gas: blackfin: reign in overeager insn flag handling
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define ATREG 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
102
103 #define ILLEGAL_REG (32)
104
105 #define AT mips_opts.at
106
107 /* Allow override of standard little-endian ECOFF format. */
108
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
111 #endif
112
113 extern int target_big_endian;
114
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
123
124 /* Information about an instruction, including its format, operands
125 and fixups. */
126 struct mips_cl_insn
127 {
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
130
131 /* True if this is a mips16 instruction and if we want the extended
132 form of INSN_MO. */
133 bfd_boolean use_extend;
134
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
141
142 /* The frag that contains the instruction. */
143 struct frag *frag;
144
145 /* The offset into FRAG of the first instruction byte. */
146 long where;
147
148 /* The relocs associated with the instruction, if any. */
149 fixS *fixp[3];
150
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
153
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
156
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
159 };
160
161 /* The ABI to use. */
162 enum mips_abi_level
163 {
164 NO_ABI = 0,
165 O32_ABI,
166 O64_ABI,
167 N32_ABI,
168 N64_ABI,
169 EABI_ABI
170 };
171
172 /* MIPS ABI we are using for this output file. */
173 static enum mips_abi_level mips_abi = NO_ABI;
174
175 /* Whether or not we have code that can call pic code. */
176 int mips_abicalls = FALSE;
177
178 /* Whether or not we have code which can be put into a shared
179 library. */
180 static bfd_boolean mips_in_shared = TRUE;
181
182 /* This is the set of options which may be modified by the .set
183 pseudo-op. We use a struct so that .set push and .set pop are more
184 reliable. */
185
186 struct mips_set_options
187 {
188 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
189 if it has not been initialized. Changed by `.set mipsN', and the
190 -mipsN command line option, and the default CPU. */
191 int isa;
192 /* Enabled Application Specific Extensions (ASEs). These are set to -1
193 if they have not been initialized. Changed by `.set <asename>', by
194 command line options, and based on the default architecture. */
195 int ase_mips3d;
196 int ase_mdmx;
197 int ase_smartmips;
198 int ase_dsp;
199 int ase_dspr2;
200 int ase_mt;
201 /* Whether we are assembling for the mips16 processor. 0 if we are
202 not, 1 if we are, and -1 if the value has not been initialized.
203 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
204 -nomips16 command line options, and the default CPU. */
205 int mips16;
206 /* Non-zero if we should not reorder instructions. Changed by `.set
207 reorder' and `.set noreorder'. */
208 int noreorder;
209 /* Non-zero if we should not permit the register designated "assembler
210 temporary" to be used in instructions. The value is the register
211 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
212 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
213 unsigned int at;
214 /* Non-zero if we should warn when a macro instruction expands into
215 more than one machine instruction. Changed by `.set nomacro' and
216 `.set macro'. */
217 int warn_about_macros;
218 /* Non-zero if we should not move instructions. Changed by `.set
219 move', `.set volatile', `.set nomove', and `.set novolatile'. */
220 int nomove;
221 /* Non-zero if we should not optimize branches by moving the target
222 of the branch into the delay slot. Actually, we don't perform
223 this optimization anyhow. Changed by `.set bopt' and `.set
224 nobopt'. */
225 int nobopt;
226 /* Non-zero if we should not autoextend mips16 instructions.
227 Changed by `.set autoextend' and `.set noautoextend'. */
228 int noautoextend;
229 /* Restrict general purpose registers and floating point registers
230 to 32 bit. This is initially determined when -mgp32 or -mfp32
231 is passed but can changed if the assembler code uses .set mipsN. */
232 int gp32;
233 int fp32;
234 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
235 command line option, and the default CPU. */
236 int arch;
237 /* True if ".set sym32" is in effect. */
238 bfd_boolean sym32;
239 /* True if floating-point operations are not allowed. Changed by .set
240 softfloat or .set hardfloat, by command line options -msoft-float or
241 -mhard-float. The default is false. */
242 bfd_boolean soft_float;
243
244 /* True if only single-precision floating-point operations are allowed.
245 Changed by .set singlefloat or .set doublefloat, command-line options
246 -msingle-float or -mdouble-float. The default is false. */
247 bfd_boolean single_float;
248 };
249
250 /* This is the struct we use to hold the current set of options. Note
251 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
252 -1 to indicate that they have not been initialized. */
253
254 /* True if -mgp32 was passed. */
255 static int file_mips_gp32 = -1;
256
257 /* True if -mfp32 was passed. */
258 static int file_mips_fp32 = -1;
259
260 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
261 static int file_mips_soft_float = 0;
262
263 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
264 static int file_mips_single_float = 0;
265
266 static struct mips_set_options mips_opts =
267 {
268 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
269 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
270 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
271 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
272 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
273 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
274 };
275
276 /* These variables are filled in with the masks of registers used.
277 The object format code reads them and puts them in the appropriate
278 place. */
279 unsigned long mips_gprmask;
280 unsigned long mips_cprmask[4];
281
282 /* MIPS ISA we are using for this output file. */
283 static int file_mips_isa = ISA_UNKNOWN;
284
285 /* True if -mips16 was passed or implied by arguments passed on the
286 command line (e.g., by -march). */
287 static int file_ase_mips16;
288
289 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
290 || mips_opts.isa == ISA_MIPS32R2 \
291 || mips_opts.isa == ISA_MIPS64 \
292 || mips_opts.isa == ISA_MIPS64R2)
293
294 /* True if we want to create R_MIPS_JALR for jalr $25. */
295 #ifdef TE_IRIX
296 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
297 #else
298 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
299 because there's no place for any addend, the only acceptable
300 expression is a bare symbol. */
301 #define MIPS_JALR_HINT_P(EXPR) \
302 (!HAVE_IN_PLACE_ADDENDS \
303 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
304 #endif
305
306 /* True if -mips3d was passed or implied by arguments passed on the
307 command line (e.g., by -march). */
308 static int file_ase_mips3d;
309
310 /* True if -mdmx was passed or implied by arguments passed on the
311 command line (e.g., by -march). */
312 static int file_ase_mdmx;
313
314 /* True if -msmartmips was passed or implied by arguments passed on the
315 command line (e.g., by -march). */
316 static int file_ase_smartmips;
317
318 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
319 || mips_opts.isa == ISA_MIPS32R2)
320
321 /* True if -mdsp was passed or implied by arguments passed on the
322 command line (e.g., by -march). */
323 static int file_ase_dsp;
324
325 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
326 || mips_opts.isa == ISA_MIPS64R2)
327
328 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
329
330 /* True if -mdspr2 was passed or implied by arguments passed on the
331 command line (e.g., by -march). */
332 static int file_ase_dspr2;
333
334 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
335 || mips_opts.isa == ISA_MIPS64R2)
336
337 /* True if -mmt was passed or implied by arguments passed on the
338 command line (e.g., by -march). */
339 static int file_ase_mt;
340
341 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
342 || mips_opts.isa == ISA_MIPS64R2)
343
344 /* The argument of the -march= flag. The architecture we are assembling. */
345 static int file_mips_arch = CPU_UNKNOWN;
346 static const char *mips_arch_string;
347
348 /* The argument of the -mtune= flag. The architecture for which we
349 are optimizing. */
350 static int mips_tune = CPU_UNKNOWN;
351 static const char *mips_tune_string;
352
353 /* True when generating 32-bit code for a 64-bit processor. */
354 static int mips_32bitmode = 0;
355
356 /* True if the given ABI requires 32-bit registers. */
357 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
358
359 /* Likewise 64-bit registers. */
360 #define ABI_NEEDS_64BIT_REGS(ABI) \
361 ((ABI) == N32_ABI \
362 || (ABI) == N64_ABI \
363 || (ABI) == O64_ABI)
364
365 /* Return true if ISA supports 64 bit wide gp registers. */
366 #define ISA_HAS_64BIT_REGS(ISA) \
367 ((ISA) == ISA_MIPS3 \
368 || (ISA) == ISA_MIPS4 \
369 || (ISA) == ISA_MIPS5 \
370 || (ISA) == ISA_MIPS64 \
371 || (ISA) == ISA_MIPS64R2)
372
373 /* Return true if ISA supports 64 bit wide float registers. */
374 #define ISA_HAS_64BIT_FPRS(ISA) \
375 ((ISA) == ISA_MIPS3 \
376 || (ISA) == ISA_MIPS4 \
377 || (ISA) == ISA_MIPS5 \
378 || (ISA) == ISA_MIPS32R2 \
379 || (ISA) == ISA_MIPS64 \
380 || (ISA) == ISA_MIPS64R2)
381
382 /* Return true if ISA supports 64-bit right rotate (dror et al.)
383 instructions. */
384 #define ISA_HAS_DROR(ISA) \
385 ((ISA) == ISA_MIPS64R2)
386
387 /* Return true if ISA supports 32-bit right rotate (ror et al.)
388 instructions. */
389 #define ISA_HAS_ROR(ISA) \
390 ((ISA) == ISA_MIPS32R2 \
391 || (ISA) == ISA_MIPS64R2 \
392 || mips_opts.ase_smartmips)
393
394 /* Return true if ISA supports single-precision floats in odd registers. */
395 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
396 ((ISA) == ISA_MIPS32 \
397 || (ISA) == ISA_MIPS32R2 \
398 || (ISA) == ISA_MIPS64 \
399 || (ISA) == ISA_MIPS64R2)
400
401 /* Return true if ISA supports move to/from high part of a 64-bit
402 floating-point register. */
403 #define ISA_HAS_MXHC1(ISA) \
404 ((ISA) == ISA_MIPS32R2 \
405 || (ISA) == ISA_MIPS64R2)
406
407 #define HAVE_32BIT_GPRS \
408 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
409
410 #define HAVE_32BIT_FPRS \
411 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
412
413 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
414 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
415
416 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
417
418 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
419
420 /* True if relocations are stored in-place. */
421 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
422
423 /* The ABI-derived address size. */
424 #define HAVE_64BIT_ADDRESSES \
425 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
426 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
427
428 /* The size of symbolic constants (i.e., expressions of the form
429 "SYMBOL" or "SYMBOL + OFFSET"). */
430 #define HAVE_32BIT_SYMBOLS \
431 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
432 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
433
434 /* Addresses are loaded in different ways, depending on the address size
435 in use. The n32 ABI Documentation also mandates the use of additions
436 with overflow checking, but existing implementations don't follow it. */
437 #define ADDRESS_ADD_INSN \
438 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
439
440 #define ADDRESS_ADDI_INSN \
441 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
442
443 #define ADDRESS_LOAD_INSN \
444 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
445
446 #define ADDRESS_STORE_INSN \
447 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
448
449 /* Return true if the given CPU supports the MIPS16 ASE. */
450 #define CPU_HAS_MIPS16(cpu) \
451 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
452 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
453
454 /* True if CPU has a dror instruction. */
455 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
456
457 /* True if CPU has a ror instruction. */
458 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
459
460 /* True if CPU has seq/sne and seqi/snei instructions. */
461 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
462
463 /* True if CPU does not implement the all the coprocessor insns. For these
464 CPUs only those COP insns are accepted that are explicitly marked to be
465 available on the CPU. ISA membership for COP insns is ignored. */
466 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
467
468 /* True if mflo and mfhi can be immediately followed by instructions
469 which write to the HI and LO registers.
470
471 According to MIPS specifications, MIPS ISAs I, II, and III need
472 (at least) two instructions between the reads of HI/LO and
473 instructions which write them, and later ISAs do not. Contradicting
474 the MIPS specifications, some MIPS IV processor user manuals (e.g.
475 the UM for the NEC Vr5000) document needing the instructions between
476 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
477 MIPS64 and later ISAs to have the interlocks, plus any specific
478 earlier-ISA CPUs for which CPU documentation declares that the
479 instructions are really interlocked. */
480 #define hilo_interlocks \
481 (mips_opts.isa == ISA_MIPS32 \
482 || mips_opts.isa == ISA_MIPS32R2 \
483 || mips_opts.isa == ISA_MIPS64 \
484 || mips_opts.isa == ISA_MIPS64R2 \
485 || mips_opts.arch == CPU_R4010 \
486 || mips_opts.arch == CPU_R10000 \
487 || mips_opts.arch == CPU_R12000 \
488 || mips_opts.arch == CPU_R14000 \
489 || mips_opts.arch == CPU_R16000 \
490 || mips_opts.arch == CPU_RM7000 \
491 || mips_opts.arch == CPU_VR5500 \
492 )
493
494 /* Whether the processor uses hardware interlocks to protect reads
495 from the GPRs after they are loaded from memory, and thus does not
496 require nops to be inserted. This applies to instructions marked
497 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
498 level I. */
499 #define gpr_interlocks \
500 (mips_opts.isa != ISA_MIPS1 \
501 || mips_opts.arch == CPU_R3900)
502
503 /* Whether the processor uses hardware interlocks to avoid delays
504 required by coprocessor instructions, and thus does not require
505 nops to be inserted. This applies to instructions marked
506 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
507 between instructions marked INSN_WRITE_COND_CODE and ones marked
508 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
509 levels I, II, and III. */
510 /* Itbl support may require additional care here. */
511 #define cop_interlocks \
512 ((mips_opts.isa != ISA_MIPS1 \
513 && mips_opts.isa != ISA_MIPS2 \
514 && mips_opts.isa != ISA_MIPS3) \
515 || mips_opts.arch == CPU_R4300 \
516 )
517
518 /* Whether the processor uses hardware interlocks to protect reads
519 from coprocessor registers after they are loaded from memory, and
520 thus does not require nops to be inserted. This applies to
521 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
522 requires at MIPS ISA level I. */
523 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
524
525 /* Is this a mfhi or mflo instruction? */
526 #define MF_HILO_INSN(PINFO) \
527 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
528
529 /* Returns true for a (non floating-point) coprocessor instruction. Reading
530 or writing the condition code is only possible on the coprocessors and
531 these insns are not marked with INSN_COP. Thus for these insns use the
532 condition-code flags. */
533 #define COP_INSN(PINFO) \
534 (PINFO != INSN_MACRO \
535 && ((PINFO) & (FP_S | FP_D)) == 0 \
536 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
537
538 /* MIPS PIC level. */
539
540 enum mips_pic_level mips_pic;
541
542 /* 1 if we should generate 32 bit offsets from the $gp register in
543 SVR4_PIC mode. Currently has no meaning in other modes. */
544 static int mips_big_got = 0;
545
546 /* 1 if trap instructions should used for overflow rather than break
547 instructions. */
548 static int mips_trap = 0;
549
550 /* 1 if double width floating point constants should not be constructed
551 by assembling two single width halves into two single width floating
552 point registers which just happen to alias the double width destination
553 register. On some architectures this aliasing can be disabled by a bit
554 in the status register, and the setting of this bit cannot be determined
555 automatically at assemble time. */
556 static int mips_disable_float_construction;
557
558 /* Non-zero if any .set noreorder directives were used. */
559
560 static int mips_any_noreorder;
561
562 /* Non-zero if nops should be inserted when the register referenced in
563 an mfhi/mflo instruction is read in the next two instructions. */
564 static int mips_7000_hilo_fix;
565
566 /* The size of objects in the small data section. */
567 static unsigned int g_switch_value = 8;
568 /* Whether the -G option was used. */
569 static int g_switch_seen = 0;
570
571 #define N_RMASK 0xc4
572 #define N_VFP 0xd4
573
574 /* If we can determine in advance that GP optimization won't be
575 possible, we can skip the relaxation stuff that tries to produce
576 GP-relative references. This makes delay slot optimization work
577 better.
578
579 This function can only provide a guess, but it seems to work for
580 gcc output. It needs to guess right for gcc, otherwise gcc
581 will put what it thinks is a GP-relative instruction in a branch
582 delay slot.
583
584 I don't know if a fix is needed for the SVR4_PIC mode. I've only
585 fixed it for the non-PIC mode. KR 95/04/07 */
586 static int nopic_need_relax (symbolS *, int);
587
588 /* handle of the OPCODE hash table */
589 static struct hash_control *op_hash = NULL;
590
591 /* The opcode hash table we use for the mips16. */
592 static struct hash_control *mips16_op_hash = NULL;
593
594 /* This array holds the chars that always start a comment. If the
595 pre-processor is disabled, these aren't very useful */
596 const char comment_chars[] = "#";
597
598 /* This array holds the chars that only start a comment at the beginning of
599 a line. If the line seems to have the form '# 123 filename'
600 .line and .file directives will appear in the pre-processed output */
601 /* Note that input_file.c hand checks for '#' at the beginning of the
602 first line of the input file. This is because the compiler outputs
603 #NO_APP at the beginning of its output. */
604 /* Also note that C style comments are always supported. */
605 const char line_comment_chars[] = "#";
606
607 /* This array holds machine specific line separator characters. */
608 const char line_separator_chars[] = ";";
609
610 /* Chars that can be used to separate mant from exp in floating point nums */
611 const char EXP_CHARS[] = "eE";
612
613 /* Chars that mean this number is a floating point constant */
614 /* As in 0f12.456 */
615 /* or 0d1.2345e12 */
616 const char FLT_CHARS[] = "rRsSfFdDxXpP";
617
618 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
619 changed in read.c . Ideally it shouldn't have to know about it at all,
620 but nothing is ideal around here.
621 */
622
623 static char *insn_error;
624
625 static int auto_align = 1;
626
627 /* When outputting SVR4 PIC code, the assembler needs to know the
628 offset in the stack frame from which to restore the $gp register.
629 This is set by the .cprestore pseudo-op, and saved in this
630 variable. */
631 static offsetT mips_cprestore_offset = -1;
632
633 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
634 more optimizations, it can use a register value instead of a memory-saved
635 offset and even an other register than $gp as global pointer. */
636 static offsetT mips_cpreturn_offset = -1;
637 static int mips_cpreturn_register = -1;
638 static int mips_gp_register = GP;
639 static int mips_gprel_offset = 0;
640
641 /* Whether mips_cprestore_offset has been set in the current function
642 (or whether it has already been warned about, if not). */
643 static int mips_cprestore_valid = 0;
644
645 /* This is the register which holds the stack frame, as set by the
646 .frame pseudo-op. This is needed to implement .cprestore. */
647 static int mips_frame_reg = SP;
648
649 /* Whether mips_frame_reg has been set in the current function
650 (or whether it has already been warned about, if not). */
651 static int mips_frame_reg_valid = 0;
652
653 /* To output NOP instructions correctly, we need to keep information
654 about the previous two instructions. */
655
656 /* Whether we are optimizing. The default value of 2 means to remove
657 unneeded NOPs and swap branch instructions when possible. A value
658 of 1 means to not swap branches. A value of 0 means to always
659 insert NOPs. */
660 static int mips_optimize = 2;
661
662 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
663 equivalent to seeing no -g option at all. */
664 static int mips_debug = 0;
665
666 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
667 #define MAX_VR4130_NOPS 4
668
669 /* The maximum number of NOPs needed to fill delay slots. */
670 #define MAX_DELAY_NOPS 2
671
672 /* The maximum number of NOPs needed for any purpose. */
673 #define MAX_NOPS 4
674
675 /* A list of previous instructions, with index 0 being the most recent.
676 We need to look back MAX_NOPS instructions when filling delay slots
677 or working around processor errata. We need to look back one
678 instruction further if we're thinking about using history[0] to
679 fill a branch delay slot. */
680 static struct mips_cl_insn history[1 + MAX_NOPS];
681
682 /* Nop instructions used by emit_nop. */
683 static struct mips_cl_insn nop_insn, mips16_nop_insn;
684
685 /* The appropriate nop for the current mode. */
686 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
687
688 /* If this is set, it points to a frag holding nop instructions which
689 were inserted before the start of a noreorder section. If those
690 nops turn out to be unnecessary, the size of the frag can be
691 decreased. */
692 static fragS *prev_nop_frag;
693
694 /* The number of nop instructions we created in prev_nop_frag. */
695 static int prev_nop_frag_holds;
696
697 /* The number of nop instructions that we know we need in
698 prev_nop_frag. */
699 static int prev_nop_frag_required;
700
701 /* The number of instructions we've seen since prev_nop_frag. */
702 static int prev_nop_frag_since;
703
704 /* For ECOFF and ELF, relocations against symbols are done in two
705 parts, with a HI relocation and a LO relocation. Each relocation
706 has only 16 bits of space to store an addend. This means that in
707 order for the linker to handle carries correctly, it must be able
708 to locate both the HI and the LO relocation. This means that the
709 relocations must appear in order in the relocation table.
710
711 In order to implement this, we keep track of each unmatched HI
712 relocation. We then sort them so that they immediately precede the
713 corresponding LO relocation. */
714
715 struct mips_hi_fixup
716 {
717 /* Next HI fixup. */
718 struct mips_hi_fixup *next;
719 /* This fixup. */
720 fixS *fixp;
721 /* The section this fixup is in. */
722 segT seg;
723 };
724
725 /* The list of unmatched HI relocs. */
726
727 static struct mips_hi_fixup *mips_hi_fixup_list;
728
729 /* The frag containing the last explicit relocation operator.
730 Null if explicit relocations have not been used. */
731
732 static fragS *prev_reloc_op_frag;
733
734 /* Map normal MIPS register numbers to mips16 register numbers. */
735
736 #define X ILLEGAL_REG
737 static const int mips32_to_16_reg_map[] =
738 {
739 X, X, 2, 3, 4, 5, 6, 7,
740 X, X, X, X, X, X, X, X,
741 0, 1, X, X, X, X, X, X,
742 X, X, X, X, X, X, X, X
743 };
744 #undef X
745
746 /* Map mips16 register numbers to normal MIPS register numbers. */
747
748 static const unsigned int mips16_to_32_reg_map[] =
749 {
750 16, 17, 2, 3, 4, 5, 6, 7
751 };
752
753 /* Classifies the kind of instructions we're interested in when
754 implementing -mfix-vr4120. */
755 enum fix_vr4120_class
756 {
757 FIX_VR4120_MACC,
758 FIX_VR4120_DMACC,
759 FIX_VR4120_MULT,
760 FIX_VR4120_DMULT,
761 FIX_VR4120_DIV,
762 FIX_VR4120_MTHILO,
763 NUM_FIX_VR4120_CLASSES
764 };
765
766 /* ...likewise -mfix-loongson2f-jump. */
767 static bfd_boolean mips_fix_loongson2f_jump;
768
769 /* ...likewise -mfix-loongson2f-nop. */
770 static bfd_boolean mips_fix_loongson2f_nop;
771
772 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
773 static bfd_boolean mips_fix_loongson2f;
774
775 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
776 there must be at least one other instruction between an instruction
777 of type X and an instruction of type Y. */
778 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
779
780 /* True if -mfix-vr4120 is in force. */
781 static int mips_fix_vr4120;
782
783 /* ...likewise -mfix-vr4130. */
784 static int mips_fix_vr4130;
785
786 /* ...likewise -mfix-24k. */
787 static int mips_fix_24k;
788
789 /* ...likewise -mfix-cn63xxp1 */
790 static bfd_boolean mips_fix_cn63xxp1;
791
792 /* We don't relax branches by default, since this causes us to expand
793 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
794 fail to compute the offset before expanding the macro to the most
795 efficient expansion. */
796
797 static int mips_relax_branch;
798 \f
799 /* The expansion of many macros depends on the type of symbol that
800 they refer to. For example, when generating position-dependent code,
801 a macro that refers to a symbol may have two different expansions,
802 one which uses GP-relative addresses and one which uses absolute
803 addresses. When generating SVR4-style PIC, a macro may have
804 different expansions for local and global symbols.
805
806 We handle these situations by generating both sequences and putting
807 them in variant frags. In position-dependent code, the first sequence
808 will be the GP-relative one and the second sequence will be the
809 absolute one. In SVR4 PIC, the first sequence will be for global
810 symbols and the second will be for local symbols.
811
812 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
813 SECOND are the lengths of the two sequences in bytes. These fields
814 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
815 the subtype has the following flags:
816
817 RELAX_USE_SECOND
818 Set if it has been decided that we should use the second
819 sequence instead of the first.
820
821 RELAX_SECOND_LONGER
822 Set in the first variant frag if the macro's second implementation
823 is longer than its first. This refers to the macro as a whole,
824 not an individual relaxation.
825
826 RELAX_NOMACRO
827 Set in the first variant frag if the macro appeared in a .set nomacro
828 block and if one alternative requires a warning but the other does not.
829
830 RELAX_DELAY_SLOT
831 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
832 delay slot.
833
834 The frag's "opcode" points to the first fixup for relaxable code.
835
836 Relaxable macros are generated using a sequence such as:
837
838 relax_start (SYMBOL);
839 ... generate first expansion ...
840 relax_switch ();
841 ... generate second expansion ...
842 relax_end ();
843
844 The code and fixups for the unwanted alternative are discarded
845 by md_convert_frag. */
846 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
847
848 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
849 #define RELAX_SECOND(X) ((X) & 0xff)
850 #define RELAX_USE_SECOND 0x10000
851 #define RELAX_SECOND_LONGER 0x20000
852 #define RELAX_NOMACRO 0x40000
853 #define RELAX_DELAY_SLOT 0x80000
854
855 /* Branch without likely bit. If label is out of range, we turn:
856
857 beq reg1, reg2, label
858 delay slot
859
860 into
861
862 bne reg1, reg2, 0f
863 nop
864 j label
865 0: delay slot
866
867 with the following opcode replacements:
868
869 beq <-> bne
870 blez <-> bgtz
871 bltz <-> bgez
872 bc1f <-> bc1t
873
874 bltzal <-> bgezal (with jal label instead of j label)
875
876 Even though keeping the delay slot instruction in the delay slot of
877 the branch would be more efficient, it would be very tricky to do
878 correctly, because we'd have to introduce a variable frag *after*
879 the delay slot instruction, and expand that instead. Let's do it
880 the easy way for now, even if the branch-not-taken case now costs
881 one additional instruction. Out-of-range branches are not supposed
882 to be common, anyway.
883
884 Branch likely. If label is out of range, we turn:
885
886 beql reg1, reg2, label
887 delay slot (annulled if branch not taken)
888
889 into
890
891 beql reg1, reg2, 1f
892 nop
893 beql $0, $0, 2f
894 nop
895 1: j[al] label
896 delay slot (executed only if branch taken)
897 2:
898
899 It would be possible to generate a shorter sequence by losing the
900 likely bit, generating something like:
901
902 bne reg1, reg2, 0f
903 nop
904 j[al] label
905 delay slot (executed only if branch taken)
906 0:
907
908 beql -> bne
909 bnel -> beq
910 blezl -> bgtz
911 bgtzl -> blez
912 bltzl -> bgez
913 bgezl -> bltz
914 bc1fl -> bc1t
915 bc1tl -> bc1f
916
917 bltzall -> bgezal (with jal label instead of j label)
918 bgezall -> bltzal (ditto)
919
920
921 but it's not clear that it would actually improve performance. */
922 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
923 ((relax_substateT) \
924 (0xc0000000 \
925 | ((toofar) ? 1 : 0) \
926 | ((link) ? 2 : 0) \
927 | ((likely) ? 4 : 0) \
928 | ((uncond) ? 8 : 0)))
929 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
930 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
931 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
932 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
933 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
934
935 /* For mips16 code, we use an entirely different form of relaxation.
936 mips16 supports two versions of most instructions which take
937 immediate values: a small one which takes some small value, and a
938 larger one which takes a 16 bit value. Since branches also follow
939 this pattern, relaxing these values is required.
940
941 We can assemble both mips16 and normal MIPS code in a single
942 object. Therefore, we need to support this type of relaxation at
943 the same time that we support the relaxation described above. We
944 use the high bit of the subtype field to distinguish these cases.
945
946 The information we store for this type of relaxation is the
947 argument code found in the opcode file for this relocation, whether
948 the user explicitly requested a small or extended form, and whether
949 the relocation is in a jump or jal delay slot. That tells us the
950 size of the value, and how it should be stored. We also store
951 whether the fragment is considered to be extended or not. We also
952 store whether this is known to be a branch to a different section,
953 whether we have tried to relax this frag yet, and whether we have
954 ever extended a PC relative fragment because of a shift count. */
955 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
956 (0x80000000 \
957 | ((type) & 0xff) \
958 | ((small) ? 0x100 : 0) \
959 | ((ext) ? 0x200 : 0) \
960 | ((dslot) ? 0x400 : 0) \
961 | ((jal_dslot) ? 0x800 : 0))
962 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
963 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
964 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
965 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
966 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
967 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
968 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
969 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
970 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
971 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
972 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
973 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
974
975 /* Is the given value a sign-extended 32-bit value? */
976 #define IS_SEXT_32BIT_NUM(x) \
977 (((x) &~ (offsetT) 0x7fffffff) == 0 \
978 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
979
980 /* Is the given value a sign-extended 16-bit value? */
981 #define IS_SEXT_16BIT_NUM(x) \
982 (((x) &~ (offsetT) 0x7fff) == 0 \
983 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
984
985 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
986 #define IS_ZEXT_32BIT_NUM(x) \
987 (((x) &~ (offsetT) 0xffffffff) == 0 \
988 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
989
990 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
991 VALUE << SHIFT. VALUE is evaluated exactly once. */
992 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
993 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
994 | (((VALUE) & (MASK)) << (SHIFT)))
995
996 /* Extract bits MASK << SHIFT from STRUCT and shift them right
997 SHIFT places. */
998 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
999 (((STRUCT) >> (SHIFT)) & (MASK))
1000
1001 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1002 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1003
1004 include/opcode/mips.h specifies operand fields using the macros
1005 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1006 with "MIPS16OP" instead of "OP". */
1007 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1008 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1009 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1010 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1011 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1012
1013 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1014 #define EXTRACT_OPERAND(FIELD, INSN) \
1015 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1016 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1017 EXTRACT_BITS ((INSN).insn_opcode, \
1018 MIPS16OP_MASK_##FIELD, \
1019 MIPS16OP_SH_##FIELD)
1020 \f
1021 /* Global variables used when generating relaxable macros. See the
1022 comment above RELAX_ENCODE for more details about how relaxation
1023 is used. */
1024 static struct {
1025 /* 0 if we're not emitting a relaxable macro.
1026 1 if we're emitting the first of the two relaxation alternatives.
1027 2 if we're emitting the second alternative. */
1028 int sequence;
1029
1030 /* The first relaxable fixup in the current frag. (In other words,
1031 the first fixup that refers to relaxable code.) */
1032 fixS *first_fixup;
1033
1034 /* sizes[0] says how many bytes of the first alternative are stored in
1035 the current frag. Likewise sizes[1] for the second alternative. */
1036 unsigned int sizes[2];
1037
1038 /* The symbol on which the choice of sequence depends. */
1039 symbolS *symbol;
1040 } mips_relax;
1041 \f
1042 /* Global variables used to decide whether a macro needs a warning. */
1043 static struct {
1044 /* True if the macro is in a branch delay slot. */
1045 bfd_boolean delay_slot_p;
1046
1047 /* For relaxable macros, sizes[0] is the length of the first alternative
1048 in bytes and sizes[1] is the length of the second alternative.
1049 For non-relaxable macros, both elements give the length of the
1050 macro in bytes. */
1051 unsigned int sizes[2];
1052
1053 /* The first variant frag for this macro. */
1054 fragS *first_frag;
1055 } mips_macro_warning;
1056 \f
1057 /* Prototypes for static functions. */
1058
1059 #define internalError() \
1060 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1061
1062 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1063
1064 static void append_insn
1065 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1066 static void mips_no_prev_insn (void);
1067 static void macro_build (expressionS *, const char *, const char *, ...);
1068 static void mips16_macro_build
1069 (expressionS *, const char *, const char *, va_list *);
1070 static void load_register (int, expressionS *, int);
1071 static void macro_start (void);
1072 static void macro_end (void);
1073 static void macro (struct mips_cl_insn * ip);
1074 static void mips16_macro (struct mips_cl_insn * ip);
1075 #ifdef LOSING_COMPILER
1076 static void macro2 (struct mips_cl_insn * ip);
1077 #endif
1078 static void mips_ip (char *str, struct mips_cl_insn * ip);
1079 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1080 static void mips16_immed
1081 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1082 unsigned long *, bfd_boolean *, unsigned short *);
1083 static size_t my_getSmallExpression
1084 (expressionS *, bfd_reloc_code_real_type *, char *);
1085 static void my_getExpression (expressionS *, char *);
1086 static void s_align (int);
1087 static void s_change_sec (int);
1088 static void s_change_section (int);
1089 static void s_cons (int);
1090 static void s_float_cons (int);
1091 static void s_mips_globl (int);
1092 static void s_option (int);
1093 static void s_mipsset (int);
1094 static void s_abicalls (int);
1095 static void s_cpload (int);
1096 static void s_cpsetup (int);
1097 static void s_cplocal (int);
1098 static void s_cprestore (int);
1099 static void s_cpreturn (int);
1100 static void s_dtprelword (int);
1101 static void s_dtpreldword (int);
1102 static void s_gpvalue (int);
1103 static void s_gpword (int);
1104 static void s_gpdword (int);
1105 static void s_cpadd (int);
1106 static void s_insn (int);
1107 static void md_obj_begin (void);
1108 static void md_obj_end (void);
1109 static void s_mips_ent (int);
1110 static void s_mips_end (int);
1111 static void s_mips_frame (int);
1112 static void s_mips_mask (int reg_type);
1113 static void s_mips_stab (int);
1114 static void s_mips_weakext (int);
1115 static void s_mips_file (int);
1116 static void s_mips_loc (int);
1117 static bfd_boolean pic_need_relax (symbolS *, asection *);
1118 static int relaxed_branch_length (fragS *, asection *, int);
1119 static int validate_mips_insn (const struct mips_opcode *);
1120
1121 /* Table and functions used to map between CPU/ISA names, and
1122 ISA levels, and CPU numbers. */
1123
1124 struct mips_cpu_info
1125 {
1126 const char *name; /* CPU or ISA name. */
1127 int flags; /* ASEs available, or ISA flag. */
1128 int isa; /* ISA level. */
1129 int cpu; /* CPU number (default CPU if ISA). */
1130 };
1131
1132 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1133 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1134 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1135 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1136 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1137 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1138 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1139
1140 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1141 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1142 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1143 \f
1144 /* Pseudo-op table.
1145
1146 The following pseudo-ops from the Kane and Heinrich MIPS book
1147 should be defined here, but are currently unsupported: .alias,
1148 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1149
1150 The following pseudo-ops from the Kane and Heinrich MIPS book are
1151 specific to the type of debugging information being generated, and
1152 should be defined by the object format: .aent, .begin, .bend,
1153 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1154 .vreg.
1155
1156 The following pseudo-ops from the Kane and Heinrich MIPS book are
1157 not MIPS CPU specific, but are also not specific to the object file
1158 format. This file is probably the best place to define them, but
1159 they are not currently supported: .asm0, .endr, .lab, .struct. */
1160
1161 static const pseudo_typeS mips_pseudo_table[] =
1162 {
1163 /* MIPS specific pseudo-ops. */
1164 {"option", s_option, 0},
1165 {"set", s_mipsset, 0},
1166 {"rdata", s_change_sec, 'r'},
1167 {"sdata", s_change_sec, 's'},
1168 {"livereg", s_ignore, 0},
1169 {"abicalls", s_abicalls, 0},
1170 {"cpload", s_cpload, 0},
1171 {"cpsetup", s_cpsetup, 0},
1172 {"cplocal", s_cplocal, 0},
1173 {"cprestore", s_cprestore, 0},
1174 {"cpreturn", s_cpreturn, 0},
1175 {"dtprelword", s_dtprelword, 0},
1176 {"dtpreldword", s_dtpreldword, 0},
1177 {"gpvalue", s_gpvalue, 0},
1178 {"gpword", s_gpword, 0},
1179 {"gpdword", s_gpdword, 0},
1180 {"cpadd", s_cpadd, 0},
1181 {"insn", s_insn, 0},
1182
1183 /* Relatively generic pseudo-ops that happen to be used on MIPS
1184 chips. */
1185 {"asciiz", stringer, 8 + 1},
1186 {"bss", s_change_sec, 'b'},
1187 {"err", s_err, 0},
1188 {"half", s_cons, 1},
1189 {"dword", s_cons, 3},
1190 {"weakext", s_mips_weakext, 0},
1191 {"origin", s_org, 0},
1192 {"repeat", s_rept, 0},
1193
1194 /* These pseudo-ops are defined in read.c, but must be overridden
1195 here for one reason or another. */
1196 {"align", s_align, 0},
1197 {"byte", s_cons, 0},
1198 {"data", s_change_sec, 'd'},
1199 {"double", s_float_cons, 'd'},
1200 {"float", s_float_cons, 'f'},
1201 {"globl", s_mips_globl, 0},
1202 {"global", s_mips_globl, 0},
1203 {"hword", s_cons, 1},
1204 {"int", s_cons, 2},
1205 {"long", s_cons, 2},
1206 {"octa", s_cons, 4},
1207 {"quad", s_cons, 3},
1208 {"section", s_change_section, 0},
1209 {"short", s_cons, 1},
1210 {"single", s_float_cons, 'f'},
1211 {"stabn", s_mips_stab, 'n'},
1212 {"text", s_change_sec, 't'},
1213 {"word", s_cons, 2},
1214
1215 { "extern", ecoff_directive_extern, 0},
1216
1217 { NULL, NULL, 0 },
1218 };
1219
1220 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1221 {
1222 /* These pseudo-ops should be defined by the object file format.
1223 However, a.out doesn't support them, so we have versions here. */
1224 {"aent", s_mips_ent, 1},
1225 {"bgnb", s_ignore, 0},
1226 {"end", s_mips_end, 0},
1227 {"endb", s_ignore, 0},
1228 {"ent", s_mips_ent, 0},
1229 {"file", s_mips_file, 0},
1230 {"fmask", s_mips_mask, 'F'},
1231 {"frame", s_mips_frame, 0},
1232 {"loc", s_mips_loc, 0},
1233 {"mask", s_mips_mask, 'R'},
1234 {"verstamp", s_ignore, 0},
1235 { NULL, NULL, 0 },
1236 };
1237
1238 extern void pop_insert (const pseudo_typeS *);
1239
1240 void
1241 mips_pop_insert (void)
1242 {
1243 pop_insert (mips_pseudo_table);
1244 if (! ECOFF_DEBUGGING)
1245 pop_insert (mips_nonecoff_pseudo_table);
1246 }
1247 \f
1248 /* Symbols labelling the current insn. */
1249
1250 struct insn_label_list
1251 {
1252 struct insn_label_list *next;
1253 symbolS *label;
1254 };
1255
1256 static struct insn_label_list *free_insn_labels;
1257 #define label_list tc_segment_info_data.labels
1258
1259 static void mips_clear_insn_labels (void);
1260
1261 static inline void
1262 mips_clear_insn_labels (void)
1263 {
1264 register struct insn_label_list **pl;
1265 segment_info_type *si;
1266
1267 if (now_seg)
1268 {
1269 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1270 ;
1271
1272 si = seg_info (now_seg);
1273 *pl = si->label_list;
1274 si->label_list = NULL;
1275 }
1276 }
1277
1278 \f
1279 static char *expr_end;
1280
1281 /* Expressions which appear in instructions. These are set by
1282 mips_ip. */
1283
1284 static expressionS imm_expr;
1285 static expressionS imm2_expr;
1286 static expressionS offset_expr;
1287
1288 /* Relocs associated with imm_expr and offset_expr. */
1289
1290 static bfd_reloc_code_real_type imm_reloc[3]
1291 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1292 static bfd_reloc_code_real_type offset_reloc[3]
1293 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1294
1295 /* These are set by mips16_ip if an explicit extension is used. */
1296
1297 static bfd_boolean mips16_small, mips16_ext;
1298
1299 #ifdef OBJ_ELF
1300 /* The pdr segment for per procedure frame/regmask info. Not used for
1301 ECOFF debugging. */
1302
1303 static segT pdr_seg;
1304 #endif
1305
1306 /* The default target format to use. */
1307
1308 const char *
1309 mips_target_format (void)
1310 {
1311 switch (OUTPUT_FLAVOR)
1312 {
1313 case bfd_target_ecoff_flavour:
1314 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1315 case bfd_target_coff_flavour:
1316 return "pe-mips";
1317 case bfd_target_elf_flavour:
1318 #ifdef TE_VXWORKS
1319 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1320 return (target_big_endian
1321 ? "elf32-bigmips-vxworks"
1322 : "elf32-littlemips-vxworks");
1323 #endif
1324 #ifdef TE_TMIPS
1325 /* This is traditional mips. */
1326 return (target_big_endian
1327 ? (HAVE_64BIT_OBJECTS
1328 ? "elf64-tradbigmips"
1329 : (HAVE_NEWABI
1330 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1331 : (HAVE_64BIT_OBJECTS
1332 ? "elf64-tradlittlemips"
1333 : (HAVE_NEWABI
1334 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1335 #else
1336 return (target_big_endian
1337 ? (HAVE_64BIT_OBJECTS
1338 ? "elf64-bigmips"
1339 : (HAVE_NEWABI
1340 ? "elf32-nbigmips" : "elf32-bigmips"))
1341 : (HAVE_64BIT_OBJECTS
1342 ? "elf64-littlemips"
1343 : (HAVE_NEWABI
1344 ? "elf32-nlittlemips" : "elf32-littlemips")));
1345 #endif
1346 default:
1347 abort ();
1348 return NULL;
1349 }
1350 }
1351
1352 /* Return the length of instruction INSN. */
1353
1354 static inline unsigned int
1355 insn_length (const struct mips_cl_insn *insn)
1356 {
1357 if (!mips_opts.mips16)
1358 return 4;
1359 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1360 }
1361
1362 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1363
1364 static void
1365 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1366 {
1367 size_t i;
1368
1369 insn->insn_mo = mo;
1370 insn->use_extend = FALSE;
1371 insn->extend = 0;
1372 insn->insn_opcode = mo->match;
1373 insn->frag = NULL;
1374 insn->where = 0;
1375 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1376 insn->fixp[i] = NULL;
1377 insn->fixed_p = (mips_opts.noreorder > 0);
1378 insn->noreorder_p = (mips_opts.noreorder > 0);
1379 insn->mips16_absolute_jump_p = 0;
1380 }
1381
1382 /* Record the current MIPS16 mode in now_seg. */
1383
1384 static void
1385 mips_record_mips16_mode (void)
1386 {
1387 segment_info_type *si;
1388
1389 si = seg_info (now_seg);
1390 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1391 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1392 }
1393
1394 /* Install INSN at the location specified by its "frag" and "where" fields. */
1395
1396 static void
1397 install_insn (const struct mips_cl_insn *insn)
1398 {
1399 char *f = insn->frag->fr_literal + insn->where;
1400 if (!mips_opts.mips16)
1401 md_number_to_chars (f, insn->insn_opcode, 4);
1402 else if (insn->mips16_absolute_jump_p)
1403 {
1404 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1405 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1406 }
1407 else
1408 {
1409 if (insn->use_extend)
1410 {
1411 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1412 f += 2;
1413 }
1414 md_number_to_chars (f, insn->insn_opcode, 2);
1415 }
1416 mips_record_mips16_mode ();
1417 }
1418
1419 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1420 and install the opcode in the new location. */
1421
1422 static void
1423 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1424 {
1425 size_t i;
1426
1427 insn->frag = frag;
1428 insn->where = where;
1429 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1430 if (insn->fixp[i] != NULL)
1431 {
1432 insn->fixp[i]->fx_frag = frag;
1433 insn->fixp[i]->fx_where = where;
1434 }
1435 install_insn (insn);
1436 }
1437
1438 /* Add INSN to the end of the output. */
1439
1440 static void
1441 add_fixed_insn (struct mips_cl_insn *insn)
1442 {
1443 char *f = frag_more (insn_length (insn));
1444 move_insn (insn, frag_now, f - frag_now->fr_literal);
1445 }
1446
1447 /* Start a variant frag and move INSN to the start of the variant part,
1448 marking it as fixed. The other arguments are as for frag_var. */
1449
1450 static void
1451 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1452 relax_substateT subtype, symbolS *symbol, offsetT offset)
1453 {
1454 frag_grow (max_chars);
1455 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1456 insn->fixed_p = 1;
1457 frag_var (rs_machine_dependent, max_chars, var,
1458 subtype, symbol, offset, NULL);
1459 }
1460
1461 /* Insert N copies of INSN into the history buffer, starting at
1462 position FIRST. Neither FIRST nor N need to be clipped. */
1463
1464 static void
1465 insert_into_history (unsigned int first, unsigned int n,
1466 const struct mips_cl_insn *insn)
1467 {
1468 if (mips_relax.sequence != 2)
1469 {
1470 unsigned int i;
1471
1472 for (i = ARRAY_SIZE (history); i-- > first;)
1473 if (i >= first + n)
1474 history[i] = history[i - n];
1475 else
1476 history[i] = *insn;
1477 }
1478 }
1479
1480 /* Emit a nop instruction, recording it in the history buffer. */
1481
1482 static void
1483 emit_nop (void)
1484 {
1485 add_fixed_insn (NOP_INSN);
1486 insert_into_history (0, 1, NOP_INSN);
1487 }
1488
1489 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1490 the idea is to make it obvious at a glance that each errata is
1491 included. */
1492
1493 static void
1494 init_vr4120_conflicts (void)
1495 {
1496 #define CONFLICT(FIRST, SECOND) \
1497 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1498
1499 /* Errata 21 - [D]DIV[U] after [D]MACC */
1500 CONFLICT (MACC, DIV);
1501 CONFLICT (DMACC, DIV);
1502
1503 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1504 CONFLICT (DMULT, DMULT);
1505 CONFLICT (DMULT, DMACC);
1506 CONFLICT (DMACC, DMULT);
1507 CONFLICT (DMACC, DMACC);
1508
1509 /* Errata 24 - MT{LO,HI} after [D]MACC */
1510 CONFLICT (MACC, MTHILO);
1511 CONFLICT (DMACC, MTHILO);
1512
1513 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1514 instruction is executed immediately after a MACC or DMACC
1515 instruction, the result of [either instruction] is incorrect." */
1516 CONFLICT (MACC, MULT);
1517 CONFLICT (MACC, DMULT);
1518 CONFLICT (DMACC, MULT);
1519 CONFLICT (DMACC, DMULT);
1520
1521 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1522 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1523 DDIV or DDIVU instruction, the result of the MACC or
1524 DMACC instruction is incorrect.". */
1525 CONFLICT (DMULT, MACC);
1526 CONFLICT (DMULT, DMACC);
1527 CONFLICT (DIV, MACC);
1528 CONFLICT (DIV, DMACC);
1529
1530 #undef CONFLICT
1531 }
1532
1533 struct regname {
1534 const char *name;
1535 unsigned int num;
1536 };
1537
1538 #define RTYPE_MASK 0x1ff00
1539 #define RTYPE_NUM 0x00100
1540 #define RTYPE_FPU 0x00200
1541 #define RTYPE_FCC 0x00400
1542 #define RTYPE_VEC 0x00800
1543 #define RTYPE_GP 0x01000
1544 #define RTYPE_CP0 0x02000
1545 #define RTYPE_PC 0x04000
1546 #define RTYPE_ACC 0x08000
1547 #define RTYPE_CCC 0x10000
1548 #define RNUM_MASK 0x000ff
1549 #define RWARN 0x80000
1550
1551 #define GENERIC_REGISTER_NUMBERS \
1552 {"$0", RTYPE_NUM | 0}, \
1553 {"$1", RTYPE_NUM | 1}, \
1554 {"$2", RTYPE_NUM | 2}, \
1555 {"$3", RTYPE_NUM | 3}, \
1556 {"$4", RTYPE_NUM | 4}, \
1557 {"$5", RTYPE_NUM | 5}, \
1558 {"$6", RTYPE_NUM | 6}, \
1559 {"$7", RTYPE_NUM | 7}, \
1560 {"$8", RTYPE_NUM | 8}, \
1561 {"$9", RTYPE_NUM | 9}, \
1562 {"$10", RTYPE_NUM | 10}, \
1563 {"$11", RTYPE_NUM | 11}, \
1564 {"$12", RTYPE_NUM | 12}, \
1565 {"$13", RTYPE_NUM | 13}, \
1566 {"$14", RTYPE_NUM | 14}, \
1567 {"$15", RTYPE_NUM | 15}, \
1568 {"$16", RTYPE_NUM | 16}, \
1569 {"$17", RTYPE_NUM | 17}, \
1570 {"$18", RTYPE_NUM | 18}, \
1571 {"$19", RTYPE_NUM | 19}, \
1572 {"$20", RTYPE_NUM | 20}, \
1573 {"$21", RTYPE_NUM | 21}, \
1574 {"$22", RTYPE_NUM | 22}, \
1575 {"$23", RTYPE_NUM | 23}, \
1576 {"$24", RTYPE_NUM | 24}, \
1577 {"$25", RTYPE_NUM | 25}, \
1578 {"$26", RTYPE_NUM | 26}, \
1579 {"$27", RTYPE_NUM | 27}, \
1580 {"$28", RTYPE_NUM | 28}, \
1581 {"$29", RTYPE_NUM | 29}, \
1582 {"$30", RTYPE_NUM | 30}, \
1583 {"$31", RTYPE_NUM | 31}
1584
1585 #define FPU_REGISTER_NAMES \
1586 {"$f0", RTYPE_FPU | 0}, \
1587 {"$f1", RTYPE_FPU | 1}, \
1588 {"$f2", RTYPE_FPU | 2}, \
1589 {"$f3", RTYPE_FPU | 3}, \
1590 {"$f4", RTYPE_FPU | 4}, \
1591 {"$f5", RTYPE_FPU | 5}, \
1592 {"$f6", RTYPE_FPU | 6}, \
1593 {"$f7", RTYPE_FPU | 7}, \
1594 {"$f8", RTYPE_FPU | 8}, \
1595 {"$f9", RTYPE_FPU | 9}, \
1596 {"$f10", RTYPE_FPU | 10}, \
1597 {"$f11", RTYPE_FPU | 11}, \
1598 {"$f12", RTYPE_FPU | 12}, \
1599 {"$f13", RTYPE_FPU | 13}, \
1600 {"$f14", RTYPE_FPU | 14}, \
1601 {"$f15", RTYPE_FPU | 15}, \
1602 {"$f16", RTYPE_FPU | 16}, \
1603 {"$f17", RTYPE_FPU | 17}, \
1604 {"$f18", RTYPE_FPU | 18}, \
1605 {"$f19", RTYPE_FPU | 19}, \
1606 {"$f20", RTYPE_FPU | 20}, \
1607 {"$f21", RTYPE_FPU | 21}, \
1608 {"$f22", RTYPE_FPU | 22}, \
1609 {"$f23", RTYPE_FPU | 23}, \
1610 {"$f24", RTYPE_FPU | 24}, \
1611 {"$f25", RTYPE_FPU | 25}, \
1612 {"$f26", RTYPE_FPU | 26}, \
1613 {"$f27", RTYPE_FPU | 27}, \
1614 {"$f28", RTYPE_FPU | 28}, \
1615 {"$f29", RTYPE_FPU | 29}, \
1616 {"$f30", RTYPE_FPU | 30}, \
1617 {"$f31", RTYPE_FPU | 31}
1618
1619 #define FPU_CONDITION_CODE_NAMES \
1620 {"$fcc0", RTYPE_FCC | 0}, \
1621 {"$fcc1", RTYPE_FCC | 1}, \
1622 {"$fcc2", RTYPE_FCC | 2}, \
1623 {"$fcc3", RTYPE_FCC | 3}, \
1624 {"$fcc4", RTYPE_FCC | 4}, \
1625 {"$fcc5", RTYPE_FCC | 5}, \
1626 {"$fcc6", RTYPE_FCC | 6}, \
1627 {"$fcc7", RTYPE_FCC | 7}
1628
1629 #define COPROC_CONDITION_CODE_NAMES \
1630 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1631 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1632 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1633 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1634 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1635 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1636 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1637 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1638
1639 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1640 {"$a4", RTYPE_GP | 8}, \
1641 {"$a5", RTYPE_GP | 9}, \
1642 {"$a6", RTYPE_GP | 10}, \
1643 {"$a7", RTYPE_GP | 11}, \
1644 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1645 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1646 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1647 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1648 {"$t0", RTYPE_GP | 12}, \
1649 {"$t1", RTYPE_GP | 13}, \
1650 {"$t2", RTYPE_GP | 14}, \
1651 {"$t3", RTYPE_GP | 15}
1652
1653 #define O32_SYMBOLIC_REGISTER_NAMES \
1654 {"$t0", RTYPE_GP | 8}, \
1655 {"$t1", RTYPE_GP | 9}, \
1656 {"$t2", RTYPE_GP | 10}, \
1657 {"$t3", RTYPE_GP | 11}, \
1658 {"$t4", RTYPE_GP | 12}, \
1659 {"$t5", RTYPE_GP | 13}, \
1660 {"$t6", RTYPE_GP | 14}, \
1661 {"$t7", RTYPE_GP | 15}, \
1662 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1663 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1664 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1665 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1666
1667 /* Remaining symbolic register names */
1668 #define SYMBOLIC_REGISTER_NAMES \
1669 {"$zero", RTYPE_GP | 0}, \
1670 {"$at", RTYPE_GP | 1}, \
1671 {"$AT", RTYPE_GP | 1}, \
1672 {"$v0", RTYPE_GP | 2}, \
1673 {"$v1", RTYPE_GP | 3}, \
1674 {"$a0", RTYPE_GP | 4}, \
1675 {"$a1", RTYPE_GP | 5}, \
1676 {"$a2", RTYPE_GP | 6}, \
1677 {"$a3", RTYPE_GP | 7}, \
1678 {"$s0", RTYPE_GP | 16}, \
1679 {"$s1", RTYPE_GP | 17}, \
1680 {"$s2", RTYPE_GP | 18}, \
1681 {"$s3", RTYPE_GP | 19}, \
1682 {"$s4", RTYPE_GP | 20}, \
1683 {"$s5", RTYPE_GP | 21}, \
1684 {"$s6", RTYPE_GP | 22}, \
1685 {"$s7", RTYPE_GP | 23}, \
1686 {"$t8", RTYPE_GP | 24}, \
1687 {"$t9", RTYPE_GP | 25}, \
1688 {"$k0", RTYPE_GP | 26}, \
1689 {"$kt0", RTYPE_GP | 26}, \
1690 {"$k1", RTYPE_GP | 27}, \
1691 {"$kt1", RTYPE_GP | 27}, \
1692 {"$gp", RTYPE_GP | 28}, \
1693 {"$sp", RTYPE_GP | 29}, \
1694 {"$s8", RTYPE_GP | 30}, \
1695 {"$fp", RTYPE_GP | 30}, \
1696 {"$ra", RTYPE_GP | 31}
1697
1698 #define MIPS16_SPECIAL_REGISTER_NAMES \
1699 {"$pc", RTYPE_PC | 0}
1700
1701 #define MDMX_VECTOR_REGISTER_NAMES \
1702 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1703 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1704 {"$v2", RTYPE_VEC | 2}, \
1705 {"$v3", RTYPE_VEC | 3}, \
1706 {"$v4", RTYPE_VEC | 4}, \
1707 {"$v5", RTYPE_VEC | 5}, \
1708 {"$v6", RTYPE_VEC | 6}, \
1709 {"$v7", RTYPE_VEC | 7}, \
1710 {"$v8", RTYPE_VEC | 8}, \
1711 {"$v9", RTYPE_VEC | 9}, \
1712 {"$v10", RTYPE_VEC | 10}, \
1713 {"$v11", RTYPE_VEC | 11}, \
1714 {"$v12", RTYPE_VEC | 12}, \
1715 {"$v13", RTYPE_VEC | 13}, \
1716 {"$v14", RTYPE_VEC | 14}, \
1717 {"$v15", RTYPE_VEC | 15}, \
1718 {"$v16", RTYPE_VEC | 16}, \
1719 {"$v17", RTYPE_VEC | 17}, \
1720 {"$v18", RTYPE_VEC | 18}, \
1721 {"$v19", RTYPE_VEC | 19}, \
1722 {"$v20", RTYPE_VEC | 20}, \
1723 {"$v21", RTYPE_VEC | 21}, \
1724 {"$v22", RTYPE_VEC | 22}, \
1725 {"$v23", RTYPE_VEC | 23}, \
1726 {"$v24", RTYPE_VEC | 24}, \
1727 {"$v25", RTYPE_VEC | 25}, \
1728 {"$v26", RTYPE_VEC | 26}, \
1729 {"$v27", RTYPE_VEC | 27}, \
1730 {"$v28", RTYPE_VEC | 28}, \
1731 {"$v29", RTYPE_VEC | 29}, \
1732 {"$v30", RTYPE_VEC | 30}, \
1733 {"$v31", RTYPE_VEC | 31}
1734
1735 #define MIPS_DSP_ACCUMULATOR_NAMES \
1736 {"$ac0", RTYPE_ACC | 0}, \
1737 {"$ac1", RTYPE_ACC | 1}, \
1738 {"$ac2", RTYPE_ACC | 2}, \
1739 {"$ac3", RTYPE_ACC | 3}
1740
1741 static const struct regname reg_names[] = {
1742 GENERIC_REGISTER_NUMBERS,
1743 FPU_REGISTER_NAMES,
1744 FPU_CONDITION_CODE_NAMES,
1745 COPROC_CONDITION_CODE_NAMES,
1746
1747 /* The $txx registers depends on the abi,
1748 these will be added later into the symbol table from
1749 one of the tables below once mips_abi is set after
1750 parsing of arguments from the command line. */
1751 SYMBOLIC_REGISTER_NAMES,
1752
1753 MIPS16_SPECIAL_REGISTER_NAMES,
1754 MDMX_VECTOR_REGISTER_NAMES,
1755 MIPS_DSP_ACCUMULATOR_NAMES,
1756 {0, 0}
1757 };
1758
1759 static const struct regname reg_names_o32[] = {
1760 O32_SYMBOLIC_REGISTER_NAMES,
1761 {0, 0}
1762 };
1763
1764 static const struct regname reg_names_n32n64[] = {
1765 N32N64_SYMBOLIC_REGISTER_NAMES,
1766 {0, 0}
1767 };
1768
1769 static int
1770 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1771 {
1772 symbolS *symbolP;
1773 char *e;
1774 char save_c;
1775 int reg = -1;
1776
1777 /* Find end of name. */
1778 e = *s;
1779 if (is_name_beginner (*e))
1780 ++e;
1781 while (is_part_of_name (*e))
1782 ++e;
1783
1784 /* Terminate name. */
1785 save_c = *e;
1786 *e = '\0';
1787
1788 /* Look for a register symbol. */
1789 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1790 {
1791 int r = S_GET_VALUE (symbolP);
1792 if (r & types)
1793 reg = r & RNUM_MASK;
1794 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1795 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1796 reg = (r & RNUM_MASK) - 2;
1797 }
1798 /* Else see if this is a register defined in an itbl entry. */
1799 else if ((types & RTYPE_GP) && itbl_have_entries)
1800 {
1801 char *n = *s;
1802 unsigned long r;
1803
1804 if (*n == '$')
1805 ++n;
1806 if (itbl_get_reg_val (n, &r))
1807 reg = r & RNUM_MASK;
1808 }
1809
1810 /* Advance to next token if a register was recognised. */
1811 if (reg >= 0)
1812 *s = e;
1813 else if (types & RWARN)
1814 as_warn (_("Unrecognized register name `%s'"), *s);
1815
1816 *e = save_c;
1817 if (regnop)
1818 *regnop = reg;
1819 return reg >= 0;
1820 }
1821
1822 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1823 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1824
1825 static bfd_boolean
1826 is_opcode_valid (const struct mips_opcode *mo)
1827 {
1828 int isa = mips_opts.isa;
1829 int fp_s, fp_d;
1830
1831 if (mips_opts.ase_mdmx)
1832 isa |= INSN_MDMX;
1833 if (mips_opts.ase_dsp)
1834 isa |= INSN_DSP;
1835 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1836 isa |= INSN_DSP64;
1837 if (mips_opts.ase_dspr2)
1838 isa |= INSN_DSPR2;
1839 if (mips_opts.ase_mt)
1840 isa |= INSN_MT;
1841 if (mips_opts.ase_mips3d)
1842 isa |= INSN_MIPS3D;
1843 if (mips_opts.ase_smartmips)
1844 isa |= INSN_SMARTMIPS;
1845
1846 /* Don't accept instructions based on the ISA if the CPU does not implement
1847 all the coprocessor insns. */
1848 if (NO_ISA_COP (mips_opts.arch)
1849 && COP_INSN (mo->pinfo))
1850 isa = 0;
1851
1852 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1853 return FALSE;
1854
1855 /* Check whether the instruction or macro requires single-precision or
1856 double-precision floating-point support. Note that this information is
1857 stored differently in the opcode table for insns and macros. */
1858 if (mo->pinfo == INSN_MACRO)
1859 {
1860 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1861 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1862 }
1863 else
1864 {
1865 fp_s = mo->pinfo & FP_S;
1866 fp_d = mo->pinfo & FP_D;
1867 }
1868
1869 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1870 return FALSE;
1871
1872 if (fp_s && mips_opts.soft_float)
1873 return FALSE;
1874
1875 return TRUE;
1876 }
1877
1878 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1879 selected ISA and architecture. */
1880
1881 static bfd_boolean
1882 is_opcode_valid_16 (const struct mips_opcode *mo)
1883 {
1884 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1885 }
1886
1887 /* This function is called once, at assembler startup time. It should set up
1888 all the tables, etc. that the MD part of the assembler will need. */
1889
1890 void
1891 md_begin (void)
1892 {
1893 const char *retval = NULL;
1894 int i = 0;
1895 int broken = 0;
1896
1897 if (mips_pic != NO_PIC)
1898 {
1899 if (g_switch_seen && g_switch_value != 0)
1900 as_bad (_("-G may not be used in position-independent code"));
1901 g_switch_value = 0;
1902 }
1903
1904 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1905 as_warn (_("Could not set architecture and machine"));
1906
1907 op_hash = hash_new ();
1908
1909 for (i = 0; i < NUMOPCODES;)
1910 {
1911 const char *name = mips_opcodes[i].name;
1912
1913 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1914 if (retval != NULL)
1915 {
1916 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1917 mips_opcodes[i].name, retval);
1918 /* Probably a memory allocation problem? Give up now. */
1919 as_fatal (_("Broken assembler. No assembly attempted."));
1920 }
1921 do
1922 {
1923 if (mips_opcodes[i].pinfo != INSN_MACRO)
1924 {
1925 if (!validate_mips_insn (&mips_opcodes[i]))
1926 broken = 1;
1927 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1928 {
1929 create_insn (&nop_insn, mips_opcodes + i);
1930 if (mips_fix_loongson2f_nop)
1931 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1932 nop_insn.fixed_p = 1;
1933 }
1934 }
1935 ++i;
1936 }
1937 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1938 }
1939
1940 mips16_op_hash = hash_new ();
1941
1942 i = 0;
1943 while (i < bfd_mips16_num_opcodes)
1944 {
1945 const char *name = mips16_opcodes[i].name;
1946
1947 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1948 if (retval != NULL)
1949 as_fatal (_("internal: can't hash `%s': %s"),
1950 mips16_opcodes[i].name, retval);
1951 do
1952 {
1953 if (mips16_opcodes[i].pinfo != INSN_MACRO
1954 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1955 != mips16_opcodes[i].match))
1956 {
1957 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1958 mips16_opcodes[i].name, mips16_opcodes[i].args);
1959 broken = 1;
1960 }
1961 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1962 {
1963 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1964 mips16_nop_insn.fixed_p = 1;
1965 }
1966 ++i;
1967 }
1968 while (i < bfd_mips16_num_opcodes
1969 && strcmp (mips16_opcodes[i].name, name) == 0);
1970 }
1971
1972 if (broken)
1973 as_fatal (_("Broken assembler. No assembly attempted."));
1974
1975 /* We add all the general register names to the symbol table. This
1976 helps us detect invalid uses of them. */
1977 for (i = 0; reg_names[i].name; i++)
1978 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1979 reg_names[i].num, /* & RNUM_MASK, */
1980 &zero_address_frag));
1981 if (HAVE_NEWABI)
1982 for (i = 0; reg_names_n32n64[i].name; i++)
1983 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1984 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1985 &zero_address_frag));
1986 else
1987 for (i = 0; reg_names_o32[i].name; i++)
1988 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1989 reg_names_o32[i].num, /* & RNUM_MASK, */
1990 &zero_address_frag));
1991
1992 mips_no_prev_insn ();
1993
1994 mips_gprmask = 0;
1995 mips_cprmask[0] = 0;
1996 mips_cprmask[1] = 0;
1997 mips_cprmask[2] = 0;
1998 mips_cprmask[3] = 0;
1999
2000 /* set the default alignment for the text section (2**2) */
2001 record_alignment (text_section, 2);
2002
2003 bfd_set_gp_size (stdoutput, g_switch_value);
2004
2005 #ifdef OBJ_ELF
2006 if (IS_ELF)
2007 {
2008 /* On a native system other than VxWorks, sections must be aligned
2009 to 16 byte boundaries. When configured for an embedded ELF
2010 target, we don't bother. */
2011 if (strncmp (TARGET_OS, "elf", 3) != 0
2012 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2013 {
2014 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2015 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2016 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2017 }
2018
2019 /* Create a .reginfo section for register masks and a .mdebug
2020 section for debugging information. */
2021 {
2022 segT seg;
2023 subsegT subseg;
2024 flagword flags;
2025 segT sec;
2026
2027 seg = now_seg;
2028 subseg = now_subseg;
2029
2030 /* The ABI says this section should be loaded so that the
2031 running program can access it. However, we don't load it
2032 if we are configured for an embedded target */
2033 flags = SEC_READONLY | SEC_DATA;
2034 if (strncmp (TARGET_OS, "elf", 3) != 0)
2035 flags |= SEC_ALLOC | SEC_LOAD;
2036
2037 if (mips_abi != N64_ABI)
2038 {
2039 sec = subseg_new (".reginfo", (subsegT) 0);
2040
2041 bfd_set_section_flags (stdoutput, sec, flags);
2042 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2043
2044 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2045 }
2046 else
2047 {
2048 /* The 64-bit ABI uses a .MIPS.options section rather than
2049 .reginfo section. */
2050 sec = subseg_new (".MIPS.options", (subsegT) 0);
2051 bfd_set_section_flags (stdoutput, sec, flags);
2052 bfd_set_section_alignment (stdoutput, sec, 3);
2053
2054 /* Set up the option header. */
2055 {
2056 Elf_Internal_Options opthdr;
2057 char *f;
2058
2059 opthdr.kind = ODK_REGINFO;
2060 opthdr.size = (sizeof (Elf_External_Options)
2061 + sizeof (Elf64_External_RegInfo));
2062 opthdr.section = 0;
2063 opthdr.info = 0;
2064 f = frag_more (sizeof (Elf_External_Options));
2065 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2066 (Elf_External_Options *) f);
2067
2068 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2069 }
2070 }
2071
2072 if (ECOFF_DEBUGGING)
2073 {
2074 sec = subseg_new (".mdebug", (subsegT) 0);
2075 (void) bfd_set_section_flags (stdoutput, sec,
2076 SEC_HAS_CONTENTS | SEC_READONLY);
2077 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2078 }
2079 else if (mips_flag_pdr)
2080 {
2081 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2082 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2083 SEC_READONLY | SEC_RELOC
2084 | SEC_DEBUGGING);
2085 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2086 }
2087
2088 subseg_set (seg, subseg);
2089 }
2090 }
2091 #endif /* OBJ_ELF */
2092
2093 if (! ECOFF_DEBUGGING)
2094 md_obj_begin ();
2095
2096 if (mips_fix_vr4120)
2097 init_vr4120_conflicts ();
2098 }
2099
2100 void
2101 md_mips_end (void)
2102 {
2103 if (! ECOFF_DEBUGGING)
2104 md_obj_end ();
2105 }
2106
2107 void
2108 md_assemble (char *str)
2109 {
2110 struct mips_cl_insn insn;
2111 bfd_reloc_code_real_type unused_reloc[3]
2112 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2113
2114 imm_expr.X_op = O_absent;
2115 imm2_expr.X_op = O_absent;
2116 offset_expr.X_op = O_absent;
2117 imm_reloc[0] = BFD_RELOC_UNUSED;
2118 imm_reloc[1] = BFD_RELOC_UNUSED;
2119 imm_reloc[2] = BFD_RELOC_UNUSED;
2120 offset_reloc[0] = BFD_RELOC_UNUSED;
2121 offset_reloc[1] = BFD_RELOC_UNUSED;
2122 offset_reloc[2] = BFD_RELOC_UNUSED;
2123
2124 if (mips_opts.mips16)
2125 mips16_ip (str, &insn);
2126 else
2127 {
2128 mips_ip (str, &insn);
2129 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2130 str, insn.insn_opcode));
2131 }
2132
2133 if (insn_error)
2134 {
2135 as_bad ("%s `%s'", insn_error, str);
2136 return;
2137 }
2138
2139 if (insn.insn_mo->pinfo == INSN_MACRO)
2140 {
2141 macro_start ();
2142 if (mips_opts.mips16)
2143 mips16_macro (&insn);
2144 else
2145 macro (&insn);
2146 macro_end ();
2147 }
2148 else
2149 {
2150 if (imm_expr.X_op != O_absent)
2151 append_insn (&insn, &imm_expr, imm_reloc);
2152 else if (offset_expr.X_op != O_absent)
2153 append_insn (&insn, &offset_expr, offset_reloc);
2154 else
2155 append_insn (&insn, NULL, unused_reloc);
2156 }
2157 }
2158
2159 /* Convenience functions for abstracting away the differences between
2160 MIPS16 and non-MIPS16 relocations. */
2161
2162 static inline bfd_boolean
2163 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2164 {
2165 switch (reloc)
2166 {
2167 case BFD_RELOC_MIPS16_JMP:
2168 case BFD_RELOC_MIPS16_GPREL:
2169 case BFD_RELOC_MIPS16_GOT16:
2170 case BFD_RELOC_MIPS16_CALL16:
2171 case BFD_RELOC_MIPS16_HI16_S:
2172 case BFD_RELOC_MIPS16_HI16:
2173 case BFD_RELOC_MIPS16_LO16:
2174 return TRUE;
2175
2176 default:
2177 return FALSE;
2178 }
2179 }
2180
2181 static inline bfd_boolean
2182 got16_reloc_p (bfd_reloc_code_real_type reloc)
2183 {
2184 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2185 }
2186
2187 static inline bfd_boolean
2188 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2189 {
2190 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2191 }
2192
2193 static inline bfd_boolean
2194 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2195 {
2196 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2197 }
2198
2199 /* Return true if the given relocation might need a matching %lo().
2200 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2201 need a matching %lo() when applied to local symbols. */
2202
2203 static inline bfd_boolean
2204 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2205 {
2206 return (HAVE_IN_PLACE_ADDENDS
2207 && (hi16_reloc_p (reloc)
2208 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2209 all GOT16 relocations evaluate to "G". */
2210 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2211 }
2212
2213 /* Return the type of %lo() reloc needed by RELOC, given that
2214 reloc_needs_lo_p. */
2215
2216 static inline bfd_reloc_code_real_type
2217 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2218 {
2219 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2220 }
2221
2222 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2223 relocation. */
2224
2225 static inline bfd_boolean
2226 fixup_has_matching_lo_p (fixS *fixp)
2227 {
2228 return (fixp->fx_next != NULL
2229 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2230 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2231 && fixp->fx_offset == fixp->fx_next->fx_offset);
2232 }
2233
2234 /* See whether instruction IP reads register REG. CLASS is the type
2235 of register. */
2236
2237 static int
2238 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2239 enum mips_regclass regclass)
2240 {
2241 if (regclass == MIPS16_REG)
2242 {
2243 gas_assert (mips_opts.mips16);
2244 reg = mips16_to_32_reg_map[reg];
2245 regclass = MIPS_GR_REG;
2246 }
2247
2248 /* Don't report on general register ZERO, since it never changes. */
2249 if (regclass == MIPS_GR_REG && reg == ZERO)
2250 return 0;
2251
2252 if (regclass == MIPS_FP_REG)
2253 {
2254 gas_assert (! mips_opts.mips16);
2255 /* If we are called with either $f0 or $f1, we must check $f0.
2256 This is not optimal, because it will introduce an unnecessary
2257 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2258 need to distinguish reading both $f0 and $f1 or just one of
2259 them. Note that we don't have to check the other way,
2260 because there is no instruction that sets both $f0 and $f1
2261 and requires a delay. */
2262 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2263 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2264 == (reg &~ (unsigned) 1)))
2265 return 1;
2266 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2267 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2268 == (reg &~ (unsigned) 1)))
2269 return 1;
2270 }
2271 else if (! mips_opts.mips16)
2272 {
2273 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2274 && EXTRACT_OPERAND (RS, *ip) == reg)
2275 return 1;
2276 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2277 && EXTRACT_OPERAND (RT, *ip) == reg)
2278 return 1;
2279 }
2280 else
2281 {
2282 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2283 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2284 return 1;
2285 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2286 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2287 return 1;
2288 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2289 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2290 == reg))
2291 return 1;
2292 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2293 return 1;
2294 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2295 return 1;
2296 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2297 return 1;
2298 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2299 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2300 return 1;
2301 }
2302
2303 return 0;
2304 }
2305
2306 /* This function returns true if modifying a register requires a
2307 delay. */
2308
2309 static int
2310 reg_needs_delay (unsigned int reg)
2311 {
2312 unsigned long prev_pinfo;
2313
2314 prev_pinfo = history[0].insn_mo->pinfo;
2315 if (! mips_opts.noreorder
2316 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2317 && ! gpr_interlocks)
2318 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2319 && ! cop_interlocks)))
2320 {
2321 /* A load from a coprocessor or from memory. All load delays
2322 delay the use of general register rt for one instruction. */
2323 /* Itbl support may require additional care here. */
2324 know (prev_pinfo & INSN_WRITE_GPR_T);
2325 if (reg == EXTRACT_OPERAND (RT, history[0]))
2326 return 1;
2327 }
2328
2329 return 0;
2330 }
2331
2332 /* Move all labels in insn_labels to the current insertion point. */
2333
2334 static void
2335 mips_move_labels (void)
2336 {
2337 segment_info_type *si = seg_info (now_seg);
2338 struct insn_label_list *l;
2339 valueT val;
2340
2341 for (l = si->label_list; l != NULL; l = l->next)
2342 {
2343 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2344 symbol_set_frag (l->label, frag_now);
2345 val = (valueT) frag_now_fix ();
2346 /* mips16 text labels are stored as odd. */
2347 if (mips_opts.mips16)
2348 ++val;
2349 S_SET_VALUE (l->label, val);
2350 }
2351 }
2352
2353 static bfd_boolean
2354 s_is_linkonce (symbolS *sym, segT from_seg)
2355 {
2356 bfd_boolean linkonce = FALSE;
2357 segT symseg = S_GET_SEGMENT (sym);
2358
2359 if (symseg != from_seg && !S_IS_LOCAL (sym))
2360 {
2361 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2362 linkonce = TRUE;
2363 #ifdef OBJ_ELF
2364 /* The GNU toolchain uses an extension for ELF: a section
2365 beginning with the magic string .gnu.linkonce is a
2366 linkonce section. */
2367 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2368 sizeof ".gnu.linkonce" - 1) == 0)
2369 linkonce = TRUE;
2370 #endif
2371 }
2372 return linkonce;
2373 }
2374
2375 /* Mark instruction labels in mips16 mode. This permits the linker to
2376 handle them specially, such as generating jalx instructions when
2377 needed. We also make them odd for the duration of the assembly, in
2378 order to generate the right sort of code. We will make them even
2379 in the adjust_symtab routine, while leaving them marked. This is
2380 convenient for the debugger and the disassembler. The linker knows
2381 to make them odd again. */
2382
2383 static void
2384 mips16_mark_labels (void)
2385 {
2386 segment_info_type *si = seg_info (now_seg);
2387 struct insn_label_list *l;
2388
2389 if (!mips_opts.mips16)
2390 return;
2391
2392 for (l = si->label_list; l != NULL; l = l->next)
2393 {
2394 symbolS *label = l->label;
2395
2396 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2397 if (IS_ELF)
2398 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2399 #endif
2400 if ((S_GET_VALUE (label) & 1) == 0
2401 /* Don't adjust the address if the label is global or weak, or
2402 in a link-once section, since we'll be emitting symbol reloc
2403 references to it which will be patched up by the linker, and
2404 the final value of the symbol may or may not be MIPS16. */
2405 && ! S_IS_WEAK (label)
2406 && ! S_IS_EXTERNAL (label)
2407 && ! s_is_linkonce (label, now_seg))
2408 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2409 }
2410 }
2411
2412 /* End the current frag. Make it a variant frag and record the
2413 relaxation info. */
2414
2415 static void
2416 relax_close_frag (void)
2417 {
2418 mips_macro_warning.first_frag = frag_now;
2419 frag_var (rs_machine_dependent, 0, 0,
2420 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2421 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2422
2423 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2424 mips_relax.first_fixup = 0;
2425 }
2426
2427 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2428 See the comment above RELAX_ENCODE for more details. */
2429
2430 static void
2431 relax_start (symbolS *symbol)
2432 {
2433 gas_assert (mips_relax.sequence == 0);
2434 mips_relax.sequence = 1;
2435 mips_relax.symbol = symbol;
2436 }
2437
2438 /* Start generating the second version of a relaxable sequence.
2439 See the comment above RELAX_ENCODE for more details. */
2440
2441 static void
2442 relax_switch (void)
2443 {
2444 gas_assert (mips_relax.sequence == 1);
2445 mips_relax.sequence = 2;
2446 }
2447
2448 /* End the current relaxable sequence. */
2449
2450 static void
2451 relax_end (void)
2452 {
2453 gas_assert (mips_relax.sequence == 2);
2454 relax_close_frag ();
2455 mips_relax.sequence = 0;
2456 }
2457
2458 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2459 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2460 by VR4120 errata. */
2461
2462 static unsigned int
2463 classify_vr4120_insn (const char *name)
2464 {
2465 if (strncmp (name, "macc", 4) == 0)
2466 return FIX_VR4120_MACC;
2467 if (strncmp (name, "dmacc", 5) == 0)
2468 return FIX_VR4120_DMACC;
2469 if (strncmp (name, "mult", 4) == 0)
2470 return FIX_VR4120_MULT;
2471 if (strncmp (name, "dmult", 5) == 0)
2472 return FIX_VR4120_DMULT;
2473 if (strstr (name, "div"))
2474 return FIX_VR4120_DIV;
2475 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2476 return FIX_VR4120_MTHILO;
2477 return NUM_FIX_VR4120_CLASSES;
2478 }
2479
2480 #define INSN_ERET 0x42000018
2481 #define INSN_DERET 0x4200001f
2482
2483 /* Return the number of instructions that must separate INSN1 and INSN2,
2484 where INSN1 is the earlier instruction. Return the worst-case value
2485 for any INSN2 if INSN2 is null. */
2486
2487 static unsigned int
2488 insns_between (const struct mips_cl_insn *insn1,
2489 const struct mips_cl_insn *insn2)
2490 {
2491 unsigned long pinfo1, pinfo2;
2492
2493 /* This function needs to know which pinfo flags are set for INSN2
2494 and which registers INSN2 uses. The former is stored in PINFO2 and
2495 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2496 will have every flag set and INSN2_USES_REG will always return true. */
2497 pinfo1 = insn1->insn_mo->pinfo;
2498 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2499
2500 #define INSN2_USES_REG(REG, CLASS) \
2501 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2502
2503 /* For most targets, write-after-read dependencies on the HI and LO
2504 registers must be separated by at least two instructions. */
2505 if (!hilo_interlocks)
2506 {
2507 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2508 return 2;
2509 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2510 return 2;
2511 }
2512
2513 /* If we're working around r7000 errata, there must be two instructions
2514 between an mfhi or mflo and any instruction that uses the result. */
2515 if (mips_7000_hilo_fix
2516 && MF_HILO_INSN (pinfo1)
2517 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2518 return 2;
2519
2520 /* If we're working around 24K errata, one instruction is required
2521 if an ERET or DERET is followed by a branch instruction. */
2522 if (mips_fix_24k)
2523 {
2524 if (insn1->insn_opcode == INSN_ERET
2525 || insn1->insn_opcode == INSN_DERET)
2526 {
2527 if (insn2 == NULL
2528 || insn2->insn_opcode == INSN_ERET
2529 || insn2->insn_opcode == INSN_DERET
2530 || (insn2->insn_mo->pinfo
2531 & (INSN_UNCOND_BRANCH_DELAY
2532 | INSN_COND_BRANCH_DELAY
2533 | INSN_COND_BRANCH_LIKELY)) != 0)
2534 return 1;
2535 }
2536 }
2537
2538 /* If working around VR4120 errata, check for combinations that need
2539 a single intervening instruction. */
2540 if (mips_fix_vr4120)
2541 {
2542 unsigned int class1, class2;
2543
2544 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2545 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2546 {
2547 if (insn2 == NULL)
2548 return 1;
2549 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2550 if (vr4120_conflicts[class1] & (1 << class2))
2551 return 1;
2552 }
2553 }
2554
2555 if (!mips_opts.mips16)
2556 {
2557 /* Check for GPR or coprocessor load delays. All such delays
2558 are on the RT register. */
2559 /* Itbl support may require additional care here. */
2560 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2561 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2562 {
2563 know (pinfo1 & INSN_WRITE_GPR_T);
2564 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2565 return 1;
2566 }
2567
2568 /* Check for generic coprocessor hazards.
2569
2570 This case is not handled very well. There is no special
2571 knowledge of CP0 handling, and the coprocessors other than
2572 the floating point unit are not distinguished at all. */
2573 /* Itbl support may require additional care here. FIXME!
2574 Need to modify this to include knowledge about
2575 user specified delays! */
2576 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2577 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2578 {
2579 /* Handle cases where INSN1 writes to a known general coprocessor
2580 register. There must be a one instruction delay before INSN2
2581 if INSN2 reads that register, otherwise no delay is needed. */
2582 if (pinfo1 & INSN_WRITE_FPR_T)
2583 {
2584 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2585 return 1;
2586 }
2587 else if (pinfo1 & INSN_WRITE_FPR_S)
2588 {
2589 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2590 return 1;
2591 }
2592 else
2593 {
2594 /* Read-after-write dependencies on the control registers
2595 require a two-instruction gap. */
2596 if ((pinfo1 & INSN_WRITE_COND_CODE)
2597 && (pinfo2 & INSN_READ_COND_CODE))
2598 return 2;
2599
2600 /* We don't know exactly what INSN1 does. If INSN2 is
2601 also a coprocessor instruction, assume there must be
2602 a one instruction gap. */
2603 if (pinfo2 & INSN_COP)
2604 return 1;
2605 }
2606 }
2607
2608 /* Check for read-after-write dependencies on the coprocessor
2609 control registers in cases where INSN1 does not need a general
2610 coprocessor delay. This means that INSN1 is a floating point
2611 comparison instruction. */
2612 /* Itbl support may require additional care here. */
2613 else if (!cop_interlocks
2614 && (pinfo1 & INSN_WRITE_COND_CODE)
2615 && (pinfo2 & INSN_READ_COND_CODE))
2616 return 1;
2617 }
2618
2619 #undef INSN2_USES_REG
2620
2621 return 0;
2622 }
2623
2624 /* Return the number of nops that would be needed to work around the
2625 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2626 the MAX_VR4130_NOPS instructions described by HIST. */
2627
2628 static int
2629 nops_for_vr4130 (const struct mips_cl_insn *hist,
2630 const struct mips_cl_insn *insn)
2631 {
2632 int i, j, reg;
2633
2634 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2635 are not affected by the errata. */
2636 if (insn != 0
2637 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2638 || strcmp (insn->insn_mo->name, "mtlo") == 0
2639 || strcmp (insn->insn_mo->name, "mthi") == 0))
2640 return 0;
2641
2642 /* Search for the first MFLO or MFHI. */
2643 for (i = 0; i < MAX_VR4130_NOPS; i++)
2644 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2645 {
2646 /* Extract the destination register. */
2647 if (mips_opts.mips16)
2648 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, hist[i])];
2649 else
2650 reg = EXTRACT_OPERAND (RD, hist[i]);
2651
2652 /* No nops are needed if INSN reads that register. */
2653 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2654 return 0;
2655
2656 /* ...or if any of the intervening instructions do. */
2657 for (j = 0; j < i; j++)
2658 if (insn_uses_reg (&hist[j], reg, MIPS_GR_REG))
2659 return 0;
2660
2661 return MAX_VR4130_NOPS - i;
2662 }
2663 return 0;
2664 }
2665
2666 /* Return the number of nops that would be needed if instruction INSN
2667 immediately followed the MAX_NOPS instructions given by HIST,
2668 where HIST[0] is the most recent instruction. If INSN is null,
2669 return the worse-case number of nops for any instruction. */
2670
2671 static int
2672 nops_for_insn (const struct mips_cl_insn *hist,
2673 const struct mips_cl_insn *insn)
2674 {
2675 int i, nops, tmp_nops;
2676
2677 nops = 0;
2678 for (i = 0; i < MAX_DELAY_NOPS; i++)
2679 {
2680 tmp_nops = insns_between (hist + i, insn) - i;
2681 if (tmp_nops > nops)
2682 nops = tmp_nops;
2683 }
2684
2685 if (mips_fix_vr4130)
2686 {
2687 tmp_nops = nops_for_vr4130 (hist, insn);
2688 if (tmp_nops > nops)
2689 nops = tmp_nops;
2690 }
2691
2692 return nops;
2693 }
2694
2695 /* The variable arguments provide NUM_INSNS extra instructions that
2696 might be added to HIST. Return the largest number of nops that
2697 would be needed after the extended sequence. */
2698
2699 static int
2700 nops_for_sequence (int num_insns, const struct mips_cl_insn *hist, ...)
2701 {
2702 va_list args;
2703 struct mips_cl_insn buffer[MAX_NOPS];
2704 struct mips_cl_insn *cursor;
2705 int nops;
2706
2707 va_start (args, hist);
2708 cursor = buffer + num_insns;
2709 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2710 while (cursor > buffer)
2711 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2712
2713 nops = nops_for_insn (buffer, NULL);
2714 va_end (args);
2715 return nops;
2716 }
2717
2718 /* Like nops_for_insn, but if INSN is a branch, take into account the
2719 worst-case delay for the branch target. */
2720
2721 static int
2722 nops_for_insn_or_target (const struct mips_cl_insn *hist,
2723 const struct mips_cl_insn *insn)
2724 {
2725 int nops, tmp_nops;
2726
2727 nops = nops_for_insn (hist, insn);
2728 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2729 | INSN_COND_BRANCH_DELAY
2730 | INSN_COND_BRANCH_LIKELY))
2731 {
2732 tmp_nops = nops_for_sequence (2, hist, insn, NOP_INSN);
2733 if (tmp_nops > nops)
2734 nops = tmp_nops;
2735 }
2736 else if (mips_opts.mips16
2737 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2738 | MIPS16_INSN_COND_BRANCH)))
2739 {
2740 tmp_nops = nops_for_sequence (1, hist, insn);
2741 if (tmp_nops > nops)
2742 nops = tmp_nops;
2743 }
2744 return nops;
2745 }
2746
2747 /* Fix NOP issue: Replace nops by "or at,at,zero". */
2748
2749 static void
2750 fix_loongson2f_nop (struct mips_cl_insn * ip)
2751 {
2752 if (strcmp (ip->insn_mo->name, "nop") == 0)
2753 ip->insn_opcode = LOONGSON2F_NOP_INSN;
2754 }
2755
2756 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
2757 jr target pc &= 'hffff_ffff_cfff_ffff. */
2758
2759 static void
2760 fix_loongson2f_jump (struct mips_cl_insn * ip)
2761 {
2762 if (strcmp (ip->insn_mo->name, "j") == 0
2763 || strcmp (ip->insn_mo->name, "jr") == 0
2764 || strcmp (ip->insn_mo->name, "jalr") == 0)
2765 {
2766 int sreg;
2767 expressionS ep;
2768
2769 if (! mips_opts.at)
2770 return;
2771
2772 sreg = EXTRACT_OPERAND (RS, *ip);
2773 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
2774 return;
2775
2776 ep.X_op = O_constant;
2777 ep.X_add_number = 0xcfff0000;
2778 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
2779 ep.X_add_number = 0xffff;
2780 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
2781 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
2782 }
2783 }
2784
2785 static void
2786 fix_loongson2f (struct mips_cl_insn * ip)
2787 {
2788 if (mips_fix_loongson2f_nop)
2789 fix_loongson2f_nop (ip);
2790
2791 if (mips_fix_loongson2f_jump)
2792 fix_loongson2f_jump (ip);
2793 }
2794
2795 /* Output an instruction. IP is the instruction information.
2796 ADDRESS_EXPR is an operand of the instruction to be used with
2797 RELOC_TYPE. */
2798
2799 static void
2800 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2801 bfd_reloc_code_real_type *reloc_type)
2802 {
2803 unsigned long prev_pinfo, pinfo;
2804 relax_stateT prev_insn_frag_type = 0;
2805 bfd_boolean relaxed_branch = FALSE;
2806 segment_info_type *si = seg_info (now_seg);
2807
2808 if (mips_fix_loongson2f)
2809 fix_loongson2f (ip);
2810
2811 /* Mark instruction labels in mips16 mode. */
2812 mips16_mark_labels ();
2813
2814 prev_pinfo = history[0].insn_mo->pinfo;
2815 pinfo = ip->insn_mo->pinfo;
2816
2817 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2818 {
2819 /* There are a lot of optimizations we could do that we don't.
2820 In particular, we do not, in general, reorder instructions.
2821 If you use gcc with optimization, it will reorder
2822 instructions and generally do much more optimization then we
2823 do here; repeating all that work in the assembler would only
2824 benefit hand written assembly code, and does not seem worth
2825 it. */
2826 int nops = (mips_optimize == 0
2827 ? nops_for_insn (history, NULL)
2828 : nops_for_insn_or_target (history, ip));
2829 if (nops > 0)
2830 {
2831 fragS *old_frag;
2832 unsigned long old_frag_offset;
2833 int i;
2834
2835 old_frag = frag_now;
2836 old_frag_offset = frag_now_fix ();
2837
2838 for (i = 0; i < nops; i++)
2839 emit_nop ();
2840
2841 if (listing)
2842 {
2843 listing_prev_line ();
2844 /* We may be at the start of a variant frag. In case we
2845 are, make sure there is enough space for the frag
2846 after the frags created by listing_prev_line. The
2847 argument to frag_grow here must be at least as large
2848 as the argument to all other calls to frag_grow in
2849 this file. We don't have to worry about being in the
2850 middle of a variant frag, because the variants insert
2851 all needed nop instructions themselves. */
2852 frag_grow (40);
2853 }
2854
2855 mips_move_labels ();
2856
2857 #ifndef NO_ECOFF_DEBUGGING
2858 if (ECOFF_DEBUGGING)
2859 ecoff_fix_loc (old_frag, old_frag_offset);
2860 #endif
2861 }
2862 }
2863 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2864 {
2865 /* Work out how many nops in prev_nop_frag are needed by IP. */
2866 int nops = nops_for_insn_or_target (history, ip);
2867 gas_assert (nops <= prev_nop_frag_holds);
2868
2869 /* Enforce NOPS as a minimum. */
2870 if (nops > prev_nop_frag_required)
2871 prev_nop_frag_required = nops;
2872
2873 if (prev_nop_frag_holds == prev_nop_frag_required)
2874 {
2875 /* Settle for the current number of nops. Update the history
2876 accordingly (for the benefit of any future .set reorder code). */
2877 prev_nop_frag = NULL;
2878 insert_into_history (prev_nop_frag_since,
2879 prev_nop_frag_holds, NOP_INSN);
2880 }
2881 else
2882 {
2883 /* Allow this instruction to replace one of the nops that was
2884 tentatively added to prev_nop_frag. */
2885 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2886 prev_nop_frag_holds--;
2887 prev_nop_frag_since++;
2888 }
2889 }
2890
2891 #ifdef OBJ_ELF
2892 /* The value passed to dwarf2_emit_insn is the distance between
2893 the beginning of the current instruction and the address that
2894 should be recorded in the debug tables. For MIPS16 debug info
2895 we want to use ISA-encoded addresses, so we pass -1 for an
2896 address higher by one than the current. */
2897 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2898 #endif
2899
2900 /* Record the frag type before frag_var. */
2901 if (history[0].frag)
2902 prev_insn_frag_type = history[0].frag->fr_type;
2903
2904 if (address_expr
2905 && *reloc_type == BFD_RELOC_16_PCREL_S2
2906 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2907 || pinfo & INSN_COND_BRANCH_LIKELY)
2908 && mips_relax_branch
2909 /* Don't try branch relaxation within .set nomacro, or within
2910 .set noat if we use $at for PIC computations. If it turns
2911 out that the branch was out-of-range, we'll get an error. */
2912 && !mips_opts.warn_about_macros
2913 && (mips_opts.at || mips_pic == NO_PIC)
2914 && !mips_opts.mips16)
2915 {
2916 relaxed_branch = TRUE;
2917 add_relaxed_insn (ip, (relaxed_branch_length
2918 (NULL, NULL,
2919 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2920 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2921 : 0)), 4,
2922 RELAX_BRANCH_ENCODE
2923 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2924 pinfo & INSN_COND_BRANCH_LIKELY,
2925 pinfo & INSN_WRITE_GPR_31,
2926 0),
2927 address_expr->X_add_symbol,
2928 address_expr->X_add_number);
2929 *reloc_type = BFD_RELOC_UNUSED;
2930 }
2931 else if (*reloc_type > BFD_RELOC_UNUSED)
2932 {
2933 /* We need to set up a variant frag. */
2934 gas_assert (mips_opts.mips16 && address_expr != NULL);
2935 add_relaxed_insn (ip, 4, 0,
2936 RELAX_MIPS16_ENCODE
2937 (*reloc_type - BFD_RELOC_UNUSED,
2938 mips16_small, mips16_ext,
2939 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2940 history[0].mips16_absolute_jump_p),
2941 make_expr_symbol (address_expr), 0);
2942 }
2943 else if (mips_opts.mips16
2944 && ! ip->use_extend
2945 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2946 {
2947 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2948 /* Make sure there is enough room to swap this instruction with
2949 a following jump instruction. */
2950 frag_grow (6);
2951 add_fixed_insn (ip);
2952 }
2953 else
2954 {
2955 if (mips_opts.mips16
2956 && mips_opts.noreorder
2957 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2958 as_warn (_("extended instruction in delay slot"));
2959
2960 if (mips_relax.sequence)
2961 {
2962 /* If we've reached the end of this frag, turn it into a variant
2963 frag and record the information for the instructions we've
2964 written so far. */
2965 if (frag_room () < 4)
2966 relax_close_frag ();
2967 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2968 }
2969
2970 if (mips_relax.sequence != 2)
2971 mips_macro_warning.sizes[0] += 4;
2972 if (mips_relax.sequence != 1)
2973 mips_macro_warning.sizes[1] += 4;
2974
2975 if (mips_opts.mips16)
2976 {
2977 ip->fixed_p = 1;
2978 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2979 }
2980 add_fixed_insn (ip);
2981 }
2982
2983 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2984 {
2985 if (address_expr->X_op == O_constant)
2986 {
2987 unsigned int tmp;
2988
2989 switch (*reloc_type)
2990 {
2991 case BFD_RELOC_32:
2992 ip->insn_opcode |= address_expr->X_add_number;
2993 break;
2994
2995 case BFD_RELOC_MIPS_HIGHEST:
2996 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2997 ip->insn_opcode |= tmp & 0xffff;
2998 break;
2999
3000 case BFD_RELOC_MIPS_HIGHER:
3001 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3002 ip->insn_opcode |= tmp & 0xffff;
3003 break;
3004
3005 case BFD_RELOC_HI16_S:
3006 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3007 ip->insn_opcode |= tmp & 0xffff;
3008 break;
3009
3010 case BFD_RELOC_HI16:
3011 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3012 break;
3013
3014 case BFD_RELOC_UNUSED:
3015 case BFD_RELOC_LO16:
3016 case BFD_RELOC_MIPS_GOT_DISP:
3017 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3018 break;
3019
3020 case BFD_RELOC_MIPS_JMP:
3021 if ((address_expr->X_add_number & 3) != 0)
3022 as_bad (_("jump to misaligned address (0x%lx)"),
3023 (unsigned long) address_expr->X_add_number);
3024 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3025 break;
3026
3027 case BFD_RELOC_MIPS16_JMP:
3028 if ((address_expr->X_add_number & 3) != 0)
3029 as_bad (_("jump to misaligned address (0x%lx)"),
3030 (unsigned long) address_expr->X_add_number);
3031 ip->insn_opcode |=
3032 (((address_expr->X_add_number & 0x7c0000) << 3)
3033 | ((address_expr->X_add_number & 0xf800000) >> 7)
3034 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3035 break;
3036
3037 case BFD_RELOC_16_PCREL_S2:
3038 if ((address_expr->X_add_number & 3) != 0)
3039 as_bad (_("branch to misaligned address (0x%lx)"),
3040 (unsigned long) address_expr->X_add_number);
3041 if (mips_relax_branch)
3042 goto need_reloc;
3043 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3044 as_bad (_("branch address range overflow (0x%lx)"),
3045 (unsigned long) address_expr->X_add_number);
3046 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3047 break;
3048
3049 default:
3050 internalError ();
3051 }
3052 }
3053 else if (*reloc_type < BFD_RELOC_UNUSED)
3054 need_reloc:
3055 {
3056 reloc_howto_type *howto;
3057 int i;
3058
3059 /* In a compound relocation, it is the final (outermost)
3060 operator that determines the relocated field. */
3061 for (i = 1; i < 3; i++)
3062 if (reloc_type[i] == BFD_RELOC_UNUSED)
3063 break;
3064
3065 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3066 if (howto == NULL)
3067 {
3068 /* To reproduce this failure try assembling gas/testsuites/
3069 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3070 assembler. */
3071 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3072 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3073 }
3074
3075 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3076 bfd_get_reloc_size (howto),
3077 address_expr,
3078 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3079 reloc_type[0]);
3080
3081 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3082 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3083 && ip->fixp[0]->fx_addsy)
3084 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3085
3086 /* These relocations can have an addend that won't fit in
3087 4 octets for 64bit assembly. */
3088 if (HAVE_64BIT_GPRS
3089 && ! howto->partial_inplace
3090 && (reloc_type[0] == BFD_RELOC_16
3091 || reloc_type[0] == BFD_RELOC_32
3092 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3093 || reloc_type[0] == BFD_RELOC_GPREL16
3094 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3095 || reloc_type[0] == BFD_RELOC_GPREL32
3096 || reloc_type[0] == BFD_RELOC_64
3097 || reloc_type[0] == BFD_RELOC_CTOR
3098 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3099 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3100 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3101 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3102 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3103 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3104 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3105 || hi16_reloc_p (reloc_type[0])
3106 || lo16_reloc_p (reloc_type[0])))
3107 ip->fixp[0]->fx_no_overflow = 1;
3108
3109 if (mips_relax.sequence)
3110 {
3111 if (mips_relax.first_fixup == 0)
3112 mips_relax.first_fixup = ip->fixp[0];
3113 }
3114 else if (reloc_needs_lo_p (*reloc_type))
3115 {
3116 struct mips_hi_fixup *hi_fixup;
3117
3118 /* Reuse the last entry if it already has a matching %lo. */
3119 hi_fixup = mips_hi_fixup_list;
3120 if (hi_fixup == 0
3121 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3122 {
3123 hi_fixup = ((struct mips_hi_fixup *)
3124 xmalloc (sizeof (struct mips_hi_fixup)));
3125 hi_fixup->next = mips_hi_fixup_list;
3126 mips_hi_fixup_list = hi_fixup;
3127 }
3128 hi_fixup->fixp = ip->fixp[0];
3129 hi_fixup->seg = now_seg;
3130 }
3131
3132 /* Add fixups for the second and third relocations, if given.
3133 Note that the ABI allows the second relocation to be
3134 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3135 moment we only use RSS_UNDEF, but we could add support
3136 for the others if it ever becomes necessary. */
3137 for (i = 1; i < 3; i++)
3138 if (reloc_type[i] != BFD_RELOC_UNUSED)
3139 {
3140 ip->fixp[i] = fix_new (ip->frag, ip->where,
3141 ip->fixp[0]->fx_size, NULL, 0,
3142 FALSE, reloc_type[i]);
3143
3144 /* Use fx_tcbit to mark compound relocs. */
3145 ip->fixp[0]->fx_tcbit = 1;
3146 ip->fixp[i]->fx_tcbit = 1;
3147 }
3148 }
3149 }
3150 install_insn (ip);
3151
3152 /* Update the register mask information. */
3153 if (! mips_opts.mips16)
3154 {
3155 if (pinfo & INSN_WRITE_GPR_D)
3156 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3157 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3158 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3159 if (pinfo & INSN_READ_GPR_S)
3160 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3161 if (pinfo & INSN_WRITE_GPR_31)
3162 mips_gprmask |= 1 << RA;
3163 if (pinfo & INSN_WRITE_FPR_D)
3164 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3165 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3166 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3167 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3168 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3169 if ((pinfo & INSN_READ_FPR_R) != 0)
3170 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3171 if (pinfo & INSN_COP)
3172 {
3173 /* We don't keep enough information to sort these cases out.
3174 The itbl support does keep this information however, although
3175 we currently don't support itbl fprmats as part of the cop
3176 instruction. May want to add this support in the future. */
3177 }
3178 /* Never set the bit for $0, which is always zero. */
3179 mips_gprmask &= ~1 << 0;
3180 }
3181 else
3182 {
3183 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3184 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3185 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3186 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3187 if (pinfo & MIPS16_INSN_WRITE_Z)
3188 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3189 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3190 mips_gprmask |= 1 << TREG;
3191 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3192 mips_gprmask |= 1 << SP;
3193 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3194 mips_gprmask |= 1 << RA;
3195 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3196 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3197 if (pinfo & MIPS16_INSN_READ_Z)
3198 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3199 if (pinfo & MIPS16_INSN_READ_GPR_X)
3200 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3201 }
3202
3203 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3204 {
3205 /* Filling the branch delay slot is more complex. We try to
3206 switch the branch with the previous instruction, which we can
3207 do if the previous instruction does not set up a condition
3208 that the branch tests and if the branch is not itself the
3209 target of any branch. */
3210 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3211 || (pinfo & INSN_COND_BRANCH_DELAY))
3212 {
3213 if (mips_optimize < 2
3214 /* If we have seen .set volatile or .set nomove, don't
3215 optimize. */
3216 || mips_opts.nomove != 0
3217 /* We can't swap if the previous instruction's position
3218 is fixed. */
3219 || history[0].fixed_p
3220 /* If the previous previous insn was in a .set
3221 noreorder, we can't swap. Actually, the MIPS
3222 assembler will swap in this situation. However, gcc
3223 configured -with-gnu-as will generate code like
3224 .set noreorder
3225 lw $4,XXX
3226 .set reorder
3227 INSN
3228 bne $4,$0,foo
3229 in which we can not swap the bne and INSN. If gcc is
3230 not configured -with-gnu-as, it does not output the
3231 .set pseudo-ops. */
3232 || history[1].noreorder_p
3233 /* If the branch is itself the target of a branch, we
3234 can not swap. We cheat on this; all we check for is
3235 whether there is a label on this instruction. If
3236 there are any branches to anything other than a
3237 label, users must use .set noreorder. */
3238 || si->label_list != NULL
3239 /* If the previous instruction is in a variant frag
3240 other than this branch's one, we cannot do the swap.
3241 This does not apply to the mips16, which uses variant
3242 frags for different purposes. */
3243 || (! mips_opts.mips16
3244 && prev_insn_frag_type == rs_machine_dependent)
3245 /* Check for conflicts between the branch and the instructions
3246 before the candidate delay slot. */
3247 || nops_for_insn (history + 1, ip) > 0
3248 /* Check for conflicts between the swapped sequence and the
3249 target of the branch. */
3250 || nops_for_sequence (2, history + 1, ip, history) > 0
3251 /* We do not swap with a trap instruction, since it
3252 complicates trap handlers to have the trap
3253 instruction be in a delay slot. */
3254 || (prev_pinfo & INSN_TRAP)
3255 /* If the branch reads a register that the previous
3256 instruction sets, we can not swap. */
3257 || (! mips_opts.mips16
3258 && (prev_pinfo & INSN_WRITE_GPR_T)
3259 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3260 MIPS_GR_REG))
3261 || (! mips_opts.mips16
3262 && (prev_pinfo & INSN_WRITE_GPR_D)
3263 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3264 MIPS_GR_REG))
3265 || (mips_opts.mips16
3266 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3267 && (insn_uses_reg
3268 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3269 MIPS16_REG)))
3270 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3271 && (insn_uses_reg
3272 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3273 MIPS16_REG)))
3274 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3275 && (insn_uses_reg
3276 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3277 MIPS16_REG)))
3278 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3279 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3280 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3281 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3282 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3283 && insn_uses_reg (ip,
3284 MIPS16OP_EXTRACT_REG32R
3285 (history[0].insn_opcode),
3286 MIPS_GR_REG))))
3287 /* If the branch writes a register that the previous
3288 instruction sets, we can not swap (we know that
3289 branches write only to RD or to $31). */
3290 || (! mips_opts.mips16
3291 && (prev_pinfo & INSN_WRITE_GPR_T)
3292 && (((pinfo & INSN_WRITE_GPR_D)
3293 && (EXTRACT_OPERAND (RT, history[0])
3294 == EXTRACT_OPERAND (RD, *ip)))
3295 || ((pinfo & INSN_WRITE_GPR_31)
3296 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3297 || (! mips_opts.mips16
3298 && (prev_pinfo & INSN_WRITE_GPR_D)
3299 && (((pinfo & INSN_WRITE_GPR_D)
3300 && (EXTRACT_OPERAND (RD, history[0])
3301 == EXTRACT_OPERAND (RD, *ip)))
3302 || ((pinfo & INSN_WRITE_GPR_31)
3303 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3304 || (mips_opts.mips16
3305 && (pinfo & MIPS16_INSN_WRITE_31)
3306 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3307 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3308 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3309 == RA))))
3310 /* If the branch writes a register that the previous
3311 instruction reads, we can not swap (we know that
3312 branches only write to RD or to $31). */
3313 || (! mips_opts.mips16
3314 && (pinfo & INSN_WRITE_GPR_D)
3315 && insn_uses_reg (&history[0],
3316 EXTRACT_OPERAND (RD, *ip),
3317 MIPS_GR_REG))
3318 || (! mips_opts.mips16
3319 && (pinfo & INSN_WRITE_GPR_31)
3320 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3321 || (mips_opts.mips16
3322 && (pinfo & MIPS16_INSN_WRITE_31)
3323 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3324 /* If one instruction sets a condition code and the
3325 other one uses a condition code, we can not swap. */
3326 || ((pinfo & INSN_READ_COND_CODE)
3327 && (prev_pinfo & INSN_WRITE_COND_CODE))
3328 || ((pinfo & INSN_WRITE_COND_CODE)
3329 && (prev_pinfo & INSN_READ_COND_CODE))
3330 /* If the previous instruction uses the PC, we can not
3331 swap. */
3332 || (mips_opts.mips16
3333 && (prev_pinfo & MIPS16_INSN_READ_PC))
3334 /* If the previous instruction had a fixup in mips16
3335 mode, we can not swap. This normally means that the
3336 previous instruction was a 4 byte branch anyhow. */
3337 || (mips_opts.mips16 && history[0].fixp[0])
3338 /* If the previous instruction is a sync, sync.l, or
3339 sync.p, we can not swap. */
3340 || (prev_pinfo & INSN_SYNC)
3341 /* If the previous instruction is an ERET or
3342 DERET, avoid the swap. */
3343 || (history[0].insn_opcode == INSN_ERET)
3344 || (history[0].insn_opcode == INSN_DERET))
3345 {
3346 if (mips_opts.mips16
3347 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3348 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3349 && ISA_SUPPORTS_MIPS16E)
3350 {
3351 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3352 ip->insn_opcode |= 0x0080;
3353 install_insn (ip);
3354 insert_into_history (0, 1, ip);
3355 }
3356 else
3357 {
3358 /* We could do even better for unconditional branches to
3359 portions of this object file; we could pick up the
3360 instruction at the destination, put it in the delay
3361 slot, and bump the destination address. */
3362 insert_into_history (0, 1, ip);
3363 emit_nop ();
3364 }
3365
3366 if (mips_relax.sequence)
3367 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3368 }
3369 else
3370 {
3371 /* It looks like we can actually do the swap. */
3372 struct mips_cl_insn delay = history[0];
3373 if (mips_opts.mips16)
3374 {
3375 know (delay.frag == ip->frag);
3376 move_insn (ip, delay.frag, delay.where);
3377 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3378 }
3379 else if (relaxed_branch)
3380 {
3381 /* Add the delay slot instruction to the end of the
3382 current frag and shrink the fixed part of the
3383 original frag. If the branch occupies the tail of
3384 the latter, move it backwards to cover the gap. */
3385 delay.frag->fr_fix -= 4;
3386 if (delay.frag == ip->frag)
3387 move_insn (ip, ip->frag, ip->where - 4);
3388 add_fixed_insn (&delay);
3389 }
3390 else
3391 {
3392 move_insn (&delay, ip->frag, ip->where);
3393 move_insn (ip, history[0].frag, history[0].where);
3394 }
3395 history[0] = *ip;
3396 delay.fixed_p = 1;
3397 insert_into_history (0, 1, &delay);
3398 }
3399
3400 /* If that was an unconditional branch, forget the previous
3401 insn information. */
3402 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3403 {
3404 mips_no_prev_insn ();
3405 }
3406 }
3407 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3408 {
3409 /* We don't yet optimize a branch likely. What we should do
3410 is look at the target, copy the instruction found there
3411 into the delay slot, and increment the branch to jump to
3412 the next instruction. */
3413 insert_into_history (0, 1, ip);
3414 emit_nop ();
3415 }
3416 else
3417 insert_into_history (0, 1, ip);
3418 }
3419 else
3420 insert_into_history (0, 1, ip);
3421
3422 /* We just output an insn, so the next one doesn't have a label. */
3423 mips_clear_insn_labels ();
3424 }
3425
3426 /* Forget that there was any previous instruction or label. */
3427
3428 static void
3429 mips_no_prev_insn (void)
3430 {
3431 prev_nop_frag = NULL;
3432 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3433 mips_clear_insn_labels ();
3434 }
3435
3436 /* This function must be called before we emit something other than
3437 instructions. It is like mips_no_prev_insn except that it inserts
3438 any NOPS that might be needed by previous instructions. */
3439
3440 void
3441 mips_emit_delays (void)
3442 {
3443 if (! mips_opts.noreorder)
3444 {
3445 int nops = nops_for_insn (history, NULL);
3446 if (nops > 0)
3447 {
3448 while (nops-- > 0)
3449 add_fixed_insn (NOP_INSN);
3450 mips_move_labels ();
3451 }
3452 }
3453 mips_no_prev_insn ();
3454 }
3455
3456 /* Start a (possibly nested) noreorder block. */
3457
3458 static void
3459 start_noreorder (void)
3460 {
3461 if (mips_opts.noreorder == 0)
3462 {
3463 unsigned int i;
3464 int nops;
3465
3466 /* None of the instructions before the .set noreorder can be moved. */
3467 for (i = 0; i < ARRAY_SIZE (history); i++)
3468 history[i].fixed_p = 1;
3469
3470 /* Insert any nops that might be needed between the .set noreorder
3471 block and the previous instructions. We will later remove any
3472 nops that turn out not to be needed. */
3473 nops = nops_for_insn (history, NULL);
3474 if (nops > 0)
3475 {
3476 if (mips_optimize != 0)
3477 {
3478 /* Record the frag which holds the nop instructions, so
3479 that we can remove them if we don't need them. */
3480 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3481 prev_nop_frag = frag_now;
3482 prev_nop_frag_holds = nops;
3483 prev_nop_frag_required = 0;
3484 prev_nop_frag_since = 0;
3485 }
3486
3487 for (; nops > 0; --nops)
3488 add_fixed_insn (NOP_INSN);
3489
3490 /* Move on to a new frag, so that it is safe to simply
3491 decrease the size of prev_nop_frag. */
3492 frag_wane (frag_now);
3493 frag_new (0);
3494 mips_move_labels ();
3495 }
3496 mips16_mark_labels ();
3497 mips_clear_insn_labels ();
3498 }
3499 mips_opts.noreorder++;
3500 mips_any_noreorder = 1;
3501 }
3502
3503 /* End a nested noreorder block. */
3504
3505 static void
3506 end_noreorder (void)
3507 {
3508
3509 mips_opts.noreorder--;
3510 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3511 {
3512 /* Commit to inserting prev_nop_frag_required nops and go back to
3513 handling nop insertion the .set reorder way. */
3514 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3515 * (mips_opts.mips16 ? 2 : 4));
3516 insert_into_history (prev_nop_frag_since,
3517 prev_nop_frag_required, NOP_INSN);
3518 prev_nop_frag = NULL;
3519 }
3520 }
3521
3522 /* Set up global variables for the start of a new macro. */
3523
3524 static void
3525 macro_start (void)
3526 {
3527 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3528 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3529 && (history[0].insn_mo->pinfo
3530 & (INSN_UNCOND_BRANCH_DELAY
3531 | INSN_COND_BRANCH_DELAY
3532 | INSN_COND_BRANCH_LIKELY)) != 0);
3533 }
3534
3535 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3536 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3537 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3538
3539 static const char *
3540 macro_warning (relax_substateT subtype)
3541 {
3542 if (subtype & RELAX_DELAY_SLOT)
3543 return _("Macro instruction expanded into multiple instructions"
3544 " in a branch delay slot");
3545 else if (subtype & RELAX_NOMACRO)
3546 return _("Macro instruction expanded into multiple instructions");
3547 else
3548 return 0;
3549 }
3550
3551 /* Finish up a macro. Emit warnings as appropriate. */
3552
3553 static void
3554 macro_end (void)
3555 {
3556 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3557 {
3558 relax_substateT subtype;
3559
3560 /* Set up the relaxation warning flags. */
3561 subtype = 0;
3562 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3563 subtype |= RELAX_SECOND_LONGER;
3564 if (mips_opts.warn_about_macros)
3565 subtype |= RELAX_NOMACRO;
3566 if (mips_macro_warning.delay_slot_p)
3567 subtype |= RELAX_DELAY_SLOT;
3568
3569 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3570 {
3571 /* Either the macro has a single implementation or both
3572 implementations are longer than 4 bytes. Emit the
3573 warning now. */
3574 const char *msg = macro_warning (subtype);
3575 if (msg != 0)
3576 as_warn ("%s", msg);
3577 }
3578 else
3579 {
3580 /* One implementation might need a warning but the other
3581 definitely doesn't. */
3582 mips_macro_warning.first_frag->fr_subtype |= subtype;
3583 }
3584 }
3585 }
3586
3587 /* Read a macro's relocation codes from *ARGS and store them in *R.
3588 The first argument in *ARGS will be either the code for a single
3589 relocation or -1 followed by the three codes that make up a
3590 composite relocation. */
3591
3592 static void
3593 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3594 {
3595 int i, next;
3596
3597 next = va_arg (*args, int);
3598 if (next >= 0)
3599 r[0] = (bfd_reloc_code_real_type) next;
3600 else
3601 for (i = 0; i < 3; i++)
3602 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3603 }
3604
3605 /* Build an instruction created by a macro expansion. This is passed
3606 a pointer to the count of instructions created so far, an
3607 expression, the name of the instruction to build, an operand format
3608 string, and corresponding arguments. */
3609
3610 static void
3611 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3612 {
3613 const struct mips_opcode *mo;
3614 struct mips_cl_insn insn;
3615 bfd_reloc_code_real_type r[3];
3616 va_list args;
3617
3618 va_start (args, fmt);
3619
3620 if (mips_opts.mips16)
3621 {
3622 mips16_macro_build (ep, name, fmt, &args);
3623 va_end (args);
3624 return;
3625 }
3626
3627 r[0] = BFD_RELOC_UNUSED;
3628 r[1] = BFD_RELOC_UNUSED;
3629 r[2] = BFD_RELOC_UNUSED;
3630 mo = (struct mips_opcode *) hash_find (op_hash, name);
3631 gas_assert (mo);
3632 gas_assert (strcmp (name, mo->name) == 0);
3633
3634 while (1)
3635 {
3636 /* Search until we get a match for NAME. It is assumed here that
3637 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3638 if (strcmp (fmt, mo->args) == 0
3639 && mo->pinfo != INSN_MACRO
3640 && is_opcode_valid (mo))
3641 break;
3642
3643 ++mo;
3644 gas_assert (mo->name);
3645 gas_assert (strcmp (name, mo->name) == 0);
3646 }
3647
3648 create_insn (&insn, mo);
3649 for (;;)
3650 {
3651 switch (*fmt++)
3652 {
3653 case '\0':
3654 break;
3655
3656 case ',':
3657 case '(':
3658 case ')':
3659 continue;
3660
3661 case '+':
3662 switch (*fmt++)
3663 {
3664 case 'A':
3665 case 'E':
3666 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3667 continue;
3668
3669 case 'B':
3670 case 'F':
3671 /* Note that in the macro case, these arguments are already
3672 in MSB form. (When handling the instruction in the
3673 non-macro case, these arguments are sizes from which
3674 MSB values must be calculated.) */
3675 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3676 continue;
3677
3678 case 'C':
3679 case 'G':
3680 case 'H':
3681 /* Note that in the macro case, these arguments are already
3682 in MSBD form. (When handling the instruction in the
3683 non-macro case, these arguments are sizes from which
3684 MSBD values must be calculated.) */
3685 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3686 continue;
3687
3688 case 'Q':
3689 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3690 continue;
3691
3692 default:
3693 internalError ();
3694 }
3695 continue;
3696
3697 case '2':
3698 INSERT_OPERAND (BP, insn, va_arg (args, int));
3699 continue;
3700
3701 case 't':
3702 case 'w':
3703 case 'E':
3704 INSERT_OPERAND (RT, insn, va_arg (args, int));
3705 continue;
3706
3707 case 'c':
3708 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3709 continue;
3710
3711 case 'T':
3712 case 'W':
3713 INSERT_OPERAND (FT, insn, va_arg (args, int));
3714 continue;
3715
3716 case 'd':
3717 case 'G':
3718 case 'K':
3719 INSERT_OPERAND (RD, insn, va_arg (args, int));
3720 continue;
3721
3722 case 'U':
3723 {
3724 int tmp = va_arg (args, int);
3725
3726 INSERT_OPERAND (RT, insn, tmp);
3727 INSERT_OPERAND (RD, insn, tmp);
3728 continue;
3729 }
3730
3731 case 'V':
3732 case 'S':
3733 INSERT_OPERAND (FS, insn, va_arg (args, int));
3734 continue;
3735
3736 case 'z':
3737 continue;
3738
3739 case '<':
3740 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3741 continue;
3742
3743 case 'D':
3744 INSERT_OPERAND (FD, insn, va_arg (args, int));
3745 continue;
3746
3747 case 'B':
3748 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3749 continue;
3750
3751 case 'J':
3752 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3753 continue;
3754
3755 case 'q':
3756 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3757 continue;
3758
3759 case 'b':
3760 case 's':
3761 case 'r':
3762 case 'v':
3763 INSERT_OPERAND (RS, insn, va_arg (args, int));
3764 continue;
3765
3766 case 'i':
3767 case 'j':
3768 case 'o':
3769 macro_read_relocs (&args, r);
3770 gas_assert (*r == BFD_RELOC_GPREL16
3771 || *r == BFD_RELOC_MIPS_LITERAL
3772 || *r == BFD_RELOC_MIPS_HIGHER
3773 || *r == BFD_RELOC_HI16_S
3774 || *r == BFD_RELOC_LO16
3775 || *r == BFD_RELOC_MIPS_GOT16
3776 || *r == BFD_RELOC_MIPS_CALL16
3777 || *r == BFD_RELOC_MIPS_GOT_DISP
3778 || *r == BFD_RELOC_MIPS_GOT_PAGE
3779 || *r == BFD_RELOC_MIPS_GOT_OFST
3780 || *r == BFD_RELOC_MIPS_GOT_LO16
3781 || *r == BFD_RELOC_MIPS_CALL_LO16);
3782 continue;
3783
3784 case 'u':
3785 macro_read_relocs (&args, r);
3786 gas_assert (ep != NULL
3787 && (ep->X_op == O_constant
3788 || (ep->X_op == O_symbol
3789 && (*r == BFD_RELOC_MIPS_HIGHEST
3790 || *r == BFD_RELOC_HI16_S
3791 || *r == BFD_RELOC_HI16
3792 || *r == BFD_RELOC_GPREL16
3793 || *r == BFD_RELOC_MIPS_GOT_HI16
3794 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3795 continue;
3796
3797 case 'p':
3798 gas_assert (ep != NULL);
3799
3800 /*
3801 * This allows macro() to pass an immediate expression for
3802 * creating short branches without creating a symbol.
3803 *
3804 * We don't allow branch relaxation for these branches, as
3805 * they should only appear in ".set nomacro" anyway.
3806 */
3807 if (ep->X_op == O_constant)
3808 {
3809 if ((ep->X_add_number & 3) != 0)
3810 as_bad (_("branch to misaligned address (0x%lx)"),
3811 (unsigned long) ep->X_add_number);
3812 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3813 as_bad (_("branch address range overflow (0x%lx)"),
3814 (unsigned long) ep->X_add_number);
3815 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3816 ep = NULL;
3817 }
3818 else
3819 *r = BFD_RELOC_16_PCREL_S2;
3820 continue;
3821
3822 case 'a':
3823 gas_assert (ep != NULL);
3824 *r = BFD_RELOC_MIPS_JMP;
3825 continue;
3826
3827 case 'C':
3828 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3829 continue;
3830
3831 case 'k':
3832 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3833 continue;
3834
3835 default:
3836 internalError ();
3837 }
3838 break;
3839 }
3840 va_end (args);
3841 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3842
3843 append_insn (&insn, ep, r);
3844 }
3845
3846 static void
3847 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3848 va_list *args)
3849 {
3850 struct mips_opcode *mo;
3851 struct mips_cl_insn insn;
3852 bfd_reloc_code_real_type r[3]
3853 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3854
3855 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3856 gas_assert (mo);
3857 gas_assert (strcmp (name, mo->name) == 0);
3858
3859 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3860 {
3861 ++mo;
3862 gas_assert (mo->name);
3863 gas_assert (strcmp (name, mo->name) == 0);
3864 }
3865
3866 create_insn (&insn, mo);
3867 for (;;)
3868 {
3869 int c;
3870
3871 c = *fmt++;
3872 switch (c)
3873 {
3874 case '\0':
3875 break;
3876
3877 case ',':
3878 case '(':
3879 case ')':
3880 continue;
3881
3882 case 'y':
3883 case 'w':
3884 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
3885 continue;
3886
3887 case 'x':
3888 case 'v':
3889 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
3890 continue;
3891
3892 case 'z':
3893 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
3894 continue;
3895
3896 case 'Z':
3897 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
3898 continue;
3899
3900 case '0':
3901 case 'S':
3902 case 'P':
3903 case 'R':
3904 continue;
3905
3906 case 'X':
3907 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
3908 continue;
3909
3910 case 'Y':
3911 {
3912 int regno;
3913
3914 regno = va_arg (*args, int);
3915 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3916 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3917 }
3918 continue;
3919
3920 case '<':
3921 case '>':
3922 case '4':
3923 case '5':
3924 case 'H':
3925 case 'W':
3926 case 'D':
3927 case 'j':
3928 case '8':
3929 case 'V':
3930 case 'C':
3931 case 'U':
3932 case 'k':
3933 case 'K':
3934 case 'p':
3935 case 'q':
3936 {
3937 gas_assert (ep != NULL);
3938
3939 if (ep->X_op != O_constant)
3940 *r = (int) BFD_RELOC_UNUSED + c;
3941 else
3942 {
3943 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3944 FALSE, &insn.insn_opcode, &insn.use_extend,
3945 &insn.extend);
3946 ep = NULL;
3947 *r = BFD_RELOC_UNUSED;
3948 }
3949 }
3950 continue;
3951
3952 case '6':
3953 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
3954 continue;
3955 }
3956
3957 break;
3958 }
3959
3960 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3961
3962 append_insn (&insn, ep, r);
3963 }
3964
3965 /*
3966 * Sign-extend 32-bit mode constants that have bit 31 set and all
3967 * higher bits unset.
3968 */
3969 static void
3970 normalize_constant_expr (expressionS *ex)
3971 {
3972 if (ex->X_op == O_constant
3973 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3974 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3975 - 0x80000000);
3976 }
3977
3978 /*
3979 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3980 * all higher bits unset.
3981 */
3982 static void
3983 normalize_address_expr (expressionS *ex)
3984 {
3985 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3986 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3987 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3988 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3989 - 0x80000000);
3990 }
3991
3992 /*
3993 * Generate a "jalr" instruction with a relocation hint to the called
3994 * function. This occurs in NewABI PIC code.
3995 */
3996 static void
3997 macro_build_jalr (expressionS *ep)
3998 {
3999 char *f = NULL;
4000
4001 if (MIPS_JALR_HINT_P (ep))
4002 {
4003 frag_grow (8);
4004 f = frag_more (0);
4005 }
4006 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4007 if (MIPS_JALR_HINT_P (ep))
4008 fix_new_exp (frag_now, f - frag_now->fr_literal,
4009 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4010 }
4011
4012 /*
4013 * Generate a "lui" instruction.
4014 */
4015 static void
4016 macro_build_lui (expressionS *ep, int regnum)
4017 {
4018 expressionS high_expr;
4019 const struct mips_opcode *mo;
4020 struct mips_cl_insn insn;
4021 bfd_reloc_code_real_type r[3]
4022 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4023 const char *name = "lui";
4024 const char *fmt = "t,u";
4025
4026 gas_assert (! mips_opts.mips16);
4027
4028 high_expr = *ep;
4029
4030 if (high_expr.X_op == O_constant)
4031 {
4032 /* We can compute the instruction now without a relocation entry. */
4033 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4034 >> 16) & 0xffff;
4035 *r = BFD_RELOC_UNUSED;
4036 }
4037 else
4038 {
4039 gas_assert (ep->X_op == O_symbol);
4040 /* _gp_disp is a special case, used from s_cpload.
4041 __gnu_local_gp is used if mips_no_shared. */
4042 gas_assert (mips_pic == NO_PIC
4043 || (! HAVE_NEWABI
4044 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4045 || (! mips_in_shared
4046 && strcmp (S_GET_NAME (ep->X_add_symbol),
4047 "__gnu_local_gp") == 0));
4048 *r = BFD_RELOC_HI16_S;
4049 }
4050
4051 mo = hash_find (op_hash, name);
4052 gas_assert (strcmp (name, mo->name) == 0);
4053 gas_assert (strcmp (fmt, mo->args) == 0);
4054 create_insn (&insn, mo);
4055
4056 insn.insn_opcode = insn.insn_mo->match;
4057 INSERT_OPERAND (RT, insn, regnum);
4058 if (*r == BFD_RELOC_UNUSED)
4059 {
4060 insn.insn_opcode |= high_expr.X_add_number;
4061 append_insn (&insn, NULL, r);
4062 }
4063 else
4064 append_insn (&insn, &high_expr, r);
4065 }
4066
4067 /* Generate a sequence of instructions to do a load or store from a constant
4068 offset off of a base register (breg) into/from a target register (treg),
4069 using AT if necessary. */
4070 static void
4071 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4072 int treg, int breg, int dbl)
4073 {
4074 gas_assert (ep->X_op == O_constant);
4075
4076 /* Sign-extending 32-bit constants makes their handling easier. */
4077 if (!dbl)
4078 normalize_constant_expr (ep);
4079
4080 /* Right now, this routine can only handle signed 32-bit constants. */
4081 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4082 as_warn (_("operand overflow"));
4083
4084 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4085 {
4086 /* Signed 16-bit offset will fit in the op. Easy! */
4087 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4088 }
4089 else
4090 {
4091 /* 32-bit offset, need multiple instructions and AT, like:
4092 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4093 addu $tempreg,$tempreg,$breg
4094 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4095 to handle the complete offset. */
4096 macro_build_lui (ep, AT);
4097 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4098 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4099
4100 if (!mips_opts.at)
4101 as_bad (_("Macro used $at after \".set noat\""));
4102 }
4103 }
4104
4105 /* set_at()
4106 * Generates code to set the $at register to true (one)
4107 * if reg is less than the immediate expression.
4108 */
4109 static void
4110 set_at (int reg, int unsignedp)
4111 {
4112 if (imm_expr.X_op == O_constant
4113 && imm_expr.X_add_number >= -0x8000
4114 && imm_expr.X_add_number < 0x8000)
4115 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4116 AT, reg, BFD_RELOC_LO16);
4117 else
4118 {
4119 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4120 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4121 }
4122 }
4123
4124 /* Warn if an expression is not a constant. */
4125
4126 static void
4127 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4128 {
4129 if (ex->X_op == O_big)
4130 as_bad (_("unsupported large constant"));
4131 else if (ex->X_op != O_constant)
4132 as_bad (_("Instruction %s requires absolute expression"),
4133 ip->insn_mo->name);
4134
4135 if (HAVE_32BIT_GPRS)
4136 normalize_constant_expr (ex);
4137 }
4138
4139 /* Count the leading zeroes by performing a binary chop. This is a
4140 bulky bit of source, but performance is a LOT better for the
4141 majority of values than a simple loop to count the bits:
4142 for (lcnt = 0; (lcnt < 32); lcnt++)
4143 if ((v) & (1 << (31 - lcnt)))
4144 break;
4145 However it is not code size friendly, and the gain will drop a bit
4146 on certain cached systems.
4147 */
4148 #define COUNT_TOP_ZEROES(v) \
4149 (((v) & ~0xffff) == 0 \
4150 ? ((v) & ~0xff) == 0 \
4151 ? ((v) & ~0xf) == 0 \
4152 ? ((v) & ~0x3) == 0 \
4153 ? ((v) & ~0x1) == 0 \
4154 ? !(v) \
4155 ? 32 \
4156 : 31 \
4157 : 30 \
4158 : ((v) & ~0x7) == 0 \
4159 ? 29 \
4160 : 28 \
4161 : ((v) & ~0x3f) == 0 \
4162 ? ((v) & ~0x1f) == 0 \
4163 ? 27 \
4164 : 26 \
4165 : ((v) & ~0x7f) == 0 \
4166 ? 25 \
4167 : 24 \
4168 : ((v) & ~0xfff) == 0 \
4169 ? ((v) & ~0x3ff) == 0 \
4170 ? ((v) & ~0x1ff) == 0 \
4171 ? 23 \
4172 : 22 \
4173 : ((v) & ~0x7ff) == 0 \
4174 ? 21 \
4175 : 20 \
4176 : ((v) & ~0x3fff) == 0 \
4177 ? ((v) & ~0x1fff) == 0 \
4178 ? 19 \
4179 : 18 \
4180 : ((v) & ~0x7fff) == 0 \
4181 ? 17 \
4182 : 16 \
4183 : ((v) & ~0xffffff) == 0 \
4184 ? ((v) & ~0xfffff) == 0 \
4185 ? ((v) & ~0x3ffff) == 0 \
4186 ? ((v) & ~0x1ffff) == 0 \
4187 ? 15 \
4188 : 14 \
4189 : ((v) & ~0x7ffff) == 0 \
4190 ? 13 \
4191 : 12 \
4192 : ((v) & ~0x3fffff) == 0 \
4193 ? ((v) & ~0x1fffff) == 0 \
4194 ? 11 \
4195 : 10 \
4196 : ((v) & ~0x7fffff) == 0 \
4197 ? 9 \
4198 : 8 \
4199 : ((v) & ~0xfffffff) == 0 \
4200 ? ((v) & ~0x3ffffff) == 0 \
4201 ? ((v) & ~0x1ffffff) == 0 \
4202 ? 7 \
4203 : 6 \
4204 : ((v) & ~0x7ffffff) == 0 \
4205 ? 5 \
4206 : 4 \
4207 : ((v) & ~0x3fffffff) == 0 \
4208 ? ((v) & ~0x1fffffff) == 0 \
4209 ? 3 \
4210 : 2 \
4211 : ((v) & ~0x7fffffff) == 0 \
4212 ? 1 \
4213 : 0)
4214
4215 /* load_register()
4216 * This routine generates the least number of instructions necessary to load
4217 * an absolute expression value into a register.
4218 */
4219 static void
4220 load_register (int reg, expressionS *ep, int dbl)
4221 {
4222 int freg;
4223 expressionS hi32, lo32;
4224
4225 if (ep->X_op != O_big)
4226 {
4227 gas_assert (ep->X_op == O_constant);
4228
4229 /* Sign-extending 32-bit constants makes their handling easier. */
4230 if (!dbl)
4231 normalize_constant_expr (ep);
4232
4233 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4234 {
4235 /* We can handle 16 bit signed values with an addiu to
4236 $zero. No need to ever use daddiu here, since $zero and
4237 the result are always correct in 32 bit mode. */
4238 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4239 return;
4240 }
4241 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4242 {
4243 /* We can handle 16 bit unsigned values with an ori to
4244 $zero. */
4245 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4246 return;
4247 }
4248 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4249 {
4250 /* 32 bit values require an lui. */
4251 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4252 if ((ep->X_add_number & 0xffff) != 0)
4253 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4254 return;
4255 }
4256 }
4257
4258 /* The value is larger than 32 bits. */
4259
4260 if (!dbl || HAVE_32BIT_GPRS)
4261 {
4262 char value[32];
4263
4264 sprintf_vma (value, ep->X_add_number);
4265 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4266 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4267 return;
4268 }
4269
4270 if (ep->X_op != O_big)
4271 {
4272 hi32 = *ep;
4273 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4274 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4275 hi32.X_add_number &= 0xffffffff;
4276 lo32 = *ep;
4277 lo32.X_add_number &= 0xffffffff;
4278 }
4279 else
4280 {
4281 gas_assert (ep->X_add_number > 2);
4282 if (ep->X_add_number == 3)
4283 generic_bignum[3] = 0;
4284 else if (ep->X_add_number > 4)
4285 as_bad (_("Number larger than 64 bits"));
4286 lo32.X_op = O_constant;
4287 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4288 hi32.X_op = O_constant;
4289 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4290 }
4291
4292 if (hi32.X_add_number == 0)
4293 freg = 0;
4294 else
4295 {
4296 int shift, bit;
4297 unsigned long hi, lo;
4298
4299 if (hi32.X_add_number == (offsetT) 0xffffffff)
4300 {
4301 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4302 {
4303 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4304 return;
4305 }
4306 if (lo32.X_add_number & 0x80000000)
4307 {
4308 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4309 if (lo32.X_add_number & 0xffff)
4310 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4311 return;
4312 }
4313 }
4314
4315 /* Check for 16bit shifted constant. We know that hi32 is
4316 non-zero, so start the mask on the first bit of the hi32
4317 value. */
4318 shift = 17;
4319 do
4320 {
4321 unsigned long himask, lomask;
4322
4323 if (shift < 32)
4324 {
4325 himask = 0xffff >> (32 - shift);
4326 lomask = (0xffff << shift) & 0xffffffff;
4327 }
4328 else
4329 {
4330 himask = 0xffff << (shift - 32);
4331 lomask = 0;
4332 }
4333 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4334 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4335 {
4336 expressionS tmp;
4337
4338 tmp.X_op = O_constant;
4339 if (shift < 32)
4340 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4341 | (lo32.X_add_number >> shift));
4342 else
4343 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4344 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4345 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4346 reg, reg, (shift >= 32) ? shift - 32 : shift);
4347 return;
4348 }
4349 ++shift;
4350 }
4351 while (shift <= (64 - 16));
4352
4353 /* Find the bit number of the lowest one bit, and store the
4354 shifted value in hi/lo. */
4355 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4356 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4357 if (lo != 0)
4358 {
4359 bit = 0;
4360 while ((lo & 1) == 0)
4361 {
4362 lo >>= 1;
4363 ++bit;
4364 }
4365 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4366 hi >>= bit;
4367 }
4368 else
4369 {
4370 bit = 32;
4371 while ((hi & 1) == 0)
4372 {
4373 hi >>= 1;
4374 ++bit;
4375 }
4376 lo = hi;
4377 hi = 0;
4378 }
4379
4380 /* Optimize if the shifted value is a (power of 2) - 1. */
4381 if ((hi == 0 && ((lo + 1) & lo) == 0)
4382 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4383 {
4384 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4385 if (shift != 0)
4386 {
4387 expressionS tmp;
4388
4389 /* This instruction will set the register to be all
4390 ones. */
4391 tmp.X_op = O_constant;
4392 tmp.X_add_number = (offsetT) -1;
4393 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4394 if (bit != 0)
4395 {
4396 bit += shift;
4397 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4398 reg, reg, (bit >= 32) ? bit - 32 : bit);
4399 }
4400 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4401 reg, reg, (shift >= 32) ? shift - 32 : shift);
4402 return;
4403 }
4404 }
4405
4406 /* Sign extend hi32 before calling load_register, because we can
4407 generally get better code when we load a sign extended value. */
4408 if ((hi32.X_add_number & 0x80000000) != 0)
4409 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4410 load_register (reg, &hi32, 0);
4411 freg = reg;
4412 }
4413 if ((lo32.X_add_number & 0xffff0000) == 0)
4414 {
4415 if (freg != 0)
4416 {
4417 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4418 freg = reg;
4419 }
4420 }
4421 else
4422 {
4423 expressionS mid16;
4424
4425 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4426 {
4427 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4428 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4429 return;
4430 }
4431
4432 if (freg != 0)
4433 {
4434 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4435 freg = reg;
4436 }
4437 mid16 = lo32;
4438 mid16.X_add_number >>= 16;
4439 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4440 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4441 freg = reg;
4442 }
4443 if ((lo32.X_add_number & 0xffff) != 0)
4444 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4445 }
4446
4447 static inline void
4448 load_delay_nop (void)
4449 {
4450 if (!gpr_interlocks)
4451 macro_build (NULL, "nop", "");
4452 }
4453
4454 /* Load an address into a register. */
4455
4456 static void
4457 load_address (int reg, expressionS *ep, int *used_at)
4458 {
4459 if (ep->X_op != O_constant
4460 && ep->X_op != O_symbol)
4461 {
4462 as_bad (_("expression too complex"));
4463 ep->X_op = O_constant;
4464 }
4465
4466 if (ep->X_op == O_constant)
4467 {
4468 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4469 return;
4470 }
4471
4472 if (mips_pic == NO_PIC)
4473 {
4474 /* If this is a reference to a GP relative symbol, we want
4475 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4476 Otherwise we want
4477 lui $reg,<sym> (BFD_RELOC_HI16_S)
4478 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4479 If we have an addend, we always use the latter form.
4480
4481 With 64bit address space and a usable $at we want
4482 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4483 lui $at,<sym> (BFD_RELOC_HI16_S)
4484 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4485 daddiu $at,<sym> (BFD_RELOC_LO16)
4486 dsll32 $reg,0
4487 daddu $reg,$reg,$at
4488
4489 If $at is already in use, we use a path which is suboptimal
4490 on superscalar processors.
4491 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4492 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4493 dsll $reg,16
4494 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4495 dsll $reg,16
4496 daddiu $reg,<sym> (BFD_RELOC_LO16)
4497
4498 For GP relative symbols in 64bit address space we can use
4499 the same sequence as in 32bit address space. */
4500 if (HAVE_64BIT_SYMBOLS)
4501 {
4502 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4503 && !nopic_need_relax (ep->X_add_symbol, 1))
4504 {
4505 relax_start (ep->X_add_symbol);
4506 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4507 mips_gp_register, BFD_RELOC_GPREL16);
4508 relax_switch ();
4509 }
4510
4511 if (*used_at == 0 && mips_opts.at)
4512 {
4513 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4514 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4515 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4516 BFD_RELOC_MIPS_HIGHER);
4517 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4518 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4519 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4520 *used_at = 1;
4521 }
4522 else
4523 {
4524 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4525 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4526 BFD_RELOC_MIPS_HIGHER);
4527 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4528 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4529 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4530 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4531 }
4532
4533 if (mips_relax.sequence)
4534 relax_end ();
4535 }
4536 else
4537 {
4538 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4539 && !nopic_need_relax (ep->X_add_symbol, 1))
4540 {
4541 relax_start (ep->X_add_symbol);
4542 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4543 mips_gp_register, BFD_RELOC_GPREL16);
4544 relax_switch ();
4545 }
4546 macro_build_lui (ep, reg);
4547 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4548 reg, reg, BFD_RELOC_LO16);
4549 if (mips_relax.sequence)
4550 relax_end ();
4551 }
4552 }
4553 else if (!mips_big_got)
4554 {
4555 expressionS ex;
4556
4557 /* If this is a reference to an external symbol, we want
4558 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4559 Otherwise we want
4560 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4561 nop
4562 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4563 If there is a constant, it must be added in after.
4564
4565 If we have NewABI, we want
4566 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4567 unless we're referencing a global symbol with a non-zero
4568 offset, in which case cst must be added separately. */
4569 if (HAVE_NEWABI)
4570 {
4571 if (ep->X_add_number)
4572 {
4573 ex.X_add_number = ep->X_add_number;
4574 ep->X_add_number = 0;
4575 relax_start (ep->X_add_symbol);
4576 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4577 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4578 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4579 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4580 ex.X_op = O_constant;
4581 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4582 reg, reg, BFD_RELOC_LO16);
4583 ep->X_add_number = ex.X_add_number;
4584 relax_switch ();
4585 }
4586 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4587 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4588 if (mips_relax.sequence)
4589 relax_end ();
4590 }
4591 else
4592 {
4593 ex.X_add_number = ep->X_add_number;
4594 ep->X_add_number = 0;
4595 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4596 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4597 load_delay_nop ();
4598 relax_start (ep->X_add_symbol);
4599 relax_switch ();
4600 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4601 BFD_RELOC_LO16);
4602 relax_end ();
4603
4604 if (ex.X_add_number != 0)
4605 {
4606 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4607 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4608 ex.X_op = O_constant;
4609 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4610 reg, reg, BFD_RELOC_LO16);
4611 }
4612 }
4613 }
4614 else if (mips_big_got)
4615 {
4616 expressionS ex;
4617
4618 /* This is the large GOT case. If this is a reference to an
4619 external symbol, we want
4620 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4621 addu $reg,$reg,$gp
4622 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4623
4624 Otherwise, for a reference to a local symbol in old ABI, we want
4625 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4626 nop
4627 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4628 If there is a constant, it must be added in after.
4629
4630 In the NewABI, for local symbols, with or without offsets, we want:
4631 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4632 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4633 */
4634 if (HAVE_NEWABI)
4635 {
4636 ex.X_add_number = ep->X_add_number;
4637 ep->X_add_number = 0;
4638 relax_start (ep->X_add_symbol);
4639 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4640 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4641 reg, reg, mips_gp_register);
4642 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4643 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4644 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4645 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4646 else if (ex.X_add_number)
4647 {
4648 ex.X_op = O_constant;
4649 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4650 BFD_RELOC_LO16);
4651 }
4652
4653 ep->X_add_number = ex.X_add_number;
4654 relax_switch ();
4655 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4656 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4657 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4658 BFD_RELOC_MIPS_GOT_OFST);
4659 relax_end ();
4660 }
4661 else
4662 {
4663 ex.X_add_number = ep->X_add_number;
4664 ep->X_add_number = 0;
4665 relax_start (ep->X_add_symbol);
4666 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4667 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4668 reg, reg, mips_gp_register);
4669 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4670 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4671 relax_switch ();
4672 if (reg_needs_delay (mips_gp_register))
4673 {
4674 /* We need a nop before loading from $gp. This special
4675 check is required because the lui which starts the main
4676 instruction stream does not refer to $gp, and so will not
4677 insert the nop which may be required. */
4678 macro_build (NULL, "nop", "");
4679 }
4680 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4681 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4682 load_delay_nop ();
4683 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4684 BFD_RELOC_LO16);
4685 relax_end ();
4686
4687 if (ex.X_add_number != 0)
4688 {
4689 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4690 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4691 ex.X_op = O_constant;
4692 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4693 BFD_RELOC_LO16);
4694 }
4695 }
4696 }
4697 else
4698 abort ();
4699
4700 if (!mips_opts.at && *used_at == 1)
4701 as_bad (_("Macro used $at after \".set noat\""));
4702 }
4703
4704 /* Move the contents of register SOURCE into register DEST. */
4705
4706 static void
4707 move_register (int dest, int source)
4708 {
4709 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4710 dest, source, 0);
4711 }
4712
4713 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4714 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4715 The two alternatives are:
4716
4717 Global symbol Local sybmol
4718 ------------- ------------
4719 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4720 ... ...
4721 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4722
4723 load_got_offset emits the first instruction and add_got_offset
4724 emits the second for a 16-bit offset or add_got_offset_hilo emits
4725 a sequence to add a 32-bit offset using a scratch register. */
4726
4727 static void
4728 load_got_offset (int dest, expressionS *local)
4729 {
4730 expressionS global;
4731
4732 global = *local;
4733 global.X_add_number = 0;
4734
4735 relax_start (local->X_add_symbol);
4736 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4737 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4738 relax_switch ();
4739 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4740 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4741 relax_end ();
4742 }
4743
4744 static void
4745 add_got_offset (int dest, expressionS *local)
4746 {
4747 expressionS global;
4748
4749 global.X_op = O_constant;
4750 global.X_op_symbol = NULL;
4751 global.X_add_symbol = NULL;
4752 global.X_add_number = local->X_add_number;
4753
4754 relax_start (local->X_add_symbol);
4755 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4756 dest, dest, BFD_RELOC_LO16);
4757 relax_switch ();
4758 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4759 relax_end ();
4760 }
4761
4762 static void
4763 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4764 {
4765 expressionS global;
4766 int hold_mips_optimize;
4767
4768 global.X_op = O_constant;
4769 global.X_op_symbol = NULL;
4770 global.X_add_symbol = NULL;
4771 global.X_add_number = local->X_add_number;
4772
4773 relax_start (local->X_add_symbol);
4774 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4775 relax_switch ();
4776 /* Set mips_optimize around the lui instruction to avoid
4777 inserting an unnecessary nop after the lw. */
4778 hold_mips_optimize = mips_optimize;
4779 mips_optimize = 2;
4780 macro_build_lui (&global, tmp);
4781 mips_optimize = hold_mips_optimize;
4782 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4783 relax_end ();
4784
4785 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4786 }
4787
4788 /*
4789 * Build macros
4790 * This routine implements the seemingly endless macro or synthesized
4791 * instructions and addressing modes in the mips assembly language. Many
4792 * of these macros are simple and are similar to each other. These could
4793 * probably be handled by some kind of table or grammar approach instead of
4794 * this verbose method. Others are not simple macros but are more like
4795 * optimizing code generation.
4796 * One interesting optimization is when several store macros appear
4797 * consecutively that would load AT with the upper half of the same address.
4798 * The ensuing load upper instructions are ommited. This implies some kind
4799 * of global optimization. We currently only optimize within a single macro.
4800 * For many of the load and store macros if the address is specified as a
4801 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4802 * first load register 'at' with zero and use it as the base register. The
4803 * mips assembler simply uses register $zero. Just one tiny optimization
4804 * we're missing.
4805 */
4806 static void
4807 macro (struct mips_cl_insn *ip)
4808 {
4809 unsigned int treg, sreg, dreg, breg;
4810 unsigned int tempreg;
4811 int mask;
4812 int used_at = 0;
4813 expressionS expr1;
4814 const char *s;
4815 const char *s2;
4816 const char *fmt;
4817 int likely = 0;
4818 int dbl = 0;
4819 int coproc = 0;
4820 int lr = 0;
4821 int imm = 0;
4822 int call = 0;
4823 int off;
4824 offsetT maxnum;
4825 bfd_reloc_code_real_type r;
4826 int hold_mips_optimize;
4827
4828 gas_assert (! mips_opts.mips16);
4829
4830 treg = (ip->insn_opcode >> 16) & 0x1f;
4831 dreg = (ip->insn_opcode >> 11) & 0x1f;
4832 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4833 mask = ip->insn_mo->mask;
4834
4835 expr1.X_op = O_constant;
4836 expr1.X_op_symbol = NULL;
4837 expr1.X_add_symbol = NULL;
4838 expr1.X_add_number = 1;
4839
4840 switch (mask)
4841 {
4842 case M_DABS:
4843 dbl = 1;
4844 case M_ABS:
4845 /* bgez $a0,.+12
4846 move v0,$a0
4847 sub v0,$zero,$a0
4848 */
4849
4850 start_noreorder ();
4851
4852 expr1.X_add_number = 8;
4853 macro_build (&expr1, "bgez", "s,p", sreg);
4854 if (dreg == sreg)
4855 macro_build (NULL, "nop", "", 0);
4856 else
4857 move_register (dreg, sreg);
4858 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4859
4860 end_noreorder ();
4861 break;
4862
4863 case M_ADD_I:
4864 s = "addi";
4865 s2 = "add";
4866 goto do_addi;
4867 case M_ADDU_I:
4868 s = "addiu";
4869 s2 = "addu";
4870 goto do_addi;
4871 case M_DADD_I:
4872 dbl = 1;
4873 s = "daddi";
4874 s2 = "dadd";
4875 goto do_addi;
4876 case M_DADDU_I:
4877 dbl = 1;
4878 s = "daddiu";
4879 s2 = "daddu";
4880 do_addi:
4881 if (imm_expr.X_op == O_constant
4882 && imm_expr.X_add_number >= -0x8000
4883 && imm_expr.X_add_number < 0x8000)
4884 {
4885 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4886 break;
4887 }
4888 used_at = 1;
4889 load_register (AT, &imm_expr, dbl);
4890 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4891 break;
4892
4893 case M_AND_I:
4894 s = "andi";
4895 s2 = "and";
4896 goto do_bit;
4897 case M_OR_I:
4898 s = "ori";
4899 s2 = "or";
4900 goto do_bit;
4901 case M_NOR_I:
4902 s = "";
4903 s2 = "nor";
4904 goto do_bit;
4905 case M_XOR_I:
4906 s = "xori";
4907 s2 = "xor";
4908 do_bit:
4909 if (imm_expr.X_op == O_constant
4910 && imm_expr.X_add_number >= 0
4911 && imm_expr.X_add_number < 0x10000)
4912 {
4913 if (mask != M_NOR_I)
4914 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4915 else
4916 {
4917 macro_build (&imm_expr, "ori", "t,r,i",
4918 treg, sreg, BFD_RELOC_LO16);
4919 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4920 }
4921 break;
4922 }
4923
4924 used_at = 1;
4925 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4926 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4927 break;
4928
4929 case M_BALIGN:
4930 switch (imm_expr.X_add_number)
4931 {
4932 case 0:
4933 macro_build (NULL, "nop", "");
4934 break;
4935 case 2:
4936 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4937 break;
4938 default:
4939 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4940 (int)imm_expr.X_add_number);
4941 break;
4942 }
4943 break;
4944
4945 case M_BEQ_I:
4946 s = "beq";
4947 goto beq_i;
4948 case M_BEQL_I:
4949 s = "beql";
4950 likely = 1;
4951 goto beq_i;
4952 case M_BNE_I:
4953 s = "bne";
4954 goto beq_i;
4955 case M_BNEL_I:
4956 s = "bnel";
4957 likely = 1;
4958 beq_i:
4959 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4960 {
4961 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4962 break;
4963 }
4964 used_at = 1;
4965 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4966 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4967 break;
4968
4969 case M_BGEL:
4970 likely = 1;
4971 case M_BGE:
4972 if (treg == 0)
4973 {
4974 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4975 break;
4976 }
4977 if (sreg == 0)
4978 {
4979 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4980 break;
4981 }
4982 used_at = 1;
4983 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4984 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4985 break;
4986
4987 case M_BGTL_I:
4988 likely = 1;
4989 case M_BGT_I:
4990 /* check for > max integer */
4991 maxnum = 0x7fffffff;
4992 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4993 {
4994 maxnum <<= 16;
4995 maxnum |= 0xffff;
4996 maxnum <<= 16;
4997 maxnum |= 0xffff;
4998 }
4999 if (imm_expr.X_op == O_constant
5000 && imm_expr.X_add_number >= maxnum
5001 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5002 {
5003 do_false:
5004 /* result is always false */
5005 if (! likely)
5006 macro_build (NULL, "nop", "", 0);
5007 else
5008 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
5009 break;
5010 }
5011 if (imm_expr.X_op != O_constant)
5012 as_bad (_("Unsupported large constant"));
5013 ++imm_expr.X_add_number;
5014 /* FALLTHROUGH */
5015 case M_BGE_I:
5016 case M_BGEL_I:
5017 if (mask == M_BGEL_I)
5018 likely = 1;
5019 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5020 {
5021 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5022 break;
5023 }
5024 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5025 {
5026 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5027 break;
5028 }
5029 maxnum = 0x7fffffff;
5030 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5031 {
5032 maxnum <<= 16;
5033 maxnum |= 0xffff;
5034 maxnum <<= 16;
5035 maxnum |= 0xffff;
5036 }
5037 maxnum = - maxnum - 1;
5038 if (imm_expr.X_op == O_constant
5039 && imm_expr.X_add_number <= maxnum
5040 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5041 {
5042 do_true:
5043 /* result is always true */
5044 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5045 macro_build (&offset_expr, "b", "p");
5046 break;
5047 }
5048 used_at = 1;
5049 set_at (sreg, 0);
5050 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5051 break;
5052
5053 case M_BGEUL:
5054 likely = 1;
5055 case M_BGEU:
5056 if (treg == 0)
5057 goto do_true;
5058 if (sreg == 0)
5059 {
5060 macro_build (&offset_expr, likely ? "beql" : "beq",
5061 "s,t,p", 0, treg);
5062 break;
5063 }
5064 used_at = 1;
5065 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5066 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5067 break;
5068
5069 case M_BGTUL_I:
5070 likely = 1;
5071 case M_BGTU_I:
5072 if (sreg == 0
5073 || (HAVE_32BIT_GPRS
5074 && imm_expr.X_op == O_constant
5075 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5076 goto do_false;
5077 if (imm_expr.X_op != O_constant)
5078 as_bad (_("Unsupported large constant"));
5079 ++imm_expr.X_add_number;
5080 /* FALLTHROUGH */
5081 case M_BGEU_I:
5082 case M_BGEUL_I:
5083 if (mask == M_BGEUL_I)
5084 likely = 1;
5085 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5086 goto do_true;
5087 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5088 {
5089 macro_build (&offset_expr, likely ? "bnel" : "bne",
5090 "s,t,p", sreg, 0);
5091 break;
5092 }
5093 used_at = 1;
5094 set_at (sreg, 1);
5095 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5096 break;
5097
5098 case M_BGTL:
5099 likely = 1;
5100 case M_BGT:
5101 if (treg == 0)
5102 {
5103 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5104 break;
5105 }
5106 if (sreg == 0)
5107 {
5108 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5109 break;
5110 }
5111 used_at = 1;
5112 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5113 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5114 break;
5115
5116 case M_BGTUL:
5117 likely = 1;
5118 case M_BGTU:
5119 if (treg == 0)
5120 {
5121 macro_build (&offset_expr, likely ? "bnel" : "bne",
5122 "s,t,p", sreg, 0);
5123 break;
5124 }
5125 if (sreg == 0)
5126 goto do_false;
5127 used_at = 1;
5128 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5129 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5130 break;
5131
5132 case M_BLEL:
5133 likely = 1;
5134 case M_BLE:
5135 if (treg == 0)
5136 {
5137 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5138 break;
5139 }
5140 if (sreg == 0)
5141 {
5142 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5143 break;
5144 }
5145 used_at = 1;
5146 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5147 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5148 break;
5149
5150 case M_BLEL_I:
5151 likely = 1;
5152 case M_BLE_I:
5153 maxnum = 0x7fffffff;
5154 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5155 {
5156 maxnum <<= 16;
5157 maxnum |= 0xffff;
5158 maxnum <<= 16;
5159 maxnum |= 0xffff;
5160 }
5161 if (imm_expr.X_op == O_constant
5162 && imm_expr.X_add_number >= maxnum
5163 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5164 goto do_true;
5165 if (imm_expr.X_op != O_constant)
5166 as_bad (_("Unsupported large constant"));
5167 ++imm_expr.X_add_number;
5168 /* FALLTHROUGH */
5169 case M_BLT_I:
5170 case M_BLTL_I:
5171 if (mask == M_BLTL_I)
5172 likely = 1;
5173 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5174 {
5175 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5176 break;
5177 }
5178 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5179 {
5180 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5181 break;
5182 }
5183 used_at = 1;
5184 set_at (sreg, 0);
5185 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5186 break;
5187
5188 case M_BLEUL:
5189 likely = 1;
5190 case M_BLEU:
5191 if (treg == 0)
5192 {
5193 macro_build (&offset_expr, likely ? "beql" : "beq",
5194 "s,t,p", sreg, 0);
5195 break;
5196 }
5197 if (sreg == 0)
5198 goto do_true;
5199 used_at = 1;
5200 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5201 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5202 break;
5203
5204 case M_BLEUL_I:
5205 likely = 1;
5206 case M_BLEU_I:
5207 if (sreg == 0
5208 || (HAVE_32BIT_GPRS
5209 && imm_expr.X_op == O_constant
5210 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5211 goto do_true;
5212 if (imm_expr.X_op != O_constant)
5213 as_bad (_("Unsupported large constant"));
5214 ++imm_expr.X_add_number;
5215 /* FALLTHROUGH */
5216 case M_BLTU_I:
5217 case M_BLTUL_I:
5218 if (mask == M_BLTUL_I)
5219 likely = 1;
5220 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5221 goto do_false;
5222 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5223 {
5224 macro_build (&offset_expr, likely ? "beql" : "beq",
5225 "s,t,p", sreg, 0);
5226 break;
5227 }
5228 used_at = 1;
5229 set_at (sreg, 1);
5230 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5231 break;
5232
5233 case M_BLTL:
5234 likely = 1;
5235 case M_BLT:
5236 if (treg == 0)
5237 {
5238 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5239 break;
5240 }
5241 if (sreg == 0)
5242 {
5243 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5244 break;
5245 }
5246 used_at = 1;
5247 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5248 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5249 break;
5250
5251 case M_BLTUL:
5252 likely = 1;
5253 case M_BLTU:
5254 if (treg == 0)
5255 goto do_false;
5256 if (sreg == 0)
5257 {
5258 macro_build (&offset_expr, likely ? "bnel" : "bne",
5259 "s,t,p", 0, treg);
5260 break;
5261 }
5262 used_at = 1;
5263 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5264 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5265 break;
5266
5267 case M_DEXT:
5268 {
5269 unsigned long pos;
5270 unsigned long size;
5271
5272 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5273 {
5274 as_bad (_("Unsupported large constant"));
5275 pos = size = 1;
5276 }
5277 else
5278 {
5279 pos = (unsigned long) imm_expr.X_add_number;
5280 size = (unsigned long) imm2_expr.X_add_number;
5281 }
5282
5283 if (pos > 63)
5284 {
5285 as_bad (_("Improper position (%lu)"), pos);
5286 pos = 1;
5287 }
5288 if (size == 0 || size > 64
5289 || (pos + size - 1) > 63)
5290 {
5291 as_bad (_("Improper extract size (%lu, position %lu)"),
5292 size, pos);
5293 size = 1;
5294 }
5295
5296 if (size <= 32 && pos < 32)
5297 {
5298 s = "dext";
5299 fmt = "t,r,+A,+C";
5300 }
5301 else if (size <= 32)
5302 {
5303 s = "dextu";
5304 fmt = "t,r,+E,+H";
5305 }
5306 else
5307 {
5308 s = "dextm";
5309 fmt = "t,r,+A,+G";
5310 }
5311 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5312 }
5313 break;
5314
5315 case M_DINS:
5316 {
5317 unsigned long pos;
5318 unsigned long size;
5319
5320 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5321 {
5322 as_bad (_("Unsupported large constant"));
5323 pos = size = 1;
5324 }
5325 else
5326 {
5327 pos = (unsigned long) imm_expr.X_add_number;
5328 size = (unsigned long) imm2_expr.X_add_number;
5329 }
5330
5331 if (pos > 63)
5332 {
5333 as_bad (_("Improper position (%lu)"), pos);
5334 pos = 1;
5335 }
5336 if (size == 0 || size > 64
5337 || (pos + size - 1) > 63)
5338 {
5339 as_bad (_("Improper insert size (%lu, position %lu)"),
5340 size, pos);
5341 size = 1;
5342 }
5343
5344 if (pos < 32 && (pos + size - 1) < 32)
5345 {
5346 s = "dins";
5347 fmt = "t,r,+A,+B";
5348 }
5349 else if (pos >= 32)
5350 {
5351 s = "dinsu";
5352 fmt = "t,r,+E,+F";
5353 }
5354 else
5355 {
5356 s = "dinsm";
5357 fmt = "t,r,+A,+F";
5358 }
5359 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5360 (int) (pos + size - 1));
5361 }
5362 break;
5363
5364 case M_DDIV_3:
5365 dbl = 1;
5366 case M_DIV_3:
5367 s = "mflo";
5368 goto do_div3;
5369 case M_DREM_3:
5370 dbl = 1;
5371 case M_REM_3:
5372 s = "mfhi";
5373 do_div3:
5374 if (treg == 0)
5375 {
5376 as_warn (_("Divide by zero."));
5377 if (mips_trap)
5378 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5379 else
5380 macro_build (NULL, "break", "c", 7);
5381 break;
5382 }
5383
5384 start_noreorder ();
5385 if (mips_trap)
5386 {
5387 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5388 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5389 }
5390 else
5391 {
5392 expr1.X_add_number = 8;
5393 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5394 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5395 macro_build (NULL, "break", "c", 7);
5396 }
5397 expr1.X_add_number = -1;
5398 used_at = 1;
5399 load_register (AT, &expr1, dbl);
5400 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5401 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5402 if (dbl)
5403 {
5404 expr1.X_add_number = 1;
5405 load_register (AT, &expr1, dbl);
5406 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5407 }
5408 else
5409 {
5410 expr1.X_add_number = 0x80000000;
5411 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5412 }
5413 if (mips_trap)
5414 {
5415 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5416 /* We want to close the noreorder block as soon as possible, so
5417 that later insns are available for delay slot filling. */
5418 end_noreorder ();
5419 }
5420 else
5421 {
5422 expr1.X_add_number = 8;
5423 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5424 macro_build (NULL, "nop", "", 0);
5425
5426 /* We want to close the noreorder block as soon as possible, so
5427 that later insns are available for delay slot filling. */
5428 end_noreorder ();
5429
5430 macro_build (NULL, "break", "c", 6);
5431 }
5432 macro_build (NULL, s, "d", dreg);
5433 break;
5434
5435 case M_DIV_3I:
5436 s = "div";
5437 s2 = "mflo";
5438 goto do_divi;
5439 case M_DIVU_3I:
5440 s = "divu";
5441 s2 = "mflo";
5442 goto do_divi;
5443 case M_REM_3I:
5444 s = "div";
5445 s2 = "mfhi";
5446 goto do_divi;
5447 case M_REMU_3I:
5448 s = "divu";
5449 s2 = "mfhi";
5450 goto do_divi;
5451 case M_DDIV_3I:
5452 dbl = 1;
5453 s = "ddiv";
5454 s2 = "mflo";
5455 goto do_divi;
5456 case M_DDIVU_3I:
5457 dbl = 1;
5458 s = "ddivu";
5459 s2 = "mflo";
5460 goto do_divi;
5461 case M_DREM_3I:
5462 dbl = 1;
5463 s = "ddiv";
5464 s2 = "mfhi";
5465 goto do_divi;
5466 case M_DREMU_3I:
5467 dbl = 1;
5468 s = "ddivu";
5469 s2 = "mfhi";
5470 do_divi:
5471 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5472 {
5473 as_warn (_("Divide by zero."));
5474 if (mips_trap)
5475 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5476 else
5477 macro_build (NULL, "break", "c", 7);
5478 break;
5479 }
5480 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5481 {
5482 if (strcmp (s2, "mflo") == 0)
5483 move_register (dreg, sreg);
5484 else
5485 move_register (dreg, 0);
5486 break;
5487 }
5488 if (imm_expr.X_op == O_constant
5489 && imm_expr.X_add_number == -1
5490 && s[strlen (s) - 1] != 'u')
5491 {
5492 if (strcmp (s2, "mflo") == 0)
5493 {
5494 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5495 }
5496 else
5497 move_register (dreg, 0);
5498 break;
5499 }
5500
5501 used_at = 1;
5502 load_register (AT, &imm_expr, dbl);
5503 macro_build (NULL, s, "z,s,t", sreg, AT);
5504 macro_build (NULL, s2, "d", dreg);
5505 break;
5506
5507 case M_DIVU_3:
5508 s = "divu";
5509 s2 = "mflo";
5510 goto do_divu3;
5511 case M_REMU_3:
5512 s = "divu";
5513 s2 = "mfhi";
5514 goto do_divu3;
5515 case M_DDIVU_3:
5516 s = "ddivu";
5517 s2 = "mflo";
5518 goto do_divu3;
5519 case M_DREMU_3:
5520 s = "ddivu";
5521 s2 = "mfhi";
5522 do_divu3:
5523 start_noreorder ();
5524 if (mips_trap)
5525 {
5526 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5527 macro_build (NULL, s, "z,s,t", sreg, treg);
5528 /* We want to close the noreorder block as soon as possible, so
5529 that later insns are available for delay slot filling. */
5530 end_noreorder ();
5531 }
5532 else
5533 {
5534 expr1.X_add_number = 8;
5535 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5536 macro_build (NULL, s, "z,s,t", sreg, treg);
5537
5538 /* We want to close the noreorder block as soon as possible, so
5539 that later insns are available for delay slot filling. */
5540 end_noreorder ();
5541 macro_build (NULL, "break", "c", 7);
5542 }
5543 macro_build (NULL, s2, "d", dreg);
5544 break;
5545
5546 case M_DLCA_AB:
5547 dbl = 1;
5548 case M_LCA_AB:
5549 call = 1;
5550 goto do_la;
5551 case M_DLA_AB:
5552 dbl = 1;
5553 case M_LA_AB:
5554 do_la:
5555 /* Load the address of a symbol into a register. If breg is not
5556 zero, we then add a base register to it. */
5557
5558 if (dbl && HAVE_32BIT_GPRS)
5559 as_warn (_("dla used to load 32-bit register"));
5560
5561 if (! dbl && HAVE_64BIT_OBJECTS)
5562 as_warn (_("la used to load 64-bit address"));
5563
5564 if (offset_expr.X_op == O_constant
5565 && offset_expr.X_add_number >= -0x8000
5566 && offset_expr.X_add_number < 0x8000)
5567 {
5568 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5569 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5570 break;
5571 }
5572
5573 if (mips_opts.at && (treg == breg))
5574 {
5575 tempreg = AT;
5576 used_at = 1;
5577 }
5578 else
5579 {
5580 tempreg = treg;
5581 }
5582
5583 if (offset_expr.X_op != O_symbol
5584 && offset_expr.X_op != O_constant)
5585 {
5586 as_bad (_("expression too complex"));
5587 offset_expr.X_op = O_constant;
5588 }
5589
5590 if (offset_expr.X_op == O_constant)
5591 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5592 else if (mips_pic == NO_PIC)
5593 {
5594 /* If this is a reference to a GP relative symbol, we want
5595 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5596 Otherwise we want
5597 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5598 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5599 If we have a constant, we need two instructions anyhow,
5600 so we may as well always use the latter form.
5601
5602 With 64bit address space and a usable $at we want
5603 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5604 lui $at,<sym> (BFD_RELOC_HI16_S)
5605 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5606 daddiu $at,<sym> (BFD_RELOC_LO16)
5607 dsll32 $tempreg,0
5608 daddu $tempreg,$tempreg,$at
5609
5610 If $at is already in use, we use a path which is suboptimal
5611 on superscalar processors.
5612 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5613 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5614 dsll $tempreg,16
5615 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5616 dsll $tempreg,16
5617 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5618
5619 For GP relative symbols in 64bit address space we can use
5620 the same sequence as in 32bit address space. */
5621 if (HAVE_64BIT_SYMBOLS)
5622 {
5623 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5624 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5625 {
5626 relax_start (offset_expr.X_add_symbol);
5627 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5628 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5629 relax_switch ();
5630 }
5631
5632 if (used_at == 0 && mips_opts.at)
5633 {
5634 macro_build (&offset_expr, "lui", "t,u",
5635 tempreg, BFD_RELOC_MIPS_HIGHEST);
5636 macro_build (&offset_expr, "lui", "t,u",
5637 AT, BFD_RELOC_HI16_S);
5638 macro_build (&offset_expr, "daddiu", "t,r,j",
5639 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5640 macro_build (&offset_expr, "daddiu", "t,r,j",
5641 AT, AT, BFD_RELOC_LO16);
5642 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5643 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5644 used_at = 1;
5645 }
5646 else
5647 {
5648 macro_build (&offset_expr, "lui", "t,u",
5649 tempreg, BFD_RELOC_MIPS_HIGHEST);
5650 macro_build (&offset_expr, "daddiu", "t,r,j",
5651 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5652 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5653 macro_build (&offset_expr, "daddiu", "t,r,j",
5654 tempreg, tempreg, BFD_RELOC_HI16_S);
5655 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5656 macro_build (&offset_expr, "daddiu", "t,r,j",
5657 tempreg, tempreg, BFD_RELOC_LO16);
5658 }
5659
5660 if (mips_relax.sequence)
5661 relax_end ();
5662 }
5663 else
5664 {
5665 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5666 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5667 {
5668 relax_start (offset_expr.X_add_symbol);
5669 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5670 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5671 relax_switch ();
5672 }
5673 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5674 as_bad (_("offset too large"));
5675 macro_build_lui (&offset_expr, tempreg);
5676 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5677 tempreg, tempreg, BFD_RELOC_LO16);
5678 if (mips_relax.sequence)
5679 relax_end ();
5680 }
5681 }
5682 else if (!mips_big_got && !HAVE_NEWABI)
5683 {
5684 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5685
5686 /* If this is a reference to an external symbol, and there
5687 is no constant, we want
5688 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5689 or for lca or if tempreg is PIC_CALL_REG
5690 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5691 For a local symbol, we want
5692 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5693 nop
5694 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5695
5696 If we have a small constant, and this is a reference to
5697 an external symbol, we want
5698 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5699 nop
5700 addiu $tempreg,$tempreg,<constant>
5701 For a local symbol, we want the same instruction
5702 sequence, but we output a BFD_RELOC_LO16 reloc on the
5703 addiu instruction.
5704
5705 If we have a large constant, and this is a reference to
5706 an external symbol, we want
5707 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5708 lui $at,<hiconstant>
5709 addiu $at,$at,<loconstant>
5710 addu $tempreg,$tempreg,$at
5711 For a local symbol, we want the same instruction
5712 sequence, but we output a BFD_RELOC_LO16 reloc on the
5713 addiu instruction.
5714 */
5715
5716 if (offset_expr.X_add_number == 0)
5717 {
5718 if (mips_pic == SVR4_PIC
5719 && breg == 0
5720 && (call || tempreg == PIC_CALL_REG))
5721 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5722
5723 relax_start (offset_expr.X_add_symbol);
5724 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5725 lw_reloc_type, mips_gp_register);
5726 if (breg != 0)
5727 {
5728 /* We're going to put in an addu instruction using
5729 tempreg, so we may as well insert the nop right
5730 now. */
5731 load_delay_nop ();
5732 }
5733 relax_switch ();
5734 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5735 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5736 load_delay_nop ();
5737 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5738 tempreg, tempreg, BFD_RELOC_LO16);
5739 relax_end ();
5740 /* FIXME: If breg == 0, and the next instruction uses
5741 $tempreg, then if this variant case is used an extra
5742 nop will be generated. */
5743 }
5744 else if (offset_expr.X_add_number >= -0x8000
5745 && offset_expr.X_add_number < 0x8000)
5746 {
5747 load_got_offset (tempreg, &offset_expr);
5748 load_delay_nop ();
5749 add_got_offset (tempreg, &offset_expr);
5750 }
5751 else
5752 {
5753 expr1.X_add_number = offset_expr.X_add_number;
5754 offset_expr.X_add_number =
5755 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5756 load_got_offset (tempreg, &offset_expr);
5757 offset_expr.X_add_number = expr1.X_add_number;
5758 /* If we are going to add in a base register, and the
5759 target register and the base register are the same,
5760 then we are using AT as a temporary register. Since
5761 we want to load the constant into AT, we add our
5762 current AT (from the global offset table) and the
5763 register into the register now, and pretend we were
5764 not using a base register. */
5765 if (breg == treg)
5766 {
5767 load_delay_nop ();
5768 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5769 treg, AT, breg);
5770 breg = 0;
5771 tempreg = treg;
5772 }
5773 add_got_offset_hilo (tempreg, &offset_expr, AT);
5774 used_at = 1;
5775 }
5776 }
5777 else if (!mips_big_got && HAVE_NEWABI)
5778 {
5779 int add_breg_early = 0;
5780
5781 /* If this is a reference to an external, and there is no
5782 constant, or local symbol (*), with or without a
5783 constant, we want
5784 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5785 or for lca or if tempreg is PIC_CALL_REG
5786 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5787
5788 If we have a small constant, and this is a reference to
5789 an external symbol, we want
5790 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5791 addiu $tempreg,$tempreg,<constant>
5792
5793 If we have a large constant, and this is a reference to
5794 an external symbol, we want
5795 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5796 lui $at,<hiconstant>
5797 addiu $at,$at,<loconstant>
5798 addu $tempreg,$tempreg,$at
5799
5800 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5801 local symbols, even though it introduces an additional
5802 instruction. */
5803
5804 if (offset_expr.X_add_number)
5805 {
5806 expr1.X_add_number = offset_expr.X_add_number;
5807 offset_expr.X_add_number = 0;
5808
5809 relax_start (offset_expr.X_add_symbol);
5810 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5811 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5812
5813 if (expr1.X_add_number >= -0x8000
5814 && expr1.X_add_number < 0x8000)
5815 {
5816 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5817 tempreg, tempreg, BFD_RELOC_LO16);
5818 }
5819 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5820 {
5821 /* If we are going to add in a base register, and the
5822 target register and the base register are the same,
5823 then we are using AT as a temporary register. Since
5824 we want to load the constant into AT, we add our
5825 current AT (from the global offset table) and the
5826 register into the register now, and pretend we were
5827 not using a base register. */
5828 if (breg != treg)
5829 dreg = tempreg;
5830 else
5831 {
5832 gas_assert (tempreg == AT);
5833 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5834 treg, AT, breg);
5835 dreg = treg;
5836 add_breg_early = 1;
5837 }
5838
5839 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5840 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5841 dreg, dreg, AT);
5842
5843 used_at = 1;
5844 }
5845 else
5846 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5847
5848 relax_switch ();
5849 offset_expr.X_add_number = expr1.X_add_number;
5850
5851 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5852 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5853 if (add_breg_early)
5854 {
5855 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5856 treg, tempreg, breg);
5857 breg = 0;
5858 tempreg = treg;
5859 }
5860 relax_end ();
5861 }
5862 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5863 {
5864 relax_start (offset_expr.X_add_symbol);
5865 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5866 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5867 relax_switch ();
5868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5869 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5870 relax_end ();
5871 }
5872 else
5873 {
5874 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5875 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5876 }
5877 }
5878 else if (mips_big_got && !HAVE_NEWABI)
5879 {
5880 int gpdelay;
5881 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5882 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5883 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5884
5885 /* This is the large GOT case. If this is a reference to an
5886 external symbol, and there is no constant, we want
5887 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5888 addu $tempreg,$tempreg,$gp
5889 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5890 or for lca or if tempreg is PIC_CALL_REG
5891 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5892 addu $tempreg,$tempreg,$gp
5893 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5894 For a local symbol, we want
5895 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5896 nop
5897 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5898
5899 If we have a small constant, and this is a reference to
5900 an external symbol, we want
5901 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5902 addu $tempreg,$tempreg,$gp
5903 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5904 nop
5905 addiu $tempreg,$tempreg,<constant>
5906 For a local symbol, we want
5907 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5908 nop
5909 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5910
5911 If we have a large constant, and this is a reference to
5912 an external symbol, we want
5913 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5914 addu $tempreg,$tempreg,$gp
5915 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5916 lui $at,<hiconstant>
5917 addiu $at,$at,<loconstant>
5918 addu $tempreg,$tempreg,$at
5919 For a local symbol, we want
5920 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5921 lui $at,<hiconstant>
5922 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5923 addu $tempreg,$tempreg,$at
5924 */
5925
5926 expr1.X_add_number = offset_expr.X_add_number;
5927 offset_expr.X_add_number = 0;
5928 relax_start (offset_expr.X_add_symbol);
5929 gpdelay = reg_needs_delay (mips_gp_register);
5930 if (expr1.X_add_number == 0 && breg == 0
5931 && (call || tempreg == PIC_CALL_REG))
5932 {
5933 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5934 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5935 }
5936 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5937 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5938 tempreg, tempreg, mips_gp_register);
5939 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5940 tempreg, lw_reloc_type, tempreg);
5941 if (expr1.X_add_number == 0)
5942 {
5943 if (breg != 0)
5944 {
5945 /* We're going to put in an addu instruction using
5946 tempreg, so we may as well insert the nop right
5947 now. */
5948 load_delay_nop ();
5949 }
5950 }
5951 else if (expr1.X_add_number >= -0x8000
5952 && expr1.X_add_number < 0x8000)
5953 {
5954 load_delay_nop ();
5955 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5956 tempreg, tempreg, BFD_RELOC_LO16);
5957 }
5958 else
5959 {
5960 /* If we are going to add in a base register, and the
5961 target register and the base register are the same,
5962 then we are using AT as a temporary register. Since
5963 we want to load the constant into AT, we add our
5964 current AT (from the global offset table) and the
5965 register into the register now, and pretend we were
5966 not using a base register. */
5967 if (breg != treg)
5968 dreg = tempreg;
5969 else
5970 {
5971 gas_assert (tempreg == AT);
5972 load_delay_nop ();
5973 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5974 treg, AT, breg);
5975 dreg = treg;
5976 }
5977
5978 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5979 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5980
5981 used_at = 1;
5982 }
5983 offset_expr.X_add_number =
5984 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5985 relax_switch ();
5986
5987 if (gpdelay)
5988 {
5989 /* This is needed because this instruction uses $gp, but
5990 the first instruction on the main stream does not. */
5991 macro_build (NULL, "nop", "");
5992 }
5993
5994 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5995 local_reloc_type, mips_gp_register);
5996 if (expr1.X_add_number >= -0x8000
5997 && expr1.X_add_number < 0x8000)
5998 {
5999 load_delay_nop ();
6000 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6001 tempreg, tempreg, BFD_RELOC_LO16);
6002 /* FIXME: If add_number is 0, and there was no base
6003 register, the external symbol case ended with a load,
6004 so if the symbol turns out to not be external, and
6005 the next instruction uses tempreg, an unnecessary nop
6006 will be inserted. */
6007 }
6008 else
6009 {
6010 if (breg == treg)
6011 {
6012 /* We must add in the base register now, as in the
6013 external symbol case. */
6014 gas_assert (tempreg == AT);
6015 load_delay_nop ();
6016 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6017 treg, AT, breg);
6018 tempreg = treg;
6019 /* We set breg to 0 because we have arranged to add
6020 it in in both cases. */
6021 breg = 0;
6022 }
6023
6024 macro_build_lui (&expr1, AT);
6025 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6026 AT, AT, BFD_RELOC_LO16);
6027 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6028 tempreg, tempreg, AT);
6029 used_at = 1;
6030 }
6031 relax_end ();
6032 }
6033 else if (mips_big_got && HAVE_NEWABI)
6034 {
6035 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6036 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6037 int add_breg_early = 0;
6038
6039 /* This is the large GOT case. If this is a reference to an
6040 external symbol, and there is no constant, we want
6041 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6042 add $tempreg,$tempreg,$gp
6043 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6044 or for lca or if tempreg is PIC_CALL_REG
6045 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6046 add $tempreg,$tempreg,$gp
6047 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6048
6049 If we have a small constant, and this is a reference to
6050 an external symbol, we want
6051 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6052 add $tempreg,$tempreg,$gp
6053 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6054 addi $tempreg,$tempreg,<constant>
6055
6056 If we have a large constant, and this is a reference to
6057 an external symbol, we want
6058 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6059 addu $tempreg,$tempreg,$gp
6060 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6061 lui $at,<hiconstant>
6062 addi $at,$at,<loconstant>
6063 add $tempreg,$tempreg,$at
6064
6065 If we have NewABI, and we know it's a local symbol, we want
6066 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6067 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6068 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6069
6070 relax_start (offset_expr.X_add_symbol);
6071
6072 expr1.X_add_number = offset_expr.X_add_number;
6073 offset_expr.X_add_number = 0;
6074
6075 if (expr1.X_add_number == 0 && breg == 0
6076 && (call || tempreg == PIC_CALL_REG))
6077 {
6078 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6079 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6080 }
6081 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6082 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6083 tempreg, tempreg, mips_gp_register);
6084 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6085 tempreg, lw_reloc_type, tempreg);
6086
6087 if (expr1.X_add_number == 0)
6088 ;
6089 else if (expr1.X_add_number >= -0x8000
6090 && expr1.X_add_number < 0x8000)
6091 {
6092 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6093 tempreg, tempreg, BFD_RELOC_LO16);
6094 }
6095 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6096 {
6097 /* If we are going to add in a base register, and the
6098 target register and the base register are the same,
6099 then we are using AT as a temporary register. Since
6100 we want to load the constant into AT, we add our
6101 current AT (from the global offset table) and the
6102 register into the register now, and pretend we were
6103 not using a base register. */
6104 if (breg != treg)
6105 dreg = tempreg;
6106 else
6107 {
6108 gas_assert (tempreg == AT);
6109 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6110 treg, AT, breg);
6111 dreg = treg;
6112 add_breg_early = 1;
6113 }
6114
6115 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6116 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6117
6118 used_at = 1;
6119 }
6120 else
6121 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6122
6123 relax_switch ();
6124 offset_expr.X_add_number = expr1.X_add_number;
6125 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6126 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6127 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6128 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6129 if (add_breg_early)
6130 {
6131 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6132 treg, tempreg, breg);
6133 breg = 0;
6134 tempreg = treg;
6135 }
6136 relax_end ();
6137 }
6138 else
6139 abort ();
6140
6141 if (breg != 0)
6142 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6143 break;
6144
6145 case M_MSGSND:
6146 {
6147 unsigned long temp = (treg << 16) | (0x01);
6148 macro_build (NULL, "c2", "C", temp);
6149 }
6150 /* AT is not used, just return */
6151 return;
6152
6153 case M_MSGLD:
6154 {
6155 unsigned long temp = (0x02);
6156 macro_build (NULL, "c2", "C", temp);
6157 }
6158 /* AT is not used, just return */
6159 return;
6160
6161 case M_MSGLD_T:
6162 {
6163 unsigned long temp = (treg << 16) | (0x02);
6164 macro_build (NULL, "c2", "C", temp);
6165 }
6166 /* AT is not used, just return */
6167 return;
6168
6169 case M_MSGWAIT:
6170 macro_build (NULL, "c2", "C", 3);
6171 /* AT is not used, just return */
6172 return;
6173
6174 case M_MSGWAIT_T:
6175 {
6176 unsigned long temp = (treg << 16) | 0x03;
6177 macro_build (NULL, "c2", "C", temp);
6178 }
6179 /* AT is not used, just return */
6180 return;
6181
6182 case M_J_A:
6183 /* The j instruction may not be used in PIC code, since it
6184 requires an absolute address. We convert it to a b
6185 instruction. */
6186 if (mips_pic == NO_PIC)
6187 macro_build (&offset_expr, "j", "a");
6188 else
6189 macro_build (&offset_expr, "b", "p");
6190 break;
6191
6192 /* The jal instructions must be handled as macros because when
6193 generating PIC code they expand to multi-instruction
6194 sequences. Normally they are simple instructions. */
6195 case M_JAL_1:
6196 dreg = RA;
6197 /* Fall through. */
6198 case M_JAL_2:
6199 if (mips_pic == NO_PIC)
6200 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6201 else
6202 {
6203 if (sreg != PIC_CALL_REG)
6204 as_warn (_("MIPS PIC call to register other than $25"));
6205
6206 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6207 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6208 {
6209 if (mips_cprestore_offset < 0)
6210 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6211 else
6212 {
6213 if (! mips_frame_reg_valid)
6214 {
6215 as_warn (_("No .frame pseudo-op used in PIC code"));
6216 /* Quiet this warning. */
6217 mips_frame_reg_valid = 1;
6218 }
6219 if (! mips_cprestore_valid)
6220 {
6221 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6222 /* Quiet this warning. */
6223 mips_cprestore_valid = 1;
6224 }
6225 if (mips_opts.noreorder)
6226 macro_build (NULL, "nop", "");
6227 expr1.X_add_number = mips_cprestore_offset;
6228 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6229 mips_gp_register,
6230 mips_frame_reg,
6231 HAVE_64BIT_ADDRESSES);
6232 }
6233 }
6234 }
6235
6236 break;
6237
6238 case M_JAL_A:
6239 if (mips_pic == NO_PIC)
6240 macro_build (&offset_expr, "jal", "a");
6241 else if (mips_pic == SVR4_PIC)
6242 {
6243 /* If this is a reference to an external symbol, and we are
6244 using a small GOT, we want
6245 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6246 nop
6247 jalr $ra,$25
6248 nop
6249 lw $gp,cprestore($sp)
6250 The cprestore value is set using the .cprestore
6251 pseudo-op. If we are using a big GOT, we want
6252 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6253 addu $25,$25,$gp
6254 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6255 nop
6256 jalr $ra,$25
6257 nop
6258 lw $gp,cprestore($sp)
6259 If the symbol is not external, we want
6260 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6261 nop
6262 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6263 jalr $ra,$25
6264 nop
6265 lw $gp,cprestore($sp)
6266
6267 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6268 sequences above, minus nops, unless the symbol is local,
6269 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6270 GOT_DISP. */
6271 if (HAVE_NEWABI)
6272 {
6273 if (! mips_big_got)
6274 {
6275 relax_start (offset_expr.X_add_symbol);
6276 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6277 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6278 mips_gp_register);
6279 relax_switch ();
6280 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6281 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6282 mips_gp_register);
6283 relax_end ();
6284 }
6285 else
6286 {
6287 relax_start (offset_expr.X_add_symbol);
6288 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6289 BFD_RELOC_MIPS_CALL_HI16);
6290 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6291 PIC_CALL_REG, mips_gp_register);
6292 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6293 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6294 PIC_CALL_REG);
6295 relax_switch ();
6296 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6297 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6298 mips_gp_register);
6299 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6300 PIC_CALL_REG, PIC_CALL_REG,
6301 BFD_RELOC_MIPS_GOT_OFST);
6302 relax_end ();
6303 }
6304
6305 macro_build_jalr (&offset_expr);
6306 }
6307 else
6308 {
6309 relax_start (offset_expr.X_add_symbol);
6310 if (! mips_big_got)
6311 {
6312 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6313 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6314 mips_gp_register);
6315 load_delay_nop ();
6316 relax_switch ();
6317 }
6318 else
6319 {
6320 int gpdelay;
6321
6322 gpdelay = reg_needs_delay (mips_gp_register);
6323 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6324 BFD_RELOC_MIPS_CALL_HI16);
6325 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6326 PIC_CALL_REG, mips_gp_register);
6327 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6328 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6329 PIC_CALL_REG);
6330 load_delay_nop ();
6331 relax_switch ();
6332 if (gpdelay)
6333 macro_build (NULL, "nop", "");
6334 }
6335 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6336 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6337 mips_gp_register);
6338 load_delay_nop ();
6339 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6340 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6341 relax_end ();
6342 macro_build_jalr (&offset_expr);
6343
6344 if (mips_cprestore_offset < 0)
6345 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6346 else
6347 {
6348 if (! mips_frame_reg_valid)
6349 {
6350 as_warn (_("No .frame pseudo-op used in PIC code"));
6351 /* Quiet this warning. */
6352 mips_frame_reg_valid = 1;
6353 }
6354 if (! mips_cprestore_valid)
6355 {
6356 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6357 /* Quiet this warning. */
6358 mips_cprestore_valid = 1;
6359 }
6360 if (mips_opts.noreorder)
6361 macro_build (NULL, "nop", "");
6362 expr1.X_add_number = mips_cprestore_offset;
6363 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6364 mips_gp_register,
6365 mips_frame_reg,
6366 HAVE_64BIT_ADDRESSES);
6367 }
6368 }
6369 }
6370 else if (mips_pic == VXWORKS_PIC)
6371 as_bad (_("Non-PIC jump used in PIC library"));
6372 else
6373 abort ();
6374
6375 break;
6376
6377 case M_LB_AB:
6378 s = "lb";
6379 goto ld;
6380 case M_LBU_AB:
6381 s = "lbu";
6382 goto ld;
6383 case M_LH_AB:
6384 s = "lh";
6385 goto ld;
6386 case M_LHU_AB:
6387 s = "lhu";
6388 goto ld;
6389 case M_LW_AB:
6390 s = "lw";
6391 goto ld;
6392 case M_LWC0_AB:
6393 s = "lwc0";
6394 /* Itbl support may require additional care here. */
6395 coproc = 1;
6396 goto ld;
6397 case M_LWC1_AB:
6398 s = "lwc1";
6399 /* Itbl support may require additional care here. */
6400 coproc = 1;
6401 goto ld;
6402 case M_LWC2_AB:
6403 s = "lwc2";
6404 /* Itbl support may require additional care here. */
6405 coproc = 1;
6406 goto ld;
6407 case M_LWC3_AB:
6408 s = "lwc3";
6409 /* Itbl support may require additional care here. */
6410 coproc = 1;
6411 goto ld;
6412 case M_LWL_AB:
6413 s = "lwl";
6414 lr = 1;
6415 goto ld;
6416 case M_LWR_AB:
6417 s = "lwr";
6418 lr = 1;
6419 goto ld;
6420 case M_LDC1_AB:
6421 s = "ldc1";
6422 /* Itbl support may require additional care here. */
6423 coproc = 1;
6424 goto ld;
6425 case M_LDC2_AB:
6426 s = "ldc2";
6427 /* Itbl support may require additional care here. */
6428 coproc = 1;
6429 goto ld;
6430 case M_LDC3_AB:
6431 s = "ldc3";
6432 /* Itbl support may require additional care here. */
6433 coproc = 1;
6434 goto ld;
6435 case M_LDL_AB:
6436 s = "ldl";
6437 lr = 1;
6438 goto ld;
6439 case M_LDR_AB:
6440 s = "ldr";
6441 lr = 1;
6442 goto ld;
6443 case M_LL_AB:
6444 s = "ll";
6445 goto ld;
6446 case M_LLD_AB:
6447 s = "lld";
6448 goto ld;
6449 case M_LWU_AB:
6450 s = "lwu";
6451 ld:
6452 if (breg == treg || coproc || lr)
6453 {
6454 tempreg = AT;
6455 used_at = 1;
6456 }
6457 else
6458 {
6459 tempreg = treg;
6460 }
6461 goto ld_st;
6462 case M_SB_AB:
6463 s = "sb";
6464 goto st;
6465 case M_SH_AB:
6466 s = "sh";
6467 goto st;
6468 case M_SW_AB:
6469 s = "sw";
6470 goto st;
6471 case M_SWC0_AB:
6472 s = "swc0";
6473 /* Itbl support may require additional care here. */
6474 coproc = 1;
6475 goto st;
6476 case M_SWC1_AB:
6477 s = "swc1";
6478 /* Itbl support may require additional care here. */
6479 coproc = 1;
6480 goto st;
6481 case M_SWC2_AB:
6482 s = "swc2";
6483 /* Itbl support may require additional care here. */
6484 coproc = 1;
6485 goto st;
6486 case M_SWC3_AB:
6487 s = "swc3";
6488 /* Itbl support may require additional care here. */
6489 coproc = 1;
6490 goto st;
6491 case M_SWL_AB:
6492 s = "swl";
6493 goto st;
6494 case M_SWR_AB:
6495 s = "swr";
6496 goto st;
6497 case M_SC_AB:
6498 s = "sc";
6499 goto st;
6500 case M_SCD_AB:
6501 s = "scd";
6502 goto st;
6503 case M_CACHE_AB:
6504 s = "cache";
6505 goto st;
6506 case M_SDC1_AB:
6507 s = "sdc1";
6508 coproc = 1;
6509 /* Itbl support may require additional care here. */
6510 goto st;
6511 case M_SDC2_AB:
6512 s = "sdc2";
6513 /* Itbl support may require additional care here. */
6514 coproc = 1;
6515 goto st;
6516 case M_SDC3_AB:
6517 s = "sdc3";
6518 /* Itbl support may require additional care here. */
6519 coproc = 1;
6520 goto st;
6521 case M_SDL_AB:
6522 s = "sdl";
6523 goto st;
6524 case M_SDR_AB:
6525 s = "sdr";
6526 st:
6527 tempreg = AT;
6528 used_at = 1;
6529 ld_st:
6530 if (coproc
6531 && NO_ISA_COP (mips_opts.arch)
6532 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6533 {
6534 as_bad (_("opcode not supported on this processor: %s"),
6535 mips_cpu_info_from_arch (mips_opts.arch)->name);
6536 break;
6537 }
6538
6539 /* Itbl support may require additional care here. */
6540 if (mask == M_LWC1_AB
6541 || mask == M_SWC1_AB
6542 || mask == M_LDC1_AB
6543 || mask == M_SDC1_AB
6544 || mask == M_L_DAB
6545 || mask == M_S_DAB)
6546 fmt = "T,o(b)";
6547 else if (mask == M_CACHE_AB)
6548 fmt = "k,o(b)";
6549 else if (coproc)
6550 fmt = "E,o(b)";
6551 else
6552 fmt = "t,o(b)";
6553
6554 if (offset_expr.X_op != O_constant
6555 && offset_expr.X_op != O_symbol)
6556 {
6557 as_bad (_("expression too complex"));
6558 offset_expr.X_op = O_constant;
6559 }
6560
6561 if (HAVE_32BIT_ADDRESSES
6562 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6563 {
6564 char value [32];
6565
6566 sprintf_vma (value, offset_expr.X_add_number);
6567 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6568 }
6569
6570 /* A constant expression in PIC code can be handled just as it
6571 is in non PIC code. */
6572 if (offset_expr.X_op == O_constant)
6573 {
6574 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6575 & ~(bfd_vma) 0xffff);
6576 normalize_address_expr (&expr1);
6577 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6578 if (breg != 0)
6579 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6580 tempreg, tempreg, breg);
6581 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6582 }
6583 else if (mips_pic == NO_PIC)
6584 {
6585 /* If this is a reference to a GP relative symbol, and there
6586 is no base register, we want
6587 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6588 Otherwise, if there is no base register, we want
6589 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6590 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6591 If we have a constant, we need two instructions anyhow,
6592 so we always use the latter form.
6593
6594 If we have a base register, and this is a reference to a
6595 GP relative symbol, we want
6596 addu $tempreg,$breg,$gp
6597 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6598 Otherwise we want
6599 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6600 addu $tempreg,$tempreg,$breg
6601 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6602 With a constant we always use the latter case.
6603
6604 With 64bit address space and no base register and $at usable,
6605 we want
6606 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6607 lui $at,<sym> (BFD_RELOC_HI16_S)
6608 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6609 dsll32 $tempreg,0
6610 daddu $tempreg,$at
6611 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6612 If we have a base register, we want
6613 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6614 lui $at,<sym> (BFD_RELOC_HI16_S)
6615 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6616 daddu $at,$breg
6617 dsll32 $tempreg,0
6618 daddu $tempreg,$at
6619 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6620
6621 Without $at we can't generate the optimal path for superscalar
6622 processors here since this would require two temporary registers.
6623 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6624 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6625 dsll $tempreg,16
6626 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6627 dsll $tempreg,16
6628 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6629 If we have a base register, we want
6630 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6631 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6632 dsll $tempreg,16
6633 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6634 dsll $tempreg,16
6635 daddu $tempreg,$tempreg,$breg
6636 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6637
6638 For GP relative symbols in 64bit address space we can use
6639 the same sequence as in 32bit address space. */
6640 if (HAVE_64BIT_SYMBOLS)
6641 {
6642 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6643 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6644 {
6645 relax_start (offset_expr.X_add_symbol);
6646 if (breg == 0)
6647 {
6648 macro_build (&offset_expr, s, fmt, treg,
6649 BFD_RELOC_GPREL16, mips_gp_register);
6650 }
6651 else
6652 {
6653 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6654 tempreg, breg, mips_gp_register);
6655 macro_build (&offset_expr, s, fmt, treg,
6656 BFD_RELOC_GPREL16, tempreg);
6657 }
6658 relax_switch ();
6659 }
6660
6661 if (used_at == 0 && mips_opts.at)
6662 {
6663 macro_build (&offset_expr, "lui", "t,u", tempreg,
6664 BFD_RELOC_MIPS_HIGHEST);
6665 macro_build (&offset_expr, "lui", "t,u", AT,
6666 BFD_RELOC_HI16_S);
6667 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6668 tempreg, BFD_RELOC_MIPS_HIGHER);
6669 if (breg != 0)
6670 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6671 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6672 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6673 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6674 tempreg);
6675 used_at = 1;
6676 }
6677 else
6678 {
6679 macro_build (&offset_expr, "lui", "t,u", tempreg,
6680 BFD_RELOC_MIPS_HIGHEST);
6681 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6682 tempreg, BFD_RELOC_MIPS_HIGHER);
6683 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6684 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6685 tempreg, BFD_RELOC_HI16_S);
6686 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6687 if (breg != 0)
6688 macro_build (NULL, "daddu", "d,v,t",
6689 tempreg, tempreg, breg);
6690 macro_build (&offset_expr, s, fmt, treg,
6691 BFD_RELOC_LO16, tempreg);
6692 }
6693
6694 if (mips_relax.sequence)
6695 relax_end ();
6696 break;
6697 }
6698
6699 if (breg == 0)
6700 {
6701 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6702 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6703 {
6704 relax_start (offset_expr.X_add_symbol);
6705 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6706 mips_gp_register);
6707 relax_switch ();
6708 }
6709 macro_build_lui (&offset_expr, tempreg);
6710 macro_build (&offset_expr, s, fmt, treg,
6711 BFD_RELOC_LO16, tempreg);
6712 if (mips_relax.sequence)
6713 relax_end ();
6714 }
6715 else
6716 {
6717 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6718 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6719 {
6720 relax_start (offset_expr.X_add_symbol);
6721 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6722 tempreg, breg, mips_gp_register);
6723 macro_build (&offset_expr, s, fmt, treg,
6724 BFD_RELOC_GPREL16, tempreg);
6725 relax_switch ();
6726 }
6727 macro_build_lui (&offset_expr, tempreg);
6728 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6729 tempreg, tempreg, breg);
6730 macro_build (&offset_expr, s, fmt, treg,
6731 BFD_RELOC_LO16, tempreg);
6732 if (mips_relax.sequence)
6733 relax_end ();
6734 }
6735 }
6736 else if (!mips_big_got)
6737 {
6738 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6739
6740 /* If this is a reference to an external symbol, we want
6741 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6742 nop
6743 <op> $treg,0($tempreg)
6744 Otherwise we want
6745 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6746 nop
6747 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6748 <op> $treg,0($tempreg)
6749
6750 For NewABI, we want
6751 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6752 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6753
6754 If there is a base register, we add it to $tempreg before
6755 the <op>. If there is a constant, we stick it in the
6756 <op> instruction. We don't handle constants larger than
6757 16 bits, because we have no way to load the upper 16 bits
6758 (actually, we could handle them for the subset of cases
6759 in which we are not using $at). */
6760 gas_assert (offset_expr.X_op == O_symbol);
6761 if (HAVE_NEWABI)
6762 {
6763 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6764 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6765 if (breg != 0)
6766 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6767 tempreg, tempreg, breg);
6768 macro_build (&offset_expr, s, fmt, treg,
6769 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6770 break;
6771 }
6772 expr1.X_add_number = offset_expr.X_add_number;
6773 offset_expr.X_add_number = 0;
6774 if (expr1.X_add_number < -0x8000
6775 || expr1.X_add_number >= 0x8000)
6776 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6777 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6778 lw_reloc_type, mips_gp_register);
6779 load_delay_nop ();
6780 relax_start (offset_expr.X_add_symbol);
6781 relax_switch ();
6782 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6783 tempreg, BFD_RELOC_LO16);
6784 relax_end ();
6785 if (breg != 0)
6786 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6787 tempreg, tempreg, breg);
6788 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6789 }
6790 else if (mips_big_got && !HAVE_NEWABI)
6791 {
6792 int gpdelay;
6793
6794 /* If this is a reference to an external symbol, we want
6795 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6796 addu $tempreg,$tempreg,$gp
6797 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6798 <op> $treg,0($tempreg)
6799 Otherwise we want
6800 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6801 nop
6802 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6803 <op> $treg,0($tempreg)
6804 If there is a base register, we add it to $tempreg before
6805 the <op>. If there is a constant, we stick it in the
6806 <op> instruction. We don't handle constants larger than
6807 16 bits, because we have no way to load the upper 16 bits
6808 (actually, we could handle them for the subset of cases
6809 in which we are not using $at). */
6810 gas_assert (offset_expr.X_op == O_symbol);
6811 expr1.X_add_number = offset_expr.X_add_number;
6812 offset_expr.X_add_number = 0;
6813 if (expr1.X_add_number < -0x8000
6814 || expr1.X_add_number >= 0x8000)
6815 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6816 gpdelay = reg_needs_delay (mips_gp_register);
6817 relax_start (offset_expr.X_add_symbol);
6818 macro_build (&offset_expr, "lui", "t,u", tempreg,
6819 BFD_RELOC_MIPS_GOT_HI16);
6820 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6821 mips_gp_register);
6822 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6823 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6824 relax_switch ();
6825 if (gpdelay)
6826 macro_build (NULL, "nop", "");
6827 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6828 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6829 load_delay_nop ();
6830 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6831 tempreg, BFD_RELOC_LO16);
6832 relax_end ();
6833
6834 if (breg != 0)
6835 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6836 tempreg, tempreg, breg);
6837 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6838 }
6839 else if (mips_big_got && HAVE_NEWABI)
6840 {
6841 /* If this is a reference to an external symbol, we want
6842 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6843 add $tempreg,$tempreg,$gp
6844 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6845 <op> $treg,<ofst>($tempreg)
6846 Otherwise, for local symbols, we want:
6847 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6848 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6849 gas_assert (offset_expr.X_op == O_symbol);
6850 expr1.X_add_number = offset_expr.X_add_number;
6851 offset_expr.X_add_number = 0;
6852 if (expr1.X_add_number < -0x8000
6853 || expr1.X_add_number >= 0x8000)
6854 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6855 relax_start (offset_expr.X_add_symbol);
6856 macro_build (&offset_expr, "lui", "t,u", tempreg,
6857 BFD_RELOC_MIPS_GOT_HI16);
6858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6859 mips_gp_register);
6860 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6861 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6862 if (breg != 0)
6863 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6864 tempreg, tempreg, breg);
6865 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6866
6867 relax_switch ();
6868 offset_expr.X_add_number = expr1.X_add_number;
6869 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6870 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6871 if (breg != 0)
6872 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6873 tempreg, tempreg, breg);
6874 macro_build (&offset_expr, s, fmt, treg,
6875 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6876 relax_end ();
6877 }
6878 else
6879 abort ();
6880
6881 break;
6882
6883 case M_LI:
6884 case M_LI_S:
6885 load_register (treg, &imm_expr, 0);
6886 break;
6887
6888 case M_DLI:
6889 load_register (treg, &imm_expr, 1);
6890 break;
6891
6892 case M_LI_SS:
6893 if (imm_expr.X_op == O_constant)
6894 {
6895 used_at = 1;
6896 load_register (AT, &imm_expr, 0);
6897 macro_build (NULL, "mtc1", "t,G", AT, treg);
6898 break;
6899 }
6900 else
6901 {
6902 gas_assert (offset_expr.X_op == O_symbol
6903 && strcmp (segment_name (S_GET_SEGMENT
6904 (offset_expr.X_add_symbol)),
6905 ".lit4") == 0
6906 && offset_expr.X_add_number == 0);
6907 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6908 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6909 break;
6910 }
6911
6912 case M_LI_D:
6913 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6914 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6915 order 32 bits of the value and the low order 32 bits are either
6916 zero or in OFFSET_EXPR. */
6917 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6918 {
6919 if (HAVE_64BIT_GPRS)
6920 load_register (treg, &imm_expr, 1);
6921 else
6922 {
6923 int hreg, lreg;
6924
6925 if (target_big_endian)
6926 {
6927 hreg = treg;
6928 lreg = treg + 1;
6929 }
6930 else
6931 {
6932 hreg = treg + 1;
6933 lreg = treg;
6934 }
6935
6936 if (hreg <= 31)
6937 load_register (hreg, &imm_expr, 0);
6938 if (lreg <= 31)
6939 {
6940 if (offset_expr.X_op == O_absent)
6941 move_register (lreg, 0);
6942 else
6943 {
6944 gas_assert (offset_expr.X_op == O_constant);
6945 load_register (lreg, &offset_expr, 0);
6946 }
6947 }
6948 }
6949 break;
6950 }
6951
6952 /* We know that sym is in the .rdata section. First we get the
6953 upper 16 bits of the address. */
6954 if (mips_pic == NO_PIC)
6955 {
6956 macro_build_lui (&offset_expr, AT);
6957 used_at = 1;
6958 }
6959 else
6960 {
6961 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6962 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6963 used_at = 1;
6964 }
6965
6966 /* Now we load the register(s). */
6967 if (HAVE_64BIT_GPRS)
6968 {
6969 used_at = 1;
6970 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6971 }
6972 else
6973 {
6974 used_at = 1;
6975 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6976 if (treg != RA)
6977 {
6978 /* FIXME: How in the world do we deal with the possible
6979 overflow here? */
6980 offset_expr.X_add_number += 4;
6981 macro_build (&offset_expr, "lw", "t,o(b)",
6982 treg + 1, BFD_RELOC_LO16, AT);
6983 }
6984 }
6985 break;
6986
6987 case M_LI_DD:
6988 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6989 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6990 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6991 the value and the low order 32 bits are either zero or in
6992 OFFSET_EXPR. */
6993 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6994 {
6995 used_at = 1;
6996 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6997 if (HAVE_64BIT_FPRS)
6998 {
6999 gas_assert (HAVE_64BIT_GPRS);
7000 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7001 }
7002 else
7003 {
7004 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7005 if (offset_expr.X_op == O_absent)
7006 macro_build (NULL, "mtc1", "t,G", 0, treg);
7007 else
7008 {
7009 gas_assert (offset_expr.X_op == O_constant);
7010 load_register (AT, &offset_expr, 0);
7011 macro_build (NULL, "mtc1", "t,G", AT, treg);
7012 }
7013 }
7014 break;
7015 }
7016
7017 gas_assert (offset_expr.X_op == O_symbol
7018 && offset_expr.X_add_number == 0);
7019 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7020 if (strcmp (s, ".lit8") == 0)
7021 {
7022 if (mips_opts.isa != ISA_MIPS1)
7023 {
7024 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7025 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7026 break;
7027 }
7028 breg = mips_gp_register;
7029 r = BFD_RELOC_MIPS_LITERAL;
7030 goto dob;
7031 }
7032 else
7033 {
7034 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7035 used_at = 1;
7036 if (mips_pic != NO_PIC)
7037 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7038 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7039 else
7040 {
7041 /* FIXME: This won't work for a 64 bit address. */
7042 macro_build_lui (&offset_expr, AT);
7043 }
7044
7045 if (mips_opts.isa != ISA_MIPS1)
7046 {
7047 macro_build (&offset_expr, "ldc1", "T,o(b)",
7048 treg, BFD_RELOC_LO16, AT);
7049 break;
7050 }
7051 breg = AT;
7052 r = BFD_RELOC_LO16;
7053 goto dob;
7054 }
7055
7056 case M_L_DOB:
7057 /* Even on a big endian machine $fn comes before $fn+1. We have
7058 to adjust when loading from memory. */
7059 r = BFD_RELOC_LO16;
7060 dob:
7061 gas_assert (mips_opts.isa == ISA_MIPS1);
7062 macro_build (&offset_expr, "lwc1", "T,o(b)",
7063 target_big_endian ? treg + 1 : treg, r, breg);
7064 /* FIXME: A possible overflow which I don't know how to deal
7065 with. */
7066 offset_expr.X_add_number += 4;
7067 macro_build (&offset_expr, "lwc1", "T,o(b)",
7068 target_big_endian ? treg : treg + 1, r, breg);
7069 break;
7070
7071 case M_L_DAB:
7072 /*
7073 * The MIPS assembler seems to check for X_add_number not
7074 * being double aligned and generating:
7075 * lui at,%hi(foo+1)
7076 * addu at,at,v1
7077 * addiu at,at,%lo(foo+1)
7078 * lwc1 f2,0(at)
7079 * lwc1 f3,4(at)
7080 * But, the resulting address is the same after relocation so why
7081 * generate the extra instruction?
7082 */
7083 /* Itbl support may require additional care here. */
7084 coproc = 1;
7085 if (mips_opts.isa != ISA_MIPS1)
7086 {
7087 s = "ldc1";
7088 goto ld;
7089 }
7090
7091 s = "lwc1";
7092 fmt = "T,o(b)";
7093 goto ldd_std;
7094
7095 case M_S_DAB:
7096 if (mips_opts.isa != ISA_MIPS1)
7097 {
7098 s = "sdc1";
7099 goto st;
7100 }
7101
7102 s = "swc1";
7103 fmt = "T,o(b)";
7104 /* Itbl support may require additional care here. */
7105 coproc = 1;
7106 goto ldd_std;
7107
7108 case M_LD_AB:
7109 if (HAVE_64BIT_GPRS)
7110 {
7111 s = "ld";
7112 goto ld;
7113 }
7114
7115 s = "lw";
7116 fmt = "t,o(b)";
7117 goto ldd_std;
7118
7119 case M_SD_AB:
7120 if (HAVE_64BIT_GPRS)
7121 {
7122 s = "sd";
7123 goto st;
7124 }
7125
7126 s = "sw";
7127 fmt = "t,o(b)";
7128
7129 ldd_std:
7130 if (offset_expr.X_op != O_symbol
7131 && offset_expr.X_op != O_constant)
7132 {
7133 as_bad (_("expression too complex"));
7134 offset_expr.X_op = O_constant;
7135 }
7136
7137 if (HAVE_32BIT_ADDRESSES
7138 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7139 {
7140 char value [32];
7141
7142 sprintf_vma (value, offset_expr.X_add_number);
7143 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7144 }
7145
7146 /* Even on a big endian machine $fn comes before $fn+1. We have
7147 to adjust when loading from memory. We set coproc if we must
7148 load $fn+1 first. */
7149 /* Itbl support may require additional care here. */
7150 if (! target_big_endian)
7151 coproc = 0;
7152
7153 if (mips_pic == NO_PIC
7154 || offset_expr.X_op == O_constant)
7155 {
7156 /* If this is a reference to a GP relative symbol, we want
7157 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7158 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7159 If we have a base register, we use this
7160 addu $at,$breg,$gp
7161 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7162 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7163 If this is not a GP relative symbol, we want
7164 lui $at,<sym> (BFD_RELOC_HI16_S)
7165 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7166 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7167 If there is a base register, we add it to $at after the
7168 lui instruction. If there is a constant, we always use
7169 the last case. */
7170 if (offset_expr.X_op == O_symbol
7171 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7172 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7173 {
7174 relax_start (offset_expr.X_add_symbol);
7175 if (breg == 0)
7176 {
7177 tempreg = mips_gp_register;
7178 }
7179 else
7180 {
7181 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7182 AT, breg, mips_gp_register);
7183 tempreg = AT;
7184 used_at = 1;
7185 }
7186
7187 /* Itbl support may require additional care here. */
7188 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7189 BFD_RELOC_GPREL16, tempreg);
7190 offset_expr.X_add_number += 4;
7191
7192 /* Set mips_optimize to 2 to avoid inserting an
7193 undesired nop. */
7194 hold_mips_optimize = mips_optimize;
7195 mips_optimize = 2;
7196 /* Itbl support may require additional care here. */
7197 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7198 BFD_RELOC_GPREL16, tempreg);
7199 mips_optimize = hold_mips_optimize;
7200
7201 relax_switch ();
7202
7203 /* We just generated two relocs. When tc_gen_reloc
7204 handles this case, it will skip the first reloc and
7205 handle the second. The second reloc already has an
7206 extra addend of 4, which we added above. We must
7207 subtract it out, and then subtract another 4 to make
7208 the first reloc come out right. The second reloc
7209 will come out right because we are going to add 4 to
7210 offset_expr when we build its instruction below.
7211
7212 If we have a symbol, then we don't want to include
7213 the offset, because it will wind up being included
7214 when we generate the reloc. */
7215
7216 if (offset_expr.X_op == O_constant)
7217 offset_expr.X_add_number -= 8;
7218 else
7219 {
7220 offset_expr.X_add_number = -4;
7221 offset_expr.X_op = O_constant;
7222 }
7223 }
7224 used_at = 1;
7225 macro_build_lui (&offset_expr, AT);
7226 if (breg != 0)
7227 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7228 /* Itbl support may require additional care here. */
7229 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7230 BFD_RELOC_LO16, AT);
7231 /* FIXME: How do we handle overflow here? */
7232 offset_expr.X_add_number += 4;
7233 /* Itbl support may require additional care here. */
7234 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7235 BFD_RELOC_LO16, AT);
7236 if (mips_relax.sequence)
7237 relax_end ();
7238 }
7239 else if (!mips_big_got)
7240 {
7241 /* If this is a reference to an external symbol, we want
7242 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7243 nop
7244 <op> $treg,0($at)
7245 <op> $treg+1,4($at)
7246 Otherwise we want
7247 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7248 nop
7249 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7250 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7251 If there is a base register we add it to $at before the
7252 lwc1 instructions. If there is a constant we include it
7253 in the lwc1 instructions. */
7254 used_at = 1;
7255 expr1.X_add_number = offset_expr.X_add_number;
7256 if (expr1.X_add_number < -0x8000
7257 || expr1.X_add_number >= 0x8000 - 4)
7258 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7259 load_got_offset (AT, &offset_expr);
7260 load_delay_nop ();
7261 if (breg != 0)
7262 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7263
7264 /* Set mips_optimize to 2 to avoid inserting an undesired
7265 nop. */
7266 hold_mips_optimize = mips_optimize;
7267 mips_optimize = 2;
7268
7269 /* Itbl support may require additional care here. */
7270 relax_start (offset_expr.X_add_symbol);
7271 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7272 BFD_RELOC_LO16, AT);
7273 expr1.X_add_number += 4;
7274 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7275 BFD_RELOC_LO16, AT);
7276 relax_switch ();
7277 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7278 BFD_RELOC_LO16, AT);
7279 offset_expr.X_add_number += 4;
7280 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7281 BFD_RELOC_LO16, AT);
7282 relax_end ();
7283
7284 mips_optimize = hold_mips_optimize;
7285 }
7286 else if (mips_big_got)
7287 {
7288 int gpdelay;
7289
7290 /* If this is a reference to an external symbol, we want
7291 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7292 addu $at,$at,$gp
7293 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7294 nop
7295 <op> $treg,0($at)
7296 <op> $treg+1,4($at)
7297 Otherwise we want
7298 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7299 nop
7300 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7301 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7302 If there is a base register we add it to $at before the
7303 lwc1 instructions. If there is a constant we include it
7304 in the lwc1 instructions. */
7305 used_at = 1;
7306 expr1.X_add_number = offset_expr.X_add_number;
7307 offset_expr.X_add_number = 0;
7308 if (expr1.X_add_number < -0x8000
7309 || expr1.X_add_number >= 0x8000 - 4)
7310 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7311 gpdelay = reg_needs_delay (mips_gp_register);
7312 relax_start (offset_expr.X_add_symbol);
7313 macro_build (&offset_expr, "lui", "t,u",
7314 AT, BFD_RELOC_MIPS_GOT_HI16);
7315 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7316 AT, AT, mips_gp_register);
7317 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7318 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7319 load_delay_nop ();
7320 if (breg != 0)
7321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7322 /* Itbl support may require additional care here. */
7323 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7324 BFD_RELOC_LO16, AT);
7325 expr1.X_add_number += 4;
7326
7327 /* Set mips_optimize to 2 to avoid inserting an undesired
7328 nop. */
7329 hold_mips_optimize = mips_optimize;
7330 mips_optimize = 2;
7331 /* Itbl support may require additional care here. */
7332 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7333 BFD_RELOC_LO16, AT);
7334 mips_optimize = hold_mips_optimize;
7335 expr1.X_add_number -= 4;
7336
7337 relax_switch ();
7338 offset_expr.X_add_number = expr1.X_add_number;
7339 if (gpdelay)
7340 macro_build (NULL, "nop", "");
7341 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7342 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7343 load_delay_nop ();
7344 if (breg != 0)
7345 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7346 /* Itbl support may require additional care here. */
7347 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7348 BFD_RELOC_LO16, AT);
7349 offset_expr.X_add_number += 4;
7350
7351 /* Set mips_optimize to 2 to avoid inserting an undesired
7352 nop. */
7353 hold_mips_optimize = mips_optimize;
7354 mips_optimize = 2;
7355 /* Itbl support may require additional care here. */
7356 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7357 BFD_RELOC_LO16, AT);
7358 mips_optimize = hold_mips_optimize;
7359 relax_end ();
7360 }
7361 else
7362 abort ();
7363
7364 break;
7365
7366 case M_LD_OB:
7367 s = "lw";
7368 goto sd_ob;
7369 case M_SD_OB:
7370 s = "sw";
7371 sd_ob:
7372 gas_assert (HAVE_32BIT_ADDRESSES);
7373 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7374 offset_expr.X_add_number += 4;
7375 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
7376 break;
7377
7378 /* New code added to support COPZ instructions.
7379 This code builds table entries out of the macros in mip_opcodes.
7380 R4000 uses interlocks to handle coproc delays.
7381 Other chips (like the R3000) require nops to be inserted for delays.
7382
7383 FIXME: Currently, we require that the user handle delays.
7384 In order to fill delay slots for non-interlocked chips,
7385 we must have a way to specify delays based on the coprocessor.
7386 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7387 What are the side-effects of the cop instruction?
7388 What cache support might we have and what are its effects?
7389 Both coprocessor & memory require delays. how long???
7390 What registers are read/set/modified?
7391
7392 If an itbl is provided to interpret cop instructions,
7393 this knowledge can be encoded in the itbl spec. */
7394
7395 case M_COP0:
7396 s = "c0";
7397 goto copz;
7398 case M_COP1:
7399 s = "c1";
7400 goto copz;
7401 case M_COP2:
7402 s = "c2";
7403 goto copz;
7404 case M_COP3:
7405 s = "c3";
7406 copz:
7407 if (NO_ISA_COP (mips_opts.arch)
7408 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7409 {
7410 as_bad (_("opcode not supported on this processor: %s"),
7411 mips_cpu_info_from_arch (mips_opts.arch)->name);
7412 break;
7413 }
7414
7415 /* For now we just do C (same as Cz). The parameter will be
7416 stored in insn_opcode by mips_ip. */
7417 macro_build (NULL, s, "C", ip->insn_opcode);
7418 break;
7419
7420 case M_MOVE:
7421 move_register (dreg, sreg);
7422 break;
7423
7424 #ifdef LOSING_COMPILER
7425 default:
7426 /* Try and see if this is a new itbl instruction.
7427 This code builds table entries out of the macros in mip_opcodes.
7428 FIXME: For now we just assemble the expression and pass it's
7429 value along as a 32-bit immediate.
7430 We may want to have the assembler assemble this value,
7431 so that we gain the assembler's knowledge of delay slots,
7432 symbols, etc.
7433 Would it be more efficient to use mask (id) here? */
7434 if (itbl_have_entries
7435 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
7436 {
7437 s = ip->insn_mo->name;
7438 s2 = "cop3";
7439 coproc = ITBL_DECODE_PNUM (immed_expr);;
7440 macro_build (&immed_expr, s, "C");
7441 break;
7442 }
7443 macro2 (ip);
7444 break;
7445 }
7446 if (!mips_opts.at && used_at)
7447 as_bad (_("Macro used $at after \".set noat\""));
7448 }
7449
7450 static void
7451 macro2 (struct mips_cl_insn *ip)
7452 {
7453 unsigned int treg, sreg, dreg, breg;
7454 unsigned int tempreg;
7455 int mask;
7456 int used_at;
7457 expressionS expr1;
7458 const char *s;
7459 const char *s2;
7460 const char *fmt;
7461 int likely = 0;
7462 int dbl = 0;
7463 int coproc = 0;
7464 int lr = 0;
7465 int imm = 0;
7466 int off;
7467 offsetT maxnum;
7468 bfd_reloc_code_real_type r;
7469
7470 treg = (ip->insn_opcode >> 16) & 0x1f;
7471 dreg = (ip->insn_opcode >> 11) & 0x1f;
7472 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
7473 mask = ip->insn_mo->mask;
7474
7475 expr1.X_op = O_constant;
7476 expr1.X_op_symbol = NULL;
7477 expr1.X_add_symbol = NULL;
7478 expr1.X_add_number = 1;
7479
7480 switch (mask)
7481 {
7482 #endif /* LOSING_COMPILER */
7483
7484 case M_DMUL:
7485 dbl = 1;
7486 case M_MUL:
7487 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7488 macro_build (NULL, "mflo", "d", dreg);
7489 break;
7490
7491 case M_DMUL_I:
7492 dbl = 1;
7493 case M_MUL_I:
7494 /* The MIPS assembler some times generates shifts and adds. I'm
7495 not trying to be that fancy. GCC should do this for us
7496 anyway. */
7497 used_at = 1;
7498 load_register (AT, &imm_expr, dbl);
7499 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7500 macro_build (NULL, "mflo", "d", dreg);
7501 break;
7502
7503 case M_DMULO_I:
7504 dbl = 1;
7505 case M_MULO_I:
7506 imm = 1;
7507 goto do_mulo;
7508
7509 case M_DMULO:
7510 dbl = 1;
7511 case M_MULO:
7512 do_mulo:
7513 start_noreorder ();
7514 used_at = 1;
7515 if (imm)
7516 load_register (AT, &imm_expr, dbl);
7517 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7518 macro_build (NULL, "mflo", "d", dreg);
7519 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7520 macro_build (NULL, "mfhi", "d", AT);
7521 if (mips_trap)
7522 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7523 else
7524 {
7525 expr1.X_add_number = 8;
7526 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7527 macro_build (NULL, "nop", "", 0);
7528 macro_build (NULL, "break", "c", 6);
7529 }
7530 end_noreorder ();
7531 macro_build (NULL, "mflo", "d", dreg);
7532 break;
7533
7534 case M_DMULOU_I:
7535 dbl = 1;
7536 case M_MULOU_I:
7537 imm = 1;
7538 goto do_mulou;
7539
7540 case M_DMULOU:
7541 dbl = 1;
7542 case M_MULOU:
7543 do_mulou:
7544 start_noreorder ();
7545 used_at = 1;
7546 if (imm)
7547 load_register (AT, &imm_expr, dbl);
7548 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7549 sreg, imm ? AT : treg);
7550 macro_build (NULL, "mfhi", "d", AT);
7551 macro_build (NULL, "mflo", "d", dreg);
7552 if (mips_trap)
7553 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7554 else
7555 {
7556 expr1.X_add_number = 8;
7557 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7558 macro_build (NULL, "nop", "", 0);
7559 macro_build (NULL, "break", "c", 6);
7560 }
7561 end_noreorder ();
7562 break;
7563
7564 case M_DROL:
7565 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7566 {
7567 if (dreg == sreg)
7568 {
7569 tempreg = AT;
7570 used_at = 1;
7571 }
7572 else
7573 {
7574 tempreg = dreg;
7575 }
7576 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7577 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7578 break;
7579 }
7580 used_at = 1;
7581 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7582 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7583 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7584 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7585 break;
7586
7587 case M_ROL:
7588 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7589 {
7590 if (dreg == sreg)
7591 {
7592 tempreg = AT;
7593 used_at = 1;
7594 }
7595 else
7596 {
7597 tempreg = dreg;
7598 }
7599 macro_build (NULL, "negu", "d,w", tempreg, treg);
7600 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7601 break;
7602 }
7603 used_at = 1;
7604 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7605 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7606 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7607 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7608 break;
7609
7610 case M_DROL_I:
7611 {
7612 unsigned int rot;
7613 char *l;
7614 char *rr;
7615
7616 if (imm_expr.X_op != O_constant)
7617 as_bad (_("Improper rotate count"));
7618 rot = imm_expr.X_add_number & 0x3f;
7619 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7620 {
7621 rot = (64 - rot) & 0x3f;
7622 if (rot >= 32)
7623 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7624 else
7625 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7626 break;
7627 }
7628 if (rot == 0)
7629 {
7630 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7631 break;
7632 }
7633 l = (rot < 0x20) ? "dsll" : "dsll32";
7634 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7635 rot &= 0x1f;
7636 used_at = 1;
7637 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7638 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7639 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7640 }
7641 break;
7642
7643 case M_ROL_I:
7644 {
7645 unsigned int rot;
7646
7647 if (imm_expr.X_op != O_constant)
7648 as_bad (_("Improper rotate count"));
7649 rot = imm_expr.X_add_number & 0x1f;
7650 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7651 {
7652 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7653 break;
7654 }
7655 if (rot == 0)
7656 {
7657 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7658 break;
7659 }
7660 used_at = 1;
7661 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7662 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7663 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7664 }
7665 break;
7666
7667 case M_DROR:
7668 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7669 {
7670 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7671 break;
7672 }
7673 used_at = 1;
7674 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7675 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7676 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7677 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7678 break;
7679
7680 case M_ROR:
7681 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7682 {
7683 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7684 break;
7685 }
7686 used_at = 1;
7687 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7688 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7689 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7690 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7691 break;
7692
7693 case M_DROR_I:
7694 {
7695 unsigned int rot;
7696 char *l;
7697 char *rr;
7698
7699 if (imm_expr.X_op != O_constant)
7700 as_bad (_("Improper rotate count"));
7701 rot = imm_expr.X_add_number & 0x3f;
7702 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7703 {
7704 if (rot >= 32)
7705 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7706 else
7707 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7708 break;
7709 }
7710 if (rot == 0)
7711 {
7712 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7713 break;
7714 }
7715 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7716 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7717 rot &= 0x1f;
7718 used_at = 1;
7719 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7720 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7721 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7722 }
7723 break;
7724
7725 case M_ROR_I:
7726 {
7727 unsigned int rot;
7728
7729 if (imm_expr.X_op != O_constant)
7730 as_bad (_("Improper rotate count"));
7731 rot = imm_expr.X_add_number & 0x1f;
7732 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7733 {
7734 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7735 break;
7736 }
7737 if (rot == 0)
7738 {
7739 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7740 break;
7741 }
7742 used_at = 1;
7743 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7744 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7745 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7746 }
7747 break;
7748
7749 case M_S_DOB:
7750 gas_assert (mips_opts.isa == ISA_MIPS1);
7751 /* Even on a big endian machine $fn comes before $fn+1. We have
7752 to adjust when storing to memory. */
7753 macro_build (&offset_expr, "swc1", "T,o(b)",
7754 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7755 offset_expr.X_add_number += 4;
7756 macro_build (&offset_expr, "swc1", "T,o(b)",
7757 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7758 break;
7759
7760 case M_SEQ:
7761 if (sreg == 0)
7762 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7763 else if (treg == 0)
7764 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7765 else
7766 {
7767 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7768 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7769 }
7770 break;
7771
7772 case M_SEQ_I:
7773 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7774 {
7775 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7776 break;
7777 }
7778 if (sreg == 0)
7779 {
7780 as_warn (_("Instruction %s: result is always false"),
7781 ip->insn_mo->name);
7782 move_register (dreg, 0);
7783 break;
7784 }
7785 if (CPU_HAS_SEQ (mips_opts.arch)
7786 && -512 <= imm_expr.X_add_number
7787 && imm_expr.X_add_number < 512)
7788 {
7789 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7790 (int) imm_expr.X_add_number);
7791 break;
7792 }
7793 if (imm_expr.X_op == O_constant
7794 && imm_expr.X_add_number >= 0
7795 && imm_expr.X_add_number < 0x10000)
7796 {
7797 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7798 }
7799 else if (imm_expr.X_op == O_constant
7800 && imm_expr.X_add_number > -0x8000
7801 && imm_expr.X_add_number < 0)
7802 {
7803 imm_expr.X_add_number = -imm_expr.X_add_number;
7804 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7805 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7806 }
7807 else if (CPU_HAS_SEQ (mips_opts.arch))
7808 {
7809 used_at = 1;
7810 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7811 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7812 break;
7813 }
7814 else
7815 {
7816 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7817 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7818 used_at = 1;
7819 }
7820 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7821 break;
7822
7823 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7824 s = "slt";
7825 goto sge;
7826 case M_SGEU:
7827 s = "sltu";
7828 sge:
7829 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7830 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7831 break;
7832
7833 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7834 case M_SGEU_I:
7835 if (imm_expr.X_op == O_constant
7836 && imm_expr.X_add_number >= -0x8000
7837 && imm_expr.X_add_number < 0x8000)
7838 {
7839 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7840 dreg, sreg, BFD_RELOC_LO16);
7841 }
7842 else
7843 {
7844 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7845 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7846 dreg, sreg, AT);
7847 used_at = 1;
7848 }
7849 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7850 break;
7851
7852 case M_SGT: /* sreg > treg <==> treg < sreg */
7853 s = "slt";
7854 goto sgt;
7855 case M_SGTU:
7856 s = "sltu";
7857 sgt:
7858 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7859 break;
7860
7861 case M_SGT_I: /* sreg > I <==> I < sreg */
7862 s = "slt";
7863 goto sgti;
7864 case M_SGTU_I:
7865 s = "sltu";
7866 sgti:
7867 used_at = 1;
7868 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7869 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7870 break;
7871
7872 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7873 s = "slt";
7874 goto sle;
7875 case M_SLEU:
7876 s = "sltu";
7877 sle:
7878 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7879 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7880 break;
7881
7882 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7883 s = "slt";
7884 goto slei;
7885 case M_SLEU_I:
7886 s = "sltu";
7887 slei:
7888 used_at = 1;
7889 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7890 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7891 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7892 break;
7893
7894 case M_SLT_I:
7895 if (imm_expr.X_op == O_constant
7896 && imm_expr.X_add_number >= -0x8000
7897 && imm_expr.X_add_number < 0x8000)
7898 {
7899 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7900 break;
7901 }
7902 used_at = 1;
7903 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7904 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7905 break;
7906
7907 case M_SLTU_I:
7908 if (imm_expr.X_op == O_constant
7909 && imm_expr.X_add_number >= -0x8000
7910 && imm_expr.X_add_number < 0x8000)
7911 {
7912 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7913 BFD_RELOC_LO16);
7914 break;
7915 }
7916 used_at = 1;
7917 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7918 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7919 break;
7920
7921 case M_SNE:
7922 if (sreg == 0)
7923 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7924 else if (treg == 0)
7925 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7926 else
7927 {
7928 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7929 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7930 }
7931 break;
7932
7933 case M_SNE_I:
7934 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7935 {
7936 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7937 break;
7938 }
7939 if (sreg == 0)
7940 {
7941 as_warn (_("Instruction %s: result is always true"),
7942 ip->insn_mo->name);
7943 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7944 dreg, 0, BFD_RELOC_LO16);
7945 break;
7946 }
7947 if (CPU_HAS_SEQ (mips_opts.arch)
7948 && -512 <= imm_expr.X_add_number
7949 && imm_expr.X_add_number < 512)
7950 {
7951 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7952 (int) imm_expr.X_add_number);
7953 break;
7954 }
7955 if (imm_expr.X_op == O_constant
7956 && imm_expr.X_add_number >= 0
7957 && imm_expr.X_add_number < 0x10000)
7958 {
7959 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7960 }
7961 else if (imm_expr.X_op == O_constant
7962 && imm_expr.X_add_number > -0x8000
7963 && imm_expr.X_add_number < 0)
7964 {
7965 imm_expr.X_add_number = -imm_expr.X_add_number;
7966 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7967 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7968 }
7969 else if (CPU_HAS_SEQ (mips_opts.arch))
7970 {
7971 used_at = 1;
7972 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7973 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7974 break;
7975 }
7976 else
7977 {
7978 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7979 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7980 used_at = 1;
7981 }
7982 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7983 break;
7984
7985 case M_DSUB_I:
7986 dbl = 1;
7987 case M_SUB_I:
7988 if (imm_expr.X_op == O_constant
7989 && imm_expr.X_add_number > -0x8000
7990 && imm_expr.X_add_number <= 0x8000)
7991 {
7992 imm_expr.X_add_number = -imm_expr.X_add_number;
7993 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7994 dreg, sreg, BFD_RELOC_LO16);
7995 break;
7996 }
7997 used_at = 1;
7998 load_register (AT, &imm_expr, dbl);
7999 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
8000 break;
8001
8002 case M_DSUBU_I:
8003 dbl = 1;
8004 case M_SUBU_I:
8005 if (imm_expr.X_op == O_constant
8006 && imm_expr.X_add_number > -0x8000
8007 && imm_expr.X_add_number <= 0x8000)
8008 {
8009 imm_expr.X_add_number = -imm_expr.X_add_number;
8010 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
8011 dreg, sreg, BFD_RELOC_LO16);
8012 break;
8013 }
8014 used_at = 1;
8015 load_register (AT, &imm_expr, dbl);
8016 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
8017 break;
8018
8019 case M_TEQ_I:
8020 s = "teq";
8021 goto trap;
8022 case M_TGE_I:
8023 s = "tge";
8024 goto trap;
8025 case M_TGEU_I:
8026 s = "tgeu";
8027 goto trap;
8028 case M_TLT_I:
8029 s = "tlt";
8030 goto trap;
8031 case M_TLTU_I:
8032 s = "tltu";
8033 goto trap;
8034 case M_TNE_I:
8035 s = "tne";
8036 trap:
8037 used_at = 1;
8038 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
8039 macro_build (NULL, s, "s,t", sreg, AT);
8040 break;
8041
8042 case M_TRUNCWS:
8043 case M_TRUNCWD:
8044 gas_assert (mips_opts.isa == ISA_MIPS1);
8045 used_at = 1;
8046 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
8047 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
8048
8049 /*
8050 * Is the double cfc1 instruction a bug in the mips assembler;
8051 * or is there a reason for it?
8052 */
8053 start_noreorder ();
8054 macro_build (NULL, "cfc1", "t,G", treg, RA);
8055 macro_build (NULL, "cfc1", "t,G", treg, RA);
8056 macro_build (NULL, "nop", "");
8057 expr1.X_add_number = 3;
8058 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
8059 expr1.X_add_number = 2;
8060 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
8061 macro_build (NULL, "ctc1", "t,G", AT, RA);
8062 macro_build (NULL, "nop", "");
8063 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
8064 dreg, sreg);
8065 macro_build (NULL, "ctc1", "t,G", treg, RA);
8066 macro_build (NULL, "nop", "");
8067 end_noreorder ();
8068 break;
8069
8070 case M_ULH:
8071 s = "lb";
8072 goto ulh;
8073 case M_ULHU:
8074 s = "lbu";
8075 ulh:
8076 used_at = 1;
8077 if (offset_expr.X_add_number >= 0x7fff)
8078 as_bad (_("operand overflow"));
8079 if (! target_big_endian)
8080 ++offset_expr.X_add_number;
8081 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8082 if (! target_big_endian)
8083 --offset_expr.X_add_number;
8084 else
8085 ++offset_expr.X_add_number;
8086 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8087 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8088 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8089 break;
8090
8091 case M_ULD:
8092 s = "ldl";
8093 s2 = "ldr";
8094 off = 7;
8095 goto ulw;
8096 case M_ULW:
8097 s = "lwl";
8098 s2 = "lwr";
8099 off = 3;
8100 ulw:
8101 if (offset_expr.X_add_number >= 0x8000 - off)
8102 as_bad (_("operand overflow"));
8103 if (treg != breg)
8104 tempreg = treg;
8105 else
8106 {
8107 used_at = 1;
8108 tempreg = AT;
8109 }
8110 if (! target_big_endian)
8111 offset_expr.X_add_number += off;
8112 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8113 if (! target_big_endian)
8114 offset_expr.X_add_number -= off;
8115 else
8116 offset_expr.X_add_number += off;
8117 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8118
8119 /* If necessary, move the result in tempreg the final destination. */
8120 if (treg == tempreg)
8121 break;
8122 /* Protect second load's delay slot. */
8123 load_delay_nop ();
8124 move_register (treg, tempreg);
8125 break;
8126
8127 case M_ULD_A:
8128 s = "ldl";
8129 s2 = "ldr";
8130 off = 7;
8131 goto ulwa;
8132 case M_ULW_A:
8133 s = "lwl";
8134 s2 = "lwr";
8135 off = 3;
8136 ulwa:
8137 used_at = 1;
8138 load_address (AT, &offset_expr, &used_at);
8139 if (breg != 0)
8140 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8141 if (! target_big_endian)
8142 expr1.X_add_number = off;
8143 else
8144 expr1.X_add_number = 0;
8145 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8146 if (! target_big_endian)
8147 expr1.X_add_number = 0;
8148 else
8149 expr1.X_add_number = off;
8150 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8151 break;
8152
8153 case M_ULH_A:
8154 case M_ULHU_A:
8155 used_at = 1;
8156 load_address (AT, &offset_expr, &used_at);
8157 if (breg != 0)
8158 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8159 if (target_big_endian)
8160 expr1.X_add_number = 0;
8161 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8162 treg, BFD_RELOC_LO16, AT);
8163 if (target_big_endian)
8164 expr1.X_add_number = 1;
8165 else
8166 expr1.X_add_number = 0;
8167 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8168 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8169 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8170 break;
8171
8172 case M_USH:
8173 used_at = 1;
8174 if (offset_expr.X_add_number >= 0x7fff)
8175 as_bad (_("operand overflow"));
8176 if (target_big_endian)
8177 ++offset_expr.X_add_number;
8178 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8179 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8180 if (target_big_endian)
8181 --offset_expr.X_add_number;
8182 else
8183 ++offset_expr.X_add_number;
8184 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8185 break;
8186
8187 case M_USD:
8188 s = "sdl";
8189 s2 = "sdr";
8190 off = 7;
8191 goto usw;
8192 case M_USW:
8193 s = "swl";
8194 s2 = "swr";
8195 off = 3;
8196 usw:
8197 if (offset_expr.X_add_number >= 0x8000 - off)
8198 as_bad (_("operand overflow"));
8199 if (! target_big_endian)
8200 offset_expr.X_add_number += off;
8201 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8202 if (! target_big_endian)
8203 offset_expr.X_add_number -= off;
8204 else
8205 offset_expr.X_add_number += off;
8206 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8207 break;
8208
8209 case M_USD_A:
8210 s = "sdl";
8211 s2 = "sdr";
8212 off = 7;
8213 goto uswa;
8214 case M_USW_A:
8215 s = "swl";
8216 s2 = "swr";
8217 off = 3;
8218 uswa:
8219 used_at = 1;
8220 load_address (AT, &offset_expr, &used_at);
8221 if (breg != 0)
8222 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8223 if (! target_big_endian)
8224 expr1.X_add_number = off;
8225 else
8226 expr1.X_add_number = 0;
8227 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8228 if (! target_big_endian)
8229 expr1.X_add_number = 0;
8230 else
8231 expr1.X_add_number = off;
8232 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8233 break;
8234
8235 case M_USH_A:
8236 used_at = 1;
8237 load_address (AT, &offset_expr, &used_at);
8238 if (breg != 0)
8239 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8240 if (! target_big_endian)
8241 expr1.X_add_number = 0;
8242 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8243 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8244 if (! target_big_endian)
8245 expr1.X_add_number = 1;
8246 else
8247 expr1.X_add_number = 0;
8248 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8249 if (! target_big_endian)
8250 expr1.X_add_number = 0;
8251 else
8252 expr1.X_add_number = 1;
8253 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8254 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8255 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8256 break;
8257
8258 default:
8259 /* FIXME: Check if this is one of the itbl macros, since they
8260 are added dynamically. */
8261 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8262 break;
8263 }
8264 if (!mips_opts.at && used_at)
8265 as_bad (_("Macro used $at after \".set noat\""));
8266 }
8267
8268 /* Implement macros in mips16 mode. */
8269
8270 static void
8271 mips16_macro (struct mips_cl_insn *ip)
8272 {
8273 int mask;
8274 int xreg, yreg, zreg, tmp;
8275 expressionS expr1;
8276 int dbl;
8277 const char *s, *s2, *s3;
8278
8279 mask = ip->insn_mo->mask;
8280
8281 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8282 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8283 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8284
8285 expr1.X_op = O_constant;
8286 expr1.X_op_symbol = NULL;
8287 expr1.X_add_symbol = NULL;
8288 expr1.X_add_number = 1;
8289
8290 dbl = 0;
8291
8292 switch (mask)
8293 {
8294 default:
8295 internalError ();
8296
8297 case M_DDIV_3:
8298 dbl = 1;
8299 case M_DIV_3:
8300 s = "mflo";
8301 goto do_div3;
8302 case M_DREM_3:
8303 dbl = 1;
8304 case M_REM_3:
8305 s = "mfhi";
8306 do_div3:
8307 start_noreorder ();
8308 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8309 expr1.X_add_number = 2;
8310 macro_build (&expr1, "bnez", "x,p", yreg);
8311 macro_build (NULL, "break", "6", 7);
8312
8313 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8314 since that causes an overflow. We should do that as well,
8315 but I don't see how to do the comparisons without a temporary
8316 register. */
8317 end_noreorder ();
8318 macro_build (NULL, s, "x", zreg);
8319 break;
8320
8321 case M_DIVU_3:
8322 s = "divu";
8323 s2 = "mflo";
8324 goto do_divu3;
8325 case M_REMU_3:
8326 s = "divu";
8327 s2 = "mfhi";
8328 goto do_divu3;
8329 case M_DDIVU_3:
8330 s = "ddivu";
8331 s2 = "mflo";
8332 goto do_divu3;
8333 case M_DREMU_3:
8334 s = "ddivu";
8335 s2 = "mfhi";
8336 do_divu3:
8337 start_noreorder ();
8338 macro_build (NULL, s, "0,x,y", xreg, yreg);
8339 expr1.X_add_number = 2;
8340 macro_build (&expr1, "bnez", "x,p", yreg);
8341 macro_build (NULL, "break", "6", 7);
8342 end_noreorder ();
8343 macro_build (NULL, s2, "x", zreg);
8344 break;
8345
8346 case M_DMUL:
8347 dbl = 1;
8348 case M_MUL:
8349 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8350 macro_build (NULL, "mflo", "x", zreg);
8351 break;
8352
8353 case M_DSUBU_I:
8354 dbl = 1;
8355 goto do_subu;
8356 case M_SUBU_I:
8357 do_subu:
8358 if (imm_expr.X_op != O_constant)
8359 as_bad (_("Unsupported large constant"));
8360 imm_expr.X_add_number = -imm_expr.X_add_number;
8361 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8362 break;
8363
8364 case M_SUBU_I_2:
8365 if (imm_expr.X_op != O_constant)
8366 as_bad (_("Unsupported large constant"));
8367 imm_expr.X_add_number = -imm_expr.X_add_number;
8368 macro_build (&imm_expr, "addiu", "x,k", xreg);
8369 break;
8370
8371 case M_DSUBU_I_2:
8372 if (imm_expr.X_op != O_constant)
8373 as_bad (_("Unsupported large constant"));
8374 imm_expr.X_add_number = -imm_expr.X_add_number;
8375 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8376 break;
8377
8378 case M_BEQ:
8379 s = "cmp";
8380 s2 = "bteqz";
8381 goto do_branch;
8382 case M_BNE:
8383 s = "cmp";
8384 s2 = "btnez";
8385 goto do_branch;
8386 case M_BLT:
8387 s = "slt";
8388 s2 = "btnez";
8389 goto do_branch;
8390 case M_BLTU:
8391 s = "sltu";
8392 s2 = "btnez";
8393 goto do_branch;
8394 case M_BLE:
8395 s = "slt";
8396 s2 = "bteqz";
8397 goto do_reverse_branch;
8398 case M_BLEU:
8399 s = "sltu";
8400 s2 = "bteqz";
8401 goto do_reverse_branch;
8402 case M_BGE:
8403 s = "slt";
8404 s2 = "bteqz";
8405 goto do_branch;
8406 case M_BGEU:
8407 s = "sltu";
8408 s2 = "bteqz";
8409 goto do_branch;
8410 case M_BGT:
8411 s = "slt";
8412 s2 = "btnez";
8413 goto do_reverse_branch;
8414 case M_BGTU:
8415 s = "sltu";
8416 s2 = "btnez";
8417
8418 do_reverse_branch:
8419 tmp = xreg;
8420 xreg = yreg;
8421 yreg = tmp;
8422
8423 do_branch:
8424 macro_build (NULL, s, "x,y", xreg, yreg);
8425 macro_build (&offset_expr, s2, "p");
8426 break;
8427
8428 case M_BEQ_I:
8429 s = "cmpi";
8430 s2 = "bteqz";
8431 s3 = "x,U";
8432 goto do_branch_i;
8433 case M_BNE_I:
8434 s = "cmpi";
8435 s2 = "btnez";
8436 s3 = "x,U";
8437 goto do_branch_i;
8438 case M_BLT_I:
8439 s = "slti";
8440 s2 = "btnez";
8441 s3 = "x,8";
8442 goto do_branch_i;
8443 case M_BLTU_I:
8444 s = "sltiu";
8445 s2 = "btnez";
8446 s3 = "x,8";
8447 goto do_branch_i;
8448 case M_BLE_I:
8449 s = "slti";
8450 s2 = "btnez";
8451 s3 = "x,8";
8452 goto do_addone_branch_i;
8453 case M_BLEU_I:
8454 s = "sltiu";
8455 s2 = "btnez";
8456 s3 = "x,8";
8457 goto do_addone_branch_i;
8458 case M_BGE_I:
8459 s = "slti";
8460 s2 = "bteqz";
8461 s3 = "x,8";
8462 goto do_branch_i;
8463 case M_BGEU_I:
8464 s = "sltiu";
8465 s2 = "bteqz";
8466 s3 = "x,8";
8467 goto do_branch_i;
8468 case M_BGT_I:
8469 s = "slti";
8470 s2 = "bteqz";
8471 s3 = "x,8";
8472 goto do_addone_branch_i;
8473 case M_BGTU_I:
8474 s = "sltiu";
8475 s2 = "bteqz";
8476 s3 = "x,8";
8477
8478 do_addone_branch_i:
8479 if (imm_expr.X_op != O_constant)
8480 as_bad (_("Unsupported large constant"));
8481 ++imm_expr.X_add_number;
8482
8483 do_branch_i:
8484 macro_build (&imm_expr, s, s3, xreg);
8485 macro_build (&offset_expr, s2, "p");
8486 break;
8487
8488 case M_ABS:
8489 expr1.X_add_number = 0;
8490 macro_build (&expr1, "slti", "x,8", yreg);
8491 if (xreg != yreg)
8492 move_register (xreg, yreg);
8493 expr1.X_add_number = 2;
8494 macro_build (&expr1, "bteqz", "p");
8495 macro_build (NULL, "neg", "x,w", xreg, xreg);
8496 }
8497 }
8498
8499 /* For consistency checking, verify that all bits are specified either
8500 by the match/mask part of the instruction definition, or by the
8501 operand list. */
8502 static int
8503 validate_mips_insn (const struct mips_opcode *opc)
8504 {
8505 const char *p = opc->args;
8506 char c;
8507 unsigned long used_bits = opc->mask;
8508
8509 if ((used_bits & opc->match) != opc->match)
8510 {
8511 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8512 opc->name, opc->args);
8513 return 0;
8514 }
8515 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8516 while (*p)
8517 switch (c = *p++)
8518 {
8519 case ',': break;
8520 case '(': break;
8521 case ')': break;
8522 case '+':
8523 switch (c = *p++)
8524 {
8525 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8526 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8527 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8528 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8529 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8530 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8531 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8532 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8533 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8534 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8535 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8536 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8537 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8538 case 'I': break;
8539 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8540 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8541 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8542 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8543 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8544 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8545 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8546 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8547 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8548 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8549
8550 default:
8551 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8552 c, opc->name, opc->args);
8553 return 0;
8554 }
8555 break;
8556 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8557 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8558 case 'A': break;
8559 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8560 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8561 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8562 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8563 case 'F': break;
8564 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8565 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8566 case 'I': break;
8567 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8568 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8569 case 'L': break;
8570 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8571 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8572 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8573 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8574 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8575 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8576 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8577 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8578 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8579 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8580 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8581 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8582 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8583 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8584 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8585 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8586 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8587 case 'f': break;
8588 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8589 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8590 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8591 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8592 case 'l': break;
8593 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8594 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8595 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8596 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8597 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8598 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8599 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8600 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8601 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8602 case 'x': break;
8603 case 'z': break;
8604 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8605 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8606 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8607 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8608 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8609 case '[': break;
8610 case ']': break;
8611 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8612 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8613 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8614 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8615 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8616 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8617 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8618 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8619 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8620 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8621 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8622 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8623 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8624 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8625 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8626 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8627 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8628 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8629 default:
8630 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8631 c, opc->name, opc->args);
8632 return 0;
8633 }
8634 #undef USE_BITS
8635 if (used_bits != 0xffffffff)
8636 {
8637 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8638 ~used_bits & 0xffffffff, opc->name, opc->args);
8639 return 0;
8640 }
8641 return 1;
8642 }
8643
8644 /* UDI immediates. */
8645 struct mips_immed {
8646 char type;
8647 unsigned int shift;
8648 unsigned long mask;
8649 const char * desc;
8650 };
8651
8652 static const struct mips_immed mips_immed[] = {
8653 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8654 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8655 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8656 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8657 { 0,0,0,0 }
8658 };
8659
8660 /* Check whether an odd floating-point register is allowed. */
8661 static int
8662 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8663 {
8664 const char *s = insn->name;
8665
8666 if (insn->pinfo == INSN_MACRO)
8667 /* Let a macro pass, we'll catch it later when it is expanded. */
8668 return 1;
8669
8670 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8671 {
8672 /* Allow odd registers for single-precision ops. */
8673 switch (insn->pinfo & (FP_S | FP_D))
8674 {
8675 case FP_S:
8676 case 0:
8677 return 1; /* both single precision - ok */
8678 case FP_D:
8679 return 0; /* both double precision - fail */
8680 default:
8681 break;
8682 }
8683
8684 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8685 s = strchr (insn->name, '.');
8686 if (argnum == 2)
8687 s = s != NULL ? strchr (s + 1, '.') : NULL;
8688 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8689 }
8690
8691 /* Single-precision coprocessor loads and moves are OK too. */
8692 if ((insn->pinfo & FP_S)
8693 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8694 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8695 return 1;
8696
8697 return 0;
8698 }
8699
8700 /* This routine assembles an instruction into its binary format. As a
8701 side effect, it sets one of the global variables imm_reloc or
8702 offset_reloc to the type of relocation to do if one of the operands
8703 is an address expression. */
8704
8705 static void
8706 mips_ip (char *str, struct mips_cl_insn *ip)
8707 {
8708 char *s;
8709 const char *args;
8710 char c = 0;
8711 struct mips_opcode *insn;
8712 char *argsStart;
8713 unsigned int regno;
8714 unsigned int lastregno = 0;
8715 unsigned int lastpos = 0;
8716 unsigned int limlo, limhi;
8717 char *s_reset;
8718 char save_c = 0;
8719 offsetT min_range, max_range;
8720 int argnum;
8721 unsigned int rtype;
8722
8723 insn_error = NULL;
8724
8725 /* If the instruction contains a '.', we first try to match an instruction
8726 including the '.'. Then we try again without the '.'. */
8727 insn = NULL;
8728 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8729 continue;
8730
8731 /* If we stopped on whitespace, then replace the whitespace with null for
8732 the call to hash_find. Save the character we replaced just in case we
8733 have to re-parse the instruction. */
8734 if (ISSPACE (*s))
8735 {
8736 save_c = *s;
8737 *s++ = '\0';
8738 }
8739
8740 insn = (struct mips_opcode *) hash_find (op_hash, str);
8741
8742 /* If we didn't find the instruction in the opcode table, try again, but
8743 this time with just the instruction up to, but not including the
8744 first '.'. */
8745 if (insn == NULL)
8746 {
8747 /* Restore the character we overwrite above (if any). */
8748 if (save_c)
8749 *(--s) = save_c;
8750
8751 /* Scan up to the first '.' or whitespace. */
8752 for (s = str;
8753 *s != '\0' && *s != '.' && !ISSPACE (*s);
8754 ++s)
8755 continue;
8756
8757 /* If we did not find a '.', then we can quit now. */
8758 if (*s != '.')
8759 {
8760 insn_error = _("unrecognized opcode");
8761 return;
8762 }
8763
8764 /* Lookup the instruction in the hash table. */
8765 *s++ = '\0';
8766 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8767 {
8768 insn_error = _("unrecognized opcode");
8769 return;
8770 }
8771 }
8772
8773 argsStart = s;
8774 for (;;)
8775 {
8776 bfd_boolean ok;
8777
8778 gas_assert (strcmp (insn->name, str) == 0);
8779
8780 ok = is_opcode_valid (insn);
8781 if (! ok)
8782 {
8783 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8784 && strcmp (insn->name, insn[1].name) == 0)
8785 {
8786 ++insn;
8787 continue;
8788 }
8789 else
8790 {
8791 if (!insn_error)
8792 {
8793 static char buf[100];
8794 sprintf (buf,
8795 _("opcode not supported on this processor: %s (%s)"),
8796 mips_cpu_info_from_arch (mips_opts.arch)->name,
8797 mips_cpu_info_from_isa (mips_opts.isa)->name);
8798 insn_error = buf;
8799 }
8800 if (save_c)
8801 *(--s) = save_c;
8802 return;
8803 }
8804 }
8805
8806 create_insn (ip, insn);
8807 insn_error = NULL;
8808 argnum = 1;
8809 lastregno = 0xffffffff;
8810 for (args = insn->args;; ++args)
8811 {
8812 int is_mdmx;
8813
8814 s += strspn (s, " \t");
8815 is_mdmx = 0;
8816 switch (*args)
8817 {
8818 case '\0': /* end of args */
8819 if (*s == '\0')
8820 return;
8821 break;
8822
8823 case '2': /* dsp 2-bit unsigned immediate in bit 11 */
8824 my_getExpression (&imm_expr, s);
8825 check_absolute_expr (ip, &imm_expr);
8826 if ((unsigned long) imm_expr.X_add_number != 1
8827 && (unsigned long) imm_expr.X_add_number != 3)
8828 {
8829 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8830 (unsigned long) imm_expr.X_add_number);
8831 }
8832 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8833 imm_expr.X_op = O_absent;
8834 s = expr_end;
8835 continue;
8836
8837 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8838 my_getExpression (&imm_expr, s);
8839 check_absolute_expr (ip, &imm_expr);
8840 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8841 {
8842 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8843 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8844 }
8845 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8846 imm_expr.X_op = O_absent;
8847 s = expr_end;
8848 continue;
8849
8850 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8851 my_getExpression (&imm_expr, s);
8852 check_absolute_expr (ip, &imm_expr);
8853 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8854 {
8855 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8856 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8857 }
8858 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8859 imm_expr.X_op = O_absent;
8860 s = expr_end;
8861 continue;
8862
8863 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8864 my_getExpression (&imm_expr, s);
8865 check_absolute_expr (ip, &imm_expr);
8866 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8867 {
8868 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8869 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8870 }
8871 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8872 imm_expr.X_op = O_absent;
8873 s = expr_end;
8874 continue;
8875
8876 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8877 my_getExpression (&imm_expr, s);
8878 check_absolute_expr (ip, &imm_expr);
8879 if (imm_expr.X_add_number & ~OP_MASK_RS)
8880 {
8881 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8882 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8883 }
8884 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8885 imm_expr.X_op = O_absent;
8886 s = expr_end;
8887 continue;
8888
8889 case '7': /* four dsp accumulators in bits 11,12 */
8890 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8891 s[3] >= '0' && s[3] <= '3')
8892 {
8893 regno = s[3] - '0';
8894 s += 4;
8895 INSERT_OPERAND (DSPACC, *ip, regno);
8896 continue;
8897 }
8898 else
8899 as_bad (_("Invalid dsp acc register"));
8900 break;
8901
8902 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8903 my_getExpression (&imm_expr, s);
8904 check_absolute_expr (ip, &imm_expr);
8905 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8906 {
8907 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8908 OP_MASK_WRDSP,
8909 (unsigned long) imm_expr.X_add_number);
8910 }
8911 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8912 imm_expr.X_op = O_absent;
8913 s = expr_end;
8914 continue;
8915
8916 case '9': /* four dsp accumulators in bits 21,22 */
8917 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8918 s[3] >= '0' && s[3] <= '3')
8919 {
8920 regno = s[3] - '0';
8921 s += 4;
8922 INSERT_OPERAND (DSPACC_S, *ip, regno);
8923 continue;
8924 }
8925 else
8926 as_bad (_("Invalid dsp acc register"));
8927 break;
8928
8929 case '0': /* dsp 6-bit signed immediate in bit 20 */
8930 my_getExpression (&imm_expr, s);
8931 check_absolute_expr (ip, &imm_expr);
8932 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8933 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8934 if (imm_expr.X_add_number < min_range ||
8935 imm_expr.X_add_number > max_range)
8936 {
8937 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8938 (long) min_range, (long) max_range,
8939 (long) imm_expr.X_add_number);
8940 }
8941 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8942 imm_expr.X_op = O_absent;
8943 s = expr_end;
8944 continue;
8945
8946 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8947 my_getExpression (&imm_expr, s);
8948 check_absolute_expr (ip, &imm_expr);
8949 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8950 {
8951 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8952 OP_MASK_RDDSP,
8953 (unsigned long) imm_expr.X_add_number);
8954 }
8955 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8956 imm_expr.X_op = O_absent;
8957 s = expr_end;
8958 continue;
8959
8960 case ':': /* dsp 7-bit signed immediate in bit 19 */
8961 my_getExpression (&imm_expr, s);
8962 check_absolute_expr (ip, &imm_expr);
8963 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8964 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8965 if (imm_expr.X_add_number < min_range ||
8966 imm_expr.X_add_number > max_range)
8967 {
8968 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8969 (long) min_range, (long) max_range,
8970 (long) imm_expr.X_add_number);
8971 }
8972 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8973 imm_expr.X_op = O_absent;
8974 s = expr_end;
8975 continue;
8976
8977 case '@': /* dsp 10-bit signed immediate in bit 16 */
8978 my_getExpression (&imm_expr, s);
8979 check_absolute_expr (ip, &imm_expr);
8980 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8981 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8982 if (imm_expr.X_add_number < min_range ||
8983 imm_expr.X_add_number > max_range)
8984 {
8985 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8986 (long) min_range, (long) max_range,
8987 (long) imm_expr.X_add_number);
8988 }
8989 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8990 imm_expr.X_op = O_absent;
8991 s = expr_end;
8992 continue;
8993
8994 case '!': /* MT usermode flag bit. */
8995 my_getExpression (&imm_expr, s);
8996 check_absolute_expr (ip, &imm_expr);
8997 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8998 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8999 (unsigned long) imm_expr.X_add_number);
9000 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
9001 imm_expr.X_op = O_absent;
9002 s = expr_end;
9003 continue;
9004
9005 case '$': /* MT load high flag bit. */
9006 my_getExpression (&imm_expr, s);
9007 check_absolute_expr (ip, &imm_expr);
9008 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
9009 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
9010 (unsigned long) imm_expr.X_add_number);
9011 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
9012 imm_expr.X_op = O_absent;
9013 s = expr_end;
9014 continue;
9015
9016 case '*': /* four dsp accumulators in bits 18,19 */
9017 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9018 s[3] >= '0' && s[3] <= '3')
9019 {
9020 regno = s[3] - '0';
9021 s += 4;
9022 INSERT_OPERAND (MTACC_T, *ip, regno);
9023 continue;
9024 }
9025 else
9026 as_bad (_("Invalid dsp/smartmips acc register"));
9027 break;
9028
9029 case '&': /* four dsp accumulators in bits 13,14 */
9030 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
9031 s[3] >= '0' && s[3] <= '3')
9032 {
9033 regno = s[3] - '0';
9034 s += 4;
9035 INSERT_OPERAND (MTACC_D, *ip, regno);
9036 continue;
9037 }
9038 else
9039 as_bad (_("Invalid dsp/smartmips acc register"));
9040 break;
9041
9042 case ',':
9043 ++argnum;
9044 if (*s++ == *args)
9045 continue;
9046 s--;
9047 switch (*++args)
9048 {
9049 case 'r':
9050 case 'v':
9051 INSERT_OPERAND (RS, *ip, lastregno);
9052 continue;
9053
9054 case 'w':
9055 INSERT_OPERAND (RT, *ip, lastregno);
9056 continue;
9057
9058 case 'W':
9059 INSERT_OPERAND (FT, *ip, lastregno);
9060 continue;
9061
9062 case 'V':
9063 INSERT_OPERAND (FS, *ip, lastregno);
9064 continue;
9065 }
9066 break;
9067
9068 case '(':
9069 /* Handle optional base register.
9070 Either the base register is omitted or
9071 we must have a left paren. */
9072 /* This is dependent on the next operand specifier
9073 is a base register specification. */
9074 gas_assert (args[1] == 'b' || args[1] == '5'
9075 || args[1] == '-' || args[1] == '4');
9076 if (*s == '\0')
9077 return;
9078
9079 case ')': /* these must match exactly */
9080 case '[':
9081 case ']':
9082 if (*s++ == *args)
9083 continue;
9084 break;
9085
9086 case '+': /* Opcode extension character. */
9087 switch (*++args)
9088 {
9089 case '1': /* UDI immediates. */
9090 case '2':
9091 case '3':
9092 case '4':
9093 {
9094 const struct mips_immed *imm = mips_immed;
9095
9096 while (imm->type && imm->type != *args)
9097 ++imm;
9098 if (! imm->type)
9099 internalError ();
9100 my_getExpression (&imm_expr, s);
9101 check_absolute_expr (ip, &imm_expr);
9102 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9103 {
9104 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9105 imm->desc ? imm->desc : ip->insn_mo->name,
9106 (unsigned long) imm_expr.X_add_number,
9107 (unsigned long) imm_expr.X_add_number);
9108 imm_expr.X_add_number &= imm->mask;
9109 }
9110 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9111 << imm->shift);
9112 imm_expr.X_op = O_absent;
9113 s = expr_end;
9114 }
9115 continue;
9116
9117 case 'A': /* ins/ext position, becomes LSB. */
9118 limlo = 0;
9119 limhi = 31;
9120 goto do_lsb;
9121 case 'E':
9122 limlo = 32;
9123 limhi = 63;
9124 goto do_lsb;
9125 do_lsb:
9126 my_getExpression (&imm_expr, s);
9127 check_absolute_expr (ip, &imm_expr);
9128 if ((unsigned long) imm_expr.X_add_number < limlo
9129 || (unsigned long) imm_expr.X_add_number > limhi)
9130 {
9131 as_bad (_("Improper position (%lu)"),
9132 (unsigned long) imm_expr.X_add_number);
9133 imm_expr.X_add_number = limlo;
9134 }
9135 lastpos = imm_expr.X_add_number;
9136 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9137 imm_expr.X_op = O_absent;
9138 s = expr_end;
9139 continue;
9140
9141 case 'B': /* ins size, becomes MSB. */
9142 limlo = 1;
9143 limhi = 32;
9144 goto do_msb;
9145 case 'F':
9146 limlo = 33;
9147 limhi = 64;
9148 goto do_msb;
9149 do_msb:
9150 my_getExpression (&imm_expr, s);
9151 check_absolute_expr (ip, &imm_expr);
9152 /* Check for negative input so that small negative numbers
9153 will not succeed incorrectly. The checks against
9154 (pos+size) transitively check "size" itself,
9155 assuming that "pos" is reasonable. */
9156 if ((long) imm_expr.X_add_number < 0
9157 || ((unsigned long) imm_expr.X_add_number
9158 + lastpos) < limlo
9159 || ((unsigned long) imm_expr.X_add_number
9160 + lastpos) > limhi)
9161 {
9162 as_bad (_("Improper insert size (%lu, position %lu)"),
9163 (unsigned long) imm_expr.X_add_number,
9164 (unsigned long) lastpos);
9165 imm_expr.X_add_number = limlo - lastpos;
9166 }
9167 INSERT_OPERAND (INSMSB, *ip,
9168 lastpos + imm_expr.X_add_number - 1);
9169 imm_expr.X_op = O_absent;
9170 s = expr_end;
9171 continue;
9172
9173 case 'C': /* ext size, becomes MSBD. */
9174 limlo = 1;
9175 limhi = 32;
9176 goto do_msbd;
9177 case 'G':
9178 limlo = 33;
9179 limhi = 64;
9180 goto do_msbd;
9181 case 'H':
9182 limlo = 33;
9183 limhi = 64;
9184 goto do_msbd;
9185 do_msbd:
9186 my_getExpression (&imm_expr, s);
9187 check_absolute_expr (ip, &imm_expr);
9188 /* Check for negative input so that small negative numbers
9189 will not succeed incorrectly. The checks against
9190 (pos+size) transitively check "size" itself,
9191 assuming that "pos" is reasonable. */
9192 if ((long) imm_expr.X_add_number < 0
9193 || ((unsigned long) imm_expr.X_add_number
9194 + lastpos) < limlo
9195 || ((unsigned long) imm_expr.X_add_number
9196 + lastpos) > limhi)
9197 {
9198 as_bad (_("Improper extract size (%lu, position %lu)"),
9199 (unsigned long) imm_expr.X_add_number,
9200 (unsigned long) lastpos);
9201 imm_expr.X_add_number = limlo - lastpos;
9202 }
9203 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9204 imm_expr.X_op = O_absent;
9205 s = expr_end;
9206 continue;
9207
9208 case 'D':
9209 /* +D is for disassembly only; never match. */
9210 break;
9211
9212 case 'I':
9213 /* "+I" is like "I", except that imm2_expr is used. */
9214 my_getExpression (&imm2_expr, s);
9215 if (imm2_expr.X_op != O_big
9216 && imm2_expr.X_op != O_constant)
9217 insn_error = _("absolute expression required");
9218 if (HAVE_32BIT_GPRS)
9219 normalize_constant_expr (&imm2_expr);
9220 s = expr_end;
9221 continue;
9222
9223 case 'T': /* Coprocessor register. */
9224 /* +T is for disassembly only; never match. */
9225 break;
9226
9227 case 't': /* Coprocessor register number. */
9228 if (s[0] == '$' && ISDIGIT (s[1]))
9229 {
9230 ++s;
9231 regno = 0;
9232 do
9233 {
9234 regno *= 10;
9235 regno += *s - '0';
9236 ++s;
9237 }
9238 while (ISDIGIT (*s));
9239 if (regno > 31)
9240 as_bad (_("Invalid register number (%d)"), regno);
9241 else
9242 {
9243 INSERT_OPERAND (RT, *ip, regno);
9244 continue;
9245 }
9246 }
9247 else
9248 as_bad (_("Invalid coprocessor 0 register number"));
9249 break;
9250
9251 case 'x':
9252 /* bbit[01] and bbit[01]32 bit index. Give error if index
9253 is not in the valid range. */
9254 my_getExpression (&imm_expr, s);
9255 check_absolute_expr (ip, &imm_expr);
9256 if ((unsigned) imm_expr.X_add_number > 31)
9257 {
9258 as_bad (_("Improper bit index (%lu)"),
9259 (unsigned long) imm_expr.X_add_number);
9260 imm_expr.X_add_number = 0;
9261 }
9262 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9263 imm_expr.X_op = O_absent;
9264 s = expr_end;
9265 continue;
9266
9267 case 'X':
9268 /* bbit[01] bit index when bbit is used but we generate
9269 bbit[01]32 because the index is over 32. Move to the
9270 next candidate if index is not in the valid range. */
9271 my_getExpression (&imm_expr, s);
9272 check_absolute_expr (ip, &imm_expr);
9273 if ((unsigned) imm_expr.X_add_number < 32
9274 || (unsigned) imm_expr.X_add_number > 63)
9275 break;
9276 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9277 imm_expr.X_op = O_absent;
9278 s = expr_end;
9279 continue;
9280
9281 case 'p':
9282 /* cins, cins32, exts and exts32 position field. Give error
9283 if it's not in the valid range. */
9284 my_getExpression (&imm_expr, s);
9285 check_absolute_expr (ip, &imm_expr);
9286 if ((unsigned) imm_expr.X_add_number > 31)
9287 {
9288 as_bad (_("Improper position (%lu)"),
9289 (unsigned long) imm_expr.X_add_number);
9290 imm_expr.X_add_number = 0;
9291 }
9292 /* Make the pos explicit to simplify +S. */
9293 lastpos = imm_expr.X_add_number + 32;
9294 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9295 imm_expr.X_op = O_absent;
9296 s = expr_end;
9297 continue;
9298
9299 case 'P':
9300 /* cins, cins32, exts and exts32 position field. Move to
9301 the next candidate if it's not in the valid range. */
9302 my_getExpression (&imm_expr, s);
9303 check_absolute_expr (ip, &imm_expr);
9304 if ((unsigned) imm_expr.X_add_number < 32
9305 || (unsigned) imm_expr.X_add_number > 63)
9306 break;
9307 lastpos = imm_expr.X_add_number;
9308 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9309 imm_expr.X_op = O_absent;
9310 s = expr_end;
9311 continue;
9312
9313 case 's':
9314 /* cins and exts length-minus-one field. */
9315 my_getExpression (&imm_expr, s);
9316 check_absolute_expr (ip, &imm_expr);
9317 if ((unsigned long) imm_expr.X_add_number > 31)
9318 {
9319 as_bad (_("Improper size (%lu)"),
9320 (unsigned long) imm_expr.X_add_number);
9321 imm_expr.X_add_number = 0;
9322 }
9323 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9324 imm_expr.X_op = O_absent;
9325 s = expr_end;
9326 continue;
9327
9328 case 'S':
9329 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9330 length-minus-one field. */
9331 my_getExpression (&imm_expr, s);
9332 check_absolute_expr (ip, &imm_expr);
9333 if ((long) imm_expr.X_add_number < 0
9334 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9335 {
9336 as_bad (_("Improper size (%lu)"),
9337 (unsigned long) imm_expr.X_add_number);
9338 imm_expr.X_add_number = 0;
9339 }
9340 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9341 imm_expr.X_op = O_absent;
9342 s = expr_end;
9343 continue;
9344
9345 case 'Q':
9346 /* seqi/snei immediate field. */
9347 my_getExpression (&imm_expr, s);
9348 check_absolute_expr (ip, &imm_expr);
9349 if ((long) imm_expr.X_add_number < -512
9350 || (long) imm_expr.X_add_number >= 512)
9351 {
9352 as_bad (_("Improper immediate (%ld)"),
9353 (long) imm_expr.X_add_number);
9354 imm_expr.X_add_number = 0;
9355 }
9356 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9357 imm_expr.X_op = O_absent;
9358 s = expr_end;
9359 continue;
9360
9361 default:
9362 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
9363 *args, insn->name, insn->args);
9364 /* Further processing is fruitless. */
9365 return;
9366 }
9367 break;
9368
9369 case '<': /* must be at least one digit */
9370 /*
9371 * According to the manual, if the shift amount is greater
9372 * than 31 or less than 0, then the shift amount should be
9373 * mod 32. In reality the mips assembler issues an error.
9374 * We issue a warning and mask out all but the low 5 bits.
9375 */
9376 my_getExpression (&imm_expr, s);
9377 check_absolute_expr (ip, &imm_expr);
9378 if ((unsigned long) imm_expr.X_add_number > 31)
9379 as_warn (_("Improper shift amount (%lu)"),
9380 (unsigned long) imm_expr.X_add_number);
9381 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9382 imm_expr.X_op = O_absent;
9383 s = expr_end;
9384 continue;
9385
9386 case '>': /* shift amount minus 32 */
9387 my_getExpression (&imm_expr, s);
9388 check_absolute_expr (ip, &imm_expr);
9389 if ((unsigned long) imm_expr.X_add_number < 32
9390 || (unsigned long) imm_expr.X_add_number > 63)
9391 break;
9392 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9393 imm_expr.X_op = O_absent;
9394 s = expr_end;
9395 continue;
9396
9397 case 'k': /* cache code */
9398 case 'h': /* prefx code */
9399 case '1': /* sync type */
9400 my_getExpression (&imm_expr, s);
9401 check_absolute_expr (ip, &imm_expr);
9402 if ((unsigned long) imm_expr.X_add_number > 31)
9403 as_warn (_("Invalid value for `%s' (%lu)"),
9404 ip->insn_mo->name,
9405 (unsigned long) imm_expr.X_add_number);
9406 if (*args == 'k')
9407 {
9408 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9409 switch (imm_expr.X_add_number)
9410 {
9411 case 5:
9412 case 25:
9413 case 26:
9414 case 27:
9415 case 28:
9416 case 29:
9417 case 30:
9418 case 31: /* These are ok. */
9419 break;
9420
9421 default: /* The rest must be changed to 28. */
9422 imm_expr.X_add_number = 28;
9423 break;
9424 }
9425 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9426 }
9427 else if (*args == 'h')
9428 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9429 else
9430 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9431 imm_expr.X_op = O_absent;
9432 s = expr_end;
9433 continue;
9434
9435 case 'c': /* break code */
9436 my_getExpression (&imm_expr, s);
9437 check_absolute_expr (ip, &imm_expr);
9438 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9439 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9440 ip->insn_mo->name,
9441 (unsigned long) imm_expr.X_add_number);
9442 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9443 imm_expr.X_op = O_absent;
9444 s = expr_end;
9445 continue;
9446
9447 case 'q': /* lower break code */
9448 my_getExpression (&imm_expr, s);
9449 check_absolute_expr (ip, &imm_expr);
9450 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9451 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9452 ip->insn_mo->name,
9453 (unsigned long) imm_expr.X_add_number);
9454 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9455 imm_expr.X_op = O_absent;
9456 s = expr_end;
9457 continue;
9458
9459 case 'B': /* 20-bit syscall/break code. */
9460 my_getExpression (&imm_expr, s);
9461 check_absolute_expr (ip, &imm_expr);
9462 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9463 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9464 ip->insn_mo->name,
9465 (unsigned long) imm_expr.X_add_number);
9466 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9467 imm_expr.X_op = O_absent;
9468 s = expr_end;
9469 continue;
9470
9471 case 'C': /* Coprocessor code */
9472 my_getExpression (&imm_expr, s);
9473 check_absolute_expr (ip, &imm_expr);
9474 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9475 {
9476 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9477 (unsigned long) imm_expr.X_add_number);
9478 imm_expr.X_add_number &= OP_MASK_COPZ;
9479 }
9480 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9481 imm_expr.X_op = O_absent;
9482 s = expr_end;
9483 continue;
9484
9485 case 'J': /* 19-bit wait code. */
9486 my_getExpression (&imm_expr, s);
9487 check_absolute_expr (ip, &imm_expr);
9488 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9489 {
9490 as_warn (_("Illegal 19-bit code (%lu)"),
9491 (unsigned long) imm_expr.X_add_number);
9492 imm_expr.X_add_number &= OP_MASK_CODE19;
9493 }
9494 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9495 imm_expr.X_op = O_absent;
9496 s = expr_end;
9497 continue;
9498
9499 case 'P': /* Performance register. */
9500 my_getExpression (&imm_expr, s);
9501 check_absolute_expr (ip, &imm_expr);
9502 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9503 as_warn (_("Invalid performance register (%lu)"),
9504 (unsigned long) imm_expr.X_add_number);
9505 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9506 imm_expr.X_op = O_absent;
9507 s = expr_end;
9508 continue;
9509
9510 case 'G': /* Coprocessor destination register. */
9511 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9512 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9513 else
9514 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9515 INSERT_OPERAND (RD, *ip, regno);
9516 if (ok)
9517 {
9518 lastregno = regno;
9519 continue;
9520 }
9521 else
9522 break;
9523
9524 case 'b': /* base register */
9525 case 'd': /* destination register */
9526 case 's': /* source register */
9527 case 't': /* target register */
9528 case 'r': /* both target and source */
9529 case 'v': /* both dest and source */
9530 case 'w': /* both dest and target */
9531 case 'E': /* coprocessor target register */
9532 case 'K': /* 'rdhwr' destination register */
9533 case 'x': /* ignore register name */
9534 case 'z': /* must be zero register */
9535 case 'U': /* destination register (clo/clz). */
9536 case 'g': /* coprocessor destination register */
9537 s_reset = s;
9538 if (*args == 'E' || *args == 'K')
9539 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9540 else
9541 {
9542 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9543 if (regno == AT && mips_opts.at)
9544 {
9545 if (mips_opts.at == ATREG)
9546 as_warn (_("used $at without \".set noat\""));
9547 else
9548 as_warn (_("used $%u with \".set at=$%u\""),
9549 regno, mips_opts.at);
9550 }
9551 }
9552 if (ok)
9553 {
9554 c = *args;
9555 if (*s == ' ')
9556 ++s;
9557 if (args[1] != *s)
9558 {
9559 if (c == 'r' || c == 'v' || c == 'w')
9560 {
9561 regno = lastregno;
9562 s = s_reset;
9563 ++args;
9564 }
9565 }
9566 /* 'z' only matches $0. */
9567 if (c == 'z' && regno != 0)
9568 break;
9569
9570 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9571 {
9572 if (regno == lastregno)
9573 {
9574 insn_error = _("source and destination must be different");
9575 continue;
9576 }
9577 if (regno == 31 && lastregno == 0xffffffff)
9578 {
9579 insn_error = _("a destination register must be supplied");
9580 continue;
9581 }
9582 }
9583 /* Now that we have assembled one operand, we use the args string
9584 * to figure out where it goes in the instruction. */
9585 switch (c)
9586 {
9587 case 'r':
9588 case 's':
9589 case 'v':
9590 case 'b':
9591 INSERT_OPERAND (RS, *ip, regno);
9592 break;
9593 case 'd':
9594 case 'G':
9595 case 'K':
9596 case 'g':
9597 INSERT_OPERAND (RD, *ip, regno);
9598 break;
9599 case 'U':
9600 INSERT_OPERAND (RD, *ip, regno);
9601 INSERT_OPERAND (RT, *ip, regno);
9602 break;
9603 case 'w':
9604 case 't':
9605 case 'E':
9606 INSERT_OPERAND (RT, *ip, regno);
9607 break;
9608 case 'x':
9609 /* This case exists because on the r3000 trunc
9610 expands into a macro which requires a gp
9611 register. On the r6000 or r4000 it is
9612 assembled into a single instruction which
9613 ignores the register. Thus the insn version
9614 is MIPS_ISA2 and uses 'x', and the macro
9615 version is MIPS_ISA1 and uses 't'. */
9616 break;
9617 case 'z':
9618 /* This case is for the div instruction, which
9619 acts differently if the destination argument
9620 is $0. This only matches $0, and is checked
9621 outside the switch. */
9622 break;
9623 case 'D':
9624 /* Itbl operand; not yet implemented. FIXME ?? */
9625 break;
9626 /* What about all other operands like 'i', which
9627 can be specified in the opcode table? */
9628 }
9629 lastregno = regno;
9630 continue;
9631 }
9632 switch (*args++)
9633 {
9634 case 'r':
9635 case 'v':
9636 INSERT_OPERAND (RS, *ip, lastregno);
9637 continue;
9638 case 'w':
9639 INSERT_OPERAND (RT, *ip, lastregno);
9640 continue;
9641 }
9642 break;
9643
9644 case 'O': /* MDMX alignment immediate constant. */
9645 my_getExpression (&imm_expr, s);
9646 check_absolute_expr (ip, &imm_expr);
9647 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9648 as_warn (_("Improper align amount (%ld), using low bits"),
9649 (long) imm_expr.X_add_number);
9650 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9651 imm_expr.X_op = O_absent;
9652 s = expr_end;
9653 continue;
9654
9655 case 'Q': /* MDMX vector, element sel, or const. */
9656 if (s[0] != '$')
9657 {
9658 /* MDMX Immediate. */
9659 my_getExpression (&imm_expr, s);
9660 check_absolute_expr (ip, &imm_expr);
9661 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9662 as_warn (_("Invalid MDMX Immediate (%ld)"),
9663 (long) imm_expr.X_add_number);
9664 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9665 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9666 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9667 else
9668 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9669 imm_expr.X_op = O_absent;
9670 s = expr_end;
9671 continue;
9672 }
9673 /* Not MDMX Immediate. Fall through. */
9674 case 'X': /* MDMX destination register. */
9675 case 'Y': /* MDMX source register. */
9676 case 'Z': /* MDMX target register. */
9677 is_mdmx = 1;
9678 case 'D': /* floating point destination register */
9679 case 'S': /* floating point source register */
9680 case 'T': /* floating point target register */
9681 case 'R': /* floating point source register */
9682 case 'V':
9683 case 'W':
9684 rtype = RTYPE_FPU;
9685 if (is_mdmx
9686 || (mips_opts.ase_mdmx
9687 && (ip->insn_mo->pinfo & FP_D)
9688 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9689 | INSN_COPROC_MEMORY_DELAY
9690 | INSN_LOAD_COPROC_DELAY
9691 | INSN_LOAD_MEMORY_DELAY
9692 | INSN_STORE_MEMORY))))
9693 rtype |= RTYPE_VEC;
9694 s_reset = s;
9695 if (reg_lookup (&s, rtype, &regno))
9696 {
9697 if ((regno & 1) != 0
9698 && HAVE_32BIT_FPRS
9699 && ! mips_oddfpreg_ok (ip->insn_mo, argnum))
9700 as_warn (_("Float register should be even, was %d"),
9701 regno);
9702
9703 c = *args;
9704 if (*s == ' ')
9705 ++s;
9706 if (args[1] != *s)
9707 {
9708 if (c == 'V' || c == 'W')
9709 {
9710 regno = lastregno;
9711 s = s_reset;
9712 ++args;
9713 }
9714 }
9715 switch (c)
9716 {
9717 case 'D':
9718 case 'X':
9719 INSERT_OPERAND (FD, *ip, regno);
9720 break;
9721 case 'V':
9722 case 'S':
9723 case 'Y':
9724 INSERT_OPERAND (FS, *ip, regno);
9725 break;
9726 case 'Q':
9727 /* This is like 'Z', but also needs to fix the MDMX
9728 vector/scalar select bits. Note that the
9729 scalar immediate case is handled above. */
9730 if (*s == '[')
9731 {
9732 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9733 int max_el = (is_qh ? 3 : 7);
9734 s++;
9735 my_getExpression(&imm_expr, s);
9736 check_absolute_expr (ip, &imm_expr);
9737 s = expr_end;
9738 if (imm_expr.X_add_number > max_el)
9739 as_bad (_("Bad element selector %ld"),
9740 (long) imm_expr.X_add_number);
9741 imm_expr.X_add_number &= max_el;
9742 ip->insn_opcode |= (imm_expr.X_add_number
9743 << (OP_SH_VSEL +
9744 (is_qh ? 2 : 1)));
9745 imm_expr.X_op = O_absent;
9746 if (*s != ']')
9747 as_warn (_("Expecting ']' found '%s'"), s);
9748 else
9749 s++;
9750 }
9751 else
9752 {
9753 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9754 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9755 << OP_SH_VSEL);
9756 else
9757 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9758 OP_SH_VSEL);
9759 }
9760 /* Fall through */
9761 case 'W':
9762 case 'T':
9763 case 'Z':
9764 INSERT_OPERAND (FT, *ip, regno);
9765 break;
9766 case 'R':
9767 INSERT_OPERAND (FR, *ip, regno);
9768 break;
9769 }
9770 lastregno = regno;
9771 continue;
9772 }
9773
9774 switch (*args++)
9775 {
9776 case 'V':
9777 INSERT_OPERAND (FS, *ip, lastregno);
9778 continue;
9779 case 'W':
9780 INSERT_OPERAND (FT, *ip, lastregno);
9781 continue;
9782 }
9783 break;
9784
9785 case 'I':
9786 my_getExpression (&imm_expr, s);
9787 if (imm_expr.X_op != O_big
9788 && imm_expr.X_op != O_constant)
9789 insn_error = _("absolute expression required");
9790 if (HAVE_32BIT_GPRS)
9791 normalize_constant_expr (&imm_expr);
9792 s = expr_end;
9793 continue;
9794
9795 case 'A':
9796 my_getExpression (&offset_expr, s);
9797 normalize_address_expr (&offset_expr);
9798 *imm_reloc = BFD_RELOC_32;
9799 s = expr_end;
9800 continue;
9801
9802 case 'F':
9803 case 'L':
9804 case 'f':
9805 case 'l':
9806 {
9807 int f64;
9808 int using_gprs;
9809 char *save_in;
9810 char *err;
9811 unsigned char temp[8];
9812 int len;
9813 unsigned int length;
9814 segT seg;
9815 subsegT subseg;
9816 char *p;
9817
9818 /* These only appear as the last operand in an
9819 instruction, and every instruction that accepts
9820 them in any variant accepts them in all variants.
9821 This means we don't have to worry about backing out
9822 any changes if the instruction does not match.
9823
9824 The difference between them is the size of the
9825 floating point constant and where it goes. For 'F'
9826 and 'L' the constant is 64 bits; for 'f' and 'l' it
9827 is 32 bits. Where the constant is placed is based
9828 on how the MIPS assembler does things:
9829 F -- .rdata
9830 L -- .lit8
9831 f -- immediate value
9832 l -- .lit4
9833
9834 The .lit4 and .lit8 sections are only used if
9835 permitted by the -G argument.
9836
9837 The code below needs to know whether the target register
9838 is 32 or 64 bits wide. It relies on the fact 'f' and
9839 'F' are used with GPR-based instructions and 'l' and
9840 'L' are used with FPR-based instructions. */
9841
9842 f64 = *args == 'F' || *args == 'L';
9843 using_gprs = *args == 'F' || *args == 'f';
9844
9845 save_in = input_line_pointer;
9846 input_line_pointer = s;
9847 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9848 length = len;
9849 s = input_line_pointer;
9850 input_line_pointer = save_in;
9851 if (err != NULL && *err != '\0')
9852 {
9853 as_bad (_("Bad floating point constant: %s"), err);
9854 memset (temp, '\0', sizeof temp);
9855 length = f64 ? 8 : 4;
9856 }
9857
9858 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9859
9860 if (*args == 'f'
9861 || (*args == 'l'
9862 && (g_switch_value < 4
9863 || (temp[0] == 0 && temp[1] == 0)
9864 || (temp[2] == 0 && temp[3] == 0))))
9865 {
9866 imm_expr.X_op = O_constant;
9867 if (! target_big_endian)
9868 imm_expr.X_add_number = bfd_getl32 (temp);
9869 else
9870 imm_expr.X_add_number = bfd_getb32 (temp);
9871 }
9872 else if (length > 4
9873 && ! mips_disable_float_construction
9874 /* Constants can only be constructed in GPRs and
9875 copied to FPRs if the GPRs are at least as wide
9876 as the FPRs. Force the constant into memory if
9877 we are using 64-bit FPRs but the GPRs are only
9878 32 bits wide. */
9879 && (using_gprs
9880 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9881 && ((temp[0] == 0 && temp[1] == 0)
9882 || (temp[2] == 0 && temp[3] == 0))
9883 && ((temp[4] == 0 && temp[5] == 0)
9884 || (temp[6] == 0 && temp[7] == 0)))
9885 {
9886 /* The value is simple enough to load with a couple of
9887 instructions. If using 32-bit registers, set
9888 imm_expr to the high order 32 bits and offset_expr to
9889 the low order 32 bits. Otherwise, set imm_expr to
9890 the entire 64 bit constant. */
9891 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9892 {
9893 imm_expr.X_op = O_constant;
9894 offset_expr.X_op = O_constant;
9895 if (! target_big_endian)
9896 {
9897 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9898 offset_expr.X_add_number = bfd_getl32 (temp);
9899 }
9900 else
9901 {
9902 imm_expr.X_add_number = bfd_getb32 (temp);
9903 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9904 }
9905 if (offset_expr.X_add_number == 0)
9906 offset_expr.X_op = O_absent;
9907 }
9908 else if (sizeof (imm_expr.X_add_number) > 4)
9909 {
9910 imm_expr.X_op = O_constant;
9911 if (! target_big_endian)
9912 imm_expr.X_add_number = bfd_getl64 (temp);
9913 else
9914 imm_expr.X_add_number = bfd_getb64 (temp);
9915 }
9916 else
9917 {
9918 imm_expr.X_op = O_big;
9919 imm_expr.X_add_number = 4;
9920 if (! target_big_endian)
9921 {
9922 generic_bignum[0] = bfd_getl16 (temp);
9923 generic_bignum[1] = bfd_getl16 (temp + 2);
9924 generic_bignum[2] = bfd_getl16 (temp + 4);
9925 generic_bignum[3] = bfd_getl16 (temp + 6);
9926 }
9927 else
9928 {
9929 generic_bignum[0] = bfd_getb16 (temp + 6);
9930 generic_bignum[1] = bfd_getb16 (temp + 4);
9931 generic_bignum[2] = bfd_getb16 (temp + 2);
9932 generic_bignum[3] = bfd_getb16 (temp);
9933 }
9934 }
9935 }
9936 else
9937 {
9938 const char *newname;
9939 segT new_seg;
9940
9941 /* Switch to the right section. */
9942 seg = now_seg;
9943 subseg = now_subseg;
9944 switch (*args)
9945 {
9946 default: /* unused default case avoids warnings. */
9947 case 'L':
9948 newname = RDATA_SECTION_NAME;
9949 if (g_switch_value >= 8)
9950 newname = ".lit8";
9951 break;
9952 case 'F':
9953 newname = RDATA_SECTION_NAME;
9954 break;
9955 case 'l':
9956 gas_assert (g_switch_value >= 4);
9957 newname = ".lit4";
9958 break;
9959 }
9960 new_seg = subseg_new (newname, (subsegT) 0);
9961 if (IS_ELF)
9962 bfd_set_section_flags (stdoutput, new_seg,
9963 (SEC_ALLOC
9964 | SEC_LOAD
9965 | SEC_READONLY
9966 | SEC_DATA));
9967 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9968 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9969 record_alignment (new_seg, 4);
9970 else
9971 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9972 if (seg == now_seg)
9973 as_bad (_("Can't use floating point insn in this section"));
9974
9975 /* Set the argument to the current address in the
9976 section. */
9977 offset_expr.X_op = O_symbol;
9978 offset_expr.X_add_symbol = symbol_temp_new_now ();
9979 offset_expr.X_add_number = 0;
9980
9981 /* Put the floating point number into the section. */
9982 p = frag_more ((int) length);
9983 memcpy (p, temp, length);
9984
9985 /* Switch back to the original section. */
9986 subseg_set (seg, subseg);
9987 }
9988 }
9989 continue;
9990
9991 case 'i': /* 16 bit unsigned immediate */
9992 case 'j': /* 16 bit signed immediate */
9993 *imm_reloc = BFD_RELOC_LO16;
9994 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9995 {
9996 int more;
9997 offsetT minval, maxval;
9998
9999 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
10000 && strcmp (insn->name, insn[1].name) == 0);
10001
10002 /* If the expression was written as an unsigned number,
10003 only treat it as signed if there are no more
10004 alternatives. */
10005 if (more
10006 && *args == 'j'
10007 && sizeof (imm_expr.X_add_number) <= 4
10008 && imm_expr.X_op == O_constant
10009 && imm_expr.X_add_number < 0
10010 && imm_expr.X_unsigned
10011 && HAVE_64BIT_GPRS)
10012 break;
10013
10014 /* For compatibility with older assemblers, we accept
10015 0x8000-0xffff as signed 16-bit numbers when only
10016 signed numbers are allowed. */
10017 if (*args == 'i')
10018 minval = 0, maxval = 0xffff;
10019 else if (more)
10020 minval = -0x8000, maxval = 0x7fff;
10021 else
10022 minval = -0x8000, maxval = 0xffff;
10023
10024 if (imm_expr.X_op != O_constant
10025 || imm_expr.X_add_number < minval
10026 || imm_expr.X_add_number > maxval)
10027 {
10028 if (more)
10029 break;
10030 if (imm_expr.X_op == O_constant
10031 || imm_expr.X_op == O_big)
10032 as_bad (_("expression out of range"));
10033 }
10034 }
10035 s = expr_end;
10036 continue;
10037
10038 case 'o': /* 16 bit offset */
10039 /* Check whether there is only a single bracketed expression
10040 left. If so, it must be the base register and the
10041 constant must be zero. */
10042 if (*s == '(' && strchr (s + 1, '(') == 0)
10043 {
10044 offset_expr.X_op = O_constant;
10045 offset_expr.X_add_number = 0;
10046 continue;
10047 }
10048
10049 /* If this value won't fit into a 16 bit offset, then go
10050 find a macro that will generate the 32 bit offset
10051 code pattern. */
10052 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
10053 && (offset_expr.X_op != O_constant
10054 || offset_expr.X_add_number >= 0x8000
10055 || offset_expr.X_add_number < -0x8000))
10056 break;
10057
10058 s = expr_end;
10059 continue;
10060
10061 case 'p': /* pc relative offset */
10062 *offset_reloc = BFD_RELOC_16_PCREL_S2;
10063 my_getExpression (&offset_expr, s);
10064 s = expr_end;
10065 continue;
10066
10067 case 'u': /* upper 16 bits */
10068 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
10069 && imm_expr.X_op == O_constant
10070 && (imm_expr.X_add_number < 0
10071 || imm_expr.X_add_number >= 0x10000))
10072 as_bad (_("lui expression not in range 0..65535"));
10073 s = expr_end;
10074 continue;
10075
10076 case 'a': /* 26 bit address */
10077 my_getExpression (&offset_expr, s);
10078 s = expr_end;
10079 *offset_reloc = BFD_RELOC_MIPS_JMP;
10080 continue;
10081
10082 case 'N': /* 3 bit branch condition code */
10083 case 'M': /* 3 bit compare condition code */
10084 rtype = RTYPE_CCC;
10085 if (ip->insn_mo->pinfo & (FP_D| FP_S))
10086 rtype |= RTYPE_FCC;
10087 if (!reg_lookup (&s, rtype, &regno))
10088 break;
10089 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
10090 || strcmp(str + strlen(str) - 5, "any2f") == 0
10091 || strcmp(str + strlen(str) - 5, "any2t") == 0)
10092 && (regno & 1) != 0)
10093 as_warn (_("Condition code register should be even for %s, was %d"),
10094 str, regno);
10095 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
10096 || strcmp(str + strlen(str) - 5, "any4t") == 0)
10097 && (regno & 3) != 0)
10098 as_warn (_("Condition code register should be 0 or 4 for %s, was %d"),
10099 str, regno);
10100 if (*args == 'N')
10101 INSERT_OPERAND (BCC, *ip, regno);
10102 else
10103 INSERT_OPERAND (CCC, *ip, regno);
10104 continue;
10105
10106 case 'H':
10107 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10108 s += 2;
10109 if (ISDIGIT (*s))
10110 {
10111 c = 0;
10112 do
10113 {
10114 c *= 10;
10115 c += *s - '0';
10116 ++s;
10117 }
10118 while (ISDIGIT (*s));
10119 }
10120 else
10121 c = 8; /* Invalid sel value. */
10122
10123 if (c > 7)
10124 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
10125 ip->insn_opcode |= c;
10126 continue;
10127
10128 case 'e':
10129 /* Must be at least one digit. */
10130 my_getExpression (&imm_expr, s);
10131 check_absolute_expr (ip, &imm_expr);
10132
10133 if ((unsigned long) imm_expr.X_add_number
10134 > (unsigned long) OP_MASK_VECBYTE)
10135 {
10136 as_bad (_("bad byte vector index (%ld)"),
10137 (long) imm_expr.X_add_number);
10138 imm_expr.X_add_number = 0;
10139 }
10140
10141 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10142 imm_expr.X_op = O_absent;
10143 s = expr_end;
10144 continue;
10145
10146 case '%':
10147 my_getExpression (&imm_expr, s);
10148 check_absolute_expr (ip, &imm_expr);
10149
10150 if ((unsigned long) imm_expr.X_add_number
10151 > (unsigned long) OP_MASK_VECALIGN)
10152 {
10153 as_bad (_("bad byte vector index (%ld)"),
10154 (long) imm_expr.X_add_number);
10155 imm_expr.X_add_number = 0;
10156 }
10157
10158 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10159 imm_expr.X_op = O_absent;
10160 s = expr_end;
10161 continue;
10162
10163 default:
10164 as_bad (_("bad char = '%c'\n"), *args);
10165 internalError ();
10166 }
10167 break;
10168 }
10169 /* Args don't match. */
10170 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10171 !strcmp (insn->name, insn[1].name))
10172 {
10173 ++insn;
10174 s = argsStart;
10175 insn_error = _("illegal operands");
10176 continue;
10177 }
10178 if (save_c)
10179 *(--argsStart) = save_c;
10180 insn_error = _("illegal operands");
10181 return;
10182 }
10183 }
10184
10185 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10186
10187 /* This routine assembles an instruction into its binary format when
10188 assembling for the mips16. As a side effect, it sets one of the
10189 global variables imm_reloc or offset_reloc to the type of
10190 relocation to do if one of the operands is an address expression.
10191 It also sets mips16_small and mips16_ext if the user explicitly
10192 requested a small or extended instruction. */
10193
10194 static void
10195 mips16_ip (char *str, struct mips_cl_insn *ip)
10196 {
10197 char *s;
10198 const char *args;
10199 struct mips_opcode *insn;
10200 char *argsstart;
10201 unsigned int regno;
10202 unsigned int lastregno = 0;
10203 char *s_reset;
10204 size_t i;
10205
10206 insn_error = NULL;
10207
10208 mips16_small = FALSE;
10209 mips16_ext = FALSE;
10210
10211 for (s = str; ISLOWER (*s); ++s)
10212 ;
10213 switch (*s)
10214 {
10215 case '\0':
10216 break;
10217
10218 case ' ':
10219 *s++ = '\0';
10220 break;
10221
10222 case '.':
10223 if (s[1] == 't' && s[2] == ' ')
10224 {
10225 *s = '\0';
10226 mips16_small = TRUE;
10227 s += 3;
10228 break;
10229 }
10230 else if (s[1] == 'e' && s[2] == ' ')
10231 {
10232 *s = '\0';
10233 mips16_ext = TRUE;
10234 s += 3;
10235 break;
10236 }
10237 /* Fall through. */
10238 default:
10239 insn_error = _("unknown opcode");
10240 return;
10241 }
10242
10243 if (mips_opts.noautoextend && ! mips16_ext)
10244 mips16_small = TRUE;
10245
10246 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10247 {
10248 insn_error = _("unrecognized opcode");
10249 return;
10250 }
10251
10252 argsstart = s;
10253 for (;;)
10254 {
10255 bfd_boolean ok;
10256
10257 gas_assert (strcmp (insn->name, str) == 0);
10258
10259 ok = is_opcode_valid_16 (insn);
10260 if (! ok)
10261 {
10262 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10263 && strcmp (insn->name, insn[1].name) == 0)
10264 {
10265 ++insn;
10266 continue;
10267 }
10268 else
10269 {
10270 if (!insn_error)
10271 {
10272 static char buf[100];
10273 sprintf (buf,
10274 _("opcode not supported on this processor: %s (%s)"),
10275 mips_cpu_info_from_arch (mips_opts.arch)->name,
10276 mips_cpu_info_from_isa (mips_opts.isa)->name);
10277 insn_error = buf;
10278 }
10279 return;
10280 }
10281 }
10282
10283 create_insn (ip, insn);
10284 imm_expr.X_op = O_absent;
10285 imm_reloc[0] = BFD_RELOC_UNUSED;
10286 imm_reloc[1] = BFD_RELOC_UNUSED;
10287 imm_reloc[2] = BFD_RELOC_UNUSED;
10288 imm2_expr.X_op = O_absent;
10289 offset_expr.X_op = O_absent;
10290 offset_reloc[0] = BFD_RELOC_UNUSED;
10291 offset_reloc[1] = BFD_RELOC_UNUSED;
10292 offset_reloc[2] = BFD_RELOC_UNUSED;
10293 for (args = insn->args; 1; ++args)
10294 {
10295 int c;
10296
10297 if (*s == ' ')
10298 ++s;
10299
10300 /* In this switch statement we call break if we did not find
10301 a match, continue if we did find a match, or return if we
10302 are done. */
10303
10304 c = *args;
10305 switch (c)
10306 {
10307 case '\0':
10308 if (*s == '\0')
10309 {
10310 /* Stuff the immediate value in now, if we can. */
10311 if (imm_expr.X_op == O_constant
10312 && *imm_reloc > BFD_RELOC_UNUSED
10313 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10314 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10315 && insn->pinfo != INSN_MACRO)
10316 {
10317 valueT tmp;
10318
10319 switch (*offset_reloc)
10320 {
10321 case BFD_RELOC_MIPS16_HI16_S:
10322 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10323 break;
10324
10325 case BFD_RELOC_MIPS16_HI16:
10326 tmp = imm_expr.X_add_number >> 16;
10327 break;
10328
10329 case BFD_RELOC_MIPS16_LO16:
10330 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10331 - 0x8000;
10332 break;
10333
10334 case BFD_RELOC_UNUSED:
10335 tmp = imm_expr.X_add_number;
10336 break;
10337
10338 default:
10339 internalError ();
10340 }
10341 *offset_reloc = BFD_RELOC_UNUSED;
10342
10343 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10344 tmp, TRUE, mips16_small,
10345 mips16_ext, &ip->insn_opcode,
10346 &ip->use_extend, &ip->extend);
10347 imm_expr.X_op = O_absent;
10348 *imm_reloc = BFD_RELOC_UNUSED;
10349 }
10350
10351 return;
10352 }
10353 break;
10354
10355 case ',':
10356 if (*s++ == c)
10357 continue;
10358 s--;
10359 switch (*++args)
10360 {
10361 case 'v':
10362 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10363 continue;
10364 case 'w':
10365 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10366 continue;
10367 }
10368 break;
10369
10370 case '(':
10371 case ')':
10372 if (*s++ == c)
10373 continue;
10374 break;
10375
10376 case 'v':
10377 case 'w':
10378 if (s[0] != '$')
10379 {
10380 if (c == 'v')
10381 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10382 else
10383 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10384 ++args;
10385 continue;
10386 }
10387 /* Fall through. */
10388 case 'x':
10389 case 'y':
10390 case 'z':
10391 case 'Z':
10392 case '0':
10393 case 'S':
10394 case 'R':
10395 case 'X':
10396 case 'Y':
10397 s_reset = s;
10398 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10399 {
10400 if (c == 'v' || c == 'w')
10401 {
10402 if (c == 'v')
10403 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10404 else
10405 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10406 ++args;
10407 continue;
10408 }
10409 break;
10410 }
10411
10412 if (*s == ' ')
10413 ++s;
10414 if (args[1] != *s)
10415 {
10416 if (c == 'v' || c == 'w')
10417 {
10418 regno = mips16_to_32_reg_map[lastregno];
10419 s = s_reset;
10420 ++args;
10421 }
10422 }
10423
10424 switch (c)
10425 {
10426 case 'x':
10427 case 'y':
10428 case 'z':
10429 case 'v':
10430 case 'w':
10431 case 'Z':
10432 regno = mips32_to_16_reg_map[regno];
10433 break;
10434
10435 case '0':
10436 if (regno != 0)
10437 regno = ILLEGAL_REG;
10438 break;
10439
10440 case 'S':
10441 if (regno != SP)
10442 regno = ILLEGAL_REG;
10443 break;
10444
10445 case 'R':
10446 if (regno != RA)
10447 regno = ILLEGAL_REG;
10448 break;
10449
10450 case 'X':
10451 case 'Y':
10452 if (regno == AT && mips_opts.at)
10453 {
10454 if (mips_opts.at == ATREG)
10455 as_warn (_("used $at without \".set noat\""));
10456 else
10457 as_warn (_("used $%u with \".set at=$%u\""),
10458 regno, mips_opts.at);
10459 }
10460 break;
10461
10462 default:
10463 internalError ();
10464 }
10465
10466 if (regno == ILLEGAL_REG)
10467 break;
10468
10469 switch (c)
10470 {
10471 case 'x':
10472 case 'v':
10473 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10474 break;
10475 case 'y':
10476 case 'w':
10477 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10478 break;
10479 case 'z':
10480 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10481 break;
10482 case 'Z':
10483 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10484 case '0':
10485 case 'S':
10486 case 'R':
10487 break;
10488 case 'X':
10489 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10490 break;
10491 case 'Y':
10492 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10493 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10494 break;
10495 default:
10496 internalError ();
10497 }
10498
10499 lastregno = regno;
10500 continue;
10501
10502 case 'P':
10503 if (strncmp (s, "$pc", 3) == 0)
10504 {
10505 s += 3;
10506 continue;
10507 }
10508 break;
10509
10510 case '5':
10511 case 'H':
10512 case 'W':
10513 case 'D':
10514 case 'j':
10515 case 'V':
10516 case 'C':
10517 case 'U':
10518 case 'k':
10519 case 'K':
10520 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10521 if (i > 0)
10522 {
10523 if (imm_expr.X_op != O_constant)
10524 {
10525 mips16_ext = TRUE;
10526 ip->use_extend = TRUE;
10527 ip->extend = 0;
10528 }
10529 else
10530 {
10531 /* We need to relax this instruction. */
10532 *offset_reloc = *imm_reloc;
10533 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10534 }
10535 s = expr_end;
10536 continue;
10537 }
10538 *imm_reloc = BFD_RELOC_UNUSED;
10539 /* Fall through. */
10540 case '<':
10541 case '>':
10542 case '[':
10543 case ']':
10544 case '4':
10545 case '8':
10546 my_getExpression (&imm_expr, s);
10547 if (imm_expr.X_op == O_register)
10548 {
10549 /* What we thought was an expression turned out to
10550 be a register. */
10551
10552 if (s[0] == '(' && args[1] == '(')
10553 {
10554 /* It looks like the expression was omitted
10555 before a register indirection, which means
10556 that the expression is implicitly zero. We
10557 still set up imm_expr, so that we handle
10558 explicit extensions correctly. */
10559 imm_expr.X_op = O_constant;
10560 imm_expr.X_add_number = 0;
10561 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10562 continue;
10563 }
10564
10565 break;
10566 }
10567
10568 /* We need to relax this instruction. */
10569 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10570 s = expr_end;
10571 continue;
10572
10573 case 'p':
10574 case 'q':
10575 case 'A':
10576 case 'B':
10577 case 'E':
10578 /* We use offset_reloc rather than imm_reloc for the PC
10579 relative operands. This lets macros with both
10580 immediate and address operands work correctly. */
10581 my_getExpression (&offset_expr, s);
10582
10583 if (offset_expr.X_op == O_register)
10584 break;
10585
10586 /* We need to relax this instruction. */
10587 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10588 s = expr_end;
10589 continue;
10590
10591 case '6': /* break code */
10592 my_getExpression (&imm_expr, s);
10593 check_absolute_expr (ip, &imm_expr);
10594 if ((unsigned long) imm_expr.X_add_number > 63)
10595 as_warn (_("Invalid value for `%s' (%lu)"),
10596 ip->insn_mo->name,
10597 (unsigned long) imm_expr.X_add_number);
10598 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10599 imm_expr.X_op = O_absent;
10600 s = expr_end;
10601 continue;
10602
10603 case 'a': /* 26 bit address */
10604 my_getExpression (&offset_expr, s);
10605 s = expr_end;
10606 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10607 ip->insn_opcode <<= 16;
10608 continue;
10609
10610 case 'l': /* register list for entry macro */
10611 case 'L': /* register list for exit macro */
10612 {
10613 int mask;
10614
10615 if (c == 'l')
10616 mask = 0;
10617 else
10618 mask = 7 << 3;
10619 while (*s != '\0')
10620 {
10621 unsigned int freg, reg1, reg2;
10622
10623 while (*s == ' ' || *s == ',')
10624 ++s;
10625 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10626 freg = 0;
10627 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10628 freg = 1;
10629 else
10630 {
10631 as_bad (_("can't parse register list"));
10632 break;
10633 }
10634 if (*s == ' ')
10635 ++s;
10636 if (*s != '-')
10637 reg2 = reg1;
10638 else
10639 {
10640 ++s;
10641 if (!reg_lookup (&s, freg ? RTYPE_FPU
10642 : (RTYPE_GP | RTYPE_NUM), &reg2))
10643 {
10644 as_bad (_("invalid register list"));
10645 break;
10646 }
10647 }
10648 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10649 {
10650 mask &= ~ (7 << 3);
10651 mask |= 5 << 3;
10652 }
10653 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10654 {
10655 mask &= ~ (7 << 3);
10656 mask |= 6 << 3;
10657 }
10658 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10659 mask |= (reg2 - 3) << 3;
10660 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10661 mask |= (reg2 - 15) << 1;
10662 else if (reg1 == RA && reg2 == RA)
10663 mask |= 1;
10664 else
10665 {
10666 as_bad (_("invalid register list"));
10667 break;
10668 }
10669 }
10670 /* The mask is filled in in the opcode table for the
10671 benefit of the disassembler. We remove it before
10672 applying the actual mask. */
10673 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10674 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10675 }
10676 continue;
10677
10678 case 'm': /* Register list for save insn. */
10679 case 'M': /* Register list for restore insn. */
10680 {
10681 int opcode = 0;
10682 int framesz = 0, seen_framesz = 0;
10683 int nargs = 0, statics = 0, sregs = 0;
10684
10685 while (*s != '\0')
10686 {
10687 unsigned int reg1, reg2;
10688
10689 SKIP_SPACE_TABS (s);
10690 while (*s == ',')
10691 ++s;
10692 SKIP_SPACE_TABS (s);
10693
10694 my_getExpression (&imm_expr, s);
10695 if (imm_expr.X_op == O_constant)
10696 {
10697 /* Handle the frame size. */
10698 if (seen_framesz)
10699 {
10700 as_bad (_("more than one frame size in list"));
10701 break;
10702 }
10703 seen_framesz = 1;
10704 framesz = imm_expr.X_add_number;
10705 imm_expr.X_op = O_absent;
10706 s = expr_end;
10707 continue;
10708 }
10709
10710 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10711 {
10712 as_bad (_("can't parse register list"));
10713 break;
10714 }
10715
10716 while (*s == ' ')
10717 ++s;
10718
10719 if (*s != '-')
10720 reg2 = reg1;
10721 else
10722 {
10723 ++s;
10724 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10725 || reg2 < reg1)
10726 {
10727 as_bad (_("can't parse register list"));
10728 break;
10729 }
10730 }
10731
10732 while (reg1 <= reg2)
10733 {
10734 if (reg1 >= 4 && reg1 <= 7)
10735 {
10736 if (!seen_framesz)
10737 /* args $a0-$a3 */
10738 nargs |= 1 << (reg1 - 4);
10739 else
10740 /* statics $a0-$a3 */
10741 statics |= 1 << (reg1 - 4);
10742 }
10743 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10744 {
10745 /* $s0-$s8 */
10746 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10747 }
10748 else if (reg1 == 31)
10749 {
10750 /* Add $ra to insn. */
10751 opcode |= 0x40;
10752 }
10753 else
10754 {
10755 as_bad (_("unexpected register in list"));
10756 break;
10757 }
10758 if (++reg1 == 24)
10759 reg1 = 30;
10760 }
10761 }
10762
10763 /* Encode args/statics combination. */
10764 if (nargs & statics)
10765 as_bad (_("arg/static registers overlap"));
10766 else if (nargs == 0xf)
10767 /* All $a0-$a3 are args. */
10768 opcode |= MIPS16_ALL_ARGS << 16;
10769 else if (statics == 0xf)
10770 /* All $a0-$a3 are statics. */
10771 opcode |= MIPS16_ALL_STATICS << 16;
10772 else
10773 {
10774 int narg = 0, nstat = 0;
10775
10776 /* Count arg registers. */
10777 while (nargs & 0x1)
10778 {
10779 nargs >>= 1;
10780 narg++;
10781 }
10782 if (nargs != 0)
10783 as_bad (_("invalid arg register list"));
10784
10785 /* Count static registers. */
10786 while (statics & 0x8)
10787 {
10788 statics = (statics << 1) & 0xf;
10789 nstat++;
10790 }
10791 if (statics != 0)
10792 as_bad (_("invalid static register list"));
10793
10794 /* Encode args/statics. */
10795 opcode |= ((narg << 2) | nstat) << 16;
10796 }
10797
10798 /* Encode $s0/$s1. */
10799 if (sregs & (1 << 0)) /* $s0 */
10800 opcode |= 0x20;
10801 if (sregs & (1 << 1)) /* $s1 */
10802 opcode |= 0x10;
10803 sregs >>= 2;
10804
10805 if (sregs != 0)
10806 {
10807 /* Count regs $s2-$s8. */
10808 int nsreg = 0;
10809 while (sregs & 1)
10810 {
10811 sregs >>= 1;
10812 nsreg++;
10813 }
10814 if (sregs != 0)
10815 as_bad (_("invalid static register list"));
10816 /* Encode $s2-$s8. */
10817 opcode |= nsreg << 24;
10818 }
10819
10820 /* Encode frame size. */
10821 if (!seen_framesz)
10822 as_bad (_("missing frame size"));
10823 else if ((framesz & 7) != 0 || framesz < 0
10824 || framesz > 0xff * 8)
10825 as_bad (_("invalid frame size"));
10826 else if (framesz != 128 || (opcode >> 16) != 0)
10827 {
10828 framesz /= 8;
10829 opcode |= (((framesz & 0xf0) << 16)
10830 | (framesz & 0x0f));
10831 }
10832
10833 /* Finally build the instruction. */
10834 if ((opcode >> 16) != 0 || framesz == 0)
10835 {
10836 ip->use_extend = TRUE;
10837 ip->extend = opcode >> 16;
10838 }
10839 ip->insn_opcode |= opcode & 0x7f;
10840 }
10841 continue;
10842
10843 case 'e': /* extend code */
10844 my_getExpression (&imm_expr, s);
10845 check_absolute_expr (ip, &imm_expr);
10846 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10847 {
10848 as_warn (_("Invalid value for `%s' (%lu)"),
10849 ip->insn_mo->name,
10850 (unsigned long) imm_expr.X_add_number);
10851 imm_expr.X_add_number &= 0x7ff;
10852 }
10853 ip->insn_opcode |= imm_expr.X_add_number;
10854 imm_expr.X_op = O_absent;
10855 s = expr_end;
10856 continue;
10857
10858 default:
10859 internalError ();
10860 }
10861 break;
10862 }
10863
10864 /* Args don't match. */
10865 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10866 strcmp (insn->name, insn[1].name) == 0)
10867 {
10868 ++insn;
10869 s = argsstart;
10870 continue;
10871 }
10872
10873 insn_error = _("illegal operands");
10874
10875 return;
10876 }
10877 }
10878
10879 /* This structure holds information we know about a mips16 immediate
10880 argument type. */
10881
10882 struct mips16_immed_operand
10883 {
10884 /* The type code used in the argument string in the opcode table. */
10885 int type;
10886 /* The number of bits in the short form of the opcode. */
10887 int nbits;
10888 /* The number of bits in the extended form of the opcode. */
10889 int extbits;
10890 /* The amount by which the short form is shifted when it is used;
10891 for example, the sw instruction has a shift count of 2. */
10892 int shift;
10893 /* The amount by which the short form is shifted when it is stored
10894 into the instruction code. */
10895 int op_shift;
10896 /* Non-zero if the short form is unsigned. */
10897 int unsp;
10898 /* Non-zero if the extended form is unsigned. */
10899 int extu;
10900 /* Non-zero if the value is PC relative. */
10901 int pcrel;
10902 };
10903
10904 /* The mips16 immediate operand types. */
10905
10906 static const struct mips16_immed_operand mips16_immed_operands[] =
10907 {
10908 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10909 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10910 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10911 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10912 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10913 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10914 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10915 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10916 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10917 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10918 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10919 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10920 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10921 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10922 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10923 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10924 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10925 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10926 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10927 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10928 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10929 };
10930
10931 #define MIPS16_NUM_IMMED \
10932 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10933
10934 /* Handle a mips16 instruction with an immediate value. This or's the
10935 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10936 whether an extended value is needed; if one is needed, it sets
10937 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10938 If SMALL is true, an unextended opcode was explicitly requested.
10939 If EXT is true, an extended opcode was explicitly requested. If
10940 WARN is true, warn if EXT does not match reality. */
10941
10942 static void
10943 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10944 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10945 unsigned long *insn, bfd_boolean *use_extend,
10946 unsigned short *extend)
10947 {
10948 const struct mips16_immed_operand *op;
10949 int mintiny, maxtiny;
10950 bfd_boolean needext;
10951
10952 op = mips16_immed_operands;
10953 while (op->type != type)
10954 {
10955 ++op;
10956 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10957 }
10958
10959 if (op->unsp)
10960 {
10961 if (type == '<' || type == '>' || type == '[' || type == ']')
10962 {
10963 mintiny = 1;
10964 maxtiny = 1 << op->nbits;
10965 }
10966 else
10967 {
10968 mintiny = 0;
10969 maxtiny = (1 << op->nbits) - 1;
10970 }
10971 }
10972 else
10973 {
10974 mintiny = - (1 << (op->nbits - 1));
10975 maxtiny = (1 << (op->nbits - 1)) - 1;
10976 }
10977
10978 /* Branch offsets have an implicit 0 in the lowest bit. */
10979 if (type == 'p' || type == 'q')
10980 val /= 2;
10981
10982 if ((val & ((1 << op->shift) - 1)) != 0
10983 || val < (mintiny << op->shift)
10984 || val > (maxtiny << op->shift))
10985 needext = TRUE;
10986 else
10987 needext = FALSE;
10988
10989 if (warn && ext && ! needext)
10990 as_warn_where (file, line,
10991 _("extended operand requested but not required"));
10992 if (small && needext)
10993 as_bad_where (file, line, _("invalid unextended operand value"));
10994
10995 if (small || (! ext && ! needext))
10996 {
10997 int insnval;
10998
10999 *use_extend = FALSE;
11000 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
11001 insnval <<= op->op_shift;
11002 *insn |= insnval;
11003 }
11004 else
11005 {
11006 long minext, maxext;
11007 int extval;
11008
11009 if (op->extu)
11010 {
11011 minext = 0;
11012 maxext = (1 << op->extbits) - 1;
11013 }
11014 else
11015 {
11016 minext = - (1 << (op->extbits - 1));
11017 maxext = (1 << (op->extbits - 1)) - 1;
11018 }
11019 if (val < minext || val > maxext)
11020 as_bad_where (file, line,
11021 _("operand value out of range for instruction"));
11022
11023 *use_extend = TRUE;
11024 if (op->extbits == 16)
11025 {
11026 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
11027 val &= 0x1f;
11028 }
11029 else if (op->extbits == 15)
11030 {
11031 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
11032 val &= 0xf;
11033 }
11034 else
11035 {
11036 extval = ((val & 0x1f) << 6) | (val & 0x20);
11037 val = 0;
11038 }
11039
11040 *extend = (unsigned short) extval;
11041 *insn |= val;
11042 }
11043 }
11044 \f
11045 struct percent_op_match
11046 {
11047 const char *str;
11048 bfd_reloc_code_real_type reloc;
11049 };
11050
11051 static const struct percent_op_match mips_percent_op[] =
11052 {
11053 {"%lo", BFD_RELOC_LO16},
11054 #ifdef OBJ_ELF
11055 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
11056 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
11057 {"%call16", BFD_RELOC_MIPS_CALL16},
11058 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
11059 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
11060 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
11061 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
11062 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
11063 {"%got", BFD_RELOC_MIPS_GOT16},
11064 {"%gp_rel", BFD_RELOC_GPREL16},
11065 {"%half", BFD_RELOC_16},
11066 {"%highest", BFD_RELOC_MIPS_HIGHEST},
11067 {"%higher", BFD_RELOC_MIPS_HIGHER},
11068 {"%neg", BFD_RELOC_MIPS_SUB},
11069 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11070 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11071 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11072 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11073 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11074 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11075 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11076 #endif
11077 {"%hi", BFD_RELOC_HI16_S}
11078 };
11079
11080 static const struct percent_op_match mips16_percent_op[] =
11081 {
11082 {"%lo", BFD_RELOC_MIPS16_LO16},
11083 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11084 {"%got", BFD_RELOC_MIPS16_GOT16},
11085 {"%call16", BFD_RELOC_MIPS16_CALL16},
11086 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11087 };
11088
11089
11090 /* Return true if *STR points to a relocation operator. When returning true,
11091 move *STR over the operator and store its relocation code in *RELOC.
11092 Leave both *STR and *RELOC alone when returning false. */
11093
11094 static bfd_boolean
11095 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11096 {
11097 const struct percent_op_match *percent_op;
11098 size_t limit, i;
11099
11100 if (mips_opts.mips16)
11101 {
11102 percent_op = mips16_percent_op;
11103 limit = ARRAY_SIZE (mips16_percent_op);
11104 }
11105 else
11106 {
11107 percent_op = mips_percent_op;
11108 limit = ARRAY_SIZE (mips_percent_op);
11109 }
11110
11111 for (i = 0; i < limit; i++)
11112 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11113 {
11114 int len = strlen (percent_op[i].str);
11115
11116 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11117 continue;
11118
11119 *str += strlen (percent_op[i].str);
11120 *reloc = percent_op[i].reloc;
11121
11122 /* Check whether the output BFD supports this relocation.
11123 If not, issue an error and fall back on something safe. */
11124 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11125 {
11126 as_bad (_("relocation %s isn't supported by the current ABI"),
11127 percent_op[i].str);
11128 *reloc = BFD_RELOC_UNUSED;
11129 }
11130 return TRUE;
11131 }
11132 return FALSE;
11133 }
11134
11135
11136 /* Parse string STR as a 16-bit relocatable operand. Store the
11137 expression in *EP and the relocations in the array starting
11138 at RELOC. Return the number of relocation operators used.
11139
11140 On exit, EXPR_END points to the first character after the expression. */
11141
11142 static size_t
11143 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11144 char *str)
11145 {
11146 bfd_reloc_code_real_type reversed_reloc[3];
11147 size_t reloc_index, i;
11148 int crux_depth, str_depth;
11149 char *crux;
11150
11151 /* Search for the start of the main expression, recoding relocations
11152 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11153 of the main expression and with CRUX_DEPTH containing the number
11154 of open brackets at that point. */
11155 reloc_index = -1;
11156 str_depth = 0;
11157 do
11158 {
11159 reloc_index++;
11160 crux = str;
11161 crux_depth = str_depth;
11162
11163 /* Skip over whitespace and brackets, keeping count of the number
11164 of brackets. */
11165 while (*str == ' ' || *str == '\t' || *str == '(')
11166 if (*str++ == '(')
11167 str_depth++;
11168 }
11169 while (*str == '%'
11170 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11171 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11172
11173 my_getExpression (ep, crux);
11174 str = expr_end;
11175
11176 /* Match every open bracket. */
11177 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11178 if (*str++ == ')')
11179 crux_depth--;
11180
11181 if (crux_depth > 0)
11182 as_bad (_("unclosed '('"));
11183
11184 expr_end = str;
11185
11186 if (reloc_index != 0)
11187 {
11188 prev_reloc_op_frag = frag_now;
11189 for (i = 0; i < reloc_index; i++)
11190 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11191 }
11192
11193 return reloc_index;
11194 }
11195
11196 static void
11197 my_getExpression (expressionS *ep, char *str)
11198 {
11199 char *save_in;
11200 valueT val;
11201
11202 save_in = input_line_pointer;
11203 input_line_pointer = str;
11204 expression (ep);
11205 expr_end = input_line_pointer;
11206 input_line_pointer = save_in;
11207
11208 /* If we are in mips16 mode, and this is an expression based on `.',
11209 then we bump the value of the symbol by 1 since that is how other
11210 text symbols are handled. We don't bother to handle complex
11211 expressions, just `.' plus or minus a constant. */
11212 if (mips_opts.mips16
11213 && ep->X_op == O_symbol
11214 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11215 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11216 && symbol_get_frag (ep->X_add_symbol) == frag_now
11217 && symbol_constant_p (ep->X_add_symbol)
11218 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11219 S_SET_VALUE (ep->X_add_symbol, val + 1);
11220 }
11221
11222 char *
11223 md_atof (int type, char *litP, int *sizeP)
11224 {
11225 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11226 }
11227
11228 void
11229 md_number_to_chars (char *buf, valueT val, int n)
11230 {
11231 if (target_big_endian)
11232 number_to_chars_bigendian (buf, val, n);
11233 else
11234 number_to_chars_littleendian (buf, val, n);
11235 }
11236 \f
11237 #ifdef OBJ_ELF
11238 static int support_64bit_objects(void)
11239 {
11240 const char **list, **l;
11241 int yes;
11242
11243 list = bfd_target_list ();
11244 for (l = list; *l != NULL; l++)
11245 #ifdef TE_TMIPS
11246 /* This is traditional mips */
11247 if (strcmp (*l, "elf64-tradbigmips") == 0
11248 || strcmp (*l, "elf64-tradlittlemips") == 0)
11249 #else
11250 if (strcmp (*l, "elf64-bigmips") == 0
11251 || strcmp (*l, "elf64-littlemips") == 0)
11252 #endif
11253 break;
11254 yes = (*l != NULL);
11255 free (list);
11256 return yes;
11257 }
11258 #endif /* OBJ_ELF */
11259
11260 const char *md_shortopts = "O::g::G:";
11261
11262 enum options
11263 {
11264 OPTION_MARCH = OPTION_MD_BASE,
11265 OPTION_MTUNE,
11266 OPTION_MIPS1,
11267 OPTION_MIPS2,
11268 OPTION_MIPS3,
11269 OPTION_MIPS4,
11270 OPTION_MIPS5,
11271 OPTION_MIPS32,
11272 OPTION_MIPS64,
11273 OPTION_MIPS32R2,
11274 OPTION_MIPS64R2,
11275 OPTION_MIPS16,
11276 OPTION_NO_MIPS16,
11277 OPTION_MIPS3D,
11278 OPTION_NO_MIPS3D,
11279 OPTION_MDMX,
11280 OPTION_NO_MDMX,
11281 OPTION_DSP,
11282 OPTION_NO_DSP,
11283 OPTION_MT,
11284 OPTION_NO_MT,
11285 OPTION_SMARTMIPS,
11286 OPTION_NO_SMARTMIPS,
11287 OPTION_DSPR2,
11288 OPTION_NO_DSPR2,
11289 OPTION_COMPAT_ARCH_BASE,
11290 OPTION_M4650,
11291 OPTION_NO_M4650,
11292 OPTION_M4010,
11293 OPTION_NO_M4010,
11294 OPTION_M4100,
11295 OPTION_NO_M4100,
11296 OPTION_M3900,
11297 OPTION_NO_M3900,
11298 OPTION_M7000_HILO_FIX,
11299 OPTION_MNO_7000_HILO_FIX,
11300 OPTION_FIX_24K,
11301 OPTION_NO_FIX_24K,
11302 OPTION_FIX_LOONGSON2F_JUMP,
11303 OPTION_NO_FIX_LOONGSON2F_JUMP,
11304 OPTION_FIX_LOONGSON2F_NOP,
11305 OPTION_NO_FIX_LOONGSON2F_NOP,
11306 OPTION_FIX_VR4120,
11307 OPTION_NO_FIX_VR4120,
11308 OPTION_FIX_VR4130,
11309 OPTION_NO_FIX_VR4130,
11310 OPTION_FIX_CN63XXP1,
11311 OPTION_NO_FIX_CN63XXP1,
11312 OPTION_TRAP,
11313 OPTION_BREAK,
11314 OPTION_EB,
11315 OPTION_EL,
11316 OPTION_FP32,
11317 OPTION_GP32,
11318 OPTION_CONSTRUCT_FLOATS,
11319 OPTION_NO_CONSTRUCT_FLOATS,
11320 OPTION_FP64,
11321 OPTION_GP64,
11322 OPTION_RELAX_BRANCH,
11323 OPTION_NO_RELAX_BRANCH,
11324 OPTION_MSHARED,
11325 OPTION_MNO_SHARED,
11326 OPTION_MSYM32,
11327 OPTION_MNO_SYM32,
11328 OPTION_SOFT_FLOAT,
11329 OPTION_HARD_FLOAT,
11330 OPTION_SINGLE_FLOAT,
11331 OPTION_DOUBLE_FLOAT,
11332 OPTION_32,
11333 #ifdef OBJ_ELF
11334 OPTION_CALL_SHARED,
11335 OPTION_CALL_NONPIC,
11336 OPTION_NON_SHARED,
11337 OPTION_XGOT,
11338 OPTION_MABI,
11339 OPTION_N32,
11340 OPTION_64,
11341 OPTION_MDEBUG,
11342 OPTION_NO_MDEBUG,
11343 OPTION_PDR,
11344 OPTION_NO_PDR,
11345 OPTION_MVXWORKS_PIC,
11346 #endif /* OBJ_ELF */
11347 OPTION_END_OF_ENUM
11348 };
11349
11350 struct option md_longopts[] =
11351 {
11352 /* Options which specify architecture. */
11353 {"march", required_argument, NULL, OPTION_MARCH},
11354 {"mtune", required_argument, NULL, OPTION_MTUNE},
11355 {"mips0", no_argument, NULL, OPTION_MIPS1},
11356 {"mips1", no_argument, NULL, OPTION_MIPS1},
11357 {"mips2", no_argument, NULL, OPTION_MIPS2},
11358 {"mips3", no_argument, NULL, OPTION_MIPS3},
11359 {"mips4", no_argument, NULL, OPTION_MIPS4},
11360 {"mips5", no_argument, NULL, OPTION_MIPS5},
11361 {"mips32", no_argument, NULL, OPTION_MIPS32},
11362 {"mips64", no_argument, NULL, OPTION_MIPS64},
11363 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11364 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11365
11366 /* Options which specify Application Specific Extensions (ASEs). */
11367 {"mips16", no_argument, NULL, OPTION_MIPS16},
11368 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11369 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11370 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11371 {"mdmx", no_argument, NULL, OPTION_MDMX},
11372 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11373 {"mdsp", no_argument, NULL, OPTION_DSP},
11374 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11375 {"mmt", no_argument, NULL, OPTION_MT},
11376 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11377 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11378 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11379 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11380 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11381
11382 /* Old-style architecture options. Don't add more of these. */
11383 {"m4650", no_argument, NULL, OPTION_M4650},
11384 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11385 {"m4010", no_argument, NULL, OPTION_M4010},
11386 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11387 {"m4100", no_argument, NULL, OPTION_M4100},
11388 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11389 {"m3900", no_argument, NULL, OPTION_M3900},
11390 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11391
11392 /* Options which enable bug fixes. */
11393 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11394 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11395 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11396 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11397 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11398 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11399 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11400 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11401 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11402 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11403 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11404 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11405 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11406 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11407 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11408
11409 /* Miscellaneous options. */
11410 {"trap", no_argument, NULL, OPTION_TRAP},
11411 {"no-break", no_argument, NULL, OPTION_TRAP},
11412 {"break", no_argument, NULL, OPTION_BREAK},
11413 {"no-trap", no_argument, NULL, OPTION_BREAK},
11414 {"EB", no_argument, NULL, OPTION_EB},
11415 {"EL", no_argument, NULL, OPTION_EL},
11416 {"mfp32", no_argument, NULL, OPTION_FP32},
11417 {"mgp32", no_argument, NULL, OPTION_GP32},
11418 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11419 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11420 {"mfp64", no_argument, NULL, OPTION_FP64},
11421 {"mgp64", no_argument, NULL, OPTION_GP64},
11422 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11423 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11424 {"mshared", no_argument, NULL, OPTION_MSHARED},
11425 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11426 {"msym32", no_argument, NULL, OPTION_MSYM32},
11427 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11428 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11429 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11430 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11431 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11432
11433 /* Strictly speaking this next option is ELF specific,
11434 but we allow it for other ports as well in order to
11435 make testing easier. */
11436 {"32", no_argument, NULL, OPTION_32},
11437
11438 /* ELF-specific options. */
11439 #ifdef OBJ_ELF
11440 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11441 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11442 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11443 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11444 {"xgot", no_argument, NULL, OPTION_XGOT},
11445 {"mabi", required_argument, NULL, OPTION_MABI},
11446 {"n32", no_argument, NULL, OPTION_N32},
11447 {"64", no_argument, NULL, OPTION_64},
11448 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11449 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11450 {"mpdr", no_argument, NULL, OPTION_PDR},
11451 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11452 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11453 #endif /* OBJ_ELF */
11454
11455 {NULL, no_argument, NULL, 0}
11456 };
11457 size_t md_longopts_size = sizeof (md_longopts);
11458
11459 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11460 NEW_VALUE. Warn if another value was already specified. Note:
11461 we have to defer parsing the -march and -mtune arguments in order
11462 to handle 'from-abi' correctly, since the ABI might be specified
11463 in a later argument. */
11464
11465 static void
11466 mips_set_option_string (const char **string_ptr, const char *new_value)
11467 {
11468 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11469 as_warn (_("A different %s was already specified, is now %s"),
11470 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11471 new_value);
11472
11473 *string_ptr = new_value;
11474 }
11475
11476 int
11477 md_parse_option (int c, char *arg)
11478 {
11479 switch (c)
11480 {
11481 case OPTION_CONSTRUCT_FLOATS:
11482 mips_disable_float_construction = 0;
11483 break;
11484
11485 case OPTION_NO_CONSTRUCT_FLOATS:
11486 mips_disable_float_construction = 1;
11487 break;
11488
11489 case OPTION_TRAP:
11490 mips_trap = 1;
11491 break;
11492
11493 case OPTION_BREAK:
11494 mips_trap = 0;
11495 break;
11496
11497 case OPTION_EB:
11498 target_big_endian = 1;
11499 break;
11500
11501 case OPTION_EL:
11502 target_big_endian = 0;
11503 break;
11504
11505 case 'O':
11506 if (arg == NULL)
11507 mips_optimize = 1;
11508 else if (arg[0] == '0')
11509 mips_optimize = 0;
11510 else if (arg[0] == '1')
11511 mips_optimize = 1;
11512 else
11513 mips_optimize = 2;
11514 break;
11515
11516 case 'g':
11517 if (arg == NULL)
11518 mips_debug = 2;
11519 else
11520 mips_debug = atoi (arg);
11521 break;
11522
11523 case OPTION_MIPS1:
11524 file_mips_isa = ISA_MIPS1;
11525 break;
11526
11527 case OPTION_MIPS2:
11528 file_mips_isa = ISA_MIPS2;
11529 break;
11530
11531 case OPTION_MIPS3:
11532 file_mips_isa = ISA_MIPS3;
11533 break;
11534
11535 case OPTION_MIPS4:
11536 file_mips_isa = ISA_MIPS4;
11537 break;
11538
11539 case OPTION_MIPS5:
11540 file_mips_isa = ISA_MIPS5;
11541 break;
11542
11543 case OPTION_MIPS32:
11544 file_mips_isa = ISA_MIPS32;
11545 break;
11546
11547 case OPTION_MIPS32R2:
11548 file_mips_isa = ISA_MIPS32R2;
11549 break;
11550
11551 case OPTION_MIPS64R2:
11552 file_mips_isa = ISA_MIPS64R2;
11553 break;
11554
11555 case OPTION_MIPS64:
11556 file_mips_isa = ISA_MIPS64;
11557 break;
11558
11559 case OPTION_MTUNE:
11560 mips_set_option_string (&mips_tune_string, arg);
11561 break;
11562
11563 case OPTION_MARCH:
11564 mips_set_option_string (&mips_arch_string, arg);
11565 break;
11566
11567 case OPTION_M4650:
11568 mips_set_option_string (&mips_arch_string, "4650");
11569 mips_set_option_string (&mips_tune_string, "4650");
11570 break;
11571
11572 case OPTION_NO_M4650:
11573 break;
11574
11575 case OPTION_M4010:
11576 mips_set_option_string (&mips_arch_string, "4010");
11577 mips_set_option_string (&mips_tune_string, "4010");
11578 break;
11579
11580 case OPTION_NO_M4010:
11581 break;
11582
11583 case OPTION_M4100:
11584 mips_set_option_string (&mips_arch_string, "4100");
11585 mips_set_option_string (&mips_tune_string, "4100");
11586 break;
11587
11588 case OPTION_NO_M4100:
11589 break;
11590
11591 case OPTION_M3900:
11592 mips_set_option_string (&mips_arch_string, "3900");
11593 mips_set_option_string (&mips_tune_string, "3900");
11594 break;
11595
11596 case OPTION_NO_M3900:
11597 break;
11598
11599 case OPTION_MDMX:
11600 mips_opts.ase_mdmx = 1;
11601 break;
11602
11603 case OPTION_NO_MDMX:
11604 mips_opts.ase_mdmx = 0;
11605 break;
11606
11607 case OPTION_DSP:
11608 mips_opts.ase_dsp = 1;
11609 mips_opts.ase_dspr2 = 0;
11610 break;
11611
11612 case OPTION_NO_DSP:
11613 mips_opts.ase_dsp = 0;
11614 mips_opts.ase_dspr2 = 0;
11615 break;
11616
11617 case OPTION_DSPR2:
11618 mips_opts.ase_dspr2 = 1;
11619 mips_opts.ase_dsp = 1;
11620 break;
11621
11622 case OPTION_NO_DSPR2:
11623 mips_opts.ase_dspr2 = 0;
11624 mips_opts.ase_dsp = 0;
11625 break;
11626
11627 case OPTION_MT:
11628 mips_opts.ase_mt = 1;
11629 break;
11630
11631 case OPTION_NO_MT:
11632 mips_opts.ase_mt = 0;
11633 break;
11634
11635 case OPTION_MIPS16:
11636 mips_opts.mips16 = 1;
11637 mips_no_prev_insn ();
11638 break;
11639
11640 case OPTION_NO_MIPS16:
11641 mips_opts.mips16 = 0;
11642 mips_no_prev_insn ();
11643 break;
11644
11645 case OPTION_MIPS3D:
11646 mips_opts.ase_mips3d = 1;
11647 break;
11648
11649 case OPTION_NO_MIPS3D:
11650 mips_opts.ase_mips3d = 0;
11651 break;
11652
11653 case OPTION_SMARTMIPS:
11654 mips_opts.ase_smartmips = 1;
11655 break;
11656
11657 case OPTION_NO_SMARTMIPS:
11658 mips_opts.ase_smartmips = 0;
11659 break;
11660
11661 case OPTION_FIX_24K:
11662 mips_fix_24k = 1;
11663 break;
11664
11665 case OPTION_NO_FIX_24K:
11666 mips_fix_24k = 0;
11667 break;
11668
11669 case OPTION_FIX_LOONGSON2F_JUMP:
11670 mips_fix_loongson2f_jump = TRUE;
11671 break;
11672
11673 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11674 mips_fix_loongson2f_jump = FALSE;
11675 break;
11676
11677 case OPTION_FIX_LOONGSON2F_NOP:
11678 mips_fix_loongson2f_nop = TRUE;
11679 break;
11680
11681 case OPTION_NO_FIX_LOONGSON2F_NOP:
11682 mips_fix_loongson2f_nop = FALSE;
11683 break;
11684
11685 case OPTION_FIX_VR4120:
11686 mips_fix_vr4120 = 1;
11687 break;
11688
11689 case OPTION_NO_FIX_VR4120:
11690 mips_fix_vr4120 = 0;
11691 break;
11692
11693 case OPTION_FIX_VR4130:
11694 mips_fix_vr4130 = 1;
11695 break;
11696
11697 case OPTION_NO_FIX_VR4130:
11698 mips_fix_vr4130 = 0;
11699 break;
11700
11701 case OPTION_FIX_CN63XXP1:
11702 mips_fix_cn63xxp1 = TRUE;
11703 break;
11704
11705 case OPTION_NO_FIX_CN63XXP1:
11706 mips_fix_cn63xxp1 = FALSE;
11707 break;
11708
11709 case OPTION_RELAX_BRANCH:
11710 mips_relax_branch = 1;
11711 break;
11712
11713 case OPTION_NO_RELAX_BRANCH:
11714 mips_relax_branch = 0;
11715 break;
11716
11717 case OPTION_MSHARED:
11718 mips_in_shared = TRUE;
11719 break;
11720
11721 case OPTION_MNO_SHARED:
11722 mips_in_shared = FALSE;
11723 break;
11724
11725 case OPTION_MSYM32:
11726 mips_opts.sym32 = TRUE;
11727 break;
11728
11729 case OPTION_MNO_SYM32:
11730 mips_opts.sym32 = FALSE;
11731 break;
11732
11733 #ifdef OBJ_ELF
11734 /* When generating ELF code, we permit -KPIC and -call_shared to
11735 select SVR4_PIC, and -non_shared to select no PIC. This is
11736 intended to be compatible with Irix 5. */
11737 case OPTION_CALL_SHARED:
11738 if (!IS_ELF)
11739 {
11740 as_bad (_("-call_shared is supported only for ELF format"));
11741 return 0;
11742 }
11743 mips_pic = SVR4_PIC;
11744 mips_abicalls = TRUE;
11745 break;
11746
11747 case OPTION_CALL_NONPIC:
11748 if (!IS_ELF)
11749 {
11750 as_bad (_("-call_nonpic is supported only for ELF format"));
11751 return 0;
11752 }
11753 mips_pic = NO_PIC;
11754 mips_abicalls = TRUE;
11755 break;
11756
11757 case OPTION_NON_SHARED:
11758 if (!IS_ELF)
11759 {
11760 as_bad (_("-non_shared is supported only for ELF format"));
11761 return 0;
11762 }
11763 mips_pic = NO_PIC;
11764 mips_abicalls = FALSE;
11765 break;
11766
11767 /* The -xgot option tells the assembler to use 32 bit offsets
11768 when accessing the got in SVR4_PIC mode. It is for Irix
11769 compatibility. */
11770 case OPTION_XGOT:
11771 mips_big_got = 1;
11772 break;
11773 #endif /* OBJ_ELF */
11774
11775 case 'G':
11776 g_switch_value = atoi (arg);
11777 g_switch_seen = 1;
11778 break;
11779
11780 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11781 and -mabi=64. */
11782 case OPTION_32:
11783 if (IS_ELF)
11784 mips_abi = O32_ABI;
11785 /* We silently ignore -32 for non-ELF targets. This greatly
11786 simplifies the construction of the MIPS GAS test cases. */
11787 break;
11788
11789 #ifdef OBJ_ELF
11790 case OPTION_N32:
11791 if (!IS_ELF)
11792 {
11793 as_bad (_("-n32 is supported for ELF format only"));
11794 return 0;
11795 }
11796 mips_abi = N32_ABI;
11797 break;
11798
11799 case OPTION_64:
11800 if (!IS_ELF)
11801 {
11802 as_bad (_("-64 is supported for ELF format only"));
11803 return 0;
11804 }
11805 mips_abi = N64_ABI;
11806 if (!support_64bit_objects())
11807 as_fatal (_("No compiled in support for 64 bit object file format"));
11808 break;
11809 #endif /* OBJ_ELF */
11810
11811 case OPTION_GP32:
11812 file_mips_gp32 = 1;
11813 break;
11814
11815 case OPTION_GP64:
11816 file_mips_gp32 = 0;
11817 break;
11818
11819 case OPTION_FP32:
11820 file_mips_fp32 = 1;
11821 break;
11822
11823 case OPTION_FP64:
11824 file_mips_fp32 = 0;
11825 break;
11826
11827 case OPTION_SINGLE_FLOAT:
11828 file_mips_single_float = 1;
11829 break;
11830
11831 case OPTION_DOUBLE_FLOAT:
11832 file_mips_single_float = 0;
11833 break;
11834
11835 case OPTION_SOFT_FLOAT:
11836 file_mips_soft_float = 1;
11837 break;
11838
11839 case OPTION_HARD_FLOAT:
11840 file_mips_soft_float = 0;
11841 break;
11842
11843 #ifdef OBJ_ELF
11844 case OPTION_MABI:
11845 if (!IS_ELF)
11846 {
11847 as_bad (_("-mabi is supported for ELF format only"));
11848 return 0;
11849 }
11850 if (strcmp (arg, "32") == 0)
11851 mips_abi = O32_ABI;
11852 else if (strcmp (arg, "o64") == 0)
11853 mips_abi = O64_ABI;
11854 else if (strcmp (arg, "n32") == 0)
11855 mips_abi = N32_ABI;
11856 else if (strcmp (arg, "64") == 0)
11857 {
11858 mips_abi = N64_ABI;
11859 if (! support_64bit_objects())
11860 as_fatal (_("No compiled in support for 64 bit object file "
11861 "format"));
11862 }
11863 else if (strcmp (arg, "eabi") == 0)
11864 mips_abi = EABI_ABI;
11865 else
11866 {
11867 as_fatal (_("invalid abi -mabi=%s"), arg);
11868 return 0;
11869 }
11870 break;
11871 #endif /* OBJ_ELF */
11872
11873 case OPTION_M7000_HILO_FIX:
11874 mips_7000_hilo_fix = TRUE;
11875 break;
11876
11877 case OPTION_MNO_7000_HILO_FIX:
11878 mips_7000_hilo_fix = FALSE;
11879 break;
11880
11881 #ifdef OBJ_ELF
11882 case OPTION_MDEBUG:
11883 mips_flag_mdebug = TRUE;
11884 break;
11885
11886 case OPTION_NO_MDEBUG:
11887 mips_flag_mdebug = FALSE;
11888 break;
11889
11890 case OPTION_PDR:
11891 mips_flag_pdr = TRUE;
11892 break;
11893
11894 case OPTION_NO_PDR:
11895 mips_flag_pdr = FALSE;
11896 break;
11897
11898 case OPTION_MVXWORKS_PIC:
11899 mips_pic = VXWORKS_PIC;
11900 break;
11901 #endif /* OBJ_ELF */
11902
11903 default:
11904 return 0;
11905 }
11906
11907 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
11908
11909 return 1;
11910 }
11911 \f
11912 /* Set up globals to generate code for the ISA or processor
11913 described by INFO. */
11914
11915 static void
11916 mips_set_architecture (const struct mips_cpu_info *info)
11917 {
11918 if (info != 0)
11919 {
11920 file_mips_arch = info->cpu;
11921 mips_opts.arch = info->cpu;
11922 mips_opts.isa = info->isa;
11923 }
11924 }
11925
11926
11927 /* Likewise for tuning. */
11928
11929 static void
11930 mips_set_tune (const struct mips_cpu_info *info)
11931 {
11932 if (info != 0)
11933 mips_tune = info->cpu;
11934 }
11935
11936
11937 void
11938 mips_after_parse_args (void)
11939 {
11940 const struct mips_cpu_info *arch_info = 0;
11941 const struct mips_cpu_info *tune_info = 0;
11942
11943 /* GP relative stuff not working for PE */
11944 if (strncmp (TARGET_OS, "pe", 2) == 0)
11945 {
11946 if (g_switch_seen && g_switch_value != 0)
11947 as_bad (_("-G not supported in this configuration."));
11948 g_switch_value = 0;
11949 }
11950
11951 if (mips_abi == NO_ABI)
11952 mips_abi = MIPS_DEFAULT_ABI;
11953
11954 /* The following code determines the architecture and register size.
11955 Similar code was added to GCC 3.3 (see override_options() in
11956 config/mips/mips.c). The GAS and GCC code should be kept in sync
11957 as much as possible. */
11958
11959 if (mips_arch_string != 0)
11960 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11961
11962 if (file_mips_isa != ISA_UNKNOWN)
11963 {
11964 /* Handle -mipsN. At this point, file_mips_isa contains the
11965 ISA level specified by -mipsN, while arch_info->isa contains
11966 the -march selection (if any). */
11967 if (arch_info != 0)
11968 {
11969 /* -march takes precedence over -mipsN, since it is more descriptive.
11970 There's no harm in specifying both as long as the ISA levels
11971 are the same. */
11972 if (file_mips_isa != arch_info->isa)
11973 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11974 mips_cpu_info_from_isa (file_mips_isa)->name,
11975 mips_cpu_info_from_isa (arch_info->isa)->name);
11976 }
11977 else
11978 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11979 }
11980
11981 if (arch_info == 0)
11982 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11983
11984 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11985 as_bad (_("-march=%s is not compatible with the selected ABI"),
11986 arch_info->name);
11987
11988 mips_set_architecture (arch_info);
11989
11990 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11991 if (mips_tune_string != 0)
11992 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11993
11994 if (tune_info == 0)
11995 mips_set_tune (arch_info);
11996 else
11997 mips_set_tune (tune_info);
11998
11999 if (file_mips_gp32 >= 0)
12000 {
12001 /* The user specified the size of the integer registers. Make sure
12002 it agrees with the ABI and ISA. */
12003 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
12004 as_bad (_("-mgp64 used with a 32-bit processor"));
12005 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
12006 as_bad (_("-mgp32 used with a 64-bit ABI"));
12007 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
12008 as_bad (_("-mgp64 used with a 32-bit ABI"));
12009 }
12010 else
12011 {
12012 /* Infer the integer register size from the ABI and processor.
12013 Restrict ourselves to 32-bit registers if that's all the
12014 processor has, or if the ABI cannot handle 64-bit registers. */
12015 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
12016 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
12017 }
12018
12019 switch (file_mips_fp32)
12020 {
12021 default:
12022 case -1:
12023 /* No user specified float register size.
12024 ??? GAS treats single-float processors as though they had 64-bit
12025 float registers (although it complains when double-precision
12026 instructions are used). As things stand, saying they have 32-bit
12027 registers would lead to spurious "register must be even" messages.
12028 So here we assume float registers are never smaller than the
12029 integer ones. */
12030 if (file_mips_gp32 == 0)
12031 /* 64-bit integer registers implies 64-bit float registers. */
12032 file_mips_fp32 = 0;
12033 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
12034 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
12035 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
12036 file_mips_fp32 = 0;
12037 else
12038 /* 32-bit float registers. */
12039 file_mips_fp32 = 1;
12040 break;
12041
12042 /* The user specified the size of the float registers. Check if it
12043 agrees with the ABI and ISA. */
12044 case 0:
12045 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12046 as_bad (_("-mfp64 used with a 32-bit fpu"));
12047 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
12048 && !ISA_HAS_MXHC1 (mips_opts.isa))
12049 as_warn (_("-mfp64 used with a 32-bit ABI"));
12050 break;
12051 case 1:
12052 if (ABI_NEEDS_64BIT_REGS (mips_abi))
12053 as_warn (_("-mfp32 used with a 64-bit ABI"));
12054 break;
12055 }
12056
12057 /* End of GCC-shared inference code. */
12058
12059 /* This flag is set when we have a 64-bit capable CPU but use only
12060 32-bit wide registers. Note that EABI does not use it. */
12061 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
12062 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
12063 || mips_abi == O32_ABI))
12064 mips_32bitmode = 1;
12065
12066 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
12067 as_bad (_("trap exception not supported at ISA 1"));
12068
12069 /* If the selected architecture includes support for ASEs, enable
12070 generation of code for them. */
12071 if (mips_opts.mips16 == -1)
12072 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12073 if (mips_opts.ase_mips3d == -1)
12074 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12075 && file_mips_fp32 == 0) ? 1 : 0;
12076 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12077 as_bad (_("-mfp32 used with -mips3d"));
12078
12079 if (mips_opts.ase_mdmx == -1)
12080 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12081 && file_mips_fp32 == 0) ? 1 : 0;
12082 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12083 as_bad (_("-mfp32 used with -mdmx"));
12084
12085 if (mips_opts.ase_smartmips == -1)
12086 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12087 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12088 as_warn (_("%s ISA does not support SmartMIPS"),
12089 mips_cpu_info_from_isa (mips_opts.isa)->name);
12090
12091 if (mips_opts.ase_dsp == -1)
12092 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12093 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12094 as_warn (_("%s ISA does not support DSP ASE"),
12095 mips_cpu_info_from_isa (mips_opts.isa)->name);
12096
12097 if (mips_opts.ase_dspr2 == -1)
12098 {
12099 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12100 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12101 }
12102 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12103 as_warn (_("%s ISA does not support DSP R2 ASE"),
12104 mips_cpu_info_from_isa (mips_opts.isa)->name);
12105
12106 if (mips_opts.ase_mt == -1)
12107 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12108 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12109 as_warn (_("%s ISA does not support MT ASE"),
12110 mips_cpu_info_from_isa (mips_opts.isa)->name);
12111
12112 file_mips_isa = mips_opts.isa;
12113 file_ase_mips16 = mips_opts.mips16;
12114 file_ase_mips3d = mips_opts.ase_mips3d;
12115 file_ase_mdmx = mips_opts.ase_mdmx;
12116 file_ase_smartmips = mips_opts.ase_smartmips;
12117 file_ase_dsp = mips_opts.ase_dsp;
12118 file_ase_dspr2 = mips_opts.ase_dspr2;
12119 file_ase_mt = mips_opts.ase_mt;
12120 mips_opts.gp32 = file_mips_gp32;
12121 mips_opts.fp32 = file_mips_fp32;
12122 mips_opts.soft_float = file_mips_soft_float;
12123 mips_opts.single_float = file_mips_single_float;
12124
12125 if (mips_flag_mdebug < 0)
12126 {
12127 #ifdef OBJ_MAYBE_ECOFF
12128 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12129 mips_flag_mdebug = 1;
12130 else
12131 #endif /* OBJ_MAYBE_ECOFF */
12132 mips_flag_mdebug = 0;
12133 }
12134 }
12135 \f
12136 void
12137 mips_init_after_args (void)
12138 {
12139 /* initialize opcodes */
12140 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12141 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12142 }
12143
12144 long
12145 md_pcrel_from (fixS *fixP)
12146 {
12147 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12148 switch (fixP->fx_r_type)
12149 {
12150 case BFD_RELOC_16_PCREL_S2:
12151 case BFD_RELOC_MIPS_JMP:
12152 /* Return the address of the delay slot. */
12153 return addr + 4;
12154 default:
12155 /* We have no relocation type for PC relative MIPS16 instructions. */
12156 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12157 as_bad_where (fixP->fx_file, fixP->fx_line,
12158 _("PC relative MIPS16 instruction references a different section"));
12159 return addr;
12160 }
12161 }
12162
12163 /* This is called before the symbol table is processed. In order to
12164 work with gcc when using mips-tfile, we must keep all local labels.
12165 However, in other cases, we want to discard them. If we were
12166 called with -g, but we didn't see any debugging information, it may
12167 mean that gcc is smuggling debugging information through to
12168 mips-tfile, in which case we must generate all local labels. */
12169
12170 void
12171 mips_frob_file_before_adjust (void)
12172 {
12173 #ifndef NO_ECOFF_DEBUGGING
12174 if (ECOFF_DEBUGGING
12175 && mips_debug != 0
12176 && ! ecoff_debugging_seen)
12177 flag_keep_locals = 1;
12178 #endif
12179 }
12180
12181 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12182 the corresponding LO16 reloc. This is called before md_apply_fix and
12183 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12184 relocation operators.
12185
12186 For our purposes, a %lo() expression matches a %got() or %hi()
12187 expression if:
12188
12189 (a) it refers to the same symbol; and
12190 (b) the offset applied in the %lo() expression is no lower than
12191 the offset applied in the %got() or %hi().
12192
12193 (b) allows us to cope with code like:
12194
12195 lui $4,%hi(foo)
12196 lh $4,%lo(foo+2)($4)
12197
12198 ...which is legal on RELA targets, and has a well-defined behaviour
12199 if the user knows that adding 2 to "foo" will not induce a carry to
12200 the high 16 bits.
12201
12202 When several %lo()s match a particular %got() or %hi(), we use the
12203 following rules to distinguish them:
12204
12205 (1) %lo()s with smaller offsets are a better match than %lo()s with
12206 higher offsets.
12207
12208 (2) %lo()s with no matching %got() or %hi() are better than those
12209 that already have a matching %got() or %hi().
12210
12211 (3) later %lo()s are better than earlier %lo()s.
12212
12213 These rules are applied in order.
12214
12215 (1) means, among other things, that %lo()s with identical offsets are
12216 chosen if they exist.
12217
12218 (2) means that we won't associate several high-part relocations with
12219 the same low-part relocation unless there's no alternative. Having
12220 several high parts for the same low part is a GNU extension; this rule
12221 allows careful users to avoid it.
12222
12223 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12224 with the last high-part relocation being at the front of the list.
12225 It therefore makes sense to choose the last matching low-part
12226 relocation, all other things being equal. It's also easier
12227 to code that way. */
12228
12229 void
12230 mips_frob_file (void)
12231 {
12232 struct mips_hi_fixup *l;
12233 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12234
12235 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12236 {
12237 segment_info_type *seginfo;
12238 bfd_boolean matched_lo_p;
12239 fixS **hi_pos, **lo_pos, **pos;
12240
12241 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12242
12243 /* If a GOT16 relocation turns out to be against a global symbol,
12244 there isn't supposed to be a matching LO. */
12245 if (got16_reloc_p (l->fixp->fx_r_type)
12246 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12247 continue;
12248
12249 /* Check quickly whether the next fixup happens to be a matching %lo. */
12250 if (fixup_has_matching_lo_p (l->fixp))
12251 continue;
12252
12253 seginfo = seg_info (l->seg);
12254
12255 /* Set HI_POS to the position of this relocation in the chain.
12256 Set LO_POS to the position of the chosen low-part relocation.
12257 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12258 relocation that matches an immediately-preceding high-part
12259 relocation. */
12260 hi_pos = NULL;
12261 lo_pos = NULL;
12262 matched_lo_p = FALSE;
12263 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12264
12265 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12266 {
12267 if (*pos == l->fixp)
12268 hi_pos = pos;
12269
12270 if ((*pos)->fx_r_type == looking_for_rtype
12271 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12272 && (*pos)->fx_offset >= l->fixp->fx_offset
12273 && (lo_pos == NULL
12274 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12275 || (!matched_lo_p
12276 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12277 lo_pos = pos;
12278
12279 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12280 && fixup_has_matching_lo_p (*pos));
12281 }
12282
12283 /* If we found a match, remove the high-part relocation from its
12284 current position and insert it before the low-part relocation.
12285 Make the offsets match so that fixup_has_matching_lo_p()
12286 will return true.
12287
12288 We don't warn about unmatched high-part relocations since some
12289 versions of gcc have been known to emit dead "lui ...%hi(...)"
12290 instructions. */
12291 if (lo_pos != NULL)
12292 {
12293 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12294 if (l->fixp->fx_next != *lo_pos)
12295 {
12296 *hi_pos = l->fixp->fx_next;
12297 l->fixp->fx_next = *lo_pos;
12298 *lo_pos = l->fixp;
12299 }
12300 }
12301 }
12302 }
12303
12304 /* We may have combined relocations without symbols in the N32/N64 ABI.
12305 We have to prevent gas from dropping them. */
12306
12307 int
12308 mips_force_relocation (fixS *fixp)
12309 {
12310 if (generic_force_reloc (fixp))
12311 return 1;
12312
12313 if (HAVE_NEWABI
12314 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12315 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12316 || hi16_reloc_p (fixp->fx_r_type)
12317 || lo16_reloc_p (fixp->fx_r_type)))
12318 return 1;
12319
12320 return 0;
12321 }
12322
12323 /* Apply a fixup to the object file. */
12324
12325 void
12326 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12327 {
12328 bfd_byte *buf;
12329 long insn;
12330 reloc_howto_type *howto;
12331
12332 /* We ignore generic BFD relocations we don't know about. */
12333 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12334 if (! howto)
12335 return;
12336
12337 gas_assert (fixP->fx_size == 4
12338 || fixP->fx_r_type == BFD_RELOC_16
12339 || fixP->fx_r_type == BFD_RELOC_64
12340 || fixP->fx_r_type == BFD_RELOC_CTOR
12341 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12342 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12343 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12344 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12345
12346 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12347
12348 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12349
12350 /* Don't treat parts of a composite relocation as done. There are two
12351 reasons for this:
12352
12353 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12354 should nevertheless be emitted if the first part is.
12355
12356 (2) In normal usage, composite relocations are never assembly-time
12357 constants. The easiest way of dealing with the pathological
12358 exceptions is to generate a relocation against STN_UNDEF and
12359 leave everything up to the linker. */
12360 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12361 fixP->fx_done = 1;
12362
12363 switch (fixP->fx_r_type)
12364 {
12365 case BFD_RELOC_MIPS_TLS_GD:
12366 case BFD_RELOC_MIPS_TLS_LDM:
12367 case BFD_RELOC_MIPS_TLS_DTPREL32:
12368 case BFD_RELOC_MIPS_TLS_DTPREL64:
12369 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12370 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12371 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12372 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12373 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12374 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12375 /* fall through */
12376
12377 case BFD_RELOC_MIPS_JMP:
12378 case BFD_RELOC_MIPS_SHIFT5:
12379 case BFD_RELOC_MIPS_SHIFT6:
12380 case BFD_RELOC_MIPS_GOT_DISP:
12381 case BFD_RELOC_MIPS_GOT_PAGE:
12382 case BFD_RELOC_MIPS_GOT_OFST:
12383 case BFD_RELOC_MIPS_SUB:
12384 case BFD_RELOC_MIPS_INSERT_A:
12385 case BFD_RELOC_MIPS_INSERT_B:
12386 case BFD_RELOC_MIPS_DELETE:
12387 case BFD_RELOC_MIPS_HIGHEST:
12388 case BFD_RELOC_MIPS_HIGHER:
12389 case BFD_RELOC_MIPS_SCN_DISP:
12390 case BFD_RELOC_MIPS_REL16:
12391 case BFD_RELOC_MIPS_RELGOT:
12392 case BFD_RELOC_MIPS_JALR:
12393 case BFD_RELOC_HI16:
12394 case BFD_RELOC_HI16_S:
12395 case BFD_RELOC_GPREL16:
12396 case BFD_RELOC_MIPS_LITERAL:
12397 case BFD_RELOC_MIPS_CALL16:
12398 case BFD_RELOC_MIPS_GOT16:
12399 case BFD_RELOC_GPREL32:
12400 case BFD_RELOC_MIPS_GOT_HI16:
12401 case BFD_RELOC_MIPS_GOT_LO16:
12402 case BFD_RELOC_MIPS_CALL_HI16:
12403 case BFD_RELOC_MIPS_CALL_LO16:
12404 case BFD_RELOC_MIPS16_GPREL:
12405 case BFD_RELOC_MIPS16_GOT16:
12406 case BFD_RELOC_MIPS16_CALL16:
12407 case BFD_RELOC_MIPS16_HI16:
12408 case BFD_RELOC_MIPS16_HI16_S:
12409 case BFD_RELOC_MIPS16_JMP:
12410 /* Nothing needed to do. The value comes from the reloc entry. */
12411 break;
12412
12413 case BFD_RELOC_64:
12414 /* This is handled like BFD_RELOC_32, but we output a sign
12415 extended value if we are only 32 bits. */
12416 if (fixP->fx_done)
12417 {
12418 if (8 <= sizeof (valueT))
12419 md_number_to_chars ((char *) buf, *valP, 8);
12420 else
12421 {
12422 valueT hiv;
12423
12424 if ((*valP & 0x80000000) != 0)
12425 hiv = 0xffffffff;
12426 else
12427 hiv = 0;
12428 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12429 *valP, 4);
12430 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12431 hiv, 4);
12432 }
12433 }
12434 break;
12435
12436 case BFD_RELOC_RVA:
12437 case BFD_RELOC_32:
12438 case BFD_RELOC_16:
12439 /* If we are deleting this reloc entry, we must fill in the
12440 value now. This can happen if we have a .word which is not
12441 resolved when it appears but is later defined. */
12442 if (fixP->fx_done)
12443 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12444 break;
12445
12446 case BFD_RELOC_LO16:
12447 case BFD_RELOC_MIPS16_LO16:
12448 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12449 may be safe to remove, but if so it's not obvious. */
12450 /* When handling an embedded PIC switch statement, we can wind
12451 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12452 if (fixP->fx_done)
12453 {
12454 if (*valP + 0x8000 > 0xffff)
12455 as_bad_where (fixP->fx_file, fixP->fx_line,
12456 _("relocation overflow"));
12457 if (target_big_endian)
12458 buf += 2;
12459 md_number_to_chars ((char *) buf, *valP, 2);
12460 }
12461 break;
12462
12463 case BFD_RELOC_16_PCREL_S2:
12464 if ((*valP & 0x3) != 0)
12465 as_bad_where (fixP->fx_file, fixP->fx_line,
12466 _("Branch to misaligned address (%lx)"), (long) *valP);
12467
12468 /* We need to save the bits in the instruction since fixup_segment()
12469 might be deleting the relocation entry (i.e., a branch within
12470 the current segment). */
12471 if (! fixP->fx_done)
12472 break;
12473
12474 /* Update old instruction data. */
12475 if (target_big_endian)
12476 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12477 else
12478 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12479
12480 if (*valP + 0x20000 <= 0x3ffff)
12481 {
12482 insn |= (*valP >> 2) & 0xffff;
12483 md_number_to_chars ((char *) buf, insn, 4);
12484 }
12485 else if (mips_pic == NO_PIC
12486 && fixP->fx_done
12487 && fixP->fx_frag->fr_address >= text_section->vma
12488 && (fixP->fx_frag->fr_address
12489 < text_section->vma + bfd_get_section_size (text_section))
12490 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12491 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12492 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12493 {
12494 /* The branch offset is too large. If this is an
12495 unconditional branch, and we are not generating PIC code,
12496 we can convert it to an absolute jump instruction. */
12497 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12498 insn = 0x0c000000; /* jal */
12499 else
12500 insn = 0x08000000; /* j */
12501 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12502 fixP->fx_done = 0;
12503 fixP->fx_addsy = section_symbol (text_section);
12504 *valP += md_pcrel_from (fixP);
12505 md_number_to_chars ((char *) buf, insn, 4);
12506 }
12507 else
12508 {
12509 /* If we got here, we have branch-relaxation disabled,
12510 and there's nothing we can do to fix this instruction
12511 without turning it into a longer sequence. */
12512 as_bad_where (fixP->fx_file, fixP->fx_line,
12513 _("Branch out of range"));
12514 }
12515 break;
12516
12517 case BFD_RELOC_VTABLE_INHERIT:
12518 fixP->fx_done = 0;
12519 if (fixP->fx_addsy
12520 && !S_IS_DEFINED (fixP->fx_addsy)
12521 && !S_IS_WEAK (fixP->fx_addsy))
12522 S_SET_WEAK (fixP->fx_addsy);
12523 break;
12524
12525 case BFD_RELOC_VTABLE_ENTRY:
12526 fixP->fx_done = 0;
12527 break;
12528
12529 default:
12530 internalError ();
12531 }
12532
12533 /* Remember value for tc_gen_reloc. */
12534 fixP->fx_addnumber = *valP;
12535 }
12536
12537 static symbolS *
12538 get_symbol (void)
12539 {
12540 int c;
12541 char *name;
12542 symbolS *p;
12543
12544 name = input_line_pointer;
12545 c = get_symbol_end ();
12546 p = (symbolS *) symbol_find_or_make (name);
12547 *input_line_pointer = c;
12548 return p;
12549 }
12550
12551 /* Align the current frag to a given power of two. If a particular
12552 fill byte should be used, FILL points to an integer that contains
12553 that byte, otherwise FILL is null.
12554
12555 The MIPS assembler also automatically adjusts any preceding
12556 label. */
12557
12558 static void
12559 mips_align (int to, int *fill, symbolS *label)
12560 {
12561 mips_emit_delays ();
12562 mips_record_mips16_mode ();
12563 if (fill == NULL && subseg_text_p (now_seg))
12564 frag_align_code (to, 0);
12565 else
12566 frag_align (to, fill ? *fill : 0, 0);
12567 record_alignment (now_seg, to);
12568 if (label != NULL)
12569 {
12570 gas_assert (S_GET_SEGMENT (label) == now_seg);
12571 symbol_set_frag (label, frag_now);
12572 S_SET_VALUE (label, (valueT) frag_now_fix ());
12573 }
12574 }
12575
12576 /* Align to a given power of two. .align 0 turns off the automatic
12577 alignment used by the data creating pseudo-ops. */
12578
12579 static void
12580 s_align (int x ATTRIBUTE_UNUSED)
12581 {
12582 int temp, fill_value, *fill_ptr;
12583 long max_alignment = 28;
12584
12585 /* o Note that the assembler pulls down any immediately preceding label
12586 to the aligned address.
12587 o It's not documented but auto alignment is reinstated by
12588 a .align pseudo instruction.
12589 o Note also that after auto alignment is turned off the mips assembler
12590 issues an error on attempt to assemble an improperly aligned data item.
12591 We don't. */
12592
12593 temp = get_absolute_expression ();
12594 if (temp > max_alignment)
12595 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12596 else if (temp < 0)
12597 {
12598 as_warn (_("Alignment negative: 0 assumed."));
12599 temp = 0;
12600 }
12601 if (*input_line_pointer == ',')
12602 {
12603 ++input_line_pointer;
12604 fill_value = get_absolute_expression ();
12605 fill_ptr = &fill_value;
12606 }
12607 else
12608 fill_ptr = 0;
12609 if (temp)
12610 {
12611 segment_info_type *si = seg_info (now_seg);
12612 struct insn_label_list *l = si->label_list;
12613 /* Auto alignment should be switched on by next section change. */
12614 auto_align = 1;
12615 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12616 }
12617 else
12618 {
12619 auto_align = 0;
12620 }
12621
12622 demand_empty_rest_of_line ();
12623 }
12624
12625 static void
12626 s_change_sec (int sec)
12627 {
12628 segT seg;
12629
12630 #ifdef OBJ_ELF
12631 /* The ELF backend needs to know that we are changing sections, so
12632 that .previous works correctly. We could do something like check
12633 for an obj_section_change_hook macro, but that might be confusing
12634 as it would not be appropriate to use it in the section changing
12635 functions in read.c, since obj-elf.c intercepts those. FIXME:
12636 This should be cleaner, somehow. */
12637 if (IS_ELF)
12638 obj_elf_section_change_hook ();
12639 #endif
12640
12641 mips_emit_delays ();
12642
12643 switch (sec)
12644 {
12645 case 't':
12646 s_text (0);
12647 break;
12648 case 'd':
12649 s_data (0);
12650 break;
12651 case 'b':
12652 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12653 demand_empty_rest_of_line ();
12654 break;
12655
12656 case 'r':
12657 seg = subseg_new (RDATA_SECTION_NAME,
12658 (subsegT) get_absolute_expression ());
12659 if (IS_ELF)
12660 {
12661 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12662 | SEC_READONLY | SEC_RELOC
12663 | SEC_DATA));
12664 if (strncmp (TARGET_OS, "elf", 3) != 0)
12665 record_alignment (seg, 4);
12666 }
12667 demand_empty_rest_of_line ();
12668 break;
12669
12670 case 's':
12671 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12672 if (IS_ELF)
12673 {
12674 bfd_set_section_flags (stdoutput, seg,
12675 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12676 if (strncmp (TARGET_OS, "elf", 3) != 0)
12677 record_alignment (seg, 4);
12678 }
12679 demand_empty_rest_of_line ();
12680 break;
12681 }
12682
12683 auto_align = 1;
12684 }
12685
12686 void
12687 s_change_section (int ignore ATTRIBUTE_UNUSED)
12688 {
12689 #ifdef OBJ_ELF
12690 char *section_name;
12691 char c;
12692 char next_c = 0;
12693 int section_type;
12694 int section_flag;
12695 int section_entry_size;
12696 int section_alignment;
12697
12698 if (!IS_ELF)
12699 return;
12700
12701 section_name = input_line_pointer;
12702 c = get_symbol_end ();
12703 if (c)
12704 next_c = *(input_line_pointer + 1);
12705
12706 /* Do we have .section Name<,"flags">? */
12707 if (c != ',' || (c == ',' && next_c == '"'))
12708 {
12709 /* just after name is now '\0'. */
12710 *input_line_pointer = c;
12711 input_line_pointer = section_name;
12712 obj_elf_section (ignore);
12713 return;
12714 }
12715 input_line_pointer++;
12716
12717 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12718 if (c == ',')
12719 section_type = get_absolute_expression ();
12720 else
12721 section_type = 0;
12722 if (*input_line_pointer++ == ',')
12723 section_flag = get_absolute_expression ();
12724 else
12725 section_flag = 0;
12726 if (*input_line_pointer++ == ',')
12727 section_entry_size = get_absolute_expression ();
12728 else
12729 section_entry_size = 0;
12730 if (*input_line_pointer++ == ',')
12731 section_alignment = get_absolute_expression ();
12732 else
12733 section_alignment = 0;
12734 /* FIXME: really ignore? */
12735 (void) section_alignment;
12736
12737 section_name = xstrdup (section_name);
12738
12739 /* When using the generic form of .section (as implemented by obj-elf.c),
12740 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12741 traditionally had to fall back on the more common @progbits instead.
12742
12743 There's nothing really harmful in this, since bfd will correct
12744 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12745 means that, for backwards compatibility, the special_section entries
12746 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12747
12748 Even so, we shouldn't force users of the MIPS .section syntax to
12749 incorrectly label the sections as SHT_PROGBITS. The best compromise
12750 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12751 generic type-checking code. */
12752 if (section_type == SHT_MIPS_DWARF)
12753 section_type = SHT_PROGBITS;
12754
12755 obj_elf_change_section (section_name, section_type, section_flag,
12756 section_entry_size, 0, 0, 0);
12757
12758 if (now_seg->name != section_name)
12759 free (section_name);
12760 #endif /* OBJ_ELF */
12761 }
12762
12763 void
12764 mips_enable_auto_align (void)
12765 {
12766 auto_align = 1;
12767 }
12768
12769 static void
12770 s_cons (int log_size)
12771 {
12772 segment_info_type *si = seg_info (now_seg);
12773 struct insn_label_list *l = si->label_list;
12774 symbolS *label;
12775
12776 label = l != NULL ? l->label : NULL;
12777 mips_emit_delays ();
12778 if (log_size > 0 && auto_align)
12779 mips_align (log_size, 0, label);
12780 mips_clear_insn_labels ();
12781 cons (1 << log_size);
12782 }
12783
12784 static void
12785 s_float_cons (int type)
12786 {
12787 segment_info_type *si = seg_info (now_seg);
12788 struct insn_label_list *l = si->label_list;
12789 symbolS *label;
12790
12791 label = l != NULL ? l->label : NULL;
12792
12793 mips_emit_delays ();
12794
12795 if (auto_align)
12796 {
12797 if (type == 'd')
12798 mips_align (3, 0, label);
12799 else
12800 mips_align (2, 0, label);
12801 }
12802
12803 mips_clear_insn_labels ();
12804
12805 float_cons (type);
12806 }
12807
12808 /* Handle .globl. We need to override it because on Irix 5 you are
12809 permitted to say
12810 .globl foo .text
12811 where foo is an undefined symbol, to mean that foo should be
12812 considered to be the address of a function. */
12813
12814 static void
12815 s_mips_globl (int x ATTRIBUTE_UNUSED)
12816 {
12817 char *name;
12818 int c;
12819 symbolS *symbolP;
12820 flagword flag;
12821
12822 do
12823 {
12824 name = input_line_pointer;
12825 c = get_symbol_end ();
12826 symbolP = symbol_find_or_make (name);
12827 S_SET_EXTERNAL (symbolP);
12828
12829 *input_line_pointer = c;
12830 SKIP_WHITESPACE ();
12831
12832 /* On Irix 5, every global symbol that is not explicitly labelled as
12833 being a function is apparently labelled as being an object. */
12834 flag = BSF_OBJECT;
12835
12836 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12837 && (*input_line_pointer != ','))
12838 {
12839 char *secname;
12840 asection *sec;
12841
12842 secname = input_line_pointer;
12843 c = get_symbol_end ();
12844 sec = bfd_get_section_by_name (stdoutput, secname);
12845 if (sec == NULL)
12846 as_bad (_("%s: no such section"), secname);
12847 *input_line_pointer = c;
12848
12849 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12850 flag = BSF_FUNCTION;
12851 }
12852
12853 symbol_get_bfdsym (symbolP)->flags |= flag;
12854
12855 c = *input_line_pointer;
12856 if (c == ',')
12857 {
12858 input_line_pointer++;
12859 SKIP_WHITESPACE ();
12860 if (is_end_of_line[(unsigned char) *input_line_pointer])
12861 c = '\n';
12862 }
12863 }
12864 while (c == ',');
12865
12866 demand_empty_rest_of_line ();
12867 }
12868
12869 static void
12870 s_option (int x ATTRIBUTE_UNUSED)
12871 {
12872 char *opt;
12873 char c;
12874
12875 opt = input_line_pointer;
12876 c = get_symbol_end ();
12877
12878 if (*opt == 'O')
12879 {
12880 /* FIXME: What does this mean? */
12881 }
12882 else if (strncmp (opt, "pic", 3) == 0)
12883 {
12884 int i;
12885
12886 i = atoi (opt + 3);
12887 if (i == 0)
12888 mips_pic = NO_PIC;
12889 else if (i == 2)
12890 {
12891 mips_pic = SVR4_PIC;
12892 mips_abicalls = TRUE;
12893 }
12894 else
12895 as_bad (_(".option pic%d not supported"), i);
12896
12897 if (mips_pic == SVR4_PIC)
12898 {
12899 if (g_switch_seen && g_switch_value != 0)
12900 as_warn (_("-G may not be used with SVR4 PIC code"));
12901 g_switch_value = 0;
12902 bfd_set_gp_size (stdoutput, 0);
12903 }
12904 }
12905 else
12906 as_warn (_("Unrecognized option \"%s\""), opt);
12907
12908 *input_line_pointer = c;
12909 demand_empty_rest_of_line ();
12910 }
12911
12912 /* This structure is used to hold a stack of .set values. */
12913
12914 struct mips_option_stack
12915 {
12916 struct mips_option_stack *next;
12917 struct mips_set_options options;
12918 };
12919
12920 static struct mips_option_stack *mips_opts_stack;
12921
12922 /* Handle the .set pseudo-op. */
12923
12924 static void
12925 s_mipsset (int x ATTRIBUTE_UNUSED)
12926 {
12927 char *name = input_line_pointer, ch;
12928
12929 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12930 ++input_line_pointer;
12931 ch = *input_line_pointer;
12932 *input_line_pointer = '\0';
12933
12934 if (strcmp (name, "reorder") == 0)
12935 {
12936 if (mips_opts.noreorder)
12937 end_noreorder ();
12938 }
12939 else if (strcmp (name, "noreorder") == 0)
12940 {
12941 if (!mips_opts.noreorder)
12942 start_noreorder ();
12943 }
12944 else if (strncmp (name, "at=", 3) == 0)
12945 {
12946 char *s = name + 3;
12947
12948 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12949 as_bad (_("Unrecognized register name `%s'"), s);
12950 }
12951 else if (strcmp (name, "at") == 0)
12952 {
12953 mips_opts.at = ATREG;
12954 }
12955 else if (strcmp (name, "noat") == 0)
12956 {
12957 mips_opts.at = ZERO;
12958 }
12959 else if (strcmp (name, "macro") == 0)
12960 {
12961 mips_opts.warn_about_macros = 0;
12962 }
12963 else if (strcmp (name, "nomacro") == 0)
12964 {
12965 if (mips_opts.noreorder == 0)
12966 as_bad (_("`noreorder' must be set before `nomacro'"));
12967 mips_opts.warn_about_macros = 1;
12968 }
12969 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12970 {
12971 mips_opts.nomove = 0;
12972 }
12973 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12974 {
12975 mips_opts.nomove = 1;
12976 }
12977 else if (strcmp (name, "bopt") == 0)
12978 {
12979 mips_opts.nobopt = 0;
12980 }
12981 else if (strcmp (name, "nobopt") == 0)
12982 {
12983 mips_opts.nobopt = 1;
12984 }
12985 else if (strcmp (name, "gp=default") == 0)
12986 mips_opts.gp32 = file_mips_gp32;
12987 else if (strcmp (name, "gp=32") == 0)
12988 mips_opts.gp32 = 1;
12989 else if (strcmp (name, "gp=64") == 0)
12990 {
12991 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12992 as_warn (_("%s isa does not support 64-bit registers"),
12993 mips_cpu_info_from_isa (mips_opts.isa)->name);
12994 mips_opts.gp32 = 0;
12995 }
12996 else if (strcmp (name, "fp=default") == 0)
12997 mips_opts.fp32 = file_mips_fp32;
12998 else if (strcmp (name, "fp=32") == 0)
12999 mips_opts.fp32 = 1;
13000 else if (strcmp (name, "fp=64") == 0)
13001 {
13002 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13003 as_warn (_("%s isa does not support 64-bit floating point registers"),
13004 mips_cpu_info_from_isa (mips_opts.isa)->name);
13005 mips_opts.fp32 = 0;
13006 }
13007 else if (strcmp (name, "softfloat") == 0)
13008 mips_opts.soft_float = 1;
13009 else if (strcmp (name, "hardfloat") == 0)
13010 mips_opts.soft_float = 0;
13011 else if (strcmp (name, "singlefloat") == 0)
13012 mips_opts.single_float = 1;
13013 else if (strcmp (name, "doublefloat") == 0)
13014 mips_opts.single_float = 0;
13015 else if (strcmp (name, "mips16") == 0
13016 || strcmp (name, "MIPS-16") == 0)
13017 mips_opts.mips16 = 1;
13018 else if (strcmp (name, "nomips16") == 0
13019 || strcmp (name, "noMIPS-16") == 0)
13020 mips_opts.mips16 = 0;
13021 else if (strcmp (name, "smartmips") == 0)
13022 {
13023 if (!ISA_SUPPORTS_SMARTMIPS)
13024 as_warn (_("%s ISA does not support SmartMIPS ASE"),
13025 mips_cpu_info_from_isa (mips_opts.isa)->name);
13026 mips_opts.ase_smartmips = 1;
13027 }
13028 else if (strcmp (name, "nosmartmips") == 0)
13029 mips_opts.ase_smartmips = 0;
13030 else if (strcmp (name, "mips3d") == 0)
13031 mips_opts.ase_mips3d = 1;
13032 else if (strcmp (name, "nomips3d") == 0)
13033 mips_opts.ase_mips3d = 0;
13034 else if (strcmp (name, "mdmx") == 0)
13035 mips_opts.ase_mdmx = 1;
13036 else if (strcmp (name, "nomdmx") == 0)
13037 mips_opts.ase_mdmx = 0;
13038 else if (strcmp (name, "dsp") == 0)
13039 {
13040 if (!ISA_SUPPORTS_DSP_ASE)
13041 as_warn (_("%s ISA does not support DSP ASE"),
13042 mips_cpu_info_from_isa (mips_opts.isa)->name);
13043 mips_opts.ase_dsp = 1;
13044 mips_opts.ase_dspr2 = 0;
13045 }
13046 else if (strcmp (name, "nodsp") == 0)
13047 {
13048 mips_opts.ase_dsp = 0;
13049 mips_opts.ase_dspr2 = 0;
13050 }
13051 else if (strcmp (name, "dspr2") == 0)
13052 {
13053 if (!ISA_SUPPORTS_DSPR2_ASE)
13054 as_warn (_("%s ISA does not support DSP R2 ASE"),
13055 mips_cpu_info_from_isa (mips_opts.isa)->name);
13056 mips_opts.ase_dspr2 = 1;
13057 mips_opts.ase_dsp = 1;
13058 }
13059 else if (strcmp (name, "nodspr2") == 0)
13060 {
13061 mips_opts.ase_dspr2 = 0;
13062 mips_opts.ase_dsp = 0;
13063 }
13064 else if (strcmp (name, "mt") == 0)
13065 {
13066 if (!ISA_SUPPORTS_MT_ASE)
13067 as_warn (_("%s ISA does not support MT ASE"),
13068 mips_cpu_info_from_isa (mips_opts.isa)->name);
13069 mips_opts.ase_mt = 1;
13070 }
13071 else if (strcmp (name, "nomt") == 0)
13072 mips_opts.ase_mt = 0;
13073 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13074 {
13075 int reset = 0;
13076
13077 /* Permit the user to change the ISA and architecture on the fly.
13078 Needless to say, misuse can cause serious problems. */
13079 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13080 {
13081 reset = 1;
13082 mips_opts.isa = file_mips_isa;
13083 mips_opts.arch = file_mips_arch;
13084 }
13085 else if (strncmp (name, "arch=", 5) == 0)
13086 {
13087 const struct mips_cpu_info *p;
13088
13089 p = mips_parse_cpu("internal use", name + 5);
13090 if (!p)
13091 as_bad (_("unknown architecture %s"), name + 5);
13092 else
13093 {
13094 mips_opts.arch = p->cpu;
13095 mips_opts.isa = p->isa;
13096 }
13097 }
13098 else if (strncmp (name, "mips", 4) == 0)
13099 {
13100 const struct mips_cpu_info *p;
13101
13102 p = mips_parse_cpu("internal use", name);
13103 if (!p)
13104 as_bad (_("unknown ISA level %s"), name + 4);
13105 else
13106 {
13107 mips_opts.arch = p->cpu;
13108 mips_opts.isa = p->isa;
13109 }
13110 }
13111 else
13112 as_bad (_("unknown ISA or architecture %s"), name);
13113
13114 switch (mips_opts.isa)
13115 {
13116 case 0:
13117 break;
13118 case ISA_MIPS1:
13119 case ISA_MIPS2:
13120 case ISA_MIPS32:
13121 case ISA_MIPS32R2:
13122 mips_opts.gp32 = 1;
13123 mips_opts.fp32 = 1;
13124 break;
13125 case ISA_MIPS3:
13126 case ISA_MIPS4:
13127 case ISA_MIPS5:
13128 case ISA_MIPS64:
13129 case ISA_MIPS64R2:
13130 mips_opts.gp32 = 0;
13131 mips_opts.fp32 = 0;
13132 break;
13133 default:
13134 as_bad (_("unknown ISA level %s"), name + 4);
13135 break;
13136 }
13137 if (reset)
13138 {
13139 mips_opts.gp32 = file_mips_gp32;
13140 mips_opts.fp32 = file_mips_fp32;
13141 }
13142 }
13143 else if (strcmp (name, "autoextend") == 0)
13144 mips_opts.noautoextend = 0;
13145 else if (strcmp (name, "noautoextend") == 0)
13146 mips_opts.noautoextend = 1;
13147 else if (strcmp (name, "push") == 0)
13148 {
13149 struct mips_option_stack *s;
13150
13151 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13152 s->next = mips_opts_stack;
13153 s->options = mips_opts;
13154 mips_opts_stack = s;
13155 }
13156 else if (strcmp (name, "pop") == 0)
13157 {
13158 struct mips_option_stack *s;
13159
13160 s = mips_opts_stack;
13161 if (s == NULL)
13162 as_bad (_(".set pop with no .set push"));
13163 else
13164 {
13165 /* If we're changing the reorder mode we need to handle
13166 delay slots correctly. */
13167 if (s->options.noreorder && ! mips_opts.noreorder)
13168 start_noreorder ();
13169 else if (! s->options.noreorder && mips_opts.noreorder)
13170 end_noreorder ();
13171
13172 mips_opts = s->options;
13173 mips_opts_stack = s->next;
13174 free (s);
13175 }
13176 }
13177 else if (strcmp (name, "sym32") == 0)
13178 mips_opts.sym32 = TRUE;
13179 else if (strcmp (name, "nosym32") == 0)
13180 mips_opts.sym32 = FALSE;
13181 else if (strchr (name, ','))
13182 {
13183 /* Generic ".set" directive; use the generic handler. */
13184 *input_line_pointer = ch;
13185 input_line_pointer = name;
13186 s_set (0);
13187 return;
13188 }
13189 else
13190 {
13191 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13192 }
13193 *input_line_pointer = ch;
13194 demand_empty_rest_of_line ();
13195 }
13196
13197 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13198 .option pic2. It means to generate SVR4 PIC calls. */
13199
13200 static void
13201 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13202 {
13203 mips_pic = SVR4_PIC;
13204 mips_abicalls = TRUE;
13205
13206 if (g_switch_seen && g_switch_value != 0)
13207 as_warn (_("-G may not be used with SVR4 PIC code"));
13208 g_switch_value = 0;
13209
13210 bfd_set_gp_size (stdoutput, 0);
13211 demand_empty_rest_of_line ();
13212 }
13213
13214 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13215 PIC code. It sets the $gp register for the function based on the
13216 function address, which is in the register named in the argument.
13217 This uses a relocation against _gp_disp, which is handled specially
13218 by the linker. The result is:
13219 lui $gp,%hi(_gp_disp)
13220 addiu $gp,$gp,%lo(_gp_disp)
13221 addu $gp,$gp,.cpload argument
13222 The .cpload argument is normally $25 == $t9.
13223
13224 The -mno-shared option changes this to:
13225 lui $gp,%hi(__gnu_local_gp)
13226 addiu $gp,$gp,%lo(__gnu_local_gp)
13227 and the argument is ignored. This saves an instruction, but the
13228 resulting code is not position independent; it uses an absolute
13229 address for __gnu_local_gp. Thus code assembled with -mno-shared
13230 can go into an ordinary executable, but not into a shared library. */
13231
13232 static void
13233 s_cpload (int ignore ATTRIBUTE_UNUSED)
13234 {
13235 expressionS ex;
13236 int reg;
13237 int in_shared;
13238
13239 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13240 .cpload is ignored. */
13241 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13242 {
13243 s_ignore (0);
13244 return;
13245 }
13246
13247 /* .cpload should be in a .set noreorder section. */
13248 if (mips_opts.noreorder == 0)
13249 as_warn (_(".cpload not in noreorder section"));
13250
13251 reg = tc_get_register (0);
13252
13253 /* If we need to produce a 64-bit address, we are better off using
13254 the default instruction sequence. */
13255 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13256
13257 ex.X_op = O_symbol;
13258 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13259 "__gnu_local_gp");
13260 ex.X_op_symbol = NULL;
13261 ex.X_add_number = 0;
13262
13263 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13264 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13265
13266 macro_start ();
13267 macro_build_lui (&ex, mips_gp_register);
13268 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13269 mips_gp_register, BFD_RELOC_LO16);
13270 if (in_shared)
13271 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13272 mips_gp_register, reg);
13273 macro_end ();
13274
13275 demand_empty_rest_of_line ();
13276 }
13277
13278 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13279 .cpsetup $reg1, offset|$reg2, label
13280
13281 If offset is given, this results in:
13282 sd $gp, offset($sp)
13283 lui $gp, %hi(%neg(%gp_rel(label)))
13284 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13285 daddu $gp, $gp, $reg1
13286
13287 If $reg2 is given, this results in:
13288 daddu $reg2, $gp, $0
13289 lui $gp, %hi(%neg(%gp_rel(label)))
13290 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13291 daddu $gp, $gp, $reg1
13292 $reg1 is normally $25 == $t9.
13293
13294 The -mno-shared option replaces the last three instructions with
13295 lui $gp,%hi(_gp)
13296 addiu $gp,$gp,%lo(_gp) */
13297
13298 static void
13299 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13300 {
13301 expressionS ex_off;
13302 expressionS ex_sym;
13303 int reg1;
13304
13305 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13306 We also need NewABI support. */
13307 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13308 {
13309 s_ignore (0);
13310 return;
13311 }
13312
13313 reg1 = tc_get_register (0);
13314 SKIP_WHITESPACE ();
13315 if (*input_line_pointer != ',')
13316 {
13317 as_bad (_("missing argument separator ',' for .cpsetup"));
13318 return;
13319 }
13320 else
13321 ++input_line_pointer;
13322 SKIP_WHITESPACE ();
13323 if (*input_line_pointer == '$')
13324 {
13325 mips_cpreturn_register = tc_get_register (0);
13326 mips_cpreturn_offset = -1;
13327 }
13328 else
13329 {
13330 mips_cpreturn_offset = get_absolute_expression ();
13331 mips_cpreturn_register = -1;
13332 }
13333 SKIP_WHITESPACE ();
13334 if (*input_line_pointer != ',')
13335 {
13336 as_bad (_("missing argument separator ',' for .cpsetup"));
13337 return;
13338 }
13339 else
13340 ++input_line_pointer;
13341 SKIP_WHITESPACE ();
13342 expression (&ex_sym);
13343
13344 macro_start ();
13345 if (mips_cpreturn_register == -1)
13346 {
13347 ex_off.X_op = O_constant;
13348 ex_off.X_add_symbol = NULL;
13349 ex_off.X_op_symbol = NULL;
13350 ex_off.X_add_number = mips_cpreturn_offset;
13351
13352 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13353 BFD_RELOC_LO16, SP);
13354 }
13355 else
13356 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13357 mips_gp_register, 0);
13358
13359 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13360 {
13361 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13362 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13363 BFD_RELOC_HI16_S);
13364
13365 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13366 mips_gp_register, -1, BFD_RELOC_GPREL16,
13367 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13368
13369 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13370 mips_gp_register, reg1);
13371 }
13372 else
13373 {
13374 expressionS ex;
13375
13376 ex.X_op = O_symbol;
13377 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13378 ex.X_op_symbol = NULL;
13379 ex.X_add_number = 0;
13380
13381 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13382 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13383
13384 macro_build_lui (&ex, mips_gp_register);
13385 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13386 mips_gp_register, BFD_RELOC_LO16);
13387 }
13388
13389 macro_end ();
13390
13391 demand_empty_rest_of_line ();
13392 }
13393
13394 static void
13395 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13396 {
13397 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13398 .cplocal is ignored. */
13399 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13400 {
13401 s_ignore (0);
13402 return;
13403 }
13404
13405 mips_gp_register = tc_get_register (0);
13406 demand_empty_rest_of_line ();
13407 }
13408
13409 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13410 offset from $sp. The offset is remembered, and after making a PIC
13411 call $gp is restored from that location. */
13412
13413 static void
13414 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13415 {
13416 expressionS ex;
13417
13418 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13419 .cprestore is ignored. */
13420 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13421 {
13422 s_ignore (0);
13423 return;
13424 }
13425
13426 mips_cprestore_offset = get_absolute_expression ();
13427 mips_cprestore_valid = 1;
13428
13429 ex.X_op = O_constant;
13430 ex.X_add_symbol = NULL;
13431 ex.X_op_symbol = NULL;
13432 ex.X_add_number = mips_cprestore_offset;
13433
13434 macro_start ();
13435 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13436 SP, HAVE_64BIT_ADDRESSES);
13437 macro_end ();
13438
13439 demand_empty_rest_of_line ();
13440 }
13441
13442 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13443 was given in the preceding .cpsetup, it results in:
13444 ld $gp, offset($sp)
13445
13446 If a register $reg2 was given there, it results in:
13447 daddu $gp, $reg2, $0 */
13448
13449 static void
13450 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13451 {
13452 expressionS ex;
13453
13454 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13455 We also need NewABI support. */
13456 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13457 {
13458 s_ignore (0);
13459 return;
13460 }
13461
13462 macro_start ();
13463 if (mips_cpreturn_register == -1)
13464 {
13465 ex.X_op = O_constant;
13466 ex.X_add_symbol = NULL;
13467 ex.X_op_symbol = NULL;
13468 ex.X_add_number = mips_cpreturn_offset;
13469
13470 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13471 }
13472 else
13473 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13474 mips_cpreturn_register, 0);
13475 macro_end ();
13476
13477 demand_empty_rest_of_line ();
13478 }
13479
13480 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13481 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13482 use in DWARF debug information. */
13483
13484 static void
13485 s_dtprel_internal (size_t bytes)
13486 {
13487 expressionS ex;
13488 char *p;
13489
13490 expression (&ex);
13491
13492 if (ex.X_op != O_symbol)
13493 {
13494 as_bad (_("Unsupported use of %s"), (bytes == 8
13495 ? ".dtpreldword"
13496 : ".dtprelword"));
13497 ignore_rest_of_line ();
13498 }
13499
13500 p = frag_more (bytes);
13501 md_number_to_chars (p, 0, bytes);
13502 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13503 (bytes == 8
13504 ? BFD_RELOC_MIPS_TLS_DTPREL64
13505 : BFD_RELOC_MIPS_TLS_DTPREL32));
13506
13507 demand_empty_rest_of_line ();
13508 }
13509
13510 /* Handle .dtprelword. */
13511
13512 static void
13513 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13514 {
13515 s_dtprel_internal (4);
13516 }
13517
13518 /* Handle .dtpreldword. */
13519
13520 static void
13521 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13522 {
13523 s_dtprel_internal (8);
13524 }
13525
13526 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13527 code. It sets the offset to use in gp_rel relocations. */
13528
13529 static void
13530 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13531 {
13532 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13533 We also need NewABI support. */
13534 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13535 {
13536 s_ignore (0);
13537 return;
13538 }
13539
13540 mips_gprel_offset = get_absolute_expression ();
13541
13542 demand_empty_rest_of_line ();
13543 }
13544
13545 /* Handle the .gpword pseudo-op. This is used when generating PIC
13546 code. It generates a 32 bit GP relative reloc. */
13547
13548 static void
13549 s_gpword (int ignore ATTRIBUTE_UNUSED)
13550 {
13551 segment_info_type *si;
13552 struct insn_label_list *l;
13553 symbolS *label;
13554 expressionS ex;
13555 char *p;
13556
13557 /* When not generating PIC code, this is treated as .word. */
13558 if (mips_pic != SVR4_PIC)
13559 {
13560 s_cons (2);
13561 return;
13562 }
13563
13564 si = seg_info (now_seg);
13565 l = si->label_list;
13566 label = l != NULL ? l->label : NULL;
13567 mips_emit_delays ();
13568 if (auto_align)
13569 mips_align (2, 0, label);
13570 mips_clear_insn_labels ();
13571
13572 expression (&ex);
13573
13574 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13575 {
13576 as_bad (_("Unsupported use of .gpword"));
13577 ignore_rest_of_line ();
13578 }
13579
13580 p = frag_more (4);
13581 md_number_to_chars (p, 0, 4);
13582 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13583 BFD_RELOC_GPREL32);
13584
13585 demand_empty_rest_of_line ();
13586 }
13587
13588 static void
13589 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13590 {
13591 segment_info_type *si;
13592 struct insn_label_list *l;
13593 symbolS *label;
13594 expressionS ex;
13595 char *p;
13596
13597 /* When not generating PIC code, this is treated as .dword. */
13598 if (mips_pic != SVR4_PIC)
13599 {
13600 s_cons (3);
13601 return;
13602 }
13603
13604 si = seg_info (now_seg);
13605 l = si->label_list;
13606 label = l != NULL ? l->label : NULL;
13607 mips_emit_delays ();
13608 if (auto_align)
13609 mips_align (3, 0, label);
13610 mips_clear_insn_labels ();
13611
13612 expression (&ex);
13613
13614 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13615 {
13616 as_bad (_("Unsupported use of .gpdword"));
13617 ignore_rest_of_line ();
13618 }
13619
13620 p = frag_more (8);
13621 md_number_to_chars (p, 0, 8);
13622 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13623 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13624
13625 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13626 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13627 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13628
13629 demand_empty_rest_of_line ();
13630 }
13631
13632 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13633 tables in SVR4 PIC code. */
13634
13635 static void
13636 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13637 {
13638 int reg;
13639
13640 /* This is ignored when not generating SVR4 PIC code. */
13641 if (mips_pic != SVR4_PIC)
13642 {
13643 s_ignore (0);
13644 return;
13645 }
13646
13647 /* Add $gp to the register named as an argument. */
13648 macro_start ();
13649 reg = tc_get_register (0);
13650 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13651 macro_end ();
13652
13653 demand_empty_rest_of_line ();
13654 }
13655
13656 /* Handle the .insn pseudo-op. This marks instruction labels in
13657 mips16 mode. This permits the linker to handle them specially,
13658 such as generating jalx instructions when needed. We also make
13659 them odd for the duration of the assembly, in order to generate the
13660 right sort of code. We will make them even in the adjust_symtab
13661 routine, while leaving them marked. This is convenient for the
13662 debugger and the disassembler. The linker knows to make them odd
13663 again. */
13664
13665 static void
13666 s_insn (int ignore ATTRIBUTE_UNUSED)
13667 {
13668 mips16_mark_labels ();
13669
13670 demand_empty_rest_of_line ();
13671 }
13672
13673 /* Handle a .stabn directive. We need these in order to mark a label
13674 as being a mips16 text label correctly. Sometimes the compiler
13675 will emit a label, followed by a .stabn, and then switch sections.
13676 If the label and .stabn are in mips16 mode, then the label is
13677 really a mips16 text label. */
13678
13679 static void
13680 s_mips_stab (int type)
13681 {
13682 if (type == 'n')
13683 mips16_mark_labels ();
13684
13685 s_stab (type);
13686 }
13687
13688 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13689
13690 static void
13691 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13692 {
13693 char *name;
13694 int c;
13695 symbolS *symbolP;
13696 expressionS exp;
13697
13698 name = input_line_pointer;
13699 c = get_symbol_end ();
13700 symbolP = symbol_find_or_make (name);
13701 S_SET_WEAK (symbolP);
13702 *input_line_pointer = c;
13703
13704 SKIP_WHITESPACE ();
13705
13706 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13707 {
13708 if (S_IS_DEFINED (symbolP))
13709 {
13710 as_bad (_("ignoring attempt to redefine symbol %s"),
13711 S_GET_NAME (symbolP));
13712 ignore_rest_of_line ();
13713 return;
13714 }
13715
13716 if (*input_line_pointer == ',')
13717 {
13718 ++input_line_pointer;
13719 SKIP_WHITESPACE ();
13720 }
13721
13722 expression (&exp);
13723 if (exp.X_op != O_symbol)
13724 {
13725 as_bad (_("bad .weakext directive"));
13726 ignore_rest_of_line ();
13727 return;
13728 }
13729 symbol_set_value_expression (symbolP, &exp);
13730 }
13731
13732 demand_empty_rest_of_line ();
13733 }
13734
13735 /* Parse a register string into a number. Called from the ECOFF code
13736 to parse .frame. The argument is non-zero if this is the frame
13737 register, so that we can record it in mips_frame_reg. */
13738
13739 int
13740 tc_get_register (int frame)
13741 {
13742 unsigned int reg;
13743
13744 SKIP_WHITESPACE ();
13745 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13746 reg = 0;
13747 if (frame)
13748 {
13749 mips_frame_reg = reg != 0 ? reg : SP;
13750 mips_frame_reg_valid = 1;
13751 mips_cprestore_valid = 0;
13752 }
13753 return reg;
13754 }
13755
13756 valueT
13757 md_section_align (asection *seg, valueT addr)
13758 {
13759 int align = bfd_get_section_alignment (stdoutput, seg);
13760
13761 if (IS_ELF)
13762 {
13763 /* We don't need to align ELF sections to the full alignment.
13764 However, Irix 5 may prefer that we align them at least to a 16
13765 byte boundary. We don't bother to align the sections if we
13766 are targeted for an embedded system. */
13767 if (strncmp (TARGET_OS, "elf", 3) == 0)
13768 return addr;
13769 if (align > 4)
13770 align = 4;
13771 }
13772
13773 return ((addr + (1 << align) - 1) & (-1 << align));
13774 }
13775
13776 /* Utility routine, called from above as well. If called while the
13777 input file is still being read, it's only an approximation. (For
13778 example, a symbol may later become defined which appeared to be
13779 undefined earlier.) */
13780
13781 static int
13782 nopic_need_relax (symbolS *sym, int before_relaxing)
13783 {
13784 if (sym == 0)
13785 return 0;
13786
13787 if (g_switch_value > 0)
13788 {
13789 const char *symname;
13790 int change;
13791
13792 /* Find out whether this symbol can be referenced off the $gp
13793 register. It can be if it is smaller than the -G size or if
13794 it is in the .sdata or .sbss section. Certain symbols can
13795 not be referenced off the $gp, although it appears as though
13796 they can. */
13797 symname = S_GET_NAME (sym);
13798 if (symname != (const char *) NULL
13799 && (strcmp (symname, "eprol") == 0
13800 || strcmp (symname, "etext") == 0
13801 || strcmp (symname, "_gp") == 0
13802 || strcmp (symname, "edata") == 0
13803 || strcmp (symname, "_fbss") == 0
13804 || strcmp (symname, "_fdata") == 0
13805 || strcmp (symname, "_ftext") == 0
13806 || strcmp (symname, "end") == 0
13807 || strcmp (symname, "_gp_disp") == 0))
13808 change = 1;
13809 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13810 && (0
13811 #ifndef NO_ECOFF_DEBUGGING
13812 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13813 && (symbol_get_obj (sym)->ecoff_extern_size
13814 <= g_switch_value))
13815 #endif
13816 /* We must defer this decision until after the whole
13817 file has been read, since there might be a .extern
13818 after the first use of this symbol. */
13819 || (before_relaxing
13820 #ifndef NO_ECOFF_DEBUGGING
13821 && symbol_get_obj (sym)->ecoff_extern_size == 0
13822 #endif
13823 && S_GET_VALUE (sym) == 0)
13824 || (S_GET_VALUE (sym) != 0
13825 && S_GET_VALUE (sym) <= g_switch_value)))
13826 change = 0;
13827 else
13828 {
13829 const char *segname;
13830
13831 segname = segment_name (S_GET_SEGMENT (sym));
13832 gas_assert (strcmp (segname, ".lit8") != 0
13833 && strcmp (segname, ".lit4") != 0);
13834 change = (strcmp (segname, ".sdata") != 0
13835 && strcmp (segname, ".sbss") != 0
13836 && strncmp (segname, ".sdata.", 7) != 0
13837 && strncmp (segname, ".sbss.", 6) != 0
13838 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13839 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13840 }
13841 return change;
13842 }
13843 else
13844 /* We are not optimizing for the $gp register. */
13845 return 1;
13846 }
13847
13848
13849 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13850
13851 static bfd_boolean
13852 pic_need_relax (symbolS *sym, asection *segtype)
13853 {
13854 asection *symsec;
13855
13856 /* Handle the case of a symbol equated to another symbol. */
13857 while (symbol_equated_reloc_p (sym))
13858 {
13859 symbolS *n;
13860
13861 /* It's possible to get a loop here in a badly written program. */
13862 n = symbol_get_value_expression (sym)->X_add_symbol;
13863 if (n == sym)
13864 break;
13865 sym = n;
13866 }
13867
13868 if (symbol_section_p (sym))
13869 return TRUE;
13870
13871 symsec = S_GET_SEGMENT (sym);
13872
13873 /* This must duplicate the test in adjust_reloc_syms. */
13874 return (symsec != &bfd_und_section
13875 && symsec != &bfd_abs_section
13876 && !bfd_is_com_section (symsec)
13877 && !s_is_linkonce (sym, segtype)
13878 #ifdef OBJ_ELF
13879 /* A global or weak symbol is treated as external. */
13880 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13881 #endif
13882 );
13883 }
13884
13885
13886 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13887 extended opcode. SEC is the section the frag is in. */
13888
13889 static int
13890 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13891 {
13892 int type;
13893 const struct mips16_immed_operand *op;
13894 offsetT val;
13895 int mintiny, maxtiny;
13896 segT symsec;
13897 fragS *sym_frag;
13898
13899 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13900 return 0;
13901 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13902 return 1;
13903
13904 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13905 op = mips16_immed_operands;
13906 while (op->type != type)
13907 {
13908 ++op;
13909 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13910 }
13911
13912 if (op->unsp)
13913 {
13914 if (type == '<' || type == '>' || type == '[' || type == ']')
13915 {
13916 mintiny = 1;
13917 maxtiny = 1 << op->nbits;
13918 }
13919 else
13920 {
13921 mintiny = 0;
13922 maxtiny = (1 << op->nbits) - 1;
13923 }
13924 }
13925 else
13926 {
13927 mintiny = - (1 << (op->nbits - 1));
13928 maxtiny = (1 << (op->nbits - 1)) - 1;
13929 }
13930
13931 sym_frag = symbol_get_frag (fragp->fr_symbol);
13932 val = S_GET_VALUE (fragp->fr_symbol);
13933 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13934
13935 if (op->pcrel)
13936 {
13937 addressT addr;
13938
13939 /* We won't have the section when we are called from
13940 mips_relax_frag. However, we will always have been called
13941 from md_estimate_size_before_relax first. If this is a
13942 branch to a different section, we mark it as such. If SEC is
13943 NULL, and the frag is not marked, then it must be a branch to
13944 the same section. */
13945 if (sec == NULL)
13946 {
13947 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13948 return 1;
13949 }
13950 else
13951 {
13952 /* Must have been called from md_estimate_size_before_relax. */
13953 if (symsec != sec)
13954 {
13955 fragp->fr_subtype =
13956 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13957
13958 /* FIXME: We should support this, and let the linker
13959 catch branches and loads that are out of range. */
13960 as_bad_where (fragp->fr_file, fragp->fr_line,
13961 _("unsupported PC relative reference to different section"));
13962
13963 return 1;
13964 }
13965 if (fragp != sym_frag && sym_frag->fr_address == 0)
13966 /* Assume non-extended on the first relaxation pass.
13967 The address we have calculated will be bogus if this is
13968 a forward branch to another frag, as the forward frag
13969 will have fr_address == 0. */
13970 return 0;
13971 }
13972
13973 /* In this case, we know for sure that the symbol fragment is in
13974 the same section. If the relax_marker of the symbol fragment
13975 differs from the relax_marker of this fragment, we have not
13976 yet adjusted the symbol fragment fr_address. We want to add
13977 in STRETCH in order to get a better estimate of the address.
13978 This particularly matters because of the shift bits. */
13979 if (stretch != 0
13980 && sym_frag->relax_marker != fragp->relax_marker)
13981 {
13982 fragS *f;
13983
13984 /* Adjust stretch for any alignment frag. Note that if have
13985 been expanding the earlier code, the symbol may be
13986 defined in what appears to be an earlier frag. FIXME:
13987 This doesn't handle the fr_subtype field, which specifies
13988 a maximum number of bytes to skip when doing an
13989 alignment. */
13990 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13991 {
13992 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13993 {
13994 if (stretch < 0)
13995 stretch = - ((- stretch)
13996 & ~ ((1 << (int) f->fr_offset) - 1));
13997 else
13998 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13999 if (stretch == 0)
14000 break;
14001 }
14002 }
14003 if (f != NULL)
14004 val += stretch;
14005 }
14006
14007 addr = fragp->fr_address + fragp->fr_fix;
14008
14009 /* The base address rules are complicated. The base address of
14010 a branch is the following instruction. The base address of a
14011 PC relative load or add is the instruction itself, but if it
14012 is in a delay slot (in which case it can not be extended) use
14013 the address of the instruction whose delay slot it is in. */
14014 if (type == 'p' || type == 'q')
14015 {
14016 addr += 2;
14017
14018 /* If we are currently assuming that this frag should be
14019 extended, then, the current address is two bytes
14020 higher. */
14021 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14022 addr += 2;
14023
14024 /* Ignore the low bit in the target, since it will be set
14025 for a text label. */
14026 if ((val & 1) != 0)
14027 --val;
14028 }
14029 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14030 addr -= 4;
14031 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14032 addr -= 2;
14033
14034 val -= addr & ~ ((1 << op->shift) - 1);
14035
14036 /* Branch offsets have an implicit 0 in the lowest bit. */
14037 if (type == 'p' || type == 'q')
14038 val /= 2;
14039
14040 /* If any of the shifted bits are set, we must use an extended
14041 opcode. If the address depends on the size of this
14042 instruction, this can lead to a loop, so we arrange to always
14043 use an extended opcode. We only check this when we are in
14044 the main relaxation loop, when SEC is NULL. */
14045 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
14046 {
14047 fragp->fr_subtype =
14048 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14049 return 1;
14050 }
14051
14052 /* If we are about to mark a frag as extended because the value
14053 is precisely maxtiny + 1, then there is a chance of an
14054 infinite loop as in the following code:
14055 la $4,foo
14056 .skip 1020
14057 .align 2
14058 foo:
14059 In this case when the la is extended, foo is 0x3fc bytes
14060 away, so the la can be shrunk, but then foo is 0x400 away, so
14061 the la must be extended. To avoid this loop, we mark the
14062 frag as extended if it was small, and is about to become
14063 extended with a value of maxtiny + 1. */
14064 if (val == ((maxtiny + 1) << op->shift)
14065 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14066 && sec == NULL)
14067 {
14068 fragp->fr_subtype =
14069 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14070 return 1;
14071 }
14072 }
14073 else if (symsec != absolute_section && sec != NULL)
14074 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14075
14076 if ((val & ((1 << op->shift) - 1)) != 0
14077 || val < (mintiny << op->shift)
14078 || val > (maxtiny << op->shift))
14079 return 1;
14080 else
14081 return 0;
14082 }
14083
14084 /* Compute the length of a branch sequence, and adjust the
14085 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14086 worst-case length is computed, with UPDATE being used to indicate
14087 whether an unconditional (-1), branch-likely (+1) or regular (0)
14088 branch is to be computed. */
14089 static int
14090 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14091 {
14092 bfd_boolean toofar;
14093 int length;
14094
14095 if (fragp
14096 && S_IS_DEFINED (fragp->fr_symbol)
14097 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14098 {
14099 addressT addr;
14100 offsetT val;
14101
14102 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14103
14104 addr = fragp->fr_address + fragp->fr_fix + 4;
14105
14106 val -= addr;
14107
14108 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14109 }
14110 else if (fragp)
14111 /* If the symbol is not defined or it's in a different segment,
14112 assume the user knows what's going on and emit a short
14113 branch. */
14114 toofar = FALSE;
14115 else
14116 toofar = TRUE;
14117
14118 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14119 fragp->fr_subtype
14120 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14121 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14122 RELAX_BRANCH_LINK (fragp->fr_subtype),
14123 toofar);
14124
14125 length = 4;
14126 if (toofar)
14127 {
14128 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14129 length += 8;
14130
14131 if (mips_pic != NO_PIC)
14132 {
14133 /* Additional space for PIC loading of target address. */
14134 length += 8;
14135 if (mips_opts.isa == ISA_MIPS1)
14136 /* Additional space for $at-stabilizing nop. */
14137 length += 4;
14138 }
14139
14140 /* If branch is conditional. */
14141 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14142 length += 8;
14143 }
14144
14145 return length;
14146 }
14147
14148 /* Estimate the size of a frag before relaxing. Unless this is the
14149 mips16, we are not really relaxing here, and the final size is
14150 encoded in the subtype information. For the mips16, we have to
14151 decide whether we are using an extended opcode or not. */
14152
14153 int
14154 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14155 {
14156 int change;
14157
14158 if (RELAX_BRANCH_P (fragp->fr_subtype))
14159 {
14160
14161 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14162
14163 return fragp->fr_var;
14164 }
14165
14166 if (RELAX_MIPS16_P (fragp->fr_subtype))
14167 /* We don't want to modify the EXTENDED bit here; it might get us
14168 into infinite loops. We change it only in mips_relax_frag(). */
14169 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14170
14171 if (mips_pic == NO_PIC)
14172 change = nopic_need_relax (fragp->fr_symbol, 0);
14173 else if (mips_pic == SVR4_PIC)
14174 change = pic_need_relax (fragp->fr_symbol, segtype);
14175 else if (mips_pic == VXWORKS_PIC)
14176 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14177 change = 0;
14178 else
14179 abort ();
14180
14181 if (change)
14182 {
14183 fragp->fr_subtype |= RELAX_USE_SECOND;
14184 return -RELAX_FIRST (fragp->fr_subtype);
14185 }
14186 else
14187 return -RELAX_SECOND (fragp->fr_subtype);
14188 }
14189
14190 /* This is called to see whether a reloc against a defined symbol
14191 should be converted into a reloc against a section. */
14192
14193 int
14194 mips_fix_adjustable (fixS *fixp)
14195 {
14196 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14197 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14198 return 0;
14199
14200 if (fixp->fx_addsy == NULL)
14201 return 1;
14202
14203 /* If symbol SYM is in a mergeable section, relocations of the form
14204 SYM + 0 can usually be made section-relative. The mergeable data
14205 is then identified by the section offset rather than by the symbol.
14206
14207 However, if we're generating REL LO16 relocations, the offset is split
14208 between the LO16 and parterning high part relocation. The linker will
14209 need to recalculate the complete offset in order to correctly identify
14210 the merge data.
14211
14212 The linker has traditionally not looked for the parterning high part
14213 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14214 placed anywhere. Rather than break backwards compatibility by changing
14215 this, it seems better not to force the issue, and instead keep the
14216 original symbol. This will work with either linker behavior. */
14217 if ((lo16_reloc_p (fixp->fx_r_type)
14218 || reloc_needs_lo_p (fixp->fx_r_type))
14219 && HAVE_IN_PLACE_ADDENDS
14220 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14221 return 0;
14222
14223 /* There is no place to store an in-place offset for JALR relocations. */
14224 if (fixp->fx_r_type == BFD_RELOC_MIPS_JALR && HAVE_IN_PLACE_ADDENDS)
14225 return 0;
14226
14227 #ifdef OBJ_ELF
14228 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14229 to a floating-point stub. The same is true for non-R_MIPS16_26
14230 relocations against MIPS16 functions; in this case, the stub becomes
14231 the function's canonical address.
14232
14233 Floating-point stubs are stored in unique .mips16.call.* or
14234 .mips16.fn.* sections. If a stub T for function F is in section S,
14235 the first relocation in section S must be against F; this is how the
14236 linker determines the target function. All relocations that might
14237 resolve to T must also be against F. We therefore have the following
14238 restrictions, which are given in an intentionally-redundant way:
14239
14240 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14241 symbols.
14242
14243 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14244 if that stub might be used.
14245
14246 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14247 symbols.
14248
14249 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14250 that stub might be used.
14251
14252 There is a further restriction:
14253
14254 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14255 on targets with in-place addends; the relocation field cannot
14256 encode the low bit.
14257
14258 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14259 against a MIPS16 symbol.
14260
14261 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14262 relocation against some symbol R, no relocation against R may be
14263 reduced. (Note that this deals with (2) as well as (1) because
14264 relocations against global symbols will never be reduced on ELF
14265 targets.) This approach is a little simpler than trying to detect
14266 stub sections, and gives the "all or nothing" per-symbol consistency
14267 that we have for MIPS16 symbols. */
14268 if (IS_ELF
14269 && fixp->fx_subsy == NULL
14270 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14271 || *symbol_get_tc (fixp->fx_addsy)))
14272 return 0;
14273 #endif
14274
14275 return 1;
14276 }
14277
14278 /* Translate internal representation of relocation info to BFD target
14279 format. */
14280
14281 arelent **
14282 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14283 {
14284 static arelent *retval[4];
14285 arelent *reloc;
14286 bfd_reloc_code_real_type code;
14287
14288 memset (retval, 0, sizeof(retval));
14289 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14290 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14291 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14292 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14293
14294 if (fixp->fx_pcrel)
14295 {
14296 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14297
14298 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14299 Relocations want only the symbol offset. */
14300 reloc->addend = fixp->fx_addnumber + reloc->address;
14301 if (!IS_ELF)
14302 {
14303 /* A gruesome hack which is a result of the gruesome gas
14304 reloc handling. What's worse, for COFF (as opposed to
14305 ECOFF), we might need yet another copy of reloc->address.
14306 See bfd_install_relocation. */
14307 reloc->addend += reloc->address;
14308 }
14309 }
14310 else
14311 reloc->addend = fixp->fx_addnumber;
14312
14313 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14314 entry to be used in the relocation's section offset. */
14315 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14316 {
14317 reloc->address = reloc->addend;
14318 reloc->addend = 0;
14319 }
14320
14321 code = fixp->fx_r_type;
14322
14323 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14324 if (reloc->howto == NULL)
14325 {
14326 as_bad_where (fixp->fx_file, fixp->fx_line,
14327 _("Can not represent %s relocation in this object file format"),
14328 bfd_get_reloc_code_name (code));
14329 retval[0] = NULL;
14330 }
14331
14332 return retval;
14333 }
14334
14335 /* Relax a machine dependent frag. This returns the amount by which
14336 the current size of the frag should change. */
14337
14338 int
14339 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14340 {
14341 if (RELAX_BRANCH_P (fragp->fr_subtype))
14342 {
14343 offsetT old_var = fragp->fr_var;
14344
14345 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14346
14347 return fragp->fr_var - old_var;
14348 }
14349
14350 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14351 return 0;
14352
14353 if (mips16_extended_frag (fragp, NULL, stretch))
14354 {
14355 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14356 return 0;
14357 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14358 return 2;
14359 }
14360 else
14361 {
14362 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14363 return 0;
14364 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14365 return -2;
14366 }
14367
14368 return 0;
14369 }
14370
14371 /* Convert a machine dependent frag. */
14372
14373 void
14374 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14375 {
14376 if (RELAX_BRANCH_P (fragp->fr_subtype))
14377 {
14378 bfd_byte *buf;
14379 unsigned long insn;
14380 expressionS exp;
14381 fixS *fixp;
14382
14383 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14384
14385 if (target_big_endian)
14386 insn = bfd_getb32 (buf);
14387 else
14388 insn = bfd_getl32 (buf);
14389
14390 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14391 {
14392 /* We generate a fixup instead of applying it right now
14393 because, if there are linker relaxations, we're going to
14394 need the relocations. */
14395 exp.X_op = O_symbol;
14396 exp.X_add_symbol = fragp->fr_symbol;
14397 exp.X_add_number = fragp->fr_offset;
14398
14399 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14400 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14401 fixp->fx_file = fragp->fr_file;
14402 fixp->fx_line = fragp->fr_line;
14403
14404 md_number_to_chars ((char *) buf, insn, 4);
14405 buf += 4;
14406 }
14407 else
14408 {
14409 int i;
14410
14411 as_warn_where (fragp->fr_file, fragp->fr_line,
14412 _("relaxed out-of-range branch into a jump"));
14413
14414 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14415 goto uncond;
14416
14417 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14418 {
14419 /* Reverse the branch. */
14420 switch ((insn >> 28) & 0xf)
14421 {
14422 case 4:
14423 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14424 have the condition reversed by tweaking a single
14425 bit, and their opcodes all have 0x4???????. */
14426 gas_assert ((insn & 0xf1000000) == 0x41000000);
14427 insn ^= 0x00010000;
14428 break;
14429
14430 case 0:
14431 /* bltz 0x04000000 bgez 0x04010000
14432 bltzal 0x04100000 bgezal 0x04110000 */
14433 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14434 insn ^= 0x00010000;
14435 break;
14436
14437 case 1:
14438 /* beq 0x10000000 bne 0x14000000
14439 blez 0x18000000 bgtz 0x1c000000 */
14440 insn ^= 0x04000000;
14441 break;
14442
14443 default:
14444 abort ();
14445 }
14446 }
14447
14448 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14449 {
14450 /* Clear the and-link bit. */
14451 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14452
14453 /* bltzal 0x04100000 bgezal 0x04110000
14454 bltzall 0x04120000 bgezall 0x04130000 */
14455 insn &= ~0x00100000;
14456 }
14457
14458 /* Branch over the branch (if the branch was likely) or the
14459 full jump (not likely case). Compute the offset from the
14460 current instruction to branch to. */
14461 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14462 i = 16;
14463 else
14464 {
14465 /* How many bytes in instructions we've already emitted? */
14466 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14467 /* How many bytes in instructions from here to the end? */
14468 i = fragp->fr_var - i;
14469 }
14470 /* Convert to instruction count. */
14471 i >>= 2;
14472 /* Branch counts from the next instruction. */
14473 i--;
14474 insn |= i;
14475 /* Branch over the jump. */
14476 md_number_to_chars ((char *) buf, insn, 4);
14477 buf += 4;
14478
14479 /* nop */
14480 md_number_to_chars ((char *) buf, 0, 4);
14481 buf += 4;
14482
14483 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14484 {
14485 /* beql $0, $0, 2f */
14486 insn = 0x50000000;
14487 /* Compute the PC offset from the current instruction to
14488 the end of the variable frag. */
14489 /* How many bytes in instructions we've already emitted? */
14490 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14491 /* How many bytes in instructions from here to the end? */
14492 i = fragp->fr_var - i;
14493 /* Convert to instruction count. */
14494 i >>= 2;
14495 /* Don't decrement i, because we want to branch over the
14496 delay slot. */
14497
14498 insn |= i;
14499 md_number_to_chars ((char *) buf, insn, 4);
14500 buf += 4;
14501
14502 md_number_to_chars ((char *) buf, 0, 4);
14503 buf += 4;
14504 }
14505
14506 uncond:
14507 if (mips_pic == NO_PIC)
14508 {
14509 /* j or jal. */
14510 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14511 ? 0x0c000000 : 0x08000000);
14512 exp.X_op = O_symbol;
14513 exp.X_add_symbol = fragp->fr_symbol;
14514 exp.X_add_number = fragp->fr_offset;
14515
14516 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14517 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14518 fixp->fx_file = fragp->fr_file;
14519 fixp->fx_line = fragp->fr_line;
14520
14521 md_number_to_chars ((char *) buf, insn, 4);
14522 buf += 4;
14523 }
14524 else
14525 {
14526 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14527 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14528 exp.X_op = O_symbol;
14529 exp.X_add_symbol = fragp->fr_symbol;
14530 exp.X_add_number = fragp->fr_offset;
14531
14532 if (fragp->fr_offset)
14533 {
14534 exp.X_add_symbol = make_expr_symbol (&exp);
14535 exp.X_add_number = 0;
14536 }
14537
14538 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14539 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14540 fixp->fx_file = fragp->fr_file;
14541 fixp->fx_line = fragp->fr_line;
14542
14543 md_number_to_chars ((char *) buf, insn, 4);
14544 buf += 4;
14545
14546 if (mips_opts.isa == ISA_MIPS1)
14547 {
14548 /* nop */
14549 md_number_to_chars ((char *) buf, 0, 4);
14550 buf += 4;
14551 }
14552
14553 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14554 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14555
14556 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14557 4, &exp, FALSE, BFD_RELOC_LO16);
14558 fixp->fx_file = fragp->fr_file;
14559 fixp->fx_line = fragp->fr_line;
14560
14561 md_number_to_chars ((char *) buf, insn, 4);
14562 buf += 4;
14563
14564 /* j(al)r $at. */
14565 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14566 insn = 0x0020f809;
14567 else
14568 insn = 0x00200008;
14569
14570 md_number_to_chars ((char *) buf, insn, 4);
14571 buf += 4;
14572 }
14573 }
14574
14575 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14576 + fragp->fr_fix + fragp->fr_var);
14577
14578 fragp->fr_fix += fragp->fr_var;
14579
14580 return;
14581 }
14582
14583 if (RELAX_MIPS16_P (fragp->fr_subtype))
14584 {
14585 int type;
14586 const struct mips16_immed_operand *op;
14587 bfd_boolean small, ext;
14588 offsetT val;
14589 bfd_byte *buf;
14590 unsigned long insn;
14591 bfd_boolean use_extend;
14592 unsigned short extend;
14593
14594 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14595 op = mips16_immed_operands;
14596 while (op->type != type)
14597 ++op;
14598
14599 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14600 {
14601 small = FALSE;
14602 ext = TRUE;
14603 }
14604 else
14605 {
14606 small = TRUE;
14607 ext = FALSE;
14608 }
14609
14610 resolve_symbol_value (fragp->fr_symbol);
14611 val = S_GET_VALUE (fragp->fr_symbol);
14612 if (op->pcrel)
14613 {
14614 addressT addr;
14615
14616 addr = fragp->fr_address + fragp->fr_fix;
14617
14618 /* The rules for the base address of a PC relative reloc are
14619 complicated; see mips16_extended_frag. */
14620 if (type == 'p' || type == 'q')
14621 {
14622 addr += 2;
14623 if (ext)
14624 addr += 2;
14625 /* Ignore the low bit in the target, since it will be
14626 set for a text label. */
14627 if ((val & 1) != 0)
14628 --val;
14629 }
14630 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14631 addr -= 4;
14632 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14633 addr -= 2;
14634
14635 addr &= ~ (addressT) ((1 << op->shift) - 1);
14636 val -= addr;
14637
14638 /* Make sure the section winds up with the alignment we have
14639 assumed. */
14640 if (op->shift > 0)
14641 record_alignment (asec, op->shift);
14642 }
14643
14644 if (ext
14645 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14646 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14647 as_warn_where (fragp->fr_file, fragp->fr_line,
14648 _("extended instruction in delay slot"));
14649
14650 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14651
14652 if (target_big_endian)
14653 insn = bfd_getb16 (buf);
14654 else
14655 insn = bfd_getl16 (buf);
14656
14657 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14658 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14659 small, ext, &insn, &use_extend, &extend);
14660
14661 if (use_extend)
14662 {
14663 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14664 fragp->fr_fix += 2;
14665 buf += 2;
14666 }
14667
14668 md_number_to_chars ((char *) buf, insn, 2);
14669 fragp->fr_fix += 2;
14670 buf += 2;
14671 }
14672 else
14673 {
14674 int first, second;
14675 fixS *fixp;
14676
14677 first = RELAX_FIRST (fragp->fr_subtype);
14678 second = RELAX_SECOND (fragp->fr_subtype);
14679 fixp = (fixS *) fragp->fr_opcode;
14680
14681 /* Possibly emit a warning if we've chosen the longer option. */
14682 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14683 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14684 {
14685 const char *msg = macro_warning (fragp->fr_subtype);
14686 if (msg != 0)
14687 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14688 }
14689
14690 /* Go through all the fixups for the first sequence. Disable them
14691 (by marking them as done) if we're going to use the second
14692 sequence instead. */
14693 while (fixp
14694 && fixp->fx_frag == fragp
14695 && fixp->fx_where < fragp->fr_fix - second)
14696 {
14697 if (fragp->fr_subtype & RELAX_USE_SECOND)
14698 fixp->fx_done = 1;
14699 fixp = fixp->fx_next;
14700 }
14701
14702 /* Go through the fixups for the second sequence. Disable them if
14703 we're going to use the first sequence, otherwise adjust their
14704 addresses to account for the relaxation. */
14705 while (fixp && fixp->fx_frag == fragp)
14706 {
14707 if (fragp->fr_subtype & RELAX_USE_SECOND)
14708 fixp->fx_where -= first;
14709 else
14710 fixp->fx_done = 1;
14711 fixp = fixp->fx_next;
14712 }
14713
14714 /* Now modify the frag contents. */
14715 if (fragp->fr_subtype & RELAX_USE_SECOND)
14716 {
14717 char *start;
14718
14719 start = fragp->fr_literal + fragp->fr_fix - first - second;
14720 memmove (start, start + first, second);
14721 fragp->fr_fix -= first;
14722 }
14723 else
14724 fragp->fr_fix -= second;
14725 }
14726 }
14727
14728 #ifdef OBJ_ELF
14729
14730 /* This function is called after the relocs have been generated.
14731 We've been storing mips16 text labels as odd. Here we convert them
14732 back to even for the convenience of the debugger. */
14733
14734 void
14735 mips_frob_file_after_relocs (void)
14736 {
14737 asymbol **syms;
14738 unsigned int count, i;
14739
14740 if (!IS_ELF)
14741 return;
14742
14743 syms = bfd_get_outsymbols (stdoutput);
14744 count = bfd_get_symcount (stdoutput);
14745 for (i = 0; i < count; i++, syms++)
14746 {
14747 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14748 && ((*syms)->value & 1) != 0)
14749 {
14750 (*syms)->value &= ~1;
14751 /* If the symbol has an odd size, it was probably computed
14752 incorrectly, so adjust that as well. */
14753 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14754 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14755 }
14756 }
14757 }
14758
14759 #endif
14760
14761 /* This function is called whenever a label is defined. It is used
14762 when handling branch delays; if a branch has a label, we assume we
14763 can not move it. */
14764
14765 void
14766 mips_define_label (symbolS *sym)
14767 {
14768 segment_info_type *si = seg_info (now_seg);
14769 struct insn_label_list *l;
14770
14771 if (free_insn_labels == NULL)
14772 l = (struct insn_label_list *) xmalloc (sizeof *l);
14773 else
14774 {
14775 l = free_insn_labels;
14776 free_insn_labels = l->next;
14777 }
14778
14779 l->label = sym;
14780 l->next = si->label_list;
14781 si->label_list = l;
14782
14783 #ifdef OBJ_ELF
14784 dwarf2_emit_label (sym);
14785 #endif
14786 }
14787 \f
14788 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14789
14790 /* Some special processing for a MIPS ELF file. */
14791
14792 void
14793 mips_elf_final_processing (void)
14794 {
14795 /* Write out the register information. */
14796 if (mips_abi != N64_ABI)
14797 {
14798 Elf32_RegInfo s;
14799
14800 s.ri_gprmask = mips_gprmask;
14801 s.ri_cprmask[0] = mips_cprmask[0];
14802 s.ri_cprmask[1] = mips_cprmask[1];
14803 s.ri_cprmask[2] = mips_cprmask[2];
14804 s.ri_cprmask[3] = mips_cprmask[3];
14805 /* The gp_value field is set by the MIPS ELF backend. */
14806
14807 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14808 ((Elf32_External_RegInfo *)
14809 mips_regmask_frag));
14810 }
14811 else
14812 {
14813 Elf64_Internal_RegInfo s;
14814
14815 s.ri_gprmask = mips_gprmask;
14816 s.ri_pad = 0;
14817 s.ri_cprmask[0] = mips_cprmask[0];
14818 s.ri_cprmask[1] = mips_cprmask[1];
14819 s.ri_cprmask[2] = mips_cprmask[2];
14820 s.ri_cprmask[3] = mips_cprmask[3];
14821 /* The gp_value field is set by the MIPS ELF backend. */
14822
14823 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14824 ((Elf64_External_RegInfo *)
14825 mips_regmask_frag));
14826 }
14827
14828 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14829 sort of BFD interface for this. */
14830 if (mips_any_noreorder)
14831 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14832 if (mips_pic != NO_PIC)
14833 {
14834 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14835 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14836 }
14837 if (mips_abicalls)
14838 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14839
14840 /* Set MIPS ELF flags for ASEs. */
14841 /* We may need to define a new flag for DSP ASE, and set this flag when
14842 file_ase_dsp is true. */
14843 /* Same for DSP R2. */
14844 /* We may need to define a new flag for MT ASE, and set this flag when
14845 file_ase_mt is true. */
14846 if (file_ase_mips16)
14847 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14848 #if 0 /* XXX FIXME */
14849 if (file_ase_mips3d)
14850 elf_elfheader (stdoutput)->e_flags |= ???;
14851 #endif
14852 if (file_ase_mdmx)
14853 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14854
14855 /* Set the MIPS ELF ABI flags. */
14856 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14857 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14858 else if (mips_abi == O64_ABI)
14859 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14860 else if (mips_abi == EABI_ABI)
14861 {
14862 if (!file_mips_gp32)
14863 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14864 else
14865 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14866 }
14867 else if (mips_abi == N32_ABI)
14868 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14869
14870 /* Nothing to do for N64_ABI. */
14871
14872 if (mips_32bitmode)
14873 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14874
14875 #if 0 /* XXX FIXME */
14876 /* 32 bit code with 64 bit FP registers. */
14877 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14878 elf_elfheader (stdoutput)->e_flags |= ???;
14879 #endif
14880 }
14881
14882 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14883 \f
14884 typedef struct proc {
14885 symbolS *func_sym;
14886 symbolS *func_end_sym;
14887 unsigned long reg_mask;
14888 unsigned long reg_offset;
14889 unsigned long fpreg_mask;
14890 unsigned long fpreg_offset;
14891 unsigned long frame_offset;
14892 unsigned long frame_reg;
14893 unsigned long pc_reg;
14894 } procS;
14895
14896 static procS cur_proc;
14897 static procS *cur_proc_ptr;
14898 static int numprocs;
14899
14900 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14901 nop as "0". */
14902
14903 char
14904 mips_nop_opcode (void)
14905 {
14906 return seg_info (now_seg)->tc_segment_info_data.mips16;
14907 }
14908
14909 /* Fill in an rs_align_code fragment. This only needs to do something
14910 for MIPS16 code, where 0 is not a nop. */
14911
14912 void
14913 mips_handle_align (fragS *fragp)
14914 {
14915 char *p;
14916 int bytes, size, excess;
14917 valueT opcode;
14918
14919 if (fragp->fr_type != rs_align_code)
14920 return;
14921
14922 p = fragp->fr_literal + fragp->fr_fix;
14923 if (*p)
14924 {
14925 opcode = mips16_nop_insn.insn_opcode;
14926 size = 2;
14927 }
14928 else
14929 {
14930 opcode = nop_insn.insn_opcode;
14931 size = 4;
14932 }
14933
14934 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14935 excess = bytes % size;
14936 if (excess != 0)
14937 {
14938 /* If we're not inserting a whole number of instructions,
14939 pad the end of the fixed part of the frag with zeros. */
14940 memset (p, 0, excess);
14941 p += excess;
14942 fragp->fr_fix += excess;
14943 }
14944
14945 md_number_to_chars (p, opcode, size);
14946 fragp->fr_var = size;
14947 }
14948
14949 static void
14950 md_obj_begin (void)
14951 {
14952 }
14953
14954 static void
14955 md_obj_end (void)
14956 {
14957 /* Check for premature end, nesting errors, etc. */
14958 if (cur_proc_ptr)
14959 as_warn (_("missing .end at end of assembly"));
14960 }
14961
14962 static long
14963 get_number (void)
14964 {
14965 int negative = 0;
14966 long val = 0;
14967
14968 if (*input_line_pointer == '-')
14969 {
14970 ++input_line_pointer;
14971 negative = 1;
14972 }
14973 if (!ISDIGIT (*input_line_pointer))
14974 as_bad (_("expected simple number"));
14975 if (input_line_pointer[0] == '0')
14976 {
14977 if (input_line_pointer[1] == 'x')
14978 {
14979 input_line_pointer += 2;
14980 while (ISXDIGIT (*input_line_pointer))
14981 {
14982 val <<= 4;
14983 val |= hex_value (*input_line_pointer++);
14984 }
14985 return negative ? -val : val;
14986 }
14987 else
14988 {
14989 ++input_line_pointer;
14990 while (ISDIGIT (*input_line_pointer))
14991 {
14992 val <<= 3;
14993 val |= *input_line_pointer++ - '0';
14994 }
14995 return negative ? -val : val;
14996 }
14997 }
14998 if (!ISDIGIT (*input_line_pointer))
14999 {
15000 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
15001 *input_line_pointer, *input_line_pointer);
15002 as_warn (_("invalid number"));
15003 return -1;
15004 }
15005 while (ISDIGIT (*input_line_pointer))
15006 {
15007 val *= 10;
15008 val += *input_line_pointer++ - '0';
15009 }
15010 return negative ? -val : val;
15011 }
15012
15013 /* The .file directive; just like the usual .file directive, but there
15014 is an initial number which is the ECOFF file index. In the non-ECOFF
15015 case .file implies DWARF-2. */
15016
15017 static void
15018 s_mips_file (int x ATTRIBUTE_UNUSED)
15019 {
15020 static int first_file_directive = 0;
15021
15022 if (ECOFF_DEBUGGING)
15023 {
15024 get_number ();
15025 s_app_file (0);
15026 }
15027 else
15028 {
15029 char *filename;
15030
15031 filename = dwarf2_directive_file (0);
15032
15033 /* Versions of GCC up to 3.1 start files with a ".file"
15034 directive even for stabs output. Make sure that this
15035 ".file" is handled. Note that you need a version of GCC
15036 after 3.1 in order to support DWARF-2 on MIPS. */
15037 if (filename != NULL && ! first_file_directive)
15038 {
15039 (void) new_logical_line (filename, -1);
15040 s_app_file_string (filename, 0);
15041 }
15042 first_file_directive = 1;
15043 }
15044 }
15045
15046 /* The .loc directive, implying DWARF-2. */
15047
15048 static void
15049 s_mips_loc (int x ATTRIBUTE_UNUSED)
15050 {
15051 if (!ECOFF_DEBUGGING)
15052 dwarf2_directive_loc (0);
15053 }
15054
15055 /* The .end directive. */
15056
15057 static void
15058 s_mips_end (int x ATTRIBUTE_UNUSED)
15059 {
15060 symbolS *p;
15061
15062 /* Following functions need their own .frame and .cprestore directives. */
15063 mips_frame_reg_valid = 0;
15064 mips_cprestore_valid = 0;
15065
15066 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15067 {
15068 p = get_symbol ();
15069 demand_empty_rest_of_line ();
15070 }
15071 else
15072 p = NULL;
15073
15074 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15075 as_warn (_(".end not in text section"));
15076
15077 if (!cur_proc_ptr)
15078 {
15079 as_warn (_(".end directive without a preceding .ent directive."));
15080 demand_empty_rest_of_line ();
15081 return;
15082 }
15083
15084 if (p != NULL)
15085 {
15086 gas_assert (S_GET_NAME (p));
15087 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15088 as_warn (_(".end symbol does not match .ent symbol."));
15089
15090 if (debug_type == DEBUG_STABS)
15091 stabs_generate_asm_endfunc (S_GET_NAME (p),
15092 S_GET_NAME (p));
15093 }
15094 else
15095 as_warn (_(".end directive missing or unknown symbol"));
15096
15097 #ifdef OBJ_ELF
15098 /* Create an expression to calculate the size of the function. */
15099 if (p && cur_proc_ptr)
15100 {
15101 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15102 expressionS *exp = xmalloc (sizeof (expressionS));
15103
15104 obj->size = exp;
15105 exp->X_op = O_subtract;
15106 exp->X_add_symbol = symbol_temp_new_now ();
15107 exp->X_op_symbol = p;
15108 exp->X_add_number = 0;
15109
15110 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15111 }
15112
15113 /* Generate a .pdr section. */
15114 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15115 {
15116 segT saved_seg = now_seg;
15117 subsegT saved_subseg = now_subseg;
15118 expressionS exp;
15119 char *fragp;
15120
15121 #ifdef md_flush_pending_output
15122 md_flush_pending_output ();
15123 #endif
15124
15125 gas_assert (pdr_seg);
15126 subseg_set (pdr_seg, 0);
15127
15128 /* Write the symbol. */
15129 exp.X_op = O_symbol;
15130 exp.X_add_symbol = p;
15131 exp.X_add_number = 0;
15132 emit_expr (&exp, 4);
15133
15134 fragp = frag_more (7 * 4);
15135
15136 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15137 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15138 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15139 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15140 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15141 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15142 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15143
15144 subseg_set (saved_seg, saved_subseg);
15145 }
15146 #endif /* OBJ_ELF */
15147
15148 cur_proc_ptr = NULL;
15149 }
15150
15151 /* The .aent and .ent directives. */
15152
15153 static void
15154 s_mips_ent (int aent)
15155 {
15156 symbolS *symbolP;
15157
15158 symbolP = get_symbol ();
15159 if (*input_line_pointer == ',')
15160 ++input_line_pointer;
15161 SKIP_WHITESPACE ();
15162 if (ISDIGIT (*input_line_pointer)
15163 || *input_line_pointer == '-')
15164 get_number ();
15165
15166 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15167 as_warn (_(".ent or .aent not in text section."));
15168
15169 if (!aent && cur_proc_ptr)
15170 as_warn (_("missing .end"));
15171
15172 if (!aent)
15173 {
15174 /* This function needs its own .frame and .cprestore directives. */
15175 mips_frame_reg_valid = 0;
15176 mips_cprestore_valid = 0;
15177
15178 cur_proc_ptr = &cur_proc;
15179 memset (cur_proc_ptr, '\0', sizeof (procS));
15180
15181 cur_proc_ptr->func_sym = symbolP;
15182
15183 ++numprocs;
15184
15185 if (debug_type == DEBUG_STABS)
15186 stabs_generate_asm_func (S_GET_NAME (symbolP),
15187 S_GET_NAME (symbolP));
15188 }
15189
15190 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15191
15192 demand_empty_rest_of_line ();
15193 }
15194
15195 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15196 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15197 s_mips_frame is used so that we can set the PDR information correctly.
15198 We can't use the ecoff routines because they make reference to the ecoff
15199 symbol table (in the mdebug section). */
15200
15201 static void
15202 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15203 {
15204 #ifdef OBJ_ELF
15205 if (IS_ELF && !ECOFF_DEBUGGING)
15206 {
15207 long val;
15208
15209 if (cur_proc_ptr == (procS *) NULL)
15210 {
15211 as_warn (_(".frame outside of .ent"));
15212 demand_empty_rest_of_line ();
15213 return;
15214 }
15215
15216 cur_proc_ptr->frame_reg = tc_get_register (1);
15217
15218 SKIP_WHITESPACE ();
15219 if (*input_line_pointer++ != ','
15220 || get_absolute_expression_and_terminator (&val) != ',')
15221 {
15222 as_warn (_("Bad .frame directive"));
15223 --input_line_pointer;
15224 demand_empty_rest_of_line ();
15225 return;
15226 }
15227
15228 cur_proc_ptr->frame_offset = val;
15229 cur_proc_ptr->pc_reg = tc_get_register (0);
15230
15231 demand_empty_rest_of_line ();
15232 }
15233 else
15234 #endif /* OBJ_ELF */
15235 s_ignore (ignore);
15236 }
15237
15238 /* The .fmask and .mask directives. If the mdebug section is present
15239 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15240 embedded targets, s_mips_mask is used so that we can set the PDR
15241 information correctly. We can't use the ecoff routines because they
15242 make reference to the ecoff symbol table (in the mdebug section). */
15243
15244 static void
15245 s_mips_mask (int reg_type)
15246 {
15247 #ifdef OBJ_ELF
15248 if (IS_ELF && !ECOFF_DEBUGGING)
15249 {
15250 long mask, off;
15251
15252 if (cur_proc_ptr == (procS *) NULL)
15253 {
15254 as_warn (_(".mask/.fmask outside of .ent"));
15255 demand_empty_rest_of_line ();
15256 return;
15257 }
15258
15259 if (get_absolute_expression_and_terminator (&mask) != ',')
15260 {
15261 as_warn (_("Bad .mask/.fmask directive"));
15262 --input_line_pointer;
15263 demand_empty_rest_of_line ();
15264 return;
15265 }
15266
15267 off = get_absolute_expression ();
15268
15269 if (reg_type == 'F')
15270 {
15271 cur_proc_ptr->fpreg_mask = mask;
15272 cur_proc_ptr->fpreg_offset = off;
15273 }
15274 else
15275 {
15276 cur_proc_ptr->reg_mask = mask;
15277 cur_proc_ptr->reg_offset = off;
15278 }
15279
15280 demand_empty_rest_of_line ();
15281 }
15282 else
15283 #endif /* OBJ_ELF */
15284 s_ignore (reg_type);
15285 }
15286
15287 /* A table describing all the processors gas knows about. Names are
15288 matched in the order listed.
15289
15290 To ease comparison, please keep this table in the same order as
15291 gcc's mips_cpu_info_table[]. */
15292 static const struct mips_cpu_info mips_cpu_info_table[] =
15293 {
15294 /* Entries for generic ISAs */
15295 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15296 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15297 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15298 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15299 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15300 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15301 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15302 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15303 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15304
15305 /* MIPS I */
15306 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15307 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15308 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15309
15310 /* MIPS II */
15311 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15312
15313 /* MIPS III */
15314 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15315 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15316 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15317 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15318 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15319 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15320 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15321 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15322 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15323 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15324 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15325 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15326 /* ST Microelectronics Loongson 2E and 2F cores */
15327 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15328 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15329
15330 /* MIPS IV */
15331 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15332 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15333 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15334 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15335 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15336 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15337 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15338 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15339 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15340 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15341 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15342 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15343 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15344 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15345 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15346
15347 /* MIPS 32 */
15348 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15349 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15350 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15351 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15352
15353 /* MIPS 32 Release 2 */
15354 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15355 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15356 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15357 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15358 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15359 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15360 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15361 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15362 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15363 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15364 /* Deprecated forms of the above. */
15365 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15366 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15367 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15368 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15369 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15370 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15371 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15372 /* Deprecated forms of the above. */
15373 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15374 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15375 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15376 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15377 ISA_MIPS32R2, CPU_MIPS32R2 },
15378 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15379 ISA_MIPS32R2, CPU_MIPS32R2 },
15380 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15381 ISA_MIPS32R2, CPU_MIPS32R2 },
15382 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15383 ISA_MIPS32R2, CPU_MIPS32R2 },
15384 /* Deprecated forms of the above. */
15385 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15386 ISA_MIPS32R2, CPU_MIPS32R2 },
15387 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15388 ISA_MIPS32R2, CPU_MIPS32R2 },
15389 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15390 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15391 ISA_MIPS32R2, CPU_MIPS32R2 },
15392 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15393 ISA_MIPS32R2, CPU_MIPS32R2 },
15394 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15395 ISA_MIPS32R2, CPU_MIPS32R2 },
15396 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15397 ISA_MIPS32R2, CPU_MIPS32R2 },
15398 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15399 ISA_MIPS32R2, CPU_MIPS32R2 },
15400 /* Deprecated forms of the above. */
15401 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15402 ISA_MIPS32R2, CPU_MIPS32R2 },
15403 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15404 ISA_MIPS32R2, CPU_MIPS32R2 },
15405 /* 1004K cores are multiprocessor versions of the 34K. */
15406 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15407 ISA_MIPS32R2, CPU_MIPS32R2 },
15408 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15409 ISA_MIPS32R2, CPU_MIPS32R2 },
15410 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15411 ISA_MIPS32R2, CPU_MIPS32R2 },
15412 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15413 ISA_MIPS32R2, CPU_MIPS32R2 },
15414
15415 /* MIPS 64 */
15416 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15417 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15418 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15419 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15420
15421 /* Broadcom SB-1 CPU core */
15422 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15423 ISA_MIPS64, CPU_SB1 },
15424 /* Broadcom SB-1A CPU core */
15425 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15426 ISA_MIPS64, CPU_SB1 },
15427
15428 /* MIPS 64 Release 2 */
15429
15430 /* Cavium Networks Octeon CPU core */
15431 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15432
15433 /* RMI Xlr */
15434 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15435
15436 /* End marker */
15437 { NULL, 0, 0, 0 }
15438 };
15439
15440
15441 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15442 with a final "000" replaced by "k". Ignore case.
15443
15444 Note: this function is shared between GCC and GAS. */
15445
15446 static bfd_boolean
15447 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15448 {
15449 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15450 given++, canonical++;
15451
15452 return ((*given == 0 && *canonical == 0)
15453 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15454 }
15455
15456
15457 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15458 CPU name. We've traditionally allowed a lot of variation here.
15459
15460 Note: this function is shared between GCC and GAS. */
15461
15462 static bfd_boolean
15463 mips_matching_cpu_name_p (const char *canonical, const char *given)
15464 {
15465 /* First see if the name matches exactly, or with a final "000"
15466 turned into "k". */
15467 if (mips_strict_matching_cpu_name_p (canonical, given))
15468 return TRUE;
15469
15470 /* If not, try comparing based on numerical designation alone.
15471 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15472 if (TOLOWER (*given) == 'r')
15473 given++;
15474 if (!ISDIGIT (*given))
15475 return FALSE;
15476
15477 /* Skip over some well-known prefixes in the canonical name,
15478 hoping to find a number there too. */
15479 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15480 canonical += 2;
15481 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15482 canonical += 2;
15483 else if (TOLOWER (canonical[0]) == 'r')
15484 canonical += 1;
15485
15486 return mips_strict_matching_cpu_name_p (canonical, given);
15487 }
15488
15489
15490 /* Parse an option that takes the name of a processor as its argument.
15491 OPTION is the name of the option and CPU_STRING is the argument.
15492 Return the corresponding processor enumeration if the CPU_STRING is
15493 recognized, otherwise report an error and return null.
15494
15495 A similar function exists in GCC. */
15496
15497 static const struct mips_cpu_info *
15498 mips_parse_cpu (const char *option, const char *cpu_string)
15499 {
15500 const struct mips_cpu_info *p;
15501
15502 /* 'from-abi' selects the most compatible architecture for the given
15503 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15504 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15505 version. Look first at the -mgp options, if given, otherwise base
15506 the choice on MIPS_DEFAULT_64BIT.
15507
15508 Treat NO_ABI like the EABIs. One reason to do this is that the
15509 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15510 architecture. This code picks MIPS I for 'mips' and MIPS III for
15511 'mips64', just as we did in the days before 'from-abi'. */
15512 if (strcasecmp (cpu_string, "from-abi") == 0)
15513 {
15514 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15515 return mips_cpu_info_from_isa (ISA_MIPS1);
15516
15517 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15518 return mips_cpu_info_from_isa (ISA_MIPS3);
15519
15520 if (file_mips_gp32 >= 0)
15521 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15522
15523 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15524 ? ISA_MIPS3
15525 : ISA_MIPS1);
15526 }
15527
15528 /* 'default' has traditionally been a no-op. Probably not very useful. */
15529 if (strcasecmp (cpu_string, "default") == 0)
15530 return 0;
15531
15532 for (p = mips_cpu_info_table; p->name != 0; p++)
15533 if (mips_matching_cpu_name_p (p->name, cpu_string))
15534 return p;
15535
15536 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15537 return 0;
15538 }
15539
15540 /* Return the canonical processor information for ISA (a member of the
15541 ISA_MIPS* enumeration). */
15542
15543 static const struct mips_cpu_info *
15544 mips_cpu_info_from_isa (int isa)
15545 {
15546 int i;
15547
15548 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15549 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15550 && isa == mips_cpu_info_table[i].isa)
15551 return (&mips_cpu_info_table[i]);
15552
15553 return NULL;
15554 }
15555
15556 static const struct mips_cpu_info *
15557 mips_cpu_info_from_arch (int arch)
15558 {
15559 int i;
15560
15561 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15562 if (arch == mips_cpu_info_table[i].cpu)
15563 return (&mips_cpu_info_table[i]);
15564
15565 return NULL;
15566 }
15567 \f
15568 static void
15569 show (FILE *stream, const char *string, int *col_p, int *first_p)
15570 {
15571 if (*first_p)
15572 {
15573 fprintf (stream, "%24s", "");
15574 *col_p = 24;
15575 }
15576 else
15577 {
15578 fprintf (stream, ", ");
15579 *col_p += 2;
15580 }
15581
15582 if (*col_p + strlen (string) > 72)
15583 {
15584 fprintf (stream, "\n%24s", "");
15585 *col_p = 24;
15586 }
15587
15588 fprintf (stream, "%s", string);
15589 *col_p += strlen (string);
15590
15591 *first_p = 0;
15592 }
15593
15594 void
15595 md_show_usage (FILE *stream)
15596 {
15597 int column, first;
15598 size_t i;
15599
15600 fprintf (stream, _("\
15601 MIPS options:\n\
15602 -EB generate big endian output\n\
15603 -EL generate little endian output\n\
15604 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15605 -G NUM allow referencing objects up to NUM bytes\n\
15606 implicitly with the gp register [default 8]\n"));
15607 fprintf (stream, _("\
15608 -mips1 generate MIPS ISA I instructions\n\
15609 -mips2 generate MIPS ISA II instructions\n\
15610 -mips3 generate MIPS ISA III instructions\n\
15611 -mips4 generate MIPS ISA IV instructions\n\
15612 -mips5 generate MIPS ISA V instructions\n\
15613 -mips32 generate MIPS32 ISA instructions\n\
15614 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15615 -mips64 generate MIPS64 ISA instructions\n\
15616 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15617 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15618
15619 first = 1;
15620
15621 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15622 show (stream, mips_cpu_info_table[i].name, &column, &first);
15623 show (stream, "from-abi", &column, &first);
15624 fputc ('\n', stream);
15625
15626 fprintf (stream, _("\
15627 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15628 -no-mCPU don't generate code specific to CPU.\n\
15629 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15630
15631 first = 1;
15632
15633 show (stream, "3900", &column, &first);
15634 show (stream, "4010", &column, &first);
15635 show (stream, "4100", &column, &first);
15636 show (stream, "4650", &column, &first);
15637 fputc ('\n', stream);
15638
15639 fprintf (stream, _("\
15640 -mips16 generate mips16 instructions\n\
15641 -no-mips16 do not generate mips16 instructions\n"));
15642 fprintf (stream, _("\
15643 -msmartmips generate smartmips instructions\n\
15644 -mno-smartmips do not generate smartmips instructions\n"));
15645 fprintf (stream, _("\
15646 -mdsp generate DSP instructions\n\
15647 -mno-dsp do not generate DSP instructions\n"));
15648 fprintf (stream, _("\
15649 -mdspr2 generate DSP R2 instructions\n\
15650 -mno-dspr2 do not generate DSP R2 instructions\n"));
15651 fprintf (stream, _("\
15652 -mmt generate MT instructions\n\
15653 -mno-mt do not generate MT instructions\n"));
15654 fprintf (stream, _("\
15655 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15656 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15657 -mfix-vr4120 work around certain VR4120 errata\n\
15658 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15659 -mfix-24k insert a nop after ERET and DERET instructions\n\
15660 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15661 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15662 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15663 -msym32 assume all symbols have 32-bit values\n\
15664 -O0 remove unneeded NOPs, do not swap branches\n\
15665 -O remove unneeded NOPs and swap branches\n\
15666 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15667 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15668 fprintf (stream, _("\
15669 -mhard-float allow floating-point instructions\n\
15670 -msoft-float do not allow floating-point instructions\n\
15671 -msingle-float only allow 32-bit floating-point operations\n\
15672 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15673 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15674 ));
15675 #ifdef OBJ_ELF
15676 fprintf (stream, _("\
15677 -KPIC, -call_shared generate SVR4 position independent code\n\
15678 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15679 -mvxworks-pic generate VxWorks position independent code\n\
15680 -non_shared do not generate code that can operate with DSOs\n\
15681 -xgot assume a 32 bit GOT\n\
15682 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15683 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15684 position dependent (non shared) code\n\
15685 -mabi=ABI create ABI conformant object file for:\n"));
15686
15687 first = 1;
15688
15689 show (stream, "32", &column, &first);
15690 show (stream, "o64", &column, &first);
15691 show (stream, "n32", &column, &first);
15692 show (stream, "64", &column, &first);
15693 show (stream, "eabi", &column, &first);
15694
15695 fputc ('\n', stream);
15696
15697 fprintf (stream, _("\
15698 -32 create o32 ABI object file (default)\n\
15699 -n32 create n32 ABI object file\n\
15700 -64 create 64 ABI object file\n"));
15701 #endif
15702 }
15703
15704 #ifdef TE_IRIX
15705 enum dwarf2_format
15706 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15707 {
15708 if (HAVE_64BIT_SYMBOLS)
15709 return dwarf2_format_64bit_irix;
15710 else
15711 return dwarf2_format_32bit;
15712 }
15713 #endif
15714
15715 int
15716 mips_dwarf2_addr_size (void)
15717 {
15718 if (HAVE_64BIT_OBJECTS)
15719 return 8;
15720 else
15721 return 4;
15722 }
15723
15724 /* Standard calling conventions leave the CFA at SP on entry. */
15725 void
15726 mips_cfi_frame_initial_instructions (void)
15727 {
15728 cfi_add_CFA_def_cfa_register (SP);
15729 }
15730
15731 int
15732 tc_mips_regname_to_dw2regnum (char *regname)
15733 {
15734 unsigned int regnum = -1;
15735 unsigned int reg;
15736
15737 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15738 regnum = reg;
15739
15740 return regnum;
15741 }
This page took 0.36086 seconds and 4 git commands to generate.