ae37e02e09df67b74168c81d1388ffa6d3600493
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define ATREG 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
102
103 #define ILLEGAL_REG (32)
104
105 #define AT mips_opts.at
106
107 /* Allow override of standard little-endian ECOFF format. */
108
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
111 #endif
112
113 extern int target_big_endian;
114
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
123
124 /* Information about an instruction, including its format, operands
125 and fixups. */
126 struct mips_cl_insn
127 {
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
130
131 /* True if this is a mips16 instruction and if we want the extended
132 form of INSN_MO. */
133 bfd_boolean use_extend;
134
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
141
142 /* The frag that contains the instruction. */
143 struct frag *frag;
144
145 /* The offset into FRAG of the first instruction byte. */
146 long where;
147
148 /* The relocs associated with the instruction, if any. */
149 fixS *fixp[3];
150
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
153
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
156
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
159 };
160
161 /* The ABI to use. */
162 enum mips_abi_level
163 {
164 NO_ABI = 0,
165 O32_ABI,
166 O64_ABI,
167 N32_ABI,
168 N64_ABI,
169 EABI_ABI
170 };
171
172 /* MIPS ABI we are using for this output file. */
173 static enum mips_abi_level mips_abi = NO_ABI;
174
175 /* Whether or not we have code that can call pic code. */
176 int mips_abicalls = FALSE;
177
178 /* Whether or not we have code which can be put into a shared
179 library. */
180 static bfd_boolean mips_in_shared = TRUE;
181
182 /* This is the set of options which may be modified by the .set
183 pseudo-op. We use a struct so that .set push and .set pop are more
184 reliable. */
185
186 struct mips_set_options
187 {
188 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
189 if it has not been initialized. Changed by `.set mipsN', and the
190 -mipsN command line option, and the default CPU. */
191 int isa;
192 /* Enabled Application Specific Extensions (ASEs). These are set to -1
193 if they have not been initialized. Changed by `.set <asename>', by
194 command line options, and based on the default architecture. */
195 int ase_mips3d;
196 int ase_mdmx;
197 int ase_smartmips;
198 int ase_dsp;
199 int ase_dspr2;
200 int ase_mt;
201 /* Whether we are assembling for the mips16 processor. 0 if we are
202 not, 1 if we are, and -1 if the value has not been initialized.
203 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
204 -nomips16 command line options, and the default CPU. */
205 int mips16;
206 /* Non-zero if we should not reorder instructions. Changed by `.set
207 reorder' and `.set noreorder'. */
208 int noreorder;
209 /* Non-zero if we should not permit the register designated "assembler
210 temporary" to be used in instructions. The value is the register
211 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
212 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
213 unsigned int at;
214 /* Non-zero if we should warn when a macro instruction expands into
215 more than one machine instruction. Changed by `.set nomacro' and
216 `.set macro'. */
217 int warn_about_macros;
218 /* Non-zero if we should not move instructions. Changed by `.set
219 move', `.set volatile', `.set nomove', and `.set novolatile'. */
220 int nomove;
221 /* Non-zero if we should not optimize branches by moving the target
222 of the branch into the delay slot. Actually, we don't perform
223 this optimization anyhow. Changed by `.set bopt' and `.set
224 nobopt'. */
225 int nobopt;
226 /* Non-zero if we should not autoextend mips16 instructions.
227 Changed by `.set autoextend' and `.set noautoextend'. */
228 int noautoextend;
229 /* Restrict general purpose registers and floating point registers
230 to 32 bit. This is initially determined when -mgp32 or -mfp32
231 is passed but can changed if the assembler code uses .set mipsN. */
232 int gp32;
233 int fp32;
234 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
235 command line option, and the default CPU. */
236 int arch;
237 /* True if ".set sym32" is in effect. */
238 bfd_boolean sym32;
239 /* True if floating-point operations are not allowed. Changed by .set
240 softfloat or .set hardfloat, by command line options -msoft-float or
241 -mhard-float. The default is false. */
242 bfd_boolean soft_float;
243
244 /* True if only single-precision floating-point operations are allowed.
245 Changed by .set singlefloat or .set doublefloat, command-line options
246 -msingle-float or -mdouble-float. The default is false. */
247 bfd_boolean single_float;
248 };
249
250 /* This is the struct we use to hold the current set of options. Note
251 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
252 -1 to indicate that they have not been initialized. */
253
254 /* True if -mgp32 was passed. */
255 static int file_mips_gp32 = -1;
256
257 /* True if -mfp32 was passed. */
258 static int file_mips_fp32 = -1;
259
260 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
261 static int file_mips_soft_float = 0;
262
263 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
264 static int file_mips_single_float = 0;
265
266 static struct mips_set_options mips_opts =
267 {
268 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
269 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
270 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
271 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
272 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
273 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
274 };
275
276 /* These variables are filled in with the masks of registers used.
277 The object format code reads them and puts them in the appropriate
278 place. */
279 unsigned long mips_gprmask;
280 unsigned long mips_cprmask[4];
281
282 /* MIPS ISA we are using for this output file. */
283 static int file_mips_isa = ISA_UNKNOWN;
284
285 /* True if any MIPS16 code was produced. */
286 static int file_ase_mips16;
287
288 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
289 || mips_opts.isa == ISA_MIPS32R2 \
290 || mips_opts.isa == ISA_MIPS64 \
291 || mips_opts.isa == ISA_MIPS64R2)
292
293 /* True if we want to create R_MIPS_JALR for jalr $25. */
294 #ifdef TE_IRIX
295 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
296 #else
297 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
298 because there's no place for any addend, the only acceptable
299 expression is a bare symbol. */
300 #define MIPS_JALR_HINT_P(EXPR) \
301 (!HAVE_IN_PLACE_ADDENDS \
302 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
303 #endif
304
305 /* True if -mips3d was passed or implied by arguments passed on the
306 command line (e.g., by -march). */
307 static int file_ase_mips3d;
308
309 /* True if -mdmx was passed or implied by arguments passed on the
310 command line (e.g., by -march). */
311 static int file_ase_mdmx;
312
313 /* True if -msmartmips was passed or implied by arguments passed on the
314 command line (e.g., by -march). */
315 static int file_ase_smartmips;
316
317 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
318 || mips_opts.isa == ISA_MIPS32R2)
319
320 /* True if -mdsp was passed or implied by arguments passed on the
321 command line (e.g., by -march). */
322 static int file_ase_dsp;
323
324 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
325 || mips_opts.isa == ISA_MIPS64R2)
326
327 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
328
329 /* True if -mdspr2 was passed or implied by arguments passed on the
330 command line (e.g., by -march). */
331 static int file_ase_dspr2;
332
333 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
334 || mips_opts.isa == ISA_MIPS64R2)
335
336 /* True if -mmt was passed or implied by arguments passed on the
337 command line (e.g., by -march). */
338 static int file_ase_mt;
339
340 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
341 || mips_opts.isa == ISA_MIPS64R2)
342
343 /* The argument of the -march= flag. The architecture we are assembling. */
344 static int file_mips_arch = CPU_UNKNOWN;
345 static const char *mips_arch_string;
346
347 /* The argument of the -mtune= flag. The architecture for which we
348 are optimizing. */
349 static int mips_tune = CPU_UNKNOWN;
350 static const char *mips_tune_string;
351
352 /* True when generating 32-bit code for a 64-bit processor. */
353 static int mips_32bitmode = 0;
354
355 /* True if the given ABI requires 32-bit registers. */
356 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
357
358 /* Likewise 64-bit registers. */
359 #define ABI_NEEDS_64BIT_REGS(ABI) \
360 ((ABI) == N32_ABI \
361 || (ABI) == N64_ABI \
362 || (ABI) == O64_ABI)
363
364 /* Return true if ISA supports 64 bit wide gp registers. */
365 #define ISA_HAS_64BIT_REGS(ISA) \
366 ((ISA) == ISA_MIPS3 \
367 || (ISA) == ISA_MIPS4 \
368 || (ISA) == ISA_MIPS5 \
369 || (ISA) == ISA_MIPS64 \
370 || (ISA) == ISA_MIPS64R2)
371
372 /* Return true if ISA supports 64 bit wide float registers. */
373 #define ISA_HAS_64BIT_FPRS(ISA) \
374 ((ISA) == ISA_MIPS3 \
375 || (ISA) == ISA_MIPS4 \
376 || (ISA) == ISA_MIPS5 \
377 || (ISA) == ISA_MIPS32R2 \
378 || (ISA) == ISA_MIPS64 \
379 || (ISA) == ISA_MIPS64R2)
380
381 /* Return true if ISA supports 64-bit right rotate (dror et al.)
382 instructions. */
383 #define ISA_HAS_DROR(ISA) \
384 ((ISA) == ISA_MIPS64R2)
385
386 /* Return true if ISA supports 32-bit right rotate (ror et al.)
387 instructions. */
388 #define ISA_HAS_ROR(ISA) \
389 ((ISA) == ISA_MIPS32R2 \
390 || (ISA) == ISA_MIPS64R2 \
391 || mips_opts.ase_smartmips)
392
393 /* Return true if ISA supports single-precision floats in odd registers. */
394 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
395 ((ISA) == ISA_MIPS32 \
396 || (ISA) == ISA_MIPS32R2 \
397 || (ISA) == ISA_MIPS64 \
398 || (ISA) == ISA_MIPS64R2)
399
400 /* Return true if ISA supports move to/from high part of a 64-bit
401 floating-point register. */
402 #define ISA_HAS_MXHC1(ISA) \
403 ((ISA) == ISA_MIPS32R2 \
404 || (ISA) == ISA_MIPS64R2)
405
406 #define HAVE_32BIT_GPRS \
407 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
408
409 #define HAVE_32BIT_FPRS \
410 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
411
412 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
413 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
414
415 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
416
417 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
418
419 /* True if relocations are stored in-place. */
420 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
421
422 /* The ABI-derived address size. */
423 #define HAVE_64BIT_ADDRESSES \
424 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
425 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
426
427 /* The size of symbolic constants (i.e., expressions of the form
428 "SYMBOL" or "SYMBOL + OFFSET"). */
429 #define HAVE_32BIT_SYMBOLS \
430 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
431 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
432
433 /* Addresses are loaded in different ways, depending on the address size
434 in use. The n32 ABI Documentation also mandates the use of additions
435 with overflow checking, but existing implementations don't follow it. */
436 #define ADDRESS_ADD_INSN \
437 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
438
439 #define ADDRESS_ADDI_INSN \
440 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
441
442 #define ADDRESS_LOAD_INSN \
443 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
444
445 #define ADDRESS_STORE_INSN \
446 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
447
448 /* Return true if the given CPU supports the MIPS16 ASE. */
449 #define CPU_HAS_MIPS16(cpu) \
450 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
451 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
452
453 /* True if CPU has a dror instruction. */
454 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
455
456 /* True if CPU has a ror instruction. */
457 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
458
459 /* True if CPU has seq/sne and seqi/snei instructions. */
460 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
461
462 /* True if CPU does not implement the all the coprocessor insns. For these
463 CPUs only those COP insns are accepted that are explicitly marked to be
464 available on the CPU. ISA membership for COP insns is ignored. */
465 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
466
467 /* True if mflo and mfhi can be immediately followed by instructions
468 which write to the HI and LO registers.
469
470 According to MIPS specifications, MIPS ISAs I, II, and III need
471 (at least) two instructions between the reads of HI/LO and
472 instructions which write them, and later ISAs do not. Contradicting
473 the MIPS specifications, some MIPS IV processor user manuals (e.g.
474 the UM for the NEC Vr5000) document needing the instructions between
475 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
476 MIPS64 and later ISAs to have the interlocks, plus any specific
477 earlier-ISA CPUs for which CPU documentation declares that the
478 instructions are really interlocked. */
479 #define hilo_interlocks \
480 (mips_opts.isa == ISA_MIPS32 \
481 || mips_opts.isa == ISA_MIPS32R2 \
482 || mips_opts.isa == ISA_MIPS64 \
483 || mips_opts.isa == ISA_MIPS64R2 \
484 || mips_opts.arch == CPU_R4010 \
485 || mips_opts.arch == CPU_R10000 \
486 || mips_opts.arch == CPU_R12000 \
487 || mips_opts.arch == CPU_R14000 \
488 || mips_opts.arch == CPU_R16000 \
489 || mips_opts.arch == CPU_RM7000 \
490 || mips_opts.arch == CPU_VR5500 \
491 )
492
493 /* Whether the processor uses hardware interlocks to protect reads
494 from the GPRs after they are loaded from memory, and thus does not
495 require nops to be inserted. This applies to instructions marked
496 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
497 level I. */
498 #define gpr_interlocks \
499 (mips_opts.isa != ISA_MIPS1 \
500 || mips_opts.arch == CPU_R3900)
501
502 /* Whether the processor uses hardware interlocks to avoid delays
503 required by coprocessor instructions, and thus does not require
504 nops to be inserted. This applies to instructions marked
505 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
506 between instructions marked INSN_WRITE_COND_CODE and ones marked
507 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
508 levels I, II, and III. */
509 /* Itbl support may require additional care here. */
510 #define cop_interlocks \
511 ((mips_opts.isa != ISA_MIPS1 \
512 && mips_opts.isa != ISA_MIPS2 \
513 && mips_opts.isa != ISA_MIPS3) \
514 || mips_opts.arch == CPU_R4300 \
515 )
516
517 /* Whether the processor uses hardware interlocks to protect reads
518 from coprocessor registers after they are loaded from memory, and
519 thus does not require nops to be inserted. This applies to
520 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
521 requires at MIPS ISA level I. */
522 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
523
524 /* Is this a mfhi or mflo instruction? */
525 #define MF_HILO_INSN(PINFO) \
526 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
527
528 /* Returns true for a (non floating-point) coprocessor instruction. Reading
529 or writing the condition code is only possible on the coprocessors and
530 these insns are not marked with INSN_COP. Thus for these insns use the
531 condition-code flags. */
532 #define COP_INSN(PINFO) \
533 (PINFO != INSN_MACRO \
534 && ((PINFO) & (FP_S | FP_D)) == 0 \
535 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
536
537 /* MIPS PIC level. */
538
539 enum mips_pic_level mips_pic;
540
541 /* 1 if we should generate 32 bit offsets from the $gp register in
542 SVR4_PIC mode. Currently has no meaning in other modes. */
543 static int mips_big_got = 0;
544
545 /* 1 if trap instructions should used for overflow rather than break
546 instructions. */
547 static int mips_trap = 0;
548
549 /* 1 if double width floating point constants should not be constructed
550 by assembling two single width halves into two single width floating
551 point registers which just happen to alias the double width destination
552 register. On some architectures this aliasing can be disabled by a bit
553 in the status register, and the setting of this bit cannot be determined
554 automatically at assemble time. */
555 static int mips_disable_float_construction;
556
557 /* Non-zero if any .set noreorder directives were used. */
558
559 static int mips_any_noreorder;
560
561 /* Non-zero if nops should be inserted when the register referenced in
562 an mfhi/mflo instruction is read in the next two instructions. */
563 static int mips_7000_hilo_fix;
564
565 /* The size of objects in the small data section. */
566 static unsigned int g_switch_value = 8;
567 /* Whether the -G option was used. */
568 static int g_switch_seen = 0;
569
570 #define N_RMASK 0xc4
571 #define N_VFP 0xd4
572
573 /* If we can determine in advance that GP optimization won't be
574 possible, we can skip the relaxation stuff that tries to produce
575 GP-relative references. This makes delay slot optimization work
576 better.
577
578 This function can only provide a guess, but it seems to work for
579 gcc output. It needs to guess right for gcc, otherwise gcc
580 will put what it thinks is a GP-relative instruction in a branch
581 delay slot.
582
583 I don't know if a fix is needed for the SVR4_PIC mode. I've only
584 fixed it for the non-PIC mode. KR 95/04/07 */
585 static int nopic_need_relax (symbolS *, int);
586
587 /* handle of the OPCODE hash table */
588 static struct hash_control *op_hash = NULL;
589
590 /* The opcode hash table we use for the mips16. */
591 static struct hash_control *mips16_op_hash = NULL;
592
593 /* This array holds the chars that always start a comment. If the
594 pre-processor is disabled, these aren't very useful */
595 const char comment_chars[] = "#";
596
597 /* This array holds the chars that only start a comment at the beginning of
598 a line. If the line seems to have the form '# 123 filename'
599 .line and .file directives will appear in the pre-processed output */
600 /* Note that input_file.c hand checks for '#' at the beginning of the
601 first line of the input file. This is because the compiler outputs
602 #NO_APP at the beginning of its output. */
603 /* Also note that C style comments are always supported. */
604 const char line_comment_chars[] = "#";
605
606 /* This array holds machine specific line separator characters. */
607 const char line_separator_chars[] = ";";
608
609 /* Chars that can be used to separate mant from exp in floating point nums */
610 const char EXP_CHARS[] = "eE";
611
612 /* Chars that mean this number is a floating point constant */
613 /* As in 0f12.456 */
614 /* or 0d1.2345e12 */
615 const char FLT_CHARS[] = "rRsSfFdDxXpP";
616
617 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
618 changed in read.c . Ideally it shouldn't have to know about it at all,
619 but nothing is ideal around here.
620 */
621
622 static char *insn_error;
623
624 static int auto_align = 1;
625
626 /* When outputting SVR4 PIC code, the assembler needs to know the
627 offset in the stack frame from which to restore the $gp register.
628 This is set by the .cprestore pseudo-op, and saved in this
629 variable. */
630 static offsetT mips_cprestore_offset = -1;
631
632 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
633 more optimizations, it can use a register value instead of a memory-saved
634 offset and even an other register than $gp as global pointer. */
635 static offsetT mips_cpreturn_offset = -1;
636 static int mips_cpreturn_register = -1;
637 static int mips_gp_register = GP;
638 static int mips_gprel_offset = 0;
639
640 /* Whether mips_cprestore_offset has been set in the current function
641 (or whether it has already been warned about, if not). */
642 static int mips_cprestore_valid = 0;
643
644 /* This is the register which holds the stack frame, as set by the
645 .frame pseudo-op. This is needed to implement .cprestore. */
646 static int mips_frame_reg = SP;
647
648 /* Whether mips_frame_reg has been set in the current function
649 (or whether it has already been warned about, if not). */
650 static int mips_frame_reg_valid = 0;
651
652 /* To output NOP instructions correctly, we need to keep information
653 about the previous two instructions. */
654
655 /* Whether we are optimizing. The default value of 2 means to remove
656 unneeded NOPs and swap branch instructions when possible. A value
657 of 1 means to not swap branches. A value of 0 means to always
658 insert NOPs. */
659 static int mips_optimize = 2;
660
661 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
662 equivalent to seeing no -g option at all. */
663 static int mips_debug = 0;
664
665 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
666 #define MAX_VR4130_NOPS 4
667
668 /* The maximum number of NOPs needed to fill delay slots. */
669 #define MAX_DELAY_NOPS 2
670
671 /* The maximum number of NOPs needed for any purpose. */
672 #define MAX_NOPS 4
673
674 /* A list of previous instructions, with index 0 being the most recent.
675 We need to look back MAX_NOPS instructions when filling delay slots
676 or working around processor errata. We need to look back one
677 instruction further if we're thinking about using history[0] to
678 fill a branch delay slot. */
679 static struct mips_cl_insn history[1 + MAX_NOPS];
680
681 /* Nop instructions used by emit_nop. */
682 static struct mips_cl_insn nop_insn, mips16_nop_insn;
683
684 /* The appropriate nop for the current mode. */
685 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
686
687 /* If this is set, it points to a frag holding nop instructions which
688 were inserted before the start of a noreorder section. If those
689 nops turn out to be unnecessary, the size of the frag can be
690 decreased. */
691 static fragS *prev_nop_frag;
692
693 /* The number of nop instructions we created in prev_nop_frag. */
694 static int prev_nop_frag_holds;
695
696 /* The number of nop instructions that we know we need in
697 prev_nop_frag. */
698 static int prev_nop_frag_required;
699
700 /* The number of instructions we've seen since prev_nop_frag. */
701 static int prev_nop_frag_since;
702
703 /* For ECOFF and ELF, relocations against symbols are done in two
704 parts, with a HI relocation and a LO relocation. Each relocation
705 has only 16 bits of space to store an addend. This means that in
706 order for the linker to handle carries correctly, it must be able
707 to locate both the HI and the LO relocation. This means that the
708 relocations must appear in order in the relocation table.
709
710 In order to implement this, we keep track of each unmatched HI
711 relocation. We then sort them so that they immediately precede the
712 corresponding LO relocation. */
713
714 struct mips_hi_fixup
715 {
716 /* Next HI fixup. */
717 struct mips_hi_fixup *next;
718 /* This fixup. */
719 fixS *fixp;
720 /* The section this fixup is in. */
721 segT seg;
722 };
723
724 /* The list of unmatched HI relocs. */
725
726 static struct mips_hi_fixup *mips_hi_fixup_list;
727
728 /* The frag containing the last explicit relocation operator.
729 Null if explicit relocations have not been used. */
730
731 static fragS *prev_reloc_op_frag;
732
733 /* Map normal MIPS register numbers to mips16 register numbers. */
734
735 #define X ILLEGAL_REG
736 static const int mips32_to_16_reg_map[] =
737 {
738 X, X, 2, 3, 4, 5, 6, 7,
739 X, X, X, X, X, X, X, X,
740 0, 1, X, X, X, X, X, X,
741 X, X, X, X, X, X, X, X
742 };
743 #undef X
744
745 /* Map mips16 register numbers to normal MIPS register numbers. */
746
747 static const unsigned int mips16_to_32_reg_map[] =
748 {
749 16, 17, 2, 3, 4, 5, 6, 7
750 };
751
752 /* Classifies the kind of instructions we're interested in when
753 implementing -mfix-vr4120. */
754 enum fix_vr4120_class
755 {
756 FIX_VR4120_MACC,
757 FIX_VR4120_DMACC,
758 FIX_VR4120_MULT,
759 FIX_VR4120_DMULT,
760 FIX_VR4120_DIV,
761 FIX_VR4120_MTHILO,
762 NUM_FIX_VR4120_CLASSES
763 };
764
765 /* ...likewise -mfix-loongson2f-jump. */
766 static bfd_boolean mips_fix_loongson2f_jump;
767
768 /* ...likewise -mfix-loongson2f-nop. */
769 static bfd_boolean mips_fix_loongson2f_nop;
770
771 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
772 static bfd_boolean mips_fix_loongson2f;
773
774 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
775 there must be at least one other instruction between an instruction
776 of type X and an instruction of type Y. */
777 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
778
779 /* True if -mfix-vr4120 is in force. */
780 static int mips_fix_vr4120;
781
782 /* ...likewise -mfix-vr4130. */
783 static int mips_fix_vr4130;
784
785 /* ...likewise -mfix-24k. */
786 static int mips_fix_24k;
787
788 /* ...likewise -mfix-cn63xxp1 */
789 static bfd_boolean mips_fix_cn63xxp1;
790
791 /* We don't relax branches by default, since this causes us to expand
792 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
793 fail to compute the offset before expanding the macro to the most
794 efficient expansion. */
795
796 static int mips_relax_branch;
797 \f
798 /* The expansion of many macros depends on the type of symbol that
799 they refer to. For example, when generating position-dependent code,
800 a macro that refers to a symbol may have two different expansions,
801 one which uses GP-relative addresses and one which uses absolute
802 addresses. When generating SVR4-style PIC, a macro may have
803 different expansions for local and global symbols.
804
805 We handle these situations by generating both sequences and putting
806 them in variant frags. In position-dependent code, the first sequence
807 will be the GP-relative one and the second sequence will be the
808 absolute one. In SVR4 PIC, the first sequence will be for global
809 symbols and the second will be for local symbols.
810
811 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
812 SECOND are the lengths of the two sequences in bytes. These fields
813 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
814 the subtype has the following flags:
815
816 RELAX_USE_SECOND
817 Set if it has been decided that we should use the second
818 sequence instead of the first.
819
820 RELAX_SECOND_LONGER
821 Set in the first variant frag if the macro's second implementation
822 is longer than its first. This refers to the macro as a whole,
823 not an individual relaxation.
824
825 RELAX_NOMACRO
826 Set in the first variant frag if the macro appeared in a .set nomacro
827 block and if one alternative requires a warning but the other does not.
828
829 RELAX_DELAY_SLOT
830 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
831 delay slot.
832
833 The frag's "opcode" points to the first fixup for relaxable code.
834
835 Relaxable macros are generated using a sequence such as:
836
837 relax_start (SYMBOL);
838 ... generate first expansion ...
839 relax_switch ();
840 ... generate second expansion ...
841 relax_end ();
842
843 The code and fixups for the unwanted alternative are discarded
844 by md_convert_frag. */
845 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
846
847 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
848 #define RELAX_SECOND(X) ((X) & 0xff)
849 #define RELAX_USE_SECOND 0x10000
850 #define RELAX_SECOND_LONGER 0x20000
851 #define RELAX_NOMACRO 0x40000
852 #define RELAX_DELAY_SLOT 0x80000
853
854 /* Branch without likely bit. If label is out of range, we turn:
855
856 beq reg1, reg2, label
857 delay slot
858
859 into
860
861 bne reg1, reg2, 0f
862 nop
863 j label
864 0: delay slot
865
866 with the following opcode replacements:
867
868 beq <-> bne
869 blez <-> bgtz
870 bltz <-> bgez
871 bc1f <-> bc1t
872
873 bltzal <-> bgezal (with jal label instead of j label)
874
875 Even though keeping the delay slot instruction in the delay slot of
876 the branch would be more efficient, it would be very tricky to do
877 correctly, because we'd have to introduce a variable frag *after*
878 the delay slot instruction, and expand that instead. Let's do it
879 the easy way for now, even if the branch-not-taken case now costs
880 one additional instruction. Out-of-range branches are not supposed
881 to be common, anyway.
882
883 Branch likely. If label is out of range, we turn:
884
885 beql reg1, reg2, label
886 delay slot (annulled if branch not taken)
887
888 into
889
890 beql reg1, reg2, 1f
891 nop
892 beql $0, $0, 2f
893 nop
894 1: j[al] label
895 delay slot (executed only if branch taken)
896 2:
897
898 It would be possible to generate a shorter sequence by losing the
899 likely bit, generating something like:
900
901 bne reg1, reg2, 0f
902 nop
903 j[al] label
904 delay slot (executed only if branch taken)
905 0:
906
907 beql -> bne
908 bnel -> beq
909 blezl -> bgtz
910 bgtzl -> blez
911 bltzl -> bgez
912 bgezl -> bltz
913 bc1fl -> bc1t
914 bc1tl -> bc1f
915
916 bltzall -> bgezal (with jal label instead of j label)
917 bgezall -> bltzal (ditto)
918
919
920 but it's not clear that it would actually improve performance. */
921 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
922 ((relax_substateT) \
923 (0xc0000000 \
924 | ((toofar) ? 1 : 0) \
925 | ((link) ? 2 : 0) \
926 | ((likely) ? 4 : 0) \
927 | ((uncond) ? 8 : 0)))
928 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
929 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
930 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
931 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
932 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
933
934 /* For mips16 code, we use an entirely different form of relaxation.
935 mips16 supports two versions of most instructions which take
936 immediate values: a small one which takes some small value, and a
937 larger one which takes a 16 bit value. Since branches also follow
938 this pattern, relaxing these values is required.
939
940 We can assemble both mips16 and normal MIPS code in a single
941 object. Therefore, we need to support this type of relaxation at
942 the same time that we support the relaxation described above. We
943 use the high bit of the subtype field to distinguish these cases.
944
945 The information we store for this type of relaxation is the
946 argument code found in the opcode file for this relocation, whether
947 the user explicitly requested a small or extended form, and whether
948 the relocation is in a jump or jal delay slot. That tells us the
949 size of the value, and how it should be stored. We also store
950 whether the fragment is considered to be extended or not. We also
951 store whether this is known to be a branch to a different section,
952 whether we have tried to relax this frag yet, and whether we have
953 ever extended a PC relative fragment because of a shift count. */
954 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
955 (0x80000000 \
956 | ((type) & 0xff) \
957 | ((small) ? 0x100 : 0) \
958 | ((ext) ? 0x200 : 0) \
959 | ((dslot) ? 0x400 : 0) \
960 | ((jal_dslot) ? 0x800 : 0))
961 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
962 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
963 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
964 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
965 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
966 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
967 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
968 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
969 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
970 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
971 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
972 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
973
974 /* Is the given value a sign-extended 32-bit value? */
975 #define IS_SEXT_32BIT_NUM(x) \
976 (((x) &~ (offsetT) 0x7fffffff) == 0 \
977 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
978
979 /* Is the given value a sign-extended 16-bit value? */
980 #define IS_SEXT_16BIT_NUM(x) \
981 (((x) &~ (offsetT) 0x7fff) == 0 \
982 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
983
984 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
985 #define IS_ZEXT_32BIT_NUM(x) \
986 (((x) &~ (offsetT) 0xffffffff) == 0 \
987 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
988
989 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
990 VALUE << SHIFT. VALUE is evaluated exactly once. */
991 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
992 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
993 | (((VALUE) & (MASK)) << (SHIFT)))
994
995 /* Extract bits MASK << SHIFT from STRUCT and shift them right
996 SHIFT places. */
997 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
998 (((STRUCT) >> (SHIFT)) & (MASK))
999
1000 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1001 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1002
1003 include/opcode/mips.h specifies operand fields using the macros
1004 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1005 with "MIPS16OP" instead of "OP". */
1006 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1007 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1008 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1009 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1010 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1011
1012 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1013 #define EXTRACT_OPERAND(FIELD, INSN) \
1014 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1015 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1016 EXTRACT_BITS ((INSN).insn_opcode, \
1017 MIPS16OP_MASK_##FIELD, \
1018 MIPS16OP_SH_##FIELD)
1019 \f
1020 /* Global variables used when generating relaxable macros. See the
1021 comment above RELAX_ENCODE for more details about how relaxation
1022 is used. */
1023 static struct {
1024 /* 0 if we're not emitting a relaxable macro.
1025 1 if we're emitting the first of the two relaxation alternatives.
1026 2 if we're emitting the second alternative. */
1027 int sequence;
1028
1029 /* The first relaxable fixup in the current frag. (In other words,
1030 the first fixup that refers to relaxable code.) */
1031 fixS *first_fixup;
1032
1033 /* sizes[0] says how many bytes of the first alternative are stored in
1034 the current frag. Likewise sizes[1] for the second alternative. */
1035 unsigned int sizes[2];
1036
1037 /* The symbol on which the choice of sequence depends. */
1038 symbolS *symbol;
1039 } mips_relax;
1040 \f
1041 /* Global variables used to decide whether a macro needs a warning. */
1042 static struct {
1043 /* True if the macro is in a branch delay slot. */
1044 bfd_boolean delay_slot_p;
1045
1046 /* For relaxable macros, sizes[0] is the length of the first alternative
1047 in bytes and sizes[1] is the length of the second alternative.
1048 For non-relaxable macros, both elements give the length of the
1049 macro in bytes. */
1050 unsigned int sizes[2];
1051
1052 /* The first variant frag for this macro. */
1053 fragS *first_frag;
1054 } mips_macro_warning;
1055 \f
1056 /* Prototypes for static functions. */
1057
1058 #define internalError() \
1059 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1060
1061 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1062
1063 static void append_insn
1064 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1065 static void mips_no_prev_insn (void);
1066 static void macro_build (expressionS *, const char *, const char *, ...);
1067 static void mips16_macro_build
1068 (expressionS *, const char *, const char *, va_list *);
1069 static void load_register (int, expressionS *, int);
1070 static void macro_start (void);
1071 static void macro_end (void);
1072 static void macro (struct mips_cl_insn * ip);
1073 static void mips16_macro (struct mips_cl_insn * ip);
1074 static void mips_ip (char *str, struct mips_cl_insn * ip);
1075 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1076 static void mips16_immed
1077 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1078 unsigned long *, bfd_boolean *, unsigned short *);
1079 static size_t my_getSmallExpression
1080 (expressionS *, bfd_reloc_code_real_type *, char *);
1081 static void my_getExpression (expressionS *, char *);
1082 static void s_align (int);
1083 static void s_change_sec (int);
1084 static void s_change_section (int);
1085 static void s_cons (int);
1086 static void s_float_cons (int);
1087 static void s_mips_globl (int);
1088 static void s_option (int);
1089 static void s_mipsset (int);
1090 static void s_abicalls (int);
1091 static void s_cpload (int);
1092 static void s_cpsetup (int);
1093 static void s_cplocal (int);
1094 static void s_cprestore (int);
1095 static void s_cpreturn (int);
1096 static void s_dtprelword (int);
1097 static void s_dtpreldword (int);
1098 static void s_gpvalue (int);
1099 static void s_gpword (int);
1100 static void s_gpdword (int);
1101 static void s_cpadd (int);
1102 static void s_insn (int);
1103 static void md_obj_begin (void);
1104 static void md_obj_end (void);
1105 static void s_mips_ent (int);
1106 static void s_mips_end (int);
1107 static void s_mips_frame (int);
1108 static void s_mips_mask (int reg_type);
1109 static void s_mips_stab (int);
1110 static void s_mips_weakext (int);
1111 static void s_mips_file (int);
1112 static void s_mips_loc (int);
1113 static bfd_boolean pic_need_relax (symbolS *, asection *);
1114 static int relaxed_branch_length (fragS *, asection *, int);
1115 static int validate_mips_insn (const struct mips_opcode *);
1116
1117 /* Table and functions used to map between CPU/ISA names, and
1118 ISA levels, and CPU numbers. */
1119
1120 struct mips_cpu_info
1121 {
1122 const char *name; /* CPU or ISA name. */
1123 int flags; /* ASEs available, or ISA flag. */
1124 int isa; /* ISA level. */
1125 int cpu; /* CPU number (default CPU if ISA). */
1126 };
1127
1128 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1129 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1130 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1131 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1132 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1133 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1134 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1135
1136 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1137 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1138 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1139 \f
1140 /* Pseudo-op table.
1141
1142 The following pseudo-ops from the Kane and Heinrich MIPS book
1143 should be defined here, but are currently unsupported: .alias,
1144 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1145
1146 The following pseudo-ops from the Kane and Heinrich MIPS book are
1147 specific to the type of debugging information being generated, and
1148 should be defined by the object format: .aent, .begin, .bend,
1149 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1150 .vreg.
1151
1152 The following pseudo-ops from the Kane and Heinrich MIPS book are
1153 not MIPS CPU specific, but are also not specific to the object file
1154 format. This file is probably the best place to define them, but
1155 they are not currently supported: .asm0, .endr, .lab, .struct. */
1156
1157 static const pseudo_typeS mips_pseudo_table[] =
1158 {
1159 /* MIPS specific pseudo-ops. */
1160 {"option", s_option, 0},
1161 {"set", s_mipsset, 0},
1162 {"rdata", s_change_sec, 'r'},
1163 {"sdata", s_change_sec, 's'},
1164 {"livereg", s_ignore, 0},
1165 {"abicalls", s_abicalls, 0},
1166 {"cpload", s_cpload, 0},
1167 {"cpsetup", s_cpsetup, 0},
1168 {"cplocal", s_cplocal, 0},
1169 {"cprestore", s_cprestore, 0},
1170 {"cpreturn", s_cpreturn, 0},
1171 {"dtprelword", s_dtprelword, 0},
1172 {"dtpreldword", s_dtpreldword, 0},
1173 {"gpvalue", s_gpvalue, 0},
1174 {"gpword", s_gpword, 0},
1175 {"gpdword", s_gpdword, 0},
1176 {"cpadd", s_cpadd, 0},
1177 {"insn", s_insn, 0},
1178
1179 /* Relatively generic pseudo-ops that happen to be used on MIPS
1180 chips. */
1181 {"asciiz", stringer, 8 + 1},
1182 {"bss", s_change_sec, 'b'},
1183 {"err", s_err, 0},
1184 {"half", s_cons, 1},
1185 {"dword", s_cons, 3},
1186 {"weakext", s_mips_weakext, 0},
1187 {"origin", s_org, 0},
1188 {"repeat", s_rept, 0},
1189
1190 /* For MIPS this is non-standard, but we define it for consistency. */
1191 {"sbss", s_change_sec, 'B'},
1192
1193 /* These pseudo-ops are defined in read.c, but must be overridden
1194 here for one reason or another. */
1195 {"align", s_align, 0},
1196 {"byte", s_cons, 0},
1197 {"data", s_change_sec, 'd'},
1198 {"double", s_float_cons, 'd'},
1199 {"float", s_float_cons, 'f'},
1200 {"globl", s_mips_globl, 0},
1201 {"global", s_mips_globl, 0},
1202 {"hword", s_cons, 1},
1203 {"int", s_cons, 2},
1204 {"long", s_cons, 2},
1205 {"octa", s_cons, 4},
1206 {"quad", s_cons, 3},
1207 {"section", s_change_section, 0},
1208 {"short", s_cons, 1},
1209 {"single", s_float_cons, 'f'},
1210 {"stabn", s_mips_stab, 'n'},
1211 {"text", s_change_sec, 't'},
1212 {"word", s_cons, 2},
1213
1214 { "extern", ecoff_directive_extern, 0},
1215
1216 { NULL, NULL, 0 },
1217 };
1218
1219 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1220 {
1221 /* These pseudo-ops should be defined by the object file format.
1222 However, a.out doesn't support them, so we have versions here. */
1223 {"aent", s_mips_ent, 1},
1224 {"bgnb", s_ignore, 0},
1225 {"end", s_mips_end, 0},
1226 {"endb", s_ignore, 0},
1227 {"ent", s_mips_ent, 0},
1228 {"file", s_mips_file, 0},
1229 {"fmask", s_mips_mask, 'F'},
1230 {"frame", s_mips_frame, 0},
1231 {"loc", s_mips_loc, 0},
1232 {"mask", s_mips_mask, 'R'},
1233 {"verstamp", s_ignore, 0},
1234 { NULL, NULL, 0 },
1235 };
1236
1237 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1238 purpose of the `.dc.a' internal pseudo-op. */
1239
1240 int
1241 mips_address_bytes (void)
1242 {
1243 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1244 }
1245
1246 extern void pop_insert (const pseudo_typeS *);
1247
1248 void
1249 mips_pop_insert (void)
1250 {
1251 pop_insert (mips_pseudo_table);
1252 if (! ECOFF_DEBUGGING)
1253 pop_insert (mips_nonecoff_pseudo_table);
1254 }
1255 \f
1256 /* Symbols labelling the current insn. */
1257
1258 struct insn_label_list
1259 {
1260 struct insn_label_list *next;
1261 symbolS *label;
1262 };
1263
1264 static struct insn_label_list *free_insn_labels;
1265 #define label_list tc_segment_info_data.labels
1266
1267 static void mips_clear_insn_labels (void);
1268
1269 static inline void
1270 mips_clear_insn_labels (void)
1271 {
1272 register struct insn_label_list **pl;
1273 segment_info_type *si;
1274
1275 if (now_seg)
1276 {
1277 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1278 ;
1279
1280 si = seg_info (now_seg);
1281 *pl = si->label_list;
1282 si->label_list = NULL;
1283 }
1284 }
1285
1286 \f
1287 static char *expr_end;
1288
1289 /* Expressions which appear in instructions. These are set by
1290 mips_ip. */
1291
1292 static expressionS imm_expr;
1293 static expressionS imm2_expr;
1294 static expressionS offset_expr;
1295
1296 /* Relocs associated with imm_expr and offset_expr. */
1297
1298 static bfd_reloc_code_real_type imm_reloc[3]
1299 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1300 static bfd_reloc_code_real_type offset_reloc[3]
1301 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1302
1303 /* These are set by mips16_ip if an explicit extension is used. */
1304
1305 static bfd_boolean mips16_small, mips16_ext;
1306
1307 #ifdef OBJ_ELF
1308 /* The pdr segment for per procedure frame/regmask info. Not used for
1309 ECOFF debugging. */
1310
1311 static segT pdr_seg;
1312 #endif
1313
1314 /* The default target format to use. */
1315
1316 #if defined (TE_FreeBSD)
1317 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1318 #elif defined (TE_TMIPS)
1319 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1320 #else
1321 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1322 #endif
1323
1324 const char *
1325 mips_target_format (void)
1326 {
1327 switch (OUTPUT_FLAVOR)
1328 {
1329 case bfd_target_ecoff_flavour:
1330 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1331 case bfd_target_coff_flavour:
1332 return "pe-mips";
1333 case bfd_target_elf_flavour:
1334 #ifdef TE_VXWORKS
1335 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1336 return (target_big_endian
1337 ? "elf32-bigmips-vxworks"
1338 : "elf32-littlemips-vxworks");
1339 #endif
1340 return (target_big_endian
1341 ? (HAVE_64BIT_OBJECTS
1342 ? ELF_TARGET ("elf64-", "big")
1343 : (HAVE_NEWABI
1344 ? ELF_TARGET ("elf32-n", "big")
1345 : ELF_TARGET ("elf32-", "big")))
1346 : (HAVE_64BIT_OBJECTS
1347 ? ELF_TARGET ("elf64-", "little")
1348 : (HAVE_NEWABI
1349 ? ELF_TARGET ("elf32-n", "little")
1350 : ELF_TARGET ("elf32-", "little"))));
1351 default:
1352 abort ();
1353 return NULL;
1354 }
1355 }
1356
1357 /* Return the length of instruction INSN. */
1358
1359 static inline unsigned int
1360 insn_length (const struct mips_cl_insn *insn)
1361 {
1362 if (!mips_opts.mips16)
1363 return 4;
1364 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1365 }
1366
1367 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1368
1369 static void
1370 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1371 {
1372 size_t i;
1373
1374 insn->insn_mo = mo;
1375 insn->use_extend = FALSE;
1376 insn->extend = 0;
1377 insn->insn_opcode = mo->match;
1378 insn->frag = NULL;
1379 insn->where = 0;
1380 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1381 insn->fixp[i] = NULL;
1382 insn->fixed_p = (mips_opts.noreorder > 0);
1383 insn->noreorder_p = (mips_opts.noreorder > 0);
1384 insn->mips16_absolute_jump_p = 0;
1385 }
1386
1387 /* Record the current MIPS16 mode in now_seg. */
1388
1389 static void
1390 mips_record_mips16_mode (void)
1391 {
1392 segment_info_type *si;
1393
1394 si = seg_info (now_seg);
1395 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1396 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1397 }
1398
1399 /* Install INSN at the location specified by its "frag" and "where" fields. */
1400
1401 static void
1402 install_insn (const struct mips_cl_insn *insn)
1403 {
1404 char *f = insn->frag->fr_literal + insn->where;
1405 if (!mips_opts.mips16)
1406 md_number_to_chars (f, insn->insn_opcode, 4);
1407 else if (insn->mips16_absolute_jump_p)
1408 {
1409 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1410 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1411 }
1412 else
1413 {
1414 if (insn->use_extend)
1415 {
1416 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1417 f += 2;
1418 }
1419 md_number_to_chars (f, insn->insn_opcode, 2);
1420 }
1421 mips_record_mips16_mode ();
1422 }
1423
1424 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1425 and install the opcode in the new location. */
1426
1427 static void
1428 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1429 {
1430 size_t i;
1431
1432 insn->frag = frag;
1433 insn->where = where;
1434 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1435 if (insn->fixp[i] != NULL)
1436 {
1437 insn->fixp[i]->fx_frag = frag;
1438 insn->fixp[i]->fx_where = where;
1439 }
1440 install_insn (insn);
1441 }
1442
1443 /* Add INSN to the end of the output. */
1444
1445 static void
1446 add_fixed_insn (struct mips_cl_insn *insn)
1447 {
1448 char *f = frag_more (insn_length (insn));
1449 move_insn (insn, frag_now, f - frag_now->fr_literal);
1450 }
1451
1452 /* Start a variant frag and move INSN to the start of the variant part,
1453 marking it as fixed. The other arguments are as for frag_var. */
1454
1455 static void
1456 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1457 relax_substateT subtype, symbolS *symbol, offsetT offset)
1458 {
1459 frag_grow (max_chars);
1460 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1461 insn->fixed_p = 1;
1462 frag_var (rs_machine_dependent, max_chars, var,
1463 subtype, symbol, offset, NULL);
1464 }
1465
1466 /* Insert N copies of INSN into the history buffer, starting at
1467 position FIRST. Neither FIRST nor N need to be clipped. */
1468
1469 static void
1470 insert_into_history (unsigned int first, unsigned int n,
1471 const struct mips_cl_insn *insn)
1472 {
1473 if (mips_relax.sequence != 2)
1474 {
1475 unsigned int i;
1476
1477 for (i = ARRAY_SIZE (history); i-- > first;)
1478 if (i >= first + n)
1479 history[i] = history[i - n];
1480 else
1481 history[i] = *insn;
1482 }
1483 }
1484
1485 /* Emit a nop instruction, recording it in the history buffer. */
1486
1487 static void
1488 emit_nop (void)
1489 {
1490 add_fixed_insn (NOP_INSN);
1491 insert_into_history (0, 1, NOP_INSN);
1492 }
1493
1494 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1495 the idea is to make it obvious at a glance that each errata is
1496 included. */
1497
1498 static void
1499 init_vr4120_conflicts (void)
1500 {
1501 #define CONFLICT(FIRST, SECOND) \
1502 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1503
1504 /* Errata 21 - [D]DIV[U] after [D]MACC */
1505 CONFLICT (MACC, DIV);
1506 CONFLICT (DMACC, DIV);
1507
1508 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1509 CONFLICT (DMULT, DMULT);
1510 CONFLICT (DMULT, DMACC);
1511 CONFLICT (DMACC, DMULT);
1512 CONFLICT (DMACC, DMACC);
1513
1514 /* Errata 24 - MT{LO,HI} after [D]MACC */
1515 CONFLICT (MACC, MTHILO);
1516 CONFLICT (DMACC, MTHILO);
1517
1518 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1519 instruction is executed immediately after a MACC or DMACC
1520 instruction, the result of [either instruction] is incorrect." */
1521 CONFLICT (MACC, MULT);
1522 CONFLICT (MACC, DMULT);
1523 CONFLICT (DMACC, MULT);
1524 CONFLICT (DMACC, DMULT);
1525
1526 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1527 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1528 DDIV or DDIVU instruction, the result of the MACC or
1529 DMACC instruction is incorrect.". */
1530 CONFLICT (DMULT, MACC);
1531 CONFLICT (DMULT, DMACC);
1532 CONFLICT (DIV, MACC);
1533 CONFLICT (DIV, DMACC);
1534
1535 #undef CONFLICT
1536 }
1537
1538 struct regname {
1539 const char *name;
1540 unsigned int num;
1541 };
1542
1543 #define RTYPE_MASK 0x1ff00
1544 #define RTYPE_NUM 0x00100
1545 #define RTYPE_FPU 0x00200
1546 #define RTYPE_FCC 0x00400
1547 #define RTYPE_VEC 0x00800
1548 #define RTYPE_GP 0x01000
1549 #define RTYPE_CP0 0x02000
1550 #define RTYPE_PC 0x04000
1551 #define RTYPE_ACC 0x08000
1552 #define RTYPE_CCC 0x10000
1553 #define RNUM_MASK 0x000ff
1554 #define RWARN 0x80000
1555
1556 #define GENERIC_REGISTER_NUMBERS \
1557 {"$0", RTYPE_NUM | 0}, \
1558 {"$1", RTYPE_NUM | 1}, \
1559 {"$2", RTYPE_NUM | 2}, \
1560 {"$3", RTYPE_NUM | 3}, \
1561 {"$4", RTYPE_NUM | 4}, \
1562 {"$5", RTYPE_NUM | 5}, \
1563 {"$6", RTYPE_NUM | 6}, \
1564 {"$7", RTYPE_NUM | 7}, \
1565 {"$8", RTYPE_NUM | 8}, \
1566 {"$9", RTYPE_NUM | 9}, \
1567 {"$10", RTYPE_NUM | 10}, \
1568 {"$11", RTYPE_NUM | 11}, \
1569 {"$12", RTYPE_NUM | 12}, \
1570 {"$13", RTYPE_NUM | 13}, \
1571 {"$14", RTYPE_NUM | 14}, \
1572 {"$15", RTYPE_NUM | 15}, \
1573 {"$16", RTYPE_NUM | 16}, \
1574 {"$17", RTYPE_NUM | 17}, \
1575 {"$18", RTYPE_NUM | 18}, \
1576 {"$19", RTYPE_NUM | 19}, \
1577 {"$20", RTYPE_NUM | 20}, \
1578 {"$21", RTYPE_NUM | 21}, \
1579 {"$22", RTYPE_NUM | 22}, \
1580 {"$23", RTYPE_NUM | 23}, \
1581 {"$24", RTYPE_NUM | 24}, \
1582 {"$25", RTYPE_NUM | 25}, \
1583 {"$26", RTYPE_NUM | 26}, \
1584 {"$27", RTYPE_NUM | 27}, \
1585 {"$28", RTYPE_NUM | 28}, \
1586 {"$29", RTYPE_NUM | 29}, \
1587 {"$30", RTYPE_NUM | 30}, \
1588 {"$31", RTYPE_NUM | 31}
1589
1590 #define FPU_REGISTER_NAMES \
1591 {"$f0", RTYPE_FPU | 0}, \
1592 {"$f1", RTYPE_FPU | 1}, \
1593 {"$f2", RTYPE_FPU | 2}, \
1594 {"$f3", RTYPE_FPU | 3}, \
1595 {"$f4", RTYPE_FPU | 4}, \
1596 {"$f5", RTYPE_FPU | 5}, \
1597 {"$f6", RTYPE_FPU | 6}, \
1598 {"$f7", RTYPE_FPU | 7}, \
1599 {"$f8", RTYPE_FPU | 8}, \
1600 {"$f9", RTYPE_FPU | 9}, \
1601 {"$f10", RTYPE_FPU | 10}, \
1602 {"$f11", RTYPE_FPU | 11}, \
1603 {"$f12", RTYPE_FPU | 12}, \
1604 {"$f13", RTYPE_FPU | 13}, \
1605 {"$f14", RTYPE_FPU | 14}, \
1606 {"$f15", RTYPE_FPU | 15}, \
1607 {"$f16", RTYPE_FPU | 16}, \
1608 {"$f17", RTYPE_FPU | 17}, \
1609 {"$f18", RTYPE_FPU | 18}, \
1610 {"$f19", RTYPE_FPU | 19}, \
1611 {"$f20", RTYPE_FPU | 20}, \
1612 {"$f21", RTYPE_FPU | 21}, \
1613 {"$f22", RTYPE_FPU | 22}, \
1614 {"$f23", RTYPE_FPU | 23}, \
1615 {"$f24", RTYPE_FPU | 24}, \
1616 {"$f25", RTYPE_FPU | 25}, \
1617 {"$f26", RTYPE_FPU | 26}, \
1618 {"$f27", RTYPE_FPU | 27}, \
1619 {"$f28", RTYPE_FPU | 28}, \
1620 {"$f29", RTYPE_FPU | 29}, \
1621 {"$f30", RTYPE_FPU | 30}, \
1622 {"$f31", RTYPE_FPU | 31}
1623
1624 #define FPU_CONDITION_CODE_NAMES \
1625 {"$fcc0", RTYPE_FCC | 0}, \
1626 {"$fcc1", RTYPE_FCC | 1}, \
1627 {"$fcc2", RTYPE_FCC | 2}, \
1628 {"$fcc3", RTYPE_FCC | 3}, \
1629 {"$fcc4", RTYPE_FCC | 4}, \
1630 {"$fcc5", RTYPE_FCC | 5}, \
1631 {"$fcc6", RTYPE_FCC | 6}, \
1632 {"$fcc7", RTYPE_FCC | 7}
1633
1634 #define COPROC_CONDITION_CODE_NAMES \
1635 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1636 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1637 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1638 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1639 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1640 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1641 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1642 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1643
1644 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1645 {"$a4", RTYPE_GP | 8}, \
1646 {"$a5", RTYPE_GP | 9}, \
1647 {"$a6", RTYPE_GP | 10}, \
1648 {"$a7", RTYPE_GP | 11}, \
1649 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1650 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1651 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1652 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1653 {"$t0", RTYPE_GP | 12}, \
1654 {"$t1", RTYPE_GP | 13}, \
1655 {"$t2", RTYPE_GP | 14}, \
1656 {"$t3", RTYPE_GP | 15}
1657
1658 #define O32_SYMBOLIC_REGISTER_NAMES \
1659 {"$t0", RTYPE_GP | 8}, \
1660 {"$t1", RTYPE_GP | 9}, \
1661 {"$t2", RTYPE_GP | 10}, \
1662 {"$t3", RTYPE_GP | 11}, \
1663 {"$t4", RTYPE_GP | 12}, \
1664 {"$t5", RTYPE_GP | 13}, \
1665 {"$t6", RTYPE_GP | 14}, \
1666 {"$t7", RTYPE_GP | 15}, \
1667 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1668 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1669 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1670 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1671
1672 /* Remaining symbolic register names */
1673 #define SYMBOLIC_REGISTER_NAMES \
1674 {"$zero", RTYPE_GP | 0}, \
1675 {"$at", RTYPE_GP | 1}, \
1676 {"$AT", RTYPE_GP | 1}, \
1677 {"$v0", RTYPE_GP | 2}, \
1678 {"$v1", RTYPE_GP | 3}, \
1679 {"$a0", RTYPE_GP | 4}, \
1680 {"$a1", RTYPE_GP | 5}, \
1681 {"$a2", RTYPE_GP | 6}, \
1682 {"$a3", RTYPE_GP | 7}, \
1683 {"$s0", RTYPE_GP | 16}, \
1684 {"$s1", RTYPE_GP | 17}, \
1685 {"$s2", RTYPE_GP | 18}, \
1686 {"$s3", RTYPE_GP | 19}, \
1687 {"$s4", RTYPE_GP | 20}, \
1688 {"$s5", RTYPE_GP | 21}, \
1689 {"$s6", RTYPE_GP | 22}, \
1690 {"$s7", RTYPE_GP | 23}, \
1691 {"$t8", RTYPE_GP | 24}, \
1692 {"$t9", RTYPE_GP | 25}, \
1693 {"$k0", RTYPE_GP | 26}, \
1694 {"$kt0", RTYPE_GP | 26}, \
1695 {"$k1", RTYPE_GP | 27}, \
1696 {"$kt1", RTYPE_GP | 27}, \
1697 {"$gp", RTYPE_GP | 28}, \
1698 {"$sp", RTYPE_GP | 29}, \
1699 {"$s8", RTYPE_GP | 30}, \
1700 {"$fp", RTYPE_GP | 30}, \
1701 {"$ra", RTYPE_GP | 31}
1702
1703 #define MIPS16_SPECIAL_REGISTER_NAMES \
1704 {"$pc", RTYPE_PC | 0}
1705
1706 #define MDMX_VECTOR_REGISTER_NAMES \
1707 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1708 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1709 {"$v2", RTYPE_VEC | 2}, \
1710 {"$v3", RTYPE_VEC | 3}, \
1711 {"$v4", RTYPE_VEC | 4}, \
1712 {"$v5", RTYPE_VEC | 5}, \
1713 {"$v6", RTYPE_VEC | 6}, \
1714 {"$v7", RTYPE_VEC | 7}, \
1715 {"$v8", RTYPE_VEC | 8}, \
1716 {"$v9", RTYPE_VEC | 9}, \
1717 {"$v10", RTYPE_VEC | 10}, \
1718 {"$v11", RTYPE_VEC | 11}, \
1719 {"$v12", RTYPE_VEC | 12}, \
1720 {"$v13", RTYPE_VEC | 13}, \
1721 {"$v14", RTYPE_VEC | 14}, \
1722 {"$v15", RTYPE_VEC | 15}, \
1723 {"$v16", RTYPE_VEC | 16}, \
1724 {"$v17", RTYPE_VEC | 17}, \
1725 {"$v18", RTYPE_VEC | 18}, \
1726 {"$v19", RTYPE_VEC | 19}, \
1727 {"$v20", RTYPE_VEC | 20}, \
1728 {"$v21", RTYPE_VEC | 21}, \
1729 {"$v22", RTYPE_VEC | 22}, \
1730 {"$v23", RTYPE_VEC | 23}, \
1731 {"$v24", RTYPE_VEC | 24}, \
1732 {"$v25", RTYPE_VEC | 25}, \
1733 {"$v26", RTYPE_VEC | 26}, \
1734 {"$v27", RTYPE_VEC | 27}, \
1735 {"$v28", RTYPE_VEC | 28}, \
1736 {"$v29", RTYPE_VEC | 29}, \
1737 {"$v30", RTYPE_VEC | 30}, \
1738 {"$v31", RTYPE_VEC | 31}
1739
1740 #define MIPS_DSP_ACCUMULATOR_NAMES \
1741 {"$ac0", RTYPE_ACC | 0}, \
1742 {"$ac1", RTYPE_ACC | 1}, \
1743 {"$ac2", RTYPE_ACC | 2}, \
1744 {"$ac3", RTYPE_ACC | 3}
1745
1746 static const struct regname reg_names[] = {
1747 GENERIC_REGISTER_NUMBERS,
1748 FPU_REGISTER_NAMES,
1749 FPU_CONDITION_CODE_NAMES,
1750 COPROC_CONDITION_CODE_NAMES,
1751
1752 /* The $txx registers depends on the abi,
1753 these will be added later into the symbol table from
1754 one of the tables below once mips_abi is set after
1755 parsing of arguments from the command line. */
1756 SYMBOLIC_REGISTER_NAMES,
1757
1758 MIPS16_SPECIAL_REGISTER_NAMES,
1759 MDMX_VECTOR_REGISTER_NAMES,
1760 MIPS_DSP_ACCUMULATOR_NAMES,
1761 {0, 0}
1762 };
1763
1764 static const struct regname reg_names_o32[] = {
1765 O32_SYMBOLIC_REGISTER_NAMES,
1766 {0, 0}
1767 };
1768
1769 static const struct regname reg_names_n32n64[] = {
1770 N32N64_SYMBOLIC_REGISTER_NAMES,
1771 {0, 0}
1772 };
1773
1774 static int
1775 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1776 {
1777 symbolS *symbolP;
1778 char *e;
1779 char save_c;
1780 int reg = -1;
1781
1782 /* Find end of name. */
1783 e = *s;
1784 if (is_name_beginner (*e))
1785 ++e;
1786 while (is_part_of_name (*e))
1787 ++e;
1788
1789 /* Terminate name. */
1790 save_c = *e;
1791 *e = '\0';
1792
1793 /* Look for a register symbol. */
1794 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1795 {
1796 int r = S_GET_VALUE (symbolP);
1797 if (r & types)
1798 reg = r & RNUM_MASK;
1799 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1800 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1801 reg = (r & RNUM_MASK) - 2;
1802 }
1803 /* Else see if this is a register defined in an itbl entry. */
1804 else if ((types & RTYPE_GP) && itbl_have_entries)
1805 {
1806 char *n = *s;
1807 unsigned long r;
1808
1809 if (*n == '$')
1810 ++n;
1811 if (itbl_get_reg_val (n, &r))
1812 reg = r & RNUM_MASK;
1813 }
1814
1815 /* Advance to next token if a register was recognised. */
1816 if (reg >= 0)
1817 *s = e;
1818 else if (types & RWARN)
1819 as_warn (_("Unrecognized register name `%s'"), *s);
1820
1821 *e = save_c;
1822 if (regnop)
1823 *regnop = reg;
1824 return reg >= 0;
1825 }
1826
1827 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1828 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1829
1830 static bfd_boolean
1831 is_opcode_valid (const struct mips_opcode *mo)
1832 {
1833 int isa = mips_opts.isa;
1834 int fp_s, fp_d;
1835
1836 if (mips_opts.ase_mdmx)
1837 isa |= INSN_MDMX;
1838 if (mips_opts.ase_dsp)
1839 isa |= INSN_DSP;
1840 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1841 isa |= INSN_DSP64;
1842 if (mips_opts.ase_dspr2)
1843 isa |= INSN_DSPR2;
1844 if (mips_opts.ase_mt)
1845 isa |= INSN_MT;
1846 if (mips_opts.ase_mips3d)
1847 isa |= INSN_MIPS3D;
1848 if (mips_opts.ase_smartmips)
1849 isa |= INSN_SMARTMIPS;
1850
1851 /* Don't accept instructions based on the ISA if the CPU does not implement
1852 all the coprocessor insns. */
1853 if (NO_ISA_COP (mips_opts.arch)
1854 && COP_INSN (mo->pinfo))
1855 isa = 0;
1856
1857 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1858 return FALSE;
1859
1860 /* Check whether the instruction or macro requires single-precision or
1861 double-precision floating-point support. Note that this information is
1862 stored differently in the opcode table for insns and macros. */
1863 if (mo->pinfo == INSN_MACRO)
1864 {
1865 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1866 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1867 }
1868 else
1869 {
1870 fp_s = mo->pinfo & FP_S;
1871 fp_d = mo->pinfo & FP_D;
1872 }
1873
1874 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1875 return FALSE;
1876
1877 if (fp_s && mips_opts.soft_float)
1878 return FALSE;
1879
1880 return TRUE;
1881 }
1882
1883 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1884 selected ISA and architecture. */
1885
1886 static bfd_boolean
1887 is_opcode_valid_16 (const struct mips_opcode *mo)
1888 {
1889 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1890 }
1891
1892 /* This function is called once, at assembler startup time. It should set up
1893 all the tables, etc. that the MD part of the assembler will need. */
1894
1895 void
1896 md_begin (void)
1897 {
1898 const char *retval = NULL;
1899 int i = 0;
1900 int broken = 0;
1901
1902 if (mips_pic != NO_PIC)
1903 {
1904 if (g_switch_seen && g_switch_value != 0)
1905 as_bad (_("-G may not be used in position-independent code"));
1906 g_switch_value = 0;
1907 }
1908
1909 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1910 as_warn (_("Could not set architecture and machine"));
1911
1912 op_hash = hash_new ();
1913
1914 for (i = 0; i < NUMOPCODES;)
1915 {
1916 const char *name = mips_opcodes[i].name;
1917
1918 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1919 if (retval != NULL)
1920 {
1921 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1922 mips_opcodes[i].name, retval);
1923 /* Probably a memory allocation problem? Give up now. */
1924 as_fatal (_("Broken assembler. No assembly attempted."));
1925 }
1926 do
1927 {
1928 if (mips_opcodes[i].pinfo != INSN_MACRO)
1929 {
1930 if (!validate_mips_insn (&mips_opcodes[i]))
1931 broken = 1;
1932 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1933 {
1934 create_insn (&nop_insn, mips_opcodes + i);
1935 if (mips_fix_loongson2f_nop)
1936 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1937 nop_insn.fixed_p = 1;
1938 }
1939 }
1940 ++i;
1941 }
1942 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1943 }
1944
1945 mips16_op_hash = hash_new ();
1946
1947 i = 0;
1948 while (i < bfd_mips16_num_opcodes)
1949 {
1950 const char *name = mips16_opcodes[i].name;
1951
1952 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1953 if (retval != NULL)
1954 as_fatal (_("internal: can't hash `%s': %s"),
1955 mips16_opcodes[i].name, retval);
1956 do
1957 {
1958 if (mips16_opcodes[i].pinfo != INSN_MACRO
1959 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1960 != mips16_opcodes[i].match))
1961 {
1962 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1963 mips16_opcodes[i].name, mips16_opcodes[i].args);
1964 broken = 1;
1965 }
1966 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1967 {
1968 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1969 mips16_nop_insn.fixed_p = 1;
1970 }
1971 ++i;
1972 }
1973 while (i < bfd_mips16_num_opcodes
1974 && strcmp (mips16_opcodes[i].name, name) == 0);
1975 }
1976
1977 if (broken)
1978 as_fatal (_("Broken assembler. No assembly attempted."));
1979
1980 /* We add all the general register names to the symbol table. This
1981 helps us detect invalid uses of them. */
1982 for (i = 0; reg_names[i].name; i++)
1983 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1984 reg_names[i].num, /* & RNUM_MASK, */
1985 &zero_address_frag));
1986 if (HAVE_NEWABI)
1987 for (i = 0; reg_names_n32n64[i].name; i++)
1988 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1989 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1990 &zero_address_frag));
1991 else
1992 for (i = 0; reg_names_o32[i].name; i++)
1993 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1994 reg_names_o32[i].num, /* & RNUM_MASK, */
1995 &zero_address_frag));
1996
1997 mips_no_prev_insn ();
1998
1999 mips_gprmask = 0;
2000 mips_cprmask[0] = 0;
2001 mips_cprmask[1] = 0;
2002 mips_cprmask[2] = 0;
2003 mips_cprmask[3] = 0;
2004
2005 /* set the default alignment for the text section (2**2) */
2006 record_alignment (text_section, 2);
2007
2008 bfd_set_gp_size (stdoutput, g_switch_value);
2009
2010 #ifdef OBJ_ELF
2011 if (IS_ELF)
2012 {
2013 /* On a native system other than VxWorks, sections must be aligned
2014 to 16 byte boundaries. When configured for an embedded ELF
2015 target, we don't bother. */
2016 if (strncmp (TARGET_OS, "elf", 3) != 0
2017 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2018 {
2019 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2020 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2021 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2022 }
2023
2024 /* Create a .reginfo section for register masks and a .mdebug
2025 section for debugging information. */
2026 {
2027 segT seg;
2028 subsegT subseg;
2029 flagword flags;
2030 segT sec;
2031
2032 seg = now_seg;
2033 subseg = now_subseg;
2034
2035 /* The ABI says this section should be loaded so that the
2036 running program can access it. However, we don't load it
2037 if we are configured for an embedded target */
2038 flags = SEC_READONLY | SEC_DATA;
2039 if (strncmp (TARGET_OS, "elf", 3) != 0)
2040 flags |= SEC_ALLOC | SEC_LOAD;
2041
2042 if (mips_abi != N64_ABI)
2043 {
2044 sec = subseg_new (".reginfo", (subsegT) 0);
2045
2046 bfd_set_section_flags (stdoutput, sec, flags);
2047 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2048
2049 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2050 }
2051 else
2052 {
2053 /* The 64-bit ABI uses a .MIPS.options section rather than
2054 .reginfo section. */
2055 sec = subseg_new (".MIPS.options", (subsegT) 0);
2056 bfd_set_section_flags (stdoutput, sec, flags);
2057 bfd_set_section_alignment (stdoutput, sec, 3);
2058
2059 /* Set up the option header. */
2060 {
2061 Elf_Internal_Options opthdr;
2062 char *f;
2063
2064 opthdr.kind = ODK_REGINFO;
2065 opthdr.size = (sizeof (Elf_External_Options)
2066 + sizeof (Elf64_External_RegInfo));
2067 opthdr.section = 0;
2068 opthdr.info = 0;
2069 f = frag_more (sizeof (Elf_External_Options));
2070 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2071 (Elf_External_Options *) f);
2072
2073 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2074 }
2075 }
2076
2077 if (ECOFF_DEBUGGING)
2078 {
2079 sec = subseg_new (".mdebug", (subsegT) 0);
2080 (void) bfd_set_section_flags (stdoutput, sec,
2081 SEC_HAS_CONTENTS | SEC_READONLY);
2082 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2083 }
2084 else if (mips_flag_pdr)
2085 {
2086 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2087 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2088 SEC_READONLY | SEC_RELOC
2089 | SEC_DEBUGGING);
2090 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2091 }
2092
2093 subseg_set (seg, subseg);
2094 }
2095 }
2096 #endif /* OBJ_ELF */
2097
2098 if (! ECOFF_DEBUGGING)
2099 md_obj_begin ();
2100
2101 if (mips_fix_vr4120)
2102 init_vr4120_conflicts ();
2103 }
2104
2105 void
2106 md_mips_end (void)
2107 {
2108 if (! ECOFF_DEBUGGING)
2109 md_obj_end ();
2110 }
2111
2112 void
2113 md_assemble (char *str)
2114 {
2115 struct mips_cl_insn insn;
2116 bfd_reloc_code_real_type unused_reloc[3]
2117 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2118
2119 imm_expr.X_op = O_absent;
2120 imm2_expr.X_op = O_absent;
2121 offset_expr.X_op = O_absent;
2122 imm_reloc[0] = BFD_RELOC_UNUSED;
2123 imm_reloc[1] = BFD_RELOC_UNUSED;
2124 imm_reloc[2] = BFD_RELOC_UNUSED;
2125 offset_reloc[0] = BFD_RELOC_UNUSED;
2126 offset_reloc[1] = BFD_RELOC_UNUSED;
2127 offset_reloc[2] = BFD_RELOC_UNUSED;
2128
2129 if (mips_opts.mips16)
2130 mips16_ip (str, &insn);
2131 else
2132 {
2133 mips_ip (str, &insn);
2134 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2135 str, insn.insn_opcode));
2136 }
2137
2138 if (insn_error)
2139 {
2140 as_bad ("%s `%s'", insn_error, str);
2141 return;
2142 }
2143
2144 if (insn.insn_mo->pinfo == INSN_MACRO)
2145 {
2146 macro_start ();
2147 if (mips_opts.mips16)
2148 mips16_macro (&insn);
2149 else
2150 macro (&insn);
2151 macro_end ();
2152 }
2153 else
2154 {
2155 if (imm_expr.X_op != O_absent)
2156 append_insn (&insn, &imm_expr, imm_reloc);
2157 else if (offset_expr.X_op != O_absent)
2158 append_insn (&insn, &offset_expr, offset_reloc);
2159 else
2160 append_insn (&insn, NULL, unused_reloc);
2161 }
2162 }
2163
2164 /* Convenience functions for abstracting away the differences between
2165 MIPS16 and non-MIPS16 relocations. */
2166
2167 static inline bfd_boolean
2168 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2169 {
2170 switch (reloc)
2171 {
2172 case BFD_RELOC_MIPS16_JMP:
2173 case BFD_RELOC_MIPS16_GPREL:
2174 case BFD_RELOC_MIPS16_GOT16:
2175 case BFD_RELOC_MIPS16_CALL16:
2176 case BFD_RELOC_MIPS16_HI16_S:
2177 case BFD_RELOC_MIPS16_HI16:
2178 case BFD_RELOC_MIPS16_LO16:
2179 return TRUE;
2180
2181 default:
2182 return FALSE;
2183 }
2184 }
2185
2186 static inline bfd_boolean
2187 got16_reloc_p (bfd_reloc_code_real_type reloc)
2188 {
2189 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2190 }
2191
2192 static inline bfd_boolean
2193 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2194 {
2195 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2196 }
2197
2198 static inline bfd_boolean
2199 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2200 {
2201 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2202 }
2203
2204 /* Return true if the given relocation might need a matching %lo().
2205 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2206 need a matching %lo() when applied to local symbols. */
2207
2208 static inline bfd_boolean
2209 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2210 {
2211 return (HAVE_IN_PLACE_ADDENDS
2212 && (hi16_reloc_p (reloc)
2213 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2214 all GOT16 relocations evaluate to "G". */
2215 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2216 }
2217
2218 /* Return the type of %lo() reloc needed by RELOC, given that
2219 reloc_needs_lo_p. */
2220
2221 static inline bfd_reloc_code_real_type
2222 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2223 {
2224 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2225 }
2226
2227 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2228 relocation. */
2229
2230 static inline bfd_boolean
2231 fixup_has_matching_lo_p (fixS *fixp)
2232 {
2233 return (fixp->fx_next != NULL
2234 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2235 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2236 && fixp->fx_offset == fixp->fx_next->fx_offset);
2237 }
2238
2239 /* See whether instruction IP reads register REG. CLASS is the type
2240 of register. */
2241
2242 static int
2243 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2244 enum mips_regclass regclass)
2245 {
2246 if (regclass == MIPS16_REG)
2247 {
2248 gas_assert (mips_opts.mips16);
2249 reg = mips16_to_32_reg_map[reg];
2250 regclass = MIPS_GR_REG;
2251 }
2252
2253 /* Don't report on general register ZERO, since it never changes. */
2254 if (regclass == MIPS_GR_REG && reg == ZERO)
2255 return 0;
2256
2257 if (regclass == MIPS_FP_REG)
2258 {
2259 gas_assert (! mips_opts.mips16);
2260 /* If we are called with either $f0 or $f1, we must check $f0.
2261 This is not optimal, because it will introduce an unnecessary
2262 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2263 need to distinguish reading both $f0 and $f1 or just one of
2264 them. Note that we don't have to check the other way,
2265 because there is no instruction that sets both $f0 and $f1
2266 and requires a delay. */
2267 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2268 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2269 == (reg &~ (unsigned) 1)))
2270 return 1;
2271 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2272 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2273 == (reg &~ (unsigned) 1)))
2274 return 1;
2275 if ((ip->insn_mo->pinfo2 & INSN2_READ_FPR_Z)
2276 && ((EXTRACT_OPERAND (FZ, *ip) & ~(unsigned) 1)
2277 == (reg &~ (unsigned) 1)))
2278 return 1;
2279 }
2280 else if (! mips_opts.mips16)
2281 {
2282 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2283 && EXTRACT_OPERAND (RS, *ip) == reg)
2284 return 1;
2285 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2286 && EXTRACT_OPERAND (RT, *ip) == reg)
2287 return 1;
2288 if ((ip->insn_mo->pinfo2 & INSN2_READ_GPR_D)
2289 && EXTRACT_OPERAND (RD, *ip) == reg)
2290 return 1;
2291 if ((ip->insn_mo->pinfo2 & INSN2_READ_GPR_Z)
2292 && EXTRACT_OPERAND (RZ, *ip) == reg)
2293 return 1;
2294 }
2295 else
2296 {
2297 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2298 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2299 return 1;
2300 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2301 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2302 return 1;
2303 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2304 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2305 == reg))
2306 return 1;
2307 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2308 return 1;
2309 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2310 return 1;
2311 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2312 return 1;
2313 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2314 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2315 return 1;
2316 }
2317
2318 return 0;
2319 }
2320
2321 /* This function returns true if modifying a register requires a
2322 delay. */
2323
2324 static int
2325 reg_needs_delay (unsigned int reg)
2326 {
2327 unsigned long prev_pinfo;
2328
2329 prev_pinfo = history[0].insn_mo->pinfo;
2330 if (! mips_opts.noreorder
2331 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2332 && ! gpr_interlocks)
2333 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2334 && ! cop_interlocks)))
2335 {
2336 /* A load from a coprocessor or from memory. All load delays
2337 delay the use of general register rt for one instruction. */
2338 /* Itbl support may require additional care here. */
2339 know (prev_pinfo & INSN_WRITE_GPR_T);
2340 if (reg == EXTRACT_OPERAND (RT, history[0]))
2341 return 1;
2342 }
2343
2344 return 0;
2345 }
2346
2347 /* Move all labels in insn_labels to the current insertion point. */
2348
2349 static void
2350 mips_move_labels (void)
2351 {
2352 segment_info_type *si = seg_info (now_seg);
2353 struct insn_label_list *l;
2354 valueT val;
2355
2356 for (l = si->label_list; l != NULL; l = l->next)
2357 {
2358 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2359 symbol_set_frag (l->label, frag_now);
2360 val = (valueT) frag_now_fix ();
2361 /* mips16 text labels are stored as odd. */
2362 if (mips_opts.mips16)
2363 ++val;
2364 S_SET_VALUE (l->label, val);
2365 }
2366 }
2367
2368 static bfd_boolean
2369 s_is_linkonce (symbolS *sym, segT from_seg)
2370 {
2371 bfd_boolean linkonce = FALSE;
2372 segT symseg = S_GET_SEGMENT (sym);
2373
2374 if (symseg != from_seg && !S_IS_LOCAL (sym))
2375 {
2376 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2377 linkonce = TRUE;
2378 #ifdef OBJ_ELF
2379 /* The GNU toolchain uses an extension for ELF: a section
2380 beginning with the magic string .gnu.linkonce is a
2381 linkonce section. */
2382 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2383 sizeof ".gnu.linkonce" - 1) == 0)
2384 linkonce = TRUE;
2385 #endif
2386 }
2387 return linkonce;
2388 }
2389
2390 /* Mark instruction labels in mips16 mode. This permits the linker to
2391 handle them specially, such as generating jalx instructions when
2392 needed. We also make them odd for the duration of the assembly, in
2393 order to generate the right sort of code. We will make them even
2394 in the adjust_symtab routine, while leaving them marked. This is
2395 convenient for the debugger and the disassembler. The linker knows
2396 to make them odd again. */
2397
2398 static void
2399 mips16_mark_labels (void)
2400 {
2401 segment_info_type *si = seg_info (now_seg);
2402 struct insn_label_list *l;
2403
2404 if (!mips_opts.mips16)
2405 return;
2406
2407 for (l = si->label_list; l != NULL; l = l->next)
2408 {
2409 symbolS *label = l->label;
2410
2411 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2412 if (IS_ELF)
2413 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2414 #endif
2415 if ((S_GET_VALUE (label) & 1) == 0
2416 /* Don't adjust the address if the label is global or weak, or
2417 in a link-once section, since we'll be emitting symbol reloc
2418 references to it which will be patched up by the linker, and
2419 the final value of the symbol may or may not be MIPS16. */
2420 && ! S_IS_WEAK (label)
2421 && ! S_IS_EXTERNAL (label)
2422 && ! s_is_linkonce (label, now_seg))
2423 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2424 }
2425 }
2426
2427 /* End the current frag. Make it a variant frag and record the
2428 relaxation info. */
2429
2430 static void
2431 relax_close_frag (void)
2432 {
2433 mips_macro_warning.first_frag = frag_now;
2434 frag_var (rs_machine_dependent, 0, 0,
2435 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2436 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2437
2438 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2439 mips_relax.first_fixup = 0;
2440 }
2441
2442 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2443 See the comment above RELAX_ENCODE for more details. */
2444
2445 static void
2446 relax_start (symbolS *symbol)
2447 {
2448 gas_assert (mips_relax.sequence == 0);
2449 mips_relax.sequence = 1;
2450 mips_relax.symbol = symbol;
2451 }
2452
2453 /* Start generating the second version of a relaxable sequence.
2454 See the comment above RELAX_ENCODE for more details. */
2455
2456 static void
2457 relax_switch (void)
2458 {
2459 gas_assert (mips_relax.sequence == 1);
2460 mips_relax.sequence = 2;
2461 }
2462
2463 /* End the current relaxable sequence. */
2464
2465 static void
2466 relax_end (void)
2467 {
2468 gas_assert (mips_relax.sequence == 2);
2469 relax_close_frag ();
2470 mips_relax.sequence = 0;
2471 }
2472
2473 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2474 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2475 by VR4120 errata. */
2476
2477 static unsigned int
2478 classify_vr4120_insn (const char *name)
2479 {
2480 if (strncmp (name, "macc", 4) == 0)
2481 return FIX_VR4120_MACC;
2482 if (strncmp (name, "dmacc", 5) == 0)
2483 return FIX_VR4120_DMACC;
2484 if (strncmp (name, "mult", 4) == 0)
2485 return FIX_VR4120_MULT;
2486 if (strncmp (name, "dmult", 5) == 0)
2487 return FIX_VR4120_DMULT;
2488 if (strstr (name, "div"))
2489 return FIX_VR4120_DIV;
2490 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2491 return FIX_VR4120_MTHILO;
2492 return NUM_FIX_VR4120_CLASSES;
2493 }
2494
2495 #define INSN_ERET 0x42000018
2496 #define INSN_DERET 0x4200001f
2497
2498 /* Return the number of instructions that must separate INSN1 and INSN2,
2499 where INSN1 is the earlier instruction. Return the worst-case value
2500 for any INSN2 if INSN2 is null. */
2501
2502 static unsigned int
2503 insns_between (const struct mips_cl_insn *insn1,
2504 const struct mips_cl_insn *insn2)
2505 {
2506 unsigned long pinfo1, pinfo2;
2507
2508 /* This function needs to know which pinfo flags are set for INSN2
2509 and which registers INSN2 uses. The former is stored in PINFO2 and
2510 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2511 will have every flag set and INSN2_USES_REG will always return true. */
2512 pinfo1 = insn1->insn_mo->pinfo;
2513 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2514
2515 #define INSN2_USES_REG(REG, CLASS) \
2516 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2517
2518 /* For most targets, write-after-read dependencies on the HI and LO
2519 registers must be separated by at least two instructions. */
2520 if (!hilo_interlocks)
2521 {
2522 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2523 return 2;
2524 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2525 return 2;
2526 }
2527
2528 /* If we're working around r7000 errata, there must be two instructions
2529 between an mfhi or mflo and any instruction that uses the result. */
2530 if (mips_7000_hilo_fix
2531 && MF_HILO_INSN (pinfo1)
2532 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2533 return 2;
2534
2535 /* If we're working around 24K errata, one instruction is required
2536 if an ERET or DERET is followed by a branch instruction. */
2537 if (mips_fix_24k)
2538 {
2539 if (insn1->insn_opcode == INSN_ERET
2540 || insn1->insn_opcode == INSN_DERET)
2541 {
2542 if (insn2 == NULL
2543 || insn2->insn_opcode == INSN_ERET
2544 || insn2->insn_opcode == INSN_DERET
2545 || (insn2->insn_mo->pinfo
2546 & (INSN_UNCOND_BRANCH_DELAY
2547 | INSN_COND_BRANCH_DELAY
2548 | INSN_COND_BRANCH_LIKELY)) != 0)
2549 return 1;
2550 }
2551 }
2552
2553 /* If working around VR4120 errata, check for combinations that need
2554 a single intervening instruction. */
2555 if (mips_fix_vr4120)
2556 {
2557 unsigned int class1, class2;
2558
2559 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2560 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2561 {
2562 if (insn2 == NULL)
2563 return 1;
2564 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2565 if (vr4120_conflicts[class1] & (1 << class2))
2566 return 1;
2567 }
2568 }
2569
2570 if (!mips_opts.mips16)
2571 {
2572 /* Check for GPR or coprocessor load delays. All such delays
2573 are on the RT register. */
2574 /* Itbl support may require additional care here. */
2575 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2576 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2577 {
2578 know (pinfo1 & INSN_WRITE_GPR_T);
2579 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2580 return 1;
2581 }
2582
2583 /* Check for generic coprocessor hazards.
2584
2585 This case is not handled very well. There is no special
2586 knowledge of CP0 handling, and the coprocessors other than
2587 the floating point unit are not distinguished at all. */
2588 /* Itbl support may require additional care here. FIXME!
2589 Need to modify this to include knowledge about
2590 user specified delays! */
2591 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2592 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2593 {
2594 /* Handle cases where INSN1 writes to a known general coprocessor
2595 register. There must be a one instruction delay before INSN2
2596 if INSN2 reads that register, otherwise no delay is needed. */
2597 if (pinfo1 & INSN_WRITE_FPR_T)
2598 {
2599 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2600 return 1;
2601 }
2602 else if (pinfo1 & INSN_WRITE_FPR_S)
2603 {
2604 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2605 return 1;
2606 }
2607 else
2608 {
2609 /* Read-after-write dependencies on the control registers
2610 require a two-instruction gap. */
2611 if ((pinfo1 & INSN_WRITE_COND_CODE)
2612 && (pinfo2 & INSN_READ_COND_CODE))
2613 return 2;
2614
2615 /* We don't know exactly what INSN1 does. If INSN2 is
2616 also a coprocessor instruction, assume there must be
2617 a one instruction gap. */
2618 if (pinfo2 & INSN_COP)
2619 return 1;
2620 }
2621 }
2622
2623 /* Check for read-after-write dependencies on the coprocessor
2624 control registers in cases where INSN1 does not need a general
2625 coprocessor delay. This means that INSN1 is a floating point
2626 comparison instruction. */
2627 /* Itbl support may require additional care here. */
2628 else if (!cop_interlocks
2629 && (pinfo1 & INSN_WRITE_COND_CODE)
2630 && (pinfo2 & INSN_READ_COND_CODE))
2631 return 1;
2632 }
2633
2634 #undef INSN2_USES_REG
2635
2636 return 0;
2637 }
2638
2639 /* Return the number of nops that would be needed to work around the
2640 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2641 the MAX_VR4130_NOPS instructions described by HIST. */
2642
2643 static int
2644 nops_for_vr4130 (const struct mips_cl_insn *hist,
2645 const struct mips_cl_insn *insn)
2646 {
2647 int i, j, reg;
2648
2649 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2650 are not affected by the errata. */
2651 if (insn != 0
2652 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2653 || strcmp (insn->insn_mo->name, "mtlo") == 0
2654 || strcmp (insn->insn_mo->name, "mthi") == 0))
2655 return 0;
2656
2657 /* Search for the first MFLO or MFHI. */
2658 for (i = 0; i < MAX_VR4130_NOPS; i++)
2659 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2660 {
2661 /* Extract the destination register. */
2662 if (mips_opts.mips16)
2663 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, hist[i])];
2664 else
2665 reg = EXTRACT_OPERAND (RD, hist[i]);
2666
2667 /* No nops are needed if INSN reads that register. */
2668 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2669 return 0;
2670
2671 /* ...or if any of the intervening instructions do. */
2672 for (j = 0; j < i; j++)
2673 if (insn_uses_reg (&hist[j], reg, MIPS_GR_REG))
2674 return 0;
2675
2676 return MAX_VR4130_NOPS - i;
2677 }
2678 return 0;
2679 }
2680
2681 /* Return the number of nops that would be needed if instruction INSN
2682 immediately followed the MAX_NOPS instructions given by HIST,
2683 where HIST[0] is the most recent instruction. If INSN is null,
2684 return the worse-case number of nops for any instruction. */
2685
2686 static int
2687 nops_for_insn (const struct mips_cl_insn *hist,
2688 const struct mips_cl_insn *insn)
2689 {
2690 int i, nops, tmp_nops;
2691
2692 nops = 0;
2693 for (i = 0; i < MAX_DELAY_NOPS; i++)
2694 {
2695 tmp_nops = insns_between (hist + i, insn) - i;
2696 if (tmp_nops > nops)
2697 nops = tmp_nops;
2698 }
2699
2700 if (mips_fix_vr4130)
2701 {
2702 tmp_nops = nops_for_vr4130 (hist, insn);
2703 if (tmp_nops > nops)
2704 nops = tmp_nops;
2705 }
2706
2707 return nops;
2708 }
2709
2710 /* The variable arguments provide NUM_INSNS extra instructions that
2711 might be added to HIST. Return the largest number of nops that
2712 would be needed after the extended sequence. */
2713
2714 static int
2715 nops_for_sequence (int num_insns, const struct mips_cl_insn *hist, ...)
2716 {
2717 va_list args;
2718 struct mips_cl_insn buffer[MAX_NOPS];
2719 struct mips_cl_insn *cursor;
2720 int nops;
2721
2722 va_start (args, hist);
2723 cursor = buffer + num_insns;
2724 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2725 while (cursor > buffer)
2726 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2727
2728 nops = nops_for_insn (buffer, NULL);
2729 va_end (args);
2730 return nops;
2731 }
2732
2733 /* Like nops_for_insn, but if INSN is a branch, take into account the
2734 worst-case delay for the branch target. */
2735
2736 static int
2737 nops_for_insn_or_target (const struct mips_cl_insn *hist,
2738 const struct mips_cl_insn *insn)
2739 {
2740 int nops, tmp_nops;
2741
2742 nops = nops_for_insn (hist, insn);
2743 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2744 | INSN_COND_BRANCH_DELAY
2745 | INSN_COND_BRANCH_LIKELY))
2746 {
2747 tmp_nops = nops_for_sequence (2, hist, insn, NOP_INSN);
2748 if (tmp_nops > nops)
2749 nops = tmp_nops;
2750 }
2751 else if (mips_opts.mips16
2752 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2753 | MIPS16_INSN_COND_BRANCH)))
2754 {
2755 tmp_nops = nops_for_sequence (1, hist, insn);
2756 if (tmp_nops > nops)
2757 nops = tmp_nops;
2758 }
2759 return nops;
2760 }
2761
2762 /* Fix NOP issue: Replace nops by "or at,at,zero". */
2763
2764 static void
2765 fix_loongson2f_nop (struct mips_cl_insn * ip)
2766 {
2767 if (strcmp (ip->insn_mo->name, "nop") == 0)
2768 ip->insn_opcode = LOONGSON2F_NOP_INSN;
2769 }
2770
2771 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
2772 jr target pc &= 'hffff_ffff_cfff_ffff. */
2773
2774 static void
2775 fix_loongson2f_jump (struct mips_cl_insn * ip)
2776 {
2777 if (strcmp (ip->insn_mo->name, "j") == 0
2778 || strcmp (ip->insn_mo->name, "jr") == 0
2779 || strcmp (ip->insn_mo->name, "jalr") == 0)
2780 {
2781 int sreg;
2782 expressionS ep;
2783
2784 if (! mips_opts.at)
2785 return;
2786
2787 sreg = EXTRACT_OPERAND (RS, *ip);
2788 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
2789 return;
2790
2791 ep.X_op = O_constant;
2792 ep.X_add_number = 0xcfff0000;
2793 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
2794 ep.X_add_number = 0xffff;
2795 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
2796 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
2797 }
2798 }
2799
2800 static void
2801 fix_loongson2f (struct mips_cl_insn * ip)
2802 {
2803 if (mips_fix_loongson2f_nop)
2804 fix_loongson2f_nop (ip);
2805
2806 if (mips_fix_loongson2f_jump)
2807 fix_loongson2f_jump (ip);
2808 }
2809
2810 /* Output an instruction. IP is the instruction information.
2811 ADDRESS_EXPR is an operand of the instruction to be used with
2812 RELOC_TYPE. */
2813
2814 static void
2815 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2816 bfd_reloc_code_real_type *reloc_type)
2817 {
2818 unsigned long prev_pinfo, pinfo;
2819 unsigned long prev_pinfo2, pinfo2;
2820 relax_stateT prev_insn_frag_type = 0;
2821 bfd_boolean relaxed_branch = FALSE;
2822 segment_info_type *si = seg_info (now_seg);
2823
2824 if (mips_fix_loongson2f)
2825 fix_loongson2f (ip);
2826
2827 /* Mark instruction labels in mips16 mode. */
2828 mips16_mark_labels ();
2829
2830 file_ase_mips16 |= mips_opts.mips16;
2831
2832 prev_pinfo = history[0].insn_mo->pinfo;
2833 prev_pinfo2 = history[0].insn_mo->pinfo2;
2834 pinfo = ip->insn_mo->pinfo;
2835 pinfo2 = ip->insn_mo->pinfo2;
2836
2837 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2838 {
2839 /* There are a lot of optimizations we could do that we don't.
2840 In particular, we do not, in general, reorder instructions.
2841 If you use gcc with optimization, it will reorder
2842 instructions and generally do much more optimization then we
2843 do here; repeating all that work in the assembler would only
2844 benefit hand written assembly code, and does not seem worth
2845 it. */
2846 int nops = (mips_optimize == 0
2847 ? nops_for_insn (history, NULL)
2848 : nops_for_insn_or_target (history, ip));
2849 if (nops > 0)
2850 {
2851 fragS *old_frag;
2852 unsigned long old_frag_offset;
2853 int i;
2854
2855 old_frag = frag_now;
2856 old_frag_offset = frag_now_fix ();
2857
2858 for (i = 0; i < nops; i++)
2859 emit_nop ();
2860
2861 if (listing)
2862 {
2863 listing_prev_line ();
2864 /* We may be at the start of a variant frag. In case we
2865 are, make sure there is enough space for the frag
2866 after the frags created by listing_prev_line. The
2867 argument to frag_grow here must be at least as large
2868 as the argument to all other calls to frag_grow in
2869 this file. We don't have to worry about being in the
2870 middle of a variant frag, because the variants insert
2871 all needed nop instructions themselves. */
2872 frag_grow (40);
2873 }
2874
2875 mips_move_labels ();
2876
2877 #ifndef NO_ECOFF_DEBUGGING
2878 if (ECOFF_DEBUGGING)
2879 ecoff_fix_loc (old_frag, old_frag_offset);
2880 #endif
2881 }
2882 }
2883 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2884 {
2885 /* Work out how many nops in prev_nop_frag are needed by IP. */
2886 int nops = nops_for_insn_or_target (history, ip);
2887 gas_assert (nops <= prev_nop_frag_holds);
2888
2889 /* Enforce NOPS as a minimum. */
2890 if (nops > prev_nop_frag_required)
2891 prev_nop_frag_required = nops;
2892
2893 if (prev_nop_frag_holds == prev_nop_frag_required)
2894 {
2895 /* Settle for the current number of nops. Update the history
2896 accordingly (for the benefit of any future .set reorder code). */
2897 prev_nop_frag = NULL;
2898 insert_into_history (prev_nop_frag_since,
2899 prev_nop_frag_holds, NOP_INSN);
2900 }
2901 else
2902 {
2903 /* Allow this instruction to replace one of the nops that was
2904 tentatively added to prev_nop_frag. */
2905 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2906 prev_nop_frag_holds--;
2907 prev_nop_frag_since++;
2908 }
2909 }
2910
2911 #ifdef OBJ_ELF
2912 /* The value passed to dwarf2_emit_insn is the distance between
2913 the beginning of the current instruction and the address that
2914 should be recorded in the debug tables. For MIPS16 debug info
2915 we want to use ISA-encoded addresses, so we pass -1 for an
2916 address higher by one than the current. */
2917 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2918 #endif
2919
2920 /* Record the frag type before frag_var. */
2921 if (history[0].frag)
2922 prev_insn_frag_type = history[0].frag->fr_type;
2923
2924 if (address_expr
2925 && *reloc_type == BFD_RELOC_16_PCREL_S2
2926 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2927 || pinfo & INSN_COND_BRANCH_LIKELY)
2928 && mips_relax_branch
2929 /* Don't try branch relaxation within .set nomacro, or within
2930 .set noat if we use $at for PIC computations. If it turns
2931 out that the branch was out-of-range, we'll get an error. */
2932 && !mips_opts.warn_about_macros
2933 && (mips_opts.at || mips_pic == NO_PIC)
2934 && !mips_opts.mips16)
2935 {
2936 relaxed_branch = TRUE;
2937 add_relaxed_insn (ip, (relaxed_branch_length
2938 (NULL, NULL,
2939 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2940 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2941 : 0)), 4,
2942 RELAX_BRANCH_ENCODE
2943 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2944 pinfo & INSN_COND_BRANCH_LIKELY,
2945 pinfo & INSN_WRITE_GPR_31,
2946 0),
2947 address_expr->X_add_symbol,
2948 address_expr->X_add_number);
2949 *reloc_type = BFD_RELOC_UNUSED;
2950 }
2951 else if (*reloc_type > BFD_RELOC_UNUSED)
2952 {
2953 /* We need to set up a variant frag. */
2954 gas_assert (mips_opts.mips16 && address_expr != NULL);
2955 add_relaxed_insn (ip, 4, 0,
2956 RELAX_MIPS16_ENCODE
2957 (*reloc_type - BFD_RELOC_UNUSED,
2958 mips16_small, mips16_ext,
2959 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2960 history[0].mips16_absolute_jump_p),
2961 make_expr_symbol (address_expr), 0);
2962 }
2963 else if (mips_opts.mips16
2964 && ! ip->use_extend
2965 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2966 {
2967 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2968 /* Make sure there is enough room to swap this instruction with
2969 a following jump instruction. */
2970 frag_grow (6);
2971 add_fixed_insn (ip);
2972 }
2973 else
2974 {
2975 if (mips_opts.mips16
2976 && mips_opts.noreorder
2977 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2978 as_warn (_("extended instruction in delay slot"));
2979
2980 if (mips_relax.sequence)
2981 {
2982 /* If we've reached the end of this frag, turn it into a variant
2983 frag and record the information for the instructions we've
2984 written so far. */
2985 if (frag_room () < 4)
2986 relax_close_frag ();
2987 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2988 }
2989
2990 if (mips_relax.sequence != 2)
2991 mips_macro_warning.sizes[0] += 4;
2992 if (mips_relax.sequence != 1)
2993 mips_macro_warning.sizes[1] += 4;
2994
2995 if (mips_opts.mips16)
2996 {
2997 ip->fixed_p = 1;
2998 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2999 }
3000 add_fixed_insn (ip);
3001 }
3002
3003 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
3004 {
3005 if (address_expr->X_op == O_constant)
3006 {
3007 unsigned int tmp;
3008
3009 switch (*reloc_type)
3010 {
3011 case BFD_RELOC_32:
3012 ip->insn_opcode |= address_expr->X_add_number;
3013 break;
3014
3015 case BFD_RELOC_MIPS_HIGHEST:
3016 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
3017 ip->insn_opcode |= tmp & 0xffff;
3018 break;
3019
3020 case BFD_RELOC_MIPS_HIGHER:
3021 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3022 ip->insn_opcode |= tmp & 0xffff;
3023 break;
3024
3025 case BFD_RELOC_HI16_S:
3026 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3027 ip->insn_opcode |= tmp & 0xffff;
3028 break;
3029
3030 case BFD_RELOC_HI16:
3031 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3032 break;
3033
3034 case BFD_RELOC_UNUSED:
3035 case BFD_RELOC_LO16:
3036 case BFD_RELOC_MIPS_GOT_DISP:
3037 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3038 break;
3039
3040 case BFD_RELOC_MIPS_JMP:
3041 if ((address_expr->X_add_number & 3) != 0)
3042 as_bad (_("jump to misaligned address (0x%lx)"),
3043 (unsigned long) address_expr->X_add_number);
3044 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3045 break;
3046
3047 case BFD_RELOC_MIPS16_JMP:
3048 if ((address_expr->X_add_number & 3) != 0)
3049 as_bad (_("jump to misaligned address (0x%lx)"),
3050 (unsigned long) address_expr->X_add_number);
3051 ip->insn_opcode |=
3052 (((address_expr->X_add_number & 0x7c0000) << 3)
3053 | ((address_expr->X_add_number & 0xf800000) >> 7)
3054 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3055 break;
3056
3057 case BFD_RELOC_16_PCREL_S2:
3058 if ((address_expr->X_add_number & 3) != 0)
3059 as_bad (_("branch to misaligned address (0x%lx)"),
3060 (unsigned long) address_expr->X_add_number);
3061 if (mips_relax_branch)
3062 goto need_reloc;
3063 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3064 as_bad (_("branch address range overflow (0x%lx)"),
3065 (unsigned long) address_expr->X_add_number);
3066 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3067 break;
3068
3069 default:
3070 internalError ();
3071 }
3072 }
3073 else if (*reloc_type < BFD_RELOC_UNUSED)
3074 need_reloc:
3075 {
3076 reloc_howto_type *howto;
3077 int i;
3078
3079 /* In a compound relocation, it is the final (outermost)
3080 operator that determines the relocated field. */
3081 for (i = 1; i < 3; i++)
3082 if (reloc_type[i] == BFD_RELOC_UNUSED)
3083 break;
3084
3085 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3086 if (howto == NULL)
3087 {
3088 /* To reproduce this failure try assembling gas/testsuites/
3089 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3090 assembler. */
3091 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3092 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3093 }
3094
3095 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3096 bfd_get_reloc_size (howto),
3097 address_expr,
3098 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3099 reloc_type[0]);
3100
3101 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3102 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3103 && ip->fixp[0]->fx_addsy)
3104 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3105
3106 /* These relocations can have an addend that won't fit in
3107 4 octets for 64bit assembly. */
3108 if (HAVE_64BIT_GPRS
3109 && ! howto->partial_inplace
3110 && (reloc_type[0] == BFD_RELOC_16
3111 || reloc_type[0] == BFD_RELOC_32
3112 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3113 || reloc_type[0] == BFD_RELOC_GPREL16
3114 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3115 || reloc_type[0] == BFD_RELOC_GPREL32
3116 || reloc_type[0] == BFD_RELOC_64
3117 || reloc_type[0] == BFD_RELOC_CTOR
3118 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3119 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3120 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3121 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3122 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3123 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3124 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3125 || hi16_reloc_p (reloc_type[0])
3126 || lo16_reloc_p (reloc_type[0])))
3127 ip->fixp[0]->fx_no_overflow = 1;
3128
3129 if (mips_relax.sequence)
3130 {
3131 if (mips_relax.first_fixup == 0)
3132 mips_relax.first_fixup = ip->fixp[0];
3133 }
3134 else if (reloc_needs_lo_p (*reloc_type))
3135 {
3136 struct mips_hi_fixup *hi_fixup;
3137
3138 /* Reuse the last entry if it already has a matching %lo. */
3139 hi_fixup = mips_hi_fixup_list;
3140 if (hi_fixup == 0
3141 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3142 {
3143 hi_fixup = ((struct mips_hi_fixup *)
3144 xmalloc (sizeof (struct mips_hi_fixup)));
3145 hi_fixup->next = mips_hi_fixup_list;
3146 mips_hi_fixup_list = hi_fixup;
3147 }
3148 hi_fixup->fixp = ip->fixp[0];
3149 hi_fixup->seg = now_seg;
3150 }
3151
3152 /* Add fixups for the second and third relocations, if given.
3153 Note that the ABI allows the second relocation to be
3154 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3155 moment we only use RSS_UNDEF, but we could add support
3156 for the others if it ever becomes necessary. */
3157 for (i = 1; i < 3; i++)
3158 if (reloc_type[i] != BFD_RELOC_UNUSED)
3159 {
3160 ip->fixp[i] = fix_new (ip->frag, ip->where,
3161 ip->fixp[0]->fx_size, NULL, 0,
3162 FALSE, reloc_type[i]);
3163
3164 /* Use fx_tcbit to mark compound relocs. */
3165 ip->fixp[0]->fx_tcbit = 1;
3166 ip->fixp[i]->fx_tcbit = 1;
3167 }
3168 }
3169 }
3170 install_insn (ip);
3171
3172 /* Update the register mask information. */
3173 if (! mips_opts.mips16)
3174 {
3175 if ((pinfo & INSN_WRITE_GPR_D) || (pinfo2 & INSN2_READ_GPR_D))
3176 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3177 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3178 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3179 if (pinfo & INSN_READ_GPR_S)
3180 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3181 if (pinfo & INSN_WRITE_GPR_31)
3182 mips_gprmask |= 1 << RA;
3183 if (pinfo2 & (INSN2_WRITE_GPR_Z | INSN2_READ_GPR_Z))
3184 mips_gprmask |= 1 << EXTRACT_OPERAND (RZ, *ip);
3185 if (pinfo & INSN_WRITE_FPR_D)
3186 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3187 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3188 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3189 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3190 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3191 if ((pinfo & INSN_READ_FPR_R) != 0)
3192 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3193 if (pinfo2 & (INSN2_WRITE_FPR_Z | INSN2_READ_FPR_Z))
3194 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FZ, *ip);
3195 if (pinfo & INSN_COP)
3196 {
3197 /* We don't keep enough information to sort these cases out.
3198 The itbl support does keep this information however, although
3199 we currently don't support itbl fprmats as part of the cop
3200 instruction. May want to add this support in the future. */
3201 }
3202 /* Never set the bit for $0, which is always zero. */
3203 mips_gprmask &= ~1 << 0;
3204 }
3205 else
3206 {
3207 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3208 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3209 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3210 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3211 if (pinfo & MIPS16_INSN_WRITE_Z)
3212 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3213 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3214 mips_gprmask |= 1 << TREG;
3215 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3216 mips_gprmask |= 1 << SP;
3217 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3218 mips_gprmask |= 1 << RA;
3219 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3220 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3221 if (pinfo & MIPS16_INSN_READ_Z)
3222 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3223 if (pinfo & MIPS16_INSN_READ_GPR_X)
3224 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3225 }
3226
3227 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3228 {
3229 /* Filling the branch delay slot is more complex. We try to
3230 switch the branch with the previous instruction, which we can
3231 do if the previous instruction does not set up a condition
3232 that the branch tests and if the branch is not itself the
3233 target of any branch. */
3234 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3235 || (pinfo & INSN_COND_BRANCH_DELAY))
3236 {
3237 if (mips_optimize < 2
3238 /* If we have seen .set volatile or .set nomove, don't
3239 optimize. */
3240 || mips_opts.nomove != 0
3241 /* We can't swap if the previous instruction's position
3242 is fixed. */
3243 || history[0].fixed_p
3244 /* If the previous previous insn was in a .set
3245 noreorder, we can't swap. Actually, the MIPS
3246 assembler will swap in this situation. However, gcc
3247 configured -with-gnu-as will generate code like
3248 .set noreorder
3249 lw $4,XXX
3250 .set reorder
3251 INSN
3252 bne $4,$0,foo
3253 in which we can not swap the bne and INSN. If gcc is
3254 not configured -with-gnu-as, it does not output the
3255 .set pseudo-ops. */
3256 || history[1].noreorder_p
3257 /* If the branch is itself the target of a branch, we
3258 can not swap. We cheat on this; all we check for is
3259 whether there is a label on this instruction. If
3260 there are any branches to anything other than a
3261 label, users must use .set noreorder. */
3262 || si->label_list != NULL
3263 /* If the previous instruction is in a variant frag
3264 other than this branch's one, we cannot do the swap.
3265 This does not apply to the mips16, which uses variant
3266 frags for different purposes. */
3267 || (! mips_opts.mips16
3268 && prev_insn_frag_type == rs_machine_dependent)
3269 /* Check for conflicts between the branch and the instructions
3270 before the candidate delay slot. */
3271 || nops_for_insn (history + 1, ip) > 0
3272 /* Check for conflicts between the swapped sequence and the
3273 target of the branch. */
3274 || nops_for_sequence (2, history + 1, ip, history) > 0
3275 /* We do not swap with a trap instruction, since it
3276 complicates trap handlers to have the trap
3277 instruction be in a delay slot. */
3278 || (prev_pinfo & INSN_TRAP)
3279 /* If the branch reads a register that the previous
3280 instruction sets, we can not swap. */
3281 || (! mips_opts.mips16
3282 && (prev_pinfo & INSN_WRITE_GPR_T)
3283 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3284 MIPS_GR_REG))
3285 || (! mips_opts.mips16
3286 && (prev_pinfo & INSN_WRITE_GPR_D)
3287 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3288 MIPS_GR_REG))
3289 || (! mips_opts.mips16
3290 && (prev_pinfo2 & INSN2_WRITE_GPR_Z)
3291 && insn_uses_reg (ip, EXTRACT_OPERAND (RZ, history[0]),
3292 MIPS_GR_REG))
3293 || (mips_opts.mips16
3294 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3295 && (insn_uses_reg
3296 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3297 MIPS16_REG)))
3298 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3299 && (insn_uses_reg
3300 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3301 MIPS16_REG)))
3302 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3303 && (insn_uses_reg
3304 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3305 MIPS16_REG)))
3306 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3307 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3308 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3309 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3310 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3311 && insn_uses_reg (ip,
3312 MIPS16OP_EXTRACT_REG32R
3313 (history[0].insn_opcode),
3314 MIPS_GR_REG))))
3315 /* If the branch writes a register that the previous
3316 instruction sets, we can not swap (we know that
3317 branches write only to RD or to $31). */
3318 || (! mips_opts.mips16
3319 && (prev_pinfo & INSN_WRITE_GPR_T)
3320 && (((pinfo & INSN_WRITE_GPR_D)
3321 && (EXTRACT_OPERAND (RT, history[0])
3322 == EXTRACT_OPERAND (RD, *ip)))
3323 || ((pinfo & INSN_WRITE_GPR_31)
3324 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3325 || (! mips_opts.mips16
3326 && (prev_pinfo & INSN_WRITE_GPR_D)
3327 && (((pinfo & INSN_WRITE_GPR_D)
3328 && (EXTRACT_OPERAND (RD, history[0])
3329 == EXTRACT_OPERAND (RD, *ip)))
3330 || ((pinfo & INSN_WRITE_GPR_31)
3331 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3332 || (mips_opts.mips16
3333 && (pinfo & MIPS16_INSN_WRITE_31)
3334 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3335 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3336 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3337 == RA))))
3338 /* If the branch writes a register that the previous
3339 instruction reads, we can not swap (we know that
3340 branches only write to RD or to $31). */
3341 || (! mips_opts.mips16
3342 && (pinfo & INSN_WRITE_GPR_D)
3343 && insn_uses_reg (&history[0],
3344 EXTRACT_OPERAND (RD, *ip),
3345 MIPS_GR_REG))
3346 || (! mips_opts.mips16
3347 && (pinfo & INSN_WRITE_GPR_31)
3348 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3349 || (mips_opts.mips16
3350 && (pinfo & MIPS16_INSN_WRITE_31)
3351 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3352 /* If one instruction sets a condition code and the
3353 other one uses a condition code, we can not swap. */
3354 || ((pinfo & INSN_READ_COND_CODE)
3355 && (prev_pinfo & INSN_WRITE_COND_CODE))
3356 || ((pinfo & INSN_WRITE_COND_CODE)
3357 && (prev_pinfo & INSN_READ_COND_CODE))
3358 /* If the previous instruction uses the PC, we can not
3359 swap. */
3360 || (mips_opts.mips16
3361 && (prev_pinfo & MIPS16_INSN_READ_PC))
3362 /* If the previous instruction had a fixup in mips16
3363 mode, we can not swap. This normally means that the
3364 previous instruction was a 4 byte branch anyhow. */
3365 || (mips_opts.mips16 && history[0].fixp[0])
3366 /* If the previous instruction is a sync, sync.l, or
3367 sync.p, we can not swap. */
3368 || (prev_pinfo & INSN_SYNC)
3369 /* If the previous instruction is an ERET or
3370 DERET, avoid the swap. */
3371 || (history[0].insn_opcode == INSN_ERET)
3372 || (history[0].insn_opcode == INSN_DERET))
3373 {
3374 if (mips_opts.mips16
3375 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3376 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3377 && ISA_SUPPORTS_MIPS16E)
3378 {
3379 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3380 ip->insn_opcode |= 0x0080;
3381 install_insn (ip);
3382 insert_into_history (0, 1, ip);
3383 }
3384 else
3385 {
3386 /* We could do even better for unconditional branches to
3387 portions of this object file; we could pick up the
3388 instruction at the destination, put it in the delay
3389 slot, and bump the destination address. */
3390 insert_into_history (0, 1, ip);
3391 emit_nop ();
3392 }
3393
3394 if (mips_relax.sequence)
3395 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3396 }
3397 else
3398 {
3399 /* It looks like we can actually do the swap. */
3400 struct mips_cl_insn delay = history[0];
3401 if (mips_opts.mips16)
3402 {
3403 know (delay.frag == ip->frag);
3404 move_insn (ip, delay.frag, delay.where);
3405 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3406 }
3407 else if (relaxed_branch)
3408 {
3409 /* Add the delay slot instruction to the end of the
3410 current frag and shrink the fixed part of the
3411 original frag. If the branch occupies the tail of
3412 the latter, move it backwards to cover the gap. */
3413 delay.frag->fr_fix -= 4;
3414 if (delay.frag == ip->frag)
3415 move_insn (ip, ip->frag, ip->where - 4);
3416 add_fixed_insn (&delay);
3417 }
3418 else
3419 {
3420 move_insn (&delay, ip->frag, ip->where);
3421 move_insn (ip, history[0].frag, history[0].where);
3422 }
3423 history[0] = *ip;
3424 delay.fixed_p = 1;
3425 insert_into_history (0, 1, &delay);
3426 }
3427
3428 /* If that was an unconditional branch, forget the previous
3429 insn information. */
3430 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3431 {
3432 mips_no_prev_insn ();
3433 }
3434 }
3435 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3436 {
3437 /* We don't yet optimize a branch likely. What we should do
3438 is look at the target, copy the instruction found there
3439 into the delay slot, and increment the branch to jump to
3440 the next instruction. */
3441 insert_into_history (0, 1, ip);
3442 emit_nop ();
3443 }
3444 else
3445 insert_into_history (0, 1, ip);
3446 }
3447 else
3448 insert_into_history (0, 1, ip);
3449
3450 /* We just output an insn, so the next one doesn't have a label. */
3451 mips_clear_insn_labels ();
3452 }
3453
3454 /* Forget that there was any previous instruction or label. */
3455
3456 static void
3457 mips_no_prev_insn (void)
3458 {
3459 prev_nop_frag = NULL;
3460 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3461 mips_clear_insn_labels ();
3462 }
3463
3464 /* This function must be called before we emit something other than
3465 instructions. It is like mips_no_prev_insn except that it inserts
3466 any NOPS that might be needed by previous instructions. */
3467
3468 void
3469 mips_emit_delays (void)
3470 {
3471 if (! mips_opts.noreorder)
3472 {
3473 int nops = nops_for_insn (history, NULL);
3474 if (nops > 0)
3475 {
3476 while (nops-- > 0)
3477 add_fixed_insn (NOP_INSN);
3478 mips_move_labels ();
3479 }
3480 }
3481 mips_no_prev_insn ();
3482 }
3483
3484 /* Start a (possibly nested) noreorder block. */
3485
3486 static void
3487 start_noreorder (void)
3488 {
3489 if (mips_opts.noreorder == 0)
3490 {
3491 unsigned int i;
3492 int nops;
3493
3494 /* None of the instructions before the .set noreorder can be moved. */
3495 for (i = 0; i < ARRAY_SIZE (history); i++)
3496 history[i].fixed_p = 1;
3497
3498 /* Insert any nops that might be needed between the .set noreorder
3499 block and the previous instructions. We will later remove any
3500 nops that turn out not to be needed. */
3501 nops = nops_for_insn (history, NULL);
3502 if (nops > 0)
3503 {
3504 if (mips_optimize != 0)
3505 {
3506 /* Record the frag which holds the nop instructions, so
3507 that we can remove them if we don't need them. */
3508 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3509 prev_nop_frag = frag_now;
3510 prev_nop_frag_holds = nops;
3511 prev_nop_frag_required = 0;
3512 prev_nop_frag_since = 0;
3513 }
3514
3515 for (; nops > 0; --nops)
3516 add_fixed_insn (NOP_INSN);
3517
3518 /* Move on to a new frag, so that it is safe to simply
3519 decrease the size of prev_nop_frag. */
3520 frag_wane (frag_now);
3521 frag_new (0);
3522 mips_move_labels ();
3523 }
3524 mips16_mark_labels ();
3525 mips_clear_insn_labels ();
3526 }
3527 mips_opts.noreorder++;
3528 mips_any_noreorder = 1;
3529 }
3530
3531 /* End a nested noreorder block. */
3532
3533 static void
3534 end_noreorder (void)
3535 {
3536
3537 mips_opts.noreorder--;
3538 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3539 {
3540 /* Commit to inserting prev_nop_frag_required nops and go back to
3541 handling nop insertion the .set reorder way. */
3542 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3543 * (mips_opts.mips16 ? 2 : 4));
3544 insert_into_history (prev_nop_frag_since,
3545 prev_nop_frag_required, NOP_INSN);
3546 prev_nop_frag = NULL;
3547 }
3548 }
3549
3550 /* Set up global variables for the start of a new macro. */
3551
3552 static void
3553 macro_start (void)
3554 {
3555 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3556 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3557 && (history[0].insn_mo->pinfo
3558 & (INSN_UNCOND_BRANCH_DELAY
3559 | INSN_COND_BRANCH_DELAY
3560 | INSN_COND_BRANCH_LIKELY)) != 0);
3561 }
3562
3563 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3564 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3565 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3566
3567 static const char *
3568 macro_warning (relax_substateT subtype)
3569 {
3570 if (subtype & RELAX_DELAY_SLOT)
3571 return _("Macro instruction expanded into multiple instructions"
3572 " in a branch delay slot");
3573 else if (subtype & RELAX_NOMACRO)
3574 return _("Macro instruction expanded into multiple instructions");
3575 else
3576 return 0;
3577 }
3578
3579 /* Finish up a macro. Emit warnings as appropriate. */
3580
3581 static void
3582 macro_end (void)
3583 {
3584 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3585 {
3586 relax_substateT subtype;
3587
3588 /* Set up the relaxation warning flags. */
3589 subtype = 0;
3590 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3591 subtype |= RELAX_SECOND_LONGER;
3592 if (mips_opts.warn_about_macros)
3593 subtype |= RELAX_NOMACRO;
3594 if (mips_macro_warning.delay_slot_p)
3595 subtype |= RELAX_DELAY_SLOT;
3596
3597 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3598 {
3599 /* Either the macro has a single implementation or both
3600 implementations are longer than 4 bytes. Emit the
3601 warning now. */
3602 const char *msg = macro_warning (subtype);
3603 if (msg != 0)
3604 as_warn ("%s", msg);
3605 }
3606 else
3607 {
3608 /* One implementation might need a warning but the other
3609 definitely doesn't. */
3610 mips_macro_warning.first_frag->fr_subtype |= subtype;
3611 }
3612 }
3613 }
3614
3615 /* Read a macro's relocation codes from *ARGS and store them in *R.
3616 The first argument in *ARGS will be either the code for a single
3617 relocation or -1 followed by the three codes that make up a
3618 composite relocation. */
3619
3620 static void
3621 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3622 {
3623 int i, next;
3624
3625 next = va_arg (*args, int);
3626 if (next >= 0)
3627 r[0] = (bfd_reloc_code_real_type) next;
3628 else
3629 for (i = 0; i < 3; i++)
3630 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3631 }
3632
3633 /* Build an instruction created by a macro expansion. This is passed
3634 a pointer to the count of instructions created so far, an
3635 expression, the name of the instruction to build, an operand format
3636 string, and corresponding arguments. */
3637
3638 static void
3639 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3640 {
3641 const struct mips_opcode *mo;
3642 struct mips_cl_insn insn;
3643 bfd_reloc_code_real_type r[3];
3644 va_list args;
3645
3646 va_start (args, fmt);
3647
3648 if (mips_opts.mips16)
3649 {
3650 mips16_macro_build (ep, name, fmt, &args);
3651 va_end (args);
3652 return;
3653 }
3654
3655 r[0] = BFD_RELOC_UNUSED;
3656 r[1] = BFD_RELOC_UNUSED;
3657 r[2] = BFD_RELOC_UNUSED;
3658 mo = (struct mips_opcode *) hash_find (op_hash, name);
3659 gas_assert (mo);
3660 gas_assert (strcmp (name, mo->name) == 0);
3661
3662 while (1)
3663 {
3664 /* Search until we get a match for NAME. It is assumed here that
3665 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3666 if (strcmp (fmt, mo->args) == 0
3667 && mo->pinfo != INSN_MACRO
3668 && is_opcode_valid (mo))
3669 break;
3670
3671 ++mo;
3672 gas_assert (mo->name);
3673 gas_assert (strcmp (name, mo->name) == 0);
3674 }
3675
3676 create_insn (&insn, mo);
3677 for (;;)
3678 {
3679 switch (*fmt++)
3680 {
3681 case '\0':
3682 break;
3683
3684 case ',':
3685 case '(':
3686 case ')':
3687 continue;
3688
3689 case '+':
3690 switch (*fmt++)
3691 {
3692 case 'A':
3693 case 'E':
3694 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3695 continue;
3696
3697 case 'B':
3698 case 'F':
3699 /* Note that in the macro case, these arguments are already
3700 in MSB form. (When handling the instruction in the
3701 non-macro case, these arguments are sizes from which
3702 MSB values must be calculated.) */
3703 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3704 continue;
3705
3706 case 'C':
3707 case 'G':
3708 case 'H':
3709 /* Note that in the macro case, these arguments are already
3710 in MSBD form. (When handling the instruction in the
3711 non-macro case, these arguments are sizes from which
3712 MSBD values must be calculated.) */
3713 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3714 continue;
3715
3716 case 'Q':
3717 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3718 continue;
3719
3720 default:
3721 internalError ();
3722 }
3723 continue;
3724
3725 case '2':
3726 INSERT_OPERAND (BP, insn, va_arg (args, int));
3727 continue;
3728
3729 case 't':
3730 case 'w':
3731 case 'E':
3732 INSERT_OPERAND (RT, insn, va_arg (args, int));
3733 continue;
3734
3735 case 'c':
3736 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3737 continue;
3738
3739 case 'T':
3740 case 'W':
3741 INSERT_OPERAND (FT, insn, va_arg (args, int));
3742 continue;
3743
3744 case 'd':
3745 case 'G':
3746 case 'K':
3747 INSERT_OPERAND (RD, insn, va_arg (args, int));
3748 continue;
3749
3750 case 'U':
3751 {
3752 int tmp = va_arg (args, int);
3753
3754 INSERT_OPERAND (RT, insn, tmp);
3755 INSERT_OPERAND (RD, insn, tmp);
3756 continue;
3757 }
3758
3759 case 'V':
3760 case 'S':
3761 INSERT_OPERAND (FS, insn, va_arg (args, int));
3762 continue;
3763
3764 case 'z':
3765 continue;
3766
3767 case '<':
3768 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3769 continue;
3770
3771 case 'D':
3772 INSERT_OPERAND (FD, insn, va_arg (args, int));
3773 continue;
3774
3775 case 'B':
3776 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3777 continue;
3778
3779 case 'J':
3780 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3781 continue;
3782
3783 case 'q':
3784 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3785 continue;
3786
3787 case 'b':
3788 case 's':
3789 case 'r':
3790 case 'v':
3791 INSERT_OPERAND (RS, insn, va_arg (args, int));
3792 continue;
3793
3794 case 'i':
3795 case 'j':
3796 macro_read_relocs (&args, r);
3797 gas_assert (*r == BFD_RELOC_GPREL16
3798 || *r == BFD_RELOC_MIPS_HIGHER
3799 || *r == BFD_RELOC_HI16_S
3800 || *r == BFD_RELOC_LO16
3801 || *r == BFD_RELOC_MIPS_GOT_OFST);
3802 continue;
3803
3804 case 'o':
3805 macro_read_relocs (&args, r);
3806 continue;
3807
3808 case 'u':
3809 macro_read_relocs (&args, r);
3810 gas_assert (ep != NULL
3811 && (ep->X_op == O_constant
3812 || (ep->X_op == O_symbol
3813 && (*r == BFD_RELOC_MIPS_HIGHEST
3814 || *r == BFD_RELOC_HI16_S
3815 || *r == BFD_RELOC_HI16
3816 || *r == BFD_RELOC_GPREL16
3817 || *r == BFD_RELOC_MIPS_GOT_HI16
3818 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3819 continue;
3820
3821 case 'p':
3822 gas_assert (ep != NULL);
3823
3824 /*
3825 * This allows macro() to pass an immediate expression for
3826 * creating short branches without creating a symbol.
3827 *
3828 * We don't allow branch relaxation for these branches, as
3829 * they should only appear in ".set nomacro" anyway.
3830 */
3831 if (ep->X_op == O_constant)
3832 {
3833 if ((ep->X_add_number & 3) != 0)
3834 as_bad (_("branch to misaligned address (0x%lx)"),
3835 (unsigned long) ep->X_add_number);
3836 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3837 as_bad (_("branch address range overflow (0x%lx)"),
3838 (unsigned long) ep->X_add_number);
3839 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3840 ep = NULL;
3841 }
3842 else
3843 *r = BFD_RELOC_16_PCREL_S2;
3844 continue;
3845
3846 case 'a':
3847 gas_assert (ep != NULL);
3848 *r = BFD_RELOC_MIPS_JMP;
3849 continue;
3850
3851 case 'C':
3852 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3853 continue;
3854
3855 case 'k':
3856 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3857 continue;
3858
3859 default:
3860 internalError ();
3861 }
3862 break;
3863 }
3864 va_end (args);
3865 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3866
3867 append_insn (&insn, ep, r);
3868 }
3869
3870 static void
3871 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3872 va_list *args)
3873 {
3874 struct mips_opcode *mo;
3875 struct mips_cl_insn insn;
3876 bfd_reloc_code_real_type r[3]
3877 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3878
3879 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3880 gas_assert (mo);
3881 gas_assert (strcmp (name, mo->name) == 0);
3882
3883 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3884 {
3885 ++mo;
3886 gas_assert (mo->name);
3887 gas_assert (strcmp (name, mo->name) == 0);
3888 }
3889
3890 create_insn (&insn, mo);
3891 for (;;)
3892 {
3893 int c;
3894
3895 c = *fmt++;
3896 switch (c)
3897 {
3898 case '\0':
3899 break;
3900
3901 case ',':
3902 case '(':
3903 case ')':
3904 continue;
3905
3906 case 'y':
3907 case 'w':
3908 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
3909 continue;
3910
3911 case 'x':
3912 case 'v':
3913 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
3914 continue;
3915
3916 case 'z':
3917 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
3918 continue;
3919
3920 case 'Z':
3921 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
3922 continue;
3923
3924 case '0':
3925 case 'S':
3926 case 'P':
3927 case 'R':
3928 continue;
3929
3930 case 'X':
3931 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
3932 continue;
3933
3934 case 'Y':
3935 {
3936 int regno;
3937
3938 regno = va_arg (*args, int);
3939 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3940 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3941 }
3942 continue;
3943
3944 case '<':
3945 case '>':
3946 case '4':
3947 case '5':
3948 case 'H':
3949 case 'W':
3950 case 'D':
3951 case 'j':
3952 case '8':
3953 case 'V':
3954 case 'C':
3955 case 'U':
3956 case 'k':
3957 case 'K':
3958 case 'p':
3959 case 'q':
3960 {
3961 gas_assert (ep != NULL);
3962
3963 if (ep->X_op != O_constant)
3964 *r = (int) BFD_RELOC_UNUSED + c;
3965 else
3966 {
3967 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3968 FALSE, &insn.insn_opcode, &insn.use_extend,
3969 &insn.extend);
3970 ep = NULL;
3971 *r = BFD_RELOC_UNUSED;
3972 }
3973 }
3974 continue;
3975
3976 case '6':
3977 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
3978 continue;
3979 }
3980
3981 break;
3982 }
3983
3984 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3985
3986 append_insn (&insn, ep, r);
3987 }
3988
3989 /*
3990 * Sign-extend 32-bit mode constants that have bit 31 set and all
3991 * higher bits unset.
3992 */
3993 static void
3994 normalize_constant_expr (expressionS *ex)
3995 {
3996 if (ex->X_op == O_constant
3997 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3998 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3999 - 0x80000000);
4000 }
4001
4002 /*
4003 * Sign-extend 32-bit mode address offsets that have bit 31 set and
4004 * all higher bits unset.
4005 */
4006 static void
4007 normalize_address_expr (expressionS *ex)
4008 {
4009 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
4010 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
4011 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
4012 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
4013 - 0x80000000);
4014 }
4015
4016 /*
4017 * Generate a "jalr" instruction with a relocation hint to the called
4018 * function. This occurs in NewABI PIC code.
4019 */
4020 static void
4021 macro_build_jalr (expressionS *ep)
4022 {
4023 char *f = NULL;
4024
4025 if (MIPS_JALR_HINT_P (ep))
4026 {
4027 frag_grow (8);
4028 f = frag_more (0);
4029 }
4030 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4031 if (MIPS_JALR_HINT_P (ep))
4032 fix_new_exp (frag_now, f - frag_now->fr_literal,
4033 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4034 }
4035
4036 /*
4037 * Generate a "lui" instruction.
4038 */
4039 static void
4040 macro_build_lui (expressionS *ep, int regnum)
4041 {
4042 expressionS high_expr;
4043 const struct mips_opcode *mo;
4044 struct mips_cl_insn insn;
4045 bfd_reloc_code_real_type r[3]
4046 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4047 const char *name = "lui";
4048 const char *fmt = "t,u";
4049
4050 gas_assert (! mips_opts.mips16);
4051
4052 high_expr = *ep;
4053
4054 if (high_expr.X_op == O_constant)
4055 {
4056 /* We can compute the instruction now without a relocation entry. */
4057 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4058 >> 16) & 0xffff;
4059 *r = BFD_RELOC_UNUSED;
4060 }
4061 else
4062 {
4063 gas_assert (ep->X_op == O_symbol);
4064 /* _gp_disp is a special case, used from s_cpload.
4065 __gnu_local_gp is used if mips_no_shared. */
4066 gas_assert (mips_pic == NO_PIC
4067 || (! HAVE_NEWABI
4068 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4069 || (! mips_in_shared
4070 && strcmp (S_GET_NAME (ep->X_add_symbol),
4071 "__gnu_local_gp") == 0));
4072 *r = BFD_RELOC_HI16_S;
4073 }
4074
4075 mo = hash_find (op_hash, name);
4076 gas_assert (strcmp (name, mo->name) == 0);
4077 gas_assert (strcmp (fmt, mo->args) == 0);
4078 create_insn (&insn, mo);
4079
4080 insn.insn_opcode = insn.insn_mo->match;
4081 INSERT_OPERAND (RT, insn, regnum);
4082 if (*r == BFD_RELOC_UNUSED)
4083 {
4084 insn.insn_opcode |= high_expr.X_add_number;
4085 append_insn (&insn, NULL, r);
4086 }
4087 else
4088 append_insn (&insn, &high_expr, r);
4089 }
4090
4091 /* Generate a sequence of instructions to do a load or store from a constant
4092 offset off of a base register (breg) into/from a target register (treg),
4093 using AT if necessary. */
4094 static void
4095 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4096 int treg, int breg, int dbl)
4097 {
4098 gas_assert (ep->X_op == O_constant);
4099
4100 /* Sign-extending 32-bit constants makes their handling easier. */
4101 if (!dbl)
4102 normalize_constant_expr (ep);
4103
4104 /* Right now, this routine can only handle signed 32-bit constants. */
4105 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4106 as_warn (_("operand overflow"));
4107
4108 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4109 {
4110 /* Signed 16-bit offset will fit in the op. Easy! */
4111 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4112 }
4113 else
4114 {
4115 /* 32-bit offset, need multiple instructions and AT, like:
4116 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4117 addu $tempreg,$tempreg,$breg
4118 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4119 to handle the complete offset. */
4120 macro_build_lui (ep, AT);
4121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4122 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4123
4124 if (!mips_opts.at)
4125 as_bad (_("Macro used $at after \".set noat\""));
4126 }
4127 }
4128
4129 /* set_at()
4130 * Generates code to set the $at register to true (one)
4131 * if reg is less than the immediate expression.
4132 */
4133 static void
4134 set_at (int reg, int unsignedp)
4135 {
4136 if (imm_expr.X_op == O_constant
4137 && imm_expr.X_add_number >= -0x8000
4138 && imm_expr.X_add_number < 0x8000)
4139 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4140 AT, reg, BFD_RELOC_LO16);
4141 else
4142 {
4143 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4144 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4145 }
4146 }
4147
4148 /* Warn if an expression is not a constant. */
4149
4150 static void
4151 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4152 {
4153 if (ex->X_op == O_big)
4154 as_bad (_("unsupported large constant"));
4155 else if (ex->X_op != O_constant)
4156 as_bad (_("Instruction %s requires absolute expression"),
4157 ip->insn_mo->name);
4158
4159 if (HAVE_32BIT_GPRS)
4160 normalize_constant_expr (ex);
4161 }
4162
4163 /* Count the leading zeroes by performing a binary chop. This is a
4164 bulky bit of source, but performance is a LOT better for the
4165 majority of values than a simple loop to count the bits:
4166 for (lcnt = 0; (lcnt < 32); lcnt++)
4167 if ((v) & (1 << (31 - lcnt)))
4168 break;
4169 However it is not code size friendly, and the gain will drop a bit
4170 on certain cached systems.
4171 */
4172 #define COUNT_TOP_ZEROES(v) \
4173 (((v) & ~0xffff) == 0 \
4174 ? ((v) & ~0xff) == 0 \
4175 ? ((v) & ~0xf) == 0 \
4176 ? ((v) & ~0x3) == 0 \
4177 ? ((v) & ~0x1) == 0 \
4178 ? !(v) \
4179 ? 32 \
4180 : 31 \
4181 : 30 \
4182 : ((v) & ~0x7) == 0 \
4183 ? 29 \
4184 : 28 \
4185 : ((v) & ~0x3f) == 0 \
4186 ? ((v) & ~0x1f) == 0 \
4187 ? 27 \
4188 : 26 \
4189 : ((v) & ~0x7f) == 0 \
4190 ? 25 \
4191 : 24 \
4192 : ((v) & ~0xfff) == 0 \
4193 ? ((v) & ~0x3ff) == 0 \
4194 ? ((v) & ~0x1ff) == 0 \
4195 ? 23 \
4196 : 22 \
4197 : ((v) & ~0x7ff) == 0 \
4198 ? 21 \
4199 : 20 \
4200 : ((v) & ~0x3fff) == 0 \
4201 ? ((v) & ~0x1fff) == 0 \
4202 ? 19 \
4203 : 18 \
4204 : ((v) & ~0x7fff) == 0 \
4205 ? 17 \
4206 : 16 \
4207 : ((v) & ~0xffffff) == 0 \
4208 ? ((v) & ~0xfffff) == 0 \
4209 ? ((v) & ~0x3ffff) == 0 \
4210 ? ((v) & ~0x1ffff) == 0 \
4211 ? 15 \
4212 : 14 \
4213 : ((v) & ~0x7ffff) == 0 \
4214 ? 13 \
4215 : 12 \
4216 : ((v) & ~0x3fffff) == 0 \
4217 ? ((v) & ~0x1fffff) == 0 \
4218 ? 11 \
4219 : 10 \
4220 : ((v) & ~0x7fffff) == 0 \
4221 ? 9 \
4222 : 8 \
4223 : ((v) & ~0xfffffff) == 0 \
4224 ? ((v) & ~0x3ffffff) == 0 \
4225 ? ((v) & ~0x1ffffff) == 0 \
4226 ? 7 \
4227 : 6 \
4228 : ((v) & ~0x7ffffff) == 0 \
4229 ? 5 \
4230 : 4 \
4231 : ((v) & ~0x3fffffff) == 0 \
4232 ? ((v) & ~0x1fffffff) == 0 \
4233 ? 3 \
4234 : 2 \
4235 : ((v) & ~0x7fffffff) == 0 \
4236 ? 1 \
4237 : 0)
4238
4239 /* load_register()
4240 * This routine generates the least number of instructions necessary to load
4241 * an absolute expression value into a register.
4242 */
4243 static void
4244 load_register (int reg, expressionS *ep, int dbl)
4245 {
4246 int freg;
4247 expressionS hi32, lo32;
4248
4249 if (ep->X_op != O_big)
4250 {
4251 gas_assert (ep->X_op == O_constant);
4252
4253 /* Sign-extending 32-bit constants makes their handling easier. */
4254 if (!dbl)
4255 normalize_constant_expr (ep);
4256
4257 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4258 {
4259 /* We can handle 16 bit signed values with an addiu to
4260 $zero. No need to ever use daddiu here, since $zero and
4261 the result are always correct in 32 bit mode. */
4262 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4263 return;
4264 }
4265 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4266 {
4267 /* We can handle 16 bit unsigned values with an ori to
4268 $zero. */
4269 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4270 return;
4271 }
4272 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4273 {
4274 /* 32 bit values require an lui. */
4275 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4276 if ((ep->X_add_number & 0xffff) != 0)
4277 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4278 return;
4279 }
4280 }
4281
4282 /* The value is larger than 32 bits. */
4283
4284 if (!dbl || HAVE_32BIT_GPRS)
4285 {
4286 char value[32];
4287
4288 sprintf_vma (value, ep->X_add_number);
4289 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4290 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4291 return;
4292 }
4293
4294 if (ep->X_op != O_big)
4295 {
4296 hi32 = *ep;
4297 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4298 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4299 hi32.X_add_number &= 0xffffffff;
4300 lo32 = *ep;
4301 lo32.X_add_number &= 0xffffffff;
4302 }
4303 else
4304 {
4305 gas_assert (ep->X_add_number > 2);
4306 if (ep->X_add_number == 3)
4307 generic_bignum[3] = 0;
4308 else if (ep->X_add_number > 4)
4309 as_bad (_("Number larger than 64 bits"));
4310 lo32.X_op = O_constant;
4311 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4312 hi32.X_op = O_constant;
4313 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4314 }
4315
4316 if (hi32.X_add_number == 0)
4317 freg = 0;
4318 else
4319 {
4320 int shift, bit;
4321 unsigned long hi, lo;
4322
4323 if (hi32.X_add_number == (offsetT) 0xffffffff)
4324 {
4325 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4326 {
4327 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4328 return;
4329 }
4330 if (lo32.X_add_number & 0x80000000)
4331 {
4332 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4333 if (lo32.X_add_number & 0xffff)
4334 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4335 return;
4336 }
4337 }
4338
4339 /* Check for 16bit shifted constant. We know that hi32 is
4340 non-zero, so start the mask on the first bit of the hi32
4341 value. */
4342 shift = 17;
4343 do
4344 {
4345 unsigned long himask, lomask;
4346
4347 if (shift < 32)
4348 {
4349 himask = 0xffff >> (32 - shift);
4350 lomask = (0xffff << shift) & 0xffffffff;
4351 }
4352 else
4353 {
4354 himask = 0xffff << (shift - 32);
4355 lomask = 0;
4356 }
4357 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4358 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4359 {
4360 expressionS tmp;
4361
4362 tmp.X_op = O_constant;
4363 if (shift < 32)
4364 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4365 | (lo32.X_add_number >> shift));
4366 else
4367 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4368 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4369 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4370 reg, reg, (shift >= 32) ? shift - 32 : shift);
4371 return;
4372 }
4373 ++shift;
4374 }
4375 while (shift <= (64 - 16));
4376
4377 /* Find the bit number of the lowest one bit, and store the
4378 shifted value in hi/lo. */
4379 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4380 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4381 if (lo != 0)
4382 {
4383 bit = 0;
4384 while ((lo & 1) == 0)
4385 {
4386 lo >>= 1;
4387 ++bit;
4388 }
4389 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4390 hi >>= bit;
4391 }
4392 else
4393 {
4394 bit = 32;
4395 while ((hi & 1) == 0)
4396 {
4397 hi >>= 1;
4398 ++bit;
4399 }
4400 lo = hi;
4401 hi = 0;
4402 }
4403
4404 /* Optimize if the shifted value is a (power of 2) - 1. */
4405 if ((hi == 0 && ((lo + 1) & lo) == 0)
4406 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4407 {
4408 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4409 if (shift != 0)
4410 {
4411 expressionS tmp;
4412
4413 /* This instruction will set the register to be all
4414 ones. */
4415 tmp.X_op = O_constant;
4416 tmp.X_add_number = (offsetT) -1;
4417 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4418 if (bit != 0)
4419 {
4420 bit += shift;
4421 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4422 reg, reg, (bit >= 32) ? bit - 32 : bit);
4423 }
4424 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4425 reg, reg, (shift >= 32) ? shift - 32 : shift);
4426 return;
4427 }
4428 }
4429
4430 /* Sign extend hi32 before calling load_register, because we can
4431 generally get better code when we load a sign extended value. */
4432 if ((hi32.X_add_number & 0x80000000) != 0)
4433 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4434 load_register (reg, &hi32, 0);
4435 freg = reg;
4436 }
4437 if ((lo32.X_add_number & 0xffff0000) == 0)
4438 {
4439 if (freg != 0)
4440 {
4441 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4442 freg = reg;
4443 }
4444 }
4445 else
4446 {
4447 expressionS mid16;
4448
4449 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4450 {
4451 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4452 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4453 return;
4454 }
4455
4456 if (freg != 0)
4457 {
4458 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4459 freg = reg;
4460 }
4461 mid16 = lo32;
4462 mid16.X_add_number >>= 16;
4463 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4464 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4465 freg = reg;
4466 }
4467 if ((lo32.X_add_number & 0xffff) != 0)
4468 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4469 }
4470
4471 static inline void
4472 load_delay_nop (void)
4473 {
4474 if (!gpr_interlocks)
4475 macro_build (NULL, "nop", "");
4476 }
4477
4478 /* Load an address into a register. */
4479
4480 static void
4481 load_address (int reg, expressionS *ep, int *used_at)
4482 {
4483 if (ep->X_op != O_constant
4484 && ep->X_op != O_symbol)
4485 {
4486 as_bad (_("expression too complex"));
4487 ep->X_op = O_constant;
4488 }
4489
4490 if (ep->X_op == O_constant)
4491 {
4492 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4493 return;
4494 }
4495
4496 if (mips_pic == NO_PIC)
4497 {
4498 /* If this is a reference to a GP relative symbol, we want
4499 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4500 Otherwise we want
4501 lui $reg,<sym> (BFD_RELOC_HI16_S)
4502 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4503 If we have an addend, we always use the latter form.
4504
4505 With 64bit address space and a usable $at we want
4506 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4507 lui $at,<sym> (BFD_RELOC_HI16_S)
4508 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4509 daddiu $at,<sym> (BFD_RELOC_LO16)
4510 dsll32 $reg,0
4511 daddu $reg,$reg,$at
4512
4513 If $at is already in use, we use a path which is suboptimal
4514 on superscalar processors.
4515 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4516 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4517 dsll $reg,16
4518 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4519 dsll $reg,16
4520 daddiu $reg,<sym> (BFD_RELOC_LO16)
4521
4522 For GP relative symbols in 64bit address space we can use
4523 the same sequence as in 32bit address space. */
4524 if (HAVE_64BIT_SYMBOLS)
4525 {
4526 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4527 && !nopic_need_relax (ep->X_add_symbol, 1))
4528 {
4529 relax_start (ep->X_add_symbol);
4530 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4531 mips_gp_register, BFD_RELOC_GPREL16);
4532 relax_switch ();
4533 }
4534
4535 if (*used_at == 0 && mips_opts.at)
4536 {
4537 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4538 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4539 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4540 BFD_RELOC_MIPS_HIGHER);
4541 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4542 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4543 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4544 *used_at = 1;
4545 }
4546 else
4547 {
4548 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4549 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4550 BFD_RELOC_MIPS_HIGHER);
4551 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4552 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4553 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4554 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4555 }
4556
4557 if (mips_relax.sequence)
4558 relax_end ();
4559 }
4560 else
4561 {
4562 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4563 && !nopic_need_relax (ep->X_add_symbol, 1))
4564 {
4565 relax_start (ep->X_add_symbol);
4566 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4567 mips_gp_register, BFD_RELOC_GPREL16);
4568 relax_switch ();
4569 }
4570 macro_build_lui (ep, reg);
4571 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4572 reg, reg, BFD_RELOC_LO16);
4573 if (mips_relax.sequence)
4574 relax_end ();
4575 }
4576 }
4577 else if (!mips_big_got)
4578 {
4579 expressionS ex;
4580
4581 /* If this is a reference to an external symbol, we want
4582 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4583 Otherwise we want
4584 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4585 nop
4586 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4587 If there is a constant, it must be added in after.
4588
4589 If we have NewABI, we want
4590 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4591 unless we're referencing a global symbol with a non-zero
4592 offset, in which case cst must be added separately. */
4593 if (HAVE_NEWABI)
4594 {
4595 if (ep->X_add_number)
4596 {
4597 ex.X_add_number = ep->X_add_number;
4598 ep->X_add_number = 0;
4599 relax_start (ep->X_add_symbol);
4600 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4601 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4602 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4603 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4604 ex.X_op = O_constant;
4605 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4606 reg, reg, BFD_RELOC_LO16);
4607 ep->X_add_number = ex.X_add_number;
4608 relax_switch ();
4609 }
4610 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4611 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4612 if (mips_relax.sequence)
4613 relax_end ();
4614 }
4615 else
4616 {
4617 ex.X_add_number = ep->X_add_number;
4618 ep->X_add_number = 0;
4619 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4620 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4621 load_delay_nop ();
4622 relax_start (ep->X_add_symbol);
4623 relax_switch ();
4624 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4625 BFD_RELOC_LO16);
4626 relax_end ();
4627
4628 if (ex.X_add_number != 0)
4629 {
4630 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4631 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4632 ex.X_op = O_constant;
4633 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4634 reg, reg, BFD_RELOC_LO16);
4635 }
4636 }
4637 }
4638 else if (mips_big_got)
4639 {
4640 expressionS ex;
4641
4642 /* This is the large GOT case. If this is a reference to an
4643 external symbol, we want
4644 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4645 addu $reg,$reg,$gp
4646 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4647
4648 Otherwise, for a reference to a local symbol in old ABI, we want
4649 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4650 nop
4651 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4652 If there is a constant, it must be added in after.
4653
4654 In the NewABI, for local symbols, with or without offsets, we want:
4655 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4656 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4657 */
4658 if (HAVE_NEWABI)
4659 {
4660 ex.X_add_number = ep->X_add_number;
4661 ep->X_add_number = 0;
4662 relax_start (ep->X_add_symbol);
4663 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4664 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4665 reg, reg, mips_gp_register);
4666 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4667 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4668 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4669 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4670 else if (ex.X_add_number)
4671 {
4672 ex.X_op = O_constant;
4673 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4674 BFD_RELOC_LO16);
4675 }
4676
4677 ep->X_add_number = ex.X_add_number;
4678 relax_switch ();
4679 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4680 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4681 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4682 BFD_RELOC_MIPS_GOT_OFST);
4683 relax_end ();
4684 }
4685 else
4686 {
4687 ex.X_add_number = ep->X_add_number;
4688 ep->X_add_number = 0;
4689 relax_start (ep->X_add_symbol);
4690 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4691 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4692 reg, reg, mips_gp_register);
4693 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4694 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4695 relax_switch ();
4696 if (reg_needs_delay (mips_gp_register))
4697 {
4698 /* We need a nop before loading from $gp. This special
4699 check is required because the lui which starts the main
4700 instruction stream does not refer to $gp, and so will not
4701 insert the nop which may be required. */
4702 macro_build (NULL, "nop", "");
4703 }
4704 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4705 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4706 load_delay_nop ();
4707 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4708 BFD_RELOC_LO16);
4709 relax_end ();
4710
4711 if (ex.X_add_number != 0)
4712 {
4713 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4714 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4715 ex.X_op = O_constant;
4716 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4717 BFD_RELOC_LO16);
4718 }
4719 }
4720 }
4721 else
4722 abort ();
4723
4724 if (!mips_opts.at && *used_at == 1)
4725 as_bad (_("Macro used $at after \".set noat\""));
4726 }
4727
4728 /* Move the contents of register SOURCE into register DEST. */
4729
4730 static void
4731 move_register (int dest, int source)
4732 {
4733 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4734 dest, source, 0);
4735 }
4736
4737 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4738 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4739 The two alternatives are:
4740
4741 Global symbol Local sybmol
4742 ------------- ------------
4743 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4744 ... ...
4745 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4746
4747 load_got_offset emits the first instruction and add_got_offset
4748 emits the second for a 16-bit offset or add_got_offset_hilo emits
4749 a sequence to add a 32-bit offset using a scratch register. */
4750
4751 static void
4752 load_got_offset (int dest, expressionS *local)
4753 {
4754 expressionS global;
4755
4756 global = *local;
4757 global.X_add_number = 0;
4758
4759 relax_start (local->X_add_symbol);
4760 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4761 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4762 relax_switch ();
4763 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4764 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4765 relax_end ();
4766 }
4767
4768 static void
4769 add_got_offset (int dest, expressionS *local)
4770 {
4771 expressionS global;
4772
4773 global.X_op = O_constant;
4774 global.X_op_symbol = NULL;
4775 global.X_add_symbol = NULL;
4776 global.X_add_number = local->X_add_number;
4777
4778 relax_start (local->X_add_symbol);
4779 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4780 dest, dest, BFD_RELOC_LO16);
4781 relax_switch ();
4782 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4783 relax_end ();
4784 }
4785
4786 static void
4787 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4788 {
4789 expressionS global;
4790 int hold_mips_optimize;
4791
4792 global.X_op = O_constant;
4793 global.X_op_symbol = NULL;
4794 global.X_add_symbol = NULL;
4795 global.X_add_number = local->X_add_number;
4796
4797 relax_start (local->X_add_symbol);
4798 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4799 relax_switch ();
4800 /* Set mips_optimize around the lui instruction to avoid
4801 inserting an unnecessary nop after the lw. */
4802 hold_mips_optimize = mips_optimize;
4803 mips_optimize = 2;
4804 macro_build_lui (&global, tmp);
4805 mips_optimize = hold_mips_optimize;
4806 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4807 relax_end ();
4808
4809 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4810 }
4811
4812 /*
4813 * Build macros
4814 * This routine implements the seemingly endless macro or synthesized
4815 * instructions and addressing modes in the mips assembly language. Many
4816 * of these macros are simple and are similar to each other. These could
4817 * probably be handled by some kind of table or grammar approach instead of
4818 * this verbose method. Others are not simple macros but are more like
4819 * optimizing code generation.
4820 * One interesting optimization is when several store macros appear
4821 * consecutively that would load AT with the upper half of the same address.
4822 * The ensuing load upper instructions are ommited. This implies some kind
4823 * of global optimization. We currently only optimize within a single macro.
4824 * For many of the load and store macros if the address is specified as a
4825 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4826 * first load register 'at' with zero and use it as the base register. The
4827 * mips assembler simply uses register $zero. Just one tiny optimization
4828 * we're missing.
4829 */
4830 static void
4831 macro (struct mips_cl_insn *ip)
4832 {
4833 unsigned int treg, sreg, dreg, breg;
4834 unsigned int tempreg;
4835 int mask;
4836 int used_at = 0;
4837 expressionS expr1;
4838 const char *s;
4839 const char *s2;
4840 const char *fmt;
4841 int likely = 0;
4842 int dbl = 0;
4843 int coproc = 0;
4844 int lr = 0;
4845 int imm = 0;
4846 int call = 0;
4847 int off;
4848 offsetT maxnum;
4849 bfd_reloc_code_real_type r;
4850 int hold_mips_optimize;
4851
4852 gas_assert (! mips_opts.mips16);
4853
4854 treg = EXTRACT_OPERAND (RT, *ip);
4855 dreg = EXTRACT_OPERAND (RD, *ip);
4856 sreg = breg = EXTRACT_OPERAND (RS, *ip);
4857 mask = ip->insn_mo->mask;
4858
4859 expr1.X_op = O_constant;
4860 expr1.X_op_symbol = NULL;
4861 expr1.X_add_symbol = NULL;
4862 expr1.X_add_number = 1;
4863
4864 switch (mask)
4865 {
4866 case M_DABS:
4867 dbl = 1;
4868 case M_ABS:
4869 /* bgez $a0,.+12
4870 move v0,$a0
4871 sub v0,$zero,$a0
4872 */
4873
4874 start_noreorder ();
4875
4876 expr1.X_add_number = 8;
4877 macro_build (&expr1, "bgez", "s,p", sreg);
4878 if (dreg == sreg)
4879 macro_build (NULL, "nop", "");
4880 else
4881 move_register (dreg, sreg);
4882 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4883
4884 end_noreorder ();
4885 break;
4886
4887 case M_ADD_I:
4888 s = "addi";
4889 s2 = "add";
4890 goto do_addi;
4891 case M_ADDU_I:
4892 s = "addiu";
4893 s2 = "addu";
4894 goto do_addi;
4895 case M_DADD_I:
4896 dbl = 1;
4897 s = "daddi";
4898 s2 = "dadd";
4899 goto do_addi;
4900 case M_DADDU_I:
4901 dbl = 1;
4902 s = "daddiu";
4903 s2 = "daddu";
4904 do_addi:
4905 if (imm_expr.X_op == O_constant
4906 && imm_expr.X_add_number >= -0x8000
4907 && imm_expr.X_add_number < 0x8000)
4908 {
4909 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4910 break;
4911 }
4912 used_at = 1;
4913 load_register (AT, &imm_expr, dbl);
4914 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4915 break;
4916
4917 case M_AND_I:
4918 s = "andi";
4919 s2 = "and";
4920 goto do_bit;
4921 case M_OR_I:
4922 s = "ori";
4923 s2 = "or";
4924 goto do_bit;
4925 case M_NOR_I:
4926 s = "";
4927 s2 = "nor";
4928 goto do_bit;
4929 case M_XOR_I:
4930 s = "xori";
4931 s2 = "xor";
4932 do_bit:
4933 if (imm_expr.X_op == O_constant
4934 && imm_expr.X_add_number >= 0
4935 && imm_expr.X_add_number < 0x10000)
4936 {
4937 if (mask != M_NOR_I)
4938 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4939 else
4940 {
4941 macro_build (&imm_expr, "ori", "t,r,i",
4942 treg, sreg, BFD_RELOC_LO16);
4943 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4944 }
4945 break;
4946 }
4947
4948 used_at = 1;
4949 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4950 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4951 break;
4952
4953 case M_BALIGN:
4954 switch (imm_expr.X_add_number)
4955 {
4956 case 0:
4957 macro_build (NULL, "nop", "");
4958 break;
4959 case 2:
4960 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4961 break;
4962 default:
4963 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4964 (int) imm_expr.X_add_number);
4965 break;
4966 }
4967 break;
4968
4969 case M_BEQ_I:
4970 s = "beq";
4971 goto beq_i;
4972 case M_BEQL_I:
4973 s = "beql";
4974 likely = 1;
4975 goto beq_i;
4976 case M_BNE_I:
4977 s = "bne";
4978 goto beq_i;
4979 case M_BNEL_I:
4980 s = "bnel";
4981 likely = 1;
4982 beq_i:
4983 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4984 {
4985 macro_build (&offset_expr, s, "s,t,p", sreg, ZERO);
4986 break;
4987 }
4988 used_at = 1;
4989 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4990 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4991 break;
4992
4993 case M_BGEL:
4994 likely = 1;
4995 case M_BGE:
4996 if (treg == 0)
4997 {
4998 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4999 break;
5000 }
5001 if (sreg == 0)
5002 {
5003 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
5004 break;
5005 }
5006 used_at = 1;
5007 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5008 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5009 break;
5010
5011 case M_BGTL_I:
5012 likely = 1;
5013 case M_BGT_I:
5014 /* Check for > max integer. */
5015 maxnum = 0x7fffffff;
5016 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5017 {
5018 maxnum <<= 16;
5019 maxnum |= 0xffff;
5020 maxnum <<= 16;
5021 maxnum |= 0xffff;
5022 }
5023 if (imm_expr.X_op == O_constant
5024 && imm_expr.X_add_number >= maxnum
5025 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5026 {
5027 do_false:
5028 /* Result is always false. */
5029 if (! likely)
5030 macro_build (NULL, "nop", "");
5031 else
5032 macro_build (&offset_expr, "bnel", "s,t,p", ZERO, ZERO);
5033 break;
5034 }
5035 if (imm_expr.X_op != O_constant)
5036 as_bad (_("Unsupported large constant"));
5037 ++imm_expr.X_add_number;
5038 /* FALLTHROUGH */
5039 case M_BGE_I:
5040 case M_BGEL_I:
5041 if (mask == M_BGEL_I)
5042 likely = 1;
5043 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5044 {
5045 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5046 break;
5047 }
5048 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5049 {
5050 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5051 break;
5052 }
5053 maxnum = 0x7fffffff;
5054 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5055 {
5056 maxnum <<= 16;
5057 maxnum |= 0xffff;
5058 maxnum <<= 16;
5059 maxnum |= 0xffff;
5060 }
5061 maxnum = - maxnum - 1;
5062 if (imm_expr.X_op == O_constant
5063 && imm_expr.X_add_number <= maxnum
5064 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5065 {
5066 do_true:
5067 /* result is always true */
5068 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5069 macro_build (&offset_expr, "b", "p");
5070 break;
5071 }
5072 used_at = 1;
5073 set_at (sreg, 0);
5074 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5075 break;
5076
5077 case M_BGEUL:
5078 likely = 1;
5079 case M_BGEU:
5080 if (treg == 0)
5081 goto do_true;
5082 if (sreg == 0)
5083 {
5084 macro_build (&offset_expr, likely ? "beql" : "beq",
5085 "s,t,p", ZERO, treg);
5086 break;
5087 }
5088 used_at = 1;
5089 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5090 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5091 break;
5092
5093 case M_BGTUL_I:
5094 likely = 1;
5095 case M_BGTU_I:
5096 if (sreg == 0
5097 || (HAVE_32BIT_GPRS
5098 && imm_expr.X_op == O_constant
5099 && imm_expr.X_add_number == -1))
5100 goto do_false;
5101 if (imm_expr.X_op != O_constant)
5102 as_bad (_("Unsupported large constant"));
5103 ++imm_expr.X_add_number;
5104 /* FALLTHROUGH */
5105 case M_BGEU_I:
5106 case M_BGEUL_I:
5107 if (mask == M_BGEUL_I)
5108 likely = 1;
5109 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5110 goto do_true;
5111 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5112 {
5113 macro_build (&offset_expr, likely ? "bnel" : "bne",
5114 "s,t,p", sreg, ZERO);
5115 break;
5116 }
5117 used_at = 1;
5118 set_at (sreg, 1);
5119 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5120 break;
5121
5122 case M_BGTL:
5123 likely = 1;
5124 case M_BGT:
5125 if (treg == 0)
5126 {
5127 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5128 break;
5129 }
5130 if (sreg == 0)
5131 {
5132 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5133 break;
5134 }
5135 used_at = 1;
5136 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5137 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5138 break;
5139
5140 case M_BGTUL:
5141 likely = 1;
5142 case M_BGTU:
5143 if (treg == 0)
5144 {
5145 macro_build (&offset_expr, likely ? "bnel" : "bne",
5146 "s,t,p", sreg, ZERO);
5147 break;
5148 }
5149 if (sreg == 0)
5150 goto do_false;
5151 used_at = 1;
5152 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5153 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5154 break;
5155
5156 case M_BLEL:
5157 likely = 1;
5158 case M_BLE:
5159 if (treg == 0)
5160 {
5161 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5162 break;
5163 }
5164 if (sreg == 0)
5165 {
5166 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5167 break;
5168 }
5169 used_at = 1;
5170 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5171 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5172 break;
5173
5174 case M_BLEL_I:
5175 likely = 1;
5176 case M_BLE_I:
5177 maxnum = 0x7fffffff;
5178 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5179 {
5180 maxnum <<= 16;
5181 maxnum |= 0xffff;
5182 maxnum <<= 16;
5183 maxnum |= 0xffff;
5184 }
5185 if (imm_expr.X_op == O_constant
5186 && imm_expr.X_add_number >= maxnum
5187 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5188 goto do_true;
5189 if (imm_expr.X_op != O_constant)
5190 as_bad (_("Unsupported large constant"));
5191 ++imm_expr.X_add_number;
5192 /* FALLTHROUGH */
5193 case M_BLT_I:
5194 case M_BLTL_I:
5195 if (mask == M_BLTL_I)
5196 likely = 1;
5197 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5198 {
5199 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5200 break;
5201 }
5202 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5203 {
5204 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5205 break;
5206 }
5207 used_at = 1;
5208 set_at (sreg, 0);
5209 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5210 break;
5211
5212 case M_BLEUL:
5213 likely = 1;
5214 case M_BLEU:
5215 if (treg == 0)
5216 {
5217 macro_build (&offset_expr, likely ? "beql" : "beq",
5218 "s,t,p", sreg, ZERO);
5219 break;
5220 }
5221 if (sreg == 0)
5222 goto do_true;
5223 used_at = 1;
5224 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5225 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5226 break;
5227
5228 case M_BLEUL_I:
5229 likely = 1;
5230 case M_BLEU_I:
5231 if (sreg == 0
5232 || (HAVE_32BIT_GPRS
5233 && imm_expr.X_op == O_constant
5234 && imm_expr.X_add_number == -1))
5235 goto do_true;
5236 if (imm_expr.X_op != O_constant)
5237 as_bad (_("Unsupported large constant"));
5238 ++imm_expr.X_add_number;
5239 /* FALLTHROUGH */
5240 case M_BLTU_I:
5241 case M_BLTUL_I:
5242 if (mask == M_BLTUL_I)
5243 likely = 1;
5244 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5245 goto do_false;
5246 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5247 {
5248 macro_build (&offset_expr, likely ? "beql" : "beq",
5249 "s,t,p", sreg, ZERO);
5250 break;
5251 }
5252 used_at = 1;
5253 set_at (sreg, 1);
5254 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5255 break;
5256
5257 case M_BLTL:
5258 likely = 1;
5259 case M_BLT:
5260 if (treg == 0)
5261 {
5262 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5263 break;
5264 }
5265 if (sreg == 0)
5266 {
5267 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5268 break;
5269 }
5270 used_at = 1;
5271 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5272 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5273 break;
5274
5275 case M_BLTUL:
5276 likely = 1;
5277 case M_BLTU:
5278 if (treg == 0)
5279 goto do_false;
5280 if (sreg == 0)
5281 {
5282 macro_build (&offset_expr, likely ? "bnel" : "bne",
5283 "s,t,p", ZERO, treg);
5284 break;
5285 }
5286 used_at = 1;
5287 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5288 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5289 break;
5290
5291 case M_DEXT:
5292 {
5293 /* Use unsigned arithmetic. */
5294 addressT pos;
5295 addressT size;
5296
5297 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5298 {
5299 as_bad (_("Unsupported large constant"));
5300 pos = size = 1;
5301 }
5302 else
5303 {
5304 pos = imm_expr.X_add_number;
5305 size = imm2_expr.X_add_number;
5306 }
5307
5308 if (pos > 63)
5309 {
5310 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5311 pos = 1;
5312 }
5313 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5314 {
5315 as_bad (_("Improper extract size (%lu, position %lu)"),
5316 (unsigned long) size, (unsigned long) pos);
5317 size = 1;
5318 }
5319
5320 if (size <= 32 && pos < 32)
5321 {
5322 s = "dext";
5323 fmt = "t,r,+A,+C";
5324 }
5325 else if (size <= 32)
5326 {
5327 s = "dextu";
5328 fmt = "t,r,+E,+H";
5329 }
5330 else
5331 {
5332 s = "dextm";
5333 fmt = "t,r,+A,+G";
5334 }
5335 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5336 (int) (size - 1));
5337 }
5338 break;
5339
5340 case M_DINS:
5341 {
5342 /* Use unsigned arithmetic. */
5343 addressT pos;
5344 addressT size;
5345
5346 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5347 {
5348 as_bad (_("Unsupported large constant"));
5349 pos = size = 1;
5350 }
5351 else
5352 {
5353 pos = imm_expr.X_add_number;
5354 size = imm2_expr.X_add_number;
5355 }
5356
5357 if (pos > 63)
5358 {
5359 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5360 pos = 1;
5361 }
5362 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5363 {
5364 as_bad (_("Improper insert size (%lu, position %lu)"),
5365 (unsigned long) size, (unsigned long) pos);
5366 size = 1;
5367 }
5368
5369 if (pos < 32 && (pos + size - 1) < 32)
5370 {
5371 s = "dins";
5372 fmt = "t,r,+A,+B";
5373 }
5374 else if (pos >= 32)
5375 {
5376 s = "dinsu";
5377 fmt = "t,r,+E,+F";
5378 }
5379 else
5380 {
5381 s = "dinsm";
5382 fmt = "t,r,+A,+F";
5383 }
5384 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5385 (int) (pos + size - 1));
5386 }
5387 break;
5388
5389 case M_DDIV_3:
5390 dbl = 1;
5391 case M_DIV_3:
5392 s = "mflo";
5393 goto do_div3;
5394 case M_DREM_3:
5395 dbl = 1;
5396 case M_REM_3:
5397 s = "mfhi";
5398 do_div3:
5399 if (treg == 0)
5400 {
5401 as_warn (_("Divide by zero."));
5402 if (mips_trap)
5403 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5404 else
5405 macro_build (NULL, "break", "c", 7);
5406 break;
5407 }
5408
5409 start_noreorder ();
5410 if (mips_trap)
5411 {
5412 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5413 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5414 }
5415 else
5416 {
5417 expr1.X_add_number = 8;
5418 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5419 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5420 macro_build (NULL, "break", "c", 7);
5421 }
5422 expr1.X_add_number = -1;
5423 used_at = 1;
5424 load_register (AT, &expr1, dbl);
5425 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5426 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5427 if (dbl)
5428 {
5429 expr1.X_add_number = 1;
5430 load_register (AT, &expr1, dbl);
5431 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5432 }
5433 else
5434 {
5435 expr1.X_add_number = 0x80000000;
5436 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5437 }
5438 if (mips_trap)
5439 {
5440 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5441 /* We want to close the noreorder block as soon as possible, so
5442 that later insns are available for delay slot filling. */
5443 end_noreorder ();
5444 }
5445 else
5446 {
5447 expr1.X_add_number = 8;
5448 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5449 macro_build (NULL, "nop", "");
5450
5451 /* We want to close the noreorder block as soon as possible, so
5452 that later insns are available for delay slot filling. */
5453 end_noreorder ();
5454
5455 macro_build (NULL, "break", "c", 6);
5456 }
5457 macro_build (NULL, s, "d", dreg);
5458 break;
5459
5460 case M_DIV_3I:
5461 s = "div";
5462 s2 = "mflo";
5463 goto do_divi;
5464 case M_DIVU_3I:
5465 s = "divu";
5466 s2 = "mflo";
5467 goto do_divi;
5468 case M_REM_3I:
5469 s = "div";
5470 s2 = "mfhi";
5471 goto do_divi;
5472 case M_REMU_3I:
5473 s = "divu";
5474 s2 = "mfhi";
5475 goto do_divi;
5476 case M_DDIV_3I:
5477 dbl = 1;
5478 s = "ddiv";
5479 s2 = "mflo";
5480 goto do_divi;
5481 case M_DDIVU_3I:
5482 dbl = 1;
5483 s = "ddivu";
5484 s2 = "mflo";
5485 goto do_divi;
5486 case M_DREM_3I:
5487 dbl = 1;
5488 s = "ddiv";
5489 s2 = "mfhi";
5490 goto do_divi;
5491 case M_DREMU_3I:
5492 dbl = 1;
5493 s = "ddivu";
5494 s2 = "mfhi";
5495 do_divi:
5496 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5497 {
5498 as_warn (_("Divide by zero."));
5499 if (mips_trap)
5500 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5501 else
5502 macro_build (NULL, "break", "c", 7);
5503 break;
5504 }
5505 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5506 {
5507 if (strcmp (s2, "mflo") == 0)
5508 move_register (dreg, sreg);
5509 else
5510 move_register (dreg, ZERO);
5511 break;
5512 }
5513 if (imm_expr.X_op == O_constant
5514 && imm_expr.X_add_number == -1
5515 && s[strlen (s) - 1] != 'u')
5516 {
5517 if (strcmp (s2, "mflo") == 0)
5518 {
5519 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5520 }
5521 else
5522 move_register (dreg, ZERO);
5523 break;
5524 }
5525
5526 used_at = 1;
5527 load_register (AT, &imm_expr, dbl);
5528 macro_build (NULL, s, "z,s,t", sreg, AT);
5529 macro_build (NULL, s2, "d", dreg);
5530 break;
5531
5532 case M_DIVU_3:
5533 s = "divu";
5534 s2 = "mflo";
5535 goto do_divu3;
5536 case M_REMU_3:
5537 s = "divu";
5538 s2 = "mfhi";
5539 goto do_divu3;
5540 case M_DDIVU_3:
5541 s = "ddivu";
5542 s2 = "mflo";
5543 goto do_divu3;
5544 case M_DREMU_3:
5545 s = "ddivu";
5546 s2 = "mfhi";
5547 do_divu3:
5548 start_noreorder ();
5549 if (mips_trap)
5550 {
5551 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5552 macro_build (NULL, s, "z,s,t", sreg, treg);
5553 /* We want to close the noreorder block as soon as possible, so
5554 that later insns are available for delay slot filling. */
5555 end_noreorder ();
5556 }
5557 else
5558 {
5559 expr1.X_add_number = 8;
5560 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5561 macro_build (NULL, s, "z,s,t", sreg, treg);
5562
5563 /* We want to close the noreorder block as soon as possible, so
5564 that later insns are available for delay slot filling. */
5565 end_noreorder ();
5566 macro_build (NULL, "break", "c", 7);
5567 }
5568 macro_build (NULL, s2, "d", dreg);
5569 break;
5570
5571 case M_DLCA_AB:
5572 dbl = 1;
5573 case M_LCA_AB:
5574 call = 1;
5575 goto do_la;
5576 case M_DLA_AB:
5577 dbl = 1;
5578 case M_LA_AB:
5579 do_la:
5580 /* Load the address of a symbol into a register. If breg is not
5581 zero, we then add a base register to it. */
5582
5583 if (dbl && HAVE_32BIT_GPRS)
5584 as_warn (_("dla used to load 32-bit register"));
5585
5586 if (!dbl && HAVE_64BIT_OBJECTS)
5587 as_warn (_("la used to load 64-bit address"));
5588
5589 if (offset_expr.X_op == O_constant
5590 && offset_expr.X_add_number >= -0x8000
5591 && offset_expr.X_add_number < 0x8000)
5592 {
5593 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5594 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5595 break;
5596 }
5597
5598 if (mips_opts.at && (treg == breg))
5599 {
5600 tempreg = AT;
5601 used_at = 1;
5602 }
5603 else
5604 {
5605 tempreg = treg;
5606 }
5607
5608 if (offset_expr.X_op != O_symbol
5609 && offset_expr.X_op != O_constant)
5610 {
5611 as_bad (_("Expression too complex"));
5612 offset_expr.X_op = O_constant;
5613 }
5614
5615 if (offset_expr.X_op == O_constant)
5616 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5617 else if (mips_pic == NO_PIC)
5618 {
5619 /* If this is a reference to a GP relative symbol, we want
5620 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5621 Otherwise we want
5622 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5623 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5624 If we have a constant, we need two instructions anyhow,
5625 so we may as well always use the latter form.
5626
5627 With 64bit address space and a usable $at we want
5628 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5629 lui $at,<sym> (BFD_RELOC_HI16_S)
5630 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5631 daddiu $at,<sym> (BFD_RELOC_LO16)
5632 dsll32 $tempreg,0
5633 daddu $tempreg,$tempreg,$at
5634
5635 If $at is already in use, we use a path which is suboptimal
5636 on superscalar processors.
5637 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5638 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5639 dsll $tempreg,16
5640 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5641 dsll $tempreg,16
5642 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5643
5644 For GP relative symbols in 64bit address space we can use
5645 the same sequence as in 32bit address space. */
5646 if (HAVE_64BIT_SYMBOLS)
5647 {
5648 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5649 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5650 {
5651 relax_start (offset_expr.X_add_symbol);
5652 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5653 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5654 relax_switch ();
5655 }
5656
5657 if (used_at == 0 && mips_opts.at)
5658 {
5659 macro_build (&offset_expr, "lui", "t,u",
5660 tempreg, BFD_RELOC_MIPS_HIGHEST);
5661 macro_build (&offset_expr, "lui", "t,u",
5662 AT, BFD_RELOC_HI16_S);
5663 macro_build (&offset_expr, "daddiu", "t,r,j",
5664 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5665 macro_build (&offset_expr, "daddiu", "t,r,j",
5666 AT, AT, BFD_RELOC_LO16);
5667 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5668 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5669 used_at = 1;
5670 }
5671 else
5672 {
5673 macro_build (&offset_expr, "lui", "t,u",
5674 tempreg, BFD_RELOC_MIPS_HIGHEST);
5675 macro_build (&offset_expr, "daddiu", "t,r,j",
5676 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5677 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5678 macro_build (&offset_expr, "daddiu", "t,r,j",
5679 tempreg, tempreg, BFD_RELOC_HI16_S);
5680 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5681 macro_build (&offset_expr, "daddiu", "t,r,j",
5682 tempreg, tempreg, BFD_RELOC_LO16);
5683 }
5684
5685 if (mips_relax.sequence)
5686 relax_end ();
5687 }
5688 else
5689 {
5690 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5691 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5692 {
5693 relax_start (offset_expr.X_add_symbol);
5694 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5695 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5696 relax_switch ();
5697 }
5698 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5699 as_bad (_("Offset too large"));
5700 macro_build_lui (&offset_expr, tempreg);
5701 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5702 tempreg, tempreg, BFD_RELOC_LO16);
5703 if (mips_relax.sequence)
5704 relax_end ();
5705 }
5706 }
5707 else if (!mips_big_got && !HAVE_NEWABI)
5708 {
5709 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5710
5711 /* If this is a reference to an external symbol, and there
5712 is no constant, we want
5713 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5714 or for lca or if tempreg is PIC_CALL_REG
5715 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5716 For a local symbol, we want
5717 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5718 nop
5719 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5720
5721 If we have a small constant, and this is a reference to
5722 an external symbol, we want
5723 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5724 nop
5725 addiu $tempreg,$tempreg,<constant>
5726 For a local symbol, we want the same instruction
5727 sequence, but we output a BFD_RELOC_LO16 reloc on the
5728 addiu instruction.
5729
5730 If we have a large constant, and this is a reference to
5731 an external symbol, we want
5732 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5733 lui $at,<hiconstant>
5734 addiu $at,$at,<loconstant>
5735 addu $tempreg,$tempreg,$at
5736 For a local symbol, we want the same instruction
5737 sequence, but we output a BFD_RELOC_LO16 reloc on the
5738 addiu instruction.
5739 */
5740
5741 if (offset_expr.X_add_number == 0)
5742 {
5743 if (mips_pic == SVR4_PIC
5744 && breg == 0
5745 && (call || tempreg == PIC_CALL_REG))
5746 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5747
5748 relax_start (offset_expr.X_add_symbol);
5749 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5750 lw_reloc_type, mips_gp_register);
5751 if (breg != 0)
5752 {
5753 /* We're going to put in an addu instruction using
5754 tempreg, so we may as well insert the nop right
5755 now. */
5756 load_delay_nop ();
5757 }
5758 relax_switch ();
5759 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5760 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5761 load_delay_nop ();
5762 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5763 tempreg, tempreg, BFD_RELOC_LO16);
5764 relax_end ();
5765 /* FIXME: If breg == 0, and the next instruction uses
5766 $tempreg, then if this variant case is used an extra
5767 nop will be generated. */
5768 }
5769 else if (offset_expr.X_add_number >= -0x8000
5770 && offset_expr.X_add_number < 0x8000)
5771 {
5772 load_got_offset (tempreg, &offset_expr);
5773 load_delay_nop ();
5774 add_got_offset (tempreg, &offset_expr);
5775 }
5776 else
5777 {
5778 expr1.X_add_number = offset_expr.X_add_number;
5779 offset_expr.X_add_number =
5780 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5781 load_got_offset (tempreg, &offset_expr);
5782 offset_expr.X_add_number = expr1.X_add_number;
5783 /* If we are going to add in a base register, and the
5784 target register and the base register are the same,
5785 then we are using AT as a temporary register. Since
5786 we want to load the constant into AT, we add our
5787 current AT (from the global offset table) and the
5788 register into the register now, and pretend we were
5789 not using a base register. */
5790 if (breg == treg)
5791 {
5792 load_delay_nop ();
5793 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5794 treg, AT, breg);
5795 breg = 0;
5796 tempreg = treg;
5797 }
5798 add_got_offset_hilo (tempreg, &offset_expr, AT);
5799 used_at = 1;
5800 }
5801 }
5802 else if (!mips_big_got && HAVE_NEWABI)
5803 {
5804 int add_breg_early = 0;
5805
5806 /* If this is a reference to an external, and there is no
5807 constant, or local symbol (*), with or without a
5808 constant, we want
5809 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5810 or for lca or if tempreg is PIC_CALL_REG
5811 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5812
5813 If we have a small constant, and this is a reference to
5814 an external symbol, we want
5815 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5816 addiu $tempreg,$tempreg,<constant>
5817
5818 If we have a large constant, and this is a reference to
5819 an external symbol, we want
5820 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5821 lui $at,<hiconstant>
5822 addiu $at,$at,<loconstant>
5823 addu $tempreg,$tempreg,$at
5824
5825 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5826 local symbols, even though it introduces an additional
5827 instruction. */
5828
5829 if (offset_expr.X_add_number)
5830 {
5831 expr1.X_add_number = offset_expr.X_add_number;
5832 offset_expr.X_add_number = 0;
5833
5834 relax_start (offset_expr.X_add_symbol);
5835 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5836 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5837
5838 if (expr1.X_add_number >= -0x8000
5839 && expr1.X_add_number < 0x8000)
5840 {
5841 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5842 tempreg, tempreg, BFD_RELOC_LO16);
5843 }
5844 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5845 {
5846 /* If we are going to add in a base register, and the
5847 target register and the base register are the same,
5848 then we are using AT as a temporary register. Since
5849 we want to load the constant into AT, we add our
5850 current AT (from the global offset table) and the
5851 register into the register now, and pretend we were
5852 not using a base register. */
5853 if (breg != treg)
5854 dreg = tempreg;
5855 else
5856 {
5857 gas_assert (tempreg == AT);
5858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5859 treg, AT, breg);
5860 dreg = treg;
5861 add_breg_early = 1;
5862 }
5863
5864 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5865 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5866 dreg, dreg, AT);
5867
5868 used_at = 1;
5869 }
5870 else
5871 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5872
5873 relax_switch ();
5874 offset_expr.X_add_number = expr1.X_add_number;
5875
5876 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5877 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5878 if (add_breg_early)
5879 {
5880 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5881 treg, tempreg, breg);
5882 breg = 0;
5883 tempreg = treg;
5884 }
5885 relax_end ();
5886 }
5887 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5888 {
5889 relax_start (offset_expr.X_add_symbol);
5890 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5891 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5892 relax_switch ();
5893 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5894 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5895 relax_end ();
5896 }
5897 else
5898 {
5899 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5900 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5901 }
5902 }
5903 else if (mips_big_got && !HAVE_NEWABI)
5904 {
5905 int gpdelay;
5906 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5907 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5908 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5909
5910 /* This is the large GOT case. If this is a reference to an
5911 external symbol, and there is no constant, we want
5912 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5913 addu $tempreg,$tempreg,$gp
5914 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5915 or for lca or if tempreg is PIC_CALL_REG
5916 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5917 addu $tempreg,$tempreg,$gp
5918 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5919 For a local symbol, we want
5920 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5921 nop
5922 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5923
5924 If we have a small constant, and this is a reference to
5925 an external symbol, we want
5926 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5927 addu $tempreg,$tempreg,$gp
5928 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5929 nop
5930 addiu $tempreg,$tempreg,<constant>
5931 For a local symbol, we want
5932 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5933 nop
5934 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5935
5936 If we have a large constant, and this is a reference to
5937 an external symbol, we want
5938 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5939 addu $tempreg,$tempreg,$gp
5940 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5941 lui $at,<hiconstant>
5942 addiu $at,$at,<loconstant>
5943 addu $tempreg,$tempreg,$at
5944 For a local symbol, we want
5945 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5946 lui $at,<hiconstant>
5947 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5948 addu $tempreg,$tempreg,$at
5949 */
5950
5951 expr1.X_add_number = offset_expr.X_add_number;
5952 offset_expr.X_add_number = 0;
5953 relax_start (offset_expr.X_add_symbol);
5954 gpdelay = reg_needs_delay (mips_gp_register);
5955 if (expr1.X_add_number == 0 && breg == 0
5956 && (call || tempreg == PIC_CALL_REG))
5957 {
5958 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5959 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5960 }
5961 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5962 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5963 tempreg, tempreg, mips_gp_register);
5964 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5965 tempreg, lw_reloc_type, tempreg);
5966 if (expr1.X_add_number == 0)
5967 {
5968 if (breg != 0)
5969 {
5970 /* We're going to put in an addu instruction using
5971 tempreg, so we may as well insert the nop right
5972 now. */
5973 load_delay_nop ();
5974 }
5975 }
5976 else if (expr1.X_add_number >= -0x8000
5977 && expr1.X_add_number < 0x8000)
5978 {
5979 load_delay_nop ();
5980 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5981 tempreg, tempreg, BFD_RELOC_LO16);
5982 }
5983 else
5984 {
5985 /* If we are going to add in a base register, and the
5986 target register and the base register are the same,
5987 then we are using AT as a temporary register. Since
5988 we want to load the constant into AT, we add our
5989 current AT (from the global offset table) and the
5990 register into the register now, and pretend we were
5991 not using a base register. */
5992 if (breg != treg)
5993 dreg = tempreg;
5994 else
5995 {
5996 gas_assert (tempreg == AT);
5997 load_delay_nop ();
5998 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5999 treg, AT, breg);
6000 dreg = treg;
6001 }
6002
6003 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6004 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6005
6006 used_at = 1;
6007 }
6008 offset_expr.X_add_number =
6009 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
6010 relax_switch ();
6011
6012 if (gpdelay)
6013 {
6014 /* This is needed because this instruction uses $gp, but
6015 the first instruction on the main stream does not. */
6016 macro_build (NULL, "nop", "");
6017 }
6018
6019 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6020 local_reloc_type, mips_gp_register);
6021 if (expr1.X_add_number >= -0x8000
6022 && expr1.X_add_number < 0x8000)
6023 {
6024 load_delay_nop ();
6025 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6026 tempreg, tempreg, BFD_RELOC_LO16);
6027 /* FIXME: If add_number is 0, and there was no base
6028 register, the external symbol case ended with a load,
6029 so if the symbol turns out to not be external, and
6030 the next instruction uses tempreg, an unnecessary nop
6031 will be inserted. */
6032 }
6033 else
6034 {
6035 if (breg == treg)
6036 {
6037 /* We must add in the base register now, as in the
6038 external symbol case. */
6039 gas_assert (tempreg == AT);
6040 load_delay_nop ();
6041 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6042 treg, AT, breg);
6043 tempreg = treg;
6044 /* We set breg to 0 because we have arranged to add
6045 it in in both cases. */
6046 breg = 0;
6047 }
6048
6049 macro_build_lui (&expr1, AT);
6050 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6051 AT, AT, BFD_RELOC_LO16);
6052 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6053 tempreg, tempreg, AT);
6054 used_at = 1;
6055 }
6056 relax_end ();
6057 }
6058 else if (mips_big_got && HAVE_NEWABI)
6059 {
6060 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6061 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6062 int add_breg_early = 0;
6063
6064 /* This is the large GOT case. If this is a reference to an
6065 external symbol, and there is no constant, we want
6066 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6067 add $tempreg,$tempreg,$gp
6068 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6069 or for lca or if tempreg is PIC_CALL_REG
6070 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6071 add $tempreg,$tempreg,$gp
6072 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6073
6074 If we have a small constant, and this is a reference to
6075 an external symbol, we want
6076 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6077 add $tempreg,$tempreg,$gp
6078 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6079 addi $tempreg,$tempreg,<constant>
6080
6081 If we have a large constant, and this is a reference to
6082 an external symbol, we want
6083 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6084 addu $tempreg,$tempreg,$gp
6085 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6086 lui $at,<hiconstant>
6087 addi $at,$at,<loconstant>
6088 add $tempreg,$tempreg,$at
6089
6090 If we have NewABI, and we know it's a local symbol, we want
6091 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6092 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6093 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6094
6095 relax_start (offset_expr.X_add_symbol);
6096
6097 expr1.X_add_number = offset_expr.X_add_number;
6098 offset_expr.X_add_number = 0;
6099
6100 if (expr1.X_add_number == 0 && breg == 0
6101 && (call || tempreg == PIC_CALL_REG))
6102 {
6103 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6104 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6105 }
6106 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6107 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6108 tempreg, tempreg, mips_gp_register);
6109 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6110 tempreg, lw_reloc_type, tempreg);
6111
6112 if (expr1.X_add_number == 0)
6113 ;
6114 else if (expr1.X_add_number >= -0x8000
6115 && expr1.X_add_number < 0x8000)
6116 {
6117 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6118 tempreg, tempreg, BFD_RELOC_LO16);
6119 }
6120 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6121 {
6122 /* If we are going to add in a base register, and the
6123 target register and the base register are the same,
6124 then we are using AT as a temporary register. Since
6125 we want to load the constant into AT, we add our
6126 current AT (from the global offset table) and the
6127 register into the register now, and pretend we were
6128 not using a base register. */
6129 if (breg != treg)
6130 dreg = tempreg;
6131 else
6132 {
6133 gas_assert (tempreg == AT);
6134 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6135 treg, AT, breg);
6136 dreg = treg;
6137 add_breg_early = 1;
6138 }
6139
6140 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6141 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6142
6143 used_at = 1;
6144 }
6145 else
6146 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6147
6148 relax_switch ();
6149 offset_expr.X_add_number = expr1.X_add_number;
6150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6151 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6152 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6153 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6154 if (add_breg_early)
6155 {
6156 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6157 treg, tempreg, breg);
6158 breg = 0;
6159 tempreg = treg;
6160 }
6161 relax_end ();
6162 }
6163 else
6164 abort ();
6165
6166 if (breg != 0)
6167 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6168 break;
6169
6170 case M_MSGSND:
6171 {
6172 unsigned long temp = (treg << 16) | (0x01);
6173 macro_build (NULL, "c2", "C", temp);
6174 }
6175 break;
6176
6177 case M_MSGLD:
6178 {
6179 unsigned long temp = (0x02);
6180 macro_build (NULL, "c2", "C", temp);
6181 }
6182 break;
6183
6184 case M_MSGLD_T:
6185 {
6186 unsigned long temp = (treg << 16) | (0x02);
6187 macro_build (NULL, "c2", "C", temp);
6188 }
6189 break;
6190
6191 case M_MSGWAIT:
6192 macro_build (NULL, "c2", "C", 3);
6193 break;
6194
6195 case M_MSGWAIT_T:
6196 {
6197 unsigned long temp = (treg << 16) | 0x03;
6198 macro_build (NULL, "c2", "C", temp);
6199 }
6200 break;
6201
6202 case M_J_A:
6203 /* The j instruction may not be used in PIC code, since it
6204 requires an absolute address. We convert it to a b
6205 instruction. */
6206 if (mips_pic == NO_PIC)
6207 macro_build (&offset_expr, "j", "a");
6208 else
6209 macro_build (&offset_expr, "b", "p");
6210 break;
6211
6212 /* The jal instructions must be handled as macros because when
6213 generating PIC code they expand to multi-instruction
6214 sequences. Normally they are simple instructions. */
6215 case M_JAL_1:
6216 dreg = RA;
6217 /* Fall through. */
6218 case M_JAL_2:
6219 if (mips_pic == NO_PIC)
6220 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6221 else
6222 {
6223 if (sreg != PIC_CALL_REG)
6224 as_warn (_("MIPS PIC call to register other than $25"));
6225
6226 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6227 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6228 {
6229 if (mips_cprestore_offset < 0)
6230 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6231 else
6232 {
6233 if (!mips_frame_reg_valid)
6234 {
6235 as_warn (_("No .frame pseudo-op used in PIC code"));
6236 /* Quiet this warning. */
6237 mips_frame_reg_valid = 1;
6238 }
6239 if (!mips_cprestore_valid)
6240 {
6241 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6242 /* Quiet this warning. */
6243 mips_cprestore_valid = 1;
6244 }
6245 if (mips_opts.noreorder)
6246 macro_build (NULL, "nop", "");
6247 expr1.X_add_number = mips_cprestore_offset;
6248 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6249 mips_gp_register,
6250 mips_frame_reg,
6251 HAVE_64BIT_ADDRESSES);
6252 }
6253 }
6254 }
6255
6256 break;
6257
6258 case M_JAL_A:
6259 if (mips_pic == NO_PIC)
6260 macro_build (&offset_expr, "jal", "a");
6261 else if (mips_pic == SVR4_PIC)
6262 {
6263 /* If this is a reference to an external symbol, and we are
6264 using a small GOT, we want
6265 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6266 nop
6267 jalr $ra,$25
6268 nop
6269 lw $gp,cprestore($sp)
6270 The cprestore value is set using the .cprestore
6271 pseudo-op. If we are using a big GOT, we want
6272 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6273 addu $25,$25,$gp
6274 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6275 nop
6276 jalr $ra,$25
6277 nop
6278 lw $gp,cprestore($sp)
6279 If the symbol is not external, we want
6280 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6281 nop
6282 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6283 jalr $ra,$25
6284 nop
6285 lw $gp,cprestore($sp)
6286
6287 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6288 sequences above, minus nops, unless the symbol is local,
6289 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6290 GOT_DISP. */
6291 if (HAVE_NEWABI)
6292 {
6293 if (!mips_big_got)
6294 {
6295 relax_start (offset_expr.X_add_symbol);
6296 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6297 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6298 mips_gp_register);
6299 relax_switch ();
6300 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6301 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6302 mips_gp_register);
6303 relax_end ();
6304 }
6305 else
6306 {
6307 relax_start (offset_expr.X_add_symbol);
6308 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6309 BFD_RELOC_MIPS_CALL_HI16);
6310 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6311 PIC_CALL_REG, mips_gp_register);
6312 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6313 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6314 PIC_CALL_REG);
6315 relax_switch ();
6316 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6317 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6318 mips_gp_register);
6319 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6320 PIC_CALL_REG, PIC_CALL_REG,
6321 BFD_RELOC_MIPS_GOT_OFST);
6322 relax_end ();
6323 }
6324
6325 macro_build_jalr (&offset_expr);
6326 }
6327 else
6328 {
6329 relax_start (offset_expr.X_add_symbol);
6330 if (!mips_big_got)
6331 {
6332 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6333 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6334 mips_gp_register);
6335 load_delay_nop ();
6336 relax_switch ();
6337 }
6338 else
6339 {
6340 int gpdelay;
6341
6342 gpdelay = reg_needs_delay (mips_gp_register);
6343 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6344 BFD_RELOC_MIPS_CALL_HI16);
6345 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6346 PIC_CALL_REG, mips_gp_register);
6347 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6348 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6349 PIC_CALL_REG);
6350 load_delay_nop ();
6351 relax_switch ();
6352 if (gpdelay)
6353 macro_build (NULL, "nop", "");
6354 }
6355 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6356 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6357 mips_gp_register);
6358 load_delay_nop ();
6359 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6360 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6361 relax_end ();
6362 macro_build_jalr (&offset_expr);
6363
6364 if (mips_cprestore_offset < 0)
6365 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6366 else
6367 {
6368 if (!mips_frame_reg_valid)
6369 {
6370 as_warn (_("No .frame pseudo-op used in PIC code"));
6371 /* Quiet this warning. */
6372 mips_frame_reg_valid = 1;
6373 }
6374 if (!mips_cprestore_valid)
6375 {
6376 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6377 /* Quiet this warning. */
6378 mips_cprestore_valid = 1;
6379 }
6380 if (mips_opts.noreorder)
6381 macro_build (NULL, "nop", "");
6382 expr1.X_add_number = mips_cprestore_offset;
6383 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6384 mips_gp_register,
6385 mips_frame_reg,
6386 HAVE_64BIT_ADDRESSES);
6387 }
6388 }
6389 }
6390 else if (mips_pic == VXWORKS_PIC)
6391 as_bad (_("Non-PIC jump used in PIC library"));
6392 else
6393 abort ();
6394
6395 break;
6396
6397 case M_LB_AB:
6398 s = "lb";
6399 goto ld;
6400 case M_LBU_AB:
6401 s = "lbu";
6402 goto ld;
6403 case M_LH_AB:
6404 s = "lh";
6405 goto ld;
6406 case M_LHU_AB:
6407 s = "lhu";
6408 goto ld;
6409 case M_LW_AB:
6410 s = "lw";
6411 goto ld;
6412 case M_LWC0_AB:
6413 s = "lwc0";
6414 /* Itbl support may require additional care here. */
6415 coproc = 1;
6416 goto ld;
6417 case M_LWC1_AB:
6418 s = "lwc1";
6419 /* Itbl support may require additional care here. */
6420 coproc = 1;
6421 goto ld;
6422 case M_LWC2_AB:
6423 s = "lwc2";
6424 /* Itbl support may require additional care here. */
6425 coproc = 1;
6426 goto ld;
6427 case M_LWC3_AB:
6428 s = "lwc3";
6429 /* Itbl support may require additional care here. */
6430 coproc = 1;
6431 goto ld;
6432 case M_LWL_AB:
6433 s = "lwl";
6434 lr = 1;
6435 goto ld;
6436 case M_LWR_AB:
6437 s = "lwr";
6438 lr = 1;
6439 goto ld;
6440 case M_LDC1_AB:
6441 s = "ldc1";
6442 /* Itbl support may require additional care here. */
6443 coproc = 1;
6444 goto ld;
6445 case M_LDC2_AB:
6446 s = "ldc2";
6447 /* Itbl support may require additional care here. */
6448 coproc = 1;
6449 goto ld;
6450 case M_LDC3_AB:
6451 s = "ldc3";
6452 /* Itbl support may require additional care here. */
6453 coproc = 1;
6454 goto ld;
6455 case M_LDL_AB:
6456 s = "ldl";
6457 lr = 1;
6458 goto ld;
6459 case M_LDR_AB:
6460 s = "ldr";
6461 lr = 1;
6462 goto ld;
6463 case M_LL_AB:
6464 s = "ll";
6465 goto ld;
6466 case M_LLD_AB:
6467 s = "lld";
6468 goto ld;
6469 case M_LWU_AB:
6470 s = "lwu";
6471 ld:
6472 if (breg == treg || coproc || lr)
6473 {
6474 tempreg = AT;
6475 used_at = 1;
6476 }
6477 else
6478 {
6479 tempreg = treg;
6480 }
6481 goto ld_st;
6482 case M_SB_AB:
6483 s = "sb";
6484 goto st;
6485 case M_SH_AB:
6486 s = "sh";
6487 goto st;
6488 case M_SW_AB:
6489 s = "sw";
6490 goto st;
6491 case M_SWC0_AB:
6492 s = "swc0";
6493 /* Itbl support may require additional care here. */
6494 coproc = 1;
6495 goto st;
6496 case M_SWC1_AB:
6497 s = "swc1";
6498 /* Itbl support may require additional care here. */
6499 coproc = 1;
6500 goto st;
6501 case M_SWC2_AB:
6502 s = "swc2";
6503 /* Itbl support may require additional care here. */
6504 coproc = 1;
6505 goto st;
6506 case M_SWC3_AB:
6507 s = "swc3";
6508 /* Itbl support may require additional care here. */
6509 coproc = 1;
6510 goto st;
6511 case M_SWL_AB:
6512 s = "swl";
6513 goto st;
6514 case M_SWR_AB:
6515 s = "swr";
6516 goto st;
6517 case M_SC_AB:
6518 s = "sc";
6519 goto st;
6520 case M_SCD_AB:
6521 s = "scd";
6522 goto st;
6523 case M_CACHE_AB:
6524 s = "cache";
6525 goto st;
6526 case M_SDC1_AB:
6527 s = "sdc1";
6528 coproc = 1;
6529 /* Itbl support may require additional care here. */
6530 goto st;
6531 case M_SDC2_AB:
6532 s = "sdc2";
6533 /* Itbl support may require additional care here. */
6534 coproc = 1;
6535 goto st;
6536 case M_SDC3_AB:
6537 s = "sdc3";
6538 /* Itbl support may require additional care here. */
6539 coproc = 1;
6540 goto st;
6541 case M_SDL_AB:
6542 s = "sdl";
6543 goto st;
6544 case M_SDR_AB:
6545 s = "sdr";
6546 st:
6547 tempreg = AT;
6548 used_at = 1;
6549 ld_st:
6550 if (coproc
6551 && NO_ISA_COP (mips_opts.arch)
6552 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6553 {
6554 as_bad (_("Opcode not supported on this processor: %s"),
6555 mips_cpu_info_from_arch (mips_opts.arch)->name);
6556 break;
6557 }
6558
6559 /* Itbl support may require additional care here. */
6560 if (mask == M_LWC1_AB
6561 || mask == M_SWC1_AB
6562 || mask == M_LDC1_AB
6563 || mask == M_SDC1_AB
6564 || mask == M_L_DAB
6565 || mask == M_S_DAB)
6566 fmt = "T,o(b)";
6567 else if (mask == M_CACHE_AB)
6568 fmt = "k,o(b)";
6569 else if (coproc)
6570 fmt = "E,o(b)";
6571 else
6572 fmt = "t,o(b)";
6573
6574 if (offset_expr.X_op != O_constant
6575 && offset_expr.X_op != O_symbol)
6576 {
6577 as_bad (_("Expression too complex"));
6578 offset_expr.X_op = O_constant;
6579 }
6580
6581 if (HAVE_32BIT_ADDRESSES
6582 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6583 {
6584 char value [32];
6585
6586 sprintf_vma (value, offset_expr.X_add_number);
6587 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6588 }
6589
6590 /* A constant expression in PIC code can be handled just as it
6591 is in non PIC code. */
6592 if (offset_expr.X_op == O_constant)
6593 {
6594 expr1.X_add_number = offset_expr.X_add_number;
6595 normalize_address_expr (&expr1);
6596 if (!IS_SEXT_16BIT_NUM (expr1.X_add_number))
6597 {
6598 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
6599 & ~(bfd_vma) 0xffff);
6600 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6601 if (breg != 0)
6602 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6603 tempreg, tempreg, breg);
6604 breg = tempreg;
6605 }
6606 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
6607 }
6608 else if (mips_pic == NO_PIC)
6609 {
6610 /* If this is a reference to a GP relative symbol, and there
6611 is no base register, we want
6612 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6613 Otherwise, if there is no base register, we want
6614 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6615 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6616 If we have a constant, we need two instructions anyhow,
6617 so we always use the latter form.
6618
6619 If we have a base register, and this is a reference to a
6620 GP relative symbol, we want
6621 addu $tempreg,$breg,$gp
6622 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6623 Otherwise we want
6624 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6625 addu $tempreg,$tempreg,$breg
6626 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6627 With a constant we always use the latter case.
6628
6629 With 64bit address space and no base register and $at usable,
6630 we want
6631 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6632 lui $at,<sym> (BFD_RELOC_HI16_S)
6633 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6634 dsll32 $tempreg,0
6635 daddu $tempreg,$at
6636 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6637 If we have a base register, we want
6638 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6639 lui $at,<sym> (BFD_RELOC_HI16_S)
6640 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6641 daddu $at,$breg
6642 dsll32 $tempreg,0
6643 daddu $tempreg,$at
6644 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6645
6646 Without $at we can't generate the optimal path for superscalar
6647 processors here since this would require two temporary registers.
6648 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6649 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6650 dsll $tempreg,16
6651 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6652 dsll $tempreg,16
6653 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6654 If we have a base register, we want
6655 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6656 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6657 dsll $tempreg,16
6658 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6659 dsll $tempreg,16
6660 daddu $tempreg,$tempreg,$breg
6661 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6662
6663 For GP relative symbols in 64bit address space we can use
6664 the same sequence as in 32bit address space. */
6665 if (HAVE_64BIT_SYMBOLS)
6666 {
6667 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6668 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6669 {
6670 relax_start (offset_expr.X_add_symbol);
6671 if (breg == 0)
6672 {
6673 macro_build (&offset_expr, s, fmt, treg,
6674 BFD_RELOC_GPREL16, mips_gp_register);
6675 }
6676 else
6677 {
6678 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6679 tempreg, breg, mips_gp_register);
6680 macro_build (&offset_expr, s, fmt, treg,
6681 BFD_RELOC_GPREL16, tempreg);
6682 }
6683 relax_switch ();
6684 }
6685
6686 if (used_at == 0 && mips_opts.at)
6687 {
6688 macro_build (&offset_expr, "lui", "t,u", tempreg,
6689 BFD_RELOC_MIPS_HIGHEST);
6690 macro_build (&offset_expr, "lui", "t,u", AT,
6691 BFD_RELOC_HI16_S);
6692 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6693 tempreg, BFD_RELOC_MIPS_HIGHER);
6694 if (breg != 0)
6695 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6696 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6697 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6698 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6699 tempreg);
6700 used_at = 1;
6701 }
6702 else
6703 {
6704 macro_build (&offset_expr, "lui", "t,u", tempreg,
6705 BFD_RELOC_MIPS_HIGHEST);
6706 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6707 tempreg, BFD_RELOC_MIPS_HIGHER);
6708 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6709 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6710 tempreg, BFD_RELOC_HI16_S);
6711 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6712 if (breg != 0)
6713 macro_build (NULL, "daddu", "d,v,t",
6714 tempreg, tempreg, breg);
6715 macro_build (&offset_expr, s, fmt, treg,
6716 BFD_RELOC_LO16, tempreg);
6717 }
6718
6719 if (mips_relax.sequence)
6720 relax_end ();
6721 break;
6722 }
6723
6724 if (breg == 0)
6725 {
6726 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6727 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6728 {
6729 relax_start (offset_expr.X_add_symbol);
6730 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6731 mips_gp_register);
6732 relax_switch ();
6733 }
6734 macro_build_lui (&offset_expr, tempreg);
6735 macro_build (&offset_expr, s, fmt, treg,
6736 BFD_RELOC_LO16, tempreg);
6737 if (mips_relax.sequence)
6738 relax_end ();
6739 }
6740 else
6741 {
6742 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6743 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6744 {
6745 relax_start (offset_expr.X_add_symbol);
6746 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6747 tempreg, breg, mips_gp_register);
6748 macro_build (&offset_expr, s, fmt, treg,
6749 BFD_RELOC_GPREL16, tempreg);
6750 relax_switch ();
6751 }
6752 macro_build_lui (&offset_expr, tempreg);
6753 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6754 tempreg, tempreg, breg);
6755 macro_build (&offset_expr, s, fmt, treg,
6756 BFD_RELOC_LO16, tempreg);
6757 if (mips_relax.sequence)
6758 relax_end ();
6759 }
6760 }
6761 else if (!mips_big_got)
6762 {
6763 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6764
6765 /* If this is a reference to an external symbol, we want
6766 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6767 nop
6768 <op> $treg,0($tempreg)
6769 Otherwise we want
6770 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6771 nop
6772 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6773 <op> $treg,0($tempreg)
6774
6775 For NewABI, we want
6776 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6777 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6778
6779 If there is a base register, we add it to $tempreg before
6780 the <op>. If there is a constant, we stick it in the
6781 <op> instruction. We don't handle constants larger than
6782 16 bits, because we have no way to load the upper 16 bits
6783 (actually, we could handle them for the subset of cases
6784 in which we are not using $at). */
6785 gas_assert (offset_expr.X_op == O_symbol);
6786 if (HAVE_NEWABI)
6787 {
6788 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6789 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6790 if (breg != 0)
6791 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6792 tempreg, tempreg, breg);
6793 macro_build (&offset_expr, s, fmt, treg,
6794 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6795 break;
6796 }
6797 expr1.X_add_number = offset_expr.X_add_number;
6798 offset_expr.X_add_number = 0;
6799 if (expr1.X_add_number < -0x8000
6800 || expr1.X_add_number >= 0x8000)
6801 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6802 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6803 lw_reloc_type, mips_gp_register);
6804 load_delay_nop ();
6805 relax_start (offset_expr.X_add_symbol);
6806 relax_switch ();
6807 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6808 tempreg, BFD_RELOC_LO16);
6809 relax_end ();
6810 if (breg != 0)
6811 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6812 tempreg, tempreg, breg);
6813 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6814 }
6815 else if (mips_big_got && !HAVE_NEWABI)
6816 {
6817 int gpdelay;
6818
6819 /* If this is a reference to an external symbol, we want
6820 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6821 addu $tempreg,$tempreg,$gp
6822 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6823 <op> $treg,0($tempreg)
6824 Otherwise we want
6825 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6826 nop
6827 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6828 <op> $treg,0($tempreg)
6829 If there is a base register, we add it to $tempreg before
6830 the <op>. If there is a constant, we stick it in the
6831 <op> instruction. We don't handle constants larger than
6832 16 bits, because we have no way to load the upper 16 bits
6833 (actually, we could handle them for the subset of cases
6834 in which we are not using $at). */
6835 gas_assert (offset_expr.X_op == O_symbol);
6836 expr1.X_add_number = offset_expr.X_add_number;
6837 offset_expr.X_add_number = 0;
6838 if (expr1.X_add_number < -0x8000
6839 || expr1.X_add_number >= 0x8000)
6840 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6841 gpdelay = reg_needs_delay (mips_gp_register);
6842 relax_start (offset_expr.X_add_symbol);
6843 macro_build (&offset_expr, "lui", "t,u", tempreg,
6844 BFD_RELOC_MIPS_GOT_HI16);
6845 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6846 mips_gp_register);
6847 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6848 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6849 relax_switch ();
6850 if (gpdelay)
6851 macro_build (NULL, "nop", "");
6852 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6853 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6854 load_delay_nop ();
6855 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6856 tempreg, BFD_RELOC_LO16);
6857 relax_end ();
6858
6859 if (breg != 0)
6860 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6861 tempreg, tempreg, breg);
6862 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6863 }
6864 else if (mips_big_got && HAVE_NEWABI)
6865 {
6866 /* If this is a reference to an external symbol, we want
6867 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6868 add $tempreg,$tempreg,$gp
6869 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6870 <op> $treg,<ofst>($tempreg)
6871 Otherwise, for local symbols, we want:
6872 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6873 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6874 gas_assert (offset_expr.X_op == O_symbol);
6875 expr1.X_add_number = offset_expr.X_add_number;
6876 offset_expr.X_add_number = 0;
6877 if (expr1.X_add_number < -0x8000
6878 || expr1.X_add_number >= 0x8000)
6879 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6880 relax_start (offset_expr.X_add_symbol);
6881 macro_build (&offset_expr, "lui", "t,u", tempreg,
6882 BFD_RELOC_MIPS_GOT_HI16);
6883 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6884 mips_gp_register);
6885 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6886 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6887 if (breg != 0)
6888 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6889 tempreg, tempreg, breg);
6890 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6891
6892 relax_switch ();
6893 offset_expr.X_add_number = expr1.X_add_number;
6894 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6895 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6896 if (breg != 0)
6897 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6898 tempreg, tempreg, breg);
6899 macro_build (&offset_expr, s, fmt, treg,
6900 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6901 relax_end ();
6902 }
6903 else
6904 abort ();
6905
6906 break;
6907
6908 case M_LI:
6909 case M_LI_S:
6910 load_register (treg, &imm_expr, 0);
6911 break;
6912
6913 case M_DLI:
6914 load_register (treg, &imm_expr, 1);
6915 break;
6916
6917 case M_LI_SS:
6918 if (imm_expr.X_op == O_constant)
6919 {
6920 used_at = 1;
6921 load_register (AT, &imm_expr, 0);
6922 macro_build (NULL, "mtc1", "t,G", AT, treg);
6923 break;
6924 }
6925 else
6926 {
6927 gas_assert (offset_expr.X_op == O_symbol
6928 && strcmp (segment_name (S_GET_SEGMENT
6929 (offset_expr.X_add_symbol)),
6930 ".lit4") == 0
6931 && offset_expr.X_add_number == 0);
6932 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6933 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6934 break;
6935 }
6936
6937 case M_LI_D:
6938 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6939 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6940 order 32 bits of the value and the low order 32 bits are either
6941 zero or in OFFSET_EXPR. */
6942 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6943 {
6944 if (HAVE_64BIT_GPRS)
6945 load_register (treg, &imm_expr, 1);
6946 else
6947 {
6948 int hreg, lreg;
6949
6950 if (target_big_endian)
6951 {
6952 hreg = treg;
6953 lreg = treg + 1;
6954 }
6955 else
6956 {
6957 hreg = treg + 1;
6958 lreg = treg;
6959 }
6960
6961 if (hreg <= 31)
6962 load_register (hreg, &imm_expr, 0);
6963 if (lreg <= 31)
6964 {
6965 if (offset_expr.X_op == O_absent)
6966 move_register (lreg, 0);
6967 else
6968 {
6969 gas_assert (offset_expr.X_op == O_constant);
6970 load_register (lreg, &offset_expr, 0);
6971 }
6972 }
6973 }
6974 break;
6975 }
6976
6977 /* We know that sym is in the .rdata section. First we get the
6978 upper 16 bits of the address. */
6979 if (mips_pic == NO_PIC)
6980 {
6981 macro_build_lui (&offset_expr, AT);
6982 used_at = 1;
6983 }
6984 else
6985 {
6986 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6987 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6988 used_at = 1;
6989 }
6990
6991 /* Now we load the register(s). */
6992 if (HAVE_64BIT_GPRS)
6993 {
6994 used_at = 1;
6995 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6996 }
6997 else
6998 {
6999 used_at = 1;
7000 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7001 if (treg != RA)
7002 {
7003 /* FIXME: How in the world do we deal with the possible
7004 overflow here? */
7005 offset_expr.X_add_number += 4;
7006 macro_build (&offset_expr, "lw", "t,o(b)",
7007 treg + 1, BFD_RELOC_LO16, AT);
7008 }
7009 }
7010 break;
7011
7012 case M_LI_DD:
7013 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
7014 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
7015 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
7016 the value and the low order 32 bits are either zero or in
7017 OFFSET_EXPR. */
7018 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
7019 {
7020 used_at = 1;
7021 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
7022 if (HAVE_64BIT_FPRS)
7023 {
7024 gas_assert (HAVE_64BIT_GPRS);
7025 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7026 }
7027 else
7028 {
7029 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7030 if (offset_expr.X_op == O_absent)
7031 macro_build (NULL, "mtc1", "t,G", 0, treg);
7032 else
7033 {
7034 gas_assert (offset_expr.X_op == O_constant);
7035 load_register (AT, &offset_expr, 0);
7036 macro_build (NULL, "mtc1", "t,G", AT, treg);
7037 }
7038 }
7039 break;
7040 }
7041
7042 gas_assert (offset_expr.X_op == O_symbol
7043 && offset_expr.X_add_number == 0);
7044 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7045 if (strcmp (s, ".lit8") == 0)
7046 {
7047 if (mips_opts.isa != ISA_MIPS1)
7048 {
7049 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7050 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7051 break;
7052 }
7053 breg = mips_gp_register;
7054 r = BFD_RELOC_MIPS_LITERAL;
7055 goto dob;
7056 }
7057 else
7058 {
7059 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7060 used_at = 1;
7061 if (mips_pic != NO_PIC)
7062 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7063 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7064 else
7065 {
7066 /* FIXME: This won't work for a 64 bit address. */
7067 macro_build_lui (&offset_expr, AT);
7068 }
7069
7070 if (mips_opts.isa != ISA_MIPS1)
7071 {
7072 macro_build (&offset_expr, "ldc1", "T,o(b)",
7073 treg, BFD_RELOC_LO16, AT);
7074 break;
7075 }
7076 breg = AT;
7077 r = BFD_RELOC_LO16;
7078 goto dob;
7079 }
7080
7081 case M_L_DOB:
7082 /* Even on a big endian machine $fn comes before $fn+1. We have
7083 to adjust when loading from memory. */
7084 r = BFD_RELOC_LO16;
7085 dob:
7086 gas_assert (mips_opts.isa == ISA_MIPS1);
7087 macro_build (&offset_expr, "lwc1", "T,o(b)",
7088 target_big_endian ? treg + 1 : treg, r, breg);
7089 /* FIXME: A possible overflow which I don't know how to deal
7090 with. */
7091 offset_expr.X_add_number += 4;
7092 macro_build (&offset_expr, "lwc1", "T,o(b)",
7093 target_big_endian ? treg : treg + 1, r, breg);
7094 break;
7095
7096 case M_S_DOB:
7097 gas_assert (mips_opts.isa == ISA_MIPS1);
7098 /* Even on a big endian machine $fn comes before $fn+1. We have
7099 to adjust when storing to memory. */
7100 macro_build (&offset_expr, "swc1", "T,o(b)",
7101 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7102 offset_expr.X_add_number += 4;
7103 macro_build (&offset_expr, "swc1", "T,o(b)",
7104 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7105 break;
7106
7107 case M_L_DAB:
7108 /*
7109 * The MIPS assembler seems to check for X_add_number not
7110 * being double aligned and generating:
7111 * lui at,%hi(foo+1)
7112 * addu at,at,v1
7113 * addiu at,at,%lo(foo+1)
7114 * lwc1 f2,0(at)
7115 * lwc1 f3,4(at)
7116 * But, the resulting address is the same after relocation so why
7117 * generate the extra instruction?
7118 */
7119 /* Itbl support may require additional care here. */
7120 coproc = 1;
7121 if (mips_opts.isa != ISA_MIPS1)
7122 {
7123 s = "ldc1";
7124 goto ld;
7125 }
7126
7127 s = "lwc1";
7128 fmt = "T,o(b)";
7129 goto ldd_std;
7130
7131 case M_S_DAB:
7132 if (mips_opts.isa != ISA_MIPS1)
7133 {
7134 s = "sdc1";
7135 goto st;
7136 }
7137
7138 s = "swc1";
7139 fmt = "T,o(b)";
7140 /* Itbl support may require additional care here. */
7141 coproc = 1;
7142 goto ldd_std;
7143
7144 case M_LD_AB:
7145 if (HAVE_64BIT_GPRS)
7146 {
7147 s = "ld";
7148 goto ld;
7149 }
7150
7151 s = "lw";
7152 fmt = "t,o(b)";
7153 goto ldd_std;
7154
7155 case M_SD_AB:
7156 if (HAVE_64BIT_GPRS)
7157 {
7158 s = "sd";
7159 goto st;
7160 }
7161
7162 s = "sw";
7163 fmt = "t,o(b)";
7164
7165 ldd_std:
7166 if (offset_expr.X_op != O_symbol
7167 && offset_expr.X_op != O_constant)
7168 {
7169 as_bad (_("Expression too complex"));
7170 offset_expr.X_op = O_constant;
7171 }
7172
7173 if (HAVE_32BIT_ADDRESSES
7174 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7175 {
7176 char value [32];
7177
7178 sprintf_vma (value, offset_expr.X_add_number);
7179 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7180 }
7181
7182 /* Even on a big endian machine $fn comes before $fn+1. We have
7183 to adjust when loading from memory. We set coproc if we must
7184 load $fn+1 first. */
7185 /* Itbl support may require additional care here. */
7186 if (!target_big_endian)
7187 coproc = 0;
7188
7189 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
7190 {
7191 /* If this is a reference to a GP relative symbol, we want
7192 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7193 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7194 If we have a base register, we use this
7195 addu $at,$breg,$gp
7196 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7197 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7198 If this is not a GP relative symbol, we want
7199 lui $at,<sym> (BFD_RELOC_HI16_S)
7200 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7201 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7202 If there is a base register, we add it to $at after the
7203 lui instruction. If there is a constant, we always use
7204 the last case. */
7205 if (offset_expr.X_op == O_symbol
7206 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7207 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7208 {
7209 relax_start (offset_expr.X_add_symbol);
7210 if (breg == 0)
7211 {
7212 tempreg = mips_gp_register;
7213 }
7214 else
7215 {
7216 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7217 AT, breg, mips_gp_register);
7218 tempreg = AT;
7219 used_at = 1;
7220 }
7221
7222 /* Itbl support may require additional care here. */
7223 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7224 BFD_RELOC_GPREL16, tempreg);
7225 offset_expr.X_add_number += 4;
7226
7227 /* Set mips_optimize to 2 to avoid inserting an
7228 undesired nop. */
7229 hold_mips_optimize = mips_optimize;
7230 mips_optimize = 2;
7231 /* Itbl support may require additional care here. */
7232 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7233 BFD_RELOC_GPREL16, tempreg);
7234 mips_optimize = hold_mips_optimize;
7235
7236 relax_switch ();
7237
7238 offset_expr.X_add_number -= 4;
7239 }
7240 used_at = 1;
7241 macro_build_lui (&offset_expr, AT);
7242 if (breg != 0)
7243 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7244 /* Itbl support may require additional care here. */
7245 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7246 BFD_RELOC_LO16, AT);
7247 /* FIXME: How do we handle overflow here? */
7248 offset_expr.X_add_number += 4;
7249 /* Itbl support may require additional care here. */
7250 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7251 BFD_RELOC_LO16, AT);
7252 if (mips_relax.sequence)
7253 relax_end ();
7254 }
7255 else if (!mips_big_got)
7256 {
7257 /* If this is a reference to an external symbol, we want
7258 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7259 nop
7260 <op> $treg,0($at)
7261 <op> $treg+1,4($at)
7262 Otherwise we want
7263 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7264 nop
7265 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7266 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7267 If there is a base register we add it to $at before the
7268 lwc1 instructions. If there is a constant we include it
7269 in the lwc1 instructions. */
7270 used_at = 1;
7271 expr1.X_add_number = offset_expr.X_add_number;
7272 if (expr1.X_add_number < -0x8000
7273 || expr1.X_add_number >= 0x8000 - 4)
7274 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7275 load_got_offset (AT, &offset_expr);
7276 load_delay_nop ();
7277 if (breg != 0)
7278 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7279
7280 /* Set mips_optimize to 2 to avoid inserting an undesired
7281 nop. */
7282 hold_mips_optimize = mips_optimize;
7283 mips_optimize = 2;
7284
7285 /* Itbl support may require additional care here. */
7286 relax_start (offset_expr.X_add_symbol);
7287 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7288 BFD_RELOC_LO16, AT);
7289 expr1.X_add_number += 4;
7290 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7291 BFD_RELOC_LO16, AT);
7292 relax_switch ();
7293 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7294 BFD_RELOC_LO16, AT);
7295 offset_expr.X_add_number += 4;
7296 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7297 BFD_RELOC_LO16, AT);
7298 relax_end ();
7299
7300 mips_optimize = hold_mips_optimize;
7301 }
7302 else if (mips_big_got)
7303 {
7304 int gpdelay;
7305
7306 /* If this is a reference to an external symbol, we want
7307 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7308 addu $at,$at,$gp
7309 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7310 nop
7311 <op> $treg,0($at)
7312 <op> $treg+1,4($at)
7313 Otherwise we want
7314 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7315 nop
7316 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7317 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7318 If there is a base register we add it to $at before the
7319 lwc1 instructions. If there is a constant we include it
7320 in the lwc1 instructions. */
7321 used_at = 1;
7322 expr1.X_add_number = offset_expr.X_add_number;
7323 offset_expr.X_add_number = 0;
7324 if (expr1.X_add_number < -0x8000
7325 || expr1.X_add_number >= 0x8000 - 4)
7326 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7327 gpdelay = reg_needs_delay (mips_gp_register);
7328 relax_start (offset_expr.X_add_symbol);
7329 macro_build (&offset_expr, "lui", "t,u",
7330 AT, BFD_RELOC_MIPS_GOT_HI16);
7331 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7332 AT, AT, mips_gp_register);
7333 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7334 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7335 load_delay_nop ();
7336 if (breg != 0)
7337 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7338 /* Itbl support may require additional care here. */
7339 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7340 BFD_RELOC_LO16, AT);
7341 expr1.X_add_number += 4;
7342
7343 /* Set mips_optimize to 2 to avoid inserting an undesired
7344 nop. */
7345 hold_mips_optimize = mips_optimize;
7346 mips_optimize = 2;
7347 /* Itbl support may require additional care here. */
7348 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7349 BFD_RELOC_LO16, AT);
7350 mips_optimize = hold_mips_optimize;
7351 expr1.X_add_number -= 4;
7352
7353 relax_switch ();
7354 offset_expr.X_add_number = expr1.X_add_number;
7355 if (gpdelay)
7356 macro_build (NULL, "nop", "");
7357 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7358 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7359 load_delay_nop ();
7360 if (breg != 0)
7361 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7362 /* Itbl support may require additional care here. */
7363 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7364 BFD_RELOC_LO16, AT);
7365 offset_expr.X_add_number += 4;
7366
7367 /* Set mips_optimize to 2 to avoid inserting an undesired
7368 nop. */
7369 hold_mips_optimize = mips_optimize;
7370 mips_optimize = 2;
7371 /* Itbl support may require additional care here. */
7372 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7373 BFD_RELOC_LO16, AT);
7374 mips_optimize = hold_mips_optimize;
7375 relax_end ();
7376 }
7377 else
7378 abort ();
7379
7380 break;
7381
7382 case M_LD_OB:
7383 s = HAVE_64BIT_GPRS ? "ld" : "lw";
7384 goto sd_ob;
7385 case M_SD_OB:
7386 s = HAVE_64BIT_GPRS ? "sd" : "sw";
7387 sd_ob:
7388 macro_build (&offset_expr, s, "t,o(b)", treg,
7389 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7390 breg);
7391 if (!HAVE_64BIT_GPRS)
7392 {
7393 offset_expr.X_add_number += 4;
7394 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
7395 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7396 breg);
7397 }
7398 break;
7399
7400 /* New code added to support COPZ instructions.
7401 This code builds table entries out of the macros in mip_opcodes.
7402 R4000 uses interlocks to handle coproc delays.
7403 Other chips (like the R3000) require nops to be inserted for delays.
7404
7405 FIXME: Currently, we require that the user handle delays.
7406 In order to fill delay slots for non-interlocked chips,
7407 we must have a way to specify delays based on the coprocessor.
7408 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7409 What are the side-effects of the cop instruction?
7410 What cache support might we have and what are its effects?
7411 Both coprocessor & memory require delays. how long???
7412 What registers are read/set/modified?
7413
7414 If an itbl is provided to interpret cop instructions,
7415 this knowledge can be encoded in the itbl spec. */
7416
7417 case M_COP0:
7418 s = "c0";
7419 goto copz;
7420 case M_COP1:
7421 s = "c1";
7422 goto copz;
7423 case M_COP2:
7424 s = "c2";
7425 goto copz;
7426 case M_COP3:
7427 s = "c3";
7428 copz:
7429 if (NO_ISA_COP (mips_opts.arch)
7430 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7431 {
7432 as_bad (_("opcode not supported on this processor: %s"),
7433 mips_cpu_info_from_arch (mips_opts.arch)->name);
7434 break;
7435 }
7436
7437 /* For now we just do C (same as Cz). The parameter will be
7438 stored in insn_opcode by mips_ip. */
7439 macro_build (NULL, s, "C", ip->insn_opcode);
7440 break;
7441
7442 case M_MOVE:
7443 move_register (dreg, sreg);
7444 break;
7445
7446 case M_DMUL:
7447 dbl = 1;
7448 case M_MUL:
7449 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7450 macro_build (NULL, "mflo", "d", dreg);
7451 break;
7452
7453 case M_DMUL_I:
7454 dbl = 1;
7455 case M_MUL_I:
7456 /* The MIPS assembler some times generates shifts and adds. I'm
7457 not trying to be that fancy. GCC should do this for us
7458 anyway. */
7459 used_at = 1;
7460 load_register (AT, &imm_expr, dbl);
7461 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7462 macro_build (NULL, "mflo", "d", dreg);
7463 break;
7464
7465 case M_DMULO_I:
7466 dbl = 1;
7467 case M_MULO_I:
7468 imm = 1;
7469 goto do_mulo;
7470
7471 case M_DMULO:
7472 dbl = 1;
7473 case M_MULO:
7474 do_mulo:
7475 start_noreorder ();
7476 used_at = 1;
7477 if (imm)
7478 load_register (AT, &imm_expr, dbl);
7479 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7480 macro_build (NULL, "mflo", "d", dreg);
7481 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7482 macro_build (NULL, "mfhi", "d", AT);
7483 if (mips_trap)
7484 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7485 else
7486 {
7487 expr1.X_add_number = 8;
7488 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7489 macro_build (NULL, "nop", "");
7490 macro_build (NULL, "break", "c", 6);
7491 }
7492 end_noreorder ();
7493 macro_build (NULL, "mflo", "d", dreg);
7494 break;
7495
7496 case M_DMULOU_I:
7497 dbl = 1;
7498 case M_MULOU_I:
7499 imm = 1;
7500 goto do_mulou;
7501
7502 case M_DMULOU:
7503 dbl = 1;
7504 case M_MULOU:
7505 do_mulou:
7506 start_noreorder ();
7507 used_at = 1;
7508 if (imm)
7509 load_register (AT, &imm_expr, dbl);
7510 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7511 sreg, imm ? AT : treg);
7512 macro_build (NULL, "mfhi", "d", AT);
7513 macro_build (NULL, "mflo", "d", dreg);
7514 if (mips_trap)
7515 macro_build (NULL, "tne", "s,t,q", AT, ZERO, 6);
7516 else
7517 {
7518 expr1.X_add_number = 8;
7519 macro_build (&expr1, "beq", "s,t,p", AT, ZERO);
7520 macro_build (NULL, "nop", "");
7521 macro_build (NULL, "break", "c", 6);
7522 }
7523 end_noreorder ();
7524 break;
7525
7526 case M_DROL:
7527 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7528 {
7529 if (dreg == sreg)
7530 {
7531 tempreg = AT;
7532 used_at = 1;
7533 }
7534 else
7535 {
7536 tempreg = dreg;
7537 }
7538 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7539 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7540 break;
7541 }
7542 used_at = 1;
7543 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7544 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7545 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7546 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7547 break;
7548
7549 case M_ROL:
7550 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7551 {
7552 if (dreg == sreg)
7553 {
7554 tempreg = AT;
7555 used_at = 1;
7556 }
7557 else
7558 {
7559 tempreg = dreg;
7560 }
7561 macro_build (NULL, "negu", "d,w", tempreg, treg);
7562 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7563 break;
7564 }
7565 used_at = 1;
7566 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7567 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7568 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7569 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7570 break;
7571
7572 case M_DROL_I:
7573 {
7574 unsigned int rot;
7575 char *l;
7576 char *rr;
7577
7578 if (imm_expr.X_op != O_constant)
7579 as_bad (_("Improper rotate count"));
7580 rot = imm_expr.X_add_number & 0x3f;
7581 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7582 {
7583 rot = (64 - rot) & 0x3f;
7584 if (rot >= 32)
7585 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7586 else
7587 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7588 break;
7589 }
7590 if (rot == 0)
7591 {
7592 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7593 break;
7594 }
7595 l = (rot < 0x20) ? "dsll" : "dsll32";
7596 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7597 rot &= 0x1f;
7598 used_at = 1;
7599 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7600 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7601 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7602 }
7603 break;
7604
7605 case M_ROL_I:
7606 {
7607 unsigned int rot;
7608
7609 if (imm_expr.X_op != O_constant)
7610 as_bad (_("Improper rotate count"));
7611 rot = imm_expr.X_add_number & 0x1f;
7612 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7613 {
7614 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7615 break;
7616 }
7617 if (rot == 0)
7618 {
7619 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7620 break;
7621 }
7622 used_at = 1;
7623 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7624 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7625 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7626 }
7627 break;
7628
7629 case M_DROR:
7630 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7631 {
7632 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7633 break;
7634 }
7635 used_at = 1;
7636 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7637 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7638 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7639 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7640 break;
7641
7642 case M_ROR:
7643 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7644 {
7645 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7646 break;
7647 }
7648 used_at = 1;
7649 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7650 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7651 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7652 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7653 break;
7654
7655 case M_DROR_I:
7656 {
7657 unsigned int rot;
7658 char *l;
7659 char *rr;
7660
7661 if (imm_expr.X_op != O_constant)
7662 as_bad (_("Improper rotate count"));
7663 rot = imm_expr.X_add_number & 0x3f;
7664 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7665 {
7666 if (rot >= 32)
7667 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7668 else
7669 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7670 break;
7671 }
7672 if (rot == 0)
7673 {
7674 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7675 break;
7676 }
7677 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7678 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7679 rot &= 0x1f;
7680 used_at = 1;
7681 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7682 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7683 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7684 }
7685 break;
7686
7687 case M_ROR_I:
7688 {
7689 unsigned int rot;
7690
7691 if (imm_expr.X_op != O_constant)
7692 as_bad (_("Improper rotate count"));
7693 rot = imm_expr.X_add_number & 0x1f;
7694 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7695 {
7696 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7697 break;
7698 }
7699 if (rot == 0)
7700 {
7701 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7702 break;
7703 }
7704 used_at = 1;
7705 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7706 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7707 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7708 }
7709 break;
7710
7711 case M_SEQ:
7712 if (sreg == 0)
7713 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7714 else if (treg == 0)
7715 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7716 else
7717 {
7718 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7719 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7720 }
7721 break;
7722
7723 case M_SEQ_I:
7724 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7725 {
7726 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7727 break;
7728 }
7729 if (sreg == 0)
7730 {
7731 as_warn (_("Instruction %s: result is always false"),
7732 ip->insn_mo->name);
7733 move_register (dreg, 0);
7734 break;
7735 }
7736 if (CPU_HAS_SEQ (mips_opts.arch)
7737 && -512 <= imm_expr.X_add_number
7738 && imm_expr.X_add_number < 512)
7739 {
7740 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7741 (int) imm_expr.X_add_number);
7742 break;
7743 }
7744 if (imm_expr.X_op == O_constant
7745 && imm_expr.X_add_number >= 0
7746 && imm_expr.X_add_number < 0x10000)
7747 {
7748 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7749 }
7750 else if (imm_expr.X_op == O_constant
7751 && imm_expr.X_add_number > -0x8000
7752 && imm_expr.X_add_number < 0)
7753 {
7754 imm_expr.X_add_number = -imm_expr.X_add_number;
7755 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7756 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7757 }
7758 else if (CPU_HAS_SEQ (mips_opts.arch))
7759 {
7760 used_at = 1;
7761 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7762 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7763 break;
7764 }
7765 else
7766 {
7767 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7768 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7769 used_at = 1;
7770 }
7771 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7772 break;
7773
7774 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7775 s = "slt";
7776 goto sge;
7777 case M_SGEU:
7778 s = "sltu";
7779 sge:
7780 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7781 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7782 break;
7783
7784 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7785 case M_SGEU_I:
7786 if (imm_expr.X_op == O_constant
7787 && imm_expr.X_add_number >= -0x8000
7788 && imm_expr.X_add_number < 0x8000)
7789 {
7790 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7791 dreg, sreg, BFD_RELOC_LO16);
7792 }
7793 else
7794 {
7795 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7796 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7797 dreg, sreg, AT);
7798 used_at = 1;
7799 }
7800 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7801 break;
7802
7803 case M_SGT: /* sreg > treg <==> treg < sreg */
7804 s = "slt";
7805 goto sgt;
7806 case M_SGTU:
7807 s = "sltu";
7808 sgt:
7809 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7810 break;
7811
7812 case M_SGT_I: /* sreg > I <==> I < sreg */
7813 s = "slt";
7814 goto sgti;
7815 case M_SGTU_I:
7816 s = "sltu";
7817 sgti:
7818 used_at = 1;
7819 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7820 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7821 break;
7822
7823 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7824 s = "slt";
7825 goto sle;
7826 case M_SLEU:
7827 s = "sltu";
7828 sle:
7829 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7830 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7831 break;
7832
7833 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7834 s = "slt";
7835 goto slei;
7836 case M_SLEU_I:
7837 s = "sltu";
7838 slei:
7839 used_at = 1;
7840 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7841 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7842 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7843 break;
7844
7845 case M_SLT_I:
7846 if (imm_expr.X_op == O_constant
7847 && imm_expr.X_add_number >= -0x8000
7848 && imm_expr.X_add_number < 0x8000)
7849 {
7850 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7851 break;
7852 }
7853 used_at = 1;
7854 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7855 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7856 break;
7857
7858 case M_SLTU_I:
7859 if (imm_expr.X_op == O_constant
7860 && imm_expr.X_add_number >= -0x8000
7861 && imm_expr.X_add_number < 0x8000)
7862 {
7863 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7864 BFD_RELOC_LO16);
7865 break;
7866 }
7867 used_at = 1;
7868 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7869 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7870 break;
7871
7872 case M_SNE:
7873 if (sreg == 0)
7874 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7875 else if (treg == 0)
7876 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7877 else
7878 {
7879 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7880 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7881 }
7882 break;
7883
7884 case M_SNE_I:
7885 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7886 {
7887 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7888 break;
7889 }
7890 if (sreg == 0)
7891 {
7892 as_warn (_("Instruction %s: result is always true"),
7893 ip->insn_mo->name);
7894 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7895 dreg, 0, BFD_RELOC_LO16);
7896 break;
7897 }
7898 if (CPU_HAS_SEQ (mips_opts.arch)
7899 && -512 <= imm_expr.X_add_number
7900 && imm_expr.X_add_number < 512)
7901 {
7902 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7903 (int) imm_expr.X_add_number);
7904 break;
7905 }
7906 if (imm_expr.X_op == O_constant
7907 && imm_expr.X_add_number >= 0
7908 && imm_expr.X_add_number < 0x10000)
7909 {
7910 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7911 }
7912 else if (imm_expr.X_op == O_constant
7913 && imm_expr.X_add_number > -0x8000
7914 && imm_expr.X_add_number < 0)
7915 {
7916 imm_expr.X_add_number = -imm_expr.X_add_number;
7917 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7918 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7919 }
7920 else if (CPU_HAS_SEQ (mips_opts.arch))
7921 {
7922 used_at = 1;
7923 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7924 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7925 break;
7926 }
7927 else
7928 {
7929 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7930 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7931 used_at = 1;
7932 }
7933 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7934 break;
7935
7936 case M_DSUB_I:
7937 dbl = 1;
7938 case M_SUB_I:
7939 if (imm_expr.X_op == O_constant
7940 && imm_expr.X_add_number > -0x8000
7941 && imm_expr.X_add_number <= 0x8000)
7942 {
7943 imm_expr.X_add_number = -imm_expr.X_add_number;
7944 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7945 dreg, sreg, BFD_RELOC_LO16);
7946 break;
7947 }
7948 used_at = 1;
7949 load_register (AT, &imm_expr, dbl);
7950 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7951 break;
7952
7953 case M_DSUBU_I:
7954 dbl = 1;
7955 case M_SUBU_I:
7956 if (imm_expr.X_op == O_constant
7957 && imm_expr.X_add_number > -0x8000
7958 && imm_expr.X_add_number <= 0x8000)
7959 {
7960 imm_expr.X_add_number = -imm_expr.X_add_number;
7961 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7962 dreg, sreg, BFD_RELOC_LO16);
7963 break;
7964 }
7965 used_at = 1;
7966 load_register (AT, &imm_expr, dbl);
7967 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7968 break;
7969
7970 case M_TEQ_I:
7971 s = "teq";
7972 goto trap;
7973 case M_TGE_I:
7974 s = "tge";
7975 goto trap;
7976 case M_TGEU_I:
7977 s = "tgeu";
7978 goto trap;
7979 case M_TLT_I:
7980 s = "tlt";
7981 goto trap;
7982 case M_TLTU_I:
7983 s = "tltu";
7984 goto trap;
7985 case M_TNE_I:
7986 s = "tne";
7987 trap:
7988 used_at = 1;
7989 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7990 macro_build (NULL, s, "s,t", sreg, AT);
7991 break;
7992
7993 case M_TRUNCWS:
7994 case M_TRUNCWD:
7995 gas_assert (mips_opts.isa == ISA_MIPS1);
7996 used_at = 1;
7997 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7998 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7999
8000 /*
8001 * Is the double cfc1 instruction a bug in the mips assembler;
8002 * or is there a reason for it?
8003 */
8004 start_noreorder ();
8005 macro_build (NULL, "cfc1", "t,G", treg, RA);
8006 macro_build (NULL, "cfc1", "t,G", treg, RA);
8007 macro_build (NULL, "nop", "");
8008 expr1.X_add_number = 3;
8009 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
8010 expr1.X_add_number = 2;
8011 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
8012 macro_build (NULL, "ctc1", "t,G", AT, RA);
8013 macro_build (NULL, "nop", "");
8014 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
8015 dreg, sreg);
8016 macro_build (NULL, "ctc1", "t,G", treg, RA);
8017 macro_build (NULL, "nop", "");
8018 end_noreorder ();
8019 break;
8020
8021 case M_ULH:
8022 s = "lb";
8023 goto ulh;
8024 case M_ULHU:
8025 s = "lbu";
8026 ulh:
8027 used_at = 1;
8028 if (offset_expr.X_add_number >= 0x7fff)
8029 as_bad (_("Operand overflow"));
8030 if (!target_big_endian)
8031 ++offset_expr.X_add_number;
8032 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8033 if (!target_big_endian)
8034 --offset_expr.X_add_number;
8035 else
8036 ++offset_expr.X_add_number;
8037 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8038 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8039 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8040 break;
8041
8042 case M_ULD:
8043 s = "ldl";
8044 s2 = "ldr";
8045 off = 7;
8046 goto ulw;
8047 case M_ULW:
8048 s = "lwl";
8049 s2 = "lwr";
8050 off = 3;
8051 ulw:
8052 if (offset_expr.X_add_number >= 0x8000 - off)
8053 as_bad (_("Operand overflow"));
8054 if (treg != breg)
8055 tempreg = treg;
8056 else
8057 {
8058 used_at = 1;
8059 tempreg = AT;
8060 }
8061 if (!target_big_endian)
8062 offset_expr.X_add_number += off;
8063 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8064 if (!target_big_endian)
8065 offset_expr.X_add_number -= off;
8066 else
8067 offset_expr.X_add_number += off;
8068 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8069
8070 /* If necessary, move the result in tempreg to the final destination. */
8071 if (treg == tempreg)
8072 break;
8073 /* Protect second load's delay slot. */
8074 load_delay_nop ();
8075 move_register (treg, tempreg);
8076 break;
8077
8078 case M_ULD_A:
8079 s = "ldl";
8080 s2 = "ldr";
8081 off = 7;
8082 goto ulwa;
8083 case M_ULW_A:
8084 s = "lwl";
8085 s2 = "lwr";
8086 off = 3;
8087 ulwa:
8088 used_at = 1;
8089 load_address (AT, &offset_expr, &used_at);
8090 if (breg != 0)
8091 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8092 if (!target_big_endian)
8093 expr1.X_add_number = off;
8094 else
8095 expr1.X_add_number = 0;
8096 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8097 if (!target_big_endian)
8098 expr1.X_add_number = 0;
8099 else
8100 expr1.X_add_number = off;
8101 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8102 break;
8103
8104 case M_ULH_A:
8105 case M_ULHU_A:
8106 used_at = 1;
8107 load_address (AT, &offset_expr, &used_at);
8108 if (breg != 0)
8109 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8110 if (target_big_endian)
8111 expr1.X_add_number = 0;
8112 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8113 treg, BFD_RELOC_LO16, AT);
8114 if (target_big_endian)
8115 expr1.X_add_number = 1;
8116 else
8117 expr1.X_add_number = 0;
8118 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8119 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8120 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8121 break;
8122
8123 case M_USH:
8124 used_at = 1;
8125 if (offset_expr.X_add_number >= 0x7fff)
8126 as_bad (_("Operand overflow"));
8127 if (target_big_endian)
8128 ++offset_expr.X_add_number;
8129 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8130 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8131 if (target_big_endian)
8132 --offset_expr.X_add_number;
8133 else
8134 ++offset_expr.X_add_number;
8135 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8136 break;
8137
8138 case M_USD:
8139 s = "sdl";
8140 s2 = "sdr";
8141 off = 7;
8142 goto usw;
8143 case M_USW:
8144 s = "swl";
8145 s2 = "swr";
8146 off = 3;
8147 usw:
8148 if (offset_expr.X_add_number >= 0x8000 - off)
8149 as_bad (_("Operand overflow"));
8150 if (!target_big_endian)
8151 offset_expr.X_add_number += off;
8152 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8153 if (!target_big_endian)
8154 offset_expr.X_add_number -= off;
8155 else
8156 offset_expr.X_add_number += off;
8157 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8158 break;
8159
8160 case M_USD_A:
8161 s = "sdl";
8162 s2 = "sdr";
8163 off = 7;
8164 goto uswa;
8165 case M_USW_A:
8166 s = "swl";
8167 s2 = "swr";
8168 off = 3;
8169 uswa:
8170 used_at = 1;
8171 load_address (AT, &offset_expr, &used_at);
8172 if (breg != 0)
8173 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8174 if (!target_big_endian)
8175 expr1.X_add_number = off;
8176 else
8177 expr1.X_add_number = 0;
8178 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8179 if (!target_big_endian)
8180 expr1.X_add_number = 0;
8181 else
8182 expr1.X_add_number = off;
8183 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8184 break;
8185
8186 case M_USH_A:
8187 used_at = 1;
8188 load_address (AT, &offset_expr, &used_at);
8189 if (breg != 0)
8190 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8191 if (!target_big_endian)
8192 expr1.X_add_number = 0;
8193 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8194 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8195 if (!target_big_endian)
8196 expr1.X_add_number = 1;
8197 else
8198 expr1.X_add_number = 0;
8199 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8200 if (!target_big_endian)
8201 expr1.X_add_number = 0;
8202 else
8203 expr1.X_add_number = 1;
8204 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8205 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8206 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8207 break;
8208
8209 default:
8210 /* FIXME: Check if this is one of the itbl macros, since they
8211 are added dynamically. */
8212 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8213 break;
8214 }
8215 if (!mips_opts.at && used_at)
8216 as_bad (_("Macro used $at after \".set noat\""));
8217 }
8218
8219 /* Implement macros in mips16 mode. */
8220
8221 static void
8222 mips16_macro (struct mips_cl_insn *ip)
8223 {
8224 int mask;
8225 int xreg, yreg, zreg, tmp;
8226 expressionS expr1;
8227 int dbl;
8228 const char *s, *s2, *s3;
8229
8230 mask = ip->insn_mo->mask;
8231
8232 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8233 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8234 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8235
8236 expr1.X_op = O_constant;
8237 expr1.X_op_symbol = NULL;
8238 expr1.X_add_symbol = NULL;
8239 expr1.X_add_number = 1;
8240
8241 dbl = 0;
8242
8243 switch (mask)
8244 {
8245 default:
8246 internalError ();
8247
8248 case M_DDIV_3:
8249 dbl = 1;
8250 case M_DIV_3:
8251 s = "mflo";
8252 goto do_div3;
8253 case M_DREM_3:
8254 dbl = 1;
8255 case M_REM_3:
8256 s = "mfhi";
8257 do_div3:
8258 start_noreorder ();
8259 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8260 expr1.X_add_number = 2;
8261 macro_build (&expr1, "bnez", "x,p", yreg);
8262 macro_build (NULL, "break", "6", 7);
8263
8264 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8265 since that causes an overflow. We should do that as well,
8266 but I don't see how to do the comparisons without a temporary
8267 register. */
8268 end_noreorder ();
8269 macro_build (NULL, s, "x", zreg);
8270 break;
8271
8272 case M_DIVU_3:
8273 s = "divu";
8274 s2 = "mflo";
8275 goto do_divu3;
8276 case M_REMU_3:
8277 s = "divu";
8278 s2 = "mfhi";
8279 goto do_divu3;
8280 case M_DDIVU_3:
8281 s = "ddivu";
8282 s2 = "mflo";
8283 goto do_divu3;
8284 case M_DREMU_3:
8285 s = "ddivu";
8286 s2 = "mfhi";
8287 do_divu3:
8288 start_noreorder ();
8289 macro_build (NULL, s, "0,x,y", xreg, yreg);
8290 expr1.X_add_number = 2;
8291 macro_build (&expr1, "bnez", "x,p", yreg);
8292 macro_build (NULL, "break", "6", 7);
8293 end_noreorder ();
8294 macro_build (NULL, s2, "x", zreg);
8295 break;
8296
8297 case M_DMUL:
8298 dbl = 1;
8299 case M_MUL:
8300 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8301 macro_build (NULL, "mflo", "x", zreg);
8302 break;
8303
8304 case M_DSUBU_I:
8305 dbl = 1;
8306 goto do_subu;
8307 case M_SUBU_I:
8308 do_subu:
8309 if (imm_expr.X_op != O_constant)
8310 as_bad (_("Unsupported large constant"));
8311 imm_expr.X_add_number = -imm_expr.X_add_number;
8312 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8313 break;
8314
8315 case M_SUBU_I_2:
8316 if (imm_expr.X_op != O_constant)
8317 as_bad (_("Unsupported large constant"));
8318 imm_expr.X_add_number = -imm_expr.X_add_number;
8319 macro_build (&imm_expr, "addiu", "x,k", xreg);
8320 break;
8321
8322 case M_DSUBU_I_2:
8323 if (imm_expr.X_op != O_constant)
8324 as_bad (_("Unsupported large constant"));
8325 imm_expr.X_add_number = -imm_expr.X_add_number;
8326 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8327 break;
8328
8329 case M_BEQ:
8330 s = "cmp";
8331 s2 = "bteqz";
8332 goto do_branch;
8333 case M_BNE:
8334 s = "cmp";
8335 s2 = "btnez";
8336 goto do_branch;
8337 case M_BLT:
8338 s = "slt";
8339 s2 = "btnez";
8340 goto do_branch;
8341 case M_BLTU:
8342 s = "sltu";
8343 s2 = "btnez";
8344 goto do_branch;
8345 case M_BLE:
8346 s = "slt";
8347 s2 = "bteqz";
8348 goto do_reverse_branch;
8349 case M_BLEU:
8350 s = "sltu";
8351 s2 = "bteqz";
8352 goto do_reverse_branch;
8353 case M_BGE:
8354 s = "slt";
8355 s2 = "bteqz";
8356 goto do_branch;
8357 case M_BGEU:
8358 s = "sltu";
8359 s2 = "bteqz";
8360 goto do_branch;
8361 case M_BGT:
8362 s = "slt";
8363 s2 = "btnez";
8364 goto do_reverse_branch;
8365 case M_BGTU:
8366 s = "sltu";
8367 s2 = "btnez";
8368
8369 do_reverse_branch:
8370 tmp = xreg;
8371 xreg = yreg;
8372 yreg = tmp;
8373
8374 do_branch:
8375 macro_build (NULL, s, "x,y", xreg, yreg);
8376 macro_build (&offset_expr, s2, "p");
8377 break;
8378
8379 case M_BEQ_I:
8380 s = "cmpi";
8381 s2 = "bteqz";
8382 s3 = "x,U";
8383 goto do_branch_i;
8384 case M_BNE_I:
8385 s = "cmpi";
8386 s2 = "btnez";
8387 s3 = "x,U";
8388 goto do_branch_i;
8389 case M_BLT_I:
8390 s = "slti";
8391 s2 = "btnez";
8392 s3 = "x,8";
8393 goto do_branch_i;
8394 case M_BLTU_I:
8395 s = "sltiu";
8396 s2 = "btnez";
8397 s3 = "x,8";
8398 goto do_branch_i;
8399 case M_BLE_I:
8400 s = "slti";
8401 s2 = "btnez";
8402 s3 = "x,8";
8403 goto do_addone_branch_i;
8404 case M_BLEU_I:
8405 s = "sltiu";
8406 s2 = "btnez";
8407 s3 = "x,8";
8408 goto do_addone_branch_i;
8409 case M_BGE_I:
8410 s = "slti";
8411 s2 = "bteqz";
8412 s3 = "x,8";
8413 goto do_branch_i;
8414 case M_BGEU_I:
8415 s = "sltiu";
8416 s2 = "bteqz";
8417 s3 = "x,8";
8418 goto do_branch_i;
8419 case M_BGT_I:
8420 s = "slti";
8421 s2 = "bteqz";
8422 s3 = "x,8";
8423 goto do_addone_branch_i;
8424 case M_BGTU_I:
8425 s = "sltiu";
8426 s2 = "bteqz";
8427 s3 = "x,8";
8428
8429 do_addone_branch_i:
8430 if (imm_expr.X_op != O_constant)
8431 as_bad (_("Unsupported large constant"));
8432 ++imm_expr.X_add_number;
8433
8434 do_branch_i:
8435 macro_build (&imm_expr, s, s3, xreg);
8436 macro_build (&offset_expr, s2, "p");
8437 break;
8438
8439 case M_ABS:
8440 expr1.X_add_number = 0;
8441 macro_build (&expr1, "slti", "x,8", yreg);
8442 if (xreg != yreg)
8443 move_register (xreg, yreg);
8444 expr1.X_add_number = 2;
8445 macro_build (&expr1, "bteqz", "p");
8446 macro_build (NULL, "neg", "x,w", xreg, xreg);
8447 }
8448 }
8449
8450 /* For consistency checking, verify that all bits are specified either
8451 by the match/mask part of the instruction definition, or by the
8452 operand list. */
8453 static int
8454 validate_mips_insn (const struct mips_opcode *opc)
8455 {
8456 const char *p = opc->args;
8457 char c;
8458 unsigned long used_bits = opc->mask;
8459
8460 if ((used_bits & opc->match) != opc->match)
8461 {
8462 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8463 opc->name, opc->args);
8464 return 0;
8465 }
8466 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8467 while (*p)
8468 switch (c = *p++)
8469 {
8470 case ',': break;
8471 case '(': break;
8472 case ')': break;
8473 case '+':
8474 switch (c = *p++)
8475 {
8476 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8477 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8478 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8479 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8480 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8481 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8482 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8483 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8484 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8485 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8486 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8487 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8488 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8489 case 'I': break;
8490 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8491 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8492 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8493 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8494 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8495 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8496 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8497 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8498 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8499 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8500 case 'z': USE_BITS (OP_MASK_RZ, OP_SH_RZ); break;
8501 case 'Z': USE_BITS (OP_MASK_FZ, OP_SH_FZ); break;
8502 case 'a': USE_BITS (OP_MASK_OFFSET_A, OP_SH_OFFSET_A); break;
8503 case 'b': USE_BITS (OP_MASK_OFFSET_B, OP_SH_OFFSET_B); break;
8504 case 'c': USE_BITS (OP_MASK_OFFSET_C, OP_SH_OFFSET_C); break;
8505
8506 default:
8507 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8508 c, opc->name, opc->args);
8509 return 0;
8510 }
8511 break;
8512 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8513 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8514 case 'A': break;
8515 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8516 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8517 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8518 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8519 case 'F': break;
8520 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8521 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8522 case 'I': break;
8523 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8524 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8525 case 'L': break;
8526 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8527 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8528 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8529 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8530 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8531 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8532 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8533 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8534 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8535 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8536 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8537 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8538 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8539 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8540 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8541 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8542 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8543 case 'f': break;
8544 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8545 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8546 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8547 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8548 case 'l': break;
8549 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8550 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8551 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8552 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8553 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8554 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8555 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8556 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8557 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8558 case 'x': break;
8559 case 'z': break;
8560 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8561 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8562 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8563 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8564 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8565 case '[': break;
8566 case ']': break;
8567 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8568 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8569 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8570 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8571 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8572 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8573 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8574 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8575 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8576 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8577 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8578 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8579 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8580 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8581 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8582 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8583 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8584 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8585 default:
8586 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8587 c, opc->name, opc->args);
8588 return 0;
8589 }
8590 #undef USE_BITS
8591 if (used_bits != 0xffffffff)
8592 {
8593 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8594 ~used_bits & 0xffffffff, opc->name, opc->args);
8595 return 0;
8596 }
8597 return 1;
8598 }
8599
8600 /* UDI immediates. */
8601 struct mips_immed {
8602 char type;
8603 unsigned int shift;
8604 unsigned long mask;
8605 const char * desc;
8606 };
8607
8608 static const struct mips_immed mips_immed[] = {
8609 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8610 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8611 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8612 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8613 { 0,0,0,0 }
8614 };
8615
8616 /* Check whether an odd floating-point register is allowed. */
8617 static int
8618 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8619 {
8620 const char *s = insn->name;
8621
8622 if (insn->pinfo == INSN_MACRO)
8623 /* Let a macro pass, we'll catch it later when it is expanded. */
8624 return 1;
8625
8626 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8627 {
8628 /* Allow odd registers for single-precision ops. */
8629 switch (insn->pinfo & (FP_S | FP_D))
8630 {
8631 case FP_S:
8632 case 0:
8633 return 1; /* both single precision - ok */
8634 case FP_D:
8635 return 0; /* both double precision - fail */
8636 default:
8637 break;
8638 }
8639
8640 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8641 s = strchr (insn->name, '.');
8642 if (argnum == 2)
8643 s = s != NULL ? strchr (s + 1, '.') : NULL;
8644 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8645 }
8646
8647 /* Single-precision coprocessor loads and moves are OK too. */
8648 if ((insn->pinfo & FP_S)
8649 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8650 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8651 return 1;
8652
8653 return 0;
8654 }
8655
8656 /* This routine assembles an instruction into its binary format. As a
8657 side effect, it sets one of the global variables imm_reloc or
8658 offset_reloc to the type of relocation to do if one of the operands
8659 is an address expression. */
8660
8661 static void
8662 mips_ip (char *str, struct mips_cl_insn *ip)
8663 {
8664 char *s;
8665 const char *args;
8666 char c = 0;
8667 struct mips_opcode *insn;
8668 char *argsStart;
8669 unsigned int regno;
8670 unsigned int lastregno;
8671 unsigned int lastpos = 0;
8672 unsigned int limlo, limhi;
8673 char *s_reset;
8674 char save_c = 0;
8675 offsetT min_range, max_range;
8676 int argnum;
8677 unsigned int rtype;
8678
8679 insn_error = NULL;
8680
8681 /* If the instruction contains a '.', we first try to match an instruction
8682 including the '.'. Then we try again without the '.'. */
8683 insn = NULL;
8684 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8685 continue;
8686
8687 /* If we stopped on whitespace, then replace the whitespace with null for
8688 the call to hash_find. Save the character we replaced just in case we
8689 have to re-parse the instruction. */
8690 if (ISSPACE (*s))
8691 {
8692 save_c = *s;
8693 *s++ = '\0';
8694 }
8695
8696 insn = (struct mips_opcode *) hash_find (op_hash, str);
8697
8698 /* If we didn't find the instruction in the opcode table, try again, but
8699 this time with just the instruction up to, but not including the
8700 first '.'. */
8701 if (insn == NULL)
8702 {
8703 /* Restore the character we overwrite above (if any). */
8704 if (save_c)
8705 *(--s) = save_c;
8706
8707 /* Scan up to the first '.' or whitespace. */
8708 for (s = str;
8709 *s != '\0' && *s != '.' && !ISSPACE (*s);
8710 ++s)
8711 continue;
8712
8713 /* If we did not find a '.', then we can quit now. */
8714 if (*s != '.')
8715 {
8716 insn_error = _("Unrecognized opcode");
8717 return;
8718 }
8719
8720 /* Lookup the instruction in the hash table. */
8721 *s++ = '\0';
8722 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8723 {
8724 insn_error = _("Unrecognized opcode");
8725 return;
8726 }
8727 }
8728
8729 argsStart = s;
8730 for (;;)
8731 {
8732 bfd_boolean ok;
8733
8734 gas_assert (strcmp (insn->name, str) == 0);
8735
8736 ok = is_opcode_valid (insn);
8737 if (! ok)
8738 {
8739 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8740 && strcmp (insn->name, insn[1].name) == 0)
8741 {
8742 ++insn;
8743 continue;
8744 }
8745 else
8746 {
8747 if (!insn_error)
8748 {
8749 static char buf[100];
8750 sprintf (buf,
8751 _("opcode not supported on this processor: %s (%s)"),
8752 mips_cpu_info_from_arch (mips_opts.arch)->name,
8753 mips_cpu_info_from_isa (mips_opts.isa)->name);
8754 insn_error = buf;
8755 }
8756 if (save_c)
8757 *(--s) = save_c;
8758 return;
8759 }
8760 }
8761
8762 create_insn (ip, insn);
8763 insn_error = NULL;
8764 argnum = 1;
8765 lastregno = 0xffffffff;
8766 for (args = insn->args;; ++args)
8767 {
8768 int is_mdmx;
8769
8770 s += strspn (s, " \t");
8771 is_mdmx = 0;
8772 switch (*args)
8773 {
8774 case '\0': /* end of args */
8775 if (*s == '\0')
8776 return;
8777 break;
8778
8779 case '2': /* DSP 2-bit unsigned immediate in bit 11. */
8780 my_getExpression (&imm_expr, s);
8781 check_absolute_expr (ip, &imm_expr);
8782 if ((unsigned long) imm_expr.X_add_number != 1
8783 && (unsigned long) imm_expr.X_add_number != 3)
8784 {
8785 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8786 (unsigned long) imm_expr.X_add_number);
8787 }
8788 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8789 imm_expr.X_op = O_absent;
8790 s = expr_end;
8791 continue;
8792
8793 case '3': /* DSP 3-bit unsigned immediate in bit 21. */
8794 my_getExpression (&imm_expr, s);
8795 check_absolute_expr (ip, &imm_expr);
8796 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8797 {
8798 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8799 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8800 }
8801 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8802 imm_expr.X_op = O_absent;
8803 s = expr_end;
8804 continue;
8805
8806 case '4': /* DSP 4-bit unsigned immediate in bit 21. */
8807 my_getExpression (&imm_expr, s);
8808 check_absolute_expr (ip, &imm_expr);
8809 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8810 {
8811 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8812 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8813 }
8814 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8815 imm_expr.X_op = O_absent;
8816 s = expr_end;
8817 continue;
8818
8819 case '5': /* DSP 8-bit unsigned immediate in bit 16. */
8820 my_getExpression (&imm_expr, s);
8821 check_absolute_expr (ip, &imm_expr);
8822 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8823 {
8824 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8825 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8826 }
8827 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8828 imm_expr.X_op = O_absent;
8829 s = expr_end;
8830 continue;
8831
8832 case '6': /* DSP 5-bit unsigned immediate in bit 21. */
8833 my_getExpression (&imm_expr, s);
8834 check_absolute_expr (ip, &imm_expr);
8835 if (imm_expr.X_add_number & ~OP_MASK_RS)
8836 {
8837 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8838 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8839 }
8840 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8841 imm_expr.X_op = O_absent;
8842 s = expr_end;
8843 continue;
8844
8845 case '7': /* Four DSP accumulators in bits 11,12. */
8846 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8847 s[3] >= '0' && s[3] <= '3')
8848 {
8849 regno = s[3] - '0';
8850 s += 4;
8851 INSERT_OPERAND (DSPACC, *ip, regno);
8852 continue;
8853 }
8854 else
8855 as_bad (_("Invalid dsp acc register"));
8856 break;
8857
8858 case '8': /* DSP 6-bit unsigned immediate in bit 11. */
8859 my_getExpression (&imm_expr, s);
8860 check_absolute_expr (ip, &imm_expr);
8861 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8862 {
8863 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8864 OP_MASK_WRDSP,
8865 (unsigned long) imm_expr.X_add_number);
8866 }
8867 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8868 imm_expr.X_op = O_absent;
8869 s = expr_end;
8870 continue;
8871
8872 case '9': /* Four DSP accumulators in bits 21,22. */
8873 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8874 s[3] >= '0' && s[3] <= '3')
8875 {
8876 regno = s[3] - '0';
8877 s += 4;
8878 INSERT_OPERAND (DSPACC_S, *ip, regno);
8879 continue;
8880 }
8881 else
8882 as_bad (_("Invalid dsp acc register"));
8883 break;
8884
8885 case '0': /* DSP 6-bit signed immediate in bit 20. */
8886 my_getExpression (&imm_expr, s);
8887 check_absolute_expr (ip, &imm_expr);
8888 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8889 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8890 if (imm_expr.X_add_number < min_range ||
8891 imm_expr.X_add_number > max_range)
8892 {
8893 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8894 (long) min_range, (long) max_range,
8895 (long) imm_expr.X_add_number);
8896 }
8897 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8898 imm_expr.X_op = O_absent;
8899 s = expr_end;
8900 continue;
8901
8902 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
8903 my_getExpression (&imm_expr, s);
8904 check_absolute_expr (ip, &imm_expr);
8905 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8906 {
8907 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8908 OP_MASK_RDDSP,
8909 (unsigned long) imm_expr.X_add_number);
8910 }
8911 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8912 imm_expr.X_op = O_absent;
8913 s = expr_end;
8914 continue;
8915
8916 case ':': /* DSP 7-bit signed immediate in bit 19. */
8917 my_getExpression (&imm_expr, s);
8918 check_absolute_expr (ip, &imm_expr);
8919 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8920 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8921 if (imm_expr.X_add_number < min_range ||
8922 imm_expr.X_add_number > max_range)
8923 {
8924 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8925 (long) min_range, (long) max_range,
8926 (long) imm_expr.X_add_number);
8927 }
8928 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8929 imm_expr.X_op = O_absent;
8930 s = expr_end;
8931 continue;
8932
8933 case '@': /* DSP 10-bit signed immediate in bit 16. */
8934 my_getExpression (&imm_expr, s);
8935 check_absolute_expr (ip, &imm_expr);
8936 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8937 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8938 if (imm_expr.X_add_number < min_range ||
8939 imm_expr.X_add_number > max_range)
8940 {
8941 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8942 (long) min_range, (long) max_range,
8943 (long) imm_expr.X_add_number);
8944 }
8945 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8946 imm_expr.X_op = O_absent;
8947 s = expr_end;
8948 continue;
8949
8950 case '!': /* MT usermode flag bit. */
8951 my_getExpression (&imm_expr, s);
8952 check_absolute_expr (ip, &imm_expr);
8953 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8954 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8955 (unsigned long) imm_expr.X_add_number);
8956 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8957 imm_expr.X_op = O_absent;
8958 s = expr_end;
8959 continue;
8960
8961 case '$': /* MT load high flag bit. */
8962 my_getExpression (&imm_expr, s);
8963 check_absolute_expr (ip, &imm_expr);
8964 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8965 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8966 (unsigned long) imm_expr.X_add_number);
8967 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8968 imm_expr.X_op = O_absent;
8969 s = expr_end;
8970 continue;
8971
8972 case '*': /* Four DSP accumulators in bits 18,19. */
8973 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8974 s[3] >= '0' && s[3] <= '3')
8975 {
8976 regno = s[3] - '0';
8977 s += 4;
8978 INSERT_OPERAND (MTACC_T, *ip, regno);
8979 continue;
8980 }
8981 else
8982 as_bad (_("Invalid dsp/smartmips acc register"));
8983 break;
8984
8985 case '&': /* Four DSP accumulators in bits 13,14. */
8986 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8987 s[3] >= '0' && s[3] <= '3')
8988 {
8989 regno = s[3] - '0';
8990 s += 4;
8991 INSERT_OPERAND (MTACC_D, *ip, regno);
8992 continue;
8993 }
8994 else
8995 as_bad (_("Invalid dsp/smartmips acc register"));
8996 break;
8997
8998 case ',':
8999 ++argnum;
9000 if (*s++ == *args)
9001 continue;
9002 s--;
9003 switch (*++args)
9004 {
9005 case 'r':
9006 case 'v':
9007 INSERT_OPERAND (RS, *ip, lastregno);
9008 continue;
9009
9010 case 'w':
9011 INSERT_OPERAND (RT, *ip, lastregno);
9012 continue;
9013
9014 case 'W':
9015 INSERT_OPERAND (FT, *ip, lastregno);
9016 continue;
9017
9018 case 'V':
9019 INSERT_OPERAND (FS, *ip, lastregno);
9020 continue;
9021 }
9022 break;
9023
9024 case '(':
9025 /* Handle optional base register.
9026 Either the base register is omitted or
9027 we must have a left paren. */
9028 /* This is dependent on the next operand specifier
9029 is a base register specification. */
9030 gas_assert (args[1] == 'b');
9031 if (*s == '\0')
9032 return;
9033
9034 case ')': /* These must match exactly. */
9035 case '[':
9036 case ']':
9037 if (*s++ == *args)
9038 continue;
9039 break;
9040
9041 case '+': /* Opcode extension character. */
9042 switch (*++args)
9043 {
9044 case '1': /* UDI immediates. */
9045 case '2':
9046 case '3':
9047 case '4':
9048 {
9049 const struct mips_immed *imm = mips_immed;
9050
9051 while (imm->type && imm->type != *args)
9052 ++imm;
9053 if (! imm->type)
9054 internalError ();
9055 my_getExpression (&imm_expr, s);
9056 check_absolute_expr (ip, &imm_expr);
9057 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9058 {
9059 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9060 imm->desc ? imm->desc : ip->insn_mo->name,
9061 (unsigned long) imm_expr.X_add_number,
9062 (unsigned long) imm_expr.X_add_number);
9063 imm_expr.X_add_number &= imm->mask;
9064 }
9065 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9066 << imm->shift);
9067 imm_expr.X_op = O_absent;
9068 s = expr_end;
9069 }
9070 continue;
9071
9072 case 'A': /* ins/ext position, becomes LSB. */
9073 limlo = 0;
9074 limhi = 31;
9075 goto do_lsb;
9076 case 'E':
9077 limlo = 32;
9078 limhi = 63;
9079 goto do_lsb;
9080 do_lsb:
9081 my_getExpression (&imm_expr, s);
9082 check_absolute_expr (ip, &imm_expr);
9083 if ((unsigned long) imm_expr.X_add_number < limlo
9084 || (unsigned long) imm_expr.X_add_number > limhi)
9085 {
9086 as_bad (_("Improper position (%lu)"),
9087 (unsigned long) imm_expr.X_add_number);
9088 imm_expr.X_add_number = limlo;
9089 }
9090 lastpos = imm_expr.X_add_number;
9091 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9092 imm_expr.X_op = O_absent;
9093 s = expr_end;
9094 continue;
9095
9096 case 'B': /* ins size, becomes MSB. */
9097 limlo = 1;
9098 limhi = 32;
9099 goto do_msb;
9100 case 'F':
9101 limlo = 33;
9102 limhi = 64;
9103 goto do_msb;
9104 do_msb:
9105 my_getExpression (&imm_expr, s);
9106 check_absolute_expr (ip, &imm_expr);
9107 /* Check for negative input so that small negative numbers
9108 will not succeed incorrectly. The checks against
9109 (pos+size) transitively check "size" itself,
9110 assuming that "pos" is reasonable. */
9111 if ((long) imm_expr.X_add_number < 0
9112 || ((unsigned long) imm_expr.X_add_number
9113 + lastpos) < limlo
9114 || ((unsigned long) imm_expr.X_add_number
9115 + lastpos) > limhi)
9116 {
9117 as_bad (_("Improper insert size (%lu, position %lu)"),
9118 (unsigned long) imm_expr.X_add_number,
9119 (unsigned long) lastpos);
9120 imm_expr.X_add_number = limlo - lastpos;
9121 }
9122 INSERT_OPERAND (INSMSB, *ip,
9123 lastpos + imm_expr.X_add_number - 1);
9124 imm_expr.X_op = O_absent;
9125 s = expr_end;
9126 continue;
9127
9128 case 'C': /* ext size, becomes MSBD. */
9129 limlo = 1;
9130 limhi = 32;
9131 goto do_msbd;
9132 case 'G':
9133 limlo = 33;
9134 limhi = 64;
9135 goto do_msbd;
9136 case 'H':
9137 limlo = 33;
9138 limhi = 64;
9139 goto do_msbd;
9140 do_msbd:
9141 my_getExpression (&imm_expr, s);
9142 check_absolute_expr (ip, &imm_expr);
9143 /* Check for negative input so that small negative numbers
9144 will not succeed incorrectly. The checks against
9145 (pos+size) transitively check "size" itself,
9146 assuming that "pos" is reasonable. */
9147 if ((long) imm_expr.X_add_number < 0
9148 || ((unsigned long) imm_expr.X_add_number
9149 + lastpos) < limlo
9150 || ((unsigned long) imm_expr.X_add_number
9151 + lastpos) > limhi)
9152 {
9153 as_bad (_("Improper extract size (%lu, position %lu)"),
9154 (unsigned long) imm_expr.X_add_number,
9155 (unsigned long) lastpos);
9156 imm_expr.X_add_number = limlo - lastpos;
9157 }
9158 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9159 imm_expr.X_op = O_absent;
9160 s = expr_end;
9161 continue;
9162
9163 case 'D':
9164 /* +D is for disassembly only; never match. */
9165 break;
9166
9167 case 'I':
9168 /* "+I" is like "I", except that imm2_expr is used. */
9169 my_getExpression (&imm2_expr, s);
9170 if (imm2_expr.X_op != O_big
9171 && imm2_expr.X_op != O_constant)
9172 insn_error = _("absolute expression required");
9173 if (HAVE_32BIT_GPRS)
9174 normalize_constant_expr (&imm2_expr);
9175 s = expr_end;
9176 continue;
9177
9178 case 'T': /* Coprocessor register. */
9179 /* +T is for disassembly only; never match. */
9180 break;
9181
9182 case 't': /* Coprocessor register number. */
9183 if (s[0] == '$' && ISDIGIT (s[1]))
9184 {
9185 ++s;
9186 regno = 0;
9187 do
9188 {
9189 regno *= 10;
9190 regno += *s - '0';
9191 ++s;
9192 }
9193 while (ISDIGIT (*s));
9194 if (regno > 31)
9195 as_bad (_("Invalid register number (%d)"), regno);
9196 else
9197 {
9198 INSERT_OPERAND (RT, *ip, regno);
9199 continue;
9200 }
9201 }
9202 else
9203 as_bad (_("Invalid coprocessor 0 register number"));
9204 break;
9205
9206 case 'x':
9207 /* bbit[01] and bbit[01]32 bit index. Give error if index
9208 is not in the valid range. */
9209 my_getExpression (&imm_expr, s);
9210 check_absolute_expr (ip, &imm_expr);
9211 if ((unsigned) imm_expr.X_add_number > 31)
9212 {
9213 as_bad (_("Improper bit index (%lu)"),
9214 (unsigned long) imm_expr.X_add_number);
9215 imm_expr.X_add_number = 0;
9216 }
9217 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9218 imm_expr.X_op = O_absent;
9219 s = expr_end;
9220 continue;
9221
9222 case 'X':
9223 /* bbit[01] bit index when bbit is used but we generate
9224 bbit[01]32 because the index is over 32. Move to the
9225 next candidate if index is not in the valid range. */
9226 my_getExpression (&imm_expr, s);
9227 check_absolute_expr (ip, &imm_expr);
9228 if ((unsigned) imm_expr.X_add_number < 32
9229 || (unsigned) imm_expr.X_add_number > 63)
9230 break;
9231 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9232 imm_expr.X_op = O_absent;
9233 s = expr_end;
9234 continue;
9235
9236 case 'p':
9237 /* cins, cins32, exts and exts32 position field. Give error
9238 if it's not in the valid range. */
9239 my_getExpression (&imm_expr, s);
9240 check_absolute_expr (ip, &imm_expr);
9241 if ((unsigned) imm_expr.X_add_number > 31)
9242 {
9243 as_bad (_("Improper position (%lu)"),
9244 (unsigned long) imm_expr.X_add_number);
9245 imm_expr.X_add_number = 0;
9246 }
9247 /* Make the pos explicit to simplify +S. */
9248 lastpos = imm_expr.X_add_number + 32;
9249 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9250 imm_expr.X_op = O_absent;
9251 s = expr_end;
9252 continue;
9253
9254 case 'P':
9255 /* cins, cins32, exts and exts32 position field. Move to
9256 the next candidate if it's not in the valid range. */
9257 my_getExpression (&imm_expr, s);
9258 check_absolute_expr (ip, &imm_expr);
9259 if ((unsigned) imm_expr.X_add_number < 32
9260 || (unsigned) imm_expr.X_add_number > 63)
9261 break;
9262 lastpos = imm_expr.X_add_number;
9263 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9264 imm_expr.X_op = O_absent;
9265 s = expr_end;
9266 continue;
9267
9268 case 's':
9269 /* cins and exts length-minus-one field. */
9270 my_getExpression (&imm_expr, s);
9271 check_absolute_expr (ip, &imm_expr);
9272 if ((unsigned long) imm_expr.X_add_number > 31)
9273 {
9274 as_bad (_("Improper size (%lu)"),
9275 (unsigned long) imm_expr.X_add_number);
9276 imm_expr.X_add_number = 0;
9277 }
9278 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9279 imm_expr.X_op = O_absent;
9280 s = expr_end;
9281 continue;
9282
9283 case 'S':
9284 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9285 length-minus-one field. */
9286 my_getExpression (&imm_expr, s);
9287 check_absolute_expr (ip, &imm_expr);
9288 if ((long) imm_expr.X_add_number < 0
9289 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9290 {
9291 as_bad (_("Improper size (%lu)"),
9292 (unsigned long) imm_expr.X_add_number);
9293 imm_expr.X_add_number = 0;
9294 }
9295 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9296 imm_expr.X_op = O_absent;
9297 s = expr_end;
9298 continue;
9299
9300 case 'Q':
9301 /* seqi/snei immediate field. */
9302 my_getExpression (&imm_expr, s);
9303 check_absolute_expr (ip, &imm_expr);
9304 if ((long) imm_expr.X_add_number < -512
9305 || (long) imm_expr.X_add_number >= 512)
9306 {
9307 as_bad (_("Improper immediate (%ld)"),
9308 (long) imm_expr.X_add_number);
9309 imm_expr.X_add_number = 0;
9310 }
9311 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9312 imm_expr.X_op = O_absent;
9313 s = expr_end;
9314 continue;
9315
9316 case 'a': /* 8-bit signed offset in bit 6 */
9317 my_getExpression (&imm_expr, s);
9318 check_absolute_expr (ip, &imm_expr);
9319 min_range = -((OP_MASK_OFFSET_A + 1) >> 1);
9320 max_range = ((OP_MASK_OFFSET_A + 1) >> 1) - 1;
9321 if (imm_expr.X_add_number < min_range
9322 || imm_expr.X_add_number > max_range)
9323 {
9324 as_bad (_("Offset not in range %ld..%ld (%ld)"),
9325 (long) min_range, (long) max_range,
9326 (long) imm_expr.X_add_number);
9327 }
9328 INSERT_OPERAND (OFFSET_A, *ip, imm_expr.X_add_number);
9329 imm_expr.X_op = O_absent;
9330 s = expr_end;
9331 continue;
9332
9333 case 'b': /* 8-bit signed offset in bit 3 */
9334 my_getExpression (&imm_expr, s);
9335 check_absolute_expr (ip, &imm_expr);
9336 min_range = -((OP_MASK_OFFSET_B + 1) >> 1);
9337 max_range = ((OP_MASK_OFFSET_B + 1) >> 1) - 1;
9338 if (imm_expr.X_add_number < min_range
9339 || imm_expr.X_add_number > max_range)
9340 {
9341 as_bad (_("Offset not in range %ld..%ld (%ld)"),
9342 (long) min_range, (long) max_range,
9343 (long) imm_expr.X_add_number);
9344 }
9345 INSERT_OPERAND (OFFSET_B, *ip, imm_expr.X_add_number);
9346 imm_expr.X_op = O_absent;
9347 s = expr_end;
9348 continue;
9349
9350 case 'c': /* 9-bit signed offset in bit 6 */
9351 my_getExpression (&imm_expr, s);
9352 check_absolute_expr (ip, &imm_expr);
9353 min_range = -((OP_MASK_OFFSET_C + 1) >> 1);
9354 max_range = ((OP_MASK_OFFSET_C + 1) >> 1) - 1;
9355 /* We check the offset range before adjusted. */
9356 min_range <<= 4;
9357 max_range <<= 4;
9358 if (imm_expr.X_add_number < min_range
9359 || imm_expr.X_add_number > max_range)
9360 {
9361 as_bad (_("Offset not in range %ld..%ld (%ld)"),
9362 (long) min_range, (long) max_range,
9363 (long) imm_expr.X_add_number);
9364 }
9365 if (imm_expr.X_add_number & 0xf)
9366 {
9367 as_bad (_("Offset not 16 bytes alignment (%ld)"),
9368 (long) imm_expr.X_add_number);
9369 }
9370 /* Right shift 4 bits to adjust the offset operand. */
9371 INSERT_OPERAND (OFFSET_C, *ip, imm_expr.X_add_number >> 4);
9372 imm_expr.X_op = O_absent;
9373 s = expr_end;
9374 continue;
9375
9376 case 'z':
9377 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
9378 break;
9379 if (regno == AT && mips_opts.at)
9380 {
9381 if (mips_opts.at == ATREG)
9382 as_warn (_("used $at without \".set noat\""));
9383 else
9384 as_warn (_("used $%u with \".set at=$%u\""),
9385 regno, mips_opts.at);
9386 }
9387 INSERT_OPERAND (RZ, *ip, regno);
9388 continue;
9389
9390 case 'Z':
9391 if (!reg_lookup (&s, RTYPE_FPU, &regno))
9392 break;
9393 INSERT_OPERAND (FZ, *ip, regno);
9394 continue;
9395
9396 default:
9397 as_bad (_("Internal error: bad mips opcode "
9398 "(unknown extension operand type `+%c'): %s %s"),
9399 *args, insn->name, insn->args);
9400 /* Further processing is fruitless. */
9401 return;
9402 }
9403 break;
9404
9405 case '<': /* must be at least one digit */
9406 /*
9407 * According to the manual, if the shift amount is greater
9408 * than 31 or less than 0, then the shift amount should be
9409 * mod 32. In reality the mips assembler issues an error.
9410 * We issue a warning and mask out all but the low 5 bits.
9411 */
9412 my_getExpression (&imm_expr, s);
9413 check_absolute_expr (ip, &imm_expr);
9414 if ((unsigned long) imm_expr.X_add_number > 31)
9415 as_warn (_("Improper shift amount (%lu)"),
9416 (unsigned long) imm_expr.X_add_number);
9417 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9418 imm_expr.X_op = O_absent;
9419 s = expr_end;
9420 continue;
9421
9422 case '>': /* shift amount minus 32 */
9423 my_getExpression (&imm_expr, s);
9424 check_absolute_expr (ip, &imm_expr);
9425 if ((unsigned long) imm_expr.X_add_number < 32
9426 || (unsigned long) imm_expr.X_add_number > 63)
9427 break;
9428 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9429 imm_expr.X_op = O_absent;
9430 s = expr_end;
9431 continue;
9432
9433 case 'k': /* CACHE code. */
9434 case 'h': /* PREFX code. */
9435 case '1': /* SYNC type. */
9436 my_getExpression (&imm_expr, s);
9437 check_absolute_expr (ip, &imm_expr);
9438 if ((unsigned long) imm_expr.X_add_number > 31)
9439 as_warn (_("Invalid value for `%s' (%lu)"),
9440 ip->insn_mo->name,
9441 (unsigned long) imm_expr.X_add_number);
9442 if (*args == 'k')
9443 {
9444 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9445 switch (imm_expr.X_add_number)
9446 {
9447 case 5:
9448 case 25:
9449 case 26:
9450 case 27:
9451 case 28:
9452 case 29:
9453 case 30:
9454 case 31: /* These are ok. */
9455 break;
9456
9457 default: /* The rest must be changed to 28. */
9458 imm_expr.X_add_number = 28;
9459 break;
9460 }
9461 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9462 }
9463 else if (*args == 'h')
9464 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9465 else
9466 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9467 imm_expr.X_op = O_absent;
9468 s = expr_end;
9469 continue;
9470
9471 case 'c': /* BREAK code. */
9472 my_getExpression (&imm_expr, s);
9473 check_absolute_expr (ip, &imm_expr);
9474 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9475 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9476 ip->insn_mo->name,
9477 (unsigned long) imm_expr.X_add_number);
9478 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9479 imm_expr.X_op = O_absent;
9480 s = expr_end;
9481 continue;
9482
9483 case 'q': /* Lower BREAK code. */
9484 my_getExpression (&imm_expr, s);
9485 check_absolute_expr (ip, &imm_expr);
9486 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9487 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9488 ip->insn_mo->name,
9489 (unsigned long) imm_expr.X_add_number);
9490 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9491 imm_expr.X_op = O_absent;
9492 s = expr_end;
9493 continue;
9494
9495 case 'B': /* 20-bit SYSCALL/BREAK code. */
9496 my_getExpression (&imm_expr, s);
9497 check_absolute_expr (ip, &imm_expr);
9498 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9499 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9500 ip->insn_mo->name,
9501 (unsigned long) imm_expr.X_add_number);
9502 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9503 imm_expr.X_op = O_absent;
9504 s = expr_end;
9505 continue;
9506
9507 case 'C': /* Coprocessor code. */
9508 my_getExpression (&imm_expr, s);
9509 check_absolute_expr (ip, &imm_expr);
9510 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9511 {
9512 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9513 (unsigned long) imm_expr.X_add_number);
9514 imm_expr.X_add_number &= OP_MASK_COPZ;
9515 }
9516 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9517 imm_expr.X_op = O_absent;
9518 s = expr_end;
9519 continue;
9520
9521 case 'J': /* 19-bit WAIT code. */
9522 my_getExpression (&imm_expr, s);
9523 check_absolute_expr (ip, &imm_expr);
9524 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9525 {
9526 as_warn (_("Illegal 19-bit code (%lu)"),
9527 (unsigned long) imm_expr.X_add_number);
9528 imm_expr.X_add_number &= OP_MASK_CODE19;
9529 }
9530 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9531 imm_expr.X_op = O_absent;
9532 s = expr_end;
9533 continue;
9534
9535 case 'P': /* Performance register. */
9536 my_getExpression (&imm_expr, s);
9537 check_absolute_expr (ip, &imm_expr);
9538 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9539 as_warn (_("Invalid performance register (%lu)"),
9540 (unsigned long) imm_expr.X_add_number);
9541 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9542 imm_expr.X_op = O_absent;
9543 s = expr_end;
9544 continue;
9545
9546 case 'G': /* Coprocessor destination register. */
9547 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9548 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9549 else
9550 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9551 INSERT_OPERAND (RD, *ip, regno);
9552 if (ok)
9553 {
9554 lastregno = regno;
9555 continue;
9556 }
9557 else
9558 break;
9559
9560 case 'b': /* Base register. */
9561 case 'd': /* Destination register. */
9562 case 's': /* Source register. */
9563 case 't': /* Target register. */
9564 case 'r': /* Both target and source. */
9565 case 'v': /* Both dest and source. */
9566 case 'w': /* Both dest and target. */
9567 case 'E': /* Coprocessor target register. */
9568 case 'K': /* RDHWR destination register. */
9569 case 'x': /* Ignore register name. */
9570 case 'z': /* Must be zero register. */
9571 case 'U': /* Destination register (CLO/CLZ). */
9572 case 'g': /* Coprocessor destination register. */
9573 s_reset = s;
9574 if (*args == 'E' || *args == 'K')
9575 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9576 else
9577 {
9578 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9579 if (regno == AT && mips_opts.at)
9580 {
9581 if (mips_opts.at == ATREG)
9582 as_warn (_("Used $at without \".set noat\""));
9583 else
9584 as_warn (_("Used $%u with \".set at=$%u\""),
9585 regno, mips_opts.at);
9586 }
9587 }
9588 if (ok)
9589 {
9590 c = *args;
9591 if (*s == ' ')
9592 ++s;
9593 if (args[1] != *s)
9594 {
9595 if (c == 'r' || c == 'v' || c == 'w')
9596 {
9597 regno = lastregno;
9598 s = s_reset;
9599 ++args;
9600 }
9601 }
9602 /* 'z' only matches $0. */
9603 if (c == 'z' && regno != 0)
9604 break;
9605
9606 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9607 {
9608 if (regno == lastregno)
9609 {
9610 insn_error
9611 = _("Source and destination must be different");
9612 continue;
9613 }
9614 if (regno == 31 && lastregno == 0xffffffff)
9615 {
9616 insn_error
9617 = _("A destination register must be supplied");
9618 continue;
9619 }
9620 }
9621 /* Now that we have assembled one operand, we use the args
9622 string to figure out where it goes in the instruction. */
9623 switch (c)
9624 {
9625 case 'r':
9626 case 's':
9627 case 'v':
9628 case 'b':
9629 INSERT_OPERAND (RS, *ip, regno);
9630 break;
9631 case 'd':
9632 case 'K':
9633 case 'g':
9634 INSERT_OPERAND (RD, *ip, regno);
9635 break;
9636 case 'U':
9637 INSERT_OPERAND (RD, *ip, regno);
9638 INSERT_OPERAND (RT, *ip, regno);
9639 break;
9640 case 'w':
9641 case 't':
9642 case 'E':
9643 INSERT_OPERAND (RT, *ip, regno);
9644 break;
9645 case 'x':
9646 /* This case exists because on the r3000 trunc
9647 expands into a macro which requires a gp
9648 register. On the r6000 or r4000 it is
9649 assembled into a single instruction which
9650 ignores the register. Thus the insn version
9651 is MIPS_ISA2 and uses 'x', and the macro
9652 version is MIPS_ISA1 and uses 't'. */
9653 break;
9654 case 'z':
9655 /* This case is for the div instruction, which
9656 acts differently if the destination argument
9657 is $0. This only matches $0, and is checked
9658 outside the switch. */
9659 break;
9660 }
9661 lastregno = regno;
9662 continue;
9663 }
9664 switch (*args++)
9665 {
9666 case 'r':
9667 case 'v':
9668 INSERT_OPERAND (RS, *ip, lastregno);
9669 continue;
9670 case 'w':
9671 INSERT_OPERAND (RT, *ip, lastregno);
9672 continue;
9673 }
9674 break;
9675
9676 case 'O': /* MDMX alignment immediate constant. */
9677 my_getExpression (&imm_expr, s);
9678 check_absolute_expr (ip, &imm_expr);
9679 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9680 as_warn (_("Improper align amount (%ld), using low bits"),
9681 (long) imm_expr.X_add_number);
9682 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9683 imm_expr.X_op = O_absent;
9684 s = expr_end;
9685 continue;
9686
9687 case 'Q': /* MDMX vector, element sel, or const. */
9688 if (s[0] != '$')
9689 {
9690 /* MDMX Immediate. */
9691 my_getExpression (&imm_expr, s);
9692 check_absolute_expr (ip, &imm_expr);
9693 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9694 as_warn (_("Invalid MDMX Immediate (%ld)"),
9695 (long) imm_expr.X_add_number);
9696 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9697 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9698 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9699 else
9700 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9701 imm_expr.X_op = O_absent;
9702 s = expr_end;
9703 continue;
9704 }
9705 /* Not MDMX Immediate. Fall through. */
9706 case 'X': /* MDMX destination register. */
9707 case 'Y': /* MDMX source register. */
9708 case 'Z': /* MDMX target register. */
9709 is_mdmx = 1;
9710 case 'D': /* Floating point destination register. */
9711 case 'S': /* Floating point source register. */
9712 case 'T': /* Floating point target register. */
9713 case 'R': /* Floating point source register. */
9714 case 'V':
9715 case 'W':
9716 rtype = RTYPE_FPU;
9717 if (is_mdmx
9718 || (mips_opts.ase_mdmx
9719 && (ip->insn_mo->pinfo & FP_D)
9720 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9721 | INSN_COPROC_MEMORY_DELAY
9722 | INSN_LOAD_COPROC_DELAY
9723 | INSN_LOAD_MEMORY_DELAY
9724 | INSN_STORE_MEMORY))))
9725 rtype |= RTYPE_VEC;
9726 s_reset = s;
9727 if (reg_lookup (&s, rtype, &regno))
9728 {
9729 if ((regno & 1) != 0
9730 && HAVE_32BIT_FPRS
9731 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
9732 as_warn (_("Float register should be even, was %d"),
9733 regno);
9734
9735 c = *args;
9736 if (*s == ' ')
9737 ++s;
9738 if (args[1] != *s)
9739 {
9740 if (c == 'V' || c == 'W')
9741 {
9742 regno = lastregno;
9743 s = s_reset;
9744 ++args;
9745 }
9746 }
9747 switch (c)
9748 {
9749 case 'D':
9750 case 'X':
9751 INSERT_OPERAND (FD, *ip, regno);
9752 break;
9753 case 'V':
9754 case 'S':
9755 case 'Y':
9756 INSERT_OPERAND (FS, *ip, regno);
9757 break;
9758 case 'Q':
9759 /* This is like 'Z', but also needs to fix the MDMX
9760 vector/scalar select bits. Note that the
9761 scalar immediate case is handled above. */
9762 if (*s == '[')
9763 {
9764 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9765 int max_el = (is_qh ? 3 : 7);
9766 s++;
9767 my_getExpression(&imm_expr, s);
9768 check_absolute_expr (ip, &imm_expr);
9769 s = expr_end;
9770 if (imm_expr.X_add_number > max_el)
9771 as_bad (_("Bad element selector %ld"),
9772 (long) imm_expr.X_add_number);
9773 imm_expr.X_add_number &= max_el;
9774 ip->insn_opcode |= (imm_expr.X_add_number
9775 << (OP_SH_VSEL +
9776 (is_qh ? 2 : 1)));
9777 imm_expr.X_op = O_absent;
9778 if (*s != ']')
9779 as_warn (_("Expecting ']' found '%s'"), s);
9780 else
9781 s++;
9782 }
9783 else
9784 {
9785 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9786 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9787 << OP_SH_VSEL);
9788 else
9789 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9790 OP_SH_VSEL);
9791 }
9792 /* Fall through. */
9793 case 'W':
9794 case 'T':
9795 case 'Z':
9796 INSERT_OPERAND (FT, *ip, regno);
9797 break;
9798 case 'R':
9799 INSERT_OPERAND (FR, *ip, regno);
9800 break;
9801 }
9802 lastregno = regno;
9803 continue;
9804 }
9805
9806 switch (*args++)
9807 {
9808 case 'V':
9809 INSERT_OPERAND (FS, *ip, lastregno);
9810 continue;
9811 case 'W':
9812 INSERT_OPERAND (FT, *ip, lastregno);
9813 continue;
9814 }
9815 break;
9816
9817 case 'I':
9818 my_getExpression (&imm_expr, s);
9819 if (imm_expr.X_op != O_big
9820 && imm_expr.X_op != O_constant)
9821 insn_error = _("absolute expression required");
9822 if (HAVE_32BIT_GPRS)
9823 normalize_constant_expr (&imm_expr);
9824 s = expr_end;
9825 continue;
9826
9827 case 'A':
9828 my_getExpression (&offset_expr, s);
9829 normalize_address_expr (&offset_expr);
9830 *imm_reloc = BFD_RELOC_32;
9831 s = expr_end;
9832 continue;
9833
9834 case 'F':
9835 case 'L':
9836 case 'f':
9837 case 'l':
9838 {
9839 int f64;
9840 int using_gprs;
9841 char *save_in;
9842 char *err;
9843 unsigned char temp[8];
9844 int len;
9845 unsigned int length;
9846 segT seg;
9847 subsegT subseg;
9848 char *p;
9849
9850 /* These only appear as the last operand in an
9851 instruction, and every instruction that accepts
9852 them in any variant accepts them in all variants.
9853 This means we don't have to worry about backing out
9854 any changes if the instruction does not match.
9855
9856 The difference between them is the size of the
9857 floating point constant and where it goes. For 'F'
9858 and 'L' the constant is 64 bits; for 'f' and 'l' it
9859 is 32 bits. Where the constant is placed is based
9860 on how the MIPS assembler does things:
9861 F -- .rdata
9862 L -- .lit8
9863 f -- immediate value
9864 l -- .lit4
9865
9866 The .lit4 and .lit8 sections are only used if
9867 permitted by the -G argument.
9868
9869 The code below needs to know whether the target register
9870 is 32 or 64 bits wide. It relies on the fact 'f' and
9871 'F' are used with GPR-based instructions and 'l' and
9872 'L' are used with FPR-based instructions. */
9873
9874 f64 = *args == 'F' || *args == 'L';
9875 using_gprs = *args == 'F' || *args == 'f';
9876
9877 save_in = input_line_pointer;
9878 input_line_pointer = s;
9879 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9880 length = len;
9881 s = input_line_pointer;
9882 input_line_pointer = save_in;
9883 if (err != NULL && *err != '\0')
9884 {
9885 as_bad (_("Bad floating point constant: %s"), err);
9886 memset (temp, '\0', sizeof temp);
9887 length = f64 ? 8 : 4;
9888 }
9889
9890 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9891
9892 if (*args == 'f'
9893 || (*args == 'l'
9894 && (g_switch_value < 4
9895 || (temp[0] == 0 && temp[1] == 0)
9896 || (temp[2] == 0 && temp[3] == 0))))
9897 {
9898 imm_expr.X_op = O_constant;
9899 if (!target_big_endian)
9900 imm_expr.X_add_number = bfd_getl32 (temp);
9901 else
9902 imm_expr.X_add_number = bfd_getb32 (temp);
9903 }
9904 else if (length > 4
9905 && !mips_disable_float_construction
9906 /* Constants can only be constructed in GPRs and
9907 copied to FPRs if the GPRs are at least as wide
9908 as the FPRs. Force the constant into memory if
9909 we are using 64-bit FPRs but the GPRs are only
9910 32 bits wide. */
9911 && (using_gprs
9912 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9913 && ((temp[0] == 0 && temp[1] == 0)
9914 || (temp[2] == 0 && temp[3] == 0))
9915 && ((temp[4] == 0 && temp[5] == 0)
9916 || (temp[6] == 0 && temp[7] == 0)))
9917 {
9918 /* The value is simple enough to load with a couple of
9919 instructions. If using 32-bit registers, set
9920 imm_expr to the high order 32 bits and offset_expr to
9921 the low order 32 bits. Otherwise, set imm_expr to
9922 the entire 64 bit constant. */
9923 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9924 {
9925 imm_expr.X_op = O_constant;
9926 offset_expr.X_op = O_constant;
9927 if (!target_big_endian)
9928 {
9929 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9930 offset_expr.X_add_number = bfd_getl32 (temp);
9931 }
9932 else
9933 {
9934 imm_expr.X_add_number = bfd_getb32 (temp);
9935 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9936 }
9937 if (offset_expr.X_add_number == 0)
9938 offset_expr.X_op = O_absent;
9939 }
9940 else if (sizeof (imm_expr.X_add_number) > 4)
9941 {
9942 imm_expr.X_op = O_constant;
9943 if (!target_big_endian)
9944 imm_expr.X_add_number = bfd_getl64 (temp);
9945 else
9946 imm_expr.X_add_number = bfd_getb64 (temp);
9947 }
9948 else
9949 {
9950 imm_expr.X_op = O_big;
9951 imm_expr.X_add_number = 4;
9952 if (!target_big_endian)
9953 {
9954 generic_bignum[0] = bfd_getl16 (temp);
9955 generic_bignum[1] = bfd_getl16 (temp + 2);
9956 generic_bignum[2] = bfd_getl16 (temp + 4);
9957 generic_bignum[3] = bfd_getl16 (temp + 6);
9958 }
9959 else
9960 {
9961 generic_bignum[0] = bfd_getb16 (temp + 6);
9962 generic_bignum[1] = bfd_getb16 (temp + 4);
9963 generic_bignum[2] = bfd_getb16 (temp + 2);
9964 generic_bignum[3] = bfd_getb16 (temp);
9965 }
9966 }
9967 }
9968 else
9969 {
9970 const char *newname;
9971 segT new_seg;
9972
9973 /* Switch to the right section. */
9974 seg = now_seg;
9975 subseg = now_subseg;
9976 switch (*args)
9977 {
9978 default: /* unused default case avoids warnings. */
9979 case 'L':
9980 newname = RDATA_SECTION_NAME;
9981 if (g_switch_value >= 8)
9982 newname = ".lit8";
9983 break;
9984 case 'F':
9985 newname = RDATA_SECTION_NAME;
9986 break;
9987 case 'l':
9988 gas_assert (g_switch_value >= 4);
9989 newname = ".lit4";
9990 break;
9991 }
9992 new_seg = subseg_new (newname, (subsegT) 0);
9993 if (IS_ELF)
9994 bfd_set_section_flags (stdoutput, new_seg,
9995 (SEC_ALLOC
9996 | SEC_LOAD
9997 | SEC_READONLY
9998 | SEC_DATA));
9999 frag_align (*args == 'l' ? 2 : 3, 0, 0);
10000 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
10001 record_alignment (new_seg, 4);
10002 else
10003 record_alignment (new_seg, *args == 'l' ? 2 : 3);
10004 if (seg == now_seg)
10005 as_bad (_("Can't use floating point insn in this section"));
10006
10007 /* Set the argument to the current address in the
10008 section. */
10009 offset_expr.X_op = O_symbol;
10010 offset_expr.X_add_symbol = symbol_temp_new_now ();
10011 offset_expr.X_add_number = 0;
10012
10013 /* Put the floating point number into the section. */
10014 p = frag_more ((int) length);
10015 memcpy (p, temp, length);
10016
10017 /* Switch back to the original section. */
10018 subseg_set (seg, subseg);
10019 }
10020 }
10021 continue;
10022
10023 case 'i': /* 16-bit unsigned immediate. */
10024 case 'j': /* 16-bit signed immediate. */
10025 *imm_reloc = BFD_RELOC_LO16;
10026 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
10027 {
10028 int more;
10029 offsetT minval, maxval;
10030
10031 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
10032 && strcmp (insn->name, insn[1].name) == 0);
10033
10034 /* If the expression was written as an unsigned number,
10035 only treat it as signed if there are no more
10036 alternatives. */
10037 if (more
10038 && *args == 'j'
10039 && sizeof (imm_expr.X_add_number) <= 4
10040 && imm_expr.X_op == O_constant
10041 && imm_expr.X_add_number < 0
10042 && imm_expr.X_unsigned
10043 && HAVE_64BIT_GPRS)
10044 break;
10045
10046 /* For compatibility with older assemblers, we accept
10047 0x8000-0xffff as signed 16-bit numbers when only
10048 signed numbers are allowed. */
10049 if (*args == 'i')
10050 minval = 0, maxval = 0xffff;
10051 else if (more)
10052 minval = -0x8000, maxval = 0x7fff;
10053 else
10054 minval = -0x8000, maxval = 0xffff;
10055
10056 if (imm_expr.X_op != O_constant
10057 || imm_expr.X_add_number < minval
10058 || imm_expr.X_add_number > maxval)
10059 {
10060 if (more)
10061 break;
10062 if (imm_expr.X_op == O_constant
10063 || imm_expr.X_op == O_big)
10064 as_bad (_("Expression out of range"));
10065 }
10066 }
10067 s = expr_end;
10068 continue;
10069
10070 case 'o': /* 16-bit offset. */
10071 offset_reloc[0] = BFD_RELOC_LO16;
10072 offset_reloc[1] = BFD_RELOC_UNUSED;
10073 offset_reloc[2] = BFD_RELOC_UNUSED;
10074
10075 /* Check whether there is only a single bracketed expression
10076 left. If so, it must be the base register and the
10077 constant must be zero. */
10078 offset_reloc[0] = BFD_RELOC_LO16;
10079 offset_reloc[1] = BFD_RELOC_UNUSED;
10080 offset_reloc[2] = BFD_RELOC_UNUSED;
10081 if (*s == '(' && strchr (s + 1, '(') == 0)
10082 {
10083 offset_expr.X_op = O_constant;
10084 offset_expr.X_add_number = 0;
10085 continue;
10086 }
10087
10088 /* If this value won't fit into a 16 bit offset, then go
10089 find a macro that will generate the 32 bit offset
10090 code pattern. */
10091 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
10092 && (offset_expr.X_op != O_constant
10093 || offset_expr.X_add_number >= 0x8000
10094 || offset_expr.X_add_number < -0x8000))
10095 break;
10096
10097 s = expr_end;
10098 continue;
10099
10100 case 'p': /* PC-relative offset. */
10101 *offset_reloc = BFD_RELOC_16_PCREL_S2;
10102 my_getExpression (&offset_expr, s);
10103 s = expr_end;
10104 continue;
10105
10106 case 'u': /* Upper 16 bits. */
10107 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
10108 && imm_expr.X_op == O_constant
10109 && (imm_expr.X_add_number < 0
10110 || imm_expr.X_add_number >= 0x10000))
10111 as_bad (_("lui expression (%lu) not in range 0..65535"),
10112 (unsigned long) imm_expr.X_add_number);
10113 s = expr_end;
10114 continue;
10115
10116 case 'a': /* 26-bit address. */
10117 my_getExpression (&offset_expr, s);
10118 s = expr_end;
10119 *offset_reloc = BFD_RELOC_MIPS_JMP;
10120 continue;
10121
10122 case 'N': /* 3-bit branch condition code. */
10123 case 'M': /* 3-bit compare condition code. */
10124 rtype = RTYPE_CCC;
10125 if (ip->insn_mo->pinfo & (FP_D | FP_S))
10126 rtype |= RTYPE_FCC;
10127 if (!reg_lookup (&s, rtype, &regno))
10128 break;
10129 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
10130 || strcmp (str + strlen (str) - 5, "any2f") == 0
10131 || strcmp (str + strlen (str) - 5, "any2t") == 0)
10132 && (regno & 1) != 0)
10133 as_warn (_("Condition code register should be even for %s, "
10134 "was %d"),
10135 str, regno);
10136 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
10137 || strcmp (str + strlen (str) - 5, "any4t") == 0)
10138 && (regno & 3) != 0)
10139 as_warn (_("Condition code register should be 0 or 4 for %s, "
10140 "was %d"),
10141 str, regno);
10142 if (*args == 'N')
10143 INSERT_OPERAND (BCC, *ip, regno);
10144 else
10145 INSERT_OPERAND (CCC, *ip, regno);
10146 continue;
10147
10148 case 'H':
10149 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10150 s += 2;
10151 if (ISDIGIT (*s))
10152 {
10153 c = 0;
10154 do
10155 {
10156 c *= 10;
10157 c += *s - '0';
10158 ++s;
10159 }
10160 while (ISDIGIT (*s));
10161 }
10162 else
10163 c = 8; /* Invalid sel value. */
10164
10165 if (c > 7)
10166 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
10167 ip->insn_opcode |= c;
10168 continue;
10169
10170 case 'e':
10171 /* Must be at least one digit. */
10172 my_getExpression (&imm_expr, s);
10173 check_absolute_expr (ip, &imm_expr);
10174
10175 if ((unsigned long) imm_expr.X_add_number
10176 > (unsigned long) OP_MASK_VECBYTE)
10177 {
10178 as_bad (_("bad byte vector index (%ld)"),
10179 (long) imm_expr.X_add_number);
10180 imm_expr.X_add_number = 0;
10181 }
10182
10183 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10184 imm_expr.X_op = O_absent;
10185 s = expr_end;
10186 continue;
10187
10188 case '%':
10189 my_getExpression (&imm_expr, s);
10190 check_absolute_expr (ip, &imm_expr);
10191
10192 if ((unsigned long) imm_expr.X_add_number
10193 > (unsigned long) OP_MASK_VECALIGN)
10194 {
10195 as_bad (_("bad byte vector index (%ld)"),
10196 (long) imm_expr.X_add_number);
10197 imm_expr.X_add_number = 0;
10198 }
10199
10200 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10201 imm_expr.X_op = O_absent;
10202 s = expr_end;
10203 continue;
10204
10205 default:
10206 as_bad (_("Bad char = '%c'\n"), *args);
10207 internalError ();
10208 }
10209 break;
10210 }
10211 /* Args don't match. */
10212 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10213 !strcmp (insn->name, insn[1].name))
10214 {
10215 ++insn;
10216 s = argsStart;
10217 insn_error = _("Illegal operands");
10218 continue;
10219 }
10220 if (save_c)
10221 *(--argsStart) = save_c;
10222 insn_error = _("Illegal operands");
10223 return;
10224 }
10225 }
10226
10227 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10228
10229 /* This routine assembles an instruction into its binary format when
10230 assembling for the mips16. As a side effect, it sets one of the
10231 global variables imm_reloc or offset_reloc to the type of
10232 relocation to do if one of the operands is an address expression.
10233 It also sets mips16_small and mips16_ext if the user explicitly
10234 requested a small or extended instruction. */
10235
10236 static void
10237 mips16_ip (char *str, struct mips_cl_insn *ip)
10238 {
10239 char *s;
10240 const char *args;
10241 struct mips_opcode *insn;
10242 char *argsstart;
10243 unsigned int regno;
10244 unsigned int lastregno = 0;
10245 char *s_reset;
10246 size_t i;
10247
10248 insn_error = NULL;
10249
10250 mips16_small = FALSE;
10251 mips16_ext = FALSE;
10252
10253 for (s = str; ISLOWER (*s); ++s)
10254 ;
10255 switch (*s)
10256 {
10257 case '\0':
10258 break;
10259
10260 case ' ':
10261 *s++ = '\0';
10262 break;
10263
10264 case '.':
10265 if (s[1] == 't' && s[2] == ' ')
10266 {
10267 *s = '\0';
10268 mips16_small = TRUE;
10269 s += 3;
10270 break;
10271 }
10272 else if (s[1] == 'e' && s[2] == ' ')
10273 {
10274 *s = '\0';
10275 mips16_ext = TRUE;
10276 s += 3;
10277 break;
10278 }
10279 /* Fall through. */
10280 default:
10281 insn_error = _("unknown opcode");
10282 return;
10283 }
10284
10285 if (mips_opts.noautoextend && ! mips16_ext)
10286 mips16_small = TRUE;
10287
10288 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10289 {
10290 insn_error = _("unrecognized opcode");
10291 return;
10292 }
10293
10294 argsstart = s;
10295 for (;;)
10296 {
10297 bfd_boolean ok;
10298
10299 gas_assert (strcmp (insn->name, str) == 0);
10300
10301 ok = is_opcode_valid_16 (insn);
10302 if (! ok)
10303 {
10304 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10305 && strcmp (insn->name, insn[1].name) == 0)
10306 {
10307 ++insn;
10308 continue;
10309 }
10310 else
10311 {
10312 if (!insn_error)
10313 {
10314 static char buf[100];
10315 sprintf (buf,
10316 _("opcode not supported on this processor: %s (%s)"),
10317 mips_cpu_info_from_arch (mips_opts.arch)->name,
10318 mips_cpu_info_from_isa (mips_opts.isa)->name);
10319 insn_error = buf;
10320 }
10321 return;
10322 }
10323 }
10324
10325 create_insn (ip, insn);
10326 imm_expr.X_op = O_absent;
10327 imm_reloc[0] = BFD_RELOC_UNUSED;
10328 imm_reloc[1] = BFD_RELOC_UNUSED;
10329 imm_reloc[2] = BFD_RELOC_UNUSED;
10330 imm2_expr.X_op = O_absent;
10331 offset_expr.X_op = O_absent;
10332 offset_reloc[0] = BFD_RELOC_UNUSED;
10333 offset_reloc[1] = BFD_RELOC_UNUSED;
10334 offset_reloc[2] = BFD_RELOC_UNUSED;
10335 for (args = insn->args; 1; ++args)
10336 {
10337 int c;
10338
10339 if (*s == ' ')
10340 ++s;
10341
10342 /* In this switch statement we call break if we did not find
10343 a match, continue if we did find a match, or return if we
10344 are done. */
10345
10346 c = *args;
10347 switch (c)
10348 {
10349 case '\0':
10350 if (*s == '\0')
10351 {
10352 /* Stuff the immediate value in now, if we can. */
10353 if (imm_expr.X_op == O_constant
10354 && *imm_reloc > BFD_RELOC_UNUSED
10355 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10356 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10357 && insn->pinfo != INSN_MACRO)
10358 {
10359 valueT tmp;
10360
10361 switch (*offset_reloc)
10362 {
10363 case BFD_RELOC_MIPS16_HI16_S:
10364 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10365 break;
10366
10367 case BFD_RELOC_MIPS16_HI16:
10368 tmp = imm_expr.X_add_number >> 16;
10369 break;
10370
10371 case BFD_RELOC_MIPS16_LO16:
10372 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10373 - 0x8000;
10374 break;
10375
10376 case BFD_RELOC_UNUSED:
10377 tmp = imm_expr.X_add_number;
10378 break;
10379
10380 default:
10381 internalError ();
10382 }
10383 *offset_reloc = BFD_RELOC_UNUSED;
10384
10385 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10386 tmp, TRUE, mips16_small,
10387 mips16_ext, &ip->insn_opcode,
10388 &ip->use_extend, &ip->extend);
10389 imm_expr.X_op = O_absent;
10390 *imm_reloc = BFD_RELOC_UNUSED;
10391 }
10392
10393 return;
10394 }
10395 break;
10396
10397 case ',':
10398 if (*s++ == c)
10399 continue;
10400 s--;
10401 switch (*++args)
10402 {
10403 case 'v':
10404 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10405 continue;
10406 case 'w':
10407 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10408 continue;
10409 }
10410 break;
10411
10412 case '(':
10413 case ')':
10414 if (*s++ == c)
10415 continue;
10416 break;
10417
10418 case 'v':
10419 case 'w':
10420 if (s[0] != '$')
10421 {
10422 if (c == 'v')
10423 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10424 else
10425 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10426 ++args;
10427 continue;
10428 }
10429 /* Fall through. */
10430 case 'x':
10431 case 'y':
10432 case 'z':
10433 case 'Z':
10434 case '0':
10435 case 'S':
10436 case 'R':
10437 case 'X':
10438 case 'Y':
10439 s_reset = s;
10440 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10441 {
10442 if (c == 'v' || c == 'w')
10443 {
10444 if (c == 'v')
10445 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10446 else
10447 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10448 ++args;
10449 continue;
10450 }
10451 break;
10452 }
10453
10454 if (*s == ' ')
10455 ++s;
10456 if (args[1] != *s)
10457 {
10458 if (c == 'v' || c == 'w')
10459 {
10460 regno = mips16_to_32_reg_map[lastregno];
10461 s = s_reset;
10462 ++args;
10463 }
10464 }
10465
10466 switch (c)
10467 {
10468 case 'x':
10469 case 'y':
10470 case 'z':
10471 case 'v':
10472 case 'w':
10473 case 'Z':
10474 regno = mips32_to_16_reg_map[regno];
10475 break;
10476
10477 case '0':
10478 if (regno != 0)
10479 regno = ILLEGAL_REG;
10480 break;
10481
10482 case 'S':
10483 if (regno != SP)
10484 regno = ILLEGAL_REG;
10485 break;
10486
10487 case 'R':
10488 if (regno != RA)
10489 regno = ILLEGAL_REG;
10490 break;
10491
10492 case 'X':
10493 case 'Y':
10494 if (regno == AT && mips_opts.at)
10495 {
10496 if (mips_opts.at == ATREG)
10497 as_warn (_("used $at without \".set noat\""));
10498 else
10499 as_warn (_("used $%u with \".set at=$%u\""),
10500 regno, mips_opts.at);
10501 }
10502 break;
10503
10504 default:
10505 internalError ();
10506 }
10507
10508 if (regno == ILLEGAL_REG)
10509 break;
10510
10511 switch (c)
10512 {
10513 case 'x':
10514 case 'v':
10515 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10516 break;
10517 case 'y':
10518 case 'w':
10519 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10520 break;
10521 case 'z':
10522 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10523 break;
10524 case 'Z':
10525 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10526 case '0':
10527 case 'S':
10528 case 'R':
10529 break;
10530 case 'X':
10531 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10532 break;
10533 case 'Y':
10534 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10535 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10536 break;
10537 default:
10538 internalError ();
10539 }
10540
10541 lastregno = regno;
10542 continue;
10543
10544 case 'P':
10545 if (strncmp (s, "$pc", 3) == 0)
10546 {
10547 s += 3;
10548 continue;
10549 }
10550 break;
10551
10552 case '5':
10553 case 'H':
10554 case 'W':
10555 case 'D':
10556 case 'j':
10557 case 'V':
10558 case 'C':
10559 case 'U':
10560 case 'k':
10561 case 'K':
10562 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10563 if (i > 0)
10564 {
10565 if (imm_expr.X_op != O_constant)
10566 {
10567 mips16_ext = TRUE;
10568 ip->use_extend = TRUE;
10569 ip->extend = 0;
10570 }
10571 else
10572 {
10573 /* We need to relax this instruction. */
10574 *offset_reloc = *imm_reloc;
10575 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10576 }
10577 s = expr_end;
10578 continue;
10579 }
10580 *imm_reloc = BFD_RELOC_UNUSED;
10581 /* Fall through. */
10582 case '<':
10583 case '>':
10584 case '[':
10585 case ']':
10586 case '4':
10587 case '8':
10588 my_getExpression (&imm_expr, s);
10589 if (imm_expr.X_op == O_register)
10590 {
10591 /* What we thought was an expression turned out to
10592 be a register. */
10593
10594 if (s[0] == '(' && args[1] == '(')
10595 {
10596 /* It looks like the expression was omitted
10597 before a register indirection, which means
10598 that the expression is implicitly zero. We
10599 still set up imm_expr, so that we handle
10600 explicit extensions correctly. */
10601 imm_expr.X_op = O_constant;
10602 imm_expr.X_add_number = 0;
10603 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10604 continue;
10605 }
10606
10607 break;
10608 }
10609
10610 /* We need to relax this instruction. */
10611 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10612 s = expr_end;
10613 continue;
10614
10615 case 'p':
10616 case 'q':
10617 case 'A':
10618 case 'B':
10619 case 'E':
10620 /* We use offset_reloc rather than imm_reloc for the PC
10621 relative operands. This lets macros with both
10622 immediate and address operands work correctly. */
10623 my_getExpression (&offset_expr, s);
10624
10625 if (offset_expr.X_op == O_register)
10626 break;
10627
10628 /* We need to relax this instruction. */
10629 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10630 s = expr_end;
10631 continue;
10632
10633 case '6': /* break code */
10634 my_getExpression (&imm_expr, s);
10635 check_absolute_expr (ip, &imm_expr);
10636 if ((unsigned long) imm_expr.X_add_number > 63)
10637 as_warn (_("Invalid value for `%s' (%lu)"),
10638 ip->insn_mo->name,
10639 (unsigned long) imm_expr.X_add_number);
10640 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10641 imm_expr.X_op = O_absent;
10642 s = expr_end;
10643 continue;
10644
10645 case 'a': /* 26 bit address */
10646 my_getExpression (&offset_expr, s);
10647 s = expr_end;
10648 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10649 ip->insn_opcode <<= 16;
10650 continue;
10651
10652 case 'l': /* register list for entry macro */
10653 case 'L': /* register list for exit macro */
10654 {
10655 int mask;
10656
10657 if (c == 'l')
10658 mask = 0;
10659 else
10660 mask = 7 << 3;
10661 while (*s != '\0')
10662 {
10663 unsigned int freg, reg1, reg2;
10664
10665 while (*s == ' ' || *s == ',')
10666 ++s;
10667 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10668 freg = 0;
10669 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10670 freg = 1;
10671 else
10672 {
10673 as_bad (_("can't parse register list"));
10674 break;
10675 }
10676 if (*s == ' ')
10677 ++s;
10678 if (*s != '-')
10679 reg2 = reg1;
10680 else
10681 {
10682 ++s;
10683 if (!reg_lookup (&s, freg ? RTYPE_FPU
10684 : (RTYPE_GP | RTYPE_NUM), &reg2))
10685 {
10686 as_bad (_("invalid register list"));
10687 break;
10688 }
10689 }
10690 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10691 {
10692 mask &= ~ (7 << 3);
10693 mask |= 5 << 3;
10694 }
10695 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10696 {
10697 mask &= ~ (7 << 3);
10698 mask |= 6 << 3;
10699 }
10700 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10701 mask |= (reg2 - 3) << 3;
10702 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10703 mask |= (reg2 - 15) << 1;
10704 else if (reg1 == RA && reg2 == RA)
10705 mask |= 1;
10706 else
10707 {
10708 as_bad (_("invalid register list"));
10709 break;
10710 }
10711 }
10712 /* The mask is filled in in the opcode table for the
10713 benefit of the disassembler. We remove it before
10714 applying the actual mask. */
10715 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10716 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10717 }
10718 continue;
10719
10720 case 'm': /* Register list for save insn. */
10721 case 'M': /* Register list for restore insn. */
10722 {
10723 int opcode = 0;
10724 int framesz = 0, seen_framesz = 0;
10725 int nargs = 0, statics = 0, sregs = 0;
10726
10727 while (*s != '\0')
10728 {
10729 unsigned int reg1, reg2;
10730
10731 SKIP_SPACE_TABS (s);
10732 while (*s == ',')
10733 ++s;
10734 SKIP_SPACE_TABS (s);
10735
10736 my_getExpression (&imm_expr, s);
10737 if (imm_expr.X_op == O_constant)
10738 {
10739 /* Handle the frame size. */
10740 if (seen_framesz)
10741 {
10742 as_bad (_("more than one frame size in list"));
10743 break;
10744 }
10745 seen_framesz = 1;
10746 framesz = imm_expr.X_add_number;
10747 imm_expr.X_op = O_absent;
10748 s = expr_end;
10749 continue;
10750 }
10751
10752 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10753 {
10754 as_bad (_("can't parse register list"));
10755 break;
10756 }
10757
10758 while (*s == ' ')
10759 ++s;
10760
10761 if (*s != '-')
10762 reg2 = reg1;
10763 else
10764 {
10765 ++s;
10766 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10767 || reg2 < reg1)
10768 {
10769 as_bad (_("can't parse register list"));
10770 break;
10771 }
10772 }
10773
10774 while (reg1 <= reg2)
10775 {
10776 if (reg1 >= 4 && reg1 <= 7)
10777 {
10778 if (!seen_framesz)
10779 /* args $a0-$a3 */
10780 nargs |= 1 << (reg1 - 4);
10781 else
10782 /* statics $a0-$a3 */
10783 statics |= 1 << (reg1 - 4);
10784 }
10785 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10786 {
10787 /* $s0-$s8 */
10788 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10789 }
10790 else if (reg1 == 31)
10791 {
10792 /* Add $ra to insn. */
10793 opcode |= 0x40;
10794 }
10795 else
10796 {
10797 as_bad (_("unexpected register in list"));
10798 break;
10799 }
10800 if (++reg1 == 24)
10801 reg1 = 30;
10802 }
10803 }
10804
10805 /* Encode args/statics combination. */
10806 if (nargs & statics)
10807 as_bad (_("arg/static registers overlap"));
10808 else if (nargs == 0xf)
10809 /* All $a0-$a3 are args. */
10810 opcode |= MIPS16_ALL_ARGS << 16;
10811 else if (statics == 0xf)
10812 /* All $a0-$a3 are statics. */
10813 opcode |= MIPS16_ALL_STATICS << 16;
10814 else
10815 {
10816 int narg = 0, nstat = 0;
10817
10818 /* Count arg registers. */
10819 while (nargs & 0x1)
10820 {
10821 nargs >>= 1;
10822 narg++;
10823 }
10824 if (nargs != 0)
10825 as_bad (_("invalid arg register list"));
10826
10827 /* Count static registers. */
10828 while (statics & 0x8)
10829 {
10830 statics = (statics << 1) & 0xf;
10831 nstat++;
10832 }
10833 if (statics != 0)
10834 as_bad (_("invalid static register list"));
10835
10836 /* Encode args/statics. */
10837 opcode |= ((narg << 2) | nstat) << 16;
10838 }
10839
10840 /* Encode $s0/$s1. */
10841 if (sregs & (1 << 0)) /* $s0 */
10842 opcode |= 0x20;
10843 if (sregs & (1 << 1)) /* $s1 */
10844 opcode |= 0x10;
10845 sregs >>= 2;
10846
10847 if (sregs != 0)
10848 {
10849 /* Count regs $s2-$s8. */
10850 int nsreg = 0;
10851 while (sregs & 1)
10852 {
10853 sregs >>= 1;
10854 nsreg++;
10855 }
10856 if (sregs != 0)
10857 as_bad (_("invalid static register list"));
10858 /* Encode $s2-$s8. */
10859 opcode |= nsreg << 24;
10860 }
10861
10862 /* Encode frame size. */
10863 if (!seen_framesz)
10864 as_bad (_("missing frame size"));
10865 else if ((framesz & 7) != 0 || framesz < 0
10866 || framesz > 0xff * 8)
10867 as_bad (_("invalid frame size"));
10868 else if (framesz != 128 || (opcode >> 16) != 0)
10869 {
10870 framesz /= 8;
10871 opcode |= (((framesz & 0xf0) << 16)
10872 | (framesz & 0x0f));
10873 }
10874
10875 /* Finally build the instruction. */
10876 if ((opcode >> 16) != 0 || framesz == 0)
10877 {
10878 ip->use_extend = TRUE;
10879 ip->extend = opcode >> 16;
10880 }
10881 ip->insn_opcode |= opcode & 0x7f;
10882 }
10883 continue;
10884
10885 case 'e': /* extend code */
10886 my_getExpression (&imm_expr, s);
10887 check_absolute_expr (ip, &imm_expr);
10888 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10889 {
10890 as_warn (_("Invalid value for `%s' (%lu)"),
10891 ip->insn_mo->name,
10892 (unsigned long) imm_expr.X_add_number);
10893 imm_expr.X_add_number &= 0x7ff;
10894 }
10895 ip->insn_opcode |= imm_expr.X_add_number;
10896 imm_expr.X_op = O_absent;
10897 s = expr_end;
10898 continue;
10899
10900 default:
10901 internalError ();
10902 }
10903 break;
10904 }
10905
10906 /* Args don't match. */
10907 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10908 strcmp (insn->name, insn[1].name) == 0)
10909 {
10910 ++insn;
10911 s = argsstart;
10912 continue;
10913 }
10914
10915 insn_error = _("illegal operands");
10916
10917 return;
10918 }
10919 }
10920
10921 /* This structure holds information we know about a mips16 immediate
10922 argument type. */
10923
10924 struct mips16_immed_operand
10925 {
10926 /* The type code used in the argument string in the opcode table. */
10927 int type;
10928 /* The number of bits in the short form of the opcode. */
10929 int nbits;
10930 /* The number of bits in the extended form of the opcode. */
10931 int extbits;
10932 /* The amount by which the short form is shifted when it is used;
10933 for example, the sw instruction has a shift count of 2. */
10934 int shift;
10935 /* The amount by which the short form is shifted when it is stored
10936 into the instruction code. */
10937 int op_shift;
10938 /* Non-zero if the short form is unsigned. */
10939 int unsp;
10940 /* Non-zero if the extended form is unsigned. */
10941 int extu;
10942 /* Non-zero if the value is PC relative. */
10943 int pcrel;
10944 };
10945
10946 /* The mips16 immediate operand types. */
10947
10948 static const struct mips16_immed_operand mips16_immed_operands[] =
10949 {
10950 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10951 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10952 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10953 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10954 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10955 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10956 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10957 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10958 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10959 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10960 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10961 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10962 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10963 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10964 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10965 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10966 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10967 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10968 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10969 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10970 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10971 };
10972
10973 #define MIPS16_NUM_IMMED \
10974 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10975
10976 /* Handle a mips16 instruction with an immediate value. This or's the
10977 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10978 whether an extended value is needed; if one is needed, it sets
10979 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10980 If SMALL is true, an unextended opcode was explicitly requested.
10981 If EXT is true, an extended opcode was explicitly requested. If
10982 WARN is true, warn if EXT does not match reality. */
10983
10984 static void
10985 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10986 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10987 unsigned long *insn, bfd_boolean *use_extend,
10988 unsigned short *extend)
10989 {
10990 const struct mips16_immed_operand *op;
10991 int mintiny, maxtiny;
10992 bfd_boolean needext;
10993
10994 op = mips16_immed_operands;
10995 while (op->type != type)
10996 {
10997 ++op;
10998 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10999 }
11000
11001 if (op->unsp)
11002 {
11003 if (type == '<' || type == '>' || type == '[' || type == ']')
11004 {
11005 mintiny = 1;
11006 maxtiny = 1 << op->nbits;
11007 }
11008 else
11009 {
11010 mintiny = 0;
11011 maxtiny = (1 << op->nbits) - 1;
11012 }
11013 }
11014 else
11015 {
11016 mintiny = - (1 << (op->nbits - 1));
11017 maxtiny = (1 << (op->nbits - 1)) - 1;
11018 }
11019
11020 /* Branch offsets have an implicit 0 in the lowest bit. */
11021 if (type == 'p' || type == 'q')
11022 val /= 2;
11023
11024 if ((val & ((1 << op->shift) - 1)) != 0
11025 || val < (mintiny << op->shift)
11026 || val > (maxtiny << op->shift))
11027 needext = TRUE;
11028 else
11029 needext = FALSE;
11030
11031 if (warn && ext && ! needext)
11032 as_warn_where (file, line,
11033 _("extended operand requested but not required"));
11034 if (small && needext)
11035 as_bad_where (file, line, _("invalid unextended operand value"));
11036
11037 if (small || (! ext && ! needext))
11038 {
11039 int insnval;
11040
11041 *use_extend = FALSE;
11042 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
11043 insnval <<= op->op_shift;
11044 *insn |= insnval;
11045 }
11046 else
11047 {
11048 long minext, maxext;
11049 int extval;
11050
11051 if (op->extu)
11052 {
11053 minext = 0;
11054 maxext = (1 << op->extbits) - 1;
11055 }
11056 else
11057 {
11058 minext = - (1 << (op->extbits - 1));
11059 maxext = (1 << (op->extbits - 1)) - 1;
11060 }
11061 if (val < minext || val > maxext)
11062 as_bad_where (file, line,
11063 _("operand value out of range for instruction"));
11064
11065 *use_extend = TRUE;
11066 if (op->extbits == 16)
11067 {
11068 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
11069 val &= 0x1f;
11070 }
11071 else if (op->extbits == 15)
11072 {
11073 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
11074 val &= 0xf;
11075 }
11076 else
11077 {
11078 extval = ((val & 0x1f) << 6) | (val & 0x20);
11079 val = 0;
11080 }
11081
11082 *extend = (unsigned short) extval;
11083 *insn |= val;
11084 }
11085 }
11086 \f
11087 struct percent_op_match
11088 {
11089 const char *str;
11090 bfd_reloc_code_real_type reloc;
11091 };
11092
11093 static const struct percent_op_match mips_percent_op[] =
11094 {
11095 {"%lo", BFD_RELOC_LO16},
11096 #ifdef OBJ_ELF
11097 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
11098 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
11099 {"%call16", BFD_RELOC_MIPS_CALL16},
11100 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
11101 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
11102 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
11103 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
11104 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
11105 {"%got", BFD_RELOC_MIPS_GOT16},
11106 {"%gp_rel", BFD_RELOC_GPREL16},
11107 {"%half", BFD_RELOC_16},
11108 {"%highest", BFD_RELOC_MIPS_HIGHEST},
11109 {"%higher", BFD_RELOC_MIPS_HIGHER},
11110 {"%neg", BFD_RELOC_MIPS_SUB},
11111 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11112 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11113 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11114 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11115 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11116 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11117 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11118 #endif
11119 {"%hi", BFD_RELOC_HI16_S}
11120 };
11121
11122 static const struct percent_op_match mips16_percent_op[] =
11123 {
11124 {"%lo", BFD_RELOC_MIPS16_LO16},
11125 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11126 {"%got", BFD_RELOC_MIPS16_GOT16},
11127 {"%call16", BFD_RELOC_MIPS16_CALL16},
11128 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11129 };
11130
11131
11132 /* Return true if *STR points to a relocation operator. When returning true,
11133 move *STR over the operator and store its relocation code in *RELOC.
11134 Leave both *STR and *RELOC alone when returning false. */
11135
11136 static bfd_boolean
11137 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11138 {
11139 const struct percent_op_match *percent_op;
11140 size_t limit, i;
11141
11142 if (mips_opts.mips16)
11143 {
11144 percent_op = mips16_percent_op;
11145 limit = ARRAY_SIZE (mips16_percent_op);
11146 }
11147 else
11148 {
11149 percent_op = mips_percent_op;
11150 limit = ARRAY_SIZE (mips_percent_op);
11151 }
11152
11153 for (i = 0; i < limit; i++)
11154 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11155 {
11156 int len = strlen (percent_op[i].str);
11157
11158 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11159 continue;
11160
11161 *str += strlen (percent_op[i].str);
11162 *reloc = percent_op[i].reloc;
11163
11164 /* Check whether the output BFD supports this relocation.
11165 If not, issue an error and fall back on something safe. */
11166 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11167 {
11168 as_bad (_("relocation %s isn't supported by the current ABI"),
11169 percent_op[i].str);
11170 *reloc = BFD_RELOC_UNUSED;
11171 }
11172 return TRUE;
11173 }
11174 return FALSE;
11175 }
11176
11177
11178 /* Parse string STR as a 16-bit relocatable operand. Store the
11179 expression in *EP and the relocations in the array starting
11180 at RELOC. Return the number of relocation operators used.
11181
11182 On exit, EXPR_END points to the first character after the expression. */
11183
11184 static size_t
11185 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11186 char *str)
11187 {
11188 bfd_reloc_code_real_type reversed_reloc[3];
11189 size_t reloc_index, i;
11190 int crux_depth, str_depth;
11191 char *crux;
11192
11193 /* Search for the start of the main expression, recoding relocations
11194 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11195 of the main expression and with CRUX_DEPTH containing the number
11196 of open brackets at that point. */
11197 reloc_index = -1;
11198 str_depth = 0;
11199 do
11200 {
11201 reloc_index++;
11202 crux = str;
11203 crux_depth = str_depth;
11204
11205 /* Skip over whitespace and brackets, keeping count of the number
11206 of brackets. */
11207 while (*str == ' ' || *str == '\t' || *str == '(')
11208 if (*str++ == '(')
11209 str_depth++;
11210 }
11211 while (*str == '%'
11212 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11213 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11214
11215 my_getExpression (ep, crux);
11216 str = expr_end;
11217
11218 /* Match every open bracket. */
11219 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11220 if (*str++ == ')')
11221 crux_depth--;
11222
11223 if (crux_depth > 0)
11224 as_bad (_("unclosed '('"));
11225
11226 expr_end = str;
11227
11228 if (reloc_index != 0)
11229 {
11230 prev_reloc_op_frag = frag_now;
11231 for (i = 0; i < reloc_index; i++)
11232 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11233 }
11234
11235 return reloc_index;
11236 }
11237
11238 static void
11239 my_getExpression (expressionS *ep, char *str)
11240 {
11241 char *save_in;
11242
11243 save_in = input_line_pointer;
11244 input_line_pointer = str;
11245 expression (ep);
11246 expr_end = input_line_pointer;
11247 input_line_pointer = save_in;
11248 }
11249
11250 char *
11251 md_atof (int type, char *litP, int *sizeP)
11252 {
11253 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11254 }
11255
11256 void
11257 md_number_to_chars (char *buf, valueT val, int n)
11258 {
11259 if (target_big_endian)
11260 number_to_chars_bigendian (buf, val, n);
11261 else
11262 number_to_chars_littleendian (buf, val, n);
11263 }
11264 \f
11265 #ifdef OBJ_ELF
11266 static int support_64bit_objects(void)
11267 {
11268 const char **list, **l;
11269 int yes;
11270
11271 list = bfd_target_list ();
11272 for (l = list; *l != NULL; l++)
11273 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
11274 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
11275 break;
11276 yes = (*l != NULL);
11277 free (list);
11278 return yes;
11279 }
11280 #endif /* OBJ_ELF */
11281
11282 const char *md_shortopts = "O::g::G:";
11283
11284 enum options
11285 {
11286 OPTION_MARCH = OPTION_MD_BASE,
11287 OPTION_MTUNE,
11288 OPTION_MIPS1,
11289 OPTION_MIPS2,
11290 OPTION_MIPS3,
11291 OPTION_MIPS4,
11292 OPTION_MIPS5,
11293 OPTION_MIPS32,
11294 OPTION_MIPS64,
11295 OPTION_MIPS32R2,
11296 OPTION_MIPS64R2,
11297 OPTION_MIPS16,
11298 OPTION_NO_MIPS16,
11299 OPTION_MIPS3D,
11300 OPTION_NO_MIPS3D,
11301 OPTION_MDMX,
11302 OPTION_NO_MDMX,
11303 OPTION_DSP,
11304 OPTION_NO_DSP,
11305 OPTION_MT,
11306 OPTION_NO_MT,
11307 OPTION_SMARTMIPS,
11308 OPTION_NO_SMARTMIPS,
11309 OPTION_DSPR2,
11310 OPTION_NO_DSPR2,
11311 OPTION_COMPAT_ARCH_BASE,
11312 OPTION_M4650,
11313 OPTION_NO_M4650,
11314 OPTION_M4010,
11315 OPTION_NO_M4010,
11316 OPTION_M4100,
11317 OPTION_NO_M4100,
11318 OPTION_M3900,
11319 OPTION_NO_M3900,
11320 OPTION_M7000_HILO_FIX,
11321 OPTION_MNO_7000_HILO_FIX,
11322 OPTION_FIX_24K,
11323 OPTION_NO_FIX_24K,
11324 OPTION_FIX_LOONGSON2F_JUMP,
11325 OPTION_NO_FIX_LOONGSON2F_JUMP,
11326 OPTION_FIX_LOONGSON2F_NOP,
11327 OPTION_NO_FIX_LOONGSON2F_NOP,
11328 OPTION_FIX_VR4120,
11329 OPTION_NO_FIX_VR4120,
11330 OPTION_FIX_VR4130,
11331 OPTION_NO_FIX_VR4130,
11332 OPTION_FIX_CN63XXP1,
11333 OPTION_NO_FIX_CN63XXP1,
11334 OPTION_TRAP,
11335 OPTION_BREAK,
11336 OPTION_EB,
11337 OPTION_EL,
11338 OPTION_FP32,
11339 OPTION_GP32,
11340 OPTION_CONSTRUCT_FLOATS,
11341 OPTION_NO_CONSTRUCT_FLOATS,
11342 OPTION_FP64,
11343 OPTION_GP64,
11344 OPTION_RELAX_BRANCH,
11345 OPTION_NO_RELAX_BRANCH,
11346 OPTION_MSHARED,
11347 OPTION_MNO_SHARED,
11348 OPTION_MSYM32,
11349 OPTION_MNO_SYM32,
11350 OPTION_SOFT_FLOAT,
11351 OPTION_HARD_FLOAT,
11352 OPTION_SINGLE_FLOAT,
11353 OPTION_DOUBLE_FLOAT,
11354 OPTION_32,
11355 #ifdef OBJ_ELF
11356 OPTION_CALL_SHARED,
11357 OPTION_CALL_NONPIC,
11358 OPTION_NON_SHARED,
11359 OPTION_XGOT,
11360 OPTION_MABI,
11361 OPTION_N32,
11362 OPTION_64,
11363 OPTION_MDEBUG,
11364 OPTION_NO_MDEBUG,
11365 OPTION_PDR,
11366 OPTION_NO_PDR,
11367 OPTION_MVXWORKS_PIC,
11368 #endif /* OBJ_ELF */
11369 OPTION_END_OF_ENUM
11370 };
11371
11372 struct option md_longopts[] =
11373 {
11374 /* Options which specify architecture. */
11375 {"march", required_argument, NULL, OPTION_MARCH},
11376 {"mtune", required_argument, NULL, OPTION_MTUNE},
11377 {"mips0", no_argument, NULL, OPTION_MIPS1},
11378 {"mips1", no_argument, NULL, OPTION_MIPS1},
11379 {"mips2", no_argument, NULL, OPTION_MIPS2},
11380 {"mips3", no_argument, NULL, OPTION_MIPS3},
11381 {"mips4", no_argument, NULL, OPTION_MIPS4},
11382 {"mips5", no_argument, NULL, OPTION_MIPS5},
11383 {"mips32", no_argument, NULL, OPTION_MIPS32},
11384 {"mips64", no_argument, NULL, OPTION_MIPS64},
11385 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11386 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11387
11388 /* Options which specify Application Specific Extensions (ASEs). */
11389 {"mips16", no_argument, NULL, OPTION_MIPS16},
11390 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11391 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11392 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11393 {"mdmx", no_argument, NULL, OPTION_MDMX},
11394 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11395 {"mdsp", no_argument, NULL, OPTION_DSP},
11396 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11397 {"mmt", no_argument, NULL, OPTION_MT},
11398 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11399 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11400 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11401 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11402 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11403
11404 /* Old-style architecture options. Don't add more of these. */
11405 {"m4650", no_argument, NULL, OPTION_M4650},
11406 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11407 {"m4010", no_argument, NULL, OPTION_M4010},
11408 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11409 {"m4100", no_argument, NULL, OPTION_M4100},
11410 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11411 {"m3900", no_argument, NULL, OPTION_M3900},
11412 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11413
11414 /* Options which enable bug fixes. */
11415 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11416 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11417 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11418 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11419 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11420 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11421 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11422 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11423 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11424 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11425 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11426 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11427 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11428 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11429 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11430
11431 /* Miscellaneous options. */
11432 {"trap", no_argument, NULL, OPTION_TRAP},
11433 {"no-break", no_argument, NULL, OPTION_TRAP},
11434 {"break", no_argument, NULL, OPTION_BREAK},
11435 {"no-trap", no_argument, NULL, OPTION_BREAK},
11436 {"EB", no_argument, NULL, OPTION_EB},
11437 {"EL", no_argument, NULL, OPTION_EL},
11438 {"mfp32", no_argument, NULL, OPTION_FP32},
11439 {"mgp32", no_argument, NULL, OPTION_GP32},
11440 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11441 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11442 {"mfp64", no_argument, NULL, OPTION_FP64},
11443 {"mgp64", no_argument, NULL, OPTION_GP64},
11444 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11445 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11446 {"mshared", no_argument, NULL, OPTION_MSHARED},
11447 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11448 {"msym32", no_argument, NULL, OPTION_MSYM32},
11449 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11450 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11451 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11452 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11453 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11454
11455 /* Strictly speaking this next option is ELF specific,
11456 but we allow it for other ports as well in order to
11457 make testing easier. */
11458 {"32", no_argument, NULL, OPTION_32},
11459
11460 /* ELF-specific options. */
11461 #ifdef OBJ_ELF
11462 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11463 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11464 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11465 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11466 {"xgot", no_argument, NULL, OPTION_XGOT},
11467 {"mabi", required_argument, NULL, OPTION_MABI},
11468 {"n32", no_argument, NULL, OPTION_N32},
11469 {"64", no_argument, NULL, OPTION_64},
11470 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11471 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11472 {"mpdr", no_argument, NULL, OPTION_PDR},
11473 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11474 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11475 #endif /* OBJ_ELF */
11476
11477 {NULL, no_argument, NULL, 0}
11478 };
11479 size_t md_longopts_size = sizeof (md_longopts);
11480
11481 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11482 NEW_VALUE. Warn if another value was already specified. Note:
11483 we have to defer parsing the -march and -mtune arguments in order
11484 to handle 'from-abi' correctly, since the ABI might be specified
11485 in a later argument. */
11486
11487 static void
11488 mips_set_option_string (const char **string_ptr, const char *new_value)
11489 {
11490 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11491 as_warn (_("A different %s was already specified, is now %s"),
11492 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11493 new_value);
11494
11495 *string_ptr = new_value;
11496 }
11497
11498 int
11499 md_parse_option (int c, char *arg)
11500 {
11501 switch (c)
11502 {
11503 case OPTION_CONSTRUCT_FLOATS:
11504 mips_disable_float_construction = 0;
11505 break;
11506
11507 case OPTION_NO_CONSTRUCT_FLOATS:
11508 mips_disable_float_construction = 1;
11509 break;
11510
11511 case OPTION_TRAP:
11512 mips_trap = 1;
11513 break;
11514
11515 case OPTION_BREAK:
11516 mips_trap = 0;
11517 break;
11518
11519 case OPTION_EB:
11520 target_big_endian = 1;
11521 break;
11522
11523 case OPTION_EL:
11524 target_big_endian = 0;
11525 break;
11526
11527 case 'O':
11528 if (arg == NULL)
11529 mips_optimize = 1;
11530 else if (arg[0] == '0')
11531 mips_optimize = 0;
11532 else if (arg[0] == '1')
11533 mips_optimize = 1;
11534 else
11535 mips_optimize = 2;
11536 break;
11537
11538 case 'g':
11539 if (arg == NULL)
11540 mips_debug = 2;
11541 else
11542 mips_debug = atoi (arg);
11543 break;
11544
11545 case OPTION_MIPS1:
11546 file_mips_isa = ISA_MIPS1;
11547 break;
11548
11549 case OPTION_MIPS2:
11550 file_mips_isa = ISA_MIPS2;
11551 break;
11552
11553 case OPTION_MIPS3:
11554 file_mips_isa = ISA_MIPS3;
11555 break;
11556
11557 case OPTION_MIPS4:
11558 file_mips_isa = ISA_MIPS4;
11559 break;
11560
11561 case OPTION_MIPS5:
11562 file_mips_isa = ISA_MIPS5;
11563 break;
11564
11565 case OPTION_MIPS32:
11566 file_mips_isa = ISA_MIPS32;
11567 break;
11568
11569 case OPTION_MIPS32R2:
11570 file_mips_isa = ISA_MIPS32R2;
11571 break;
11572
11573 case OPTION_MIPS64R2:
11574 file_mips_isa = ISA_MIPS64R2;
11575 break;
11576
11577 case OPTION_MIPS64:
11578 file_mips_isa = ISA_MIPS64;
11579 break;
11580
11581 case OPTION_MTUNE:
11582 mips_set_option_string (&mips_tune_string, arg);
11583 break;
11584
11585 case OPTION_MARCH:
11586 mips_set_option_string (&mips_arch_string, arg);
11587 break;
11588
11589 case OPTION_M4650:
11590 mips_set_option_string (&mips_arch_string, "4650");
11591 mips_set_option_string (&mips_tune_string, "4650");
11592 break;
11593
11594 case OPTION_NO_M4650:
11595 break;
11596
11597 case OPTION_M4010:
11598 mips_set_option_string (&mips_arch_string, "4010");
11599 mips_set_option_string (&mips_tune_string, "4010");
11600 break;
11601
11602 case OPTION_NO_M4010:
11603 break;
11604
11605 case OPTION_M4100:
11606 mips_set_option_string (&mips_arch_string, "4100");
11607 mips_set_option_string (&mips_tune_string, "4100");
11608 break;
11609
11610 case OPTION_NO_M4100:
11611 break;
11612
11613 case OPTION_M3900:
11614 mips_set_option_string (&mips_arch_string, "3900");
11615 mips_set_option_string (&mips_tune_string, "3900");
11616 break;
11617
11618 case OPTION_NO_M3900:
11619 break;
11620
11621 case OPTION_MDMX:
11622 mips_opts.ase_mdmx = 1;
11623 break;
11624
11625 case OPTION_NO_MDMX:
11626 mips_opts.ase_mdmx = 0;
11627 break;
11628
11629 case OPTION_DSP:
11630 mips_opts.ase_dsp = 1;
11631 mips_opts.ase_dspr2 = 0;
11632 break;
11633
11634 case OPTION_NO_DSP:
11635 mips_opts.ase_dsp = 0;
11636 mips_opts.ase_dspr2 = 0;
11637 break;
11638
11639 case OPTION_DSPR2:
11640 mips_opts.ase_dspr2 = 1;
11641 mips_opts.ase_dsp = 1;
11642 break;
11643
11644 case OPTION_NO_DSPR2:
11645 mips_opts.ase_dspr2 = 0;
11646 mips_opts.ase_dsp = 0;
11647 break;
11648
11649 case OPTION_MT:
11650 mips_opts.ase_mt = 1;
11651 break;
11652
11653 case OPTION_NO_MT:
11654 mips_opts.ase_mt = 0;
11655 break;
11656
11657 case OPTION_MIPS16:
11658 mips_opts.mips16 = 1;
11659 mips_no_prev_insn ();
11660 break;
11661
11662 case OPTION_NO_MIPS16:
11663 mips_opts.mips16 = 0;
11664 mips_no_prev_insn ();
11665 break;
11666
11667 case OPTION_MIPS3D:
11668 mips_opts.ase_mips3d = 1;
11669 break;
11670
11671 case OPTION_NO_MIPS3D:
11672 mips_opts.ase_mips3d = 0;
11673 break;
11674
11675 case OPTION_SMARTMIPS:
11676 mips_opts.ase_smartmips = 1;
11677 break;
11678
11679 case OPTION_NO_SMARTMIPS:
11680 mips_opts.ase_smartmips = 0;
11681 break;
11682
11683 case OPTION_FIX_24K:
11684 mips_fix_24k = 1;
11685 break;
11686
11687 case OPTION_NO_FIX_24K:
11688 mips_fix_24k = 0;
11689 break;
11690
11691 case OPTION_FIX_LOONGSON2F_JUMP:
11692 mips_fix_loongson2f_jump = TRUE;
11693 break;
11694
11695 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11696 mips_fix_loongson2f_jump = FALSE;
11697 break;
11698
11699 case OPTION_FIX_LOONGSON2F_NOP:
11700 mips_fix_loongson2f_nop = TRUE;
11701 break;
11702
11703 case OPTION_NO_FIX_LOONGSON2F_NOP:
11704 mips_fix_loongson2f_nop = FALSE;
11705 break;
11706
11707 case OPTION_FIX_VR4120:
11708 mips_fix_vr4120 = 1;
11709 break;
11710
11711 case OPTION_NO_FIX_VR4120:
11712 mips_fix_vr4120 = 0;
11713 break;
11714
11715 case OPTION_FIX_VR4130:
11716 mips_fix_vr4130 = 1;
11717 break;
11718
11719 case OPTION_NO_FIX_VR4130:
11720 mips_fix_vr4130 = 0;
11721 break;
11722
11723 case OPTION_FIX_CN63XXP1:
11724 mips_fix_cn63xxp1 = TRUE;
11725 break;
11726
11727 case OPTION_NO_FIX_CN63XXP1:
11728 mips_fix_cn63xxp1 = FALSE;
11729 break;
11730
11731 case OPTION_RELAX_BRANCH:
11732 mips_relax_branch = 1;
11733 break;
11734
11735 case OPTION_NO_RELAX_BRANCH:
11736 mips_relax_branch = 0;
11737 break;
11738
11739 case OPTION_MSHARED:
11740 mips_in_shared = TRUE;
11741 break;
11742
11743 case OPTION_MNO_SHARED:
11744 mips_in_shared = FALSE;
11745 break;
11746
11747 case OPTION_MSYM32:
11748 mips_opts.sym32 = TRUE;
11749 break;
11750
11751 case OPTION_MNO_SYM32:
11752 mips_opts.sym32 = FALSE;
11753 break;
11754
11755 #ifdef OBJ_ELF
11756 /* When generating ELF code, we permit -KPIC and -call_shared to
11757 select SVR4_PIC, and -non_shared to select no PIC. This is
11758 intended to be compatible with Irix 5. */
11759 case OPTION_CALL_SHARED:
11760 if (!IS_ELF)
11761 {
11762 as_bad (_("-call_shared is supported only for ELF format"));
11763 return 0;
11764 }
11765 mips_pic = SVR4_PIC;
11766 mips_abicalls = TRUE;
11767 break;
11768
11769 case OPTION_CALL_NONPIC:
11770 if (!IS_ELF)
11771 {
11772 as_bad (_("-call_nonpic is supported only for ELF format"));
11773 return 0;
11774 }
11775 mips_pic = NO_PIC;
11776 mips_abicalls = TRUE;
11777 break;
11778
11779 case OPTION_NON_SHARED:
11780 if (!IS_ELF)
11781 {
11782 as_bad (_("-non_shared is supported only for ELF format"));
11783 return 0;
11784 }
11785 mips_pic = NO_PIC;
11786 mips_abicalls = FALSE;
11787 break;
11788
11789 /* The -xgot option tells the assembler to use 32 bit offsets
11790 when accessing the got in SVR4_PIC mode. It is for Irix
11791 compatibility. */
11792 case OPTION_XGOT:
11793 mips_big_got = 1;
11794 break;
11795 #endif /* OBJ_ELF */
11796
11797 case 'G':
11798 g_switch_value = atoi (arg);
11799 g_switch_seen = 1;
11800 break;
11801
11802 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11803 and -mabi=64. */
11804 case OPTION_32:
11805 if (IS_ELF)
11806 mips_abi = O32_ABI;
11807 /* We silently ignore -32 for non-ELF targets. This greatly
11808 simplifies the construction of the MIPS GAS test cases. */
11809 break;
11810
11811 #ifdef OBJ_ELF
11812 case OPTION_N32:
11813 if (!IS_ELF)
11814 {
11815 as_bad (_("-n32 is supported for ELF format only"));
11816 return 0;
11817 }
11818 mips_abi = N32_ABI;
11819 break;
11820
11821 case OPTION_64:
11822 if (!IS_ELF)
11823 {
11824 as_bad (_("-64 is supported for ELF format only"));
11825 return 0;
11826 }
11827 mips_abi = N64_ABI;
11828 if (!support_64bit_objects())
11829 as_fatal (_("No compiled in support for 64 bit object file format"));
11830 break;
11831 #endif /* OBJ_ELF */
11832
11833 case OPTION_GP32:
11834 file_mips_gp32 = 1;
11835 break;
11836
11837 case OPTION_GP64:
11838 file_mips_gp32 = 0;
11839 break;
11840
11841 case OPTION_FP32:
11842 file_mips_fp32 = 1;
11843 break;
11844
11845 case OPTION_FP64:
11846 file_mips_fp32 = 0;
11847 break;
11848
11849 case OPTION_SINGLE_FLOAT:
11850 file_mips_single_float = 1;
11851 break;
11852
11853 case OPTION_DOUBLE_FLOAT:
11854 file_mips_single_float = 0;
11855 break;
11856
11857 case OPTION_SOFT_FLOAT:
11858 file_mips_soft_float = 1;
11859 break;
11860
11861 case OPTION_HARD_FLOAT:
11862 file_mips_soft_float = 0;
11863 break;
11864
11865 #ifdef OBJ_ELF
11866 case OPTION_MABI:
11867 if (!IS_ELF)
11868 {
11869 as_bad (_("-mabi is supported for ELF format only"));
11870 return 0;
11871 }
11872 if (strcmp (arg, "32") == 0)
11873 mips_abi = O32_ABI;
11874 else if (strcmp (arg, "o64") == 0)
11875 mips_abi = O64_ABI;
11876 else if (strcmp (arg, "n32") == 0)
11877 mips_abi = N32_ABI;
11878 else if (strcmp (arg, "64") == 0)
11879 {
11880 mips_abi = N64_ABI;
11881 if (! support_64bit_objects())
11882 as_fatal (_("No compiled in support for 64 bit object file "
11883 "format"));
11884 }
11885 else if (strcmp (arg, "eabi") == 0)
11886 mips_abi = EABI_ABI;
11887 else
11888 {
11889 as_fatal (_("invalid abi -mabi=%s"), arg);
11890 return 0;
11891 }
11892 break;
11893 #endif /* OBJ_ELF */
11894
11895 case OPTION_M7000_HILO_FIX:
11896 mips_7000_hilo_fix = TRUE;
11897 break;
11898
11899 case OPTION_MNO_7000_HILO_FIX:
11900 mips_7000_hilo_fix = FALSE;
11901 break;
11902
11903 #ifdef OBJ_ELF
11904 case OPTION_MDEBUG:
11905 mips_flag_mdebug = TRUE;
11906 break;
11907
11908 case OPTION_NO_MDEBUG:
11909 mips_flag_mdebug = FALSE;
11910 break;
11911
11912 case OPTION_PDR:
11913 mips_flag_pdr = TRUE;
11914 break;
11915
11916 case OPTION_NO_PDR:
11917 mips_flag_pdr = FALSE;
11918 break;
11919
11920 case OPTION_MVXWORKS_PIC:
11921 mips_pic = VXWORKS_PIC;
11922 break;
11923 #endif /* OBJ_ELF */
11924
11925 default:
11926 return 0;
11927 }
11928
11929 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
11930
11931 return 1;
11932 }
11933 \f
11934 /* Set up globals to generate code for the ISA or processor
11935 described by INFO. */
11936
11937 static void
11938 mips_set_architecture (const struct mips_cpu_info *info)
11939 {
11940 if (info != 0)
11941 {
11942 file_mips_arch = info->cpu;
11943 mips_opts.arch = info->cpu;
11944 mips_opts.isa = info->isa;
11945 }
11946 }
11947
11948
11949 /* Likewise for tuning. */
11950
11951 static void
11952 mips_set_tune (const struct mips_cpu_info *info)
11953 {
11954 if (info != 0)
11955 mips_tune = info->cpu;
11956 }
11957
11958
11959 void
11960 mips_after_parse_args (void)
11961 {
11962 const struct mips_cpu_info *arch_info = 0;
11963 const struct mips_cpu_info *tune_info = 0;
11964
11965 /* GP relative stuff not working for PE */
11966 if (strncmp (TARGET_OS, "pe", 2) == 0)
11967 {
11968 if (g_switch_seen && g_switch_value != 0)
11969 as_bad (_("-G not supported in this configuration."));
11970 g_switch_value = 0;
11971 }
11972
11973 if (mips_abi == NO_ABI)
11974 mips_abi = MIPS_DEFAULT_ABI;
11975
11976 /* The following code determines the architecture and register size.
11977 Similar code was added to GCC 3.3 (see override_options() in
11978 config/mips/mips.c). The GAS and GCC code should be kept in sync
11979 as much as possible. */
11980
11981 if (mips_arch_string != 0)
11982 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11983
11984 if (file_mips_isa != ISA_UNKNOWN)
11985 {
11986 /* Handle -mipsN. At this point, file_mips_isa contains the
11987 ISA level specified by -mipsN, while arch_info->isa contains
11988 the -march selection (if any). */
11989 if (arch_info != 0)
11990 {
11991 /* -march takes precedence over -mipsN, since it is more descriptive.
11992 There's no harm in specifying both as long as the ISA levels
11993 are the same. */
11994 if (file_mips_isa != arch_info->isa)
11995 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11996 mips_cpu_info_from_isa (file_mips_isa)->name,
11997 mips_cpu_info_from_isa (arch_info->isa)->name);
11998 }
11999 else
12000 arch_info = mips_cpu_info_from_isa (file_mips_isa);
12001 }
12002
12003 if (arch_info == 0)
12004 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
12005
12006 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
12007 as_bad (_("-march=%s is not compatible with the selected ABI"),
12008 arch_info->name);
12009
12010 mips_set_architecture (arch_info);
12011
12012 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
12013 if (mips_tune_string != 0)
12014 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
12015
12016 if (tune_info == 0)
12017 mips_set_tune (arch_info);
12018 else
12019 mips_set_tune (tune_info);
12020
12021 if (file_mips_gp32 >= 0)
12022 {
12023 /* The user specified the size of the integer registers. Make sure
12024 it agrees with the ABI and ISA. */
12025 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
12026 as_bad (_("-mgp64 used with a 32-bit processor"));
12027 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
12028 as_bad (_("-mgp32 used with a 64-bit ABI"));
12029 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
12030 as_bad (_("-mgp64 used with a 32-bit ABI"));
12031 }
12032 else
12033 {
12034 /* Infer the integer register size from the ABI and processor.
12035 Restrict ourselves to 32-bit registers if that's all the
12036 processor has, or if the ABI cannot handle 64-bit registers. */
12037 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
12038 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
12039 }
12040
12041 switch (file_mips_fp32)
12042 {
12043 default:
12044 case -1:
12045 /* No user specified float register size.
12046 ??? GAS treats single-float processors as though they had 64-bit
12047 float registers (although it complains when double-precision
12048 instructions are used). As things stand, saying they have 32-bit
12049 registers would lead to spurious "register must be even" messages.
12050 So here we assume float registers are never smaller than the
12051 integer ones. */
12052 if (file_mips_gp32 == 0)
12053 /* 64-bit integer registers implies 64-bit float registers. */
12054 file_mips_fp32 = 0;
12055 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
12056 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
12057 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
12058 file_mips_fp32 = 0;
12059 else
12060 /* 32-bit float registers. */
12061 file_mips_fp32 = 1;
12062 break;
12063
12064 /* The user specified the size of the float registers. Check if it
12065 agrees with the ABI and ISA. */
12066 case 0:
12067 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12068 as_bad (_("-mfp64 used with a 32-bit fpu"));
12069 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
12070 && !ISA_HAS_MXHC1 (mips_opts.isa))
12071 as_warn (_("-mfp64 used with a 32-bit ABI"));
12072 break;
12073 case 1:
12074 if (ABI_NEEDS_64BIT_REGS (mips_abi))
12075 as_warn (_("-mfp32 used with a 64-bit ABI"));
12076 break;
12077 }
12078
12079 /* End of GCC-shared inference code. */
12080
12081 /* This flag is set when we have a 64-bit capable CPU but use only
12082 32-bit wide registers. Note that EABI does not use it. */
12083 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
12084 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
12085 || mips_abi == O32_ABI))
12086 mips_32bitmode = 1;
12087
12088 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
12089 as_bad (_("trap exception not supported at ISA 1"));
12090
12091 /* If the selected architecture includes support for ASEs, enable
12092 generation of code for them. */
12093 if (mips_opts.mips16 == -1)
12094 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12095 if (mips_opts.ase_mips3d == -1)
12096 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12097 && file_mips_fp32 == 0) ? 1 : 0;
12098 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12099 as_bad (_("-mfp32 used with -mips3d"));
12100
12101 if (mips_opts.ase_mdmx == -1)
12102 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12103 && file_mips_fp32 == 0) ? 1 : 0;
12104 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12105 as_bad (_("-mfp32 used with -mdmx"));
12106
12107 if (mips_opts.ase_smartmips == -1)
12108 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12109 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12110 as_warn (_("%s ISA does not support SmartMIPS"),
12111 mips_cpu_info_from_isa (mips_opts.isa)->name);
12112
12113 if (mips_opts.ase_dsp == -1)
12114 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12115 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12116 as_warn (_("%s ISA does not support DSP ASE"),
12117 mips_cpu_info_from_isa (mips_opts.isa)->name);
12118
12119 if (mips_opts.ase_dspr2 == -1)
12120 {
12121 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12122 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12123 }
12124 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12125 as_warn (_("%s ISA does not support DSP R2 ASE"),
12126 mips_cpu_info_from_isa (mips_opts.isa)->name);
12127
12128 if (mips_opts.ase_mt == -1)
12129 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12130 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12131 as_warn (_("%s ISA does not support MT ASE"),
12132 mips_cpu_info_from_isa (mips_opts.isa)->name);
12133
12134 file_mips_isa = mips_opts.isa;
12135 file_ase_mips3d = mips_opts.ase_mips3d;
12136 file_ase_mdmx = mips_opts.ase_mdmx;
12137 file_ase_smartmips = mips_opts.ase_smartmips;
12138 file_ase_dsp = mips_opts.ase_dsp;
12139 file_ase_dspr2 = mips_opts.ase_dspr2;
12140 file_ase_mt = mips_opts.ase_mt;
12141 mips_opts.gp32 = file_mips_gp32;
12142 mips_opts.fp32 = file_mips_fp32;
12143 mips_opts.soft_float = file_mips_soft_float;
12144 mips_opts.single_float = file_mips_single_float;
12145
12146 if (mips_flag_mdebug < 0)
12147 {
12148 #ifdef OBJ_MAYBE_ECOFF
12149 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12150 mips_flag_mdebug = 1;
12151 else
12152 #endif /* OBJ_MAYBE_ECOFF */
12153 mips_flag_mdebug = 0;
12154 }
12155 }
12156 \f
12157 void
12158 mips_init_after_args (void)
12159 {
12160 /* initialize opcodes */
12161 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12162 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12163 }
12164
12165 long
12166 md_pcrel_from (fixS *fixP)
12167 {
12168 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12169 switch (fixP->fx_r_type)
12170 {
12171 case BFD_RELOC_16_PCREL_S2:
12172 case BFD_RELOC_MIPS_JMP:
12173 /* Return the address of the delay slot. */
12174 return addr + 4;
12175 default:
12176 /* We have no relocation type for PC relative MIPS16 instructions. */
12177 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12178 as_bad_where (fixP->fx_file, fixP->fx_line,
12179 _("PC relative MIPS16 instruction references a different section"));
12180 return addr;
12181 }
12182 }
12183
12184 /* This is called before the symbol table is processed. In order to
12185 work with gcc when using mips-tfile, we must keep all local labels.
12186 However, in other cases, we want to discard them. If we were
12187 called with -g, but we didn't see any debugging information, it may
12188 mean that gcc is smuggling debugging information through to
12189 mips-tfile, in which case we must generate all local labels. */
12190
12191 void
12192 mips_frob_file_before_adjust (void)
12193 {
12194 #ifndef NO_ECOFF_DEBUGGING
12195 if (ECOFF_DEBUGGING
12196 && mips_debug != 0
12197 && ! ecoff_debugging_seen)
12198 flag_keep_locals = 1;
12199 #endif
12200 }
12201
12202 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12203 the corresponding LO16 reloc. This is called before md_apply_fix and
12204 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12205 relocation operators.
12206
12207 For our purposes, a %lo() expression matches a %got() or %hi()
12208 expression if:
12209
12210 (a) it refers to the same symbol; and
12211 (b) the offset applied in the %lo() expression is no lower than
12212 the offset applied in the %got() or %hi().
12213
12214 (b) allows us to cope with code like:
12215
12216 lui $4,%hi(foo)
12217 lh $4,%lo(foo+2)($4)
12218
12219 ...which is legal on RELA targets, and has a well-defined behaviour
12220 if the user knows that adding 2 to "foo" will not induce a carry to
12221 the high 16 bits.
12222
12223 When several %lo()s match a particular %got() or %hi(), we use the
12224 following rules to distinguish them:
12225
12226 (1) %lo()s with smaller offsets are a better match than %lo()s with
12227 higher offsets.
12228
12229 (2) %lo()s with no matching %got() or %hi() are better than those
12230 that already have a matching %got() or %hi().
12231
12232 (3) later %lo()s are better than earlier %lo()s.
12233
12234 These rules are applied in order.
12235
12236 (1) means, among other things, that %lo()s with identical offsets are
12237 chosen if they exist.
12238
12239 (2) means that we won't associate several high-part relocations with
12240 the same low-part relocation unless there's no alternative. Having
12241 several high parts for the same low part is a GNU extension; this rule
12242 allows careful users to avoid it.
12243
12244 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12245 with the last high-part relocation being at the front of the list.
12246 It therefore makes sense to choose the last matching low-part
12247 relocation, all other things being equal. It's also easier
12248 to code that way. */
12249
12250 void
12251 mips_frob_file (void)
12252 {
12253 struct mips_hi_fixup *l;
12254 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12255
12256 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12257 {
12258 segment_info_type *seginfo;
12259 bfd_boolean matched_lo_p;
12260 fixS **hi_pos, **lo_pos, **pos;
12261
12262 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12263
12264 /* If a GOT16 relocation turns out to be against a global symbol,
12265 there isn't supposed to be a matching LO. */
12266 if (got16_reloc_p (l->fixp->fx_r_type)
12267 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12268 continue;
12269
12270 /* Check quickly whether the next fixup happens to be a matching %lo. */
12271 if (fixup_has_matching_lo_p (l->fixp))
12272 continue;
12273
12274 seginfo = seg_info (l->seg);
12275
12276 /* Set HI_POS to the position of this relocation in the chain.
12277 Set LO_POS to the position of the chosen low-part relocation.
12278 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12279 relocation that matches an immediately-preceding high-part
12280 relocation. */
12281 hi_pos = NULL;
12282 lo_pos = NULL;
12283 matched_lo_p = FALSE;
12284 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12285
12286 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12287 {
12288 if (*pos == l->fixp)
12289 hi_pos = pos;
12290
12291 if ((*pos)->fx_r_type == looking_for_rtype
12292 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12293 && (*pos)->fx_offset >= l->fixp->fx_offset
12294 && (lo_pos == NULL
12295 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12296 || (!matched_lo_p
12297 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12298 lo_pos = pos;
12299
12300 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12301 && fixup_has_matching_lo_p (*pos));
12302 }
12303
12304 /* If we found a match, remove the high-part relocation from its
12305 current position and insert it before the low-part relocation.
12306 Make the offsets match so that fixup_has_matching_lo_p()
12307 will return true.
12308
12309 We don't warn about unmatched high-part relocations since some
12310 versions of gcc have been known to emit dead "lui ...%hi(...)"
12311 instructions. */
12312 if (lo_pos != NULL)
12313 {
12314 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12315 if (l->fixp->fx_next != *lo_pos)
12316 {
12317 *hi_pos = l->fixp->fx_next;
12318 l->fixp->fx_next = *lo_pos;
12319 *lo_pos = l->fixp;
12320 }
12321 }
12322 }
12323 }
12324
12325 /* We may have combined relocations without symbols in the N32/N64 ABI.
12326 We have to prevent gas from dropping them. */
12327
12328 int
12329 mips_force_relocation (fixS *fixp)
12330 {
12331 if (generic_force_reloc (fixp))
12332 return 1;
12333
12334 if (HAVE_NEWABI
12335 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12336 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12337 || hi16_reloc_p (fixp->fx_r_type)
12338 || lo16_reloc_p (fixp->fx_r_type)))
12339 return 1;
12340
12341 return 0;
12342 }
12343
12344 /* Apply a fixup to the object file. */
12345
12346 void
12347 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12348 {
12349 bfd_byte *buf;
12350 long insn;
12351 reloc_howto_type *howto;
12352
12353 /* We ignore generic BFD relocations we don't know about. */
12354 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12355 if (! howto)
12356 return;
12357
12358 gas_assert (fixP->fx_size == 4
12359 || fixP->fx_r_type == BFD_RELOC_16
12360 || fixP->fx_r_type == BFD_RELOC_64
12361 || fixP->fx_r_type == BFD_RELOC_CTOR
12362 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12363 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12364 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12365 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12366
12367 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12368
12369 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12370
12371 /* Don't treat parts of a composite relocation as done. There are two
12372 reasons for this:
12373
12374 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12375 should nevertheless be emitted if the first part is.
12376
12377 (2) In normal usage, composite relocations are never assembly-time
12378 constants. The easiest way of dealing with the pathological
12379 exceptions is to generate a relocation against STN_UNDEF and
12380 leave everything up to the linker. */
12381 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12382 fixP->fx_done = 1;
12383
12384 switch (fixP->fx_r_type)
12385 {
12386 case BFD_RELOC_MIPS_TLS_GD:
12387 case BFD_RELOC_MIPS_TLS_LDM:
12388 case BFD_RELOC_MIPS_TLS_DTPREL32:
12389 case BFD_RELOC_MIPS_TLS_DTPREL64:
12390 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12391 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12392 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12393 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12394 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12395 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12396 /* fall through */
12397
12398 case BFD_RELOC_MIPS_JMP:
12399 case BFD_RELOC_MIPS_SHIFT5:
12400 case BFD_RELOC_MIPS_SHIFT6:
12401 case BFD_RELOC_MIPS_GOT_DISP:
12402 case BFD_RELOC_MIPS_GOT_PAGE:
12403 case BFD_RELOC_MIPS_GOT_OFST:
12404 case BFD_RELOC_MIPS_SUB:
12405 case BFD_RELOC_MIPS_INSERT_A:
12406 case BFD_RELOC_MIPS_INSERT_B:
12407 case BFD_RELOC_MIPS_DELETE:
12408 case BFD_RELOC_MIPS_HIGHEST:
12409 case BFD_RELOC_MIPS_HIGHER:
12410 case BFD_RELOC_MIPS_SCN_DISP:
12411 case BFD_RELOC_MIPS_REL16:
12412 case BFD_RELOC_MIPS_RELGOT:
12413 case BFD_RELOC_MIPS_JALR:
12414 case BFD_RELOC_HI16:
12415 case BFD_RELOC_HI16_S:
12416 case BFD_RELOC_GPREL16:
12417 case BFD_RELOC_MIPS_LITERAL:
12418 case BFD_RELOC_MIPS_CALL16:
12419 case BFD_RELOC_MIPS_GOT16:
12420 case BFD_RELOC_GPREL32:
12421 case BFD_RELOC_MIPS_GOT_HI16:
12422 case BFD_RELOC_MIPS_GOT_LO16:
12423 case BFD_RELOC_MIPS_CALL_HI16:
12424 case BFD_RELOC_MIPS_CALL_LO16:
12425 case BFD_RELOC_MIPS16_GPREL:
12426 case BFD_RELOC_MIPS16_GOT16:
12427 case BFD_RELOC_MIPS16_CALL16:
12428 case BFD_RELOC_MIPS16_HI16:
12429 case BFD_RELOC_MIPS16_HI16_S:
12430 case BFD_RELOC_MIPS16_JMP:
12431 /* Nothing needed to do. The value comes from the reloc entry. */
12432 break;
12433
12434 case BFD_RELOC_64:
12435 /* This is handled like BFD_RELOC_32, but we output a sign
12436 extended value if we are only 32 bits. */
12437 if (fixP->fx_done)
12438 {
12439 if (8 <= sizeof (valueT))
12440 md_number_to_chars ((char *) buf, *valP, 8);
12441 else
12442 {
12443 valueT hiv;
12444
12445 if ((*valP & 0x80000000) != 0)
12446 hiv = 0xffffffff;
12447 else
12448 hiv = 0;
12449 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12450 *valP, 4);
12451 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12452 hiv, 4);
12453 }
12454 }
12455 break;
12456
12457 case BFD_RELOC_RVA:
12458 case BFD_RELOC_32:
12459 case BFD_RELOC_16:
12460 /* If we are deleting this reloc entry, we must fill in the
12461 value now. This can happen if we have a .word which is not
12462 resolved when it appears but is later defined. */
12463 if (fixP->fx_done)
12464 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12465 break;
12466
12467 case BFD_RELOC_LO16:
12468 case BFD_RELOC_MIPS16_LO16:
12469 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12470 may be safe to remove, but if so it's not obvious. */
12471 /* When handling an embedded PIC switch statement, we can wind
12472 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12473 if (fixP->fx_done)
12474 {
12475 if (*valP + 0x8000 > 0xffff)
12476 as_bad_where (fixP->fx_file, fixP->fx_line,
12477 _("relocation overflow"));
12478 if (target_big_endian)
12479 buf += 2;
12480 md_number_to_chars ((char *) buf, *valP, 2);
12481 }
12482 break;
12483
12484 case BFD_RELOC_16_PCREL_S2:
12485 if ((*valP & 0x3) != 0)
12486 as_bad_where (fixP->fx_file, fixP->fx_line,
12487 _("Branch to misaligned address (%lx)"), (long) *valP);
12488
12489 /* We need to save the bits in the instruction since fixup_segment()
12490 might be deleting the relocation entry (i.e., a branch within
12491 the current segment). */
12492 if (! fixP->fx_done)
12493 break;
12494
12495 /* Update old instruction data. */
12496 if (target_big_endian)
12497 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12498 else
12499 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12500
12501 if (*valP + 0x20000 <= 0x3ffff)
12502 {
12503 insn |= (*valP >> 2) & 0xffff;
12504 md_number_to_chars ((char *) buf, insn, 4);
12505 }
12506 else if (mips_pic == NO_PIC
12507 && fixP->fx_done
12508 && fixP->fx_frag->fr_address >= text_section->vma
12509 && (fixP->fx_frag->fr_address
12510 < text_section->vma + bfd_get_section_size (text_section))
12511 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12512 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12513 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12514 {
12515 /* The branch offset is too large. If this is an
12516 unconditional branch, and we are not generating PIC code,
12517 we can convert it to an absolute jump instruction. */
12518 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12519 insn = 0x0c000000; /* jal */
12520 else
12521 insn = 0x08000000; /* j */
12522 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12523 fixP->fx_done = 0;
12524 fixP->fx_addsy = section_symbol (text_section);
12525 *valP += md_pcrel_from (fixP);
12526 md_number_to_chars ((char *) buf, insn, 4);
12527 }
12528 else
12529 {
12530 /* If we got here, we have branch-relaxation disabled,
12531 and there's nothing we can do to fix this instruction
12532 without turning it into a longer sequence. */
12533 as_bad_where (fixP->fx_file, fixP->fx_line,
12534 _("Branch out of range"));
12535 }
12536 break;
12537
12538 case BFD_RELOC_VTABLE_INHERIT:
12539 fixP->fx_done = 0;
12540 if (fixP->fx_addsy
12541 && !S_IS_DEFINED (fixP->fx_addsy)
12542 && !S_IS_WEAK (fixP->fx_addsy))
12543 S_SET_WEAK (fixP->fx_addsy);
12544 break;
12545
12546 case BFD_RELOC_VTABLE_ENTRY:
12547 fixP->fx_done = 0;
12548 break;
12549
12550 default:
12551 internalError ();
12552 }
12553
12554 /* Remember value for tc_gen_reloc. */
12555 fixP->fx_addnumber = *valP;
12556 }
12557
12558 static symbolS *
12559 get_symbol (void)
12560 {
12561 int c;
12562 char *name;
12563 symbolS *p;
12564
12565 name = input_line_pointer;
12566 c = get_symbol_end ();
12567 p = (symbolS *) symbol_find_or_make (name);
12568 *input_line_pointer = c;
12569 return p;
12570 }
12571
12572 /* Align the current frag to a given power of two. If a particular
12573 fill byte should be used, FILL points to an integer that contains
12574 that byte, otherwise FILL is null.
12575
12576 The MIPS assembler also automatically adjusts any preceding
12577 label. */
12578
12579 static void
12580 mips_align (int to, int *fill, symbolS *label)
12581 {
12582 mips_emit_delays ();
12583 mips_record_mips16_mode ();
12584 if (fill == NULL && subseg_text_p (now_seg))
12585 frag_align_code (to, 0);
12586 else
12587 frag_align (to, fill ? *fill : 0, 0);
12588 record_alignment (now_seg, to);
12589 if (label != NULL)
12590 {
12591 gas_assert (S_GET_SEGMENT (label) == now_seg);
12592 symbol_set_frag (label, frag_now);
12593 S_SET_VALUE (label, (valueT) frag_now_fix ());
12594 }
12595 }
12596
12597 /* Align to a given power of two. .align 0 turns off the automatic
12598 alignment used by the data creating pseudo-ops. */
12599
12600 static void
12601 s_align (int x ATTRIBUTE_UNUSED)
12602 {
12603 int temp, fill_value, *fill_ptr;
12604 long max_alignment = 28;
12605
12606 /* o Note that the assembler pulls down any immediately preceding label
12607 to the aligned address.
12608 o It's not documented but auto alignment is reinstated by
12609 a .align pseudo instruction.
12610 o Note also that after auto alignment is turned off the mips assembler
12611 issues an error on attempt to assemble an improperly aligned data item.
12612 We don't. */
12613
12614 temp = get_absolute_expression ();
12615 if (temp > max_alignment)
12616 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12617 else if (temp < 0)
12618 {
12619 as_warn (_("Alignment negative: 0 assumed."));
12620 temp = 0;
12621 }
12622 if (*input_line_pointer == ',')
12623 {
12624 ++input_line_pointer;
12625 fill_value = get_absolute_expression ();
12626 fill_ptr = &fill_value;
12627 }
12628 else
12629 fill_ptr = 0;
12630 if (temp)
12631 {
12632 segment_info_type *si = seg_info (now_seg);
12633 struct insn_label_list *l = si->label_list;
12634 /* Auto alignment should be switched on by next section change. */
12635 auto_align = 1;
12636 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12637 }
12638 else
12639 {
12640 auto_align = 0;
12641 }
12642
12643 demand_empty_rest_of_line ();
12644 }
12645
12646 static void
12647 s_change_sec (int sec)
12648 {
12649 segT seg;
12650
12651 #ifdef OBJ_ELF
12652 /* The ELF backend needs to know that we are changing sections, so
12653 that .previous works correctly. We could do something like check
12654 for an obj_section_change_hook macro, but that might be confusing
12655 as it would not be appropriate to use it in the section changing
12656 functions in read.c, since obj-elf.c intercepts those. FIXME:
12657 This should be cleaner, somehow. */
12658 if (IS_ELF)
12659 obj_elf_section_change_hook ();
12660 #endif
12661
12662 mips_emit_delays ();
12663
12664 switch (sec)
12665 {
12666 case 't':
12667 s_text (0);
12668 break;
12669 case 'd':
12670 s_data (0);
12671 break;
12672 case 'b':
12673 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12674 demand_empty_rest_of_line ();
12675 break;
12676
12677 case 'r':
12678 seg = subseg_new (RDATA_SECTION_NAME,
12679 (subsegT) get_absolute_expression ());
12680 if (IS_ELF)
12681 {
12682 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12683 | SEC_READONLY | SEC_RELOC
12684 | SEC_DATA));
12685 if (strncmp (TARGET_OS, "elf", 3) != 0)
12686 record_alignment (seg, 4);
12687 }
12688 demand_empty_rest_of_line ();
12689 break;
12690
12691 case 's':
12692 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12693 if (IS_ELF)
12694 {
12695 bfd_set_section_flags (stdoutput, seg,
12696 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12697 if (strncmp (TARGET_OS, "elf", 3) != 0)
12698 record_alignment (seg, 4);
12699 }
12700 demand_empty_rest_of_line ();
12701 break;
12702
12703 case 'B':
12704 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
12705 if (IS_ELF)
12706 {
12707 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
12708 if (strncmp (TARGET_OS, "elf", 3) != 0)
12709 record_alignment (seg, 4);
12710 }
12711 demand_empty_rest_of_line ();
12712 break;
12713 }
12714
12715 auto_align = 1;
12716 }
12717
12718 void
12719 s_change_section (int ignore ATTRIBUTE_UNUSED)
12720 {
12721 #ifdef OBJ_ELF
12722 char *section_name;
12723 char c;
12724 char next_c = 0;
12725 int section_type;
12726 int section_flag;
12727 int section_entry_size;
12728 int section_alignment;
12729
12730 if (!IS_ELF)
12731 return;
12732
12733 section_name = input_line_pointer;
12734 c = get_symbol_end ();
12735 if (c)
12736 next_c = *(input_line_pointer + 1);
12737
12738 /* Do we have .section Name<,"flags">? */
12739 if (c != ',' || (c == ',' && next_c == '"'))
12740 {
12741 /* just after name is now '\0'. */
12742 *input_line_pointer = c;
12743 input_line_pointer = section_name;
12744 obj_elf_section (ignore);
12745 return;
12746 }
12747 input_line_pointer++;
12748
12749 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12750 if (c == ',')
12751 section_type = get_absolute_expression ();
12752 else
12753 section_type = 0;
12754 if (*input_line_pointer++ == ',')
12755 section_flag = get_absolute_expression ();
12756 else
12757 section_flag = 0;
12758 if (*input_line_pointer++ == ',')
12759 section_entry_size = get_absolute_expression ();
12760 else
12761 section_entry_size = 0;
12762 if (*input_line_pointer++ == ',')
12763 section_alignment = get_absolute_expression ();
12764 else
12765 section_alignment = 0;
12766 /* FIXME: really ignore? */
12767 (void) section_alignment;
12768
12769 section_name = xstrdup (section_name);
12770
12771 /* When using the generic form of .section (as implemented by obj-elf.c),
12772 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12773 traditionally had to fall back on the more common @progbits instead.
12774
12775 There's nothing really harmful in this, since bfd will correct
12776 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12777 means that, for backwards compatibility, the special_section entries
12778 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12779
12780 Even so, we shouldn't force users of the MIPS .section syntax to
12781 incorrectly label the sections as SHT_PROGBITS. The best compromise
12782 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12783 generic type-checking code. */
12784 if (section_type == SHT_MIPS_DWARF)
12785 section_type = SHT_PROGBITS;
12786
12787 obj_elf_change_section (section_name, section_type, section_flag,
12788 section_entry_size, 0, 0, 0);
12789
12790 if (now_seg->name != section_name)
12791 free (section_name);
12792 #endif /* OBJ_ELF */
12793 }
12794
12795 void
12796 mips_enable_auto_align (void)
12797 {
12798 auto_align = 1;
12799 }
12800
12801 static void
12802 s_cons (int log_size)
12803 {
12804 segment_info_type *si = seg_info (now_seg);
12805 struct insn_label_list *l = si->label_list;
12806 symbolS *label;
12807
12808 label = l != NULL ? l->label : NULL;
12809 mips_emit_delays ();
12810 if (log_size > 0 && auto_align)
12811 mips_align (log_size, 0, label);
12812 cons (1 << log_size);
12813 mips_clear_insn_labels ();
12814 }
12815
12816 static void
12817 s_float_cons (int type)
12818 {
12819 segment_info_type *si = seg_info (now_seg);
12820 struct insn_label_list *l = si->label_list;
12821 symbolS *label;
12822
12823 label = l != NULL ? l->label : NULL;
12824
12825 mips_emit_delays ();
12826
12827 if (auto_align)
12828 {
12829 if (type == 'd')
12830 mips_align (3, 0, label);
12831 else
12832 mips_align (2, 0, label);
12833 }
12834
12835 float_cons (type);
12836 mips_clear_insn_labels ();
12837 }
12838
12839 /* Handle .globl. We need to override it because on Irix 5 you are
12840 permitted to say
12841 .globl foo .text
12842 where foo is an undefined symbol, to mean that foo should be
12843 considered to be the address of a function. */
12844
12845 static void
12846 s_mips_globl (int x ATTRIBUTE_UNUSED)
12847 {
12848 char *name;
12849 int c;
12850 symbolS *symbolP;
12851 flagword flag;
12852
12853 do
12854 {
12855 name = input_line_pointer;
12856 c = get_symbol_end ();
12857 symbolP = symbol_find_or_make (name);
12858 S_SET_EXTERNAL (symbolP);
12859
12860 *input_line_pointer = c;
12861 SKIP_WHITESPACE ();
12862
12863 /* On Irix 5, every global symbol that is not explicitly labelled as
12864 being a function is apparently labelled as being an object. */
12865 flag = BSF_OBJECT;
12866
12867 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12868 && (*input_line_pointer != ','))
12869 {
12870 char *secname;
12871 asection *sec;
12872
12873 secname = input_line_pointer;
12874 c = get_symbol_end ();
12875 sec = bfd_get_section_by_name (stdoutput, secname);
12876 if (sec == NULL)
12877 as_bad (_("%s: no such section"), secname);
12878 *input_line_pointer = c;
12879
12880 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12881 flag = BSF_FUNCTION;
12882 }
12883
12884 symbol_get_bfdsym (symbolP)->flags |= flag;
12885
12886 c = *input_line_pointer;
12887 if (c == ',')
12888 {
12889 input_line_pointer++;
12890 SKIP_WHITESPACE ();
12891 if (is_end_of_line[(unsigned char) *input_line_pointer])
12892 c = '\n';
12893 }
12894 }
12895 while (c == ',');
12896
12897 demand_empty_rest_of_line ();
12898 }
12899
12900 static void
12901 s_option (int x ATTRIBUTE_UNUSED)
12902 {
12903 char *opt;
12904 char c;
12905
12906 opt = input_line_pointer;
12907 c = get_symbol_end ();
12908
12909 if (*opt == 'O')
12910 {
12911 /* FIXME: What does this mean? */
12912 }
12913 else if (strncmp (opt, "pic", 3) == 0)
12914 {
12915 int i;
12916
12917 i = atoi (opt + 3);
12918 if (i == 0)
12919 mips_pic = NO_PIC;
12920 else if (i == 2)
12921 {
12922 mips_pic = SVR4_PIC;
12923 mips_abicalls = TRUE;
12924 }
12925 else
12926 as_bad (_(".option pic%d not supported"), i);
12927
12928 if (mips_pic == SVR4_PIC)
12929 {
12930 if (g_switch_seen && g_switch_value != 0)
12931 as_warn (_("-G may not be used with SVR4 PIC code"));
12932 g_switch_value = 0;
12933 bfd_set_gp_size (stdoutput, 0);
12934 }
12935 }
12936 else
12937 as_warn (_("Unrecognized option \"%s\""), opt);
12938
12939 *input_line_pointer = c;
12940 demand_empty_rest_of_line ();
12941 }
12942
12943 /* This structure is used to hold a stack of .set values. */
12944
12945 struct mips_option_stack
12946 {
12947 struct mips_option_stack *next;
12948 struct mips_set_options options;
12949 };
12950
12951 static struct mips_option_stack *mips_opts_stack;
12952
12953 /* Handle the .set pseudo-op. */
12954
12955 static void
12956 s_mipsset (int x ATTRIBUTE_UNUSED)
12957 {
12958 char *name = input_line_pointer, ch;
12959
12960 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12961 ++input_line_pointer;
12962 ch = *input_line_pointer;
12963 *input_line_pointer = '\0';
12964
12965 if (strcmp (name, "reorder") == 0)
12966 {
12967 if (mips_opts.noreorder)
12968 end_noreorder ();
12969 }
12970 else if (strcmp (name, "noreorder") == 0)
12971 {
12972 if (!mips_opts.noreorder)
12973 start_noreorder ();
12974 }
12975 else if (strncmp (name, "at=", 3) == 0)
12976 {
12977 char *s = name + 3;
12978
12979 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12980 as_bad (_("Unrecognized register name `%s'"), s);
12981 }
12982 else if (strcmp (name, "at") == 0)
12983 {
12984 mips_opts.at = ATREG;
12985 }
12986 else if (strcmp (name, "noat") == 0)
12987 {
12988 mips_opts.at = ZERO;
12989 }
12990 else if (strcmp (name, "macro") == 0)
12991 {
12992 mips_opts.warn_about_macros = 0;
12993 }
12994 else if (strcmp (name, "nomacro") == 0)
12995 {
12996 if (mips_opts.noreorder == 0)
12997 as_bad (_("`noreorder' must be set before `nomacro'"));
12998 mips_opts.warn_about_macros = 1;
12999 }
13000 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
13001 {
13002 mips_opts.nomove = 0;
13003 }
13004 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
13005 {
13006 mips_opts.nomove = 1;
13007 }
13008 else if (strcmp (name, "bopt") == 0)
13009 {
13010 mips_opts.nobopt = 0;
13011 }
13012 else if (strcmp (name, "nobopt") == 0)
13013 {
13014 mips_opts.nobopt = 1;
13015 }
13016 else if (strcmp (name, "gp=default") == 0)
13017 mips_opts.gp32 = file_mips_gp32;
13018 else if (strcmp (name, "gp=32") == 0)
13019 mips_opts.gp32 = 1;
13020 else if (strcmp (name, "gp=64") == 0)
13021 {
13022 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
13023 as_warn (_("%s isa does not support 64-bit registers"),
13024 mips_cpu_info_from_isa (mips_opts.isa)->name);
13025 mips_opts.gp32 = 0;
13026 }
13027 else if (strcmp (name, "fp=default") == 0)
13028 mips_opts.fp32 = file_mips_fp32;
13029 else if (strcmp (name, "fp=32") == 0)
13030 mips_opts.fp32 = 1;
13031 else if (strcmp (name, "fp=64") == 0)
13032 {
13033 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13034 as_warn (_("%s isa does not support 64-bit floating point registers"),
13035 mips_cpu_info_from_isa (mips_opts.isa)->name);
13036 mips_opts.fp32 = 0;
13037 }
13038 else if (strcmp (name, "softfloat") == 0)
13039 mips_opts.soft_float = 1;
13040 else if (strcmp (name, "hardfloat") == 0)
13041 mips_opts.soft_float = 0;
13042 else if (strcmp (name, "singlefloat") == 0)
13043 mips_opts.single_float = 1;
13044 else if (strcmp (name, "doublefloat") == 0)
13045 mips_opts.single_float = 0;
13046 else if (strcmp (name, "mips16") == 0
13047 || strcmp (name, "MIPS-16") == 0)
13048 mips_opts.mips16 = 1;
13049 else if (strcmp (name, "nomips16") == 0
13050 || strcmp (name, "noMIPS-16") == 0)
13051 mips_opts.mips16 = 0;
13052 else if (strcmp (name, "smartmips") == 0)
13053 {
13054 if (!ISA_SUPPORTS_SMARTMIPS)
13055 as_warn (_("%s ISA does not support SmartMIPS ASE"),
13056 mips_cpu_info_from_isa (mips_opts.isa)->name);
13057 mips_opts.ase_smartmips = 1;
13058 }
13059 else if (strcmp (name, "nosmartmips") == 0)
13060 mips_opts.ase_smartmips = 0;
13061 else if (strcmp (name, "mips3d") == 0)
13062 mips_opts.ase_mips3d = 1;
13063 else if (strcmp (name, "nomips3d") == 0)
13064 mips_opts.ase_mips3d = 0;
13065 else if (strcmp (name, "mdmx") == 0)
13066 mips_opts.ase_mdmx = 1;
13067 else if (strcmp (name, "nomdmx") == 0)
13068 mips_opts.ase_mdmx = 0;
13069 else if (strcmp (name, "dsp") == 0)
13070 {
13071 if (!ISA_SUPPORTS_DSP_ASE)
13072 as_warn (_("%s ISA does not support DSP ASE"),
13073 mips_cpu_info_from_isa (mips_opts.isa)->name);
13074 mips_opts.ase_dsp = 1;
13075 mips_opts.ase_dspr2 = 0;
13076 }
13077 else if (strcmp (name, "nodsp") == 0)
13078 {
13079 mips_opts.ase_dsp = 0;
13080 mips_opts.ase_dspr2 = 0;
13081 }
13082 else if (strcmp (name, "dspr2") == 0)
13083 {
13084 if (!ISA_SUPPORTS_DSPR2_ASE)
13085 as_warn (_("%s ISA does not support DSP R2 ASE"),
13086 mips_cpu_info_from_isa (mips_opts.isa)->name);
13087 mips_opts.ase_dspr2 = 1;
13088 mips_opts.ase_dsp = 1;
13089 }
13090 else if (strcmp (name, "nodspr2") == 0)
13091 {
13092 mips_opts.ase_dspr2 = 0;
13093 mips_opts.ase_dsp = 0;
13094 }
13095 else if (strcmp (name, "mt") == 0)
13096 {
13097 if (!ISA_SUPPORTS_MT_ASE)
13098 as_warn (_("%s ISA does not support MT ASE"),
13099 mips_cpu_info_from_isa (mips_opts.isa)->name);
13100 mips_opts.ase_mt = 1;
13101 }
13102 else if (strcmp (name, "nomt") == 0)
13103 mips_opts.ase_mt = 0;
13104 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13105 {
13106 int reset = 0;
13107
13108 /* Permit the user to change the ISA and architecture on the fly.
13109 Needless to say, misuse can cause serious problems. */
13110 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13111 {
13112 reset = 1;
13113 mips_opts.isa = file_mips_isa;
13114 mips_opts.arch = file_mips_arch;
13115 }
13116 else if (strncmp (name, "arch=", 5) == 0)
13117 {
13118 const struct mips_cpu_info *p;
13119
13120 p = mips_parse_cpu("internal use", name + 5);
13121 if (!p)
13122 as_bad (_("unknown architecture %s"), name + 5);
13123 else
13124 {
13125 mips_opts.arch = p->cpu;
13126 mips_opts.isa = p->isa;
13127 }
13128 }
13129 else if (strncmp (name, "mips", 4) == 0)
13130 {
13131 const struct mips_cpu_info *p;
13132
13133 p = mips_parse_cpu("internal use", name);
13134 if (!p)
13135 as_bad (_("unknown ISA level %s"), name + 4);
13136 else
13137 {
13138 mips_opts.arch = p->cpu;
13139 mips_opts.isa = p->isa;
13140 }
13141 }
13142 else
13143 as_bad (_("unknown ISA or architecture %s"), name);
13144
13145 switch (mips_opts.isa)
13146 {
13147 case 0:
13148 break;
13149 case ISA_MIPS1:
13150 case ISA_MIPS2:
13151 case ISA_MIPS32:
13152 case ISA_MIPS32R2:
13153 mips_opts.gp32 = 1;
13154 mips_opts.fp32 = 1;
13155 break;
13156 case ISA_MIPS3:
13157 case ISA_MIPS4:
13158 case ISA_MIPS5:
13159 case ISA_MIPS64:
13160 case ISA_MIPS64R2:
13161 mips_opts.gp32 = 0;
13162 mips_opts.fp32 = 0;
13163 break;
13164 default:
13165 as_bad (_("unknown ISA level %s"), name + 4);
13166 break;
13167 }
13168 if (reset)
13169 {
13170 mips_opts.gp32 = file_mips_gp32;
13171 mips_opts.fp32 = file_mips_fp32;
13172 }
13173 }
13174 else if (strcmp (name, "autoextend") == 0)
13175 mips_opts.noautoextend = 0;
13176 else if (strcmp (name, "noautoextend") == 0)
13177 mips_opts.noautoextend = 1;
13178 else if (strcmp (name, "push") == 0)
13179 {
13180 struct mips_option_stack *s;
13181
13182 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13183 s->next = mips_opts_stack;
13184 s->options = mips_opts;
13185 mips_opts_stack = s;
13186 }
13187 else if (strcmp (name, "pop") == 0)
13188 {
13189 struct mips_option_stack *s;
13190
13191 s = mips_opts_stack;
13192 if (s == NULL)
13193 as_bad (_(".set pop with no .set push"));
13194 else
13195 {
13196 /* If we're changing the reorder mode we need to handle
13197 delay slots correctly. */
13198 if (s->options.noreorder && ! mips_opts.noreorder)
13199 start_noreorder ();
13200 else if (! s->options.noreorder && mips_opts.noreorder)
13201 end_noreorder ();
13202
13203 mips_opts = s->options;
13204 mips_opts_stack = s->next;
13205 free (s);
13206 }
13207 }
13208 else if (strcmp (name, "sym32") == 0)
13209 mips_opts.sym32 = TRUE;
13210 else if (strcmp (name, "nosym32") == 0)
13211 mips_opts.sym32 = FALSE;
13212 else if (strchr (name, ','))
13213 {
13214 /* Generic ".set" directive; use the generic handler. */
13215 *input_line_pointer = ch;
13216 input_line_pointer = name;
13217 s_set (0);
13218 return;
13219 }
13220 else
13221 {
13222 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13223 }
13224 *input_line_pointer = ch;
13225 demand_empty_rest_of_line ();
13226 }
13227
13228 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13229 .option pic2. It means to generate SVR4 PIC calls. */
13230
13231 static void
13232 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13233 {
13234 mips_pic = SVR4_PIC;
13235 mips_abicalls = TRUE;
13236
13237 if (g_switch_seen && g_switch_value != 0)
13238 as_warn (_("-G may not be used with SVR4 PIC code"));
13239 g_switch_value = 0;
13240
13241 bfd_set_gp_size (stdoutput, 0);
13242 demand_empty_rest_of_line ();
13243 }
13244
13245 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13246 PIC code. It sets the $gp register for the function based on the
13247 function address, which is in the register named in the argument.
13248 This uses a relocation against _gp_disp, which is handled specially
13249 by the linker. The result is:
13250 lui $gp,%hi(_gp_disp)
13251 addiu $gp,$gp,%lo(_gp_disp)
13252 addu $gp,$gp,.cpload argument
13253 The .cpload argument is normally $25 == $t9.
13254
13255 The -mno-shared option changes this to:
13256 lui $gp,%hi(__gnu_local_gp)
13257 addiu $gp,$gp,%lo(__gnu_local_gp)
13258 and the argument is ignored. This saves an instruction, but the
13259 resulting code is not position independent; it uses an absolute
13260 address for __gnu_local_gp. Thus code assembled with -mno-shared
13261 can go into an ordinary executable, but not into a shared library. */
13262
13263 static void
13264 s_cpload (int ignore ATTRIBUTE_UNUSED)
13265 {
13266 expressionS ex;
13267 int reg;
13268 int in_shared;
13269
13270 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13271 .cpload is ignored. */
13272 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13273 {
13274 s_ignore (0);
13275 return;
13276 }
13277
13278 /* .cpload should be in a .set noreorder section. */
13279 if (mips_opts.noreorder == 0)
13280 as_warn (_(".cpload not in noreorder section"));
13281
13282 reg = tc_get_register (0);
13283
13284 /* If we need to produce a 64-bit address, we are better off using
13285 the default instruction sequence. */
13286 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13287
13288 ex.X_op = O_symbol;
13289 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13290 "__gnu_local_gp");
13291 ex.X_op_symbol = NULL;
13292 ex.X_add_number = 0;
13293
13294 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13295 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13296
13297 macro_start ();
13298 macro_build_lui (&ex, mips_gp_register);
13299 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13300 mips_gp_register, BFD_RELOC_LO16);
13301 if (in_shared)
13302 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13303 mips_gp_register, reg);
13304 macro_end ();
13305
13306 demand_empty_rest_of_line ();
13307 }
13308
13309 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13310 .cpsetup $reg1, offset|$reg2, label
13311
13312 If offset is given, this results in:
13313 sd $gp, offset($sp)
13314 lui $gp, %hi(%neg(%gp_rel(label)))
13315 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13316 daddu $gp, $gp, $reg1
13317
13318 If $reg2 is given, this results in:
13319 daddu $reg2, $gp, $0
13320 lui $gp, %hi(%neg(%gp_rel(label)))
13321 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13322 daddu $gp, $gp, $reg1
13323 $reg1 is normally $25 == $t9.
13324
13325 The -mno-shared option replaces the last three instructions with
13326 lui $gp,%hi(_gp)
13327 addiu $gp,$gp,%lo(_gp) */
13328
13329 static void
13330 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13331 {
13332 expressionS ex_off;
13333 expressionS ex_sym;
13334 int reg1;
13335
13336 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13337 We also need NewABI support. */
13338 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13339 {
13340 s_ignore (0);
13341 return;
13342 }
13343
13344 reg1 = tc_get_register (0);
13345 SKIP_WHITESPACE ();
13346 if (*input_line_pointer != ',')
13347 {
13348 as_bad (_("missing argument separator ',' for .cpsetup"));
13349 return;
13350 }
13351 else
13352 ++input_line_pointer;
13353 SKIP_WHITESPACE ();
13354 if (*input_line_pointer == '$')
13355 {
13356 mips_cpreturn_register = tc_get_register (0);
13357 mips_cpreturn_offset = -1;
13358 }
13359 else
13360 {
13361 mips_cpreturn_offset = get_absolute_expression ();
13362 mips_cpreturn_register = -1;
13363 }
13364 SKIP_WHITESPACE ();
13365 if (*input_line_pointer != ',')
13366 {
13367 as_bad (_("missing argument separator ',' for .cpsetup"));
13368 return;
13369 }
13370 else
13371 ++input_line_pointer;
13372 SKIP_WHITESPACE ();
13373 expression (&ex_sym);
13374
13375 macro_start ();
13376 if (mips_cpreturn_register == -1)
13377 {
13378 ex_off.X_op = O_constant;
13379 ex_off.X_add_symbol = NULL;
13380 ex_off.X_op_symbol = NULL;
13381 ex_off.X_add_number = mips_cpreturn_offset;
13382
13383 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13384 BFD_RELOC_LO16, SP);
13385 }
13386 else
13387 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13388 mips_gp_register, 0);
13389
13390 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13391 {
13392 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13393 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13394 BFD_RELOC_HI16_S);
13395
13396 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13397 mips_gp_register, -1, BFD_RELOC_GPREL16,
13398 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13399
13400 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13401 mips_gp_register, reg1);
13402 }
13403 else
13404 {
13405 expressionS ex;
13406
13407 ex.X_op = O_symbol;
13408 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13409 ex.X_op_symbol = NULL;
13410 ex.X_add_number = 0;
13411
13412 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13413 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13414
13415 macro_build_lui (&ex, mips_gp_register);
13416 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13417 mips_gp_register, BFD_RELOC_LO16);
13418 }
13419
13420 macro_end ();
13421
13422 demand_empty_rest_of_line ();
13423 }
13424
13425 static void
13426 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13427 {
13428 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13429 .cplocal is ignored. */
13430 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13431 {
13432 s_ignore (0);
13433 return;
13434 }
13435
13436 mips_gp_register = tc_get_register (0);
13437 demand_empty_rest_of_line ();
13438 }
13439
13440 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13441 offset from $sp. The offset is remembered, and after making a PIC
13442 call $gp is restored from that location. */
13443
13444 static void
13445 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13446 {
13447 expressionS ex;
13448
13449 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13450 .cprestore is ignored. */
13451 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13452 {
13453 s_ignore (0);
13454 return;
13455 }
13456
13457 mips_cprestore_offset = get_absolute_expression ();
13458 mips_cprestore_valid = 1;
13459
13460 ex.X_op = O_constant;
13461 ex.X_add_symbol = NULL;
13462 ex.X_op_symbol = NULL;
13463 ex.X_add_number = mips_cprestore_offset;
13464
13465 macro_start ();
13466 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13467 SP, HAVE_64BIT_ADDRESSES);
13468 macro_end ();
13469
13470 demand_empty_rest_of_line ();
13471 }
13472
13473 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13474 was given in the preceding .cpsetup, it results in:
13475 ld $gp, offset($sp)
13476
13477 If a register $reg2 was given there, it results in:
13478 daddu $gp, $reg2, $0 */
13479
13480 static void
13481 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13482 {
13483 expressionS ex;
13484
13485 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13486 We also need NewABI support. */
13487 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13488 {
13489 s_ignore (0);
13490 return;
13491 }
13492
13493 macro_start ();
13494 if (mips_cpreturn_register == -1)
13495 {
13496 ex.X_op = O_constant;
13497 ex.X_add_symbol = NULL;
13498 ex.X_op_symbol = NULL;
13499 ex.X_add_number = mips_cpreturn_offset;
13500
13501 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13502 }
13503 else
13504 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13505 mips_cpreturn_register, 0);
13506 macro_end ();
13507
13508 demand_empty_rest_of_line ();
13509 }
13510
13511 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13512 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13513 use in DWARF debug information. */
13514
13515 static void
13516 s_dtprel_internal (size_t bytes)
13517 {
13518 expressionS ex;
13519 char *p;
13520
13521 expression (&ex);
13522
13523 if (ex.X_op != O_symbol)
13524 {
13525 as_bad (_("Unsupported use of %s"), (bytes == 8
13526 ? ".dtpreldword"
13527 : ".dtprelword"));
13528 ignore_rest_of_line ();
13529 }
13530
13531 p = frag_more (bytes);
13532 md_number_to_chars (p, 0, bytes);
13533 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13534 (bytes == 8
13535 ? BFD_RELOC_MIPS_TLS_DTPREL64
13536 : BFD_RELOC_MIPS_TLS_DTPREL32));
13537
13538 demand_empty_rest_of_line ();
13539 }
13540
13541 /* Handle .dtprelword. */
13542
13543 static void
13544 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13545 {
13546 s_dtprel_internal (4);
13547 }
13548
13549 /* Handle .dtpreldword. */
13550
13551 static void
13552 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13553 {
13554 s_dtprel_internal (8);
13555 }
13556
13557 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13558 code. It sets the offset to use in gp_rel relocations. */
13559
13560 static void
13561 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13562 {
13563 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13564 We also need NewABI support. */
13565 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13566 {
13567 s_ignore (0);
13568 return;
13569 }
13570
13571 mips_gprel_offset = get_absolute_expression ();
13572
13573 demand_empty_rest_of_line ();
13574 }
13575
13576 /* Handle the .gpword pseudo-op. This is used when generating PIC
13577 code. It generates a 32 bit GP relative reloc. */
13578
13579 static void
13580 s_gpword (int ignore ATTRIBUTE_UNUSED)
13581 {
13582 segment_info_type *si;
13583 struct insn_label_list *l;
13584 symbolS *label;
13585 expressionS ex;
13586 char *p;
13587
13588 /* When not generating PIC code, this is treated as .word. */
13589 if (mips_pic != SVR4_PIC)
13590 {
13591 s_cons (2);
13592 return;
13593 }
13594
13595 si = seg_info (now_seg);
13596 l = si->label_list;
13597 label = l != NULL ? l->label : NULL;
13598 mips_emit_delays ();
13599 if (auto_align)
13600 mips_align (2, 0, label);
13601
13602 expression (&ex);
13603 mips_clear_insn_labels ();
13604
13605 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13606 {
13607 as_bad (_("Unsupported use of .gpword"));
13608 ignore_rest_of_line ();
13609 }
13610
13611 p = frag_more (4);
13612 md_number_to_chars (p, 0, 4);
13613 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13614 BFD_RELOC_GPREL32);
13615
13616 demand_empty_rest_of_line ();
13617 }
13618
13619 static void
13620 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13621 {
13622 segment_info_type *si;
13623 struct insn_label_list *l;
13624 symbolS *label;
13625 expressionS ex;
13626 char *p;
13627
13628 /* When not generating PIC code, this is treated as .dword. */
13629 if (mips_pic != SVR4_PIC)
13630 {
13631 s_cons (3);
13632 return;
13633 }
13634
13635 si = seg_info (now_seg);
13636 l = si->label_list;
13637 label = l != NULL ? l->label : NULL;
13638 mips_emit_delays ();
13639 if (auto_align)
13640 mips_align (3, 0, label);
13641
13642 expression (&ex);
13643 mips_clear_insn_labels ();
13644
13645 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13646 {
13647 as_bad (_("Unsupported use of .gpdword"));
13648 ignore_rest_of_line ();
13649 }
13650
13651 p = frag_more (8);
13652 md_number_to_chars (p, 0, 8);
13653 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13654 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13655
13656 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13657 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13658 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13659
13660 demand_empty_rest_of_line ();
13661 }
13662
13663 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13664 tables in SVR4 PIC code. */
13665
13666 static void
13667 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13668 {
13669 int reg;
13670
13671 /* This is ignored when not generating SVR4 PIC code. */
13672 if (mips_pic != SVR4_PIC)
13673 {
13674 s_ignore (0);
13675 return;
13676 }
13677
13678 /* Add $gp to the register named as an argument. */
13679 macro_start ();
13680 reg = tc_get_register (0);
13681 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13682 macro_end ();
13683
13684 demand_empty_rest_of_line ();
13685 }
13686
13687 /* Handle the .insn pseudo-op. This marks instruction labels in
13688 mips16 mode. This permits the linker to handle them specially,
13689 such as generating jalx instructions when needed. We also make
13690 them odd for the duration of the assembly, in order to generate the
13691 right sort of code. We will make them even in the adjust_symtab
13692 routine, while leaving them marked. This is convenient for the
13693 debugger and the disassembler. The linker knows to make them odd
13694 again. */
13695
13696 static void
13697 s_insn (int ignore ATTRIBUTE_UNUSED)
13698 {
13699 mips16_mark_labels ();
13700
13701 demand_empty_rest_of_line ();
13702 }
13703
13704 /* Handle a .stabn directive. We need these in order to mark a label
13705 as being a mips16 text label correctly. Sometimes the compiler
13706 will emit a label, followed by a .stabn, and then switch sections.
13707 If the label and .stabn are in mips16 mode, then the label is
13708 really a mips16 text label. */
13709
13710 static void
13711 s_mips_stab (int type)
13712 {
13713 if (type == 'n')
13714 mips16_mark_labels ();
13715
13716 s_stab (type);
13717 }
13718
13719 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13720
13721 static void
13722 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13723 {
13724 char *name;
13725 int c;
13726 symbolS *symbolP;
13727 expressionS exp;
13728
13729 name = input_line_pointer;
13730 c = get_symbol_end ();
13731 symbolP = symbol_find_or_make (name);
13732 S_SET_WEAK (symbolP);
13733 *input_line_pointer = c;
13734
13735 SKIP_WHITESPACE ();
13736
13737 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13738 {
13739 if (S_IS_DEFINED (symbolP))
13740 {
13741 as_bad (_("ignoring attempt to redefine symbol %s"),
13742 S_GET_NAME (symbolP));
13743 ignore_rest_of_line ();
13744 return;
13745 }
13746
13747 if (*input_line_pointer == ',')
13748 {
13749 ++input_line_pointer;
13750 SKIP_WHITESPACE ();
13751 }
13752
13753 expression (&exp);
13754 if (exp.X_op != O_symbol)
13755 {
13756 as_bad (_("bad .weakext directive"));
13757 ignore_rest_of_line ();
13758 return;
13759 }
13760 symbol_set_value_expression (symbolP, &exp);
13761 }
13762
13763 demand_empty_rest_of_line ();
13764 }
13765
13766 /* Parse a register string into a number. Called from the ECOFF code
13767 to parse .frame. The argument is non-zero if this is the frame
13768 register, so that we can record it in mips_frame_reg. */
13769
13770 int
13771 tc_get_register (int frame)
13772 {
13773 unsigned int reg;
13774
13775 SKIP_WHITESPACE ();
13776 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13777 reg = 0;
13778 if (frame)
13779 {
13780 mips_frame_reg = reg != 0 ? reg : SP;
13781 mips_frame_reg_valid = 1;
13782 mips_cprestore_valid = 0;
13783 }
13784 return reg;
13785 }
13786
13787 valueT
13788 md_section_align (asection *seg, valueT addr)
13789 {
13790 int align = bfd_get_section_alignment (stdoutput, seg);
13791
13792 if (IS_ELF)
13793 {
13794 /* We don't need to align ELF sections to the full alignment.
13795 However, Irix 5 may prefer that we align them at least to a 16
13796 byte boundary. We don't bother to align the sections if we
13797 are targeted for an embedded system. */
13798 if (strncmp (TARGET_OS, "elf", 3) == 0)
13799 return addr;
13800 if (align > 4)
13801 align = 4;
13802 }
13803
13804 return ((addr + (1 << align) - 1) & (-1 << align));
13805 }
13806
13807 /* Utility routine, called from above as well. If called while the
13808 input file is still being read, it's only an approximation. (For
13809 example, a symbol may later become defined which appeared to be
13810 undefined earlier.) */
13811
13812 static int
13813 nopic_need_relax (symbolS *sym, int before_relaxing)
13814 {
13815 if (sym == 0)
13816 return 0;
13817
13818 if (g_switch_value > 0)
13819 {
13820 const char *symname;
13821 int change;
13822
13823 /* Find out whether this symbol can be referenced off the $gp
13824 register. It can be if it is smaller than the -G size or if
13825 it is in the .sdata or .sbss section. Certain symbols can
13826 not be referenced off the $gp, although it appears as though
13827 they can. */
13828 symname = S_GET_NAME (sym);
13829 if (symname != (const char *) NULL
13830 && (strcmp (symname, "eprol") == 0
13831 || strcmp (symname, "etext") == 0
13832 || strcmp (symname, "_gp") == 0
13833 || strcmp (symname, "edata") == 0
13834 || strcmp (symname, "_fbss") == 0
13835 || strcmp (symname, "_fdata") == 0
13836 || strcmp (symname, "_ftext") == 0
13837 || strcmp (symname, "end") == 0
13838 || strcmp (symname, "_gp_disp") == 0))
13839 change = 1;
13840 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13841 && (0
13842 #ifndef NO_ECOFF_DEBUGGING
13843 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13844 && (symbol_get_obj (sym)->ecoff_extern_size
13845 <= g_switch_value))
13846 #endif
13847 /* We must defer this decision until after the whole
13848 file has been read, since there might be a .extern
13849 after the first use of this symbol. */
13850 || (before_relaxing
13851 #ifndef NO_ECOFF_DEBUGGING
13852 && symbol_get_obj (sym)->ecoff_extern_size == 0
13853 #endif
13854 && S_GET_VALUE (sym) == 0)
13855 || (S_GET_VALUE (sym) != 0
13856 && S_GET_VALUE (sym) <= g_switch_value)))
13857 change = 0;
13858 else
13859 {
13860 const char *segname;
13861
13862 segname = segment_name (S_GET_SEGMENT (sym));
13863 gas_assert (strcmp (segname, ".lit8") != 0
13864 && strcmp (segname, ".lit4") != 0);
13865 change = (strcmp (segname, ".sdata") != 0
13866 && strcmp (segname, ".sbss") != 0
13867 && strncmp (segname, ".sdata.", 7) != 0
13868 && strncmp (segname, ".sbss.", 6) != 0
13869 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13870 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13871 }
13872 return change;
13873 }
13874 else
13875 /* We are not optimizing for the $gp register. */
13876 return 1;
13877 }
13878
13879
13880 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13881
13882 static bfd_boolean
13883 pic_need_relax (symbolS *sym, asection *segtype)
13884 {
13885 asection *symsec;
13886
13887 /* Handle the case of a symbol equated to another symbol. */
13888 while (symbol_equated_reloc_p (sym))
13889 {
13890 symbolS *n;
13891
13892 /* It's possible to get a loop here in a badly written program. */
13893 n = symbol_get_value_expression (sym)->X_add_symbol;
13894 if (n == sym)
13895 break;
13896 sym = n;
13897 }
13898
13899 if (symbol_section_p (sym))
13900 return TRUE;
13901
13902 symsec = S_GET_SEGMENT (sym);
13903
13904 /* This must duplicate the test in adjust_reloc_syms. */
13905 return (symsec != &bfd_und_section
13906 && symsec != &bfd_abs_section
13907 && !bfd_is_com_section (symsec)
13908 && !s_is_linkonce (sym, segtype)
13909 #ifdef OBJ_ELF
13910 /* A global or weak symbol is treated as external. */
13911 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13912 #endif
13913 );
13914 }
13915
13916
13917 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13918 extended opcode. SEC is the section the frag is in. */
13919
13920 static int
13921 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13922 {
13923 int type;
13924 const struct mips16_immed_operand *op;
13925 offsetT val;
13926 int mintiny, maxtiny;
13927 segT symsec;
13928 fragS *sym_frag;
13929
13930 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13931 return 0;
13932 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13933 return 1;
13934
13935 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13936 op = mips16_immed_operands;
13937 while (op->type != type)
13938 {
13939 ++op;
13940 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13941 }
13942
13943 if (op->unsp)
13944 {
13945 if (type == '<' || type == '>' || type == '[' || type == ']')
13946 {
13947 mintiny = 1;
13948 maxtiny = 1 << op->nbits;
13949 }
13950 else
13951 {
13952 mintiny = 0;
13953 maxtiny = (1 << op->nbits) - 1;
13954 }
13955 }
13956 else
13957 {
13958 mintiny = - (1 << (op->nbits - 1));
13959 maxtiny = (1 << (op->nbits - 1)) - 1;
13960 }
13961
13962 sym_frag = symbol_get_frag (fragp->fr_symbol);
13963 val = S_GET_VALUE (fragp->fr_symbol);
13964 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13965
13966 if (op->pcrel)
13967 {
13968 addressT addr;
13969
13970 /* We won't have the section when we are called from
13971 mips_relax_frag. However, we will always have been called
13972 from md_estimate_size_before_relax first. If this is a
13973 branch to a different section, we mark it as such. If SEC is
13974 NULL, and the frag is not marked, then it must be a branch to
13975 the same section. */
13976 if (sec == NULL)
13977 {
13978 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13979 return 1;
13980 }
13981 else
13982 {
13983 /* Must have been called from md_estimate_size_before_relax. */
13984 if (symsec != sec)
13985 {
13986 fragp->fr_subtype =
13987 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13988
13989 /* FIXME: We should support this, and let the linker
13990 catch branches and loads that are out of range. */
13991 as_bad_where (fragp->fr_file, fragp->fr_line,
13992 _("unsupported PC relative reference to different section"));
13993
13994 return 1;
13995 }
13996 if (fragp != sym_frag && sym_frag->fr_address == 0)
13997 /* Assume non-extended on the first relaxation pass.
13998 The address we have calculated will be bogus if this is
13999 a forward branch to another frag, as the forward frag
14000 will have fr_address == 0. */
14001 return 0;
14002 }
14003
14004 /* In this case, we know for sure that the symbol fragment is in
14005 the same section. If the relax_marker of the symbol fragment
14006 differs from the relax_marker of this fragment, we have not
14007 yet adjusted the symbol fragment fr_address. We want to add
14008 in STRETCH in order to get a better estimate of the address.
14009 This particularly matters because of the shift bits. */
14010 if (stretch != 0
14011 && sym_frag->relax_marker != fragp->relax_marker)
14012 {
14013 fragS *f;
14014
14015 /* Adjust stretch for any alignment frag. Note that if have
14016 been expanding the earlier code, the symbol may be
14017 defined in what appears to be an earlier frag. FIXME:
14018 This doesn't handle the fr_subtype field, which specifies
14019 a maximum number of bytes to skip when doing an
14020 alignment. */
14021 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
14022 {
14023 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
14024 {
14025 if (stretch < 0)
14026 stretch = - ((- stretch)
14027 & ~ ((1 << (int) f->fr_offset) - 1));
14028 else
14029 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
14030 if (stretch == 0)
14031 break;
14032 }
14033 }
14034 if (f != NULL)
14035 val += stretch;
14036 }
14037
14038 addr = fragp->fr_address + fragp->fr_fix;
14039
14040 /* The base address rules are complicated. The base address of
14041 a branch is the following instruction. The base address of a
14042 PC relative load or add is the instruction itself, but if it
14043 is in a delay slot (in which case it can not be extended) use
14044 the address of the instruction whose delay slot it is in. */
14045 if (type == 'p' || type == 'q')
14046 {
14047 addr += 2;
14048
14049 /* If we are currently assuming that this frag should be
14050 extended, then, the current address is two bytes
14051 higher. */
14052 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14053 addr += 2;
14054
14055 /* Ignore the low bit in the target, since it will be set
14056 for a text label. */
14057 if ((val & 1) != 0)
14058 --val;
14059 }
14060 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14061 addr -= 4;
14062 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14063 addr -= 2;
14064
14065 val -= addr & ~ ((1 << op->shift) - 1);
14066
14067 /* Branch offsets have an implicit 0 in the lowest bit. */
14068 if (type == 'p' || type == 'q')
14069 val /= 2;
14070
14071 /* If any of the shifted bits are set, we must use an extended
14072 opcode. If the address depends on the size of this
14073 instruction, this can lead to a loop, so we arrange to always
14074 use an extended opcode. We only check this when we are in
14075 the main relaxation loop, when SEC is NULL. */
14076 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
14077 {
14078 fragp->fr_subtype =
14079 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14080 return 1;
14081 }
14082
14083 /* If we are about to mark a frag as extended because the value
14084 is precisely maxtiny + 1, then there is a chance of an
14085 infinite loop as in the following code:
14086 la $4,foo
14087 .skip 1020
14088 .align 2
14089 foo:
14090 In this case when the la is extended, foo is 0x3fc bytes
14091 away, so the la can be shrunk, but then foo is 0x400 away, so
14092 the la must be extended. To avoid this loop, we mark the
14093 frag as extended if it was small, and is about to become
14094 extended with a value of maxtiny + 1. */
14095 if (val == ((maxtiny + 1) << op->shift)
14096 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14097 && sec == NULL)
14098 {
14099 fragp->fr_subtype =
14100 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14101 return 1;
14102 }
14103 }
14104 else if (symsec != absolute_section && sec != NULL)
14105 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14106
14107 if ((val & ((1 << op->shift) - 1)) != 0
14108 || val < (mintiny << op->shift)
14109 || val > (maxtiny << op->shift))
14110 return 1;
14111 else
14112 return 0;
14113 }
14114
14115 /* Compute the length of a branch sequence, and adjust the
14116 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14117 worst-case length is computed, with UPDATE being used to indicate
14118 whether an unconditional (-1), branch-likely (+1) or regular (0)
14119 branch is to be computed. */
14120 static int
14121 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14122 {
14123 bfd_boolean toofar;
14124 int length;
14125
14126 if (fragp
14127 && S_IS_DEFINED (fragp->fr_symbol)
14128 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14129 {
14130 addressT addr;
14131 offsetT val;
14132
14133 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14134
14135 addr = fragp->fr_address + fragp->fr_fix + 4;
14136
14137 val -= addr;
14138
14139 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14140 }
14141 else if (fragp)
14142 /* If the symbol is not defined or it's in a different segment,
14143 assume the user knows what's going on and emit a short
14144 branch. */
14145 toofar = FALSE;
14146 else
14147 toofar = TRUE;
14148
14149 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14150 fragp->fr_subtype
14151 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14152 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14153 RELAX_BRANCH_LINK (fragp->fr_subtype),
14154 toofar);
14155
14156 length = 4;
14157 if (toofar)
14158 {
14159 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14160 length += 8;
14161
14162 if (mips_pic != NO_PIC)
14163 {
14164 /* Additional space for PIC loading of target address. */
14165 length += 8;
14166 if (mips_opts.isa == ISA_MIPS1)
14167 /* Additional space for $at-stabilizing nop. */
14168 length += 4;
14169 }
14170
14171 /* If branch is conditional. */
14172 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14173 length += 8;
14174 }
14175
14176 return length;
14177 }
14178
14179 /* Estimate the size of a frag before relaxing. Unless this is the
14180 mips16, we are not really relaxing here, and the final size is
14181 encoded in the subtype information. For the mips16, we have to
14182 decide whether we are using an extended opcode or not. */
14183
14184 int
14185 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14186 {
14187 int change;
14188
14189 if (RELAX_BRANCH_P (fragp->fr_subtype))
14190 {
14191
14192 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14193
14194 return fragp->fr_var;
14195 }
14196
14197 if (RELAX_MIPS16_P (fragp->fr_subtype))
14198 /* We don't want to modify the EXTENDED bit here; it might get us
14199 into infinite loops. We change it only in mips_relax_frag(). */
14200 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14201
14202 if (mips_pic == NO_PIC)
14203 change = nopic_need_relax (fragp->fr_symbol, 0);
14204 else if (mips_pic == SVR4_PIC)
14205 change = pic_need_relax (fragp->fr_symbol, segtype);
14206 else if (mips_pic == VXWORKS_PIC)
14207 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14208 change = 0;
14209 else
14210 abort ();
14211
14212 if (change)
14213 {
14214 fragp->fr_subtype |= RELAX_USE_SECOND;
14215 return -RELAX_FIRST (fragp->fr_subtype);
14216 }
14217 else
14218 return -RELAX_SECOND (fragp->fr_subtype);
14219 }
14220
14221 /* This is called to see whether a reloc against a defined symbol
14222 should be converted into a reloc against a section. */
14223
14224 int
14225 mips_fix_adjustable (fixS *fixp)
14226 {
14227 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14228 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14229 return 0;
14230
14231 if (fixp->fx_addsy == NULL)
14232 return 1;
14233
14234 /* If symbol SYM is in a mergeable section, relocations of the form
14235 SYM + 0 can usually be made section-relative. The mergeable data
14236 is then identified by the section offset rather than by the symbol.
14237
14238 However, if we're generating REL LO16 relocations, the offset is split
14239 between the LO16 and parterning high part relocation. The linker will
14240 need to recalculate the complete offset in order to correctly identify
14241 the merge data.
14242
14243 The linker has traditionally not looked for the parterning high part
14244 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14245 placed anywhere. Rather than break backwards compatibility by changing
14246 this, it seems better not to force the issue, and instead keep the
14247 original symbol. This will work with either linker behavior. */
14248 if ((lo16_reloc_p (fixp->fx_r_type)
14249 || reloc_needs_lo_p (fixp->fx_r_type))
14250 && HAVE_IN_PLACE_ADDENDS
14251 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14252 return 0;
14253
14254 /* There is no place to store an in-place offset for JALR relocations. */
14255 if (fixp->fx_r_type == BFD_RELOC_MIPS_JALR && HAVE_IN_PLACE_ADDENDS)
14256 return 0;
14257
14258 #ifdef OBJ_ELF
14259 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14260 to a floating-point stub. The same is true for non-R_MIPS16_26
14261 relocations against MIPS16 functions; in this case, the stub becomes
14262 the function's canonical address.
14263
14264 Floating-point stubs are stored in unique .mips16.call.* or
14265 .mips16.fn.* sections. If a stub T for function F is in section S,
14266 the first relocation in section S must be against F; this is how the
14267 linker determines the target function. All relocations that might
14268 resolve to T must also be against F. We therefore have the following
14269 restrictions, which are given in an intentionally-redundant way:
14270
14271 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14272 symbols.
14273
14274 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14275 if that stub might be used.
14276
14277 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14278 symbols.
14279
14280 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14281 that stub might be used.
14282
14283 There is a further restriction:
14284
14285 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14286 on targets with in-place addends; the relocation field cannot
14287 encode the low bit.
14288
14289 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14290 against a MIPS16 symbol.
14291
14292 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14293 relocation against some symbol R, no relocation against R may be
14294 reduced. (Note that this deals with (2) as well as (1) because
14295 relocations against global symbols will never be reduced on ELF
14296 targets.) This approach is a little simpler than trying to detect
14297 stub sections, and gives the "all or nothing" per-symbol consistency
14298 that we have for MIPS16 symbols. */
14299 if (IS_ELF
14300 && fixp->fx_subsy == NULL
14301 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14302 || *symbol_get_tc (fixp->fx_addsy)))
14303 return 0;
14304 #endif
14305
14306 return 1;
14307 }
14308
14309 /* Translate internal representation of relocation info to BFD target
14310 format. */
14311
14312 arelent **
14313 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14314 {
14315 static arelent *retval[4];
14316 arelent *reloc;
14317 bfd_reloc_code_real_type code;
14318
14319 memset (retval, 0, sizeof(retval));
14320 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14321 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14322 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14323 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14324
14325 if (fixp->fx_pcrel)
14326 {
14327 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14328
14329 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14330 Relocations want only the symbol offset. */
14331 reloc->addend = fixp->fx_addnumber + reloc->address;
14332 if (!IS_ELF)
14333 {
14334 /* A gruesome hack which is a result of the gruesome gas
14335 reloc handling. What's worse, for COFF (as opposed to
14336 ECOFF), we might need yet another copy of reloc->address.
14337 See bfd_install_relocation. */
14338 reloc->addend += reloc->address;
14339 }
14340 }
14341 else
14342 reloc->addend = fixp->fx_addnumber;
14343
14344 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14345 entry to be used in the relocation's section offset. */
14346 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14347 {
14348 reloc->address = reloc->addend;
14349 reloc->addend = 0;
14350 }
14351
14352 code = fixp->fx_r_type;
14353
14354 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14355 if (reloc->howto == NULL)
14356 {
14357 as_bad_where (fixp->fx_file, fixp->fx_line,
14358 _("Can not represent %s relocation in this object file format"),
14359 bfd_get_reloc_code_name (code));
14360 retval[0] = NULL;
14361 }
14362
14363 return retval;
14364 }
14365
14366 /* Relax a machine dependent frag. This returns the amount by which
14367 the current size of the frag should change. */
14368
14369 int
14370 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14371 {
14372 if (RELAX_BRANCH_P (fragp->fr_subtype))
14373 {
14374 offsetT old_var = fragp->fr_var;
14375
14376 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14377
14378 return fragp->fr_var - old_var;
14379 }
14380
14381 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14382 return 0;
14383
14384 if (mips16_extended_frag (fragp, NULL, stretch))
14385 {
14386 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14387 return 0;
14388 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14389 return 2;
14390 }
14391 else
14392 {
14393 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14394 return 0;
14395 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14396 return -2;
14397 }
14398
14399 return 0;
14400 }
14401
14402 /* Convert a machine dependent frag. */
14403
14404 void
14405 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14406 {
14407 if (RELAX_BRANCH_P (fragp->fr_subtype))
14408 {
14409 bfd_byte *buf;
14410 unsigned long insn;
14411 expressionS exp;
14412 fixS *fixp;
14413
14414 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14415
14416 if (target_big_endian)
14417 insn = bfd_getb32 (buf);
14418 else
14419 insn = bfd_getl32 (buf);
14420
14421 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14422 {
14423 /* We generate a fixup instead of applying it right now
14424 because, if there are linker relaxations, we're going to
14425 need the relocations. */
14426 exp.X_op = O_symbol;
14427 exp.X_add_symbol = fragp->fr_symbol;
14428 exp.X_add_number = fragp->fr_offset;
14429
14430 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14431 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14432 fixp->fx_file = fragp->fr_file;
14433 fixp->fx_line = fragp->fr_line;
14434
14435 md_number_to_chars ((char *) buf, insn, 4);
14436 buf += 4;
14437 }
14438 else
14439 {
14440 int i;
14441
14442 as_warn_where (fragp->fr_file, fragp->fr_line,
14443 _("relaxed out-of-range branch into a jump"));
14444
14445 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14446 goto uncond;
14447
14448 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14449 {
14450 /* Reverse the branch. */
14451 switch ((insn >> 28) & 0xf)
14452 {
14453 case 4:
14454 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14455 have the condition reversed by tweaking a single
14456 bit, and their opcodes all have 0x4???????. */
14457 gas_assert ((insn & 0xf1000000) == 0x41000000);
14458 insn ^= 0x00010000;
14459 break;
14460
14461 case 0:
14462 /* bltz 0x04000000 bgez 0x04010000
14463 bltzal 0x04100000 bgezal 0x04110000 */
14464 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14465 insn ^= 0x00010000;
14466 break;
14467
14468 case 1:
14469 /* beq 0x10000000 bne 0x14000000
14470 blez 0x18000000 bgtz 0x1c000000 */
14471 insn ^= 0x04000000;
14472 break;
14473
14474 default:
14475 abort ();
14476 }
14477 }
14478
14479 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14480 {
14481 /* Clear the and-link bit. */
14482 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14483
14484 /* bltzal 0x04100000 bgezal 0x04110000
14485 bltzall 0x04120000 bgezall 0x04130000 */
14486 insn &= ~0x00100000;
14487 }
14488
14489 /* Branch over the branch (if the branch was likely) or the
14490 full jump (not likely case). Compute the offset from the
14491 current instruction to branch to. */
14492 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14493 i = 16;
14494 else
14495 {
14496 /* How many bytes in instructions we've already emitted? */
14497 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14498 /* How many bytes in instructions from here to the end? */
14499 i = fragp->fr_var - i;
14500 }
14501 /* Convert to instruction count. */
14502 i >>= 2;
14503 /* Branch counts from the next instruction. */
14504 i--;
14505 insn |= i;
14506 /* Branch over the jump. */
14507 md_number_to_chars ((char *) buf, insn, 4);
14508 buf += 4;
14509
14510 /* nop */
14511 md_number_to_chars ((char *) buf, 0, 4);
14512 buf += 4;
14513
14514 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14515 {
14516 /* beql $0, $0, 2f */
14517 insn = 0x50000000;
14518 /* Compute the PC offset from the current instruction to
14519 the end of the variable frag. */
14520 /* How many bytes in instructions we've already emitted? */
14521 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14522 /* How many bytes in instructions from here to the end? */
14523 i = fragp->fr_var - i;
14524 /* Convert to instruction count. */
14525 i >>= 2;
14526 /* Don't decrement i, because we want to branch over the
14527 delay slot. */
14528
14529 insn |= i;
14530 md_number_to_chars ((char *) buf, insn, 4);
14531 buf += 4;
14532
14533 md_number_to_chars ((char *) buf, 0, 4);
14534 buf += 4;
14535 }
14536
14537 uncond:
14538 if (mips_pic == NO_PIC)
14539 {
14540 /* j or jal. */
14541 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14542 ? 0x0c000000 : 0x08000000);
14543 exp.X_op = O_symbol;
14544 exp.X_add_symbol = fragp->fr_symbol;
14545 exp.X_add_number = fragp->fr_offset;
14546
14547 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14548 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14549 fixp->fx_file = fragp->fr_file;
14550 fixp->fx_line = fragp->fr_line;
14551
14552 md_number_to_chars ((char *) buf, insn, 4);
14553 buf += 4;
14554 }
14555 else
14556 {
14557 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14558 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14559 exp.X_op = O_symbol;
14560 exp.X_add_symbol = fragp->fr_symbol;
14561 exp.X_add_number = fragp->fr_offset;
14562
14563 if (fragp->fr_offset)
14564 {
14565 exp.X_add_symbol = make_expr_symbol (&exp);
14566 exp.X_add_number = 0;
14567 }
14568
14569 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14570 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14571 fixp->fx_file = fragp->fr_file;
14572 fixp->fx_line = fragp->fr_line;
14573
14574 md_number_to_chars ((char *) buf, insn, 4);
14575 buf += 4;
14576
14577 if (mips_opts.isa == ISA_MIPS1)
14578 {
14579 /* nop */
14580 md_number_to_chars ((char *) buf, 0, 4);
14581 buf += 4;
14582 }
14583
14584 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14585 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14586
14587 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14588 4, &exp, FALSE, BFD_RELOC_LO16);
14589 fixp->fx_file = fragp->fr_file;
14590 fixp->fx_line = fragp->fr_line;
14591
14592 md_number_to_chars ((char *) buf, insn, 4);
14593 buf += 4;
14594
14595 /* j(al)r $at. */
14596 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14597 insn = 0x0020f809;
14598 else
14599 insn = 0x00200008;
14600
14601 md_number_to_chars ((char *) buf, insn, 4);
14602 buf += 4;
14603 }
14604 }
14605
14606 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14607 + fragp->fr_fix + fragp->fr_var);
14608
14609 fragp->fr_fix += fragp->fr_var;
14610
14611 return;
14612 }
14613
14614 if (RELAX_MIPS16_P (fragp->fr_subtype))
14615 {
14616 int type;
14617 const struct mips16_immed_operand *op;
14618 bfd_boolean small, ext;
14619 offsetT val;
14620 bfd_byte *buf;
14621 unsigned long insn;
14622 bfd_boolean use_extend;
14623 unsigned short extend;
14624
14625 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14626 op = mips16_immed_operands;
14627 while (op->type != type)
14628 ++op;
14629
14630 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14631 {
14632 small = FALSE;
14633 ext = TRUE;
14634 }
14635 else
14636 {
14637 small = TRUE;
14638 ext = FALSE;
14639 }
14640
14641 val = resolve_symbol_value (fragp->fr_symbol);
14642 if (op->pcrel)
14643 {
14644 addressT addr;
14645
14646 addr = fragp->fr_address + fragp->fr_fix;
14647
14648 /* The rules for the base address of a PC relative reloc are
14649 complicated; see mips16_extended_frag. */
14650 if (type == 'p' || type == 'q')
14651 {
14652 addr += 2;
14653 if (ext)
14654 addr += 2;
14655 /* Ignore the low bit in the target, since it will be
14656 set for a text label. */
14657 if ((val & 1) != 0)
14658 --val;
14659 }
14660 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14661 addr -= 4;
14662 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14663 addr -= 2;
14664
14665 addr &= ~ (addressT) ((1 << op->shift) - 1);
14666 val -= addr;
14667
14668 /* Make sure the section winds up with the alignment we have
14669 assumed. */
14670 if (op->shift > 0)
14671 record_alignment (asec, op->shift);
14672 }
14673
14674 if (ext
14675 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14676 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14677 as_warn_where (fragp->fr_file, fragp->fr_line,
14678 _("extended instruction in delay slot"));
14679
14680 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14681
14682 if (target_big_endian)
14683 insn = bfd_getb16 (buf);
14684 else
14685 insn = bfd_getl16 (buf);
14686
14687 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14688 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14689 small, ext, &insn, &use_extend, &extend);
14690
14691 if (use_extend)
14692 {
14693 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14694 fragp->fr_fix += 2;
14695 buf += 2;
14696 }
14697
14698 md_number_to_chars ((char *) buf, insn, 2);
14699 fragp->fr_fix += 2;
14700 buf += 2;
14701 }
14702 else
14703 {
14704 int first, second;
14705 fixS *fixp;
14706
14707 first = RELAX_FIRST (fragp->fr_subtype);
14708 second = RELAX_SECOND (fragp->fr_subtype);
14709 fixp = (fixS *) fragp->fr_opcode;
14710
14711 /* Possibly emit a warning if we've chosen the longer option. */
14712 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14713 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14714 {
14715 const char *msg = macro_warning (fragp->fr_subtype);
14716 if (msg != 0)
14717 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14718 }
14719
14720 /* Go through all the fixups for the first sequence. Disable them
14721 (by marking them as done) if we're going to use the second
14722 sequence instead. */
14723 while (fixp
14724 && fixp->fx_frag == fragp
14725 && fixp->fx_where < fragp->fr_fix - second)
14726 {
14727 if (fragp->fr_subtype & RELAX_USE_SECOND)
14728 fixp->fx_done = 1;
14729 fixp = fixp->fx_next;
14730 }
14731
14732 /* Go through the fixups for the second sequence. Disable them if
14733 we're going to use the first sequence, otherwise adjust their
14734 addresses to account for the relaxation. */
14735 while (fixp && fixp->fx_frag == fragp)
14736 {
14737 if (fragp->fr_subtype & RELAX_USE_SECOND)
14738 fixp->fx_where -= first;
14739 else
14740 fixp->fx_done = 1;
14741 fixp = fixp->fx_next;
14742 }
14743
14744 /* Now modify the frag contents. */
14745 if (fragp->fr_subtype & RELAX_USE_SECOND)
14746 {
14747 char *start;
14748
14749 start = fragp->fr_literal + fragp->fr_fix - first - second;
14750 memmove (start, start + first, second);
14751 fragp->fr_fix -= first;
14752 }
14753 else
14754 fragp->fr_fix -= second;
14755 }
14756 }
14757
14758 #ifdef OBJ_ELF
14759
14760 /* This function is called after the relocs have been generated.
14761 We've been storing mips16 text labels as odd. Here we convert them
14762 back to even for the convenience of the debugger. */
14763
14764 void
14765 mips_frob_file_after_relocs (void)
14766 {
14767 asymbol **syms;
14768 unsigned int count, i;
14769
14770 if (!IS_ELF)
14771 return;
14772
14773 syms = bfd_get_outsymbols (stdoutput);
14774 count = bfd_get_symcount (stdoutput);
14775 for (i = 0; i < count; i++, syms++)
14776 {
14777 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14778 && ((*syms)->value & 1) != 0)
14779 {
14780 (*syms)->value &= ~1;
14781 /* If the symbol has an odd size, it was probably computed
14782 incorrectly, so adjust that as well. */
14783 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14784 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14785 }
14786 }
14787 }
14788
14789 #endif
14790
14791 /* This function is called whenever a label is defined, including fake
14792 labels instantiated off the dot special symbol. It is used when
14793 handling branch delays; if a branch has a label, we assume we cannot
14794 move it. This also bumps the value of the symbol by 1 in compressed
14795 code. */
14796
14797 void
14798 mips_record_label (symbolS *sym)
14799 {
14800 segment_info_type *si = seg_info (now_seg);
14801 struct insn_label_list *l;
14802
14803 if (free_insn_labels == NULL)
14804 l = (struct insn_label_list *) xmalloc (sizeof *l);
14805 else
14806 {
14807 l = free_insn_labels;
14808 free_insn_labels = l->next;
14809 }
14810
14811 l->label = sym;
14812 l->next = si->label_list;
14813 si->label_list = l;
14814 }
14815
14816 /* This function is called as tc_frob_label() whenever a label is defined
14817 and adds a DWARF-2 record we only want for true labels. */
14818
14819 void
14820 mips_define_label (symbolS *sym)
14821 {
14822 mips_record_label (sym);
14823 #ifdef OBJ_ELF
14824 dwarf2_emit_label (sym);
14825 #endif
14826 }
14827 \f
14828 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14829
14830 /* Some special processing for a MIPS ELF file. */
14831
14832 void
14833 mips_elf_final_processing (void)
14834 {
14835 /* Write out the register information. */
14836 if (mips_abi != N64_ABI)
14837 {
14838 Elf32_RegInfo s;
14839
14840 s.ri_gprmask = mips_gprmask;
14841 s.ri_cprmask[0] = mips_cprmask[0];
14842 s.ri_cprmask[1] = mips_cprmask[1];
14843 s.ri_cprmask[2] = mips_cprmask[2];
14844 s.ri_cprmask[3] = mips_cprmask[3];
14845 /* The gp_value field is set by the MIPS ELF backend. */
14846
14847 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14848 ((Elf32_External_RegInfo *)
14849 mips_regmask_frag));
14850 }
14851 else
14852 {
14853 Elf64_Internal_RegInfo s;
14854
14855 s.ri_gprmask = mips_gprmask;
14856 s.ri_pad = 0;
14857 s.ri_cprmask[0] = mips_cprmask[0];
14858 s.ri_cprmask[1] = mips_cprmask[1];
14859 s.ri_cprmask[2] = mips_cprmask[2];
14860 s.ri_cprmask[3] = mips_cprmask[3];
14861 /* The gp_value field is set by the MIPS ELF backend. */
14862
14863 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14864 ((Elf64_External_RegInfo *)
14865 mips_regmask_frag));
14866 }
14867
14868 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14869 sort of BFD interface for this. */
14870 if (mips_any_noreorder)
14871 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14872 if (mips_pic != NO_PIC)
14873 {
14874 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14875 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14876 }
14877 if (mips_abicalls)
14878 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14879
14880 /* Set MIPS ELF flags for ASEs. */
14881 /* We may need to define a new flag for DSP ASE, and set this flag when
14882 file_ase_dsp is true. */
14883 /* Same for DSP R2. */
14884 /* We may need to define a new flag for MT ASE, and set this flag when
14885 file_ase_mt is true. */
14886 if (file_ase_mips16)
14887 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14888 #if 0 /* XXX FIXME */
14889 if (file_ase_mips3d)
14890 elf_elfheader (stdoutput)->e_flags |= ???;
14891 #endif
14892 if (file_ase_mdmx)
14893 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14894
14895 /* Set the MIPS ELF ABI flags. */
14896 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14897 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14898 else if (mips_abi == O64_ABI)
14899 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14900 else if (mips_abi == EABI_ABI)
14901 {
14902 if (!file_mips_gp32)
14903 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14904 else
14905 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14906 }
14907 else if (mips_abi == N32_ABI)
14908 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14909
14910 /* Nothing to do for N64_ABI. */
14911
14912 if (mips_32bitmode)
14913 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14914
14915 #if 0 /* XXX FIXME */
14916 /* 32 bit code with 64 bit FP registers. */
14917 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14918 elf_elfheader (stdoutput)->e_flags |= ???;
14919 #endif
14920 }
14921
14922 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14923 \f
14924 typedef struct proc {
14925 symbolS *func_sym;
14926 symbolS *func_end_sym;
14927 unsigned long reg_mask;
14928 unsigned long reg_offset;
14929 unsigned long fpreg_mask;
14930 unsigned long fpreg_offset;
14931 unsigned long frame_offset;
14932 unsigned long frame_reg;
14933 unsigned long pc_reg;
14934 } procS;
14935
14936 static procS cur_proc;
14937 static procS *cur_proc_ptr;
14938 static int numprocs;
14939
14940 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14941 nop as "0". */
14942
14943 char
14944 mips_nop_opcode (void)
14945 {
14946 return seg_info (now_seg)->tc_segment_info_data.mips16;
14947 }
14948
14949 /* Fill in an rs_align_code fragment. This only needs to do something
14950 for MIPS16 code, where 0 is not a nop. */
14951
14952 void
14953 mips_handle_align (fragS *fragp)
14954 {
14955 char *p;
14956 int bytes, size, excess;
14957 valueT opcode;
14958
14959 if (fragp->fr_type != rs_align_code)
14960 return;
14961
14962 p = fragp->fr_literal + fragp->fr_fix;
14963 if (*p)
14964 {
14965 opcode = mips16_nop_insn.insn_opcode;
14966 size = 2;
14967 }
14968 else
14969 {
14970 opcode = nop_insn.insn_opcode;
14971 size = 4;
14972 }
14973
14974 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14975 excess = bytes % size;
14976 if (excess != 0)
14977 {
14978 /* If we're not inserting a whole number of instructions,
14979 pad the end of the fixed part of the frag with zeros. */
14980 memset (p, 0, excess);
14981 p += excess;
14982 fragp->fr_fix += excess;
14983 }
14984
14985 md_number_to_chars (p, opcode, size);
14986 fragp->fr_var = size;
14987 }
14988
14989 static void
14990 md_obj_begin (void)
14991 {
14992 }
14993
14994 static void
14995 md_obj_end (void)
14996 {
14997 /* Check for premature end, nesting errors, etc. */
14998 if (cur_proc_ptr)
14999 as_warn (_("missing .end at end of assembly"));
15000 }
15001
15002 static long
15003 get_number (void)
15004 {
15005 int negative = 0;
15006 long val = 0;
15007
15008 if (*input_line_pointer == '-')
15009 {
15010 ++input_line_pointer;
15011 negative = 1;
15012 }
15013 if (!ISDIGIT (*input_line_pointer))
15014 as_bad (_("expected simple number"));
15015 if (input_line_pointer[0] == '0')
15016 {
15017 if (input_line_pointer[1] == 'x')
15018 {
15019 input_line_pointer += 2;
15020 while (ISXDIGIT (*input_line_pointer))
15021 {
15022 val <<= 4;
15023 val |= hex_value (*input_line_pointer++);
15024 }
15025 return negative ? -val : val;
15026 }
15027 else
15028 {
15029 ++input_line_pointer;
15030 while (ISDIGIT (*input_line_pointer))
15031 {
15032 val <<= 3;
15033 val |= *input_line_pointer++ - '0';
15034 }
15035 return negative ? -val : val;
15036 }
15037 }
15038 if (!ISDIGIT (*input_line_pointer))
15039 {
15040 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
15041 *input_line_pointer, *input_line_pointer);
15042 as_warn (_("invalid number"));
15043 return -1;
15044 }
15045 while (ISDIGIT (*input_line_pointer))
15046 {
15047 val *= 10;
15048 val += *input_line_pointer++ - '0';
15049 }
15050 return negative ? -val : val;
15051 }
15052
15053 /* The .file directive; just like the usual .file directive, but there
15054 is an initial number which is the ECOFF file index. In the non-ECOFF
15055 case .file implies DWARF-2. */
15056
15057 static void
15058 s_mips_file (int x ATTRIBUTE_UNUSED)
15059 {
15060 static int first_file_directive = 0;
15061
15062 if (ECOFF_DEBUGGING)
15063 {
15064 get_number ();
15065 s_app_file (0);
15066 }
15067 else
15068 {
15069 char *filename;
15070
15071 filename = dwarf2_directive_file (0);
15072
15073 /* Versions of GCC up to 3.1 start files with a ".file"
15074 directive even for stabs output. Make sure that this
15075 ".file" is handled. Note that you need a version of GCC
15076 after 3.1 in order to support DWARF-2 on MIPS. */
15077 if (filename != NULL && ! first_file_directive)
15078 {
15079 (void) new_logical_line (filename, -1);
15080 s_app_file_string (filename, 0);
15081 }
15082 first_file_directive = 1;
15083 }
15084 }
15085
15086 /* The .loc directive, implying DWARF-2. */
15087
15088 static void
15089 s_mips_loc (int x ATTRIBUTE_UNUSED)
15090 {
15091 if (!ECOFF_DEBUGGING)
15092 dwarf2_directive_loc (0);
15093 }
15094
15095 /* The .end directive. */
15096
15097 static void
15098 s_mips_end (int x ATTRIBUTE_UNUSED)
15099 {
15100 symbolS *p;
15101
15102 /* Following functions need their own .frame and .cprestore directives. */
15103 mips_frame_reg_valid = 0;
15104 mips_cprestore_valid = 0;
15105
15106 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15107 {
15108 p = get_symbol ();
15109 demand_empty_rest_of_line ();
15110 }
15111 else
15112 p = NULL;
15113
15114 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15115 as_warn (_(".end not in text section"));
15116
15117 if (!cur_proc_ptr)
15118 {
15119 as_warn (_(".end directive without a preceding .ent directive."));
15120 demand_empty_rest_of_line ();
15121 return;
15122 }
15123
15124 if (p != NULL)
15125 {
15126 gas_assert (S_GET_NAME (p));
15127 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15128 as_warn (_(".end symbol does not match .ent symbol."));
15129
15130 if (debug_type == DEBUG_STABS)
15131 stabs_generate_asm_endfunc (S_GET_NAME (p),
15132 S_GET_NAME (p));
15133 }
15134 else
15135 as_warn (_(".end directive missing or unknown symbol"));
15136
15137 #ifdef OBJ_ELF
15138 /* Create an expression to calculate the size of the function. */
15139 if (p && cur_proc_ptr)
15140 {
15141 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15142 expressionS *exp = xmalloc (sizeof (expressionS));
15143
15144 obj->size = exp;
15145 exp->X_op = O_subtract;
15146 exp->X_add_symbol = symbol_temp_new_now ();
15147 exp->X_op_symbol = p;
15148 exp->X_add_number = 0;
15149
15150 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15151 }
15152
15153 /* Generate a .pdr section. */
15154 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15155 {
15156 segT saved_seg = now_seg;
15157 subsegT saved_subseg = now_subseg;
15158 expressionS exp;
15159 char *fragp;
15160
15161 #ifdef md_flush_pending_output
15162 md_flush_pending_output ();
15163 #endif
15164
15165 gas_assert (pdr_seg);
15166 subseg_set (pdr_seg, 0);
15167
15168 /* Write the symbol. */
15169 exp.X_op = O_symbol;
15170 exp.X_add_symbol = p;
15171 exp.X_add_number = 0;
15172 emit_expr (&exp, 4);
15173
15174 fragp = frag_more (7 * 4);
15175
15176 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15177 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15178 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15179 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15180 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15181 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15182 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15183
15184 subseg_set (saved_seg, saved_subseg);
15185 }
15186 #endif /* OBJ_ELF */
15187
15188 cur_proc_ptr = NULL;
15189 }
15190
15191 /* The .aent and .ent directives. */
15192
15193 static void
15194 s_mips_ent (int aent)
15195 {
15196 symbolS *symbolP;
15197
15198 symbolP = get_symbol ();
15199 if (*input_line_pointer == ',')
15200 ++input_line_pointer;
15201 SKIP_WHITESPACE ();
15202 if (ISDIGIT (*input_line_pointer)
15203 || *input_line_pointer == '-')
15204 get_number ();
15205
15206 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15207 as_warn (_(".ent or .aent not in text section."));
15208
15209 if (!aent && cur_proc_ptr)
15210 as_warn (_("missing .end"));
15211
15212 if (!aent)
15213 {
15214 /* This function needs its own .frame and .cprestore directives. */
15215 mips_frame_reg_valid = 0;
15216 mips_cprestore_valid = 0;
15217
15218 cur_proc_ptr = &cur_proc;
15219 memset (cur_proc_ptr, '\0', sizeof (procS));
15220
15221 cur_proc_ptr->func_sym = symbolP;
15222
15223 ++numprocs;
15224
15225 if (debug_type == DEBUG_STABS)
15226 stabs_generate_asm_func (S_GET_NAME (symbolP),
15227 S_GET_NAME (symbolP));
15228 }
15229
15230 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15231
15232 demand_empty_rest_of_line ();
15233 }
15234
15235 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15236 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15237 s_mips_frame is used so that we can set the PDR information correctly.
15238 We can't use the ecoff routines because they make reference to the ecoff
15239 symbol table (in the mdebug section). */
15240
15241 static void
15242 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15243 {
15244 #ifdef OBJ_ELF
15245 if (IS_ELF && !ECOFF_DEBUGGING)
15246 {
15247 long val;
15248
15249 if (cur_proc_ptr == (procS *) NULL)
15250 {
15251 as_warn (_(".frame outside of .ent"));
15252 demand_empty_rest_of_line ();
15253 return;
15254 }
15255
15256 cur_proc_ptr->frame_reg = tc_get_register (1);
15257
15258 SKIP_WHITESPACE ();
15259 if (*input_line_pointer++ != ','
15260 || get_absolute_expression_and_terminator (&val) != ',')
15261 {
15262 as_warn (_("Bad .frame directive"));
15263 --input_line_pointer;
15264 demand_empty_rest_of_line ();
15265 return;
15266 }
15267
15268 cur_proc_ptr->frame_offset = val;
15269 cur_proc_ptr->pc_reg = tc_get_register (0);
15270
15271 demand_empty_rest_of_line ();
15272 }
15273 else
15274 #endif /* OBJ_ELF */
15275 s_ignore (ignore);
15276 }
15277
15278 /* The .fmask and .mask directives. If the mdebug section is present
15279 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15280 embedded targets, s_mips_mask is used so that we can set the PDR
15281 information correctly. We can't use the ecoff routines because they
15282 make reference to the ecoff symbol table (in the mdebug section). */
15283
15284 static void
15285 s_mips_mask (int reg_type)
15286 {
15287 #ifdef OBJ_ELF
15288 if (IS_ELF && !ECOFF_DEBUGGING)
15289 {
15290 long mask, off;
15291
15292 if (cur_proc_ptr == (procS *) NULL)
15293 {
15294 as_warn (_(".mask/.fmask outside of .ent"));
15295 demand_empty_rest_of_line ();
15296 return;
15297 }
15298
15299 if (get_absolute_expression_and_terminator (&mask) != ',')
15300 {
15301 as_warn (_("Bad .mask/.fmask directive"));
15302 --input_line_pointer;
15303 demand_empty_rest_of_line ();
15304 return;
15305 }
15306
15307 off = get_absolute_expression ();
15308
15309 if (reg_type == 'F')
15310 {
15311 cur_proc_ptr->fpreg_mask = mask;
15312 cur_proc_ptr->fpreg_offset = off;
15313 }
15314 else
15315 {
15316 cur_proc_ptr->reg_mask = mask;
15317 cur_proc_ptr->reg_offset = off;
15318 }
15319
15320 demand_empty_rest_of_line ();
15321 }
15322 else
15323 #endif /* OBJ_ELF */
15324 s_ignore (reg_type);
15325 }
15326
15327 /* A table describing all the processors gas knows about. Names are
15328 matched in the order listed.
15329
15330 To ease comparison, please keep this table in the same order as
15331 gcc's mips_cpu_info_table[]. */
15332 static const struct mips_cpu_info mips_cpu_info_table[] =
15333 {
15334 /* Entries for generic ISAs */
15335 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15336 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15337 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15338 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15339 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15340 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15341 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15342 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15343 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15344
15345 /* MIPS I */
15346 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15347 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15348 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15349
15350 /* MIPS II */
15351 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15352
15353 /* MIPS III */
15354 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15355 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15356 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15357 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15358 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15359 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15360 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15361 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15362 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15363 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15364 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15365 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15366 /* ST Microelectronics Loongson 2E and 2F cores */
15367 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15368 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15369
15370 /* MIPS IV */
15371 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15372 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15373 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15374 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15375 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15376 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15377 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15378 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15379 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15380 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15381 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15382 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15383 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15384 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15385 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15386
15387 /* MIPS 32 */
15388 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15389 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15390 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15391 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15392
15393 /* MIPS 32 Release 2 */
15394 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15395 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15396 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15397 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15398 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15399 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15400 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15401 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15402 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15403 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15404 /* Deprecated forms of the above. */
15405 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15406 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15407 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15408 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15409 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15410 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15411 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15412 /* Deprecated forms of the above. */
15413 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15414 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15415 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15416 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15417 ISA_MIPS32R2, CPU_MIPS32R2 },
15418 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15419 ISA_MIPS32R2, CPU_MIPS32R2 },
15420 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15421 ISA_MIPS32R2, CPU_MIPS32R2 },
15422 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15423 ISA_MIPS32R2, CPU_MIPS32R2 },
15424 /* Deprecated forms of the above. */
15425 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15426 ISA_MIPS32R2, CPU_MIPS32R2 },
15427 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15428 ISA_MIPS32R2, CPU_MIPS32R2 },
15429 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15430 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15431 ISA_MIPS32R2, CPU_MIPS32R2 },
15432 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15433 ISA_MIPS32R2, CPU_MIPS32R2 },
15434 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15435 ISA_MIPS32R2, CPU_MIPS32R2 },
15436 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15437 ISA_MIPS32R2, CPU_MIPS32R2 },
15438 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15439 ISA_MIPS32R2, CPU_MIPS32R2 },
15440 /* Deprecated forms of the above. */
15441 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15442 ISA_MIPS32R2, CPU_MIPS32R2 },
15443 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15444 ISA_MIPS32R2, CPU_MIPS32R2 },
15445 /* 1004K cores are multiprocessor versions of the 34K. */
15446 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15447 ISA_MIPS32R2, CPU_MIPS32R2 },
15448 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15449 ISA_MIPS32R2, CPU_MIPS32R2 },
15450 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15451 ISA_MIPS32R2, CPU_MIPS32R2 },
15452 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15453 ISA_MIPS32R2, CPU_MIPS32R2 },
15454
15455 /* MIPS 64 */
15456 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15457 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15458 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15459 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15460
15461 /* Broadcom SB-1 CPU core */
15462 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15463 ISA_MIPS64, CPU_SB1 },
15464 /* Broadcom SB-1A CPU core */
15465 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15466 ISA_MIPS64, CPU_SB1 },
15467
15468 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
15469
15470 /* MIPS 64 Release 2 */
15471
15472 /* Cavium Networks Octeon CPU core */
15473 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15474
15475 /* RMI Xlr */
15476 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15477
15478 /* End marker */
15479 { NULL, 0, 0, 0 }
15480 };
15481
15482
15483 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15484 with a final "000" replaced by "k". Ignore case.
15485
15486 Note: this function is shared between GCC and GAS. */
15487
15488 static bfd_boolean
15489 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15490 {
15491 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15492 given++, canonical++;
15493
15494 return ((*given == 0 && *canonical == 0)
15495 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15496 }
15497
15498
15499 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15500 CPU name. We've traditionally allowed a lot of variation here.
15501
15502 Note: this function is shared between GCC and GAS. */
15503
15504 static bfd_boolean
15505 mips_matching_cpu_name_p (const char *canonical, const char *given)
15506 {
15507 /* First see if the name matches exactly, or with a final "000"
15508 turned into "k". */
15509 if (mips_strict_matching_cpu_name_p (canonical, given))
15510 return TRUE;
15511
15512 /* If not, try comparing based on numerical designation alone.
15513 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15514 if (TOLOWER (*given) == 'r')
15515 given++;
15516 if (!ISDIGIT (*given))
15517 return FALSE;
15518
15519 /* Skip over some well-known prefixes in the canonical name,
15520 hoping to find a number there too. */
15521 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15522 canonical += 2;
15523 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15524 canonical += 2;
15525 else if (TOLOWER (canonical[0]) == 'r')
15526 canonical += 1;
15527
15528 return mips_strict_matching_cpu_name_p (canonical, given);
15529 }
15530
15531
15532 /* Parse an option that takes the name of a processor as its argument.
15533 OPTION is the name of the option and CPU_STRING is the argument.
15534 Return the corresponding processor enumeration if the CPU_STRING is
15535 recognized, otherwise report an error and return null.
15536
15537 A similar function exists in GCC. */
15538
15539 static const struct mips_cpu_info *
15540 mips_parse_cpu (const char *option, const char *cpu_string)
15541 {
15542 const struct mips_cpu_info *p;
15543
15544 /* 'from-abi' selects the most compatible architecture for the given
15545 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15546 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15547 version. Look first at the -mgp options, if given, otherwise base
15548 the choice on MIPS_DEFAULT_64BIT.
15549
15550 Treat NO_ABI like the EABIs. One reason to do this is that the
15551 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15552 architecture. This code picks MIPS I for 'mips' and MIPS III for
15553 'mips64', just as we did in the days before 'from-abi'. */
15554 if (strcasecmp (cpu_string, "from-abi") == 0)
15555 {
15556 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15557 return mips_cpu_info_from_isa (ISA_MIPS1);
15558
15559 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15560 return mips_cpu_info_from_isa (ISA_MIPS3);
15561
15562 if (file_mips_gp32 >= 0)
15563 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15564
15565 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15566 ? ISA_MIPS3
15567 : ISA_MIPS1);
15568 }
15569
15570 /* 'default' has traditionally been a no-op. Probably not very useful. */
15571 if (strcasecmp (cpu_string, "default") == 0)
15572 return 0;
15573
15574 for (p = mips_cpu_info_table; p->name != 0; p++)
15575 if (mips_matching_cpu_name_p (p->name, cpu_string))
15576 return p;
15577
15578 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15579 return 0;
15580 }
15581
15582 /* Return the canonical processor information for ISA (a member of the
15583 ISA_MIPS* enumeration). */
15584
15585 static const struct mips_cpu_info *
15586 mips_cpu_info_from_isa (int isa)
15587 {
15588 int i;
15589
15590 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15591 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15592 && isa == mips_cpu_info_table[i].isa)
15593 return (&mips_cpu_info_table[i]);
15594
15595 return NULL;
15596 }
15597
15598 static const struct mips_cpu_info *
15599 mips_cpu_info_from_arch (int arch)
15600 {
15601 int i;
15602
15603 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15604 if (arch == mips_cpu_info_table[i].cpu)
15605 return (&mips_cpu_info_table[i]);
15606
15607 return NULL;
15608 }
15609 \f
15610 static void
15611 show (FILE *stream, const char *string, int *col_p, int *first_p)
15612 {
15613 if (*first_p)
15614 {
15615 fprintf (stream, "%24s", "");
15616 *col_p = 24;
15617 }
15618 else
15619 {
15620 fprintf (stream, ", ");
15621 *col_p += 2;
15622 }
15623
15624 if (*col_p + strlen (string) > 72)
15625 {
15626 fprintf (stream, "\n%24s", "");
15627 *col_p = 24;
15628 }
15629
15630 fprintf (stream, "%s", string);
15631 *col_p += strlen (string);
15632
15633 *first_p = 0;
15634 }
15635
15636 void
15637 md_show_usage (FILE *stream)
15638 {
15639 int column, first;
15640 size_t i;
15641
15642 fprintf (stream, _("\
15643 MIPS options:\n\
15644 -EB generate big endian output\n\
15645 -EL generate little endian output\n\
15646 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15647 -G NUM allow referencing objects up to NUM bytes\n\
15648 implicitly with the gp register [default 8]\n"));
15649 fprintf (stream, _("\
15650 -mips1 generate MIPS ISA I instructions\n\
15651 -mips2 generate MIPS ISA II instructions\n\
15652 -mips3 generate MIPS ISA III instructions\n\
15653 -mips4 generate MIPS ISA IV instructions\n\
15654 -mips5 generate MIPS ISA V instructions\n\
15655 -mips32 generate MIPS32 ISA instructions\n\
15656 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15657 -mips64 generate MIPS64 ISA instructions\n\
15658 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15659 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15660
15661 first = 1;
15662
15663 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15664 show (stream, mips_cpu_info_table[i].name, &column, &first);
15665 show (stream, "from-abi", &column, &first);
15666 fputc ('\n', stream);
15667
15668 fprintf (stream, _("\
15669 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15670 -no-mCPU don't generate code specific to CPU.\n\
15671 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15672
15673 first = 1;
15674
15675 show (stream, "3900", &column, &first);
15676 show (stream, "4010", &column, &first);
15677 show (stream, "4100", &column, &first);
15678 show (stream, "4650", &column, &first);
15679 fputc ('\n', stream);
15680
15681 fprintf (stream, _("\
15682 -mips16 generate mips16 instructions\n\
15683 -no-mips16 do not generate mips16 instructions\n"));
15684 fprintf (stream, _("\
15685 -msmartmips generate smartmips instructions\n\
15686 -mno-smartmips do not generate smartmips instructions\n"));
15687 fprintf (stream, _("\
15688 -mdsp generate DSP instructions\n\
15689 -mno-dsp do not generate DSP instructions\n"));
15690 fprintf (stream, _("\
15691 -mdspr2 generate DSP R2 instructions\n\
15692 -mno-dspr2 do not generate DSP R2 instructions\n"));
15693 fprintf (stream, _("\
15694 -mmt generate MT instructions\n\
15695 -mno-mt do not generate MT instructions\n"));
15696 fprintf (stream, _("\
15697 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15698 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15699 -mfix-vr4120 work around certain VR4120 errata\n\
15700 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15701 -mfix-24k insert a nop after ERET and DERET instructions\n\
15702 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15703 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15704 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15705 -msym32 assume all symbols have 32-bit values\n\
15706 -O0 remove unneeded NOPs, do not swap branches\n\
15707 -O remove unneeded NOPs and swap branches\n\
15708 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15709 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15710 fprintf (stream, _("\
15711 -mhard-float allow floating-point instructions\n\
15712 -msoft-float do not allow floating-point instructions\n\
15713 -msingle-float only allow 32-bit floating-point operations\n\
15714 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15715 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15716 ));
15717 #ifdef OBJ_ELF
15718 fprintf (stream, _("\
15719 -KPIC, -call_shared generate SVR4 position independent code\n\
15720 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15721 -mvxworks-pic generate VxWorks position independent code\n\
15722 -non_shared do not generate code that can operate with DSOs\n\
15723 -xgot assume a 32 bit GOT\n\
15724 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15725 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15726 position dependent (non shared) code\n\
15727 -mabi=ABI create ABI conformant object file for:\n"));
15728
15729 first = 1;
15730
15731 show (stream, "32", &column, &first);
15732 show (stream, "o64", &column, &first);
15733 show (stream, "n32", &column, &first);
15734 show (stream, "64", &column, &first);
15735 show (stream, "eabi", &column, &first);
15736
15737 fputc ('\n', stream);
15738
15739 fprintf (stream, _("\
15740 -32 create o32 ABI object file (default)\n\
15741 -n32 create n32 ABI object file\n\
15742 -64 create 64 ABI object file\n"));
15743 #endif
15744 }
15745
15746 #ifdef TE_IRIX
15747 enum dwarf2_format
15748 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15749 {
15750 if (HAVE_64BIT_SYMBOLS)
15751 return dwarf2_format_64bit_irix;
15752 else
15753 return dwarf2_format_32bit;
15754 }
15755 #endif
15756
15757 int
15758 mips_dwarf2_addr_size (void)
15759 {
15760 if (HAVE_64BIT_OBJECTS)
15761 return 8;
15762 else
15763 return 4;
15764 }
15765
15766 /* Standard calling conventions leave the CFA at SP on entry. */
15767 void
15768 mips_cfi_frame_initial_instructions (void)
15769 {
15770 cfi_add_CFA_def_cfa_register (SP);
15771 }
15772
15773 int
15774 tc_mips_regname_to_dw2regnum (char *regname)
15775 {
15776 unsigned int regnum = -1;
15777 unsigned int reg;
15778
15779 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15780 regnum = reg;
15781
15782 return regnum;
15783 }
This page took 0.387844 seconds and 4 git commands to generate.