b7997c703c55900a16412e41d275a6f241803a90
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_DSPR3,
1414 OPTION_NO_DSPR3,
1415 OPTION_EVA,
1416 OPTION_NO_EVA,
1417 OPTION_XPA,
1418 OPTION_NO_XPA,
1419 OPTION_MICROMIPS,
1420 OPTION_NO_MICROMIPS,
1421 OPTION_MCU,
1422 OPTION_NO_MCU,
1423 OPTION_COMPAT_ARCH_BASE,
1424 OPTION_M4650,
1425 OPTION_NO_M4650,
1426 OPTION_M4010,
1427 OPTION_NO_M4010,
1428 OPTION_M4100,
1429 OPTION_NO_M4100,
1430 OPTION_M3900,
1431 OPTION_NO_M3900,
1432 OPTION_M7000_HILO_FIX,
1433 OPTION_MNO_7000_HILO_FIX,
1434 OPTION_FIX_24K,
1435 OPTION_NO_FIX_24K,
1436 OPTION_FIX_RM7000,
1437 OPTION_NO_FIX_RM7000,
1438 OPTION_FIX_LOONGSON2F_JUMP,
1439 OPTION_NO_FIX_LOONGSON2F_JUMP,
1440 OPTION_FIX_LOONGSON2F_NOP,
1441 OPTION_NO_FIX_LOONGSON2F_NOP,
1442 OPTION_FIX_VR4120,
1443 OPTION_NO_FIX_VR4120,
1444 OPTION_FIX_VR4130,
1445 OPTION_NO_FIX_VR4130,
1446 OPTION_FIX_CN63XXP1,
1447 OPTION_NO_FIX_CN63XXP1,
1448 OPTION_TRAP,
1449 OPTION_BREAK,
1450 OPTION_EB,
1451 OPTION_EL,
1452 OPTION_FP32,
1453 OPTION_GP32,
1454 OPTION_CONSTRUCT_FLOATS,
1455 OPTION_NO_CONSTRUCT_FLOATS,
1456 OPTION_FP64,
1457 OPTION_FPXX,
1458 OPTION_GP64,
1459 OPTION_RELAX_BRANCH,
1460 OPTION_NO_RELAX_BRANCH,
1461 OPTION_INSN32,
1462 OPTION_NO_INSN32,
1463 OPTION_MSHARED,
1464 OPTION_MNO_SHARED,
1465 OPTION_MSYM32,
1466 OPTION_MNO_SYM32,
1467 OPTION_SOFT_FLOAT,
1468 OPTION_HARD_FLOAT,
1469 OPTION_SINGLE_FLOAT,
1470 OPTION_DOUBLE_FLOAT,
1471 OPTION_32,
1472 OPTION_CALL_SHARED,
1473 OPTION_CALL_NONPIC,
1474 OPTION_NON_SHARED,
1475 OPTION_XGOT,
1476 OPTION_MABI,
1477 OPTION_N32,
1478 OPTION_64,
1479 OPTION_MDEBUG,
1480 OPTION_NO_MDEBUG,
1481 OPTION_PDR,
1482 OPTION_NO_PDR,
1483 OPTION_MVXWORKS_PIC,
1484 OPTION_NAN,
1485 OPTION_ODD_SPREG,
1486 OPTION_NO_ODD_SPREG,
1487 OPTION_END_OF_ENUM
1488 };
1489
1490 struct option md_longopts[] =
1491 {
1492 /* Options which specify architecture. */
1493 {"march", required_argument, NULL, OPTION_MARCH},
1494 {"mtune", required_argument, NULL, OPTION_MTUNE},
1495 {"mips0", no_argument, NULL, OPTION_MIPS1},
1496 {"mips1", no_argument, NULL, OPTION_MIPS1},
1497 {"mips2", no_argument, NULL, OPTION_MIPS2},
1498 {"mips3", no_argument, NULL, OPTION_MIPS3},
1499 {"mips4", no_argument, NULL, OPTION_MIPS4},
1500 {"mips5", no_argument, NULL, OPTION_MIPS5},
1501 {"mips32", no_argument, NULL, OPTION_MIPS32},
1502 {"mips64", no_argument, NULL, OPTION_MIPS64},
1503 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1504 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1505 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1506 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1507 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1508 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1509 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1510 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1511
1512 /* Options which specify Application Specific Extensions (ASEs). */
1513 {"mips16", no_argument, NULL, OPTION_MIPS16},
1514 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1515 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1516 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1517 {"mdmx", no_argument, NULL, OPTION_MDMX},
1518 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1519 {"mdsp", no_argument, NULL, OPTION_DSP},
1520 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1521 {"mmt", no_argument, NULL, OPTION_MT},
1522 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1523 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1524 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1525 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1526 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1527 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1528 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1529 {"meva", no_argument, NULL, OPTION_EVA},
1530 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1531 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1532 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1533 {"mmcu", no_argument, NULL, OPTION_MCU},
1534 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1535 {"mvirt", no_argument, NULL, OPTION_VIRT},
1536 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1537 {"mmsa", no_argument, NULL, OPTION_MSA},
1538 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1539 {"mxpa", no_argument, NULL, OPTION_XPA},
1540 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1541
1542 /* Old-style architecture options. Don't add more of these. */
1543 {"m4650", no_argument, NULL, OPTION_M4650},
1544 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1545 {"m4010", no_argument, NULL, OPTION_M4010},
1546 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1547 {"m4100", no_argument, NULL, OPTION_M4100},
1548 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1549 {"m3900", no_argument, NULL, OPTION_M3900},
1550 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1551
1552 /* Options which enable bug fixes. */
1553 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1554 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1555 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1556 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1557 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1558 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1559 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1560 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1561 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1562 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1563 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1564 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1565 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1566 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1567 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1568 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1569 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1570
1571 /* Miscellaneous options. */
1572 {"trap", no_argument, NULL, OPTION_TRAP},
1573 {"no-break", no_argument, NULL, OPTION_TRAP},
1574 {"break", no_argument, NULL, OPTION_BREAK},
1575 {"no-trap", no_argument, NULL, OPTION_BREAK},
1576 {"EB", no_argument, NULL, OPTION_EB},
1577 {"EL", no_argument, NULL, OPTION_EL},
1578 {"mfp32", no_argument, NULL, OPTION_FP32},
1579 {"mgp32", no_argument, NULL, OPTION_GP32},
1580 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1581 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1582 {"mfp64", no_argument, NULL, OPTION_FP64},
1583 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1584 {"mgp64", no_argument, NULL, OPTION_GP64},
1585 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1586 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1587 {"minsn32", no_argument, NULL, OPTION_INSN32},
1588 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1589 {"mshared", no_argument, NULL, OPTION_MSHARED},
1590 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1591 {"msym32", no_argument, NULL, OPTION_MSYM32},
1592 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1593 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1594 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1595 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1596 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1597 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1598 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1599
1600 /* Strictly speaking this next option is ELF specific,
1601 but we allow it for other ports as well in order to
1602 make testing easier. */
1603 {"32", no_argument, NULL, OPTION_32},
1604
1605 /* ELF-specific options. */
1606 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1607 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1608 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1609 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1610 {"xgot", no_argument, NULL, OPTION_XGOT},
1611 {"mabi", required_argument, NULL, OPTION_MABI},
1612 {"n32", no_argument, NULL, OPTION_N32},
1613 {"64", no_argument, NULL, OPTION_64},
1614 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1615 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1616 {"mpdr", no_argument, NULL, OPTION_PDR},
1617 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1618 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1619 {"mnan", required_argument, NULL, OPTION_NAN},
1620
1621 {NULL, no_argument, NULL, 0}
1622 };
1623 size_t md_longopts_size = sizeof (md_longopts);
1624 \f
1625 /* Information about either an Application Specific Extension or an
1626 optional architecture feature that, for simplicity, we treat in the
1627 same way as an ASE. */
1628 struct mips_ase
1629 {
1630 /* The name of the ASE, used in both the command-line and .set options. */
1631 const char *name;
1632
1633 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1634 and 64-bit architectures, the flags here refer to the subset that
1635 is available on both. */
1636 unsigned int flags;
1637
1638 /* The ASE_* flag used for instructions that are available on 64-bit
1639 architectures but that are not included in FLAGS. */
1640 unsigned int flags64;
1641
1642 /* The command-line options that turn the ASE on and off. */
1643 int option_on;
1644 int option_off;
1645
1646 /* The minimum required architecture revisions for MIPS32, MIPS64,
1647 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1648 int mips32_rev;
1649 int mips64_rev;
1650 int micromips32_rev;
1651 int micromips64_rev;
1652
1653 /* The architecture where the ASE was removed or -1 if the extension has not
1654 been removed. */
1655 int rem_rev;
1656 };
1657
1658 /* A table of all supported ASEs. */
1659 static const struct mips_ase mips_ases[] = {
1660 { "dsp", ASE_DSP, ASE_DSP64,
1661 OPTION_DSP, OPTION_NO_DSP,
1662 2, 2, 2, 2,
1663 -1 },
1664
1665 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1666 OPTION_DSPR2, OPTION_NO_DSPR2,
1667 2, 2, 2, 2,
1668 -1 },
1669
1670 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1671 OPTION_DSPR3, OPTION_NO_DSPR3,
1672 6, 6, -1, -1,
1673 -1 },
1674
1675 { "eva", ASE_EVA, 0,
1676 OPTION_EVA, OPTION_NO_EVA,
1677 2, 2, 2, 2,
1678 -1 },
1679
1680 { "mcu", ASE_MCU, 0,
1681 OPTION_MCU, OPTION_NO_MCU,
1682 2, 2, 2, 2,
1683 -1 },
1684
1685 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1686 { "mdmx", ASE_MDMX, 0,
1687 OPTION_MDMX, OPTION_NO_MDMX,
1688 -1, 1, -1, -1,
1689 6 },
1690
1691 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1692 { "mips3d", ASE_MIPS3D, 0,
1693 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1694 2, 1, -1, -1,
1695 6 },
1696
1697 { "mt", ASE_MT, 0,
1698 OPTION_MT, OPTION_NO_MT,
1699 2, 2, -1, -1,
1700 -1 },
1701
1702 { "smartmips", ASE_SMARTMIPS, 0,
1703 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1704 1, -1, -1, -1,
1705 6 },
1706
1707 { "virt", ASE_VIRT, ASE_VIRT64,
1708 OPTION_VIRT, OPTION_NO_VIRT,
1709 2, 2, 2, 2,
1710 -1 },
1711
1712 { "msa", ASE_MSA, ASE_MSA64,
1713 OPTION_MSA, OPTION_NO_MSA,
1714 2, 2, 2, 2,
1715 -1 },
1716
1717 { "xpa", ASE_XPA, 0,
1718 OPTION_XPA, OPTION_NO_XPA,
1719 2, 2, -1, -1,
1720 -1 },
1721 };
1722
1723 /* The set of ASEs that require -mfp64. */
1724 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1725
1726 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1727 static const unsigned int mips_ase_groups[] = {
1728 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1729 };
1730 \f
1731 /* Pseudo-op table.
1732
1733 The following pseudo-ops from the Kane and Heinrich MIPS book
1734 should be defined here, but are currently unsupported: .alias,
1735 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1736
1737 The following pseudo-ops from the Kane and Heinrich MIPS book are
1738 specific to the type of debugging information being generated, and
1739 should be defined by the object format: .aent, .begin, .bend,
1740 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1741 .vreg.
1742
1743 The following pseudo-ops from the Kane and Heinrich MIPS book are
1744 not MIPS CPU specific, but are also not specific to the object file
1745 format. This file is probably the best place to define them, but
1746 they are not currently supported: .asm0, .endr, .lab, .struct. */
1747
1748 static const pseudo_typeS mips_pseudo_table[] =
1749 {
1750 /* MIPS specific pseudo-ops. */
1751 {"option", s_option, 0},
1752 {"set", s_mipsset, 0},
1753 {"rdata", s_change_sec, 'r'},
1754 {"sdata", s_change_sec, 's'},
1755 {"livereg", s_ignore, 0},
1756 {"abicalls", s_abicalls, 0},
1757 {"cpload", s_cpload, 0},
1758 {"cpsetup", s_cpsetup, 0},
1759 {"cplocal", s_cplocal, 0},
1760 {"cprestore", s_cprestore, 0},
1761 {"cpreturn", s_cpreturn, 0},
1762 {"dtprelword", s_dtprelword, 0},
1763 {"dtpreldword", s_dtpreldword, 0},
1764 {"tprelword", s_tprelword, 0},
1765 {"tpreldword", s_tpreldword, 0},
1766 {"gpvalue", s_gpvalue, 0},
1767 {"gpword", s_gpword, 0},
1768 {"gpdword", s_gpdword, 0},
1769 {"ehword", s_ehword, 0},
1770 {"cpadd", s_cpadd, 0},
1771 {"insn", s_insn, 0},
1772 {"nan", s_nan, 0},
1773 {"module", s_module, 0},
1774
1775 /* Relatively generic pseudo-ops that happen to be used on MIPS
1776 chips. */
1777 {"asciiz", stringer, 8 + 1},
1778 {"bss", s_change_sec, 'b'},
1779 {"err", s_err, 0},
1780 {"half", s_cons, 1},
1781 {"dword", s_cons, 3},
1782 {"weakext", s_mips_weakext, 0},
1783 {"origin", s_org, 0},
1784 {"repeat", s_rept, 0},
1785
1786 /* For MIPS this is non-standard, but we define it for consistency. */
1787 {"sbss", s_change_sec, 'B'},
1788
1789 /* These pseudo-ops are defined in read.c, but must be overridden
1790 here for one reason or another. */
1791 {"align", s_align, 0},
1792 {"byte", s_cons, 0},
1793 {"data", s_change_sec, 'd'},
1794 {"double", s_float_cons, 'd'},
1795 {"float", s_float_cons, 'f'},
1796 {"globl", s_mips_globl, 0},
1797 {"global", s_mips_globl, 0},
1798 {"hword", s_cons, 1},
1799 {"int", s_cons, 2},
1800 {"long", s_cons, 2},
1801 {"octa", s_cons, 4},
1802 {"quad", s_cons, 3},
1803 {"section", s_change_section, 0},
1804 {"short", s_cons, 1},
1805 {"single", s_float_cons, 'f'},
1806 {"stabd", s_mips_stab, 'd'},
1807 {"stabn", s_mips_stab, 'n'},
1808 {"stabs", s_mips_stab, 's'},
1809 {"text", s_change_sec, 't'},
1810 {"word", s_cons, 2},
1811
1812 { "extern", ecoff_directive_extern, 0},
1813
1814 { NULL, NULL, 0 },
1815 };
1816
1817 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1818 {
1819 /* These pseudo-ops should be defined by the object file format.
1820 However, a.out doesn't support them, so we have versions here. */
1821 {"aent", s_mips_ent, 1},
1822 {"bgnb", s_ignore, 0},
1823 {"end", s_mips_end, 0},
1824 {"endb", s_ignore, 0},
1825 {"ent", s_mips_ent, 0},
1826 {"file", s_mips_file, 0},
1827 {"fmask", s_mips_mask, 'F'},
1828 {"frame", s_mips_frame, 0},
1829 {"loc", s_mips_loc, 0},
1830 {"mask", s_mips_mask, 'R'},
1831 {"verstamp", s_ignore, 0},
1832 { NULL, NULL, 0 },
1833 };
1834
1835 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1836 purpose of the `.dc.a' internal pseudo-op. */
1837
1838 int
1839 mips_address_bytes (void)
1840 {
1841 file_mips_check_options ();
1842 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1843 }
1844
1845 extern void pop_insert (const pseudo_typeS *);
1846
1847 void
1848 mips_pop_insert (void)
1849 {
1850 pop_insert (mips_pseudo_table);
1851 if (! ECOFF_DEBUGGING)
1852 pop_insert (mips_nonecoff_pseudo_table);
1853 }
1854 \f
1855 /* Symbols labelling the current insn. */
1856
1857 struct insn_label_list
1858 {
1859 struct insn_label_list *next;
1860 symbolS *label;
1861 };
1862
1863 static struct insn_label_list *free_insn_labels;
1864 #define label_list tc_segment_info_data.labels
1865
1866 static void mips_clear_insn_labels (void);
1867 static void mips_mark_labels (void);
1868 static void mips_compressed_mark_labels (void);
1869
1870 static inline void
1871 mips_clear_insn_labels (void)
1872 {
1873 struct insn_label_list **pl;
1874 segment_info_type *si;
1875
1876 if (now_seg)
1877 {
1878 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1879 ;
1880
1881 si = seg_info (now_seg);
1882 *pl = si->label_list;
1883 si->label_list = NULL;
1884 }
1885 }
1886
1887 /* Mark instruction labels in MIPS16/microMIPS mode. */
1888
1889 static inline void
1890 mips_mark_labels (void)
1891 {
1892 if (HAVE_CODE_COMPRESSION)
1893 mips_compressed_mark_labels ();
1894 }
1895 \f
1896 static char *expr_end;
1897
1898 /* An expression in a macro instruction. This is set by mips_ip and
1899 mips16_ip and when populated is always an O_constant. */
1900
1901 static expressionS imm_expr;
1902
1903 /* The relocatable field in an instruction and the relocs associated
1904 with it. These variables are used for instructions like LUI and
1905 JAL as well as true offsets. They are also used for address
1906 operands in macros. */
1907
1908 static expressionS offset_expr;
1909 static bfd_reloc_code_real_type offset_reloc[3]
1910 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1911
1912 /* This is set to the resulting size of the instruction to be produced
1913 by mips16_ip if an explicit extension is used or by mips_ip if an
1914 explicit size is supplied. */
1915
1916 static unsigned int forced_insn_length;
1917
1918 /* True if we are assembling an instruction. All dot symbols defined during
1919 this time should be treated as code labels. */
1920
1921 static bfd_boolean mips_assembling_insn;
1922
1923 /* The pdr segment for per procedure frame/regmask info. Not used for
1924 ECOFF debugging. */
1925
1926 static segT pdr_seg;
1927
1928 /* The default target format to use. */
1929
1930 #if defined (TE_FreeBSD)
1931 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1932 #elif defined (TE_TMIPS)
1933 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1934 #else
1935 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1936 #endif
1937
1938 const char *
1939 mips_target_format (void)
1940 {
1941 switch (OUTPUT_FLAVOR)
1942 {
1943 case bfd_target_elf_flavour:
1944 #ifdef TE_VXWORKS
1945 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1946 return (target_big_endian
1947 ? "elf32-bigmips-vxworks"
1948 : "elf32-littlemips-vxworks");
1949 #endif
1950 return (target_big_endian
1951 ? (HAVE_64BIT_OBJECTS
1952 ? ELF_TARGET ("elf64-", "big")
1953 : (HAVE_NEWABI
1954 ? ELF_TARGET ("elf32-n", "big")
1955 : ELF_TARGET ("elf32-", "big")))
1956 : (HAVE_64BIT_OBJECTS
1957 ? ELF_TARGET ("elf64-", "little")
1958 : (HAVE_NEWABI
1959 ? ELF_TARGET ("elf32-n", "little")
1960 : ELF_TARGET ("elf32-", "little"))));
1961 default:
1962 abort ();
1963 return NULL;
1964 }
1965 }
1966
1967 /* Return the ISA revision that is currently in use, or 0 if we are
1968 generating code for MIPS V or below. */
1969
1970 static int
1971 mips_isa_rev (void)
1972 {
1973 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1974 return 2;
1975
1976 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1977 return 3;
1978
1979 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1980 return 5;
1981
1982 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1983 return 6;
1984
1985 /* microMIPS implies revision 2 or above. */
1986 if (mips_opts.micromips)
1987 return 2;
1988
1989 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1990 return 1;
1991
1992 return 0;
1993 }
1994
1995 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1996
1997 static unsigned int
1998 mips_ase_mask (unsigned int flags)
1999 {
2000 unsigned int i;
2001
2002 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2003 if (flags & mips_ase_groups[i])
2004 flags |= mips_ase_groups[i];
2005 return flags;
2006 }
2007
2008 /* Check whether the current ISA supports ASE. Issue a warning if
2009 appropriate. */
2010
2011 static void
2012 mips_check_isa_supports_ase (const struct mips_ase *ase)
2013 {
2014 const char *base;
2015 int min_rev, size;
2016 static unsigned int warned_isa;
2017 static unsigned int warned_fp32;
2018
2019 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2020 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2021 else
2022 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2023 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2024 && (warned_isa & ase->flags) != ase->flags)
2025 {
2026 warned_isa |= ase->flags;
2027 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2028 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2029 if (min_rev < 0)
2030 as_warn (_("the %d-bit %s architecture does not support the"
2031 " `%s' extension"), size, base, ase->name);
2032 else
2033 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2034 ase->name, base, size, min_rev);
2035 }
2036 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2037 && (warned_isa & ase->flags) != ase->flags)
2038 {
2039 warned_isa |= ase->flags;
2040 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2041 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2042 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2043 ase->name, base, size, ase->rem_rev);
2044 }
2045
2046 if ((ase->flags & FP64_ASES)
2047 && mips_opts.fp != 64
2048 && (warned_fp32 & ase->flags) != ase->flags)
2049 {
2050 warned_fp32 |= ase->flags;
2051 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2052 }
2053 }
2054
2055 /* Check all enabled ASEs to see whether they are supported by the
2056 chosen architecture. */
2057
2058 static void
2059 mips_check_isa_supports_ases (void)
2060 {
2061 unsigned int i, mask;
2062
2063 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2064 {
2065 mask = mips_ase_mask (mips_ases[i].flags);
2066 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2067 mips_check_isa_supports_ase (&mips_ases[i]);
2068 }
2069 }
2070
2071 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2072 that were affected. */
2073
2074 static unsigned int
2075 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2076 bfd_boolean enabled_p)
2077 {
2078 unsigned int mask;
2079
2080 mask = mips_ase_mask (ase->flags);
2081 opts->ase &= ~mask;
2082 if (enabled_p)
2083 opts->ase |= ase->flags;
2084 return mask;
2085 }
2086
2087 /* Return the ASE called NAME, or null if none. */
2088
2089 static const struct mips_ase *
2090 mips_lookup_ase (const char *name)
2091 {
2092 unsigned int i;
2093
2094 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2095 if (strcmp (name, mips_ases[i].name) == 0)
2096 return &mips_ases[i];
2097 return NULL;
2098 }
2099
2100 /* Return the length of a microMIPS instruction in bytes. If bits of
2101 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2102 otherwise it is a 32-bit instruction. */
2103
2104 static inline unsigned int
2105 micromips_insn_length (const struct mips_opcode *mo)
2106 {
2107 return (mo->mask >> 16) == 0 ? 2 : 4;
2108 }
2109
2110 /* Return the length of MIPS16 instruction OPCODE. */
2111
2112 static inline unsigned int
2113 mips16_opcode_length (unsigned long opcode)
2114 {
2115 return (opcode >> 16) == 0 ? 2 : 4;
2116 }
2117
2118 /* Return the length of instruction INSN. */
2119
2120 static inline unsigned int
2121 insn_length (const struct mips_cl_insn *insn)
2122 {
2123 if (mips_opts.micromips)
2124 return micromips_insn_length (insn->insn_mo);
2125 else if (mips_opts.mips16)
2126 return mips16_opcode_length (insn->insn_opcode);
2127 else
2128 return 4;
2129 }
2130
2131 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2132
2133 static void
2134 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2135 {
2136 size_t i;
2137
2138 insn->insn_mo = mo;
2139 insn->insn_opcode = mo->match;
2140 insn->frag = NULL;
2141 insn->where = 0;
2142 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2143 insn->fixp[i] = NULL;
2144 insn->fixed_p = (mips_opts.noreorder > 0);
2145 insn->noreorder_p = (mips_opts.noreorder > 0);
2146 insn->mips16_absolute_jump_p = 0;
2147 insn->complete_p = 0;
2148 insn->cleared_p = 0;
2149 }
2150
2151 /* Get a list of all the operands in INSN. */
2152
2153 static const struct mips_operand_array *
2154 insn_operands (const struct mips_cl_insn *insn)
2155 {
2156 if (insn->insn_mo >= &mips_opcodes[0]
2157 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2158 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2159
2160 if (insn->insn_mo >= &mips16_opcodes[0]
2161 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2162 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2163
2164 if (insn->insn_mo >= &micromips_opcodes[0]
2165 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2166 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2167
2168 abort ();
2169 }
2170
2171 /* Get a description of operand OPNO of INSN. */
2172
2173 static const struct mips_operand *
2174 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2175 {
2176 const struct mips_operand_array *operands;
2177
2178 operands = insn_operands (insn);
2179 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2180 abort ();
2181 return operands->operand[opno];
2182 }
2183
2184 /* Install UVAL as the value of OPERAND in INSN. */
2185
2186 static inline void
2187 insn_insert_operand (struct mips_cl_insn *insn,
2188 const struct mips_operand *operand, unsigned int uval)
2189 {
2190 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2191 }
2192
2193 /* Extract the value of OPERAND from INSN. */
2194
2195 static inline unsigned
2196 insn_extract_operand (const struct mips_cl_insn *insn,
2197 const struct mips_operand *operand)
2198 {
2199 return mips_extract_operand (operand, insn->insn_opcode);
2200 }
2201
2202 /* Record the current MIPS16/microMIPS mode in now_seg. */
2203
2204 static void
2205 mips_record_compressed_mode (void)
2206 {
2207 segment_info_type *si;
2208
2209 si = seg_info (now_seg);
2210 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2211 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2212 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2213 si->tc_segment_info_data.micromips = mips_opts.micromips;
2214 }
2215
2216 /* Read a standard MIPS instruction from BUF. */
2217
2218 static unsigned long
2219 read_insn (char *buf)
2220 {
2221 if (target_big_endian)
2222 return bfd_getb32 ((bfd_byte *) buf);
2223 else
2224 return bfd_getl32 ((bfd_byte *) buf);
2225 }
2226
2227 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2228 the next byte. */
2229
2230 static char *
2231 write_insn (char *buf, unsigned int insn)
2232 {
2233 md_number_to_chars (buf, insn, 4);
2234 return buf + 4;
2235 }
2236
2237 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2238 has length LENGTH. */
2239
2240 static unsigned long
2241 read_compressed_insn (char *buf, unsigned int length)
2242 {
2243 unsigned long insn;
2244 unsigned int i;
2245
2246 insn = 0;
2247 for (i = 0; i < length; i += 2)
2248 {
2249 insn <<= 16;
2250 if (target_big_endian)
2251 insn |= bfd_getb16 ((char *) buf);
2252 else
2253 insn |= bfd_getl16 ((char *) buf);
2254 buf += 2;
2255 }
2256 return insn;
2257 }
2258
2259 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2260 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2261
2262 static char *
2263 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2264 {
2265 unsigned int i;
2266
2267 for (i = 0; i < length; i += 2)
2268 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2269 return buf + length;
2270 }
2271
2272 /* Install INSN at the location specified by its "frag" and "where" fields. */
2273
2274 static void
2275 install_insn (const struct mips_cl_insn *insn)
2276 {
2277 char *f = insn->frag->fr_literal + insn->where;
2278 if (HAVE_CODE_COMPRESSION)
2279 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2280 else
2281 write_insn (f, insn->insn_opcode);
2282 mips_record_compressed_mode ();
2283 }
2284
2285 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2286 and install the opcode in the new location. */
2287
2288 static void
2289 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2290 {
2291 size_t i;
2292
2293 insn->frag = frag;
2294 insn->where = where;
2295 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2296 if (insn->fixp[i] != NULL)
2297 {
2298 insn->fixp[i]->fx_frag = frag;
2299 insn->fixp[i]->fx_where = where;
2300 }
2301 install_insn (insn);
2302 }
2303
2304 /* Add INSN to the end of the output. */
2305
2306 static void
2307 add_fixed_insn (struct mips_cl_insn *insn)
2308 {
2309 char *f = frag_more (insn_length (insn));
2310 move_insn (insn, frag_now, f - frag_now->fr_literal);
2311 }
2312
2313 /* Start a variant frag and move INSN to the start of the variant part,
2314 marking it as fixed. The other arguments are as for frag_var. */
2315
2316 static void
2317 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2318 relax_substateT subtype, symbolS *symbol, offsetT offset)
2319 {
2320 frag_grow (max_chars);
2321 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2322 insn->fixed_p = 1;
2323 frag_var (rs_machine_dependent, max_chars, var,
2324 subtype, symbol, offset, NULL);
2325 }
2326
2327 /* Insert N copies of INSN into the history buffer, starting at
2328 position FIRST. Neither FIRST nor N need to be clipped. */
2329
2330 static void
2331 insert_into_history (unsigned int first, unsigned int n,
2332 const struct mips_cl_insn *insn)
2333 {
2334 if (mips_relax.sequence != 2)
2335 {
2336 unsigned int i;
2337
2338 for (i = ARRAY_SIZE (history); i-- > first;)
2339 if (i >= first + n)
2340 history[i] = history[i - n];
2341 else
2342 history[i] = *insn;
2343 }
2344 }
2345
2346 /* Clear the error in insn_error. */
2347
2348 static void
2349 clear_insn_error (void)
2350 {
2351 memset (&insn_error, 0, sizeof (insn_error));
2352 }
2353
2354 /* Possibly record error message MSG for the current instruction.
2355 If the error is about a particular argument, ARGNUM is the 1-based
2356 number of that argument, otherwise it is 0. FORMAT is the format
2357 of MSG. Return true if MSG was used, false if the current message
2358 was kept. */
2359
2360 static bfd_boolean
2361 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2362 const char *msg)
2363 {
2364 if (argnum == 0)
2365 {
2366 /* Give priority to errors against specific arguments, and to
2367 the first whole-instruction message. */
2368 if (insn_error.msg)
2369 return FALSE;
2370 }
2371 else
2372 {
2373 /* Keep insn_error if it is against a later argument. */
2374 if (argnum < insn_error.min_argnum)
2375 return FALSE;
2376
2377 /* If both errors are against the same argument but are different,
2378 give up on reporting a specific error for this argument.
2379 See the comment about mips_insn_error for details. */
2380 if (argnum == insn_error.min_argnum
2381 && insn_error.msg
2382 && strcmp (insn_error.msg, msg) != 0)
2383 {
2384 insn_error.msg = 0;
2385 insn_error.min_argnum += 1;
2386 return FALSE;
2387 }
2388 }
2389 insn_error.min_argnum = argnum;
2390 insn_error.format = format;
2391 insn_error.msg = msg;
2392 return TRUE;
2393 }
2394
2395 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398 static void
2399 set_insn_error (int argnum, const char *msg)
2400 {
2401 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2402 }
2403
2404 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2405 as for set_insn_error_format. */
2406
2407 static void
2408 set_insn_error_i (int argnum, const char *msg, int i)
2409 {
2410 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2411 insn_error.u.i = i;
2412 }
2413
2414 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2415 are as for set_insn_error_format. */
2416
2417 static void
2418 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2419 {
2420 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2421 {
2422 insn_error.u.ss[0] = s1;
2423 insn_error.u.ss[1] = s2;
2424 }
2425 }
2426
2427 /* Report the error in insn_error, which is against assembly code STR. */
2428
2429 static void
2430 report_insn_error (const char *str)
2431 {
2432 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2433
2434 switch (insn_error.format)
2435 {
2436 case ERR_FMT_PLAIN:
2437 as_bad (msg, str);
2438 break;
2439
2440 case ERR_FMT_I:
2441 as_bad (msg, insn_error.u.i, str);
2442 break;
2443
2444 case ERR_FMT_SS:
2445 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2446 break;
2447 }
2448
2449 free ((char *) msg);
2450 }
2451
2452 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2453 the idea is to make it obvious at a glance that each errata is
2454 included. */
2455
2456 static void
2457 init_vr4120_conflicts (void)
2458 {
2459 #define CONFLICT(FIRST, SECOND) \
2460 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2461
2462 /* Errata 21 - [D]DIV[U] after [D]MACC */
2463 CONFLICT (MACC, DIV);
2464 CONFLICT (DMACC, DIV);
2465
2466 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2467 CONFLICT (DMULT, DMULT);
2468 CONFLICT (DMULT, DMACC);
2469 CONFLICT (DMACC, DMULT);
2470 CONFLICT (DMACC, DMACC);
2471
2472 /* Errata 24 - MT{LO,HI} after [D]MACC */
2473 CONFLICT (MACC, MTHILO);
2474 CONFLICT (DMACC, MTHILO);
2475
2476 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2477 instruction is executed immediately after a MACC or DMACC
2478 instruction, the result of [either instruction] is incorrect." */
2479 CONFLICT (MACC, MULT);
2480 CONFLICT (MACC, DMULT);
2481 CONFLICT (DMACC, MULT);
2482 CONFLICT (DMACC, DMULT);
2483
2484 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2485 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2486 DDIV or DDIVU instruction, the result of the MACC or
2487 DMACC instruction is incorrect.". */
2488 CONFLICT (DMULT, MACC);
2489 CONFLICT (DMULT, DMACC);
2490 CONFLICT (DIV, MACC);
2491 CONFLICT (DIV, DMACC);
2492
2493 #undef CONFLICT
2494 }
2495
2496 struct regname {
2497 const char *name;
2498 unsigned int num;
2499 };
2500
2501 #define RNUM_MASK 0x00000ff
2502 #define RTYPE_MASK 0x0ffff00
2503 #define RTYPE_NUM 0x0000100
2504 #define RTYPE_FPU 0x0000200
2505 #define RTYPE_FCC 0x0000400
2506 #define RTYPE_VEC 0x0000800
2507 #define RTYPE_GP 0x0001000
2508 #define RTYPE_CP0 0x0002000
2509 #define RTYPE_PC 0x0004000
2510 #define RTYPE_ACC 0x0008000
2511 #define RTYPE_CCC 0x0010000
2512 #define RTYPE_VI 0x0020000
2513 #define RTYPE_VF 0x0040000
2514 #define RTYPE_R5900_I 0x0080000
2515 #define RTYPE_R5900_Q 0x0100000
2516 #define RTYPE_R5900_R 0x0200000
2517 #define RTYPE_R5900_ACC 0x0400000
2518 #define RTYPE_MSA 0x0800000
2519 #define RWARN 0x8000000
2520
2521 #define GENERIC_REGISTER_NUMBERS \
2522 {"$0", RTYPE_NUM | 0}, \
2523 {"$1", RTYPE_NUM | 1}, \
2524 {"$2", RTYPE_NUM | 2}, \
2525 {"$3", RTYPE_NUM | 3}, \
2526 {"$4", RTYPE_NUM | 4}, \
2527 {"$5", RTYPE_NUM | 5}, \
2528 {"$6", RTYPE_NUM | 6}, \
2529 {"$7", RTYPE_NUM | 7}, \
2530 {"$8", RTYPE_NUM | 8}, \
2531 {"$9", RTYPE_NUM | 9}, \
2532 {"$10", RTYPE_NUM | 10}, \
2533 {"$11", RTYPE_NUM | 11}, \
2534 {"$12", RTYPE_NUM | 12}, \
2535 {"$13", RTYPE_NUM | 13}, \
2536 {"$14", RTYPE_NUM | 14}, \
2537 {"$15", RTYPE_NUM | 15}, \
2538 {"$16", RTYPE_NUM | 16}, \
2539 {"$17", RTYPE_NUM | 17}, \
2540 {"$18", RTYPE_NUM | 18}, \
2541 {"$19", RTYPE_NUM | 19}, \
2542 {"$20", RTYPE_NUM | 20}, \
2543 {"$21", RTYPE_NUM | 21}, \
2544 {"$22", RTYPE_NUM | 22}, \
2545 {"$23", RTYPE_NUM | 23}, \
2546 {"$24", RTYPE_NUM | 24}, \
2547 {"$25", RTYPE_NUM | 25}, \
2548 {"$26", RTYPE_NUM | 26}, \
2549 {"$27", RTYPE_NUM | 27}, \
2550 {"$28", RTYPE_NUM | 28}, \
2551 {"$29", RTYPE_NUM | 29}, \
2552 {"$30", RTYPE_NUM | 30}, \
2553 {"$31", RTYPE_NUM | 31}
2554
2555 #define FPU_REGISTER_NAMES \
2556 {"$f0", RTYPE_FPU | 0}, \
2557 {"$f1", RTYPE_FPU | 1}, \
2558 {"$f2", RTYPE_FPU | 2}, \
2559 {"$f3", RTYPE_FPU | 3}, \
2560 {"$f4", RTYPE_FPU | 4}, \
2561 {"$f5", RTYPE_FPU | 5}, \
2562 {"$f6", RTYPE_FPU | 6}, \
2563 {"$f7", RTYPE_FPU | 7}, \
2564 {"$f8", RTYPE_FPU | 8}, \
2565 {"$f9", RTYPE_FPU | 9}, \
2566 {"$f10", RTYPE_FPU | 10}, \
2567 {"$f11", RTYPE_FPU | 11}, \
2568 {"$f12", RTYPE_FPU | 12}, \
2569 {"$f13", RTYPE_FPU | 13}, \
2570 {"$f14", RTYPE_FPU | 14}, \
2571 {"$f15", RTYPE_FPU | 15}, \
2572 {"$f16", RTYPE_FPU | 16}, \
2573 {"$f17", RTYPE_FPU | 17}, \
2574 {"$f18", RTYPE_FPU | 18}, \
2575 {"$f19", RTYPE_FPU | 19}, \
2576 {"$f20", RTYPE_FPU | 20}, \
2577 {"$f21", RTYPE_FPU | 21}, \
2578 {"$f22", RTYPE_FPU | 22}, \
2579 {"$f23", RTYPE_FPU | 23}, \
2580 {"$f24", RTYPE_FPU | 24}, \
2581 {"$f25", RTYPE_FPU | 25}, \
2582 {"$f26", RTYPE_FPU | 26}, \
2583 {"$f27", RTYPE_FPU | 27}, \
2584 {"$f28", RTYPE_FPU | 28}, \
2585 {"$f29", RTYPE_FPU | 29}, \
2586 {"$f30", RTYPE_FPU | 30}, \
2587 {"$f31", RTYPE_FPU | 31}
2588
2589 #define FPU_CONDITION_CODE_NAMES \
2590 {"$fcc0", RTYPE_FCC | 0}, \
2591 {"$fcc1", RTYPE_FCC | 1}, \
2592 {"$fcc2", RTYPE_FCC | 2}, \
2593 {"$fcc3", RTYPE_FCC | 3}, \
2594 {"$fcc4", RTYPE_FCC | 4}, \
2595 {"$fcc5", RTYPE_FCC | 5}, \
2596 {"$fcc6", RTYPE_FCC | 6}, \
2597 {"$fcc7", RTYPE_FCC | 7}
2598
2599 #define COPROC_CONDITION_CODE_NAMES \
2600 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2601 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2602 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2603 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2604 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2605 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2606 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2607 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2608
2609 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2610 {"$a4", RTYPE_GP | 8}, \
2611 {"$a5", RTYPE_GP | 9}, \
2612 {"$a6", RTYPE_GP | 10}, \
2613 {"$a7", RTYPE_GP | 11}, \
2614 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2615 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2616 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2617 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2618 {"$t0", RTYPE_GP | 12}, \
2619 {"$t1", RTYPE_GP | 13}, \
2620 {"$t2", RTYPE_GP | 14}, \
2621 {"$t3", RTYPE_GP | 15}
2622
2623 #define O32_SYMBOLIC_REGISTER_NAMES \
2624 {"$t0", RTYPE_GP | 8}, \
2625 {"$t1", RTYPE_GP | 9}, \
2626 {"$t2", RTYPE_GP | 10}, \
2627 {"$t3", RTYPE_GP | 11}, \
2628 {"$t4", RTYPE_GP | 12}, \
2629 {"$t5", RTYPE_GP | 13}, \
2630 {"$t6", RTYPE_GP | 14}, \
2631 {"$t7", RTYPE_GP | 15}, \
2632 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2633 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2634 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2635 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2636
2637 /* Remaining symbolic register names */
2638 #define SYMBOLIC_REGISTER_NAMES \
2639 {"$zero", RTYPE_GP | 0}, \
2640 {"$at", RTYPE_GP | 1}, \
2641 {"$AT", RTYPE_GP | 1}, \
2642 {"$v0", RTYPE_GP | 2}, \
2643 {"$v1", RTYPE_GP | 3}, \
2644 {"$a0", RTYPE_GP | 4}, \
2645 {"$a1", RTYPE_GP | 5}, \
2646 {"$a2", RTYPE_GP | 6}, \
2647 {"$a3", RTYPE_GP | 7}, \
2648 {"$s0", RTYPE_GP | 16}, \
2649 {"$s1", RTYPE_GP | 17}, \
2650 {"$s2", RTYPE_GP | 18}, \
2651 {"$s3", RTYPE_GP | 19}, \
2652 {"$s4", RTYPE_GP | 20}, \
2653 {"$s5", RTYPE_GP | 21}, \
2654 {"$s6", RTYPE_GP | 22}, \
2655 {"$s7", RTYPE_GP | 23}, \
2656 {"$t8", RTYPE_GP | 24}, \
2657 {"$t9", RTYPE_GP | 25}, \
2658 {"$k0", RTYPE_GP | 26}, \
2659 {"$kt0", RTYPE_GP | 26}, \
2660 {"$k1", RTYPE_GP | 27}, \
2661 {"$kt1", RTYPE_GP | 27}, \
2662 {"$gp", RTYPE_GP | 28}, \
2663 {"$sp", RTYPE_GP | 29}, \
2664 {"$s8", RTYPE_GP | 30}, \
2665 {"$fp", RTYPE_GP | 30}, \
2666 {"$ra", RTYPE_GP | 31}
2667
2668 #define MIPS16_SPECIAL_REGISTER_NAMES \
2669 {"$pc", RTYPE_PC | 0}
2670
2671 #define MDMX_VECTOR_REGISTER_NAMES \
2672 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2673 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2674 {"$v2", RTYPE_VEC | 2}, \
2675 {"$v3", RTYPE_VEC | 3}, \
2676 {"$v4", RTYPE_VEC | 4}, \
2677 {"$v5", RTYPE_VEC | 5}, \
2678 {"$v6", RTYPE_VEC | 6}, \
2679 {"$v7", RTYPE_VEC | 7}, \
2680 {"$v8", RTYPE_VEC | 8}, \
2681 {"$v9", RTYPE_VEC | 9}, \
2682 {"$v10", RTYPE_VEC | 10}, \
2683 {"$v11", RTYPE_VEC | 11}, \
2684 {"$v12", RTYPE_VEC | 12}, \
2685 {"$v13", RTYPE_VEC | 13}, \
2686 {"$v14", RTYPE_VEC | 14}, \
2687 {"$v15", RTYPE_VEC | 15}, \
2688 {"$v16", RTYPE_VEC | 16}, \
2689 {"$v17", RTYPE_VEC | 17}, \
2690 {"$v18", RTYPE_VEC | 18}, \
2691 {"$v19", RTYPE_VEC | 19}, \
2692 {"$v20", RTYPE_VEC | 20}, \
2693 {"$v21", RTYPE_VEC | 21}, \
2694 {"$v22", RTYPE_VEC | 22}, \
2695 {"$v23", RTYPE_VEC | 23}, \
2696 {"$v24", RTYPE_VEC | 24}, \
2697 {"$v25", RTYPE_VEC | 25}, \
2698 {"$v26", RTYPE_VEC | 26}, \
2699 {"$v27", RTYPE_VEC | 27}, \
2700 {"$v28", RTYPE_VEC | 28}, \
2701 {"$v29", RTYPE_VEC | 29}, \
2702 {"$v30", RTYPE_VEC | 30}, \
2703 {"$v31", RTYPE_VEC | 31}
2704
2705 #define R5900_I_NAMES \
2706 {"$I", RTYPE_R5900_I | 0}
2707
2708 #define R5900_Q_NAMES \
2709 {"$Q", RTYPE_R5900_Q | 0}
2710
2711 #define R5900_R_NAMES \
2712 {"$R", RTYPE_R5900_R | 0}
2713
2714 #define R5900_ACC_NAMES \
2715 {"$ACC", RTYPE_R5900_ACC | 0 }
2716
2717 #define MIPS_DSP_ACCUMULATOR_NAMES \
2718 {"$ac0", RTYPE_ACC | 0}, \
2719 {"$ac1", RTYPE_ACC | 1}, \
2720 {"$ac2", RTYPE_ACC | 2}, \
2721 {"$ac3", RTYPE_ACC | 3}
2722
2723 static const struct regname reg_names[] = {
2724 GENERIC_REGISTER_NUMBERS,
2725 FPU_REGISTER_NAMES,
2726 FPU_CONDITION_CODE_NAMES,
2727 COPROC_CONDITION_CODE_NAMES,
2728
2729 /* The $txx registers depends on the abi,
2730 these will be added later into the symbol table from
2731 one of the tables below once mips_abi is set after
2732 parsing of arguments from the command line. */
2733 SYMBOLIC_REGISTER_NAMES,
2734
2735 MIPS16_SPECIAL_REGISTER_NAMES,
2736 MDMX_VECTOR_REGISTER_NAMES,
2737 R5900_I_NAMES,
2738 R5900_Q_NAMES,
2739 R5900_R_NAMES,
2740 R5900_ACC_NAMES,
2741 MIPS_DSP_ACCUMULATOR_NAMES,
2742 {0, 0}
2743 };
2744
2745 static const struct regname reg_names_o32[] = {
2746 O32_SYMBOLIC_REGISTER_NAMES,
2747 {0, 0}
2748 };
2749
2750 static const struct regname reg_names_n32n64[] = {
2751 N32N64_SYMBOLIC_REGISTER_NAMES,
2752 {0, 0}
2753 };
2754
2755 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2756 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2757 of these register symbols, return the associated vector register,
2758 otherwise return SYMVAL itself. */
2759
2760 static unsigned int
2761 mips_prefer_vec_regno (unsigned int symval)
2762 {
2763 if ((symval & -2) == (RTYPE_GP | 2))
2764 return RTYPE_VEC | (symval & 1);
2765 return symval;
2766 }
2767
2768 /* Return true if string [S, E) is a valid register name, storing its
2769 symbol value in *SYMVAL_PTR if so. */
2770
2771 static bfd_boolean
2772 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2773 {
2774 char save_c;
2775 symbolS *symbol;
2776
2777 /* Terminate name. */
2778 save_c = *e;
2779 *e = '\0';
2780
2781 /* Look up the name. */
2782 symbol = symbol_find (s);
2783 *e = save_c;
2784
2785 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2786 return FALSE;
2787
2788 *symval_ptr = S_GET_VALUE (symbol);
2789 return TRUE;
2790 }
2791
2792 /* Return true if the string at *SPTR is a valid register name. Allow it
2793 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2794 is nonnull.
2795
2796 When returning true, move *SPTR past the register, store the
2797 register's symbol value in *SYMVAL_PTR and the channel mask in
2798 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2799 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2800 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2801
2802 static bfd_boolean
2803 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2804 unsigned int *channels_ptr)
2805 {
2806 char *s, *e, *m;
2807 const char *q;
2808 unsigned int channels, symval, bit;
2809
2810 /* Find end of name. */
2811 s = e = *sptr;
2812 if (is_name_beginner (*e))
2813 ++e;
2814 while (is_part_of_name (*e))
2815 ++e;
2816
2817 channels = 0;
2818 if (!mips_parse_register_1 (s, e, &symval))
2819 {
2820 if (!channels_ptr)
2821 return FALSE;
2822
2823 /* Eat characters from the end of the string that are valid
2824 channel suffixes. The preceding register must be $ACC or
2825 end with a digit, so there is no ambiguity. */
2826 bit = 1;
2827 m = e;
2828 for (q = "wzyx"; *q; q++, bit <<= 1)
2829 if (m > s && m[-1] == *q)
2830 {
2831 --m;
2832 channels |= bit;
2833 }
2834
2835 if (channels == 0
2836 || !mips_parse_register_1 (s, m, &symval)
2837 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2838 return FALSE;
2839 }
2840
2841 *sptr = e;
2842 *symval_ptr = symval;
2843 if (channels_ptr)
2844 *channels_ptr = channels;
2845 return TRUE;
2846 }
2847
2848 /* Check if SPTR points at a valid register specifier according to TYPES.
2849 If so, then return 1, advance S to consume the specifier and store
2850 the register's number in REGNOP, otherwise return 0. */
2851
2852 static int
2853 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2854 {
2855 unsigned int regno;
2856
2857 if (mips_parse_register (s, &regno, NULL))
2858 {
2859 if (types & RTYPE_VEC)
2860 regno = mips_prefer_vec_regno (regno);
2861 if (regno & types)
2862 regno &= RNUM_MASK;
2863 else
2864 regno = ~0;
2865 }
2866 else
2867 {
2868 if (types & RWARN)
2869 as_warn (_("unrecognized register name `%s'"), *s);
2870 regno = ~0;
2871 }
2872 if (regnop)
2873 *regnop = regno;
2874 return regno <= RNUM_MASK;
2875 }
2876
2877 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2878 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2879
2880 static char *
2881 mips_parse_vu0_channels (char *s, unsigned int *channels)
2882 {
2883 unsigned int i;
2884
2885 *channels = 0;
2886 for (i = 0; i < 4; i++)
2887 if (*s == "xyzw"[i])
2888 {
2889 *channels |= 1 << (3 - i);
2890 ++s;
2891 }
2892 return s;
2893 }
2894
2895 /* Token types for parsed operand lists. */
2896 enum mips_operand_token_type {
2897 /* A plain register, e.g. $f2. */
2898 OT_REG,
2899
2900 /* A 4-bit XYZW channel mask. */
2901 OT_CHANNELS,
2902
2903 /* A constant vector index, e.g. [1]. */
2904 OT_INTEGER_INDEX,
2905
2906 /* A register vector index, e.g. [$2]. */
2907 OT_REG_INDEX,
2908
2909 /* A continuous range of registers, e.g. $s0-$s4. */
2910 OT_REG_RANGE,
2911
2912 /* A (possibly relocated) expression. */
2913 OT_INTEGER,
2914
2915 /* A floating-point value. */
2916 OT_FLOAT,
2917
2918 /* A single character. This can be '(', ')' or ',', but '(' only appears
2919 before OT_REGs. */
2920 OT_CHAR,
2921
2922 /* A doubled character, either "--" or "++". */
2923 OT_DOUBLE_CHAR,
2924
2925 /* The end of the operand list. */
2926 OT_END
2927 };
2928
2929 /* A parsed operand token. */
2930 struct mips_operand_token
2931 {
2932 /* The type of token. */
2933 enum mips_operand_token_type type;
2934 union
2935 {
2936 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2937 unsigned int regno;
2938
2939 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2940 unsigned int channels;
2941
2942 /* The integer value of an OT_INTEGER_INDEX. */
2943 addressT index;
2944
2945 /* The two register symbol values involved in an OT_REG_RANGE. */
2946 struct {
2947 unsigned int regno1;
2948 unsigned int regno2;
2949 } reg_range;
2950
2951 /* The value of an OT_INTEGER. The value is represented as an
2952 expression and the relocation operators that were applied to
2953 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2954 relocation operators were used. */
2955 struct {
2956 expressionS value;
2957 bfd_reloc_code_real_type relocs[3];
2958 } integer;
2959
2960 /* The binary data for an OT_FLOAT constant, and the number of bytes
2961 in the constant. */
2962 struct {
2963 unsigned char data[8];
2964 int length;
2965 } flt;
2966
2967 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2968 char ch;
2969 } u;
2970 };
2971
2972 /* An obstack used to construct lists of mips_operand_tokens. */
2973 static struct obstack mips_operand_tokens;
2974
2975 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2976
2977 static void
2978 mips_add_token (struct mips_operand_token *token,
2979 enum mips_operand_token_type type)
2980 {
2981 token->type = type;
2982 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2983 }
2984
2985 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2986 and OT_REG tokens for them if so, and return a pointer to the first
2987 unconsumed character. Return null otherwise. */
2988
2989 static char *
2990 mips_parse_base_start (char *s)
2991 {
2992 struct mips_operand_token token;
2993 unsigned int regno, channels;
2994 bfd_boolean decrement_p;
2995
2996 if (*s != '(')
2997 return 0;
2998
2999 ++s;
3000 SKIP_SPACE_TABS (s);
3001
3002 /* Only match "--" as part of a base expression. In other contexts "--X"
3003 is a double negative. */
3004 decrement_p = (s[0] == '-' && s[1] == '-');
3005 if (decrement_p)
3006 {
3007 s += 2;
3008 SKIP_SPACE_TABS (s);
3009 }
3010
3011 /* Allow a channel specifier because that leads to better error messages
3012 than treating something like "$vf0x++" as an expression. */
3013 if (!mips_parse_register (&s, &regno, &channels))
3014 return 0;
3015
3016 token.u.ch = '(';
3017 mips_add_token (&token, OT_CHAR);
3018
3019 if (decrement_p)
3020 {
3021 token.u.ch = '-';
3022 mips_add_token (&token, OT_DOUBLE_CHAR);
3023 }
3024
3025 token.u.regno = regno;
3026 mips_add_token (&token, OT_REG);
3027
3028 if (channels)
3029 {
3030 token.u.channels = channels;
3031 mips_add_token (&token, OT_CHANNELS);
3032 }
3033
3034 /* For consistency, only match "++" as part of base expressions too. */
3035 SKIP_SPACE_TABS (s);
3036 if (s[0] == '+' && s[1] == '+')
3037 {
3038 s += 2;
3039 token.u.ch = '+';
3040 mips_add_token (&token, OT_DOUBLE_CHAR);
3041 }
3042
3043 return s;
3044 }
3045
3046 /* Parse one or more tokens from S. Return a pointer to the first
3047 unconsumed character on success. Return null if an error was found
3048 and store the error text in insn_error. FLOAT_FORMAT is as for
3049 mips_parse_arguments. */
3050
3051 static char *
3052 mips_parse_argument_token (char *s, char float_format)
3053 {
3054 char *end, *save_in;
3055 const char *err;
3056 unsigned int regno1, regno2, channels;
3057 struct mips_operand_token token;
3058
3059 /* First look for "($reg", since we want to treat that as an
3060 OT_CHAR and OT_REG rather than an expression. */
3061 end = mips_parse_base_start (s);
3062 if (end)
3063 return end;
3064
3065 /* Handle other characters that end up as OT_CHARs. */
3066 if (*s == ')' || *s == ',')
3067 {
3068 token.u.ch = *s;
3069 mips_add_token (&token, OT_CHAR);
3070 ++s;
3071 return s;
3072 }
3073
3074 /* Handle tokens that start with a register. */
3075 if (mips_parse_register (&s, &regno1, &channels))
3076 {
3077 if (channels)
3078 {
3079 /* A register and a VU0 channel suffix. */
3080 token.u.regno = regno1;
3081 mips_add_token (&token, OT_REG);
3082
3083 token.u.channels = channels;
3084 mips_add_token (&token, OT_CHANNELS);
3085 return s;
3086 }
3087
3088 SKIP_SPACE_TABS (s);
3089 if (*s == '-')
3090 {
3091 /* A register range. */
3092 ++s;
3093 SKIP_SPACE_TABS (s);
3094 if (!mips_parse_register (&s, &regno2, NULL))
3095 {
3096 set_insn_error (0, _("invalid register range"));
3097 return 0;
3098 }
3099
3100 token.u.reg_range.regno1 = regno1;
3101 token.u.reg_range.regno2 = regno2;
3102 mips_add_token (&token, OT_REG_RANGE);
3103 return s;
3104 }
3105
3106 /* Add the register itself. */
3107 token.u.regno = regno1;
3108 mips_add_token (&token, OT_REG);
3109
3110 /* Check for a vector index. */
3111 if (*s == '[')
3112 {
3113 ++s;
3114 SKIP_SPACE_TABS (s);
3115 if (mips_parse_register (&s, &token.u.regno, NULL))
3116 mips_add_token (&token, OT_REG_INDEX);
3117 else
3118 {
3119 expressionS element;
3120
3121 my_getExpression (&element, s);
3122 if (element.X_op != O_constant)
3123 {
3124 set_insn_error (0, _("vector element must be constant"));
3125 return 0;
3126 }
3127 s = expr_end;
3128 token.u.index = element.X_add_number;
3129 mips_add_token (&token, OT_INTEGER_INDEX);
3130 }
3131 SKIP_SPACE_TABS (s);
3132 if (*s != ']')
3133 {
3134 set_insn_error (0, _("missing `]'"));
3135 return 0;
3136 }
3137 ++s;
3138 }
3139 return s;
3140 }
3141
3142 if (float_format)
3143 {
3144 /* First try to treat expressions as floats. */
3145 save_in = input_line_pointer;
3146 input_line_pointer = s;
3147 err = md_atof (float_format, (char *) token.u.flt.data,
3148 &token.u.flt.length);
3149 end = input_line_pointer;
3150 input_line_pointer = save_in;
3151 if (err && *err)
3152 {
3153 set_insn_error (0, err);
3154 return 0;
3155 }
3156 if (s != end)
3157 {
3158 mips_add_token (&token, OT_FLOAT);
3159 return end;
3160 }
3161 }
3162
3163 /* Treat everything else as an integer expression. */
3164 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3165 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3166 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3167 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3168 s = expr_end;
3169 mips_add_token (&token, OT_INTEGER);
3170 return s;
3171 }
3172
3173 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3174 if expressions should be treated as 32-bit floating-point constants,
3175 'd' if they should be treated as 64-bit floating-point constants,
3176 or 0 if they should be treated as integer expressions (the usual case).
3177
3178 Return a list of tokens on success, otherwise return 0. The caller
3179 must obstack_free the list after use. */
3180
3181 static struct mips_operand_token *
3182 mips_parse_arguments (char *s, char float_format)
3183 {
3184 struct mips_operand_token token;
3185
3186 SKIP_SPACE_TABS (s);
3187 while (*s)
3188 {
3189 s = mips_parse_argument_token (s, float_format);
3190 if (!s)
3191 {
3192 obstack_free (&mips_operand_tokens,
3193 obstack_finish (&mips_operand_tokens));
3194 return 0;
3195 }
3196 SKIP_SPACE_TABS (s);
3197 }
3198 mips_add_token (&token, OT_END);
3199 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3200 }
3201
3202 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3203 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3204
3205 static bfd_boolean
3206 is_opcode_valid (const struct mips_opcode *mo)
3207 {
3208 int isa = mips_opts.isa;
3209 int ase = mips_opts.ase;
3210 int fp_s, fp_d;
3211 unsigned int i;
3212
3213 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3214 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3215 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3216 ase |= mips_ases[i].flags64;
3217
3218 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3219 return FALSE;
3220
3221 /* Check whether the instruction or macro requires single-precision or
3222 double-precision floating-point support. Note that this information is
3223 stored differently in the opcode table for insns and macros. */
3224 if (mo->pinfo == INSN_MACRO)
3225 {
3226 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3227 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3228 }
3229 else
3230 {
3231 fp_s = mo->pinfo & FP_S;
3232 fp_d = mo->pinfo & FP_D;
3233 }
3234
3235 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3236 return FALSE;
3237
3238 if (fp_s && mips_opts.soft_float)
3239 return FALSE;
3240
3241 return TRUE;
3242 }
3243
3244 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3245 selected ISA and architecture. */
3246
3247 static bfd_boolean
3248 is_opcode_valid_16 (const struct mips_opcode *mo)
3249 {
3250 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3251 }
3252
3253 /* Return TRUE if the size of the microMIPS opcode MO matches one
3254 explicitly requested. Always TRUE in the standard MIPS mode. */
3255
3256 static bfd_boolean
3257 is_size_valid (const struct mips_opcode *mo)
3258 {
3259 if (!mips_opts.micromips)
3260 return TRUE;
3261
3262 if (mips_opts.insn32)
3263 {
3264 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3265 return FALSE;
3266 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3267 return FALSE;
3268 }
3269 if (!forced_insn_length)
3270 return TRUE;
3271 if (mo->pinfo == INSN_MACRO)
3272 return FALSE;
3273 return forced_insn_length == micromips_insn_length (mo);
3274 }
3275
3276 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3277 of the preceding instruction. Always TRUE in the standard MIPS mode.
3278
3279 We don't accept macros in 16-bit delay slots to avoid a case where
3280 a macro expansion fails because it relies on a preceding 32-bit real
3281 instruction to have matched and does not handle the operands correctly.
3282 The only macros that may expand to 16-bit instructions are JAL that
3283 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3284 and BGT (that likewise cannot be placed in a delay slot) that decay to
3285 a NOP. In all these cases the macros precede any corresponding real
3286 instruction definitions in the opcode table, so they will match in the
3287 second pass where the size of the delay slot is ignored and therefore
3288 produce correct code. */
3289
3290 static bfd_boolean
3291 is_delay_slot_valid (const struct mips_opcode *mo)
3292 {
3293 if (!mips_opts.micromips)
3294 return TRUE;
3295
3296 if (mo->pinfo == INSN_MACRO)
3297 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3298 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3299 && micromips_insn_length (mo) != 4)
3300 return FALSE;
3301 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3302 && micromips_insn_length (mo) != 2)
3303 return FALSE;
3304
3305 return TRUE;
3306 }
3307
3308 /* For consistency checking, verify that all bits of OPCODE are specified
3309 either by the match/mask part of the instruction definition, or by the
3310 operand list. Also build up a list of operands in OPERANDS.
3311
3312 INSN_BITS says which bits of the instruction are significant.
3313 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3314 provides the mips_operand description of each operand. DECODE_OPERAND
3315 is null for MIPS16 instructions. */
3316
3317 static int
3318 validate_mips_insn (const struct mips_opcode *opcode,
3319 unsigned long insn_bits,
3320 const struct mips_operand *(*decode_operand) (const char *),
3321 struct mips_operand_array *operands)
3322 {
3323 const char *s;
3324 unsigned long used_bits, doubled, undefined, opno, mask;
3325 const struct mips_operand *operand;
3326
3327 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3328 if ((mask & opcode->match) != opcode->match)
3329 {
3330 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3331 opcode->name, opcode->args);
3332 return 0;
3333 }
3334 used_bits = 0;
3335 opno = 0;
3336 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3337 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3338 for (s = opcode->args; *s; ++s)
3339 switch (*s)
3340 {
3341 case ',':
3342 case '(':
3343 case ')':
3344 break;
3345
3346 case '#':
3347 s++;
3348 break;
3349
3350 default:
3351 if (!decode_operand)
3352 operand = decode_mips16_operand (*s, FALSE);
3353 else
3354 operand = decode_operand (s);
3355 if (!operand && opcode->pinfo != INSN_MACRO)
3356 {
3357 as_bad (_("internal: unknown operand type: %s %s"),
3358 opcode->name, opcode->args);
3359 return 0;
3360 }
3361 gas_assert (opno < MAX_OPERANDS);
3362 operands->operand[opno] = operand;
3363 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3364 {
3365 used_bits = mips_insert_operand (operand, used_bits, -1);
3366 if (operand->type == OP_MDMX_IMM_REG)
3367 /* Bit 5 is the format selector (OB vs QH). The opcode table
3368 has separate entries for each format. */
3369 used_bits &= ~(1 << (operand->lsb + 5));
3370 if (operand->type == OP_ENTRY_EXIT_LIST)
3371 used_bits &= ~(mask & 0x700);
3372 }
3373 /* Skip prefix characters. */
3374 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3375 ++s;
3376 opno += 1;
3377 break;
3378 }
3379 doubled = used_bits & mask & insn_bits;
3380 if (doubled)
3381 {
3382 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3383 " %s %s"), doubled, opcode->name, opcode->args);
3384 return 0;
3385 }
3386 used_bits |= mask;
3387 undefined = ~used_bits & insn_bits;
3388 if (opcode->pinfo != INSN_MACRO && undefined)
3389 {
3390 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3391 undefined, opcode->name, opcode->args);
3392 return 0;
3393 }
3394 used_bits &= ~insn_bits;
3395 if (used_bits)
3396 {
3397 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3398 used_bits, opcode->name, opcode->args);
3399 return 0;
3400 }
3401 return 1;
3402 }
3403
3404 /* The MIPS16 version of validate_mips_insn. */
3405
3406 static int
3407 validate_mips16_insn (const struct mips_opcode *opcode,
3408 struct mips_operand_array *operands)
3409 {
3410 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3411 {
3412 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3413 instruction. Use TMP to describe the full instruction. */
3414 struct mips_opcode tmp;
3415
3416 tmp = *opcode;
3417 tmp.match <<= 16;
3418 tmp.mask <<= 16;
3419 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3420 }
3421 return validate_mips_insn (opcode, 0xffff, 0, operands);
3422 }
3423
3424 /* The microMIPS version of validate_mips_insn. */
3425
3426 static int
3427 validate_micromips_insn (const struct mips_opcode *opc,
3428 struct mips_operand_array *operands)
3429 {
3430 unsigned long insn_bits;
3431 unsigned long major;
3432 unsigned int length;
3433
3434 if (opc->pinfo == INSN_MACRO)
3435 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3436 operands);
3437
3438 length = micromips_insn_length (opc);
3439 if (length != 2 && length != 4)
3440 {
3441 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3442 "%s %s"), length, opc->name, opc->args);
3443 return 0;
3444 }
3445 major = opc->match >> (10 + 8 * (length - 2));
3446 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3447 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3448 {
3449 as_bad (_("internal error: bad microMIPS opcode "
3450 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3451 return 0;
3452 }
3453
3454 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3455 insn_bits = 1 << 4 * length;
3456 insn_bits <<= 4 * length;
3457 insn_bits -= 1;
3458 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3459 operands);
3460 }
3461
3462 /* This function is called once, at assembler startup time. It should set up
3463 all the tables, etc. that the MD part of the assembler will need. */
3464
3465 void
3466 md_begin (void)
3467 {
3468 const char *retval = NULL;
3469 int i = 0;
3470 int broken = 0;
3471
3472 if (mips_pic != NO_PIC)
3473 {
3474 if (g_switch_seen && g_switch_value != 0)
3475 as_bad (_("-G may not be used in position-independent code"));
3476 g_switch_value = 0;
3477 }
3478 else if (mips_abicalls)
3479 {
3480 if (g_switch_seen && g_switch_value != 0)
3481 as_bad (_("-G may not be used with abicalls"));
3482 g_switch_value = 0;
3483 }
3484
3485 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3486 as_warn (_("could not set architecture and machine"));
3487
3488 op_hash = hash_new ();
3489
3490 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3491 for (i = 0; i < NUMOPCODES;)
3492 {
3493 const char *name = mips_opcodes[i].name;
3494
3495 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3496 if (retval != NULL)
3497 {
3498 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3499 mips_opcodes[i].name, retval);
3500 /* Probably a memory allocation problem? Give up now. */
3501 as_fatal (_("broken assembler, no assembly attempted"));
3502 }
3503 do
3504 {
3505 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3506 decode_mips_operand, &mips_operands[i]))
3507 broken = 1;
3508 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3509 {
3510 create_insn (&nop_insn, mips_opcodes + i);
3511 if (mips_fix_loongson2f_nop)
3512 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3513 nop_insn.fixed_p = 1;
3514 }
3515 ++i;
3516 }
3517 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3518 }
3519
3520 mips16_op_hash = hash_new ();
3521 mips16_operands = XCNEWVEC (struct mips_operand_array,
3522 bfd_mips16_num_opcodes);
3523
3524 i = 0;
3525 while (i < bfd_mips16_num_opcodes)
3526 {
3527 const char *name = mips16_opcodes[i].name;
3528
3529 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3530 if (retval != NULL)
3531 as_fatal (_("internal: can't hash `%s': %s"),
3532 mips16_opcodes[i].name, retval);
3533 do
3534 {
3535 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3536 broken = 1;
3537 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3538 {
3539 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3540 mips16_nop_insn.fixed_p = 1;
3541 }
3542 ++i;
3543 }
3544 while (i < bfd_mips16_num_opcodes
3545 && strcmp (mips16_opcodes[i].name, name) == 0);
3546 }
3547
3548 micromips_op_hash = hash_new ();
3549 micromips_operands = XCNEWVEC (struct mips_operand_array,
3550 bfd_micromips_num_opcodes);
3551
3552 i = 0;
3553 while (i < bfd_micromips_num_opcodes)
3554 {
3555 const char *name = micromips_opcodes[i].name;
3556
3557 retval = hash_insert (micromips_op_hash, name,
3558 (void *) &micromips_opcodes[i]);
3559 if (retval != NULL)
3560 as_fatal (_("internal: can't hash `%s': %s"),
3561 micromips_opcodes[i].name, retval);
3562 do
3563 {
3564 struct mips_cl_insn *micromips_nop_insn;
3565
3566 if (!validate_micromips_insn (&micromips_opcodes[i],
3567 &micromips_operands[i]))
3568 broken = 1;
3569
3570 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3571 {
3572 if (micromips_insn_length (micromips_opcodes + i) == 2)
3573 micromips_nop_insn = &micromips_nop16_insn;
3574 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3575 micromips_nop_insn = &micromips_nop32_insn;
3576 else
3577 continue;
3578
3579 if (micromips_nop_insn->insn_mo == NULL
3580 && strcmp (name, "nop") == 0)
3581 {
3582 create_insn (micromips_nop_insn, micromips_opcodes + i);
3583 micromips_nop_insn->fixed_p = 1;
3584 }
3585 }
3586 }
3587 while (++i < bfd_micromips_num_opcodes
3588 && strcmp (micromips_opcodes[i].name, name) == 0);
3589 }
3590
3591 if (broken)
3592 as_fatal (_("broken assembler, no assembly attempted"));
3593
3594 /* We add all the general register names to the symbol table. This
3595 helps us detect invalid uses of them. */
3596 for (i = 0; reg_names[i].name; i++)
3597 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3598 reg_names[i].num, /* & RNUM_MASK, */
3599 &zero_address_frag));
3600 if (HAVE_NEWABI)
3601 for (i = 0; reg_names_n32n64[i].name; i++)
3602 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3603 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3604 &zero_address_frag));
3605 else
3606 for (i = 0; reg_names_o32[i].name; i++)
3607 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3608 reg_names_o32[i].num, /* & RNUM_MASK, */
3609 &zero_address_frag));
3610
3611 for (i = 0; i < 32; i++)
3612 {
3613 char regname[6];
3614
3615 /* R5900 VU0 floating-point register. */
3616 sprintf (regname, "$vf%d", i);
3617 symbol_table_insert (symbol_new (regname, reg_section,
3618 RTYPE_VF | i, &zero_address_frag));
3619
3620 /* R5900 VU0 integer register. */
3621 sprintf (regname, "$vi%d", i);
3622 symbol_table_insert (symbol_new (regname, reg_section,
3623 RTYPE_VI | i, &zero_address_frag));
3624
3625 /* MSA register. */
3626 sprintf (regname, "$w%d", i);
3627 symbol_table_insert (symbol_new (regname, reg_section,
3628 RTYPE_MSA | i, &zero_address_frag));
3629 }
3630
3631 obstack_init (&mips_operand_tokens);
3632
3633 mips_no_prev_insn ();
3634
3635 mips_gprmask = 0;
3636 mips_cprmask[0] = 0;
3637 mips_cprmask[1] = 0;
3638 mips_cprmask[2] = 0;
3639 mips_cprmask[3] = 0;
3640
3641 /* set the default alignment for the text section (2**2) */
3642 record_alignment (text_section, 2);
3643
3644 bfd_set_gp_size (stdoutput, g_switch_value);
3645
3646 /* On a native system other than VxWorks, sections must be aligned
3647 to 16 byte boundaries. When configured for an embedded ELF
3648 target, we don't bother. */
3649 if (strncmp (TARGET_OS, "elf", 3) != 0
3650 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3651 {
3652 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3653 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3654 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3655 }
3656
3657 /* Create a .reginfo section for register masks and a .mdebug
3658 section for debugging information. */
3659 {
3660 segT seg;
3661 subsegT subseg;
3662 flagword flags;
3663 segT sec;
3664
3665 seg = now_seg;
3666 subseg = now_subseg;
3667
3668 /* The ABI says this section should be loaded so that the
3669 running program can access it. However, we don't load it
3670 if we are configured for an embedded target */
3671 flags = SEC_READONLY | SEC_DATA;
3672 if (strncmp (TARGET_OS, "elf", 3) != 0)
3673 flags |= SEC_ALLOC | SEC_LOAD;
3674
3675 if (mips_abi != N64_ABI)
3676 {
3677 sec = subseg_new (".reginfo", (subsegT) 0);
3678
3679 bfd_set_section_flags (stdoutput, sec, flags);
3680 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3681
3682 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3683 }
3684 else
3685 {
3686 /* The 64-bit ABI uses a .MIPS.options section rather than
3687 .reginfo section. */
3688 sec = subseg_new (".MIPS.options", (subsegT) 0);
3689 bfd_set_section_flags (stdoutput, sec, flags);
3690 bfd_set_section_alignment (stdoutput, sec, 3);
3691
3692 /* Set up the option header. */
3693 {
3694 Elf_Internal_Options opthdr;
3695 char *f;
3696
3697 opthdr.kind = ODK_REGINFO;
3698 opthdr.size = (sizeof (Elf_External_Options)
3699 + sizeof (Elf64_External_RegInfo));
3700 opthdr.section = 0;
3701 opthdr.info = 0;
3702 f = frag_more (sizeof (Elf_External_Options));
3703 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3704 (Elf_External_Options *) f);
3705
3706 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3707 }
3708 }
3709
3710 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3711 bfd_set_section_flags (stdoutput, sec,
3712 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3713 bfd_set_section_alignment (stdoutput, sec, 3);
3714 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3715
3716 if (ECOFF_DEBUGGING)
3717 {
3718 sec = subseg_new (".mdebug", (subsegT) 0);
3719 (void) bfd_set_section_flags (stdoutput, sec,
3720 SEC_HAS_CONTENTS | SEC_READONLY);
3721 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3722 }
3723 else if (mips_flag_pdr)
3724 {
3725 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3726 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3727 SEC_READONLY | SEC_RELOC
3728 | SEC_DEBUGGING);
3729 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3730 }
3731
3732 subseg_set (seg, subseg);
3733 }
3734
3735 if (mips_fix_vr4120)
3736 init_vr4120_conflicts ();
3737 }
3738
3739 static inline void
3740 fpabi_incompatible_with (int fpabi, const char *what)
3741 {
3742 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3743 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3744 }
3745
3746 static inline void
3747 fpabi_requires (int fpabi, const char *what)
3748 {
3749 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3750 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3751 }
3752
3753 /* Check -mabi and register sizes against the specified FP ABI. */
3754 static void
3755 check_fpabi (int fpabi)
3756 {
3757 switch (fpabi)
3758 {
3759 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3760 if (file_mips_opts.soft_float)
3761 fpabi_incompatible_with (fpabi, "softfloat");
3762 else if (file_mips_opts.single_float)
3763 fpabi_incompatible_with (fpabi, "singlefloat");
3764 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3765 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3766 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3767 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3768 break;
3769
3770 case Val_GNU_MIPS_ABI_FP_XX:
3771 if (mips_abi != O32_ABI)
3772 fpabi_requires (fpabi, "-mabi=32");
3773 else if (file_mips_opts.soft_float)
3774 fpabi_incompatible_with (fpabi, "softfloat");
3775 else if (file_mips_opts.single_float)
3776 fpabi_incompatible_with (fpabi, "singlefloat");
3777 else if (file_mips_opts.fp != 0)
3778 fpabi_requires (fpabi, "fp=xx");
3779 break;
3780
3781 case Val_GNU_MIPS_ABI_FP_64A:
3782 case Val_GNU_MIPS_ABI_FP_64:
3783 if (mips_abi != O32_ABI)
3784 fpabi_requires (fpabi, "-mabi=32");
3785 else if (file_mips_opts.soft_float)
3786 fpabi_incompatible_with (fpabi, "softfloat");
3787 else if (file_mips_opts.single_float)
3788 fpabi_incompatible_with (fpabi, "singlefloat");
3789 else if (file_mips_opts.fp != 64)
3790 fpabi_requires (fpabi, "fp=64");
3791 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3792 fpabi_incompatible_with (fpabi, "nooddspreg");
3793 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3794 fpabi_requires (fpabi, "nooddspreg");
3795 break;
3796
3797 case Val_GNU_MIPS_ABI_FP_SINGLE:
3798 if (file_mips_opts.soft_float)
3799 fpabi_incompatible_with (fpabi, "softfloat");
3800 else if (!file_mips_opts.single_float)
3801 fpabi_requires (fpabi, "singlefloat");
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_SOFT:
3805 if (!file_mips_opts.soft_float)
3806 fpabi_requires (fpabi, "softfloat");
3807 break;
3808
3809 case Val_GNU_MIPS_ABI_FP_OLD_64:
3810 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3811 Tag_GNU_MIPS_ABI_FP, fpabi);
3812 break;
3813
3814 case Val_GNU_MIPS_ABI_FP_NAN2008:
3815 /* Silently ignore compatibility value. */
3816 break;
3817
3818 default:
3819 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3820 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3821 break;
3822 }
3823 }
3824
3825 /* Perform consistency checks on the current options. */
3826
3827 static void
3828 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3829 {
3830 /* Check the size of integer registers agrees with the ABI and ISA. */
3831 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3832 as_bad (_("`gp=64' used with a 32-bit processor"));
3833 else if (abi_checks
3834 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3835 as_bad (_("`gp=32' used with a 64-bit ABI"));
3836 else if (abi_checks
3837 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3838 as_bad (_("`gp=64' used with a 32-bit ABI"));
3839
3840 /* Check the size of the float registers agrees with the ABI and ISA. */
3841 switch (opts->fp)
3842 {
3843 case 0:
3844 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3845 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3846 else if (opts->single_float == 1)
3847 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3848 break;
3849 case 64:
3850 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3851 as_bad (_("`fp=64' used with a 32-bit fpu"));
3852 else if (abi_checks
3853 && ABI_NEEDS_32BIT_REGS (mips_abi)
3854 && !ISA_HAS_MXHC1 (opts->isa))
3855 as_warn (_("`fp=64' used with a 32-bit ABI"));
3856 break;
3857 case 32:
3858 if (abi_checks
3859 && ABI_NEEDS_64BIT_REGS (mips_abi))
3860 as_warn (_("`fp=32' used with a 64-bit ABI"));
3861 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3862 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3863 break;
3864 default:
3865 as_bad (_("Unknown size of floating point registers"));
3866 break;
3867 }
3868
3869 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3870 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3871
3872 if (opts->micromips == 1 && opts->mips16 == 1)
3873 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3874 else if (ISA_IS_R6 (opts->isa)
3875 && (opts->micromips == 1
3876 || opts->mips16 == 1))
3877 as_fatal (_("`%s' cannot be used with `%s'"),
3878 opts->micromips ? "micromips" : "mips16",
3879 mips_cpu_info_from_isa (opts->isa)->name);
3880
3881 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3882 as_fatal (_("branch relaxation is not supported in `%s'"),
3883 mips_cpu_info_from_isa (opts->isa)->name);
3884 }
3885
3886 /* Perform consistency checks on the module level options exactly once.
3887 This is a deferred check that happens:
3888 at the first .set directive
3889 or, at the first pseudo op that generates code (inc .dc.a)
3890 or, at the first instruction
3891 or, at the end. */
3892
3893 static void
3894 file_mips_check_options (void)
3895 {
3896 const struct mips_cpu_info *arch_info = 0;
3897
3898 if (file_mips_opts_checked)
3899 return;
3900
3901 /* The following code determines the register size.
3902 Similar code was added to GCC 3.3 (see override_options() in
3903 config/mips/mips.c). The GAS and GCC code should be kept in sync
3904 as much as possible. */
3905
3906 if (file_mips_opts.gp < 0)
3907 {
3908 /* Infer the integer register size from the ABI and processor.
3909 Restrict ourselves to 32-bit registers if that's all the
3910 processor has, or if the ABI cannot handle 64-bit registers. */
3911 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3912 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3913 ? 32 : 64;
3914 }
3915
3916 if (file_mips_opts.fp < 0)
3917 {
3918 /* No user specified float register size.
3919 ??? GAS treats single-float processors as though they had 64-bit
3920 float registers (although it complains when double-precision
3921 instructions are used). As things stand, saying they have 32-bit
3922 registers would lead to spurious "register must be even" messages.
3923 So here we assume float registers are never smaller than the
3924 integer ones. */
3925 if (file_mips_opts.gp == 64)
3926 /* 64-bit integer registers implies 64-bit float registers. */
3927 file_mips_opts.fp = 64;
3928 else if ((file_mips_opts.ase & FP64_ASES)
3929 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3930 /* Handle ASEs that require 64-bit float registers, if possible. */
3931 file_mips_opts.fp = 64;
3932 else if (ISA_IS_R6 (mips_opts.isa))
3933 /* R6 implies 64-bit float registers. */
3934 file_mips_opts.fp = 64;
3935 else
3936 /* 32-bit float registers. */
3937 file_mips_opts.fp = 32;
3938 }
3939
3940 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3941
3942 /* Disable operations on odd-numbered floating-point registers by default
3943 when using the FPXX ABI. */
3944 if (file_mips_opts.oddspreg < 0)
3945 {
3946 if (file_mips_opts.fp == 0)
3947 file_mips_opts.oddspreg = 0;
3948 else
3949 file_mips_opts.oddspreg = 1;
3950 }
3951
3952 /* End of GCC-shared inference code. */
3953
3954 /* This flag is set when we have a 64-bit capable CPU but use only
3955 32-bit wide registers. Note that EABI does not use it. */
3956 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3957 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3958 || mips_abi == O32_ABI))
3959 mips_32bitmode = 1;
3960
3961 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3962 as_bad (_("trap exception not supported at ISA 1"));
3963
3964 /* If the selected architecture includes support for ASEs, enable
3965 generation of code for them. */
3966 if (file_mips_opts.mips16 == -1)
3967 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3968 if (file_mips_opts.micromips == -1)
3969 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3970 ? 1 : 0;
3971
3972 if (mips_nan2008 == -1)
3973 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3974 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3975 as_fatal (_("`%s' does not support legacy NaN"),
3976 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3977
3978 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3979 being selected implicitly. */
3980 if (file_mips_opts.fp != 64)
3981 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3982
3983 /* If the user didn't explicitly select or deselect a particular ASE,
3984 use the default setting for the CPU. */
3985 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3986
3987 /* Set up the current options. These may change throughout assembly. */
3988 mips_opts = file_mips_opts;
3989
3990 mips_check_isa_supports_ases ();
3991 mips_check_options (&file_mips_opts, TRUE);
3992 file_mips_opts_checked = TRUE;
3993
3994 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3995 as_warn (_("could not set architecture and machine"));
3996 }
3997
3998 void
3999 md_assemble (char *str)
4000 {
4001 struct mips_cl_insn insn;
4002 bfd_reloc_code_real_type unused_reloc[3]
4003 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4004
4005 file_mips_check_options ();
4006
4007 imm_expr.X_op = O_absent;
4008 offset_expr.X_op = O_absent;
4009 offset_reloc[0] = BFD_RELOC_UNUSED;
4010 offset_reloc[1] = BFD_RELOC_UNUSED;
4011 offset_reloc[2] = BFD_RELOC_UNUSED;
4012
4013 mips_mark_labels ();
4014 mips_assembling_insn = TRUE;
4015 clear_insn_error ();
4016
4017 if (mips_opts.mips16)
4018 mips16_ip (str, &insn);
4019 else
4020 {
4021 mips_ip (str, &insn);
4022 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4023 str, insn.insn_opcode));
4024 }
4025
4026 if (insn_error.msg)
4027 report_insn_error (str);
4028 else if (insn.insn_mo->pinfo == INSN_MACRO)
4029 {
4030 macro_start ();
4031 if (mips_opts.mips16)
4032 mips16_macro (&insn);
4033 else
4034 macro (&insn, str);
4035 macro_end ();
4036 }
4037 else
4038 {
4039 if (offset_expr.X_op != O_absent)
4040 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4041 else
4042 append_insn (&insn, NULL, unused_reloc, FALSE);
4043 }
4044
4045 mips_assembling_insn = FALSE;
4046 }
4047
4048 /* Convenience functions for abstracting away the differences between
4049 MIPS16 and non-MIPS16 relocations. */
4050
4051 static inline bfd_boolean
4052 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4053 {
4054 switch (reloc)
4055 {
4056 case BFD_RELOC_MIPS16_JMP:
4057 case BFD_RELOC_MIPS16_GPREL:
4058 case BFD_RELOC_MIPS16_GOT16:
4059 case BFD_RELOC_MIPS16_CALL16:
4060 case BFD_RELOC_MIPS16_HI16_S:
4061 case BFD_RELOC_MIPS16_HI16:
4062 case BFD_RELOC_MIPS16_LO16:
4063 case BFD_RELOC_MIPS16_16_PCREL_S1:
4064 return TRUE;
4065
4066 default:
4067 return FALSE;
4068 }
4069 }
4070
4071 static inline bfd_boolean
4072 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4073 {
4074 switch (reloc)
4075 {
4076 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4077 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4078 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4079 case BFD_RELOC_MICROMIPS_GPREL16:
4080 case BFD_RELOC_MICROMIPS_JMP:
4081 case BFD_RELOC_MICROMIPS_HI16:
4082 case BFD_RELOC_MICROMIPS_HI16_S:
4083 case BFD_RELOC_MICROMIPS_LO16:
4084 case BFD_RELOC_MICROMIPS_LITERAL:
4085 case BFD_RELOC_MICROMIPS_GOT16:
4086 case BFD_RELOC_MICROMIPS_CALL16:
4087 case BFD_RELOC_MICROMIPS_GOT_HI16:
4088 case BFD_RELOC_MICROMIPS_GOT_LO16:
4089 case BFD_RELOC_MICROMIPS_CALL_HI16:
4090 case BFD_RELOC_MICROMIPS_CALL_LO16:
4091 case BFD_RELOC_MICROMIPS_SUB:
4092 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4093 case BFD_RELOC_MICROMIPS_GOT_OFST:
4094 case BFD_RELOC_MICROMIPS_GOT_DISP:
4095 case BFD_RELOC_MICROMIPS_HIGHEST:
4096 case BFD_RELOC_MICROMIPS_HIGHER:
4097 case BFD_RELOC_MICROMIPS_SCN_DISP:
4098 case BFD_RELOC_MICROMIPS_JALR:
4099 return TRUE;
4100
4101 default:
4102 return FALSE;
4103 }
4104 }
4105
4106 static inline bfd_boolean
4107 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4108 {
4109 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4110 }
4111
4112 static inline bfd_boolean
4113 b_reloc_p (bfd_reloc_code_real_type reloc)
4114 {
4115 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4116 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4117 || reloc == BFD_RELOC_16_PCREL_S2
4118 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4119 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4120 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4121 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4122 }
4123
4124 static inline bfd_boolean
4125 got16_reloc_p (bfd_reloc_code_real_type reloc)
4126 {
4127 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4128 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4129 }
4130
4131 static inline bfd_boolean
4132 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4133 {
4134 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4135 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4136 }
4137
4138 static inline bfd_boolean
4139 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4140 {
4141 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4142 || reloc == BFD_RELOC_MICROMIPS_LO16);
4143 }
4144
4145 static inline bfd_boolean
4146 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4147 {
4148 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4149 }
4150
4151 static inline bfd_boolean
4152 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4153 {
4154 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4155 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4156 }
4157
4158 /* Return true if RELOC is a PC-relative relocation that does not have
4159 full address range. */
4160
4161 static inline bfd_boolean
4162 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4163 {
4164 switch (reloc)
4165 {
4166 case BFD_RELOC_16_PCREL_S2:
4167 case BFD_RELOC_MIPS16_16_PCREL_S1:
4168 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4169 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4170 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4171 case BFD_RELOC_MIPS_21_PCREL_S2:
4172 case BFD_RELOC_MIPS_26_PCREL_S2:
4173 case BFD_RELOC_MIPS_18_PCREL_S3:
4174 case BFD_RELOC_MIPS_19_PCREL_S2:
4175 return TRUE;
4176
4177 case BFD_RELOC_32_PCREL:
4178 case BFD_RELOC_HI16_S_PCREL:
4179 case BFD_RELOC_LO16_PCREL:
4180 return HAVE_64BIT_ADDRESSES;
4181
4182 default:
4183 return FALSE;
4184 }
4185 }
4186
4187 /* Return true if the given relocation might need a matching %lo().
4188 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4189 need a matching %lo() when applied to local symbols. */
4190
4191 static inline bfd_boolean
4192 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4193 {
4194 return (HAVE_IN_PLACE_ADDENDS
4195 && (hi16_reloc_p (reloc)
4196 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4197 all GOT16 relocations evaluate to "G". */
4198 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4199 }
4200
4201 /* Return the type of %lo() reloc needed by RELOC, given that
4202 reloc_needs_lo_p. */
4203
4204 static inline bfd_reloc_code_real_type
4205 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4206 {
4207 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4208 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4209 : BFD_RELOC_LO16));
4210 }
4211
4212 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4213 relocation. */
4214
4215 static inline bfd_boolean
4216 fixup_has_matching_lo_p (fixS *fixp)
4217 {
4218 return (fixp->fx_next != NULL
4219 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4220 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4221 && fixp->fx_offset == fixp->fx_next->fx_offset);
4222 }
4223
4224 /* Move all labels in LABELS to the current insertion point. TEXT_P
4225 says whether the labels refer to text or data. */
4226
4227 static void
4228 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4229 {
4230 struct insn_label_list *l;
4231 valueT val;
4232
4233 for (l = labels; l != NULL; l = l->next)
4234 {
4235 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4236 symbol_set_frag (l->label, frag_now);
4237 val = (valueT) frag_now_fix ();
4238 /* MIPS16/microMIPS text labels are stored as odd. */
4239 if (text_p && HAVE_CODE_COMPRESSION)
4240 ++val;
4241 S_SET_VALUE (l->label, val);
4242 }
4243 }
4244
4245 /* Move all labels in insn_labels to the current insertion point
4246 and treat them as text labels. */
4247
4248 static void
4249 mips_move_text_labels (void)
4250 {
4251 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4252 }
4253
4254 static bfd_boolean
4255 s_is_linkonce (symbolS *sym, segT from_seg)
4256 {
4257 bfd_boolean linkonce = FALSE;
4258 segT symseg = S_GET_SEGMENT (sym);
4259
4260 if (symseg != from_seg && !S_IS_LOCAL (sym))
4261 {
4262 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4263 linkonce = TRUE;
4264 /* The GNU toolchain uses an extension for ELF: a section
4265 beginning with the magic string .gnu.linkonce is a
4266 linkonce section. */
4267 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4268 sizeof ".gnu.linkonce" - 1) == 0)
4269 linkonce = TRUE;
4270 }
4271 return linkonce;
4272 }
4273
4274 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4275 linker to handle them specially, such as generating jalx instructions
4276 when needed. We also make them odd for the duration of the assembly,
4277 in order to generate the right sort of code. We will make them even
4278 in the adjust_symtab routine, while leaving them marked. This is
4279 convenient for the debugger and the disassembler. The linker knows
4280 to make them odd again. */
4281
4282 static void
4283 mips_compressed_mark_label (symbolS *label)
4284 {
4285 gas_assert (HAVE_CODE_COMPRESSION);
4286
4287 if (mips_opts.mips16)
4288 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4289 else
4290 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4291 if ((S_GET_VALUE (label) & 1) == 0
4292 /* Don't adjust the address if the label is global or weak, or
4293 in a link-once section, since we'll be emitting symbol reloc
4294 references to it which will be patched up by the linker, and
4295 the final value of the symbol may or may not be MIPS16/microMIPS. */
4296 && !S_IS_WEAK (label)
4297 && !S_IS_EXTERNAL (label)
4298 && !s_is_linkonce (label, now_seg))
4299 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4300 }
4301
4302 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4303
4304 static void
4305 mips_compressed_mark_labels (void)
4306 {
4307 struct insn_label_list *l;
4308
4309 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4310 mips_compressed_mark_label (l->label);
4311 }
4312
4313 /* End the current frag. Make it a variant frag and record the
4314 relaxation info. */
4315
4316 static void
4317 relax_close_frag (void)
4318 {
4319 mips_macro_warning.first_frag = frag_now;
4320 frag_var (rs_machine_dependent, 0, 0,
4321 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4322 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4323
4324 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4325 mips_relax.first_fixup = 0;
4326 }
4327
4328 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4329 See the comment above RELAX_ENCODE for more details. */
4330
4331 static void
4332 relax_start (symbolS *symbol)
4333 {
4334 gas_assert (mips_relax.sequence == 0);
4335 mips_relax.sequence = 1;
4336 mips_relax.symbol = symbol;
4337 }
4338
4339 /* Start generating the second version of a relaxable sequence.
4340 See the comment above RELAX_ENCODE for more details. */
4341
4342 static void
4343 relax_switch (void)
4344 {
4345 gas_assert (mips_relax.sequence == 1);
4346 mips_relax.sequence = 2;
4347 }
4348
4349 /* End the current relaxable sequence. */
4350
4351 static void
4352 relax_end (void)
4353 {
4354 gas_assert (mips_relax.sequence == 2);
4355 relax_close_frag ();
4356 mips_relax.sequence = 0;
4357 }
4358
4359 /* Return true if IP is a delayed branch or jump. */
4360
4361 static inline bfd_boolean
4362 delayed_branch_p (const struct mips_cl_insn *ip)
4363 {
4364 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4365 | INSN_COND_BRANCH_DELAY
4366 | INSN_COND_BRANCH_LIKELY)) != 0;
4367 }
4368
4369 /* Return true if IP is a compact branch or jump. */
4370
4371 static inline bfd_boolean
4372 compact_branch_p (const struct mips_cl_insn *ip)
4373 {
4374 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4375 | INSN2_COND_BRANCH)) != 0;
4376 }
4377
4378 /* Return true if IP is an unconditional branch or jump. */
4379
4380 static inline bfd_boolean
4381 uncond_branch_p (const struct mips_cl_insn *ip)
4382 {
4383 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4384 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4385 }
4386
4387 /* Return true if IP is a branch-likely instruction. */
4388
4389 static inline bfd_boolean
4390 branch_likely_p (const struct mips_cl_insn *ip)
4391 {
4392 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4393 }
4394
4395 /* Return the type of nop that should be used to fill the delay slot
4396 of delayed branch IP. */
4397
4398 static struct mips_cl_insn *
4399 get_delay_slot_nop (const struct mips_cl_insn *ip)
4400 {
4401 if (mips_opts.micromips
4402 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4403 return &micromips_nop32_insn;
4404 return NOP_INSN;
4405 }
4406
4407 /* Return a mask that has bit N set if OPCODE reads the register(s)
4408 in operand N. */
4409
4410 static unsigned int
4411 insn_read_mask (const struct mips_opcode *opcode)
4412 {
4413 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4414 }
4415
4416 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4417 in operand N. */
4418
4419 static unsigned int
4420 insn_write_mask (const struct mips_opcode *opcode)
4421 {
4422 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4423 }
4424
4425 /* Return a mask of the registers specified by operand OPERAND of INSN.
4426 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4427 is set. */
4428
4429 static unsigned int
4430 operand_reg_mask (const struct mips_cl_insn *insn,
4431 const struct mips_operand *operand,
4432 unsigned int type_mask)
4433 {
4434 unsigned int uval, vsel;
4435
4436 switch (operand->type)
4437 {
4438 case OP_INT:
4439 case OP_MAPPED_INT:
4440 case OP_MSB:
4441 case OP_PCREL:
4442 case OP_PERF_REG:
4443 case OP_ADDIUSP_INT:
4444 case OP_ENTRY_EXIT_LIST:
4445 case OP_REPEAT_DEST_REG:
4446 case OP_REPEAT_PREV_REG:
4447 case OP_PC:
4448 case OP_VU0_SUFFIX:
4449 case OP_VU0_MATCH_SUFFIX:
4450 case OP_IMM_INDEX:
4451 abort ();
4452
4453 case OP_REG:
4454 case OP_OPTIONAL_REG:
4455 {
4456 const struct mips_reg_operand *reg_op;
4457
4458 reg_op = (const struct mips_reg_operand *) operand;
4459 if (!(type_mask & (1 << reg_op->reg_type)))
4460 return 0;
4461 uval = insn_extract_operand (insn, operand);
4462 return 1 << mips_decode_reg_operand (reg_op, uval);
4463 }
4464
4465 case OP_REG_PAIR:
4466 {
4467 const struct mips_reg_pair_operand *pair_op;
4468
4469 pair_op = (const struct mips_reg_pair_operand *) operand;
4470 if (!(type_mask & (1 << pair_op->reg_type)))
4471 return 0;
4472 uval = insn_extract_operand (insn, operand);
4473 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4474 }
4475
4476 case OP_CLO_CLZ_DEST:
4477 if (!(type_mask & (1 << OP_REG_GP)))
4478 return 0;
4479 uval = insn_extract_operand (insn, operand);
4480 return (1 << (uval & 31)) | (1 << (uval >> 5));
4481
4482 case OP_SAME_RS_RT:
4483 if (!(type_mask & (1 << OP_REG_GP)))
4484 return 0;
4485 uval = insn_extract_operand (insn, operand);
4486 gas_assert ((uval & 31) == (uval >> 5));
4487 return 1 << (uval & 31);
4488
4489 case OP_CHECK_PREV:
4490 case OP_NON_ZERO_REG:
4491 if (!(type_mask & (1 << OP_REG_GP)))
4492 return 0;
4493 uval = insn_extract_operand (insn, operand);
4494 return 1 << (uval & 31);
4495
4496 case OP_LWM_SWM_LIST:
4497 abort ();
4498
4499 case OP_SAVE_RESTORE_LIST:
4500 abort ();
4501
4502 case OP_MDMX_IMM_REG:
4503 if (!(type_mask & (1 << OP_REG_VEC)))
4504 return 0;
4505 uval = insn_extract_operand (insn, operand);
4506 vsel = uval >> 5;
4507 if ((vsel & 0x18) == 0x18)
4508 return 0;
4509 return 1 << (uval & 31);
4510
4511 case OP_REG_INDEX:
4512 if (!(type_mask & (1 << OP_REG_GP)))
4513 return 0;
4514 return 1 << insn_extract_operand (insn, operand);
4515 }
4516 abort ();
4517 }
4518
4519 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4520 where bit N of OPNO_MASK is set if operand N should be included.
4521 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4522 is set. */
4523
4524 static unsigned int
4525 insn_reg_mask (const struct mips_cl_insn *insn,
4526 unsigned int type_mask, unsigned int opno_mask)
4527 {
4528 unsigned int opno, reg_mask;
4529
4530 opno = 0;
4531 reg_mask = 0;
4532 while (opno_mask != 0)
4533 {
4534 if (opno_mask & 1)
4535 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4536 opno_mask >>= 1;
4537 opno += 1;
4538 }
4539 return reg_mask;
4540 }
4541
4542 /* Return the mask of core registers that IP reads. */
4543
4544 static unsigned int
4545 gpr_read_mask (const struct mips_cl_insn *ip)
4546 {
4547 unsigned long pinfo, pinfo2;
4548 unsigned int mask;
4549
4550 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4551 pinfo = ip->insn_mo->pinfo;
4552 pinfo2 = ip->insn_mo->pinfo2;
4553 if (pinfo & INSN_UDI)
4554 {
4555 /* UDI instructions have traditionally been assumed to read RS
4556 and RT. */
4557 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4558 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4559 }
4560 if (pinfo & INSN_READ_GPR_24)
4561 mask |= 1 << 24;
4562 if (pinfo2 & INSN2_READ_GPR_16)
4563 mask |= 1 << 16;
4564 if (pinfo2 & INSN2_READ_SP)
4565 mask |= 1 << SP;
4566 if (pinfo2 & INSN2_READ_GPR_31)
4567 mask |= 1 << 31;
4568 /* Don't include register 0. */
4569 return mask & ~1;
4570 }
4571
4572 /* Return the mask of core registers that IP writes. */
4573
4574 static unsigned int
4575 gpr_write_mask (const struct mips_cl_insn *ip)
4576 {
4577 unsigned long pinfo, pinfo2;
4578 unsigned int mask;
4579
4580 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4581 pinfo = ip->insn_mo->pinfo;
4582 pinfo2 = ip->insn_mo->pinfo2;
4583 if (pinfo & INSN_WRITE_GPR_24)
4584 mask |= 1 << 24;
4585 if (pinfo & INSN_WRITE_GPR_31)
4586 mask |= 1 << 31;
4587 if (pinfo & INSN_UDI)
4588 /* UDI instructions have traditionally been assumed to write to RD. */
4589 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4590 if (pinfo2 & INSN2_WRITE_SP)
4591 mask |= 1 << SP;
4592 /* Don't include register 0. */
4593 return mask & ~1;
4594 }
4595
4596 /* Return the mask of floating-point registers that IP reads. */
4597
4598 static unsigned int
4599 fpr_read_mask (const struct mips_cl_insn *ip)
4600 {
4601 unsigned long pinfo;
4602 unsigned int mask;
4603
4604 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4605 | (1 << OP_REG_MSA)),
4606 insn_read_mask (ip->insn_mo));
4607 pinfo = ip->insn_mo->pinfo;
4608 /* Conservatively treat all operands to an FP_D instruction are doubles.
4609 (This is overly pessimistic for things like cvt.d.s.) */
4610 if (FPR_SIZE != 64 && (pinfo & FP_D))
4611 mask |= mask << 1;
4612 return mask;
4613 }
4614
4615 /* Return the mask of floating-point registers that IP writes. */
4616
4617 static unsigned int
4618 fpr_write_mask (const struct mips_cl_insn *ip)
4619 {
4620 unsigned long pinfo;
4621 unsigned int mask;
4622
4623 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4624 | (1 << OP_REG_MSA)),
4625 insn_write_mask (ip->insn_mo));
4626 pinfo = ip->insn_mo->pinfo;
4627 /* Conservatively treat all operands to an FP_D instruction are doubles.
4628 (This is overly pessimistic for things like cvt.s.d.) */
4629 if (FPR_SIZE != 64 && (pinfo & FP_D))
4630 mask |= mask << 1;
4631 return mask;
4632 }
4633
4634 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4635 Check whether that is allowed. */
4636
4637 static bfd_boolean
4638 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4639 {
4640 const char *s = insn->name;
4641 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4642 || FPR_SIZE == 64)
4643 && mips_opts.oddspreg;
4644
4645 if (insn->pinfo == INSN_MACRO)
4646 /* Let a macro pass, we'll catch it later when it is expanded. */
4647 return TRUE;
4648
4649 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4650 otherwise it depends on oddspreg. */
4651 if ((insn->pinfo & FP_S)
4652 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4653 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4654 return FPR_SIZE == 32 || oddspreg;
4655
4656 /* Allow odd registers for single-precision ops and double-precision if the
4657 floating-point registers are 64-bit wide. */
4658 switch (insn->pinfo & (FP_S | FP_D))
4659 {
4660 case FP_S:
4661 case 0:
4662 return oddspreg;
4663 case FP_D:
4664 return FPR_SIZE == 64;
4665 default:
4666 break;
4667 }
4668
4669 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4670 s = strchr (insn->name, '.');
4671 if (s != NULL && opnum == 2)
4672 s = strchr (s + 1, '.');
4673 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4674 return oddspreg;
4675
4676 return FPR_SIZE == 64;
4677 }
4678
4679 /* Information about an instruction argument that we're trying to match. */
4680 struct mips_arg_info
4681 {
4682 /* The instruction so far. */
4683 struct mips_cl_insn *insn;
4684
4685 /* The first unconsumed operand token. */
4686 struct mips_operand_token *token;
4687
4688 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4689 int opnum;
4690
4691 /* The 1-based argument number, for error reporting. This does not
4692 count elided optional registers, etc.. */
4693 int argnum;
4694
4695 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4696 unsigned int last_regno;
4697
4698 /* If the first operand was an OP_REG, this is the register that it
4699 specified, otherwise it is ILLEGAL_REG. */
4700 unsigned int dest_regno;
4701
4702 /* The value of the last OP_INT operand. Only used for OP_MSB,
4703 where it gives the lsb position. */
4704 unsigned int last_op_int;
4705
4706 /* If true, match routines should assume that no later instruction
4707 alternative matches and should therefore be as accomodating as
4708 possible. Match routines should not report errors if something
4709 is only invalid for !LAX_MATCH. */
4710 bfd_boolean lax_match;
4711
4712 /* True if a reference to the current AT register was seen. */
4713 bfd_boolean seen_at;
4714 };
4715
4716 /* Record that the argument is out of range. */
4717
4718 static void
4719 match_out_of_range (struct mips_arg_info *arg)
4720 {
4721 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4722 }
4723
4724 /* Record that the argument isn't constant but needs to be. */
4725
4726 static void
4727 match_not_constant (struct mips_arg_info *arg)
4728 {
4729 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4730 arg->argnum);
4731 }
4732
4733 /* Try to match an OT_CHAR token for character CH. Consume the token
4734 and return true on success, otherwise return false. */
4735
4736 static bfd_boolean
4737 match_char (struct mips_arg_info *arg, char ch)
4738 {
4739 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4740 {
4741 ++arg->token;
4742 if (ch == ',')
4743 arg->argnum += 1;
4744 return TRUE;
4745 }
4746 return FALSE;
4747 }
4748
4749 /* Try to get an expression from the next tokens in ARG. Consume the
4750 tokens and return true on success, storing the expression value in
4751 VALUE and relocation types in R. */
4752
4753 static bfd_boolean
4754 match_expression (struct mips_arg_info *arg, expressionS *value,
4755 bfd_reloc_code_real_type *r)
4756 {
4757 /* If the next token is a '(' that was parsed as being part of a base
4758 expression, assume we have an elided offset. The later match will fail
4759 if this turns out to be wrong. */
4760 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4761 {
4762 value->X_op = O_constant;
4763 value->X_add_number = 0;
4764 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4765 return TRUE;
4766 }
4767
4768 /* Reject register-based expressions such as "0+$2" and "(($2))".
4769 For plain registers the default error seems more appropriate. */
4770 if (arg->token->type == OT_INTEGER
4771 && arg->token->u.integer.value.X_op == O_register)
4772 {
4773 set_insn_error (arg->argnum, _("register value used as expression"));
4774 return FALSE;
4775 }
4776
4777 if (arg->token->type == OT_INTEGER)
4778 {
4779 *value = arg->token->u.integer.value;
4780 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4781 ++arg->token;
4782 return TRUE;
4783 }
4784
4785 set_insn_error_i
4786 (arg->argnum, _("operand %d must be an immediate expression"),
4787 arg->argnum);
4788 return FALSE;
4789 }
4790
4791 /* Try to get a constant expression from the next tokens in ARG. Consume
4792 the tokens and return return true on success, storing the constant value
4793 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4794 error. */
4795
4796 static bfd_boolean
4797 match_const_int (struct mips_arg_info *arg, offsetT *value)
4798 {
4799 expressionS ex;
4800 bfd_reloc_code_real_type r[3];
4801
4802 if (!match_expression (arg, &ex, r))
4803 return FALSE;
4804
4805 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4806 *value = ex.X_add_number;
4807 else
4808 {
4809 match_not_constant (arg);
4810 return FALSE;
4811 }
4812 return TRUE;
4813 }
4814
4815 /* Return the RTYPE_* flags for a register operand of type TYPE that
4816 appears in instruction OPCODE. */
4817
4818 static unsigned int
4819 convert_reg_type (const struct mips_opcode *opcode,
4820 enum mips_reg_operand_type type)
4821 {
4822 switch (type)
4823 {
4824 case OP_REG_GP:
4825 return RTYPE_NUM | RTYPE_GP;
4826
4827 case OP_REG_FP:
4828 /* Allow vector register names for MDMX if the instruction is a 64-bit
4829 FPR load, store or move (including moves to and from GPRs). */
4830 if ((mips_opts.ase & ASE_MDMX)
4831 && (opcode->pinfo & FP_D)
4832 && (opcode->pinfo & (INSN_COPROC_MOVE
4833 | INSN_COPROC_MEMORY_DELAY
4834 | INSN_LOAD_COPROC
4835 | INSN_LOAD_MEMORY
4836 | INSN_STORE_MEMORY)))
4837 return RTYPE_FPU | RTYPE_VEC;
4838 return RTYPE_FPU;
4839
4840 case OP_REG_CCC:
4841 if (opcode->pinfo & (FP_D | FP_S))
4842 return RTYPE_CCC | RTYPE_FCC;
4843 return RTYPE_CCC;
4844
4845 case OP_REG_VEC:
4846 if (opcode->membership & INSN_5400)
4847 return RTYPE_FPU;
4848 return RTYPE_FPU | RTYPE_VEC;
4849
4850 case OP_REG_ACC:
4851 return RTYPE_ACC;
4852
4853 case OP_REG_COPRO:
4854 if (opcode->name[strlen (opcode->name) - 1] == '0')
4855 return RTYPE_NUM | RTYPE_CP0;
4856 return RTYPE_NUM;
4857
4858 case OP_REG_HW:
4859 return RTYPE_NUM;
4860
4861 case OP_REG_VI:
4862 return RTYPE_NUM | RTYPE_VI;
4863
4864 case OP_REG_VF:
4865 return RTYPE_NUM | RTYPE_VF;
4866
4867 case OP_REG_R5900_I:
4868 return RTYPE_R5900_I;
4869
4870 case OP_REG_R5900_Q:
4871 return RTYPE_R5900_Q;
4872
4873 case OP_REG_R5900_R:
4874 return RTYPE_R5900_R;
4875
4876 case OP_REG_R5900_ACC:
4877 return RTYPE_R5900_ACC;
4878
4879 case OP_REG_MSA:
4880 return RTYPE_MSA;
4881
4882 case OP_REG_MSA_CTRL:
4883 return RTYPE_NUM;
4884 }
4885 abort ();
4886 }
4887
4888 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4889
4890 static void
4891 check_regno (struct mips_arg_info *arg,
4892 enum mips_reg_operand_type type, unsigned int regno)
4893 {
4894 if (AT && type == OP_REG_GP && regno == AT)
4895 arg->seen_at = TRUE;
4896
4897 if (type == OP_REG_FP
4898 && (regno & 1) != 0
4899 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4900 {
4901 /* This was a warning prior to introducing O32 FPXX and FP64 support
4902 so maintain a warning for FP32 but raise an error for the new
4903 cases. */
4904 if (FPR_SIZE == 32)
4905 as_warn (_("float register should be even, was %d"), regno);
4906 else
4907 as_bad (_("float register should be even, was %d"), regno);
4908 }
4909
4910 if (type == OP_REG_CCC)
4911 {
4912 const char *name;
4913 size_t length;
4914
4915 name = arg->insn->insn_mo->name;
4916 length = strlen (name);
4917 if ((regno & 1) != 0
4918 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4919 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4920 as_warn (_("condition code register should be even for %s, was %d"),
4921 name, regno);
4922
4923 if ((regno & 3) != 0
4924 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4925 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4926 name, regno);
4927 }
4928 }
4929
4930 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4931 a register of type TYPE. Return true on success, storing the register
4932 number in *REGNO and warning about any dubious uses. */
4933
4934 static bfd_boolean
4935 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4936 unsigned int symval, unsigned int *regno)
4937 {
4938 if (type == OP_REG_VEC)
4939 symval = mips_prefer_vec_regno (symval);
4940 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4941 return FALSE;
4942
4943 *regno = symval & RNUM_MASK;
4944 check_regno (arg, type, *regno);
4945 return TRUE;
4946 }
4947
4948 /* Try to interpret the next token in ARG as a register of type TYPE.
4949 Consume the token and return true on success, storing the register
4950 number in *REGNO. Return false on failure. */
4951
4952 static bfd_boolean
4953 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4954 unsigned int *regno)
4955 {
4956 if (arg->token->type == OT_REG
4957 && match_regno (arg, type, arg->token->u.regno, regno))
4958 {
4959 ++arg->token;
4960 return TRUE;
4961 }
4962 return FALSE;
4963 }
4964
4965 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4966 Consume the token and return true on success, storing the register numbers
4967 in *REGNO1 and *REGNO2. Return false on failure. */
4968
4969 static bfd_boolean
4970 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4971 unsigned int *regno1, unsigned int *regno2)
4972 {
4973 if (match_reg (arg, type, regno1))
4974 {
4975 *regno2 = *regno1;
4976 return TRUE;
4977 }
4978 if (arg->token->type == OT_REG_RANGE
4979 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4980 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4981 && *regno1 <= *regno2)
4982 {
4983 ++arg->token;
4984 return TRUE;
4985 }
4986 return FALSE;
4987 }
4988
4989 /* OP_INT matcher. */
4990
4991 static bfd_boolean
4992 match_int_operand (struct mips_arg_info *arg,
4993 const struct mips_operand *operand_base)
4994 {
4995 const struct mips_int_operand *operand;
4996 unsigned int uval;
4997 int min_val, max_val, factor;
4998 offsetT sval;
4999
5000 operand = (const struct mips_int_operand *) operand_base;
5001 factor = 1 << operand->shift;
5002 min_val = mips_int_operand_min (operand);
5003 max_val = mips_int_operand_max (operand);
5004
5005 if (operand_base->lsb == 0
5006 && operand_base->size == 16
5007 && operand->shift == 0
5008 && operand->bias == 0
5009 && (operand->max_val == 32767 || operand->max_val == 65535))
5010 {
5011 /* The operand can be relocated. */
5012 if (!match_expression (arg, &offset_expr, offset_reloc))
5013 return FALSE;
5014
5015 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5016 /* Relocation operators were used. Accept the arguent and
5017 leave the relocation value in offset_expr and offset_relocs
5018 for the caller to process. */
5019 return TRUE;
5020
5021 if (offset_expr.X_op != O_constant)
5022 {
5023 /* Accept non-constant operands if no later alternative matches,
5024 leaving it for the caller to process. */
5025 if (!arg->lax_match)
5026 return FALSE;
5027 offset_reloc[0] = BFD_RELOC_LO16;
5028 return TRUE;
5029 }
5030
5031 /* Clear the global state; we're going to install the operand
5032 ourselves. */
5033 sval = offset_expr.X_add_number;
5034 offset_expr.X_op = O_absent;
5035
5036 /* For compatibility with older assemblers, we accept
5037 0x8000-0xffff as signed 16-bit numbers when only
5038 signed numbers are allowed. */
5039 if (sval > max_val)
5040 {
5041 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5042 if (!arg->lax_match && sval <= max_val)
5043 return FALSE;
5044 }
5045 }
5046 else
5047 {
5048 if (!match_const_int (arg, &sval))
5049 return FALSE;
5050 }
5051
5052 arg->last_op_int = sval;
5053
5054 if (sval < min_val || sval > max_val || sval % factor)
5055 {
5056 match_out_of_range (arg);
5057 return FALSE;
5058 }
5059
5060 uval = (unsigned int) sval >> operand->shift;
5061 uval -= operand->bias;
5062
5063 /* Handle -mfix-cn63xxp1. */
5064 if (arg->opnum == 1
5065 && mips_fix_cn63xxp1
5066 && !mips_opts.micromips
5067 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5068 switch (uval)
5069 {
5070 case 5:
5071 case 25:
5072 case 26:
5073 case 27:
5074 case 28:
5075 case 29:
5076 case 30:
5077 case 31:
5078 /* These are ok. */
5079 break;
5080
5081 default:
5082 /* The rest must be changed to 28. */
5083 uval = 28;
5084 break;
5085 }
5086
5087 insn_insert_operand (arg->insn, operand_base, uval);
5088 return TRUE;
5089 }
5090
5091 /* OP_MAPPED_INT matcher. */
5092
5093 static bfd_boolean
5094 match_mapped_int_operand (struct mips_arg_info *arg,
5095 const struct mips_operand *operand_base)
5096 {
5097 const struct mips_mapped_int_operand *operand;
5098 unsigned int uval, num_vals;
5099 offsetT sval;
5100
5101 operand = (const struct mips_mapped_int_operand *) operand_base;
5102 if (!match_const_int (arg, &sval))
5103 return FALSE;
5104
5105 num_vals = 1 << operand_base->size;
5106 for (uval = 0; uval < num_vals; uval++)
5107 if (operand->int_map[uval] == sval)
5108 break;
5109 if (uval == num_vals)
5110 {
5111 match_out_of_range (arg);
5112 return FALSE;
5113 }
5114
5115 insn_insert_operand (arg->insn, operand_base, uval);
5116 return TRUE;
5117 }
5118
5119 /* OP_MSB matcher. */
5120
5121 static bfd_boolean
5122 match_msb_operand (struct mips_arg_info *arg,
5123 const struct mips_operand *operand_base)
5124 {
5125 const struct mips_msb_operand *operand;
5126 int min_val, max_val, max_high;
5127 offsetT size, sval, high;
5128
5129 operand = (const struct mips_msb_operand *) operand_base;
5130 min_val = operand->bias;
5131 max_val = min_val + (1 << operand_base->size) - 1;
5132 max_high = operand->opsize;
5133
5134 if (!match_const_int (arg, &size))
5135 return FALSE;
5136
5137 high = size + arg->last_op_int;
5138 sval = operand->add_lsb ? high : size;
5139
5140 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5141 {
5142 match_out_of_range (arg);
5143 return FALSE;
5144 }
5145 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5146 return TRUE;
5147 }
5148
5149 /* OP_REG matcher. */
5150
5151 static bfd_boolean
5152 match_reg_operand (struct mips_arg_info *arg,
5153 const struct mips_operand *operand_base)
5154 {
5155 const struct mips_reg_operand *operand;
5156 unsigned int regno, uval, num_vals;
5157
5158 operand = (const struct mips_reg_operand *) operand_base;
5159 if (!match_reg (arg, operand->reg_type, &regno))
5160 return FALSE;
5161
5162 if (operand->reg_map)
5163 {
5164 num_vals = 1 << operand->root.size;
5165 for (uval = 0; uval < num_vals; uval++)
5166 if (operand->reg_map[uval] == regno)
5167 break;
5168 if (num_vals == uval)
5169 return FALSE;
5170 }
5171 else
5172 uval = regno;
5173
5174 arg->last_regno = regno;
5175 if (arg->opnum == 1)
5176 arg->dest_regno = regno;
5177 insn_insert_operand (arg->insn, operand_base, uval);
5178 return TRUE;
5179 }
5180
5181 /* OP_REG_PAIR matcher. */
5182
5183 static bfd_boolean
5184 match_reg_pair_operand (struct mips_arg_info *arg,
5185 const struct mips_operand *operand_base)
5186 {
5187 const struct mips_reg_pair_operand *operand;
5188 unsigned int regno1, regno2, uval, num_vals;
5189
5190 operand = (const struct mips_reg_pair_operand *) operand_base;
5191 if (!match_reg (arg, operand->reg_type, &regno1)
5192 || !match_char (arg, ',')
5193 || !match_reg (arg, operand->reg_type, &regno2))
5194 return FALSE;
5195
5196 num_vals = 1 << operand_base->size;
5197 for (uval = 0; uval < num_vals; uval++)
5198 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5199 break;
5200 if (uval == num_vals)
5201 return FALSE;
5202
5203 insn_insert_operand (arg->insn, operand_base, uval);
5204 return TRUE;
5205 }
5206
5207 /* OP_PCREL matcher. The caller chooses the relocation type. */
5208
5209 static bfd_boolean
5210 match_pcrel_operand (struct mips_arg_info *arg)
5211 {
5212 bfd_reloc_code_real_type r[3];
5213
5214 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5215 }
5216
5217 /* OP_PERF_REG matcher. */
5218
5219 static bfd_boolean
5220 match_perf_reg_operand (struct mips_arg_info *arg,
5221 const struct mips_operand *operand)
5222 {
5223 offsetT sval;
5224
5225 if (!match_const_int (arg, &sval))
5226 return FALSE;
5227
5228 if (sval != 0
5229 && (sval != 1
5230 || (mips_opts.arch == CPU_R5900
5231 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5232 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5233 {
5234 set_insn_error (arg->argnum, _("invalid performance register"));
5235 return FALSE;
5236 }
5237
5238 insn_insert_operand (arg->insn, operand, sval);
5239 return TRUE;
5240 }
5241
5242 /* OP_ADDIUSP matcher. */
5243
5244 static bfd_boolean
5245 match_addiusp_operand (struct mips_arg_info *arg,
5246 const struct mips_operand *operand)
5247 {
5248 offsetT sval;
5249 unsigned int uval;
5250
5251 if (!match_const_int (arg, &sval))
5252 return FALSE;
5253
5254 if (sval % 4)
5255 {
5256 match_out_of_range (arg);
5257 return FALSE;
5258 }
5259
5260 sval /= 4;
5261 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5262 {
5263 match_out_of_range (arg);
5264 return FALSE;
5265 }
5266
5267 uval = (unsigned int) sval;
5268 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5269 insn_insert_operand (arg->insn, operand, uval);
5270 return TRUE;
5271 }
5272
5273 /* OP_CLO_CLZ_DEST matcher. */
5274
5275 static bfd_boolean
5276 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5277 const struct mips_operand *operand)
5278 {
5279 unsigned int regno;
5280
5281 if (!match_reg (arg, OP_REG_GP, &regno))
5282 return FALSE;
5283
5284 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5285 return TRUE;
5286 }
5287
5288 /* OP_CHECK_PREV matcher. */
5289
5290 static bfd_boolean
5291 match_check_prev_operand (struct mips_arg_info *arg,
5292 const struct mips_operand *operand_base)
5293 {
5294 const struct mips_check_prev_operand *operand;
5295 unsigned int regno;
5296
5297 operand = (const struct mips_check_prev_operand *) operand_base;
5298
5299 if (!match_reg (arg, OP_REG_GP, &regno))
5300 return FALSE;
5301
5302 if (!operand->zero_ok && regno == 0)
5303 return FALSE;
5304
5305 if ((operand->less_than_ok && regno < arg->last_regno)
5306 || (operand->greater_than_ok && regno > arg->last_regno)
5307 || (operand->equal_ok && regno == arg->last_regno))
5308 {
5309 arg->last_regno = regno;
5310 insn_insert_operand (arg->insn, operand_base, regno);
5311 return TRUE;
5312 }
5313
5314 return FALSE;
5315 }
5316
5317 /* OP_SAME_RS_RT matcher. */
5318
5319 static bfd_boolean
5320 match_same_rs_rt_operand (struct mips_arg_info *arg,
5321 const struct mips_operand *operand)
5322 {
5323 unsigned int regno;
5324
5325 if (!match_reg (arg, OP_REG_GP, &regno))
5326 return FALSE;
5327
5328 if (regno == 0)
5329 {
5330 set_insn_error (arg->argnum, _("the source register must not be $0"));
5331 return FALSE;
5332 }
5333
5334 arg->last_regno = regno;
5335
5336 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5337 return TRUE;
5338 }
5339
5340 /* OP_LWM_SWM_LIST matcher. */
5341
5342 static bfd_boolean
5343 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5344 const struct mips_operand *operand)
5345 {
5346 unsigned int reglist, sregs, ra, regno1, regno2;
5347 struct mips_arg_info reset;
5348
5349 reglist = 0;
5350 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5351 return FALSE;
5352 do
5353 {
5354 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5355 {
5356 reglist |= 1 << FP;
5357 regno2 = S7;
5358 }
5359 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5360 reset = *arg;
5361 }
5362 while (match_char (arg, ',')
5363 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5364 *arg = reset;
5365
5366 if (operand->size == 2)
5367 {
5368 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5369
5370 s0, ra
5371 s0, s1, ra, s2, s3
5372 s0-s2, ra
5373
5374 and any permutations of these. */
5375 if ((reglist & 0xfff1ffff) != 0x80010000)
5376 return FALSE;
5377
5378 sregs = (reglist >> 17) & 7;
5379 ra = 0;
5380 }
5381 else
5382 {
5383 /* The list must include at least one of ra and s0-sN,
5384 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5385 which are $23 and $30 respectively.) E.g.:
5386
5387 ra
5388 s0
5389 ra, s0, s1, s2
5390 s0-s8
5391 s0-s5, ra
5392
5393 and any permutations of these. */
5394 if ((reglist & 0x3f00ffff) != 0)
5395 return FALSE;
5396
5397 ra = (reglist >> 27) & 0x10;
5398 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5399 }
5400 sregs += 1;
5401 if ((sregs & -sregs) != sregs)
5402 return FALSE;
5403
5404 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5405 return TRUE;
5406 }
5407
5408 /* OP_ENTRY_EXIT_LIST matcher. */
5409
5410 static unsigned int
5411 match_entry_exit_operand (struct mips_arg_info *arg,
5412 const struct mips_operand *operand)
5413 {
5414 unsigned int mask;
5415 bfd_boolean is_exit;
5416
5417 /* The format is the same for both ENTRY and EXIT, but the constraints
5418 are different. */
5419 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5420 mask = (is_exit ? 7 << 3 : 0);
5421 do
5422 {
5423 unsigned int regno1, regno2;
5424 bfd_boolean is_freg;
5425
5426 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5427 is_freg = FALSE;
5428 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5429 is_freg = TRUE;
5430 else
5431 return FALSE;
5432
5433 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5434 {
5435 mask &= ~(7 << 3);
5436 mask |= (5 + regno2) << 3;
5437 }
5438 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5439 mask |= (regno2 - 3) << 3;
5440 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5441 mask |= (regno2 - 15) << 1;
5442 else if (regno1 == RA && regno2 == RA)
5443 mask |= 1;
5444 else
5445 return FALSE;
5446 }
5447 while (match_char (arg, ','));
5448
5449 insn_insert_operand (arg->insn, operand, mask);
5450 return TRUE;
5451 }
5452
5453 /* OP_SAVE_RESTORE_LIST matcher. */
5454
5455 static bfd_boolean
5456 match_save_restore_list_operand (struct mips_arg_info *arg)
5457 {
5458 unsigned int opcode, args, statics, sregs;
5459 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5460 offsetT frame_size;
5461
5462 opcode = arg->insn->insn_opcode;
5463 frame_size = 0;
5464 num_frame_sizes = 0;
5465 args = 0;
5466 statics = 0;
5467 sregs = 0;
5468 do
5469 {
5470 unsigned int regno1, regno2;
5471
5472 if (arg->token->type == OT_INTEGER)
5473 {
5474 /* Handle the frame size. */
5475 if (!match_const_int (arg, &frame_size))
5476 return FALSE;
5477 num_frame_sizes += 1;
5478 }
5479 else
5480 {
5481 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5482 return FALSE;
5483
5484 while (regno1 <= regno2)
5485 {
5486 if (regno1 >= 4 && regno1 <= 7)
5487 {
5488 if (num_frame_sizes == 0)
5489 /* args $a0-$a3 */
5490 args |= 1 << (regno1 - 4);
5491 else
5492 /* statics $a0-$a3 */
5493 statics |= 1 << (regno1 - 4);
5494 }
5495 else if (regno1 >= 16 && regno1 <= 23)
5496 /* $s0-$s7 */
5497 sregs |= 1 << (regno1 - 16);
5498 else if (regno1 == 30)
5499 /* $s8 */
5500 sregs |= 1 << 8;
5501 else if (regno1 == 31)
5502 /* Add $ra to insn. */
5503 opcode |= 0x40;
5504 else
5505 return FALSE;
5506 regno1 += 1;
5507 if (regno1 == 24)
5508 regno1 = 30;
5509 }
5510 }
5511 }
5512 while (match_char (arg, ','));
5513
5514 /* Encode args/statics combination. */
5515 if (args & statics)
5516 return FALSE;
5517 else if (args == 0xf)
5518 /* All $a0-$a3 are args. */
5519 opcode |= MIPS16_ALL_ARGS << 16;
5520 else if (statics == 0xf)
5521 /* All $a0-$a3 are statics. */
5522 opcode |= MIPS16_ALL_STATICS << 16;
5523 else
5524 {
5525 /* Count arg registers. */
5526 num_args = 0;
5527 while (args & 0x1)
5528 {
5529 args >>= 1;
5530 num_args += 1;
5531 }
5532 if (args != 0)
5533 return FALSE;
5534
5535 /* Count static registers. */
5536 num_statics = 0;
5537 while (statics & 0x8)
5538 {
5539 statics = (statics << 1) & 0xf;
5540 num_statics += 1;
5541 }
5542 if (statics != 0)
5543 return FALSE;
5544
5545 /* Encode args/statics. */
5546 opcode |= ((num_args << 2) | num_statics) << 16;
5547 }
5548
5549 /* Encode $s0/$s1. */
5550 if (sregs & (1 << 0)) /* $s0 */
5551 opcode |= 0x20;
5552 if (sregs & (1 << 1)) /* $s1 */
5553 opcode |= 0x10;
5554 sregs >>= 2;
5555
5556 /* Encode $s2-$s8. */
5557 num_sregs = 0;
5558 while (sregs & 1)
5559 {
5560 sregs >>= 1;
5561 num_sregs += 1;
5562 }
5563 if (sregs != 0)
5564 return FALSE;
5565 opcode |= num_sregs << 24;
5566
5567 /* Encode frame size. */
5568 if (num_frame_sizes == 0)
5569 {
5570 set_insn_error (arg->argnum, _("missing frame size"));
5571 return FALSE;
5572 }
5573 if (num_frame_sizes > 1)
5574 {
5575 set_insn_error (arg->argnum, _("frame size specified twice"));
5576 return FALSE;
5577 }
5578 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5579 {
5580 set_insn_error (arg->argnum, _("invalid frame size"));
5581 return FALSE;
5582 }
5583 if (frame_size != 128 || (opcode >> 16) != 0)
5584 {
5585 frame_size /= 8;
5586 opcode |= (((frame_size & 0xf0) << 16)
5587 | (frame_size & 0x0f));
5588 }
5589
5590 /* Finally build the instruction. */
5591 if ((opcode >> 16) != 0 || frame_size == 0)
5592 opcode |= MIPS16_EXTEND;
5593 arg->insn->insn_opcode = opcode;
5594 return TRUE;
5595 }
5596
5597 /* OP_MDMX_IMM_REG matcher. */
5598
5599 static bfd_boolean
5600 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5601 const struct mips_operand *operand)
5602 {
5603 unsigned int regno, uval;
5604 bfd_boolean is_qh;
5605 const struct mips_opcode *opcode;
5606
5607 /* The mips_opcode records whether this is an octobyte or quadhalf
5608 instruction. Start out with that bit in place. */
5609 opcode = arg->insn->insn_mo;
5610 uval = mips_extract_operand (operand, opcode->match);
5611 is_qh = (uval != 0);
5612
5613 if (arg->token->type == OT_REG)
5614 {
5615 if ((opcode->membership & INSN_5400)
5616 && strcmp (opcode->name, "rzu.ob") == 0)
5617 {
5618 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5619 arg->argnum);
5620 return FALSE;
5621 }
5622
5623 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5624 return FALSE;
5625 ++arg->token;
5626
5627 /* Check whether this is a vector register or a broadcast of
5628 a single element. */
5629 if (arg->token->type == OT_INTEGER_INDEX)
5630 {
5631 if (arg->token->u.index > (is_qh ? 3 : 7))
5632 {
5633 set_insn_error (arg->argnum, _("invalid element selector"));
5634 return FALSE;
5635 }
5636 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5637 ++arg->token;
5638 }
5639 else
5640 {
5641 /* A full vector. */
5642 if ((opcode->membership & INSN_5400)
5643 && (strcmp (opcode->name, "sll.ob") == 0
5644 || strcmp (opcode->name, "srl.ob") == 0))
5645 {
5646 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5647 arg->argnum);
5648 return FALSE;
5649 }
5650
5651 if (is_qh)
5652 uval |= MDMX_FMTSEL_VEC_QH << 5;
5653 else
5654 uval |= MDMX_FMTSEL_VEC_OB << 5;
5655 }
5656 uval |= regno;
5657 }
5658 else
5659 {
5660 offsetT sval;
5661
5662 if (!match_const_int (arg, &sval))
5663 return FALSE;
5664 if (sval < 0 || sval > 31)
5665 {
5666 match_out_of_range (arg);
5667 return FALSE;
5668 }
5669 uval |= (sval & 31);
5670 if (is_qh)
5671 uval |= MDMX_FMTSEL_IMM_QH << 5;
5672 else
5673 uval |= MDMX_FMTSEL_IMM_OB << 5;
5674 }
5675 insn_insert_operand (arg->insn, operand, uval);
5676 return TRUE;
5677 }
5678
5679 /* OP_IMM_INDEX matcher. */
5680
5681 static bfd_boolean
5682 match_imm_index_operand (struct mips_arg_info *arg,
5683 const struct mips_operand *operand)
5684 {
5685 unsigned int max_val;
5686
5687 if (arg->token->type != OT_INTEGER_INDEX)
5688 return FALSE;
5689
5690 max_val = (1 << operand->size) - 1;
5691 if (arg->token->u.index > max_val)
5692 {
5693 match_out_of_range (arg);
5694 return FALSE;
5695 }
5696 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5697 ++arg->token;
5698 return TRUE;
5699 }
5700
5701 /* OP_REG_INDEX matcher. */
5702
5703 static bfd_boolean
5704 match_reg_index_operand (struct mips_arg_info *arg,
5705 const struct mips_operand *operand)
5706 {
5707 unsigned int regno;
5708
5709 if (arg->token->type != OT_REG_INDEX)
5710 return FALSE;
5711
5712 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5713 return FALSE;
5714
5715 insn_insert_operand (arg->insn, operand, regno);
5716 ++arg->token;
5717 return TRUE;
5718 }
5719
5720 /* OP_PC matcher. */
5721
5722 static bfd_boolean
5723 match_pc_operand (struct mips_arg_info *arg)
5724 {
5725 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5726 {
5727 ++arg->token;
5728 return TRUE;
5729 }
5730 return FALSE;
5731 }
5732
5733 /* OP_NON_ZERO_REG matcher. */
5734
5735 static bfd_boolean
5736 match_non_zero_reg_operand (struct mips_arg_info *arg,
5737 const struct mips_operand *operand)
5738 {
5739 unsigned int regno;
5740
5741 if (!match_reg (arg, OP_REG_GP, &regno))
5742 return FALSE;
5743
5744 if (regno == 0)
5745 return FALSE;
5746
5747 arg->last_regno = regno;
5748 insn_insert_operand (arg->insn, operand, regno);
5749 return TRUE;
5750 }
5751
5752 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5753 register that we need to match. */
5754
5755 static bfd_boolean
5756 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5757 {
5758 unsigned int regno;
5759
5760 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5761 }
5762
5763 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5764 the length of the value in bytes (4 for float, 8 for double) and
5765 USING_GPRS says whether the destination is a GPR rather than an FPR.
5766
5767 Return the constant in IMM and OFFSET as follows:
5768
5769 - If the constant should be loaded via memory, set IMM to O_absent and
5770 OFFSET to the memory address.
5771
5772 - Otherwise, if the constant should be loaded into two 32-bit registers,
5773 set IMM to the O_constant to load into the high register and OFFSET
5774 to the corresponding value for the low register.
5775
5776 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5777
5778 These constants only appear as the last operand in an instruction,
5779 and every instruction that accepts them in any variant accepts them
5780 in all variants. This means we don't have to worry about backing out
5781 any changes if the instruction does not match. We just match
5782 unconditionally and report an error if the constant is invalid. */
5783
5784 static bfd_boolean
5785 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5786 expressionS *offset, int length, bfd_boolean using_gprs)
5787 {
5788 char *p;
5789 segT seg, new_seg;
5790 subsegT subseg;
5791 const char *newname;
5792 unsigned char *data;
5793
5794 /* Where the constant is placed is based on how the MIPS assembler
5795 does things:
5796
5797 length == 4 && using_gprs -- immediate value only
5798 length == 8 && using_gprs -- .rdata or immediate value
5799 length == 4 && !using_gprs -- .lit4 or immediate value
5800 length == 8 && !using_gprs -- .lit8 or immediate value
5801
5802 The .lit4 and .lit8 sections are only used if permitted by the
5803 -G argument. */
5804 if (arg->token->type != OT_FLOAT)
5805 {
5806 set_insn_error (arg->argnum, _("floating-point expression required"));
5807 return FALSE;
5808 }
5809
5810 gas_assert (arg->token->u.flt.length == length);
5811 data = arg->token->u.flt.data;
5812 ++arg->token;
5813
5814 /* Handle 32-bit constants for which an immediate value is best. */
5815 if (length == 4
5816 && (using_gprs
5817 || g_switch_value < 4
5818 || (data[0] == 0 && data[1] == 0)
5819 || (data[2] == 0 && data[3] == 0)))
5820 {
5821 imm->X_op = O_constant;
5822 if (!target_big_endian)
5823 imm->X_add_number = bfd_getl32 (data);
5824 else
5825 imm->X_add_number = bfd_getb32 (data);
5826 offset->X_op = O_absent;
5827 return TRUE;
5828 }
5829
5830 /* Handle 64-bit constants for which an immediate value is best. */
5831 if (length == 8
5832 && !mips_disable_float_construction
5833 /* Constants can only be constructed in GPRs and copied to FPRs if the
5834 GPRs are at least as wide as the FPRs or MTHC1 is available.
5835 Unlike most tests for 32-bit floating-point registers this check
5836 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5837 permit 64-bit moves without MXHC1.
5838 Force the constant into memory otherwise. */
5839 && (using_gprs
5840 || GPR_SIZE == 64
5841 || ISA_HAS_MXHC1 (mips_opts.isa)
5842 || FPR_SIZE == 32)
5843 && ((data[0] == 0 && data[1] == 0)
5844 || (data[2] == 0 && data[3] == 0))
5845 && ((data[4] == 0 && data[5] == 0)
5846 || (data[6] == 0 && data[7] == 0)))
5847 {
5848 /* The value is simple enough to load with a couple of instructions.
5849 If using 32-bit registers, set IMM to the high order 32 bits and
5850 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5851 64 bit constant. */
5852 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5853 {
5854 imm->X_op = O_constant;
5855 offset->X_op = O_constant;
5856 if (!target_big_endian)
5857 {
5858 imm->X_add_number = bfd_getl32 (data + 4);
5859 offset->X_add_number = bfd_getl32 (data);
5860 }
5861 else
5862 {
5863 imm->X_add_number = bfd_getb32 (data);
5864 offset->X_add_number = bfd_getb32 (data + 4);
5865 }
5866 if (offset->X_add_number == 0)
5867 offset->X_op = O_absent;
5868 }
5869 else
5870 {
5871 imm->X_op = O_constant;
5872 if (!target_big_endian)
5873 imm->X_add_number = bfd_getl64 (data);
5874 else
5875 imm->X_add_number = bfd_getb64 (data);
5876 offset->X_op = O_absent;
5877 }
5878 return TRUE;
5879 }
5880
5881 /* Switch to the right section. */
5882 seg = now_seg;
5883 subseg = now_subseg;
5884 if (length == 4)
5885 {
5886 gas_assert (!using_gprs && g_switch_value >= 4);
5887 newname = ".lit4";
5888 }
5889 else
5890 {
5891 if (using_gprs || g_switch_value < 8)
5892 newname = RDATA_SECTION_NAME;
5893 else
5894 newname = ".lit8";
5895 }
5896
5897 new_seg = subseg_new (newname, (subsegT) 0);
5898 bfd_set_section_flags (stdoutput, new_seg,
5899 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5900 frag_align (length == 4 ? 2 : 3, 0, 0);
5901 if (strncmp (TARGET_OS, "elf", 3) != 0)
5902 record_alignment (new_seg, 4);
5903 else
5904 record_alignment (new_seg, length == 4 ? 2 : 3);
5905 if (seg == now_seg)
5906 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5907
5908 /* Set the argument to the current address in the section. */
5909 imm->X_op = O_absent;
5910 offset->X_op = O_symbol;
5911 offset->X_add_symbol = symbol_temp_new_now ();
5912 offset->X_add_number = 0;
5913
5914 /* Put the floating point number into the section. */
5915 p = frag_more (length);
5916 memcpy (p, data, length);
5917
5918 /* Switch back to the original section. */
5919 subseg_set (seg, subseg);
5920 return TRUE;
5921 }
5922
5923 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5924 them. */
5925
5926 static bfd_boolean
5927 match_vu0_suffix_operand (struct mips_arg_info *arg,
5928 const struct mips_operand *operand,
5929 bfd_boolean match_p)
5930 {
5931 unsigned int uval;
5932
5933 /* The operand can be an XYZW mask or a single 2-bit channel index
5934 (with X being 0). */
5935 gas_assert (operand->size == 2 || operand->size == 4);
5936
5937 /* The suffix can be omitted when it is already part of the opcode. */
5938 if (arg->token->type != OT_CHANNELS)
5939 return match_p;
5940
5941 uval = arg->token->u.channels;
5942 if (operand->size == 2)
5943 {
5944 /* Check that a single bit is set and convert it into a 2-bit index. */
5945 if ((uval & -uval) != uval)
5946 return FALSE;
5947 uval = 4 - ffs (uval);
5948 }
5949
5950 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5951 return FALSE;
5952
5953 ++arg->token;
5954 if (!match_p)
5955 insn_insert_operand (arg->insn, operand, uval);
5956 return TRUE;
5957 }
5958
5959 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5960 of the argument text if the match is successful, otherwise return null. */
5961
5962 static bfd_boolean
5963 match_operand (struct mips_arg_info *arg,
5964 const struct mips_operand *operand)
5965 {
5966 switch (operand->type)
5967 {
5968 case OP_INT:
5969 return match_int_operand (arg, operand);
5970
5971 case OP_MAPPED_INT:
5972 return match_mapped_int_operand (arg, operand);
5973
5974 case OP_MSB:
5975 return match_msb_operand (arg, operand);
5976
5977 case OP_REG:
5978 case OP_OPTIONAL_REG:
5979 return match_reg_operand (arg, operand);
5980
5981 case OP_REG_PAIR:
5982 return match_reg_pair_operand (arg, operand);
5983
5984 case OP_PCREL:
5985 return match_pcrel_operand (arg);
5986
5987 case OP_PERF_REG:
5988 return match_perf_reg_operand (arg, operand);
5989
5990 case OP_ADDIUSP_INT:
5991 return match_addiusp_operand (arg, operand);
5992
5993 case OP_CLO_CLZ_DEST:
5994 return match_clo_clz_dest_operand (arg, operand);
5995
5996 case OP_LWM_SWM_LIST:
5997 return match_lwm_swm_list_operand (arg, operand);
5998
5999 case OP_ENTRY_EXIT_LIST:
6000 return match_entry_exit_operand (arg, operand);
6001
6002 case OP_SAVE_RESTORE_LIST:
6003 return match_save_restore_list_operand (arg);
6004
6005 case OP_MDMX_IMM_REG:
6006 return match_mdmx_imm_reg_operand (arg, operand);
6007
6008 case OP_REPEAT_DEST_REG:
6009 return match_tied_reg_operand (arg, arg->dest_regno);
6010
6011 case OP_REPEAT_PREV_REG:
6012 return match_tied_reg_operand (arg, arg->last_regno);
6013
6014 case OP_PC:
6015 return match_pc_operand (arg);
6016
6017 case OP_VU0_SUFFIX:
6018 return match_vu0_suffix_operand (arg, operand, FALSE);
6019
6020 case OP_VU0_MATCH_SUFFIX:
6021 return match_vu0_suffix_operand (arg, operand, TRUE);
6022
6023 case OP_IMM_INDEX:
6024 return match_imm_index_operand (arg, operand);
6025
6026 case OP_REG_INDEX:
6027 return match_reg_index_operand (arg, operand);
6028
6029 case OP_SAME_RS_RT:
6030 return match_same_rs_rt_operand (arg, operand);
6031
6032 case OP_CHECK_PREV:
6033 return match_check_prev_operand (arg, operand);
6034
6035 case OP_NON_ZERO_REG:
6036 return match_non_zero_reg_operand (arg, operand);
6037 }
6038 abort ();
6039 }
6040
6041 /* ARG is the state after successfully matching an instruction.
6042 Issue any queued-up warnings. */
6043
6044 static void
6045 check_completed_insn (struct mips_arg_info *arg)
6046 {
6047 if (arg->seen_at)
6048 {
6049 if (AT == ATREG)
6050 as_warn (_("used $at without \".set noat\""));
6051 else
6052 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6053 }
6054 }
6055
6056 /* Return true if modifying general-purpose register REG needs a delay. */
6057
6058 static bfd_boolean
6059 reg_needs_delay (unsigned int reg)
6060 {
6061 unsigned long prev_pinfo;
6062
6063 prev_pinfo = history[0].insn_mo->pinfo;
6064 if (!mips_opts.noreorder
6065 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6066 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6067 && (gpr_write_mask (&history[0]) & (1 << reg)))
6068 return TRUE;
6069
6070 return FALSE;
6071 }
6072
6073 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6074 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6075 by VR4120 errata. */
6076
6077 static unsigned int
6078 classify_vr4120_insn (const char *name)
6079 {
6080 if (strncmp (name, "macc", 4) == 0)
6081 return FIX_VR4120_MACC;
6082 if (strncmp (name, "dmacc", 5) == 0)
6083 return FIX_VR4120_DMACC;
6084 if (strncmp (name, "mult", 4) == 0)
6085 return FIX_VR4120_MULT;
6086 if (strncmp (name, "dmult", 5) == 0)
6087 return FIX_VR4120_DMULT;
6088 if (strstr (name, "div"))
6089 return FIX_VR4120_DIV;
6090 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6091 return FIX_VR4120_MTHILO;
6092 return NUM_FIX_VR4120_CLASSES;
6093 }
6094
6095 #define INSN_ERET 0x42000018
6096 #define INSN_DERET 0x4200001f
6097 #define INSN_DMULT 0x1c
6098 #define INSN_DMULTU 0x1d
6099
6100 /* Return the number of instructions that must separate INSN1 and INSN2,
6101 where INSN1 is the earlier instruction. Return the worst-case value
6102 for any INSN2 if INSN2 is null. */
6103
6104 static unsigned int
6105 insns_between (const struct mips_cl_insn *insn1,
6106 const struct mips_cl_insn *insn2)
6107 {
6108 unsigned long pinfo1, pinfo2;
6109 unsigned int mask;
6110
6111 /* If INFO2 is null, pessimistically assume that all flags are set for
6112 the second instruction. */
6113 pinfo1 = insn1->insn_mo->pinfo;
6114 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6115
6116 /* For most targets, write-after-read dependencies on the HI and LO
6117 registers must be separated by at least two instructions. */
6118 if (!hilo_interlocks)
6119 {
6120 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6121 return 2;
6122 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6123 return 2;
6124 }
6125
6126 /* If we're working around r7000 errata, there must be two instructions
6127 between an mfhi or mflo and any instruction that uses the result. */
6128 if (mips_7000_hilo_fix
6129 && !mips_opts.micromips
6130 && MF_HILO_INSN (pinfo1)
6131 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6132 return 2;
6133
6134 /* If we're working around 24K errata, one instruction is required
6135 if an ERET or DERET is followed by a branch instruction. */
6136 if (mips_fix_24k && !mips_opts.micromips)
6137 {
6138 if (insn1->insn_opcode == INSN_ERET
6139 || insn1->insn_opcode == INSN_DERET)
6140 {
6141 if (insn2 == NULL
6142 || insn2->insn_opcode == INSN_ERET
6143 || insn2->insn_opcode == INSN_DERET
6144 || delayed_branch_p (insn2))
6145 return 1;
6146 }
6147 }
6148
6149 /* If we're working around PMC RM7000 errata, there must be three
6150 nops between a dmult and a load instruction. */
6151 if (mips_fix_rm7000 && !mips_opts.micromips)
6152 {
6153 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6154 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6155 {
6156 if (pinfo2 & INSN_LOAD_MEMORY)
6157 return 3;
6158 }
6159 }
6160
6161 /* If working around VR4120 errata, check for combinations that need
6162 a single intervening instruction. */
6163 if (mips_fix_vr4120 && !mips_opts.micromips)
6164 {
6165 unsigned int class1, class2;
6166
6167 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6168 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6169 {
6170 if (insn2 == NULL)
6171 return 1;
6172 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6173 if (vr4120_conflicts[class1] & (1 << class2))
6174 return 1;
6175 }
6176 }
6177
6178 if (!HAVE_CODE_COMPRESSION)
6179 {
6180 /* Check for GPR or coprocessor load delays. All such delays
6181 are on the RT register. */
6182 /* Itbl support may require additional care here. */
6183 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6184 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6185 {
6186 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6187 return 1;
6188 }
6189
6190 /* Check for generic coprocessor hazards.
6191
6192 This case is not handled very well. There is no special
6193 knowledge of CP0 handling, and the coprocessors other than
6194 the floating point unit are not distinguished at all. */
6195 /* Itbl support may require additional care here. FIXME!
6196 Need to modify this to include knowledge about
6197 user specified delays! */
6198 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6199 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6200 {
6201 /* Handle cases where INSN1 writes to a known general coprocessor
6202 register. There must be a one instruction delay before INSN2
6203 if INSN2 reads that register, otherwise no delay is needed. */
6204 mask = fpr_write_mask (insn1);
6205 if (mask != 0)
6206 {
6207 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6208 return 1;
6209 }
6210 else
6211 {
6212 /* Read-after-write dependencies on the control registers
6213 require a two-instruction gap. */
6214 if ((pinfo1 & INSN_WRITE_COND_CODE)
6215 && (pinfo2 & INSN_READ_COND_CODE))
6216 return 2;
6217
6218 /* We don't know exactly what INSN1 does. If INSN2 is
6219 also a coprocessor instruction, assume there must be
6220 a one instruction gap. */
6221 if (pinfo2 & INSN_COP)
6222 return 1;
6223 }
6224 }
6225
6226 /* Check for read-after-write dependencies on the coprocessor
6227 control registers in cases where INSN1 does not need a general
6228 coprocessor delay. This means that INSN1 is a floating point
6229 comparison instruction. */
6230 /* Itbl support may require additional care here. */
6231 else if (!cop_interlocks
6232 && (pinfo1 & INSN_WRITE_COND_CODE)
6233 && (pinfo2 & INSN_READ_COND_CODE))
6234 return 1;
6235 }
6236
6237 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6238 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6239 and pause. */
6240 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6241 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6242 || (insn2 && delayed_branch_p (insn2))))
6243 return 1;
6244
6245 return 0;
6246 }
6247
6248 /* Return the number of nops that would be needed to work around the
6249 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6250 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6251 that are contained within the first IGNORE instructions of HIST. */
6252
6253 static int
6254 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6255 const struct mips_cl_insn *insn)
6256 {
6257 int i, j;
6258 unsigned int mask;
6259
6260 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6261 are not affected by the errata. */
6262 if (insn != 0
6263 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6264 || strcmp (insn->insn_mo->name, "mtlo") == 0
6265 || strcmp (insn->insn_mo->name, "mthi") == 0))
6266 return 0;
6267
6268 /* Search for the first MFLO or MFHI. */
6269 for (i = 0; i < MAX_VR4130_NOPS; i++)
6270 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6271 {
6272 /* Extract the destination register. */
6273 mask = gpr_write_mask (&hist[i]);
6274
6275 /* No nops are needed if INSN reads that register. */
6276 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6277 return 0;
6278
6279 /* ...or if any of the intervening instructions do. */
6280 for (j = 0; j < i; j++)
6281 if (gpr_read_mask (&hist[j]) & mask)
6282 return 0;
6283
6284 if (i >= ignore)
6285 return MAX_VR4130_NOPS - i;
6286 }
6287 return 0;
6288 }
6289
6290 #define BASE_REG_EQ(INSN1, INSN2) \
6291 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6292 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6293
6294 /* Return the minimum alignment for this store instruction. */
6295
6296 static int
6297 fix_24k_align_to (const struct mips_opcode *mo)
6298 {
6299 if (strcmp (mo->name, "sh") == 0)
6300 return 2;
6301
6302 if (strcmp (mo->name, "swc1") == 0
6303 || strcmp (mo->name, "swc2") == 0
6304 || strcmp (mo->name, "sw") == 0
6305 || strcmp (mo->name, "sc") == 0
6306 || strcmp (mo->name, "s.s") == 0)
6307 return 4;
6308
6309 if (strcmp (mo->name, "sdc1") == 0
6310 || strcmp (mo->name, "sdc2") == 0
6311 || strcmp (mo->name, "s.d") == 0)
6312 return 8;
6313
6314 /* sb, swl, swr */
6315 return 1;
6316 }
6317
6318 struct fix_24k_store_info
6319 {
6320 /* Immediate offset, if any, for this store instruction. */
6321 short off;
6322 /* Alignment required by this store instruction. */
6323 int align_to;
6324 /* True for register offsets. */
6325 int register_offset;
6326 };
6327
6328 /* Comparison function used by qsort. */
6329
6330 static int
6331 fix_24k_sort (const void *a, const void *b)
6332 {
6333 const struct fix_24k_store_info *pos1 = a;
6334 const struct fix_24k_store_info *pos2 = b;
6335
6336 return (pos1->off - pos2->off);
6337 }
6338
6339 /* INSN is a store instruction. Try to record the store information
6340 in STINFO. Return false if the information isn't known. */
6341
6342 static bfd_boolean
6343 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6344 const struct mips_cl_insn *insn)
6345 {
6346 /* The instruction must have a known offset. */
6347 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6348 return FALSE;
6349
6350 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6351 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6352 return TRUE;
6353 }
6354
6355 /* Return the number of nops that would be needed to work around the 24k
6356 "lost data on stores during refill" errata if instruction INSN
6357 immediately followed the 2 instructions described by HIST.
6358 Ignore hazards that are contained within the first IGNORE
6359 instructions of HIST.
6360
6361 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6362 for the data cache refills and store data. The following describes
6363 the scenario where the store data could be lost.
6364
6365 * A data cache miss, due to either a load or a store, causing fill
6366 data to be supplied by the memory subsystem
6367 * The first three doublewords of fill data are returned and written
6368 into the cache
6369 * A sequence of four stores occurs in consecutive cycles around the
6370 final doubleword of the fill:
6371 * Store A
6372 * Store B
6373 * Store C
6374 * Zero, One or more instructions
6375 * Store D
6376
6377 The four stores A-D must be to different doublewords of the line that
6378 is being filled. The fourth instruction in the sequence above permits
6379 the fill of the final doubleword to be transferred from the FSB into
6380 the cache. In the sequence above, the stores may be either integer
6381 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6382 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6383 different doublewords on the line. If the floating point unit is
6384 running in 1:2 mode, it is not possible to create the sequence above
6385 using only floating point store instructions.
6386
6387 In this case, the cache line being filled is incorrectly marked
6388 invalid, thereby losing the data from any store to the line that
6389 occurs between the original miss and the completion of the five
6390 cycle sequence shown above.
6391
6392 The workarounds are:
6393
6394 * Run the data cache in write-through mode.
6395 * Insert a non-store instruction between
6396 Store A and Store B or Store B and Store C. */
6397
6398 static int
6399 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6400 const struct mips_cl_insn *insn)
6401 {
6402 struct fix_24k_store_info pos[3];
6403 int align, i, base_offset;
6404
6405 if (ignore >= 2)
6406 return 0;
6407
6408 /* If the previous instruction wasn't a store, there's nothing to
6409 worry about. */
6410 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6411 return 0;
6412
6413 /* If the instructions after the previous one are unknown, we have
6414 to assume the worst. */
6415 if (!insn)
6416 return 1;
6417
6418 /* Check whether we are dealing with three consecutive stores. */
6419 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6420 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6421 return 0;
6422
6423 /* If we don't know the relationship between the store addresses,
6424 assume the worst. */
6425 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6426 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6427 return 1;
6428
6429 if (!fix_24k_record_store_info (&pos[0], insn)
6430 || !fix_24k_record_store_info (&pos[1], &hist[0])
6431 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6432 return 1;
6433
6434 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6435
6436 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6437 X bytes and such that the base register + X is known to be aligned
6438 to align bytes. */
6439
6440 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6441 align = 8;
6442 else
6443 {
6444 align = pos[0].align_to;
6445 base_offset = pos[0].off;
6446 for (i = 1; i < 3; i++)
6447 if (align < pos[i].align_to)
6448 {
6449 align = pos[i].align_to;
6450 base_offset = pos[i].off;
6451 }
6452 for (i = 0; i < 3; i++)
6453 pos[i].off -= base_offset;
6454 }
6455
6456 pos[0].off &= ~align + 1;
6457 pos[1].off &= ~align + 1;
6458 pos[2].off &= ~align + 1;
6459
6460 /* If any two stores write to the same chunk, they also write to the
6461 same doubleword. The offsets are still sorted at this point. */
6462 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6463 return 0;
6464
6465 /* A range of at least 9 bytes is needed for the stores to be in
6466 non-overlapping doublewords. */
6467 if (pos[2].off - pos[0].off <= 8)
6468 return 0;
6469
6470 if (pos[2].off - pos[1].off >= 24
6471 || pos[1].off - pos[0].off >= 24
6472 || pos[2].off - pos[0].off >= 32)
6473 return 0;
6474
6475 return 1;
6476 }
6477
6478 /* Return the number of nops that would be needed if instruction INSN
6479 immediately followed the MAX_NOPS instructions given by HIST,
6480 where HIST[0] is the most recent instruction. Ignore hazards
6481 between INSN and the first IGNORE instructions in HIST.
6482
6483 If INSN is null, return the worse-case number of nops for any
6484 instruction. */
6485
6486 static int
6487 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6488 const struct mips_cl_insn *insn)
6489 {
6490 int i, nops, tmp_nops;
6491
6492 nops = 0;
6493 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6494 {
6495 tmp_nops = insns_between (hist + i, insn) - i;
6496 if (tmp_nops > nops)
6497 nops = tmp_nops;
6498 }
6499
6500 if (mips_fix_vr4130 && !mips_opts.micromips)
6501 {
6502 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6503 if (tmp_nops > nops)
6504 nops = tmp_nops;
6505 }
6506
6507 if (mips_fix_24k && !mips_opts.micromips)
6508 {
6509 tmp_nops = nops_for_24k (ignore, hist, insn);
6510 if (tmp_nops > nops)
6511 nops = tmp_nops;
6512 }
6513
6514 return nops;
6515 }
6516
6517 /* The variable arguments provide NUM_INSNS extra instructions that
6518 might be added to HIST. Return the largest number of nops that
6519 would be needed after the extended sequence, ignoring hazards
6520 in the first IGNORE instructions. */
6521
6522 static int
6523 nops_for_sequence (int num_insns, int ignore,
6524 const struct mips_cl_insn *hist, ...)
6525 {
6526 va_list args;
6527 struct mips_cl_insn buffer[MAX_NOPS];
6528 struct mips_cl_insn *cursor;
6529 int nops;
6530
6531 va_start (args, hist);
6532 cursor = buffer + num_insns;
6533 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6534 while (cursor > buffer)
6535 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6536
6537 nops = nops_for_insn (ignore, buffer, NULL);
6538 va_end (args);
6539 return nops;
6540 }
6541
6542 /* Like nops_for_insn, but if INSN is a branch, take into account the
6543 worst-case delay for the branch target. */
6544
6545 static int
6546 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6547 const struct mips_cl_insn *insn)
6548 {
6549 int nops, tmp_nops;
6550
6551 nops = nops_for_insn (ignore, hist, insn);
6552 if (delayed_branch_p (insn))
6553 {
6554 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6555 hist, insn, get_delay_slot_nop (insn));
6556 if (tmp_nops > nops)
6557 nops = tmp_nops;
6558 }
6559 else if (compact_branch_p (insn))
6560 {
6561 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6562 if (tmp_nops > nops)
6563 nops = tmp_nops;
6564 }
6565 return nops;
6566 }
6567
6568 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6569
6570 static void
6571 fix_loongson2f_nop (struct mips_cl_insn * ip)
6572 {
6573 gas_assert (!HAVE_CODE_COMPRESSION);
6574 if (strcmp (ip->insn_mo->name, "nop") == 0)
6575 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6576 }
6577
6578 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6579 jr target pc &= 'hffff_ffff_cfff_ffff. */
6580
6581 static void
6582 fix_loongson2f_jump (struct mips_cl_insn * ip)
6583 {
6584 gas_assert (!HAVE_CODE_COMPRESSION);
6585 if (strcmp (ip->insn_mo->name, "j") == 0
6586 || strcmp (ip->insn_mo->name, "jr") == 0
6587 || strcmp (ip->insn_mo->name, "jalr") == 0)
6588 {
6589 int sreg;
6590 expressionS ep;
6591
6592 if (! mips_opts.at)
6593 return;
6594
6595 sreg = EXTRACT_OPERAND (0, RS, *ip);
6596 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6597 return;
6598
6599 ep.X_op = O_constant;
6600 ep.X_add_number = 0xcfff0000;
6601 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6602 ep.X_add_number = 0xffff;
6603 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6604 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6605 }
6606 }
6607
6608 static void
6609 fix_loongson2f (struct mips_cl_insn * ip)
6610 {
6611 if (mips_fix_loongson2f_nop)
6612 fix_loongson2f_nop (ip);
6613
6614 if (mips_fix_loongson2f_jump)
6615 fix_loongson2f_jump (ip);
6616 }
6617
6618 /* IP is a branch that has a delay slot, and we need to fill it
6619 automatically. Return true if we can do that by swapping IP
6620 with the previous instruction.
6621 ADDRESS_EXPR is an operand of the instruction to be used with
6622 RELOC_TYPE. */
6623
6624 static bfd_boolean
6625 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6626 bfd_reloc_code_real_type *reloc_type)
6627 {
6628 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6629 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6630 unsigned int fpr_read, prev_fpr_write;
6631
6632 /* -O2 and above is required for this optimization. */
6633 if (mips_optimize < 2)
6634 return FALSE;
6635
6636 /* If we have seen .set volatile or .set nomove, don't optimize. */
6637 if (mips_opts.nomove)
6638 return FALSE;
6639
6640 /* We can't swap if the previous instruction's position is fixed. */
6641 if (history[0].fixed_p)
6642 return FALSE;
6643
6644 /* If the previous previous insn was in a .set noreorder, we can't
6645 swap. Actually, the MIPS assembler will swap in this situation.
6646 However, gcc configured -with-gnu-as will generate code like
6647
6648 .set noreorder
6649 lw $4,XXX
6650 .set reorder
6651 INSN
6652 bne $4,$0,foo
6653
6654 in which we can not swap the bne and INSN. If gcc is not configured
6655 -with-gnu-as, it does not output the .set pseudo-ops. */
6656 if (history[1].noreorder_p)
6657 return FALSE;
6658
6659 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6660 This means that the previous instruction was a 4-byte one anyhow. */
6661 if (mips_opts.mips16 && history[0].fixp[0])
6662 return FALSE;
6663
6664 /* If the branch is itself the target of a branch, we can not swap.
6665 We cheat on this; all we check for is whether there is a label on
6666 this instruction. If there are any branches to anything other than
6667 a label, users must use .set noreorder. */
6668 if (seg_info (now_seg)->label_list)
6669 return FALSE;
6670
6671 /* If the previous instruction is in a variant frag other than this
6672 branch's one, we cannot do the swap. This does not apply to
6673 MIPS16 code, which uses variant frags for different purposes. */
6674 if (!mips_opts.mips16
6675 && history[0].frag
6676 && history[0].frag->fr_type == rs_machine_dependent)
6677 return FALSE;
6678
6679 /* We do not swap with instructions that cannot architecturally
6680 be placed in a branch delay slot, such as SYNC or ERET. We
6681 also refrain from swapping with a trap instruction, since it
6682 complicates trap handlers to have the trap instruction be in
6683 a delay slot. */
6684 prev_pinfo = history[0].insn_mo->pinfo;
6685 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6686 return FALSE;
6687
6688 /* Check for conflicts between the branch and the instructions
6689 before the candidate delay slot. */
6690 if (nops_for_insn (0, history + 1, ip) > 0)
6691 return FALSE;
6692
6693 /* Check for conflicts between the swapped sequence and the
6694 target of the branch. */
6695 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6696 return FALSE;
6697
6698 /* If the branch reads a register that the previous
6699 instruction sets, we can not swap. */
6700 gpr_read = gpr_read_mask (ip);
6701 prev_gpr_write = gpr_write_mask (&history[0]);
6702 if (gpr_read & prev_gpr_write)
6703 return FALSE;
6704
6705 fpr_read = fpr_read_mask (ip);
6706 prev_fpr_write = fpr_write_mask (&history[0]);
6707 if (fpr_read & prev_fpr_write)
6708 return FALSE;
6709
6710 /* If the branch writes a register that the previous
6711 instruction sets, we can not swap. */
6712 gpr_write = gpr_write_mask (ip);
6713 if (gpr_write & prev_gpr_write)
6714 return FALSE;
6715
6716 /* If the branch writes a register that the previous
6717 instruction reads, we can not swap. */
6718 prev_gpr_read = gpr_read_mask (&history[0]);
6719 if (gpr_write & prev_gpr_read)
6720 return FALSE;
6721
6722 /* If one instruction sets a condition code and the
6723 other one uses a condition code, we can not swap. */
6724 pinfo = ip->insn_mo->pinfo;
6725 if ((pinfo & INSN_READ_COND_CODE)
6726 && (prev_pinfo & INSN_WRITE_COND_CODE))
6727 return FALSE;
6728 if ((pinfo & INSN_WRITE_COND_CODE)
6729 && (prev_pinfo & INSN_READ_COND_CODE))
6730 return FALSE;
6731
6732 /* If the previous instruction uses the PC, we can not swap. */
6733 prev_pinfo2 = history[0].insn_mo->pinfo2;
6734 if (prev_pinfo2 & INSN2_READ_PC)
6735 return FALSE;
6736
6737 /* If the previous instruction has an incorrect size for a fixed
6738 branch delay slot in microMIPS mode, we cannot swap. */
6739 pinfo2 = ip->insn_mo->pinfo2;
6740 if (mips_opts.micromips
6741 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6742 && insn_length (history) != 2)
6743 return FALSE;
6744 if (mips_opts.micromips
6745 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6746 && insn_length (history) != 4)
6747 return FALSE;
6748
6749 /* On R5900 short loops need to be fixed by inserting a nop in
6750 the branch delay slots.
6751 A short loop can be terminated too early. */
6752 if (mips_opts.arch == CPU_R5900
6753 /* Check if instruction has a parameter, ignore "j $31". */
6754 && (address_expr != NULL)
6755 /* Parameter must be 16 bit. */
6756 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6757 /* Branch to same segment. */
6758 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6759 /* Branch to same code fragment. */
6760 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6761 /* Can only calculate branch offset if value is known. */
6762 && symbol_constant_p (address_expr->X_add_symbol)
6763 /* Check if branch is really conditional. */
6764 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6765 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6766 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6767 {
6768 int distance;
6769 /* Check if loop is shorter than 6 instructions including
6770 branch and delay slot. */
6771 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6772 if (distance <= 20)
6773 {
6774 int i;
6775 int rv;
6776
6777 rv = FALSE;
6778 /* When the loop includes branches or jumps,
6779 it is not a short loop. */
6780 for (i = 0; i < (distance / 4); i++)
6781 {
6782 if ((history[i].cleared_p)
6783 || delayed_branch_p (&history[i]))
6784 {
6785 rv = TRUE;
6786 break;
6787 }
6788 }
6789 if (rv == FALSE)
6790 {
6791 /* Insert nop after branch to fix short loop. */
6792 return FALSE;
6793 }
6794 }
6795 }
6796
6797 return TRUE;
6798 }
6799
6800 /* Decide how we should add IP to the instruction stream.
6801 ADDRESS_EXPR is an operand of the instruction to be used with
6802 RELOC_TYPE. */
6803
6804 static enum append_method
6805 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6806 bfd_reloc_code_real_type *reloc_type)
6807 {
6808 /* The relaxed version of a macro sequence must be inherently
6809 hazard-free. */
6810 if (mips_relax.sequence == 2)
6811 return APPEND_ADD;
6812
6813 /* We must not dabble with instructions in a ".set noreorder" block. */
6814 if (mips_opts.noreorder)
6815 return APPEND_ADD;
6816
6817 /* Otherwise, it's our responsibility to fill branch delay slots. */
6818 if (delayed_branch_p (ip))
6819 {
6820 if (!branch_likely_p (ip)
6821 && can_swap_branch_p (ip, address_expr, reloc_type))
6822 return APPEND_SWAP;
6823
6824 if (mips_opts.mips16
6825 && ISA_SUPPORTS_MIPS16E
6826 && gpr_read_mask (ip) != 0)
6827 return APPEND_ADD_COMPACT;
6828
6829 return APPEND_ADD_WITH_NOP;
6830 }
6831
6832 return APPEND_ADD;
6833 }
6834
6835 /* IP is a MIPS16 instruction whose opcode we have just changed.
6836 Point IP->insn_mo to the new opcode's definition. */
6837
6838 static void
6839 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6840 {
6841 const struct mips_opcode *mo, *end;
6842
6843 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6844 for (mo = ip->insn_mo; mo < end; mo++)
6845 if ((ip->insn_opcode & mo->mask) == mo->match)
6846 {
6847 ip->insn_mo = mo;
6848 return;
6849 }
6850 abort ();
6851 }
6852
6853 /* For microMIPS macros, we need to generate a local number label
6854 as the target of branches. */
6855 #define MICROMIPS_LABEL_CHAR '\037'
6856 static unsigned long micromips_target_label;
6857 static char micromips_target_name[32];
6858
6859 static char *
6860 micromips_label_name (void)
6861 {
6862 char *p = micromips_target_name;
6863 char symbol_name_temporary[24];
6864 unsigned long l;
6865 int i;
6866
6867 if (*p)
6868 return p;
6869
6870 i = 0;
6871 l = micromips_target_label;
6872 #ifdef LOCAL_LABEL_PREFIX
6873 *p++ = LOCAL_LABEL_PREFIX;
6874 #endif
6875 *p++ = 'L';
6876 *p++ = MICROMIPS_LABEL_CHAR;
6877 do
6878 {
6879 symbol_name_temporary[i++] = l % 10 + '0';
6880 l /= 10;
6881 }
6882 while (l != 0);
6883 while (i > 0)
6884 *p++ = symbol_name_temporary[--i];
6885 *p = '\0';
6886
6887 return micromips_target_name;
6888 }
6889
6890 static void
6891 micromips_label_expr (expressionS *label_expr)
6892 {
6893 label_expr->X_op = O_symbol;
6894 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6895 label_expr->X_add_number = 0;
6896 }
6897
6898 static void
6899 micromips_label_inc (void)
6900 {
6901 micromips_target_label++;
6902 *micromips_target_name = '\0';
6903 }
6904
6905 static void
6906 micromips_add_label (void)
6907 {
6908 symbolS *s;
6909
6910 s = colon (micromips_label_name ());
6911 micromips_label_inc ();
6912 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6913 }
6914
6915 /* If assembling microMIPS code, then return the microMIPS reloc
6916 corresponding to the requested one if any. Otherwise return
6917 the reloc unchanged. */
6918
6919 static bfd_reloc_code_real_type
6920 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6921 {
6922 static const bfd_reloc_code_real_type relocs[][2] =
6923 {
6924 /* Keep sorted incrementally by the left-hand key. */
6925 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6926 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6927 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6928 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6929 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6930 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6931 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6932 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6933 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6934 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6935 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6936 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6937 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6938 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6939 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6940 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6941 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6942 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6943 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6944 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6945 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6946 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6947 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6948 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6949 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6950 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6951 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6952 };
6953 bfd_reloc_code_real_type r;
6954 size_t i;
6955
6956 if (!mips_opts.micromips)
6957 return reloc;
6958 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6959 {
6960 r = relocs[i][0];
6961 if (r > reloc)
6962 return reloc;
6963 if (r == reloc)
6964 return relocs[i][1];
6965 }
6966 return reloc;
6967 }
6968
6969 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6970 Return true on success, storing the resolved value in RESULT. */
6971
6972 static bfd_boolean
6973 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6974 offsetT *result)
6975 {
6976 switch (reloc)
6977 {
6978 case BFD_RELOC_MIPS_HIGHEST:
6979 case BFD_RELOC_MICROMIPS_HIGHEST:
6980 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6981 return TRUE;
6982
6983 case BFD_RELOC_MIPS_HIGHER:
6984 case BFD_RELOC_MICROMIPS_HIGHER:
6985 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6986 return TRUE;
6987
6988 case BFD_RELOC_HI16_S:
6989 case BFD_RELOC_HI16_S_PCREL:
6990 case BFD_RELOC_MICROMIPS_HI16_S:
6991 case BFD_RELOC_MIPS16_HI16_S:
6992 *result = ((operand + 0x8000) >> 16) & 0xffff;
6993 return TRUE;
6994
6995 case BFD_RELOC_HI16:
6996 case BFD_RELOC_MICROMIPS_HI16:
6997 case BFD_RELOC_MIPS16_HI16:
6998 *result = (operand >> 16) & 0xffff;
6999 return TRUE;
7000
7001 case BFD_RELOC_LO16:
7002 case BFD_RELOC_LO16_PCREL:
7003 case BFD_RELOC_MICROMIPS_LO16:
7004 case BFD_RELOC_MIPS16_LO16:
7005 *result = operand & 0xffff;
7006 return TRUE;
7007
7008 case BFD_RELOC_UNUSED:
7009 *result = operand;
7010 return TRUE;
7011
7012 default:
7013 return FALSE;
7014 }
7015 }
7016
7017 /* Output an instruction. IP is the instruction information.
7018 ADDRESS_EXPR is an operand of the instruction to be used with
7019 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7020 a macro expansion. */
7021
7022 static void
7023 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7024 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7025 {
7026 unsigned long prev_pinfo2, pinfo;
7027 bfd_boolean relaxed_branch = FALSE;
7028 enum append_method method;
7029 bfd_boolean relax32;
7030 int branch_disp;
7031
7032 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7033 fix_loongson2f (ip);
7034
7035 file_ase_mips16 |= mips_opts.mips16;
7036 file_ase_micromips |= mips_opts.micromips;
7037
7038 prev_pinfo2 = history[0].insn_mo->pinfo2;
7039 pinfo = ip->insn_mo->pinfo;
7040
7041 if (mips_opts.micromips
7042 && !expansionp
7043 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7044 && micromips_insn_length (ip->insn_mo) != 2)
7045 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7046 && micromips_insn_length (ip->insn_mo) != 4)))
7047 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7048 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7049
7050 if (address_expr == NULL)
7051 ip->complete_p = 1;
7052 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7053 && reloc_type[1] == BFD_RELOC_UNUSED
7054 && reloc_type[2] == BFD_RELOC_UNUSED
7055 && address_expr->X_op == O_constant)
7056 {
7057 switch (*reloc_type)
7058 {
7059 case BFD_RELOC_MIPS_JMP:
7060 {
7061 int shift;
7062
7063 /* Shift is 2, unusually, for microMIPS JALX. */
7064 shift = (mips_opts.micromips
7065 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7066 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7067 as_bad (_("jump to misaligned address (0x%lx)"),
7068 (unsigned long) address_expr->X_add_number);
7069 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7070 & 0x3ffffff);
7071 ip->complete_p = 1;
7072 }
7073 break;
7074
7075 case BFD_RELOC_MIPS16_JMP:
7076 if ((address_expr->X_add_number & 3) != 0)
7077 as_bad (_("jump to misaligned address (0x%lx)"),
7078 (unsigned long) address_expr->X_add_number);
7079 ip->insn_opcode |=
7080 (((address_expr->X_add_number & 0x7c0000) << 3)
7081 | ((address_expr->X_add_number & 0xf800000) >> 7)
7082 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7083 ip->complete_p = 1;
7084 break;
7085
7086 case BFD_RELOC_16_PCREL_S2:
7087 {
7088 int shift;
7089
7090 shift = mips_opts.micromips ? 1 : 2;
7091 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7092 as_bad (_("branch to misaligned address (0x%lx)"),
7093 (unsigned long) address_expr->X_add_number);
7094 if (!mips_relax_branch)
7095 {
7096 if ((address_expr->X_add_number + (1 << (shift + 15)))
7097 & ~((1 << (shift + 16)) - 1))
7098 as_bad (_("branch address range overflow (0x%lx)"),
7099 (unsigned long) address_expr->X_add_number);
7100 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7101 & 0xffff);
7102 }
7103 }
7104 break;
7105
7106 case BFD_RELOC_MIPS_21_PCREL_S2:
7107 {
7108 int shift;
7109
7110 shift = 2;
7111 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7112 as_bad (_("branch to misaligned address (0x%lx)"),
7113 (unsigned long) address_expr->X_add_number);
7114 if ((address_expr->X_add_number + (1 << (shift + 20)))
7115 & ~((1 << (shift + 21)) - 1))
7116 as_bad (_("branch address range overflow (0x%lx)"),
7117 (unsigned long) address_expr->X_add_number);
7118 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7119 & 0x1fffff);
7120 }
7121 break;
7122
7123 case BFD_RELOC_MIPS_26_PCREL_S2:
7124 {
7125 int shift;
7126
7127 shift = 2;
7128 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7129 as_bad (_("branch to misaligned address (0x%lx)"),
7130 (unsigned long) address_expr->X_add_number);
7131 if ((address_expr->X_add_number + (1 << (shift + 25)))
7132 & ~((1 << (shift + 26)) - 1))
7133 as_bad (_("branch address range overflow (0x%lx)"),
7134 (unsigned long) address_expr->X_add_number);
7135 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7136 & 0x3ffffff);
7137 }
7138 break;
7139
7140 default:
7141 {
7142 offsetT value;
7143
7144 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7145 &value))
7146 {
7147 ip->insn_opcode |= value & 0xffff;
7148 ip->complete_p = 1;
7149 }
7150 }
7151 break;
7152 }
7153 }
7154
7155 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7156 {
7157 /* There are a lot of optimizations we could do that we don't.
7158 In particular, we do not, in general, reorder instructions.
7159 If you use gcc with optimization, it will reorder
7160 instructions and generally do much more optimization then we
7161 do here; repeating all that work in the assembler would only
7162 benefit hand written assembly code, and does not seem worth
7163 it. */
7164 int nops = (mips_optimize == 0
7165 ? nops_for_insn (0, history, NULL)
7166 : nops_for_insn_or_target (0, history, ip));
7167 if (nops > 0)
7168 {
7169 fragS *old_frag;
7170 unsigned long old_frag_offset;
7171 int i;
7172
7173 old_frag = frag_now;
7174 old_frag_offset = frag_now_fix ();
7175
7176 for (i = 0; i < nops; i++)
7177 add_fixed_insn (NOP_INSN);
7178 insert_into_history (0, nops, NOP_INSN);
7179
7180 if (listing)
7181 {
7182 listing_prev_line ();
7183 /* We may be at the start of a variant frag. In case we
7184 are, make sure there is enough space for the frag
7185 after the frags created by listing_prev_line. The
7186 argument to frag_grow here must be at least as large
7187 as the argument to all other calls to frag_grow in
7188 this file. We don't have to worry about being in the
7189 middle of a variant frag, because the variants insert
7190 all needed nop instructions themselves. */
7191 frag_grow (40);
7192 }
7193
7194 mips_move_text_labels ();
7195
7196 #ifndef NO_ECOFF_DEBUGGING
7197 if (ECOFF_DEBUGGING)
7198 ecoff_fix_loc (old_frag, old_frag_offset);
7199 #endif
7200 }
7201 }
7202 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7203 {
7204 int nops;
7205
7206 /* Work out how many nops in prev_nop_frag are needed by IP,
7207 ignoring hazards generated by the first prev_nop_frag_since
7208 instructions. */
7209 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7210 gas_assert (nops <= prev_nop_frag_holds);
7211
7212 /* Enforce NOPS as a minimum. */
7213 if (nops > prev_nop_frag_required)
7214 prev_nop_frag_required = nops;
7215
7216 if (prev_nop_frag_holds == prev_nop_frag_required)
7217 {
7218 /* Settle for the current number of nops. Update the history
7219 accordingly (for the benefit of any future .set reorder code). */
7220 prev_nop_frag = NULL;
7221 insert_into_history (prev_nop_frag_since,
7222 prev_nop_frag_holds, NOP_INSN);
7223 }
7224 else
7225 {
7226 /* Allow this instruction to replace one of the nops that was
7227 tentatively added to prev_nop_frag. */
7228 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7229 prev_nop_frag_holds--;
7230 prev_nop_frag_since++;
7231 }
7232 }
7233
7234 method = get_append_method (ip, address_expr, reloc_type);
7235 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7236
7237 dwarf2_emit_insn (0);
7238 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7239 so "move" the instruction address accordingly.
7240
7241 Also, it doesn't seem appropriate for the assembler to reorder .loc
7242 entries. If this instruction is a branch that we are going to swap
7243 with the previous instruction, the two instructions should be
7244 treated as a unit, and the debug information for both instructions
7245 should refer to the start of the branch sequence. Using the
7246 current position is certainly wrong when swapping a 32-bit branch
7247 and a 16-bit delay slot, since the current position would then be
7248 in the middle of a branch. */
7249 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7250
7251 relax32 = (mips_relax_branch
7252 /* Don't try branch relaxation within .set nomacro, or within
7253 .set noat if we use $at for PIC computations. If it turns
7254 out that the branch was out-of-range, we'll get an error. */
7255 && !mips_opts.warn_about_macros
7256 && (mips_opts.at || mips_pic == NO_PIC)
7257 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7258 as they have no complementing branches. */
7259 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7260
7261 if (!HAVE_CODE_COMPRESSION
7262 && address_expr
7263 && relax32
7264 && *reloc_type == BFD_RELOC_16_PCREL_S2
7265 && delayed_branch_p (ip))
7266 {
7267 relaxed_branch = TRUE;
7268 add_relaxed_insn (ip, (relaxed_branch_length
7269 (NULL, NULL,
7270 uncond_branch_p (ip) ? -1
7271 : branch_likely_p (ip) ? 1
7272 : 0)), 4,
7273 RELAX_BRANCH_ENCODE
7274 (AT,
7275 uncond_branch_p (ip),
7276 branch_likely_p (ip),
7277 pinfo & INSN_WRITE_GPR_31,
7278 0),
7279 address_expr->X_add_symbol,
7280 address_expr->X_add_number);
7281 *reloc_type = BFD_RELOC_UNUSED;
7282 }
7283 else if (mips_opts.micromips
7284 && address_expr
7285 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7286 || *reloc_type > BFD_RELOC_UNUSED)
7287 && (delayed_branch_p (ip) || compact_branch_p (ip))
7288 /* Don't try branch relaxation when users specify
7289 16-bit/32-bit instructions. */
7290 && !forced_insn_length)
7291 {
7292 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7293 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7294 int uncond = uncond_branch_p (ip) ? -1 : 0;
7295 int compact = compact_branch_p (ip);
7296 int al = pinfo & INSN_WRITE_GPR_31;
7297 int length32;
7298
7299 gas_assert (address_expr != NULL);
7300 gas_assert (!mips_relax.sequence);
7301
7302 relaxed_branch = TRUE;
7303 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7304 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7305 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7306 relax32, 0, 0),
7307 address_expr->X_add_symbol,
7308 address_expr->X_add_number);
7309 *reloc_type = BFD_RELOC_UNUSED;
7310 }
7311 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7312 {
7313 symbolS *symbol;
7314 offsetT offset;
7315
7316 /* We need to set up a variant frag. */
7317 gas_assert (address_expr != NULL);
7318 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7319 symbol created by `make_expr_symbol' may not get a necessary
7320 external relocation produced. */
7321 if (address_expr->X_op == O_symbol)
7322 {
7323 symbol = address_expr->X_add_symbol;
7324 offset = address_expr->X_add_number;
7325 }
7326 else
7327 {
7328 symbol = make_expr_symbol (address_expr);
7329 offset = 0;
7330 }
7331 add_relaxed_insn (ip, 4, 0,
7332 RELAX_MIPS16_ENCODE
7333 (*reloc_type - BFD_RELOC_UNUSED,
7334 forced_insn_length == 2, forced_insn_length == 4,
7335 delayed_branch_p (&history[0]),
7336 history[0].mips16_absolute_jump_p),
7337 symbol, offset);
7338 }
7339 else if (mips_opts.mips16 && insn_length (ip) == 2)
7340 {
7341 if (!delayed_branch_p (ip))
7342 /* Make sure there is enough room to swap this instruction with
7343 a following jump instruction. */
7344 frag_grow (6);
7345 add_fixed_insn (ip);
7346 }
7347 else
7348 {
7349 if (mips_opts.mips16
7350 && mips_opts.noreorder
7351 && delayed_branch_p (&history[0]))
7352 as_warn (_("extended instruction in delay slot"));
7353
7354 if (mips_relax.sequence)
7355 {
7356 /* If we've reached the end of this frag, turn it into a variant
7357 frag and record the information for the instructions we've
7358 written so far. */
7359 if (frag_room () < 4)
7360 relax_close_frag ();
7361 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7362 }
7363
7364 if (mips_relax.sequence != 2)
7365 {
7366 if (mips_macro_warning.first_insn_sizes[0] == 0)
7367 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7368 mips_macro_warning.sizes[0] += insn_length (ip);
7369 mips_macro_warning.insns[0]++;
7370 }
7371 if (mips_relax.sequence != 1)
7372 {
7373 if (mips_macro_warning.first_insn_sizes[1] == 0)
7374 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7375 mips_macro_warning.sizes[1] += insn_length (ip);
7376 mips_macro_warning.insns[1]++;
7377 }
7378
7379 if (mips_opts.mips16)
7380 {
7381 ip->fixed_p = 1;
7382 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7383 }
7384 add_fixed_insn (ip);
7385 }
7386
7387 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7388 {
7389 bfd_reloc_code_real_type final_type[3];
7390 reloc_howto_type *howto0;
7391 reloc_howto_type *howto;
7392 int i;
7393
7394 /* Perform any necessary conversion to microMIPS relocations
7395 and find out how many relocations there actually are. */
7396 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7397 final_type[i] = micromips_map_reloc (reloc_type[i]);
7398
7399 /* In a compound relocation, it is the final (outermost)
7400 operator that determines the relocated field. */
7401 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7402 if (!howto)
7403 abort ();
7404
7405 if (i > 1)
7406 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7407 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7408 bfd_get_reloc_size (howto),
7409 address_expr,
7410 howto0 && howto0->pc_relative,
7411 final_type[0]);
7412
7413 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7414 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7415 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7416
7417 /* These relocations can have an addend that won't fit in
7418 4 octets for 64bit assembly. */
7419 if (GPR_SIZE == 64
7420 && ! howto->partial_inplace
7421 && (reloc_type[0] == BFD_RELOC_16
7422 || reloc_type[0] == BFD_RELOC_32
7423 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7424 || reloc_type[0] == BFD_RELOC_GPREL16
7425 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7426 || reloc_type[0] == BFD_RELOC_GPREL32
7427 || reloc_type[0] == BFD_RELOC_64
7428 || reloc_type[0] == BFD_RELOC_CTOR
7429 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7430 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7431 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7432 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7433 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7434 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7435 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7436 || hi16_reloc_p (reloc_type[0])
7437 || lo16_reloc_p (reloc_type[0])))
7438 ip->fixp[0]->fx_no_overflow = 1;
7439
7440 /* These relocations can have an addend that won't fit in 2 octets. */
7441 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7442 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7443 ip->fixp[0]->fx_no_overflow = 1;
7444
7445 if (mips_relax.sequence)
7446 {
7447 if (mips_relax.first_fixup == 0)
7448 mips_relax.first_fixup = ip->fixp[0];
7449 }
7450 else if (reloc_needs_lo_p (*reloc_type))
7451 {
7452 struct mips_hi_fixup *hi_fixup;
7453
7454 /* Reuse the last entry if it already has a matching %lo. */
7455 hi_fixup = mips_hi_fixup_list;
7456 if (hi_fixup == 0
7457 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7458 {
7459 hi_fixup = XNEW (struct mips_hi_fixup);
7460 hi_fixup->next = mips_hi_fixup_list;
7461 mips_hi_fixup_list = hi_fixup;
7462 }
7463 hi_fixup->fixp = ip->fixp[0];
7464 hi_fixup->seg = now_seg;
7465 }
7466
7467 /* Add fixups for the second and third relocations, if given.
7468 Note that the ABI allows the second relocation to be
7469 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7470 moment we only use RSS_UNDEF, but we could add support
7471 for the others if it ever becomes necessary. */
7472 for (i = 1; i < 3; i++)
7473 if (reloc_type[i] != BFD_RELOC_UNUSED)
7474 {
7475 ip->fixp[i] = fix_new (ip->frag, ip->where,
7476 ip->fixp[0]->fx_size, NULL, 0,
7477 FALSE, final_type[i]);
7478
7479 /* Use fx_tcbit to mark compound relocs. */
7480 ip->fixp[0]->fx_tcbit = 1;
7481 ip->fixp[i]->fx_tcbit = 1;
7482 }
7483 }
7484
7485 /* Update the register mask information. */
7486 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7487 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7488
7489 switch (method)
7490 {
7491 case APPEND_ADD:
7492 insert_into_history (0, 1, ip);
7493 break;
7494
7495 case APPEND_ADD_WITH_NOP:
7496 {
7497 struct mips_cl_insn *nop;
7498
7499 insert_into_history (0, 1, ip);
7500 nop = get_delay_slot_nop (ip);
7501 add_fixed_insn (nop);
7502 insert_into_history (0, 1, nop);
7503 if (mips_relax.sequence)
7504 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7505 }
7506 break;
7507
7508 case APPEND_ADD_COMPACT:
7509 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7510 gas_assert (mips_opts.mips16);
7511 ip->insn_opcode |= 0x0080;
7512 find_altered_mips16_opcode (ip);
7513 install_insn (ip);
7514 insert_into_history (0, 1, ip);
7515 break;
7516
7517 case APPEND_SWAP:
7518 {
7519 struct mips_cl_insn delay = history[0];
7520
7521 if (relaxed_branch || delay.frag != ip->frag)
7522 {
7523 /* Add the delay slot instruction to the end of the
7524 current frag and shrink the fixed part of the
7525 original frag. If the branch occupies the tail of
7526 the latter, move it backwards to cover the gap. */
7527 delay.frag->fr_fix -= branch_disp;
7528 if (delay.frag == ip->frag)
7529 move_insn (ip, ip->frag, ip->where - branch_disp);
7530 add_fixed_insn (&delay);
7531 }
7532 else
7533 {
7534 /* If this is not a relaxed branch and we are in the
7535 same frag, then just swap the instructions. */
7536 move_insn (ip, delay.frag, delay.where);
7537 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7538 }
7539 history[0] = *ip;
7540 delay.fixed_p = 1;
7541 insert_into_history (0, 1, &delay);
7542 }
7543 break;
7544 }
7545
7546 /* If we have just completed an unconditional branch, clear the history. */
7547 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7548 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7549 {
7550 unsigned int i;
7551
7552 mips_no_prev_insn ();
7553
7554 for (i = 0; i < ARRAY_SIZE (history); i++)
7555 history[i].cleared_p = 1;
7556 }
7557
7558 /* We need to emit a label at the end of branch-likely macros. */
7559 if (emit_branch_likely_macro)
7560 {
7561 emit_branch_likely_macro = FALSE;
7562 micromips_add_label ();
7563 }
7564
7565 /* We just output an insn, so the next one doesn't have a label. */
7566 mips_clear_insn_labels ();
7567 }
7568
7569 /* Forget that there was any previous instruction or label.
7570 When BRANCH is true, the branch history is also flushed. */
7571
7572 static void
7573 mips_no_prev_insn (void)
7574 {
7575 prev_nop_frag = NULL;
7576 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7577 mips_clear_insn_labels ();
7578 }
7579
7580 /* This function must be called before we emit something other than
7581 instructions. It is like mips_no_prev_insn except that it inserts
7582 any NOPS that might be needed by previous instructions. */
7583
7584 void
7585 mips_emit_delays (void)
7586 {
7587 if (! mips_opts.noreorder)
7588 {
7589 int nops = nops_for_insn (0, history, NULL);
7590 if (nops > 0)
7591 {
7592 while (nops-- > 0)
7593 add_fixed_insn (NOP_INSN);
7594 mips_move_text_labels ();
7595 }
7596 }
7597 mips_no_prev_insn ();
7598 }
7599
7600 /* Start a (possibly nested) noreorder block. */
7601
7602 static void
7603 start_noreorder (void)
7604 {
7605 if (mips_opts.noreorder == 0)
7606 {
7607 unsigned int i;
7608 int nops;
7609
7610 /* None of the instructions before the .set noreorder can be moved. */
7611 for (i = 0; i < ARRAY_SIZE (history); i++)
7612 history[i].fixed_p = 1;
7613
7614 /* Insert any nops that might be needed between the .set noreorder
7615 block and the previous instructions. We will later remove any
7616 nops that turn out not to be needed. */
7617 nops = nops_for_insn (0, history, NULL);
7618 if (nops > 0)
7619 {
7620 if (mips_optimize != 0)
7621 {
7622 /* Record the frag which holds the nop instructions, so
7623 that we can remove them if we don't need them. */
7624 frag_grow (nops * NOP_INSN_SIZE);
7625 prev_nop_frag = frag_now;
7626 prev_nop_frag_holds = nops;
7627 prev_nop_frag_required = 0;
7628 prev_nop_frag_since = 0;
7629 }
7630
7631 for (; nops > 0; --nops)
7632 add_fixed_insn (NOP_INSN);
7633
7634 /* Move on to a new frag, so that it is safe to simply
7635 decrease the size of prev_nop_frag. */
7636 frag_wane (frag_now);
7637 frag_new (0);
7638 mips_move_text_labels ();
7639 }
7640 mips_mark_labels ();
7641 mips_clear_insn_labels ();
7642 }
7643 mips_opts.noreorder++;
7644 mips_any_noreorder = 1;
7645 }
7646
7647 /* End a nested noreorder block. */
7648
7649 static void
7650 end_noreorder (void)
7651 {
7652 mips_opts.noreorder--;
7653 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7654 {
7655 /* Commit to inserting prev_nop_frag_required nops and go back to
7656 handling nop insertion the .set reorder way. */
7657 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7658 * NOP_INSN_SIZE);
7659 insert_into_history (prev_nop_frag_since,
7660 prev_nop_frag_required, NOP_INSN);
7661 prev_nop_frag = NULL;
7662 }
7663 }
7664
7665 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7666 higher bits unset. */
7667
7668 static void
7669 normalize_constant_expr (expressionS *ex)
7670 {
7671 if (ex->X_op == O_constant
7672 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7673 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7674 - 0x80000000);
7675 }
7676
7677 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7678 all higher bits unset. */
7679
7680 static void
7681 normalize_address_expr (expressionS *ex)
7682 {
7683 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7684 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7685 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7686 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7687 - 0x80000000);
7688 }
7689
7690 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7691 Return true if the match was successful.
7692
7693 OPCODE_EXTRA is a value that should be ORed into the opcode
7694 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7695 there are more alternatives after OPCODE and SOFT_MATCH is
7696 as for mips_arg_info. */
7697
7698 static bfd_boolean
7699 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7700 struct mips_operand_token *tokens, unsigned int opcode_extra,
7701 bfd_boolean lax_match, bfd_boolean complete_p)
7702 {
7703 const char *args;
7704 struct mips_arg_info arg;
7705 const struct mips_operand *operand;
7706 char c;
7707
7708 imm_expr.X_op = O_absent;
7709 offset_expr.X_op = O_absent;
7710 offset_reloc[0] = BFD_RELOC_UNUSED;
7711 offset_reloc[1] = BFD_RELOC_UNUSED;
7712 offset_reloc[2] = BFD_RELOC_UNUSED;
7713
7714 create_insn (insn, opcode);
7715 /* When no opcode suffix is specified, assume ".xyzw". */
7716 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7717 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7718 else
7719 insn->insn_opcode |= opcode_extra;
7720 memset (&arg, 0, sizeof (arg));
7721 arg.insn = insn;
7722 arg.token = tokens;
7723 arg.argnum = 1;
7724 arg.last_regno = ILLEGAL_REG;
7725 arg.dest_regno = ILLEGAL_REG;
7726 arg.lax_match = lax_match;
7727 for (args = opcode->args;; ++args)
7728 {
7729 if (arg.token->type == OT_END)
7730 {
7731 /* Handle unary instructions in which only one operand is given.
7732 The source is then the same as the destination. */
7733 if (arg.opnum == 1 && *args == ',')
7734 {
7735 operand = (mips_opts.micromips
7736 ? decode_micromips_operand (args + 1)
7737 : decode_mips_operand (args + 1));
7738 if (operand && mips_optional_operand_p (operand))
7739 {
7740 arg.token = tokens;
7741 arg.argnum = 1;
7742 continue;
7743 }
7744 }
7745
7746 /* Treat elided base registers as $0. */
7747 if (strcmp (args, "(b)") == 0)
7748 args += 3;
7749
7750 if (args[0] == '+')
7751 switch (args[1])
7752 {
7753 case 'K':
7754 case 'N':
7755 /* The register suffix is optional. */
7756 args += 2;
7757 break;
7758 }
7759
7760 /* Fail the match if there were too few operands. */
7761 if (*args)
7762 return FALSE;
7763
7764 /* Successful match. */
7765 if (!complete_p)
7766 return TRUE;
7767 clear_insn_error ();
7768 if (arg.dest_regno == arg.last_regno
7769 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7770 {
7771 if (arg.opnum == 2)
7772 set_insn_error
7773 (0, _("source and destination must be different"));
7774 else if (arg.last_regno == 31)
7775 set_insn_error
7776 (0, _("a destination register must be supplied"));
7777 }
7778 else if (arg.last_regno == 31
7779 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7780 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7781 set_insn_error (0, _("the source register must not be $31"));
7782 check_completed_insn (&arg);
7783 return TRUE;
7784 }
7785
7786 /* Fail the match if the line has too many operands. */
7787 if (*args == 0)
7788 return FALSE;
7789
7790 /* Handle characters that need to match exactly. */
7791 if (*args == '(' || *args == ')' || *args == ',')
7792 {
7793 if (match_char (&arg, *args))
7794 continue;
7795 return FALSE;
7796 }
7797 if (*args == '#')
7798 {
7799 ++args;
7800 if (arg.token->type == OT_DOUBLE_CHAR
7801 && arg.token->u.ch == *args)
7802 {
7803 ++arg.token;
7804 continue;
7805 }
7806 return FALSE;
7807 }
7808
7809 /* Handle special macro operands. Work out the properties of
7810 other operands. */
7811 arg.opnum += 1;
7812 switch (*args)
7813 {
7814 case '-':
7815 switch (args[1])
7816 {
7817 case 'A':
7818 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7819 break;
7820
7821 case 'B':
7822 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7823 break;
7824 }
7825 break;
7826
7827 case '+':
7828 switch (args[1])
7829 {
7830 case 'i':
7831 *offset_reloc = BFD_RELOC_MIPS_JMP;
7832 break;
7833
7834 case '\'':
7835 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7836 break;
7837
7838 case '\"':
7839 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7840 break;
7841 }
7842 break;
7843
7844 case 'I':
7845 if (!match_const_int (&arg, &imm_expr.X_add_number))
7846 return FALSE;
7847 imm_expr.X_op = O_constant;
7848 if (GPR_SIZE == 32)
7849 normalize_constant_expr (&imm_expr);
7850 continue;
7851
7852 case 'A':
7853 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7854 {
7855 /* Assume that the offset has been elided and that what
7856 we saw was a base register. The match will fail later
7857 if that assumption turns out to be wrong. */
7858 offset_expr.X_op = O_constant;
7859 offset_expr.X_add_number = 0;
7860 }
7861 else
7862 {
7863 if (!match_expression (&arg, &offset_expr, offset_reloc))
7864 return FALSE;
7865 normalize_address_expr (&offset_expr);
7866 }
7867 continue;
7868
7869 case 'F':
7870 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7871 8, TRUE))
7872 return FALSE;
7873 continue;
7874
7875 case 'L':
7876 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7877 8, FALSE))
7878 return FALSE;
7879 continue;
7880
7881 case 'f':
7882 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7883 4, TRUE))
7884 return FALSE;
7885 continue;
7886
7887 case 'l':
7888 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7889 4, FALSE))
7890 return FALSE;
7891 continue;
7892
7893 case 'p':
7894 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7895 break;
7896
7897 case 'a':
7898 *offset_reloc = BFD_RELOC_MIPS_JMP;
7899 break;
7900
7901 case 'm':
7902 gas_assert (mips_opts.micromips);
7903 c = args[1];
7904 switch (c)
7905 {
7906 case 'D':
7907 case 'E':
7908 if (!forced_insn_length)
7909 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7910 else if (c == 'D')
7911 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7912 else
7913 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7914 break;
7915 }
7916 break;
7917 }
7918
7919 operand = (mips_opts.micromips
7920 ? decode_micromips_operand (args)
7921 : decode_mips_operand (args));
7922 if (!operand)
7923 abort ();
7924
7925 /* Skip prefixes. */
7926 if (*args == '+' || *args == 'm' || *args == '-')
7927 args++;
7928
7929 if (mips_optional_operand_p (operand)
7930 && args[1] == ','
7931 && (arg.token[0].type != OT_REG
7932 || arg.token[1].type == OT_END))
7933 {
7934 /* Assume that the register has been elided and is the
7935 same as the first operand. */
7936 arg.token = tokens;
7937 arg.argnum = 1;
7938 }
7939
7940 if (!match_operand (&arg, operand))
7941 return FALSE;
7942 }
7943 }
7944
7945 /* Like match_insn, but for MIPS16. */
7946
7947 static bfd_boolean
7948 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7949 struct mips_operand_token *tokens)
7950 {
7951 const char *args;
7952 const struct mips_operand *operand;
7953 const struct mips_operand *ext_operand;
7954 struct mips_arg_info arg;
7955 int relax_char;
7956
7957 create_insn (insn, opcode);
7958 imm_expr.X_op = O_absent;
7959 offset_expr.X_op = O_absent;
7960 offset_reloc[0] = BFD_RELOC_UNUSED;
7961 offset_reloc[1] = BFD_RELOC_UNUSED;
7962 offset_reloc[2] = BFD_RELOC_UNUSED;
7963 relax_char = 0;
7964
7965 memset (&arg, 0, sizeof (arg));
7966 arg.insn = insn;
7967 arg.token = tokens;
7968 arg.argnum = 1;
7969 arg.last_regno = ILLEGAL_REG;
7970 arg.dest_regno = ILLEGAL_REG;
7971 relax_char = 0;
7972 for (args = opcode->args;; ++args)
7973 {
7974 int c;
7975
7976 if (arg.token->type == OT_END)
7977 {
7978 offsetT value;
7979
7980 /* Handle unary instructions in which only one operand is given.
7981 The source is then the same as the destination. */
7982 if (arg.opnum == 1 && *args == ',')
7983 {
7984 operand = decode_mips16_operand (args[1], FALSE);
7985 if (operand && mips_optional_operand_p (operand))
7986 {
7987 arg.token = tokens;
7988 arg.argnum = 1;
7989 continue;
7990 }
7991 }
7992
7993 /* Fail the match if there were too few operands. */
7994 if (*args)
7995 return FALSE;
7996
7997 /* Successful match. Stuff the immediate value in now, if
7998 we can. */
7999 clear_insn_error ();
8000 if (opcode->pinfo == INSN_MACRO)
8001 {
8002 gas_assert (relax_char == 0 || relax_char == 'p');
8003 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8004 }
8005 else if (relax_char
8006 && offset_expr.X_op == O_constant
8007 && calculate_reloc (*offset_reloc,
8008 offset_expr.X_add_number,
8009 &value))
8010 {
8011 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8012 forced_insn_length, &insn->insn_opcode);
8013 offset_expr.X_op = O_absent;
8014 *offset_reloc = BFD_RELOC_UNUSED;
8015 }
8016 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8017 {
8018 if (forced_insn_length == 2)
8019 set_insn_error (0, _("invalid unextended operand value"));
8020 forced_insn_length = 4;
8021 insn->insn_opcode |= MIPS16_EXTEND;
8022 }
8023 else if (relax_char)
8024 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8025
8026 check_completed_insn (&arg);
8027 return TRUE;
8028 }
8029
8030 /* Fail the match if the line has too many operands. */
8031 if (*args == 0)
8032 return FALSE;
8033
8034 /* Handle characters that need to match exactly. */
8035 if (*args == '(' || *args == ')' || *args == ',')
8036 {
8037 if (match_char (&arg, *args))
8038 continue;
8039 return FALSE;
8040 }
8041
8042 arg.opnum += 1;
8043 c = *args;
8044 switch (c)
8045 {
8046 case 'p':
8047 case 'q':
8048 case 'A':
8049 case 'B':
8050 case 'E':
8051 relax_char = c;
8052 break;
8053
8054 case 'I':
8055 if (!match_const_int (&arg, &imm_expr.X_add_number))
8056 return FALSE;
8057 imm_expr.X_op = O_constant;
8058 if (GPR_SIZE == 32)
8059 normalize_constant_expr (&imm_expr);
8060 continue;
8061
8062 case 'a':
8063 case 'i':
8064 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8065 insn->insn_opcode <<= 16;
8066 break;
8067 }
8068
8069 operand = decode_mips16_operand (c, FALSE);
8070 if (!operand)
8071 abort ();
8072
8073 /* '6' is a special case. It is used for BREAK and SDBBP,
8074 whose operands are only meaningful to the software that decodes
8075 them. This means that there is no architectural reason why
8076 they cannot be prefixed by EXTEND, but in practice,
8077 exception handlers will only look at the instruction
8078 itself. We therefore allow '6' to be extended when
8079 disassembling but not when assembling. */
8080 if (operand->type != OP_PCREL && c != '6')
8081 {
8082 ext_operand = decode_mips16_operand (c, TRUE);
8083 if (operand != ext_operand)
8084 {
8085 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8086 {
8087 offset_expr.X_op = O_constant;
8088 offset_expr.X_add_number = 0;
8089 relax_char = c;
8090 continue;
8091 }
8092
8093 /* We need the OT_INTEGER check because some MIPS16
8094 immediate variants are listed before the register ones. */
8095 if (arg.token->type != OT_INTEGER
8096 || !match_expression (&arg, &offset_expr, offset_reloc))
8097 return FALSE;
8098
8099 /* '8' is used for SLTI(U) and has traditionally not
8100 been allowed to take relocation operators. */
8101 if (offset_reloc[0] != BFD_RELOC_UNUSED
8102 && (ext_operand->size != 16 || c == '8'))
8103 return FALSE;
8104
8105 relax_char = c;
8106 continue;
8107 }
8108 }
8109
8110 if (mips_optional_operand_p (operand)
8111 && args[1] == ','
8112 && (arg.token[0].type != OT_REG
8113 || arg.token[1].type == OT_END))
8114 {
8115 /* Assume that the register has been elided and is the
8116 same as the first operand. */
8117 arg.token = tokens;
8118 arg.argnum = 1;
8119 }
8120
8121 if (!match_operand (&arg, operand))
8122 return FALSE;
8123 }
8124 }
8125
8126 /* Record that the current instruction is invalid for the current ISA. */
8127
8128 static void
8129 match_invalid_for_isa (void)
8130 {
8131 set_insn_error_ss
8132 (0, _("opcode not supported on this processor: %s (%s)"),
8133 mips_cpu_info_from_arch (mips_opts.arch)->name,
8134 mips_cpu_info_from_isa (mips_opts.isa)->name);
8135 }
8136
8137 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8138 Return true if a definite match or failure was found, storing any match
8139 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8140 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8141 tried and failed to match under normal conditions and now want to try a
8142 more relaxed match. */
8143
8144 static bfd_boolean
8145 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8146 const struct mips_opcode *past, struct mips_operand_token *tokens,
8147 int opcode_extra, bfd_boolean lax_match)
8148 {
8149 const struct mips_opcode *opcode;
8150 const struct mips_opcode *invalid_delay_slot;
8151 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8152
8153 /* Search for a match, ignoring alternatives that don't satisfy the
8154 current ISA or forced_length. */
8155 invalid_delay_slot = 0;
8156 seen_valid_for_isa = FALSE;
8157 seen_valid_for_size = FALSE;
8158 opcode = first;
8159 do
8160 {
8161 gas_assert (strcmp (opcode->name, first->name) == 0);
8162 if (is_opcode_valid (opcode))
8163 {
8164 seen_valid_for_isa = TRUE;
8165 if (is_size_valid (opcode))
8166 {
8167 bfd_boolean delay_slot_ok;
8168
8169 seen_valid_for_size = TRUE;
8170 delay_slot_ok = is_delay_slot_valid (opcode);
8171 if (match_insn (insn, opcode, tokens, opcode_extra,
8172 lax_match, delay_slot_ok))
8173 {
8174 if (!delay_slot_ok)
8175 {
8176 if (!invalid_delay_slot)
8177 invalid_delay_slot = opcode;
8178 }
8179 else
8180 return TRUE;
8181 }
8182 }
8183 }
8184 ++opcode;
8185 }
8186 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8187
8188 /* If the only matches we found had the wrong length for the delay slot,
8189 pick the first such match. We'll issue an appropriate warning later. */
8190 if (invalid_delay_slot)
8191 {
8192 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8193 lax_match, TRUE))
8194 return TRUE;
8195 abort ();
8196 }
8197
8198 /* Handle the case where we didn't try to match an instruction because
8199 all the alternatives were incompatible with the current ISA. */
8200 if (!seen_valid_for_isa)
8201 {
8202 match_invalid_for_isa ();
8203 return TRUE;
8204 }
8205
8206 /* Handle the case where we didn't try to match an instruction because
8207 all the alternatives were of the wrong size. */
8208 if (!seen_valid_for_size)
8209 {
8210 if (mips_opts.insn32)
8211 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8212 else
8213 set_insn_error_i
8214 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8215 8 * forced_insn_length);
8216 return TRUE;
8217 }
8218
8219 return FALSE;
8220 }
8221
8222 /* Like match_insns, but for MIPS16. */
8223
8224 static bfd_boolean
8225 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8226 struct mips_operand_token *tokens)
8227 {
8228 const struct mips_opcode *opcode;
8229 bfd_boolean seen_valid_for_isa;
8230
8231 /* Search for a match, ignoring alternatives that don't satisfy the
8232 current ISA. There are no separate entries for extended forms so
8233 we deal with forced_length later. */
8234 seen_valid_for_isa = FALSE;
8235 opcode = first;
8236 do
8237 {
8238 gas_assert (strcmp (opcode->name, first->name) == 0);
8239 if (is_opcode_valid_16 (opcode))
8240 {
8241 seen_valid_for_isa = TRUE;
8242 if (match_mips16_insn (insn, opcode, tokens))
8243 return TRUE;
8244 }
8245 ++opcode;
8246 }
8247 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8248 && strcmp (opcode->name, first->name) == 0);
8249
8250 /* Handle the case where we didn't try to match an instruction because
8251 all the alternatives were incompatible with the current ISA. */
8252 if (!seen_valid_for_isa)
8253 {
8254 match_invalid_for_isa ();
8255 return TRUE;
8256 }
8257
8258 return FALSE;
8259 }
8260
8261 /* Set up global variables for the start of a new macro. */
8262
8263 static void
8264 macro_start (void)
8265 {
8266 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8267 memset (&mips_macro_warning.first_insn_sizes, 0,
8268 sizeof (mips_macro_warning.first_insn_sizes));
8269 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8270 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8271 && delayed_branch_p (&history[0]));
8272 switch (history[0].insn_mo->pinfo2
8273 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8274 {
8275 case INSN2_BRANCH_DELAY_32BIT:
8276 mips_macro_warning.delay_slot_length = 4;
8277 break;
8278 case INSN2_BRANCH_DELAY_16BIT:
8279 mips_macro_warning.delay_slot_length = 2;
8280 break;
8281 default:
8282 mips_macro_warning.delay_slot_length = 0;
8283 break;
8284 }
8285 mips_macro_warning.first_frag = NULL;
8286 }
8287
8288 /* Given that a macro is longer than one instruction or of the wrong size,
8289 return the appropriate warning for it. Return null if no warning is
8290 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8291 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8292 and RELAX_NOMACRO. */
8293
8294 static const char *
8295 macro_warning (relax_substateT subtype)
8296 {
8297 if (subtype & RELAX_DELAY_SLOT)
8298 return _("macro instruction expanded into multiple instructions"
8299 " in a branch delay slot");
8300 else if (subtype & RELAX_NOMACRO)
8301 return _("macro instruction expanded into multiple instructions");
8302 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8303 | RELAX_DELAY_SLOT_SIZE_SECOND))
8304 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8305 ? _("macro instruction expanded into a wrong size instruction"
8306 " in a 16-bit branch delay slot")
8307 : _("macro instruction expanded into a wrong size instruction"
8308 " in a 32-bit branch delay slot"));
8309 else
8310 return 0;
8311 }
8312
8313 /* Finish up a macro. Emit warnings as appropriate. */
8314
8315 static void
8316 macro_end (void)
8317 {
8318 /* Relaxation warning flags. */
8319 relax_substateT subtype = 0;
8320
8321 /* Check delay slot size requirements. */
8322 if (mips_macro_warning.delay_slot_length == 2)
8323 subtype |= RELAX_DELAY_SLOT_16BIT;
8324 if (mips_macro_warning.delay_slot_length != 0)
8325 {
8326 if (mips_macro_warning.delay_slot_length
8327 != mips_macro_warning.first_insn_sizes[0])
8328 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8329 if (mips_macro_warning.delay_slot_length
8330 != mips_macro_warning.first_insn_sizes[1])
8331 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8332 }
8333
8334 /* Check instruction count requirements. */
8335 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8336 {
8337 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8338 subtype |= RELAX_SECOND_LONGER;
8339 if (mips_opts.warn_about_macros)
8340 subtype |= RELAX_NOMACRO;
8341 if (mips_macro_warning.delay_slot_p)
8342 subtype |= RELAX_DELAY_SLOT;
8343 }
8344
8345 /* If both alternatives fail to fill a delay slot correctly,
8346 emit the warning now. */
8347 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8348 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8349 {
8350 relax_substateT s;
8351 const char *msg;
8352
8353 s = subtype & (RELAX_DELAY_SLOT_16BIT
8354 | RELAX_DELAY_SLOT_SIZE_FIRST
8355 | RELAX_DELAY_SLOT_SIZE_SECOND);
8356 msg = macro_warning (s);
8357 if (msg != NULL)
8358 as_warn ("%s", msg);
8359 subtype &= ~s;
8360 }
8361
8362 /* If both implementations are longer than 1 instruction, then emit the
8363 warning now. */
8364 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8365 {
8366 relax_substateT s;
8367 const char *msg;
8368
8369 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8370 msg = macro_warning (s);
8371 if (msg != NULL)
8372 as_warn ("%s", msg);
8373 subtype &= ~s;
8374 }
8375
8376 /* If any flags still set, then one implementation might need a warning
8377 and the other either will need one of a different kind or none at all.
8378 Pass any remaining flags over to relaxation. */
8379 if (mips_macro_warning.first_frag != NULL)
8380 mips_macro_warning.first_frag->fr_subtype |= subtype;
8381 }
8382
8383 /* Instruction operand formats used in macros that vary between
8384 standard MIPS and microMIPS code. */
8385
8386 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8387 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8388 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8389 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8390 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8391 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8392 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8393 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8394
8395 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8396 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8397 : cop12_fmt[mips_opts.micromips])
8398 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8399 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8400 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8401 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8402 : mem12_fmt[mips_opts.micromips])
8403 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8404 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8405 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8406
8407 /* Read a macro's relocation codes from *ARGS and store them in *R.
8408 The first argument in *ARGS will be either the code for a single
8409 relocation or -1 followed by the three codes that make up a
8410 composite relocation. */
8411
8412 static void
8413 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8414 {
8415 int i, next;
8416
8417 next = va_arg (*args, int);
8418 if (next >= 0)
8419 r[0] = (bfd_reloc_code_real_type) next;
8420 else
8421 {
8422 for (i = 0; i < 3; i++)
8423 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8424 /* This function is only used for 16-bit relocation fields.
8425 To make the macro code simpler, treat an unrelocated value
8426 in the same way as BFD_RELOC_LO16. */
8427 if (r[0] == BFD_RELOC_UNUSED)
8428 r[0] = BFD_RELOC_LO16;
8429 }
8430 }
8431
8432 /* Build an instruction created by a macro expansion. This is passed
8433 a pointer to the count of instructions created so far, an
8434 expression, the name of the instruction to build, an operand format
8435 string, and corresponding arguments. */
8436
8437 static void
8438 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8439 {
8440 const struct mips_opcode *mo = NULL;
8441 bfd_reloc_code_real_type r[3];
8442 const struct mips_opcode *amo;
8443 const struct mips_operand *operand;
8444 struct hash_control *hash;
8445 struct mips_cl_insn insn;
8446 va_list args;
8447 unsigned int uval;
8448
8449 va_start (args, fmt);
8450
8451 if (mips_opts.mips16)
8452 {
8453 mips16_macro_build (ep, name, fmt, &args);
8454 va_end (args);
8455 return;
8456 }
8457
8458 r[0] = BFD_RELOC_UNUSED;
8459 r[1] = BFD_RELOC_UNUSED;
8460 r[2] = BFD_RELOC_UNUSED;
8461 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8462 amo = (struct mips_opcode *) hash_find (hash, name);
8463 gas_assert (amo);
8464 gas_assert (strcmp (name, amo->name) == 0);
8465
8466 do
8467 {
8468 /* Search until we get a match for NAME. It is assumed here that
8469 macros will never generate MDMX, MIPS-3D, or MT instructions.
8470 We try to match an instruction that fulfils the branch delay
8471 slot instruction length requirement (if any) of the previous
8472 instruction. While doing this we record the first instruction
8473 seen that matches all the other conditions and use it anyway
8474 if the requirement cannot be met; we will issue an appropriate
8475 warning later on. */
8476 if (strcmp (fmt, amo->args) == 0
8477 && amo->pinfo != INSN_MACRO
8478 && is_opcode_valid (amo)
8479 && is_size_valid (amo))
8480 {
8481 if (is_delay_slot_valid (amo))
8482 {
8483 mo = amo;
8484 break;
8485 }
8486 else if (!mo)
8487 mo = amo;
8488 }
8489
8490 ++amo;
8491 gas_assert (amo->name);
8492 }
8493 while (strcmp (name, amo->name) == 0);
8494
8495 gas_assert (mo);
8496 create_insn (&insn, mo);
8497 for (; *fmt; ++fmt)
8498 {
8499 switch (*fmt)
8500 {
8501 case ',':
8502 case '(':
8503 case ')':
8504 case 'z':
8505 break;
8506
8507 case 'i':
8508 case 'j':
8509 macro_read_relocs (&args, r);
8510 gas_assert (*r == BFD_RELOC_GPREL16
8511 || *r == BFD_RELOC_MIPS_HIGHER
8512 || *r == BFD_RELOC_HI16_S
8513 || *r == BFD_RELOC_LO16
8514 || *r == BFD_RELOC_MIPS_GOT_OFST);
8515 break;
8516
8517 case 'o':
8518 macro_read_relocs (&args, r);
8519 break;
8520
8521 case 'u':
8522 macro_read_relocs (&args, r);
8523 gas_assert (ep != NULL
8524 && (ep->X_op == O_constant
8525 || (ep->X_op == O_symbol
8526 && (*r == BFD_RELOC_MIPS_HIGHEST
8527 || *r == BFD_RELOC_HI16_S
8528 || *r == BFD_RELOC_HI16
8529 || *r == BFD_RELOC_GPREL16
8530 || *r == BFD_RELOC_MIPS_GOT_HI16
8531 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8532 break;
8533
8534 case 'p':
8535 gas_assert (ep != NULL);
8536
8537 /*
8538 * This allows macro() to pass an immediate expression for
8539 * creating short branches without creating a symbol.
8540 *
8541 * We don't allow branch relaxation for these branches, as
8542 * they should only appear in ".set nomacro" anyway.
8543 */
8544 if (ep->X_op == O_constant)
8545 {
8546 /* For microMIPS we always use relocations for branches.
8547 So we should not resolve immediate values. */
8548 gas_assert (!mips_opts.micromips);
8549
8550 if ((ep->X_add_number & 3) != 0)
8551 as_bad (_("branch to misaligned address (0x%lx)"),
8552 (unsigned long) ep->X_add_number);
8553 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8554 as_bad (_("branch address range overflow (0x%lx)"),
8555 (unsigned long) ep->X_add_number);
8556 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8557 ep = NULL;
8558 }
8559 else
8560 *r = BFD_RELOC_16_PCREL_S2;
8561 break;
8562
8563 case 'a':
8564 gas_assert (ep != NULL);
8565 *r = BFD_RELOC_MIPS_JMP;
8566 break;
8567
8568 default:
8569 operand = (mips_opts.micromips
8570 ? decode_micromips_operand (fmt)
8571 : decode_mips_operand (fmt));
8572 if (!operand)
8573 abort ();
8574
8575 uval = va_arg (args, int);
8576 if (operand->type == OP_CLO_CLZ_DEST)
8577 uval |= (uval << 5);
8578 insn_insert_operand (&insn, operand, uval);
8579
8580 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8581 ++fmt;
8582 break;
8583 }
8584 }
8585 va_end (args);
8586 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8587
8588 append_insn (&insn, ep, r, TRUE);
8589 }
8590
8591 static void
8592 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8593 va_list *args)
8594 {
8595 struct mips_opcode *mo;
8596 struct mips_cl_insn insn;
8597 const struct mips_operand *operand;
8598 bfd_reloc_code_real_type r[3]
8599 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8600
8601 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8602 gas_assert (mo);
8603 gas_assert (strcmp (name, mo->name) == 0);
8604
8605 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8606 {
8607 ++mo;
8608 gas_assert (mo->name);
8609 gas_assert (strcmp (name, mo->name) == 0);
8610 }
8611
8612 create_insn (&insn, mo);
8613 for (; *fmt; ++fmt)
8614 {
8615 int c;
8616
8617 c = *fmt;
8618 switch (c)
8619 {
8620 case ',':
8621 case '(':
8622 case ')':
8623 break;
8624
8625 case '0':
8626 case 'S':
8627 case 'P':
8628 case 'R':
8629 break;
8630
8631 case '<':
8632 case '>':
8633 case '4':
8634 case '5':
8635 case 'H':
8636 case 'W':
8637 case 'D':
8638 case 'j':
8639 case '8':
8640 case 'V':
8641 case 'C':
8642 case 'U':
8643 case 'k':
8644 case 'K':
8645 case 'p':
8646 case 'q':
8647 {
8648 offsetT value;
8649
8650 gas_assert (ep != NULL);
8651
8652 if (ep->X_op != O_constant)
8653 *r = (int) BFD_RELOC_UNUSED + c;
8654 else if (calculate_reloc (*r, ep->X_add_number, &value))
8655 {
8656 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8657 ep = NULL;
8658 *r = BFD_RELOC_UNUSED;
8659 }
8660 }
8661 break;
8662
8663 default:
8664 operand = decode_mips16_operand (c, FALSE);
8665 if (!operand)
8666 abort ();
8667
8668 insn_insert_operand (&insn, operand, va_arg (*args, int));
8669 break;
8670 }
8671 }
8672
8673 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8674
8675 append_insn (&insn, ep, r, TRUE);
8676 }
8677
8678 /*
8679 * Generate a "jalr" instruction with a relocation hint to the called
8680 * function. This occurs in NewABI PIC code.
8681 */
8682 static void
8683 macro_build_jalr (expressionS *ep, int cprestore)
8684 {
8685 static const bfd_reloc_code_real_type jalr_relocs[2]
8686 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8687 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8688 const char *jalr;
8689 char *f = NULL;
8690
8691 if (MIPS_JALR_HINT_P (ep))
8692 {
8693 frag_grow (8);
8694 f = frag_more (0);
8695 }
8696 if (mips_opts.micromips)
8697 {
8698 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8699 ? "jalr" : "jalrs");
8700 if (MIPS_JALR_HINT_P (ep)
8701 || mips_opts.insn32
8702 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8703 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8704 else
8705 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8706 }
8707 else
8708 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8709 if (MIPS_JALR_HINT_P (ep))
8710 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8711 }
8712
8713 /*
8714 * Generate a "lui" instruction.
8715 */
8716 static void
8717 macro_build_lui (expressionS *ep, int regnum)
8718 {
8719 gas_assert (! mips_opts.mips16);
8720
8721 if (ep->X_op != O_constant)
8722 {
8723 gas_assert (ep->X_op == O_symbol);
8724 /* _gp_disp is a special case, used from s_cpload.
8725 __gnu_local_gp is used if mips_no_shared. */
8726 gas_assert (mips_pic == NO_PIC
8727 || (! HAVE_NEWABI
8728 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8729 || (! mips_in_shared
8730 && strcmp (S_GET_NAME (ep->X_add_symbol),
8731 "__gnu_local_gp") == 0));
8732 }
8733
8734 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8735 }
8736
8737 /* Generate a sequence of instructions to do a load or store from a constant
8738 offset off of a base register (breg) into/from a target register (treg),
8739 using AT if necessary. */
8740 static void
8741 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8742 int treg, int breg, int dbl)
8743 {
8744 gas_assert (ep->X_op == O_constant);
8745
8746 /* Sign-extending 32-bit constants makes their handling easier. */
8747 if (!dbl)
8748 normalize_constant_expr (ep);
8749
8750 /* Right now, this routine can only handle signed 32-bit constants. */
8751 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8752 as_warn (_("operand overflow"));
8753
8754 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8755 {
8756 /* Signed 16-bit offset will fit in the op. Easy! */
8757 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8758 }
8759 else
8760 {
8761 /* 32-bit offset, need multiple instructions and AT, like:
8762 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8763 addu $tempreg,$tempreg,$breg
8764 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8765 to handle the complete offset. */
8766 macro_build_lui (ep, AT);
8767 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8768 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8769
8770 if (!mips_opts.at)
8771 as_bad (_("macro used $at after \".set noat\""));
8772 }
8773 }
8774
8775 /* set_at()
8776 * Generates code to set the $at register to true (one)
8777 * if reg is less than the immediate expression.
8778 */
8779 static void
8780 set_at (int reg, int unsignedp)
8781 {
8782 if (imm_expr.X_add_number >= -0x8000
8783 && imm_expr.X_add_number < 0x8000)
8784 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8785 AT, reg, BFD_RELOC_LO16);
8786 else
8787 {
8788 load_register (AT, &imm_expr, GPR_SIZE == 64);
8789 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8790 }
8791 }
8792
8793 /* Count the leading zeroes by performing a binary chop. This is a
8794 bulky bit of source, but performance is a LOT better for the
8795 majority of values than a simple loop to count the bits:
8796 for (lcnt = 0; (lcnt < 32); lcnt++)
8797 if ((v) & (1 << (31 - lcnt)))
8798 break;
8799 However it is not code size friendly, and the gain will drop a bit
8800 on certain cached systems.
8801 */
8802 #define COUNT_TOP_ZEROES(v) \
8803 (((v) & ~0xffff) == 0 \
8804 ? ((v) & ~0xff) == 0 \
8805 ? ((v) & ~0xf) == 0 \
8806 ? ((v) & ~0x3) == 0 \
8807 ? ((v) & ~0x1) == 0 \
8808 ? !(v) \
8809 ? 32 \
8810 : 31 \
8811 : 30 \
8812 : ((v) & ~0x7) == 0 \
8813 ? 29 \
8814 : 28 \
8815 : ((v) & ~0x3f) == 0 \
8816 ? ((v) & ~0x1f) == 0 \
8817 ? 27 \
8818 : 26 \
8819 : ((v) & ~0x7f) == 0 \
8820 ? 25 \
8821 : 24 \
8822 : ((v) & ~0xfff) == 0 \
8823 ? ((v) & ~0x3ff) == 0 \
8824 ? ((v) & ~0x1ff) == 0 \
8825 ? 23 \
8826 : 22 \
8827 : ((v) & ~0x7ff) == 0 \
8828 ? 21 \
8829 : 20 \
8830 : ((v) & ~0x3fff) == 0 \
8831 ? ((v) & ~0x1fff) == 0 \
8832 ? 19 \
8833 : 18 \
8834 : ((v) & ~0x7fff) == 0 \
8835 ? 17 \
8836 : 16 \
8837 : ((v) & ~0xffffff) == 0 \
8838 ? ((v) & ~0xfffff) == 0 \
8839 ? ((v) & ~0x3ffff) == 0 \
8840 ? ((v) & ~0x1ffff) == 0 \
8841 ? 15 \
8842 : 14 \
8843 : ((v) & ~0x7ffff) == 0 \
8844 ? 13 \
8845 : 12 \
8846 : ((v) & ~0x3fffff) == 0 \
8847 ? ((v) & ~0x1fffff) == 0 \
8848 ? 11 \
8849 : 10 \
8850 : ((v) & ~0x7fffff) == 0 \
8851 ? 9 \
8852 : 8 \
8853 : ((v) & ~0xfffffff) == 0 \
8854 ? ((v) & ~0x3ffffff) == 0 \
8855 ? ((v) & ~0x1ffffff) == 0 \
8856 ? 7 \
8857 : 6 \
8858 : ((v) & ~0x7ffffff) == 0 \
8859 ? 5 \
8860 : 4 \
8861 : ((v) & ~0x3fffffff) == 0 \
8862 ? ((v) & ~0x1fffffff) == 0 \
8863 ? 3 \
8864 : 2 \
8865 : ((v) & ~0x7fffffff) == 0 \
8866 ? 1 \
8867 : 0)
8868
8869 /* load_register()
8870 * This routine generates the least number of instructions necessary to load
8871 * an absolute expression value into a register.
8872 */
8873 static void
8874 load_register (int reg, expressionS *ep, int dbl)
8875 {
8876 int freg;
8877 expressionS hi32, lo32;
8878
8879 if (ep->X_op != O_big)
8880 {
8881 gas_assert (ep->X_op == O_constant);
8882
8883 /* Sign-extending 32-bit constants makes their handling easier. */
8884 if (!dbl)
8885 normalize_constant_expr (ep);
8886
8887 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8888 {
8889 /* We can handle 16 bit signed values with an addiu to
8890 $zero. No need to ever use daddiu here, since $zero and
8891 the result are always correct in 32 bit mode. */
8892 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8893 return;
8894 }
8895 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8896 {
8897 /* We can handle 16 bit unsigned values with an ori to
8898 $zero. */
8899 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8900 return;
8901 }
8902 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8903 {
8904 /* 32 bit values require an lui. */
8905 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8906 if ((ep->X_add_number & 0xffff) != 0)
8907 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8908 return;
8909 }
8910 }
8911
8912 /* The value is larger than 32 bits. */
8913
8914 if (!dbl || GPR_SIZE == 32)
8915 {
8916 char value[32];
8917
8918 sprintf_vma (value, ep->X_add_number);
8919 as_bad (_("number (0x%s) larger than 32 bits"), value);
8920 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8921 return;
8922 }
8923
8924 if (ep->X_op != O_big)
8925 {
8926 hi32 = *ep;
8927 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8928 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8929 hi32.X_add_number &= 0xffffffff;
8930 lo32 = *ep;
8931 lo32.X_add_number &= 0xffffffff;
8932 }
8933 else
8934 {
8935 gas_assert (ep->X_add_number > 2);
8936 if (ep->X_add_number == 3)
8937 generic_bignum[3] = 0;
8938 else if (ep->X_add_number > 4)
8939 as_bad (_("number larger than 64 bits"));
8940 lo32.X_op = O_constant;
8941 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8942 hi32.X_op = O_constant;
8943 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8944 }
8945
8946 if (hi32.X_add_number == 0)
8947 freg = 0;
8948 else
8949 {
8950 int shift, bit;
8951 unsigned long hi, lo;
8952
8953 if (hi32.X_add_number == (offsetT) 0xffffffff)
8954 {
8955 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8956 {
8957 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8958 return;
8959 }
8960 if (lo32.X_add_number & 0x80000000)
8961 {
8962 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8963 if (lo32.X_add_number & 0xffff)
8964 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8965 return;
8966 }
8967 }
8968
8969 /* Check for 16bit shifted constant. We know that hi32 is
8970 non-zero, so start the mask on the first bit of the hi32
8971 value. */
8972 shift = 17;
8973 do
8974 {
8975 unsigned long himask, lomask;
8976
8977 if (shift < 32)
8978 {
8979 himask = 0xffff >> (32 - shift);
8980 lomask = (0xffff << shift) & 0xffffffff;
8981 }
8982 else
8983 {
8984 himask = 0xffff << (shift - 32);
8985 lomask = 0;
8986 }
8987 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8988 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8989 {
8990 expressionS tmp;
8991
8992 tmp.X_op = O_constant;
8993 if (shift < 32)
8994 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8995 | (lo32.X_add_number >> shift));
8996 else
8997 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8998 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8999 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9000 reg, reg, (shift >= 32) ? shift - 32 : shift);
9001 return;
9002 }
9003 ++shift;
9004 }
9005 while (shift <= (64 - 16));
9006
9007 /* Find the bit number of the lowest one bit, and store the
9008 shifted value in hi/lo. */
9009 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9010 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9011 if (lo != 0)
9012 {
9013 bit = 0;
9014 while ((lo & 1) == 0)
9015 {
9016 lo >>= 1;
9017 ++bit;
9018 }
9019 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9020 hi >>= bit;
9021 }
9022 else
9023 {
9024 bit = 32;
9025 while ((hi & 1) == 0)
9026 {
9027 hi >>= 1;
9028 ++bit;
9029 }
9030 lo = hi;
9031 hi = 0;
9032 }
9033
9034 /* Optimize if the shifted value is a (power of 2) - 1. */
9035 if ((hi == 0 && ((lo + 1) & lo) == 0)
9036 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9037 {
9038 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9039 if (shift != 0)
9040 {
9041 expressionS tmp;
9042
9043 /* This instruction will set the register to be all
9044 ones. */
9045 tmp.X_op = O_constant;
9046 tmp.X_add_number = (offsetT) -1;
9047 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9048 if (bit != 0)
9049 {
9050 bit += shift;
9051 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9052 reg, reg, (bit >= 32) ? bit - 32 : bit);
9053 }
9054 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9055 reg, reg, (shift >= 32) ? shift - 32 : shift);
9056 return;
9057 }
9058 }
9059
9060 /* Sign extend hi32 before calling load_register, because we can
9061 generally get better code when we load a sign extended value. */
9062 if ((hi32.X_add_number & 0x80000000) != 0)
9063 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9064 load_register (reg, &hi32, 0);
9065 freg = reg;
9066 }
9067 if ((lo32.X_add_number & 0xffff0000) == 0)
9068 {
9069 if (freg != 0)
9070 {
9071 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9072 freg = reg;
9073 }
9074 }
9075 else
9076 {
9077 expressionS mid16;
9078
9079 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9080 {
9081 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9082 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9083 return;
9084 }
9085
9086 if (freg != 0)
9087 {
9088 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9089 freg = reg;
9090 }
9091 mid16 = lo32;
9092 mid16.X_add_number >>= 16;
9093 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9094 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9095 freg = reg;
9096 }
9097 if ((lo32.X_add_number & 0xffff) != 0)
9098 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9099 }
9100
9101 static inline void
9102 load_delay_nop (void)
9103 {
9104 if (!gpr_interlocks)
9105 macro_build (NULL, "nop", "");
9106 }
9107
9108 /* Load an address into a register. */
9109
9110 static void
9111 load_address (int reg, expressionS *ep, int *used_at)
9112 {
9113 if (ep->X_op != O_constant
9114 && ep->X_op != O_symbol)
9115 {
9116 as_bad (_("expression too complex"));
9117 ep->X_op = O_constant;
9118 }
9119
9120 if (ep->X_op == O_constant)
9121 {
9122 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9123 return;
9124 }
9125
9126 if (mips_pic == NO_PIC)
9127 {
9128 /* If this is a reference to a GP relative symbol, we want
9129 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9130 Otherwise we want
9131 lui $reg,<sym> (BFD_RELOC_HI16_S)
9132 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9133 If we have an addend, we always use the latter form.
9134
9135 With 64bit address space and a usable $at we want
9136 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9137 lui $at,<sym> (BFD_RELOC_HI16_S)
9138 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9139 daddiu $at,<sym> (BFD_RELOC_LO16)
9140 dsll32 $reg,0
9141 daddu $reg,$reg,$at
9142
9143 If $at is already in use, we use a path which is suboptimal
9144 on superscalar processors.
9145 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9146 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9147 dsll $reg,16
9148 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9149 dsll $reg,16
9150 daddiu $reg,<sym> (BFD_RELOC_LO16)
9151
9152 For GP relative symbols in 64bit address space we can use
9153 the same sequence as in 32bit address space. */
9154 if (HAVE_64BIT_SYMBOLS)
9155 {
9156 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9157 && !nopic_need_relax (ep->X_add_symbol, 1))
9158 {
9159 relax_start (ep->X_add_symbol);
9160 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9161 mips_gp_register, BFD_RELOC_GPREL16);
9162 relax_switch ();
9163 }
9164
9165 if (*used_at == 0 && mips_opts.at)
9166 {
9167 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9168 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9169 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9170 BFD_RELOC_MIPS_HIGHER);
9171 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9172 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9173 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9174 *used_at = 1;
9175 }
9176 else
9177 {
9178 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9179 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9180 BFD_RELOC_MIPS_HIGHER);
9181 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9182 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9183 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9184 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9185 }
9186
9187 if (mips_relax.sequence)
9188 relax_end ();
9189 }
9190 else
9191 {
9192 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9193 && !nopic_need_relax (ep->X_add_symbol, 1))
9194 {
9195 relax_start (ep->X_add_symbol);
9196 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9197 mips_gp_register, BFD_RELOC_GPREL16);
9198 relax_switch ();
9199 }
9200 macro_build_lui (ep, reg);
9201 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9202 reg, reg, BFD_RELOC_LO16);
9203 if (mips_relax.sequence)
9204 relax_end ();
9205 }
9206 }
9207 else if (!mips_big_got)
9208 {
9209 expressionS ex;
9210
9211 /* If this is a reference to an external symbol, we want
9212 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9213 Otherwise we want
9214 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9215 nop
9216 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9217 If there is a constant, it must be added in after.
9218
9219 If we have NewABI, we want
9220 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9221 unless we're referencing a global symbol with a non-zero
9222 offset, in which case cst must be added separately. */
9223 if (HAVE_NEWABI)
9224 {
9225 if (ep->X_add_number)
9226 {
9227 ex.X_add_number = ep->X_add_number;
9228 ep->X_add_number = 0;
9229 relax_start (ep->X_add_symbol);
9230 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9231 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9232 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9233 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9234 ex.X_op = O_constant;
9235 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9236 reg, reg, BFD_RELOC_LO16);
9237 ep->X_add_number = ex.X_add_number;
9238 relax_switch ();
9239 }
9240 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9241 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9242 if (mips_relax.sequence)
9243 relax_end ();
9244 }
9245 else
9246 {
9247 ex.X_add_number = ep->X_add_number;
9248 ep->X_add_number = 0;
9249 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9250 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9251 load_delay_nop ();
9252 relax_start (ep->X_add_symbol);
9253 relax_switch ();
9254 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9255 BFD_RELOC_LO16);
9256 relax_end ();
9257
9258 if (ex.X_add_number != 0)
9259 {
9260 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9261 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9262 ex.X_op = O_constant;
9263 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9264 reg, reg, BFD_RELOC_LO16);
9265 }
9266 }
9267 }
9268 else if (mips_big_got)
9269 {
9270 expressionS ex;
9271
9272 /* This is the large GOT case. If this is a reference to an
9273 external symbol, we want
9274 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9275 addu $reg,$reg,$gp
9276 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9277
9278 Otherwise, for a reference to a local symbol in old ABI, we want
9279 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9280 nop
9281 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9282 If there is a constant, it must be added in after.
9283
9284 In the NewABI, for local symbols, with or without offsets, we want:
9285 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9286 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9287 */
9288 if (HAVE_NEWABI)
9289 {
9290 ex.X_add_number = ep->X_add_number;
9291 ep->X_add_number = 0;
9292 relax_start (ep->X_add_symbol);
9293 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9294 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9295 reg, reg, mips_gp_register);
9296 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9297 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9298 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9299 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9300 else if (ex.X_add_number)
9301 {
9302 ex.X_op = O_constant;
9303 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9304 BFD_RELOC_LO16);
9305 }
9306
9307 ep->X_add_number = ex.X_add_number;
9308 relax_switch ();
9309 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9310 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9311 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9312 BFD_RELOC_MIPS_GOT_OFST);
9313 relax_end ();
9314 }
9315 else
9316 {
9317 ex.X_add_number = ep->X_add_number;
9318 ep->X_add_number = 0;
9319 relax_start (ep->X_add_symbol);
9320 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9322 reg, reg, mips_gp_register);
9323 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9324 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9325 relax_switch ();
9326 if (reg_needs_delay (mips_gp_register))
9327 {
9328 /* We need a nop before loading from $gp. This special
9329 check is required because the lui which starts the main
9330 instruction stream does not refer to $gp, and so will not
9331 insert the nop which may be required. */
9332 macro_build (NULL, "nop", "");
9333 }
9334 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9335 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9336 load_delay_nop ();
9337 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9338 BFD_RELOC_LO16);
9339 relax_end ();
9340
9341 if (ex.X_add_number != 0)
9342 {
9343 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9344 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9345 ex.X_op = O_constant;
9346 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9347 BFD_RELOC_LO16);
9348 }
9349 }
9350 }
9351 else
9352 abort ();
9353
9354 if (!mips_opts.at && *used_at == 1)
9355 as_bad (_("macro used $at after \".set noat\""));
9356 }
9357
9358 /* Move the contents of register SOURCE into register DEST. */
9359
9360 static void
9361 move_register (int dest, int source)
9362 {
9363 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9364 instruction specifically requires a 32-bit one. */
9365 if (mips_opts.micromips
9366 && !mips_opts.insn32
9367 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9368 macro_build (NULL, "move", "mp,mj", dest, source);
9369 else
9370 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9371 }
9372
9373 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9374 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9375 The two alternatives are:
9376
9377 Global symbol Local sybmol
9378 ------------- ------------
9379 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9380 ... ...
9381 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9382
9383 load_got_offset emits the first instruction and add_got_offset
9384 emits the second for a 16-bit offset or add_got_offset_hilo emits
9385 a sequence to add a 32-bit offset using a scratch register. */
9386
9387 static void
9388 load_got_offset (int dest, expressionS *local)
9389 {
9390 expressionS global;
9391
9392 global = *local;
9393 global.X_add_number = 0;
9394
9395 relax_start (local->X_add_symbol);
9396 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9397 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9398 relax_switch ();
9399 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9400 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9401 relax_end ();
9402 }
9403
9404 static void
9405 add_got_offset (int dest, expressionS *local)
9406 {
9407 expressionS global;
9408
9409 global.X_op = O_constant;
9410 global.X_op_symbol = NULL;
9411 global.X_add_symbol = NULL;
9412 global.X_add_number = local->X_add_number;
9413
9414 relax_start (local->X_add_symbol);
9415 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9416 dest, dest, BFD_RELOC_LO16);
9417 relax_switch ();
9418 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9419 relax_end ();
9420 }
9421
9422 static void
9423 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9424 {
9425 expressionS global;
9426 int hold_mips_optimize;
9427
9428 global.X_op = O_constant;
9429 global.X_op_symbol = NULL;
9430 global.X_add_symbol = NULL;
9431 global.X_add_number = local->X_add_number;
9432
9433 relax_start (local->X_add_symbol);
9434 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9435 relax_switch ();
9436 /* Set mips_optimize around the lui instruction to avoid
9437 inserting an unnecessary nop after the lw. */
9438 hold_mips_optimize = mips_optimize;
9439 mips_optimize = 2;
9440 macro_build_lui (&global, tmp);
9441 mips_optimize = hold_mips_optimize;
9442 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9443 relax_end ();
9444
9445 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9446 }
9447
9448 /* Emit a sequence of instructions to emulate a branch likely operation.
9449 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9450 is its complementing branch with the original condition negated.
9451 CALL is set if the original branch specified the link operation.
9452 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9453
9454 Code like this is produced in the noreorder mode:
9455
9456 BRNEG <args>, 1f
9457 nop
9458 b <sym>
9459 delay slot (executed only if branch taken)
9460 1:
9461
9462 or, if CALL is set:
9463
9464 BRNEG <args>, 1f
9465 nop
9466 bal <sym>
9467 delay slot (executed only if branch taken)
9468 1:
9469
9470 In the reorder mode the delay slot would be filled with a nop anyway,
9471 so code produced is simply:
9472
9473 BR <args>, <sym>
9474 nop
9475
9476 This function is used when producing code for the microMIPS ASE that
9477 does not implement branch likely instructions in hardware. */
9478
9479 static void
9480 macro_build_branch_likely (const char *br, const char *brneg,
9481 int call, expressionS *ep, const char *fmt,
9482 unsigned int sreg, unsigned int treg)
9483 {
9484 int noreorder = mips_opts.noreorder;
9485 expressionS expr1;
9486
9487 gas_assert (mips_opts.micromips);
9488 start_noreorder ();
9489 if (noreorder)
9490 {
9491 micromips_label_expr (&expr1);
9492 macro_build (&expr1, brneg, fmt, sreg, treg);
9493 macro_build (NULL, "nop", "");
9494 macro_build (ep, call ? "bal" : "b", "p");
9495
9496 /* Set to true so that append_insn adds a label. */
9497 emit_branch_likely_macro = TRUE;
9498 }
9499 else
9500 {
9501 macro_build (ep, br, fmt, sreg, treg);
9502 macro_build (NULL, "nop", "");
9503 }
9504 end_noreorder ();
9505 }
9506
9507 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9508 the condition code tested. EP specifies the branch target. */
9509
9510 static void
9511 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9512 {
9513 const int call = 0;
9514 const char *brneg;
9515 const char *br;
9516
9517 switch (type)
9518 {
9519 case M_BC1FL:
9520 br = "bc1f";
9521 brneg = "bc1t";
9522 break;
9523 case M_BC1TL:
9524 br = "bc1t";
9525 brneg = "bc1f";
9526 break;
9527 case M_BC2FL:
9528 br = "bc2f";
9529 brneg = "bc2t";
9530 break;
9531 case M_BC2TL:
9532 br = "bc2t";
9533 brneg = "bc2f";
9534 break;
9535 default:
9536 abort ();
9537 }
9538 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9539 }
9540
9541 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9542 the register tested. EP specifies the branch target. */
9543
9544 static void
9545 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9546 {
9547 const char *brneg = NULL;
9548 const char *br;
9549 int call = 0;
9550
9551 switch (type)
9552 {
9553 case M_BGEZ:
9554 br = "bgez";
9555 break;
9556 case M_BGEZL:
9557 br = mips_opts.micromips ? "bgez" : "bgezl";
9558 brneg = "bltz";
9559 break;
9560 case M_BGEZALL:
9561 gas_assert (mips_opts.micromips);
9562 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9563 brneg = "bltz";
9564 call = 1;
9565 break;
9566 case M_BGTZ:
9567 br = "bgtz";
9568 break;
9569 case M_BGTZL:
9570 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9571 brneg = "blez";
9572 break;
9573 case M_BLEZ:
9574 br = "blez";
9575 break;
9576 case M_BLEZL:
9577 br = mips_opts.micromips ? "blez" : "blezl";
9578 brneg = "bgtz";
9579 break;
9580 case M_BLTZ:
9581 br = "bltz";
9582 break;
9583 case M_BLTZL:
9584 br = mips_opts.micromips ? "bltz" : "bltzl";
9585 brneg = "bgez";
9586 break;
9587 case M_BLTZALL:
9588 gas_assert (mips_opts.micromips);
9589 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9590 brneg = "bgez";
9591 call = 1;
9592 break;
9593 default:
9594 abort ();
9595 }
9596 if (mips_opts.micromips && brneg)
9597 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9598 else
9599 macro_build (ep, br, "s,p", sreg);
9600 }
9601
9602 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9603 TREG as the registers tested. EP specifies the branch target. */
9604
9605 static void
9606 macro_build_branch_rsrt (int type, expressionS *ep,
9607 unsigned int sreg, unsigned int treg)
9608 {
9609 const char *brneg = NULL;
9610 const int call = 0;
9611 const char *br;
9612
9613 switch (type)
9614 {
9615 case M_BEQ:
9616 case M_BEQ_I:
9617 br = "beq";
9618 break;
9619 case M_BEQL:
9620 case M_BEQL_I:
9621 br = mips_opts.micromips ? "beq" : "beql";
9622 brneg = "bne";
9623 break;
9624 case M_BNE:
9625 case M_BNE_I:
9626 br = "bne";
9627 break;
9628 case M_BNEL:
9629 case M_BNEL_I:
9630 br = mips_opts.micromips ? "bne" : "bnel";
9631 brneg = "beq";
9632 break;
9633 default:
9634 abort ();
9635 }
9636 if (mips_opts.micromips && brneg)
9637 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9638 else
9639 macro_build (ep, br, "s,t,p", sreg, treg);
9640 }
9641
9642 /* Return the high part that should be loaded in order to make the low
9643 part of VALUE accessible using an offset of OFFBITS bits. */
9644
9645 static offsetT
9646 offset_high_part (offsetT value, unsigned int offbits)
9647 {
9648 offsetT bias;
9649 addressT low_mask;
9650
9651 if (offbits == 0)
9652 return value;
9653 bias = 1 << (offbits - 1);
9654 low_mask = bias * 2 - 1;
9655 return (value + bias) & ~low_mask;
9656 }
9657
9658 /* Return true if the value stored in offset_expr and offset_reloc
9659 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9660 amount that the caller wants to add without inducing overflow
9661 and ALIGN is the known alignment of the value in bytes. */
9662
9663 static bfd_boolean
9664 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9665 {
9666 if (offbits == 16)
9667 {
9668 /* Accept any relocation operator if overflow isn't a concern. */
9669 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9670 return TRUE;
9671
9672 /* These relocations are guaranteed not to overflow in correct links. */
9673 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9674 || gprel16_reloc_p (*offset_reloc))
9675 return TRUE;
9676 }
9677 if (offset_expr.X_op == O_constant
9678 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9679 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9680 return TRUE;
9681 return FALSE;
9682 }
9683
9684 /*
9685 * Build macros
9686 * This routine implements the seemingly endless macro or synthesized
9687 * instructions and addressing modes in the mips assembly language. Many
9688 * of these macros are simple and are similar to each other. These could
9689 * probably be handled by some kind of table or grammar approach instead of
9690 * this verbose method. Others are not simple macros but are more like
9691 * optimizing code generation.
9692 * One interesting optimization is when several store macros appear
9693 * consecutively that would load AT with the upper half of the same address.
9694 * The ensuing load upper instructions are ommited. This implies some kind
9695 * of global optimization. We currently only optimize within a single macro.
9696 * For many of the load and store macros if the address is specified as a
9697 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9698 * first load register 'at' with zero and use it as the base register. The
9699 * mips assembler simply uses register $zero. Just one tiny optimization
9700 * we're missing.
9701 */
9702 static void
9703 macro (struct mips_cl_insn *ip, char *str)
9704 {
9705 const struct mips_operand_array *operands;
9706 unsigned int breg, i;
9707 unsigned int tempreg;
9708 int mask;
9709 int used_at = 0;
9710 expressionS label_expr;
9711 expressionS expr1;
9712 expressionS *ep;
9713 const char *s;
9714 const char *s2;
9715 const char *fmt;
9716 int likely = 0;
9717 int coproc = 0;
9718 int offbits = 16;
9719 int call = 0;
9720 int jals = 0;
9721 int dbl = 0;
9722 int imm = 0;
9723 int ust = 0;
9724 int lp = 0;
9725 bfd_boolean large_offset;
9726 int off;
9727 int hold_mips_optimize;
9728 unsigned int align;
9729 unsigned int op[MAX_OPERANDS];
9730
9731 gas_assert (! mips_opts.mips16);
9732
9733 operands = insn_operands (ip);
9734 for (i = 0; i < MAX_OPERANDS; i++)
9735 if (operands->operand[i])
9736 op[i] = insn_extract_operand (ip, operands->operand[i]);
9737 else
9738 op[i] = -1;
9739
9740 mask = ip->insn_mo->mask;
9741
9742 label_expr.X_op = O_constant;
9743 label_expr.X_op_symbol = NULL;
9744 label_expr.X_add_symbol = NULL;
9745 label_expr.X_add_number = 0;
9746
9747 expr1.X_op = O_constant;
9748 expr1.X_op_symbol = NULL;
9749 expr1.X_add_symbol = NULL;
9750 expr1.X_add_number = 1;
9751 align = 1;
9752
9753 switch (mask)
9754 {
9755 case M_DABS:
9756 dbl = 1;
9757 case M_ABS:
9758 /* bgez $a0,1f
9759 move v0,$a0
9760 sub v0,$zero,$a0
9761 1:
9762 */
9763
9764 start_noreorder ();
9765
9766 if (mips_opts.micromips)
9767 micromips_label_expr (&label_expr);
9768 else
9769 label_expr.X_add_number = 8;
9770 macro_build (&label_expr, "bgez", "s,p", op[1]);
9771 if (op[0] == op[1])
9772 macro_build (NULL, "nop", "");
9773 else
9774 move_register (op[0], op[1]);
9775 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9776 if (mips_opts.micromips)
9777 micromips_add_label ();
9778
9779 end_noreorder ();
9780 break;
9781
9782 case M_ADD_I:
9783 s = "addi";
9784 s2 = "add";
9785 goto do_addi;
9786 case M_ADDU_I:
9787 s = "addiu";
9788 s2 = "addu";
9789 goto do_addi;
9790 case M_DADD_I:
9791 dbl = 1;
9792 s = "daddi";
9793 s2 = "dadd";
9794 if (!mips_opts.micromips)
9795 goto do_addi;
9796 if (imm_expr.X_add_number >= -0x200
9797 && imm_expr.X_add_number < 0x200)
9798 {
9799 macro_build (NULL, s, "t,r,.", op[0], op[1],
9800 (int) imm_expr.X_add_number);
9801 break;
9802 }
9803 goto do_addi_i;
9804 case M_DADDU_I:
9805 dbl = 1;
9806 s = "daddiu";
9807 s2 = "daddu";
9808 do_addi:
9809 if (imm_expr.X_add_number >= -0x8000
9810 && imm_expr.X_add_number < 0x8000)
9811 {
9812 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9813 break;
9814 }
9815 do_addi_i:
9816 used_at = 1;
9817 load_register (AT, &imm_expr, dbl);
9818 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9819 break;
9820
9821 case M_AND_I:
9822 s = "andi";
9823 s2 = "and";
9824 goto do_bit;
9825 case M_OR_I:
9826 s = "ori";
9827 s2 = "or";
9828 goto do_bit;
9829 case M_NOR_I:
9830 s = "";
9831 s2 = "nor";
9832 goto do_bit;
9833 case M_XOR_I:
9834 s = "xori";
9835 s2 = "xor";
9836 do_bit:
9837 if (imm_expr.X_add_number >= 0
9838 && imm_expr.X_add_number < 0x10000)
9839 {
9840 if (mask != M_NOR_I)
9841 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9842 else
9843 {
9844 macro_build (&imm_expr, "ori", "t,r,i",
9845 op[0], op[1], BFD_RELOC_LO16);
9846 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9847 }
9848 break;
9849 }
9850
9851 used_at = 1;
9852 load_register (AT, &imm_expr, GPR_SIZE == 64);
9853 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9854 break;
9855
9856 case M_BALIGN:
9857 switch (imm_expr.X_add_number)
9858 {
9859 case 0:
9860 macro_build (NULL, "nop", "");
9861 break;
9862 case 2:
9863 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9864 break;
9865 case 1:
9866 case 3:
9867 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9868 (int) imm_expr.X_add_number);
9869 break;
9870 default:
9871 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9872 (unsigned long) imm_expr.X_add_number);
9873 break;
9874 }
9875 break;
9876
9877 case M_BC1FL:
9878 case M_BC1TL:
9879 case M_BC2FL:
9880 case M_BC2TL:
9881 gas_assert (mips_opts.micromips);
9882 macro_build_branch_ccl (mask, &offset_expr,
9883 EXTRACT_OPERAND (1, BCC, *ip));
9884 break;
9885
9886 case M_BEQ_I:
9887 case M_BEQL_I:
9888 case M_BNE_I:
9889 case M_BNEL_I:
9890 if (imm_expr.X_add_number == 0)
9891 op[1] = 0;
9892 else
9893 {
9894 op[1] = AT;
9895 used_at = 1;
9896 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9897 }
9898 /* Fall through. */
9899 case M_BEQL:
9900 case M_BNEL:
9901 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9902 break;
9903
9904 case M_BGEL:
9905 likely = 1;
9906 case M_BGE:
9907 if (op[1] == 0)
9908 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9909 else if (op[0] == 0)
9910 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9911 else
9912 {
9913 used_at = 1;
9914 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9915 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9916 &offset_expr, AT, ZERO);
9917 }
9918 break;
9919
9920 case M_BGEZL:
9921 case M_BGEZALL:
9922 case M_BGTZL:
9923 case M_BLEZL:
9924 case M_BLTZL:
9925 case M_BLTZALL:
9926 macro_build_branch_rs (mask, &offset_expr, op[0]);
9927 break;
9928
9929 case M_BGTL_I:
9930 likely = 1;
9931 case M_BGT_I:
9932 /* Check for > max integer. */
9933 if (imm_expr.X_add_number >= GPR_SMAX)
9934 {
9935 do_false:
9936 /* Result is always false. */
9937 if (! likely)
9938 macro_build (NULL, "nop", "");
9939 else
9940 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9941 break;
9942 }
9943 ++imm_expr.X_add_number;
9944 /* FALLTHROUGH */
9945 case M_BGE_I:
9946 case M_BGEL_I:
9947 if (mask == M_BGEL_I)
9948 likely = 1;
9949 if (imm_expr.X_add_number == 0)
9950 {
9951 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9952 &offset_expr, op[0]);
9953 break;
9954 }
9955 if (imm_expr.X_add_number == 1)
9956 {
9957 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9958 &offset_expr, op[0]);
9959 break;
9960 }
9961 if (imm_expr.X_add_number <= GPR_SMIN)
9962 {
9963 do_true:
9964 /* result is always true */
9965 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9966 macro_build (&offset_expr, "b", "p");
9967 break;
9968 }
9969 used_at = 1;
9970 set_at (op[0], 0);
9971 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9972 &offset_expr, AT, ZERO);
9973 break;
9974
9975 case M_BGEUL:
9976 likely = 1;
9977 case M_BGEU:
9978 if (op[1] == 0)
9979 goto do_true;
9980 else if (op[0] == 0)
9981 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9982 &offset_expr, ZERO, op[1]);
9983 else
9984 {
9985 used_at = 1;
9986 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9987 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9988 &offset_expr, AT, ZERO);
9989 }
9990 break;
9991
9992 case M_BGTUL_I:
9993 likely = 1;
9994 case M_BGTU_I:
9995 if (op[0] == 0
9996 || (GPR_SIZE == 32
9997 && imm_expr.X_add_number == -1))
9998 goto do_false;
9999 ++imm_expr.X_add_number;
10000 /* FALLTHROUGH */
10001 case M_BGEU_I:
10002 case M_BGEUL_I:
10003 if (mask == M_BGEUL_I)
10004 likely = 1;
10005 if (imm_expr.X_add_number == 0)
10006 goto do_true;
10007 else if (imm_expr.X_add_number == 1)
10008 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10009 &offset_expr, op[0], ZERO);
10010 else
10011 {
10012 used_at = 1;
10013 set_at (op[0], 1);
10014 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10015 &offset_expr, AT, ZERO);
10016 }
10017 break;
10018
10019 case M_BGTL:
10020 likely = 1;
10021 case M_BGT:
10022 if (op[1] == 0)
10023 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10024 else if (op[0] == 0)
10025 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10026 else
10027 {
10028 used_at = 1;
10029 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10030 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10031 &offset_expr, AT, ZERO);
10032 }
10033 break;
10034
10035 case M_BGTUL:
10036 likely = 1;
10037 case M_BGTU:
10038 if (op[1] == 0)
10039 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10040 &offset_expr, op[0], ZERO);
10041 else if (op[0] == 0)
10042 goto do_false;
10043 else
10044 {
10045 used_at = 1;
10046 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10047 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10048 &offset_expr, AT, ZERO);
10049 }
10050 break;
10051
10052 case M_BLEL:
10053 likely = 1;
10054 case M_BLE:
10055 if (op[1] == 0)
10056 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10057 else if (op[0] == 0)
10058 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10059 else
10060 {
10061 used_at = 1;
10062 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10063 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10064 &offset_expr, AT, ZERO);
10065 }
10066 break;
10067
10068 case M_BLEL_I:
10069 likely = 1;
10070 case M_BLE_I:
10071 if (imm_expr.X_add_number >= GPR_SMAX)
10072 goto do_true;
10073 ++imm_expr.X_add_number;
10074 /* FALLTHROUGH */
10075 case M_BLT_I:
10076 case M_BLTL_I:
10077 if (mask == M_BLTL_I)
10078 likely = 1;
10079 if (imm_expr.X_add_number == 0)
10080 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10081 else if (imm_expr.X_add_number == 1)
10082 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10083 else
10084 {
10085 used_at = 1;
10086 set_at (op[0], 0);
10087 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10088 &offset_expr, AT, ZERO);
10089 }
10090 break;
10091
10092 case M_BLEUL:
10093 likely = 1;
10094 case M_BLEU:
10095 if (op[1] == 0)
10096 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10097 &offset_expr, op[0], ZERO);
10098 else if (op[0] == 0)
10099 goto do_true;
10100 else
10101 {
10102 used_at = 1;
10103 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10104 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10105 &offset_expr, AT, ZERO);
10106 }
10107 break;
10108
10109 case M_BLEUL_I:
10110 likely = 1;
10111 case M_BLEU_I:
10112 if (op[0] == 0
10113 || (GPR_SIZE == 32
10114 && imm_expr.X_add_number == -1))
10115 goto do_true;
10116 ++imm_expr.X_add_number;
10117 /* FALLTHROUGH */
10118 case M_BLTU_I:
10119 case M_BLTUL_I:
10120 if (mask == M_BLTUL_I)
10121 likely = 1;
10122 if (imm_expr.X_add_number == 0)
10123 goto do_false;
10124 else if (imm_expr.X_add_number == 1)
10125 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10126 &offset_expr, op[0], ZERO);
10127 else
10128 {
10129 used_at = 1;
10130 set_at (op[0], 1);
10131 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10132 &offset_expr, AT, ZERO);
10133 }
10134 break;
10135
10136 case M_BLTL:
10137 likely = 1;
10138 case M_BLT:
10139 if (op[1] == 0)
10140 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10141 else if (op[0] == 0)
10142 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10143 else
10144 {
10145 used_at = 1;
10146 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10147 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10148 &offset_expr, AT, ZERO);
10149 }
10150 break;
10151
10152 case M_BLTUL:
10153 likely = 1;
10154 case M_BLTU:
10155 if (op[1] == 0)
10156 goto do_false;
10157 else if (op[0] == 0)
10158 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10159 &offset_expr, ZERO, op[1]);
10160 else
10161 {
10162 used_at = 1;
10163 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10164 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10165 &offset_expr, AT, ZERO);
10166 }
10167 break;
10168
10169 case M_DDIV_3:
10170 dbl = 1;
10171 case M_DIV_3:
10172 s = "mflo";
10173 goto do_div3;
10174 case M_DREM_3:
10175 dbl = 1;
10176 case M_REM_3:
10177 s = "mfhi";
10178 do_div3:
10179 if (op[2] == 0)
10180 {
10181 as_warn (_("divide by zero"));
10182 if (mips_trap)
10183 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10184 else
10185 macro_build (NULL, "break", BRK_FMT, 7);
10186 break;
10187 }
10188
10189 start_noreorder ();
10190 if (mips_trap)
10191 {
10192 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10193 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10194 }
10195 else
10196 {
10197 if (mips_opts.micromips)
10198 micromips_label_expr (&label_expr);
10199 else
10200 label_expr.X_add_number = 8;
10201 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10202 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10203 macro_build (NULL, "break", BRK_FMT, 7);
10204 if (mips_opts.micromips)
10205 micromips_add_label ();
10206 }
10207 expr1.X_add_number = -1;
10208 used_at = 1;
10209 load_register (AT, &expr1, dbl);
10210 if (mips_opts.micromips)
10211 micromips_label_expr (&label_expr);
10212 else
10213 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10214 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10215 if (dbl)
10216 {
10217 expr1.X_add_number = 1;
10218 load_register (AT, &expr1, dbl);
10219 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10220 }
10221 else
10222 {
10223 expr1.X_add_number = 0x80000000;
10224 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10225 }
10226 if (mips_trap)
10227 {
10228 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10229 /* We want to close the noreorder block as soon as possible, so
10230 that later insns are available for delay slot filling. */
10231 end_noreorder ();
10232 }
10233 else
10234 {
10235 if (mips_opts.micromips)
10236 micromips_label_expr (&label_expr);
10237 else
10238 label_expr.X_add_number = 8;
10239 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10240 macro_build (NULL, "nop", "");
10241
10242 /* We want to close the noreorder block as soon as possible, so
10243 that later insns are available for delay slot filling. */
10244 end_noreorder ();
10245
10246 macro_build (NULL, "break", BRK_FMT, 6);
10247 }
10248 if (mips_opts.micromips)
10249 micromips_add_label ();
10250 macro_build (NULL, s, MFHL_FMT, op[0]);
10251 break;
10252
10253 case M_DIV_3I:
10254 s = "div";
10255 s2 = "mflo";
10256 goto do_divi;
10257 case M_DIVU_3I:
10258 s = "divu";
10259 s2 = "mflo";
10260 goto do_divi;
10261 case M_REM_3I:
10262 s = "div";
10263 s2 = "mfhi";
10264 goto do_divi;
10265 case M_REMU_3I:
10266 s = "divu";
10267 s2 = "mfhi";
10268 goto do_divi;
10269 case M_DDIV_3I:
10270 dbl = 1;
10271 s = "ddiv";
10272 s2 = "mflo";
10273 goto do_divi;
10274 case M_DDIVU_3I:
10275 dbl = 1;
10276 s = "ddivu";
10277 s2 = "mflo";
10278 goto do_divi;
10279 case M_DREM_3I:
10280 dbl = 1;
10281 s = "ddiv";
10282 s2 = "mfhi";
10283 goto do_divi;
10284 case M_DREMU_3I:
10285 dbl = 1;
10286 s = "ddivu";
10287 s2 = "mfhi";
10288 do_divi:
10289 if (imm_expr.X_add_number == 0)
10290 {
10291 as_warn (_("divide by zero"));
10292 if (mips_trap)
10293 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10294 else
10295 macro_build (NULL, "break", BRK_FMT, 7);
10296 break;
10297 }
10298 if (imm_expr.X_add_number == 1)
10299 {
10300 if (strcmp (s2, "mflo") == 0)
10301 move_register (op[0], op[1]);
10302 else
10303 move_register (op[0], ZERO);
10304 break;
10305 }
10306 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10307 {
10308 if (strcmp (s2, "mflo") == 0)
10309 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10310 else
10311 move_register (op[0], ZERO);
10312 break;
10313 }
10314
10315 used_at = 1;
10316 load_register (AT, &imm_expr, dbl);
10317 macro_build (NULL, s, "z,s,t", op[1], AT);
10318 macro_build (NULL, s2, MFHL_FMT, op[0]);
10319 break;
10320
10321 case M_DIVU_3:
10322 s = "divu";
10323 s2 = "mflo";
10324 goto do_divu3;
10325 case M_REMU_3:
10326 s = "divu";
10327 s2 = "mfhi";
10328 goto do_divu3;
10329 case M_DDIVU_3:
10330 s = "ddivu";
10331 s2 = "mflo";
10332 goto do_divu3;
10333 case M_DREMU_3:
10334 s = "ddivu";
10335 s2 = "mfhi";
10336 do_divu3:
10337 start_noreorder ();
10338 if (mips_trap)
10339 {
10340 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10341 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10342 /* We want to close the noreorder block as soon as possible, so
10343 that later insns are available for delay slot filling. */
10344 end_noreorder ();
10345 }
10346 else
10347 {
10348 if (mips_opts.micromips)
10349 micromips_label_expr (&label_expr);
10350 else
10351 label_expr.X_add_number = 8;
10352 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10353 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10354
10355 /* We want to close the noreorder block as soon as possible, so
10356 that later insns are available for delay slot filling. */
10357 end_noreorder ();
10358 macro_build (NULL, "break", BRK_FMT, 7);
10359 if (mips_opts.micromips)
10360 micromips_add_label ();
10361 }
10362 macro_build (NULL, s2, MFHL_FMT, op[0]);
10363 break;
10364
10365 case M_DLCA_AB:
10366 dbl = 1;
10367 case M_LCA_AB:
10368 call = 1;
10369 goto do_la;
10370 case M_DLA_AB:
10371 dbl = 1;
10372 case M_LA_AB:
10373 do_la:
10374 /* Load the address of a symbol into a register. If breg is not
10375 zero, we then add a base register to it. */
10376
10377 breg = op[2];
10378 if (dbl && GPR_SIZE == 32)
10379 as_warn (_("dla used to load 32-bit register; recommend using la "
10380 "instead"));
10381
10382 if (!dbl && HAVE_64BIT_OBJECTS)
10383 as_warn (_("la used to load 64-bit address; recommend using dla "
10384 "instead"));
10385
10386 if (small_offset_p (0, align, 16))
10387 {
10388 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10389 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10390 break;
10391 }
10392
10393 if (mips_opts.at && (op[0] == breg))
10394 {
10395 tempreg = AT;
10396 used_at = 1;
10397 }
10398 else
10399 tempreg = op[0];
10400
10401 if (offset_expr.X_op != O_symbol
10402 && offset_expr.X_op != O_constant)
10403 {
10404 as_bad (_("expression too complex"));
10405 offset_expr.X_op = O_constant;
10406 }
10407
10408 if (offset_expr.X_op == O_constant)
10409 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10410 else if (mips_pic == NO_PIC)
10411 {
10412 /* If this is a reference to a GP relative symbol, we want
10413 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10414 Otherwise we want
10415 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10416 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10417 If we have a constant, we need two instructions anyhow,
10418 so we may as well always use the latter form.
10419
10420 With 64bit address space and a usable $at we want
10421 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10422 lui $at,<sym> (BFD_RELOC_HI16_S)
10423 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10424 daddiu $at,<sym> (BFD_RELOC_LO16)
10425 dsll32 $tempreg,0
10426 daddu $tempreg,$tempreg,$at
10427
10428 If $at is already in use, we use a path which is suboptimal
10429 on superscalar processors.
10430 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10431 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10432 dsll $tempreg,16
10433 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10434 dsll $tempreg,16
10435 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10436
10437 For GP relative symbols in 64bit address space we can use
10438 the same sequence as in 32bit address space. */
10439 if (HAVE_64BIT_SYMBOLS)
10440 {
10441 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10442 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10443 {
10444 relax_start (offset_expr.X_add_symbol);
10445 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10446 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10447 relax_switch ();
10448 }
10449
10450 if (used_at == 0 && mips_opts.at)
10451 {
10452 macro_build (&offset_expr, "lui", LUI_FMT,
10453 tempreg, BFD_RELOC_MIPS_HIGHEST);
10454 macro_build (&offset_expr, "lui", LUI_FMT,
10455 AT, BFD_RELOC_HI16_S);
10456 macro_build (&offset_expr, "daddiu", "t,r,j",
10457 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10458 macro_build (&offset_expr, "daddiu", "t,r,j",
10459 AT, AT, BFD_RELOC_LO16);
10460 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10461 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10462 used_at = 1;
10463 }
10464 else
10465 {
10466 macro_build (&offset_expr, "lui", LUI_FMT,
10467 tempreg, BFD_RELOC_MIPS_HIGHEST);
10468 macro_build (&offset_expr, "daddiu", "t,r,j",
10469 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10470 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10471 macro_build (&offset_expr, "daddiu", "t,r,j",
10472 tempreg, tempreg, BFD_RELOC_HI16_S);
10473 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10474 macro_build (&offset_expr, "daddiu", "t,r,j",
10475 tempreg, tempreg, BFD_RELOC_LO16);
10476 }
10477
10478 if (mips_relax.sequence)
10479 relax_end ();
10480 }
10481 else
10482 {
10483 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10484 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10485 {
10486 relax_start (offset_expr.X_add_symbol);
10487 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10488 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10489 relax_switch ();
10490 }
10491 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10492 as_bad (_("offset too large"));
10493 macro_build_lui (&offset_expr, tempreg);
10494 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10495 tempreg, tempreg, BFD_RELOC_LO16);
10496 if (mips_relax.sequence)
10497 relax_end ();
10498 }
10499 }
10500 else if (!mips_big_got && !HAVE_NEWABI)
10501 {
10502 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10503
10504 /* If this is a reference to an external symbol, and there
10505 is no constant, we want
10506 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10507 or for lca or if tempreg is PIC_CALL_REG
10508 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10509 For a local symbol, we want
10510 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10511 nop
10512 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10513
10514 If we have a small constant, and this is a reference to
10515 an external symbol, we want
10516 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10517 nop
10518 addiu $tempreg,$tempreg,<constant>
10519 For a local symbol, we want the same instruction
10520 sequence, but we output a BFD_RELOC_LO16 reloc on the
10521 addiu instruction.
10522
10523 If we have a large constant, and this is a reference to
10524 an external symbol, we want
10525 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10526 lui $at,<hiconstant>
10527 addiu $at,$at,<loconstant>
10528 addu $tempreg,$tempreg,$at
10529 For a local symbol, we want the same instruction
10530 sequence, but we output a BFD_RELOC_LO16 reloc on the
10531 addiu instruction.
10532 */
10533
10534 if (offset_expr.X_add_number == 0)
10535 {
10536 if (mips_pic == SVR4_PIC
10537 && breg == 0
10538 && (call || tempreg == PIC_CALL_REG))
10539 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10540
10541 relax_start (offset_expr.X_add_symbol);
10542 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10543 lw_reloc_type, mips_gp_register);
10544 if (breg != 0)
10545 {
10546 /* We're going to put in an addu instruction using
10547 tempreg, so we may as well insert the nop right
10548 now. */
10549 load_delay_nop ();
10550 }
10551 relax_switch ();
10552 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10553 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10554 load_delay_nop ();
10555 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10556 tempreg, tempreg, BFD_RELOC_LO16);
10557 relax_end ();
10558 /* FIXME: If breg == 0, and the next instruction uses
10559 $tempreg, then if this variant case is used an extra
10560 nop will be generated. */
10561 }
10562 else if (offset_expr.X_add_number >= -0x8000
10563 && offset_expr.X_add_number < 0x8000)
10564 {
10565 load_got_offset (tempreg, &offset_expr);
10566 load_delay_nop ();
10567 add_got_offset (tempreg, &offset_expr);
10568 }
10569 else
10570 {
10571 expr1.X_add_number = offset_expr.X_add_number;
10572 offset_expr.X_add_number =
10573 SEXT_16BIT (offset_expr.X_add_number);
10574 load_got_offset (tempreg, &offset_expr);
10575 offset_expr.X_add_number = expr1.X_add_number;
10576 /* If we are going to add in a base register, and the
10577 target register and the base register are the same,
10578 then we are using AT as a temporary register. Since
10579 we want to load the constant into AT, we add our
10580 current AT (from the global offset table) and the
10581 register into the register now, and pretend we were
10582 not using a base register. */
10583 if (breg == op[0])
10584 {
10585 load_delay_nop ();
10586 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10587 op[0], AT, breg);
10588 breg = 0;
10589 tempreg = op[0];
10590 }
10591 add_got_offset_hilo (tempreg, &offset_expr, AT);
10592 used_at = 1;
10593 }
10594 }
10595 else if (!mips_big_got && HAVE_NEWABI)
10596 {
10597 int add_breg_early = 0;
10598
10599 /* If this is a reference to an external, and there is no
10600 constant, or local symbol (*), with or without a
10601 constant, we want
10602 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10603 or for lca or if tempreg is PIC_CALL_REG
10604 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10605
10606 If we have a small constant, and this is a reference to
10607 an external symbol, we want
10608 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10609 addiu $tempreg,$tempreg,<constant>
10610
10611 If we have a large constant, and this is a reference to
10612 an external symbol, we want
10613 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10614 lui $at,<hiconstant>
10615 addiu $at,$at,<loconstant>
10616 addu $tempreg,$tempreg,$at
10617
10618 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10619 local symbols, even though it introduces an additional
10620 instruction. */
10621
10622 if (offset_expr.X_add_number)
10623 {
10624 expr1.X_add_number = offset_expr.X_add_number;
10625 offset_expr.X_add_number = 0;
10626
10627 relax_start (offset_expr.X_add_symbol);
10628 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10629 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10630
10631 if (expr1.X_add_number >= -0x8000
10632 && expr1.X_add_number < 0x8000)
10633 {
10634 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10635 tempreg, tempreg, BFD_RELOC_LO16);
10636 }
10637 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10638 {
10639 unsigned int dreg;
10640
10641 /* If we are going to add in a base register, and the
10642 target register and the base register are the same,
10643 then we are using AT as a temporary register. Since
10644 we want to load the constant into AT, we add our
10645 current AT (from the global offset table) and the
10646 register into the register now, and pretend we were
10647 not using a base register. */
10648 if (breg != op[0])
10649 dreg = tempreg;
10650 else
10651 {
10652 gas_assert (tempreg == AT);
10653 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10654 op[0], AT, breg);
10655 dreg = op[0];
10656 add_breg_early = 1;
10657 }
10658
10659 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10660 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10661 dreg, dreg, AT);
10662
10663 used_at = 1;
10664 }
10665 else
10666 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10667
10668 relax_switch ();
10669 offset_expr.X_add_number = expr1.X_add_number;
10670
10671 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10672 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10673 if (add_breg_early)
10674 {
10675 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10676 op[0], tempreg, breg);
10677 breg = 0;
10678 tempreg = op[0];
10679 }
10680 relax_end ();
10681 }
10682 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10683 {
10684 relax_start (offset_expr.X_add_symbol);
10685 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10686 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10687 relax_switch ();
10688 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10689 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10690 relax_end ();
10691 }
10692 else
10693 {
10694 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10695 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10696 }
10697 }
10698 else if (mips_big_got && !HAVE_NEWABI)
10699 {
10700 int gpdelay;
10701 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10702 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10703 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10704
10705 /* This is the large GOT case. If this is a reference to an
10706 external symbol, and there is no constant, we want
10707 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10708 addu $tempreg,$tempreg,$gp
10709 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10710 or for lca or if tempreg is PIC_CALL_REG
10711 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10712 addu $tempreg,$tempreg,$gp
10713 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10714 For a local symbol, we want
10715 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10716 nop
10717 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10718
10719 If we have a small constant, and this is a reference to
10720 an external symbol, we want
10721 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10722 addu $tempreg,$tempreg,$gp
10723 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10724 nop
10725 addiu $tempreg,$tempreg,<constant>
10726 For a local symbol, we want
10727 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10728 nop
10729 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10730
10731 If we have a large constant, and this is a reference to
10732 an external symbol, we want
10733 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10734 addu $tempreg,$tempreg,$gp
10735 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10736 lui $at,<hiconstant>
10737 addiu $at,$at,<loconstant>
10738 addu $tempreg,$tempreg,$at
10739 For a local symbol, we want
10740 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10741 lui $at,<hiconstant>
10742 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10743 addu $tempreg,$tempreg,$at
10744 */
10745
10746 expr1.X_add_number = offset_expr.X_add_number;
10747 offset_expr.X_add_number = 0;
10748 relax_start (offset_expr.X_add_symbol);
10749 gpdelay = reg_needs_delay (mips_gp_register);
10750 if (expr1.X_add_number == 0 && breg == 0
10751 && (call || tempreg == PIC_CALL_REG))
10752 {
10753 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10754 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10755 }
10756 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10757 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10758 tempreg, tempreg, mips_gp_register);
10759 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10760 tempreg, lw_reloc_type, tempreg);
10761 if (expr1.X_add_number == 0)
10762 {
10763 if (breg != 0)
10764 {
10765 /* We're going to put in an addu instruction using
10766 tempreg, so we may as well insert the nop right
10767 now. */
10768 load_delay_nop ();
10769 }
10770 }
10771 else if (expr1.X_add_number >= -0x8000
10772 && expr1.X_add_number < 0x8000)
10773 {
10774 load_delay_nop ();
10775 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10776 tempreg, tempreg, BFD_RELOC_LO16);
10777 }
10778 else
10779 {
10780 unsigned int dreg;
10781
10782 /* If we are going to add in a base register, and the
10783 target register and the base register are the same,
10784 then we are using AT as a temporary register. Since
10785 we want to load the constant into AT, we add our
10786 current AT (from the global offset table) and the
10787 register into the register now, and pretend we were
10788 not using a base register. */
10789 if (breg != op[0])
10790 dreg = tempreg;
10791 else
10792 {
10793 gas_assert (tempreg == AT);
10794 load_delay_nop ();
10795 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10796 op[0], AT, breg);
10797 dreg = op[0];
10798 }
10799
10800 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10801 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10802
10803 used_at = 1;
10804 }
10805 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10806 relax_switch ();
10807
10808 if (gpdelay)
10809 {
10810 /* This is needed because this instruction uses $gp, but
10811 the first instruction on the main stream does not. */
10812 macro_build (NULL, "nop", "");
10813 }
10814
10815 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10816 local_reloc_type, mips_gp_register);
10817 if (expr1.X_add_number >= -0x8000
10818 && expr1.X_add_number < 0x8000)
10819 {
10820 load_delay_nop ();
10821 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10822 tempreg, tempreg, BFD_RELOC_LO16);
10823 /* FIXME: If add_number is 0, and there was no base
10824 register, the external symbol case ended with a load,
10825 so if the symbol turns out to not be external, and
10826 the next instruction uses tempreg, an unnecessary nop
10827 will be inserted. */
10828 }
10829 else
10830 {
10831 if (breg == op[0])
10832 {
10833 /* We must add in the base register now, as in the
10834 external symbol case. */
10835 gas_assert (tempreg == AT);
10836 load_delay_nop ();
10837 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10838 op[0], AT, breg);
10839 tempreg = op[0];
10840 /* We set breg to 0 because we have arranged to add
10841 it in in both cases. */
10842 breg = 0;
10843 }
10844
10845 macro_build_lui (&expr1, AT);
10846 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10847 AT, AT, BFD_RELOC_LO16);
10848 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10849 tempreg, tempreg, AT);
10850 used_at = 1;
10851 }
10852 relax_end ();
10853 }
10854 else if (mips_big_got && HAVE_NEWABI)
10855 {
10856 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10857 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10858 int add_breg_early = 0;
10859
10860 /* This is the large GOT case. If this is a reference to an
10861 external symbol, and there is no constant, we want
10862 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10863 add $tempreg,$tempreg,$gp
10864 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10865 or for lca or if tempreg is PIC_CALL_REG
10866 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10867 add $tempreg,$tempreg,$gp
10868 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10869
10870 If we have a small constant, and this is a reference to
10871 an external symbol, we want
10872 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10873 add $tempreg,$tempreg,$gp
10874 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10875 addi $tempreg,$tempreg,<constant>
10876
10877 If we have a large constant, and this is a reference to
10878 an external symbol, we want
10879 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10880 addu $tempreg,$tempreg,$gp
10881 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10882 lui $at,<hiconstant>
10883 addi $at,$at,<loconstant>
10884 add $tempreg,$tempreg,$at
10885
10886 If we have NewABI, and we know it's a local symbol, we want
10887 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10888 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10889 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10890
10891 relax_start (offset_expr.X_add_symbol);
10892
10893 expr1.X_add_number = offset_expr.X_add_number;
10894 offset_expr.X_add_number = 0;
10895
10896 if (expr1.X_add_number == 0 && breg == 0
10897 && (call || tempreg == PIC_CALL_REG))
10898 {
10899 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10900 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10901 }
10902 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10903 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10904 tempreg, tempreg, mips_gp_register);
10905 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10906 tempreg, lw_reloc_type, tempreg);
10907
10908 if (expr1.X_add_number == 0)
10909 ;
10910 else if (expr1.X_add_number >= -0x8000
10911 && expr1.X_add_number < 0x8000)
10912 {
10913 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10914 tempreg, tempreg, BFD_RELOC_LO16);
10915 }
10916 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10917 {
10918 unsigned int dreg;
10919
10920 /* If we are going to add in a base register, and the
10921 target register and the base register are the same,
10922 then we are using AT as a temporary register. Since
10923 we want to load the constant into AT, we add our
10924 current AT (from the global offset table) and the
10925 register into the register now, and pretend we were
10926 not using a base register. */
10927 if (breg != op[0])
10928 dreg = tempreg;
10929 else
10930 {
10931 gas_assert (tempreg == AT);
10932 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10933 op[0], AT, breg);
10934 dreg = op[0];
10935 add_breg_early = 1;
10936 }
10937
10938 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10939 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10940
10941 used_at = 1;
10942 }
10943 else
10944 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10945
10946 relax_switch ();
10947 offset_expr.X_add_number = expr1.X_add_number;
10948 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10949 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10950 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10951 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10952 if (add_breg_early)
10953 {
10954 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10955 op[0], tempreg, breg);
10956 breg = 0;
10957 tempreg = op[0];
10958 }
10959 relax_end ();
10960 }
10961 else
10962 abort ();
10963
10964 if (breg != 0)
10965 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10966 break;
10967
10968 case M_MSGSND:
10969 gas_assert (!mips_opts.micromips);
10970 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10971 break;
10972
10973 case M_MSGLD:
10974 gas_assert (!mips_opts.micromips);
10975 macro_build (NULL, "c2", "C", 0x02);
10976 break;
10977
10978 case M_MSGLD_T:
10979 gas_assert (!mips_opts.micromips);
10980 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10981 break;
10982
10983 case M_MSGWAIT:
10984 gas_assert (!mips_opts.micromips);
10985 macro_build (NULL, "c2", "C", 3);
10986 break;
10987
10988 case M_MSGWAIT_T:
10989 gas_assert (!mips_opts.micromips);
10990 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10991 break;
10992
10993 case M_J_A:
10994 /* The j instruction may not be used in PIC code, since it
10995 requires an absolute address. We convert it to a b
10996 instruction. */
10997 if (mips_pic == NO_PIC)
10998 macro_build (&offset_expr, "j", "a");
10999 else
11000 macro_build (&offset_expr, "b", "p");
11001 break;
11002
11003 /* The jal instructions must be handled as macros because when
11004 generating PIC code they expand to multi-instruction
11005 sequences. Normally they are simple instructions. */
11006 case M_JALS_1:
11007 op[1] = op[0];
11008 op[0] = RA;
11009 /* Fall through. */
11010 case M_JALS_2:
11011 gas_assert (mips_opts.micromips);
11012 if (mips_opts.insn32)
11013 {
11014 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11015 break;
11016 }
11017 jals = 1;
11018 goto jal;
11019 case M_JAL_1:
11020 op[1] = op[0];
11021 op[0] = RA;
11022 /* Fall through. */
11023 case M_JAL_2:
11024 jal:
11025 if (mips_pic == NO_PIC)
11026 {
11027 s = jals ? "jalrs" : "jalr";
11028 if (mips_opts.micromips
11029 && !mips_opts.insn32
11030 && op[0] == RA
11031 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11032 macro_build (NULL, s, "mj", op[1]);
11033 else
11034 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11035 }
11036 else
11037 {
11038 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11039 && mips_cprestore_offset >= 0);
11040
11041 if (op[1] != PIC_CALL_REG)
11042 as_warn (_("MIPS PIC call to register other than $25"));
11043
11044 s = ((mips_opts.micromips
11045 && !mips_opts.insn32
11046 && (!mips_opts.noreorder || cprestore))
11047 ? "jalrs" : "jalr");
11048 if (mips_opts.micromips
11049 && !mips_opts.insn32
11050 && op[0] == RA
11051 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11052 macro_build (NULL, s, "mj", op[1]);
11053 else
11054 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11055 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11056 {
11057 if (mips_cprestore_offset < 0)
11058 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11059 else
11060 {
11061 if (!mips_frame_reg_valid)
11062 {
11063 as_warn (_("no .frame pseudo-op used in PIC code"));
11064 /* Quiet this warning. */
11065 mips_frame_reg_valid = 1;
11066 }
11067 if (!mips_cprestore_valid)
11068 {
11069 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11070 /* Quiet this warning. */
11071 mips_cprestore_valid = 1;
11072 }
11073 if (mips_opts.noreorder)
11074 macro_build (NULL, "nop", "");
11075 expr1.X_add_number = mips_cprestore_offset;
11076 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11077 mips_gp_register,
11078 mips_frame_reg,
11079 HAVE_64BIT_ADDRESSES);
11080 }
11081 }
11082 }
11083
11084 break;
11085
11086 case M_JALS_A:
11087 gas_assert (mips_opts.micromips);
11088 if (mips_opts.insn32)
11089 {
11090 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11091 break;
11092 }
11093 jals = 1;
11094 /* Fall through. */
11095 case M_JAL_A:
11096 if (mips_pic == NO_PIC)
11097 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11098 else if (mips_pic == SVR4_PIC)
11099 {
11100 /* If this is a reference to an external symbol, and we are
11101 using a small GOT, we want
11102 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11103 nop
11104 jalr $ra,$25
11105 nop
11106 lw $gp,cprestore($sp)
11107 The cprestore value is set using the .cprestore
11108 pseudo-op. If we are using a big GOT, we want
11109 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11110 addu $25,$25,$gp
11111 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11112 nop
11113 jalr $ra,$25
11114 nop
11115 lw $gp,cprestore($sp)
11116 If the symbol is not external, we want
11117 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11118 nop
11119 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11120 jalr $ra,$25
11121 nop
11122 lw $gp,cprestore($sp)
11123
11124 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11125 sequences above, minus nops, unless the symbol is local,
11126 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11127 GOT_DISP. */
11128 if (HAVE_NEWABI)
11129 {
11130 if (!mips_big_got)
11131 {
11132 relax_start (offset_expr.X_add_symbol);
11133 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11134 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11135 mips_gp_register);
11136 relax_switch ();
11137 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11138 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11139 mips_gp_register);
11140 relax_end ();
11141 }
11142 else
11143 {
11144 relax_start (offset_expr.X_add_symbol);
11145 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11146 BFD_RELOC_MIPS_CALL_HI16);
11147 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11148 PIC_CALL_REG, mips_gp_register);
11149 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11150 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11151 PIC_CALL_REG);
11152 relax_switch ();
11153 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11154 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11155 mips_gp_register);
11156 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11157 PIC_CALL_REG, PIC_CALL_REG,
11158 BFD_RELOC_MIPS_GOT_OFST);
11159 relax_end ();
11160 }
11161
11162 macro_build_jalr (&offset_expr, 0);
11163 }
11164 else
11165 {
11166 relax_start (offset_expr.X_add_symbol);
11167 if (!mips_big_got)
11168 {
11169 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11170 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11171 mips_gp_register);
11172 load_delay_nop ();
11173 relax_switch ();
11174 }
11175 else
11176 {
11177 int gpdelay;
11178
11179 gpdelay = reg_needs_delay (mips_gp_register);
11180 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11181 BFD_RELOC_MIPS_CALL_HI16);
11182 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11183 PIC_CALL_REG, mips_gp_register);
11184 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11185 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11186 PIC_CALL_REG);
11187 load_delay_nop ();
11188 relax_switch ();
11189 if (gpdelay)
11190 macro_build (NULL, "nop", "");
11191 }
11192 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11193 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11194 mips_gp_register);
11195 load_delay_nop ();
11196 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11197 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11198 relax_end ();
11199 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11200
11201 if (mips_cprestore_offset < 0)
11202 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11203 else
11204 {
11205 if (!mips_frame_reg_valid)
11206 {
11207 as_warn (_("no .frame pseudo-op used in PIC code"));
11208 /* Quiet this warning. */
11209 mips_frame_reg_valid = 1;
11210 }
11211 if (!mips_cprestore_valid)
11212 {
11213 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11214 /* Quiet this warning. */
11215 mips_cprestore_valid = 1;
11216 }
11217 if (mips_opts.noreorder)
11218 macro_build (NULL, "nop", "");
11219 expr1.X_add_number = mips_cprestore_offset;
11220 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11221 mips_gp_register,
11222 mips_frame_reg,
11223 HAVE_64BIT_ADDRESSES);
11224 }
11225 }
11226 }
11227 else if (mips_pic == VXWORKS_PIC)
11228 as_bad (_("non-PIC jump used in PIC library"));
11229 else
11230 abort ();
11231
11232 break;
11233
11234 case M_LBUE_AB:
11235 s = "lbue";
11236 fmt = "t,+j(b)";
11237 offbits = 9;
11238 goto ld_st;
11239 case M_LHUE_AB:
11240 s = "lhue";
11241 fmt = "t,+j(b)";
11242 offbits = 9;
11243 goto ld_st;
11244 case M_LBE_AB:
11245 s = "lbe";
11246 fmt = "t,+j(b)";
11247 offbits = 9;
11248 goto ld_st;
11249 case M_LHE_AB:
11250 s = "lhe";
11251 fmt = "t,+j(b)";
11252 offbits = 9;
11253 goto ld_st;
11254 case M_LLE_AB:
11255 s = "lle";
11256 fmt = "t,+j(b)";
11257 offbits = 9;
11258 goto ld_st;
11259 case M_LWE_AB:
11260 s = "lwe";
11261 fmt = "t,+j(b)";
11262 offbits = 9;
11263 goto ld_st;
11264 case M_LWLE_AB:
11265 s = "lwle";
11266 fmt = "t,+j(b)";
11267 offbits = 9;
11268 goto ld_st;
11269 case M_LWRE_AB:
11270 s = "lwre";
11271 fmt = "t,+j(b)";
11272 offbits = 9;
11273 goto ld_st;
11274 case M_SBE_AB:
11275 s = "sbe";
11276 fmt = "t,+j(b)";
11277 offbits = 9;
11278 goto ld_st;
11279 case M_SCE_AB:
11280 s = "sce";
11281 fmt = "t,+j(b)";
11282 offbits = 9;
11283 goto ld_st;
11284 case M_SHE_AB:
11285 s = "she";
11286 fmt = "t,+j(b)";
11287 offbits = 9;
11288 goto ld_st;
11289 case M_SWE_AB:
11290 s = "swe";
11291 fmt = "t,+j(b)";
11292 offbits = 9;
11293 goto ld_st;
11294 case M_SWLE_AB:
11295 s = "swle";
11296 fmt = "t,+j(b)";
11297 offbits = 9;
11298 goto ld_st;
11299 case M_SWRE_AB:
11300 s = "swre";
11301 fmt = "t,+j(b)";
11302 offbits = 9;
11303 goto ld_st;
11304 case M_ACLR_AB:
11305 s = "aclr";
11306 fmt = "\\,~(b)";
11307 offbits = 12;
11308 goto ld_st;
11309 case M_ASET_AB:
11310 s = "aset";
11311 fmt = "\\,~(b)";
11312 offbits = 12;
11313 goto ld_st;
11314 case M_LB_AB:
11315 s = "lb";
11316 fmt = "t,o(b)";
11317 goto ld;
11318 case M_LBU_AB:
11319 s = "lbu";
11320 fmt = "t,o(b)";
11321 goto ld;
11322 case M_LH_AB:
11323 s = "lh";
11324 fmt = "t,o(b)";
11325 goto ld;
11326 case M_LHU_AB:
11327 s = "lhu";
11328 fmt = "t,o(b)";
11329 goto ld;
11330 case M_LW_AB:
11331 s = "lw";
11332 fmt = "t,o(b)";
11333 goto ld;
11334 case M_LWC0_AB:
11335 gas_assert (!mips_opts.micromips);
11336 s = "lwc0";
11337 fmt = "E,o(b)";
11338 /* Itbl support may require additional care here. */
11339 coproc = 1;
11340 goto ld_st;
11341 case M_LWC1_AB:
11342 s = "lwc1";
11343 fmt = "T,o(b)";
11344 /* Itbl support may require additional care here. */
11345 coproc = 1;
11346 goto ld_st;
11347 case M_LWC2_AB:
11348 s = "lwc2";
11349 fmt = COP12_FMT;
11350 offbits = (mips_opts.micromips ? 12
11351 : ISA_IS_R6 (mips_opts.isa) ? 11
11352 : 16);
11353 /* Itbl support may require additional care here. */
11354 coproc = 1;
11355 goto ld_st;
11356 case M_LWC3_AB:
11357 gas_assert (!mips_opts.micromips);
11358 s = "lwc3";
11359 fmt = "E,o(b)";
11360 /* Itbl support may require additional care here. */
11361 coproc = 1;
11362 goto ld_st;
11363 case M_LWL_AB:
11364 s = "lwl";
11365 fmt = MEM12_FMT;
11366 offbits = (mips_opts.micromips ? 12 : 16);
11367 goto ld_st;
11368 case M_LWR_AB:
11369 s = "lwr";
11370 fmt = MEM12_FMT;
11371 offbits = (mips_opts.micromips ? 12 : 16);
11372 goto ld_st;
11373 case M_LDC1_AB:
11374 s = "ldc1";
11375 fmt = "T,o(b)";
11376 /* Itbl support may require additional care here. */
11377 coproc = 1;
11378 goto ld_st;
11379 case M_LDC2_AB:
11380 s = "ldc2";
11381 fmt = COP12_FMT;
11382 offbits = (mips_opts.micromips ? 12
11383 : ISA_IS_R6 (mips_opts.isa) ? 11
11384 : 16);
11385 /* Itbl support may require additional care here. */
11386 coproc = 1;
11387 goto ld_st;
11388 case M_LQC2_AB:
11389 s = "lqc2";
11390 fmt = "+7,o(b)";
11391 /* Itbl support may require additional care here. */
11392 coproc = 1;
11393 goto ld_st;
11394 case M_LDC3_AB:
11395 s = "ldc3";
11396 fmt = "E,o(b)";
11397 /* Itbl support may require additional care here. */
11398 coproc = 1;
11399 goto ld_st;
11400 case M_LDL_AB:
11401 s = "ldl";
11402 fmt = MEM12_FMT;
11403 offbits = (mips_opts.micromips ? 12 : 16);
11404 goto ld_st;
11405 case M_LDR_AB:
11406 s = "ldr";
11407 fmt = MEM12_FMT;
11408 offbits = (mips_opts.micromips ? 12 : 16);
11409 goto ld_st;
11410 case M_LL_AB:
11411 s = "ll";
11412 fmt = LL_SC_FMT;
11413 offbits = (mips_opts.micromips ? 12
11414 : ISA_IS_R6 (mips_opts.isa) ? 9
11415 : 16);
11416 goto ld;
11417 case M_LLD_AB:
11418 s = "lld";
11419 fmt = LL_SC_FMT;
11420 offbits = (mips_opts.micromips ? 12
11421 : ISA_IS_R6 (mips_opts.isa) ? 9
11422 : 16);
11423 goto ld;
11424 case M_LWU_AB:
11425 s = "lwu";
11426 fmt = MEM12_FMT;
11427 offbits = (mips_opts.micromips ? 12 : 16);
11428 goto ld;
11429 case M_LWP_AB:
11430 gas_assert (mips_opts.micromips);
11431 s = "lwp";
11432 fmt = "t,~(b)";
11433 offbits = 12;
11434 lp = 1;
11435 goto ld;
11436 case M_LDP_AB:
11437 gas_assert (mips_opts.micromips);
11438 s = "ldp";
11439 fmt = "t,~(b)";
11440 offbits = 12;
11441 lp = 1;
11442 goto ld;
11443 case M_LWM_AB:
11444 gas_assert (mips_opts.micromips);
11445 s = "lwm";
11446 fmt = "n,~(b)";
11447 offbits = 12;
11448 goto ld_st;
11449 case M_LDM_AB:
11450 gas_assert (mips_opts.micromips);
11451 s = "ldm";
11452 fmt = "n,~(b)";
11453 offbits = 12;
11454 goto ld_st;
11455
11456 ld:
11457 /* We don't want to use $0 as tempreg. */
11458 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11459 goto ld_st;
11460 else
11461 tempreg = op[0] + lp;
11462 goto ld_noat;
11463
11464 case M_SB_AB:
11465 s = "sb";
11466 fmt = "t,o(b)";
11467 goto ld_st;
11468 case M_SH_AB:
11469 s = "sh";
11470 fmt = "t,o(b)";
11471 goto ld_st;
11472 case M_SW_AB:
11473 s = "sw";
11474 fmt = "t,o(b)";
11475 goto ld_st;
11476 case M_SWC0_AB:
11477 gas_assert (!mips_opts.micromips);
11478 s = "swc0";
11479 fmt = "E,o(b)";
11480 /* Itbl support may require additional care here. */
11481 coproc = 1;
11482 goto ld_st;
11483 case M_SWC1_AB:
11484 s = "swc1";
11485 fmt = "T,o(b)";
11486 /* Itbl support may require additional care here. */
11487 coproc = 1;
11488 goto ld_st;
11489 case M_SWC2_AB:
11490 s = "swc2";
11491 fmt = COP12_FMT;
11492 offbits = (mips_opts.micromips ? 12
11493 : ISA_IS_R6 (mips_opts.isa) ? 11
11494 : 16);
11495 /* Itbl support may require additional care here. */
11496 coproc = 1;
11497 goto ld_st;
11498 case M_SWC3_AB:
11499 gas_assert (!mips_opts.micromips);
11500 s = "swc3";
11501 fmt = "E,o(b)";
11502 /* Itbl support may require additional care here. */
11503 coproc = 1;
11504 goto ld_st;
11505 case M_SWL_AB:
11506 s = "swl";
11507 fmt = MEM12_FMT;
11508 offbits = (mips_opts.micromips ? 12 : 16);
11509 goto ld_st;
11510 case M_SWR_AB:
11511 s = "swr";
11512 fmt = MEM12_FMT;
11513 offbits = (mips_opts.micromips ? 12 : 16);
11514 goto ld_st;
11515 case M_SC_AB:
11516 s = "sc";
11517 fmt = LL_SC_FMT;
11518 offbits = (mips_opts.micromips ? 12
11519 : ISA_IS_R6 (mips_opts.isa) ? 9
11520 : 16);
11521 goto ld_st;
11522 case M_SCD_AB:
11523 s = "scd";
11524 fmt = LL_SC_FMT;
11525 offbits = (mips_opts.micromips ? 12
11526 : ISA_IS_R6 (mips_opts.isa) ? 9
11527 : 16);
11528 goto ld_st;
11529 case M_CACHE_AB:
11530 s = "cache";
11531 fmt = (mips_opts.micromips ? "k,~(b)"
11532 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11533 : "k,o(b)");
11534 offbits = (mips_opts.micromips ? 12
11535 : ISA_IS_R6 (mips_opts.isa) ? 9
11536 : 16);
11537 goto ld_st;
11538 case M_CACHEE_AB:
11539 s = "cachee";
11540 fmt = "k,+j(b)";
11541 offbits = 9;
11542 goto ld_st;
11543 case M_PREF_AB:
11544 s = "pref";
11545 fmt = (mips_opts.micromips ? "k,~(b)"
11546 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11547 : "k,o(b)");
11548 offbits = (mips_opts.micromips ? 12
11549 : ISA_IS_R6 (mips_opts.isa) ? 9
11550 : 16);
11551 goto ld_st;
11552 case M_PREFE_AB:
11553 s = "prefe";
11554 fmt = "k,+j(b)";
11555 offbits = 9;
11556 goto ld_st;
11557 case M_SDC1_AB:
11558 s = "sdc1";
11559 fmt = "T,o(b)";
11560 coproc = 1;
11561 /* Itbl support may require additional care here. */
11562 goto ld_st;
11563 case M_SDC2_AB:
11564 s = "sdc2";
11565 fmt = COP12_FMT;
11566 offbits = (mips_opts.micromips ? 12
11567 : ISA_IS_R6 (mips_opts.isa) ? 11
11568 : 16);
11569 /* Itbl support may require additional care here. */
11570 coproc = 1;
11571 goto ld_st;
11572 case M_SQC2_AB:
11573 s = "sqc2";
11574 fmt = "+7,o(b)";
11575 /* Itbl support may require additional care here. */
11576 coproc = 1;
11577 goto ld_st;
11578 case M_SDC3_AB:
11579 gas_assert (!mips_opts.micromips);
11580 s = "sdc3";
11581 fmt = "E,o(b)";
11582 /* Itbl support may require additional care here. */
11583 coproc = 1;
11584 goto ld_st;
11585 case M_SDL_AB:
11586 s = "sdl";
11587 fmt = MEM12_FMT;
11588 offbits = (mips_opts.micromips ? 12 : 16);
11589 goto ld_st;
11590 case M_SDR_AB:
11591 s = "sdr";
11592 fmt = MEM12_FMT;
11593 offbits = (mips_opts.micromips ? 12 : 16);
11594 goto ld_st;
11595 case M_SWP_AB:
11596 gas_assert (mips_opts.micromips);
11597 s = "swp";
11598 fmt = "t,~(b)";
11599 offbits = 12;
11600 goto ld_st;
11601 case M_SDP_AB:
11602 gas_assert (mips_opts.micromips);
11603 s = "sdp";
11604 fmt = "t,~(b)";
11605 offbits = 12;
11606 goto ld_st;
11607 case M_SWM_AB:
11608 gas_assert (mips_opts.micromips);
11609 s = "swm";
11610 fmt = "n,~(b)";
11611 offbits = 12;
11612 goto ld_st;
11613 case M_SDM_AB:
11614 gas_assert (mips_opts.micromips);
11615 s = "sdm";
11616 fmt = "n,~(b)";
11617 offbits = 12;
11618
11619 ld_st:
11620 tempreg = AT;
11621 ld_noat:
11622 breg = op[2];
11623 if (small_offset_p (0, align, 16))
11624 {
11625 /* The first case exists for M_LD_AB and M_SD_AB, which are
11626 macros for o32 but which should act like normal instructions
11627 otherwise. */
11628 if (offbits == 16)
11629 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11630 offset_reloc[1], offset_reloc[2], breg);
11631 else if (small_offset_p (0, align, offbits))
11632 {
11633 if (offbits == 0)
11634 macro_build (NULL, s, fmt, op[0], breg);
11635 else
11636 macro_build (NULL, s, fmt, op[0],
11637 (int) offset_expr.X_add_number, breg);
11638 }
11639 else
11640 {
11641 if (tempreg == AT)
11642 used_at = 1;
11643 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11644 tempreg, breg, -1, offset_reloc[0],
11645 offset_reloc[1], offset_reloc[2]);
11646 if (offbits == 0)
11647 macro_build (NULL, s, fmt, op[0], tempreg);
11648 else
11649 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11650 }
11651 break;
11652 }
11653
11654 if (tempreg == AT)
11655 used_at = 1;
11656
11657 if (offset_expr.X_op != O_constant
11658 && offset_expr.X_op != O_symbol)
11659 {
11660 as_bad (_("expression too complex"));
11661 offset_expr.X_op = O_constant;
11662 }
11663
11664 if (HAVE_32BIT_ADDRESSES
11665 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11666 {
11667 char value [32];
11668
11669 sprintf_vma (value, offset_expr.X_add_number);
11670 as_bad (_("number (0x%s) larger than 32 bits"), value);
11671 }
11672
11673 /* A constant expression in PIC code can be handled just as it
11674 is in non PIC code. */
11675 if (offset_expr.X_op == O_constant)
11676 {
11677 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11678 offbits == 0 ? 16 : offbits);
11679 offset_expr.X_add_number -= expr1.X_add_number;
11680
11681 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11682 if (breg != 0)
11683 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11684 tempreg, tempreg, breg);
11685 if (offbits == 0)
11686 {
11687 if (offset_expr.X_add_number != 0)
11688 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11689 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11690 macro_build (NULL, s, fmt, op[0], tempreg);
11691 }
11692 else if (offbits == 16)
11693 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11694 else
11695 macro_build (NULL, s, fmt, op[0],
11696 (int) offset_expr.X_add_number, tempreg);
11697 }
11698 else if (offbits != 16)
11699 {
11700 /* The offset field is too narrow to be used for a low-part
11701 relocation, so load the whole address into the auxillary
11702 register. */
11703 load_address (tempreg, &offset_expr, &used_at);
11704 if (breg != 0)
11705 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11706 tempreg, tempreg, breg);
11707 if (offbits == 0)
11708 macro_build (NULL, s, fmt, op[0], tempreg);
11709 else
11710 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11711 }
11712 else if (mips_pic == NO_PIC)
11713 {
11714 /* If this is a reference to a GP relative symbol, and there
11715 is no base register, we want
11716 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11717 Otherwise, if there is no base register, we want
11718 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11719 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11720 If we have a constant, we need two instructions anyhow,
11721 so we always use the latter form.
11722
11723 If we have a base register, and this is a reference to a
11724 GP relative symbol, we want
11725 addu $tempreg,$breg,$gp
11726 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11727 Otherwise we want
11728 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11729 addu $tempreg,$tempreg,$breg
11730 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11731 With a constant we always use the latter case.
11732
11733 With 64bit address space and no base register and $at usable,
11734 we want
11735 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11736 lui $at,<sym> (BFD_RELOC_HI16_S)
11737 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11738 dsll32 $tempreg,0
11739 daddu $tempreg,$at
11740 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11741 If we have a base register, we want
11742 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11743 lui $at,<sym> (BFD_RELOC_HI16_S)
11744 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11745 daddu $at,$breg
11746 dsll32 $tempreg,0
11747 daddu $tempreg,$at
11748 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11749
11750 Without $at we can't generate the optimal path for superscalar
11751 processors here since this would require two temporary registers.
11752 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11753 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11754 dsll $tempreg,16
11755 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11756 dsll $tempreg,16
11757 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11758 If we have a base register, we want
11759 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11760 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11761 dsll $tempreg,16
11762 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11763 dsll $tempreg,16
11764 daddu $tempreg,$tempreg,$breg
11765 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11766
11767 For GP relative symbols in 64bit address space we can use
11768 the same sequence as in 32bit address space. */
11769 if (HAVE_64BIT_SYMBOLS)
11770 {
11771 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11772 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11773 {
11774 relax_start (offset_expr.X_add_symbol);
11775 if (breg == 0)
11776 {
11777 macro_build (&offset_expr, s, fmt, op[0],
11778 BFD_RELOC_GPREL16, mips_gp_register);
11779 }
11780 else
11781 {
11782 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11783 tempreg, breg, mips_gp_register);
11784 macro_build (&offset_expr, s, fmt, op[0],
11785 BFD_RELOC_GPREL16, tempreg);
11786 }
11787 relax_switch ();
11788 }
11789
11790 if (used_at == 0 && mips_opts.at)
11791 {
11792 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11793 BFD_RELOC_MIPS_HIGHEST);
11794 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11795 BFD_RELOC_HI16_S);
11796 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11797 tempreg, BFD_RELOC_MIPS_HIGHER);
11798 if (breg != 0)
11799 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11800 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11801 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11802 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11803 tempreg);
11804 used_at = 1;
11805 }
11806 else
11807 {
11808 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11809 BFD_RELOC_MIPS_HIGHEST);
11810 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11811 tempreg, BFD_RELOC_MIPS_HIGHER);
11812 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11813 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11814 tempreg, BFD_RELOC_HI16_S);
11815 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11816 if (breg != 0)
11817 macro_build (NULL, "daddu", "d,v,t",
11818 tempreg, tempreg, breg);
11819 macro_build (&offset_expr, s, fmt, op[0],
11820 BFD_RELOC_LO16, tempreg);
11821 }
11822
11823 if (mips_relax.sequence)
11824 relax_end ();
11825 break;
11826 }
11827
11828 if (breg == 0)
11829 {
11830 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11831 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11832 {
11833 relax_start (offset_expr.X_add_symbol);
11834 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11835 mips_gp_register);
11836 relax_switch ();
11837 }
11838 macro_build_lui (&offset_expr, tempreg);
11839 macro_build (&offset_expr, s, fmt, op[0],
11840 BFD_RELOC_LO16, tempreg);
11841 if (mips_relax.sequence)
11842 relax_end ();
11843 }
11844 else
11845 {
11846 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11847 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11848 {
11849 relax_start (offset_expr.X_add_symbol);
11850 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11851 tempreg, breg, mips_gp_register);
11852 macro_build (&offset_expr, s, fmt, op[0],
11853 BFD_RELOC_GPREL16, tempreg);
11854 relax_switch ();
11855 }
11856 macro_build_lui (&offset_expr, tempreg);
11857 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11858 tempreg, tempreg, breg);
11859 macro_build (&offset_expr, s, fmt, op[0],
11860 BFD_RELOC_LO16, tempreg);
11861 if (mips_relax.sequence)
11862 relax_end ();
11863 }
11864 }
11865 else if (!mips_big_got)
11866 {
11867 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11868
11869 /* If this is a reference to an external symbol, we want
11870 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11871 nop
11872 <op> op[0],0($tempreg)
11873 Otherwise we want
11874 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11875 nop
11876 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11877 <op> op[0],0($tempreg)
11878
11879 For NewABI, we want
11880 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11881 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11882
11883 If there is a base register, we add it to $tempreg before
11884 the <op>. If there is a constant, we stick it in the
11885 <op> instruction. We don't handle constants larger than
11886 16 bits, because we have no way to load the upper 16 bits
11887 (actually, we could handle them for the subset of cases
11888 in which we are not using $at). */
11889 gas_assert (offset_expr.X_op == O_symbol);
11890 if (HAVE_NEWABI)
11891 {
11892 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11893 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11894 if (breg != 0)
11895 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11896 tempreg, tempreg, breg);
11897 macro_build (&offset_expr, s, fmt, op[0],
11898 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11899 break;
11900 }
11901 expr1.X_add_number = offset_expr.X_add_number;
11902 offset_expr.X_add_number = 0;
11903 if (expr1.X_add_number < -0x8000
11904 || expr1.X_add_number >= 0x8000)
11905 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11906 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11907 lw_reloc_type, mips_gp_register);
11908 load_delay_nop ();
11909 relax_start (offset_expr.X_add_symbol);
11910 relax_switch ();
11911 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11912 tempreg, BFD_RELOC_LO16);
11913 relax_end ();
11914 if (breg != 0)
11915 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11916 tempreg, tempreg, breg);
11917 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11918 }
11919 else if (mips_big_got && !HAVE_NEWABI)
11920 {
11921 int gpdelay;
11922
11923 /* If this is a reference to an external symbol, we want
11924 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11925 addu $tempreg,$tempreg,$gp
11926 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11927 <op> op[0],0($tempreg)
11928 Otherwise we want
11929 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11930 nop
11931 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11932 <op> op[0],0($tempreg)
11933 If there is a base register, we add it to $tempreg before
11934 the <op>. If there is a constant, we stick it in the
11935 <op> instruction. We don't handle constants larger than
11936 16 bits, because we have no way to load the upper 16 bits
11937 (actually, we could handle them for the subset of cases
11938 in which we are not using $at). */
11939 gas_assert (offset_expr.X_op == O_symbol);
11940 expr1.X_add_number = offset_expr.X_add_number;
11941 offset_expr.X_add_number = 0;
11942 if (expr1.X_add_number < -0x8000
11943 || expr1.X_add_number >= 0x8000)
11944 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11945 gpdelay = reg_needs_delay (mips_gp_register);
11946 relax_start (offset_expr.X_add_symbol);
11947 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11948 BFD_RELOC_MIPS_GOT_HI16);
11949 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11950 mips_gp_register);
11951 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11952 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11953 relax_switch ();
11954 if (gpdelay)
11955 macro_build (NULL, "nop", "");
11956 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11957 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11958 load_delay_nop ();
11959 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11960 tempreg, BFD_RELOC_LO16);
11961 relax_end ();
11962
11963 if (breg != 0)
11964 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11965 tempreg, tempreg, breg);
11966 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11967 }
11968 else if (mips_big_got && HAVE_NEWABI)
11969 {
11970 /* If this is a reference to an external symbol, we want
11971 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11972 add $tempreg,$tempreg,$gp
11973 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11974 <op> op[0],<ofst>($tempreg)
11975 Otherwise, for local symbols, we want:
11976 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11977 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11978 gas_assert (offset_expr.X_op == O_symbol);
11979 expr1.X_add_number = offset_expr.X_add_number;
11980 offset_expr.X_add_number = 0;
11981 if (expr1.X_add_number < -0x8000
11982 || expr1.X_add_number >= 0x8000)
11983 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11984 relax_start (offset_expr.X_add_symbol);
11985 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11986 BFD_RELOC_MIPS_GOT_HI16);
11987 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11988 mips_gp_register);
11989 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11990 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11991 if (breg != 0)
11992 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11993 tempreg, tempreg, breg);
11994 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11995
11996 relax_switch ();
11997 offset_expr.X_add_number = expr1.X_add_number;
11998 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11999 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12000 if (breg != 0)
12001 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12002 tempreg, tempreg, breg);
12003 macro_build (&offset_expr, s, fmt, op[0],
12004 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12005 relax_end ();
12006 }
12007 else
12008 abort ();
12009
12010 break;
12011
12012 case M_JRADDIUSP:
12013 gas_assert (mips_opts.micromips);
12014 gas_assert (mips_opts.insn32);
12015 start_noreorder ();
12016 macro_build (NULL, "jr", "s", RA);
12017 expr1.X_add_number = op[0] << 2;
12018 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12019 end_noreorder ();
12020 break;
12021
12022 case M_JRC:
12023 gas_assert (mips_opts.micromips);
12024 gas_assert (mips_opts.insn32);
12025 macro_build (NULL, "jr", "s", op[0]);
12026 if (mips_opts.noreorder)
12027 macro_build (NULL, "nop", "");
12028 break;
12029
12030 case M_LI:
12031 case M_LI_S:
12032 load_register (op[0], &imm_expr, 0);
12033 break;
12034
12035 case M_DLI:
12036 load_register (op[0], &imm_expr, 1);
12037 break;
12038
12039 case M_LI_SS:
12040 if (imm_expr.X_op == O_constant)
12041 {
12042 used_at = 1;
12043 load_register (AT, &imm_expr, 0);
12044 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12045 break;
12046 }
12047 else
12048 {
12049 gas_assert (imm_expr.X_op == O_absent
12050 && offset_expr.X_op == O_symbol
12051 && strcmp (segment_name (S_GET_SEGMENT
12052 (offset_expr.X_add_symbol)),
12053 ".lit4") == 0
12054 && offset_expr.X_add_number == 0);
12055 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12056 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12057 break;
12058 }
12059
12060 case M_LI_D:
12061 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12062 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12063 order 32 bits of the value and the low order 32 bits are either
12064 zero or in OFFSET_EXPR. */
12065 if (imm_expr.X_op == O_constant)
12066 {
12067 if (GPR_SIZE == 64)
12068 load_register (op[0], &imm_expr, 1);
12069 else
12070 {
12071 int hreg, lreg;
12072
12073 if (target_big_endian)
12074 {
12075 hreg = op[0];
12076 lreg = op[0] + 1;
12077 }
12078 else
12079 {
12080 hreg = op[0] + 1;
12081 lreg = op[0];
12082 }
12083
12084 if (hreg <= 31)
12085 load_register (hreg, &imm_expr, 0);
12086 if (lreg <= 31)
12087 {
12088 if (offset_expr.X_op == O_absent)
12089 move_register (lreg, 0);
12090 else
12091 {
12092 gas_assert (offset_expr.X_op == O_constant);
12093 load_register (lreg, &offset_expr, 0);
12094 }
12095 }
12096 }
12097 break;
12098 }
12099 gas_assert (imm_expr.X_op == O_absent);
12100
12101 /* We know that sym is in the .rdata section. First we get the
12102 upper 16 bits of the address. */
12103 if (mips_pic == NO_PIC)
12104 {
12105 macro_build_lui (&offset_expr, AT);
12106 used_at = 1;
12107 }
12108 else
12109 {
12110 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12111 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12112 used_at = 1;
12113 }
12114
12115 /* Now we load the register(s). */
12116 if (GPR_SIZE == 64)
12117 {
12118 used_at = 1;
12119 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12120 BFD_RELOC_LO16, AT);
12121 }
12122 else
12123 {
12124 used_at = 1;
12125 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12126 BFD_RELOC_LO16, AT);
12127 if (op[0] != RA)
12128 {
12129 /* FIXME: How in the world do we deal with the possible
12130 overflow here? */
12131 offset_expr.X_add_number += 4;
12132 macro_build (&offset_expr, "lw", "t,o(b)",
12133 op[0] + 1, BFD_RELOC_LO16, AT);
12134 }
12135 }
12136 break;
12137
12138 case M_LI_DD:
12139 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12140 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12141 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12142 the value and the low order 32 bits are either zero or in
12143 OFFSET_EXPR. */
12144 if (imm_expr.X_op == O_constant)
12145 {
12146 used_at = 1;
12147 load_register (AT, &imm_expr, FPR_SIZE == 64);
12148 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12149 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12150 else
12151 {
12152 if (ISA_HAS_MXHC1 (mips_opts.isa))
12153 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12154 else if (FPR_SIZE != 32)
12155 as_bad (_("Unable to generate `%s' compliant code "
12156 "without mthc1"),
12157 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12158 else
12159 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12160 if (offset_expr.X_op == O_absent)
12161 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12162 else
12163 {
12164 gas_assert (offset_expr.X_op == O_constant);
12165 load_register (AT, &offset_expr, 0);
12166 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12167 }
12168 }
12169 break;
12170 }
12171
12172 gas_assert (imm_expr.X_op == O_absent
12173 && offset_expr.X_op == O_symbol
12174 && offset_expr.X_add_number == 0);
12175 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12176 if (strcmp (s, ".lit8") == 0)
12177 {
12178 op[2] = mips_gp_register;
12179 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12180 offset_reloc[1] = BFD_RELOC_UNUSED;
12181 offset_reloc[2] = BFD_RELOC_UNUSED;
12182 }
12183 else
12184 {
12185 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12186 used_at = 1;
12187 if (mips_pic != NO_PIC)
12188 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12189 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12190 else
12191 {
12192 /* FIXME: This won't work for a 64 bit address. */
12193 macro_build_lui (&offset_expr, AT);
12194 }
12195
12196 op[2] = AT;
12197 offset_reloc[0] = BFD_RELOC_LO16;
12198 offset_reloc[1] = BFD_RELOC_UNUSED;
12199 offset_reloc[2] = BFD_RELOC_UNUSED;
12200 }
12201 align = 8;
12202 /* Fall through */
12203
12204 case M_L_DAB:
12205 /*
12206 * The MIPS assembler seems to check for X_add_number not
12207 * being double aligned and generating:
12208 * lui at,%hi(foo+1)
12209 * addu at,at,v1
12210 * addiu at,at,%lo(foo+1)
12211 * lwc1 f2,0(at)
12212 * lwc1 f3,4(at)
12213 * But, the resulting address is the same after relocation so why
12214 * generate the extra instruction?
12215 */
12216 /* Itbl support may require additional care here. */
12217 coproc = 1;
12218 fmt = "T,o(b)";
12219 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12220 {
12221 s = "ldc1";
12222 goto ld_st;
12223 }
12224 s = "lwc1";
12225 goto ldd_std;
12226
12227 case M_S_DAB:
12228 gas_assert (!mips_opts.micromips);
12229 /* Itbl support may require additional care here. */
12230 coproc = 1;
12231 fmt = "T,o(b)";
12232 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12233 {
12234 s = "sdc1";
12235 goto ld_st;
12236 }
12237 s = "swc1";
12238 goto ldd_std;
12239
12240 case M_LQ_AB:
12241 fmt = "t,o(b)";
12242 s = "lq";
12243 goto ld;
12244
12245 case M_SQ_AB:
12246 fmt = "t,o(b)";
12247 s = "sq";
12248 goto ld_st;
12249
12250 case M_LD_AB:
12251 fmt = "t,o(b)";
12252 if (GPR_SIZE == 64)
12253 {
12254 s = "ld";
12255 goto ld;
12256 }
12257 s = "lw";
12258 goto ldd_std;
12259
12260 case M_SD_AB:
12261 fmt = "t,o(b)";
12262 if (GPR_SIZE == 64)
12263 {
12264 s = "sd";
12265 goto ld_st;
12266 }
12267 s = "sw";
12268
12269 ldd_std:
12270 /* Even on a big endian machine $fn comes before $fn+1. We have
12271 to adjust when loading from memory. We set coproc if we must
12272 load $fn+1 first. */
12273 /* Itbl support may require additional care here. */
12274 if (!target_big_endian)
12275 coproc = 0;
12276
12277 breg = op[2];
12278 if (small_offset_p (0, align, 16))
12279 {
12280 ep = &offset_expr;
12281 if (!small_offset_p (4, align, 16))
12282 {
12283 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12284 -1, offset_reloc[0], offset_reloc[1],
12285 offset_reloc[2]);
12286 expr1.X_add_number = 0;
12287 ep = &expr1;
12288 breg = AT;
12289 used_at = 1;
12290 offset_reloc[0] = BFD_RELOC_LO16;
12291 offset_reloc[1] = BFD_RELOC_UNUSED;
12292 offset_reloc[2] = BFD_RELOC_UNUSED;
12293 }
12294 if (strcmp (s, "lw") == 0 && op[0] == breg)
12295 {
12296 ep->X_add_number += 4;
12297 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12298 offset_reloc[1], offset_reloc[2], breg);
12299 ep->X_add_number -= 4;
12300 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12301 offset_reloc[1], offset_reloc[2], breg);
12302 }
12303 else
12304 {
12305 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12306 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12307 breg);
12308 ep->X_add_number += 4;
12309 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12310 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12311 breg);
12312 }
12313 break;
12314 }
12315
12316 if (offset_expr.X_op != O_symbol
12317 && offset_expr.X_op != O_constant)
12318 {
12319 as_bad (_("expression too complex"));
12320 offset_expr.X_op = O_constant;
12321 }
12322
12323 if (HAVE_32BIT_ADDRESSES
12324 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12325 {
12326 char value [32];
12327
12328 sprintf_vma (value, offset_expr.X_add_number);
12329 as_bad (_("number (0x%s) larger than 32 bits"), value);
12330 }
12331
12332 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12333 {
12334 /* If this is a reference to a GP relative symbol, we want
12335 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12336 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12337 If we have a base register, we use this
12338 addu $at,$breg,$gp
12339 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12340 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12341 If this is not a GP relative symbol, we want
12342 lui $at,<sym> (BFD_RELOC_HI16_S)
12343 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12344 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12345 If there is a base register, we add it to $at after the
12346 lui instruction. If there is a constant, we always use
12347 the last case. */
12348 if (offset_expr.X_op == O_symbol
12349 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12350 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12351 {
12352 relax_start (offset_expr.X_add_symbol);
12353 if (breg == 0)
12354 {
12355 tempreg = mips_gp_register;
12356 }
12357 else
12358 {
12359 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12360 AT, breg, mips_gp_register);
12361 tempreg = AT;
12362 used_at = 1;
12363 }
12364
12365 /* Itbl support may require additional care here. */
12366 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12367 BFD_RELOC_GPREL16, tempreg);
12368 offset_expr.X_add_number += 4;
12369
12370 /* Set mips_optimize to 2 to avoid inserting an
12371 undesired nop. */
12372 hold_mips_optimize = mips_optimize;
12373 mips_optimize = 2;
12374 /* Itbl support may require additional care here. */
12375 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12376 BFD_RELOC_GPREL16, tempreg);
12377 mips_optimize = hold_mips_optimize;
12378
12379 relax_switch ();
12380
12381 offset_expr.X_add_number -= 4;
12382 }
12383 used_at = 1;
12384 if (offset_high_part (offset_expr.X_add_number, 16)
12385 != offset_high_part (offset_expr.X_add_number + 4, 16))
12386 {
12387 load_address (AT, &offset_expr, &used_at);
12388 offset_expr.X_op = O_constant;
12389 offset_expr.X_add_number = 0;
12390 }
12391 else
12392 macro_build_lui (&offset_expr, AT);
12393 if (breg != 0)
12394 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12395 /* Itbl support may require additional care here. */
12396 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12397 BFD_RELOC_LO16, AT);
12398 /* FIXME: How do we handle overflow here? */
12399 offset_expr.X_add_number += 4;
12400 /* Itbl support may require additional care here. */
12401 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12402 BFD_RELOC_LO16, AT);
12403 if (mips_relax.sequence)
12404 relax_end ();
12405 }
12406 else if (!mips_big_got)
12407 {
12408 /* If this is a reference to an external symbol, we want
12409 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12410 nop
12411 <op> op[0],0($at)
12412 <op> op[0]+1,4($at)
12413 Otherwise we want
12414 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12415 nop
12416 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12417 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12418 If there is a base register we add it to $at before the
12419 lwc1 instructions. If there is a constant we include it
12420 in the lwc1 instructions. */
12421 used_at = 1;
12422 expr1.X_add_number = offset_expr.X_add_number;
12423 if (expr1.X_add_number < -0x8000
12424 || expr1.X_add_number >= 0x8000 - 4)
12425 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12426 load_got_offset (AT, &offset_expr);
12427 load_delay_nop ();
12428 if (breg != 0)
12429 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12430
12431 /* Set mips_optimize to 2 to avoid inserting an undesired
12432 nop. */
12433 hold_mips_optimize = mips_optimize;
12434 mips_optimize = 2;
12435
12436 /* Itbl support may require additional care here. */
12437 relax_start (offset_expr.X_add_symbol);
12438 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12439 BFD_RELOC_LO16, AT);
12440 expr1.X_add_number += 4;
12441 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12442 BFD_RELOC_LO16, AT);
12443 relax_switch ();
12444 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12445 BFD_RELOC_LO16, AT);
12446 offset_expr.X_add_number += 4;
12447 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12448 BFD_RELOC_LO16, AT);
12449 relax_end ();
12450
12451 mips_optimize = hold_mips_optimize;
12452 }
12453 else if (mips_big_got)
12454 {
12455 int gpdelay;
12456
12457 /* If this is a reference to an external symbol, we want
12458 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12459 addu $at,$at,$gp
12460 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12461 nop
12462 <op> op[0],0($at)
12463 <op> op[0]+1,4($at)
12464 Otherwise we want
12465 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12466 nop
12467 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12468 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12469 If there is a base register we add it to $at before the
12470 lwc1 instructions. If there is a constant we include it
12471 in the lwc1 instructions. */
12472 used_at = 1;
12473 expr1.X_add_number = offset_expr.X_add_number;
12474 offset_expr.X_add_number = 0;
12475 if (expr1.X_add_number < -0x8000
12476 || expr1.X_add_number >= 0x8000 - 4)
12477 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12478 gpdelay = reg_needs_delay (mips_gp_register);
12479 relax_start (offset_expr.X_add_symbol);
12480 macro_build (&offset_expr, "lui", LUI_FMT,
12481 AT, BFD_RELOC_MIPS_GOT_HI16);
12482 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12483 AT, AT, mips_gp_register);
12484 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12485 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12486 load_delay_nop ();
12487 if (breg != 0)
12488 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12489 /* Itbl support may require additional care here. */
12490 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12491 BFD_RELOC_LO16, AT);
12492 expr1.X_add_number += 4;
12493
12494 /* Set mips_optimize to 2 to avoid inserting an undesired
12495 nop. */
12496 hold_mips_optimize = mips_optimize;
12497 mips_optimize = 2;
12498 /* Itbl support may require additional care here. */
12499 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12500 BFD_RELOC_LO16, AT);
12501 mips_optimize = hold_mips_optimize;
12502 expr1.X_add_number -= 4;
12503
12504 relax_switch ();
12505 offset_expr.X_add_number = expr1.X_add_number;
12506 if (gpdelay)
12507 macro_build (NULL, "nop", "");
12508 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12509 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12510 load_delay_nop ();
12511 if (breg != 0)
12512 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12513 /* Itbl support may require additional care here. */
12514 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12515 BFD_RELOC_LO16, AT);
12516 offset_expr.X_add_number += 4;
12517
12518 /* Set mips_optimize to 2 to avoid inserting an undesired
12519 nop. */
12520 hold_mips_optimize = mips_optimize;
12521 mips_optimize = 2;
12522 /* Itbl support may require additional care here. */
12523 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12524 BFD_RELOC_LO16, AT);
12525 mips_optimize = hold_mips_optimize;
12526 relax_end ();
12527 }
12528 else
12529 abort ();
12530
12531 break;
12532
12533 case M_SAA_AB:
12534 s = "saa";
12535 goto saa_saad;
12536 case M_SAAD_AB:
12537 s = "saad";
12538 saa_saad:
12539 gas_assert (!mips_opts.micromips);
12540 offbits = 0;
12541 fmt = "t,(b)";
12542 goto ld_st;
12543
12544 /* New code added to support COPZ instructions.
12545 This code builds table entries out of the macros in mip_opcodes.
12546 R4000 uses interlocks to handle coproc delays.
12547 Other chips (like the R3000) require nops to be inserted for delays.
12548
12549 FIXME: Currently, we require that the user handle delays.
12550 In order to fill delay slots for non-interlocked chips,
12551 we must have a way to specify delays based on the coprocessor.
12552 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12553 What are the side-effects of the cop instruction?
12554 What cache support might we have and what are its effects?
12555 Both coprocessor & memory require delays. how long???
12556 What registers are read/set/modified?
12557
12558 If an itbl is provided to interpret cop instructions,
12559 this knowledge can be encoded in the itbl spec. */
12560
12561 case M_COP0:
12562 s = "c0";
12563 goto copz;
12564 case M_COP1:
12565 s = "c1";
12566 goto copz;
12567 case M_COP2:
12568 s = "c2";
12569 goto copz;
12570 case M_COP3:
12571 s = "c3";
12572 copz:
12573 gas_assert (!mips_opts.micromips);
12574 /* For now we just do C (same as Cz). The parameter will be
12575 stored in insn_opcode by mips_ip. */
12576 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12577 break;
12578
12579 case M_MOVE:
12580 move_register (op[0], op[1]);
12581 break;
12582
12583 case M_MOVEP:
12584 gas_assert (mips_opts.micromips);
12585 gas_assert (mips_opts.insn32);
12586 move_register (micromips_to_32_reg_h_map1[op[0]],
12587 micromips_to_32_reg_m_map[op[1]]);
12588 move_register (micromips_to_32_reg_h_map2[op[0]],
12589 micromips_to_32_reg_n_map[op[2]]);
12590 break;
12591
12592 case M_DMUL:
12593 dbl = 1;
12594 case M_MUL:
12595 if (mips_opts.arch == CPU_R5900)
12596 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12597 op[2]);
12598 else
12599 {
12600 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12601 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12602 }
12603 break;
12604
12605 case M_DMUL_I:
12606 dbl = 1;
12607 case M_MUL_I:
12608 /* The MIPS assembler some times generates shifts and adds. I'm
12609 not trying to be that fancy. GCC should do this for us
12610 anyway. */
12611 used_at = 1;
12612 load_register (AT, &imm_expr, dbl);
12613 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12614 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12615 break;
12616
12617 case M_DMULO_I:
12618 dbl = 1;
12619 case M_MULO_I:
12620 imm = 1;
12621 goto do_mulo;
12622
12623 case M_DMULO:
12624 dbl = 1;
12625 case M_MULO:
12626 do_mulo:
12627 start_noreorder ();
12628 used_at = 1;
12629 if (imm)
12630 load_register (AT, &imm_expr, dbl);
12631 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12632 op[1], imm ? AT : op[2]);
12633 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12634 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12635 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12636 if (mips_trap)
12637 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12638 else
12639 {
12640 if (mips_opts.micromips)
12641 micromips_label_expr (&label_expr);
12642 else
12643 label_expr.X_add_number = 8;
12644 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12645 macro_build (NULL, "nop", "");
12646 macro_build (NULL, "break", BRK_FMT, 6);
12647 if (mips_opts.micromips)
12648 micromips_add_label ();
12649 }
12650 end_noreorder ();
12651 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12652 break;
12653
12654 case M_DMULOU_I:
12655 dbl = 1;
12656 case M_MULOU_I:
12657 imm = 1;
12658 goto do_mulou;
12659
12660 case M_DMULOU:
12661 dbl = 1;
12662 case M_MULOU:
12663 do_mulou:
12664 start_noreorder ();
12665 used_at = 1;
12666 if (imm)
12667 load_register (AT, &imm_expr, dbl);
12668 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12669 op[1], imm ? AT : op[2]);
12670 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12671 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12672 if (mips_trap)
12673 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12674 else
12675 {
12676 if (mips_opts.micromips)
12677 micromips_label_expr (&label_expr);
12678 else
12679 label_expr.X_add_number = 8;
12680 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12681 macro_build (NULL, "nop", "");
12682 macro_build (NULL, "break", BRK_FMT, 6);
12683 if (mips_opts.micromips)
12684 micromips_add_label ();
12685 }
12686 end_noreorder ();
12687 break;
12688
12689 case M_DROL:
12690 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12691 {
12692 if (op[0] == op[1])
12693 {
12694 tempreg = AT;
12695 used_at = 1;
12696 }
12697 else
12698 tempreg = op[0];
12699 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12700 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12701 break;
12702 }
12703 used_at = 1;
12704 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12705 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12706 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12707 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12708 break;
12709
12710 case M_ROL:
12711 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12712 {
12713 if (op[0] == op[1])
12714 {
12715 tempreg = AT;
12716 used_at = 1;
12717 }
12718 else
12719 tempreg = op[0];
12720 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12721 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12722 break;
12723 }
12724 used_at = 1;
12725 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12726 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12727 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12728 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12729 break;
12730
12731 case M_DROL_I:
12732 {
12733 unsigned int rot;
12734 const char *l;
12735 const char *rr;
12736
12737 rot = imm_expr.X_add_number & 0x3f;
12738 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12739 {
12740 rot = (64 - rot) & 0x3f;
12741 if (rot >= 32)
12742 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12743 else
12744 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12745 break;
12746 }
12747 if (rot == 0)
12748 {
12749 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12750 break;
12751 }
12752 l = (rot < 0x20) ? "dsll" : "dsll32";
12753 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12754 rot &= 0x1f;
12755 used_at = 1;
12756 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12757 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12758 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12759 }
12760 break;
12761
12762 case M_ROL_I:
12763 {
12764 unsigned int rot;
12765
12766 rot = imm_expr.X_add_number & 0x1f;
12767 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12768 {
12769 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12770 (32 - rot) & 0x1f);
12771 break;
12772 }
12773 if (rot == 0)
12774 {
12775 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12776 break;
12777 }
12778 used_at = 1;
12779 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12780 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12781 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12782 }
12783 break;
12784
12785 case M_DROR:
12786 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12787 {
12788 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12789 break;
12790 }
12791 used_at = 1;
12792 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12793 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12794 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12795 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12796 break;
12797
12798 case M_ROR:
12799 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12800 {
12801 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12802 break;
12803 }
12804 used_at = 1;
12805 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12806 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12807 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12808 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12809 break;
12810
12811 case M_DROR_I:
12812 {
12813 unsigned int rot;
12814 const char *l;
12815 const char *rr;
12816
12817 rot = imm_expr.X_add_number & 0x3f;
12818 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12819 {
12820 if (rot >= 32)
12821 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12822 else
12823 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12824 break;
12825 }
12826 if (rot == 0)
12827 {
12828 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12829 break;
12830 }
12831 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12832 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12833 rot &= 0x1f;
12834 used_at = 1;
12835 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12836 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12837 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12838 }
12839 break;
12840
12841 case M_ROR_I:
12842 {
12843 unsigned int rot;
12844
12845 rot = imm_expr.X_add_number & 0x1f;
12846 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12847 {
12848 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12849 break;
12850 }
12851 if (rot == 0)
12852 {
12853 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12854 break;
12855 }
12856 used_at = 1;
12857 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12858 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12859 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12860 }
12861 break;
12862
12863 case M_SEQ:
12864 if (op[1] == 0)
12865 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12866 else if (op[2] == 0)
12867 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12868 else
12869 {
12870 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12871 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12872 }
12873 break;
12874
12875 case M_SEQ_I:
12876 if (imm_expr.X_add_number == 0)
12877 {
12878 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12879 break;
12880 }
12881 if (op[1] == 0)
12882 {
12883 as_warn (_("instruction %s: result is always false"),
12884 ip->insn_mo->name);
12885 move_register (op[0], 0);
12886 break;
12887 }
12888 if (CPU_HAS_SEQ (mips_opts.arch)
12889 && -512 <= imm_expr.X_add_number
12890 && imm_expr.X_add_number < 512)
12891 {
12892 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12893 (int) imm_expr.X_add_number);
12894 break;
12895 }
12896 if (imm_expr.X_add_number >= 0
12897 && imm_expr.X_add_number < 0x10000)
12898 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12899 else if (imm_expr.X_add_number > -0x8000
12900 && imm_expr.X_add_number < 0)
12901 {
12902 imm_expr.X_add_number = -imm_expr.X_add_number;
12903 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12904 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12905 }
12906 else if (CPU_HAS_SEQ (mips_opts.arch))
12907 {
12908 used_at = 1;
12909 load_register (AT, &imm_expr, GPR_SIZE == 64);
12910 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12911 break;
12912 }
12913 else
12914 {
12915 load_register (AT, &imm_expr, GPR_SIZE == 64);
12916 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12917 used_at = 1;
12918 }
12919 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12920 break;
12921
12922 case M_SGE: /* X >= Y <==> not (X < Y) */
12923 s = "slt";
12924 goto sge;
12925 case M_SGEU:
12926 s = "sltu";
12927 sge:
12928 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12929 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12930 break;
12931
12932 case M_SGE_I: /* X >= I <==> not (X < I) */
12933 case M_SGEU_I:
12934 if (imm_expr.X_add_number >= -0x8000
12935 && imm_expr.X_add_number < 0x8000)
12936 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12937 op[0], op[1], BFD_RELOC_LO16);
12938 else
12939 {
12940 load_register (AT, &imm_expr, GPR_SIZE == 64);
12941 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12942 op[0], op[1], AT);
12943 used_at = 1;
12944 }
12945 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12946 break;
12947
12948 case M_SGT: /* X > Y <==> Y < X */
12949 s = "slt";
12950 goto sgt;
12951 case M_SGTU:
12952 s = "sltu";
12953 sgt:
12954 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12955 break;
12956
12957 case M_SGT_I: /* X > I <==> I < X */
12958 s = "slt";
12959 goto sgti;
12960 case M_SGTU_I:
12961 s = "sltu";
12962 sgti:
12963 used_at = 1;
12964 load_register (AT, &imm_expr, GPR_SIZE == 64);
12965 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12966 break;
12967
12968 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12969 s = "slt";
12970 goto sle;
12971 case M_SLEU:
12972 s = "sltu";
12973 sle:
12974 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12975 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12976 break;
12977
12978 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12979 s = "slt";
12980 goto slei;
12981 case M_SLEU_I:
12982 s = "sltu";
12983 slei:
12984 used_at = 1;
12985 load_register (AT, &imm_expr, GPR_SIZE == 64);
12986 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12987 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12988 break;
12989
12990 case M_SLT_I:
12991 if (imm_expr.X_add_number >= -0x8000
12992 && imm_expr.X_add_number < 0x8000)
12993 {
12994 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12995 BFD_RELOC_LO16);
12996 break;
12997 }
12998 used_at = 1;
12999 load_register (AT, &imm_expr, GPR_SIZE == 64);
13000 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13001 break;
13002
13003 case M_SLTU_I:
13004 if (imm_expr.X_add_number >= -0x8000
13005 && imm_expr.X_add_number < 0x8000)
13006 {
13007 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13008 BFD_RELOC_LO16);
13009 break;
13010 }
13011 used_at = 1;
13012 load_register (AT, &imm_expr, GPR_SIZE == 64);
13013 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13014 break;
13015
13016 case M_SNE:
13017 if (op[1] == 0)
13018 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13019 else if (op[2] == 0)
13020 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13021 else
13022 {
13023 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13024 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13025 }
13026 break;
13027
13028 case M_SNE_I:
13029 if (imm_expr.X_add_number == 0)
13030 {
13031 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13032 break;
13033 }
13034 if (op[1] == 0)
13035 {
13036 as_warn (_("instruction %s: result is always true"),
13037 ip->insn_mo->name);
13038 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13039 op[0], 0, BFD_RELOC_LO16);
13040 break;
13041 }
13042 if (CPU_HAS_SEQ (mips_opts.arch)
13043 && -512 <= imm_expr.X_add_number
13044 && imm_expr.X_add_number < 512)
13045 {
13046 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13047 (int) imm_expr.X_add_number);
13048 break;
13049 }
13050 if (imm_expr.X_add_number >= 0
13051 && imm_expr.X_add_number < 0x10000)
13052 {
13053 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13054 BFD_RELOC_LO16);
13055 }
13056 else if (imm_expr.X_add_number > -0x8000
13057 && imm_expr.X_add_number < 0)
13058 {
13059 imm_expr.X_add_number = -imm_expr.X_add_number;
13060 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13061 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13062 }
13063 else if (CPU_HAS_SEQ (mips_opts.arch))
13064 {
13065 used_at = 1;
13066 load_register (AT, &imm_expr, GPR_SIZE == 64);
13067 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13068 break;
13069 }
13070 else
13071 {
13072 load_register (AT, &imm_expr, GPR_SIZE == 64);
13073 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13074 used_at = 1;
13075 }
13076 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13077 break;
13078
13079 case M_SUB_I:
13080 s = "addi";
13081 s2 = "sub";
13082 goto do_subi;
13083 case M_SUBU_I:
13084 s = "addiu";
13085 s2 = "subu";
13086 goto do_subi;
13087 case M_DSUB_I:
13088 dbl = 1;
13089 s = "daddi";
13090 s2 = "dsub";
13091 if (!mips_opts.micromips)
13092 goto do_subi;
13093 if (imm_expr.X_add_number > -0x200
13094 && imm_expr.X_add_number <= 0x200)
13095 {
13096 macro_build (NULL, s, "t,r,.", op[0], op[1],
13097 (int) -imm_expr.X_add_number);
13098 break;
13099 }
13100 goto do_subi_i;
13101 case M_DSUBU_I:
13102 dbl = 1;
13103 s = "daddiu";
13104 s2 = "dsubu";
13105 do_subi:
13106 if (imm_expr.X_add_number > -0x8000
13107 && imm_expr.X_add_number <= 0x8000)
13108 {
13109 imm_expr.X_add_number = -imm_expr.X_add_number;
13110 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13111 break;
13112 }
13113 do_subi_i:
13114 used_at = 1;
13115 load_register (AT, &imm_expr, dbl);
13116 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13117 break;
13118
13119 case M_TEQ_I:
13120 s = "teq";
13121 goto trap;
13122 case M_TGE_I:
13123 s = "tge";
13124 goto trap;
13125 case M_TGEU_I:
13126 s = "tgeu";
13127 goto trap;
13128 case M_TLT_I:
13129 s = "tlt";
13130 goto trap;
13131 case M_TLTU_I:
13132 s = "tltu";
13133 goto trap;
13134 case M_TNE_I:
13135 s = "tne";
13136 trap:
13137 used_at = 1;
13138 load_register (AT, &imm_expr, GPR_SIZE == 64);
13139 macro_build (NULL, s, "s,t", op[0], AT);
13140 break;
13141
13142 case M_TRUNCWS:
13143 case M_TRUNCWD:
13144 gas_assert (!mips_opts.micromips);
13145 gas_assert (mips_opts.isa == ISA_MIPS1);
13146 used_at = 1;
13147
13148 /*
13149 * Is the double cfc1 instruction a bug in the mips assembler;
13150 * or is there a reason for it?
13151 */
13152 start_noreorder ();
13153 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13154 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13155 macro_build (NULL, "nop", "");
13156 expr1.X_add_number = 3;
13157 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13158 expr1.X_add_number = 2;
13159 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13160 macro_build (NULL, "ctc1", "t,G", AT, RA);
13161 macro_build (NULL, "nop", "");
13162 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13163 op[0], op[1]);
13164 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13165 macro_build (NULL, "nop", "");
13166 end_noreorder ();
13167 break;
13168
13169 case M_ULH_AB:
13170 s = "lb";
13171 s2 = "lbu";
13172 off = 1;
13173 goto uld_st;
13174 case M_ULHU_AB:
13175 s = "lbu";
13176 s2 = "lbu";
13177 off = 1;
13178 goto uld_st;
13179 case M_ULW_AB:
13180 s = "lwl";
13181 s2 = "lwr";
13182 offbits = (mips_opts.micromips ? 12 : 16);
13183 off = 3;
13184 goto uld_st;
13185 case M_ULD_AB:
13186 s = "ldl";
13187 s2 = "ldr";
13188 offbits = (mips_opts.micromips ? 12 : 16);
13189 off = 7;
13190 goto uld_st;
13191 case M_USH_AB:
13192 s = "sb";
13193 s2 = "sb";
13194 off = 1;
13195 ust = 1;
13196 goto uld_st;
13197 case M_USW_AB:
13198 s = "swl";
13199 s2 = "swr";
13200 offbits = (mips_opts.micromips ? 12 : 16);
13201 off = 3;
13202 ust = 1;
13203 goto uld_st;
13204 case M_USD_AB:
13205 s = "sdl";
13206 s2 = "sdr";
13207 offbits = (mips_opts.micromips ? 12 : 16);
13208 off = 7;
13209 ust = 1;
13210
13211 uld_st:
13212 breg = op[2];
13213 large_offset = !small_offset_p (off, align, offbits);
13214 ep = &offset_expr;
13215 expr1.X_add_number = 0;
13216 if (large_offset)
13217 {
13218 used_at = 1;
13219 tempreg = AT;
13220 if (small_offset_p (0, align, 16))
13221 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13222 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13223 else
13224 {
13225 load_address (tempreg, ep, &used_at);
13226 if (breg != 0)
13227 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13228 tempreg, tempreg, breg);
13229 }
13230 offset_reloc[0] = BFD_RELOC_LO16;
13231 offset_reloc[1] = BFD_RELOC_UNUSED;
13232 offset_reloc[2] = BFD_RELOC_UNUSED;
13233 breg = tempreg;
13234 tempreg = op[0];
13235 ep = &expr1;
13236 }
13237 else if (!ust && op[0] == breg)
13238 {
13239 used_at = 1;
13240 tempreg = AT;
13241 }
13242 else
13243 tempreg = op[0];
13244
13245 if (off == 1)
13246 goto ulh_sh;
13247
13248 if (!target_big_endian)
13249 ep->X_add_number += off;
13250 if (offbits == 12)
13251 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13252 else
13253 macro_build (ep, s, "t,o(b)", tempreg, -1,
13254 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13255
13256 if (!target_big_endian)
13257 ep->X_add_number -= off;
13258 else
13259 ep->X_add_number += off;
13260 if (offbits == 12)
13261 macro_build (NULL, s2, "t,~(b)",
13262 tempreg, (int) ep->X_add_number, breg);
13263 else
13264 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13265 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13266
13267 /* If necessary, move the result in tempreg to the final destination. */
13268 if (!ust && op[0] != tempreg)
13269 {
13270 /* Protect second load's delay slot. */
13271 load_delay_nop ();
13272 move_register (op[0], tempreg);
13273 }
13274 break;
13275
13276 ulh_sh:
13277 used_at = 1;
13278 if (target_big_endian == ust)
13279 ep->X_add_number += off;
13280 tempreg = ust || large_offset ? op[0] : AT;
13281 macro_build (ep, s, "t,o(b)", tempreg, -1,
13282 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13283
13284 /* For halfword transfers we need a temporary register to shuffle
13285 bytes. Unfortunately for M_USH_A we have none available before
13286 the next store as AT holds the base address. We deal with this
13287 case by clobbering TREG and then restoring it as with ULH. */
13288 tempreg = ust == large_offset ? op[0] : AT;
13289 if (ust)
13290 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13291
13292 if (target_big_endian == ust)
13293 ep->X_add_number -= off;
13294 else
13295 ep->X_add_number += off;
13296 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13297 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13298
13299 /* For M_USH_A re-retrieve the LSB. */
13300 if (ust && large_offset)
13301 {
13302 if (target_big_endian)
13303 ep->X_add_number += off;
13304 else
13305 ep->X_add_number -= off;
13306 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13307 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13308 }
13309 /* For ULH and M_USH_A OR the LSB in. */
13310 if (!ust || large_offset)
13311 {
13312 tempreg = !large_offset ? AT : op[0];
13313 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13314 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13315 }
13316 break;
13317
13318 default:
13319 /* FIXME: Check if this is one of the itbl macros, since they
13320 are added dynamically. */
13321 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13322 break;
13323 }
13324 if (!mips_opts.at && used_at)
13325 as_bad (_("macro used $at after \".set noat\""));
13326 }
13327
13328 /* Implement macros in mips16 mode. */
13329
13330 static void
13331 mips16_macro (struct mips_cl_insn *ip)
13332 {
13333 const struct mips_operand_array *operands;
13334 int mask;
13335 int tmp;
13336 expressionS expr1;
13337 int dbl;
13338 const char *s, *s2, *s3;
13339 unsigned int op[MAX_OPERANDS];
13340 unsigned int i;
13341
13342 mask = ip->insn_mo->mask;
13343
13344 operands = insn_operands (ip);
13345 for (i = 0; i < MAX_OPERANDS; i++)
13346 if (operands->operand[i])
13347 op[i] = insn_extract_operand (ip, operands->operand[i]);
13348 else
13349 op[i] = -1;
13350
13351 expr1.X_op = O_constant;
13352 expr1.X_op_symbol = NULL;
13353 expr1.X_add_symbol = NULL;
13354 expr1.X_add_number = 1;
13355
13356 dbl = 0;
13357
13358 switch (mask)
13359 {
13360 default:
13361 abort ();
13362
13363 case M_DDIV_3:
13364 dbl = 1;
13365 case M_DIV_3:
13366 s = "mflo";
13367 goto do_div3;
13368 case M_DREM_3:
13369 dbl = 1;
13370 case M_REM_3:
13371 s = "mfhi";
13372 do_div3:
13373 start_noreorder ();
13374 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13375 expr1.X_add_number = 2;
13376 macro_build (&expr1, "bnez", "x,p", op[2]);
13377 macro_build (NULL, "break", "6", 7);
13378
13379 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13380 since that causes an overflow. We should do that as well,
13381 but I don't see how to do the comparisons without a temporary
13382 register. */
13383 end_noreorder ();
13384 macro_build (NULL, s, "x", op[0]);
13385 break;
13386
13387 case M_DIVU_3:
13388 s = "divu";
13389 s2 = "mflo";
13390 goto do_divu3;
13391 case M_REMU_3:
13392 s = "divu";
13393 s2 = "mfhi";
13394 goto do_divu3;
13395 case M_DDIVU_3:
13396 s = "ddivu";
13397 s2 = "mflo";
13398 goto do_divu3;
13399 case M_DREMU_3:
13400 s = "ddivu";
13401 s2 = "mfhi";
13402 do_divu3:
13403 start_noreorder ();
13404 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13405 expr1.X_add_number = 2;
13406 macro_build (&expr1, "bnez", "x,p", op[2]);
13407 macro_build (NULL, "break", "6", 7);
13408 end_noreorder ();
13409 macro_build (NULL, s2, "x", op[0]);
13410 break;
13411
13412 case M_DMUL:
13413 dbl = 1;
13414 case M_MUL:
13415 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13416 macro_build (NULL, "mflo", "x", op[0]);
13417 break;
13418
13419 case M_DSUBU_I:
13420 dbl = 1;
13421 goto do_subu;
13422 case M_SUBU_I:
13423 do_subu:
13424 imm_expr.X_add_number = -imm_expr.X_add_number;
13425 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13426 break;
13427
13428 case M_SUBU_I_2:
13429 imm_expr.X_add_number = -imm_expr.X_add_number;
13430 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13431 break;
13432
13433 case M_DSUBU_I_2:
13434 imm_expr.X_add_number = -imm_expr.X_add_number;
13435 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13436 break;
13437
13438 case M_BEQ:
13439 s = "cmp";
13440 s2 = "bteqz";
13441 goto do_branch;
13442 case M_BNE:
13443 s = "cmp";
13444 s2 = "btnez";
13445 goto do_branch;
13446 case M_BLT:
13447 s = "slt";
13448 s2 = "btnez";
13449 goto do_branch;
13450 case M_BLTU:
13451 s = "sltu";
13452 s2 = "btnez";
13453 goto do_branch;
13454 case M_BLE:
13455 s = "slt";
13456 s2 = "bteqz";
13457 goto do_reverse_branch;
13458 case M_BLEU:
13459 s = "sltu";
13460 s2 = "bteqz";
13461 goto do_reverse_branch;
13462 case M_BGE:
13463 s = "slt";
13464 s2 = "bteqz";
13465 goto do_branch;
13466 case M_BGEU:
13467 s = "sltu";
13468 s2 = "bteqz";
13469 goto do_branch;
13470 case M_BGT:
13471 s = "slt";
13472 s2 = "btnez";
13473 goto do_reverse_branch;
13474 case M_BGTU:
13475 s = "sltu";
13476 s2 = "btnez";
13477
13478 do_reverse_branch:
13479 tmp = op[1];
13480 op[1] = op[0];
13481 op[0] = tmp;
13482
13483 do_branch:
13484 macro_build (NULL, s, "x,y", op[0], op[1]);
13485 macro_build (&offset_expr, s2, "p");
13486 break;
13487
13488 case M_BEQ_I:
13489 s = "cmpi";
13490 s2 = "bteqz";
13491 s3 = "x,U";
13492 goto do_branch_i;
13493 case M_BNE_I:
13494 s = "cmpi";
13495 s2 = "btnez";
13496 s3 = "x,U";
13497 goto do_branch_i;
13498 case M_BLT_I:
13499 s = "slti";
13500 s2 = "btnez";
13501 s3 = "x,8";
13502 goto do_branch_i;
13503 case M_BLTU_I:
13504 s = "sltiu";
13505 s2 = "btnez";
13506 s3 = "x,8";
13507 goto do_branch_i;
13508 case M_BLE_I:
13509 s = "slti";
13510 s2 = "btnez";
13511 s3 = "x,8";
13512 goto do_addone_branch_i;
13513 case M_BLEU_I:
13514 s = "sltiu";
13515 s2 = "btnez";
13516 s3 = "x,8";
13517 goto do_addone_branch_i;
13518 case M_BGE_I:
13519 s = "slti";
13520 s2 = "bteqz";
13521 s3 = "x,8";
13522 goto do_branch_i;
13523 case M_BGEU_I:
13524 s = "sltiu";
13525 s2 = "bteqz";
13526 s3 = "x,8";
13527 goto do_branch_i;
13528 case M_BGT_I:
13529 s = "slti";
13530 s2 = "bteqz";
13531 s3 = "x,8";
13532 goto do_addone_branch_i;
13533 case M_BGTU_I:
13534 s = "sltiu";
13535 s2 = "bteqz";
13536 s3 = "x,8";
13537
13538 do_addone_branch_i:
13539 ++imm_expr.X_add_number;
13540
13541 do_branch_i:
13542 macro_build (&imm_expr, s, s3, op[0]);
13543 macro_build (&offset_expr, s2, "p");
13544 break;
13545
13546 case M_ABS:
13547 expr1.X_add_number = 0;
13548 macro_build (&expr1, "slti", "x,8", op[1]);
13549 if (op[0] != op[1])
13550 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13551 expr1.X_add_number = 2;
13552 macro_build (&expr1, "bteqz", "p");
13553 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13554 break;
13555 }
13556 }
13557
13558 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13559 opcode bits in *OPCODE_EXTRA. */
13560
13561 static struct mips_opcode *
13562 mips_lookup_insn (struct hash_control *hash, const char *start,
13563 ssize_t length, unsigned int *opcode_extra)
13564 {
13565 char *name, *dot, *p;
13566 unsigned int mask, suffix;
13567 ssize_t opend;
13568 struct mips_opcode *insn;
13569
13570 /* Make a copy of the instruction so that we can fiddle with it. */
13571 name = xstrndup (start, length);
13572
13573 /* Look up the instruction as-is. */
13574 insn = (struct mips_opcode *) hash_find (hash, name);
13575 if (insn)
13576 goto end;
13577
13578 dot = strchr (name, '.');
13579 if (dot && dot[1])
13580 {
13581 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13582 p = mips_parse_vu0_channels (dot + 1, &mask);
13583 if (*p == 0 && mask != 0)
13584 {
13585 *dot = 0;
13586 insn = (struct mips_opcode *) hash_find (hash, name);
13587 *dot = '.';
13588 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13589 {
13590 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13591 goto end;
13592 }
13593 }
13594 }
13595
13596 if (mips_opts.micromips)
13597 {
13598 /* See if there's an instruction size override suffix,
13599 either `16' or `32', at the end of the mnemonic proper,
13600 that defines the operation, i.e. before the first `.'
13601 character if any. Strip it and retry. */
13602 opend = dot != NULL ? dot - name : length;
13603 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13604 suffix = 2;
13605 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13606 suffix = 4;
13607 else
13608 suffix = 0;
13609 if (suffix)
13610 {
13611 memcpy (name + opend - 2, name + opend, length - opend + 1);
13612 insn = (struct mips_opcode *) hash_find (hash, name);
13613 if (insn)
13614 {
13615 forced_insn_length = suffix;
13616 goto end;
13617 }
13618 }
13619 }
13620
13621 insn = NULL;
13622 end:
13623 free (name);
13624 return insn;
13625 }
13626
13627 /* Assemble an instruction into its binary format. If the instruction
13628 is a macro, set imm_expr and offset_expr to the values associated
13629 with "I" and "A" operands respectively. Otherwise store the value
13630 of the relocatable field (if any) in offset_expr. In both cases
13631 set offset_reloc to the relocation operators applied to offset_expr. */
13632
13633 static void
13634 mips_ip (char *str, struct mips_cl_insn *insn)
13635 {
13636 const struct mips_opcode *first, *past;
13637 struct hash_control *hash;
13638 char format;
13639 size_t end;
13640 struct mips_operand_token *tokens;
13641 unsigned int opcode_extra;
13642
13643 if (mips_opts.micromips)
13644 {
13645 hash = micromips_op_hash;
13646 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13647 }
13648 else
13649 {
13650 hash = op_hash;
13651 past = &mips_opcodes[NUMOPCODES];
13652 }
13653 forced_insn_length = 0;
13654 opcode_extra = 0;
13655
13656 /* We first try to match an instruction up to a space or to the end. */
13657 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13658 continue;
13659
13660 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13661 if (first == NULL)
13662 {
13663 set_insn_error (0, _("unrecognized opcode"));
13664 return;
13665 }
13666
13667 if (strcmp (first->name, "li.s") == 0)
13668 format = 'f';
13669 else if (strcmp (first->name, "li.d") == 0)
13670 format = 'd';
13671 else
13672 format = 0;
13673 tokens = mips_parse_arguments (str + end, format);
13674 if (!tokens)
13675 return;
13676
13677 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13678 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13679 set_insn_error (0, _("invalid operands"));
13680
13681 obstack_free (&mips_operand_tokens, tokens);
13682 }
13683
13684 /* As for mips_ip, but used when assembling MIPS16 code.
13685 Also set forced_insn_length to the resulting instruction size in
13686 bytes if the user explicitly requested a small or extended instruction. */
13687
13688 static void
13689 mips16_ip (char *str, struct mips_cl_insn *insn)
13690 {
13691 char *end, *s, c;
13692 struct mips_opcode *first;
13693 struct mips_operand_token *tokens;
13694
13695 forced_insn_length = 0;
13696
13697 for (s = str; ISLOWER (*s); ++s)
13698 ;
13699 end = s;
13700 c = *end;
13701 switch (c)
13702 {
13703 case '\0':
13704 break;
13705
13706 case ' ':
13707 s++;
13708 break;
13709
13710 case '.':
13711 if (s[1] == 't' && s[2] == ' ')
13712 {
13713 forced_insn_length = 2;
13714 s += 3;
13715 break;
13716 }
13717 else if (s[1] == 'e' && s[2] == ' ')
13718 {
13719 forced_insn_length = 4;
13720 s += 3;
13721 break;
13722 }
13723 /* Fall through. */
13724 default:
13725 set_insn_error (0, _("unrecognized opcode"));
13726 return;
13727 }
13728
13729 if (mips_opts.noautoextend && !forced_insn_length)
13730 forced_insn_length = 2;
13731
13732 *end = 0;
13733 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13734 *end = c;
13735
13736 if (!first)
13737 {
13738 set_insn_error (0, _("unrecognized opcode"));
13739 return;
13740 }
13741
13742 tokens = mips_parse_arguments (s, 0);
13743 if (!tokens)
13744 return;
13745
13746 if (!match_mips16_insns (insn, first, tokens))
13747 set_insn_error (0, _("invalid operands"));
13748
13749 obstack_free (&mips_operand_tokens, tokens);
13750 }
13751
13752 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13753 NBITS is the number of significant bits in VAL. */
13754
13755 static unsigned long
13756 mips16_immed_extend (offsetT val, unsigned int nbits)
13757 {
13758 int extval;
13759 if (nbits == 16)
13760 {
13761 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13762 val &= 0x1f;
13763 }
13764 else if (nbits == 15)
13765 {
13766 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13767 val &= 0xf;
13768 }
13769 else
13770 {
13771 extval = ((val & 0x1f) << 6) | (val & 0x20);
13772 val = 0;
13773 }
13774 return (extval << 16) | val;
13775 }
13776
13777 /* Like decode_mips16_operand, but require the operand to be defined and
13778 require it to be an integer. */
13779
13780 static const struct mips_int_operand *
13781 mips16_immed_operand (int type, bfd_boolean extended_p)
13782 {
13783 const struct mips_operand *operand;
13784
13785 operand = decode_mips16_operand (type, extended_p);
13786 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13787 abort ();
13788 return (const struct mips_int_operand *) operand;
13789 }
13790
13791 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13792
13793 static bfd_boolean
13794 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13795 bfd_reloc_code_real_type reloc, offsetT sval)
13796 {
13797 int min_val, max_val;
13798
13799 min_val = mips_int_operand_min (operand);
13800 max_val = mips_int_operand_max (operand);
13801 if (reloc != BFD_RELOC_UNUSED)
13802 {
13803 if (min_val < 0)
13804 sval = SEXT_16BIT (sval);
13805 else
13806 sval &= 0xffff;
13807 }
13808
13809 return (sval >= min_val
13810 && sval <= max_val
13811 && (sval & ((1 << operand->shift) - 1)) == 0);
13812 }
13813
13814 /* Install immediate value VAL into MIPS16 instruction *INSN,
13815 extending it if necessary. The instruction in *INSN may
13816 already be extended.
13817
13818 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13819 if none. In the former case, VAL is a 16-bit number with no
13820 defined signedness.
13821
13822 TYPE is the type of the immediate field. USER_INSN_LENGTH
13823 is the length that the user requested, or 0 if none. */
13824
13825 static void
13826 mips16_immed (const char *file, unsigned int line, int type,
13827 bfd_reloc_code_real_type reloc, offsetT val,
13828 unsigned int user_insn_length, unsigned long *insn)
13829 {
13830 const struct mips_int_operand *operand;
13831 unsigned int uval, length;
13832
13833 operand = mips16_immed_operand (type, FALSE);
13834 if (!mips16_immed_in_range_p (operand, reloc, val))
13835 {
13836 /* We need an extended instruction. */
13837 if (user_insn_length == 2)
13838 as_bad_where (file, line, _("invalid unextended operand value"));
13839 else
13840 *insn |= MIPS16_EXTEND;
13841 }
13842 else if (user_insn_length == 4)
13843 {
13844 /* The operand doesn't force an unextended instruction to be extended.
13845 Warn if the user wanted an extended instruction anyway. */
13846 *insn |= MIPS16_EXTEND;
13847 as_warn_where (file, line,
13848 _("extended operand requested but not required"));
13849 }
13850
13851 length = mips16_opcode_length (*insn);
13852 if (length == 4)
13853 {
13854 operand = mips16_immed_operand (type, TRUE);
13855 if (!mips16_immed_in_range_p (operand, reloc, val))
13856 as_bad_where (file, line,
13857 _("operand value out of range for instruction"));
13858 }
13859 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13860 if (length == 2)
13861 *insn = mips_insert_operand (&operand->root, *insn, uval);
13862 else
13863 *insn |= mips16_immed_extend (uval, operand->root.size);
13864 }
13865 \f
13866 struct percent_op_match
13867 {
13868 const char *str;
13869 bfd_reloc_code_real_type reloc;
13870 };
13871
13872 static const struct percent_op_match mips_percent_op[] =
13873 {
13874 {"%lo", BFD_RELOC_LO16},
13875 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13876 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13877 {"%call16", BFD_RELOC_MIPS_CALL16},
13878 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13879 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13880 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13881 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13882 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13883 {"%got", BFD_RELOC_MIPS_GOT16},
13884 {"%gp_rel", BFD_RELOC_GPREL16},
13885 {"%half", BFD_RELOC_16},
13886 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13887 {"%higher", BFD_RELOC_MIPS_HIGHER},
13888 {"%neg", BFD_RELOC_MIPS_SUB},
13889 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13890 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13891 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13892 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13893 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13894 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13895 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13896 {"%hi", BFD_RELOC_HI16_S},
13897 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13898 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13899 };
13900
13901 static const struct percent_op_match mips16_percent_op[] =
13902 {
13903 {"%lo", BFD_RELOC_MIPS16_LO16},
13904 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13905 {"%got", BFD_RELOC_MIPS16_GOT16},
13906 {"%call16", BFD_RELOC_MIPS16_CALL16},
13907 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13908 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13909 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13910 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13911 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13912 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13913 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13914 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13915 };
13916
13917
13918 /* Return true if *STR points to a relocation operator. When returning true,
13919 move *STR over the operator and store its relocation code in *RELOC.
13920 Leave both *STR and *RELOC alone when returning false. */
13921
13922 static bfd_boolean
13923 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13924 {
13925 const struct percent_op_match *percent_op;
13926 size_t limit, i;
13927
13928 if (mips_opts.mips16)
13929 {
13930 percent_op = mips16_percent_op;
13931 limit = ARRAY_SIZE (mips16_percent_op);
13932 }
13933 else
13934 {
13935 percent_op = mips_percent_op;
13936 limit = ARRAY_SIZE (mips_percent_op);
13937 }
13938
13939 for (i = 0; i < limit; i++)
13940 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13941 {
13942 int len = strlen (percent_op[i].str);
13943
13944 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13945 continue;
13946
13947 *str += strlen (percent_op[i].str);
13948 *reloc = percent_op[i].reloc;
13949
13950 /* Check whether the output BFD supports this relocation.
13951 If not, issue an error and fall back on something safe. */
13952 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13953 {
13954 as_bad (_("relocation %s isn't supported by the current ABI"),
13955 percent_op[i].str);
13956 *reloc = BFD_RELOC_UNUSED;
13957 }
13958 return TRUE;
13959 }
13960 return FALSE;
13961 }
13962
13963
13964 /* Parse string STR as a 16-bit relocatable operand. Store the
13965 expression in *EP and the relocations in the array starting
13966 at RELOC. Return the number of relocation operators used.
13967
13968 On exit, EXPR_END points to the first character after the expression. */
13969
13970 static size_t
13971 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13972 char *str)
13973 {
13974 bfd_reloc_code_real_type reversed_reloc[3];
13975 size_t reloc_index, i;
13976 int crux_depth, str_depth;
13977 char *crux;
13978
13979 /* Search for the start of the main expression, recoding relocations
13980 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13981 of the main expression and with CRUX_DEPTH containing the number
13982 of open brackets at that point. */
13983 reloc_index = -1;
13984 str_depth = 0;
13985 do
13986 {
13987 reloc_index++;
13988 crux = str;
13989 crux_depth = str_depth;
13990
13991 /* Skip over whitespace and brackets, keeping count of the number
13992 of brackets. */
13993 while (*str == ' ' || *str == '\t' || *str == '(')
13994 if (*str++ == '(')
13995 str_depth++;
13996 }
13997 while (*str == '%'
13998 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13999 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14000
14001 my_getExpression (ep, crux);
14002 str = expr_end;
14003
14004 /* Match every open bracket. */
14005 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14006 if (*str++ == ')')
14007 crux_depth--;
14008
14009 if (crux_depth > 0)
14010 as_bad (_("unclosed '('"));
14011
14012 expr_end = str;
14013
14014 if (reloc_index != 0)
14015 {
14016 prev_reloc_op_frag = frag_now;
14017 for (i = 0; i < reloc_index; i++)
14018 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14019 }
14020
14021 return reloc_index;
14022 }
14023
14024 static void
14025 my_getExpression (expressionS *ep, char *str)
14026 {
14027 char *save_in;
14028
14029 save_in = input_line_pointer;
14030 input_line_pointer = str;
14031 expression (ep);
14032 expr_end = input_line_pointer;
14033 input_line_pointer = save_in;
14034 }
14035
14036 const char *
14037 md_atof (int type, char *litP, int *sizeP)
14038 {
14039 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14040 }
14041
14042 void
14043 md_number_to_chars (char *buf, valueT val, int n)
14044 {
14045 if (target_big_endian)
14046 number_to_chars_bigendian (buf, val, n);
14047 else
14048 number_to_chars_littleendian (buf, val, n);
14049 }
14050 \f
14051 static int support_64bit_objects(void)
14052 {
14053 const char **list, **l;
14054 int yes;
14055
14056 list = bfd_target_list ();
14057 for (l = list; *l != NULL; l++)
14058 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14059 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14060 break;
14061 yes = (*l != NULL);
14062 free (list);
14063 return yes;
14064 }
14065
14066 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14067 NEW_VALUE. Warn if another value was already specified. Note:
14068 we have to defer parsing the -march and -mtune arguments in order
14069 to handle 'from-abi' correctly, since the ABI might be specified
14070 in a later argument. */
14071
14072 static void
14073 mips_set_option_string (const char **string_ptr, const char *new_value)
14074 {
14075 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14076 as_warn (_("a different %s was already specified, is now %s"),
14077 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14078 new_value);
14079
14080 *string_ptr = new_value;
14081 }
14082
14083 int
14084 md_parse_option (int c, const char *arg)
14085 {
14086 unsigned int i;
14087
14088 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14089 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14090 {
14091 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14092 c == mips_ases[i].option_on);
14093 return 1;
14094 }
14095
14096 switch (c)
14097 {
14098 case OPTION_CONSTRUCT_FLOATS:
14099 mips_disable_float_construction = 0;
14100 break;
14101
14102 case OPTION_NO_CONSTRUCT_FLOATS:
14103 mips_disable_float_construction = 1;
14104 break;
14105
14106 case OPTION_TRAP:
14107 mips_trap = 1;
14108 break;
14109
14110 case OPTION_BREAK:
14111 mips_trap = 0;
14112 break;
14113
14114 case OPTION_EB:
14115 target_big_endian = 1;
14116 break;
14117
14118 case OPTION_EL:
14119 target_big_endian = 0;
14120 break;
14121
14122 case 'O':
14123 if (arg == NULL)
14124 mips_optimize = 1;
14125 else if (arg[0] == '0')
14126 mips_optimize = 0;
14127 else if (arg[0] == '1')
14128 mips_optimize = 1;
14129 else
14130 mips_optimize = 2;
14131 break;
14132
14133 case 'g':
14134 if (arg == NULL)
14135 mips_debug = 2;
14136 else
14137 mips_debug = atoi (arg);
14138 break;
14139
14140 case OPTION_MIPS1:
14141 file_mips_opts.isa = ISA_MIPS1;
14142 break;
14143
14144 case OPTION_MIPS2:
14145 file_mips_opts.isa = ISA_MIPS2;
14146 break;
14147
14148 case OPTION_MIPS3:
14149 file_mips_opts.isa = ISA_MIPS3;
14150 break;
14151
14152 case OPTION_MIPS4:
14153 file_mips_opts.isa = ISA_MIPS4;
14154 break;
14155
14156 case OPTION_MIPS5:
14157 file_mips_opts.isa = ISA_MIPS5;
14158 break;
14159
14160 case OPTION_MIPS32:
14161 file_mips_opts.isa = ISA_MIPS32;
14162 break;
14163
14164 case OPTION_MIPS32R2:
14165 file_mips_opts.isa = ISA_MIPS32R2;
14166 break;
14167
14168 case OPTION_MIPS32R3:
14169 file_mips_opts.isa = ISA_MIPS32R3;
14170 break;
14171
14172 case OPTION_MIPS32R5:
14173 file_mips_opts.isa = ISA_MIPS32R5;
14174 break;
14175
14176 case OPTION_MIPS32R6:
14177 file_mips_opts.isa = ISA_MIPS32R6;
14178 break;
14179
14180 case OPTION_MIPS64R2:
14181 file_mips_opts.isa = ISA_MIPS64R2;
14182 break;
14183
14184 case OPTION_MIPS64R3:
14185 file_mips_opts.isa = ISA_MIPS64R3;
14186 break;
14187
14188 case OPTION_MIPS64R5:
14189 file_mips_opts.isa = ISA_MIPS64R5;
14190 break;
14191
14192 case OPTION_MIPS64R6:
14193 file_mips_opts.isa = ISA_MIPS64R6;
14194 break;
14195
14196 case OPTION_MIPS64:
14197 file_mips_opts.isa = ISA_MIPS64;
14198 break;
14199
14200 case OPTION_MTUNE:
14201 mips_set_option_string (&mips_tune_string, arg);
14202 break;
14203
14204 case OPTION_MARCH:
14205 mips_set_option_string (&mips_arch_string, arg);
14206 break;
14207
14208 case OPTION_M4650:
14209 mips_set_option_string (&mips_arch_string, "4650");
14210 mips_set_option_string (&mips_tune_string, "4650");
14211 break;
14212
14213 case OPTION_NO_M4650:
14214 break;
14215
14216 case OPTION_M4010:
14217 mips_set_option_string (&mips_arch_string, "4010");
14218 mips_set_option_string (&mips_tune_string, "4010");
14219 break;
14220
14221 case OPTION_NO_M4010:
14222 break;
14223
14224 case OPTION_M4100:
14225 mips_set_option_string (&mips_arch_string, "4100");
14226 mips_set_option_string (&mips_tune_string, "4100");
14227 break;
14228
14229 case OPTION_NO_M4100:
14230 break;
14231
14232 case OPTION_M3900:
14233 mips_set_option_string (&mips_arch_string, "3900");
14234 mips_set_option_string (&mips_tune_string, "3900");
14235 break;
14236
14237 case OPTION_NO_M3900:
14238 break;
14239
14240 case OPTION_MICROMIPS:
14241 if (file_mips_opts.mips16 == 1)
14242 {
14243 as_bad (_("-mmicromips cannot be used with -mips16"));
14244 return 0;
14245 }
14246 file_mips_opts.micromips = 1;
14247 mips_no_prev_insn ();
14248 break;
14249
14250 case OPTION_NO_MICROMIPS:
14251 file_mips_opts.micromips = 0;
14252 mips_no_prev_insn ();
14253 break;
14254
14255 case OPTION_MIPS16:
14256 if (file_mips_opts.micromips == 1)
14257 {
14258 as_bad (_("-mips16 cannot be used with -micromips"));
14259 return 0;
14260 }
14261 file_mips_opts.mips16 = 1;
14262 mips_no_prev_insn ();
14263 break;
14264
14265 case OPTION_NO_MIPS16:
14266 file_mips_opts.mips16 = 0;
14267 mips_no_prev_insn ();
14268 break;
14269
14270 case OPTION_FIX_24K:
14271 mips_fix_24k = 1;
14272 break;
14273
14274 case OPTION_NO_FIX_24K:
14275 mips_fix_24k = 0;
14276 break;
14277
14278 case OPTION_FIX_RM7000:
14279 mips_fix_rm7000 = 1;
14280 break;
14281
14282 case OPTION_NO_FIX_RM7000:
14283 mips_fix_rm7000 = 0;
14284 break;
14285
14286 case OPTION_FIX_LOONGSON2F_JUMP:
14287 mips_fix_loongson2f_jump = TRUE;
14288 break;
14289
14290 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14291 mips_fix_loongson2f_jump = FALSE;
14292 break;
14293
14294 case OPTION_FIX_LOONGSON2F_NOP:
14295 mips_fix_loongson2f_nop = TRUE;
14296 break;
14297
14298 case OPTION_NO_FIX_LOONGSON2F_NOP:
14299 mips_fix_loongson2f_nop = FALSE;
14300 break;
14301
14302 case OPTION_FIX_VR4120:
14303 mips_fix_vr4120 = 1;
14304 break;
14305
14306 case OPTION_NO_FIX_VR4120:
14307 mips_fix_vr4120 = 0;
14308 break;
14309
14310 case OPTION_FIX_VR4130:
14311 mips_fix_vr4130 = 1;
14312 break;
14313
14314 case OPTION_NO_FIX_VR4130:
14315 mips_fix_vr4130 = 0;
14316 break;
14317
14318 case OPTION_FIX_CN63XXP1:
14319 mips_fix_cn63xxp1 = TRUE;
14320 break;
14321
14322 case OPTION_NO_FIX_CN63XXP1:
14323 mips_fix_cn63xxp1 = FALSE;
14324 break;
14325
14326 case OPTION_RELAX_BRANCH:
14327 mips_relax_branch = 1;
14328 break;
14329
14330 case OPTION_NO_RELAX_BRANCH:
14331 mips_relax_branch = 0;
14332 break;
14333
14334 case OPTION_INSN32:
14335 file_mips_opts.insn32 = TRUE;
14336 break;
14337
14338 case OPTION_NO_INSN32:
14339 file_mips_opts.insn32 = FALSE;
14340 break;
14341
14342 case OPTION_MSHARED:
14343 mips_in_shared = TRUE;
14344 break;
14345
14346 case OPTION_MNO_SHARED:
14347 mips_in_shared = FALSE;
14348 break;
14349
14350 case OPTION_MSYM32:
14351 file_mips_opts.sym32 = TRUE;
14352 break;
14353
14354 case OPTION_MNO_SYM32:
14355 file_mips_opts.sym32 = FALSE;
14356 break;
14357
14358 /* When generating ELF code, we permit -KPIC and -call_shared to
14359 select SVR4_PIC, and -non_shared to select no PIC. This is
14360 intended to be compatible with Irix 5. */
14361 case OPTION_CALL_SHARED:
14362 mips_pic = SVR4_PIC;
14363 mips_abicalls = TRUE;
14364 break;
14365
14366 case OPTION_CALL_NONPIC:
14367 mips_pic = NO_PIC;
14368 mips_abicalls = TRUE;
14369 break;
14370
14371 case OPTION_NON_SHARED:
14372 mips_pic = NO_PIC;
14373 mips_abicalls = FALSE;
14374 break;
14375
14376 /* The -xgot option tells the assembler to use 32 bit offsets
14377 when accessing the got in SVR4_PIC mode. It is for Irix
14378 compatibility. */
14379 case OPTION_XGOT:
14380 mips_big_got = 1;
14381 break;
14382
14383 case 'G':
14384 g_switch_value = atoi (arg);
14385 g_switch_seen = 1;
14386 break;
14387
14388 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14389 and -mabi=64. */
14390 case OPTION_32:
14391 mips_abi = O32_ABI;
14392 break;
14393
14394 case OPTION_N32:
14395 mips_abi = N32_ABI;
14396 break;
14397
14398 case OPTION_64:
14399 mips_abi = N64_ABI;
14400 if (!support_64bit_objects())
14401 as_fatal (_("no compiled in support for 64 bit object file format"));
14402 break;
14403
14404 case OPTION_GP32:
14405 file_mips_opts.gp = 32;
14406 break;
14407
14408 case OPTION_GP64:
14409 file_mips_opts.gp = 64;
14410 break;
14411
14412 case OPTION_FP32:
14413 file_mips_opts.fp = 32;
14414 break;
14415
14416 case OPTION_FPXX:
14417 file_mips_opts.fp = 0;
14418 break;
14419
14420 case OPTION_FP64:
14421 file_mips_opts.fp = 64;
14422 break;
14423
14424 case OPTION_ODD_SPREG:
14425 file_mips_opts.oddspreg = 1;
14426 break;
14427
14428 case OPTION_NO_ODD_SPREG:
14429 file_mips_opts.oddspreg = 0;
14430 break;
14431
14432 case OPTION_SINGLE_FLOAT:
14433 file_mips_opts.single_float = 1;
14434 break;
14435
14436 case OPTION_DOUBLE_FLOAT:
14437 file_mips_opts.single_float = 0;
14438 break;
14439
14440 case OPTION_SOFT_FLOAT:
14441 file_mips_opts.soft_float = 1;
14442 break;
14443
14444 case OPTION_HARD_FLOAT:
14445 file_mips_opts.soft_float = 0;
14446 break;
14447
14448 case OPTION_MABI:
14449 if (strcmp (arg, "32") == 0)
14450 mips_abi = O32_ABI;
14451 else if (strcmp (arg, "o64") == 0)
14452 mips_abi = O64_ABI;
14453 else if (strcmp (arg, "n32") == 0)
14454 mips_abi = N32_ABI;
14455 else if (strcmp (arg, "64") == 0)
14456 {
14457 mips_abi = N64_ABI;
14458 if (! support_64bit_objects())
14459 as_fatal (_("no compiled in support for 64 bit object file "
14460 "format"));
14461 }
14462 else if (strcmp (arg, "eabi") == 0)
14463 mips_abi = EABI_ABI;
14464 else
14465 {
14466 as_fatal (_("invalid abi -mabi=%s"), arg);
14467 return 0;
14468 }
14469 break;
14470
14471 case OPTION_M7000_HILO_FIX:
14472 mips_7000_hilo_fix = TRUE;
14473 break;
14474
14475 case OPTION_MNO_7000_HILO_FIX:
14476 mips_7000_hilo_fix = FALSE;
14477 break;
14478
14479 case OPTION_MDEBUG:
14480 mips_flag_mdebug = TRUE;
14481 break;
14482
14483 case OPTION_NO_MDEBUG:
14484 mips_flag_mdebug = FALSE;
14485 break;
14486
14487 case OPTION_PDR:
14488 mips_flag_pdr = TRUE;
14489 break;
14490
14491 case OPTION_NO_PDR:
14492 mips_flag_pdr = FALSE;
14493 break;
14494
14495 case OPTION_MVXWORKS_PIC:
14496 mips_pic = VXWORKS_PIC;
14497 break;
14498
14499 case OPTION_NAN:
14500 if (strcmp (arg, "2008") == 0)
14501 mips_nan2008 = 1;
14502 else if (strcmp (arg, "legacy") == 0)
14503 mips_nan2008 = 0;
14504 else
14505 {
14506 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14507 return 0;
14508 }
14509 break;
14510
14511 default:
14512 return 0;
14513 }
14514
14515 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14516
14517 return 1;
14518 }
14519 \f
14520 /* Set up globals to tune for the ISA or processor described by INFO. */
14521
14522 static void
14523 mips_set_tune (const struct mips_cpu_info *info)
14524 {
14525 if (info != 0)
14526 mips_tune = info->cpu;
14527 }
14528
14529
14530 void
14531 mips_after_parse_args (void)
14532 {
14533 const struct mips_cpu_info *arch_info = 0;
14534 const struct mips_cpu_info *tune_info = 0;
14535
14536 /* GP relative stuff not working for PE */
14537 if (strncmp (TARGET_OS, "pe", 2) == 0)
14538 {
14539 if (g_switch_seen && g_switch_value != 0)
14540 as_bad (_("-G not supported in this configuration"));
14541 g_switch_value = 0;
14542 }
14543
14544 if (mips_abi == NO_ABI)
14545 mips_abi = MIPS_DEFAULT_ABI;
14546
14547 /* The following code determines the architecture.
14548 Similar code was added to GCC 3.3 (see override_options() in
14549 config/mips/mips.c). The GAS and GCC code should be kept in sync
14550 as much as possible. */
14551
14552 if (mips_arch_string != 0)
14553 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14554
14555 if (file_mips_opts.isa != ISA_UNKNOWN)
14556 {
14557 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14558 ISA level specified by -mipsN, while arch_info->isa contains
14559 the -march selection (if any). */
14560 if (arch_info != 0)
14561 {
14562 /* -march takes precedence over -mipsN, since it is more descriptive.
14563 There's no harm in specifying both as long as the ISA levels
14564 are the same. */
14565 if (file_mips_opts.isa != arch_info->isa)
14566 as_bad (_("-%s conflicts with the other architecture options,"
14567 " which imply -%s"),
14568 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14569 mips_cpu_info_from_isa (arch_info->isa)->name);
14570 }
14571 else
14572 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14573 }
14574
14575 if (arch_info == 0)
14576 {
14577 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14578 gas_assert (arch_info);
14579 }
14580
14581 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14582 as_bad (_("-march=%s is not compatible with the selected ABI"),
14583 arch_info->name);
14584
14585 file_mips_opts.arch = arch_info->cpu;
14586 file_mips_opts.isa = arch_info->isa;
14587
14588 /* Set up initial mips_opts state. */
14589 mips_opts = file_mips_opts;
14590
14591 /* The register size inference code is now placed in
14592 file_mips_check_options. */
14593
14594 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14595 processor. */
14596 if (mips_tune_string != 0)
14597 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14598
14599 if (tune_info == 0)
14600 mips_set_tune (arch_info);
14601 else
14602 mips_set_tune (tune_info);
14603
14604 if (mips_flag_mdebug < 0)
14605 mips_flag_mdebug = 0;
14606 }
14607 \f
14608 void
14609 mips_init_after_args (void)
14610 {
14611 /* initialize opcodes */
14612 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14613 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14614 }
14615
14616 long
14617 md_pcrel_from (fixS *fixP)
14618 {
14619 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14620 switch (fixP->fx_r_type)
14621 {
14622 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14623 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14624 /* Return the address of the delay slot. */
14625 return addr + 2;
14626
14627 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14628 case BFD_RELOC_MICROMIPS_JMP:
14629 case BFD_RELOC_MIPS16_16_PCREL_S1:
14630 case BFD_RELOC_16_PCREL_S2:
14631 case BFD_RELOC_MIPS_21_PCREL_S2:
14632 case BFD_RELOC_MIPS_26_PCREL_S2:
14633 case BFD_RELOC_MIPS_JMP:
14634 /* Return the address of the delay slot. */
14635 return addr + 4;
14636
14637 case BFD_RELOC_MIPS_18_PCREL_S3:
14638 /* Return the aligned address of the doubleword containing
14639 the instruction. */
14640 return addr & ~7;
14641
14642 default:
14643 return addr;
14644 }
14645 }
14646
14647 /* This is called before the symbol table is processed. In order to
14648 work with gcc when using mips-tfile, we must keep all local labels.
14649 However, in other cases, we want to discard them. If we were
14650 called with -g, but we didn't see any debugging information, it may
14651 mean that gcc is smuggling debugging information through to
14652 mips-tfile, in which case we must generate all local labels. */
14653
14654 void
14655 mips_frob_file_before_adjust (void)
14656 {
14657 #ifndef NO_ECOFF_DEBUGGING
14658 if (ECOFF_DEBUGGING
14659 && mips_debug != 0
14660 && ! ecoff_debugging_seen)
14661 flag_keep_locals = 1;
14662 #endif
14663 }
14664
14665 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14666 the corresponding LO16 reloc. This is called before md_apply_fix and
14667 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14668 relocation operators.
14669
14670 For our purposes, a %lo() expression matches a %got() or %hi()
14671 expression if:
14672
14673 (a) it refers to the same symbol; and
14674 (b) the offset applied in the %lo() expression is no lower than
14675 the offset applied in the %got() or %hi().
14676
14677 (b) allows us to cope with code like:
14678
14679 lui $4,%hi(foo)
14680 lh $4,%lo(foo+2)($4)
14681
14682 ...which is legal on RELA targets, and has a well-defined behaviour
14683 if the user knows that adding 2 to "foo" will not induce a carry to
14684 the high 16 bits.
14685
14686 When several %lo()s match a particular %got() or %hi(), we use the
14687 following rules to distinguish them:
14688
14689 (1) %lo()s with smaller offsets are a better match than %lo()s with
14690 higher offsets.
14691
14692 (2) %lo()s with no matching %got() or %hi() are better than those
14693 that already have a matching %got() or %hi().
14694
14695 (3) later %lo()s are better than earlier %lo()s.
14696
14697 These rules are applied in order.
14698
14699 (1) means, among other things, that %lo()s with identical offsets are
14700 chosen if they exist.
14701
14702 (2) means that we won't associate several high-part relocations with
14703 the same low-part relocation unless there's no alternative. Having
14704 several high parts for the same low part is a GNU extension; this rule
14705 allows careful users to avoid it.
14706
14707 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14708 with the last high-part relocation being at the front of the list.
14709 It therefore makes sense to choose the last matching low-part
14710 relocation, all other things being equal. It's also easier
14711 to code that way. */
14712
14713 void
14714 mips_frob_file (void)
14715 {
14716 struct mips_hi_fixup *l;
14717 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14718
14719 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14720 {
14721 segment_info_type *seginfo;
14722 bfd_boolean matched_lo_p;
14723 fixS **hi_pos, **lo_pos, **pos;
14724
14725 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14726
14727 /* If a GOT16 relocation turns out to be against a global symbol,
14728 there isn't supposed to be a matching LO. Ignore %gots against
14729 constants; we'll report an error for those later. */
14730 if (got16_reloc_p (l->fixp->fx_r_type)
14731 && !(l->fixp->fx_addsy
14732 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14733 continue;
14734
14735 /* Check quickly whether the next fixup happens to be a matching %lo. */
14736 if (fixup_has_matching_lo_p (l->fixp))
14737 continue;
14738
14739 seginfo = seg_info (l->seg);
14740
14741 /* Set HI_POS to the position of this relocation in the chain.
14742 Set LO_POS to the position of the chosen low-part relocation.
14743 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14744 relocation that matches an immediately-preceding high-part
14745 relocation. */
14746 hi_pos = NULL;
14747 lo_pos = NULL;
14748 matched_lo_p = FALSE;
14749 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14750
14751 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14752 {
14753 if (*pos == l->fixp)
14754 hi_pos = pos;
14755
14756 if ((*pos)->fx_r_type == looking_for_rtype
14757 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14758 && (*pos)->fx_offset >= l->fixp->fx_offset
14759 && (lo_pos == NULL
14760 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14761 || (!matched_lo_p
14762 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14763 lo_pos = pos;
14764
14765 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14766 && fixup_has_matching_lo_p (*pos));
14767 }
14768
14769 /* If we found a match, remove the high-part relocation from its
14770 current position and insert it before the low-part relocation.
14771 Make the offsets match so that fixup_has_matching_lo_p()
14772 will return true.
14773
14774 We don't warn about unmatched high-part relocations since some
14775 versions of gcc have been known to emit dead "lui ...%hi(...)"
14776 instructions. */
14777 if (lo_pos != NULL)
14778 {
14779 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14780 if (l->fixp->fx_next != *lo_pos)
14781 {
14782 *hi_pos = l->fixp->fx_next;
14783 l->fixp->fx_next = *lo_pos;
14784 *lo_pos = l->fixp;
14785 }
14786 }
14787 }
14788 }
14789
14790 int
14791 mips_force_relocation (fixS *fixp)
14792 {
14793 if (generic_force_reloc (fixp))
14794 return 1;
14795
14796 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14797 so that the linker relaxation can update targets. */
14798 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14799 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14800 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14801 return 1;
14802
14803 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14804 if (ISA_IS_R6 (file_mips_opts.isa)
14805 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14806 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14807 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14808 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14809 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14810 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14811 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14812 return 1;
14813
14814 return 0;
14815 }
14816
14817 /* Read the instruction associated with RELOC from BUF. */
14818
14819 static unsigned int
14820 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14821 {
14822 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14823 return read_compressed_insn (buf, 4);
14824 else
14825 return read_insn (buf);
14826 }
14827
14828 /* Write instruction INSN to BUF, given that it has been relocated
14829 by RELOC. */
14830
14831 static void
14832 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14833 unsigned long insn)
14834 {
14835 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14836 write_compressed_insn (buf, insn, 4);
14837 else
14838 write_insn (buf, insn);
14839 }
14840
14841 /* Apply a fixup to the object file. */
14842
14843 void
14844 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14845 {
14846 char *buf;
14847 unsigned long insn;
14848 reloc_howto_type *howto;
14849
14850 if (fixP->fx_pcrel)
14851 switch (fixP->fx_r_type)
14852 {
14853 case BFD_RELOC_16_PCREL_S2:
14854 case BFD_RELOC_MIPS16_16_PCREL_S1:
14855 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14856 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14857 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14858 case BFD_RELOC_32_PCREL:
14859 case BFD_RELOC_MIPS_21_PCREL_S2:
14860 case BFD_RELOC_MIPS_26_PCREL_S2:
14861 case BFD_RELOC_MIPS_18_PCREL_S3:
14862 case BFD_RELOC_MIPS_19_PCREL_S2:
14863 case BFD_RELOC_HI16_S_PCREL:
14864 case BFD_RELOC_LO16_PCREL:
14865 break;
14866
14867 case BFD_RELOC_32:
14868 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14869 break;
14870
14871 default:
14872 as_bad_where (fixP->fx_file, fixP->fx_line,
14873 _("PC-relative reference to a different section"));
14874 break;
14875 }
14876
14877 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14878 that have no MIPS ELF equivalent. */
14879 if (fixP->fx_r_type != BFD_RELOC_8)
14880 {
14881 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14882 if (!howto)
14883 return;
14884 }
14885
14886 gas_assert (fixP->fx_size == 2
14887 || fixP->fx_size == 4
14888 || fixP->fx_r_type == BFD_RELOC_8
14889 || fixP->fx_r_type == BFD_RELOC_16
14890 || fixP->fx_r_type == BFD_RELOC_64
14891 || fixP->fx_r_type == BFD_RELOC_CTOR
14892 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14893 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14894 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14895 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14896 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14897 || fixP->fx_r_type == BFD_RELOC_NONE);
14898
14899 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14900
14901 /* Don't treat parts of a composite relocation as done. There are two
14902 reasons for this:
14903
14904 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14905 should nevertheless be emitted if the first part is.
14906
14907 (2) In normal usage, composite relocations are never assembly-time
14908 constants. The easiest way of dealing with the pathological
14909 exceptions is to generate a relocation against STN_UNDEF and
14910 leave everything up to the linker. */
14911 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14912 fixP->fx_done = 1;
14913
14914 switch (fixP->fx_r_type)
14915 {
14916 case BFD_RELOC_MIPS_TLS_GD:
14917 case BFD_RELOC_MIPS_TLS_LDM:
14918 case BFD_RELOC_MIPS_TLS_DTPREL32:
14919 case BFD_RELOC_MIPS_TLS_DTPREL64:
14920 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14921 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14922 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14923 case BFD_RELOC_MIPS_TLS_TPREL32:
14924 case BFD_RELOC_MIPS_TLS_TPREL64:
14925 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14926 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14927 case BFD_RELOC_MICROMIPS_TLS_GD:
14928 case BFD_RELOC_MICROMIPS_TLS_LDM:
14929 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14930 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14931 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14932 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14933 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14934 case BFD_RELOC_MIPS16_TLS_GD:
14935 case BFD_RELOC_MIPS16_TLS_LDM:
14936 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14937 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14938 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14939 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14940 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14941 if (fixP->fx_addsy)
14942 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14943 else
14944 as_bad_where (fixP->fx_file, fixP->fx_line,
14945 _("TLS relocation against a constant"));
14946 break;
14947
14948 case BFD_RELOC_MIPS_JMP:
14949 case BFD_RELOC_MIPS_SHIFT5:
14950 case BFD_RELOC_MIPS_SHIFT6:
14951 case BFD_RELOC_MIPS_GOT_DISP:
14952 case BFD_RELOC_MIPS_GOT_PAGE:
14953 case BFD_RELOC_MIPS_GOT_OFST:
14954 case BFD_RELOC_MIPS_SUB:
14955 case BFD_RELOC_MIPS_INSERT_A:
14956 case BFD_RELOC_MIPS_INSERT_B:
14957 case BFD_RELOC_MIPS_DELETE:
14958 case BFD_RELOC_MIPS_HIGHEST:
14959 case BFD_RELOC_MIPS_HIGHER:
14960 case BFD_RELOC_MIPS_SCN_DISP:
14961 case BFD_RELOC_MIPS_REL16:
14962 case BFD_RELOC_MIPS_RELGOT:
14963 case BFD_RELOC_MIPS_JALR:
14964 case BFD_RELOC_HI16:
14965 case BFD_RELOC_HI16_S:
14966 case BFD_RELOC_LO16:
14967 case BFD_RELOC_GPREL16:
14968 case BFD_RELOC_MIPS_LITERAL:
14969 case BFD_RELOC_MIPS_CALL16:
14970 case BFD_RELOC_MIPS_GOT16:
14971 case BFD_RELOC_GPREL32:
14972 case BFD_RELOC_MIPS_GOT_HI16:
14973 case BFD_RELOC_MIPS_GOT_LO16:
14974 case BFD_RELOC_MIPS_CALL_HI16:
14975 case BFD_RELOC_MIPS_CALL_LO16:
14976 case BFD_RELOC_HI16_S_PCREL:
14977 case BFD_RELOC_LO16_PCREL:
14978 case BFD_RELOC_MIPS16_GPREL:
14979 case BFD_RELOC_MIPS16_GOT16:
14980 case BFD_RELOC_MIPS16_CALL16:
14981 case BFD_RELOC_MIPS16_HI16:
14982 case BFD_RELOC_MIPS16_HI16_S:
14983 case BFD_RELOC_MIPS16_LO16:
14984 case BFD_RELOC_MIPS16_JMP:
14985 case BFD_RELOC_MICROMIPS_JMP:
14986 case BFD_RELOC_MICROMIPS_GOT_DISP:
14987 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14988 case BFD_RELOC_MICROMIPS_GOT_OFST:
14989 case BFD_RELOC_MICROMIPS_SUB:
14990 case BFD_RELOC_MICROMIPS_HIGHEST:
14991 case BFD_RELOC_MICROMIPS_HIGHER:
14992 case BFD_RELOC_MICROMIPS_SCN_DISP:
14993 case BFD_RELOC_MICROMIPS_JALR:
14994 case BFD_RELOC_MICROMIPS_HI16:
14995 case BFD_RELOC_MICROMIPS_HI16_S:
14996 case BFD_RELOC_MICROMIPS_LO16:
14997 case BFD_RELOC_MICROMIPS_GPREL16:
14998 case BFD_RELOC_MICROMIPS_LITERAL:
14999 case BFD_RELOC_MICROMIPS_CALL16:
15000 case BFD_RELOC_MICROMIPS_GOT16:
15001 case BFD_RELOC_MICROMIPS_GOT_HI16:
15002 case BFD_RELOC_MICROMIPS_GOT_LO16:
15003 case BFD_RELOC_MICROMIPS_CALL_HI16:
15004 case BFD_RELOC_MICROMIPS_CALL_LO16:
15005 case BFD_RELOC_MIPS_EH:
15006 if (fixP->fx_done)
15007 {
15008 offsetT value;
15009
15010 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15011 {
15012 insn = read_reloc_insn (buf, fixP->fx_r_type);
15013 if (mips16_reloc_p (fixP->fx_r_type))
15014 insn |= mips16_immed_extend (value, 16);
15015 else
15016 insn |= (value & 0xffff);
15017 write_reloc_insn (buf, fixP->fx_r_type, insn);
15018 }
15019 else
15020 as_bad_where (fixP->fx_file, fixP->fx_line,
15021 _("unsupported constant in relocation"));
15022 }
15023 break;
15024
15025 case BFD_RELOC_64:
15026 /* This is handled like BFD_RELOC_32, but we output a sign
15027 extended value if we are only 32 bits. */
15028 if (fixP->fx_done)
15029 {
15030 if (8 <= sizeof (valueT))
15031 md_number_to_chars (buf, *valP, 8);
15032 else
15033 {
15034 valueT hiv;
15035
15036 if ((*valP & 0x80000000) != 0)
15037 hiv = 0xffffffff;
15038 else
15039 hiv = 0;
15040 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15041 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15042 }
15043 }
15044 break;
15045
15046 case BFD_RELOC_RVA:
15047 case BFD_RELOC_32:
15048 case BFD_RELOC_32_PCREL:
15049 case BFD_RELOC_16:
15050 case BFD_RELOC_8:
15051 /* If we are deleting this reloc entry, we must fill in the
15052 value now. This can happen if we have a .word which is not
15053 resolved when it appears but is later defined. */
15054 if (fixP->fx_done)
15055 md_number_to_chars (buf, *valP, fixP->fx_size);
15056 break;
15057
15058 case BFD_RELOC_MIPS_21_PCREL_S2:
15059 if ((*valP & 0x3) != 0)
15060 as_bad_where (fixP->fx_file, fixP->fx_line,
15061 _("branch to misaligned address (%lx)"), (long) *valP);
15062 if (!fixP->fx_done)
15063 break;
15064
15065 if (*valP + 0x400000 <= 0x7fffff)
15066 {
15067 insn = read_insn (buf);
15068 insn |= (*valP >> 2) & 0x1fffff;
15069 write_insn (buf, insn);
15070 }
15071 else
15072 as_bad_where (fixP->fx_file, fixP->fx_line,
15073 _("branch out of range"));
15074 break;
15075
15076 case BFD_RELOC_MIPS_26_PCREL_S2:
15077 if ((*valP & 0x3) != 0)
15078 as_bad_where (fixP->fx_file, fixP->fx_line,
15079 _("branch to misaligned address (%lx)"), (long) *valP);
15080 if (!fixP->fx_done)
15081 break;
15082
15083 if (*valP + 0x8000000 <= 0xfffffff)
15084 {
15085 insn = read_insn (buf);
15086 insn |= (*valP >> 2) & 0x3ffffff;
15087 write_insn (buf, insn);
15088 }
15089 else
15090 as_bad_where (fixP->fx_file, fixP->fx_line,
15091 _("branch out of range"));
15092 break;
15093
15094 case BFD_RELOC_MIPS_18_PCREL_S3:
15095 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15096 as_bad_where (fixP->fx_file, fixP->fx_line,
15097 _("PC-relative access using misaligned symbol (%lx)"),
15098 (long) S_GET_VALUE (fixP->fx_addsy));
15099 if ((fixP->fx_offset & 0x7) != 0)
15100 as_bad_where (fixP->fx_file, fixP->fx_line,
15101 _("PC-relative access using misaligned offset (%lx)"),
15102 (long) fixP->fx_offset);
15103 if (!fixP->fx_done)
15104 break;
15105
15106 if (*valP + 0x100000 <= 0x1fffff)
15107 {
15108 insn = read_insn (buf);
15109 insn |= (*valP >> 3) & 0x3ffff;
15110 write_insn (buf, insn);
15111 }
15112 else
15113 as_bad_where (fixP->fx_file, fixP->fx_line,
15114 _("PC-relative access out of range"));
15115 break;
15116
15117 case BFD_RELOC_MIPS_19_PCREL_S2:
15118 if ((*valP & 0x3) != 0)
15119 as_bad_where (fixP->fx_file, fixP->fx_line,
15120 _("PC-relative access to misaligned address (%lx)"),
15121 (long) *valP);
15122 if (!fixP->fx_done)
15123 break;
15124
15125 if (*valP + 0x100000 <= 0x1fffff)
15126 {
15127 insn = read_insn (buf);
15128 insn |= (*valP >> 2) & 0x7ffff;
15129 write_insn (buf, insn);
15130 }
15131 else
15132 as_bad_where (fixP->fx_file, fixP->fx_line,
15133 _("PC-relative access out of range"));
15134 break;
15135
15136 case BFD_RELOC_16_PCREL_S2:
15137 if ((*valP & 0x3) != 0)
15138 as_bad_where (fixP->fx_file, fixP->fx_line,
15139 _("branch to misaligned address (%lx)"), (long) *valP);
15140
15141 /* We need to save the bits in the instruction since fixup_segment()
15142 might be deleting the relocation entry (i.e., a branch within
15143 the current segment). */
15144 if (! fixP->fx_done)
15145 break;
15146
15147 /* Update old instruction data. */
15148 insn = read_insn (buf);
15149
15150 if (*valP + 0x20000 <= 0x3ffff)
15151 {
15152 insn |= (*valP >> 2) & 0xffff;
15153 write_insn (buf, insn);
15154 }
15155 else if (mips_pic == NO_PIC
15156 && fixP->fx_done
15157 && fixP->fx_frag->fr_address >= text_section->vma
15158 && (fixP->fx_frag->fr_address
15159 < text_section->vma + bfd_get_section_size (text_section))
15160 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15161 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15162 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15163 {
15164 /* The branch offset is too large. If this is an
15165 unconditional branch, and we are not generating PIC code,
15166 we can convert it to an absolute jump instruction. */
15167 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15168 insn = 0x0c000000; /* jal */
15169 else
15170 insn = 0x08000000; /* j */
15171 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15172 fixP->fx_done = 0;
15173 fixP->fx_addsy = section_symbol (text_section);
15174 *valP += md_pcrel_from (fixP);
15175 write_insn (buf, insn);
15176 }
15177 else
15178 {
15179 /* If we got here, we have branch-relaxation disabled,
15180 and there's nothing we can do to fix this instruction
15181 without turning it into a longer sequence. */
15182 as_bad_where (fixP->fx_file, fixP->fx_line,
15183 _("branch out of range"));
15184 }
15185 break;
15186
15187 case BFD_RELOC_MIPS16_16_PCREL_S1:
15188 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15189 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15190 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15191 /* We adjust the offset back to even. */
15192 if ((*valP & 0x1) != 0)
15193 --(*valP);
15194
15195 if (! fixP->fx_done)
15196 break;
15197
15198 /* Should never visit here, because we keep the relocation. */
15199 abort ();
15200 break;
15201
15202 case BFD_RELOC_VTABLE_INHERIT:
15203 fixP->fx_done = 0;
15204 if (fixP->fx_addsy
15205 && !S_IS_DEFINED (fixP->fx_addsy)
15206 && !S_IS_WEAK (fixP->fx_addsy))
15207 S_SET_WEAK (fixP->fx_addsy);
15208 break;
15209
15210 case BFD_RELOC_NONE:
15211 case BFD_RELOC_VTABLE_ENTRY:
15212 fixP->fx_done = 0;
15213 break;
15214
15215 default:
15216 abort ();
15217 }
15218
15219 /* Remember value for tc_gen_reloc. */
15220 fixP->fx_addnumber = *valP;
15221 }
15222
15223 static symbolS *
15224 get_symbol (void)
15225 {
15226 int c;
15227 char *name;
15228 symbolS *p;
15229
15230 c = get_symbol_name (&name);
15231 p = (symbolS *) symbol_find_or_make (name);
15232 (void) restore_line_pointer (c);
15233 return p;
15234 }
15235
15236 /* Align the current frag to a given power of two. If a particular
15237 fill byte should be used, FILL points to an integer that contains
15238 that byte, otherwise FILL is null.
15239
15240 This function used to have the comment:
15241
15242 The MIPS assembler also automatically adjusts any preceding label.
15243
15244 The implementation therefore applied the adjustment to a maximum of
15245 one label. However, other label adjustments are applied to batches
15246 of labels, and adjusting just one caused problems when new labels
15247 were added for the sake of debugging or unwind information.
15248 We therefore adjust all preceding labels (given as LABELS) instead. */
15249
15250 static void
15251 mips_align (int to, int *fill, struct insn_label_list *labels)
15252 {
15253 mips_emit_delays ();
15254 mips_record_compressed_mode ();
15255 if (fill == NULL && subseg_text_p (now_seg))
15256 frag_align_code (to, 0);
15257 else
15258 frag_align (to, fill ? *fill : 0, 0);
15259 record_alignment (now_seg, to);
15260 mips_move_labels (labels, FALSE);
15261 }
15262
15263 /* Align to a given power of two. .align 0 turns off the automatic
15264 alignment used by the data creating pseudo-ops. */
15265
15266 static void
15267 s_align (int x ATTRIBUTE_UNUSED)
15268 {
15269 int temp, fill_value, *fill_ptr;
15270 long max_alignment = 28;
15271
15272 /* o Note that the assembler pulls down any immediately preceding label
15273 to the aligned address.
15274 o It's not documented but auto alignment is reinstated by
15275 a .align pseudo instruction.
15276 o Note also that after auto alignment is turned off the mips assembler
15277 issues an error on attempt to assemble an improperly aligned data item.
15278 We don't. */
15279
15280 temp = get_absolute_expression ();
15281 if (temp > max_alignment)
15282 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15283 else if (temp < 0)
15284 {
15285 as_warn (_("alignment negative, 0 assumed"));
15286 temp = 0;
15287 }
15288 if (*input_line_pointer == ',')
15289 {
15290 ++input_line_pointer;
15291 fill_value = get_absolute_expression ();
15292 fill_ptr = &fill_value;
15293 }
15294 else
15295 fill_ptr = 0;
15296 if (temp)
15297 {
15298 segment_info_type *si = seg_info (now_seg);
15299 struct insn_label_list *l = si->label_list;
15300 /* Auto alignment should be switched on by next section change. */
15301 auto_align = 1;
15302 mips_align (temp, fill_ptr, l);
15303 }
15304 else
15305 {
15306 auto_align = 0;
15307 }
15308
15309 demand_empty_rest_of_line ();
15310 }
15311
15312 static void
15313 s_change_sec (int sec)
15314 {
15315 segT seg;
15316
15317 /* The ELF backend needs to know that we are changing sections, so
15318 that .previous works correctly. We could do something like check
15319 for an obj_section_change_hook macro, but that might be confusing
15320 as it would not be appropriate to use it in the section changing
15321 functions in read.c, since obj-elf.c intercepts those. FIXME:
15322 This should be cleaner, somehow. */
15323 obj_elf_section_change_hook ();
15324
15325 mips_emit_delays ();
15326
15327 switch (sec)
15328 {
15329 case 't':
15330 s_text (0);
15331 break;
15332 case 'd':
15333 s_data (0);
15334 break;
15335 case 'b':
15336 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15337 demand_empty_rest_of_line ();
15338 break;
15339
15340 case 'r':
15341 seg = subseg_new (RDATA_SECTION_NAME,
15342 (subsegT) get_absolute_expression ());
15343 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15344 | SEC_READONLY | SEC_RELOC
15345 | SEC_DATA));
15346 if (strncmp (TARGET_OS, "elf", 3) != 0)
15347 record_alignment (seg, 4);
15348 demand_empty_rest_of_line ();
15349 break;
15350
15351 case 's':
15352 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15353 bfd_set_section_flags (stdoutput, seg,
15354 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15355 if (strncmp (TARGET_OS, "elf", 3) != 0)
15356 record_alignment (seg, 4);
15357 demand_empty_rest_of_line ();
15358 break;
15359
15360 case 'B':
15361 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15362 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15363 if (strncmp (TARGET_OS, "elf", 3) != 0)
15364 record_alignment (seg, 4);
15365 demand_empty_rest_of_line ();
15366 break;
15367 }
15368
15369 auto_align = 1;
15370 }
15371
15372 void
15373 s_change_section (int ignore ATTRIBUTE_UNUSED)
15374 {
15375 char *saved_ilp;
15376 char *section_name;
15377 char c, endc;
15378 char next_c = 0;
15379 int section_type;
15380 int section_flag;
15381 int section_entry_size;
15382 int section_alignment;
15383
15384 saved_ilp = input_line_pointer;
15385 endc = get_symbol_name (&section_name);
15386 c = (endc == '"' ? input_line_pointer[1] : endc);
15387 if (c)
15388 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15389
15390 /* Do we have .section Name<,"flags">? */
15391 if (c != ',' || (c == ',' && next_c == '"'))
15392 {
15393 /* Just after name is now '\0'. */
15394 (void) restore_line_pointer (endc);
15395 input_line_pointer = saved_ilp;
15396 obj_elf_section (ignore);
15397 return;
15398 }
15399
15400 section_name = xstrdup (section_name);
15401 c = restore_line_pointer (endc);
15402
15403 input_line_pointer++;
15404
15405 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15406 if (c == ',')
15407 section_type = get_absolute_expression ();
15408 else
15409 section_type = 0;
15410
15411 if (*input_line_pointer++ == ',')
15412 section_flag = get_absolute_expression ();
15413 else
15414 section_flag = 0;
15415
15416 if (*input_line_pointer++ == ',')
15417 section_entry_size = get_absolute_expression ();
15418 else
15419 section_entry_size = 0;
15420
15421 if (*input_line_pointer++ == ',')
15422 section_alignment = get_absolute_expression ();
15423 else
15424 section_alignment = 0;
15425
15426 /* FIXME: really ignore? */
15427 (void) section_alignment;
15428
15429 /* When using the generic form of .section (as implemented by obj-elf.c),
15430 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15431 traditionally had to fall back on the more common @progbits instead.
15432
15433 There's nothing really harmful in this, since bfd will correct
15434 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15435 means that, for backwards compatibility, the special_section entries
15436 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15437
15438 Even so, we shouldn't force users of the MIPS .section syntax to
15439 incorrectly label the sections as SHT_PROGBITS. The best compromise
15440 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15441 generic type-checking code. */
15442 if (section_type == SHT_MIPS_DWARF)
15443 section_type = SHT_PROGBITS;
15444
15445 obj_elf_change_section (section_name, section_type, section_flag,
15446 section_entry_size, 0, 0, 0);
15447
15448 if (now_seg->name != section_name)
15449 free (section_name);
15450 }
15451
15452 void
15453 mips_enable_auto_align (void)
15454 {
15455 auto_align = 1;
15456 }
15457
15458 static void
15459 s_cons (int log_size)
15460 {
15461 segment_info_type *si = seg_info (now_seg);
15462 struct insn_label_list *l = si->label_list;
15463
15464 mips_emit_delays ();
15465 if (log_size > 0 && auto_align)
15466 mips_align (log_size, 0, l);
15467 cons (1 << log_size);
15468 mips_clear_insn_labels ();
15469 }
15470
15471 static void
15472 s_float_cons (int type)
15473 {
15474 segment_info_type *si = seg_info (now_seg);
15475 struct insn_label_list *l = si->label_list;
15476
15477 mips_emit_delays ();
15478
15479 if (auto_align)
15480 {
15481 if (type == 'd')
15482 mips_align (3, 0, l);
15483 else
15484 mips_align (2, 0, l);
15485 }
15486
15487 float_cons (type);
15488 mips_clear_insn_labels ();
15489 }
15490
15491 /* Handle .globl. We need to override it because on Irix 5 you are
15492 permitted to say
15493 .globl foo .text
15494 where foo is an undefined symbol, to mean that foo should be
15495 considered to be the address of a function. */
15496
15497 static void
15498 s_mips_globl (int x ATTRIBUTE_UNUSED)
15499 {
15500 char *name;
15501 int c;
15502 symbolS *symbolP;
15503 flagword flag;
15504
15505 do
15506 {
15507 c = get_symbol_name (&name);
15508 symbolP = symbol_find_or_make (name);
15509 S_SET_EXTERNAL (symbolP);
15510
15511 *input_line_pointer = c;
15512 SKIP_WHITESPACE_AFTER_NAME ();
15513
15514 /* On Irix 5, every global symbol that is not explicitly labelled as
15515 being a function is apparently labelled as being an object. */
15516 flag = BSF_OBJECT;
15517
15518 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15519 && (*input_line_pointer != ','))
15520 {
15521 char *secname;
15522 asection *sec;
15523
15524 c = get_symbol_name (&secname);
15525 sec = bfd_get_section_by_name (stdoutput, secname);
15526 if (sec == NULL)
15527 as_bad (_("%s: no such section"), secname);
15528 (void) restore_line_pointer (c);
15529
15530 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15531 flag = BSF_FUNCTION;
15532 }
15533
15534 symbol_get_bfdsym (symbolP)->flags |= flag;
15535
15536 c = *input_line_pointer;
15537 if (c == ',')
15538 {
15539 input_line_pointer++;
15540 SKIP_WHITESPACE ();
15541 if (is_end_of_line[(unsigned char) *input_line_pointer])
15542 c = '\n';
15543 }
15544 }
15545 while (c == ',');
15546
15547 demand_empty_rest_of_line ();
15548 }
15549
15550 static void
15551 s_option (int x ATTRIBUTE_UNUSED)
15552 {
15553 char *opt;
15554 char c;
15555
15556 c = get_symbol_name (&opt);
15557
15558 if (*opt == 'O')
15559 {
15560 /* FIXME: What does this mean? */
15561 }
15562 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
15563 {
15564 int i;
15565
15566 i = atoi (opt + 3);
15567 if (i != 0 && i != 2)
15568 as_bad (_(".option pic%d not supported"), i);
15569 else if (mips_pic == VXWORKS_PIC)
15570 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
15571 else if (i == 0)
15572 mips_pic = NO_PIC;
15573 else if (i == 2)
15574 {
15575 mips_pic = SVR4_PIC;
15576 mips_abicalls = TRUE;
15577 }
15578
15579 if (mips_pic == SVR4_PIC)
15580 {
15581 if (g_switch_seen && g_switch_value != 0)
15582 as_warn (_("-G may not be used with SVR4 PIC code"));
15583 g_switch_value = 0;
15584 bfd_set_gp_size (stdoutput, 0);
15585 }
15586 }
15587 else
15588 as_warn (_("unrecognized option \"%s\""), opt);
15589
15590 (void) restore_line_pointer (c);
15591 demand_empty_rest_of_line ();
15592 }
15593
15594 /* This structure is used to hold a stack of .set values. */
15595
15596 struct mips_option_stack
15597 {
15598 struct mips_option_stack *next;
15599 struct mips_set_options options;
15600 };
15601
15602 static struct mips_option_stack *mips_opts_stack;
15603
15604 /* Return status for .set/.module option handling. */
15605
15606 enum code_option_type
15607 {
15608 /* Unrecognized option. */
15609 OPTION_TYPE_BAD = -1,
15610
15611 /* Ordinary option. */
15612 OPTION_TYPE_NORMAL,
15613
15614 /* ISA changing option. */
15615 OPTION_TYPE_ISA
15616 };
15617
15618 /* Handle common .set/.module options. Return status indicating option
15619 type. */
15620
15621 static enum code_option_type
15622 parse_code_option (char * name)
15623 {
15624 bfd_boolean isa_set = FALSE;
15625 const struct mips_ase *ase;
15626
15627 if (strncmp (name, "at=", 3) == 0)
15628 {
15629 char *s = name + 3;
15630
15631 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15632 as_bad (_("unrecognized register name `%s'"), s);
15633 }
15634 else if (strcmp (name, "at") == 0)
15635 mips_opts.at = ATREG;
15636 else if (strcmp (name, "noat") == 0)
15637 mips_opts.at = ZERO;
15638 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15639 mips_opts.nomove = 0;
15640 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15641 mips_opts.nomove = 1;
15642 else if (strcmp (name, "bopt") == 0)
15643 mips_opts.nobopt = 0;
15644 else if (strcmp (name, "nobopt") == 0)
15645 mips_opts.nobopt = 1;
15646 else if (strcmp (name, "gp=32") == 0)
15647 mips_opts.gp = 32;
15648 else if (strcmp (name, "gp=64") == 0)
15649 mips_opts.gp = 64;
15650 else if (strcmp (name, "fp=32") == 0)
15651 mips_opts.fp = 32;
15652 else if (strcmp (name, "fp=xx") == 0)
15653 mips_opts.fp = 0;
15654 else if (strcmp (name, "fp=64") == 0)
15655 mips_opts.fp = 64;
15656 else if (strcmp (name, "softfloat") == 0)
15657 mips_opts.soft_float = 1;
15658 else if (strcmp (name, "hardfloat") == 0)
15659 mips_opts.soft_float = 0;
15660 else if (strcmp (name, "singlefloat") == 0)
15661 mips_opts.single_float = 1;
15662 else if (strcmp (name, "doublefloat") == 0)
15663 mips_opts.single_float = 0;
15664 else if (strcmp (name, "nooddspreg") == 0)
15665 mips_opts.oddspreg = 0;
15666 else if (strcmp (name, "oddspreg") == 0)
15667 mips_opts.oddspreg = 1;
15668 else if (strcmp (name, "mips16") == 0
15669 || strcmp (name, "MIPS-16") == 0)
15670 mips_opts.mips16 = 1;
15671 else if (strcmp (name, "nomips16") == 0
15672 || strcmp (name, "noMIPS-16") == 0)
15673 mips_opts.mips16 = 0;
15674 else if (strcmp (name, "micromips") == 0)
15675 mips_opts.micromips = 1;
15676 else if (strcmp (name, "nomicromips") == 0)
15677 mips_opts.micromips = 0;
15678 else if (name[0] == 'n'
15679 && name[1] == 'o'
15680 && (ase = mips_lookup_ase (name + 2)))
15681 mips_set_ase (ase, &mips_opts, FALSE);
15682 else if ((ase = mips_lookup_ase (name)))
15683 mips_set_ase (ase, &mips_opts, TRUE);
15684 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15685 {
15686 /* Permit the user to change the ISA and architecture on the fly.
15687 Needless to say, misuse can cause serious problems. */
15688 if (strncmp (name, "arch=", 5) == 0)
15689 {
15690 const struct mips_cpu_info *p;
15691
15692 p = mips_parse_cpu ("internal use", name + 5);
15693 if (!p)
15694 as_bad (_("unknown architecture %s"), name + 5);
15695 else
15696 {
15697 mips_opts.arch = p->cpu;
15698 mips_opts.isa = p->isa;
15699 isa_set = TRUE;
15700 }
15701 }
15702 else if (strncmp (name, "mips", 4) == 0)
15703 {
15704 const struct mips_cpu_info *p;
15705
15706 p = mips_parse_cpu ("internal use", name);
15707 if (!p)
15708 as_bad (_("unknown ISA level %s"), name + 4);
15709 else
15710 {
15711 mips_opts.arch = p->cpu;
15712 mips_opts.isa = p->isa;
15713 isa_set = TRUE;
15714 }
15715 }
15716 else
15717 as_bad (_("unknown ISA or architecture %s"), name);
15718 }
15719 else if (strcmp (name, "autoextend") == 0)
15720 mips_opts.noautoextend = 0;
15721 else if (strcmp (name, "noautoextend") == 0)
15722 mips_opts.noautoextend = 1;
15723 else if (strcmp (name, "insn32") == 0)
15724 mips_opts.insn32 = TRUE;
15725 else if (strcmp (name, "noinsn32") == 0)
15726 mips_opts.insn32 = FALSE;
15727 else if (strcmp (name, "sym32") == 0)
15728 mips_opts.sym32 = TRUE;
15729 else if (strcmp (name, "nosym32") == 0)
15730 mips_opts.sym32 = FALSE;
15731 else
15732 return OPTION_TYPE_BAD;
15733
15734 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
15735 }
15736
15737 /* Handle the .set pseudo-op. */
15738
15739 static void
15740 s_mipsset (int x ATTRIBUTE_UNUSED)
15741 {
15742 enum code_option_type type = OPTION_TYPE_NORMAL;
15743 char *name = input_line_pointer, ch;
15744
15745 file_mips_check_options ();
15746
15747 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15748 ++input_line_pointer;
15749 ch = *input_line_pointer;
15750 *input_line_pointer = '\0';
15751
15752 if (strchr (name, ','))
15753 {
15754 /* Generic ".set" directive; use the generic handler. */
15755 *input_line_pointer = ch;
15756 input_line_pointer = name;
15757 s_set (0);
15758 return;
15759 }
15760
15761 if (strcmp (name, "reorder") == 0)
15762 {
15763 if (mips_opts.noreorder)
15764 end_noreorder ();
15765 }
15766 else if (strcmp (name, "noreorder") == 0)
15767 {
15768 if (!mips_opts.noreorder)
15769 start_noreorder ();
15770 }
15771 else if (strcmp (name, "macro") == 0)
15772 mips_opts.warn_about_macros = 0;
15773 else if (strcmp (name, "nomacro") == 0)
15774 {
15775 if (mips_opts.noreorder == 0)
15776 as_bad (_("`noreorder' must be set before `nomacro'"));
15777 mips_opts.warn_about_macros = 1;
15778 }
15779 else if (strcmp (name, "gp=default") == 0)
15780 mips_opts.gp = file_mips_opts.gp;
15781 else if (strcmp (name, "fp=default") == 0)
15782 mips_opts.fp = file_mips_opts.fp;
15783 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15784 {
15785 mips_opts.isa = file_mips_opts.isa;
15786 mips_opts.arch = file_mips_opts.arch;
15787 mips_opts.gp = file_mips_opts.gp;
15788 mips_opts.fp = file_mips_opts.fp;
15789 }
15790 else if (strcmp (name, "push") == 0)
15791 {
15792 struct mips_option_stack *s;
15793
15794 s = XNEW (struct mips_option_stack);
15795 s->next = mips_opts_stack;
15796 s->options = mips_opts;
15797 mips_opts_stack = s;
15798 }
15799 else if (strcmp (name, "pop") == 0)
15800 {
15801 struct mips_option_stack *s;
15802
15803 s = mips_opts_stack;
15804 if (s == NULL)
15805 as_bad (_(".set pop with no .set push"));
15806 else
15807 {
15808 /* If we're changing the reorder mode we need to handle
15809 delay slots correctly. */
15810 if (s->options.noreorder && ! mips_opts.noreorder)
15811 start_noreorder ();
15812 else if (! s->options.noreorder && mips_opts.noreorder)
15813 end_noreorder ();
15814
15815 mips_opts = s->options;
15816 mips_opts_stack = s->next;
15817 free (s);
15818 }
15819 }
15820 else
15821 {
15822 type = parse_code_option (name);
15823 if (type == OPTION_TYPE_BAD)
15824 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15825 }
15826
15827 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15828 registers based on what is supported by the arch/cpu. */
15829 if (type == OPTION_TYPE_ISA)
15830 {
15831 switch (mips_opts.isa)
15832 {
15833 case 0:
15834 break;
15835 case ISA_MIPS1:
15836 /* MIPS I cannot support FPXX. */
15837 mips_opts.fp = 32;
15838 /* fall-through. */
15839 case ISA_MIPS2:
15840 case ISA_MIPS32:
15841 case ISA_MIPS32R2:
15842 case ISA_MIPS32R3:
15843 case ISA_MIPS32R5:
15844 mips_opts.gp = 32;
15845 if (mips_opts.fp != 0)
15846 mips_opts.fp = 32;
15847 break;
15848 case ISA_MIPS32R6:
15849 mips_opts.gp = 32;
15850 mips_opts.fp = 64;
15851 break;
15852 case ISA_MIPS3:
15853 case ISA_MIPS4:
15854 case ISA_MIPS5:
15855 case ISA_MIPS64:
15856 case ISA_MIPS64R2:
15857 case ISA_MIPS64R3:
15858 case ISA_MIPS64R5:
15859 case ISA_MIPS64R6:
15860 mips_opts.gp = 64;
15861 if (mips_opts.fp != 0)
15862 {
15863 if (mips_opts.arch == CPU_R5900)
15864 mips_opts.fp = 32;
15865 else
15866 mips_opts.fp = 64;
15867 }
15868 break;
15869 default:
15870 as_bad (_("unknown ISA level %s"), name + 4);
15871 break;
15872 }
15873 }
15874
15875 mips_check_options (&mips_opts, FALSE);
15876
15877 mips_check_isa_supports_ases ();
15878 *input_line_pointer = ch;
15879 demand_empty_rest_of_line ();
15880 }
15881
15882 /* Handle the .module pseudo-op. */
15883
15884 static void
15885 s_module (int ignore ATTRIBUTE_UNUSED)
15886 {
15887 char *name = input_line_pointer, ch;
15888
15889 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15890 ++input_line_pointer;
15891 ch = *input_line_pointer;
15892 *input_line_pointer = '\0';
15893
15894 if (!file_mips_opts_checked)
15895 {
15896 if (parse_code_option (name) == OPTION_TYPE_BAD)
15897 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15898
15899 /* Update module level settings from mips_opts. */
15900 file_mips_opts = mips_opts;
15901 }
15902 else
15903 as_bad (_(".module is not permitted after generating code"));
15904
15905 *input_line_pointer = ch;
15906 demand_empty_rest_of_line ();
15907 }
15908
15909 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15910 .option pic2. It means to generate SVR4 PIC calls. */
15911
15912 static void
15913 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15914 {
15915 mips_pic = SVR4_PIC;
15916 mips_abicalls = TRUE;
15917
15918 if (g_switch_seen && g_switch_value != 0)
15919 as_warn (_("-G may not be used with SVR4 PIC code"));
15920 g_switch_value = 0;
15921
15922 bfd_set_gp_size (stdoutput, 0);
15923 demand_empty_rest_of_line ();
15924 }
15925
15926 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15927 PIC code. It sets the $gp register for the function based on the
15928 function address, which is in the register named in the argument.
15929 This uses a relocation against _gp_disp, which is handled specially
15930 by the linker. The result is:
15931 lui $gp,%hi(_gp_disp)
15932 addiu $gp,$gp,%lo(_gp_disp)
15933 addu $gp,$gp,.cpload argument
15934 The .cpload argument is normally $25 == $t9.
15935
15936 The -mno-shared option changes this to:
15937 lui $gp,%hi(__gnu_local_gp)
15938 addiu $gp,$gp,%lo(__gnu_local_gp)
15939 and the argument is ignored. This saves an instruction, but the
15940 resulting code is not position independent; it uses an absolute
15941 address for __gnu_local_gp. Thus code assembled with -mno-shared
15942 can go into an ordinary executable, but not into a shared library. */
15943
15944 static void
15945 s_cpload (int ignore ATTRIBUTE_UNUSED)
15946 {
15947 expressionS ex;
15948 int reg;
15949 int in_shared;
15950
15951 file_mips_check_options ();
15952
15953 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15954 .cpload is ignored. */
15955 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15956 {
15957 s_ignore (0);
15958 return;
15959 }
15960
15961 if (mips_opts.mips16)
15962 {
15963 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15964 ignore_rest_of_line ();
15965 return;
15966 }
15967
15968 /* .cpload should be in a .set noreorder section. */
15969 if (mips_opts.noreorder == 0)
15970 as_warn (_(".cpload not in noreorder section"));
15971
15972 reg = tc_get_register (0);
15973
15974 /* If we need to produce a 64-bit address, we are better off using
15975 the default instruction sequence. */
15976 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15977
15978 ex.X_op = O_symbol;
15979 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15980 "__gnu_local_gp");
15981 ex.X_op_symbol = NULL;
15982 ex.X_add_number = 0;
15983
15984 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15985 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15986
15987 mips_mark_labels ();
15988 mips_assembling_insn = TRUE;
15989
15990 macro_start ();
15991 macro_build_lui (&ex, mips_gp_register);
15992 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15993 mips_gp_register, BFD_RELOC_LO16);
15994 if (in_shared)
15995 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15996 mips_gp_register, reg);
15997 macro_end ();
15998
15999 mips_assembling_insn = FALSE;
16000 demand_empty_rest_of_line ();
16001 }
16002
16003 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16004 .cpsetup $reg1, offset|$reg2, label
16005
16006 If offset is given, this results in:
16007 sd $gp, offset($sp)
16008 lui $gp, %hi(%neg(%gp_rel(label)))
16009 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16010 daddu $gp, $gp, $reg1
16011
16012 If $reg2 is given, this results in:
16013 or $reg2, $gp, $0
16014 lui $gp, %hi(%neg(%gp_rel(label)))
16015 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16016 daddu $gp, $gp, $reg1
16017 $reg1 is normally $25 == $t9.
16018
16019 The -mno-shared option replaces the last three instructions with
16020 lui $gp,%hi(_gp)
16021 addiu $gp,$gp,%lo(_gp) */
16022
16023 static void
16024 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16025 {
16026 expressionS ex_off;
16027 expressionS ex_sym;
16028 int reg1;
16029
16030 file_mips_check_options ();
16031
16032 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16033 We also need NewABI support. */
16034 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16035 {
16036 s_ignore (0);
16037 return;
16038 }
16039
16040 if (mips_opts.mips16)
16041 {
16042 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16043 ignore_rest_of_line ();
16044 return;
16045 }
16046
16047 reg1 = tc_get_register (0);
16048 SKIP_WHITESPACE ();
16049 if (*input_line_pointer != ',')
16050 {
16051 as_bad (_("missing argument separator ',' for .cpsetup"));
16052 return;
16053 }
16054 else
16055 ++input_line_pointer;
16056 SKIP_WHITESPACE ();
16057 if (*input_line_pointer == '$')
16058 {
16059 mips_cpreturn_register = tc_get_register (0);
16060 mips_cpreturn_offset = -1;
16061 }
16062 else
16063 {
16064 mips_cpreturn_offset = get_absolute_expression ();
16065 mips_cpreturn_register = -1;
16066 }
16067 SKIP_WHITESPACE ();
16068 if (*input_line_pointer != ',')
16069 {
16070 as_bad (_("missing argument separator ',' for .cpsetup"));
16071 return;
16072 }
16073 else
16074 ++input_line_pointer;
16075 SKIP_WHITESPACE ();
16076 expression (&ex_sym);
16077
16078 mips_mark_labels ();
16079 mips_assembling_insn = TRUE;
16080
16081 macro_start ();
16082 if (mips_cpreturn_register == -1)
16083 {
16084 ex_off.X_op = O_constant;
16085 ex_off.X_add_symbol = NULL;
16086 ex_off.X_op_symbol = NULL;
16087 ex_off.X_add_number = mips_cpreturn_offset;
16088
16089 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16090 BFD_RELOC_LO16, SP);
16091 }
16092 else
16093 move_register (mips_cpreturn_register, mips_gp_register);
16094
16095 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16096 {
16097 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16098 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16099 BFD_RELOC_HI16_S);
16100
16101 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16102 mips_gp_register, -1, BFD_RELOC_GPREL16,
16103 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16104
16105 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16106 mips_gp_register, reg1);
16107 }
16108 else
16109 {
16110 expressionS ex;
16111
16112 ex.X_op = O_symbol;
16113 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16114 ex.X_op_symbol = NULL;
16115 ex.X_add_number = 0;
16116
16117 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16118 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16119
16120 macro_build_lui (&ex, mips_gp_register);
16121 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16122 mips_gp_register, BFD_RELOC_LO16);
16123 }
16124
16125 macro_end ();
16126
16127 mips_assembling_insn = FALSE;
16128 demand_empty_rest_of_line ();
16129 }
16130
16131 static void
16132 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16133 {
16134 file_mips_check_options ();
16135
16136 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16137 .cplocal is ignored. */
16138 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16139 {
16140 s_ignore (0);
16141 return;
16142 }
16143
16144 if (mips_opts.mips16)
16145 {
16146 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16147 ignore_rest_of_line ();
16148 return;
16149 }
16150
16151 mips_gp_register = tc_get_register (0);
16152 demand_empty_rest_of_line ();
16153 }
16154
16155 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16156 offset from $sp. The offset is remembered, and after making a PIC
16157 call $gp is restored from that location. */
16158
16159 static void
16160 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16161 {
16162 expressionS ex;
16163
16164 file_mips_check_options ();
16165
16166 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16167 .cprestore is ignored. */
16168 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16169 {
16170 s_ignore (0);
16171 return;
16172 }
16173
16174 if (mips_opts.mips16)
16175 {
16176 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16177 ignore_rest_of_line ();
16178 return;
16179 }
16180
16181 mips_cprestore_offset = get_absolute_expression ();
16182 mips_cprestore_valid = 1;
16183
16184 ex.X_op = O_constant;
16185 ex.X_add_symbol = NULL;
16186 ex.X_op_symbol = NULL;
16187 ex.X_add_number = mips_cprestore_offset;
16188
16189 mips_mark_labels ();
16190 mips_assembling_insn = TRUE;
16191
16192 macro_start ();
16193 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16194 SP, HAVE_64BIT_ADDRESSES);
16195 macro_end ();
16196
16197 mips_assembling_insn = FALSE;
16198 demand_empty_rest_of_line ();
16199 }
16200
16201 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16202 was given in the preceding .cpsetup, it results in:
16203 ld $gp, offset($sp)
16204
16205 If a register $reg2 was given there, it results in:
16206 or $gp, $reg2, $0 */
16207
16208 static void
16209 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16210 {
16211 expressionS ex;
16212
16213 file_mips_check_options ();
16214
16215 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16216 We also need NewABI support. */
16217 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16218 {
16219 s_ignore (0);
16220 return;
16221 }
16222
16223 if (mips_opts.mips16)
16224 {
16225 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16226 ignore_rest_of_line ();
16227 return;
16228 }
16229
16230 mips_mark_labels ();
16231 mips_assembling_insn = TRUE;
16232
16233 macro_start ();
16234 if (mips_cpreturn_register == -1)
16235 {
16236 ex.X_op = O_constant;
16237 ex.X_add_symbol = NULL;
16238 ex.X_op_symbol = NULL;
16239 ex.X_add_number = mips_cpreturn_offset;
16240
16241 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16242 }
16243 else
16244 move_register (mips_gp_register, mips_cpreturn_register);
16245
16246 macro_end ();
16247
16248 mips_assembling_insn = FALSE;
16249 demand_empty_rest_of_line ();
16250 }
16251
16252 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16253 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16254 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16255 debug information or MIPS16 TLS. */
16256
16257 static void
16258 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16259 bfd_reloc_code_real_type rtype)
16260 {
16261 expressionS ex;
16262 char *p;
16263
16264 expression (&ex);
16265
16266 if (ex.X_op != O_symbol)
16267 {
16268 as_bad (_("unsupported use of %s"), dirstr);
16269 ignore_rest_of_line ();
16270 }
16271
16272 p = frag_more (bytes);
16273 md_number_to_chars (p, 0, bytes);
16274 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16275 demand_empty_rest_of_line ();
16276 mips_clear_insn_labels ();
16277 }
16278
16279 /* Handle .dtprelword. */
16280
16281 static void
16282 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16283 {
16284 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16285 }
16286
16287 /* Handle .dtpreldword. */
16288
16289 static void
16290 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16291 {
16292 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16293 }
16294
16295 /* Handle .tprelword. */
16296
16297 static void
16298 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16299 {
16300 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16301 }
16302
16303 /* Handle .tpreldword. */
16304
16305 static void
16306 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16307 {
16308 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16309 }
16310
16311 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16312 code. It sets the offset to use in gp_rel relocations. */
16313
16314 static void
16315 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16316 {
16317 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16318 We also need NewABI support. */
16319 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16320 {
16321 s_ignore (0);
16322 return;
16323 }
16324
16325 mips_gprel_offset = get_absolute_expression ();
16326
16327 demand_empty_rest_of_line ();
16328 }
16329
16330 /* Handle the .gpword pseudo-op. This is used when generating PIC
16331 code. It generates a 32 bit GP relative reloc. */
16332
16333 static void
16334 s_gpword (int ignore ATTRIBUTE_UNUSED)
16335 {
16336 segment_info_type *si;
16337 struct insn_label_list *l;
16338 expressionS ex;
16339 char *p;
16340
16341 /* When not generating PIC code, this is treated as .word. */
16342 if (mips_pic != SVR4_PIC)
16343 {
16344 s_cons (2);
16345 return;
16346 }
16347
16348 si = seg_info (now_seg);
16349 l = si->label_list;
16350 mips_emit_delays ();
16351 if (auto_align)
16352 mips_align (2, 0, l);
16353
16354 expression (&ex);
16355 mips_clear_insn_labels ();
16356
16357 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16358 {
16359 as_bad (_("unsupported use of .gpword"));
16360 ignore_rest_of_line ();
16361 }
16362
16363 p = frag_more (4);
16364 md_number_to_chars (p, 0, 4);
16365 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16366 BFD_RELOC_GPREL32);
16367
16368 demand_empty_rest_of_line ();
16369 }
16370
16371 static void
16372 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16373 {
16374 segment_info_type *si;
16375 struct insn_label_list *l;
16376 expressionS ex;
16377 char *p;
16378
16379 /* When not generating PIC code, this is treated as .dword. */
16380 if (mips_pic != SVR4_PIC)
16381 {
16382 s_cons (3);
16383 return;
16384 }
16385
16386 si = seg_info (now_seg);
16387 l = si->label_list;
16388 mips_emit_delays ();
16389 if (auto_align)
16390 mips_align (3, 0, l);
16391
16392 expression (&ex);
16393 mips_clear_insn_labels ();
16394
16395 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16396 {
16397 as_bad (_("unsupported use of .gpdword"));
16398 ignore_rest_of_line ();
16399 }
16400
16401 p = frag_more (8);
16402 md_number_to_chars (p, 0, 8);
16403 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16404 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16405
16406 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16407 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16408 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16409
16410 demand_empty_rest_of_line ();
16411 }
16412
16413 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16414 tables. It generates a R_MIPS_EH reloc. */
16415
16416 static void
16417 s_ehword (int ignore ATTRIBUTE_UNUSED)
16418 {
16419 expressionS ex;
16420 char *p;
16421
16422 mips_emit_delays ();
16423
16424 expression (&ex);
16425 mips_clear_insn_labels ();
16426
16427 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16428 {
16429 as_bad (_("unsupported use of .ehword"));
16430 ignore_rest_of_line ();
16431 }
16432
16433 p = frag_more (4);
16434 md_number_to_chars (p, 0, 4);
16435 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16436 BFD_RELOC_32_PCREL);
16437
16438 demand_empty_rest_of_line ();
16439 }
16440
16441 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16442 tables in SVR4 PIC code. */
16443
16444 static void
16445 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16446 {
16447 int reg;
16448
16449 file_mips_check_options ();
16450
16451 /* This is ignored when not generating SVR4 PIC code. */
16452 if (mips_pic != SVR4_PIC)
16453 {
16454 s_ignore (0);
16455 return;
16456 }
16457
16458 mips_mark_labels ();
16459 mips_assembling_insn = TRUE;
16460
16461 /* Add $gp to the register named as an argument. */
16462 macro_start ();
16463 reg = tc_get_register (0);
16464 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16465 macro_end ();
16466
16467 mips_assembling_insn = FALSE;
16468 demand_empty_rest_of_line ();
16469 }
16470
16471 /* Handle the .insn pseudo-op. This marks instruction labels in
16472 mips16/micromips mode. This permits the linker to handle them specially,
16473 such as generating jalx instructions when needed. We also make
16474 them odd for the duration of the assembly, in order to generate the
16475 right sort of code. We will make them even in the adjust_symtab
16476 routine, while leaving them marked. This is convenient for the
16477 debugger and the disassembler. The linker knows to make them odd
16478 again. */
16479
16480 static void
16481 s_insn (int ignore ATTRIBUTE_UNUSED)
16482 {
16483 file_mips_check_options ();
16484 file_ase_mips16 |= mips_opts.mips16;
16485 file_ase_micromips |= mips_opts.micromips;
16486
16487 mips_mark_labels ();
16488
16489 demand_empty_rest_of_line ();
16490 }
16491
16492 /* Handle the .nan pseudo-op. */
16493
16494 static void
16495 s_nan (int ignore ATTRIBUTE_UNUSED)
16496 {
16497 static const char str_legacy[] = "legacy";
16498 static const char str_2008[] = "2008";
16499 size_t i;
16500
16501 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16502
16503 if (i == sizeof (str_2008) - 1
16504 && memcmp (input_line_pointer, str_2008, i) == 0)
16505 mips_nan2008 = 1;
16506 else if (i == sizeof (str_legacy) - 1
16507 && memcmp (input_line_pointer, str_legacy, i) == 0)
16508 {
16509 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16510 mips_nan2008 = 0;
16511 else
16512 as_bad (_("`%s' does not support legacy NaN"),
16513 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16514 }
16515 else
16516 as_bad (_("bad .nan directive"));
16517
16518 input_line_pointer += i;
16519 demand_empty_rest_of_line ();
16520 }
16521
16522 /* Handle a .stab[snd] directive. Ideally these directives would be
16523 implemented in a transparent way, so that removing them would not
16524 have any effect on the generated instructions. However, s_stab
16525 internally changes the section, so in practice we need to decide
16526 now whether the preceding label marks compressed code. We do not
16527 support changing the compression mode of a label after a .stab*
16528 directive, such as in:
16529
16530 foo:
16531 .stabs ...
16532 .set mips16
16533
16534 so the current mode wins. */
16535
16536 static void
16537 s_mips_stab (int type)
16538 {
16539 mips_mark_labels ();
16540 s_stab (type);
16541 }
16542
16543 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16544
16545 static void
16546 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16547 {
16548 char *name;
16549 int c;
16550 symbolS *symbolP;
16551 expressionS exp;
16552
16553 c = get_symbol_name (&name);
16554 symbolP = symbol_find_or_make (name);
16555 S_SET_WEAK (symbolP);
16556 *input_line_pointer = c;
16557
16558 SKIP_WHITESPACE_AFTER_NAME ();
16559
16560 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16561 {
16562 if (S_IS_DEFINED (symbolP))
16563 {
16564 as_bad (_("ignoring attempt to redefine symbol %s"),
16565 S_GET_NAME (symbolP));
16566 ignore_rest_of_line ();
16567 return;
16568 }
16569
16570 if (*input_line_pointer == ',')
16571 {
16572 ++input_line_pointer;
16573 SKIP_WHITESPACE ();
16574 }
16575
16576 expression (&exp);
16577 if (exp.X_op != O_symbol)
16578 {
16579 as_bad (_("bad .weakext directive"));
16580 ignore_rest_of_line ();
16581 return;
16582 }
16583 symbol_set_value_expression (symbolP, &exp);
16584 }
16585
16586 demand_empty_rest_of_line ();
16587 }
16588
16589 /* Parse a register string into a number. Called from the ECOFF code
16590 to parse .frame. The argument is non-zero if this is the frame
16591 register, so that we can record it in mips_frame_reg. */
16592
16593 int
16594 tc_get_register (int frame)
16595 {
16596 unsigned int reg;
16597
16598 SKIP_WHITESPACE ();
16599 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16600 reg = 0;
16601 if (frame)
16602 {
16603 mips_frame_reg = reg != 0 ? reg : SP;
16604 mips_frame_reg_valid = 1;
16605 mips_cprestore_valid = 0;
16606 }
16607 return reg;
16608 }
16609
16610 valueT
16611 md_section_align (asection *seg, valueT addr)
16612 {
16613 int align = bfd_get_section_alignment (stdoutput, seg);
16614
16615 /* We don't need to align ELF sections to the full alignment.
16616 However, Irix 5 may prefer that we align them at least to a 16
16617 byte boundary. We don't bother to align the sections if we
16618 are targeted for an embedded system. */
16619 if (strncmp (TARGET_OS, "elf", 3) == 0)
16620 return addr;
16621 if (align > 4)
16622 align = 4;
16623
16624 return ((addr + (1 << align) - 1) & -(1 << align));
16625 }
16626
16627 /* Utility routine, called from above as well. If called while the
16628 input file is still being read, it's only an approximation. (For
16629 example, a symbol may later become defined which appeared to be
16630 undefined earlier.) */
16631
16632 static int
16633 nopic_need_relax (symbolS *sym, int before_relaxing)
16634 {
16635 if (sym == 0)
16636 return 0;
16637
16638 if (g_switch_value > 0)
16639 {
16640 const char *symname;
16641 int change;
16642
16643 /* Find out whether this symbol can be referenced off the $gp
16644 register. It can be if it is smaller than the -G size or if
16645 it is in the .sdata or .sbss section. Certain symbols can
16646 not be referenced off the $gp, although it appears as though
16647 they can. */
16648 symname = S_GET_NAME (sym);
16649 if (symname != (const char *) NULL
16650 && (strcmp (symname, "eprol") == 0
16651 || strcmp (symname, "etext") == 0
16652 || strcmp (symname, "_gp") == 0
16653 || strcmp (symname, "edata") == 0
16654 || strcmp (symname, "_fbss") == 0
16655 || strcmp (symname, "_fdata") == 0
16656 || strcmp (symname, "_ftext") == 0
16657 || strcmp (symname, "end") == 0
16658 || strcmp (symname, "_gp_disp") == 0))
16659 change = 1;
16660 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16661 && (0
16662 #ifndef NO_ECOFF_DEBUGGING
16663 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16664 && (symbol_get_obj (sym)->ecoff_extern_size
16665 <= g_switch_value))
16666 #endif
16667 /* We must defer this decision until after the whole
16668 file has been read, since there might be a .extern
16669 after the first use of this symbol. */
16670 || (before_relaxing
16671 #ifndef NO_ECOFF_DEBUGGING
16672 && symbol_get_obj (sym)->ecoff_extern_size == 0
16673 #endif
16674 && S_GET_VALUE (sym) == 0)
16675 || (S_GET_VALUE (sym) != 0
16676 && S_GET_VALUE (sym) <= g_switch_value)))
16677 change = 0;
16678 else
16679 {
16680 const char *segname;
16681
16682 segname = segment_name (S_GET_SEGMENT (sym));
16683 gas_assert (strcmp (segname, ".lit8") != 0
16684 && strcmp (segname, ".lit4") != 0);
16685 change = (strcmp (segname, ".sdata") != 0
16686 && strcmp (segname, ".sbss") != 0
16687 && strncmp (segname, ".sdata.", 7) != 0
16688 && strncmp (segname, ".sbss.", 6) != 0
16689 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16690 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16691 }
16692 return change;
16693 }
16694 else
16695 /* We are not optimizing for the $gp register. */
16696 return 1;
16697 }
16698
16699
16700 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16701
16702 static bfd_boolean
16703 pic_need_relax (symbolS *sym, asection *segtype)
16704 {
16705 asection *symsec;
16706
16707 /* Handle the case of a symbol equated to another symbol. */
16708 while (symbol_equated_reloc_p (sym))
16709 {
16710 symbolS *n;
16711
16712 /* It's possible to get a loop here in a badly written program. */
16713 n = symbol_get_value_expression (sym)->X_add_symbol;
16714 if (n == sym)
16715 break;
16716 sym = n;
16717 }
16718
16719 if (symbol_section_p (sym))
16720 return TRUE;
16721
16722 symsec = S_GET_SEGMENT (sym);
16723
16724 /* This must duplicate the test in adjust_reloc_syms. */
16725 return (!bfd_is_und_section (symsec)
16726 && !bfd_is_abs_section (symsec)
16727 && !bfd_is_com_section (symsec)
16728 && !s_is_linkonce (sym, segtype)
16729 /* A global or weak symbol is treated as external. */
16730 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16731 }
16732
16733
16734 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16735 extended opcode. SEC is the section the frag is in. */
16736
16737 static int
16738 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16739 {
16740 int type;
16741 const struct mips_int_operand *operand;
16742 offsetT val;
16743 segT symsec;
16744 fragS *sym_frag;
16745
16746 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16747 return 0;
16748 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16749 return 1;
16750
16751 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16752 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16753 operand = mips16_immed_operand (type, FALSE);
16754 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
16755 || (operand->root.type == OP_PCREL
16756 ? sec != symsec
16757 : !bfd_is_abs_section (symsec)))
16758 return 1;
16759
16760 sym_frag = symbol_get_frag (fragp->fr_symbol);
16761 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16762
16763 if (operand->root.type == OP_PCREL)
16764 {
16765 const struct mips_pcrel_operand *pcrel_op;
16766 addressT addr;
16767 offsetT maxtiny;
16768
16769 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16770 return 1;
16771
16772 pcrel_op = (const struct mips_pcrel_operand *) operand;
16773
16774 /* If the relax_marker of the symbol fragment differs from the
16775 relax_marker of this fragment, we have not yet adjusted the
16776 symbol fragment fr_address. We want to add in STRETCH in
16777 order to get a better estimate of the address. This
16778 particularly matters because of the shift bits. */
16779 if (stretch != 0
16780 && sym_frag->relax_marker != fragp->relax_marker)
16781 {
16782 fragS *f;
16783
16784 /* Adjust stretch for any alignment frag. Note that if have
16785 been expanding the earlier code, the symbol may be
16786 defined in what appears to be an earlier frag. FIXME:
16787 This doesn't handle the fr_subtype field, which specifies
16788 a maximum number of bytes to skip when doing an
16789 alignment. */
16790 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16791 {
16792 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16793 {
16794 if (stretch < 0)
16795 stretch = - ((- stretch)
16796 & ~ ((1 << (int) f->fr_offset) - 1));
16797 else
16798 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16799 if (stretch == 0)
16800 break;
16801 }
16802 }
16803 if (f != NULL)
16804 val += stretch;
16805 }
16806
16807 addr = fragp->fr_address + fragp->fr_fix;
16808
16809 /* The base address rules are complicated. The base address of
16810 a branch is the following instruction. The base address of a
16811 PC relative load or add is the instruction itself, but if it
16812 is in a delay slot (in which case it can not be extended) use
16813 the address of the instruction whose delay slot it is in. */
16814 if (pcrel_op->include_isa_bit)
16815 {
16816 addr += 2;
16817
16818 /* If we are currently assuming that this frag should be
16819 extended, then, the current address is two bytes
16820 higher. */
16821 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16822 addr += 2;
16823
16824 /* Ignore the low bit in the target, since it will be set
16825 for a text label. */
16826 val &= -2;
16827 }
16828 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16829 addr -= 4;
16830 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16831 addr -= 2;
16832
16833 val -= addr & -(1 << pcrel_op->align_log2);
16834
16835 /* If any of the shifted bits are set, we must use an extended
16836 opcode. If the address depends on the size of this
16837 instruction, this can lead to a loop, so we arrange to always
16838 use an extended opcode. */
16839 if ((val & ((1 << operand->shift) - 1)) != 0)
16840 {
16841 fragp->fr_subtype =
16842 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16843 return 1;
16844 }
16845
16846 /* If we are about to mark a frag as extended because the value
16847 is precisely the next value above maxtiny, then there is a
16848 chance of an infinite loop as in the following code:
16849 la $4,foo
16850 .skip 1020
16851 .align 2
16852 foo:
16853 In this case when the la is extended, foo is 0x3fc bytes
16854 away, so the la can be shrunk, but then foo is 0x400 away, so
16855 the la must be extended. To avoid this loop, we mark the
16856 frag as extended if it was small, and is about to become
16857 extended with the next value above maxtiny. */
16858 maxtiny = mips_int_operand_max (operand);
16859 if (val == maxtiny + (1 << operand->shift)
16860 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16861 {
16862 fragp->fr_subtype =
16863 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16864 return 1;
16865 }
16866 }
16867
16868 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16869 }
16870
16871 /* Compute the length of a branch sequence, and adjust the
16872 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16873 worst-case length is computed, with UPDATE being used to indicate
16874 whether an unconditional (-1), branch-likely (+1) or regular (0)
16875 branch is to be computed. */
16876 static int
16877 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16878 {
16879 bfd_boolean toofar;
16880 int length;
16881
16882 if (fragp
16883 && S_IS_DEFINED (fragp->fr_symbol)
16884 && !S_IS_WEAK (fragp->fr_symbol)
16885 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16886 {
16887 addressT addr;
16888 offsetT val;
16889
16890 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16891
16892 addr = fragp->fr_address + fragp->fr_fix + 4;
16893
16894 val -= addr;
16895
16896 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16897 }
16898 else
16899 /* If the symbol is not defined or it's in a different segment,
16900 we emit the long sequence. */
16901 toofar = TRUE;
16902
16903 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16904 fragp->fr_subtype
16905 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16906 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16907 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16908 RELAX_BRANCH_LINK (fragp->fr_subtype),
16909 toofar);
16910
16911 length = 4;
16912 if (toofar)
16913 {
16914 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16915 length += 8;
16916
16917 if (mips_pic != NO_PIC)
16918 {
16919 /* Additional space for PIC loading of target address. */
16920 length += 8;
16921 if (mips_opts.isa == ISA_MIPS1)
16922 /* Additional space for $at-stabilizing nop. */
16923 length += 4;
16924 }
16925
16926 /* If branch is conditional. */
16927 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16928 length += 8;
16929 }
16930
16931 return length;
16932 }
16933
16934 /* Compute the length of a branch sequence, and adjust the
16935 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16936 worst-case length is computed, with UPDATE being used to indicate
16937 whether an unconditional (-1), or regular (0) branch is to be
16938 computed. */
16939
16940 static int
16941 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16942 {
16943 bfd_boolean toofar;
16944 int length;
16945
16946 if (fragp
16947 && S_IS_DEFINED (fragp->fr_symbol)
16948 && !S_IS_WEAK (fragp->fr_symbol)
16949 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16950 {
16951 addressT addr;
16952 offsetT val;
16953
16954 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16955 /* Ignore the low bit in the target, since it will be set
16956 for a text label. */
16957 if ((val & 1) != 0)
16958 --val;
16959
16960 addr = fragp->fr_address + fragp->fr_fix + 4;
16961
16962 val -= addr;
16963
16964 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16965 }
16966 else
16967 /* If the symbol is not defined or it's in a different segment,
16968 we emit the long sequence. */
16969 toofar = TRUE;
16970
16971 if (fragp && update
16972 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16973 fragp->fr_subtype = (toofar
16974 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16975 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16976
16977 length = 4;
16978 if (toofar)
16979 {
16980 bfd_boolean compact_known = fragp != NULL;
16981 bfd_boolean compact = FALSE;
16982 bfd_boolean uncond;
16983
16984 if (compact_known)
16985 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16986 if (fragp)
16987 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16988 else
16989 uncond = update < 0;
16990
16991 /* If label is out of range, we turn branch <br>:
16992
16993 <br> label # 4 bytes
16994 0:
16995
16996 into:
16997
16998 j label # 4 bytes
16999 nop # 2 bytes if compact && !PIC
17000 0:
17001 */
17002 if (mips_pic == NO_PIC && (!compact_known || compact))
17003 length += 2;
17004
17005 /* If assembling PIC code, we further turn:
17006
17007 j label # 4 bytes
17008
17009 into:
17010
17011 lw/ld at, %got(label)(gp) # 4 bytes
17012 d/addiu at, %lo(label) # 4 bytes
17013 jr/c at # 2 bytes
17014 */
17015 if (mips_pic != NO_PIC)
17016 length += 6;
17017
17018 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17019
17020 <brneg> 0f # 4 bytes
17021 nop # 2 bytes if !compact
17022 */
17023 if (!uncond)
17024 length += (compact_known && compact) ? 4 : 6;
17025 }
17026
17027 return length;
17028 }
17029
17030 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17031 bit accordingly. */
17032
17033 static int
17034 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17035 {
17036 bfd_boolean toofar;
17037
17038 if (fragp
17039 && S_IS_DEFINED (fragp->fr_symbol)
17040 && !S_IS_WEAK (fragp->fr_symbol)
17041 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17042 {
17043 addressT addr;
17044 offsetT val;
17045 int type;
17046
17047 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17048 /* Ignore the low bit in the target, since it will be set
17049 for a text label. */
17050 if ((val & 1) != 0)
17051 --val;
17052
17053 /* Assume this is a 2-byte branch. */
17054 addr = fragp->fr_address + fragp->fr_fix + 2;
17055
17056 /* We try to avoid the infinite loop by not adding 2 more bytes for
17057 long branches. */
17058
17059 val -= addr;
17060
17061 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17062 if (type == 'D')
17063 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17064 else if (type == 'E')
17065 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17066 else
17067 abort ();
17068 }
17069 else
17070 /* If the symbol is not defined or it's in a different segment,
17071 we emit a normal 32-bit branch. */
17072 toofar = TRUE;
17073
17074 if (fragp && update
17075 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17076 fragp->fr_subtype
17077 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17078 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17079
17080 if (toofar)
17081 return 4;
17082
17083 return 2;
17084 }
17085
17086 /* Estimate the size of a frag before relaxing. Unless this is the
17087 mips16, we are not really relaxing here, and the final size is
17088 encoded in the subtype information. For the mips16, we have to
17089 decide whether we are using an extended opcode or not. */
17090
17091 int
17092 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17093 {
17094 int change;
17095
17096 if (RELAX_BRANCH_P (fragp->fr_subtype))
17097 {
17098
17099 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17100
17101 return fragp->fr_var;
17102 }
17103
17104 if (RELAX_MIPS16_P (fragp->fr_subtype))
17105 /* We don't want to modify the EXTENDED bit here; it might get us
17106 into infinite loops. We change it only in mips_relax_frag(). */
17107 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17108
17109 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17110 {
17111 int length = 4;
17112
17113 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17114 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17115 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17116 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17117 fragp->fr_var = length;
17118
17119 return length;
17120 }
17121
17122 if (mips_pic == NO_PIC)
17123 change = nopic_need_relax (fragp->fr_symbol, 0);
17124 else if (mips_pic == SVR4_PIC)
17125 change = pic_need_relax (fragp->fr_symbol, segtype);
17126 else if (mips_pic == VXWORKS_PIC)
17127 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17128 change = 0;
17129 else
17130 abort ();
17131
17132 if (change)
17133 {
17134 fragp->fr_subtype |= RELAX_USE_SECOND;
17135 return -RELAX_FIRST (fragp->fr_subtype);
17136 }
17137 else
17138 return -RELAX_SECOND (fragp->fr_subtype);
17139 }
17140
17141 /* This is called to see whether a reloc against a defined symbol
17142 should be converted into a reloc against a section. */
17143
17144 int
17145 mips_fix_adjustable (fixS *fixp)
17146 {
17147 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17148 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17149 return 0;
17150
17151 if (fixp->fx_addsy == NULL)
17152 return 1;
17153
17154 /* Allow relocs used for EH tables. */
17155 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17156 return 1;
17157
17158 /* If symbol SYM is in a mergeable section, relocations of the form
17159 SYM + 0 can usually be made section-relative. The mergeable data
17160 is then identified by the section offset rather than by the symbol.
17161
17162 However, if we're generating REL LO16 relocations, the offset is split
17163 between the LO16 and parterning high part relocation. The linker will
17164 need to recalculate the complete offset in order to correctly identify
17165 the merge data.
17166
17167 The linker has traditionally not looked for the parterning high part
17168 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17169 placed anywhere. Rather than break backwards compatibility by changing
17170 this, it seems better not to force the issue, and instead keep the
17171 original symbol. This will work with either linker behavior. */
17172 if ((lo16_reloc_p (fixp->fx_r_type)
17173 || reloc_needs_lo_p (fixp->fx_r_type))
17174 && HAVE_IN_PLACE_ADDENDS
17175 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17176 return 0;
17177
17178 /* There is no place to store an in-place offset for JALR relocations. */
17179 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17180 return 0;
17181
17182 /* Likewise an in-range offset of limited PC-relative relocations may
17183 overflow the in-place relocatable field if recalculated against the
17184 start address of the symbol's containing section.
17185
17186 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17187 section relative to allow linker relaxations to be performed later on. */
17188 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17189 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17190 return 0;
17191
17192 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17193 to a floating-point stub. The same is true for non-R_MIPS16_26
17194 relocations against MIPS16 functions; in this case, the stub becomes
17195 the function's canonical address.
17196
17197 Floating-point stubs are stored in unique .mips16.call.* or
17198 .mips16.fn.* sections. If a stub T for function F is in section S,
17199 the first relocation in section S must be against F; this is how the
17200 linker determines the target function. All relocations that might
17201 resolve to T must also be against F. We therefore have the following
17202 restrictions, which are given in an intentionally-redundant way:
17203
17204 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17205 symbols.
17206
17207 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17208 if that stub might be used.
17209
17210 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17211 symbols.
17212
17213 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17214 that stub might be used.
17215
17216 There is a further restriction:
17217
17218 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17219 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17220 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17221 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17222 against MIPS16 or microMIPS symbols because we need to keep the
17223 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17224 detection and JAL to JALX instruction conversion in the linker.
17225
17226 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17227 against a MIPS16 symbol. We deal with (5) by additionally leaving
17228 alone any jump and branch relocations against a microMIPS symbol.
17229
17230 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17231 relocation against some symbol R, no relocation against R may be
17232 reduced. (Note that this deals with (2) as well as (1) because
17233 relocations against global symbols will never be reduced on ELF
17234 targets.) This approach is a little simpler than trying to detect
17235 stub sections, and gives the "all or nothing" per-symbol consistency
17236 that we have for MIPS16 symbols. */
17237 if (fixp->fx_subsy == NULL
17238 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17239 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17240 && (jmp_reloc_p (fixp->fx_r_type)
17241 || b_reloc_p (fixp->fx_r_type)))
17242 || *symbol_get_tc (fixp->fx_addsy)))
17243 return 0;
17244
17245 return 1;
17246 }
17247
17248 /* Translate internal representation of relocation info to BFD target
17249 format. */
17250
17251 arelent **
17252 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17253 {
17254 static arelent *retval[4];
17255 arelent *reloc;
17256 bfd_reloc_code_real_type code;
17257
17258 memset (retval, 0, sizeof(retval));
17259 reloc = retval[0] = XCNEW (arelent);
17260 reloc->sym_ptr_ptr = XNEW (asymbol *);
17261 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17262 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17263
17264 if (fixp->fx_pcrel)
17265 {
17266 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17267 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17268 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17269 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17270 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17271 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17272 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17273 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17274 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17275 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17276 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17277 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17278
17279 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17280 Relocations want only the symbol offset. */
17281 switch (fixp->fx_r_type)
17282 {
17283 case BFD_RELOC_MIPS_18_PCREL_S3:
17284 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17285 break;
17286 default:
17287 reloc->addend = fixp->fx_addnumber + reloc->address;
17288 break;
17289 }
17290 }
17291 else if (HAVE_IN_PLACE_ADDENDS
17292 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17293 && (read_compressed_insn (fixp->fx_frag->fr_literal
17294 + fixp->fx_where, 4) >> 26) == 0x3c)
17295 {
17296 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17297 addend accordingly. */
17298 reloc->addend = fixp->fx_addnumber >> 1;
17299 }
17300 else
17301 reloc->addend = fixp->fx_addnumber;
17302
17303 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17304 entry to be used in the relocation's section offset. */
17305 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17306 {
17307 reloc->address = reloc->addend;
17308 reloc->addend = 0;
17309 }
17310
17311 code = fixp->fx_r_type;
17312
17313 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17314 if (reloc->howto == NULL)
17315 {
17316 as_bad_where (fixp->fx_file, fixp->fx_line,
17317 _("cannot represent %s relocation in this object file"
17318 " format"),
17319 bfd_get_reloc_code_name (code));
17320 retval[0] = NULL;
17321 }
17322
17323 return retval;
17324 }
17325
17326 /* Relax a machine dependent frag. This returns the amount by which
17327 the current size of the frag should change. */
17328
17329 int
17330 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17331 {
17332 if (RELAX_BRANCH_P (fragp->fr_subtype))
17333 {
17334 offsetT old_var = fragp->fr_var;
17335
17336 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17337
17338 return fragp->fr_var - old_var;
17339 }
17340
17341 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17342 {
17343 offsetT old_var = fragp->fr_var;
17344 offsetT new_var = 4;
17345
17346 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17347 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17348 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17349 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17350 fragp->fr_var = new_var;
17351
17352 return new_var - old_var;
17353 }
17354
17355 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17356 return 0;
17357
17358 if (mips16_extended_frag (fragp, sec, stretch))
17359 {
17360 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17361 return 0;
17362 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17363 return 2;
17364 }
17365 else
17366 {
17367 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17368 return 0;
17369 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17370 return -2;
17371 }
17372
17373 return 0;
17374 }
17375
17376 /* Convert a machine dependent frag. */
17377
17378 void
17379 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17380 {
17381 if (RELAX_BRANCH_P (fragp->fr_subtype))
17382 {
17383 char *buf;
17384 unsigned long insn;
17385 expressionS exp;
17386 fixS *fixp;
17387
17388 buf = fragp->fr_literal + fragp->fr_fix;
17389 insn = read_insn (buf);
17390
17391 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17392 {
17393 /* We generate a fixup instead of applying it right now
17394 because, if there are linker relaxations, we're going to
17395 need the relocations. */
17396 exp.X_op = O_symbol;
17397 exp.X_add_symbol = fragp->fr_symbol;
17398 exp.X_add_number = fragp->fr_offset;
17399
17400 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17401 BFD_RELOC_16_PCREL_S2);
17402 fixp->fx_file = fragp->fr_file;
17403 fixp->fx_line = fragp->fr_line;
17404
17405 buf = write_insn (buf, insn);
17406 }
17407 else
17408 {
17409 int i;
17410
17411 as_warn_where (fragp->fr_file, fragp->fr_line,
17412 _("relaxed out-of-range branch into a jump"));
17413
17414 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17415 goto uncond;
17416
17417 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17418 {
17419 /* Reverse the branch. */
17420 switch ((insn >> 28) & 0xf)
17421 {
17422 case 4:
17423 if ((insn & 0xff000000) == 0x47000000
17424 || (insn & 0xff600000) == 0x45600000)
17425 {
17426 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17427 reversed by tweaking bit 23. */
17428 insn ^= 0x00800000;
17429 }
17430 else
17431 {
17432 /* bc[0-3][tf]l? instructions can have the condition
17433 reversed by tweaking a single TF bit, and their
17434 opcodes all have 0x4???????. */
17435 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17436 insn ^= 0x00010000;
17437 }
17438 break;
17439
17440 case 0:
17441 /* bltz 0x04000000 bgez 0x04010000
17442 bltzal 0x04100000 bgezal 0x04110000 */
17443 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17444 insn ^= 0x00010000;
17445 break;
17446
17447 case 1:
17448 /* beq 0x10000000 bne 0x14000000
17449 blez 0x18000000 bgtz 0x1c000000 */
17450 insn ^= 0x04000000;
17451 break;
17452
17453 default:
17454 abort ();
17455 }
17456 }
17457
17458 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17459 {
17460 /* Clear the and-link bit. */
17461 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17462
17463 /* bltzal 0x04100000 bgezal 0x04110000
17464 bltzall 0x04120000 bgezall 0x04130000 */
17465 insn &= ~0x00100000;
17466 }
17467
17468 /* Branch over the branch (if the branch was likely) or the
17469 full jump (not likely case). Compute the offset from the
17470 current instruction to branch to. */
17471 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17472 i = 16;
17473 else
17474 {
17475 /* How many bytes in instructions we've already emitted? */
17476 i = buf - fragp->fr_literal - fragp->fr_fix;
17477 /* How many bytes in instructions from here to the end? */
17478 i = fragp->fr_var - i;
17479 }
17480 /* Convert to instruction count. */
17481 i >>= 2;
17482 /* Branch counts from the next instruction. */
17483 i--;
17484 insn |= i;
17485 /* Branch over the jump. */
17486 buf = write_insn (buf, insn);
17487
17488 /* nop */
17489 buf = write_insn (buf, 0);
17490
17491 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17492 {
17493 /* beql $0, $0, 2f */
17494 insn = 0x50000000;
17495 /* Compute the PC offset from the current instruction to
17496 the end of the variable frag. */
17497 /* How many bytes in instructions we've already emitted? */
17498 i = buf - fragp->fr_literal - fragp->fr_fix;
17499 /* How many bytes in instructions from here to the end? */
17500 i = fragp->fr_var - i;
17501 /* Convert to instruction count. */
17502 i >>= 2;
17503 /* Don't decrement i, because we want to branch over the
17504 delay slot. */
17505 insn |= i;
17506
17507 buf = write_insn (buf, insn);
17508 buf = write_insn (buf, 0);
17509 }
17510
17511 uncond:
17512 if (mips_pic == NO_PIC)
17513 {
17514 /* j or jal. */
17515 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17516 ? 0x0c000000 : 0x08000000);
17517 exp.X_op = O_symbol;
17518 exp.X_add_symbol = fragp->fr_symbol;
17519 exp.X_add_number = fragp->fr_offset;
17520
17521 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17522 FALSE, BFD_RELOC_MIPS_JMP);
17523 fixp->fx_file = fragp->fr_file;
17524 fixp->fx_line = fragp->fr_line;
17525
17526 buf = write_insn (buf, insn);
17527 }
17528 else
17529 {
17530 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17531
17532 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17533 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17534 insn |= at << OP_SH_RT;
17535 exp.X_op = O_symbol;
17536 exp.X_add_symbol = fragp->fr_symbol;
17537 exp.X_add_number = fragp->fr_offset;
17538
17539 if (fragp->fr_offset)
17540 {
17541 exp.X_add_symbol = make_expr_symbol (&exp);
17542 exp.X_add_number = 0;
17543 }
17544
17545 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17546 FALSE, BFD_RELOC_MIPS_GOT16);
17547 fixp->fx_file = fragp->fr_file;
17548 fixp->fx_line = fragp->fr_line;
17549
17550 buf = write_insn (buf, insn);
17551
17552 if (mips_opts.isa == ISA_MIPS1)
17553 /* nop */
17554 buf = write_insn (buf, 0);
17555
17556 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17557 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17558 insn |= at << OP_SH_RS | at << OP_SH_RT;
17559
17560 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17561 FALSE, BFD_RELOC_LO16);
17562 fixp->fx_file = fragp->fr_file;
17563 fixp->fx_line = fragp->fr_line;
17564
17565 buf = write_insn (buf, insn);
17566
17567 /* j(al)r $at. */
17568 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17569 insn = 0x0000f809;
17570 else
17571 insn = 0x00000008;
17572 insn |= at << OP_SH_RS;
17573
17574 buf = write_insn (buf, insn);
17575 }
17576 }
17577
17578 fragp->fr_fix += fragp->fr_var;
17579 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17580 return;
17581 }
17582
17583 /* Relax microMIPS branches. */
17584 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17585 {
17586 char *buf = fragp->fr_literal + fragp->fr_fix;
17587 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17588 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17589 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17590 bfd_boolean short_ds;
17591 unsigned long insn;
17592 expressionS exp;
17593 fixS *fixp;
17594
17595 exp.X_op = O_symbol;
17596 exp.X_add_symbol = fragp->fr_symbol;
17597 exp.X_add_number = fragp->fr_offset;
17598
17599 fragp->fr_fix += fragp->fr_var;
17600
17601 /* Handle 16-bit branches that fit or are forced to fit. */
17602 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17603 {
17604 /* We generate a fixup instead of applying it right now,
17605 because if there is linker relaxation, we're going to
17606 need the relocations. */
17607 if (type == 'D')
17608 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17609 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17610 else if (type == 'E')
17611 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17612 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17613 else
17614 abort ();
17615
17616 fixp->fx_file = fragp->fr_file;
17617 fixp->fx_line = fragp->fr_line;
17618
17619 /* These relocations can have an addend that won't fit in
17620 2 octets. */
17621 fixp->fx_no_overflow = 1;
17622
17623 return;
17624 }
17625
17626 /* Handle 32-bit branches that fit or are forced to fit. */
17627 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17628 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17629 {
17630 /* We generate a fixup instead of applying it right now,
17631 because if there is linker relaxation, we're going to
17632 need the relocations. */
17633 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17634 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17635 fixp->fx_file = fragp->fr_file;
17636 fixp->fx_line = fragp->fr_line;
17637
17638 if (type == 0)
17639 return;
17640 }
17641
17642 /* Relax 16-bit branches to 32-bit branches. */
17643 if (type != 0)
17644 {
17645 insn = read_compressed_insn (buf, 2);
17646
17647 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17648 insn = 0x94000000; /* beq */
17649 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17650 {
17651 unsigned long regno;
17652
17653 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17654 regno = micromips_to_32_reg_d_map [regno];
17655 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17656 insn |= regno << MICROMIPSOP_SH_RS;
17657 }
17658 else
17659 abort ();
17660
17661 /* Nothing else to do, just write it out. */
17662 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17663 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17664 {
17665 buf = write_compressed_insn (buf, insn, 4);
17666 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17667 return;
17668 }
17669 }
17670 else
17671 insn = read_compressed_insn (buf, 4);
17672
17673 /* Relax 32-bit branches to a sequence of instructions. */
17674 as_warn_where (fragp->fr_file, fragp->fr_line,
17675 _("relaxed out-of-range branch into a jump"));
17676
17677 /* Set the short-delay-slot bit. */
17678 short_ds = al && (insn & 0x02000000) != 0;
17679
17680 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17681 {
17682 symbolS *l;
17683
17684 /* Reverse the branch. */
17685 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17686 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17687 insn ^= 0x20000000;
17688 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17689 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17690 || (insn & 0xffe00000) == 0x40800000 /* blez */
17691 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17692 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17693 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17694 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17695 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17696 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17697 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17698 insn ^= 0x00400000;
17699 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17700 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17701 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17702 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17703 insn ^= 0x00200000;
17704 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17705 BNZ.df */
17706 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17707 BNZ.V */
17708 insn ^= 0x00800000;
17709 else
17710 abort ();
17711
17712 if (al)
17713 {
17714 /* Clear the and-link and short-delay-slot bits. */
17715 gas_assert ((insn & 0xfda00000) == 0x40200000);
17716
17717 /* bltzal 0x40200000 bgezal 0x40600000 */
17718 /* bltzals 0x42200000 bgezals 0x42600000 */
17719 insn &= ~0x02200000;
17720 }
17721
17722 /* Make a label at the end for use with the branch. */
17723 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17724 micromips_label_inc ();
17725 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17726
17727 /* Refer to it. */
17728 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17729 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17730 fixp->fx_file = fragp->fr_file;
17731 fixp->fx_line = fragp->fr_line;
17732
17733 /* Branch over the jump. */
17734 buf = write_compressed_insn (buf, insn, 4);
17735 if (!compact)
17736 /* nop */
17737 buf = write_compressed_insn (buf, 0x0c00, 2);
17738 }
17739
17740 if (mips_pic == NO_PIC)
17741 {
17742 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17743
17744 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17745 insn = al ? jal : 0xd4000000;
17746
17747 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17748 BFD_RELOC_MICROMIPS_JMP);
17749 fixp->fx_file = fragp->fr_file;
17750 fixp->fx_line = fragp->fr_line;
17751
17752 buf = write_compressed_insn (buf, insn, 4);
17753 if (compact)
17754 /* nop */
17755 buf = write_compressed_insn (buf, 0x0c00, 2);
17756 }
17757 else
17758 {
17759 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17760 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17761 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17762
17763 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17764 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17765 insn |= at << MICROMIPSOP_SH_RT;
17766
17767 if (exp.X_add_number)
17768 {
17769 exp.X_add_symbol = make_expr_symbol (&exp);
17770 exp.X_add_number = 0;
17771 }
17772
17773 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17774 BFD_RELOC_MICROMIPS_GOT16);
17775 fixp->fx_file = fragp->fr_file;
17776 fixp->fx_line = fragp->fr_line;
17777
17778 buf = write_compressed_insn (buf, insn, 4);
17779
17780 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17781 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17782 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17783
17784 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17785 BFD_RELOC_MICROMIPS_LO16);
17786 fixp->fx_file = fragp->fr_file;
17787 fixp->fx_line = fragp->fr_line;
17788
17789 buf = write_compressed_insn (buf, insn, 4);
17790
17791 /* jr/jrc/jalr/jalrs $at */
17792 insn = al ? jalr : jr;
17793 insn |= at << MICROMIPSOP_SH_MJ;
17794
17795 buf = write_compressed_insn (buf, insn, 2);
17796 }
17797
17798 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17799 return;
17800 }
17801
17802 if (RELAX_MIPS16_P (fragp->fr_subtype))
17803 {
17804 int type;
17805 const struct mips_int_operand *operand;
17806 offsetT val;
17807 char *buf;
17808 unsigned int user_length, length;
17809 unsigned long insn;
17810 bfd_boolean ext;
17811 segT symsec;
17812
17813 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17814 operand = mips16_immed_operand (type, FALSE);
17815
17816 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17817 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
17818 if (operand->root.type == OP_PCREL)
17819 {
17820 const struct mips_pcrel_operand *pcrel_op;
17821 addressT addr;
17822
17823 pcrel_op = (const struct mips_pcrel_operand *) operand;
17824 addr = fragp->fr_address + fragp->fr_fix;
17825
17826 /* The rules for the base address of a PC relative reloc are
17827 complicated; see mips16_extended_frag. */
17828 if (pcrel_op->include_isa_bit)
17829 {
17830 addr += 2;
17831 if (ext)
17832 addr += 2;
17833 /* Ignore the low bit in the target, since it will be
17834 set for a text label. */
17835 val &= -2;
17836 }
17837 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17838 addr -= 4;
17839 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17840 addr -= 2;
17841
17842 addr &= -(1 << pcrel_op->align_log2);
17843 val -= addr;
17844
17845 /* Make sure the section winds up with the alignment we have
17846 assumed. */
17847 if (operand->shift > 0)
17848 record_alignment (asec, operand->shift);
17849 }
17850
17851 if (ext
17852 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17853 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17854 as_warn_where (fragp->fr_file, fragp->fr_line,
17855 _("extended instruction in delay slot"));
17856
17857 buf = fragp->fr_literal + fragp->fr_fix;
17858
17859 insn = read_compressed_insn (buf, 2);
17860 if (ext)
17861 insn |= MIPS16_EXTEND;
17862
17863 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17864 user_length = 4;
17865 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17866 user_length = 2;
17867 else
17868 user_length = 0;
17869
17870 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17871 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17872 || (operand->root.type == OP_PCREL
17873 ? asec != symsec
17874 : !bfd_is_abs_section (symsec)))
17875 {
17876 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
17877 expressionS exp;
17878 fixS *fixp;
17879
17880 switch (type)
17881 {
17882 case 'p':
17883 case 'q':
17884 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
17885 break;
17886 default:
17887 as_bad_where (fragp->fr_file, fragp->fr_line,
17888 _("unsupported relocation"));
17889 break;
17890 }
17891 if (reloc != BFD_RELOC_NONE)
17892 {
17893 gas_assert (ext);
17894
17895 exp.X_op = O_symbol;
17896 exp.X_add_symbol = fragp->fr_symbol;
17897 exp.X_add_number = fragp->fr_offset;
17898
17899 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp,
17900 TRUE, reloc);
17901
17902 fixp->fx_file = fragp->fr_file;
17903 fixp->fx_line = fragp->fr_line;
17904
17905 /* These relocations can have an addend that won't fit
17906 in 2 octets. */
17907 fixp->fx_no_overflow = 1;
17908 }
17909 }
17910 else
17911 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17912 BFD_RELOC_UNUSED, val, user_length, &insn);
17913
17914 length = (ext ? 4 : 2);
17915 gas_assert (mips16_opcode_length (insn) == length);
17916 write_compressed_insn (buf, insn, length);
17917 fragp->fr_fix += length;
17918 }
17919 else
17920 {
17921 relax_substateT subtype = fragp->fr_subtype;
17922 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17923 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17924 int first, second;
17925 fixS *fixp;
17926
17927 first = RELAX_FIRST (subtype);
17928 second = RELAX_SECOND (subtype);
17929 fixp = (fixS *) fragp->fr_opcode;
17930
17931 /* If the delay slot chosen does not match the size of the instruction,
17932 then emit a warning. */
17933 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17934 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17935 {
17936 relax_substateT s;
17937 const char *msg;
17938
17939 s = subtype & (RELAX_DELAY_SLOT_16BIT
17940 | RELAX_DELAY_SLOT_SIZE_FIRST
17941 | RELAX_DELAY_SLOT_SIZE_SECOND);
17942 msg = macro_warning (s);
17943 if (msg != NULL)
17944 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17945 subtype &= ~s;
17946 }
17947
17948 /* Possibly emit a warning if we've chosen the longer option. */
17949 if (use_second == second_longer)
17950 {
17951 relax_substateT s;
17952 const char *msg;
17953
17954 s = (subtype
17955 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17956 msg = macro_warning (s);
17957 if (msg != NULL)
17958 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17959 subtype &= ~s;
17960 }
17961
17962 /* Go through all the fixups for the first sequence. Disable them
17963 (by marking them as done) if we're going to use the second
17964 sequence instead. */
17965 while (fixp
17966 && fixp->fx_frag == fragp
17967 && fixp->fx_where < fragp->fr_fix - second)
17968 {
17969 if (subtype & RELAX_USE_SECOND)
17970 fixp->fx_done = 1;
17971 fixp = fixp->fx_next;
17972 }
17973
17974 /* Go through the fixups for the second sequence. Disable them if
17975 we're going to use the first sequence, otherwise adjust their
17976 addresses to account for the relaxation. */
17977 while (fixp && fixp->fx_frag == fragp)
17978 {
17979 if (subtype & RELAX_USE_SECOND)
17980 fixp->fx_where -= first;
17981 else
17982 fixp->fx_done = 1;
17983 fixp = fixp->fx_next;
17984 }
17985
17986 /* Now modify the frag contents. */
17987 if (subtype & RELAX_USE_SECOND)
17988 {
17989 char *start;
17990
17991 start = fragp->fr_literal + fragp->fr_fix - first - second;
17992 memmove (start, start + first, second);
17993 fragp->fr_fix -= first;
17994 }
17995 else
17996 fragp->fr_fix -= second;
17997 }
17998 }
17999
18000 /* This function is called after the relocs have been generated.
18001 We've been storing mips16 text labels as odd. Here we convert them
18002 back to even for the convenience of the debugger. */
18003
18004 void
18005 mips_frob_file_after_relocs (void)
18006 {
18007 asymbol **syms;
18008 unsigned int count, i;
18009
18010 syms = bfd_get_outsymbols (stdoutput);
18011 count = bfd_get_symcount (stdoutput);
18012 for (i = 0; i < count; i++, syms++)
18013 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18014 && ((*syms)->value & 1) != 0)
18015 {
18016 (*syms)->value &= ~1;
18017 /* If the symbol has an odd size, it was probably computed
18018 incorrectly, so adjust that as well. */
18019 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18020 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18021 }
18022 }
18023
18024 /* This function is called whenever a label is defined, including fake
18025 labels instantiated off the dot special symbol. It is used when
18026 handling branch delays; if a branch has a label, we assume we cannot
18027 move it. This also bumps the value of the symbol by 1 in compressed
18028 code. */
18029
18030 static void
18031 mips_record_label (symbolS *sym)
18032 {
18033 segment_info_type *si = seg_info (now_seg);
18034 struct insn_label_list *l;
18035
18036 if (free_insn_labels == NULL)
18037 l = XNEW (struct insn_label_list);
18038 else
18039 {
18040 l = free_insn_labels;
18041 free_insn_labels = l->next;
18042 }
18043
18044 l->label = sym;
18045 l->next = si->label_list;
18046 si->label_list = l;
18047 }
18048
18049 /* This function is called as tc_frob_label() whenever a label is defined
18050 and adds a DWARF-2 record we only want for true labels. */
18051
18052 void
18053 mips_define_label (symbolS *sym)
18054 {
18055 mips_record_label (sym);
18056 dwarf2_emit_label (sym);
18057 }
18058
18059 /* This function is called by tc_new_dot_label whenever a new dot symbol
18060 is defined. */
18061
18062 void
18063 mips_add_dot_label (symbolS *sym)
18064 {
18065 mips_record_label (sym);
18066 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18067 mips_compressed_mark_label (sym);
18068 }
18069 \f
18070 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18071 static unsigned int
18072 mips_convert_ase_flags (int ase)
18073 {
18074 unsigned int ext_ases = 0;
18075
18076 if (ase & ASE_DSP)
18077 ext_ases |= AFL_ASE_DSP;
18078 if (ase & ASE_DSPR2)
18079 ext_ases |= AFL_ASE_DSPR2;
18080 if (ase & ASE_DSPR3)
18081 ext_ases |= AFL_ASE_DSPR3;
18082 if (ase & ASE_EVA)
18083 ext_ases |= AFL_ASE_EVA;
18084 if (ase & ASE_MCU)
18085 ext_ases |= AFL_ASE_MCU;
18086 if (ase & ASE_MDMX)
18087 ext_ases |= AFL_ASE_MDMX;
18088 if (ase & ASE_MIPS3D)
18089 ext_ases |= AFL_ASE_MIPS3D;
18090 if (ase & ASE_MT)
18091 ext_ases |= AFL_ASE_MT;
18092 if (ase & ASE_SMARTMIPS)
18093 ext_ases |= AFL_ASE_SMARTMIPS;
18094 if (ase & ASE_VIRT)
18095 ext_ases |= AFL_ASE_VIRT;
18096 if (ase & ASE_MSA)
18097 ext_ases |= AFL_ASE_MSA;
18098 if (ase & ASE_XPA)
18099 ext_ases |= AFL_ASE_XPA;
18100
18101 return ext_ases;
18102 }
18103 /* Some special processing for a MIPS ELF file. */
18104
18105 void
18106 mips_elf_final_processing (void)
18107 {
18108 int fpabi;
18109 Elf_Internal_ABIFlags_v0 flags;
18110
18111 flags.version = 0;
18112 flags.isa_rev = 0;
18113 switch (file_mips_opts.isa)
18114 {
18115 case INSN_ISA1:
18116 flags.isa_level = 1;
18117 break;
18118 case INSN_ISA2:
18119 flags.isa_level = 2;
18120 break;
18121 case INSN_ISA3:
18122 flags.isa_level = 3;
18123 break;
18124 case INSN_ISA4:
18125 flags.isa_level = 4;
18126 break;
18127 case INSN_ISA5:
18128 flags.isa_level = 5;
18129 break;
18130 case INSN_ISA32:
18131 flags.isa_level = 32;
18132 flags.isa_rev = 1;
18133 break;
18134 case INSN_ISA32R2:
18135 flags.isa_level = 32;
18136 flags.isa_rev = 2;
18137 break;
18138 case INSN_ISA32R3:
18139 flags.isa_level = 32;
18140 flags.isa_rev = 3;
18141 break;
18142 case INSN_ISA32R5:
18143 flags.isa_level = 32;
18144 flags.isa_rev = 5;
18145 break;
18146 case INSN_ISA32R6:
18147 flags.isa_level = 32;
18148 flags.isa_rev = 6;
18149 break;
18150 case INSN_ISA64:
18151 flags.isa_level = 64;
18152 flags.isa_rev = 1;
18153 break;
18154 case INSN_ISA64R2:
18155 flags.isa_level = 64;
18156 flags.isa_rev = 2;
18157 break;
18158 case INSN_ISA64R3:
18159 flags.isa_level = 64;
18160 flags.isa_rev = 3;
18161 break;
18162 case INSN_ISA64R5:
18163 flags.isa_level = 64;
18164 flags.isa_rev = 5;
18165 break;
18166 case INSN_ISA64R6:
18167 flags.isa_level = 64;
18168 flags.isa_rev = 6;
18169 break;
18170 }
18171
18172 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18173 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18174 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18175 : (file_mips_opts.fp == 64) ? AFL_REG_64
18176 : AFL_REG_32;
18177 flags.cpr2_size = AFL_REG_NONE;
18178 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18179 Tag_GNU_MIPS_ABI_FP);
18180 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18181 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18182 if (file_ase_mips16)
18183 flags.ases |= AFL_ASE_MIPS16;
18184 if (file_ase_micromips)
18185 flags.ases |= AFL_ASE_MICROMIPS;
18186 flags.flags1 = 0;
18187 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18188 || file_mips_opts.fp == 64)
18189 && file_mips_opts.oddspreg)
18190 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18191 flags.flags2 = 0;
18192
18193 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18194 ((Elf_External_ABIFlags_v0 *)
18195 mips_flags_frag));
18196
18197 /* Write out the register information. */
18198 if (mips_abi != N64_ABI)
18199 {
18200 Elf32_RegInfo s;
18201
18202 s.ri_gprmask = mips_gprmask;
18203 s.ri_cprmask[0] = mips_cprmask[0];
18204 s.ri_cprmask[1] = mips_cprmask[1];
18205 s.ri_cprmask[2] = mips_cprmask[2];
18206 s.ri_cprmask[3] = mips_cprmask[3];
18207 /* The gp_value field is set by the MIPS ELF backend. */
18208
18209 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18210 ((Elf32_External_RegInfo *)
18211 mips_regmask_frag));
18212 }
18213 else
18214 {
18215 Elf64_Internal_RegInfo s;
18216
18217 s.ri_gprmask = mips_gprmask;
18218 s.ri_pad = 0;
18219 s.ri_cprmask[0] = mips_cprmask[0];
18220 s.ri_cprmask[1] = mips_cprmask[1];
18221 s.ri_cprmask[2] = mips_cprmask[2];
18222 s.ri_cprmask[3] = mips_cprmask[3];
18223 /* The gp_value field is set by the MIPS ELF backend. */
18224
18225 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18226 ((Elf64_External_RegInfo *)
18227 mips_regmask_frag));
18228 }
18229
18230 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18231 sort of BFD interface for this. */
18232 if (mips_any_noreorder)
18233 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18234 if (mips_pic != NO_PIC)
18235 {
18236 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18237 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18238 }
18239 if (mips_abicalls)
18240 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18241
18242 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18243 defined at present; this might need to change in future. */
18244 if (file_ase_mips16)
18245 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18246 if (file_ase_micromips)
18247 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18248 if (file_mips_opts.ase & ASE_MDMX)
18249 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18250
18251 /* Set the MIPS ELF ABI flags. */
18252 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18253 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18254 else if (mips_abi == O64_ABI)
18255 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18256 else if (mips_abi == EABI_ABI)
18257 {
18258 if (file_mips_opts.gp == 64)
18259 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18260 else
18261 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18262 }
18263 else if (mips_abi == N32_ABI)
18264 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18265
18266 /* Nothing to do for N64_ABI. */
18267
18268 if (mips_32bitmode)
18269 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18270
18271 if (mips_nan2008 == 1)
18272 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18273
18274 /* 32 bit code with 64 bit FP registers. */
18275 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18276 Tag_GNU_MIPS_ABI_FP);
18277 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18278 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18279 }
18280 \f
18281 typedef struct proc {
18282 symbolS *func_sym;
18283 symbolS *func_end_sym;
18284 unsigned long reg_mask;
18285 unsigned long reg_offset;
18286 unsigned long fpreg_mask;
18287 unsigned long fpreg_offset;
18288 unsigned long frame_offset;
18289 unsigned long frame_reg;
18290 unsigned long pc_reg;
18291 } procS;
18292
18293 static procS cur_proc;
18294 static procS *cur_proc_ptr;
18295 static int numprocs;
18296
18297 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18298 as "2", and a normal nop as "0". */
18299
18300 #define NOP_OPCODE_MIPS 0
18301 #define NOP_OPCODE_MIPS16 1
18302 #define NOP_OPCODE_MICROMIPS 2
18303
18304 char
18305 mips_nop_opcode (void)
18306 {
18307 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18308 return NOP_OPCODE_MICROMIPS;
18309 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18310 return NOP_OPCODE_MIPS16;
18311 else
18312 return NOP_OPCODE_MIPS;
18313 }
18314
18315 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18316 32-bit microMIPS NOPs here (if applicable). */
18317
18318 void
18319 mips_handle_align (fragS *fragp)
18320 {
18321 char nop_opcode;
18322 char *p;
18323 int bytes, size, excess;
18324 valueT opcode;
18325
18326 if (fragp->fr_type != rs_align_code)
18327 return;
18328
18329 p = fragp->fr_literal + fragp->fr_fix;
18330 nop_opcode = *p;
18331 switch (nop_opcode)
18332 {
18333 case NOP_OPCODE_MICROMIPS:
18334 opcode = micromips_nop32_insn.insn_opcode;
18335 size = 4;
18336 break;
18337 case NOP_OPCODE_MIPS16:
18338 opcode = mips16_nop_insn.insn_opcode;
18339 size = 2;
18340 break;
18341 case NOP_OPCODE_MIPS:
18342 default:
18343 opcode = nop_insn.insn_opcode;
18344 size = 4;
18345 break;
18346 }
18347
18348 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18349 excess = bytes % size;
18350
18351 /* Handle the leading part if we're not inserting a whole number of
18352 instructions, and make it the end of the fixed part of the frag.
18353 Try to fit in a short microMIPS NOP if applicable and possible,
18354 and use zeroes otherwise. */
18355 gas_assert (excess < 4);
18356 fragp->fr_fix += excess;
18357 switch (excess)
18358 {
18359 case 3:
18360 *p++ = '\0';
18361 /* Fall through. */
18362 case 2:
18363 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18364 {
18365 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18366 break;
18367 }
18368 *p++ = '\0';
18369 /* Fall through. */
18370 case 1:
18371 *p++ = '\0';
18372 /* Fall through. */
18373 case 0:
18374 break;
18375 }
18376
18377 md_number_to_chars (p, opcode, size);
18378 fragp->fr_var = size;
18379 }
18380
18381 static long
18382 get_number (void)
18383 {
18384 int negative = 0;
18385 long val = 0;
18386
18387 if (*input_line_pointer == '-')
18388 {
18389 ++input_line_pointer;
18390 negative = 1;
18391 }
18392 if (!ISDIGIT (*input_line_pointer))
18393 as_bad (_("expected simple number"));
18394 if (input_line_pointer[0] == '0')
18395 {
18396 if (input_line_pointer[1] == 'x')
18397 {
18398 input_line_pointer += 2;
18399 while (ISXDIGIT (*input_line_pointer))
18400 {
18401 val <<= 4;
18402 val |= hex_value (*input_line_pointer++);
18403 }
18404 return negative ? -val : val;
18405 }
18406 else
18407 {
18408 ++input_line_pointer;
18409 while (ISDIGIT (*input_line_pointer))
18410 {
18411 val <<= 3;
18412 val |= *input_line_pointer++ - '0';
18413 }
18414 return negative ? -val : val;
18415 }
18416 }
18417 if (!ISDIGIT (*input_line_pointer))
18418 {
18419 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18420 *input_line_pointer, *input_line_pointer);
18421 as_warn (_("invalid number"));
18422 return -1;
18423 }
18424 while (ISDIGIT (*input_line_pointer))
18425 {
18426 val *= 10;
18427 val += *input_line_pointer++ - '0';
18428 }
18429 return negative ? -val : val;
18430 }
18431
18432 /* The .file directive; just like the usual .file directive, but there
18433 is an initial number which is the ECOFF file index. In the non-ECOFF
18434 case .file implies DWARF-2. */
18435
18436 static void
18437 s_mips_file (int x ATTRIBUTE_UNUSED)
18438 {
18439 static int first_file_directive = 0;
18440
18441 if (ECOFF_DEBUGGING)
18442 {
18443 get_number ();
18444 s_app_file (0);
18445 }
18446 else
18447 {
18448 char *filename;
18449
18450 filename = dwarf2_directive_file (0);
18451
18452 /* Versions of GCC up to 3.1 start files with a ".file"
18453 directive even for stabs output. Make sure that this
18454 ".file" is handled. Note that you need a version of GCC
18455 after 3.1 in order to support DWARF-2 on MIPS. */
18456 if (filename != NULL && ! first_file_directive)
18457 {
18458 (void) new_logical_line (filename, -1);
18459 s_app_file_string (filename, 0);
18460 }
18461 first_file_directive = 1;
18462 }
18463 }
18464
18465 /* The .loc directive, implying DWARF-2. */
18466
18467 static void
18468 s_mips_loc (int x ATTRIBUTE_UNUSED)
18469 {
18470 if (!ECOFF_DEBUGGING)
18471 dwarf2_directive_loc (0);
18472 }
18473
18474 /* The .end directive. */
18475
18476 static void
18477 s_mips_end (int x ATTRIBUTE_UNUSED)
18478 {
18479 symbolS *p;
18480
18481 /* Following functions need their own .frame and .cprestore directives. */
18482 mips_frame_reg_valid = 0;
18483 mips_cprestore_valid = 0;
18484
18485 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18486 {
18487 p = get_symbol ();
18488 demand_empty_rest_of_line ();
18489 }
18490 else
18491 p = NULL;
18492
18493 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18494 as_warn (_(".end not in text section"));
18495
18496 if (!cur_proc_ptr)
18497 {
18498 as_warn (_(".end directive without a preceding .ent directive"));
18499 demand_empty_rest_of_line ();
18500 return;
18501 }
18502
18503 if (p != NULL)
18504 {
18505 gas_assert (S_GET_NAME (p));
18506 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18507 as_warn (_(".end symbol does not match .ent symbol"));
18508
18509 if (debug_type == DEBUG_STABS)
18510 stabs_generate_asm_endfunc (S_GET_NAME (p),
18511 S_GET_NAME (p));
18512 }
18513 else
18514 as_warn (_(".end directive missing or unknown symbol"));
18515
18516 /* Create an expression to calculate the size of the function. */
18517 if (p && cur_proc_ptr)
18518 {
18519 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18520 expressionS *exp = XNEW (expressionS);
18521
18522 obj->size = exp;
18523 exp->X_op = O_subtract;
18524 exp->X_add_symbol = symbol_temp_new_now ();
18525 exp->X_op_symbol = p;
18526 exp->X_add_number = 0;
18527
18528 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18529 }
18530
18531 /* Generate a .pdr section. */
18532 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18533 {
18534 segT saved_seg = now_seg;
18535 subsegT saved_subseg = now_subseg;
18536 expressionS exp;
18537 char *fragp;
18538
18539 #ifdef md_flush_pending_output
18540 md_flush_pending_output ();
18541 #endif
18542
18543 gas_assert (pdr_seg);
18544 subseg_set (pdr_seg, 0);
18545
18546 /* Write the symbol. */
18547 exp.X_op = O_symbol;
18548 exp.X_add_symbol = p;
18549 exp.X_add_number = 0;
18550 emit_expr (&exp, 4);
18551
18552 fragp = frag_more (7 * 4);
18553
18554 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18555 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18556 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18557 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18558 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18559 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18560 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18561
18562 subseg_set (saved_seg, saved_subseg);
18563 }
18564
18565 cur_proc_ptr = NULL;
18566 }
18567
18568 /* The .aent and .ent directives. */
18569
18570 static void
18571 s_mips_ent (int aent)
18572 {
18573 symbolS *symbolP;
18574
18575 symbolP = get_symbol ();
18576 if (*input_line_pointer == ',')
18577 ++input_line_pointer;
18578 SKIP_WHITESPACE ();
18579 if (ISDIGIT (*input_line_pointer)
18580 || *input_line_pointer == '-')
18581 get_number ();
18582
18583 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18584 as_warn (_(".ent or .aent not in text section"));
18585
18586 if (!aent && cur_proc_ptr)
18587 as_warn (_("missing .end"));
18588
18589 if (!aent)
18590 {
18591 /* This function needs its own .frame and .cprestore directives. */
18592 mips_frame_reg_valid = 0;
18593 mips_cprestore_valid = 0;
18594
18595 cur_proc_ptr = &cur_proc;
18596 memset (cur_proc_ptr, '\0', sizeof (procS));
18597
18598 cur_proc_ptr->func_sym = symbolP;
18599
18600 ++numprocs;
18601
18602 if (debug_type == DEBUG_STABS)
18603 stabs_generate_asm_func (S_GET_NAME (symbolP),
18604 S_GET_NAME (symbolP));
18605 }
18606
18607 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18608
18609 demand_empty_rest_of_line ();
18610 }
18611
18612 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18613 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18614 s_mips_frame is used so that we can set the PDR information correctly.
18615 We can't use the ecoff routines because they make reference to the ecoff
18616 symbol table (in the mdebug section). */
18617
18618 static void
18619 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18620 {
18621 if (ECOFF_DEBUGGING)
18622 s_ignore (ignore);
18623 else
18624 {
18625 long val;
18626
18627 if (cur_proc_ptr == (procS *) NULL)
18628 {
18629 as_warn (_(".frame outside of .ent"));
18630 demand_empty_rest_of_line ();
18631 return;
18632 }
18633
18634 cur_proc_ptr->frame_reg = tc_get_register (1);
18635
18636 SKIP_WHITESPACE ();
18637 if (*input_line_pointer++ != ','
18638 || get_absolute_expression_and_terminator (&val) != ',')
18639 {
18640 as_warn (_("bad .frame directive"));
18641 --input_line_pointer;
18642 demand_empty_rest_of_line ();
18643 return;
18644 }
18645
18646 cur_proc_ptr->frame_offset = val;
18647 cur_proc_ptr->pc_reg = tc_get_register (0);
18648
18649 demand_empty_rest_of_line ();
18650 }
18651 }
18652
18653 /* The .fmask and .mask directives. If the mdebug section is present
18654 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18655 embedded targets, s_mips_mask is used so that we can set the PDR
18656 information correctly. We can't use the ecoff routines because they
18657 make reference to the ecoff symbol table (in the mdebug section). */
18658
18659 static void
18660 s_mips_mask (int reg_type)
18661 {
18662 if (ECOFF_DEBUGGING)
18663 s_ignore (reg_type);
18664 else
18665 {
18666 long mask, off;
18667
18668 if (cur_proc_ptr == (procS *) NULL)
18669 {
18670 as_warn (_(".mask/.fmask outside of .ent"));
18671 demand_empty_rest_of_line ();
18672 return;
18673 }
18674
18675 if (get_absolute_expression_and_terminator (&mask) != ',')
18676 {
18677 as_warn (_("bad .mask/.fmask directive"));
18678 --input_line_pointer;
18679 demand_empty_rest_of_line ();
18680 return;
18681 }
18682
18683 off = get_absolute_expression ();
18684
18685 if (reg_type == 'F')
18686 {
18687 cur_proc_ptr->fpreg_mask = mask;
18688 cur_proc_ptr->fpreg_offset = off;
18689 }
18690 else
18691 {
18692 cur_proc_ptr->reg_mask = mask;
18693 cur_proc_ptr->reg_offset = off;
18694 }
18695
18696 demand_empty_rest_of_line ();
18697 }
18698 }
18699
18700 /* A table describing all the processors gas knows about. Names are
18701 matched in the order listed.
18702
18703 To ease comparison, please keep this table in the same order as
18704 gcc's mips_cpu_info_table[]. */
18705 static const struct mips_cpu_info mips_cpu_info_table[] =
18706 {
18707 /* Entries for generic ISAs */
18708 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18709 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18710 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18711 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18712 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18713 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18714 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18715 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18716 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18717 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18718 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18719 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18720 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18721 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18722 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18723
18724 /* MIPS I */
18725 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18726 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18727 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18728
18729 /* MIPS II */
18730 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18731
18732 /* MIPS III */
18733 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18734 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18735 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18736 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18737 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18738 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18739 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18740 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18741 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18742 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18743 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18744 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18745 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18746 /* ST Microelectronics Loongson 2E and 2F cores */
18747 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18748 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18749
18750 /* MIPS IV */
18751 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18752 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18753 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18754 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18755 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18756 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18757 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18758 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18759 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18760 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18761 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18762 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18763 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18764 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18765 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18766
18767 /* MIPS 32 */
18768 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18769 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18770 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18771 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18772
18773 /* MIPS 32 Release 2 */
18774 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18775 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18776 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18777 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18778 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18779 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18780 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18781 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18782 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18783 ISA_MIPS32R2, CPU_MIPS32R2 },
18784 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18785 ISA_MIPS32R2, CPU_MIPS32R2 },
18786 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18787 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18788 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18789 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18790 /* Deprecated forms of the above. */
18791 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18792 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18793 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18794 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18795 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18796 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18797 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18798 /* Deprecated forms of the above. */
18799 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18800 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18801 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18802 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18803 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18804 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18805 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18806 /* Deprecated forms of the above. */
18807 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18808 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18809 /* 34Kn is a 34kc without DSP. */
18810 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18811 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18812 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18813 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18814 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18815 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18816 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18817 /* Deprecated forms of the above. */
18818 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18819 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18820 /* 1004K cores are multiprocessor versions of the 34K. */
18821 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18822 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18823 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18824 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18825 /* interaptiv is the new name for 1004kf */
18826 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18827 /* M5100 family */
18828 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18829 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18830 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18831 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18832
18833 /* MIPS 64 */
18834 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18835 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18836 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18837 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18838
18839 /* Broadcom SB-1 CPU core */
18840 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18841 /* Broadcom SB-1A CPU core */
18842 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18843
18844 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18845
18846 /* MIPS 64 Release 2 */
18847
18848 /* Cavium Networks Octeon CPU core */
18849 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18850 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18851 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18852 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18853
18854 /* RMI Xlr */
18855 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18856
18857 /* Broadcom XLP.
18858 XLP is mostly like XLR, with the prominent exception that it is
18859 MIPS64R2 rather than MIPS64. */
18860 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18861
18862 /* MIPS 64 Release 6 */
18863 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18864 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18865
18866 /* End marker */
18867 { NULL, 0, 0, 0, 0 }
18868 };
18869
18870
18871 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18872 with a final "000" replaced by "k". Ignore case.
18873
18874 Note: this function is shared between GCC and GAS. */
18875
18876 static bfd_boolean
18877 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18878 {
18879 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18880 given++, canonical++;
18881
18882 return ((*given == 0 && *canonical == 0)
18883 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18884 }
18885
18886
18887 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18888 CPU name. We've traditionally allowed a lot of variation here.
18889
18890 Note: this function is shared between GCC and GAS. */
18891
18892 static bfd_boolean
18893 mips_matching_cpu_name_p (const char *canonical, const char *given)
18894 {
18895 /* First see if the name matches exactly, or with a final "000"
18896 turned into "k". */
18897 if (mips_strict_matching_cpu_name_p (canonical, given))
18898 return TRUE;
18899
18900 /* If not, try comparing based on numerical designation alone.
18901 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18902 if (TOLOWER (*given) == 'r')
18903 given++;
18904 if (!ISDIGIT (*given))
18905 return FALSE;
18906
18907 /* Skip over some well-known prefixes in the canonical name,
18908 hoping to find a number there too. */
18909 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18910 canonical += 2;
18911 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18912 canonical += 2;
18913 else if (TOLOWER (canonical[0]) == 'r')
18914 canonical += 1;
18915
18916 return mips_strict_matching_cpu_name_p (canonical, given);
18917 }
18918
18919
18920 /* Parse an option that takes the name of a processor as its argument.
18921 OPTION is the name of the option and CPU_STRING is the argument.
18922 Return the corresponding processor enumeration if the CPU_STRING is
18923 recognized, otherwise report an error and return null.
18924
18925 A similar function exists in GCC. */
18926
18927 static const struct mips_cpu_info *
18928 mips_parse_cpu (const char *option, const char *cpu_string)
18929 {
18930 const struct mips_cpu_info *p;
18931
18932 /* 'from-abi' selects the most compatible architecture for the given
18933 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18934 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18935 version. Look first at the -mgp options, if given, otherwise base
18936 the choice on MIPS_DEFAULT_64BIT.
18937
18938 Treat NO_ABI like the EABIs. One reason to do this is that the
18939 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18940 architecture. This code picks MIPS I for 'mips' and MIPS III for
18941 'mips64', just as we did in the days before 'from-abi'. */
18942 if (strcasecmp (cpu_string, "from-abi") == 0)
18943 {
18944 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18945 return mips_cpu_info_from_isa (ISA_MIPS1);
18946
18947 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18948 return mips_cpu_info_from_isa (ISA_MIPS3);
18949
18950 if (file_mips_opts.gp >= 0)
18951 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18952 ? ISA_MIPS1 : ISA_MIPS3);
18953
18954 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18955 ? ISA_MIPS3
18956 : ISA_MIPS1);
18957 }
18958
18959 /* 'default' has traditionally been a no-op. Probably not very useful. */
18960 if (strcasecmp (cpu_string, "default") == 0)
18961 return 0;
18962
18963 for (p = mips_cpu_info_table; p->name != 0; p++)
18964 if (mips_matching_cpu_name_p (p->name, cpu_string))
18965 return p;
18966
18967 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18968 return 0;
18969 }
18970
18971 /* Return the canonical processor information for ISA (a member of the
18972 ISA_MIPS* enumeration). */
18973
18974 static const struct mips_cpu_info *
18975 mips_cpu_info_from_isa (int isa)
18976 {
18977 int i;
18978
18979 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18980 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18981 && isa == mips_cpu_info_table[i].isa)
18982 return (&mips_cpu_info_table[i]);
18983
18984 return NULL;
18985 }
18986
18987 static const struct mips_cpu_info *
18988 mips_cpu_info_from_arch (int arch)
18989 {
18990 int i;
18991
18992 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18993 if (arch == mips_cpu_info_table[i].cpu)
18994 return (&mips_cpu_info_table[i]);
18995
18996 return NULL;
18997 }
18998 \f
18999 static void
19000 show (FILE *stream, const char *string, int *col_p, int *first_p)
19001 {
19002 if (*first_p)
19003 {
19004 fprintf (stream, "%24s", "");
19005 *col_p = 24;
19006 }
19007 else
19008 {
19009 fprintf (stream, ", ");
19010 *col_p += 2;
19011 }
19012
19013 if (*col_p + strlen (string) > 72)
19014 {
19015 fprintf (stream, "\n%24s", "");
19016 *col_p = 24;
19017 }
19018
19019 fprintf (stream, "%s", string);
19020 *col_p += strlen (string);
19021
19022 *first_p = 0;
19023 }
19024
19025 void
19026 md_show_usage (FILE *stream)
19027 {
19028 int column, first;
19029 size_t i;
19030
19031 fprintf (stream, _("\
19032 MIPS options:\n\
19033 -EB generate big endian output\n\
19034 -EL generate little endian output\n\
19035 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19036 -G NUM allow referencing objects up to NUM bytes\n\
19037 implicitly with the gp register [default 8]\n"));
19038 fprintf (stream, _("\
19039 -mips1 generate MIPS ISA I instructions\n\
19040 -mips2 generate MIPS ISA II instructions\n\
19041 -mips3 generate MIPS ISA III instructions\n\
19042 -mips4 generate MIPS ISA IV instructions\n\
19043 -mips5 generate MIPS ISA V instructions\n\
19044 -mips32 generate MIPS32 ISA instructions\n\
19045 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19046 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19047 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19048 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19049 -mips64 generate MIPS64 ISA instructions\n\
19050 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19051 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19052 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19053 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19054 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19055
19056 first = 1;
19057
19058 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19059 show (stream, mips_cpu_info_table[i].name, &column, &first);
19060 show (stream, "from-abi", &column, &first);
19061 fputc ('\n', stream);
19062
19063 fprintf (stream, _("\
19064 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19065 -no-mCPU don't generate code specific to CPU.\n\
19066 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19067
19068 first = 1;
19069
19070 show (stream, "3900", &column, &first);
19071 show (stream, "4010", &column, &first);
19072 show (stream, "4100", &column, &first);
19073 show (stream, "4650", &column, &first);
19074 fputc ('\n', stream);
19075
19076 fprintf (stream, _("\
19077 -mips16 generate mips16 instructions\n\
19078 -no-mips16 do not generate mips16 instructions\n"));
19079 fprintf (stream, _("\
19080 -mmicromips generate microMIPS instructions\n\
19081 -mno-micromips do not generate microMIPS instructions\n"));
19082 fprintf (stream, _("\
19083 -msmartmips generate smartmips instructions\n\
19084 -mno-smartmips do not generate smartmips instructions\n"));
19085 fprintf (stream, _("\
19086 -mdsp generate DSP instructions\n\
19087 -mno-dsp do not generate DSP instructions\n"));
19088 fprintf (stream, _("\
19089 -mdspr2 generate DSP R2 instructions\n\
19090 -mno-dspr2 do not generate DSP R2 instructions\n"));
19091 fprintf (stream, _("\
19092 -mdspr3 generate DSP R3 instructions\n\
19093 -mno-dspr3 do not generate DSP R3 instructions\n"));
19094 fprintf (stream, _("\
19095 -mmt generate MT instructions\n\
19096 -mno-mt do not generate MT instructions\n"));
19097 fprintf (stream, _("\
19098 -mmcu generate MCU instructions\n\
19099 -mno-mcu do not generate MCU instructions\n"));
19100 fprintf (stream, _("\
19101 -mmsa generate MSA instructions\n\
19102 -mno-msa do not generate MSA instructions\n"));
19103 fprintf (stream, _("\
19104 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19105 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19106 fprintf (stream, _("\
19107 -mvirt generate Virtualization instructions\n\
19108 -mno-virt do not generate Virtualization instructions\n"));
19109 fprintf (stream, _("\
19110 -minsn32 only generate 32-bit microMIPS instructions\n\
19111 -mno-insn32 generate all microMIPS instructions\n"));
19112 fprintf (stream, _("\
19113 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19114 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19115 -mfix-vr4120 work around certain VR4120 errata\n\
19116 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19117 -mfix-24k insert a nop after ERET and DERET instructions\n\
19118 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19119 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19120 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19121 -msym32 assume all symbols have 32-bit values\n\
19122 -O0 remove unneeded NOPs, do not swap branches\n\
19123 -O remove unneeded NOPs and swap branches\n\
19124 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19125 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19126 fprintf (stream, _("\
19127 -mhard-float allow floating-point instructions\n\
19128 -msoft-float do not allow floating-point instructions\n\
19129 -msingle-float only allow 32-bit floating-point operations\n\
19130 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19131 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19132 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19133 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19134
19135 first = 1;
19136
19137 show (stream, "legacy", &column, &first);
19138 show (stream, "2008", &column, &first);
19139
19140 fputc ('\n', stream);
19141
19142 fprintf (stream, _("\
19143 -KPIC, -call_shared generate SVR4 position independent code\n\
19144 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19145 -mvxworks-pic generate VxWorks position independent code\n\
19146 -non_shared do not generate code that can operate with DSOs\n\
19147 -xgot assume a 32 bit GOT\n\
19148 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19149 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19150 position dependent (non shared) code\n\
19151 -mabi=ABI create ABI conformant object file for:\n"));
19152
19153 first = 1;
19154
19155 show (stream, "32", &column, &first);
19156 show (stream, "o64", &column, &first);
19157 show (stream, "n32", &column, &first);
19158 show (stream, "64", &column, &first);
19159 show (stream, "eabi", &column, &first);
19160
19161 fputc ('\n', stream);
19162
19163 fprintf (stream, _("\
19164 -32 create o32 ABI object file (default)\n\
19165 -n32 create n32 ABI object file\n\
19166 -64 create 64 ABI object file\n"));
19167 }
19168
19169 #ifdef TE_IRIX
19170 enum dwarf2_format
19171 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19172 {
19173 if (HAVE_64BIT_SYMBOLS)
19174 return dwarf2_format_64bit_irix;
19175 else
19176 return dwarf2_format_32bit;
19177 }
19178 #endif
19179
19180 int
19181 mips_dwarf2_addr_size (void)
19182 {
19183 if (HAVE_64BIT_OBJECTS)
19184 return 8;
19185 else
19186 return 4;
19187 }
19188
19189 /* Standard calling conventions leave the CFA at SP on entry. */
19190 void
19191 mips_cfi_frame_initial_instructions (void)
19192 {
19193 cfi_add_CFA_def_cfa_register (SP);
19194 }
19195
19196 int
19197 tc_mips_regname_to_dw2regnum (char *regname)
19198 {
19199 unsigned int regnum = -1;
19200 unsigned int reg;
19201
19202 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19203 regnum = reg;
19204
19205 return regnum;
19206 }
19207
19208 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19209 Given a symbolic attribute NAME, return the proper integer value.
19210 Returns -1 if the attribute is not known. */
19211
19212 int
19213 mips_convert_symbolic_attribute (const char *name)
19214 {
19215 static const struct
19216 {
19217 const char * name;
19218 const int tag;
19219 }
19220 attribute_table[] =
19221 {
19222 #define T(tag) {#tag, tag}
19223 T (Tag_GNU_MIPS_ABI_FP),
19224 T (Tag_GNU_MIPS_ABI_MSA),
19225 #undef T
19226 };
19227 unsigned int i;
19228
19229 if (name == NULL)
19230 return -1;
19231
19232 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19233 if (streq (name, attribute_table[i].name))
19234 return attribute_table[i].tag;
19235
19236 return -1;
19237 }
19238
19239 void
19240 md_mips_end (void)
19241 {
19242 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19243
19244 mips_emit_delays ();
19245 if (cur_proc_ptr)
19246 as_warn (_("missing .end at end of assembly"));
19247
19248 /* Just in case no code was emitted, do the consistency check. */
19249 file_mips_check_options ();
19250
19251 /* Set a floating-point ABI if the user did not. */
19252 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19253 {
19254 /* Perform consistency checks on the floating-point ABI. */
19255 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19256 Tag_GNU_MIPS_ABI_FP);
19257 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19258 check_fpabi (fpabi);
19259 }
19260 else
19261 {
19262 /* Soft-float gets precedence over single-float, the two options should
19263 not be used together so this should not matter. */
19264 if (file_mips_opts.soft_float == 1)
19265 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19266 /* Single-float gets precedence over all double_float cases. */
19267 else if (file_mips_opts.single_float == 1)
19268 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19269 else
19270 {
19271 switch (file_mips_opts.fp)
19272 {
19273 case 32:
19274 if (file_mips_opts.gp == 32)
19275 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19276 break;
19277 case 0:
19278 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19279 break;
19280 case 64:
19281 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19282 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19283 else if (file_mips_opts.gp == 32)
19284 fpabi = Val_GNU_MIPS_ABI_FP_64;
19285 else
19286 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19287 break;
19288 }
19289 }
19290
19291 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19292 Tag_GNU_MIPS_ABI_FP, fpabi);
19293 }
19294 }
19295
19296 /* Returns the relocation type required for a particular CFI encoding. */
19297
19298 bfd_reloc_code_real_type
19299 mips_cfi_reloc_for_encoding (int encoding)
19300 {
19301 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19302 return BFD_RELOC_32_PCREL;
19303 else return BFD_RELOC_NONE;
19304 }
This page took 0.729955 seconds and 4 git commands to generate.