3424 static void
3425 mips_move_text_labels (void)
3426 {
3427 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
3428 }
3429
3430 static bfd_boolean
3431 s_is_linkonce (symbolS *sym, segT from_seg)
3432 {
3433 bfd_boolean linkonce = FALSE;
3434 segT symseg = S_GET_SEGMENT (sym);
3435
3436 if (symseg != from_seg && !S_IS_LOCAL (sym))
3437 {
3438 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
3439 linkonce = TRUE;
3440 /* The GNU toolchain uses an extension for ELF: a section
3441 beginning with the magic string .gnu.linkonce is a
3442 linkonce section. */
3443 if (strncmp (segment_name (symseg), ".gnu.linkonce",
3444 sizeof ".gnu.linkonce" - 1) == 0)
3445 linkonce = TRUE;
3446 }
3447 return linkonce;
3448 }
3449
3450 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
3451 linker to handle them specially, such as generating jalx instructions
3452 when needed. We also make them odd for the duration of the assembly,
3453 in order to generate the right sort of code. We will make them even
3454 in the adjust_symtab routine, while leaving them marked. This is
3455 convenient for the debugger and the disassembler. The linker knows
3456 to make them odd again. */
3457
3458 static void
3459 mips_compressed_mark_label (symbolS *label)
3460 {
3461 gas_assert (HAVE_CODE_COMPRESSION);
3462
3463 if (mips_opts.mips16)
3464 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
3465 else
3466 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
3467 if ((S_GET_VALUE (label) & 1) == 0
3468 /* Don't adjust the address if the label is global or weak, or
3469 in a link-once section, since we'll be emitting symbol reloc
3470 references to it which will be patched up by the linker, and
3471 the final value of the symbol may or may not be MIPS16/microMIPS. */
3472 && !S_IS_WEAK (label)
3473 && !S_IS_EXTERNAL (label)
3474 && !s_is_linkonce (label, now_seg))
3475 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
3476 }
3477
3478 /* Mark preceding MIPS16 or microMIPS instruction labels. */
3479
3480 static void
3481 mips_compressed_mark_labels (void)
3482 {
3483 struct insn_label_list *l;
3484
3485 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
3486 mips_compressed_mark_label (l->label);
3487 }
3488
3489 /* End the current frag. Make it a variant frag and record the
3490 relaxation info. */
3491
3492 static void
3493 relax_close_frag (void)
3494 {
3495 mips_macro_warning.first_frag = frag_now;
3496 frag_var (rs_machine_dependent, 0, 0,
3497 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
3498 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
3499
3500 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
3501 mips_relax.first_fixup = 0;
3502 }
3503
3504 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
3505 See the comment above RELAX_ENCODE for more details. */
3506
3507 static void
3508 relax_start (symbolS *symbol)
3509 {
3510 gas_assert (mips_relax.sequence == 0);
3511 mips_relax.sequence = 1;
3512 mips_relax.symbol = symbol;
3513 }
3514
3515 /* Start generating the second version of a relaxable sequence.
3516 See the comment above RELAX_ENCODE for more details. */
3517
3518 static void
3519 relax_switch (void)
3520 {
3521 gas_assert (mips_relax.sequence == 1);
3522 mips_relax.sequence = 2;
3523 }
3524
3525 /* End the current relaxable sequence. */
3526
3527 static void
3528 relax_end (void)
3529 {
3530 gas_assert (mips_relax.sequence == 2);
3531 relax_close_frag ();
3532 mips_relax.sequence = 0;
3533 }
3534
3535 /* Return true if IP is a delayed branch or jump. */
3536
3537 static inline bfd_boolean
3538 delayed_branch_p (const struct mips_cl_insn *ip)
3539 {
3540 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
3541 | INSN_COND_BRANCH_DELAY
3542 | INSN_COND_BRANCH_LIKELY)) != 0;
3543 }
3544
3545 /* Return true if IP is a compact branch or jump. */
3546
3547 static inline bfd_boolean
3548 compact_branch_p (const struct mips_cl_insn *ip)
3549 {
3550 if (mips_opts.mips16)
3551 return (ip->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
3552 | MIPS16_INSN_COND_BRANCH)) != 0;
3553 else
3554 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
3555 | INSN2_COND_BRANCH)) != 0;
3556 }
3557
3558 /* Return true if IP is an unconditional branch or jump. */
3559
3560 static inline bfd_boolean
3561 uncond_branch_p (const struct mips_cl_insn *ip)
3562 {
3563 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
3564 || (mips_opts.mips16
3565 ? (ip->insn_mo->pinfo & MIPS16_INSN_UNCOND_BRANCH) != 0
3566 : (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0));
3567 }
3568
3569 /* Return true if IP is a branch-likely instruction. */
3570
3571 static inline bfd_boolean
3572 branch_likely_p (const struct mips_cl_insn *ip)
3573 {
3574 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
3575 }
3576
3577 /* Return the type of nop that should be used to fill the delay slot
3578 of delayed branch IP. */
3579
3580 static struct mips_cl_insn *
3581 get_delay_slot_nop (const struct mips_cl_insn *ip)
3582 {
3583 if (mips_opts.micromips
3584 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
3585 return &micromips_nop32_insn;
3586 return NOP_INSN;
3587 }
3588
3589 /* Return the mask of core registers that IP reads or writes. */
3590
3591 static unsigned int
3592 gpr_mod_mask (const struct mips_cl_insn *ip)
3593 {
3594 unsigned long pinfo2;
3595 unsigned int mask;
3596
3597 mask = 0;
3598 pinfo2 = ip->insn_mo->pinfo2;
3599 if (mips_opts.micromips)
3600 {
3601 if (pinfo2 & INSN2_MOD_GPR_MD)
3602 mask |= 1 << micromips_to_32_reg_d_map[EXTRACT_OPERAND (1, MD, *ip)];
3603 if (pinfo2 & INSN2_MOD_GPR_MF)
3604 mask |= 1 << micromips_to_32_reg_f_map[EXTRACT_OPERAND (1, MF, *ip)];
3605 if (pinfo2 & INSN2_MOD_SP)
3606 mask |= 1 << SP;
3607 }
3608 return mask;
3609 }
3610
3611 /* Return the mask of core registers that IP reads. */
3612
3613 static unsigned int
3614 gpr_read_mask (const struct mips_cl_insn *ip)
3615 {
3616 unsigned long pinfo, pinfo2;
3617 unsigned int mask;
3618
3619 mask = gpr_mod_mask (ip);
3620 pinfo = ip->insn_mo->pinfo;
3621 pinfo2 = ip->insn_mo->pinfo2;
3622 if (mips_opts.mips16)
3623 {
3624 if (pinfo & MIPS16_INSN_READ_X)
3625 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3626 if (pinfo & MIPS16_INSN_READ_Y)
3627 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3628 if (pinfo & MIPS16_INSN_READ_T)
3629 mask |= 1 << TREG;
3630 if (pinfo & MIPS16_INSN_READ_SP)
3631 mask |= 1 << SP;
3632 if (pinfo & MIPS16_INSN_READ_31)
3633 mask |= 1 << RA;
3634 if (pinfo & MIPS16_INSN_READ_Z)
3635 mask |= 1 << (mips16_to_32_reg_map
3636 [MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]);
3637 if (pinfo & MIPS16_INSN_READ_GPR_X)
3638 mask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3639 }
3640 else
3641 {
3642 if (pinfo2 & INSN2_READ_GPR_D)
3643 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3644 if (pinfo & INSN_READ_GPR_T)
3645 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3646 if (pinfo & INSN_READ_GPR_S)
3647 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3648 if (pinfo2 & INSN2_READ_GP)
3649 mask |= 1 << GP;
3650 if (pinfo2 & INSN2_READ_GPR_31)
3651 mask |= 1 << RA;
3652 if (pinfo2 & INSN2_READ_GPR_Z)
3653 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3654 }
3655 if (mips_opts.micromips)
3656 {
3657 if (pinfo2 & INSN2_READ_GPR_MC)
3658 mask |= 1 << micromips_to_32_reg_c_map[EXTRACT_OPERAND (1, MC, *ip)];
3659 if (pinfo2 & INSN2_READ_GPR_ME)
3660 mask |= 1 << micromips_to_32_reg_e_map[EXTRACT_OPERAND (1, ME, *ip)];
3661 if (pinfo2 & INSN2_READ_GPR_MG)
3662 mask |= 1 << micromips_to_32_reg_g_map[EXTRACT_OPERAND (1, MG, *ip)];
3663 if (pinfo2 & INSN2_READ_GPR_MJ)
3664 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3665 if (pinfo2 & INSN2_READ_GPR_MMN)
3666 {
3667 mask |= 1 << micromips_to_32_reg_m_map[EXTRACT_OPERAND (1, MM, *ip)];
3668 mask |= 1 << micromips_to_32_reg_n_map[EXTRACT_OPERAND (1, MN, *ip)];
3669 }
3670 if (pinfo2 & INSN2_READ_GPR_MP)
3671 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3672 if (pinfo2 & INSN2_READ_GPR_MQ)
3673 mask |= 1 << micromips_to_32_reg_q_map[EXTRACT_OPERAND (1, MQ, *ip)];
3674 }
3675 /* Don't include register 0. */
3676 return mask & ~1;
3677 }
3678
3679 /* Return the mask of core registers that IP writes. */
3680
3681 static unsigned int
3682 gpr_write_mask (const struct mips_cl_insn *ip)
3683 {
3684 unsigned long pinfo, pinfo2;
3685 unsigned int mask;
3686
3687 mask = gpr_mod_mask (ip);
3688 pinfo = ip->insn_mo->pinfo;
3689 pinfo2 = ip->insn_mo->pinfo2;
3690 if (mips_opts.mips16)
3691 {
3692 if (pinfo & MIPS16_INSN_WRITE_X)
3693 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)];
3694 if (pinfo & MIPS16_INSN_WRITE_Y)
3695 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)];
3696 if (pinfo & MIPS16_INSN_WRITE_Z)
3697 mask |= 1 << mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RZ, *ip)];
3698 if (pinfo & MIPS16_INSN_WRITE_T)
3699 mask |= 1 << TREG;
3700 if (pinfo & MIPS16_INSN_WRITE_SP)
3701 mask |= 1 << SP;
3702 if (pinfo & MIPS16_INSN_WRITE_31)
3703 mask |= 1 << RA;
3704 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3705 mask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3706 }
3707 else
3708 {
3709 if (pinfo & INSN_WRITE_GPR_D)
3710 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
3711 if (pinfo & INSN_WRITE_GPR_T)
3712 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
3713 if (pinfo & INSN_WRITE_GPR_S)
3714 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
3715 if (pinfo & INSN_WRITE_GPR_31)
3716 mask |= 1 << RA;
3717 if (pinfo2 & INSN2_WRITE_GPR_Z)
3718 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RZ, *ip);
3719 }
3720 if (mips_opts.micromips)
3721 {
3722 if (pinfo2 & INSN2_WRITE_GPR_MB)
3723 mask |= 1 << micromips_to_32_reg_b_map[EXTRACT_OPERAND (1, MB, *ip)];
3724 if (pinfo2 & INSN2_WRITE_GPR_MH)
3725 {
3726 mask |= 1 << micromips_to_32_reg_h_map1[EXTRACT_OPERAND (1, MH, *ip)];
3727 mask |= 1 << micromips_to_32_reg_h_map2[EXTRACT_OPERAND (1, MH, *ip)];
3728 }
3729 if (pinfo2 & INSN2_WRITE_GPR_MJ)
3730 mask |= 1 << EXTRACT_OPERAND (1, MJ, *ip);
3731 if (pinfo2 & INSN2_WRITE_GPR_MP)
3732 mask |= 1 << EXTRACT_OPERAND (1, MP, *ip);
3733 }
3734 /* Don't include register 0. */
3735 return mask & ~1;
3736 }
3737
3738 /* Return the mask of floating-point registers that IP reads. */
3739
3740 static unsigned int
3741 fpr_read_mask (const struct mips_cl_insn *ip)
3742 {
3743 unsigned long pinfo, pinfo2;
3744 unsigned int mask;
3745
3746 mask = 0;
3747 pinfo = ip->insn_mo->pinfo;
3748 pinfo2 = ip->insn_mo->pinfo2;
3749 if (!mips_opts.mips16)
3750 {
3751 if (pinfo2 & INSN2_READ_FPR_D)
3752 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3753 if (pinfo & INSN_READ_FPR_S)
3754 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3755 if (pinfo & INSN_READ_FPR_T)
3756 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3757 if (pinfo & INSN_READ_FPR_R)
3758 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FR, *ip);
3759 if (pinfo2 & INSN2_READ_FPR_Z)
3760 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3761 }
3762 /* Conservatively treat all operands to an FP_D instruction are doubles.
3763 (This is overly pessimistic for things like cvt.d.s.) */
3764 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3765 mask |= mask << 1;
3766 return mask;
3767 }
3768
3769 /* Return the mask of floating-point registers that IP writes. */
3770
3771 static unsigned int
3772 fpr_write_mask (const struct mips_cl_insn *ip)
3773 {
3774 unsigned long pinfo, pinfo2;
3775 unsigned int mask;
3776
3777 mask = 0;
3778 pinfo = ip->insn_mo->pinfo;
3779 pinfo2 = ip->insn_mo->pinfo2;
3780 if (!mips_opts.mips16)
3781 {
3782 if (pinfo & INSN_WRITE_FPR_D)
3783 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FD, *ip);
3784 if (pinfo & INSN_WRITE_FPR_S)
3785 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FS, *ip);
3786 if (pinfo & INSN_WRITE_FPR_T)
3787 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FT, *ip);
3788 if (pinfo2 & INSN2_WRITE_FPR_Z)
3789 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, FZ, *ip);
3790 }
3791 /* Conservatively treat all operands to an FP_D instruction are doubles.
3792 (This is overly pessimistic for things like cvt.s.d.) */
3793 if (HAVE_32BIT_FPRS && (pinfo & FP_D))
3794 mask |= mask << 1;
3795 return mask;
3796 }
3797
3798 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
3799 Check whether that is allowed. */
3800
3801 static bfd_boolean
3802 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
3803 {
3804 const char *s = insn->name;
3805
3806 if (insn->pinfo == INSN_MACRO)
3807 /* Let a macro pass, we'll catch it later when it is expanded. */
3808 return TRUE;
3809
3810 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa) || mips_opts.arch == CPU_R5900)
3811 {
3812 /* Allow odd registers for single-precision ops. */
3813 switch (insn->pinfo & (FP_S | FP_D))
3814 {
3815 case FP_S:
3816 case 0:
3817 return TRUE;
3818 case FP_D:
3819 return FALSE;
3820 default:
3821 break;
3822 }
3823
3824 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
3825 s = strchr (insn->name, '.');
3826 if (s != NULL && opnum == 2)
3827 s = strchr (s + 1, '.');
3828 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
3829 }
3830
3831 /* Single-precision coprocessor loads and moves are OK too. */
3832 if ((insn->pinfo & FP_S)
3833 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
3834 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
3835 return TRUE;
3836
3837 return FALSE;
3838 }
3839
3840 /* Report that user-supplied argument ARGNUM for INSN was VAL, but should
3841 have been in the range [MIN_VAL, MAX_VAL]. PRINT_HEX says whether
3842 this operand is normally printed in hex or decimal. */
3843
3844 static void
3845 report_bad_range (struct mips_cl_insn *insn, int argnum,
3846 offsetT val, int min_val, int max_val,
3847 bfd_boolean print_hex)
3848 {
3849 if (print_hex && val >= 0)
3850 as_bad (_("Operand %d of `%s' must be in the range [0x%x, 0x%x],"
3851 " was 0x%lx."),
3852 argnum, insn->insn_mo->name, min_val, max_val, (unsigned long) val);
3853 else if (print_hex)
3854 as_bad (_("Operand %d of `%s' must be in the range [0x%x, 0x%x],"
3855 " was %ld."),
3856 argnum, insn->insn_mo->name, min_val, max_val, (unsigned long) val);
3857 else
3858 as_bad (_("Operand %d of `%s' must be in the range [%d, %d],"
3859 " was %ld."),
3860 argnum, insn->insn_mo->name, min_val, max_val, (unsigned long) val);
3861 }
3862
3863 /* Report an invalid combination of position and size operands for a bitfield
3864 operation. POS and SIZE are the values that were given. */
3865
3866 static void
3867 report_bad_field (offsetT pos, offsetT size)
3868 {
3869 as_bad (_("Invalid field specification (position %ld, size %ld)"),
3870 (unsigned long) pos, (unsigned long) size);
3871 }
3872
3873 /* Information about an instruction argument that we're trying to match. */
3874 struct mips_arg_info
3875 {
3876 /* The instruction so far. */
3877 struct mips_cl_insn *insn;
3878
3879 /* The first unconsumed operand token. */
3880 struct mips_operand_token *token;
3881
3882 /* The 1-based operand number, in terms of insn->insn_mo->args. */
3883 int opnum;
3884
3885 /* The 1-based argument number, for error reporting. This does not
3886 count elided optional registers, etc.. */
3887 int argnum;
3888
3889 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
3890 unsigned int last_regno;
3891
3892 /* If the first operand was an OP_REG, this is the register that it
3893 specified, otherwise it is ILLEGAL_REG. */
3894 unsigned int dest_regno;
3895
3896 /* The value of the last OP_INT operand. Only used for OP_MSB,
3897 where it gives the lsb position. */
3898 unsigned int last_op_int;
3899
3900 /* If true, match routines should silently reject invalid arguments.
3901 If false, match routines can accept invalid arguments as long as
3902 they report an appropriate error. They still have the option of
3903 silently rejecting arguments, in which case a generic "Invalid operands"
3904 style of error will be used instead. */
3905 bfd_boolean soft_match;
3906
3907 /* If true, the OP_INT match routine should treat plain symbolic operands
3908 as if a relocation operator like %lo(...) had been used. This is only
3909 ever true if the operand can be relocated. */
3910 bfd_boolean allow_nonconst;
3911
3912 /* When true, the OP_INT match routine should allow unsigned N-bit
3913 arguments to be used where a signed N-bit operand is expected. */
3914 bfd_boolean lax_max;
3915
3916 /* True if a reference to the current AT register was seen. */
3917 bfd_boolean seen_at;
3918 };
3919
3920 /* Try to match an OT_CHAR token for character CH. Consume the token
3921 and return true on success, otherwise return false. */
3922
3923 static bfd_boolean
3924 match_char (struct mips_arg_info *arg, char ch)
3925 {
3926 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
3927 {
3928 ++arg->token;
3929 if (ch == ',')
3930 arg->argnum += 1;
3931 return TRUE;
3932 }
3933 return FALSE;
3934 }
3935
3936 /* Try to get an expression from the next tokens in ARG. Consume the
3937 tokens and return true on success, storing the expression value in
3938 VALUE and relocation types in R. */
3939
3940 static bfd_boolean
3941 match_expression (struct mips_arg_info *arg, expressionS *value,
3942 bfd_reloc_code_real_type *r)
3943 {
3944 if (arg->token->type == OT_INTEGER)
3945 {
3946 *value = arg->token->u.integer.value;
3947 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
3948 ++arg->token;
3949 return TRUE;
3950 }
3951
3952 /* Error-reporting is more consistent if we treat registers as O_register
3953 rather than rejecting them outright. "$1", "($1)" and "(($1))" are
3954 then handled in the same way. */
3955 if (arg->token->type == OT_REG)
3956 {
3957 value->X_add_number = arg->token->u.regno;
3958 ++arg->token;
3959 }
3960 else if (arg->token[0].type == OT_CHAR
3961 && arg->token[0].u.ch == '('
3962 && arg->token[1].type == OT_REG
3963 && arg->token[2].type == OT_CHAR
3964 && arg->token[2].u.ch == ')')
3965 {
3966 value->X_add_number = arg->token[1].u.regno;
3967 arg->token += 3;
3968 }
3969 else
3970 return FALSE;
3971
3972 value->X_op = O_register;
3973 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
3974 return TRUE;
3975 }
3976
3977 /* Try to get a constant expression from the next tokens in ARG. Consume
3978 the tokens and return return true on success, storing the constant value
3979 in *VALUE. Use FALLBACK as the value if the match succeeded with an
3980 error. */
3981
3982 static bfd_boolean
3983 match_const_int (struct mips_arg_info *arg, offsetT *value, offsetT fallback)
3984 {
3985 expressionS ex;
3986 bfd_reloc_code_real_type r[3];
3987
3988 if (!match_expression (arg, &ex, r))
3989 return FALSE;
3990
3991 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
3992 *value = ex.X_add_number;
3993 else
3994 {
3995 if (arg->soft_match)
3996 return FALSE;
3997 as_bad (_("Operand %d of `%s' must be constant"),
3998 arg->argnum, arg->insn->insn_mo->name);
3999 *value = fallback;
4000 }
4001 return TRUE;
4002 }
4003
4004 /* Return the RTYPE_* flags for a register operand of type TYPE that
4005 appears in instruction OPCODE. */
4006
4007 static unsigned int
4008 convert_reg_type (const struct mips_opcode *opcode,
4009 enum mips_reg_operand_type type)
4010 {
4011 switch (type)
4012 {
4013 case OP_REG_GP:
4014 return RTYPE_NUM | RTYPE_GP;
4015
4016 case OP_REG_FP:
4017 /* Allow vector register names for MDMX if the instruction is a 64-bit
4018 FPR load, store or move (including moves to and from GPRs). */
4019 if ((mips_opts.ase & ASE_MDMX)
4020 && (opcode->pinfo & FP_D)
4021 && (opcode->pinfo & (INSN_COPROC_MOVE_DELAY
4022 | INSN_COPROC_MEMORY_DELAY
4023 | INSN_LOAD_COPROC_DELAY
4024 | INSN_LOAD_MEMORY_DELAY
4025 | INSN_STORE_MEMORY)))
4026 return RTYPE_FPU | RTYPE_VEC;
4027 return RTYPE_FPU;
4028
4029 case OP_REG_CCC:
4030 if (opcode->pinfo & (FP_D | FP_S))
4031 return RTYPE_CCC | RTYPE_FCC;
4032 return RTYPE_CCC;
4033
4034 case OP_REG_VEC:
4035 if (opcode->membership & INSN_5400)
4036 return RTYPE_FPU;
4037 return RTYPE_FPU | RTYPE_VEC;
4038
4039 case OP_REG_ACC:
4040 return RTYPE_ACC;
4041
4042 case OP_REG_COPRO:
4043 if (opcode->name[strlen (opcode->name) - 1] == '0')
4044 return RTYPE_NUM | RTYPE_CP0;
4045 return RTYPE_NUM;
4046
4047 case OP_REG_HW:
4048 return RTYPE_NUM;
4049 }
4050 abort ();
4051 }
4052
4053 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4054
4055 static void
4056 check_regno (struct mips_arg_info *arg,
4057 enum mips_reg_operand_type type, unsigned int regno)
4058 {
4059 if (AT && type == OP_REG_GP && regno == AT)
4060 arg->seen_at = TRUE;
4061
4062 if (type == OP_REG_FP
4063 && (regno & 1) != 0
4064 && HAVE_32BIT_FPRS
4065 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4066 as_warn (_("Float register should be even, was %d"), regno);
4067
4068 if (type == OP_REG_CCC)
4069 {
4070 const char *name;
4071 size_t length;
4072
4073 name = arg->insn->insn_mo->name;
4074 length = strlen (name);
4075 if ((regno & 1) != 0
4076 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4077 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4078 as_warn (_("Condition code register should be even for %s, was %d"),
4079 name, regno);
4080
4081 if ((regno & 3) != 0
4082 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4083 as_warn (_("Condition code register should be 0 or 4 for %s, was %d"),
4084 name, regno);
4085 }
4086 }
4087
4088 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4089 a register of type TYPE. Return true on success, storing the register
4090 number in *REGNO and warning about any dubious uses. */
4091
4092 static bfd_boolean
4093 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4094 unsigned int symval, unsigned int *regno)
4095 {
4096 if (type == OP_REG_VEC)
4097 symval = mips_prefer_vec_regno (symval);
4098 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4099 return FALSE;
4100
4101 *regno = symval & RNUM_MASK;
4102 check_regno (arg, type, *regno);
4103 return TRUE;
4104 }
4105
4106 /* Try to interpret the next token in ARG as a register of type TYPE.
4107 Consume the token and return true on success, storing the register
4108 number in *REGNO. Return false on failure. */
4109
4110 static bfd_boolean
4111 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4112 unsigned int *regno)
4113 {
4114 if (arg->token->type == OT_REG
4115 && match_regno (arg, type, arg->token->u.regno, regno))
4116 {
4117 ++arg->token;
4118 return TRUE;
4119 }
4120 return FALSE;
4121 }
4122
4123 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4124 Consume the token and return true on success, storing the register numbers
4125 in *REGNO1 and *REGNO2. Return false on failure. */
4126
4127 static bfd_boolean
4128 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4129 unsigned int *regno1, unsigned int *regno2)
4130 {
4131 if (match_reg (arg, type, regno1))
4132 {
4133 *regno2 = *regno1;
4134 return TRUE;
4135 }
4136 if (arg->token->type == OT_REG_RANGE
4137 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4138 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4139 && *regno1 <= *regno2)
4140 {
4141 ++arg->token;
4142 return TRUE;
4143 }
4144 return FALSE;
4145 }
4146
4147 /* OP_INT matcher. */
4148
4149 static bfd_boolean
4150 match_int_operand (struct mips_arg_info *arg,
4151 const struct mips_operand *operand_base)
4152 {
4153 const struct mips_int_operand *operand;
4154 unsigned int uval, mask;
4155 int min_val, max_val, factor;
4156 offsetT sval;
4157 bfd_boolean print_hex;
4158
4159 operand = (const struct mips_int_operand *) operand_base;
4160 factor = 1 << operand->shift;
4161 mask = (1 << operand_base->size) - 1;
4162 max_val = (operand->max_val + operand->bias) << operand->shift;
4163 min_val = max_val - (mask << operand->shift);
4164 if (arg->lax_max)
4165 max_val = mask << operand->shift;
4166
4167 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4168 /* Assume we have an elided offset. The later match will fail
4169 if this turns out to be wrong. */
4170 sval = 0;
4171 else if (operand_base->lsb == 0
4172 && operand_base->size == 16
4173 && operand->shift == 0
4174 && operand->bias == 0
4175 && (operand->max_val == 32767 || operand->max_val == 65535))
4176 {
4177 /* The operand can be relocated. */
4178 if (!match_expression (arg, &offset_expr, offset_reloc))
4179 return FALSE;
4180
4181 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4182 /* Relocation operators were used. Accept the arguent and
4183 leave the relocation value in offset_expr and offset_relocs
4184 for the caller to process. */
4185 return TRUE;
4186
4187 if (offset_expr.X_op != O_constant)
4188 {
4189 /* If non-constant operands are allowed then leave them for
4190 the caller to process, otherwise fail the match. */
4191 if (!arg->allow_nonconst)
4192 return FALSE;
4193 offset_reloc[0] = BFD_RELOC_LO16;
4194 return TRUE;
4195 }
4196
4197 /* Clear the global state; we're going to install the operand
4198 ourselves. */
4199 sval = offset_expr.X_add_number;
4200 offset_expr.X_op = O_absent;
4201 }
4202 else
4203 {
4204 if (!match_const_int (arg, &sval, min_val))
4205 return FALSE;
4206 }
4207
4208 arg->last_op_int = sval;
4209
4210 /* Check the range. If there's a problem, record the lowest acceptable
4211 value in arg->last_op_int in order to prevent an unhelpful error
4212 from OP_MSB too.
4213
4214 Bit counts have traditionally been printed in hex by the disassembler
4215 but printed as decimal in error messages. Only resort to hex if
4216 the operand is bigger than 6 bits. */
4217 print_hex = operand->print_hex && operand_base->size > 6;
4218 if (sval < min_val || sval > max_val)
4219 {
4220 if (arg->soft_match)
4221 return FALSE;
4222 report_bad_range (arg->insn, arg->argnum, sval, min_val, max_val,
4223 print_hex);
4224 arg->last_op_int = min_val;
4225 }
4226 else if (sval % factor)
4227 {
4228 if (arg->soft_match)
4229 return FALSE;
4230 as_bad (print_hex && sval >= 0
4231 ? _("Operand %d of `%s' must be a factor of %d, was 0x%lx.")
4232 : _("Operand %d of `%s' must be a factor of %d, was %ld."),
4233 arg->argnum, arg->insn->insn_mo->name, factor,
4234 (unsigned long) sval);
4235 arg->last_op_int = min_val;
4236 }
4237
4238 uval = (unsigned int) sval >> operand->shift;
4239 uval -= operand->bias;
4240
4241 /* Handle -mfix-cn63xxp1. */
4242 if (arg->opnum == 1
4243 && mips_fix_cn63xxp1
4244 && !mips_opts.micromips
4245 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
4246 switch (uval)
4247 {
4248 case 5:
4249 case 25:
4250 case 26:
4251 case 27:
4252 case 28:
4253 case 29:
4254 case 30:
4255 case 31:
4256 /* These are ok. */
4257 break;
4258
4259 default:
4260 /* The rest must be changed to 28. */
4261 uval = 28;
4262 break;
4263 }
4264
4265 insn_insert_operand (arg->insn, operand_base, uval);
4266 return TRUE;
4267 }
4268
4269 /* OP_MAPPED_INT matcher. */
4270
4271 static bfd_boolean
4272 match_mapped_int_operand (struct mips_arg_info *arg,
4273 const struct mips_operand *operand_base)
4274 {
4275 const struct mips_mapped_int_operand *operand;
4276 unsigned int uval, num_vals;
4277 offsetT sval;
4278
4279 operand = (const struct mips_mapped_int_operand *) operand_base;
4280 if (!match_const_int (arg, &sval, operand->int_map[0]))
4281 return FALSE;
4282
4283 num_vals = 1 << operand_base->size;
4284 for (uval = 0; uval < num_vals; uval++)
4285 if (operand->int_map[uval] == sval)
4286 break;
4287 if (uval == num_vals)
4288 return FALSE;
4289
4290 insn_insert_operand (arg->insn, operand_base, uval);
4291 return TRUE;
4292 }
4293
4294 /* OP_MSB matcher. */
4295
4296 static bfd_boolean
4297 match_msb_operand (struct mips_arg_info *arg,
4298 const struct mips_operand *operand_base)
4299 {
4300 const struct mips_msb_operand *operand;
4301 int min_val, max_val, max_high;
4302 offsetT size, sval, high;
4303
4304 operand = (const struct mips_msb_operand *) operand_base;
4305 min_val = operand->bias;
4306 max_val = min_val + (1 << operand_base->size) - 1;
4307 max_high = operand->opsize;
4308
4309 if (!match_const_int (arg, &size, 1))
4310 return FALSE;
4311
4312 high = size + arg->last_op_int;
4313 sval = operand->add_lsb ? high : size;
4314
4315 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
4316 {
4317 if (arg->soft_match)
4318 return FALSE;
4319 report_bad_field (arg->last_op_int, size);
4320 sval = min_val;
4321 }
4322 insn_insert_operand (arg->insn, operand_base, sval - min_val);
4323 return TRUE;
4324 }
4325
4326 /* OP_REG matcher. */
4327
4328 static bfd_boolean
4329 match_reg_operand (struct mips_arg_info *arg,
4330 const struct mips_operand *operand_base)
4331 {
4332 const struct mips_reg_operand *operand;
4333 unsigned int regno, uval, num_vals;
4334
4335 operand = (const struct mips_reg_operand *) operand_base;
4336 if (!match_reg (arg, operand->reg_type, &regno))
4337 return FALSE;
4338
4339 if (operand->reg_map)
4340 {
4341 num_vals = 1 << operand->root.size;
4342 for (uval = 0; uval < num_vals; uval++)
4343 if (operand->reg_map[uval] == regno)
4344 break;
4345 if (num_vals == uval)
4346 return FALSE;
4347 }
4348 else
4349 uval = regno;
4350
4351 arg->last_regno = regno;
4352 if (arg->opnum == 1)
4353 arg->dest_regno = regno;
4354 insn_insert_operand (arg->insn, operand_base, uval);
4355 return TRUE;
4356 }
4357
4358 /* OP_REG_PAIR matcher. */
4359
4360 static bfd_boolean
4361 match_reg_pair_operand (struct mips_arg_info *arg,
4362 const struct mips_operand *operand_base)
4363 {
4364 const struct mips_reg_pair_operand *operand;
4365 unsigned int regno1, regno2, uval, num_vals;
4366
4367 operand = (const struct mips_reg_pair_operand *) operand_base;
4368 if (!match_reg (arg, operand->reg_type, &regno1)
4369 || !match_char (arg, ',')
4370 || !match_reg (arg, operand->reg_type, &regno2))
4371 return FALSE;
4372
4373 num_vals = 1 << operand_base->size;
4374 for (uval = 0; uval < num_vals; uval++)
4375 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
4376 break;
4377 if (uval == num_vals)
4378 return FALSE;
4379
4380 insn_insert_operand (arg->insn, operand_base, uval);
4381 return TRUE;
4382 }
4383
4384 /* OP_PCREL matcher. The caller chooses the relocation type. */
4385
4386 static bfd_boolean
4387 match_pcrel_operand (struct mips_arg_info *arg)
4388 {
4389 bfd_reloc_code_real_type r[3];
4390
4391 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
4392 }
4393
4394 /* OP_PERF_REG matcher. */
4395
4396 static bfd_boolean
4397 match_perf_reg_operand (struct mips_arg_info *arg,
4398 const struct mips_operand *operand)
4399 {
4400 offsetT sval;
4401
4402 if (!match_const_int (arg, &sval, 0))
4403 return FALSE;
4404
4405 if (sval != 0
4406 && (sval != 1
4407 || (mips_opts.arch == CPU_R5900
4408 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
4409 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
4410 {
4411 if (arg->soft_match)
4412 return FALSE;
4413 as_bad (_("Invalid performance register (%ld)"), (unsigned long) sval);
4414 }
4415
4416 insn_insert_operand (arg->insn, operand, sval);
4417 return TRUE;
4418 }
4419
4420 /* OP_ADDIUSP matcher. */
4421
4422 static bfd_boolean
4423 match_addiusp_operand (struct mips_arg_info *arg,
4424 const struct mips_operand *operand)
4425 {
4426 offsetT sval;
4427 unsigned int uval;
4428
4429 if (!match_const_int (arg, &sval, -256))
4430 return FALSE;
4431
4432 if (sval % 4)
4433 return FALSE;
4434
4435 sval /= 4;
4436 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
4437 return FALSE;
4438
4439 uval = (unsigned int) sval;
4440 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
4441 insn_insert_operand (arg->insn, operand, uval);
4442 return TRUE;
4443 }
4444
4445 /* OP_CLO_CLZ_DEST matcher. */
4446
4447 static bfd_boolean
4448 match_clo_clz_dest_operand (struct mips_arg_info *arg,
4449 const struct mips_operand *operand)
4450 {
4451 unsigned int regno;
4452
4453 if (!match_reg (arg, OP_REG_GP, &regno))
4454 return FALSE;
4455
4456 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
4457 return TRUE;
4458 }
4459
4460 /* OP_LWM_SWM_LIST matcher. */
4461
4462 static bfd_boolean
4463 match_lwm_swm_list_operand (struct mips_arg_info *arg,
4464 const struct mips_operand *operand)
4465 {
4466 unsigned int reglist, sregs, ra, regno1, regno2;
4467 struct mips_arg_info reset;
4468
4469 reglist = 0;
4470 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4471 return FALSE;
4472 do
4473 {
4474 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
4475 {
4476 reglist |= 1 << FP;
4477 regno2 = S7;
4478 }
4479 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
4480 reset = *arg;
4481 }
4482 while (match_char (arg, ',')
4483 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
4484 *arg = reset;
4485
4486 if (operand->size == 2)
4487 {
4488 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
4489
4490 s0, ra
4491 s0, s1, ra, s2, s3
4492 s0-s2, ra
4493
4494 and any permutations of these. */
4495 if ((reglist & 0xfff1ffff) != 0x80010000)
4496 return FALSE;
4497
4498 sregs = (reglist >> 17) & 7;
4499 ra = 0;
4500 }
4501 else
4502 {
4503 /* The list must include at least one of ra and s0-sN,
4504 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
4505 which are $23 and $30 respectively.) E.g.:
4506
4507 ra
4508 s0
4509 ra, s0, s1, s2
4510 s0-s8
4511 s0-s5, ra
4512
4513 and any permutations of these. */
4514 if ((reglist & 0x3f00ffff) != 0)
4515 return FALSE;
4516
4517 ra = (reglist >> 27) & 0x10;
4518 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
4519 }
4520 sregs += 1;
4521 if ((sregs & -sregs) != sregs)
4522 return FALSE;
4523
4524 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
4525 return TRUE;
4526 }
4527
4528 /* OP_ENTRY_EXIT_LIST matcher. */
4529
4530 static unsigned int
4531 match_entry_exit_operand (struct mips_arg_info *arg,
4532 const struct mips_operand *operand)
4533 {
4534 unsigned int mask;
4535 bfd_boolean is_exit;
4536
4537 /* The format is the same for both ENTRY and EXIT, but the constraints
4538 are different. */
4539 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
4540 mask = (is_exit ? 7 << 3 : 0);
4541 do
4542 {
4543 unsigned int regno1, regno2;
4544 bfd_boolean is_freg;
4545
4546 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4547 is_freg = FALSE;
4548 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
4549 is_freg = TRUE;
4550 else
4551 return FALSE;
4552
4553 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
4554 {
4555 mask &= ~(7 << 3);
4556 mask |= (5 + regno2) << 3;
4557 }
4558 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
4559 mask |= (regno2 - 3) << 3;
4560 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
4561 mask |= (regno2 - 15) << 1;
4562 else if (regno1 == RA && regno2 == RA)
4563 mask |= 1;
4564 else
4565 return FALSE;
4566 }
4567 while (match_char (arg, ','));
4568
4569 insn_insert_operand (arg->insn, operand, mask);
4570 return TRUE;
4571 }
4572
4573 /* OP_SAVE_RESTORE_LIST matcher. */
4574
4575 static bfd_boolean
4576 match_save_restore_list_operand (struct mips_arg_info *arg)
4577 {
4578 unsigned int opcode, args, statics, sregs;
4579 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
4580 offsetT frame_size;
4581 const char *error;
4582
4583 error = 0;
4584 opcode = arg->insn->insn_opcode;
4585 frame_size = 0;
4586 num_frame_sizes = 0;
4587 args = 0;
4588 statics = 0;
4589 sregs = 0;
4590 do
4591 {
4592 unsigned int regno1, regno2;
4593
4594 if (arg->token->type == OT_INTEGER)
4595 {
4596 /* Handle the frame size. */
4597 if (!match_const_int (arg, &frame_size, 0))
4598 return FALSE;
4599 num_frame_sizes += 1;
4600 }
4601 else
4602 {
4603 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
4604 return FALSE;
4605
4606 while (regno1 <= regno2)
4607 {
4608 if (regno1 >= 4 && regno1 <= 7)
4609 {
4610 if (num_frame_sizes == 0)
4611 /* args $a0-$a3 */
4612 args |= 1 << (regno1 - 4);
4613 else
4614 /* statics $a0-$a3 */
4615 statics |= 1 << (regno1 - 4);
4616 }
4617 else if (regno1 >= 16 && regno1 <= 23)
4618 /* $s0-$s7 */
4619 sregs |= 1 << (regno1 - 16);
4620 else if (regno1 == 30)
4621 /* $s8 */
4622 sregs |= 1 << 8;
4623 else if (regno1 == 31)
4624 /* Add $ra to insn. */
4625 opcode |= 0x40;
4626 else
4627 return FALSE;
4628 regno1 += 1;
4629 if (regno1 == 24)
4630 regno1 = 30;
4631 }
4632 }
4633 }
4634 while (match_char (arg, ','));
4635
4636 /* Encode args/statics combination. */
4637 if (args & statics)
4638 return FALSE;
4639 else if (args == 0xf)
4640 /* All $a0-$a3 are args. */
4641 opcode |= MIPS16_ALL_ARGS << 16;
4642 else if (statics == 0xf)
4643 /* All $a0-$a3 are statics. */
4644 opcode |= MIPS16_ALL_STATICS << 16;
4645 else
4646 {
4647 /* Count arg registers. */
4648 num_args = 0;
4649 while (args & 0x1)
4650 {
4651 args >>= 1;
4652 num_args += 1;
4653 }
4654 if (args != 0)
4655 return FALSE;
4656
4657 /* Count static registers. */
4658 num_statics = 0;
4659 while (statics & 0x8)
4660 {
4661 statics = (statics << 1) & 0xf;
4662 num_statics += 1;
4663 }
4664 if (statics != 0)
4665 return FALSE;
4666
4667 /* Encode args/statics. */
4668 opcode |= ((num_args << 2) | num_statics) << 16;
4669 }
4670
4671 /* Encode $s0/$s1. */
4672 if (sregs & (1 << 0)) /* $s0 */
4673 opcode |= 0x20;
4674 if (sregs & (1 << 1)) /* $s1 */
4675 opcode |= 0x10;
4676 sregs >>= 2;
4677
4678 /* Encode $s2-$s8. */
4679 num_sregs = 0;
4680 while (sregs & 1)
4681 {
4682 sregs >>= 1;
4683 num_sregs += 1;
4684 }
4685 if (sregs != 0)
4686 return FALSE;
4687 opcode |= num_sregs << 24;
4688
4689 /* Encode frame size. */
4690 if (num_frame_sizes == 0)
4691 error = _("Missing frame size");
4692 else if (num_frame_sizes > 1)
4693 error = _("Frame size specified twice");
4694 else if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
4695 error = _("Invalid frame size");
4696 else if (frame_size != 128 || (opcode >> 16) != 0)
4697 {
4698 frame_size /= 8;
4699 opcode |= (((frame_size & 0xf0) << 16)
4700 | (frame_size & 0x0f));
4701 }
4702
4703 if (error)
4704 {
4705 if (arg->soft_match)
4706 return FALSE;
4707 as_bad ("%s", error);
4708 }
4709
4710 /* Finally build the instruction. */
4711 if ((opcode >> 16) != 0 || frame_size == 0)
4712 opcode |= MIPS16_EXTEND;
4713 arg->insn->insn_opcode = opcode;
4714 return TRUE;
4715 }
4716
4717 /* OP_MDMX_IMM_REG matcher. */
4718
4719 static bfd_boolean
4720 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
4721 const struct mips_operand *operand)
4722 {
4723 unsigned int regno, uval;
4724 bfd_boolean is_qh;
4725 const struct mips_opcode *opcode;
4726
4727 /* The mips_opcode records whether this is an octobyte or quadhalf
4728 instruction. Start out with that bit in place. */
4729 opcode = arg->insn->insn_mo;
4730 uval = mips_extract_operand (operand, opcode->match);
4731 is_qh = (uval != 0);
4732
4733 if (arg->token->type == OT_REG || arg->token->type == OT_REG_ELEMENT)
4734 {
4735 if ((opcode->membership & INSN_5400)
4736 && strcmp (opcode->name, "rzu.ob") == 0)
4737 {
4738 if (arg->soft_match)
4739 return FALSE;
4740 as_bad (_("Operand %d of `%s' must be an immediate"),
4741 arg->argnum, opcode->name);
4742 }
4743
4744 /* Check whether this is a vector register or a broadcast of
4745 a single element. */
4746 if (arg->token->type == OT_REG_ELEMENT)
4747 {
4748 if (!match_regno (arg, OP_REG_VEC, arg->token->u.reg_element.regno,
4749 &regno))
4750 return FALSE;
4751 if (arg->token->u.reg_element.index > (is_qh ? 3 : 7))
4752 {
4753 if (arg->soft_match)
4754 return FALSE;
4755 as_bad (_("Invalid element selector"));
4756 }
4757 else
4758 uval |= arg->token->u.reg_element.index << (is_qh ? 2 : 1) << 5;
4759 }
4760 else
4761 {
4762 /* A full vector. */
4763 if ((opcode->membership & INSN_5400)
4764 && (strcmp (opcode->name, "sll.ob") == 0
4765 || strcmp (opcode->name, "srl.ob") == 0))
4766 {
4767 if (arg->soft_match)
4768 return FALSE;
4769 as_bad (_("Operand %d of `%s' must be scalar"),
4770 arg->argnum, opcode->name);
4771 }
4772
4773 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
4774 return FALSE;
4775 if (is_qh)
4776 uval |= MDMX_FMTSEL_VEC_QH << 5;
4777 else
4778 uval |= MDMX_FMTSEL_VEC_OB << 5;
4779 }
4780 uval |= regno;
4781 ++arg->token;
4782 }
4783 else
4784 {
4785 offsetT sval;
4786
4787 if (!match_const_int (arg, &sval, 0))
4788 return FALSE;
4789 if (sval < 0 || sval > 31)
4790 {
4791 if (arg->soft_match)
4792 return FALSE;
4793 report_bad_range (arg->insn, arg->argnum, sval, 0, 31, FALSE);
4794 }
4795 uval |= (sval & 31);
4796 if (is_qh)
4797 uval |= MDMX_FMTSEL_IMM_QH << 5;
4798 else
4799 uval |= MDMX_FMTSEL_IMM_OB << 5;
4800 }
4801 insn_insert_operand (arg->insn, operand, uval);
4802 return TRUE;
4803 }
4804
4805 /* OP_PC matcher. */
4806
4807 static bfd_boolean
4808 match_pc_operand (struct mips_arg_info *arg)
4809 {
4810 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
4811 {
4812 ++arg->token;
4813 return TRUE;
4814 }
4815 return FALSE;
4816 }
4817
4818 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
4819 register that we need to match. */
4820
4821 static bfd_boolean
4822 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
4823 {
4824 unsigned int regno;
4825
4826 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
4827 }
4828
4829 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
4830 the length of the value in bytes (4 for float, 8 for double) and
4831 USING_GPRS says whether the destination is a GPR rather than an FPR.
4832
4833 Return the constant in IMM and OFFSET as follows:
4834
4835 - If the constant should be loaded via memory, set IMM to O_absent and
4836 OFFSET to the memory address.
4837
4838 - Otherwise, if the constant should be loaded into two 32-bit registers,
4839 set IMM to the O_constant to load into the high register and OFFSET
4840 to the corresponding value for the low register.
4841
4842 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
4843
4844 These constants only appear as the last operand in an instruction,
4845 and every instruction that accepts them in any variant accepts them
4846 in all variants. This means we don't have to worry about backing out
4847 any changes if the instruction does not match. We just match
4848 unconditionally and report an error if the constant is invalid. */
4849
4850 static bfd_boolean
4851 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
4852 expressionS *offset, int length, bfd_boolean using_gprs)
4853 {
4854 char *p;
4855 segT seg, new_seg;
4856 subsegT subseg;
4857 const char *newname;
4858 unsigned char *data;
4859
4860 /* Where the constant is placed is based on how the MIPS assembler
4861 does things:
4862
4863 length == 4 && using_gprs -- immediate value only
4864 length == 8 && using_gprs -- .rdata or immediate value
4865 length == 4 && !using_gprs -- .lit4 or immediate value
4866 length == 8 && !using_gprs -- .lit8 or immediate value
4867
4868 The .lit4 and .lit8 sections are only used if permitted by the
4869 -G argument. */
4870 if (arg->token->type != OT_FLOAT)
4871 return FALSE;
4872
4873 gas_assert (arg->token->u.flt.length == length);
4874 data = arg->token->u.flt.data;
4875 ++arg->token;
4876
4877 /* Handle 32-bit constants for which an immediate value is best. */
4878 if (length == 4
4879 && (using_gprs
4880 || g_switch_value < 4
4881 || (data[0] == 0 && data[1] == 0)
4882 || (data[2] == 0 && data[3] == 0)))
4883 {
4884 imm->X_op = O_constant;
4885 if (!target_big_endian)
4886 imm->X_add_number = bfd_getl32 (data);
4887 else
4888 imm->X_add_number = bfd_getb32 (data);
4889 offset->X_op = O_absent;
4890 return TRUE;
4891 }
4892
4893 /* Handle 64-bit constants for which an immediate value is best. */
4894 if (length == 8
4895 && !mips_disable_float_construction
4896 /* Constants can only be constructed in GPRs and copied
4897 to FPRs if the GPRs are at least as wide as the FPRs.
4898 Force the constant into memory if we are using 64-bit FPRs
4899 but the GPRs are only 32 bits wide. */
4900 /* ??? No longer true with the addition of MTHC1, but this
4901 is legacy code... */
4902 && (using_gprs || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
4903 && ((data[0] == 0 && data[1] == 0)
4904 || (data[2] == 0 && data[3] == 0))
4905 && ((data[4] == 0 && data[5] == 0)
4906 || (data[6] == 0 && data[7] == 0)))
4907 {
4908 /* The value is simple enough to load with a couple of instructions.
4909 If using 32-bit registers, set IMM to the high order 32 bits and
4910 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
4911 64 bit constant. */
4912 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
4913 {
4914 imm->X_op = O_constant;
4915 offset->X_op = O_constant;
4916 if (!target_big_endian)
4917 {
4918 imm->X_add_number = bfd_getl32 (data + 4);
4919 offset->X_add_number = bfd_getl32 (data);
4920 }
4921 else
4922 {
4923 imm->X_add_number = bfd_getb32 (data);
4924 offset->X_add_number = bfd_getb32 (data + 4);
4925 }
4926 if (offset->X_add_number == 0)
4927 offset->X_op = O_absent;
4928 }
4929 else
4930 {
4931 imm->X_op = O_constant;
4932 if (!target_big_endian)
4933 imm->X_add_number = bfd_getl64 (data);
4934 else
4935 imm->X_add_number = bfd_getb64 (data);
4936 offset->X_op = O_absent;
4937 }
4938 return TRUE;
4939 }
4940
4941 /* Switch to the right section. */
4942 seg = now_seg;
4943 subseg = now_subseg;
4944 if (length == 4)
4945 {
4946 gas_assert (!using_gprs && g_switch_value >= 4);
4947 newname = ".lit4";
4948 }
4949 else
4950 {
4951 if (using_gprs || g_switch_value < 8)
4952 newname = RDATA_SECTION_NAME;
4953 else
4954 newname = ".lit8";
4955 }
4956
4957 new_seg = subseg_new (newname, (subsegT) 0);
4958 bfd_set_section_flags (stdoutput, new_seg,
4959 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
4960 frag_align (length == 4 ? 2 : 3, 0, 0);
4961 if (strncmp (TARGET_OS, "elf", 3) != 0)
4962 record_alignment (new_seg, 4);
4963 else
4964 record_alignment (new_seg, length == 4 ? 2 : 3);
4965 if (seg == now_seg)
4966 as_bad (_("Can't use floating point insn in this section"));
4967
4968 /* Set the argument to the current address in the section. */
4969 imm->X_op = O_absent;
4970 offset->X_op = O_symbol;
4971 offset->X_add_symbol = symbol_temp_new_now ();
4972 offset->X_add_number = 0;
4973
4974 /* Put the floating point number into the section. */
4975 p = frag_more (length);
4976 memcpy (p, data, length);
4977
4978 /* Switch back to the original section. */
4979 subseg_set (seg, subseg);
4980 return TRUE;
4981 }
4982
4983 /* S is the text seen for ARG. Match it against OPERAND. Return the end
4984 of the argument text if the match is successful, otherwise return null. */
4985
4986 static bfd_boolean
4987 match_operand (struct mips_arg_info *arg,
4988 const struct mips_operand *operand)
4989 {
4990 switch (operand->type)
4991 {
4992 case OP_INT:
4993 return match_int_operand (arg, operand);
4994
4995 case OP_MAPPED_INT:
4996 return match_mapped_int_operand (arg, operand);
4997
4998 case OP_MSB:
4999 return match_msb_operand (arg, operand);
5000
5001 case OP_REG:
5002 return match_reg_operand (arg, operand);
5003
5004 case OP_REG_PAIR:
5005 return match_reg_pair_operand (arg, operand);
5006
5007 case OP_PCREL:
5008 return match_pcrel_operand (arg);
5009
5010 case OP_PERF_REG:
5011 return match_perf_reg_operand (arg, operand);
5012
5013 case OP_ADDIUSP_INT:
5014 return match_addiusp_operand (arg, operand);
5015
5016 case OP_CLO_CLZ_DEST:
5017 return match_clo_clz_dest_operand (arg, operand);
5018
5019 case OP_LWM_SWM_LIST:
5020 return match_lwm_swm_list_operand (arg, operand);
5021
5022 case OP_ENTRY_EXIT_LIST:
5023 return match_entry_exit_operand (arg, operand);
5024
5025 case OP_SAVE_RESTORE_LIST:
5026 return match_save_restore_list_operand (arg);
5027
5028 case OP_MDMX_IMM_REG:
5029 return match_mdmx_imm_reg_operand (arg, operand);
5030
5031 case OP_REPEAT_DEST_REG:
5032 return match_tied_reg_operand (arg, arg->dest_regno);
5033
5034 case OP_REPEAT_PREV_REG:
5035 return match_tied_reg_operand (arg, arg->last_regno);
5036
5037 case OP_PC:
5038 return match_pc_operand (arg);
5039 }
5040 abort ();
5041 }
5042
5043 /* ARG is the state after successfully matching an instruction.
5044 Issue any queued-up warnings. */
5045
5046 static void
5047 check_completed_insn (struct mips_arg_info *arg)
5048 {
5049 if (arg->seen_at)
5050 {
5051 if (AT == ATREG)
5052 as_warn (_("Used $at without \".set noat\""));
5053 else
5054 as_warn (_("Used $%u with \".set at=$%u\""), AT, AT);
5055 }
5056 }
5057
5058 /* Return true if modifying general-purpose register REG needs a delay. */
5059
5060 static bfd_boolean
5061 reg_needs_delay (unsigned int reg)
5062 {
5063 unsigned long prev_pinfo;
5064
5065 prev_pinfo = history[0].insn_mo->pinfo;
5066 if (!mips_opts.noreorder
5067 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY) && !gpr_interlocks)
5068 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY) && !cop_interlocks))
5069 && (gpr_write_mask (&history[0]) & (1 << reg)))
5070 return TRUE;
5071
5072 return FALSE;
5073 }
5074
5075 /* Classify an instruction according to the FIX_VR4120_* enumeration.
5076 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
5077 by VR4120 errata. */
5078
5079 static unsigned int
5080 classify_vr4120_insn (const char *name)
5081 {
5082 if (strncmp (name, "macc", 4) == 0)
5083 return FIX_VR4120_MACC;
5084 if (strncmp (name, "dmacc", 5) == 0)
5085 return FIX_VR4120_DMACC;
5086 if (strncmp (name, "mult", 4) == 0)
5087 return FIX_VR4120_MULT;
5088 if (strncmp (name, "dmult", 5) == 0)
5089 return FIX_VR4120_DMULT;
5090 if (strstr (name, "div"))
5091 return FIX_VR4120_DIV;
5092 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
5093 return FIX_VR4120_MTHILO;
5094 return NUM_FIX_VR4120_CLASSES;
5095 }
5096
5097 #define INSN_ERET 0x42000018
5098 #define INSN_DERET 0x4200001f
5099
5100 /* Return the number of instructions that must separate INSN1 and INSN2,
5101 where INSN1 is the earlier instruction. Return the worst-case value
5102 for any INSN2 if INSN2 is null. */
5103
5104 static unsigned int
5105 insns_between (const struct mips_cl_insn *insn1,
5106 const struct mips_cl_insn *insn2)
5107 {
5108 unsigned long pinfo1, pinfo2;
5109 unsigned int mask;
5110
5111 /* If INFO2 is null, pessimistically assume that all flags are set for
5112 the second instruction. */
5113 pinfo1 = insn1->insn_mo->pinfo;
5114 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
5115
5116 /* For most targets, write-after-read dependencies on the HI and LO
5117 registers must be separated by at least two instructions. */
5118 if (!hilo_interlocks)
5119 {
5120 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
5121 return 2;
5122 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
5123 return 2;
5124 }
5125
5126 /* If we're working around r7000 errata, there must be two instructions
5127 between an mfhi or mflo and any instruction that uses the result. */
5128 if (mips_7000_hilo_fix
5129 && !mips_opts.micromips
5130 && MF_HILO_INSN (pinfo1)
5131 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
5132 return 2;
5133
5134 /* If we're working around 24K errata, one instruction is required
5135 if an ERET or DERET is followed by a branch instruction. */
5136 if (mips_fix_24k && !mips_opts.micromips)
5137 {
5138 if (insn1->insn_opcode == INSN_ERET
5139 || insn1->insn_opcode == INSN_DERET)
5140 {
5141 if (insn2 == NULL
5142 || insn2->insn_opcode == INSN_ERET
5143 || insn2->insn_opcode == INSN_DERET
5144 || delayed_branch_p (insn2))
5145 return 1;
5146 }
5147 }
5148
5149 /* If working around VR4120 errata, check for combinations that need
5150 a single intervening instruction. */
5151 if (mips_fix_vr4120 && !mips_opts.micromips)
5152 {
5153 unsigned int class1, class2;
5154
5155 class1 = classify_vr4120_insn (insn1->insn_mo->name);
5156 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
5157 {
5158 if (insn2 == NULL)
5159 return 1;
5160 class2 = classify_vr4120_insn (insn2->insn_mo->name);
5161 if (vr4120_conflicts[class1] & (1 << class2))
5162 return 1;
5163 }
5164 }
5165
5166 if (!HAVE_CODE_COMPRESSION)
5167 {
5168 /* Check for GPR or coprocessor load delays. All such delays
5169 are on the RT register. */
5170 /* Itbl support may require additional care here. */
5171 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
5172 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
5173 {
5174 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
5175 return 1;
5176 }
5177
5178 /* Check for generic coprocessor hazards.
5179
5180 This case is not handled very well. There is no special
5181 knowledge of CP0 handling, and the coprocessors other than
5182 the floating point unit are not distinguished at all. */
5183 /* Itbl support may require additional care here. FIXME!
5184 Need to modify this to include knowledge about
5185 user specified delays! */
5186 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
5187 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
5188 {
5189 /* Handle cases where INSN1 writes to a known general coprocessor
5190 register. There must be a one instruction delay before INSN2
5191 if INSN2 reads that register, otherwise no delay is needed. */
5192 mask = fpr_write_mask (insn1);
5193 if (mask != 0)
5194 {
5195 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
5196 return 1;
5197 }
5198 else
5199 {
5200 /* Read-after-write dependencies on the control registers
5201 require a two-instruction gap. */
5202 if ((pinfo1 & INSN_WRITE_COND_CODE)
5203 && (pinfo2 & INSN_READ_COND_CODE))
5204 return 2;
5205
5206 /* We don't know exactly what INSN1 does. If INSN2 is
5207 also a coprocessor instruction, assume there must be
5208 a one instruction gap. */
5209 if (pinfo2 & INSN_COP)
5210 return 1;
5211 }
5212 }
5213
5214 /* Check for read-after-write dependencies on the coprocessor
5215 control registers in cases where INSN1 does not need a general
5216 coprocessor delay. This means that INSN1 is a floating point
5217 comparison instruction. */
5218 /* Itbl support may require additional care here. */
5219 else if (!cop_interlocks
5220 && (pinfo1 & INSN_WRITE_COND_CODE)
5221 && (pinfo2 & INSN_READ_COND_CODE))
5222 return 1;
5223 }
5224
5225 return 0;
5226 }
5227
5228 /* Return the number of nops that would be needed to work around the
5229 VR4130 mflo/mfhi errata if instruction INSN immediately followed
5230 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
5231 that are contained within the first IGNORE instructions of HIST. */
5232
5233 static int
5234 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
5235 const struct mips_cl_insn *insn)
5236 {
5237 int i, j;
5238 unsigned int mask;
5239
5240 /* Check if the instruction writes to HI or LO. MTHI and MTLO
5241 are not affected by the errata. */
5242 if (insn != 0
5243 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
5244 || strcmp (insn->insn_mo->name, "mtlo") == 0
5245 || strcmp (insn->insn_mo->name, "mthi") == 0))
5246 return 0;
5247
5248 /* Search for the first MFLO or MFHI. */
5249 for (i = 0; i < MAX_VR4130_NOPS; i++)
5250 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
5251 {
5252 /* Extract the destination register. */
5253 mask = gpr_write_mask (&hist[i]);
5254
5255 /* No nops are needed if INSN reads that register. */
5256 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
5257 return 0;
5258
5259 /* ...or if any of the intervening instructions do. */
5260 for (j = 0; j < i; j++)
5261 if (gpr_read_mask (&hist[j]) & mask)
5262 return 0;
5263
5264 if (i >= ignore)
5265 return MAX_VR4130_NOPS - i;
5266 }
5267 return 0;
5268 }
5269
5270 #define BASE_REG_EQ(INSN1, INSN2) \
5271 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
5272 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
5273
5274 /* Return the minimum alignment for this store instruction. */
5275
5276 static int
5277 fix_24k_align_to (const struct mips_opcode *mo)
5278 {
5279 if (strcmp (mo->name, "sh") == 0)
5280 return 2;
5281
5282 if (strcmp (mo->name, "swc1") == 0
5283 || strcmp (mo->name, "swc2") == 0
5284 || strcmp (mo->name, "sw") == 0
5285 || strcmp (mo->name, "sc") == 0
5286 || strcmp (mo->name, "s.s") == 0)
5287 return 4;
5288
5289 if (strcmp (mo->name, "sdc1") == 0
5290 || strcmp (mo->name, "sdc2") == 0
5291 || strcmp (mo->name, "s.d") == 0)
5292 return 8;
5293
5294 /* sb, swl, swr */
5295 return 1;
5296 }
5297
5298 struct fix_24k_store_info
5299 {
5300 /* Immediate offset, if any, for this store instruction. */
5301 short off;
5302 /* Alignment required by this store instruction. */
5303 int align_to;
5304 /* True for register offsets. */
5305 int register_offset;
5306 };
5307
5308 /* Comparison function used by qsort. */
5309
5310 static int
5311 fix_24k_sort (const void *a, const void *b)
5312 {
5313 const struct fix_24k_store_info *pos1 = a;
5314 const struct fix_24k_store_info *pos2 = b;
5315
5316 return (pos1->off - pos2->off);
5317 }
5318
5319 /* INSN is a store instruction. Try to record the store information
5320 in STINFO. Return false if the information isn't known. */
5321
5322 static bfd_boolean
5323 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
5324 const struct mips_cl_insn *insn)
5325 {
5326 /* The instruction must have a known offset. */
5327 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
5328 return FALSE;
5329
5330 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
5331 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
5332 return TRUE;
5333 }
5334
5335 /* Return the number of nops that would be needed to work around the 24k
5336 "lost data on stores during refill" errata if instruction INSN
5337 immediately followed the 2 instructions described by HIST.
5338 Ignore hazards that are contained within the first IGNORE
5339 instructions of HIST.
5340
5341 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
5342 for the data cache refills and store data. The following describes
5343 the scenario where the store data could be lost.
5344
5345 * A data cache miss, due to either a load or a store, causing fill
5346 data to be supplied by the memory subsystem
5347 * The first three doublewords of fill data are returned and written
5348 into the cache
5349 * A sequence of four stores occurs in consecutive cycles around the
5350 final doubleword of the fill:
5351 * Store A
5352 * Store B
5353 * Store C
5354 * Zero, One or more instructions
5355 * Store D
5356
5357 The four stores A-D must be to different doublewords of the line that
5358 is being filled. The fourth instruction in the sequence above permits
5359 the fill of the final doubleword to be transferred from the FSB into
5360 the cache. In the sequence above, the stores may be either integer
5361 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
5362 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
5363 different doublewords on the line. If the floating point unit is
5364 running in 1:2 mode, it is not possible to create the sequence above
5365 using only floating point store instructions.
5366
5367 In this case, the cache line being filled is incorrectly marked
5368 invalid, thereby losing the data from any store to the line that
5369 occurs between the original miss and the completion of the five
5370 cycle sequence shown above.
5371
5372 The workarounds are:
5373
5374 * Run the data cache in write-through mode.
5375 * Insert a non-store instruction between
5376 Store A and Store B or Store B and Store C. */
5377
5378 static int
5379 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
5380 const struct mips_cl_insn *insn)
5381 {
5382 struct fix_24k_store_info pos[3];
5383 int align, i, base_offset;
5384
5385 if (ignore >= 2)
5386 return 0;
5387
5388 /* If the previous instruction wasn't a store, there's nothing to
5389 worry about. */
5390 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
5391 return 0;
5392
5393 /* If the instructions after the previous one are unknown, we have
5394 to assume the worst. */
5395 if (!insn)
5396 return 1;
5397
5398 /* Check whether we are dealing with three consecutive stores. */
5399 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
5400 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
5401 return 0;
5402
5403 /* If we don't know the relationship between the store addresses,
5404 assume the worst. */
5405 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
5406 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
5407 return 1;
5408
5409 if (!fix_24k_record_store_info (&pos[0], insn)
5410 || !fix_24k_record_store_info (&pos[1], &hist[0])
5411 || !fix_24k_record_store_info (&pos[2], &hist[1]))
5412 return 1;
5413
5414 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
5415
5416 /* Pick a value of ALIGN and X such that all offsets are adjusted by
5417 X bytes and such that the base register + X is known to be aligned
5418 to align bytes. */
5419
5420 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
5421 align = 8;
5422 else
5423 {
5424 align = pos[0].align_to;
5425 base_offset = pos[0].off;
5426 for (i = 1; i < 3; i++)
5427 if (align < pos[i].align_to)
5428 {
5429 align = pos[i].align_to;
5430 base_offset = pos[i].off;
5431 }
5432 for (i = 0; i < 3; i++)
5433 pos[i].off -= base_offset;
5434 }
5435
5436 pos[0].off &= ~align + 1;
5437 pos[1].off &= ~align + 1;
5438 pos[2].off &= ~align + 1;
5439
5440 /* If any two stores write to the same chunk, they also write to the
5441 same doubleword. The offsets are still sorted at this point. */
5442 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
5443 return 0;
5444
5445 /* A range of at least 9 bytes is needed for the stores to be in
5446 non-overlapping doublewords. */
5447 if (pos[2].off - pos[0].off <= 8)
5448 return 0;
5449
5450 if (pos[2].off - pos[1].off >= 24
5451 || pos[1].off - pos[0].off >= 24
5452 || pos[2].off - pos[0].off >= 32)
5453 return 0;
5454
5455 return 1;
5456 }
5457
5458 /* Return the number of nops that would be needed if instruction INSN
5459 immediately followed the MAX_NOPS instructions given by HIST,
5460 where HIST[0] is the most recent instruction. Ignore hazards
5461 between INSN and the first IGNORE instructions in HIST.
5462
5463 If INSN is null, return the worse-case number of nops for any
5464 instruction. */
5465
5466 static int
5467 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
5468 const struct mips_cl_insn *insn)
5469 {
5470 int i, nops, tmp_nops;
5471
5472 nops = 0;
5473 for (i = ignore; i < MAX_DELAY_NOPS; i++)
5474 {
5475 tmp_nops = insns_between (hist + i, insn) - i;
5476 if (tmp_nops > nops)
5477 nops = tmp_nops;
5478 }
5479
5480 if (mips_fix_vr4130 && !mips_opts.micromips)
5481 {
5482 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
5483 if (tmp_nops > nops)
5484 nops = tmp_nops;
5485 }
5486
5487 if (mips_fix_24k && !mips_opts.micromips)
5488 {
5489 tmp_nops = nops_for_24k (ignore, hist, insn);
5490 if (tmp_nops > nops)
5491 nops = tmp_nops;
5492 }
5493
5494 return nops;
5495 }
5496
5497 /* The variable arguments provide NUM_INSNS extra instructions that
5498 might be added to HIST. Return the largest number of nops that
5499 would be needed after the extended sequence, ignoring hazards
5500 in the first IGNORE instructions. */
5501
5502 static int
5503 nops_for_sequence (int num_insns, int ignore,
5504 const struct mips_cl_insn *hist, ...)
5505 {
5506 va_list args;
5507 struct mips_cl_insn buffer[MAX_NOPS];
5508 struct mips_cl_insn *cursor;
5509 int nops;
5510
5511 va_start (args, hist);
5512 cursor = buffer + num_insns;
5513 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
5514 while (cursor > buffer)
5515 *--cursor = *va_arg (args, const struct mips_cl_insn *);
5516
5517 nops = nops_for_insn (ignore, buffer, NULL);
5518 va_end (args);
5519 return nops;
5520 }
5521
5522 /* Like nops_for_insn, but if INSN is a branch, take into account the
5523 worst-case delay for the branch target. */
5524
5525 static int
5526 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
5527 const struct mips_cl_insn *insn)
5528 {
5529 int nops, tmp_nops;
5530
5531 nops = nops_for_insn (ignore, hist, insn);
5532 if (delayed_branch_p (insn))
5533 {
5534 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
5535 hist, insn, get_delay_slot_nop (insn));
5536 if (tmp_nops > nops)
5537 nops = tmp_nops;
5538 }
5539 else if (compact_branch_p (insn))
5540 {
5541 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
5542 if (tmp_nops > nops)
5543 nops = tmp_nops;
5544 }
5545 return nops;
5546 }
5547
5548 /* Fix NOP issue: Replace nops by "or at,at,zero". */
5549
5550 static void
5551 fix_loongson2f_nop (struct mips_cl_insn * ip)
5552 {
5553 gas_assert (!HAVE_CODE_COMPRESSION);
5554 if (strcmp (ip->insn_mo->name, "nop") == 0)
5555 ip->insn_opcode = LOONGSON2F_NOP_INSN;
5556 }
5557
5558 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
5559 jr target pc &= 'hffff_ffff_cfff_ffff. */
5560
5561 static void
5562 fix_loongson2f_jump (struct mips_cl_insn * ip)
5563 {
5564 gas_assert (!HAVE_CODE_COMPRESSION);
5565 if (strcmp (ip->insn_mo->name, "j") == 0
5566 || strcmp (ip->insn_mo->name, "jr") == 0
5567 || strcmp (ip->insn_mo->name, "jalr") == 0)
5568 {
5569 int sreg;
5570 expressionS ep;
5571
5572 if (! mips_opts.at)
5573 return;
5574
5575 sreg = EXTRACT_OPERAND (0, RS, *ip);
5576 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
5577 return;
5578
5579 ep.X_op = O_constant;
5580 ep.X_add_number = 0xcfff0000;
5581 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
5582 ep.X_add_number = 0xffff;
5583 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
5584 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
5585 }
5586 }
5587
5588 static void
5589 fix_loongson2f (struct mips_cl_insn * ip)
5590 {
5591 if (mips_fix_loongson2f_nop)
5592 fix_loongson2f_nop (ip);
5593
5594 if (mips_fix_loongson2f_jump)
5595 fix_loongson2f_jump (ip);
5596 }
5597
5598 /* IP is a branch that has a delay slot, and we need to fill it
5599 automatically. Return true if we can do that by swapping IP
5600 with the previous instruction.
5601 ADDRESS_EXPR is an operand of the instruction to be used with
5602 RELOC_TYPE. */
5603
5604 static bfd_boolean
5605 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
5606 bfd_reloc_code_real_type *reloc_type)
5607 {
5608 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
5609 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
5610
5611 /* -O2 and above is required for this optimization. */
5612 if (mips_optimize < 2)
5613 return FALSE;
5614
5615 /* If we have seen .set volatile or .set nomove, don't optimize. */
5616 if (mips_opts.nomove)
5617 return FALSE;
5618
5619 /* We can't swap if the previous instruction's position is fixed. */
5620 if (history[0].fixed_p)
5621 return FALSE;
5622
5623 /* If the previous previous insn was in a .set noreorder, we can't
5624 swap. Actually, the MIPS assembler will swap in this situation.
5625 However, gcc configured -with-gnu-as will generate code like
5626
5627 .set noreorder
5628 lw $4,XXX
5629 .set reorder
5630 INSN
5631 bne $4,$0,foo
5632
5633 in which we can not swap the bne and INSN. If gcc is not configured
5634 -with-gnu-as, it does not output the .set pseudo-ops. */
5635 if (history[1].noreorder_p)
5636 return FALSE;
5637
5638 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
5639 This means that the previous instruction was a 4-byte one anyhow. */
5640 if (mips_opts.mips16 && history[0].fixp[0])
5641 return FALSE;
5642
5643 /* If the branch is itself the target of a branch, we can not swap.
5644 We cheat on this; all we check for is whether there is a label on
5645 this instruction. If there are any branches to anything other than
5646 a label, users must use .set noreorder. */
5647 if (seg_info (now_seg)->label_list)
5648 return FALSE;
5649
5650 /* If the previous instruction is in a variant frag other than this
5651 branch's one, we cannot do the swap. This does not apply to
5652 MIPS16 code, which uses variant frags for different purposes. */
5653 if (!mips_opts.mips16
5654 && history[0].frag
5655 && history[0].frag->fr_type == rs_machine_dependent)
5656 return FALSE;
5657
5658 /* We do not swap with instructions that cannot architecturally
5659 be placed in a branch delay slot, such as SYNC or ERET. We
5660 also refrain from swapping with a trap instruction, since it
5661 complicates trap handlers to have the trap instruction be in
5662 a delay slot. */
5663 prev_pinfo = history[0].insn_mo->pinfo;
5664 if (prev_pinfo & INSN_NO_DELAY_SLOT)
5665 return FALSE;
5666
5667 /* Check for conflicts between the branch and the instructions
5668 before the candidate delay slot. */
5669 if (nops_for_insn (0, history + 1, ip) > 0)
5670 return FALSE;
5671
5672 /* Check for conflicts between the swapped sequence and the
5673 target of the branch. */
5674 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
5675 return FALSE;
5676
5677 /* If the branch reads a register that the previous
5678 instruction sets, we can not swap. */
5679 gpr_read = gpr_read_mask (ip);
5680 prev_gpr_write = gpr_write_mask (&history[0]);
5681 if (gpr_read & prev_gpr_write)
5682 return FALSE;
5683
5684 /* If the branch writes a register that the previous
5685 instruction sets, we can not swap. */
5686 gpr_write = gpr_write_mask (ip);
5687 if (gpr_write & prev_gpr_write)
5688 return FALSE;
5689
5690 /* If the branch writes a register that the previous
5691 instruction reads, we can not swap. */
5692 prev_gpr_read = gpr_read_mask (&history[0]);
5693 if (gpr_write & prev_gpr_read)
5694 return FALSE;
5695
5696 /* If one instruction sets a condition code and the
5697 other one uses a condition code, we can not swap. */
5698 pinfo = ip->insn_mo->pinfo;
5699 if ((pinfo & INSN_READ_COND_CODE)
5700 && (prev_pinfo & INSN_WRITE_COND_CODE))
5701 return FALSE;
5702 if ((pinfo & INSN_WRITE_COND_CODE)
5703 && (prev_pinfo & INSN_READ_COND_CODE))
5704 return FALSE;
5705
5706 /* If the previous instruction uses the PC, we can not swap. */
5707 prev_pinfo2 = history[0].insn_mo->pinfo2;
5708 if (mips_opts.mips16 && (prev_pinfo & MIPS16_INSN_READ_PC))
5709 return FALSE;
5710 if (mips_opts.micromips && (prev_pinfo2 & INSN2_READ_PC))
5711 return FALSE;
5712
5713 /* If the previous instruction has an incorrect size for a fixed
5714 branch delay slot in microMIPS mode, we cannot swap. */
5715 pinfo2 = ip->insn_mo->pinfo2;
5716 if (mips_opts.micromips
5717 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
5718 && insn_length (history) != 2)
5719 return FALSE;
5720 if (mips_opts.micromips
5721 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
5722 && insn_length (history) != 4)
5723 return FALSE;
5724
5725 /* On R5900 short loops need to be fixed by inserting a nop in
5726 the branch delay slots.
5727 A short loop can be terminated too early. */
5728 if (mips_opts.arch == CPU_R5900
5729 /* Check if instruction has a parameter, ignore "j $31". */
5730 && (address_expr != NULL)
5731 /* Parameter must be 16 bit. */
5732 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
5733 /* Branch to same segment. */
5734 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
5735 /* Branch to same code fragment. */
5736 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
5737 /* Can only calculate branch offset if value is known. */
5738 && symbol_constant_p(address_expr->X_add_symbol)
5739 /* Check if branch is really conditional. */
5740 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
5741 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
5742 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
5743 {
5744 int distance;
5745 /* Check if loop is shorter than 6 instructions including
5746 branch and delay slot. */
5747 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
5748 if (distance <= 20)
5749 {
5750 int i;
5751 int rv;
5752
5753 rv = FALSE;
5754 /* When the loop includes branches or jumps,
5755 it is not a short loop. */
5756 for (i = 0; i < (distance / 4); i++)
5757 {
5758 if ((history[i].cleared_p)
5759 || delayed_branch_p(&history[i]))
5760 {
5761 rv = TRUE;
5762 break;
5763 }
5764 }
5765 if (rv == FALSE)
5766 {
5767 /* Insert nop after branch to fix short loop. */
5768 return FALSE;
5769 }
5770 }
5771 }
5772
5773 return TRUE;
5774 }
5775
5776 /* Decide how we should add IP to the instruction stream.
5777 ADDRESS_EXPR is an operand of the instruction to be used with
5778 RELOC_TYPE. */
5779
5780 static enum append_method
5781 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
5782 bfd_reloc_code_real_type *reloc_type)
5783 {
5784 unsigned long pinfo;
5785
5786 /* The relaxed version of a macro sequence must be inherently
5787 hazard-free. */
5788 if (mips_relax.sequence == 2)
5789 return APPEND_ADD;
5790
5791 /* We must not dabble with instructions in a ".set norerorder" block. */
5792 if (mips_opts.noreorder)
5793 return APPEND_ADD;
5794
5795 /* Otherwise, it's our responsibility to fill branch delay slots. */
5796 if (delayed_branch_p (ip))
5797 {
5798 if (!branch_likely_p (ip)
5799 && can_swap_branch_p (ip, address_expr, reloc_type))
5800 return APPEND_SWAP;
5801
5802 pinfo = ip->insn_mo->pinfo;
5803 if (mips_opts.mips16
5804 && ISA_SUPPORTS_MIPS16E
5805 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31)))
5806 return APPEND_ADD_COMPACT;
5807
5808 return APPEND_ADD_WITH_NOP;
5809 }
5810
5811 return APPEND_ADD;
5812 }
5813
5814 /* IP is a MIPS16 instruction whose opcode we have just changed.
5815 Point IP->insn_mo to the new opcode's definition. */
5816
5817 static void
5818 find_altered_mips16_opcode (struct mips_cl_insn *ip)
5819 {
5820 const struct mips_opcode *mo, *end;
5821
5822 end = &mips16_opcodes[bfd_mips16_num_opcodes];
5823 for (mo = ip->insn_mo; mo < end; mo++)
5824 if ((ip->insn_opcode & mo->mask) == mo->match)
5825 {
5826 ip->insn_mo = mo;
5827 return;
5828 }
5829 abort ();
5830 }
5831
5832 /* For microMIPS macros, we need to generate a local number label
5833 as the target of branches. */
5834 #define MICROMIPS_LABEL_CHAR '\037'
5835 static unsigned long micromips_target_label;
5836 static char micromips_target_name[32];
5837
5838 static char *
5839 micromips_label_name (void)
5840 {
5841 char *p = micromips_target_name;
5842 char symbol_name_temporary[24];
5843 unsigned long l;
5844 int i;
5845
5846 if (*p)
5847 return p;
5848
5849 i = 0;
5850 l = micromips_target_label;
5851 #ifdef LOCAL_LABEL_PREFIX
5852 *p++ = LOCAL_LABEL_PREFIX;
5853 #endif
5854 *p++ = 'L';
5855 *p++ = MICROMIPS_LABEL_CHAR;
5856 do
5857 {
5858 symbol_name_temporary[i++] = l % 10 + '0';
5859 l /= 10;
5860 }
5861 while (l != 0);
5862 while (i > 0)
5863 *p++ = symbol_name_temporary[--i];
5864 *p = '\0';
5865
5866 return micromips_target_name;
5867 }
5868
5869 static void
5870 micromips_label_expr (expressionS *label_expr)
5871 {
5872 label_expr->X_op = O_symbol;
5873 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
5874 label_expr->X_add_number = 0;
5875 }
5876
5877 static void
5878 micromips_label_inc (void)
5879 {
5880 micromips_target_label++;
5881 *micromips_target_name = '\0';
5882 }
5883
5884 static void
5885 micromips_add_label (void)
5886 {
5887 symbolS *s;
5888
5889 s = colon (micromips_label_name ());
5890 micromips_label_inc ();
5891 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
5892 }
5893
5894 /* If assembling microMIPS code, then return the microMIPS reloc
5895 corresponding to the requested one if any. Otherwise return
5896 the reloc unchanged. */
5897
5898 static bfd_reloc_code_real_type
5899 micromips_map_reloc (bfd_reloc_code_real_type reloc)
5900 {
5901 static const bfd_reloc_code_real_type relocs[][2] =
5902 {
5903 /* Keep sorted incrementally by the left-hand key. */
5904 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
5905 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
5906 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
5907 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
5908 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
5909 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
5910 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
5911 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
5912 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
5913 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
5914 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
5915 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
5916 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
5917 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
5918 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
5919 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
5920 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
5921 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
5922 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
5923 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
5924 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
5925 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
5926 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
5927 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
5928 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
5929 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
5930 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
5931 };
5932 bfd_reloc_code_real_type r;
5933 size_t i;
5934
5935 if (!mips_opts.micromips)
5936 return reloc;
5937 for (i = 0; i < ARRAY_SIZE (relocs); i++)
5938 {
5939 r = relocs[i][0];
5940 if (r > reloc)
5941 return reloc;
5942 if (r == reloc)
5943 return relocs[i][1];
5944 }
5945 return reloc;
5946 }
5947
5948 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
5949 Return true on success, storing the resolved value in RESULT. */
5950
5951 static bfd_boolean
5952 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
5953 offsetT *result)
5954 {
5955 switch (reloc)
5956 {
5957 case BFD_RELOC_MIPS_HIGHEST:
5958 case BFD_RELOC_MICROMIPS_HIGHEST:
5959 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
5960 return TRUE;
5961
5962 case BFD_RELOC_MIPS_HIGHER:
5963 case BFD_RELOC_MICROMIPS_HIGHER:
5964 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
5965 return TRUE;
5966
5967 case BFD_RELOC_HI16_S:
5968 case BFD_RELOC_MICROMIPS_HI16_S:
5969 case BFD_RELOC_MIPS16_HI16_S:
5970 *result = ((operand + 0x8000) >> 16) & 0xffff;
5971 return TRUE;
5972
5973 case BFD_RELOC_HI16:
5974 case BFD_RELOC_MICROMIPS_HI16:
5975 case BFD_RELOC_MIPS16_HI16:
5976 *result = (operand >> 16) & 0xffff;
5977 return TRUE;
5978
5979 case BFD_RELOC_LO16:
5980 case BFD_RELOC_MICROMIPS_LO16:
5981 case BFD_RELOC_MIPS16_LO16:
5982 *result = operand & 0xffff;
5983 return TRUE;
5984
5985 case BFD_RELOC_UNUSED:
5986 *result = operand;
5987 return TRUE;
5988
5989 default:
5990 return FALSE;
5991 }
5992 }
5993
5994 /* Output an instruction. IP is the instruction information.
5995 ADDRESS_EXPR is an operand of the instruction to be used with
5996 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
5997 a macro expansion. */
5998
5999 static void
6000 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
6001 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
6002 {
6003 unsigned long prev_pinfo2, pinfo;
6004 bfd_boolean relaxed_branch = FALSE;
6005 enum append_method method;
6006 bfd_boolean relax32;
6007 int branch_disp;
6008
6009 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
6010 fix_loongson2f (ip);
6011
6012 file_ase_mips16 |= mips_opts.mips16;
6013 file_ase_micromips |= mips_opts.micromips;
6014
6015 prev_pinfo2 = history[0].insn_mo->pinfo2;
6016 pinfo = ip->insn_mo->pinfo;
6017
6018 if (mips_opts.micromips
6019 && !expansionp
6020 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
6021 && micromips_insn_length (ip->insn_mo) != 2)
6022 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
6023 && micromips_insn_length (ip->insn_mo) != 4)))
6024 as_warn (_("Wrong size instruction in a %u-bit branch delay slot"),
6025 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
6026
6027 if (address_expr == NULL)
6028 ip->complete_p = 1;
6029 else if (reloc_type[0] <= BFD_RELOC_UNUSED
6030 && reloc_type[1] == BFD_RELOC_UNUSED
6031 && reloc_type[2] == BFD_RELOC_UNUSED
6032 && address_expr->X_op == O_constant)
6033 {
6034 switch (*reloc_type)
6035 {
6036 case BFD_RELOC_MIPS_JMP:
6037 {
6038 int shift;
6039
6040 shift = mips_opts.micromips ? 1 : 2;
6041 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6042 as_bad (_("jump to misaligned address (0x%lx)"),
6043 (unsigned long) address_expr->X_add_number);
6044 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6045 & 0x3ffffff);
6046 ip->complete_p = 1;
6047 }
6048 break;
6049
6050 case BFD_RELOC_MIPS16_JMP:
6051 if ((address_expr->X_add_number & 3) != 0)
6052 as_bad (_("jump to misaligned address (0x%lx)"),
6053 (unsigned long) address_expr->X_add_number);
6054 ip->insn_opcode |=
6055 (((address_expr->X_add_number & 0x7c0000) << 3)
6056 | ((address_expr->X_add_number & 0xf800000) >> 7)
6057 | ((address_expr->X_add_number & 0x3fffc) >> 2));
6058 ip->complete_p = 1;
6059 break;
6060
6061 case BFD_RELOC_16_PCREL_S2:
6062 {
6063 int shift;
6064
6065 shift = mips_opts.micromips ? 1 : 2;
6066 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
6067 as_bad (_("branch to misaligned address (0x%lx)"),
6068 (unsigned long) address_expr->X_add_number);
6069 if (!mips_relax_branch)
6070 {
6071 if ((address_expr->X_add_number + (1 << (shift + 15)))
6072 & ~((1 << (shift + 16)) - 1))
6073 as_bad (_("branch address range overflow (0x%lx)"),
6074 (unsigned long) address_expr->X_add_number);
6075 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
6076 & 0xffff);
6077 }
6078 }
6079 break;
6080
6081 default:
6082 {
6083 offsetT value;
6084
6085 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
6086 &value))
6087 {
6088 ip->insn_opcode |= value & 0xffff;
6089 ip->complete_p = 1;
6090 }
6091 }
6092 break;
6093 }
6094 }
6095
6096 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
6097 {
6098 /* There are a lot of optimizations we could do that we don't.
6099 In particular, we do not, in general, reorder instructions.
6100 If you use gcc with optimization, it will reorder
6101 instructions and generally do much more optimization then we
6102 do here; repeating all that work in the assembler would only
6103 benefit hand written assembly code, and does not seem worth
6104 it. */
6105 int nops = (mips_optimize == 0
6106 ? nops_for_insn (0, history, NULL)
6107 : nops_for_insn_or_target (0, history, ip));
6108 if (nops > 0)
6109 {
6110 fragS *old_frag;
6111 unsigned long old_frag_offset;
6112 int i;
6113
6114 old_frag = frag_now;
6115 old_frag_offset = frag_now_fix ();
6116
6117 for (i = 0; i < nops; i++)
6118 add_fixed_insn (NOP_INSN);
6119 insert_into_history (0, nops, NOP_INSN);
6120
6121 if (listing)
6122 {
6123 listing_prev_line ();
6124 /* We may be at the start of a variant frag. In case we
6125 are, make sure there is enough space for the frag
6126 after the frags created by listing_prev_line. The
6127 argument to frag_grow here must be at least as large
6128 as the argument to all other calls to frag_grow in
6129 this file. We don't have to worry about being in the
6130 middle of a variant frag, because the variants insert
6131 all needed nop instructions themselves. */
6132 frag_grow (40);
6133 }
6134
6135 mips_move_text_labels ();
6136
6137 #ifndef NO_ECOFF_DEBUGGING
6138 if (ECOFF_DEBUGGING)
6139 ecoff_fix_loc (old_frag, old_frag_offset);
6140 #endif
6141 }
6142 }
6143 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
6144 {
6145 int nops;
6146
6147 /* Work out how many nops in prev_nop_frag are needed by IP,
6148 ignoring hazards generated by the first prev_nop_frag_since
6149 instructions. */
6150 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
6151 gas_assert (nops <= prev_nop_frag_holds);
6152
6153 /* Enforce NOPS as a minimum. */
6154 if (nops > prev_nop_frag_required)
6155 prev_nop_frag_required = nops;
6156
6157 if (prev_nop_frag_holds == prev_nop_frag_required)
6158 {
6159 /* Settle for the current number of nops. Update the history
6160 accordingly (for the benefit of any future .set reorder code). */
6161 prev_nop_frag = NULL;
6162 insert_into_history (prev_nop_frag_since,
6163 prev_nop_frag_holds, NOP_INSN);
6164 }
6165 else
6166 {
6167 /* Allow this instruction to replace one of the nops that was
6168 tentatively added to prev_nop_frag. */
6169 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
6170 prev_nop_frag_holds--;
6171 prev_nop_frag_since++;
6172 }
6173 }
6174
6175 method = get_append_method (ip, address_expr, reloc_type);
6176 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
6177
6178 dwarf2_emit_insn (0);
6179 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
6180 so "move" the instruction address accordingly.
6181
6182 Also, it doesn't seem appropriate for the assembler to reorder .loc
6183 entries. If this instruction is a branch that we are going to swap
6184 with the previous instruction, the two instructions should be
6185 treated as a unit, and the debug information for both instructions
6186 should refer to the start of the branch sequence. Using the
6187 current position is certainly wrong when swapping a 32-bit branch
6188 and a 16-bit delay slot, since the current position would then be
6189 in the middle of a branch. */
6190 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
6191
6192 relax32 = (mips_relax_branch
6193 /* Don't try branch relaxation within .set nomacro, or within
6194 .set noat if we use $at for PIC computations. If it turns
6195 out that the branch was out-of-range, we'll get an error. */
6196 && !mips_opts.warn_about_macros
6197 && (mips_opts.at || mips_pic == NO_PIC)
6198 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
6199 as they have no complementing branches. */
6200 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
6201
6202 if (!HAVE_CODE_COMPRESSION
6203 && address_expr
6204 && relax32
6205 && *reloc_type == BFD_RELOC_16_PCREL_S2
6206 && delayed_branch_p (ip))
6207 {
6208 relaxed_branch = TRUE;
6209 add_relaxed_insn (ip, (relaxed_branch_length
6210 (NULL, NULL,
6211 uncond_branch_p (ip) ? -1
6212 : branch_likely_p (ip) ? 1
6213 : 0)), 4,
6214 RELAX_BRANCH_ENCODE
6215 (AT,
6216 uncond_branch_p (ip),
6217 branch_likely_p (ip),
6218 pinfo & INSN_WRITE_GPR_31,
6219 0),
6220 address_expr->X_add_symbol,
6221 address_expr->X_add_number);
6222 *reloc_type = BFD_RELOC_UNUSED;
6223 }
6224 else if (mips_opts.micromips
6225 && address_expr
6226 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
6227 || *reloc_type > BFD_RELOC_UNUSED)
6228 && (delayed_branch_p (ip) || compact_branch_p (ip))
6229 /* Don't try branch relaxation when users specify
6230 16-bit/32-bit instructions. */
6231 && !forced_insn_length)
6232 {
6233 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
6234 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
6235 int uncond = uncond_branch_p (ip) ? -1 : 0;
6236 int compact = compact_branch_p (ip);
6237 int al = pinfo & INSN_WRITE_GPR_31;
6238 int length32;
6239
6240 gas_assert (address_expr != NULL);
6241 gas_assert (!mips_relax.sequence);
6242
6243 relaxed_branch = TRUE;
6244 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
6245 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
6246 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
6247 relax32, 0, 0),
6248 address_expr->X_add_symbol,
6249 address_expr->X_add_number);
6250 *reloc_type = BFD_RELOC_UNUSED;
6251 }
6252 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
6253 {
6254 /* We need to set up a variant frag. */
6255 gas_assert (address_expr != NULL);
6256 add_relaxed_insn (ip, 4, 0,
6257 RELAX_MIPS16_ENCODE
6258 (*reloc_type - BFD_RELOC_UNUSED,
6259 forced_insn_length == 2, forced_insn_length == 4,
6260 delayed_branch_p (&history[0]),
6261 history[0].mips16_absolute_jump_p),
6262 make_expr_symbol (address_expr), 0);
6263 }
6264 else if (mips_opts.mips16 && insn_length (ip) == 2)
6265 {
6266 if (!delayed_branch_p (ip))
6267 /* Make sure there is enough room to swap this instruction with
6268 a following jump instruction. */
6269 frag_grow (6);
6270 add_fixed_insn (ip);
6271 }
6272 else
6273 {
6274 if (mips_opts.mips16
6275 && mips_opts.noreorder
6276 && delayed_branch_p (&history[0]))
6277 as_warn (_("extended instruction in delay slot"));
6278
6279 if (mips_relax.sequence)
6280 {
6281 /* If we've reached the end of this frag, turn it into a variant
6282 frag and record the information for the instructions we've
6283 written so far. */
6284 if (frag_room () < 4)
6285 relax_close_frag ();
6286 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
6287 }
6288
6289 if (mips_relax.sequence != 2)
6290 {
6291 if (mips_macro_warning.first_insn_sizes[0] == 0)
6292 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
6293 mips_macro_warning.sizes[0] += insn_length (ip);
6294 mips_macro_warning.insns[0]++;
6295 }
6296 if (mips_relax.sequence != 1)
6297 {
6298 if (mips_macro_warning.first_insn_sizes[1] == 0)
6299 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
6300 mips_macro_warning.sizes[1] += insn_length (ip);
6301 mips_macro_warning.insns[1]++;
6302 }
6303
6304 if (mips_opts.mips16)
6305 {
6306 ip->fixed_p = 1;
6307 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
6308 }
6309 add_fixed_insn (ip);
6310 }
6311
6312 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
6313 {
6314 bfd_reloc_code_real_type final_type[3];
6315 reloc_howto_type *howto0;
6316 reloc_howto_type *howto;
6317 int i;
6318
6319 /* Perform any necessary conversion to microMIPS relocations
6320 and find out how many relocations there actually are. */
6321 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
6322 final_type[i] = micromips_map_reloc (reloc_type[i]);
6323
6324 /* In a compound relocation, it is the final (outermost)
6325 operator that determines the relocated field. */
6326 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
6327 if (!howto)
6328 abort ();
6329
6330 if (i > 1)
6331 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
6332 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
6333 bfd_get_reloc_size (howto),
6334 address_expr,
6335 howto0 && howto0->pc_relative,
6336 final_type[0]);
6337
6338 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
6339 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
6340 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
6341
6342 /* These relocations can have an addend that won't fit in
6343 4 octets for 64bit assembly. */
6344 if (HAVE_64BIT_GPRS
6345 && ! howto->partial_inplace
6346 && (reloc_type[0] == BFD_RELOC_16
6347 || reloc_type[0] == BFD_RELOC_32
6348 || reloc_type[0] == BFD_RELOC_MIPS_JMP
6349 || reloc_type[0] == BFD_RELOC_GPREL16
6350 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
6351 || reloc_type[0] == BFD_RELOC_GPREL32
6352 || reloc_type[0] == BFD_RELOC_64
6353 || reloc_type[0] == BFD_RELOC_CTOR
6354 || reloc_type[0] == BFD_RELOC_MIPS_SUB
6355 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
6356 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
6357 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
6358 || reloc_type[0] == BFD_RELOC_MIPS_REL16
6359 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
6360 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
6361 || hi16_reloc_p (reloc_type[0])
6362 || lo16_reloc_p (reloc_type[0])))
6363 ip->fixp[0]->fx_no_overflow = 1;
6364
6365 /* These relocations can have an addend that won't fit in 2 octets. */
6366 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
6367 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
6368 ip->fixp[0]->fx_no_overflow = 1;
6369
6370 if (mips_relax.sequence)
6371 {
6372 if (mips_relax.first_fixup == 0)
6373 mips_relax.first_fixup = ip->fixp[0];
6374 }
6375 else if (reloc_needs_lo_p (*reloc_type))
6376 {
6377 struct mips_hi_fixup *hi_fixup;
6378
6379 /* Reuse the last entry if it already has a matching %lo. */
6380 hi_fixup = mips_hi_fixup_list;
6381 if (hi_fixup == 0
6382 || !fixup_has_matching_lo_p (hi_fixup->fixp))
6383 {
6384 hi_fixup = ((struct mips_hi_fixup *)
6385 xmalloc (sizeof (struct mips_hi_fixup)));
6386 hi_fixup->next = mips_hi_fixup_list;
6387 mips_hi_fixup_list = hi_fixup;
6388 }
6389 hi_fixup->fixp = ip->fixp[0];
6390 hi_fixup->seg = now_seg;
6391 }
6392
6393 /* Add fixups for the second and third relocations, if given.
6394 Note that the ABI allows the second relocation to be
6395 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
6396 moment we only use RSS_UNDEF, but we could add support
6397 for the others if it ever becomes necessary. */
6398 for (i = 1; i < 3; i++)
6399 if (reloc_type[i] != BFD_RELOC_UNUSED)
6400 {
6401 ip->fixp[i] = fix_new (ip->frag, ip->where,
6402 ip->fixp[0]->fx_size, NULL, 0,
6403 FALSE, final_type[i]);
6404
6405 /* Use fx_tcbit to mark compound relocs. */
6406 ip->fixp[0]->fx_tcbit = 1;
6407 ip->fixp[i]->fx_tcbit = 1;
6408 }
6409 }
6410 install_insn (ip);
6411
6412 /* Update the register mask information. */
6413 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
6414 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
6415
6416 switch (method)
6417 {
6418 case APPEND_ADD:
6419 insert_into_history (0, 1, ip);
6420 break;
6421
6422 case APPEND_ADD_WITH_NOP:
6423 {
6424 struct mips_cl_insn *nop;
6425
6426 insert_into_history (0, 1, ip);
6427 nop = get_delay_slot_nop (ip);
6428 add_fixed_insn (nop);
6429 insert_into_history (0, 1, nop);
6430 if (mips_relax.sequence)
6431 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
6432 }
6433 break;
6434
6435 case APPEND_ADD_COMPACT:
6436 /* Convert MIPS16 jr/jalr into a "compact" jump. */
6437 gas_assert (mips_opts.mips16);
6438 ip->insn_opcode |= 0x0080;
6439 find_altered_mips16_opcode (ip);
6440 install_insn (ip);
6441 insert_into_history (0, 1, ip);
6442 break;
6443
6444 case APPEND_SWAP:
6445 {
6446 struct mips_cl_insn delay = history[0];
6447 if (mips_opts.mips16)
6448 {
6449 know (delay.frag == ip->frag);
6450 move_insn (ip, delay.frag, delay.where);
6451 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
6452 }
6453 else if (relaxed_branch || delay.frag != ip->frag)
6454 {
6455 /* Add the delay slot instruction to the end of the
6456 current frag and shrink the fixed part of the
6457 original frag. If the branch occupies the tail of
6458 the latter, move it backwards to cover the gap. */
6459 delay.frag->fr_fix -= branch_disp;
6460 if (delay.frag == ip->frag)
6461 move_insn (ip, ip->frag, ip->where - branch_disp);
6462 add_fixed_insn (&delay);
6463 }
6464 else
6465 {
6466 move_insn (&delay, ip->frag,
6467 ip->where - branch_disp + insn_length (ip));
6468 move_insn (ip, history[0].frag, history[0].where);
6469 }
6470 history[0] = *ip;
6471 delay.fixed_p = 1;
6472 insert_into_history (0, 1, &delay);
6473 }
6474 break;
6475 }
6476
6477 /* If we have just completed an unconditional branch, clear the history. */
6478 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
6479 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
6480 {
6481 unsigned int i;
6482
6483 mips_no_prev_insn ();
6484
6485 for (i = 0; i < ARRAY_SIZE (history); i++)
6486 history[i].cleared_p = 1;
6487 }
6488
6489 /* We need to emit a label at the end of branch-likely macros. */
6490 if (emit_branch_likely_macro)
6491 {
6492 emit_branch_likely_macro = FALSE;
6493 micromips_add_label ();
6494 }
6495
6496 /* We just output an insn, so the next one doesn't have a label. */
6497 mips_clear_insn_labels ();
6498 }
6499
6500 /* Forget that there was any previous instruction or label.
6501 When BRANCH is true, the branch history is also flushed. */
6502
6503 static void
6504 mips_no_prev_insn (void)
6505 {
6506 prev_nop_frag = NULL;
6507 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
6508 mips_clear_insn_labels ();
6509 }
6510
6511 /* This function must be called before we emit something other than
6512 instructions. It is like mips_no_prev_insn except that it inserts
6513 any NOPS that might be needed by previous instructions. */
6514
6515 void
6516 mips_emit_delays (void)
6517 {
6518 if (! mips_opts.noreorder)
6519 {
6520 int nops = nops_for_insn (0, history, NULL);
6521 if (nops > 0)
6522 {
6523 while (nops-- > 0)
6524 add_fixed_insn (NOP_INSN);
6525 mips_move_text_labels ();
6526 }
6527 }
6528 mips_no_prev_insn ();
6529 }
6530
6531 /* Start a (possibly nested) noreorder block. */
6532
6533 static void
6534 start_noreorder (void)
6535 {
6536 if (mips_opts.noreorder == 0)
6537 {
6538 unsigned int i;
6539 int nops;
6540
6541 /* None of the instructions before the .set noreorder can be moved. */
6542 for (i = 0; i < ARRAY_SIZE (history); i++)
6543 history[i].fixed_p = 1;
6544
6545 /* Insert any nops that might be needed between the .set noreorder
6546 block and the previous instructions. We will later remove any
6547 nops that turn out not to be needed. */
6548 nops = nops_for_insn (0, history, NULL);
6549 if (nops > 0)
6550 {
6551 if (mips_optimize != 0)
6552 {
6553 /* Record the frag which holds the nop instructions, so
6554 that we can remove them if we don't need them. */
6555 frag_grow (nops * NOP_INSN_SIZE);
6556 prev_nop_frag = frag_now;
6557 prev_nop_frag_holds = nops;
6558 prev_nop_frag_required = 0;
6559 prev_nop_frag_since = 0;
6560 }
6561
6562 for (; nops > 0; --nops)
6563 add_fixed_insn (NOP_INSN);
6564
6565 /* Move on to a new frag, so that it is safe to simply
6566 decrease the size of prev_nop_frag. */
6567 frag_wane (frag_now);
6568 frag_new (0);
6569 mips_move_text_labels ();
6570 }
6571 mips_mark_labels ();
6572 mips_clear_insn_labels ();
6573 }
6574 mips_opts.noreorder++;
6575 mips_any_noreorder = 1;
6576 }
6577
6578 /* End a nested noreorder block. */
6579
6580 static void
6581 end_noreorder (void)
6582 {
6583 mips_opts.noreorder--;
6584 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
6585 {
6586 /* Commit to inserting prev_nop_frag_required nops and go back to
6587 handling nop insertion the .set reorder way. */
6588 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
6589 * NOP_INSN_SIZE);
6590 insert_into_history (prev_nop_frag_since,
6591 prev_nop_frag_required, NOP_INSN);
6592 prev_nop_frag = NULL;
6593 }
6594 }
6595
6596 /* Set up global variables for the start of a new macro. */
6597
6598 static void
6599 macro_start (void)
6600 {
6601 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
6602 memset (&mips_macro_warning.first_insn_sizes, 0,
6603 sizeof (mips_macro_warning.first_insn_sizes));
6604 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
6605 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
6606 && delayed_branch_p (&history[0]));
6607 switch (history[0].insn_mo->pinfo2
6608 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
6609 {
6610 case INSN2_BRANCH_DELAY_32BIT:
6611 mips_macro_warning.delay_slot_length = 4;
6612 break;
6613 case INSN2_BRANCH_DELAY_16BIT:
6614 mips_macro_warning.delay_slot_length = 2;
6615 break;
6616 default:
6617 mips_macro_warning.delay_slot_length = 0;
6618 break;
6619 }
6620 mips_macro_warning.first_frag = NULL;
6621 }
6622
6623 /* Given that a macro is longer than one instruction or of the wrong size,
6624 return the appropriate warning for it. Return null if no warning is
6625 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
6626 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
6627 and RELAX_NOMACRO. */
6628
6629 static const char *
6630 macro_warning (relax_substateT subtype)
6631 {
6632 if (subtype & RELAX_DELAY_SLOT)
6633 return _("Macro instruction expanded into multiple instructions"
6634 " in a branch delay slot");
6635 else if (subtype & RELAX_NOMACRO)
6636 return _("Macro instruction expanded into multiple instructions");
6637 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
6638 | RELAX_DELAY_SLOT_SIZE_SECOND))
6639 return ((subtype & RELAX_DELAY_SLOT_16BIT)
6640 ? _("Macro instruction expanded into a wrong size instruction"
6641 " in a 16-bit branch delay slot")
6642 : _("Macro instruction expanded into a wrong size instruction"
6643 " in a 32-bit branch delay slot"));
6644 else
6645 return 0;
6646 }
6647
6648 /* Finish up a macro. Emit warnings as appropriate. */
6649
6650 static void
6651 macro_end (void)
6652 {
6653 /* Relaxation warning flags. */
6654 relax_substateT subtype = 0;
6655
6656 /* Check delay slot size requirements. */
6657 if (mips_macro_warning.delay_slot_length == 2)
6658 subtype |= RELAX_DELAY_SLOT_16BIT;
6659 if (mips_macro_warning.delay_slot_length != 0)
6660 {
6661 if (mips_macro_warning.delay_slot_length
6662 != mips_macro_warning.first_insn_sizes[0])
6663 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
6664 if (mips_macro_warning.delay_slot_length
6665 != mips_macro_warning.first_insn_sizes[1])
6666 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
6667 }
6668
6669 /* Check instruction count requirements. */
6670 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
6671 {
6672 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
6673 subtype |= RELAX_SECOND_LONGER;
6674 if (mips_opts.warn_about_macros)
6675 subtype |= RELAX_NOMACRO;
6676 if (mips_macro_warning.delay_slot_p)
6677 subtype |= RELAX_DELAY_SLOT;
6678 }
6679
6680 /* If both alternatives fail to fill a delay slot correctly,
6681 emit the warning now. */
6682 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
6683 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
6684 {
6685 relax_substateT s;
6686 const char *msg;
6687
6688 s = subtype & (RELAX_DELAY_SLOT_16BIT
6689 | RELAX_DELAY_SLOT_SIZE_FIRST
6690 | RELAX_DELAY_SLOT_SIZE_SECOND);
6691 msg = macro_warning (s);
6692 if (msg != NULL)
6693 as_warn ("%s", msg);
6694 subtype &= ~s;
6695 }
6696
6697 /* If both implementations are longer than 1 instruction, then emit the
6698 warning now. */
6699 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
6700 {
6701 relax_substateT s;
6702 const char *msg;
6703
6704 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
6705 msg = macro_warning (s);
6706 if (msg != NULL)
6707 as_warn ("%s", msg);
6708 subtype &= ~s;
6709 }
6710
6711 /* If any flags still set, then one implementation might need a warning
6712 and the other either will need one of a different kind or none at all.
6713 Pass any remaining flags over to relaxation. */
6714 if (mips_macro_warning.first_frag != NULL)
6715 mips_macro_warning.first_frag->fr_subtype |= subtype;
6716 }
6717
6718 /* Instruction operand formats used in macros that vary between
6719 standard MIPS and microMIPS code. */
6720
6721 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
6722 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
6723 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
6724 static const char * const lui_fmt[2] = { "t,u", "s,u" };
6725 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
6726 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
6727 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
6728 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
6729
6730 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
6731 #define COP12_FMT (cop12_fmt[mips_opts.micromips])
6732 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
6733 #define LUI_FMT (lui_fmt[mips_opts.micromips])
6734 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
6735 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
6736 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
6737 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
6738
6739 /* Read a macro's relocation codes from *ARGS and store them in *R.
6740 The first argument in *ARGS will be either the code for a single
6741 relocation or -1 followed by the three codes that make up a
6742 composite relocation. */
6743
6744 static void
6745 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
6746 {
6747 int i, next;
6748
6749 next = va_arg (*args, int);
6750 if (next >= 0)
6751 r[0] = (bfd_reloc_code_real_type) next;
6752 else
6753 {
6754 for (i = 0; i < 3; i++)
6755 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
6756 /* This function is only used for 16-bit relocation fields.
6757 To make the macro code simpler, treat an unrelocated value
6758 in the same way as BFD_RELOC_LO16. */
6759 if (r[0] == BFD_RELOC_UNUSED)
6760 r[0] = BFD_RELOC_LO16;
6761 }
6762 }
6763
6764 /* Build an instruction created by a macro expansion. This is passed
6765 a pointer to the count of instructions created so far, an
6766 expression, the name of the instruction to build, an operand format
6767 string, and corresponding arguments. */
6768
6769 static void
6770 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
6771 {
6772 const struct mips_opcode *mo = NULL;
6773 bfd_reloc_code_real_type r[3];
6774 const struct mips_opcode *amo;
6775 const struct mips_operand *operand;
6776 struct hash_control *hash;
6777 struct mips_cl_insn insn;
6778 va_list args;
6779 unsigned int uval;
6780
6781 va_start (args, fmt);
6782
6783 if (mips_opts.mips16)
6784 {
6785 mips16_macro_build (ep, name, fmt, &args);
6786 va_end (args);
6787 return;
6788 }
6789
6790 r[0] = BFD_RELOC_UNUSED;
6791 r[1] = BFD_RELOC_UNUSED;
6792 r[2] = BFD_RELOC_UNUSED;
6793 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
6794 amo = (struct mips_opcode *) hash_find (hash, name);
6795 gas_assert (amo);
6796 gas_assert (strcmp (name, amo->name) == 0);
6797
6798 do
6799 {
6800 /* Search until we get a match for NAME. It is assumed here that
6801 macros will never generate MDMX, MIPS-3D, or MT instructions.
6802 We try to match an instruction that fulfils the branch delay
6803 slot instruction length requirement (if any) of the previous
6804 instruction. While doing this we record the first instruction
6805 seen that matches all the other conditions and use it anyway
6806 if the requirement cannot be met; we will issue an appropriate
6807 warning later on. */
6808 if (strcmp (fmt, amo->args) == 0
6809 && amo->pinfo != INSN_MACRO
6810 && is_opcode_valid (amo)
6811 && is_size_valid (amo))
6812 {
6813 if (is_delay_slot_valid (amo))
6814 {
6815 mo = amo;
6816 break;
6817 }
6818 else if (!mo)
6819 mo = amo;
6820 }
6821
6822 ++amo;
6823 gas_assert (amo->name);
6824 }
6825 while (strcmp (name, amo->name) == 0);
6826
6827 gas_assert (mo);
6828 create_insn (&insn, mo);
6829 for (; *fmt; ++fmt)
6830 {
6831 switch (*fmt)
6832 {
6833 case ',':
6834 case '(':
6835 case ')':
6836 case 'z':
6837 break;
6838
6839 case 'i':
6840 case 'j':
6841 macro_read_relocs (&args, r);
6842 gas_assert (*r == BFD_RELOC_GPREL16
6843 || *r == BFD_RELOC_MIPS_HIGHER
6844 || *r == BFD_RELOC_HI16_S
6845 || *r == BFD_RELOC_LO16
6846 || *r == BFD_RELOC_MIPS_GOT_OFST);
6847 break;
6848
6849 case 'o':
6850 macro_read_relocs (&args, r);
6851 break;
6852
6853 case 'u':
6854 macro_read_relocs (&args, r);
6855 gas_assert (ep != NULL
6856 && (ep->X_op == O_constant
6857 || (ep->X_op == O_symbol
6858 && (*r == BFD_RELOC_MIPS_HIGHEST
6859 || *r == BFD_RELOC_HI16_S
6860 || *r == BFD_RELOC_HI16
6861 || *r == BFD_RELOC_GPREL16
6862 || *r == BFD_RELOC_MIPS_GOT_HI16
6863 || *r == BFD_RELOC_MIPS_CALL_HI16))));
6864 break;
6865
6866 case 'p':
6867 gas_assert (ep != NULL);
6868
6869 /*
6870 * This allows macro() to pass an immediate expression for
6871 * creating short branches without creating a symbol.
6872 *
6873 * We don't allow branch relaxation for these branches, as
6874 * they should only appear in ".set nomacro" anyway.
6875 */
6876 if (ep->X_op == O_constant)
6877 {
6878 /* For microMIPS we always use relocations for branches.
6879 So we should not resolve immediate values. */
6880 gas_assert (!mips_opts.micromips);
6881
6882 if ((ep->X_add_number & 3) != 0)
6883 as_bad (_("branch to misaligned address (0x%lx)"),
6884 (unsigned long) ep->X_add_number);
6885 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
6886 as_bad (_("branch address range overflow (0x%lx)"),
6887 (unsigned long) ep->X_add_number);
6888 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
6889 ep = NULL;
6890 }
6891 else
6892 *r = BFD_RELOC_16_PCREL_S2;
6893 break;
6894
6895 case 'a':
6896 gas_assert (ep != NULL);
6897 *r = BFD_RELOC_MIPS_JMP;
6898 break;
6899
6900 default:
6901 operand = (mips_opts.micromips
6902 ? decode_micromips_operand (fmt)
6903 : decode_mips_operand (fmt));
6904 if (!operand)
6905 abort ();
6906
6907 uval = va_arg (args, int);
6908 if (operand->type == OP_CLO_CLZ_DEST)
6909 uval |= (uval << 5);
6910 insn_insert_operand (&insn, operand, uval);
6911
6912 if (*fmt == '+' || *fmt == 'm')
6913 ++fmt;
6914 break;
6915 }
6916 }
6917 va_end (args);
6918 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
6919
6920 append_insn (&insn, ep, r, TRUE);
6921 }
6922
6923 static void
6924 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
6925 va_list *args)
6926 {
6927 struct mips_opcode *mo;
6928 struct mips_cl_insn insn;
6929 const struct mips_operand *operand;
6930 bfd_reloc_code_real_type r[3]
6931 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
6932
6933 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
6934 gas_assert (mo);
6935 gas_assert (strcmp (name, mo->name) == 0);
6936
6937 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
6938 {
6939 ++mo;
6940 gas_assert (mo->name);
6941 gas_assert (strcmp (name, mo->name) == 0);
6942 }
6943
6944 create_insn (&insn, mo);
6945 for (; *fmt; ++fmt)
6946 {
6947 int c;
6948
6949 c = *fmt;
6950 switch (c)
6951 {
6952 case ',':
6953 case '(':
6954 case ')':
6955 break;
6956
6957 case '0':
6958 case 'S':
6959 case 'P':
6960 case 'R':
6961 break;
6962
6963 case '<':
6964 case '>':
6965 case '4':
6966 case '5':
6967 case 'H':
6968 case 'W':
6969 case 'D':
6970 case 'j':
6971 case '8':
6972 case 'V':
6973 case 'C':
6974 case 'U':
6975 case 'k':
6976 case 'K':
6977 case 'p':
6978 case 'q':
6979 {
6980 offsetT value;
6981
6982 gas_assert (ep != NULL);
6983
6984 if (ep->X_op != O_constant)
6985 *r = (int) BFD_RELOC_UNUSED + c;
6986 else if (calculate_reloc (*r, ep->X_add_number, &value))
6987 {
6988 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
6989 ep = NULL;
6990 *r = BFD_RELOC_UNUSED;
6991 }
6992 }
6993 break;
6994
6995 default:
6996 operand = decode_mips16_operand (c, FALSE);
6997 if (!operand)
6998 abort ();
6999
7000 insn_insert_operand (&insn, operand, va_arg (*args, int));
7001 break;
7002 }
7003 }
7004
7005 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
7006
7007 append_insn (&insn, ep, r, TRUE);
7008 }
7009
7010 /*
7011 * Sign-extend 32-bit mode constants that have bit 31 set and all
7012 * higher bits unset.
7013 */
7014 static void
7015 normalize_constant_expr (expressionS *ex)
7016 {
7017 if (ex->X_op == O_constant
7018 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7019 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7020 - 0x80000000);
7021 }
7022
7023 /*
7024 * Sign-extend 32-bit mode address offsets that have bit 31 set and
7025 * all higher bits unset.
7026 */
7027 static void
7028 normalize_address_expr (expressionS *ex)
7029 {
7030 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7031 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7032 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7033 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7034 - 0x80000000);
7035 }
7036
7037 /*
7038 * Generate a "jalr" instruction with a relocation hint to the called
7039 * function. This occurs in NewABI PIC code.
7040 */
7041 static void
7042 macro_build_jalr (expressionS *ep, int cprestore)
7043 {
7044 static const bfd_reloc_code_real_type jalr_relocs[2]
7045 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
7046 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
7047 const char *jalr;
7048 char *f = NULL;
7049
7050 if (MIPS_JALR_HINT_P (ep))
7051 {
7052 frag_grow (8);
7053 f = frag_more (0);
7054 }
7055 if (mips_opts.micromips)
7056 {
7057 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
7058 ? "jalr" : "jalrs");
7059 if (MIPS_JALR_HINT_P (ep)
7060 || mips_opts.insn32
7061 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7062 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
7063 else
7064 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
7065 }
7066 else
7067 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
7068 if (MIPS_JALR_HINT_P (ep))
7069 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
7070 }
7071
7072 /*
7073 * Generate a "lui" instruction.
7074 */
7075 static void
7076 macro_build_lui (expressionS *ep, int regnum)
7077 {
7078 gas_assert (! mips_opts.mips16);
7079
7080 if (ep->X_op != O_constant)
7081 {
7082 gas_assert (ep->X_op == O_symbol);
7083 /* _gp_disp is a special case, used from s_cpload.
7084 __gnu_local_gp is used if mips_no_shared. */
7085 gas_assert (mips_pic == NO_PIC
7086 || (! HAVE_NEWABI
7087 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
7088 || (! mips_in_shared
7089 && strcmp (S_GET_NAME (ep->X_add_symbol),
7090 "__gnu_local_gp") == 0));
7091 }
7092
7093 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
7094 }
7095
7096 /* Generate a sequence of instructions to do a load or store from a constant
7097 offset off of a base register (breg) into/from a target register (treg),
7098 using AT if necessary. */
7099 static void
7100 macro_build_ldst_constoffset (expressionS *ep, const char *op,
7101 int treg, int breg, int dbl)
7102 {
7103 gas_assert (ep->X_op == O_constant);
7104
7105 /* Sign-extending 32-bit constants makes their handling easier. */
7106 if (!dbl)
7107 normalize_constant_expr (ep);
7108
7109 /* Right now, this routine can only handle signed 32-bit constants. */
7110 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
7111 as_warn (_("operand overflow"));
7112
7113 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
7114 {
7115 /* Signed 16-bit offset will fit in the op. Easy! */
7116 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7117 }
7118 else
7119 {
7120 /* 32-bit offset, need multiple instructions and AT, like:
7121 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
7122 addu $tempreg,$tempreg,$breg
7123 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
7124 to handle the complete offset. */
7125 macro_build_lui (ep, AT);
7126 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7127 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7128
7129 if (!mips_opts.at)
7130 as_bad (_("Macro used $at after \".set noat\""));
7131 }
7132 }
7133
7134 /* set_at()
7135 * Generates code to set the $at register to true (one)
7136 * if reg is less than the immediate expression.
7137 */
7138 static void
7139 set_at (int reg, int unsignedp)
7140 {
7141 if (imm_expr.X_op == O_constant
7142 && imm_expr.X_add_number >= -0x8000
7143 && imm_expr.X_add_number < 0x8000)
7144 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
7145 AT, reg, BFD_RELOC_LO16);
7146 else
7147 {
7148 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7149 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
7150 }
7151 }
7152
7153 /* Count the leading zeroes by performing a binary chop. This is a
7154 bulky bit of source, but performance is a LOT better for the
7155 majority of values than a simple loop to count the bits:
7156 for (lcnt = 0; (lcnt < 32); lcnt++)
7157 if ((v) & (1 << (31 - lcnt)))
7158 break;
7159 However it is not code size friendly, and the gain will drop a bit
7160 on certain cached systems.
7161 */
7162 #define COUNT_TOP_ZEROES(v) \
7163 (((v) & ~0xffff) == 0 \
7164 ? ((v) & ~0xff) == 0 \
7165 ? ((v) & ~0xf) == 0 \
7166 ? ((v) & ~0x3) == 0 \
7167 ? ((v) & ~0x1) == 0 \
7168 ? !(v) \
7169 ? 32 \
7170 : 31 \
7171 : 30 \
7172 : ((v) & ~0x7) == 0 \
7173 ? 29 \
7174 : 28 \
7175 : ((v) & ~0x3f) == 0 \
7176 ? ((v) & ~0x1f) == 0 \
7177 ? 27 \
7178 : 26 \
7179 : ((v) & ~0x7f) == 0 \
7180 ? 25 \
7181 : 24 \
7182 : ((v) & ~0xfff) == 0 \
7183 ? ((v) & ~0x3ff) == 0 \
7184 ? ((v) & ~0x1ff) == 0 \
7185 ? 23 \
7186 : 22 \
7187 : ((v) & ~0x7ff) == 0 \
7188 ? 21 \
7189 : 20 \
7190 : ((v) & ~0x3fff) == 0 \
7191 ? ((v) & ~0x1fff) == 0 \
7192 ? 19 \
7193 : 18 \
7194 : ((v) & ~0x7fff) == 0 \
7195 ? 17 \
7196 : 16 \
7197 : ((v) & ~0xffffff) == 0 \
7198 ? ((v) & ~0xfffff) == 0 \
7199 ? ((v) & ~0x3ffff) == 0 \
7200 ? ((v) & ~0x1ffff) == 0 \
7201 ? 15 \
7202 : 14 \
7203 : ((v) & ~0x7ffff) == 0 \
7204 ? 13 \
7205 : 12 \
7206 : ((v) & ~0x3fffff) == 0 \
7207 ? ((v) & ~0x1fffff) == 0 \
7208 ? 11 \
7209 : 10 \
7210 : ((v) & ~0x7fffff) == 0 \
7211 ? 9 \
7212 : 8 \
7213 : ((v) & ~0xfffffff) == 0 \
7214 ? ((v) & ~0x3ffffff) == 0 \
7215 ? ((v) & ~0x1ffffff) == 0 \
7216 ? 7 \
7217 : 6 \
7218 : ((v) & ~0x7ffffff) == 0 \
7219 ? 5 \
7220 : 4 \
7221 : ((v) & ~0x3fffffff) == 0 \
7222 ? ((v) & ~0x1fffffff) == 0 \
7223 ? 3 \
7224 : 2 \
7225 : ((v) & ~0x7fffffff) == 0 \
7226 ? 1 \
7227 : 0)
7228
7229 /* load_register()
7230 * This routine generates the least number of instructions necessary to load
7231 * an absolute expression value into a register.
7232 */
7233 static void
7234 load_register (int reg, expressionS *ep, int dbl)
7235 {
7236 int freg;
7237 expressionS hi32, lo32;
7238
7239 if (ep->X_op != O_big)
7240 {
7241 gas_assert (ep->X_op == O_constant);
7242
7243 /* Sign-extending 32-bit constants makes their handling easier. */
7244 if (!dbl)
7245 normalize_constant_expr (ep);
7246
7247 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
7248 {
7249 /* We can handle 16 bit signed values with an addiu to
7250 $zero. No need to ever use daddiu here, since $zero and
7251 the result are always correct in 32 bit mode. */
7252 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
7253 return;
7254 }
7255 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
7256 {
7257 /* We can handle 16 bit unsigned values with an ori to
7258 $zero. */
7259 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
7260 return;
7261 }
7262 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
7263 {
7264 /* 32 bit values require an lui. */
7265 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
7266 if ((ep->X_add_number & 0xffff) != 0)
7267 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
7268 return;
7269 }
7270 }
7271
7272 /* The value is larger than 32 bits. */
7273
7274 if (!dbl || HAVE_32BIT_GPRS)
7275 {
7276 char value[32];
7277
7278 sprintf_vma (value, ep->X_add_number);
7279 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7280 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
7281 return;
7282 }
7283
7284 if (ep->X_op != O_big)
7285 {
7286 hi32 = *ep;
7287 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
7288 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
7289 hi32.X_add_number &= 0xffffffff;
7290 lo32 = *ep;
7291 lo32.X_add_number &= 0xffffffff;
7292 }
7293 else
7294 {
7295 gas_assert (ep->X_add_number > 2);
7296 if (ep->X_add_number == 3)
7297 generic_bignum[3] = 0;
7298 else if (ep->X_add_number > 4)
7299 as_bad (_("Number larger than 64 bits"));
7300 lo32.X_op = O_constant;
7301 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
7302 hi32.X_op = O_constant;
7303 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
7304 }
7305
7306 if (hi32.X_add_number == 0)
7307 freg = 0;
7308 else
7309 {
7310 int shift, bit;
7311 unsigned long hi, lo;
7312
7313 if (hi32.X_add_number == (offsetT) 0xffffffff)
7314 {
7315 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
7316 {
7317 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
7318 return;
7319 }
7320 if (lo32.X_add_number & 0x80000000)
7321 {
7322 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
7323 if (lo32.X_add_number & 0xffff)
7324 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
7325 return;
7326 }
7327 }
7328
7329 /* Check for 16bit shifted constant. We know that hi32 is
7330 non-zero, so start the mask on the first bit of the hi32
7331 value. */
7332 shift = 17;
7333 do
7334 {
7335 unsigned long himask, lomask;
7336
7337 if (shift < 32)
7338 {
7339 himask = 0xffff >> (32 - shift);
7340 lomask = (0xffff << shift) & 0xffffffff;
7341 }
7342 else
7343 {
7344 himask = 0xffff << (shift - 32);
7345 lomask = 0;
7346 }
7347 if ((hi32.X_add_number & ~(offsetT) himask) == 0
7348 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
7349 {
7350 expressionS tmp;
7351
7352 tmp.X_op = O_constant;
7353 if (shift < 32)
7354 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
7355 | (lo32.X_add_number >> shift));
7356 else
7357 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
7358 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
7359 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
7360 reg, reg, (shift >= 32) ? shift - 32 : shift);
7361 return;
7362 }
7363 ++shift;
7364 }
7365 while (shift <= (64 - 16));
7366
7367 /* Find the bit number of the lowest one bit, and store the
7368 shifted value in hi/lo. */
7369 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
7370 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
7371 if (lo != 0)
7372 {
7373 bit = 0;
7374 while ((lo & 1) == 0)
7375 {
7376 lo >>= 1;
7377 ++bit;
7378 }
7379 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
7380 hi >>= bit;
7381 }
7382 else
7383 {
7384 bit = 32;
7385 while ((hi & 1) == 0)
7386 {
7387 hi >>= 1;
7388 ++bit;
7389 }
7390 lo = hi;
7391 hi = 0;
7392 }
7393
7394 /* Optimize if the shifted value is a (power of 2) - 1. */
7395 if ((hi == 0 && ((lo + 1) & lo) == 0)
7396 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
7397 {
7398 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
7399 if (shift != 0)
7400 {
7401 expressionS tmp;
7402
7403 /* This instruction will set the register to be all
7404 ones. */
7405 tmp.X_op = O_constant;
7406 tmp.X_add_number = (offsetT) -1;
7407 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
7408 if (bit != 0)
7409 {
7410 bit += shift;
7411 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
7412 reg, reg, (bit >= 32) ? bit - 32 : bit);
7413 }
7414 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
7415 reg, reg, (shift >= 32) ? shift - 32 : shift);
7416 return;
7417 }
7418 }
7419
7420 /* Sign extend hi32 before calling load_register, because we can
7421 generally get better code when we load a sign extended value. */
7422 if ((hi32.X_add_number & 0x80000000) != 0)
7423 hi32.X_add_number |= ~(offsetT) 0xffffffff;
7424 load_register (reg, &hi32, 0);
7425 freg = reg;
7426 }
7427 if ((lo32.X_add_number & 0xffff0000) == 0)
7428 {
7429 if (freg != 0)
7430 {
7431 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
7432 freg = reg;
7433 }
7434 }
7435 else
7436 {
7437 expressionS mid16;
7438
7439 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
7440 {
7441 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
7442 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
7443 return;
7444 }
7445
7446 if (freg != 0)
7447 {
7448 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
7449 freg = reg;
7450 }
7451 mid16 = lo32;
7452 mid16.X_add_number >>= 16;
7453 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
7454 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
7455 freg = reg;
7456 }
7457 if ((lo32.X_add_number & 0xffff) != 0)
7458 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
7459 }
7460
7461 static inline void
7462 load_delay_nop (void)
7463 {
7464 if (!gpr_interlocks)
7465 macro_build (NULL, "nop", "");
7466 }
7467
7468 /* Load an address into a register. */
7469
7470 static void
7471 load_address (int reg, expressionS *ep, int *used_at)
7472 {
7473 if (ep->X_op != O_constant
7474 && ep->X_op != O_symbol)
7475 {
7476 as_bad (_("expression too complex"));
7477 ep->X_op = O_constant;
7478 }
7479
7480 if (ep->X_op == O_constant)
7481 {
7482 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
7483 return;
7484 }
7485
7486 if (mips_pic == NO_PIC)
7487 {
7488 /* If this is a reference to a GP relative symbol, we want
7489 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
7490 Otherwise we want
7491 lui $reg,<sym> (BFD_RELOC_HI16_S)
7492 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
7493 If we have an addend, we always use the latter form.
7494
7495 With 64bit address space and a usable $at we want
7496 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7497 lui $at,<sym> (BFD_RELOC_HI16_S)
7498 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
7499 daddiu $at,<sym> (BFD_RELOC_LO16)
7500 dsll32 $reg,0
7501 daddu $reg,$reg,$at
7502
7503 If $at is already in use, we use a path which is suboptimal
7504 on superscalar processors.
7505 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
7506 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
7507 dsll $reg,16
7508 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
7509 dsll $reg,16
7510 daddiu $reg,<sym> (BFD_RELOC_LO16)
7511
7512 For GP relative symbols in 64bit address space we can use
7513 the same sequence as in 32bit address space. */
7514 if (HAVE_64BIT_SYMBOLS)
7515 {
7516 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
7517 && !nopic_need_relax (ep->X_add_symbol, 1))
7518 {
7519 relax_start (ep->X_add_symbol);
7520 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
7521 mips_gp_register, BFD_RELOC_GPREL16);
7522 relax_switch ();
7523 }
7524
7525 if (*used_at == 0 && mips_opts.at)
7526 {
7527 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
7528 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
7529 macro_build (ep, "daddiu", "t,r,j", reg, reg,
7530 BFD_RELOC_MIPS_HIGHER);
7531 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
7532 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
7533 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
7534 *used_at = 1;
7535 }
7536 else
7537 {
7538 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
7539 macro_build (ep, "daddiu", "t,r,j", reg, reg,
7540 BFD_RELOC_MIPS_HIGHER);
7541 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
7542 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
7543 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
7544 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
7545 }
7546
7547 if (mips_relax.sequence)
7548 relax_end ();
7549 }
7550 else
7551 {
7552 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
7553 && !nopic_need_relax (ep->X_add_symbol, 1))
7554 {
7555 relax_start (ep->X_add_symbol);
7556 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
7557 mips_gp_register, BFD_RELOC_GPREL16);
7558 relax_switch ();
7559 }
7560 macro_build_lui (ep, reg);
7561 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
7562 reg, reg, BFD_RELOC_LO16);
7563 if (mips_relax.sequence)
7564 relax_end ();
7565 }
7566 }
7567 else if (!mips_big_got)
7568 {
7569 expressionS ex;
7570
7571 /* If this is a reference to an external symbol, we want
7572 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7573 Otherwise we want
7574 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7575 nop
7576 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
7577 If there is a constant, it must be added in after.
7578
7579 If we have NewABI, we want
7580 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
7581 unless we're referencing a global symbol with a non-zero
7582 offset, in which case cst must be added separately. */
7583 if (HAVE_NEWABI)
7584 {
7585 if (ep->X_add_number)
7586 {
7587 ex.X_add_number = ep->X_add_number;
7588 ep->X_add_number = 0;
7589 relax_start (ep->X_add_symbol);
7590 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
7591 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7592 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
7593 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7594 ex.X_op = O_constant;
7595 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
7596 reg, reg, BFD_RELOC_LO16);
7597 ep->X_add_number = ex.X_add_number;
7598 relax_switch ();
7599 }
7600 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
7601 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
7602 if (mips_relax.sequence)
7603 relax_end ();
7604 }
7605 else
7606 {
7607 ex.X_add_number = ep->X_add_number;
7608 ep->X_add_number = 0;
7609 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
7610 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7611 load_delay_nop ();
7612 relax_start (ep->X_add_symbol);
7613 relax_switch ();
7614 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
7615 BFD_RELOC_LO16);
7616 relax_end ();
7617
7618 if (ex.X_add_number != 0)
7619 {
7620 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
7621 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7622 ex.X_op = O_constant;
7623 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
7624 reg, reg, BFD_RELOC_LO16);
7625 }
7626 }
7627 }
7628 else if (mips_big_got)
7629 {
7630 expressionS ex;
7631
7632 /* This is the large GOT case. If this is a reference to an
7633 external symbol, we want
7634 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7635 addu $reg,$reg,$gp
7636 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
7637
7638 Otherwise, for a reference to a local symbol in old ABI, we want
7639 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7640 nop
7641 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
7642 If there is a constant, it must be added in after.
7643
7644 In the NewABI, for local symbols, with or without offsets, we want:
7645 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
7646 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
7647 */
7648 if (HAVE_NEWABI)
7649 {
7650 ex.X_add_number = ep->X_add_number;
7651 ep->X_add_number = 0;
7652 relax_start (ep->X_add_symbol);
7653 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
7654 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7655 reg, reg, mips_gp_register);
7656 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
7657 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
7658 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
7659 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7660 else if (ex.X_add_number)
7661 {
7662 ex.X_op = O_constant;
7663 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
7664 BFD_RELOC_LO16);
7665 }
7666
7667 ep->X_add_number = ex.X_add_number;
7668 relax_switch ();
7669 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
7670 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
7671 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
7672 BFD_RELOC_MIPS_GOT_OFST);
7673 relax_end ();
7674 }
7675 else
7676 {
7677 ex.X_add_number = ep->X_add_number;
7678 ep->X_add_number = 0;
7679 relax_start (ep->X_add_symbol);
7680 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
7681 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7682 reg, reg, mips_gp_register);
7683 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
7684 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
7685 relax_switch ();
7686 if (reg_needs_delay (mips_gp_register))
7687 {
7688 /* We need a nop before loading from $gp. This special
7689 check is required because the lui which starts the main
7690 instruction stream does not refer to $gp, and so will not
7691 insert the nop which may be required. */
7692 macro_build (NULL, "nop", "");
7693 }
7694 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
7695 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7696 load_delay_nop ();
7697 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
7698 BFD_RELOC_LO16);
7699 relax_end ();
7700
7701 if (ex.X_add_number != 0)
7702 {
7703 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
7704 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7705 ex.X_op = O_constant;
7706 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
7707 BFD_RELOC_LO16);
7708 }
7709 }
7710 }
7711 else
7712 abort ();
7713
7714 if (!mips_opts.at && *used_at == 1)
7715 as_bad (_("Macro used $at after \".set noat\""));
7716 }
7717
7718 /* Move the contents of register SOURCE into register DEST. */
7719
7720 static void
7721 move_register (int dest, int source)
7722 {
7723 /* Prefer to use a 16-bit microMIPS instruction unless the previous
7724 instruction specifically requires a 32-bit one. */
7725 if (mips_opts.micromips
7726 && !mips_opts.insn32
7727 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
7728 macro_build (NULL, "move", "mp,mj", dest, source);
7729 else
7730 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
7731 dest, source, 0);
7732 }
7733
7734 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
7735 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
7736 The two alternatives are:
7737
7738 Global symbol Local sybmol
7739 ------------- ------------
7740 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
7741 ... ...
7742 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
7743
7744 load_got_offset emits the first instruction and add_got_offset
7745 emits the second for a 16-bit offset or add_got_offset_hilo emits
7746 a sequence to add a 32-bit offset using a scratch register. */
7747
7748 static void
7749 load_got_offset (int dest, expressionS *local)
7750 {
7751 expressionS global;
7752
7753 global = *local;
7754 global.X_add_number = 0;
7755
7756 relax_start (local->X_add_symbol);
7757 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
7758 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7759 relax_switch ();
7760 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
7761 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7762 relax_end ();
7763 }
7764
7765 static void
7766 add_got_offset (int dest, expressionS *local)
7767 {
7768 expressionS global;
7769
7770 global.X_op = O_constant;
7771 global.X_op_symbol = NULL;
7772 global.X_add_symbol = NULL;
7773 global.X_add_number = local->X_add_number;
7774
7775 relax_start (local->X_add_symbol);
7776 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
7777 dest, dest, BFD_RELOC_LO16);
7778 relax_switch ();
7779 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
7780 relax_end ();
7781 }
7782
7783 static void
7784 add_got_offset_hilo (int dest, expressionS *local, int tmp)
7785 {
7786 expressionS global;
7787 int hold_mips_optimize;
7788
7789 global.X_op = O_constant;
7790 global.X_op_symbol = NULL;
7791 global.X_add_symbol = NULL;
7792 global.X_add_number = local->X_add_number;
7793
7794 relax_start (local->X_add_symbol);
7795 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
7796 relax_switch ();
7797 /* Set mips_optimize around the lui instruction to avoid
7798 inserting an unnecessary nop after the lw. */
7799 hold_mips_optimize = mips_optimize;
7800 mips_optimize = 2;
7801 macro_build_lui (&global, tmp);
7802 mips_optimize = hold_mips_optimize;
7803 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
7804 relax_end ();
7805
7806 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
7807 }
7808
7809 /* Emit a sequence of instructions to emulate a branch likely operation.
7810 BR is an ordinary branch corresponding to one to be emulated. BRNEG
7811 is its complementing branch with the original condition negated.
7812 CALL is set if the original branch specified the link operation.
7813 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
7814
7815 Code like this is produced in the noreorder mode:
7816
7817 BRNEG <args>, 1f
7818 nop
7819 b <sym>
7820 delay slot (executed only if branch taken)
7821 1:
7822
7823 or, if CALL is set:
7824
7825 BRNEG <args>, 1f
7826 nop
7827 bal <sym>
7828 delay slot (executed only if branch taken)
7829 1:
7830
7831 In the reorder mode the delay slot would be filled with a nop anyway,
7832 so code produced is simply:
7833
7834 BR <args>, <sym>
7835 nop
7836
7837 This function is used when producing code for the microMIPS ASE that
7838 does not implement branch likely instructions in hardware. */
7839
7840 static void
7841 macro_build_branch_likely (const char *br, const char *brneg,
7842 int call, expressionS *ep, const char *fmt,
7843 unsigned int sreg, unsigned int treg)
7844 {
7845 int noreorder = mips_opts.noreorder;
7846 expressionS expr1;
7847
7848 gas_assert (mips_opts.micromips);
7849 start_noreorder ();
7850 if (noreorder)
7851 {
7852 micromips_label_expr (&expr1);
7853 macro_build (&expr1, brneg, fmt, sreg, treg);
7854 macro_build (NULL, "nop", "");
7855 macro_build (ep, call ? "bal" : "b", "p");
7856
7857 /* Set to true so that append_insn adds a label. */
7858 emit_branch_likely_macro = TRUE;
7859 }
7860 else
7861 {
7862 macro_build (ep, br, fmt, sreg, treg);
7863 macro_build (NULL, "nop", "");
7864 }
7865 end_noreorder ();
7866 }
7867
7868 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
7869 the condition code tested. EP specifies the branch target. */
7870
7871 static void
7872 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
7873 {
7874 const int call = 0;
7875 const char *brneg;
7876 const char *br;
7877
7878 switch (type)
7879 {
7880 case M_BC1FL:
7881 br = "bc1f";
7882 brneg = "bc1t";
7883 break;
7884 case M_BC1TL:
7885 br = "bc1t";
7886 brneg = "bc1f";
7887 break;
7888 case M_BC2FL:
7889 br = "bc2f";
7890 brneg = "bc2t";
7891 break;
7892 case M_BC2TL:
7893 br = "bc2t";
7894 brneg = "bc2f";
7895 break;
7896 default:
7897 abort ();
7898 }
7899 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
7900 }
7901
7902 /* Emit a two-argument branch macro specified by TYPE, using SREG as
7903 the register tested. EP specifies the branch target. */
7904
7905 static void
7906 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
7907 {
7908 const char *brneg = NULL;
7909 const char *br;
7910 int call = 0;
7911
7912 switch (type)
7913 {
7914 case M_BGEZ:
7915 br = "bgez";
7916 break;
7917 case M_BGEZL:
7918 br = mips_opts.micromips ? "bgez" : "bgezl";
7919 brneg = "bltz";
7920 break;
7921 case M_BGEZALL:
7922 gas_assert (mips_opts.micromips);
7923 br = mips_opts.insn32 ? "bgezal" : "bgezals";
7924 brneg = "bltz";
7925 call = 1;
7926 break;
7927 case M_BGTZ:
7928 br = "bgtz";
7929 break;
7930 case M_BGTZL:
7931 br = mips_opts.micromips ? "bgtz" : "bgtzl";
7932 brneg = "blez";
7933 break;
7934 case M_BLEZ:
7935 br = "blez";
7936 break;
7937 case M_BLEZL:
7938 br = mips_opts.micromips ? "blez" : "blezl";
7939 brneg = "bgtz";
7940 break;
7941 case M_BLTZ:
7942 br = "bltz";
7943 break;
7944 case M_BLTZL:
7945 br = mips_opts.micromips ? "bltz" : "bltzl";
7946 brneg = "bgez";
7947 break;
7948 case M_BLTZALL:
7949 gas_assert (mips_opts.micromips);
7950 br = mips_opts.insn32 ? "bltzal" : "bltzals";
7951 brneg = "bgez";
7952 call = 1;
7953 break;
7954 default:
7955 abort ();
7956 }
7957 if (mips_opts.micromips && brneg)
7958 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
7959 else
7960 macro_build (ep, br, "s,p", sreg);
7961 }
7962
7963 /* Emit a three-argument branch macro specified by TYPE, using SREG and
7964 TREG as the registers tested. EP specifies the branch target. */
7965
7966 static void
7967 macro_build_branch_rsrt (int type, expressionS *ep,
7968 unsigned int sreg, unsigned int treg)
7969 {
7970 const char *brneg = NULL;
7971 const int call = 0;
7972 const char *br;
7973
7974 switch (type)
7975 {
7976 case M_BEQ:
7977 case M_BEQ_I:
7978 br = "beq";
7979 break;
7980 case M_BEQL:
7981 case M_BEQL_I:
7982 br = mips_opts.micromips ? "beq" : "beql";
7983 brneg = "bne";
7984 break;
7985 case M_BNE:
7986 case M_BNE_I:
7987 br = "bne";
7988 break;
7989 case M_BNEL:
7990 case M_BNEL_I:
7991 br = mips_opts.micromips ? "bne" : "bnel";
7992 brneg = "beq";
7993 break;
7994 default:
7995 abort ();
7996 }
7997 if (mips_opts.micromips && brneg)
7998 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
7999 else
8000 macro_build (ep, br, "s,t,p", sreg, treg);
8001 }
8002
8003 /* Return the high part that should be loaded in order to make the low
8004 part of VALUE accessible using an offset of OFFBITS bits. */
8005
8006 static offsetT
8007 offset_high_part (offsetT value, unsigned int offbits)
8008 {
8009 offsetT bias;
8010 addressT low_mask;
8011
8012 if (offbits == 0)
8013 return value;
8014 bias = 1 << (offbits - 1);
8015 low_mask = bias * 2 - 1;
8016 return (value + bias) & ~low_mask;
8017 }
8018
8019 /* Return true if the value stored in offset_expr and offset_reloc
8020 fits into a signed offset of OFFBITS bits. RANGE is the maximum
8021 amount that the caller wants to add without inducing overflow
8022 and ALIGN is the known alignment of the value in bytes. */
8023
8024 static bfd_boolean
8025 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
8026 {
8027 if (offbits == 16)
8028 {
8029 /* Accept any relocation operator if overflow isn't a concern. */
8030 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
8031 return TRUE;
8032
8033 /* These relocations are guaranteed not to overflow in correct links. */
8034 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
8035 || gprel16_reloc_p (*offset_reloc))
8036 return TRUE;
8037 }
8038 if (offset_expr.X_op == O_constant
8039 && offset_high_part (offset_expr.X_add_number, offbits) == 0
8040 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
8041 return TRUE;
8042 return FALSE;
8043 }
8044
8045 /*
8046 * Build macros
8047 * This routine implements the seemingly endless macro or synthesized
8048 * instructions and addressing modes in the mips assembly language. Many
8049 * of these macros are simple and are similar to each other. These could
8050 * probably be handled by some kind of table or grammar approach instead of
8051 * this verbose method. Others are not simple macros but are more like
8052 * optimizing code generation.
8053 * One interesting optimization is when several store macros appear
8054 * consecutively that would load AT with the upper half of the same address.
8055 * The ensuing load upper instructions are ommited. This implies some kind
8056 * of global optimization. We currently only optimize within a single macro.
8057 * For many of the load and store macros if the address is specified as a
8058 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
8059 * first load register 'at' with zero and use it as the base register. The
8060 * mips assembler simply uses register $zero. Just one tiny optimization
8061 * we're missing.
8062 */
8063 static void
8064 macro (struct mips_cl_insn *ip, char *str)
8065 {
8066 unsigned int treg, sreg, dreg, breg;
8067 unsigned int tempreg;
8068 int mask;
8069 int used_at = 0;
8070 expressionS label_expr;
8071 expressionS expr1;
8072 expressionS *ep;
8073 const char *s;
8074 const char *s2;
8075 const char *fmt;
8076 int likely = 0;
8077 int coproc = 0;
8078 int offbits = 16;
8079 int call = 0;
8080 int jals = 0;
8081 int dbl = 0;
8082 int imm = 0;
8083 int ust = 0;
8084 int lp = 0;
8085 bfd_boolean large_offset;
8086 int off;
8087 int hold_mips_optimize;
8088 unsigned int align;
8089
8090 gas_assert (! mips_opts.mips16);
8091
8092 treg = EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
8093 dreg = EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
8094 sreg = breg = EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
8095 mask = ip->insn_mo->mask;
8096
8097 label_expr.X_op = O_constant;
8098 label_expr.X_op_symbol = NULL;
8099 label_expr.X_add_symbol = NULL;
8100 label_expr.X_add_number = 0;
8101
8102 expr1.X_op = O_constant;
8103 expr1.X_op_symbol = NULL;
8104 expr1.X_add_symbol = NULL;
8105 expr1.X_add_number = 1;
8106 align = 1;
8107
8108 switch (mask)
8109 {
8110 case M_DABS:
8111 dbl = 1;
8112 case M_ABS:
8113 /* bgez $a0,1f
8114 move v0,$a0
8115 sub v0,$zero,$a0
8116 1:
8117 */
8118
8119 start_noreorder ();
8120
8121 if (mips_opts.micromips)
8122 micromips_label_expr (&label_expr);
8123 else
8124 label_expr.X_add_number = 8;
8125 macro_build (&label_expr, "bgez", "s,p", sreg);
8126 if (dreg == sreg)
8127 macro_build (NULL, "nop", "");
8128 else
8129 move_register (dreg, sreg);
8130 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
8131 if (mips_opts.micromips)
8132 micromips_add_label ();
8133
8134 end_noreorder ();
8135 break;
8136
8137 case M_ADD_I:
8138 s = "addi";
8139 s2 = "add";
8140 goto do_addi;
8141 case M_ADDU_I:
8142 s = "addiu";
8143 s2 = "addu";
8144 goto do_addi;
8145 case M_DADD_I:
8146 dbl = 1;
8147 s = "daddi";
8148 s2 = "dadd";
8149 if (!mips_opts.micromips)
8150 goto do_addi;
8151 if (imm_expr.X_op == O_constant
8152 && imm_expr.X_add_number >= -0x200
8153 && imm_expr.X_add_number < 0x200)
8154 {
8155 macro_build (NULL, s, "t,r,.", treg, sreg, imm_expr.X_add_number);
8156 break;
8157 }
8158 goto do_addi_i;
8159 case M_DADDU_I:
8160 dbl = 1;
8161 s = "daddiu";
8162 s2 = "daddu";
8163 do_addi:
8164 if (imm_expr.X_op == O_constant
8165 && imm_expr.X_add_number >= -0x8000
8166 && imm_expr.X_add_number < 0x8000)
8167 {
8168 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
8169 break;
8170 }
8171 do_addi_i:
8172 used_at = 1;
8173 load_register (AT, &imm_expr, dbl);
8174 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
8175 break;
8176
8177 case M_AND_I:
8178 s = "andi";
8179 s2 = "and";
8180 goto do_bit;
8181 case M_OR_I:
8182 s = "ori";
8183 s2 = "or";
8184 goto do_bit;
8185 case M_NOR_I:
8186 s = "";
8187 s2 = "nor";
8188 goto do_bit;
8189 case M_XOR_I:
8190 s = "xori";
8191 s2 = "xor";
8192 do_bit:
8193 if (imm_expr.X_op == O_constant
8194 && imm_expr.X_add_number >= 0
8195 && imm_expr.X_add_number < 0x10000)
8196 {
8197 if (mask != M_NOR_I)
8198 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
8199 else
8200 {
8201 macro_build (&imm_expr, "ori", "t,r,i",
8202 treg, sreg, BFD_RELOC_LO16);
8203 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
8204 }
8205 break;
8206 }
8207
8208 used_at = 1;
8209 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8210 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
8211 break;
8212
8213 case M_BALIGN:
8214 switch (imm_expr.X_add_number)
8215 {
8216 case 0:
8217 macro_build (NULL, "nop", "");
8218 break;
8219 case 2:
8220 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
8221 break;
8222 case 1:
8223 case 3:
8224 macro_build (NULL, "balign", "t,s,2", treg, sreg,
8225 (int) imm_expr.X_add_number);
8226 break;
8227 default:
8228 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
8229 (unsigned long) imm_expr.X_add_number);
8230 break;
8231 }
8232 break;
8233
8234 case M_BC1FL:
8235 case M_BC1TL:
8236 case M_BC2FL:
8237 case M_BC2TL:
8238 gas_assert (mips_opts.micromips);
8239 macro_build_branch_ccl (mask, &offset_expr,
8240 EXTRACT_OPERAND (1, BCC, *ip));
8241 break;
8242
8243 case M_BEQ_I:
8244 case M_BEQL_I:
8245 case M_BNE_I:
8246 case M_BNEL_I:
8247 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
8248 treg = 0;
8249 else
8250 {
8251 treg = AT;
8252 used_at = 1;
8253 load_register (treg, &imm_expr, HAVE_64BIT_GPRS);
8254 }
8255 /* Fall through. */
8256 case M_BEQL:
8257 case M_BNEL:
8258 macro_build_branch_rsrt (mask, &offset_expr, sreg, treg);
8259 break;
8260
8261 case M_BGEL:
8262 likely = 1;
8263 case M_BGE:
8264 if (treg == 0)
8265 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, sreg);
8266 else if (sreg == 0)
8267 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, treg);
8268 else
8269 {
8270 used_at = 1;
8271 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
8272 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8273 &offset_expr, AT, ZERO);
8274 }
8275 break;
8276
8277 case M_BGEZL:
8278 case M_BGEZALL:
8279 case M_BGTZL:
8280 case M_BLEZL:
8281 case M_BLTZL:
8282 case M_BLTZALL:
8283 macro_build_branch_rs (mask, &offset_expr, sreg);
8284 break;
8285
8286 case M_BGTL_I:
8287 likely = 1;
8288 case M_BGT_I:
8289 /* Check for > max integer. */
8290 if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= GPR_SMAX)
8291 {
8292 do_false:
8293 /* Result is always false. */
8294 if (! likely)
8295 macro_build (NULL, "nop", "");
8296 else
8297 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
8298 break;
8299 }
8300 if (imm_expr.X_op != O_constant)
8301 as_bad (_("Unsupported large constant"));
8302 ++imm_expr.X_add_number;
8303 /* FALLTHROUGH */
8304 case M_BGE_I:
8305 case M_BGEL_I:
8306 if (mask == M_BGEL_I)
8307 likely = 1;
8308 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
8309 {
8310 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
8311 &offset_expr, sreg);
8312 break;
8313 }
8314 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
8315 {
8316 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
8317 &offset_expr, sreg);
8318 break;
8319 }
8320 if (imm_expr.X_op == O_constant && imm_expr.X_add_number <= GPR_SMIN)
8321 {
8322 do_true:
8323 /* result is always true */
8324 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
8325 macro_build (&offset_expr, "b", "p");
8326 break;
8327 }
8328 used_at = 1;
8329 set_at (sreg, 0);
8330 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8331 &offset_expr, AT, ZERO);
8332 break;
8333
8334 case M_BGEUL:
8335 likely = 1;
8336 case M_BGEU:
8337 if (treg == 0)
8338 goto do_true;
8339 else if (sreg == 0)
8340 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8341 &offset_expr, ZERO, treg);
8342 else
8343 {
8344 used_at = 1;
8345 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
8346 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8347 &offset_expr, AT, ZERO);
8348 }
8349 break;
8350
8351 case M_BGTUL_I:
8352 likely = 1;
8353 case M_BGTU_I:
8354 if (sreg == 0
8355 || (HAVE_32BIT_GPRS
8356 && imm_expr.X_op == O_constant
8357 && imm_expr.X_add_number == -1))
8358 goto do_false;
8359 if (imm_expr.X_op != O_constant)
8360 as_bad (_("Unsupported large constant"));
8361 ++imm_expr.X_add_number;
8362 /* FALLTHROUGH */
8363 case M_BGEU_I:
8364 case M_BGEUL_I:
8365 if (mask == M_BGEUL_I)
8366 likely = 1;
8367 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
8368 goto do_true;
8369 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
8370 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8371 &offset_expr, sreg, ZERO);
8372 else
8373 {
8374 used_at = 1;
8375 set_at (sreg, 1);
8376 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8377 &offset_expr, AT, ZERO);
8378 }
8379 break;
8380
8381 case M_BGTL:
8382 likely = 1;
8383 case M_BGT:
8384 if (treg == 0)
8385 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, sreg);
8386 else if (sreg == 0)
8387 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, treg);
8388 else
8389 {
8390 used_at = 1;
8391 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
8392 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8393 &offset_expr, AT, ZERO);
8394 }
8395 break;
8396
8397 case M_BGTUL:
8398 likely = 1;
8399 case M_BGTU:
8400 if (treg == 0)
8401 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8402 &offset_expr, sreg, ZERO);
8403 else if (sreg == 0)
8404 goto do_false;
8405 else
8406 {
8407 used_at = 1;
8408 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
8409 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8410 &offset_expr, AT, ZERO);
8411 }
8412 break;
8413
8414 case M_BLEL:
8415 likely = 1;
8416 case M_BLE:
8417 if (treg == 0)
8418 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
8419 else if (sreg == 0)
8420 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, treg);
8421 else
8422 {
8423 used_at = 1;
8424 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
8425 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8426 &offset_expr, AT, ZERO);
8427 }
8428 break;
8429
8430 case M_BLEL_I:
8431 likely = 1;
8432 case M_BLE_I:
8433 if (imm_expr.X_op == O_constant && imm_expr.X_add_number >= GPR_SMAX)
8434 goto do_true;
8435 if (imm_expr.X_op != O_constant)
8436 as_bad (_("Unsupported large constant"));
8437 ++imm_expr.X_add_number;
8438 /* FALLTHROUGH */
8439 case M_BLT_I:
8440 case M_BLTL_I:
8441 if (mask == M_BLTL_I)
8442 likely = 1;
8443 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
8444 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
8445 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
8446 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, sreg);
8447 else
8448 {
8449 used_at = 1;
8450 set_at (sreg, 0);
8451 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8452 &offset_expr, AT, ZERO);
8453 }
8454 break;
8455
8456 case M_BLEUL:
8457 likely = 1;
8458 case M_BLEU:
8459 if (treg == 0)
8460 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8461 &offset_expr, sreg, ZERO);
8462 else if (sreg == 0)
8463 goto do_true;
8464 else
8465 {
8466 used_at = 1;
8467 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
8468 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8469 &offset_expr, AT, ZERO);
8470 }
8471 break;
8472
8473 case M_BLEUL_I:
8474 likely = 1;
8475 case M_BLEU_I:
8476 if (sreg == 0
8477 || (HAVE_32BIT_GPRS
8478 && imm_expr.X_op == O_constant
8479 && imm_expr.X_add_number == -1))
8480 goto do_true;
8481 if (imm_expr.X_op != O_constant)
8482 as_bad (_("Unsupported large constant"));
8483 ++imm_expr.X_add_number;
8484 /* FALLTHROUGH */
8485 case M_BLTU_I:
8486 case M_BLTUL_I:
8487 if (mask == M_BLTUL_I)
8488 likely = 1;
8489 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
8490 goto do_false;
8491 else if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
8492 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
8493 &offset_expr, sreg, ZERO);
8494 else
8495 {
8496 used_at = 1;
8497 set_at (sreg, 1);
8498 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8499 &offset_expr, AT, ZERO);
8500 }
8501 break;
8502
8503 case M_BLTL:
8504 likely = 1;
8505 case M_BLT:
8506 if (treg == 0)
8507 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, sreg);
8508 else if (sreg == 0)
8509 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, treg);
8510 else
8511 {
8512 used_at = 1;
8513 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
8514 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8515 &offset_expr, AT, ZERO);
8516 }
8517 break;
8518
8519 case M_BLTUL:
8520 likely = 1;
8521 case M_BLTU:
8522 if (treg == 0)
8523 goto do_false;
8524 else if (sreg == 0)
8525 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8526 &offset_expr, ZERO, treg);
8527 else
8528 {
8529 used_at = 1;
8530 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
8531 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
8532 &offset_expr, AT, ZERO);
8533 }
8534 break;
8535
8536 case M_DEXT:
8537 {
8538 /* Use unsigned arithmetic. */
8539 addressT pos;
8540 addressT size;
8541
8542 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
8543 {
8544 as_bad (_("Unsupported large constant"));
8545 pos = size = 1;
8546 }
8547 else
8548 {
8549 pos = imm_expr.X_add_number;
8550 size = imm2_expr.X_add_number;
8551 }
8552
8553 if (pos > 63)
8554 {
8555 report_bad_range (ip, 3, pos, 0, 63, FALSE);
8556 pos = 1;
8557 }
8558 if (size == 0 || size > 64 || (pos + size - 1) > 63)
8559 {
8560 report_bad_field (pos, size);
8561 size = 1;
8562 }
8563
8564 if (size <= 32 && pos < 32)
8565 {
8566 s = "dext";
8567 fmt = "t,r,+A,+C";
8568 }
8569 else if (size <= 32)
8570 {
8571 s = "dextu";
8572 fmt = "t,r,+E,+H";
8573 }
8574 else
8575 {
8576 s = "dextm";
8577 fmt = "t,r,+A,+G";
8578 }
8579 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
8580 (int) (size - 1));
8581 }
8582 break;
8583
8584 case M_DINS:
8585 {
8586 /* Use unsigned arithmetic. */
8587 addressT pos;
8588 addressT size;
8589
8590 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
8591 {
8592 as_bad (_("Unsupported large constant"));
8593 pos = size = 1;
8594 }
8595 else
8596 {
8597 pos = imm_expr.X_add_number;
8598 size = imm2_expr.X_add_number;
8599 }
8600
8601 if (pos > 63)
8602 {
8603 report_bad_range (ip, 3, pos, 0, 63, FALSE);
8604 pos = 1;
8605 }
8606 if (size == 0 || size > 64 || (pos + size - 1) > 63)
8607 {
8608 report_bad_field (pos, size);
8609 size = 1;
8610 }
8611
8612 if (pos < 32 && (pos + size - 1) < 32)
8613 {
8614 s = "dins";
8615 fmt = "t,r,+A,+B";
8616 }
8617 else if (pos >= 32)
8618 {
8619 s = "dinsu";
8620 fmt = "t,r,+E,+F";
8621 }
8622 else
8623 {
8624 s = "dinsm";
8625 fmt = "t,r,+A,+F";
8626 }
8627 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
8628 (int) (pos + size - 1));
8629 }
8630 break;
8631
8632 case M_DDIV_3:
8633 dbl = 1;
8634 case M_DIV_3:
8635 s = "mflo";
8636 goto do_div3;
8637 case M_DREM_3:
8638 dbl = 1;
8639 case M_REM_3:
8640 s = "mfhi";
8641 do_div3:
8642 if (treg == 0)
8643 {
8644 as_warn (_("Divide by zero."));
8645 if (mips_trap)
8646 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
8647 else
8648 macro_build (NULL, "break", BRK_FMT, 7);
8649 break;
8650 }
8651
8652 start_noreorder ();
8653 if (mips_trap)
8654 {
8655 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
8656 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
8657 }
8658 else
8659 {
8660 if (mips_opts.micromips)
8661 micromips_label_expr (&label_expr);
8662 else
8663 label_expr.X_add_number = 8;
8664 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
8665 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
8666 macro_build (NULL, "break", BRK_FMT, 7);
8667 if (mips_opts.micromips)
8668 micromips_add_label ();
8669 }
8670 expr1.X_add_number = -1;
8671 used_at = 1;
8672 load_register (AT, &expr1, dbl);
8673 if (mips_opts.micromips)
8674 micromips_label_expr (&label_expr);
8675 else
8676 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
8677 macro_build (&label_expr, "bne", "s,t,p", treg, AT);
8678 if (dbl)
8679 {
8680 expr1.X_add_number = 1;
8681 load_register (AT, &expr1, dbl);
8682 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
8683 }
8684 else
8685 {
8686 expr1.X_add_number = 0x80000000;
8687 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
8688 }
8689 if (mips_trap)
8690 {
8691 macro_build (NULL, "teq", TRAP_FMT, sreg, AT, 6);
8692 /* We want to close the noreorder block as soon as possible, so
8693 that later insns are available for delay slot filling. */
8694 end_noreorder ();
8695 }
8696 else
8697 {
8698 if (mips_opts.micromips)
8699 micromips_label_expr (&label_expr);
8700 else
8701 label_expr.X_add_number = 8;
8702 macro_build (&label_expr, "bne", "s,t,p", sreg, AT);
8703 macro_build (NULL, "nop", "");
8704
8705 /* We want to close the noreorder block as soon as possible, so
8706 that later insns are available for delay slot filling. */
8707 end_noreorder ();
8708
8709 macro_build (NULL, "break", BRK_FMT, 6);
8710 }
8711 if (mips_opts.micromips)
8712 micromips_add_label ();
8713 macro_build (NULL, s, MFHL_FMT, dreg);
8714 break;
8715
8716 case M_DIV_3I:
8717 s = "div";
8718 s2 = "mflo";
8719 goto do_divi;
8720 case M_DIVU_3I:
8721 s = "divu";
8722 s2 = "mflo";
8723 goto do_divi;
8724 case M_REM_3I:
8725 s = "div";
8726 s2 = "mfhi";
8727 goto do_divi;
8728 case M_REMU_3I:
8729 s = "divu";
8730 s2 = "mfhi";
8731 goto do_divi;
8732 case M_DDIV_3I:
8733 dbl = 1;
8734 s = "ddiv";
8735 s2 = "mflo";
8736 goto do_divi;
8737 case M_DDIVU_3I:
8738 dbl = 1;
8739 s = "ddivu";
8740 s2 = "mflo";
8741 goto do_divi;
8742 case M_DREM_3I:
8743 dbl = 1;
8744 s = "ddiv";
8745 s2 = "mfhi";
8746 goto do_divi;
8747 case M_DREMU_3I:
8748 dbl = 1;
8749 s = "ddivu";
8750 s2 = "mfhi";
8751 do_divi:
8752 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
8753 {
8754 as_warn (_("Divide by zero."));
8755 if (mips_trap)
8756 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
8757 else
8758 macro_build (NULL, "break", BRK_FMT, 7);
8759 break;
8760 }
8761 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
8762 {
8763 if (strcmp (s2, "mflo") == 0)
8764 move_register (dreg, sreg);
8765 else
8766 move_register (dreg, ZERO);
8767 break;
8768 }
8769 if (imm_expr.X_op == O_constant
8770 && imm_expr.X_add_number == -1
8771 && s[strlen (s) - 1] != 'u')
8772 {
8773 if (strcmp (s2, "mflo") == 0)
8774 {
8775 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
8776 }
8777 else
8778 move_register (dreg, ZERO);
8779 break;
8780 }
8781
8782 used_at = 1;
8783 load_register (AT, &imm_expr, dbl);
8784 macro_build (NULL, s, "z,s,t", sreg, AT);
8785 macro_build (NULL, s2, MFHL_FMT, dreg);
8786 break;
8787
8788 case M_DIVU_3:
8789 s = "divu";
8790 s2 = "mflo";
8791 goto do_divu3;
8792 case M_REMU_3:
8793 s = "divu";
8794 s2 = "mfhi";
8795 goto do_divu3;
8796 case M_DDIVU_3:
8797 s = "ddivu";
8798 s2 = "mflo";
8799 goto do_divu3;
8800 case M_DREMU_3:
8801 s = "ddivu";
8802 s2 = "mfhi";
8803 do_divu3:
8804 start_noreorder ();
8805 if (mips_trap)
8806 {
8807 macro_build (NULL, "teq", TRAP_FMT, treg, ZERO, 7);
8808 macro_build (NULL, s, "z,s,t", sreg, treg);
8809 /* We want to close the noreorder block as soon as possible, so
8810 that later insns are available for delay slot filling. */
8811 end_noreorder ();
8812 }
8813 else
8814 {
8815 if (mips_opts.micromips)
8816 micromips_label_expr (&label_expr);
8817 else
8818 label_expr.X_add_number = 8;
8819 macro_build (&label_expr, "bne", "s,t,p", treg, ZERO);
8820 macro_build (NULL, s, "z,s,t", sreg, treg);
8821
8822 /* We want to close the noreorder block as soon as possible, so
8823 that later insns are available for delay slot filling. */
8824 end_noreorder ();
8825 macro_build (NULL, "break", BRK_FMT, 7);
8826 if (mips_opts.micromips)
8827 micromips_add_label ();
8828 }
8829 macro_build (NULL, s2, MFHL_FMT, dreg);
8830 break;
8831
8832 case M_DLCA_AB:
8833 dbl = 1;
8834 case M_LCA_AB:
8835 call = 1;
8836 goto do_la;
8837 case M_DLA_AB:
8838 dbl = 1;
8839 case M_LA_AB:
8840 do_la:
8841 /* Load the address of a symbol into a register. If breg is not
8842 zero, we then add a base register to it. */
8843
8844 if (dbl && HAVE_32BIT_GPRS)
8845 as_warn (_("dla used to load 32-bit register"));
8846
8847 if (!dbl && HAVE_64BIT_OBJECTS)
8848 as_warn (_("la used to load 64-bit address"));
8849
8850 if (small_offset_p (0, align, 16))
8851 {
8852 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", treg, breg,
8853 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
8854 break;
8855 }
8856
8857 if (mips_opts.at && (treg == breg))
8858 {
8859 tempreg = AT;
8860 used_at = 1;
8861 }
8862 else
8863 {
8864 tempreg = treg;
8865 }
8866
8867 if (offset_expr.X_op != O_symbol
8868 && offset_expr.X_op != O_constant)
8869 {
8870 as_bad (_("Expression too complex"));
8871 offset_expr.X_op = O_constant;
8872 }
8873
8874 if (offset_expr.X_op == O_constant)
8875 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
8876 else if (mips_pic == NO_PIC)
8877 {
8878 /* If this is a reference to a GP relative symbol, we want
8879 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
8880 Otherwise we want
8881 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
8882 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8883 If we have a constant, we need two instructions anyhow,
8884 so we may as well always use the latter form.
8885
8886 With 64bit address space and a usable $at we want
8887 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8888 lui $at,<sym> (BFD_RELOC_HI16_S)
8889 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8890 daddiu $at,<sym> (BFD_RELOC_LO16)
8891 dsll32 $tempreg,0
8892 daddu $tempreg,$tempreg,$at
8893
8894 If $at is already in use, we use a path which is suboptimal
8895 on superscalar processors.
8896 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
8897 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
8898 dsll $tempreg,16
8899 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
8900 dsll $tempreg,16
8901 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
8902
8903 For GP relative symbols in 64bit address space we can use
8904 the same sequence as in 32bit address space. */
8905 if (HAVE_64BIT_SYMBOLS)
8906 {
8907 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8908 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8909 {
8910 relax_start (offset_expr.X_add_symbol);
8911 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8912 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
8913 relax_switch ();
8914 }
8915
8916 if (used_at == 0 && mips_opts.at)
8917 {
8918 macro_build (&offset_expr, "lui", LUI_FMT,
8919 tempreg, BFD_RELOC_MIPS_HIGHEST);
8920 macro_build (&offset_expr, "lui", LUI_FMT,
8921 AT, BFD_RELOC_HI16_S);
8922 macro_build (&offset_expr, "daddiu", "t,r,j",
8923 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
8924 macro_build (&offset_expr, "daddiu", "t,r,j",
8925 AT, AT, BFD_RELOC_LO16);
8926 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
8927 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
8928 used_at = 1;
8929 }
8930 else
8931 {
8932 macro_build (&offset_expr, "lui", LUI_FMT,
8933 tempreg, BFD_RELOC_MIPS_HIGHEST);
8934 macro_build (&offset_expr, "daddiu", "t,r,j",
8935 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
8936 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8937 macro_build (&offset_expr, "daddiu", "t,r,j",
8938 tempreg, tempreg, BFD_RELOC_HI16_S);
8939 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
8940 macro_build (&offset_expr, "daddiu", "t,r,j",
8941 tempreg, tempreg, BFD_RELOC_LO16);
8942 }
8943
8944 if (mips_relax.sequence)
8945 relax_end ();
8946 }
8947 else
8948 {
8949 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
8950 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
8951 {
8952 relax_start (offset_expr.X_add_symbol);
8953 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8954 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
8955 relax_switch ();
8956 }
8957 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
8958 as_bad (_("Offset too large"));
8959 macro_build_lui (&offset_expr, tempreg);
8960 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
8961 tempreg, tempreg, BFD_RELOC_LO16);
8962 if (mips_relax.sequence)
8963 relax_end ();
8964 }
8965 }
8966 else if (!mips_big_got && !HAVE_NEWABI)
8967 {
8968 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
8969
8970 /* If this is a reference to an external symbol, and there
8971 is no constant, we want
8972 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8973 or for lca or if tempreg is PIC_CALL_REG
8974 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
8975 For a local symbol, we want
8976 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8977 nop
8978 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
8979
8980 If we have a small constant, and this is a reference to
8981 an external symbol, we want
8982 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8983 nop
8984 addiu $tempreg,$tempreg,<constant>
8985 For a local symbol, we want the same instruction
8986 sequence, but we output a BFD_RELOC_LO16 reloc on the
8987 addiu instruction.
8988
8989 If we have a large constant, and this is a reference to
8990 an external symbol, we want
8991 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
8992 lui $at,<hiconstant>
8993 addiu $at,$at,<loconstant>
8994 addu $tempreg,$tempreg,$at
8995 For a local symbol, we want the same instruction
8996 sequence, but we output a BFD_RELOC_LO16 reloc on the
8997 addiu instruction.
8998 */
8999
9000 if (offset_expr.X_add_number == 0)
9001 {
9002 if (mips_pic == SVR4_PIC
9003 && breg == 0
9004 && (call || tempreg == PIC_CALL_REG))
9005 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
9006
9007 relax_start (offset_expr.X_add_symbol);
9008 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9009 lw_reloc_type, mips_gp_register);
9010 if (breg != 0)
9011 {
9012 /* We're going to put in an addu instruction using
9013 tempreg, so we may as well insert the nop right
9014 now. */
9015 load_delay_nop ();
9016 }
9017 relax_switch ();
9018 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9019 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
9020 load_delay_nop ();
9021 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9022 tempreg, tempreg, BFD_RELOC_LO16);
9023 relax_end ();
9024 /* FIXME: If breg == 0, and the next instruction uses
9025 $tempreg, then if this variant case is used an extra
9026 nop will be generated. */
9027 }
9028 else if (offset_expr.X_add_number >= -0x8000
9029 && offset_expr.X_add_number < 0x8000)
9030 {
9031 load_got_offset (tempreg, &offset_expr);
9032 load_delay_nop ();
9033 add_got_offset (tempreg, &offset_expr);
9034 }
9035 else
9036 {
9037 expr1.X_add_number = offset_expr.X_add_number;
9038 offset_expr.X_add_number =
9039 SEXT_16BIT (offset_expr.X_add_number);
9040 load_got_offset (tempreg, &offset_expr);
9041 offset_expr.X_add_number = expr1.X_add_number;
9042 /* If we are going to add in a base register, and the
9043 target register and the base register are the same,
9044 then we are using AT as a temporary register. Since
9045 we want to load the constant into AT, we add our
9046 current AT (from the global offset table) and the
9047 register into the register now, and pretend we were
9048 not using a base register. */
9049 if (breg == treg)
9050 {
9051 load_delay_nop ();
9052 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9053 treg, AT, breg);
9054 breg = 0;
9055 tempreg = treg;
9056 }
9057 add_got_offset_hilo (tempreg, &offset_expr, AT);
9058 used_at = 1;
9059 }
9060 }
9061 else if (!mips_big_got && HAVE_NEWABI)
9062 {
9063 int add_breg_early = 0;
9064
9065 /* If this is a reference to an external, and there is no
9066 constant, or local symbol (*), with or without a
9067 constant, we want
9068 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9069 or for lca or if tempreg is PIC_CALL_REG
9070 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
9071
9072 If we have a small constant, and this is a reference to
9073 an external symbol, we want
9074 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9075 addiu $tempreg,$tempreg,<constant>
9076
9077 If we have a large constant, and this is a reference to
9078 an external symbol, we want
9079 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9080 lui $at,<hiconstant>
9081 addiu $at,$at,<loconstant>
9082 addu $tempreg,$tempreg,$at
9083
9084 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
9085 local symbols, even though it introduces an additional
9086 instruction. */
9087
9088 if (offset_expr.X_add_number)
9089 {
9090 expr1.X_add_number = offset_expr.X_add_number;
9091 offset_expr.X_add_number = 0;
9092
9093 relax_start (offset_expr.X_add_symbol);
9094 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9095 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9096
9097 if (expr1.X_add_number >= -0x8000
9098 && expr1.X_add_number < 0x8000)
9099 {
9100 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
9101 tempreg, tempreg, BFD_RELOC_LO16);
9102 }
9103 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
9104 {
9105 /* If we are going to add in a base register, and the
9106 target register and the base register are the same,
9107 then we are using AT as a temporary register. Since
9108 we want to load the constant into AT, we add our
9109 current AT (from the global offset table) and the
9110 register into the register now, and pretend we were
9111 not using a base register. */
9112 if (breg != treg)
9113 dreg = tempreg;
9114 else
9115 {
9116 gas_assert (tempreg == AT);
9117 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9118 treg, AT, breg);
9119 dreg = treg;
9120 add_breg_early = 1;
9121 }
9122
9123 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
9124 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9125 dreg, dreg, AT);
9126
9127 used_at = 1;
9128 }
9129 else
9130 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
9131
9132 relax_switch ();
9133 offset_expr.X_add_number = expr1.X_add_number;
9134
9135 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9136 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9137 if (add_breg_early)
9138 {
9139 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9140 treg, tempreg, breg);
9141 breg = 0;
9142 tempreg = treg;
9143 }
9144 relax_end ();
9145 }
9146 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
9147 {
9148 relax_start (offset_expr.X_add_symbol);
9149 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9150 BFD_RELOC_MIPS_CALL16, mips_gp_register);
9151 relax_switch ();
9152 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9153 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9154 relax_end ();
9155 }
9156 else
9157 {
9158 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9159 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9160 }
9161 }
9162 else if (mips_big_got && !HAVE_NEWABI)
9163 {
9164 int gpdelay;
9165 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
9166 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
9167 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
9168
9169 /* This is the large GOT case. If this is a reference to an
9170 external symbol, and there is no constant, we want
9171 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9172 addu $tempreg,$tempreg,$gp
9173 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9174 or for lca or if tempreg is PIC_CALL_REG
9175 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
9176 addu $tempreg,$tempreg,$gp
9177 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
9178 For a local symbol, we want
9179 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9180 nop
9181 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
9182
9183 If we have a small constant, and this is a reference to
9184 an external symbol, we want
9185 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9186 addu $tempreg,$tempreg,$gp
9187 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9188 nop
9189 addiu $tempreg,$tempreg,<constant>
9190 For a local symbol, we want
9191 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9192 nop
9193 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
9194
9195 If we have a large constant, and this is a reference to
9196 an external symbol, we want
9197 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9198 addu $tempreg,$tempreg,$gp
9199 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9200 lui $at,<hiconstant>
9201 addiu $at,$at,<loconstant>
9202 addu $tempreg,$tempreg,$at
9203 For a local symbol, we want
9204 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9205 lui $at,<hiconstant>
9206 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
9207 addu $tempreg,$tempreg,$at
9208 */
9209
9210 expr1.X_add_number = offset_expr.X_add_number;
9211 offset_expr.X_add_number = 0;
9212 relax_start (offset_expr.X_add_symbol);
9213 gpdelay = reg_needs_delay (mips_gp_register);
9214 if (expr1.X_add_number == 0 && breg == 0
9215 && (call || tempreg == PIC_CALL_REG))
9216 {
9217 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
9218 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
9219 }
9220 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
9221 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9222 tempreg, tempreg, mips_gp_register);
9223 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9224 tempreg, lw_reloc_type, tempreg);
9225 if (expr1.X_add_number == 0)
9226 {
9227 if (breg != 0)
9228 {
9229 /* We're going to put in an addu instruction using
9230 tempreg, so we may as well insert the nop right
9231 now. */
9232 load_delay_nop ();
9233 }
9234 }
9235 else if (expr1.X_add_number >= -0x8000
9236 && expr1.X_add_number < 0x8000)
9237 {
9238 load_delay_nop ();
9239 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
9240 tempreg, tempreg, BFD_RELOC_LO16);
9241 }
9242 else
9243 {
9244 /* If we are going to add in a base register, and the
9245 target register and the base register are the same,
9246 then we are using AT as a temporary register. Since
9247 we want to load the constant into AT, we add our
9248 current AT (from the global offset table) and the
9249 register into the register now, and pretend we were
9250 not using a base register. */
9251 if (breg != treg)
9252 dreg = tempreg;
9253 else
9254 {
9255 gas_assert (tempreg == AT);
9256 load_delay_nop ();
9257 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9258 treg, AT, breg);
9259 dreg = treg;
9260 }
9261
9262 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
9263 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
9264
9265 used_at = 1;
9266 }
9267 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
9268 relax_switch ();
9269
9270 if (gpdelay)
9271 {
9272 /* This is needed because this instruction uses $gp, but
9273 the first instruction on the main stream does not. */
9274 macro_build (NULL, "nop", "");
9275 }
9276
9277 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9278 local_reloc_type, mips_gp_register);
9279 if (expr1.X_add_number >= -0x8000
9280 && expr1.X_add_number < 0x8000)
9281 {
9282 load_delay_nop ();
9283 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9284 tempreg, tempreg, BFD_RELOC_LO16);
9285 /* FIXME: If add_number is 0, and there was no base
9286 register, the external symbol case ended with a load,
9287 so if the symbol turns out to not be external, and
9288 the next instruction uses tempreg, an unnecessary nop
9289 will be inserted. */
9290 }
9291 else
9292 {
9293 if (breg == treg)
9294 {
9295 /* We must add in the base register now, as in the
9296 external symbol case. */
9297 gas_assert (tempreg == AT);
9298 load_delay_nop ();
9299 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9300 treg, AT, breg);
9301 tempreg = treg;
9302 /* We set breg to 0 because we have arranged to add
9303 it in in both cases. */
9304 breg = 0;
9305 }
9306
9307 macro_build_lui (&expr1, AT);
9308 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9309 AT, AT, BFD_RELOC_LO16);
9310 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9311 tempreg, tempreg, AT);
9312 used_at = 1;
9313 }
9314 relax_end ();
9315 }
9316 else if (mips_big_got && HAVE_NEWABI)
9317 {
9318 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
9319 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
9320 int add_breg_early = 0;
9321
9322 /* This is the large GOT case. If this is a reference to an
9323 external symbol, and there is no constant, we want
9324 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9325 add $tempreg,$tempreg,$gp
9326 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9327 or for lca or if tempreg is PIC_CALL_REG
9328 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
9329 add $tempreg,$tempreg,$gp
9330 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
9331
9332 If we have a small constant, and this is a reference to
9333 an external symbol, we want
9334 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9335 add $tempreg,$tempreg,$gp
9336 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9337 addi $tempreg,$tempreg,<constant>
9338
9339 If we have a large constant, and this is a reference to
9340 an external symbol, we want
9341 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9342 addu $tempreg,$tempreg,$gp
9343 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
9344 lui $at,<hiconstant>
9345 addi $at,$at,<loconstant>
9346 add $tempreg,$tempreg,$at
9347
9348 If we have NewABI, and we know it's a local symbol, we want
9349 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9350 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9351 otherwise we have to resort to GOT_HI16/GOT_LO16. */
9352
9353 relax_start (offset_expr.X_add_symbol);
9354
9355 expr1.X_add_number = offset_expr.X_add_number;
9356 offset_expr.X_add_number = 0;
9357
9358 if (expr1.X_add_number == 0 && breg == 0
9359 && (call || tempreg == PIC_CALL_REG))
9360 {
9361 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
9362 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
9363 }
9364 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
9365 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9366 tempreg, tempreg, mips_gp_register);
9367 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9368 tempreg, lw_reloc_type, tempreg);
9369
9370 if (expr1.X_add_number == 0)
9371 ;
9372 else if (expr1.X_add_number >= -0x8000
9373 && expr1.X_add_number < 0x8000)
9374 {
9375 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
9376 tempreg, tempreg, BFD_RELOC_LO16);
9377 }
9378 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
9379 {
9380 /* If we are going to add in a base register, and the
9381 target register and the base register are the same,
9382 then we are using AT as a temporary register. Since
9383 we want to load the constant into AT, we add our
9384 current AT (from the global offset table) and the
9385 register into the register now, and pretend we were
9386 not using a base register. */
9387 if (breg != treg)
9388 dreg = tempreg;
9389 else
9390 {
9391 gas_assert (tempreg == AT);
9392 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9393 treg, AT, breg);
9394 dreg = treg;
9395 add_breg_early = 1;
9396 }
9397
9398 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
9399 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
9400
9401 used_at = 1;
9402 }
9403 else
9404 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
9405
9406 relax_switch ();
9407 offset_expr.X_add_number = expr1.X_add_number;
9408 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
9409 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9410 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
9411 tempreg, BFD_RELOC_MIPS_GOT_OFST);
9412 if (add_breg_early)
9413 {
9414 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9415 treg, tempreg, breg);
9416 breg = 0;
9417 tempreg = treg;
9418 }
9419 relax_end ();
9420 }
9421 else
9422 abort ();
9423
9424 if (breg != 0)
9425 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
9426 break;
9427
9428 case M_MSGSND:
9429 gas_assert (!mips_opts.micromips);
9430 macro_build (NULL, "c2", "C", (treg << 16) | 0x01);
9431 break;
9432
9433 case M_MSGLD:
9434 gas_assert (!mips_opts.micromips);
9435 macro_build (NULL, "c2", "C", 0x02);
9436 break;
9437
9438 case M_MSGLD_T:
9439 gas_assert (!mips_opts.micromips);
9440 macro_build (NULL, "c2", "C", (treg << 16) | 0x02);
9441 break;
9442
9443 case M_MSGWAIT:
9444 gas_assert (!mips_opts.micromips);
9445 macro_build (NULL, "c2", "C", 3);
9446 break;
9447
9448 case M_MSGWAIT_T:
9449 gas_assert (!mips_opts.micromips);
9450 macro_build (NULL, "c2", "C", (treg << 16) | 0x03);
9451 break;
9452
9453 case M_J_A:
9454 /* The j instruction may not be used in PIC code, since it
9455 requires an absolute address. We convert it to a b
9456 instruction. */
9457 if (mips_pic == NO_PIC)
9458 macro_build (&offset_expr, "j", "a");
9459 else
9460 macro_build (&offset_expr, "b", "p");
9461 break;
9462
9463 /* The jal instructions must be handled as macros because when
9464 generating PIC code they expand to multi-instruction
9465 sequences. Normally they are simple instructions. */
9466 case M_JALS_1:
9467 dreg = RA;
9468 /* Fall through. */
9469 case M_JALS_2:
9470 gas_assert (mips_opts.micromips);
9471 if (mips_opts.insn32)
9472 {
9473 as_bad (_("Opcode not supported in the `insn32' mode `%s'"), str);
9474 break;
9475 }
9476 jals = 1;
9477 goto jal;
9478 case M_JAL_1:
9479 dreg = RA;
9480 /* Fall through. */
9481 case M_JAL_2:
9482 jal:
9483 if (mips_pic == NO_PIC)
9484 {
9485 s = jals ? "jalrs" : "jalr";
9486 if (mips_opts.micromips
9487 && !mips_opts.insn32
9488 && dreg == RA
9489 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9490 macro_build (NULL, s, "mj", sreg);
9491 else
9492 macro_build (NULL, s, JALR_FMT, dreg, sreg);
9493 }
9494 else
9495 {
9496 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
9497 && mips_cprestore_offset >= 0);
9498
9499 if (sreg != PIC_CALL_REG)
9500 as_warn (_("MIPS PIC call to register other than $25"));
9501
9502 s = ((mips_opts.micromips
9503 && !mips_opts.insn32
9504 && (!mips_opts.noreorder || cprestore))
9505 ? "jalrs" : "jalr");
9506 if (mips_opts.micromips
9507 && !mips_opts.insn32
9508 && dreg == RA
9509 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9510 macro_build (NULL, s, "mj", sreg);
9511 else
9512 macro_build (NULL, s, JALR_FMT, dreg, sreg);
9513 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
9514 {
9515 if (mips_cprestore_offset < 0)
9516 as_warn (_("No .cprestore pseudo-op used in PIC code"));
9517 else
9518 {
9519 if (!mips_frame_reg_valid)
9520 {
9521 as_warn (_("No .frame pseudo-op used in PIC code"));
9522 /* Quiet this warning. */
9523 mips_frame_reg_valid = 1;
9524 }
9525 if (!mips_cprestore_valid)
9526 {
9527 as_warn (_("No .cprestore pseudo-op used in PIC code"));
9528 /* Quiet this warning. */
9529 mips_cprestore_valid = 1;
9530 }
9531 if (mips_opts.noreorder)
9532 macro_build (NULL, "nop", "");
9533 expr1.X_add_number = mips_cprestore_offset;
9534 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
9535 mips_gp_register,
9536 mips_frame_reg,
9537 HAVE_64BIT_ADDRESSES);
9538 }
9539 }
9540 }
9541
9542 break;
9543
9544 case M_JALS_A:
9545 gas_assert (mips_opts.micromips);
9546 if (mips_opts.insn32)
9547 {
9548 as_bad (_("Opcode not supported in the `insn32' mode `%s'"), str);
9549 break;
9550 }
9551 jals = 1;
9552 /* Fall through. */
9553 case M_JAL_A:
9554 if (mips_pic == NO_PIC)
9555 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
9556 else if (mips_pic == SVR4_PIC)
9557 {
9558 /* If this is a reference to an external symbol, and we are
9559 using a small GOT, we want
9560 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
9561 nop
9562 jalr $ra,$25
9563 nop
9564 lw $gp,cprestore($sp)
9565 The cprestore value is set using the .cprestore
9566 pseudo-op. If we are using a big GOT, we want
9567 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
9568 addu $25,$25,$gp
9569 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
9570 nop
9571 jalr $ra,$25
9572 nop
9573 lw $gp,cprestore($sp)
9574 If the symbol is not external, we want
9575 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9576 nop
9577 addiu $25,$25,<sym> (BFD_RELOC_LO16)
9578 jalr $ra,$25
9579 nop
9580 lw $gp,cprestore($sp)
9581
9582 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
9583 sequences above, minus nops, unless the symbol is local,
9584 which enables us to use GOT_PAGE/GOT_OFST (big got) or
9585 GOT_DISP. */
9586 if (HAVE_NEWABI)
9587 {
9588 if (!mips_big_got)
9589 {
9590 relax_start (offset_expr.X_add_symbol);
9591 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9592 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
9593 mips_gp_register);
9594 relax_switch ();
9595 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9596 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
9597 mips_gp_register);
9598 relax_end ();
9599 }
9600 else
9601 {
9602 relax_start (offset_expr.X_add_symbol);
9603 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
9604 BFD_RELOC_MIPS_CALL_HI16);
9605 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
9606 PIC_CALL_REG, mips_gp_register);
9607 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9608 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
9609 PIC_CALL_REG);
9610 relax_switch ();
9611 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9612 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
9613 mips_gp_register);
9614 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9615 PIC_CALL_REG, PIC_CALL_REG,
9616 BFD_RELOC_MIPS_GOT_OFST);
9617 relax_end ();
9618 }
9619
9620 macro_build_jalr (&offset_expr, 0);
9621 }
9622 else
9623 {
9624 relax_start (offset_expr.X_add_symbol);
9625 if (!mips_big_got)
9626 {
9627 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9628 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
9629 mips_gp_register);
9630 load_delay_nop ();
9631 relax_switch ();
9632 }
9633 else
9634 {
9635 int gpdelay;
9636
9637 gpdelay = reg_needs_delay (mips_gp_register);
9638 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
9639 BFD_RELOC_MIPS_CALL_HI16);
9640 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
9641 PIC_CALL_REG, mips_gp_register);
9642 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9643 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
9644 PIC_CALL_REG);
9645 load_delay_nop ();
9646 relax_switch ();
9647 if (gpdelay)
9648 macro_build (NULL, "nop", "");
9649 }
9650 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
9651 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
9652 mips_gp_register);
9653 load_delay_nop ();
9654 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
9655 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
9656 relax_end ();
9657 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
9658
9659 if (mips_cprestore_offset < 0)
9660 as_warn (_("No .cprestore pseudo-op used in PIC code"));
9661 else
9662 {
9663 if (!mips_frame_reg_valid)
9664 {
9665 as_warn (_("No .frame pseudo-op used in PIC code"));
9666 /* Quiet this warning. */
9667 mips_frame_reg_valid = 1;
9668 }
9669 if (!mips_cprestore_valid)
9670 {
9671 as_warn (_("No .cprestore pseudo-op used in PIC code"));
9672 /* Quiet this warning. */
9673 mips_cprestore_valid = 1;
9674 }
9675 if (mips_opts.noreorder)
9676 macro_build (NULL, "nop", "");
9677 expr1.X_add_number = mips_cprestore_offset;
9678 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
9679 mips_gp_register,
9680 mips_frame_reg,
9681 HAVE_64BIT_ADDRESSES);
9682 }
9683 }
9684 }
9685 else if (mips_pic == VXWORKS_PIC)
9686 as_bad (_("Non-PIC jump used in PIC library"));
9687 else
9688 abort ();
9689
9690 break;
9691
9692 case M_LBUE_AB:
9693 s = "lbue";
9694 fmt = "t,+j(b)";
9695 offbits = 9;
9696 goto ld_st;
9697 case M_LHUE_AB:
9698 s = "lhue";
9699 fmt = "t,+j(b)";
9700 offbits = 9;
9701 goto ld_st;
9702 case M_LBE_AB:
9703 s = "lbe";
9704 fmt = "t,+j(b)";
9705 offbits = 9;
9706 goto ld_st;
9707 case M_LHE_AB:
9708 s = "lhe";
9709 fmt = "t,+j(b)";
9710 offbits = 9;
9711 goto ld_st;
9712 case M_LLE_AB:
9713 s = "lle";
9714 fmt = "t,+j(b)";
9715 offbits = 9;
9716 goto ld_st;
9717 case M_LWE_AB:
9718 s = "lwe";
9719 fmt = "t,+j(b)";
9720 offbits = 9;
9721 goto ld_st;
9722 case M_LWLE_AB:
9723 s = "lwle";
9724 fmt = "t,+j(b)";
9725 offbits = 9;
9726 goto ld_st;
9727 case M_LWRE_AB:
9728 s = "lwre";
9729 fmt = "t,+j(b)";
9730 offbits = 9;
9731 goto ld_st;
9732 case M_SBE_AB:
9733 s = "sbe";
9734 fmt = "t,+j(b)";
9735 offbits = 9;
9736 goto ld_st;
9737 case M_SCE_AB:
9738 s = "sce";
9739 fmt = "t,+j(b)";
9740 offbits = 9;
9741 goto ld_st;
9742 case M_SHE_AB:
9743 s = "she";
9744 fmt = "t,+j(b)";
9745 offbits = 9;
9746 goto ld_st;
9747 case M_SWE_AB:
9748 s = "swe";
9749 fmt = "t,+j(b)";
9750 offbits = 9;
9751 goto ld_st;
9752 case M_SWLE_AB:
9753 s = "swle";
9754 fmt = "t,+j(b)";
9755 offbits = 9;
9756 goto ld_st;
9757 case M_SWRE_AB:
9758 s = "swre";
9759 fmt = "t,+j(b)";
9760 offbits = 9;
9761 goto ld_st;
9762 case M_ACLR_AB:
9763 s = "aclr";
9764 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
9765 fmt = "\\,~(b)";
9766 offbits = 12;
9767 goto ld_st;
9768 case M_ASET_AB:
9769 s = "aset";
9770 treg = EXTRACT_OPERAND (mips_opts.micromips, 3BITPOS, *ip);
9771 fmt = "\\,~(b)";
9772 offbits = 12;
9773 goto ld_st;
9774 case M_LB_AB:
9775 s = "lb";
9776 fmt = "t,o(b)";
9777 goto ld;
9778 case M_LBU_AB:
9779 s = "lbu";
9780 fmt = "t,o(b)";
9781 goto ld;
9782 case M_LH_AB:
9783 s = "lh";
9784 fmt = "t,o(b)";
9785 goto ld;
9786 case M_LHU_AB:
9787 s = "lhu";
9788 fmt = "t,o(b)";
9789 goto ld;
9790 case M_LW_AB:
9791 s = "lw";
9792 fmt = "t,o(b)";
9793 goto ld;
9794 case M_LWC0_AB:
9795 gas_assert (!mips_opts.micromips);
9796 s = "lwc0";
9797 fmt = "E,o(b)";
9798 /* Itbl support may require additional care here. */
9799 coproc = 1;
9800 goto ld_st;
9801 case M_LWC1_AB:
9802 s = "lwc1";
9803 fmt = "T,o(b)";
9804 /* Itbl support may require additional care here. */
9805 coproc = 1;
9806 goto ld_st;
9807 case M_LWC2_AB:
9808 s = "lwc2";
9809 fmt = COP12_FMT;
9810 offbits = (mips_opts.micromips ? 12 : 16);
9811 /* Itbl support may require additional care here. */
9812 coproc = 1;
9813 goto ld_st;
9814 case M_LWC3_AB:
9815 gas_assert (!mips_opts.micromips);
9816 s = "lwc3";
9817 fmt = "E,o(b)";
9818 /* Itbl support may require additional care here. */
9819 coproc = 1;
9820 goto ld_st;
9821 case M_LWL_AB:
9822 s = "lwl";
9823 fmt = MEM12_FMT;
9824 offbits = (mips_opts.micromips ? 12 : 16);
9825 goto ld_st;
9826 case M_LWR_AB:
9827 s = "lwr";
9828 fmt = MEM12_FMT;
9829 offbits = (mips_opts.micromips ? 12 : 16);
9830 goto ld_st;
9831 case M_LDC1_AB:
9832 s = "ldc1";
9833 fmt = "T,o(b)";
9834 /* Itbl support may require additional care here. */
9835 coproc = 1;
9836 goto ld_st;
9837 case M_LDC2_AB:
9838 s = "ldc2";
9839 fmt = COP12_FMT;
9840 offbits = (mips_opts.micromips ? 12 : 16);
9841 /* Itbl support may require additional care here. */
9842 coproc = 1;
9843 goto ld_st;
9844 case M_LQC2_AB:
9845 s = "lqc2";
9846 fmt = "E,o(b)";
9847 /* Itbl support may require additional care here. */
9848 coproc = 1;
9849 goto ld_st;
9850 case M_LDC3_AB:
9851 s = "ldc3";
9852 fmt = "E,o(b)";
9853 /* Itbl support may require additional care here. */
9854 coproc = 1;
9855 goto ld_st;
9856 case M_LDL_AB:
9857 s = "ldl";
9858 fmt = MEM12_FMT;
9859 offbits = (mips_opts.micromips ? 12 : 16);
9860 goto ld_st;
9861 case M_LDR_AB:
9862 s = "ldr";
9863 fmt = MEM12_FMT;
9864 offbits = (mips_opts.micromips ? 12 : 16);
9865 goto ld_st;
9866 case M_LL_AB:
9867 s = "ll";
9868 fmt = MEM12_FMT;
9869 offbits = (mips_opts.micromips ? 12 : 16);
9870 goto ld;
9871 case M_LLD_AB:
9872 s = "lld";
9873 fmt = MEM12_FMT;
9874 offbits = (mips_opts.micromips ? 12 : 16);
9875 goto ld;
9876 case M_LWU_AB:
9877 s = "lwu";
9878 fmt = MEM12_FMT;
9879 offbits = (mips_opts.micromips ? 12 : 16);
9880 goto ld;
9881 case M_LWP_AB:
9882 gas_assert (mips_opts.micromips);
9883 s = "lwp";
9884 fmt = "t,~(b)";
9885 offbits = 12;
9886 lp = 1;
9887 goto ld;
9888 case M_LDP_AB:
9889 gas_assert (mips_opts.micromips);
9890 s = "ldp";
9891 fmt = "t,~(b)";
9892 offbits = 12;
9893 lp = 1;
9894 goto ld;
9895 case M_LWM_AB:
9896 gas_assert (mips_opts.micromips);
9897 s = "lwm";
9898 fmt = "n,~(b)";
9899 offbits = 12;
9900 goto ld_st;
9901 case M_LDM_AB:
9902 gas_assert (mips_opts.micromips);
9903 s = "ldm";
9904 fmt = "n,~(b)";
9905 offbits = 12;
9906 goto ld_st;
9907
9908 ld:
9909 /* We don't want to use $0 as tempreg. */
9910 if (breg == treg + lp || treg + lp == ZERO)
9911 goto ld_st;
9912 else
9913 tempreg = treg + lp;
9914 goto ld_noat;
9915
9916 case M_SB_AB:
9917 s = "sb";
9918 fmt = "t,o(b)";
9919 goto ld_st;
9920 case M_SH_AB:
9921 s = "sh";
9922 fmt = "t,o(b)";
9923 goto ld_st;
9924 case M_SW_AB:
9925 s = "sw";
9926 fmt = "t,o(b)";
9927 goto ld_st;
9928 case M_SWC0_AB:
9929 gas_assert (!mips_opts.micromips);
9930 s = "swc0";
9931 fmt = "E,o(b)";
9932 /* Itbl support may require additional care here. */
9933 coproc = 1;
9934 goto ld_st;
9935 case M_SWC1_AB:
9936 s = "swc1";
9937 fmt = "T,o(b)";
9938 /* Itbl support may require additional care here. */
9939 coproc = 1;
9940 goto ld_st;
9941 case M_SWC2_AB:
9942 s = "swc2";
9943 fmt = COP12_FMT;
9944 offbits = (mips_opts.micromips ? 12 : 16);
9945 /* Itbl support may require additional care here. */
9946 coproc = 1;
9947 goto ld_st;
9948 case M_SWC3_AB:
9949 gas_assert (!mips_opts.micromips);
9950 s = "swc3";
9951 fmt = "E,o(b)";
9952 /* Itbl support may require additional care here. */
9953 coproc = 1;
9954 goto ld_st;
9955 case M_SWL_AB:
9956 s = "swl";
9957 fmt = MEM12_FMT;
9958 offbits = (mips_opts.micromips ? 12 : 16);
9959 goto ld_st;
9960 case M_SWR_AB:
9961 s = "swr";
9962 fmt = MEM12_FMT;
9963 offbits = (mips_opts.micromips ? 12 : 16);
9964 goto ld_st;
9965 case M_SC_AB:
9966 s = "sc";
9967 fmt = MEM12_FMT;
9968 offbits = (mips_opts.micromips ? 12 : 16);
9969 goto ld_st;
9970 case M_SCD_AB:
9971 s = "scd";
9972 fmt = MEM12_FMT;
9973 offbits = (mips_opts.micromips ? 12 : 16);
9974 goto ld_st;
9975 case M_CACHE_AB:
9976 s = "cache";
9977 fmt = mips_opts.micromips ? "k,~(b)" : "k,o(b)";
9978 offbits = (mips_opts.micromips ? 12 : 16);
9979 goto ld_st;
9980 case M_CACHEE_AB:
9981 s = "cachee";
9982 fmt = "k,+j(b)";
9983 offbits = 9;
9984 goto ld_st;
9985 case M_PREF_AB:
9986 s = "pref";
9987 fmt = !mips_opts.micromips ? "k,o(b)" : "k,~(b)";
9988 offbits = (mips_opts.micromips ? 12 : 16);
9989 goto ld_st;
9990 case M_PREFE_AB:
9991 s = "prefe";
9992 fmt = "k,+j(b)";
9993 offbits = 9;
9994 goto ld_st;
9995 case M_SDC1_AB:
9996 s = "sdc1";
9997 fmt = "T,o(b)";
9998 coproc = 1;
9999 /* Itbl support may require additional care here. */
10000 goto ld_st;
10001 case M_SDC2_AB:
10002 s = "sdc2";
10003 fmt = COP12_FMT;
10004 offbits = (mips_opts.micromips ? 12 : 16);
10005 /* Itbl support may require additional care here. */
10006 coproc = 1;
10007 goto ld_st;
10008 case M_SQC2_AB:
10009 s = "sqc2";
10010 fmt = "E,o(b)";
10011 /* Itbl support may require additional care here. */
10012 coproc = 1;
10013 goto ld_st;
10014 case M_SDC3_AB:
10015 gas_assert (!mips_opts.micromips);
10016 s = "sdc3";
10017 fmt = "E,o(b)";
10018 /* Itbl support may require additional care here. */
10019 coproc = 1;
10020 goto ld_st;
10021 case M_SDL_AB:
10022 s = "sdl";
10023 fmt = MEM12_FMT;
10024 offbits = (mips_opts.micromips ? 12 : 16);
10025 goto ld_st;
10026 case M_SDR_AB:
10027 s = "sdr";
10028 fmt = MEM12_FMT;
10029 offbits = (mips_opts.micromips ? 12 : 16);
10030 goto ld_st;
10031 case M_SWP_AB:
10032 gas_assert (mips_opts.micromips);
10033 s = "swp";
10034 fmt = "t,~(b)";
10035 offbits = 12;
10036 goto ld_st;
10037 case M_SDP_AB:
10038 gas_assert (mips_opts.micromips);
10039 s = "sdp";
10040 fmt = "t,~(b)";
10041 offbits = 12;
10042 goto ld_st;
10043 case M_SWM_AB:
10044 gas_assert (mips_opts.micromips);
10045 s = "swm";
10046 fmt = "n,~(b)";
10047 offbits = 12;
10048 goto ld_st;
10049 case M_SDM_AB:
10050 gas_assert (mips_opts.micromips);
10051 s = "sdm";
10052 fmt = "n,~(b)";
10053 offbits = 12;
10054
10055 ld_st:
10056 tempreg = AT;
10057 ld_noat:
10058 if (small_offset_p (0, align, 16))
10059 {
10060 /* The first case exists for M_LD_AB and M_SD_AB, which are
10061 macros for o32 but which should act like normal instructions
10062 otherwise. */
10063 if (offbits == 16)
10064 macro_build (&offset_expr, s, fmt, treg, -1, offset_reloc[0],
10065 offset_reloc[1], offset_reloc[2], breg);
10066 else if (small_offset_p (0, align, offbits))
10067 {
10068 if (offbits == 0)
10069 macro_build (NULL, s, fmt, treg, breg);
10070 else
10071 macro_build (NULL, s, fmt, treg,
10072 (int) offset_expr.X_add_number, breg);
10073 }
10074 else
10075 {
10076 if (tempreg == AT)
10077 used_at = 1;
10078 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10079 tempreg, breg, -1, offset_reloc[0],
10080 offset_reloc[1], offset_reloc[2]);
10081 if (offbits == 0)
10082 macro_build (NULL, s, fmt, treg, tempreg);
10083 else
10084 macro_build (NULL, s, fmt, treg, 0, tempreg);
10085 }
10086 break;
10087 }
10088
10089 if (tempreg == AT)
10090 used_at = 1;
10091
10092 if (offset_expr.X_op != O_constant
10093 && offset_expr.X_op != O_symbol)
10094 {
10095 as_bad (_("Expression too complex"));
10096 offset_expr.X_op = O_constant;
10097 }
10098
10099 if (HAVE_32BIT_ADDRESSES
10100 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10101 {
10102 char value [32];
10103
10104 sprintf_vma (value, offset_expr.X_add_number);
10105 as_bad (_("Number (0x%s) larger than 32 bits"), value);
10106 }
10107
10108 /* A constant expression in PIC code can be handled just as it
10109 is in non PIC code. */
10110 if (offset_expr.X_op == O_constant)
10111 {
10112 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
10113 offbits == 0 ? 16 : offbits);
10114 offset_expr.X_add_number -= expr1.X_add_number;
10115
10116 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
10117 if (breg != 0)
10118 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10119 tempreg, tempreg, breg);
10120 if (offbits == 0)
10121 {
10122 if (offset_expr.X_add_number != 0)
10123 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
10124 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
10125 macro_build (NULL, s, fmt, treg, tempreg);
10126 }
10127 else if (offbits == 16)
10128 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
10129 else
10130 macro_build (NULL, s, fmt, treg,
10131 (int) offset_expr.X_add_number, tempreg);
10132 }
10133 else if (offbits != 16)
10134 {
10135 /* The offset field is too narrow to be used for a low-part
10136 relocation, so load the whole address into the auxillary
10137 register. */
10138 load_address (tempreg, &offset_expr, &used_at);
10139 if (breg != 0)
10140 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10141 tempreg, tempreg, breg);
10142 if (offbits == 0)
10143 macro_build (NULL, s, fmt, treg, tempreg);
10144 else
10145 macro_build (NULL, s, fmt, treg, 0, tempreg);
10146 }
10147 else if (mips_pic == NO_PIC)
10148 {
10149 /* If this is a reference to a GP relative symbol, and there
10150 is no base register, we want
10151 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
10152 Otherwise, if there is no base register, we want
10153 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10154 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
10155 If we have a constant, we need two instructions anyhow,
10156 so we always use the latter form.
10157
10158 If we have a base register, and this is a reference to a
10159 GP relative symbol, we want
10160 addu $tempreg,$breg,$gp
10161 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
10162 Otherwise we want
10163 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10164 addu $tempreg,$tempreg,$breg
10165 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
10166 With a constant we always use the latter case.
10167
10168 With 64bit address space and no base register and $at usable,
10169 we want
10170 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10171 lui $at,<sym> (BFD_RELOC_HI16_S)
10172 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10173 dsll32 $tempreg,0
10174 daddu $tempreg,$at
10175 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
10176 If we have a base register, we want
10177 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10178 lui $at,<sym> (BFD_RELOC_HI16_S)
10179 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10180 daddu $at,$breg
10181 dsll32 $tempreg,0
10182 daddu $tempreg,$at
10183 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
10184
10185 Without $at we can't generate the optimal path for superscalar
10186 processors here since this would require two temporary registers.
10187 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10188 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10189 dsll $tempreg,16
10190 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10191 dsll $tempreg,16
10192 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
10193 If we have a base register, we want
10194 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10195 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10196 dsll $tempreg,16
10197 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10198 dsll $tempreg,16
10199 daddu $tempreg,$tempreg,$breg
10200 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
10201
10202 For GP relative symbols in 64bit address space we can use
10203 the same sequence as in 32bit address space. */
10204 if (HAVE_64BIT_SYMBOLS)
10205 {
10206 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10207 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10208 {
10209 relax_start (offset_expr.X_add_symbol);
10210 if (breg == 0)
10211 {
10212 macro_build (&offset_expr, s, fmt, treg,
10213 BFD_RELOC_GPREL16, mips_gp_register);
10214 }
10215 else
10216 {
10217 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10218 tempreg, breg, mips_gp_register);
10219 macro_build (&offset_expr, s, fmt, treg,
10220 BFD_RELOC_GPREL16, tempreg);
10221 }
10222 relax_switch ();
10223 }
10224
10225 if (used_at == 0 && mips_opts.at)
10226 {
10227 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
10228 BFD_RELOC_MIPS_HIGHEST);
10229 macro_build (&offset_expr, "lui", LUI_FMT, AT,
10230 BFD_RELOC_HI16_S);
10231 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
10232 tempreg, BFD_RELOC_MIPS_HIGHER);
10233 if (breg != 0)
10234 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
10235 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10236 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10237 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
10238 tempreg);
10239 used_at = 1;
10240 }
10241 else
10242 {
10243 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
10244 BFD_RELOC_MIPS_HIGHEST);
10245 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
10246 tempreg, BFD_RELOC_MIPS_HIGHER);
10247 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10248 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
10249 tempreg, BFD_RELOC_HI16_S);
10250 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10251 if (breg != 0)
10252 macro_build (NULL, "daddu", "d,v,t",
10253 tempreg, tempreg, breg);
10254 macro_build (&offset_expr, s, fmt, treg,
10255 BFD_RELOC_LO16, tempreg);
10256 }
10257
10258 if (mips_relax.sequence)
10259 relax_end ();
10260 break;
10261 }
10262
10263 if (breg == 0)
10264 {
10265 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10266 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10267 {
10268 relax_start (offset_expr.X_add_symbol);
10269 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
10270 mips_gp_register);
10271 relax_switch ();
10272 }
10273 macro_build_lui (&offset_expr, tempreg);
10274 macro_build (&offset_expr, s, fmt, treg,
10275 BFD_RELOC_LO16, tempreg);
10276 if (mips_relax.sequence)
10277 relax_end ();
10278 }
10279 else
10280 {
10281 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10282 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10283 {
10284 relax_start (offset_expr.X_add_symbol);
10285 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10286 tempreg, breg, mips_gp_register);
10287 macro_build (&offset_expr, s, fmt, treg,
10288 BFD_RELOC_GPREL16, tempreg);
10289 relax_switch ();
10290 }
10291 macro_build_lui (&offset_expr, tempreg);
10292 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10293 tempreg, tempreg, breg);
10294 macro_build (&offset_expr, s, fmt, treg,
10295 BFD_RELOC_LO16, tempreg);
10296 if (mips_relax.sequence)
10297 relax_end ();
10298 }
10299 }
10300 else if (!mips_big_got)
10301 {
10302 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10303
10304 /* If this is a reference to an external symbol, we want
10305 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10306 nop
10307 <op> $treg,0($tempreg)
10308 Otherwise we want
10309 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10310 nop
10311 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10312 <op> $treg,0($tempreg)
10313
10314 For NewABI, we want
10315 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10316 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
10317
10318 If there is a base register, we add it to $tempreg before
10319 the <op>. If there is a constant, we stick it in the
10320 <op> instruction. We don't handle constants larger than
10321 16 bits, because we have no way to load the upper 16 bits
10322 (actually, we could handle them for the subset of cases
10323 in which we are not using $at). */
10324 gas_assert (offset_expr.X_op == O_symbol);
10325 if (HAVE_NEWABI)
10326 {
10327 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10328 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10329 if (breg != 0)
10330 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10331 tempreg, tempreg, breg);
10332 macro_build (&offset_expr, s, fmt, treg,
10333 BFD_RELOC_MIPS_GOT_OFST, tempreg);
10334 break;
10335 }
10336 expr1.X_add_number = offset_expr.X_add_number;
10337 offset_expr.X_add_number = 0;
10338 if (expr1.X_add_number < -0x8000
10339 || expr1.X_add_number >= 0x8000)
10340 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
10341 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10342 lw_reloc_type, mips_gp_register);
10343 load_delay_nop ();
10344 relax_start (offset_expr.X_add_symbol);
10345 relax_switch ();
10346 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10347 tempreg, BFD_RELOC_LO16);
10348 relax_end ();
10349 if (breg != 0)
10350 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10351 tempreg, tempreg, breg);
10352 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
10353 }
10354 else if (mips_big_got && !HAVE_NEWABI)
10355 {
10356 int gpdelay;
10357
10358 /* If this is a reference to an external symbol, we want
10359 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10360 addu $tempreg,$tempreg,$gp
10361 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10362 <op> $treg,0($tempreg)
10363 Otherwise we want
10364 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10365 nop
10366 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10367 <op> $treg,0($tempreg)
10368 If there is a base register, we add it to $tempreg before
10369 the <op>. If there is a constant, we stick it in the
10370 <op> instruction. We don't handle constants larger than
10371 16 bits, because we have no way to load the upper 16 bits
10372 (actually, we could handle them for the subset of cases
10373 in which we are not using $at). */
10374 gas_assert (offset_expr.X_op == O_symbol);
10375 expr1.X_add_number = offset_expr.X_add_number;
10376 offset_expr.X_add_number = 0;
10377 if (expr1.X_add_number < -0x8000
10378 || expr1.X_add_number >= 0x8000)
10379 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
10380 gpdelay = reg_needs_delay (mips_gp_register);
10381 relax_start (offset_expr.X_add_symbol);
10382 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
10383 BFD_RELOC_MIPS_GOT_HI16);
10384 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
10385 mips_gp_register);
10386 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10387 BFD_RELOC_MIPS_GOT_LO16, tempreg);
10388 relax_switch ();
10389 if (gpdelay)
10390 macro_build (NULL, "nop", "");
10391 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10392 BFD_RELOC_MIPS_GOT16, mips_gp_register);
10393 load_delay_nop ();
10394 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10395 tempreg, BFD_RELOC_LO16);
10396 relax_end ();
10397
10398 if (breg != 0)
10399 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10400 tempreg, tempreg, breg);
10401 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
10402 }
10403 else if (mips_big_got && HAVE_NEWABI)
10404 {
10405 /* If this is a reference to an external symbol, we want
10406 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10407 add $tempreg,$tempreg,$gp
10408 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10409 <op> $treg,<ofst>($tempreg)
10410 Otherwise, for local symbols, we want:
10411 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10412 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
10413 gas_assert (offset_expr.X_op == O_symbol);
10414 expr1.X_add_number = offset_expr.X_add_number;
10415 offset_expr.X_add_number = 0;
10416 if (expr1.X_add_number < -0x8000
10417 || expr1.X_add_number >= 0x8000)
10418 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
10419 relax_start (offset_expr.X_add_symbol);
10420 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
10421 BFD_RELOC_MIPS_GOT_HI16);
10422 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
10423 mips_gp_register);
10424 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10425 BFD_RELOC_MIPS_GOT_LO16, tempreg);
10426 if (breg != 0)
10427 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10428 tempreg, tempreg, breg);
10429 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
10430
10431 relax_switch ();
10432 offset_expr.X_add_number = expr1.X_add_number;
10433 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10434 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10435 if (breg != 0)
10436 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10437 tempreg, tempreg, breg);
10438 macro_build (&offset_expr, s, fmt, treg,
10439 BFD_RELOC_MIPS_GOT_OFST, tempreg);
10440 relax_end ();
10441 }
10442 else
10443 abort ();
10444
10445 break;
10446
10447 case M_JRADDIUSP:
10448 gas_assert (mips_opts.micromips);
10449 gas_assert (mips_opts.insn32);
10450 start_noreorder ();
10451 macro_build (NULL, "jr", "s", RA);
10452 expr1.X_add_number = EXTRACT_OPERAND (1, IMMP, *ip) << 2;
10453 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
10454 end_noreorder ();
10455 break;
10456
10457 case M_JRC:
10458 gas_assert (mips_opts.micromips);
10459 gas_assert (mips_opts.insn32);
10460 macro_build (NULL, "jr", "s", sreg);
10461 if (mips_opts.noreorder)
10462 macro_build (NULL, "nop", "");
10463 break;
10464
10465 case M_LI:
10466 case M_LI_S:
10467 load_register (treg, &imm_expr, 0);
10468 break;
10469
10470 case M_DLI:
10471 load_register (treg, &imm_expr, 1);
10472 break;
10473
10474 case M_LI_SS:
10475 if (imm_expr.X_op == O_constant)
10476 {
10477 used_at = 1;
10478 load_register (AT, &imm_expr, 0);
10479 macro_build (NULL, "mtc1", "t,G", AT, treg);
10480 break;
10481 }
10482 else
10483 {
10484 gas_assert (offset_expr.X_op == O_symbol
10485 && strcmp (segment_name (S_GET_SEGMENT
10486 (offset_expr.X_add_symbol)),
10487 ".lit4") == 0
10488 && offset_expr.X_add_number == 0);
10489 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
10490 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
10491 break;
10492 }
10493
10494 case M_LI_D:
10495 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
10496 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
10497 order 32 bits of the value and the low order 32 bits are either
10498 zero or in OFFSET_EXPR. */
10499 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
10500 {
10501 if (HAVE_64BIT_GPRS)
10502 load_register (treg, &imm_expr, 1);
10503 else
10504 {
10505 int hreg, lreg;
10506
10507 if (target_big_endian)
10508 {
10509 hreg = treg;
10510 lreg = treg + 1;
10511 }
10512 else
10513 {
10514 hreg = treg + 1;
10515 lreg = treg;
10516 }
10517
10518 if (hreg <= 31)
10519 load_register (hreg, &imm_expr, 0);
10520 if (lreg <= 31)
10521 {
10522 if (offset_expr.X_op == O_absent)
10523 move_register (lreg, 0);
10524 else
10525 {
10526 gas_assert (offset_expr.X_op == O_constant);
10527 load_register (lreg, &offset_expr, 0);
10528 }
10529 }
10530 }
10531 break;
10532 }
10533
10534 /* We know that sym is in the .rdata section. First we get the
10535 upper 16 bits of the address. */
10536 if (mips_pic == NO_PIC)
10537 {
10538 macro_build_lui (&offset_expr, AT);
10539 used_at = 1;
10540 }
10541 else
10542 {
10543 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
10544 BFD_RELOC_MIPS_GOT16, mips_gp_register);
10545 used_at = 1;
10546 }
10547
10548 /* Now we load the register(s). */
10549 if (HAVE_64BIT_GPRS)
10550 {
10551 used_at = 1;
10552 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
10553 }
10554 else
10555 {
10556 used_at = 1;
10557 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
10558 if (treg != RA)
10559 {
10560 /* FIXME: How in the world do we deal with the possible
10561 overflow here? */
10562 offset_expr.X_add_number += 4;
10563 macro_build (&offset_expr, "lw", "t,o(b)",
10564 treg + 1, BFD_RELOC_LO16, AT);
10565 }
10566 }
10567 break;
10568
10569 case M_LI_DD:
10570 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
10571 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
10572 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
10573 the value and the low order 32 bits are either zero or in
10574 OFFSET_EXPR. */
10575 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
10576 {
10577 used_at = 1;
10578 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
10579 if (HAVE_64BIT_FPRS)
10580 {
10581 gas_assert (HAVE_64BIT_GPRS);
10582 macro_build (NULL, "dmtc1", "t,S", AT, treg);
10583 }
10584 else
10585 {
10586 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
10587 if (offset_expr.X_op == O_absent)
10588 macro_build (NULL, "mtc1", "t,G", 0, treg);
10589 else
10590 {
10591 gas_assert (offset_expr.X_op == O_constant);
10592 load_register (AT, &offset_expr, 0);
10593 macro_build (NULL, "mtc1", "t,G", AT, treg);
10594 }
10595 }
10596 break;
10597 }
10598
10599 gas_assert (offset_expr.X_op == O_symbol
10600 && offset_expr.X_add_number == 0);
10601 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
10602 if (strcmp (s, ".lit8") == 0)
10603 {
10604 breg = mips_gp_register;
10605 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
10606 offset_reloc[1] = BFD_RELOC_UNUSED;
10607 offset_reloc[2] = BFD_RELOC_UNUSED;
10608 }
10609 else
10610 {
10611 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
10612 used_at = 1;
10613 if (mips_pic != NO_PIC)
10614 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
10615 BFD_RELOC_MIPS_GOT16, mips_gp_register);
10616 else
10617 {
10618 /* FIXME: This won't work for a 64 bit address. */
10619 macro_build_lui (&offset_expr, AT);
10620 }
10621
10622 breg = AT;
10623 offset_reloc[0] = BFD_RELOC_LO16;
10624 offset_reloc[1] = BFD_RELOC_UNUSED;
10625 offset_reloc[2] = BFD_RELOC_UNUSED;
10626 }
10627 align = 8;
10628 /* Fall through */
10629
10630 case M_L_DAB:
10631 /*
10632 * The MIPS assembler seems to check for X_add_number not
10633 * being double aligned and generating:
10634 * lui at,%hi(foo+1)
10635 * addu at,at,v1
10636 * addiu at,at,%lo(foo+1)
10637 * lwc1 f2,0(at)
10638 * lwc1 f3,4(at)
10639 * But, the resulting address is the same after relocation so why
10640 * generate the extra instruction?
10641 */
10642 /* Itbl support may require additional care here. */
10643 coproc = 1;
10644 fmt = "T,o(b)";
10645 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
10646 {
10647 s = "ldc1";
10648 goto ld_st;
10649 }
10650 s = "lwc1";
10651 goto ldd_std;
10652
10653 case M_S_DAB:
10654 gas_assert (!mips_opts.micromips);
10655 /* Itbl support may require additional care here. */
10656 coproc = 1;
10657 fmt = "T,o(b)";
10658 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
10659 {
10660 s = "sdc1";
10661 goto ld_st;
10662 }
10663 s = "swc1";
10664 goto ldd_std;
10665
10666 case M_LQ_AB:
10667 fmt = "t,o(b)";
10668 s = "lq";
10669 goto ld;
10670
10671 case M_SQ_AB:
10672 fmt = "t,o(b)";
10673 s = "sq";
10674 goto ld_st;
10675
10676 case M_LD_AB:
10677 fmt = "t,o(b)";
10678 if (HAVE_64BIT_GPRS)
10679 {
10680 s = "ld";
10681 goto ld;
10682 }
10683 s = "lw";
10684 goto ldd_std;
10685
10686 case M_SD_AB:
10687 fmt = "t,o(b)";
10688 if (HAVE_64BIT_GPRS)
10689 {
10690 s = "sd";
10691 goto ld_st;
10692 }
10693 s = "sw";
10694
10695 ldd_std:
10696 /* Even on a big endian machine $fn comes before $fn+1. We have
10697 to adjust when loading from memory. We set coproc if we must
10698 load $fn+1 first. */
10699 /* Itbl support may require additional care here. */
10700 if (!target_big_endian)
10701 coproc = 0;
10702
10703 if (small_offset_p (0, align, 16))
10704 {
10705 ep = &offset_expr;
10706 if (!small_offset_p (4, align, 16))
10707 {
10708 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
10709 -1, offset_reloc[0], offset_reloc[1],
10710 offset_reloc[2]);
10711 expr1.X_add_number = 0;
10712 ep = &expr1;
10713 breg = AT;
10714 used_at = 1;
10715 offset_reloc[0] = BFD_RELOC_LO16;
10716 offset_reloc[1] = BFD_RELOC_UNUSED;
10717 offset_reloc[2] = BFD_RELOC_UNUSED;
10718 }
10719 if (strcmp (s, "lw") == 0 && treg == breg)
10720 {
10721 ep->X_add_number += 4;
10722 macro_build (ep, s, fmt, treg + 1, -1, offset_reloc[0],
10723 offset_reloc[1], offset_reloc[2], breg);
10724 ep->X_add_number -= 4;
10725 macro_build (ep, s, fmt, treg, -1, offset_reloc[0],
10726 offset_reloc[1], offset_reloc[2], breg);
10727 }
10728 else
10729 {
10730 macro_build (ep, s, fmt, coproc ? treg + 1 : treg, -1,
10731 offset_reloc[0], offset_reloc[1], offset_reloc[2],
10732 breg);
10733 ep->X_add_number += 4;
10734 macro_build (ep, s, fmt, coproc ? treg : treg + 1, -1,
10735 offset_reloc[0], offset_reloc[1], offset_reloc[2],
10736 breg);
10737 }
10738 break;
10739 }
10740
10741 if (offset_expr.X_op != O_symbol
10742 && offset_expr.X_op != O_constant)
10743 {
10744 as_bad (_("Expression too complex"));
10745 offset_expr.X_op = O_constant;
10746 }
10747
10748 if (HAVE_32BIT_ADDRESSES
10749 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10750 {
10751 char value [32];
10752
10753 sprintf_vma (value, offset_expr.X_add_number);
10754 as_bad (_("Number (0x%s) larger than 32 bits"), value);
10755 }
10756
10757 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
10758 {
10759 /* If this is a reference to a GP relative symbol, we want
10760 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
10761 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
10762 If we have a base register, we use this
10763 addu $at,$breg,$gp
10764 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
10765 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
10766 If this is not a GP relative symbol, we want
10767 lui $at,<sym> (BFD_RELOC_HI16_S)
10768 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
10769 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
10770 If there is a base register, we add it to $at after the
10771 lui instruction. If there is a constant, we always use
10772 the last case. */
10773 if (offset_expr.X_op == O_symbol
10774 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10775 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10776 {
10777 relax_start (offset_expr.X_add_symbol);
10778 if (breg == 0)
10779 {
10780 tempreg = mips_gp_register;
10781 }
10782 else
10783 {
10784 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10785 AT, breg, mips_gp_register);
10786 tempreg = AT;
10787 used_at = 1;
10788 }
10789
10790 /* Itbl support may require additional care here. */
10791 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
10792 BFD_RELOC_GPREL16, tempreg);
10793 offset_expr.X_add_number += 4;
10794
10795 /* Set mips_optimize to 2 to avoid inserting an
10796 undesired nop. */
10797 hold_mips_optimize = mips_optimize;
10798 mips_optimize = 2;
10799 /* Itbl support may require additional care here. */
10800 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
10801 BFD_RELOC_GPREL16, tempreg);
10802 mips_optimize = hold_mips_optimize;
10803
10804 relax_switch ();
10805
10806 offset_expr.X_add_number -= 4;
10807 }
10808 used_at = 1;
10809 if (offset_high_part (offset_expr.X_add_number, 16)
10810 != offset_high_part (offset_expr.X_add_number + 4, 16))
10811 {
10812 load_address (AT, &offset_expr, &used_at);
10813 offset_expr.X_op = O_constant;
10814 offset_expr.X_add_number = 0;
10815 }
10816 else
10817 macro_build_lui (&offset_expr, AT);
10818 if (breg != 0)
10819 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
10820 /* Itbl support may require additional care here. */
10821 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
10822 BFD_RELOC_LO16, AT);
10823 /* FIXME: How do we handle overflow here? */
10824 offset_expr.X_add_number += 4;
10825 /* Itbl support may require additional care here. */
10826 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
10827 BFD_RELOC_LO16, AT);
10828 if (mips_relax.sequence)
10829 relax_end ();
10830 }
10831 else if (!mips_big_got)
10832 {
10833 /* If this is a reference to an external symbol, we want
10834 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10835 nop
10836 <op> $treg,0($at)
10837 <op> $treg+1,4($at)
10838 Otherwise we want
10839 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10840 nop
10841 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
10842 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
10843 If there is a base register we add it to $at before the
10844 lwc1 instructions. If there is a constant we include it
10845 in the lwc1 instructions. */
10846 used_at = 1;
10847 expr1.X_add_number = offset_expr.X_add_number;
10848 if (expr1.X_add_number < -0x8000
10849 || expr1.X_add_number >= 0x8000 - 4)
10850 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
10851 load_got_offset (AT, &offset_expr);
10852 load_delay_nop ();
10853 if (breg != 0)
10854 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
10855
10856 /* Set mips_optimize to 2 to avoid inserting an undesired
10857 nop. */
10858 hold_mips_optimize = mips_optimize;
10859 mips_optimize = 2;
10860
10861 /* Itbl support may require additional care here. */
10862 relax_start (offset_expr.X_add_symbol);
10863 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
10864 BFD_RELOC_LO16, AT);
10865 expr1.X_add_number += 4;
10866 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
10867 BFD_RELOC_LO16, AT);
10868 relax_switch ();
10869 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
10870 BFD_RELOC_LO16, AT);
10871 offset_expr.X_add_number += 4;
10872 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
10873 BFD_RELOC_LO16, AT);
10874 relax_end ();
10875
10876 mips_optimize = hold_mips_optimize;
10877 }
10878 else if (mips_big_got)
10879 {
10880 int gpdelay;
10881
10882 /* If this is a reference to an external symbol, we want
10883 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10884 addu $at,$at,$gp
10885 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
10886 nop
10887 <op> $treg,0($at)
10888 <op> $treg+1,4($at)
10889 Otherwise we want
10890 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10891 nop
10892 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
10893 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
10894 If there is a base register we add it to $at before the
10895 lwc1 instructions. If there is a constant we include it
10896 in the lwc1 instructions. */
10897 used_at = 1;
10898 expr1.X_add_number = offset_expr.X_add_number;
10899 offset_expr.X_add_number = 0;
10900 if (expr1.X_add_number < -0x8000
10901 || expr1.X_add_number >= 0x8000 - 4)
10902 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
10903 gpdelay = reg_needs_delay (mips_gp_register);
10904 relax_start (offset_expr.X_add_symbol);
10905 macro_build (&offset_expr, "lui", LUI_FMT,
10906 AT, BFD_RELOC_MIPS_GOT_HI16);
10907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10908 AT, AT, mips_gp_register);
10909 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10910 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
10911 load_delay_nop ();
10912 if (breg != 0)
10913 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
10914 /* Itbl support may require additional care here. */
10915 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
10916 BFD_RELOC_LO16, AT);
10917 expr1.X_add_number += 4;
10918
10919 /* Set mips_optimize to 2 to avoid inserting an undesired
10920 nop. */
10921 hold_mips_optimize = mips_optimize;
10922 mips_optimize = 2;
10923 /* Itbl support may require additional care here. */
10924 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
10925 BFD_RELOC_LO16, AT);
10926 mips_optimize = hold_mips_optimize;
10927 expr1.X_add_number -= 4;
10928
10929 relax_switch ();
10930 offset_expr.X_add_number = expr1.X_add_number;
10931 if (gpdelay)
10932 macro_build (NULL, "nop", "");
10933 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
10934 BFD_RELOC_MIPS_GOT16, mips_gp_register);
10935 load_delay_nop ();
10936 if (breg != 0)
10937 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
10938 /* Itbl support may require additional care here. */
10939 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
10940 BFD_RELOC_LO16, AT);
10941 offset_expr.X_add_number += 4;
10942
10943 /* Set mips_optimize to 2 to avoid inserting an undesired
10944 nop. */
10945 hold_mips_optimize = mips_optimize;
10946 mips_optimize = 2;
10947 /* Itbl support may require additional care here. */
10948 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
10949 BFD_RELOC_LO16, AT);
10950 mips_optimize = hold_mips_optimize;
10951 relax_end ();
10952 }
10953 else
10954 abort ();
10955
10956 break;
10957
10958 case M_SAA_AB:
10959 s = "saa";
10960 offbits = 0;
10961 fmt = "t,(b)";
10962 goto ld_st;
10963 case M_SAAD_AB:
10964 s = "saad";
10965 offbits = 0;
10966 fmt = "t,(b)";
10967 goto ld_st;
10968
10969 /* New code added to support COPZ instructions.
10970 This code builds table entries out of the macros in mip_opcodes.
10971 R4000 uses interlocks to handle coproc delays.
10972 Other chips (like the R3000) require nops to be inserted for delays.
10973
10974 FIXME: Currently, we require that the user handle delays.
10975 In order to fill delay slots for non-interlocked chips,
10976 we must have a way to specify delays based on the coprocessor.
10977 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
10978 What are the side-effects of the cop instruction?
10979 What cache support might we have and what are its effects?
10980 Both coprocessor & memory require delays. how long???
10981 What registers are read/set/modified?
10982
10983 If an itbl is provided to interpret cop instructions,
10984 this knowledge can be encoded in the itbl spec. */
10985
10986 case M_COP0:
10987 s = "c0";
10988 goto copz;
10989 case M_COP1:
10990 s = "c1";
10991 goto copz;
10992 case M_COP2:
10993 s = "c2";
10994 goto copz;
10995 case M_COP3:
10996 s = "c3";
10997 copz:
10998 gas_assert (!mips_opts.micromips);
10999 /* For now we just do C (same as Cz). The parameter will be
11000 stored in insn_opcode by mips_ip. */
11001 macro_build (NULL, s, "C", (int) ip->insn_opcode);
11002 break;
11003
11004 case M_MOVE:
11005 move_register (dreg, sreg);
11006 break;
11007
11008 case M_MOVEP:
11009 gas_assert (mips_opts.micromips);
11010 gas_assert (mips_opts.insn32);
11011 dreg = micromips_to_32_reg_h_map1[EXTRACT_OPERAND (1, MH, *ip)];
11012 breg = micromips_to_32_reg_h_map2[EXTRACT_OPERAND (1, MH, *ip)];
11013 sreg = micromips_to_32_reg_m_map[EXTRACT_OPERAND (1, MM, *ip)];
11014 treg = micromips_to_32_reg_n_map[EXTRACT_OPERAND (1, MN, *ip)];
11015 move_register (dreg, sreg);
11016 move_register (breg, treg);
11017 break;
11018
11019 case M_DMUL:
11020 dbl = 1;
11021 case M_MUL:
11022 if (mips_opts.arch == CPU_R5900)
11023 {
11024 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", dreg, sreg, treg);
11025 }
11026 else
11027 {
11028 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
11029 macro_build (NULL, "mflo", MFHL_FMT, dreg);
11030 }
11031 break;
11032
11033 case M_DMUL_I:
11034 dbl = 1;
11035 case M_MUL_I:
11036 /* The MIPS assembler some times generates shifts and adds. I'm
11037 not trying to be that fancy. GCC should do this for us
11038 anyway. */
11039 used_at = 1;
11040 load_register (AT, &imm_expr, dbl);
11041 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
11042 macro_build (NULL, "mflo", MFHL_FMT, dreg);
11043 break;
11044
11045 case M_DMULO_I:
11046 dbl = 1;
11047 case M_MULO_I:
11048 imm = 1;
11049 goto do_mulo;
11050
11051 case M_DMULO:
11052 dbl = 1;
11053 case M_MULO:
11054 do_mulo:
11055 start_noreorder ();
11056 used_at = 1;
11057 if (imm)
11058 load_register (AT, &imm_expr, dbl);
11059 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
11060 macro_build (NULL, "mflo", MFHL_FMT, dreg);
11061 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, dreg, dreg, RA);
11062 macro_build (NULL, "mfhi", MFHL_FMT, AT);
11063 if (mips_trap)
11064 macro_build (NULL, "tne", TRAP_FMT, dreg, AT, 6);
11065 else
11066 {
11067 if (mips_opts.micromips)
11068 micromips_label_expr (&label_expr);
11069 else
11070 label_expr.X_add_number = 8;
11071 macro_build (&label_expr, "beq", "s,t,p", dreg, AT);
11072 macro_build (NULL, "nop", "");
11073 macro_build (NULL, "break", BRK_FMT, 6);
11074 if (mips_opts.micromips)
11075 micromips_add_label ();
11076 }
11077 end_noreorder ();
11078 macro_build (NULL, "mflo", MFHL_FMT, dreg);
11079 break;
11080
11081 case M_DMULOU_I:
11082 dbl = 1;
11083 case M_MULOU_I:
11084 imm = 1;
11085 goto do_mulou;
11086
11087 case M_DMULOU:
11088 dbl = 1;
11089 case M_MULOU:
11090 do_mulou:
11091 start_noreorder ();
11092 used_at = 1;
11093 if (imm)
11094 load_register (AT, &imm_expr, dbl);
11095 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
11096 sreg, imm ? AT : treg);
11097 macro_build (NULL, "mfhi", MFHL_FMT, AT);
11098 macro_build (NULL, "mflo", MFHL_FMT, dreg);
11099 if (mips_trap)
11100 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
11101 else
11102 {
11103 if (mips_opts.micromips)
11104 micromips_label_expr (&label_expr);
11105 else
11106 label_expr.X_add_number = 8;
11107 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
11108 macro_build (NULL, "nop", "");
11109 macro_build (NULL, "break", BRK_FMT, 6);
11110 if (mips_opts.micromips)
11111 micromips_add_label ();
11112 }
11113 end_noreorder ();
11114 break;
11115
11116 case M_DROL:
11117 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
11118 {
11119 if (dreg == sreg)
11120 {
11121 tempreg = AT;
11122 used_at = 1;
11123 }
11124 else
11125 {
11126 tempreg = dreg;
11127 }
11128 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
11129 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
11130 break;
11131 }
11132 used_at = 1;
11133 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
11134 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
11135 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
11136 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
11137 break;
11138
11139 case M_ROL:
11140 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
11141 {
11142 if (dreg == sreg)
11143 {
11144 tempreg = AT;
11145 used_at = 1;
11146 }
11147 else
11148 {
11149 tempreg = dreg;
11150 }
11151 macro_build (NULL, "negu", "d,w", tempreg, treg);
11152 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
11153 break;
11154 }
11155 used_at = 1;
11156 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
11157 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
11158 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
11159 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
11160 break;
11161
11162 case M_DROL_I:
11163 {
11164 unsigned int rot;
11165 char *l;
11166 char *rr;
11167
11168 if (imm_expr.X_op != O_constant)
11169 as_bad (_("Improper rotate count"));
11170 rot = imm_expr.X_add_number & 0x3f;
11171 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
11172 {
11173 rot = (64 - rot) & 0x3f;
11174 if (rot >= 32)
11175 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
11176 else
11177 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
11178 break;
11179 }
11180 if (rot == 0)
11181 {
11182 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
11183 break;
11184 }
11185 l = (rot < 0x20) ? "dsll" : "dsll32";
11186 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
11187 rot &= 0x1f;
11188 used_at = 1;
11189 macro_build (NULL, l, SHFT_FMT, AT, sreg, rot);
11190 macro_build (NULL, rr, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
11191 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
11192 }
11193 break;
11194
11195 case M_ROL_I:
11196 {
11197 unsigned int rot;
11198
11199 if (imm_expr.X_op != O_constant)
11200 as_bad (_("Improper rotate count"));
11201 rot = imm_expr.X_add_number & 0x1f;
11202 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
11203 {
11204 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, (32 - rot) & 0x1f);
11205 break;
11206 }
11207 if (rot == 0)
11208 {
11209 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
11210 break;
11211 }
11212 used_at = 1;
11213 macro_build (NULL, "sll", SHFT_FMT, AT, sreg, rot);
11214 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
11215 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
11216 }
11217 break;
11218
11219 case M_DROR:
11220 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
11221 {
11222 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
11223 break;
11224 }
11225 used_at = 1;
11226 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
11227 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
11228 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
11229 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
11230 break;
11231
11232 case M_ROR:
11233 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
11234 {
11235 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
11236 break;
11237 }
11238 used_at = 1;
11239 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
11240 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
11241 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
11242 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
11243 break;
11244
11245 case M_DROR_I:
11246 {
11247 unsigned int rot;
11248 char *l;
11249 char *rr;
11250
11251 if (imm_expr.X_op != O_constant)
11252 as_bad (_("Improper rotate count"));
11253 rot = imm_expr.X_add_number & 0x3f;
11254 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
11255 {
11256 if (rot >= 32)
11257 macro_build (NULL, "dror32", SHFT_FMT, dreg, sreg, rot - 32);
11258 else
11259 macro_build (NULL, "dror", SHFT_FMT, dreg, sreg, rot);
11260 break;
11261 }
11262 if (rot == 0)
11263 {
11264 macro_build (NULL, "dsrl", SHFT_FMT, dreg, sreg, 0);
11265 break;
11266 }
11267 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
11268 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
11269 rot &= 0x1f;
11270 used_at = 1;
11271 macro_build (NULL, rr, SHFT_FMT, AT, sreg, rot);
11272 macro_build (NULL, l, SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
11273 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
11274 }
11275 break;
11276
11277 case M_ROR_I:
11278 {
11279 unsigned int rot;
11280
11281 if (imm_expr.X_op != O_constant)
11282 as_bad (_("Improper rotate count"));
11283 rot = imm_expr.X_add_number & 0x1f;
11284 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
11285 {
11286 macro_build (NULL, "ror", SHFT_FMT, dreg, sreg, rot);
11287 break;
11288 }
11289 if (rot == 0)
11290 {
11291 macro_build (NULL, "srl", SHFT_FMT, dreg, sreg, 0);
11292 break;
11293 }
11294 used_at = 1;
11295 macro_build (NULL, "srl", SHFT_FMT, AT, sreg, rot);
11296 macro_build (NULL, "sll", SHFT_FMT, dreg, sreg, (0x20 - rot) & 0x1f);
11297 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
11298 }
11299 break;
11300
11301 case M_SEQ:
11302 if (sreg == 0)
11303 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
11304 else if (treg == 0)
11305 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
11306 else
11307 {
11308 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
11309 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
11310 }
11311 break;
11312
11313 case M_SEQ_I:
11314 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
11315 {
11316 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
11317 break;
11318 }
11319 if (sreg == 0)
11320 {
11321 as_warn (_("Instruction %s: result is always false"),
11322 ip->insn_mo->name);
11323 move_register (dreg, 0);
11324 break;
11325 }
11326 if (CPU_HAS_SEQ (mips_opts.arch)
11327 && -512 <= imm_expr.X_add_number
11328 && imm_expr.X_add_number < 512)
11329 {
11330 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
11331 (int) imm_expr.X_add_number);
11332 break;
11333 }
11334 if (imm_expr.X_op == O_constant
11335 && imm_expr.X_add_number >= 0
11336 && imm_expr.X_add_number < 0x10000)
11337 {
11338 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
11339 }
11340 else if (imm_expr.X_op == O_constant
11341 && imm_expr.X_add_number > -0x8000
11342 && imm_expr.X_add_number < 0)
11343 {
11344 imm_expr.X_add_number = -imm_expr.X_add_number;
11345 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
11346 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
11347 }
11348 else if (CPU_HAS_SEQ (mips_opts.arch))
11349 {
11350 used_at = 1;
11351 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11352 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
11353 break;
11354 }
11355 else
11356 {
11357 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11358 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
11359 used_at = 1;
11360 }
11361 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
11362 break;
11363
11364 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
11365 s = "slt";
11366 goto sge;
11367 case M_SGEU:
11368 s = "sltu";
11369 sge:
11370 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
11371 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
11372 break;
11373
11374 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
11375 case M_SGEU_I:
11376 if (imm_expr.X_op == O_constant
11377 && imm_expr.X_add_number >= -0x8000
11378 && imm_expr.X_add_number < 0x8000)
11379 {
11380 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
11381 dreg, sreg, BFD_RELOC_LO16);
11382 }
11383 else
11384 {
11385 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11386 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
11387 dreg, sreg, AT);
11388 used_at = 1;
11389 }
11390 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
11391 break;
11392
11393 case M_SGT: /* sreg > treg <==> treg < sreg */
11394 s = "slt";
11395 goto sgt;
11396 case M_SGTU:
11397 s = "sltu";
11398 sgt:
11399 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
11400 break;
11401
11402 case M_SGT_I: /* sreg > I <==> I < sreg */
11403 s = "slt";
11404 goto sgti;
11405 case M_SGTU_I:
11406 s = "sltu";
11407 sgti:
11408 used_at = 1;
11409 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11410 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
11411 break;
11412
11413 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
11414 s = "slt";
11415 goto sle;
11416 case M_SLEU:
11417 s = "sltu";
11418 sle:
11419 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
11420 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
11421 break;
11422
11423 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
11424 s = "slt";
11425 goto slei;
11426 case M_SLEU_I:
11427 s = "sltu";
11428 slei:
11429 used_at = 1;
11430 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11431 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
11432 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
11433 break;
11434
11435 case M_SLT_I:
11436 if (imm_expr.X_op == O_constant
11437 && imm_expr.X_add_number >= -0x8000
11438 && imm_expr.X_add_number < 0x8000)
11439 {
11440 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
11441 break;
11442 }
11443 used_at = 1;
11444 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11445 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
11446 break;
11447
11448 case M_SLTU_I:
11449 if (imm_expr.X_op == O_constant
11450 && imm_expr.X_add_number >= -0x8000
11451 && imm_expr.X_add_number < 0x8000)
11452 {
11453 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
11454 BFD_RELOC_LO16);
11455 break;
11456 }
11457 used_at = 1;
11458 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11459 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
11460 break;
11461
11462 case M_SNE:
11463 if (sreg == 0)
11464 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
11465 else if (treg == 0)
11466 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
11467 else
11468 {
11469 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
11470 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
11471 }
11472 break;
11473
11474 case M_SNE_I:
11475 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
11476 {
11477 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
11478 break;
11479 }
11480 if (sreg == 0)
11481 {
11482 as_warn (_("Instruction %s: result is always true"),
11483 ip->insn_mo->name);
11484 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
11485 dreg, 0, BFD_RELOC_LO16);
11486 break;
11487 }
11488 if (CPU_HAS_SEQ (mips_opts.arch)
11489 && -512 <= imm_expr.X_add_number
11490 && imm_expr.X_add_number < 512)
11491 {
11492 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
11493 (int) imm_expr.X_add_number);
11494 break;
11495 }
11496 if (imm_expr.X_op == O_constant
11497 && imm_expr.X_add_number >= 0
11498 && imm_expr.X_add_number < 0x10000)
11499 {
11500 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
11501 }
11502 else if (imm_expr.X_op == O_constant
11503 && imm_expr.X_add_number > -0x8000
11504 && imm_expr.X_add_number < 0)
11505 {
11506 imm_expr.X_add_number = -imm_expr.X_add_number;
11507 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
11508 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
11509 }
11510 else if (CPU_HAS_SEQ (mips_opts.arch))
11511 {
11512 used_at = 1;
11513 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11514 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
11515 break;
11516 }
11517 else
11518 {
11519 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11520 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
11521 used_at = 1;
11522 }
11523 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
11524 break;
11525
11526 case M_SUB_I:
11527 s = "addi";
11528 s2 = "sub";
11529 goto do_subi;
11530 case M_SUBU_I:
11531 s = "addiu";
11532 s2 = "subu";
11533 goto do_subi;
11534 case M_DSUB_I:
11535 dbl = 1;
11536 s = "daddi";
11537 s2 = "dsub";
11538 if (!mips_opts.micromips)
11539 goto do_subi;
11540 if (imm_expr.X_op == O_constant
11541 && imm_expr.X_add_number > -0x200
11542 && imm_expr.X_add_number <= 0x200)
11543 {
11544 macro_build (NULL, s, "t,r,.", dreg, sreg, -imm_expr.X_add_number);
11545 break;
11546 }
11547 goto do_subi_i;
11548 case M_DSUBU_I:
11549 dbl = 1;
11550 s = "daddiu";
11551 s2 = "dsubu";
11552 do_subi:
11553 if (imm_expr.X_op == O_constant
11554 && imm_expr.X_add_number > -0x8000
11555 && imm_expr.X_add_number <= 0x8000)
11556 {
11557 imm_expr.X_add_number = -imm_expr.X_add_number;
11558 macro_build (&imm_expr, s, "t,r,j", dreg, sreg, BFD_RELOC_LO16);
11559 break;
11560 }
11561 do_subi_i:
11562 used_at = 1;
11563 load_register (AT, &imm_expr, dbl);
11564 macro_build (NULL, s2, "d,v,t", dreg, sreg, AT);
11565 break;
11566
11567 case M_TEQ_I:
11568 s = "teq";
11569 goto trap;
11570 case M_TGE_I:
11571 s = "tge";
11572 goto trap;
11573 case M_TGEU_I:
11574 s = "tgeu";
11575 goto trap;
11576 case M_TLT_I:
11577 s = "tlt";
11578 goto trap;
11579 case M_TLTU_I:
11580 s = "tltu";
11581 goto trap;
11582 case M_TNE_I:
11583 s = "tne";
11584 trap:
11585 used_at = 1;
11586 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
11587 macro_build (NULL, s, "s,t", sreg, AT);
11588 break;
11589
11590 case M_TRUNCWS:
11591 case M_TRUNCWD:
11592 gas_assert (!mips_opts.micromips);
11593 gas_assert (mips_opts.isa == ISA_MIPS1);
11594 used_at = 1;
11595 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
11596 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
11597
11598 /*
11599 * Is the double cfc1 instruction a bug in the mips assembler;
11600 * or is there a reason for it?
11601 */
11602 start_noreorder ();
11603 macro_build (NULL, "cfc1", "t,G", treg, RA);
11604 macro_build (NULL, "cfc1", "t,G", treg, RA);
11605 macro_build (NULL, "nop", "");
11606 expr1.X_add_number = 3;
11607 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
11608 expr1.X_add_number = 2;
11609 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
11610 macro_build (NULL, "ctc1", "t,G", AT, RA);
11611 macro_build (NULL, "nop", "");
11612 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
11613 dreg, sreg);
11614 macro_build (NULL, "ctc1", "t,G", treg, RA);
11615 macro_build (NULL, "nop", "");
11616 end_noreorder ();
11617 break;
11618
11619 case M_ULH_AB:
11620 s = "lb";
11621 s2 = "lbu";
11622 off = 1;
11623 goto uld_st;
11624 case M_ULHU_AB:
11625 s = "lbu";
11626 s2 = "lbu";
11627 off = 1;
11628 goto uld_st;
11629 case M_ULW_AB:
11630 s = "lwl";
11631 s2 = "lwr";
11632 offbits = (mips_opts.micromips ? 12 : 16);
11633 off = 3;
11634 goto uld_st;
11635 case M_ULD_AB:
11636 s = "ldl";
11637 s2 = "ldr";
11638 offbits = (mips_opts.micromips ? 12 : 16);
11639 off = 7;
11640 goto uld_st;
11641 case M_USH_AB:
11642 s = "sb";
11643 s2 = "sb";
11644 off = 1;
11645 ust = 1;
11646 goto uld_st;
11647 case M_USW_AB:
11648 s = "swl";
11649 s2 = "swr";
11650 offbits = (mips_opts.micromips ? 12 : 16);
11651 off = 3;
11652 ust = 1;
11653 goto uld_st;
11654 case M_USD_AB:
11655 s = "sdl";
11656 s2 = "sdr";
11657 offbits = (mips_opts.micromips ? 12 : 16);
11658 off = 7;
11659 ust = 1;
11660
11661 uld_st:
11662 large_offset = !small_offset_p (off, align, offbits);
11663 ep = &offset_expr;
11664 expr1.X_add_number = 0;
11665 if (large_offset)
11666 {
11667 used_at = 1;
11668 tempreg = AT;
11669 if (small_offset_p (0, align, 16))
11670 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
11671 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
11672 else
11673 {
11674 load_address (tempreg, ep, &used_at);
11675 if (breg != 0)
11676 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11677 tempreg, tempreg, breg);
11678 }
11679 offset_reloc[0] = BFD_RELOC_LO16;
11680 offset_reloc[1] = BFD_RELOC_UNUSED;
11681 offset_reloc[2] = BFD_RELOC_UNUSED;
11682 breg = tempreg;
11683 tempreg = treg;
11684 ep = &expr1;
11685 }
11686 else if (!ust && treg == breg)
11687 {
11688 used_at = 1;
11689 tempreg = AT;
11690 }
11691 else
11692 tempreg = treg;
11693
11694 if (off == 1)
11695 goto ulh_sh;
11696
11697 if (!target_big_endian)
11698 ep->X_add_number += off;
11699 if (offbits == 12)
11700 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
11701 else
11702 macro_build (ep, s, "t,o(b)", tempreg, -1,
11703 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
11704
11705 if (!target_big_endian)
11706 ep->X_add_number -= off;
11707 else
11708 ep->X_add_number += off;
11709 if (offbits == 12)
11710 macro_build (NULL, s2, "t,~(b)",
11711 tempreg, (int) ep->X_add_number, breg);
11712 else
11713 macro_build (ep, s2, "t,o(b)", tempreg, -1,
11714 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
11715
11716 /* If necessary, move the result in tempreg to the final destination. */
11717 if (!ust && treg != tempreg)
11718 {
11719 /* Protect second load's delay slot. */
11720 load_delay_nop ();
11721 move_register (treg, tempreg);
11722 }
11723 break;
11724
11725 ulh_sh:
11726 used_at = 1;
11727 if (target_big_endian == ust)
11728 ep->X_add_number += off;
11729 tempreg = ust || large_offset ? treg : AT;
11730 macro_build (ep, s, "t,o(b)", tempreg, -1,
11731 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
11732
11733 /* For halfword transfers we need a temporary register to shuffle
11734 bytes. Unfortunately for M_USH_A we have none available before
11735 the next store as AT holds the base address. We deal with this
11736 case by clobbering TREG and then restoring it as with ULH. */
11737 tempreg = ust == large_offset ? treg : AT;
11738 if (ust)
11739 macro_build (NULL, "srl", SHFT_FMT, tempreg, treg, 8);
11740
11741 if (target_big_endian == ust)
11742 ep->X_add_number -= off;
11743 else
11744 ep->X_add_number += off;
11745 macro_build (ep, s2, "t,o(b)", tempreg, -1,
11746 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
11747
11748 /* For M_USH_A re-retrieve the LSB. */
11749 if (ust && large_offset)
11750 {
11751 if (target_big_endian)
11752 ep->X_add_number += off;
11753 else
11754 ep->X_add_number -= off;
11755 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
11756 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
11757 }
11758 /* For ULH and M_USH_A OR the LSB in. */
11759 if (!ust || large_offset)
11760 {
11761 tempreg = !large_offset ? AT : treg;
11762 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
11763 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
11764 }
11765 break;
11766
11767 default:
11768 /* FIXME: Check if this is one of the itbl macros, since they
11769 are added dynamically. */
11770 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
11771 break;
11772 }
11773 if (!mips_opts.at && used_at)
11774 as_bad (_("Macro used $at after \".set noat\""));
11775 }
11776
11777 /* Implement macros in mips16 mode. */
11778
11779 static void
11780 mips16_macro (struct mips_cl_insn *ip)
11781 {
11782 int mask;
11783 int xreg, yreg, zreg, tmp;
11784 expressionS expr1;
11785 int dbl;
11786 const char *s, *s2, *s3;
11787
11788 mask = ip->insn_mo->mask;
11789
11790 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
11791 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
11792 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
11793
11794 expr1.X_op = O_constant;
11795 expr1.X_op_symbol = NULL;
11796 expr1.X_add_symbol = NULL;
11797 expr1.X_add_number = 1;
11798
11799 dbl = 0;
11800
11801 switch (mask)
11802 {
11803 default:
11804 abort ();
11805
11806 case M_DDIV_3:
11807 dbl = 1;
11808 case M_DIV_3:
11809 s = "mflo";
11810 goto do_div3;
11811 case M_DREM_3:
11812 dbl = 1;
11813 case M_REM_3:
11814 s = "mfhi";
11815 do_div3:
11816 start_noreorder ();
11817 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
11818 expr1.X_add_number = 2;
11819 macro_build (&expr1, "bnez", "x,p", yreg);
11820 macro_build (NULL, "break", "6", 7);
11821
11822 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
11823 since that causes an overflow. We should do that as well,
11824 but I don't see how to do the comparisons without a temporary
11825 register. */
11826 end_noreorder ();
11827 macro_build (NULL, s, "x", zreg);
11828 break;
11829
11830 case M_DIVU_3:
11831 s = "divu";
11832 s2 = "mflo";
11833 goto do_divu3;
11834 case M_REMU_3:
11835 s = "divu";
11836 s2 = "mfhi";
11837 goto do_divu3;
11838 case M_DDIVU_3:
11839 s = "ddivu";
11840 s2 = "mflo";
11841 goto do_divu3;
11842 case M_DREMU_3:
11843 s = "ddivu";
11844 s2 = "mfhi";
11845 do_divu3:
11846 start_noreorder ();
11847 macro_build (NULL, s, "0,x,y", xreg, yreg);
11848 expr1.X_add_number = 2;
11849 macro_build (&expr1, "bnez", "x,p", yreg);
11850 macro_build (NULL, "break", "6", 7);
11851 end_noreorder ();
11852 macro_build (NULL, s2, "x", zreg);
11853 break;
11854
11855 case M_DMUL:
11856 dbl = 1;
11857 case M_MUL:
11858 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
11859 macro_build (NULL, "mflo", "x", zreg);
11860 break;
11861
11862 case M_DSUBU_I:
11863 dbl = 1;
11864 goto do_subu;
11865 case M_SUBU_I:
11866 do_subu:
11867 if (imm_expr.X_op != O_constant)
11868 as_bad (_("Unsupported large constant"));
11869 imm_expr.X_add_number = -imm_expr.X_add_number;
11870 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
11871 break;
11872
11873 case M_SUBU_I_2:
11874 if (imm_expr.X_op != O_constant)
11875 as_bad (_("Unsupported large constant"));
11876 imm_expr.X_add_number = -imm_expr.X_add_number;
11877 macro_build (&imm_expr, "addiu", "x,k", xreg);
11878 break;
11879
11880 case M_DSUBU_I_2:
11881 if (imm_expr.X_op != O_constant)
11882 as_bad (_("Unsupported large constant"));
11883 imm_expr.X_add_number = -imm_expr.X_add_number;
11884 macro_build (&imm_expr, "daddiu", "y,j", yreg);
11885 break;
11886
11887 case M_BEQ:
11888 s = "cmp";
11889 s2 = "bteqz";
11890 goto do_branch;
11891 case M_BNE:
11892 s = "cmp";
11893 s2 = "btnez";
11894 goto do_branch;
11895 case M_BLT:
11896 s = "slt";
11897 s2 = "btnez";
11898 goto do_branch;
11899 case M_BLTU:
11900 s = "sltu";
11901 s2 = "btnez";
11902 goto do_branch;
11903 case M_BLE:
11904 s = "slt";
11905 s2 = "bteqz";
11906 goto do_reverse_branch;
11907 case M_BLEU:
11908 s = "sltu";
11909 s2 = "bteqz";
11910 goto do_reverse_branch;
11911 case M_BGE:
11912 s = "slt";
11913 s2 = "bteqz";
11914 goto do_branch;
11915 case M_BGEU:
11916 s = "sltu";
11917 s2 = "bteqz";
11918 goto do_branch;
11919 case M_BGT:
11920 s = "slt";
11921 s2 = "btnez";
11922 goto do_reverse_branch;
11923 case M_BGTU:
11924 s = "sltu";
11925 s2 = "btnez";
11926
11927 do_reverse_branch:
11928 tmp = xreg;
11929 xreg = yreg;
11930 yreg = tmp;
11931
11932 do_branch:
11933 macro_build (NULL, s, "x,y", xreg, yreg);
11934 macro_build (&offset_expr, s2, "p");
11935 break;
11936
11937 case M_BEQ_I:
11938 s = "cmpi";
11939 s2 = "bteqz";
11940 s3 = "x,U";
11941 goto do_branch_i;
11942 case M_BNE_I:
11943 s = "cmpi";
11944 s2 = "btnez";
11945 s3 = "x,U";
11946 goto do_branch_i;
11947 case M_BLT_I:
11948 s = "slti";
11949 s2 = "btnez";
11950 s3 = "x,8";
11951 goto do_branch_i;
11952 case M_BLTU_I:
11953 s = "sltiu";
11954 s2 = "btnez";
11955 s3 = "x,8";
11956 goto do_branch_i;
11957 case M_BLE_I:
11958 s = "slti";
11959 s2 = "btnez";
11960 s3 = "x,8";
11961 goto do_addone_branch_i;
11962 case M_BLEU_I:
11963 s = "sltiu";
11964 s2 = "btnez";
11965 s3 = "x,8";
11966 goto do_addone_branch_i;
11967 case M_BGE_I:
11968 s = "slti";
11969 s2 = "bteqz";
11970 s3 = "x,8";
11971 goto do_branch_i;
11972 case M_BGEU_I:
11973 s = "sltiu";
11974 s2 = "bteqz";
11975 s3 = "x,8";
11976 goto do_branch_i;
11977 case M_BGT_I:
11978 s = "slti";
11979 s2 = "bteqz";
11980 s3 = "x,8";
11981 goto do_addone_branch_i;
11982 case M_BGTU_I:
11983 s = "sltiu";
11984 s2 = "bteqz";
11985 s3 = "x,8";
11986
11987 do_addone_branch_i:
11988 if (imm_expr.X_op != O_constant)
11989 as_bad (_("Unsupported large constant"));
11990 ++imm_expr.X_add_number;
11991
11992 do_branch_i:
11993 macro_build (&imm_expr, s, s3, xreg);
11994 macro_build (&offset_expr, s2, "p");
11995 break;
11996
11997 case M_ABS:
11998 expr1.X_add_number = 0;
11999 macro_build (&expr1, "slti", "x,8", yreg);
12000 if (xreg != yreg)
12001 move_register (xreg, yreg);
12002 expr1.X_add_number = 2;
12003 macro_build (&expr1, "bteqz", "p");
12004 macro_build (NULL, "neg", "x,w", xreg, xreg);
12005 }
12006 }
12007
12008 /* Assemble an instruction into its binary format. If the instruction
12009 is a macro, set imm_expr, imm2_expr and offset_expr to the values
12010 associated with "I", "+I" and "A" operands respectively. Otherwise
12011 store the value of the relocatable field (if any) in offset_expr.
12012 In both cases set offset_reloc to the relocation operators applied
12013 to offset_expr. */
12014
12015 static void
12016 mips_ip (char *str, struct mips_cl_insn *ip)
12017 {
12018 bfd_boolean wrong_delay_slot_insns = FALSE;
12019 bfd_boolean need_delay_slot_ok = TRUE;
12020 struct mips_opcode *firstinsn = NULL;
12021 const struct mips_opcode *past;
12022 struct hash_control *hash;
12023 const char *args;
12024 char c = 0;
12025 struct mips_opcode *insn;
12026 long opend;
12027 char *name;
12028 char *dot;
12029 char format;
12030 long end;
12031 const struct mips_operand *operand;
12032 struct mips_arg_info arg;
12033 struct mips_operand_token *tokens;
12034 bfd_boolean optional_reg;
12035
12036 insn_error = NULL;
12037
12038 if (mips_opts.micromips)
12039 {
12040 hash = micromips_op_hash;
12041 past = &micromips_opcodes[bfd_micromips_num_opcodes];
12042 }
12043 else
12044 {
12045 hash = op_hash;
12046 past = &mips_opcodes[NUMOPCODES];
12047 }
12048 forced_insn_length = 0;
12049 insn = NULL;
12050
12051 /* We first try to match an instruction up to a space or to the end. */
12052 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
12053 continue;
12054
12055 /* Make a copy of the instruction so that we can fiddle with it. */
12056 name = alloca (end + 1);
12057 memcpy (name, str, end);
12058 name[end] = '\0';
12059
12060 for (;;)
12061 {
12062 insn = (struct mips_opcode *) hash_find (hash, name);
12063
12064 if (insn != NULL || !mips_opts.micromips)
12065 break;
12066 if (forced_insn_length)
12067 break;
12068
12069 /* See if there's an instruction size override suffix,
12070 either `16' or `32', at the end of the mnemonic proper,
12071 that defines the operation, i.e. before the first `.'
12072 character if any. Strip it and retry. */
12073 dot = strchr (name, '.');
12074 opend = dot != NULL ? dot - name : end;
12075 if (opend < 3)
12076 break;
12077 if (name[opend - 2] == '1' && name[opend - 1] == '6')
12078 forced_insn_length = 2;
12079 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
12080 forced_insn_length = 4;
12081 else
12082 break;
12083 memcpy (name + opend - 2, name + opend, end - opend + 1);
12084 }
12085 if (insn == NULL)
12086 {
12087 insn_error = _("Unrecognized opcode");
12088 return;
12089 }
12090
12091 if (strcmp (name, "li.s") == 0)
12092 format = 'f';
12093 else if (strcmp (name, "li.d") == 0)
12094 format = 'd';
12095 else
12096 format = 0;
12097 tokens = mips_parse_arguments (str + end, format);
12098 if (!tokens)
12099 return;
12100
12101 /* For microMIPS instructions placed in a fixed-length branch delay slot
12102 we make up to two passes over the relevant fragment of the opcode
12103 table. First we try instructions that meet the delay slot's length
12104 requirement. If none matched, then we retry with the remaining ones
12105 and if one matches, then we use it and then issue an appropriate
12106 warning later on. */
12107 for (;;)
12108 {
12109 bfd_boolean delay_slot_ok;
12110 bfd_boolean size_ok;
12111 bfd_boolean ok;
12112 bfd_boolean more_alts;
12113
12114 gas_assert (strcmp (insn->name, name) == 0);
12115
12116 ok = is_opcode_valid (insn);
12117 size_ok = is_size_valid (insn);
12118 delay_slot_ok = is_delay_slot_valid (insn);
12119 if (!delay_slot_ok && !wrong_delay_slot_insns)
12120 {
12121 firstinsn = insn;
12122 wrong_delay_slot_insns = TRUE;
12123 }
12124 more_alts = (insn + 1 < past
12125 && strcmp (insn[0].name, insn[1].name) == 0);
12126 if (!ok || !size_ok || delay_slot_ok != need_delay_slot_ok)
12127 {
12128 static char buf[256];
12129
12130 if (more_alts)
12131 {
12132 ++insn;
12133 continue;
12134 }
12135 if (wrong_delay_slot_insns && need_delay_slot_ok)
12136 {
12137 gas_assert (firstinsn);
12138 need_delay_slot_ok = FALSE;
12139 past = insn + 1;
12140 insn = firstinsn;
12141 continue;
12142 }
12143
12144 obstack_free (&mips_operand_tokens, tokens);
12145 if (insn_error)
12146 return;
12147
12148 if (!ok)
12149 sprintf (buf, _("Opcode not supported on this processor: %s (%s)"),
12150 mips_cpu_info_from_arch (mips_opts.arch)->name,
12151 mips_cpu_info_from_isa (mips_opts.isa)->name);
12152 else if (mips_opts.insn32)
12153 sprintf (buf, _("Opcode not supported in the `insn32' mode"));
12154 else
12155 sprintf (buf, _("Unrecognized %u-bit version of microMIPS opcode"),
12156 8 * forced_insn_length);
12157 insn_error = buf;
12158
12159 return;
12160 }
12161
12162 imm_expr.X_op = O_absent;
12163 imm2_expr.X_op = O_absent;
12164 offset_expr.X_op = O_absent;
12165 offset_reloc[0] = BFD_RELOC_UNUSED;
12166 offset_reloc[1] = BFD_RELOC_UNUSED;
12167 offset_reloc[2] = BFD_RELOC_UNUSED;
12168
12169 create_insn (ip, insn);
12170 insn_error = NULL;
12171 memset (&arg, 0, sizeof (arg));
12172 arg.insn = ip;
12173 arg.token = tokens;
12174 arg.argnum = 1;
12175 arg.last_regno = ILLEGAL_REG;
12176 arg.dest_regno = ILLEGAL_REG;
12177 arg.soft_match = (more_alts
12178 || (wrong_delay_slot_insns && need_delay_slot_ok));
12179 for (args = insn->args;; ++args)
12180 {
12181 if (arg.token->type == OT_END)
12182 {
12183 /* Handle unary instructions in which only one operand is given.
12184 The source is then the same as the destination. */
12185 if (arg.opnum == 1 && *args == ',')
12186 switch (args[1])
12187 {
12188 case 'r':
12189 case 'v':
12190 case 'w':
12191 case 'W':
12192 case 'V':
12193 arg.token = tokens;
12194 arg.argnum = 1;
12195 continue;
12196 }
12197
12198 /* Treat elided base registers as $0. */
12199 if (strcmp (args, "(b)") == 0)
12200 args += 3;
12201
12202 /* Fail the match if there were too few operands. */
12203 if (*args)
12204 break;
12205
12206 /* Successful match. */
12207 if (arg.dest_regno == arg.last_regno
12208 && strncmp (ip->insn_mo->name, "jalr", 4) == 0)
12209 {
12210 if (arg.opnum == 2)
12211 as_bad (_("Source and destination must be different"));
12212 else if (arg.last_regno == 31)
12213 as_bad (_("A destination register must be supplied"));
12214 }
12215 check_completed_insn (&arg);
12216 obstack_free (&mips_operand_tokens, tokens);
12217 return;
12218 }
12219
12220 /* Fail the match if the line has too many operands. */
12221 if (*args == 0)
12222 break;
12223
12224 /* Handle characters that need to match exactly. */
12225 if (*args == '(' || *args == ')' || *args == ',')
12226 {
12227 if (match_char (&arg, *args))
12228 continue;
12229 break;
12230 }
12231
12232 /* Handle special macro operands. Work out the properties of
12233 other operands. */
12234 arg.opnum += 1;
12235 arg.lax_max = FALSE;
12236 optional_reg = FALSE;
12237 switch (*args)
12238 {
12239 case '+':
12240 switch (args[1])
12241 {
12242 case '1':
12243 case '2':
12244 case '3':
12245 case '4':
12246 case 'B':
12247 case 'C':
12248 case 'F':
12249 case 'G':
12250 case 'H':
12251 case 'J':
12252 case 'Q':
12253 case 'S':
12254 case 's':
12255 /* If these integer forms come last, there is no other
12256 form of the instruction that could match. Prefer to
12257 give detailed error messages where possible. */
12258 if (args[2] == 0)
12259 arg.soft_match = FALSE;
12260 break;
12261
12262 case 'I':
12263 /* "+I" is like "I", except that imm2_expr is used. */
12264 if (match_const_int (&arg, &imm2_expr.X_add_number, 0))
12265 imm2_expr.X_op = O_constant;
12266 else
12267 insn_error = _("absolute expression required");
12268 if (HAVE_32BIT_GPRS)
12269 normalize_constant_expr (&imm2_expr);
12270 ++args;
12271 continue;
12272
12273 case 'i':
12274 *offset_reloc = BFD_RELOC_MIPS_JMP;
12275 break;
12276 }
12277 break;
12278
12279 case '\'':
12280 case ':':
12281 case '@':
12282 case '^':
12283 case '$':
12284 case '\\':
12285 case '%':
12286 case '|':
12287 case '0':
12288 case '1':
12289 case '2':
12290 case '3':
12291 case '4':
12292 case '5':
12293 case '6':
12294 case '8':
12295 case 'B':
12296 case 'C':
12297 case 'J':
12298 case 'O':
12299 case 'P':
12300 case 'Q':
12301 case 'c':
12302 case 'h':
12303 case 'q':
12304 /* If these integer forms come last, there is no other
12305 form of the instruction that could match. Prefer to
12306 give detailed error messages where possible. */
12307 if (args[1] == 0)
12308 arg.soft_match = FALSE;
12309 break;
12310
12311 case 'r':
12312 case 'v':
12313 case 'w':
12314 case 'W':
12315 case 'V':
12316 /* We have already matched a comma by this point, so the register
12317 is only optional if there is another operand to come. */
12318 gas_assert (arg.opnum == 2);
12319 optional_reg = (args[1] == ',');
12320 break;
12321
12322 case 'I':
12323 if (match_const_int (&arg, &imm_expr.X_add_number, 0))
12324 imm_expr.X_op = O_constant;
12325 else
12326 insn_error = _("absolute expression required");
12327 if (HAVE_32BIT_GPRS)
12328 normalize_constant_expr (&imm_expr);
12329 continue;
12330
12331 case 'A':
12332 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
12333 {
12334 /* Assume that the offset has been elided and that what
12335 we saw was a base register. The match will fail later
12336 if that assumption turns out to be wrong. */
12337 offset_expr.X_op = O_constant;
12338 offset_expr.X_add_number = 0;
12339 }
12340 else if (match_expression (&arg, &offset_expr, offset_reloc))
12341 normalize_address_expr (&offset_expr);
12342 else
12343 insn_error = _("absolute expression required");
12344 continue;
12345
12346 case 'F':
12347 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
12348 8, TRUE))
12349 insn_error = _("floating-point expression required");
12350 continue;
12351
12352 case 'L':
12353 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
12354 8, FALSE))
12355 insn_error = _("floating-point expression required");
12356 continue;
12357
12358 case 'f':
12359 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
12360 4, TRUE))
12361 insn_error = _("floating-point expression required");
12362 continue;
12363
12364 case 'l':
12365 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
12366 4, FALSE))
12367 insn_error = _("floating-point expression required");
12368 continue;
12369
12370 /* ??? This is the traditional behavior, but is flaky if
12371 there are alternative versions of the same instruction
12372 for different subarchitectures. The next alternative
12373 might not be suitable. */
12374 case 'j':
12375 /* For compatibility with older assemblers, we accept
12376 0x8000-0xffff as signed 16-bit numbers when only
12377 signed numbers are allowed. */
12378 arg.lax_max = !more_alts;
12379 case 'i':
12380 /* Only accept non-constant operands if this is the
12381 final alternative. Later alternatives might include
12382 a macro implementation. */
12383 arg.allow_nonconst = !more_alts;
12384 break;
12385
12386 case 'u':
12387 /* There are no macro implementations for out-of-range values. */
12388 arg.allow_nonconst = TRUE;
12389 break;
12390
12391 case 'o':
12392 /* There should always be a macro implementation. */
12393 arg.allow_nonconst = FALSE;
12394 break;
12395
12396 case 'p':
12397 *offset_reloc = BFD_RELOC_16_PCREL_S2;
12398 break;
12399
12400 case 'a':
12401 *offset_reloc = BFD_RELOC_MIPS_JMP;
12402 break;
12403
12404 case 'm':
12405 gas_assert (mips_opts.micromips);
12406 c = args[1];
12407 switch (c)
12408 {
12409 case 't':
12410 case 'c':
12411 case 'e':
12412 /* We have already matched a comma by this point,
12413 so the register is only optional if there is another
12414 operand to come. */
12415 gas_assert (arg.opnum == 2);
12416 optional_reg = (args[2] == ',');
12417 break;
12418
12419 case 'D':
12420 case 'E':
12421 if (!forced_insn_length)
12422 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
12423 else if (c == 'D')
12424 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
12425 else
12426 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
12427 break;
12428 }
12429 break;
12430 }
12431
12432 operand = (mips_opts.micromips
12433 ? decode_micromips_operand (args)
12434 : decode_mips_operand (args));
12435 if (!operand)
12436 abort ();
12437
12438 if (optional_reg
12439 && (arg.token[0].type != OT_REG
12440 || arg.token[1].type == OT_END))
12441 {
12442 /* Assume that the register has been elided and is the
12443 same as the first operand. */
12444 arg.token = tokens;
12445 arg.argnum = 1;
12446 }
12447
12448 if (!match_operand (&arg, operand))
12449 break;
12450
12451 /* Skip prefixes. */
12452 if (*args == '+' || *args == 'm')
12453 args++;
12454
12455 continue;
12456 }
12457 /* Args don't match. */
12458 insn_error = _("Illegal operands");
12459 if (more_alts)
12460 {
12461 ++insn;
12462 continue;
12463 }
12464 if (wrong_delay_slot_insns && need_delay_slot_ok)
12465 {
12466 gas_assert (firstinsn);
12467 need_delay_slot_ok = FALSE;
12468 past = insn + 1;
12469 insn = firstinsn;
12470 continue;
12471 }
12472 obstack_free (&mips_operand_tokens, tokens);
12473 return;
12474 }
12475 }
12476
12477 /* As for mips_ip, but used when assembling MIPS16 code.
12478 Also set forced_insn_length to the resulting instruction size in
12479 bytes if the user explicitly requested a small or extended instruction. */
12480
12481 static void
12482 mips16_ip (char *str, struct mips_cl_insn *ip)
12483 {
12484 char *s;
12485 const char *args;
12486 struct mips_opcode *insn;
12487 const struct mips_operand *operand;
12488 const struct mips_operand *ext_operand;
12489 struct mips_arg_info arg;
12490 struct mips_operand_token *tokens;
12491 bfd_boolean optional_reg;
12492
12493 insn_error = NULL;
12494
12495 forced_insn_length = 0;
12496
12497 for (s = str; ISLOWER (*s); ++s)
12498 ;
12499 switch (*s)
12500 {
12501 case '\0':
12502 break;
12503
12504 case ' ':
12505 *s++ = '\0';
12506 break;
12507
12508 case '.':
12509 if (s[1] == 't' && s[2] == ' ')
12510 {
12511 *s = '\0';
12512 forced_insn_length = 2;
12513 s += 3;
12514 break;
12515 }
12516 else if (s[1] == 'e' && s[2] == ' ')
12517 {
12518 *s = '\0';
12519 forced_insn_length = 4;
12520 s += 3;
12521 break;
12522 }
12523 /* Fall through. */
12524 default:
12525 insn_error = _("unknown opcode");
12526 return;
12527 }
12528
12529 if (mips_opts.noautoextend && !forced_insn_length)
12530 forced_insn_length = 2;
12531
12532 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
12533 {
12534 insn_error = _("unrecognized opcode");
12535 return;
12536 }
12537
12538 tokens = mips_parse_arguments (s, 0);
12539 if (!tokens)
12540 return;
12541
12542 for (;;)
12543 {
12544 bfd_boolean ok;
12545 bfd_boolean more_alts;
12546 char relax_char;
12547
12548 gas_assert (strcmp (insn->name, str) == 0);
12549
12550 ok = is_opcode_valid_16 (insn);
12551 more_alts = (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
12552 && strcmp (insn[0].name, insn[1].name) == 0);
12553 if (! ok)
12554 {
12555 if (more_alts)
12556 {
12557 ++insn;
12558 continue;
12559 }
12560 else
12561 {
12562 if (!insn_error)
12563 {
12564 static char buf[100];
12565 sprintf (buf,
12566 _("Opcode not supported on this processor: %s (%s)"),
12567 mips_cpu_info_from_arch (mips_opts.arch)->name,
12568 mips_cpu_info_from_isa (mips_opts.isa)->name);
12569 insn_error = buf;
12570 }
12571 obstack_free (&mips_operand_tokens, tokens);
12572 return;
12573 }
12574 }
12575
12576 create_insn (ip, insn);
12577 imm_expr.X_op = O_absent;
12578 imm2_expr.X_op = O_absent;
12579 offset_expr.X_op = O_absent;
12580 offset_reloc[0] = BFD_RELOC_UNUSED;
12581 offset_reloc[1] = BFD_RELOC_UNUSED;
12582 offset_reloc[2] = BFD_RELOC_UNUSED;
12583 relax_char = 0;
12584
12585 memset (&arg, 0, sizeof (arg));
12586 arg.insn = ip;
12587 arg.token = tokens;
12588 arg.argnum = 1;
12589 arg.last_regno = ILLEGAL_REG;
12590 arg.dest_regno = ILLEGAL_REG;
12591 arg.soft_match = more_alts;
12592 relax_char = 0;
12593 for (args = insn->args; 1; ++args)
12594 {
12595 int c;
12596
12597 if (arg.token->type == OT_END)
12598 {
12599 offsetT value;
12600
12601 /* Handle unary instructions in which only one operand is given.
12602 The source is then the same as the destination. */
12603 if (arg.opnum == 1 && *args == ',')
12604 switch (args[1])
12605 {
12606 case 'v':
12607 case 'w':
12608 arg.token = tokens;
12609 arg.argnum = 1;
12610 continue;
12611 }
12612
12613 /* Fail the match if there were too few operands. */
12614 if (*args)
12615 break;
12616
12617 /* Successful match. Stuff the immediate value in now, if
12618 we can. */
12619 if (insn->pinfo == INSN_MACRO)
12620 {
12621 gas_assert (relax_char == 0);
12622 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
12623 }
12624 else if (relax_char
12625 && offset_expr.X_op == O_constant
12626 && calculate_reloc (*offset_reloc,
12627 offset_expr.X_add_number,
12628 &value))
12629 {
12630 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
12631 forced_insn_length, &ip->insn_opcode);
12632 offset_expr.X_op = O_absent;
12633 *offset_reloc = BFD_RELOC_UNUSED;
12634 }
12635 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
12636 {
12637 if (forced_insn_length == 2)
12638 as_bad (_("invalid unextended operand value"));
12639 forced_insn_length = 4;
12640 ip->insn_opcode |= MIPS16_EXTEND;
12641 }
12642 else if (relax_char)
12643 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
12644
12645 check_completed_insn (&arg);
12646 obstack_free (&mips_operand_tokens, tokens);
12647 return;
12648 }
12649
12650 /* Fail the match if the line has too many operands. */
12651 if (*args == 0)
12652 break;
12653
12654 /* Handle characters that need to match exactly. */
12655 if (*args == '(' || *args == ')' || *args == ',')
12656 {
12657 if (match_char (&arg, *args))
12658 continue;
12659 break;
12660 }
12661
12662 arg.opnum += 1;
12663 optional_reg = FALSE;
12664 c = *args;
12665 switch (c)
12666 {
12667 case 'v':
12668 case 'w':
12669 optional_reg = (args[1] == ',');
12670 break;
12671
12672 case 'p':
12673 case 'q':
12674 case 'A':
12675 case 'B':
12676 case 'E':
12677 relax_char = c;
12678 break;
12679
12680 case 'I':
12681 if (match_const_int (&arg, &imm_expr.X_add_number, 0))
12682 imm_expr.X_op = O_constant;
12683 else
12684 insn_error = _("absolute expression required");
12685 if (HAVE_32BIT_GPRS)
12686 normalize_constant_expr (&imm_expr);
12687 continue;
12688
12689 case 'a':
12690 case 'i':
12691 *offset_reloc = BFD_RELOC_MIPS16_JMP;
12692 ip->insn_opcode <<= 16;
12693 break;
12694 }
12695
12696 operand = decode_mips16_operand (c, FALSE);
12697 if (!operand)
12698 abort ();
12699
12700 /* '6' is a special case. It is used for BREAK and SDBBP,
12701 whose operands are only meaningful to the software that decodes
12702 them. This means that there is no architectural reason why
12703 they cannot be prefixed by EXTEND, but in practice,
12704 exception handlers will only look at the instruction
12705 itself. We therefore allow '6' to be extended when
12706 disassembling but not when assembling. */
12707 if (operand->type != OP_PCREL && c != '6')
12708 {
12709 ext_operand = decode_mips16_operand (c, TRUE);
12710 if (operand != ext_operand)
12711 {
12712 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
12713 {
12714 offset_expr.X_op = O_constant;
12715 offset_expr.X_add_number = 0;
12716 relax_char = c;
12717 continue;
12718 }
12719
12720 /* We need the OT_INTEGER check because some MIPS16
12721 immediate variants are listed before the register ones. */
12722 if (arg.token->type != OT_INTEGER
12723 || !match_expression (&arg, &offset_expr, offset_reloc))
12724 break;
12725
12726 /* '8' is used for SLTI(U) and has traditionally not
12727 been allowed to take relocation operators. */
12728 if (offset_reloc[0] != BFD_RELOC_UNUSED
12729 && (ext_operand->size != 16 || c == '8'))
12730 break;
12731
12732 relax_char = c;
12733 continue;
12734 }
12735 }
12736
12737 if (optional_reg
12738 && (arg.token[0].type != OT_REG
12739 || arg.token[1].type == OT_END))
12740 {
12741 /* Assume that the register has been elided and is the
12742 same as the first operand. */
12743 arg.token = tokens;
12744 arg.argnum = 1;
12745 }
12746
12747 if (!match_operand (&arg, operand))
12748 break;
12749 continue;
12750 }
12751
12752 /* Args don't match. */
12753 if (more_alts)
12754 {
12755 ++insn;
12756 continue;
12757 }
12758
12759 insn_error = _("illegal operands");
12760
12761 obstack_free (&mips_operand_tokens, tokens);
12762 return;
12763 }
12764 }
12765
12766 /* This structure holds information we know about a mips16 immediate
12767 argument type. */
12768
12769 struct mips16_immed_operand
12770 {
12771 /* The type code used in the argument string in the opcode table. */
12772 int type;
12773 /* The number of bits in the short form of the opcode. */
12774 int nbits;
12775 /* The number of bits in the extended form of the opcode. */
12776 int extbits;
12777 /* The amount by which the short form is shifted when it is used;
12778 for example, the sw instruction has a shift count of 2. */
12779 int shift;
12780 /* The amount by which the short form is shifted when it is stored
12781 into the instruction code. */
12782 int op_shift;
12783 /* Non-zero if the short form is unsigned. */
12784 int unsp;
12785 /* Non-zero if the extended form is unsigned. */
12786 int extu;
12787 /* Non-zero if the value is PC relative. */
12788 int pcrel;
12789 };
12790
12791 /* The mips16 immediate operand types. */
12792
12793 static const struct mips16_immed_operand mips16_immed_operands[] =
12794 {
12795 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
12796 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
12797 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
12798 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
12799 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
12800 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
12801 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
12802 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
12803 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
12804 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
12805 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
12806 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
12807 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
12808 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
12809 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
12810 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
12811 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
12812 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
12813 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
12814 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
12815 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
12816 };
12817
12818 #define MIPS16_NUM_IMMED \
12819 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
12820
12821 /* Marshal immediate value VAL for an extended MIPS16 instruction.
12822 NBITS is the number of significant bits in VAL. */
12823
12824 static unsigned long
12825 mips16_immed_extend (offsetT val, unsigned int nbits)
12826 {
12827 int extval;
12828 if (nbits == 16)
12829 {
12830 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
12831 val &= 0x1f;
12832 }
12833 else if (nbits == 15)
12834 {
12835 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
12836 val &= 0xf;
12837 }
12838 else
12839 {
12840 extval = ((val & 0x1f) << 6) | (val & 0x20);
12841 val = 0;
12842 }
12843 return (extval << 16) | val;
12844 }
12845
12846 /* Install immediate value VAL into MIPS16 instruction *INSN,
12847 extending it if necessary. The instruction in *INSN may
12848 already be extended.
12849
12850 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
12851 if none. In the former case, VAL is a 16-bit number with no
12852 defined signedness.
12853
12854 TYPE is the type of the immediate field. USER_INSN_LENGTH
12855 is the length that the user requested, or 0 if none. */
12856
12857 static void
12858 mips16_immed (char *file, unsigned int line, int type,
12859 bfd_reloc_code_real_type reloc, offsetT val,
12860 unsigned int user_insn_length, unsigned long *insn)
12861 {
12862 const struct mips16_immed_operand *op;
12863 int mintiny, maxtiny;
12864
12865 op = mips16_immed_operands;
12866 while (op->type != type)
12867 {
12868 ++op;
12869 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
12870 }
12871
12872 if (op->unsp)
12873 {
12874 if (type == '<' || type == '>' || type == '[' || type == ']')
12875 {
12876 mintiny = 1;
12877 maxtiny = 1 << op->nbits;
12878 }
12879 else
12880 {
12881 mintiny = 0;
12882 maxtiny = (1 << op->nbits) - 1;
12883 }
12884 if (reloc != BFD_RELOC_UNUSED)
12885 val &= 0xffff;
12886 }
12887 else
12888 {
12889 mintiny = - (1 << (op->nbits - 1));
12890 maxtiny = (1 << (op->nbits - 1)) - 1;
12891 if (reloc != BFD_RELOC_UNUSED)
12892 val = SEXT_16BIT (val);
12893 }
12894
12895 /* Branch offsets have an implicit 0 in the lowest bit. */
12896 if (type == 'p' || type == 'q')
12897 val /= 2;
12898
12899 if ((val & ((1 << op->shift) - 1)) != 0
12900 || val < (mintiny << op->shift)
12901 || val > (maxtiny << op->shift))
12902 {
12903 /* We need an extended instruction. */
12904 if (user_insn_length == 2)
12905 as_bad_where (file, line, _("invalid unextended operand value"));
12906 else
12907 *insn |= MIPS16_EXTEND;
12908 }
12909 else if (user_insn_length == 4)
12910 {
12911 /* The operand doesn't force an unextended instruction to be extended.
12912 Warn if the user wanted an extended instruction anyway. */
12913 *insn |= MIPS16_EXTEND;
12914 as_warn_where (file, line,
12915 _("extended operand requested but not required"));
12916 }
12917
12918 if (mips16_opcode_length (*insn) == 2)
12919 {
12920 int insnval;
12921
12922 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
12923 insnval <<= op->op_shift;
12924 *insn |= insnval;
12925 }
12926 else
12927 {
12928 long minext, maxext;
12929
12930 if (reloc == BFD_RELOC_UNUSED)
12931 {
12932 if (op->extu)
12933 {
12934 minext = 0;
12935 maxext = (1 << op->extbits) - 1;
12936 }
12937 else
12938 {
12939 minext = - (1 << (op->extbits - 1));
12940 maxext = (1 << (op->extbits - 1)) - 1;
12941 }
12942 if (val < minext || val > maxext)
12943 as_bad_where (file, line,
12944 _("operand value out of range for instruction"));
12945 }
12946
12947 *insn |= mips16_immed_extend (val, op->extbits);
12948 }
12949 }
12950 \f
12951 struct percent_op_match
12952 {
12953 const char *str;
12954 bfd_reloc_code_real_type reloc;
12955 };
12956
12957 static const struct percent_op_match mips_percent_op[] =
12958 {
12959 {"%lo", BFD_RELOC_LO16},
12960 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
12961 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
12962 {"%call16", BFD_RELOC_MIPS_CALL16},
12963 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
12964 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
12965 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
12966 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
12967 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
12968 {"%got", BFD_RELOC_MIPS_GOT16},
12969 {"%gp_rel", BFD_RELOC_GPREL16},
12970 {"%half", BFD_RELOC_16},
12971 {"%highest", BFD_RELOC_MIPS_HIGHEST},
12972 {"%higher", BFD_RELOC_MIPS_HIGHER},
12973 {"%neg", BFD_RELOC_MIPS_SUB},
12974 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
12975 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
12976 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
12977 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
12978 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
12979 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
12980 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
12981 {"%hi", BFD_RELOC_HI16_S}
12982 };
12983
12984 static const struct percent_op_match mips16_percent_op[] =
12985 {
12986 {"%lo", BFD_RELOC_MIPS16_LO16},
12987 {"%gprel", BFD_RELOC_MIPS16_GPREL},
12988 {"%got", BFD_RELOC_MIPS16_GOT16},
12989 {"%call16", BFD_RELOC_MIPS16_CALL16},
12990 {"%hi", BFD_RELOC_MIPS16_HI16_S},
12991 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
12992 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
12993 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
12994 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
12995 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
12996 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
12997 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
12998 };
12999
13000
13001 /* Return true if *STR points to a relocation operator. When returning true,
13002 move *STR over the operator and store its relocation code in *RELOC.
13003 Leave both *STR and *RELOC alone when returning false. */
13004
13005 static bfd_boolean
13006 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13007 {
13008 const struct percent_op_match *percent_op;
13009 size_t limit, i;
13010
13011 if (mips_opts.mips16)
13012 {
13013 percent_op = mips16_percent_op;
13014 limit = ARRAY_SIZE (mips16_percent_op);
13015 }
13016 else
13017 {
13018 percent_op = mips_percent_op;
13019 limit = ARRAY_SIZE (mips_percent_op);
13020 }
13021
13022 for (i = 0; i < limit; i++)
13023 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13024 {
13025 int len = strlen (percent_op[i].str);
13026
13027 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13028 continue;
13029
13030 *str += strlen (percent_op[i].str);
13031 *reloc = percent_op[i].reloc;
13032
13033 /* Check whether the output BFD supports this relocation.
13034 If not, issue an error and fall back on something safe. */
13035 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13036 {
13037 as_bad (_("relocation %s isn't supported by the current ABI"),
13038 percent_op[i].str);
13039 *reloc = BFD_RELOC_UNUSED;
13040 }
13041 return TRUE;
13042 }
13043 return FALSE;
13044 }
13045
13046
13047 /* Parse string STR as a 16-bit relocatable operand. Store the
13048 expression in *EP and the relocations in the array starting
13049 at RELOC. Return the number of relocation operators used.
13050
13051 On exit, EXPR_END points to the first character after the expression. */
13052
13053 static size_t
13054 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13055 char *str)
13056 {
13057 bfd_reloc_code_real_type reversed_reloc[3];
13058 size_t reloc_index, i;
13059 int crux_depth, str_depth;
13060 char *crux;
13061
13062 /* Search for the start of the main expression, recoding relocations
13063 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13064 of the main expression and with CRUX_DEPTH containing the number
13065 of open brackets at that point. */
13066 reloc_index = -1;
13067 str_depth = 0;
13068 do
13069 {
13070 reloc_index++;
13071 crux = str;
13072 crux_depth = str_depth;
13073
13074 /* Skip over whitespace and brackets, keeping count of the number
13075 of brackets. */
13076 while (*str == ' ' || *str == '\t' || *str == '(')
13077 if (*str++ == '(')
13078 str_depth++;
13079 }
13080 while (*str == '%'
13081 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13082 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13083
13084 my_getExpression (ep, crux);
13085 str = expr_end;
13086
13087 /* Match every open bracket. */
13088 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13089 if (*str++ == ')')
13090 crux_depth--;
13091
13092 if (crux_depth > 0)
13093 as_bad (_("unclosed '('"));
13094
13095 expr_end = str;
13096
13097 if (reloc_index != 0)
13098 {
13099 prev_reloc_op_frag = frag_now;
13100 for (i = 0; i < reloc_index; i++)
13101 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13102 }
13103
13104 return reloc_index;
13105 }
13106
13107 static void
13108 my_getExpression (expressionS *ep, char *str)
13109 {
13110 char *save_in;
13111
13112 save_in = input_line_pointer;
13113 input_line_pointer = str;
13114 expression (ep);
13115 expr_end = input_line_pointer;
13116 input_line_pointer = save_in;
13117 }
13118
13119 char *
13120 md_atof (int type, char *litP, int *sizeP)
13121 {
13122 return ieee_md_atof (type, litP, sizeP, target_big_endian);
13123 }
13124
13125 void
13126 md_number_to_chars (char *buf, valueT val, int n)
13127 {
13128 if (target_big_endian)
13129 number_to_chars_bigendian (buf, val, n);
13130 else
13131 number_to_chars_littleendian (buf, val, n);
13132 }
13133 \f
13134 static int support_64bit_objects(void)
13135 {
13136 const char **list, **l;
13137 int yes;
13138
13139 list = bfd_target_list ();
13140 for (l = list; *l != NULL; l++)
13141 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
13142 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
13143 break;
13144 yes = (*l != NULL);
13145 free (list);
13146 return yes;
13147 }
13148
13149 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
13150 NEW_VALUE. Warn if another value was already specified. Note:
13151 we have to defer parsing the -march and -mtune arguments in order
13152 to handle 'from-abi' correctly, since the ABI might be specified
13153 in a later argument. */
13154
13155 static void
13156 mips_set_option_string (const char **string_ptr, const char *new_value)
13157 {
13158 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
13159 as_warn (_("A different %s was already specified, is now %s"),
13160 string_ptr == &mips_arch_string ? "-march" : "-mtune",
13161 new_value);
13162
13163 *string_ptr = new_value;
13164 }
13165
13166 int
13167 md_parse_option (int c, char *arg)
13168 {
13169 unsigned int i;
13170
13171 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
13172 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
13173 {
13174 file_ase_explicit |= mips_set_ase (&mips_ases[i],
13175 c == mips_ases[i].option_on);
13176 return 1;
13177 }
13178
13179 switch (c)
13180 {
13181 case OPTION_CONSTRUCT_FLOATS:
13182 mips_disable_float_construction = 0;
13183 break;
13184
13185 case OPTION_NO_CONSTRUCT_FLOATS:
13186 mips_disable_float_construction = 1;
13187 break;
13188
13189 case OPTION_TRAP:
13190 mips_trap = 1;
13191 break;
13192
13193 case OPTION_BREAK:
13194 mips_trap = 0;
13195 break;
13196
13197 case OPTION_EB:
13198 target_big_endian = 1;
13199 break;
13200
13201 case OPTION_EL:
13202 target_big_endian = 0;
13203 break;
13204
13205 case 'O':
13206 if (arg == NULL)
13207 mips_optimize = 1;
13208 else if (arg[0] == '0')
13209 mips_optimize = 0;
13210 else if (arg[0] == '1')
13211 mips_optimize = 1;
13212 else
13213 mips_optimize = 2;
13214 break;
13215
13216 case 'g':
13217 if (arg == NULL)
13218 mips_debug = 2;
13219 else
13220 mips_debug = atoi (arg);
13221 break;
13222
13223 case OPTION_MIPS1:
13224 file_mips_isa = ISA_MIPS1;
13225 break;
13226
13227 case OPTION_MIPS2:
13228 file_mips_isa = ISA_MIPS2;
13229 break;
13230
13231 case OPTION_MIPS3:
13232 file_mips_isa = ISA_MIPS3;
13233 break;
13234
13235 case OPTION_MIPS4:
13236 file_mips_isa = ISA_MIPS4;
13237 break;
13238
13239 case OPTION_MIPS5:
13240 file_mips_isa = ISA_MIPS5;
13241 break;
13242
13243 case OPTION_MIPS32:
13244 file_mips_isa = ISA_MIPS32;
13245 break;
13246
13247 case OPTION_MIPS32R2:
13248 file_mips_isa = ISA_MIPS32R2;
13249 break;
13250
13251 case OPTION_MIPS64R2:
13252 file_mips_isa = ISA_MIPS64R2;
13253 break;
13254
13255 case OPTION_MIPS64:
13256 file_mips_isa = ISA_MIPS64;
13257 break;
13258
13259 case OPTION_MTUNE:
13260 mips_set_option_string (&mips_tune_string, arg);
13261 break;
13262
13263 case OPTION_MARCH:
13264 mips_set_option_string (&mips_arch_string, arg);
13265 break;
13266
13267 case OPTION_M4650:
13268 mips_set_option_string (&mips_arch_string, "4650");
13269 mips_set_option_string (&mips_tune_string, "4650");
13270 break;
13271
13272 case OPTION_NO_M4650:
13273 break;
13274
13275 case OPTION_M4010:
13276 mips_set_option_string (&mips_arch_string, "4010");
13277 mips_set_option_string (&mips_tune_string, "4010");
13278 break;
13279
13280 case OPTION_NO_M4010:
13281 break;
13282
13283 case OPTION_M4100:
13284 mips_set_option_string (&mips_arch_string, "4100");
13285 mips_set_option_string (&mips_tune_string, "4100");
13286 break;
13287
13288 case OPTION_NO_M4100:
13289 break;
13290
13291 case OPTION_M3900:
13292 mips_set_option_string (&mips_arch_string, "3900");
13293 mips_set_option_string (&mips_tune_string, "3900");
13294 break;
13295
13296 case OPTION_NO_M3900:
13297 break;
13298
13299 case OPTION_MICROMIPS:
13300 if (mips_opts.mips16 == 1)
13301 {
13302 as_bad (_("-mmicromips cannot be used with -mips16"));
13303 return 0;
13304 }
13305 mips_opts.micromips = 1;
13306 mips_no_prev_insn ();
13307 break;
13308
13309 case OPTION_NO_MICROMIPS:
13310 mips_opts.micromips = 0;
13311 mips_no_prev_insn ();
13312 break;
13313
13314 case OPTION_MIPS16:
13315 if (mips_opts.micromips == 1)
13316 {
13317 as_bad (_("-mips16 cannot be used with -micromips"));
13318 return 0;
13319 }
13320 mips_opts.mips16 = 1;
13321 mips_no_prev_insn ();
13322 break;
13323
13324 case OPTION_NO_MIPS16:
13325 mips_opts.mips16 = 0;
13326 mips_no_prev_insn ();
13327 break;
13328
13329 case OPTION_FIX_24K:
13330 mips_fix_24k = 1;
13331 break;
13332
13333 case OPTION_NO_FIX_24K:
13334 mips_fix_24k = 0;
13335 break;
13336
13337 case OPTION_FIX_LOONGSON2F_JUMP:
13338 mips_fix_loongson2f_jump = TRUE;
13339 break;
13340
13341 case OPTION_NO_FIX_LOONGSON2F_JUMP:
13342 mips_fix_loongson2f_jump = FALSE;
13343 break;
13344
13345 case OPTION_FIX_LOONGSON2F_NOP:
13346 mips_fix_loongson2f_nop = TRUE;
13347 break;
13348
13349 case OPTION_NO_FIX_LOONGSON2F_NOP:
13350 mips_fix_loongson2f_nop = FALSE;
13351 break;
13352
13353 case OPTION_FIX_VR4120:
13354 mips_fix_vr4120 = 1;
13355 break;
13356
13357 case OPTION_NO_FIX_VR4120:
13358 mips_fix_vr4120 = 0;
13359 break;
13360
13361 case OPTION_FIX_VR4130:
13362 mips_fix_vr4130 = 1;
13363 break;
13364
13365 case OPTION_NO_FIX_VR4130:
13366 mips_fix_vr4130 = 0;
13367 break;
13368
13369 case OPTION_FIX_CN63XXP1:
13370 mips_fix_cn63xxp1 = TRUE;
13371 break;
13372
13373 case OPTION_NO_FIX_CN63XXP1:
13374 mips_fix_cn63xxp1 = FALSE;
13375 break;
13376
13377 case OPTION_RELAX_BRANCH:
13378 mips_relax_branch = 1;
13379 break;
13380
13381 case OPTION_NO_RELAX_BRANCH:
13382 mips_relax_branch = 0;
13383 break;
13384
13385 case OPTION_INSN32:
13386 mips_opts.insn32 = TRUE;
13387 break;
13388
13389 case OPTION_NO_INSN32:
13390 mips_opts.insn32 = FALSE;
13391 break;
13392
13393 case OPTION_MSHARED:
13394 mips_in_shared = TRUE;
13395 break;
13396
13397 case OPTION_MNO_SHARED:
13398 mips_in_shared = FALSE;
13399 break;
13400
13401 case OPTION_MSYM32:
13402 mips_opts.sym32 = TRUE;
13403 break;
13404
13405 case OPTION_MNO_SYM32:
13406 mips_opts.sym32 = FALSE;
13407 break;
13408
13409 /* When generating ELF code, we permit -KPIC and -call_shared to
13410 select SVR4_PIC, and -non_shared to select no PIC. This is
13411 intended to be compatible with Irix 5. */
13412 case OPTION_CALL_SHARED:
13413 mips_pic = SVR4_PIC;
13414 mips_abicalls = TRUE;
13415 break;
13416
13417 case OPTION_CALL_NONPIC:
13418 mips_pic = NO_PIC;
13419 mips_abicalls = TRUE;
13420 break;
13421
13422 case OPTION_NON_SHARED:
13423 mips_pic = NO_PIC;
13424 mips_abicalls = FALSE;
13425 break;
13426
13427 /* The -xgot option tells the assembler to use 32 bit offsets
13428 when accessing the got in SVR4_PIC mode. It is for Irix
13429 compatibility. */
13430 case OPTION_XGOT:
13431 mips_big_got = 1;
13432 break;
13433
13434 case 'G':
13435 g_switch_value = atoi (arg);
13436 g_switch_seen = 1;
13437 break;
13438
13439 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
13440 and -mabi=64. */
13441 case OPTION_32:
13442 mips_abi = O32_ABI;
13443 break;
13444
13445 case OPTION_N32:
13446 mips_abi = N32_ABI;
13447 break;
13448
13449 case OPTION_64:
13450 mips_abi = N64_ABI;
13451 if (!support_64bit_objects())
13452 as_fatal (_("No compiled in support for 64 bit object file format"));
13453 break;
13454
13455 case OPTION_GP32:
13456 file_mips_gp32 = 1;
13457 break;
13458
13459 case OPTION_GP64:
13460 file_mips_gp32 = 0;
13461 break;
13462
13463 case OPTION_FP32:
13464 file_mips_fp32 = 1;
13465 break;
13466
13467 case OPTION_FP64:
13468 file_mips_fp32 = 0;
13469 break;
13470
13471 case OPTION_SINGLE_FLOAT:
13472 file_mips_single_float = 1;
13473 break;
13474
13475 case OPTION_DOUBLE_FLOAT:
13476 file_mips_single_float = 0;
13477 break;
13478
13479 case OPTION_SOFT_FLOAT:
13480 file_mips_soft_float = 1;
13481 break;
13482
13483 case OPTION_HARD_FLOAT:
13484 file_mips_soft_float = 0;
13485 break;
13486
13487 case OPTION_MABI:
13488 if (strcmp (arg, "32") == 0)
13489 mips_abi = O32_ABI;
13490 else if (strcmp (arg, "o64") == 0)
13491 mips_abi = O64_ABI;
13492 else if (strcmp (arg, "n32") == 0)
13493 mips_abi = N32_ABI;
13494 else if (strcmp (arg, "64") == 0)
13495 {
13496 mips_abi = N64_ABI;
13497 if (! support_64bit_objects())
13498 as_fatal (_("No compiled in support for 64 bit object file "
13499 "format"));
13500 }
13501 else if (strcmp (arg, "eabi") == 0)
13502 mips_abi = EABI_ABI;
13503 else
13504 {
13505 as_fatal (_("invalid abi -mabi=%s"), arg);
13506 return 0;
13507 }
13508 break;
13509
13510 case OPTION_M7000_HILO_FIX:
13511 mips_7000_hilo_fix = TRUE;
13512 break;
13513
13514 case OPTION_MNO_7000_HILO_FIX:
13515 mips_7000_hilo_fix = FALSE;
13516 break;
13517
13518 case OPTION_MDEBUG:
13519 mips_flag_mdebug = TRUE;
13520 break;
13521
13522 case OPTION_NO_MDEBUG:
13523 mips_flag_mdebug = FALSE;
13524 break;
13525
13526 case OPTION_PDR:
13527 mips_flag_pdr = TRUE;
13528 break;
13529
13530 case OPTION_NO_PDR:
13531 mips_flag_pdr = FALSE;
13532 break;
13533
13534 case OPTION_MVXWORKS_PIC:
13535 mips_pic = VXWORKS_PIC;
13536 break;
13537
13538 case OPTION_NAN:
13539 if (strcmp (arg, "2008") == 0)
13540 mips_flag_nan2008 = TRUE;
13541 else if (strcmp (arg, "legacy") == 0)
13542 mips_flag_nan2008 = FALSE;
13543 else
13544 {
13545 as_fatal (_("Invalid NaN setting -mnan=%s"), arg);
13546 return 0;
13547 }
13548 break;
13549
13550 default:
13551 return 0;
13552 }
13553
13554 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
13555
13556 return 1;
13557 }
13558 \f
13559 /* Set up globals to generate code for the ISA or processor
13560 described by INFO. */
13561
13562 static void
13563 mips_set_architecture (const struct mips_cpu_info *info)
13564 {
13565 if (info != 0)
13566 {
13567 file_mips_arch = info->cpu;
13568 mips_opts.arch = info->cpu;
13569 mips_opts.isa = info->isa;
13570 }
13571 }
13572
13573
13574 /* Likewise for tuning. */
13575
13576 static void
13577 mips_set_tune (const struct mips_cpu_info *info)
13578 {
13579 if (info != 0)
13580 mips_tune = info->cpu;
13581 }
13582
13583
13584 void
13585 mips_after_parse_args (void)
13586 {
13587 const struct mips_cpu_info *arch_info = 0;
13588 const struct mips_cpu_info *tune_info = 0;
13589
13590 /* GP relative stuff not working for PE */
13591 if (strncmp (TARGET_OS, "pe", 2) == 0)
13592 {
13593 if (g_switch_seen && g_switch_value != 0)
13594 as_bad (_("-G not supported in this configuration."));
13595 g_switch_value = 0;
13596 }
13597
13598 if (mips_abi == NO_ABI)
13599 mips_abi = MIPS_DEFAULT_ABI;
13600
13601 /* The following code determines the architecture and register size.
13602 Similar code was added to GCC 3.3 (see override_options() in
13603 config/mips/mips.c). The GAS and GCC code should be kept in sync
13604 as much as possible. */
13605
13606 if (mips_arch_string != 0)
13607 arch_info = mips_parse_cpu ("-march", mips_arch_string);
13608
13609 if (file_mips_isa != ISA_UNKNOWN)
13610 {
13611 /* Handle -mipsN. At this point, file_mips_isa contains the
13612 ISA level specified by -mipsN, while arch_info->isa contains
13613 the -march selection (if any). */
13614 if (arch_info != 0)
13615 {
13616 /* -march takes precedence over -mipsN, since it is more descriptive.
13617 There's no harm in specifying both as long as the ISA levels
13618 are the same. */
13619 if (file_mips_isa != arch_info->isa)
13620 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
13621 mips_cpu_info_from_isa (file_mips_isa)->name,
13622 mips_cpu_info_from_isa (arch_info->isa)->name);
13623 }
13624 else
13625 arch_info = mips_cpu_info_from_isa (file_mips_isa);
13626 }
13627
13628 if (arch_info == 0)
13629 {
13630 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
13631 gas_assert (arch_info);
13632 }
13633
13634 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
13635 as_bad (_("-march=%s is not compatible with the selected ABI"),
13636 arch_info->name);
13637
13638 mips_set_architecture (arch_info);
13639
13640 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
13641 if (mips_tune_string != 0)
13642 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
13643
13644 if (tune_info == 0)
13645 mips_set_tune (arch_info);
13646 else
13647 mips_set_tune (tune_info);
13648
13649 if (file_mips_gp32 >= 0)
13650 {
13651 /* The user specified the size of the integer registers. Make sure
13652 it agrees with the ABI and ISA. */
13653 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
13654 as_bad (_("-mgp64 used with a 32-bit processor"));
13655 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
13656 as_bad (_("-mgp32 used with a 64-bit ABI"));
13657 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
13658 as_bad (_("-mgp64 used with a 32-bit ABI"));
13659 }
13660 else
13661 {
13662 /* Infer the integer register size from the ABI and processor.
13663 Restrict ourselves to 32-bit registers if that's all the
13664 processor has, or if the ABI cannot handle 64-bit registers. */
13665 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
13666 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
13667 }
13668
13669 switch (file_mips_fp32)
13670 {
13671 default:
13672 case -1:
13673 /* No user specified float register size.
13674 ??? GAS treats single-float processors as though they had 64-bit
13675 float registers (although it complains when double-precision
13676 instructions are used). As things stand, saying they have 32-bit
13677 registers would lead to spurious "register must be even" messages.
13678 So here we assume float registers are never smaller than the
13679 integer ones. */
13680 if (file_mips_gp32 == 0)
13681 /* 64-bit integer registers implies 64-bit float registers. */
13682 file_mips_fp32 = 0;
13683 else if ((mips_opts.ase & FP64_ASES)
13684 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
13685 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
13686 file_mips_fp32 = 0;
13687 else
13688 /* 32-bit float registers. */
13689 file_mips_fp32 = 1;
13690 break;
13691
13692 /* The user specified the size of the float registers. Check if it
13693 agrees with the ABI and ISA. */
13694 case 0:
13695 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13696 as_bad (_("-mfp64 used with a 32-bit fpu"));
13697 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
13698 && !ISA_HAS_MXHC1 (mips_opts.isa))
13699 as_warn (_("-mfp64 used with a 32-bit ABI"));
13700 break;
13701 case 1:
13702 if (ABI_NEEDS_64BIT_REGS (mips_abi))
13703 as_warn (_("-mfp32 used with a 64-bit ABI"));
13704 break;
13705 }
13706
13707 /* End of GCC-shared inference code. */
13708
13709 /* This flag is set when we have a 64-bit capable CPU but use only
13710 32-bit wide registers. Note that EABI does not use it. */
13711 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
13712 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
13713 || mips_abi == O32_ABI))
13714 mips_32bitmode = 1;
13715
13716 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
13717 as_bad (_("trap exception not supported at ISA 1"));
13718
13719 /* If the selected architecture includes support for ASEs, enable
13720 generation of code for them. */
13721 if (mips_opts.mips16 == -1)
13722 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
13723 if (mips_opts.micromips == -1)
13724 mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_arch)) ? 1 : 0;
13725
13726 /* MIPS3D and MDMX require 64-bit FPRs, so -mfp32 should stop those
13727 ASEs from being selected implicitly. */
13728 if (file_mips_fp32 == 1)
13729 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX;
13730
13731 /* If the user didn't explicitly select or deselect a particular ASE,
13732 use the default setting for the CPU. */
13733 mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
13734
13735 file_mips_isa = mips_opts.isa;
13736 file_ase = mips_opts.ase;
13737 mips_opts.gp32 = file_mips_gp32;
13738 mips_opts.fp32 = file_mips_fp32;
13739 mips_opts.soft_float = file_mips_soft_float;
13740 mips_opts.single_float = file_mips_single_float;
13741
13742 mips_check_isa_supports_ases ();
13743
13744 if (mips_flag_mdebug < 0)
13745 mips_flag_mdebug = 0;
13746 }
13747 \f
13748 void
13749 mips_init_after_args (void)
13750 {
13751 /* initialize opcodes */
13752 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
13753 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
13754 }
13755
13756 long
13757 md_pcrel_from (fixS *fixP)
13758 {
13759 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
13760 switch (fixP->fx_r_type)
13761 {
13762 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
13763 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
13764 /* Return the address of the delay slot. */
13765 return addr + 2;
13766
13767 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
13768 case BFD_RELOC_MICROMIPS_JMP:
13769 case BFD_RELOC_16_PCREL_S2:
13770 case BFD_RELOC_MIPS_JMP:
13771 /* Return the address of the delay slot. */
13772 return addr + 4;
13773
13774 case BFD_RELOC_32_PCREL:
13775 return addr;
13776
13777 default:
13778 /* We have no relocation type for PC relative MIPS16 instructions. */
13779 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
13780 as_bad_where (fixP->fx_file, fixP->fx_line,
13781 _("PC relative MIPS16 instruction references a different section"));
13782 return addr;
13783 }
13784 }
13785
13786 /* This is called before the symbol table is processed. In order to
13787 work with gcc when using mips-tfile, we must keep all local labels.
13788 However, in other cases, we want to discard them. If we were
13789 called with -g, but we didn't see any debugging information, it may
13790 mean that gcc is smuggling debugging information through to
13791 mips-tfile, in which case we must generate all local labels. */
13792
13793 void
13794 mips_frob_file_before_adjust (void)
13795 {
13796 #ifndef NO_ECOFF_DEBUGGING
13797 if (ECOFF_DEBUGGING
13798 && mips_debug != 0
13799 && ! ecoff_debugging_seen)
13800 flag_keep_locals = 1;
13801 #endif
13802 }
13803
13804 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
13805 the corresponding LO16 reloc. This is called before md_apply_fix and
13806 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
13807 relocation operators.
13808
13809 For our purposes, a %lo() expression matches a %got() or %hi()
13810 expression if:
13811
13812 (a) it refers to the same symbol; and
13813 (b) the offset applied in the %lo() expression is no lower than
13814 the offset applied in the %got() or %hi().
13815
13816 (b) allows us to cope with code like:
13817
13818 lui $4,%hi(foo)
13819 lh $4,%lo(foo+2)($4)
13820
13821 ...which is legal on RELA targets, and has a well-defined behaviour
13822 if the user knows that adding 2 to "foo" will not induce a carry to
13823 the high 16 bits.
13824
13825 When several %lo()s match a particular %got() or %hi(), we use the
13826 following rules to distinguish them:
13827
13828 (1) %lo()s with smaller offsets are a better match than %lo()s with
13829 higher offsets.
13830
13831 (2) %lo()s with no matching %got() or %hi() are better than those
13832 that already have a matching %got() or %hi().
13833
13834 (3) later %lo()s are better than earlier %lo()s.
13835
13836 These rules are applied in order.
13837
13838 (1) means, among other things, that %lo()s with identical offsets are
13839 chosen if they exist.
13840
13841 (2) means that we won't associate several high-part relocations with
13842 the same low-part relocation unless there's no alternative. Having
13843 several high parts for the same low part is a GNU extension; this rule
13844 allows careful users to avoid it.
13845
13846 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
13847 with the last high-part relocation being at the front of the list.
13848 It therefore makes sense to choose the last matching low-part
13849 relocation, all other things being equal. It's also easier
13850 to code that way. */
13851
13852 void
13853 mips_frob_file (void)
13854 {
13855 struct mips_hi_fixup *l;
13856 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
13857
13858 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
13859 {
13860 segment_info_type *seginfo;
13861 bfd_boolean matched_lo_p;
13862 fixS **hi_pos, **lo_pos, **pos;
13863
13864 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
13865
13866 /* If a GOT16 relocation turns out to be against a global symbol,
13867 there isn't supposed to be a matching LO. Ignore %gots against
13868 constants; we'll report an error for those later. */
13869 if (got16_reloc_p (l->fixp->fx_r_type)
13870 && !(l->fixp->fx_addsy
13871 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
13872 continue;
13873
13874 /* Check quickly whether the next fixup happens to be a matching %lo. */
13875 if (fixup_has_matching_lo_p (l->fixp))
13876 continue;
13877
13878 seginfo = seg_info (l->seg);
13879
13880 /* Set HI_POS to the position of this relocation in the chain.
13881 Set LO_POS to the position of the chosen low-part relocation.
13882 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
13883 relocation that matches an immediately-preceding high-part
13884 relocation. */
13885 hi_pos = NULL;
13886 lo_pos = NULL;
13887 matched_lo_p = FALSE;
13888 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
13889
13890 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
13891 {
13892 if (*pos == l->fixp)
13893 hi_pos = pos;
13894
13895 if ((*pos)->fx_r_type == looking_for_rtype
13896 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
13897 && (*pos)->fx_offset >= l->fixp->fx_offset
13898 && (lo_pos == NULL
13899 || (*pos)->fx_offset < (*lo_pos)->fx_offset
13900 || (!matched_lo_p
13901 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
13902 lo_pos = pos;
13903
13904 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
13905 && fixup_has_matching_lo_p (*pos));
13906 }
13907
13908 /* If we found a match, remove the high-part relocation from its
13909 current position and insert it before the low-part relocation.
13910 Make the offsets match so that fixup_has_matching_lo_p()
13911 will return true.
13912
13913 We don't warn about unmatched high-part relocations since some
13914 versions of gcc have been known to emit dead "lui ...%hi(...)"
13915 instructions. */
13916 if (lo_pos != NULL)
13917 {
13918 l->fixp->fx_offset = (*lo_pos)->fx_offset;
13919 if (l->fixp->fx_next != *lo_pos)
13920 {
13921 *hi_pos = l->fixp->fx_next;
13922 l->fixp->fx_next = *lo_pos;
13923 *lo_pos = l->fixp;
13924 }
13925 }
13926 }
13927 }
13928
13929 int
13930 mips_force_relocation (fixS *fixp)
13931 {
13932 if (generic_force_reloc (fixp))
13933 return 1;
13934
13935 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
13936 so that the linker relaxation can update targets. */
13937 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
13938 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
13939 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
13940 return 1;
13941
13942 return 0;
13943 }
13944
13945 /* Read the instruction associated with RELOC from BUF. */
13946
13947 static unsigned int
13948 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
13949 {
13950 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
13951 return read_compressed_insn (buf, 4);
13952 else
13953 return read_insn (buf);
13954 }
13955
13956 /* Write instruction INSN to BUF, given that it has been relocated
13957 by RELOC. */
13958
13959 static void
13960 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
13961 unsigned long insn)
13962 {
13963 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
13964 write_compressed_insn (buf, insn, 4);
13965 else
13966 write_insn (buf, insn);
13967 }
13968
13969 /* Apply a fixup to the object file. */
13970
13971 void
13972 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
13973 {
13974 char *buf;
13975 unsigned long insn;
13976 reloc_howto_type *howto;
13977
13978 /* We ignore generic BFD relocations we don't know about. */
13979 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
13980 if (! howto)
13981 return;
13982
13983 gas_assert (fixP->fx_size == 2
13984 || fixP->fx_size == 4
13985 || fixP->fx_r_type == BFD_RELOC_16
13986 || fixP->fx_r_type == BFD_RELOC_64
13987 || fixP->fx_r_type == BFD_RELOC_CTOR
13988 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
13989 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
13990 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
13991 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
13992 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
13993
13994 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
13995
13996 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
13997 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
13998 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
13999 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
14000 || fixP->fx_r_type == BFD_RELOC_32_PCREL);
14001
14002 /* Don't treat parts of a composite relocation as done. There are two
14003 reasons for this:
14004
14005 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14006 should nevertheless be emitted if the first part is.
14007
14008 (2) In normal usage, composite relocations are never assembly-time
14009 constants. The easiest way of dealing with the pathological
14010 exceptions is to generate a relocation against STN_UNDEF and
14011 leave everything up to the linker. */
14012 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14013 fixP->fx_done = 1;
14014
14015 switch (fixP->fx_r_type)
14016 {
14017 case BFD_RELOC_MIPS_TLS_GD:
14018 case BFD_RELOC_MIPS_TLS_LDM:
14019 case BFD_RELOC_MIPS_TLS_DTPREL32:
14020 case BFD_RELOC_MIPS_TLS_DTPREL64:
14021 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14022 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14023 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14024 case BFD_RELOC_MIPS_TLS_TPREL32:
14025 case BFD_RELOC_MIPS_TLS_TPREL64:
14026 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14027 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14028 case BFD_RELOC_MICROMIPS_TLS_GD:
14029 case BFD_RELOC_MICROMIPS_TLS_LDM:
14030 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14031 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14032 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14033 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14034 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14035 case BFD_RELOC_MIPS16_TLS_GD:
14036 case BFD_RELOC_MIPS16_TLS_LDM:
14037 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14038 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14039 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14040 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14041 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14042 if (!fixP->fx_addsy)
14043 {
14044 as_bad_where (fixP->fx_file, fixP->fx_line,
14045 _("TLS relocation against a constant"));
14046 break;
14047 }
14048 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14049 /* fall through */
14050
14051 case BFD_RELOC_MIPS_JMP:
14052 case BFD_RELOC_MIPS_SHIFT5:
14053 case BFD_RELOC_MIPS_SHIFT6:
14054 case BFD_RELOC_MIPS_GOT_DISP:
14055 case BFD_RELOC_MIPS_GOT_PAGE:
14056 case BFD_RELOC_MIPS_GOT_OFST:
14057 case BFD_RELOC_MIPS_SUB:
14058 case BFD_RELOC_MIPS_INSERT_A:
14059 case BFD_RELOC_MIPS_INSERT_B:
14060 case BFD_RELOC_MIPS_DELETE:
14061 case BFD_RELOC_MIPS_HIGHEST:
14062 case BFD_RELOC_MIPS_HIGHER:
14063 case BFD_RELOC_MIPS_SCN_DISP:
14064 case BFD_RELOC_MIPS_REL16:
14065 case BFD_RELOC_MIPS_RELGOT:
14066 case BFD_RELOC_MIPS_JALR:
14067 case BFD_RELOC_HI16:
14068 case BFD_RELOC_HI16_S:
14069 case BFD_RELOC_LO16:
14070 case BFD_RELOC_GPREL16:
14071 case BFD_RELOC_MIPS_LITERAL:
14072 case BFD_RELOC_MIPS_CALL16:
14073 case BFD_RELOC_MIPS_GOT16:
14074 case BFD_RELOC_GPREL32:
14075 case BFD_RELOC_MIPS_GOT_HI16:
14076 case BFD_RELOC_MIPS_GOT_LO16:
14077 case BFD_RELOC_MIPS_CALL_HI16:
14078 case BFD_RELOC_MIPS_CALL_LO16:
14079 case BFD_RELOC_MIPS16_GPREL:
14080 case BFD_RELOC_MIPS16_GOT16:
14081 case BFD_RELOC_MIPS16_CALL16:
14082 case BFD_RELOC_MIPS16_HI16:
14083 case BFD_RELOC_MIPS16_HI16_S:
14084 case BFD_RELOC_MIPS16_LO16:
14085 case BFD_RELOC_MIPS16_JMP:
14086 case BFD_RELOC_MICROMIPS_JMP:
14087 case BFD_RELOC_MICROMIPS_GOT_DISP:
14088 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14089 case BFD_RELOC_MICROMIPS_GOT_OFST:
14090 case BFD_RELOC_MICROMIPS_SUB:
14091 case BFD_RELOC_MICROMIPS_HIGHEST:
14092 case BFD_RELOC_MICROMIPS_HIGHER:
14093 case BFD_RELOC_MICROMIPS_SCN_DISP:
14094 case BFD_RELOC_MICROMIPS_JALR:
14095 case BFD_RELOC_MICROMIPS_HI16:
14096 case BFD_RELOC_MICROMIPS_HI16_S:
14097 case BFD_RELOC_MICROMIPS_LO16:
14098 case BFD_RELOC_MICROMIPS_GPREL16:
14099 case BFD_RELOC_MICROMIPS_LITERAL:
14100 case BFD_RELOC_MICROMIPS_CALL16:
14101 case BFD_RELOC_MICROMIPS_GOT16:
14102 case BFD_RELOC_MICROMIPS_GOT_HI16:
14103 case BFD_RELOC_MICROMIPS_GOT_LO16:
14104 case BFD_RELOC_MICROMIPS_CALL_HI16:
14105 case BFD_RELOC_MICROMIPS_CALL_LO16:
14106 case BFD_RELOC_MIPS_EH:
14107 if (fixP->fx_done)
14108 {
14109 offsetT value;
14110
14111 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14112 {
14113 insn = read_reloc_insn (buf, fixP->fx_r_type);
14114 if (mips16_reloc_p (fixP->fx_r_type))
14115 insn |= mips16_immed_extend (value, 16);
14116 else
14117 insn |= (value & 0xffff);
14118 write_reloc_insn (buf, fixP->fx_r_type, insn);
14119 }
14120 else
14121 as_bad_where (fixP->fx_file, fixP->fx_line,
14122 _("Unsupported constant in relocation"));
14123 }
14124 break;
14125
14126 case BFD_RELOC_64:
14127 /* This is handled like BFD_RELOC_32, but we output a sign
14128 extended value if we are only 32 bits. */
14129 if (fixP->fx_done)
14130 {
14131 if (8 <= sizeof (valueT))
14132 md_number_to_chars (buf, *valP, 8);
14133 else
14134 {
14135 valueT hiv;
14136
14137 if ((*valP & 0x80000000) != 0)
14138 hiv = 0xffffffff;
14139 else
14140 hiv = 0;
14141 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14142 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
14143 }
14144 }
14145 break;
14146
14147 case BFD_RELOC_RVA:
14148 case BFD_RELOC_32:
14149 case BFD_RELOC_32_PCREL:
14150 case BFD_RELOC_16:
14151 /* If we are deleting this reloc entry, we must fill in the
14152 value now. This can happen if we have a .word which is not
14153 resolved when it appears but is later defined. */
14154 if (fixP->fx_done)
14155 md_number_to_chars (buf, *valP, fixP->fx_size);
14156 break;
14157
14158 case BFD_RELOC_16_PCREL_S2:
14159 if ((*valP & 0x3) != 0)
14160 as_bad_where (fixP->fx_file, fixP->fx_line,
14161 _("Branch to misaligned address (%lx)"), (long) *valP);
14162
14163 /* We need to save the bits in the instruction since fixup_segment()
14164 might be deleting the relocation entry (i.e., a branch within
14165 the current segment). */
14166 if (! fixP->fx_done)
14167 break;
14168
14169 /* Update old instruction data. */
14170 insn = read_insn (buf);
14171
14172 if (*valP + 0x20000 <= 0x3ffff)
14173 {
14174 insn |= (*valP >> 2) & 0xffff;
14175 write_insn (buf, insn);
14176 }
14177 else if (mips_pic == NO_PIC
14178 && fixP->fx_done
14179 && fixP->fx_frag->fr_address >= text_section->vma
14180 && (fixP->fx_frag->fr_address
14181 < text_section->vma + bfd_get_section_size (text_section))
14182 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
14183 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
14184 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
14185 {
14186 /* The branch offset is too large. If this is an
14187 unconditional branch, and we are not generating PIC code,
14188 we can convert it to an absolute jump instruction. */
14189 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
14190 insn = 0x0c000000; /* jal */
14191 else
14192 insn = 0x08000000; /* j */
14193 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
14194 fixP->fx_done = 0;
14195 fixP->fx_addsy = section_symbol (text_section);
14196 *valP += md_pcrel_from (fixP);
14197 write_insn (buf, insn);
14198 }
14199 else
14200 {
14201 /* If we got here, we have branch-relaxation disabled,
14202 and there's nothing we can do to fix this instruction
14203 without turning it into a longer sequence. */
14204 as_bad_where (fixP->fx_file, fixP->fx_line,
14205 _("Branch out of range"));
14206 }
14207 break;
14208
14209 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14210 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14211 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14212 /* We adjust the offset back to even. */
14213 if ((*valP & 0x1) != 0)
14214 --(*valP);
14215
14216 if (! fixP->fx_done)
14217 break;
14218
14219 /* Should never visit here, because we keep the relocation. */
14220 abort ();
14221 break;
14222
14223 case BFD_RELOC_VTABLE_INHERIT:
14224 fixP->fx_done = 0;
14225 if (fixP->fx_addsy
14226 && !S_IS_DEFINED (fixP->fx_addsy)
14227 && !S_IS_WEAK (fixP->fx_addsy))
14228 S_SET_WEAK (fixP->fx_addsy);
14229 break;
14230
14231 case BFD_RELOC_VTABLE_ENTRY:
14232 fixP->fx_done = 0;
14233 break;
14234
14235 default:
14236 abort ();
14237 }
14238
14239 /* Remember value for tc_gen_reloc. */
14240 fixP->fx_addnumber = *valP;
14241 }
14242
14243 static symbolS *
14244 get_symbol (void)
14245 {
14246 int c;
14247 char *name;
14248 symbolS *p;
14249
14250 name = input_line_pointer;
14251 c = get_symbol_end ();
14252 p = (symbolS *) symbol_find_or_make (name);
14253 *input_line_pointer = c;
14254 return p;
14255 }
14256
14257 /* Align the current frag to a given power of two. If a particular
14258 fill byte should be used, FILL points to an integer that contains
14259 that byte, otherwise FILL is null.
14260
14261 This function used to have the comment:
14262
14263 The MIPS assembler also automatically adjusts any preceding label.
14264
14265 The implementation therefore applied the adjustment to a maximum of
14266 one label. However, other label adjustments are applied to batches
14267 of labels, and adjusting just one caused problems when new labels
14268 were added for the sake of debugging or unwind information.
14269 We therefore adjust all preceding labels (given as LABELS) instead. */
14270
14271 static void
14272 mips_align (int to, int *fill, struct insn_label_list *labels)
14273 {
14274 mips_emit_delays ();
14275 mips_record_compressed_mode ();
14276 if (fill == NULL && subseg_text_p (now_seg))
14277 frag_align_code (to, 0);
14278 else
14279 frag_align (to, fill ? *fill : 0, 0);
14280 record_alignment (now_seg, to);
14281 mips_move_labels (labels, FALSE);
14282 }
14283
14284 /* Align to a given power of two. .align 0 turns off the automatic
14285 alignment used by the data creating pseudo-ops. */
14286
14287 static void
14288 s_align (int x ATTRIBUTE_UNUSED)
14289 {
14290 int temp, fill_value, *fill_ptr;
14291 long max_alignment = 28;
14292
14293 /* o Note that the assembler pulls down any immediately preceding label
14294 to the aligned address.
14295 o It's not documented but auto alignment is reinstated by
14296 a .align pseudo instruction.
14297 o Note also that after auto alignment is turned off the mips assembler
14298 issues an error on attempt to assemble an improperly aligned data item.
14299 We don't. */
14300
14301 temp = get_absolute_expression ();
14302 if (temp > max_alignment)
14303 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
14304 else if (temp < 0)
14305 {
14306 as_warn (_("Alignment negative: 0 assumed."));
14307 temp = 0;
14308 }
14309 if (*input_line_pointer == ',')
14310 {
14311 ++input_line_pointer;
14312 fill_value = get_absolute_expression ();
14313 fill_ptr = &fill_value;
14314 }
14315 else
14316 fill_ptr = 0;
14317 if (temp)
14318 {
14319 segment_info_type *si = seg_info (now_seg);
14320 struct insn_label_list *l = si->label_list;
14321 /* Auto alignment should be switched on by next section change. */
14322 auto_align = 1;
14323 mips_align (temp, fill_ptr, l);
14324 }
14325 else
14326 {
14327 auto_align = 0;
14328 }
14329
14330 demand_empty_rest_of_line ();
14331 }
14332
14333 static void
14334 s_change_sec (int sec)
14335 {
14336 segT seg;
14337
14338 /* The ELF backend needs to know that we are changing sections, so
14339 that .previous works correctly. We could do something like check
14340 for an obj_section_change_hook macro, but that might be confusing
14341 as it would not be appropriate to use it in the section changing
14342 functions in read.c, since obj-elf.c intercepts those. FIXME:
14343 This should be cleaner, somehow. */
14344 obj_elf_section_change_hook ();
14345
14346 mips_emit_delays ();
14347
14348 switch (sec)
14349 {
14350 case 't':
14351 s_text (0);
14352 break;
14353 case 'd':
14354 s_data (0);
14355 break;
14356 case 'b':
14357 subseg_set (bss_section, (subsegT) get_absolute_expression ());
14358 demand_empty_rest_of_line ();
14359 break;
14360
14361 case 'r':
14362 seg = subseg_new (RDATA_SECTION_NAME,
14363 (subsegT) get_absolute_expression ());
14364 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
14365 | SEC_READONLY | SEC_RELOC
14366 | SEC_DATA));
14367 if (strncmp (TARGET_OS, "elf", 3) != 0)
14368 record_alignment (seg, 4);
14369 demand_empty_rest_of_line ();
14370 break;
14371
14372 case 's':
14373 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
14374 bfd_set_section_flags (stdoutput, seg,
14375 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
14376 if (strncmp (TARGET_OS, "elf", 3) != 0)
14377 record_alignment (seg, 4);
14378 demand_empty_rest_of_line ();
14379 break;
14380
14381 case 'B':
14382 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
14383 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
14384 if (strncmp (TARGET_OS, "elf", 3) != 0)
14385 record_alignment (seg, 4);
14386 demand_empty_rest_of_line ();
14387 break;
14388 }
14389
14390 auto_align = 1;
14391 }
14392
14393 void
14394 s_change_section (int ignore ATTRIBUTE_UNUSED)
14395 {
14396 char *section_name;
14397 char c;
14398 char next_c = 0;
14399 int section_type;
14400 int section_flag;
14401 int section_entry_size;
14402 int section_alignment;
14403
14404 section_name = input_line_pointer;
14405 c = get_symbol_end ();
14406 if (c)
14407 next_c = *(input_line_pointer + 1);
14408
14409 /* Do we have .section Name<,"flags">? */
14410 if (c != ',' || (c == ',' && next_c == '"'))
14411 {
14412 /* just after name is now '\0'. */
14413 *input_line_pointer = c;
14414 input_line_pointer = section_name;
14415 obj_elf_section (ignore);
14416 return;
14417 }
14418 input_line_pointer++;
14419
14420 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
14421 if (c == ',')
14422 section_type = get_absolute_expression ();
14423 else
14424 section_type = 0;
14425 if (*input_line_pointer++ == ',')
14426 section_flag = get_absolute_expression ();
14427 else
14428 section_flag = 0;
14429 if (*input_line_pointer++ == ',')
14430 section_entry_size = get_absolute_expression ();
14431 else
14432 section_entry_size = 0;
14433 if (*input_line_pointer++ == ',')
14434 section_alignment = get_absolute_expression ();
14435 else
14436 section_alignment = 0;
14437 /* FIXME: really ignore? */
14438 (void) section_alignment;
14439
14440 section_name = xstrdup (section_name);
14441
14442 /* When using the generic form of .section (as implemented by obj-elf.c),
14443 there's no way to set the section type to SHT_MIPS_DWARF. Users have
14444 traditionally had to fall back on the more common @progbits instead.
14445
14446 There's nothing really harmful in this, since bfd will correct
14447 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
14448 means that, for backwards compatibility, the special_section entries
14449 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
14450
14451 Even so, we shouldn't force users of the MIPS .section syntax to
14452 incorrectly label the sections as SHT_PROGBITS. The best compromise
14453 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
14454 generic type-checking code. */
14455 if (section_type == SHT_MIPS_DWARF)
14456 section_type = SHT_PROGBITS;
14457
14458 obj_elf_change_section (section_name, section_type, section_flag,
14459 section_entry_size, 0, 0, 0);
14460
14461 if (now_seg->name != section_name)
14462 free (section_name);
14463 }
14464
14465 void
14466 mips_enable_auto_align (void)
14467 {
14468 auto_align = 1;
14469 }
14470
14471 static void
14472 s_cons (int log_size)
14473 {
14474 segment_info_type *si = seg_info (now_seg);
14475 struct insn_label_list *l = si->label_list;
14476
14477 mips_emit_delays ();
14478 if (log_size > 0 && auto_align)
14479 mips_align (log_size, 0, l);
14480 cons (1 << log_size);
14481 mips_clear_insn_labels ();
14482 }
14483
14484 static void
14485 s_float_cons (int type)
14486 {
14487 segment_info_type *si = seg_info (now_seg);
14488 struct insn_label_list *l = si->label_list;
14489
14490 mips_emit_delays ();
14491
14492 if (auto_align)
14493 {
14494 if (type == 'd')
14495 mips_align (3, 0, l);
14496 else
14497 mips_align (2, 0, l);
14498 }
14499
14500 float_cons (type);
14501 mips_clear_insn_labels ();
14502 }
14503
14504 /* Handle .globl. We need to override it because on Irix 5 you are
14505 permitted to say
14506 .globl foo .text
14507 where foo is an undefined symbol, to mean that foo should be
14508 considered to be the address of a function. */
14509
14510 static void
14511 s_mips_globl (int x ATTRIBUTE_UNUSED)
14512 {
14513 char *name;
14514 int c;
14515 symbolS *symbolP;
14516 flagword flag;
14517
14518 do
14519 {
14520 name = input_line_pointer;
14521 c = get_symbol_end ();
14522 symbolP = symbol_find_or_make (name);
14523 S_SET_EXTERNAL (symbolP);
14524
14525 *input_line_pointer = c;
14526 SKIP_WHITESPACE ();
14527
14528 /* On Irix 5, every global symbol that is not explicitly labelled as
14529 being a function is apparently labelled as being an object. */
14530 flag = BSF_OBJECT;
14531
14532 if (!is_end_of_line[(unsigned char) *input_line_pointer]
14533 && (*input_line_pointer != ','))
14534 {
14535 char *secname;
14536 asection *sec;
14537
14538 secname = input_line_pointer;
14539 c = get_symbol_end ();
14540 sec = bfd_get_section_by_name (stdoutput, secname);
14541 if (sec == NULL)
14542 as_bad (_("%s: no such section"), secname);
14543 *input_line_pointer = c;
14544
14545 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
14546 flag = BSF_FUNCTION;
14547 }
14548
14549 symbol_get_bfdsym (symbolP)->flags |= flag;
14550
14551 c = *input_line_pointer;
14552 if (c == ',')
14553 {
14554 input_line_pointer++;
14555 SKIP_WHITESPACE ();
14556 if (is_end_of_line[(unsigned char) *input_line_pointer])
14557 c = '\n';
14558 }
14559 }
14560 while (c == ',');
14561
14562 demand_empty_rest_of_line ();
14563 }
14564
14565 static void
14566 s_option (int x ATTRIBUTE_UNUSED)
14567 {
14568 char *opt;
14569 char c;
14570
14571 opt = input_line_pointer;
14572 c = get_symbol_end ();
14573
14574 if (*opt == 'O')
14575 {
14576 /* FIXME: What does this mean? */
14577 }
14578 else if (strncmp (opt, "pic", 3) == 0)
14579 {
14580 int i;
14581
14582 i = atoi (opt + 3);
14583 if (i == 0)
14584 mips_pic = NO_PIC;
14585 else if (i == 2)
14586 {
14587 mips_pic = SVR4_PIC;
14588 mips_abicalls = TRUE;
14589 }
14590 else
14591 as_bad (_(".option pic%d not supported"), i);
14592
14593 if (mips_pic == SVR4_PIC)
14594 {
14595 if (g_switch_seen && g_switch_value != 0)
14596 as_warn (_("-G may not be used with SVR4 PIC code"));
14597 g_switch_value = 0;
14598 bfd_set_gp_size (stdoutput, 0);
14599 }
14600 }
14601 else
14602 as_warn (_("Unrecognized option \"%s\""), opt);
14603
14604 *input_line_pointer = c;
14605 demand_empty_rest_of_line ();
14606 }
14607
14608 /* This structure is used to hold a stack of .set values. */
14609
14610 struct mips_option_stack
14611 {
14612 struct mips_option_stack *next;
14613 struct mips_set_options options;
14614 };
14615
14616 static struct mips_option_stack *mips_opts_stack;
14617
14618 /* Handle the .set pseudo-op. */
14619
14620 static void
14621 s_mipsset (int x ATTRIBUTE_UNUSED)
14622 {
14623 char *name = input_line_pointer, ch;
14624 const struct mips_ase *ase;
14625
14626 while (!is_end_of_line[(unsigned char) *input_line_pointer])
14627 ++input_line_pointer;
14628 ch = *input_line_pointer;
14629 *input_line_pointer = '\0';
14630
14631 if (strcmp (name, "reorder") == 0)
14632 {
14633 if (mips_opts.noreorder)
14634 end_noreorder ();
14635 }
14636 else if (strcmp (name, "noreorder") == 0)
14637 {
14638 if (!mips_opts.noreorder)
14639 start_noreorder ();
14640 }
14641 else if (strncmp (name, "at=", 3) == 0)
14642 {
14643 char *s = name + 3;
14644
14645 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
14646 as_bad (_("Unrecognized register name `%s'"), s);
14647 }
14648 else if (strcmp (name, "at") == 0)
14649 {
14650 mips_opts.at = ATREG;
14651 }
14652 else if (strcmp (name, "noat") == 0)
14653 {
14654 mips_opts.at = ZERO;
14655 }
14656 else if (strcmp (name, "macro") == 0)
14657 {
14658 mips_opts.warn_about_macros = 0;
14659 }
14660 else if (strcmp (name, "nomacro") == 0)
14661 {
14662 if (mips_opts.noreorder == 0)
14663 as_bad (_("`noreorder' must be set before `nomacro'"));
14664 mips_opts.warn_about_macros = 1;
14665 }
14666 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
14667 {
14668 mips_opts.nomove = 0;
14669 }
14670 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
14671 {
14672 mips_opts.nomove = 1;
14673 }
14674 else if (strcmp (name, "bopt") == 0)
14675 {
14676 mips_opts.nobopt = 0;
14677 }
14678 else if (strcmp (name, "nobopt") == 0)
14679 {
14680 mips_opts.nobopt = 1;
14681 }
14682 else if (strcmp (name, "gp=default") == 0)
14683 mips_opts.gp32 = file_mips_gp32;
14684 else if (strcmp (name, "gp=32") == 0)
14685 mips_opts.gp32 = 1;
14686 else if (strcmp (name, "gp=64") == 0)
14687 {
14688 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
14689 as_warn (_("%s isa does not support 64-bit registers"),
14690 mips_cpu_info_from_isa (mips_opts.isa)->name);
14691 mips_opts.gp32 = 0;
14692 }
14693 else if (strcmp (name, "fp=default") == 0)
14694 mips_opts.fp32 = file_mips_fp32;
14695 else if (strcmp (name, "fp=32") == 0)
14696 mips_opts.fp32 = 1;
14697 else if (strcmp (name, "fp=64") == 0)
14698 {
14699 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
14700 as_warn (_("%s isa does not support 64-bit floating point registers"),
14701 mips_cpu_info_from_isa (mips_opts.isa)->name);
14702 mips_opts.fp32 = 0;
14703 }
14704 else if (strcmp (name, "softfloat") == 0)
14705 mips_opts.soft_float = 1;
14706 else if (strcmp (name, "hardfloat") == 0)
14707 mips_opts.soft_float = 0;
14708 else if (strcmp (name, "singlefloat") == 0)
14709 mips_opts.single_float = 1;
14710 else if (strcmp (name, "doublefloat") == 0)
14711 mips_opts.single_float = 0;
14712 else if (strcmp (name, "mips16") == 0
14713 || strcmp (name, "MIPS-16") == 0)
14714 {
14715 if (mips_opts.micromips == 1)
14716 as_fatal (_("`mips16' cannot be used with `micromips'"));
14717 mips_opts.mips16 = 1;
14718 }
14719 else if (strcmp (name, "nomips16") == 0
14720 || strcmp (name, "noMIPS-16") == 0)
14721 mips_opts.mips16 = 0;
14722 else if (strcmp (name, "micromips") == 0)
14723 {
14724 if (mips_opts.mips16 == 1)
14725 as_fatal (_("`micromips' cannot be used with `mips16'"));
14726 mips_opts.micromips = 1;
14727 }
14728 else if (strcmp (name, "nomicromips") == 0)
14729 mips_opts.micromips = 0;
14730 else if (name[0] == 'n'
14731 && name[1] == 'o'
14732 && (ase = mips_lookup_ase (name + 2)))
14733 mips_set_ase (ase, FALSE);
14734 else if ((ase = mips_lookup_ase (name)))
14735 mips_set_ase (ase, TRUE);
14736 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
14737 {
14738 int reset = 0;
14739
14740 /* Permit the user to change the ISA and architecture on the fly.
14741 Needless to say, misuse can cause serious problems. */
14742 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
14743 {
14744 reset = 1;
14745 mips_opts.isa = file_mips_isa;
14746 mips_opts.arch = file_mips_arch;
14747 }
14748 else if (strncmp (name, "arch=", 5) == 0)
14749 {
14750 const struct mips_cpu_info *p;
14751
14752 p = mips_parse_cpu("internal use", name + 5);
14753 if (!p)
14754 as_bad (_("unknown architecture %s"), name + 5);
14755 else
14756 {
14757 mips_opts.arch = p->cpu;
14758 mips_opts.isa = p->isa;
14759 }
14760 }
14761 else if (strncmp (name, "mips", 4) == 0)
14762 {
14763 const struct mips_cpu_info *p;
14764
14765 p = mips_parse_cpu("internal use", name);
14766 if (!p)
14767 as_bad (_("unknown ISA level %s"), name + 4);
14768 else
14769 {
14770 mips_opts.arch = p->cpu;
14771 mips_opts.isa = p->isa;
14772 }
14773 }
14774 else
14775 as_bad (_("unknown ISA or architecture %s"), name);
14776
14777 switch (mips_opts.isa)
14778 {
14779 case 0:
14780 break;
14781 case ISA_MIPS1:
14782 case ISA_MIPS2:
14783 case ISA_MIPS32:
14784 case ISA_MIPS32R2:
14785 mips_opts.gp32 = 1;
14786 mips_opts.fp32 = 1;
14787 break;
14788 case ISA_MIPS3:
14789 case ISA_MIPS4:
14790 case ISA_MIPS5:
14791 case ISA_MIPS64:
14792 case ISA_MIPS64R2:
14793 mips_opts.gp32 = 0;
14794 if (mips_opts.arch == CPU_R5900)
14795 {
14796 mips_opts.fp32 = 1;
14797 }
14798 else
14799 {
14800 mips_opts.fp32 = 0;
14801 }
14802 break;
14803 default:
14804 as_bad (_("unknown ISA level %s"), name + 4);
14805 break;
14806 }
14807 if (reset)
14808 {
14809 mips_opts.gp32 = file_mips_gp32;
14810 mips_opts.fp32 = file_mips_fp32;
14811 }
14812 }
14813 else if (strcmp (name, "autoextend") == 0)
14814 mips_opts.noautoextend = 0;
14815 else if (strcmp (name, "noautoextend") == 0)
14816 mips_opts.noautoextend = 1;
14817 else if (strcmp (name, "insn32") == 0)
14818 mips_opts.insn32 = TRUE;
14819 else if (strcmp (name, "noinsn32") == 0)
14820 mips_opts.insn32 = FALSE;
14821 else if (strcmp (name, "push") == 0)
14822 {
14823 struct mips_option_stack *s;
14824
14825 s = (struct mips_option_stack *) xmalloc (sizeof *s);
14826 s->next = mips_opts_stack;
14827 s->options = mips_opts;
14828 mips_opts_stack = s;
14829 }
14830 else if (strcmp (name, "pop") == 0)
14831 {
14832 struct mips_option_stack *s;
14833
14834 s = mips_opts_stack;
14835 if (s == NULL)
14836 as_bad (_(".set pop with no .set push"));
14837 else
14838 {
14839 /* If we're changing the reorder mode we need to handle
14840 delay slots correctly. */
14841 if (s->options.noreorder && ! mips_opts.noreorder)
14842 start_noreorder ();
14843 else if (! s->options.noreorder && mips_opts.noreorder)
14844 end_noreorder ();
14845
14846 mips_opts = s->options;
14847 mips_opts_stack = s->next;
14848 free (s);
14849 }
14850 }
14851 else if (strcmp (name, "sym32") == 0)
14852 mips_opts.sym32 = TRUE;
14853 else if (strcmp (name, "nosym32") == 0)
14854 mips_opts.sym32 = FALSE;
14855 else if (strchr (name, ','))
14856 {
14857 /* Generic ".set" directive; use the generic handler. */
14858 *input_line_pointer = ch;
14859 input_line_pointer = name;
14860 s_set (0);
14861 return;
14862 }
14863 else
14864 {
14865 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
14866 }
14867 mips_check_isa_supports_ases ();
14868 *input_line_pointer = ch;
14869 demand_empty_rest_of_line ();
14870 }
14871
14872 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
14873 .option pic2. It means to generate SVR4 PIC calls. */
14874
14875 static void
14876 s_abicalls (int ignore ATTRIBUTE_UNUSED)
14877 {
14878 mips_pic = SVR4_PIC;
14879 mips_abicalls = TRUE;
14880
14881 if (g_switch_seen && g_switch_value != 0)
14882 as_warn (_("-G may not be used with SVR4 PIC code"));
14883 g_switch_value = 0;
14884
14885 bfd_set_gp_size (stdoutput, 0);
14886 demand_empty_rest_of_line ();
14887 }
14888
14889 /* Handle the .cpload pseudo-op. This is used when generating SVR4
14890 PIC code. It sets the $gp register for the function based on the
14891 function address, which is in the register named in the argument.
14892 This uses a relocation against _gp_disp, which is handled specially
14893 by the linker. The result is:
14894 lui $gp,%hi(_gp_disp)
14895 addiu $gp,$gp,%lo(_gp_disp)
14896 addu $gp,$gp,.cpload argument
14897 The .cpload argument is normally $25 == $t9.
14898
14899 The -mno-shared option changes this to:
14900 lui $gp,%hi(__gnu_local_gp)
14901 addiu $gp,$gp,%lo(__gnu_local_gp)
14902 and the argument is ignored. This saves an instruction, but the
14903 resulting code is not position independent; it uses an absolute
14904 address for __gnu_local_gp. Thus code assembled with -mno-shared
14905 can go into an ordinary executable, but not into a shared library. */
14906
14907 static void
14908 s_cpload (int ignore ATTRIBUTE_UNUSED)
14909 {
14910 expressionS ex;
14911 int reg;
14912 int in_shared;
14913
14914 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
14915 .cpload is ignored. */
14916 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
14917 {
14918 s_ignore (0);
14919 return;
14920 }
14921
14922 if (mips_opts.mips16)
14923 {
14924 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
14925 ignore_rest_of_line ();
14926 return;
14927 }
14928
14929 /* .cpload should be in a .set noreorder section. */
14930 if (mips_opts.noreorder == 0)
14931 as_warn (_(".cpload not in noreorder section"));
14932
14933 reg = tc_get_register (0);
14934
14935 /* If we need to produce a 64-bit address, we are better off using
14936 the default instruction sequence. */
14937 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
14938
14939 ex.X_op = O_symbol;
14940 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
14941 "__gnu_local_gp");
14942 ex.X_op_symbol = NULL;
14943 ex.X_add_number = 0;
14944
14945 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
14946 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
14947
14948 mips_mark_labels ();
14949 mips_assembling_insn = TRUE;
14950
14951 macro_start ();
14952 macro_build_lui (&ex, mips_gp_register);
14953 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
14954 mips_gp_register, BFD_RELOC_LO16);
14955 if (in_shared)
14956 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
14957 mips_gp_register, reg);
14958 macro_end ();
14959
14960 mips_assembling_insn = FALSE;
14961 demand_empty_rest_of_line ();
14962 }
14963
14964 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
14965 .cpsetup $reg1, offset|$reg2, label
14966
14967 If offset is given, this results in:
14968 sd $gp, offset($sp)
14969 lui $gp, %hi(%neg(%gp_rel(label)))
14970 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
14971 daddu $gp, $gp, $reg1
14972
14973 If $reg2 is given, this results in:
14974 daddu $reg2, $gp, $0
14975 lui $gp, %hi(%neg(%gp_rel(label)))
14976 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
14977 daddu $gp, $gp, $reg1
14978 $reg1 is normally $25 == $t9.
14979
14980 The -mno-shared option replaces the last three instructions with
14981 lui $gp,%hi(_gp)
14982 addiu $gp,$gp,%lo(_gp) */
14983
14984 static void
14985 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
14986 {
14987 expressionS ex_off;
14988 expressionS ex_sym;
14989 int reg1;
14990
14991 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
14992 We also need NewABI support. */
14993 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
14994 {
14995 s_ignore (0);
14996 return;
14997 }
14998
14999 if (mips_opts.mips16)
15000 {
15001 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15002 ignore_rest_of_line ();
15003 return;
15004 }
15005
15006 reg1 = tc_get_register (0);
15007 SKIP_WHITESPACE ();
15008 if (*input_line_pointer != ',')
15009 {
15010 as_bad (_("missing argument separator ',' for .cpsetup"));
15011 return;
15012 }
15013 else
15014 ++input_line_pointer;
15015 SKIP_WHITESPACE ();
15016 if (*input_line_pointer == '$')
15017 {
15018 mips_cpreturn_register = tc_get_register (0);
15019 mips_cpreturn_offset = -1;
15020 }
15021 else
15022 {
15023 mips_cpreturn_offset = get_absolute_expression ();
15024 mips_cpreturn_register = -1;
15025 }
15026 SKIP_WHITESPACE ();
15027 if (*input_line_pointer != ',')
15028 {
15029 as_bad (_("missing argument separator ',' for .cpsetup"));
15030 return;
15031 }
15032 else
15033 ++input_line_pointer;
15034 SKIP_WHITESPACE ();
15035 expression (&ex_sym);
15036
15037 mips_mark_labels ();
15038 mips_assembling_insn = TRUE;
15039
15040 macro_start ();
15041 if (mips_cpreturn_register == -1)
15042 {
15043 ex_off.X_op = O_constant;
15044 ex_off.X_add_symbol = NULL;
15045 ex_off.X_op_symbol = NULL;
15046 ex_off.X_add_number = mips_cpreturn_offset;
15047
15048 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15049 BFD_RELOC_LO16, SP);
15050 }
15051 else
15052 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
15053 mips_gp_register, 0);
15054
15055 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15056 {
15057 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15058 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15059 BFD_RELOC_HI16_S);
15060
15061 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15062 mips_gp_register, -1, BFD_RELOC_GPREL16,
15063 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15064
15065 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15066 mips_gp_register, reg1);
15067 }
15068 else
15069 {
15070 expressionS ex;
15071
15072 ex.X_op = O_symbol;
15073 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
15074 ex.X_op_symbol = NULL;
15075 ex.X_add_number = 0;
15076
15077 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15078 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15079
15080 macro_build_lui (&ex, mips_gp_register);
15081 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15082 mips_gp_register, BFD_RELOC_LO16);
15083 }
15084
15085 macro_end ();
15086
15087 mips_assembling_insn = FALSE;
15088 demand_empty_rest_of_line ();
15089 }
15090
15091 static void
15092 s_cplocal (int ignore ATTRIBUTE_UNUSED)
15093 {
15094 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
15095 .cplocal is ignored. */
15096 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15097 {
15098 s_ignore (0);
15099 return;
15100 }
15101
15102 if (mips_opts.mips16)
15103 {
15104 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
15105 ignore_rest_of_line ();
15106 return;
15107 }
15108
15109 mips_gp_register = tc_get_register (0);
15110 demand_empty_rest_of_line ();
15111 }
15112
15113 /* Handle the .cprestore pseudo-op. This stores $gp into a given
15114 offset from $sp. The offset is remembered, and after making a PIC
15115 call $gp is restored from that location. */
15116
15117 static void
15118 s_cprestore (int ignore ATTRIBUTE_UNUSED)
15119 {
15120 expressionS ex;
15121
15122 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15123 .cprestore is ignored. */
15124 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15125 {
15126 s_ignore (0);
15127 return;
15128 }
15129
15130 if (mips_opts.mips16)
15131 {
15132 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
15133 ignore_rest_of_line ();
15134 return;
15135 }
15136
15137 mips_cprestore_offset = get_absolute_expression ();
15138 mips_cprestore_valid = 1;
15139
15140 ex.X_op = O_constant;
15141 ex.X_add_symbol = NULL;
15142 ex.X_op_symbol = NULL;
15143 ex.X_add_number = mips_cprestore_offset;
15144
15145 mips_mark_labels ();
15146 mips_assembling_insn = TRUE;
15147
15148 macro_start ();
15149 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
15150 SP, HAVE_64BIT_ADDRESSES);
15151 macro_end ();
15152
15153 mips_assembling_insn = FALSE;
15154 demand_empty_rest_of_line ();
15155 }
15156
15157 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
15158 was given in the preceding .cpsetup, it results in:
15159 ld $gp, offset($sp)
15160
15161 If a register $reg2 was given there, it results in:
15162 daddu $gp, $reg2, $0 */
15163
15164 static void
15165 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
15166 {
15167 expressionS ex;
15168
15169 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
15170 We also need NewABI support. */
15171 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15172 {
15173 s_ignore (0);
15174 return;
15175 }
15176
15177 if (mips_opts.mips16)
15178 {
15179 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
15180 ignore_rest_of_line ();
15181 return;
15182 }
15183
15184 mips_mark_labels ();
15185 mips_assembling_insn = TRUE;
15186
15187 macro_start ();
15188 if (mips_cpreturn_register == -1)
15189 {
15190 ex.X_op = O_constant;
15191 ex.X_add_symbol = NULL;
15192 ex.X_op_symbol = NULL;
15193 ex.X_add_number = mips_cpreturn_offset;
15194
15195 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
15196 }
15197 else
15198 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
15199 mips_cpreturn_register, 0);
15200 macro_end ();
15201
15202 mips_assembling_insn = FALSE;
15203 demand_empty_rest_of_line ();
15204 }
15205
15206 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
15207 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
15208 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
15209 debug information or MIPS16 TLS. */
15210
15211 static void
15212 s_tls_rel_directive (const size_t bytes, const char *dirstr,
15213 bfd_reloc_code_real_type rtype)
15214 {
15215 expressionS ex;
15216 char *p;
15217
15218 expression (&ex);
15219
15220 if (ex.X_op != O_symbol)
15221 {
15222 as_bad (_("Unsupported use of %s"), dirstr);
15223 ignore_rest_of_line ();
15224 }
15225
15226 p = frag_more (bytes);
15227 md_number_to_chars (p, 0, bytes);
15228 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
15229 demand_empty_rest_of_line ();
15230 mips_clear_insn_labels ();
15231 }
15232
15233 /* Handle .dtprelword. */
15234
15235 static void
15236 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
15237 {
15238 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
15239 }
15240
15241 /* Handle .dtpreldword. */
15242
15243 static void
15244 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
15245 {
15246 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
15247 }
15248
15249 /* Handle .tprelword. */
15250
15251 static void
15252 s_tprelword (int ignore ATTRIBUTE_UNUSED)
15253 {
15254 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
15255 }
15256
15257 /* Handle .tpreldword. */
15258
15259 static void
15260 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
15261 {
15262 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
15263 }
15264
15265 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
15266 code. It sets the offset to use in gp_rel relocations. */
15267
15268 static void
15269 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
15270 {
15271 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
15272 We also need NewABI support. */
15273 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15274 {
15275 s_ignore (0);
15276 return;
15277 }
15278
15279 mips_gprel_offset = get_absolute_expression ();
15280
15281 demand_empty_rest_of_line ();
15282 }
15283
15284 /* Handle the .gpword pseudo-op. This is used when generating PIC
15285 code. It generates a 32 bit GP relative reloc. */
15286
15287 static void
15288 s_gpword (int ignore ATTRIBUTE_UNUSED)
15289 {
15290 segment_info_type *si;
15291 struct insn_label_list *l;
15292 expressionS ex;
15293 char *p;
15294
15295 /* When not generating PIC code, this is treated as .word. */
15296 if (mips_pic != SVR4_PIC)
15297 {
15298 s_cons (2);
15299 return;
15300 }
15301
15302 si = seg_info (now_seg);
15303 l = si->label_list;
15304 mips_emit_delays ();
15305 if (auto_align)
15306 mips_align (2, 0, l);
15307
15308 expression (&ex);
15309 mips_clear_insn_labels ();
15310
15311 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15312 {
15313 as_bad (_("Unsupported use of .gpword"));
15314 ignore_rest_of_line ();
15315 }
15316
15317 p = frag_more (4);
15318 md_number_to_chars (p, 0, 4);
15319 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15320 BFD_RELOC_GPREL32);
15321
15322 demand_empty_rest_of_line ();
15323 }
15324
15325 static void
15326 s_gpdword (int ignore ATTRIBUTE_UNUSED)
15327 {
15328 segment_info_type *si;
15329 struct insn_label_list *l;
15330 expressionS ex;
15331 char *p;
15332
15333 /* When not generating PIC code, this is treated as .dword. */
15334 if (mips_pic != SVR4_PIC)
15335 {
15336 s_cons (3);
15337 return;
15338 }
15339
15340 si = seg_info (now_seg);
15341 l = si->label_list;
15342 mips_emit_delays ();
15343 if (auto_align)
15344 mips_align (3, 0, l);
15345
15346 expression (&ex);
15347 mips_clear_insn_labels ();
15348
15349 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15350 {
15351 as_bad (_("Unsupported use of .gpdword"));
15352 ignore_rest_of_line ();
15353 }
15354
15355 p = frag_more (8);
15356 md_number_to_chars (p, 0, 8);
15357 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15358 BFD_RELOC_GPREL32)->fx_tcbit = 1;
15359
15360 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
15361 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
15362 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
15363
15364 demand_empty_rest_of_line ();
15365 }
15366
15367 /* Handle the .ehword pseudo-op. This is used when generating unwinding
15368 tables. It generates a R_MIPS_EH reloc. */
15369
15370 static void
15371 s_ehword (int ignore ATTRIBUTE_UNUSED)
15372 {
15373 expressionS ex;
15374 char *p;
15375
15376 mips_emit_delays ();
15377
15378 expression (&ex);
15379 mips_clear_insn_labels ();
15380
15381 if (ex.X_op != O_symbol || ex.X_add_number != 0)
15382 {
15383 as_bad (_("Unsupported use of .ehword"));
15384 ignore_rest_of_line ();
15385 }
15386
15387 p = frag_more (4);
15388 md_number_to_chars (p, 0, 4);
15389 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
15390 BFD_RELOC_MIPS_EH);
15391
15392 demand_empty_rest_of_line ();
15393 }
15394
15395 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
15396 tables in SVR4 PIC code. */
15397
15398 static void
15399 s_cpadd (int ignore ATTRIBUTE_UNUSED)
15400 {
15401 int reg;
15402
15403 /* This is ignored when not generating SVR4 PIC code. */
15404 if (mips_pic != SVR4_PIC)
15405 {
15406 s_ignore (0);
15407 return;
15408 }
15409
15410 mips_mark_labels ();
15411 mips_assembling_insn = TRUE;
15412
15413 /* Add $gp to the register named as an argument. */
15414 macro_start ();
15415 reg = tc_get_register (0);
15416 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
15417 macro_end ();
15418
15419 mips_assembling_insn = FALSE;
15420 demand_empty_rest_of_line ();
15421 }
15422
15423 /* Handle the .insn pseudo-op. This marks instruction labels in
15424 mips16/micromips mode. This permits the linker to handle them specially,
15425 such as generating jalx instructions when needed. We also make
15426 them odd for the duration of the assembly, in order to generate the
15427 right sort of code. We will make them even in the adjust_symtab
15428 routine, while leaving them marked. This is convenient for the
15429 debugger and the disassembler. The linker knows to make them odd
15430 again. */
15431
15432 static void
15433 s_insn (int ignore ATTRIBUTE_UNUSED)
15434 {
15435 mips_mark_labels ();
15436
15437 demand_empty_rest_of_line ();
15438 }
15439
15440 /* Handle the .nan pseudo-op. */
15441
15442 static void
15443 s_nan (int ignore ATTRIBUTE_UNUSED)
15444 {
15445 static const char str_legacy[] = "legacy";
15446 static const char str_2008[] = "2008";
15447 size_t i;
15448
15449 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
15450
15451 if (i == sizeof (str_2008) - 1
15452 && memcmp (input_line_pointer, str_2008, i) == 0)
15453 mips_flag_nan2008 = TRUE;
15454 else if (i == sizeof (str_legacy) - 1
15455 && memcmp (input_line_pointer, str_legacy, i) == 0)
15456 mips_flag_nan2008 = FALSE;
15457 else
15458 as_bad (_("Bad .nan directive"));
15459
15460 input_line_pointer += i;
15461 demand_empty_rest_of_line ();
15462 }
15463
15464 /* Handle a .stab[snd] directive. Ideally these directives would be
15465 implemented in a transparent way, so that removing them would not
15466 have any effect on the generated instructions. However, s_stab
15467 internally changes the section, so in practice we need to decide
15468 now whether the preceding label marks compressed code. We do not
15469 support changing the compression mode of a label after a .stab*
15470 directive, such as in:
15471
15472 foo:
15473 .stabs ...
15474 .set mips16
15475
15476 so the current mode wins. */
15477
15478 static void
15479 s_mips_stab (int type)
15480 {
15481 mips_mark_labels ();
15482 s_stab (type);
15483 }
15484
15485 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
15486
15487 static void
15488 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
15489 {
15490 char *name;
15491 int c;
15492 symbolS *symbolP;
15493 expressionS exp;
15494
15495 name = input_line_pointer;
15496 c = get_symbol_end ();
15497 symbolP = symbol_find_or_make (name);
15498 S_SET_WEAK (symbolP);
15499 *input_line_pointer = c;
15500
15501 SKIP_WHITESPACE ();
15502
15503 if (! is_end_of_line[(unsigned char) *input_line_pointer])
15504 {
15505 if (S_IS_DEFINED (symbolP))
15506 {
15507 as_bad (_("ignoring attempt to redefine symbol %s"),
15508 S_GET_NAME (symbolP));
15509 ignore_rest_of_line ();
15510 return;
15511 }
15512
15513 if (*input_line_pointer == ',')
15514 {
15515 ++input_line_pointer;
15516 SKIP_WHITESPACE ();
15517 }
15518
15519 expression (&exp);
15520 if (exp.X_op != O_symbol)
15521 {
15522 as_bad (_("bad .weakext directive"));
15523 ignore_rest_of_line ();
15524 return;
15525 }
15526 symbol_set_value_expression (symbolP, &exp);
15527 }
15528
15529 demand_empty_rest_of_line ();
15530 }
15531
15532 /* Parse a register string into a number. Called from the ECOFF code
15533 to parse .frame. The argument is non-zero if this is the frame
15534 register, so that we can record it in mips_frame_reg. */
15535
15536 int
15537 tc_get_register (int frame)
15538 {
15539 unsigned int reg;
15540
15541 SKIP_WHITESPACE ();
15542 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
15543 reg = 0;
15544 if (frame)
15545 {
15546 mips_frame_reg = reg != 0 ? reg : SP;
15547 mips_frame_reg_valid = 1;
15548 mips_cprestore_valid = 0;
15549 }
15550 return reg;
15551 }
15552
15553 valueT
15554 md_section_align (asection *seg, valueT addr)
15555 {
15556 int align = bfd_get_section_alignment (stdoutput, seg);
15557
15558 /* We don't need to align ELF sections to the full alignment.
15559 However, Irix 5 may prefer that we align them at least to a 16
15560 byte boundary. We don't bother to align the sections if we
15561 are targeted for an embedded system. */
15562 if (strncmp (TARGET_OS, "elf", 3) == 0)
15563 return addr;
15564 if (align > 4)
15565 align = 4;
15566
15567 return ((addr + (1 << align) - 1) & (-1 << align));
15568 }
15569
15570 /* Utility routine, called from above as well. If called while the
15571 input file is still being read, it's only an approximation. (For
15572 example, a symbol may later become defined which appeared to be
15573 undefined earlier.) */
15574
15575 static int
15576 nopic_need_relax (symbolS *sym, int before_relaxing)
15577 {
15578 if (sym == 0)
15579 return 0;
15580
15581 if (g_switch_value > 0)
15582 {
15583 const char *symname;
15584 int change;
15585
15586 /* Find out whether this symbol can be referenced off the $gp
15587 register. It can be if it is smaller than the -G size or if
15588 it is in the .sdata or .sbss section. Certain symbols can
15589 not be referenced off the $gp, although it appears as though
15590 they can. */
15591 symname = S_GET_NAME (sym);
15592 if (symname != (const char *) NULL
15593 && (strcmp (symname, "eprol") == 0
15594 || strcmp (symname, "etext") == 0
15595 || strcmp (symname, "_gp") == 0
15596 || strcmp (symname, "edata") == 0
15597 || strcmp (symname, "_fbss") == 0
15598 || strcmp (symname, "_fdata") == 0
15599 || strcmp (symname, "_ftext") == 0
15600 || strcmp (symname, "end") == 0
15601 || strcmp (symname, "_gp_disp") == 0))
15602 change = 1;
15603 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
15604 && (0
15605 #ifndef NO_ECOFF_DEBUGGING
15606 || (symbol_get_obj (sym)->ecoff_extern_size != 0
15607 && (symbol_get_obj (sym)->ecoff_extern_size
15608 <= g_switch_value))
15609 #endif
15610 /* We must defer this decision until after the whole
15611 file has been read, since there might be a .extern
15612 after the first use of this symbol. */
15613 || (before_relaxing
15614 #ifndef NO_ECOFF_DEBUGGING
15615 && symbol_get_obj (sym)->ecoff_extern_size == 0
15616 #endif
15617 && S_GET_VALUE (sym) == 0)
15618 || (S_GET_VALUE (sym) != 0
15619 && S_GET_VALUE (sym) <= g_switch_value)))
15620 change = 0;
15621 else
15622 {
15623 const char *segname;
15624
15625 segname = segment_name (S_GET_SEGMENT (sym));
15626 gas_assert (strcmp (segname, ".lit8") != 0
15627 && strcmp (segname, ".lit4") != 0);
15628 change = (strcmp (segname, ".sdata") != 0
15629 && strcmp (segname, ".sbss") != 0
15630 && strncmp (segname, ".sdata.", 7) != 0
15631 && strncmp (segname, ".sbss.", 6) != 0
15632 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
15633 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
15634 }
15635 return change;
15636 }
15637 else
15638 /* We are not optimizing for the $gp register. */
15639 return 1;
15640 }
15641
15642
15643 /* Return true if the given symbol should be considered local for SVR4 PIC. */
15644
15645 static bfd_boolean
15646 pic_need_relax (symbolS *sym, asection *segtype)
15647 {
15648 asection *symsec;
15649
15650 /* Handle the case of a symbol equated to another symbol. */
15651 while (symbol_equated_reloc_p (sym))
15652 {
15653 symbolS *n;
15654
15655 /* It's possible to get a loop here in a badly written program. */
15656 n = symbol_get_value_expression (sym)->X_add_symbol;
15657 if (n == sym)
15658 break;
15659 sym = n;
15660 }
15661
15662 if (symbol_section_p (sym))
15663 return TRUE;
15664
15665 symsec = S_GET_SEGMENT (sym);
15666
15667 /* This must duplicate the test in adjust_reloc_syms. */
15668 return (!bfd_is_und_section (symsec)
15669 && !bfd_is_abs_section (symsec)
15670 && !bfd_is_com_section (symsec)
15671 && !s_is_linkonce (sym, segtype)
15672 /* A global or weak symbol is treated as external. */
15673 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
15674 }
15675
15676
15677 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
15678 extended opcode. SEC is the section the frag is in. */
15679
15680 static int
15681 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
15682 {
15683 int type;
15684 const struct mips16_immed_operand *op;
15685 offsetT val;
15686 int mintiny, maxtiny;
15687 segT symsec;
15688 fragS *sym_frag;
15689
15690 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
15691 return 0;
15692 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
15693 return 1;
15694
15695 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
15696 op = mips16_immed_operands;
15697 while (op->type != type)
15698 {
15699 ++op;
15700 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
15701 }
15702
15703 if (op->unsp)
15704 {
15705 if (type == '<' || type == '>' || type == '[' || type == ']')
15706 {
15707 mintiny = 1;
15708 maxtiny = 1 << op->nbits;
15709 }
15710 else
15711 {
15712 mintiny = 0;
15713 maxtiny = (1 << op->nbits) - 1;
15714 }
15715 }
15716 else
15717 {
15718 mintiny = - (1 << (op->nbits - 1));
15719 maxtiny = (1 << (op->nbits - 1)) - 1;
15720 }
15721
15722 sym_frag = symbol_get_frag (fragp->fr_symbol);
15723 val = S_GET_VALUE (fragp->fr_symbol);
15724 symsec = S_GET_SEGMENT (fragp->fr_symbol);
15725
15726 if (op->pcrel)
15727 {
15728 addressT addr;
15729
15730 /* We won't have the section when we are called from
15731 mips_relax_frag. However, we will always have been called
15732 from md_estimate_size_before_relax first. If this is a
15733 branch to a different section, we mark it as such. If SEC is
15734 NULL, and the frag is not marked, then it must be a branch to
15735 the same section. */
15736 if (sec == NULL)
15737 {
15738 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
15739 return 1;
15740 }
15741 else
15742 {
15743 /* Must have been called from md_estimate_size_before_relax. */
15744 if (symsec != sec)
15745 {
15746 fragp->fr_subtype =
15747 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
15748
15749 /* FIXME: We should support this, and let the linker
15750 catch branches and loads that are out of range. */
15751 as_bad_where (fragp->fr_file, fragp->fr_line,
15752 _("unsupported PC relative reference to different section"));
15753
15754 return 1;
15755 }
15756 if (fragp != sym_frag && sym_frag->fr_address == 0)
15757 /* Assume non-extended on the first relaxation pass.
15758 The address we have calculated will be bogus if this is
15759 a forward branch to another frag, as the forward frag
15760 will have fr_address == 0. */
15761 return 0;
15762 }
15763
15764 /* In this case, we know for sure that the symbol fragment is in
15765 the same section. If the relax_marker of the symbol fragment
15766 differs from the relax_marker of this fragment, we have not
15767 yet adjusted the symbol fragment fr_address. We want to add
15768 in STRETCH in order to get a better estimate of the address.
15769 This particularly matters because of the shift bits. */
15770 if (stretch != 0
15771 && sym_frag->relax_marker != fragp->relax_marker)
15772 {
15773 fragS *f;
15774
15775 /* Adjust stretch for any alignment frag. Note that if have
15776 been expanding the earlier code, the symbol may be
15777 defined in what appears to be an earlier frag. FIXME:
15778 This doesn't handle the fr_subtype field, which specifies
15779 a maximum number of bytes to skip when doing an
15780 alignment. */
15781 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
15782 {
15783 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
15784 {
15785 if (stretch < 0)
15786 stretch = - ((- stretch)
15787 & ~ ((1 << (int) f->fr_offset) - 1));
15788 else
15789 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
15790 if (stretch == 0)
15791 break;
15792 }
15793 }
15794 if (f != NULL)
15795 val += stretch;
15796 }
15797
15798 addr = fragp->fr_address + fragp->fr_fix;
15799
15800 /* The base address rules are complicated. The base address of
15801 a branch is the following instruction. The base address of a
15802 PC relative load or add is the instruction itself, but if it
15803 is in a delay slot (in which case it can not be extended) use
15804 the address of the instruction whose delay slot it is in. */
15805 if (type == 'p' || type == 'q')
15806 {
15807 addr += 2;
15808
15809 /* If we are currently assuming that this frag should be
15810 extended, then, the current address is two bytes
15811 higher. */
15812 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
15813 addr += 2;
15814
15815 /* Ignore the low bit in the target, since it will be set
15816 for a text label. */
15817 if ((val & 1) != 0)
15818 --val;
15819 }
15820 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
15821 addr -= 4;
15822 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
15823 addr -= 2;
15824
15825 val -= addr & ~ ((1 << op->shift) - 1);
15826
15827 /* Branch offsets have an implicit 0 in the lowest bit. */
15828 if (type == 'p' || type == 'q')
15829 val /= 2;
15830
15831 /* If any of the shifted bits are set, we must use an extended
15832 opcode. If the address depends on the size of this
15833 instruction, this can lead to a loop, so we arrange to always
15834 use an extended opcode. We only check this when we are in
15835 the main relaxation loop, when SEC is NULL. */
15836 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
15837 {
15838 fragp->fr_subtype =
15839 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
15840 return 1;
15841 }
15842
15843 /* If we are about to mark a frag as extended because the value
15844 is precisely maxtiny + 1, then there is a chance of an
15845 infinite loop as in the following code:
15846 la $4,foo
15847 .skip 1020
15848 .align 2
15849 foo:
15850 In this case when the la is extended, foo is 0x3fc bytes
15851 away, so the la can be shrunk, but then foo is 0x400 away, so
15852 the la must be extended. To avoid this loop, we mark the
15853 frag as extended if it was small, and is about to become
15854 extended with a value of maxtiny + 1. */
15855 if (val == ((maxtiny + 1) << op->shift)
15856 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
15857 && sec == NULL)
15858 {
15859 fragp->fr_subtype =
15860 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
15861 return 1;
15862 }
15863 }
15864 else if (symsec != absolute_section && sec != NULL)
15865 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
15866
15867 if ((val & ((1 << op->shift) - 1)) != 0
15868 || val < (mintiny << op->shift)
15869 || val > (maxtiny << op->shift))
15870 return 1;
15871 else
15872 return 0;
15873 }
15874
15875 /* Compute the length of a branch sequence, and adjust the
15876 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
15877 worst-case length is computed, with UPDATE being used to indicate
15878 whether an unconditional (-1), branch-likely (+1) or regular (0)
15879 branch is to be computed. */
15880 static int
15881 relaxed_branch_length (fragS *fragp, asection *sec, int update)
15882 {
15883 bfd_boolean toofar;
15884 int length;
15885
15886 if (fragp
15887 && S_IS_DEFINED (fragp->fr_symbol)
15888 && sec == S_GET_SEGMENT (fragp->fr_symbol))
15889 {
15890 addressT addr;
15891 offsetT val;
15892
15893 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
15894
15895 addr = fragp->fr_address + fragp->fr_fix + 4;
15896
15897 val -= addr;
15898
15899 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
15900 }
15901 else if (fragp)
15902 /* If the symbol is not defined or it's in a different segment,
15903 assume the user knows what's going on and emit a short
15904 branch. */
15905 toofar = FALSE;
15906 else
15907 toofar = TRUE;
15908
15909 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
15910 fragp->fr_subtype
15911 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
15912 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
15913 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
15914 RELAX_BRANCH_LINK (fragp->fr_subtype),
15915 toofar);
15916
15917 length = 4;
15918 if (toofar)
15919 {
15920 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
15921 length += 8;
15922
15923 if (mips_pic != NO_PIC)
15924 {
15925 /* Additional space for PIC loading of target address. */
15926 length += 8;
15927 if (mips_opts.isa == ISA_MIPS1)
15928 /* Additional space for $at-stabilizing nop. */
15929 length += 4;
15930 }
15931
15932 /* If branch is conditional. */
15933 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
15934 length += 8;
15935 }
15936
15937 return length;
15938 }
15939
15940 /* Compute the length of a branch sequence, and adjust the
15941 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
15942 worst-case length is computed, with UPDATE being used to indicate
15943 whether an unconditional (-1), or regular (0) branch is to be
15944 computed. */
15945
15946 static int
15947 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
15948 {
15949 bfd_boolean toofar;
15950 int length;
15951
15952 if (fragp
15953 && S_IS_DEFINED (fragp->fr_symbol)
15954 && sec == S_GET_SEGMENT (fragp->fr_symbol))
15955 {
15956 addressT addr;
15957 offsetT val;
15958
15959 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
15960 /* Ignore the low bit in the target, since it will be set
15961 for a text label. */
15962 if ((val & 1) != 0)
15963 --val;
15964
15965 addr = fragp->fr_address + fragp->fr_fix + 4;
15966
15967 val -= addr;
15968
15969 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
15970 }
15971 else if (fragp)
15972 /* If the symbol is not defined or it's in a different segment,
15973 assume the user knows what's going on and emit a short
15974 branch. */
15975 toofar = FALSE;
15976 else
15977 toofar = TRUE;
15978
15979 if (fragp && update
15980 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
15981 fragp->fr_subtype = (toofar
15982 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
15983 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
15984
15985 length = 4;
15986 if (toofar)
15987 {
15988 bfd_boolean compact_known = fragp != NULL;
15989 bfd_boolean compact = FALSE;
15990 bfd_boolean uncond;
15991
15992 if (compact_known)
15993 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
15994 if (fragp)
15995 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
15996 else
15997 uncond = update < 0;
15998
15999 /* If label is out of range, we turn branch <br>:
16000
16001 <br> label # 4 bytes
16002 0:
16003
16004 into:
16005
16006 j label # 4 bytes
16007 nop # 2 bytes if compact && !PIC
16008 0:
16009 */
16010 if (mips_pic == NO_PIC && (!compact_known || compact))
16011 length += 2;
16012
16013 /* If assembling PIC code, we further turn:
16014
16015 j label # 4 bytes
16016
16017 into:
16018
16019 lw/ld at, %got(label)(gp) # 4 bytes
16020 d/addiu at, %lo(label) # 4 bytes
16021 jr/c at # 2 bytes
16022 */
16023 if (mips_pic != NO_PIC)
16024 length += 6;
16025
16026 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16027
16028 <brneg> 0f # 4 bytes
16029 nop # 2 bytes if !compact
16030 */
16031 if (!uncond)
16032 length += (compact_known && compact) ? 4 : 6;
16033 }
16034
16035 return length;
16036 }
16037
16038 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16039 bit accordingly. */
16040
16041 static int
16042 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16043 {
16044 bfd_boolean toofar;
16045
16046 if (fragp
16047 && S_IS_DEFINED (fragp->fr_symbol)
16048 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16049 {
16050 addressT addr;
16051 offsetT val;
16052 int type;
16053
16054 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16055 /* Ignore the low bit in the target, since it will be set
16056 for a text label. */
16057 if ((val & 1) != 0)
16058 --val;
16059
16060 /* Assume this is a 2-byte branch. */
16061 addr = fragp->fr_address + fragp->fr_fix + 2;
16062
16063 /* We try to avoid the infinite loop by not adding 2 more bytes for
16064 long branches. */
16065
16066 val -= addr;
16067
16068 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16069 if (type == 'D')
16070 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16071 else if (type == 'E')
16072 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16073 else
16074 abort ();
16075 }
16076 else
16077 /* If the symbol is not defined or it's in a different segment,
16078 we emit a normal 32-bit branch. */
16079 toofar = TRUE;
16080
16081 if (fragp && update
16082 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16083 fragp->fr_subtype
16084 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16085 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16086
16087 if (toofar)
16088 return 4;
16089
16090 return 2;
16091 }
16092
16093 /* Estimate the size of a frag before relaxing. Unless this is the
16094 mips16, we are not really relaxing here, and the final size is
16095 encoded in the subtype information. For the mips16, we have to
16096 decide whether we are using an extended opcode or not. */
16097
16098 int
16099 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
16100 {
16101 int change;
16102
16103 if (RELAX_BRANCH_P (fragp->fr_subtype))
16104 {
16105
16106 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
16107
16108 return fragp->fr_var;
16109 }
16110
16111 if (RELAX_MIPS16_P (fragp->fr_subtype))
16112 /* We don't want to modify the EXTENDED bit here; it might get us
16113 into infinite loops. We change it only in mips_relax_frag(). */
16114 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
16115
16116 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16117 {
16118 int length = 4;
16119
16120 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16121 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
16122 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16123 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
16124 fragp->fr_var = length;
16125
16126 return length;
16127 }
16128
16129 if (mips_pic == NO_PIC)
16130 change = nopic_need_relax (fragp->fr_symbol, 0);
16131 else if (mips_pic == SVR4_PIC)
16132 change = pic_need_relax (fragp->fr_symbol, segtype);
16133 else if (mips_pic == VXWORKS_PIC)
16134 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
16135 change = 0;
16136 else
16137 abort ();
16138
16139 if (change)
16140 {
16141 fragp->fr_subtype |= RELAX_USE_SECOND;
16142 return -RELAX_FIRST (fragp->fr_subtype);
16143 }
16144 else
16145 return -RELAX_SECOND (fragp->fr_subtype);
16146 }
16147
16148 /* This is called to see whether a reloc against a defined symbol
16149 should be converted into a reloc against a section. */
16150
16151 int
16152 mips_fix_adjustable (fixS *fixp)
16153 {
16154 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
16155 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16156 return 0;
16157
16158 if (fixp->fx_addsy == NULL)
16159 return 1;
16160
16161 /* If symbol SYM is in a mergeable section, relocations of the form
16162 SYM + 0 can usually be made section-relative. The mergeable data
16163 is then identified by the section offset rather than by the symbol.
16164
16165 However, if we're generating REL LO16 relocations, the offset is split
16166 between the LO16 and parterning high part relocation. The linker will
16167 need to recalculate the complete offset in order to correctly identify
16168 the merge data.
16169
16170 The linker has traditionally not looked for the parterning high part
16171 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
16172 placed anywhere. Rather than break backwards compatibility by changing
16173 this, it seems better not to force the issue, and instead keep the
16174 original symbol. This will work with either linker behavior. */
16175 if ((lo16_reloc_p (fixp->fx_r_type)
16176 || reloc_needs_lo_p (fixp->fx_r_type))
16177 && HAVE_IN_PLACE_ADDENDS
16178 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
16179 return 0;
16180
16181 /* There is no place to store an in-place offset for JALR relocations.
16182 Likewise an in-range offset of limited PC-relative relocations may
16183 overflow the in-place relocatable field if recalculated against the
16184 start address of the symbol's containing section. */
16185 if (HAVE_IN_PLACE_ADDENDS
16186 && (limited_pcrel_reloc_p (fixp->fx_r_type)
16187 || jalr_reloc_p (fixp->fx_r_type)))
16188 return 0;
16189
16190 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
16191 to a floating-point stub. The same is true for non-R_MIPS16_26
16192 relocations against MIPS16 functions; in this case, the stub becomes
16193 the function's canonical address.
16194
16195 Floating-point stubs are stored in unique .mips16.call.* or
16196 .mips16.fn.* sections. If a stub T for function F is in section S,
16197 the first relocation in section S must be against F; this is how the
16198 linker determines the target function. All relocations that might
16199 resolve to T must also be against F. We therefore have the following
16200 restrictions, which are given in an intentionally-redundant way:
16201
16202 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
16203 symbols.
16204
16205 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
16206 if that stub might be used.
16207
16208 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
16209 symbols.
16210
16211 4. We cannot reduce a stub's relocations against MIPS16 symbols if
16212 that stub might be used.
16213
16214 There is a further restriction:
16215
16216 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
16217 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
16218 targets with in-place addends; the relocation field cannot
16219 encode the low bit.
16220
16221 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
16222 against a MIPS16 symbol. We deal with (5) by by not reducing any
16223 such relocations on REL targets.
16224
16225 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
16226 relocation against some symbol R, no relocation against R may be
16227 reduced. (Note that this deals with (2) as well as (1) because
16228 relocations against global symbols will never be reduced on ELF
16229 targets.) This approach is a little simpler than trying to detect
16230 stub sections, and gives the "all or nothing" per-symbol consistency
16231 that we have for MIPS16 symbols. */
16232 if (fixp->fx_subsy == NULL
16233 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
16234 || *symbol_get_tc (fixp->fx_addsy)
16235 || (HAVE_IN_PLACE_ADDENDS
16236 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
16237 && jmp_reloc_p (fixp->fx_r_type))))
16238 return 0;
16239
16240 return 1;
16241 }
16242
16243 /* Translate internal representation of relocation info to BFD target
16244 format. */
16245
16246 arelent **
16247 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
16248 {
16249 static arelent *retval[4];
16250 arelent *reloc;
16251 bfd_reloc_code_real_type code;
16252
16253 memset (retval, 0, sizeof(retval));
16254 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
16255 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
16256 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
16257 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
16258
16259 if (fixp->fx_pcrel)
16260 {
16261 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
16262 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
16263 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
16264 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
16265 || fixp->fx_r_type == BFD_RELOC_32_PCREL);
16266
16267 /* At this point, fx_addnumber is "symbol offset - pcrel address".
16268 Relocations want only the symbol offset. */
16269 reloc->addend = fixp->fx_addnumber + reloc->address;
16270 }
16271 else
16272 reloc->addend = fixp->fx_addnumber;
16273
16274 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
16275 entry to be used in the relocation's section offset. */
16276 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
16277 {
16278 reloc->address = reloc->addend;
16279 reloc->addend = 0;
16280 }
16281
16282 code = fixp->fx_r_type;
16283
16284 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
16285 if (reloc->howto == NULL)
16286 {
16287 as_bad_where (fixp->fx_file, fixp->fx_line,
16288 _("Can not represent %s relocation in this object file format"),
16289 bfd_get_reloc_code_name (code));
16290 retval[0] = NULL;
16291 }
16292
16293 return retval;
16294 }
16295
16296 /* Relax a machine dependent frag. This returns the amount by which
16297 the current size of the frag should change. */
16298
16299 int
16300 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
16301 {
16302 if (RELAX_BRANCH_P (fragp->fr_subtype))
16303 {
16304 offsetT old_var = fragp->fr_var;
16305
16306 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
16307
16308 return fragp->fr_var - old_var;
16309 }
16310
16311 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16312 {
16313 offsetT old_var = fragp->fr_var;
16314 offsetT new_var = 4;
16315
16316 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
16317 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
16318 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
16319 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
16320 fragp->fr_var = new_var;
16321
16322 return new_var - old_var;
16323 }
16324
16325 if (! RELAX_MIPS16_P (fragp->fr_subtype))
16326 return 0;
16327
16328 if (mips16_extended_frag (fragp, NULL, stretch))
16329 {
16330 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16331 return 0;
16332 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
16333 return 2;
16334 }
16335 else
16336 {
16337 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16338 return 0;
16339 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
16340 return -2;
16341 }
16342
16343 return 0;
16344 }
16345
16346 /* Convert a machine dependent frag. */
16347
16348 void
16349 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
16350 {
16351 if (RELAX_BRANCH_P (fragp->fr_subtype))
16352 {
16353 char *buf;
16354 unsigned long insn;
16355 expressionS exp;
16356 fixS *fixp;
16357
16358 buf = fragp->fr_literal + fragp->fr_fix;
16359 insn = read_insn (buf);
16360
16361 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16362 {
16363 /* We generate a fixup instead of applying it right now
16364 because, if there are linker relaxations, we're going to
16365 need the relocations. */
16366 exp.X_op = O_symbol;
16367 exp.X_add_symbol = fragp->fr_symbol;
16368 exp.X_add_number = fragp->fr_offset;
16369
16370 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16371 BFD_RELOC_16_PCREL_S2);
16372 fixp->fx_file = fragp->fr_file;
16373 fixp->fx_line = fragp->fr_line;
16374
16375 buf = write_insn (buf, insn);
16376 }
16377 else
16378 {
16379 int i;
16380
16381 as_warn_where (fragp->fr_file, fragp->fr_line,
16382 _("Relaxed out-of-range branch into a jump"));
16383
16384 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
16385 goto uncond;
16386
16387 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16388 {
16389 /* Reverse the branch. */
16390 switch ((insn >> 28) & 0xf)
16391 {
16392 case 4:
16393 /* bc[0-3][tf]l? instructions can have the condition
16394 reversed by tweaking a single TF bit, and their
16395 opcodes all have 0x4???????. */
16396 gas_assert ((insn & 0xf3e00000) == 0x41000000);
16397 insn ^= 0x00010000;
16398 break;
16399
16400 case 0:
16401 /* bltz 0x04000000 bgez 0x04010000
16402 bltzal 0x04100000 bgezal 0x04110000 */
16403 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
16404 insn ^= 0x00010000;
16405 break;
16406
16407 case 1:
16408 /* beq 0x10000000 bne 0x14000000
16409 blez 0x18000000 bgtz 0x1c000000 */
16410 insn ^= 0x04000000;
16411 break;
16412
16413 default:
16414 abort ();
16415 }
16416 }
16417
16418 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
16419 {
16420 /* Clear the and-link bit. */
16421 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
16422
16423 /* bltzal 0x04100000 bgezal 0x04110000
16424 bltzall 0x04120000 bgezall 0x04130000 */
16425 insn &= ~0x00100000;
16426 }
16427
16428 /* Branch over the branch (if the branch was likely) or the
16429 full jump (not likely case). Compute the offset from the
16430 current instruction to branch to. */
16431 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16432 i = 16;
16433 else
16434 {
16435 /* How many bytes in instructions we've already emitted? */
16436 i = buf - fragp->fr_literal - fragp->fr_fix;
16437 /* How many bytes in instructions from here to the end? */
16438 i = fragp->fr_var - i;
16439 }
16440 /* Convert to instruction count. */
16441 i >>= 2;
16442 /* Branch counts from the next instruction. */
16443 i--;
16444 insn |= i;
16445 /* Branch over the jump. */
16446 buf = write_insn (buf, insn);
16447
16448 /* nop */
16449 buf = write_insn (buf, 0);
16450
16451 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
16452 {
16453 /* beql $0, $0, 2f */
16454 insn = 0x50000000;
16455 /* Compute the PC offset from the current instruction to
16456 the end of the variable frag. */
16457 /* How many bytes in instructions we've already emitted? */
16458 i = buf - fragp->fr_literal - fragp->fr_fix;
16459 /* How many bytes in instructions from here to the end? */
16460 i = fragp->fr_var - i;
16461 /* Convert to instruction count. */
16462 i >>= 2;
16463 /* Don't decrement i, because we want to branch over the
16464 delay slot. */
16465 insn |= i;
16466
16467 buf = write_insn (buf, insn);
16468 buf = write_insn (buf, 0);
16469 }
16470
16471 uncond:
16472 if (mips_pic == NO_PIC)
16473 {
16474 /* j or jal. */
16475 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
16476 ? 0x0c000000 : 0x08000000);
16477 exp.X_op = O_symbol;
16478 exp.X_add_symbol = fragp->fr_symbol;
16479 exp.X_add_number = fragp->fr_offset;
16480
16481 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16482 FALSE, BFD_RELOC_MIPS_JMP);
16483 fixp->fx_file = fragp->fr_file;
16484 fixp->fx_line = fragp->fr_line;
16485
16486 buf = write_insn (buf, insn);
16487 }
16488 else
16489 {
16490 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
16491
16492 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
16493 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
16494 insn |= at << OP_SH_RT;
16495 exp.X_op = O_symbol;
16496 exp.X_add_symbol = fragp->fr_symbol;
16497 exp.X_add_number = fragp->fr_offset;
16498
16499 if (fragp->fr_offset)
16500 {
16501 exp.X_add_symbol = make_expr_symbol (&exp);
16502 exp.X_add_number = 0;
16503 }
16504
16505 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16506 FALSE, BFD_RELOC_MIPS_GOT16);
16507 fixp->fx_file = fragp->fr_file;
16508 fixp->fx_line = fragp->fr_line;
16509
16510 buf = write_insn (buf, insn);
16511
16512 if (mips_opts.isa == ISA_MIPS1)
16513 /* nop */
16514 buf = write_insn (buf, 0);
16515
16516 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
16517 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
16518 insn |= at << OP_SH_RS | at << OP_SH_RT;
16519
16520 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
16521 FALSE, BFD_RELOC_LO16);
16522 fixp->fx_file = fragp->fr_file;
16523 fixp->fx_line = fragp->fr_line;
16524
16525 buf = write_insn (buf, insn);
16526
16527 /* j(al)r $at. */
16528 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
16529 insn = 0x0000f809;
16530 else
16531 insn = 0x00000008;
16532 insn |= at << OP_SH_RS;
16533
16534 buf = write_insn (buf, insn);
16535 }
16536 }
16537
16538 fragp->fr_fix += fragp->fr_var;
16539 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
16540 return;
16541 }
16542
16543 /* Relax microMIPS branches. */
16544 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
16545 {
16546 char *buf = fragp->fr_literal + fragp->fr_fix;
16547 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16548 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
16549 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16550 bfd_boolean short_ds;
16551 unsigned long insn;
16552 expressionS exp;
16553 fixS *fixp;
16554
16555 exp.X_op = O_symbol;
16556 exp.X_add_symbol = fragp->fr_symbol;
16557 exp.X_add_number = fragp->fr_offset;
16558
16559 fragp->fr_fix += fragp->fr_var;
16560
16561 /* Handle 16-bit branches that fit or are forced to fit. */
16562 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16563 {
16564 /* We generate a fixup instead of applying it right now,
16565 because if there is linker relaxation, we're going to
16566 need the relocations. */
16567 if (type == 'D')
16568 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
16569 BFD_RELOC_MICROMIPS_10_PCREL_S1);
16570 else if (type == 'E')
16571 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
16572 BFD_RELOC_MICROMIPS_7_PCREL_S1);
16573 else
16574 abort ();
16575
16576 fixp->fx_file = fragp->fr_file;
16577 fixp->fx_line = fragp->fr_line;
16578
16579 /* These relocations can have an addend that won't fit in
16580 2 octets. */
16581 fixp->fx_no_overflow = 1;
16582
16583 return;
16584 }
16585
16586 /* Handle 32-bit branches that fit or are forced to fit. */
16587 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16588 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16589 {
16590 /* We generate a fixup instead of applying it right now,
16591 because if there is linker relaxation, we're going to
16592 need the relocations. */
16593 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
16594 BFD_RELOC_MICROMIPS_16_PCREL_S1);
16595 fixp->fx_file = fragp->fr_file;
16596 fixp->fx_line = fragp->fr_line;
16597
16598 if (type == 0)
16599 return;
16600 }
16601
16602 /* Relax 16-bit branches to 32-bit branches. */
16603 if (type != 0)
16604 {
16605 insn = read_compressed_insn (buf, 2);
16606
16607 if ((insn & 0xfc00) == 0xcc00) /* b16 */
16608 insn = 0x94000000; /* beq */
16609 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
16610 {
16611 unsigned long regno;
16612
16613 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
16614 regno = micromips_to_32_reg_d_map [regno];
16615 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
16616 insn |= regno << MICROMIPSOP_SH_RS;
16617 }
16618 else
16619 abort ();
16620
16621 /* Nothing else to do, just write it out. */
16622 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
16623 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16624 {
16625 buf = write_compressed_insn (buf, insn, 4);
16626 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
16627 return;
16628 }
16629 }
16630 else
16631 insn = read_compressed_insn (buf, 4);
16632
16633 /* Relax 32-bit branches to a sequence of instructions. */
16634 as_warn_where (fragp->fr_file, fragp->fr_line,
16635 _("Relaxed out-of-range branch into a jump"));
16636
16637 /* Set the short-delay-slot bit. */
16638 short_ds = al && (insn & 0x02000000) != 0;
16639
16640 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
16641 {
16642 symbolS *l;
16643
16644 /* Reverse the branch. */
16645 if ((insn & 0xfc000000) == 0x94000000 /* beq */
16646 || (insn & 0xfc000000) == 0xb4000000) /* bne */
16647 insn ^= 0x20000000;
16648 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
16649 || (insn & 0xffe00000) == 0x40400000 /* bgez */
16650 || (insn & 0xffe00000) == 0x40800000 /* blez */
16651 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
16652 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
16653 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
16654 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
16655 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
16656 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
16657 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
16658 insn ^= 0x00400000;
16659 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
16660 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
16661 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
16662 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
16663 insn ^= 0x00200000;
16664 else
16665 abort ();
16666
16667 if (al)
16668 {
16669 /* Clear the and-link and short-delay-slot bits. */
16670 gas_assert ((insn & 0xfda00000) == 0x40200000);
16671
16672 /* bltzal 0x40200000 bgezal 0x40600000 */
16673 /* bltzals 0x42200000 bgezals 0x42600000 */
16674 insn &= ~0x02200000;
16675 }
16676
16677 /* Make a label at the end for use with the branch. */
16678 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
16679 micromips_label_inc ();
16680 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
16681
16682 /* Refer to it. */
16683 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
16684 BFD_RELOC_MICROMIPS_16_PCREL_S1);
16685 fixp->fx_file = fragp->fr_file;
16686 fixp->fx_line = fragp->fr_line;
16687
16688 /* Branch over the jump. */
16689 buf = write_compressed_insn (buf, insn, 4);
16690 if (!compact)
16691 /* nop */
16692 buf = write_compressed_insn (buf, 0x0c00, 2);
16693 }
16694
16695 if (mips_pic == NO_PIC)
16696 {
16697 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
16698
16699 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
16700 insn = al ? jal : 0xd4000000;
16701
16702 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16703 BFD_RELOC_MICROMIPS_JMP);
16704 fixp->fx_file = fragp->fr_file;
16705 fixp->fx_line = fragp->fr_line;
16706
16707 buf = write_compressed_insn (buf, insn, 4);
16708 if (compact)
16709 /* nop */
16710 buf = write_compressed_insn (buf, 0x0c00, 2);
16711 }
16712 else
16713 {
16714 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
16715 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
16716 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
16717
16718 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
16719 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
16720 insn |= at << MICROMIPSOP_SH_RT;
16721
16722 if (exp.X_add_number)
16723 {
16724 exp.X_add_symbol = make_expr_symbol (&exp);
16725 exp.X_add_number = 0;
16726 }
16727
16728 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16729 BFD_RELOC_MICROMIPS_GOT16);
16730 fixp->fx_file = fragp->fr_file;
16731 fixp->fx_line = fragp->fr_line;
16732
16733 buf = write_compressed_insn (buf, insn, 4);
16734
16735 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
16736 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
16737 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
16738
16739 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
16740 BFD_RELOC_MICROMIPS_LO16);
16741 fixp->fx_file = fragp->fr_file;
16742 fixp->fx_line = fragp->fr_line;
16743
16744 buf = write_compressed_insn (buf, insn, 4);
16745
16746 /* jr/jrc/jalr/jalrs $at */
16747 insn = al ? jalr : jr;
16748 insn |= at << MICROMIPSOP_SH_MJ;
16749
16750 buf = write_compressed_insn (buf, insn, 2);
16751 }
16752
16753 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
16754 return;
16755 }
16756
16757 if (RELAX_MIPS16_P (fragp->fr_subtype))
16758 {
16759 int type;
16760 const struct mips16_immed_operand *op;
16761 offsetT val;
16762 char *buf;
16763 unsigned int user_length, length;
16764 unsigned long insn;
16765 bfd_boolean ext;
16766
16767 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16768 op = mips16_immed_operands;
16769 while (op->type != type)
16770 ++op;
16771
16772 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
16773 val = resolve_symbol_value (fragp->fr_symbol);
16774 if (op->pcrel)
16775 {
16776 addressT addr;
16777
16778 addr = fragp->fr_address + fragp->fr_fix;
16779
16780 /* The rules for the base address of a PC relative reloc are
16781 complicated; see mips16_extended_frag. */
16782 if (type == 'p' || type == 'q')
16783 {
16784 addr += 2;
16785 if (ext)
16786 addr += 2;
16787 /* Ignore the low bit in the target, since it will be
16788 set for a text label. */
16789 if ((val & 1) != 0)
16790 --val;
16791 }
16792 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16793 addr -= 4;
16794 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16795 addr -= 2;
16796
16797 addr &= ~ (addressT) ((1 << op->shift) - 1);
16798 val -= addr;
16799
16800 /* Make sure the section winds up with the alignment we have
16801 assumed. */
16802 if (op->shift > 0)
16803 record_alignment (asec, op->shift);
16804 }
16805
16806 if (ext
16807 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
16808 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
16809 as_warn_where (fragp->fr_file, fragp->fr_line,
16810 _("extended instruction in delay slot"));
16811
16812 buf = fragp->fr_literal + fragp->fr_fix;
16813
16814 insn = read_compressed_insn (buf, 2);
16815 if (ext)
16816 insn |= MIPS16_EXTEND;
16817
16818 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16819 user_length = 4;
16820 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16821 user_length = 2;
16822 else
16823 user_length = 0;
16824
16825 mips16_immed (fragp->fr_file, fragp->fr_line, type,
16826 BFD_RELOC_UNUSED, val, user_length, &insn);
16827
16828 length = (ext ? 4 : 2);
16829 gas_assert (mips16_opcode_length (insn) == length);
16830 write_compressed_insn (buf, insn, length);
16831 fragp->fr_fix += length;
16832 }
16833 else
16834 {
16835 relax_substateT subtype = fragp->fr_subtype;
16836 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
16837 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
16838 int first, second;
16839 fixS *fixp;
16840
16841 first = RELAX_FIRST (subtype);
16842 second = RELAX_SECOND (subtype);
16843 fixp = (fixS *) fragp->fr_opcode;
16844
16845 /* If the delay slot chosen does not match the size of the instruction,
16846 then emit a warning. */
16847 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
16848 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
16849 {
16850 relax_substateT s;
16851 const char *msg;
16852
16853 s = subtype & (RELAX_DELAY_SLOT_16BIT
16854 | RELAX_DELAY_SLOT_SIZE_FIRST
16855 | RELAX_DELAY_SLOT_SIZE_SECOND);
16856 msg = macro_warning (s);
16857 if (msg != NULL)
16858 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
16859 subtype &= ~s;
16860 }
16861
16862 /* Possibly emit a warning if we've chosen the longer option. */
16863 if (use_second == second_longer)
16864 {
16865 relax_substateT s;
16866 const char *msg;
16867
16868 s = (subtype
16869 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
16870 msg = macro_warning (s);
16871 if (msg != NULL)
16872 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
16873 subtype &= ~s;
16874 }
16875
16876 /* Go through all the fixups for the first sequence. Disable them
16877 (by marking them as done) if we're going to use the second
16878 sequence instead. */
16879 while (fixp
16880 && fixp->fx_frag == fragp
16881 && fixp->fx_where < fragp->fr_fix - second)
16882 {
16883 if (subtype & RELAX_USE_SECOND)
16884 fixp->fx_done = 1;
16885 fixp = fixp->fx_next;
16886 }
16887
16888 /* Go through the fixups for the second sequence. Disable them if
16889 we're going to use the first sequence, otherwise adjust their
16890 addresses to account for the relaxation. */
16891 while (fixp && fixp->fx_frag == fragp)
16892 {
16893 if (subtype & RELAX_USE_SECOND)
16894 fixp->fx_where -= first;
16895 else
16896 fixp->fx_done = 1;
16897 fixp = fixp->fx_next;
16898 }
16899
16900 /* Now modify the frag contents. */
16901 if (subtype & RELAX_USE_SECOND)
16902 {
16903 char *start;
16904
16905 start = fragp->fr_literal + fragp->fr_fix - first - second;
16906 memmove (start, start + first, second);
16907 fragp->fr_fix -= first;
16908 }
16909 else
16910 fragp->fr_fix -= second;
16911 }
16912 }
16913
16914 /* This function is called after the relocs have been generated.
16915 We've been storing mips16 text labels as odd. Here we convert them
16916 back to even for the convenience of the debugger. */
16917
16918 void
16919 mips_frob_file_after_relocs (void)
16920 {
16921 asymbol **syms;
16922 unsigned int count, i;
16923
16924 syms = bfd_get_outsymbols (stdoutput);
16925 count = bfd_get_symcount (stdoutput);
16926 for (i = 0; i < count; i++, syms++)
16927 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
16928 && ((*syms)->value & 1) != 0)
16929 {
16930 (*syms)->value &= ~1;
16931 /* If the symbol has an odd size, it was probably computed
16932 incorrectly, so adjust that as well. */
16933 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
16934 ++elf_symbol (*syms)->internal_elf_sym.st_size;
16935 }
16936 }
16937
16938 /* This function is called whenever a label is defined, including fake
16939 labels instantiated off the dot special symbol. It is used when
16940 handling branch delays; if a branch has a label, we assume we cannot
16941 move it. This also bumps the value of the symbol by 1 in compressed
16942 code. */
16943
16944 static void
16945 mips_record_label (symbolS *sym)
16946 {
16947 segment_info_type *si = seg_info (now_seg);
16948 struct insn_label_list *l;
16949
16950 if (free_insn_labels == NULL)
16951 l = (struct insn_label_list *) xmalloc (sizeof *l);
16952 else
16953 {
16954 l = free_insn_labels;
16955 free_insn_labels = l->next;
16956 }
16957
16958 l->label = sym;
16959 l->next = si->label_list;
16960 si->label_list = l;
16961 }
16962
16963 /* This function is called as tc_frob_label() whenever a label is defined
16964 and adds a DWARF-2 record we only want for true labels. */
16965
16966 void
16967 mips_define_label (symbolS *sym)
16968 {
16969 mips_record_label (sym);
16970 dwarf2_emit_label (sym);
16971 }
16972
16973 /* This function is called by tc_new_dot_label whenever a new dot symbol
16974 is defined. */
16975
16976 void
16977 mips_add_dot_label (symbolS *sym)
16978 {
16979 mips_record_label (sym);
16980 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
16981 mips_compressed_mark_label (sym);
16982 }
16983 \f
16984 /* Some special processing for a MIPS ELF file. */
16985
16986 void
16987 mips_elf_final_processing (void)
16988 {
16989 /* Write out the register information. */
16990 if (mips_abi != N64_ABI)
16991 {
16992 Elf32_RegInfo s;
16993
16994 s.ri_gprmask = mips_gprmask;
16995 s.ri_cprmask[0] = mips_cprmask[0];
16996 s.ri_cprmask[1] = mips_cprmask[1];
16997 s.ri_cprmask[2] = mips_cprmask[2];
16998 s.ri_cprmask[3] = mips_cprmask[3];
16999 /* The gp_value field is set by the MIPS ELF backend. */
17000
17001 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
17002 ((Elf32_External_RegInfo *)
17003 mips_regmask_frag));
17004 }
17005 else
17006 {
17007 Elf64_Internal_RegInfo s;
17008
17009 s.ri_gprmask = mips_gprmask;
17010 s.ri_pad = 0;
17011 s.ri_cprmask[0] = mips_cprmask[0];
17012 s.ri_cprmask[1] = mips_cprmask[1];
17013 s.ri_cprmask[2] = mips_cprmask[2];
17014 s.ri_cprmask[3] = mips_cprmask[3];
17015 /* The gp_value field is set by the MIPS ELF backend. */
17016
17017 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
17018 ((Elf64_External_RegInfo *)
17019 mips_regmask_frag));
17020 }
17021
17022 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
17023 sort of BFD interface for this. */
17024 if (mips_any_noreorder)
17025 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
17026 if (mips_pic != NO_PIC)
17027 {
17028 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
17029 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
17030 }
17031 if (mips_abicalls)
17032 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
17033
17034 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
17035 defined at present; this might need to change in future. */
17036 if (file_ase_mips16)
17037 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
17038 if (file_ase_micromips)
17039 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
17040 if (file_ase & ASE_MDMX)
17041 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
17042
17043 /* Set the MIPS ELF ABI flags. */
17044 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
17045 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
17046 else if (mips_abi == O64_ABI)
17047 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
17048 else if (mips_abi == EABI_ABI)
17049 {
17050 if (!file_mips_gp32)
17051 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
17052 else
17053 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
17054 }
17055 else if (mips_abi == N32_ABI)
17056 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
17057
17058 /* Nothing to do for N64_ABI. */
17059
17060 if (mips_32bitmode)
17061 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
17062
17063 if (mips_flag_nan2008)
17064 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
17065
17066 #if 0 /* XXX FIXME */
17067 /* 32 bit code with 64 bit FP registers. */
17068 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
17069 elf_elfheader (stdoutput)->e_flags |= ???;
17070 #endif
17071 }
17072 \f
17073 typedef struct proc {
17074 symbolS *func_sym;
17075 symbolS *func_end_sym;
17076 unsigned long reg_mask;
17077 unsigned long reg_offset;
17078 unsigned long fpreg_mask;
17079 unsigned long fpreg_offset;
17080 unsigned long frame_offset;
17081 unsigned long frame_reg;
17082 unsigned long pc_reg;
17083 } procS;
17084
17085 static procS cur_proc;
17086 static procS *cur_proc_ptr;
17087 static int numprocs;
17088
17089 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
17090 as "2", and a normal nop as "0". */
17091
17092 #define NOP_OPCODE_MIPS 0
17093 #define NOP_OPCODE_MIPS16 1
17094 #define NOP_OPCODE_MICROMIPS 2
17095
17096 char
17097 mips_nop_opcode (void)
17098 {
17099 if (seg_info (now_seg)->tc_segment_info_data.micromips)
17100 return NOP_OPCODE_MICROMIPS;
17101 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
17102 return NOP_OPCODE_MIPS16;
17103 else
17104 return NOP_OPCODE_MIPS;
17105 }
17106
17107 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
17108 32-bit microMIPS NOPs here (if applicable). */
17109
17110 void
17111 mips_handle_align (fragS *fragp)
17112 {
17113 char nop_opcode;
17114 char *p;
17115 int bytes, size, excess;
17116 valueT opcode;
17117
17118 if (fragp->fr_type != rs_align_code)
17119 return;
17120
17121 p = fragp->fr_literal + fragp->fr_fix;
17122 nop_opcode = *p;
17123 switch (nop_opcode)
17124 {
17125 case NOP_OPCODE_MICROMIPS:
17126 opcode = micromips_nop32_insn.insn_opcode;
17127 size = 4;
17128 break;
17129 case NOP_OPCODE_MIPS16:
17130 opcode = mips16_nop_insn.insn_opcode;
17131 size = 2;
17132 break;
17133 case NOP_OPCODE_MIPS:
17134 default:
17135 opcode = nop_insn.insn_opcode;
17136 size = 4;
17137 break;
17138 }
17139
17140 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
17141 excess = bytes % size;
17142
17143 /* Handle the leading part if we're not inserting a whole number of
17144 instructions, and make it the end of the fixed part of the frag.
17145 Try to fit in a short microMIPS NOP if applicable and possible,
17146 and use zeroes otherwise. */
17147 gas_assert (excess < 4);
17148 fragp->fr_fix += excess;
17149 switch (excess)
17150 {
17151 case 3:
17152 *p++ = '\0';
17153 /* Fall through. */
17154 case 2:
17155 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
17156 {
17157 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
17158 break;
17159 }
17160 *p++ = '\0';
17161 /* Fall through. */
17162 case 1:
17163 *p++ = '\0';
17164 /* Fall through. */
17165 case 0:
17166 break;
17167 }
17168
17169 md_number_to_chars (p, opcode, size);
17170 fragp->fr_var = size;
17171 }
17172
17173 static void
17174 md_obj_begin (void)
17175 {
17176 }
17177
17178 static void
17179 md_obj_end (void)
17180 {
17181 /* Check for premature end, nesting errors, etc. */
17182 if (cur_proc_ptr)
17183 as_warn (_("missing .end at end of assembly"));
17184 }
17185
17186 static long
17187 get_number (void)
17188 {
17189 int negative = 0;
17190 long val = 0;
17191
17192 if (*input_line_pointer == '-')
17193 {
17194 ++input_line_pointer;
17195 negative = 1;
17196 }
17197 if (!ISDIGIT (*input_line_pointer))
17198 as_bad (_("expected simple number"));
17199 if (input_line_pointer[0] == '0')
17200 {
17201 if (input_line_pointer[1] == 'x')
17202 {
17203 input_line_pointer += 2;
17204 while (ISXDIGIT (*input_line_pointer))
17205 {
17206 val <<= 4;
17207 val |= hex_value (*input_line_pointer++);
17208 }
17209 return negative ? -val : val;
17210 }
17211 else
17212 {
17213 ++input_line_pointer;
17214 while (ISDIGIT (*input_line_pointer))
17215 {
17216 val <<= 3;
17217 val |= *input_line_pointer++ - '0';
17218 }
17219 return negative ? -val : val;
17220 }
17221 }
17222 if (!ISDIGIT (*input_line_pointer))
17223 {
17224 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
17225 *input_line_pointer, *input_line_pointer);
17226 as_warn (_("invalid number"));
17227 return -1;
17228 }
17229 while (ISDIGIT (*input_line_pointer))
17230 {
17231 val *= 10;
17232 val += *input_line_pointer++ - '0';
17233 }
17234 return negative ? -val : val;
17235 }
17236
17237 /* The .file directive; just like the usual .file directive, but there
17238 is an initial number which is the ECOFF file index. In the non-ECOFF
17239 case .file implies DWARF-2. */
17240
17241 static void
17242 s_mips_file (int x ATTRIBUTE_UNUSED)
17243 {
17244 static int first_file_directive = 0;
17245
17246 if (ECOFF_DEBUGGING)
17247 {
17248 get_number ();
17249 s_app_file (0);
17250 }
17251 else
17252 {
17253 char *filename;
17254
17255 filename = dwarf2_directive_file (0);
17256
17257 /* Versions of GCC up to 3.1 start files with a ".file"
17258 directive even for stabs output. Make sure that this
17259 ".file" is handled. Note that you need a version of GCC
17260 after 3.1 in order to support DWARF-2 on MIPS. */
17261 if (filename != NULL && ! first_file_directive)
17262 {
17263 (void) new_logical_line (filename, -1);
17264 s_app_file_string (filename, 0);
17265 }
17266 first_file_directive = 1;
17267 }
17268 }
17269
17270 /* The .loc directive, implying DWARF-2. */
17271
17272 static void
17273 s_mips_loc (int x ATTRIBUTE_UNUSED)
17274 {
17275 if (!ECOFF_DEBUGGING)
17276 dwarf2_directive_loc (0);
17277 }
17278
17279 /* The .end directive. */
17280
17281 static void
17282 s_mips_end (int x ATTRIBUTE_UNUSED)
17283 {
17284 symbolS *p;
17285
17286 /* Following functions need their own .frame and .cprestore directives. */
17287 mips_frame_reg_valid = 0;
17288 mips_cprestore_valid = 0;
17289
17290 if (!is_end_of_line[(unsigned char) *input_line_pointer])
17291 {
17292 p = get_symbol ();
17293 demand_empty_rest_of_line ();
17294 }
17295 else
17296 p = NULL;
17297
17298 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
17299 as_warn (_(".end not in text section"));
17300
17301 if (!cur_proc_ptr)
17302 {
17303 as_warn (_(".end directive without a preceding .ent directive."));
17304 demand_empty_rest_of_line ();
17305 return;
17306 }
17307
17308 if (p != NULL)
17309 {
17310 gas_assert (S_GET_NAME (p));
17311 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
17312 as_warn (_(".end symbol does not match .ent symbol."));
17313
17314 if (debug_type == DEBUG_STABS)
17315 stabs_generate_asm_endfunc (S_GET_NAME (p),
17316 S_GET_NAME (p));
17317 }
17318 else
17319 as_warn (_(".end directive missing or unknown symbol"));
17320
17321 /* Create an expression to calculate the size of the function. */
17322 if (p && cur_proc_ptr)
17323 {
17324 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
17325 expressionS *exp = xmalloc (sizeof (expressionS));
17326
17327 obj->size = exp;
17328 exp->X_op = O_subtract;
17329 exp->X_add_symbol = symbol_temp_new_now ();
17330 exp->X_op_symbol = p;
17331 exp->X_add_number = 0;
17332
17333 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
17334 }
17335
17336 /* Generate a .pdr section. */
17337 if (!ECOFF_DEBUGGING && mips_flag_pdr)
17338 {
17339 segT saved_seg = now_seg;
17340 subsegT saved_subseg = now_subseg;
17341 expressionS exp;
17342 char *fragp;
17343
17344 #ifdef md_flush_pending_output
17345 md_flush_pending_output ();
17346 #endif
17347
17348 gas_assert (pdr_seg);
17349 subseg_set (pdr_seg, 0);
17350
17351 /* Write the symbol. */
17352 exp.X_op = O_symbol;
17353 exp.X_add_symbol = p;
17354 exp.X_add_number = 0;
17355 emit_expr (&exp, 4);
17356
17357 fragp = frag_more (7 * 4);
17358
17359 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
17360 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
17361 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
17362 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
17363 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
17364 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
17365 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
17366
17367 subseg_set (saved_seg, saved_subseg);
17368 }
17369
17370 cur_proc_ptr = NULL;
17371 }
17372
17373 /* The .aent and .ent directives. */
17374
17375 static void
17376 s_mips_ent (int aent)
17377 {
17378 symbolS *symbolP;
17379
17380 symbolP = get_symbol ();
17381 if (*input_line_pointer == ',')
17382 ++input_line_pointer;
17383 SKIP_WHITESPACE ();
17384 if (ISDIGIT (*input_line_pointer)
17385 || *input_line_pointer == '-')
17386 get_number ();
17387
17388 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
17389 as_warn (_(".ent or .aent not in text section."));
17390
17391 if (!aent && cur_proc_ptr)
17392 as_warn (_("missing .end"));
17393
17394 if (!aent)
17395 {
17396 /* This function needs its own .frame and .cprestore directives. */
17397 mips_frame_reg_valid = 0;
17398 mips_cprestore_valid = 0;
17399
17400 cur_proc_ptr = &cur_proc;
17401 memset (cur_proc_ptr, '\0', sizeof (procS));
17402
17403 cur_proc_ptr->func_sym = symbolP;
17404
17405 ++numprocs;
17406
17407 if (debug_type == DEBUG_STABS)
17408 stabs_generate_asm_func (S_GET_NAME (symbolP),
17409 S_GET_NAME (symbolP));
17410 }
17411
17412 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
17413
17414 demand_empty_rest_of_line ();
17415 }
17416
17417 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
17418 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
17419 s_mips_frame is used so that we can set the PDR information correctly.
17420 We can't use the ecoff routines because they make reference to the ecoff
17421 symbol table (in the mdebug section). */
17422
17423 static void
17424 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
17425 {
17426 if (ECOFF_DEBUGGING)
17427 s_ignore (ignore);
17428 else
17429 {
17430 long val;
17431
17432 if (cur_proc_ptr == (procS *) NULL)
17433 {
17434 as_warn (_(".frame outside of .ent"));
17435 demand_empty_rest_of_line ();
17436 return;
17437 }
17438
17439 cur_proc_ptr->frame_reg = tc_get_register (1);
17440
17441 SKIP_WHITESPACE ();
17442 if (*input_line_pointer++ != ','
17443 || get_absolute_expression_and_terminator (&val) != ',')
17444 {
17445 as_warn (_("Bad .frame directive"));
17446 --input_line_pointer;
17447 demand_empty_rest_of_line ();
17448 return;
17449 }
17450
17451 cur_proc_ptr->frame_offset = val;
17452 cur_proc_ptr->pc_reg = tc_get_register (0);
17453
17454 demand_empty_rest_of_line ();
17455 }
17456 }
17457
17458 /* The .fmask and .mask directives. If the mdebug section is present
17459 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
17460 embedded targets, s_mips_mask is used so that we can set the PDR
17461 information correctly. We can't use the ecoff routines because they
17462 make reference to the ecoff symbol table (in the mdebug section). */
17463
17464 static void
17465 s_mips_mask (int reg_type)
17466 {
17467 if (ECOFF_DEBUGGING)
17468 s_ignore (reg_type);
17469 else
17470 {
17471 long mask, off;
17472
17473 if (cur_proc_ptr == (procS *) NULL)
17474 {
17475 as_warn (_(".mask/.fmask outside of .ent"));
17476 demand_empty_rest_of_line ();
17477 return;
17478 }
17479
17480 if (get_absolute_expression_and_terminator (&mask) != ',')
17481 {
17482 as_warn (_("Bad .mask/.fmask directive"));
17483 --input_line_pointer;
17484 demand_empty_rest_of_line ();
17485 return;
17486 }
17487
17488 off = get_absolute_expression ();
17489
17490 if (reg_type == 'F')
17491 {
17492 cur_proc_ptr->fpreg_mask = mask;
17493 cur_proc_ptr->fpreg_offset = off;
17494 }
17495 else
17496 {
17497 cur_proc_ptr->reg_mask = mask;
17498 cur_proc_ptr->reg_offset = off;
17499 }
17500
17501 demand_empty_rest_of_line ();
17502 }
17503 }
17504
17505 /* A table describing all the processors gas knows about. Names are
17506 matched in the order listed.
17507
17508 To ease comparison, please keep this table in the same order as
17509 gcc's mips_cpu_info_table[]. */
17510 static const struct mips_cpu_info mips_cpu_info_table[] =
17511 {
17512 /* Entries for generic ISAs */
17513 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
17514 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
17515 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
17516 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
17517 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
17518 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
17519 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17520 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
17521 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
17522
17523 /* MIPS I */
17524 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
17525 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
17526 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
17527
17528 /* MIPS II */
17529 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
17530
17531 /* MIPS III */
17532 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
17533 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
17534 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
17535 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
17536 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
17537 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
17538 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
17539 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
17540 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
17541 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
17542 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
17543 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
17544 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
17545 /* ST Microelectronics Loongson 2E and 2F cores */
17546 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
17547 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
17548
17549 /* MIPS IV */
17550 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
17551 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
17552 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
17553 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
17554 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
17555 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
17556 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
17557 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
17558 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
17559 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
17560 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
17561 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
17562 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
17563 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
17564 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
17565
17566 /* MIPS 32 */
17567 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17568 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17569 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
17570 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
17571
17572 /* MIPS 32 Release 2 */
17573 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17574 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17575 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17576 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
17577 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17578 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17579 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17580 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
17581 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17582 ISA_MIPS32R2, CPU_MIPS32R2 },
17583 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
17584 ISA_MIPS32R2, CPU_MIPS32R2 },
17585 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17586 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17587 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17588 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17589 /* Deprecated forms of the above. */
17590 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17591 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
17592 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
17593 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17594 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17595 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17596 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17597 /* Deprecated forms of the above. */
17598 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17599 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
17600 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
17601 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17602 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17603 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17604 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17605 /* Deprecated forms of the above. */
17606 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17607 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17608 /* 34Kn is a 34kc without DSP. */
17609 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17610 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
17611 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17612 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17613 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17614 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17615 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17616 /* Deprecated forms of the above. */
17617 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17618 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
17619 /* 1004K cores are multiprocessor versions of the 34K. */
17620 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17621 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17622 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17623 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
17624
17625 /* MIPS 64 */
17626 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17627 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
17628 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
17629 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
17630
17631 /* Broadcom SB-1 CPU core */
17632 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
17633 /* Broadcom SB-1A CPU core */
17634 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
17635
17636 { "loongson3a", 0, 0, ISA_MIPS64, CPU_LOONGSON_3A },
17637
17638 /* MIPS 64 Release 2 */
17639
17640 /* Cavium Networks Octeon CPU core */
17641 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
17642 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
17643 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
17644
17645 /* RMI Xlr */
17646 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
17647
17648 /* Broadcom XLP.
17649 XLP is mostly like XLR, with the prominent exception that it is
17650 MIPS64R2 rather than MIPS64. */
17651 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
17652
17653 /* End marker */
17654 { NULL, 0, 0, 0, 0 }
17655 };
17656
17657
17658 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
17659 with a final "000" replaced by "k". Ignore case.
17660
17661 Note: this function is shared between GCC and GAS. */
17662
17663 static bfd_boolean
17664 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
17665 {
17666 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
17667 given++, canonical++;
17668
17669 return ((*given == 0 && *canonical == 0)
17670 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
17671 }
17672
17673
17674 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
17675 CPU name. We've traditionally allowed a lot of variation here.
17676
17677 Note: this function is shared between GCC and GAS. */
17678
17679 static bfd_boolean
17680 mips_matching_cpu_name_p (const char *canonical, const char *given)
17681 {
17682 /* First see if the name matches exactly, or with a final "000"
17683 turned into "k". */
17684 if (mips_strict_matching_cpu_name_p (canonical, given))
17685 return TRUE;
17686
17687 /* If not, try comparing based on numerical designation alone.
17688 See if GIVEN is an unadorned number, or 'r' followed by a number. */
17689 if (TOLOWER (*given) == 'r')
17690 given++;
17691 if (!ISDIGIT (*given))
17692 return FALSE;
17693
17694 /* Skip over some well-known prefixes in the canonical name,
17695 hoping to find a number there too. */
17696 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
17697 canonical += 2;
17698 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
17699 canonical += 2;
17700 else if (TOLOWER (canonical[0]) == 'r')
17701 canonical += 1;
17702
17703 return mips_strict_matching_cpu_name_p (canonical, given);
17704 }
17705
17706
17707 /* Parse an option that takes the name of a processor as its argument.
17708 OPTION is the name of the option and CPU_STRING is the argument.
17709 Return the corresponding processor enumeration if the CPU_STRING is
17710 recognized, otherwise report an error and return null.
17711
17712 A similar function exists in GCC. */
17713
17714 static const struct mips_cpu_info *
17715 mips_parse_cpu (const char *option, const char *cpu_string)
17716 {
17717 const struct mips_cpu_info *p;
17718
17719 /* 'from-abi' selects the most compatible architecture for the given
17720 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
17721 EABIs, we have to decide whether we're using the 32-bit or 64-bit
17722 version. Look first at the -mgp options, if given, otherwise base
17723 the choice on MIPS_DEFAULT_64BIT.
17724
17725 Treat NO_ABI like the EABIs. One reason to do this is that the
17726 plain 'mips' and 'mips64' configs have 'from-abi' as their default
17727 architecture. This code picks MIPS I for 'mips' and MIPS III for
17728 'mips64', just as we did in the days before 'from-abi'. */
17729 if (strcasecmp (cpu_string, "from-abi") == 0)
17730 {
17731 if (ABI_NEEDS_32BIT_REGS (mips_abi))
17732 return mips_cpu_info_from_isa (ISA_MIPS1);
17733
17734 if (ABI_NEEDS_64BIT_REGS (mips_abi))
17735 return mips_cpu_info_from_isa (ISA_MIPS3);
17736
17737 if (file_mips_gp32 >= 0)
17738 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
17739
17740 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
17741 ? ISA_MIPS3
17742 : ISA_MIPS1);
17743 }
17744
17745 /* 'default' has traditionally been a no-op. Probably not very useful. */
17746 if (strcasecmp (cpu_string, "default") == 0)
17747 return 0;
17748
17749 for (p = mips_cpu_info_table; p->name != 0; p++)
17750 if (mips_matching_cpu_name_p (p->name, cpu_string))
17751 return p;
17752
17753 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
17754 return 0;
17755 }
17756
17757 /* Return the canonical processor information for ISA (a member of the
17758 ISA_MIPS* enumeration). */
17759
17760 static const struct mips_cpu_info *
17761 mips_cpu_info_from_isa (int isa)
17762 {
17763 int i;
17764
17765 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
17766 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
17767 && isa == mips_cpu_info_table[i].isa)
17768 return (&mips_cpu_info_table[i]);
17769
17770 return NULL;
17771 }
17772
17773 static const struct mips_cpu_info *
17774 mips_cpu_info_from_arch (int arch)
17775 {
17776 int i;
17777
17778 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
17779 if (arch == mips_cpu_info_table[i].cpu)
17780 return (&mips_cpu_info_table[i]);
17781
17782 return NULL;
17783 }
17784 \f
17785 static void
17786 show (FILE *stream, const char *string, int *col_p, int *first_p)
17787 {
17788 if (*first_p)
17789 {
17790 fprintf (stream, "%24s", "");
17791 *col_p = 24;
17792 }
17793 else
17794 {
17795 fprintf (stream, ", ");
17796 *col_p += 2;
17797 }
17798
17799 if (*col_p + strlen (string) > 72)
17800 {
17801 fprintf (stream, "\n%24s", "");
17802 *col_p = 24;
17803 }
17804
17805 fprintf (stream, "%s", string);
17806 *col_p += strlen (string);
17807
17808 *first_p = 0;
17809 }
17810
17811 void
17812 md_show_usage (FILE *stream)
17813 {
17814 int column, first;
17815 size_t i;
17816
17817 fprintf (stream, _("\
17818 MIPS options:\n\
17819 -EB generate big endian output\n\
17820 -EL generate little endian output\n\
17821 -g, -g2 do not remove unneeded NOPs or swap branches\n\
17822 -G NUM allow referencing objects up to NUM bytes\n\
17823 implicitly with the gp register [default 8]\n"));
17824 fprintf (stream, _("\
17825 -mips1 generate MIPS ISA I instructions\n\
17826 -mips2 generate MIPS ISA II instructions\n\
17827 -mips3 generate MIPS ISA III instructions\n\
17828 -mips4 generate MIPS ISA IV instructions\n\
17829 -mips5 generate MIPS ISA V instructions\n\
17830 -mips32 generate MIPS32 ISA instructions\n\
17831 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
17832 -mips64 generate MIPS64 ISA instructions\n\
17833 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
17834 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
17835
17836 first = 1;
17837
17838 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
17839 show (stream, mips_cpu_info_table[i].name, &column, &first);
17840 show (stream, "from-abi", &column, &first);
17841 fputc ('\n', stream);
17842
17843 fprintf (stream, _("\
17844 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
17845 -no-mCPU don't generate code specific to CPU.\n\
17846 For -mCPU and -no-mCPU, CPU must be one of:\n"));
17847
17848 first = 1;
17849
17850 show (stream, "3900", &column, &first);
17851 show (stream, "4010", &column, &first);
17852 show (stream, "4100", &column, &first);
17853 show (stream, "4650", &column, &first);
17854 fputc ('\n', stream);
17855
17856 fprintf (stream, _("\
17857 -mips16 generate mips16 instructions\n\
17858 -no-mips16 do not generate mips16 instructions\n"));
17859 fprintf (stream, _("\
17860 -mmicromips generate microMIPS instructions\n\
17861 -mno-micromips do not generate microMIPS instructions\n"));
17862 fprintf (stream, _("\
17863 -msmartmips generate smartmips instructions\n\
17864 -mno-smartmips do not generate smartmips instructions\n"));
17865 fprintf (stream, _("\
17866 -mdsp generate DSP instructions\n\
17867 -mno-dsp do not generate DSP instructions\n"));
17868 fprintf (stream, _("\
17869 -mdspr2 generate DSP R2 instructions\n\
17870 -mno-dspr2 do not generate DSP R2 instructions\n"));
17871 fprintf (stream, _("\
17872 -mmt generate MT instructions\n\
17873 -mno-mt do not generate MT instructions\n"));
17874 fprintf (stream, _("\
17875 -mmcu generate MCU instructions\n\
17876 -mno-mcu do not generate MCU instructions\n"));
17877 fprintf (stream, _("\
17878 -mvirt generate Virtualization instructions\n\
17879 -mno-virt do not generate Virtualization instructions\n"));
17880 fprintf (stream, _("\
17881 -minsn32 only generate 32-bit microMIPS instructions\n\
17882 -mno-insn32 generate all microMIPS instructions\n"));
17883 fprintf (stream, _("\
17884 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
17885 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
17886 -mfix-vr4120 work around certain VR4120 errata\n\
17887 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
17888 -mfix-24k insert a nop after ERET and DERET instructions\n\
17889 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
17890 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
17891 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
17892 -msym32 assume all symbols have 32-bit values\n\
17893 -O0 remove unneeded NOPs, do not swap branches\n\
17894 -O remove unneeded NOPs and swap branches\n\
17895 --trap, --no-break trap exception on div by 0 and mult overflow\n\
17896 --break, --no-trap break exception on div by 0 and mult overflow\n"));
17897 fprintf (stream, _("\
17898 -mhard-float allow floating-point instructions\n\
17899 -msoft-float do not allow floating-point instructions\n\
17900 -msingle-float only allow 32-bit floating-point operations\n\
17901 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
17902 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
17903 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
17904 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
17905
17906 first = 1;
17907
17908 show (stream, "legacy", &column, &first);
17909 show (stream, "2008", &column, &first);
17910
17911 fputc ('\n', stream);
17912
17913 fprintf (stream, _("\
17914 -KPIC, -call_shared generate SVR4 position independent code\n\
17915 -call_nonpic generate non-PIC code that can operate with DSOs\n\
17916 -mvxworks-pic generate VxWorks position independent code\n\
17917 -non_shared do not generate code that can operate with DSOs\n\
17918 -xgot assume a 32 bit GOT\n\
17919 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
17920 -mshared, -mno-shared disable/enable .cpload optimization for\n\
17921 position dependent (non shared) code\n\
17922 -mabi=ABI create ABI conformant object file for:\n"));
17923
17924 first = 1;
17925
17926 show (stream, "32", &column, &first);
17927 show (stream, "o64", &column, &first);
17928 show (stream, "n32", &column, &first);
17929 show (stream, "64", &column, &first);
17930 show (stream, "eabi", &column, &first);
17931
17932 fputc ('\n', stream);
17933
17934 fprintf (stream, _("\
17935 -32 create o32 ABI object file (default)\n\
17936 -n32 create n32 ABI object file\n\
17937 -64 create 64 ABI object file\n"));
17938 }
17939
17940 #ifdef TE_IRIX
17941 enum dwarf2_format
17942 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
17943 {
17944 if (HAVE_64BIT_SYMBOLS)
17945 return dwarf2_format_64bit_irix;
17946 else
17947 return dwarf2_format_32bit;
17948 }
17949 #endif
17950
17951 int
17952 mips_dwarf2_addr_size (void)
17953 {
17954 if (HAVE_64BIT_OBJECTS)
17955 return 8;
17956 else
17957 return 4;
17958 }
17959
17960 /* Standard calling conventions leave the CFA at SP on entry. */
17961 void
17962 mips_cfi_frame_initial_instructions (void)
17963 {
17964 cfi_add_CFA_def_cfa_register (SP);
17965 }
17966
17967 int
17968 tc_mips_regname_to_dw2regnum (char *regname)
17969 {
17970 unsigned int regnum = -1;
17971 unsigned int reg;
17972
17973 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
17974 regnum = reg;
17975
17976 return regnum;
17977 }
This page took 0.554783 seconds and 4 git commands to generate.