6891508e132a38cd6b38a0d740ac2b052e8924f5
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_DSPR3,
1414 OPTION_NO_DSPR3,
1415 OPTION_EVA,
1416 OPTION_NO_EVA,
1417 OPTION_XPA,
1418 OPTION_NO_XPA,
1419 OPTION_MICROMIPS,
1420 OPTION_NO_MICROMIPS,
1421 OPTION_MCU,
1422 OPTION_NO_MCU,
1423 OPTION_COMPAT_ARCH_BASE,
1424 OPTION_M4650,
1425 OPTION_NO_M4650,
1426 OPTION_M4010,
1427 OPTION_NO_M4010,
1428 OPTION_M4100,
1429 OPTION_NO_M4100,
1430 OPTION_M3900,
1431 OPTION_NO_M3900,
1432 OPTION_M7000_HILO_FIX,
1433 OPTION_MNO_7000_HILO_FIX,
1434 OPTION_FIX_24K,
1435 OPTION_NO_FIX_24K,
1436 OPTION_FIX_RM7000,
1437 OPTION_NO_FIX_RM7000,
1438 OPTION_FIX_LOONGSON2F_JUMP,
1439 OPTION_NO_FIX_LOONGSON2F_JUMP,
1440 OPTION_FIX_LOONGSON2F_NOP,
1441 OPTION_NO_FIX_LOONGSON2F_NOP,
1442 OPTION_FIX_VR4120,
1443 OPTION_NO_FIX_VR4120,
1444 OPTION_FIX_VR4130,
1445 OPTION_NO_FIX_VR4130,
1446 OPTION_FIX_CN63XXP1,
1447 OPTION_NO_FIX_CN63XXP1,
1448 OPTION_TRAP,
1449 OPTION_BREAK,
1450 OPTION_EB,
1451 OPTION_EL,
1452 OPTION_FP32,
1453 OPTION_GP32,
1454 OPTION_CONSTRUCT_FLOATS,
1455 OPTION_NO_CONSTRUCT_FLOATS,
1456 OPTION_FP64,
1457 OPTION_FPXX,
1458 OPTION_GP64,
1459 OPTION_RELAX_BRANCH,
1460 OPTION_NO_RELAX_BRANCH,
1461 OPTION_INSN32,
1462 OPTION_NO_INSN32,
1463 OPTION_MSHARED,
1464 OPTION_MNO_SHARED,
1465 OPTION_MSYM32,
1466 OPTION_MNO_SYM32,
1467 OPTION_SOFT_FLOAT,
1468 OPTION_HARD_FLOAT,
1469 OPTION_SINGLE_FLOAT,
1470 OPTION_DOUBLE_FLOAT,
1471 OPTION_32,
1472 OPTION_CALL_SHARED,
1473 OPTION_CALL_NONPIC,
1474 OPTION_NON_SHARED,
1475 OPTION_XGOT,
1476 OPTION_MABI,
1477 OPTION_N32,
1478 OPTION_64,
1479 OPTION_MDEBUG,
1480 OPTION_NO_MDEBUG,
1481 OPTION_PDR,
1482 OPTION_NO_PDR,
1483 OPTION_MVXWORKS_PIC,
1484 OPTION_NAN,
1485 OPTION_ODD_SPREG,
1486 OPTION_NO_ODD_SPREG,
1487 OPTION_END_OF_ENUM
1488 };
1489
1490 struct option md_longopts[] =
1491 {
1492 /* Options which specify architecture. */
1493 {"march", required_argument, NULL, OPTION_MARCH},
1494 {"mtune", required_argument, NULL, OPTION_MTUNE},
1495 {"mips0", no_argument, NULL, OPTION_MIPS1},
1496 {"mips1", no_argument, NULL, OPTION_MIPS1},
1497 {"mips2", no_argument, NULL, OPTION_MIPS2},
1498 {"mips3", no_argument, NULL, OPTION_MIPS3},
1499 {"mips4", no_argument, NULL, OPTION_MIPS4},
1500 {"mips5", no_argument, NULL, OPTION_MIPS5},
1501 {"mips32", no_argument, NULL, OPTION_MIPS32},
1502 {"mips64", no_argument, NULL, OPTION_MIPS64},
1503 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1504 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1505 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1506 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1507 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1508 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1509 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1510 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1511
1512 /* Options which specify Application Specific Extensions (ASEs). */
1513 {"mips16", no_argument, NULL, OPTION_MIPS16},
1514 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1515 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1516 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1517 {"mdmx", no_argument, NULL, OPTION_MDMX},
1518 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1519 {"mdsp", no_argument, NULL, OPTION_DSP},
1520 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1521 {"mmt", no_argument, NULL, OPTION_MT},
1522 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1523 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1524 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1525 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1526 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1527 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1528 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1529 {"meva", no_argument, NULL, OPTION_EVA},
1530 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1531 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1532 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1533 {"mmcu", no_argument, NULL, OPTION_MCU},
1534 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1535 {"mvirt", no_argument, NULL, OPTION_VIRT},
1536 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1537 {"mmsa", no_argument, NULL, OPTION_MSA},
1538 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1539 {"mxpa", no_argument, NULL, OPTION_XPA},
1540 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1541
1542 /* Old-style architecture options. Don't add more of these. */
1543 {"m4650", no_argument, NULL, OPTION_M4650},
1544 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1545 {"m4010", no_argument, NULL, OPTION_M4010},
1546 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1547 {"m4100", no_argument, NULL, OPTION_M4100},
1548 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1549 {"m3900", no_argument, NULL, OPTION_M3900},
1550 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1551
1552 /* Options which enable bug fixes. */
1553 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1554 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1555 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1556 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1557 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1558 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1559 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1560 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1561 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1562 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1563 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1564 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1565 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1566 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1567 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1568 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1569 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1570
1571 /* Miscellaneous options. */
1572 {"trap", no_argument, NULL, OPTION_TRAP},
1573 {"no-break", no_argument, NULL, OPTION_TRAP},
1574 {"break", no_argument, NULL, OPTION_BREAK},
1575 {"no-trap", no_argument, NULL, OPTION_BREAK},
1576 {"EB", no_argument, NULL, OPTION_EB},
1577 {"EL", no_argument, NULL, OPTION_EL},
1578 {"mfp32", no_argument, NULL, OPTION_FP32},
1579 {"mgp32", no_argument, NULL, OPTION_GP32},
1580 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1581 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1582 {"mfp64", no_argument, NULL, OPTION_FP64},
1583 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1584 {"mgp64", no_argument, NULL, OPTION_GP64},
1585 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1586 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1587 {"minsn32", no_argument, NULL, OPTION_INSN32},
1588 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1589 {"mshared", no_argument, NULL, OPTION_MSHARED},
1590 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1591 {"msym32", no_argument, NULL, OPTION_MSYM32},
1592 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1593 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1594 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1595 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1596 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1597 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1598 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1599
1600 /* Strictly speaking this next option is ELF specific,
1601 but we allow it for other ports as well in order to
1602 make testing easier. */
1603 {"32", no_argument, NULL, OPTION_32},
1604
1605 /* ELF-specific options. */
1606 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1607 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1608 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1609 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1610 {"xgot", no_argument, NULL, OPTION_XGOT},
1611 {"mabi", required_argument, NULL, OPTION_MABI},
1612 {"n32", no_argument, NULL, OPTION_N32},
1613 {"64", no_argument, NULL, OPTION_64},
1614 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1615 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1616 {"mpdr", no_argument, NULL, OPTION_PDR},
1617 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1618 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1619 {"mnan", required_argument, NULL, OPTION_NAN},
1620
1621 {NULL, no_argument, NULL, 0}
1622 };
1623 size_t md_longopts_size = sizeof (md_longopts);
1624 \f
1625 /* Information about either an Application Specific Extension or an
1626 optional architecture feature that, for simplicity, we treat in the
1627 same way as an ASE. */
1628 struct mips_ase
1629 {
1630 /* The name of the ASE, used in both the command-line and .set options. */
1631 const char *name;
1632
1633 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1634 and 64-bit architectures, the flags here refer to the subset that
1635 is available on both. */
1636 unsigned int flags;
1637
1638 /* The ASE_* flag used for instructions that are available on 64-bit
1639 architectures but that are not included in FLAGS. */
1640 unsigned int flags64;
1641
1642 /* The command-line options that turn the ASE on and off. */
1643 int option_on;
1644 int option_off;
1645
1646 /* The minimum required architecture revisions for MIPS32, MIPS64,
1647 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1648 int mips32_rev;
1649 int mips64_rev;
1650 int micromips32_rev;
1651 int micromips64_rev;
1652
1653 /* The architecture where the ASE was removed or -1 if the extension has not
1654 been removed. */
1655 int rem_rev;
1656 };
1657
1658 /* A table of all supported ASEs. */
1659 static const struct mips_ase mips_ases[] = {
1660 { "dsp", ASE_DSP, ASE_DSP64,
1661 OPTION_DSP, OPTION_NO_DSP,
1662 2, 2, 2, 2,
1663 -1 },
1664
1665 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1666 OPTION_DSPR2, OPTION_NO_DSPR2,
1667 2, 2, 2, 2,
1668 -1 },
1669
1670 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1671 OPTION_DSPR3, OPTION_NO_DSPR3,
1672 6, 6, -1, -1,
1673 -1 },
1674
1675 { "eva", ASE_EVA, 0,
1676 OPTION_EVA, OPTION_NO_EVA,
1677 2, 2, 2, 2,
1678 -1 },
1679
1680 { "mcu", ASE_MCU, 0,
1681 OPTION_MCU, OPTION_NO_MCU,
1682 2, 2, 2, 2,
1683 -1 },
1684
1685 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1686 { "mdmx", ASE_MDMX, 0,
1687 OPTION_MDMX, OPTION_NO_MDMX,
1688 -1, 1, -1, -1,
1689 6 },
1690
1691 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1692 { "mips3d", ASE_MIPS3D, 0,
1693 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1694 2, 1, -1, -1,
1695 6 },
1696
1697 { "mt", ASE_MT, 0,
1698 OPTION_MT, OPTION_NO_MT,
1699 2, 2, -1, -1,
1700 -1 },
1701
1702 { "smartmips", ASE_SMARTMIPS, 0,
1703 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1704 1, -1, -1, -1,
1705 6 },
1706
1707 { "virt", ASE_VIRT, ASE_VIRT64,
1708 OPTION_VIRT, OPTION_NO_VIRT,
1709 2, 2, 2, 2,
1710 -1 },
1711
1712 { "msa", ASE_MSA, ASE_MSA64,
1713 OPTION_MSA, OPTION_NO_MSA,
1714 2, 2, 2, 2,
1715 -1 },
1716
1717 { "xpa", ASE_XPA, 0,
1718 OPTION_XPA, OPTION_NO_XPA,
1719 2, 2, -1, -1,
1720 -1 },
1721 };
1722
1723 /* The set of ASEs that require -mfp64. */
1724 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1725
1726 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1727 static const unsigned int mips_ase_groups[] = {
1728 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1729 };
1730 \f
1731 /* Pseudo-op table.
1732
1733 The following pseudo-ops from the Kane and Heinrich MIPS book
1734 should be defined here, but are currently unsupported: .alias,
1735 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1736
1737 The following pseudo-ops from the Kane and Heinrich MIPS book are
1738 specific to the type of debugging information being generated, and
1739 should be defined by the object format: .aent, .begin, .bend,
1740 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1741 .vreg.
1742
1743 The following pseudo-ops from the Kane and Heinrich MIPS book are
1744 not MIPS CPU specific, but are also not specific to the object file
1745 format. This file is probably the best place to define them, but
1746 they are not currently supported: .asm0, .endr, .lab, .struct. */
1747
1748 static const pseudo_typeS mips_pseudo_table[] =
1749 {
1750 /* MIPS specific pseudo-ops. */
1751 {"option", s_option, 0},
1752 {"set", s_mipsset, 0},
1753 {"rdata", s_change_sec, 'r'},
1754 {"sdata", s_change_sec, 's'},
1755 {"livereg", s_ignore, 0},
1756 {"abicalls", s_abicalls, 0},
1757 {"cpload", s_cpload, 0},
1758 {"cpsetup", s_cpsetup, 0},
1759 {"cplocal", s_cplocal, 0},
1760 {"cprestore", s_cprestore, 0},
1761 {"cpreturn", s_cpreturn, 0},
1762 {"dtprelword", s_dtprelword, 0},
1763 {"dtpreldword", s_dtpreldword, 0},
1764 {"tprelword", s_tprelword, 0},
1765 {"tpreldword", s_tpreldword, 0},
1766 {"gpvalue", s_gpvalue, 0},
1767 {"gpword", s_gpword, 0},
1768 {"gpdword", s_gpdword, 0},
1769 {"ehword", s_ehword, 0},
1770 {"cpadd", s_cpadd, 0},
1771 {"insn", s_insn, 0},
1772 {"nan", s_nan, 0},
1773 {"module", s_module, 0},
1774
1775 /* Relatively generic pseudo-ops that happen to be used on MIPS
1776 chips. */
1777 {"asciiz", stringer, 8 + 1},
1778 {"bss", s_change_sec, 'b'},
1779 {"err", s_err, 0},
1780 {"half", s_cons, 1},
1781 {"dword", s_cons, 3},
1782 {"weakext", s_mips_weakext, 0},
1783 {"origin", s_org, 0},
1784 {"repeat", s_rept, 0},
1785
1786 /* For MIPS this is non-standard, but we define it for consistency. */
1787 {"sbss", s_change_sec, 'B'},
1788
1789 /* These pseudo-ops are defined in read.c, but must be overridden
1790 here for one reason or another. */
1791 {"align", s_align, 0},
1792 {"byte", s_cons, 0},
1793 {"data", s_change_sec, 'd'},
1794 {"double", s_float_cons, 'd'},
1795 {"float", s_float_cons, 'f'},
1796 {"globl", s_mips_globl, 0},
1797 {"global", s_mips_globl, 0},
1798 {"hword", s_cons, 1},
1799 {"int", s_cons, 2},
1800 {"long", s_cons, 2},
1801 {"octa", s_cons, 4},
1802 {"quad", s_cons, 3},
1803 {"section", s_change_section, 0},
1804 {"short", s_cons, 1},
1805 {"single", s_float_cons, 'f'},
1806 {"stabd", s_mips_stab, 'd'},
1807 {"stabn", s_mips_stab, 'n'},
1808 {"stabs", s_mips_stab, 's'},
1809 {"text", s_change_sec, 't'},
1810 {"word", s_cons, 2},
1811
1812 { "extern", ecoff_directive_extern, 0},
1813
1814 { NULL, NULL, 0 },
1815 };
1816
1817 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1818 {
1819 /* These pseudo-ops should be defined by the object file format.
1820 However, a.out doesn't support them, so we have versions here. */
1821 {"aent", s_mips_ent, 1},
1822 {"bgnb", s_ignore, 0},
1823 {"end", s_mips_end, 0},
1824 {"endb", s_ignore, 0},
1825 {"ent", s_mips_ent, 0},
1826 {"file", s_mips_file, 0},
1827 {"fmask", s_mips_mask, 'F'},
1828 {"frame", s_mips_frame, 0},
1829 {"loc", s_mips_loc, 0},
1830 {"mask", s_mips_mask, 'R'},
1831 {"verstamp", s_ignore, 0},
1832 { NULL, NULL, 0 },
1833 };
1834
1835 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1836 purpose of the `.dc.a' internal pseudo-op. */
1837
1838 int
1839 mips_address_bytes (void)
1840 {
1841 file_mips_check_options ();
1842 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1843 }
1844
1845 extern void pop_insert (const pseudo_typeS *);
1846
1847 void
1848 mips_pop_insert (void)
1849 {
1850 pop_insert (mips_pseudo_table);
1851 if (! ECOFF_DEBUGGING)
1852 pop_insert (mips_nonecoff_pseudo_table);
1853 }
1854 \f
1855 /* Symbols labelling the current insn. */
1856
1857 struct insn_label_list
1858 {
1859 struct insn_label_list *next;
1860 symbolS *label;
1861 };
1862
1863 static struct insn_label_list *free_insn_labels;
1864 #define label_list tc_segment_info_data.labels
1865
1866 static void mips_clear_insn_labels (void);
1867 static void mips_mark_labels (void);
1868 static void mips_compressed_mark_labels (void);
1869
1870 static inline void
1871 mips_clear_insn_labels (void)
1872 {
1873 struct insn_label_list **pl;
1874 segment_info_type *si;
1875
1876 if (now_seg)
1877 {
1878 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1879 ;
1880
1881 si = seg_info (now_seg);
1882 *pl = si->label_list;
1883 si->label_list = NULL;
1884 }
1885 }
1886
1887 /* Mark instruction labels in MIPS16/microMIPS mode. */
1888
1889 static inline void
1890 mips_mark_labels (void)
1891 {
1892 if (HAVE_CODE_COMPRESSION)
1893 mips_compressed_mark_labels ();
1894 }
1895 \f
1896 static char *expr_end;
1897
1898 /* An expression in a macro instruction. This is set by mips_ip and
1899 mips16_ip and when populated is always an O_constant. */
1900
1901 static expressionS imm_expr;
1902
1903 /* The relocatable field in an instruction and the relocs associated
1904 with it. These variables are used for instructions like LUI and
1905 JAL as well as true offsets. They are also used for address
1906 operands in macros. */
1907
1908 static expressionS offset_expr;
1909 static bfd_reloc_code_real_type offset_reloc[3]
1910 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1911
1912 /* This is set to the resulting size of the instruction to be produced
1913 by mips16_ip if an explicit extension is used or by mips_ip if an
1914 explicit size is supplied. */
1915
1916 static unsigned int forced_insn_length;
1917
1918 /* True if we are assembling an instruction. All dot symbols defined during
1919 this time should be treated as code labels. */
1920
1921 static bfd_boolean mips_assembling_insn;
1922
1923 /* The pdr segment for per procedure frame/regmask info. Not used for
1924 ECOFF debugging. */
1925
1926 static segT pdr_seg;
1927
1928 /* The default target format to use. */
1929
1930 #if defined (TE_FreeBSD)
1931 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1932 #elif defined (TE_TMIPS)
1933 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1934 #else
1935 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1936 #endif
1937
1938 const char *
1939 mips_target_format (void)
1940 {
1941 switch (OUTPUT_FLAVOR)
1942 {
1943 case bfd_target_elf_flavour:
1944 #ifdef TE_VXWORKS
1945 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1946 return (target_big_endian
1947 ? "elf32-bigmips-vxworks"
1948 : "elf32-littlemips-vxworks");
1949 #endif
1950 return (target_big_endian
1951 ? (HAVE_64BIT_OBJECTS
1952 ? ELF_TARGET ("elf64-", "big")
1953 : (HAVE_NEWABI
1954 ? ELF_TARGET ("elf32-n", "big")
1955 : ELF_TARGET ("elf32-", "big")))
1956 : (HAVE_64BIT_OBJECTS
1957 ? ELF_TARGET ("elf64-", "little")
1958 : (HAVE_NEWABI
1959 ? ELF_TARGET ("elf32-n", "little")
1960 : ELF_TARGET ("elf32-", "little"))));
1961 default:
1962 abort ();
1963 return NULL;
1964 }
1965 }
1966
1967 /* Return the ISA revision that is currently in use, or 0 if we are
1968 generating code for MIPS V or below. */
1969
1970 static int
1971 mips_isa_rev (void)
1972 {
1973 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1974 return 2;
1975
1976 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1977 return 3;
1978
1979 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1980 return 5;
1981
1982 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1983 return 6;
1984
1985 /* microMIPS implies revision 2 or above. */
1986 if (mips_opts.micromips)
1987 return 2;
1988
1989 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1990 return 1;
1991
1992 return 0;
1993 }
1994
1995 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1996
1997 static unsigned int
1998 mips_ase_mask (unsigned int flags)
1999 {
2000 unsigned int i;
2001
2002 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2003 if (flags & mips_ase_groups[i])
2004 flags |= mips_ase_groups[i];
2005 return flags;
2006 }
2007
2008 /* Check whether the current ISA supports ASE. Issue a warning if
2009 appropriate. */
2010
2011 static void
2012 mips_check_isa_supports_ase (const struct mips_ase *ase)
2013 {
2014 const char *base;
2015 int min_rev, size;
2016 static unsigned int warned_isa;
2017 static unsigned int warned_fp32;
2018
2019 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2020 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2021 else
2022 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2023 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2024 && (warned_isa & ase->flags) != ase->flags)
2025 {
2026 warned_isa |= ase->flags;
2027 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2028 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2029 if (min_rev < 0)
2030 as_warn (_("the %d-bit %s architecture does not support the"
2031 " `%s' extension"), size, base, ase->name);
2032 else
2033 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2034 ase->name, base, size, min_rev);
2035 }
2036 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2037 && (warned_isa & ase->flags) != ase->flags)
2038 {
2039 warned_isa |= ase->flags;
2040 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2041 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2042 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2043 ase->name, base, size, ase->rem_rev);
2044 }
2045
2046 if ((ase->flags & FP64_ASES)
2047 && mips_opts.fp != 64
2048 && (warned_fp32 & ase->flags) != ase->flags)
2049 {
2050 warned_fp32 |= ase->flags;
2051 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2052 }
2053 }
2054
2055 /* Check all enabled ASEs to see whether they are supported by the
2056 chosen architecture. */
2057
2058 static void
2059 mips_check_isa_supports_ases (void)
2060 {
2061 unsigned int i, mask;
2062
2063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2064 {
2065 mask = mips_ase_mask (mips_ases[i].flags);
2066 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2067 mips_check_isa_supports_ase (&mips_ases[i]);
2068 }
2069 }
2070
2071 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2072 that were affected. */
2073
2074 static unsigned int
2075 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2076 bfd_boolean enabled_p)
2077 {
2078 unsigned int mask;
2079
2080 mask = mips_ase_mask (ase->flags);
2081 opts->ase &= ~mask;
2082 if (enabled_p)
2083 opts->ase |= ase->flags;
2084 return mask;
2085 }
2086
2087 /* Return the ASE called NAME, or null if none. */
2088
2089 static const struct mips_ase *
2090 mips_lookup_ase (const char *name)
2091 {
2092 unsigned int i;
2093
2094 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2095 if (strcmp (name, mips_ases[i].name) == 0)
2096 return &mips_ases[i];
2097 return NULL;
2098 }
2099
2100 /* Return the length of a microMIPS instruction in bytes. If bits of
2101 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2102 otherwise it is a 32-bit instruction. */
2103
2104 static inline unsigned int
2105 micromips_insn_length (const struct mips_opcode *mo)
2106 {
2107 return (mo->mask >> 16) == 0 ? 2 : 4;
2108 }
2109
2110 /* Return the length of MIPS16 instruction OPCODE. */
2111
2112 static inline unsigned int
2113 mips16_opcode_length (unsigned long opcode)
2114 {
2115 return (opcode >> 16) == 0 ? 2 : 4;
2116 }
2117
2118 /* Return the length of instruction INSN. */
2119
2120 static inline unsigned int
2121 insn_length (const struct mips_cl_insn *insn)
2122 {
2123 if (mips_opts.micromips)
2124 return micromips_insn_length (insn->insn_mo);
2125 else if (mips_opts.mips16)
2126 return mips16_opcode_length (insn->insn_opcode);
2127 else
2128 return 4;
2129 }
2130
2131 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2132
2133 static void
2134 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2135 {
2136 size_t i;
2137
2138 insn->insn_mo = mo;
2139 insn->insn_opcode = mo->match;
2140 insn->frag = NULL;
2141 insn->where = 0;
2142 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2143 insn->fixp[i] = NULL;
2144 insn->fixed_p = (mips_opts.noreorder > 0);
2145 insn->noreorder_p = (mips_opts.noreorder > 0);
2146 insn->mips16_absolute_jump_p = 0;
2147 insn->complete_p = 0;
2148 insn->cleared_p = 0;
2149 }
2150
2151 /* Get a list of all the operands in INSN. */
2152
2153 static const struct mips_operand_array *
2154 insn_operands (const struct mips_cl_insn *insn)
2155 {
2156 if (insn->insn_mo >= &mips_opcodes[0]
2157 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2158 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2159
2160 if (insn->insn_mo >= &mips16_opcodes[0]
2161 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2162 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2163
2164 if (insn->insn_mo >= &micromips_opcodes[0]
2165 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2166 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2167
2168 abort ();
2169 }
2170
2171 /* Get a description of operand OPNO of INSN. */
2172
2173 static const struct mips_operand *
2174 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2175 {
2176 const struct mips_operand_array *operands;
2177
2178 operands = insn_operands (insn);
2179 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2180 abort ();
2181 return operands->operand[opno];
2182 }
2183
2184 /* Install UVAL as the value of OPERAND in INSN. */
2185
2186 static inline void
2187 insn_insert_operand (struct mips_cl_insn *insn,
2188 const struct mips_operand *operand, unsigned int uval)
2189 {
2190 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2191 }
2192
2193 /* Extract the value of OPERAND from INSN. */
2194
2195 static inline unsigned
2196 insn_extract_operand (const struct mips_cl_insn *insn,
2197 const struct mips_operand *operand)
2198 {
2199 return mips_extract_operand (operand, insn->insn_opcode);
2200 }
2201
2202 /* Record the current MIPS16/microMIPS mode in now_seg. */
2203
2204 static void
2205 mips_record_compressed_mode (void)
2206 {
2207 segment_info_type *si;
2208
2209 si = seg_info (now_seg);
2210 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2211 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2212 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2213 si->tc_segment_info_data.micromips = mips_opts.micromips;
2214 }
2215
2216 /* Read a standard MIPS instruction from BUF. */
2217
2218 static unsigned long
2219 read_insn (char *buf)
2220 {
2221 if (target_big_endian)
2222 return bfd_getb32 ((bfd_byte *) buf);
2223 else
2224 return bfd_getl32 ((bfd_byte *) buf);
2225 }
2226
2227 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2228 the next byte. */
2229
2230 static char *
2231 write_insn (char *buf, unsigned int insn)
2232 {
2233 md_number_to_chars (buf, insn, 4);
2234 return buf + 4;
2235 }
2236
2237 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2238 has length LENGTH. */
2239
2240 static unsigned long
2241 read_compressed_insn (char *buf, unsigned int length)
2242 {
2243 unsigned long insn;
2244 unsigned int i;
2245
2246 insn = 0;
2247 for (i = 0; i < length; i += 2)
2248 {
2249 insn <<= 16;
2250 if (target_big_endian)
2251 insn |= bfd_getb16 ((char *) buf);
2252 else
2253 insn |= bfd_getl16 ((char *) buf);
2254 buf += 2;
2255 }
2256 return insn;
2257 }
2258
2259 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2260 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2261
2262 static char *
2263 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2264 {
2265 unsigned int i;
2266
2267 for (i = 0; i < length; i += 2)
2268 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2269 return buf + length;
2270 }
2271
2272 /* Install INSN at the location specified by its "frag" and "where" fields. */
2273
2274 static void
2275 install_insn (const struct mips_cl_insn *insn)
2276 {
2277 char *f = insn->frag->fr_literal + insn->where;
2278 if (HAVE_CODE_COMPRESSION)
2279 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2280 else
2281 write_insn (f, insn->insn_opcode);
2282 mips_record_compressed_mode ();
2283 }
2284
2285 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2286 and install the opcode in the new location. */
2287
2288 static void
2289 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2290 {
2291 size_t i;
2292
2293 insn->frag = frag;
2294 insn->where = where;
2295 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2296 if (insn->fixp[i] != NULL)
2297 {
2298 insn->fixp[i]->fx_frag = frag;
2299 insn->fixp[i]->fx_where = where;
2300 }
2301 install_insn (insn);
2302 }
2303
2304 /* Add INSN to the end of the output. */
2305
2306 static void
2307 add_fixed_insn (struct mips_cl_insn *insn)
2308 {
2309 char *f = frag_more (insn_length (insn));
2310 move_insn (insn, frag_now, f - frag_now->fr_literal);
2311 }
2312
2313 /* Start a variant frag and move INSN to the start of the variant part,
2314 marking it as fixed. The other arguments are as for frag_var. */
2315
2316 static void
2317 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2318 relax_substateT subtype, symbolS *symbol, offsetT offset)
2319 {
2320 frag_grow (max_chars);
2321 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2322 insn->fixed_p = 1;
2323 frag_var (rs_machine_dependent, max_chars, var,
2324 subtype, symbol, offset, NULL);
2325 }
2326
2327 /* Insert N copies of INSN into the history buffer, starting at
2328 position FIRST. Neither FIRST nor N need to be clipped. */
2329
2330 static void
2331 insert_into_history (unsigned int first, unsigned int n,
2332 const struct mips_cl_insn *insn)
2333 {
2334 if (mips_relax.sequence != 2)
2335 {
2336 unsigned int i;
2337
2338 for (i = ARRAY_SIZE (history); i-- > first;)
2339 if (i >= first + n)
2340 history[i] = history[i - n];
2341 else
2342 history[i] = *insn;
2343 }
2344 }
2345
2346 /* Clear the error in insn_error. */
2347
2348 static void
2349 clear_insn_error (void)
2350 {
2351 memset (&insn_error, 0, sizeof (insn_error));
2352 }
2353
2354 /* Possibly record error message MSG for the current instruction.
2355 If the error is about a particular argument, ARGNUM is the 1-based
2356 number of that argument, otherwise it is 0. FORMAT is the format
2357 of MSG. Return true if MSG was used, false if the current message
2358 was kept. */
2359
2360 static bfd_boolean
2361 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2362 const char *msg)
2363 {
2364 if (argnum == 0)
2365 {
2366 /* Give priority to errors against specific arguments, and to
2367 the first whole-instruction message. */
2368 if (insn_error.msg)
2369 return FALSE;
2370 }
2371 else
2372 {
2373 /* Keep insn_error if it is against a later argument. */
2374 if (argnum < insn_error.min_argnum)
2375 return FALSE;
2376
2377 /* If both errors are against the same argument but are different,
2378 give up on reporting a specific error for this argument.
2379 See the comment about mips_insn_error for details. */
2380 if (argnum == insn_error.min_argnum
2381 && insn_error.msg
2382 && strcmp (insn_error.msg, msg) != 0)
2383 {
2384 insn_error.msg = 0;
2385 insn_error.min_argnum += 1;
2386 return FALSE;
2387 }
2388 }
2389 insn_error.min_argnum = argnum;
2390 insn_error.format = format;
2391 insn_error.msg = msg;
2392 return TRUE;
2393 }
2394
2395 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398 static void
2399 set_insn_error (int argnum, const char *msg)
2400 {
2401 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2402 }
2403
2404 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2405 as for set_insn_error_format. */
2406
2407 static void
2408 set_insn_error_i (int argnum, const char *msg, int i)
2409 {
2410 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2411 insn_error.u.i = i;
2412 }
2413
2414 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2415 are as for set_insn_error_format. */
2416
2417 static void
2418 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2419 {
2420 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2421 {
2422 insn_error.u.ss[0] = s1;
2423 insn_error.u.ss[1] = s2;
2424 }
2425 }
2426
2427 /* Report the error in insn_error, which is against assembly code STR. */
2428
2429 static void
2430 report_insn_error (const char *str)
2431 {
2432 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2433
2434 switch (insn_error.format)
2435 {
2436 case ERR_FMT_PLAIN:
2437 as_bad (msg, str);
2438 break;
2439
2440 case ERR_FMT_I:
2441 as_bad (msg, insn_error.u.i, str);
2442 break;
2443
2444 case ERR_FMT_SS:
2445 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2446 break;
2447 }
2448
2449 free ((char *) msg);
2450 }
2451
2452 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2453 the idea is to make it obvious at a glance that each errata is
2454 included. */
2455
2456 static void
2457 init_vr4120_conflicts (void)
2458 {
2459 #define CONFLICT(FIRST, SECOND) \
2460 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2461
2462 /* Errata 21 - [D]DIV[U] after [D]MACC */
2463 CONFLICT (MACC, DIV);
2464 CONFLICT (DMACC, DIV);
2465
2466 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2467 CONFLICT (DMULT, DMULT);
2468 CONFLICT (DMULT, DMACC);
2469 CONFLICT (DMACC, DMULT);
2470 CONFLICT (DMACC, DMACC);
2471
2472 /* Errata 24 - MT{LO,HI} after [D]MACC */
2473 CONFLICT (MACC, MTHILO);
2474 CONFLICT (DMACC, MTHILO);
2475
2476 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2477 instruction is executed immediately after a MACC or DMACC
2478 instruction, the result of [either instruction] is incorrect." */
2479 CONFLICT (MACC, MULT);
2480 CONFLICT (MACC, DMULT);
2481 CONFLICT (DMACC, MULT);
2482 CONFLICT (DMACC, DMULT);
2483
2484 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2485 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2486 DDIV or DDIVU instruction, the result of the MACC or
2487 DMACC instruction is incorrect.". */
2488 CONFLICT (DMULT, MACC);
2489 CONFLICT (DMULT, DMACC);
2490 CONFLICT (DIV, MACC);
2491 CONFLICT (DIV, DMACC);
2492
2493 #undef CONFLICT
2494 }
2495
2496 struct regname {
2497 const char *name;
2498 unsigned int num;
2499 };
2500
2501 #define RNUM_MASK 0x00000ff
2502 #define RTYPE_MASK 0x0ffff00
2503 #define RTYPE_NUM 0x0000100
2504 #define RTYPE_FPU 0x0000200
2505 #define RTYPE_FCC 0x0000400
2506 #define RTYPE_VEC 0x0000800
2507 #define RTYPE_GP 0x0001000
2508 #define RTYPE_CP0 0x0002000
2509 #define RTYPE_PC 0x0004000
2510 #define RTYPE_ACC 0x0008000
2511 #define RTYPE_CCC 0x0010000
2512 #define RTYPE_VI 0x0020000
2513 #define RTYPE_VF 0x0040000
2514 #define RTYPE_R5900_I 0x0080000
2515 #define RTYPE_R5900_Q 0x0100000
2516 #define RTYPE_R5900_R 0x0200000
2517 #define RTYPE_R5900_ACC 0x0400000
2518 #define RTYPE_MSA 0x0800000
2519 #define RWARN 0x8000000
2520
2521 #define GENERIC_REGISTER_NUMBERS \
2522 {"$0", RTYPE_NUM | 0}, \
2523 {"$1", RTYPE_NUM | 1}, \
2524 {"$2", RTYPE_NUM | 2}, \
2525 {"$3", RTYPE_NUM | 3}, \
2526 {"$4", RTYPE_NUM | 4}, \
2527 {"$5", RTYPE_NUM | 5}, \
2528 {"$6", RTYPE_NUM | 6}, \
2529 {"$7", RTYPE_NUM | 7}, \
2530 {"$8", RTYPE_NUM | 8}, \
2531 {"$9", RTYPE_NUM | 9}, \
2532 {"$10", RTYPE_NUM | 10}, \
2533 {"$11", RTYPE_NUM | 11}, \
2534 {"$12", RTYPE_NUM | 12}, \
2535 {"$13", RTYPE_NUM | 13}, \
2536 {"$14", RTYPE_NUM | 14}, \
2537 {"$15", RTYPE_NUM | 15}, \
2538 {"$16", RTYPE_NUM | 16}, \
2539 {"$17", RTYPE_NUM | 17}, \
2540 {"$18", RTYPE_NUM | 18}, \
2541 {"$19", RTYPE_NUM | 19}, \
2542 {"$20", RTYPE_NUM | 20}, \
2543 {"$21", RTYPE_NUM | 21}, \
2544 {"$22", RTYPE_NUM | 22}, \
2545 {"$23", RTYPE_NUM | 23}, \
2546 {"$24", RTYPE_NUM | 24}, \
2547 {"$25", RTYPE_NUM | 25}, \
2548 {"$26", RTYPE_NUM | 26}, \
2549 {"$27", RTYPE_NUM | 27}, \
2550 {"$28", RTYPE_NUM | 28}, \
2551 {"$29", RTYPE_NUM | 29}, \
2552 {"$30", RTYPE_NUM | 30}, \
2553 {"$31", RTYPE_NUM | 31}
2554
2555 #define FPU_REGISTER_NAMES \
2556 {"$f0", RTYPE_FPU | 0}, \
2557 {"$f1", RTYPE_FPU | 1}, \
2558 {"$f2", RTYPE_FPU | 2}, \
2559 {"$f3", RTYPE_FPU | 3}, \
2560 {"$f4", RTYPE_FPU | 4}, \
2561 {"$f5", RTYPE_FPU | 5}, \
2562 {"$f6", RTYPE_FPU | 6}, \
2563 {"$f7", RTYPE_FPU | 7}, \
2564 {"$f8", RTYPE_FPU | 8}, \
2565 {"$f9", RTYPE_FPU | 9}, \
2566 {"$f10", RTYPE_FPU | 10}, \
2567 {"$f11", RTYPE_FPU | 11}, \
2568 {"$f12", RTYPE_FPU | 12}, \
2569 {"$f13", RTYPE_FPU | 13}, \
2570 {"$f14", RTYPE_FPU | 14}, \
2571 {"$f15", RTYPE_FPU | 15}, \
2572 {"$f16", RTYPE_FPU | 16}, \
2573 {"$f17", RTYPE_FPU | 17}, \
2574 {"$f18", RTYPE_FPU | 18}, \
2575 {"$f19", RTYPE_FPU | 19}, \
2576 {"$f20", RTYPE_FPU | 20}, \
2577 {"$f21", RTYPE_FPU | 21}, \
2578 {"$f22", RTYPE_FPU | 22}, \
2579 {"$f23", RTYPE_FPU | 23}, \
2580 {"$f24", RTYPE_FPU | 24}, \
2581 {"$f25", RTYPE_FPU | 25}, \
2582 {"$f26", RTYPE_FPU | 26}, \
2583 {"$f27", RTYPE_FPU | 27}, \
2584 {"$f28", RTYPE_FPU | 28}, \
2585 {"$f29", RTYPE_FPU | 29}, \
2586 {"$f30", RTYPE_FPU | 30}, \
2587 {"$f31", RTYPE_FPU | 31}
2588
2589 #define FPU_CONDITION_CODE_NAMES \
2590 {"$fcc0", RTYPE_FCC | 0}, \
2591 {"$fcc1", RTYPE_FCC | 1}, \
2592 {"$fcc2", RTYPE_FCC | 2}, \
2593 {"$fcc3", RTYPE_FCC | 3}, \
2594 {"$fcc4", RTYPE_FCC | 4}, \
2595 {"$fcc5", RTYPE_FCC | 5}, \
2596 {"$fcc6", RTYPE_FCC | 6}, \
2597 {"$fcc7", RTYPE_FCC | 7}
2598
2599 #define COPROC_CONDITION_CODE_NAMES \
2600 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2601 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2602 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2603 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2604 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2605 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2606 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2607 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2608
2609 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2610 {"$a4", RTYPE_GP | 8}, \
2611 {"$a5", RTYPE_GP | 9}, \
2612 {"$a6", RTYPE_GP | 10}, \
2613 {"$a7", RTYPE_GP | 11}, \
2614 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2615 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2616 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2617 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2618 {"$t0", RTYPE_GP | 12}, \
2619 {"$t1", RTYPE_GP | 13}, \
2620 {"$t2", RTYPE_GP | 14}, \
2621 {"$t3", RTYPE_GP | 15}
2622
2623 #define O32_SYMBOLIC_REGISTER_NAMES \
2624 {"$t0", RTYPE_GP | 8}, \
2625 {"$t1", RTYPE_GP | 9}, \
2626 {"$t2", RTYPE_GP | 10}, \
2627 {"$t3", RTYPE_GP | 11}, \
2628 {"$t4", RTYPE_GP | 12}, \
2629 {"$t5", RTYPE_GP | 13}, \
2630 {"$t6", RTYPE_GP | 14}, \
2631 {"$t7", RTYPE_GP | 15}, \
2632 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2633 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2634 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2635 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2636
2637 /* Remaining symbolic register names */
2638 #define SYMBOLIC_REGISTER_NAMES \
2639 {"$zero", RTYPE_GP | 0}, \
2640 {"$at", RTYPE_GP | 1}, \
2641 {"$AT", RTYPE_GP | 1}, \
2642 {"$v0", RTYPE_GP | 2}, \
2643 {"$v1", RTYPE_GP | 3}, \
2644 {"$a0", RTYPE_GP | 4}, \
2645 {"$a1", RTYPE_GP | 5}, \
2646 {"$a2", RTYPE_GP | 6}, \
2647 {"$a3", RTYPE_GP | 7}, \
2648 {"$s0", RTYPE_GP | 16}, \
2649 {"$s1", RTYPE_GP | 17}, \
2650 {"$s2", RTYPE_GP | 18}, \
2651 {"$s3", RTYPE_GP | 19}, \
2652 {"$s4", RTYPE_GP | 20}, \
2653 {"$s5", RTYPE_GP | 21}, \
2654 {"$s6", RTYPE_GP | 22}, \
2655 {"$s7", RTYPE_GP | 23}, \
2656 {"$t8", RTYPE_GP | 24}, \
2657 {"$t9", RTYPE_GP | 25}, \
2658 {"$k0", RTYPE_GP | 26}, \
2659 {"$kt0", RTYPE_GP | 26}, \
2660 {"$k1", RTYPE_GP | 27}, \
2661 {"$kt1", RTYPE_GP | 27}, \
2662 {"$gp", RTYPE_GP | 28}, \
2663 {"$sp", RTYPE_GP | 29}, \
2664 {"$s8", RTYPE_GP | 30}, \
2665 {"$fp", RTYPE_GP | 30}, \
2666 {"$ra", RTYPE_GP | 31}
2667
2668 #define MIPS16_SPECIAL_REGISTER_NAMES \
2669 {"$pc", RTYPE_PC | 0}
2670
2671 #define MDMX_VECTOR_REGISTER_NAMES \
2672 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2673 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2674 {"$v2", RTYPE_VEC | 2}, \
2675 {"$v3", RTYPE_VEC | 3}, \
2676 {"$v4", RTYPE_VEC | 4}, \
2677 {"$v5", RTYPE_VEC | 5}, \
2678 {"$v6", RTYPE_VEC | 6}, \
2679 {"$v7", RTYPE_VEC | 7}, \
2680 {"$v8", RTYPE_VEC | 8}, \
2681 {"$v9", RTYPE_VEC | 9}, \
2682 {"$v10", RTYPE_VEC | 10}, \
2683 {"$v11", RTYPE_VEC | 11}, \
2684 {"$v12", RTYPE_VEC | 12}, \
2685 {"$v13", RTYPE_VEC | 13}, \
2686 {"$v14", RTYPE_VEC | 14}, \
2687 {"$v15", RTYPE_VEC | 15}, \
2688 {"$v16", RTYPE_VEC | 16}, \
2689 {"$v17", RTYPE_VEC | 17}, \
2690 {"$v18", RTYPE_VEC | 18}, \
2691 {"$v19", RTYPE_VEC | 19}, \
2692 {"$v20", RTYPE_VEC | 20}, \
2693 {"$v21", RTYPE_VEC | 21}, \
2694 {"$v22", RTYPE_VEC | 22}, \
2695 {"$v23", RTYPE_VEC | 23}, \
2696 {"$v24", RTYPE_VEC | 24}, \
2697 {"$v25", RTYPE_VEC | 25}, \
2698 {"$v26", RTYPE_VEC | 26}, \
2699 {"$v27", RTYPE_VEC | 27}, \
2700 {"$v28", RTYPE_VEC | 28}, \
2701 {"$v29", RTYPE_VEC | 29}, \
2702 {"$v30", RTYPE_VEC | 30}, \
2703 {"$v31", RTYPE_VEC | 31}
2704
2705 #define R5900_I_NAMES \
2706 {"$I", RTYPE_R5900_I | 0}
2707
2708 #define R5900_Q_NAMES \
2709 {"$Q", RTYPE_R5900_Q | 0}
2710
2711 #define R5900_R_NAMES \
2712 {"$R", RTYPE_R5900_R | 0}
2713
2714 #define R5900_ACC_NAMES \
2715 {"$ACC", RTYPE_R5900_ACC | 0 }
2716
2717 #define MIPS_DSP_ACCUMULATOR_NAMES \
2718 {"$ac0", RTYPE_ACC | 0}, \
2719 {"$ac1", RTYPE_ACC | 1}, \
2720 {"$ac2", RTYPE_ACC | 2}, \
2721 {"$ac3", RTYPE_ACC | 3}
2722
2723 static const struct regname reg_names[] = {
2724 GENERIC_REGISTER_NUMBERS,
2725 FPU_REGISTER_NAMES,
2726 FPU_CONDITION_CODE_NAMES,
2727 COPROC_CONDITION_CODE_NAMES,
2728
2729 /* The $txx registers depends on the abi,
2730 these will be added later into the symbol table from
2731 one of the tables below once mips_abi is set after
2732 parsing of arguments from the command line. */
2733 SYMBOLIC_REGISTER_NAMES,
2734
2735 MIPS16_SPECIAL_REGISTER_NAMES,
2736 MDMX_VECTOR_REGISTER_NAMES,
2737 R5900_I_NAMES,
2738 R5900_Q_NAMES,
2739 R5900_R_NAMES,
2740 R5900_ACC_NAMES,
2741 MIPS_DSP_ACCUMULATOR_NAMES,
2742 {0, 0}
2743 };
2744
2745 static const struct regname reg_names_o32[] = {
2746 O32_SYMBOLIC_REGISTER_NAMES,
2747 {0, 0}
2748 };
2749
2750 static const struct regname reg_names_n32n64[] = {
2751 N32N64_SYMBOLIC_REGISTER_NAMES,
2752 {0, 0}
2753 };
2754
2755 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2756 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2757 of these register symbols, return the associated vector register,
2758 otherwise return SYMVAL itself. */
2759
2760 static unsigned int
2761 mips_prefer_vec_regno (unsigned int symval)
2762 {
2763 if ((symval & -2) == (RTYPE_GP | 2))
2764 return RTYPE_VEC | (symval & 1);
2765 return symval;
2766 }
2767
2768 /* Return true if string [S, E) is a valid register name, storing its
2769 symbol value in *SYMVAL_PTR if so. */
2770
2771 static bfd_boolean
2772 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2773 {
2774 char save_c;
2775 symbolS *symbol;
2776
2777 /* Terminate name. */
2778 save_c = *e;
2779 *e = '\0';
2780
2781 /* Look up the name. */
2782 symbol = symbol_find (s);
2783 *e = save_c;
2784
2785 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2786 return FALSE;
2787
2788 *symval_ptr = S_GET_VALUE (symbol);
2789 return TRUE;
2790 }
2791
2792 /* Return true if the string at *SPTR is a valid register name. Allow it
2793 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2794 is nonnull.
2795
2796 When returning true, move *SPTR past the register, store the
2797 register's symbol value in *SYMVAL_PTR and the channel mask in
2798 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2799 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2800 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2801
2802 static bfd_boolean
2803 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2804 unsigned int *channels_ptr)
2805 {
2806 char *s, *e, *m;
2807 const char *q;
2808 unsigned int channels, symval, bit;
2809
2810 /* Find end of name. */
2811 s = e = *sptr;
2812 if (is_name_beginner (*e))
2813 ++e;
2814 while (is_part_of_name (*e))
2815 ++e;
2816
2817 channels = 0;
2818 if (!mips_parse_register_1 (s, e, &symval))
2819 {
2820 if (!channels_ptr)
2821 return FALSE;
2822
2823 /* Eat characters from the end of the string that are valid
2824 channel suffixes. The preceding register must be $ACC or
2825 end with a digit, so there is no ambiguity. */
2826 bit = 1;
2827 m = e;
2828 for (q = "wzyx"; *q; q++, bit <<= 1)
2829 if (m > s && m[-1] == *q)
2830 {
2831 --m;
2832 channels |= bit;
2833 }
2834
2835 if (channels == 0
2836 || !mips_parse_register_1 (s, m, &symval)
2837 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2838 return FALSE;
2839 }
2840
2841 *sptr = e;
2842 *symval_ptr = symval;
2843 if (channels_ptr)
2844 *channels_ptr = channels;
2845 return TRUE;
2846 }
2847
2848 /* Check if SPTR points at a valid register specifier according to TYPES.
2849 If so, then return 1, advance S to consume the specifier and store
2850 the register's number in REGNOP, otherwise return 0. */
2851
2852 static int
2853 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2854 {
2855 unsigned int regno;
2856
2857 if (mips_parse_register (s, &regno, NULL))
2858 {
2859 if (types & RTYPE_VEC)
2860 regno = mips_prefer_vec_regno (regno);
2861 if (regno & types)
2862 regno &= RNUM_MASK;
2863 else
2864 regno = ~0;
2865 }
2866 else
2867 {
2868 if (types & RWARN)
2869 as_warn (_("unrecognized register name `%s'"), *s);
2870 regno = ~0;
2871 }
2872 if (regnop)
2873 *regnop = regno;
2874 return regno <= RNUM_MASK;
2875 }
2876
2877 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2878 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2879
2880 static char *
2881 mips_parse_vu0_channels (char *s, unsigned int *channels)
2882 {
2883 unsigned int i;
2884
2885 *channels = 0;
2886 for (i = 0; i < 4; i++)
2887 if (*s == "xyzw"[i])
2888 {
2889 *channels |= 1 << (3 - i);
2890 ++s;
2891 }
2892 return s;
2893 }
2894
2895 /* Token types for parsed operand lists. */
2896 enum mips_operand_token_type {
2897 /* A plain register, e.g. $f2. */
2898 OT_REG,
2899
2900 /* A 4-bit XYZW channel mask. */
2901 OT_CHANNELS,
2902
2903 /* A constant vector index, e.g. [1]. */
2904 OT_INTEGER_INDEX,
2905
2906 /* A register vector index, e.g. [$2]. */
2907 OT_REG_INDEX,
2908
2909 /* A continuous range of registers, e.g. $s0-$s4. */
2910 OT_REG_RANGE,
2911
2912 /* A (possibly relocated) expression. */
2913 OT_INTEGER,
2914
2915 /* A floating-point value. */
2916 OT_FLOAT,
2917
2918 /* A single character. This can be '(', ')' or ',', but '(' only appears
2919 before OT_REGs. */
2920 OT_CHAR,
2921
2922 /* A doubled character, either "--" or "++". */
2923 OT_DOUBLE_CHAR,
2924
2925 /* The end of the operand list. */
2926 OT_END
2927 };
2928
2929 /* A parsed operand token. */
2930 struct mips_operand_token
2931 {
2932 /* The type of token. */
2933 enum mips_operand_token_type type;
2934 union
2935 {
2936 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2937 unsigned int regno;
2938
2939 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2940 unsigned int channels;
2941
2942 /* The integer value of an OT_INTEGER_INDEX. */
2943 addressT index;
2944
2945 /* The two register symbol values involved in an OT_REG_RANGE. */
2946 struct {
2947 unsigned int regno1;
2948 unsigned int regno2;
2949 } reg_range;
2950
2951 /* The value of an OT_INTEGER. The value is represented as an
2952 expression and the relocation operators that were applied to
2953 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2954 relocation operators were used. */
2955 struct {
2956 expressionS value;
2957 bfd_reloc_code_real_type relocs[3];
2958 } integer;
2959
2960 /* The binary data for an OT_FLOAT constant, and the number of bytes
2961 in the constant. */
2962 struct {
2963 unsigned char data[8];
2964 int length;
2965 } flt;
2966
2967 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2968 char ch;
2969 } u;
2970 };
2971
2972 /* An obstack used to construct lists of mips_operand_tokens. */
2973 static struct obstack mips_operand_tokens;
2974
2975 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2976
2977 static void
2978 mips_add_token (struct mips_operand_token *token,
2979 enum mips_operand_token_type type)
2980 {
2981 token->type = type;
2982 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2983 }
2984
2985 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2986 and OT_REG tokens for them if so, and return a pointer to the first
2987 unconsumed character. Return null otherwise. */
2988
2989 static char *
2990 mips_parse_base_start (char *s)
2991 {
2992 struct mips_operand_token token;
2993 unsigned int regno, channels;
2994 bfd_boolean decrement_p;
2995
2996 if (*s != '(')
2997 return 0;
2998
2999 ++s;
3000 SKIP_SPACE_TABS (s);
3001
3002 /* Only match "--" as part of a base expression. In other contexts "--X"
3003 is a double negative. */
3004 decrement_p = (s[0] == '-' && s[1] == '-');
3005 if (decrement_p)
3006 {
3007 s += 2;
3008 SKIP_SPACE_TABS (s);
3009 }
3010
3011 /* Allow a channel specifier because that leads to better error messages
3012 than treating something like "$vf0x++" as an expression. */
3013 if (!mips_parse_register (&s, &regno, &channels))
3014 return 0;
3015
3016 token.u.ch = '(';
3017 mips_add_token (&token, OT_CHAR);
3018
3019 if (decrement_p)
3020 {
3021 token.u.ch = '-';
3022 mips_add_token (&token, OT_DOUBLE_CHAR);
3023 }
3024
3025 token.u.regno = regno;
3026 mips_add_token (&token, OT_REG);
3027
3028 if (channels)
3029 {
3030 token.u.channels = channels;
3031 mips_add_token (&token, OT_CHANNELS);
3032 }
3033
3034 /* For consistency, only match "++" as part of base expressions too. */
3035 SKIP_SPACE_TABS (s);
3036 if (s[0] == '+' && s[1] == '+')
3037 {
3038 s += 2;
3039 token.u.ch = '+';
3040 mips_add_token (&token, OT_DOUBLE_CHAR);
3041 }
3042
3043 return s;
3044 }
3045
3046 /* Parse one or more tokens from S. Return a pointer to the first
3047 unconsumed character on success. Return null if an error was found
3048 and store the error text in insn_error. FLOAT_FORMAT is as for
3049 mips_parse_arguments. */
3050
3051 static char *
3052 mips_parse_argument_token (char *s, char float_format)
3053 {
3054 char *end, *save_in;
3055 const char *err;
3056 unsigned int regno1, regno2, channels;
3057 struct mips_operand_token token;
3058
3059 /* First look for "($reg", since we want to treat that as an
3060 OT_CHAR and OT_REG rather than an expression. */
3061 end = mips_parse_base_start (s);
3062 if (end)
3063 return end;
3064
3065 /* Handle other characters that end up as OT_CHARs. */
3066 if (*s == ')' || *s == ',')
3067 {
3068 token.u.ch = *s;
3069 mips_add_token (&token, OT_CHAR);
3070 ++s;
3071 return s;
3072 }
3073
3074 /* Handle tokens that start with a register. */
3075 if (mips_parse_register (&s, &regno1, &channels))
3076 {
3077 if (channels)
3078 {
3079 /* A register and a VU0 channel suffix. */
3080 token.u.regno = regno1;
3081 mips_add_token (&token, OT_REG);
3082
3083 token.u.channels = channels;
3084 mips_add_token (&token, OT_CHANNELS);
3085 return s;
3086 }
3087
3088 SKIP_SPACE_TABS (s);
3089 if (*s == '-')
3090 {
3091 /* A register range. */
3092 ++s;
3093 SKIP_SPACE_TABS (s);
3094 if (!mips_parse_register (&s, &regno2, NULL))
3095 {
3096 set_insn_error (0, _("invalid register range"));
3097 return 0;
3098 }
3099
3100 token.u.reg_range.regno1 = regno1;
3101 token.u.reg_range.regno2 = regno2;
3102 mips_add_token (&token, OT_REG_RANGE);
3103 return s;
3104 }
3105
3106 /* Add the register itself. */
3107 token.u.regno = regno1;
3108 mips_add_token (&token, OT_REG);
3109
3110 /* Check for a vector index. */
3111 if (*s == '[')
3112 {
3113 ++s;
3114 SKIP_SPACE_TABS (s);
3115 if (mips_parse_register (&s, &token.u.regno, NULL))
3116 mips_add_token (&token, OT_REG_INDEX);
3117 else
3118 {
3119 expressionS element;
3120
3121 my_getExpression (&element, s);
3122 if (element.X_op != O_constant)
3123 {
3124 set_insn_error (0, _("vector element must be constant"));
3125 return 0;
3126 }
3127 s = expr_end;
3128 token.u.index = element.X_add_number;
3129 mips_add_token (&token, OT_INTEGER_INDEX);
3130 }
3131 SKIP_SPACE_TABS (s);
3132 if (*s != ']')
3133 {
3134 set_insn_error (0, _("missing `]'"));
3135 return 0;
3136 }
3137 ++s;
3138 }
3139 return s;
3140 }
3141
3142 if (float_format)
3143 {
3144 /* First try to treat expressions as floats. */
3145 save_in = input_line_pointer;
3146 input_line_pointer = s;
3147 err = md_atof (float_format, (char *) token.u.flt.data,
3148 &token.u.flt.length);
3149 end = input_line_pointer;
3150 input_line_pointer = save_in;
3151 if (err && *err)
3152 {
3153 set_insn_error (0, err);
3154 return 0;
3155 }
3156 if (s != end)
3157 {
3158 mips_add_token (&token, OT_FLOAT);
3159 return end;
3160 }
3161 }
3162
3163 /* Treat everything else as an integer expression. */
3164 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3165 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3166 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3167 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3168 s = expr_end;
3169 mips_add_token (&token, OT_INTEGER);
3170 return s;
3171 }
3172
3173 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3174 if expressions should be treated as 32-bit floating-point constants,
3175 'd' if they should be treated as 64-bit floating-point constants,
3176 or 0 if they should be treated as integer expressions (the usual case).
3177
3178 Return a list of tokens on success, otherwise return 0. The caller
3179 must obstack_free the list after use. */
3180
3181 static struct mips_operand_token *
3182 mips_parse_arguments (char *s, char float_format)
3183 {
3184 struct mips_operand_token token;
3185
3186 SKIP_SPACE_TABS (s);
3187 while (*s)
3188 {
3189 s = mips_parse_argument_token (s, float_format);
3190 if (!s)
3191 {
3192 obstack_free (&mips_operand_tokens,
3193 obstack_finish (&mips_operand_tokens));
3194 return 0;
3195 }
3196 SKIP_SPACE_TABS (s);
3197 }
3198 mips_add_token (&token, OT_END);
3199 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3200 }
3201
3202 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3203 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3204
3205 static bfd_boolean
3206 is_opcode_valid (const struct mips_opcode *mo)
3207 {
3208 int isa = mips_opts.isa;
3209 int ase = mips_opts.ase;
3210 int fp_s, fp_d;
3211 unsigned int i;
3212
3213 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3214 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3215 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3216 ase |= mips_ases[i].flags64;
3217
3218 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3219 return FALSE;
3220
3221 /* Check whether the instruction or macro requires single-precision or
3222 double-precision floating-point support. Note that this information is
3223 stored differently in the opcode table for insns and macros. */
3224 if (mo->pinfo == INSN_MACRO)
3225 {
3226 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3227 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3228 }
3229 else
3230 {
3231 fp_s = mo->pinfo & FP_S;
3232 fp_d = mo->pinfo & FP_D;
3233 }
3234
3235 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3236 return FALSE;
3237
3238 if (fp_s && mips_opts.soft_float)
3239 return FALSE;
3240
3241 return TRUE;
3242 }
3243
3244 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3245 selected ISA and architecture. */
3246
3247 static bfd_boolean
3248 is_opcode_valid_16 (const struct mips_opcode *mo)
3249 {
3250 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3251 }
3252
3253 /* Return TRUE if the size of the microMIPS opcode MO matches one
3254 explicitly requested. Always TRUE in the standard MIPS mode. */
3255
3256 static bfd_boolean
3257 is_size_valid (const struct mips_opcode *mo)
3258 {
3259 if (!mips_opts.micromips)
3260 return TRUE;
3261
3262 if (mips_opts.insn32)
3263 {
3264 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3265 return FALSE;
3266 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3267 return FALSE;
3268 }
3269 if (!forced_insn_length)
3270 return TRUE;
3271 if (mo->pinfo == INSN_MACRO)
3272 return FALSE;
3273 return forced_insn_length == micromips_insn_length (mo);
3274 }
3275
3276 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3277 of the preceding instruction. Always TRUE in the standard MIPS mode.
3278
3279 We don't accept macros in 16-bit delay slots to avoid a case where
3280 a macro expansion fails because it relies on a preceding 32-bit real
3281 instruction to have matched and does not handle the operands correctly.
3282 The only macros that may expand to 16-bit instructions are JAL that
3283 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3284 and BGT (that likewise cannot be placed in a delay slot) that decay to
3285 a NOP. In all these cases the macros precede any corresponding real
3286 instruction definitions in the opcode table, so they will match in the
3287 second pass where the size of the delay slot is ignored and therefore
3288 produce correct code. */
3289
3290 static bfd_boolean
3291 is_delay_slot_valid (const struct mips_opcode *mo)
3292 {
3293 if (!mips_opts.micromips)
3294 return TRUE;
3295
3296 if (mo->pinfo == INSN_MACRO)
3297 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3298 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3299 && micromips_insn_length (mo) != 4)
3300 return FALSE;
3301 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3302 && micromips_insn_length (mo) != 2)
3303 return FALSE;
3304
3305 return TRUE;
3306 }
3307
3308 /* For consistency checking, verify that all bits of OPCODE are specified
3309 either by the match/mask part of the instruction definition, or by the
3310 operand list. Also build up a list of operands in OPERANDS.
3311
3312 INSN_BITS says which bits of the instruction are significant.
3313 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3314 provides the mips_operand description of each operand. DECODE_OPERAND
3315 is null for MIPS16 instructions. */
3316
3317 static int
3318 validate_mips_insn (const struct mips_opcode *opcode,
3319 unsigned long insn_bits,
3320 const struct mips_operand *(*decode_operand) (const char *),
3321 struct mips_operand_array *operands)
3322 {
3323 const char *s;
3324 unsigned long used_bits, doubled, undefined, opno, mask;
3325 const struct mips_operand *operand;
3326
3327 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3328 if ((mask & opcode->match) != opcode->match)
3329 {
3330 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3331 opcode->name, opcode->args);
3332 return 0;
3333 }
3334 used_bits = 0;
3335 opno = 0;
3336 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3337 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3338 for (s = opcode->args; *s; ++s)
3339 switch (*s)
3340 {
3341 case ',':
3342 case '(':
3343 case ')':
3344 break;
3345
3346 case '#':
3347 s++;
3348 break;
3349
3350 default:
3351 if (!decode_operand)
3352 operand = decode_mips16_operand (*s, FALSE);
3353 else
3354 operand = decode_operand (s);
3355 if (!operand && opcode->pinfo != INSN_MACRO)
3356 {
3357 as_bad (_("internal: unknown operand type: %s %s"),
3358 opcode->name, opcode->args);
3359 return 0;
3360 }
3361 gas_assert (opno < MAX_OPERANDS);
3362 operands->operand[opno] = operand;
3363 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3364 {
3365 used_bits = mips_insert_operand (operand, used_bits, -1);
3366 if (operand->type == OP_MDMX_IMM_REG)
3367 /* Bit 5 is the format selector (OB vs QH). The opcode table
3368 has separate entries for each format. */
3369 used_bits &= ~(1 << (operand->lsb + 5));
3370 if (operand->type == OP_ENTRY_EXIT_LIST)
3371 used_bits &= ~(mask & 0x700);
3372 }
3373 /* Skip prefix characters. */
3374 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3375 ++s;
3376 opno += 1;
3377 break;
3378 }
3379 doubled = used_bits & mask & insn_bits;
3380 if (doubled)
3381 {
3382 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3383 " %s %s"), doubled, opcode->name, opcode->args);
3384 return 0;
3385 }
3386 used_bits |= mask;
3387 undefined = ~used_bits & insn_bits;
3388 if (opcode->pinfo != INSN_MACRO && undefined)
3389 {
3390 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3391 undefined, opcode->name, opcode->args);
3392 return 0;
3393 }
3394 used_bits &= ~insn_bits;
3395 if (used_bits)
3396 {
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3398 used_bits, opcode->name, opcode->args);
3399 return 0;
3400 }
3401 return 1;
3402 }
3403
3404 /* The MIPS16 version of validate_mips_insn. */
3405
3406 static int
3407 validate_mips16_insn (const struct mips_opcode *opcode,
3408 struct mips_operand_array *operands)
3409 {
3410 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3411 {
3412 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3413 instruction. Use TMP to describe the full instruction. */
3414 struct mips_opcode tmp;
3415
3416 tmp = *opcode;
3417 tmp.match <<= 16;
3418 tmp.mask <<= 16;
3419 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3420 }
3421 return validate_mips_insn (opcode, 0xffff, 0, operands);
3422 }
3423
3424 /* The microMIPS version of validate_mips_insn. */
3425
3426 static int
3427 validate_micromips_insn (const struct mips_opcode *opc,
3428 struct mips_operand_array *operands)
3429 {
3430 unsigned long insn_bits;
3431 unsigned long major;
3432 unsigned int length;
3433
3434 if (opc->pinfo == INSN_MACRO)
3435 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3436 operands);
3437
3438 length = micromips_insn_length (opc);
3439 if (length != 2 && length != 4)
3440 {
3441 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3442 "%s %s"), length, opc->name, opc->args);
3443 return 0;
3444 }
3445 major = opc->match >> (10 + 8 * (length - 2));
3446 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3447 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3448 {
3449 as_bad (_("internal error: bad microMIPS opcode "
3450 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3451 return 0;
3452 }
3453
3454 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3455 insn_bits = 1 << 4 * length;
3456 insn_bits <<= 4 * length;
3457 insn_bits -= 1;
3458 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3459 operands);
3460 }
3461
3462 /* This function is called once, at assembler startup time. It should set up
3463 all the tables, etc. that the MD part of the assembler will need. */
3464
3465 void
3466 md_begin (void)
3467 {
3468 const char *retval = NULL;
3469 int i = 0;
3470 int broken = 0;
3471
3472 if (mips_pic != NO_PIC)
3473 {
3474 if (g_switch_seen && g_switch_value != 0)
3475 as_bad (_("-G may not be used in position-independent code"));
3476 g_switch_value = 0;
3477 }
3478 else if (mips_abicalls)
3479 {
3480 if (g_switch_seen && g_switch_value != 0)
3481 as_bad (_("-G may not be used with abicalls"));
3482 g_switch_value = 0;
3483 }
3484
3485 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3486 as_warn (_("could not set architecture and machine"));
3487
3488 op_hash = hash_new ();
3489
3490 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3491 for (i = 0; i < NUMOPCODES;)
3492 {
3493 const char *name = mips_opcodes[i].name;
3494
3495 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3496 if (retval != NULL)
3497 {
3498 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3499 mips_opcodes[i].name, retval);
3500 /* Probably a memory allocation problem? Give up now. */
3501 as_fatal (_("broken assembler, no assembly attempted"));
3502 }
3503 do
3504 {
3505 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3506 decode_mips_operand, &mips_operands[i]))
3507 broken = 1;
3508 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3509 {
3510 create_insn (&nop_insn, mips_opcodes + i);
3511 if (mips_fix_loongson2f_nop)
3512 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3513 nop_insn.fixed_p = 1;
3514 }
3515 ++i;
3516 }
3517 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3518 }
3519
3520 mips16_op_hash = hash_new ();
3521 mips16_operands = XCNEWVEC (struct mips_operand_array,
3522 bfd_mips16_num_opcodes);
3523
3524 i = 0;
3525 while (i < bfd_mips16_num_opcodes)
3526 {
3527 const char *name = mips16_opcodes[i].name;
3528
3529 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3530 if (retval != NULL)
3531 as_fatal (_("internal: can't hash `%s': %s"),
3532 mips16_opcodes[i].name, retval);
3533 do
3534 {
3535 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3536 broken = 1;
3537 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3538 {
3539 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3540 mips16_nop_insn.fixed_p = 1;
3541 }
3542 ++i;
3543 }
3544 while (i < bfd_mips16_num_opcodes
3545 && strcmp (mips16_opcodes[i].name, name) == 0);
3546 }
3547
3548 micromips_op_hash = hash_new ();
3549 micromips_operands = XCNEWVEC (struct mips_operand_array,
3550 bfd_micromips_num_opcodes);
3551
3552 i = 0;
3553 while (i < bfd_micromips_num_opcodes)
3554 {
3555 const char *name = micromips_opcodes[i].name;
3556
3557 retval = hash_insert (micromips_op_hash, name,
3558 (void *) &micromips_opcodes[i]);
3559 if (retval != NULL)
3560 as_fatal (_("internal: can't hash `%s': %s"),
3561 micromips_opcodes[i].name, retval);
3562 do
3563 {
3564 struct mips_cl_insn *micromips_nop_insn;
3565
3566 if (!validate_micromips_insn (&micromips_opcodes[i],
3567 &micromips_operands[i]))
3568 broken = 1;
3569
3570 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3571 {
3572 if (micromips_insn_length (micromips_opcodes + i) == 2)
3573 micromips_nop_insn = &micromips_nop16_insn;
3574 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3575 micromips_nop_insn = &micromips_nop32_insn;
3576 else
3577 continue;
3578
3579 if (micromips_nop_insn->insn_mo == NULL
3580 && strcmp (name, "nop") == 0)
3581 {
3582 create_insn (micromips_nop_insn, micromips_opcodes + i);
3583 micromips_nop_insn->fixed_p = 1;
3584 }
3585 }
3586 }
3587 while (++i < bfd_micromips_num_opcodes
3588 && strcmp (micromips_opcodes[i].name, name) == 0);
3589 }
3590
3591 if (broken)
3592 as_fatal (_("broken assembler, no assembly attempted"));
3593
3594 /* We add all the general register names to the symbol table. This
3595 helps us detect invalid uses of them. */
3596 for (i = 0; reg_names[i].name; i++)
3597 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3598 reg_names[i].num, /* & RNUM_MASK, */
3599 &zero_address_frag));
3600 if (HAVE_NEWABI)
3601 for (i = 0; reg_names_n32n64[i].name; i++)
3602 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3603 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3604 &zero_address_frag));
3605 else
3606 for (i = 0; reg_names_o32[i].name; i++)
3607 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3608 reg_names_o32[i].num, /* & RNUM_MASK, */
3609 &zero_address_frag));
3610
3611 for (i = 0; i < 32; i++)
3612 {
3613 char regname[6];
3614
3615 /* R5900 VU0 floating-point register. */
3616 sprintf (regname, "$vf%d", i);
3617 symbol_table_insert (symbol_new (regname, reg_section,
3618 RTYPE_VF | i, &zero_address_frag));
3619
3620 /* R5900 VU0 integer register. */
3621 sprintf (regname, "$vi%d", i);
3622 symbol_table_insert (symbol_new (regname, reg_section,
3623 RTYPE_VI | i, &zero_address_frag));
3624
3625 /* MSA register. */
3626 sprintf (regname, "$w%d", i);
3627 symbol_table_insert (symbol_new (regname, reg_section,
3628 RTYPE_MSA | i, &zero_address_frag));
3629 }
3630
3631 obstack_init (&mips_operand_tokens);
3632
3633 mips_no_prev_insn ();
3634
3635 mips_gprmask = 0;
3636 mips_cprmask[0] = 0;
3637 mips_cprmask[1] = 0;
3638 mips_cprmask[2] = 0;
3639 mips_cprmask[3] = 0;
3640
3641 /* set the default alignment for the text section (2**2) */
3642 record_alignment (text_section, 2);
3643
3644 bfd_set_gp_size (stdoutput, g_switch_value);
3645
3646 /* On a native system other than VxWorks, sections must be aligned
3647 to 16 byte boundaries. When configured for an embedded ELF
3648 target, we don't bother. */
3649 if (strncmp (TARGET_OS, "elf", 3) != 0
3650 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3651 {
3652 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3653 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3654 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3655 }
3656
3657 /* Create a .reginfo section for register masks and a .mdebug
3658 section for debugging information. */
3659 {
3660 segT seg;
3661 subsegT subseg;
3662 flagword flags;
3663 segT sec;
3664
3665 seg = now_seg;
3666 subseg = now_subseg;
3667
3668 /* The ABI says this section should be loaded so that the
3669 running program can access it. However, we don't load it
3670 if we are configured for an embedded target */
3671 flags = SEC_READONLY | SEC_DATA;
3672 if (strncmp (TARGET_OS, "elf", 3) != 0)
3673 flags |= SEC_ALLOC | SEC_LOAD;
3674
3675 if (mips_abi != N64_ABI)
3676 {
3677 sec = subseg_new (".reginfo", (subsegT) 0);
3678
3679 bfd_set_section_flags (stdoutput, sec, flags);
3680 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3681
3682 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3683 }
3684 else
3685 {
3686 /* The 64-bit ABI uses a .MIPS.options section rather than
3687 .reginfo section. */
3688 sec = subseg_new (".MIPS.options", (subsegT) 0);
3689 bfd_set_section_flags (stdoutput, sec, flags);
3690 bfd_set_section_alignment (stdoutput, sec, 3);
3691
3692 /* Set up the option header. */
3693 {
3694 Elf_Internal_Options opthdr;
3695 char *f;
3696
3697 opthdr.kind = ODK_REGINFO;
3698 opthdr.size = (sizeof (Elf_External_Options)
3699 + sizeof (Elf64_External_RegInfo));
3700 opthdr.section = 0;
3701 opthdr.info = 0;
3702 f = frag_more (sizeof (Elf_External_Options));
3703 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3704 (Elf_External_Options *) f);
3705
3706 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3707 }
3708 }
3709
3710 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3711 bfd_set_section_flags (stdoutput, sec,
3712 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3713 bfd_set_section_alignment (stdoutput, sec, 3);
3714 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3715
3716 if (ECOFF_DEBUGGING)
3717 {
3718 sec = subseg_new (".mdebug", (subsegT) 0);
3719 (void) bfd_set_section_flags (stdoutput, sec,
3720 SEC_HAS_CONTENTS | SEC_READONLY);
3721 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3722 }
3723 else if (mips_flag_pdr)
3724 {
3725 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3727 SEC_READONLY | SEC_RELOC
3728 | SEC_DEBUGGING);
3729 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3730 }
3731
3732 subseg_set (seg, subseg);
3733 }
3734
3735 if (mips_fix_vr4120)
3736 init_vr4120_conflicts ();
3737 }
3738
3739 static inline void
3740 fpabi_incompatible_with (int fpabi, const char *what)
3741 {
3742 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3743 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3744 }
3745
3746 static inline void
3747 fpabi_requires (int fpabi, const char *what)
3748 {
3749 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3751 }
3752
3753 /* Check -mabi and register sizes against the specified FP ABI. */
3754 static void
3755 check_fpabi (int fpabi)
3756 {
3757 switch (fpabi)
3758 {
3759 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3760 if (file_mips_opts.soft_float)
3761 fpabi_incompatible_with (fpabi, "softfloat");
3762 else if (file_mips_opts.single_float)
3763 fpabi_incompatible_with (fpabi, "singlefloat");
3764 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3765 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3766 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3767 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3768 break;
3769
3770 case Val_GNU_MIPS_ABI_FP_XX:
3771 if (mips_abi != O32_ABI)
3772 fpabi_requires (fpabi, "-mabi=32");
3773 else if (file_mips_opts.soft_float)
3774 fpabi_incompatible_with (fpabi, "softfloat");
3775 else if (file_mips_opts.single_float)
3776 fpabi_incompatible_with (fpabi, "singlefloat");
3777 else if (file_mips_opts.fp != 0)
3778 fpabi_requires (fpabi, "fp=xx");
3779 break;
3780
3781 case Val_GNU_MIPS_ABI_FP_64A:
3782 case Val_GNU_MIPS_ABI_FP_64:
3783 if (mips_abi != O32_ABI)
3784 fpabi_requires (fpabi, "-mabi=32");
3785 else if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
3789 else if (file_mips_opts.fp != 64)
3790 fpabi_requires (fpabi, "fp=64");
3791 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3792 fpabi_incompatible_with (fpabi, "nooddspreg");
3793 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3794 fpabi_requires (fpabi, "nooddspreg");
3795 break;
3796
3797 case Val_GNU_MIPS_ABI_FP_SINGLE:
3798 if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (!file_mips_opts.single_float)
3801 fpabi_requires (fpabi, "singlefloat");
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_SOFT:
3805 if (!file_mips_opts.soft_float)
3806 fpabi_requires (fpabi, "softfloat");
3807 break;
3808
3809 case Val_GNU_MIPS_ABI_FP_OLD_64:
3810 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3811 Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813
3814 case Val_GNU_MIPS_ABI_FP_NAN2008:
3815 /* Silently ignore compatibility value. */
3816 break;
3817
3818 default:
3819 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3820 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3821 break;
3822 }
3823 }
3824
3825 /* Perform consistency checks on the current options. */
3826
3827 static void
3828 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3829 {
3830 /* Check the size of integer registers agrees with the ABI and ISA. */
3831 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3832 as_bad (_("`gp=64' used with a 32-bit processor"));
3833 else if (abi_checks
3834 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3835 as_bad (_("`gp=32' used with a 64-bit ABI"));
3836 else if (abi_checks
3837 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3838 as_bad (_("`gp=64' used with a 32-bit ABI"));
3839
3840 /* Check the size of the float registers agrees with the ABI and ISA. */
3841 switch (opts->fp)
3842 {
3843 case 0:
3844 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3845 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3846 else if (opts->single_float == 1)
3847 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3848 break;
3849 case 64:
3850 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3851 as_bad (_("`fp=64' used with a 32-bit fpu"));
3852 else if (abi_checks
3853 && ABI_NEEDS_32BIT_REGS (mips_abi)
3854 && !ISA_HAS_MXHC1 (opts->isa))
3855 as_warn (_("`fp=64' used with a 32-bit ABI"));
3856 break;
3857 case 32:
3858 if (abi_checks
3859 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_warn (_("`fp=32' used with a 64-bit ABI"));
3861 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3862 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3863 break;
3864 default:
3865 as_bad (_("Unknown size of floating point registers"));
3866 break;
3867 }
3868
3869 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3870 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3871
3872 if (opts->micromips == 1 && opts->mips16 == 1)
3873 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3874 else if (ISA_IS_R6 (opts->isa)
3875 && (opts->micromips == 1
3876 || opts->mips16 == 1))
3877 as_fatal (_("`%s' cannot be used with `%s'"),
3878 opts->micromips ? "micromips" : "mips16",
3879 mips_cpu_info_from_isa (opts->isa)->name);
3880
3881 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3882 as_fatal (_("branch relaxation is not supported in `%s'"),
3883 mips_cpu_info_from_isa (opts->isa)->name);
3884 }
3885
3886 /* Perform consistency checks on the module level options exactly once.
3887 This is a deferred check that happens:
3888 at the first .set directive
3889 or, at the first pseudo op that generates code (inc .dc.a)
3890 or, at the first instruction
3891 or, at the end. */
3892
3893 static void
3894 file_mips_check_options (void)
3895 {
3896 const struct mips_cpu_info *arch_info = 0;
3897
3898 if (file_mips_opts_checked)
3899 return;
3900
3901 /* The following code determines the register size.
3902 Similar code was added to GCC 3.3 (see override_options() in
3903 config/mips/mips.c). The GAS and GCC code should be kept in sync
3904 as much as possible. */
3905
3906 if (file_mips_opts.gp < 0)
3907 {
3908 /* Infer the integer register size from the ABI and processor.
3909 Restrict ourselves to 32-bit registers if that's all the
3910 processor has, or if the ABI cannot handle 64-bit registers. */
3911 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3912 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3913 ? 32 : 64;
3914 }
3915
3916 if (file_mips_opts.fp < 0)
3917 {
3918 /* No user specified float register size.
3919 ??? GAS treats single-float processors as though they had 64-bit
3920 float registers (although it complains when double-precision
3921 instructions are used). As things stand, saying they have 32-bit
3922 registers would lead to spurious "register must be even" messages.
3923 So here we assume float registers are never smaller than the
3924 integer ones. */
3925 if (file_mips_opts.gp == 64)
3926 /* 64-bit integer registers implies 64-bit float registers. */
3927 file_mips_opts.fp = 64;
3928 else if ((file_mips_opts.ase & FP64_ASES)
3929 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3930 /* Handle ASEs that require 64-bit float registers, if possible. */
3931 file_mips_opts.fp = 64;
3932 else if (ISA_IS_R6 (mips_opts.isa))
3933 /* R6 implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
3935 else
3936 /* 32-bit float registers. */
3937 file_mips_opts.fp = 32;
3938 }
3939
3940 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3941
3942 /* Disable operations on odd-numbered floating-point registers by default
3943 when using the FPXX ABI. */
3944 if (file_mips_opts.oddspreg < 0)
3945 {
3946 if (file_mips_opts.fp == 0)
3947 file_mips_opts.oddspreg = 0;
3948 else
3949 file_mips_opts.oddspreg = 1;
3950 }
3951
3952 /* End of GCC-shared inference code. */
3953
3954 /* This flag is set when we have a 64-bit capable CPU but use only
3955 32-bit wide registers. Note that EABI does not use it. */
3956 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3957 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3958 || mips_abi == O32_ABI))
3959 mips_32bitmode = 1;
3960
3961 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3962 as_bad (_("trap exception not supported at ISA 1"));
3963
3964 /* If the selected architecture includes support for ASEs, enable
3965 generation of code for them. */
3966 if (file_mips_opts.mips16 == -1)
3967 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3968 if (file_mips_opts.micromips == -1)
3969 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3970 ? 1 : 0;
3971
3972 if (mips_nan2008 == -1)
3973 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3974 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3975 as_fatal (_("`%s' does not support legacy NaN"),
3976 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3977
3978 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3979 being selected implicitly. */
3980 if (file_mips_opts.fp != 64)
3981 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3982
3983 /* If the user didn't explicitly select or deselect a particular ASE,
3984 use the default setting for the CPU. */
3985 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3986
3987 /* Set up the current options. These may change throughout assembly. */
3988 mips_opts = file_mips_opts;
3989
3990 mips_check_isa_supports_ases ();
3991 mips_check_options (&file_mips_opts, TRUE);
3992 file_mips_opts_checked = TRUE;
3993
3994 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3995 as_warn (_("could not set architecture and machine"));
3996 }
3997
3998 void
3999 md_assemble (char *str)
4000 {
4001 struct mips_cl_insn insn;
4002 bfd_reloc_code_real_type unused_reloc[3]
4003 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4004
4005 file_mips_check_options ();
4006
4007 imm_expr.X_op = O_absent;
4008 offset_expr.X_op = O_absent;
4009 offset_reloc[0] = BFD_RELOC_UNUSED;
4010 offset_reloc[1] = BFD_RELOC_UNUSED;
4011 offset_reloc[2] = BFD_RELOC_UNUSED;
4012
4013 mips_mark_labels ();
4014 mips_assembling_insn = TRUE;
4015 clear_insn_error ();
4016
4017 if (mips_opts.mips16)
4018 mips16_ip (str, &insn);
4019 else
4020 {
4021 mips_ip (str, &insn);
4022 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4023 str, insn.insn_opcode));
4024 }
4025
4026 if (insn_error.msg)
4027 report_insn_error (str);
4028 else if (insn.insn_mo->pinfo == INSN_MACRO)
4029 {
4030 macro_start ();
4031 if (mips_opts.mips16)
4032 mips16_macro (&insn);
4033 else
4034 macro (&insn, str);
4035 macro_end ();
4036 }
4037 else
4038 {
4039 if (offset_expr.X_op != O_absent)
4040 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4041 else
4042 append_insn (&insn, NULL, unused_reloc, FALSE);
4043 }
4044
4045 mips_assembling_insn = FALSE;
4046 }
4047
4048 /* Convenience functions for abstracting away the differences between
4049 MIPS16 and non-MIPS16 relocations. */
4050
4051 static inline bfd_boolean
4052 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4053 {
4054 switch (reloc)
4055 {
4056 case BFD_RELOC_MIPS16_JMP:
4057 case BFD_RELOC_MIPS16_GPREL:
4058 case BFD_RELOC_MIPS16_GOT16:
4059 case BFD_RELOC_MIPS16_CALL16:
4060 case BFD_RELOC_MIPS16_HI16_S:
4061 case BFD_RELOC_MIPS16_HI16:
4062 case BFD_RELOC_MIPS16_LO16:
4063 return TRUE;
4064
4065 default:
4066 return FALSE;
4067 }
4068 }
4069
4070 static inline bfd_boolean
4071 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4072 {
4073 switch (reloc)
4074 {
4075 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4076 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4077 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4078 case BFD_RELOC_MICROMIPS_GPREL16:
4079 case BFD_RELOC_MICROMIPS_JMP:
4080 case BFD_RELOC_MICROMIPS_HI16:
4081 case BFD_RELOC_MICROMIPS_HI16_S:
4082 case BFD_RELOC_MICROMIPS_LO16:
4083 case BFD_RELOC_MICROMIPS_LITERAL:
4084 case BFD_RELOC_MICROMIPS_GOT16:
4085 case BFD_RELOC_MICROMIPS_CALL16:
4086 case BFD_RELOC_MICROMIPS_GOT_HI16:
4087 case BFD_RELOC_MICROMIPS_GOT_LO16:
4088 case BFD_RELOC_MICROMIPS_CALL_HI16:
4089 case BFD_RELOC_MICROMIPS_CALL_LO16:
4090 case BFD_RELOC_MICROMIPS_SUB:
4091 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4092 case BFD_RELOC_MICROMIPS_GOT_OFST:
4093 case BFD_RELOC_MICROMIPS_GOT_DISP:
4094 case BFD_RELOC_MICROMIPS_HIGHEST:
4095 case BFD_RELOC_MICROMIPS_HIGHER:
4096 case BFD_RELOC_MICROMIPS_SCN_DISP:
4097 case BFD_RELOC_MICROMIPS_JALR:
4098 return TRUE;
4099
4100 default:
4101 return FALSE;
4102 }
4103 }
4104
4105 static inline bfd_boolean
4106 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4107 {
4108 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4109 }
4110
4111 static inline bfd_boolean
4112 got16_reloc_p (bfd_reloc_code_real_type reloc)
4113 {
4114 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4115 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4116 }
4117
4118 static inline bfd_boolean
4119 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4120 {
4121 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4122 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4123 }
4124
4125 static inline bfd_boolean
4126 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4127 {
4128 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4129 || reloc == BFD_RELOC_MICROMIPS_LO16);
4130 }
4131
4132 static inline bfd_boolean
4133 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4134 {
4135 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4136 }
4137
4138 static inline bfd_boolean
4139 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4140 {
4141 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4142 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4143 }
4144
4145 /* Return true if RELOC is a PC-relative relocation that does not have
4146 full address range. */
4147
4148 static inline bfd_boolean
4149 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4150 {
4151 switch (reloc)
4152 {
4153 case BFD_RELOC_16_PCREL_S2:
4154 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4155 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4156 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4157 case BFD_RELOC_MIPS_21_PCREL_S2:
4158 case BFD_RELOC_MIPS_26_PCREL_S2:
4159 case BFD_RELOC_MIPS_18_PCREL_S3:
4160 case BFD_RELOC_MIPS_19_PCREL_S2:
4161 return TRUE;
4162
4163 case BFD_RELOC_32_PCREL:
4164 case BFD_RELOC_HI16_S_PCREL:
4165 case BFD_RELOC_LO16_PCREL:
4166 return HAVE_64BIT_ADDRESSES;
4167
4168 default:
4169 return FALSE;
4170 }
4171 }
4172
4173 /* Return true if the given relocation might need a matching %lo().
4174 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4175 need a matching %lo() when applied to local symbols. */
4176
4177 static inline bfd_boolean
4178 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4179 {
4180 return (HAVE_IN_PLACE_ADDENDS
4181 && (hi16_reloc_p (reloc)
4182 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4183 all GOT16 relocations evaluate to "G". */
4184 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4185 }
4186
4187 /* Return the type of %lo() reloc needed by RELOC, given that
4188 reloc_needs_lo_p. */
4189
4190 static inline bfd_reloc_code_real_type
4191 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4192 {
4193 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4194 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4195 : BFD_RELOC_LO16));
4196 }
4197
4198 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4199 relocation. */
4200
4201 static inline bfd_boolean
4202 fixup_has_matching_lo_p (fixS *fixp)
4203 {
4204 return (fixp->fx_next != NULL
4205 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4206 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4207 && fixp->fx_offset == fixp->fx_next->fx_offset);
4208 }
4209
4210 /* Move all labels in LABELS to the current insertion point. TEXT_P
4211 says whether the labels refer to text or data. */
4212
4213 static void
4214 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4215 {
4216 struct insn_label_list *l;
4217 valueT val;
4218
4219 for (l = labels; l != NULL; l = l->next)
4220 {
4221 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4222 symbol_set_frag (l->label, frag_now);
4223 val = (valueT) frag_now_fix ();
4224 /* MIPS16/microMIPS text labels are stored as odd. */
4225 if (text_p && HAVE_CODE_COMPRESSION)
4226 ++val;
4227 S_SET_VALUE (l->label, val);
4228 }
4229 }
4230
4231 /* Move all labels in insn_labels to the current insertion point
4232 and treat them as text labels. */
4233
4234 static void
4235 mips_move_text_labels (void)
4236 {
4237 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4238 }
4239
4240 static bfd_boolean
4241 s_is_linkonce (symbolS *sym, segT from_seg)
4242 {
4243 bfd_boolean linkonce = FALSE;
4244 segT symseg = S_GET_SEGMENT (sym);
4245
4246 if (symseg != from_seg && !S_IS_LOCAL (sym))
4247 {
4248 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4249 linkonce = TRUE;
4250 /* The GNU toolchain uses an extension for ELF: a section
4251 beginning with the magic string .gnu.linkonce is a
4252 linkonce section. */
4253 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4254 sizeof ".gnu.linkonce" - 1) == 0)
4255 linkonce = TRUE;
4256 }
4257 return linkonce;
4258 }
4259
4260 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4261 linker to handle them specially, such as generating jalx instructions
4262 when needed. We also make them odd for the duration of the assembly,
4263 in order to generate the right sort of code. We will make them even
4264 in the adjust_symtab routine, while leaving them marked. This is
4265 convenient for the debugger and the disassembler. The linker knows
4266 to make them odd again. */
4267
4268 static void
4269 mips_compressed_mark_label (symbolS *label)
4270 {
4271 gas_assert (HAVE_CODE_COMPRESSION);
4272
4273 if (mips_opts.mips16)
4274 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4275 else
4276 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4277 if ((S_GET_VALUE (label) & 1) == 0
4278 /* Don't adjust the address if the label is global or weak, or
4279 in a link-once section, since we'll be emitting symbol reloc
4280 references to it which will be patched up by the linker, and
4281 the final value of the symbol may or may not be MIPS16/microMIPS. */
4282 && !S_IS_WEAK (label)
4283 && !S_IS_EXTERNAL (label)
4284 && !s_is_linkonce (label, now_seg))
4285 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4286 }
4287
4288 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4289
4290 static void
4291 mips_compressed_mark_labels (void)
4292 {
4293 struct insn_label_list *l;
4294
4295 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4296 mips_compressed_mark_label (l->label);
4297 }
4298
4299 /* End the current frag. Make it a variant frag and record the
4300 relaxation info. */
4301
4302 static void
4303 relax_close_frag (void)
4304 {
4305 mips_macro_warning.first_frag = frag_now;
4306 frag_var (rs_machine_dependent, 0, 0,
4307 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4308 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4309
4310 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4311 mips_relax.first_fixup = 0;
4312 }
4313
4314 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4315 See the comment above RELAX_ENCODE for more details. */
4316
4317 static void
4318 relax_start (symbolS *symbol)
4319 {
4320 gas_assert (mips_relax.sequence == 0);
4321 mips_relax.sequence = 1;
4322 mips_relax.symbol = symbol;
4323 }
4324
4325 /* Start generating the second version of a relaxable sequence.
4326 See the comment above RELAX_ENCODE for more details. */
4327
4328 static void
4329 relax_switch (void)
4330 {
4331 gas_assert (mips_relax.sequence == 1);
4332 mips_relax.sequence = 2;
4333 }
4334
4335 /* End the current relaxable sequence. */
4336
4337 static void
4338 relax_end (void)
4339 {
4340 gas_assert (mips_relax.sequence == 2);
4341 relax_close_frag ();
4342 mips_relax.sequence = 0;
4343 }
4344
4345 /* Return true if IP is a delayed branch or jump. */
4346
4347 static inline bfd_boolean
4348 delayed_branch_p (const struct mips_cl_insn *ip)
4349 {
4350 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4351 | INSN_COND_BRANCH_DELAY
4352 | INSN_COND_BRANCH_LIKELY)) != 0;
4353 }
4354
4355 /* Return true if IP is a compact branch or jump. */
4356
4357 static inline bfd_boolean
4358 compact_branch_p (const struct mips_cl_insn *ip)
4359 {
4360 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4361 | INSN2_COND_BRANCH)) != 0;
4362 }
4363
4364 /* Return true if IP is an unconditional branch or jump. */
4365
4366 static inline bfd_boolean
4367 uncond_branch_p (const struct mips_cl_insn *ip)
4368 {
4369 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4370 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4371 }
4372
4373 /* Return true if IP is a branch-likely instruction. */
4374
4375 static inline bfd_boolean
4376 branch_likely_p (const struct mips_cl_insn *ip)
4377 {
4378 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4379 }
4380
4381 /* Return the type of nop that should be used to fill the delay slot
4382 of delayed branch IP. */
4383
4384 static struct mips_cl_insn *
4385 get_delay_slot_nop (const struct mips_cl_insn *ip)
4386 {
4387 if (mips_opts.micromips
4388 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4389 return &micromips_nop32_insn;
4390 return NOP_INSN;
4391 }
4392
4393 /* Return a mask that has bit N set if OPCODE reads the register(s)
4394 in operand N. */
4395
4396 static unsigned int
4397 insn_read_mask (const struct mips_opcode *opcode)
4398 {
4399 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4400 }
4401
4402 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4403 in operand N. */
4404
4405 static unsigned int
4406 insn_write_mask (const struct mips_opcode *opcode)
4407 {
4408 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4409 }
4410
4411 /* Return a mask of the registers specified by operand OPERAND of INSN.
4412 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4413 is set. */
4414
4415 static unsigned int
4416 operand_reg_mask (const struct mips_cl_insn *insn,
4417 const struct mips_operand *operand,
4418 unsigned int type_mask)
4419 {
4420 unsigned int uval, vsel;
4421
4422 switch (operand->type)
4423 {
4424 case OP_INT:
4425 case OP_MAPPED_INT:
4426 case OP_MSB:
4427 case OP_PCREL:
4428 case OP_PERF_REG:
4429 case OP_ADDIUSP_INT:
4430 case OP_ENTRY_EXIT_LIST:
4431 case OP_REPEAT_DEST_REG:
4432 case OP_REPEAT_PREV_REG:
4433 case OP_PC:
4434 case OP_VU0_SUFFIX:
4435 case OP_VU0_MATCH_SUFFIX:
4436 case OP_IMM_INDEX:
4437 abort ();
4438
4439 case OP_REG:
4440 case OP_OPTIONAL_REG:
4441 {
4442 const struct mips_reg_operand *reg_op;
4443
4444 reg_op = (const struct mips_reg_operand *) operand;
4445 if (!(type_mask & (1 << reg_op->reg_type)))
4446 return 0;
4447 uval = insn_extract_operand (insn, operand);
4448 return 1 << mips_decode_reg_operand (reg_op, uval);
4449 }
4450
4451 case OP_REG_PAIR:
4452 {
4453 const struct mips_reg_pair_operand *pair_op;
4454
4455 pair_op = (const struct mips_reg_pair_operand *) operand;
4456 if (!(type_mask & (1 << pair_op->reg_type)))
4457 return 0;
4458 uval = insn_extract_operand (insn, operand);
4459 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4460 }
4461
4462 case OP_CLO_CLZ_DEST:
4463 if (!(type_mask & (1 << OP_REG_GP)))
4464 return 0;
4465 uval = insn_extract_operand (insn, operand);
4466 return (1 << (uval & 31)) | (1 << (uval >> 5));
4467
4468 case OP_SAME_RS_RT:
4469 if (!(type_mask & (1 << OP_REG_GP)))
4470 return 0;
4471 uval = insn_extract_operand (insn, operand);
4472 gas_assert ((uval & 31) == (uval >> 5));
4473 return 1 << (uval & 31);
4474
4475 case OP_CHECK_PREV:
4476 case OP_NON_ZERO_REG:
4477 if (!(type_mask & (1 << OP_REG_GP)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return 1 << (uval & 31);
4481
4482 case OP_LWM_SWM_LIST:
4483 abort ();
4484
4485 case OP_SAVE_RESTORE_LIST:
4486 abort ();
4487
4488 case OP_MDMX_IMM_REG:
4489 if (!(type_mask & (1 << OP_REG_VEC)))
4490 return 0;
4491 uval = insn_extract_operand (insn, operand);
4492 vsel = uval >> 5;
4493 if ((vsel & 0x18) == 0x18)
4494 return 0;
4495 return 1 << (uval & 31);
4496
4497 case OP_REG_INDEX:
4498 if (!(type_mask & (1 << OP_REG_GP)))
4499 return 0;
4500 return 1 << insn_extract_operand (insn, operand);
4501 }
4502 abort ();
4503 }
4504
4505 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4506 where bit N of OPNO_MASK is set if operand N should be included.
4507 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4508 is set. */
4509
4510 static unsigned int
4511 insn_reg_mask (const struct mips_cl_insn *insn,
4512 unsigned int type_mask, unsigned int opno_mask)
4513 {
4514 unsigned int opno, reg_mask;
4515
4516 opno = 0;
4517 reg_mask = 0;
4518 while (opno_mask != 0)
4519 {
4520 if (opno_mask & 1)
4521 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4522 opno_mask >>= 1;
4523 opno += 1;
4524 }
4525 return reg_mask;
4526 }
4527
4528 /* Return the mask of core registers that IP reads. */
4529
4530 static unsigned int
4531 gpr_read_mask (const struct mips_cl_insn *ip)
4532 {
4533 unsigned long pinfo, pinfo2;
4534 unsigned int mask;
4535
4536 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4537 pinfo = ip->insn_mo->pinfo;
4538 pinfo2 = ip->insn_mo->pinfo2;
4539 if (pinfo & INSN_UDI)
4540 {
4541 /* UDI instructions have traditionally been assumed to read RS
4542 and RT. */
4543 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4544 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4545 }
4546 if (pinfo & INSN_READ_GPR_24)
4547 mask |= 1 << 24;
4548 if (pinfo2 & INSN2_READ_GPR_16)
4549 mask |= 1 << 16;
4550 if (pinfo2 & INSN2_READ_SP)
4551 mask |= 1 << SP;
4552 if (pinfo2 & INSN2_READ_GPR_31)
4553 mask |= 1 << 31;
4554 /* Don't include register 0. */
4555 return mask & ~1;
4556 }
4557
4558 /* Return the mask of core registers that IP writes. */
4559
4560 static unsigned int
4561 gpr_write_mask (const struct mips_cl_insn *ip)
4562 {
4563 unsigned long pinfo, pinfo2;
4564 unsigned int mask;
4565
4566 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4567 pinfo = ip->insn_mo->pinfo;
4568 pinfo2 = ip->insn_mo->pinfo2;
4569 if (pinfo & INSN_WRITE_GPR_24)
4570 mask |= 1 << 24;
4571 if (pinfo & INSN_WRITE_GPR_31)
4572 mask |= 1 << 31;
4573 if (pinfo & INSN_UDI)
4574 /* UDI instructions have traditionally been assumed to write to RD. */
4575 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4576 if (pinfo2 & INSN2_WRITE_SP)
4577 mask |= 1 << SP;
4578 /* Don't include register 0. */
4579 return mask & ~1;
4580 }
4581
4582 /* Return the mask of floating-point registers that IP reads. */
4583
4584 static unsigned int
4585 fpr_read_mask (const struct mips_cl_insn *ip)
4586 {
4587 unsigned long pinfo;
4588 unsigned int mask;
4589
4590 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4591 | (1 << OP_REG_MSA)),
4592 insn_read_mask (ip->insn_mo));
4593 pinfo = ip->insn_mo->pinfo;
4594 /* Conservatively treat all operands to an FP_D instruction are doubles.
4595 (This is overly pessimistic for things like cvt.d.s.) */
4596 if (FPR_SIZE != 64 && (pinfo & FP_D))
4597 mask |= mask << 1;
4598 return mask;
4599 }
4600
4601 /* Return the mask of floating-point registers that IP writes. */
4602
4603 static unsigned int
4604 fpr_write_mask (const struct mips_cl_insn *ip)
4605 {
4606 unsigned long pinfo;
4607 unsigned int mask;
4608
4609 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4610 | (1 << OP_REG_MSA)),
4611 insn_write_mask (ip->insn_mo));
4612 pinfo = ip->insn_mo->pinfo;
4613 /* Conservatively treat all operands to an FP_D instruction are doubles.
4614 (This is overly pessimistic for things like cvt.s.d.) */
4615 if (FPR_SIZE != 64 && (pinfo & FP_D))
4616 mask |= mask << 1;
4617 return mask;
4618 }
4619
4620 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4621 Check whether that is allowed. */
4622
4623 static bfd_boolean
4624 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4625 {
4626 const char *s = insn->name;
4627 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4628 || FPR_SIZE == 64)
4629 && mips_opts.oddspreg;
4630
4631 if (insn->pinfo == INSN_MACRO)
4632 /* Let a macro pass, we'll catch it later when it is expanded. */
4633 return TRUE;
4634
4635 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4636 otherwise it depends on oddspreg. */
4637 if ((insn->pinfo & FP_S)
4638 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4639 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4640 return FPR_SIZE == 32 || oddspreg;
4641
4642 /* Allow odd registers for single-precision ops and double-precision if the
4643 floating-point registers are 64-bit wide. */
4644 switch (insn->pinfo & (FP_S | FP_D))
4645 {
4646 case FP_S:
4647 case 0:
4648 return oddspreg;
4649 case FP_D:
4650 return FPR_SIZE == 64;
4651 default:
4652 break;
4653 }
4654
4655 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4656 s = strchr (insn->name, '.');
4657 if (s != NULL && opnum == 2)
4658 s = strchr (s + 1, '.');
4659 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4660 return oddspreg;
4661
4662 return FPR_SIZE == 64;
4663 }
4664
4665 /* Information about an instruction argument that we're trying to match. */
4666 struct mips_arg_info
4667 {
4668 /* The instruction so far. */
4669 struct mips_cl_insn *insn;
4670
4671 /* The first unconsumed operand token. */
4672 struct mips_operand_token *token;
4673
4674 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4675 int opnum;
4676
4677 /* The 1-based argument number, for error reporting. This does not
4678 count elided optional registers, etc.. */
4679 int argnum;
4680
4681 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4682 unsigned int last_regno;
4683
4684 /* If the first operand was an OP_REG, this is the register that it
4685 specified, otherwise it is ILLEGAL_REG. */
4686 unsigned int dest_regno;
4687
4688 /* The value of the last OP_INT operand. Only used for OP_MSB,
4689 where it gives the lsb position. */
4690 unsigned int last_op_int;
4691
4692 /* If true, match routines should assume that no later instruction
4693 alternative matches and should therefore be as accomodating as
4694 possible. Match routines should not report errors if something
4695 is only invalid for !LAX_MATCH. */
4696 bfd_boolean lax_match;
4697
4698 /* True if a reference to the current AT register was seen. */
4699 bfd_boolean seen_at;
4700 };
4701
4702 /* Record that the argument is out of range. */
4703
4704 static void
4705 match_out_of_range (struct mips_arg_info *arg)
4706 {
4707 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4708 }
4709
4710 /* Record that the argument isn't constant but needs to be. */
4711
4712 static void
4713 match_not_constant (struct mips_arg_info *arg)
4714 {
4715 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4716 arg->argnum);
4717 }
4718
4719 /* Try to match an OT_CHAR token for character CH. Consume the token
4720 and return true on success, otherwise return false. */
4721
4722 static bfd_boolean
4723 match_char (struct mips_arg_info *arg, char ch)
4724 {
4725 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4726 {
4727 ++arg->token;
4728 if (ch == ',')
4729 arg->argnum += 1;
4730 return TRUE;
4731 }
4732 return FALSE;
4733 }
4734
4735 /* Try to get an expression from the next tokens in ARG. Consume the
4736 tokens and return true on success, storing the expression value in
4737 VALUE and relocation types in R. */
4738
4739 static bfd_boolean
4740 match_expression (struct mips_arg_info *arg, expressionS *value,
4741 bfd_reloc_code_real_type *r)
4742 {
4743 /* If the next token is a '(' that was parsed as being part of a base
4744 expression, assume we have an elided offset. The later match will fail
4745 if this turns out to be wrong. */
4746 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4747 {
4748 value->X_op = O_constant;
4749 value->X_add_number = 0;
4750 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4751 return TRUE;
4752 }
4753
4754 /* Reject register-based expressions such as "0+$2" and "(($2))".
4755 For plain registers the default error seems more appropriate. */
4756 if (arg->token->type == OT_INTEGER
4757 && arg->token->u.integer.value.X_op == O_register)
4758 {
4759 set_insn_error (arg->argnum, _("register value used as expression"));
4760 return FALSE;
4761 }
4762
4763 if (arg->token->type == OT_INTEGER)
4764 {
4765 *value = arg->token->u.integer.value;
4766 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4767 ++arg->token;
4768 return TRUE;
4769 }
4770
4771 set_insn_error_i
4772 (arg->argnum, _("operand %d must be an immediate expression"),
4773 arg->argnum);
4774 return FALSE;
4775 }
4776
4777 /* Try to get a constant expression from the next tokens in ARG. Consume
4778 the tokens and return return true on success, storing the constant value
4779 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4780 error. */
4781
4782 static bfd_boolean
4783 match_const_int (struct mips_arg_info *arg, offsetT *value)
4784 {
4785 expressionS ex;
4786 bfd_reloc_code_real_type r[3];
4787
4788 if (!match_expression (arg, &ex, r))
4789 return FALSE;
4790
4791 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4792 *value = ex.X_add_number;
4793 else
4794 {
4795 match_not_constant (arg);
4796 return FALSE;
4797 }
4798 return TRUE;
4799 }
4800
4801 /* Return the RTYPE_* flags for a register operand of type TYPE that
4802 appears in instruction OPCODE. */
4803
4804 static unsigned int
4805 convert_reg_type (const struct mips_opcode *opcode,
4806 enum mips_reg_operand_type type)
4807 {
4808 switch (type)
4809 {
4810 case OP_REG_GP:
4811 return RTYPE_NUM | RTYPE_GP;
4812
4813 case OP_REG_FP:
4814 /* Allow vector register names for MDMX if the instruction is a 64-bit
4815 FPR load, store or move (including moves to and from GPRs). */
4816 if ((mips_opts.ase & ASE_MDMX)
4817 && (opcode->pinfo & FP_D)
4818 && (opcode->pinfo & (INSN_COPROC_MOVE
4819 | INSN_COPROC_MEMORY_DELAY
4820 | INSN_LOAD_COPROC
4821 | INSN_LOAD_MEMORY
4822 | INSN_STORE_MEMORY)))
4823 return RTYPE_FPU | RTYPE_VEC;
4824 return RTYPE_FPU;
4825
4826 case OP_REG_CCC:
4827 if (opcode->pinfo & (FP_D | FP_S))
4828 return RTYPE_CCC | RTYPE_FCC;
4829 return RTYPE_CCC;
4830
4831 case OP_REG_VEC:
4832 if (opcode->membership & INSN_5400)
4833 return RTYPE_FPU;
4834 return RTYPE_FPU | RTYPE_VEC;
4835
4836 case OP_REG_ACC:
4837 return RTYPE_ACC;
4838
4839 case OP_REG_COPRO:
4840 if (opcode->name[strlen (opcode->name) - 1] == '0')
4841 return RTYPE_NUM | RTYPE_CP0;
4842 return RTYPE_NUM;
4843
4844 case OP_REG_HW:
4845 return RTYPE_NUM;
4846
4847 case OP_REG_VI:
4848 return RTYPE_NUM | RTYPE_VI;
4849
4850 case OP_REG_VF:
4851 return RTYPE_NUM | RTYPE_VF;
4852
4853 case OP_REG_R5900_I:
4854 return RTYPE_R5900_I;
4855
4856 case OP_REG_R5900_Q:
4857 return RTYPE_R5900_Q;
4858
4859 case OP_REG_R5900_R:
4860 return RTYPE_R5900_R;
4861
4862 case OP_REG_R5900_ACC:
4863 return RTYPE_R5900_ACC;
4864
4865 case OP_REG_MSA:
4866 return RTYPE_MSA;
4867
4868 case OP_REG_MSA_CTRL:
4869 return RTYPE_NUM;
4870 }
4871 abort ();
4872 }
4873
4874 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4875
4876 static void
4877 check_regno (struct mips_arg_info *arg,
4878 enum mips_reg_operand_type type, unsigned int regno)
4879 {
4880 if (AT && type == OP_REG_GP && regno == AT)
4881 arg->seen_at = TRUE;
4882
4883 if (type == OP_REG_FP
4884 && (regno & 1) != 0
4885 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4886 {
4887 /* This was a warning prior to introducing O32 FPXX and FP64 support
4888 so maintain a warning for FP32 but raise an error for the new
4889 cases. */
4890 if (FPR_SIZE == 32)
4891 as_warn (_("float register should be even, was %d"), regno);
4892 else
4893 as_bad (_("float register should be even, was %d"), regno);
4894 }
4895
4896 if (type == OP_REG_CCC)
4897 {
4898 const char *name;
4899 size_t length;
4900
4901 name = arg->insn->insn_mo->name;
4902 length = strlen (name);
4903 if ((regno & 1) != 0
4904 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4905 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4906 as_warn (_("condition code register should be even for %s, was %d"),
4907 name, regno);
4908
4909 if ((regno & 3) != 0
4910 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4911 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4912 name, regno);
4913 }
4914 }
4915
4916 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4917 a register of type TYPE. Return true on success, storing the register
4918 number in *REGNO and warning about any dubious uses. */
4919
4920 static bfd_boolean
4921 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4922 unsigned int symval, unsigned int *regno)
4923 {
4924 if (type == OP_REG_VEC)
4925 symval = mips_prefer_vec_regno (symval);
4926 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4927 return FALSE;
4928
4929 *regno = symval & RNUM_MASK;
4930 check_regno (arg, type, *regno);
4931 return TRUE;
4932 }
4933
4934 /* Try to interpret the next token in ARG as a register of type TYPE.
4935 Consume the token and return true on success, storing the register
4936 number in *REGNO. Return false on failure. */
4937
4938 static bfd_boolean
4939 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4940 unsigned int *regno)
4941 {
4942 if (arg->token->type == OT_REG
4943 && match_regno (arg, type, arg->token->u.regno, regno))
4944 {
4945 ++arg->token;
4946 return TRUE;
4947 }
4948 return FALSE;
4949 }
4950
4951 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4952 Consume the token and return true on success, storing the register numbers
4953 in *REGNO1 and *REGNO2. Return false on failure. */
4954
4955 static bfd_boolean
4956 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4957 unsigned int *regno1, unsigned int *regno2)
4958 {
4959 if (match_reg (arg, type, regno1))
4960 {
4961 *regno2 = *regno1;
4962 return TRUE;
4963 }
4964 if (arg->token->type == OT_REG_RANGE
4965 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4966 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4967 && *regno1 <= *regno2)
4968 {
4969 ++arg->token;
4970 return TRUE;
4971 }
4972 return FALSE;
4973 }
4974
4975 /* OP_INT matcher. */
4976
4977 static bfd_boolean
4978 match_int_operand (struct mips_arg_info *arg,
4979 const struct mips_operand *operand_base)
4980 {
4981 const struct mips_int_operand *operand;
4982 unsigned int uval;
4983 int min_val, max_val, factor;
4984 offsetT sval;
4985
4986 operand = (const struct mips_int_operand *) operand_base;
4987 factor = 1 << operand->shift;
4988 min_val = mips_int_operand_min (operand);
4989 max_val = mips_int_operand_max (operand);
4990
4991 if (operand_base->lsb == 0
4992 && operand_base->size == 16
4993 && operand->shift == 0
4994 && operand->bias == 0
4995 && (operand->max_val == 32767 || operand->max_val == 65535))
4996 {
4997 /* The operand can be relocated. */
4998 if (!match_expression (arg, &offset_expr, offset_reloc))
4999 return FALSE;
5000
5001 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5002 /* Relocation operators were used. Accept the arguent and
5003 leave the relocation value in offset_expr and offset_relocs
5004 for the caller to process. */
5005 return TRUE;
5006
5007 if (offset_expr.X_op != O_constant)
5008 {
5009 /* Accept non-constant operands if no later alternative matches,
5010 leaving it for the caller to process. */
5011 if (!arg->lax_match)
5012 return FALSE;
5013 offset_reloc[0] = BFD_RELOC_LO16;
5014 return TRUE;
5015 }
5016
5017 /* Clear the global state; we're going to install the operand
5018 ourselves. */
5019 sval = offset_expr.X_add_number;
5020 offset_expr.X_op = O_absent;
5021
5022 /* For compatibility with older assemblers, we accept
5023 0x8000-0xffff as signed 16-bit numbers when only
5024 signed numbers are allowed. */
5025 if (sval > max_val)
5026 {
5027 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5028 if (!arg->lax_match && sval <= max_val)
5029 return FALSE;
5030 }
5031 }
5032 else
5033 {
5034 if (!match_const_int (arg, &sval))
5035 return FALSE;
5036 }
5037
5038 arg->last_op_int = sval;
5039
5040 if (sval < min_val || sval > max_val || sval % factor)
5041 {
5042 match_out_of_range (arg);
5043 return FALSE;
5044 }
5045
5046 uval = (unsigned int) sval >> operand->shift;
5047 uval -= operand->bias;
5048
5049 /* Handle -mfix-cn63xxp1. */
5050 if (arg->opnum == 1
5051 && mips_fix_cn63xxp1
5052 && !mips_opts.micromips
5053 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5054 switch (uval)
5055 {
5056 case 5:
5057 case 25:
5058 case 26:
5059 case 27:
5060 case 28:
5061 case 29:
5062 case 30:
5063 case 31:
5064 /* These are ok. */
5065 break;
5066
5067 default:
5068 /* The rest must be changed to 28. */
5069 uval = 28;
5070 break;
5071 }
5072
5073 insn_insert_operand (arg->insn, operand_base, uval);
5074 return TRUE;
5075 }
5076
5077 /* OP_MAPPED_INT matcher. */
5078
5079 static bfd_boolean
5080 match_mapped_int_operand (struct mips_arg_info *arg,
5081 const struct mips_operand *operand_base)
5082 {
5083 const struct mips_mapped_int_operand *operand;
5084 unsigned int uval, num_vals;
5085 offsetT sval;
5086
5087 operand = (const struct mips_mapped_int_operand *) operand_base;
5088 if (!match_const_int (arg, &sval))
5089 return FALSE;
5090
5091 num_vals = 1 << operand_base->size;
5092 for (uval = 0; uval < num_vals; uval++)
5093 if (operand->int_map[uval] == sval)
5094 break;
5095 if (uval == num_vals)
5096 {
5097 match_out_of_range (arg);
5098 return FALSE;
5099 }
5100
5101 insn_insert_operand (arg->insn, operand_base, uval);
5102 return TRUE;
5103 }
5104
5105 /* OP_MSB matcher. */
5106
5107 static bfd_boolean
5108 match_msb_operand (struct mips_arg_info *arg,
5109 const struct mips_operand *operand_base)
5110 {
5111 const struct mips_msb_operand *operand;
5112 int min_val, max_val, max_high;
5113 offsetT size, sval, high;
5114
5115 operand = (const struct mips_msb_operand *) operand_base;
5116 min_val = operand->bias;
5117 max_val = min_val + (1 << operand_base->size) - 1;
5118 max_high = operand->opsize;
5119
5120 if (!match_const_int (arg, &size))
5121 return FALSE;
5122
5123 high = size + arg->last_op_int;
5124 sval = operand->add_lsb ? high : size;
5125
5126 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5127 {
5128 match_out_of_range (arg);
5129 return FALSE;
5130 }
5131 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5132 return TRUE;
5133 }
5134
5135 /* OP_REG matcher. */
5136
5137 static bfd_boolean
5138 match_reg_operand (struct mips_arg_info *arg,
5139 const struct mips_operand *operand_base)
5140 {
5141 const struct mips_reg_operand *operand;
5142 unsigned int regno, uval, num_vals;
5143
5144 operand = (const struct mips_reg_operand *) operand_base;
5145 if (!match_reg (arg, operand->reg_type, &regno))
5146 return FALSE;
5147
5148 if (operand->reg_map)
5149 {
5150 num_vals = 1 << operand->root.size;
5151 for (uval = 0; uval < num_vals; uval++)
5152 if (operand->reg_map[uval] == regno)
5153 break;
5154 if (num_vals == uval)
5155 return FALSE;
5156 }
5157 else
5158 uval = regno;
5159
5160 arg->last_regno = regno;
5161 if (arg->opnum == 1)
5162 arg->dest_regno = regno;
5163 insn_insert_operand (arg->insn, operand_base, uval);
5164 return TRUE;
5165 }
5166
5167 /* OP_REG_PAIR matcher. */
5168
5169 static bfd_boolean
5170 match_reg_pair_operand (struct mips_arg_info *arg,
5171 const struct mips_operand *operand_base)
5172 {
5173 const struct mips_reg_pair_operand *operand;
5174 unsigned int regno1, regno2, uval, num_vals;
5175
5176 operand = (const struct mips_reg_pair_operand *) operand_base;
5177 if (!match_reg (arg, operand->reg_type, &regno1)
5178 || !match_char (arg, ',')
5179 || !match_reg (arg, operand->reg_type, &regno2))
5180 return FALSE;
5181
5182 num_vals = 1 << operand_base->size;
5183 for (uval = 0; uval < num_vals; uval++)
5184 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5185 break;
5186 if (uval == num_vals)
5187 return FALSE;
5188
5189 insn_insert_operand (arg->insn, operand_base, uval);
5190 return TRUE;
5191 }
5192
5193 /* OP_PCREL matcher. The caller chooses the relocation type. */
5194
5195 static bfd_boolean
5196 match_pcrel_operand (struct mips_arg_info *arg)
5197 {
5198 bfd_reloc_code_real_type r[3];
5199
5200 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5201 }
5202
5203 /* OP_PERF_REG matcher. */
5204
5205 static bfd_boolean
5206 match_perf_reg_operand (struct mips_arg_info *arg,
5207 const struct mips_operand *operand)
5208 {
5209 offsetT sval;
5210
5211 if (!match_const_int (arg, &sval))
5212 return FALSE;
5213
5214 if (sval != 0
5215 && (sval != 1
5216 || (mips_opts.arch == CPU_R5900
5217 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5218 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5219 {
5220 set_insn_error (arg->argnum, _("invalid performance register"));
5221 return FALSE;
5222 }
5223
5224 insn_insert_operand (arg->insn, operand, sval);
5225 return TRUE;
5226 }
5227
5228 /* OP_ADDIUSP matcher. */
5229
5230 static bfd_boolean
5231 match_addiusp_operand (struct mips_arg_info *arg,
5232 const struct mips_operand *operand)
5233 {
5234 offsetT sval;
5235 unsigned int uval;
5236
5237 if (!match_const_int (arg, &sval))
5238 return FALSE;
5239
5240 if (sval % 4)
5241 {
5242 match_out_of_range (arg);
5243 return FALSE;
5244 }
5245
5246 sval /= 4;
5247 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5248 {
5249 match_out_of_range (arg);
5250 return FALSE;
5251 }
5252
5253 uval = (unsigned int) sval;
5254 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5255 insn_insert_operand (arg->insn, operand, uval);
5256 return TRUE;
5257 }
5258
5259 /* OP_CLO_CLZ_DEST matcher. */
5260
5261 static bfd_boolean
5262 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5263 const struct mips_operand *operand)
5264 {
5265 unsigned int regno;
5266
5267 if (!match_reg (arg, OP_REG_GP, &regno))
5268 return FALSE;
5269
5270 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5271 return TRUE;
5272 }
5273
5274 /* OP_CHECK_PREV matcher. */
5275
5276 static bfd_boolean
5277 match_check_prev_operand (struct mips_arg_info *arg,
5278 const struct mips_operand *operand_base)
5279 {
5280 const struct mips_check_prev_operand *operand;
5281 unsigned int regno;
5282
5283 operand = (const struct mips_check_prev_operand *) operand_base;
5284
5285 if (!match_reg (arg, OP_REG_GP, &regno))
5286 return FALSE;
5287
5288 if (!operand->zero_ok && regno == 0)
5289 return FALSE;
5290
5291 if ((operand->less_than_ok && regno < arg->last_regno)
5292 || (operand->greater_than_ok && regno > arg->last_regno)
5293 || (operand->equal_ok && regno == arg->last_regno))
5294 {
5295 arg->last_regno = regno;
5296 insn_insert_operand (arg->insn, operand_base, regno);
5297 return TRUE;
5298 }
5299
5300 return FALSE;
5301 }
5302
5303 /* OP_SAME_RS_RT matcher. */
5304
5305 static bfd_boolean
5306 match_same_rs_rt_operand (struct mips_arg_info *arg,
5307 const struct mips_operand *operand)
5308 {
5309 unsigned int regno;
5310
5311 if (!match_reg (arg, OP_REG_GP, &regno))
5312 return FALSE;
5313
5314 if (regno == 0)
5315 {
5316 set_insn_error (arg->argnum, _("the source register must not be $0"));
5317 return FALSE;
5318 }
5319
5320 arg->last_regno = regno;
5321
5322 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5323 return TRUE;
5324 }
5325
5326 /* OP_LWM_SWM_LIST matcher. */
5327
5328 static bfd_boolean
5329 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5330 const struct mips_operand *operand)
5331 {
5332 unsigned int reglist, sregs, ra, regno1, regno2;
5333 struct mips_arg_info reset;
5334
5335 reglist = 0;
5336 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5337 return FALSE;
5338 do
5339 {
5340 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5341 {
5342 reglist |= 1 << FP;
5343 regno2 = S7;
5344 }
5345 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5346 reset = *arg;
5347 }
5348 while (match_char (arg, ',')
5349 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5350 *arg = reset;
5351
5352 if (operand->size == 2)
5353 {
5354 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5355
5356 s0, ra
5357 s0, s1, ra, s2, s3
5358 s0-s2, ra
5359
5360 and any permutations of these. */
5361 if ((reglist & 0xfff1ffff) != 0x80010000)
5362 return FALSE;
5363
5364 sregs = (reglist >> 17) & 7;
5365 ra = 0;
5366 }
5367 else
5368 {
5369 /* The list must include at least one of ra and s0-sN,
5370 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5371 which are $23 and $30 respectively.) E.g.:
5372
5373 ra
5374 s0
5375 ra, s0, s1, s2
5376 s0-s8
5377 s0-s5, ra
5378
5379 and any permutations of these. */
5380 if ((reglist & 0x3f00ffff) != 0)
5381 return FALSE;
5382
5383 ra = (reglist >> 27) & 0x10;
5384 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5385 }
5386 sregs += 1;
5387 if ((sregs & -sregs) != sregs)
5388 return FALSE;
5389
5390 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5391 return TRUE;
5392 }
5393
5394 /* OP_ENTRY_EXIT_LIST matcher. */
5395
5396 static unsigned int
5397 match_entry_exit_operand (struct mips_arg_info *arg,
5398 const struct mips_operand *operand)
5399 {
5400 unsigned int mask;
5401 bfd_boolean is_exit;
5402
5403 /* The format is the same for both ENTRY and EXIT, but the constraints
5404 are different. */
5405 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5406 mask = (is_exit ? 7 << 3 : 0);
5407 do
5408 {
5409 unsigned int regno1, regno2;
5410 bfd_boolean is_freg;
5411
5412 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5413 is_freg = FALSE;
5414 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5415 is_freg = TRUE;
5416 else
5417 return FALSE;
5418
5419 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5420 {
5421 mask &= ~(7 << 3);
5422 mask |= (5 + regno2) << 3;
5423 }
5424 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5425 mask |= (regno2 - 3) << 3;
5426 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5427 mask |= (regno2 - 15) << 1;
5428 else if (regno1 == RA && regno2 == RA)
5429 mask |= 1;
5430 else
5431 return FALSE;
5432 }
5433 while (match_char (arg, ','));
5434
5435 insn_insert_operand (arg->insn, operand, mask);
5436 return TRUE;
5437 }
5438
5439 /* OP_SAVE_RESTORE_LIST matcher. */
5440
5441 static bfd_boolean
5442 match_save_restore_list_operand (struct mips_arg_info *arg)
5443 {
5444 unsigned int opcode, args, statics, sregs;
5445 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5446 offsetT frame_size;
5447
5448 opcode = arg->insn->insn_opcode;
5449 frame_size = 0;
5450 num_frame_sizes = 0;
5451 args = 0;
5452 statics = 0;
5453 sregs = 0;
5454 do
5455 {
5456 unsigned int regno1, regno2;
5457
5458 if (arg->token->type == OT_INTEGER)
5459 {
5460 /* Handle the frame size. */
5461 if (!match_const_int (arg, &frame_size))
5462 return FALSE;
5463 num_frame_sizes += 1;
5464 }
5465 else
5466 {
5467 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5468 return FALSE;
5469
5470 while (regno1 <= regno2)
5471 {
5472 if (regno1 >= 4 && regno1 <= 7)
5473 {
5474 if (num_frame_sizes == 0)
5475 /* args $a0-$a3 */
5476 args |= 1 << (regno1 - 4);
5477 else
5478 /* statics $a0-$a3 */
5479 statics |= 1 << (regno1 - 4);
5480 }
5481 else if (regno1 >= 16 && regno1 <= 23)
5482 /* $s0-$s7 */
5483 sregs |= 1 << (regno1 - 16);
5484 else if (regno1 == 30)
5485 /* $s8 */
5486 sregs |= 1 << 8;
5487 else if (regno1 == 31)
5488 /* Add $ra to insn. */
5489 opcode |= 0x40;
5490 else
5491 return FALSE;
5492 regno1 += 1;
5493 if (regno1 == 24)
5494 regno1 = 30;
5495 }
5496 }
5497 }
5498 while (match_char (arg, ','));
5499
5500 /* Encode args/statics combination. */
5501 if (args & statics)
5502 return FALSE;
5503 else if (args == 0xf)
5504 /* All $a0-$a3 are args. */
5505 opcode |= MIPS16_ALL_ARGS << 16;
5506 else if (statics == 0xf)
5507 /* All $a0-$a3 are statics. */
5508 opcode |= MIPS16_ALL_STATICS << 16;
5509 else
5510 {
5511 /* Count arg registers. */
5512 num_args = 0;
5513 while (args & 0x1)
5514 {
5515 args >>= 1;
5516 num_args += 1;
5517 }
5518 if (args != 0)
5519 return FALSE;
5520
5521 /* Count static registers. */
5522 num_statics = 0;
5523 while (statics & 0x8)
5524 {
5525 statics = (statics << 1) & 0xf;
5526 num_statics += 1;
5527 }
5528 if (statics != 0)
5529 return FALSE;
5530
5531 /* Encode args/statics. */
5532 opcode |= ((num_args << 2) | num_statics) << 16;
5533 }
5534
5535 /* Encode $s0/$s1. */
5536 if (sregs & (1 << 0)) /* $s0 */
5537 opcode |= 0x20;
5538 if (sregs & (1 << 1)) /* $s1 */
5539 opcode |= 0x10;
5540 sregs >>= 2;
5541
5542 /* Encode $s2-$s8. */
5543 num_sregs = 0;
5544 while (sregs & 1)
5545 {
5546 sregs >>= 1;
5547 num_sregs += 1;
5548 }
5549 if (sregs != 0)
5550 return FALSE;
5551 opcode |= num_sregs << 24;
5552
5553 /* Encode frame size. */
5554 if (num_frame_sizes == 0)
5555 {
5556 set_insn_error (arg->argnum, _("missing frame size"));
5557 return FALSE;
5558 }
5559 if (num_frame_sizes > 1)
5560 {
5561 set_insn_error (arg->argnum, _("frame size specified twice"));
5562 return FALSE;
5563 }
5564 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5565 {
5566 set_insn_error (arg->argnum, _("invalid frame size"));
5567 return FALSE;
5568 }
5569 if (frame_size != 128 || (opcode >> 16) != 0)
5570 {
5571 frame_size /= 8;
5572 opcode |= (((frame_size & 0xf0) << 16)
5573 | (frame_size & 0x0f));
5574 }
5575
5576 /* Finally build the instruction. */
5577 if ((opcode >> 16) != 0 || frame_size == 0)
5578 opcode |= MIPS16_EXTEND;
5579 arg->insn->insn_opcode = opcode;
5580 return TRUE;
5581 }
5582
5583 /* OP_MDMX_IMM_REG matcher. */
5584
5585 static bfd_boolean
5586 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5587 const struct mips_operand *operand)
5588 {
5589 unsigned int regno, uval;
5590 bfd_boolean is_qh;
5591 const struct mips_opcode *opcode;
5592
5593 /* The mips_opcode records whether this is an octobyte or quadhalf
5594 instruction. Start out with that bit in place. */
5595 opcode = arg->insn->insn_mo;
5596 uval = mips_extract_operand (operand, opcode->match);
5597 is_qh = (uval != 0);
5598
5599 if (arg->token->type == OT_REG)
5600 {
5601 if ((opcode->membership & INSN_5400)
5602 && strcmp (opcode->name, "rzu.ob") == 0)
5603 {
5604 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5605 arg->argnum);
5606 return FALSE;
5607 }
5608
5609 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5610 return FALSE;
5611 ++arg->token;
5612
5613 /* Check whether this is a vector register or a broadcast of
5614 a single element. */
5615 if (arg->token->type == OT_INTEGER_INDEX)
5616 {
5617 if (arg->token->u.index > (is_qh ? 3 : 7))
5618 {
5619 set_insn_error (arg->argnum, _("invalid element selector"));
5620 return FALSE;
5621 }
5622 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5623 ++arg->token;
5624 }
5625 else
5626 {
5627 /* A full vector. */
5628 if ((opcode->membership & INSN_5400)
5629 && (strcmp (opcode->name, "sll.ob") == 0
5630 || strcmp (opcode->name, "srl.ob") == 0))
5631 {
5632 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5633 arg->argnum);
5634 return FALSE;
5635 }
5636
5637 if (is_qh)
5638 uval |= MDMX_FMTSEL_VEC_QH << 5;
5639 else
5640 uval |= MDMX_FMTSEL_VEC_OB << 5;
5641 }
5642 uval |= regno;
5643 }
5644 else
5645 {
5646 offsetT sval;
5647
5648 if (!match_const_int (arg, &sval))
5649 return FALSE;
5650 if (sval < 0 || sval > 31)
5651 {
5652 match_out_of_range (arg);
5653 return FALSE;
5654 }
5655 uval |= (sval & 31);
5656 if (is_qh)
5657 uval |= MDMX_FMTSEL_IMM_QH << 5;
5658 else
5659 uval |= MDMX_FMTSEL_IMM_OB << 5;
5660 }
5661 insn_insert_operand (arg->insn, operand, uval);
5662 return TRUE;
5663 }
5664
5665 /* OP_IMM_INDEX matcher. */
5666
5667 static bfd_boolean
5668 match_imm_index_operand (struct mips_arg_info *arg,
5669 const struct mips_operand *operand)
5670 {
5671 unsigned int max_val;
5672
5673 if (arg->token->type != OT_INTEGER_INDEX)
5674 return FALSE;
5675
5676 max_val = (1 << operand->size) - 1;
5677 if (arg->token->u.index > max_val)
5678 {
5679 match_out_of_range (arg);
5680 return FALSE;
5681 }
5682 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5683 ++arg->token;
5684 return TRUE;
5685 }
5686
5687 /* OP_REG_INDEX matcher. */
5688
5689 static bfd_boolean
5690 match_reg_index_operand (struct mips_arg_info *arg,
5691 const struct mips_operand *operand)
5692 {
5693 unsigned int regno;
5694
5695 if (arg->token->type != OT_REG_INDEX)
5696 return FALSE;
5697
5698 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5699 return FALSE;
5700
5701 insn_insert_operand (arg->insn, operand, regno);
5702 ++arg->token;
5703 return TRUE;
5704 }
5705
5706 /* OP_PC matcher. */
5707
5708 static bfd_boolean
5709 match_pc_operand (struct mips_arg_info *arg)
5710 {
5711 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5712 {
5713 ++arg->token;
5714 return TRUE;
5715 }
5716 return FALSE;
5717 }
5718
5719 /* OP_NON_ZERO_REG matcher. */
5720
5721 static bfd_boolean
5722 match_non_zero_reg_operand (struct mips_arg_info *arg,
5723 const struct mips_operand *operand)
5724 {
5725 unsigned int regno;
5726
5727 if (!match_reg (arg, OP_REG_GP, &regno))
5728 return FALSE;
5729
5730 if (regno == 0)
5731 return FALSE;
5732
5733 arg->last_regno = regno;
5734 insn_insert_operand (arg->insn, operand, regno);
5735 return TRUE;
5736 }
5737
5738 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5739 register that we need to match. */
5740
5741 static bfd_boolean
5742 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5743 {
5744 unsigned int regno;
5745
5746 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5747 }
5748
5749 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5750 the length of the value in bytes (4 for float, 8 for double) and
5751 USING_GPRS says whether the destination is a GPR rather than an FPR.
5752
5753 Return the constant in IMM and OFFSET as follows:
5754
5755 - If the constant should be loaded via memory, set IMM to O_absent and
5756 OFFSET to the memory address.
5757
5758 - Otherwise, if the constant should be loaded into two 32-bit registers,
5759 set IMM to the O_constant to load into the high register and OFFSET
5760 to the corresponding value for the low register.
5761
5762 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5763
5764 These constants only appear as the last operand in an instruction,
5765 and every instruction that accepts them in any variant accepts them
5766 in all variants. This means we don't have to worry about backing out
5767 any changes if the instruction does not match. We just match
5768 unconditionally and report an error if the constant is invalid. */
5769
5770 static bfd_boolean
5771 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5772 expressionS *offset, int length, bfd_boolean using_gprs)
5773 {
5774 char *p;
5775 segT seg, new_seg;
5776 subsegT subseg;
5777 const char *newname;
5778 unsigned char *data;
5779
5780 /* Where the constant is placed is based on how the MIPS assembler
5781 does things:
5782
5783 length == 4 && using_gprs -- immediate value only
5784 length == 8 && using_gprs -- .rdata or immediate value
5785 length == 4 && !using_gprs -- .lit4 or immediate value
5786 length == 8 && !using_gprs -- .lit8 or immediate value
5787
5788 The .lit4 and .lit8 sections are only used if permitted by the
5789 -G argument. */
5790 if (arg->token->type != OT_FLOAT)
5791 {
5792 set_insn_error (arg->argnum, _("floating-point expression required"));
5793 return FALSE;
5794 }
5795
5796 gas_assert (arg->token->u.flt.length == length);
5797 data = arg->token->u.flt.data;
5798 ++arg->token;
5799
5800 /* Handle 32-bit constants for which an immediate value is best. */
5801 if (length == 4
5802 && (using_gprs
5803 || g_switch_value < 4
5804 || (data[0] == 0 && data[1] == 0)
5805 || (data[2] == 0 && data[3] == 0)))
5806 {
5807 imm->X_op = O_constant;
5808 if (!target_big_endian)
5809 imm->X_add_number = bfd_getl32 (data);
5810 else
5811 imm->X_add_number = bfd_getb32 (data);
5812 offset->X_op = O_absent;
5813 return TRUE;
5814 }
5815
5816 /* Handle 64-bit constants for which an immediate value is best. */
5817 if (length == 8
5818 && !mips_disable_float_construction
5819 /* Constants can only be constructed in GPRs and copied to FPRs if the
5820 GPRs are at least as wide as the FPRs or MTHC1 is available.
5821 Unlike most tests for 32-bit floating-point registers this check
5822 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5823 permit 64-bit moves without MXHC1.
5824 Force the constant into memory otherwise. */
5825 && (using_gprs
5826 || GPR_SIZE == 64
5827 || ISA_HAS_MXHC1 (mips_opts.isa)
5828 || FPR_SIZE == 32)
5829 && ((data[0] == 0 && data[1] == 0)
5830 || (data[2] == 0 && data[3] == 0))
5831 && ((data[4] == 0 && data[5] == 0)
5832 || (data[6] == 0 && data[7] == 0)))
5833 {
5834 /* The value is simple enough to load with a couple of instructions.
5835 If using 32-bit registers, set IMM to the high order 32 bits and
5836 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5837 64 bit constant. */
5838 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5839 {
5840 imm->X_op = O_constant;
5841 offset->X_op = O_constant;
5842 if (!target_big_endian)
5843 {
5844 imm->X_add_number = bfd_getl32 (data + 4);
5845 offset->X_add_number = bfd_getl32 (data);
5846 }
5847 else
5848 {
5849 imm->X_add_number = bfd_getb32 (data);
5850 offset->X_add_number = bfd_getb32 (data + 4);
5851 }
5852 if (offset->X_add_number == 0)
5853 offset->X_op = O_absent;
5854 }
5855 else
5856 {
5857 imm->X_op = O_constant;
5858 if (!target_big_endian)
5859 imm->X_add_number = bfd_getl64 (data);
5860 else
5861 imm->X_add_number = bfd_getb64 (data);
5862 offset->X_op = O_absent;
5863 }
5864 return TRUE;
5865 }
5866
5867 /* Switch to the right section. */
5868 seg = now_seg;
5869 subseg = now_subseg;
5870 if (length == 4)
5871 {
5872 gas_assert (!using_gprs && g_switch_value >= 4);
5873 newname = ".lit4";
5874 }
5875 else
5876 {
5877 if (using_gprs || g_switch_value < 8)
5878 newname = RDATA_SECTION_NAME;
5879 else
5880 newname = ".lit8";
5881 }
5882
5883 new_seg = subseg_new (newname, (subsegT) 0);
5884 bfd_set_section_flags (stdoutput, new_seg,
5885 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5886 frag_align (length == 4 ? 2 : 3, 0, 0);
5887 if (strncmp (TARGET_OS, "elf", 3) != 0)
5888 record_alignment (new_seg, 4);
5889 else
5890 record_alignment (new_seg, length == 4 ? 2 : 3);
5891 if (seg == now_seg)
5892 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5893
5894 /* Set the argument to the current address in the section. */
5895 imm->X_op = O_absent;
5896 offset->X_op = O_symbol;
5897 offset->X_add_symbol = symbol_temp_new_now ();
5898 offset->X_add_number = 0;
5899
5900 /* Put the floating point number into the section. */
5901 p = frag_more (length);
5902 memcpy (p, data, length);
5903
5904 /* Switch back to the original section. */
5905 subseg_set (seg, subseg);
5906 return TRUE;
5907 }
5908
5909 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5910 them. */
5911
5912 static bfd_boolean
5913 match_vu0_suffix_operand (struct mips_arg_info *arg,
5914 const struct mips_operand *operand,
5915 bfd_boolean match_p)
5916 {
5917 unsigned int uval;
5918
5919 /* The operand can be an XYZW mask or a single 2-bit channel index
5920 (with X being 0). */
5921 gas_assert (operand->size == 2 || operand->size == 4);
5922
5923 /* The suffix can be omitted when it is already part of the opcode. */
5924 if (arg->token->type != OT_CHANNELS)
5925 return match_p;
5926
5927 uval = arg->token->u.channels;
5928 if (operand->size == 2)
5929 {
5930 /* Check that a single bit is set and convert it into a 2-bit index. */
5931 if ((uval & -uval) != uval)
5932 return FALSE;
5933 uval = 4 - ffs (uval);
5934 }
5935
5936 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5937 return FALSE;
5938
5939 ++arg->token;
5940 if (!match_p)
5941 insn_insert_operand (arg->insn, operand, uval);
5942 return TRUE;
5943 }
5944
5945 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5946 of the argument text if the match is successful, otherwise return null. */
5947
5948 static bfd_boolean
5949 match_operand (struct mips_arg_info *arg,
5950 const struct mips_operand *operand)
5951 {
5952 switch (operand->type)
5953 {
5954 case OP_INT:
5955 return match_int_operand (arg, operand);
5956
5957 case OP_MAPPED_INT:
5958 return match_mapped_int_operand (arg, operand);
5959
5960 case OP_MSB:
5961 return match_msb_operand (arg, operand);
5962
5963 case OP_REG:
5964 case OP_OPTIONAL_REG:
5965 return match_reg_operand (arg, operand);
5966
5967 case OP_REG_PAIR:
5968 return match_reg_pair_operand (arg, operand);
5969
5970 case OP_PCREL:
5971 return match_pcrel_operand (arg);
5972
5973 case OP_PERF_REG:
5974 return match_perf_reg_operand (arg, operand);
5975
5976 case OP_ADDIUSP_INT:
5977 return match_addiusp_operand (arg, operand);
5978
5979 case OP_CLO_CLZ_DEST:
5980 return match_clo_clz_dest_operand (arg, operand);
5981
5982 case OP_LWM_SWM_LIST:
5983 return match_lwm_swm_list_operand (arg, operand);
5984
5985 case OP_ENTRY_EXIT_LIST:
5986 return match_entry_exit_operand (arg, operand);
5987
5988 case OP_SAVE_RESTORE_LIST:
5989 return match_save_restore_list_operand (arg);
5990
5991 case OP_MDMX_IMM_REG:
5992 return match_mdmx_imm_reg_operand (arg, operand);
5993
5994 case OP_REPEAT_DEST_REG:
5995 return match_tied_reg_operand (arg, arg->dest_regno);
5996
5997 case OP_REPEAT_PREV_REG:
5998 return match_tied_reg_operand (arg, arg->last_regno);
5999
6000 case OP_PC:
6001 return match_pc_operand (arg);
6002
6003 case OP_VU0_SUFFIX:
6004 return match_vu0_suffix_operand (arg, operand, FALSE);
6005
6006 case OP_VU0_MATCH_SUFFIX:
6007 return match_vu0_suffix_operand (arg, operand, TRUE);
6008
6009 case OP_IMM_INDEX:
6010 return match_imm_index_operand (arg, operand);
6011
6012 case OP_REG_INDEX:
6013 return match_reg_index_operand (arg, operand);
6014
6015 case OP_SAME_RS_RT:
6016 return match_same_rs_rt_operand (arg, operand);
6017
6018 case OP_CHECK_PREV:
6019 return match_check_prev_operand (arg, operand);
6020
6021 case OP_NON_ZERO_REG:
6022 return match_non_zero_reg_operand (arg, operand);
6023 }
6024 abort ();
6025 }
6026
6027 /* ARG is the state after successfully matching an instruction.
6028 Issue any queued-up warnings. */
6029
6030 static void
6031 check_completed_insn (struct mips_arg_info *arg)
6032 {
6033 if (arg->seen_at)
6034 {
6035 if (AT == ATREG)
6036 as_warn (_("used $at without \".set noat\""));
6037 else
6038 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6039 }
6040 }
6041
6042 /* Return true if modifying general-purpose register REG needs a delay. */
6043
6044 static bfd_boolean
6045 reg_needs_delay (unsigned int reg)
6046 {
6047 unsigned long prev_pinfo;
6048
6049 prev_pinfo = history[0].insn_mo->pinfo;
6050 if (!mips_opts.noreorder
6051 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6052 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6053 && (gpr_write_mask (&history[0]) & (1 << reg)))
6054 return TRUE;
6055
6056 return FALSE;
6057 }
6058
6059 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6060 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6061 by VR4120 errata. */
6062
6063 static unsigned int
6064 classify_vr4120_insn (const char *name)
6065 {
6066 if (strncmp (name, "macc", 4) == 0)
6067 return FIX_VR4120_MACC;
6068 if (strncmp (name, "dmacc", 5) == 0)
6069 return FIX_VR4120_DMACC;
6070 if (strncmp (name, "mult", 4) == 0)
6071 return FIX_VR4120_MULT;
6072 if (strncmp (name, "dmult", 5) == 0)
6073 return FIX_VR4120_DMULT;
6074 if (strstr (name, "div"))
6075 return FIX_VR4120_DIV;
6076 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6077 return FIX_VR4120_MTHILO;
6078 return NUM_FIX_VR4120_CLASSES;
6079 }
6080
6081 #define INSN_ERET 0x42000018
6082 #define INSN_DERET 0x4200001f
6083 #define INSN_DMULT 0x1c
6084 #define INSN_DMULTU 0x1d
6085
6086 /* Return the number of instructions that must separate INSN1 and INSN2,
6087 where INSN1 is the earlier instruction. Return the worst-case value
6088 for any INSN2 if INSN2 is null. */
6089
6090 static unsigned int
6091 insns_between (const struct mips_cl_insn *insn1,
6092 const struct mips_cl_insn *insn2)
6093 {
6094 unsigned long pinfo1, pinfo2;
6095 unsigned int mask;
6096
6097 /* If INFO2 is null, pessimistically assume that all flags are set for
6098 the second instruction. */
6099 pinfo1 = insn1->insn_mo->pinfo;
6100 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6101
6102 /* For most targets, write-after-read dependencies on the HI and LO
6103 registers must be separated by at least two instructions. */
6104 if (!hilo_interlocks)
6105 {
6106 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6107 return 2;
6108 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6109 return 2;
6110 }
6111
6112 /* If we're working around r7000 errata, there must be two instructions
6113 between an mfhi or mflo and any instruction that uses the result. */
6114 if (mips_7000_hilo_fix
6115 && !mips_opts.micromips
6116 && MF_HILO_INSN (pinfo1)
6117 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6118 return 2;
6119
6120 /* If we're working around 24K errata, one instruction is required
6121 if an ERET or DERET is followed by a branch instruction. */
6122 if (mips_fix_24k && !mips_opts.micromips)
6123 {
6124 if (insn1->insn_opcode == INSN_ERET
6125 || insn1->insn_opcode == INSN_DERET)
6126 {
6127 if (insn2 == NULL
6128 || insn2->insn_opcode == INSN_ERET
6129 || insn2->insn_opcode == INSN_DERET
6130 || delayed_branch_p (insn2))
6131 return 1;
6132 }
6133 }
6134
6135 /* If we're working around PMC RM7000 errata, there must be three
6136 nops between a dmult and a load instruction. */
6137 if (mips_fix_rm7000 && !mips_opts.micromips)
6138 {
6139 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6140 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6141 {
6142 if (pinfo2 & INSN_LOAD_MEMORY)
6143 return 3;
6144 }
6145 }
6146
6147 /* If working around VR4120 errata, check for combinations that need
6148 a single intervening instruction. */
6149 if (mips_fix_vr4120 && !mips_opts.micromips)
6150 {
6151 unsigned int class1, class2;
6152
6153 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6154 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6155 {
6156 if (insn2 == NULL)
6157 return 1;
6158 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6159 if (vr4120_conflicts[class1] & (1 << class2))
6160 return 1;
6161 }
6162 }
6163
6164 if (!HAVE_CODE_COMPRESSION)
6165 {
6166 /* Check for GPR or coprocessor load delays. All such delays
6167 are on the RT register. */
6168 /* Itbl support may require additional care here. */
6169 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6170 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6171 {
6172 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6173 return 1;
6174 }
6175
6176 /* Check for generic coprocessor hazards.
6177
6178 This case is not handled very well. There is no special
6179 knowledge of CP0 handling, and the coprocessors other than
6180 the floating point unit are not distinguished at all. */
6181 /* Itbl support may require additional care here. FIXME!
6182 Need to modify this to include knowledge about
6183 user specified delays! */
6184 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6185 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6186 {
6187 /* Handle cases where INSN1 writes to a known general coprocessor
6188 register. There must be a one instruction delay before INSN2
6189 if INSN2 reads that register, otherwise no delay is needed. */
6190 mask = fpr_write_mask (insn1);
6191 if (mask != 0)
6192 {
6193 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6194 return 1;
6195 }
6196 else
6197 {
6198 /* Read-after-write dependencies on the control registers
6199 require a two-instruction gap. */
6200 if ((pinfo1 & INSN_WRITE_COND_CODE)
6201 && (pinfo2 & INSN_READ_COND_CODE))
6202 return 2;
6203
6204 /* We don't know exactly what INSN1 does. If INSN2 is
6205 also a coprocessor instruction, assume there must be
6206 a one instruction gap. */
6207 if (pinfo2 & INSN_COP)
6208 return 1;
6209 }
6210 }
6211
6212 /* Check for read-after-write dependencies on the coprocessor
6213 control registers in cases where INSN1 does not need a general
6214 coprocessor delay. This means that INSN1 is a floating point
6215 comparison instruction. */
6216 /* Itbl support may require additional care here. */
6217 else if (!cop_interlocks
6218 && (pinfo1 & INSN_WRITE_COND_CODE)
6219 && (pinfo2 & INSN_READ_COND_CODE))
6220 return 1;
6221 }
6222
6223 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6224 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6225 and pause. */
6226 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6227 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6228 || (insn2 && delayed_branch_p (insn2))))
6229 return 1;
6230
6231 return 0;
6232 }
6233
6234 /* Return the number of nops that would be needed to work around the
6235 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6236 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6237 that are contained within the first IGNORE instructions of HIST. */
6238
6239 static int
6240 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6241 const struct mips_cl_insn *insn)
6242 {
6243 int i, j;
6244 unsigned int mask;
6245
6246 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6247 are not affected by the errata. */
6248 if (insn != 0
6249 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6250 || strcmp (insn->insn_mo->name, "mtlo") == 0
6251 || strcmp (insn->insn_mo->name, "mthi") == 0))
6252 return 0;
6253
6254 /* Search for the first MFLO or MFHI. */
6255 for (i = 0; i < MAX_VR4130_NOPS; i++)
6256 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6257 {
6258 /* Extract the destination register. */
6259 mask = gpr_write_mask (&hist[i]);
6260
6261 /* No nops are needed if INSN reads that register. */
6262 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6263 return 0;
6264
6265 /* ...or if any of the intervening instructions do. */
6266 for (j = 0; j < i; j++)
6267 if (gpr_read_mask (&hist[j]) & mask)
6268 return 0;
6269
6270 if (i >= ignore)
6271 return MAX_VR4130_NOPS - i;
6272 }
6273 return 0;
6274 }
6275
6276 #define BASE_REG_EQ(INSN1, INSN2) \
6277 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6278 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6279
6280 /* Return the minimum alignment for this store instruction. */
6281
6282 static int
6283 fix_24k_align_to (const struct mips_opcode *mo)
6284 {
6285 if (strcmp (mo->name, "sh") == 0)
6286 return 2;
6287
6288 if (strcmp (mo->name, "swc1") == 0
6289 || strcmp (mo->name, "swc2") == 0
6290 || strcmp (mo->name, "sw") == 0
6291 || strcmp (mo->name, "sc") == 0
6292 || strcmp (mo->name, "s.s") == 0)
6293 return 4;
6294
6295 if (strcmp (mo->name, "sdc1") == 0
6296 || strcmp (mo->name, "sdc2") == 0
6297 || strcmp (mo->name, "s.d") == 0)
6298 return 8;
6299
6300 /* sb, swl, swr */
6301 return 1;
6302 }
6303
6304 struct fix_24k_store_info
6305 {
6306 /* Immediate offset, if any, for this store instruction. */
6307 short off;
6308 /* Alignment required by this store instruction. */
6309 int align_to;
6310 /* True for register offsets. */
6311 int register_offset;
6312 };
6313
6314 /* Comparison function used by qsort. */
6315
6316 static int
6317 fix_24k_sort (const void *a, const void *b)
6318 {
6319 const struct fix_24k_store_info *pos1 = a;
6320 const struct fix_24k_store_info *pos2 = b;
6321
6322 return (pos1->off - pos2->off);
6323 }
6324
6325 /* INSN is a store instruction. Try to record the store information
6326 in STINFO. Return false if the information isn't known. */
6327
6328 static bfd_boolean
6329 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6330 const struct mips_cl_insn *insn)
6331 {
6332 /* The instruction must have a known offset. */
6333 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6334 return FALSE;
6335
6336 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6337 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6338 return TRUE;
6339 }
6340
6341 /* Return the number of nops that would be needed to work around the 24k
6342 "lost data on stores during refill" errata if instruction INSN
6343 immediately followed the 2 instructions described by HIST.
6344 Ignore hazards that are contained within the first IGNORE
6345 instructions of HIST.
6346
6347 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6348 for the data cache refills and store data. The following describes
6349 the scenario where the store data could be lost.
6350
6351 * A data cache miss, due to either a load or a store, causing fill
6352 data to be supplied by the memory subsystem
6353 * The first three doublewords of fill data are returned and written
6354 into the cache
6355 * A sequence of four stores occurs in consecutive cycles around the
6356 final doubleword of the fill:
6357 * Store A
6358 * Store B
6359 * Store C
6360 * Zero, One or more instructions
6361 * Store D
6362
6363 The four stores A-D must be to different doublewords of the line that
6364 is being filled. The fourth instruction in the sequence above permits
6365 the fill of the final doubleword to be transferred from the FSB into
6366 the cache. In the sequence above, the stores may be either integer
6367 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6368 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6369 different doublewords on the line. If the floating point unit is
6370 running in 1:2 mode, it is not possible to create the sequence above
6371 using only floating point store instructions.
6372
6373 In this case, the cache line being filled is incorrectly marked
6374 invalid, thereby losing the data from any store to the line that
6375 occurs between the original miss and the completion of the five
6376 cycle sequence shown above.
6377
6378 The workarounds are:
6379
6380 * Run the data cache in write-through mode.
6381 * Insert a non-store instruction between
6382 Store A and Store B or Store B and Store C. */
6383
6384 static int
6385 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6386 const struct mips_cl_insn *insn)
6387 {
6388 struct fix_24k_store_info pos[3];
6389 int align, i, base_offset;
6390
6391 if (ignore >= 2)
6392 return 0;
6393
6394 /* If the previous instruction wasn't a store, there's nothing to
6395 worry about. */
6396 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6397 return 0;
6398
6399 /* If the instructions after the previous one are unknown, we have
6400 to assume the worst. */
6401 if (!insn)
6402 return 1;
6403
6404 /* Check whether we are dealing with three consecutive stores. */
6405 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6406 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6407 return 0;
6408
6409 /* If we don't know the relationship between the store addresses,
6410 assume the worst. */
6411 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6412 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6413 return 1;
6414
6415 if (!fix_24k_record_store_info (&pos[0], insn)
6416 || !fix_24k_record_store_info (&pos[1], &hist[0])
6417 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6418 return 1;
6419
6420 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6421
6422 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6423 X bytes and such that the base register + X is known to be aligned
6424 to align bytes. */
6425
6426 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6427 align = 8;
6428 else
6429 {
6430 align = pos[0].align_to;
6431 base_offset = pos[0].off;
6432 for (i = 1; i < 3; i++)
6433 if (align < pos[i].align_to)
6434 {
6435 align = pos[i].align_to;
6436 base_offset = pos[i].off;
6437 }
6438 for (i = 0; i < 3; i++)
6439 pos[i].off -= base_offset;
6440 }
6441
6442 pos[0].off &= ~align + 1;
6443 pos[1].off &= ~align + 1;
6444 pos[2].off &= ~align + 1;
6445
6446 /* If any two stores write to the same chunk, they also write to the
6447 same doubleword. The offsets are still sorted at this point. */
6448 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6449 return 0;
6450
6451 /* A range of at least 9 bytes is needed for the stores to be in
6452 non-overlapping doublewords. */
6453 if (pos[2].off - pos[0].off <= 8)
6454 return 0;
6455
6456 if (pos[2].off - pos[1].off >= 24
6457 || pos[1].off - pos[0].off >= 24
6458 || pos[2].off - pos[0].off >= 32)
6459 return 0;
6460
6461 return 1;
6462 }
6463
6464 /* Return the number of nops that would be needed if instruction INSN
6465 immediately followed the MAX_NOPS instructions given by HIST,
6466 where HIST[0] is the most recent instruction. Ignore hazards
6467 between INSN and the first IGNORE instructions in HIST.
6468
6469 If INSN is null, return the worse-case number of nops for any
6470 instruction. */
6471
6472 static int
6473 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6474 const struct mips_cl_insn *insn)
6475 {
6476 int i, nops, tmp_nops;
6477
6478 nops = 0;
6479 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6480 {
6481 tmp_nops = insns_between (hist + i, insn) - i;
6482 if (tmp_nops > nops)
6483 nops = tmp_nops;
6484 }
6485
6486 if (mips_fix_vr4130 && !mips_opts.micromips)
6487 {
6488 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6489 if (tmp_nops > nops)
6490 nops = tmp_nops;
6491 }
6492
6493 if (mips_fix_24k && !mips_opts.micromips)
6494 {
6495 tmp_nops = nops_for_24k (ignore, hist, insn);
6496 if (tmp_nops > nops)
6497 nops = tmp_nops;
6498 }
6499
6500 return nops;
6501 }
6502
6503 /* The variable arguments provide NUM_INSNS extra instructions that
6504 might be added to HIST. Return the largest number of nops that
6505 would be needed after the extended sequence, ignoring hazards
6506 in the first IGNORE instructions. */
6507
6508 static int
6509 nops_for_sequence (int num_insns, int ignore,
6510 const struct mips_cl_insn *hist, ...)
6511 {
6512 va_list args;
6513 struct mips_cl_insn buffer[MAX_NOPS];
6514 struct mips_cl_insn *cursor;
6515 int nops;
6516
6517 va_start (args, hist);
6518 cursor = buffer + num_insns;
6519 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6520 while (cursor > buffer)
6521 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6522
6523 nops = nops_for_insn (ignore, buffer, NULL);
6524 va_end (args);
6525 return nops;
6526 }
6527
6528 /* Like nops_for_insn, but if INSN is a branch, take into account the
6529 worst-case delay for the branch target. */
6530
6531 static int
6532 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6533 const struct mips_cl_insn *insn)
6534 {
6535 int nops, tmp_nops;
6536
6537 nops = nops_for_insn (ignore, hist, insn);
6538 if (delayed_branch_p (insn))
6539 {
6540 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6541 hist, insn, get_delay_slot_nop (insn));
6542 if (tmp_nops > nops)
6543 nops = tmp_nops;
6544 }
6545 else if (compact_branch_p (insn))
6546 {
6547 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6548 if (tmp_nops > nops)
6549 nops = tmp_nops;
6550 }
6551 return nops;
6552 }
6553
6554 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6555
6556 static void
6557 fix_loongson2f_nop (struct mips_cl_insn * ip)
6558 {
6559 gas_assert (!HAVE_CODE_COMPRESSION);
6560 if (strcmp (ip->insn_mo->name, "nop") == 0)
6561 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6562 }
6563
6564 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6565 jr target pc &= 'hffff_ffff_cfff_ffff. */
6566
6567 static void
6568 fix_loongson2f_jump (struct mips_cl_insn * ip)
6569 {
6570 gas_assert (!HAVE_CODE_COMPRESSION);
6571 if (strcmp (ip->insn_mo->name, "j") == 0
6572 || strcmp (ip->insn_mo->name, "jr") == 0
6573 || strcmp (ip->insn_mo->name, "jalr") == 0)
6574 {
6575 int sreg;
6576 expressionS ep;
6577
6578 if (! mips_opts.at)
6579 return;
6580
6581 sreg = EXTRACT_OPERAND (0, RS, *ip);
6582 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6583 return;
6584
6585 ep.X_op = O_constant;
6586 ep.X_add_number = 0xcfff0000;
6587 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6588 ep.X_add_number = 0xffff;
6589 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6590 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6591 }
6592 }
6593
6594 static void
6595 fix_loongson2f (struct mips_cl_insn * ip)
6596 {
6597 if (mips_fix_loongson2f_nop)
6598 fix_loongson2f_nop (ip);
6599
6600 if (mips_fix_loongson2f_jump)
6601 fix_loongson2f_jump (ip);
6602 }
6603
6604 /* IP is a branch that has a delay slot, and we need to fill it
6605 automatically. Return true if we can do that by swapping IP
6606 with the previous instruction.
6607 ADDRESS_EXPR is an operand of the instruction to be used with
6608 RELOC_TYPE. */
6609
6610 static bfd_boolean
6611 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6612 bfd_reloc_code_real_type *reloc_type)
6613 {
6614 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6615 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6616 unsigned int fpr_read, prev_fpr_write;
6617
6618 /* -O2 and above is required for this optimization. */
6619 if (mips_optimize < 2)
6620 return FALSE;
6621
6622 /* If we have seen .set volatile or .set nomove, don't optimize. */
6623 if (mips_opts.nomove)
6624 return FALSE;
6625
6626 /* We can't swap if the previous instruction's position is fixed. */
6627 if (history[0].fixed_p)
6628 return FALSE;
6629
6630 /* If the previous previous insn was in a .set noreorder, we can't
6631 swap. Actually, the MIPS assembler will swap in this situation.
6632 However, gcc configured -with-gnu-as will generate code like
6633
6634 .set noreorder
6635 lw $4,XXX
6636 .set reorder
6637 INSN
6638 bne $4,$0,foo
6639
6640 in which we can not swap the bne and INSN. If gcc is not configured
6641 -with-gnu-as, it does not output the .set pseudo-ops. */
6642 if (history[1].noreorder_p)
6643 return FALSE;
6644
6645 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6646 This means that the previous instruction was a 4-byte one anyhow. */
6647 if (mips_opts.mips16 && history[0].fixp[0])
6648 return FALSE;
6649
6650 /* If the branch is itself the target of a branch, we can not swap.
6651 We cheat on this; all we check for is whether there is a label on
6652 this instruction. If there are any branches to anything other than
6653 a label, users must use .set noreorder. */
6654 if (seg_info (now_seg)->label_list)
6655 return FALSE;
6656
6657 /* If the previous instruction is in a variant frag other than this
6658 branch's one, we cannot do the swap. This does not apply to
6659 MIPS16 code, which uses variant frags for different purposes. */
6660 if (!mips_opts.mips16
6661 && history[0].frag
6662 && history[0].frag->fr_type == rs_machine_dependent)
6663 return FALSE;
6664
6665 /* We do not swap with instructions that cannot architecturally
6666 be placed in a branch delay slot, such as SYNC or ERET. We
6667 also refrain from swapping with a trap instruction, since it
6668 complicates trap handlers to have the trap instruction be in
6669 a delay slot. */
6670 prev_pinfo = history[0].insn_mo->pinfo;
6671 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6672 return FALSE;
6673
6674 /* Check for conflicts between the branch and the instructions
6675 before the candidate delay slot. */
6676 if (nops_for_insn (0, history + 1, ip) > 0)
6677 return FALSE;
6678
6679 /* Check for conflicts between the swapped sequence and the
6680 target of the branch. */
6681 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6682 return FALSE;
6683
6684 /* If the branch reads a register that the previous
6685 instruction sets, we can not swap. */
6686 gpr_read = gpr_read_mask (ip);
6687 prev_gpr_write = gpr_write_mask (&history[0]);
6688 if (gpr_read & prev_gpr_write)
6689 return FALSE;
6690
6691 fpr_read = fpr_read_mask (ip);
6692 prev_fpr_write = fpr_write_mask (&history[0]);
6693 if (fpr_read & prev_fpr_write)
6694 return FALSE;
6695
6696 /* If the branch writes a register that the previous
6697 instruction sets, we can not swap. */
6698 gpr_write = gpr_write_mask (ip);
6699 if (gpr_write & prev_gpr_write)
6700 return FALSE;
6701
6702 /* If the branch writes a register that the previous
6703 instruction reads, we can not swap. */
6704 prev_gpr_read = gpr_read_mask (&history[0]);
6705 if (gpr_write & prev_gpr_read)
6706 return FALSE;
6707
6708 /* If one instruction sets a condition code and the
6709 other one uses a condition code, we can not swap. */
6710 pinfo = ip->insn_mo->pinfo;
6711 if ((pinfo & INSN_READ_COND_CODE)
6712 && (prev_pinfo & INSN_WRITE_COND_CODE))
6713 return FALSE;
6714 if ((pinfo & INSN_WRITE_COND_CODE)
6715 && (prev_pinfo & INSN_READ_COND_CODE))
6716 return FALSE;
6717
6718 /* If the previous instruction uses the PC, we can not swap. */
6719 prev_pinfo2 = history[0].insn_mo->pinfo2;
6720 if (prev_pinfo2 & INSN2_READ_PC)
6721 return FALSE;
6722
6723 /* If the previous instruction has an incorrect size for a fixed
6724 branch delay slot in microMIPS mode, we cannot swap. */
6725 pinfo2 = ip->insn_mo->pinfo2;
6726 if (mips_opts.micromips
6727 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6728 && insn_length (history) != 2)
6729 return FALSE;
6730 if (mips_opts.micromips
6731 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6732 && insn_length (history) != 4)
6733 return FALSE;
6734
6735 /* On R5900 short loops need to be fixed by inserting a nop in
6736 the branch delay slots.
6737 A short loop can be terminated too early. */
6738 if (mips_opts.arch == CPU_R5900
6739 /* Check if instruction has a parameter, ignore "j $31". */
6740 && (address_expr != NULL)
6741 /* Parameter must be 16 bit. */
6742 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6743 /* Branch to same segment. */
6744 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6745 /* Branch to same code fragment. */
6746 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6747 /* Can only calculate branch offset if value is known. */
6748 && symbol_constant_p (address_expr->X_add_symbol)
6749 /* Check if branch is really conditional. */
6750 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6751 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6752 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6753 {
6754 int distance;
6755 /* Check if loop is shorter than 6 instructions including
6756 branch and delay slot. */
6757 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6758 if (distance <= 20)
6759 {
6760 int i;
6761 int rv;
6762
6763 rv = FALSE;
6764 /* When the loop includes branches or jumps,
6765 it is not a short loop. */
6766 for (i = 0; i < (distance / 4); i++)
6767 {
6768 if ((history[i].cleared_p)
6769 || delayed_branch_p (&history[i]))
6770 {
6771 rv = TRUE;
6772 break;
6773 }
6774 }
6775 if (rv == FALSE)
6776 {
6777 /* Insert nop after branch to fix short loop. */
6778 return FALSE;
6779 }
6780 }
6781 }
6782
6783 return TRUE;
6784 }
6785
6786 /* Decide how we should add IP to the instruction stream.
6787 ADDRESS_EXPR is an operand of the instruction to be used with
6788 RELOC_TYPE. */
6789
6790 static enum append_method
6791 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6792 bfd_reloc_code_real_type *reloc_type)
6793 {
6794 /* The relaxed version of a macro sequence must be inherently
6795 hazard-free. */
6796 if (mips_relax.sequence == 2)
6797 return APPEND_ADD;
6798
6799 /* We must not dabble with instructions in a ".set norerorder" block. */
6800 if (mips_opts.noreorder)
6801 return APPEND_ADD;
6802
6803 /* Otherwise, it's our responsibility to fill branch delay slots. */
6804 if (delayed_branch_p (ip))
6805 {
6806 if (!branch_likely_p (ip)
6807 && can_swap_branch_p (ip, address_expr, reloc_type))
6808 return APPEND_SWAP;
6809
6810 if (mips_opts.mips16
6811 && ISA_SUPPORTS_MIPS16E
6812 && gpr_read_mask (ip) != 0)
6813 return APPEND_ADD_COMPACT;
6814
6815 return APPEND_ADD_WITH_NOP;
6816 }
6817
6818 return APPEND_ADD;
6819 }
6820
6821 /* IP is a MIPS16 instruction whose opcode we have just changed.
6822 Point IP->insn_mo to the new opcode's definition. */
6823
6824 static void
6825 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6826 {
6827 const struct mips_opcode *mo, *end;
6828
6829 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6830 for (mo = ip->insn_mo; mo < end; mo++)
6831 if ((ip->insn_opcode & mo->mask) == mo->match)
6832 {
6833 ip->insn_mo = mo;
6834 return;
6835 }
6836 abort ();
6837 }
6838
6839 /* For microMIPS macros, we need to generate a local number label
6840 as the target of branches. */
6841 #define MICROMIPS_LABEL_CHAR '\037'
6842 static unsigned long micromips_target_label;
6843 static char micromips_target_name[32];
6844
6845 static char *
6846 micromips_label_name (void)
6847 {
6848 char *p = micromips_target_name;
6849 char symbol_name_temporary[24];
6850 unsigned long l;
6851 int i;
6852
6853 if (*p)
6854 return p;
6855
6856 i = 0;
6857 l = micromips_target_label;
6858 #ifdef LOCAL_LABEL_PREFIX
6859 *p++ = LOCAL_LABEL_PREFIX;
6860 #endif
6861 *p++ = 'L';
6862 *p++ = MICROMIPS_LABEL_CHAR;
6863 do
6864 {
6865 symbol_name_temporary[i++] = l % 10 + '0';
6866 l /= 10;
6867 }
6868 while (l != 0);
6869 while (i > 0)
6870 *p++ = symbol_name_temporary[--i];
6871 *p = '\0';
6872
6873 return micromips_target_name;
6874 }
6875
6876 static void
6877 micromips_label_expr (expressionS *label_expr)
6878 {
6879 label_expr->X_op = O_symbol;
6880 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6881 label_expr->X_add_number = 0;
6882 }
6883
6884 static void
6885 micromips_label_inc (void)
6886 {
6887 micromips_target_label++;
6888 *micromips_target_name = '\0';
6889 }
6890
6891 static void
6892 micromips_add_label (void)
6893 {
6894 symbolS *s;
6895
6896 s = colon (micromips_label_name ());
6897 micromips_label_inc ();
6898 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6899 }
6900
6901 /* If assembling microMIPS code, then return the microMIPS reloc
6902 corresponding to the requested one if any. Otherwise return
6903 the reloc unchanged. */
6904
6905 static bfd_reloc_code_real_type
6906 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6907 {
6908 static const bfd_reloc_code_real_type relocs[][2] =
6909 {
6910 /* Keep sorted incrementally by the left-hand key. */
6911 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6912 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6913 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6914 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6915 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6916 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6917 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6918 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6919 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6920 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6921 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6922 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6923 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6924 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6925 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6926 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6927 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6928 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6929 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6930 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6931 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6932 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6933 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6934 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6935 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6936 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6937 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6938 };
6939 bfd_reloc_code_real_type r;
6940 size_t i;
6941
6942 if (!mips_opts.micromips)
6943 return reloc;
6944 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6945 {
6946 r = relocs[i][0];
6947 if (r > reloc)
6948 return reloc;
6949 if (r == reloc)
6950 return relocs[i][1];
6951 }
6952 return reloc;
6953 }
6954
6955 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6956 Return true on success, storing the resolved value in RESULT. */
6957
6958 static bfd_boolean
6959 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6960 offsetT *result)
6961 {
6962 switch (reloc)
6963 {
6964 case BFD_RELOC_MIPS_HIGHEST:
6965 case BFD_RELOC_MICROMIPS_HIGHEST:
6966 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6967 return TRUE;
6968
6969 case BFD_RELOC_MIPS_HIGHER:
6970 case BFD_RELOC_MICROMIPS_HIGHER:
6971 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6972 return TRUE;
6973
6974 case BFD_RELOC_HI16_S:
6975 case BFD_RELOC_HI16_S_PCREL:
6976 case BFD_RELOC_MICROMIPS_HI16_S:
6977 case BFD_RELOC_MIPS16_HI16_S:
6978 *result = ((operand + 0x8000) >> 16) & 0xffff;
6979 return TRUE;
6980
6981 case BFD_RELOC_HI16:
6982 case BFD_RELOC_MICROMIPS_HI16:
6983 case BFD_RELOC_MIPS16_HI16:
6984 *result = (operand >> 16) & 0xffff;
6985 return TRUE;
6986
6987 case BFD_RELOC_LO16:
6988 case BFD_RELOC_LO16_PCREL:
6989 case BFD_RELOC_MICROMIPS_LO16:
6990 case BFD_RELOC_MIPS16_LO16:
6991 *result = operand & 0xffff;
6992 return TRUE;
6993
6994 case BFD_RELOC_UNUSED:
6995 *result = operand;
6996 return TRUE;
6997
6998 default:
6999 return FALSE;
7000 }
7001 }
7002
7003 /* Output an instruction. IP is the instruction information.
7004 ADDRESS_EXPR is an operand of the instruction to be used with
7005 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7006 a macro expansion. */
7007
7008 static void
7009 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7010 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7011 {
7012 unsigned long prev_pinfo2, pinfo;
7013 bfd_boolean relaxed_branch = FALSE;
7014 enum append_method method;
7015 bfd_boolean relax32;
7016 int branch_disp;
7017
7018 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7019 fix_loongson2f (ip);
7020
7021 file_ase_mips16 |= mips_opts.mips16;
7022 file_ase_micromips |= mips_opts.micromips;
7023
7024 prev_pinfo2 = history[0].insn_mo->pinfo2;
7025 pinfo = ip->insn_mo->pinfo;
7026
7027 if (mips_opts.micromips
7028 && !expansionp
7029 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7030 && micromips_insn_length (ip->insn_mo) != 2)
7031 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7032 && micromips_insn_length (ip->insn_mo) != 4)))
7033 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7034 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7035
7036 if (address_expr == NULL)
7037 ip->complete_p = 1;
7038 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7039 && reloc_type[1] == BFD_RELOC_UNUSED
7040 && reloc_type[2] == BFD_RELOC_UNUSED
7041 && address_expr->X_op == O_constant)
7042 {
7043 switch (*reloc_type)
7044 {
7045 case BFD_RELOC_MIPS_JMP:
7046 {
7047 int shift;
7048
7049 /* Shift is 2, unusually, for microMIPS JALX. */
7050 shift = (mips_opts.micromips
7051 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7052 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7053 as_bad (_("jump to misaligned address (0x%lx)"),
7054 (unsigned long) address_expr->X_add_number);
7055 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7056 & 0x3ffffff);
7057 ip->complete_p = 1;
7058 }
7059 break;
7060
7061 case BFD_RELOC_MIPS16_JMP:
7062 if ((address_expr->X_add_number & 3) != 0)
7063 as_bad (_("jump to misaligned address (0x%lx)"),
7064 (unsigned long) address_expr->X_add_number);
7065 ip->insn_opcode |=
7066 (((address_expr->X_add_number & 0x7c0000) << 3)
7067 | ((address_expr->X_add_number & 0xf800000) >> 7)
7068 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7069 ip->complete_p = 1;
7070 break;
7071
7072 case BFD_RELOC_16_PCREL_S2:
7073 {
7074 int shift;
7075
7076 shift = mips_opts.micromips ? 1 : 2;
7077 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7078 as_bad (_("branch to misaligned address (0x%lx)"),
7079 (unsigned long) address_expr->X_add_number);
7080 if (!mips_relax_branch)
7081 {
7082 if ((address_expr->X_add_number + (1 << (shift + 15)))
7083 & ~((1 << (shift + 16)) - 1))
7084 as_bad (_("branch address range overflow (0x%lx)"),
7085 (unsigned long) address_expr->X_add_number);
7086 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7087 & 0xffff);
7088 }
7089 }
7090 break;
7091
7092 case BFD_RELOC_MIPS_21_PCREL_S2:
7093 {
7094 int shift;
7095
7096 shift = 2;
7097 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7098 as_bad (_("branch to misaligned address (0x%lx)"),
7099 (unsigned long) address_expr->X_add_number);
7100 if ((address_expr->X_add_number + (1 << (shift + 20)))
7101 & ~((1 << (shift + 21)) - 1))
7102 as_bad (_("branch address range overflow (0x%lx)"),
7103 (unsigned long) address_expr->X_add_number);
7104 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7105 & 0x1fffff);
7106 }
7107 break;
7108
7109 case BFD_RELOC_MIPS_26_PCREL_S2:
7110 {
7111 int shift;
7112
7113 shift = 2;
7114 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7115 as_bad (_("branch to misaligned address (0x%lx)"),
7116 (unsigned long) address_expr->X_add_number);
7117 if ((address_expr->X_add_number + (1 << (shift + 25)))
7118 & ~((1 << (shift + 26)) - 1))
7119 as_bad (_("branch address range overflow (0x%lx)"),
7120 (unsigned long) address_expr->X_add_number);
7121 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7122 & 0x3ffffff);
7123 }
7124 break;
7125
7126 default:
7127 {
7128 offsetT value;
7129
7130 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7131 &value))
7132 {
7133 ip->insn_opcode |= value & 0xffff;
7134 ip->complete_p = 1;
7135 }
7136 }
7137 break;
7138 }
7139 }
7140
7141 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7142 {
7143 /* There are a lot of optimizations we could do that we don't.
7144 In particular, we do not, in general, reorder instructions.
7145 If you use gcc with optimization, it will reorder
7146 instructions and generally do much more optimization then we
7147 do here; repeating all that work in the assembler would only
7148 benefit hand written assembly code, and does not seem worth
7149 it. */
7150 int nops = (mips_optimize == 0
7151 ? nops_for_insn (0, history, NULL)
7152 : nops_for_insn_or_target (0, history, ip));
7153 if (nops > 0)
7154 {
7155 fragS *old_frag;
7156 unsigned long old_frag_offset;
7157 int i;
7158
7159 old_frag = frag_now;
7160 old_frag_offset = frag_now_fix ();
7161
7162 for (i = 0; i < nops; i++)
7163 add_fixed_insn (NOP_INSN);
7164 insert_into_history (0, nops, NOP_INSN);
7165
7166 if (listing)
7167 {
7168 listing_prev_line ();
7169 /* We may be at the start of a variant frag. In case we
7170 are, make sure there is enough space for the frag
7171 after the frags created by listing_prev_line. The
7172 argument to frag_grow here must be at least as large
7173 as the argument to all other calls to frag_grow in
7174 this file. We don't have to worry about being in the
7175 middle of a variant frag, because the variants insert
7176 all needed nop instructions themselves. */
7177 frag_grow (40);
7178 }
7179
7180 mips_move_text_labels ();
7181
7182 #ifndef NO_ECOFF_DEBUGGING
7183 if (ECOFF_DEBUGGING)
7184 ecoff_fix_loc (old_frag, old_frag_offset);
7185 #endif
7186 }
7187 }
7188 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7189 {
7190 int nops;
7191
7192 /* Work out how many nops in prev_nop_frag are needed by IP,
7193 ignoring hazards generated by the first prev_nop_frag_since
7194 instructions. */
7195 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7196 gas_assert (nops <= prev_nop_frag_holds);
7197
7198 /* Enforce NOPS as a minimum. */
7199 if (nops > prev_nop_frag_required)
7200 prev_nop_frag_required = nops;
7201
7202 if (prev_nop_frag_holds == prev_nop_frag_required)
7203 {
7204 /* Settle for the current number of nops. Update the history
7205 accordingly (for the benefit of any future .set reorder code). */
7206 prev_nop_frag = NULL;
7207 insert_into_history (prev_nop_frag_since,
7208 prev_nop_frag_holds, NOP_INSN);
7209 }
7210 else
7211 {
7212 /* Allow this instruction to replace one of the nops that was
7213 tentatively added to prev_nop_frag. */
7214 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7215 prev_nop_frag_holds--;
7216 prev_nop_frag_since++;
7217 }
7218 }
7219
7220 method = get_append_method (ip, address_expr, reloc_type);
7221 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7222
7223 dwarf2_emit_insn (0);
7224 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7225 so "move" the instruction address accordingly.
7226
7227 Also, it doesn't seem appropriate for the assembler to reorder .loc
7228 entries. If this instruction is a branch that we are going to swap
7229 with the previous instruction, the two instructions should be
7230 treated as a unit, and the debug information for both instructions
7231 should refer to the start of the branch sequence. Using the
7232 current position is certainly wrong when swapping a 32-bit branch
7233 and a 16-bit delay slot, since the current position would then be
7234 in the middle of a branch. */
7235 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7236
7237 relax32 = (mips_relax_branch
7238 /* Don't try branch relaxation within .set nomacro, or within
7239 .set noat if we use $at for PIC computations. If it turns
7240 out that the branch was out-of-range, we'll get an error. */
7241 && !mips_opts.warn_about_macros
7242 && (mips_opts.at || mips_pic == NO_PIC)
7243 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7244 as they have no complementing branches. */
7245 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7246
7247 if (!HAVE_CODE_COMPRESSION
7248 && address_expr
7249 && relax32
7250 && *reloc_type == BFD_RELOC_16_PCREL_S2
7251 && delayed_branch_p (ip))
7252 {
7253 relaxed_branch = TRUE;
7254 add_relaxed_insn (ip, (relaxed_branch_length
7255 (NULL, NULL,
7256 uncond_branch_p (ip) ? -1
7257 : branch_likely_p (ip) ? 1
7258 : 0)), 4,
7259 RELAX_BRANCH_ENCODE
7260 (AT,
7261 uncond_branch_p (ip),
7262 branch_likely_p (ip),
7263 pinfo & INSN_WRITE_GPR_31,
7264 0),
7265 address_expr->X_add_symbol,
7266 address_expr->X_add_number);
7267 *reloc_type = BFD_RELOC_UNUSED;
7268 }
7269 else if (mips_opts.micromips
7270 && address_expr
7271 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7272 || *reloc_type > BFD_RELOC_UNUSED)
7273 && (delayed_branch_p (ip) || compact_branch_p (ip))
7274 /* Don't try branch relaxation when users specify
7275 16-bit/32-bit instructions. */
7276 && !forced_insn_length)
7277 {
7278 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7279 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7280 int uncond = uncond_branch_p (ip) ? -1 : 0;
7281 int compact = compact_branch_p (ip);
7282 int al = pinfo & INSN_WRITE_GPR_31;
7283 int length32;
7284
7285 gas_assert (address_expr != NULL);
7286 gas_assert (!mips_relax.sequence);
7287
7288 relaxed_branch = TRUE;
7289 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7290 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7291 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7292 relax32, 0, 0),
7293 address_expr->X_add_symbol,
7294 address_expr->X_add_number);
7295 *reloc_type = BFD_RELOC_UNUSED;
7296 }
7297 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7298 {
7299 /* We need to set up a variant frag. */
7300 gas_assert (address_expr != NULL);
7301 add_relaxed_insn (ip, 4, 0,
7302 RELAX_MIPS16_ENCODE
7303 (*reloc_type - BFD_RELOC_UNUSED,
7304 forced_insn_length == 2, forced_insn_length == 4,
7305 delayed_branch_p (&history[0]),
7306 history[0].mips16_absolute_jump_p),
7307 make_expr_symbol (address_expr), 0);
7308 }
7309 else if (mips_opts.mips16 && insn_length (ip) == 2)
7310 {
7311 if (!delayed_branch_p (ip))
7312 /* Make sure there is enough room to swap this instruction with
7313 a following jump instruction. */
7314 frag_grow (6);
7315 add_fixed_insn (ip);
7316 }
7317 else
7318 {
7319 if (mips_opts.mips16
7320 && mips_opts.noreorder
7321 && delayed_branch_p (&history[0]))
7322 as_warn (_("extended instruction in delay slot"));
7323
7324 if (mips_relax.sequence)
7325 {
7326 /* If we've reached the end of this frag, turn it into a variant
7327 frag and record the information for the instructions we've
7328 written so far. */
7329 if (frag_room () < 4)
7330 relax_close_frag ();
7331 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7332 }
7333
7334 if (mips_relax.sequence != 2)
7335 {
7336 if (mips_macro_warning.first_insn_sizes[0] == 0)
7337 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7338 mips_macro_warning.sizes[0] += insn_length (ip);
7339 mips_macro_warning.insns[0]++;
7340 }
7341 if (mips_relax.sequence != 1)
7342 {
7343 if (mips_macro_warning.first_insn_sizes[1] == 0)
7344 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7345 mips_macro_warning.sizes[1] += insn_length (ip);
7346 mips_macro_warning.insns[1]++;
7347 }
7348
7349 if (mips_opts.mips16)
7350 {
7351 ip->fixed_p = 1;
7352 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7353 }
7354 add_fixed_insn (ip);
7355 }
7356
7357 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7358 {
7359 bfd_reloc_code_real_type final_type[3];
7360 reloc_howto_type *howto0;
7361 reloc_howto_type *howto;
7362 int i;
7363
7364 /* Perform any necessary conversion to microMIPS relocations
7365 and find out how many relocations there actually are. */
7366 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7367 final_type[i] = micromips_map_reloc (reloc_type[i]);
7368
7369 /* In a compound relocation, it is the final (outermost)
7370 operator that determines the relocated field. */
7371 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7372 if (!howto)
7373 abort ();
7374
7375 if (i > 1)
7376 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7377 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7378 bfd_get_reloc_size (howto),
7379 address_expr,
7380 howto0 && howto0->pc_relative,
7381 final_type[0]);
7382
7383 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7384 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7385 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7386
7387 /* These relocations can have an addend that won't fit in
7388 4 octets for 64bit assembly. */
7389 if (GPR_SIZE == 64
7390 && ! howto->partial_inplace
7391 && (reloc_type[0] == BFD_RELOC_16
7392 || reloc_type[0] == BFD_RELOC_32
7393 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7394 || reloc_type[0] == BFD_RELOC_GPREL16
7395 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7396 || reloc_type[0] == BFD_RELOC_GPREL32
7397 || reloc_type[0] == BFD_RELOC_64
7398 || reloc_type[0] == BFD_RELOC_CTOR
7399 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7400 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7401 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7402 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7403 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7404 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7405 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7406 || hi16_reloc_p (reloc_type[0])
7407 || lo16_reloc_p (reloc_type[0])))
7408 ip->fixp[0]->fx_no_overflow = 1;
7409
7410 /* These relocations can have an addend that won't fit in 2 octets. */
7411 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7412 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7413 ip->fixp[0]->fx_no_overflow = 1;
7414
7415 if (mips_relax.sequence)
7416 {
7417 if (mips_relax.first_fixup == 0)
7418 mips_relax.first_fixup = ip->fixp[0];
7419 }
7420 else if (reloc_needs_lo_p (*reloc_type))
7421 {
7422 struct mips_hi_fixup *hi_fixup;
7423
7424 /* Reuse the last entry if it already has a matching %lo. */
7425 hi_fixup = mips_hi_fixup_list;
7426 if (hi_fixup == 0
7427 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7428 {
7429 hi_fixup = XNEW (struct mips_hi_fixup);
7430 hi_fixup->next = mips_hi_fixup_list;
7431 mips_hi_fixup_list = hi_fixup;
7432 }
7433 hi_fixup->fixp = ip->fixp[0];
7434 hi_fixup->seg = now_seg;
7435 }
7436
7437 /* Add fixups for the second and third relocations, if given.
7438 Note that the ABI allows the second relocation to be
7439 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7440 moment we only use RSS_UNDEF, but we could add support
7441 for the others if it ever becomes necessary. */
7442 for (i = 1; i < 3; i++)
7443 if (reloc_type[i] != BFD_RELOC_UNUSED)
7444 {
7445 ip->fixp[i] = fix_new (ip->frag, ip->where,
7446 ip->fixp[0]->fx_size, NULL, 0,
7447 FALSE, final_type[i]);
7448
7449 /* Use fx_tcbit to mark compound relocs. */
7450 ip->fixp[0]->fx_tcbit = 1;
7451 ip->fixp[i]->fx_tcbit = 1;
7452 }
7453 }
7454 install_insn (ip);
7455
7456 /* Update the register mask information. */
7457 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7458 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7459
7460 switch (method)
7461 {
7462 case APPEND_ADD:
7463 insert_into_history (0, 1, ip);
7464 break;
7465
7466 case APPEND_ADD_WITH_NOP:
7467 {
7468 struct mips_cl_insn *nop;
7469
7470 insert_into_history (0, 1, ip);
7471 nop = get_delay_slot_nop (ip);
7472 add_fixed_insn (nop);
7473 insert_into_history (0, 1, nop);
7474 if (mips_relax.sequence)
7475 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7476 }
7477 break;
7478
7479 case APPEND_ADD_COMPACT:
7480 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7481 gas_assert (mips_opts.mips16);
7482 ip->insn_opcode |= 0x0080;
7483 find_altered_mips16_opcode (ip);
7484 install_insn (ip);
7485 insert_into_history (0, 1, ip);
7486 break;
7487
7488 case APPEND_SWAP:
7489 {
7490 struct mips_cl_insn delay = history[0];
7491 if (mips_opts.mips16)
7492 {
7493 know (delay.frag == ip->frag);
7494 move_insn (ip, delay.frag, delay.where);
7495 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7496 }
7497 else if (relaxed_branch || delay.frag != ip->frag)
7498 {
7499 /* Add the delay slot instruction to the end of the
7500 current frag and shrink the fixed part of the
7501 original frag. If the branch occupies the tail of
7502 the latter, move it backwards to cover the gap. */
7503 delay.frag->fr_fix -= branch_disp;
7504 if (delay.frag == ip->frag)
7505 move_insn (ip, ip->frag, ip->where - branch_disp);
7506 add_fixed_insn (&delay);
7507 }
7508 else
7509 {
7510 move_insn (&delay, ip->frag,
7511 ip->where - branch_disp + insn_length (ip));
7512 move_insn (ip, history[0].frag, history[0].where);
7513 }
7514 history[0] = *ip;
7515 delay.fixed_p = 1;
7516 insert_into_history (0, 1, &delay);
7517 }
7518 break;
7519 }
7520
7521 /* If we have just completed an unconditional branch, clear the history. */
7522 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7523 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7524 {
7525 unsigned int i;
7526
7527 mips_no_prev_insn ();
7528
7529 for (i = 0; i < ARRAY_SIZE (history); i++)
7530 history[i].cleared_p = 1;
7531 }
7532
7533 /* We need to emit a label at the end of branch-likely macros. */
7534 if (emit_branch_likely_macro)
7535 {
7536 emit_branch_likely_macro = FALSE;
7537 micromips_add_label ();
7538 }
7539
7540 /* We just output an insn, so the next one doesn't have a label. */
7541 mips_clear_insn_labels ();
7542 }
7543
7544 /* Forget that there was any previous instruction or label.
7545 When BRANCH is true, the branch history is also flushed. */
7546
7547 static void
7548 mips_no_prev_insn (void)
7549 {
7550 prev_nop_frag = NULL;
7551 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7552 mips_clear_insn_labels ();
7553 }
7554
7555 /* This function must be called before we emit something other than
7556 instructions. It is like mips_no_prev_insn except that it inserts
7557 any NOPS that might be needed by previous instructions. */
7558
7559 void
7560 mips_emit_delays (void)
7561 {
7562 if (! mips_opts.noreorder)
7563 {
7564 int nops = nops_for_insn (0, history, NULL);
7565 if (nops > 0)
7566 {
7567 while (nops-- > 0)
7568 add_fixed_insn (NOP_INSN);
7569 mips_move_text_labels ();
7570 }
7571 }
7572 mips_no_prev_insn ();
7573 }
7574
7575 /* Start a (possibly nested) noreorder block. */
7576
7577 static void
7578 start_noreorder (void)
7579 {
7580 if (mips_opts.noreorder == 0)
7581 {
7582 unsigned int i;
7583 int nops;
7584
7585 /* None of the instructions before the .set noreorder can be moved. */
7586 for (i = 0; i < ARRAY_SIZE (history); i++)
7587 history[i].fixed_p = 1;
7588
7589 /* Insert any nops that might be needed between the .set noreorder
7590 block and the previous instructions. We will later remove any
7591 nops that turn out not to be needed. */
7592 nops = nops_for_insn (0, history, NULL);
7593 if (nops > 0)
7594 {
7595 if (mips_optimize != 0)
7596 {
7597 /* Record the frag which holds the nop instructions, so
7598 that we can remove them if we don't need them. */
7599 frag_grow (nops * NOP_INSN_SIZE);
7600 prev_nop_frag = frag_now;
7601 prev_nop_frag_holds = nops;
7602 prev_nop_frag_required = 0;
7603 prev_nop_frag_since = 0;
7604 }
7605
7606 for (; nops > 0; --nops)
7607 add_fixed_insn (NOP_INSN);
7608
7609 /* Move on to a new frag, so that it is safe to simply
7610 decrease the size of prev_nop_frag. */
7611 frag_wane (frag_now);
7612 frag_new (0);
7613 mips_move_text_labels ();
7614 }
7615 mips_mark_labels ();
7616 mips_clear_insn_labels ();
7617 }
7618 mips_opts.noreorder++;
7619 mips_any_noreorder = 1;
7620 }
7621
7622 /* End a nested noreorder block. */
7623
7624 static void
7625 end_noreorder (void)
7626 {
7627 mips_opts.noreorder--;
7628 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7629 {
7630 /* Commit to inserting prev_nop_frag_required nops and go back to
7631 handling nop insertion the .set reorder way. */
7632 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7633 * NOP_INSN_SIZE);
7634 insert_into_history (prev_nop_frag_since,
7635 prev_nop_frag_required, NOP_INSN);
7636 prev_nop_frag = NULL;
7637 }
7638 }
7639
7640 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7641 higher bits unset. */
7642
7643 static void
7644 normalize_constant_expr (expressionS *ex)
7645 {
7646 if (ex->X_op == O_constant
7647 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7648 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7649 - 0x80000000);
7650 }
7651
7652 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7653 all higher bits unset. */
7654
7655 static void
7656 normalize_address_expr (expressionS *ex)
7657 {
7658 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7659 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7660 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7661 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7662 - 0x80000000);
7663 }
7664
7665 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7666 Return true if the match was successful.
7667
7668 OPCODE_EXTRA is a value that should be ORed into the opcode
7669 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7670 there are more alternatives after OPCODE and SOFT_MATCH is
7671 as for mips_arg_info. */
7672
7673 static bfd_boolean
7674 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7675 struct mips_operand_token *tokens, unsigned int opcode_extra,
7676 bfd_boolean lax_match, bfd_boolean complete_p)
7677 {
7678 const char *args;
7679 struct mips_arg_info arg;
7680 const struct mips_operand *operand;
7681 char c;
7682
7683 imm_expr.X_op = O_absent;
7684 offset_expr.X_op = O_absent;
7685 offset_reloc[0] = BFD_RELOC_UNUSED;
7686 offset_reloc[1] = BFD_RELOC_UNUSED;
7687 offset_reloc[2] = BFD_RELOC_UNUSED;
7688
7689 create_insn (insn, opcode);
7690 /* When no opcode suffix is specified, assume ".xyzw". */
7691 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7692 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7693 else
7694 insn->insn_opcode |= opcode_extra;
7695 memset (&arg, 0, sizeof (arg));
7696 arg.insn = insn;
7697 arg.token = tokens;
7698 arg.argnum = 1;
7699 arg.last_regno = ILLEGAL_REG;
7700 arg.dest_regno = ILLEGAL_REG;
7701 arg.lax_match = lax_match;
7702 for (args = opcode->args;; ++args)
7703 {
7704 if (arg.token->type == OT_END)
7705 {
7706 /* Handle unary instructions in which only one operand is given.
7707 The source is then the same as the destination. */
7708 if (arg.opnum == 1 && *args == ',')
7709 {
7710 operand = (mips_opts.micromips
7711 ? decode_micromips_operand (args + 1)
7712 : decode_mips_operand (args + 1));
7713 if (operand && mips_optional_operand_p (operand))
7714 {
7715 arg.token = tokens;
7716 arg.argnum = 1;
7717 continue;
7718 }
7719 }
7720
7721 /* Treat elided base registers as $0. */
7722 if (strcmp (args, "(b)") == 0)
7723 args += 3;
7724
7725 if (args[0] == '+')
7726 switch (args[1])
7727 {
7728 case 'K':
7729 case 'N':
7730 /* The register suffix is optional. */
7731 args += 2;
7732 break;
7733 }
7734
7735 /* Fail the match if there were too few operands. */
7736 if (*args)
7737 return FALSE;
7738
7739 /* Successful match. */
7740 if (!complete_p)
7741 return TRUE;
7742 clear_insn_error ();
7743 if (arg.dest_regno == arg.last_regno
7744 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7745 {
7746 if (arg.opnum == 2)
7747 set_insn_error
7748 (0, _("source and destination must be different"));
7749 else if (arg.last_regno == 31)
7750 set_insn_error
7751 (0, _("a destination register must be supplied"));
7752 }
7753 else if (arg.last_regno == 31
7754 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7755 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7756 set_insn_error (0, _("the source register must not be $31"));
7757 check_completed_insn (&arg);
7758 return TRUE;
7759 }
7760
7761 /* Fail the match if the line has too many operands. */
7762 if (*args == 0)
7763 return FALSE;
7764
7765 /* Handle characters that need to match exactly. */
7766 if (*args == '(' || *args == ')' || *args == ',')
7767 {
7768 if (match_char (&arg, *args))
7769 continue;
7770 return FALSE;
7771 }
7772 if (*args == '#')
7773 {
7774 ++args;
7775 if (arg.token->type == OT_DOUBLE_CHAR
7776 && arg.token->u.ch == *args)
7777 {
7778 ++arg.token;
7779 continue;
7780 }
7781 return FALSE;
7782 }
7783
7784 /* Handle special macro operands. Work out the properties of
7785 other operands. */
7786 arg.opnum += 1;
7787 switch (*args)
7788 {
7789 case '-':
7790 switch (args[1])
7791 {
7792 case 'A':
7793 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7794 break;
7795
7796 case 'B':
7797 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7798 break;
7799 }
7800 break;
7801
7802 case '+':
7803 switch (args[1])
7804 {
7805 case 'i':
7806 *offset_reloc = BFD_RELOC_MIPS_JMP;
7807 break;
7808
7809 case '\'':
7810 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7811 break;
7812
7813 case '\"':
7814 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7815 break;
7816 }
7817 break;
7818
7819 case 'I':
7820 if (!match_const_int (&arg, &imm_expr.X_add_number))
7821 return FALSE;
7822 imm_expr.X_op = O_constant;
7823 if (GPR_SIZE == 32)
7824 normalize_constant_expr (&imm_expr);
7825 continue;
7826
7827 case 'A':
7828 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7829 {
7830 /* Assume that the offset has been elided and that what
7831 we saw was a base register. The match will fail later
7832 if that assumption turns out to be wrong. */
7833 offset_expr.X_op = O_constant;
7834 offset_expr.X_add_number = 0;
7835 }
7836 else
7837 {
7838 if (!match_expression (&arg, &offset_expr, offset_reloc))
7839 return FALSE;
7840 normalize_address_expr (&offset_expr);
7841 }
7842 continue;
7843
7844 case 'F':
7845 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7846 8, TRUE))
7847 return FALSE;
7848 continue;
7849
7850 case 'L':
7851 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7852 8, FALSE))
7853 return FALSE;
7854 continue;
7855
7856 case 'f':
7857 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7858 4, TRUE))
7859 return FALSE;
7860 continue;
7861
7862 case 'l':
7863 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7864 4, FALSE))
7865 return FALSE;
7866 continue;
7867
7868 case 'p':
7869 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7870 break;
7871
7872 case 'a':
7873 *offset_reloc = BFD_RELOC_MIPS_JMP;
7874 break;
7875
7876 case 'm':
7877 gas_assert (mips_opts.micromips);
7878 c = args[1];
7879 switch (c)
7880 {
7881 case 'D':
7882 case 'E':
7883 if (!forced_insn_length)
7884 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7885 else if (c == 'D')
7886 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7887 else
7888 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7889 break;
7890 }
7891 break;
7892 }
7893
7894 operand = (mips_opts.micromips
7895 ? decode_micromips_operand (args)
7896 : decode_mips_operand (args));
7897 if (!operand)
7898 abort ();
7899
7900 /* Skip prefixes. */
7901 if (*args == '+' || *args == 'm' || *args == '-')
7902 args++;
7903
7904 if (mips_optional_operand_p (operand)
7905 && args[1] == ','
7906 && (arg.token[0].type != OT_REG
7907 || arg.token[1].type == OT_END))
7908 {
7909 /* Assume that the register has been elided and is the
7910 same as the first operand. */
7911 arg.token = tokens;
7912 arg.argnum = 1;
7913 }
7914
7915 if (!match_operand (&arg, operand))
7916 return FALSE;
7917 }
7918 }
7919
7920 /* Like match_insn, but for MIPS16. */
7921
7922 static bfd_boolean
7923 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7924 struct mips_operand_token *tokens)
7925 {
7926 const char *args;
7927 const struct mips_operand *operand;
7928 const struct mips_operand *ext_operand;
7929 struct mips_arg_info arg;
7930 int relax_char;
7931
7932 create_insn (insn, opcode);
7933 imm_expr.X_op = O_absent;
7934 offset_expr.X_op = O_absent;
7935 offset_reloc[0] = BFD_RELOC_UNUSED;
7936 offset_reloc[1] = BFD_RELOC_UNUSED;
7937 offset_reloc[2] = BFD_RELOC_UNUSED;
7938 relax_char = 0;
7939
7940 memset (&arg, 0, sizeof (arg));
7941 arg.insn = insn;
7942 arg.token = tokens;
7943 arg.argnum = 1;
7944 arg.last_regno = ILLEGAL_REG;
7945 arg.dest_regno = ILLEGAL_REG;
7946 relax_char = 0;
7947 for (args = opcode->args;; ++args)
7948 {
7949 int c;
7950
7951 if (arg.token->type == OT_END)
7952 {
7953 offsetT value;
7954
7955 /* Handle unary instructions in which only one operand is given.
7956 The source is then the same as the destination. */
7957 if (arg.opnum == 1 && *args == ',')
7958 {
7959 operand = decode_mips16_operand (args[1], FALSE);
7960 if (operand && mips_optional_operand_p (operand))
7961 {
7962 arg.token = tokens;
7963 arg.argnum = 1;
7964 continue;
7965 }
7966 }
7967
7968 /* Fail the match if there were too few operands. */
7969 if (*args)
7970 return FALSE;
7971
7972 /* Successful match. Stuff the immediate value in now, if
7973 we can. */
7974 clear_insn_error ();
7975 if (opcode->pinfo == INSN_MACRO)
7976 {
7977 gas_assert (relax_char == 0 || relax_char == 'p');
7978 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7979 }
7980 else if (relax_char
7981 && offset_expr.X_op == O_constant
7982 && calculate_reloc (*offset_reloc,
7983 offset_expr.X_add_number,
7984 &value))
7985 {
7986 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7987 forced_insn_length, &insn->insn_opcode);
7988 offset_expr.X_op = O_absent;
7989 *offset_reloc = BFD_RELOC_UNUSED;
7990 }
7991 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7992 {
7993 if (forced_insn_length == 2)
7994 set_insn_error (0, _("invalid unextended operand value"));
7995 forced_insn_length = 4;
7996 insn->insn_opcode |= MIPS16_EXTEND;
7997 }
7998 else if (relax_char)
7999 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8000
8001 check_completed_insn (&arg);
8002 return TRUE;
8003 }
8004
8005 /* Fail the match if the line has too many operands. */
8006 if (*args == 0)
8007 return FALSE;
8008
8009 /* Handle characters that need to match exactly. */
8010 if (*args == '(' || *args == ')' || *args == ',')
8011 {
8012 if (match_char (&arg, *args))
8013 continue;
8014 return FALSE;
8015 }
8016
8017 arg.opnum += 1;
8018 c = *args;
8019 switch (c)
8020 {
8021 case 'p':
8022 case 'q':
8023 case 'A':
8024 case 'B':
8025 case 'E':
8026 relax_char = c;
8027 break;
8028
8029 case 'I':
8030 if (!match_const_int (&arg, &imm_expr.X_add_number))
8031 return FALSE;
8032 imm_expr.X_op = O_constant;
8033 if (GPR_SIZE == 32)
8034 normalize_constant_expr (&imm_expr);
8035 continue;
8036
8037 case 'a':
8038 case 'i':
8039 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8040 insn->insn_opcode <<= 16;
8041 break;
8042 }
8043
8044 operand = decode_mips16_operand (c, FALSE);
8045 if (!operand)
8046 abort ();
8047
8048 /* '6' is a special case. It is used for BREAK and SDBBP,
8049 whose operands are only meaningful to the software that decodes
8050 them. This means that there is no architectural reason why
8051 they cannot be prefixed by EXTEND, but in practice,
8052 exception handlers will only look at the instruction
8053 itself. We therefore allow '6' to be extended when
8054 disassembling but not when assembling. */
8055 if (operand->type != OP_PCREL && c != '6')
8056 {
8057 ext_operand = decode_mips16_operand (c, TRUE);
8058 if (operand != ext_operand)
8059 {
8060 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8061 {
8062 offset_expr.X_op = O_constant;
8063 offset_expr.X_add_number = 0;
8064 relax_char = c;
8065 continue;
8066 }
8067
8068 /* We need the OT_INTEGER check because some MIPS16
8069 immediate variants are listed before the register ones. */
8070 if (arg.token->type != OT_INTEGER
8071 || !match_expression (&arg, &offset_expr, offset_reloc))
8072 return FALSE;
8073
8074 /* '8' is used for SLTI(U) and has traditionally not
8075 been allowed to take relocation operators. */
8076 if (offset_reloc[0] != BFD_RELOC_UNUSED
8077 && (ext_operand->size != 16 || c == '8'))
8078 return FALSE;
8079
8080 relax_char = c;
8081 continue;
8082 }
8083 }
8084
8085 if (mips_optional_operand_p (operand)
8086 && args[1] == ','
8087 && (arg.token[0].type != OT_REG
8088 || arg.token[1].type == OT_END))
8089 {
8090 /* Assume that the register has been elided and is the
8091 same as the first operand. */
8092 arg.token = tokens;
8093 arg.argnum = 1;
8094 }
8095
8096 if (!match_operand (&arg, operand))
8097 return FALSE;
8098 }
8099 }
8100
8101 /* Record that the current instruction is invalid for the current ISA. */
8102
8103 static void
8104 match_invalid_for_isa (void)
8105 {
8106 set_insn_error_ss
8107 (0, _("opcode not supported on this processor: %s (%s)"),
8108 mips_cpu_info_from_arch (mips_opts.arch)->name,
8109 mips_cpu_info_from_isa (mips_opts.isa)->name);
8110 }
8111
8112 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8113 Return true if a definite match or failure was found, storing any match
8114 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8115 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8116 tried and failed to match under normal conditions and now want to try a
8117 more relaxed match. */
8118
8119 static bfd_boolean
8120 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8121 const struct mips_opcode *past, struct mips_operand_token *tokens,
8122 int opcode_extra, bfd_boolean lax_match)
8123 {
8124 const struct mips_opcode *opcode;
8125 const struct mips_opcode *invalid_delay_slot;
8126 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8127
8128 /* Search for a match, ignoring alternatives that don't satisfy the
8129 current ISA or forced_length. */
8130 invalid_delay_slot = 0;
8131 seen_valid_for_isa = FALSE;
8132 seen_valid_for_size = FALSE;
8133 opcode = first;
8134 do
8135 {
8136 gas_assert (strcmp (opcode->name, first->name) == 0);
8137 if (is_opcode_valid (opcode))
8138 {
8139 seen_valid_for_isa = TRUE;
8140 if (is_size_valid (opcode))
8141 {
8142 bfd_boolean delay_slot_ok;
8143
8144 seen_valid_for_size = TRUE;
8145 delay_slot_ok = is_delay_slot_valid (opcode);
8146 if (match_insn (insn, opcode, tokens, opcode_extra,
8147 lax_match, delay_slot_ok))
8148 {
8149 if (!delay_slot_ok)
8150 {
8151 if (!invalid_delay_slot)
8152 invalid_delay_slot = opcode;
8153 }
8154 else
8155 return TRUE;
8156 }
8157 }
8158 }
8159 ++opcode;
8160 }
8161 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8162
8163 /* If the only matches we found had the wrong length for the delay slot,
8164 pick the first such match. We'll issue an appropriate warning later. */
8165 if (invalid_delay_slot)
8166 {
8167 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8168 lax_match, TRUE))
8169 return TRUE;
8170 abort ();
8171 }
8172
8173 /* Handle the case where we didn't try to match an instruction because
8174 all the alternatives were incompatible with the current ISA. */
8175 if (!seen_valid_for_isa)
8176 {
8177 match_invalid_for_isa ();
8178 return TRUE;
8179 }
8180
8181 /* Handle the case where we didn't try to match an instruction because
8182 all the alternatives were of the wrong size. */
8183 if (!seen_valid_for_size)
8184 {
8185 if (mips_opts.insn32)
8186 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8187 else
8188 set_insn_error_i
8189 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8190 8 * forced_insn_length);
8191 return TRUE;
8192 }
8193
8194 return FALSE;
8195 }
8196
8197 /* Like match_insns, but for MIPS16. */
8198
8199 static bfd_boolean
8200 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8201 struct mips_operand_token *tokens)
8202 {
8203 const struct mips_opcode *opcode;
8204 bfd_boolean seen_valid_for_isa;
8205
8206 /* Search for a match, ignoring alternatives that don't satisfy the
8207 current ISA. There are no separate entries for extended forms so
8208 we deal with forced_length later. */
8209 seen_valid_for_isa = FALSE;
8210 opcode = first;
8211 do
8212 {
8213 gas_assert (strcmp (opcode->name, first->name) == 0);
8214 if (is_opcode_valid_16 (opcode))
8215 {
8216 seen_valid_for_isa = TRUE;
8217 if (match_mips16_insn (insn, opcode, tokens))
8218 return TRUE;
8219 }
8220 ++opcode;
8221 }
8222 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8223 && strcmp (opcode->name, first->name) == 0);
8224
8225 /* Handle the case where we didn't try to match an instruction because
8226 all the alternatives were incompatible with the current ISA. */
8227 if (!seen_valid_for_isa)
8228 {
8229 match_invalid_for_isa ();
8230 return TRUE;
8231 }
8232
8233 return FALSE;
8234 }
8235
8236 /* Set up global variables for the start of a new macro. */
8237
8238 static void
8239 macro_start (void)
8240 {
8241 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8242 memset (&mips_macro_warning.first_insn_sizes, 0,
8243 sizeof (mips_macro_warning.first_insn_sizes));
8244 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8245 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8246 && delayed_branch_p (&history[0]));
8247 switch (history[0].insn_mo->pinfo2
8248 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8249 {
8250 case INSN2_BRANCH_DELAY_32BIT:
8251 mips_macro_warning.delay_slot_length = 4;
8252 break;
8253 case INSN2_BRANCH_DELAY_16BIT:
8254 mips_macro_warning.delay_slot_length = 2;
8255 break;
8256 default:
8257 mips_macro_warning.delay_slot_length = 0;
8258 break;
8259 }
8260 mips_macro_warning.first_frag = NULL;
8261 }
8262
8263 /* Given that a macro is longer than one instruction or of the wrong size,
8264 return the appropriate warning for it. Return null if no warning is
8265 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8266 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8267 and RELAX_NOMACRO. */
8268
8269 static const char *
8270 macro_warning (relax_substateT subtype)
8271 {
8272 if (subtype & RELAX_DELAY_SLOT)
8273 return _("macro instruction expanded into multiple instructions"
8274 " in a branch delay slot");
8275 else if (subtype & RELAX_NOMACRO)
8276 return _("macro instruction expanded into multiple instructions");
8277 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8278 | RELAX_DELAY_SLOT_SIZE_SECOND))
8279 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8280 ? _("macro instruction expanded into a wrong size instruction"
8281 " in a 16-bit branch delay slot")
8282 : _("macro instruction expanded into a wrong size instruction"
8283 " in a 32-bit branch delay slot"));
8284 else
8285 return 0;
8286 }
8287
8288 /* Finish up a macro. Emit warnings as appropriate. */
8289
8290 static void
8291 macro_end (void)
8292 {
8293 /* Relaxation warning flags. */
8294 relax_substateT subtype = 0;
8295
8296 /* Check delay slot size requirements. */
8297 if (mips_macro_warning.delay_slot_length == 2)
8298 subtype |= RELAX_DELAY_SLOT_16BIT;
8299 if (mips_macro_warning.delay_slot_length != 0)
8300 {
8301 if (mips_macro_warning.delay_slot_length
8302 != mips_macro_warning.first_insn_sizes[0])
8303 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8304 if (mips_macro_warning.delay_slot_length
8305 != mips_macro_warning.first_insn_sizes[1])
8306 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8307 }
8308
8309 /* Check instruction count requirements. */
8310 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8311 {
8312 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8313 subtype |= RELAX_SECOND_LONGER;
8314 if (mips_opts.warn_about_macros)
8315 subtype |= RELAX_NOMACRO;
8316 if (mips_macro_warning.delay_slot_p)
8317 subtype |= RELAX_DELAY_SLOT;
8318 }
8319
8320 /* If both alternatives fail to fill a delay slot correctly,
8321 emit the warning now. */
8322 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8323 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8324 {
8325 relax_substateT s;
8326 const char *msg;
8327
8328 s = subtype & (RELAX_DELAY_SLOT_16BIT
8329 | RELAX_DELAY_SLOT_SIZE_FIRST
8330 | RELAX_DELAY_SLOT_SIZE_SECOND);
8331 msg = macro_warning (s);
8332 if (msg != NULL)
8333 as_warn ("%s", msg);
8334 subtype &= ~s;
8335 }
8336
8337 /* If both implementations are longer than 1 instruction, then emit the
8338 warning now. */
8339 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8340 {
8341 relax_substateT s;
8342 const char *msg;
8343
8344 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8345 msg = macro_warning (s);
8346 if (msg != NULL)
8347 as_warn ("%s", msg);
8348 subtype &= ~s;
8349 }
8350
8351 /* If any flags still set, then one implementation might need a warning
8352 and the other either will need one of a different kind or none at all.
8353 Pass any remaining flags over to relaxation. */
8354 if (mips_macro_warning.first_frag != NULL)
8355 mips_macro_warning.first_frag->fr_subtype |= subtype;
8356 }
8357
8358 /* Instruction operand formats used in macros that vary between
8359 standard MIPS and microMIPS code. */
8360
8361 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8362 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8363 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8364 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8365 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8366 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8367 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8368 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8369
8370 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8371 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8372 : cop12_fmt[mips_opts.micromips])
8373 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8374 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8375 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8376 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8377 : mem12_fmt[mips_opts.micromips])
8378 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8379 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8380 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8381
8382 /* Read a macro's relocation codes from *ARGS and store them in *R.
8383 The first argument in *ARGS will be either the code for a single
8384 relocation or -1 followed by the three codes that make up a
8385 composite relocation. */
8386
8387 static void
8388 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8389 {
8390 int i, next;
8391
8392 next = va_arg (*args, int);
8393 if (next >= 0)
8394 r[0] = (bfd_reloc_code_real_type) next;
8395 else
8396 {
8397 for (i = 0; i < 3; i++)
8398 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8399 /* This function is only used for 16-bit relocation fields.
8400 To make the macro code simpler, treat an unrelocated value
8401 in the same way as BFD_RELOC_LO16. */
8402 if (r[0] == BFD_RELOC_UNUSED)
8403 r[0] = BFD_RELOC_LO16;
8404 }
8405 }
8406
8407 /* Build an instruction created by a macro expansion. This is passed
8408 a pointer to the count of instructions created so far, an
8409 expression, the name of the instruction to build, an operand format
8410 string, and corresponding arguments. */
8411
8412 static void
8413 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8414 {
8415 const struct mips_opcode *mo = NULL;
8416 bfd_reloc_code_real_type r[3];
8417 const struct mips_opcode *amo;
8418 const struct mips_operand *operand;
8419 struct hash_control *hash;
8420 struct mips_cl_insn insn;
8421 va_list args;
8422 unsigned int uval;
8423
8424 va_start (args, fmt);
8425
8426 if (mips_opts.mips16)
8427 {
8428 mips16_macro_build (ep, name, fmt, &args);
8429 va_end (args);
8430 return;
8431 }
8432
8433 r[0] = BFD_RELOC_UNUSED;
8434 r[1] = BFD_RELOC_UNUSED;
8435 r[2] = BFD_RELOC_UNUSED;
8436 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8437 amo = (struct mips_opcode *) hash_find (hash, name);
8438 gas_assert (amo);
8439 gas_assert (strcmp (name, amo->name) == 0);
8440
8441 do
8442 {
8443 /* Search until we get a match for NAME. It is assumed here that
8444 macros will never generate MDMX, MIPS-3D, or MT instructions.
8445 We try to match an instruction that fulfils the branch delay
8446 slot instruction length requirement (if any) of the previous
8447 instruction. While doing this we record the first instruction
8448 seen that matches all the other conditions and use it anyway
8449 if the requirement cannot be met; we will issue an appropriate
8450 warning later on. */
8451 if (strcmp (fmt, amo->args) == 0
8452 && amo->pinfo != INSN_MACRO
8453 && is_opcode_valid (amo)
8454 && is_size_valid (amo))
8455 {
8456 if (is_delay_slot_valid (amo))
8457 {
8458 mo = amo;
8459 break;
8460 }
8461 else if (!mo)
8462 mo = amo;
8463 }
8464
8465 ++amo;
8466 gas_assert (amo->name);
8467 }
8468 while (strcmp (name, amo->name) == 0);
8469
8470 gas_assert (mo);
8471 create_insn (&insn, mo);
8472 for (; *fmt; ++fmt)
8473 {
8474 switch (*fmt)
8475 {
8476 case ',':
8477 case '(':
8478 case ')':
8479 case 'z':
8480 break;
8481
8482 case 'i':
8483 case 'j':
8484 macro_read_relocs (&args, r);
8485 gas_assert (*r == BFD_RELOC_GPREL16
8486 || *r == BFD_RELOC_MIPS_HIGHER
8487 || *r == BFD_RELOC_HI16_S
8488 || *r == BFD_RELOC_LO16
8489 || *r == BFD_RELOC_MIPS_GOT_OFST);
8490 break;
8491
8492 case 'o':
8493 macro_read_relocs (&args, r);
8494 break;
8495
8496 case 'u':
8497 macro_read_relocs (&args, r);
8498 gas_assert (ep != NULL
8499 && (ep->X_op == O_constant
8500 || (ep->X_op == O_symbol
8501 && (*r == BFD_RELOC_MIPS_HIGHEST
8502 || *r == BFD_RELOC_HI16_S
8503 || *r == BFD_RELOC_HI16
8504 || *r == BFD_RELOC_GPREL16
8505 || *r == BFD_RELOC_MIPS_GOT_HI16
8506 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8507 break;
8508
8509 case 'p':
8510 gas_assert (ep != NULL);
8511
8512 /*
8513 * This allows macro() to pass an immediate expression for
8514 * creating short branches without creating a symbol.
8515 *
8516 * We don't allow branch relaxation for these branches, as
8517 * they should only appear in ".set nomacro" anyway.
8518 */
8519 if (ep->X_op == O_constant)
8520 {
8521 /* For microMIPS we always use relocations for branches.
8522 So we should not resolve immediate values. */
8523 gas_assert (!mips_opts.micromips);
8524
8525 if ((ep->X_add_number & 3) != 0)
8526 as_bad (_("branch to misaligned address (0x%lx)"),
8527 (unsigned long) ep->X_add_number);
8528 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8529 as_bad (_("branch address range overflow (0x%lx)"),
8530 (unsigned long) ep->X_add_number);
8531 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8532 ep = NULL;
8533 }
8534 else
8535 *r = BFD_RELOC_16_PCREL_S2;
8536 break;
8537
8538 case 'a':
8539 gas_assert (ep != NULL);
8540 *r = BFD_RELOC_MIPS_JMP;
8541 break;
8542
8543 default:
8544 operand = (mips_opts.micromips
8545 ? decode_micromips_operand (fmt)
8546 : decode_mips_operand (fmt));
8547 if (!operand)
8548 abort ();
8549
8550 uval = va_arg (args, int);
8551 if (operand->type == OP_CLO_CLZ_DEST)
8552 uval |= (uval << 5);
8553 insn_insert_operand (&insn, operand, uval);
8554
8555 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8556 ++fmt;
8557 break;
8558 }
8559 }
8560 va_end (args);
8561 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8562
8563 append_insn (&insn, ep, r, TRUE);
8564 }
8565
8566 static void
8567 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8568 va_list *args)
8569 {
8570 struct mips_opcode *mo;
8571 struct mips_cl_insn insn;
8572 const struct mips_operand *operand;
8573 bfd_reloc_code_real_type r[3]
8574 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8575
8576 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8577 gas_assert (mo);
8578 gas_assert (strcmp (name, mo->name) == 0);
8579
8580 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8581 {
8582 ++mo;
8583 gas_assert (mo->name);
8584 gas_assert (strcmp (name, mo->name) == 0);
8585 }
8586
8587 create_insn (&insn, mo);
8588 for (; *fmt; ++fmt)
8589 {
8590 int c;
8591
8592 c = *fmt;
8593 switch (c)
8594 {
8595 case ',':
8596 case '(':
8597 case ')':
8598 break;
8599
8600 case '0':
8601 case 'S':
8602 case 'P':
8603 case 'R':
8604 break;
8605
8606 case '<':
8607 case '>':
8608 case '4':
8609 case '5':
8610 case 'H':
8611 case 'W':
8612 case 'D':
8613 case 'j':
8614 case '8':
8615 case 'V':
8616 case 'C':
8617 case 'U':
8618 case 'k':
8619 case 'K':
8620 case 'p':
8621 case 'q':
8622 {
8623 offsetT value;
8624
8625 gas_assert (ep != NULL);
8626
8627 if (ep->X_op != O_constant)
8628 *r = (int) BFD_RELOC_UNUSED + c;
8629 else if (calculate_reloc (*r, ep->X_add_number, &value))
8630 {
8631 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8632 ep = NULL;
8633 *r = BFD_RELOC_UNUSED;
8634 }
8635 }
8636 break;
8637
8638 default:
8639 operand = decode_mips16_operand (c, FALSE);
8640 if (!operand)
8641 abort ();
8642
8643 insn_insert_operand (&insn, operand, va_arg (*args, int));
8644 break;
8645 }
8646 }
8647
8648 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8649
8650 append_insn (&insn, ep, r, TRUE);
8651 }
8652
8653 /*
8654 * Generate a "jalr" instruction with a relocation hint to the called
8655 * function. This occurs in NewABI PIC code.
8656 */
8657 static void
8658 macro_build_jalr (expressionS *ep, int cprestore)
8659 {
8660 static const bfd_reloc_code_real_type jalr_relocs[2]
8661 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8662 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8663 const char *jalr;
8664 char *f = NULL;
8665
8666 if (MIPS_JALR_HINT_P (ep))
8667 {
8668 frag_grow (8);
8669 f = frag_more (0);
8670 }
8671 if (mips_opts.micromips)
8672 {
8673 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8674 ? "jalr" : "jalrs");
8675 if (MIPS_JALR_HINT_P (ep)
8676 || mips_opts.insn32
8677 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8678 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8679 else
8680 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8681 }
8682 else
8683 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8684 if (MIPS_JALR_HINT_P (ep))
8685 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8686 }
8687
8688 /*
8689 * Generate a "lui" instruction.
8690 */
8691 static void
8692 macro_build_lui (expressionS *ep, int regnum)
8693 {
8694 gas_assert (! mips_opts.mips16);
8695
8696 if (ep->X_op != O_constant)
8697 {
8698 gas_assert (ep->X_op == O_symbol);
8699 /* _gp_disp is a special case, used from s_cpload.
8700 __gnu_local_gp is used if mips_no_shared. */
8701 gas_assert (mips_pic == NO_PIC
8702 || (! HAVE_NEWABI
8703 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8704 || (! mips_in_shared
8705 && strcmp (S_GET_NAME (ep->X_add_symbol),
8706 "__gnu_local_gp") == 0));
8707 }
8708
8709 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8710 }
8711
8712 /* Generate a sequence of instructions to do a load or store from a constant
8713 offset off of a base register (breg) into/from a target register (treg),
8714 using AT if necessary. */
8715 static void
8716 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8717 int treg, int breg, int dbl)
8718 {
8719 gas_assert (ep->X_op == O_constant);
8720
8721 /* Sign-extending 32-bit constants makes their handling easier. */
8722 if (!dbl)
8723 normalize_constant_expr (ep);
8724
8725 /* Right now, this routine can only handle signed 32-bit constants. */
8726 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8727 as_warn (_("operand overflow"));
8728
8729 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8730 {
8731 /* Signed 16-bit offset will fit in the op. Easy! */
8732 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8733 }
8734 else
8735 {
8736 /* 32-bit offset, need multiple instructions and AT, like:
8737 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8738 addu $tempreg,$tempreg,$breg
8739 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8740 to handle the complete offset. */
8741 macro_build_lui (ep, AT);
8742 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8743 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8744
8745 if (!mips_opts.at)
8746 as_bad (_("macro used $at after \".set noat\""));
8747 }
8748 }
8749
8750 /* set_at()
8751 * Generates code to set the $at register to true (one)
8752 * if reg is less than the immediate expression.
8753 */
8754 static void
8755 set_at (int reg, int unsignedp)
8756 {
8757 if (imm_expr.X_add_number >= -0x8000
8758 && imm_expr.X_add_number < 0x8000)
8759 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8760 AT, reg, BFD_RELOC_LO16);
8761 else
8762 {
8763 load_register (AT, &imm_expr, GPR_SIZE == 64);
8764 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8765 }
8766 }
8767
8768 /* Count the leading zeroes by performing a binary chop. This is a
8769 bulky bit of source, but performance is a LOT better for the
8770 majority of values than a simple loop to count the bits:
8771 for (lcnt = 0; (lcnt < 32); lcnt++)
8772 if ((v) & (1 << (31 - lcnt)))
8773 break;
8774 However it is not code size friendly, and the gain will drop a bit
8775 on certain cached systems.
8776 */
8777 #define COUNT_TOP_ZEROES(v) \
8778 (((v) & ~0xffff) == 0 \
8779 ? ((v) & ~0xff) == 0 \
8780 ? ((v) & ~0xf) == 0 \
8781 ? ((v) & ~0x3) == 0 \
8782 ? ((v) & ~0x1) == 0 \
8783 ? !(v) \
8784 ? 32 \
8785 : 31 \
8786 : 30 \
8787 : ((v) & ~0x7) == 0 \
8788 ? 29 \
8789 : 28 \
8790 : ((v) & ~0x3f) == 0 \
8791 ? ((v) & ~0x1f) == 0 \
8792 ? 27 \
8793 : 26 \
8794 : ((v) & ~0x7f) == 0 \
8795 ? 25 \
8796 : 24 \
8797 : ((v) & ~0xfff) == 0 \
8798 ? ((v) & ~0x3ff) == 0 \
8799 ? ((v) & ~0x1ff) == 0 \
8800 ? 23 \
8801 : 22 \
8802 : ((v) & ~0x7ff) == 0 \
8803 ? 21 \
8804 : 20 \
8805 : ((v) & ~0x3fff) == 0 \
8806 ? ((v) & ~0x1fff) == 0 \
8807 ? 19 \
8808 : 18 \
8809 : ((v) & ~0x7fff) == 0 \
8810 ? 17 \
8811 : 16 \
8812 : ((v) & ~0xffffff) == 0 \
8813 ? ((v) & ~0xfffff) == 0 \
8814 ? ((v) & ~0x3ffff) == 0 \
8815 ? ((v) & ~0x1ffff) == 0 \
8816 ? 15 \
8817 : 14 \
8818 : ((v) & ~0x7ffff) == 0 \
8819 ? 13 \
8820 : 12 \
8821 : ((v) & ~0x3fffff) == 0 \
8822 ? ((v) & ~0x1fffff) == 0 \
8823 ? 11 \
8824 : 10 \
8825 : ((v) & ~0x7fffff) == 0 \
8826 ? 9 \
8827 : 8 \
8828 : ((v) & ~0xfffffff) == 0 \
8829 ? ((v) & ~0x3ffffff) == 0 \
8830 ? ((v) & ~0x1ffffff) == 0 \
8831 ? 7 \
8832 : 6 \
8833 : ((v) & ~0x7ffffff) == 0 \
8834 ? 5 \
8835 : 4 \
8836 : ((v) & ~0x3fffffff) == 0 \
8837 ? ((v) & ~0x1fffffff) == 0 \
8838 ? 3 \
8839 : 2 \
8840 : ((v) & ~0x7fffffff) == 0 \
8841 ? 1 \
8842 : 0)
8843
8844 /* load_register()
8845 * This routine generates the least number of instructions necessary to load
8846 * an absolute expression value into a register.
8847 */
8848 static void
8849 load_register (int reg, expressionS *ep, int dbl)
8850 {
8851 int freg;
8852 expressionS hi32, lo32;
8853
8854 if (ep->X_op != O_big)
8855 {
8856 gas_assert (ep->X_op == O_constant);
8857
8858 /* Sign-extending 32-bit constants makes their handling easier. */
8859 if (!dbl)
8860 normalize_constant_expr (ep);
8861
8862 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8863 {
8864 /* We can handle 16 bit signed values with an addiu to
8865 $zero. No need to ever use daddiu here, since $zero and
8866 the result are always correct in 32 bit mode. */
8867 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8868 return;
8869 }
8870 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8871 {
8872 /* We can handle 16 bit unsigned values with an ori to
8873 $zero. */
8874 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8875 return;
8876 }
8877 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8878 {
8879 /* 32 bit values require an lui. */
8880 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8881 if ((ep->X_add_number & 0xffff) != 0)
8882 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8883 return;
8884 }
8885 }
8886
8887 /* The value is larger than 32 bits. */
8888
8889 if (!dbl || GPR_SIZE == 32)
8890 {
8891 char value[32];
8892
8893 sprintf_vma (value, ep->X_add_number);
8894 as_bad (_("number (0x%s) larger than 32 bits"), value);
8895 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8896 return;
8897 }
8898
8899 if (ep->X_op != O_big)
8900 {
8901 hi32 = *ep;
8902 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8903 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8904 hi32.X_add_number &= 0xffffffff;
8905 lo32 = *ep;
8906 lo32.X_add_number &= 0xffffffff;
8907 }
8908 else
8909 {
8910 gas_assert (ep->X_add_number > 2);
8911 if (ep->X_add_number == 3)
8912 generic_bignum[3] = 0;
8913 else if (ep->X_add_number > 4)
8914 as_bad (_("number larger than 64 bits"));
8915 lo32.X_op = O_constant;
8916 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8917 hi32.X_op = O_constant;
8918 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8919 }
8920
8921 if (hi32.X_add_number == 0)
8922 freg = 0;
8923 else
8924 {
8925 int shift, bit;
8926 unsigned long hi, lo;
8927
8928 if (hi32.X_add_number == (offsetT) 0xffffffff)
8929 {
8930 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8931 {
8932 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8933 return;
8934 }
8935 if (lo32.X_add_number & 0x80000000)
8936 {
8937 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8938 if (lo32.X_add_number & 0xffff)
8939 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8940 return;
8941 }
8942 }
8943
8944 /* Check for 16bit shifted constant. We know that hi32 is
8945 non-zero, so start the mask on the first bit of the hi32
8946 value. */
8947 shift = 17;
8948 do
8949 {
8950 unsigned long himask, lomask;
8951
8952 if (shift < 32)
8953 {
8954 himask = 0xffff >> (32 - shift);
8955 lomask = (0xffff << shift) & 0xffffffff;
8956 }
8957 else
8958 {
8959 himask = 0xffff << (shift - 32);
8960 lomask = 0;
8961 }
8962 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8963 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8964 {
8965 expressionS tmp;
8966
8967 tmp.X_op = O_constant;
8968 if (shift < 32)
8969 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8970 | (lo32.X_add_number >> shift));
8971 else
8972 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8973 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8974 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8975 reg, reg, (shift >= 32) ? shift - 32 : shift);
8976 return;
8977 }
8978 ++shift;
8979 }
8980 while (shift <= (64 - 16));
8981
8982 /* Find the bit number of the lowest one bit, and store the
8983 shifted value in hi/lo. */
8984 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8985 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8986 if (lo != 0)
8987 {
8988 bit = 0;
8989 while ((lo & 1) == 0)
8990 {
8991 lo >>= 1;
8992 ++bit;
8993 }
8994 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8995 hi >>= bit;
8996 }
8997 else
8998 {
8999 bit = 32;
9000 while ((hi & 1) == 0)
9001 {
9002 hi >>= 1;
9003 ++bit;
9004 }
9005 lo = hi;
9006 hi = 0;
9007 }
9008
9009 /* Optimize if the shifted value is a (power of 2) - 1. */
9010 if ((hi == 0 && ((lo + 1) & lo) == 0)
9011 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9012 {
9013 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9014 if (shift != 0)
9015 {
9016 expressionS tmp;
9017
9018 /* This instruction will set the register to be all
9019 ones. */
9020 tmp.X_op = O_constant;
9021 tmp.X_add_number = (offsetT) -1;
9022 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9023 if (bit != 0)
9024 {
9025 bit += shift;
9026 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9027 reg, reg, (bit >= 32) ? bit - 32 : bit);
9028 }
9029 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9030 reg, reg, (shift >= 32) ? shift - 32 : shift);
9031 return;
9032 }
9033 }
9034
9035 /* Sign extend hi32 before calling load_register, because we can
9036 generally get better code when we load a sign extended value. */
9037 if ((hi32.X_add_number & 0x80000000) != 0)
9038 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9039 load_register (reg, &hi32, 0);
9040 freg = reg;
9041 }
9042 if ((lo32.X_add_number & 0xffff0000) == 0)
9043 {
9044 if (freg != 0)
9045 {
9046 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9047 freg = reg;
9048 }
9049 }
9050 else
9051 {
9052 expressionS mid16;
9053
9054 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9055 {
9056 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9057 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9058 return;
9059 }
9060
9061 if (freg != 0)
9062 {
9063 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9064 freg = reg;
9065 }
9066 mid16 = lo32;
9067 mid16.X_add_number >>= 16;
9068 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9069 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9070 freg = reg;
9071 }
9072 if ((lo32.X_add_number & 0xffff) != 0)
9073 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9074 }
9075
9076 static inline void
9077 load_delay_nop (void)
9078 {
9079 if (!gpr_interlocks)
9080 macro_build (NULL, "nop", "");
9081 }
9082
9083 /* Load an address into a register. */
9084
9085 static void
9086 load_address (int reg, expressionS *ep, int *used_at)
9087 {
9088 if (ep->X_op != O_constant
9089 && ep->X_op != O_symbol)
9090 {
9091 as_bad (_("expression too complex"));
9092 ep->X_op = O_constant;
9093 }
9094
9095 if (ep->X_op == O_constant)
9096 {
9097 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9098 return;
9099 }
9100
9101 if (mips_pic == NO_PIC)
9102 {
9103 /* If this is a reference to a GP relative symbol, we want
9104 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9105 Otherwise we want
9106 lui $reg,<sym> (BFD_RELOC_HI16_S)
9107 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9108 If we have an addend, we always use the latter form.
9109
9110 With 64bit address space and a usable $at we want
9111 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9112 lui $at,<sym> (BFD_RELOC_HI16_S)
9113 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9114 daddiu $at,<sym> (BFD_RELOC_LO16)
9115 dsll32 $reg,0
9116 daddu $reg,$reg,$at
9117
9118 If $at is already in use, we use a path which is suboptimal
9119 on superscalar processors.
9120 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9121 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9122 dsll $reg,16
9123 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9124 dsll $reg,16
9125 daddiu $reg,<sym> (BFD_RELOC_LO16)
9126
9127 For GP relative symbols in 64bit address space we can use
9128 the same sequence as in 32bit address space. */
9129 if (HAVE_64BIT_SYMBOLS)
9130 {
9131 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9132 && !nopic_need_relax (ep->X_add_symbol, 1))
9133 {
9134 relax_start (ep->X_add_symbol);
9135 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9136 mips_gp_register, BFD_RELOC_GPREL16);
9137 relax_switch ();
9138 }
9139
9140 if (*used_at == 0 && mips_opts.at)
9141 {
9142 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9143 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9144 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9145 BFD_RELOC_MIPS_HIGHER);
9146 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9147 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9148 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9149 *used_at = 1;
9150 }
9151 else
9152 {
9153 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9154 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9155 BFD_RELOC_MIPS_HIGHER);
9156 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9157 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9158 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9159 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9160 }
9161
9162 if (mips_relax.sequence)
9163 relax_end ();
9164 }
9165 else
9166 {
9167 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9168 && !nopic_need_relax (ep->X_add_symbol, 1))
9169 {
9170 relax_start (ep->X_add_symbol);
9171 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9172 mips_gp_register, BFD_RELOC_GPREL16);
9173 relax_switch ();
9174 }
9175 macro_build_lui (ep, reg);
9176 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9177 reg, reg, BFD_RELOC_LO16);
9178 if (mips_relax.sequence)
9179 relax_end ();
9180 }
9181 }
9182 else if (!mips_big_got)
9183 {
9184 expressionS ex;
9185
9186 /* If this is a reference to an external symbol, we want
9187 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9188 Otherwise we want
9189 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9190 nop
9191 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9192 If there is a constant, it must be added in after.
9193
9194 If we have NewABI, we want
9195 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9196 unless we're referencing a global symbol with a non-zero
9197 offset, in which case cst must be added separately. */
9198 if (HAVE_NEWABI)
9199 {
9200 if (ep->X_add_number)
9201 {
9202 ex.X_add_number = ep->X_add_number;
9203 ep->X_add_number = 0;
9204 relax_start (ep->X_add_symbol);
9205 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9206 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9207 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9208 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9209 ex.X_op = O_constant;
9210 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9211 reg, reg, BFD_RELOC_LO16);
9212 ep->X_add_number = ex.X_add_number;
9213 relax_switch ();
9214 }
9215 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9216 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9217 if (mips_relax.sequence)
9218 relax_end ();
9219 }
9220 else
9221 {
9222 ex.X_add_number = ep->X_add_number;
9223 ep->X_add_number = 0;
9224 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9225 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9226 load_delay_nop ();
9227 relax_start (ep->X_add_symbol);
9228 relax_switch ();
9229 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9230 BFD_RELOC_LO16);
9231 relax_end ();
9232
9233 if (ex.X_add_number != 0)
9234 {
9235 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9236 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9237 ex.X_op = O_constant;
9238 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9239 reg, reg, BFD_RELOC_LO16);
9240 }
9241 }
9242 }
9243 else if (mips_big_got)
9244 {
9245 expressionS ex;
9246
9247 /* This is the large GOT case. If this is a reference to an
9248 external symbol, we want
9249 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9250 addu $reg,$reg,$gp
9251 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9252
9253 Otherwise, for a reference to a local symbol in old ABI, we want
9254 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9255 nop
9256 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9257 If there is a constant, it must be added in after.
9258
9259 In the NewABI, for local symbols, with or without offsets, we want:
9260 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9261 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9262 */
9263 if (HAVE_NEWABI)
9264 {
9265 ex.X_add_number = ep->X_add_number;
9266 ep->X_add_number = 0;
9267 relax_start (ep->X_add_symbol);
9268 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9269 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9270 reg, reg, mips_gp_register);
9271 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9272 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9273 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9274 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9275 else if (ex.X_add_number)
9276 {
9277 ex.X_op = O_constant;
9278 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9279 BFD_RELOC_LO16);
9280 }
9281
9282 ep->X_add_number = ex.X_add_number;
9283 relax_switch ();
9284 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9285 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9286 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9287 BFD_RELOC_MIPS_GOT_OFST);
9288 relax_end ();
9289 }
9290 else
9291 {
9292 ex.X_add_number = ep->X_add_number;
9293 ep->X_add_number = 0;
9294 relax_start (ep->X_add_symbol);
9295 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9296 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9297 reg, reg, mips_gp_register);
9298 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9299 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9300 relax_switch ();
9301 if (reg_needs_delay (mips_gp_register))
9302 {
9303 /* We need a nop before loading from $gp. This special
9304 check is required because the lui which starts the main
9305 instruction stream does not refer to $gp, and so will not
9306 insert the nop which may be required. */
9307 macro_build (NULL, "nop", "");
9308 }
9309 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9310 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9311 load_delay_nop ();
9312 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9313 BFD_RELOC_LO16);
9314 relax_end ();
9315
9316 if (ex.X_add_number != 0)
9317 {
9318 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9319 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9320 ex.X_op = O_constant;
9321 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9322 BFD_RELOC_LO16);
9323 }
9324 }
9325 }
9326 else
9327 abort ();
9328
9329 if (!mips_opts.at && *used_at == 1)
9330 as_bad (_("macro used $at after \".set noat\""));
9331 }
9332
9333 /* Move the contents of register SOURCE into register DEST. */
9334
9335 static void
9336 move_register (int dest, int source)
9337 {
9338 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9339 instruction specifically requires a 32-bit one. */
9340 if (mips_opts.micromips
9341 && !mips_opts.insn32
9342 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9343 macro_build (NULL, "move", "mp,mj", dest, source);
9344 else
9345 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9346 }
9347
9348 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9349 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9350 The two alternatives are:
9351
9352 Global symbol Local sybmol
9353 ------------- ------------
9354 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9355 ... ...
9356 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9357
9358 load_got_offset emits the first instruction and add_got_offset
9359 emits the second for a 16-bit offset or add_got_offset_hilo emits
9360 a sequence to add a 32-bit offset using a scratch register. */
9361
9362 static void
9363 load_got_offset (int dest, expressionS *local)
9364 {
9365 expressionS global;
9366
9367 global = *local;
9368 global.X_add_number = 0;
9369
9370 relax_start (local->X_add_symbol);
9371 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9372 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9373 relax_switch ();
9374 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9375 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9376 relax_end ();
9377 }
9378
9379 static void
9380 add_got_offset (int dest, expressionS *local)
9381 {
9382 expressionS global;
9383
9384 global.X_op = O_constant;
9385 global.X_op_symbol = NULL;
9386 global.X_add_symbol = NULL;
9387 global.X_add_number = local->X_add_number;
9388
9389 relax_start (local->X_add_symbol);
9390 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9391 dest, dest, BFD_RELOC_LO16);
9392 relax_switch ();
9393 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9394 relax_end ();
9395 }
9396
9397 static void
9398 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9399 {
9400 expressionS global;
9401 int hold_mips_optimize;
9402
9403 global.X_op = O_constant;
9404 global.X_op_symbol = NULL;
9405 global.X_add_symbol = NULL;
9406 global.X_add_number = local->X_add_number;
9407
9408 relax_start (local->X_add_symbol);
9409 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9410 relax_switch ();
9411 /* Set mips_optimize around the lui instruction to avoid
9412 inserting an unnecessary nop after the lw. */
9413 hold_mips_optimize = mips_optimize;
9414 mips_optimize = 2;
9415 macro_build_lui (&global, tmp);
9416 mips_optimize = hold_mips_optimize;
9417 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9418 relax_end ();
9419
9420 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9421 }
9422
9423 /* Emit a sequence of instructions to emulate a branch likely operation.
9424 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9425 is its complementing branch with the original condition negated.
9426 CALL is set if the original branch specified the link operation.
9427 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9428
9429 Code like this is produced in the noreorder mode:
9430
9431 BRNEG <args>, 1f
9432 nop
9433 b <sym>
9434 delay slot (executed only if branch taken)
9435 1:
9436
9437 or, if CALL is set:
9438
9439 BRNEG <args>, 1f
9440 nop
9441 bal <sym>
9442 delay slot (executed only if branch taken)
9443 1:
9444
9445 In the reorder mode the delay slot would be filled with a nop anyway,
9446 so code produced is simply:
9447
9448 BR <args>, <sym>
9449 nop
9450
9451 This function is used when producing code for the microMIPS ASE that
9452 does not implement branch likely instructions in hardware. */
9453
9454 static void
9455 macro_build_branch_likely (const char *br, const char *brneg,
9456 int call, expressionS *ep, const char *fmt,
9457 unsigned int sreg, unsigned int treg)
9458 {
9459 int noreorder = mips_opts.noreorder;
9460 expressionS expr1;
9461
9462 gas_assert (mips_opts.micromips);
9463 start_noreorder ();
9464 if (noreorder)
9465 {
9466 micromips_label_expr (&expr1);
9467 macro_build (&expr1, brneg, fmt, sreg, treg);
9468 macro_build (NULL, "nop", "");
9469 macro_build (ep, call ? "bal" : "b", "p");
9470
9471 /* Set to true so that append_insn adds a label. */
9472 emit_branch_likely_macro = TRUE;
9473 }
9474 else
9475 {
9476 macro_build (ep, br, fmt, sreg, treg);
9477 macro_build (NULL, "nop", "");
9478 }
9479 end_noreorder ();
9480 }
9481
9482 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9483 the condition code tested. EP specifies the branch target. */
9484
9485 static void
9486 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9487 {
9488 const int call = 0;
9489 const char *brneg;
9490 const char *br;
9491
9492 switch (type)
9493 {
9494 case M_BC1FL:
9495 br = "bc1f";
9496 brneg = "bc1t";
9497 break;
9498 case M_BC1TL:
9499 br = "bc1t";
9500 brneg = "bc1f";
9501 break;
9502 case M_BC2FL:
9503 br = "bc2f";
9504 brneg = "bc2t";
9505 break;
9506 case M_BC2TL:
9507 br = "bc2t";
9508 brneg = "bc2f";
9509 break;
9510 default:
9511 abort ();
9512 }
9513 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9514 }
9515
9516 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9517 the register tested. EP specifies the branch target. */
9518
9519 static void
9520 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9521 {
9522 const char *brneg = NULL;
9523 const char *br;
9524 int call = 0;
9525
9526 switch (type)
9527 {
9528 case M_BGEZ:
9529 br = "bgez";
9530 break;
9531 case M_BGEZL:
9532 br = mips_opts.micromips ? "bgez" : "bgezl";
9533 brneg = "bltz";
9534 break;
9535 case M_BGEZALL:
9536 gas_assert (mips_opts.micromips);
9537 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9538 brneg = "bltz";
9539 call = 1;
9540 break;
9541 case M_BGTZ:
9542 br = "bgtz";
9543 break;
9544 case M_BGTZL:
9545 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9546 brneg = "blez";
9547 break;
9548 case M_BLEZ:
9549 br = "blez";
9550 break;
9551 case M_BLEZL:
9552 br = mips_opts.micromips ? "blez" : "blezl";
9553 brneg = "bgtz";
9554 break;
9555 case M_BLTZ:
9556 br = "bltz";
9557 break;
9558 case M_BLTZL:
9559 br = mips_opts.micromips ? "bltz" : "bltzl";
9560 brneg = "bgez";
9561 break;
9562 case M_BLTZALL:
9563 gas_assert (mips_opts.micromips);
9564 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9565 brneg = "bgez";
9566 call = 1;
9567 break;
9568 default:
9569 abort ();
9570 }
9571 if (mips_opts.micromips && brneg)
9572 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9573 else
9574 macro_build (ep, br, "s,p", sreg);
9575 }
9576
9577 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9578 TREG as the registers tested. EP specifies the branch target. */
9579
9580 static void
9581 macro_build_branch_rsrt (int type, expressionS *ep,
9582 unsigned int sreg, unsigned int treg)
9583 {
9584 const char *brneg = NULL;
9585 const int call = 0;
9586 const char *br;
9587
9588 switch (type)
9589 {
9590 case M_BEQ:
9591 case M_BEQ_I:
9592 br = "beq";
9593 break;
9594 case M_BEQL:
9595 case M_BEQL_I:
9596 br = mips_opts.micromips ? "beq" : "beql";
9597 brneg = "bne";
9598 break;
9599 case M_BNE:
9600 case M_BNE_I:
9601 br = "bne";
9602 break;
9603 case M_BNEL:
9604 case M_BNEL_I:
9605 br = mips_opts.micromips ? "bne" : "bnel";
9606 brneg = "beq";
9607 break;
9608 default:
9609 abort ();
9610 }
9611 if (mips_opts.micromips && brneg)
9612 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9613 else
9614 macro_build (ep, br, "s,t,p", sreg, treg);
9615 }
9616
9617 /* Return the high part that should be loaded in order to make the low
9618 part of VALUE accessible using an offset of OFFBITS bits. */
9619
9620 static offsetT
9621 offset_high_part (offsetT value, unsigned int offbits)
9622 {
9623 offsetT bias;
9624 addressT low_mask;
9625
9626 if (offbits == 0)
9627 return value;
9628 bias = 1 << (offbits - 1);
9629 low_mask = bias * 2 - 1;
9630 return (value + bias) & ~low_mask;
9631 }
9632
9633 /* Return true if the value stored in offset_expr and offset_reloc
9634 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9635 amount that the caller wants to add without inducing overflow
9636 and ALIGN is the known alignment of the value in bytes. */
9637
9638 static bfd_boolean
9639 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9640 {
9641 if (offbits == 16)
9642 {
9643 /* Accept any relocation operator if overflow isn't a concern. */
9644 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9645 return TRUE;
9646
9647 /* These relocations are guaranteed not to overflow in correct links. */
9648 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9649 || gprel16_reloc_p (*offset_reloc))
9650 return TRUE;
9651 }
9652 if (offset_expr.X_op == O_constant
9653 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9654 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9655 return TRUE;
9656 return FALSE;
9657 }
9658
9659 /*
9660 * Build macros
9661 * This routine implements the seemingly endless macro or synthesized
9662 * instructions and addressing modes in the mips assembly language. Many
9663 * of these macros are simple and are similar to each other. These could
9664 * probably be handled by some kind of table or grammar approach instead of
9665 * this verbose method. Others are not simple macros but are more like
9666 * optimizing code generation.
9667 * One interesting optimization is when several store macros appear
9668 * consecutively that would load AT with the upper half of the same address.
9669 * The ensuing load upper instructions are ommited. This implies some kind
9670 * of global optimization. We currently only optimize within a single macro.
9671 * For many of the load and store macros if the address is specified as a
9672 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9673 * first load register 'at' with zero and use it as the base register. The
9674 * mips assembler simply uses register $zero. Just one tiny optimization
9675 * we're missing.
9676 */
9677 static void
9678 macro (struct mips_cl_insn *ip, char *str)
9679 {
9680 const struct mips_operand_array *operands;
9681 unsigned int breg, i;
9682 unsigned int tempreg;
9683 int mask;
9684 int used_at = 0;
9685 expressionS label_expr;
9686 expressionS expr1;
9687 expressionS *ep;
9688 const char *s;
9689 const char *s2;
9690 const char *fmt;
9691 int likely = 0;
9692 int coproc = 0;
9693 int offbits = 16;
9694 int call = 0;
9695 int jals = 0;
9696 int dbl = 0;
9697 int imm = 0;
9698 int ust = 0;
9699 int lp = 0;
9700 bfd_boolean large_offset;
9701 int off;
9702 int hold_mips_optimize;
9703 unsigned int align;
9704 unsigned int op[MAX_OPERANDS];
9705
9706 gas_assert (! mips_opts.mips16);
9707
9708 operands = insn_operands (ip);
9709 for (i = 0; i < MAX_OPERANDS; i++)
9710 if (operands->operand[i])
9711 op[i] = insn_extract_operand (ip, operands->operand[i]);
9712 else
9713 op[i] = -1;
9714
9715 mask = ip->insn_mo->mask;
9716
9717 label_expr.X_op = O_constant;
9718 label_expr.X_op_symbol = NULL;
9719 label_expr.X_add_symbol = NULL;
9720 label_expr.X_add_number = 0;
9721
9722 expr1.X_op = O_constant;
9723 expr1.X_op_symbol = NULL;
9724 expr1.X_add_symbol = NULL;
9725 expr1.X_add_number = 1;
9726 align = 1;
9727
9728 switch (mask)
9729 {
9730 case M_DABS:
9731 dbl = 1;
9732 case M_ABS:
9733 /* bgez $a0,1f
9734 move v0,$a0
9735 sub v0,$zero,$a0
9736 1:
9737 */
9738
9739 start_noreorder ();
9740
9741 if (mips_opts.micromips)
9742 micromips_label_expr (&label_expr);
9743 else
9744 label_expr.X_add_number = 8;
9745 macro_build (&label_expr, "bgez", "s,p", op[1]);
9746 if (op[0] == op[1])
9747 macro_build (NULL, "nop", "");
9748 else
9749 move_register (op[0], op[1]);
9750 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9751 if (mips_opts.micromips)
9752 micromips_add_label ();
9753
9754 end_noreorder ();
9755 break;
9756
9757 case M_ADD_I:
9758 s = "addi";
9759 s2 = "add";
9760 goto do_addi;
9761 case M_ADDU_I:
9762 s = "addiu";
9763 s2 = "addu";
9764 goto do_addi;
9765 case M_DADD_I:
9766 dbl = 1;
9767 s = "daddi";
9768 s2 = "dadd";
9769 if (!mips_opts.micromips)
9770 goto do_addi;
9771 if (imm_expr.X_add_number >= -0x200
9772 && imm_expr.X_add_number < 0x200)
9773 {
9774 macro_build (NULL, s, "t,r,.", op[0], op[1],
9775 (int) imm_expr.X_add_number);
9776 break;
9777 }
9778 goto do_addi_i;
9779 case M_DADDU_I:
9780 dbl = 1;
9781 s = "daddiu";
9782 s2 = "daddu";
9783 do_addi:
9784 if (imm_expr.X_add_number >= -0x8000
9785 && imm_expr.X_add_number < 0x8000)
9786 {
9787 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9788 break;
9789 }
9790 do_addi_i:
9791 used_at = 1;
9792 load_register (AT, &imm_expr, dbl);
9793 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9794 break;
9795
9796 case M_AND_I:
9797 s = "andi";
9798 s2 = "and";
9799 goto do_bit;
9800 case M_OR_I:
9801 s = "ori";
9802 s2 = "or";
9803 goto do_bit;
9804 case M_NOR_I:
9805 s = "";
9806 s2 = "nor";
9807 goto do_bit;
9808 case M_XOR_I:
9809 s = "xori";
9810 s2 = "xor";
9811 do_bit:
9812 if (imm_expr.X_add_number >= 0
9813 && imm_expr.X_add_number < 0x10000)
9814 {
9815 if (mask != M_NOR_I)
9816 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9817 else
9818 {
9819 macro_build (&imm_expr, "ori", "t,r,i",
9820 op[0], op[1], BFD_RELOC_LO16);
9821 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9822 }
9823 break;
9824 }
9825
9826 used_at = 1;
9827 load_register (AT, &imm_expr, GPR_SIZE == 64);
9828 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9829 break;
9830
9831 case M_BALIGN:
9832 switch (imm_expr.X_add_number)
9833 {
9834 case 0:
9835 macro_build (NULL, "nop", "");
9836 break;
9837 case 2:
9838 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9839 break;
9840 case 1:
9841 case 3:
9842 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9843 (int) imm_expr.X_add_number);
9844 break;
9845 default:
9846 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9847 (unsigned long) imm_expr.X_add_number);
9848 break;
9849 }
9850 break;
9851
9852 case M_BC1FL:
9853 case M_BC1TL:
9854 case M_BC2FL:
9855 case M_BC2TL:
9856 gas_assert (mips_opts.micromips);
9857 macro_build_branch_ccl (mask, &offset_expr,
9858 EXTRACT_OPERAND (1, BCC, *ip));
9859 break;
9860
9861 case M_BEQ_I:
9862 case M_BEQL_I:
9863 case M_BNE_I:
9864 case M_BNEL_I:
9865 if (imm_expr.X_add_number == 0)
9866 op[1] = 0;
9867 else
9868 {
9869 op[1] = AT;
9870 used_at = 1;
9871 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9872 }
9873 /* Fall through. */
9874 case M_BEQL:
9875 case M_BNEL:
9876 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9877 break;
9878
9879 case M_BGEL:
9880 likely = 1;
9881 case M_BGE:
9882 if (op[1] == 0)
9883 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9884 else if (op[0] == 0)
9885 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9886 else
9887 {
9888 used_at = 1;
9889 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9890 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9891 &offset_expr, AT, ZERO);
9892 }
9893 break;
9894
9895 case M_BGEZL:
9896 case M_BGEZALL:
9897 case M_BGTZL:
9898 case M_BLEZL:
9899 case M_BLTZL:
9900 case M_BLTZALL:
9901 macro_build_branch_rs (mask, &offset_expr, op[0]);
9902 break;
9903
9904 case M_BGTL_I:
9905 likely = 1;
9906 case M_BGT_I:
9907 /* Check for > max integer. */
9908 if (imm_expr.X_add_number >= GPR_SMAX)
9909 {
9910 do_false:
9911 /* Result is always false. */
9912 if (! likely)
9913 macro_build (NULL, "nop", "");
9914 else
9915 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9916 break;
9917 }
9918 ++imm_expr.X_add_number;
9919 /* FALLTHROUGH */
9920 case M_BGE_I:
9921 case M_BGEL_I:
9922 if (mask == M_BGEL_I)
9923 likely = 1;
9924 if (imm_expr.X_add_number == 0)
9925 {
9926 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9927 &offset_expr, op[0]);
9928 break;
9929 }
9930 if (imm_expr.X_add_number == 1)
9931 {
9932 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9933 &offset_expr, op[0]);
9934 break;
9935 }
9936 if (imm_expr.X_add_number <= GPR_SMIN)
9937 {
9938 do_true:
9939 /* result is always true */
9940 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9941 macro_build (&offset_expr, "b", "p");
9942 break;
9943 }
9944 used_at = 1;
9945 set_at (op[0], 0);
9946 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9947 &offset_expr, AT, ZERO);
9948 break;
9949
9950 case M_BGEUL:
9951 likely = 1;
9952 case M_BGEU:
9953 if (op[1] == 0)
9954 goto do_true;
9955 else if (op[0] == 0)
9956 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9957 &offset_expr, ZERO, op[1]);
9958 else
9959 {
9960 used_at = 1;
9961 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9962 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9963 &offset_expr, AT, ZERO);
9964 }
9965 break;
9966
9967 case M_BGTUL_I:
9968 likely = 1;
9969 case M_BGTU_I:
9970 if (op[0] == 0
9971 || (GPR_SIZE == 32
9972 && imm_expr.X_add_number == -1))
9973 goto do_false;
9974 ++imm_expr.X_add_number;
9975 /* FALLTHROUGH */
9976 case M_BGEU_I:
9977 case M_BGEUL_I:
9978 if (mask == M_BGEUL_I)
9979 likely = 1;
9980 if (imm_expr.X_add_number == 0)
9981 goto do_true;
9982 else if (imm_expr.X_add_number == 1)
9983 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9984 &offset_expr, op[0], ZERO);
9985 else
9986 {
9987 used_at = 1;
9988 set_at (op[0], 1);
9989 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9990 &offset_expr, AT, ZERO);
9991 }
9992 break;
9993
9994 case M_BGTL:
9995 likely = 1;
9996 case M_BGT:
9997 if (op[1] == 0)
9998 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9999 else if (op[0] == 0)
10000 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10001 else
10002 {
10003 used_at = 1;
10004 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10005 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10006 &offset_expr, AT, ZERO);
10007 }
10008 break;
10009
10010 case M_BGTUL:
10011 likely = 1;
10012 case M_BGTU:
10013 if (op[1] == 0)
10014 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10015 &offset_expr, op[0], ZERO);
10016 else if (op[0] == 0)
10017 goto do_false;
10018 else
10019 {
10020 used_at = 1;
10021 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10022 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10023 &offset_expr, AT, ZERO);
10024 }
10025 break;
10026
10027 case M_BLEL:
10028 likely = 1;
10029 case M_BLE:
10030 if (op[1] == 0)
10031 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10032 else if (op[0] == 0)
10033 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10034 else
10035 {
10036 used_at = 1;
10037 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10038 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10039 &offset_expr, AT, ZERO);
10040 }
10041 break;
10042
10043 case M_BLEL_I:
10044 likely = 1;
10045 case M_BLE_I:
10046 if (imm_expr.X_add_number >= GPR_SMAX)
10047 goto do_true;
10048 ++imm_expr.X_add_number;
10049 /* FALLTHROUGH */
10050 case M_BLT_I:
10051 case M_BLTL_I:
10052 if (mask == M_BLTL_I)
10053 likely = 1;
10054 if (imm_expr.X_add_number == 0)
10055 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10056 else if (imm_expr.X_add_number == 1)
10057 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10058 else
10059 {
10060 used_at = 1;
10061 set_at (op[0], 0);
10062 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10063 &offset_expr, AT, ZERO);
10064 }
10065 break;
10066
10067 case M_BLEUL:
10068 likely = 1;
10069 case M_BLEU:
10070 if (op[1] == 0)
10071 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10072 &offset_expr, op[0], ZERO);
10073 else if (op[0] == 0)
10074 goto do_true;
10075 else
10076 {
10077 used_at = 1;
10078 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10079 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10080 &offset_expr, AT, ZERO);
10081 }
10082 break;
10083
10084 case M_BLEUL_I:
10085 likely = 1;
10086 case M_BLEU_I:
10087 if (op[0] == 0
10088 || (GPR_SIZE == 32
10089 && imm_expr.X_add_number == -1))
10090 goto do_true;
10091 ++imm_expr.X_add_number;
10092 /* FALLTHROUGH */
10093 case M_BLTU_I:
10094 case M_BLTUL_I:
10095 if (mask == M_BLTUL_I)
10096 likely = 1;
10097 if (imm_expr.X_add_number == 0)
10098 goto do_false;
10099 else if (imm_expr.X_add_number == 1)
10100 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10101 &offset_expr, op[0], ZERO);
10102 else
10103 {
10104 used_at = 1;
10105 set_at (op[0], 1);
10106 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10107 &offset_expr, AT, ZERO);
10108 }
10109 break;
10110
10111 case M_BLTL:
10112 likely = 1;
10113 case M_BLT:
10114 if (op[1] == 0)
10115 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10116 else if (op[0] == 0)
10117 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10118 else
10119 {
10120 used_at = 1;
10121 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10122 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10123 &offset_expr, AT, ZERO);
10124 }
10125 break;
10126
10127 case M_BLTUL:
10128 likely = 1;
10129 case M_BLTU:
10130 if (op[1] == 0)
10131 goto do_false;
10132 else if (op[0] == 0)
10133 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10134 &offset_expr, ZERO, op[1]);
10135 else
10136 {
10137 used_at = 1;
10138 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10139 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10140 &offset_expr, AT, ZERO);
10141 }
10142 break;
10143
10144 case M_DDIV_3:
10145 dbl = 1;
10146 case M_DIV_3:
10147 s = "mflo";
10148 goto do_div3;
10149 case M_DREM_3:
10150 dbl = 1;
10151 case M_REM_3:
10152 s = "mfhi";
10153 do_div3:
10154 if (op[2] == 0)
10155 {
10156 as_warn (_("divide by zero"));
10157 if (mips_trap)
10158 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10159 else
10160 macro_build (NULL, "break", BRK_FMT, 7);
10161 break;
10162 }
10163
10164 start_noreorder ();
10165 if (mips_trap)
10166 {
10167 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10168 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10169 }
10170 else
10171 {
10172 if (mips_opts.micromips)
10173 micromips_label_expr (&label_expr);
10174 else
10175 label_expr.X_add_number = 8;
10176 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10177 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10178 macro_build (NULL, "break", BRK_FMT, 7);
10179 if (mips_opts.micromips)
10180 micromips_add_label ();
10181 }
10182 expr1.X_add_number = -1;
10183 used_at = 1;
10184 load_register (AT, &expr1, dbl);
10185 if (mips_opts.micromips)
10186 micromips_label_expr (&label_expr);
10187 else
10188 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10189 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10190 if (dbl)
10191 {
10192 expr1.X_add_number = 1;
10193 load_register (AT, &expr1, dbl);
10194 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10195 }
10196 else
10197 {
10198 expr1.X_add_number = 0x80000000;
10199 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10200 }
10201 if (mips_trap)
10202 {
10203 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10204 /* We want to close the noreorder block as soon as possible, so
10205 that later insns are available for delay slot filling. */
10206 end_noreorder ();
10207 }
10208 else
10209 {
10210 if (mips_opts.micromips)
10211 micromips_label_expr (&label_expr);
10212 else
10213 label_expr.X_add_number = 8;
10214 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10215 macro_build (NULL, "nop", "");
10216
10217 /* We want to close the noreorder block as soon as possible, so
10218 that later insns are available for delay slot filling. */
10219 end_noreorder ();
10220
10221 macro_build (NULL, "break", BRK_FMT, 6);
10222 }
10223 if (mips_opts.micromips)
10224 micromips_add_label ();
10225 macro_build (NULL, s, MFHL_FMT, op[0]);
10226 break;
10227
10228 case M_DIV_3I:
10229 s = "div";
10230 s2 = "mflo";
10231 goto do_divi;
10232 case M_DIVU_3I:
10233 s = "divu";
10234 s2 = "mflo";
10235 goto do_divi;
10236 case M_REM_3I:
10237 s = "div";
10238 s2 = "mfhi";
10239 goto do_divi;
10240 case M_REMU_3I:
10241 s = "divu";
10242 s2 = "mfhi";
10243 goto do_divi;
10244 case M_DDIV_3I:
10245 dbl = 1;
10246 s = "ddiv";
10247 s2 = "mflo";
10248 goto do_divi;
10249 case M_DDIVU_3I:
10250 dbl = 1;
10251 s = "ddivu";
10252 s2 = "mflo";
10253 goto do_divi;
10254 case M_DREM_3I:
10255 dbl = 1;
10256 s = "ddiv";
10257 s2 = "mfhi";
10258 goto do_divi;
10259 case M_DREMU_3I:
10260 dbl = 1;
10261 s = "ddivu";
10262 s2 = "mfhi";
10263 do_divi:
10264 if (imm_expr.X_add_number == 0)
10265 {
10266 as_warn (_("divide by zero"));
10267 if (mips_trap)
10268 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10269 else
10270 macro_build (NULL, "break", BRK_FMT, 7);
10271 break;
10272 }
10273 if (imm_expr.X_add_number == 1)
10274 {
10275 if (strcmp (s2, "mflo") == 0)
10276 move_register (op[0], op[1]);
10277 else
10278 move_register (op[0], ZERO);
10279 break;
10280 }
10281 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10282 {
10283 if (strcmp (s2, "mflo") == 0)
10284 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10285 else
10286 move_register (op[0], ZERO);
10287 break;
10288 }
10289
10290 used_at = 1;
10291 load_register (AT, &imm_expr, dbl);
10292 macro_build (NULL, s, "z,s,t", op[1], AT);
10293 macro_build (NULL, s2, MFHL_FMT, op[0]);
10294 break;
10295
10296 case M_DIVU_3:
10297 s = "divu";
10298 s2 = "mflo";
10299 goto do_divu3;
10300 case M_REMU_3:
10301 s = "divu";
10302 s2 = "mfhi";
10303 goto do_divu3;
10304 case M_DDIVU_3:
10305 s = "ddivu";
10306 s2 = "mflo";
10307 goto do_divu3;
10308 case M_DREMU_3:
10309 s = "ddivu";
10310 s2 = "mfhi";
10311 do_divu3:
10312 start_noreorder ();
10313 if (mips_trap)
10314 {
10315 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10316 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10317 /* We want to close the noreorder block as soon as possible, so
10318 that later insns are available for delay slot filling. */
10319 end_noreorder ();
10320 }
10321 else
10322 {
10323 if (mips_opts.micromips)
10324 micromips_label_expr (&label_expr);
10325 else
10326 label_expr.X_add_number = 8;
10327 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10328 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10329
10330 /* We want to close the noreorder block as soon as possible, so
10331 that later insns are available for delay slot filling. */
10332 end_noreorder ();
10333 macro_build (NULL, "break", BRK_FMT, 7);
10334 if (mips_opts.micromips)
10335 micromips_add_label ();
10336 }
10337 macro_build (NULL, s2, MFHL_FMT, op[0]);
10338 break;
10339
10340 case M_DLCA_AB:
10341 dbl = 1;
10342 case M_LCA_AB:
10343 call = 1;
10344 goto do_la;
10345 case M_DLA_AB:
10346 dbl = 1;
10347 case M_LA_AB:
10348 do_la:
10349 /* Load the address of a symbol into a register. If breg is not
10350 zero, we then add a base register to it. */
10351
10352 breg = op[2];
10353 if (dbl && GPR_SIZE == 32)
10354 as_warn (_("dla used to load 32-bit register; recommend using la "
10355 "instead"));
10356
10357 if (!dbl && HAVE_64BIT_OBJECTS)
10358 as_warn (_("la used to load 64-bit address; recommend using dla "
10359 "instead"));
10360
10361 if (small_offset_p (0, align, 16))
10362 {
10363 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10364 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10365 break;
10366 }
10367
10368 if (mips_opts.at && (op[0] == breg))
10369 {
10370 tempreg = AT;
10371 used_at = 1;
10372 }
10373 else
10374 tempreg = op[0];
10375
10376 if (offset_expr.X_op != O_symbol
10377 && offset_expr.X_op != O_constant)
10378 {
10379 as_bad (_("expression too complex"));
10380 offset_expr.X_op = O_constant;
10381 }
10382
10383 if (offset_expr.X_op == O_constant)
10384 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10385 else if (mips_pic == NO_PIC)
10386 {
10387 /* If this is a reference to a GP relative symbol, we want
10388 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10389 Otherwise we want
10390 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10391 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10392 If we have a constant, we need two instructions anyhow,
10393 so we may as well always use the latter form.
10394
10395 With 64bit address space and a usable $at we want
10396 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10397 lui $at,<sym> (BFD_RELOC_HI16_S)
10398 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10399 daddiu $at,<sym> (BFD_RELOC_LO16)
10400 dsll32 $tempreg,0
10401 daddu $tempreg,$tempreg,$at
10402
10403 If $at is already in use, we use a path which is suboptimal
10404 on superscalar processors.
10405 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10406 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10407 dsll $tempreg,16
10408 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10409 dsll $tempreg,16
10410 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10411
10412 For GP relative symbols in 64bit address space we can use
10413 the same sequence as in 32bit address space. */
10414 if (HAVE_64BIT_SYMBOLS)
10415 {
10416 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10417 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10418 {
10419 relax_start (offset_expr.X_add_symbol);
10420 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10421 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10422 relax_switch ();
10423 }
10424
10425 if (used_at == 0 && mips_opts.at)
10426 {
10427 macro_build (&offset_expr, "lui", LUI_FMT,
10428 tempreg, BFD_RELOC_MIPS_HIGHEST);
10429 macro_build (&offset_expr, "lui", LUI_FMT,
10430 AT, BFD_RELOC_HI16_S);
10431 macro_build (&offset_expr, "daddiu", "t,r,j",
10432 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10433 macro_build (&offset_expr, "daddiu", "t,r,j",
10434 AT, AT, BFD_RELOC_LO16);
10435 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10436 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10437 used_at = 1;
10438 }
10439 else
10440 {
10441 macro_build (&offset_expr, "lui", LUI_FMT,
10442 tempreg, BFD_RELOC_MIPS_HIGHEST);
10443 macro_build (&offset_expr, "daddiu", "t,r,j",
10444 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10445 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10446 macro_build (&offset_expr, "daddiu", "t,r,j",
10447 tempreg, tempreg, BFD_RELOC_HI16_S);
10448 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10449 macro_build (&offset_expr, "daddiu", "t,r,j",
10450 tempreg, tempreg, BFD_RELOC_LO16);
10451 }
10452
10453 if (mips_relax.sequence)
10454 relax_end ();
10455 }
10456 else
10457 {
10458 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10459 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10460 {
10461 relax_start (offset_expr.X_add_symbol);
10462 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10463 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10464 relax_switch ();
10465 }
10466 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10467 as_bad (_("offset too large"));
10468 macro_build_lui (&offset_expr, tempreg);
10469 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10470 tempreg, tempreg, BFD_RELOC_LO16);
10471 if (mips_relax.sequence)
10472 relax_end ();
10473 }
10474 }
10475 else if (!mips_big_got && !HAVE_NEWABI)
10476 {
10477 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10478
10479 /* If this is a reference to an external symbol, and there
10480 is no constant, we want
10481 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10482 or for lca or if tempreg is PIC_CALL_REG
10483 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10484 For a local symbol, we want
10485 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10486 nop
10487 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10488
10489 If we have a small constant, and this is a reference to
10490 an external symbol, we want
10491 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10492 nop
10493 addiu $tempreg,$tempreg,<constant>
10494 For a local symbol, we want the same instruction
10495 sequence, but we output a BFD_RELOC_LO16 reloc on the
10496 addiu instruction.
10497
10498 If we have a large constant, and this is a reference to
10499 an external symbol, we want
10500 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10501 lui $at,<hiconstant>
10502 addiu $at,$at,<loconstant>
10503 addu $tempreg,$tempreg,$at
10504 For a local symbol, we want the same instruction
10505 sequence, but we output a BFD_RELOC_LO16 reloc on the
10506 addiu instruction.
10507 */
10508
10509 if (offset_expr.X_add_number == 0)
10510 {
10511 if (mips_pic == SVR4_PIC
10512 && breg == 0
10513 && (call || tempreg == PIC_CALL_REG))
10514 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10515
10516 relax_start (offset_expr.X_add_symbol);
10517 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10518 lw_reloc_type, mips_gp_register);
10519 if (breg != 0)
10520 {
10521 /* We're going to put in an addu instruction using
10522 tempreg, so we may as well insert the nop right
10523 now. */
10524 load_delay_nop ();
10525 }
10526 relax_switch ();
10527 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10528 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10529 load_delay_nop ();
10530 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10531 tempreg, tempreg, BFD_RELOC_LO16);
10532 relax_end ();
10533 /* FIXME: If breg == 0, and the next instruction uses
10534 $tempreg, then if this variant case is used an extra
10535 nop will be generated. */
10536 }
10537 else if (offset_expr.X_add_number >= -0x8000
10538 && offset_expr.X_add_number < 0x8000)
10539 {
10540 load_got_offset (tempreg, &offset_expr);
10541 load_delay_nop ();
10542 add_got_offset (tempreg, &offset_expr);
10543 }
10544 else
10545 {
10546 expr1.X_add_number = offset_expr.X_add_number;
10547 offset_expr.X_add_number =
10548 SEXT_16BIT (offset_expr.X_add_number);
10549 load_got_offset (tempreg, &offset_expr);
10550 offset_expr.X_add_number = expr1.X_add_number;
10551 /* If we are going to add in a base register, and the
10552 target register and the base register are the same,
10553 then we are using AT as a temporary register. Since
10554 we want to load the constant into AT, we add our
10555 current AT (from the global offset table) and the
10556 register into the register now, and pretend we were
10557 not using a base register. */
10558 if (breg == op[0])
10559 {
10560 load_delay_nop ();
10561 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10562 op[0], AT, breg);
10563 breg = 0;
10564 tempreg = op[0];
10565 }
10566 add_got_offset_hilo (tempreg, &offset_expr, AT);
10567 used_at = 1;
10568 }
10569 }
10570 else if (!mips_big_got && HAVE_NEWABI)
10571 {
10572 int add_breg_early = 0;
10573
10574 /* If this is a reference to an external, and there is no
10575 constant, or local symbol (*), with or without a
10576 constant, we want
10577 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10578 or for lca or if tempreg is PIC_CALL_REG
10579 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10580
10581 If we have a small constant, and this is a reference to
10582 an external symbol, we want
10583 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10584 addiu $tempreg,$tempreg,<constant>
10585
10586 If we have a large constant, and this is a reference to
10587 an external symbol, we want
10588 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10589 lui $at,<hiconstant>
10590 addiu $at,$at,<loconstant>
10591 addu $tempreg,$tempreg,$at
10592
10593 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10594 local symbols, even though it introduces an additional
10595 instruction. */
10596
10597 if (offset_expr.X_add_number)
10598 {
10599 expr1.X_add_number = offset_expr.X_add_number;
10600 offset_expr.X_add_number = 0;
10601
10602 relax_start (offset_expr.X_add_symbol);
10603 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10604 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10605
10606 if (expr1.X_add_number >= -0x8000
10607 && expr1.X_add_number < 0x8000)
10608 {
10609 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10610 tempreg, tempreg, BFD_RELOC_LO16);
10611 }
10612 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10613 {
10614 unsigned int dreg;
10615
10616 /* If we are going to add in a base register, and the
10617 target register and the base register are the same,
10618 then we are using AT as a temporary register. Since
10619 we want to load the constant into AT, we add our
10620 current AT (from the global offset table) and the
10621 register into the register now, and pretend we were
10622 not using a base register. */
10623 if (breg != op[0])
10624 dreg = tempreg;
10625 else
10626 {
10627 gas_assert (tempreg == AT);
10628 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10629 op[0], AT, breg);
10630 dreg = op[0];
10631 add_breg_early = 1;
10632 }
10633
10634 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10635 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10636 dreg, dreg, AT);
10637
10638 used_at = 1;
10639 }
10640 else
10641 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10642
10643 relax_switch ();
10644 offset_expr.X_add_number = expr1.X_add_number;
10645
10646 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10647 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10648 if (add_breg_early)
10649 {
10650 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10651 op[0], tempreg, breg);
10652 breg = 0;
10653 tempreg = op[0];
10654 }
10655 relax_end ();
10656 }
10657 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10658 {
10659 relax_start (offset_expr.X_add_symbol);
10660 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10661 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10662 relax_switch ();
10663 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10664 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10665 relax_end ();
10666 }
10667 else
10668 {
10669 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10670 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10671 }
10672 }
10673 else if (mips_big_got && !HAVE_NEWABI)
10674 {
10675 int gpdelay;
10676 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10677 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10678 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10679
10680 /* This is the large GOT case. If this is a reference to an
10681 external symbol, and there is no constant, we want
10682 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10683 addu $tempreg,$tempreg,$gp
10684 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10685 or for lca or if tempreg is PIC_CALL_REG
10686 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10687 addu $tempreg,$tempreg,$gp
10688 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10689 For a local symbol, we want
10690 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10691 nop
10692 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10693
10694 If we have a small constant, and this is a reference to
10695 an external symbol, we want
10696 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10697 addu $tempreg,$tempreg,$gp
10698 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10699 nop
10700 addiu $tempreg,$tempreg,<constant>
10701 For a local symbol, we want
10702 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10703 nop
10704 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10705
10706 If we have a large constant, and this is a reference to
10707 an external symbol, we want
10708 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10709 addu $tempreg,$tempreg,$gp
10710 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10711 lui $at,<hiconstant>
10712 addiu $at,$at,<loconstant>
10713 addu $tempreg,$tempreg,$at
10714 For a local symbol, we want
10715 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10716 lui $at,<hiconstant>
10717 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10718 addu $tempreg,$tempreg,$at
10719 */
10720
10721 expr1.X_add_number = offset_expr.X_add_number;
10722 offset_expr.X_add_number = 0;
10723 relax_start (offset_expr.X_add_symbol);
10724 gpdelay = reg_needs_delay (mips_gp_register);
10725 if (expr1.X_add_number == 0 && breg == 0
10726 && (call || tempreg == PIC_CALL_REG))
10727 {
10728 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10729 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10730 }
10731 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10732 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10733 tempreg, tempreg, mips_gp_register);
10734 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10735 tempreg, lw_reloc_type, tempreg);
10736 if (expr1.X_add_number == 0)
10737 {
10738 if (breg != 0)
10739 {
10740 /* We're going to put in an addu instruction using
10741 tempreg, so we may as well insert the nop right
10742 now. */
10743 load_delay_nop ();
10744 }
10745 }
10746 else if (expr1.X_add_number >= -0x8000
10747 && expr1.X_add_number < 0x8000)
10748 {
10749 load_delay_nop ();
10750 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10751 tempreg, tempreg, BFD_RELOC_LO16);
10752 }
10753 else
10754 {
10755 unsigned int dreg;
10756
10757 /* If we are going to add in a base register, and the
10758 target register and the base register are the same,
10759 then we are using AT as a temporary register. Since
10760 we want to load the constant into AT, we add our
10761 current AT (from the global offset table) and the
10762 register into the register now, and pretend we were
10763 not using a base register. */
10764 if (breg != op[0])
10765 dreg = tempreg;
10766 else
10767 {
10768 gas_assert (tempreg == AT);
10769 load_delay_nop ();
10770 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10771 op[0], AT, breg);
10772 dreg = op[0];
10773 }
10774
10775 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10776 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10777
10778 used_at = 1;
10779 }
10780 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10781 relax_switch ();
10782
10783 if (gpdelay)
10784 {
10785 /* This is needed because this instruction uses $gp, but
10786 the first instruction on the main stream does not. */
10787 macro_build (NULL, "nop", "");
10788 }
10789
10790 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10791 local_reloc_type, mips_gp_register);
10792 if (expr1.X_add_number >= -0x8000
10793 && expr1.X_add_number < 0x8000)
10794 {
10795 load_delay_nop ();
10796 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10797 tempreg, tempreg, BFD_RELOC_LO16);
10798 /* FIXME: If add_number is 0, and there was no base
10799 register, the external symbol case ended with a load,
10800 so if the symbol turns out to not be external, and
10801 the next instruction uses tempreg, an unnecessary nop
10802 will be inserted. */
10803 }
10804 else
10805 {
10806 if (breg == op[0])
10807 {
10808 /* We must add in the base register now, as in the
10809 external symbol case. */
10810 gas_assert (tempreg == AT);
10811 load_delay_nop ();
10812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10813 op[0], AT, breg);
10814 tempreg = op[0];
10815 /* We set breg to 0 because we have arranged to add
10816 it in in both cases. */
10817 breg = 0;
10818 }
10819
10820 macro_build_lui (&expr1, AT);
10821 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10822 AT, AT, BFD_RELOC_LO16);
10823 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10824 tempreg, tempreg, AT);
10825 used_at = 1;
10826 }
10827 relax_end ();
10828 }
10829 else if (mips_big_got && HAVE_NEWABI)
10830 {
10831 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10832 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10833 int add_breg_early = 0;
10834
10835 /* This is the large GOT case. If this is a reference to an
10836 external symbol, and there is no constant, we want
10837 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10838 add $tempreg,$tempreg,$gp
10839 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10840 or for lca or if tempreg is PIC_CALL_REG
10841 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10842 add $tempreg,$tempreg,$gp
10843 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10844
10845 If we have a small constant, and this is a reference to
10846 an external symbol, we want
10847 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10848 add $tempreg,$tempreg,$gp
10849 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10850 addi $tempreg,$tempreg,<constant>
10851
10852 If we have a large constant, and this is a reference to
10853 an external symbol, we want
10854 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10855 addu $tempreg,$tempreg,$gp
10856 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10857 lui $at,<hiconstant>
10858 addi $at,$at,<loconstant>
10859 add $tempreg,$tempreg,$at
10860
10861 If we have NewABI, and we know it's a local symbol, we want
10862 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10863 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10864 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10865
10866 relax_start (offset_expr.X_add_symbol);
10867
10868 expr1.X_add_number = offset_expr.X_add_number;
10869 offset_expr.X_add_number = 0;
10870
10871 if (expr1.X_add_number == 0 && breg == 0
10872 && (call || tempreg == PIC_CALL_REG))
10873 {
10874 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10875 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10876 }
10877 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10878 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10879 tempreg, tempreg, mips_gp_register);
10880 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10881 tempreg, lw_reloc_type, tempreg);
10882
10883 if (expr1.X_add_number == 0)
10884 ;
10885 else if (expr1.X_add_number >= -0x8000
10886 && expr1.X_add_number < 0x8000)
10887 {
10888 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10889 tempreg, tempreg, BFD_RELOC_LO16);
10890 }
10891 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10892 {
10893 unsigned int dreg;
10894
10895 /* If we are going to add in a base register, and the
10896 target register and the base register are the same,
10897 then we are using AT as a temporary register. Since
10898 we want to load the constant into AT, we add our
10899 current AT (from the global offset table) and the
10900 register into the register now, and pretend we were
10901 not using a base register. */
10902 if (breg != op[0])
10903 dreg = tempreg;
10904 else
10905 {
10906 gas_assert (tempreg == AT);
10907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10908 op[0], AT, breg);
10909 dreg = op[0];
10910 add_breg_early = 1;
10911 }
10912
10913 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10914 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10915
10916 used_at = 1;
10917 }
10918 else
10919 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10920
10921 relax_switch ();
10922 offset_expr.X_add_number = expr1.X_add_number;
10923 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10924 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10925 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10926 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10927 if (add_breg_early)
10928 {
10929 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10930 op[0], tempreg, breg);
10931 breg = 0;
10932 tempreg = op[0];
10933 }
10934 relax_end ();
10935 }
10936 else
10937 abort ();
10938
10939 if (breg != 0)
10940 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10941 break;
10942
10943 case M_MSGSND:
10944 gas_assert (!mips_opts.micromips);
10945 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10946 break;
10947
10948 case M_MSGLD:
10949 gas_assert (!mips_opts.micromips);
10950 macro_build (NULL, "c2", "C", 0x02);
10951 break;
10952
10953 case M_MSGLD_T:
10954 gas_assert (!mips_opts.micromips);
10955 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10956 break;
10957
10958 case M_MSGWAIT:
10959 gas_assert (!mips_opts.micromips);
10960 macro_build (NULL, "c2", "C", 3);
10961 break;
10962
10963 case M_MSGWAIT_T:
10964 gas_assert (!mips_opts.micromips);
10965 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10966 break;
10967
10968 case M_J_A:
10969 /* The j instruction may not be used in PIC code, since it
10970 requires an absolute address. We convert it to a b
10971 instruction. */
10972 if (mips_pic == NO_PIC)
10973 macro_build (&offset_expr, "j", "a");
10974 else
10975 macro_build (&offset_expr, "b", "p");
10976 break;
10977
10978 /* The jal instructions must be handled as macros because when
10979 generating PIC code they expand to multi-instruction
10980 sequences. Normally they are simple instructions. */
10981 case M_JALS_1:
10982 op[1] = op[0];
10983 op[0] = RA;
10984 /* Fall through. */
10985 case M_JALS_2:
10986 gas_assert (mips_opts.micromips);
10987 if (mips_opts.insn32)
10988 {
10989 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10990 break;
10991 }
10992 jals = 1;
10993 goto jal;
10994 case M_JAL_1:
10995 op[1] = op[0];
10996 op[0] = RA;
10997 /* Fall through. */
10998 case M_JAL_2:
10999 jal:
11000 if (mips_pic == NO_PIC)
11001 {
11002 s = jals ? "jalrs" : "jalr";
11003 if (mips_opts.micromips
11004 && !mips_opts.insn32
11005 && op[0] == RA
11006 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11007 macro_build (NULL, s, "mj", op[1]);
11008 else
11009 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11010 }
11011 else
11012 {
11013 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11014 && mips_cprestore_offset >= 0);
11015
11016 if (op[1] != PIC_CALL_REG)
11017 as_warn (_("MIPS PIC call to register other than $25"));
11018
11019 s = ((mips_opts.micromips
11020 && !mips_opts.insn32
11021 && (!mips_opts.noreorder || cprestore))
11022 ? "jalrs" : "jalr");
11023 if (mips_opts.micromips
11024 && !mips_opts.insn32
11025 && op[0] == RA
11026 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11027 macro_build (NULL, s, "mj", op[1]);
11028 else
11029 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11030 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11031 {
11032 if (mips_cprestore_offset < 0)
11033 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11034 else
11035 {
11036 if (!mips_frame_reg_valid)
11037 {
11038 as_warn (_("no .frame pseudo-op used in PIC code"));
11039 /* Quiet this warning. */
11040 mips_frame_reg_valid = 1;
11041 }
11042 if (!mips_cprestore_valid)
11043 {
11044 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11045 /* Quiet this warning. */
11046 mips_cprestore_valid = 1;
11047 }
11048 if (mips_opts.noreorder)
11049 macro_build (NULL, "nop", "");
11050 expr1.X_add_number = mips_cprestore_offset;
11051 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11052 mips_gp_register,
11053 mips_frame_reg,
11054 HAVE_64BIT_ADDRESSES);
11055 }
11056 }
11057 }
11058
11059 break;
11060
11061 case M_JALS_A:
11062 gas_assert (mips_opts.micromips);
11063 if (mips_opts.insn32)
11064 {
11065 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11066 break;
11067 }
11068 jals = 1;
11069 /* Fall through. */
11070 case M_JAL_A:
11071 if (mips_pic == NO_PIC)
11072 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11073 else if (mips_pic == SVR4_PIC)
11074 {
11075 /* If this is a reference to an external symbol, and we are
11076 using a small GOT, we want
11077 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11078 nop
11079 jalr $ra,$25
11080 nop
11081 lw $gp,cprestore($sp)
11082 The cprestore value is set using the .cprestore
11083 pseudo-op. If we are using a big GOT, we want
11084 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11085 addu $25,$25,$gp
11086 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11087 nop
11088 jalr $ra,$25
11089 nop
11090 lw $gp,cprestore($sp)
11091 If the symbol is not external, we want
11092 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11093 nop
11094 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11095 jalr $ra,$25
11096 nop
11097 lw $gp,cprestore($sp)
11098
11099 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11100 sequences above, minus nops, unless the symbol is local,
11101 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11102 GOT_DISP. */
11103 if (HAVE_NEWABI)
11104 {
11105 if (!mips_big_got)
11106 {
11107 relax_start (offset_expr.X_add_symbol);
11108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11109 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11110 mips_gp_register);
11111 relax_switch ();
11112 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11113 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11114 mips_gp_register);
11115 relax_end ();
11116 }
11117 else
11118 {
11119 relax_start (offset_expr.X_add_symbol);
11120 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11121 BFD_RELOC_MIPS_CALL_HI16);
11122 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11123 PIC_CALL_REG, mips_gp_register);
11124 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11125 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11126 PIC_CALL_REG);
11127 relax_switch ();
11128 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11129 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11130 mips_gp_register);
11131 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11132 PIC_CALL_REG, PIC_CALL_REG,
11133 BFD_RELOC_MIPS_GOT_OFST);
11134 relax_end ();
11135 }
11136
11137 macro_build_jalr (&offset_expr, 0);
11138 }
11139 else
11140 {
11141 relax_start (offset_expr.X_add_symbol);
11142 if (!mips_big_got)
11143 {
11144 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11145 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11146 mips_gp_register);
11147 load_delay_nop ();
11148 relax_switch ();
11149 }
11150 else
11151 {
11152 int gpdelay;
11153
11154 gpdelay = reg_needs_delay (mips_gp_register);
11155 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11156 BFD_RELOC_MIPS_CALL_HI16);
11157 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11158 PIC_CALL_REG, mips_gp_register);
11159 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11160 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11161 PIC_CALL_REG);
11162 load_delay_nop ();
11163 relax_switch ();
11164 if (gpdelay)
11165 macro_build (NULL, "nop", "");
11166 }
11167 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11168 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11169 mips_gp_register);
11170 load_delay_nop ();
11171 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11172 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11173 relax_end ();
11174 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11175
11176 if (mips_cprestore_offset < 0)
11177 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11178 else
11179 {
11180 if (!mips_frame_reg_valid)
11181 {
11182 as_warn (_("no .frame pseudo-op used in PIC code"));
11183 /* Quiet this warning. */
11184 mips_frame_reg_valid = 1;
11185 }
11186 if (!mips_cprestore_valid)
11187 {
11188 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11189 /* Quiet this warning. */
11190 mips_cprestore_valid = 1;
11191 }
11192 if (mips_opts.noreorder)
11193 macro_build (NULL, "nop", "");
11194 expr1.X_add_number = mips_cprestore_offset;
11195 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11196 mips_gp_register,
11197 mips_frame_reg,
11198 HAVE_64BIT_ADDRESSES);
11199 }
11200 }
11201 }
11202 else if (mips_pic == VXWORKS_PIC)
11203 as_bad (_("non-PIC jump used in PIC library"));
11204 else
11205 abort ();
11206
11207 break;
11208
11209 case M_LBUE_AB:
11210 s = "lbue";
11211 fmt = "t,+j(b)";
11212 offbits = 9;
11213 goto ld_st;
11214 case M_LHUE_AB:
11215 s = "lhue";
11216 fmt = "t,+j(b)";
11217 offbits = 9;
11218 goto ld_st;
11219 case M_LBE_AB:
11220 s = "lbe";
11221 fmt = "t,+j(b)";
11222 offbits = 9;
11223 goto ld_st;
11224 case M_LHE_AB:
11225 s = "lhe";
11226 fmt = "t,+j(b)";
11227 offbits = 9;
11228 goto ld_st;
11229 case M_LLE_AB:
11230 s = "lle";
11231 fmt = "t,+j(b)";
11232 offbits = 9;
11233 goto ld_st;
11234 case M_LWE_AB:
11235 s = "lwe";
11236 fmt = "t,+j(b)";
11237 offbits = 9;
11238 goto ld_st;
11239 case M_LWLE_AB:
11240 s = "lwle";
11241 fmt = "t,+j(b)";
11242 offbits = 9;
11243 goto ld_st;
11244 case M_LWRE_AB:
11245 s = "lwre";
11246 fmt = "t,+j(b)";
11247 offbits = 9;
11248 goto ld_st;
11249 case M_SBE_AB:
11250 s = "sbe";
11251 fmt = "t,+j(b)";
11252 offbits = 9;
11253 goto ld_st;
11254 case M_SCE_AB:
11255 s = "sce";
11256 fmt = "t,+j(b)";
11257 offbits = 9;
11258 goto ld_st;
11259 case M_SHE_AB:
11260 s = "she";
11261 fmt = "t,+j(b)";
11262 offbits = 9;
11263 goto ld_st;
11264 case M_SWE_AB:
11265 s = "swe";
11266 fmt = "t,+j(b)";
11267 offbits = 9;
11268 goto ld_st;
11269 case M_SWLE_AB:
11270 s = "swle";
11271 fmt = "t,+j(b)";
11272 offbits = 9;
11273 goto ld_st;
11274 case M_SWRE_AB:
11275 s = "swre";
11276 fmt = "t,+j(b)";
11277 offbits = 9;
11278 goto ld_st;
11279 case M_ACLR_AB:
11280 s = "aclr";
11281 fmt = "\\,~(b)";
11282 offbits = 12;
11283 goto ld_st;
11284 case M_ASET_AB:
11285 s = "aset";
11286 fmt = "\\,~(b)";
11287 offbits = 12;
11288 goto ld_st;
11289 case M_LB_AB:
11290 s = "lb";
11291 fmt = "t,o(b)";
11292 goto ld;
11293 case M_LBU_AB:
11294 s = "lbu";
11295 fmt = "t,o(b)";
11296 goto ld;
11297 case M_LH_AB:
11298 s = "lh";
11299 fmt = "t,o(b)";
11300 goto ld;
11301 case M_LHU_AB:
11302 s = "lhu";
11303 fmt = "t,o(b)";
11304 goto ld;
11305 case M_LW_AB:
11306 s = "lw";
11307 fmt = "t,o(b)";
11308 goto ld;
11309 case M_LWC0_AB:
11310 gas_assert (!mips_opts.micromips);
11311 s = "lwc0";
11312 fmt = "E,o(b)";
11313 /* Itbl support may require additional care here. */
11314 coproc = 1;
11315 goto ld_st;
11316 case M_LWC1_AB:
11317 s = "lwc1";
11318 fmt = "T,o(b)";
11319 /* Itbl support may require additional care here. */
11320 coproc = 1;
11321 goto ld_st;
11322 case M_LWC2_AB:
11323 s = "lwc2";
11324 fmt = COP12_FMT;
11325 offbits = (mips_opts.micromips ? 12
11326 : ISA_IS_R6 (mips_opts.isa) ? 11
11327 : 16);
11328 /* Itbl support may require additional care here. */
11329 coproc = 1;
11330 goto ld_st;
11331 case M_LWC3_AB:
11332 gas_assert (!mips_opts.micromips);
11333 s = "lwc3";
11334 fmt = "E,o(b)";
11335 /* Itbl support may require additional care here. */
11336 coproc = 1;
11337 goto ld_st;
11338 case M_LWL_AB:
11339 s = "lwl";
11340 fmt = MEM12_FMT;
11341 offbits = (mips_opts.micromips ? 12 : 16);
11342 goto ld_st;
11343 case M_LWR_AB:
11344 s = "lwr";
11345 fmt = MEM12_FMT;
11346 offbits = (mips_opts.micromips ? 12 : 16);
11347 goto ld_st;
11348 case M_LDC1_AB:
11349 s = "ldc1";
11350 fmt = "T,o(b)";
11351 /* Itbl support may require additional care here. */
11352 coproc = 1;
11353 goto ld_st;
11354 case M_LDC2_AB:
11355 s = "ldc2";
11356 fmt = COP12_FMT;
11357 offbits = (mips_opts.micromips ? 12
11358 : ISA_IS_R6 (mips_opts.isa) ? 11
11359 : 16);
11360 /* Itbl support may require additional care here. */
11361 coproc = 1;
11362 goto ld_st;
11363 case M_LQC2_AB:
11364 s = "lqc2";
11365 fmt = "+7,o(b)";
11366 /* Itbl support may require additional care here. */
11367 coproc = 1;
11368 goto ld_st;
11369 case M_LDC3_AB:
11370 s = "ldc3";
11371 fmt = "E,o(b)";
11372 /* Itbl support may require additional care here. */
11373 coproc = 1;
11374 goto ld_st;
11375 case M_LDL_AB:
11376 s = "ldl";
11377 fmt = MEM12_FMT;
11378 offbits = (mips_opts.micromips ? 12 : 16);
11379 goto ld_st;
11380 case M_LDR_AB:
11381 s = "ldr";
11382 fmt = MEM12_FMT;
11383 offbits = (mips_opts.micromips ? 12 : 16);
11384 goto ld_st;
11385 case M_LL_AB:
11386 s = "ll";
11387 fmt = LL_SC_FMT;
11388 offbits = (mips_opts.micromips ? 12
11389 : ISA_IS_R6 (mips_opts.isa) ? 9
11390 : 16);
11391 goto ld;
11392 case M_LLD_AB:
11393 s = "lld";
11394 fmt = LL_SC_FMT;
11395 offbits = (mips_opts.micromips ? 12
11396 : ISA_IS_R6 (mips_opts.isa) ? 9
11397 : 16);
11398 goto ld;
11399 case M_LWU_AB:
11400 s = "lwu";
11401 fmt = MEM12_FMT;
11402 offbits = (mips_opts.micromips ? 12 : 16);
11403 goto ld;
11404 case M_LWP_AB:
11405 gas_assert (mips_opts.micromips);
11406 s = "lwp";
11407 fmt = "t,~(b)";
11408 offbits = 12;
11409 lp = 1;
11410 goto ld;
11411 case M_LDP_AB:
11412 gas_assert (mips_opts.micromips);
11413 s = "ldp";
11414 fmt = "t,~(b)";
11415 offbits = 12;
11416 lp = 1;
11417 goto ld;
11418 case M_LWM_AB:
11419 gas_assert (mips_opts.micromips);
11420 s = "lwm";
11421 fmt = "n,~(b)";
11422 offbits = 12;
11423 goto ld_st;
11424 case M_LDM_AB:
11425 gas_assert (mips_opts.micromips);
11426 s = "ldm";
11427 fmt = "n,~(b)";
11428 offbits = 12;
11429 goto ld_st;
11430
11431 ld:
11432 /* We don't want to use $0 as tempreg. */
11433 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11434 goto ld_st;
11435 else
11436 tempreg = op[0] + lp;
11437 goto ld_noat;
11438
11439 case M_SB_AB:
11440 s = "sb";
11441 fmt = "t,o(b)";
11442 goto ld_st;
11443 case M_SH_AB:
11444 s = "sh";
11445 fmt = "t,o(b)";
11446 goto ld_st;
11447 case M_SW_AB:
11448 s = "sw";
11449 fmt = "t,o(b)";
11450 goto ld_st;
11451 case M_SWC0_AB:
11452 gas_assert (!mips_opts.micromips);
11453 s = "swc0";
11454 fmt = "E,o(b)";
11455 /* Itbl support may require additional care here. */
11456 coproc = 1;
11457 goto ld_st;
11458 case M_SWC1_AB:
11459 s = "swc1";
11460 fmt = "T,o(b)";
11461 /* Itbl support may require additional care here. */
11462 coproc = 1;
11463 goto ld_st;
11464 case M_SWC2_AB:
11465 s = "swc2";
11466 fmt = COP12_FMT;
11467 offbits = (mips_opts.micromips ? 12
11468 : ISA_IS_R6 (mips_opts.isa) ? 11
11469 : 16);
11470 /* Itbl support may require additional care here. */
11471 coproc = 1;
11472 goto ld_st;
11473 case M_SWC3_AB:
11474 gas_assert (!mips_opts.micromips);
11475 s = "swc3";
11476 fmt = "E,o(b)";
11477 /* Itbl support may require additional care here. */
11478 coproc = 1;
11479 goto ld_st;
11480 case M_SWL_AB:
11481 s = "swl";
11482 fmt = MEM12_FMT;
11483 offbits = (mips_opts.micromips ? 12 : 16);
11484 goto ld_st;
11485 case M_SWR_AB:
11486 s = "swr";
11487 fmt = MEM12_FMT;
11488 offbits = (mips_opts.micromips ? 12 : 16);
11489 goto ld_st;
11490 case M_SC_AB:
11491 s = "sc";
11492 fmt = LL_SC_FMT;
11493 offbits = (mips_opts.micromips ? 12
11494 : ISA_IS_R6 (mips_opts.isa) ? 9
11495 : 16);
11496 goto ld_st;
11497 case M_SCD_AB:
11498 s = "scd";
11499 fmt = LL_SC_FMT;
11500 offbits = (mips_opts.micromips ? 12
11501 : ISA_IS_R6 (mips_opts.isa) ? 9
11502 : 16);
11503 goto ld_st;
11504 case M_CACHE_AB:
11505 s = "cache";
11506 fmt = (mips_opts.micromips ? "k,~(b)"
11507 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11508 : "k,o(b)");
11509 offbits = (mips_opts.micromips ? 12
11510 : ISA_IS_R6 (mips_opts.isa) ? 9
11511 : 16);
11512 goto ld_st;
11513 case M_CACHEE_AB:
11514 s = "cachee";
11515 fmt = "k,+j(b)";
11516 offbits = 9;
11517 goto ld_st;
11518 case M_PREF_AB:
11519 s = "pref";
11520 fmt = (mips_opts.micromips ? "k,~(b)"
11521 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11522 : "k,o(b)");
11523 offbits = (mips_opts.micromips ? 12
11524 : ISA_IS_R6 (mips_opts.isa) ? 9
11525 : 16);
11526 goto ld_st;
11527 case M_PREFE_AB:
11528 s = "prefe";
11529 fmt = "k,+j(b)";
11530 offbits = 9;
11531 goto ld_st;
11532 case M_SDC1_AB:
11533 s = "sdc1";
11534 fmt = "T,o(b)";
11535 coproc = 1;
11536 /* Itbl support may require additional care here. */
11537 goto ld_st;
11538 case M_SDC2_AB:
11539 s = "sdc2";
11540 fmt = COP12_FMT;
11541 offbits = (mips_opts.micromips ? 12
11542 : ISA_IS_R6 (mips_opts.isa) ? 11
11543 : 16);
11544 /* Itbl support may require additional care here. */
11545 coproc = 1;
11546 goto ld_st;
11547 case M_SQC2_AB:
11548 s = "sqc2";
11549 fmt = "+7,o(b)";
11550 /* Itbl support may require additional care here. */
11551 coproc = 1;
11552 goto ld_st;
11553 case M_SDC3_AB:
11554 gas_assert (!mips_opts.micromips);
11555 s = "sdc3";
11556 fmt = "E,o(b)";
11557 /* Itbl support may require additional care here. */
11558 coproc = 1;
11559 goto ld_st;
11560 case M_SDL_AB:
11561 s = "sdl";
11562 fmt = MEM12_FMT;
11563 offbits = (mips_opts.micromips ? 12 : 16);
11564 goto ld_st;
11565 case M_SDR_AB:
11566 s = "sdr";
11567 fmt = MEM12_FMT;
11568 offbits = (mips_opts.micromips ? 12 : 16);
11569 goto ld_st;
11570 case M_SWP_AB:
11571 gas_assert (mips_opts.micromips);
11572 s = "swp";
11573 fmt = "t,~(b)";
11574 offbits = 12;
11575 goto ld_st;
11576 case M_SDP_AB:
11577 gas_assert (mips_opts.micromips);
11578 s = "sdp";
11579 fmt = "t,~(b)";
11580 offbits = 12;
11581 goto ld_st;
11582 case M_SWM_AB:
11583 gas_assert (mips_opts.micromips);
11584 s = "swm";
11585 fmt = "n,~(b)";
11586 offbits = 12;
11587 goto ld_st;
11588 case M_SDM_AB:
11589 gas_assert (mips_opts.micromips);
11590 s = "sdm";
11591 fmt = "n,~(b)";
11592 offbits = 12;
11593
11594 ld_st:
11595 tempreg = AT;
11596 ld_noat:
11597 breg = op[2];
11598 if (small_offset_p (0, align, 16))
11599 {
11600 /* The first case exists for M_LD_AB and M_SD_AB, which are
11601 macros for o32 but which should act like normal instructions
11602 otherwise. */
11603 if (offbits == 16)
11604 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11605 offset_reloc[1], offset_reloc[2], breg);
11606 else if (small_offset_p (0, align, offbits))
11607 {
11608 if (offbits == 0)
11609 macro_build (NULL, s, fmt, op[0], breg);
11610 else
11611 macro_build (NULL, s, fmt, op[0],
11612 (int) offset_expr.X_add_number, breg);
11613 }
11614 else
11615 {
11616 if (tempreg == AT)
11617 used_at = 1;
11618 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11619 tempreg, breg, -1, offset_reloc[0],
11620 offset_reloc[1], offset_reloc[2]);
11621 if (offbits == 0)
11622 macro_build (NULL, s, fmt, op[0], tempreg);
11623 else
11624 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11625 }
11626 break;
11627 }
11628
11629 if (tempreg == AT)
11630 used_at = 1;
11631
11632 if (offset_expr.X_op != O_constant
11633 && offset_expr.X_op != O_symbol)
11634 {
11635 as_bad (_("expression too complex"));
11636 offset_expr.X_op = O_constant;
11637 }
11638
11639 if (HAVE_32BIT_ADDRESSES
11640 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11641 {
11642 char value [32];
11643
11644 sprintf_vma (value, offset_expr.X_add_number);
11645 as_bad (_("number (0x%s) larger than 32 bits"), value);
11646 }
11647
11648 /* A constant expression in PIC code can be handled just as it
11649 is in non PIC code. */
11650 if (offset_expr.X_op == O_constant)
11651 {
11652 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11653 offbits == 0 ? 16 : offbits);
11654 offset_expr.X_add_number -= expr1.X_add_number;
11655
11656 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11657 if (breg != 0)
11658 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11659 tempreg, tempreg, breg);
11660 if (offbits == 0)
11661 {
11662 if (offset_expr.X_add_number != 0)
11663 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11664 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11665 macro_build (NULL, s, fmt, op[0], tempreg);
11666 }
11667 else if (offbits == 16)
11668 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11669 else
11670 macro_build (NULL, s, fmt, op[0],
11671 (int) offset_expr.X_add_number, tempreg);
11672 }
11673 else if (offbits != 16)
11674 {
11675 /* The offset field is too narrow to be used for a low-part
11676 relocation, so load the whole address into the auxillary
11677 register. */
11678 load_address (tempreg, &offset_expr, &used_at);
11679 if (breg != 0)
11680 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11681 tempreg, tempreg, breg);
11682 if (offbits == 0)
11683 macro_build (NULL, s, fmt, op[0], tempreg);
11684 else
11685 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11686 }
11687 else if (mips_pic == NO_PIC)
11688 {
11689 /* If this is a reference to a GP relative symbol, and there
11690 is no base register, we want
11691 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11692 Otherwise, if there is no base register, we want
11693 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11694 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11695 If we have a constant, we need two instructions anyhow,
11696 so we always use the latter form.
11697
11698 If we have a base register, and this is a reference to a
11699 GP relative symbol, we want
11700 addu $tempreg,$breg,$gp
11701 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11702 Otherwise we want
11703 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11704 addu $tempreg,$tempreg,$breg
11705 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11706 With a constant we always use the latter case.
11707
11708 With 64bit address space and no base register and $at usable,
11709 we want
11710 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11711 lui $at,<sym> (BFD_RELOC_HI16_S)
11712 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11713 dsll32 $tempreg,0
11714 daddu $tempreg,$at
11715 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11716 If we have a base register, we want
11717 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11718 lui $at,<sym> (BFD_RELOC_HI16_S)
11719 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11720 daddu $at,$breg
11721 dsll32 $tempreg,0
11722 daddu $tempreg,$at
11723 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11724
11725 Without $at we can't generate the optimal path for superscalar
11726 processors here since this would require two temporary registers.
11727 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11728 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11729 dsll $tempreg,16
11730 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11731 dsll $tempreg,16
11732 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11733 If we have a base register, we want
11734 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11735 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11736 dsll $tempreg,16
11737 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11738 dsll $tempreg,16
11739 daddu $tempreg,$tempreg,$breg
11740 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11741
11742 For GP relative symbols in 64bit address space we can use
11743 the same sequence as in 32bit address space. */
11744 if (HAVE_64BIT_SYMBOLS)
11745 {
11746 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11747 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11748 {
11749 relax_start (offset_expr.X_add_symbol);
11750 if (breg == 0)
11751 {
11752 macro_build (&offset_expr, s, fmt, op[0],
11753 BFD_RELOC_GPREL16, mips_gp_register);
11754 }
11755 else
11756 {
11757 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11758 tempreg, breg, mips_gp_register);
11759 macro_build (&offset_expr, s, fmt, op[0],
11760 BFD_RELOC_GPREL16, tempreg);
11761 }
11762 relax_switch ();
11763 }
11764
11765 if (used_at == 0 && mips_opts.at)
11766 {
11767 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11768 BFD_RELOC_MIPS_HIGHEST);
11769 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11770 BFD_RELOC_HI16_S);
11771 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11772 tempreg, BFD_RELOC_MIPS_HIGHER);
11773 if (breg != 0)
11774 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11775 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11776 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11777 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11778 tempreg);
11779 used_at = 1;
11780 }
11781 else
11782 {
11783 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11784 BFD_RELOC_MIPS_HIGHEST);
11785 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11786 tempreg, BFD_RELOC_MIPS_HIGHER);
11787 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11788 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11789 tempreg, BFD_RELOC_HI16_S);
11790 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11791 if (breg != 0)
11792 macro_build (NULL, "daddu", "d,v,t",
11793 tempreg, tempreg, breg);
11794 macro_build (&offset_expr, s, fmt, op[0],
11795 BFD_RELOC_LO16, tempreg);
11796 }
11797
11798 if (mips_relax.sequence)
11799 relax_end ();
11800 break;
11801 }
11802
11803 if (breg == 0)
11804 {
11805 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11806 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11807 {
11808 relax_start (offset_expr.X_add_symbol);
11809 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11810 mips_gp_register);
11811 relax_switch ();
11812 }
11813 macro_build_lui (&offset_expr, tempreg);
11814 macro_build (&offset_expr, s, fmt, op[0],
11815 BFD_RELOC_LO16, tempreg);
11816 if (mips_relax.sequence)
11817 relax_end ();
11818 }
11819 else
11820 {
11821 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11822 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11823 {
11824 relax_start (offset_expr.X_add_symbol);
11825 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11826 tempreg, breg, mips_gp_register);
11827 macro_build (&offset_expr, s, fmt, op[0],
11828 BFD_RELOC_GPREL16, tempreg);
11829 relax_switch ();
11830 }
11831 macro_build_lui (&offset_expr, tempreg);
11832 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11833 tempreg, tempreg, breg);
11834 macro_build (&offset_expr, s, fmt, op[0],
11835 BFD_RELOC_LO16, tempreg);
11836 if (mips_relax.sequence)
11837 relax_end ();
11838 }
11839 }
11840 else if (!mips_big_got)
11841 {
11842 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11843
11844 /* If this is a reference to an external symbol, we want
11845 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11846 nop
11847 <op> op[0],0($tempreg)
11848 Otherwise we want
11849 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11850 nop
11851 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11852 <op> op[0],0($tempreg)
11853
11854 For NewABI, we want
11855 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11856 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11857
11858 If there is a base register, we add it to $tempreg before
11859 the <op>. If there is a constant, we stick it in the
11860 <op> instruction. We don't handle constants larger than
11861 16 bits, because we have no way to load the upper 16 bits
11862 (actually, we could handle them for the subset of cases
11863 in which we are not using $at). */
11864 gas_assert (offset_expr.X_op == O_symbol);
11865 if (HAVE_NEWABI)
11866 {
11867 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11868 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11869 if (breg != 0)
11870 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11871 tempreg, tempreg, breg);
11872 macro_build (&offset_expr, s, fmt, op[0],
11873 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11874 break;
11875 }
11876 expr1.X_add_number = offset_expr.X_add_number;
11877 offset_expr.X_add_number = 0;
11878 if (expr1.X_add_number < -0x8000
11879 || expr1.X_add_number >= 0x8000)
11880 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11881 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11882 lw_reloc_type, mips_gp_register);
11883 load_delay_nop ();
11884 relax_start (offset_expr.X_add_symbol);
11885 relax_switch ();
11886 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11887 tempreg, BFD_RELOC_LO16);
11888 relax_end ();
11889 if (breg != 0)
11890 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11891 tempreg, tempreg, breg);
11892 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11893 }
11894 else if (mips_big_got && !HAVE_NEWABI)
11895 {
11896 int gpdelay;
11897
11898 /* If this is a reference to an external symbol, we want
11899 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11900 addu $tempreg,$tempreg,$gp
11901 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11902 <op> op[0],0($tempreg)
11903 Otherwise we want
11904 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11905 nop
11906 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11907 <op> op[0],0($tempreg)
11908 If there is a base register, we add it to $tempreg before
11909 the <op>. If there is a constant, we stick it in the
11910 <op> instruction. We don't handle constants larger than
11911 16 bits, because we have no way to load the upper 16 bits
11912 (actually, we could handle them for the subset of cases
11913 in which we are not using $at). */
11914 gas_assert (offset_expr.X_op == O_symbol);
11915 expr1.X_add_number = offset_expr.X_add_number;
11916 offset_expr.X_add_number = 0;
11917 if (expr1.X_add_number < -0x8000
11918 || expr1.X_add_number >= 0x8000)
11919 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11920 gpdelay = reg_needs_delay (mips_gp_register);
11921 relax_start (offset_expr.X_add_symbol);
11922 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11923 BFD_RELOC_MIPS_GOT_HI16);
11924 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11925 mips_gp_register);
11926 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11927 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11928 relax_switch ();
11929 if (gpdelay)
11930 macro_build (NULL, "nop", "");
11931 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11932 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11933 load_delay_nop ();
11934 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11935 tempreg, BFD_RELOC_LO16);
11936 relax_end ();
11937
11938 if (breg != 0)
11939 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11940 tempreg, tempreg, breg);
11941 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11942 }
11943 else if (mips_big_got && HAVE_NEWABI)
11944 {
11945 /* If this is a reference to an external symbol, we want
11946 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11947 add $tempreg,$tempreg,$gp
11948 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11949 <op> op[0],<ofst>($tempreg)
11950 Otherwise, for local symbols, we want:
11951 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11952 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11953 gas_assert (offset_expr.X_op == O_symbol);
11954 expr1.X_add_number = offset_expr.X_add_number;
11955 offset_expr.X_add_number = 0;
11956 if (expr1.X_add_number < -0x8000
11957 || expr1.X_add_number >= 0x8000)
11958 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11959 relax_start (offset_expr.X_add_symbol);
11960 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11961 BFD_RELOC_MIPS_GOT_HI16);
11962 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11963 mips_gp_register);
11964 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11965 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11966 if (breg != 0)
11967 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11968 tempreg, tempreg, breg);
11969 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11970
11971 relax_switch ();
11972 offset_expr.X_add_number = expr1.X_add_number;
11973 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11974 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11975 if (breg != 0)
11976 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11977 tempreg, tempreg, breg);
11978 macro_build (&offset_expr, s, fmt, op[0],
11979 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11980 relax_end ();
11981 }
11982 else
11983 abort ();
11984
11985 break;
11986
11987 case M_JRADDIUSP:
11988 gas_assert (mips_opts.micromips);
11989 gas_assert (mips_opts.insn32);
11990 start_noreorder ();
11991 macro_build (NULL, "jr", "s", RA);
11992 expr1.X_add_number = op[0] << 2;
11993 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11994 end_noreorder ();
11995 break;
11996
11997 case M_JRC:
11998 gas_assert (mips_opts.micromips);
11999 gas_assert (mips_opts.insn32);
12000 macro_build (NULL, "jr", "s", op[0]);
12001 if (mips_opts.noreorder)
12002 macro_build (NULL, "nop", "");
12003 break;
12004
12005 case M_LI:
12006 case M_LI_S:
12007 load_register (op[0], &imm_expr, 0);
12008 break;
12009
12010 case M_DLI:
12011 load_register (op[0], &imm_expr, 1);
12012 break;
12013
12014 case M_LI_SS:
12015 if (imm_expr.X_op == O_constant)
12016 {
12017 used_at = 1;
12018 load_register (AT, &imm_expr, 0);
12019 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12020 break;
12021 }
12022 else
12023 {
12024 gas_assert (imm_expr.X_op == O_absent
12025 && offset_expr.X_op == O_symbol
12026 && strcmp (segment_name (S_GET_SEGMENT
12027 (offset_expr.X_add_symbol)),
12028 ".lit4") == 0
12029 && offset_expr.X_add_number == 0);
12030 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12031 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12032 break;
12033 }
12034
12035 case M_LI_D:
12036 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12037 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12038 order 32 bits of the value and the low order 32 bits are either
12039 zero or in OFFSET_EXPR. */
12040 if (imm_expr.X_op == O_constant)
12041 {
12042 if (GPR_SIZE == 64)
12043 load_register (op[0], &imm_expr, 1);
12044 else
12045 {
12046 int hreg, lreg;
12047
12048 if (target_big_endian)
12049 {
12050 hreg = op[0];
12051 lreg = op[0] + 1;
12052 }
12053 else
12054 {
12055 hreg = op[0] + 1;
12056 lreg = op[0];
12057 }
12058
12059 if (hreg <= 31)
12060 load_register (hreg, &imm_expr, 0);
12061 if (lreg <= 31)
12062 {
12063 if (offset_expr.X_op == O_absent)
12064 move_register (lreg, 0);
12065 else
12066 {
12067 gas_assert (offset_expr.X_op == O_constant);
12068 load_register (lreg, &offset_expr, 0);
12069 }
12070 }
12071 }
12072 break;
12073 }
12074 gas_assert (imm_expr.X_op == O_absent);
12075
12076 /* We know that sym is in the .rdata section. First we get the
12077 upper 16 bits of the address. */
12078 if (mips_pic == NO_PIC)
12079 {
12080 macro_build_lui (&offset_expr, AT);
12081 used_at = 1;
12082 }
12083 else
12084 {
12085 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12086 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12087 used_at = 1;
12088 }
12089
12090 /* Now we load the register(s). */
12091 if (GPR_SIZE == 64)
12092 {
12093 used_at = 1;
12094 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12095 BFD_RELOC_LO16, AT);
12096 }
12097 else
12098 {
12099 used_at = 1;
12100 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12101 BFD_RELOC_LO16, AT);
12102 if (op[0] != RA)
12103 {
12104 /* FIXME: How in the world do we deal with the possible
12105 overflow here? */
12106 offset_expr.X_add_number += 4;
12107 macro_build (&offset_expr, "lw", "t,o(b)",
12108 op[0] + 1, BFD_RELOC_LO16, AT);
12109 }
12110 }
12111 break;
12112
12113 case M_LI_DD:
12114 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12115 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12116 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12117 the value and the low order 32 bits are either zero or in
12118 OFFSET_EXPR. */
12119 if (imm_expr.X_op == O_constant)
12120 {
12121 used_at = 1;
12122 load_register (AT, &imm_expr, FPR_SIZE == 64);
12123 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12124 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12125 else
12126 {
12127 if (ISA_HAS_MXHC1 (mips_opts.isa))
12128 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12129 else if (FPR_SIZE != 32)
12130 as_bad (_("Unable to generate `%s' compliant code "
12131 "without mthc1"),
12132 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12133 else
12134 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12135 if (offset_expr.X_op == O_absent)
12136 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12137 else
12138 {
12139 gas_assert (offset_expr.X_op == O_constant);
12140 load_register (AT, &offset_expr, 0);
12141 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12142 }
12143 }
12144 break;
12145 }
12146
12147 gas_assert (imm_expr.X_op == O_absent
12148 && offset_expr.X_op == O_symbol
12149 && offset_expr.X_add_number == 0);
12150 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12151 if (strcmp (s, ".lit8") == 0)
12152 {
12153 op[2] = mips_gp_register;
12154 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12155 offset_reloc[1] = BFD_RELOC_UNUSED;
12156 offset_reloc[2] = BFD_RELOC_UNUSED;
12157 }
12158 else
12159 {
12160 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12161 used_at = 1;
12162 if (mips_pic != NO_PIC)
12163 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12164 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12165 else
12166 {
12167 /* FIXME: This won't work for a 64 bit address. */
12168 macro_build_lui (&offset_expr, AT);
12169 }
12170
12171 op[2] = AT;
12172 offset_reloc[0] = BFD_RELOC_LO16;
12173 offset_reloc[1] = BFD_RELOC_UNUSED;
12174 offset_reloc[2] = BFD_RELOC_UNUSED;
12175 }
12176 align = 8;
12177 /* Fall through */
12178
12179 case M_L_DAB:
12180 /*
12181 * The MIPS assembler seems to check for X_add_number not
12182 * being double aligned and generating:
12183 * lui at,%hi(foo+1)
12184 * addu at,at,v1
12185 * addiu at,at,%lo(foo+1)
12186 * lwc1 f2,0(at)
12187 * lwc1 f3,4(at)
12188 * But, the resulting address is the same after relocation so why
12189 * generate the extra instruction?
12190 */
12191 /* Itbl support may require additional care here. */
12192 coproc = 1;
12193 fmt = "T,o(b)";
12194 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12195 {
12196 s = "ldc1";
12197 goto ld_st;
12198 }
12199 s = "lwc1";
12200 goto ldd_std;
12201
12202 case M_S_DAB:
12203 gas_assert (!mips_opts.micromips);
12204 /* Itbl support may require additional care here. */
12205 coproc = 1;
12206 fmt = "T,o(b)";
12207 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12208 {
12209 s = "sdc1";
12210 goto ld_st;
12211 }
12212 s = "swc1";
12213 goto ldd_std;
12214
12215 case M_LQ_AB:
12216 fmt = "t,o(b)";
12217 s = "lq";
12218 goto ld;
12219
12220 case M_SQ_AB:
12221 fmt = "t,o(b)";
12222 s = "sq";
12223 goto ld_st;
12224
12225 case M_LD_AB:
12226 fmt = "t,o(b)";
12227 if (GPR_SIZE == 64)
12228 {
12229 s = "ld";
12230 goto ld;
12231 }
12232 s = "lw";
12233 goto ldd_std;
12234
12235 case M_SD_AB:
12236 fmt = "t,o(b)";
12237 if (GPR_SIZE == 64)
12238 {
12239 s = "sd";
12240 goto ld_st;
12241 }
12242 s = "sw";
12243
12244 ldd_std:
12245 /* Even on a big endian machine $fn comes before $fn+1. We have
12246 to adjust when loading from memory. We set coproc if we must
12247 load $fn+1 first. */
12248 /* Itbl support may require additional care here. */
12249 if (!target_big_endian)
12250 coproc = 0;
12251
12252 breg = op[2];
12253 if (small_offset_p (0, align, 16))
12254 {
12255 ep = &offset_expr;
12256 if (!small_offset_p (4, align, 16))
12257 {
12258 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12259 -1, offset_reloc[0], offset_reloc[1],
12260 offset_reloc[2]);
12261 expr1.X_add_number = 0;
12262 ep = &expr1;
12263 breg = AT;
12264 used_at = 1;
12265 offset_reloc[0] = BFD_RELOC_LO16;
12266 offset_reloc[1] = BFD_RELOC_UNUSED;
12267 offset_reloc[2] = BFD_RELOC_UNUSED;
12268 }
12269 if (strcmp (s, "lw") == 0 && op[0] == breg)
12270 {
12271 ep->X_add_number += 4;
12272 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12273 offset_reloc[1], offset_reloc[2], breg);
12274 ep->X_add_number -= 4;
12275 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12276 offset_reloc[1], offset_reloc[2], breg);
12277 }
12278 else
12279 {
12280 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12281 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12282 breg);
12283 ep->X_add_number += 4;
12284 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12285 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12286 breg);
12287 }
12288 break;
12289 }
12290
12291 if (offset_expr.X_op != O_symbol
12292 && offset_expr.X_op != O_constant)
12293 {
12294 as_bad (_("expression too complex"));
12295 offset_expr.X_op = O_constant;
12296 }
12297
12298 if (HAVE_32BIT_ADDRESSES
12299 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12300 {
12301 char value [32];
12302
12303 sprintf_vma (value, offset_expr.X_add_number);
12304 as_bad (_("number (0x%s) larger than 32 bits"), value);
12305 }
12306
12307 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12308 {
12309 /* If this is a reference to a GP relative symbol, we want
12310 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12311 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12312 If we have a base register, we use this
12313 addu $at,$breg,$gp
12314 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12315 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12316 If this is not a GP relative symbol, we want
12317 lui $at,<sym> (BFD_RELOC_HI16_S)
12318 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12319 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12320 If there is a base register, we add it to $at after the
12321 lui instruction. If there is a constant, we always use
12322 the last case. */
12323 if (offset_expr.X_op == O_symbol
12324 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12325 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12326 {
12327 relax_start (offset_expr.X_add_symbol);
12328 if (breg == 0)
12329 {
12330 tempreg = mips_gp_register;
12331 }
12332 else
12333 {
12334 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12335 AT, breg, mips_gp_register);
12336 tempreg = AT;
12337 used_at = 1;
12338 }
12339
12340 /* Itbl support may require additional care here. */
12341 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12342 BFD_RELOC_GPREL16, tempreg);
12343 offset_expr.X_add_number += 4;
12344
12345 /* Set mips_optimize to 2 to avoid inserting an
12346 undesired nop. */
12347 hold_mips_optimize = mips_optimize;
12348 mips_optimize = 2;
12349 /* Itbl support may require additional care here. */
12350 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12351 BFD_RELOC_GPREL16, tempreg);
12352 mips_optimize = hold_mips_optimize;
12353
12354 relax_switch ();
12355
12356 offset_expr.X_add_number -= 4;
12357 }
12358 used_at = 1;
12359 if (offset_high_part (offset_expr.X_add_number, 16)
12360 != offset_high_part (offset_expr.X_add_number + 4, 16))
12361 {
12362 load_address (AT, &offset_expr, &used_at);
12363 offset_expr.X_op = O_constant;
12364 offset_expr.X_add_number = 0;
12365 }
12366 else
12367 macro_build_lui (&offset_expr, AT);
12368 if (breg != 0)
12369 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12370 /* Itbl support may require additional care here. */
12371 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12372 BFD_RELOC_LO16, AT);
12373 /* FIXME: How do we handle overflow here? */
12374 offset_expr.X_add_number += 4;
12375 /* Itbl support may require additional care here. */
12376 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12377 BFD_RELOC_LO16, AT);
12378 if (mips_relax.sequence)
12379 relax_end ();
12380 }
12381 else if (!mips_big_got)
12382 {
12383 /* If this is a reference to an external symbol, we want
12384 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12385 nop
12386 <op> op[0],0($at)
12387 <op> op[0]+1,4($at)
12388 Otherwise we want
12389 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12390 nop
12391 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12392 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12393 If there is a base register we add it to $at before the
12394 lwc1 instructions. If there is a constant we include it
12395 in the lwc1 instructions. */
12396 used_at = 1;
12397 expr1.X_add_number = offset_expr.X_add_number;
12398 if (expr1.X_add_number < -0x8000
12399 || expr1.X_add_number >= 0x8000 - 4)
12400 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12401 load_got_offset (AT, &offset_expr);
12402 load_delay_nop ();
12403 if (breg != 0)
12404 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12405
12406 /* Set mips_optimize to 2 to avoid inserting an undesired
12407 nop. */
12408 hold_mips_optimize = mips_optimize;
12409 mips_optimize = 2;
12410
12411 /* Itbl support may require additional care here. */
12412 relax_start (offset_expr.X_add_symbol);
12413 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12414 BFD_RELOC_LO16, AT);
12415 expr1.X_add_number += 4;
12416 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12417 BFD_RELOC_LO16, AT);
12418 relax_switch ();
12419 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12420 BFD_RELOC_LO16, AT);
12421 offset_expr.X_add_number += 4;
12422 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12423 BFD_RELOC_LO16, AT);
12424 relax_end ();
12425
12426 mips_optimize = hold_mips_optimize;
12427 }
12428 else if (mips_big_got)
12429 {
12430 int gpdelay;
12431
12432 /* If this is a reference to an external symbol, we want
12433 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12434 addu $at,$at,$gp
12435 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12436 nop
12437 <op> op[0],0($at)
12438 <op> op[0]+1,4($at)
12439 Otherwise we want
12440 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12441 nop
12442 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12443 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12444 If there is a base register we add it to $at before the
12445 lwc1 instructions. If there is a constant we include it
12446 in the lwc1 instructions. */
12447 used_at = 1;
12448 expr1.X_add_number = offset_expr.X_add_number;
12449 offset_expr.X_add_number = 0;
12450 if (expr1.X_add_number < -0x8000
12451 || expr1.X_add_number >= 0x8000 - 4)
12452 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12453 gpdelay = reg_needs_delay (mips_gp_register);
12454 relax_start (offset_expr.X_add_symbol);
12455 macro_build (&offset_expr, "lui", LUI_FMT,
12456 AT, BFD_RELOC_MIPS_GOT_HI16);
12457 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12458 AT, AT, mips_gp_register);
12459 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12460 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12461 load_delay_nop ();
12462 if (breg != 0)
12463 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12464 /* Itbl support may require additional care here. */
12465 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12466 BFD_RELOC_LO16, AT);
12467 expr1.X_add_number += 4;
12468
12469 /* Set mips_optimize to 2 to avoid inserting an undesired
12470 nop. */
12471 hold_mips_optimize = mips_optimize;
12472 mips_optimize = 2;
12473 /* Itbl support may require additional care here. */
12474 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12475 BFD_RELOC_LO16, AT);
12476 mips_optimize = hold_mips_optimize;
12477 expr1.X_add_number -= 4;
12478
12479 relax_switch ();
12480 offset_expr.X_add_number = expr1.X_add_number;
12481 if (gpdelay)
12482 macro_build (NULL, "nop", "");
12483 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12484 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12485 load_delay_nop ();
12486 if (breg != 0)
12487 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12488 /* Itbl support may require additional care here. */
12489 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12490 BFD_RELOC_LO16, AT);
12491 offset_expr.X_add_number += 4;
12492
12493 /* Set mips_optimize to 2 to avoid inserting an undesired
12494 nop. */
12495 hold_mips_optimize = mips_optimize;
12496 mips_optimize = 2;
12497 /* Itbl support may require additional care here. */
12498 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12499 BFD_RELOC_LO16, AT);
12500 mips_optimize = hold_mips_optimize;
12501 relax_end ();
12502 }
12503 else
12504 abort ();
12505
12506 break;
12507
12508 case M_SAA_AB:
12509 s = "saa";
12510 goto saa_saad;
12511 case M_SAAD_AB:
12512 s = "saad";
12513 saa_saad:
12514 gas_assert (!mips_opts.micromips);
12515 offbits = 0;
12516 fmt = "t,(b)";
12517 goto ld_st;
12518
12519 /* New code added to support COPZ instructions.
12520 This code builds table entries out of the macros in mip_opcodes.
12521 R4000 uses interlocks to handle coproc delays.
12522 Other chips (like the R3000) require nops to be inserted for delays.
12523
12524 FIXME: Currently, we require that the user handle delays.
12525 In order to fill delay slots for non-interlocked chips,
12526 we must have a way to specify delays based on the coprocessor.
12527 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12528 What are the side-effects of the cop instruction?
12529 What cache support might we have and what are its effects?
12530 Both coprocessor & memory require delays. how long???
12531 What registers are read/set/modified?
12532
12533 If an itbl is provided to interpret cop instructions,
12534 this knowledge can be encoded in the itbl spec. */
12535
12536 case M_COP0:
12537 s = "c0";
12538 goto copz;
12539 case M_COP1:
12540 s = "c1";
12541 goto copz;
12542 case M_COP2:
12543 s = "c2";
12544 goto copz;
12545 case M_COP3:
12546 s = "c3";
12547 copz:
12548 gas_assert (!mips_opts.micromips);
12549 /* For now we just do C (same as Cz). The parameter will be
12550 stored in insn_opcode by mips_ip. */
12551 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12552 break;
12553
12554 case M_MOVE:
12555 move_register (op[0], op[1]);
12556 break;
12557
12558 case M_MOVEP:
12559 gas_assert (mips_opts.micromips);
12560 gas_assert (mips_opts.insn32);
12561 move_register (micromips_to_32_reg_h_map1[op[0]],
12562 micromips_to_32_reg_m_map[op[1]]);
12563 move_register (micromips_to_32_reg_h_map2[op[0]],
12564 micromips_to_32_reg_n_map[op[2]]);
12565 break;
12566
12567 case M_DMUL:
12568 dbl = 1;
12569 case M_MUL:
12570 if (mips_opts.arch == CPU_R5900)
12571 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12572 op[2]);
12573 else
12574 {
12575 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12576 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12577 }
12578 break;
12579
12580 case M_DMUL_I:
12581 dbl = 1;
12582 case M_MUL_I:
12583 /* The MIPS assembler some times generates shifts and adds. I'm
12584 not trying to be that fancy. GCC should do this for us
12585 anyway. */
12586 used_at = 1;
12587 load_register (AT, &imm_expr, dbl);
12588 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12589 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12590 break;
12591
12592 case M_DMULO_I:
12593 dbl = 1;
12594 case M_MULO_I:
12595 imm = 1;
12596 goto do_mulo;
12597
12598 case M_DMULO:
12599 dbl = 1;
12600 case M_MULO:
12601 do_mulo:
12602 start_noreorder ();
12603 used_at = 1;
12604 if (imm)
12605 load_register (AT, &imm_expr, dbl);
12606 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12607 op[1], imm ? AT : op[2]);
12608 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12609 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12610 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12611 if (mips_trap)
12612 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12613 else
12614 {
12615 if (mips_opts.micromips)
12616 micromips_label_expr (&label_expr);
12617 else
12618 label_expr.X_add_number = 8;
12619 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12620 macro_build (NULL, "nop", "");
12621 macro_build (NULL, "break", BRK_FMT, 6);
12622 if (mips_opts.micromips)
12623 micromips_add_label ();
12624 }
12625 end_noreorder ();
12626 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12627 break;
12628
12629 case M_DMULOU_I:
12630 dbl = 1;
12631 case M_MULOU_I:
12632 imm = 1;
12633 goto do_mulou;
12634
12635 case M_DMULOU:
12636 dbl = 1;
12637 case M_MULOU:
12638 do_mulou:
12639 start_noreorder ();
12640 used_at = 1;
12641 if (imm)
12642 load_register (AT, &imm_expr, dbl);
12643 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12644 op[1], imm ? AT : op[2]);
12645 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12646 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12647 if (mips_trap)
12648 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12649 else
12650 {
12651 if (mips_opts.micromips)
12652 micromips_label_expr (&label_expr);
12653 else
12654 label_expr.X_add_number = 8;
12655 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12656 macro_build (NULL, "nop", "");
12657 macro_build (NULL, "break", BRK_FMT, 6);
12658 if (mips_opts.micromips)
12659 micromips_add_label ();
12660 }
12661 end_noreorder ();
12662 break;
12663
12664 case M_DROL:
12665 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12666 {
12667 if (op[0] == op[1])
12668 {
12669 tempreg = AT;
12670 used_at = 1;
12671 }
12672 else
12673 tempreg = op[0];
12674 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12675 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12676 break;
12677 }
12678 used_at = 1;
12679 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12680 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12681 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12682 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12683 break;
12684
12685 case M_ROL:
12686 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12687 {
12688 if (op[0] == op[1])
12689 {
12690 tempreg = AT;
12691 used_at = 1;
12692 }
12693 else
12694 tempreg = op[0];
12695 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12696 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12697 break;
12698 }
12699 used_at = 1;
12700 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12701 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12702 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12703 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12704 break;
12705
12706 case M_DROL_I:
12707 {
12708 unsigned int rot;
12709 const char *l;
12710 const char *rr;
12711
12712 rot = imm_expr.X_add_number & 0x3f;
12713 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12714 {
12715 rot = (64 - rot) & 0x3f;
12716 if (rot >= 32)
12717 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12718 else
12719 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12720 break;
12721 }
12722 if (rot == 0)
12723 {
12724 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12725 break;
12726 }
12727 l = (rot < 0x20) ? "dsll" : "dsll32";
12728 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12729 rot &= 0x1f;
12730 used_at = 1;
12731 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12732 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12733 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12734 }
12735 break;
12736
12737 case M_ROL_I:
12738 {
12739 unsigned int rot;
12740
12741 rot = imm_expr.X_add_number & 0x1f;
12742 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12743 {
12744 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12745 (32 - rot) & 0x1f);
12746 break;
12747 }
12748 if (rot == 0)
12749 {
12750 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12751 break;
12752 }
12753 used_at = 1;
12754 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12755 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12756 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12757 }
12758 break;
12759
12760 case M_DROR:
12761 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12762 {
12763 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12764 break;
12765 }
12766 used_at = 1;
12767 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12768 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12769 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12770 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12771 break;
12772
12773 case M_ROR:
12774 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12775 {
12776 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12777 break;
12778 }
12779 used_at = 1;
12780 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12781 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12782 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12783 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12784 break;
12785
12786 case M_DROR_I:
12787 {
12788 unsigned int rot;
12789 const char *l;
12790 const char *rr;
12791
12792 rot = imm_expr.X_add_number & 0x3f;
12793 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12794 {
12795 if (rot >= 32)
12796 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12797 else
12798 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12799 break;
12800 }
12801 if (rot == 0)
12802 {
12803 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12804 break;
12805 }
12806 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12807 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12808 rot &= 0x1f;
12809 used_at = 1;
12810 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12811 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12812 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12813 }
12814 break;
12815
12816 case M_ROR_I:
12817 {
12818 unsigned int rot;
12819
12820 rot = imm_expr.X_add_number & 0x1f;
12821 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12822 {
12823 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12824 break;
12825 }
12826 if (rot == 0)
12827 {
12828 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12829 break;
12830 }
12831 used_at = 1;
12832 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12833 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12834 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12835 }
12836 break;
12837
12838 case M_SEQ:
12839 if (op[1] == 0)
12840 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12841 else if (op[2] == 0)
12842 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12843 else
12844 {
12845 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12846 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12847 }
12848 break;
12849
12850 case M_SEQ_I:
12851 if (imm_expr.X_add_number == 0)
12852 {
12853 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12854 break;
12855 }
12856 if (op[1] == 0)
12857 {
12858 as_warn (_("instruction %s: result is always false"),
12859 ip->insn_mo->name);
12860 move_register (op[0], 0);
12861 break;
12862 }
12863 if (CPU_HAS_SEQ (mips_opts.arch)
12864 && -512 <= imm_expr.X_add_number
12865 && imm_expr.X_add_number < 512)
12866 {
12867 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12868 (int) imm_expr.X_add_number);
12869 break;
12870 }
12871 if (imm_expr.X_add_number >= 0
12872 && imm_expr.X_add_number < 0x10000)
12873 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12874 else if (imm_expr.X_add_number > -0x8000
12875 && imm_expr.X_add_number < 0)
12876 {
12877 imm_expr.X_add_number = -imm_expr.X_add_number;
12878 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12879 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12880 }
12881 else if (CPU_HAS_SEQ (mips_opts.arch))
12882 {
12883 used_at = 1;
12884 load_register (AT, &imm_expr, GPR_SIZE == 64);
12885 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12886 break;
12887 }
12888 else
12889 {
12890 load_register (AT, &imm_expr, GPR_SIZE == 64);
12891 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12892 used_at = 1;
12893 }
12894 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12895 break;
12896
12897 case M_SGE: /* X >= Y <==> not (X < Y) */
12898 s = "slt";
12899 goto sge;
12900 case M_SGEU:
12901 s = "sltu";
12902 sge:
12903 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12904 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12905 break;
12906
12907 case M_SGE_I: /* X >= I <==> not (X < I) */
12908 case M_SGEU_I:
12909 if (imm_expr.X_add_number >= -0x8000
12910 && imm_expr.X_add_number < 0x8000)
12911 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12912 op[0], op[1], BFD_RELOC_LO16);
12913 else
12914 {
12915 load_register (AT, &imm_expr, GPR_SIZE == 64);
12916 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12917 op[0], op[1], AT);
12918 used_at = 1;
12919 }
12920 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12921 break;
12922
12923 case M_SGT: /* X > Y <==> Y < X */
12924 s = "slt";
12925 goto sgt;
12926 case M_SGTU:
12927 s = "sltu";
12928 sgt:
12929 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12930 break;
12931
12932 case M_SGT_I: /* X > I <==> I < X */
12933 s = "slt";
12934 goto sgti;
12935 case M_SGTU_I:
12936 s = "sltu";
12937 sgti:
12938 used_at = 1;
12939 load_register (AT, &imm_expr, GPR_SIZE == 64);
12940 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12941 break;
12942
12943 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12944 s = "slt";
12945 goto sle;
12946 case M_SLEU:
12947 s = "sltu";
12948 sle:
12949 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12950 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12951 break;
12952
12953 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12954 s = "slt";
12955 goto slei;
12956 case M_SLEU_I:
12957 s = "sltu";
12958 slei:
12959 used_at = 1;
12960 load_register (AT, &imm_expr, GPR_SIZE == 64);
12961 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12962 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12963 break;
12964
12965 case M_SLT_I:
12966 if (imm_expr.X_add_number >= -0x8000
12967 && imm_expr.X_add_number < 0x8000)
12968 {
12969 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12970 BFD_RELOC_LO16);
12971 break;
12972 }
12973 used_at = 1;
12974 load_register (AT, &imm_expr, GPR_SIZE == 64);
12975 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12976 break;
12977
12978 case M_SLTU_I:
12979 if (imm_expr.X_add_number >= -0x8000
12980 && imm_expr.X_add_number < 0x8000)
12981 {
12982 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12983 BFD_RELOC_LO16);
12984 break;
12985 }
12986 used_at = 1;
12987 load_register (AT, &imm_expr, GPR_SIZE == 64);
12988 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12989 break;
12990
12991 case M_SNE:
12992 if (op[1] == 0)
12993 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12994 else if (op[2] == 0)
12995 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12996 else
12997 {
12998 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12999 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13000 }
13001 break;
13002
13003 case M_SNE_I:
13004 if (imm_expr.X_add_number == 0)
13005 {
13006 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13007 break;
13008 }
13009 if (op[1] == 0)
13010 {
13011 as_warn (_("instruction %s: result is always true"),
13012 ip->insn_mo->name);
13013 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13014 op[0], 0, BFD_RELOC_LO16);
13015 break;
13016 }
13017 if (CPU_HAS_SEQ (mips_opts.arch)
13018 && -512 <= imm_expr.X_add_number
13019 && imm_expr.X_add_number < 512)
13020 {
13021 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13022 (int) imm_expr.X_add_number);
13023 break;
13024 }
13025 if (imm_expr.X_add_number >= 0
13026 && imm_expr.X_add_number < 0x10000)
13027 {
13028 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13029 BFD_RELOC_LO16);
13030 }
13031 else if (imm_expr.X_add_number > -0x8000
13032 && imm_expr.X_add_number < 0)
13033 {
13034 imm_expr.X_add_number = -imm_expr.X_add_number;
13035 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13036 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13037 }
13038 else if (CPU_HAS_SEQ (mips_opts.arch))
13039 {
13040 used_at = 1;
13041 load_register (AT, &imm_expr, GPR_SIZE == 64);
13042 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13043 break;
13044 }
13045 else
13046 {
13047 load_register (AT, &imm_expr, GPR_SIZE == 64);
13048 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13049 used_at = 1;
13050 }
13051 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13052 break;
13053
13054 case M_SUB_I:
13055 s = "addi";
13056 s2 = "sub";
13057 goto do_subi;
13058 case M_SUBU_I:
13059 s = "addiu";
13060 s2 = "subu";
13061 goto do_subi;
13062 case M_DSUB_I:
13063 dbl = 1;
13064 s = "daddi";
13065 s2 = "dsub";
13066 if (!mips_opts.micromips)
13067 goto do_subi;
13068 if (imm_expr.X_add_number > -0x200
13069 && imm_expr.X_add_number <= 0x200)
13070 {
13071 macro_build (NULL, s, "t,r,.", op[0], op[1],
13072 (int) -imm_expr.X_add_number);
13073 break;
13074 }
13075 goto do_subi_i;
13076 case M_DSUBU_I:
13077 dbl = 1;
13078 s = "daddiu";
13079 s2 = "dsubu";
13080 do_subi:
13081 if (imm_expr.X_add_number > -0x8000
13082 && imm_expr.X_add_number <= 0x8000)
13083 {
13084 imm_expr.X_add_number = -imm_expr.X_add_number;
13085 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13086 break;
13087 }
13088 do_subi_i:
13089 used_at = 1;
13090 load_register (AT, &imm_expr, dbl);
13091 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13092 break;
13093
13094 case M_TEQ_I:
13095 s = "teq";
13096 goto trap;
13097 case M_TGE_I:
13098 s = "tge";
13099 goto trap;
13100 case M_TGEU_I:
13101 s = "tgeu";
13102 goto trap;
13103 case M_TLT_I:
13104 s = "tlt";
13105 goto trap;
13106 case M_TLTU_I:
13107 s = "tltu";
13108 goto trap;
13109 case M_TNE_I:
13110 s = "tne";
13111 trap:
13112 used_at = 1;
13113 load_register (AT, &imm_expr, GPR_SIZE == 64);
13114 macro_build (NULL, s, "s,t", op[0], AT);
13115 break;
13116
13117 case M_TRUNCWS:
13118 case M_TRUNCWD:
13119 gas_assert (!mips_opts.micromips);
13120 gas_assert (mips_opts.isa == ISA_MIPS1);
13121 used_at = 1;
13122
13123 /*
13124 * Is the double cfc1 instruction a bug in the mips assembler;
13125 * or is there a reason for it?
13126 */
13127 start_noreorder ();
13128 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13129 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13130 macro_build (NULL, "nop", "");
13131 expr1.X_add_number = 3;
13132 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13133 expr1.X_add_number = 2;
13134 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13135 macro_build (NULL, "ctc1", "t,G", AT, RA);
13136 macro_build (NULL, "nop", "");
13137 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13138 op[0], op[1]);
13139 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13140 macro_build (NULL, "nop", "");
13141 end_noreorder ();
13142 break;
13143
13144 case M_ULH_AB:
13145 s = "lb";
13146 s2 = "lbu";
13147 off = 1;
13148 goto uld_st;
13149 case M_ULHU_AB:
13150 s = "lbu";
13151 s2 = "lbu";
13152 off = 1;
13153 goto uld_st;
13154 case M_ULW_AB:
13155 s = "lwl";
13156 s2 = "lwr";
13157 offbits = (mips_opts.micromips ? 12 : 16);
13158 off = 3;
13159 goto uld_st;
13160 case M_ULD_AB:
13161 s = "ldl";
13162 s2 = "ldr";
13163 offbits = (mips_opts.micromips ? 12 : 16);
13164 off = 7;
13165 goto uld_st;
13166 case M_USH_AB:
13167 s = "sb";
13168 s2 = "sb";
13169 off = 1;
13170 ust = 1;
13171 goto uld_st;
13172 case M_USW_AB:
13173 s = "swl";
13174 s2 = "swr";
13175 offbits = (mips_opts.micromips ? 12 : 16);
13176 off = 3;
13177 ust = 1;
13178 goto uld_st;
13179 case M_USD_AB:
13180 s = "sdl";
13181 s2 = "sdr";
13182 offbits = (mips_opts.micromips ? 12 : 16);
13183 off = 7;
13184 ust = 1;
13185
13186 uld_st:
13187 breg = op[2];
13188 large_offset = !small_offset_p (off, align, offbits);
13189 ep = &offset_expr;
13190 expr1.X_add_number = 0;
13191 if (large_offset)
13192 {
13193 used_at = 1;
13194 tempreg = AT;
13195 if (small_offset_p (0, align, 16))
13196 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13197 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13198 else
13199 {
13200 load_address (tempreg, ep, &used_at);
13201 if (breg != 0)
13202 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13203 tempreg, tempreg, breg);
13204 }
13205 offset_reloc[0] = BFD_RELOC_LO16;
13206 offset_reloc[1] = BFD_RELOC_UNUSED;
13207 offset_reloc[2] = BFD_RELOC_UNUSED;
13208 breg = tempreg;
13209 tempreg = op[0];
13210 ep = &expr1;
13211 }
13212 else if (!ust && op[0] == breg)
13213 {
13214 used_at = 1;
13215 tempreg = AT;
13216 }
13217 else
13218 tempreg = op[0];
13219
13220 if (off == 1)
13221 goto ulh_sh;
13222
13223 if (!target_big_endian)
13224 ep->X_add_number += off;
13225 if (offbits == 12)
13226 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13227 else
13228 macro_build (ep, s, "t,o(b)", tempreg, -1,
13229 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13230
13231 if (!target_big_endian)
13232 ep->X_add_number -= off;
13233 else
13234 ep->X_add_number += off;
13235 if (offbits == 12)
13236 macro_build (NULL, s2, "t,~(b)",
13237 tempreg, (int) ep->X_add_number, breg);
13238 else
13239 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13240 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13241
13242 /* If necessary, move the result in tempreg to the final destination. */
13243 if (!ust && op[0] != tempreg)
13244 {
13245 /* Protect second load's delay slot. */
13246 load_delay_nop ();
13247 move_register (op[0], tempreg);
13248 }
13249 break;
13250
13251 ulh_sh:
13252 used_at = 1;
13253 if (target_big_endian == ust)
13254 ep->X_add_number += off;
13255 tempreg = ust || large_offset ? op[0] : AT;
13256 macro_build (ep, s, "t,o(b)", tempreg, -1,
13257 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13258
13259 /* For halfword transfers we need a temporary register to shuffle
13260 bytes. Unfortunately for M_USH_A we have none available before
13261 the next store as AT holds the base address. We deal with this
13262 case by clobbering TREG and then restoring it as with ULH. */
13263 tempreg = ust == large_offset ? op[0] : AT;
13264 if (ust)
13265 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13266
13267 if (target_big_endian == ust)
13268 ep->X_add_number -= off;
13269 else
13270 ep->X_add_number += off;
13271 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13272 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13273
13274 /* For M_USH_A re-retrieve the LSB. */
13275 if (ust && large_offset)
13276 {
13277 if (target_big_endian)
13278 ep->X_add_number += off;
13279 else
13280 ep->X_add_number -= off;
13281 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13282 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13283 }
13284 /* For ULH and M_USH_A OR the LSB in. */
13285 if (!ust || large_offset)
13286 {
13287 tempreg = !large_offset ? AT : op[0];
13288 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13289 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13290 }
13291 break;
13292
13293 default:
13294 /* FIXME: Check if this is one of the itbl macros, since they
13295 are added dynamically. */
13296 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13297 break;
13298 }
13299 if (!mips_opts.at && used_at)
13300 as_bad (_("macro used $at after \".set noat\""));
13301 }
13302
13303 /* Implement macros in mips16 mode. */
13304
13305 static void
13306 mips16_macro (struct mips_cl_insn *ip)
13307 {
13308 const struct mips_operand_array *operands;
13309 int mask;
13310 int tmp;
13311 expressionS expr1;
13312 int dbl;
13313 const char *s, *s2, *s3;
13314 unsigned int op[MAX_OPERANDS];
13315 unsigned int i;
13316
13317 mask = ip->insn_mo->mask;
13318
13319 operands = insn_operands (ip);
13320 for (i = 0; i < MAX_OPERANDS; i++)
13321 if (operands->operand[i])
13322 op[i] = insn_extract_operand (ip, operands->operand[i]);
13323 else
13324 op[i] = -1;
13325
13326 expr1.X_op = O_constant;
13327 expr1.X_op_symbol = NULL;
13328 expr1.X_add_symbol = NULL;
13329 expr1.X_add_number = 1;
13330
13331 dbl = 0;
13332
13333 switch (mask)
13334 {
13335 default:
13336 abort ();
13337
13338 case M_DDIV_3:
13339 dbl = 1;
13340 case M_DIV_3:
13341 s = "mflo";
13342 goto do_div3;
13343 case M_DREM_3:
13344 dbl = 1;
13345 case M_REM_3:
13346 s = "mfhi";
13347 do_div3:
13348 start_noreorder ();
13349 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13350 expr1.X_add_number = 2;
13351 macro_build (&expr1, "bnez", "x,p", op[2]);
13352 macro_build (NULL, "break", "6", 7);
13353
13354 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13355 since that causes an overflow. We should do that as well,
13356 but I don't see how to do the comparisons without a temporary
13357 register. */
13358 end_noreorder ();
13359 macro_build (NULL, s, "x", op[0]);
13360 break;
13361
13362 case M_DIVU_3:
13363 s = "divu";
13364 s2 = "mflo";
13365 goto do_divu3;
13366 case M_REMU_3:
13367 s = "divu";
13368 s2 = "mfhi";
13369 goto do_divu3;
13370 case M_DDIVU_3:
13371 s = "ddivu";
13372 s2 = "mflo";
13373 goto do_divu3;
13374 case M_DREMU_3:
13375 s = "ddivu";
13376 s2 = "mfhi";
13377 do_divu3:
13378 start_noreorder ();
13379 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13380 expr1.X_add_number = 2;
13381 macro_build (&expr1, "bnez", "x,p", op[2]);
13382 macro_build (NULL, "break", "6", 7);
13383 end_noreorder ();
13384 macro_build (NULL, s2, "x", op[0]);
13385 break;
13386
13387 case M_DMUL:
13388 dbl = 1;
13389 case M_MUL:
13390 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13391 macro_build (NULL, "mflo", "x", op[0]);
13392 break;
13393
13394 case M_DSUBU_I:
13395 dbl = 1;
13396 goto do_subu;
13397 case M_SUBU_I:
13398 do_subu:
13399 imm_expr.X_add_number = -imm_expr.X_add_number;
13400 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13401 break;
13402
13403 case M_SUBU_I_2:
13404 imm_expr.X_add_number = -imm_expr.X_add_number;
13405 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13406 break;
13407
13408 case M_DSUBU_I_2:
13409 imm_expr.X_add_number = -imm_expr.X_add_number;
13410 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13411 break;
13412
13413 case M_BEQ:
13414 s = "cmp";
13415 s2 = "bteqz";
13416 goto do_branch;
13417 case M_BNE:
13418 s = "cmp";
13419 s2 = "btnez";
13420 goto do_branch;
13421 case M_BLT:
13422 s = "slt";
13423 s2 = "btnez";
13424 goto do_branch;
13425 case M_BLTU:
13426 s = "sltu";
13427 s2 = "btnez";
13428 goto do_branch;
13429 case M_BLE:
13430 s = "slt";
13431 s2 = "bteqz";
13432 goto do_reverse_branch;
13433 case M_BLEU:
13434 s = "sltu";
13435 s2 = "bteqz";
13436 goto do_reverse_branch;
13437 case M_BGE:
13438 s = "slt";
13439 s2 = "bteqz";
13440 goto do_branch;
13441 case M_BGEU:
13442 s = "sltu";
13443 s2 = "bteqz";
13444 goto do_branch;
13445 case M_BGT:
13446 s = "slt";
13447 s2 = "btnez";
13448 goto do_reverse_branch;
13449 case M_BGTU:
13450 s = "sltu";
13451 s2 = "btnez";
13452
13453 do_reverse_branch:
13454 tmp = op[1];
13455 op[1] = op[0];
13456 op[0] = tmp;
13457
13458 do_branch:
13459 macro_build (NULL, s, "x,y", op[0], op[1]);
13460 macro_build (&offset_expr, s2, "p");
13461 break;
13462
13463 case M_BEQ_I:
13464 s = "cmpi";
13465 s2 = "bteqz";
13466 s3 = "x,U";
13467 goto do_branch_i;
13468 case M_BNE_I:
13469 s = "cmpi";
13470 s2 = "btnez";
13471 s3 = "x,U";
13472 goto do_branch_i;
13473 case M_BLT_I:
13474 s = "slti";
13475 s2 = "btnez";
13476 s3 = "x,8";
13477 goto do_branch_i;
13478 case M_BLTU_I:
13479 s = "sltiu";
13480 s2 = "btnez";
13481 s3 = "x,8";
13482 goto do_branch_i;
13483 case M_BLE_I:
13484 s = "slti";
13485 s2 = "btnez";
13486 s3 = "x,8";
13487 goto do_addone_branch_i;
13488 case M_BLEU_I:
13489 s = "sltiu";
13490 s2 = "btnez";
13491 s3 = "x,8";
13492 goto do_addone_branch_i;
13493 case M_BGE_I:
13494 s = "slti";
13495 s2 = "bteqz";
13496 s3 = "x,8";
13497 goto do_branch_i;
13498 case M_BGEU_I:
13499 s = "sltiu";
13500 s2 = "bteqz";
13501 s3 = "x,8";
13502 goto do_branch_i;
13503 case M_BGT_I:
13504 s = "slti";
13505 s2 = "bteqz";
13506 s3 = "x,8";
13507 goto do_addone_branch_i;
13508 case M_BGTU_I:
13509 s = "sltiu";
13510 s2 = "bteqz";
13511 s3 = "x,8";
13512
13513 do_addone_branch_i:
13514 ++imm_expr.X_add_number;
13515
13516 do_branch_i:
13517 macro_build (&imm_expr, s, s3, op[0]);
13518 macro_build (&offset_expr, s2, "p");
13519 break;
13520
13521 case M_ABS:
13522 expr1.X_add_number = 0;
13523 macro_build (&expr1, "slti", "x,8", op[1]);
13524 if (op[0] != op[1])
13525 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13526 expr1.X_add_number = 2;
13527 macro_build (&expr1, "bteqz", "p");
13528 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13529 break;
13530 }
13531 }
13532
13533 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13534 opcode bits in *OPCODE_EXTRA. */
13535
13536 static struct mips_opcode *
13537 mips_lookup_insn (struct hash_control *hash, const char *start,
13538 ssize_t length, unsigned int *opcode_extra)
13539 {
13540 char *name, *dot, *p;
13541 unsigned int mask, suffix;
13542 ssize_t opend;
13543 struct mips_opcode *insn;
13544
13545 /* Make a copy of the instruction so that we can fiddle with it. */
13546 name = xstrndup (start, length);
13547
13548 /* Look up the instruction as-is. */
13549 insn = (struct mips_opcode *) hash_find (hash, name);
13550 if (insn)
13551 goto end;
13552
13553 dot = strchr (name, '.');
13554 if (dot && dot[1])
13555 {
13556 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13557 p = mips_parse_vu0_channels (dot + 1, &mask);
13558 if (*p == 0 && mask != 0)
13559 {
13560 *dot = 0;
13561 insn = (struct mips_opcode *) hash_find (hash, name);
13562 *dot = '.';
13563 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13564 {
13565 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13566 goto end;
13567 }
13568 }
13569 }
13570
13571 if (mips_opts.micromips)
13572 {
13573 /* See if there's an instruction size override suffix,
13574 either `16' or `32', at the end of the mnemonic proper,
13575 that defines the operation, i.e. before the first `.'
13576 character if any. Strip it and retry. */
13577 opend = dot != NULL ? dot - name : length;
13578 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13579 suffix = 2;
13580 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13581 suffix = 4;
13582 else
13583 suffix = 0;
13584 if (suffix)
13585 {
13586 memcpy (name + opend - 2, name + opend, length - opend + 1);
13587 insn = (struct mips_opcode *) hash_find (hash, name);
13588 if (insn)
13589 {
13590 forced_insn_length = suffix;
13591 goto end;
13592 }
13593 }
13594 }
13595
13596 insn = NULL;
13597 end:
13598 free (name);
13599 return insn;
13600 }
13601
13602 /* Assemble an instruction into its binary format. If the instruction
13603 is a macro, set imm_expr and offset_expr to the values associated
13604 with "I" and "A" operands respectively. Otherwise store the value
13605 of the relocatable field (if any) in offset_expr. In both cases
13606 set offset_reloc to the relocation operators applied to offset_expr. */
13607
13608 static void
13609 mips_ip (char *str, struct mips_cl_insn *insn)
13610 {
13611 const struct mips_opcode *first, *past;
13612 struct hash_control *hash;
13613 char format;
13614 size_t end;
13615 struct mips_operand_token *tokens;
13616 unsigned int opcode_extra;
13617
13618 if (mips_opts.micromips)
13619 {
13620 hash = micromips_op_hash;
13621 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13622 }
13623 else
13624 {
13625 hash = op_hash;
13626 past = &mips_opcodes[NUMOPCODES];
13627 }
13628 forced_insn_length = 0;
13629 opcode_extra = 0;
13630
13631 /* We first try to match an instruction up to a space or to the end. */
13632 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13633 continue;
13634
13635 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13636 if (first == NULL)
13637 {
13638 set_insn_error (0, _("unrecognized opcode"));
13639 return;
13640 }
13641
13642 if (strcmp (first->name, "li.s") == 0)
13643 format = 'f';
13644 else if (strcmp (first->name, "li.d") == 0)
13645 format = 'd';
13646 else
13647 format = 0;
13648 tokens = mips_parse_arguments (str + end, format);
13649 if (!tokens)
13650 return;
13651
13652 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13653 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13654 set_insn_error (0, _("invalid operands"));
13655
13656 obstack_free (&mips_operand_tokens, tokens);
13657 }
13658
13659 /* As for mips_ip, but used when assembling MIPS16 code.
13660 Also set forced_insn_length to the resulting instruction size in
13661 bytes if the user explicitly requested a small or extended instruction. */
13662
13663 static void
13664 mips16_ip (char *str, struct mips_cl_insn *insn)
13665 {
13666 char *end, *s, c;
13667 struct mips_opcode *first;
13668 struct mips_operand_token *tokens;
13669
13670 forced_insn_length = 0;
13671
13672 for (s = str; ISLOWER (*s); ++s)
13673 ;
13674 end = s;
13675 c = *end;
13676 switch (c)
13677 {
13678 case '\0':
13679 break;
13680
13681 case ' ':
13682 s++;
13683 break;
13684
13685 case '.':
13686 if (s[1] == 't' && s[2] == ' ')
13687 {
13688 forced_insn_length = 2;
13689 s += 3;
13690 break;
13691 }
13692 else if (s[1] == 'e' && s[2] == ' ')
13693 {
13694 forced_insn_length = 4;
13695 s += 3;
13696 break;
13697 }
13698 /* Fall through. */
13699 default:
13700 set_insn_error (0, _("unrecognized opcode"));
13701 return;
13702 }
13703
13704 if (mips_opts.noautoextend && !forced_insn_length)
13705 forced_insn_length = 2;
13706
13707 *end = 0;
13708 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13709 *end = c;
13710
13711 if (!first)
13712 {
13713 set_insn_error (0, _("unrecognized opcode"));
13714 return;
13715 }
13716
13717 tokens = mips_parse_arguments (s, 0);
13718 if (!tokens)
13719 return;
13720
13721 if (!match_mips16_insns (insn, first, tokens))
13722 set_insn_error (0, _("invalid operands"));
13723
13724 obstack_free (&mips_operand_tokens, tokens);
13725 }
13726
13727 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13728 NBITS is the number of significant bits in VAL. */
13729
13730 static unsigned long
13731 mips16_immed_extend (offsetT val, unsigned int nbits)
13732 {
13733 int extval;
13734 if (nbits == 16)
13735 {
13736 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13737 val &= 0x1f;
13738 }
13739 else if (nbits == 15)
13740 {
13741 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13742 val &= 0xf;
13743 }
13744 else
13745 {
13746 extval = ((val & 0x1f) << 6) | (val & 0x20);
13747 val = 0;
13748 }
13749 return (extval << 16) | val;
13750 }
13751
13752 /* Like decode_mips16_operand, but require the operand to be defined and
13753 require it to be an integer. */
13754
13755 static const struct mips_int_operand *
13756 mips16_immed_operand (int type, bfd_boolean extended_p)
13757 {
13758 const struct mips_operand *operand;
13759
13760 operand = decode_mips16_operand (type, extended_p);
13761 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13762 abort ();
13763 return (const struct mips_int_operand *) operand;
13764 }
13765
13766 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13767
13768 static bfd_boolean
13769 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13770 bfd_reloc_code_real_type reloc, offsetT sval)
13771 {
13772 int min_val, max_val;
13773
13774 min_val = mips_int_operand_min (operand);
13775 max_val = mips_int_operand_max (operand);
13776 if (reloc != BFD_RELOC_UNUSED)
13777 {
13778 if (min_val < 0)
13779 sval = SEXT_16BIT (sval);
13780 else
13781 sval &= 0xffff;
13782 }
13783
13784 return (sval >= min_val
13785 && sval <= max_val
13786 && (sval & ((1 << operand->shift) - 1)) == 0);
13787 }
13788
13789 /* Install immediate value VAL into MIPS16 instruction *INSN,
13790 extending it if necessary. The instruction in *INSN may
13791 already be extended.
13792
13793 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13794 if none. In the former case, VAL is a 16-bit number with no
13795 defined signedness.
13796
13797 TYPE is the type of the immediate field. USER_INSN_LENGTH
13798 is the length that the user requested, or 0 if none. */
13799
13800 static void
13801 mips16_immed (const char *file, unsigned int line, int type,
13802 bfd_reloc_code_real_type reloc, offsetT val,
13803 unsigned int user_insn_length, unsigned long *insn)
13804 {
13805 const struct mips_int_operand *operand;
13806 unsigned int uval, length;
13807
13808 operand = mips16_immed_operand (type, FALSE);
13809 if (!mips16_immed_in_range_p (operand, reloc, val))
13810 {
13811 /* We need an extended instruction. */
13812 if (user_insn_length == 2)
13813 as_bad_where (file, line, _("invalid unextended operand value"));
13814 else
13815 *insn |= MIPS16_EXTEND;
13816 }
13817 else if (user_insn_length == 4)
13818 {
13819 /* The operand doesn't force an unextended instruction to be extended.
13820 Warn if the user wanted an extended instruction anyway. */
13821 *insn |= MIPS16_EXTEND;
13822 as_warn_where (file, line,
13823 _("extended operand requested but not required"));
13824 }
13825
13826 length = mips16_opcode_length (*insn);
13827 if (length == 4)
13828 {
13829 operand = mips16_immed_operand (type, TRUE);
13830 if (!mips16_immed_in_range_p (operand, reloc, val))
13831 as_bad_where (file, line,
13832 _("operand value out of range for instruction"));
13833 }
13834 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13835 if (length == 2)
13836 *insn = mips_insert_operand (&operand->root, *insn, uval);
13837 else
13838 *insn |= mips16_immed_extend (uval, operand->root.size);
13839 }
13840 \f
13841 struct percent_op_match
13842 {
13843 const char *str;
13844 bfd_reloc_code_real_type reloc;
13845 };
13846
13847 static const struct percent_op_match mips_percent_op[] =
13848 {
13849 {"%lo", BFD_RELOC_LO16},
13850 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13851 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13852 {"%call16", BFD_RELOC_MIPS_CALL16},
13853 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13854 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13855 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13856 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13857 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13858 {"%got", BFD_RELOC_MIPS_GOT16},
13859 {"%gp_rel", BFD_RELOC_GPREL16},
13860 {"%half", BFD_RELOC_16},
13861 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13862 {"%higher", BFD_RELOC_MIPS_HIGHER},
13863 {"%neg", BFD_RELOC_MIPS_SUB},
13864 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13865 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13866 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13867 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13868 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13869 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13870 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13871 {"%hi", BFD_RELOC_HI16_S},
13872 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13873 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13874 };
13875
13876 static const struct percent_op_match mips16_percent_op[] =
13877 {
13878 {"%lo", BFD_RELOC_MIPS16_LO16},
13879 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13880 {"%got", BFD_RELOC_MIPS16_GOT16},
13881 {"%call16", BFD_RELOC_MIPS16_CALL16},
13882 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13883 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13884 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13885 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13886 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13887 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13888 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13889 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13890 };
13891
13892
13893 /* Return true if *STR points to a relocation operator. When returning true,
13894 move *STR over the operator and store its relocation code in *RELOC.
13895 Leave both *STR and *RELOC alone when returning false. */
13896
13897 static bfd_boolean
13898 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13899 {
13900 const struct percent_op_match *percent_op;
13901 size_t limit, i;
13902
13903 if (mips_opts.mips16)
13904 {
13905 percent_op = mips16_percent_op;
13906 limit = ARRAY_SIZE (mips16_percent_op);
13907 }
13908 else
13909 {
13910 percent_op = mips_percent_op;
13911 limit = ARRAY_SIZE (mips_percent_op);
13912 }
13913
13914 for (i = 0; i < limit; i++)
13915 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13916 {
13917 int len = strlen (percent_op[i].str);
13918
13919 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13920 continue;
13921
13922 *str += strlen (percent_op[i].str);
13923 *reloc = percent_op[i].reloc;
13924
13925 /* Check whether the output BFD supports this relocation.
13926 If not, issue an error and fall back on something safe. */
13927 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13928 {
13929 as_bad (_("relocation %s isn't supported by the current ABI"),
13930 percent_op[i].str);
13931 *reloc = BFD_RELOC_UNUSED;
13932 }
13933 return TRUE;
13934 }
13935 return FALSE;
13936 }
13937
13938
13939 /* Parse string STR as a 16-bit relocatable operand. Store the
13940 expression in *EP and the relocations in the array starting
13941 at RELOC. Return the number of relocation operators used.
13942
13943 On exit, EXPR_END points to the first character after the expression. */
13944
13945 static size_t
13946 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13947 char *str)
13948 {
13949 bfd_reloc_code_real_type reversed_reloc[3];
13950 size_t reloc_index, i;
13951 int crux_depth, str_depth;
13952 char *crux;
13953
13954 /* Search for the start of the main expression, recoding relocations
13955 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13956 of the main expression and with CRUX_DEPTH containing the number
13957 of open brackets at that point. */
13958 reloc_index = -1;
13959 str_depth = 0;
13960 do
13961 {
13962 reloc_index++;
13963 crux = str;
13964 crux_depth = str_depth;
13965
13966 /* Skip over whitespace and brackets, keeping count of the number
13967 of brackets. */
13968 while (*str == ' ' || *str == '\t' || *str == '(')
13969 if (*str++ == '(')
13970 str_depth++;
13971 }
13972 while (*str == '%'
13973 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13974 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13975
13976 my_getExpression (ep, crux);
13977 str = expr_end;
13978
13979 /* Match every open bracket. */
13980 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13981 if (*str++ == ')')
13982 crux_depth--;
13983
13984 if (crux_depth > 0)
13985 as_bad (_("unclosed '('"));
13986
13987 expr_end = str;
13988
13989 if (reloc_index != 0)
13990 {
13991 prev_reloc_op_frag = frag_now;
13992 for (i = 0; i < reloc_index; i++)
13993 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13994 }
13995
13996 return reloc_index;
13997 }
13998
13999 static void
14000 my_getExpression (expressionS *ep, char *str)
14001 {
14002 char *save_in;
14003
14004 save_in = input_line_pointer;
14005 input_line_pointer = str;
14006 expression (ep);
14007 expr_end = input_line_pointer;
14008 input_line_pointer = save_in;
14009 }
14010
14011 const char *
14012 md_atof (int type, char *litP, int *sizeP)
14013 {
14014 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14015 }
14016
14017 void
14018 md_number_to_chars (char *buf, valueT val, int n)
14019 {
14020 if (target_big_endian)
14021 number_to_chars_bigendian (buf, val, n);
14022 else
14023 number_to_chars_littleendian (buf, val, n);
14024 }
14025 \f
14026 static int support_64bit_objects(void)
14027 {
14028 const char **list, **l;
14029 int yes;
14030
14031 list = bfd_target_list ();
14032 for (l = list; *l != NULL; l++)
14033 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14034 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14035 break;
14036 yes = (*l != NULL);
14037 free (list);
14038 return yes;
14039 }
14040
14041 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14042 NEW_VALUE. Warn if another value was already specified. Note:
14043 we have to defer parsing the -march and -mtune arguments in order
14044 to handle 'from-abi' correctly, since the ABI might be specified
14045 in a later argument. */
14046
14047 static void
14048 mips_set_option_string (const char **string_ptr, const char *new_value)
14049 {
14050 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14051 as_warn (_("a different %s was already specified, is now %s"),
14052 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14053 new_value);
14054
14055 *string_ptr = new_value;
14056 }
14057
14058 int
14059 md_parse_option (int c, const char *arg)
14060 {
14061 unsigned int i;
14062
14063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14064 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14065 {
14066 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14067 c == mips_ases[i].option_on);
14068 return 1;
14069 }
14070
14071 switch (c)
14072 {
14073 case OPTION_CONSTRUCT_FLOATS:
14074 mips_disable_float_construction = 0;
14075 break;
14076
14077 case OPTION_NO_CONSTRUCT_FLOATS:
14078 mips_disable_float_construction = 1;
14079 break;
14080
14081 case OPTION_TRAP:
14082 mips_trap = 1;
14083 break;
14084
14085 case OPTION_BREAK:
14086 mips_trap = 0;
14087 break;
14088
14089 case OPTION_EB:
14090 target_big_endian = 1;
14091 break;
14092
14093 case OPTION_EL:
14094 target_big_endian = 0;
14095 break;
14096
14097 case 'O':
14098 if (arg == NULL)
14099 mips_optimize = 1;
14100 else if (arg[0] == '0')
14101 mips_optimize = 0;
14102 else if (arg[0] == '1')
14103 mips_optimize = 1;
14104 else
14105 mips_optimize = 2;
14106 break;
14107
14108 case 'g':
14109 if (arg == NULL)
14110 mips_debug = 2;
14111 else
14112 mips_debug = atoi (arg);
14113 break;
14114
14115 case OPTION_MIPS1:
14116 file_mips_opts.isa = ISA_MIPS1;
14117 break;
14118
14119 case OPTION_MIPS2:
14120 file_mips_opts.isa = ISA_MIPS2;
14121 break;
14122
14123 case OPTION_MIPS3:
14124 file_mips_opts.isa = ISA_MIPS3;
14125 break;
14126
14127 case OPTION_MIPS4:
14128 file_mips_opts.isa = ISA_MIPS4;
14129 break;
14130
14131 case OPTION_MIPS5:
14132 file_mips_opts.isa = ISA_MIPS5;
14133 break;
14134
14135 case OPTION_MIPS32:
14136 file_mips_opts.isa = ISA_MIPS32;
14137 break;
14138
14139 case OPTION_MIPS32R2:
14140 file_mips_opts.isa = ISA_MIPS32R2;
14141 break;
14142
14143 case OPTION_MIPS32R3:
14144 file_mips_opts.isa = ISA_MIPS32R3;
14145 break;
14146
14147 case OPTION_MIPS32R5:
14148 file_mips_opts.isa = ISA_MIPS32R5;
14149 break;
14150
14151 case OPTION_MIPS32R6:
14152 file_mips_opts.isa = ISA_MIPS32R6;
14153 break;
14154
14155 case OPTION_MIPS64R2:
14156 file_mips_opts.isa = ISA_MIPS64R2;
14157 break;
14158
14159 case OPTION_MIPS64R3:
14160 file_mips_opts.isa = ISA_MIPS64R3;
14161 break;
14162
14163 case OPTION_MIPS64R5:
14164 file_mips_opts.isa = ISA_MIPS64R5;
14165 break;
14166
14167 case OPTION_MIPS64R6:
14168 file_mips_opts.isa = ISA_MIPS64R6;
14169 break;
14170
14171 case OPTION_MIPS64:
14172 file_mips_opts.isa = ISA_MIPS64;
14173 break;
14174
14175 case OPTION_MTUNE:
14176 mips_set_option_string (&mips_tune_string, arg);
14177 break;
14178
14179 case OPTION_MARCH:
14180 mips_set_option_string (&mips_arch_string, arg);
14181 break;
14182
14183 case OPTION_M4650:
14184 mips_set_option_string (&mips_arch_string, "4650");
14185 mips_set_option_string (&mips_tune_string, "4650");
14186 break;
14187
14188 case OPTION_NO_M4650:
14189 break;
14190
14191 case OPTION_M4010:
14192 mips_set_option_string (&mips_arch_string, "4010");
14193 mips_set_option_string (&mips_tune_string, "4010");
14194 break;
14195
14196 case OPTION_NO_M4010:
14197 break;
14198
14199 case OPTION_M4100:
14200 mips_set_option_string (&mips_arch_string, "4100");
14201 mips_set_option_string (&mips_tune_string, "4100");
14202 break;
14203
14204 case OPTION_NO_M4100:
14205 break;
14206
14207 case OPTION_M3900:
14208 mips_set_option_string (&mips_arch_string, "3900");
14209 mips_set_option_string (&mips_tune_string, "3900");
14210 break;
14211
14212 case OPTION_NO_M3900:
14213 break;
14214
14215 case OPTION_MICROMIPS:
14216 if (file_mips_opts.mips16 == 1)
14217 {
14218 as_bad (_("-mmicromips cannot be used with -mips16"));
14219 return 0;
14220 }
14221 file_mips_opts.micromips = 1;
14222 mips_no_prev_insn ();
14223 break;
14224
14225 case OPTION_NO_MICROMIPS:
14226 file_mips_opts.micromips = 0;
14227 mips_no_prev_insn ();
14228 break;
14229
14230 case OPTION_MIPS16:
14231 if (file_mips_opts.micromips == 1)
14232 {
14233 as_bad (_("-mips16 cannot be used with -micromips"));
14234 return 0;
14235 }
14236 file_mips_opts.mips16 = 1;
14237 mips_no_prev_insn ();
14238 break;
14239
14240 case OPTION_NO_MIPS16:
14241 file_mips_opts.mips16 = 0;
14242 mips_no_prev_insn ();
14243 break;
14244
14245 case OPTION_FIX_24K:
14246 mips_fix_24k = 1;
14247 break;
14248
14249 case OPTION_NO_FIX_24K:
14250 mips_fix_24k = 0;
14251 break;
14252
14253 case OPTION_FIX_RM7000:
14254 mips_fix_rm7000 = 1;
14255 break;
14256
14257 case OPTION_NO_FIX_RM7000:
14258 mips_fix_rm7000 = 0;
14259 break;
14260
14261 case OPTION_FIX_LOONGSON2F_JUMP:
14262 mips_fix_loongson2f_jump = TRUE;
14263 break;
14264
14265 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14266 mips_fix_loongson2f_jump = FALSE;
14267 break;
14268
14269 case OPTION_FIX_LOONGSON2F_NOP:
14270 mips_fix_loongson2f_nop = TRUE;
14271 break;
14272
14273 case OPTION_NO_FIX_LOONGSON2F_NOP:
14274 mips_fix_loongson2f_nop = FALSE;
14275 break;
14276
14277 case OPTION_FIX_VR4120:
14278 mips_fix_vr4120 = 1;
14279 break;
14280
14281 case OPTION_NO_FIX_VR4120:
14282 mips_fix_vr4120 = 0;
14283 break;
14284
14285 case OPTION_FIX_VR4130:
14286 mips_fix_vr4130 = 1;
14287 break;
14288
14289 case OPTION_NO_FIX_VR4130:
14290 mips_fix_vr4130 = 0;
14291 break;
14292
14293 case OPTION_FIX_CN63XXP1:
14294 mips_fix_cn63xxp1 = TRUE;
14295 break;
14296
14297 case OPTION_NO_FIX_CN63XXP1:
14298 mips_fix_cn63xxp1 = FALSE;
14299 break;
14300
14301 case OPTION_RELAX_BRANCH:
14302 mips_relax_branch = 1;
14303 break;
14304
14305 case OPTION_NO_RELAX_BRANCH:
14306 mips_relax_branch = 0;
14307 break;
14308
14309 case OPTION_INSN32:
14310 file_mips_opts.insn32 = TRUE;
14311 break;
14312
14313 case OPTION_NO_INSN32:
14314 file_mips_opts.insn32 = FALSE;
14315 break;
14316
14317 case OPTION_MSHARED:
14318 mips_in_shared = TRUE;
14319 break;
14320
14321 case OPTION_MNO_SHARED:
14322 mips_in_shared = FALSE;
14323 break;
14324
14325 case OPTION_MSYM32:
14326 file_mips_opts.sym32 = TRUE;
14327 break;
14328
14329 case OPTION_MNO_SYM32:
14330 file_mips_opts.sym32 = FALSE;
14331 break;
14332
14333 /* When generating ELF code, we permit -KPIC and -call_shared to
14334 select SVR4_PIC, and -non_shared to select no PIC. This is
14335 intended to be compatible with Irix 5. */
14336 case OPTION_CALL_SHARED:
14337 mips_pic = SVR4_PIC;
14338 mips_abicalls = TRUE;
14339 break;
14340
14341 case OPTION_CALL_NONPIC:
14342 mips_pic = NO_PIC;
14343 mips_abicalls = TRUE;
14344 break;
14345
14346 case OPTION_NON_SHARED:
14347 mips_pic = NO_PIC;
14348 mips_abicalls = FALSE;
14349 break;
14350
14351 /* The -xgot option tells the assembler to use 32 bit offsets
14352 when accessing the got in SVR4_PIC mode. It is for Irix
14353 compatibility. */
14354 case OPTION_XGOT:
14355 mips_big_got = 1;
14356 break;
14357
14358 case 'G':
14359 g_switch_value = atoi (arg);
14360 g_switch_seen = 1;
14361 break;
14362
14363 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14364 and -mabi=64. */
14365 case OPTION_32:
14366 mips_abi = O32_ABI;
14367 break;
14368
14369 case OPTION_N32:
14370 mips_abi = N32_ABI;
14371 break;
14372
14373 case OPTION_64:
14374 mips_abi = N64_ABI;
14375 if (!support_64bit_objects())
14376 as_fatal (_("no compiled in support for 64 bit object file format"));
14377 break;
14378
14379 case OPTION_GP32:
14380 file_mips_opts.gp = 32;
14381 break;
14382
14383 case OPTION_GP64:
14384 file_mips_opts.gp = 64;
14385 break;
14386
14387 case OPTION_FP32:
14388 file_mips_opts.fp = 32;
14389 break;
14390
14391 case OPTION_FPXX:
14392 file_mips_opts.fp = 0;
14393 break;
14394
14395 case OPTION_FP64:
14396 file_mips_opts.fp = 64;
14397 break;
14398
14399 case OPTION_ODD_SPREG:
14400 file_mips_opts.oddspreg = 1;
14401 break;
14402
14403 case OPTION_NO_ODD_SPREG:
14404 file_mips_opts.oddspreg = 0;
14405 break;
14406
14407 case OPTION_SINGLE_FLOAT:
14408 file_mips_opts.single_float = 1;
14409 break;
14410
14411 case OPTION_DOUBLE_FLOAT:
14412 file_mips_opts.single_float = 0;
14413 break;
14414
14415 case OPTION_SOFT_FLOAT:
14416 file_mips_opts.soft_float = 1;
14417 break;
14418
14419 case OPTION_HARD_FLOAT:
14420 file_mips_opts.soft_float = 0;
14421 break;
14422
14423 case OPTION_MABI:
14424 if (strcmp (arg, "32") == 0)
14425 mips_abi = O32_ABI;
14426 else if (strcmp (arg, "o64") == 0)
14427 mips_abi = O64_ABI;
14428 else if (strcmp (arg, "n32") == 0)
14429 mips_abi = N32_ABI;
14430 else if (strcmp (arg, "64") == 0)
14431 {
14432 mips_abi = N64_ABI;
14433 if (! support_64bit_objects())
14434 as_fatal (_("no compiled in support for 64 bit object file "
14435 "format"));
14436 }
14437 else if (strcmp (arg, "eabi") == 0)
14438 mips_abi = EABI_ABI;
14439 else
14440 {
14441 as_fatal (_("invalid abi -mabi=%s"), arg);
14442 return 0;
14443 }
14444 break;
14445
14446 case OPTION_M7000_HILO_FIX:
14447 mips_7000_hilo_fix = TRUE;
14448 break;
14449
14450 case OPTION_MNO_7000_HILO_FIX:
14451 mips_7000_hilo_fix = FALSE;
14452 break;
14453
14454 case OPTION_MDEBUG:
14455 mips_flag_mdebug = TRUE;
14456 break;
14457
14458 case OPTION_NO_MDEBUG:
14459 mips_flag_mdebug = FALSE;
14460 break;
14461
14462 case OPTION_PDR:
14463 mips_flag_pdr = TRUE;
14464 break;
14465
14466 case OPTION_NO_PDR:
14467 mips_flag_pdr = FALSE;
14468 break;
14469
14470 case OPTION_MVXWORKS_PIC:
14471 mips_pic = VXWORKS_PIC;
14472 break;
14473
14474 case OPTION_NAN:
14475 if (strcmp (arg, "2008") == 0)
14476 mips_nan2008 = 1;
14477 else if (strcmp (arg, "legacy") == 0)
14478 mips_nan2008 = 0;
14479 else
14480 {
14481 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14482 return 0;
14483 }
14484 break;
14485
14486 default:
14487 return 0;
14488 }
14489
14490 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14491
14492 return 1;
14493 }
14494 \f
14495 /* Set up globals to tune for the ISA or processor described by INFO. */
14496
14497 static void
14498 mips_set_tune (const struct mips_cpu_info *info)
14499 {
14500 if (info != 0)
14501 mips_tune = info->cpu;
14502 }
14503
14504
14505 void
14506 mips_after_parse_args (void)
14507 {
14508 const struct mips_cpu_info *arch_info = 0;
14509 const struct mips_cpu_info *tune_info = 0;
14510
14511 /* GP relative stuff not working for PE */
14512 if (strncmp (TARGET_OS, "pe", 2) == 0)
14513 {
14514 if (g_switch_seen && g_switch_value != 0)
14515 as_bad (_("-G not supported in this configuration"));
14516 g_switch_value = 0;
14517 }
14518
14519 if (mips_abi == NO_ABI)
14520 mips_abi = MIPS_DEFAULT_ABI;
14521
14522 /* The following code determines the architecture.
14523 Similar code was added to GCC 3.3 (see override_options() in
14524 config/mips/mips.c). The GAS and GCC code should be kept in sync
14525 as much as possible. */
14526
14527 if (mips_arch_string != 0)
14528 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14529
14530 if (file_mips_opts.isa != ISA_UNKNOWN)
14531 {
14532 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14533 ISA level specified by -mipsN, while arch_info->isa contains
14534 the -march selection (if any). */
14535 if (arch_info != 0)
14536 {
14537 /* -march takes precedence over -mipsN, since it is more descriptive.
14538 There's no harm in specifying both as long as the ISA levels
14539 are the same. */
14540 if (file_mips_opts.isa != arch_info->isa)
14541 as_bad (_("-%s conflicts with the other architecture options,"
14542 " which imply -%s"),
14543 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14544 mips_cpu_info_from_isa (arch_info->isa)->name);
14545 }
14546 else
14547 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14548 }
14549
14550 if (arch_info == 0)
14551 {
14552 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14553 gas_assert (arch_info);
14554 }
14555
14556 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14557 as_bad (_("-march=%s is not compatible with the selected ABI"),
14558 arch_info->name);
14559
14560 file_mips_opts.arch = arch_info->cpu;
14561 file_mips_opts.isa = arch_info->isa;
14562
14563 /* Set up initial mips_opts state. */
14564 mips_opts = file_mips_opts;
14565
14566 /* The register size inference code is now placed in
14567 file_mips_check_options. */
14568
14569 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14570 processor. */
14571 if (mips_tune_string != 0)
14572 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14573
14574 if (tune_info == 0)
14575 mips_set_tune (arch_info);
14576 else
14577 mips_set_tune (tune_info);
14578
14579 if (mips_flag_mdebug < 0)
14580 mips_flag_mdebug = 0;
14581 }
14582 \f
14583 void
14584 mips_init_after_args (void)
14585 {
14586 /* initialize opcodes */
14587 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14588 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14589 }
14590
14591 long
14592 md_pcrel_from (fixS *fixP)
14593 {
14594 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14595 switch (fixP->fx_r_type)
14596 {
14597 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14598 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14599 /* Return the address of the delay slot. */
14600 return addr + 2;
14601
14602 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14603 case BFD_RELOC_MICROMIPS_JMP:
14604 case BFD_RELOC_16_PCREL_S2:
14605 case BFD_RELOC_MIPS_21_PCREL_S2:
14606 case BFD_RELOC_MIPS_26_PCREL_S2:
14607 case BFD_RELOC_MIPS_JMP:
14608 /* Return the address of the delay slot. */
14609 return addr + 4;
14610
14611 case BFD_RELOC_MIPS_18_PCREL_S3:
14612 /* Return the aligned address of the doubleword containing
14613 the instruction. */
14614 return addr & ~7;
14615
14616 default:
14617 return addr;
14618 }
14619 }
14620
14621 /* This is called before the symbol table is processed. In order to
14622 work with gcc when using mips-tfile, we must keep all local labels.
14623 However, in other cases, we want to discard them. If we were
14624 called with -g, but we didn't see any debugging information, it may
14625 mean that gcc is smuggling debugging information through to
14626 mips-tfile, in which case we must generate all local labels. */
14627
14628 void
14629 mips_frob_file_before_adjust (void)
14630 {
14631 #ifndef NO_ECOFF_DEBUGGING
14632 if (ECOFF_DEBUGGING
14633 && mips_debug != 0
14634 && ! ecoff_debugging_seen)
14635 flag_keep_locals = 1;
14636 #endif
14637 }
14638
14639 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14640 the corresponding LO16 reloc. This is called before md_apply_fix and
14641 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14642 relocation operators.
14643
14644 For our purposes, a %lo() expression matches a %got() or %hi()
14645 expression if:
14646
14647 (a) it refers to the same symbol; and
14648 (b) the offset applied in the %lo() expression is no lower than
14649 the offset applied in the %got() or %hi().
14650
14651 (b) allows us to cope with code like:
14652
14653 lui $4,%hi(foo)
14654 lh $4,%lo(foo+2)($4)
14655
14656 ...which is legal on RELA targets, and has a well-defined behaviour
14657 if the user knows that adding 2 to "foo" will not induce a carry to
14658 the high 16 bits.
14659
14660 When several %lo()s match a particular %got() or %hi(), we use the
14661 following rules to distinguish them:
14662
14663 (1) %lo()s with smaller offsets are a better match than %lo()s with
14664 higher offsets.
14665
14666 (2) %lo()s with no matching %got() or %hi() are better than those
14667 that already have a matching %got() or %hi().
14668
14669 (3) later %lo()s are better than earlier %lo()s.
14670
14671 These rules are applied in order.
14672
14673 (1) means, among other things, that %lo()s with identical offsets are
14674 chosen if they exist.
14675
14676 (2) means that we won't associate several high-part relocations with
14677 the same low-part relocation unless there's no alternative. Having
14678 several high parts for the same low part is a GNU extension; this rule
14679 allows careful users to avoid it.
14680
14681 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14682 with the last high-part relocation being at the front of the list.
14683 It therefore makes sense to choose the last matching low-part
14684 relocation, all other things being equal. It's also easier
14685 to code that way. */
14686
14687 void
14688 mips_frob_file (void)
14689 {
14690 struct mips_hi_fixup *l;
14691 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14692
14693 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14694 {
14695 segment_info_type *seginfo;
14696 bfd_boolean matched_lo_p;
14697 fixS **hi_pos, **lo_pos, **pos;
14698
14699 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14700
14701 /* If a GOT16 relocation turns out to be against a global symbol,
14702 there isn't supposed to be a matching LO. Ignore %gots against
14703 constants; we'll report an error for those later. */
14704 if (got16_reloc_p (l->fixp->fx_r_type)
14705 && !(l->fixp->fx_addsy
14706 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14707 continue;
14708
14709 /* Check quickly whether the next fixup happens to be a matching %lo. */
14710 if (fixup_has_matching_lo_p (l->fixp))
14711 continue;
14712
14713 seginfo = seg_info (l->seg);
14714
14715 /* Set HI_POS to the position of this relocation in the chain.
14716 Set LO_POS to the position of the chosen low-part relocation.
14717 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14718 relocation that matches an immediately-preceding high-part
14719 relocation. */
14720 hi_pos = NULL;
14721 lo_pos = NULL;
14722 matched_lo_p = FALSE;
14723 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14724
14725 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14726 {
14727 if (*pos == l->fixp)
14728 hi_pos = pos;
14729
14730 if ((*pos)->fx_r_type == looking_for_rtype
14731 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14732 && (*pos)->fx_offset >= l->fixp->fx_offset
14733 && (lo_pos == NULL
14734 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14735 || (!matched_lo_p
14736 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14737 lo_pos = pos;
14738
14739 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14740 && fixup_has_matching_lo_p (*pos));
14741 }
14742
14743 /* If we found a match, remove the high-part relocation from its
14744 current position and insert it before the low-part relocation.
14745 Make the offsets match so that fixup_has_matching_lo_p()
14746 will return true.
14747
14748 We don't warn about unmatched high-part relocations since some
14749 versions of gcc have been known to emit dead "lui ...%hi(...)"
14750 instructions. */
14751 if (lo_pos != NULL)
14752 {
14753 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14754 if (l->fixp->fx_next != *lo_pos)
14755 {
14756 *hi_pos = l->fixp->fx_next;
14757 l->fixp->fx_next = *lo_pos;
14758 *lo_pos = l->fixp;
14759 }
14760 }
14761 }
14762 }
14763
14764 int
14765 mips_force_relocation (fixS *fixp)
14766 {
14767 if (generic_force_reloc (fixp))
14768 return 1;
14769
14770 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14771 so that the linker relaxation can update targets. */
14772 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14773 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14774 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14775 return 1;
14776
14777 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14778 if (ISA_IS_R6 (file_mips_opts.isa)
14779 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14780 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14781 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14782 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14783 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14784 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14785 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14786 return 1;
14787
14788 return 0;
14789 }
14790
14791 /* Read the instruction associated with RELOC from BUF. */
14792
14793 static unsigned int
14794 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14795 {
14796 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14797 return read_compressed_insn (buf, 4);
14798 else
14799 return read_insn (buf);
14800 }
14801
14802 /* Write instruction INSN to BUF, given that it has been relocated
14803 by RELOC. */
14804
14805 static void
14806 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14807 unsigned long insn)
14808 {
14809 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14810 write_compressed_insn (buf, insn, 4);
14811 else
14812 write_insn (buf, insn);
14813 }
14814
14815 /* Apply a fixup to the object file. */
14816
14817 void
14818 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14819 {
14820 char *buf;
14821 unsigned long insn;
14822 reloc_howto_type *howto;
14823
14824 if (fixP->fx_pcrel)
14825 switch (fixP->fx_r_type)
14826 {
14827 case BFD_RELOC_16_PCREL_S2:
14828 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14829 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14830 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14831 case BFD_RELOC_32_PCREL:
14832 case BFD_RELOC_MIPS_21_PCREL_S2:
14833 case BFD_RELOC_MIPS_26_PCREL_S2:
14834 case BFD_RELOC_MIPS_18_PCREL_S3:
14835 case BFD_RELOC_MIPS_19_PCREL_S2:
14836 case BFD_RELOC_HI16_S_PCREL:
14837 case BFD_RELOC_LO16_PCREL:
14838 break;
14839
14840 case BFD_RELOC_32:
14841 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14842 break;
14843
14844 default:
14845 as_bad_where (fixP->fx_file, fixP->fx_line,
14846 _("PC-relative reference to a different section"));
14847 break;
14848 }
14849
14850 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14851 that have no MIPS ELF equivalent. */
14852 if (fixP->fx_r_type != BFD_RELOC_8)
14853 {
14854 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14855 if (!howto)
14856 return;
14857 }
14858
14859 gas_assert (fixP->fx_size == 2
14860 || fixP->fx_size == 4
14861 || fixP->fx_r_type == BFD_RELOC_8
14862 || fixP->fx_r_type == BFD_RELOC_16
14863 || fixP->fx_r_type == BFD_RELOC_64
14864 || fixP->fx_r_type == BFD_RELOC_CTOR
14865 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14866 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14867 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14868 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14869 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14870 || fixP->fx_r_type == BFD_RELOC_NONE);
14871
14872 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14873
14874 /* Don't treat parts of a composite relocation as done. There are two
14875 reasons for this:
14876
14877 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14878 should nevertheless be emitted if the first part is.
14879
14880 (2) In normal usage, composite relocations are never assembly-time
14881 constants. The easiest way of dealing with the pathological
14882 exceptions is to generate a relocation against STN_UNDEF and
14883 leave everything up to the linker. */
14884 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14885 fixP->fx_done = 1;
14886
14887 switch (fixP->fx_r_type)
14888 {
14889 case BFD_RELOC_MIPS_TLS_GD:
14890 case BFD_RELOC_MIPS_TLS_LDM:
14891 case BFD_RELOC_MIPS_TLS_DTPREL32:
14892 case BFD_RELOC_MIPS_TLS_DTPREL64:
14893 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14894 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14895 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14896 case BFD_RELOC_MIPS_TLS_TPREL32:
14897 case BFD_RELOC_MIPS_TLS_TPREL64:
14898 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14899 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14900 case BFD_RELOC_MICROMIPS_TLS_GD:
14901 case BFD_RELOC_MICROMIPS_TLS_LDM:
14902 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14903 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14904 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14905 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14906 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14907 case BFD_RELOC_MIPS16_TLS_GD:
14908 case BFD_RELOC_MIPS16_TLS_LDM:
14909 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14910 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14911 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14912 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14913 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14914 if (fixP->fx_addsy)
14915 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14916 else
14917 as_bad_where (fixP->fx_file, fixP->fx_line,
14918 _("TLS relocation against a constant"));
14919 break;
14920
14921 case BFD_RELOC_MIPS_JMP:
14922 case BFD_RELOC_MIPS_SHIFT5:
14923 case BFD_RELOC_MIPS_SHIFT6:
14924 case BFD_RELOC_MIPS_GOT_DISP:
14925 case BFD_RELOC_MIPS_GOT_PAGE:
14926 case BFD_RELOC_MIPS_GOT_OFST:
14927 case BFD_RELOC_MIPS_SUB:
14928 case BFD_RELOC_MIPS_INSERT_A:
14929 case BFD_RELOC_MIPS_INSERT_B:
14930 case BFD_RELOC_MIPS_DELETE:
14931 case BFD_RELOC_MIPS_HIGHEST:
14932 case BFD_RELOC_MIPS_HIGHER:
14933 case BFD_RELOC_MIPS_SCN_DISP:
14934 case BFD_RELOC_MIPS_REL16:
14935 case BFD_RELOC_MIPS_RELGOT:
14936 case BFD_RELOC_MIPS_JALR:
14937 case BFD_RELOC_HI16:
14938 case BFD_RELOC_HI16_S:
14939 case BFD_RELOC_LO16:
14940 case BFD_RELOC_GPREL16:
14941 case BFD_RELOC_MIPS_LITERAL:
14942 case BFD_RELOC_MIPS_CALL16:
14943 case BFD_RELOC_MIPS_GOT16:
14944 case BFD_RELOC_GPREL32:
14945 case BFD_RELOC_MIPS_GOT_HI16:
14946 case BFD_RELOC_MIPS_GOT_LO16:
14947 case BFD_RELOC_MIPS_CALL_HI16:
14948 case BFD_RELOC_MIPS_CALL_LO16:
14949 case BFD_RELOC_HI16_S_PCREL:
14950 case BFD_RELOC_LO16_PCREL:
14951 case BFD_RELOC_MIPS16_GPREL:
14952 case BFD_RELOC_MIPS16_GOT16:
14953 case BFD_RELOC_MIPS16_CALL16:
14954 case BFD_RELOC_MIPS16_HI16:
14955 case BFD_RELOC_MIPS16_HI16_S:
14956 case BFD_RELOC_MIPS16_LO16:
14957 case BFD_RELOC_MIPS16_JMP:
14958 case BFD_RELOC_MICROMIPS_JMP:
14959 case BFD_RELOC_MICROMIPS_GOT_DISP:
14960 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14961 case BFD_RELOC_MICROMIPS_GOT_OFST:
14962 case BFD_RELOC_MICROMIPS_SUB:
14963 case BFD_RELOC_MICROMIPS_HIGHEST:
14964 case BFD_RELOC_MICROMIPS_HIGHER:
14965 case BFD_RELOC_MICROMIPS_SCN_DISP:
14966 case BFD_RELOC_MICROMIPS_JALR:
14967 case BFD_RELOC_MICROMIPS_HI16:
14968 case BFD_RELOC_MICROMIPS_HI16_S:
14969 case BFD_RELOC_MICROMIPS_LO16:
14970 case BFD_RELOC_MICROMIPS_GPREL16:
14971 case BFD_RELOC_MICROMIPS_LITERAL:
14972 case BFD_RELOC_MICROMIPS_CALL16:
14973 case BFD_RELOC_MICROMIPS_GOT16:
14974 case BFD_RELOC_MICROMIPS_GOT_HI16:
14975 case BFD_RELOC_MICROMIPS_GOT_LO16:
14976 case BFD_RELOC_MICROMIPS_CALL_HI16:
14977 case BFD_RELOC_MICROMIPS_CALL_LO16:
14978 case BFD_RELOC_MIPS_EH:
14979 if (fixP->fx_done)
14980 {
14981 offsetT value;
14982
14983 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14984 {
14985 insn = read_reloc_insn (buf, fixP->fx_r_type);
14986 if (mips16_reloc_p (fixP->fx_r_type))
14987 insn |= mips16_immed_extend (value, 16);
14988 else
14989 insn |= (value & 0xffff);
14990 write_reloc_insn (buf, fixP->fx_r_type, insn);
14991 }
14992 else
14993 as_bad_where (fixP->fx_file, fixP->fx_line,
14994 _("unsupported constant in relocation"));
14995 }
14996 break;
14997
14998 case BFD_RELOC_64:
14999 /* This is handled like BFD_RELOC_32, but we output a sign
15000 extended value if we are only 32 bits. */
15001 if (fixP->fx_done)
15002 {
15003 if (8 <= sizeof (valueT))
15004 md_number_to_chars (buf, *valP, 8);
15005 else
15006 {
15007 valueT hiv;
15008
15009 if ((*valP & 0x80000000) != 0)
15010 hiv = 0xffffffff;
15011 else
15012 hiv = 0;
15013 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15014 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15015 }
15016 }
15017 break;
15018
15019 case BFD_RELOC_RVA:
15020 case BFD_RELOC_32:
15021 case BFD_RELOC_32_PCREL:
15022 case BFD_RELOC_16:
15023 case BFD_RELOC_8:
15024 /* If we are deleting this reloc entry, we must fill in the
15025 value now. This can happen if we have a .word which is not
15026 resolved when it appears but is later defined. */
15027 if (fixP->fx_done)
15028 md_number_to_chars (buf, *valP, fixP->fx_size);
15029 break;
15030
15031 case BFD_RELOC_MIPS_21_PCREL_S2:
15032 if ((*valP & 0x3) != 0)
15033 as_bad_where (fixP->fx_file, fixP->fx_line,
15034 _("branch to misaligned address (%lx)"), (long) *valP);
15035 if (!fixP->fx_done)
15036 break;
15037
15038 if (*valP + 0x400000 <= 0x7fffff)
15039 {
15040 insn = read_insn (buf);
15041 insn |= (*valP >> 2) & 0x1fffff;
15042 write_insn (buf, insn);
15043 }
15044 else
15045 as_bad_where (fixP->fx_file, fixP->fx_line,
15046 _("branch out of range"));
15047 break;
15048
15049 case BFD_RELOC_MIPS_26_PCREL_S2:
15050 if ((*valP & 0x3) != 0)
15051 as_bad_where (fixP->fx_file, fixP->fx_line,
15052 _("branch to misaligned address (%lx)"), (long) *valP);
15053 if (!fixP->fx_done)
15054 break;
15055
15056 if (*valP + 0x8000000 <= 0xfffffff)
15057 {
15058 insn = read_insn (buf);
15059 insn |= (*valP >> 2) & 0x3ffffff;
15060 write_insn (buf, insn);
15061 }
15062 else
15063 as_bad_where (fixP->fx_file, fixP->fx_line,
15064 _("branch out of range"));
15065 break;
15066
15067 case BFD_RELOC_MIPS_18_PCREL_S3:
15068 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15069 as_bad_where (fixP->fx_file, fixP->fx_line,
15070 _("PC-relative access using misaligned symbol (%lx)"),
15071 (long) S_GET_VALUE (fixP->fx_addsy));
15072 if ((fixP->fx_offset & 0x7) != 0)
15073 as_bad_where (fixP->fx_file, fixP->fx_line,
15074 _("PC-relative access using misaligned offset (%lx)"),
15075 (long) fixP->fx_offset);
15076 if (!fixP->fx_done)
15077 break;
15078
15079 if (*valP + 0x100000 <= 0x1fffff)
15080 {
15081 insn = read_insn (buf);
15082 insn |= (*valP >> 3) & 0x3ffff;
15083 write_insn (buf, insn);
15084 }
15085 else
15086 as_bad_where (fixP->fx_file, fixP->fx_line,
15087 _("PC-relative access out of range"));
15088 break;
15089
15090 case BFD_RELOC_MIPS_19_PCREL_S2:
15091 if ((*valP & 0x3) != 0)
15092 as_bad_where (fixP->fx_file, fixP->fx_line,
15093 _("PC-relative access to misaligned address (%lx)"),
15094 (long) *valP);
15095 if (!fixP->fx_done)
15096 break;
15097
15098 if (*valP + 0x100000 <= 0x1fffff)
15099 {
15100 insn = read_insn (buf);
15101 insn |= (*valP >> 2) & 0x7ffff;
15102 write_insn (buf, insn);
15103 }
15104 else
15105 as_bad_where (fixP->fx_file, fixP->fx_line,
15106 _("PC-relative access out of range"));
15107 break;
15108
15109 case BFD_RELOC_16_PCREL_S2:
15110 if ((*valP & 0x3) != 0)
15111 as_bad_where (fixP->fx_file, fixP->fx_line,
15112 _("branch to misaligned address (%lx)"), (long) *valP);
15113
15114 /* We need to save the bits in the instruction since fixup_segment()
15115 might be deleting the relocation entry (i.e., a branch within
15116 the current segment). */
15117 if (! fixP->fx_done)
15118 break;
15119
15120 /* Update old instruction data. */
15121 insn = read_insn (buf);
15122
15123 if (*valP + 0x20000 <= 0x3ffff)
15124 {
15125 insn |= (*valP >> 2) & 0xffff;
15126 write_insn (buf, insn);
15127 }
15128 else if (mips_pic == NO_PIC
15129 && fixP->fx_done
15130 && fixP->fx_frag->fr_address >= text_section->vma
15131 && (fixP->fx_frag->fr_address
15132 < text_section->vma + bfd_get_section_size (text_section))
15133 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15134 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15135 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15136 {
15137 /* The branch offset is too large. If this is an
15138 unconditional branch, and we are not generating PIC code,
15139 we can convert it to an absolute jump instruction. */
15140 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15141 insn = 0x0c000000; /* jal */
15142 else
15143 insn = 0x08000000; /* j */
15144 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15145 fixP->fx_done = 0;
15146 fixP->fx_addsy = section_symbol (text_section);
15147 *valP += md_pcrel_from (fixP);
15148 write_insn (buf, insn);
15149 }
15150 else
15151 {
15152 /* If we got here, we have branch-relaxation disabled,
15153 and there's nothing we can do to fix this instruction
15154 without turning it into a longer sequence. */
15155 as_bad_where (fixP->fx_file, fixP->fx_line,
15156 _("branch out of range"));
15157 }
15158 break;
15159
15160 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15161 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15162 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15163 /* We adjust the offset back to even. */
15164 if ((*valP & 0x1) != 0)
15165 --(*valP);
15166
15167 if (! fixP->fx_done)
15168 break;
15169
15170 /* Should never visit here, because we keep the relocation. */
15171 abort ();
15172 break;
15173
15174 case BFD_RELOC_VTABLE_INHERIT:
15175 fixP->fx_done = 0;
15176 if (fixP->fx_addsy
15177 && !S_IS_DEFINED (fixP->fx_addsy)
15178 && !S_IS_WEAK (fixP->fx_addsy))
15179 S_SET_WEAK (fixP->fx_addsy);
15180 break;
15181
15182 case BFD_RELOC_NONE:
15183 case BFD_RELOC_VTABLE_ENTRY:
15184 fixP->fx_done = 0;
15185 break;
15186
15187 default:
15188 abort ();
15189 }
15190
15191 /* Remember value for tc_gen_reloc. */
15192 fixP->fx_addnumber = *valP;
15193 }
15194
15195 static symbolS *
15196 get_symbol (void)
15197 {
15198 int c;
15199 char *name;
15200 symbolS *p;
15201
15202 c = get_symbol_name (&name);
15203 p = (symbolS *) symbol_find_or_make (name);
15204 (void) restore_line_pointer (c);
15205 return p;
15206 }
15207
15208 /* Align the current frag to a given power of two. If a particular
15209 fill byte should be used, FILL points to an integer that contains
15210 that byte, otherwise FILL is null.
15211
15212 This function used to have the comment:
15213
15214 The MIPS assembler also automatically adjusts any preceding label.
15215
15216 The implementation therefore applied the adjustment to a maximum of
15217 one label. However, other label adjustments are applied to batches
15218 of labels, and adjusting just one caused problems when new labels
15219 were added for the sake of debugging or unwind information.
15220 We therefore adjust all preceding labels (given as LABELS) instead. */
15221
15222 static void
15223 mips_align (int to, int *fill, struct insn_label_list *labels)
15224 {
15225 mips_emit_delays ();
15226 mips_record_compressed_mode ();
15227 if (fill == NULL && subseg_text_p (now_seg))
15228 frag_align_code (to, 0);
15229 else
15230 frag_align (to, fill ? *fill : 0, 0);
15231 record_alignment (now_seg, to);
15232 mips_move_labels (labels, FALSE);
15233 }
15234
15235 /* Align to a given power of two. .align 0 turns off the automatic
15236 alignment used by the data creating pseudo-ops. */
15237
15238 static void
15239 s_align (int x ATTRIBUTE_UNUSED)
15240 {
15241 int temp, fill_value, *fill_ptr;
15242 long max_alignment = 28;
15243
15244 /* o Note that the assembler pulls down any immediately preceding label
15245 to the aligned address.
15246 o It's not documented but auto alignment is reinstated by
15247 a .align pseudo instruction.
15248 o Note also that after auto alignment is turned off the mips assembler
15249 issues an error on attempt to assemble an improperly aligned data item.
15250 We don't. */
15251
15252 temp = get_absolute_expression ();
15253 if (temp > max_alignment)
15254 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15255 else if (temp < 0)
15256 {
15257 as_warn (_("alignment negative, 0 assumed"));
15258 temp = 0;
15259 }
15260 if (*input_line_pointer == ',')
15261 {
15262 ++input_line_pointer;
15263 fill_value = get_absolute_expression ();
15264 fill_ptr = &fill_value;
15265 }
15266 else
15267 fill_ptr = 0;
15268 if (temp)
15269 {
15270 segment_info_type *si = seg_info (now_seg);
15271 struct insn_label_list *l = si->label_list;
15272 /* Auto alignment should be switched on by next section change. */
15273 auto_align = 1;
15274 mips_align (temp, fill_ptr, l);
15275 }
15276 else
15277 {
15278 auto_align = 0;
15279 }
15280
15281 demand_empty_rest_of_line ();
15282 }
15283
15284 static void
15285 s_change_sec (int sec)
15286 {
15287 segT seg;
15288
15289 /* The ELF backend needs to know that we are changing sections, so
15290 that .previous works correctly. We could do something like check
15291 for an obj_section_change_hook macro, but that might be confusing
15292 as it would not be appropriate to use it in the section changing
15293 functions in read.c, since obj-elf.c intercepts those. FIXME:
15294 This should be cleaner, somehow. */
15295 obj_elf_section_change_hook ();
15296
15297 mips_emit_delays ();
15298
15299 switch (sec)
15300 {
15301 case 't':
15302 s_text (0);
15303 break;
15304 case 'd':
15305 s_data (0);
15306 break;
15307 case 'b':
15308 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15309 demand_empty_rest_of_line ();
15310 break;
15311
15312 case 'r':
15313 seg = subseg_new (RDATA_SECTION_NAME,
15314 (subsegT) get_absolute_expression ());
15315 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15316 | SEC_READONLY | SEC_RELOC
15317 | SEC_DATA));
15318 if (strncmp (TARGET_OS, "elf", 3) != 0)
15319 record_alignment (seg, 4);
15320 demand_empty_rest_of_line ();
15321 break;
15322
15323 case 's':
15324 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15325 bfd_set_section_flags (stdoutput, seg,
15326 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15327 if (strncmp (TARGET_OS, "elf", 3) != 0)
15328 record_alignment (seg, 4);
15329 demand_empty_rest_of_line ();
15330 break;
15331
15332 case 'B':
15333 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15334 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15335 if (strncmp (TARGET_OS, "elf", 3) != 0)
15336 record_alignment (seg, 4);
15337 demand_empty_rest_of_line ();
15338 break;
15339 }
15340
15341 auto_align = 1;
15342 }
15343
15344 void
15345 s_change_section (int ignore ATTRIBUTE_UNUSED)
15346 {
15347 char *saved_ilp;
15348 char *section_name;
15349 char c, endc;
15350 char next_c = 0;
15351 int section_type;
15352 int section_flag;
15353 int section_entry_size;
15354 int section_alignment;
15355
15356 saved_ilp = input_line_pointer;
15357 endc = get_symbol_name (&section_name);
15358 c = (endc == '"' ? input_line_pointer[1] : endc);
15359 if (c)
15360 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15361
15362 /* Do we have .section Name<,"flags">? */
15363 if (c != ',' || (c == ',' && next_c == '"'))
15364 {
15365 /* Just after name is now '\0'. */
15366 (void) restore_line_pointer (endc);
15367 input_line_pointer = saved_ilp;
15368 obj_elf_section (ignore);
15369 return;
15370 }
15371
15372 section_name = xstrdup (section_name);
15373 c = restore_line_pointer (endc);
15374
15375 input_line_pointer++;
15376
15377 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15378 if (c == ',')
15379 section_type = get_absolute_expression ();
15380 else
15381 section_type = 0;
15382
15383 if (*input_line_pointer++ == ',')
15384 section_flag = get_absolute_expression ();
15385 else
15386 section_flag = 0;
15387
15388 if (*input_line_pointer++ == ',')
15389 section_entry_size = get_absolute_expression ();
15390 else
15391 section_entry_size = 0;
15392
15393 if (*input_line_pointer++ == ',')
15394 section_alignment = get_absolute_expression ();
15395 else
15396 section_alignment = 0;
15397
15398 /* FIXME: really ignore? */
15399 (void) section_alignment;
15400
15401 /* When using the generic form of .section (as implemented by obj-elf.c),
15402 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15403 traditionally had to fall back on the more common @progbits instead.
15404
15405 There's nothing really harmful in this, since bfd will correct
15406 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15407 means that, for backwards compatibility, the special_section entries
15408 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15409
15410 Even so, we shouldn't force users of the MIPS .section syntax to
15411 incorrectly label the sections as SHT_PROGBITS. The best compromise
15412 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15413 generic type-checking code. */
15414 if (section_type == SHT_MIPS_DWARF)
15415 section_type = SHT_PROGBITS;
15416
15417 obj_elf_change_section (section_name, section_type, section_flag,
15418 section_entry_size, 0, 0, 0);
15419
15420 if (now_seg->name != section_name)
15421 free (section_name);
15422 }
15423
15424 void
15425 mips_enable_auto_align (void)
15426 {
15427 auto_align = 1;
15428 }
15429
15430 static void
15431 s_cons (int log_size)
15432 {
15433 segment_info_type *si = seg_info (now_seg);
15434 struct insn_label_list *l = si->label_list;
15435
15436 mips_emit_delays ();
15437 if (log_size > 0 && auto_align)
15438 mips_align (log_size, 0, l);
15439 cons (1 << log_size);
15440 mips_clear_insn_labels ();
15441 }
15442
15443 static void
15444 s_float_cons (int type)
15445 {
15446 segment_info_type *si = seg_info (now_seg);
15447 struct insn_label_list *l = si->label_list;
15448
15449 mips_emit_delays ();
15450
15451 if (auto_align)
15452 {
15453 if (type == 'd')
15454 mips_align (3, 0, l);
15455 else
15456 mips_align (2, 0, l);
15457 }
15458
15459 float_cons (type);
15460 mips_clear_insn_labels ();
15461 }
15462
15463 /* Handle .globl. We need to override it because on Irix 5 you are
15464 permitted to say
15465 .globl foo .text
15466 where foo is an undefined symbol, to mean that foo should be
15467 considered to be the address of a function. */
15468
15469 static void
15470 s_mips_globl (int x ATTRIBUTE_UNUSED)
15471 {
15472 char *name;
15473 int c;
15474 symbolS *symbolP;
15475 flagword flag;
15476
15477 do
15478 {
15479 c = get_symbol_name (&name);
15480 symbolP = symbol_find_or_make (name);
15481 S_SET_EXTERNAL (symbolP);
15482
15483 *input_line_pointer = c;
15484 SKIP_WHITESPACE_AFTER_NAME ();
15485
15486 /* On Irix 5, every global symbol that is not explicitly labelled as
15487 being a function is apparently labelled as being an object. */
15488 flag = BSF_OBJECT;
15489
15490 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15491 && (*input_line_pointer != ','))
15492 {
15493 char *secname;
15494 asection *sec;
15495
15496 c = get_symbol_name (&secname);
15497 sec = bfd_get_section_by_name (stdoutput, secname);
15498 if (sec == NULL)
15499 as_bad (_("%s: no such section"), secname);
15500 (void) restore_line_pointer (c);
15501
15502 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15503 flag = BSF_FUNCTION;
15504 }
15505
15506 symbol_get_bfdsym (symbolP)->flags |= flag;
15507
15508 c = *input_line_pointer;
15509 if (c == ',')
15510 {
15511 input_line_pointer++;
15512 SKIP_WHITESPACE ();
15513 if (is_end_of_line[(unsigned char) *input_line_pointer])
15514 c = '\n';
15515 }
15516 }
15517 while (c == ',');
15518
15519 demand_empty_rest_of_line ();
15520 }
15521
15522 static void
15523 s_option (int x ATTRIBUTE_UNUSED)
15524 {
15525 char *opt;
15526 char c;
15527
15528 c = get_symbol_name (&opt);
15529
15530 if (*opt == 'O')
15531 {
15532 /* FIXME: What does this mean? */
15533 }
15534 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15535 {
15536 int i;
15537
15538 i = atoi (opt + 3);
15539 if (i != 0 && i != 2)
15540 as_bad (_(".option pic%d not supported"), i);
15541 else if (mips_pic == VXWORKS_PIC)
15542 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15543 else if (i == 0)
15544 mips_pic = NO_PIC;
15545 else if (i == 2)
15546 {
15547 mips_pic = SVR4_PIC;
15548 mips_abicalls = TRUE;
15549 }
15550
15551 if (mips_pic == SVR4_PIC)
15552 {
15553 if (g_switch_seen && g_switch_value != 0)
15554 as_warn (_("-G may not be used with SVR4 PIC code"));
15555 g_switch_value = 0;
15556 bfd_set_gp_size (stdoutput, 0);
15557 }
15558 }
15559 else
15560 as_warn (_("unrecognized option \"%s\""), opt);
15561
15562 (void) restore_line_pointer (c);
15563 demand_empty_rest_of_line ();
15564 }
15565
15566 /* This structure is used to hold a stack of .set values. */
15567
15568 struct mips_option_stack
15569 {
15570 struct mips_option_stack *next;
15571 struct mips_set_options options;
15572 };
15573
15574 static struct mips_option_stack *mips_opts_stack;
15575
15576 /* Return status for .set/.module option handling. */
15577
15578 enum code_option_type
15579 {
15580 /* Unrecognized option. */
15581 OPTION_TYPE_BAD = -1,
15582
15583 /* Ordinary option. */
15584 OPTION_TYPE_NORMAL,
15585
15586 /* ISA changing option. */
15587 OPTION_TYPE_ISA
15588 };
15589
15590 /* Handle common .set/.module options. Return status indicating option
15591 type. */
15592
15593 static enum code_option_type
15594 parse_code_option (char * name)
15595 {
15596 bfd_boolean isa_set = FALSE;
15597 const struct mips_ase *ase;
15598
15599 if (strncmp (name, "at=", 3) == 0)
15600 {
15601 char *s = name + 3;
15602
15603 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15604 as_bad (_("unrecognized register name `%s'"), s);
15605 }
15606 else if (strcmp (name, "at") == 0)
15607 mips_opts.at = ATREG;
15608 else if (strcmp (name, "noat") == 0)
15609 mips_opts.at = ZERO;
15610 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15611 mips_opts.nomove = 0;
15612 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15613 mips_opts.nomove = 1;
15614 else if (strcmp (name, "bopt") == 0)
15615 mips_opts.nobopt = 0;
15616 else if (strcmp (name, "nobopt") == 0)
15617 mips_opts.nobopt = 1;
15618 else if (strcmp (name, "gp=32") == 0)
15619 mips_opts.gp = 32;
15620 else if (strcmp (name, "gp=64") == 0)
15621 mips_opts.gp = 64;
15622 else if (strcmp (name, "fp=32") == 0)
15623 mips_opts.fp = 32;
15624 else if (strcmp (name, "fp=xx") == 0)
15625 mips_opts.fp = 0;
15626 else if (strcmp (name, "fp=64") == 0)
15627 mips_opts.fp = 64;
15628 else if (strcmp (name, "softfloat") == 0)
15629 mips_opts.soft_float = 1;
15630 else if (strcmp (name, "hardfloat") == 0)
15631 mips_opts.soft_float = 0;
15632 else if (strcmp (name, "singlefloat") == 0)
15633 mips_opts.single_float = 1;
15634 else if (strcmp (name, "doublefloat") == 0)
15635 mips_opts.single_float = 0;
15636 else if (strcmp (name, "nooddspreg") == 0)
15637 mips_opts.oddspreg = 0;
15638 else if (strcmp (name, "oddspreg") == 0)
15639 mips_opts.oddspreg = 1;
15640 else if (strcmp (name, "mips16") == 0
15641 || strcmp (name, "MIPS-16") == 0)
15642 mips_opts.mips16 = 1;
15643 else if (strcmp (name, "nomips16") == 0
15644 || strcmp (name, "noMIPS-16") == 0)
15645 mips_opts.mips16 = 0;
15646 else if (strcmp (name, "micromips") == 0)
15647 mips_opts.micromips = 1;
15648 else if (strcmp (name, "nomicromips") == 0)
15649 mips_opts.micromips = 0;
15650 else if (name[0] == 'n'
15651 && name[1] == 'o'
15652 && (ase = mips_lookup_ase (name + 2)))
15653 mips_set_ase (ase, &mips_opts, FALSE);
15654 else if ((ase = mips_lookup_ase (name)))
15655 mips_set_ase (ase, &mips_opts, TRUE);
15656 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15657 {
15658 /* Permit the user to change the ISA and architecture on the fly.
15659 Needless to say, misuse can cause serious problems. */
15660 if (strncmp (name, "arch=", 5) == 0)
15661 {
15662 const struct mips_cpu_info *p;
15663
15664 p = mips_parse_cpu ("internal use", name + 5);
15665 if (!p)
15666 as_bad (_("unknown architecture %s"), name + 5);
15667 else
15668 {
15669 mips_opts.arch = p->cpu;
15670 mips_opts.isa = p->isa;
15671 isa_set = TRUE;
15672 }
15673 }
15674 else if (strncmp (name, "mips", 4) == 0)
15675 {
15676 const struct mips_cpu_info *p;
15677
15678 p = mips_parse_cpu ("internal use", name);
15679 if (!p)
15680 as_bad (_("unknown ISA level %s"), name + 4);
15681 else
15682 {
15683 mips_opts.arch = p->cpu;
15684 mips_opts.isa = p->isa;
15685 isa_set = TRUE;
15686 }
15687 }
15688 else
15689 as_bad (_("unknown ISA or architecture %s"), name);
15690 }
15691 else if (strcmp (name, "autoextend") == 0)
15692 mips_opts.noautoextend = 0;
15693 else if (strcmp (name, "noautoextend") == 0)
15694 mips_opts.noautoextend = 1;
15695 else if (strcmp (name, "insn32") == 0)
15696 mips_opts.insn32 = TRUE;
15697 else if (strcmp (name, "noinsn32") == 0)
15698 mips_opts.insn32 = FALSE;
15699 else if (strcmp (name, "sym32") == 0)
15700 mips_opts.sym32 = TRUE;
15701 else if (strcmp (name, "nosym32") == 0)
15702 mips_opts.sym32 = FALSE;
15703 else
15704 return OPTION_TYPE_BAD;
15705
15706 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
15707 }
15708
15709 /* Handle the .set pseudo-op. */
15710
15711 static void
15712 s_mipsset (int x ATTRIBUTE_UNUSED)
15713 {
15714 enum code_option_type type = OPTION_TYPE_NORMAL;
15715 char *name = input_line_pointer, ch;
15716
15717 file_mips_check_options ();
15718
15719 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15720 ++input_line_pointer;
15721 ch = *input_line_pointer;
15722 *input_line_pointer = '\0';
15723
15724 if (strchr (name, ','))
15725 {
15726 /* Generic ".set" directive; use the generic handler. */
15727 *input_line_pointer = ch;
15728 input_line_pointer = name;
15729 s_set (0);
15730 return;
15731 }
15732
15733 if (strcmp (name, "reorder") == 0)
15734 {
15735 if (mips_opts.noreorder)
15736 end_noreorder ();
15737 }
15738 else if (strcmp (name, "noreorder") == 0)
15739 {
15740 if (!mips_opts.noreorder)
15741 start_noreorder ();
15742 }
15743 else if (strcmp (name, "macro") == 0)
15744 mips_opts.warn_about_macros = 0;
15745 else if (strcmp (name, "nomacro") == 0)
15746 {
15747 if (mips_opts.noreorder == 0)
15748 as_bad (_("`noreorder' must be set before `nomacro'"));
15749 mips_opts.warn_about_macros = 1;
15750 }
15751 else if (strcmp (name, "gp=default") == 0)
15752 mips_opts.gp = file_mips_opts.gp;
15753 else if (strcmp (name, "fp=default") == 0)
15754 mips_opts.fp = file_mips_opts.fp;
15755 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15756 {
15757 mips_opts.isa = file_mips_opts.isa;
15758 mips_opts.arch = file_mips_opts.arch;
15759 mips_opts.gp = file_mips_opts.gp;
15760 mips_opts.fp = file_mips_opts.fp;
15761 }
15762 else if (strcmp (name, "push") == 0)
15763 {
15764 struct mips_option_stack *s;
15765
15766 s = XNEW (struct mips_option_stack);
15767 s->next = mips_opts_stack;
15768 s->options = mips_opts;
15769 mips_opts_stack = s;
15770 }
15771 else if (strcmp (name, "pop") == 0)
15772 {
15773 struct mips_option_stack *s;
15774
15775 s = mips_opts_stack;
15776 if (s == NULL)
15777 as_bad (_(".set pop with no .set push"));
15778 else
15779 {
15780 /* If we're changing the reorder mode we need to handle
15781 delay slots correctly. */
15782 if (s->options.noreorder && ! mips_opts.noreorder)
15783 start_noreorder ();
15784 else if (! s->options.noreorder && mips_opts.noreorder)
15785 end_noreorder ();
15786
15787 mips_opts = s->options;
15788 mips_opts_stack = s->next;
15789 free (s);
15790 }
15791 }
15792 else
15793 {
15794 type = parse_code_option (name);
15795 if (type == OPTION_TYPE_BAD)
15796 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15797 }
15798
15799 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15800 registers based on what is supported by the arch/cpu. */
15801 if (type == OPTION_TYPE_ISA)
15802 {
15803 switch (mips_opts.isa)
15804 {
15805 case 0:
15806 break;
15807 case ISA_MIPS1:
15808 /* MIPS I cannot support FPXX. */
15809 mips_opts.fp = 32;
15810 /* fall-through. */
15811 case ISA_MIPS2:
15812 case ISA_MIPS32:
15813 case ISA_MIPS32R2:
15814 case ISA_MIPS32R3:
15815 case ISA_MIPS32R5:
15816 mips_opts.gp = 32;
15817 if (mips_opts.fp != 0)
15818 mips_opts.fp = 32;
15819 break;
15820 case ISA_MIPS32R6:
15821 mips_opts.gp = 32;
15822 mips_opts.fp = 64;
15823 break;
15824 case ISA_MIPS3:
15825 case ISA_MIPS4:
15826 case ISA_MIPS5:
15827 case ISA_MIPS64:
15828 case ISA_MIPS64R2:
15829 case ISA_MIPS64R3:
15830 case ISA_MIPS64R5:
15831 case ISA_MIPS64R6:
15832 mips_opts.gp = 64;
15833 if (mips_opts.fp != 0)
15834 {
15835 if (mips_opts.arch == CPU_R5900)
15836 mips_opts.fp = 32;
15837 else
15838 mips_opts.fp = 64;
15839 }
15840 break;
15841 default:
15842 as_bad (_("unknown ISA level %s"), name + 4);
15843 break;
15844 }
15845 }
15846
15847 mips_check_options (&mips_opts, FALSE);
15848
15849 mips_check_isa_supports_ases ();
15850 *input_line_pointer = ch;
15851 demand_empty_rest_of_line ();
15852 }
15853
15854 /* Handle the .module pseudo-op. */
15855
15856 static void
15857 s_module (int ignore ATTRIBUTE_UNUSED)
15858 {
15859 char *name = input_line_pointer, ch;
15860
15861 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15862 ++input_line_pointer;
15863 ch = *input_line_pointer;
15864 *input_line_pointer = '\0';
15865
15866 if (!file_mips_opts_checked)
15867 {
15868 if (parse_code_option (name) == OPTION_TYPE_BAD)
15869 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15870
15871 /* Update module level settings from mips_opts. */
15872 file_mips_opts = mips_opts;
15873 }
15874 else
15875 as_bad (_(".module is not permitted after generating code"));
15876
15877 *input_line_pointer = ch;
15878 demand_empty_rest_of_line ();
15879 }
15880
15881 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15882 .option pic2. It means to generate SVR4 PIC calls. */
15883
15884 static void
15885 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15886 {
15887 mips_pic = SVR4_PIC;
15888 mips_abicalls = TRUE;
15889
15890 if (g_switch_seen && g_switch_value != 0)
15891 as_warn (_("-G may not be used with SVR4 PIC code"));
15892 g_switch_value = 0;
15893
15894 bfd_set_gp_size (stdoutput, 0);
15895 demand_empty_rest_of_line ();
15896 }
15897
15898 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15899 PIC code. It sets the $gp register for the function based on the
15900 function address, which is in the register named in the argument.
15901 This uses a relocation against _gp_disp, which is handled specially
15902 by the linker. The result is:
15903 lui $gp,%hi(_gp_disp)
15904 addiu $gp,$gp,%lo(_gp_disp)
15905 addu $gp,$gp,.cpload argument
15906 The .cpload argument is normally $25 == $t9.
15907
15908 The -mno-shared option changes this to:
15909 lui $gp,%hi(__gnu_local_gp)
15910 addiu $gp,$gp,%lo(__gnu_local_gp)
15911 and the argument is ignored. This saves an instruction, but the
15912 resulting code is not position independent; it uses an absolute
15913 address for __gnu_local_gp. Thus code assembled with -mno-shared
15914 can go into an ordinary executable, but not into a shared library. */
15915
15916 static void
15917 s_cpload (int ignore ATTRIBUTE_UNUSED)
15918 {
15919 expressionS ex;
15920 int reg;
15921 int in_shared;
15922
15923 file_mips_check_options ();
15924
15925 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15926 .cpload is ignored. */
15927 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15928 {
15929 s_ignore (0);
15930 return;
15931 }
15932
15933 if (mips_opts.mips16)
15934 {
15935 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15936 ignore_rest_of_line ();
15937 return;
15938 }
15939
15940 /* .cpload should be in a .set noreorder section. */
15941 if (mips_opts.noreorder == 0)
15942 as_warn (_(".cpload not in noreorder section"));
15943
15944 reg = tc_get_register (0);
15945
15946 /* If we need to produce a 64-bit address, we are better off using
15947 the default instruction sequence. */
15948 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15949
15950 ex.X_op = O_symbol;
15951 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15952 "__gnu_local_gp");
15953 ex.X_op_symbol = NULL;
15954 ex.X_add_number = 0;
15955
15956 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15957 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15958
15959 mips_mark_labels ();
15960 mips_assembling_insn = TRUE;
15961
15962 macro_start ();
15963 macro_build_lui (&ex, mips_gp_register);
15964 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15965 mips_gp_register, BFD_RELOC_LO16);
15966 if (in_shared)
15967 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15968 mips_gp_register, reg);
15969 macro_end ();
15970
15971 mips_assembling_insn = FALSE;
15972 demand_empty_rest_of_line ();
15973 }
15974
15975 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15976 .cpsetup $reg1, offset|$reg2, label
15977
15978 If offset is given, this results in:
15979 sd $gp, offset($sp)
15980 lui $gp, %hi(%neg(%gp_rel(label)))
15981 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15982 daddu $gp, $gp, $reg1
15983
15984 If $reg2 is given, this results in:
15985 or $reg2, $gp, $0
15986 lui $gp, %hi(%neg(%gp_rel(label)))
15987 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15988 daddu $gp, $gp, $reg1
15989 $reg1 is normally $25 == $t9.
15990
15991 The -mno-shared option replaces the last three instructions with
15992 lui $gp,%hi(_gp)
15993 addiu $gp,$gp,%lo(_gp) */
15994
15995 static void
15996 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15997 {
15998 expressionS ex_off;
15999 expressionS ex_sym;
16000 int reg1;
16001
16002 file_mips_check_options ();
16003
16004 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16005 We also need NewABI support. */
16006 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16007 {
16008 s_ignore (0);
16009 return;
16010 }
16011
16012 if (mips_opts.mips16)
16013 {
16014 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16015 ignore_rest_of_line ();
16016 return;
16017 }
16018
16019 reg1 = tc_get_register (0);
16020 SKIP_WHITESPACE ();
16021 if (*input_line_pointer != ',')
16022 {
16023 as_bad (_("missing argument separator ',' for .cpsetup"));
16024 return;
16025 }
16026 else
16027 ++input_line_pointer;
16028 SKIP_WHITESPACE ();
16029 if (*input_line_pointer == '$')
16030 {
16031 mips_cpreturn_register = tc_get_register (0);
16032 mips_cpreturn_offset = -1;
16033 }
16034 else
16035 {
16036 mips_cpreturn_offset = get_absolute_expression ();
16037 mips_cpreturn_register = -1;
16038 }
16039 SKIP_WHITESPACE ();
16040 if (*input_line_pointer != ',')
16041 {
16042 as_bad (_("missing argument separator ',' for .cpsetup"));
16043 return;
16044 }
16045 else
16046 ++input_line_pointer;
16047 SKIP_WHITESPACE ();
16048 expression (&ex_sym);
16049
16050 mips_mark_labels ();
16051 mips_assembling_insn = TRUE;
16052
16053 macro_start ();
16054 if (mips_cpreturn_register == -1)
16055 {
16056 ex_off.X_op = O_constant;
16057 ex_off.X_add_symbol = NULL;
16058 ex_off.X_op_symbol = NULL;
16059 ex_off.X_add_number = mips_cpreturn_offset;
16060
16061 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16062 BFD_RELOC_LO16, SP);
16063 }
16064 else
16065 move_register (mips_cpreturn_register, mips_gp_register);
16066
16067 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16068 {
16069 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16070 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16071 BFD_RELOC_HI16_S);
16072
16073 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16074 mips_gp_register, -1, BFD_RELOC_GPREL16,
16075 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16076
16077 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16078 mips_gp_register, reg1);
16079 }
16080 else
16081 {
16082 expressionS ex;
16083
16084 ex.X_op = O_symbol;
16085 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16086 ex.X_op_symbol = NULL;
16087 ex.X_add_number = 0;
16088
16089 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16090 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16091
16092 macro_build_lui (&ex, mips_gp_register);
16093 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16094 mips_gp_register, BFD_RELOC_LO16);
16095 }
16096
16097 macro_end ();
16098
16099 mips_assembling_insn = FALSE;
16100 demand_empty_rest_of_line ();
16101 }
16102
16103 static void
16104 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16105 {
16106 file_mips_check_options ();
16107
16108 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16109 .cplocal is ignored. */
16110 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16111 {
16112 s_ignore (0);
16113 return;
16114 }
16115
16116 if (mips_opts.mips16)
16117 {
16118 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16119 ignore_rest_of_line ();
16120 return;
16121 }
16122
16123 mips_gp_register = tc_get_register (0);
16124 demand_empty_rest_of_line ();
16125 }
16126
16127 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16128 offset from $sp. The offset is remembered, and after making a PIC
16129 call $gp is restored from that location. */
16130
16131 static void
16132 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16133 {
16134 expressionS ex;
16135
16136 file_mips_check_options ();
16137
16138 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16139 .cprestore is ignored. */
16140 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16141 {
16142 s_ignore (0);
16143 return;
16144 }
16145
16146 if (mips_opts.mips16)
16147 {
16148 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16149 ignore_rest_of_line ();
16150 return;
16151 }
16152
16153 mips_cprestore_offset = get_absolute_expression ();
16154 mips_cprestore_valid = 1;
16155
16156 ex.X_op = O_constant;
16157 ex.X_add_symbol = NULL;
16158 ex.X_op_symbol = NULL;
16159 ex.X_add_number = mips_cprestore_offset;
16160
16161 mips_mark_labels ();
16162 mips_assembling_insn = TRUE;
16163
16164 macro_start ();
16165 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16166 SP, HAVE_64BIT_ADDRESSES);
16167 macro_end ();
16168
16169 mips_assembling_insn = FALSE;
16170 demand_empty_rest_of_line ();
16171 }
16172
16173 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16174 was given in the preceding .cpsetup, it results in:
16175 ld $gp, offset($sp)
16176
16177 If a register $reg2 was given there, it results in:
16178 or $gp, $reg2, $0 */
16179
16180 static void
16181 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16182 {
16183 expressionS ex;
16184
16185 file_mips_check_options ();
16186
16187 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16188 We also need NewABI support. */
16189 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16190 {
16191 s_ignore (0);
16192 return;
16193 }
16194
16195 if (mips_opts.mips16)
16196 {
16197 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16198 ignore_rest_of_line ();
16199 return;
16200 }
16201
16202 mips_mark_labels ();
16203 mips_assembling_insn = TRUE;
16204
16205 macro_start ();
16206 if (mips_cpreturn_register == -1)
16207 {
16208 ex.X_op = O_constant;
16209 ex.X_add_symbol = NULL;
16210 ex.X_op_symbol = NULL;
16211 ex.X_add_number = mips_cpreturn_offset;
16212
16213 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16214 }
16215 else
16216 move_register (mips_gp_register, mips_cpreturn_register);
16217
16218 macro_end ();
16219
16220 mips_assembling_insn = FALSE;
16221 demand_empty_rest_of_line ();
16222 }
16223
16224 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16225 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16226 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16227 debug information or MIPS16 TLS. */
16228
16229 static void
16230 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16231 bfd_reloc_code_real_type rtype)
16232 {
16233 expressionS ex;
16234 char *p;
16235
16236 expression (&ex);
16237
16238 if (ex.X_op != O_symbol)
16239 {
16240 as_bad (_("unsupported use of %s"), dirstr);
16241 ignore_rest_of_line ();
16242 }
16243
16244 p = frag_more (bytes);
16245 md_number_to_chars (p, 0, bytes);
16246 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16247 demand_empty_rest_of_line ();
16248 mips_clear_insn_labels ();
16249 }
16250
16251 /* Handle .dtprelword. */
16252
16253 static void
16254 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16255 {
16256 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16257 }
16258
16259 /* Handle .dtpreldword. */
16260
16261 static void
16262 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16263 {
16264 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16265 }
16266
16267 /* Handle .tprelword. */
16268
16269 static void
16270 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16271 {
16272 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16273 }
16274
16275 /* Handle .tpreldword. */
16276
16277 static void
16278 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16279 {
16280 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16281 }
16282
16283 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16284 code. It sets the offset to use in gp_rel relocations. */
16285
16286 static void
16287 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16288 {
16289 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16290 We also need NewABI support. */
16291 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16292 {
16293 s_ignore (0);
16294 return;
16295 }
16296
16297 mips_gprel_offset = get_absolute_expression ();
16298
16299 demand_empty_rest_of_line ();
16300 }
16301
16302 /* Handle the .gpword pseudo-op. This is used when generating PIC
16303 code. It generates a 32 bit GP relative reloc. */
16304
16305 static void
16306 s_gpword (int ignore ATTRIBUTE_UNUSED)
16307 {
16308 segment_info_type *si;
16309 struct insn_label_list *l;
16310 expressionS ex;
16311 char *p;
16312
16313 /* When not generating PIC code, this is treated as .word. */
16314 if (mips_pic != SVR4_PIC)
16315 {
16316 s_cons (2);
16317 return;
16318 }
16319
16320 si = seg_info (now_seg);
16321 l = si->label_list;
16322 mips_emit_delays ();
16323 if (auto_align)
16324 mips_align (2, 0, l);
16325
16326 expression (&ex);
16327 mips_clear_insn_labels ();
16328
16329 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16330 {
16331 as_bad (_("unsupported use of .gpword"));
16332 ignore_rest_of_line ();
16333 }
16334
16335 p = frag_more (4);
16336 md_number_to_chars (p, 0, 4);
16337 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16338 BFD_RELOC_GPREL32);
16339
16340 demand_empty_rest_of_line ();
16341 }
16342
16343 static void
16344 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16345 {
16346 segment_info_type *si;
16347 struct insn_label_list *l;
16348 expressionS ex;
16349 char *p;
16350
16351 /* When not generating PIC code, this is treated as .dword. */
16352 if (mips_pic != SVR4_PIC)
16353 {
16354 s_cons (3);
16355 return;
16356 }
16357
16358 si = seg_info (now_seg);
16359 l = si->label_list;
16360 mips_emit_delays ();
16361 if (auto_align)
16362 mips_align (3, 0, l);
16363
16364 expression (&ex);
16365 mips_clear_insn_labels ();
16366
16367 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16368 {
16369 as_bad (_("unsupported use of .gpdword"));
16370 ignore_rest_of_line ();
16371 }
16372
16373 p = frag_more (8);
16374 md_number_to_chars (p, 0, 8);
16375 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16376 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16377
16378 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16379 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16380 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16381
16382 demand_empty_rest_of_line ();
16383 }
16384
16385 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16386 tables. It generates a R_MIPS_EH reloc. */
16387
16388 static void
16389 s_ehword (int ignore ATTRIBUTE_UNUSED)
16390 {
16391 expressionS ex;
16392 char *p;
16393
16394 mips_emit_delays ();
16395
16396 expression (&ex);
16397 mips_clear_insn_labels ();
16398
16399 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16400 {
16401 as_bad (_("unsupported use of .ehword"));
16402 ignore_rest_of_line ();
16403 }
16404
16405 p = frag_more (4);
16406 md_number_to_chars (p, 0, 4);
16407 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16408 BFD_RELOC_32_PCREL);
16409
16410 demand_empty_rest_of_line ();
16411 }
16412
16413 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16414 tables in SVR4 PIC code. */
16415
16416 static void
16417 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16418 {
16419 int reg;
16420
16421 file_mips_check_options ();
16422
16423 /* This is ignored when not generating SVR4 PIC code. */
16424 if (mips_pic != SVR4_PIC)
16425 {
16426 s_ignore (0);
16427 return;
16428 }
16429
16430 mips_mark_labels ();
16431 mips_assembling_insn = TRUE;
16432
16433 /* Add $gp to the register named as an argument. */
16434 macro_start ();
16435 reg = tc_get_register (0);
16436 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16437 macro_end ();
16438
16439 mips_assembling_insn = FALSE;
16440 demand_empty_rest_of_line ();
16441 }
16442
16443 /* Handle the .insn pseudo-op. This marks instruction labels in
16444 mips16/micromips mode. This permits the linker to handle them specially,
16445 such as generating jalx instructions when needed. We also make
16446 them odd for the duration of the assembly, in order to generate the
16447 right sort of code. We will make them even in the adjust_symtab
16448 routine, while leaving them marked. This is convenient for the
16449 debugger and the disassembler. The linker knows to make them odd
16450 again. */
16451
16452 static void
16453 s_insn (int ignore ATTRIBUTE_UNUSED)
16454 {
16455 file_mips_check_options ();
16456 file_ase_mips16 |= mips_opts.mips16;
16457 file_ase_micromips |= mips_opts.micromips;
16458
16459 mips_mark_labels ();
16460
16461 demand_empty_rest_of_line ();
16462 }
16463
16464 /* Handle the .nan pseudo-op. */
16465
16466 static void
16467 s_nan (int ignore ATTRIBUTE_UNUSED)
16468 {
16469 static const char str_legacy[] = "legacy";
16470 static const char str_2008[] = "2008";
16471 size_t i;
16472
16473 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16474
16475 if (i == sizeof (str_2008) - 1
16476 && memcmp (input_line_pointer, str_2008, i) == 0)
16477 mips_nan2008 = 1;
16478 else if (i == sizeof (str_legacy) - 1
16479 && memcmp (input_line_pointer, str_legacy, i) == 0)
16480 {
16481 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16482 mips_nan2008 = 0;
16483 else
16484 as_bad (_("`%s' does not support legacy NaN"),
16485 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16486 }
16487 else
16488 as_bad (_("bad .nan directive"));
16489
16490 input_line_pointer += i;
16491 demand_empty_rest_of_line ();
16492 }
16493
16494 /* Handle a .stab[snd] directive. Ideally these directives would be
16495 implemented in a transparent way, so that removing them would not
16496 have any effect on the generated instructions. However, s_stab
16497 internally changes the section, so in practice we need to decide
16498 now whether the preceding label marks compressed code. We do not
16499 support changing the compression mode of a label after a .stab*
16500 directive, such as in:
16501
16502 foo:
16503 .stabs ...
16504 .set mips16
16505
16506 so the current mode wins. */
16507
16508 static void
16509 s_mips_stab (int type)
16510 {
16511 mips_mark_labels ();
16512 s_stab (type);
16513 }
16514
16515 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16516
16517 static void
16518 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16519 {
16520 char *name;
16521 int c;
16522 symbolS *symbolP;
16523 expressionS exp;
16524
16525 c = get_symbol_name (&name);
16526 symbolP = symbol_find_or_make (name);
16527 S_SET_WEAK (symbolP);
16528 *input_line_pointer = c;
16529
16530 SKIP_WHITESPACE_AFTER_NAME ();
16531
16532 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16533 {
16534 if (S_IS_DEFINED (symbolP))
16535 {
16536 as_bad (_("ignoring attempt to redefine symbol %s"),
16537 S_GET_NAME (symbolP));
16538 ignore_rest_of_line ();
16539 return;
16540 }
16541
16542 if (*input_line_pointer == ',')
16543 {
16544 ++input_line_pointer;
16545 SKIP_WHITESPACE ();
16546 }
16547
16548 expression (&exp);
16549 if (exp.X_op != O_symbol)
16550 {
16551 as_bad (_("bad .weakext directive"));
16552 ignore_rest_of_line ();
16553 return;
16554 }
16555 symbol_set_value_expression (symbolP, &exp);
16556 }
16557
16558 demand_empty_rest_of_line ();
16559 }
16560
16561 /* Parse a register string into a number. Called from the ECOFF code
16562 to parse .frame. The argument is non-zero if this is the frame
16563 register, so that we can record it in mips_frame_reg. */
16564
16565 int
16566 tc_get_register (int frame)
16567 {
16568 unsigned int reg;
16569
16570 SKIP_WHITESPACE ();
16571 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16572 reg = 0;
16573 if (frame)
16574 {
16575 mips_frame_reg = reg != 0 ? reg : SP;
16576 mips_frame_reg_valid = 1;
16577 mips_cprestore_valid = 0;
16578 }
16579 return reg;
16580 }
16581
16582 valueT
16583 md_section_align (asection *seg, valueT addr)
16584 {
16585 int align = bfd_get_section_alignment (stdoutput, seg);
16586
16587 /* We don't need to align ELF sections to the full alignment.
16588 However, Irix 5 may prefer that we align them at least to a 16
16589 byte boundary. We don't bother to align the sections if we
16590 are targeted for an embedded system. */
16591 if (strncmp (TARGET_OS, "elf", 3) == 0)
16592 return addr;
16593 if (align > 4)
16594 align = 4;
16595
16596 return ((addr + (1 << align) - 1) & -(1 << align));
16597 }
16598
16599 /* Utility routine, called from above as well. If called while the
16600 input file is still being read, it's only an approximation. (For
16601 example, a symbol may later become defined which appeared to be
16602 undefined earlier.) */
16603
16604 static int
16605 nopic_need_relax (symbolS *sym, int before_relaxing)
16606 {
16607 if (sym == 0)
16608 return 0;
16609
16610 if (g_switch_value > 0)
16611 {
16612 const char *symname;
16613 int change;
16614
16615 /* Find out whether this symbol can be referenced off the $gp
16616 register. It can be if it is smaller than the -G size or if
16617 it is in the .sdata or .sbss section. Certain symbols can
16618 not be referenced off the $gp, although it appears as though
16619 they can. */
16620 symname = S_GET_NAME (sym);
16621 if (symname != (const char *) NULL
16622 && (strcmp (symname, "eprol") == 0
16623 || strcmp (symname, "etext") == 0
16624 || strcmp (symname, "_gp") == 0
16625 || strcmp (symname, "edata") == 0
16626 || strcmp (symname, "_fbss") == 0
16627 || strcmp (symname, "_fdata") == 0
16628 || strcmp (symname, "_ftext") == 0
16629 || strcmp (symname, "end") == 0
16630 || strcmp (symname, "_gp_disp") == 0))
16631 change = 1;
16632 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16633 && (0
16634 #ifndef NO_ECOFF_DEBUGGING
16635 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16636 && (symbol_get_obj (sym)->ecoff_extern_size
16637 <= g_switch_value))
16638 #endif
16639 /* We must defer this decision until after the whole
16640 file has been read, since there might be a .extern
16641 after the first use of this symbol. */
16642 || (before_relaxing
16643 #ifndef NO_ECOFF_DEBUGGING
16644 && symbol_get_obj (sym)->ecoff_extern_size == 0
16645 #endif
16646 && S_GET_VALUE (sym) == 0)
16647 || (S_GET_VALUE (sym) != 0
16648 && S_GET_VALUE (sym) <= g_switch_value)))
16649 change = 0;
16650 else
16651 {
16652 const char *segname;
16653
16654 segname = segment_name (S_GET_SEGMENT (sym));
16655 gas_assert (strcmp (segname, ".lit8") != 0
16656 && strcmp (segname, ".lit4") != 0);
16657 change = (strcmp (segname, ".sdata") != 0
16658 && strcmp (segname, ".sbss") != 0
16659 && strncmp (segname, ".sdata.", 7) != 0
16660 && strncmp (segname, ".sbss.", 6) != 0
16661 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16662 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16663 }
16664 return change;
16665 }
16666 else
16667 /* We are not optimizing for the $gp register. */
16668 return 1;
16669 }
16670
16671
16672 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16673
16674 static bfd_boolean
16675 pic_need_relax (symbolS *sym, asection *segtype)
16676 {
16677 asection *symsec;
16678
16679 /* Handle the case of a symbol equated to another symbol. */
16680 while (symbol_equated_reloc_p (sym))
16681 {
16682 symbolS *n;
16683
16684 /* It's possible to get a loop here in a badly written program. */
16685 n = symbol_get_value_expression (sym)->X_add_symbol;
16686 if (n == sym)
16687 break;
16688 sym = n;
16689 }
16690
16691 if (symbol_section_p (sym))
16692 return TRUE;
16693
16694 symsec = S_GET_SEGMENT (sym);
16695
16696 /* This must duplicate the test in adjust_reloc_syms. */
16697 return (!bfd_is_und_section (symsec)
16698 && !bfd_is_abs_section (symsec)
16699 && !bfd_is_com_section (symsec)
16700 && !s_is_linkonce (sym, segtype)
16701 /* A global or weak symbol is treated as external. */
16702 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16703 }
16704
16705
16706 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16707 extended opcode. SEC is the section the frag is in. */
16708
16709 static int
16710 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16711 {
16712 int type;
16713 const struct mips_int_operand *operand;
16714 offsetT val;
16715 segT symsec;
16716 fragS *sym_frag;
16717
16718 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16719 return 0;
16720 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16721 return 1;
16722
16723 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16724 operand = mips16_immed_operand (type, FALSE);
16725
16726 sym_frag = symbol_get_frag (fragp->fr_symbol);
16727 val = S_GET_VALUE (fragp->fr_symbol);
16728 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16729
16730 if (operand->root.type == OP_PCREL)
16731 {
16732 const struct mips_pcrel_operand *pcrel_op;
16733 addressT addr;
16734 offsetT maxtiny;
16735
16736 /* We won't have the section when we are called from
16737 mips_relax_frag. However, we will always have been called
16738 from md_estimate_size_before_relax first. If this is a
16739 branch to a different section, we mark it as such. If SEC is
16740 NULL, and the frag is not marked, then it must be a branch to
16741 the same section. */
16742 pcrel_op = (const struct mips_pcrel_operand *) operand;
16743 if (sec == NULL)
16744 {
16745 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16746 return 1;
16747 }
16748 else
16749 {
16750 /* Must have been called from md_estimate_size_before_relax. */
16751 if (symsec != sec)
16752 {
16753 fragp->fr_subtype =
16754 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16755
16756 /* FIXME: We should support this, and let the linker
16757 catch branches and loads that are out of range. */
16758 as_bad_where (fragp->fr_file, fragp->fr_line,
16759 _("unsupported PC relative reference to different section"));
16760
16761 return 1;
16762 }
16763 if (fragp != sym_frag && sym_frag->fr_address == 0)
16764 /* Assume non-extended on the first relaxation pass.
16765 The address we have calculated will be bogus if this is
16766 a forward branch to another frag, as the forward frag
16767 will have fr_address == 0. */
16768 return 0;
16769 }
16770
16771 /* In this case, we know for sure that the symbol fragment is in
16772 the same section. If the relax_marker of the symbol fragment
16773 differs from the relax_marker of this fragment, we have not
16774 yet adjusted the symbol fragment fr_address. We want to add
16775 in STRETCH in order to get a better estimate of the address.
16776 This particularly matters because of the shift bits. */
16777 if (stretch != 0
16778 && sym_frag->relax_marker != fragp->relax_marker)
16779 {
16780 fragS *f;
16781
16782 /* Adjust stretch for any alignment frag. Note that if have
16783 been expanding the earlier code, the symbol may be
16784 defined in what appears to be an earlier frag. FIXME:
16785 This doesn't handle the fr_subtype field, which specifies
16786 a maximum number of bytes to skip when doing an
16787 alignment. */
16788 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16789 {
16790 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16791 {
16792 if (stretch < 0)
16793 stretch = - ((- stretch)
16794 & ~ ((1 << (int) f->fr_offset) - 1));
16795 else
16796 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16797 if (stretch == 0)
16798 break;
16799 }
16800 }
16801 if (f != NULL)
16802 val += stretch;
16803 }
16804
16805 addr = fragp->fr_address + fragp->fr_fix;
16806
16807 /* The base address rules are complicated. The base address of
16808 a branch is the following instruction. The base address of a
16809 PC relative load or add is the instruction itself, but if it
16810 is in a delay slot (in which case it can not be extended) use
16811 the address of the instruction whose delay slot it is in. */
16812 if (pcrel_op->include_isa_bit)
16813 {
16814 addr += 2;
16815
16816 /* If we are currently assuming that this frag should be
16817 extended, then, the current address is two bytes
16818 higher. */
16819 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16820 addr += 2;
16821
16822 /* Ignore the low bit in the target, since it will be set
16823 for a text label. */
16824 val &= -2;
16825 }
16826 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16827 addr -= 4;
16828 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16829 addr -= 2;
16830
16831 val -= addr & -(1 << pcrel_op->align_log2);
16832
16833 /* If any of the shifted bits are set, we must use an extended
16834 opcode. If the address depends on the size of this
16835 instruction, this can lead to a loop, so we arrange to always
16836 use an extended opcode. We only check this when we are in
16837 the main relaxation loop, when SEC is NULL. */
16838 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16839 {
16840 fragp->fr_subtype =
16841 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16842 return 1;
16843 }
16844
16845 /* If we are about to mark a frag as extended because the value
16846 is precisely the next value above maxtiny, then there is a
16847 chance of an infinite loop as in the following code:
16848 la $4,foo
16849 .skip 1020
16850 .align 2
16851 foo:
16852 In this case when the la is extended, foo is 0x3fc bytes
16853 away, so the la can be shrunk, but then foo is 0x400 away, so
16854 the la must be extended. To avoid this loop, we mark the
16855 frag as extended if it was small, and is about to become
16856 extended with the next value above maxtiny. */
16857 maxtiny = mips_int_operand_max (operand);
16858 if (val == maxtiny + (1 << operand->shift)
16859 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16860 && sec == NULL)
16861 {
16862 fragp->fr_subtype =
16863 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16864 return 1;
16865 }
16866 }
16867 else if (symsec != absolute_section && sec != NULL)
16868 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16869
16870 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16871 }
16872
16873 /* Compute the length of a branch sequence, and adjust the
16874 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16875 worst-case length is computed, with UPDATE being used to indicate
16876 whether an unconditional (-1), branch-likely (+1) or regular (0)
16877 branch is to be computed. */
16878 static int
16879 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16880 {
16881 bfd_boolean toofar;
16882 int length;
16883
16884 if (fragp
16885 && S_IS_DEFINED (fragp->fr_symbol)
16886 && !S_IS_WEAK (fragp->fr_symbol)
16887 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16888 {
16889 addressT addr;
16890 offsetT val;
16891
16892 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16893
16894 addr = fragp->fr_address + fragp->fr_fix + 4;
16895
16896 val -= addr;
16897
16898 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16899 }
16900 else
16901 /* If the symbol is not defined or it's in a different segment,
16902 we emit the long sequence. */
16903 toofar = TRUE;
16904
16905 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16906 fragp->fr_subtype
16907 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16908 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16909 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16910 RELAX_BRANCH_LINK (fragp->fr_subtype),
16911 toofar);
16912
16913 length = 4;
16914 if (toofar)
16915 {
16916 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16917 length += 8;
16918
16919 if (mips_pic != NO_PIC)
16920 {
16921 /* Additional space for PIC loading of target address. */
16922 length += 8;
16923 if (mips_opts.isa == ISA_MIPS1)
16924 /* Additional space for $at-stabilizing nop. */
16925 length += 4;
16926 }
16927
16928 /* If branch is conditional. */
16929 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16930 length += 8;
16931 }
16932
16933 return length;
16934 }
16935
16936 /* Compute the length of a branch sequence, and adjust the
16937 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16938 worst-case length is computed, with UPDATE being used to indicate
16939 whether an unconditional (-1), or regular (0) branch is to be
16940 computed. */
16941
16942 static int
16943 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16944 {
16945 bfd_boolean toofar;
16946 int length;
16947
16948 if (fragp
16949 && S_IS_DEFINED (fragp->fr_symbol)
16950 && !S_IS_WEAK (fragp->fr_symbol)
16951 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16952 {
16953 addressT addr;
16954 offsetT val;
16955
16956 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16957 /* Ignore the low bit in the target, since it will be set
16958 for a text label. */
16959 if ((val & 1) != 0)
16960 --val;
16961
16962 addr = fragp->fr_address + fragp->fr_fix + 4;
16963
16964 val -= addr;
16965
16966 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16967 }
16968 else
16969 /* If the symbol is not defined or it's in a different segment,
16970 we emit the long sequence. */
16971 toofar = TRUE;
16972
16973 if (fragp && update
16974 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16975 fragp->fr_subtype = (toofar
16976 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16977 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16978
16979 length = 4;
16980 if (toofar)
16981 {
16982 bfd_boolean compact_known = fragp != NULL;
16983 bfd_boolean compact = FALSE;
16984 bfd_boolean uncond;
16985
16986 if (compact_known)
16987 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16988 if (fragp)
16989 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16990 else
16991 uncond = update < 0;
16992
16993 /* If label is out of range, we turn branch <br>:
16994
16995 <br> label # 4 bytes
16996 0:
16997
16998 into:
16999
17000 j label # 4 bytes
17001 nop # 2 bytes if compact && !PIC
17002 0:
17003 */
17004 if (mips_pic == NO_PIC && (!compact_known || compact))
17005 length += 2;
17006
17007 /* If assembling PIC code, we further turn:
17008
17009 j label # 4 bytes
17010
17011 into:
17012
17013 lw/ld at, %got(label)(gp) # 4 bytes
17014 d/addiu at, %lo(label) # 4 bytes
17015 jr/c at # 2 bytes
17016 */
17017 if (mips_pic != NO_PIC)
17018 length += 6;
17019
17020 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17021
17022 <brneg> 0f # 4 bytes
17023 nop # 2 bytes if !compact
17024 */
17025 if (!uncond)
17026 length += (compact_known && compact) ? 4 : 6;
17027 }
17028
17029 return length;
17030 }
17031
17032 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17033 bit accordingly. */
17034
17035 static int
17036 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17037 {
17038 bfd_boolean toofar;
17039
17040 if (fragp
17041 && S_IS_DEFINED (fragp->fr_symbol)
17042 && !S_IS_WEAK (fragp->fr_symbol)
17043 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17044 {
17045 addressT addr;
17046 offsetT val;
17047 int type;
17048
17049 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17050 /* Ignore the low bit in the target, since it will be set
17051 for a text label. */
17052 if ((val & 1) != 0)
17053 --val;
17054
17055 /* Assume this is a 2-byte branch. */
17056 addr = fragp->fr_address + fragp->fr_fix + 2;
17057
17058 /* We try to avoid the infinite loop by not adding 2 more bytes for
17059 long branches. */
17060
17061 val -= addr;
17062
17063 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17064 if (type == 'D')
17065 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17066 else if (type == 'E')
17067 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17068 else
17069 abort ();
17070 }
17071 else
17072 /* If the symbol is not defined or it's in a different segment,
17073 we emit a normal 32-bit branch. */
17074 toofar = TRUE;
17075
17076 if (fragp && update
17077 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17078 fragp->fr_subtype
17079 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17080 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17081
17082 if (toofar)
17083 return 4;
17084
17085 return 2;
17086 }
17087
17088 /* Estimate the size of a frag before relaxing. Unless this is the
17089 mips16, we are not really relaxing here, and the final size is
17090 encoded in the subtype information. For the mips16, we have to
17091 decide whether we are using an extended opcode or not. */
17092
17093 int
17094 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17095 {
17096 int change;
17097
17098 if (RELAX_BRANCH_P (fragp->fr_subtype))
17099 {
17100
17101 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17102
17103 return fragp->fr_var;
17104 }
17105
17106 if (RELAX_MIPS16_P (fragp->fr_subtype))
17107 /* We don't want to modify the EXTENDED bit here; it might get us
17108 into infinite loops. We change it only in mips_relax_frag(). */
17109 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17110
17111 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17112 {
17113 int length = 4;
17114
17115 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17116 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17117 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17118 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17119 fragp->fr_var = length;
17120
17121 return length;
17122 }
17123
17124 if (mips_pic == NO_PIC)
17125 change = nopic_need_relax (fragp->fr_symbol, 0);
17126 else if (mips_pic == SVR4_PIC)
17127 change = pic_need_relax (fragp->fr_symbol, segtype);
17128 else if (mips_pic == VXWORKS_PIC)
17129 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17130 change = 0;
17131 else
17132 abort ();
17133
17134 if (change)
17135 {
17136 fragp->fr_subtype |= RELAX_USE_SECOND;
17137 return -RELAX_FIRST (fragp->fr_subtype);
17138 }
17139 else
17140 return -RELAX_SECOND (fragp->fr_subtype);
17141 }
17142
17143 /* This is called to see whether a reloc against a defined symbol
17144 should be converted into a reloc against a section. */
17145
17146 int
17147 mips_fix_adjustable (fixS *fixp)
17148 {
17149 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17150 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17151 return 0;
17152
17153 if (fixp->fx_addsy == NULL)
17154 return 1;
17155
17156 /* Allow relocs used for EH tables. */
17157 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17158 return 1;
17159
17160 /* If symbol SYM is in a mergeable section, relocations of the form
17161 SYM + 0 can usually be made section-relative. The mergeable data
17162 is then identified by the section offset rather than by the symbol.
17163
17164 However, if we're generating REL LO16 relocations, the offset is split
17165 between the LO16 and parterning high part relocation. The linker will
17166 need to recalculate the complete offset in order to correctly identify
17167 the merge data.
17168
17169 The linker has traditionally not looked for the parterning high part
17170 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17171 placed anywhere. Rather than break backwards compatibility by changing
17172 this, it seems better not to force the issue, and instead keep the
17173 original symbol. This will work with either linker behavior. */
17174 if ((lo16_reloc_p (fixp->fx_r_type)
17175 || reloc_needs_lo_p (fixp->fx_r_type))
17176 && HAVE_IN_PLACE_ADDENDS
17177 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17178 return 0;
17179
17180 /* There is no place to store an in-place offset for JALR relocations. */
17181 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17182 return 0;
17183
17184 /* Likewise an in-range offset of limited PC-relative relocations may
17185 overflow the in-place relocatable field if recalculated against the
17186 start address of the symbol's containing section.
17187
17188 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17189 section relative to allow linker relaxations to be performed later on. */
17190 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17191 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17192 return 0;
17193
17194 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17195 to a floating-point stub. The same is true for non-R_MIPS16_26
17196 relocations against MIPS16 functions; in this case, the stub becomes
17197 the function's canonical address.
17198
17199 Floating-point stubs are stored in unique .mips16.call.* or
17200 .mips16.fn.* sections. If a stub T for function F is in section S,
17201 the first relocation in section S must be against F; this is how the
17202 linker determines the target function. All relocations that might
17203 resolve to T must also be against F. We therefore have the following
17204 restrictions, which are given in an intentionally-redundant way:
17205
17206 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17207 symbols.
17208
17209 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17210 if that stub might be used.
17211
17212 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17213 symbols.
17214
17215 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17216 that stub might be used.
17217
17218 There is a further restriction:
17219
17220 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17221 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols because
17222 we need to keep the MIPS16 or microMIPS symbol for the purpose
17223 of converting JAL to JALX instructions in the linker.
17224
17225 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17226 against a MIPS16 symbol. We deal with (5) by additionally leaving
17227 alone any jump relocations against a microMIPS symbol.
17228
17229 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17230 relocation against some symbol R, no relocation against R may be
17231 reduced. (Note that this deals with (2) as well as (1) because
17232 relocations against global symbols will never be reduced on ELF
17233 targets.) This approach is a little simpler than trying to detect
17234 stub sections, and gives the "all or nothing" per-symbol consistency
17235 that we have for MIPS16 symbols. */
17236 if (fixp->fx_subsy == NULL
17237 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17238 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17239 && jmp_reloc_p (fixp->fx_r_type))
17240 || *symbol_get_tc (fixp->fx_addsy)))
17241 return 0;
17242
17243 return 1;
17244 }
17245
17246 /* Translate internal representation of relocation info to BFD target
17247 format. */
17248
17249 arelent **
17250 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17251 {
17252 static arelent *retval[4];
17253 arelent *reloc;
17254 bfd_reloc_code_real_type code;
17255
17256 memset (retval, 0, sizeof(retval));
17257 reloc = retval[0] = XCNEW (arelent);
17258 reloc->sym_ptr_ptr = XNEW (asymbol *);
17259 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17260 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17261
17262 if (fixp->fx_pcrel)
17263 {
17264 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17265 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17266 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17267 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17268 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17269 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17270 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17271 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17272 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17273 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17274 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17275
17276 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17277 Relocations want only the symbol offset. */
17278 switch (fixp->fx_r_type)
17279 {
17280 case BFD_RELOC_MIPS_18_PCREL_S3:
17281 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17282 break;
17283 default:
17284 reloc->addend = fixp->fx_addnumber + reloc->address;
17285 break;
17286 }
17287 }
17288 else if (HAVE_IN_PLACE_ADDENDS
17289 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17290 && (read_compressed_insn (fixp->fx_frag->fr_literal
17291 + fixp->fx_where, 4) >> 26) == 0x3c)
17292 {
17293 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17294 addend accordingly. */
17295 reloc->addend = fixp->fx_addnumber >> 1;
17296 }
17297 else
17298 reloc->addend = fixp->fx_addnumber;
17299
17300 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17301 entry to be used in the relocation's section offset. */
17302 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17303 {
17304 reloc->address = reloc->addend;
17305 reloc->addend = 0;
17306 }
17307
17308 code = fixp->fx_r_type;
17309
17310 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17311 if (reloc->howto == NULL)
17312 {
17313 as_bad_where (fixp->fx_file, fixp->fx_line,
17314 _("cannot represent %s relocation in this object file"
17315 " format"),
17316 bfd_get_reloc_code_name (code));
17317 retval[0] = NULL;
17318 }
17319
17320 return retval;
17321 }
17322
17323 /* Relax a machine dependent frag. This returns the amount by which
17324 the current size of the frag should change. */
17325
17326 int
17327 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17328 {
17329 if (RELAX_BRANCH_P (fragp->fr_subtype))
17330 {
17331 offsetT old_var = fragp->fr_var;
17332
17333 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17334
17335 return fragp->fr_var - old_var;
17336 }
17337
17338 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17339 {
17340 offsetT old_var = fragp->fr_var;
17341 offsetT new_var = 4;
17342
17343 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17344 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17345 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17346 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17347 fragp->fr_var = new_var;
17348
17349 return new_var - old_var;
17350 }
17351
17352 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17353 return 0;
17354
17355 if (mips16_extended_frag (fragp, NULL, stretch))
17356 {
17357 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17358 return 0;
17359 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17360 return 2;
17361 }
17362 else
17363 {
17364 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17365 return 0;
17366 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17367 return -2;
17368 }
17369
17370 return 0;
17371 }
17372
17373 /* Convert a machine dependent frag. */
17374
17375 void
17376 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17377 {
17378 if (RELAX_BRANCH_P (fragp->fr_subtype))
17379 {
17380 char *buf;
17381 unsigned long insn;
17382 expressionS exp;
17383 fixS *fixp;
17384
17385 buf = fragp->fr_literal + fragp->fr_fix;
17386 insn = read_insn (buf);
17387
17388 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17389 {
17390 /* We generate a fixup instead of applying it right now
17391 because, if there are linker relaxations, we're going to
17392 need the relocations. */
17393 exp.X_op = O_symbol;
17394 exp.X_add_symbol = fragp->fr_symbol;
17395 exp.X_add_number = fragp->fr_offset;
17396
17397 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17398 BFD_RELOC_16_PCREL_S2);
17399 fixp->fx_file = fragp->fr_file;
17400 fixp->fx_line = fragp->fr_line;
17401
17402 buf = write_insn (buf, insn);
17403 }
17404 else
17405 {
17406 int i;
17407
17408 as_warn_where (fragp->fr_file, fragp->fr_line,
17409 _("relaxed out-of-range branch into a jump"));
17410
17411 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17412 goto uncond;
17413
17414 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17415 {
17416 /* Reverse the branch. */
17417 switch ((insn >> 28) & 0xf)
17418 {
17419 case 4:
17420 if ((insn & 0xff000000) == 0x47000000
17421 || (insn & 0xff600000) == 0x45600000)
17422 {
17423 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17424 reversed by tweaking bit 23. */
17425 insn ^= 0x00800000;
17426 }
17427 else
17428 {
17429 /* bc[0-3][tf]l? instructions can have the condition
17430 reversed by tweaking a single TF bit, and their
17431 opcodes all have 0x4???????. */
17432 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17433 insn ^= 0x00010000;
17434 }
17435 break;
17436
17437 case 0:
17438 /* bltz 0x04000000 bgez 0x04010000
17439 bltzal 0x04100000 bgezal 0x04110000 */
17440 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17441 insn ^= 0x00010000;
17442 break;
17443
17444 case 1:
17445 /* beq 0x10000000 bne 0x14000000
17446 blez 0x18000000 bgtz 0x1c000000 */
17447 insn ^= 0x04000000;
17448 break;
17449
17450 default:
17451 abort ();
17452 }
17453 }
17454
17455 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17456 {
17457 /* Clear the and-link bit. */
17458 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17459
17460 /* bltzal 0x04100000 bgezal 0x04110000
17461 bltzall 0x04120000 bgezall 0x04130000 */
17462 insn &= ~0x00100000;
17463 }
17464
17465 /* Branch over the branch (if the branch was likely) or the
17466 full jump (not likely case). Compute the offset from the
17467 current instruction to branch to. */
17468 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17469 i = 16;
17470 else
17471 {
17472 /* How many bytes in instructions we've already emitted? */
17473 i = buf - fragp->fr_literal - fragp->fr_fix;
17474 /* How many bytes in instructions from here to the end? */
17475 i = fragp->fr_var - i;
17476 }
17477 /* Convert to instruction count. */
17478 i >>= 2;
17479 /* Branch counts from the next instruction. */
17480 i--;
17481 insn |= i;
17482 /* Branch over the jump. */
17483 buf = write_insn (buf, insn);
17484
17485 /* nop */
17486 buf = write_insn (buf, 0);
17487
17488 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17489 {
17490 /* beql $0, $0, 2f */
17491 insn = 0x50000000;
17492 /* Compute the PC offset from the current instruction to
17493 the end of the variable frag. */
17494 /* How many bytes in instructions we've already emitted? */
17495 i = buf - fragp->fr_literal - fragp->fr_fix;
17496 /* How many bytes in instructions from here to the end? */
17497 i = fragp->fr_var - i;
17498 /* Convert to instruction count. */
17499 i >>= 2;
17500 /* Don't decrement i, because we want to branch over the
17501 delay slot. */
17502 insn |= i;
17503
17504 buf = write_insn (buf, insn);
17505 buf = write_insn (buf, 0);
17506 }
17507
17508 uncond:
17509 if (mips_pic == NO_PIC)
17510 {
17511 /* j or jal. */
17512 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17513 ? 0x0c000000 : 0x08000000);
17514 exp.X_op = O_symbol;
17515 exp.X_add_symbol = fragp->fr_symbol;
17516 exp.X_add_number = fragp->fr_offset;
17517
17518 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17519 FALSE, BFD_RELOC_MIPS_JMP);
17520 fixp->fx_file = fragp->fr_file;
17521 fixp->fx_line = fragp->fr_line;
17522
17523 buf = write_insn (buf, insn);
17524 }
17525 else
17526 {
17527 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17528
17529 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17530 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17531 insn |= at << OP_SH_RT;
17532 exp.X_op = O_symbol;
17533 exp.X_add_symbol = fragp->fr_symbol;
17534 exp.X_add_number = fragp->fr_offset;
17535
17536 if (fragp->fr_offset)
17537 {
17538 exp.X_add_symbol = make_expr_symbol (&exp);
17539 exp.X_add_number = 0;
17540 }
17541
17542 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17543 FALSE, BFD_RELOC_MIPS_GOT16);
17544 fixp->fx_file = fragp->fr_file;
17545 fixp->fx_line = fragp->fr_line;
17546
17547 buf = write_insn (buf, insn);
17548
17549 if (mips_opts.isa == ISA_MIPS1)
17550 /* nop */
17551 buf = write_insn (buf, 0);
17552
17553 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17554 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17555 insn |= at << OP_SH_RS | at << OP_SH_RT;
17556
17557 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17558 FALSE, BFD_RELOC_LO16);
17559 fixp->fx_file = fragp->fr_file;
17560 fixp->fx_line = fragp->fr_line;
17561
17562 buf = write_insn (buf, insn);
17563
17564 /* j(al)r $at. */
17565 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17566 insn = 0x0000f809;
17567 else
17568 insn = 0x00000008;
17569 insn |= at << OP_SH_RS;
17570
17571 buf = write_insn (buf, insn);
17572 }
17573 }
17574
17575 fragp->fr_fix += fragp->fr_var;
17576 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17577 return;
17578 }
17579
17580 /* Relax microMIPS branches. */
17581 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17582 {
17583 char *buf = fragp->fr_literal + fragp->fr_fix;
17584 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17585 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17586 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17587 bfd_boolean short_ds;
17588 unsigned long insn;
17589 expressionS exp;
17590 fixS *fixp;
17591
17592 exp.X_op = O_symbol;
17593 exp.X_add_symbol = fragp->fr_symbol;
17594 exp.X_add_number = fragp->fr_offset;
17595
17596 fragp->fr_fix += fragp->fr_var;
17597
17598 /* Handle 16-bit branches that fit or are forced to fit. */
17599 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17600 {
17601 /* We generate a fixup instead of applying it right now,
17602 because if there is linker relaxation, we're going to
17603 need the relocations. */
17604 if (type == 'D')
17605 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17606 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17607 else if (type == 'E')
17608 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17609 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17610 else
17611 abort ();
17612
17613 fixp->fx_file = fragp->fr_file;
17614 fixp->fx_line = fragp->fr_line;
17615
17616 /* These relocations can have an addend that won't fit in
17617 2 octets. */
17618 fixp->fx_no_overflow = 1;
17619
17620 return;
17621 }
17622
17623 /* Handle 32-bit branches that fit or are forced to fit. */
17624 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17625 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17626 {
17627 /* We generate a fixup instead of applying it right now,
17628 because if there is linker relaxation, we're going to
17629 need the relocations. */
17630 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17631 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17632 fixp->fx_file = fragp->fr_file;
17633 fixp->fx_line = fragp->fr_line;
17634
17635 if (type == 0)
17636 return;
17637 }
17638
17639 /* Relax 16-bit branches to 32-bit branches. */
17640 if (type != 0)
17641 {
17642 insn = read_compressed_insn (buf, 2);
17643
17644 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17645 insn = 0x94000000; /* beq */
17646 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17647 {
17648 unsigned long regno;
17649
17650 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17651 regno = micromips_to_32_reg_d_map [regno];
17652 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17653 insn |= regno << MICROMIPSOP_SH_RS;
17654 }
17655 else
17656 abort ();
17657
17658 /* Nothing else to do, just write it out. */
17659 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17660 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17661 {
17662 buf = write_compressed_insn (buf, insn, 4);
17663 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17664 return;
17665 }
17666 }
17667 else
17668 insn = read_compressed_insn (buf, 4);
17669
17670 /* Relax 32-bit branches to a sequence of instructions. */
17671 as_warn_where (fragp->fr_file, fragp->fr_line,
17672 _("relaxed out-of-range branch into a jump"));
17673
17674 /* Set the short-delay-slot bit. */
17675 short_ds = al && (insn & 0x02000000) != 0;
17676
17677 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17678 {
17679 symbolS *l;
17680
17681 /* Reverse the branch. */
17682 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17683 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17684 insn ^= 0x20000000;
17685 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17686 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17687 || (insn & 0xffe00000) == 0x40800000 /* blez */
17688 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17689 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17690 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17691 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17692 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17693 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17694 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17695 insn ^= 0x00400000;
17696 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17697 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17698 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17699 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17700 insn ^= 0x00200000;
17701 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17702 BNZ.df */
17703 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17704 BNZ.V */
17705 insn ^= 0x00800000;
17706 else
17707 abort ();
17708
17709 if (al)
17710 {
17711 /* Clear the and-link and short-delay-slot bits. */
17712 gas_assert ((insn & 0xfda00000) == 0x40200000);
17713
17714 /* bltzal 0x40200000 bgezal 0x40600000 */
17715 /* bltzals 0x42200000 bgezals 0x42600000 */
17716 insn &= ~0x02200000;
17717 }
17718
17719 /* Make a label at the end for use with the branch. */
17720 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17721 micromips_label_inc ();
17722 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17723
17724 /* Refer to it. */
17725 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17726 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17727 fixp->fx_file = fragp->fr_file;
17728 fixp->fx_line = fragp->fr_line;
17729
17730 /* Branch over the jump. */
17731 buf = write_compressed_insn (buf, insn, 4);
17732 if (!compact)
17733 /* nop */
17734 buf = write_compressed_insn (buf, 0x0c00, 2);
17735 }
17736
17737 if (mips_pic == NO_PIC)
17738 {
17739 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17740
17741 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17742 insn = al ? jal : 0xd4000000;
17743
17744 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17745 BFD_RELOC_MICROMIPS_JMP);
17746 fixp->fx_file = fragp->fr_file;
17747 fixp->fx_line = fragp->fr_line;
17748
17749 buf = write_compressed_insn (buf, insn, 4);
17750 if (compact)
17751 /* nop */
17752 buf = write_compressed_insn (buf, 0x0c00, 2);
17753 }
17754 else
17755 {
17756 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17757 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17758 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17759
17760 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17761 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17762 insn |= at << MICROMIPSOP_SH_RT;
17763
17764 if (exp.X_add_number)
17765 {
17766 exp.X_add_symbol = make_expr_symbol (&exp);
17767 exp.X_add_number = 0;
17768 }
17769
17770 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17771 BFD_RELOC_MICROMIPS_GOT16);
17772 fixp->fx_file = fragp->fr_file;
17773 fixp->fx_line = fragp->fr_line;
17774
17775 buf = write_compressed_insn (buf, insn, 4);
17776
17777 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17778 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17779 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17780
17781 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17782 BFD_RELOC_MICROMIPS_LO16);
17783 fixp->fx_file = fragp->fr_file;
17784 fixp->fx_line = fragp->fr_line;
17785
17786 buf = write_compressed_insn (buf, insn, 4);
17787
17788 /* jr/jrc/jalr/jalrs $at */
17789 insn = al ? jalr : jr;
17790 insn |= at << MICROMIPSOP_SH_MJ;
17791
17792 buf = write_compressed_insn (buf, insn, 2);
17793 }
17794
17795 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17796 return;
17797 }
17798
17799 if (RELAX_MIPS16_P (fragp->fr_subtype))
17800 {
17801 int type;
17802 const struct mips_int_operand *operand;
17803 offsetT val;
17804 char *buf;
17805 unsigned int user_length, length;
17806 unsigned long insn;
17807 bfd_boolean ext;
17808
17809 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17810 operand = mips16_immed_operand (type, FALSE);
17811
17812 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17813 val = resolve_symbol_value (fragp->fr_symbol);
17814 if (operand->root.type == OP_PCREL)
17815 {
17816 const struct mips_pcrel_operand *pcrel_op;
17817 addressT addr;
17818
17819 pcrel_op = (const struct mips_pcrel_operand *) operand;
17820 addr = fragp->fr_address + fragp->fr_fix;
17821
17822 /* The rules for the base address of a PC relative reloc are
17823 complicated; see mips16_extended_frag. */
17824 if (pcrel_op->include_isa_bit)
17825 {
17826 addr += 2;
17827 if (ext)
17828 addr += 2;
17829 /* Ignore the low bit in the target, since it will be
17830 set for a text label. */
17831 val &= -2;
17832 }
17833 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17834 addr -= 4;
17835 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17836 addr -= 2;
17837
17838 addr &= -(1 << pcrel_op->align_log2);
17839 val -= addr;
17840
17841 /* Make sure the section winds up with the alignment we have
17842 assumed. */
17843 if (operand->shift > 0)
17844 record_alignment (asec, operand->shift);
17845 }
17846
17847 if (ext
17848 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17849 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17850 as_warn_where (fragp->fr_file, fragp->fr_line,
17851 _("extended instruction in delay slot"));
17852
17853 buf = fragp->fr_literal + fragp->fr_fix;
17854
17855 insn = read_compressed_insn (buf, 2);
17856 if (ext)
17857 insn |= MIPS16_EXTEND;
17858
17859 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17860 user_length = 4;
17861 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17862 user_length = 2;
17863 else
17864 user_length = 0;
17865
17866 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17867 BFD_RELOC_UNUSED, val, user_length, &insn);
17868
17869 length = (ext ? 4 : 2);
17870 gas_assert (mips16_opcode_length (insn) == length);
17871 write_compressed_insn (buf, insn, length);
17872 fragp->fr_fix += length;
17873 }
17874 else
17875 {
17876 relax_substateT subtype = fragp->fr_subtype;
17877 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17878 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17879 int first, second;
17880 fixS *fixp;
17881
17882 first = RELAX_FIRST (subtype);
17883 second = RELAX_SECOND (subtype);
17884 fixp = (fixS *) fragp->fr_opcode;
17885
17886 /* If the delay slot chosen does not match the size of the instruction,
17887 then emit a warning. */
17888 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17889 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17890 {
17891 relax_substateT s;
17892 const char *msg;
17893
17894 s = subtype & (RELAX_DELAY_SLOT_16BIT
17895 | RELAX_DELAY_SLOT_SIZE_FIRST
17896 | RELAX_DELAY_SLOT_SIZE_SECOND);
17897 msg = macro_warning (s);
17898 if (msg != NULL)
17899 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17900 subtype &= ~s;
17901 }
17902
17903 /* Possibly emit a warning if we've chosen the longer option. */
17904 if (use_second == second_longer)
17905 {
17906 relax_substateT s;
17907 const char *msg;
17908
17909 s = (subtype
17910 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17911 msg = macro_warning (s);
17912 if (msg != NULL)
17913 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17914 subtype &= ~s;
17915 }
17916
17917 /* Go through all the fixups for the first sequence. Disable them
17918 (by marking them as done) if we're going to use the second
17919 sequence instead. */
17920 while (fixp
17921 && fixp->fx_frag == fragp
17922 && fixp->fx_where < fragp->fr_fix - second)
17923 {
17924 if (subtype & RELAX_USE_SECOND)
17925 fixp->fx_done = 1;
17926 fixp = fixp->fx_next;
17927 }
17928
17929 /* Go through the fixups for the second sequence. Disable them if
17930 we're going to use the first sequence, otherwise adjust their
17931 addresses to account for the relaxation. */
17932 while (fixp && fixp->fx_frag == fragp)
17933 {
17934 if (subtype & RELAX_USE_SECOND)
17935 fixp->fx_where -= first;
17936 else
17937 fixp->fx_done = 1;
17938 fixp = fixp->fx_next;
17939 }
17940
17941 /* Now modify the frag contents. */
17942 if (subtype & RELAX_USE_SECOND)
17943 {
17944 char *start;
17945
17946 start = fragp->fr_literal + fragp->fr_fix - first - second;
17947 memmove (start, start + first, second);
17948 fragp->fr_fix -= first;
17949 }
17950 else
17951 fragp->fr_fix -= second;
17952 }
17953 }
17954
17955 /* This function is called after the relocs have been generated.
17956 We've been storing mips16 text labels as odd. Here we convert them
17957 back to even for the convenience of the debugger. */
17958
17959 void
17960 mips_frob_file_after_relocs (void)
17961 {
17962 asymbol **syms;
17963 unsigned int count, i;
17964
17965 syms = bfd_get_outsymbols (stdoutput);
17966 count = bfd_get_symcount (stdoutput);
17967 for (i = 0; i < count; i++, syms++)
17968 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17969 && ((*syms)->value & 1) != 0)
17970 {
17971 (*syms)->value &= ~1;
17972 /* If the symbol has an odd size, it was probably computed
17973 incorrectly, so adjust that as well. */
17974 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17975 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17976 }
17977 }
17978
17979 /* This function is called whenever a label is defined, including fake
17980 labels instantiated off the dot special symbol. It is used when
17981 handling branch delays; if a branch has a label, we assume we cannot
17982 move it. This also bumps the value of the symbol by 1 in compressed
17983 code. */
17984
17985 static void
17986 mips_record_label (symbolS *sym)
17987 {
17988 segment_info_type *si = seg_info (now_seg);
17989 struct insn_label_list *l;
17990
17991 if (free_insn_labels == NULL)
17992 l = XNEW (struct insn_label_list);
17993 else
17994 {
17995 l = free_insn_labels;
17996 free_insn_labels = l->next;
17997 }
17998
17999 l->label = sym;
18000 l->next = si->label_list;
18001 si->label_list = l;
18002 }
18003
18004 /* This function is called as tc_frob_label() whenever a label is defined
18005 and adds a DWARF-2 record we only want for true labels. */
18006
18007 void
18008 mips_define_label (symbolS *sym)
18009 {
18010 mips_record_label (sym);
18011 dwarf2_emit_label (sym);
18012 }
18013
18014 /* This function is called by tc_new_dot_label whenever a new dot symbol
18015 is defined. */
18016
18017 void
18018 mips_add_dot_label (symbolS *sym)
18019 {
18020 mips_record_label (sym);
18021 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18022 mips_compressed_mark_label (sym);
18023 }
18024 \f
18025 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18026 static unsigned int
18027 mips_convert_ase_flags (int ase)
18028 {
18029 unsigned int ext_ases = 0;
18030
18031 if (ase & ASE_DSP)
18032 ext_ases |= AFL_ASE_DSP;
18033 if (ase & ASE_DSPR2)
18034 ext_ases |= AFL_ASE_DSPR2;
18035 if (ase & ASE_DSPR3)
18036 ext_ases |= AFL_ASE_DSPR3;
18037 if (ase & ASE_EVA)
18038 ext_ases |= AFL_ASE_EVA;
18039 if (ase & ASE_MCU)
18040 ext_ases |= AFL_ASE_MCU;
18041 if (ase & ASE_MDMX)
18042 ext_ases |= AFL_ASE_MDMX;
18043 if (ase & ASE_MIPS3D)
18044 ext_ases |= AFL_ASE_MIPS3D;
18045 if (ase & ASE_MT)
18046 ext_ases |= AFL_ASE_MT;
18047 if (ase & ASE_SMARTMIPS)
18048 ext_ases |= AFL_ASE_SMARTMIPS;
18049 if (ase & ASE_VIRT)
18050 ext_ases |= AFL_ASE_VIRT;
18051 if (ase & ASE_MSA)
18052 ext_ases |= AFL_ASE_MSA;
18053 if (ase & ASE_XPA)
18054 ext_ases |= AFL_ASE_XPA;
18055
18056 return ext_ases;
18057 }
18058 /* Some special processing for a MIPS ELF file. */
18059
18060 void
18061 mips_elf_final_processing (void)
18062 {
18063 int fpabi;
18064 Elf_Internal_ABIFlags_v0 flags;
18065
18066 flags.version = 0;
18067 flags.isa_rev = 0;
18068 switch (file_mips_opts.isa)
18069 {
18070 case INSN_ISA1:
18071 flags.isa_level = 1;
18072 break;
18073 case INSN_ISA2:
18074 flags.isa_level = 2;
18075 break;
18076 case INSN_ISA3:
18077 flags.isa_level = 3;
18078 break;
18079 case INSN_ISA4:
18080 flags.isa_level = 4;
18081 break;
18082 case INSN_ISA5:
18083 flags.isa_level = 5;
18084 break;
18085 case INSN_ISA32:
18086 flags.isa_level = 32;
18087 flags.isa_rev = 1;
18088 break;
18089 case INSN_ISA32R2:
18090 flags.isa_level = 32;
18091 flags.isa_rev = 2;
18092 break;
18093 case INSN_ISA32R3:
18094 flags.isa_level = 32;
18095 flags.isa_rev = 3;
18096 break;
18097 case INSN_ISA32R5:
18098 flags.isa_level = 32;
18099 flags.isa_rev = 5;
18100 break;
18101 case INSN_ISA32R6:
18102 flags.isa_level = 32;
18103 flags.isa_rev = 6;
18104 break;
18105 case INSN_ISA64:
18106 flags.isa_level = 64;
18107 flags.isa_rev = 1;
18108 break;
18109 case INSN_ISA64R2:
18110 flags.isa_level = 64;
18111 flags.isa_rev = 2;
18112 break;
18113 case INSN_ISA64R3:
18114 flags.isa_level = 64;
18115 flags.isa_rev = 3;
18116 break;
18117 case INSN_ISA64R5:
18118 flags.isa_level = 64;
18119 flags.isa_rev = 5;
18120 break;
18121 case INSN_ISA64R6:
18122 flags.isa_level = 64;
18123 flags.isa_rev = 6;
18124 break;
18125 }
18126
18127 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18128 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18129 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18130 : (file_mips_opts.fp == 64) ? AFL_REG_64
18131 : AFL_REG_32;
18132 flags.cpr2_size = AFL_REG_NONE;
18133 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18134 Tag_GNU_MIPS_ABI_FP);
18135 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18136 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18137 if (file_ase_mips16)
18138 flags.ases |= AFL_ASE_MIPS16;
18139 if (file_ase_micromips)
18140 flags.ases |= AFL_ASE_MICROMIPS;
18141 flags.flags1 = 0;
18142 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18143 || file_mips_opts.fp == 64)
18144 && file_mips_opts.oddspreg)
18145 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18146 flags.flags2 = 0;
18147
18148 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18149 ((Elf_External_ABIFlags_v0 *)
18150 mips_flags_frag));
18151
18152 /* Write out the register information. */
18153 if (mips_abi != N64_ABI)
18154 {
18155 Elf32_RegInfo s;
18156
18157 s.ri_gprmask = mips_gprmask;
18158 s.ri_cprmask[0] = mips_cprmask[0];
18159 s.ri_cprmask[1] = mips_cprmask[1];
18160 s.ri_cprmask[2] = mips_cprmask[2];
18161 s.ri_cprmask[3] = mips_cprmask[3];
18162 /* The gp_value field is set by the MIPS ELF backend. */
18163
18164 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18165 ((Elf32_External_RegInfo *)
18166 mips_regmask_frag));
18167 }
18168 else
18169 {
18170 Elf64_Internal_RegInfo s;
18171
18172 s.ri_gprmask = mips_gprmask;
18173 s.ri_pad = 0;
18174 s.ri_cprmask[0] = mips_cprmask[0];
18175 s.ri_cprmask[1] = mips_cprmask[1];
18176 s.ri_cprmask[2] = mips_cprmask[2];
18177 s.ri_cprmask[3] = mips_cprmask[3];
18178 /* The gp_value field is set by the MIPS ELF backend. */
18179
18180 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18181 ((Elf64_External_RegInfo *)
18182 mips_regmask_frag));
18183 }
18184
18185 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18186 sort of BFD interface for this. */
18187 if (mips_any_noreorder)
18188 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18189 if (mips_pic != NO_PIC)
18190 {
18191 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18192 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18193 }
18194 if (mips_abicalls)
18195 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18196
18197 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18198 defined at present; this might need to change in future. */
18199 if (file_ase_mips16)
18200 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18201 if (file_ase_micromips)
18202 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18203 if (file_mips_opts.ase & ASE_MDMX)
18204 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18205
18206 /* Set the MIPS ELF ABI flags. */
18207 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18208 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18209 else if (mips_abi == O64_ABI)
18210 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18211 else if (mips_abi == EABI_ABI)
18212 {
18213 if (file_mips_opts.gp == 64)
18214 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18215 else
18216 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18217 }
18218 else if (mips_abi == N32_ABI)
18219 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18220
18221 /* Nothing to do for N64_ABI. */
18222
18223 if (mips_32bitmode)
18224 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18225
18226 if (mips_nan2008 == 1)
18227 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18228
18229 /* 32 bit code with 64 bit FP registers. */
18230 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18231 Tag_GNU_MIPS_ABI_FP);
18232 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18233 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18234 }
18235 \f
18236 typedef struct proc {
18237 symbolS *func_sym;
18238 symbolS *func_end_sym;
18239 unsigned long reg_mask;
18240 unsigned long reg_offset;
18241 unsigned long fpreg_mask;
18242 unsigned long fpreg_offset;
18243 unsigned long frame_offset;
18244 unsigned long frame_reg;
18245 unsigned long pc_reg;
18246 } procS;
18247
18248 static procS cur_proc;
18249 static procS *cur_proc_ptr;
18250 static int numprocs;
18251
18252 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18253 as "2", and a normal nop as "0". */
18254
18255 #define NOP_OPCODE_MIPS 0
18256 #define NOP_OPCODE_MIPS16 1
18257 #define NOP_OPCODE_MICROMIPS 2
18258
18259 char
18260 mips_nop_opcode (void)
18261 {
18262 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18263 return NOP_OPCODE_MICROMIPS;
18264 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18265 return NOP_OPCODE_MIPS16;
18266 else
18267 return NOP_OPCODE_MIPS;
18268 }
18269
18270 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18271 32-bit microMIPS NOPs here (if applicable). */
18272
18273 void
18274 mips_handle_align (fragS *fragp)
18275 {
18276 char nop_opcode;
18277 char *p;
18278 int bytes, size, excess;
18279 valueT opcode;
18280
18281 if (fragp->fr_type != rs_align_code)
18282 return;
18283
18284 p = fragp->fr_literal + fragp->fr_fix;
18285 nop_opcode = *p;
18286 switch (nop_opcode)
18287 {
18288 case NOP_OPCODE_MICROMIPS:
18289 opcode = micromips_nop32_insn.insn_opcode;
18290 size = 4;
18291 break;
18292 case NOP_OPCODE_MIPS16:
18293 opcode = mips16_nop_insn.insn_opcode;
18294 size = 2;
18295 break;
18296 case NOP_OPCODE_MIPS:
18297 default:
18298 opcode = nop_insn.insn_opcode;
18299 size = 4;
18300 break;
18301 }
18302
18303 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18304 excess = bytes % size;
18305
18306 /* Handle the leading part if we're not inserting a whole number of
18307 instructions, and make it the end of the fixed part of the frag.
18308 Try to fit in a short microMIPS NOP if applicable and possible,
18309 and use zeroes otherwise. */
18310 gas_assert (excess < 4);
18311 fragp->fr_fix += excess;
18312 switch (excess)
18313 {
18314 case 3:
18315 *p++ = '\0';
18316 /* Fall through. */
18317 case 2:
18318 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18319 {
18320 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18321 break;
18322 }
18323 *p++ = '\0';
18324 /* Fall through. */
18325 case 1:
18326 *p++ = '\0';
18327 /* Fall through. */
18328 case 0:
18329 break;
18330 }
18331
18332 md_number_to_chars (p, opcode, size);
18333 fragp->fr_var = size;
18334 }
18335
18336 static long
18337 get_number (void)
18338 {
18339 int negative = 0;
18340 long val = 0;
18341
18342 if (*input_line_pointer == '-')
18343 {
18344 ++input_line_pointer;
18345 negative = 1;
18346 }
18347 if (!ISDIGIT (*input_line_pointer))
18348 as_bad (_("expected simple number"));
18349 if (input_line_pointer[0] == '0')
18350 {
18351 if (input_line_pointer[1] == 'x')
18352 {
18353 input_line_pointer += 2;
18354 while (ISXDIGIT (*input_line_pointer))
18355 {
18356 val <<= 4;
18357 val |= hex_value (*input_line_pointer++);
18358 }
18359 return negative ? -val : val;
18360 }
18361 else
18362 {
18363 ++input_line_pointer;
18364 while (ISDIGIT (*input_line_pointer))
18365 {
18366 val <<= 3;
18367 val |= *input_line_pointer++ - '0';
18368 }
18369 return negative ? -val : val;
18370 }
18371 }
18372 if (!ISDIGIT (*input_line_pointer))
18373 {
18374 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18375 *input_line_pointer, *input_line_pointer);
18376 as_warn (_("invalid number"));
18377 return -1;
18378 }
18379 while (ISDIGIT (*input_line_pointer))
18380 {
18381 val *= 10;
18382 val += *input_line_pointer++ - '0';
18383 }
18384 return negative ? -val : val;
18385 }
18386
18387 /* The .file directive; just like the usual .file directive, but there
18388 is an initial number which is the ECOFF file index. In the non-ECOFF
18389 case .file implies DWARF-2. */
18390
18391 static void
18392 s_mips_file (int x ATTRIBUTE_UNUSED)
18393 {
18394 static int first_file_directive = 0;
18395
18396 if (ECOFF_DEBUGGING)
18397 {
18398 get_number ();
18399 s_app_file (0);
18400 }
18401 else
18402 {
18403 char *filename;
18404
18405 filename = dwarf2_directive_file (0);
18406
18407 /* Versions of GCC up to 3.1 start files with a ".file"
18408 directive even for stabs output. Make sure that this
18409 ".file" is handled. Note that you need a version of GCC
18410 after 3.1 in order to support DWARF-2 on MIPS. */
18411 if (filename != NULL && ! first_file_directive)
18412 {
18413 (void) new_logical_line (filename, -1);
18414 s_app_file_string (filename, 0);
18415 }
18416 first_file_directive = 1;
18417 }
18418 }
18419
18420 /* The .loc directive, implying DWARF-2. */
18421
18422 static void
18423 s_mips_loc (int x ATTRIBUTE_UNUSED)
18424 {
18425 if (!ECOFF_DEBUGGING)
18426 dwarf2_directive_loc (0);
18427 }
18428
18429 /* The .end directive. */
18430
18431 static void
18432 s_mips_end (int x ATTRIBUTE_UNUSED)
18433 {
18434 symbolS *p;
18435
18436 /* Following functions need their own .frame and .cprestore directives. */
18437 mips_frame_reg_valid = 0;
18438 mips_cprestore_valid = 0;
18439
18440 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18441 {
18442 p = get_symbol ();
18443 demand_empty_rest_of_line ();
18444 }
18445 else
18446 p = NULL;
18447
18448 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18449 as_warn (_(".end not in text section"));
18450
18451 if (!cur_proc_ptr)
18452 {
18453 as_warn (_(".end directive without a preceding .ent directive"));
18454 demand_empty_rest_of_line ();
18455 return;
18456 }
18457
18458 if (p != NULL)
18459 {
18460 gas_assert (S_GET_NAME (p));
18461 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18462 as_warn (_(".end symbol does not match .ent symbol"));
18463
18464 if (debug_type == DEBUG_STABS)
18465 stabs_generate_asm_endfunc (S_GET_NAME (p),
18466 S_GET_NAME (p));
18467 }
18468 else
18469 as_warn (_(".end directive missing or unknown symbol"));
18470
18471 /* Create an expression to calculate the size of the function. */
18472 if (p && cur_proc_ptr)
18473 {
18474 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18475 expressionS *exp = XNEW (expressionS);
18476
18477 obj->size = exp;
18478 exp->X_op = O_subtract;
18479 exp->X_add_symbol = symbol_temp_new_now ();
18480 exp->X_op_symbol = p;
18481 exp->X_add_number = 0;
18482
18483 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18484 }
18485
18486 /* Generate a .pdr section. */
18487 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18488 {
18489 segT saved_seg = now_seg;
18490 subsegT saved_subseg = now_subseg;
18491 expressionS exp;
18492 char *fragp;
18493
18494 #ifdef md_flush_pending_output
18495 md_flush_pending_output ();
18496 #endif
18497
18498 gas_assert (pdr_seg);
18499 subseg_set (pdr_seg, 0);
18500
18501 /* Write the symbol. */
18502 exp.X_op = O_symbol;
18503 exp.X_add_symbol = p;
18504 exp.X_add_number = 0;
18505 emit_expr (&exp, 4);
18506
18507 fragp = frag_more (7 * 4);
18508
18509 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18510 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18511 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18512 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18513 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18514 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18515 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18516
18517 subseg_set (saved_seg, saved_subseg);
18518 }
18519
18520 cur_proc_ptr = NULL;
18521 }
18522
18523 /* The .aent and .ent directives. */
18524
18525 static void
18526 s_mips_ent (int aent)
18527 {
18528 symbolS *symbolP;
18529
18530 symbolP = get_symbol ();
18531 if (*input_line_pointer == ',')
18532 ++input_line_pointer;
18533 SKIP_WHITESPACE ();
18534 if (ISDIGIT (*input_line_pointer)
18535 || *input_line_pointer == '-')
18536 get_number ();
18537
18538 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18539 as_warn (_(".ent or .aent not in text section"));
18540
18541 if (!aent && cur_proc_ptr)
18542 as_warn (_("missing .end"));
18543
18544 if (!aent)
18545 {
18546 /* This function needs its own .frame and .cprestore directives. */
18547 mips_frame_reg_valid = 0;
18548 mips_cprestore_valid = 0;
18549
18550 cur_proc_ptr = &cur_proc;
18551 memset (cur_proc_ptr, '\0', sizeof (procS));
18552
18553 cur_proc_ptr->func_sym = symbolP;
18554
18555 ++numprocs;
18556
18557 if (debug_type == DEBUG_STABS)
18558 stabs_generate_asm_func (S_GET_NAME (symbolP),
18559 S_GET_NAME (symbolP));
18560 }
18561
18562 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18563
18564 demand_empty_rest_of_line ();
18565 }
18566
18567 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18568 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18569 s_mips_frame is used so that we can set the PDR information correctly.
18570 We can't use the ecoff routines because they make reference to the ecoff
18571 symbol table (in the mdebug section). */
18572
18573 static void
18574 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18575 {
18576 if (ECOFF_DEBUGGING)
18577 s_ignore (ignore);
18578 else
18579 {
18580 long val;
18581
18582 if (cur_proc_ptr == (procS *) NULL)
18583 {
18584 as_warn (_(".frame outside of .ent"));
18585 demand_empty_rest_of_line ();
18586 return;
18587 }
18588
18589 cur_proc_ptr->frame_reg = tc_get_register (1);
18590
18591 SKIP_WHITESPACE ();
18592 if (*input_line_pointer++ != ','
18593 || get_absolute_expression_and_terminator (&val) != ',')
18594 {
18595 as_warn (_("bad .frame directive"));
18596 --input_line_pointer;
18597 demand_empty_rest_of_line ();
18598 return;
18599 }
18600
18601 cur_proc_ptr->frame_offset = val;
18602 cur_proc_ptr->pc_reg = tc_get_register (0);
18603
18604 demand_empty_rest_of_line ();
18605 }
18606 }
18607
18608 /* The .fmask and .mask directives. If the mdebug section is present
18609 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18610 embedded targets, s_mips_mask is used so that we can set the PDR
18611 information correctly. We can't use the ecoff routines because they
18612 make reference to the ecoff symbol table (in the mdebug section). */
18613
18614 static void
18615 s_mips_mask (int reg_type)
18616 {
18617 if (ECOFF_DEBUGGING)
18618 s_ignore (reg_type);
18619 else
18620 {
18621 long mask, off;
18622
18623 if (cur_proc_ptr == (procS *) NULL)
18624 {
18625 as_warn (_(".mask/.fmask outside of .ent"));
18626 demand_empty_rest_of_line ();
18627 return;
18628 }
18629
18630 if (get_absolute_expression_and_terminator (&mask) != ',')
18631 {
18632 as_warn (_("bad .mask/.fmask directive"));
18633 --input_line_pointer;
18634 demand_empty_rest_of_line ();
18635 return;
18636 }
18637
18638 off = get_absolute_expression ();
18639
18640 if (reg_type == 'F')
18641 {
18642 cur_proc_ptr->fpreg_mask = mask;
18643 cur_proc_ptr->fpreg_offset = off;
18644 }
18645 else
18646 {
18647 cur_proc_ptr->reg_mask = mask;
18648 cur_proc_ptr->reg_offset = off;
18649 }
18650
18651 demand_empty_rest_of_line ();
18652 }
18653 }
18654
18655 /* A table describing all the processors gas knows about. Names are
18656 matched in the order listed.
18657
18658 To ease comparison, please keep this table in the same order as
18659 gcc's mips_cpu_info_table[]. */
18660 static const struct mips_cpu_info mips_cpu_info_table[] =
18661 {
18662 /* Entries for generic ISAs */
18663 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18664 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18665 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18666 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18667 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18668 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18669 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18670 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18671 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18672 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18673 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18674 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18675 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18676 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18677 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18678
18679 /* MIPS I */
18680 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18681 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18682 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18683
18684 /* MIPS II */
18685 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18686
18687 /* MIPS III */
18688 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18689 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18690 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18691 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18692 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18693 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18694 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18695 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18696 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18697 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18698 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18699 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18700 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18701 /* ST Microelectronics Loongson 2E and 2F cores */
18702 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18703 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18704
18705 /* MIPS IV */
18706 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18707 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18708 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18709 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18710 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18711 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18712 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18713 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18714 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18715 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18716 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18717 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18718 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18719 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18720 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18721
18722 /* MIPS 32 */
18723 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18724 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18725 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18726 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18727
18728 /* MIPS 32 Release 2 */
18729 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18730 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18731 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18732 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18733 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18734 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18735 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18736 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18737 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18738 ISA_MIPS32R2, CPU_MIPS32R2 },
18739 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18740 ISA_MIPS32R2, CPU_MIPS32R2 },
18741 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18742 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18743 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18744 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18745 /* Deprecated forms of the above. */
18746 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18747 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18748 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18749 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18750 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18751 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18752 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18753 /* Deprecated forms of the above. */
18754 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18755 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18756 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18757 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18758 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18759 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18760 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18761 /* Deprecated forms of the above. */
18762 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18763 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18764 /* 34Kn is a 34kc without DSP. */
18765 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18766 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18767 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18768 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18769 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18770 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18771 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18772 /* Deprecated forms of the above. */
18773 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18774 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18775 /* 1004K cores are multiprocessor versions of the 34K. */
18776 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18777 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18778 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18779 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18780 /* interaptiv is the new name for 1004kf */
18781 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18782 /* M5100 family */
18783 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18784 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18785 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18786 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18787
18788 /* MIPS 64 */
18789 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18790 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18791 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18792 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18793
18794 /* Broadcom SB-1 CPU core */
18795 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18796 /* Broadcom SB-1A CPU core */
18797 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18798
18799 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18800
18801 /* MIPS 64 Release 2 */
18802
18803 /* Cavium Networks Octeon CPU core */
18804 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18805 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18806 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18807 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18808
18809 /* RMI Xlr */
18810 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18811
18812 /* Broadcom XLP.
18813 XLP is mostly like XLR, with the prominent exception that it is
18814 MIPS64R2 rather than MIPS64. */
18815 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18816
18817 /* MIPS 64 Release 6 */
18818 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18819 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18820
18821 /* End marker */
18822 { NULL, 0, 0, 0, 0 }
18823 };
18824
18825
18826 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18827 with a final "000" replaced by "k". Ignore case.
18828
18829 Note: this function is shared between GCC and GAS. */
18830
18831 static bfd_boolean
18832 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18833 {
18834 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18835 given++, canonical++;
18836
18837 return ((*given == 0 && *canonical == 0)
18838 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18839 }
18840
18841
18842 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18843 CPU name. We've traditionally allowed a lot of variation here.
18844
18845 Note: this function is shared between GCC and GAS. */
18846
18847 static bfd_boolean
18848 mips_matching_cpu_name_p (const char *canonical, const char *given)
18849 {
18850 /* First see if the name matches exactly, or with a final "000"
18851 turned into "k". */
18852 if (mips_strict_matching_cpu_name_p (canonical, given))
18853 return TRUE;
18854
18855 /* If not, try comparing based on numerical designation alone.
18856 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18857 if (TOLOWER (*given) == 'r')
18858 given++;
18859 if (!ISDIGIT (*given))
18860 return FALSE;
18861
18862 /* Skip over some well-known prefixes in the canonical name,
18863 hoping to find a number there too. */
18864 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18865 canonical += 2;
18866 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18867 canonical += 2;
18868 else if (TOLOWER (canonical[0]) == 'r')
18869 canonical += 1;
18870
18871 return mips_strict_matching_cpu_name_p (canonical, given);
18872 }
18873
18874
18875 /* Parse an option that takes the name of a processor as its argument.
18876 OPTION is the name of the option and CPU_STRING is the argument.
18877 Return the corresponding processor enumeration if the CPU_STRING is
18878 recognized, otherwise report an error and return null.
18879
18880 A similar function exists in GCC. */
18881
18882 static const struct mips_cpu_info *
18883 mips_parse_cpu (const char *option, const char *cpu_string)
18884 {
18885 const struct mips_cpu_info *p;
18886
18887 /* 'from-abi' selects the most compatible architecture for the given
18888 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18889 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18890 version. Look first at the -mgp options, if given, otherwise base
18891 the choice on MIPS_DEFAULT_64BIT.
18892
18893 Treat NO_ABI like the EABIs. One reason to do this is that the
18894 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18895 architecture. This code picks MIPS I for 'mips' and MIPS III for
18896 'mips64', just as we did in the days before 'from-abi'. */
18897 if (strcasecmp (cpu_string, "from-abi") == 0)
18898 {
18899 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18900 return mips_cpu_info_from_isa (ISA_MIPS1);
18901
18902 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18903 return mips_cpu_info_from_isa (ISA_MIPS3);
18904
18905 if (file_mips_opts.gp >= 0)
18906 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18907 ? ISA_MIPS1 : ISA_MIPS3);
18908
18909 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18910 ? ISA_MIPS3
18911 : ISA_MIPS1);
18912 }
18913
18914 /* 'default' has traditionally been a no-op. Probably not very useful. */
18915 if (strcasecmp (cpu_string, "default") == 0)
18916 return 0;
18917
18918 for (p = mips_cpu_info_table; p->name != 0; p++)
18919 if (mips_matching_cpu_name_p (p->name, cpu_string))
18920 return p;
18921
18922 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18923 return 0;
18924 }
18925
18926 /* Return the canonical processor information for ISA (a member of the
18927 ISA_MIPS* enumeration). */
18928
18929 static const struct mips_cpu_info *
18930 mips_cpu_info_from_isa (int isa)
18931 {
18932 int i;
18933
18934 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18935 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18936 && isa == mips_cpu_info_table[i].isa)
18937 return (&mips_cpu_info_table[i]);
18938
18939 return NULL;
18940 }
18941
18942 static const struct mips_cpu_info *
18943 mips_cpu_info_from_arch (int arch)
18944 {
18945 int i;
18946
18947 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18948 if (arch == mips_cpu_info_table[i].cpu)
18949 return (&mips_cpu_info_table[i]);
18950
18951 return NULL;
18952 }
18953 \f
18954 static void
18955 show (FILE *stream, const char *string, int *col_p, int *first_p)
18956 {
18957 if (*first_p)
18958 {
18959 fprintf (stream, "%24s", "");
18960 *col_p = 24;
18961 }
18962 else
18963 {
18964 fprintf (stream, ", ");
18965 *col_p += 2;
18966 }
18967
18968 if (*col_p + strlen (string) > 72)
18969 {
18970 fprintf (stream, "\n%24s", "");
18971 *col_p = 24;
18972 }
18973
18974 fprintf (stream, "%s", string);
18975 *col_p += strlen (string);
18976
18977 *first_p = 0;
18978 }
18979
18980 void
18981 md_show_usage (FILE *stream)
18982 {
18983 int column, first;
18984 size_t i;
18985
18986 fprintf (stream, _("\
18987 MIPS options:\n\
18988 -EB generate big endian output\n\
18989 -EL generate little endian output\n\
18990 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18991 -G NUM allow referencing objects up to NUM bytes\n\
18992 implicitly with the gp register [default 8]\n"));
18993 fprintf (stream, _("\
18994 -mips1 generate MIPS ISA I instructions\n\
18995 -mips2 generate MIPS ISA II instructions\n\
18996 -mips3 generate MIPS ISA III instructions\n\
18997 -mips4 generate MIPS ISA IV instructions\n\
18998 -mips5 generate MIPS ISA V instructions\n\
18999 -mips32 generate MIPS32 ISA instructions\n\
19000 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19001 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19002 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19003 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19004 -mips64 generate MIPS64 ISA instructions\n\
19005 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19006 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19007 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19008 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19009 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19010
19011 first = 1;
19012
19013 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19014 show (stream, mips_cpu_info_table[i].name, &column, &first);
19015 show (stream, "from-abi", &column, &first);
19016 fputc ('\n', stream);
19017
19018 fprintf (stream, _("\
19019 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19020 -no-mCPU don't generate code specific to CPU.\n\
19021 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19022
19023 first = 1;
19024
19025 show (stream, "3900", &column, &first);
19026 show (stream, "4010", &column, &first);
19027 show (stream, "4100", &column, &first);
19028 show (stream, "4650", &column, &first);
19029 fputc ('\n', stream);
19030
19031 fprintf (stream, _("\
19032 -mips16 generate mips16 instructions\n\
19033 -no-mips16 do not generate mips16 instructions\n"));
19034 fprintf (stream, _("\
19035 -mmicromips generate microMIPS instructions\n\
19036 -mno-micromips do not generate microMIPS instructions\n"));
19037 fprintf (stream, _("\
19038 -msmartmips generate smartmips instructions\n\
19039 -mno-smartmips do not generate smartmips instructions\n"));
19040 fprintf (stream, _("\
19041 -mdsp generate DSP instructions\n\
19042 -mno-dsp do not generate DSP instructions\n"));
19043 fprintf (stream, _("\
19044 -mdspr2 generate DSP R2 instructions\n\
19045 -mno-dspr2 do not generate DSP R2 instructions\n"));
19046 fprintf (stream, _("\
19047 -mdspr3 generate DSP R3 instructions\n\
19048 -mno-dspr3 do not generate DSP R3 instructions\n"));
19049 fprintf (stream, _("\
19050 -mmt generate MT instructions\n\
19051 -mno-mt do not generate MT instructions\n"));
19052 fprintf (stream, _("\
19053 -mmcu generate MCU instructions\n\
19054 -mno-mcu do not generate MCU instructions\n"));
19055 fprintf (stream, _("\
19056 -mmsa generate MSA instructions\n\
19057 -mno-msa do not generate MSA instructions\n"));
19058 fprintf (stream, _("\
19059 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19060 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19061 fprintf (stream, _("\
19062 -mvirt generate Virtualization instructions\n\
19063 -mno-virt do not generate Virtualization instructions\n"));
19064 fprintf (stream, _("\
19065 -minsn32 only generate 32-bit microMIPS instructions\n\
19066 -mno-insn32 generate all microMIPS instructions\n"));
19067 fprintf (stream, _("\
19068 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19069 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19070 -mfix-vr4120 work around certain VR4120 errata\n\
19071 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19072 -mfix-24k insert a nop after ERET and DERET instructions\n\
19073 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19074 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19075 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19076 -msym32 assume all symbols have 32-bit values\n\
19077 -O0 remove unneeded NOPs, do not swap branches\n\
19078 -O remove unneeded NOPs and swap branches\n\
19079 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19080 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19081 fprintf (stream, _("\
19082 -mhard-float allow floating-point instructions\n\
19083 -msoft-float do not allow floating-point instructions\n\
19084 -msingle-float only allow 32-bit floating-point operations\n\
19085 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19086 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19087 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19088 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19089
19090 first = 1;
19091
19092 show (stream, "legacy", &column, &first);
19093 show (stream, "2008", &column, &first);
19094
19095 fputc ('\n', stream);
19096
19097 fprintf (stream, _("\
19098 -KPIC, -call_shared generate SVR4 position independent code\n\
19099 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19100 -mvxworks-pic generate VxWorks position independent code\n\
19101 -non_shared do not generate code that can operate with DSOs\n\
19102 -xgot assume a 32 bit GOT\n\
19103 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19104 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19105 position dependent (non shared) code\n\
19106 -mabi=ABI create ABI conformant object file for:\n"));
19107
19108 first = 1;
19109
19110 show (stream, "32", &column, &first);
19111 show (stream, "o64", &column, &first);
19112 show (stream, "n32", &column, &first);
19113 show (stream, "64", &column, &first);
19114 show (stream, "eabi", &column, &first);
19115
19116 fputc ('\n', stream);
19117
19118 fprintf (stream, _("\
19119 -32 create o32 ABI object file (default)\n\
19120 -n32 create n32 ABI object file\n\
19121 -64 create 64 ABI object file\n"));
19122 }
19123
19124 #ifdef TE_IRIX
19125 enum dwarf2_format
19126 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19127 {
19128 if (HAVE_64BIT_SYMBOLS)
19129 return dwarf2_format_64bit_irix;
19130 else
19131 return dwarf2_format_32bit;
19132 }
19133 #endif
19134
19135 int
19136 mips_dwarf2_addr_size (void)
19137 {
19138 if (HAVE_64BIT_OBJECTS)
19139 return 8;
19140 else
19141 return 4;
19142 }
19143
19144 /* Standard calling conventions leave the CFA at SP on entry. */
19145 void
19146 mips_cfi_frame_initial_instructions (void)
19147 {
19148 cfi_add_CFA_def_cfa_register (SP);
19149 }
19150
19151 int
19152 tc_mips_regname_to_dw2regnum (char *regname)
19153 {
19154 unsigned int regnum = -1;
19155 unsigned int reg;
19156
19157 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19158 regnum = reg;
19159
19160 return regnum;
19161 }
19162
19163 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19164 Given a symbolic attribute NAME, return the proper integer value.
19165 Returns -1 if the attribute is not known. */
19166
19167 int
19168 mips_convert_symbolic_attribute (const char *name)
19169 {
19170 static const struct
19171 {
19172 const char * name;
19173 const int tag;
19174 }
19175 attribute_table[] =
19176 {
19177 #define T(tag) {#tag, tag}
19178 T (Tag_GNU_MIPS_ABI_FP),
19179 T (Tag_GNU_MIPS_ABI_MSA),
19180 #undef T
19181 };
19182 unsigned int i;
19183
19184 if (name == NULL)
19185 return -1;
19186
19187 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19188 if (streq (name, attribute_table[i].name))
19189 return attribute_table[i].tag;
19190
19191 return -1;
19192 }
19193
19194 void
19195 md_mips_end (void)
19196 {
19197 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19198
19199 mips_emit_delays ();
19200 if (cur_proc_ptr)
19201 as_warn (_("missing .end at end of assembly"));
19202
19203 /* Just in case no code was emitted, do the consistency check. */
19204 file_mips_check_options ();
19205
19206 /* Set a floating-point ABI if the user did not. */
19207 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19208 {
19209 /* Perform consistency checks on the floating-point ABI. */
19210 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19211 Tag_GNU_MIPS_ABI_FP);
19212 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19213 check_fpabi (fpabi);
19214 }
19215 else
19216 {
19217 /* Soft-float gets precedence over single-float, the two options should
19218 not be used together so this should not matter. */
19219 if (file_mips_opts.soft_float == 1)
19220 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19221 /* Single-float gets precedence over all double_float cases. */
19222 else if (file_mips_opts.single_float == 1)
19223 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19224 else
19225 {
19226 switch (file_mips_opts.fp)
19227 {
19228 case 32:
19229 if (file_mips_opts.gp == 32)
19230 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19231 break;
19232 case 0:
19233 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19234 break;
19235 case 64:
19236 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19237 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19238 else if (file_mips_opts.gp == 32)
19239 fpabi = Val_GNU_MIPS_ABI_FP_64;
19240 else
19241 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19242 break;
19243 }
19244 }
19245
19246 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19247 Tag_GNU_MIPS_ABI_FP, fpabi);
19248 }
19249 }
19250
19251 /* Returns the relocation type required for a particular CFI encoding. */
19252
19253 bfd_reloc_code_real_type
19254 mips_cfi_reloc_for_encoding (int encoding)
19255 {
19256 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19257 return BFD_RELOC_32_PCREL;
19258 else return BFD_RELOC_NONE;
19259 }
This page took 0.444615 seconds and 4 git commands to generate.