9450ddd8ce79641f74b2ddb3b9eaeca5761109ad
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define ATREG 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
102
103 #define ILLEGAL_REG (32)
104
105 #define AT mips_opts.at
106
107 /* Allow override of standard little-endian ECOFF format. */
108
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
111 #endif
112
113 extern int target_big_endian;
114
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
123
124 /* Information about an instruction, including its format, operands
125 and fixups. */
126 struct mips_cl_insn
127 {
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
130
131 /* True if this is a mips16 instruction and if we want the extended
132 form of INSN_MO. */
133 bfd_boolean use_extend;
134
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
141
142 /* The frag that contains the instruction. */
143 struct frag *frag;
144
145 /* The offset into FRAG of the first instruction byte. */
146 long where;
147
148 /* The relocs associated with the instruction, if any. */
149 fixS *fixp[3];
150
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
153
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
156
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
159 };
160
161 /* The ABI to use. */
162 enum mips_abi_level
163 {
164 NO_ABI = 0,
165 O32_ABI,
166 O64_ABI,
167 N32_ABI,
168 N64_ABI,
169 EABI_ABI
170 };
171
172 /* MIPS ABI we are using for this output file. */
173 static enum mips_abi_level mips_abi = NO_ABI;
174
175 /* Whether or not we have code that can call pic code. */
176 int mips_abicalls = FALSE;
177
178 /* Whether or not we have code which can be put into a shared
179 library. */
180 static bfd_boolean mips_in_shared = TRUE;
181
182 /* This is the set of options which may be modified by the .set
183 pseudo-op. We use a struct so that .set push and .set pop are more
184 reliable. */
185
186 struct mips_set_options
187 {
188 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
189 if it has not been initialized. Changed by `.set mipsN', and the
190 -mipsN command line option, and the default CPU. */
191 int isa;
192 /* Enabled Application Specific Extensions (ASEs). These are set to -1
193 if they have not been initialized. Changed by `.set <asename>', by
194 command line options, and based on the default architecture. */
195 int ase_mips3d;
196 int ase_mdmx;
197 int ase_smartmips;
198 int ase_dsp;
199 int ase_dspr2;
200 int ase_mt;
201 /* Whether we are assembling for the mips16 processor. 0 if we are
202 not, 1 if we are, and -1 if the value has not been initialized.
203 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
204 -nomips16 command line options, and the default CPU. */
205 int mips16;
206 /* Non-zero if we should not reorder instructions. Changed by `.set
207 reorder' and `.set noreorder'. */
208 int noreorder;
209 /* Non-zero if we should not permit the register designated "assembler
210 temporary" to be used in instructions. The value is the register
211 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
212 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
213 unsigned int at;
214 /* Non-zero if we should warn when a macro instruction expands into
215 more than one machine instruction. Changed by `.set nomacro' and
216 `.set macro'. */
217 int warn_about_macros;
218 /* Non-zero if we should not move instructions. Changed by `.set
219 move', `.set volatile', `.set nomove', and `.set novolatile'. */
220 int nomove;
221 /* Non-zero if we should not optimize branches by moving the target
222 of the branch into the delay slot. Actually, we don't perform
223 this optimization anyhow. Changed by `.set bopt' and `.set
224 nobopt'. */
225 int nobopt;
226 /* Non-zero if we should not autoextend mips16 instructions.
227 Changed by `.set autoextend' and `.set noautoextend'. */
228 int noautoextend;
229 /* Restrict general purpose registers and floating point registers
230 to 32 bit. This is initially determined when -mgp32 or -mfp32
231 is passed but can changed if the assembler code uses .set mipsN. */
232 int gp32;
233 int fp32;
234 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
235 command line option, and the default CPU. */
236 int arch;
237 /* True if ".set sym32" is in effect. */
238 bfd_boolean sym32;
239 /* True if floating-point operations are not allowed. Changed by .set
240 softfloat or .set hardfloat, by command line options -msoft-float or
241 -mhard-float. The default is false. */
242 bfd_boolean soft_float;
243
244 /* True if only single-precision floating-point operations are allowed.
245 Changed by .set singlefloat or .set doublefloat, command-line options
246 -msingle-float or -mdouble-float. The default is false. */
247 bfd_boolean single_float;
248 };
249
250 /* This is the struct we use to hold the current set of options. Note
251 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
252 -1 to indicate that they have not been initialized. */
253
254 /* True if -mgp32 was passed. */
255 static int file_mips_gp32 = -1;
256
257 /* True if -mfp32 was passed. */
258 static int file_mips_fp32 = -1;
259
260 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
261 static int file_mips_soft_float = 0;
262
263 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
264 static int file_mips_single_float = 0;
265
266 static struct mips_set_options mips_opts =
267 {
268 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
269 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
270 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
271 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
272 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
273 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
274 };
275
276 /* These variables are filled in with the masks of registers used.
277 The object format code reads them and puts them in the appropriate
278 place. */
279 unsigned long mips_gprmask;
280 unsigned long mips_cprmask[4];
281
282 /* MIPS ISA we are using for this output file. */
283 static int file_mips_isa = ISA_UNKNOWN;
284
285 /* True if any MIPS16 code was produced. */
286 static int file_ase_mips16;
287
288 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
289 || mips_opts.isa == ISA_MIPS32R2 \
290 || mips_opts.isa == ISA_MIPS64 \
291 || mips_opts.isa == ISA_MIPS64R2)
292
293 /* True if we want to create R_MIPS_JALR for jalr $25. */
294 #ifdef TE_IRIX
295 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
296 #else
297 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
298 because there's no place for any addend, the only acceptable
299 expression is a bare symbol. */
300 #define MIPS_JALR_HINT_P(EXPR) \
301 (!HAVE_IN_PLACE_ADDENDS \
302 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
303 #endif
304
305 /* True if -mips3d was passed or implied by arguments passed on the
306 command line (e.g., by -march). */
307 static int file_ase_mips3d;
308
309 /* True if -mdmx was passed or implied by arguments passed on the
310 command line (e.g., by -march). */
311 static int file_ase_mdmx;
312
313 /* True if -msmartmips was passed or implied by arguments passed on the
314 command line (e.g., by -march). */
315 static int file_ase_smartmips;
316
317 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
318 || mips_opts.isa == ISA_MIPS32R2)
319
320 /* True if -mdsp was passed or implied by arguments passed on the
321 command line (e.g., by -march). */
322 static int file_ase_dsp;
323
324 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
325 || mips_opts.isa == ISA_MIPS64R2)
326
327 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
328
329 /* True if -mdspr2 was passed or implied by arguments passed on the
330 command line (e.g., by -march). */
331 static int file_ase_dspr2;
332
333 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
334 || mips_opts.isa == ISA_MIPS64R2)
335
336 /* True if -mmt was passed or implied by arguments passed on the
337 command line (e.g., by -march). */
338 static int file_ase_mt;
339
340 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
341 || mips_opts.isa == ISA_MIPS64R2)
342
343 /* The argument of the -march= flag. The architecture we are assembling. */
344 static int file_mips_arch = CPU_UNKNOWN;
345 static const char *mips_arch_string;
346
347 /* The argument of the -mtune= flag. The architecture for which we
348 are optimizing. */
349 static int mips_tune = CPU_UNKNOWN;
350 static const char *mips_tune_string;
351
352 /* True when generating 32-bit code for a 64-bit processor. */
353 static int mips_32bitmode = 0;
354
355 /* True if the given ABI requires 32-bit registers. */
356 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
357
358 /* Likewise 64-bit registers. */
359 #define ABI_NEEDS_64BIT_REGS(ABI) \
360 ((ABI) == N32_ABI \
361 || (ABI) == N64_ABI \
362 || (ABI) == O64_ABI)
363
364 /* Return true if ISA supports 64 bit wide gp registers. */
365 #define ISA_HAS_64BIT_REGS(ISA) \
366 ((ISA) == ISA_MIPS3 \
367 || (ISA) == ISA_MIPS4 \
368 || (ISA) == ISA_MIPS5 \
369 || (ISA) == ISA_MIPS64 \
370 || (ISA) == ISA_MIPS64R2)
371
372 /* Return true if ISA supports 64 bit wide float registers. */
373 #define ISA_HAS_64BIT_FPRS(ISA) \
374 ((ISA) == ISA_MIPS3 \
375 || (ISA) == ISA_MIPS4 \
376 || (ISA) == ISA_MIPS5 \
377 || (ISA) == ISA_MIPS32R2 \
378 || (ISA) == ISA_MIPS64 \
379 || (ISA) == ISA_MIPS64R2)
380
381 /* Return true if ISA supports 64-bit right rotate (dror et al.)
382 instructions. */
383 #define ISA_HAS_DROR(ISA) \
384 ((ISA) == ISA_MIPS64R2)
385
386 /* Return true if ISA supports 32-bit right rotate (ror et al.)
387 instructions. */
388 #define ISA_HAS_ROR(ISA) \
389 ((ISA) == ISA_MIPS32R2 \
390 || (ISA) == ISA_MIPS64R2 \
391 || mips_opts.ase_smartmips)
392
393 /* Return true if ISA supports single-precision floats in odd registers. */
394 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
395 ((ISA) == ISA_MIPS32 \
396 || (ISA) == ISA_MIPS32R2 \
397 || (ISA) == ISA_MIPS64 \
398 || (ISA) == ISA_MIPS64R2)
399
400 /* Return true if ISA supports move to/from high part of a 64-bit
401 floating-point register. */
402 #define ISA_HAS_MXHC1(ISA) \
403 ((ISA) == ISA_MIPS32R2 \
404 || (ISA) == ISA_MIPS64R2)
405
406 #define HAVE_32BIT_GPRS \
407 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
408
409 #define HAVE_32BIT_FPRS \
410 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
411
412 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
413 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
414
415 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
416
417 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
418
419 /* True if relocations are stored in-place. */
420 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
421
422 /* The ABI-derived address size. */
423 #define HAVE_64BIT_ADDRESSES \
424 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
425 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
426
427 /* The size of symbolic constants (i.e., expressions of the form
428 "SYMBOL" or "SYMBOL + OFFSET"). */
429 #define HAVE_32BIT_SYMBOLS \
430 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
431 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
432
433 /* Addresses are loaded in different ways, depending on the address size
434 in use. The n32 ABI Documentation also mandates the use of additions
435 with overflow checking, but existing implementations don't follow it. */
436 #define ADDRESS_ADD_INSN \
437 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
438
439 #define ADDRESS_ADDI_INSN \
440 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
441
442 #define ADDRESS_LOAD_INSN \
443 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
444
445 #define ADDRESS_STORE_INSN \
446 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
447
448 /* Return true if the given CPU supports the MIPS16 ASE. */
449 #define CPU_HAS_MIPS16(cpu) \
450 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
451 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
452
453 /* True if CPU has a dror instruction. */
454 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
455
456 /* True if CPU has a ror instruction. */
457 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
458
459 /* True if CPU has seq/sne and seqi/snei instructions. */
460 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
461
462 /* True if CPU does not implement the all the coprocessor insns. For these
463 CPUs only those COP insns are accepted that are explicitly marked to be
464 available on the CPU. ISA membership for COP insns is ignored. */
465 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
466
467 /* True if mflo and mfhi can be immediately followed by instructions
468 which write to the HI and LO registers.
469
470 According to MIPS specifications, MIPS ISAs I, II, and III need
471 (at least) two instructions between the reads of HI/LO and
472 instructions which write them, and later ISAs do not. Contradicting
473 the MIPS specifications, some MIPS IV processor user manuals (e.g.
474 the UM for the NEC Vr5000) document needing the instructions between
475 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
476 MIPS64 and later ISAs to have the interlocks, plus any specific
477 earlier-ISA CPUs for which CPU documentation declares that the
478 instructions are really interlocked. */
479 #define hilo_interlocks \
480 (mips_opts.isa == ISA_MIPS32 \
481 || mips_opts.isa == ISA_MIPS32R2 \
482 || mips_opts.isa == ISA_MIPS64 \
483 || mips_opts.isa == ISA_MIPS64R2 \
484 || mips_opts.arch == CPU_R4010 \
485 || mips_opts.arch == CPU_R10000 \
486 || mips_opts.arch == CPU_R12000 \
487 || mips_opts.arch == CPU_R14000 \
488 || mips_opts.arch == CPU_R16000 \
489 || mips_opts.arch == CPU_RM7000 \
490 || mips_opts.arch == CPU_VR5500 \
491 )
492
493 /* Whether the processor uses hardware interlocks to protect reads
494 from the GPRs after they are loaded from memory, and thus does not
495 require nops to be inserted. This applies to instructions marked
496 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
497 level I. */
498 #define gpr_interlocks \
499 (mips_opts.isa != ISA_MIPS1 \
500 || mips_opts.arch == CPU_R3900)
501
502 /* Whether the processor uses hardware interlocks to avoid delays
503 required by coprocessor instructions, and thus does not require
504 nops to be inserted. This applies to instructions marked
505 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
506 between instructions marked INSN_WRITE_COND_CODE and ones marked
507 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
508 levels I, II, and III. */
509 /* Itbl support may require additional care here. */
510 #define cop_interlocks \
511 ((mips_opts.isa != ISA_MIPS1 \
512 && mips_opts.isa != ISA_MIPS2 \
513 && mips_opts.isa != ISA_MIPS3) \
514 || mips_opts.arch == CPU_R4300 \
515 )
516
517 /* Whether the processor uses hardware interlocks to protect reads
518 from coprocessor registers after they are loaded from memory, and
519 thus does not require nops to be inserted. This applies to
520 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
521 requires at MIPS ISA level I. */
522 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
523
524 /* Is this a mfhi or mflo instruction? */
525 #define MF_HILO_INSN(PINFO) \
526 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
527
528 /* Returns true for a (non floating-point) coprocessor instruction. Reading
529 or writing the condition code is only possible on the coprocessors and
530 these insns are not marked with INSN_COP. Thus for these insns use the
531 condition-code flags. */
532 #define COP_INSN(PINFO) \
533 (PINFO != INSN_MACRO \
534 && ((PINFO) & (FP_S | FP_D)) == 0 \
535 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
536
537 /* MIPS PIC level. */
538
539 enum mips_pic_level mips_pic;
540
541 /* 1 if we should generate 32 bit offsets from the $gp register in
542 SVR4_PIC mode. Currently has no meaning in other modes. */
543 static int mips_big_got = 0;
544
545 /* 1 if trap instructions should used for overflow rather than break
546 instructions. */
547 static int mips_trap = 0;
548
549 /* 1 if double width floating point constants should not be constructed
550 by assembling two single width halves into two single width floating
551 point registers which just happen to alias the double width destination
552 register. On some architectures this aliasing can be disabled by a bit
553 in the status register, and the setting of this bit cannot be determined
554 automatically at assemble time. */
555 static int mips_disable_float_construction;
556
557 /* Non-zero if any .set noreorder directives were used. */
558
559 static int mips_any_noreorder;
560
561 /* Non-zero if nops should be inserted when the register referenced in
562 an mfhi/mflo instruction is read in the next two instructions. */
563 static int mips_7000_hilo_fix;
564
565 /* The size of objects in the small data section. */
566 static unsigned int g_switch_value = 8;
567 /* Whether the -G option was used. */
568 static int g_switch_seen = 0;
569
570 #define N_RMASK 0xc4
571 #define N_VFP 0xd4
572
573 /* If we can determine in advance that GP optimization won't be
574 possible, we can skip the relaxation stuff that tries to produce
575 GP-relative references. This makes delay slot optimization work
576 better.
577
578 This function can only provide a guess, but it seems to work for
579 gcc output. It needs to guess right for gcc, otherwise gcc
580 will put what it thinks is a GP-relative instruction in a branch
581 delay slot.
582
583 I don't know if a fix is needed for the SVR4_PIC mode. I've only
584 fixed it for the non-PIC mode. KR 95/04/07 */
585 static int nopic_need_relax (symbolS *, int);
586
587 /* handle of the OPCODE hash table */
588 static struct hash_control *op_hash = NULL;
589
590 /* The opcode hash table we use for the mips16. */
591 static struct hash_control *mips16_op_hash = NULL;
592
593 /* This array holds the chars that always start a comment. If the
594 pre-processor is disabled, these aren't very useful */
595 const char comment_chars[] = "#";
596
597 /* This array holds the chars that only start a comment at the beginning of
598 a line. If the line seems to have the form '# 123 filename'
599 .line and .file directives will appear in the pre-processed output */
600 /* Note that input_file.c hand checks for '#' at the beginning of the
601 first line of the input file. This is because the compiler outputs
602 #NO_APP at the beginning of its output. */
603 /* Also note that C style comments are always supported. */
604 const char line_comment_chars[] = "#";
605
606 /* This array holds machine specific line separator characters. */
607 const char line_separator_chars[] = ";";
608
609 /* Chars that can be used to separate mant from exp in floating point nums */
610 const char EXP_CHARS[] = "eE";
611
612 /* Chars that mean this number is a floating point constant */
613 /* As in 0f12.456 */
614 /* or 0d1.2345e12 */
615 const char FLT_CHARS[] = "rRsSfFdDxXpP";
616
617 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
618 changed in read.c . Ideally it shouldn't have to know about it at all,
619 but nothing is ideal around here.
620 */
621
622 static char *insn_error;
623
624 static int auto_align = 1;
625
626 /* When outputting SVR4 PIC code, the assembler needs to know the
627 offset in the stack frame from which to restore the $gp register.
628 This is set by the .cprestore pseudo-op, and saved in this
629 variable. */
630 static offsetT mips_cprestore_offset = -1;
631
632 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
633 more optimizations, it can use a register value instead of a memory-saved
634 offset and even an other register than $gp as global pointer. */
635 static offsetT mips_cpreturn_offset = -1;
636 static int mips_cpreturn_register = -1;
637 static int mips_gp_register = GP;
638 static int mips_gprel_offset = 0;
639
640 /* Whether mips_cprestore_offset has been set in the current function
641 (or whether it has already been warned about, if not). */
642 static int mips_cprestore_valid = 0;
643
644 /* This is the register which holds the stack frame, as set by the
645 .frame pseudo-op. This is needed to implement .cprestore. */
646 static int mips_frame_reg = SP;
647
648 /* Whether mips_frame_reg has been set in the current function
649 (or whether it has already been warned about, if not). */
650 static int mips_frame_reg_valid = 0;
651
652 /* To output NOP instructions correctly, we need to keep information
653 about the previous two instructions. */
654
655 /* Whether we are optimizing. The default value of 2 means to remove
656 unneeded NOPs and swap branch instructions when possible. A value
657 of 1 means to not swap branches. A value of 0 means to always
658 insert NOPs. */
659 static int mips_optimize = 2;
660
661 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
662 equivalent to seeing no -g option at all. */
663 static int mips_debug = 0;
664
665 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
666 #define MAX_VR4130_NOPS 4
667
668 /* The maximum number of NOPs needed to fill delay slots. */
669 #define MAX_DELAY_NOPS 2
670
671 /* The maximum number of NOPs needed for any purpose. */
672 #define MAX_NOPS 4
673
674 /* A list of previous instructions, with index 0 being the most recent.
675 We need to look back MAX_NOPS instructions when filling delay slots
676 or working around processor errata. We need to look back one
677 instruction further if we're thinking about using history[0] to
678 fill a branch delay slot. */
679 static struct mips_cl_insn history[1 + MAX_NOPS];
680
681 /* Nop instructions used by emit_nop. */
682 static struct mips_cl_insn nop_insn, mips16_nop_insn;
683
684 /* The appropriate nop for the current mode. */
685 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
686
687 /* If this is set, it points to a frag holding nop instructions which
688 were inserted before the start of a noreorder section. If those
689 nops turn out to be unnecessary, the size of the frag can be
690 decreased. */
691 static fragS *prev_nop_frag;
692
693 /* The number of nop instructions we created in prev_nop_frag. */
694 static int prev_nop_frag_holds;
695
696 /* The number of nop instructions that we know we need in
697 prev_nop_frag. */
698 static int prev_nop_frag_required;
699
700 /* The number of instructions we've seen since prev_nop_frag. */
701 static int prev_nop_frag_since;
702
703 /* For ECOFF and ELF, relocations against symbols are done in two
704 parts, with a HI relocation and a LO relocation. Each relocation
705 has only 16 bits of space to store an addend. This means that in
706 order for the linker to handle carries correctly, it must be able
707 to locate both the HI and the LO relocation. This means that the
708 relocations must appear in order in the relocation table.
709
710 In order to implement this, we keep track of each unmatched HI
711 relocation. We then sort them so that they immediately precede the
712 corresponding LO relocation. */
713
714 struct mips_hi_fixup
715 {
716 /* Next HI fixup. */
717 struct mips_hi_fixup *next;
718 /* This fixup. */
719 fixS *fixp;
720 /* The section this fixup is in. */
721 segT seg;
722 };
723
724 /* The list of unmatched HI relocs. */
725
726 static struct mips_hi_fixup *mips_hi_fixup_list;
727
728 /* The frag containing the last explicit relocation operator.
729 Null if explicit relocations have not been used. */
730
731 static fragS *prev_reloc_op_frag;
732
733 /* Map normal MIPS register numbers to mips16 register numbers. */
734
735 #define X ILLEGAL_REG
736 static const int mips32_to_16_reg_map[] =
737 {
738 X, X, 2, 3, 4, 5, 6, 7,
739 X, X, X, X, X, X, X, X,
740 0, 1, X, X, X, X, X, X,
741 X, X, X, X, X, X, X, X
742 };
743 #undef X
744
745 /* Map mips16 register numbers to normal MIPS register numbers. */
746
747 static const unsigned int mips16_to_32_reg_map[] =
748 {
749 16, 17, 2, 3, 4, 5, 6, 7
750 };
751
752 /* Classifies the kind of instructions we're interested in when
753 implementing -mfix-vr4120. */
754 enum fix_vr4120_class
755 {
756 FIX_VR4120_MACC,
757 FIX_VR4120_DMACC,
758 FIX_VR4120_MULT,
759 FIX_VR4120_DMULT,
760 FIX_VR4120_DIV,
761 FIX_VR4120_MTHILO,
762 NUM_FIX_VR4120_CLASSES
763 };
764
765 /* ...likewise -mfix-loongson2f-jump. */
766 static bfd_boolean mips_fix_loongson2f_jump;
767
768 /* ...likewise -mfix-loongson2f-nop. */
769 static bfd_boolean mips_fix_loongson2f_nop;
770
771 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
772 static bfd_boolean mips_fix_loongson2f;
773
774 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
775 there must be at least one other instruction between an instruction
776 of type X and an instruction of type Y. */
777 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
778
779 /* True if -mfix-vr4120 is in force. */
780 static int mips_fix_vr4120;
781
782 /* ...likewise -mfix-vr4130. */
783 static int mips_fix_vr4130;
784
785 /* ...likewise -mfix-24k. */
786 static int mips_fix_24k;
787
788 /* ...likewise -mfix-cn63xxp1 */
789 static bfd_boolean mips_fix_cn63xxp1;
790
791 /* We don't relax branches by default, since this causes us to expand
792 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
793 fail to compute the offset before expanding the macro to the most
794 efficient expansion. */
795
796 static int mips_relax_branch;
797 \f
798 /* The expansion of many macros depends on the type of symbol that
799 they refer to. For example, when generating position-dependent code,
800 a macro that refers to a symbol may have two different expansions,
801 one which uses GP-relative addresses and one which uses absolute
802 addresses. When generating SVR4-style PIC, a macro may have
803 different expansions for local and global symbols.
804
805 We handle these situations by generating both sequences and putting
806 them in variant frags. In position-dependent code, the first sequence
807 will be the GP-relative one and the second sequence will be the
808 absolute one. In SVR4 PIC, the first sequence will be for global
809 symbols and the second will be for local symbols.
810
811 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
812 SECOND are the lengths of the two sequences in bytes. These fields
813 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
814 the subtype has the following flags:
815
816 RELAX_USE_SECOND
817 Set if it has been decided that we should use the second
818 sequence instead of the first.
819
820 RELAX_SECOND_LONGER
821 Set in the first variant frag if the macro's second implementation
822 is longer than its first. This refers to the macro as a whole,
823 not an individual relaxation.
824
825 RELAX_NOMACRO
826 Set in the first variant frag if the macro appeared in a .set nomacro
827 block and if one alternative requires a warning but the other does not.
828
829 RELAX_DELAY_SLOT
830 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
831 delay slot.
832
833 The frag's "opcode" points to the first fixup for relaxable code.
834
835 Relaxable macros are generated using a sequence such as:
836
837 relax_start (SYMBOL);
838 ... generate first expansion ...
839 relax_switch ();
840 ... generate second expansion ...
841 relax_end ();
842
843 The code and fixups for the unwanted alternative are discarded
844 by md_convert_frag. */
845 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
846
847 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
848 #define RELAX_SECOND(X) ((X) & 0xff)
849 #define RELAX_USE_SECOND 0x10000
850 #define RELAX_SECOND_LONGER 0x20000
851 #define RELAX_NOMACRO 0x40000
852 #define RELAX_DELAY_SLOT 0x80000
853
854 /* Branch without likely bit. If label is out of range, we turn:
855
856 beq reg1, reg2, label
857 delay slot
858
859 into
860
861 bne reg1, reg2, 0f
862 nop
863 j label
864 0: delay slot
865
866 with the following opcode replacements:
867
868 beq <-> bne
869 blez <-> bgtz
870 bltz <-> bgez
871 bc1f <-> bc1t
872
873 bltzal <-> bgezal (with jal label instead of j label)
874
875 Even though keeping the delay slot instruction in the delay slot of
876 the branch would be more efficient, it would be very tricky to do
877 correctly, because we'd have to introduce a variable frag *after*
878 the delay slot instruction, and expand that instead. Let's do it
879 the easy way for now, even if the branch-not-taken case now costs
880 one additional instruction. Out-of-range branches are not supposed
881 to be common, anyway.
882
883 Branch likely. If label is out of range, we turn:
884
885 beql reg1, reg2, label
886 delay slot (annulled if branch not taken)
887
888 into
889
890 beql reg1, reg2, 1f
891 nop
892 beql $0, $0, 2f
893 nop
894 1: j[al] label
895 delay slot (executed only if branch taken)
896 2:
897
898 It would be possible to generate a shorter sequence by losing the
899 likely bit, generating something like:
900
901 bne reg1, reg2, 0f
902 nop
903 j[al] label
904 delay slot (executed only if branch taken)
905 0:
906
907 beql -> bne
908 bnel -> beq
909 blezl -> bgtz
910 bgtzl -> blez
911 bltzl -> bgez
912 bgezl -> bltz
913 bc1fl -> bc1t
914 bc1tl -> bc1f
915
916 bltzall -> bgezal (with jal label instead of j label)
917 bgezall -> bltzal (ditto)
918
919
920 but it's not clear that it would actually improve performance. */
921 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
922 ((relax_substateT) \
923 (0xc0000000 \
924 | ((at) & 0x1f) \
925 | ((toofar) ? 0x20 : 0) \
926 | ((link) ? 0x40 : 0) \
927 | ((likely) ? 0x80 : 0) \
928 | ((uncond) ? 0x100 : 0)))
929 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
930 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
931 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
932 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
933 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
934 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
935
936 /* For mips16 code, we use an entirely different form of relaxation.
937 mips16 supports two versions of most instructions which take
938 immediate values: a small one which takes some small value, and a
939 larger one which takes a 16 bit value. Since branches also follow
940 this pattern, relaxing these values is required.
941
942 We can assemble both mips16 and normal MIPS code in a single
943 object. Therefore, we need to support this type of relaxation at
944 the same time that we support the relaxation described above. We
945 use the high bit of the subtype field to distinguish these cases.
946
947 The information we store for this type of relaxation is the
948 argument code found in the opcode file for this relocation, whether
949 the user explicitly requested a small or extended form, and whether
950 the relocation is in a jump or jal delay slot. That tells us the
951 size of the value, and how it should be stored. We also store
952 whether the fragment is considered to be extended or not. We also
953 store whether this is known to be a branch to a different section,
954 whether we have tried to relax this frag yet, and whether we have
955 ever extended a PC relative fragment because of a shift count. */
956 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
957 (0x80000000 \
958 | ((type) & 0xff) \
959 | ((small) ? 0x100 : 0) \
960 | ((ext) ? 0x200 : 0) \
961 | ((dslot) ? 0x400 : 0) \
962 | ((jal_dslot) ? 0x800 : 0))
963 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
964 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
965 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
966 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
967 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
968 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
969 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
970 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
971 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
972 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
973 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
974 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
975
976 /* Is the given value a sign-extended 32-bit value? */
977 #define IS_SEXT_32BIT_NUM(x) \
978 (((x) &~ (offsetT) 0x7fffffff) == 0 \
979 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
980
981 /* Is the given value a sign-extended 16-bit value? */
982 #define IS_SEXT_16BIT_NUM(x) \
983 (((x) &~ (offsetT) 0x7fff) == 0 \
984 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
985
986 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
987 #define IS_ZEXT_32BIT_NUM(x) \
988 (((x) &~ (offsetT) 0xffffffff) == 0 \
989 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
990
991 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
992 VALUE << SHIFT. VALUE is evaluated exactly once. */
993 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
994 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
995 | (((VALUE) & (MASK)) << (SHIFT)))
996
997 /* Extract bits MASK << SHIFT from STRUCT and shift them right
998 SHIFT places. */
999 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1000 (((STRUCT) >> (SHIFT)) & (MASK))
1001
1002 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1003 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1004
1005 include/opcode/mips.h specifies operand fields using the macros
1006 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1007 with "MIPS16OP" instead of "OP". */
1008 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1009 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1010 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1011 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1012 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1013
1014 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1015 #define EXTRACT_OPERAND(FIELD, INSN) \
1016 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1017 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1018 EXTRACT_BITS ((INSN).insn_opcode, \
1019 MIPS16OP_MASK_##FIELD, \
1020 MIPS16OP_SH_##FIELD)
1021 \f
1022 /* Global variables used when generating relaxable macros. See the
1023 comment above RELAX_ENCODE for more details about how relaxation
1024 is used. */
1025 static struct {
1026 /* 0 if we're not emitting a relaxable macro.
1027 1 if we're emitting the first of the two relaxation alternatives.
1028 2 if we're emitting the second alternative. */
1029 int sequence;
1030
1031 /* The first relaxable fixup in the current frag. (In other words,
1032 the first fixup that refers to relaxable code.) */
1033 fixS *first_fixup;
1034
1035 /* sizes[0] says how many bytes of the first alternative are stored in
1036 the current frag. Likewise sizes[1] for the second alternative. */
1037 unsigned int sizes[2];
1038
1039 /* The symbol on which the choice of sequence depends. */
1040 symbolS *symbol;
1041 } mips_relax;
1042 \f
1043 /* Global variables used to decide whether a macro needs a warning. */
1044 static struct {
1045 /* True if the macro is in a branch delay slot. */
1046 bfd_boolean delay_slot_p;
1047
1048 /* For relaxable macros, sizes[0] is the length of the first alternative
1049 in bytes and sizes[1] is the length of the second alternative.
1050 For non-relaxable macros, both elements give the length of the
1051 macro in bytes. */
1052 unsigned int sizes[2];
1053
1054 /* The first variant frag for this macro. */
1055 fragS *first_frag;
1056 } mips_macro_warning;
1057 \f
1058 /* Prototypes for static functions. */
1059
1060 #define internalError() \
1061 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1062
1063 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1064
1065 static void append_insn
1066 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1067 static void mips_no_prev_insn (void);
1068 static void macro_build (expressionS *, const char *, const char *, ...);
1069 static void mips16_macro_build
1070 (expressionS *, const char *, const char *, va_list *);
1071 static void load_register (int, expressionS *, int);
1072 static void macro_start (void);
1073 static void macro_end (void);
1074 static void macro (struct mips_cl_insn * ip);
1075 static void mips16_macro (struct mips_cl_insn * ip);
1076 static void mips_ip (char *str, struct mips_cl_insn * ip);
1077 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1078 static void mips16_immed
1079 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1080 unsigned long *, bfd_boolean *, unsigned short *);
1081 static size_t my_getSmallExpression
1082 (expressionS *, bfd_reloc_code_real_type *, char *);
1083 static void my_getExpression (expressionS *, char *);
1084 static void s_align (int);
1085 static void s_change_sec (int);
1086 static void s_change_section (int);
1087 static void s_cons (int);
1088 static void s_float_cons (int);
1089 static void s_mips_globl (int);
1090 static void s_option (int);
1091 static void s_mipsset (int);
1092 static void s_abicalls (int);
1093 static void s_cpload (int);
1094 static void s_cpsetup (int);
1095 static void s_cplocal (int);
1096 static void s_cprestore (int);
1097 static void s_cpreturn (int);
1098 static void s_dtprelword (int);
1099 static void s_dtpreldword (int);
1100 static void s_gpvalue (int);
1101 static void s_gpword (int);
1102 static void s_gpdword (int);
1103 static void s_cpadd (int);
1104 static void s_insn (int);
1105 static void md_obj_begin (void);
1106 static void md_obj_end (void);
1107 static void s_mips_ent (int);
1108 static void s_mips_end (int);
1109 static void s_mips_frame (int);
1110 static void s_mips_mask (int reg_type);
1111 static void s_mips_stab (int);
1112 static void s_mips_weakext (int);
1113 static void s_mips_file (int);
1114 static void s_mips_loc (int);
1115 static bfd_boolean pic_need_relax (symbolS *, asection *);
1116 static int relaxed_branch_length (fragS *, asection *, int);
1117 static int validate_mips_insn (const struct mips_opcode *);
1118
1119 /* Table and functions used to map between CPU/ISA names, and
1120 ISA levels, and CPU numbers. */
1121
1122 struct mips_cpu_info
1123 {
1124 const char *name; /* CPU or ISA name. */
1125 int flags; /* ASEs available, or ISA flag. */
1126 int isa; /* ISA level. */
1127 int cpu; /* CPU number (default CPU if ISA). */
1128 };
1129
1130 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1131 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1132 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1133 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1134 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1135 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1136 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1137
1138 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1139 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1140 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1141 \f
1142 /* Pseudo-op table.
1143
1144 The following pseudo-ops from the Kane and Heinrich MIPS book
1145 should be defined here, but are currently unsupported: .alias,
1146 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1147
1148 The following pseudo-ops from the Kane and Heinrich MIPS book are
1149 specific to the type of debugging information being generated, and
1150 should be defined by the object format: .aent, .begin, .bend,
1151 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1152 .vreg.
1153
1154 The following pseudo-ops from the Kane and Heinrich MIPS book are
1155 not MIPS CPU specific, but are also not specific to the object file
1156 format. This file is probably the best place to define them, but
1157 they are not currently supported: .asm0, .endr, .lab, .struct. */
1158
1159 static const pseudo_typeS mips_pseudo_table[] =
1160 {
1161 /* MIPS specific pseudo-ops. */
1162 {"option", s_option, 0},
1163 {"set", s_mipsset, 0},
1164 {"rdata", s_change_sec, 'r'},
1165 {"sdata", s_change_sec, 's'},
1166 {"livereg", s_ignore, 0},
1167 {"abicalls", s_abicalls, 0},
1168 {"cpload", s_cpload, 0},
1169 {"cpsetup", s_cpsetup, 0},
1170 {"cplocal", s_cplocal, 0},
1171 {"cprestore", s_cprestore, 0},
1172 {"cpreturn", s_cpreturn, 0},
1173 {"dtprelword", s_dtprelword, 0},
1174 {"dtpreldword", s_dtpreldword, 0},
1175 {"gpvalue", s_gpvalue, 0},
1176 {"gpword", s_gpword, 0},
1177 {"gpdword", s_gpdword, 0},
1178 {"cpadd", s_cpadd, 0},
1179 {"insn", s_insn, 0},
1180
1181 /* Relatively generic pseudo-ops that happen to be used on MIPS
1182 chips. */
1183 {"asciiz", stringer, 8 + 1},
1184 {"bss", s_change_sec, 'b'},
1185 {"err", s_err, 0},
1186 {"half", s_cons, 1},
1187 {"dword", s_cons, 3},
1188 {"weakext", s_mips_weakext, 0},
1189 {"origin", s_org, 0},
1190 {"repeat", s_rept, 0},
1191
1192 /* For MIPS this is non-standard, but we define it for consistency. */
1193 {"sbss", s_change_sec, 'B'},
1194
1195 /* These pseudo-ops are defined in read.c, but must be overridden
1196 here for one reason or another. */
1197 {"align", s_align, 0},
1198 {"byte", s_cons, 0},
1199 {"data", s_change_sec, 'd'},
1200 {"double", s_float_cons, 'd'},
1201 {"float", s_float_cons, 'f'},
1202 {"globl", s_mips_globl, 0},
1203 {"global", s_mips_globl, 0},
1204 {"hword", s_cons, 1},
1205 {"int", s_cons, 2},
1206 {"long", s_cons, 2},
1207 {"octa", s_cons, 4},
1208 {"quad", s_cons, 3},
1209 {"section", s_change_section, 0},
1210 {"short", s_cons, 1},
1211 {"single", s_float_cons, 'f'},
1212 {"stabn", s_mips_stab, 'n'},
1213 {"text", s_change_sec, 't'},
1214 {"word", s_cons, 2},
1215
1216 { "extern", ecoff_directive_extern, 0},
1217
1218 { NULL, NULL, 0 },
1219 };
1220
1221 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1222 {
1223 /* These pseudo-ops should be defined by the object file format.
1224 However, a.out doesn't support them, so we have versions here. */
1225 {"aent", s_mips_ent, 1},
1226 {"bgnb", s_ignore, 0},
1227 {"end", s_mips_end, 0},
1228 {"endb", s_ignore, 0},
1229 {"ent", s_mips_ent, 0},
1230 {"file", s_mips_file, 0},
1231 {"fmask", s_mips_mask, 'F'},
1232 {"frame", s_mips_frame, 0},
1233 {"loc", s_mips_loc, 0},
1234 {"mask", s_mips_mask, 'R'},
1235 {"verstamp", s_ignore, 0},
1236 { NULL, NULL, 0 },
1237 };
1238
1239 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1240 purpose of the `.dc.a' internal pseudo-op. */
1241
1242 int
1243 mips_address_bytes (void)
1244 {
1245 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1246 }
1247
1248 extern void pop_insert (const pseudo_typeS *);
1249
1250 void
1251 mips_pop_insert (void)
1252 {
1253 pop_insert (mips_pseudo_table);
1254 if (! ECOFF_DEBUGGING)
1255 pop_insert (mips_nonecoff_pseudo_table);
1256 }
1257 \f
1258 /* Symbols labelling the current insn. */
1259
1260 struct insn_label_list
1261 {
1262 struct insn_label_list *next;
1263 symbolS *label;
1264 };
1265
1266 static struct insn_label_list *free_insn_labels;
1267 #define label_list tc_segment_info_data.labels
1268
1269 static void mips_clear_insn_labels (void);
1270
1271 static inline void
1272 mips_clear_insn_labels (void)
1273 {
1274 register struct insn_label_list **pl;
1275 segment_info_type *si;
1276
1277 if (now_seg)
1278 {
1279 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1280 ;
1281
1282 si = seg_info (now_seg);
1283 *pl = si->label_list;
1284 si->label_list = NULL;
1285 }
1286 }
1287
1288 \f
1289 static char *expr_end;
1290
1291 /* Expressions which appear in instructions. These are set by
1292 mips_ip. */
1293
1294 static expressionS imm_expr;
1295 static expressionS imm2_expr;
1296 static expressionS offset_expr;
1297
1298 /* Relocs associated with imm_expr and offset_expr. */
1299
1300 static bfd_reloc_code_real_type imm_reloc[3]
1301 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1302 static bfd_reloc_code_real_type offset_reloc[3]
1303 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1304
1305 /* These are set by mips16_ip if an explicit extension is used. */
1306
1307 static bfd_boolean mips16_small, mips16_ext;
1308
1309 #ifdef OBJ_ELF
1310 /* The pdr segment for per procedure frame/regmask info. Not used for
1311 ECOFF debugging. */
1312
1313 static segT pdr_seg;
1314 #endif
1315
1316 /* The default target format to use. */
1317
1318 #if defined (TE_FreeBSD)
1319 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1320 #elif defined (TE_TMIPS)
1321 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1322 #else
1323 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1324 #endif
1325
1326 const char *
1327 mips_target_format (void)
1328 {
1329 switch (OUTPUT_FLAVOR)
1330 {
1331 case bfd_target_ecoff_flavour:
1332 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1333 case bfd_target_coff_flavour:
1334 return "pe-mips";
1335 case bfd_target_elf_flavour:
1336 #ifdef TE_VXWORKS
1337 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1338 return (target_big_endian
1339 ? "elf32-bigmips-vxworks"
1340 : "elf32-littlemips-vxworks");
1341 #endif
1342 return (target_big_endian
1343 ? (HAVE_64BIT_OBJECTS
1344 ? ELF_TARGET ("elf64-", "big")
1345 : (HAVE_NEWABI
1346 ? ELF_TARGET ("elf32-n", "big")
1347 : ELF_TARGET ("elf32-", "big")))
1348 : (HAVE_64BIT_OBJECTS
1349 ? ELF_TARGET ("elf64-", "little")
1350 : (HAVE_NEWABI
1351 ? ELF_TARGET ("elf32-n", "little")
1352 : ELF_TARGET ("elf32-", "little"))));
1353 default:
1354 abort ();
1355 return NULL;
1356 }
1357 }
1358
1359 /* Return the length of instruction INSN. */
1360
1361 static inline unsigned int
1362 insn_length (const struct mips_cl_insn *insn)
1363 {
1364 if (!mips_opts.mips16)
1365 return 4;
1366 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1367 }
1368
1369 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1370
1371 static void
1372 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1373 {
1374 size_t i;
1375
1376 insn->insn_mo = mo;
1377 insn->use_extend = FALSE;
1378 insn->extend = 0;
1379 insn->insn_opcode = mo->match;
1380 insn->frag = NULL;
1381 insn->where = 0;
1382 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1383 insn->fixp[i] = NULL;
1384 insn->fixed_p = (mips_opts.noreorder > 0);
1385 insn->noreorder_p = (mips_opts.noreorder > 0);
1386 insn->mips16_absolute_jump_p = 0;
1387 }
1388
1389 /* Record the current MIPS16 mode in now_seg. */
1390
1391 static void
1392 mips_record_mips16_mode (void)
1393 {
1394 segment_info_type *si;
1395
1396 si = seg_info (now_seg);
1397 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1398 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1399 }
1400
1401 /* Install INSN at the location specified by its "frag" and "where" fields. */
1402
1403 static void
1404 install_insn (const struct mips_cl_insn *insn)
1405 {
1406 char *f = insn->frag->fr_literal + insn->where;
1407 if (!mips_opts.mips16)
1408 md_number_to_chars (f, insn->insn_opcode, 4);
1409 else if (insn->mips16_absolute_jump_p)
1410 {
1411 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1412 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1413 }
1414 else
1415 {
1416 if (insn->use_extend)
1417 {
1418 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1419 f += 2;
1420 }
1421 md_number_to_chars (f, insn->insn_opcode, 2);
1422 }
1423 mips_record_mips16_mode ();
1424 }
1425
1426 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1427 and install the opcode in the new location. */
1428
1429 static void
1430 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1431 {
1432 size_t i;
1433
1434 insn->frag = frag;
1435 insn->where = where;
1436 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1437 if (insn->fixp[i] != NULL)
1438 {
1439 insn->fixp[i]->fx_frag = frag;
1440 insn->fixp[i]->fx_where = where;
1441 }
1442 install_insn (insn);
1443 }
1444
1445 /* Add INSN to the end of the output. */
1446
1447 static void
1448 add_fixed_insn (struct mips_cl_insn *insn)
1449 {
1450 char *f = frag_more (insn_length (insn));
1451 move_insn (insn, frag_now, f - frag_now->fr_literal);
1452 }
1453
1454 /* Start a variant frag and move INSN to the start of the variant part,
1455 marking it as fixed. The other arguments are as for frag_var. */
1456
1457 static void
1458 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1459 relax_substateT subtype, symbolS *symbol, offsetT offset)
1460 {
1461 frag_grow (max_chars);
1462 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1463 insn->fixed_p = 1;
1464 frag_var (rs_machine_dependent, max_chars, var,
1465 subtype, symbol, offset, NULL);
1466 }
1467
1468 /* Insert N copies of INSN into the history buffer, starting at
1469 position FIRST. Neither FIRST nor N need to be clipped. */
1470
1471 static void
1472 insert_into_history (unsigned int first, unsigned int n,
1473 const struct mips_cl_insn *insn)
1474 {
1475 if (mips_relax.sequence != 2)
1476 {
1477 unsigned int i;
1478
1479 for (i = ARRAY_SIZE (history); i-- > first;)
1480 if (i >= first + n)
1481 history[i] = history[i - n];
1482 else
1483 history[i] = *insn;
1484 }
1485 }
1486
1487 /* Emit a nop instruction, recording it in the history buffer. */
1488
1489 static void
1490 emit_nop (void)
1491 {
1492 add_fixed_insn (NOP_INSN);
1493 insert_into_history (0, 1, NOP_INSN);
1494 }
1495
1496 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1497 the idea is to make it obvious at a glance that each errata is
1498 included. */
1499
1500 static void
1501 init_vr4120_conflicts (void)
1502 {
1503 #define CONFLICT(FIRST, SECOND) \
1504 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1505
1506 /* Errata 21 - [D]DIV[U] after [D]MACC */
1507 CONFLICT (MACC, DIV);
1508 CONFLICT (DMACC, DIV);
1509
1510 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1511 CONFLICT (DMULT, DMULT);
1512 CONFLICT (DMULT, DMACC);
1513 CONFLICT (DMACC, DMULT);
1514 CONFLICT (DMACC, DMACC);
1515
1516 /* Errata 24 - MT{LO,HI} after [D]MACC */
1517 CONFLICT (MACC, MTHILO);
1518 CONFLICT (DMACC, MTHILO);
1519
1520 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1521 instruction is executed immediately after a MACC or DMACC
1522 instruction, the result of [either instruction] is incorrect." */
1523 CONFLICT (MACC, MULT);
1524 CONFLICT (MACC, DMULT);
1525 CONFLICT (DMACC, MULT);
1526 CONFLICT (DMACC, DMULT);
1527
1528 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1529 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1530 DDIV or DDIVU instruction, the result of the MACC or
1531 DMACC instruction is incorrect.". */
1532 CONFLICT (DMULT, MACC);
1533 CONFLICT (DMULT, DMACC);
1534 CONFLICT (DIV, MACC);
1535 CONFLICT (DIV, DMACC);
1536
1537 #undef CONFLICT
1538 }
1539
1540 struct regname {
1541 const char *name;
1542 unsigned int num;
1543 };
1544
1545 #define RTYPE_MASK 0x1ff00
1546 #define RTYPE_NUM 0x00100
1547 #define RTYPE_FPU 0x00200
1548 #define RTYPE_FCC 0x00400
1549 #define RTYPE_VEC 0x00800
1550 #define RTYPE_GP 0x01000
1551 #define RTYPE_CP0 0x02000
1552 #define RTYPE_PC 0x04000
1553 #define RTYPE_ACC 0x08000
1554 #define RTYPE_CCC 0x10000
1555 #define RNUM_MASK 0x000ff
1556 #define RWARN 0x80000
1557
1558 #define GENERIC_REGISTER_NUMBERS \
1559 {"$0", RTYPE_NUM | 0}, \
1560 {"$1", RTYPE_NUM | 1}, \
1561 {"$2", RTYPE_NUM | 2}, \
1562 {"$3", RTYPE_NUM | 3}, \
1563 {"$4", RTYPE_NUM | 4}, \
1564 {"$5", RTYPE_NUM | 5}, \
1565 {"$6", RTYPE_NUM | 6}, \
1566 {"$7", RTYPE_NUM | 7}, \
1567 {"$8", RTYPE_NUM | 8}, \
1568 {"$9", RTYPE_NUM | 9}, \
1569 {"$10", RTYPE_NUM | 10}, \
1570 {"$11", RTYPE_NUM | 11}, \
1571 {"$12", RTYPE_NUM | 12}, \
1572 {"$13", RTYPE_NUM | 13}, \
1573 {"$14", RTYPE_NUM | 14}, \
1574 {"$15", RTYPE_NUM | 15}, \
1575 {"$16", RTYPE_NUM | 16}, \
1576 {"$17", RTYPE_NUM | 17}, \
1577 {"$18", RTYPE_NUM | 18}, \
1578 {"$19", RTYPE_NUM | 19}, \
1579 {"$20", RTYPE_NUM | 20}, \
1580 {"$21", RTYPE_NUM | 21}, \
1581 {"$22", RTYPE_NUM | 22}, \
1582 {"$23", RTYPE_NUM | 23}, \
1583 {"$24", RTYPE_NUM | 24}, \
1584 {"$25", RTYPE_NUM | 25}, \
1585 {"$26", RTYPE_NUM | 26}, \
1586 {"$27", RTYPE_NUM | 27}, \
1587 {"$28", RTYPE_NUM | 28}, \
1588 {"$29", RTYPE_NUM | 29}, \
1589 {"$30", RTYPE_NUM | 30}, \
1590 {"$31", RTYPE_NUM | 31}
1591
1592 #define FPU_REGISTER_NAMES \
1593 {"$f0", RTYPE_FPU | 0}, \
1594 {"$f1", RTYPE_FPU | 1}, \
1595 {"$f2", RTYPE_FPU | 2}, \
1596 {"$f3", RTYPE_FPU | 3}, \
1597 {"$f4", RTYPE_FPU | 4}, \
1598 {"$f5", RTYPE_FPU | 5}, \
1599 {"$f6", RTYPE_FPU | 6}, \
1600 {"$f7", RTYPE_FPU | 7}, \
1601 {"$f8", RTYPE_FPU | 8}, \
1602 {"$f9", RTYPE_FPU | 9}, \
1603 {"$f10", RTYPE_FPU | 10}, \
1604 {"$f11", RTYPE_FPU | 11}, \
1605 {"$f12", RTYPE_FPU | 12}, \
1606 {"$f13", RTYPE_FPU | 13}, \
1607 {"$f14", RTYPE_FPU | 14}, \
1608 {"$f15", RTYPE_FPU | 15}, \
1609 {"$f16", RTYPE_FPU | 16}, \
1610 {"$f17", RTYPE_FPU | 17}, \
1611 {"$f18", RTYPE_FPU | 18}, \
1612 {"$f19", RTYPE_FPU | 19}, \
1613 {"$f20", RTYPE_FPU | 20}, \
1614 {"$f21", RTYPE_FPU | 21}, \
1615 {"$f22", RTYPE_FPU | 22}, \
1616 {"$f23", RTYPE_FPU | 23}, \
1617 {"$f24", RTYPE_FPU | 24}, \
1618 {"$f25", RTYPE_FPU | 25}, \
1619 {"$f26", RTYPE_FPU | 26}, \
1620 {"$f27", RTYPE_FPU | 27}, \
1621 {"$f28", RTYPE_FPU | 28}, \
1622 {"$f29", RTYPE_FPU | 29}, \
1623 {"$f30", RTYPE_FPU | 30}, \
1624 {"$f31", RTYPE_FPU | 31}
1625
1626 #define FPU_CONDITION_CODE_NAMES \
1627 {"$fcc0", RTYPE_FCC | 0}, \
1628 {"$fcc1", RTYPE_FCC | 1}, \
1629 {"$fcc2", RTYPE_FCC | 2}, \
1630 {"$fcc3", RTYPE_FCC | 3}, \
1631 {"$fcc4", RTYPE_FCC | 4}, \
1632 {"$fcc5", RTYPE_FCC | 5}, \
1633 {"$fcc6", RTYPE_FCC | 6}, \
1634 {"$fcc7", RTYPE_FCC | 7}
1635
1636 #define COPROC_CONDITION_CODE_NAMES \
1637 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1638 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1639 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1640 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1641 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1642 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1643 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1644 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1645
1646 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1647 {"$a4", RTYPE_GP | 8}, \
1648 {"$a5", RTYPE_GP | 9}, \
1649 {"$a6", RTYPE_GP | 10}, \
1650 {"$a7", RTYPE_GP | 11}, \
1651 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1652 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1653 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1654 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1655 {"$t0", RTYPE_GP | 12}, \
1656 {"$t1", RTYPE_GP | 13}, \
1657 {"$t2", RTYPE_GP | 14}, \
1658 {"$t3", RTYPE_GP | 15}
1659
1660 #define O32_SYMBOLIC_REGISTER_NAMES \
1661 {"$t0", RTYPE_GP | 8}, \
1662 {"$t1", RTYPE_GP | 9}, \
1663 {"$t2", RTYPE_GP | 10}, \
1664 {"$t3", RTYPE_GP | 11}, \
1665 {"$t4", RTYPE_GP | 12}, \
1666 {"$t5", RTYPE_GP | 13}, \
1667 {"$t6", RTYPE_GP | 14}, \
1668 {"$t7", RTYPE_GP | 15}, \
1669 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1670 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1671 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1672 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1673
1674 /* Remaining symbolic register names */
1675 #define SYMBOLIC_REGISTER_NAMES \
1676 {"$zero", RTYPE_GP | 0}, \
1677 {"$at", RTYPE_GP | 1}, \
1678 {"$AT", RTYPE_GP | 1}, \
1679 {"$v0", RTYPE_GP | 2}, \
1680 {"$v1", RTYPE_GP | 3}, \
1681 {"$a0", RTYPE_GP | 4}, \
1682 {"$a1", RTYPE_GP | 5}, \
1683 {"$a2", RTYPE_GP | 6}, \
1684 {"$a3", RTYPE_GP | 7}, \
1685 {"$s0", RTYPE_GP | 16}, \
1686 {"$s1", RTYPE_GP | 17}, \
1687 {"$s2", RTYPE_GP | 18}, \
1688 {"$s3", RTYPE_GP | 19}, \
1689 {"$s4", RTYPE_GP | 20}, \
1690 {"$s5", RTYPE_GP | 21}, \
1691 {"$s6", RTYPE_GP | 22}, \
1692 {"$s7", RTYPE_GP | 23}, \
1693 {"$t8", RTYPE_GP | 24}, \
1694 {"$t9", RTYPE_GP | 25}, \
1695 {"$k0", RTYPE_GP | 26}, \
1696 {"$kt0", RTYPE_GP | 26}, \
1697 {"$k1", RTYPE_GP | 27}, \
1698 {"$kt1", RTYPE_GP | 27}, \
1699 {"$gp", RTYPE_GP | 28}, \
1700 {"$sp", RTYPE_GP | 29}, \
1701 {"$s8", RTYPE_GP | 30}, \
1702 {"$fp", RTYPE_GP | 30}, \
1703 {"$ra", RTYPE_GP | 31}
1704
1705 #define MIPS16_SPECIAL_REGISTER_NAMES \
1706 {"$pc", RTYPE_PC | 0}
1707
1708 #define MDMX_VECTOR_REGISTER_NAMES \
1709 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1710 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1711 {"$v2", RTYPE_VEC | 2}, \
1712 {"$v3", RTYPE_VEC | 3}, \
1713 {"$v4", RTYPE_VEC | 4}, \
1714 {"$v5", RTYPE_VEC | 5}, \
1715 {"$v6", RTYPE_VEC | 6}, \
1716 {"$v7", RTYPE_VEC | 7}, \
1717 {"$v8", RTYPE_VEC | 8}, \
1718 {"$v9", RTYPE_VEC | 9}, \
1719 {"$v10", RTYPE_VEC | 10}, \
1720 {"$v11", RTYPE_VEC | 11}, \
1721 {"$v12", RTYPE_VEC | 12}, \
1722 {"$v13", RTYPE_VEC | 13}, \
1723 {"$v14", RTYPE_VEC | 14}, \
1724 {"$v15", RTYPE_VEC | 15}, \
1725 {"$v16", RTYPE_VEC | 16}, \
1726 {"$v17", RTYPE_VEC | 17}, \
1727 {"$v18", RTYPE_VEC | 18}, \
1728 {"$v19", RTYPE_VEC | 19}, \
1729 {"$v20", RTYPE_VEC | 20}, \
1730 {"$v21", RTYPE_VEC | 21}, \
1731 {"$v22", RTYPE_VEC | 22}, \
1732 {"$v23", RTYPE_VEC | 23}, \
1733 {"$v24", RTYPE_VEC | 24}, \
1734 {"$v25", RTYPE_VEC | 25}, \
1735 {"$v26", RTYPE_VEC | 26}, \
1736 {"$v27", RTYPE_VEC | 27}, \
1737 {"$v28", RTYPE_VEC | 28}, \
1738 {"$v29", RTYPE_VEC | 29}, \
1739 {"$v30", RTYPE_VEC | 30}, \
1740 {"$v31", RTYPE_VEC | 31}
1741
1742 #define MIPS_DSP_ACCUMULATOR_NAMES \
1743 {"$ac0", RTYPE_ACC | 0}, \
1744 {"$ac1", RTYPE_ACC | 1}, \
1745 {"$ac2", RTYPE_ACC | 2}, \
1746 {"$ac3", RTYPE_ACC | 3}
1747
1748 static const struct regname reg_names[] = {
1749 GENERIC_REGISTER_NUMBERS,
1750 FPU_REGISTER_NAMES,
1751 FPU_CONDITION_CODE_NAMES,
1752 COPROC_CONDITION_CODE_NAMES,
1753
1754 /* The $txx registers depends on the abi,
1755 these will be added later into the symbol table from
1756 one of the tables below once mips_abi is set after
1757 parsing of arguments from the command line. */
1758 SYMBOLIC_REGISTER_NAMES,
1759
1760 MIPS16_SPECIAL_REGISTER_NAMES,
1761 MDMX_VECTOR_REGISTER_NAMES,
1762 MIPS_DSP_ACCUMULATOR_NAMES,
1763 {0, 0}
1764 };
1765
1766 static const struct regname reg_names_o32[] = {
1767 O32_SYMBOLIC_REGISTER_NAMES,
1768 {0, 0}
1769 };
1770
1771 static const struct regname reg_names_n32n64[] = {
1772 N32N64_SYMBOLIC_REGISTER_NAMES,
1773 {0, 0}
1774 };
1775
1776 static int
1777 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1778 {
1779 symbolS *symbolP;
1780 char *e;
1781 char save_c;
1782 int reg = -1;
1783
1784 /* Find end of name. */
1785 e = *s;
1786 if (is_name_beginner (*e))
1787 ++e;
1788 while (is_part_of_name (*e))
1789 ++e;
1790
1791 /* Terminate name. */
1792 save_c = *e;
1793 *e = '\0';
1794
1795 /* Look for a register symbol. */
1796 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1797 {
1798 int r = S_GET_VALUE (symbolP);
1799 if (r & types)
1800 reg = r & RNUM_MASK;
1801 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1802 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1803 reg = (r & RNUM_MASK) - 2;
1804 }
1805 /* Else see if this is a register defined in an itbl entry. */
1806 else if ((types & RTYPE_GP) && itbl_have_entries)
1807 {
1808 char *n = *s;
1809 unsigned long r;
1810
1811 if (*n == '$')
1812 ++n;
1813 if (itbl_get_reg_val (n, &r))
1814 reg = r & RNUM_MASK;
1815 }
1816
1817 /* Advance to next token if a register was recognised. */
1818 if (reg >= 0)
1819 *s = e;
1820 else if (types & RWARN)
1821 as_warn (_("Unrecognized register name `%s'"), *s);
1822
1823 *e = save_c;
1824 if (regnop)
1825 *regnop = reg;
1826 return reg >= 0;
1827 }
1828
1829 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1830 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1831
1832 static bfd_boolean
1833 is_opcode_valid (const struct mips_opcode *mo)
1834 {
1835 int isa = mips_opts.isa;
1836 int fp_s, fp_d;
1837
1838 if (mips_opts.ase_mdmx)
1839 isa |= INSN_MDMX;
1840 if (mips_opts.ase_dsp)
1841 isa |= INSN_DSP;
1842 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1843 isa |= INSN_DSP64;
1844 if (mips_opts.ase_dspr2)
1845 isa |= INSN_DSPR2;
1846 if (mips_opts.ase_mt)
1847 isa |= INSN_MT;
1848 if (mips_opts.ase_mips3d)
1849 isa |= INSN_MIPS3D;
1850 if (mips_opts.ase_smartmips)
1851 isa |= INSN_SMARTMIPS;
1852
1853 /* Don't accept instructions based on the ISA if the CPU does not implement
1854 all the coprocessor insns. */
1855 if (NO_ISA_COP (mips_opts.arch)
1856 && COP_INSN (mo->pinfo))
1857 isa = 0;
1858
1859 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1860 return FALSE;
1861
1862 /* Check whether the instruction or macro requires single-precision or
1863 double-precision floating-point support. Note that this information is
1864 stored differently in the opcode table for insns and macros. */
1865 if (mo->pinfo == INSN_MACRO)
1866 {
1867 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1868 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1869 }
1870 else
1871 {
1872 fp_s = mo->pinfo & FP_S;
1873 fp_d = mo->pinfo & FP_D;
1874 }
1875
1876 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1877 return FALSE;
1878
1879 if (fp_s && mips_opts.soft_float)
1880 return FALSE;
1881
1882 return TRUE;
1883 }
1884
1885 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1886 selected ISA and architecture. */
1887
1888 static bfd_boolean
1889 is_opcode_valid_16 (const struct mips_opcode *mo)
1890 {
1891 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1892 }
1893
1894 /* This function is called once, at assembler startup time. It should set up
1895 all the tables, etc. that the MD part of the assembler will need. */
1896
1897 void
1898 md_begin (void)
1899 {
1900 const char *retval = NULL;
1901 int i = 0;
1902 int broken = 0;
1903
1904 if (mips_pic != NO_PIC)
1905 {
1906 if (g_switch_seen && g_switch_value != 0)
1907 as_bad (_("-G may not be used in position-independent code"));
1908 g_switch_value = 0;
1909 }
1910
1911 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1912 as_warn (_("Could not set architecture and machine"));
1913
1914 op_hash = hash_new ();
1915
1916 for (i = 0; i < NUMOPCODES;)
1917 {
1918 const char *name = mips_opcodes[i].name;
1919
1920 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1921 if (retval != NULL)
1922 {
1923 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1924 mips_opcodes[i].name, retval);
1925 /* Probably a memory allocation problem? Give up now. */
1926 as_fatal (_("Broken assembler. No assembly attempted."));
1927 }
1928 do
1929 {
1930 if (mips_opcodes[i].pinfo != INSN_MACRO)
1931 {
1932 if (!validate_mips_insn (&mips_opcodes[i]))
1933 broken = 1;
1934 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1935 {
1936 create_insn (&nop_insn, mips_opcodes + i);
1937 if (mips_fix_loongson2f_nop)
1938 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1939 nop_insn.fixed_p = 1;
1940 }
1941 }
1942 ++i;
1943 }
1944 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1945 }
1946
1947 mips16_op_hash = hash_new ();
1948
1949 i = 0;
1950 while (i < bfd_mips16_num_opcodes)
1951 {
1952 const char *name = mips16_opcodes[i].name;
1953
1954 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1955 if (retval != NULL)
1956 as_fatal (_("internal: can't hash `%s': %s"),
1957 mips16_opcodes[i].name, retval);
1958 do
1959 {
1960 if (mips16_opcodes[i].pinfo != INSN_MACRO
1961 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1962 != mips16_opcodes[i].match))
1963 {
1964 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1965 mips16_opcodes[i].name, mips16_opcodes[i].args);
1966 broken = 1;
1967 }
1968 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1969 {
1970 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1971 mips16_nop_insn.fixed_p = 1;
1972 }
1973 ++i;
1974 }
1975 while (i < bfd_mips16_num_opcodes
1976 && strcmp (mips16_opcodes[i].name, name) == 0);
1977 }
1978
1979 if (broken)
1980 as_fatal (_("Broken assembler. No assembly attempted."));
1981
1982 /* We add all the general register names to the symbol table. This
1983 helps us detect invalid uses of them. */
1984 for (i = 0; reg_names[i].name; i++)
1985 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1986 reg_names[i].num, /* & RNUM_MASK, */
1987 &zero_address_frag));
1988 if (HAVE_NEWABI)
1989 for (i = 0; reg_names_n32n64[i].name; i++)
1990 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1991 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1992 &zero_address_frag));
1993 else
1994 for (i = 0; reg_names_o32[i].name; i++)
1995 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1996 reg_names_o32[i].num, /* & RNUM_MASK, */
1997 &zero_address_frag));
1998
1999 mips_no_prev_insn ();
2000
2001 mips_gprmask = 0;
2002 mips_cprmask[0] = 0;
2003 mips_cprmask[1] = 0;
2004 mips_cprmask[2] = 0;
2005 mips_cprmask[3] = 0;
2006
2007 /* set the default alignment for the text section (2**2) */
2008 record_alignment (text_section, 2);
2009
2010 bfd_set_gp_size (stdoutput, g_switch_value);
2011
2012 #ifdef OBJ_ELF
2013 if (IS_ELF)
2014 {
2015 /* On a native system other than VxWorks, sections must be aligned
2016 to 16 byte boundaries. When configured for an embedded ELF
2017 target, we don't bother. */
2018 if (strncmp (TARGET_OS, "elf", 3) != 0
2019 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2020 {
2021 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2022 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2023 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2024 }
2025
2026 /* Create a .reginfo section for register masks and a .mdebug
2027 section for debugging information. */
2028 {
2029 segT seg;
2030 subsegT subseg;
2031 flagword flags;
2032 segT sec;
2033
2034 seg = now_seg;
2035 subseg = now_subseg;
2036
2037 /* The ABI says this section should be loaded so that the
2038 running program can access it. However, we don't load it
2039 if we are configured for an embedded target */
2040 flags = SEC_READONLY | SEC_DATA;
2041 if (strncmp (TARGET_OS, "elf", 3) != 0)
2042 flags |= SEC_ALLOC | SEC_LOAD;
2043
2044 if (mips_abi != N64_ABI)
2045 {
2046 sec = subseg_new (".reginfo", (subsegT) 0);
2047
2048 bfd_set_section_flags (stdoutput, sec, flags);
2049 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2050
2051 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2052 }
2053 else
2054 {
2055 /* The 64-bit ABI uses a .MIPS.options section rather than
2056 .reginfo section. */
2057 sec = subseg_new (".MIPS.options", (subsegT) 0);
2058 bfd_set_section_flags (stdoutput, sec, flags);
2059 bfd_set_section_alignment (stdoutput, sec, 3);
2060
2061 /* Set up the option header. */
2062 {
2063 Elf_Internal_Options opthdr;
2064 char *f;
2065
2066 opthdr.kind = ODK_REGINFO;
2067 opthdr.size = (sizeof (Elf_External_Options)
2068 + sizeof (Elf64_External_RegInfo));
2069 opthdr.section = 0;
2070 opthdr.info = 0;
2071 f = frag_more (sizeof (Elf_External_Options));
2072 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2073 (Elf_External_Options *) f);
2074
2075 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2076 }
2077 }
2078
2079 if (ECOFF_DEBUGGING)
2080 {
2081 sec = subseg_new (".mdebug", (subsegT) 0);
2082 (void) bfd_set_section_flags (stdoutput, sec,
2083 SEC_HAS_CONTENTS | SEC_READONLY);
2084 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2085 }
2086 else if (mips_flag_pdr)
2087 {
2088 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2089 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2090 SEC_READONLY | SEC_RELOC
2091 | SEC_DEBUGGING);
2092 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2093 }
2094
2095 subseg_set (seg, subseg);
2096 }
2097 }
2098 #endif /* OBJ_ELF */
2099
2100 if (! ECOFF_DEBUGGING)
2101 md_obj_begin ();
2102
2103 if (mips_fix_vr4120)
2104 init_vr4120_conflicts ();
2105 }
2106
2107 void
2108 md_mips_end (void)
2109 {
2110 if (! ECOFF_DEBUGGING)
2111 md_obj_end ();
2112 }
2113
2114 void
2115 md_assemble (char *str)
2116 {
2117 struct mips_cl_insn insn;
2118 bfd_reloc_code_real_type unused_reloc[3]
2119 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2120
2121 imm_expr.X_op = O_absent;
2122 imm2_expr.X_op = O_absent;
2123 offset_expr.X_op = O_absent;
2124 imm_reloc[0] = BFD_RELOC_UNUSED;
2125 imm_reloc[1] = BFD_RELOC_UNUSED;
2126 imm_reloc[2] = BFD_RELOC_UNUSED;
2127 offset_reloc[0] = BFD_RELOC_UNUSED;
2128 offset_reloc[1] = BFD_RELOC_UNUSED;
2129 offset_reloc[2] = BFD_RELOC_UNUSED;
2130
2131 if (mips_opts.mips16)
2132 mips16_ip (str, &insn);
2133 else
2134 {
2135 mips_ip (str, &insn);
2136 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2137 str, insn.insn_opcode));
2138 }
2139
2140 if (insn_error)
2141 {
2142 as_bad ("%s `%s'", insn_error, str);
2143 return;
2144 }
2145
2146 if (insn.insn_mo->pinfo == INSN_MACRO)
2147 {
2148 macro_start ();
2149 if (mips_opts.mips16)
2150 mips16_macro (&insn);
2151 else
2152 macro (&insn);
2153 macro_end ();
2154 }
2155 else
2156 {
2157 if (imm_expr.X_op != O_absent)
2158 append_insn (&insn, &imm_expr, imm_reloc);
2159 else if (offset_expr.X_op != O_absent)
2160 append_insn (&insn, &offset_expr, offset_reloc);
2161 else
2162 append_insn (&insn, NULL, unused_reloc);
2163 }
2164 }
2165
2166 /* Convenience functions for abstracting away the differences between
2167 MIPS16 and non-MIPS16 relocations. */
2168
2169 static inline bfd_boolean
2170 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2171 {
2172 switch (reloc)
2173 {
2174 case BFD_RELOC_MIPS16_JMP:
2175 case BFD_RELOC_MIPS16_GPREL:
2176 case BFD_RELOC_MIPS16_GOT16:
2177 case BFD_RELOC_MIPS16_CALL16:
2178 case BFD_RELOC_MIPS16_HI16_S:
2179 case BFD_RELOC_MIPS16_HI16:
2180 case BFD_RELOC_MIPS16_LO16:
2181 return TRUE;
2182
2183 default:
2184 return FALSE;
2185 }
2186 }
2187
2188 static inline bfd_boolean
2189 got16_reloc_p (bfd_reloc_code_real_type reloc)
2190 {
2191 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2192 }
2193
2194 static inline bfd_boolean
2195 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2196 {
2197 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2198 }
2199
2200 static inline bfd_boolean
2201 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2202 {
2203 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2204 }
2205
2206 /* Return true if the given relocation might need a matching %lo().
2207 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2208 need a matching %lo() when applied to local symbols. */
2209
2210 static inline bfd_boolean
2211 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2212 {
2213 return (HAVE_IN_PLACE_ADDENDS
2214 && (hi16_reloc_p (reloc)
2215 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2216 all GOT16 relocations evaluate to "G". */
2217 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2218 }
2219
2220 /* Return the type of %lo() reloc needed by RELOC, given that
2221 reloc_needs_lo_p. */
2222
2223 static inline bfd_reloc_code_real_type
2224 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2225 {
2226 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2227 }
2228
2229 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2230 relocation. */
2231
2232 static inline bfd_boolean
2233 fixup_has_matching_lo_p (fixS *fixp)
2234 {
2235 return (fixp->fx_next != NULL
2236 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2237 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2238 && fixp->fx_offset == fixp->fx_next->fx_offset);
2239 }
2240
2241 /* See whether instruction IP reads register REG. CLASS is the type
2242 of register. */
2243
2244 static int
2245 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2246 enum mips_regclass regclass)
2247 {
2248 if (regclass == MIPS16_REG)
2249 {
2250 gas_assert (mips_opts.mips16);
2251 reg = mips16_to_32_reg_map[reg];
2252 regclass = MIPS_GR_REG;
2253 }
2254
2255 /* Don't report on general register ZERO, since it never changes. */
2256 if (regclass == MIPS_GR_REG && reg == ZERO)
2257 return 0;
2258
2259 if (regclass == MIPS_FP_REG)
2260 {
2261 gas_assert (! mips_opts.mips16);
2262 /* If we are called with either $f0 or $f1, we must check $f0.
2263 This is not optimal, because it will introduce an unnecessary
2264 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2265 need to distinguish reading both $f0 and $f1 or just one of
2266 them. Note that we don't have to check the other way,
2267 because there is no instruction that sets both $f0 and $f1
2268 and requires a delay. */
2269 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2270 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2271 == (reg &~ (unsigned) 1)))
2272 return 1;
2273 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2274 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2275 == (reg &~ (unsigned) 1)))
2276 return 1;
2277 if ((ip->insn_mo->pinfo2 & INSN2_READ_FPR_Z)
2278 && ((EXTRACT_OPERAND (FZ, *ip) & ~(unsigned) 1)
2279 == (reg &~ (unsigned) 1)))
2280 return 1;
2281 }
2282 else if (! mips_opts.mips16)
2283 {
2284 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2285 && EXTRACT_OPERAND (RS, *ip) == reg)
2286 return 1;
2287 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2288 && EXTRACT_OPERAND (RT, *ip) == reg)
2289 return 1;
2290 if ((ip->insn_mo->pinfo2 & INSN2_READ_GPR_D)
2291 && EXTRACT_OPERAND (RD, *ip) == reg)
2292 return 1;
2293 if ((ip->insn_mo->pinfo2 & INSN2_READ_GPR_Z)
2294 && EXTRACT_OPERAND (RZ, *ip) == reg)
2295 return 1;
2296 }
2297 else
2298 {
2299 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2300 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2301 return 1;
2302 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2303 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2304 return 1;
2305 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2306 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2307 == reg))
2308 return 1;
2309 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2310 return 1;
2311 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2312 return 1;
2313 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2314 return 1;
2315 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2316 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2317 return 1;
2318 }
2319
2320 return 0;
2321 }
2322
2323 /* This function returns true if modifying a register requires a
2324 delay. */
2325
2326 static int
2327 reg_needs_delay (unsigned int reg)
2328 {
2329 unsigned long prev_pinfo;
2330
2331 prev_pinfo = history[0].insn_mo->pinfo;
2332 if (! mips_opts.noreorder
2333 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2334 && ! gpr_interlocks)
2335 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2336 && ! cop_interlocks)))
2337 {
2338 /* A load from a coprocessor or from memory. All load delays
2339 delay the use of general register rt for one instruction. */
2340 /* Itbl support may require additional care here. */
2341 know (prev_pinfo & INSN_WRITE_GPR_T);
2342 if (reg == EXTRACT_OPERAND (RT, history[0]))
2343 return 1;
2344 }
2345
2346 return 0;
2347 }
2348
2349 /* Move all labels in insn_labels to the current insertion point. */
2350
2351 static void
2352 mips_move_labels (void)
2353 {
2354 segment_info_type *si = seg_info (now_seg);
2355 struct insn_label_list *l;
2356 valueT val;
2357
2358 for (l = si->label_list; l != NULL; l = l->next)
2359 {
2360 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2361 symbol_set_frag (l->label, frag_now);
2362 val = (valueT) frag_now_fix ();
2363 /* mips16 text labels are stored as odd. */
2364 if (mips_opts.mips16)
2365 ++val;
2366 S_SET_VALUE (l->label, val);
2367 }
2368 }
2369
2370 static bfd_boolean
2371 s_is_linkonce (symbolS *sym, segT from_seg)
2372 {
2373 bfd_boolean linkonce = FALSE;
2374 segT symseg = S_GET_SEGMENT (sym);
2375
2376 if (symseg != from_seg && !S_IS_LOCAL (sym))
2377 {
2378 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2379 linkonce = TRUE;
2380 #ifdef OBJ_ELF
2381 /* The GNU toolchain uses an extension for ELF: a section
2382 beginning with the magic string .gnu.linkonce is a
2383 linkonce section. */
2384 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2385 sizeof ".gnu.linkonce" - 1) == 0)
2386 linkonce = TRUE;
2387 #endif
2388 }
2389 return linkonce;
2390 }
2391
2392 /* Mark instruction labels in mips16 mode. This permits the linker to
2393 handle them specially, such as generating jalx instructions when
2394 needed. We also make them odd for the duration of the assembly, in
2395 order to generate the right sort of code. We will make them even
2396 in the adjust_symtab routine, while leaving them marked. This is
2397 convenient for the debugger and the disassembler. The linker knows
2398 to make them odd again. */
2399
2400 static void
2401 mips16_mark_labels (void)
2402 {
2403 segment_info_type *si = seg_info (now_seg);
2404 struct insn_label_list *l;
2405
2406 if (!mips_opts.mips16)
2407 return;
2408
2409 for (l = si->label_list; l != NULL; l = l->next)
2410 {
2411 symbolS *label = l->label;
2412
2413 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2414 if (IS_ELF)
2415 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2416 #endif
2417 if ((S_GET_VALUE (label) & 1) == 0
2418 /* Don't adjust the address if the label is global or weak, or
2419 in a link-once section, since we'll be emitting symbol reloc
2420 references to it which will be patched up by the linker, and
2421 the final value of the symbol may or may not be MIPS16. */
2422 && ! S_IS_WEAK (label)
2423 && ! S_IS_EXTERNAL (label)
2424 && ! s_is_linkonce (label, now_seg))
2425 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2426 }
2427 }
2428
2429 /* End the current frag. Make it a variant frag and record the
2430 relaxation info. */
2431
2432 static void
2433 relax_close_frag (void)
2434 {
2435 mips_macro_warning.first_frag = frag_now;
2436 frag_var (rs_machine_dependent, 0, 0,
2437 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2438 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2439
2440 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2441 mips_relax.first_fixup = 0;
2442 }
2443
2444 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2445 See the comment above RELAX_ENCODE for more details. */
2446
2447 static void
2448 relax_start (symbolS *symbol)
2449 {
2450 gas_assert (mips_relax.sequence == 0);
2451 mips_relax.sequence = 1;
2452 mips_relax.symbol = symbol;
2453 }
2454
2455 /* Start generating the second version of a relaxable sequence.
2456 See the comment above RELAX_ENCODE for more details. */
2457
2458 static void
2459 relax_switch (void)
2460 {
2461 gas_assert (mips_relax.sequence == 1);
2462 mips_relax.sequence = 2;
2463 }
2464
2465 /* End the current relaxable sequence. */
2466
2467 static void
2468 relax_end (void)
2469 {
2470 gas_assert (mips_relax.sequence == 2);
2471 relax_close_frag ();
2472 mips_relax.sequence = 0;
2473 }
2474
2475 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2476 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2477 by VR4120 errata. */
2478
2479 static unsigned int
2480 classify_vr4120_insn (const char *name)
2481 {
2482 if (strncmp (name, "macc", 4) == 0)
2483 return FIX_VR4120_MACC;
2484 if (strncmp (name, "dmacc", 5) == 0)
2485 return FIX_VR4120_DMACC;
2486 if (strncmp (name, "mult", 4) == 0)
2487 return FIX_VR4120_MULT;
2488 if (strncmp (name, "dmult", 5) == 0)
2489 return FIX_VR4120_DMULT;
2490 if (strstr (name, "div"))
2491 return FIX_VR4120_DIV;
2492 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2493 return FIX_VR4120_MTHILO;
2494 return NUM_FIX_VR4120_CLASSES;
2495 }
2496
2497 #define INSN_ERET 0x42000018
2498 #define INSN_DERET 0x4200001f
2499
2500 /* Return the number of instructions that must separate INSN1 and INSN2,
2501 where INSN1 is the earlier instruction. Return the worst-case value
2502 for any INSN2 if INSN2 is null. */
2503
2504 static unsigned int
2505 insns_between (const struct mips_cl_insn *insn1,
2506 const struct mips_cl_insn *insn2)
2507 {
2508 unsigned long pinfo1, pinfo2;
2509
2510 /* This function needs to know which pinfo flags are set for INSN2
2511 and which registers INSN2 uses. The former is stored in PINFO2 and
2512 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2513 will have every flag set and INSN2_USES_REG will always return true. */
2514 pinfo1 = insn1->insn_mo->pinfo;
2515 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2516
2517 #define INSN2_USES_REG(REG, CLASS) \
2518 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2519
2520 /* For most targets, write-after-read dependencies on the HI and LO
2521 registers must be separated by at least two instructions. */
2522 if (!hilo_interlocks)
2523 {
2524 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2525 return 2;
2526 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2527 return 2;
2528 }
2529
2530 /* If we're working around r7000 errata, there must be two instructions
2531 between an mfhi or mflo and any instruction that uses the result. */
2532 if (mips_7000_hilo_fix
2533 && MF_HILO_INSN (pinfo1)
2534 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2535 return 2;
2536
2537 /* If we're working around 24K errata, one instruction is required
2538 if an ERET or DERET is followed by a branch instruction. */
2539 if (mips_fix_24k)
2540 {
2541 if (insn1->insn_opcode == INSN_ERET
2542 || insn1->insn_opcode == INSN_DERET)
2543 {
2544 if (insn2 == NULL
2545 || insn2->insn_opcode == INSN_ERET
2546 || insn2->insn_opcode == INSN_DERET
2547 || (insn2->insn_mo->pinfo
2548 & (INSN_UNCOND_BRANCH_DELAY
2549 | INSN_COND_BRANCH_DELAY
2550 | INSN_COND_BRANCH_LIKELY)) != 0)
2551 return 1;
2552 }
2553 }
2554
2555 /* If working around VR4120 errata, check for combinations that need
2556 a single intervening instruction. */
2557 if (mips_fix_vr4120)
2558 {
2559 unsigned int class1, class2;
2560
2561 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2562 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2563 {
2564 if (insn2 == NULL)
2565 return 1;
2566 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2567 if (vr4120_conflicts[class1] & (1 << class2))
2568 return 1;
2569 }
2570 }
2571
2572 if (!mips_opts.mips16)
2573 {
2574 /* Check for GPR or coprocessor load delays. All such delays
2575 are on the RT register. */
2576 /* Itbl support may require additional care here. */
2577 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2578 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2579 {
2580 know (pinfo1 & INSN_WRITE_GPR_T);
2581 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2582 return 1;
2583 }
2584
2585 /* Check for generic coprocessor hazards.
2586
2587 This case is not handled very well. There is no special
2588 knowledge of CP0 handling, and the coprocessors other than
2589 the floating point unit are not distinguished at all. */
2590 /* Itbl support may require additional care here. FIXME!
2591 Need to modify this to include knowledge about
2592 user specified delays! */
2593 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2594 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2595 {
2596 /* Handle cases where INSN1 writes to a known general coprocessor
2597 register. There must be a one instruction delay before INSN2
2598 if INSN2 reads that register, otherwise no delay is needed. */
2599 if (pinfo1 & INSN_WRITE_FPR_T)
2600 {
2601 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2602 return 1;
2603 }
2604 else if (pinfo1 & INSN_WRITE_FPR_S)
2605 {
2606 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2607 return 1;
2608 }
2609 else
2610 {
2611 /* Read-after-write dependencies on the control registers
2612 require a two-instruction gap. */
2613 if ((pinfo1 & INSN_WRITE_COND_CODE)
2614 && (pinfo2 & INSN_READ_COND_CODE))
2615 return 2;
2616
2617 /* We don't know exactly what INSN1 does. If INSN2 is
2618 also a coprocessor instruction, assume there must be
2619 a one instruction gap. */
2620 if (pinfo2 & INSN_COP)
2621 return 1;
2622 }
2623 }
2624
2625 /* Check for read-after-write dependencies on the coprocessor
2626 control registers in cases where INSN1 does not need a general
2627 coprocessor delay. This means that INSN1 is a floating point
2628 comparison instruction. */
2629 /* Itbl support may require additional care here. */
2630 else if (!cop_interlocks
2631 && (pinfo1 & INSN_WRITE_COND_CODE)
2632 && (pinfo2 & INSN_READ_COND_CODE))
2633 return 1;
2634 }
2635
2636 #undef INSN2_USES_REG
2637
2638 return 0;
2639 }
2640
2641 /* Return the number of nops that would be needed to work around the
2642 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2643 the MAX_VR4130_NOPS instructions described by HIST. */
2644
2645 static int
2646 nops_for_vr4130 (const struct mips_cl_insn *hist,
2647 const struct mips_cl_insn *insn)
2648 {
2649 int i, j, reg;
2650
2651 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2652 are not affected by the errata. */
2653 if (insn != 0
2654 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2655 || strcmp (insn->insn_mo->name, "mtlo") == 0
2656 || strcmp (insn->insn_mo->name, "mthi") == 0))
2657 return 0;
2658
2659 /* Search for the first MFLO or MFHI. */
2660 for (i = 0; i < MAX_VR4130_NOPS; i++)
2661 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2662 {
2663 /* Extract the destination register. */
2664 if (mips_opts.mips16)
2665 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, hist[i])];
2666 else
2667 reg = EXTRACT_OPERAND (RD, hist[i]);
2668
2669 /* No nops are needed if INSN reads that register. */
2670 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2671 return 0;
2672
2673 /* ...or if any of the intervening instructions do. */
2674 for (j = 0; j < i; j++)
2675 if (insn_uses_reg (&hist[j], reg, MIPS_GR_REG))
2676 return 0;
2677
2678 return MAX_VR4130_NOPS - i;
2679 }
2680 return 0;
2681 }
2682
2683 /* Return the number of nops that would be needed if instruction INSN
2684 immediately followed the MAX_NOPS instructions given by HIST,
2685 where HIST[0] is the most recent instruction. If INSN is null,
2686 return the worse-case number of nops for any instruction. */
2687
2688 static int
2689 nops_for_insn (const struct mips_cl_insn *hist,
2690 const struct mips_cl_insn *insn)
2691 {
2692 int i, nops, tmp_nops;
2693
2694 nops = 0;
2695 for (i = 0; i < MAX_DELAY_NOPS; i++)
2696 {
2697 tmp_nops = insns_between (hist + i, insn) - i;
2698 if (tmp_nops > nops)
2699 nops = tmp_nops;
2700 }
2701
2702 if (mips_fix_vr4130)
2703 {
2704 tmp_nops = nops_for_vr4130 (hist, insn);
2705 if (tmp_nops > nops)
2706 nops = tmp_nops;
2707 }
2708
2709 return nops;
2710 }
2711
2712 /* The variable arguments provide NUM_INSNS extra instructions that
2713 might be added to HIST. Return the largest number of nops that
2714 would be needed after the extended sequence. */
2715
2716 static int
2717 nops_for_sequence (int num_insns, const struct mips_cl_insn *hist, ...)
2718 {
2719 va_list args;
2720 struct mips_cl_insn buffer[MAX_NOPS];
2721 struct mips_cl_insn *cursor;
2722 int nops;
2723
2724 va_start (args, hist);
2725 cursor = buffer + num_insns;
2726 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2727 while (cursor > buffer)
2728 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2729
2730 nops = nops_for_insn (buffer, NULL);
2731 va_end (args);
2732 return nops;
2733 }
2734
2735 /* Like nops_for_insn, but if INSN is a branch, take into account the
2736 worst-case delay for the branch target. */
2737
2738 static int
2739 nops_for_insn_or_target (const struct mips_cl_insn *hist,
2740 const struct mips_cl_insn *insn)
2741 {
2742 int nops, tmp_nops;
2743
2744 nops = nops_for_insn (hist, insn);
2745 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2746 | INSN_COND_BRANCH_DELAY
2747 | INSN_COND_BRANCH_LIKELY))
2748 {
2749 tmp_nops = nops_for_sequence (2, hist, insn, NOP_INSN);
2750 if (tmp_nops > nops)
2751 nops = tmp_nops;
2752 }
2753 else if (mips_opts.mips16
2754 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2755 | MIPS16_INSN_COND_BRANCH)))
2756 {
2757 tmp_nops = nops_for_sequence (1, hist, insn);
2758 if (tmp_nops > nops)
2759 nops = tmp_nops;
2760 }
2761 return nops;
2762 }
2763
2764 /* Fix NOP issue: Replace nops by "or at,at,zero". */
2765
2766 static void
2767 fix_loongson2f_nop (struct mips_cl_insn * ip)
2768 {
2769 if (strcmp (ip->insn_mo->name, "nop") == 0)
2770 ip->insn_opcode = LOONGSON2F_NOP_INSN;
2771 }
2772
2773 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
2774 jr target pc &= 'hffff_ffff_cfff_ffff. */
2775
2776 static void
2777 fix_loongson2f_jump (struct mips_cl_insn * ip)
2778 {
2779 if (strcmp (ip->insn_mo->name, "j") == 0
2780 || strcmp (ip->insn_mo->name, "jr") == 0
2781 || strcmp (ip->insn_mo->name, "jalr") == 0)
2782 {
2783 int sreg;
2784 expressionS ep;
2785
2786 if (! mips_opts.at)
2787 return;
2788
2789 sreg = EXTRACT_OPERAND (RS, *ip);
2790 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
2791 return;
2792
2793 ep.X_op = O_constant;
2794 ep.X_add_number = 0xcfff0000;
2795 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
2796 ep.X_add_number = 0xffff;
2797 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
2798 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
2799 }
2800 }
2801
2802 static void
2803 fix_loongson2f (struct mips_cl_insn * ip)
2804 {
2805 if (mips_fix_loongson2f_nop)
2806 fix_loongson2f_nop (ip);
2807
2808 if (mips_fix_loongson2f_jump)
2809 fix_loongson2f_jump (ip);
2810 }
2811
2812 /* Output an instruction. IP is the instruction information.
2813 ADDRESS_EXPR is an operand of the instruction to be used with
2814 RELOC_TYPE. */
2815
2816 static void
2817 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2818 bfd_reloc_code_real_type *reloc_type)
2819 {
2820 unsigned long prev_pinfo, pinfo;
2821 unsigned long prev_pinfo2, pinfo2;
2822 relax_stateT prev_insn_frag_type = 0;
2823 bfd_boolean relaxed_branch = FALSE;
2824 segment_info_type *si = seg_info (now_seg);
2825
2826 if (mips_fix_loongson2f)
2827 fix_loongson2f (ip);
2828
2829 /* Mark instruction labels in mips16 mode. */
2830 mips16_mark_labels ();
2831
2832 file_ase_mips16 |= mips_opts.mips16;
2833
2834 prev_pinfo = history[0].insn_mo->pinfo;
2835 prev_pinfo2 = history[0].insn_mo->pinfo2;
2836 pinfo = ip->insn_mo->pinfo;
2837 pinfo2 = ip->insn_mo->pinfo2;
2838
2839 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2840 {
2841 /* There are a lot of optimizations we could do that we don't.
2842 In particular, we do not, in general, reorder instructions.
2843 If you use gcc with optimization, it will reorder
2844 instructions and generally do much more optimization then we
2845 do here; repeating all that work in the assembler would only
2846 benefit hand written assembly code, and does not seem worth
2847 it. */
2848 int nops = (mips_optimize == 0
2849 ? nops_for_insn (history, NULL)
2850 : nops_for_insn_or_target (history, ip));
2851 if (nops > 0)
2852 {
2853 fragS *old_frag;
2854 unsigned long old_frag_offset;
2855 int i;
2856
2857 old_frag = frag_now;
2858 old_frag_offset = frag_now_fix ();
2859
2860 for (i = 0; i < nops; i++)
2861 emit_nop ();
2862
2863 if (listing)
2864 {
2865 listing_prev_line ();
2866 /* We may be at the start of a variant frag. In case we
2867 are, make sure there is enough space for the frag
2868 after the frags created by listing_prev_line. The
2869 argument to frag_grow here must be at least as large
2870 as the argument to all other calls to frag_grow in
2871 this file. We don't have to worry about being in the
2872 middle of a variant frag, because the variants insert
2873 all needed nop instructions themselves. */
2874 frag_grow (40);
2875 }
2876
2877 mips_move_labels ();
2878
2879 #ifndef NO_ECOFF_DEBUGGING
2880 if (ECOFF_DEBUGGING)
2881 ecoff_fix_loc (old_frag, old_frag_offset);
2882 #endif
2883 }
2884 }
2885 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2886 {
2887 /* Work out how many nops in prev_nop_frag are needed by IP. */
2888 int nops = nops_for_insn_or_target (history, ip);
2889 gas_assert (nops <= prev_nop_frag_holds);
2890
2891 /* Enforce NOPS as a minimum. */
2892 if (nops > prev_nop_frag_required)
2893 prev_nop_frag_required = nops;
2894
2895 if (prev_nop_frag_holds == prev_nop_frag_required)
2896 {
2897 /* Settle for the current number of nops. Update the history
2898 accordingly (for the benefit of any future .set reorder code). */
2899 prev_nop_frag = NULL;
2900 insert_into_history (prev_nop_frag_since,
2901 prev_nop_frag_holds, NOP_INSN);
2902 }
2903 else
2904 {
2905 /* Allow this instruction to replace one of the nops that was
2906 tentatively added to prev_nop_frag. */
2907 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2908 prev_nop_frag_holds--;
2909 prev_nop_frag_since++;
2910 }
2911 }
2912
2913 #ifdef OBJ_ELF
2914 /* The value passed to dwarf2_emit_insn is the distance between
2915 the beginning of the current instruction and the address that
2916 should be recorded in the debug tables. For MIPS16 debug info
2917 we want to use ISA-encoded addresses, so we pass -1 for an
2918 address higher by one than the current. */
2919 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2920 #endif
2921
2922 /* Record the frag type before frag_var. */
2923 if (history[0].frag)
2924 prev_insn_frag_type = history[0].frag->fr_type;
2925
2926 if (address_expr
2927 && *reloc_type == BFD_RELOC_16_PCREL_S2
2928 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2929 || pinfo & INSN_COND_BRANCH_LIKELY)
2930 && mips_relax_branch
2931 /* Don't try branch relaxation within .set nomacro, or within
2932 .set noat if we use $at for PIC computations. If it turns
2933 out that the branch was out-of-range, we'll get an error. */
2934 && !mips_opts.warn_about_macros
2935 && (mips_opts.at || mips_pic == NO_PIC)
2936 && !mips_opts.mips16)
2937 {
2938 relaxed_branch = TRUE;
2939 add_relaxed_insn (ip, (relaxed_branch_length
2940 (NULL, NULL,
2941 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2942 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2943 : 0)), 4,
2944 RELAX_BRANCH_ENCODE
2945 (AT,
2946 pinfo & INSN_UNCOND_BRANCH_DELAY,
2947 pinfo & INSN_COND_BRANCH_LIKELY,
2948 pinfo & INSN_WRITE_GPR_31,
2949 0),
2950 address_expr->X_add_symbol,
2951 address_expr->X_add_number);
2952 *reloc_type = BFD_RELOC_UNUSED;
2953 }
2954 else if (*reloc_type > BFD_RELOC_UNUSED)
2955 {
2956 /* We need to set up a variant frag. */
2957 gas_assert (mips_opts.mips16 && address_expr != NULL);
2958 add_relaxed_insn (ip, 4, 0,
2959 RELAX_MIPS16_ENCODE
2960 (*reloc_type - BFD_RELOC_UNUSED,
2961 mips16_small, mips16_ext,
2962 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2963 history[0].mips16_absolute_jump_p),
2964 make_expr_symbol (address_expr), 0);
2965 }
2966 else if (mips_opts.mips16
2967 && ! ip->use_extend
2968 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2969 {
2970 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2971 /* Make sure there is enough room to swap this instruction with
2972 a following jump instruction. */
2973 frag_grow (6);
2974 add_fixed_insn (ip);
2975 }
2976 else
2977 {
2978 if (mips_opts.mips16
2979 && mips_opts.noreorder
2980 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2981 as_warn (_("extended instruction in delay slot"));
2982
2983 if (mips_relax.sequence)
2984 {
2985 /* If we've reached the end of this frag, turn it into a variant
2986 frag and record the information for the instructions we've
2987 written so far. */
2988 if (frag_room () < 4)
2989 relax_close_frag ();
2990 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2991 }
2992
2993 if (mips_relax.sequence != 2)
2994 mips_macro_warning.sizes[0] += 4;
2995 if (mips_relax.sequence != 1)
2996 mips_macro_warning.sizes[1] += 4;
2997
2998 if (mips_opts.mips16)
2999 {
3000 ip->fixed_p = 1;
3001 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
3002 }
3003 add_fixed_insn (ip);
3004 }
3005
3006 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
3007 {
3008 if (address_expr->X_op == O_constant)
3009 {
3010 unsigned int tmp;
3011
3012 switch (*reloc_type)
3013 {
3014 case BFD_RELOC_32:
3015 ip->insn_opcode |= address_expr->X_add_number;
3016 break;
3017
3018 case BFD_RELOC_MIPS_HIGHEST:
3019 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
3020 ip->insn_opcode |= tmp & 0xffff;
3021 break;
3022
3023 case BFD_RELOC_MIPS_HIGHER:
3024 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3025 ip->insn_opcode |= tmp & 0xffff;
3026 break;
3027
3028 case BFD_RELOC_HI16_S:
3029 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3030 ip->insn_opcode |= tmp & 0xffff;
3031 break;
3032
3033 case BFD_RELOC_HI16:
3034 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3035 break;
3036
3037 case BFD_RELOC_UNUSED:
3038 case BFD_RELOC_LO16:
3039 case BFD_RELOC_MIPS_GOT_DISP:
3040 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3041 break;
3042
3043 case BFD_RELOC_MIPS_JMP:
3044 if ((address_expr->X_add_number & 3) != 0)
3045 as_bad (_("jump to misaligned address (0x%lx)"),
3046 (unsigned long) address_expr->X_add_number);
3047 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3048 break;
3049
3050 case BFD_RELOC_MIPS16_JMP:
3051 if ((address_expr->X_add_number & 3) != 0)
3052 as_bad (_("jump to misaligned address (0x%lx)"),
3053 (unsigned long) address_expr->X_add_number);
3054 ip->insn_opcode |=
3055 (((address_expr->X_add_number & 0x7c0000) << 3)
3056 | ((address_expr->X_add_number & 0xf800000) >> 7)
3057 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3058 break;
3059
3060 case BFD_RELOC_16_PCREL_S2:
3061 if ((address_expr->X_add_number & 3) != 0)
3062 as_bad (_("branch to misaligned address (0x%lx)"),
3063 (unsigned long) address_expr->X_add_number);
3064 if (mips_relax_branch)
3065 goto need_reloc;
3066 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3067 as_bad (_("branch address range overflow (0x%lx)"),
3068 (unsigned long) address_expr->X_add_number);
3069 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3070 break;
3071
3072 default:
3073 internalError ();
3074 }
3075 }
3076 else if (*reloc_type < BFD_RELOC_UNUSED)
3077 need_reloc:
3078 {
3079 reloc_howto_type *howto;
3080 int i;
3081
3082 /* In a compound relocation, it is the final (outermost)
3083 operator that determines the relocated field. */
3084 for (i = 1; i < 3; i++)
3085 if (reloc_type[i] == BFD_RELOC_UNUSED)
3086 break;
3087
3088 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3089 if (howto == NULL)
3090 {
3091 /* To reproduce this failure try assembling gas/testsuites/
3092 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3093 assembler. */
3094 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3095 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3096 }
3097
3098 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3099 bfd_get_reloc_size (howto),
3100 address_expr,
3101 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3102 reloc_type[0]);
3103
3104 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3105 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3106 && ip->fixp[0]->fx_addsy)
3107 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3108
3109 /* These relocations can have an addend that won't fit in
3110 4 octets for 64bit assembly. */
3111 if (HAVE_64BIT_GPRS
3112 && ! howto->partial_inplace
3113 && (reloc_type[0] == BFD_RELOC_16
3114 || reloc_type[0] == BFD_RELOC_32
3115 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3116 || reloc_type[0] == BFD_RELOC_GPREL16
3117 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3118 || reloc_type[0] == BFD_RELOC_GPREL32
3119 || reloc_type[0] == BFD_RELOC_64
3120 || reloc_type[0] == BFD_RELOC_CTOR
3121 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3122 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3123 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3124 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3125 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3126 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3127 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3128 || hi16_reloc_p (reloc_type[0])
3129 || lo16_reloc_p (reloc_type[0])))
3130 ip->fixp[0]->fx_no_overflow = 1;
3131
3132 if (mips_relax.sequence)
3133 {
3134 if (mips_relax.first_fixup == 0)
3135 mips_relax.first_fixup = ip->fixp[0];
3136 }
3137 else if (reloc_needs_lo_p (*reloc_type))
3138 {
3139 struct mips_hi_fixup *hi_fixup;
3140
3141 /* Reuse the last entry if it already has a matching %lo. */
3142 hi_fixup = mips_hi_fixup_list;
3143 if (hi_fixup == 0
3144 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3145 {
3146 hi_fixup = ((struct mips_hi_fixup *)
3147 xmalloc (sizeof (struct mips_hi_fixup)));
3148 hi_fixup->next = mips_hi_fixup_list;
3149 mips_hi_fixup_list = hi_fixup;
3150 }
3151 hi_fixup->fixp = ip->fixp[0];
3152 hi_fixup->seg = now_seg;
3153 }
3154
3155 /* Add fixups for the second and third relocations, if given.
3156 Note that the ABI allows the second relocation to be
3157 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3158 moment we only use RSS_UNDEF, but we could add support
3159 for the others if it ever becomes necessary. */
3160 for (i = 1; i < 3; i++)
3161 if (reloc_type[i] != BFD_RELOC_UNUSED)
3162 {
3163 ip->fixp[i] = fix_new (ip->frag, ip->where,
3164 ip->fixp[0]->fx_size, NULL, 0,
3165 FALSE, reloc_type[i]);
3166
3167 /* Use fx_tcbit to mark compound relocs. */
3168 ip->fixp[0]->fx_tcbit = 1;
3169 ip->fixp[i]->fx_tcbit = 1;
3170 }
3171 }
3172 }
3173 install_insn (ip);
3174
3175 /* Update the register mask information. */
3176 if (! mips_opts.mips16)
3177 {
3178 if ((pinfo & INSN_WRITE_GPR_D) || (pinfo2 & INSN2_READ_GPR_D))
3179 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3180 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3181 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3182 if (pinfo & INSN_READ_GPR_S)
3183 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3184 if (pinfo & INSN_WRITE_GPR_31)
3185 mips_gprmask |= 1 << RA;
3186 if (pinfo2 & (INSN2_WRITE_GPR_Z | INSN2_READ_GPR_Z))
3187 mips_gprmask |= 1 << EXTRACT_OPERAND (RZ, *ip);
3188 if (pinfo & INSN_WRITE_FPR_D)
3189 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3190 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3191 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3192 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3193 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3194 if ((pinfo & INSN_READ_FPR_R) != 0)
3195 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3196 if (pinfo2 & (INSN2_WRITE_FPR_Z | INSN2_READ_FPR_Z))
3197 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FZ, *ip);
3198 if (pinfo & INSN_COP)
3199 {
3200 /* We don't keep enough information to sort these cases out.
3201 The itbl support does keep this information however, although
3202 we currently don't support itbl fprmats as part of the cop
3203 instruction. May want to add this support in the future. */
3204 }
3205 /* Never set the bit for $0, which is always zero. */
3206 mips_gprmask &= ~1 << 0;
3207 }
3208 else
3209 {
3210 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3211 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3212 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3213 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3214 if (pinfo & MIPS16_INSN_WRITE_Z)
3215 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3216 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3217 mips_gprmask |= 1 << TREG;
3218 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3219 mips_gprmask |= 1 << SP;
3220 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3221 mips_gprmask |= 1 << RA;
3222 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3223 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3224 if (pinfo & MIPS16_INSN_READ_Z)
3225 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3226 if (pinfo & MIPS16_INSN_READ_GPR_X)
3227 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3228 }
3229
3230 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3231 {
3232 /* Filling the branch delay slot is more complex. We try to
3233 switch the branch with the previous instruction, which we can
3234 do if the previous instruction does not set up a condition
3235 that the branch tests and if the branch is not itself the
3236 target of any branch. */
3237 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3238 || (pinfo & INSN_COND_BRANCH_DELAY))
3239 {
3240 if (mips_optimize < 2
3241 /* If we have seen .set volatile or .set nomove, don't
3242 optimize. */
3243 || mips_opts.nomove != 0
3244 /* We can't swap if the previous instruction's position
3245 is fixed. */
3246 || history[0].fixed_p
3247 /* If the previous previous insn was in a .set
3248 noreorder, we can't swap. Actually, the MIPS
3249 assembler will swap in this situation. However, gcc
3250 configured -with-gnu-as will generate code like
3251 .set noreorder
3252 lw $4,XXX
3253 .set reorder
3254 INSN
3255 bne $4,$0,foo
3256 in which we can not swap the bne and INSN. If gcc is
3257 not configured -with-gnu-as, it does not output the
3258 .set pseudo-ops. */
3259 || history[1].noreorder_p
3260 /* If the branch is itself the target of a branch, we
3261 can not swap. We cheat on this; all we check for is
3262 whether there is a label on this instruction. If
3263 there are any branches to anything other than a
3264 label, users must use .set noreorder. */
3265 || si->label_list != NULL
3266 /* If the previous instruction is in a variant frag
3267 other than this branch's one, we cannot do the swap.
3268 This does not apply to the mips16, which uses variant
3269 frags for different purposes. */
3270 || (! mips_opts.mips16
3271 && prev_insn_frag_type == rs_machine_dependent)
3272 /* Check for conflicts between the branch and the instructions
3273 before the candidate delay slot. */
3274 || nops_for_insn (history + 1, ip) > 0
3275 /* Check for conflicts between the swapped sequence and the
3276 target of the branch. */
3277 || nops_for_sequence (2, history + 1, ip, history) > 0
3278 /* We do not swap with a trap instruction, since it
3279 complicates trap handlers to have the trap
3280 instruction be in a delay slot. */
3281 || (prev_pinfo & INSN_TRAP)
3282 /* If the branch reads a register that the previous
3283 instruction sets, we can not swap. */
3284 || (! mips_opts.mips16
3285 && (prev_pinfo & INSN_WRITE_GPR_T)
3286 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3287 MIPS_GR_REG))
3288 || (! mips_opts.mips16
3289 && (prev_pinfo & INSN_WRITE_GPR_D)
3290 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3291 MIPS_GR_REG))
3292 || (! mips_opts.mips16
3293 && (prev_pinfo2 & INSN2_WRITE_GPR_Z)
3294 && insn_uses_reg (ip, EXTRACT_OPERAND (RZ, history[0]),
3295 MIPS_GR_REG))
3296 || (mips_opts.mips16
3297 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3298 && (insn_uses_reg
3299 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3300 MIPS16_REG)))
3301 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3302 && (insn_uses_reg
3303 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3304 MIPS16_REG)))
3305 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3306 && (insn_uses_reg
3307 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3308 MIPS16_REG)))
3309 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3310 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3311 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3312 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3313 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3314 && insn_uses_reg (ip,
3315 MIPS16OP_EXTRACT_REG32R
3316 (history[0].insn_opcode),
3317 MIPS_GR_REG))))
3318 /* If the branch writes a register that the previous
3319 instruction sets, we can not swap (we know that
3320 branches write only to RD or to $31). */
3321 || (! mips_opts.mips16
3322 && (prev_pinfo & INSN_WRITE_GPR_T)
3323 && (((pinfo & INSN_WRITE_GPR_D)
3324 && (EXTRACT_OPERAND (RT, history[0])
3325 == EXTRACT_OPERAND (RD, *ip)))
3326 || ((pinfo & INSN_WRITE_GPR_31)
3327 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3328 || (! mips_opts.mips16
3329 && (prev_pinfo & INSN_WRITE_GPR_D)
3330 && (((pinfo & INSN_WRITE_GPR_D)
3331 && (EXTRACT_OPERAND (RD, history[0])
3332 == EXTRACT_OPERAND (RD, *ip)))
3333 || ((pinfo & INSN_WRITE_GPR_31)
3334 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3335 || (mips_opts.mips16
3336 && (pinfo & MIPS16_INSN_WRITE_31)
3337 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3338 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3339 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3340 == RA))))
3341 /* If the branch writes a register that the previous
3342 instruction reads, we can not swap (we know that
3343 branches only write to RD or to $31). */
3344 || (! mips_opts.mips16
3345 && (pinfo & INSN_WRITE_GPR_D)
3346 && insn_uses_reg (&history[0],
3347 EXTRACT_OPERAND (RD, *ip),
3348 MIPS_GR_REG))
3349 || (! mips_opts.mips16
3350 && (pinfo & INSN_WRITE_GPR_31)
3351 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3352 || (mips_opts.mips16
3353 && (pinfo & MIPS16_INSN_WRITE_31)
3354 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3355 /* If one instruction sets a condition code and the
3356 other one uses a condition code, we can not swap. */
3357 || ((pinfo & INSN_READ_COND_CODE)
3358 && (prev_pinfo & INSN_WRITE_COND_CODE))
3359 || ((pinfo & INSN_WRITE_COND_CODE)
3360 && (prev_pinfo & INSN_READ_COND_CODE))
3361 /* If the previous instruction uses the PC, we can not
3362 swap. */
3363 || (mips_opts.mips16
3364 && (prev_pinfo & MIPS16_INSN_READ_PC))
3365 /* If the previous instruction had a fixup in mips16
3366 mode, we can not swap. This normally means that the
3367 previous instruction was a 4 byte branch anyhow. */
3368 || (mips_opts.mips16 && history[0].fixp[0])
3369 /* If the previous instruction is a sync, sync.l, or
3370 sync.p, we can not swap. */
3371 || (prev_pinfo & INSN_SYNC)
3372 /* If the previous instruction is an ERET or
3373 DERET, avoid the swap. */
3374 || (history[0].insn_opcode == INSN_ERET)
3375 || (history[0].insn_opcode == INSN_DERET))
3376 {
3377 if (mips_opts.mips16
3378 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3379 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3380 && ISA_SUPPORTS_MIPS16E)
3381 {
3382 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3383 ip->insn_opcode |= 0x0080;
3384 install_insn (ip);
3385 insert_into_history (0, 1, ip);
3386 }
3387 else
3388 {
3389 /* We could do even better for unconditional branches to
3390 portions of this object file; we could pick up the
3391 instruction at the destination, put it in the delay
3392 slot, and bump the destination address. */
3393 insert_into_history (0, 1, ip);
3394 emit_nop ();
3395 }
3396
3397 if (mips_relax.sequence)
3398 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3399 }
3400 else
3401 {
3402 /* It looks like we can actually do the swap. */
3403 struct mips_cl_insn delay = history[0];
3404 if (mips_opts.mips16)
3405 {
3406 know (delay.frag == ip->frag);
3407 move_insn (ip, delay.frag, delay.where);
3408 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3409 }
3410 else if (relaxed_branch)
3411 {
3412 /* Add the delay slot instruction to the end of the
3413 current frag and shrink the fixed part of the
3414 original frag. If the branch occupies the tail of
3415 the latter, move it backwards to cover the gap. */
3416 delay.frag->fr_fix -= 4;
3417 if (delay.frag == ip->frag)
3418 move_insn (ip, ip->frag, ip->where - 4);
3419 add_fixed_insn (&delay);
3420 }
3421 else
3422 {
3423 move_insn (&delay, ip->frag, ip->where);
3424 move_insn (ip, history[0].frag, history[0].where);
3425 }
3426 history[0] = *ip;
3427 delay.fixed_p = 1;
3428 insert_into_history (0, 1, &delay);
3429 }
3430
3431 /* If that was an unconditional branch, forget the previous
3432 insn information. */
3433 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3434 {
3435 mips_no_prev_insn ();
3436 }
3437 }
3438 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3439 {
3440 /* We don't yet optimize a branch likely. What we should do
3441 is look at the target, copy the instruction found there
3442 into the delay slot, and increment the branch to jump to
3443 the next instruction. */
3444 insert_into_history (0, 1, ip);
3445 emit_nop ();
3446 }
3447 else
3448 insert_into_history (0, 1, ip);
3449 }
3450 else
3451 insert_into_history (0, 1, ip);
3452
3453 /* We just output an insn, so the next one doesn't have a label. */
3454 mips_clear_insn_labels ();
3455 }
3456
3457 /* Forget that there was any previous instruction or label. */
3458
3459 static void
3460 mips_no_prev_insn (void)
3461 {
3462 prev_nop_frag = NULL;
3463 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3464 mips_clear_insn_labels ();
3465 }
3466
3467 /* This function must be called before we emit something other than
3468 instructions. It is like mips_no_prev_insn except that it inserts
3469 any NOPS that might be needed by previous instructions. */
3470
3471 void
3472 mips_emit_delays (void)
3473 {
3474 if (! mips_opts.noreorder)
3475 {
3476 int nops = nops_for_insn (history, NULL);
3477 if (nops > 0)
3478 {
3479 while (nops-- > 0)
3480 add_fixed_insn (NOP_INSN);
3481 mips_move_labels ();
3482 }
3483 }
3484 mips_no_prev_insn ();
3485 }
3486
3487 /* Start a (possibly nested) noreorder block. */
3488
3489 static void
3490 start_noreorder (void)
3491 {
3492 if (mips_opts.noreorder == 0)
3493 {
3494 unsigned int i;
3495 int nops;
3496
3497 /* None of the instructions before the .set noreorder can be moved. */
3498 for (i = 0; i < ARRAY_SIZE (history); i++)
3499 history[i].fixed_p = 1;
3500
3501 /* Insert any nops that might be needed between the .set noreorder
3502 block and the previous instructions. We will later remove any
3503 nops that turn out not to be needed. */
3504 nops = nops_for_insn (history, NULL);
3505 if (nops > 0)
3506 {
3507 if (mips_optimize != 0)
3508 {
3509 /* Record the frag which holds the nop instructions, so
3510 that we can remove them if we don't need them. */
3511 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3512 prev_nop_frag = frag_now;
3513 prev_nop_frag_holds = nops;
3514 prev_nop_frag_required = 0;
3515 prev_nop_frag_since = 0;
3516 }
3517
3518 for (; nops > 0; --nops)
3519 add_fixed_insn (NOP_INSN);
3520
3521 /* Move on to a new frag, so that it is safe to simply
3522 decrease the size of prev_nop_frag. */
3523 frag_wane (frag_now);
3524 frag_new (0);
3525 mips_move_labels ();
3526 }
3527 mips16_mark_labels ();
3528 mips_clear_insn_labels ();
3529 }
3530 mips_opts.noreorder++;
3531 mips_any_noreorder = 1;
3532 }
3533
3534 /* End a nested noreorder block. */
3535
3536 static void
3537 end_noreorder (void)
3538 {
3539
3540 mips_opts.noreorder--;
3541 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3542 {
3543 /* Commit to inserting prev_nop_frag_required nops and go back to
3544 handling nop insertion the .set reorder way. */
3545 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3546 * (mips_opts.mips16 ? 2 : 4));
3547 insert_into_history (prev_nop_frag_since,
3548 prev_nop_frag_required, NOP_INSN);
3549 prev_nop_frag = NULL;
3550 }
3551 }
3552
3553 /* Set up global variables for the start of a new macro. */
3554
3555 static void
3556 macro_start (void)
3557 {
3558 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3559 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3560 && (history[0].insn_mo->pinfo
3561 & (INSN_UNCOND_BRANCH_DELAY
3562 | INSN_COND_BRANCH_DELAY
3563 | INSN_COND_BRANCH_LIKELY)) != 0);
3564 }
3565
3566 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3567 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3568 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3569
3570 static const char *
3571 macro_warning (relax_substateT subtype)
3572 {
3573 if (subtype & RELAX_DELAY_SLOT)
3574 return _("Macro instruction expanded into multiple instructions"
3575 " in a branch delay slot");
3576 else if (subtype & RELAX_NOMACRO)
3577 return _("Macro instruction expanded into multiple instructions");
3578 else
3579 return 0;
3580 }
3581
3582 /* Finish up a macro. Emit warnings as appropriate. */
3583
3584 static void
3585 macro_end (void)
3586 {
3587 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3588 {
3589 relax_substateT subtype;
3590
3591 /* Set up the relaxation warning flags. */
3592 subtype = 0;
3593 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3594 subtype |= RELAX_SECOND_LONGER;
3595 if (mips_opts.warn_about_macros)
3596 subtype |= RELAX_NOMACRO;
3597 if (mips_macro_warning.delay_slot_p)
3598 subtype |= RELAX_DELAY_SLOT;
3599
3600 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3601 {
3602 /* Either the macro has a single implementation or both
3603 implementations are longer than 4 bytes. Emit the
3604 warning now. */
3605 const char *msg = macro_warning (subtype);
3606 if (msg != 0)
3607 as_warn ("%s", msg);
3608 }
3609 else
3610 {
3611 /* One implementation might need a warning but the other
3612 definitely doesn't. */
3613 mips_macro_warning.first_frag->fr_subtype |= subtype;
3614 }
3615 }
3616 }
3617
3618 /* Read a macro's relocation codes from *ARGS and store them in *R.
3619 The first argument in *ARGS will be either the code for a single
3620 relocation or -1 followed by the three codes that make up a
3621 composite relocation. */
3622
3623 static void
3624 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3625 {
3626 int i, next;
3627
3628 next = va_arg (*args, int);
3629 if (next >= 0)
3630 r[0] = (bfd_reloc_code_real_type) next;
3631 else
3632 for (i = 0; i < 3; i++)
3633 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3634 }
3635
3636 /* Build an instruction created by a macro expansion. This is passed
3637 a pointer to the count of instructions created so far, an
3638 expression, the name of the instruction to build, an operand format
3639 string, and corresponding arguments. */
3640
3641 static void
3642 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3643 {
3644 const struct mips_opcode *mo;
3645 struct mips_cl_insn insn;
3646 bfd_reloc_code_real_type r[3];
3647 va_list args;
3648
3649 va_start (args, fmt);
3650
3651 if (mips_opts.mips16)
3652 {
3653 mips16_macro_build (ep, name, fmt, &args);
3654 va_end (args);
3655 return;
3656 }
3657
3658 r[0] = BFD_RELOC_UNUSED;
3659 r[1] = BFD_RELOC_UNUSED;
3660 r[2] = BFD_RELOC_UNUSED;
3661 mo = (struct mips_opcode *) hash_find (op_hash, name);
3662 gas_assert (mo);
3663 gas_assert (strcmp (name, mo->name) == 0);
3664
3665 while (1)
3666 {
3667 /* Search until we get a match for NAME. It is assumed here that
3668 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3669 if (strcmp (fmt, mo->args) == 0
3670 && mo->pinfo != INSN_MACRO
3671 && is_opcode_valid (mo))
3672 break;
3673
3674 ++mo;
3675 gas_assert (mo->name);
3676 gas_assert (strcmp (name, mo->name) == 0);
3677 }
3678
3679 create_insn (&insn, mo);
3680 for (;;)
3681 {
3682 switch (*fmt++)
3683 {
3684 case '\0':
3685 break;
3686
3687 case ',':
3688 case '(':
3689 case ')':
3690 continue;
3691
3692 case '+':
3693 switch (*fmt++)
3694 {
3695 case 'A':
3696 case 'E':
3697 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3698 continue;
3699
3700 case 'B':
3701 case 'F':
3702 /* Note that in the macro case, these arguments are already
3703 in MSB form. (When handling the instruction in the
3704 non-macro case, these arguments are sizes from which
3705 MSB values must be calculated.) */
3706 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3707 continue;
3708
3709 case 'C':
3710 case 'G':
3711 case 'H':
3712 /* Note that in the macro case, these arguments are already
3713 in MSBD form. (When handling the instruction in the
3714 non-macro case, these arguments are sizes from which
3715 MSBD values must be calculated.) */
3716 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3717 continue;
3718
3719 case 'Q':
3720 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3721 continue;
3722
3723 default:
3724 internalError ();
3725 }
3726 continue;
3727
3728 case '2':
3729 INSERT_OPERAND (BP, insn, va_arg (args, int));
3730 continue;
3731
3732 case 't':
3733 case 'w':
3734 case 'E':
3735 INSERT_OPERAND (RT, insn, va_arg (args, int));
3736 continue;
3737
3738 case 'c':
3739 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3740 continue;
3741
3742 case 'T':
3743 case 'W':
3744 INSERT_OPERAND (FT, insn, va_arg (args, int));
3745 continue;
3746
3747 case 'd':
3748 case 'G':
3749 case 'K':
3750 INSERT_OPERAND (RD, insn, va_arg (args, int));
3751 continue;
3752
3753 case 'U':
3754 {
3755 int tmp = va_arg (args, int);
3756
3757 INSERT_OPERAND (RT, insn, tmp);
3758 INSERT_OPERAND (RD, insn, tmp);
3759 continue;
3760 }
3761
3762 case 'V':
3763 case 'S':
3764 INSERT_OPERAND (FS, insn, va_arg (args, int));
3765 continue;
3766
3767 case 'z':
3768 continue;
3769
3770 case '<':
3771 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3772 continue;
3773
3774 case 'D':
3775 INSERT_OPERAND (FD, insn, va_arg (args, int));
3776 continue;
3777
3778 case 'B':
3779 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3780 continue;
3781
3782 case 'J':
3783 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3784 continue;
3785
3786 case 'q':
3787 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3788 continue;
3789
3790 case 'b':
3791 case 's':
3792 case 'r':
3793 case 'v':
3794 INSERT_OPERAND (RS, insn, va_arg (args, int));
3795 continue;
3796
3797 case 'i':
3798 case 'j':
3799 macro_read_relocs (&args, r);
3800 gas_assert (*r == BFD_RELOC_GPREL16
3801 || *r == BFD_RELOC_MIPS_HIGHER
3802 || *r == BFD_RELOC_HI16_S
3803 || *r == BFD_RELOC_LO16
3804 || *r == BFD_RELOC_MIPS_GOT_OFST);
3805 continue;
3806
3807 case 'o':
3808 macro_read_relocs (&args, r);
3809 continue;
3810
3811 case 'u':
3812 macro_read_relocs (&args, r);
3813 gas_assert (ep != NULL
3814 && (ep->X_op == O_constant
3815 || (ep->X_op == O_symbol
3816 && (*r == BFD_RELOC_MIPS_HIGHEST
3817 || *r == BFD_RELOC_HI16_S
3818 || *r == BFD_RELOC_HI16
3819 || *r == BFD_RELOC_GPREL16
3820 || *r == BFD_RELOC_MIPS_GOT_HI16
3821 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3822 continue;
3823
3824 case 'p':
3825 gas_assert (ep != NULL);
3826
3827 /*
3828 * This allows macro() to pass an immediate expression for
3829 * creating short branches without creating a symbol.
3830 *
3831 * We don't allow branch relaxation for these branches, as
3832 * they should only appear in ".set nomacro" anyway.
3833 */
3834 if (ep->X_op == O_constant)
3835 {
3836 if ((ep->X_add_number & 3) != 0)
3837 as_bad (_("branch to misaligned address (0x%lx)"),
3838 (unsigned long) ep->X_add_number);
3839 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3840 as_bad (_("branch address range overflow (0x%lx)"),
3841 (unsigned long) ep->X_add_number);
3842 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3843 ep = NULL;
3844 }
3845 else
3846 *r = BFD_RELOC_16_PCREL_S2;
3847 continue;
3848
3849 case 'a':
3850 gas_assert (ep != NULL);
3851 *r = BFD_RELOC_MIPS_JMP;
3852 continue;
3853
3854 case 'C':
3855 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3856 continue;
3857
3858 case 'k':
3859 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3860 continue;
3861
3862 default:
3863 internalError ();
3864 }
3865 break;
3866 }
3867 va_end (args);
3868 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3869
3870 append_insn (&insn, ep, r);
3871 }
3872
3873 static void
3874 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3875 va_list *args)
3876 {
3877 struct mips_opcode *mo;
3878 struct mips_cl_insn insn;
3879 bfd_reloc_code_real_type r[3]
3880 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3881
3882 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3883 gas_assert (mo);
3884 gas_assert (strcmp (name, mo->name) == 0);
3885
3886 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3887 {
3888 ++mo;
3889 gas_assert (mo->name);
3890 gas_assert (strcmp (name, mo->name) == 0);
3891 }
3892
3893 create_insn (&insn, mo);
3894 for (;;)
3895 {
3896 int c;
3897
3898 c = *fmt++;
3899 switch (c)
3900 {
3901 case '\0':
3902 break;
3903
3904 case ',':
3905 case '(':
3906 case ')':
3907 continue;
3908
3909 case 'y':
3910 case 'w':
3911 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
3912 continue;
3913
3914 case 'x':
3915 case 'v':
3916 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
3917 continue;
3918
3919 case 'z':
3920 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
3921 continue;
3922
3923 case 'Z':
3924 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
3925 continue;
3926
3927 case '0':
3928 case 'S':
3929 case 'P':
3930 case 'R':
3931 continue;
3932
3933 case 'X':
3934 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
3935 continue;
3936
3937 case 'Y':
3938 {
3939 int regno;
3940
3941 regno = va_arg (*args, int);
3942 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3943 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3944 }
3945 continue;
3946
3947 case '<':
3948 case '>':
3949 case '4':
3950 case '5':
3951 case 'H':
3952 case 'W':
3953 case 'D':
3954 case 'j':
3955 case '8':
3956 case 'V':
3957 case 'C':
3958 case 'U':
3959 case 'k':
3960 case 'K':
3961 case 'p':
3962 case 'q':
3963 {
3964 gas_assert (ep != NULL);
3965
3966 if (ep->X_op != O_constant)
3967 *r = (int) BFD_RELOC_UNUSED + c;
3968 else
3969 {
3970 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3971 FALSE, &insn.insn_opcode, &insn.use_extend,
3972 &insn.extend);
3973 ep = NULL;
3974 *r = BFD_RELOC_UNUSED;
3975 }
3976 }
3977 continue;
3978
3979 case '6':
3980 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
3981 continue;
3982 }
3983
3984 break;
3985 }
3986
3987 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3988
3989 append_insn (&insn, ep, r);
3990 }
3991
3992 /*
3993 * Sign-extend 32-bit mode constants that have bit 31 set and all
3994 * higher bits unset.
3995 */
3996 static void
3997 normalize_constant_expr (expressionS *ex)
3998 {
3999 if (ex->X_op == O_constant
4000 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
4001 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
4002 - 0x80000000);
4003 }
4004
4005 /*
4006 * Sign-extend 32-bit mode address offsets that have bit 31 set and
4007 * all higher bits unset.
4008 */
4009 static void
4010 normalize_address_expr (expressionS *ex)
4011 {
4012 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
4013 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
4014 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
4015 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
4016 - 0x80000000);
4017 }
4018
4019 /*
4020 * Generate a "jalr" instruction with a relocation hint to the called
4021 * function. This occurs in NewABI PIC code.
4022 */
4023 static void
4024 macro_build_jalr (expressionS *ep)
4025 {
4026 char *f = NULL;
4027
4028 if (MIPS_JALR_HINT_P (ep))
4029 {
4030 frag_grow (8);
4031 f = frag_more (0);
4032 }
4033 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4034 if (MIPS_JALR_HINT_P (ep))
4035 fix_new_exp (frag_now, f - frag_now->fr_literal,
4036 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4037 }
4038
4039 /*
4040 * Generate a "lui" instruction.
4041 */
4042 static void
4043 macro_build_lui (expressionS *ep, int regnum)
4044 {
4045 expressionS high_expr;
4046 const struct mips_opcode *mo;
4047 struct mips_cl_insn insn;
4048 bfd_reloc_code_real_type r[3]
4049 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4050 const char *name = "lui";
4051 const char *fmt = "t,u";
4052
4053 gas_assert (! mips_opts.mips16);
4054
4055 high_expr = *ep;
4056
4057 if (high_expr.X_op == O_constant)
4058 {
4059 /* We can compute the instruction now without a relocation entry. */
4060 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4061 >> 16) & 0xffff;
4062 *r = BFD_RELOC_UNUSED;
4063 }
4064 else
4065 {
4066 gas_assert (ep->X_op == O_symbol);
4067 /* _gp_disp is a special case, used from s_cpload.
4068 __gnu_local_gp is used if mips_no_shared. */
4069 gas_assert (mips_pic == NO_PIC
4070 || (! HAVE_NEWABI
4071 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4072 || (! mips_in_shared
4073 && strcmp (S_GET_NAME (ep->X_add_symbol),
4074 "__gnu_local_gp") == 0));
4075 *r = BFD_RELOC_HI16_S;
4076 }
4077
4078 mo = hash_find (op_hash, name);
4079 gas_assert (strcmp (name, mo->name) == 0);
4080 gas_assert (strcmp (fmt, mo->args) == 0);
4081 create_insn (&insn, mo);
4082
4083 insn.insn_opcode = insn.insn_mo->match;
4084 INSERT_OPERAND (RT, insn, regnum);
4085 if (*r == BFD_RELOC_UNUSED)
4086 {
4087 insn.insn_opcode |= high_expr.X_add_number;
4088 append_insn (&insn, NULL, r);
4089 }
4090 else
4091 append_insn (&insn, &high_expr, r);
4092 }
4093
4094 /* Generate a sequence of instructions to do a load or store from a constant
4095 offset off of a base register (breg) into/from a target register (treg),
4096 using AT if necessary. */
4097 static void
4098 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4099 int treg, int breg, int dbl)
4100 {
4101 gas_assert (ep->X_op == O_constant);
4102
4103 /* Sign-extending 32-bit constants makes their handling easier. */
4104 if (!dbl)
4105 normalize_constant_expr (ep);
4106
4107 /* Right now, this routine can only handle signed 32-bit constants. */
4108 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4109 as_warn (_("operand overflow"));
4110
4111 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4112 {
4113 /* Signed 16-bit offset will fit in the op. Easy! */
4114 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4115 }
4116 else
4117 {
4118 /* 32-bit offset, need multiple instructions and AT, like:
4119 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4120 addu $tempreg,$tempreg,$breg
4121 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4122 to handle the complete offset. */
4123 macro_build_lui (ep, AT);
4124 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4125 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4126
4127 if (!mips_opts.at)
4128 as_bad (_("Macro used $at after \".set noat\""));
4129 }
4130 }
4131
4132 /* set_at()
4133 * Generates code to set the $at register to true (one)
4134 * if reg is less than the immediate expression.
4135 */
4136 static void
4137 set_at (int reg, int unsignedp)
4138 {
4139 if (imm_expr.X_op == O_constant
4140 && imm_expr.X_add_number >= -0x8000
4141 && imm_expr.X_add_number < 0x8000)
4142 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4143 AT, reg, BFD_RELOC_LO16);
4144 else
4145 {
4146 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4147 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4148 }
4149 }
4150
4151 /* Warn if an expression is not a constant. */
4152
4153 static void
4154 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4155 {
4156 if (ex->X_op == O_big)
4157 as_bad (_("unsupported large constant"));
4158 else if (ex->X_op != O_constant)
4159 as_bad (_("Instruction %s requires absolute expression"),
4160 ip->insn_mo->name);
4161
4162 if (HAVE_32BIT_GPRS)
4163 normalize_constant_expr (ex);
4164 }
4165
4166 /* Count the leading zeroes by performing a binary chop. This is a
4167 bulky bit of source, but performance is a LOT better for the
4168 majority of values than a simple loop to count the bits:
4169 for (lcnt = 0; (lcnt < 32); lcnt++)
4170 if ((v) & (1 << (31 - lcnt)))
4171 break;
4172 However it is not code size friendly, and the gain will drop a bit
4173 on certain cached systems.
4174 */
4175 #define COUNT_TOP_ZEROES(v) \
4176 (((v) & ~0xffff) == 0 \
4177 ? ((v) & ~0xff) == 0 \
4178 ? ((v) & ~0xf) == 0 \
4179 ? ((v) & ~0x3) == 0 \
4180 ? ((v) & ~0x1) == 0 \
4181 ? !(v) \
4182 ? 32 \
4183 : 31 \
4184 : 30 \
4185 : ((v) & ~0x7) == 0 \
4186 ? 29 \
4187 : 28 \
4188 : ((v) & ~0x3f) == 0 \
4189 ? ((v) & ~0x1f) == 0 \
4190 ? 27 \
4191 : 26 \
4192 : ((v) & ~0x7f) == 0 \
4193 ? 25 \
4194 : 24 \
4195 : ((v) & ~0xfff) == 0 \
4196 ? ((v) & ~0x3ff) == 0 \
4197 ? ((v) & ~0x1ff) == 0 \
4198 ? 23 \
4199 : 22 \
4200 : ((v) & ~0x7ff) == 0 \
4201 ? 21 \
4202 : 20 \
4203 : ((v) & ~0x3fff) == 0 \
4204 ? ((v) & ~0x1fff) == 0 \
4205 ? 19 \
4206 : 18 \
4207 : ((v) & ~0x7fff) == 0 \
4208 ? 17 \
4209 : 16 \
4210 : ((v) & ~0xffffff) == 0 \
4211 ? ((v) & ~0xfffff) == 0 \
4212 ? ((v) & ~0x3ffff) == 0 \
4213 ? ((v) & ~0x1ffff) == 0 \
4214 ? 15 \
4215 : 14 \
4216 : ((v) & ~0x7ffff) == 0 \
4217 ? 13 \
4218 : 12 \
4219 : ((v) & ~0x3fffff) == 0 \
4220 ? ((v) & ~0x1fffff) == 0 \
4221 ? 11 \
4222 : 10 \
4223 : ((v) & ~0x7fffff) == 0 \
4224 ? 9 \
4225 : 8 \
4226 : ((v) & ~0xfffffff) == 0 \
4227 ? ((v) & ~0x3ffffff) == 0 \
4228 ? ((v) & ~0x1ffffff) == 0 \
4229 ? 7 \
4230 : 6 \
4231 : ((v) & ~0x7ffffff) == 0 \
4232 ? 5 \
4233 : 4 \
4234 : ((v) & ~0x3fffffff) == 0 \
4235 ? ((v) & ~0x1fffffff) == 0 \
4236 ? 3 \
4237 : 2 \
4238 : ((v) & ~0x7fffffff) == 0 \
4239 ? 1 \
4240 : 0)
4241
4242 /* load_register()
4243 * This routine generates the least number of instructions necessary to load
4244 * an absolute expression value into a register.
4245 */
4246 static void
4247 load_register (int reg, expressionS *ep, int dbl)
4248 {
4249 int freg;
4250 expressionS hi32, lo32;
4251
4252 if (ep->X_op != O_big)
4253 {
4254 gas_assert (ep->X_op == O_constant);
4255
4256 /* Sign-extending 32-bit constants makes their handling easier. */
4257 if (!dbl)
4258 normalize_constant_expr (ep);
4259
4260 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4261 {
4262 /* We can handle 16 bit signed values with an addiu to
4263 $zero. No need to ever use daddiu here, since $zero and
4264 the result are always correct in 32 bit mode. */
4265 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4266 return;
4267 }
4268 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4269 {
4270 /* We can handle 16 bit unsigned values with an ori to
4271 $zero. */
4272 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4273 return;
4274 }
4275 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4276 {
4277 /* 32 bit values require an lui. */
4278 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4279 if ((ep->X_add_number & 0xffff) != 0)
4280 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4281 return;
4282 }
4283 }
4284
4285 /* The value is larger than 32 bits. */
4286
4287 if (!dbl || HAVE_32BIT_GPRS)
4288 {
4289 char value[32];
4290
4291 sprintf_vma (value, ep->X_add_number);
4292 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4293 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4294 return;
4295 }
4296
4297 if (ep->X_op != O_big)
4298 {
4299 hi32 = *ep;
4300 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4301 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4302 hi32.X_add_number &= 0xffffffff;
4303 lo32 = *ep;
4304 lo32.X_add_number &= 0xffffffff;
4305 }
4306 else
4307 {
4308 gas_assert (ep->X_add_number > 2);
4309 if (ep->X_add_number == 3)
4310 generic_bignum[3] = 0;
4311 else if (ep->X_add_number > 4)
4312 as_bad (_("Number larger than 64 bits"));
4313 lo32.X_op = O_constant;
4314 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4315 hi32.X_op = O_constant;
4316 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4317 }
4318
4319 if (hi32.X_add_number == 0)
4320 freg = 0;
4321 else
4322 {
4323 int shift, bit;
4324 unsigned long hi, lo;
4325
4326 if (hi32.X_add_number == (offsetT) 0xffffffff)
4327 {
4328 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4329 {
4330 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4331 return;
4332 }
4333 if (lo32.X_add_number & 0x80000000)
4334 {
4335 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4336 if (lo32.X_add_number & 0xffff)
4337 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4338 return;
4339 }
4340 }
4341
4342 /* Check for 16bit shifted constant. We know that hi32 is
4343 non-zero, so start the mask on the first bit of the hi32
4344 value. */
4345 shift = 17;
4346 do
4347 {
4348 unsigned long himask, lomask;
4349
4350 if (shift < 32)
4351 {
4352 himask = 0xffff >> (32 - shift);
4353 lomask = (0xffff << shift) & 0xffffffff;
4354 }
4355 else
4356 {
4357 himask = 0xffff << (shift - 32);
4358 lomask = 0;
4359 }
4360 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4361 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4362 {
4363 expressionS tmp;
4364
4365 tmp.X_op = O_constant;
4366 if (shift < 32)
4367 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4368 | (lo32.X_add_number >> shift));
4369 else
4370 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4371 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4372 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4373 reg, reg, (shift >= 32) ? shift - 32 : shift);
4374 return;
4375 }
4376 ++shift;
4377 }
4378 while (shift <= (64 - 16));
4379
4380 /* Find the bit number of the lowest one bit, and store the
4381 shifted value in hi/lo. */
4382 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4383 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4384 if (lo != 0)
4385 {
4386 bit = 0;
4387 while ((lo & 1) == 0)
4388 {
4389 lo >>= 1;
4390 ++bit;
4391 }
4392 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4393 hi >>= bit;
4394 }
4395 else
4396 {
4397 bit = 32;
4398 while ((hi & 1) == 0)
4399 {
4400 hi >>= 1;
4401 ++bit;
4402 }
4403 lo = hi;
4404 hi = 0;
4405 }
4406
4407 /* Optimize if the shifted value is a (power of 2) - 1. */
4408 if ((hi == 0 && ((lo + 1) & lo) == 0)
4409 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4410 {
4411 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4412 if (shift != 0)
4413 {
4414 expressionS tmp;
4415
4416 /* This instruction will set the register to be all
4417 ones. */
4418 tmp.X_op = O_constant;
4419 tmp.X_add_number = (offsetT) -1;
4420 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4421 if (bit != 0)
4422 {
4423 bit += shift;
4424 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4425 reg, reg, (bit >= 32) ? bit - 32 : bit);
4426 }
4427 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4428 reg, reg, (shift >= 32) ? shift - 32 : shift);
4429 return;
4430 }
4431 }
4432
4433 /* Sign extend hi32 before calling load_register, because we can
4434 generally get better code when we load a sign extended value. */
4435 if ((hi32.X_add_number & 0x80000000) != 0)
4436 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4437 load_register (reg, &hi32, 0);
4438 freg = reg;
4439 }
4440 if ((lo32.X_add_number & 0xffff0000) == 0)
4441 {
4442 if (freg != 0)
4443 {
4444 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4445 freg = reg;
4446 }
4447 }
4448 else
4449 {
4450 expressionS mid16;
4451
4452 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4453 {
4454 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4455 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4456 return;
4457 }
4458
4459 if (freg != 0)
4460 {
4461 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4462 freg = reg;
4463 }
4464 mid16 = lo32;
4465 mid16.X_add_number >>= 16;
4466 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4467 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4468 freg = reg;
4469 }
4470 if ((lo32.X_add_number & 0xffff) != 0)
4471 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4472 }
4473
4474 static inline void
4475 load_delay_nop (void)
4476 {
4477 if (!gpr_interlocks)
4478 macro_build (NULL, "nop", "");
4479 }
4480
4481 /* Load an address into a register. */
4482
4483 static void
4484 load_address (int reg, expressionS *ep, int *used_at)
4485 {
4486 if (ep->X_op != O_constant
4487 && ep->X_op != O_symbol)
4488 {
4489 as_bad (_("expression too complex"));
4490 ep->X_op = O_constant;
4491 }
4492
4493 if (ep->X_op == O_constant)
4494 {
4495 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4496 return;
4497 }
4498
4499 if (mips_pic == NO_PIC)
4500 {
4501 /* If this is a reference to a GP relative symbol, we want
4502 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4503 Otherwise we want
4504 lui $reg,<sym> (BFD_RELOC_HI16_S)
4505 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4506 If we have an addend, we always use the latter form.
4507
4508 With 64bit address space and a usable $at we want
4509 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4510 lui $at,<sym> (BFD_RELOC_HI16_S)
4511 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4512 daddiu $at,<sym> (BFD_RELOC_LO16)
4513 dsll32 $reg,0
4514 daddu $reg,$reg,$at
4515
4516 If $at is already in use, we use a path which is suboptimal
4517 on superscalar processors.
4518 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4519 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4520 dsll $reg,16
4521 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4522 dsll $reg,16
4523 daddiu $reg,<sym> (BFD_RELOC_LO16)
4524
4525 For GP relative symbols in 64bit address space we can use
4526 the same sequence as in 32bit address space. */
4527 if (HAVE_64BIT_SYMBOLS)
4528 {
4529 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4530 && !nopic_need_relax (ep->X_add_symbol, 1))
4531 {
4532 relax_start (ep->X_add_symbol);
4533 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4534 mips_gp_register, BFD_RELOC_GPREL16);
4535 relax_switch ();
4536 }
4537
4538 if (*used_at == 0 && mips_opts.at)
4539 {
4540 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4541 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4542 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4543 BFD_RELOC_MIPS_HIGHER);
4544 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4545 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4546 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4547 *used_at = 1;
4548 }
4549 else
4550 {
4551 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4552 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4553 BFD_RELOC_MIPS_HIGHER);
4554 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4555 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4556 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4557 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4558 }
4559
4560 if (mips_relax.sequence)
4561 relax_end ();
4562 }
4563 else
4564 {
4565 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4566 && !nopic_need_relax (ep->X_add_symbol, 1))
4567 {
4568 relax_start (ep->X_add_symbol);
4569 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4570 mips_gp_register, BFD_RELOC_GPREL16);
4571 relax_switch ();
4572 }
4573 macro_build_lui (ep, reg);
4574 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4575 reg, reg, BFD_RELOC_LO16);
4576 if (mips_relax.sequence)
4577 relax_end ();
4578 }
4579 }
4580 else if (!mips_big_got)
4581 {
4582 expressionS ex;
4583
4584 /* If this is a reference to an external symbol, we want
4585 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4586 Otherwise we want
4587 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4588 nop
4589 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4590 If there is a constant, it must be added in after.
4591
4592 If we have NewABI, we want
4593 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4594 unless we're referencing a global symbol with a non-zero
4595 offset, in which case cst must be added separately. */
4596 if (HAVE_NEWABI)
4597 {
4598 if (ep->X_add_number)
4599 {
4600 ex.X_add_number = ep->X_add_number;
4601 ep->X_add_number = 0;
4602 relax_start (ep->X_add_symbol);
4603 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4604 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4605 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4606 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4607 ex.X_op = O_constant;
4608 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4609 reg, reg, BFD_RELOC_LO16);
4610 ep->X_add_number = ex.X_add_number;
4611 relax_switch ();
4612 }
4613 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4614 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4615 if (mips_relax.sequence)
4616 relax_end ();
4617 }
4618 else
4619 {
4620 ex.X_add_number = ep->X_add_number;
4621 ep->X_add_number = 0;
4622 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4623 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4624 load_delay_nop ();
4625 relax_start (ep->X_add_symbol);
4626 relax_switch ();
4627 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4628 BFD_RELOC_LO16);
4629 relax_end ();
4630
4631 if (ex.X_add_number != 0)
4632 {
4633 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4634 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4635 ex.X_op = O_constant;
4636 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4637 reg, reg, BFD_RELOC_LO16);
4638 }
4639 }
4640 }
4641 else if (mips_big_got)
4642 {
4643 expressionS ex;
4644
4645 /* This is the large GOT case. If this is a reference to an
4646 external symbol, we want
4647 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4648 addu $reg,$reg,$gp
4649 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4650
4651 Otherwise, for a reference to a local symbol in old ABI, we want
4652 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4653 nop
4654 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4655 If there is a constant, it must be added in after.
4656
4657 In the NewABI, for local symbols, with or without offsets, we want:
4658 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4659 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4660 */
4661 if (HAVE_NEWABI)
4662 {
4663 ex.X_add_number = ep->X_add_number;
4664 ep->X_add_number = 0;
4665 relax_start (ep->X_add_symbol);
4666 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4667 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4668 reg, reg, mips_gp_register);
4669 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4670 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4671 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4672 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4673 else if (ex.X_add_number)
4674 {
4675 ex.X_op = O_constant;
4676 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4677 BFD_RELOC_LO16);
4678 }
4679
4680 ep->X_add_number = ex.X_add_number;
4681 relax_switch ();
4682 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4683 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4684 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4685 BFD_RELOC_MIPS_GOT_OFST);
4686 relax_end ();
4687 }
4688 else
4689 {
4690 ex.X_add_number = ep->X_add_number;
4691 ep->X_add_number = 0;
4692 relax_start (ep->X_add_symbol);
4693 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4694 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4695 reg, reg, mips_gp_register);
4696 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4697 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4698 relax_switch ();
4699 if (reg_needs_delay (mips_gp_register))
4700 {
4701 /* We need a nop before loading from $gp. This special
4702 check is required because the lui which starts the main
4703 instruction stream does not refer to $gp, and so will not
4704 insert the nop which may be required. */
4705 macro_build (NULL, "nop", "");
4706 }
4707 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4708 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4709 load_delay_nop ();
4710 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4711 BFD_RELOC_LO16);
4712 relax_end ();
4713
4714 if (ex.X_add_number != 0)
4715 {
4716 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4717 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4718 ex.X_op = O_constant;
4719 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4720 BFD_RELOC_LO16);
4721 }
4722 }
4723 }
4724 else
4725 abort ();
4726
4727 if (!mips_opts.at && *used_at == 1)
4728 as_bad (_("Macro used $at after \".set noat\""));
4729 }
4730
4731 /* Move the contents of register SOURCE into register DEST. */
4732
4733 static void
4734 move_register (int dest, int source)
4735 {
4736 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4737 dest, source, 0);
4738 }
4739
4740 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4741 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4742 The two alternatives are:
4743
4744 Global symbol Local sybmol
4745 ------------- ------------
4746 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4747 ... ...
4748 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4749
4750 load_got_offset emits the first instruction and add_got_offset
4751 emits the second for a 16-bit offset or add_got_offset_hilo emits
4752 a sequence to add a 32-bit offset using a scratch register. */
4753
4754 static void
4755 load_got_offset (int dest, expressionS *local)
4756 {
4757 expressionS global;
4758
4759 global = *local;
4760 global.X_add_number = 0;
4761
4762 relax_start (local->X_add_symbol);
4763 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4764 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4765 relax_switch ();
4766 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4767 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4768 relax_end ();
4769 }
4770
4771 static void
4772 add_got_offset (int dest, expressionS *local)
4773 {
4774 expressionS global;
4775
4776 global.X_op = O_constant;
4777 global.X_op_symbol = NULL;
4778 global.X_add_symbol = NULL;
4779 global.X_add_number = local->X_add_number;
4780
4781 relax_start (local->X_add_symbol);
4782 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4783 dest, dest, BFD_RELOC_LO16);
4784 relax_switch ();
4785 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4786 relax_end ();
4787 }
4788
4789 static void
4790 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4791 {
4792 expressionS global;
4793 int hold_mips_optimize;
4794
4795 global.X_op = O_constant;
4796 global.X_op_symbol = NULL;
4797 global.X_add_symbol = NULL;
4798 global.X_add_number = local->X_add_number;
4799
4800 relax_start (local->X_add_symbol);
4801 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4802 relax_switch ();
4803 /* Set mips_optimize around the lui instruction to avoid
4804 inserting an unnecessary nop after the lw. */
4805 hold_mips_optimize = mips_optimize;
4806 mips_optimize = 2;
4807 macro_build_lui (&global, tmp);
4808 mips_optimize = hold_mips_optimize;
4809 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4810 relax_end ();
4811
4812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4813 }
4814
4815 /*
4816 * Build macros
4817 * This routine implements the seemingly endless macro or synthesized
4818 * instructions and addressing modes in the mips assembly language. Many
4819 * of these macros are simple and are similar to each other. These could
4820 * probably be handled by some kind of table or grammar approach instead of
4821 * this verbose method. Others are not simple macros but are more like
4822 * optimizing code generation.
4823 * One interesting optimization is when several store macros appear
4824 * consecutively that would load AT with the upper half of the same address.
4825 * The ensuing load upper instructions are ommited. This implies some kind
4826 * of global optimization. We currently only optimize within a single macro.
4827 * For many of the load and store macros if the address is specified as a
4828 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4829 * first load register 'at' with zero and use it as the base register. The
4830 * mips assembler simply uses register $zero. Just one tiny optimization
4831 * we're missing.
4832 */
4833 static void
4834 macro (struct mips_cl_insn *ip)
4835 {
4836 unsigned int treg, sreg, dreg, breg;
4837 unsigned int tempreg;
4838 int mask;
4839 int used_at = 0;
4840 expressionS expr1;
4841 const char *s;
4842 const char *s2;
4843 const char *fmt;
4844 int likely = 0;
4845 int dbl = 0;
4846 int coproc = 0;
4847 int lr = 0;
4848 int imm = 0;
4849 int call = 0;
4850 int off;
4851 offsetT maxnum;
4852 bfd_reloc_code_real_type r;
4853 int hold_mips_optimize;
4854
4855 gas_assert (! mips_opts.mips16);
4856
4857 treg = EXTRACT_OPERAND (RT, *ip);
4858 dreg = EXTRACT_OPERAND (RD, *ip);
4859 sreg = breg = EXTRACT_OPERAND (RS, *ip);
4860 mask = ip->insn_mo->mask;
4861
4862 expr1.X_op = O_constant;
4863 expr1.X_op_symbol = NULL;
4864 expr1.X_add_symbol = NULL;
4865 expr1.X_add_number = 1;
4866
4867 switch (mask)
4868 {
4869 case M_DABS:
4870 dbl = 1;
4871 case M_ABS:
4872 /* bgez $a0,.+12
4873 move v0,$a0
4874 sub v0,$zero,$a0
4875 */
4876
4877 start_noreorder ();
4878
4879 expr1.X_add_number = 8;
4880 macro_build (&expr1, "bgez", "s,p", sreg);
4881 if (dreg == sreg)
4882 macro_build (NULL, "nop", "");
4883 else
4884 move_register (dreg, sreg);
4885 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4886
4887 end_noreorder ();
4888 break;
4889
4890 case M_ADD_I:
4891 s = "addi";
4892 s2 = "add";
4893 goto do_addi;
4894 case M_ADDU_I:
4895 s = "addiu";
4896 s2 = "addu";
4897 goto do_addi;
4898 case M_DADD_I:
4899 dbl = 1;
4900 s = "daddi";
4901 s2 = "dadd";
4902 goto do_addi;
4903 case M_DADDU_I:
4904 dbl = 1;
4905 s = "daddiu";
4906 s2 = "daddu";
4907 do_addi:
4908 if (imm_expr.X_op == O_constant
4909 && imm_expr.X_add_number >= -0x8000
4910 && imm_expr.X_add_number < 0x8000)
4911 {
4912 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4913 break;
4914 }
4915 used_at = 1;
4916 load_register (AT, &imm_expr, dbl);
4917 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4918 break;
4919
4920 case M_AND_I:
4921 s = "andi";
4922 s2 = "and";
4923 goto do_bit;
4924 case M_OR_I:
4925 s = "ori";
4926 s2 = "or";
4927 goto do_bit;
4928 case M_NOR_I:
4929 s = "";
4930 s2 = "nor";
4931 goto do_bit;
4932 case M_XOR_I:
4933 s = "xori";
4934 s2 = "xor";
4935 do_bit:
4936 if (imm_expr.X_op == O_constant
4937 && imm_expr.X_add_number >= 0
4938 && imm_expr.X_add_number < 0x10000)
4939 {
4940 if (mask != M_NOR_I)
4941 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4942 else
4943 {
4944 macro_build (&imm_expr, "ori", "t,r,i",
4945 treg, sreg, BFD_RELOC_LO16);
4946 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4947 }
4948 break;
4949 }
4950
4951 used_at = 1;
4952 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4953 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4954 break;
4955
4956 case M_BALIGN:
4957 switch (imm_expr.X_add_number)
4958 {
4959 case 0:
4960 macro_build (NULL, "nop", "");
4961 break;
4962 case 2:
4963 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4964 break;
4965 default:
4966 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4967 (int) imm_expr.X_add_number);
4968 break;
4969 }
4970 break;
4971
4972 case M_BEQ_I:
4973 s = "beq";
4974 goto beq_i;
4975 case M_BEQL_I:
4976 s = "beql";
4977 likely = 1;
4978 goto beq_i;
4979 case M_BNE_I:
4980 s = "bne";
4981 goto beq_i;
4982 case M_BNEL_I:
4983 s = "bnel";
4984 likely = 1;
4985 beq_i:
4986 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4987 {
4988 macro_build (&offset_expr, s, "s,t,p", sreg, ZERO);
4989 break;
4990 }
4991 used_at = 1;
4992 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4993 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4994 break;
4995
4996 case M_BGEL:
4997 likely = 1;
4998 case M_BGE:
4999 if (treg == 0)
5000 {
5001 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5002 break;
5003 }
5004 if (sreg == 0)
5005 {
5006 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
5007 break;
5008 }
5009 used_at = 1;
5010 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5011 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5012 break;
5013
5014 case M_BGTL_I:
5015 likely = 1;
5016 case M_BGT_I:
5017 /* Check for > max integer. */
5018 maxnum = 0x7fffffff;
5019 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5020 {
5021 maxnum <<= 16;
5022 maxnum |= 0xffff;
5023 maxnum <<= 16;
5024 maxnum |= 0xffff;
5025 }
5026 if (imm_expr.X_op == O_constant
5027 && imm_expr.X_add_number >= maxnum
5028 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5029 {
5030 do_false:
5031 /* Result is always false. */
5032 if (! likely)
5033 macro_build (NULL, "nop", "");
5034 else
5035 macro_build (&offset_expr, "bnel", "s,t,p", ZERO, ZERO);
5036 break;
5037 }
5038 if (imm_expr.X_op != O_constant)
5039 as_bad (_("Unsupported large constant"));
5040 ++imm_expr.X_add_number;
5041 /* FALLTHROUGH */
5042 case M_BGE_I:
5043 case M_BGEL_I:
5044 if (mask == M_BGEL_I)
5045 likely = 1;
5046 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5047 {
5048 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5049 break;
5050 }
5051 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5052 {
5053 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5054 break;
5055 }
5056 maxnum = 0x7fffffff;
5057 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5058 {
5059 maxnum <<= 16;
5060 maxnum |= 0xffff;
5061 maxnum <<= 16;
5062 maxnum |= 0xffff;
5063 }
5064 maxnum = - maxnum - 1;
5065 if (imm_expr.X_op == O_constant
5066 && imm_expr.X_add_number <= maxnum
5067 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5068 {
5069 do_true:
5070 /* result is always true */
5071 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5072 macro_build (&offset_expr, "b", "p");
5073 break;
5074 }
5075 used_at = 1;
5076 set_at (sreg, 0);
5077 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5078 break;
5079
5080 case M_BGEUL:
5081 likely = 1;
5082 case M_BGEU:
5083 if (treg == 0)
5084 goto do_true;
5085 if (sreg == 0)
5086 {
5087 macro_build (&offset_expr, likely ? "beql" : "beq",
5088 "s,t,p", ZERO, treg);
5089 break;
5090 }
5091 used_at = 1;
5092 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5093 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5094 break;
5095
5096 case M_BGTUL_I:
5097 likely = 1;
5098 case M_BGTU_I:
5099 if (sreg == 0
5100 || (HAVE_32BIT_GPRS
5101 && imm_expr.X_op == O_constant
5102 && imm_expr.X_add_number == -1))
5103 goto do_false;
5104 if (imm_expr.X_op != O_constant)
5105 as_bad (_("Unsupported large constant"));
5106 ++imm_expr.X_add_number;
5107 /* FALLTHROUGH */
5108 case M_BGEU_I:
5109 case M_BGEUL_I:
5110 if (mask == M_BGEUL_I)
5111 likely = 1;
5112 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5113 goto do_true;
5114 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5115 {
5116 macro_build (&offset_expr, likely ? "bnel" : "bne",
5117 "s,t,p", sreg, ZERO);
5118 break;
5119 }
5120 used_at = 1;
5121 set_at (sreg, 1);
5122 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5123 break;
5124
5125 case M_BGTL:
5126 likely = 1;
5127 case M_BGT:
5128 if (treg == 0)
5129 {
5130 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5131 break;
5132 }
5133 if (sreg == 0)
5134 {
5135 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5136 break;
5137 }
5138 used_at = 1;
5139 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5140 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5141 break;
5142
5143 case M_BGTUL:
5144 likely = 1;
5145 case M_BGTU:
5146 if (treg == 0)
5147 {
5148 macro_build (&offset_expr, likely ? "bnel" : "bne",
5149 "s,t,p", sreg, ZERO);
5150 break;
5151 }
5152 if (sreg == 0)
5153 goto do_false;
5154 used_at = 1;
5155 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5156 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5157 break;
5158
5159 case M_BLEL:
5160 likely = 1;
5161 case M_BLE:
5162 if (treg == 0)
5163 {
5164 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5165 break;
5166 }
5167 if (sreg == 0)
5168 {
5169 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5170 break;
5171 }
5172 used_at = 1;
5173 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5174 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5175 break;
5176
5177 case M_BLEL_I:
5178 likely = 1;
5179 case M_BLE_I:
5180 maxnum = 0x7fffffff;
5181 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5182 {
5183 maxnum <<= 16;
5184 maxnum |= 0xffff;
5185 maxnum <<= 16;
5186 maxnum |= 0xffff;
5187 }
5188 if (imm_expr.X_op == O_constant
5189 && imm_expr.X_add_number >= maxnum
5190 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5191 goto do_true;
5192 if (imm_expr.X_op != O_constant)
5193 as_bad (_("Unsupported large constant"));
5194 ++imm_expr.X_add_number;
5195 /* FALLTHROUGH */
5196 case M_BLT_I:
5197 case M_BLTL_I:
5198 if (mask == M_BLTL_I)
5199 likely = 1;
5200 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5201 {
5202 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5203 break;
5204 }
5205 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5206 {
5207 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5208 break;
5209 }
5210 used_at = 1;
5211 set_at (sreg, 0);
5212 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5213 break;
5214
5215 case M_BLEUL:
5216 likely = 1;
5217 case M_BLEU:
5218 if (treg == 0)
5219 {
5220 macro_build (&offset_expr, likely ? "beql" : "beq",
5221 "s,t,p", sreg, ZERO);
5222 break;
5223 }
5224 if (sreg == 0)
5225 goto do_true;
5226 used_at = 1;
5227 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5228 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5229 break;
5230
5231 case M_BLEUL_I:
5232 likely = 1;
5233 case M_BLEU_I:
5234 if (sreg == 0
5235 || (HAVE_32BIT_GPRS
5236 && imm_expr.X_op == O_constant
5237 && imm_expr.X_add_number == -1))
5238 goto do_true;
5239 if (imm_expr.X_op != O_constant)
5240 as_bad (_("Unsupported large constant"));
5241 ++imm_expr.X_add_number;
5242 /* FALLTHROUGH */
5243 case M_BLTU_I:
5244 case M_BLTUL_I:
5245 if (mask == M_BLTUL_I)
5246 likely = 1;
5247 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5248 goto do_false;
5249 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5250 {
5251 macro_build (&offset_expr, likely ? "beql" : "beq",
5252 "s,t,p", sreg, ZERO);
5253 break;
5254 }
5255 used_at = 1;
5256 set_at (sreg, 1);
5257 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5258 break;
5259
5260 case M_BLTL:
5261 likely = 1;
5262 case M_BLT:
5263 if (treg == 0)
5264 {
5265 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5266 break;
5267 }
5268 if (sreg == 0)
5269 {
5270 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5271 break;
5272 }
5273 used_at = 1;
5274 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5275 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5276 break;
5277
5278 case M_BLTUL:
5279 likely = 1;
5280 case M_BLTU:
5281 if (treg == 0)
5282 goto do_false;
5283 if (sreg == 0)
5284 {
5285 macro_build (&offset_expr, likely ? "bnel" : "bne",
5286 "s,t,p", ZERO, treg);
5287 break;
5288 }
5289 used_at = 1;
5290 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5291 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5292 break;
5293
5294 case M_DEXT:
5295 {
5296 /* Use unsigned arithmetic. */
5297 addressT pos;
5298 addressT size;
5299
5300 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5301 {
5302 as_bad (_("Unsupported large constant"));
5303 pos = size = 1;
5304 }
5305 else
5306 {
5307 pos = imm_expr.X_add_number;
5308 size = imm2_expr.X_add_number;
5309 }
5310
5311 if (pos > 63)
5312 {
5313 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5314 pos = 1;
5315 }
5316 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5317 {
5318 as_bad (_("Improper extract size (%lu, position %lu)"),
5319 (unsigned long) size, (unsigned long) pos);
5320 size = 1;
5321 }
5322
5323 if (size <= 32 && pos < 32)
5324 {
5325 s = "dext";
5326 fmt = "t,r,+A,+C";
5327 }
5328 else if (size <= 32)
5329 {
5330 s = "dextu";
5331 fmt = "t,r,+E,+H";
5332 }
5333 else
5334 {
5335 s = "dextm";
5336 fmt = "t,r,+A,+G";
5337 }
5338 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5339 (int) (size - 1));
5340 }
5341 break;
5342
5343 case M_DINS:
5344 {
5345 /* Use unsigned arithmetic. */
5346 addressT pos;
5347 addressT size;
5348
5349 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5350 {
5351 as_bad (_("Unsupported large constant"));
5352 pos = size = 1;
5353 }
5354 else
5355 {
5356 pos = imm_expr.X_add_number;
5357 size = imm2_expr.X_add_number;
5358 }
5359
5360 if (pos > 63)
5361 {
5362 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5363 pos = 1;
5364 }
5365 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5366 {
5367 as_bad (_("Improper insert size (%lu, position %lu)"),
5368 (unsigned long) size, (unsigned long) pos);
5369 size = 1;
5370 }
5371
5372 if (pos < 32 && (pos + size - 1) < 32)
5373 {
5374 s = "dins";
5375 fmt = "t,r,+A,+B";
5376 }
5377 else if (pos >= 32)
5378 {
5379 s = "dinsu";
5380 fmt = "t,r,+E,+F";
5381 }
5382 else
5383 {
5384 s = "dinsm";
5385 fmt = "t,r,+A,+F";
5386 }
5387 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5388 (int) (pos + size - 1));
5389 }
5390 break;
5391
5392 case M_DDIV_3:
5393 dbl = 1;
5394 case M_DIV_3:
5395 s = "mflo";
5396 goto do_div3;
5397 case M_DREM_3:
5398 dbl = 1;
5399 case M_REM_3:
5400 s = "mfhi";
5401 do_div3:
5402 if (treg == 0)
5403 {
5404 as_warn (_("Divide by zero."));
5405 if (mips_trap)
5406 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5407 else
5408 macro_build (NULL, "break", "c", 7);
5409 break;
5410 }
5411
5412 start_noreorder ();
5413 if (mips_trap)
5414 {
5415 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5416 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5417 }
5418 else
5419 {
5420 expr1.X_add_number = 8;
5421 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5422 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5423 macro_build (NULL, "break", "c", 7);
5424 }
5425 expr1.X_add_number = -1;
5426 used_at = 1;
5427 load_register (AT, &expr1, dbl);
5428 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5429 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5430 if (dbl)
5431 {
5432 expr1.X_add_number = 1;
5433 load_register (AT, &expr1, dbl);
5434 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5435 }
5436 else
5437 {
5438 expr1.X_add_number = 0x80000000;
5439 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5440 }
5441 if (mips_trap)
5442 {
5443 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5444 /* We want to close the noreorder block as soon as possible, so
5445 that later insns are available for delay slot filling. */
5446 end_noreorder ();
5447 }
5448 else
5449 {
5450 expr1.X_add_number = 8;
5451 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5452 macro_build (NULL, "nop", "");
5453
5454 /* We want to close the noreorder block as soon as possible, so
5455 that later insns are available for delay slot filling. */
5456 end_noreorder ();
5457
5458 macro_build (NULL, "break", "c", 6);
5459 }
5460 macro_build (NULL, s, "d", dreg);
5461 break;
5462
5463 case M_DIV_3I:
5464 s = "div";
5465 s2 = "mflo";
5466 goto do_divi;
5467 case M_DIVU_3I:
5468 s = "divu";
5469 s2 = "mflo";
5470 goto do_divi;
5471 case M_REM_3I:
5472 s = "div";
5473 s2 = "mfhi";
5474 goto do_divi;
5475 case M_REMU_3I:
5476 s = "divu";
5477 s2 = "mfhi";
5478 goto do_divi;
5479 case M_DDIV_3I:
5480 dbl = 1;
5481 s = "ddiv";
5482 s2 = "mflo";
5483 goto do_divi;
5484 case M_DDIVU_3I:
5485 dbl = 1;
5486 s = "ddivu";
5487 s2 = "mflo";
5488 goto do_divi;
5489 case M_DREM_3I:
5490 dbl = 1;
5491 s = "ddiv";
5492 s2 = "mfhi";
5493 goto do_divi;
5494 case M_DREMU_3I:
5495 dbl = 1;
5496 s = "ddivu";
5497 s2 = "mfhi";
5498 do_divi:
5499 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5500 {
5501 as_warn (_("Divide by zero."));
5502 if (mips_trap)
5503 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5504 else
5505 macro_build (NULL, "break", "c", 7);
5506 break;
5507 }
5508 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5509 {
5510 if (strcmp (s2, "mflo") == 0)
5511 move_register (dreg, sreg);
5512 else
5513 move_register (dreg, ZERO);
5514 break;
5515 }
5516 if (imm_expr.X_op == O_constant
5517 && imm_expr.X_add_number == -1
5518 && s[strlen (s) - 1] != 'u')
5519 {
5520 if (strcmp (s2, "mflo") == 0)
5521 {
5522 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5523 }
5524 else
5525 move_register (dreg, ZERO);
5526 break;
5527 }
5528
5529 used_at = 1;
5530 load_register (AT, &imm_expr, dbl);
5531 macro_build (NULL, s, "z,s,t", sreg, AT);
5532 macro_build (NULL, s2, "d", dreg);
5533 break;
5534
5535 case M_DIVU_3:
5536 s = "divu";
5537 s2 = "mflo";
5538 goto do_divu3;
5539 case M_REMU_3:
5540 s = "divu";
5541 s2 = "mfhi";
5542 goto do_divu3;
5543 case M_DDIVU_3:
5544 s = "ddivu";
5545 s2 = "mflo";
5546 goto do_divu3;
5547 case M_DREMU_3:
5548 s = "ddivu";
5549 s2 = "mfhi";
5550 do_divu3:
5551 start_noreorder ();
5552 if (mips_trap)
5553 {
5554 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5555 macro_build (NULL, s, "z,s,t", sreg, treg);
5556 /* We want to close the noreorder block as soon as possible, so
5557 that later insns are available for delay slot filling. */
5558 end_noreorder ();
5559 }
5560 else
5561 {
5562 expr1.X_add_number = 8;
5563 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5564 macro_build (NULL, s, "z,s,t", sreg, treg);
5565
5566 /* We want to close the noreorder block as soon as possible, so
5567 that later insns are available for delay slot filling. */
5568 end_noreorder ();
5569 macro_build (NULL, "break", "c", 7);
5570 }
5571 macro_build (NULL, s2, "d", dreg);
5572 break;
5573
5574 case M_DLCA_AB:
5575 dbl = 1;
5576 case M_LCA_AB:
5577 call = 1;
5578 goto do_la;
5579 case M_DLA_AB:
5580 dbl = 1;
5581 case M_LA_AB:
5582 do_la:
5583 /* Load the address of a symbol into a register. If breg is not
5584 zero, we then add a base register to it. */
5585
5586 if (dbl && HAVE_32BIT_GPRS)
5587 as_warn (_("dla used to load 32-bit register"));
5588
5589 if (!dbl && HAVE_64BIT_OBJECTS)
5590 as_warn (_("la used to load 64-bit address"));
5591
5592 if (offset_expr.X_op == O_constant
5593 && offset_expr.X_add_number >= -0x8000
5594 && offset_expr.X_add_number < 0x8000)
5595 {
5596 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5597 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5598 break;
5599 }
5600
5601 if (mips_opts.at && (treg == breg))
5602 {
5603 tempreg = AT;
5604 used_at = 1;
5605 }
5606 else
5607 {
5608 tempreg = treg;
5609 }
5610
5611 if (offset_expr.X_op != O_symbol
5612 && offset_expr.X_op != O_constant)
5613 {
5614 as_bad (_("Expression too complex"));
5615 offset_expr.X_op = O_constant;
5616 }
5617
5618 if (offset_expr.X_op == O_constant)
5619 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5620 else if (mips_pic == NO_PIC)
5621 {
5622 /* If this is a reference to a GP relative symbol, we want
5623 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5624 Otherwise we want
5625 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5626 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5627 If we have a constant, we need two instructions anyhow,
5628 so we may as well always use the latter form.
5629
5630 With 64bit address space and a usable $at we want
5631 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5632 lui $at,<sym> (BFD_RELOC_HI16_S)
5633 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5634 daddiu $at,<sym> (BFD_RELOC_LO16)
5635 dsll32 $tempreg,0
5636 daddu $tempreg,$tempreg,$at
5637
5638 If $at is already in use, we use a path which is suboptimal
5639 on superscalar processors.
5640 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5641 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5642 dsll $tempreg,16
5643 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5644 dsll $tempreg,16
5645 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5646
5647 For GP relative symbols in 64bit address space we can use
5648 the same sequence as in 32bit address space. */
5649 if (HAVE_64BIT_SYMBOLS)
5650 {
5651 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5652 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5653 {
5654 relax_start (offset_expr.X_add_symbol);
5655 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5656 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5657 relax_switch ();
5658 }
5659
5660 if (used_at == 0 && mips_opts.at)
5661 {
5662 macro_build (&offset_expr, "lui", "t,u",
5663 tempreg, BFD_RELOC_MIPS_HIGHEST);
5664 macro_build (&offset_expr, "lui", "t,u",
5665 AT, BFD_RELOC_HI16_S);
5666 macro_build (&offset_expr, "daddiu", "t,r,j",
5667 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5668 macro_build (&offset_expr, "daddiu", "t,r,j",
5669 AT, AT, BFD_RELOC_LO16);
5670 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5671 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5672 used_at = 1;
5673 }
5674 else
5675 {
5676 macro_build (&offset_expr, "lui", "t,u",
5677 tempreg, BFD_RELOC_MIPS_HIGHEST);
5678 macro_build (&offset_expr, "daddiu", "t,r,j",
5679 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5680 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5681 macro_build (&offset_expr, "daddiu", "t,r,j",
5682 tempreg, tempreg, BFD_RELOC_HI16_S);
5683 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5684 macro_build (&offset_expr, "daddiu", "t,r,j",
5685 tempreg, tempreg, BFD_RELOC_LO16);
5686 }
5687
5688 if (mips_relax.sequence)
5689 relax_end ();
5690 }
5691 else
5692 {
5693 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5694 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5695 {
5696 relax_start (offset_expr.X_add_symbol);
5697 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5698 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5699 relax_switch ();
5700 }
5701 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5702 as_bad (_("Offset too large"));
5703 macro_build_lui (&offset_expr, tempreg);
5704 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5705 tempreg, tempreg, BFD_RELOC_LO16);
5706 if (mips_relax.sequence)
5707 relax_end ();
5708 }
5709 }
5710 else if (!mips_big_got && !HAVE_NEWABI)
5711 {
5712 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5713
5714 /* If this is a reference to an external symbol, and there
5715 is no constant, we want
5716 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5717 or for lca or if tempreg is PIC_CALL_REG
5718 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5719 For a local symbol, we want
5720 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5721 nop
5722 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5723
5724 If we have a small constant, and this is a reference to
5725 an external symbol, we want
5726 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5727 nop
5728 addiu $tempreg,$tempreg,<constant>
5729 For a local symbol, we want the same instruction
5730 sequence, but we output a BFD_RELOC_LO16 reloc on the
5731 addiu instruction.
5732
5733 If we have a large constant, and this is a reference to
5734 an external symbol, we want
5735 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5736 lui $at,<hiconstant>
5737 addiu $at,$at,<loconstant>
5738 addu $tempreg,$tempreg,$at
5739 For a local symbol, we want the same instruction
5740 sequence, but we output a BFD_RELOC_LO16 reloc on the
5741 addiu instruction.
5742 */
5743
5744 if (offset_expr.X_add_number == 0)
5745 {
5746 if (mips_pic == SVR4_PIC
5747 && breg == 0
5748 && (call || tempreg == PIC_CALL_REG))
5749 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5750
5751 relax_start (offset_expr.X_add_symbol);
5752 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5753 lw_reloc_type, mips_gp_register);
5754 if (breg != 0)
5755 {
5756 /* We're going to put in an addu instruction using
5757 tempreg, so we may as well insert the nop right
5758 now. */
5759 load_delay_nop ();
5760 }
5761 relax_switch ();
5762 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5763 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5764 load_delay_nop ();
5765 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5766 tempreg, tempreg, BFD_RELOC_LO16);
5767 relax_end ();
5768 /* FIXME: If breg == 0, and the next instruction uses
5769 $tempreg, then if this variant case is used an extra
5770 nop will be generated. */
5771 }
5772 else if (offset_expr.X_add_number >= -0x8000
5773 && offset_expr.X_add_number < 0x8000)
5774 {
5775 load_got_offset (tempreg, &offset_expr);
5776 load_delay_nop ();
5777 add_got_offset (tempreg, &offset_expr);
5778 }
5779 else
5780 {
5781 expr1.X_add_number = offset_expr.X_add_number;
5782 offset_expr.X_add_number =
5783 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5784 load_got_offset (tempreg, &offset_expr);
5785 offset_expr.X_add_number = expr1.X_add_number;
5786 /* If we are going to add in a base register, and the
5787 target register and the base register are the same,
5788 then we are using AT as a temporary register. Since
5789 we want to load the constant into AT, we add our
5790 current AT (from the global offset table) and the
5791 register into the register now, and pretend we were
5792 not using a base register. */
5793 if (breg == treg)
5794 {
5795 load_delay_nop ();
5796 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5797 treg, AT, breg);
5798 breg = 0;
5799 tempreg = treg;
5800 }
5801 add_got_offset_hilo (tempreg, &offset_expr, AT);
5802 used_at = 1;
5803 }
5804 }
5805 else if (!mips_big_got && HAVE_NEWABI)
5806 {
5807 int add_breg_early = 0;
5808
5809 /* If this is a reference to an external, and there is no
5810 constant, or local symbol (*), with or without a
5811 constant, we want
5812 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5813 or for lca or if tempreg is PIC_CALL_REG
5814 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5815
5816 If we have a small constant, and this is a reference to
5817 an external symbol, we want
5818 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5819 addiu $tempreg,$tempreg,<constant>
5820
5821 If we have a large constant, and this is a reference to
5822 an external symbol, we want
5823 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5824 lui $at,<hiconstant>
5825 addiu $at,$at,<loconstant>
5826 addu $tempreg,$tempreg,$at
5827
5828 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5829 local symbols, even though it introduces an additional
5830 instruction. */
5831
5832 if (offset_expr.X_add_number)
5833 {
5834 expr1.X_add_number = offset_expr.X_add_number;
5835 offset_expr.X_add_number = 0;
5836
5837 relax_start (offset_expr.X_add_symbol);
5838 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5839 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5840
5841 if (expr1.X_add_number >= -0x8000
5842 && expr1.X_add_number < 0x8000)
5843 {
5844 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5845 tempreg, tempreg, BFD_RELOC_LO16);
5846 }
5847 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5848 {
5849 /* If we are going to add in a base register, and the
5850 target register and the base register are the same,
5851 then we are using AT as a temporary register. Since
5852 we want to load the constant into AT, we add our
5853 current AT (from the global offset table) and the
5854 register into the register now, and pretend we were
5855 not using a base register. */
5856 if (breg != treg)
5857 dreg = tempreg;
5858 else
5859 {
5860 gas_assert (tempreg == AT);
5861 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5862 treg, AT, breg);
5863 dreg = treg;
5864 add_breg_early = 1;
5865 }
5866
5867 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5868 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5869 dreg, dreg, AT);
5870
5871 used_at = 1;
5872 }
5873 else
5874 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5875
5876 relax_switch ();
5877 offset_expr.X_add_number = expr1.X_add_number;
5878
5879 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5880 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5881 if (add_breg_early)
5882 {
5883 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5884 treg, tempreg, breg);
5885 breg = 0;
5886 tempreg = treg;
5887 }
5888 relax_end ();
5889 }
5890 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5891 {
5892 relax_start (offset_expr.X_add_symbol);
5893 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5894 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5895 relax_switch ();
5896 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5897 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5898 relax_end ();
5899 }
5900 else
5901 {
5902 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5903 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5904 }
5905 }
5906 else if (mips_big_got && !HAVE_NEWABI)
5907 {
5908 int gpdelay;
5909 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5910 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5911 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5912
5913 /* This is the large GOT case. If this is a reference to an
5914 external symbol, and there is no constant, we want
5915 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5916 addu $tempreg,$tempreg,$gp
5917 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5918 or for lca or if tempreg is PIC_CALL_REG
5919 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5920 addu $tempreg,$tempreg,$gp
5921 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5922 For a local symbol, we want
5923 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5924 nop
5925 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5926
5927 If we have a small constant, and this is a reference to
5928 an external symbol, we want
5929 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5930 addu $tempreg,$tempreg,$gp
5931 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5932 nop
5933 addiu $tempreg,$tempreg,<constant>
5934 For a local symbol, we want
5935 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5936 nop
5937 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5938
5939 If we have a large constant, and this is a reference to
5940 an external symbol, we want
5941 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5942 addu $tempreg,$tempreg,$gp
5943 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5944 lui $at,<hiconstant>
5945 addiu $at,$at,<loconstant>
5946 addu $tempreg,$tempreg,$at
5947 For a local symbol, we want
5948 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5949 lui $at,<hiconstant>
5950 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5951 addu $tempreg,$tempreg,$at
5952 */
5953
5954 expr1.X_add_number = offset_expr.X_add_number;
5955 offset_expr.X_add_number = 0;
5956 relax_start (offset_expr.X_add_symbol);
5957 gpdelay = reg_needs_delay (mips_gp_register);
5958 if (expr1.X_add_number == 0 && breg == 0
5959 && (call || tempreg == PIC_CALL_REG))
5960 {
5961 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5962 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5963 }
5964 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5965 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5966 tempreg, tempreg, mips_gp_register);
5967 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5968 tempreg, lw_reloc_type, tempreg);
5969 if (expr1.X_add_number == 0)
5970 {
5971 if (breg != 0)
5972 {
5973 /* We're going to put in an addu instruction using
5974 tempreg, so we may as well insert the nop right
5975 now. */
5976 load_delay_nop ();
5977 }
5978 }
5979 else if (expr1.X_add_number >= -0x8000
5980 && expr1.X_add_number < 0x8000)
5981 {
5982 load_delay_nop ();
5983 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5984 tempreg, tempreg, BFD_RELOC_LO16);
5985 }
5986 else
5987 {
5988 /* If we are going to add in a base register, and the
5989 target register and the base register are the same,
5990 then we are using AT as a temporary register. Since
5991 we want to load the constant into AT, we add our
5992 current AT (from the global offset table) and the
5993 register into the register now, and pretend we were
5994 not using a base register. */
5995 if (breg != treg)
5996 dreg = tempreg;
5997 else
5998 {
5999 gas_assert (tempreg == AT);
6000 load_delay_nop ();
6001 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6002 treg, AT, breg);
6003 dreg = treg;
6004 }
6005
6006 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6007 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6008
6009 used_at = 1;
6010 }
6011 offset_expr.X_add_number =
6012 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
6013 relax_switch ();
6014
6015 if (gpdelay)
6016 {
6017 /* This is needed because this instruction uses $gp, but
6018 the first instruction on the main stream does not. */
6019 macro_build (NULL, "nop", "");
6020 }
6021
6022 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6023 local_reloc_type, mips_gp_register);
6024 if (expr1.X_add_number >= -0x8000
6025 && expr1.X_add_number < 0x8000)
6026 {
6027 load_delay_nop ();
6028 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6029 tempreg, tempreg, BFD_RELOC_LO16);
6030 /* FIXME: If add_number is 0, and there was no base
6031 register, the external symbol case ended with a load,
6032 so if the symbol turns out to not be external, and
6033 the next instruction uses tempreg, an unnecessary nop
6034 will be inserted. */
6035 }
6036 else
6037 {
6038 if (breg == treg)
6039 {
6040 /* We must add in the base register now, as in the
6041 external symbol case. */
6042 gas_assert (tempreg == AT);
6043 load_delay_nop ();
6044 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6045 treg, AT, breg);
6046 tempreg = treg;
6047 /* We set breg to 0 because we have arranged to add
6048 it in in both cases. */
6049 breg = 0;
6050 }
6051
6052 macro_build_lui (&expr1, AT);
6053 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6054 AT, AT, BFD_RELOC_LO16);
6055 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6056 tempreg, tempreg, AT);
6057 used_at = 1;
6058 }
6059 relax_end ();
6060 }
6061 else if (mips_big_got && HAVE_NEWABI)
6062 {
6063 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6064 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6065 int add_breg_early = 0;
6066
6067 /* This is the large GOT case. If this is a reference to an
6068 external symbol, and there is no constant, we want
6069 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6070 add $tempreg,$tempreg,$gp
6071 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6072 or for lca or if tempreg is PIC_CALL_REG
6073 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6074 add $tempreg,$tempreg,$gp
6075 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6076
6077 If we have a small constant, and this is a reference to
6078 an external symbol, we want
6079 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6080 add $tempreg,$tempreg,$gp
6081 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6082 addi $tempreg,$tempreg,<constant>
6083
6084 If we have a large constant, and this is a reference to
6085 an external symbol, we want
6086 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6087 addu $tempreg,$tempreg,$gp
6088 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6089 lui $at,<hiconstant>
6090 addi $at,$at,<loconstant>
6091 add $tempreg,$tempreg,$at
6092
6093 If we have NewABI, and we know it's a local symbol, we want
6094 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6095 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6096 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6097
6098 relax_start (offset_expr.X_add_symbol);
6099
6100 expr1.X_add_number = offset_expr.X_add_number;
6101 offset_expr.X_add_number = 0;
6102
6103 if (expr1.X_add_number == 0 && breg == 0
6104 && (call || tempreg == PIC_CALL_REG))
6105 {
6106 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6107 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6108 }
6109 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6110 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6111 tempreg, tempreg, mips_gp_register);
6112 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6113 tempreg, lw_reloc_type, tempreg);
6114
6115 if (expr1.X_add_number == 0)
6116 ;
6117 else if (expr1.X_add_number >= -0x8000
6118 && expr1.X_add_number < 0x8000)
6119 {
6120 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6121 tempreg, tempreg, BFD_RELOC_LO16);
6122 }
6123 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6124 {
6125 /* If we are going to add in a base register, and the
6126 target register and the base register are the same,
6127 then we are using AT as a temporary register. Since
6128 we want to load the constant into AT, we add our
6129 current AT (from the global offset table) and the
6130 register into the register now, and pretend we were
6131 not using a base register. */
6132 if (breg != treg)
6133 dreg = tempreg;
6134 else
6135 {
6136 gas_assert (tempreg == AT);
6137 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6138 treg, AT, breg);
6139 dreg = treg;
6140 add_breg_early = 1;
6141 }
6142
6143 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6145
6146 used_at = 1;
6147 }
6148 else
6149 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6150
6151 relax_switch ();
6152 offset_expr.X_add_number = expr1.X_add_number;
6153 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6154 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6155 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6156 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6157 if (add_breg_early)
6158 {
6159 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6160 treg, tempreg, breg);
6161 breg = 0;
6162 tempreg = treg;
6163 }
6164 relax_end ();
6165 }
6166 else
6167 abort ();
6168
6169 if (breg != 0)
6170 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6171 break;
6172
6173 case M_MSGSND:
6174 {
6175 unsigned long temp = (treg << 16) | (0x01);
6176 macro_build (NULL, "c2", "C", temp);
6177 }
6178 break;
6179
6180 case M_MSGLD:
6181 {
6182 unsigned long temp = (0x02);
6183 macro_build (NULL, "c2", "C", temp);
6184 }
6185 break;
6186
6187 case M_MSGLD_T:
6188 {
6189 unsigned long temp = (treg << 16) | (0x02);
6190 macro_build (NULL, "c2", "C", temp);
6191 }
6192 break;
6193
6194 case M_MSGWAIT:
6195 macro_build (NULL, "c2", "C", 3);
6196 break;
6197
6198 case M_MSGWAIT_T:
6199 {
6200 unsigned long temp = (treg << 16) | 0x03;
6201 macro_build (NULL, "c2", "C", temp);
6202 }
6203 break;
6204
6205 case M_J_A:
6206 /* The j instruction may not be used in PIC code, since it
6207 requires an absolute address. We convert it to a b
6208 instruction. */
6209 if (mips_pic == NO_PIC)
6210 macro_build (&offset_expr, "j", "a");
6211 else
6212 macro_build (&offset_expr, "b", "p");
6213 break;
6214
6215 /* The jal instructions must be handled as macros because when
6216 generating PIC code they expand to multi-instruction
6217 sequences. Normally they are simple instructions. */
6218 case M_JAL_1:
6219 dreg = RA;
6220 /* Fall through. */
6221 case M_JAL_2:
6222 if (mips_pic == NO_PIC)
6223 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6224 else
6225 {
6226 if (sreg != PIC_CALL_REG)
6227 as_warn (_("MIPS PIC call to register other than $25"));
6228
6229 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6230 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6231 {
6232 if (mips_cprestore_offset < 0)
6233 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6234 else
6235 {
6236 if (!mips_frame_reg_valid)
6237 {
6238 as_warn (_("No .frame pseudo-op used in PIC code"));
6239 /* Quiet this warning. */
6240 mips_frame_reg_valid = 1;
6241 }
6242 if (!mips_cprestore_valid)
6243 {
6244 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6245 /* Quiet this warning. */
6246 mips_cprestore_valid = 1;
6247 }
6248 if (mips_opts.noreorder)
6249 macro_build (NULL, "nop", "");
6250 expr1.X_add_number = mips_cprestore_offset;
6251 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6252 mips_gp_register,
6253 mips_frame_reg,
6254 HAVE_64BIT_ADDRESSES);
6255 }
6256 }
6257 }
6258
6259 break;
6260
6261 case M_JAL_A:
6262 if (mips_pic == NO_PIC)
6263 macro_build (&offset_expr, "jal", "a");
6264 else if (mips_pic == SVR4_PIC)
6265 {
6266 /* If this is a reference to an external symbol, and we are
6267 using a small GOT, we want
6268 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6269 nop
6270 jalr $ra,$25
6271 nop
6272 lw $gp,cprestore($sp)
6273 The cprestore value is set using the .cprestore
6274 pseudo-op. If we are using a big GOT, we want
6275 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6276 addu $25,$25,$gp
6277 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6278 nop
6279 jalr $ra,$25
6280 nop
6281 lw $gp,cprestore($sp)
6282 If the symbol is not external, we want
6283 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6284 nop
6285 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6286 jalr $ra,$25
6287 nop
6288 lw $gp,cprestore($sp)
6289
6290 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6291 sequences above, minus nops, unless the symbol is local,
6292 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6293 GOT_DISP. */
6294 if (HAVE_NEWABI)
6295 {
6296 if (!mips_big_got)
6297 {
6298 relax_start (offset_expr.X_add_symbol);
6299 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6300 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6301 mips_gp_register);
6302 relax_switch ();
6303 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6304 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6305 mips_gp_register);
6306 relax_end ();
6307 }
6308 else
6309 {
6310 relax_start (offset_expr.X_add_symbol);
6311 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6312 BFD_RELOC_MIPS_CALL_HI16);
6313 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6314 PIC_CALL_REG, mips_gp_register);
6315 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6316 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6317 PIC_CALL_REG);
6318 relax_switch ();
6319 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6320 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6321 mips_gp_register);
6322 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6323 PIC_CALL_REG, PIC_CALL_REG,
6324 BFD_RELOC_MIPS_GOT_OFST);
6325 relax_end ();
6326 }
6327
6328 macro_build_jalr (&offset_expr);
6329 }
6330 else
6331 {
6332 relax_start (offset_expr.X_add_symbol);
6333 if (!mips_big_got)
6334 {
6335 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6336 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6337 mips_gp_register);
6338 load_delay_nop ();
6339 relax_switch ();
6340 }
6341 else
6342 {
6343 int gpdelay;
6344
6345 gpdelay = reg_needs_delay (mips_gp_register);
6346 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6347 BFD_RELOC_MIPS_CALL_HI16);
6348 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6349 PIC_CALL_REG, mips_gp_register);
6350 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6351 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6352 PIC_CALL_REG);
6353 load_delay_nop ();
6354 relax_switch ();
6355 if (gpdelay)
6356 macro_build (NULL, "nop", "");
6357 }
6358 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6359 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6360 mips_gp_register);
6361 load_delay_nop ();
6362 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6363 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6364 relax_end ();
6365 macro_build_jalr (&offset_expr);
6366
6367 if (mips_cprestore_offset < 0)
6368 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6369 else
6370 {
6371 if (!mips_frame_reg_valid)
6372 {
6373 as_warn (_("No .frame pseudo-op used in PIC code"));
6374 /* Quiet this warning. */
6375 mips_frame_reg_valid = 1;
6376 }
6377 if (!mips_cprestore_valid)
6378 {
6379 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6380 /* Quiet this warning. */
6381 mips_cprestore_valid = 1;
6382 }
6383 if (mips_opts.noreorder)
6384 macro_build (NULL, "nop", "");
6385 expr1.X_add_number = mips_cprestore_offset;
6386 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6387 mips_gp_register,
6388 mips_frame_reg,
6389 HAVE_64BIT_ADDRESSES);
6390 }
6391 }
6392 }
6393 else if (mips_pic == VXWORKS_PIC)
6394 as_bad (_("Non-PIC jump used in PIC library"));
6395 else
6396 abort ();
6397
6398 break;
6399
6400 case M_LB_AB:
6401 s = "lb";
6402 goto ld;
6403 case M_LBU_AB:
6404 s = "lbu";
6405 goto ld;
6406 case M_LH_AB:
6407 s = "lh";
6408 goto ld;
6409 case M_LHU_AB:
6410 s = "lhu";
6411 goto ld;
6412 case M_LW_AB:
6413 s = "lw";
6414 goto ld;
6415 case M_LWC0_AB:
6416 s = "lwc0";
6417 /* Itbl support may require additional care here. */
6418 coproc = 1;
6419 goto ld;
6420 case M_LWC1_AB:
6421 s = "lwc1";
6422 /* Itbl support may require additional care here. */
6423 coproc = 1;
6424 goto ld;
6425 case M_LWC2_AB:
6426 s = "lwc2";
6427 /* Itbl support may require additional care here. */
6428 coproc = 1;
6429 goto ld;
6430 case M_LWC3_AB:
6431 s = "lwc3";
6432 /* Itbl support may require additional care here. */
6433 coproc = 1;
6434 goto ld;
6435 case M_LWL_AB:
6436 s = "lwl";
6437 lr = 1;
6438 goto ld;
6439 case M_LWR_AB:
6440 s = "lwr";
6441 lr = 1;
6442 goto ld;
6443 case M_LDC1_AB:
6444 s = "ldc1";
6445 /* Itbl support may require additional care here. */
6446 coproc = 1;
6447 goto ld;
6448 case M_LDC2_AB:
6449 s = "ldc2";
6450 /* Itbl support may require additional care here. */
6451 coproc = 1;
6452 goto ld;
6453 case M_LDC3_AB:
6454 s = "ldc3";
6455 /* Itbl support may require additional care here. */
6456 coproc = 1;
6457 goto ld;
6458 case M_LDL_AB:
6459 s = "ldl";
6460 lr = 1;
6461 goto ld;
6462 case M_LDR_AB:
6463 s = "ldr";
6464 lr = 1;
6465 goto ld;
6466 case M_LL_AB:
6467 s = "ll";
6468 goto ld;
6469 case M_LLD_AB:
6470 s = "lld";
6471 goto ld;
6472 case M_LWU_AB:
6473 s = "lwu";
6474 ld:
6475 if (breg == treg || coproc || lr)
6476 {
6477 tempreg = AT;
6478 used_at = 1;
6479 }
6480 else
6481 {
6482 tempreg = treg;
6483 }
6484 goto ld_st;
6485 case M_SB_AB:
6486 s = "sb";
6487 goto st;
6488 case M_SH_AB:
6489 s = "sh";
6490 goto st;
6491 case M_SW_AB:
6492 s = "sw";
6493 goto st;
6494 case M_SWC0_AB:
6495 s = "swc0";
6496 /* Itbl support may require additional care here. */
6497 coproc = 1;
6498 goto st;
6499 case M_SWC1_AB:
6500 s = "swc1";
6501 /* Itbl support may require additional care here. */
6502 coproc = 1;
6503 goto st;
6504 case M_SWC2_AB:
6505 s = "swc2";
6506 /* Itbl support may require additional care here. */
6507 coproc = 1;
6508 goto st;
6509 case M_SWC3_AB:
6510 s = "swc3";
6511 /* Itbl support may require additional care here. */
6512 coproc = 1;
6513 goto st;
6514 case M_SWL_AB:
6515 s = "swl";
6516 goto st;
6517 case M_SWR_AB:
6518 s = "swr";
6519 goto st;
6520 case M_SC_AB:
6521 s = "sc";
6522 goto st;
6523 case M_SCD_AB:
6524 s = "scd";
6525 goto st;
6526 case M_CACHE_AB:
6527 s = "cache";
6528 goto st;
6529 case M_SDC1_AB:
6530 s = "sdc1";
6531 coproc = 1;
6532 /* Itbl support may require additional care here. */
6533 goto st;
6534 case M_SDC2_AB:
6535 s = "sdc2";
6536 /* Itbl support may require additional care here. */
6537 coproc = 1;
6538 goto st;
6539 case M_SDC3_AB:
6540 s = "sdc3";
6541 /* Itbl support may require additional care here. */
6542 coproc = 1;
6543 goto st;
6544 case M_SDL_AB:
6545 s = "sdl";
6546 goto st;
6547 case M_SDR_AB:
6548 s = "sdr";
6549 st:
6550 tempreg = AT;
6551 used_at = 1;
6552 ld_st:
6553 if (coproc
6554 && NO_ISA_COP (mips_opts.arch)
6555 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6556 {
6557 as_bad (_("Opcode not supported on this processor: %s"),
6558 mips_cpu_info_from_arch (mips_opts.arch)->name);
6559 break;
6560 }
6561
6562 /* Itbl support may require additional care here. */
6563 if (mask == M_LWC1_AB
6564 || mask == M_SWC1_AB
6565 || mask == M_LDC1_AB
6566 || mask == M_SDC1_AB
6567 || mask == M_L_DAB
6568 || mask == M_S_DAB)
6569 fmt = "T,o(b)";
6570 else if (mask == M_CACHE_AB)
6571 fmt = "k,o(b)";
6572 else if (coproc)
6573 fmt = "E,o(b)";
6574 else
6575 fmt = "t,o(b)";
6576
6577 if (offset_expr.X_op != O_constant
6578 && offset_expr.X_op != O_symbol)
6579 {
6580 as_bad (_("Expression too complex"));
6581 offset_expr.X_op = O_constant;
6582 }
6583
6584 if (HAVE_32BIT_ADDRESSES
6585 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6586 {
6587 char value [32];
6588
6589 sprintf_vma (value, offset_expr.X_add_number);
6590 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6591 }
6592
6593 /* A constant expression in PIC code can be handled just as it
6594 is in non PIC code. */
6595 if (offset_expr.X_op == O_constant)
6596 {
6597 expr1.X_add_number = offset_expr.X_add_number;
6598 normalize_address_expr (&expr1);
6599 if (!IS_SEXT_16BIT_NUM (expr1.X_add_number))
6600 {
6601 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
6602 & ~(bfd_vma) 0xffff);
6603 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6604 if (breg != 0)
6605 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6606 tempreg, tempreg, breg);
6607 breg = tempreg;
6608 }
6609 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
6610 }
6611 else if (mips_pic == NO_PIC)
6612 {
6613 /* If this is a reference to a GP relative symbol, and there
6614 is no base register, we want
6615 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6616 Otherwise, if there is no base register, we want
6617 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6618 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6619 If we have a constant, we need two instructions anyhow,
6620 so we always use the latter form.
6621
6622 If we have a base register, and this is a reference to a
6623 GP relative symbol, we want
6624 addu $tempreg,$breg,$gp
6625 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6626 Otherwise we want
6627 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6628 addu $tempreg,$tempreg,$breg
6629 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6630 With a constant we always use the latter case.
6631
6632 With 64bit address space and no base register and $at usable,
6633 we want
6634 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6635 lui $at,<sym> (BFD_RELOC_HI16_S)
6636 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6637 dsll32 $tempreg,0
6638 daddu $tempreg,$at
6639 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6640 If we have a base register, we want
6641 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6642 lui $at,<sym> (BFD_RELOC_HI16_S)
6643 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6644 daddu $at,$breg
6645 dsll32 $tempreg,0
6646 daddu $tempreg,$at
6647 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6648
6649 Without $at we can't generate the optimal path for superscalar
6650 processors here since this would require two temporary registers.
6651 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6652 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6653 dsll $tempreg,16
6654 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6655 dsll $tempreg,16
6656 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6657 If we have a base register, we want
6658 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6659 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6660 dsll $tempreg,16
6661 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6662 dsll $tempreg,16
6663 daddu $tempreg,$tempreg,$breg
6664 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6665
6666 For GP relative symbols in 64bit address space we can use
6667 the same sequence as in 32bit address space. */
6668 if (HAVE_64BIT_SYMBOLS)
6669 {
6670 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6671 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6672 {
6673 relax_start (offset_expr.X_add_symbol);
6674 if (breg == 0)
6675 {
6676 macro_build (&offset_expr, s, fmt, treg,
6677 BFD_RELOC_GPREL16, mips_gp_register);
6678 }
6679 else
6680 {
6681 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6682 tempreg, breg, mips_gp_register);
6683 macro_build (&offset_expr, s, fmt, treg,
6684 BFD_RELOC_GPREL16, tempreg);
6685 }
6686 relax_switch ();
6687 }
6688
6689 if (used_at == 0 && mips_opts.at)
6690 {
6691 macro_build (&offset_expr, "lui", "t,u", tempreg,
6692 BFD_RELOC_MIPS_HIGHEST);
6693 macro_build (&offset_expr, "lui", "t,u", AT,
6694 BFD_RELOC_HI16_S);
6695 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6696 tempreg, BFD_RELOC_MIPS_HIGHER);
6697 if (breg != 0)
6698 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6699 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6700 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6701 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6702 tempreg);
6703 used_at = 1;
6704 }
6705 else
6706 {
6707 macro_build (&offset_expr, "lui", "t,u", tempreg,
6708 BFD_RELOC_MIPS_HIGHEST);
6709 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6710 tempreg, BFD_RELOC_MIPS_HIGHER);
6711 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6712 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6713 tempreg, BFD_RELOC_HI16_S);
6714 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6715 if (breg != 0)
6716 macro_build (NULL, "daddu", "d,v,t",
6717 tempreg, tempreg, breg);
6718 macro_build (&offset_expr, s, fmt, treg,
6719 BFD_RELOC_LO16, tempreg);
6720 }
6721
6722 if (mips_relax.sequence)
6723 relax_end ();
6724 break;
6725 }
6726
6727 if (breg == 0)
6728 {
6729 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6730 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6731 {
6732 relax_start (offset_expr.X_add_symbol);
6733 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6734 mips_gp_register);
6735 relax_switch ();
6736 }
6737 macro_build_lui (&offset_expr, tempreg);
6738 macro_build (&offset_expr, s, fmt, treg,
6739 BFD_RELOC_LO16, tempreg);
6740 if (mips_relax.sequence)
6741 relax_end ();
6742 }
6743 else
6744 {
6745 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6746 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6747 {
6748 relax_start (offset_expr.X_add_symbol);
6749 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6750 tempreg, breg, mips_gp_register);
6751 macro_build (&offset_expr, s, fmt, treg,
6752 BFD_RELOC_GPREL16, tempreg);
6753 relax_switch ();
6754 }
6755 macro_build_lui (&offset_expr, tempreg);
6756 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6757 tempreg, tempreg, breg);
6758 macro_build (&offset_expr, s, fmt, treg,
6759 BFD_RELOC_LO16, tempreg);
6760 if (mips_relax.sequence)
6761 relax_end ();
6762 }
6763 }
6764 else if (!mips_big_got)
6765 {
6766 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6767
6768 /* If this is a reference to an external symbol, we want
6769 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6770 nop
6771 <op> $treg,0($tempreg)
6772 Otherwise we want
6773 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6774 nop
6775 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6776 <op> $treg,0($tempreg)
6777
6778 For NewABI, we want
6779 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6780 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6781
6782 If there is a base register, we add it to $tempreg before
6783 the <op>. If there is a constant, we stick it in the
6784 <op> instruction. We don't handle constants larger than
6785 16 bits, because we have no way to load the upper 16 bits
6786 (actually, we could handle them for the subset of cases
6787 in which we are not using $at). */
6788 gas_assert (offset_expr.X_op == O_symbol);
6789 if (HAVE_NEWABI)
6790 {
6791 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6792 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6793 if (breg != 0)
6794 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6795 tempreg, tempreg, breg);
6796 macro_build (&offset_expr, s, fmt, treg,
6797 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6798 break;
6799 }
6800 expr1.X_add_number = offset_expr.X_add_number;
6801 offset_expr.X_add_number = 0;
6802 if (expr1.X_add_number < -0x8000
6803 || expr1.X_add_number >= 0x8000)
6804 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6805 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6806 lw_reloc_type, mips_gp_register);
6807 load_delay_nop ();
6808 relax_start (offset_expr.X_add_symbol);
6809 relax_switch ();
6810 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6811 tempreg, BFD_RELOC_LO16);
6812 relax_end ();
6813 if (breg != 0)
6814 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6815 tempreg, tempreg, breg);
6816 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6817 }
6818 else if (mips_big_got && !HAVE_NEWABI)
6819 {
6820 int gpdelay;
6821
6822 /* If this is a reference to an external symbol, we want
6823 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6824 addu $tempreg,$tempreg,$gp
6825 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6826 <op> $treg,0($tempreg)
6827 Otherwise we want
6828 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6829 nop
6830 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6831 <op> $treg,0($tempreg)
6832 If there is a base register, we add it to $tempreg before
6833 the <op>. If there is a constant, we stick it in the
6834 <op> instruction. We don't handle constants larger than
6835 16 bits, because we have no way to load the upper 16 bits
6836 (actually, we could handle them for the subset of cases
6837 in which we are not using $at). */
6838 gas_assert (offset_expr.X_op == O_symbol);
6839 expr1.X_add_number = offset_expr.X_add_number;
6840 offset_expr.X_add_number = 0;
6841 if (expr1.X_add_number < -0x8000
6842 || expr1.X_add_number >= 0x8000)
6843 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6844 gpdelay = reg_needs_delay (mips_gp_register);
6845 relax_start (offset_expr.X_add_symbol);
6846 macro_build (&offset_expr, "lui", "t,u", tempreg,
6847 BFD_RELOC_MIPS_GOT_HI16);
6848 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6849 mips_gp_register);
6850 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6851 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6852 relax_switch ();
6853 if (gpdelay)
6854 macro_build (NULL, "nop", "");
6855 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6856 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6857 load_delay_nop ();
6858 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6859 tempreg, BFD_RELOC_LO16);
6860 relax_end ();
6861
6862 if (breg != 0)
6863 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6864 tempreg, tempreg, breg);
6865 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6866 }
6867 else if (mips_big_got && HAVE_NEWABI)
6868 {
6869 /* If this is a reference to an external symbol, we want
6870 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6871 add $tempreg,$tempreg,$gp
6872 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6873 <op> $treg,<ofst>($tempreg)
6874 Otherwise, for local symbols, we want:
6875 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6876 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6877 gas_assert (offset_expr.X_op == O_symbol);
6878 expr1.X_add_number = offset_expr.X_add_number;
6879 offset_expr.X_add_number = 0;
6880 if (expr1.X_add_number < -0x8000
6881 || expr1.X_add_number >= 0x8000)
6882 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6883 relax_start (offset_expr.X_add_symbol);
6884 macro_build (&offset_expr, "lui", "t,u", tempreg,
6885 BFD_RELOC_MIPS_GOT_HI16);
6886 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6887 mips_gp_register);
6888 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6889 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6890 if (breg != 0)
6891 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6892 tempreg, tempreg, breg);
6893 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6894
6895 relax_switch ();
6896 offset_expr.X_add_number = expr1.X_add_number;
6897 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6898 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6899 if (breg != 0)
6900 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6901 tempreg, tempreg, breg);
6902 macro_build (&offset_expr, s, fmt, treg,
6903 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6904 relax_end ();
6905 }
6906 else
6907 abort ();
6908
6909 break;
6910
6911 case M_LI:
6912 case M_LI_S:
6913 load_register (treg, &imm_expr, 0);
6914 break;
6915
6916 case M_DLI:
6917 load_register (treg, &imm_expr, 1);
6918 break;
6919
6920 case M_LI_SS:
6921 if (imm_expr.X_op == O_constant)
6922 {
6923 used_at = 1;
6924 load_register (AT, &imm_expr, 0);
6925 macro_build (NULL, "mtc1", "t,G", AT, treg);
6926 break;
6927 }
6928 else
6929 {
6930 gas_assert (offset_expr.X_op == O_symbol
6931 && strcmp (segment_name (S_GET_SEGMENT
6932 (offset_expr.X_add_symbol)),
6933 ".lit4") == 0
6934 && offset_expr.X_add_number == 0);
6935 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6936 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6937 break;
6938 }
6939
6940 case M_LI_D:
6941 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6942 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6943 order 32 bits of the value and the low order 32 bits are either
6944 zero or in OFFSET_EXPR. */
6945 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6946 {
6947 if (HAVE_64BIT_GPRS)
6948 load_register (treg, &imm_expr, 1);
6949 else
6950 {
6951 int hreg, lreg;
6952
6953 if (target_big_endian)
6954 {
6955 hreg = treg;
6956 lreg = treg + 1;
6957 }
6958 else
6959 {
6960 hreg = treg + 1;
6961 lreg = treg;
6962 }
6963
6964 if (hreg <= 31)
6965 load_register (hreg, &imm_expr, 0);
6966 if (lreg <= 31)
6967 {
6968 if (offset_expr.X_op == O_absent)
6969 move_register (lreg, 0);
6970 else
6971 {
6972 gas_assert (offset_expr.X_op == O_constant);
6973 load_register (lreg, &offset_expr, 0);
6974 }
6975 }
6976 }
6977 break;
6978 }
6979
6980 /* We know that sym is in the .rdata section. First we get the
6981 upper 16 bits of the address. */
6982 if (mips_pic == NO_PIC)
6983 {
6984 macro_build_lui (&offset_expr, AT);
6985 used_at = 1;
6986 }
6987 else
6988 {
6989 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6990 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6991 used_at = 1;
6992 }
6993
6994 /* Now we load the register(s). */
6995 if (HAVE_64BIT_GPRS)
6996 {
6997 used_at = 1;
6998 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6999 }
7000 else
7001 {
7002 used_at = 1;
7003 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7004 if (treg != RA)
7005 {
7006 /* FIXME: How in the world do we deal with the possible
7007 overflow here? */
7008 offset_expr.X_add_number += 4;
7009 macro_build (&offset_expr, "lw", "t,o(b)",
7010 treg + 1, BFD_RELOC_LO16, AT);
7011 }
7012 }
7013 break;
7014
7015 case M_LI_DD:
7016 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
7017 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
7018 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
7019 the value and the low order 32 bits are either zero or in
7020 OFFSET_EXPR. */
7021 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
7022 {
7023 used_at = 1;
7024 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
7025 if (HAVE_64BIT_FPRS)
7026 {
7027 gas_assert (HAVE_64BIT_GPRS);
7028 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7029 }
7030 else
7031 {
7032 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7033 if (offset_expr.X_op == O_absent)
7034 macro_build (NULL, "mtc1", "t,G", 0, treg);
7035 else
7036 {
7037 gas_assert (offset_expr.X_op == O_constant);
7038 load_register (AT, &offset_expr, 0);
7039 macro_build (NULL, "mtc1", "t,G", AT, treg);
7040 }
7041 }
7042 break;
7043 }
7044
7045 gas_assert (offset_expr.X_op == O_symbol
7046 && offset_expr.X_add_number == 0);
7047 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7048 if (strcmp (s, ".lit8") == 0)
7049 {
7050 if (mips_opts.isa != ISA_MIPS1)
7051 {
7052 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7053 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7054 break;
7055 }
7056 breg = mips_gp_register;
7057 r = BFD_RELOC_MIPS_LITERAL;
7058 goto dob;
7059 }
7060 else
7061 {
7062 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7063 used_at = 1;
7064 if (mips_pic != NO_PIC)
7065 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7066 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7067 else
7068 {
7069 /* FIXME: This won't work for a 64 bit address. */
7070 macro_build_lui (&offset_expr, AT);
7071 }
7072
7073 if (mips_opts.isa != ISA_MIPS1)
7074 {
7075 macro_build (&offset_expr, "ldc1", "T,o(b)",
7076 treg, BFD_RELOC_LO16, AT);
7077 break;
7078 }
7079 breg = AT;
7080 r = BFD_RELOC_LO16;
7081 goto dob;
7082 }
7083
7084 case M_L_DOB:
7085 /* Even on a big endian machine $fn comes before $fn+1. We have
7086 to adjust when loading from memory. */
7087 r = BFD_RELOC_LO16;
7088 dob:
7089 gas_assert (mips_opts.isa == ISA_MIPS1);
7090 macro_build (&offset_expr, "lwc1", "T,o(b)",
7091 target_big_endian ? treg + 1 : treg, r, breg);
7092 /* FIXME: A possible overflow which I don't know how to deal
7093 with. */
7094 offset_expr.X_add_number += 4;
7095 macro_build (&offset_expr, "lwc1", "T,o(b)",
7096 target_big_endian ? treg : treg + 1, r, breg);
7097 break;
7098
7099 case M_S_DOB:
7100 gas_assert (mips_opts.isa == ISA_MIPS1);
7101 /* Even on a big endian machine $fn comes before $fn+1. We have
7102 to adjust when storing to memory. */
7103 macro_build (&offset_expr, "swc1", "T,o(b)",
7104 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7105 offset_expr.X_add_number += 4;
7106 macro_build (&offset_expr, "swc1", "T,o(b)",
7107 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7108 break;
7109
7110 case M_L_DAB:
7111 /*
7112 * The MIPS assembler seems to check for X_add_number not
7113 * being double aligned and generating:
7114 * lui at,%hi(foo+1)
7115 * addu at,at,v1
7116 * addiu at,at,%lo(foo+1)
7117 * lwc1 f2,0(at)
7118 * lwc1 f3,4(at)
7119 * But, the resulting address is the same after relocation so why
7120 * generate the extra instruction?
7121 */
7122 /* Itbl support may require additional care here. */
7123 coproc = 1;
7124 if (mips_opts.isa != ISA_MIPS1)
7125 {
7126 s = "ldc1";
7127 goto ld;
7128 }
7129
7130 s = "lwc1";
7131 fmt = "T,o(b)";
7132 goto ldd_std;
7133
7134 case M_S_DAB:
7135 if (mips_opts.isa != ISA_MIPS1)
7136 {
7137 s = "sdc1";
7138 goto st;
7139 }
7140
7141 s = "swc1";
7142 fmt = "T,o(b)";
7143 /* Itbl support may require additional care here. */
7144 coproc = 1;
7145 goto ldd_std;
7146
7147 case M_LD_AB:
7148 if (HAVE_64BIT_GPRS)
7149 {
7150 s = "ld";
7151 goto ld;
7152 }
7153
7154 s = "lw";
7155 fmt = "t,o(b)";
7156 goto ldd_std;
7157
7158 case M_SD_AB:
7159 if (HAVE_64BIT_GPRS)
7160 {
7161 s = "sd";
7162 goto st;
7163 }
7164
7165 s = "sw";
7166 fmt = "t,o(b)";
7167
7168 ldd_std:
7169 if (offset_expr.X_op != O_symbol
7170 && offset_expr.X_op != O_constant)
7171 {
7172 as_bad (_("Expression too complex"));
7173 offset_expr.X_op = O_constant;
7174 }
7175
7176 if (HAVE_32BIT_ADDRESSES
7177 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7178 {
7179 char value [32];
7180
7181 sprintf_vma (value, offset_expr.X_add_number);
7182 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7183 }
7184
7185 /* Even on a big endian machine $fn comes before $fn+1. We have
7186 to adjust when loading from memory. We set coproc if we must
7187 load $fn+1 first. */
7188 /* Itbl support may require additional care here. */
7189 if (!target_big_endian)
7190 coproc = 0;
7191
7192 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
7193 {
7194 /* If this is a reference to a GP relative symbol, we want
7195 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7196 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7197 If we have a base register, we use this
7198 addu $at,$breg,$gp
7199 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7200 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7201 If this is not a GP relative symbol, we want
7202 lui $at,<sym> (BFD_RELOC_HI16_S)
7203 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7204 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7205 If there is a base register, we add it to $at after the
7206 lui instruction. If there is a constant, we always use
7207 the last case. */
7208 if (offset_expr.X_op == O_symbol
7209 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7210 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7211 {
7212 relax_start (offset_expr.X_add_symbol);
7213 if (breg == 0)
7214 {
7215 tempreg = mips_gp_register;
7216 }
7217 else
7218 {
7219 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7220 AT, breg, mips_gp_register);
7221 tempreg = AT;
7222 used_at = 1;
7223 }
7224
7225 /* Itbl support may require additional care here. */
7226 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7227 BFD_RELOC_GPREL16, tempreg);
7228 offset_expr.X_add_number += 4;
7229
7230 /* Set mips_optimize to 2 to avoid inserting an
7231 undesired nop. */
7232 hold_mips_optimize = mips_optimize;
7233 mips_optimize = 2;
7234 /* Itbl support may require additional care here. */
7235 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7236 BFD_RELOC_GPREL16, tempreg);
7237 mips_optimize = hold_mips_optimize;
7238
7239 relax_switch ();
7240
7241 offset_expr.X_add_number -= 4;
7242 }
7243 used_at = 1;
7244 macro_build_lui (&offset_expr, AT);
7245 if (breg != 0)
7246 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7247 /* Itbl support may require additional care here. */
7248 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7249 BFD_RELOC_LO16, AT);
7250 /* FIXME: How do we handle overflow here? */
7251 offset_expr.X_add_number += 4;
7252 /* Itbl support may require additional care here. */
7253 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7254 BFD_RELOC_LO16, AT);
7255 if (mips_relax.sequence)
7256 relax_end ();
7257 }
7258 else if (!mips_big_got)
7259 {
7260 /* If this is a reference to an external symbol, we want
7261 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7262 nop
7263 <op> $treg,0($at)
7264 <op> $treg+1,4($at)
7265 Otherwise we want
7266 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7267 nop
7268 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7269 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7270 If there is a base register we add it to $at before the
7271 lwc1 instructions. If there is a constant we include it
7272 in the lwc1 instructions. */
7273 used_at = 1;
7274 expr1.X_add_number = offset_expr.X_add_number;
7275 if (expr1.X_add_number < -0x8000
7276 || expr1.X_add_number >= 0x8000 - 4)
7277 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7278 load_got_offset (AT, &offset_expr);
7279 load_delay_nop ();
7280 if (breg != 0)
7281 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7282
7283 /* Set mips_optimize to 2 to avoid inserting an undesired
7284 nop. */
7285 hold_mips_optimize = mips_optimize;
7286 mips_optimize = 2;
7287
7288 /* Itbl support may require additional care here. */
7289 relax_start (offset_expr.X_add_symbol);
7290 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7291 BFD_RELOC_LO16, AT);
7292 expr1.X_add_number += 4;
7293 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7294 BFD_RELOC_LO16, AT);
7295 relax_switch ();
7296 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7297 BFD_RELOC_LO16, AT);
7298 offset_expr.X_add_number += 4;
7299 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7300 BFD_RELOC_LO16, AT);
7301 relax_end ();
7302
7303 mips_optimize = hold_mips_optimize;
7304 }
7305 else if (mips_big_got)
7306 {
7307 int gpdelay;
7308
7309 /* If this is a reference to an external symbol, we want
7310 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7311 addu $at,$at,$gp
7312 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7313 nop
7314 <op> $treg,0($at)
7315 <op> $treg+1,4($at)
7316 Otherwise we want
7317 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7318 nop
7319 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7320 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7321 If there is a base register we add it to $at before the
7322 lwc1 instructions. If there is a constant we include it
7323 in the lwc1 instructions. */
7324 used_at = 1;
7325 expr1.X_add_number = offset_expr.X_add_number;
7326 offset_expr.X_add_number = 0;
7327 if (expr1.X_add_number < -0x8000
7328 || expr1.X_add_number >= 0x8000 - 4)
7329 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7330 gpdelay = reg_needs_delay (mips_gp_register);
7331 relax_start (offset_expr.X_add_symbol);
7332 macro_build (&offset_expr, "lui", "t,u",
7333 AT, BFD_RELOC_MIPS_GOT_HI16);
7334 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7335 AT, AT, mips_gp_register);
7336 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7337 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7338 load_delay_nop ();
7339 if (breg != 0)
7340 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7341 /* Itbl support may require additional care here. */
7342 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7343 BFD_RELOC_LO16, AT);
7344 expr1.X_add_number += 4;
7345
7346 /* Set mips_optimize to 2 to avoid inserting an undesired
7347 nop. */
7348 hold_mips_optimize = mips_optimize;
7349 mips_optimize = 2;
7350 /* Itbl support may require additional care here. */
7351 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7352 BFD_RELOC_LO16, AT);
7353 mips_optimize = hold_mips_optimize;
7354 expr1.X_add_number -= 4;
7355
7356 relax_switch ();
7357 offset_expr.X_add_number = expr1.X_add_number;
7358 if (gpdelay)
7359 macro_build (NULL, "nop", "");
7360 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7361 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7362 load_delay_nop ();
7363 if (breg != 0)
7364 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7365 /* Itbl support may require additional care here. */
7366 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7367 BFD_RELOC_LO16, AT);
7368 offset_expr.X_add_number += 4;
7369
7370 /* Set mips_optimize to 2 to avoid inserting an undesired
7371 nop. */
7372 hold_mips_optimize = mips_optimize;
7373 mips_optimize = 2;
7374 /* Itbl support may require additional care here. */
7375 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7376 BFD_RELOC_LO16, AT);
7377 mips_optimize = hold_mips_optimize;
7378 relax_end ();
7379 }
7380 else
7381 abort ();
7382
7383 break;
7384
7385 case M_LD_OB:
7386 s = HAVE_64BIT_GPRS ? "ld" : "lw";
7387 goto sd_ob;
7388 case M_SD_OB:
7389 s = HAVE_64BIT_GPRS ? "sd" : "sw";
7390 sd_ob:
7391 macro_build (&offset_expr, s, "t,o(b)", treg,
7392 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7393 breg);
7394 if (!HAVE_64BIT_GPRS)
7395 {
7396 offset_expr.X_add_number += 4;
7397 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
7398 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7399 breg);
7400 }
7401 break;
7402
7403 /* New code added to support COPZ instructions.
7404 This code builds table entries out of the macros in mip_opcodes.
7405 R4000 uses interlocks to handle coproc delays.
7406 Other chips (like the R3000) require nops to be inserted for delays.
7407
7408 FIXME: Currently, we require that the user handle delays.
7409 In order to fill delay slots for non-interlocked chips,
7410 we must have a way to specify delays based on the coprocessor.
7411 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7412 What are the side-effects of the cop instruction?
7413 What cache support might we have and what are its effects?
7414 Both coprocessor & memory require delays. how long???
7415 What registers are read/set/modified?
7416
7417 If an itbl is provided to interpret cop instructions,
7418 this knowledge can be encoded in the itbl spec. */
7419
7420 case M_COP0:
7421 s = "c0";
7422 goto copz;
7423 case M_COP1:
7424 s = "c1";
7425 goto copz;
7426 case M_COP2:
7427 s = "c2";
7428 goto copz;
7429 case M_COP3:
7430 s = "c3";
7431 copz:
7432 if (NO_ISA_COP (mips_opts.arch)
7433 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7434 {
7435 as_bad (_("opcode not supported on this processor: %s"),
7436 mips_cpu_info_from_arch (mips_opts.arch)->name);
7437 break;
7438 }
7439
7440 /* For now we just do C (same as Cz). The parameter will be
7441 stored in insn_opcode by mips_ip. */
7442 macro_build (NULL, s, "C", ip->insn_opcode);
7443 break;
7444
7445 case M_MOVE:
7446 move_register (dreg, sreg);
7447 break;
7448
7449 case M_DMUL:
7450 dbl = 1;
7451 case M_MUL:
7452 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7453 macro_build (NULL, "mflo", "d", dreg);
7454 break;
7455
7456 case M_DMUL_I:
7457 dbl = 1;
7458 case M_MUL_I:
7459 /* The MIPS assembler some times generates shifts and adds. I'm
7460 not trying to be that fancy. GCC should do this for us
7461 anyway. */
7462 used_at = 1;
7463 load_register (AT, &imm_expr, dbl);
7464 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7465 macro_build (NULL, "mflo", "d", dreg);
7466 break;
7467
7468 case M_DMULO_I:
7469 dbl = 1;
7470 case M_MULO_I:
7471 imm = 1;
7472 goto do_mulo;
7473
7474 case M_DMULO:
7475 dbl = 1;
7476 case M_MULO:
7477 do_mulo:
7478 start_noreorder ();
7479 used_at = 1;
7480 if (imm)
7481 load_register (AT, &imm_expr, dbl);
7482 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7483 macro_build (NULL, "mflo", "d", dreg);
7484 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7485 macro_build (NULL, "mfhi", "d", AT);
7486 if (mips_trap)
7487 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7488 else
7489 {
7490 expr1.X_add_number = 8;
7491 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7492 macro_build (NULL, "nop", "");
7493 macro_build (NULL, "break", "c", 6);
7494 }
7495 end_noreorder ();
7496 macro_build (NULL, "mflo", "d", dreg);
7497 break;
7498
7499 case M_DMULOU_I:
7500 dbl = 1;
7501 case M_MULOU_I:
7502 imm = 1;
7503 goto do_mulou;
7504
7505 case M_DMULOU:
7506 dbl = 1;
7507 case M_MULOU:
7508 do_mulou:
7509 start_noreorder ();
7510 used_at = 1;
7511 if (imm)
7512 load_register (AT, &imm_expr, dbl);
7513 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7514 sreg, imm ? AT : treg);
7515 macro_build (NULL, "mfhi", "d", AT);
7516 macro_build (NULL, "mflo", "d", dreg);
7517 if (mips_trap)
7518 macro_build (NULL, "tne", "s,t,q", AT, ZERO, 6);
7519 else
7520 {
7521 expr1.X_add_number = 8;
7522 macro_build (&expr1, "beq", "s,t,p", AT, ZERO);
7523 macro_build (NULL, "nop", "");
7524 macro_build (NULL, "break", "c", 6);
7525 }
7526 end_noreorder ();
7527 break;
7528
7529 case M_DROL:
7530 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7531 {
7532 if (dreg == sreg)
7533 {
7534 tempreg = AT;
7535 used_at = 1;
7536 }
7537 else
7538 {
7539 tempreg = dreg;
7540 }
7541 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7542 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7543 break;
7544 }
7545 used_at = 1;
7546 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7547 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7548 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7549 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7550 break;
7551
7552 case M_ROL:
7553 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7554 {
7555 if (dreg == sreg)
7556 {
7557 tempreg = AT;
7558 used_at = 1;
7559 }
7560 else
7561 {
7562 tempreg = dreg;
7563 }
7564 macro_build (NULL, "negu", "d,w", tempreg, treg);
7565 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7566 break;
7567 }
7568 used_at = 1;
7569 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7570 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7571 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7572 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7573 break;
7574
7575 case M_DROL_I:
7576 {
7577 unsigned int rot;
7578 char *l;
7579 char *rr;
7580
7581 if (imm_expr.X_op != O_constant)
7582 as_bad (_("Improper rotate count"));
7583 rot = imm_expr.X_add_number & 0x3f;
7584 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7585 {
7586 rot = (64 - rot) & 0x3f;
7587 if (rot >= 32)
7588 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7589 else
7590 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7591 break;
7592 }
7593 if (rot == 0)
7594 {
7595 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7596 break;
7597 }
7598 l = (rot < 0x20) ? "dsll" : "dsll32";
7599 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7600 rot &= 0x1f;
7601 used_at = 1;
7602 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7603 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7604 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7605 }
7606 break;
7607
7608 case M_ROL_I:
7609 {
7610 unsigned int rot;
7611
7612 if (imm_expr.X_op != O_constant)
7613 as_bad (_("Improper rotate count"));
7614 rot = imm_expr.X_add_number & 0x1f;
7615 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7616 {
7617 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7618 break;
7619 }
7620 if (rot == 0)
7621 {
7622 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7623 break;
7624 }
7625 used_at = 1;
7626 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7627 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7628 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7629 }
7630 break;
7631
7632 case M_DROR:
7633 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7634 {
7635 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7636 break;
7637 }
7638 used_at = 1;
7639 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7640 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7641 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7642 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7643 break;
7644
7645 case M_ROR:
7646 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7647 {
7648 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7649 break;
7650 }
7651 used_at = 1;
7652 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7653 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7654 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7655 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7656 break;
7657
7658 case M_DROR_I:
7659 {
7660 unsigned int rot;
7661 char *l;
7662 char *rr;
7663
7664 if (imm_expr.X_op != O_constant)
7665 as_bad (_("Improper rotate count"));
7666 rot = imm_expr.X_add_number & 0x3f;
7667 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7668 {
7669 if (rot >= 32)
7670 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7671 else
7672 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7673 break;
7674 }
7675 if (rot == 0)
7676 {
7677 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7678 break;
7679 }
7680 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7681 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7682 rot &= 0x1f;
7683 used_at = 1;
7684 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7685 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7686 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7687 }
7688 break;
7689
7690 case M_ROR_I:
7691 {
7692 unsigned int rot;
7693
7694 if (imm_expr.X_op != O_constant)
7695 as_bad (_("Improper rotate count"));
7696 rot = imm_expr.X_add_number & 0x1f;
7697 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7698 {
7699 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7700 break;
7701 }
7702 if (rot == 0)
7703 {
7704 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7705 break;
7706 }
7707 used_at = 1;
7708 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7709 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7710 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7711 }
7712 break;
7713
7714 case M_SEQ:
7715 if (sreg == 0)
7716 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7717 else if (treg == 0)
7718 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7719 else
7720 {
7721 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7722 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7723 }
7724 break;
7725
7726 case M_SEQ_I:
7727 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7728 {
7729 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7730 break;
7731 }
7732 if (sreg == 0)
7733 {
7734 as_warn (_("Instruction %s: result is always false"),
7735 ip->insn_mo->name);
7736 move_register (dreg, 0);
7737 break;
7738 }
7739 if (CPU_HAS_SEQ (mips_opts.arch)
7740 && -512 <= imm_expr.X_add_number
7741 && imm_expr.X_add_number < 512)
7742 {
7743 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7744 (int) imm_expr.X_add_number);
7745 break;
7746 }
7747 if (imm_expr.X_op == O_constant
7748 && imm_expr.X_add_number >= 0
7749 && imm_expr.X_add_number < 0x10000)
7750 {
7751 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7752 }
7753 else if (imm_expr.X_op == O_constant
7754 && imm_expr.X_add_number > -0x8000
7755 && imm_expr.X_add_number < 0)
7756 {
7757 imm_expr.X_add_number = -imm_expr.X_add_number;
7758 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7759 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7760 }
7761 else if (CPU_HAS_SEQ (mips_opts.arch))
7762 {
7763 used_at = 1;
7764 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7765 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7766 break;
7767 }
7768 else
7769 {
7770 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7771 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7772 used_at = 1;
7773 }
7774 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7775 break;
7776
7777 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7778 s = "slt";
7779 goto sge;
7780 case M_SGEU:
7781 s = "sltu";
7782 sge:
7783 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7784 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7785 break;
7786
7787 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7788 case M_SGEU_I:
7789 if (imm_expr.X_op == O_constant
7790 && imm_expr.X_add_number >= -0x8000
7791 && imm_expr.X_add_number < 0x8000)
7792 {
7793 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7794 dreg, sreg, BFD_RELOC_LO16);
7795 }
7796 else
7797 {
7798 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7799 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7800 dreg, sreg, AT);
7801 used_at = 1;
7802 }
7803 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7804 break;
7805
7806 case M_SGT: /* sreg > treg <==> treg < sreg */
7807 s = "slt";
7808 goto sgt;
7809 case M_SGTU:
7810 s = "sltu";
7811 sgt:
7812 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7813 break;
7814
7815 case M_SGT_I: /* sreg > I <==> I < sreg */
7816 s = "slt";
7817 goto sgti;
7818 case M_SGTU_I:
7819 s = "sltu";
7820 sgti:
7821 used_at = 1;
7822 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7823 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7824 break;
7825
7826 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7827 s = "slt";
7828 goto sle;
7829 case M_SLEU:
7830 s = "sltu";
7831 sle:
7832 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7833 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7834 break;
7835
7836 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7837 s = "slt";
7838 goto slei;
7839 case M_SLEU_I:
7840 s = "sltu";
7841 slei:
7842 used_at = 1;
7843 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7844 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7845 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7846 break;
7847
7848 case M_SLT_I:
7849 if (imm_expr.X_op == O_constant
7850 && imm_expr.X_add_number >= -0x8000
7851 && imm_expr.X_add_number < 0x8000)
7852 {
7853 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7854 break;
7855 }
7856 used_at = 1;
7857 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7858 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7859 break;
7860
7861 case M_SLTU_I:
7862 if (imm_expr.X_op == O_constant
7863 && imm_expr.X_add_number >= -0x8000
7864 && imm_expr.X_add_number < 0x8000)
7865 {
7866 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7867 BFD_RELOC_LO16);
7868 break;
7869 }
7870 used_at = 1;
7871 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7872 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7873 break;
7874
7875 case M_SNE:
7876 if (sreg == 0)
7877 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7878 else if (treg == 0)
7879 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7880 else
7881 {
7882 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7883 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7884 }
7885 break;
7886
7887 case M_SNE_I:
7888 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7889 {
7890 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7891 break;
7892 }
7893 if (sreg == 0)
7894 {
7895 as_warn (_("Instruction %s: result is always true"),
7896 ip->insn_mo->name);
7897 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7898 dreg, 0, BFD_RELOC_LO16);
7899 break;
7900 }
7901 if (CPU_HAS_SEQ (mips_opts.arch)
7902 && -512 <= imm_expr.X_add_number
7903 && imm_expr.X_add_number < 512)
7904 {
7905 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7906 (int) imm_expr.X_add_number);
7907 break;
7908 }
7909 if (imm_expr.X_op == O_constant
7910 && imm_expr.X_add_number >= 0
7911 && imm_expr.X_add_number < 0x10000)
7912 {
7913 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7914 }
7915 else if (imm_expr.X_op == O_constant
7916 && imm_expr.X_add_number > -0x8000
7917 && imm_expr.X_add_number < 0)
7918 {
7919 imm_expr.X_add_number = -imm_expr.X_add_number;
7920 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7921 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7922 }
7923 else if (CPU_HAS_SEQ (mips_opts.arch))
7924 {
7925 used_at = 1;
7926 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7927 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7928 break;
7929 }
7930 else
7931 {
7932 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7933 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7934 used_at = 1;
7935 }
7936 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7937 break;
7938
7939 case M_DSUB_I:
7940 dbl = 1;
7941 case M_SUB_I:
7942 if (imm_expr.X_op == O_constant
7943 && imm_expr.X_add_number > -0x8000
7944 && imm_expr.X_add_number <= 0x8000)
7945 {
7946 imm_expr.X_add_number = -imm_expr.X_add_number;
7947 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7948 dreg, sreg, BFD_RELOC_LO16);
7949 break;
7950 }
7951 used_at = 1;
7952 load_register (AT, &imm_expr, dbl);
7953 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7954 break;
7955
7956 case M_DSUBU_I:
7957 dbl = 1;
7958 case M_SUBU_I:
7959 if (imm_expr.X_op == O_constant
7960 && imm_expr.X_add_number > -0x8000
7961 && imm_expr.X_add_number <= 0x8000)
7962 {
7963 imm_expr.X_add_number = -imm_expr.X_add_number;
7964 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7965 dreg, sreg, BFD_RELOC_LO16);
7966 break;
7967 }
7968 used_at = 1;
7969 load_register (AT, &imm_expr, dbl);
7970 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7971 break;
7972
7973 case M_TEQ_I:
7974 s = "teq";
7975 goto trap;
7976 case M_TGE_I:
7977 s = "tge";
7978 goto trap;
7979 case M_TGEU_I:
7980 s = "tgeu";
7981 goto trap;
7982 case M_TLT_I:
7983 s = "tlt";
7984 goto trap;
7985 case M_TLTU_I:
7986 s = "tltu";
7987 goto trap;
7988 case M_TNE_I:
7989 s = "tne";
7990 trap:
7991 used_at = 1;
7992 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7993 macro_build (NULL, s, "s,t", sreg, AT);
7994 break;
7995
7996 case M_TRUNCWS:
7997 case M_TRUNCWD:
7998 gas_assert (mips_opts.isa == ISA_MIPS1);
7999 used_at = 1;
8000 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
8001 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
8002
8003 /*
8004 * Is the double cfc1 instruction a bug in the mips assembler;
8005 * or is there a reason for it?
8006 */
8007 start_noreorder ();
8008 macro_build (NULL, "cfc1", "t,G", treg, RA);
8009 macro_build (NULL, "cfc1", "t,G", treg, RA);
8010 macro_build (NULL, "nop", "");
8011 expr1.X_add_number = 3;
8012 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
8013 expr1.X_add_number = 2;
8014 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
8015 macro_build (NULL, "ctc1", "t,G", AT, RA);
8016 macro_build (NULL, "nop", "");
8017 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
8018 dreg, sreg);
8019 macro_build (NULL, "ctc1", "t,G", treg, RA);
8020 macro_build (NULL, "nop", "");
8021 end_noreorder ();
8022 break;
8023
8024 case M_ULH:
8025 s = "lb";
8026 goto ulh;
8027 case M_ULHU:
8028 s = "lbu";
8029 ulh:
8030 used_at = 1;
8031 if (offset_expr.X_add_number >= 0x7fff)
8032 as_bad (_("Operand overflow"));
8033 if (!target_big_endian)
8034 ++offset_expr.X_add_number;
8035 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8036 if (!target_big_endian)
8037 --offset_expr.X_add_number;
8038 else
8039 ++offset_expr.X_add_number;
8040 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8041 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8042 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8043 break;
8044
8045 case M_ULD:
8046 s = "ldl";
8047 s2 = "ldr";
8048 off = 7;
8049 goto ulw;
8050 case M_ULW:
8051 s = "lwl";
8052 s2 = "lwr";
8053 off = 3;
8054 ulw:
8055 if (offset_expr.X_add_number >= 0x8000 - off)
8056 as_bad (_("Operand overflow"));
8057 if (treg != breg)
8058 tempreg = treg;
8059 else
8060 {
8061 used_at = 1;
8062 tempreg = AT;
8063 }
8064 if (!target_big_endian)
8065 offset_expr.X_add_number += off;
8066 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8067 if (!target_big_endian)
8068 offset_expr.X_add_number -= off;
8069 else
8070 offset_expr.X_add_number += off;
8071 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8072
8073 /* If necessary, move the result in tempreg to the final destination. */
8074 if (treg == tempreg)
8075 break;
8076 /* Protect second load's delay slot. */
8077 load_delay_nop ();
8078 move_register (treg, tempreg);
8079 break;
8080
8081 case M_ULD_A:
8082 s = "ldl";
8083 s2 = "ldr";
8084 off = 7;
8085 goto ulwa;
8086 case M_ULW_A:
8087 s = "lwl";
8088 s2 = "lwr";
8089 off = 3;
8090 ulwa:
8091 used_at = 1;
8092 load_address (AT, &offset_expr, &used_at);
8093 if (breg != 0)
8094 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8095 if (!target_big_endian)
8096 expr1.X_add_number = off;
8097 else
8098 expr1.X_add_number = 0;
8099 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8100 if (!target_big_endian)
8101 expr1.X_add_number = 0;
8102 else
8103 expr1.X_add_number = off;
8104 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8105 break;
8106
8107 case M_ULH_A:
8108 case M_ULHU_A:
8109 used_at = 1;
8110 load_address (AT, &offset_expr, &used_at);
8111 if (breg != 0)
8112 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8113 if (target_big_endian)
8114 expr1.X_add_number = 0;
8115 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8116 treg, BFD_RELOC_LO16, AT);
8117 if (target_big_endian)
8118 expr1.X_add_number = 1;
8119 else
8120 expr1.X_add_number = 0;
8121 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8122 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8123 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8124 break;
8125
8126 case M_USH:
8127 used_at = 1;
8128 if (offset_expr.X_add_number >= 0x7fff)
8129 as_bad (_("Operand overflow"));
8130 if (target_big_endian)
8131 ++offset_expr.X_add_number;
8132 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8133 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8134 if (target_big_endian)
8135 --offset_expr.X_add_number;
8136 else
8137 ++offset_expr.X_add_number;
8138 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8139 break;
8140
8141 case M_USD:
8142 s = "sdl";
8143 s2 = "sdr";
8144 off = 7;
8145 goto usw;
8146 case M_USW:
8147 s = "swl";
8148 s2 = "swr";
8149 off = 3;
8150 usw:
8151 if (offset_expr.X_add_number >= 0x8000 - off)
8152 as_bad (_("Operand overflow"));
8153 if (!target_big_endian)
8154 offset_expr.X_add_number += off;
8155 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8156 if (!target_big_endian)
8157 offset_expr.X_add_number -= off;
8158 else
8159 offset_expr.X_add_number += off;
8160 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8161 break;
8162
8163 case M_USD_A:
8164 s = "sdl";
8165 s2 = "sdr";
8166 off = 7;
8167 goto uswa;
8168 case M_USW_A:
8169 s = "swl";
8170 s2 = "swr";
8171 off = 3;
8172 uswa:
8173 used_at = 1;
8174 load_address (AT, &offset_expr, &used_at);
8175 if (breg != 0)
8176 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8177 if (!target_big_endian)
8178 expr1.X_add_number = off;
8179 else
8180 expr1.X_add_number = 0;
8181 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8182 if (!target_big_endian)
8183 expr1.X_add_number = 0;
8184 else
8185 expr1.X_add_number = off;
8186 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8187 break;
8188
8189 case M_USH_A:
8190 used_at = 1;
8191 load_address (AT, &offset_expr, &used_at);
8192 if (breg != 0)
8193 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8194 if (!target_big_endian)
8195 expr1.X_add_number = 0;
8196 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8197 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8198 if (!target_big_endian)
8199 expr1.X_add_number = 1;
8200 else
8201 expr1.X_add_number = 0;
8202 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8203 if (!target_big_endian)
8204 expr1.X_add_number = 0;
8205 else
8206 expr1.X_add_number = 1;
8207 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8208 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8209 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8210 break;
8211
8212 default:
8213 /* FIXME: Check if this is one of the itbl macros, since they
8214 are added dynamically. */
8215 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8216 break;
8217 }
8218 if (!mips_opts.at && used_at)
8219 as_bad (_("Macro used $at after \".set noat\""));
8220 }
8221
8222 /* Implement macros in mips16 mode. */
8223
8224 static void
8225 mips16_macro (struct mips_cl_insn *ip)
8226 {
8227 int mask;
8228 int xreg, yreg, zreg, tmp;
8229 expressionS expr1;
8230 int dbl;
8231 const char *s, *s2, *s3;
8232
8233 mask = ip->insn_mo->mask;
8234
8235 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8236 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8237 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8238
8239 expr1.X_op = O_constant;
8240 expr1.X_op_symbol = NULL;
8241 expr1.X_add_symbol = NULL;
8242 expr1.X_add_number = 1;
8243
8244 dbl = 0;
8245
8246 switch (mask)
8247 {
8248 default:
8249 internalError ();
8250
8251 case M_DDIV_3:
8252 dbl = 1;
8253 case M_DIV_3:
8254 s = "mflo";
8255 goto do_div3;
8256 case M_DREM_3:
8257 dbl = 1;
8258 case M_REM_3:
8259 s = "mfhi";
8260 do_div3:
8261 start_noreorder ();
8262 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8263 expr1.X_add_number = 2;
8264 macro_build (&expr1, "bnez", "x,p", yreg);
8265 macro_build (NULL, "break", "6", 7);
8266
8267 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8268 since that causes an overflow. We should do that as well,
8269 but I don't see how to do the comparisons without a temporary
8270 register. */
8271 end_noreorder ();
8272 macro_build (NULL, s, "x", zreg);
8273 break;
8274
8275 case M_DIVU_3:
8276 s = "divu";
8277 s2 = "mflo";
8278 goto do_divu3;
8279 case M_REMU_3:
8280 s = "divu";
8281 s2 = "mfhi";
8282 goto do_divu3;
8283 case M_DDIVU_3:
8284 s = "ddivu";
8285 s2 = "mflo";
8286 goto do_divu3;
8287 case M_DREMU_3:
8288 s = "ddivu";
8289 s2 = "mfhi";
8290 do_divu3:
8291 start_noreorder ();
8292 macro_build (NULL, s, "0,x,y", xreg, yreg);
8293 expr1.X_add_number = 2;
8294 macro_build (&expr1, "bnez", "x,p", yreg);
8295 macro_build (NULL, "break", "6", 7);
8296 end_noreorder ();
8297 macro_build (NULL, s2, "x", zreg);
8298 break;
8299
8300 case M_DMUL:
8301 dbl = 1;
8302 case M_MUL:
8303 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8304 macro_build (NULL, "mflo", "x", zreg);
8305 break;
8306
8307 case M_DSUBU_I:
8308 dbl = 1;
8309 goto do_subu;
8310 case M_SUBU_I:
8311 do_subu:
8312 if (imm_expr.X_op != O_constant)
8313 as_bad (_("Unsupported large constant"));
8314 imm_expr.X_add_number = -imm_expr.X_add_number;
8315 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8316 break;
8317
8318 case M_SUBU_I_2:
8319 if (imm_expr.X_op != O_constant)
8320 as_bad (_("Unsupported large constant"));
8321 imm_expr.X_add_number = -imm_expr.X_add_number;
8322 macro_build (&imm_expr, "addiu", "x,k", xreg);
8323 break;
8324
8325 case M_DSUBU_I_2:
8326 if (imm_expr.X_op != O_constant)
8327 as_bad (_("Unsupported large constant"));
8328 imm_expr.X_add_number = -imm_expr.X_add_number;
8329 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8330 break;
8331
8332 case M_BEQ:
8333 s = "cmp";
8334 s2 = "bteqz";
8335 goto do_branch;
8336 case M_BNE:
8337 s = "cmp";
8338 s2 = "btnez";
8339 goto do_branch;
8340 case M_BLT:
8341 s = "slt";
8342 s2 = "btnez";
8343 goto do_branch;
8344 case M_BLTU:
8345 s = "sltu";
8346 s2 = "btnez";
8347 goto do_branch;
8348 case M_BLE:
8349 s = "slt";
8350 s2 = "bteqz";
8351 goto do_reverse_branch;
8352 case M_BLEU:
8353 s = "sltu";
8354 s2 = "bteqz";
8355 goto do_reverse_branch;
8356 case M_BGE:
8357 s = "slt";
8358 s2 = "bteqz";
8359 goto do_branch;
8360 case M_BGEU:
8361 s = "sltu";
8362 s2 = "bteqz";
8363 goto do_branch;
8364 case M_BGT:
8365 s = "slt";
8366 s2 = "btnez";
8367 goto do_reverse_branch;
8368 case M_BGTU:
8369 s = "sltu";
8370 s2 = "btnez";
8371
8372 do_reverse_branch:
8373 tmp = xreg;
8374 xreg = yreg;
8375 yreg = tmp;
8376
8377 do_branch:
8378 macro_build (NULL, s, "x,y", xreg, yreg);
8379 macro_build (&offset_expr, s2, "p");
8380 break;
8381
8382 case M_BEQ_I:
8383 s = "cmpi";
8384 s2 = "bteqz";
8385 s3 = "x,U";
8386 goto do_branch_i;
8387 case M_BNE_I:
8388 s = "cmpi";
8389 s2 = "btnez";
8390 s3 = "x,U";
8391 goto do_branch_i;
8392 case M_BLT_I:
8393 s = "slti";
8394 s2 = "btnez";
8395 s3 = "x,8";
8396 goto do_branch_i;
8397 case M_BLTU_I:
8398 s = "sltiu";
8399 s2 = "btnez";
8400 s3 = "x,8";
8401 goto do_branch_i;
8402 case M_BLE_I:
8403 s = "slti";
8404 s2 = "btnez";
8405 s3 = "x,8";
8406 goto do_addone_branch_i;
8407 case M_BLEU_I:
8408 s = "sltiu";
8409 s2 = "btnez";
8410 s3 = "x,8";
8411 goto do_addone_branch_i;
8412 case M_BGE_I:
8413 s = "slti";
8414 s2 = "bteqz";
8415 s3 = "x,8";
8416 goto do_branch_i;
8417 case M_BGEU_I:
8418 s = "sltiu";
8419 s2 = "bteqz";
8420 s3 = "x,8";
8421 goto do_branch_i;
8422 case M_BGT_I:
8423 s = "slti";
8424 s2 = "bteqz";
8425 s3 = "x,8";
8426 goto do_addone_branch_i;
8427 case M_BGTU_I:
8428 s = "sltiu";
8429 s2 = "bteqz";
8430 s3 = "x,8";
8431
8432 do_addone_branch_i:
8433 if (imm_expr.X_op != O_constant)
8434 as_bad (_("Unsupported large constant"));
8435 ++imm_expr.X_add_number;
8436
8437 do_branch_i:
8438 macro_build (&imm_expr, s, s3, xreg);
8439 macro_build (&offset_expr, s2, "p");
8440 break;
8441
8442 case M_ABS:
8443 expr1.X_add_number = 0;
8444 macro_build (&expr1, "slti", "x,8", yreg);
8445 if (xreg != yreg)
8446 move_register (xreg, yreg);
8447 expr1.X_add_number = 2;
8448 macro_build (&expr1, "bteqz", "p");
8449 macro_build (NULL, "neg", "x,w", xreg, xreg);
8450 }
8451 }
8452
8453 /* For consistency checking, verify that all bits are specified either
8454 by the match/mask part of the instruction definition, or by the
8455 operand list. */
8456 static int
8457 validate_mips_insn (const struct mips_opcode *opc)
8458 {
8459 const char *p = opc->args;
8460 char c;
8461 unsigned long used_bits = opc->mask;
8462
8463 if ((used_bits & opc->match) != opc->match)
8464 {
8465 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8466 opc->name, opc->args);
8467 return 0;
8468 }
8469 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8470 while (*p)
8471 switch (c = *p++)
8472 {
8473 case ',': break;
8474 case '(': break;
8475 case ')': break;
8476 case '+':
8477 switch (c = *p++)
8478 {
8479 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8480 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8481 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8482 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8483 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8484 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8485 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8486 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8487 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8488 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8489 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8490 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8491 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8492 case 'I': break;
8493 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8494 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8495 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8496 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8497 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8498 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8499 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8500 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8501 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8502 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8503 case 'z': USE_BITS (OP_MASK_RZ, OP_SH_RZ); break;
8504 case 'Z': USE_BITS (OP_MASK_FZ, OP_SH_FZ); break;
8505 case 'a': USE_BITS (OP_MASK_OFFSET_A, OP_SH_OFFSET_A); break;
8506 case 'b': USE_BITS (OP_MASK_OFFSET_B, OP_SH_OFFSET_B); break;
8507 case 'c': USE_BITS (OP_MASK_OFFSET_C, OP_SH_OFFSET_C); break;
8508
8509 default:
8510 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8511 c, opc->name, opc->args);
8512 return 0;
8513 }
8514 break;
8515 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8516 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8517 case 'A': break;
8518 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8519 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8520 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8521 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8522 case 'F': break;
8523 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8524 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8525 case 'I': break;
8526 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8527 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8528 case 'L': break;
8529 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8530 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8531 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8532 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8533 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8534 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8535 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8536 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8537 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8538 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8539 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8540 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8541 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8542 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8543 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8544 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8545 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8546 case 'f': break;
8547 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8548 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8549 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8550 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8551 case 'l': break;
8552 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8553 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8554 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8555 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8556 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8557 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8558 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8559 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8560 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8561 case 'x': break;
8562 case 'z': break;
8563 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8564 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8565 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8566 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8567 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8568 case '[': break;
8569 case ']': break;
8570 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8571 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8572 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8573 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8574 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8575 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8576 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8577 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8578 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8579 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8580 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8581 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8582 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8583 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8584 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8585 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8586 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8587 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8588 default:
8589 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8590 c, opc->name, opc->args);
8591 return 0;
8592 }
8593 #undef USE_BITS
8594 if (used_bits != 0xffffffff)
8595 {
8596 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8597 ~used_bits & 0xffffffff, opc->name, opc->args);
8598 return 0;
8599 }
8600 return 1;
8601 }
8602
8603 /* UDI immediates. */
8604 struct mips_immed {
8605 char type;
8606 unsigned int shift;
8607 unsigned long mask;
8608 const char * desc;
8609 };
8610
8611 static const struct mips_immed mips_immed[] = {
8612 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8613 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8614 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8615 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8616 { 0,0,0,0 }
8617 };
8618
8619 /* Check whether an odd floating-point register is allowed. */
8620 static int
8621 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8622 {
8623 const char *s = insn->name;
8624
8625 if (insn->pinfo == INSN_MACRO)
8626 /* Let a macro pass, we'll catch it later when it is expanded. */
8627 return 1;
8628
8629 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8630 {
8631 /* Allow odd registers for single-precision ops. */
8632 switch (insn->pinfo & (FP_S | FP_D))
8633 {
8634 case FP_S:
8635 case 0:
8636 return 1; /* both single precision - ok */
8637 case FP_D:
8638 return 0; /* both double precision - fail */
8639 default:
8640 break;
8641 }
8642
8643 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8644 s = strchr (insn->name, '.');
8645 if (argnum == 2)
8646 s = s != NULL ? strchr (s + 1, '.') : NULL;
8647 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8648 }
8649
8650 /* Single-precision coprocessor loads and moves are OK too. */
8651 if ((insn->pinfo & FP_S)
8652 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8653 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8654 return 1;
8655
8656 return 0;
8657 }
8658
8659 /* This routine assembles an instruction into its binary format. As a
8660 side effect, it sets one of the global variables imm_reloc or
8661 offset_reloc to the type of relocation to do if one of the operands
8662 is an address expression. */
8663
8664 static void
8665 mips_ip (char *str, struct mips_cl_insn *ip)
8666 {
8667 char *s;
8668 const char *args;
8669 char c = 0;
8670 struct mips_opcode *insn;
8671 char *argsStart;
8672 unsigned int regno;
8673 unsigned int lastregno;
8674 unsigned int lastpos = 0;
8675 unsigned int limlo, limhi;
8676 char *s_reset;
8677 char save_c = 0;
8678 offsetT min_range, max_range;
8679 int argnum;
8680 unsigned int rtype;
8681
8682 insn_error = NULL;
8683
8684 /* If the instruction contains a '.', we first try to match an instruction
8685 including the '.'. Then we try again without the '.'. */
8686 insn = NULL;
8687 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8688 continue;
8689
8690 /* If we stopped on whitespace, then replace the whitespace with null for
8691 the call to hash_find. Save the character we replaced just in case we
8692 have to re-parse the instruction. */
8693 if (ISSPACE (*s))
8694 {
8695 save_c = *s;
8696 *s++ = '\0';
8697 }
8698
8699 insn = (struct mips_opcode *) hash_find (op_hash, str);
8700
8701 /* If we didn't find the instruction in the opcode table, try again, but
8702 this time with just the instruction up to, but not including the
8703 first '.'. */
8704 if (insn == NULL)
8705 {
8706 /* Restore the character we overwrite above (if any). */
8707 if (save_c)
8708 *(--s) = save_c;
8709
8710 /* Scan up to the first '.' or whitespace. */
8711 for (s = str;
8712 *s != '\0' && *s != '.' && !ISSPACE (*s);
8713 ++s)
8714 continue;
8715
8716 /* If we did not find a '.', then we can quit now. */
8717 if (*s != '.')
8718 {
8719 insn_error = _("Unrecognized opcode");
8720 return;
8721 }
8722
8723 /* Lookup the instruction in the hash table. */
8724 *s++ = '\0';
8725 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8726 {
8727 insn_error = _("Unrecognized opcode");
8728 return;
8729 }
8730 }
8731
8732 argsStart = s;
8733 for (;;)
8734 {
8735 bfd_boolean ok;
8736
8737 gas_assert (strcmp (insn->name, str) == 0);
8738
8739 ok = is_opcode_valid (insn);
8740 if (! ok)
8741 {
8742 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8743 && strcmp (insn->name, insn[1].name) == 0)
8744 {
8745 ++insn;
8746 continue;
8747 }
8748 else
8749 {
8750 if (!insn_error)
8751 {
8752 static char buf[100];
8753 sprintf (buf,
8754 _("opcode not supported on this processor: %s (%s)"),
8755 mips_cpu_info_from_arch (mips_opts.arch)->name,
8756 mips_cpu_info_from_isa (mips_opts.isa)->name);
8757 insn_error = buf;
8758 }
8759 if (save_c)
8760 *(--s) = save_c;
8761 return;
8762 }
8763 }
8764
8765 create_insn (ip, insn);
8766 insn_error = NULL;
8767 argnum = 1;
8768 lastregno = 0xffffffff;
8769 for (args = insn->args;; ++args)
8770 {
8771 int is_mdmx;
8772
8773 s += strspn (s, " \t");
8774 is_mdmx = 0;
8775 switch (*args)
8776 {
8777 case '\0': /* end of args */
8778 if (*s == '\0')
8779 return;
8780 break;
8781
8782 case '2': /* DSP 2-bit unsigned immediate in bit 11. */
8783 my_getExpression (&imm_expr, s);
8784 check_absolute_expr (ip, &imm_expr);
8785 if ((unsigned long) imm_expr.X_add_number != 1
8786 && (unsigned long) imm_expr.X_add_number != 3)
8787 {
8788 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8789 (unsigned long) imm_expr.X_add_number);
8790 }
8791 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8792 imm_expr.X_op = O_absent;
8793 s = expr_end;
8794 continue;
8795
8796 case '3': /* DSP 3-bit unsigned immediate in bit 21. */
8797 my_getExpression (&imm_expr, s);
8798 check_absolute_expr (ip, &imm_expr);
8799 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8800 {
8801 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8802 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8803 }
8804 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8805 imm_expr.X_op = O_absent;
8806 s = expr_end;
8807 continue;
8808
8809 case '4': /* DSP 4-bit unsigned immediate in bit 21. */
8810 my_getExpression (&imm_expr, s);
8811 check_absolute_expr (ip, &imm_expr);
8812 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8813 {
8814 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8815 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8816 }
8817 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8818 imm_expr.X_op = O_absent;
8819 s = expr_end;
8820 continue;
8821
8822 case '5': /* DSP 8-bit unsigned immediate in bit 16. */
8823 my_getExpression (&imm_expr, s);
8824 check_absolute_expr (ip, &imm_expr);
8825 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8826 {
8827 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8828 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8829 }
8830 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8831 imm_expr.X_op = O_absent;
8832 s = expr_end;
8833 continue;
8834
8835 case '6': /* DSP 5-bit unsigned immediate in bit 21. */
8836 my_getExpression (&imm_expr, s);
8837 check_absolute_expr (ip, &imm_expr);
8838 if (imm_expr.X_add_number & ~OP_MASK_RS)
8839 {
8840 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8841 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8842 }
8843 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8844 imm_expr.X_op = O_absent;
8845 s = expr_end;
8846 continue;
8847
8848 case '7': /* Four DSP accumulators in bits 11,12. */
8849 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8850 s[3] >= '0' && s[3] <= '3')
8851 {
8852 regno = s[3] - '0';
8853 s += 4;
8854 INSERT_OPERAND (DSPACC, *ip, regno);
8855 continue;
8856 }
8857 else
8858 as_bad (_("Invalid dsp acc register"));
8859 break;
8860
8861 case '8': /* DSP 6-bit unsigned immediate in bit 11. */
8862 my_getExpression (&imm_expr, s);
8863 check_absolute_expr (ip, &imm_expr);
8864 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8865 {
8866 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8867 OP_MASK_WRDSP,
8868 (unsigned long) imm_expr.X_add_number);
8869 }
8870 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8871 imm_expr.X_op = O_absent;
8872 s = expr_end;
8873 continue;
8874
8875 case '9': /* Four DSP accumulators in bits 21,22. */
8876 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8877 s[3] >= '0' && s[3] <= '3')
8878 {
8879 regno = s[3] - '0';
8880 s += 4;
8881 INSERT_OPERAND (DSPACC_S, *ip, regno);
8882 continue;
8883 }
8884 else
8885 as_bad (_("Invalid dsp acc register"));
8886 break;
8887
8888 case '0': /* DSP 6-bit signed immediate in bit 20. */
8889 my_getExpression (&imm_expr, s);
8890 check_absolute_expr (ip, &imm_expr);
8891 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8892 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8893 if (imm_expr.X_add_number < min_range ||
8894 imm_expr.X_add_number > max_range)
8895 {
8896 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8897 (long) min_range, (long) max_range,
8898 (long) imm_expr.X_add_number);
8899 }
8900 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8901 imm_expr.X_op = O_absent;
8902 s = expr_end;
8903 continue;
8904
8905 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
8906 my_getExpression (&imm_expr, s);
8907 check_absolute_expr (ip, &imm_expr);
8908 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8909 {
8910 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8911 OP_MASK_RDDSP,
8912 (unsigned long) imm_expr.X_add_number);
8913 }
8914 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8915 imm_expr.X_op = O_absent;
8916 s = expr_end;
8917 continue;
8918
8919 case ':': /* DSP 7-bit signed immediate in bit 19. */
8920 my_getExpression (&imm_expr, s);
8921 check_absolute_expr (ip, &imm_expr);
8922 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8923 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8924 if (imm_expr.X_add_number < min_range ||
8925 imm_expr.X_add_number > max_range)
8926 {
8927 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8928 (long) min_range, (long) max_range,
8929 (long) imm_expr.X_add_number);
8930 }
8931 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8932 imm_expr.X_op = O_absent;
8933 s = expr_end;
8934 continue;
8935
8936 case '@': /* DSP 10-bit signed immediate in bit 16. */
8937 my_getExpression (&imm_expr, s);
8938 check_absolute_expr (ip, &imm_expr);
8939 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8940 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8941 if (imm_expr.X_add_number < min_range ||
8942 imm_expr.X_add_number > max_range)
8943 {
8944 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8945 (long) min_range, (long) max_range,
8946 (long) imm_expr.X_add_number);
8947 }
8948 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8949 imm_expr.X_op = O_absent;
8950 s = expr_end;
8951 continue;
8952
8953 case '!': /* MT usermode flag bit. */
8954 my_getExpression (&imm_expr, s);
8955 check_absolute_expr (ip, &imm_expr);
8956 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8957 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8958 (unsigned long) imm_expr.X_add_number);
8959 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8960 imm_expr.X_op = O_absent;
8961 s = expr_end;
8962 continue;
8963
8964 case '$': /* MT load high flag bit. */
8965 my_getExpression (&imm_expr, s);
8966 check_absolute_expr (ip, &imm_expr);
8967 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8968 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8969 (unsigned long) imm_expr.X_add_number);
8970 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8971 imm_expr.X_op = O_absent;
8972 s = expr_end;
8973 continue;
8974
8975 case '*': /* Four DSP accumulators in bits 18,19. */
8976 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8977 s[3] >= '0' && s[3] <= '3')
8978 {
8979 regno = s[3] - '0';
8980 s += 4;
8981 INSERT_OPERAND (MTACC_T, *ip, regno);
8982 continue;
8983 }
8984 else
8985 as_bad (_("Invalid dsp/smartmips acc register"));
8986 break;
8987
8988 case '&': /* Four DSP accumulators in bits 13,14. */
8989 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8990 s[3] >= '0' && s[3] <= '3')
8991 {
8992 regno = s[3] - '0';
8993 s += 4;
8994 INSERT_OPERAND (MTACC_D, *ip, regno);
8995 continue;
8996 }
8997 else
8998 as_bad (_("Invalid dsp/smartmips acc register"));
8999 break;
9000
9001 case ',':
9002 ++argnum;
9003 if (*s++ == *args)
9004 continue;
9005 s--;
9006 switch (*++args)
9007 {
9008 case 'r':
9009 case 'v':
9010 INSERT_OPERAND (RS, *ip, lastregno);
9011 continue;
9012
9013 case 'w':
9014 INSERT_OPERAND (RT, *ip, lastregno);
9015 continue;
9016
9017 case 'W':
9018 INSERT_OPERAND (FT, *ip, lastregno);
9019 continue;
9020
9021 case 'V':
9022 INSERT_OPERAND (FS, *ip, lastregno);
9023 continue;
9024 }
9025 break;
9026
9027 case '(':
9028 /* Handle optional base register.
9029 Either the base register is omitted or
9030 we must have a left paren. */
9031 /* This is dependent on the next operand specifier
9032 is a base register specification. */
9033 gas_assert (args[1] == 'b');
9034 if (*s == '\0')
9035 return;
9036
9037 case ')': /* These must match exactly. */
9038 case '[':
9039 case ']':
9040 if (*s++ == *args)
9041 continue;
9042 break;
9043
9044 case '+': /* Opcode extension character. */
9045 switch (*++args)
9046 {
9047 case '1': /* UDI immediates. */
9048 case '2':
9049 case '3':
9050 case '4':
9051 {
9052 const struct mips_immed *imm = mips_immed;
9053
9054 while (imm->type && imm->type != *args)
9055 ++imm;
9056 if (! imm->type)
9057 internalError ();
9058 my_getExpression (&imm_expr, s);
9059 check_absolute_expr (ip, &imm_expr);
9060 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9061 {
9062 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9063 imm->desc ? imm->desc : ip->insn_mo->name,
9064 (unsigned long) imm_expr.X_add_number,
9065 (unsigned long) imm_expr.X_add_number);
9066 imm_expr.X_add_number &= imm->mask;
9067 }
9068 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9069 << imm->shift);
9070 imm_expr.X_op = O_absent;
9071 s = expr_end;
9072 }
9073 continue;
9074
9075 case 'A': /* ins/ext position, becomes LSB. */
9076 limlo = 0;
9077 limhi = 31;
9078 goto do_lsb;
9079 case 'E':
9080 limlo = 32;
9081 limhi = 63;
9082 goto do_lsb;
9083 do_lsb:
9084 my_getExpression (&imm_expr, s);
9085 check_absolute_expr (ip, &imm_expr);
9086 if ((unsigned long) imm_expr.X_add_number < limlo
9087 || (unsigned long) imm_expr.X_add_number > limhi)
9088 {
9089 as_bad (_("Improper position (%lu)"),
9090 (unsigned long) imm_expr.X_add_number);
9091 imm_expr.X_add_number = limlo;
9092 }
9093 lastpos = imm_expr.X_add_number;
9094 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9095 imm_expr.X_op = O_absent;
9096 s = expr_end;
9097 continue;
9098
9099 case 'B': /* ins size, becomes MSB. */
9100 limlo = 1;
9101 limhi = 32;
9102 goto do_msb;
9103 case 'F':
9104 limlo = 33;
9105 limhi = 64;
9106 goto do_msb;
9107 do_msb:
9108 my_getExpression (&imm_expr, s);
9109 check_absolute_expr (ip, &imm_expr);
9110 /* Check for negative input so that small negative numbers
9111 will not succeed incorrectly. The checks against
9112 (pos+size) transitively check "size" itself,
9113 assuming that "pos" is reasonable. */
9114 if ((long) imm_expr.X_add_number < 0
9115 || ((unsigned long) imm_expr.X_add_number
9116 + lastpos) < limlo
9117 || ((unsigned long) imm_expr.X_add_number
9118 + lastpos) > limhi)
9119 {
9120 as_bad (_("Improper insert size (%lu, position %lu)"),
9121 (unsigned long) imm_expr.X_add_number,
9122 (unsigned long) lastpos);
9123 imm_expr.X_add_number = limlo - lastpos;
9124 }
9125 INSERT_OPERAND (INSMSB, *ip,
9126 lastpos + imm_expr.X_add_number - 1);
9127 imm_expr.X_op = O_absent;
9128 s = expr_end;
9129 continue;
9130
9131 case 'C': /* ext size, becomes MSBD. */
9132 limlo = 1;
9133 limhi = 32;
9134 goto do_msbd;
9135 case 'G':
9136 limlo = 33;
9137 limhi = 64;
9138 goto do_msbd;
9139 case 'H':
9140 limlo = 33;
9141 limhi = 64;
9142 goto do_msbd;
9143 do_msbd:
9144 my_getExpression (&imm_expr, s);
9145 check_absolute_expr (ip, &imm_expr);
9146 /* Check for negative input so that small negative numbers
9147 will not succeed incorrectly. The checks against
9148 (pos+size) transitively check "size" itself,
9149 assuming that "pos" is reasonable. */
9150 if ((long) imm_expr.X_add_number < 0
9151 || ((unsigned long) imm_expr.X_add_number
9152 + lastpos) < limlo
9153 || ((unsigned long) imm_expr.X_add_number
9154 + lastpos) > limhi)
9155 {
9156 as_bad (_("Improper extract size (%lu, position %lu)"),
9157 (unsigned long) imm_expr.X_add_number,
9158 (unsigned long) lastpos);
9159 imm_expr.X_add_number = limlo - lastpos;
9160 }
9161 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9162 imm_expr.X_op = O_absent;
9163 s = expr_end;
9164 continue;
9165
9166 case 'D':
9167 /* +D is for disassembly only; never match. */
9168 break;
9169
9170 case 'I':
9171 /* "+I" is like "I", except that imm2_expr is used. */
9172 my_getExpression (&imm2_expr, s);
9173 if (imm2_expr.X_op != O_big
9174 && imm2_expr.X_op != O_constant)
9175 insn_error = _("absolute expression required");
9176 if (HAVE_32BIT_GPRS)
9177 normalize_constant_expr (&imm2_expr);
9178 s = expr_end;
9179 continue;
9180
9181 case 'T': /* Coprocessor register. */
9182 /* +T is for disassembly only; never match. */
9183 break;
9184
9185 case 't': /* Coprocessor register number. */
9186 if (s[0] == '$' && ISDIGIT (s[1]))
9187 {
9188 ++s;
9189 regno = 0;
9190 do
9191 {
9192 regno *= 10;
9193 regno += *s - '0';
9194 ++s;
9195 }
9196 while (ISDIGIT (*s));
9197 if (regno > 31)
9198 as_bad (_("Invalid register number (%d)"), regno);
9199 else
9200 {
9201 INSERT_OPERAND (RT, *ip, regno);
9202 continue;
9203 }
9204 }
9205 else
9206 as_bad (_("Invalid coprocessor 0 register number"));
9207 break;
9208
9209 case 'x':
9210 /* bbit[01] and bbit[01]32 bit index. Give error if index
9211 is not in the valid range. */
9212 my_getExpression (&imm_expr, s);
9213 check_absolute_expr (ip, &imm_expr);
9214 if ((unsigned) imm_expr.X_add_number > 31)
9215 {
9216 as_bad (_("Improper bit index (%lu)"),
9217 (unsigned long) imm_expr.X_add_number);
9218 imm_expr.X_add_number = 0;
9219 }
9220 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9221 imm_expr.X_op = O_absent;
9222 s = expr_end;
9223 continue;
9224
9225 case 'X':
9226 /* bbit[01] bit index when bbit is used but we generate
9227 bbit[01]32 because the index is over 32. Move to the
9228 next candidate if index is not in the valid range. */
9229 my_getExpression (&imm_expr, s);
9230 check_absolute_expr (ip, &imm_expr);
9231 if ((unsigned) imm_expr.X_add_number < 32
9232 || (unsigned) imm_expr.X_add_number > 63)
9233 break;
9234 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9235 imm_expr.X_op = O_absent;
9236 s = expr_end;
9237 continue;
9238
9239 case 'p':
9240 /* cins, cins32, exts and exts32 position field. Give error
9241 if it's not in the valid range. */
9242 my_getExpression (&imm_expr, s);
9243 check_absolute_expr (ip, &imm_expr);
9244 if ((unsigned) imm_expr.X_add_number > 31)
9245 {
9246 as_bad (_("Improper position (%lu)"),
9247 (unsigned long) imm_expr.X_add_number);
9248 imm_expr.X_add_number = 0;
9249 }
9250 /* Make the pos explicit to simplify +S. */
9251 lastpos = imm_expr.X_add_number + 32;
9252 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9253 imm_expr.X_op = O_absent;
9254 s = expr_end;
9255 continue;
9256
9257 case 'P':
9258 /* cins, cins32, exts and exts32 position field. Move to
9259 the next candidate if it's not in the valid range. */
9260 my_getExpression (&imm_expr, s);
9261 check_absolute_expr (ip, &imm_expr);
9262 if ((unsigned) imm_expr.X_add_number < 32
9263 || (unsigned) imm_expr.X_add_number > 63)
9264 break;
9265 lastpos = imm_expr.X_add_number;
9266 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9267 imm_expr.X_op = O_absent;
9268 s = expr_end;
9269 continue;
9270
9271 case 's':
9272 /* cins and exts length-minus-one field. */
9273 my_getExpression (&imm_expr, s);
9274 check_absolute_expr (ip, &imm_expr);
9275 if ((unsigned long) imm_expr.X_add_number > 31)
9276 {
9277 as_bad (_("Improper size (%lu)"),
9278 (unsigned long) imm_expr.X_add_number);
9279 imm_expr.X_add_number = 0;
9280 }
9281 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9282 imm_expr.X_op = O_absent;
9283 s = expr_end;
9284 continue;
9285
9286 case 'S':
9287 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9288 length-minus-one field. */
9289 my_getExpression (&imm_expr, s);
9290 check_absolute_expr (ip, &imm_expr);
9291 if ((long) imm_expr.X_add_number < 0
9292 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9293 {
9294 as_bad (_("Improper size (%lu)"),
9295 (unsigned long) imm_expr.X_add_number);
9296 imm_expr.X_add_number = 0;
9297 }
9298 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9299 imm_expr.X_op = O_absent;
9300 s = expr_end;
9301 continue;
9302
9303 case 'Q':
9304 /* seqi/snei immediate field. */
9305 my_getExpression (&imm_expr, s);
9306 check_absolute_expr (ip, &imm_expr);
9307 if ((long) imm_expr.X_add_number < -512
9308 || (long) imm_expr.X_add_number >= 512)
9309 {
9310 as_bad (_("Improper immediate (%ld)"),
9311 (long) imm_expr.X_add_number);
9312 imm_expr.X_add_number = 0;
9313 }
9314 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9315 imm_expr.X_op = O_absent;
9316 s = expr_end;
9317 continue;
9318
9319 case 'a': /* 8-bit signed offset in bit 6 */
9320 my_getExpression (&imm_expr, s);
9321 check_absolute_expr (ip, &imm_expr);
9322 min_range = -((OP_MASK_OFFSET_A + 1) >> 1);
9323 max_range = ((OP_MASK_OFFSET_A + 1) >> 1) - 1;
9324 if (imm_expr.X_add_number < min_range
9325 || imm_expr.X_add_number > max_range)
9326 {
9327 as_bad (_("Offset not in range %ld..%ld (%ld)"),
9328 (long) min_range, (long) max_range,
9329 (long) imm_expr.X_add_number);
9330 }
9331 INSERT_OPERAND (OFFSET_A, *ip, imm_expr.X_add_number);
9332 imm_expr.X_op = O_absent;
9333 s = expr_end;
9334 continue;
9335
9336 case 'b': /* 8-bit signed offset in bit 3 */
9337 my_getExpression (&imm_expr, s);
9338 check_absolute_expr (ip, &imm_expr);
9339 min_range = -((OP_MASK_OFFSET_B + 1) >> 1);
9340 max_range = ((OP_MASK_OFFSET_B + 1) >> 1) - 1;
9341 if (imm_expr.X_add_number < min_range
9342 || imm_expr.X_add_number > max_range)
9343 {
9344 as_bad (_("Offset not in range %ld..%ld (%ld)"),
9345 (long) min_range, (long) max_range,
9346 (long) imm_expr.X_add_number);
9347 }
9348 INSERT_OPERAND (OFFSET_B, *ip, imm_expr.X_add_number);
9349 imm_expr.X_op = O_absent;
9350 s = expr_end;
9351 continue;
9352
9353 case 'c': /* 9-bit signed offset in bit 6 */
9354 my_getExpression (&imm_expr, s);
9355 check_absolute_expr (ip, &imm_expr);
9356 min_range = -((OP_MASK_OFFSET_C + 1) >> 1);
9357 max_range = ((OP_MASK_OFFSET_C + 1) >> 1) - 1;
9358 /* We check the offset range before adjusted. */
9359 min_range <<= 4;
9360 max_range <<= 4;
9361 if (imm_expr.X_add_number < min_range
9362 || imm_expr.X_add_number > max_range)
9363 {
9364 as_bad (_("Offset not in range %ld..%ld (%ld)"),
9365 (long) min_range, (long) max_range,
9366 (long) imm_expr.X_add_number);
9367 }
9368 if (imm_expr.X_add_number & 0xf)
9369 {
9370 as_bad (_("Offset not 16 bytes alignment (%ld)"),
9371 (long) imm_expr.X_add_number);
9372 }
9373 /* Right shift 4 bits to adjust the offset operand. */
9374 INSERT_OPERAND (OFFSET_C, *ip, imm_expr.X_add_number >> 4);
9375 imm_expr.X_op = O_absent;
9376 s = expr_end;
9377 continue;
9378
9379 case 'z':
9380 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
9381 break;
9382 if (regno == AT && mips_opts.at)
9383 {
9384 if (mips_opts.at == ATREG)
9385 as_warn (_("used $at without \".set noat\""));
9386 else
9387 as_warn (_("used $%u with \".set at=$%u\""),
9388 regno, mips_opts.at);
9389 }
9390 INSERT_OPERAND (RZ, *ip, regno);
9391 continue;
9392
9393 case 'Z':
9394 if (!reg_lookup (&s, RTYPE_FPU, &regno))
9395 break;
9396 INSERT_OPERAND (FZ, *ip, regno);
9397 continue;
9398
9399 default:
9400 as_bad (_("Internal error: bad mips opcode "
9401 "(unknown extension operand type `+%c'): %s %s"),
9402 *args, insn->name, insn->args);
9403 /* Further processing is fruitless. */
9404 return;
9405 }
9406 break;
9407
9408 case '<': /* must be at least one digit */
9409 /*
9410 * According to the manual, if the shift amount is greater
9411 * than 31 or less than 0, then the shift amount should be
9412 * mod 32. In reality the mips assembler issues an error.
9413 * We issue a warning and mask out all but the low 5 bits.
9414 */
9415 my_getExpression (&imm_expr, s);
9416 check_absolute_expr (ip, &imm_expr);
9417 if ((unsigned long) imm_expr.X_add_number > 31)
9418 as_warn (_("Improper shift amount (%lu)"),
9419 (unsigned long) imm_expr.X_add_number);
9420 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9421 imm_expr.X_op = O_absent;
9422 s = expr_end;
9423 continue;
9424
9425 case '>': /* shift amount minus 32 */
9426 my_getExpression (&imm_expr, s);
9427 check_absolute_expr (ip, &imm_expr);
9428 if ((unsigned long) imm_expr.X_add_number < 32
9429 || (unsigned long) imm_expr.X_add_number > 63)
9430 break;
9431 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9432 imm_expr.X_op = O_absent;
9433 s = expr_end;
9434 continue;
9435
9436 case 'k': /* CACHE code. */
9437 case 'h': /* PREFX code. */
9438 case '1': /* SYNC type. */
9439 my_getExpression (&imm_expr, s);
9440 check_absolute_expr (ip, &imm_expr);
9441 if ((unsigned long) imm_expr.X_add_number > 31)
9442 as_warn (_("Invalid value for `%s' (%lu)"),
9443 ip->insn_mo->name,
9444 (unsigned long) imm_expr.X_add_number);
9445 if (*args == 'k')
9446 {
9447 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9448 switch (imm_expr.X_add_number)
9449 {
9450 case 5:
9451 case 25:
9452 case 26:
9453 case 27:
9454 case 28:
9455 case 29:
9456 case 30:
9457 case 31: /* These are ok. */
9458 break;
9459
9460 default: /* The rest must be changed to 28. */
9461 imm_expr.X_add_number = 28;
9462 break;
9463 }
9464 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9465 }
9466 else if (*args == 'h')
9467 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9468 else
9469 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9470 imm_expr.X_op = O_absent;
9471 s = expr_end;
9472 continue;
9473
9474 case 'c': /* BREAK code. */
9475 my_getExpression (&imm_expr, s);
9476 check_absolute_expr (ip, &imm_expr);
9477 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9478 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9479 ip->insn_mo->name,
9480 (unsigned long) imm_expr.X_add_number);
9481 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9482 imm_expr.X_op = O_absent;
9483 s = expr_end;
9484 continue;
9485
9486 case 'q': /* Lower BREAK code. */
9487 my_getExpression (&imm_expr, s);
9488 check_absolute_expr (ip, &imm_expr);
9489 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9490 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9491 ip->insn_mo->name,
9492 (unsigned long) imm_expr.X_add_number);
9493 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9494 imm_expr.X_op = O_absent;
9495 s = expr_end;
9496 continue;
9497
9498 case 'B': /* 20-bit SYSCALL/BREAK code. */
9499 my_getExpression (&imm_expr, s);
9500 check_absolute_expr (ip, &imm_expr);
9501 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9502 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9503 ip->insn_mo->name,
9504 (unsigned long) imm_expr.X_add_number);
9505 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9506 imm_expr.X_op = O_absent;
9507 s = expr_end;
9508 continue;
9509
9510 case 'C': /* Coprocessor code. */
9511 my_getExpression (&imm_expr, s);
9512 check_absolute_expr (ip, &imm_expr);
9513 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9514 {
9515 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9516 (unsigned long) imm_expr.X_add_number);
9517 imm_expr.X_add_number &= OP_MASK_COPZ;
9518 }
9519 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9520 imm_expr.X_op = O_absent;
9521 s = expr_end;
9522 continue;
9523
9524 case 'J': /* 19-bit WAIT code. */
9525 my_getExpression (&imm_expr, s);
9526 check_absolute_expr (ip, &imm_expr);
9527 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9528 {
9529 as_warn (_("Illegal 19-bit code (%lu)"),
9530 (unsigned long) imm_expr.X_add_number);
9531 imm_expr.X_add_number &= OP_MASK_CODE19;
9532 }
9533 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9534 imm_expr.X_op = O_absent;
9535 s = expr_end;
9536 continue;
9537
9538 case 'P': /* Performance register. */
9539 my_getExpression (&imm_expr, s);
9540 check_absolute_expr (ip, &imm_expr);
9541 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9542 as_warn (_("Invalid performance register (%lu)"),
9543 (unsigned long) imm_expr.X_add_number);
9544 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9545 imm_expr.X_op = O_absent;
9546 s = expr_end;
9547 continue;
9548
9549 case 'G': /* Coprocessor destination register. */
9550 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9551 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9552 else
9553 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9554 INSERT_OPERAND (RD, *ip, regno);
9555 if (ok)
9556 {
9557 lastregno = regno;
9558 continue;
9559 }
9560 else
9561 break;
9562
9563 case 'b': /* Base register. */
9564 case 'd': /* Destination register. */
9565 case 's': /* Source register. */
9566 case 't': /* Target register. */
9567 case 'r': /* Both target and source. */
9568 case 'v': /* Both dest and source. */
9569 case 'w': /* Both dest and target. */
9570 case 'E': /* Coprocessor target register. */
9571 case 'K': /* RDHWR destination register. */
9572 case 'x': /* Ignore register name. */
9573 case 'z': /* Must be zero register. */
9574 case 'U': /* Destination register (CLO/CLZ). */
9575 case 'g': /* Coprocessor destination register. */
9576 s_reset = s;
9577 if (*args == 'E' || *args == 'K')
9578 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9579 else
9580 {
9581 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9582 if (regno == AT && mips_opts.at)
9583 {
9584 if (mips_opts.at == ATREG)
9585 as_warn (_("Used $at without \".set noat\""));
9586 else
9587 as_warn (_("Used $%u with \".set at=$%u\""),
9588 regno, mips_opts.at);
9589 }
9590 }
9591 if (ok)
9592 {
9593 c = *args;
9594 if (*s == ' ')
9595 ++s;
9596 if (args[1] != *s)
9597 {
9598 if (c == 'r' || c == 'v' || c == 'w')
9599 {
9600 regno = lastregno;
9601 s = s_reset;
9602 ++args;
9603 }
9604 }
9605 /* 'z' only matches $0. */
9606 if (c == 'z' && regno != 0)
9607 break;
9608
9609 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9610 {
9611 if (regno == lastregno)
9612 {
9613 insn_error
9614 = _("Source and destination must be different");
9615 continue;
9616 }
9617 if (regno == 31 && lastregno == 0xffffffff)
9618 {
9619 insn_error
9620 = _("A destination register must be supplied");
9621 continue;
9622 }
9623 }
9624 /* Now that we have assembled one operand, we use the args
9625 string to figure out where it goes in the instruction. */
9626 switch (c)
9627 {
9628 case 'r':
9629 case 's':
9630 case 'v':
9631 case 'b':
9632 INSERT_OPERAND (RS, *ip, regno);
9633 break;
9634 case 'd':
9635 case 'K':
9636 case 'g':
9637 INSERT_OPERAND (RD, *ip, regno);
9638 break;
9639 case 'U':
9640 INSERT_OPERAND (RD, *ip, regno);
9641 INSERT_OPERAND (RT, *ip, regno);
9642 break;
9643 case 'w':
9644 case 't':
9645 case 'E':
9646 INSERT_OPERAND (RT, *ip, regno);
9647 break;
9648 case 'x':
9649 /* This case exists because on the r3000 trunc
9650 expands into a macro which requires a gp
9651 register. On the r6000 or r4000 it is
9652 assembled into a single instruction which
9653 ignores the register. Thus the insn version
9654 is MIPS_ISA2 and uses 'x', and the macro
9655 version is MIPS_ISA1 and uses 't'. */
9656 break;
9657 case 'z':
9658 /* This case is for the div instruction, which
9659 acts differently if the destination argument
9660 is $0. This only matches $0, and is checked
9661 outside the switch. */
9662 break;
9663 }
9664 lastregno = regno;
9665 continue;
9666 }
9667 switch (*args++)
9668 {
9669 case 'r':
9670 case 'v':
9671 INSERT_OPERAND (RS, *ip, lastregno);
9672 continue;
9673 case 'w':
9674 INSERT_OPERAND (RT, *ip, lastregno);
9675 continue;
9676 }
9677 break;
9678
9679 case 'O': /* MDMX alignment immediate constant. */
9680 my_getExpression (&imm_expr, s);
9681 check_absolute_expr (ip, &imm_expr);
9682 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9683 as_warn (_("Improper align amount (%ld), using low bits"),
9684 (long) imm_expr.X_add_number);
9685 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9686 imm_expr.X_op = O_absent;
9687 s = expr_end;
9688 continue;
9689
9690 case 'Q': /* MDMX vector, element sel, or const. */
9691 if (s[0] != '$')
9692 {
9693 /* MDMX Immediate. */
9694 my_getExpression (&imm_expr, s);
9695 check_absolute_expr (ip, &imm_expr);
9696 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9697 as_warn (_("Invalid MDMX Immediate (%ld)"),
9698 (long) imm_expr.X_add_number);
9699 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9700 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9701 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9702 else
9703 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9704 imm_expr.X_op = O_absent;
9705 s = expr_end;
9706 continue;
9707 }
9708 /* Not MDMX Immediate. Fall through. */
9709 case 'X': /* MDMX destination register. */
9710 case 'Y': /* MDMX source register. */
9711 case 'Z': /* MDMX target register. */
9712 is_mdmx = 1;
9713 case 'D': /* Floating point destination register. */
9714 case 'S': /* Floating point source register. */
9715 case 'T': /* Floating point target register. */
9716 case 'R': /* Floating point source register. */
9717 case 'V':
9718 case 'W':
9719 rtype = RTYPE_FPU;
9720 if (is_mdmx
9721 || (mips_opts.ase_mdmx
9722 && (ip->insn_mo->pinfo & FP_D)
9723 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9724 | INSN_COPROC_MEMORY_DELAY
9725 | INSN_LOAD_COPROC_DELAY
9726 | INSN_LOAD_MEMORY_DELAY
9727 | INSN_STORE_MEMORY))))
9728 rtype |= RTYPE_VEC;
9729 s_reset = s;
9730 if (reg_lookup (&s, rtype, &regno))
9731 {
9732 if ((regno & 1) != 0
9733 && HAVE_32BIT_FPRS
9734 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
9735 as_warn (_("Float register should be even, was %d"),
9736 regno);
9737
9738 c = *args;
9739 if (*s == ' ')
9740 ++s;
9741 if (args[1] != *s)
9742 {
9743 if (c == 'V' || c == 'W')
9744 {
9745 regno = lastregno;
9746 s = s_reset;
9747 ++args;
9748 }
9749 }
9750 switch (c)
9751 {
9752 case 'D':
9753 case 'X':
9754 INSERT_OPERAND (FD, *ip, regno);
9755 break;
9756 case 'V':
9757 case 'S':
9758 case 'Y':
9759 INSERT_OPERAND (FS, *ip, regno);
9760 break;
9761 case 'Q':
9762 /* This is like 'Z', but also needs to fix the MDMX
9763 vector/scalar select bits. Note that the
9764 scalar immediate case is handled above. */
9765 if (*s == '[')
9766 {
9767 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9768 int max_el = (is_qh ? 3 : 7);
9769 s++;
9770 my_getExpression(&imm_expr, s);
9771 check_absolute_expr (ip, &imm_expr);
9772 s = expr_end;
9773 if (imm_expr.X_add_number > max_el)
9774 as_bad (_("Bad element selector %ld"),
9775 (long) imm_expr.X_add_number);
9776 imm_expr.X_add_number &= max_el;
9777 ip->insn_opcode |= (imm_expr.X_add_number
9778 << (OP_SH_VSEL +
9779 (is_qh ? 2 : 1)));
9780 imm_expr.X_op = O_absent;
9781 if (*s != ']')
9782 as_warn (_("Expecting ']' found '%s'"), s);
9783 else
9784 s++;
9785 }
9786 else
9787 {
9788 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9789 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9790 << OP_SH_VSEL);
9791 else
9792 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9793 OP_SH_VSEL);
9794 }
9795 /* Fall through. */
9796 case 'W':
9797 case 'T':
9798 case 'Z':
9799 INSERT_OPERAND (FT, *ip, regno);
9800 break;
9801 case 'R':
9802 INSERT_OPERAND (FR, *ip, regno);
9803 break;
9804 }
9805 lastregno = regno;
9806 continue;
9807 }
9808
9809 switch (*args++)
9810 {
9811 case 'V':
9812 INSERT_OPERAND (FS, *ip, lastregno);
9813 continue;
9814 case 'W':
9815 INSERT_OPERAND (FT, *ip, lastregno);
9816 continue;
9817 }
9818 break;
9819
9820 case 'I':
9821 my_getExpression (&imm_expr, s);
9822 if (imm_expr.X_op != O_big
9823 && imm_expr.X_op != O_constant)
9824 insn_error = _("absolute expression required");
9825 if (HAVE_32BIT_GPRS)
9826 normalize_constant_expr (&imm_expr);
9827 s = expr_end;
9828 continue;
9829
9830 case 'A':
9831 my_getExpression (&offset_expr, s);
9832 normalize_address_expr (&offset_expr);
9833 *imm_reloc = BFD_RELOC_32;
9834 s = expr_end;
9835 continue;
9836
9837 case 'F':
9838 case 'L':
9839 case 'f':
9840 case 'l':
9841 {
9842 int f64;
9843 int using_gprs;
9844 char *save_in;
9845 char *err;
9846 unsigned char temp[8];
9847 int len;
9848 unsigned int length;
9849 segT seg;
9850 subsegT subseg;
9851 char *p;
9852
9853 /* These only appear as the last operand in an
9854 instruction, and every instruction that accepts
9855 them in any variant accepts them in all variants.
9856 This means we don't have to worry about backing out
9857 any changes if the instruction does not match.
9858
9859 The difference between them is the size of the
9860 floating point constant and where it goes. For 'F'
9861 and 'L' the constant is 64 bits; for 'f' and 'l' it
9862 is 32 bits. Where the constant is placed is based
9863 on how the MIPS assembler does things:
9864 F -- .rdata
9865 L -- .lit8
9866 f -- immediate value
9867 l -- .lit4
9868
9869 The .lit4 and .lit8 sections are only used if
9870 permitted by the -G argument.
9871
9872 The code below needs to know whether the target register
9873 is 32 or 64 bits wide. It relies on the fact 'f' and
9874 'F' are used with GPR-based instructions and 'l' and
9875 'L' are used with FPR-based instructions. */
9876
9877 f64 = *args == 'F' || *args == 'L';
9878 using_gprs = *args == 'F' || *args == 'f';
9879
9880 save_in = input_line_pointer;
9881 input_line_pointer = s;
9882 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9883 length = len;
9884 s = input_line_pointer;
9885 input_line_pointer = save_in;
9886 if (err != NULL && *err != '\0')
9887 {
9888 as_bad (_("Bad floating point constant: %s"), err);
9889 memset (temp, '\0', sizeof temp);
9890 length = f64 ? 8 : 4;
9891 }
9892
9893 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9894
9895 if (*args == 'f'
9896 || (*args == 'l'
9897 && (g_switch_value < 4
9898 || (temp[0] == 0 && temp[1] == 0)
9899 || (temp[2] == 0 && temp[3] == 0))))
9900 {
9901 imm_expr.X_op = O_constant;
9902 if (!target_big_endian)
9903 imm_expr.X_add_number = bfd_getl32 (temp);
9904 else
9905 imm_expr.X_add_number = bfd_getb32 (temp);
9906 }
9907 else if (length > 4
9908 && !mips_disable_float_construction
9909 /* Constants can only be constructed in GPRs and
9910 copied to FPRs if the GPRs are at least as wide
9911 as the FPRs. Force the constant into memory if
9912 we are using 64-bit FPRs but the GPRs are only
9913 32 bits wide. */
9914 && (using_gprs
9915 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9916 && ((temp[0] == 0 && temp[1] == 0)
9917 || (temp[2] == 0 && temp[3] == 0))
9918 && ((temp[4] == 0 && temp[5] == 0)
9919 || (temp[6] == 0 && temp[7] == 0)))
9920 {
9921 /* The value is simple enough to load with a couple of
9922 instructions. If using 32-bit registers, set
9923 imm_expr to the high order 32 bits and offset_expr to
9924 the low order 32 bits. Otherwise, set imm_expr to
9925 the entire 64 bit constant. */
9926 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9927 {
9928 imm_expr.X_op = O_constant;
9929 offset_expr.X_op = O_constant;
9930 if (!target_big_endian)
9931 {
9932 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9933 offset_expr.X_add_number = bfd_getl32 (temp);
9934 }
9935 else
9936 {
9937 imm_expr.X_add_number = bfd_getb32 (temp);
9938 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9939 }
9940 if (offset_expr.X_add_number == 0)
9941 offset_expr.X_op = O_absent;
9942 }
9943 else if (sizeof (imm_expr.X_add_number) > 4)
9944 {
9945 imm_expr.X_op = O_constant;
9946 if (!target_big_endian)
9947 imm_expr.X_add_number = bfd_getl64 (temp);
9948 else
9949 imm_expr.X_add_number = bfd_getb64 (temp);
9950 }
9951 else
9952 {
9953 imm_expr.X_op = O_big;
9954 imm_expr.X_add_number = 4;
9955 if (!target_big_endian)
9956 {
9957 generic_bignum[0] = bfd_getl16 (temp);
9958 generic_bignum[1] = bfd_getl16 (temp + 2);
9959 generic_bignum[2] = bfd_getl16 (temp + 4);
9960 generic_bignum[3] = bfd_getl16 (temp + 6);
9961 }
9962 else
9963 {
9964 generic_bignum[0] = bfd_getb16 (temp + 6);
9965 generic_bignum[1] = bfd_getb16 (temp + 4);
9966 generic_bignum[2] = bfd_getb16 (temp + 2);
9967 generic_bignum[3] = bfd_getb16 (temp);
9968 }
9969 }
9970 }
9971 else
9972 {
9973 const char *newname;
9974 segT new_seg;
9975
9976 /* Switch to the right section. */
9977 seg = now_seg;
9978 subseg = now_subseg;
9979 switch (*args)
9980 {
9981 default: /* unused default case avoids warnings. */
9982 case 'L':
9983 newname = RDATA_SECTION_NAME;
9984 if (g_switch_value >= 8)
9985 newname = ".lit8";
9986 break;
9987 case 'F':
9988 newname = RDATA_SECTION_NAME;
9989 break;
9990 case 'l':
9991 gas_assert (g_switch_value >= 4);
9992 newname = ".lit4";
9993 break;
9994 }
9995 new_seg = subseg_new (newname, (subsegT) 0);
9996 if (IS_ELF)
9997 bfd_set_section_flags (stdoutput, new_seg,
9998 (SEC_ALLOC
9999 | SEC_LOAD
10000 | SEC_READONLY
10001 | SEC_DATA));
10002 frag_align (*args == 'l' ? 2 : 3, 0, 0);
10003 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
10004 record_alignment (new_seg, 4);
10005 else
10006 record_alignment (new_seg, *args == 'l' ? 2 : 3);
10007 if (seg == now_seg)
10008 as_bad (_("Can't use floating point insn in this section"));
10009
10010 /* Set the argument to the current address in the
10011 section. */
10012 offset_expr.X_op = O_symbol;
10013 offset_expr.X_add_symbol = symbol_temp_new_now ();
10014 offset_expr.X_add_number = 0;
10015
10016 /* Put the floating point number into the section. */
10017 p = frag_more ((int) length);
10018 memcpy (p, temp, length);
10019
10020 /* Switch back to the original section. */
10021 subseg_set (seg, subseg);
10022 }
10023 }
10024 continue;
10025
10026 case 'i': /* 16-bit unsigned immediate. */
10027 case 'j': /* 16-bit signed immediate. */
10028 *imm_reloc = BFD_RELOC_LO16;
10029 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
10030 {
10031 int more;
10032 offsetT minval, maxval;
10033
10034 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
10035 && strcmp (insn->name, insn[1].name) == 0);
10036
10037 /* If the expression was written as an unsigned number,
10038 only treat it as signed if there are no more
10039 alternatives. */
10040 if (more
10041 && *args == 'j'
10042 && sizeof (imm_expr.X_add_number) <= 4
10043 && imm_expr.X_op == O_constant
10044 && imm_expr.X_add_number < 0
10045 && imm_expr.X_unsigned
10046 && HAVE_64BIT_GPRS)
10047 break;
10048
10049 /* For compatibility with older assemblers, we accept
10050 0x8000-0xffff as signed 16-bit numbers when only
10051 signed numbers are allowed. */
10052 if (*args == 'i')
10053 minval = 0, maxval = 0xffff;
10054 else if (more)
10055 minval = -0x8000, maxval = 0x7fff;
10056 else
10057 minval = -0x8000, maxval = 0xffff;
10058
10059 if (imm_expr.X_op != O_constant
10060 || imm_expr.X_add_number < minval
10061 || imm_expr.X_add_number > maxval)
10062 {
10063 if (more)
10064 break;
10065 if (imm_expr.X_op == O_constant
10066 || imm_expr.X_op == O_big)
10067 as_bad (_("Expression out of range"));
10068 }
10069 }
10070 s = expr_end;
10071 continue;
10072
10073 case 'o': /* 16-bit offset. */
10074 offset_reloc[0] = BFD_RELOC_LO16;
10075 offset_reloc[1] = BFD_RELOC_UNUSED;
10076 offset_reloc[2] = BFD_RELOC_UNUSED;
10077
10078 /* Check whether there is only a single bracketed expression
10079 left. If so, it must be the base register and the
10080 constant must be zero. */
10081 if (*s == '(' && strchr (s + 1, '(') == 0)
10082 {
10083 offset_expr.X_op = O_constant;
10084 offset_expr.X_add_number = 0;
10085 continue;
10086 }
10087
10088 /* If this value won't fit into a 16 bit offset, then go
10089 find a macro that will generate the 32 bit offset
10090 code pattern. */
10091 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
10092 && (offset_expr.X_op != O_constant
10093 || offset_expr.X_add_number >= 0x8000
10094 || offset_expr.X_add_number < -0x8000))
10095 break;
10096
10097 s = expr_end;
10098 continue;
10099
10100 case 'p': /* PC-relative offset. */
10101 *offset_reloc = BFD_RELOC_16_PCREL_S2;
10102 my_getExpression (&offset_expr, s);
10103 s = expr_end;
10104 continue;
10105
10106 case 'u': /* Upper 16 bits. */
10107 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
10108 && imm_expr.X_op == O_constant
10109 && (imm_expr.X_add_number < 0
10110 || imm_expr.X_add_number >= 0x10000))
10111 as_bad (_("lui expression (%lu) not in range 0..65535"),
10112 (unsigned long) imm_expr.X_add_number);
10113 s = expr_end;
10114 continue;
10115
10116 case 'a': /* 26-bit address. */
10117 my_getExpression (&offset_expr, s);
10118 s = expr_end;
10119 *offset_reloc = BFD_RELOC_MIPS_JMP;
10120 continue;
10121
10122 case 'N': /* 3-bit branch condition code. */
10123 case 'M': /* 3-bit compare condition code. */
10124 rtype = RTYPE_CCC;
10125 if (ip->insn_mo->pinfo & (FP_D | FP_S))
10126 rtype |= RTYPE_FCC;
10127 if (!reg_lookup (&s, rtype, &regno))
10128 break;
10129 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
10130 || strcmp (str + strlen (str) - 5, "any2f") == 0
10131 || strcmp (str + strlen (str) - 5, "any2t") == 0)
10132 && (regno & 1) != 0)
10133 as_warn (_("Condition code register should be even for %s, "
10134 "was %d"),
10135 str, regno);
10136 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
10137 || strcmp (str + strlen (str) - 5, "any4t") == 0)
10138 && (regno & 3) != 0)
10139 as_warn (_("Condition code register should be 0 or 4 for %s, "
10140 "was %d"),
10141 str, regno);
10142 if (*args == 'N')
10143 INSERT_OPERAND (BCC, *ip, regno);
10144 else
10145 INSERT_OPERAND (CCC, *ip, regno);
10146 continue;
10147
10148 case 'H':
10149 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10150 s += 2;
10151 if (ISDIGIT (*s))
10152 {
10153 c = 0;
10154 do
10155 {
10156 c *= 10;
10157 c += *s - '0';
10158 ++s;
10159 }
10160 while (ISDIGIT (*s));
10161 }
10162 else
10163 c = 8; /* Invalid sel value. */
10164
10165 if (c > 7)
10166 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
10167 ip->insn_opcode |= c;
10168 continue;
10169
10170 case 'e':
10171 /* Must be at least one digit. */
10172 my_getExpression (&imm_expr, s);
10173 check_absolute_expr (ip, &imm_expr);
10174
10175 if ((unsigned long) imm_expr.X_add_number
10176 > (unsigned long) OP_MASK_VECBYTE)
10177 {
10178 as_bad (_("bad byte vector index (%ld)"),
10179 (long) imm_expr.X_add_number);
10180 imm_expr.X_add_number = 0;
10181 }
10182
10183 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10184 imm_expr.X_op = O_absent;
10185 s = expr_end;
10186 continue;
10187
10188 case '%':
10189 my_getExpression (&imm_expr, s);
10190 check_absolute_expr (ip, &imm_expr);
10191
10192 if ((unsigned long) imm_expr.X_add_number
10193 > (unsigned long) OP_MASK_VECALIGN)
10194 {
10195 as_bad (_("bad byte vector index (%ld)"),
10196 (long) imm_expr.X_add_number);
10197 imm_expr.X_add_number = 0;
10198 }
10199
10200 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10201 imm_expr.X_op = O_absent;
10202 s = expr_end;
10203 continue;
10204
10205 default:
10206 as_bad (_("Bad char = '%c'\n"), *args);
10207 internalError ();
10208 }
10209 break;
10210 }
10211 /* Args don't match. */
10212 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10213 !strcmp (insn->name, insn[1].name))
10214 {
10215 ++insn;
10216 s = argsStart;
10217 insn_error = _("Illegal operands");
10218 continue;
10219 }
10220 if (save_c)
10221 *(--argsStart) = save_c;
10222 insn_error = _("Illegal operands");
10223 return;
10224 }
10225 }
10226
10227 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10228
10229 /* This routine assembles an instruction into its binary format when
10230 assembling for the mips16. As a side effect, it sets one of the
10231 global variables imm_reloc or offset_reloc to the type of
10232 relocation to do if one of the operands is an address expression.
10233 It also sets mips16_small and mips16_ext if the user explicitly
10234 requested a small or extended instruction. */
10235
10236 static void
10237 mips16_ip (char *str, struct mips_cl_insn *ip)
10238 {
10239 char *s;
10240 const char *args;
10241 struct mips_opcode *insn;
10242 char *argsstart;
10243 unsigned int regno;
10244 unsigned int lastregno = 0;
10245 char *s_reset;
10246 size_t i;
10247
10248 insn_error = NULL;
10249
10250 mips16_small = FALSE;
10251 mips16_ext = FALSE;
10252
10253 for (s = str; ISLOWER (*s); ++s)
10254 ;
10255 switch (*s)
10256 {
10257 case '\0':
10258 break;
10259
10260 case ' ':
10261 *s++ = '\0';
10262 break;
10263
10264 case '.':
10265 if (s[1] == 't' && s[2] == ' ')
10266 {
10267 *s = '\0';
10268 mips16_small = TRUE;
10269 s += 3;
10270 break;
10271 }
10272 else if (s[1] == 'e' && s[2] == ' ')
10273 {
10274 *s = '\0';
10275 mips16_ext = TRUE;
10276 s += 3;
10277 break;
10278 }
10279 /* Fall through. */
10280 default:
10281 insn_error = _("unknown opcode");
10282 return;
10283 }
10284
10285 if (mips_opts.noautoextend && ! mips16_ext)
10286 mips16_small = TRUE;
10287
10288 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10289 {
10290 insn_error = _("unrecognized opcode");
10291 return;
10292 }
10293
10294 argsstart = s;
10295 for (;;)
10296 {
10297 bfd_boolean ok;
10298
10299 gas_assert (strcmp (insn->name, str) == 0);
10300
10301 ok = is_opcode_valid_16 (insn);
10302 if (! ok)
10303 {
10304 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10305 && strcmp (insn->name, insn[1].name) == 0)
10306 {
10307 ++insn;
10308 continue;
10309 }
10310 else
10311 {
10312 if (!insn_error)
10313 {
10314 static char buf[100];
10315 sprintf (buf,
10316 _("opcode not supported on this processor: %s (%s)"),
10317 mips_cpu_info_from_arch (mips_opts.arch)->name,
10318 mips_cpu_info_from_isa (mips_opts.isa)->name);
10319 insn_error = buf;
10320 }
10321 return;
10322 }
10323 }
10324
10325 create_insn (ip, insn);
10326 imm_expr.X_op = O_absent;
10327 imm_reloc[0] = BFD_RELOC_UNUSED;
10328 imm_reloc[1] = BFD_RELOC_UNUSED;
10329 imm_reloc[2] = BFD_RELOC_UNUSED;
10330 imm2_expr.X_op = O_absent;
10331 offset_expr.X_op = O_absent;
10332 offset_reloc[0] = BFD_RELOC_UNUSED;
10333 offset_reloc[1] = BFD_RELOC_UNUSED;
10334 offset_reloc[2] = BFD_RELOC_UNUSED;
10335 for (args = insn->args; 1; ++args)
10336 {
10337 int c;
10338
10339 if (*s == ' ')
10340 ++s;
10341
10342 /* In this switch statement we call break if we did not find
10343 a match, continue if we did find a match, or return if we
10344 are done. */
10345
10346 c = *args;
10347 switch (c)
10348 {
10349 case '\0':
10350 if (*s == '\0')
10351 {
10352 /* Stuff the immediate value in now, if we can. */
10353 if (imm_expr.X_op == O_constant
10354 && *imm_reloc > BFD_RELOC_UNUSED
10355 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10356 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10357 && insn->pinfo != INSN_MACRO)
10358 {
10359 valueT tmp;
10360
10361 switch (*offset_reloc)
10362 {
10363 case BFD_RELOC_MIPS16_HI16_S:
10364 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10365 break;
10366
10367 case BFD_RELOC_MIPS16_HI16:
10368 tmp = imm_expr.X_add_number >> 16;
10369 break;
10370
10371 case BFD_RELOC_MIPS16_LO16:
10372 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10373 - 0x8000;
10374 break;
10375
10376 case BFD_RELOC_UNUSED:
10377 tmp = imm_expr.X_add_number;
10378 break;
10379
10380 default:
10381 internalError ();
10382 }
10383 *offset_reloc = BFD_RELOC_UNUSED;
10384
10385 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10386 tmp, TRUE, mips16_small,
10387 mips16_ext, &ip->insn_opcode,
10388 &ip->use_extend, &ip->extend);
10389 imm_expr.X_op = O_absent;
10390 *imm_reloc = BFD_RELOC_UNUSED;
10391 }
10392
10393 return;
10394 }
10395 break;
10396
10397 case ',':
10398 if (*s++ == c)
10399 continue;
10400 s--;
10401 switch (*++args)
10402 {
10403 case 'v':
10404 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10405 continue;
10406 case 'w':
10407 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10408 continue;
10409 }
10410 break;
10411
10412 case '(':
10413 case ')':
10414 if (*s++ == c)
10415 continue;
10416 break;
10417
10418 case 'v':
10419 case 'w':
10420 if (s[0] != '$')
10421 {
10422 if (c == 'v')
10423 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10424 else
10425 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10426 ++args;
10427 continue;
10428 }
10429 /* Fall through. */
10430 case 'x':
10431 case 'y':
10432 case 'z':
10433 case 'Z':
10434 case '0':
10435 case 'S':
10436 case 'R':
10437 case 'X':
10438 case 'Y':
10439 s_reset = s;
10440 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10441 {
10442 if (c == 'v' || c == 'w')
10443 {
10444 if (c == 'v')
10445 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10446 else
10447 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10448 ++args;
10449 continue;
10450 }
10451 break;
10452 }
10453
10454 if (*s == ' ')
10455 ++s;
10456 if (args[1] != *s)
10457 {
10458 if (c == 'v' || c == 'w')
10459 {
10460 regno = mips16_to_32_reg_map[lastregno];
10461 s = s_reset;
10462 ++args;
10463 }
10464 }
10465
10466 switch (c)
10467 {
10468 case 'x':
10469 case 'y':
10470 case 'z':
10471 case 'v':
10472 case 'w':
10473 case 'Z':
10474 regno = mips32_to_16_reg_map[regno];
10475 break;
10476
10477 case '0':
10478 if (regno != 0)
10479 regno = ILLEGAL_REG;
10480 break;
10481
10482 case 'S':
10483 if (regno != SP)
10484 regno = ILLEGAL_REG;
10485 break;
10486
10487 case 'R':
10488 if (regno != RA)
10489 regno = ILLEGAL_REG;
10490 break;
10491
10492 case 'X':
10493 case 'Y':
10494 if (regno == AT && mips_opts.at)
10495 {
10496 if (mips_opts.at == ATREG)
10497 as_warn (_("used $at without \".set noat\""));
10498 else
10499 as_warn (_("used $%u with \".set at=$%u\""),
10500 regno, mips_opts.at);
10501 }
10502 break;
10503
10504 default:
10505 internalError ();
10506 }
10507
10508 if (regno == ILLEGAL_REG)
10509 break;
10510
10511 switch (c)
10512 {
10513 case 'x':
10514 case 'v':
10515 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10516 break;
10517 case 'y':
10518 case 'w':
10519 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10520 break;
10521 case 'z':
10522 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10523 break;
10524 case 'Z':
10525 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10526 case '0':
10527 case 'S':
10528 case 'R':
10529 break;
10530 case 'X':
10531 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10532 break;
10533 case 'Y':
10534 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10535 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10536 break;
10537 default:
10538 internalError ();
10539 }
10540
10541 lastregno = regno;
10542 continue;
10543
10544 case 'P':
10545 if (strncmp (s, "$pc", 3) == 0)
10546 {
10547 s += 3;
10548 continue;
10549 }
10550 break;
10551
10552 case '5':
10553 case 'H':
10554 case 'W':
10555 case 'D':
10556 case 'j':
10557 case 'V':
10558 case 'C':
10559 case 'U':
10560 case 'k':
10561 case 'K':
10562 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10563 if (i > 0)
10564 {
10565 if (imm_expr.X_op != O_constant)
10566 {
10567 mips16_ext = TRUE;
10568 ip->use_extend = TRUE;
10569 ip->extend = 0;
10570 }
10571 else
10572 {
10573 /* We need to relax this instruction. */
10574 *offset_reloc = *imm_reloc;
10575 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10576 }
10577 s = expr_end;
10578 continue;
10579 }
10580 *imm_reloc = BFD_RELOC_UNUSED;
10581 /* Fall through. */
10582 case '<':
10583 case '>':
10584 case '[':
10585 case ']':
10586 case '4':
10587 case '8':
10588 my_getExpression (&imm_expr, s);
10589 if (imm_expr.X_op == O_register)
10590 {
10591 /* What we thought was an expression turned out to
10592 be a register. */
10593
10594 if (s[0] == '(' && args[1] == '(')
10595 {
10596 /* It looks like the expression was omitted
10597 before a register indirection, which means
10598 that the expression is implicitly zero. We
10599 still set up imm_expr, so that we handle
10600 explicit extensions correctly. */
10601 imm_expr.X_op = O_constant;
10602 imm_expr.X_add_number = 0;
10603 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10604 continue;
10605 }
10606
10607 break;
10608 }
10609
10610 /* We need to relax this instruction. */
10611 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10612 s = expr_end;
10613 continue;
10614
10615 case 'p':
10616 case 'q':
10617 case 'A':
10618 case 'B':
10619 case 'E':
10620 /* We use offset_reloc rather than imm_reloc for the PC
10621 relative operands. This lets macros with both
10622 immediate and address operands work correctly. */
10623 my_getExpression (&offset_expr, s);
10624
10625 if (offset_expr.X_op == O_register)
10626 break;
10627
10628 /* We need to relax this instruction. */
10629 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10630 s = expr_end;
10631 continue;
10632
10633 case '6': /* break code */
10634 my_getExpression (&imm_expr, s);
10635 check_absolute_expr (ip, &imm_expr);
10636 if ((unsigned long) imm_expr.X_add_number > 63)
10637 as_warn (_("Invalid value for `%s' (%lu)"),
10638 ip->insn_mo->name,
10639 (unsigned long) imm_expr.X_add_number);
10640 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10641 imm_expr.X_op = O_absent;
10642 s = expr_end;
10643 continue;
10644
10645 case 'a': /* 26 bit address */
10646 my_getExpression (&offset_expr, s);
10647 s = expr_end;
10648 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10649 ip->insn_opcode <<= 16;
10650 continue;
10651
10652 case 'l': /* register list for entry macro */
10653 case 'L': /* register list for exit macro */
10654 {
10655 int mask;
10656
10657 if (c == 'l')
10658 mask = 0;
10659 else
10660 mask = 7 << 3;
10661 while (*s != '\0')
10662 {
10663 unsigned int freg, reg1, reg2;
10664
10665 while (*s == ' ' || *s == ',')
10666 ++s;
10667 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10668 freg = 0;
10669 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10670 freg = 1;
10671 else
10672 {
10673 as_bad (_("can't parse register list"));
10674 break;
10675 }
10676 if (*s == ' ')
10677 ++s;
10678 if (*s != '-')
10679 reg2 = reg1;
10680 else
10681 {
10682 ++s;
10683 if (!reg_lookup (&s, freg ? RTYPE_FPU
10684 : (RTYPE_GP | RTYPE_NUM), &reg2))
10685 {
10686 as_bad (_("invalid register list"));
10687 break;
10688 }
10689 }
10690 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10691 {
10692 mask &= ~ (7 << 3);
10693 mask |= 5 << 3;
10694 }
10695 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10696 {
10697 mask &= ~ (7 << 3);
10698 mask |= 6 << 3;
10699 }
10700 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10701 mask |= (reg2 - 3) << 3;
10702 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10703 mask |= (reg2 - 15) << 1;
10704 else if (reg1 == RA && reg2 == RA)
10705 mask |= 1;
10706 else
10707 {
10708 as_bad (_("invalid register list"));
10709 break;
10710 }
10711 }
10712 /* The mask is filled in in the opcode table for the
10713 benefit of the disassembler. We remove it before
10714 applying the actual mask. */
10715 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10716 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10717 }
10718 continue;
10719
10720 case 'm': /* Register list for save insn. */
10721 case 'M': /* Register list for restore insn. */
10722 {
10723 int opcode = 0;
10724 int framesz = 0, seen_framesz = 0;
10725 int nargs = 0, statics = 0, sregs = 0;
10726
10727 while (*s != '\0')
10728 {
10729 unsigned int reg1, reg2;
10730
10731 SKIP_SPACE_TABS (s);
10732 while (*s == ',')
10733 ++s;
10734 SKIP_SPACE_TABS (s);
10735
10736 my_getExpression (&imm_expr, s);
10737 if (imm_expr.X_op == O_constant)
10738 {
10739 /* Handle the frame size. */
10740 if (seen_framesz)
10741 {
10742 as_bad (_("more than one frame size in list"));
10743 break;
10744 }
10745 seen_framesz = 1;
10746 framesz = imm_expr.X_add_number;
10747 imm_expr.X_op = O_absent;
10748 s = expr_end;
10749 continue;
10750 }
10751
10752 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10753 {
10754 as_bad (_("can't parse register list"));
10755 break;
10756 }
10757
10758 while (*s == ' ')
10759 ++s;
10760
10761 if (*s != '-')
10762 reg2 = reg1;
10763 else
10764 {
10765 ++s;
10766 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10767 || reg2 < reg1)
10768 {
10769 as_bad (_("can't parse register list"));
10770 break;
10771 }
10772 }
10773
10774 while (reg1 <= reg2)
10775 {
10776 if (reg1 >= 4 && reg1 <= 7)
10777 {
10778 if (!seen_framesz)
10779 /* args $a0-$a3 */
10780 nargs |= 1 << (reg1 - 4);
10781 else
10782 /* statics $a0-$a3 */
10783 statics |= 1 << (reg1 - 4);
10784 }
10785 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10786 {
10787 /* $s0-$s8 */
10788 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10789 }
10790 else if (reg1 == 31)
10791 {
10792 /* Add $ra to insn. */
10793 opcode |= 0x40;
10794 }
10795 else
10796 {
10797 as_bad (_("unexpected register in list"));
10798 break;
10799 }
10800 if (++reg1 == 24)
10801 reg1 = 30;
10802 }
10803 }
10804
10805 /* Encode args/statics combination. */
10806 if (nargs & statics)
10807 as_bad (_("arg/static registers overlap"));
10808 else if (nargs == 0xf)
10809 /* All $a0-$a3 are args. */
10810 opcode |= MIPS16_ALL_ARGS << 16;
10811 else if (statics == 0xf)
10812 /* All $a0-$a3 are statics. */
10813 opcode |= MIPS16_ALL_STATICS << 16;
10814 else
10815 {
10816 int narg = 0, nstat = 0;
10817
10818 /* Count arg registers. */
10819 while (nargs & 0x1)
10820 {
10821 nargs >>= 1;
10822 narg++;
10823 }
10824 if (nargs != 0)
10825 as_bad (_("invalid arg register list"));
10826
10827 /* Count static registers. */
10828 while (statics & 0x8)
10829 {
10830 statics = (statics << 1) & 0xf;
10831 nstat++;
10832 }
10833 if (statics != 0)
10834 as_bad (_("invalid static register list"));
10835
10836 /* Encode args/statics. */
10837 opcode |= ((narg << 2) | nstat) << 16;
10838 }
10839
10840 /* Encode $s0/$s1. */
10841 if (sregs & (1 << 0)) /* $s0 */
10842 opcode |= 0x20;
10843 if (sregs & (1 << 1)) /* $s1 */
10844 opcode |= 0x10;
10845 sregs >>= 2;
10846
10847 if (sregs != 0)
10848 {
10849 /* Count regs $s2-$s8. */
10850 int nsreg = 0;
10851 while (sregs & 1)
10852 {
10853 sregs >>= 1;
10854 nsreg++;
10855 }
10856 if (sregs != 0)
10857 as_bad (_("invalid static register list"));
10858 /* Encode $s2-$s8. */
10859 opcode |= nsreg << 24;
10860 }
10861
10862 /* Encode frame size. */
10863 if (!seen_framesz)
10864 as_bad (_("missing frame size"));
10865 else if ((framesz & 7) != 0 || framesz < 0
10866 || framesz > 0xff * 8)
10867 as_bad (_("invalid frame size"));
10868 else if (framesz != 128 || (opcode >> 16) != 0)
10869 {
10870 framesz /= 8;
10871 opcode |= (((framesz & 0xf0) << 16)
10872 | (framesz & 0x0f));
10873 }
10874
10875 /* Finally build the instruction. */
10876 if ((opcode >> 16) != 0 || framesz == 0)
10877 {
10878 ip->use_extend = TRUE;
10879 ip->extend = opcode >> 16;
10880 }
10881 ip->insn_opcode |= opcode & 0x7f;
10882 }
10883 continue;
10884
10885 case 'e': /* extend code */
10886 my_getExpression (&imm_expr, s);
10887 check_absolute_expr (ip, &imm_expr);
10888 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10889 {
10890 as_warn (_("Invalid value for `%s' (%lu)"),
10891 ip->insn_mo->name,
10892 (unsigned long) imm_expr.X_add_number);
10893 imm_expr.X_add_number &= 0x7ff;
10894 }
10895 ip->insn_opcode |= imm_expr.X_add_number;
10896 imm_expr.X_op = O_absent;
10897 s = expr_end;
10898 continue;
10899
10900 default:
10901 internalError ();
10902 }
10903 break;
10904 }
10905
10906 /* Args don't match. */
10907 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10908 strcmp (insn->name, insn[1].name) == 0)
10909 {
10910 ++insn;
10911 s = argsstart;
10912 continue;
10913 }
10914
10915 insn_error = _("illegal operands");
10916
10917 return;
10918 }
10919 }
10920
10921 /* This structure holds information we know about a mips16 immediate
10922 argument type. */
10923
10924 struct mips16_immed_operand
10925 {
10926 /* The type code used in the argument string in the opcode table. */
10927 int type;
10928 /* The number of bits in the short form of the opcode. */
10929 int nbits;
10930 /* The number of bits in the extended form of the opcode. */
10931 int extbits;
10932 /* The amount by which the short form is shifted when it is used;
10933 for example, the sw instruction has a shift count of 2. */
10934 int shift;
10935 /* The amount by which the short form is shifted when it is stored
10936 into the instruction code. */
10937 int op_shift;
10938 /* Non-zero if the short form is unsigned. */
10939 int unsp;
10940 /* Non-zero if the extended form is unsigned. */
10941 int extu;
10942 /* Non-zero if the value is PC relative. */
10943 int pcrel;
10944 };
10945
10946 /* The mips16 immediate operand types. */
10947
10948 static const struct mips16_immed_operand mips16_immed_operands[] =
10949 {
10950 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10951 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10952 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10953 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10954 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10955 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10956 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10957 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10958 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10959 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10960 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10961 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10962 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10963 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10964 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10965 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10966 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10967 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10968 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10969 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10970 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10971 };
10972
10973 #define MIPS16_NUM_IMMED \
10974 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10975
10976 /* Handle a mips16 instruction with an immediate value. This or's the
10977 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10978 whether an extended value is needed; if one is needed, it sets
10979 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10980 If SMALL is true, an unextended opcode was explicitly requested.
10981 If EXT is true, an extended opcode was explicitly requested. If
10982 WARN is true, warn if EXT does not match reality. */
10983
10984 static void
10985 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10986 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10987 unsigned long *insn, bfd_boolean *use_extend,
10988 unsigned short *extend)
10989 {
10990 const struct mips16_immed_operand *op;
10991 int mintiny, maxtiny;
10992 bfd_boolean needext;
10993
10994 op = mips16_immed_operands;
10995 while (op->type != type)
10996 {
10997 ++op;
10998 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10999 }
11000
11001 if (op->unsp)
11002 {
11003 if (type == '<' || type == '>' || type == '[' || type == ']')
11004 {
11005 mintiny = 1;
11006 maxtiny = 1 << op->nbits;
11007 }
11008 else
11009 {
11010 mintiny = 0;
11011 maxtiny = (1 << op->nbits) - 1;
11012 }
11013 }
11014 else
11015 {
11016 mintiny = - (1 << (op->nbits - 1));
11017 maxtiny = (1 << (op->nbits - 1)) - 1;
11018 }
11019
11020 /* Branch offsets have an implicit 0 in the lowest bit. */
11021 if (type == 'p' || type == 'q')
11022 val /= 2;
11023
11024 if ((val & ((1 << op->shift) - 1)) != 0
11025 || val < (mintiny << op->shift)
11026 || val > (maxtiny << op->shift))
11027 needext = TRUE;
11028 else
11029 needext = FALSE;
11030
11031 if (warn && ext && ! needext)
11032 as_warn_where (file, line,
11033 _("extended operand requested but not required"));
11034 if (small && needext)
11035 as_bad_where (file, line, _("invalid unextended operand value"));
11036
11037 if (small || (! ext && ! needext))
11038 {
11039 int insnval;
11040
11041 *use_extend = FALSE;
11042 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
11043 insnval <<= op->op_shift;
11044 *insn |= insnval;
11045 }
11046 else
11047 {
11048 long minext, maxext;
11049 int extval;
11050
11051 if (op->extu)
11052 {
11053 minext = 0;
11054 maxext = (1 << op->extbits) - 1;
11055 }
11056 else
11057 {
11058 minext = - (1 << (op->extbits - 1));
11059 maxext = (1 << (op->extbits - 1)) - 1;
11060 }
11061 if (val < minext || val > maxext)
11062 as_bad_where (file, line,
11063 _("operand value out of range for instruction"));
11064
11065 *use_extend = TRUE;
11066 if (op->extbits == 16)
11067 {
11068 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
11069 val &= 0x1f;
11070 }
11071 else if (op->extbits == 15)
11072 {
11073 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
11074 val &= 0xf;
11075 }
11076 else
11077 {
11078 extval = ((val & 0x1f) << 6) | (val & 0x20);
11079 val = 0;
11080 }
11081
11082 *extend = (unsigned short) extval;
11083 *insn |= val;
11084 }
11085 }
11086 \f
11087 struct percent_op_match
11088 {
11089 const char *str;
11090 bfd_reloc_code_real_type reloc;
11091 };
11092
11093 static const struct percent_op_match mips_percent_op[] =
11094 {
11095 {"%lo", BFD_RELOC_LO16},
11096 #ifdef OBJ_ELF
11097 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
11098 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
11099 {"%call16", BFD_RELOC_MIPS_CALL16},
11100 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
11101 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
11102 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
11103 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
11104 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
11105 {"%got", BFD_RELOC_MIPS_GOT16},
11106 {"%gp_rel", BFD_RELOC_GPREL16},
11107 {"%half", BFD_RELOC_16},
11108 {"%highest", BFD_RELOC_MIPS_HIGHEST},
11109 {"%higher", BFD_RELOC_MIPS_HIGHER},
11110 {"%neg", BFD_RELOC_MIPS_SUB},
11111 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11112 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11113 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11114 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11115 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11116 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11117 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11118 #endif
11119 {"%hi", BFD_RELOC_HI16_S}
11120 };
11121
11122 static const struct percent_op_match mips16_percent_op[] =
11123 {
11124 {"%lo", BFD_RELOC_MIPS16_LO16},
11125 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11126 {"%got", BFD_RELOC_MIPS16_GOT16},
11127 {"%call16", BFD_RELOC_MIPS16_CALL16},
11128 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11129 };
11130
11131
11132 /* Return true if *STR points to a relocation operator. When returning true,
11133 move *STR over the operator and store its relocation code in *RELOC.
11134 Leave both *STR and *RELOC alone when returning false. */
11135
11136 static bfd_boolean
11137 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11138 {
11139 const struct percent_op_match *percent_op;
11140 size_t limit, i;
11141
11142 if (mips_opts.mips16)
11143 {
11144 percent_op = mips16_percent_op;
11145 limit = ARRAY_SIZE (mips16_percent_op);
11146 }
11147 else
11148 {
11149 percent_op = mips_percent_op;
11150 limit = ARRAY_SIZE (mips_percent_op);
11151 }
11152
11153 for (i = 0; i < limit; i++)
11154 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11155 {
11156 int len = strlen (percent_op[i].str);
11157
11158 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11159 continue;
11160
11161 *str += strlen (percent_op[i].str);
11162 *reloc = percent_op[i].reloc;
11163
11164 /* Check whether the output BFD supports this relocation.
11165 If not, issue an error and fall back on something safe. */
11166 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11167 {
11168 as_bad (_("relocation %s isn't supported by the current ABI"),
11169 percent_op[i].str);
11170 *reloc = BFD_RELOC_UNUSED;
11171 }
11172 return TRUE;
11173 }
11174 return FALSE;
11175 }
11176
11177
11178 /* Parse string STR as a 16-bit relocatable operand. Store the
11179 expression in *EP and the relocations in the array starting
11180 at RELOC. Return the number of relocation operators used.
11181
11182 On exit, EXPR_END points to the first character after the expression. */
11183
11184 static size_t
11185 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11186 char *str)
11187 {
11188 bfd_reloc_code_real_type reversed_reloc[3];
11189 size_t reloc_index, i;
11190 int crux_depth, str_depth;
11191 char *crux;
11192
11193 /* Search for the start of the main expression, recoding relocations
11194 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11195 of the main expression and with CRUX_DEPTH containing the number
11196 of open brackets at that point. */
11197 reloc_index = -1;
11198 str_depth = 0;
11199 do
11200 {
11201 reloc_index++;
11202 crux = str;
11203 crux_depth = str_depth;
11204
11205 /* Skip over whitespace and brackets, keeping count of the number
11206 of brackets. */
11207 while (*str == ' ' || *str == '\t' || *str == '(')
11208 if (*str++ == '(')
11209 str_depth++;
11210 }
11211 while (*str == '%'
11212 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11213 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11214
11215 my_getExpression (ep, crux);
11216 str = expr_end;
11217
11218 /* Match every open bracket. */
11219 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11220 if (*str++ == ')')
11221 crux_depth--;
11222
11223 if (crux_depth > 0)
11224 as_bad (_("unclosed '('"));
11225
11226 expr_end = str;
11227
11228 if (reloc_index != 0)
11229 {
11230 prev_reloc_op_frag = frag_now;
11231 for (i = 0; i < reloc_index; i++)
11232 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11233 }
11234
11235 return reloc_index;
11236 }
11237
11238 static void
11239 my_getExpression (expressionS *ep, char *str)
11240 {
11241 char *save_in;
11242
11243 save_in = input_line_pointer;
11244 input_line_pointer = str;
11245 expression (ep);
11246 expr_end = input_line_pointer;
11247 input_line_pointer = save_in;
11248 }
11249
11250 char *
11251 md_atof (int type, char *litP, int *sizeP)
11252 {
11253 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11254 }
11255
11256 void
11257 md_number_to_chars (char *buf, valueT val, int n)
11258 {
11259 if (target_big_endian)
11260 number_to_chars_bigendian (buf, val, n);
11261 else
11262 number_to_chars_littleendian (buf, val, n);
11263 }
11264 \f
11265 #ifdef OBJ_ELF
11266 static int support_64bit_objects(void)
11267 {
11268 const char **list, **l;
11269 int yes;
11270
11271 list = bfd_target_list ();
11272 for (l = list; *l != NULL; l++)
11273 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
11274 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
11275 break;
11276 yes = (*l != NULL);
11277 free (list);
11278 return yes;
11279 }
11280 #endif /* OBJ_ELF */
11281
11282 const char *md_shortopts = "O::g::G:";
11283
11284 enum options
11285 {
11286 OPTION_MARCH = OPTION_MD_BASE,
11287 OPTION_MTUNE,
11288 OPTION_MIPS1,
11289 OPTION_MIPS2,
11290 OPTION_MIPS3,
11291 OPTION_MIPS4,
11292 OPTION_MIPS5,
11293 OPTION_MIPS32,
11294 OPTION_MIPS64,
11295 OPTION_MIPS32R2,
11296 OPTION_MIPS64R2,
11297 OPTION_MIPS16,
11298 OPTION_NO_MIPS16,
11299 OPTION_MIPS3D,
11300 OPTION_NO_MIPS3D,
11301 OPTION_MDMX,
11302 OPTION_NO_MDMX,
11303 OPTION_DSP,
11304 OPTION_NO_DSP,
11305 OPTION_MT,
11306 OPTION_NO_MT,
11307 OPTION_SMARTMIPS,
11308 OPTION_NO_SMARTMIPS,
11309 OPTION_DSPR2,
11310 OPTION_NO_DSPR2,
11311 OPTION_COMPAT_ARCH_BASE,
11312 OPTION_M4650,
11313 OPTION_NO_M4650,
11314 OPTION_M4010,
11315 OPTION_NO_M4010,
11316 OPTION_M4100,
11317 OPTION_NO_M4100,
11318 OPTION_M3900,
11319 OPTION_NO_M3900,
11320 OPTION_M7000_HILO_FIX,
11321 OPTION_MNO_7000_HILO_FIX,
11322 OPTION_FIX_24K,
11323 OPTION_NO_FIX_24K,
11324 OPTION_FIX_LOONGSON2F_JUMP,
11325 OPTION_NO_FIX_LOONGSON2F_JUMP,
11326 OPTION_FIX_LOONGSON2F_NOP,
11327 OPTION_NO_FIX_LOONGSON2F_NOP,
11328 OPTION_FIX_VR4120,
11329 OPTION_NO_FIX_VR4120,
11330 OPTION_FIX_VR4130,
11331 OPTION_NO_FIX_VR4130,
11332 OPTION_FIX_CN63XXP1,
11333 OPTION_NO_FIX_CN63XXP1,
11334 OPTION_TRAP,
11335 OPTION_BREAK,
11336 OPTION_EB,
11337 OPTION_EL,
11338 OPTION_FP32,
11339 OPTION_GP32,
11340 OPTION_CONSTRUCT_FLOATS,
11341 OPTION_NO_CONSTRUCT_FLOATS,
11342 OPTION_FP64,
11343 OPTION_GP64,
11344 OPTION_RELAX_BRANCH,
11345 OPTION_NO_RELAX_BRANCH,
11346 OPTION_MSHARED,
11347 OPTION_MNO_SHARED,
11348 OPTION_MSYM32,
11349 OPTION_MNO_SYM32,
11350 OPTION_SOFT_FLOAT,
11351 OPTION_HARD_FLOAT,
11352 OPTION_SINGLE_FLOAT,
11353 OPTION_DOUBLE_FLOAT,
11354 OPTION_32,
11355 #ifdef OBJ_ELF
11356 OPTION_CALL_SHARED,
11357 OPTION_CALL_NONPIC,
11358 OPTION_NON_SHARED,
11359 OPTION_XGOT,
11360 OPTION_MABI,
11361 OPTION_N32,
11362 OPTION_64,
11363 OPTION_MDEBUG,
11364 OPTION_NO_MDEBUG,
11365 OPTION_PDR,
11366 OPTION_NO_PDR,
11367 OPTION_MVXWORKS_PIC,
11368 #endif /* OBJ_ELF */
11369 OPTION_END_OF_ENUM
11370 };
11371
11372 struct option md_longopts[] =
11373 {
11374 /* Options which specify architecture. */
11375 {"march", required_argument, NULL, OPTION_MARCH},
11376 {"mtune", required_argument, NULL, OPTION_MTUNE},
11377 {"mips0", no_argument, NULL, OPTION_MIPS1},
11378 {"mips1", no_argument, NULL, OPTION_MIPS1},
11379 {"mips2", no_argument, NULL, OPTION_MIPS2},
11380 {"mips3", no_argument, NULL, OPTION_MIPS3},
11381 {"mips4", no_argument, NULL, OPTION_MIPS4},
11382 {"mips5", no_argument, NULL, OPTION_MIPS5},
11383 {"mips32", no_argument, NULL, OPTION_MIPS32},
11384 {"mips64", no_argument, NULL, OPTION_MIPS64},
11385 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11386 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11387
11388 /* Options which specify Application Specific Extensions (ASEs). */
11389 {"mips16", no_argument, NULL, OPTION_MIPS16},
11390 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11391 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11392 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11393 {"mdmx", no_argument, NULL, OPTION_MDMX},
11394 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11395 {"mdsp", no_argument, NULL, OPTION_DSP},
11396 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11397 {"mmt", no_argument, NULL, OPTION_MT},
11398 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11399 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11400 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11401 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11402 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11403
11404 /* Old-style architecture options. Don't add more of these. */
11405 {"m4650", no_argument, NULL, OPTION_M4650},
11406 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11407 {"m4010", no_argument, NULL, OPTION_M4010},
11408 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11409 {"m4100", no_argument, NULL, OPTION_M4100},
11410 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11411 {"m3900", no_argument, NULL, OPTION_M3900},
11412 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11413
11414 /* Options which enable bug fixes. */
11415 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11416 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11417 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11418 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11419 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11420 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11421 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11422 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11423 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11424 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11425 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11426 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11427 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11428 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11429 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11430
11431 /* Miscellaneous options. */
11432 {"trap", no_argument, NULL, OPTION_TRAP},
11433 {"no-break", no_argument, NULL, OPTION_TRAP},
11434 {"break", no_argument, NULL, OPTION_BREAK},
11435 {"no-trap", no_argument, NULL, OPTION_BREAK},
11436 {"EB", no_argument, NULL, OPTION_EB},
11437 {"EL", no_argument, NULL, OPTION_EL},
11438 {"mfp32", no_argument, NULL, OPTION_FP32},
11439 {"mgp32", no_argument, NULL, OPTION_GP32},
11440 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11441 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11442 {"mfp64", no_argument, NULL, OPTION_FP64},
11443 {"mgp64", no_argument, NULL, OPTION_GP64},
11444 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11445 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11446 {"mshared", no_argument, NULL, OPTION_MSHARED},
11447 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11448 {"msym32", no_argument, NULL, OPTION_MSYM32},
11449 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11450 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11451 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11452 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11453 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11454
11455 /* Strictly speaking this next option is ELF specific,
11456 but we allow it for other ports as well in order to
11457 make testing easier. */
11458 {"32", no_argument, NULL, OPTION_32},
11459
11460 /* ELF-specific options. */
11461 #ifdef OBJ_ELF
11462 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11463 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11464 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11465 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11466 {"xgot", no_argument, NULL, OPTION_XGOT},
11467 {"mabi", required_argument, NULL, OPTION_MABI},
11468 {"n32", no_argument, NULL, OPTION_N32},
11469 {"64", no_argument, NULL, OPTION_64},
11470 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11471 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11472 {"mpdr", no_argument, NULL, OPTION_PDR},
11473 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11474 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11475 #endif /* OBJ_ELF */
11476
11477 {NULL, no_argument, NULL, 0}
11478 };
11479 size_t md_longopts_size = sizeof (md_longopts);
11480
11481 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11482 NEW_VALUE. Warn if another value was already specified. Note:
11483 we have to defer parsing the -march and -mtune arguments in order
11484 to handle 'from-abi' correctly, since the ABI might be specified
11485 in a later argument. */
11486
11487 static void
11488 mips_set_option_string (const char **string_ptr, const char *new_value)
11489 {
11490 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11491 as_warn (_("A different %s was already specified, is now %s"),
11492 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11493 new_value);
11494
11495 *string_ptr = new_value;
11496 }
11497
11498 int
11499 md_parse_option (int c, char *arg)
11500 {
11501 switch (c)
11502 {
11503 case OPTION_CONSTRUCT_FLOATS:
11504 mips_disable_float_construction = 0;
11505 break;
11506
11507 case OPTION_NO_CONSTRUCT_FLOATS:
11508 mips_disable_float_construction = 1;
11509 break;
11510
11511 case OPTION_TRAP:
11512 mips_trap = 1;
11513 break;
11514
11515 case OPTION_BREAK:
11516 mips_trap = 0;
11517 break;
11518
11519 case OPTION_EB:
11520 target_big_endian = 1;
11521 break;
11522
11523 case OPTION_EL:
11524 target_big_endian = 0;
11525 break;
11526
11527 case 'O':
11528 if (arg == NULL)
11529 mips_optimize = 1;
11530 else if (arg[0] == '0')
11531 mips_optimize = 0;
11532 else if (arg[0] == '1')
11533 mips_optimize = 1;
11534 else
11535 mips_optimize = 2;
11536 break;
11537
11538 case 'g':
11539 if (arg == NULL)
11540 mips_debug = 2;
11541 else
11542 mips_debug = atoi (arg);
11543 break;
11544
11545 case OPTION_MIPS1:
11546 file_mips_isa = ISA_MIPS1;
11547 break;
11548
11549 case OPTION_MIPS2:
11550 file_mips_isa = ISA_MIPS2;
11551 break;
11552
11553 case OPTION_MIPS3:
11554 file_mips_isa = ISA_MIPS3;
11555 break;
11556
11557 case OPTION_MIPS4:
11558 file_mips_isa = ISA_MIPS4;
11559 break;
11560
11561 case OPTION_MIPS5:
11562 file_mips_isa = ISA_MIPS5;
11563 break;
11564
11565 case OPTION_MIPS32:
11566 file_mips_isa = ISA_MIPS32;
11567 break;
11568
11569 case OPTION_MIPS32R2:
11570 file_mips_isa = ISA_MIPS32R2;
11571 break;
11572
11573 case OPTION_MIPS64R2:
11574 file_mips_isa = ISA_MIPS64R2;
11575 break;
11576
11577 case OPTION_MIPS64:
11578 file_mips_isa = ISA_MIPS64;
11579 break;
11580
11581 case OPTION_MTUNE:
11582 mips_set_option_string (&mips_tune_string, arg);
11583 break;
11584
11585 case OPTION_MARCH:
11586 mips_set_option_string (&mips_arch_string, arg);
11587 break;
11588
11589 case OPTION_M4650:
11590 mips_set_option_string (&mips_arch_string, "4650");
11591 mips_set_option_string (&mips_tune_string, "4650");
11592 break;
11593
11594 case OPTION_NO_M4650:
11595 break;
11596
11597 case OPTION_M4010:
11598 mips_set_option_string (&mips_arch_string, "4010");
11599 mips_set_option_string (&mips_tune_string, "4010");
11600 break;
11601
11602 case OPTION_NO_M4010:
11603 break;
11604
11605 case OPTION_M4100:
11606 mips_set_option_string (&mips_arch_string, "4100");
11607 mips_set_option_string (&mips_tune_string, "4100");
11608 break;
11609
11610 case OPTION_NO_M4100:
11611 break;
11612
11613 case OPTION_M3900:
11614 mips_set_option_string (&mips_arch_string, "3900");
11615 mips_set_option_string (&mips_tune_string, "3900");
11616 break;
11617
11618 case OPTION_NO_M3900:
11619 break;
11620
11621 case OPTION_MDMX:
11622 mips_opts.ase_mdmx = 1;
11623 break;
11624
11625 case OPTION_NO_MDMX:
11626 mips_opts.ase_mdmx = 0;
11627 break;
11628
11629 case OPTION_DSP:
11630 mips_opts.ase_dsp = 1;
11631 mips_opts.ase_dspr2 = 0;
11632 break;
11633
11634 case OPTION_NO_DSP:
11635 mips_opts.ase_dsp = 0;
11636 mips_opts.ase_dspr2 = 0;
11637 break;
11638
11639 case OPTION_DSPR2:
11640 mips_opts.ase_dspr2 = 1;
11641 mips_opts.ase_dsp = 1;
11642 break;
11643
11644 case OPTION_NO_DSPR2:
11645 mips_opts.ase_dspr2 = 0;
11646 mips_opts.ase_dsp = 0;
11647 break;
11648
11649 case OPTION_MT:
11650 mips_opts.ase_mt = 1;
11651 break;
11652
11653 case OPTION_NO_MT:
11654 mips_opts.ase_mt = 0;
11655 break;
11656
11657 case OPTION_MIPS16:
11658 mips_opts.mips16 = 1;
11659 mips_no_prev_insn ();
11660 break;
11661
11662 case OPTION_NO_MIPS16:
11663 mips_opts.mips16 = 0;
11664 mips_no_prev_insn ();
11665 break;
11666
11667 case OPTION_MIPS3D:
11668 mips_opts.ase_mips3d = 1;
11669 break;
11670
11671 case OPTION_NO_MIPS3D:
11672 mips_opts.ase_mips3d = 0;
11673 break;
11674
11675 case OPTION_SMARTMIPS:
11676 mips_opts.ase_smartmips = 1;
11677 break;
11678
11679 case OPTION_NO_SMARTMIPS:
11680 mips_opts.ase_smartmips = 0;
11681 break;
11682
11683 case OPTION_FIX_24K:
11684 mips_fix_24k = 1;
11685 break;
11686
11687 case OPTION_NO_FIX_24K:
11688 mips_fix_24k = 0;
11689 break;
11690
11691 case OPTION_FIX_LOONGSON2F_JUMP:
11692 mips_fix_loongson2f_jump = TRUE;
11693 break;
11694
11695 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11696 mips_fix_loongson2f_jump = FALSE;
11697 break;
11698
11699 case OPTION_FIX_LOONGSON2F_NOP:
11700 mips_fix_loongson2f_nop = TRUE;
11701 break;
11702
11703 case OPTION_NO_FIX_LOONGSON2F_NOP:
11704 mips_fix_loongson2f_nop = FALSE;
11705 break;
11706
11707 case OPTION_FIX_VR4120:
11708 mips_fix_vr4120 = 1;
11709 break;
11710
11711 case OPTION_NO_FIX_VR4120:
11712 mips_fix_vr4120 = 0;
11713 break;
11714
11715 case OPTION_FIX_VR4130:
11716 mips_fix_vr4130 = 1;
11717 break;
11718
11719 case OPTION_NO_FIX_VR4130:
11720 mips_fix_vr4130 = 0;
11721 break;
11722
11723 case OPTION_FIX_CN63XXP1:
11724 mips_fix_cn63xxp1 = TRUE;
11725 break;
11726
11727 case OPTION_NO_FIX_CN63XXP1:
11728 mips_fix_cn63xxp1 = FALSE;
11729 break;
11730
11731 case OPTION_RELAX_BRANCH:
11732 mips_relax_branch = 1;
11733 break;
11734
11735 case OPTION_NO_RELAX_BRANCH:
11736 mips_relax_branch = 0;
11737 break;
11738
11739 case OPTION_MSHARED:
11740 mips_in_shared = TRUE;
11741 break;
11742
11743 case OPTION_MNO_SHARED:
11744 mips_in_shared = FALSE;
11745 break;
11746
11747 case OPTION_MSYM32:
11748 mips_opts.sym32 = TRUE;
11749 break;
11750
11751 case OPTION_MNO_SYM32:
11752 mips_opts.sym32 = FALSE;
11753 break;
11754
11755 #ifdef OBJ_ELF
11756 /* When generating ELF code, we permit -KPIC and -call_shared to
11757 select SVR4_PIC, and -non_shared to select no PIC. This is
11758 intended to be compatible with Irix 5. */
11759 case OPTION_CALL_SHARED:
11760 if (!IS_ELF)
11761 {
11762 as_bad (_("-call_shared is supported only for ELF format"));
11763 return 0;
11764 }
11765 mips_pic = SVR4_PIC;
11766 mips_abicalls = TRUE;
11767 break;
11768
11769 case OPTION_CALL_NONPIC:
11770 if (!IS_ELF)
11771 {
11772 as_bad (_("-call_nonpic is supported only for ELF format"));
11773 return 0;
11774 }
11775 mips_pic = NO_PIC;
11776 mips_abicalls = TRUE;
11777 break;
11778
11779 case OPTION_NON_SHARED:
11780 if (!IS_ELF)
11781 {
11782 as_bad (_("-non_shared is supported only for ELF format"));
11783 return 0;
11784 }
11785 mips_pic = NO_PIC;
11786 mips_abicalls = FALSE;
11787 break;
11788
11789 /* The -xgot option tells the assembler to use 32 bit offsets
11790 when accessing the got in SVR4_PIC mode. It is for Irix
11791 compatibility. */
11792 case OPTION_XGOT:
11793 mips_big_got = 1;
11794 break;
11795 #endif /* OBJ_ELF */
11796
11797 case 'G':
11798 g_switch_value = atoi (arg);
11799 g_switch_seen = 1;
11800 break;
11801
11802 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11803 and -mabi=64. */
11804 case OPTION_32:
11805 if (IS_ELF)
11806 mips_abi = O32_ABI;
11807 /* We silently ignore -32 for non-ELF targets. This greatly
11808 simplifies the construction of the MIPS GAS test cases. */
11809 break;
11810
11811 #ifdef OBJ_ELF
11812 case OPTION_N32:
11813 if (!IS_ELF)
11814 {
11815 as_bad (_("-n32 is supported for ELF format only"));
11816 return 0;
11817 }
11818 mips_abi = N32_ABI;
11819 break;
11820
11821 case OPTION_64:
11822 if (!IS_ELF)
11823 {
11824 as_bad (_("-64 is supported for ELF format only"));
11825 return 0;
11826 }
11827 mips_abi = N64_ABI;
11828 if (!support_64bit_objects())
11829 as_fatal (_("No compiled in support for 64 bit object file format"));
11830 break;
11831 #endif /* OBJ_ELF */
11832
11833 case OPTION_GP32:
11834 file_mips_gp32 = 1;
11835 break;
11836
11837 case OPTION_GP64:
11838 file_mips_gp32 = 0;
11839 break;
11840
11841 case OPTION_FP32:
11842 file_mips_fp32 = 1;
11843 break;
11844
11845 case OPTION_FP64:
11846 file_mips_fp32 = 0;
11847 break;
11848
11849 case OPTION_SINGLE_FLOAT:
11850 file_mips_single_float = 1;
11851 break;
11852
11853 case OPTION_DOUBLE_FLOAT:
11854 file_mips_single_float = 0;
11855 break;
11856
11857 case OPTION_SOFT_FLOAT:
11858 file_mips_soft_float = 1;
11859 break;
11860
11861 case OPTION_HARD_FLOAT:
11862 file_mips_soft_float = 0;
11863 break;
11864
11865 #ifdef OBJ_ELF
11866 case OPTION_MABI:
11867 if (!IS_ELF)
11868 {
11869 as_bad (_("-mabi is supported for ELF format only"));
11870 return 0;
11871 }
11872 if (strcmp (arg, "32") == 0)
11873 mips_abi = O32_ABI;
11874 else if (strcmp (arg, "o64") == 0)
11875 mips_abi = O64_ABI;
11876 else if (strcmp (arg, "n32") == 0)
11877 mips_abi = N32_ABI;
11878 else if (strcmp (arg, "64") == 0)
11879 {
11880 mips_abi = N64_ABI;
11881 if (! support_64bit_objects())
11882 as_fatal (_("No compiled in support for 64 bit object file "
11883 "format"));
11884 }
11885 else if (strcmp (arg, "eabi") == 0)
11886 mips_abi = EABI_ABI;
11887 else
11888 {
11889 as_fatal (_("invalid abi -mabi=%s"), arg);
11890 return 0;
11891 }
11892 break;
11893 #endif /* OBJ_ELF */
11894
11895 case OPTION_M7000_HILO_FIX:
11896 mips_7000_hilo_fix = TRUE;
11897 break;
11898
11899 case OPTION_MNO_7000_HILO_FIX:
11900 mips_7000_hilo_fix = FALSE;
11901 break;
11902
11903 #ifdef OBJ_ELF
11904 case OPTION_MDEBUG:
11905 mips_flag_mdebug = TRUE;
11906 break;
11907
11908 case OPTION_NO_MDEBUG:
11909 mips_flag_mdebug = FALSE;
11910 break;
11911
11912 case OPTION_PDR:
11913 mips_flag_pdr = TRUE;
11914 break;
11915
11916 case OPTION_NO_PDR:
11917 mips_flag_pdr = FALSE;
11918 break;
11919
11920 case OPTION_MVXWORKS_PIC:
11921 mips_pic = VXWORKS_PIC;
11922 break;
11923 #endif /* OBJ_ELF */
11924
11925 default:
11926 return 0;
11927 }
11928
11929 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
11930
11931 return 1;
11932 }
11933 \f
11934 /* Set up globals to generate code for the ISA or processor
11935 described by INFO. */
11936
11937 static void
11938 mips_set_architecture (const struct mips_cpu_info *info)
11939 {
11940 if (info != 0)
11941 {
11942 file_mips_arch = info->cpu;
11943 mips_opts.arch = info->cpu;
11944 mips_opts.isa = info->isa;
11945 }
11946 }
11947
11948
11949 /* Likewise for tuning. */
11950
11951 static void
11952 mips_set_tune (const struct mips_cpu_info *info)
11953 {
11954 if (info != 0)
11955 mips_tune = info->cpu;
11956 }
11957
11958
11959 void
11960 mips_after_parse_args (void)
11961 {
11962 const struct mips_cpu_info *arch_info = 0;
11963 const struct mips_cpu_info *tune_info = 0;
11964
11965 /* GP relative stuff not working for PE */
11966 if (strncmp (TARGET_OS, "pe", 2) == 0)
11967 {
11968 if (g_switch_seen && g_switch_value != 0)
11969 as_bad (_("-G not supported in this configuration."));
11970 g_switch_value = 0;
11971 }
11972
11973 if (mips_abi == NO_ABI)
11974 mips_abi = MIPS_DEFAULT_ABI;
11975
11976 /* The following code determines the architecture and register size.
11977 Similar code was added to GCC 3.3 (see override_options() in
11978 config/mips/mips.c). The GAS and GCC code should be kept in sync
11979 as much as possible. */
11980
11981 if (mips_arch_string != 0)
11982 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11983
11984 if (file_mips_isa != ISA_UNKNOWN)
11985 {
11986 /* Handle -mipsN. At this point, file_mips_isa contains the
11987 ISA level specified by -mipsN, while arch_info->isa contains
11988 the -march selection (if any). */
11989 if (arch_info != 0)
11990 {
11991 /* -march takes precedence over -mipsN, since it is more descriptive.
11992 There's no harm in specifying both as long as the ISA levels
11993 are the same. */
11994 if (file_mips_isa != arch_info->isa)
11995 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11996 mips_cpu_info_from_isa (file_mips_isa)->name,
11997 mips_cpu_info_from_isa (arch_info->isa)->name);
11998 }
11999 else
12000 arch_info = mips_cpu_info_from_isa (file_mips_isa);
12001 }
12002
12003 if (arch_info == 0)
12004 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
12005
12006 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
12007 as_bad (_("-march=%s is not compatible with the selected ABI"),
12008 arch_info->name);
12009
12010 mips_set_architecture (arch_info);
12011
12012 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
12013 if (mips_tune_string != 0)
12014 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
12015
12016 if (tune_info == 0)
12017 mips_set_tune (arch_info);
12018 else
12019 mips_set_tune (tune_info);
12020
12021 if (file_mips_gp32 >= 0)
12022 {
12023 /* The user specified the size of the integer registers. Make sure
12024 it agrees with the ABI and ISA. */
12025 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
12026 as_bad (_("-mgp64 used with a 32-bit processor"));
12027 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
12028 as_bad (_("-mgp32 used with a 64-bit ABI"));
12029 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
12030 as_bad (_("-mgp64 used with a 32-bit ABI"));
12031 }
12032 else
12033 {
12034 /* Infer the integer register size from the ABI and processor.
12035 Restrict ourselves to 32-bit registers if that's all the
12036 processor has, or if the ABI cannot handle 64-bit registers. */
12037 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
12038 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
12039 }
12040
12041 switch (file_mips_fp32)
12042 {
12043 default:
12044 case -1:
12045 /* No user specified float register size.
12046 ??? GAS treats single-float processors as though they had 64-bit
12047 float registers (although it complains when double-precision
12048 instructions are used). As things stand, saying they have 32-bit
12049 registers would lead to spurious "register must be even" messages.
12050 So here we assume float registers are never smaller than the
12051 integer ones. */
12052 if (file_mips_gp32 == 0)
12053 /* 64-bit integer registers implies 64-bit float registers. */
12054 file_mips_fp32 = 0;
12055 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
12056 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
12057 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
12058 file_mips_fp32 = 0;
12059 else
12060 /* 32-bit float registers. */
12061 file_mips_fp32 = 1;
12062 break;
12063
12064 /* The user specified the size of the float registers. Check if it
12065 agrees with the ABI and ISA. */
12066 case 0:
12067 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12068 as_bad (_("-mfp64 used with a 32-bit fpu"));
12069 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
12070 && !ISA_HAS_MXHC1 (mips_opts.isa))
12071 as_warn (_("-mfp64 used with a 32-bit ABI"));
12072 break;
12073 case 1:
12074 if (ABI_NEEDS_64BIT_REGS (mips_abi))
12075 as_warn (_("-mfp32 used with a 64-bit ABI"));
12076 break;
12077 }
12078
12079 /* End of GCC-shared inference code. */
12080
12081 /* This flag is set when we have a 64-bit capable CPU but use only
12082 32-bit wide registers. Note that EABI does not use it. */
12083 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
12084 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
12085 || mips_abi == O32_ABI))
12086 mips_32bitmode = 1;
12087
12088 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
12089 as_bad (_("trap exception not supported at ISA 1"));
12090
12091 /* If the selected architecture includes support for ASEs, enable
12092 generation of code for them. */
12093 if (mips_opts.mips16 == -1)
12094 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12095 if (mips_opts.ase_mips3d == -1)
12096 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12097 && file_mips_fp32 == 0) ? 1 : 0;
12098 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12099 as_bad (_("-mfp32 used with -mips3d"));
12100
12101 if (mips_opts.ase_mdmx == -1)
12102 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12103 && file_mips_fp32 == 0) ? 1 : 0;
12104 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12105 as_bad (_("-mfp32 used with -mdmx"));
12106
12107 if (mips_opts.ase_smartmips == -1)
12108 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12109 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12110 as_warn (_("%s ISA does not support SmartMIPS"),
12111 mips_cpu_info_from_isa (mips_opts.isa)->name);
12112
12113 if (mips_opts.ase_dsp == -1)
12114 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12115 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12116 as_warn (_("%s ISA does not support DSP ASE"),
12117 mips_cpu_info_from_isa (mips_opts.isa)->name);
12118
12119 if (mips_opts.ase_dspr2 == -1)
12120 {
12121 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12122 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12123 }
12124 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12125 as_warn (_("%s ISA does not support DSP R2 ASE"),
12126 mips_cpu_info_from_isa (mips_opts.isa)->name);
12127
12128 if (mips_opts.ase_mt == -1)
12129 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12130 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12131 as_warn (_("%s ISA does not support MT ASE"),
12132 mips_cpu_info_from_isa (mips_opts.isa)->name);
12133
12134 file_mips_isa = mips_opts.isa;
12135 file_ase_mips3d = mips_opts.ase_mips3d;
12136 file_ase_mdmx = mips_opts.ase_mdmx;
12137 file_ase_smartmips = mips_opts.ase_smartmips;
12138 file_ase_dsp = mips_opts.ase_dsp;
12139 file_ase_dspr2 = mips_opts.ase_dspr2;
12140 file_ase_mt = mips_opts.ase_mt;
12141 mips_opts.gp32 = file_mips_gp32;
12142 mips_opts.fp32 = file_mips_fp32;
12143 mips_opts.soft_float = file_mips_soft_float;
12144 mips_opts.single_float = file_mips_single_float;
12145
12146 if (mips_flag_mdebug < 0)
12147 {
12148 #ifdef OBJ_MAYBE_ECOFF
12149 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12150 mips_flag_mdebug = 1;
12151 else
12152 #endif /* OBJ_MAYBE_ECOFF */
12153 mips_flag_mdebug = 0;
12154 }
12155 }
12156 \f
12157 void
12158 mips_init_after_args (void)
12159 {
12160 /* initialize opcodes */
12161 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12162 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12163 }
12164
12165 long
12166 md_pcrel_from (fixS *fixP)
12167 {
12168 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12169 switch (fixP->fx_r_type)
12170 {
12171 case BFD_RELOC_16_PCREL_S2:
12172 case BFD_RELOC_MIPS_JMP:
12173 /* Return the address of the delay slot. */
12174 return addr + 4;
12175 default:
12176 /* We have no relocation type for PC relative MIPS16 instructions. */
12177 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12178 as_bad_where (fixP->fx_file, fixP->fx_line,
12179 _("PC relative MIPS16 instruction references a different section"));
12180 return addr;
12181 }
12182 }
12183
12184 /* This is called before the symbol table is processed. In order to
12185 work with gcc when using mips-tfile, we must keep all local labels.
12186 However, in other cases, we want to discard them. If we were
12187 called with -g, but we didn't see any debugging information, it may
12188 mean that gcc is smuggling debugging information through to
12189 mips-tfile, in which case we must generate all local labels. */
12190
12191 void
12192 mips_frob_file_before_adjust (void)
12193 {
12194 #ifndef NO_ECOFF_DEBUGGING
12195 if (ECOFF_DEBUGGING
12196 && mips_debug != 0
12197 && ! ecoff_debugging_seen)
12198 flag_keep_locals = 1;
12199 #endif
12200 }
12201
12202 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12203 the corresponding LO16 reloc. This is called before md_apply_fix and
12204 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12205 relocation operators.
12206
12207 For our purposes, a %lo() expression matches a %got() or %hi()
12208 expression if:
12209
12210 (a) it refers to the same symbol; and
12211 (b) the offset applied in the %lo() expression is no lower than
12212 the offset applied in the %got() or %hi().
12213
12214 (b) allows us to cope with code like:
12215
12216 lui $4,%hi(foo)
12217 lh $4,%lo(foo+2)($4)
12218
12219 ...which is legal on RELA targets, and has a well-defined behaviour
12220 if the user knows that adding 2 to "foo" will not induce a carry to
12221 the high 16 bits.
12222
12223 When several %lo()s match a particular %got() or %hi(), we use the
12224 following rules to distinguish them:
12225
12226 (1) %lo()s with smaller offsets are a better match than %lo()s with
12227 higher offsets.
12228
12229 (2) %lo()s with no matching %got() or %hi() are better than those
12230 that already have a matching %got() or %hi().
12231
12232 (3) later %lo()s are better than earlier %lo()s.
12233
12234 These rules are applied in order.
12235
12236 (1) means, among other things, that %lo()s with identical offsets are
12237 chosen if they exist.
12238
12239 (2) means that we won't associate several high-part relocations with
12240 the same low-part relocation unless there's no alternative. Having
12241 several high parts for the same low part is a GNU extension; this rule
12242 allows careful users to avoid it.
12243
12244 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12245 with the last high-part relocation being at the front of the list.
12246 It therefore makes sense to choose the last matching low-part
12247 relocation, all other things being equal. It's also easier
12248 to code that way. */
12249
12250 void
12251 mips_frob_file (void)
12252 {
12253 struct mips_hi_fixup *l;
12254 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12255
12256 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12257 {
12258 segment_info_type *seginfo;
12259 bfd_boolean matched_lo_p;
12260 fixS **hi_pos, **lo_pos, **pos;
12261
12262 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12263
12264 /* If a GOT16 relocation turns out to be against a global symbol,
12265 there isn't supposed to be a matching LO. */
12266 if (got16_reloc_p (l->fixp->fx_r_type)
12267 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12268 continue;
12269
12270 /* Check quickly whether the next fixup happens to be a matching %lo. */
12271 if (fixup_has_matching_lo_p (l->fixp))
12272 continue;
12273
12274 seginfo = seg_info (l->seg);
12275
12276 /* Set HI_POS to the position of this relocation in the chain.
12277 Set LO_POS to the position of the chosen low-part relocation.
12278 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12279 relocation that matches an immediately-preceding high-part
12280 relocation. */
12281 hi_pos = NULL;
12282 lo_pos = NULL;
12283 matched_lo_p = FALSE;
12284 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12285
12286 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12287 {
12288 if (*pos == l->fixp)
12289 hi_pos = pos;
12290
12291 if ((*pos)->fx_r_type == looking_for_rtype
12292 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12293 && (*pos)->fx_offset >= l->fixp->fx_offset
12294 && (lo_pos == NULL
12295 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12296 || (!matched_lo_p
12297 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12298 lo_pos = pos;
12299
12300 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12301 && fixup_has_matching_lo_p (*pos));
12302 }
12303
12304 /* If we found a match, remove the high-part relocation from its
12305 current position and insert it before the low-part relocation.
12306 Make the offsets match so that fixup_has_matching_lo_p()
12307 will return true.
12308
12309 We don't warn about unmatched high-part relocations since some
12310 versions of gcc have been known to emit dead "lui ...%hi(...)"
12311 instructions. */
12312 if (lo_pos != NULL)
12313 {
12314 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12315 if (l->fixp->fx_next != *lo_pos)
12316 {
12317 *hi_pos = l->fixp->fx_next;
12318 l->fixp->fx_next = *lo_pos;
12319 *lo_pos = l->fixp;
12320 }
12321 }
12322 }
12323 }
12324
12325 /* We may have combined relocations without symbols in the N32/N64 ABI.
12326 We have to prevent gas from dropping them. */
12327
12328 int
12329 mips_force_relocation (fixS *fixp)
12330 {
12331 if (generic_force_reloc (fixp))
12332 return 1;
12333
12334 if (HAVE_NEWABI
12335 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12336 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12337 || hi16_reloc_p (fixp->fx_r_type)
12338 || lo16_reloc_p (fixp->fx_r_type)))
12339 return 1;
12340
12341 return 0;
12342 }
12343
12344 /* Apply a fixup to the object file. */
12345
12346 void
12347 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12348 {
12349 bfd_byte *buf;
12350 long insn;
12351 reloc_howto_type *howto;
12352
12353 /* We ignore generic BFD relocations we don't know about. */
12354 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12355 if (! howto)
12356 return;
12357
12358 gas_assert (fixP->fx_size == 4
12359 || fixP->fx_r_type == BFD_RELOC_16
12360 || fixP->fx_r_type == BFD_RELOC_64
12361 || fixP->fx_r_type == BFD_RELOC_CTOR
12362 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12363 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12364 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12365 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12366
12367 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12368
12369 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12370
12371 /* Don't treat parts of a composite relocation as done. There are two
12372 reasons for this:
12373
12374 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12375 should nevertheless be emitted if the first part is.
12376
12377 (2) In normal usage, composite relocations are never assembly-time
12378 constants. The easiest way of dealing with the pathological
12379 exceptions is to generate a relocation against STN_UNDEF and
12380 leave everything up to the linker. */
12381 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12382 fixP->fx_done = 1;
12383
12384 switch (fixP->fx_r_type)
12385 {
12386 case BFD_RELOC_MIPS_TLS_GD:
12387 case BFD_RELOC_MIPS_TLS_LDM:
12388 case BFD_RELOC_MIPS_TLS_DTPREL32:
12389 case BFD_RELOC_MIPS_TLS_DTPREL64:
12390 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12391 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12392 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12393 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12394 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12395 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12396 /* fall through */
12397
12398 case BFD_RELOC_MIPS_JMP:
12399 case BFD_RELOC_MIPS_SHIFT5:
12400 case BFD_RELOC_MIPS_SHIFT6:
12401 case BFD_RELOC_MIPS_GOT_DISP:
12402 case BFD_RELOC_MIPS_GOT_PAGE:
12403 case BFD_RELOC_MIPS_GOT_OFST:
12404 case BFD_RELOC_MIPS_SUB:
12405 case BFD_RELOC_MIPS_INSERT_A:
12406 case BFD_RELOC_MIPS_INSERT_B:
12407 case BFD_RELOC_MIPS_DELETE:
12408 case BFD_RELOC_MIPS_HIGHEST:
12409 case BFD_RELOC_MIPS_HIGHER:
12410 case BFD_RELOC_MIPS_SCN_DISP:
12411 case BFD_RELOC_MIPS_REL16:
12412 case BFD_RELOC_MIPS_RELGOT:
12413 case BFD_RELOC_MIPS_JALR:
12414 case BFD_RELOC_HI16:
12415 case BFD_RELOC_HI16_S:
12416 case BFD_RELOC_GPREL16:
12417 case BFD_RELOC_MIPS_LITERAL:
12418 case BFD_RELOC_MIPS_CALL16:
12419 case BFD_RELOC_MIPS_GOT16:
12420 case BFD_RELOC_GPREL32:
12421 case BFD_RELOC_MIPS_GOT_HI16:
12422 case BFD_RELOC_MIPS_GOT_LO16:
12423 case BFD_RELOC_MIPS_CALL_HI16:
12424 case BFD_RELOC_MIPS_CALL_LO16:
12425 case BFD_RELOC_MIPS16_GPREL:
12426 case BFD_RELOC_MIPS16_GOT16:
12427 case BFD_RELOC_MIPS16_CALL16:
12428 case BFD_RELOC_MIPS16_HI16:
12429 case BFD_RELOC_MIPS16_HI16_S:
12430 case BFD_RELOC_MIPS16_JMP:
12431 /* Nothing needed to do. The value comes from the reloc entry. */
12432 break;
12433
12434 case BFD_RELOC_64:
12435 /* This is handled like BFD_RELOC_32, but we output a sign
12436 extended value if we are only 32 bits. */
12437 if (fixP->fx_done)
12438 {
12439 if (8 <= sizeof (valueT))
12440 md_number_to_chars ((char *) buf, *valP, 8);
12441 else
12442 {
12443 valueT hiv;
12444
12445 if ((*valP & 0x80000000) != 0)
12446 hiv = 0xffffffff;
12447 else
12448 hiv = 0;
12449 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12450 *valP, 4);
12451 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12452 hiv, 4);
12453 }
12454 }
12455 break;
12456
12457 case BFD_RELOC_RVA:
12458 case BFD_RELOC_32:
12459 case BFD_RELOC_16:
12460 /* If we are deleting this reloc entry, we must fill in the
12461 value now. This can happen if we have a .word which is not
12462 resolved when it appears but is later defined. */
12463 if (fixP->fx_done)
12464 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12465 break;
12466
12467 case BFD_RELOC_LO16:
12468 case BFD_RELOC_MIPS16_LO16:
12469 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12470 may be safe to remove, but if so it's not obvious. */
12471 /* When handling an embedded PIC switch statement, we can wind
12472 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12473 if (fixP->fx_done)
12474 {
12475 if (*valP + 0x8000 > 0xffff)
12476 as_bad_where (fixP->fx_file, fixP->fx_line,
12477 _("relocation overflow"));
12478 if (target_big_endian)
12479 buf += 2;
12480 md_number_to_chars ((char *) buf, *valP, 2);
12481 }
12482 break;
12483
12484 case BFD_RELOC_16_PCREL_S2:
12485 if ((*valP & 0x3) != 0)
12486 as_bad_where (fixP->fx_file, fixP->fx_line,
12487 _("Branch to misaligned address (%lx)"), (long) *valP);
12488
12489 /* We need to save the bits in the instruction since fixup_segment()
12490 might be deleting the relocation entry (i.e., a branch within
12491 the current segment). */
12492 if (! fixP->fx_done)
12493 break;
12494
12495 /* Update old instruction data. */
12496 if (target_big_endian)
12497 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12498 else
12499 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12500
12501 if (*valP + 0x20000 <= 0x3ffff)
12502 {
12503 insn |= (*valP >> 2) & 0xffff;
12504 md_number_to_chars ((char *) buf, insn, 4);
12505 }
12506 else if (mips_pic == NO_PIC
12507 && fixP->fx_done
12508 && fixP->fx_frag->fr_address >= text_section->vma
12509 && (fixP->fx_frag->fr_address
12510 < text_section->vma + bfd_get_section_size (text_section))
12511 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12512 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12513 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12514 {
12515 /* The branch offset is too large. If this is an
12516 unconditional branch, and we are not generating PIC code,
12517 we can convert it to an absolute jump instruction. */
12518 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12519 insn = 0x0c000000; /* jal */
12520 else
12521 insn = 0x08000000; /* j */
12522 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12523 fixP->fx_done = 0;
12524 fixP->fx_addsy = section_symbol (text_section);
12525 *valP += md_pcrel_from (fixP);
12526 md_number_to_chars ((char *) buf, insn, 4);
12527 }
12528 else
12529 {
12530 /* If we got here, we have branch-relaxation disabled,
12531 and there's nothing we can do to fix this instruction
12532 without turning it into a longer sequence. */
12533 as_bad_where (fixP->fx_file, fixP->fx_line,
12534 _("Branch out of range"));
12535 }
12536 break;
12537
12538 case BFD_RELOC_VTABLE_INHERIT:
12539 fixP->fx_done = 0;
12540 if (fixP->fx_addsy
12541 && !S_IS_DEFINED (fixP->fx_addsy)
12542 && !S_IS_WEAK (fixP->fx_addsy))
12543 S_SET_WEAK (fixP->fx_addsy);
12544 break;
12545
12546 case BFD_RELOC_VTABLE_ENTRY:
12547 fixP->fx_done = 0;
12548 break;
12549
12550 default:
12551 internalError ();
12552 }
12553
12554 /* Remember value for tc_gen_reloc. */
12555 fixP->fx_addnumber = *valP;
12556 }
12557
12558 static symbolS *
12559 get_symbol (void)
12560 {
12561 int c;
12562 char *name;
12563 symbolS *p;
12564
12565 name = input_line_pointer;
12566 c = get_symbol_end ();
12567 p = (symbolS *) symbol_find_or_make (name);
12568 *input_line_pointer = c;
12569 return p;
12570 }
12571
12572 /* Align the current frag to a given power of two. If a particular
12573 fill byte should be used, FILL points to an integer that contains
12574 that byte, otherwise FILL is null.
12575
12576 The MIPS assembler also automatically adjusts any preceding
12577 label. */
12578
12579 static void
12580 mips_align (int to, int *fill, symbolS *label)
12581 {
12582 mips_emit_delays ();
12583 mips_record_mips16_mode ();
12584 if (fill == NULL && subseg_text_p (now_seg))
12585 frag_align_code (to, 0);
12586 else
12587 frag_align (to, fill ? *fill : 0, 0);
12588 record_alignment (now_seg, to);
12589 if (label != NULL)
12590 {
12591 gas_assert (S_GET_SEGMENT (label) == now_seg);
12592 symbol_set_frag (label, frag_now);
12593 S_SET_VALUE (label, (valueT) frag_now_fix ());
12594 }
12595 }
12596
12597 /* Align to a given power of two. .align 0 turns off the automatic
12598 alignment used by the data creating pseudo-ops. */
12599
12600 static void
12601 s_align (int x ATTRIBUTE_UNUSED)
12602 {
12603 int temp, fill_value, *fill_ptr;
12604 long max_alignment = 28;
12605
12606 /* o Note that the assembler pulls down any immediately preceding label
12607 to the aligned address.
12608 o It's not documented but auto alignment is reinstated by
12609 a .align pseudo instruction.
12610 o Note also that after auto alignment is turned off the mips assembler
12611 issues an error on attempt to assemble an improperly aligned data item.
12612 We don't. */
12613
12614 temp = get_absolute_expression ();
12615 if (temp > max_alignment)
12616 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12617 else if (temp < 0)
12618 {
12619 as_warn (_("Alignment negative: 0 assumed."));
12620 temp = 0;
12621 }
12622 if (*input_line_pointer == ',')
12623 {
12624 ++input_line_pointer;
12625 fill_value = get_absolute_expression ();
12626 fill_ptr = &fill_value;
12627 }
12628 else
12629 fill_ptr = 0;
12630 if (temp)
12631 {
12632 segment_info_type *si = seg_info (now_seg);
12633 struct insn_label_list *l = si->label_list;
12634 /* Auto alignment should be switched on by next section change. */
12635 auto_align = 1;
12636 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12637 }
12638 else
12639 {
12640 auto_align = 0;
12641 }
12642
12643 demand_empty_rest_of_line ();
12644 }
12645
12646 static void
12647 s_change_sec (int sec)
12648 {
12649 segT seg;
12650
12651 #ifdef OBJ_ELF
12652 /* The ELF backend needs to know that we are changing sections, so
12653 that .previous works correctly. We could do something like check
12654 for an obj_section_change_hook macro, but that might be confusing
12655 as it would not be appropriate to use it in the section changing
12656 functions in read.c, since obj-elf.c intercepts those. FIXME:
12657 This should be cleaner, somehow. */
12658 if (IS_ELF)
12659 obj_elf_section_change_hook ();
12660 #endif
12661
12662 mips_emit_delays ();
12663
12664 switch (sec)
12665 {
12666 case 't':
12667 s_text (0);
12668 break;
12669 case 'd':
12670 s_data (0);
12671 break;
12672 case 'b':
12673 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12674 demand_empty_rest_of_line ();
12675 break;
12676
12677 case 'r':
12678 seg = subseg_new (RDATA_SECTION_NAME,
12679 (subsegT) get_absolute_expression ());
12680 if (IS_ELF)
12681 {
12682 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12683 | SEC_READONLY | SEC_RELOC
12684 | SEC_DATA));
12685 if (strncmp (TARGET_OS, "elf", 3) != 0)
12686 record_alignment (seg, 4);
12687 }
12688 demand_empty_rest_of_line ();
12689 break;
12690
12691 case 's':
12692 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12693 if (IS_ELF)
12694 {
12695 bfd_set_section_flags (stdoutput, seg,
12696 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12697 if (strncmp (TARGET_OS, "elf", 3) != 0)
12698 record_alignment (seg, 4);
12699 }
12700 demand_empty_rest_of_line ();
12701 break;
12702
12703 case 'B':
12704 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
12705 if (IS_ELF)
12706 {
12707 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
12708 if (strncmp (TARGET_OS, "elf", 3) != 0)
12709 record_alignment (seg, 4);
12710 }
12711 demand_empty_rest_of_line ();
12712 break;
12713 }
12714
12715 auto_align = 1;
12716 }
12717
12718 void
12719 s_change_section (int ignore ATTRIBUTE_UNUSED)
12720 {
12721 #ifdef OBJ_ELF
12722 char *section_name;
12723 char c;
12724 char next_c = 0;
12725 int section_type;
12726 int section_flag;
12727 int section_entry_size;
12728 int section_alignment;
12729
12730 if (!IS_ELF)
12731 return;
12732
12733 section_name = input_line_pointer;
12734 c = get_symbol_end ();
12735 if (c)
12736 next_c = *(input_line_pointer + 1);
12737
12738 /* Do we have .section Name<,"flags">? */
12739 if (c != ',' || (c == ',' && next_c == '"'))
12740 {
12741 /* just after name is now '\0'. */
12742 *input_line_pointer = c;
12743 input_line_pointer = section_name;
12744 obj_elf_section (ignore);
12745 return;
12746 }
12747 input_line_pointer++;
12748
12749 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12750 if (c == ',')
12751 section_type = get_absolute_expression ();
12752 else
12753 section_type = 0;
12754 if (*input_line_pointer++ == ',')
12755 section_flag = get_absolute_expression ();
12756 else
12757 section_flag = 0;
12758 if (*input_line_pointer++ == ',')
12759 section_entry_size = get_absolute_expression ();
12760 else
12761 section_entry_size = 0;
12762 if (*input_line_pointer++ == ',')
12763 section_alignment = get_absolute_expression ();
12764 else
12765 section_alignment = 0;
12766 /* FIXME: really ignore? */
12767 (void) section_alignment;
12768
12769 section_name = xstrdup (section_name);
12770
12771 /* When using the generic form of .section (as implemented by obj-elf.c),
12772 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12773 traditionally had to fall back on the more common @progbits instead.
12774
12775 There's nothing really harmful in this, since bfd will correct
12776 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12777 means that, for backwards compatibility, the special_section entries
12778 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12779
12780 Even so, we shouldn't force users of the MIPS .section syntax to
12781 incorrectly label the sections as SHT_PROGBITS. The best compromise
12782 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12783 generic type-checking code. */
12784 if (section_type == SHT_MIPS_DWARF)
12785 section_type = SHT_PROGBITS;
12786
12787 obj_elf_change_section (section_name, section_type, section_flag,
12788 section_entry_size, 0, 0, 0);
12789
12790 if (now_seg->name != section_name)
12791 free (section_name);
12792 #endif /* OBJ_ELF */
12793 }
12794
12795 void
12796 mips_enable_auto_align (void)
12797 {
12798 auto_align = 1;
12799 }
12800
12801 static void
12802 s_cons (int log_size)
12803 {
12804 segment_info_type *si = seg_info (now_seg);
12805 struct insn_label_list *l = si->label_list;
12806 symbolS *label;
12807
12808 label = l != NULL ? l->label : NULL;
12809 mips_emit_delays ();
12810 if (log_size > 0 && auto_align)
12811 mips_align (log_size, 0, label);
12812 cons (1 << log_size);
12813 mips_clear_insn_labels ();
12814 }
12815
12816 static void
12817 s_float_cons (int type)
12818 {
12819 segment_info_type *si = seg_info (now_seg);
12820 struct insn_label_list *l = si->label_list;
12821 symbolS *label;
12822
12823 label = l != NULL ? l->label : NULL;
12824
12825 mips_emit_delays ();
12826
12827 if (auto_align)
12828 {
12829 if (type == 'd')
12830 mips_align (3, 0, label);
12831 else
12832 mips_align (2, 0, label);
12833 }
12834
12835 float_cons (type);
12836 mips_clear_insn_labels ();
12837 }
12838
12839 /* Handle .globl. We need to override it because on Irix 5 you are
12840 permitted to say
12841 .globl foo .text
12842 where foo is an undefined symbol, to mean that foo should be
12843 considered to be the address of a function. */
12844
12845 static void
12846 s_mips_globl (int x ATTRIBUTE_UNUSED)
12847 {
12848 char *name;
12849 int c;
12850 symbolS *symbolP;
12851 flagword flag;
12852
12853 do
12854 {
12855 name = input_line_pointer;
12856 c = get_symbol_end ();
12857 symbolP = symbol_find_or_make (name);
12858 S_SET_EXTERNAL (symbolP);
12859
12860 *input_line_pointer = c;
12861 SKIP_WHITESPACE ();
12862
12863 /* On Irix 5, every global symbol that is not explicitly labelled as
12864 being a function is apparently labelled as being an object. */
12865 flag = BSF_OBJECT;
12866
12867 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12868 && (*input_line_pointer != ','))
12869 {
12870 char *secname;
12871 asection *sec;
12872
12873 secname = input_line_pointer;
12874 c = get_symbol_end ();
12875 sec = bfd_get_section_by_name (stdoutput, secname);
12876 if (sec == NULL)
12877 as_bad (_("%s: no such section"), secname);
12878 *input_line_pointer = c;
12879
12880 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12881 flag = BSF_FUNCTION;
12882 }
12883
12884 symbol_get_bfdsym (symbolP)->flags |= flag;
12885
12886 c = *input_line_pointer;
12887 if (c == ',')
12888 {
12889 input_line_pointer++;
12890 SKIP_WHITESPACE ();
12891 if (is_end_of_line[(unsigned char) *input_line_pointer])
12892 c = '\n';
12893 }
12894 }
12895 while (c == ',');
12896
12897 demand_empty_rest_of_line ();
12898 }
12899
12900 static void
12901 s_option (int x ATTRIBUTE_UNUSED)
12902 {
12903 char *opt;
12904 char c;
12905
12906 opt = input_line_pointer;
12907 c = get_symbol_end ();
12908
12909 if (*opt == 'O')
12910 {
12911 /* FIXME: What does this mean? */
12912 }
12913 else if (strncmp (opt, "pic", 3) == 0)
12914 {
12915 int i;
12916
12917 i = atoi (opt + 3);
12918 if (i == 0)
12919 mips_pic = NO_PIC;
12920 else if (i == 2)
12921 {
12922 mips_pic = SVR4_PIC;
12923 mips_abicalls = TRUE;
12924 }
12925 else
12926 as_bad (_(".option pic%d not supported"), i);
12927
12928 if (mips_pic == SVR4_PIC)
12929 {
12930 if (g_switch_seen && g_switch_value != 0)
12931 as_warn (_("-G may not be used with SVR4 PIC code"));
12932 g_switch_value = 0;
12933 bfd_set_gp_size (stdoutput, 0);
12934 }
12935 }
12936 else
12937 as_warn (_("Unrecognized option \"%s\""), opt);
12938
12939 *input_line_pointer = c;
12940 demand_empty_rest_of_line ();
12941 }
12942
12943 /* This structure is used to hold a stack of .set values. */
12944
12945 struct mips_option_stack
12946 {
12947 struct mips_option_stack *next;
12948 struct mips_set_options options;
12949 };
12950
12951 static struct mips_option_stack *mips_opts_stack;
12952
12953 /* Handle the .set pseudo-op. */
12954
12955 static void
12956 s_mipsset (int x ATTRIBUTE_UNUSED)
12957 {
12958 char *name = input_line_pointer, ch;
12959
12960 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12961 ++input_line_pointer;
12962 ch = *input_line_pointer;
12963 *input_line_pointer = '\0';
12964
12965 if (strcmp (name, "reorder") == 0)
12966 {
12967 if (mips_opts.noreorder)
12968 end_noreorder ();
12969 }
12970 else if (strcmp (name, "noreorder") == 0)
12971 {
12972 if (!mips_opts.noreorder)
12973 start_noreorder ();
12974 }
12975 else if (strncmp (name, "at=", 3) == 0)
12976 {
12977 char *s = name + 3;
12978
12979 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12980 as_bad (_("Unrecognized register name `%s'"), s);
12981 }
12982 else if (strcmp (name, "at") == 0)
12983 {
12984 mips_opts.at = ATREG;
12985 }
12986 else if (strcmp (name, "noat") == 0)
12987 {
12988 mips_opts.at = ZERO;
12989 }
12990 else if (strcmp (name, "macro") == 0)
12991 {
12992 mips_opts.warn_about_macros = 0;
12993 }
12994 else if (strcmp (name, "nomacro") == 0)
12995 {
12996 if (mips_opts.noreorder == 0)
12997 as_bad (_("`noreorder' must be set before `nomacro'"));
12998 mips_opts.warn_about_macros = 1;
12999 }
13000 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
13001 {
13002 mips_opts.nomove = 0;
13003 }
13004 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
13005 {
13006 mips_opts.nomove = 1;
13007 }
13008 else if (strcmp (name, "bopt") == 0)
13009 {
13010 mips_opts.nobopt = 0;
13011 }
13012 else if (strcmp (name, "nobopt") == 0)
13013 {
13014 mips_opts.nobopt = 1;
13015 }
13016 else if (strcmp (name, "gp=default") == 0)
13017 mips_opts.gp32 = file_mips_gp32;
13018 else if (strcmp (name, "gp=32") == 0)
13019 mips_opts.gp32 = 1;
13020 else if (strcmp (name, "gp=64") == 0)
13021 {
13022 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
13023 as_warn (_("%s isa does not support 64-bit registers"),
13024 mips_cpu_info_from_isa (mips_opts.isa)->name);
13025 mips_opts.gp32 = 0;
13026 }
13027 else if (strcmp (name, "fp=default") == 0)
13028 mips_opts.fp32 = file_mips_fp32;
13029 else if (strcmp (name, "fp=32") == 0)
13030 mips_opts.fp32 = 1;
13031 else if (strcmp (name, "fp=64") == 0)
13032 {
13033 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13034 as_warn (_("%s isa does not support 64-bit floating point registers"),
13035 mips_cpu_info_from_isa (mips_opts.isa)->name);
13036 mips_opts.fp32 = 0;
13037 }
13038 else if (strcmp (name, "softfloat") == 0)
13039 mips_opts.soft_float = 1;
13040 else if (strcmp (name, "hardfloat") == 0)
13041 mips_opts.soft_float = 0;
13042 else if (strcmp (name, "singlefloat") == 0)
13043 mips_opts.single_float = 1;
13044 else if (strcmp (name, "doublefloat") == 0)
13045 mips_opts.single_float = 0;
13046 else if (strcmp (name, "mips16") == 0
13047 || strcmp (name, "MIPS-16") == 0)
13048 mips_opts.mips16 = 1;
13049 else if (strcmp (name, "nomips16") == 0
13050 || strcmp (name, "noMIPS-16") == 0)
13051 mips_opts.mips16 = 0;
13052 else if (strcmp (name, "smartmips") == 0)
13053 {
13054 if (!ISA_SUPPORTS_SMARTMIPS)
13055 as_warn (_("%s ISA does not support SmartMIPS ASE"),
13056 mips_cpu_info_from_isa (mips_opts.isa)->name);
13057 mips_opts.ase_smartmips = 1;
13058 }
13059 else if (strcmp (name, "nosmartmips") == 0)
13060 mips_opts.ase_smartmips = 0;
13061 else if (strcmp (name, "mips3d") == 0)
13062 mips_opts.ase_mips3d = 1;
13063 else if (strcmp (name, "nomips3d") == 0)
13064 mips_opts.ase_mips3d = 0;
13065 else if (strcmp (name, "mdmx") == 0)
13066 mips_opts.ase_mdmx = 1;
13067 else if (strcmp (name, "nomdmx") == 0)
13068 mips_opts.ase_mdmx = 0;
13069 else if (strcmp (name, "dsp") == 0)
13070 {
13071 if (!ISA_SUPPORTS_DSP_ASE)
13072 as_warn (_("%s ISA does not support DSP ASE"),
13073 mips_cpu_info_from_isa (mips_opts.isa)->name);
13074 mips_opts.ase_dsp = 1;
13075 mips_opts.ase_dspr2 = 0;
13076 }
13077 else if (strcmp (name, "nodsp") == 0)
13078 {
13079 mips_opts.ase_dsp = 0;
13080 mips_opts.ase_dspr2 = 0;
13081 }
13082 else if (strcmp (name, "dspr2") == 0)
13083 {
13084 if (!ISA_SUPPORTS_DSPR2_ASE)
13085 as_warn (_("%s ISA does not support DSP R2 ASE"),
13086 mips_cpu_info_from_isa (mips_opts.isa)->name);
13087 mips_opts.ase_dspr2 = 1;
13088 mips_opts.ase_dsp = 1;
13089 }
13090 else if (strcmp (name, "nodspr2") == 0)
13091 {
13092 mips_opts.ase_dspr2 = 0;
13093 mips_opts.ase_dsp = 0;
13094 }
13095 else if (strcmp (name, "mt") == 0)
13096 {
13097 if (!ISA_SUPPORTS_MT_ASE)
13098 as_warn (_("%s ISA does not support MT ASE"),
13099 mips_cpu_info_from_isa (mips_opts.isa)->name);
13100 mips_opts.ase_mt = 1;
13101 }
13102 else if (strcmp (name, "nomt") == 0)
13103 mips_opts.ase_mt = 0;
13104 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13105 {
13106 int reset = 0;
13107
13108 /* Permit the user to change the ISA and architecture on the fly.
13109 Needless to say, misuse can cause serious problems. */
13110 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13111 {
13112 reset = 1;
13113 mips_opts.isa = file_mips_isa;
13114 mips_opts.arch = file_mips_arch;
13115 }
13116 else if (strncmp (name, "arch=", 5) == 0)
13117 {
13118 const struct mips_cpu_info *p;
13119
13120 p = mips_parse_cpu("internal use", name + 5);
13121 if (!p)
13122 as_bad (_("unknown architecture %s"), name + 5);
13123 else
13124 {
13125 mips_opts.arch = p->cpu;
13126 mips_opts.isa = p->isa;
13127 }
13128 }
13129 else if (strncmp (name, "mips", 4) == 0)
13130 {
13131 const struct mips_cpu_info *p;
13132
13133 p = mips_parse_cpu("internal use", name);
13134 if (!p)
13135 as_bad (_("unknown ISA level %s"), name + 4);
13136 else
13137 {
13138 mips_opts.arch = p->cpu;
13139 mips_opts.isa = p->isa;
13140 }
13141 }
13142 else
13143 as_bad (_("unknown ISA or architecture %s"), name);
13144
13145 switch (mips_opts.isa)
13146 {
13147 case 0:
13148 break;
13149 case ISA_MIPS1:
13150 case ISA_MIPS2:
13151 case ISA_MIPS32:
13152 case ISA_MIPS32R2:
13153 mips_opts.gp32 = 1;
13154 mips_opts.fp32 = 1;
13155 break;
13156 case ISA_MIPS3:
13157 case ISA_MIPS4:
13158 case ISA_MIPS5:
13159 case ISA_MIPS64:
13160 case ISA_MIPS64R2:
13161 mips_opts.gp32 = 0;
13162 mips_opts.fp32 = 0;
13163 break;
13164 default:
13165 as_bad (_("unknown ISA level %s"), name + 4);
13166 break;
13167 }
13168 if (reset)
13169 {
13170 mips_opts.gp32 = file_mips_gp32;
13171 mips_opts.fp32 = file_mips_fp32;
13172 }
13173 }
13174 else if (strcmp (name, "autoextend") == 0)
13175 mips_opts.noautoextend = 0;
13176 else if (strcmp (name, "noautoextend") == 0)
13177 mips_opts.noautoextend = 1;
13178 else if (strcmp (name, "push") == 0)
13179 {
13180 struct mips_option_stack *s;
13181
13182 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13183 s->next = mips_opts_stack;
13184 s->options = mips_opts;
13185 mips_opts_stack = s;
13186 }
13187 else if (strcmp (name, "pop") == 0)
13188 {
13189 struct mips_option_stack *s;
13190
13191 s = mips_opts_stack;
13192 if (s == NULL)
13193 as_bad (_(".set pop with no .set push"));
13194 else
13195 {
13196 /* If we're changing the reorder mode we need to handle
13197 delay slots correctly. */
13198 if (s->options.noreorder && ! mips_opts.noreorder)
13199 start_noreorder ();
13200 else if (! s->options.noreorder && mips_opts.noreorder)
13201 end_noreorder ();
13202
13203 mips_opts = s->options;
13204 mips_opts_stack = s->next;
13205 free (s);
13206 }
13207 }
13208 else if (strcmp (name, "sym32") == 0)
13209 mips_opts.sym32 = TRUE;
13210 else if (strcmp (name, "nosym32") == 0)
13211 mips_opts.sym32 = FALSE;
13212 else if (strchr (name, ','))
13213 {
13214 /* Generic ".set" directive; use the generic handler. */
13215 *input_line_pointer = ch;
13216 input_line_pointer = name;
13217 s_set (0);
13218 return;
13219 }
13220 else
13221 {
13222 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13223 }
13224 *input_line_pointer = ch;
13225 demand_empty_rest_of_line ();
13226 }
13227
13228 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13229 .option pic2. It means to generate SVR4 PIC calls. */
13230
13231 static void
13232 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13233 {
13234 mips_pic = SVR4_PIC;
13235 mips_abicalls = TRUE;
13236
13237 if (g_switch_seen && g_switch_value != 0)
13238 as_warn (_("-G may not be used with SVR4 PIC code"));
13239 g_switch_value = 0;
13240
13241 bfd_set_gp_size (stdoutput, 0);
13242 demand_empty_rest_of_line ();
13243 }
13244
13245 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13246 PIC code. It sets the $gp register for the function based on the
13247 function address, which is in the register named in the argument.
13248 This uses a relocation against _gp_disp, which is handled specially
13249 by the linker. The result is:
13250 lui $gp,%hi(_gp_disp)
13251 addiu $gp,$gp,%lo(_gp_disp)
13252 addu $gp,$gp,.cpload argument
13253 The .cpload argument is normally $25 == $t9.
13254
13255 The -mno-shared option changes this to:
13256 lui $gp,%hi(__gnu_local_gp)
13257 addiu $gp,$gp,%lo(__gnu_local_gp)
13258 and the argument is ignored. This saves an instruction, but the
13259 resulting code is not position independent; it uses an absolute
13260 address for __gnu_local_gp. Thus code assembled with -mno-shared
13261 can go into an ordinary executable, but not into a shared library. */
13262
13263 static void
13264 s_cpload (int ignore ATTRIBUTE_UNUSED)
13265 {
13266 expressionS ex;
13267 int reg;
13268 int in_shared;
13269
13270 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13271 .cpload is ignored. */
13272 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13273 {
13274 s_ignore (0);
13275 return;
13276 }
13277
13278 /* .cpload should be in a .set noreorder section. */
13279 if (mips_opts.noreorder == 0)
13280 as_warn (_(".cpload not in noreorder section"));
13281
13282 reg = tc_get_register (0);
13283
13284 /* If we need to produce a 64-bit address, we are better off using
13285 the default instruction sequence. */
13286 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13287
13288 ex.X_op = O_symbol;
13289 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13290 "__gnu_local_gp");
13291 ex.X_op_symbol = NULL;
13292 ex.X_add_number = 0;
13293
13294 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13295 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13296
13297 macro_start ();
13298 macro_build_lui (&ex, mips_gp_register);
13299 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13300 mips_gp_register, BFD_RELOC_LO16);
13301 if (in_shared)
13302 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13303 mips_gp_register, reg);
13304 macro_end ();
13305
13306 demand_empty_rest_of_line ();
13307 }
13308
13309 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13310 .cpsetup $reg1, offset|$reg2, label
13311
13312 If offset is given, this results in:
13313 sd $gp, offset($sp)
13314 lui $gp, %hi(%neg(%gp_rel(label)))
13315 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13316 daddu $gp, $gp, $reg1
13317
13318 If $reg2 is given, this results in:
13319 daddu $reg2, $gp, $0
13320 lui $gp, %hi(%neg(%gp_rel(label)))
13321 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13322 daddu $gp, $gp, $reg1
13323 $reg1 is normally $25 == $t9.
13324
13325 The -mno-shared option replaces the last three instructions with
13326 lui $gp,%hi(_gp)
13327 addiu $gp,$gp,%lo(_gp) */
13328
13329 static void
13330 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13331 {
13332 expressionS ex_off;
13333 expressionS ex_sym;
13334 int reg1;
13335
13336 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13337 We also need NewABI support. */
13338 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13339 {
13340 s_ignore (0);
13341 return;
13342 }
13343
13344 reg1 = tc_get_register (0);
13345 SKIP_WHITESPACE ();
13346 if (*input_line_pointer != ',')
13347 {
13348 as_bad (_("missing argument separator ',' for .cpsetup"));
13349 return;
13350 }
13351 else
13352 ++input_line_pointer;
13353 SKIP_WHITESPACE ();
13354 if (*input_line_pointer == '$')
13355 {
13356 mips_cpreturn_register = tc_get_register (0);
13357 mips_cpreturn_offset = -1;
13358 }
13359 else
13360 {
13361 mips_cpreturn_offset = get_absolute_expression ();
13362 mips_cpreturn_register = -1;
13363 }
13364 SKIP_WHITESPACE ();
13365 if (*input_line_pointer != ',')
13366 {
13367 as_bad (_("missing argument separator ',' for .cpsetup"));
13368 return;
13369 }
13370 else
13371 ++input_line_pointer;
13372 SKIP_WHITESPACE ();
13373 expression (&ex_sym);
13374
13375 macro_start ();
13376 if (mips_cpreturn_register == -1)
13377 {
13378 ex_off.X_op = O_constant;
13379 ex_off.X_add_symbol = NULL;
13380 ex_off.X_op_symbol = NULL;
13381 ex_off.X_add_number = mips_cpreturn_offset;
13382
13383 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13384 BFD_RELOC_LO16, SP);
13385 }
13386 else
13387 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13388 mips_gp_register, 0);
13389
13390 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13391 {
13392 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13393 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13394 BFD_RELOC_HI16_S);
13395
13396 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13397 mips_gp_register, -1, BFD_RELOC_GPREL16,
13398 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13399
13400 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13401 mips_gp_register, reg1);
13402 }
13403 else
13404 {
13405 expressionS ex;
13406
13407 ex.X_op = O_symbol;
13408 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13409 ex.X_op_symbol = NULL;
13410 ex.X_add_number = 0;
13411
13412 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13413 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13414
13415 macro_build_lui (&ex, mips_gp_register);
13416 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13417 mips_gp_register, BFD_RELOC_LO16);
13418 }
13419
13420 macro_end ();
13421
13422 demand_empty_rest_of_line ();
13423 }
13424
13425 static void
13426 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13427 {
13428 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13429 .cplocal is ignored. */
13430 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13431 {
13432 s_ignore (0);
13433 return;
13434 }
13435
13436 mips_gp_register = tc_get_register (0);
13437 demand_empty_rest_of_line ();
13438 }
13439
13440 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13441 offset from $sp. The offset is remembered, and after making a PIC
13442 call $gp is restored from that location. */
13443
13444 static void
13445 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13446 {
13447 expressionS ex;
13448
13449 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13450 .cprestore is ignored. */
13451 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13452 {
13453 s_ignore (0);
13454 return;
13455 }
13456
13457 mips_cprestore_offset = get_absolute_expression ();
13458 mips_cprestore_valid = 1;
13459
13460 ex.X_op = O_constant;
13461 ex.X_add_symbol = NULL;
13462 ex.X_op_symbol = NULL;
13463 ex.X_add_number = mips_cprestore_offset;
13464
13465 macro_start ();
13466 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13467 SP, HAVE_64BIT_ADDRESSES);
13468 macro_end ();
13469
13470 demand_empty_rest_of_line ();
13471 }
13472
13473 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13474 was given in the preceding .cpsetup, it results in:
13475 ld $gp, offset($sp)
13476
13477 If a register $reg2 was given there, it results in:
13478 daddu $gp, $reg2, $0 */
13479
13480 static void
13481 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13482 {
13483 expressionS ex;
13484
13485 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13486 We also need NewABI support. */
13487 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13488 {
13489 s_ignore (0);
13490 return;
13491 }
13492
13493 macro_start ();
13494 if (mips_cpreturn_register == -1)
13495 {
13496 ex.X_op = O_constant;
13497 ex.X_add_symbol = NULL;
13498 ex.X_op_symbol = NULL;
13499 ex.X_add_number = mips_cpreturn_offset;
13500
13501 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13502 }
13503 else
13504 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13505 mips_cpreturn_register, 0);
13506 macro_end ();
13507
13508 demand_empty_rest_of_line ();
13509 }
13510
13511 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13512 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13513 use in DWARF debug information. */
13514
13515 static void
13516 s_dtprel_internal (size_t bytes)
13517 {
13518 expressionS ex;
13519 char *p;
13520
13521 expression (&ex);
13522
13523 if (ex.X_op != O_symbol)
13524 {
13525 as_bad (_("Unsupported use of %s"), (bytes == 8
13526 ? ".dtpreldword"
13527 : ".dtprelword"));
13528 ignore_rest_of_line ();
13529 }
13530
13531 p = frag_more (bytes);
13532 md_number_to_chars (p, 0, bytes);
13533 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13534 (bytes == 8
13535 ? BFD_RELOC_MIPS_TLS_DTPREL64
13536 : BFD_RELOC_MIPS_TLS_DTPREL32));
13537
13538 demand_empty_rest_of_line ();
13539 }
13540
13541 /* Handle .dtprelword. */
13542
13543 static void
13544 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13545 {
13546 s_dtprel_internal (4);
13547 }
13548
13549 /* Handle .dtpreldword. */
13550
13551 static void
13552 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13553 {
13554 s_dtprel_internal (8);
13555 }
13556
13557 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13558 code. It sets the offset to use in gp_rel relocations. */
13559
13560 static void
13561 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13562 {
13563 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13564 We also need NewABI support. */
13565 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13566 {
13567 s_ignore (0);
13568 return;
13569 }
13570
13571 mips_gprel_offset = get_absolute_expression ();
13572
13573 demand_empty_rest_of_line ();
13574 }
13575
13576 /* Handle the .gpword pseudo-op. This is used when generating PIC
13577 code. It generates a 32 bit GP relative reloc. */
13578
13579 static void
13580 s_gpword (int ignore ATTRIBUTE_UNUSED)
13581 {
13582 segment_info_type *si;
13583 struct insn_label_list *l;
13584 symbolS *label;
13585 expressionS ex;
13586 char *p;
13587
13588 /* When not generating PIC code, this is treated as .word. */
13589 if (mips_pic != SVR4_PIC)
13590 {
13591 s_cons (2);
13592 return;
13593 }
13594
13595 si = seg_info (now_seg);
13596 l = si->label_list;
13597 label = l != NULL ? l->label : NULL;
13598 mips_emit_delays ();
13599 if (auto_align)
13600 mips_align (2, 0, label);
13601
13602 expression (&ex);
13603 mips_clear_insn_labels ();
13604
13605 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13606 {
13607 as_bad (_("Unsupported use of .gpword"));
13608 ignore_rest_of_line ();
13609 }
13610
13611 p = frag_more (4);
13612 md_number_to_chars (p, 0, 4);
13613 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13614 BFD_RELOC_GPREL32);
13615
13616 demand_empty_rest_of_line ();
13617 }
13618
13619 static void
13620 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13621 {
13622 segment_info_type *si;
13623 struct insn_label_list *l;
13624 symbolS *label;
13625 expressionS ex;
13626 char *p;
13627
13628 /* When not generating PIC code, this is treated as .dword. */
13629 if (mips_pic != SVR4_PIC)
13630 {
13631 s_cons (3);
13632 return;
13633 }
13634
13635 si = seg_info (now_seg);
13636 l = si->label_list;
13637 label = l != NULL ? l->label : NULL;
13638 mips_emit_delays ();
13639 if (auto_align)
13640 mips_align (3, 0, label);
13641
13642 expression (&ex);
13643 mips_clear_insn_labels ();
13644
13645 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13646 {
13647 as_bad (_("Unsupported use of .gpdword"));
13648 ignore_rest_of_line ();
13649 }
13650
13651 p = frag_more (8);
13652 md_number_to_chars (p, 0, 8);
13653 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13654 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13655
13656 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13657 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13658 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13659
13660 demand_empty_rest_of_line ();
13661 }
13662
13663 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13664 tables in SVR4 PIC code. */
13665
13666 static void
13667 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13668 {
13669 int reg;
13670
13671 /* This is ignored when not generating SVR4 PIC code. */
13672 if (mips_pic != SVR4_PIC)
13673 {
13674 s_ignore (0);
13675 return;
13676 }
13677
13678 /* Add $gp to the register named as an argument. */
13679 macro_start ();
13680 reg = tc_get_register (0);
13681 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13682 macro_end ();
13683
13684 demand_empty_rest_of_line ();
13685 }
13686
13687 /* Handle the .insn pseudo-op. This marks instruction labels in
13688 mips16 mode. This permits the linker to handle them specially,
13689 such as generating jalx instructions when needed. We also make
13690 them odd for the duration of the assembly, in order to generate the
13691 right sort of code. We will make them even in the adjust_symtab
13692 routine, while leaving them marked. This is convenient for the
13693 debugger and the disassembler. The linker knows to make them odd
13694 again. */
13695
13696 static void
13697 s_insn (int ignore ATTRIBUTE_UNUSED)
13698 {
13699 mips16_mark_labels ();
13700
13701 demand_empty_rest_of_line ();
13702 }
13703
13704 /* Handle a .stabn directive. We need these in order to mark a label
13705 as being a mips16 text label correctly. Sometimes the compiler
13706 will emit a label, followed by a .stabn, and then switch sections.
13707 If the label and .stabn are in mips16 mode, then the label is
13708 really a mips16 text label. */
13709
13710 static void
13711 s_mips_stab (int type)
13712 {
13713 if (type == 'n')
13714 mips16_mark_labels ();
13715
13716 s_stab (type);
13717 }
13718
13719 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13720
13721 static void
13722 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13723 {
13724 char *name;
13725 int c;
13726 symbolS *symbolP;
13727 expressionS exp;
13728
13729 name = input_line_pointer;
13730 c = get_symbol_end ();
13731 symbolP = symbol_find_or_make (name);
13732 S_SET_WEAK (symbolP);
13733 *input_line_pointer = c;
13734
13735 SKIP_WHITESPACE ();
13736
13737 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13738 {
13739 if (S_IS_DEFINED (symbolP))
13740 {
13741 as_bad (_("ignoring attempt to redefine symbol %s"),
13742 S_GET_NAME (symbolP));
13743 ignore_rest_of_line ();
13744 return;
13745 }
13746
13747 if (*input_line_pointer == ',')
13748 {
13749 ++input_line_pointer;
13750 SKIP_WHITESPACE ();
13751 }
13752
13753 expression (&exp);
13754 if (exp.X_op != O_symbol)
13755 {
13756 as_bad (_("bad .weakext directive"));
13757 ignore_rest_of_line ();
13758 return;
13759 }
13760 symbol_set_value_expression (symbolP, &exp);
13761 }
13762
13763 demand_empty_rest_of_line ();
13764 }
13765
13766 /* Parse a register string into a number. Called from the ECOFF code
13767 to parse .frame. The argument is non-zero if this is the frame
13768 register, so that we can record it in mips_frame_reg. */
13769
13770 int
13771 tc_get_register (int frame)
13772 {
13773 unsigned int reg;
13774
13775 SKIP_WHITESPACE ();
13776 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13777 reg = 0;
13778 if (frame)
13779 {
13780 mips_frame_reg = reg != 0 ? reg : SP;
13781 mips_frame_reg_valid = 1;
13782 mips_cprestore_valid = 0;
13783 }
13784 return reg;
13785 }
13786
13787 valueT
13788 md_section_align (asection *seg, valueT addr)
13789 {
13790 int align = bfd_get_section_alignment (stdoutput, seg);
13791
13792 if (IS_ELF)
13793 {
13794 /* We don't need to align ELF sections to the full alignment.
13795 However, Irix 5 may prefer that we align them at least to a 16
13796 byte boundary. We don't bother to align the sections if we
13797 are targeted for an embedded system. */
13798 if (strncmp (TARGET_OS, "elf", 3) == 0)
13799 return addr;
13800 if (align > 4)
13801 align = 4;
13802 }
13803
13804 return ((addr + (1 << align) - 1) & (-1 << align));
13805 }
13806
13807 /* Utility routine, called from above as well. If called while the
13808 input file is still being read, it's only an approximation. (For
13809 example, a symbol may later become defined which appeared to be
13810 undefined earlier.) */
13811
13812 static int
13813 nopic_need_relax (symbolS *sym, int before_relaxing)
13814 {
13815 if (sym == 0)
13816 return 0;
13817
13818 if (g_switch_value > 0)
13819 {
13820 const char *symname;
13821 int change;
13822
13823 /* Find out whether this symbol can be referenced off the $gp
13824 register. It can be if it is smaller than the -G size or if
13825 it is in the .sdata or .sbss section. Certain symbols can
13826 not be referenced off the $gp, although it appears as though
13827 they can. */
13828 symname = S_GET_NAME (sym);
13829 if (symname != (const char *) NULL
13830 && (strcmp (symname, "eprol") == 0
13831 || strcmp (symname, "etext") == 0
13832 || strcmp (symname, "_gp") == 0
13833 || strcmp (symname, "edata") == 0
13834 || strcmp (symname, "_fbss") == 0
13835 || strcmp (symname, "_fdata") == 0
13836 || strcmp (symname, "_ftext") == 0
13837 || strcmp (symname, "end") == 0
13838 || strcmp (symname, "_gp_disp") == 0))
13839 change = 1;
13840 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13841 && (0
13842 #ifndef NO_ECOFF_DEBUGGING
13843 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13844 && (symbol_get_obj (sym)->ecoff_extern_size
13845 <= g_switch_value))
13846 #endif
13847 /* We must defer this decision until after the whole
13848 file has been read, since there might be a .extern
13849 after the first use of this symbol. */
13850 || (before_relaxing
13851 #ifndef NO_ECOFF_DEBUGGING
13852 && symbol_get_obj (sym)->ecoff_extern_size == 0
13853 #endif
13854 && S_GET_VALUE (sym) == 0)
13855 || (S_GET_VALUE (sym) != 0
13856 && S_GET_VALUE (sym) <= g_switch_value)))
13857 change = 0;
13858 else
13859 {
13860 const char *segname;
13861
13862 segname = segment_name (S_GET_SEGMENT (sym));
13863 gas_assert (strcmp (segname, ".lit8") != 0
13864 && strcmp (segname, ".lit4") != 0);
13865 change = (strcmp (segname, ".sdata") != 0
13866 && strcmp (segname, ".sbss") != 0
13867 && strncmp (segname, ".sdata.", 7) != 0
13868 && strncmp (segname, ".sbss.", 6) != 0
13869 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13870 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13871 }
13872 return change;
13873 }
13874 else
13875 /* We are not optimizing for the $gp register. */
13876 return 1;
13877 }
13878
13879
13880 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13881
13882 static bfd_boolean
13883 pic_need_relax (symbolS *sym, asection *segtype)
13884 {
13885 asection *symsec;
13886
13887 /* Handle the case of a symbol equated to another symbol. */
13888 while (symbol_equated_reloc_p (sym))
13889 {
13890 symbolS *n;
13891
13892 /* It's possible to get a loop here in a badly written program. */
13893 n = symbol_get_value_expression (sym)->X_add_symbol;
13894 if (n == sym)
13895 break;
13896 sym = n;
13897 }
13898
13899 if (symbol_section_p (sym))
13900 return TRUE;
13901
13902 symsec = S_GET_SEGMENT (sym);
13903
13904 /* This must duplicate the test in adjust_reloc_syms. */
13905 return (symsec != &bfd_und_section
13906 && symsec != &bfd_abs_section
13907 && !bfd_is_com_section (symsec)
13908 && !s_is_linkonce (sym, segtype)
13909 #ifdef OBJ_ELF
13910 /* A global or weak symbol is treated as external. */
13911 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13912 #endif
13913 );
13914 }
13915
13916
13917 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13918 extended opcode. SEC is the section the frag is in. */
13919
13920 static int
13921 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13922 {
13923 int type;
13924 const struct mips16_immed_operand *op;
13925 offsetT val;
13926 int mintiny, maxtiny;
13927 segT symsec;
13928 fragS *sym_frag;
13929
13930 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13931 return 0;
13932 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13933 return 1;
13934
13935 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13936 op = mips16_immed_operands;
13937 while (op->type != type)
13938 {
13939 ++op;
13940 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13941 }
13942
13943 if (op->unsp)
13944 {
13945 if (type == '<' || type == '>' || type == '[' || type == ']')
13946 {
13947 mintiny = 1;
13948 maxtiny = 1 << op->nbits;
13949 }
13950 else
13951 {
13952 mintiny = 0;
13953 maxtiny = (1 << op->nbits) - 1;
13954 }
13955 }
13956 else
13957 {
13958 mintiny = - (1 << (op->nbits - 1));
13959 maxtiny = (1 << (op->nbits - 1)) - 1;
13960 }
13961
13962 sym_frag = symbol_get_frag (fragp->fr_symbol);
13963 val = S_GET_VALUE (fragp->fr_symbol);
13964 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13965
13966 if (op->pcrel)
13967 {
13968 addressT addr;
13969
13970 /* We won't have the section when we are called from
13971 mips_relax_frag. However, we will always have been called
13972 from md_estimate_size_before_relax first. If this is a
13973 branch to a different section, we mark it as such. If SEC is
13974 NULL, and the frag is not marked, then it must be a branch to
13975 the same section. */
13976 if (sec == NULL)
13977 {
13978 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13979 return 1;
13980 }
13981 else
13982 {
13983 /* Must have been called from md_estimate_size_before_relax. */
13984 if (symsec != sec)
13985 {
13986 fragp->fr_subtype =
13987 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13988
13989 /* FIXME: We should support this, and let the linker
13990 catch branches and loads that are out of range. */
13991 as_bad_where (fragp->fr_file, fragp->fr_line,
13992 _("unsupported PC relative reference to different section"));
13993
13994 return 1;
13995 }
13996 if (fragp != sym_frag && sym_frag->fr_address == 0)
13997 /* Assume non-extended on the first relaxation pass.
13998 The address we have calculated will be bogus if this is
13999 a forward branch to another frag, as the forward frag
14000 will have fr_address == 0. */
14001 return 0;
14002 }
14003
14004 /* In this case, we know for sure that the symbol fragment is in
14005 the same section. If the relax_marker of the symbol fragment
14006 differs from the relax_marker of this fragment, we have not
14007 yet adjusted the symbol fragment fr_address. We want to add
14008 in STRETCH in order to get a better estimate of the address.
14009 This particularly matters because of the shift bits. */
14010 if (stretch != 0
14011 && sym_frag->relax_marker != fragp->relax_marker)
14012 {
14013 fragS *f;
14014
14015 /* Adjust stretch for any alignment frag. Note that if have
14016 been expanding the earlier code, the symbol may be
14017 defined in what appears to be an earlier frag. FIXME:
14018 This doesn't handle the fr_subtype field, which specifies
14019 a maximum number of bytes to skip when doing an
14020 alignment. */
14021 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
14022 {
14023 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
14024 {
14025 if (stretch < 0)
14026 stretch = - ((- stretch)
14027 & ~ ((1 << (int) f->fr_offset) - 1));
14028 else
14029 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
14030 if (stretch == 0)
14031 break;
14032 }
14033 }
14034 if (f != NULL)
14035 val += stretch;
14036 }
14037
14038 addr = fragp->fr_address + fragp->fr_fix;
14039
14040 /* The base address rules are complicated. The base address of
14041 a branch is the following instruction. The base address of a
14042 PC relative load or add is the instruction itself, but if it
14043 is in a delay slot (in which case it can not be extended) use
14044 the address of the instruction whose delay slot it is in. */
14045 if (type == 'p' || type == 'q')
14046 {
14047 addr += 2;
14048
14049 /* If we are currently assuming that this frag should be
14050 extended, then, the current address is two bytes
14051 higher. */
14052 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14053 addr += 2;
14054
14055 /* Ignore the low bit in the target, since it will be set
14056 for a text label. */
14057 if ((val & 1) != 0)
14058 --val;
14059 }
14060 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14061 addr -= 4;
14062 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14063 addr -= 2;
14064
14065 val -= addr & ~ ((1 << op->shift) - 1);
14066
14067 /* Branch offsets have an implicit 0 in the lowest bit. */
14068 if (type == 'p' || type == 'q')
14069 val /= 2;
14070
14071 /* If any of the shifted bits are set, we must use an extended
14072 opcode. If the address depends on the size of this
14073 instruction, this can lead to a loop, so we arrange to always
14074 use an extended opcode. We only check this when we are in
14075 the main relaxation loop, when SEC is NULL. */
14076 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
14077 {
14078 fragp->fr_subtype =
14079 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14080 return 1;
14081 }
14082
14083 /* If we are about to mark a frag as extended because the value
14084 is precisely maxtiny + 1, then there is a chance of an
14085 infinite loop as in the following code:
14086 la $4,foo
14087 .skip 1020
14088 .align 2
14089 foo:
14090 In this case when the la is extended, foo is 0x3fc bytes
14091 away, so the la can be shrunk, but then foo is 0x400 away, so
14092 the la must be extended. To avoid this loop, we mark the
14093 frag as extended if it was small, and is about to become
14094 extended with a value of maxtiny + 1. */
14095 if (val == ((maxtiny + 1) << op->shift)
14096 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14097 && sec == NULL)
14098 {
14099 fragp->fr_subtype =
14100 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14101 return 1;
14102 }
14103 }
14104 else if (symsec != absolute_section && sec != NULL)
14105 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14106
14107 if ((val & ((1 << op->shift) - 1)) != 0
14108 || val < (mintiny << op->shift)
14109 || val > (maxtiny << op->shift))
14110 return 1;
14111 else
14112 return 0;
14113 }
14114
14115 /* Compute the length of a branch sequence, and adjust the
14116 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14117 worst-case length is computed, with UPDATE being used to indicate
14118 whether an unconditional (-1), branch-likely (+1) or regular (0)
14119 branch is to be computed. */
14120 static int
14121 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14122 {
14123 bfd_boolean toofar;
14124 int length;
14125
14126 if (fragp
14127 && S_IS_DEFINED (fragp->fr_symbol)
14128 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14129 {
14130 addressT addr;
14131 offsetT val;
14132
14133 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14134
14135 addr = fragp->fr_address + fragp->fr_fix + 4;
14136
14137 val -= addr;
14138
14139 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14140 }
14141 else if (fragp)
14142 /* If the symbol is not defined or it's in a different segment,
14143 assume the user knows what's going on and emit a short
14144 branch. */
14145 toofar = FALSE;
14146 else
14147 toofar = TRUE;
14148
14149 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14150 fragp->fr_subtype
14151 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
14152 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14153 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14154 RELAX_BRANCH_LINK (fragp->fr_subtype),
14155 toofar);
14156
14157 length = 4;
14158 if (toofar)
14159 {
14160 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14161 length += 8;
14162
14163 if (mips_pic != NO_PIC)
14164 {
14165 /* Additional space for PIC loading of target address. */
14166 length += 8;
14167 if (mips_opts.isa == ISA_MIPS1)
14168 /* Additional space for $at-stabilizing nop. */
14169 length += 4;
14170 }
14171
14172 /* If branch is conditional. */
14173 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14174 length += 8;
14175 }
14176
14177 return length;
14178 }
14179
14180 /* Estimate the size of a frag before relaxing. Unless this is the
14181 mips16, we are not really relaxing here, and the final size is
14182 encoded in the subtype information. For the mips16, we have to
14183 decide whether we are using an extended opcode or not. */
14184
14185 int
14186 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14187 {
14188 int change;
14189
14190 if (RELAX_BRANCH_P (fragp->fr_subtype))
14191 {
14192
14193 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14194
14195 return fragp->fr_var;
14196 }
14197
14198 if (RELAX_MIPS16_P (fragp->fr_subtype))
14199 /* We don't want to modify the EXTENDED bit here; it might get us
14200 into infinite loops. We change it only in mips_relax_frag(). */
14201 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14202
14203 if (mips_pic == NO_PIC)
14204 change = nopic_need_relax (fragp->fr_symbol, 0);
14205 else if (mips_pic == SVR4_PIC)
14206 change = pic_need_relax (fragp->fr_symbol, segtype);
14207 else if (mips_pic == VXWORKS_PIC)
14208 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14209 change = 0;
14210 else
14211 abort ();
14212
14213 if (change)
14214 {
14215 fragp->fr_subtype |= RELAX_USE_SECOND;
14216 return -RELAX_FIRST (fragp->fr_subtype);
14217 }
14218 else
14219 return -RELAX_SECOND (fragp->fr_subtype);
14220 }
14221
14222 /* This is called to see whether a reloc against a defined symbol
14223 should be converted into a reloc against a section. */
14224
14225 int
14226 mips_fix_adjustable (fixS *fixp)
14227 {
14228 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14229 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14230 return 0;
14231
14232 if (fixp->fx_addsy == NULL)
14233 return 1;
14234
14235 /* If symbol SYM is in a mergeable section, relocations of the form
14236 SYM + 0 can usually be made section-relative. The mergeable data
14237 is then identified by the section offset rather than by the symbol.
14238
14239 However, if we're generating REL LO16 relocations, the offset is split
14240 between the LO16 and parterning high part relocation. The linker will
14241 need to recalculate the complete offset in order to correctly identify
14242 the merge data.
14243
14244 The linker has traditionally not looked for the parterning high part
14245 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14246 placed anywhere. Rather than break backwards compatibility by changing
14247 this, it seems better not to force the issue, and instead keep the
14248 original symbol. This will work with either linker behavior. */
14249 if ((lo16_reloc_p (fixp->fx_r_type)
14250 || reloc_needs_lo_p (fixp->fx_r_type))
14251 && HAVE_IN_PLACE_ADDENDS
14252 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14253 return 0;
14254
14255 /* There is no place to store an in-place offset for JALR relocations.
14256 Likewise an in-range offset of PC-relative relocations may overflow
14257 the in-place relocatable field if recalculated against the start
14258 address of the symbol's containing section. */
14259 if (HAVE_IN_PLACE_ADDENDS
14260 && (fixp->fx_pcrel || fixp->fx_r_type == BFD_RELOC_MIPS_JALR))
14261 return 0;
14262
14263 #ifdef OBJ_ELF
14264 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14265 to a floating-point stub. The same is true for non-R_MIPS16_26
14266 relocations against MIPS16 functions; in this case, the stub becomes
14267 the function's canonical address.
14268
14269 Floating-point stubs are stored in unique .mips16.call.* or
14270 .mips16.fn.* sections. If a stub T for function F is in section S,
14271 the first relocation in section S must be against F; this is how the
14272 linker determines the target function. All relocations that might
14273 resolve to T must also be against F. We therefore have the following
14274 restrictions, which are given in an intentionally-redundant way:
14275
14276 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14277 symbols.
14278
14279 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14280 if that stub might be used.
14281
14282 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14283 symbols.
14284
14285 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14286 that stub might be used.
14287
14288 There is a further restriction:
14289
14290 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14291 on targets with in-place addends; the relocation field cannot
14292 encode the low bit.
14293
14294 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14295 against a MIPS16 symbol.
14296
14297 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14298 relocation against some symbol R, no relocation against R may be
14299 reduced. (Note that this deals with (2) as well as (1) because
14300 relocations against global symbols will never be reduced on ELF
14301 targets.) This approach is a little simpler than trying to detect
14302 stub sections, and gives the "all or nothing" per-symbol consistency
14303 that we have for MIPS16 symbols. */
14304 if (IS_ELF
14305 && fixp->fx_subsy == NULL
14306 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14307 || *symbol_get_tc (fixp->fx_addsy)))
14308 return 0;
14309 #endif
14310
14311 return 1;
14312 }
14313
14314 /* Translate internal representation of relocation info to BFD target
14315 format. */
14316
14317 arelent **
14318 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14319 {
14320 static arelent *retval[4];
14321 arelent *reloc;
14322 bfd_reloc_code_real_type code;
14323
14324 memset (retval, 0, sizeof(retval));
14325 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14326 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14327 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14328 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14329
14330 if (fixp->fx_pcrel)
14331 {
14332 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14333
14334 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14335 Relocations want only the symbol offset. */
14336 reloc->addend = fixp->fx_addnumber + reloc->address;
14337 if (!IS_ELF)
14338 {
14339 /* A gruesome hack which is a result of the gruesome gas
14340 reloc handling. What's worse, for COFF (as opposed to
14341 ECOFF), we might need yet another copy of reloc->address.
14342 See bfd_install_relocation. */
14343 reloc->addend += reloc->address;
14344 }
14345 }
14346 else
14347 reloc->addend = fixp->fx_addnumber;
14348
14349 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14350 entry to be used in the relocation's section offset. */
14351 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14352 {
14353 reloc->address = reloc->addend;
14354 reloc->addend = 0;
14355 }
14356
14357 code = fixp->fx_r_type;
14358
14359 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14360 if (reloc->howto == NULL)
14361 {
14362 as_bad_where (fixp->fx_file, fixp->fx_line,
14363 _("Can not represent %s relocation in this object file format"),
14364 bfd_get_reloc_code_name (code));
14365 retval[0] = NULL;
14366 }
14367
14368 return retval;
14369 }
14370
14371 /* Relax a machine dependent frag. This returns the amount by which
14372 the current size of the frag should change. */
14373
14374 int
14375 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14376 {
14377 if (RELAX_BRANCH_P (fragp->fr_subtype))
14378 {
14379 offsetT old_var = fragp->fr_var;
14380
14381 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14382
14383 return fragp->fr_var - old_var;
14384 }
14385
14386 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14387 return 0;
14388
14389 if (mips16_extended_frag (fragp, NULL, stretch))
14390 {
14391 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14392 return 0;
14393 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14394 return 2;
14395 }
14396 else
14397 {
14398 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14399 return 0;
14400 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14401 return -2;
14402 }
14403
14404 return 0;
14405 }
14406
14407 /* Convert a machine dependent frag. */
14408
14409 void
14410 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14411 {
14412 if (RELAX_BRANCH_P (fragp->fr_subtype))
14413 {
14414 bfd_byte *buf;
14415 unsigned long insn;
14416 expressionS exp;
14417 fixS *fixp;
14418
14419 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14420
14421 if (target_big_endian)
14422 insn = bfd_getb32 (buf);
14423 else
14424 insn = bfd_getl32 (buf);
14425
14426 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14427 {
14428 /* We generate a fixup instead of applying it right now
14429 because, if there are linker relaxations, we're going to
14430 need the relocations. */
14431 exp.X_op = O_symbol;
14432 exp.X_add_symbol = fragp->fr_symbol;
14433 exp.X_add_number = fragp->fr_offset;
14434
14435 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14436 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14437 fixp->fx_file = fragp->fr_file;
14438 fixp->fx_line = fragp->fr_line;
14439
14440 md_number_to_chars ((char *) buf, insn, 4);
14441 buf += 4;
14442 }
14443 else
14444 {
14445 int i;
14446
14447 as_warn_where (fragp->fr_file, fragp->fr_line,
14448 _("Relaxed out-of-range branch into a jump"));
14449
14450 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14451 goto uncond;
14452
14453 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14454 {
14455 /* Reverse the branch. */
14456 switch ((insn >> 28) & 0xf)
14457 {
14458 case 4:
14459 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14460 have the condition reversed by tweaking a single
14461 bit, and their opcodes all have 0x4???????. */
14462 gas_assert ((insn & 0xf1000000) == 0x41000000);
14463 insn ^= 0x00010000;
14464 break;
14465
14466 case 0:
14467 /* bltz 0x04000000 bgez 0x04010000
14468 bltzal 0x04100000 bgezal 0x04110000 */
14469 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14470 insn ^= 0x00010000;
14471 break;
14472
14473 case 1:
14474 /* beq 0x10000000 bne 0x14000000
14475 blez 0x18000000 bgtz 0x1c000000 */
14476 insn ^= 0x04000000;
14477 break;
14478
14479 default:
14480 abort ();
14481 }
14482 }
14483
14484 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14485 {
14486 /* Clear the and-link bit. */
14487 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14488
14489 /* bltzal 0x04100000 bgezal 0x04110000
14490 bltzall 0x04120000 bgezall 0x04130000 */
14491 insn &= ~0x00100000;
14492 }
14493
14494 /* Branch over the branch (if the branch was likely) or the
14495 full jump (not likely case). Compute the offset from the
14496 current instruction to branch to. */
14497 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14498 i = 16;
14499 else
14500 {
14501 /* How many bytes in instructions we've already emitted? */
14502 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14503 /* How many bytes in instructions from here to the end? */
14504 i = fragp->fr_var - i;
14505 }
14506 /* Convert to instruction count. */
14507 i >>= 2;
14508 /* Branch counts from the next instruction. */
14509 i--;
14510 insn |= i;
14511 /* Branch over the jump. */
14512 md_number_to_chars ((char *) buf, insn, 4);
14513 buf += 4;
14514
14515 /* nop */
14516 md_number_to_chars ((char *) buf, 0, 4);
14517 buf += 4;
14518
14519 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14520 {
14521 /* beql $0, $0, 2f */
14522 insn = 0x50000000;
14523 /* Compute the PC offset from the current instruction to
14524 the end of the variable frag. */
14525 /* How many bytes in instructions we've already emitted? */
14526 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14527 /* How many bytes in instructions from here to the end? */
14528 i = fragp->fr_var - i;
14529 /* Convert to instruction count. */
14530 i >>= 2;
14531 /* Don't decrement i, because we want to branch over the
14532 delay slot. */
14533
14534 insn |= i;
14535 md_number_to_chars ((char *) buf, insn, 4);
14536 buf += 4;
14537
14538 md_number_to_chars ((char *) buf, 0, 4);
14539 buf += 4;
14540 }
14541
14542 uncond:
14543 if (mips_pic == NO_PIC)
14544 {
14545 /* j or jal. */
14546 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14547 ? 0x0c000000 : 0x08000000);
14548 exp.X_op = O_symbol;
14549 exp.X_add_symbol = fragp->fr_symbol;
14550 exp.X_add_number = fragp->fr_offset;
14551
14552 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14553 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14554 fixp->fx_file = fragp->fr_file;
14555 fixp->fx_line = fragp->fr_line;
14556
14557 md_number_to_chars ((char *) buf, insn, 4);
14558 buf += 4;
14559 }
14560 else
14561 {
14562 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
14563
14564 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14565 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
14566 insn |= at << OP_SH_RT;
14567 exp.X_op = O_symbol;
14568 exp.X_add_symbol = fragp->fr_symbol;
14569 exp.X_add_number = fragp->fr_offset;
14570
14571 if (fragp->fr_offset)
14572 {
14573 exp.X_add_symbol = make_expr_symbol (&exp);
14574 exp.X_add_number = 0;
14575 }
14576
14577 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14578 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14579 fixp->fx_file = fragp->fr_file;
14580 fixp->fx_line = fragp->fr_line;
14581
14582 md_number_to_chars ((char *) buf, insn, 4);
14583 buf += 4;
14584
14585 if (mips_opts.isa == ISA_MIPS1)
14586 {
14587 /* nop */
14588 md_number_to_chars ((char *) buf, 0, 4);
14589 buf += 4;
14590 }
14591
14592 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14593 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
14594 insn |= at << OP_SH_RS | at << OP_SH_RT;
14595
14596 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14597 4, &exp, FALSE, BFD_RELOC_LO16);
14598 fixp->fx_file = fragp->fr_file;
14599 fixp->fx_line = fragp->fr_line;
14600
14601 md_number_to_chars ((char *) buf, insn, 4);
14602 buf += 4;
14603
14604 /* j(al)r $at. */
14605 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14606 insn = 0x0000f809;
14607 else
14608 insn = 0x00000008;
14609 insn |= at << OP_SH_RS;
14610
14611 md_number_to_chars ((char *) buf, insn, 4);
14612 buf += 4;
14613 }
14614 }
14615
14616 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14617 + fragp->fr_fix + fragp->fr_var);
14618
14619 fragp->fr_fix += fragp->fr_var;
14620
14621 return;
14622 }
14623
14624 if (RELAX_MIPS16_P (fragp->fr_subtype))
14625 {
14626 int type;
14627 const struct mips16_immed_operand *op;
14628 bfd_boolean small, ext;
14629 offsetT val;
14630 bfd_byte *buf;
14631 unsigned long insn;
14632 bfd_boolean use_extend;
14633 unsigned short extend;
14634
14635 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14636 op = mips16_immed_operands;
14637 while (op->type != type)
14638 ++op;
14639
14640 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14641 {
14642 small = FALSE;
14643 ext = TRUE;
14644 }
14645 else
14646 {
14647 small = TRUE;
14648 ext = FALSE;
14649 }
14650
14651 val = resolve_symbol_value (fragp->fr_symbol);
14652 if (op->pcrel)
14653 {
14654 addressT addr;
14655
14656 addr = fragp->fr_address + fragp->fr_fix;
14657
14658 /* The rules for the base address of a PC relative reloc are
14659 complicated; see mips16_extended_frag. */
14660 if (type == 'p' || type == 'q')
14661 {
14662 addr += 2;
14663 if (ext)
14664 addr += 2;
14665 /* Ignore the low bit in the target, since it will be
14666 set for a text label. */
14667 if ((val & 1) != 0)
14668 --val;
14669 }
14670 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14671 addr -= 4;
14672 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14673 addr -= 2;
14674
14675 addr &= ~ (addressT) ((1 << op->shift) - 1);
14676 val -= addr;
14677
14678 /* Make sure the section winds up with the alignment we have
14679 assumed. */
14680 if (op->shift > 0)
14681 record_alignment (asec, op->shift);
14682 }
14683
14684 if (ext
14685 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14686 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14687 as_warn_where (fragp->fr_file, fragp->fr_line,
14688 _("extended instruction in delay slot"));
14689
14690 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14691
14692 if (target_big_endian)
14693 insn = bfd_getb16 (buf);
14694 else
14695 insn = bfd_getl16 (buf);
14696
14697 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14698 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14699 small, ext, &insn, &use_extend, &extend);
14700
14701 if (use_extend)
14702 {
14703 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14704 fragp->fr_fix += 2;
14705 buf += 2;
14706 }
14707
14708 md_number_to_chars ((char *) buf, insn, 2);
14709 fragp->fr_fix += 2;
14710 buf += 2;
14711 }
14712 else
14713 {
14714 int first, second;
14715 fixS *fixp;
14716
14717 first = RELAX_FIRST (fragp->fr_subtype);
14718 second = RELAX_SECOND (fragp->fr_subtype);
14719 fixp = (fixS *) fragp->fr_opcode;
14720
14721 /* Possibly emit a warning if we've chosen the longer option. */
14722 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14723 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14724 {
14725 const char *msg = macro_warning (fragp->fr_subtype);
14726 if (msg != 0)
14727 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14728 }
14729
14730 /* Go through all the fixups for the first sequence. Disable them
14731 (by marking them as done) if we're going to use the second
14732 sequence instead. */
14733 while (fixp
14734 && fixp->fx_frag == fragp
14735 && fixp->fx_where < fragp->fr_fix - second)
14736 {
14737 if (fragp->fr_subtype & RELAX_USE_SECOND)
14738 fixp->fx_done = 1;
14739 fixp = fixp->fx_next;
14740 }
14741
14742 /* Go through the fixups for the second sequence. Disable them if
14743 we're going to use the first sequence, otherwise adjust their
14744 addresses to account for the relaxation. */
14745 while (fixp && fixp->fx_frag == fragp)
14746 {
14747 if (fragp->fr_subtype & RELAX_USE_SECOND)
14748 fixp->fx_where -= first;
14749 else
14750 fixp->fx_done = 1;
14751 fixp = fixp->fx_next;
14752 }
14753
14754 /* Now modify the frag contents. */
14755 if (fragp->fr_subtype & RELAX_USE_SECOND)
14756 {
14757 char *start;
14758
14759 start = fragp->fr_literal + fragp->fr_fix - first - second;
14760 memmove (start, start + first, second);
14761 fragp->fr_fix -= first;
14762 }
14763 else
14764 fragp->fr_fix -= second;
14765 }
14766 }
14767
14768 #ifdef OBJ_ELF
14769
14770 /* This function is called after the relocs have been generated.
14771 We've been storing mips16 text labels as odd. Here we convert them
14772 back to even for the convenience of the debugger. */
14773
14774 void
14775 mips_frob_file_after_relocs (void)
14776 {
14777 asymbol **syms;
14778 unsigned int count, i;
14779
14780 if (!IS_ELF)
14781 return;
14782
14783 syms = bfd_get_outsymbols (stdoutput);
14784 count = bfd_get_symcount (stdoutput);
14785 for (i = 0; i < count; i++, syms++)
14786 {
14787 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14788 && ((*syms)->value & 1) != 0)
14789 {
14790 (*syms)->value &= ~1;
14791 /* If the symbol has an odd size, it was probably computed
14792 incorrectly, so adjust that as well. */
14793 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14794 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14795 }
14796 }
14797 }
14798
14799 #endif
14800
14801 /* This function is called whenever a label is defined, including fake
14802 labels instantiated off the dot special symbol. It is used when
14803 handling branch delays; if a branch has a label, we assume we cannot
14804 move it. This also bumps the value of the symbol by 1 in compressed
14805 code. */
14806
14807 void
14808 mips_record_label (symbolS *sym)
14809 {
14810 segment_info_type *si = seg_info (now_seg);
14811 struct insn_label_list *l;
14812
14813 if (free_insn_labels == NULL)
14814 l = (struct insn_label_list *) xmalloc (sizeof *l);
14815 else
14816 {
14817 l = free_insn_labels;
14818 free_insn_labels = l->next;
14819 }
14820
14821 l->label = sym;
14822 l->next = si->label_list;
14823 si->label_list = l;
14824 }
14825
14826 /* This function is called as tc_frob_label() whenever a label is defined
14827 and adds a DWARF-2 record we only want for true labels. */
14828
14829 void
14830 mips_define_label (symbolS *sym)
14831 {
14832 mips_record_label (sym);
14833 #ifdef OBJ_ELF
14834 dwarf2_emit_label (sym);
14835 #endif
14836 }
14837 \f
14838 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14839
14840 /* Some special processing for a MIPS ELF file. */
14841
14842 void
14843 mips_elf_final_processing (void)
14844 {
14845 /* Write out the register information. */
14846 if (mips_abi != N64_ABI)
14847 {
14848 Elf32_RegInfo s;
14849
14850 s.ri_gprmask = mips_gprmask;
14851 s.ri_cprmask[0] = mips_cprmask[0];
14852 s.ri_cprmask[1] = mips_cprmask[1];
14853 s.ri_cprmask[2] = mips_cprmask[2];
14854 s.ri_cprmask[3] = mips_cprmask[3];
14855 /* The gp_value field is set by the MIPS ELF backend. */
14856
14857 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14858 ((Elf32_External_RegInfo *)
14859 mips_regmask_frag));
14860 }
14861 else
14862 {
14863 Elf64_Internal_RegInfo s;
14864
14865 s.ri_gprmask = mips_gprmask;
14866 s.ri_pad = 0;
14867 s.ri_cprmask[0] = mips_cprmask[0];
14868 s.ri_cprmask[1] = mips_cprmask[1];
14869 s.ri_cprmask[2] = mips_cprmask[2];
14870 s.ri_cprmask[3] = mips_cprmask[3];
14871 /* The gp_value field is set by the MIPS ELF backend. */
14872
14873 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14874 ((Elf64_External_RegInfo *)
14875 mips_regmask_frag));
14876 }
14877
14878 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14879 sort of BFD interface for this. */
14880 if (mips_any_noreorder)
14881 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14882 if (mips_pic != NO_PIC)
14883 {
14884 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14885 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14886 }
14887 if (mips_abicalls)
14888 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14889
14890 /* Set MIPS ELF flags for ASEs. */
14891 /* We may need to define a new flag for DSP ASE, and set this flag when
14892 file_ase_dsp is true. */
14893 /* Same for DSP R2. */
14894 /* We may need to define a new flag for MT ASE, and set this flag when
14895 file_ase_mt is true. */
14896 if (file_ase_mips16)
14897 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14898 #if 0 /* XXX FIXME */
14899 if (file_ase_mips3d)
14900 elf_elfheader (stdoutput)->e_flags |= ???;
14901 #endif
14902 if (file_ase_mdmx)
14903 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14904
14905 /* Set the MIPS ELF ABI flags. */
14906 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14907 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14908 else if (mips_abi == O64_ABI)
14909 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14910 else if (mips_abi == EABI_ABI)
14911 {
14912 if (!file_mips_gp32)
14913 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14914 else
14915 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14916 }
14917 else if (mips_abi == N32_ABI)
14918 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14919
14920 /* Nothing to do for N64_ABI. */
14921
14922 if (mips_32bitmode)
14923 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14924
14925 #if 0 /* XXX FIXME */
14926 /* 32 bit code with 64 bit FP registers. */
14927 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14928 elf_elfheader (stdoutput)->e_flags |= ???;
14929 #endif
14930 }
14931
14932 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14933 \f
14934 typedef struct proc {
14935 symbolS *func_sym;
14936 symbolS *func_end_sym;
14937 unsigned long reg_mask;
14938 unsigned long reg_offset;
14939 unsigned long fpreg_mask;
14940 unsigned long fpreg_offset;
14941 unsigned long frame_offset;
14942 unsigned long frame_reg;
14943 unsigned long pc_reg;
14944 } procS;
14945
14946 static procS cur_proc;
14947 static procS *cur_proc_ptr;
14948 static int numprocs;
14949
14950 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14951 nop as "0". */
14952
14953 char
14954 mips_nop_opcode (void)
14955 {
14956 return seg_info (now_seg)->tc_segment_info_data.mips16;
14957 }
14958
14959 /* Fill in an rs_align_code fragment. This only needs to do something
14960 for MIPS16 code, where 0 is not a nop. */
14961
14962 void
14963 mips_handle_align (fragS *fragp)
14964 {
14965 char *p;
14966 int bytes, size, excess;
14967 valueT opcode;
14968
14969 if (fragp->fr_type != rs_align_code)
14970 return;
14971
14972 p = fragp->fr_literal + fragp->fr_fix;
14973 if (*p)
14974 {
14975 opcode = mips16_nop_insn.insn_opcode;
14976 size = 2;
14977 }
14978 else
14979 {
14980 opcode = nop_insn.insn_opcode;
14981 size = 4;
14982 }
14983
14984 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14985 excess = bytes % size;
14986 if (excess != 0)
14987 {
14988 /* If we're not inserting a whole number of instructions,
14989 pad the end of the fixed part of the frag with zeros. */
14990 memset (p, 0, excess);
14991 p += excess;
14992 fragp->fr_fix += excess;
14993 }
14994
14995 md_number_to_chars (p, opcode, size);
14996 fragp->fr_var = size;
14997 }
14998
14999 static void
15000 md_obj_begin (void)
15001 {
15002 }
15003
15004 static void
15005 md_obj_end (void)
15006 {
15007 /* Check for premature end, nesting errors, etc. */
15008 if (cur_proc_ptr)
15009 as_warn (_("missing .end at end of assembly"));
15010 }
15011
15012 static long
15013 get_number (void)
15014 {
15015 int negative = 0;
15016 long val = 0;
15017
15018 if (*input_line_pointer == '-')
15019 {
15020 ++input_line_pointer;
15021 negative = 1;
15022 }
15023 if (!ISDIGIT (*input_line_pointer))
15024 as_bad (_("expected simple number"));
15025 if (input_line_pointer[0] == '0')
15026 {
15027 if (input_line_pointer[1] == 'x')
15028 {
15029 input_line_pointer += 2;
15030 while (ISXDIGIT (*input_line_pointer))
15031 {
15032 val <<= 4;
15033 val |= hex_value (*input_line_pointer++);
15034 }
15035 return negative ? -val : val;
15036 }
15037 else
15038 {
15039 ++input_line_pointer;
15040 while (ISDIGIT (*input_line_pointer))
15041 {
15042 val <<= 3;
15043 val |= *input_line_pointer++ - '0';
15044 }
15045 return negative ? -val : val;
15046 }
15047 }
15048 if (!ISDIGIT (*input_line_pointer))
15049 {
15050 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
15051 *input_line_pointer, *input_line_pointer);
15052 as_warn (_("invalid number"));
15053 return -1;
15054 }
15055 while (ISDIGIT (*input_line_pointer))
15056 {
15057 val *= 10;
15058 val += *input_line_pointer++ - '0';
15059 }
15060 return negative ? -val : val;
15061 }
15062
15063 /* The .file directive; just like the usual .file directive, but there
15064 is an initial number which is the ECOFF file index. In the non-ECOFF
15065 case .file implies DWARF-2. */
15066
15067 static void
15068 s_mips_file (int x ATTRIBUTE_UNUSED)
15069 {
15070 static int first_file_directive = 0;
15071
15072 if (ECOFF_DEBUGGING)
15073 {
15074 get_number ();
15075 s_app_file (0);
15076 }
15077 else
15078 {
15079 char *filename;
15080
15081 filename = dwarf2_directive_file (0);
15082
15083 /* Versions of GCC up to 3.1 start files with a ".file"
15084 directive even for stabs output. Make sure that this
15085 ".file" is handled. Note that you need a version of GCC
15086 after 3.1 in order to support DWARF-2 on MIPS. */
15087 if (filename != NULL && ! first_file_directive)
15088 {
15089 (void) new_logical_line (filename, -1);
15090 s_app_file_string (filename, 0);
15091 }
15092 first_file_directive = 1;
15093 }
15094 }
15095
15096 /* The .loc directive, implying DWARF-2. */
15097
15098 static void
15099 s_mips_loc (int x ATTRIBUTE_UNUSED)
15100 {
15101 if (!ECOFF_DEBUGGING)
15102 dwarf2_directive_loc (0);
15103 }
15104
15105 /* The .end directive. */
15106
15107 static void
15108 s_mips_end (int x ATTRIBUTE_UNUSED)
15109 {
15110 symbolS *p;
15111
15112 /* Following functions need their own .frame and .cprestore directives. */
15113 mips_frame_reg_valid = 0;
15114 mips_cprestore_valid = 0;
15115
15116 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15117 {
15118 p = get_symbol ();
15119 demand_empty_rest_of_line ();
15120 }
15121 else
15122 p = NULL;
15123
15124 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15125 as_warn (_(".end not in text section"));
15126
15127 if (!cur_proc_ptr)
15128 {
15129 as_warn (_(".end directive without a preceding .ent directive."));
15130 demand_empty_rest_of_line ();
15131 return;
15132 }
15133
15134 if (p != NULL)
15135 {
15136 gas_assert (S_GET_NAME (p));
15137 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15138 as_warn (_(".end symbol does not match .ent symbol."));
15139
15140 if (debug_type == DEBUG_STABS)
15141 stabs_generate_asm_endfunc (S_GET_NAME (p),
15142 S_GET_NAME (p));
15143 }
15144 else
15145 as_warn (_(".end directive missing or unknown symbol"));
15146
15147 #ifdef OBJ_ELF
15148 /* Create an expression to calculate the size of the function. */
15149 if (p && cur_proc_ptr)
15150 {
15151 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15152 expressionS *exp = xmalloc (sizeof (expressionS));
15153
15154 obj->size = exp;
15155 exp->X_op = O_subtract;
15156 exp->X_add_symbol = symbol_temp_new_now ();
15157 exp->X_op_symbol = p;
15158 exp->X_add_number = 0;
15159
15160 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15161 }
15162
15163 /* Generate a .pdr section. */
15164 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15165 {
15166 segT saved_seg = now_seg;
15167 subsegT saved_subseg = now_subseg;
15168 expressionS exp;
15169 char *fragp;
15170
15171 #ifdef md_flush_pending_output
15172 md_flush_pending_output ();
15173 #endif
15174
15175 gas_assert (pdr_seg);
15176 subseg_set (pdr_seg, 0);
15177
15178 /* Write the symbol. */
15179 exp.X_op = O_symbol;
15180 exp.X_add_symbol = p;
15181 exp.X_add_number = 0;
15182 emit_expr (&exp, 4);
15183
15184 fragp = frag_more (7 * 4);
15185
15186 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15187 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15188 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15189 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15190 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15191 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15192 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15193
15194 subseg_set (saved_seg, saved_subseg);
15195 }
15196 #endif /* OBJ_ELF */
15197
15198 cur_proc_ptr = NULL;
15199 }
15200
15201 /* The .aent and .ent directives. */
15202
15203 static void
15204 s_mips_ent (int aent)
15205 {
15206 symbolS *symbolP;
15207
15208 symbolP = get_symbol ();
15209 if (*input_line_pointer == ',')
15210 ++input_line_pointer;
15211 SKIP_WHITESPACE ();
15212 if (ISDIGIT (*input_line_pointer)
15213 || *input_line_pointer == '-')
15214 get_number ();
15215
15216 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15217 as_warn (_(".ent or .aent not in text section."));
15218
15219 if (!aent && cur_proc_ptr)
15220 as_warn (_("missing .end"));
15221
15222 if (!aent)
15223 {
15224 /* This function needs its own .frame and .cprestore directives. */
15225 mips_frame_reg_valid = 0;
15226 mips_cprestore_valid = 0;
15227
15228 cur_proc_ptr = &cur_proc;
15229 memset (cur_proc_ptr, '\0', sizeof (procS));
15230
15231 cur_proc_ptr->func_sym = symbolP;
15232
15233 ++numprocs;
15234
15235 if (debug_type == DEBUG_STABS)
15236 stabs_generate_asm_func (S_GET_NAME (symbolP),
15237 S_GET_NAME (symbolP));
15238 }
15239
15240 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15241
15242 demand_empty_rest_of_line ();
15243 }
15244
15245 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15246 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15247 s_mips_frame is used so that we can set the PDR information correctly.
15248 We can't use the ecoff routines because they make reference to the ecoff
15249 symbol table (in the mdebug section). */
15250
15251 static void
15252 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15253 {
15254 #ifdef OBJ_ELF
15255 if (IS_ELF && !ECOFF_DEBUGGING)
15256 {
15257 long val;
15258
15259 if (cur_proc_ptr == (procS *) NULL)
15260 {
15261 as_warn (_(".frame outside of .ent"));
15262 demand_empty_rest_of_line ();
15263 return;
15264 }
15265
15266 cur_proc_ptr->frame_reg = tc_get_register (1);
15267
15268 SKIP_WHITESPACE ();
15269 if (*input_line_pointer++ != ','
15270 || get_absolute_expression_and_terminator (&val) != ',')
15271 {
15272 as_warn (_("Bad .frame directive"));
15273 --input_line_pointer;
15274 demand_empty_rest_of_line ();
15275 return;
15276 }
15277
15278 cur_proc_ptr->frame_offset = val;
15279 cur_proc_ptr->pc_reg = tc_get_register (0);
15280
15281 demand_empty_rest_of_line ();
15282 }
15283 else
15284 #endif /* OBJ_ELF */
15285 s_ignore (ignore);
15286 }
15287
15288 /* The .fmask and .mask directives. If the mdebug section is present
15289 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15290 embedded targets, s_mips_mask is used so that we can set the PDR
15291 information correctly. We can't use the ecoff routines because they
15292 make reference to the ecoff symbol table (in the mdebug section). */
15293
15294 static void
15295 s_mips_mask (int reg_type)
15296 {
15297 #ifdef OBJ_ELF
15298 if (IS_ELF && !ECOFF_DEBUGGING)
15299 {
15300 long mask, off;
15301
15302 if (cur_proc_ptr == (procS *) NULL)
15303 {
15304 as_warn (_(".mask/.fmask outside of .ent"));
15305 demand_empty_rest_of_line ();
15306 return;
15307 }
15308
15309 if (get_absolute_expression_and_terminator (&mask) != ',')
15310 {
15311 as_warn (_("Bad .mask/.fmask directive"));
15312 --input_line_pointer;
15313 demand_empty_rest_of_line ();
15314 return;
15315 }
15316
15317 off = get_absolute_expression ();
15318
15319 if (reg_type == 'F')
15320 {
15321 cur_proc_ptr->fpreg_mask = mask;
15322 cur_proc_ptr->fpreg_offset = off;
15323 }
15324 else
15325 {
15326 cur_proc_ptr->reg_mask = mask;
15327 cur_proc_ptr->reg_offset = off;
15328 }
15329
15330 demand_empty_rest_of_line ();
15331 }
15332 else
15333 #endif /* OBJ_ELF */
15334 s_ignore (reg_type);
15335 }
15336
15337 /* A table describing all the processors gas knows about. Names are
15338 matched in the order listed.
15339
15340 To ease comparison, please keep this table in the same order as
15341 gcc's mips_cpu_info_table[]. */
15342 static const struct mips_cpu_info mips_cpu_info_table[] =
15343 {
15344 /* Entries for generic ISAs */
15345 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15346 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15347 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15348 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15349 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15350 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15351 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15352 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15353 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15354
15355 /* MIPS I */
15356 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15357 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15358 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15359
15360 /* MIPS II */
15361 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15362
15363 /* MIPS III */
15364 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15365 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15366 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15367 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15368 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15369 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15370 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15371 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15372 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15373 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15374 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15375 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15376 /* ST Microelectronics Loongson 2E and 2F cores */
15377 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15378 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15379
15380 /* MIPS IV */
15381 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15382 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15383 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15384 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15385 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15386 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15387 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15388 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15389 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15390 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15391 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15392 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15393 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15394 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15395 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15396
15397 /* MIPS 32 */
15398 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15399 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15400 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15401 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15402
15403 /* MIPS 32 Release 2 */
15404 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15405 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15406 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15407 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15408 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15409 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15410 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15411 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15412 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15413 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15414 /* Deprecated forms of the above. */
15415 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15416 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15417 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15418 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15419 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15420 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15421 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15422 /* Deprecated forms of the above. */
15423 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15424 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15425 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15426 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15427 ISA_MIPS32R2, CPU_MIPS32R2 },
15428 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15429 ISA_MIPS32R2, CPU_MIPS32R2 },
15430 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15431 ISA_MIPS32R2, CPU_MIPS32R2 },
15432 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15433 ISA_MIPS32R2, CPU_MIPS32R2 },
15434 /* Deprecated forms of the above. */
15435 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15436 ISA_MIPS32R2, CPU_MIPS32R2 },
15437 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15438 ISA_MIPS32R2, CPU_MIPS32R2 },
15439 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15440 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15441 ISA_MIPS32R2, CPU_MIPS32R2 },
15442 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15443 ISA_MIPS32R2, CPU_MIPS32R2 },
15444 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15445 ISA_MIPS32R2, CPU_MIPS32R2 },
15446 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15447 ISA_MIPS32R2, CPU_MIPS32R2 },
15448 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15449 ISA_MIPS32R2, CPU_MIPS32R2 },
15450 /* Deprecated forms of the above. */
15451 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15452 ISA_MIPS32R2, CPU_MIPS32R2 },
15453 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15454 ISA_MIPS32R2, CPU_MIPS32R2 },
15455 /* 1004K cores are multiprocessor versions of the 34K. */
15456 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15457 ISA_MIPS32R2, CPU_MIPS32R2 },
15458 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15459 ISA_MIPS32R2, CPU_MIPS32R2 },
15460 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15461 ISA_MIPS32R2, CPU_MIPS32R2 },
15462 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15463 ISA_MIPS32R2, CPU_MIPS32R2 },
15464
15465 /* MIPS 64 */
15466 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15467 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15468 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15469 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15470
15471 /* Broadcom SB-1 CPU core */
15472 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15473 ISA_MIPS64, CPU_SB1 },
15474 /* Broadcom SB-1A CPU core */
15475 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15476 ISA_MIPS64, CPU_SB1 },
15477
15478 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
15479
15480 /* MIPS 64 Release 2 */
15481
15482 /* Cavium Networks Octeon CPU core */
15483 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15484
15485 /* RMI Xlr */
15486 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15487
15488 /* End marker */
15489 { NULL, 0, 0, 0 }
15490 };
15491
15492
15493 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15494 with a final "000" replaced by "k". Ignore case.
15495
15496 Note: this function is shared between GCC and GAS. */
15497
15498 static bfd_boolean
15499 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15500 {
15501 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15502 given++, canonical++;
15503
15504 return ((*given == 0 && *canonical == 0)
15505 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15506 }
15507
15508
15509 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15510 CPU name. We've traditionally allowed a lot of variation here.
15511
15512 Note: this function is shared between GCC and GAS. */
15513
15514 static bfd_boolean
15515 mips_matching_cpu_name_p (const char *canonical, const char *given)
15516 {
15517 /* First see if the name matches exactly, or with a final "000"
15518 turned into "k". */
15519 if (mips_strict_matching_cpu_name_p (canonical, given))
15520 return TRUE;
15521
15522 /* If not, try comparing based on numerical designation alone.
15523 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15524 if (TOLOWER (*given) == 'r')
15525 given++;
15526 if (!ISDIGIT (*given))
15527 return FALSE;
15528
15529 /* Skip over some well-known prefixes in the canonical name,
15530 hoping to find a number there too. */
15531 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15532 canonical += 2;
15533 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15534 canonical += 2;
15535 else if (TOLOWER (canonical[0]) == 'r')
15536 canonical += 1;
15537
15538 return mips_strict_matching_cpu_name_p (canonical, given);
15539 }
15540
15541
15542 /* Parse an option that takes the name of a processor as its argument.
15543 OPTION is the name of the option and CPU_STRING is the argument.
15544 Return the corresponding processor enumeration if the CPU_STRING is
15545 recognized, otherwise report an error and return null.
15546
15547 A similar function exists in GCC. */
15548
15549 static const struct mips_cpu_info *
15550 mips_parse_cpu (const char *option, const char *cpu_string)
15551 {
15552 const struct mips_cpu_info *p;
15553
15554 /* 'from-abi' selects the most compatible architecture for the given
15555 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15556 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15557 version. Look first at the -mgp options, if given, otherwise base
15558 the choice on MIPS_DEFAULT_64BIT.
15559
15560 Treat NO_ABI like the EABIs. One reason to do this is that the
15561 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15562 architecture. This code picks MIPS I for 'mips' and MIPS III for
15563 'mips64', just as we did in the days before 'from-abi'. */
15564 if (strcasecmp (cpu_string, "from-abi") == 0)
15565 {
15566 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15567 return mips_cpu_info_from_isa (ISA_MIPS1);
15568
15569 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15570 return mips_cpu_info_from_isa (ISA_MIPS3);
15571
15572 if (file_mips_gp32 >= 0)
15573 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15574
15575 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15576 ? ISA_MIPS3
15577 : ISA_MIPS1);
15578 }
15579
15580 /* 'default' has traditionally been a no-op. Probably not very useful. */
15581 if (strcasecmp (cpu_string, "default") == 0)
15582 return 0;
15583
15584 for (p = mips_cpu_info_table; p->name != 0; p++)
15585 if (mips_matching_cpu_name_p (p->name, cpu_string))
15586 return p;
15587
15588 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15589 return 0;
15590 }
15591
15592 /* Return the canonical processor information for ISA (a member of the
15593 ISA_MIPS* enumeration). */
15594
15595 static const struct mips_cpu_info *
15596 mips_cpu_info_from_isa (int isa)
15597 {
15598 int i;
15599
15600 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15601 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15602 && isa == mips_cpu_info_table[i].isa)
15603 return (&mips_cpu_info_table[i]);
15604
15605 return NULL;
15606 }
15607
15608 static const struct mips_cpu_info *
15609 mips_cpu_info_from_arch (int arch)
15610 {
15611 int i;
15612
15613 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15614 if (arch == mips_cpu_info_table[i].cpu)
15615 return (&mips_cpu_info_table[i]);
15616
15617 return NULL;
15618 }
15619 \f
15620 static void
15621 show (FILE *stream, const char *string, int *col_p, int *first_p)
15622 {
15623 if (*first_p)
15624 {
15625 fprintf (stream, "%24s", "");
15626 *col_p = 24;
15627 }
15628 else
15629 {
15630 fprintf (stream, ", ");
15631 *col_p += 2;
15632 }
15633
15634 if (*col_p + strlen (string) > 72)
15635 {
15636 fprintf (stream, "\n%24s", "");
15637 *col_p = 24;
15638 }
15639
15640 fprintf (stream, "%s", string);
15641 *col_p += strlen (string);
15642
15643 *first_p = 0;
15644 }
15645
15646 void
15647 md_show_usage (FILE *stream)
15648 {
15649 int column, first;
15650 size_t i;
15651
15652 fprintf (stream, _("\
15653 MIPS options:\n\
15654 -EB generate big endian output\n\
15655 -EL generate little endian output\n\
15656 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15657 -G NUM allow referencing objects up to NUM bytes\n\
15658 implicitly with the gp register [default 8]\n"));
15659 fprintf (stream, _("\
15660 -mips1 generate MIPS ISA I instructions\n\
15661 -mips2 generate MIPS ISA II instructions\n\
15662 -mips3 generate MIPS ISA III instructions\n\
15663 -mips4 generate MIPS ISA IV instructions\n\
15664 -mips5 generate MIPS ISA V instructions\n\
15665 -mips32 generate MIPS32 ISA instructions\n\
15666 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15667 -mips64 generate MIPS64 ISA instructions\n\
15668 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15669 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15670
15671 first = 1;
15672
15673 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15674 show (stream, mips_cpu_info_table[i].name, &column, &first);
15675 show (stream, "from-abi", &column, &first);
15676 fputc ('\n', stream);
15677
15678 fprintf (stream, _("\
15679 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15680 -no-mCPU don't generate code specific to CPU.\n\
15681 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15682
15683 first = 1;
15684
15685 show (stream, "3900", &column, &first);
15686 show (stream, "4010", &column, &first);
15687 show (stream, "4100", &column, &first);
15688 show (stream, "4650", &column, &first);
15689 fputc ('\n', stream);
15690
15691 fprintf (stream, _("\
15692 -mips16 generate mips16 instructions\n\
15693 -no-mips16 do not generate mips16 instructions\n"));
15694 fprintf (stream, _("\
15695 -msmartmips generate smartmips instructions\n\
15696 -mno-smartmips do not generate smartmips instructions\n"));
15697 fprintf (stream, _("\
15698 -mdsp generate DSP instructions\n\
15699 -mno-dsp do not generate DSP instructions\n"));
15700 fprintf (stream, _("\
15701 -mdspr2 generate DSP R2 instructions\n\
15702 -mno-dspr2 do not generate DSP R2 instructions\n"));
15703 fprintf (stream, _("\
15704 -mmt generate MT instructions\n\
15705 -mno-mt do not generate MT instructions\n"));
15706 fprintf (stream, _("\
15707 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15708 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15709 -mfix-vr4120 work around certain VR4120 errata\n\
15710 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15711 -mfix-24k insert a nop after ERET and DERET instructions\n\
15712 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15713 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15714 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15715 -msym32 assume all symbols have 32-bit values\n\
15716 -O0 remove unneeded NOPs, do not swap branches\n\
15717 -O remove unneeded NOPs and swap branches\n\
15718 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15719 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15720 fprintf (stream, _("\
15721 -mhard-float allow floating-point instructions\n\
15722 -msoft-float do not allow floating-point instructions\n\
15723 -msingle-float only allow 32-bit floating-point operations\n\
15724 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15725 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15726 ));
15727 #ifdef OBJ_ELF
15728 fprintf (stream, _("\
15729 -KPIC, -call_shared generate SVR4 position independent code\n\
15730 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15731 -mvxworks-pic generate VxWorks position independent code\n\
15732 -non_shared do not generate code that can operate with DSOs\n\
15733 -xgot assume a 32 bit GOT\n\
15734 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15735 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15736 position dependent (non shared) code\n\
15737 -mabi=ABI create ABI conformant object file for:\n"));
15738
15739 first = 1;
15740
15741 show (stream, "32", &column, &first);
15742 show (stream, "o64", &column, &first);
15743 show (stream, "n32", &column, &first);
15744 show (stream, "64", &column, &first);
15745 show (stream, "eabi", &column, &first);
15746
15747 fputc ('\n', stream);
15748
15749 fprintf (stream, _("\
15750 -32 create o32 ABI object file (default)\n\
15751 -n32 create n32 ABI object file\n\
15752 -64 create 64 ABI object file\n"));
15753 #endif
15754 }
15755
15756 #ifdef TE_IRIX
15757 enum dwarf2_format
15758 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15759 {
15760 if (HAVE_64BIT_SYMBOLS)
15761 return dwarf2_format_64bit_irix;
15762 else
15763 return dwarf2_format_32bit;
15764 }
15765 #endif
15766
15767 int
15768 mips_dwarf2_addr_size (void)
15769 {
15770 if (HAVE_64BIT_OBJECTS)
15771 return 8;
15772 else
15773 return 4;
15774 }
15775
15776 /* Standard calling conventions leave the CFA at SP on entry. */
15777 void
15778 mips_cfi_frame_initial_instructions (void)
15779 {
15780 cfi_add_CFA_def_cfa_register (SP);
15781 }
15782
15783 int
15784 tc_mips_regname_to_dw2regnum (char *regname)
15785 {
15786 unsigned int regnum = -1;
15787 unsigned int reg;
15788
15789 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15790 regnum = reg;
15791
15792 return regnum;
15793 }
This page took 0.656742 seconds and 3 git commands to generate.