Remove trailing spaces in gas
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2015 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
1455 OPTION_FPXX,
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
1482 OPTION_NAN,
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
1485 OPTION_END_OF_ENUM
1486 };
1487
1488 struct option md_longopts[] =
1489 {
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1615 {"mnan", required_argument, NULL, OPTION_NAN},
1616
1617 {NULL, no_argument, NULL, 0}
1618 };
1619 size_t md_longopts_size = sizeof (md_longopts);
1620 \f
1621 /* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624 struct mips_ase
1625 {
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
1652 };
1653
1654 /* A table of all supported ASEs. */
1655 static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
1658 2, 2, 2, 2,
1659 -1 },
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
1663 2, 2, 2, 2,
1664 -1 },
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
1668 2, 2, 2, 2,
1669 -1 },
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
1673 2, 2, 2, 2,
1674 -1 },
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
1679 -1, 1, -1, -1,
1680 6 },
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1685 2, 1, -1, -1,
1686 6 },
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
1690 2, 2, -1, -1,
1691 -1 },
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1695 1, -1, -1, -1,
1696 6 },
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
1700 2, 2, 2, 2,
1701 -1 },
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
1705 2, 2, 2, 2,
1706 -1 },
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
1710 2, 2, -1, -1,
1711 -1 },
1712 };
1713
1714 /* The set of ASEs that require -mfp64. */
1715 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1716
1717 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1718 static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720 };
1721 \f
1722 /* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
1738
1739 static const pseudo_typeS mips_pseudo_table[] =
1740 {
1741 /* MIPS specific pseudo-ops. */
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
1751 {"cprestore", s_cprestore, 0},
1752 {"cpreturn", s_cpreturn, 0},
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
1757 {"gpvalue", s_gpvalue, 0},
1758 {"gpword", s_gpword, 0},
1759 {"gpdword", s_gpdword, 0},
1760 {"ehword", s_ehword, 0},
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
1763 {"nan", s_nan, 0},
1764 {"module", s_module, 0},
1765
1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
1767 chips. */
1768 {"asciiz", stringer, 8 + 1},
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
1776
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
1780 /* These pseudo-ops are defined in read.c, but must be overridden
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
1794 {"section", s_change_section, 0},
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
1797 {"stabd", s_mips_stab, 'd'},
1798 {"stabn", s_mips_stab, 'n'},
1799 {"stabs", s_mips_stab, 's'},
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
1802
1803 { "extern", ecoff_directive_extern, 0},
1804
1805 { NULL, NULL, 0 },
1806 };
1807
1808 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809 {
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
1817 {"file", s_mips_file, 0},
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
1820 {"loc", s_mips_loc, 0},
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
1823 { NULL, NULL, 0 },
1824 };
1825
1826 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829 int
1830 mips_address_bytes (void)
1831 {
1832 file_mips_check_options ();
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834 }
1835
1836 extern void pop_insert (const pseudo_typeS *);
1837
1838 void
1839 mips_pop_insert (void)
1840 {
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844 }
1845 \f
1846 /* Symbols labelling the current insn. */
1847
1848 struct insn_label_list
1849 {
1850 struct insn_label_list *next;
1851 symbolS *label;
1852 };
1853
1854 static struct insn_label_list *free_insn_labels;
1855 #define label_list tc_segment_info_data.labels
1856
1857 static void mips_clear_insn_labels (void);
1858 static void mips_mark_labels (void);
1859 static void mips_compressed_mark_labels (void);
1860
1861 static inline void
1862 mips_clear_insn_labels (void)
1863 {
1864 struct insn_label_list **pl;
1865 segment_info_type *si;
1866
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
1871
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
1876 }
1877
1878 /* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880 static inline void
1881 mips_mark_labels (void)
1882 {
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885 }
1886 \f
1887 static char *expr_end;
1888
1889 /* An expression in a macro instruction. This is set by mips_ip and
1890 mips16_ip and when populated is always an O_constant. */
1891
1892 static expressionS imm_expr;
1893
1894 /* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
1898
1899 static expressionS offset_expr;
1900 static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1902
1903 /* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
1906
1907 static unsigned int forced_insn_length;
1908
1909 /* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912 static bfd_boolean mips_assembling_insn;
1913
1914 /* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
1916
1917 static segT pdr_seg;
1918
1919 /* The default target format to use. */
1920
1921 #if defined (TE_FreeBSD)
1922 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923 #elif defined (TE_TMIPS)
1924 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925 #else
1926 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927 #endif
1928
1929 const char *
1930 mips_target_format (void)
1931 {
1932 switch (OUTPUT_FLAVOR)
1933 {
1934 case bfd_target_elf_flavour:
1935 #ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940 #endif
1941 return (target_big_endian
1942 ? (HAVE_64BIT_OBJECTS
1943 ? ELF_TARGET ("elf64-", "big")
1944 : (HAVE_NEWABI
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
1947 : (HAVE_64BIT_OBJECTS
1948 ? ELF_TARGET ("elf64-", "little")
1949 : (HAVE_NEWABI
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956 }
1957
1958 /* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961 static int
1962 mips_isa_rev (void)
1963 {
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984 }
1985
1986 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988 static unsigned int
1989 mips_ase_mask (unsigned int flags)
1990 {
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997 }
1998
1999 /* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002 static void
2003 mips_check_isa_supports_ase (const struct mips_ase *ase)
2004 {
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
2021 as_warn (_("the %d-bit %s architecture does not support the"
2022 " `%s' extension"), size, base, ase->name);
2023 else
2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2025 ase->name, base, size, min_rev);
2026 }
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
2037 if ((ase->flags & FP64_ASES)
2038 && mips_opts.fp != 64
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2043 }
2044 }
2045
2046 /* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049 static void
2050 mips_check_isa_supports_ases (void)
2051 {
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060 }
2061
2062 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065 static unsigned int
2066 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
2068 {
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
2072 opts->ase &= ~mask;
2073 if (enabled_p)
2074 opts->ase |= ase->flags;
2075 return mask;
2076 }
2077
2078 /* Return the ASE called NAME, or null if none. */
2079
2080 static const struct mips_ase *
2081 mips_lookup_ase (const char *name)
2082 {
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089 }
2090
2091 /* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction.
2093 Otherwise assume a 32-bit instruction; 48-bit instructions (0x1f
2094 major opcode) will require further modifications to the opcode
2095 table. */
2096
2097 static inline unsigned int
2098 micromips_insn_length (const struct mips_opcode *mo)
2099 {
2100 return (mo->mask >> 16) == 0 ? 2 : 4;
2101 }
2102
2103 /* Return the length of MIPS16 instruction OPCODE. */
2104
2105 static inline unsigned int
2106 mips16_opcode_length (unsigned long opcode)
2107 {
2108 return (opcode >> 16) == 0 ? 2 : 4;
2109 }
2110
2111 /* Return the length of instruction INSN. */
2112
2113 static inline unsigned int
2114 insn_length (const struct mips_cl_insn *insn)
2115 {
2116 if (mips_opts.micromips)
2117 return micromips_insn_length (insn->insn_mo);
2118 else if (mips_opts.mips16)
2119 return mips16_opcode_length (insn->insn_opcode);
2120 else
2121 return 4;
2122 }
2123
2124 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2125
2126 static void
2127 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2128 {
2129 size_t i;
2130
2131 insn->insn_mo = mo;
2132 insn->insn_opcode = mo->match;
2133 insn->frag = NULL;
2134 insn->where = 0;
2135 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2136 insn->fixp[i] = NULL;
2137 insn->fixed_p = (mips_opts.noreorder > 0);
2138 insn->noreorder_p = (mips_opts.noreorder > 0);
2139 insn->mips16_absolute_jump_p = 0;
2140 insn->complete_p = 0;
2141 insn->cleared_p = 0;
2142 }
2143
2144 /* Get a list of all the operands in INSN. */
2145
2146 static const struct mips_operand_array *
2147 insn_operands (const struct mips_cl_insn *insn)
2148 {
2149 if (insn->insn_mo >= &mips_opcodes[0]
2150 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2151 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2152
2153 if (insn->insn_mo >= &mips16_opcodes[0]
2154 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2155 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2156
2157 if (insn->insn_mo >= &micromips_opcodes[0]
2158 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2159 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2160
2161 abort ();
2162 }
2163
2164 /* Get a description of operand OPNO of INSN. */
2165
2166 static const struct mips_operand *
2167 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2168 {
2169 const struct mips_operand_array *operands;
2170
2171 operands = insn_operands (insn);
2172 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2173 abort ();
2174 return operands->operand[opno];
2175 }
2176
2177 /* Install UVAL as the value of OPERAND in INSN. */
2178
2179 static inline void
2180 insn_insert_operand (struct mips_cl_insn *insn,
2181 const struct mips_operand *operand, unsigned int uval)
2182 {
2183 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2184 }
2185
2186 /* Extract the value of OPERAND from INSN. */
2187
2188 static inline unsigned
2189 insn_extract_operand (const struct mips_cl_insn *insn,
2190 const struct mips_operand *operand)
2191 {
2192 return mips_extract_operand (operand, insn->insn_opcode);
2193 }
2194
2195 /* Record the current MIPS16/microMIPS mode in now_seg. */
2196
2197 static void
2198 mips_record_compressed_mode (void)
2199 {
2200 segment_info_type *si;
2201
2202 si = seg_info (now_seg);
2203 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2204 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2205 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2206 si->tc_segment_info_data.micromips = mips_opts.micromips;
2207 }
2208
2209 /* Read a standard MIPS instruction from BUF. */
2210
2211 static unsigned long
2212 read_insn (char *buf)
2213 {
2214 if (target_big_endian)
2215 return bfd_getb32 ((bfd_byte *) buf);
2216 else
2217 return bfd_getl32 ((bfd_byte *) buf);
2218 }
2219
2220 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2221 the next byte. */
2222
2223 static char *
2224 write_insn (char *buf, unsigned int insn)
2225 {
2226 md_number_to_chars (buf, insn, 4);
2227 return buf + 4;
2228 }
2229
2230 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2231 has length LENGTH. */
2232
2233 static unsigned long
2234 read_compressed_insn (char *buf, unsigned int length)
2235 {
2236 unsigned long insn;
2237 unsigned int i;
2238
2239 insn = 0;
2240 for (i = 0; i < length; i += 2)
2241 {
2242 insn <<= 16;
2243 if (target_big_endian)
2244 insn |= bfd_getb16 ((char *) buf);
2245 else
2246 insn |= bfd_getl16 ((char *) buf);
2247 buf += 2;
2248 }
2249 return insn;
2250 }
2251
2252 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2253 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2254
2255 static char *
2256 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2257 {
2258 unsigned int i;
2259
2260 for (i = 0; i < length; i += 2)
2261 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2262 return buf + length;
2263 }
2264
2265 /* Install INSN at the location specified by its "frag" and "where" fields. */
2266
2267 static void
2268 install_insn (const struct mips_cl_insn *insn)
2269 {
2270 char *f = insn->frag->fr_literal + insn->where;
2271 if (HAVE_CODE_COMPRESSION)
2272 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2273 else
2274 write_insn (f, insn->insn_opcode);
2275 mips_record_compressed_mode ();
2276 }
2277
2278 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2279 and install the opcode in the new location. */
2280
2281 static void
2282 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2283 {
2284 size_t i;
2285
2286 insn->frag = frag;
2287 insn->where = where;
2288 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2289 if (insn->fixp[i] != NULL)
2290 {
2291 insn->fixp[i]->fx_frag = frag;
2292 insn->fixp[i]->fx_where = where;
2293 }
2294 install_insn (insn);
2295 }
2296
2297 /* Add INSN to the end of the output. */
2298
2299 static void
2300 add_fixed_insn (struct mips_cl_insn *insn)
2301 {
2302 char *f = frag_more (insn_length (insn));
2303 move_insn (insn, frag_now, f - frag_now->fr_literal);
2304 }
2305
2306 /* Start a variant frag and move INSN to the start of the variant part,
2307 marking it as fixed. The other arguments are as for frag_var. */
2308
2309 static void
2310 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2311 relax_substateT subtype, symbolS *symbol, offsetT offset)
2312 {
2313 frag_grow (max_chars);
2314 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2315 insn->fixed_p = 1;
2316 frag_var (rs_machine_dependent, max_chars, var,
2317 subtype, symbol, offset, NULL);
2318 }
2319
2320 /* Insert N copies of INSN into the history buffer, starting at
2321 position FIRST. Neither FIRST nor N need to be clipped. */
2322
2323 static void
2324 insert_into_history (unsigned int first, unsigned int n,
2325 const struct mips_cl_insn *insn)
2326 {
2327 if (mips_relax.sequence != 2)
2328 {
2329 unsigned int i;
2330
2331 for (i = ARRAY_SIZE (history); i-- > first;)
2332 if (i >= first + n)
2333 history[i] = history[i - n];
2334 else
2335 history[i] = *insn;
2336 }
2337 }
2338
2339 /* Clear the error in insn_error. */
2340
2341 static void
2342 clear_insn_error (void)
2343 {
2344 memset (&insn_error, 0, sizeof (insn_error));
2345 }
2346
2347 /* Possibly record error message MSG for the current instruction.
2348 If the error is about a particular argument, ARGNUM is the 1-based
2349 number of that argument, otherwise it is 0. FORMAT is the format
2350 of MSG. Return true if MSG was used, false if the current message
2351 was kept. */
2352
2353 static bfd_boolean
2354 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2355 const char *msg)
2356 {
2357 if (argnum == 0)
2358 {
2359 /* Give priority to errors against specific arguments, and to
2360 the first whole-instruction message. */
2361 if (insn_error.msg)
2362 return FALSE;
2363 }
2364 else
2365 {
2366 /* Keep insn_error if it is against a later argument. */
2367 if (argnum < insn_error.min_argnum)
2368 return FALSE;
2369
2370 /* If both errors are against the same argument but are different,
2371 give up on reporting a specific error for this argument.
2372 See the comment about mips_insn_error for details. */
2373 if (argnum == insn_error.min_argnum
2374 && insn_error.msg
2375 && strcmp (insn_error.msg, msg) != 0)
2376 {
2377 insn_error.msg = 0;
2378 insn_error.min_argnum += 1;
2379 return FALSE;
2380 }
2381 }
2382 insn_error.min_argnum = argnum;
2383 insn_error.format = format;
2384 insn_error.msg = msg;
2385 return TRUE;
2386 }
2387
2388 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2389 as for set_insn_error_format. */
2390
2391 static void
2392 set_insn_error (int argnum, const char *msg)
2393 {
2394 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2395 }
2396
2397 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2398 as for set_insn_error_format. */
2399
2400 static void
2401 set_insn_error_i (int argnum, const char *msg, int i)
2402 {
2403 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2404 insn_error.u.i = i;
2405 }
2406
2407 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2408 are as for set_insn_error_format. */
2409
2410 static void
2411 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2412 {
2413 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2414 {
2415 insn_error.u.ss[0] = s1;
2416 insn_error.u.ss[1] = s2;
2417 }
2418 }
2419
2420 /* Report the error in insn_error, which is against assembly code STR. */
2421
2422 static void
2423 report_insn_error (const char *str)
2424 {
2425 const char *msg;
2426
2427 msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
2428 switch (insn_error.format)
2429 {
2430 case ERR_FMT_PLAIN:
2431 as_bad (msg, str);
2432 break;
2433
2434 case ERR_FMT_I:
2435 as_bad (msg, insn_error.u.i, str);
2436 break;
2437
2438 case ERR_FMT_SS:
2439 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2440 break;
2441 }
2442 }
2443
2444 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2445 the idea is to make it obvious at a glance that each errata is
2446 included. */
2447
2448 static void
2449 init_vr4120_conflicts (void)
2450 {
2451 #define CONFLICT(FIRST, SECOND) \
2452 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2453
2454 /* Errata 21 - [D]DIV[U] after [D]MACC */
2455 CONFLICT (MACC, DIV);
2456 CONFLICT (DMACC, DIV);
2457
2458 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2459 CONFLICT (DMULT, DMULT);
2460 CONFLICT (DMULT, DMACC);
2461 CONFLICT (DMACC, DMULT);
2462 CONFLICT (DMACC, DMACC);
2463
2464 /* Errata 24 - MT{LO,HI} after [D]MACC */
2465 CONFLICT (MACC, MTHILO);
2466 CONFLICT (DMACC, MTHILO);
2467
2468 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2469 instruction is executed immediately after a MACC or DMACC
2470 instruction, the result of [either instruction] is incorrect." */
2471 CONFLICT (MACC, MULT);
2472 CONFLICT (MACC, DMULT);
2473 CONFLICT (DMACC, MULT);
2474 CONFLICT (DMACC, DMULT);
2475
2476 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2477 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2478 DDIV or DDIVU instruction, the result of the MACC or
2479 DMACC instruction is incorrect.". */
2480 CONFLICT (DMULT, MACC);
2481 CONFLICT (DMULT, DMACC);
2482 CONFLICT (DIV, MACC);
2483 CONFLICT (DIV, DMACC);
2484
2485 #undef CONFLICT
2486 }
2487
2488 struct regname {
2489 const char *name;
2490 unsigned int num;
2491 };
2492
2493 #define RNUM_MASK 0x00000ff
2494 #define RTYPE_MASK 0x0ffff00
2495 #define RTYPE_NUM 0x0000100
2496 #define RTYPE_FPU 0x0000200
2497 #define RTYPE_FCC 0x0000400
2498 #define RTYPE_VEC 0x0000800
2499 #define RTYPE_GP 0x0001000
2500 #define RTYPE_CP0 0x0002000
2501 #define RTYPE_PC 0x0004000
2502 #define RTYPE_ACC 0x0008000
2503 #define RTYPE_CCC 0x0010000
2504 #define RTYPE_VI 0x0020000
2505 #define RTYPE_VF 0x0040000
2506 #define RTYPE_R5900_I 0x0080000
2507 #define RTYPE_R5900_Q 0x0100000
2508 #define RTYPE_R5900_R 0x0200000
2509 #define RTYPE_R5900_ACC 0x0400000
2510 #define RTYPE_MSA 0x0800000
2511 #define RWARN 0x8000000
2512
2513 #define GENERIC_REGISTER_NUMBERS \
2514 {"$0", RTYPE_NUM | 0}, \
2515 {"$1", RTYPE_NUM | 1}, \
2516 {"$2", RTYPE_NUM | 2}, \
2517 {"$3", RTYPE_NUM | 3}, \
2518 {"$4", RTYPE_NUM | 4}, \
2519 {"$5", RTYPE_NUM | 5}, \
2520 {"$6", RTYPE_NUM | 6}, \
2521 {"$7", RTYPE_NUM | 7}, \
2522 {"$8", RTYPE_NUM | 8}, \
2523 {"$9", RTYPE_NUM | 9}, \
2524 {"$10", RTYPE_NUM | 10}, \
2525 {"$11", RTYPE_NUM | 11}, \
2526 {"$12", RTYPE_NUM | 12}, \
2527 {"$13", RTYPE_NUM | 13}, \
2528 {"$14", RTYPE_NUM | 14}, \
2529 {"$15", RTYPE_NUM | 15}, \
2530 {"$16", RTYPE_NUM | 16}, \
2531 {"$17", RTYPE_NUM | 17}, \
2532 {"$18", RTYPE_NUM | 18}, \
2533 {"$19", RTYPE_NUM | 19}, \
2534 {"$20", RTYPE_NUM | 20}, \
2535 {"$21", RTYPE_NUM | 21}, \
2536 {"$22", RTYPE_NUM | 22}, \
2537 {"$23", RTYPE_NUM | 23}, \
2538 {"$24", RTYPE_NUM | 24}, \
2539 {"$25", RTYPE_NUM | 25}, \
2540 {"$26", RTYPE_NUM | 26}, \
2541 {"$27", RTYPE_NUM | 27}, \
2542 {"$28", RTYPE_NUM | 28}, \
2543 {"$29", RTYPE_NUM | 29}, \
2544 {"$30", RTYPE_NUM | 30}, \
2545 {"$31", RTYPE_NUM | 31}
2546
2547 #define FPU_REGISTER_NAMES \
2548 {"$f0", RTYPE_FPU | 0}, \
2549 {"$f1", RTYPE_FPU | 1}, \
2550 {"$f2", RTYPE_FPU | 2}, \
2551 {"$f3", RTYPE_FPU | 3}, \
2552 {"$f4", RTYPE_FPU | 4}, \
2553 {"$f5", RTYPE_FPU | 5}, \
2554 {"$f6", RTYPE_FPU | 6}, \
2555 {"$f7", RTYPE_FPU | 7}, \
2556 {"$f8", RTYPE_FPU | 8}, \
2557 {"$f9", RTYPE_FPU | 9}, \
2558 {"$f10", RTYPE_FPU | 10}, \
2559 {"$f11", RTYPE_FPU | 11}, \
2560 {"$f12", RTYPE_FPU | 12}, \
2561 {"$f13", RTYPE_FPU | 13}, \
2562 {"$f14", RTYPE_FPU | 14}, \
2563 {"$f15", RTYPE_FPU | 15}, \
2564 {"$f16", RTYPE_FPU | 16}, \
2565 {"$f17", RTYPE_FPU | 17}, \
2566 {"$f18", RTYPE_FPU | 18}, \
2567 {"$f19", RTYPE_FPU | 19}, \
2568 {"$f20", RTYPE_FPU | 20}, \
2569 {"$f21", RTYPE_FPU | 21}, \
2570 {"$f22", RTYPE_FPU | 22}, \
2571 {"$f23", RTYPE_FPU | 23}, \
2572 {"$f24", RTYPE_FPU | 24}, \
2573 {"$f25", RTYPE_FPU | 25}, \
2574 {"$f26", RTYPE_FPU | 26}, \
2575 {"$f27", RTYPE_FPU | 27}, \
2576 {"$f28", RTYPE_FPU | 28}, \
2577 {"$f29", RTYPE_FPU | 29}, \
2578 {"$f30", RTYPE_FPU | 30}, \
2579 {"$f31", RTYPE_FPU | 31}
2580
2581 #define FPU_CONDITION_CODE_NAMES \
2582 {"$fcc0", RTYPE_FCC | 0}, \
2583 {"$fcc1", RTYPE_FCC | 1}, \
2584 {"$fcc2", RTYPE_FCC | 2}, \
2585 {"$fcc3", RTYPE_FCC | 3}, \
2586 {"$fcc4", RTYPE_FCC | 4}, \
2587 {"$fcc5", RTYPE_FCC | 5}, \
2588 {"$fcc6", RTYPE_FCC | 6}, \
2589 {"$fcc7", RTYPE_FCC | 7}
2590
2591 #define COPROC_CONDITION_CODE_NAMES \
2592 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2593 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2594 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2595 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2596 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2597 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2598 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2599 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2600
2601 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2602 {"$a4", RTYPE_GP | 8}, \
2603 {"$a5", RTYPE_GP | 9}, \
2604 {"$a6", RTYPE_GP | 10}, \
2605 {"$a7", RTYPE_GP | 11}, \
2606 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2607 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2608 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2609 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2610 {"$t0", RTYPE_GP | 12}, \
2611 {"$t1", RTYPE_GP | 13}, \
2612 {"$t2", RTYPE_GP | 14}, \
2613 {"$t3", RTYPE_GP | 15}
2614
2615 #define O32_SYMBOLIC_REGISTER_NAMES \
2616 {"$t0", RTYPE_GP | 8}, \
2617 {"$t1", RTYPE_GP | 9}, \
2618 {"$t2", RTYPE_GP | 10}, \
2619 {"$t3", RTYPE_GP | 11}, \
2620 {"$t4", RTYPE_GP | 12}, \
2621 {"$t5", RTYPE_GP | 13}, \
2622 {"$t6", RTYPE_GP | 14}, \
2623 {"$t7", RTYPE_GP | 15}, \
2624 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2625 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2626 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2627 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2628
2629 /* Remaining symbolic register names */
2630 #define SYMBOLIC_REGISTER_NAMES \
2631 {"$zero", RTYPE_GP | 0}, \
2632 {"$at", RTYPE_GP | 1}, \
2633 {"$AT", RTYPE_GP | 1}, \
2634 {"$v0", RTYPE_GP | 2}, \
2635 {"$v1", RTYPE_GP | 3}, \
2636 {"$a0", RTYPE_GP | 4}, \
2637 {"$a1", RTYPE_GP | 5}, \
2638 {"$a2", RTYPE_GP | 6}, \
2639 {"$a3", RTYPE_GP | 7}, \
2640 {"$s0", RTYPE_GP | 16}, \
2641 {"$s1", RTYPE_GP | 17}, \
2642 {"$s2", RTYPE_GP | 18}, \
2643 {"$s3", RTYPE_GP | 19}, \
2644 {"$s4", RTYPE_GP | 20}, \
2645 {"$s5", RTYPE_GP | 21}, \
2646 {"$s6", RTYPE_GP | 22}, \
2647 {"$s7", RTYPE_GP | 23}, \
2648 {"$t8", RTYPE_GP | 24}, \
2649 {"$t9", RTYPE_GP | 25}, \
2650 {"$k0", RTYPE_GP | 26}, \
2651 {"$kt0", RTYPE_GP | 26}, \
2652 {"$k1", RTYPE_GP | 27}, \
2653 {"$kt1", RTYPE_GP | 27}, \
2654 {"$gp", RTYPE_GP | 28}, \
2655 {"$sp", RTYPE_GP | 29}, \
2656 {"$s8", RTYPE_GP | 30}, \
2657 {"$fp", RTYPE_GP | 30}, \
2658 {"$ra", RTYPE_GP | 31}
2659
2660 #define MIPS16_SPECIAL_REGISTER_NAMES \
2661 {"$pc", RTYPE_PC | 0}
2662
2663 #define MDMX_VECTOR_REGISTER_NAMES \
2664 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2665 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2666 {"$v2", RTYPE_VEC | 2}, \
2667 {"$v3", RTYPE_VEC | 3}, \
2668 {"$v4", RTYPE_VEC | 4}, \
2669 {"$v5", RTYPE_VEC | 5}, \
2670 {"$v6", RTYPE_VEC | 6}, \
2671 {"$v7", RTYPE_VEC | 7}, \
2672 {"$v8", RTYPE_VEC | 8}, \
2673 {"$v9", RTYPE_VEC | 9}, \
2674 {"$v10", RTYPE_VEC | 10}, \
2675 {"$v11", RTYPE_VEC | 11}, \
2676 {"$v12", RTYPE_VEC | 12}, \
2677 {"$v13", RTYPE_VEC | 13}, \
2678 {"$v14", RTYPE_VEC | 14}, \
2679 {"$v15", RTYPE_VEC | 15}, \
2680 {"$v16", RTYPE_VEC | 16}, \
2681 {"$v17", RTYPE_VEC | 17}, \
2682 {"$v18", RTYPE_VEC | 18}, \
2683 {"$v19", RTYPE_VEC | 19}, \
2684 {"$v20", RTYPE_VEC | 20}, \
2685 {"$v21", RTYPE_VEC | 21}, \
2686 {"$v22", RTYPE_VEC | 22}, \
2687 {"$v23", RTYPE_VEC | 23}, \
2688 {"$v24", RTYPE_VEC | 24}, \
2689 {"$v25", RTYPE_VEC | 25}, \
2690 {"$v26", RTYPE_VEC | 26}, \
2691 {"$v27", RTYPE_VEC | 27}, \
2692 {"$v28", RTYPE_VEC | 28}, \
2693 {"$v29", RTYPE_VEC | 29}, \
2694 {"$v30", RTYPE_VEC | 30}, \
2695 {"$v31", RTYPE_VEC | 31}
2696
2697 #define R5900_I_NAMES \
2698 {"$I", RTYPE_R5900_I | 0}
2699
2700 #define R5900_Q_NAMES \
2701 {"$Q", RTYPE_R5900_Q | 0}
2702
2703 #define R5900_R_NAMES \
2704 {"$R", RTYPE_R5900_R | 0}
2705
2706 #define R5900_ACC_NAMES \
2707 {"$ACC", RTYPE_R5900_ACC | 0 }
2708
2709 #define MIPS_DSP_ACCUMULATOR_NAMES \
2710 {"$ac0", RTYPE_ACC | 0}, \
2711 {"$ac1", RTYPE_ACC | 1}, \
2712 {"$ac2", RTYPE_ACC | 2}, \
2713 {"$ac3", RTYPE_ACC | 3}
2714
2715 static const struct regname reg_names[] = {
2716 GENERIC_REGISTER_NUMBERS,
2717 FPU_REGISTER_NAMES,
2718 FPU_CONDITION_CODE_NAMES,
2719 COPROC_CONDITION_CODE_NAMES,
2720
2721 /* The $txx registers depends on the abi,
2722 these will be added later into the symbol table from
2723 one of the tables below once mips_abi is set after
2724 parsing of arguments from the command line. */
2725 SYMBOLIC_REGISTER_NAMES,
2726
2727 MIPS16_SPECIAL_REGISTER_NAMES,
2728 MDMX_VECTOR_REGISTER_NAMES,
2729 R5900_I_NAMES,
2730 R5900_Q_NAMES,
2731 R5900_R_NAMES,
2732 R5900_ACC_NAMES,
2733 MIPS_DSP_ACCUMULATOR_NAMES,
2734 {0, 0}
2735 };
2736
2737 static const struct regname reg_names_o32[] = {
2738 O32_SYMBOLIC_REGISTER_NAMES,
2739 {0, 0}
2740 };
2741
2742 static const struct regname reg_names_n32n64[] = {
2743 N32N64_SYMBOLIC_REGISTER_NAMES,
2744 {0, 0}
2745 };
2746
2747 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2748 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2749 of these register symbols, return the associated vector register,
2750 otherwise return SYMVAL itself. */
2751
2752 static unsigned int
2753 mips_prefer_vec_regno (unsigned int symval)
2754 {
2755 if ((symval & -2) == (RTYPE_GP | 2))
2756 return RTYPE_VEC | (symval & 1);
2757 return symval;
2758 }
2759
2760 /* Return true if string [S, E) is a valid register name, storing its
2761 symbol value in *SYMVAL_PTR if so. */
2762
2763 static bfd_boolean
2764 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2765 {
2766 char save_c;
2767 symbolS *symbol;
2768
2769 /* Terminate name. */
2770 save_c = *e;
2771 *e = '\0';
2772
2773 /* Look up the name. */
2774 symbol = symbol_find (s);
2775 *e = save_c;
2776
2777 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2778 return FALSE;
2779
2780 *symval_ptr = S_GET_VALUE (symbol);
2781 return TRUE;
2782 }
2783
2784 /* Return true if the string at *SPTR is a valid register name. Allow it
2785 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2786 is nonnull.
2787
2788 When returning true, move *SPTR past the register, store the
2789 register's symbol value in *SYMVAL_PTR and the channel mask in
2790 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2791 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2792 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2793
2794 static bfd_boolean
2795 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2796 unsigned int *channels_ptr)
2797 {
2798 char *s, *e, *m;
2799 const char *q;
2800 unsigned int channels, symval, bit;
2801
2802 /* Find end of name. */
2803 s = e = *sptr;
2804 if (is_name_beginner (*e))
2805 ++e;
2806 while (is_part_of_name (*e))
2807 ++e;
2808
2809 channels = 0;
2810 if (!mips_parse_register_1 (s, e, &symval))
2811 {
2812 if (!channels_ptr)
2813 return FALSE;
2814
2815 /* Eat characters from the end of the string that are valid
2816 channel suffixes. The preceding register must be $ACC or
2817 end with a digit, so there is no ambiguity. */
2818 bit = 1;
2819 m = e;
2820 for (q = "wzyx"; *q; q++, bit <<= 1)
2821 if (m > s && m[-1] == *q)
2822 {
2823 --m;
2824 channels |= bit;
2825 }
2826
2827 if (channels == 0
2828 || !mips_parse_register_1 (s, m, &symval)
2829 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2830 return FALSE;
2831 }
2832
2833 *sptr = e;
2834 *symval_ptr = symval;
2835 if (channels_ptr)
2836 *channels_ptr = channels;
2837 return TRUE;
2838 }
2839
2840 /* Check if SPTR points at a valid register specifier according to TYPES.
2841 If so, then return 1, advance S to consume the specifier and store
2842 the register's number in REGNOP, otherwise return 0. */
2843
2844 static int
2845 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2846 {
2847 unsigned int regno;
2848
2849 if (mips_parse_register (s, &regno, NULL))
2850 {
2851 if (types & RTYPE_VEC)
2852 regno = mips_prefer_vec_regno (regno);
2853 if (regno & types)
2854 regno &= RNUM_MASK;
2855 else
2856 regno = ~0;
2857 }
2858 else
2859 {
2860 if (types & RWARN)
2861 as_warn (_("unrecognized register name `%s'"), *s);
2862 regno = ~0;
2863 }
2864 if (regnop)
2865 *regnop = regno;
2866 return regno <= RNUM_MASK;
2867 }
2868
2869 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2870 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2871
2872 static char *
2873 mips_parse_vu0_channels (char *s, unsigned int *channels)
2874 {
2875 unsigned int i;
2876
2877 *channels = 0;
2878 for (i = 0; i < 4; i++)
2879 if (*s == "xyzw"[i])
2880 {
2881 *channels |= 1 << (3 - i);
2882 ++s;
2883 }
2884 return s;
2885 }
2886
2887 /* Token types for parsed operand lists. */
2888 enum mips_operand_token_type {
2889 /* A plain register, e.g. $f2. */
2890 OT_REG,
2891
2892 /* A 4-bit XYZW channel mask. */
2893 OT_CHANNELS,
2894
2895 /* A constant vector index, e.g. [1]. */
2896 OT_INTEGER_INDEX,
2897
2898 /* A register vector index, e.g. [$2]. */
2899 OT_REG_INDEX,
2900
2901 /* A continuous range of registers, e.g. $s0-$s4. */
2902 OT_REG_RANGE,
2903
2904 /* A (possibly relocated) expression. */
2905 OT_INTEGER,
2906
2907 /* A floating-point value. */
2908 OT_FLOAT,
2909
2910 /* A single character. This can be '(', ')' or ',', but '(' only appears
2911 before OT_REGs. */
2912 OT_CHAR,
2913
2914 /* A doubled character, either "--" or "++". */
2915 OT_DOUBLE_CHAR,
2916
2917 /* The end of the operand list. */
2918 OT_END
2919 };
2920
2921 /* A parsed operand token. */
2922 struct mips_operand_token
2923 {
2924 /* The type of token. */
2925 enum mips_operand_token_type type;
2926 union
2927 {
2928 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2929 unsigned int regno;
2930
2931 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2932 unsigned int channels;
2933
2934 /* The integer value of an OT_INTEGER_INDEX. */
2935 addressT index;
2936
2937 /* The two register symbol values involved in an OT_REG_RANGE. */
2938 struct {
2939 unsigned int regno1;
2940 unsigned int regno2;
2941 } reg_range;
2942
2943 /* The value of an OT_INTEGER. The value is represented as an
2944 expression and the relocation operators that were applied to
2945 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2946 relocation operators were used. */
2947 struct {
2948 expressionS value;
2949 bfd_reloc_code_real_type relocs[3];
2950 } integer;
2951
2952 /* The binary data for an OT_FLOAT constant, and the number of bytes
2953 in the constant. */
2954 struct {
2955 unsigned char data[8];
2956 int length;
2957 } flt;
2958
2959 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2960 char ch;
2961 } u;
2962 };
2963
2964 /* An obstack used to construct lists of mips_operand_tokens. */
2965 static struct obstack mips_operand_tokens;
2966
2967 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2968
2969 static void
2970 mips_add_token (struct mips_operand_token *token,
2971 enum mips_operand_token_type type)
2972 {
2973 token->type = type;
2974 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2975 }
2976
2977 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2978 and OT_REG tokens for them if so, and return a pointer to the first
2979 unconsumed character. Return null otherwise. */
2980
2981 static char *
2982 mips_parse_base_start (char *s)
2983 {
2984 struct mips_operand_token token;
2985 unsigned int regno, channels;
2986 bfd_boolean decrement_p;
2987
2988 if (*s != '(')
2989 return 0;
2990
2991 ++s;
2992 SKIP_SPACE_TABS (s);
2993
2994 /* Only match "--" as part of a base expression. In other contexts "--X"
2995 is a double negative. */
2996 decrement_p = (s[0] == '-' && s[1] == '-');
2997 if (decrement_p)
2998 {
2999 s += 2;
3000 SKIP_SPACE_TABS (s);
3001 }
3002
3003 /* Allow a channel specifier because that leads to better error messages
3004 than treating something like "$vf0x++" as an expression. */
3005 if (!mips_parse_register (&s, &regno, &channels))
3006 return 0;
3007
3008 token.u.ch = '(';
3009 mips_add_token (&token, OT_CHAR);
3010
3011 if (decrement_p)
3012 {
3013 token.u.ch = '-';
3014 mips_add_token (&token, OT_DOUBLE_CHAR);
3015 }
3016
3017 token.u.regno = regno;
3018 mips_add_token (&token, OT_REG);
3019
3020 if (channels)
3021 {
3022 token.u.channels = channels;
3023 mips_add_token (&token, OT_CHANNELS);
3024 }
3025
3026 /* For consistency, only match "++" as part of base expressions too. */
3027 SKIP_SPACE_TABS (s);
3028 if (s[0] == '+' && s[1] == '+')
3029 {
3030 s += 2;
3031 token.u.ch = '+';
3032 mips_add_token (&token, OT_DOUBLE_CHAR);
3033 }
3034
3035 return s;
3036 }
3037
3038 /* Parse one or more tokens from S. Return a pointer to the first
3039 unconsumed character on success. Return null if an error was found
3040 and store the error text in insn_error. FLOAT_FORMAT is as for
3041 mips_parse_arguments. */
3042
3043 static char *
3044 mips_parse_argument_token (char *s, char float_format)
3045 {
3046 char *end, *save_in, *err;
3047 unsigned int regno1, regno2, channels;
3048 struct mips_operand_token token;
3049
3050 /* First look for "($reg", since we want to treat that as an
3051 OT_CHAR and OT_REG rather than an expression. */
3052 end = mips_parse_base_start (s);
3053 if (end)
3054 return end;
3055
3056 /* Handle other characters that end up as OT_CHARs. */
3057 if (*s == ')' || *s == ',')
3058 {
3059 token.u.ch = *s;
3060 mips_add_token (&token, OT_CHAR);
3061 ++s;
3062 return s;
3063 }
3064
3065 /* Handle tokens that start with a register. */
3066 if (mips_parse_register (&s, &regno1, &channels))
3067 {
3068 if (channels)
3069 {
3070 /* A register and a VU0 channel suffix. */
3071 token.u.regno = regno1;
3072 mips_add_token (&token, OT_REG);
3073
3074 token.u.channels = channels;
3075 mips_add_token (&token, OT_CHANNELS);
3076 return s;
3077 }
3078
3079 SKIP_SPACE_TABS (s);
3080 if (*s == '-')
3081 {
3082 /* A register range. */
3083 ++s;
3084 SKIP_SPACE_TABS (s);
3085 if (!mips_parse_register (&s, &regno2, NULL))
3086 {
3087 set_insn_error (0, _("invalid register range"));
3088 return 0;
3089 }
3090
3091 token.u.reg_range.regno1 = regno1;
3092 token.u.reg_range.regno2 = regno2;
3093 mips_add_token (&token, OT_REG_RANGE);
3094 return s;
3095 }
3096
3097 /* Add the register itself. */
3098 token.u.regno = regno1;
3099 mips_add_token (&token, OT_REG);
3100
3101 /* Check for a vector index. */
3102 if (*s == '[')
3103 {
3104 ++s;
3105 SKIP_SPACE_TABS (s);
3106 if (mips_parse_register (&s, &token.u.regno, NULL))
3107 mips_add_token (&token, OT_REG_INDEX);
3108 else
3109 {
3110 expressionS element;
3111
3112 my_getExpression (&element, s);
3113 if (element.X_op != O_constant)
3114 {
3115 set_insn_error (0, _("vector element must be constant"));
3116 return 0;
3117 }
3118 s = expr_end;
3119 token.u.index = element.X_add_number;
3120 mips_add_token (&token, OT_INTEGER_INDEX);
3121 }
3122 SKIP_SPACE_TABS (s);
3123 if (*s != ']')
3124 {
3125 set_insn_error (0, _("missing `]'"));
3126 return 0;
3127 }
3128 ++s;
3129 }
3130 return s;
3131 }
3132
3133 if (float_format)
3134 {
3135 /* First try to treat expressions as floats. */
3136 save_in = input_line_pointer;
3137 input_line_pointer = s;
3138 err = md_atof (float_format, (char *) token.u.flt.data,
3139 &token.u.flt.length);
3140 end = input_line_pointer;
3141 input_line_pointer = save_in;
3142 if (err && *err)
3143 {
3144 set_insn_error (0, err);
3145 return 0;
3146 }
3147 if (s != end)
3148 {
3149 mips_add_token (&token, OT_FLOAT);
3150 return end;
3151 }
3152 }
3153
3154 /* Treat everything else as an integer expression. */
3155 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3156 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3157 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3158 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3159 s = expr_end;
3160 mips_add_token (&token, OT_INTEGER);
3161 return s;
3162 }
3163
3164 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3165 if expressions should be treated as 32-bit floating-point constants,
3166 'd' if they should be treated as 64-bit floating-point constants,
3167 or 0 if they should be treated as integer expressions (the usual case).
3168
3169 Return a list of tokens on success, otherwise return 0. The caller
3170 must obstack_free the list after use. */
3171
3172 static struct mips_operand_token *
3173 mips_parse_arguments (char *s, char float_format)
3174 {
3175 struct mips_operand_token token;
3176
3177 SKIP_SPACE_TABS (s);
3178 while (*s)
3179 {
3180 s = mips_parse_argument_token (s, float_format);
3181 if (!s)
3182 {
3183 obstack_free (&mips_operand_tokens,
3184 obstack_finish (&mips_operand_tokens));
3185 return 0;
3186 }
3187 SKIP_SPACE_TABS (s);
3188 }
3189 mips_add_token (&token, OT_END);
3190 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3191 }
3192
3193 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3194 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3195
3196 static bfd_boolean
3197 is_opcode_valid (const struct mips_opcode *mo)
3198 {
3199 int isa = mips_opts.isa;
3200 int ase = mips_opts.ase;
3201 int fp_s, fp_d;
3202 unsigned int i;
3203
3204 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3205 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3206 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3207 ase |= mips_ases[i].flags64;
3208
3209 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3210 return FALSE;
3211
3212 /* Check whether the instruction or macro requires single-precision or
3213 double-precision floating-point support. Note that this information is
3214 stored differently in the opcode table for insns and macros. */
3215 if (mo->pinfo == INSN_MACRO)
3216 {
3217 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3218 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3219 }
3220 else
3221 {
3222 fp_s = mo->pinfo & FP_S;
3223 fp_d = mo->pinfo & FP_D;
3224 }
3225
3226 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3227 return FALSE;
3228
3229 if (fp_s && mips_opts.soft_float)
3230 return FALSE;
3231
3232 return TRUE;
3233 }
3234
3235 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3236 selected ISA and architecture. */
3237
3238 static bfd_boolean
3239 is_opcode_valid_16 (const struct mips_opcode *mo)
3240 {
3241 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3242 }
3243
3244 /* Return TRUE if the size of the microMIPS opcode MO matches one
3245 explicitly requested. Always TRUE in the standard MIPS mode. */
3246
3247 static bfd_boolean
3248 is_size_valid (const struct mips_opcode *mo)
3249 {
3250 if (!mips_opts.micromips)
3251 return TRUE;
3252
3253 if (mips_opts.insn32)
3254 {
3255 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3256 return FALSE;
3257 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3258 return FALSE;
3259 }
3260 if (!forced_insn_length)
3261 return TRUE;
3262 if (mo->pinfo == INSN_MACRO)
3263 return FALSE;
3264 return forced_insn_length == micromips_insn_length (mo);
3265 }
3266
3267 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3268 of the preceding instruction. Always TRUE in the standard MIPS mode.
3269
3270 We don't accept macros in 16-bit delay slots to avoid a case where
3271 a macro expansion fails because it relies on a preceding 32-bit real
3272 instruction to have matched and does not handle the operands correctly.
3273 The only macros that may expand to 16-bit instructions are JAL that
3274 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3275 and BGT (that likewise cannot be placed in a delay slot) that decay to
3276 a NOP. In all these cases the macros precede any corresponding real
3277 instruction definitions in the opcode table, so they will match in the
3278 second pass where the size of the delay slot is ignored and therefore
3279 produce correct code. */
3280
3281 static bfd_boolean
3282 is_delay_slot_valid (const struct mips_opcode *mo)
3283 {
3284 if (!mips_opts.micromips)
3285 return TRUE;
3286
3287 if (mo->pinfo == INSN_MACRO)
3288 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3289 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3290 && micromips_insn_length (mo) != 4)
3291 return FALSE;
3292 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3293 && micromips_insn_length (mo) != 2)
3294 return FALSE;
3295
3296 return TRUE;
3297 }
3298
3299 /* For consistency checking, verify that all bits of OPCODE are specified
3300 either by the match/mask part of the instruction definition, or by the
3301 operand list. Also build up a list of operands in OPERANDS.
3302
3303 INSN_BITS says which bits of the instruction are significant.
3304 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3305 provides the mips_operand description of each operand. DECODE_OPERAND
3306 is null for MIPS16 instructions. */
3307
3308 static int
3309 validate_mips_insn (const struct mips_opcode *opcode,
3310 unsigned long insn_bits,
3311 const struct mips_operand *(*decode_operand) (const char *),
3312 struct mips_operand_array *operands)
3313 {
3314 const char *s;
3315 unsigned long used_bits, doubled, undefined, opno, mask;
3316 const struct mips_operand *operand;
3317
3318 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3319 if ((mask & opcode->match) != opcode->match)
3320 {
3321 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3322 opcode->name, opcode->args);
3323 return 0;
3324 }
3325 used_bits = 0;
3326 opno = 0;
3327 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3328 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3329 for (s = opcode->args; *s; ++s)
3330 switch (*s)
3331 {
3332 case ',':
3333 case '(':
3334 case ')':
3335 break;
3336
3337 case '#':
3338 s++;
3339 break;
3340
3341 default:
3342 if (!decode_operand)
3343 operand = decode_mips16_operand (*s, FALSE);
3344 else
3345 operand = decode_operand (s);
3346 if (!operand && opcode->pinfo != INSN_MACRO)
3347 {
3348 as_bad (_("internal: unknown operand type: %s %s"),
3349 opcode->name, opcode->args);
3350 return 0;
3351 }
3352 gas_assert (opno < MAX_OPERANDS);
3353 operands->operand[opno] = operand;
3354 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3355 {
3356 used_bits = mips_insert_operand (operand, used_bits, -1);
3357 if (operand->type == OP_MDMX_IMM_REG)
3358 /* Bit 5 is the format selector (OB vs QH). The opcode table
3359 has separate entries for each format. */
3360 used_bits &= ~(1 << (operand->lsb + 5));
3361 if (operand->type == OP_ENTRY_EXIT_LIST)
3362 used_bits &= ~(mask & 0x700);
3363 }
3364 /* Skip prefix characters. */
3365 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3366 ++s;
3367 opno += 1;
3368 break;
3369 }
3370 doubled = used_bits & mask & insn_bits;
3371 if (doubled)
3372 {
3373 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3374 " %s %s"), doubled, opcode->name, opcode->args);
3375 return 0;
3376 }
3377 used_bits |= mask;
3378 undefined = ~used_bits & insn_bits;
3379 if (opcode->pinfo != INSN_MACRO && undefined)
3380 {
3381 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3382 undefined, opcode->name, opcode->args);
3383 return 0;
3384 }
3385 used_bits &= ~insn_bits;
3386 if (used_bits)
3387 {
3388 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3389 used_bits, opcode->name, opcode->args);
3390 return 0;
3391 }
3392 return 1;
3393 }
3394
3395 /* The MIPS16 version of validate_mips_insn. */
3396
3397 static int
3398 validate_mips16_insn (const struct mips_opcode *opcode,
3399 struct mips_operand_array *operands)
3400 {
3401 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3402 {
3403 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3404 instruction. Use TMP to describe the full instruction. */
3405 struct mips_opcode tmp;
3406
3407 tmp = *opcode;
3408 tmp.match <<= 16;
3409 tmp.mask <<= 16;
3410 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3411 }
3412 return validate_mips_insn (opcode, 0xffff, 0, operands);
3413 }
3414
3415 /* The microMIPS version of validate_mips_insn. */
3416
3417 static int
3418 validate_micromips_insn (const struct mips_opcode *opc,
3419 struct mips_operand_array *operands)
3420 {
3421 unsigned long insn_bits;
3422 unsigned long major;
3423 unsigned int length;
3424
3425 if (opc->pinfo == INSN_MACRO)
3426 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3427 operands);
3428
3429 length = micromips_insn_length (opc);
3430 if (length != 2 && length != 4)
3431 {
3432 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3433 "%s %s"), length, opc->name, opc->args);
3434 return 0;
3435 }
3436 major = opc->match >> (10 + 8 * (length - 2));
3437 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3438 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3439 {
3440 as_bad (_("internal error: bad microMIPS opcode "
3441 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3442 return 0;
3443 }
3444
3445 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3446 insn_bits = 1 << 4 * length;
3447 insn_bits <<= 4 * length;
3448 insn_bits -= 1;
3449 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3450 operands);
3451 }
3452
3453 /* This function is called once, at assembler startup time. It should set up
3454 all the tables, etc. that the MD part of the assembler will need. */
3455
3456 void
3457 md_begin (void)
3458 {
3459 const char *retval = NULL;
3460 int i = 0;
3461 int broken = 0;
3462
3463 if (mips_pic != NO_PIC)
3464 {
3465 if (g_switch_seen && g_switch_value != 0)
3466 as_bad (_("-G may not be used in position-independent code"));
3467 g_switch_value = 0;
3468 }
3469
3470 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3471 as_warn (_("could not set architecture and machine"));
3472
3473 op_hash = hash_new ();
3474
3475 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3476 for (i = 0; i < NUMOPCODES;)
3477 {
3478 const char *name = mips_opcodes[i].name;
3479
3480 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3481 if (retval != NULL)
3482 {
3483 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3484 mips_opcodes[i].name, retval);
3485 /* Probably a memory allocation problem? Give up now. */
3486 as_fatal (_("broken assembler, no assembly attempted"));
3487 }
3488 do
3489 {
3490 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3491 decode_mips_operand, &mips_operands[i]))
3492 broken = 1;
3493 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3494 {
3495 create_insn (&nop_insn, mips_opcodes + i);
3496 if (mips_fix_loongson2f_nop)
3497 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3498 nop_insn.fixed_p = 1;
3499 }
3500 ++i;
3501 }
3502 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3503 }
3504
3505 mips16_op_hash = hash_new ();
3506 mips16_operands = XCNEWVEC (struct mips_operand_array,
3507 bfd_mips16_num_opcodes);
3508
3509 i = 0;
3510 while (i < bfd_mips16_num_opcodes)
3511 {
3512 const char *name = mips16_opcodes[i].name;
3513
3514 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3515 if (retval != NULL)
3516 as_fatal (_("internal: can't hash `%s': %s"),
3517 mips16_opcodes[i].name, retval);
3518 do
3519 {
3520 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3521 broken = 1;
3522 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3523 {
3524 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3525 mips16_nop_insn.fixed_p = 1;
3526 }
3527 ++i;
3528 }
3529 while (i < bfd_mips16_num_opcodes
3530 && strcmp (mips16_opcodes[i].name, name) == 0);
3531 }
3532
3533 micromips_op_hash = hash_new ();
3534 micromips_operands = XCNEWVEC (struct mips_operand_array,
3535 bfd_micromips_num_opcodes);
3536
3537 i = 0;
3538 while (i < bfd_micromips_num_opcodes)
3539 {
3540 const char *name = micromips_opcodes[i].name;
3541
3542 retval = hash_insert (micromips_op_hash, name,
3543 (void *) &micromips_opcodes[i]);
3544 if (retval != NULL)
3545 as_fatal (_("internal: can't hash `%s': %s"),
3546 micromips_opcodes[i].name, retval);
3547 do
3548 {
3549 struct mips_cl_insn *micromips_nop_insn;
3550
3551 if (!validate_micromips_insn (&micromips_opcodes[i],
3552 &micromips_operands[i]))
3553 broken = 1;
3554
3555 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3556 {
3557 if (micromips_insn_length (micromips_opcodes + i) == 2)
3558 micromips_nop_insn = &micromips_nop16_insn;
3559 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3560 micromips_nop_insn = &micromips_nop32_insn;
3561 else
3562 continue;
3563
3564 if (micromips_nop_insn->insn_mo == NULL
3565 && strcmp (name, "nop") == 0)
3566 {
3567 create_insn (micromips_nop_insn, micromips_opcodes + i);
3568 micromips_nop_insn->fixed_p = 1;
3569 }
3570 }
3571 }
3572 while (++i < bfd_micromips_num_opcodes
3573 && strcmp (micromips_opcodes[i].name, name) == 0);
3574 }
3575
3576 if (broken)
3577 as_fatal (_("broken assembler, no assembly attempted"));
3578
3579 /* We add all the general register names to the symbol table. This
3580 helps us detect invalid uses of them. */
3581 for (i = 0; reg_names[i].name; i++)
3582 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3583 reg_names[i].num, /* & RNUM_MASK, */
3584 &zero_address_frag));
3585 if (HAVE_NEWABI)
3586 for (i = 0; reg_names_n32n64[i].name; i++)
3587 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3588 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3589 &zero_address_frag));
3590 else
3591 for (i = 0; reg_names_o32[i].name; i++)
3592 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3593 reg_names_o32[i].num, /* & RNUM_MASK, */
3594 &zero_address_frag));
3595
3596 for (i = 0; i < 32; i++)
3597 {
3598 char regname[7];
3599
3600 /* R5900 VU0 floating-point register. */
3601 regname[sizeof (rename) - 1] = 0;
3602 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3603 symbol_table_insert (symbol_new (regname, reg_section,
3604 RTYPE_VF | i, &zero_address_frag));
3605
3606 /* R5900 VU0 integer register. */
3607 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3608 symbol_table_insert (symbol_new (regname, reg_section,
3609 RTYPE_VI | i, &zero_address_frag));
3610
3611 /* MSA register. */
3612 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3613 symbol_table_insert (symbol_new (regname, reg_section,
3614 RTYPE_MSA | i, &zero_address_frag));
3615 }
3616
3617 obstack_init (&mips_operand_tokens);
3618
3619 mips_no_prev_insn ();
3620
3621 mips_gprmask = 0;
3622 mips_cprmask[0] = 0;
3623 mips_cprmask[1] = 0;
3624 mips_cprmask[2] = 0;
3625 mips_cprmask[3] = 0;
3626
3627 /* set the default alignment for the text section (2**2) */
3628 record_alignment (text_section, 2);
3629
3630 bfd_set_gp_size (stdoutput, g_switch_value);
3631
3632 /* On a native system other than VxWorks, sections must be aligned
3633 to 16 byte boundaries. When configured for an embedded ELF
3634 target, we don't bother. */
3635 if (strncmp (TARGET_OS, "elf", 3) != 0
3636 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3637 {
3638 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3639 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3640 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3641 }
3642
3643 /* Create a .reginfo section for register masks and a .mdebug
3644 section for debugging information. */
3645 {
3646 segT seg;
3647 subsegT subseg;
3648 flagword flags;
3649 segT sec;
3650
3651 seg = now_seg;
3652 subseg = now_subseg;
3653
3654 /* The ABI says this section should be loaded so that the
3655 running program can access it. However, we don't load it
3656 if we are configured for an embedded target */
3657 flags = SEC_READONLY | SEC_DATA;
3658 if (strncmp (TARGET_OS, "elf", 3) != 0)
3659 flags |= SEC_ALLOC | SEC_LOAD;
3660
3661 if (mips_abi != N64_ABI)
3662 {
3663 sec = subseg_new (".reginfo", (subsegT) 0);
3664
3665 bfd_set_section_flags (stdoutput, sec, flags);
3666 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3667
3668 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3669 }
3670 else
3671 {
3672 /* The 64-bit ABI uses a .MIPS.options section rather than
3673 .reginfo section. */
3674 sec = subseg_new (".MIPS.options", (subsegT) 0);
3675 bfd_set_section_flags (stdoutput, sec, flags);
3676 bfd_set_section_alignment (stdoutput, sec, 3);
3677
3678 /* Set up the option header. */
3679 {
3680 Elf_Internal_Options opthdr;
3681 char *f;
3682
3683 opthdr.kind = ODK_REGINFO;
3684 opthdr.size = (sizeof (Elf_External_Options)
3685 + sizeof (Elf64_External_RegInfo));
3686 opthdr.section = 0;
3687 opthdr.info = 0;
3688 f = frag_more (sizeof (Elf_External_Options));
3689 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3690 (Elf_External_Options *) f);
3691
3692 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3693 }
3694 }
3695
3696 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3697 bfd_set_section_flags (stdoutput, sec,
3698 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3699 bfd_set_section_alignment (stdoutput, sec, 3);
3700 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3701
3702 if (ECOFF_DEBUGGING)
3703 {
3704 sec = subseg_new (".mdebug", (subsegT) 0);
3705 (void) bfd_set_section_flags (stdoutput, sec,
3706 SEC_HAS_CONTENTS | SEC_READONLY);
3707 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3708 }
3709 else if (mips_flag_pdr)
3710 {
3711 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3712 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3713 SEC_READONLY | SEC_RELOC
3714 | SEC_DEBUGGING);
3715 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3716 }
3717
3718 subseg_set (seg, subseg);
3719 }
3720
3721 if (mips_fix_vr4120)
3722 init_vr4120_conflicts ();
3723 }
3724
3725 static inline void
3726 fpabi_incompatible_with (int fpabi, const char *what)
3727 {
3728 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3729 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3730 }
3731
3732 static inline void
3733 fpabi_requires (int fpabi, const char *what)
3734 {
3735 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3736 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3737 }
3738
3739 /* Check -mabi and register sizes against the specified FP ABI. */
3740 static void
3741 check_fpabi (int fpabi)
3742 {
3743 switch (fpabi)
3744 {
3745 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3746 if (file_mips_opts.soft_float)
3747 fpabi_incompatible_with (fpabi, "softfloat");
3748 else if (file_mips_opts.single_float)
3749 fpabi_incompatible_with (fpabi, "singlefloat");
3750 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3751 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3752 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3753 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3754 break;
3755
3756 case Val_GNU_MIPS_ABI_FP_XX:
3757 if (mips_abi != O32_ABI)
3758 fpabi_requires (fpabi, "-mabi=32");
3759 else if (file_mips_opts.soft_float)
3760 fpabi_incompatible_with (fpabi, "softfloat");
3761 else if (file_mips_opts.single_float)
3762 fpabi_incompatible_with (fpabi, "singlefloat");
3763 else if (file_mips_opts.fp != 0)
3764 fpabi_requires (fpabi, "fp=xx");
3765 break;
3766
3767 case Val_GNU_MIPS_ABI_FP_64A:
3768 case Val_GNU_MIPS_ABI_FP_64:
3769 if (mips_abi != O32_ABI)
3770 fpabi_requires (fpabi, "-mabi=32");
3771 else if (file_mips_opts.soft_float)
3772 fpabi_incompatible_with (fpabi, "softfloat");
3773 else if (file_mips_opts.single_float)
3774 fpabi_incompatible_with (fpabi, "singlefloat");
3775 else if (file_mips_opts.fp != 64)
3776 fpabi_requires (fpabi, "fp=64");
3777 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3778 fpabi_incompatible_with (fpabi, "nooddspreg");
3779 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3780 fpabi_requires (fpabi, "nooddspreg");
3781 break;
3782
3783 case Val_GNU_MIPS_ABI_FP_SINGLE:
3784 if (file_mips_opts.soft_float)
3785 fpabi_incompatible_with (fpabi, "softfloat");
3786 else if (!file_mips_opts.single_float)
3787 fpabi_requires (fpabi, "singlefloat");
3788 break;
3789
3790 case Val_GNU_MIPS_ABI_FP_SOFT:
3791 if (!file_mips_opts.soft_float)
3792 fpabi_requires (fpabi, "softfloat");
3793 break;
3794
3795 case Val_GNU_MIPS_ABI_FP_OLD_64:
3796 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3797 Tag_GNU_MIPS_ABI_FP, fpabi);
3798 break;
3799
3800 case Val_GNU_MIPS_ABI_FP_NAN2008:
3801 /* Silently ignore compatibility value. */
3802 break;
3803
3804 default:
3805 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3806 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3807 break;
3808 }
3809 }
3810
3811 /* Perform consistency checks on the current options. */
3812
3813 static void
3814 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3815 {
3816 /* Check the size of integer registers agrees with the ABI and ISA. */
3817 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3818 as_bad (_("`gp=64' used with a 32-bit processor"));
3819 else if (abi_checks
3820 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3821 as_bad (_("`gp=32' used with a 64-bit ABI"));
3822 else if (abi_checks
3823 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3824 as_bad (_("`gp=64' used with a 32-bit ABI"));
3825
3826 /* Check the size of the float registers agrees with the ABI and ISA. */
3827 switch (opts->fp)
3828 {
3829 case 0:
3830 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3831 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3832 else if (opts->single_float == 1)
3833 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3834 break;
3835 case 64:
3836 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3837 as_bad (_("`fp=64' used with a 32-bit fpu"));
3838 else if (abi_checks
3839 && ABI_NEEDS_32BIT_REGS (mips_abi)
3840 && !ISA_HAS_MXHC1 (opts->isa))
3841 as_warn (_("`fp=64' used with a 32-bit ABI"));
3842 break;
3843 case 32:
3844 if (abi_checks
3845 && ABI_NEEDS_64BIT_REGS (mips_abi))
3846 as_warn (_("`fp=32' used with a 64-bit ABI"));
3847 if (ISA_IS_R6 (mips_opts.isa) && opts->single_float == 0)
3848 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3849 break;
3850 default:
3851 as_bad (_("Unknown size of floating point registers"));
3852 break;
3853 }
3854
3855 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3856 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3857
3858 if (opts->micromips == 1 && opts->mips16 == 1)
3859 as_bad (_("`mips16' cannot be used with `micromips'"));
3860 else if (ISA_IS_R6 (mips_opts.isa)
3861 && (opts->micromips == 1
3862 || opts->mips16 == 1))
3863 as_fatal (_("`%s' can not be used with `%s'"),
3864 opts->micromips ? "micromips" : "mips16",
3865 mips_cpu_info_from_isa (mips_opts.isa)->name);
3866
3867 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3868 as_fatal (_("branch relaxation is not supported in `%s'"),
3869 mips_cpu_info_from_isa (opts->isa)->name);
3870 }
3871
3872 /* Perform consistency checks on the module level options exactly once.
3873 This is a deferred check that happens:
3874 at the first .set directive
3875 or, at the first pseudo op that generates code (inc .dc.a)
3876 or, at the first instruction
3877 or, at the end. */
3878
3879 static void
3880 file_mips_check_options (void)
3881 {
3882 const struct mips_cpu_info *arch_info = 0;
3883
3884 if (file_mips_opts_checked)
3885 return;
3886
3887 /* The following code determines the register size.
3888 Similar code was added to GCC 3.3 (see override_options() in
3889 config/mips/mips.c). The GAS and GCC code should be kept in sync
3890 as much as possible. */
3891
3892 if (file_mips_opts.gp < 0)
3893 {
3894 /* Infer the integer register size from the ABI and processor.
3895 Restrict ourselves to 32-bit registers if that's all the
3896 processor has, or if the ABI cannot handle 64-bit registers. */
3897 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3898 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3899 ? 32 : 64;
3900 }
3901
3902 if (file_mips_opts.fp < 0)
3903 {
3904 /* No user specified float register size.
3905 ??? GAS treats single-float processors as though they had 64-bit
3906 float registers (although it complains when double-precision
3907 instructions are used). As things stand, saying they have 32-bit
3908 registers would lead to spurious "register must be even" messages.
3909 So here we assume float registers are never smaller than the
3910 integer ones. */
3911 if (file_mips_opts.gp == 64)
3912 /* 64-bit integer registers implies 64-bit float registers. */
3913 file_mips_opts.fp = 64;
3914 else if ((file_mips_opts.ase & FP64_ASES)
3915 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3916 /* Handle ASEs that require 64-bit float registers, if possible. */
3917 file_mips_opts.fp = 64;
3918 else if (ISA_IS_R6 (mips_opts.isa))
3919 /* R6 implies 64-bit float registers. */
3920 file_mips_opts.fp = 64;
3921 else
3922 /* 32-bit float registers. */
3923 file_mips_opts.fp = 32;
3924 }
3925
3926 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3927
3928 /* Disable operations on odd-numbered floating-point registers by default
3929 when using the FPXX ABI. */
3930 if (file_mips_opts.oddspreg < 0)
3931 {
3932 if (file_mips_opts.fp == 0)
3933 file_mips_opts.oddspreg = 0;
3934 else
3935 file_mips_opts.oddspreg = 1;
3936 }
3937
3938 /* End of GCC-shared inference code. */
3939
3940 /* This flag is set when we have a 64-bit capable CPU but use only
3941 32-bit wide registers. Note that EABI does not use it. */
3942 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3943 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3944 || mips_abi == O32_ABI))
3945 mips_32bitmode = 1;
3946
3947 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3948 as_bad (_("trap exception not supported at ISA 1"));
3949
3950 /* If the selected architecture includes support for ASEs, enable
3951 generation of code for them. */
3952 if (file_mips_opts.mips16 == -1)
3953 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3954 if (file_mips_opts.micromips == -1)
3955 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3956 ? 1 : 0;
3957
3958 if (mips_nan2008 == -1)
3959 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3960 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3961 as_fatal (_("`%s' does not support legacy NaN"),
3962 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3963
3964 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3965 being selected implicitly. */
3966 if (file_mips_opts.fp != 64)
3967 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3968
3969 /* If the user didn't explicitly select or deselect a particular ASE,
3970 use the default setting for the CPU. */
3971 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3972
3973 /* Set up the current options. These may change throughout assembly. */
3974 mips_opts = file_mips_opts;
3975
3976 mips_check_isa_supports_ases ();
3977 mips_check_options (&file_mips_opts, TRUE);
3978 file_mips_opts_checked = TRUE;
3979
3980 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3981 as_warn (_("could not set architecture and machine"));
3982 }
3983
3984 void
3985 md_assemble (char *str)
3986 {
3987 struct mips_cl_insn insn;
3988 bfd_reloc_code_real_type unused_reloc[3]
3989 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3990
3991 file_mips_check_options ();
3992
3993 imm_expr.X_op = O_absent;
3994 offset_expr.X_op = O_absent;
3995 offset_reloc[0] = BFD_RELOC_UNUSED;
3996 offset_reloc[1] = BFD_RELOC_UNUSED;
3997 offset_reloc[2] = BFD_RELOC_UNUSED;
3998
3999 mips_mark_labels ();
4000 mips_assembling_insn = TRUE;
4001 clear_insn_error ();
4002
4003 if (mips_opts.mips16)
4004 mips16_ip (str, &insn);
4005 else
4006 {
4007 mips_ip (str, &insn);
4008 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4009 str, insn.insn_opcode));
4010 }
4011
4012 if (insn_error.msg)
4013 report_insn_error (str);
4014 else if (insn.insn_mo->pinfo == INSN_MACRO)
4015 {
4016 macro_start ();
4017 if (mips_opts.mips16)
4018 mips16_macro (&insn);
4019 else
4020 macro (&insn, str);
4021 macro_end ();
4022 }
4023 else
4024 {
4025 if (offset_expr.X_op != O_absent)
4026 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4027 else
4028 append_insn (&insn, NULL, unused_reloc, FALSE);
4029 }
4030
4031 mips_assembling_insn = FALSE;
4032 }
4033
4034 /* Convenience functions for abstracting away the differences between
4035 MIPS16 and non-MIPS16 relocations. */
4036
4037 static inline bfd_boolean
4038 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4039 {
4040 switch (reloc)
4041 {
4042 case BFD_RELOC_MIPS16_JMP:
4043 case BFD_RELOC_MIPS16_GPREL:
4044 case BFD_RELOC_MIPS16_GOT16:
4045 case BFD_RELOC_MIPS16_CALL16:
4046 case BFD_RELOC_MIPS16_HI16_S:
4047 case BFD_RELOC_MIPS16_HI16:
4048 case BFD_RELOC_MIPS16_LO16:
4049 return TRUE;
4050
4051 default:
4052 return FALSE;
4053 }
4054 }
4055
4056 static inline bfd_boolean
4057 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4058 {
4059 switch (reloc)
4060 {
4061 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4062 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4063 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4064 case BFD_RELOC_MICROMIPS_GPREL16:
4065 case BFD_RELOC_MICROMIPS_JMP:
4066 case BFD_RELOC_MICROMIPS_HI16:
4067 case BFD_RELOC_MICROMIPS_HI16_S:
4068 case BFD_RELOC_MICROMIPS_LO16:
4069 case BFD_RELOC_MICROMIPS_LITERAL:
4070 case BFD_RELOC_MICROMIPS_GOT16:
4071 case BFD_RELOC_MICROMIPS_CALL16:
4072 case BFD_RELOC_MICROMIPS_GOT_HI16:
4073 case BFD_RELOC_MICROMIPS_GOT_LO16:
4074 case BFD_RELOC_MICROMIPS_CALL_HI16:
4075 case BFD_RELOC_MICROMIPS_CALL_LO16:
4076 case BFD_RELOC_MICROMIPS_SUB:
4077 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4078 case BFD_RELOC_MICROMIPS_GOT_OFST:
4079 case BFD_RELOC_MICROMIPS_GOT_DISP:
4080 case BFD_RELOC_MICROMIPS_HIGHEST:
4081 case BFD_RELOC_MICROMIPS_HIGHER:
4082 case BFD_RELOC_MICROMIPS_SCN_DISP:
4083 case BFD_RELOC_MICROMIPS_JALR:
4084 return TRUE;
4085
4086 default:
4087 return FALSE;
4088 }
4089 }
4090
4091 static inline bfd_boolean
4092 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4093 {
4094 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4095 }
4096
4097 static inline bfd_boolean
4098 got16_reloc_p (bfd_reloc_code_real_type reloc)
4099 {
4100 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4101 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4102 }
4103
4104 static inline bfd_boolean
4105 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4106 {
4107 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4108 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4109 }
4110
4111 static inline bfd_boolean
4112 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4113 {
4114 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4115 || reloc == BFD_RELOC_MICROMIPS_LO16);
4116 }
4117
4118 static inline bfd_boolean
4119 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4120 {
4121 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4122 }
4123
4124 static inline bfd_boolean
4125 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4126 {
4127 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4128 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4129 }
4130
4131 /* Return true if RELOC is a PC-relative relocation that does not have
4132 full address range. */
4133
4134 static inline bfd_boolean
4135 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4136 {
4137 switch (reloc)
4138 {
4139 case BFD_RELOC_16_PCREL_S2:
4140 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4141 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4142 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4143 case BFD_RELOC_MIPS_21_PCREL_S2:
4144 case BFD_RELOC_MIPS_26_PCREL_S2:
4145 case BFD_RELOC_MIPS_18_PCREL_S3:
4146 case BFD_RELOC_MIPS_19_PCREL_S2:
4147 return TRUE;
4148
4149 case BFD_RELOC_32_PCREL:
4150 case BFD_RELOC_HI16_S_PCREL:
4151 case BFD_RELOC_LO16_PCREL:
4152 return HAVE_64BIT_ADDRESSES;
4153
4154 default:
4155 return FALSE;
4156 }
4157 }
4158
4159 /* Return true if the given relocation might need a matching %lo().
4160 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4161 need a matching %lo() when applied to local symbols. */
4162
4163 static inline bfd_boolean
4164 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4165 {
4166 return (HAVE_IN_PLACE_ADDENDS
4167 && (hi16_reloc_p (reloc)
4168 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4169 all GOT16 relocations evaluate to "G". */
4170 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4171 }
4172
4173 /* Return the type of %lo() reloc needed by RELOC, given that
4174 reloc_needs_lo_p. */
4175
4176 static inline bfd_reloc_code_real_type
4177 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4178 {
4179 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4180 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4181 : BFD_RELOC_LO16));
4182 }
4183
4184 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4185 relocation. */
4186
4187 static inline bfd_boolean
4188 fixup_has_matching_lo_p (fixS *fixp)
4189 {
4190 return (fixp->fx_next != NULL
4191 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4192 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4193 && fixp->fx_offset == fixp->fx_next->fx_offset);
4194 }
4195
4196 /* Move all labels in LABELS to the current insertion point. TEXT_P
4197 says whether the labels refer to text or data. */
4198
4199 static void
4200 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4201 {
4202 struct insn_label_list *l;
4203 valueT val;
4204
4205 for (l = labels; l != NULL; l = l->next)
4206 {
4207 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4208 symbol_set_frag (l->label, frag_now);
4209 val = (valueT) frag_now_fix ();
4210 /* MIPS16/microMIPS text labels are stored as odd. */
4211 if (text_p && HAVE_CODE_COMPRESSION)
4212 ++val;
4213 S_SET_VALUE (l->label, val);
4214 }
4215 }
4216
4217 /* Move all labels in insn_labels to the current insertion point
4218 and treat them as text labels. */
4219
4220 static void
4221 mips_move_text_labels (void)
4222 {
4223 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4224 }
4225
4226 static bfd_boolean
4227 s_is_linkonce (symbolS *sym, segT from_seg)
4228 {
4229 bfd_boolean linkonce = FALSE;
4230 segT symseg = S_GET_SEGMENT (sym);
4231
4232 if (symseg != from_seg && !S_IS_LOCAL (sym))
4233 {
4234 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4235 linkonce = TRUE;
4236 /* The GNU toolchain uses an extension for ELF: a section
4237 beginning with the magic string .gnu.linkonce is a
4238 linkonce section. */
4239 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4240 sizeof ".gnu.linkonce" - 1) == 0)
4241 linkonce = TRUE;
4242 }
4243 return linkonce;
4244 }
4245
4246 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4247 linker to handle them specially, such as generating jalx instructions
4248 when needed. We also make them odd for the duration of the assembly,
4249 in order to generate the right sort of code. We will make them even
4250 in the adjust_symtab routine, while leaving them marked. This is
4251 convenient for the debugger and the disassembler. The linker knows
4252 to make them odd again. */
4253
4254 static void
4255 mips_compressed_mark_label (symbolS *label)
4256 {
4257 gas_assert (HAVE_CODE_COMPRESSION);
4258
4259 if (mips_opts.mips16)
4260 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4261 else
4262 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4263 if ((S_GET_VALUE (label) & 1) == 0
4264 /* Don't adjust the address if the label is global or weak, or
4265 in a link-once section, since we'll be emitting symbol reloc
4266 references to it which will be patched up by the linker, and
4267 the final value of the symbol may or may not be MIPS16/microMIPS. */
4268 && !S_IS_WEAK (label)
4269 && !S_IS_EXTERNAL (label)
4270 && !s_is_linkonce (label, now_seg))
4271 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4272 }
4273
4274 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4275
4276 static void
4277 mips_compressed_mark_labels (void)
4278 {
4279 struct insn_label_list *l;
4280
4281 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4282 mips_compressed_mark_label (l->label);
4283 }
4284
4285 /* End the current frag. Make it a variant frag and record the
4286 relaxation info. */
4287
4288 static void
4289 relax_close_frag (void)
4290 {
4291 mips_macro_warning.first_frag = frag_now;
4292 frag_var (rs_machine_dependent, 0, 0,
4293 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4294 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4295
4296 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4297 mips_relax.first_fixup = 0;
4298 }
4299
4300 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4301 See the comment above RELAX_ENCODE for more details. */
4302
4303 static void
4304 relax_start (symbolS *symbol)
4305 {
4306 gas_assert (mips_relax.sequence == 0);
4307 mips_relax.sequence = 1;
4308 mips_relax.symbol = symbol;
4309 }
4310
4311 /* Start generating the second version of a relaxable sequence.
4312 See the comment above RELAX_ENCODE for more details. */
4313
4314 static void
4315 relax_switch (void)
4316 {
4317 gas_assert (mips_relax.sequence == 1);
4318 mips_relax.sequence = 2;
4319 }
4320
4321 /* End the current relaxable sequence. */
4322
4323 static void
4324 relax_end (void)
4325 {
4326 gas_assert (mips_relax.sequence == 2);
4327 relax_close_frag ();
4328 mips_relax.sequence = 0;
4329 }
4330
4331 /* Return true if IP is a delayed branch or jump. */
4332
4333 static inline bfd_boolean
4334 delayed_branch_p (const struct mips_cl_insn *ip)
4335 {
4336 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4337 | INSN_COND_BRANCH_DELAY
4338 | INSN_COND_BRANCH_LIKELY)) != 0;
4339 }
4340
4341 /* Return true if IP is a compact branch or jump. */
4342
4343 static inline bfd_boolean
4344 compact_branch_p (const struct mips_cl_insn *ip)
4345 {
4346 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4347 | INSN2_COND_BRANCH)) != 0;
4348 }
4349
4350 /* Return true if IP is an unconditional branch or jump. */
4351
4352 static inline bfd_boolean
4353 uncond_branch_p (const struct mips_cl_insn *ip)
4354 {
4355 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4356 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4357 }
4358
4359 /* Return true if IP is a branch-likely instruction. */
4360
4361 static inline bfd_boolean
4362 branch_likely_p (const struct mips_cl_insn *ip)
4363 {
4364 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4365 }
4366
4367 /* Return the type of nop that should be used to fill the delay slot
4368 of delayed branch IP. */
4369
4370 static struct mips_cl_insn *
4371 get_delay_slot_nop (const struct mips_cl_insn *ip)
4372 {
4373 if (mips_opts.micromips
4374 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4375 return &micromips_nop32_insn;
4376 return NOP_INSN;
4377 }
4378
4379 /* Return a mask that has bit N set if OPCODE reads the register(s)
4380 in operand N. */
4381
4382 static unsigned int
4383 insn_read_mask (const struct mips_opcode *opcode)
4384 {
4385 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4386 }
4387
4388 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4389 in operand N. */
4390
4391 static unsigned int
4392 insn_write_mask (const struct mips_opcode *opcode)
4393 {
4394 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4395 }
4396
4397 /* Return a mask of the registers specified by operand OPERAND of INSN.
4398 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4399 is set. */
4400
4401 static unsigned int
4402 operand_reg_mask (const struct mips_cl_insn *insn,
4403 const struct mips_operand *operand,
4404 unsigned int type_mask)
4405 {
4406 unsigned int uval, vsel;
4407
4408 switch (operand->type)
4409 {
4410 case OP_INT:
4411 case OP_MAPPED_INT:
4412 case OP_MSB:
4413 case OP_PCREL:
4414 case OP_PERF_REG:
4415 case OP_ADDIUSP_INT:
4416 case OP_ENTRY_EXIT_LIST:
4417 case OP_REPEAT_DEST_REG:
4418 case OP_REPEAT_PREV_REG:
4419 case OP_PC:
4420 case OP_VU0_SUFFIX:
4421 case OP_VU0_MATCH_SUFFIX:
4422 case OP_IMM_INDEX:
4423 abort ();
4424
4425 case OP_REG:
4426 case OP_OPTIONAL_REG:
4427 {
4428 const struct mips_reg_operand *reg_op;
4429
4430 reg_op = (const struct mips_reg_operand *) operand;
4431 if (!(type_mask & (1 << reg_op->reg_type)))
4432 return 0;
4433 uval = insn_extract_operand (insn, operand);
4434 return 1 << mips_decode_reg_operand (reg_op, uval);
4435 }
4436
4437 case OP_REG_PAIR:
4438 {
4439 const struct mips_reg_pair_operand *pair_op;
4440
4441 pair_op = (const struct mips_reg_pair_operand *) operand;
4442 if (!(type_mask & (1 << pair_op->reg_type)))
4443 return 0;
4444 uval = insn_extract_operand (insn, operand);
4445 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4446 }
4447
4448 case OP_CLO_CLZ_DEST:
4449 if (!(type_mask & (1 << OP_REG_GP)))
4450 return 0;
4451 uval = insn_extract_operand (insn, operand);
4452 return (1 << (uval & 31)) | (1 << (uval >> 5));
4453
4454 case OP_SAME_RS_RT:
4455 if (!(type_mask & (1 << OP_REG_GP)))
4456 return 0;
4457 uval = insn_extract_operand (insn, operand);
4458 gas_assert ((uval & 31) == (uval >> 5));
4459 return 1 << (uval & 31);
4460
4461 case OP_CHECK_PREV:
4462 case OP_NON_ZERO_REG:
4463 if (!(type_mask & (1 << OP_REG_GP)))
4464 return 0;
4465 uval = insn_extract_operand (insn, operand);
4466 return 1 << (uval & 31);
4467
4468 case OP_LWM_SWM_LIST:
4469 abort ();
4470
4471 case OP_SAVE_RESTORE_LIST:
4472 abort ();
4473
4474 case OP_MDMX_IMM_REG:
4475 if (!(type_mask & (1 << OP_REG_VEC)))
4476 return 0;
4477 uval = insn_extract_operand (insn, operand);
4478 vsel = uval >> 5;
4479 if ((vsel & 0x18) == 0x18)
4480 return 0;
4481 return 1 << (uval & 31);
4482
4483 case OP_REG_INDEX:
4484 if (!(type_mask & (1 << OP_REG_GP)))
4485 return 0;
4486 return 1 << insn_extract_operand (insn, operand);
4487 }
4488 abort ();
4489 }
4490
4491 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4492 where bit N of OPNO_MASK is set if operand N should be included.
4493 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4494 is set. */
4495
4496 static unsigned int
4497 insn_reg_mask (const struct mips_cl_insn *insn,
4498 unsigned int type_mask, unsigned int opno_mask)
4499 {
4500 unsigned int opno, reg_mask;
4501
4502 opno = 0;
4503 reg_mask = 0;
4504 while (opno_mask != 0)
4505 {
4506 if (opno_mask & 1)
4507 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4508 opno_mask >>= 1;
4509 opno += 1;
4510 }
4511 return reg_mask;
4512 }
4513
4514 /* Return the mask of core registers that IP reads. */
4515
4516 static unsigned int
4517 gpr_read_mask (const struct mips_cl_insn *ip)
4518 {
4519 unsigned long pinfo, pinfo2;
4520 unsigned int mask;
4521
4522 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4523 pinfo = ip->insn_mo->pinfo;
4524 pinfo2 = ip->insn_mo->pinfo2;
4525 if (pinfo & INSN_UDI)
4526 {
4527 /* UDI instructions have traditionally been assumed to read RS
4528 and RT. */
4529 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4530 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4531 }
4532 if (pinfo & INSN_READ_GPR_24)
4533 mask |= 1 << 24;
4534 if (pinfo2 & INSN2_READ_GPR_16)
4535 mask |= 1 << 16;
4536 if (pinfo2 & INSN2_READ_SP)
4537 mask |= 1 << SP;
4538 if (pinfo2 & INSN2_READ_GPR_31)
4539 mask |= 1 << 31;
4540 /* Don't include register 0. */
4541 return mask & ~1;
4542 }
4543
4544 /* Return the mask of core registers that IP writes. */
4545
4546 static unsigned int
4547 gpr_write_mask (const struct mips_cl_insn *ip)
4548 {
4549 unsigned long pinfo, pinfo2;
4550 unsigned int mask;
4551
4552 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4553 pinfo = ip->insn_mo->pinfo;
4554 pinfo2 = ip->insn_mo->pinfo2;
4555 if (pinfo & INSN_WRITE_GPR_24)
4556 mask |= 1 << 24;
4557 if (pinfo & INSN_WRITE_GPR_31)
4558 mask |= 1 << 31;
4559 if (pinfo & INSN_UDI)
4560 /* UDI instructions have traditionally been assumed to write to RD. */
4561 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4562 if (pinfo2 & INSN2_WRITE_SP)
4563 mask |= 1 << SP;
4564 /* Don't include register 0. */
4565 return mask & ~1;
4566 }
4567
4568 /* Return the mask of floating-point registers that IP reads. */
4569
4570 static unsigned int
4571 fpr_read_mask (const struct mips_cl_insn *ip)
4572 {
4573 unsigned long pinfo;
4574 unsigned int mask;
4575
4576 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4577 | (1 << OP_REG_MSA)),
4578 insn_read_mask (ip->insn_mo));
4579 pinfo = ip->insn_mo->pinfo;
4580 /* Conservatively treat all operands to an FP_D instruction are doubles.
4581 (This is overly pessimistic for things like cvt.d.s.) */
4582 if (FPR_SIZE != 64 && (pinfo & FP_D))
4583 mask |= mask << 1;
4584 return mask;
4585 }
4586
4587 /* Return the mask of floating-point registers that IP writes. */
4588
4589 static unsigned int
4590 fpr_write_mask (const struct mips_cl_insn *ip)
4591 {
4592 unsigned long pinfo;
4593 unsigned int mask;
4594
4595 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4596 | (1 << OP_REG_MSA)),
4597 insn_write_mask (ip->insn_mo));
4598 pinfo = ip->insn_mo->pinfo;
4599 /* Conservatively treat all operands to an FP_D instruction are doubles.
4600 (This is overly pessimistic for things like cvt.s.d.) */
4601 if (FPR_SIZE != 64 && (pinfo & FP_D))
4602 mask |= mask << 1;
4603 return mask;
4604 }
4605
4606 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4607 Check whether that is allowed. */
4608
4609 static bfd_boolean
4610 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4611 {
4612 const char *s = insn->name;
4613 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4614 || FPR_SIZE == 64)
4615 && mips_opts.oddspreg;
4616
4617 if (insn->pinfo == INSN_MACRO)
4618 /* Let a macro pass, we'll catch it later when it is expanded. */
4619 return TRUE;
4620
4621 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4622 otherwise it depends on oddspreg. */
4623 if ((insn->pinfo & FP_S)
4624 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4625 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4626 return FPR_SIZE == 32 || oddspreg;
4627
4628 /* Allow odd registers for single-precision ops and double-precision if the
4629 floating-point registers are 64-bit wide. */
4630 switch (insn->pinfo & (FP_S | FP_D))
4631 {
4632 case FP_S:
4633 case 0:
4634 return oddspreg;
4635 case FP_D:
4636 return FPR_SIZE == 64;
4637 default:
4638 break;
4639 }
4640
4641 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4642 s = strchr (insn->name, '.');
4643 if (s != NULL && opnum == 2)
4644 s = strchr (s + 1, '.');
4645 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4646 return oddspreg;
4647
4648 return FPR_SIZE == 64;
4649 }
4650
4651 /* Information about an instruction argument that we're trying to match. */
4652 struct mips_arg_info
4653 {
4654 /* The instruction so far. */
4655 struct mips_cl_insn *insn;
4656
4657 /* The first unconsumed operand token. */
4658 struct mips_operand_token *token;
4659
4660 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4661 int opnum;
4662
4663 /* The 1-based argument number, for error reporting. This does not
4664 count elided optional registers, etc.. */
4665 int argnum;
4666
4667 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4668 unsigned int last_regno;
4669
4670 /* If the first operand was an OP_REG, this is the register that it
4671 specified, otherwise it is ILLEGAL_REG. */
4672 unsigned int dest_regno;
4673
4674 /* The value of the last OP_INT operand. Only used for OP_MSB,
4675 where it gives the lsb position. */
4676 unsigned int last_op_int;
4677
4678 /* If true, match routines should assume that no later instruction
4679 alternative matches and should therefore be as accomodating as
4680 possible. Match routines should not report errors if something
4681 is only invalid for !LAX_MATCH. */
4682 bfd_boolean lax_match;
4683
4684 /* True if a reference to the current AT register was seen. */
4685 bfd_boolean seen_at;
4686 };
4687
4688 /* Record that the argument is out of range. */
4689
4690 static void
4691 match_out_of_range (struct mips_arg_info *arg)
4692 {
4693 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4694 }
4695
4696 /* Record that the argument isn't constant but needs to be. */
4697
4698 static void
4699 match_not_constant (struct mips_arg_info *arg)
4700 {
4701 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4702 arg->argnum);
4703 }
4704
4705 /* Try to match an OT_CHAR token for character CH. Consume the token
4706 and return true on success, otherwise return false. */
4707
4708 static bfd_boolean
4709 match_char (struct mips_arg_info *arg, char ch)
4710 {
4711 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4712 {
4713 ++arg->token;
4714 if (ch == ',')
4715 arg->argnum += 1;
4716 return TRUE;
4717 }
4718 return FALSE;
4719 }
4720
4721 /* Try to get an expression from the next tokens in ARG. Consume the
4722 tokens and return true on success, storing the expression value in
4723 VALUE and relocation types in R. */
4724
4725 static bfd_boolean
4726 match_expression (struct mips_arg_info *arg, expressionS *value,
4727 bfd_reloc_code_real_type *r)
4728 {
4729 /* If the next token is a '(' that was parsed as being part of a base
4730 expression, assume we have an elided offset. The later match will fail
4731 if this turns out to be wrong. */
4732 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4733 {
4734 value->X_op = O_constant;
4735 value->X_add_number = 0;
4736 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4737 return TRUE;
4738 }
4739
4740 /* Reject register-based expressions such as "0+$2" and "(($2))".
4741 For plain registers the default error seems more appropriate. */
4742 if (arg->token->type == OT_INTEGER
4743 && arg->token->u.integer.value.X_op == O_register)
4744 {
4745 set_insn_error (arg->argnum, _("register value used as expression"));
4746 return FALSE;
4747 }
4748
4749 if (arg->token->type == OT_INTEGER)
4750 {
4751 *value = arg->token->u.integer.value;
4752 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4753 ++arg->token;
4754 return TRUE;
4755 }
4756
4757 set_insn_error_i
4758 (arg->argnum, _("operand %d must be an immediate expression"),
4759 arg->argnum);
4760 return FALSE;
4761 }
4762
4763 /* Try to get a constant expression from the next tokens in ARG. Consume
4764 the tokens and return return true on success, storing the constant value
4765 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4766 error. */
4767
4768 static bfd_boolean
4769 match_const_int (struct mips_arg_info *arg, offsetT *value)
4770 {
4771 expressionS ex;
4772 bfd_reloc_code_real_type r[3];
4773
4774 if (!match_expression (arg, &ex, r))
4775 return FALSE;
4776
4777 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4778 *value = ex.X_add_number;
4779 else
4780 {
4781 match_not_constant (arg);
4782 return FALSE;
4783 }
4784 return TRUE;
4785 }
4786
4787 /* Return the RTYPE_* flags for a register operand of type TYPE that
4788 appears in instruction OPCODE. */
4789
4790 static unsigned int
4791 convert_reg_type (const struct mips_opcode *opcode,
4792 enum mips_reg_operand_type type)
4793 {
4794 switch (type)
4795 {
4796 case OP_REG_GP:
4797 return RTYPE_NUM | RTYPE_GP;
4798
4799 case OP_REG_FP:
4800 /* Allow vector register names for MDMX if the instruction is a 64-bit
4801 FPR load, store or move (including moves to and from GPRs). */
4802 if ((mips_opts.ase & ASE_MDMX)
4803 && (opcode->pinfo & FP_D)
4804 && (opcode->pinfo & (INSN_COPROC_MOVE
4805 | INSN_COPROC_MEMORY_DELAY
4806 | INSN_LOAD_COPROC
4807 | INSN_LOAD_MEMORY
4808 | INSN_STORE_MEMORY)))
4809 return RTYPE_FPU | RTYPE_VEC;
4810 return RTYPE_FPU;
4811
4812 case OP_REG_CCC:
4813 if (opcode->pinfo & (FP_D | FP_S))
4814 return RTYPE_CCC | RTYPE_FCC;
4815 return RTYPE_CCC;
4816
4817 case OP_REG_VEC:
4818 if (opcode->membership & INSN_5400)
4819 return RTYPE_FPU;
4820 return RTYPE_FPU | RTYPE_VEC;
4821
4822 case OP_REG_ACC:
4823 return RTYPE_ACC;
4824
4825 case OP_REG_COPRO:
4826 if (opcode->name[strlen (opcode->name) - 1] == '0')
4827 return RTYPE_NUM | RTYPE_CP0;
4828 return RTYPE_NUM;
4829
4830 case OP_REG_HW:
4831 return RTYPE_NUM;
4832
4833 case OP_REG_VI:
4834 return RTYPE_NUM | RTYPE_VI;
4835
4836 case OP_REG_VF:
4837 return RTYPE_NUM | RTYPE_VF;
4838
4839 case OP_REG_R5900_I:
4840 return RTYPE_R5900_I;
4841
4842 case OP_REG_R5900_Q:
4843 return RTYPE_R5900_Q;
4844
4845 case OP_REG_R5900_R:
4846 return RTYPE_R5900_R;
4847
4848 case OP_REG_R5900_ACC:
4849 return RTYPE_R5900_ACC;
4850
4851 case OP_REG_MSA:
4852 return RTYPE_MSA;
4853
4854 case OP_REG_MSA_CTRL:
4855 return RTYPE_NUM;
4856 }
4857 abort ();
4858 }
4859
4860 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4861
4862 static void
4863 check_regno (struct mips_arg_info *arg,
4864 enum mips_reg_operand_type type, unsigned int regno)
4865 {
4866 if (AT && type == OP_REG_GP && regno == AT)
4867 arg->seen_at = TRUE;
4868
4869 if (type == OP_REG_FP
4870 && (regno & 1) != 0
4871 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4872 {
4873 /* This was a warning prior to introducing O32 FPXX and FP64 support
4874 so maintain a warning for FP32 but raise an error for the new
4875 cases. */
4876 if (FPR_SIZE == 32)
4877 as_warn (_("float register should be even, was %d"), regno);
4878 else
4879 as_bad (_("float register should be even, was %d"), regno);
4880 }
4881
4882 if (type == OP_REG_CCC)
4883 {
4884 const char *name;
4885 size_t length;
4886
4887 name = arg->insn->insn_mo->name;
4888 length = strlen (name);
4889 if ((regno & 1) != 0
4890 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4891 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4892 as_warn (_("condition code register should be even for %s, was %d"),
4893 name, regno);
4894
4895 if ((regno & 3) != 0
4896 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4897 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4898 name, regno);
4899 }
4900 }
4901
4902 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4903 a register of type TYPE. Return true on success, storing the register
4904 number in *REGNO and warning about any dubious uses. */
4905
4906 static bfd_boolean
4907 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4908 unsigned int symval, unsigned int *regno)
4909 {
4910 if (type == OP_REG_VEC)
4911 symval = mips_prefer_vec_regno (symval);
4912 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4913 return FALSE;
4914
4915 *regno = symval & RNUM_MASK;
4916 check_regno (arg, type, *regno);
4917 return TRUE;
4918 }
4919
4920 /* Try to interpret the next token in ARG as a register of type TYPE.
4921 Consume the token and return true on success, storing the register
4922 number in *REGNO. Return false on failure. */
4923
4924 static bfd_boolean
4925 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4926 unsigned int *regno)
4927 {
4928 if (arg->token->type == OT_REG
4929 && match_regno (arg, type, arg->token->u.regno, regno))
4930 {
4931 ++arg->token;
4932 return TRUE;
4933 }
4934 return FALSE;
4935 }
4936
4937 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4938 Consume the token and return true on success, storing the register numbers
4939 in *REGNO1 and *REGNO2. Return false on failure. */
4940
4941 static bfd_boolean
4942 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4943 unsigned int *regno1, unsigned int *regno2)
4944 {
4945 if (match_reg (arg, type, regno1))
4946 {
4947 *regno2 = *regno1;
4948 return TRUE;
4949 }
4950 if (arg->token->type == OT_REG_RANGE
4951 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4952 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4953 && *regno1 <= *regno2)
4954 {
4955 ++arg->token;
4956 return TRUE;
4957 }
4958 return FALSE;
4959 }
4960
4961 /* OP_INT matcher. */
4962
4963 static bfd_boolean
4964 match_int_operand (struct mips_arg_info *arg,
4965 const struct mips_operand *operand_base)
4966 {
4967 const struct mips_int_operand *operand;
4968 unsigned int uval;
4969 int min_val, max_val, factor;
4970 offsetT sval;
4971
4972 operand = (const struct mips_int_operand *) operand_base;
4973 factor = 1 << operand->shift;
4974 min_val = mips_int_operand_min (operand);
4975 max_val = mips_int_operand_max (operand);
4976
4977 if (operand_base->lsb == 0
4978 && operand_base->size == 16
4979 && operand->shift == 0
4980 && operand->bias == 0
4981 && (operand->max_val == 32767 || operand->max_val == 65535))
4982 {
4983 /* The operand can be relocated. */
4984 if (!match_expression (arg, &offset_expr, offset_reloc))
4985 return FALSE;
4986
4987 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4988 /* Relocation operators were used. Accept the arguent and
4989 leave the relocation value in offset_expr and offset_relocs
4990 for the caller to process. */
4991 return TRUE;
4992
4993 if (offset_expr.X_op != O_constant)
4994 {
4995 /* Accept non-constant operands if no later alternative matches,
4996 leaving it for the caller to process. */
4997 if (!arg->lax_match)
4998 return FALSE;
4999 offset_reloc[0] = BFD_RELOC_LO16;
5000 return TRUE;
5001 }
5002
5003 /* Clear the global state; we're going to install the operand
5004 ourselves. */
5005 sval = offset_expr.X_add_number;
5006 offset_expr.X_op = O_absent;
5007
5008 /* For compatibility with older assemblers, we accept
5009 0x8000-0xffff as signed 16-bit numbers when only
5010 signed numbers are allowed. */
5011 if (sval > max_val)
5012 {
5013 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5014 if (!arg->lax_match && sval <= max_val)
5015 return FALSE;
5016 }
5017 }
5018 else
5019 {
5020 if (!match_const_int (arg, &sval))
5021 return FALSE;
5022 }
5023
5024 arg->last_op_int = sval;
5025
5026 if (sval < min_val || sval > max_val || sval % factor)
5027 {
5028 match_out_of_range (arg);
5029 return FALSE;
5030 }
5031
5032 uval = (unsigned int) sval >> operand->shift;
5033 uval -= operand->bias;
5034
5035 /* Handle -mfix-cn63xxp1. */
5036 if (arg->opnum == 1
5037 && mips_fix_cn63xxp1
5038 && !mips_opts.micromips
5039 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5040 switch (uval)
5041 {
5042 case 5:
5043 case 25:
5044 case 26:
5045 case 27:
5046 case 28:
5047 case 29:
5048 case 30:
5049 case 31:
5050 /* These are ok. */
5051 break;
5052
5053 default:
5054 /* The rest must be changed to 28. */
5055 uval = 28;
5056 break;
5057 }
5058
5059 insn_insert_operand (arg->insn, operand_base, uval);
5060 return TRUE;
5061 }
5062
5063 /* OP_MAPPED_INT matcher. */
5064
5065 static bfd_boolean
5066 match_mapped_int_operand (struct mips_arg_info *arg,
5067 const struct mips_operand *operand_base)
5068 {
5069 const struct mips_mapped_int_operand *operand;
5070 unsigned int uval, num_vals;
5071 offsetT sval;
5072
5073 operand = (const struct mips_mapped_int_operand *) operand_base;
5074 if (!match_const_int (arg, &sval))
5075 return FALSE;
5076
5077 num_vals = 1 << operand_base->size;
5078 for (uval = 0; uval < num_vals; uval++)
5079 if (operand->int_map[uval] == sval)
5080 break;
5081 if (uval == num_vals)
5082 {
5083 match_out_of_range (arg);
5084 return FALSE;
5085 }
5086
5087 insn_insert_operand (arg->insn, operand_base, uval);
5088 return TRUE;
5089 }
5090
5091 /* OP_MSB matcher. */
5092
5093 static bfd_boolean
5094 match_msb_operand (struct mips_arg_info *arg,
5095 const struct mips_operand *operand_base)
5096 {
5097 const struct mips_msb_operand *operand;
5098 int min_val, max_val, max_high;
5099 offsetT size, sval, high;
5100
5101 operand = (const struct mips_msb_operand *) operand_base;
5102 min_val = operand->bias;
5103 max_val = min_val + (1 << operand_base->size) - 1;
5104 max_high = operand->opsize;
5105
5106 if (!match_const_int (arg, &size))
5107 return FALSE;
5108
5109 high = size + arg->last_op_int;
5110 sval = operand->add_lsb ? high : size;
5111
5112 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5113 {
5114 match_out_of_range (arg);
5115 return FALSE;
5116 }
5117 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5118 return TRUE;
5119 }
5120
5121 /* OP_REG matcher. */
5122
5123 static bfd_boolean
5124 match_reg_operand (struct mips_arg_info *arg,
5125 const struct mips_operand *operand_base)
5126 {
5127 const struct mips_reg_operand *operand;
5128 unsigned int regno, uval, num_vals;
5129
5130 operand = (const struct mips_reg_operand *) operand_base;
5131 if (!match_reg (arg, operand->reg_type, &regno))
5132 return FALSE;
5133
5134 if (operand->reg_map)
5135 {
5136 num_vals = 1 << operand->root.size;
5137 for (uval = 0; uval < num_vals; uval++)
5138 if (operand->reg_map[uval] == regno)
5139 break;
5140 if (num_vals == uval)
5141 return FALSE;
5142 }
5143 else
5144 uval = regno;
5145
5146 arg->last_regno = regno;
5147 if (arg->opnum == 1)
5148 arg->dest_regno = regno;
5149 insn_insert_operand (arg->insn, operand_base, uval);
5150 return TRUE;
5151 }
5152
5153 /* OP_REG_PAIR matcher. */
5154
5155 static bfd_boolean
5156 match_reg_pair_operand (struct mips_arg_info *arg,
5157 const struct mips_operand *operand_base)
5158 {
5159 const struct mips_reg_pair_operand *operand;
5160 unsigned int regno1, regno2, uval, num_vals;
5161
5162 operand = (const struct mips_reg_pair_operand *) operand_base;
5163 if (!match_reg (arg, operand->reg_type, &regno1)
5164 || !match_char (arg, ',')
5165 || !match_reg (arg, operand->reg_type, &regno2))
5166 return FALSE;
5167
5168 num_vals = 1 << operand_base->size;
5169 for (uval = 0; uval < num_vals; uval++)
5170 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5171 break;
5172 if (uval == num_vals)
5173 return FALSE;
5174
5175 insn_insert_operand (arg->insn, operand_base, uval);
5176 return TRUE;
5177 }
5178
5179 /* OP_PCREL matcher. The caller chooses the relocation type. */
5180
5181 static bfd_boolean
5182 match_pcrel_operand (struct mips_arg_info *arg)
5183 {
5184 bfd_reloc_code_real_type r[3];
5185
5186 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5187 }
5188
5189 /* OP_PERF_REG matcher. */
5190
5191 static bfd_boolean
5192 match_perf_reg_operand (struct mips_arg_info *arg,
5193 const struct mips_operand *operand)
5194 {
5195 offsetT sval;
5196
5197 if (!match_const_int (arg, &sval))
5198 return FALSE;
5199
5200 if (sval != 0
5201 && (sval != 1
5202 || (mips_opts.arch == CPU_R5900
5203 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5204 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5205 {
5206 set_insn_error (arg->argnum, _("invalid performance register"));
5207 return FALSE;
5208 }
5209
5210 insn_insert_operand (arg->insn, operand, sval);
5211 return TRUE;
5212 }
5213
5214 /* OP_ADDIUSP matcher. */
5215
5216 static bfd_boolean
5217 match_addiusp_operand (struct mips_arg_info *arg,
5218 const struct mips_operand *operand)
5219 {
5220 offsetT sval;
5221 unsigned int uval;
5222
5223 if (!match_const_int (arg, &sval))
5224 return FALSE;
5225
5226 if (sval % 4)
5227 {
5228 match_out_of_range (arg);
5229 return FALSE;
5230 }
5231
5232 sval /= 4;
5233 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5234 {
5235 match_out_of_range (arg);
5236 return FALSE;
5237 }
5238
5239 uval = (unsigned int) sval;
5240 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5241 insn_insert_operand (arg->insn, operand, uval);
5242 return TRUE;
5243 }
5244
5245 /* OP_CLO_CLZ_DEST matcher. */
5246
5247 static bfd_boolean
5248 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5249 const struct mips_operand *operand)
5250 {
5251 unsigned int regno;
5252
5253 if (!match_reg (arg, OP_REG_GP, &regno))
5254 return FALSE;
5255
5256 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5257 return TRUE;
5258 }
5259
5260 /* OP_CHECK_PREV matcher. */
5261
5262 static bfd_boolean
5263 match_check_prev_operand (struct mips_arg_info *arg,
5264 const struct mips_operand *operand_base)
5265 {
5266 const struct mips_check_prev_operand *operand;
5267 unsigned int regno;
5268
5269 operand = (const struct mips_check_prev_operand *) operand_base;
5270
5271 if (!match_reg (arg, OP_REG_GP, &regno))
5272 return FALSE;
5273
5274 if (!operand->zero_ok && regno == 0)
5275 return FALSE;
5276
5277 if ((operand->less_than_ok && regno < arg->last_regno)
5278 || (operand->greater_than_ok && regno > arg->last_regno)
5279 || (operand->equal_ok && regno == arg->last_regno))
5280 {
5281 arg->last_regno = regno;
5282 insn_insert_operand (arg->insn, operand_base, regno);
5283 return TRUE;
5284 }
5285
5286 return FALSE;
5287 }
5288
5289 /* OP_SAME_RS_RT matcher. */
5290
5291 static bfd_boolean
5292 match_same_rs_rt_operand (struct mips_arg_info *arg,
5293 const struct mips_operand *operand)
5294 {
5295 unsigned int regno;
5296
5297 if (!match_reg (arg, OP_REG_GP, &regno))
5298 return FALSE;
5299
5300 if (regno == 0)
5301 {
5302 set_insn_error (arg->argnum, _("the source register must not be $0"));
5303 return FALSE;
5304 }
5305
5306 arg->last_regno = regno;
5307
5308 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5309 return TRUE;
5310 }
5311
5312 /* OP_LWM_SWM_LIST matcher. */
5313
5314 static bfd_boolean
5315 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5316 const struct mips_operand *operand)
5317 {
5318 unsigned int reglist, sregs, ra, regno1, regno2;
5319 struct mips_arg_info reset;
5320
5321 reglist = 0;
5322 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5323 return FALSE;
5324 do
5325 {
5326 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5327 {
5328 reglist |= 1 << FP;
5329 regno2 = S7;
5330 }
5331 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5332 reset = *arg;
5333 }
5334 while (match_char (arg, ',')
5335 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5336 *arg = reset;
5337
5338 if (operand->size == 2)
5339 {
5340 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5341
5342 s0, ra
5343 s0, s1, ra, s2, s3
5344 s0-s2, ra
5345
5346 and any permutations of these. */
5347 if ((reglist & 0xfff1ffff) != 0x80010000)
5348 return FALSE;
5349
5350 sregs = (reglist >> 17) & 7;
5351 ra = 0;
5352 }
5353 else
5354 {
5355 /* The list must include at least one of ra and s0-sN,
5356 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5357 which are $23 and $30 respectively.) E.g.:
5358
5359 ra
5360 s0
5361 ra, s0, s1, s2
5362 s0-s8
5363 s0-s5, ra
5364
5365 and any permutations of these. */
5366 if ((reglist & 0x3f00ffff) != 0)
5367 return FALSE;
5368
5369 ra = (reglist >> 27) & 0x10;
5370 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5371 }
5372 sregs += 1;
5373 if ((sregs & -sregs) != sregs)
5374 return FALSE;
5375
5376 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5377 return TRUE;
5378 }
5379
5380 /* OP_ENTRY_EXIT_LIST matcher. */
5381
5382 static unsigned int
5383 match_entry_exit_operand (struct mips_arg_info *arg,
5384 const struct mips_operand *operand)
5385 {
5386 unsigned int mask;
5387 bfd_boolean is_exit;
5388
5389 /* The format is the same for both ENTRY and EXIT, but the constraints
5390 are different. */
5391 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5392 mask = (is_exit ? 7 << 3 : 0);
5393 do
5394 {
5395 unsigned int regno1, regno2;
5396 bfd_boolean is_freg;
5397
5398 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5399 is_freg = FALSE;
5400 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5401 is_freg = TRUE;
5402 else
5403 return FALSE;
5404
5405 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5406 {
5407 mask &= ~(7 << 3);
5408 mask |= (5 + regno2) << 3;
5409 }
5410 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5411 mask |= (regno2 - 3) << 3;
5412 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5413 mask |= (regno2 - 15) << 1;
5414 else if (regno1 == RA && regno2 == RA)
5415 mask |= 1;
5416 else
5417 return FALSE;
5418 }
5419 while (match_char (arg, ','));
5420
5421 insn_insert_operand (arg->insn, operand, mask);
5422 return TRUE;
5423 }
5424
5425 /* OP_SAVE_RESTORE_LIST matcher. */
5426
5427 static bfd_boolean
5428 match_save_restore_list_operand (struct mips_arg_info *arg)
5429 {
5430 unsigned int opcode, args, statics, sregs;
5431 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5432 offsetT frame_size;
5433
5434 opcode = arg->insn->insn_opcode;
5435 frame_size = 0;
5436 num_frame_sizes = 0;
5437 args = 0;
5438 statics = 0;
5439 sregs = 0;
5440 do
5441 {
5442 unsigned int regno1, regno2;
5443
5444 if (arg->token->type == OT_INTEGER)
5445 {
5446 /* Handle the frame size. */
5447 if (!match_const_int (arg, &frame_size))
5448 return FALSE;
5449 num_frame_sizes += 1;
5450 }
5451 else
5452 {
5453 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5454 return FALSE;
5455
5456 while (regno1 <= regno2)
5457 {
5458 if (regno1 >= 4 && regno1 <= 7)
5459 {
5460 if (num_frame_sizes == 0)
5461 /* args $a0-$a3 */
5462 args |= 1 << (regno1 - 4);
5463 else
5464 /* statics $a0-$a3 */
5465 statics |= 1 << (regno1 - 4);
5466 }
5467 else if (regno1 >= 16 && regno1 <= 23)
5468 /* $s0-$s7 */
5469 sregs |= 1 << (regno1 - 16);
5470 else if (regno1 == 30)
5471 /* $s8 */
5472 sregs |= 1 << 8;
5473 else if (regno1 == 31)
5474 /* Add $ra to insn. */
5475 opcode |= 0x40;
5476 else
5477 return FALSE;
5478 regno1 += 1;
5479 if (regno1 == 24)
5480 regno1 = 30;
5481 }
5482 }
5483 }
5484 while (match_char (arg, ','));
5485
5486 /* Encode args/statics combination. */
5487 if (args & statics)
5488 return FALSE;
5489 else if (args == 0xf)
5490 /* All $a0-$a3 are args. */
5491 opcode |= MIPS16_ALL_ARGS << 16;
5492 else if (statics == 0xf)
5493 /* All $a0-$a3 are statics. */
5494 opcode |= MIPS16_ALL_STATICS << 16;
5495 else
5496 {
5497 /* Count arg registers. */
5498 num_args = 0;
5499 while (args & 0x1)
5500 {
5501 args >>= 1;
5502 num_args += 1;
5503 }
5504 if (args != 0)
5505 return FALSE;
5506
5507 /* Count static registers. */
5508 num_statics = 0;
5509 while (statics & 0x8)
5510 {
5511 statics = (statics << 1) & 0xf;
5512 num_statics += 1;
5513 }
5514 if (statics != 0)
5515 return FALSE;
5516
5517 /* Encode args/statics. */
5518 opcode |= ((num_args << 2) | num_statics) << 16;
5519 }
5520
5521 /* Encode $s0/$s1. */
5522 if (sregs & (1 << 0)) /* $s0 */
5523 opcode |= 0x20;
5524 if (sregs & (1 << 1)) /* $s1 */
5525 opcode |= 0x10;
5526 sregs >>= 2;
5527
5528 /* Encode $s2-$s8. */
5529 num_sregs = 0;
5530 while (sregs & 1)
5531 {
5532 sregs >>= 1;
5533 num_sregs += 1;
5534 }
5535 if (sregs != 0)
5536 return FALSE;
5537 opcode |= num_sregs << 24;
5538
5539 /* Encode frame size. */
5540 if (num_frame_sizes == 0)
5541 {
5542 set_insn_error (arg->argnum, _("missing frame size"));
5543 return FALSE;
5544 }
5545 if (num_frame_sizes > 1)
5546 {
5547 set_insn_error (arg->argnum, _("frame size specified twice"));
5548 return FALSE;
5549 }
5550 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5551 {
5552 set_insn_error (arg->argnum, _("invalid frame size"));
5553 return FALSE;
5554 }
5555 if (frame_size != 128 || (opcode >> 16) != 0)
5556 {
5557 frame_size /= 8;
5558 opcode |= (((frame_size & 0xf0) << 16)
5559 | (frame_size & 0x0f));
5560 }
5561
5562 /* Finally build the instruction. */
5563 if ((opcode >> 16) != 0 || frame_size == 0)
5564 opcode |= MIPS16_EXTEND;
5565 arg->insn->insn_opcode = opcode;
5566 return TRUE;
5567 }
5568
5569 /* OP_MDMX_IMM_REG matcher. */
5570
5571 static bfd_boolean
5572 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5573 const struct mips_operand *operand)
5574 {
5575 unsigned int regno, uval;
5576 bfd_boolean is_qh;
5577 const struct mips_opcode *opcode;
5578
5579 /* The mips_opcode records whether this is an octobyte or quadhalf
5580 instruction. Start out with that bit in place. */
5581 opcode = arg->insn->insn_mo;
5582 uval = mips_extract_operand (operand, opcode->match);
5583 is_qh = (uval != 0);
5584
5585 if (arg->token->type == OT_REG)
5586 {
5587 if ((opcode->membership & INSN_5400)
5588 && strcmp (opcode->name, "rzu.ob") == 0)
5589 {
5590 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5591 arg->argnum);
5592 return FALSE;
5593 }
5594
5595 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5596 return FALSE;
5597 ++arg->token;
5598
5599 /* Check whether this is a vector register or a broadcast of
5600 a single element. */
5601 if (arg->token->type == OT_INTEGER_INDEX)
5602 {
5603 if (arg->token->u.index > (is_qh ? 3 : 7))
5604 {
5605 set_insn_error (arg->argnum, _("invalid element selector"));
5606 return FALSE;
5607 }
5608 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5609 ++arg->token;
5610 }
5611 else
5612 {
5613 /* A full vector. */
5614 if ((opcode->membership & INSN_5400)
5615 && (strcmp (opcode->name, "sll.ob") == 0
5616 || strcmp (opcode->name, "srl.ob") == 0))
5617 {
5618 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5619 arg->argnum);
5620 return FALSE;
5621 }
5622
5623 if (is_qh)
5624 uval |= MDMX_FMTSEL_VEC_QH << 5;
5625 else
5626 uval |= MDMX_FMTSEL_VEC_OB << 5;
5627 }
5628 uval |= regno;
5629 }
5630 else
5631 {
5632 offsetT sval;
5633
5634 if (!match_const_int (arg, &sval))
5635 return FALSE;
5636 if (sval < 0 || sval > 31)
5637 {
5638 match_out_of_range (arg);
5639 return FALSE;
5640 }
5641 uval |= (sval & 31);
5642 if (is_qh)
5643 uval |= MDMX_FMTSEL_IMM_QH << 5;
5644 else
5645 uval |= MDMX_FMTSEL_IMM_OB << 5;
5646 }
5647 insn_insert_operand (arg->insn, operand, uval);
5648 return TRUE;
5649 }
5650
5651 /* OP_IMM_INDEX matcher. */
5652
5653 static bfd_boolean
5654 match_imm_index_operand (struct mips_arg_info *arg,
5655 const struct mips_operand *operand)
5656 {
5657 unsigned int max_val;
5658
5659 if (arg->token->type != OT_INTEGER_INDEX)
5660 return FALSE;
5661
5662 max_val = (1 << operand->size) - 1;
5663 if (arg->token->u.index > max_val)
5664 {
5665 match_out_of_range (arg);
5666 return FALSE;
5667 }
5668 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5669 ++arg->token;
5670 return TRUE;
5671 }
5672
5673 /* OP_REG_INDEX matcher. */
5674
5675 static bfd_boolean
5676 match_reg_index_operand (struct mips_arg_info *arg,
5677 const struct mips_operand *operand)
5678 {
5679 unsigned int regno;
5680
5681 if (arg->token->type != OT_REG_INDEX)
5682 return FALSE;
5683
5684 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5685 return FALSE;
5686
5687 insn_insert_operand (arg->insn, operand, regno);
5688 ++arg->token;
5689 return TRUE;
5690 }
5691
5692 /* OP_PC matcher. */
5693
5694 static bfd_boolean
5695 match_pc_operand (struct mips_arg_info *arg)
5696 {
5697 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5698 {
5699 ++arg->token;
5700 return TRUE;
5701 }
5702 return FALSE;
5703 }
5704
5705 /* OP_NON_ZERO_REG matcher. */
5706
5707 static bfd_boolean
5708 match_non_zero_reg_operand (struct mips_arg_info *arg,
5709 const struct mips_operand *operand)
5710 {
5711 unsigned int regno;
5712
5713 if (!match_reg (arg, OP_REG_GP, &regno))
5714 return FALSE;
5715
5716 if (regno == 0)
5717 return FALSE;
5718
5719 arg->last_regno = regno;
5720 insn_insert_operand (arg->insn, operand, regno);
5721 return TRUE;
5722 }
5723
5724 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5725 register that we need to match. */
5726
5727 static bfd_boolean
5728 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5729 {
5730 unsigned int regno;
5731
5732 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5733 }
5734
5735 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5736 the length of the value in bytes (4 for float, 8 for double) and
5737 USING_GPRS says whether the destination is a GPR rather than an FPR.
5738
5739 Return the constant in IMM and OFFSET as follows:
5740
5741 - If the constant should be loaded via memory, set IMM to O_absent and
5742 OFFSET to the memory address.
5743
5744 - Otherwise, if the constant should be loaded into two 32-bit registers,
5745 set IMM to the O_constant to load into the high register and OFFSET
5746 to the corresponding value for the low register.
5747
5748 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5749
5750 These constants only appear as the last operand in an instruction,
5751 and every instruction that accepts them in any variant accepts them
5752 in all variants. This means we don't have to worry about backing out
5753 any changes if the instruction does not match. We just match
5754 unconditionally and report an error if the constant is invalid. */
5755
5756 static bfd_boolean
5757 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5758 expressionS *offset, int length, bfd_boolean using_gprs)
5759 {
5760 char *p;
5761 segT seg, new_seg;
5762 subsegT subseg;
5763 const char *newname;
5764 unsigned char *data;
5765
5766 /* Where the constant is placed is based on how the MIPS assembler
5767 does things:
5768
5769 length == 4 && using_gprs -- immediate value only
5770 length == 8 && using_gprs -- .rdata or immediate value
5771 length == 4 && !using_gprs -- .lit4 or immediate value
5772 length == 8 && !using_gprs -- .lit8 or immediate value
5773
5774 The .lit4 and .lit8 sections are only used if permitted by the
5775 -G argument. */
5776 if (arg->token->type != OT_FLOAT)
5777 {
5778 set_insn_error (arg->argnum, _("floating-point expression required"));
5779 return FALSE;
5780 }
5781
5782 gas_assert (arg->token->u.flt.length == length);
5783 data = arg->token->u.flt.data;
5784 ++arg->token;
5785
5786 /* Handle 32-bit constants for which an immediate value is best. */
5787 if (length == 4
5788 && (using_gprs
5789 || g_switch_value < 4
5790 || (data[0] == 0 && data[1] == 0)
5791 || (data[2] == 0 && data[3] == 0)))
5792 {
5793 imm->X_op = O_constant;
5794 if (!target_big_endian)
5795 imm->X_add_number = bfd_getl32 (data);
5796 else
5797 imm->X_add_number = bfd_getb32 (data);
5798 offset->X_op = O_absent;
5799 return TRUE;
5800 }
5801
5802 /* Handle 64-bit constants for which an immediate value is best. */
5803 if (length == 8
5804 && !mips_disable_float_construction
5805 /* Constants can only be constructed in GPRs and copied to FPRs if the
5806 GPRs are at least as wide as the FPRs or MTHC1 is available.
5807 Unlike most tests for 32-bit floating-point registers this check
5808 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5809 permit 64-bit moves without MXHC1.
5810 Force the constant into memory otherwise. */
5811 && (using_gprs
5812 || GPR_SIZE == 64
5813 || ISA_HAS_MXHC1 (mips_opts.isa)
5814 || FPR_SIZE == 32)
5815 && ((data[0] == 0 && data[1] == 0)
5816 || (data[2] == 0 && data[3] == 0))
5817 && ((data[4] == 0 && data[5] == 0)
5818 || (data[6] == 0 && data[7] == 0)))
5819 {
5820 /* The value is simple enough to load with a couple of instructions.
5821 If using 32-bit registers, set IMM to the high order 32 bits and
5822 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5823 64 bit constant. */
5824 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5825 {
5826 imm->X_op = O_constant;
5827 offset->X_op = O_constant;
5828 if (!target_big_endian)
5829 {
5830 imm->X_add_number = bfd_getl32 (data + 4);
5831 offset->X_add_number = bfd_getl32 (data);
5832 }
5833 else
5834 {
5835 imm->X_add_number = bfd_getb32 (data);
5836 offset->X_add_number = bfd_getb32 (data + 4);
5837 }
5838 if (offset->X_add_number == 0)
5839 offset->X_op = O_absent;
5840 }
5841 else
5842 {
5843 imm->X_op = O_constant;
5844 if (!target_big_endian)
5845 imm->X_add_number = bfd_getl64 (data);
5846 else
5847 imm->X_add_number = bfd_getb64 (data);
5848 offset->X_op = O_absent;
5849 }
5850 return TRUE;
5851 }
5852
5853 /* Switch to the right section. */
5854 seg = now_seg;
5855 subseg = now_subseg;
5856 if (length == 4)
5857 {
5858 gas_assert (!using_gprs && g_switch_value >= 4);
5859 newname = ".lit4";
5860 }
5861 else
5862 {
5863 if (using_gprs || g_switch_value < 8)
5864 newname = RDATA_SECTION_NAME;
5865 else
5866 newname = ".lit8";
5867 }
5868
5869 new_seg = subseg_new (newname, (subsegT) 0);
5870 bfd_set_section_flags (stdoutput, new_seg,
5871 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5872 frag_align (length == 4 ? 2 : 3, 0, 0);
5873 if (strncmp (TARGET_OS, "elf", 3) != 0)
5874 record_alignment (new_seg, 4);
5875 else
5876 record_alignment (new_seg, length == 4 ? 2 : 3);
5877 if (seg == now_seg)
5878 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5879
5880 /* Set the argument to the current address in the section. */
5881 imm->X_op = O_absent;
5882 offset->X_op = O_symbol;
5883 offset->X_add_symbol = symbol_temp_new_now ();
5884 offset->X_add_number = 0;
5885
5886 /* Put the floating point number into the section. */
5887 p = frag_more (length);
5888 memcpy (p, data, length);
5889
5890 /* Switch back to the original section. */
5891 subseg_set (seg, subseg);
5892 return TRUE;
5893 }
5894
5895 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5896 them. */
5897
5898 static bfd_boolean
5899 match_vu0_suffix_operand (struct mips_arg_info *arg,
5900 const struct mips_operand *operand,
5901 bfd_boolean match_p)
5902 {
5903 unsigned int uval;
5904
5905 /* The operand can be an XYZW mask or a single 2-bit channel index
5906 (with X being 0). */
5907 gas_assert (operand->size == 2 || operand->size == 4);
5908
5909 /* The suffix can be omitted when it is already part of the opcode. */
5910 if (arg->token->type != OT_CHANNELS)
5911 return match_p;
5912
5913 uval = arg->token->u.channels;
5914 if (operand->size == 2)
5915 {
5916 /* Check that a single bit is set and convert it into a 2-bit index. */
5917 if ((uval & -uval) != uval)
5918 return FALSE;
5919 uval = 4 - ffs (uval);
5920 }
5921
5922 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5923 return FALSE;
5924
5925 ++arg->token;
5926 if (!match_p)
5927 insn_insert_operand (arg->insn, operand, uval);
5928 return TRUE;
5929 }
5930
5931 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5932 of the argument text if the match is successful, otherwise return null. */
5933
5934 static bfd_boolean
5935 match_operand (struct mips_arg_info *arg,
5936 const struct mips_operand *operand)
5937 {
5938 switch (operand->type)
5939 {
5940 case OP_INT:
5941 return match_int_operand (arg, operand);
5942
5943 case OP_MAPPED_INT:
5944 return match_mapped_int_operand (arg, operand);
5945
5946 case OP_MSB:
5947 return match_msb_operand (arg, operand);
5948
5949 case OP_REG:
5950 case OP_OPTIONAL_REG:
5951 return match_reg_operand (arg, operand);
5952
5953 case OP_REG_PAIR:
5954 return match_reg_pair_operand (arg, operand);
5955
5956 case OP_PCREL:
5957 return match_pcrel_operand (arg);
5958
5959 case OP_PERF_REG:
5960 return match_perf_reg_operand (arg, operand);
5961
5962 case OP_ADDIUSP_INT:
5963 return match_addiusp_operand (arg, operand);
5964
5965 case OP_CLO_CLZ_DEST:
5966 return match_clo_clz_dest_operand (arg, operand);
5967
5968 case OP_LWM_SWM_LIST:
5969 return match_lwm_swm_list_operand (arg, operand);
5970
5971 case OP_ENTRY_EXIT_LIST:
5972 return match_entry_exit_operand (arg, operand);
5973
5974 case OP_SAVE_RESTORE_LIST:
5975 return match_save_restore_list_operand (arg);
5976
5977 case OP_MDMX_IMM_REG:
5978 return match_mdmx_imm_reg_operand (arg, operand);
5979
5980 case OP_REPEAT_DEST_REG:
5981 return match_tied_reg_operand (arg, arg->dest_regno);
5982
5983 case OP_REPEAT_PREV_REG:
5984 return match_tied_reg_operand (arg, arg->last_regno);
5985
5986 case OP_PC:
5987 return match_pc_operand (arg);
5988
5989 case OP_VU0_SUFFIX:
5990 return match_vu0_suffix_operand (arg, operand, FALSE);
5991
5992 case OP_VU0_MATCH_SUFFIX:
5993 return match_vu0_suffix_operand (arg, operand, TRUE);
5994
5995 case OP_IMM_INDEX:
5996 return match_imm_index_operand (arg, operand);
5997
5998 case OP_REG_INDEX:
5999 return match_reg_index_operand (arg, operand);
6000
6001 case OP_SAME_RS_RT:
6002 return match_same_rs_rt_operand (arg, operand);
6003
6004 case OP_CHECK_PREV:
6005 return match_check_prev_operand (arg, operand);
6006
6007 case OP_NON_ZERO_REG:
6008 return match_non_zero_reg_operand (arg, operand);
6009 }
6010 abort ();
6011 }
6012
6013 /* ARG is the state after successfully matching an instruction.
6014 Issue any queued-up warnings. */
6015
6016 static void
6017 check_completed_insn (struct mips_arg_info *arg)
6018 {
6019 if (arg->seen_at)
6020 {
6021 if (AT == ATREG)
6022 as_warn (_("used $at without \".set noat\""));
6023 else
6024 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6025 }
6026 }
6027
6028 /* Return true if modifying general-purpose register REG needs a delay. */
6029
6030 static bfd_boolean
6031 reg_needs_delay (unsigned int reg)
6032 {
6033 unsigned long prev_pinfo;
6034
6035 prev_pinfo = history[0].insn_mo->pinfo;
6036 if (!mips_opts.noreorder
6037 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6038 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6039 && (gpr_write_mask (&history[0]) & (1 << reg)))
6040 return TRUE;
6041
6042 return FALSE;
6043 }
6044
6045 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6046 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6047 by VR4120 errata. */
6048
6049 static unsigned int
6050 classify_vr4120_insn (const char *name)
6051 {
6052 if (strncmp (name, "macc", 4) == 0)
6053 return FIX_VR4120_MACC;
6054 if (strncmp (name, "dmacc", 5) == 0)
6055 return FIX_VR4120_DMACC;
6056 if (strncmp (name, "mult", 4) == 0)
6057 return FIX_VR4120_MULT;
6058 if (strncmp (name, "dmult", 5) == 0)
6059 return FIX_VR4120_DMULT;
6060 if (strstr (name, "div"))
6061 return FIX_VR4120_DIV;
6062 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6063 return FIX_VR4120_MTHILO;
6064 return NUM_FIX_VR4120_CLASSES;
6065 }
6066
6067 #define INSN_ERET 0x42000018
6068 #define INSN_DERET 0x4200001f
6069 #define INSN_DMULT 0x1c
6070 #define INSN_DMULTU 0x1d
6071
6072 /* Return the number of instructions that must separate INSN1 and INSN2,
6073 where INSN1 is the earlier instruction. Return the worst-case value
6074 for any INSN2 if INSN2 is null. */
6075
6076 static unsigned int
6077 insns_between (const struct mips_cl_insn *insn1,
6078 const struct mips_cl_insn *insn2)
6079 {
6080 unsigned long pinfo1, pinfo2;
6081 unsigned int mask;
6082
6083 /* If INFO2 is null, pessimistically assume that all flags are set for
6084 the second instruction. */
6085 pinfo1 = insn1->insn_mo->pinfo;
6086 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6087
6088 /* For most targets, write-after-read dependencies on the HI and LO
6089 registers must be separated by at least two instructions. */
6090 if (!hilo_interlocks)
6091 {
6092 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6093 return 2;
6094 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6095 return 2;
6096 }
6097
6098 /* If we're working around r7000 errata, there must be two instructions
6099 between an mfhi or mflo and any instruction that uses the result. */
6100 if (mips_7000_hilo_fix
6101 && !mips_opts.micromips
6102 && MF_HILO_INSN (pinfo1)
6103 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6104 return 2;
6105
6106 /* If we're working around 24K errata, one instruction is required
6107 if an ERET or DERET is followed by a branch instruction. */
6108 if (mips_fix_24k && !mips_opts.micromips)
6109 {
6110 if (insn1->insn_opcode == INSN_ERET
6111 || insn1->insn_opcode == INSN_DERET)
6112 {
6113 if (insn2 == NULL
6114 || insn2->insn_opcode == INSN_ERET
6115 || insn2->insn_opcode == INSN_DERET
6116 || delayed_branch_p (insn2))
6117 return 1;
6118 }
6119 }
6120
6121 /* If we're working around PMC RM7000 errata, there must be three
6122 nops between a dmult and a load instruction. */
6123 if (mips_fix_rm7000 && !mips_opts.micromips)
6124 {
6125 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6126 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6127 {
6128 if (pinfo2 & INSN_LOAD_MEMORY)
6129 return 3;
6130 }
6131 }
6132
6133 /* If working around VR4120 errata, check for combinations that need
6134 a single intervening instruction. */
6135 if (mips_fix_vr4120 && !mips_opts.micromips)
6136 {
6137 unsigned int class1, class2;
6138
6139 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6140 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6141 {
6142 if (insn2 == NULL)
6143 return 1;
6144 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6145 if (vr4120_conflicts[class1] & (1 << class2))
6146 return 1;
6147 }
6148 }
6149
6150 if (!HAVE_CODE_COMPRESSION)
6151 {
6152 /* Check for GPR or coprocessor load delays. All such delays
6153 are on the RT register. */
6154 /* Itbl support may require additional care here. */
6155 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6156 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6157 {
6158 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6159 return 1;
6160 }
6161
6162 /* Check for generic coprocessor hazards.
6163
6164 This case is not handled very well. There is no special
6165 knowledge of CP0 handling, and the coprocessors other than
6166 the floating point unit are not distinguished at all. */
6167 /* Itbl support may require additional care here. FIXME!
6168 Need to modify this to include knowledge about
6169 user specified delays! */
6170 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6171 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6172 {
6173 /* Handle cases where INSN1 writes to a known general coprocessor
6174 register. There must be a one instruction delay before INSN2
6175 if INSN2 reads that register, otherwise no delay is needed. */
6176 mask = fpr_write_mask (insn1);
6177 if (mask != 0)
6178 {
6179 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6180 return 1;
6181 }
6182 else
6183 {
6184 /* Read-after-write dependencies on the control registers
6185 require a two-instruction gap. */
6186 if ((pinfo1 & INSN_WRITE_COND_CODE)
6187 && (pinfo2 & INSN_READ_COND_CODE))
6188 return 2;
6189
6190 /* We don't know exactly what INSN1 does. If INSN2 is
6191 also a coprocessor instruction, assume there must be
6192 a one instruction gap. */
6193 if (pinfo2 & INSN_COP)
6194 return 1;
6195 }
6196 }
6197
6198 /* Check for read-after-write dependencies on the coprocessor
6199 control registers in cases where INSN1 does not need a general
6200 coprocessor delay. This means that INSN1 is a floating point
6201 comparison instruction. */
6202 /* Itbl support may require additional care here. */
6203 else if (!cop_interlocks
6204 && (pinfo1 & INSN_WRITE_COND_CODE)
6205 && (pinfo2 & INSN_READ_COND_CODE))
6206 return 1;
6207 }
6208
6209 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6210 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6211 and pause. */
6212 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6213 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6214 || (insn2 && delayed_branch_p (insn2))))
6215 return 1;
6216
6217 return 0;
6218 }
6219
6220 /* Return the number of nops that would be needed to work around the
6221 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6222 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6223 that are contained within the first IGNORE instructions of HIST. */
6224
6225 static int
6226 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6227 const struct mips_cl_insn *insn)
6228 {
6229 int i, j;
6230 unsigned int mask;
6231
6232 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6233 are not affected by the errata. */
6234 if (insn != 0
6235 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6236 || strcmp (insn->insn_mo->name, "mtlo") == 0
6237 || strcmp (insn->insn_mo->name, "mthi") == 0))
6238 return 0;
6239
6240 /* Search for the first MFLO or MFHI. */
6241 for (i = 0; i < MAX_VR4130_NOPS; i++)
6242 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6243 {
6244 /* Extract the destination register. */
6245 mask = gpr_write_mask (&hist[i]);
6246
6247 /* No nops are needed if INSN reads that register. */
6248 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6249 return 0;
6250
6251 /* ...or if any of the intervening instructions do. */
6252 for (j = 0; j < i; j++)
6253 if (gpr_read_mask (&hist[j]) & mask)
6254 return 0;
6255
6256 if (i >= ignore)
6257 return MAX_VR4130_NOPS - i;
6258 }
6259 return 0;
6260 }
6261
6262 #define BASE_REG_EQ(INSN1, INSN2) \
6263 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6264 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6265
6266 /* Return the minimum alignment for this store instruction. */
6267
6268 static int
6269 fix_24k_align_to (const struct mips_opcode *mo)
6270 {
6271 if (strcmp (mo->name, "sh") == 0)
6272 return 2;
6273
6274 if (strcmp (mo->name, "swc1") == 0
6275 || strcmp (mo->name, "swc2") == 0
6276 || strcmp (mo->name, "sw") == 0
6277 || strcmp (mo->name, "sc") == 0
6278 || strcmp (mo->name, "s.s") == 0)
6279 return 4;
6280
6281 if (strcmp (mo->name, "sdc1") == 0
6282 || strcmp (mo->name, "sdc2") == 0
6283 || strcmp (mo->name, "s.d") == 0)
6284 return 8;
6285
6286 /* sb, swl, swr */
6287 return 1;
6288 }
6289
6290 struct fix_24k_store_info
6291 {
6292 /* Immediate offset, if any, for this store instruction. */
6293 short off;
6294 /* Alignment required by this store instruction. */
6295 int align_to;
6296 /* True for register offsets. */
6297 int register_offset;
6298 };
6299
6300 /* Comparison function used by qsort. */
6301
6302 static int
6303 fix_24k_sort (const void *a, const void *b)
6304 {
6305 const struct fix_24k_store_info *pos1 = a;
6306 const struct fix_24k_store_info *pos2 = b;
6307
6308 return (pos1->off - pos2->off);
6309 }
6310
6311 /* INSN is a store instruction. Try to record the store information
6312 in STINFO. Return false if the information isn't known. */
6313
6314 static bfd_boolean
6315 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6316 const struct mips_cl_insn *insn)
6317 {
6318 /* The instruction must have a known offset. */
6319 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6320 return FALSE;
6321
6322 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6323 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6324 return TRUE;
6325 }
6326
6327 /* Return the number of nops that would be needed to work around the 24k
6328 "lost data on stores during refill" errata if instruction INSN
6329 immediately followed the 2 instructions described by HIST.
6330 Ignore hazards that are contained within the first IGNORE
6331 instructions of HIST.
6332
6333 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6334 for the data cache refills and store data. The following describes
6335 the scenario where the store data could be lost.
6336
6337 * A data cache miss, due to either a load or a store, causing fill
6338 data to be supplied by the memory subsystem
6339 * The first three doublewords of fill data are returned and written
6340 into the cache
6341 * A sequence of four stores occurs in consecutive cycles around the
6342 final doubleword of the fill:
6343 * Store A
6344 * Store B
6345 * Store C
6346 * Zero, One or more instructions
6347 * Store D
6348
6349 The four stores A-D must be to different doublewords of the line that
6350 is being filled. The fourth instruction in the sequence above permits
6351 the fill of the final doubleword to be transferred from the FSB into
6352 the cache. In the sequence above, the stores may be either integer
6353 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6354 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6355 different doublewords on the line. If the floating point unit is
6356 running in 1:2 mode, it is not possible to create the sequence above
6357 using only floating point store instructions.
6358
6359 In this case, the cache line being filled is incorrectly marked
6360 invalid, thereby losing the data from any store to the line that
6361 occurs between the original miss and the completion of the five
6362 cycle sequence shown above.
6363
6364 The workarounds are:
6365
6366 * Run the data cache in write-through mode.
6367 * Insert a non-store instruction between
6368 Store A and Store B or Store B and Store C. */
6369
6370 static int
6371 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6372 const struct mips_cl_insn *insn)
6373 {
6374 struct fix_24k_store_info pos[3];
6375 int align, i, base_offset;
6376
6377 if (ignore >= 2)
6378 return 0;
6379
6380 /* If the previous instruction wasn't a store, there's nothing to
6381 worry about. */
6382 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6383 return 0;
6384
6385 /* If the instructions after the previous one are unknown, we have
6386 to assume the worst. */
6387 if (!insn)
6388 return 1;
6389
6390 /* Check whether we are dealing with three consecutive stores. */
6391 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6392 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6393 return 0;
6394
6395 /* If we don't know the relationship between the store addresses,
6396 assume the worst. */
6397 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6398 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6399 return 1;
6400
6401 if (!fix_24k_record_store_info (&pos[0], insn)
6402 || !fix_24k_record_store_info (&pos[1], &hist[0])
6403 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6404 return 1;
6405
6406 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6407
6408 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6409 X bytes and such that the base register + X is known to be aligned
6410 to align bytes. */
6411
6412 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6413 align = 8;
6414 else
6415 {
6416 align = pos[0].align_to;
6417 base_offset = pos[0].off;
6418 for (i = 1; i < 3; i++)
6419 if (align < pos[i].align_to)
6420 {
6421 align = pos[i].align_to;
6422 base_offset = pos[i].off;
6423 }
6424 for (i = 0; i < 3; i++)
6425 pos[i].off -= base_offset;
6426 }
6427
6428 pos[0].off &= ~align + 1;
6429 pos[1].off &= ~align + 1;
6430 pos[2].off &= ~align + 1;
6431
6432 /* If any two stores write to the same chunk, they also write to the
6433 same doubleword. The offsets are still sorted at this point. */
6434 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6435 return 0;
6436
6437 /* A range of at least 9 bytes is needed for the stores to be in
6438 non-overlapping doublewords. */
6439 if (pos[2].off - pos[0].off <= 8)
6440 return 0;
6441
6442 if (pos[2].off - pos[1].off >= 24
6443 || pos[1].off - pos[0].off >= 24
6444 || pos[2].off - pos[0].off >= 32)
6445 return 0;
6446
6447 return 1;
6448 }
6449
6450 /* Return the number of nops that would be needed if instruction INSN
6451 immediately followed the MAX_NOPS instructions given by HIST,
6452 where HIST[0] is the most recent instruction. Ignore hazards
6453 between INSN and the first IGNORE instructions in HIST.
6454
6455 If INSN is null, return the worse-case number of nops for any
6456 instruction. */
6457
6458 static int
6459 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6460 const struct mips_cl_insn *insn)
6461 {
6462 int i, nops, tmp_nops;
6463
6464 nops = 0;
6465 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6466 {
6467 tmp_nops = insns_between (hist + i, insn) - i;
6468 if (tmp_nops > nops)
6469 nops = tmp_nops;
6470 }
6471
6472 if (mips_fix_vr4130 && !mips_opts.micromips)
6473 {
6474 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6475 if (tmp_nops > nops)
6476 nops = tmp_nops;
6477 }
6478
6479 if (mips_fix_24k && !mips_opts.micromips)
6480 {
6481 tmp_nops = nops_for_24k (ignore, hist, insn);
6482 if (tmp_nops > nops)
6483 nops = tmp_nops;
6484 }
6485
6486 return nops;
6487 }
6488
6489 /* The variable arguments provide NUM_INSNS extra instructions that
6490 might be added to HIST. Return the largest number of nops that
6491 would be needed after the extended sequence, ignoring hazards
6492 in the first IGNORE instructions. */
6493
6494 static int
6495 nops_for_sequence (int num_insns, int ignore,
6496 const struct mips_cl_insn *hist, ...)
6497 {
6498 va_list args;
6499 struct mips_cl_insn buffer[MAX_NOPS];
6500 struct mips_cl_insn *cursor;
6501 int nops;
6502
6503 va_start (args, hist);
6504 cursor = buffer + num_insns;
6505 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6506 while (cursor > buffer)
6507 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6508
6509 nops = nops_for_insn (ignore, buffer, NULL);
6510 va_end (args);
6511 return nops;
6512 }
6513
6514 /* Like nops_for_insn, but if INSN is a branch, take into account the
6515 worst-case delay for the branch target. */
6516
6517 static int
6518 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6519 const struct mips_cl_insn *insn)
6520 {
6521 int nops, tmp_nops;
6522
6523 nops = nops_for_insn (ignore, hist, insn);
6524 if (delayed_branch_p (insn))
6525 {
6526 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6527 hist, insn, get_delay_slot_nop (insn));
6528 if (tmp_nops > nops)
6529 nops = tmp_nops;
6530 }
6531 else if (compact_branch_p (insn))
6532 {
6533 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6534 if (tmp_nops > nops)
6535 nops = tmp_nops;
6536 }
6537 return nops;
6538 }
6539
6540 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6541
6542 static void
6543 fix_loongson2f_nop (struct mips_cl_insn * ip)
6544 {
6545 gas_assert (!HAVE_CODE_COMPRESSION);
6546 if (strcmp (ip->insn_mo->name, "nop") == 0)
6547 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6548 }
6549
6550 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6551 jr target pc &= 'hffff_ffff_cfff_ffff. */
6552
6553 static void
6554 fix_loongson2f_jump (struct mips_cl_insn * ip)
6555 {
6556 gas_assert (!HAVE_CODE_COMPRESSION);
6557 if (strcmp (ip->insn_mo->name, "j") == 0
6558 || strcmp (ip->insn_mo->name, "jr") == 0
6559 || strcmp (ip->insn_mo->name, "jalr") == 0)
6560 {
6561 int sreg;
6562 expressionS ep;
6563
6564 if (! mips_opts.at)
6565 return;
6566
6567 sreg = EXTRACT_OPERAND (0, RS, *ip);
6568 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6569 return;
6570
6571 ep.X_op = O_constant;
6572 ep.X_add_number = 0xcfff0000;
6573 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6574 ep.X_add_number = 0xffff;
6575 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6576 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6577 }
6578 }
6579
6580 static void
6581 fix_loongson2f (struct mips_cl_insn * ip)
6582 {
6583 if (mips_fix_loongson2f_nop)
6584 fix_loongson2f_nop (ip);
6585
6586 if (mips_fix_loongson2f_jump)
6587 fix_loongson2f_jump (ip);
6588 }
6589
6590 /* IP is a branch that has a delay slot, and we need to fill it
6591 automatically. Return true if we can do that by swapping IP
6592 with the previous instruction.
6593 ADDRESS_EXPR is an operand of the instruction to be used with
6594 RELOC_TYPE. */
6595
6596 static bfd_boolean
6597 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6598 bfd_reloc_code_real_type *reloc_type)
6599 {
6600 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6601 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6602 unsigned int fpr_read, prev_fpr_write;
6603
6604 /* -O2 and above is required for this optimization. */
6605 if (mips_optimize < 2)
6606 return FALSE;
6607
6608 /* If we have seen .set volatile or .set nomove, don't optimize. */
6609 if (mips_opts.nomove)
6610 return FALSE;
6611
6612 /* We can't swap if the previous instruction's position is fixed. */
6613 if (history[0].fixed_p)
6614 return FALSE;
6615
6616 /* If the previous previous insn was in a .set noreorder, we can't
6617 swap. Actually, the MIPS assembler will swap in this situation.
6618 However, gcc configured -with-gnu-as will generate code like
6619
6620 .set noreorder
6621 lw $4,XXX
6622 .set reorder
6623 INSN
6624 bne $4,$0,foo
6625
6626 in which we can not swap the bne and INSN. If gcc is not configured
6627 -with-gnu-as, it does not output the .set pseudo-ops. */
6628 if (history[1].noreorder_p)
6629 return FALSE;
6630
6631 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6632 This means that the previous instruction was a 4-byte one anyhow. */
6633 if (mips_opts.mips16 && history[0].fixp[0])
6634 return FALSE;
6635
6636 /* If the branch is itself the target of a branch, we can not swap.
6637 We cheat on this; all we check for is whether there is a label on
6638 this instruction. If there are any branches to anything other than
6639 a label, users must use .set noreorder. */
6640 if (seg_info (now_seg)->label_list)
6641 return FALSE;
6642
6643 /* If the previous instruction is in a variant frag other than this
6644 branch's one, we cannot do the swap. This does not apply to
6645 MIPS16 code, which uses variant frags for different purposes. */
6646 if (!mips_opts.mips16
6647 && history[0].frag
6648 && history[0].frag->fr_type == rs_machine_dependent)
6649 return FALSE;
6650
6651 /* We do not swap with instructions that cannot architecturally
6652 be placed in a branch delay slot, such as SYNC or ERET. We
6653 also refrain from swapping with a trap instruction, since it
6654 complicates trap handlers to have the trap instruction be in
6655 a delay slot. */
6656 prev_pinfo = history[0].insn_mo->pinfo;
6657 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6658 return FALSE;
6659
6660 /* Check for conflicts between the branch and the instructions
6661 before the candidate delay slot. */
6662 if (nops_for_insn (0, history + 1, ip) > 0)
6663 return FALSE;
6664
6665 /* Check for conflicts between the swapped sequence and the
6666 target of the branch. */
6667 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6668 return FALSE;
6669
6670 /* If the branch reads a register that the previous
6671 instruction sets, we can not swap. */
6672 gpr_read = gpr_read_mask (ip);
6673 prev_gpr_write = gpr_write_mask (&history[0]);
6674 if (gpr_read & prev_gpr_write)
6675 return FALSE;
6676
6677 fpr_read = fpr_read_mask (ip);
6678 prev_fpr_write = fpr_write_mask (&history[0]);
6679 if (fpr_read & prev_fpr_write)
6680 return FALSE;
6681
6682 /* If the branch writes a register that the previous
6683 instruction sets, we can not swap. */
6684 gpr_write = gpr_write_mask (ip);
6685 if (gpr_write & prev_gpr_write)
6686 return FALSE;
6687
6688 /* If the branch writes a register that the previous
6689 instruction reads, we can not swap. */
6690 prev_gpr_read = gpr_read_mask (&history[0]);
6691 if (gpr_write & prev_gpr_read)
6692 return FALSE;
6693
6694 /* If one instruction sets a condition code and the
6695 other one uses a condition code, we can not swap. */
6696 pinfo = ip->insn_mo->pinfo;
6697 if ((pinfo & INSN_READ_COND_CODE)
6698 && (prev_pinfo & INSN_WRITE_COND_CODE))
6699 return FALSE;
6700 if ((pinfo & INSN_WRITE_COND_CODE)
6701 && (prev_pinfo & INSN_READ_COND_CODE))
6702 return FALSE;
6703
6704 /* If the previous instruction uses the PC, we can not swap. */
6705 prev_pinfo2 = history[0].insn_mo->pinfo2;
6706 if (prev_pinfo2 & INSN2_READ_PC)
6707 return FALSE;
6708
6709 /* If the previous instruction has an incorrect size for a fixed
6710 branch delay slot in microMIPS mode, we cannot swap. */
6711 pinfo2 = ip->insn_mo->pinfo2;
6712 if (mips_opts.micromips
6713 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6714 && insn_length (history) != 2)
6715 return FALSE;
6716 if (mips_opts.micromips
6717 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6718 && insn_length (history) != 4)
6719 return FALSE;
6720
6721 /* On R5900 short loops need to be fixed by inserting a nop in
6722 the branch delay slots.
6723 A short loop can be terminated too early. */
6724 if (mips_opts.arch == CPU_R5900
6725 /* Check if instruction has a parameter, ignore "j $31". */
6726 && (address_expr != NULL)
6727 /* Parameter must be 16 bit. */
6728 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6729 /* Branch to same segment. */
6730 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6731 /* Branch to same code fragment. */
6732 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6733 /* Can only calculate branch offset if value is known. */
6734 && symbol_constant_p(address_expr->X_add_symbol)
6735 /* Check if branch is really conditional. */
6736 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6737 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6738 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6739 {
6740 int distance;
6741 /* Check if loop is shorter than 6 instructions including
6742 branch and delay slot. */
6743 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6744 if (distance <= 20)
6745 {
6746 int i;
6747 int rv;
6748
6749 rv = FALSE;
6750 /* When the loop includes branches or jumps,
6751 it is not a short loop. */
6752 for (i = 0; i < (distance / 4); i++)
6753 {
6754 if ((history[i].cleared_p)
6755 || delayed_branch_p(&history[i]))
6756 {
6757 rv = TRUE;
6758 break;
6759 }
6760 }
6761 if (rv == FALSE)
6762 {
6763 /* Insert nop after branch to fix short loop. */
6764 return FALSE;
6765 }
6766 }
6767 }
6768
6769 return TRUE;
6770 }
6771
6772 /* Decide how we should add IP to the instruction stream.
6773 ADDRESS_EXPR is an operand of the instruction to be used with
6774 RELOC_TYPE. */
6775
6776 static enum append_method
6777 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6778 bfd_reloc_code_real_type *reloc_type)
6779 {
6780 /* The relaxed version of a macro sequence must be inherently
6781 hazard-free. */
6782 if (mips_relax.sequence == 2)
6783 return APPEND_ADD;
6784
6785 /* We must not dabble with instructions in a ".set norerorder" block. */
6786 if (mips_opts.noreorder)
6787 return APPEND_ADD;
6788
6789 /* Otherwise, it's our responsibility to fill branch delay slots. */
6790 if (delayed_branch_p (ip))
6791 {
6792 if (!branch_likely_p (ip)
6793 && can_swap_branch_p (ip, address_expr, reloc_type))
6794 return APPEND_SWAP;
6795
6796 if (mips_opts.mips16
6797 && ISA_SUPPORTS_MIPS16E
6798 && gpr_read_mask (ip) != 0)
6799 return APPEND_ADD_COMPACT;
6800
6801 return APPEND_ADD_WITH_NOP;
6802 }
6803
6804 return APPEND_ADD;
6805 }
6806
6807 /* IP is a MIPS16 instruction whose opcode we have just changed.
6808 Point IP->insn_mo to the new opcode's definition. */
6809
6810 static void
6811 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6812 {
6813 const struct mips_opcode *mo, *end;
6814
6815 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6816 for (mo = ip->insn_mo; mo < end; mo++)
6817 if ((ip->insn_opcode & mo->mask) == mo->match)
6818 {
6819 ip->insn_mo = mo;
6820 return;
6821 }
6822 abort ();
6823 }
6824
6825 /* For microMIPS macros, we need to generate a local number label
6826 as the target of branches. */
6827 #define MICROMIPS_LABEL_CHAR '\037'
6828 static unsigned long micromips_target_label;
6829 static char micromips_target_name[32];
6830
6831 static char *
6832 micromips_label_name (void)
6833 {
6834 char *p = micromips_target_name;
6835 char symbol_name_temporary[24];
6836 unsigned long l;
6837 int i;
6838
6839 if (*p)
6840 return p;
6841
6842 i = 0;
6843 l = micromips_target_label;
6844 #ifdef LOCAL_LABEL_PREFIX
6845 *p++ = LOCAL_LABEL_PREFIX;
6846 #endif
6847 *p++ = 'L';
6848 *p++ = MICROMIPS_LABEL_CHAR;
6849 do
6850 {
6851 symbol_name_temporary[i++] = l % 10 + '0';
6852 l /= 10;
6853 }
6854 while (l != 0);
6855 while (i > 0)
6856 *p++ = symbol_name_temporary[--i];
6857 *p = '\0';
6858
6859 return micromips_target_name;
6860 }
6861
6862 static void
6863 micromips_label_expr (expressionS *label_expr)
6864 {
6865 label_expr->X_op = O_symbol;
6866 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6867 label_expr->X_add_number = 0;
6868 }
6869
6870 static void
6871 micromips_label_inc (void)
6872 {
6873 micromips_target_label++;
6874 *micromips_target_name = '\0';
6875 }
6876
6877 static void
6878 micromips_add_label (void)
6879 {
6880 symbolS *s;
6881
6882 s = colon (micromips_label_name ());
6883 micromips_label_inc ();
6884 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6885 }
6886
6887 /* If assembling microMIPS code, then return the microMIPS reloc
6888 corresponding to the requested one if any. Otherwise return
6889 the reloc unchanged. */
6890
6891 static bfd_reloc_code_real_type
6892 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6893 {
6894 static const bfd_reloc_code_real_type relocs[][2] =
6895 {
6896 /* Keep sorted incrementally by the left-hand key. */
6897 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6898 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6899 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6900 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6901 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6902 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6903 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6904 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6905 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6906 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6907 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6908 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6909 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6910 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6911 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6912 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6913 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6914 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6915 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6916 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6917 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6918 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6919 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6920 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6921 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6922 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6923 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6924 };
6925 bfd_reloc_code_real_type r;
6926 size_t i;
6927
6928 if (!mips_opts.micromips)
6929 return reloc;
6930 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6931 {
6932 r = relocs[i][0];
6933 if (r > reloc)
6934 return reloc;
6935 if (r == reloc)
6936 return relocs[i][1];
6937 }
6938 return reloc;
6939 }
6940
6941 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6942 Return true on success, storing the resolved value in RESULT. */
6943
6944 static bfd_boolean
6945 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6946 offsetT *result)
6947 {
6948 switch (reloc)
6949 {
6950 case BFD_RELOC_MIPS_HIGHEST:
6951 case BFD_RELOC_MICROMIPS_HIGHEST:
6952 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6953 return TRUE;
6954
6955 case BFD_RELOC_MIPS_HIGHER:
6956 case BFD_RELOC_MICROMIPS_HIGHER:
6957 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6958 return TRUE;
6959
6960 case BFD_RELOC_HI16_S:
6961 case BFD_RELOC_MICROMIPS_HI16_S:
6962 case BFD_RELOC_MIPS16_HI16_S:
6963 *result = ((operand + 0x8000) >> 16) & 0xffff;
6964 return TRUE;
6965
6966 case BFD_RELOC_HI16:
6967 case BFD_RELOC_MICROMIPS_HI16:
6968 case BFD_RELOC_MIPS16_HI16:
6969 *result = (operand >> 16) & 0xffff;
6970 return TRUE;
6971
6972 case BFD_RELOC_LO16:
6973 case BFD_RELOC_MICROMIPS_LO16:
6974 case BFD_RELOC_MIPS16_LO16:
6975 *result = operand & 0xffff;
6976 return TRUE;
6977
6978 case BFD_RELOC_UNUSED:
6979 *result = operand;
6980 return TRUE;
6981
6982 default:
6983 return FALSE;
6984 }
6985 }
6986
6987 /* Output an instruction. IP is the instruction information.
6988 ADDRESS_EXPR is an operand of the instruction to be used with
6989 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6990 a macro expansion. */
6991
6992 static void
6993 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
6994 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
6995 {
6996 unsigned long prev_pinfo2, pinfo;
6997 bfd_boolean relaxed_branch = FALSE;
6998 enum append_method method;
6999 bfd_boolean relax32;
7000 int branch_disp;
7001
7002 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7003 fix_loongson2f (ip);
7004
7005 file_ase_mips16 |= mips_opts.mips16;
7006 file_ase_micromips |= mips_opts.micromips;
7007
7008 prev_pinfo2 = history[0].insn_mo->pinfo2;
7009 pinfo = ip->insn_mo->pinfo;
7010
7011 if (mips_opts.micromips
7012 && !expansionp
7013 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7014 && micromips_insn_length (ip->insn_mo) != 2)
7015 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7016 && micromips_insn_length (ip->insn_mo) != 4)))
7017 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7018 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7019
7020 if (address_expr == NULL)
7021 ip->complete_p = 1;
7022 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7023 && reloc_type[1] == BFD_RELOC_UNUSED
7024 && reloc_type[2] == BFD_RELOC_UNUSED
7025 && address_expr->X_op == O_constant)
7026 {
7027 switch (*reloc_type)
7028 {
7029 case BFD_RELOC_MIPS_JMP:
7030 {
7031 int shift;
7032
7033 shift = mips_opts.micromips ? 1 : 2;
7034 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7035 as_bad (_("jump to misaligned address (0x%lx)"),
7036 (unsigned long) address_expr->X_add_number);
7037 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7038 & 0x3ffffff);
7039 ip->complete_p = 1;
7040 }
7041 break;
7042
7043 case BFD_RELOC_MIPS16_JMP:
7044 if ((address_expr->X_add_number & 3) != 0)
7045 as_bad (_("jump to misaligned address (0x%lx)"),
7046 (unsigned long) address_expr->X_add_number);
7047 ip->insn_opcode |=
7048 (((address_expr->X_add_number & 0x7c0000) << 3)
7049 | ((address_expr->X_add_number & 0xf800000) >> 7)
7050 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7051 ip->complete_p = 1;
7052 break;
7053
7054 case BFD_RELOC_16_PCREL_S2:
7055 {
7056 int shift;
7057
7058 shift = mips_opts.micromips ? 1 : 2;
7059 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7060 as_bad (_("branch to misaligned address (0x%lx)"),
7061 (unsigned long) address_expr->X_add_number);
7062 if (!mips_relax_branch)
7063 {
7064 if ((address_expr->X_add_number + (1 << (shift + 15)))
7065 & ~((1 << (shift + 16)) - 1))
7066 as_bad (_("branch address range overflow (0x%lx)"),
7067 (unsigned long) address_expr->X_add_number);
7068 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7069 & 0xffff);
7070 }
7071 }
7072 break;
7073
7074 case BFD_RELOC_MIPS_21_PCREL_S2:
7075 {
7076 int shift;
7077
7078 shift = 2;
7079 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7080 as_bad (_("branch to misaligned address (0x%lx)"),
7081 (unsigned long) address_expr->X_add_number);
7082 if ((address_expr->X_add_number + (1 << (shift + 20)))
7083 & ~((1 << (shift + 21)) - 1))
7084 as_bad (_("branch address range overflow (0x%lx)"),
7085 (unsigned long) address_expr->X_add_number);
7086 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7087 & 0x1fffff);
7088 }
7089 break;
7090
7091 case BFD_RELOC_MIPS_26_PCREL_S2:
7092 {
7093 int shift;
7094
7095 shift = 2;
7096 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7097 as_bad (_("branch to misaligned address (0x%lx)"),
7098 (unsigned long) address_expr->X_add_number);
7099 if ((address_expr->X_add_number + (1 << (shift + 25)))
7100 & ~((1 << (shift + 26)) - 1))
7101 as_bad (_("branch address range overflow (0x%lx)"),
7102 (unsigned long) address_expr->X_add_number);
7103 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7104 & 0x3ffffff);
7105 }
7106 break;
7107
7108 default:
7109 {
7110 offsetT value;
7111
7112 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7113 &value))
7114 {
7115 ip->insn_opcode |= value & 0xffff;
7116 ip->complete_p = 1;
7117 }
7118 }
7119 break;
7120 }
7121 }
7122
7123 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7124 {
7125 /* There are a lot of optimizations we could do that we don't.
7126 In particular, we do not, in general, reorder instructions.
7127 If you use gcc with optimization, it will reorder
7128 instructions and generally do much more optimization then we
7129 do here; repeating all that work in the assembler would only
7130 benefit hand written assembly code, and does not seem worth
7131 it. */
7132 int nops = (mips_optimize == 0
7133 ? nops_for_insn (0, history, NULL)
7134 : nops_for_insn_or_target (0, history, ip));
7135 if (nops > 0)
7136 {
7137 fragS *old_frag;
7138 unsigned long old_frag_offset;
7139 int i;
7140
7141 old_frag = frag_now;
7142 old_frag_offset = frag_now_fix ();
7143
7144 for (i = 0; i < nops; i++)
7145 add_fixed_insn (NOP_INSN);
7146 insert_into_history (0, nops, NOP_INSN);
7147
7148 if (listing)
7149 {
7150 listing_prev_line ();
7151 /* We may be at the start of a variant frag. In case we
7152 are, make sure there is enough space for the frag
7153 after the frags created by listing_prev_line. The
7154 argument to frag_grow here must be at least as large
7155 as the argument to all other calls to frag_grow in
7156 this file. We don't have to worry about being in the
7157 middle of a variant frag, because the variants insert
7158 all needed nop instructions themselves. */
7159 frag_grow (40);
7160 }
7161
7162 mips_move_text_labels ();
7163
7164 #ifndef NO_ECOFF_DEBUGGING
7165 if (ECOFF_DEBUGGING)
7166 ecoff_fix_loc (old_frag, old_frag_offset);
7167 #endif
7168 }
7169 }
7170 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7171 {
7172 int nops;
7173
7174 /* Work out how many nops in prev_nop_frag are needed by IP,
7175 ignoring hazards generated by the first prev_nop_frag_since
7176 instructions. */
7177 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7178 gas_assert (nops <= prev_nop_frag_holds);
7179
7180 /* Enforce NOPS as a minimum. */
7181 if (nops > prev_nop_frag_required)
7182 prev_nop_frag_required = nops;
7183
7184 if (prev_nop_frag_holds == prev_nop_frag_required)
7185 {
7186 /* Settle for the current number of nops. Update the history
7187 accordingly (for the benefit of any future .set reorder code). */
7188 prev_nop_frag = NULL;
7189 insert_into_history (prev_nop_frag_since,
7190 prev_nop_frag_holds, NOP_INSN);
7191 }
7192 else
7193 {
7194 /* Allow this instruction to replace one of the nops that was
7195 tentatively added to prev_nop_frag. */
7196 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7197 prev_nop_frag_holds--;
7198 prev_nop_frag_since++;
7199 }
7200 }
7201
7202 method = get_append_method (ip, address_expr, reloc_type);
7203 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7204
7205 dwarf2_emit_insn (0);
7206 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7207 so "move" the instruction address accordingly.
7208
7209 Also, it doesn't seem appropriate for the assembler to reorder .loc
7210 entries. If this instruction is a branch that we are going to swap
7211 with the previous instruction, the two instructions should be
7212 treated as a unit, and the debug information for both instructions
7213 should refer to the start of the branch sequence. Using the
7214 current position is certainly wrong when swapping a 32-bit branch
7215 and a 16-bit delay slot, since the current position would then be
7216 in the middle of a branch. */
7217 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7218
7219 relax32 = (mips_relax_branch
7220 /* Don't try branch relaxation within .set nomacro, or within
7221 .set noat if we use $at for PIC computations. If it turns
7222 out that the branch was out-of-range, we'll get an error. */
7223 && !mips_opts.warn_about_macros
7224 && (mips_opts.at || mips_pic == NO_PIC)
7225 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7226 as they have no complementing branches. */
7227 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7228
7229 if (!HAVE_CODE_COMPRESSION
7230 && address_expr
7231 && relax32
7232 && *reloc_type == BFD_RELOC_16_PCREL_S2
7233 && delayed_branch_p (ip))
7234 {
7235 relaxed_branch = TRUE;
7236 add_relaxed_insn (ip, (relaxed_branch_length
7237 (NULL, NULL,
7238 uncond_branch_p (ip) ? -1
7239 : branch_likely_p (ip) ? 1
7240 : 0)), 4,
7241 RELAX_BRANCH_ENCODE
7242 (AT,
7243 uncond_branch_p (ip),
7244 branch_likely_p (ip),
7245 pinfo & INSN_WRITE_GPR_31,
7246 0),
7247 address_expr->X_add_symbol,
7248 address_expr->X_add_number);
7249 *reloc_type = BFD_RELOC_UNUSED;
7250 }
7251 else if (mips_opts.micromips
7252 && address_expr
7253 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7254 || *reloc_type > BFD_RELOC_UNUSED)
7255 && (delayed_branch_p (ip) || compact_branch_p (ip))
7256 /* Don't try branch relaxation when users specify
7257 16-bit/32-bit instructions. */
7258 && !forced_insn_length)
7259 {
7260 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7261 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7262 int uncond = uncond_branch_p (ip) ? -1 : 0;
7263 int compact = compact_branch_p (ip);
7264 int al = pinfo & INSN_WRITE_GPR_31;
7265 int length32;
7266
7267 gas_assert (address_expr != NULL);
7268 gas_assert (!mips_relax.sequence);
7269
7270 relaxed_branch = TRUE;
7271 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7272 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7273 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7274 relax32, 0, 0),
7275 address_expr->X_add_symbol,
7276 address_expr->X_add_number);
7277 *reloc_type = BFD_RELOC_UNUSED;
7278 }
7279 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7280 {
7281 /* We need to set up a variant frag. */
7282 gas_assert (address_expr != NULL);
7283 add_relaxed_insn (ip, 4, 0,
7284 RELAX_MIPS16_ENCODE
7285 (*reloc_type - BFD_RELOC_UNUSED,
7286 forced_insn_length == 2, forced_insn_length == 4,
7287 delayed_branch_p (&history[0]),
7288 history[0].mips16_absolute_jump_p),
7289 make_expr_symbol (address_expr), 0);
7290 }
7291 else if (mips_opts.mips16 && insn_length (ip) == 2)
7292 {
7293 if (!delayed_branch_p (ip))
7294 /* Make sure there is enough room to swap this instruction with
7295 a following jump instruction. */
7296 frag_grow (6);
7297 add_fixed_insn (ip);
7298 }
7299 else
7300 {
7301 if (mips_opts.mips16
7302 && mips_opts.noreorder
7303 && delayed_branch_p (&history[0]))
7304 as_warn (_("extended instruction in delay slot"));
7305
7306 if (mips_relax.sequence)
7307 {
7308 /* If we've reached the end of this frag, turn it into a variant
7309 frag and record the information for the instructions we've
7310 written so far. */
7311 if (frag_room () < 4)
7312 relax_close_frag ();
7313 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7314 }
7315
7316 if (mips_relax.sequence != 2)
7317 {
7318 if (mips_macro_warning.first_insn_sizes[0] == 0)
7319 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7320 mips_macro_warning.sizes[0] += insn_length (ip);
7321 mips_macro_warning.insns[0]++;
7322 }
7323 if (mips_relax.sequence != 1)
7324 {
7325 if (mips_macro_warning.first_insn_sizes[1] == 0)
7326 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7327 mips_macro_warning.sizes[1] += insn_length (ip);
7328 mips_macro_warning.insns[1]++;
7329 }
7330
7331 if (mips_opts.mips16)
7332 {
7333 ip->fixed_p = 1;
7334 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7335 }
7336 add_fixed_insn (ip);
7337 }
7338
7339 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7340 {
7341 bfd_reloc_code_real_type final_type[3];
7342 reloc_howto_type *howto0;
7343 reloc_howto_type *howto;
7344 int i;
7345
7346 /* Perform any necessary conversion to microMIPS relocations
7347 and find out how many relocations there actually are. */
7348 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7349 final_type[i] = micromips_map_reloc (reloc_type[i]);
7350
7351 /* In a compound relocation, it is the final (outermost)
7352 operator that determines the relocated field. */
7353 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7354 if (!howto)
7355 abort ();
7356
7357 if (i > 1)
7358 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7359 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7360 bfd_get_reloc_size (howto),
7361 address_expr,
7362 howto0 && howto0->pc_relative,
7363 final_type[0]);
7364
7365 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7366 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7367 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7368
7369 /* These relocations can have an addend that won't fit in
7370 4 octets for 64bit assembly. */
7371 if (GPR_SIZE == 64
7372 && ! howto->partial_inplace
7373 && (reloc_type[0] == BFD_RELOC_16
7374 || reloc_type[0] == BFD_RELOC_32
7375 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7376 || reloc_type[0] == BFD_RELOC_GPREL16
7377 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7378 || reloc_type[0] == BFD_RELOC_GPREL32
7379 || reloc_type[0] == BFD_RELOC_64
7380 || reloc_type[0] == BFD_RELOC_CTOR
7381 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7382 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7383 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7384 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7385 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7386 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7387 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7388 || hi16_reloc_p (reloc_type[0])
7389 || lo16_reloc_p (reloc_type[0])))
7390 ip->fixp[0]->fx_no_overflow = 1;
7391
7392 /* These relocations can have an addend that won't fit in 2 octets. */
7393 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7394 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7395 ip->fixp[0]->fx_no_overflow = 1;
7396
7397 if (mips_relax.sequence)
7398 {
7399 if (mips_relax.first_fixup == 0)
7400 mips_relax.first_fixup = ip->fixp[0];
7401 }
7402 else if (reloc_needs_lo_p (*reloc_type))
7403 {
7404 struct mips_hi_fixup *hi_fixup;
7405
7406 /* Reuse the last entry if it already has a matching %lo. */
7407 hi_fixup = mips_hi_fixup_list;
7408 if (hi_fixup == 0
7409 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7410 {
7411 hi_fixup = ((struct mips_hi_fixup *)
7412 xmalloc (sizeof (struct mips_hi_fixup)));
7413 hi_fixup->next = mips_hi_fixup_list;
7414 mips_hi_fixup_list = hi_fixup;
7415 }
7416 hi_fixup->fixp = ip->fixp[0];
7417 hi_fixup->seg = now_seg;
7418 }
7419
7420 /* Add fixups for the second and third relocations, if given.
7421 Note that the ABI allows the second relocation to be
7422 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7423 moment we only use RSS_UNDEF, but we could add support
7424 for the others if it ever becomes necessary. */
7425 for (i = 1; i < 3; i++)
7426 if (reloc_type[i] != BFD_RELOC_UNUSED)
7427 {
7428 ip->fixp[i] = fix_new (ip->frag, ip->where,
7429 ip->fixp[0]->fx_size, NULL, 0,
7430 FALSE, final_type[i]);
7431
7432 /* Use fx_tcbit to mark compound relocs. */
7433 ip->fixp[0]->fx_tcbit = 1;
7434 ip->fixp[i]->fx_tcbit = 1;
7435 }
7436 }
7437 install_insn (ip);
7438
7439 /* Update the register mask information. */
7440 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7441 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7442
7443 switch (method)
7444 {
7445 case APPEND_ADD:
7446 insert_into_history (0, 1, ip);
7447 break;
7448
7449 case APPEND_ADD_WITH_NOP:
7450 {
7451 struct mips_cl_insn *nop;
7452
7453 insert_into_history (0, 1, ip);
7454 nop = get_delay_slot_nop (ip);
7455 add_fixed_insn (nop);
7456 insert_into_history (0, 1, nop);
7457 if (mips_relax.sequence)
7458 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7459 }
7460 break;
7461
7462 case APPEND_ADD_COMPACT:
7463 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7464 gas_assert (mips_opts.mips16);
7465 ip->insn_opcode |= 0x0080;
7466 find_altered_mips16_opcode (ip);
7467 install_insn (ip);
7468 insert_into_history (0, 1, ip);
7469 break;
7470
7471 case APPEND_SWAP:
7472 {
7473 struct mips_cl_insn delay = history[0];
7474 if (mips_opts.mips16)
7475 {
7476 know (delay.frag == ip->frag);
7477 move_insn (ip, delay.frag, delay.where);
7478 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7479 }
7480 else if (relaxed_branch || delay.frag != ip->frag)
7481 {
7482 /* Add the delay slot instruction to the end of the
7483 current frag and shrink the fixed part of the
7484 original frag. If the branch occupies the tail of
7485 the latter, move it backwards to cover the gap. */
7486 delay.frag->fr_fix -= branch_disp;
7487 if (delay.frag == ip->frag)
7488 move_insn (ip, ip->frag, ip->where - branch_disp);
7489 add_fixed_insn (&delay);
7490 }
7491 else
7492 {
7493 move_insn (&delay, ip->frag,
7494 ip->where - branch_disp + insn_length (ip));
7495 move_insn (ip, history[0].frag, history[0].where);
7496 }
7497 history[0] = *ip;
7498 delay.fixed_p = 1;
7499 insert_into_history (0, 1, &delay);
7500 }
7501 break;
7502 }
7503
7504 /* If we have just completed an unconditional branch, clear the history. */
7505 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7506 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7507 {
7508 unsigned int i;
7509
7510 mips_no_prev_insn ();
7511
7512 for (i = 0; i < ARRAY_SIZE (history); i++)
7513 history[i].cleared_p = 1;
7514 }
7515
7516 /* We need to emit a label at the end of branch-likely macros. */
7517 if (emit_branch_likely_macro)
7518 {
7519 emit_branch_likely_macro = FALSE;
7520 micromips_add_label ();
7521 }
7522
7523 /* We just output an insn, so the next one doesn't have a label. */
7524 mips_clear_insn_labels ();
7525 }
7526
7527 /* Forget that there was any previous instruction or label.
7528 When BRANCH is true, the branch history is also flushed. */
7529
7530 static void
7531 mips_no_prev_insn (void)
7532 {
7533 prev_nop_frag = NULL;
7534 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7535 mips_clear_insn_labels ();
7536 }
7537
7538 /* This function must be called before we emit something other than
7539 instructions. It is like mips_no_prev_insn except that it inserts
7540 any NOPS that might be needed by previous instructions. */
7541
7542 void
7543 mips_emit_delays (void)
7544 {
7545 if (! mips_opts.noreorder)
7546 {
7547 int nops = nops_for_insn (0, history, NULL);
7548 if (nops > 0)
7549 {
7550 while (nops-- > 0)
7551 add_fixed_insn (NOP_INSN);
7552 mips_move_text_labels ();
7553 }
7554 }
7555 mips_no_prev_insn ();
7556 }
7557
7558 /* Start a (possibly nested) noreorder block. */
7559
7560 static void
7561 start_noreorder (void)
7562 {
7563 if (mips_opts.noreorder == 0)
7564 {
7565 unsigned int i;
7566 int nops;
7567
7568 /* None of the instructions before the .set noreorder can be moved. */
7569 for (i = 0; i < ARRAY_SIZE (history); i++)
7570 history[i].fixed_p = 1;
7571
7572 /* Insert any nops that might be needed between the .set noreorder
7573 block and the previous instructions. We will later remove any
7574 nops that turn out not to be needed. */
7575 nops = nops_for_insn (0, history, NULL);
7576 if (nops > 0)
7577 {
7578 if (mips_optimize != 0)
7579 {
7580 /* Record the frag which holds the nop instructions, so
7581 that we can remove them if we don't need them. */
7582 frag_grow (nops * NOP_INSN_SIZE);
7583 prev_nop_frag = frag_now;
7584 prev_nop_frag_holds = nops;
7585 prev_nop_frag_required = 0;
7586 prev_nop_frag_since = 0;
7587 }
7588
7589 for (; nops > 0; --nops)
7590 add_fixed_insn (NOP_INSN);
7591
7592 /* Move on to a new frag, so that it is safe to simply
7593 decrease the size of prev_nop_frag. */
7594 frag_wane (frag_now);
7595 frag_new (0);
7596 mips_move_text_labels ();
7597 }
7598 mips_mark_labels ();
7599 mips_clear_insn_labels ();
7600 }
7601 mips_opts.noreorder++;
7602 mips_any_noreorder = 1;
7603 }
7604
7605 /* End a nested noreorder block. */
7606
7607 static void
7608 end_noreorder (void)
7609 {
7610 mips_opts.noreorder--;
7611 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7612 {
7613 /* Commit to inserting prev_nop_frag_required nops and go back to
7614 handling nop insertion the .set reorder way. */
7615 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7616 * NOP_INSN_SIZE);
7617 insert_into_history (prev_nop_frag_since,
7618 prev_nop_frag_required, NOP_INSN);
7619 prev_nop_frag = NULL;
7620 }
7621 }
7622
7623 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7624 higher bits unset. */
7625
7626 static void
7627 normalize_constant_expr (expressionS *ex)
7628 {
7629 if (ex->X_op == O_constant
7630 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7631 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7632 - 0x80000000);
7633 }
7634
7635 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7636 all higher bits unset. */
7637
7638 static void
7639 normalize_address_expr (expressionS *ex)
7640 {
7641 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7642 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7643 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7644 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7645 - 0x80000000);
7646 }
7647
7648 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7649 Return true if the match was successful.
7650
7651 OPCODE_EXTRA is a value that should be ORed into the opcode
7652 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7653 there are more alternatives after OPCODE and SOFT_MATCH is
7654 as for mips_arg_info. */
7655
7656 static bfd_boolean
7657 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7658 struct mips_operand_token *tokens, unsigned int opcode_extra,
7659 bfd_boolean lax_match, bfd_boolean complete_p)
7660 {
7661 const char *args;
7662 struct mips_arg_info arg;
7663 const struct mips_operand *operand;
7664 char c;
7665
7666 imm_expr.X_op = O_absent;
7667 offset_expr.X_op = O_absent;
7668 offset_reloc[0] = BFD_RELOC_UNUSED;
7669 offset_reloc[1] = BFD_RELOC_UNUSED;
7670 offset_reloc[2] = BFD_RELOC_UNUSED;
7671
7672 create_insn (insn, opcode);
7673 /* When no opcode suffix is specified, assume ".xyzw". */
7674 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7675 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7676 else
7677 insn->insn_opcode |= opcode_extra;
7678 memset (&arg, 0, sizeof (arg));
7679 arg.insn = insn;
7680 arg.token = tokens;
7681 arg.argnum = 1;
7682 arg.last_regno = ILLEGAL_REG;
7683 arg.dest_regno = ILLEGAL_REG;
7684 arg.lax_match = lax_match;
7685 for (args = opcode->args;; ++args)
7686 {
7687 if (arg.token->type == OT_END)
7688 {
7689 /* Handle unary instructions in which only one operand is given.
7690 The source is then the same as the destination. */
7691 if (arg.opnum == 1 && *args == ',')
7692 {
7693 operand = (mips_opts.micromips
7694 ? decode_micromips_operand (args + 1)
7695 : decode_mips_operand (args + 1));
7696 if (operand && mips_optional_operand_p (operand))
7697 {
7698 arg.token = tokens;
7699 arg.argnum = 1;
7700 continue;
7701 }
7702 }
7703
7704 /* Treat elided base registers as $0. */
7705 if (strcmp (args, "(b)") == 0)
7706 args += 3;
7707
7708 if (args[0] == '+')
7709 switch (args[1])
7710 {
7711 case 'K':
7712 case 'N':
7713 /* The register suffix is optional. */
7714 args += 2;
7715 break;
7716 }
7717
7718 /* Fail the match if there were too few operands. */
7719 if (*args)
7720 return FALSE;
7721
7722 /* Successful match. */
7723 if (!complete_p)
7724 return TRUE;
7725 clear_insn_error ();
7726 if (arg.dest_regno == arg.last_regno
7727 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7728 {
7729 if (arg.opnum == 2)
7730 set_insn_error
7731 (0, _("source and destination must be different"));
7732 else if (arg.last_regno == 31)
7733 set_insn_error
7734 (0, _("a destination register must be supplied"));
7735 }
7736 else if (arg.last_regno == 31
7737 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7738 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7739 set_insn_error (0, _("the source register must not be $31"));
7740 check_completed_insn (&arg);
7741 return TRUE;
7742 }
7743
7744 /* Fail the match if the line has too many operands. */
7745 if (*args == 0)
7746 return FALSE;
7747
7748 /* Handle characters that need to match exactly. */
7749 if (*args == '(' || *args == ')' || *args == ',')
7750 {
7751 if (match_char (&arg, *args))
7752 continue;
7753 return FALSE;
7754 }
7755 if (*args == '#')
7756 {
7757 ++args;
7758 if (arg.token->type == OT_DOUBLE_CHAR
7759 && arg.token->u.ch == *args)
7760 {
7761 ++arg.token;
7762 continue;
7763 }
7764 return FALSE;
7765 }
7766
7767 /* Handle special macro operands. Work out the properties of
7768 other operands. */
7769 arg.opnum += 1;
7770 switch (*args)
7771 {
7772 case '-':
7773 switch (args[1])
7774 {
7775 case 'A':
7776 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7777 break;
7778
7779 case 'B':
7780 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7781 break;
7782 }
7783 break;
7784
7785 case '+':
7786 switch (args[1])
7787 {
7788 case 'i':
7789 *offset_reloc = BFD_RELOC_MIPS_JMP;
7790 break;
7791
7792 case '\'':
7793 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7794 break;
7795
7796 case '\"':
7797 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7798 break;
7799 }
7800 break;
7801
7802 case 'I':
7803 if (!match_const_int (&arg, &imm_expr.X_add_number))
7804 return FALSE;
7805 imm_expr.X_op = O_constant;
7806 if (GPR_SIZE == 32)
7807 normalize_constant_expr (&imm_expr);
7808 continue;
7809
7810 case 'A':
7811 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7812 {
7813 /* Assume that the offset has been elided and that what
7814 we saw was a base register. The match will fail later
7815 if that assumption turns out to be wrong. */
7816 offset_expr.X_op = O_constant;
7817 offset_expr.X_add_number = 0;
7818 }
7819 else
7820 {
7821 if (!match_expression (&arg, &offset_expr, offset_reloc))
7822 return FALSE;
7823 normalize_address_expr (&offset_expr);
7824 }
7825 continue;
7826
7827 case 'F':
7828 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7829 8, TRUE))
7830 return FALSE;
7831 continue;
7832
7833 case 'L':
7834 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7835 8, FALSE))
7836 return FALSE;
7837 continue;
7838
7839 case 'f':
7840 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7841 4, TRUE))
7842 return FALSE;
7843 continue;
7844
7845 case 'l':
7846 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7847 4, FALSE))
7848 return FALSE;
7849 continue;
7850
7851 case 'p':
7852 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7853 break;
7854
7855 case 'a':
7856 *offset_reloc = BFD_RELOC_MIPS_JMP;
7857 break;
7858
7859 case 'm':
7860 gas_assert (mips_opts.micromips);
7861 c = args[1];
7862 switch (c)
7863 {
7864 case 'D':
7865 case 'E':
7866 if (!forced_insn_length)
7867 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7868 else if (c == 'D')
7869 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7870 else
7871 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7872 break;
7873 }
7874 break;
7875 }
7876
7877 operand = (mips_opts.micromips
7878 ? decode_micromips_operand (args)
7879 : decode_mips_operand (args));
7880 if (!operand)
7881 abort ();
7882
7883 /* Skip prefixes. */
7884 if (*args == '+' || *args == 'm' || *args == '-')
7885 args++;
7886
7887 if (mips_optional_operand_p (operand)
7888 && args[1] == ','
7889 && (arg.token[0].type != OT_REG
7890 || arg.token[1].type == OT_END))
7891 {
7892 /* Assume that the register has been elided and is the
7893 same as the first operand. */
7894 arg.token = tokens;
7895 arg.argnum = 1;
7896 }
7897
7898 if (!match_operand (&arg, operand))
7899 return FALSE;
7900 }
7901 }
7902
7903 /* Like match_insn, but for MIPS16. */
7904
7905 static bfd_boolean
7906 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7907 struct mips_operand_token *tokens)
7908 {
7909 const char *args;
7910 const struct mips_operand *operand;
7911 const struct mips_operand *ext_operand;
7912 struct mips_arg_info arg;
7913 int relax_char;
7914
7915 create_insn (insn, opcode);
7916 imm_expr.X_op = O_absent;
7917 offset_expr.X_op = O_absent;
7918 offset_reloc[0] = BFD_RELOC_UNUSED;
7919 offset_reloc[1] = BFD_RELOC_UNUSED;
7920 offset_reloc[2] = BFD_RELOC_UNUSED;
7921 relax_char = 0;
7922
7923 memset (&arg, 0, sizeof (arg));
7924 arg.insn = insn;
7925 arg.token = tokens;
7926 arg.argnum = 1;
7927 arg.last_regno = ILLEGAL_REG;
7928 arg.dest_regno = ILLEGAL_REG;
7929 relax_char = 0;
7930 for (args = opcode->args;; ++args)
7931 {
7932 int c;
7933
7934 if (arg.token->type == OT_END)
7935 {
7936 offsetT value;
7937
7938 /* Handle unary instructions in which only one operand is given.
7939 The source is then the same as the destination. */
7940 if (arg.opnum == 1 && *args == ',')
7941 {
7942 operand = decode_mips16_operand (args[1], FALSE);
7943 if (operand && mips_optional_operand_p (operand))
7944 {
7945 arg.token = tokens;
7946 arg.argnum = 1;
7947 continue;
7948 }
7949 }
7950
7951 /* Fail the match if there were too few operands. */
7952 if (*args)
7953 return FALSE;
7954
7955 /* Successful match. Stuff the immediate value in now, if
7956 we can. */
7957 clear_insn_error ();
7958 if (opcode->pinfo == INSN_MACRO)
7959 {
7960 gas_assert (relax_char == 0 || relax_char == 'p');
7961 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7962 }
7963 else if (relax_char
7964 && offset_expr.X_op == O_constant
7965 && calculate_reloc (*offset_reloc,
7966 offset_expr.X_add_number,
7967 &value))
7968 {
7969 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7970 forced_insn_length, &insn->insn_opcode);
7971 offset_expr.X_op = O_absent;
7972 *offset_reloc = BFD_RELOC_UNUSED;
7973 }
7974 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7975 {
7976 if (forced_insn_length == 2)
7977 set_insn_error (0, _("invalid unextended operand value"));
7978 forced_insn_length = 4;
7979 insn->insn_opcode |= MIPS16_EXTEND;
7980 }
7981 else if (relax_char)
7982 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7983
7984 check_completed_insn (&arg);
7985 return TRUE;
7986 }
7987
7988 /* Fail the match if the line has too many operands. */
7989 if (*args == 0)
7990 return FALSE;
7991
7992 /* Handle characters that need to match exactly. */
7993 if (*args == '(' || *args == ')' || *args == ',')
7994 {
7995 if (match_char (&arg, *args))
7996 continue;
7997 return FALSE;
7998 }
7999
8000 arg.opnum += 1;
8001 c = *args;
8002 switch (c)
8003 {
8004 case 'p':
8005 case 'q':
8006 case 'A':
8007 case 'B':
8008 case 'E':
8009 relax_char = c;
8010 break;
8011
8012 case 'I':
8013 if (!match_const_int (&arg, &imm_expr.X_add_number))
8014 return FALSE;
8015 imm_expr.X_op = O_constant;
8016 if (GPR_SIZE == 32)
8017 normalize_constant_expr (&imm_expr);
8018 continue;
8019
8020 case 'a':
8021 case 'i':
8022 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8023 insn->insn_opcode <<= 16;
8024 break;
8025 }
8026
8027 operand = decode_mips16_operand (c, FALSE);
8028 if (!operand)
8029 abort ();
8030
8031 /* '6' is a special case. It is used for BREAK and SDBBP,
8032 whose operands are only meaningful to the software that decodes
8033 them. This means that there is no architectural reason why
8034 they cannot be prefixed by EXTEND, but in practice,
8035 exception handlers will only look at the instruction
8036 itself. We therefore allow '6' to be extended when
8037 disassembling but not when assembling. */
8038 if (operand->type != OP_PCREL && c != '6')
8039 {
8040 ext_operand = decode_mips16_operand (c, TRUE);
8041 if (operand != ext_operand)
8042 {
8043 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8044 {
8045 offset_expr.X_op = O_constant;
8046 offset_expr.X_add_number = 0;
8047 relax_char = c;
8048 continue;
8049 }
8050
8051 /* We need the OT_INTEGER check because some MIPS16
8052 immediate variants are listed before the register ones. */
8053 if (arg.token->type != OT_INTEGER
8054 || !match_expression (&arg, &offset_expr, offset_reloc))
8055 return FALSE;
8056
8057 /* '8' is used for SLTI(U) and has traditionally not
8058 been allowed to take relocation operators. */
8059 if (offset_reloc[0] != BFD_RELOC_UNUSED
8060 && (ext_operand->size != 16 || c == '8'))
8061 return FALSE;
8062
8063 relax_char = c;
8064 continue;
8065 }
8066 }
8067
8068 if (mips_optional_operand_p (operand)
8069 && args[1] == ','
8070 && (arg.token[0].type != OT_REG
8071 || arg.token[1].type == OT_END))
8072 {
8073 /* Assume that the register has been elided and is the
8074 same as the first operand. */
8075 arg.token = tokens;
8076 arg.argnum = 1;
8077 }
8078
8079 if (!match_operand (&arg, operand))
8080 return FALSE;
8081 }
8082 }
8083
8084 /* Record that the current instruction is invalid for the current ISA. */
8085
8086 static void
8087 match_invalid_for_isa (void)
8088 {
8089 set_insn_error_ss
8090 (0, _("opcode not supported on this processor: %s (%s)"),
8091 mips_cpu_info_from_arch (mips_opts.arch)->name,
8092 mips_cpu_info_from_isa (mips_opts.isa)->name);
8093 }
8094
8095 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8096 Return true if a definite match or failure was found, storing any match
8097 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8098 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8099 tried and failed to match under normal conditions and now want to try a
8100 more relaxed match. */
8101
8102 static bfd_boolean
8103 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8104 const struct mips_opcode *past, struct mips_operand_token *tokens,
8105 int opcode_extra, bfd_boolean lax_match)
8106 {
8107 const struct mips_opcode *opcode;
8108 const struct mips_opcode *invalid_delay_slot;
8109 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8110
8111 /* Search for a match, ignoring alternatives that don't satisfy the
8112 current ISA or forced_length. */
8113 invalid_delay_slot = 0;
8114 seen_valid_for_isa = FALSE;
8115 seen_valid_for_size = FALSE;
8116 opcode = first;
8117 do
8118 {
8119 gas_assert (strcmp (opcode->name, first->name) == 0);
8120 if (is_opcode_valid (opcode))
8121 {
8122 seen_valid_for_isa = TRUE;
8123 if (is_size_valid (opcode))
8124 {
8125 bfd_boolean delay_slot_ok;
8126
8127 seen_valid_for_size = TRUE;
8128 delay_slot_ok = is_delay_slot_valid (opcode);
8129 if (match_insn (insn, opcode, tokens, opcode_extra,
8130 lax_match, delay_slot_ok))
8131 {
8132 if (!delay_slot_ok)
8133 {
8134 if (!invalid_delay_slot)
8135 invalid_delay_slot = opcode;
8136 }
8137 else
8138 return TRUE;
8139 }
8140 }
8141 }
8142 ++opcode;
8143 }
8144 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8145
8146 /* If the only matches we found had the wrong length for the delay slot,
8147 pick the first such match. We'll issue an appropriate warning later. */
8148 if (invalid_delay_slot)
8149 {
8150 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8151 lax_match, TRUE))
8152 return TRUE;
8153 abort ();
8154 }
8155
8156 /* Handle the case where we didn't try to match an instruction because
8157 all the alternatives were incompatible with the current ISA. */
8158 if (!seen_valid_for_isa)
8159 {
8160 match_invalid_for_isa ();
8161 return TRUE;
8162 }
8163
8164 /* Handle the case where we didn't try to match an instruction because
8165 all the alternatives were of the wrong size. */
8166 if (!seen_valid_for_size)
8167 {
8168 if (mips_opts.insn32)
8169 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8170 else
8171 set_insn_error_i
8172 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8173 8 * forced_insn_length);
8174 return TRUE;
8175 }
8176
8177 return FALSE;
8178 }
8179
8180 /* Like match_insns, but for MIPS16. */
8181
8182 static bfd_boolean
8183 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8184 struct mips_operand_token *tokens)
8185 {
8186 const struct mips_opcode *opcode;
8187 bfd_boolean seen_valid_for_isa;
8188
8189 /* Search for a match, ignoring alternatives that don't satisfy the
8190 current ISA. There are no separate entries for extended forms so
8191 we deal with forced_length later. */
8192 seen_valid_for_isa = FALSE;
8193 opcode = first;
8194 do
8195 {
8196 gas_assert (strcmp (opcode->name, first->name) == 0);
8197 if (is_opcode_valid_16 (opcode))
8198 {
8199 seen_valid_for_isa = TRUE;
8200 if (match_mips16_insn (insn, opcode, tokens))
8201 return TRUE;
8202 }
8203 ++opcode;
8204 }
8205 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8206 && strcmp (opcode->name, first->name) == 0);
8207
8208 /* Handle the case where we didn't try to match an instruction because
8209 all the alternatives were incompatible with the current ISA. */
8210 if (!seen_valid_for_isa)
8211 {
8212 match_invalid_for_isa ();
8213 return TRUE;
8214 }
8215
8216 return FALSE;
8217 }
8218
8219 /* Set up global variables for the start of a new macro. */
8220
8221 static void
8222 macro_start (void)
8223 {
8224 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8225 memset (&mips_macro_warning.first_insn_sizes, 0,
8226 sizeof (mips_macro_warning.first_insn_sizes));
8227 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8228 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8229 && delayed_branch_p (&history[0]));
8230 switch (history[0].insn_mo->pinfo2
8231 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8232 {
8233 case INSN2_BRANCH_DELAY_32BIT:
8234 mips_macro_warning.delay_slot_length = 4;
8235 break;
8236 case INSN2_BRANCH_DELAY_16BIT:
8237 mips_macro_warning.delay_slot_length = 2;
8238 break;
8239 default:
8240 mips_macro_warning.delay_slot_length = 0;
8241 break;
8242 }
8243 mips_macro_warning.first_frag = NULL;
8244 }
8245
8246 /* Given that a macro is longer than one instruction or of the wrong size,
8247 return the appropriate warning for it. Return null if no warning is
8248 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8249 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8250 and RELAX_NOMACRO. */
8251
8252 static const char *
8253 macro_warning (relax_substateT subtype)
8254 {
8255 if (subtype & RELAX_DELAY_SLOT)
8256 return _("macro instruction expanded into multiple instructions"
8257 " in a branch delay slot");
8258 else if (subtype & RELAX_NOMACRO)
8259 return _("macro instruction expanded into multiple instructions");
8260 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8261 | RELAX_DELAY_SLOT_SIZE_SECOND))
8262 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8263 ? _("macro instruction expanded into a wrong size instruction"
8264 " in a 16-bit branch delay slot")
8265 : _("macro instruction expanded into a wrong size instruction"
8266 " in a 32-bit branch delay slot"));
8267 else
8268 return 0;
8269 }
8270
8271 /* Finish up a macro. Emit warnings as appropriate. */
8272
8273 static void
8274 macro_end (void)
8275 {
8276 /* Relaxation warning flags. */
8277 relax_substateT subtype = 0;
8278
8279 /* Check delay slot size requirements. */
8280 if (mips_macro_warning.delay_slot_length == 2)
8281 subtype |= RELAX_DELAY_SLOT_16BIT;
8282 if (mips_macro_warning.delay_slot_length != 0)
8283 {
8284 if (mips_macro_warning.delay_slot_length
8285 != mips_macro_warning.first_insn_sizes[0])
8286 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8287 if (mips_macro_warning.delay_slot_length
8288 != mips_macro_warning.first_insn_sizes[1])
8289 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8290 }
8291
8292 /* Check instruction count requirements. */
8293 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8294 {
8295 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8296 subtype |= RELAX_SECOND_LONGER;
8297 if (mips_opts.warn_about_macros)
8298 subtype |= RELAX_NOMACRO;
8299 if (mips_macro_warning.delay_slot_p)
8300 subtype |= RELAX_DELAY_SLOT;
8301 }
8302
8303 /* If both alternatives fail to fill a delay slot correctly,
8304 emit the warning now. */
8305 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8306 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8307 {
8308 relax_substateT s;
8309 const char *msg;
8310
8311 s = subtype & (RELAX_DELAY_SLOT_16BIT
8312 | RELAX_DELAY_SLOT_SIZE_FIRST
8313 | RELAX_DELAY_SLOT_SIZE_SECOND);
8314 msg = macro_warning (s);
8315 if (msg != NULL)
8316 as_warn ("%s", msg);
8317 subtype &= ~s;
8318 }
8319
8320 /* If both implementations are longer than 1 instruction, then emit the
8321 warning now. */
8322 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8323 {
8324 relax_substateT s;
8325 const char *msg;
8326
8327 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8328 msg = macro_warning (s);
8329 if (msg != NULL)
8330 as_warn ("%s", msg);
8331 subtype &= ~s;
8332 }
8333
8334 /* If any flags still set, then one implementation might need a warning
8335 and the other either will need one of a different kind or none at all.
8336 Pass any remaining flags over to relaxation. */
8337 if (mips_macro_warning.first_frag != NULL)
8338 mips_macro_warning.first_frag->fr_subtype |= subtype;
8339 }
8340
8341 /* Instruction operand formats used in macros that vary between
8342 standard MIPS and microMIPS code. */
8343
8344 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8345 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8346 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8347 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8348 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8349 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8350 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8351 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8352
8353 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8354 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8355 : cop12_fmt[mips_opts.micromips])
8356 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8357 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8358 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8359 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8360 : mem12_fmt[mips_opts.micromips])
8361 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8362 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8363 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8364
8365 /* Read a macro's relocation codes from *ARGS and store them in *R.
8366 The first argument in *ARGS will be either the code for a single
8367 relocation or -1 followed by the three codes that make up a
8368 composite relocation. */
8369
8370 static void
8371 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8372 {
8373 int i, next;
8374
8375 next = va_arg (*args, int);
8376 if (next >= 0)
8377 r[0] = (bfd_reloc_code_real_type) next;
8378 else
8379 {
8380 for (i = 0; i < 3; i++)
8381 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8382 /* This function is only used for 16-bit relocation fields.
8383 To make the macro code simpler, treat an unrelocated value
8384 in the same way as BFD_RELOC_LO16. */
8385 if (r[0] == BFD_RELOC_UNUSED)
8386 r[0] = BFD_RELOC_LO16;
8387 }
8388 }
8389
8390 /* Build an instruction created by a macro expansion. This is passed
8391 a pointer to the count of instructions created so far, an
8392 expression, the name of the instruction to build, an operand format
8393 string, and corresponding arguments. */
8394
8395 static void
8396 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8397 {
8398 const struct mips_opcode *mo = NULL;
8399 bfd_reloc_code_real_type r[3];
8400 const struct mips_opcode *amo;
8401 const struct mips_operand *operand;
8402 struct hash_control *hash;
8403 struct mips_cl_insn insn;
8404 va_list args;
8405 unsigned int uval;
8406
8407 va_start (args, fmt);
8408
8409 if (mips_opts.mips16)
8410 {
8411 mips16_macro_build (ep, name, fmt, &args);
8412 va_end (args);
8413 return;
8414 }
8415
8416 r[0] = BFD_RELOC_UNUSED;
8417 r[1] = BFD_RELOC_UNUSED;
8418 r[2] = BFD_RELOC_UNUSED;
8419 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8420 amo = (struct mips_opcode *) hash_find (hash, name);
8421 gas_assert (amo);
8422 gas_assert (strcmp (name, amo->name) == 0);
8423
8424 do
8425 {
8426 /* Search until we get a match for NAME. It is assumed here that
8427 macros will never generate MDMX, MIPS-3D, or MT instructions.
8428 We try to match an instruction that fulfils the branch delay
8429 slot instruction length requirement (if any) of the previous
8430 instruction. While doing this we record the first instruction
8431 seen that matches all the other conditions and use it anyway
8432 if the requirement cannot be met; we will issue an appropriate
8433 warning later on. */
8434 if (strcmp (fmt, amo->args) == 0
8435 && amo->pinfo != INSN_MACRO
8436 && is_opcode_valid (amo)
8437 && is_size_valid (amo))
8438 {
8439 if (is_delay_slot_valid (amo))
8440 {
8441 mo = amo;
8442 break;
8443 }
8444 else if (!mo)
8445 mo = amo;
8446 }
8447
8448 ++amo;
8449 gas_assert (amo->name);
8450 }
8451 while (strcmp (name, amo->name) == 0);
8452
8453 gas_assert (mo);
8454 create_insn (&insn, mo);
8455 for (; *fmt; ++fmt)
8456 {
8457 switch (*fmt)
8458 {
8459 case ',':
8460 case '(':
8461 case ')':
8462 case 'z':
8463 break;
8464
8465 case 'i':
8466 case 'j':
8467 macro_read_relocs (&args, r);
8468 gas_assert (*r == BFD_RELOC_GPREL16
8469 || *r == BFD_RELOC_MIPS_HIGHER
8470 || *r == BFD_RELOC_HI16_S
8471 || *r == BFD_RELOC_LO16
8472 || *r == BFD_RELOC_MIPS_GOT_OFST);
8473 break;
8474
8475 case 'o':
8476 macro_read_relocs (&args, r);
8477 break;
8478
8479 case 'u':
8480 macro_read_relocs (&args, r);
8481 gas_assert (ep != NULL
8482 && (ep->X_op == O_constant
8483 || (ep->X_op == O_symbol
8484 && (*r == BFD_RELOC_MIPS_HIGHEST
8485 || *r == BFD_RELOC_HI16_S
8486 || *r == BFD_RELOC_HI16
8487 || *r == BFD_RELOC_GPREL16
8488 || *r == BFD_RELOC_MIPS_GOT_HI16
8489 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8490 break;
8491
8492 case 'p':
8493 gas_assert (ep != NULL);
8494
8495 /*
8496 * This allows macro() to pass an immediate expression for
8497 * creating short branches without creating a symbol.
8498 *
8499 * We don't allow branch relaxation for these branches, as
8500 * they should only appear in ".set nomacro" anyway.
8501 */
8502 if (ep->X_op == O_constant)
8503 {
8504 /* For microMIPS we always use relocations for branches.
8505 So we should not resolve immediate values. */
8506 gas_assert (!mips_opts.micromips);
8507
8508 if ((ep->X_add_number & 3) != 0)
8509 as_bad (_("branch to misaligned address (0x%lx)"),
8510 (unsigned long) ep->X_add_number);
8511 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8512 as_bad (_("branch address range overflow (0x%lx)"),
8513 (unsigned long) ep->X_add_number);
8514 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8515 ep = NULL;
8516 }
8517 else
8518 *r = BFD_RELOC_16_PCREL_S2;
8519 break;
8520
8521 case 'a':
8522 gas_assert (ep != NULL);
8523 *r = BFD_RELOC_MIPS_JMP;
8524 break;
8525
8526 default:
8527 operand = (mips_opts.micromips
8528 ? decode_micromips_operand (fmt)
8529 : decode_mips_operand (fmt));
8530 if (!operand)
8531 abort ();
8532
8533 uval = va_arg (args, int);
8534 if (operand->type == OP_CLO_CLZ_DEST)
8535 uval |= (uval << 5);
8536 insn_insert_operand (&insn, operand, uval);
8537
8538 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8539 ++fmt;
8540 break;
8541 }
8542 }
8543 va_end (args);
8544 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8545
8546 append_insn (&insn, ep, r, TRUE);
8547 }
8548
8549 static void
8550 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8551 va_list *args)
8552 {
8553 struct mips_opcode *mo;
8554 struct mips_cl_insn insn;
8555 const struct mips_operand *operand;
8556 bfd_reloc_code_real_type r[3]
8557 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8558
8559 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8560 gas_assert (mo);
8561 gas_assert (strcmp (name, mo->name) == 0);
8562
8563 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8564 {
8565 ++mo;
8566 gas_assert (mo->name);
8567 gas_assert (strcmp (name, mo->name) == 0);
8568 }
8569
8570 create_insn (&insn, mo);
8571 for (; *fmt; ++fmt)
8572 {
8573 int c;
8574
8575 c = *fmt;
8576 switch (c)
8577 {
8578 case ',':
8579 case '(':
8580 case ')':
8581 break;
8582
8583 case '0':
8584 case 'S':
8585 case 'P':
8586 case 'R':
8587 break;
8588
8589 case '<':
8590 case '>':
8591 case '4':
8592 case '5':
8593 case 'H':
8594 case 'W':
8595 case 'D':
8596 case 'j':
8597 case '8':
8598 case 'V':
8599 case 'C':
8600 case 'U':
8601 case 'k':
8602 case 'K':
8603 case 'p':
8604 case 'q':
8605 {
8606 offsetT value;
8607
8608 gas_assert (ep != NULL);
8609
8610 if (ep->X_op != O_constant)
8611 *r = (int) BFD_RELOC_UNUSED + c;
8612 else if (calculate_reloc (*r, ep->X_add_number, &value))
8613 {
8614 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8615 ep = NULL;
8616 *r = BFD_RELOC_UNUSED;
8617 }
8618 }
8619 break;
8620
8621 default:
8622 operand = decode_mips16_operand (c, FALSE);
8623 if (!operand)
8624 abort ();
8625
8626 insn_insert_operand (&insn, operand, va_arg (*args, int));
8627 break;
8628 }
8629 }
8630
8631 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8632
8633 append_insn (&insn, ep, r, TRUE);
8634 }
8635
8636 /*
8637 * Generate a "jalr" instruction with a relocation hint to the called
8638 * function. This occurs in NewABI PIC code.
8639 */
8640 static void
8641 macro_build_jalr (expressionS *ep, int cprestore)
8642 {
8643 static const bfd_reloc_code_real_type jalr_relocs[2]
8644 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8645 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8646 const char *jalr;
8647 char *f = NULL;
8648
8649 if (MIPS_JALR_HINT_P (ep))
8650 {
8651 frag_grow (8);
8652 f = frag_more (0);
8653 }
8654 if (mips_opts.micromips)
8655 {
8656 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8657 ? "jalr" : "jalrs");
8658 if (MIPS_JALR_HINT_P (ep)
8659 || mips_opts.insn32
8660 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8661 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8662 else
8663 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8664 }
8665 else
8666 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8667 if (MIPS_JALR_HINT_P (ep))
8668 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8669 }
8670
8671 /*
8672 * Generate a "lui" instruction.
8673 */
8674 static void
8675 macro_build_lui (expressionS *ep, int regnum)
8676 {
8677 gas_assert (! mips_opts.mips16);
8678
8679 if (ep->X_op != O_constant)
8680 {
8681 gas_assert (ep->X_op == O_symbol);
8682 /* _gp_disp is a special case, used from s_cpload.
8683 __gnu_local_gp is used if mips_no_shared. */
8684 gas_assert (mips_pic == NO_PIC
8685 || (! HAVE_NEWABI
8686 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8687 || (! mips_in_shared
8688 && strcmp (S_GET_NAME (ep->X_add_symbol),
8689 "__gnu_local_gp") == 0));
8690 }
8691
8692 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8693 }
8694
8695 /* Generate a sequence of instructions to do a load or store from a constant
8696 offset off of a base register (breg) into/from a target register (treg),
8697 using AT if necessary. */
8698 static void
8699 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8700 int treg, int breg, int dbl)
8701 {
8702 gas_assert (ep->X_op == O_constant);
8703
8704 /* Sign-extending 32-bit constants makes their handling easier. */
8705 if (!dbl)
8706 normalize_constant_expr (ep);
8707
8708 /* Right now, this routine can only handle signed 32-bit constants. */
8709 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8710 as_warn (_("operand overflow"));
8711
8712 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8713 {
8714 /* Signed 16-bit offset will fit in the op. Easy! */
8715 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8716 }
8717 else
8718 {
8719 /* 32-bit offset, need multiple instructions and AT, like:
8720 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8721 addu $tempreg,$tempreg,$breg
8722 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8723 to handle the complete offset. */
8724 macro_build_lui (ep, AT);
8725 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8726 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8727
8728 if (!mips_opts.at)
8729 as_bad (_("macro used $at after \".set noat\""));
8730 }
8731 }
8732
8733 /* set_at()
8734 * Generates code to set the $at register to true (one)
8735 * if reg is less than the immediate expression.
8736 */
8737 static void
8738 set_at (int reg, int unsignedp)
8739 {
8740 if (imm_expr.X_add_number >= -0x8000
8741 && imm_expr.X_add_number < 0x8000)
8742 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8743 AT, reg, BFD_RELOC_LO16);
8744 else
8745 {
8746 load_register (AT, &imm_expr, GPR_SIZE == 64);
8747 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8748 }
8749 }
8750
8751 /* Count the leading zeroes by performing a binary chop. This is a
8752 bulky bit of source, but performance is a LOT better for the
8753 majority of values than a simple loop to count the bits:
8754 for (lcnt = 0; (lcnt < 32); lcnt++)
8755 if ((v) & (1 << (31 - lcnt)))
8756 break;
8757 However it is not code size friendly, and the gain will drop a bit
8758 on certain cached systems.
8759 */
8760 #define COUNT_TOP_ZEROES(v) \
8761 (((v) & ~0xffff) == 0 \
8762 ? ((v) & ~0xff) == 0 \
8763 ? ((v) & ~0xf) == 0 \
8764 ? ((v) & ~0x3) == 0 \
8765 ? ((v) & ~0x1) == 0 \
8766 ? !(v) \
8767 ? 32 \
8768 : 31 \
8769 : 30 \
8770 : ((v) & ~0x7) == 0 \
8771 ? 29 \
8772 : 28 \
8773 : ((v) & ~0x3f) == 0 \
8774 ? ((v) & ~0x1f) == 0 \
8775 ? 27 \
8776 : 26 \
8777 : ((v) & ~0x7f) == 0 \
8778 ? 25 \
8779 : 24 \
8780 : ((v) & ~0xfff) == 0 \
8781 ? ((v) & ~0x3ff) == 0 \
8782 ? ((v) & ~0x1ff) == 0 \
8783 ? 23 \
8784 : 22 \
8785 : ((v) & ~0x7ff) == 0 \
8786 ? 21 \
8787 : 20 \
8788 : ((v) & ~0x3fff) == 0 \
8789 ? ((v) & ~0x1fff) == 0 \
8790 ? 19 \
8791 : 18 \
8792 : ((v) & ~0x7fff) == 0 \
8793 ? 17 \
8794 : 16 \
8795 : ((v) & ~0xffffff) == 0 \
8796 ? ((v) & ~0xfffff) == 0 \
8797 ? ((v) & ~0x3ffff) == 0 \
8798 ? ((v) & ~0x1ffff) == 0 \
8799 ? 15 \
8800 : 14 \
8801 : ((v) & ~0x7ffff) == 0 \
8802 ? 13 \
8803 : 12 \
8804 : ((v) & ~0x3fffff) == 0 \
8805 ? ((v) & ~0x1fffff) == 0 \
8806 ? 11 \
8807 : 10 \
8808 : ((v) & ~0x7fffff) == 0 \
8809 ? 9 \
8810 : 8 \
8811 : ((v) & ~0xfffffff) == 0 \
8812 ? ((v) & ~0x3ffffff) == 0 \
8813 ? ((v) & ~0x1ffffff) == 0 \
8814 ? 7 \
8815 : 6 \
8816 : ((v) & ~0x7ffffff) == 0 \
8817 ? 5 \
8818 : 4 \
8819 : ((v) & ~0x3fffffff) == 0 \
8820 ? ((v) & ~0x1fffffff) == 0 \
8821 ? 3 \
8822 : 2 \
8823 : ((v) & ~0x7fffffff) == 0 \
8824 ? 1 \
8825 : 0)
8826
8827 /* load_register()
8828 * This routine generates the least number of instructions necessary to load
8829 * an absolute expression value into a register.
8830 */
8831 static void
8832 load_register (int reg, expressionS *ep, int dbl)
8833 {
8834 int freg;
8835 expressionS hi32, lo32;
8836
8837 if (ep->X_op != O_big)
8838 {
8839 gas_assert (ep->X_op == O_constant);
8840
8841 /* Sign-extending 32-bit constants makes their handling easier. */
8842 if (!dbl)
8843 normalize_constant_expr (ep);
8844
8845 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8846 {
8847 /* We can handle 16 bit signed values with an addiu to
8848 $zero. No need to ever use daddiu here, since $zero and
8849 the result are always correct in 32 bit mode. */
8850 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8851 return;
8852 }
8853 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8854 {
8855 /* We can handle 16 bit unsigned values with an ori to
8856 $zero. */
8857 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8858 return;
8859 }
8860 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8861 {
8862 /* 32 bit values require an lui. */
8863 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8864 if ((ep->X_add_number & 0xffff) != 0)
8865 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8866 return;
8867 }
8868 }
8869
8870 /* The value is larger than 32 bits. */
8871
8872 if (!dbl || GPR_SIZE == 32)
8873 {
8874 char value[32];
8875
8876 sprintf_vma (value, ep->X_add_number);
8877 as_bad (_("number (0x%s) larger than 32 bits"), value);
8878 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8879 return;
8880 }
8881
8882 if (ep->X_op != O_big)
8883 {
8884 hi32 = *ep;
8885 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8886 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8887 hi32.X_add_number &= 0xffffffff;
8888 lo32 = *ep;
8889 lo32.X_add_number &= 0xffffffff;
8890 }
8891 else
8892 {
8893 gas_assert (ep->X_add_number > 2);
8894 if (ep->X_add_number == 3)
8895 generic_bignum[3] = 0;
8896 else if (ep->X_add_number > 4)
8897 as_bad (_("number larger than 64 bits"));
8898 lo32.X_op = O_constant;
8899 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8900 hi32.X_op = O_constant;
8901 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8902 }
8903
8904 if (hi32.X_add_number == 0)
8905 freg = 0;
8906 else
8907 {
8908 int shift, bit;
8909 unsigned long hi, lo;
8910
8911 if (hi32.X_add_number == (offsetT) 0xffffffff)
8912 {
8913 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8914 {
8915 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8916 return;
8917 }
8918 if (lo32.X_add_number & 0x80000000)
8919 {
8920 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8921 if (lo32.X_add_number & 0xffff)
8922 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8923 return;
8924 }
8925 }
8926
8927 /* Check for 16bit shifted constant. We know that hi32 is
8928 non-zero, so start the mask on the first bit of the hi32
8929 value. */
8930 shift = 17;
8931 do
8932 {
8933 unsigned long himask, lomask;
8934
8935 if (shift < 32)
8936 {
8937 himask = 0xffff >> (32 - shift);
8938 lomask = (0xffff << shift) & 0xffffffff;
8939 }
8940 else
8941 {
8942 himask = 0xffff << (shift - 32);
8943 lomask = 0;
8944 }
8945 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8946 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8947 {
8948 expressionS tmp;
8949
8950 tmp.X_op = O_constant;
8951 if (shift < 32)
8952 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8953 | (lo32.X_add_number >> shift));
8954 else
8955 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8956 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8957 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8958 reg, reg, (shift >= 32) ? shift - 32 : shift);
8959 return;
8960 }
8961 ++shift;
8962 }
8963 while (shift <= (64 - 16));
8964
8965 /* Find the bit number of the lowest one bit, and store the
8966 shifted value in hi/lo. */
8967 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8968 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8969 if (lo != 0)
8970 {
8971 bit = 0;
8972 while ((lo & 1) == 0)
8973 {
8974 lo >>= 1;
8975 ++bit;
8976 }
8977 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8978 hi >>= bit;
8979 }
8980 else
8981 {
8982 bit = 32;
8983 while ((hi & 1) == 0)
8984 {
8985 hi >>= 1;
8986 ++bit;
8987 }
8988 lo = hi;
8989 hi = 0;
8990 }
8991
8992 /* Optimize if the shifted value is a (power of 2) - 1. */
8993 if ((hi == 0 && ((lo + 1) & lo) == 0)
8994 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
8995 {
8996 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
8997 if (shift != 0)
8998 {
8999 expressionS tmp;
9000
9001 /* This instruction will set the register to be all
9002 ones. */
9003 tmp.X_op = O_constant;
9004 tmp.X_add_number = (offsetT) -1;
9005 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9006 if (bit != 0)
9007 {
9008 bit += shift;
9009 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9010 reg, reg, (bit >= 32) ? bit - 32 : bit);
9011 }
9012 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9013 reg, reg, (shift >= 32) ? shift - 32 : shift);
9014 return;
9015 }
9016 }
9017
9018 /* Sign extend hi32 before calling load_register, because we can
9019 generally get better code when we load a sign extended value. */
9020 if ((hi32.X_add_number & 0x80000000) != 0)
9021 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9022 load_register (reg, &hi32, 0);
9023 freg = reg;
9024 }
9025 if ((lo32.X_add_number & 0xffff0000) == 0)
9026 {
9027 if (freg != 0)
9028 {
9029 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9030 freg = reg;
9031 }
9032 }
9033 else
9034 {
9035 expressionS mid16;
9036
9037 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9038 {
9039 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9040 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9041 return;
9042 }
9043
9044 if (freg != 0)
9045 {
9046 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9047 freg = reg;
9048 }
9049 mid16 = lo32;
9050 mid16.X_add_number >>= 16;
9051 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9052 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9053 freg = reg;
9054 }
9055 if ((lo32.X_add_number & 0xffff) != 0)
9056 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9057 }
9058
9059 static inline void
9060 load_delay_nop (void)
9061 {
9062 if (!gpr_interlocks)
9063 macro_build (NULL, "nop", "");
9064 }
9065
9066 /* Load an address into a register. */
9067
9068 static void
9069 load_address (int reg, expressionS *ep, int *used_at)
9070 {
9071 if (ep->X_op != O_constant
9072 && ep->X_op != O_symbol)
9073 {
9074 as_bad (_("expression too complex"));
9075 ep->X_op = O_constant;
9076 }
9077
9078 if (ep->X_op == O_constant)
9079 {
9080 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9081 return;
9082 }
9083
9084 if (mips_pic == NO_PIC)
9085 {
9086 /* If this is a reference to a GP relative symbol, we want
9087 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9088 Otherwise we want
9089 lui $reg,<sym> (BFD_RELOC_HI16_S)
9090 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9091 If we have an addend, we always use the latter form.
9092
9093 With 64bit address space and a usable $at we want
9094 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9095 lui $at,<sym> (BFD_RELOC_HI16_S)
9096 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9097 daddiu $at,<sym> (BFD_RELOC_LO16)
9098 dsll32 $reg,0
9099 daddu $reg,$reg,$at
9100
9101 If $at is already in use, we use a path which is suboptimal
9102 on superscalar processors.
9103 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9104 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9105 dsll $reg,16
9106 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9107 dsll $reg,16
9108 daddiu $reg,<sym> (BFD_RELOC_LO16)
9109
9110 For GP relative symbols in 64bit address space we can use
9111 the same sequence as in 32bit address space. */
9112 if (HAVE_64BIT_SYMBOLS)
9113 {
9114 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9115 && !nopic_need_relax (ep->X_add_symbol, 1))
9116 {
9117 relax_start (ep->X_add_symbol);
9118 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9119 mips_gp_register, BFD_RELOC_GPREL16);
9120 relax_switch ();
9121 }
9122
9123 if (*used_at == 0 && mips_opts.at)
9124 {
9125 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9126 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9127 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9128 BFD_RELOC_MIPS_HIGHER);
9129 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9130 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9131 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9132 *used_at = 1;
9133 }
9134 else
9135 {
9136 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9137 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9138 BFD_RELOC_MIPS_HIGHER);
9139 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9140 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9141 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9142 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9143 }
9144
9145 if (mips_relax.sequence)
9146 relax_end ();
9147 }
9148 else
9149 {
9150 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9151 && !nopic_need_relax (ep->X_add_symbol, 1))
9152 {
9153 relax_start (ep->X_add_symbol);
9154 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9155 mips_gp_register, BFD_RELOC_GPREL16);
9156 relax_switch ();
9157 }
9158 macro_build_lui (ep, reg);
9159 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9160 reg, reg, BFD_RELOC_LO16);
9161 if (mips_relax.sequence)
9162 relax_end ();
9163 }
9164 }
9165 else if (!mips_big_got)
9166 {
9167 expressionS ex;
9168
9169 /* If this is a reference to an external symbol, we want
9170 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9171 Otherwise we want
9172 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9173 nop
9174 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9175 If there is a constant, it must be added in after.
9176
9177 If we have NewABI, we want
9178 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9179 unless we're referencing a global symbol with a non-zero
9180 offset, in which case cst must be added separately. */
9181 if (HAVE_NEWABI)
9182 {
9183 if (ep->X_add_number)
9184 {
9185 ex.X_add_number = ep->X_add_number;
9186 ep->X_add_number = 0;
9187 relax_start (ep->X_add_symbol);
9188 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9189 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9190 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9191 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9192 ex.X_op = O_constant;
9193 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9194 reg, reg, BFD_RELOC_LO16);
9195 ep->X_add_number = ex.X_add_number;
9196 relax_switch ();
9197 }
9198 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9199 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9200 if (mips_relax.sequence)
9201 relax_end ();
9202 }
9203 else
9204 {
9205 ex.X_add_number = ep->X_add_number;
9206 ep->X_add_number = 0;
9207 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9208 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9209 load_delay_nop ();
9210 relax_start (ep->X_add_symbol);
9211 relax_switch ();
9212 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9213 BFD_RELOC_LO16);
9214 relax_end ();
9215
9216 if (ex.X_add_number != 0)
9217 {
9218 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9219 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9220 ex.X_op = O_constant;
9221 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9222 reg, reg, BFD_RELOC_LO16);
9223 }
9224 }
9225 }
9226 else if (mips_big_got)
9227 {
9228 expressionS ex;
9229
9230 /* This is the large GOT case. If this is a reference to an
9231 external symbol, we want
9232 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9233 addu $reg,$reg,$gp
9234 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9235
9236 Otherwise, for a reference to a local symbol in old ABI, we want
9237 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9238 nop
9239 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9240 If there is a constant, it must be added in after.
9241
9242 In the NewABI, for local symbols, with or without offsets, we want:
9243 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9244 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9245 */
9246 if (HAVE_NEWABI)
9247 {
9248 ex.X_add_number = ep->X_add_number;
9249 ep->X_add_number = 0;
9250 relax_start (ep->X_add_symbol);
9251 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9252 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9253 reg, reg, mips_gp_register);
9254 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9255 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9256 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9257 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9258 else if (ex.X_add_number)
9259 {
9260 ex.X_op = O_constant;
9261 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9262 BFD_RELOC_LO16);
9263 }
9264
9265 ep->X_add_number = ex.X_add_number;
9266 relax_switch ();
9267 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9268 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9269 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9270 BFD_RELOC_MIPS_GOT_OFST);
9271 relax_end ();
9272 }
9273 else
9274 {
9275 ex.X_add_number = ep->X_add_number;
9276 ep->X_add_number = 0;
9277 relax_start (ep->X_add_symbol);
9278 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9279 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9280 reg, reg, mips_gp_register);
9281 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9282 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9283 relax_switch ();
9284 if (reg_needs_delay (mips_gp_register))
9285 {
9286 /* We need a nop before loading from $gp. This special
9287 check is required because the lui which starts the main
9288 instruction stream does not refer to $gp, and so will not
9289 insert the nop which may be required. */
9290 macro_build (NULL, "nop", "");
9291 }
9292 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9293 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9294 load_delay_nop ();
9295 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9296 BFD_RELOC_LO16);
9297 relax_end ();
9298
9299 if (ex.X_add_number != 0)
9300 {
9301 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9302 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9303 ex.X_op = O_constant;
9304 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9305 BFD_RELOC_LO16);
9306 }
9307 }
9308 }
9309 else
9310 abort ();
9311
9312 if (!mips_opts.at && *used_at == 1)
9313 as_bad (_("macro used $at after \".set noat\""));
9314 }
9315
9316 /* Move the contents of register SOURCE into register DEST. */
9317
9318 static void
9319 move_register (int dest, int source)
9320 {
9321 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9322 instruction specifically requires a 32-bit one. */
9323 if (mips_opts.micromips
9324 && !mips_opts.insn32
9325 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9326 macro_build (NULL, "move", "mp,mj", dest, source);
9327 else
9328 macro_build (NULL, GPR_SIZE == 32 ? "addu" : "daddu", "d,v,t",
9329 dest, source, 0);
9330 }
9331
9332 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9333 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9334 The two alternatives are:
9335
9336 Global symbol Local sybmol
9337 ------------- ------------
9338 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9339 ... ...
9340 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9341
9342 load_got_offset emits the first instruction and add_got_offset
9343 emits the second for a 16-bit offset or add_got_offset_hilo emits
9344 a sequence to add a 32-bit offset using a scratch register. */
9345
9346 static void
9347 load_got_offset (int dest, expressionS *local)
9348 {
9349 expressionS global;
9350
9351 global = *local;
9352 global.X_add_number = 0;
9353
9354 relax_start (local->X_add_symbol);
9355 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9356 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9357 relax_switch ();
9358 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9359 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9360 relax_end ();
9361 }
9362
9363 static void
9364 add_got_offset (int dest, expressionS *local)
9365 {
9366 expressionS global;
9367
9368 global.X_op = O_constant;
9369 global.X_op_symbol = NULL;
9370 global.X_add_symbol = NULL;
9371 global.X_add_number = local->X_add_number;
9372
9373 relax_start (local->X_add_symbol);
9374 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9375 dest, dest, BFD_RELOC_LO16);
9376 relax_switch ();
9377 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9378 relax_end ();
9379 }
9380
9381 static void
9382 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9383 {
9384 expressionS global;
9385 int hold_mips_optimize;
9386
9387 global.X_op = O_constant;
9388 global.X_op_symbol = NULL;
9389 global.X_add_symbol = NULL;
9390 global.X_add_number = local->X_add_number;
9391
9392 relax_start (local->X_add_symbol);
9393 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9394 relax_switch ();
9395 /* Set mips_optimize around the lui instruction to avoid
9396 inserting an unnecessary nop after the lw. */
9397 hold_mips_optimize = mips_optimize;
9398 mips_optimize = 2;
9399 macro_build_lui (&global, tmp);
9400 mips_optimize = hold_mips_optimize;
9401 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9402 relax_end ();
9403
9404 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9405 }
9406
9407 /* Emit a sequence of instructions to emulate a branch likely operation.
9408 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9409 is its complementing branch with the original condition negated.
9410 CALL is set if the original branch specified the link operation.
9411 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9412
9413 Code like this is produced in the noreorder mode:
9414
9415 BRNEG <args>, 1f
9416 nop
9417 b <sym>
9418 delay slot (executed only if branch taken)
9419 1:
9420
9421 or, if CALL is set:
9422
9423 BRNEG <args>, 1f
9424 nop
9425 bal <sym>
9426 delay slot (executed only if branch taken)
9427 1:
9428
9429 In the reorder mode the delay slot would be filled with a nop anyway,
9430 so code produced is simply:
9431
9432 BR <args>, <sym>
9433 nop
9434
9435 This function is used when producing code for the microMIPS ASE that
9436 does not implement branch likely instructions in hardware. */
9437
9438 static void
9439 macro_build_branch_likely (const char *br, const char *brneg,
9440 int call, expressionS *ep, const char *fmt,
9441 unsigned int sreg, unsigned int treg)
9442 {
9443 int noreorder = mips_opts.noreorder;
9444 expressionS expr1;
9445
9446 gas_assert (mips_opts.micromips);
9447 start_noreorder ();
9448 if (noreorder)
9449 {
9450 micromips_label_expr (&expr1);
9451 macro_build (&expr1, brneg, fmt, sreg, treg);
9452 macro_build (NULL, "nop", "");
9453 macro_build (ep, call ? "bal" : "b", "p");
9454
9455 /* Set to true so that append_insn adds a label. */
9456 emit_branch_likely_macro = TRUE;
9457 }
9458 else
9459 {
9460 macro_build (ep, br, fmt, sreg, treg);
9461 macro_build (NULL, "nop", "");
9462 }
9463 end_noreorder ();
9464 }
9465
9466 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9467 the condition code tested. EP specifies the branch target. */
9468
9469 static void
9470 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9471 {
9472 const int call = 0;
9473 const char *brneg;
9474 const char *br;
9475
9476 switch (type)
9477 {
9478 case M_BC1FL:
9479 br = "bc1f";
9480 brneg = "bc1t";
9481 break;
9482 case M_BC1TL:
9483 br = "bc1t";
9484 brneg = "bc1f";
9485 break;
9486 case M_BC2FL:
9487 br = "bc2f";
9488 brneg = "bc2t";
9489 break;
9490 case M_BC2TL:
9491 br = "bc2t";
9492 brneg = "bc2f";
9493 break;
9494 default:
9495 abort ();
9496 }
9497 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9498 }
9499
9500 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9501 the register tested. EP specifies the branch target. */
9502
9503 static void
9504 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9505 {
9506 const char *brneg = NULL;
9507 const char *br;
9508 int call = 0;
9509
9510 switch (type)
9511 {
9512 case M_BGEZ:
9513 br = "bgez";
9514 break;
9515 case M_BGEZL:
9516 br = mips_opts.micromips ? "bgez" : "bgezl";
9517 brneg = "bltz";
9518 break;
9519 case M_BGEZALL:
9520 gas_assert (mips_opts.micromips);
9521 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9522 brneg = "bltz";
9523 call = 1;
9524 break;
9525 case M_BGTZ:
9526 br = "bgtz";
9527 break;
9528 case M_BGTZL:
9529 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9530 brneg = "blez";
9531 break;
9532 case M_BLEZ:
9533 br = "blez";
9534 break;
9535 case M_BLEZL:
9536 br = mips_opts.micromips ? "blez" : "blezl";
9537 brneg = "bgtz";
9538 break;
9539 case M_BLTZ:
9540 br = "bltz";
9541 break;
9542 case M_BLTZL:
9543 br = mips_opts.micromips ? "bltz" : "bltzl";
9544 brneg = "bgez";
9545 break;
9546 case M_BLTZALL:
9547 gas_assert (mips_opts.micromips);
9548 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9549 brneg = "bgez";
9550 call = 1;
9551 break;
9552 default:
9553 abort ();
9554 }
9555 if (mips_opts.micromips && brneg)
9556 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9557 else
9558 macro_build (ep, br, "s,p", sreg);
9559 }
9560
9561 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9562 TREG as the registers tested. EP specifies the branch target. */
9563
9564 static void
9565 macro_build_branch_rsrt (int type, expressionS *ep,
9566 unsigned int sreg, unsigned int treg)
9567 {
9568 const char *brneg = NULL;
9569 const int call = 0;
9570 const char *br;
9571
9572 switch (type)
9573 {
9574 case M_BEQ:
9575 case M_BEQ_I:
9576 br = "beq";
9577 break;
9578 case M_BEQL:
9579 case M_BEQL_I:
9580 br = mips_opts.micromips ? "beq" : "beql";
9581 brneg = "bne";
9582 break;
9583 case M_BNE:
9584 case M_BNE_I:
9585 br = "bne";
9586 break;
9587 case M_BNEL:
9588 case M_BNEL_I:
9589 br = mips_opts.micromips ? "bne" : "bnel";
9590 brneg = "beq";
9591 break;
9592 default:
9593 abort ();
9594 }
9595 if (mips_opts.micromips && brneg)
9596 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9597 else
9598 macro_build (ep, br, "s,t,p", sreg, treg);
9599 }
9600
9601 /* Return the high part that should be loaded in order to make the low
9602 part of VALUE accessible using an offset of OFFBITS bits. */
9603
9604 static offsetT
9605 offset_high_part (offsetT value, unsigned int offbits)
9606 {
9607 offsetT bias;
9608 addressT low_mask;
9609
9610 if (offbits == 0)
9611 return value;
9612 bias = 1 << (offbits - 1);
9613 low_mask = bias * 2 - 1;
9614 return (value + bias) & ~low_mask;
9615 }
9616
9617 /* Return true if the value stored in offset_expr and offset_reloc
9618 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9619 amount that the caller wants to add without inducing overflow
9620 and ALIGN is the known alignment of the value in bytes. */
9621
9622 static bfd_boolean
9623 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9624 {
9625 if (offbits == 16)
9626 {
9627 /* Accept any relocation operator if overflow isn't a concern. */
9628 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9629 return TRUE;
9630
9631 /* These relocations are guaranteed not to overflow in correct links. */
9632 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9633 || gprel16_reloc_p (*offset_reloc))
9634 return TRUE;
9635 }
9636 if (offset_expr.X_op == O_constant
9637 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9638 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9639 return TRUE;
9640 return FALSE;
9641 }
9642
9643 /*
9644 * Build macros
9645 * This routine implements the seemingly endless macro or synthesized
9646 * instructions and addressing modes in the mips assembly language. Many
9647 * of these macros are simple and are similar to each other. These could
9648 * probably be handled by some kind of table or grammar approach instead of
9649 * this verbose method. Others are not simple macros but are more like
9650 * optimizing code generation.
9651 * One interesting optimization is when several store macros appear
9652 * consecutively that would load AT with the upper half of the same address.
9653 * The ensuing load upper instructions are ommited. This implies some kind
9654 * of global optimization. We currently only optimize within a single macro.
9655 * For many of the load and store macros if the address is specified as a
9656 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9657 * first load register 'at' with zero and use it as the base register. The
9658 * mips assembler simply uses register $zero. Just one tiny optimization
9659 * we're missing.
9660 */
9661 static void
9662 macro (struct mips_cl_insn *ip, char *str)
9663 {
9664 const struct mips_operand_array *operands;
9665 unsigned int breg, i;
9666 unsigned int tempreg;
9667 int mask;
9668 int used_at = 0;
9669 expressionS label_expr;
9670 expressionS expr1;
9671 expressionS *ep;
9672 const char *s;
9673 const char *s2;
9674 const char *fmt;
9675 int likely = 0;
9676 int coproc = 0;
9677 int offbits = 16;
9678 int call = 0;
9679 int jals = 0;
9680 int dbl = 0;
9681 int imm = 0;
9682 int ust = 0;
9683 int lp = 0;
9684 bfd_boolean large_offset;
9685 int off;
9686 int hold_mips_optimize;
9687 unsigned int align;
9688 unsigned int op[MAX_OPERANDS];
9689
9690 gas_assert (! mips_opts.mips16);
9691
9692 operands = insn_operands (ip);
9693 for (i = 0; i < MAX_OPERANDS; i++)
9694 if (operands->operand[i])
9695 op[i] = insn_extract_operand (ip, operands->operand[i]);
9696 else
9697 op[i] = -1;
9698
9699 mask = ip->insn_mo->mask;
9700
9701 label_expr.X_op = O_constant;
9702 label_expr.X_op_symbol = NULL;
9703 label_expr.X_add_symbol = NULL;
9704 label_expr.X_add_number = 0;
9705
9706 expr1.X_op = O_constant;
9707 expr1.X_op_symbol = NULL;
9708 expr1.X_add_symbol = NULL;
9709 expr1.X_add_number = 1;
9710 align = 1;
9711
9712 switch (mask)
9713 {
9714 case M_DABS:
9715 dbl = 1;
9716 case M_ABS:
9717 /* bgez $a0,1f
9718 move v0,$a0
9719 sub v0,$zero,$a0
9720 1:
9721 */
9722
9723 start_noreorder ();
9724
9725 if (mips_opts.micromips)
9726 micromips_label_expr (&label_expr);
9727 else
9728 label_expr.X_add_number = 8;
9729 macro_build (&label_expr, "bgez", "s,p", op[1]);
9730 if (op[0] == op[1])
9731 macro_build (NULL, "nop", "");
9732 else
9733 move_register (op[0], op[1]);
9734 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9735 if (mips_opts.micromips)
9736 micromips_add_label ();
9737
9738 end_noreorder ();
9739 break;
9740
9741 case M_ADD_I:
9742 s = "addi";
9743 s2 = "add";
9744 goto do_addi;
9745 case M_ADDU_I:
9746 s = "addiu";
9747 s2 = "addu";
9748 goto do_addi;
9749 case M_DADD_I:
9750 dbl = 1;
9751 s = "daddi";
9752 s2 = "dadd";
9753 if (!mips_opts.micromips)
9754 goto do_addi;
9755 if (imm_expr.X_add_number >= -0x200
9756 && imm_expr.X_add_number < 0x200)
9757 {
9758 macro_build (NULL, s, "t,r,.", op[0], op[1],
9759 (int) imm_expr.X_add_number);
9760 break;
9761 }
9762 goto do_addi_i;
9763 case M_DADDU_I:
9764 dbl = 1;
9765 s = "daddiu";
9766 s2 = "daddu";
9767 do_addi:
9768 if (imm_expr.X_add_number >= -0x8000
9769 && imm_expr.X_add_number < 0x8000)
9770 {
9771 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9772 break;
9773 }
9774 do_addi_i:
9775 used_at = 1;
9776 load_register (AT, &imm_expr, dbl);
9777 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9778 break;
9779
9780 case M_AND_I:
9781 s = "andi";
9782 s2 = "and";
9783 goto do_bit;
9784 case M_OR_I:
9785 s = "ori";
9786 s2 = "or";
9787 goto do_bit;
9788 case M_NOR_I:
9789 s = "";
9790 s2 = "nor";
9791 goto do_bit;
9792 case M_XOR_I:
9793 s = "xori";
9794 s2 = "xor";
9795 do_bit:
9796 if (imm_expr.X_add_number >= 0
9797 && imm_expr.X_add_number < 0x10000)
9798 {
9799 if (mask != M_NOR_I)
9800 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9801 else
9802 {
9803 macro_build (&imm_expr, "ori", "t,r,i",
9804 op[0], op[1], BFD_RELOC_LO16);
9805 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9806 }
9807 break;
9808 }
9809
9810 used_at = 1;
9811 load_register (AT, &imm_expr, GPR_SIZE == 64);
9812 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9813 break;
9814
9815 case M_BALIGN:
9816 switch (imm_expr.X_add_number)
9817 {
9818 case 0:
9819 macro_build (NULL, "nop", "");
9820 break;
9821 case 2:
9822 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9823 break;
9824 case 1:
9825 case 3:
9826 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9827 (int) imm_expr.X_add_number);
9828 break;
9829 default:
9830 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9831 (unsigned long) imm_expr.X_add_number);
9832 break;
9833 }
9834 break;
9835
9836 case M_BC1FL:
9837 case M_BC1TL:
9838 case M_BC2FL:
9839 case M_BC2TL:
9840 gas_assert (mips_opts.micromips);
9841 macro_build_branch_ccl (mask, &offset_expr,
9842 EXTRACT_OPERAND (1, BCC, *ip));
9843 break;
9844
9845 case M_BEQ_I:
9846 case M_BEQL_I:
9847 case M_BNE_I:
9848 case M_BNEL_I:
9849 if (imm_expr.X_add_number == 0)
9850 op[1] = 0;
9851 else
9852 {
9853 op[1] = AT;
9854 used_at = 1;
9855 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9856 }
9857 /* Fall through. */
9858 case M_BEQL:
9859 case M_BNEL:
9860 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9861 break;
9862
9863 case M_BGEL:
9864 likely = 1;
9865 case M_BGE:
9866 if (op[1] == 0)
9867 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9868 else if (op[0] == 0)
9869 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9870 else
9871 {
9872 used_at = 1;
9873 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9874 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9875 &offset_expr, AT, ZERO);
9876 }
9877 break;
9878
9879 case M_BGEZL:
9880 case M_BGEZALL:
9881 case M_BGTZL:
9882 case M_BLEZL:
9883 case M_BLTZL:
9884 case M_BLTZALL:
9885 macro_build_branch_rs (mask, &offset_expr, op[0]);
9886 break;
9887
9888 case M_BGTL_I:
9889 likely = 1;
9890 case M_BGT_I:
9891 /* Check for > max integer. */
9892 if (imm_expr.X_add_number >= GPR_SMAX)
9893 {
9894 do_false:
9895 /* Result is always false. */
9896 if (! likely)
9897 macro_build (NULL, "nop", "");
9898 else
9899 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9900 break;
9901 }
9902 ++imm_expr.X_add_number;
9903 /* FALLTHROUGH */
9904 case M_BGE_I:
9905 case M_BGEL_I:
9906 if (mask == M_BGEL_I)
9907 likely = 1;
9908 if (imm_expr.X_add_number == 0)
9909 {
9910 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9911 &offset_expr, op[0]);
9912 break;
9913 }
9914 if (imm_expr.X_add_number == 1)
9915 {
9916 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9917 &offset_expr, op[0]);
9918 break;
9919 }
9920 if (imm_expr.X_add_number <= GPR_SMIN)
9921 {
9922 do_true:
9923 /* result is always true */
9924 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9925 macro_build (&offset_expr, "b", "p");
9926 break;
9927 }
9928 used_at = 1;
9929 set_at (op[0], 0);
9930 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9931 &offset_expr, AT, ZERO);
9932 break;
9933
9934 case M_BGEUL:
9935 likely = 1;
9936 case M_BGEU:
9937 if (op[1] == 0)
9938 goto do_true;
9939 else if (op[0] == 0)
9940 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9941 &offset_expr, ZERO, op[1]);
9942 else
9943 {
9944 used_at = 1;
9945 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9946 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9947 &offset_expr, AT, ZERO);
9948 }
9949 break;
9950
9951 case M_BGTUL_I:
9952 likely = 1;
9953 case M_BGTU_I:
9954 if (op[0] == 0
9955 || (GPR_SIZE == 32
9956 && imm_expr.X_add_number == -1))
9957 goto do_false;
9958 ++imm_expr.X_add_number;
9959 /* FALLTHROUGH */
9960 case M_BGEU_I:
9961 case M_BGEUL_I:
9962 if (mask == M_BGEUL_I)
9963 likely = 1;
9964 if (imm_expr.X_add_number == 0)
9965 goto do_true;
9966 else if (imm_expr.X_add_number == 1)
9967 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9968 &offset_expr, op[0], ZERO);
9969 else
9970 {
9971 used_at = 1;
9972 set_at (op[0], 1);
9973 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9974 &offset_expr, AT, ZERO);
9975 }
9976 break;
9977
9978 case M_BGTL:
9979 likely = 1;
9980 case M_BGT:
9981 if (op[1] == 0)
9982 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9983 else if (op[0] == 0)
9984 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9985 else
9986 {
9987 used_at = 1;
9988 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9989 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9990 &offset_expr, AT, ZERO);
9991 }
9992 break;
9993
9994 case M_BGTUL:
9995 likely = 1;
9996 case M_BGTU:
9997 if (op[1] == 0)
9998 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9999 &offset_expr, op[0], ZERO);
10000 else if (op[0] == 0)
10001 goto do_false;
10002 else
10003 {
10004 used_at = 1;
10005 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10006 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10007 &offset_expr, AT, ZERO);
10008 }
10009 break;
10010
10011 case M_BLEL:
10012 likely = 1;
10013 case M_BLE:
10014 if (op[1] == 0)
10015 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10016 else if (op[0] == 0)
10017 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10018 else
10019 {
10020 used_at = 1;
10021 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10022 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10023 &offset_expr, AT, ZERO);
10024 }
10025 break;
10026
10027 case M_BLEL_I:
10028 likely = 1;
10029 case M_BLE_I:
10030 if (imm_expr.X_add_number >= GPR_SMAX)
10031 goto do_true;
10032 ++imm_expr.X_add_number;
10033 /* FALLTHROUGH */
10034 case M_BLT_I:
10035 case M_BLTL_I:
10036 if (mask == M_BLTL_I)
10037 likely = 1;
10038 if (imm_expr.X_add_number == 0)
10039 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10040 else if (imm_expr.X_add_number == 1)
10041 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10042 else
10043 {
10044 used_at = 1;
10045 set_at (op[0], 0);
10046 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10047 &offset_expr, AT, ZERO);
10048 }
10049 break;
10050
10051 case M_BLEUL:
10052 likely = 1;
10053 case M_BLEU:
10054 if (op[1] == 0)
10055 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10056 &offset_expr, op[0], ZERO);
10057 else if (op[0] == 0)
10058 goto do_true;
10059 else
10060 {
10061 used_at = 1;
10062 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10063 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10064 &offset_expr, AT, ZERO);
10065 }
10066 break;
10067
10068 case M_BLEUL_I:
10069 likely = 1;
10070 case M_BLEU_I:
10071 if (op[0] == 0
10072 || (GPR_SIZE == 32
10073 && imm_expr.X_add_number == -1))
10074 goto do_true;
10075 ++imm_expr.X_add_number;
10076 /* FALLTHROUGH */
10077 case M_BLTU_I:
10078 case M_BLTUL_I:
10079 if (mask == M_BLTUL_I)
10080 likely = 1;
10081 if (imm_expr.X_add_number == 0)
10082 goto do_false;
10083 else if (imm_expr.X_add_number == 1)
10084 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10085 &offset_expr, op[0], ZERO);
10086 else
10087 {
10088 used_at = 1;
10089 set_at (op[0], 1);
10090 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10091 &offset_expr, AT, ZERO);
10092 }
10093 break;
10094
10095 case M_BLTL:
10096 likely = 1;
10097 case M_BLT:
10098 if (op[1] == 0)
10099 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10100 else if (op[0] == 0)
10101 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10102 else
10103 {
10104 used_at = 1;
10105 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10106 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10107 &offset_expr, AT, ZERO);
10108 }
10109 break;
10110
10111 case M_BLTUL:
10112 likely = 1;
10113 case M_BLTU:
10114 if (op[1] == 0)
10115 goto do_false;
10116 else if (op[0] == 0)
10117 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10118 &offset_expr, ZERO, op[1]);
10119 else
10120 {
10121 used_at = 1;
10122 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10123 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10124 &offset_expr, AT, ZERO);
10125 }
10126 break;
10127
10128 case M_DDIV_3:
10129 dbl = 1;
10130 case M_DIV_3:
10131 s = "mflo";
10132 goto do_div3;
10133 case M_DREM_3:
10134 dbl = 1;
10135 case M_REM_3:
10136 s = "mfhi";
10137 do_div3:
10138 if (op[2] == 0)
10139 {
10140 as_warn (_("divide by zero"));
10141 if (mips_trap)
10142 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10143 else
10144 macro_build (NULL, "break", BRK_FMT, 7);
10145 break;
10146 }
10147
10148 start_noreorder ();
10149 if (mips_trap)
10150 {
10151 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10152 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10153 }
10154 else
10155 {
10156 if (mips_opts.micromips)
10157 micromips_label_expr (&label_expr);
10158 else
10159 label_expr.X_add_number = 8;
10160 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10161 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10162 macro_build (NULL, "break", BRK_FMT, 7);
10163 if (mips_opts.micromips)
10164 micromips_add_label ();
10165 }
10166 expr1.X_add_number = -1;
10167 used_at = 1;
10168 load_register (AT, &expr1, dbl);
10169 if (mips_opts.micromips)
10170 micromips_label_expr (&label_expr);
10171 else
10172 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10173 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10174 if (dbl)
10175 {
10176 expr1.X_add_number = 1;
10177 load_register (AT, &expr1, dbl);
10178 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10179 }
10180 else
10181 {
10182 expr1.X_add_number = 0x80000000;
10183 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10184 }
10185 if (mips_trap)
10186 {
10187 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10188 /* We want to close the noreorder block as soon as possible, so
10189 that later insns are available for delay slot filling. */
10190 end_noreorder ();
10191 }
10192 else
10193 {
10194 if (mips_opts.micromips)
10195 micromips_label_expr (&label_expr);
10196 else
10197 label_expr.X_add_number = 8;
10198 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10199 macro_build (NULL, "nop", "");
10200
10201 /* We want to close the noreorder block as soon as possible, so
10202 that later insns are available for delay slot filling. */
10203 end_noreorder ();
10204
10205 macro_build (NULL, "break", BRK_FMT, 6);
10206 }
10207 if (mips_opts.micromips)
10208 micromips_add_label ();
10209 macro_build (NULL, s, MFHL_FMT, op[0]);
10210 break;
10211
10212 case M_DIV_3I:
10213 s = "div";
10214 s2 = "mflo";
10215 goto do_divi;
10216 case M_DIVU_3I:
10217 s = "divu";
10218 s2 = "mflo";
10219 goto do_divi;
10220 case M_REM_3I:
10221 s = "div";
10222 s2 = "mfhi";
10223 goto do_divi;
10224 case M_REMU_3I:
10225 s = "divu";
10226 s2 = "mfhi";
10227 goto do_divi;
10228 case M_DDIV_3I:
10229 dbl = 1;
10230 s = "ddiv";
10231 s2 = "mflo";
10232 goto do_divi;
10233 case M_DDIVU_3I:
10234 dbl = 1;
10235 s = "ddivu";
10236 s2 = "mflo";
10237 goto do_divi;
10238 case M_DREM_3I:
10239 dbl = 1;
10240 s = "ddiv";
10241 s2 = "mfhi";
10242 goto do_divi;
10243 case M_DREMU_3I:
10244 dbl = 1;
10245 s = "ddivu";
10246 s2 = "mfhi";
10247 do_divi:
10248 if (imm_expr.X_add_number == 0)
10249 {
10250 as_warn (_("divide by zero"));
10251 if (mips_trap)
10252 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10253 else
10254 macro_build (NULL, "break", BRK_FMT, 7);
10255 break;
10256 }
10257 if (imm_expr.X_add_number == 1)
10258 {
10259 if (strcmp (s2, "mflo") == 0)
10260 move_register (op[0], op[1]);
10261 else
10262 move_register (op[0], ZERO);
10263 break;
10264 }
10265 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10266 {
10267 if (strcmp (s2, "mflo") == 0)
10268 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10269 else
10270 move_register (op[0], ZERO);
10271 break;
10272 }
10273
10274 used_at = 1;
10275 load_register (AT, &imm_expr, dbl);
10276 macro_build (NULL, s, "z,s,t", op[1], AT);
10277 macro_build (NULL, s2, MFHL_FMT, op[0]);
10278 break;
10279
10280 case M_DIVU_3:
10281 s = "divu";
10282 s2 = "mflo";
10283 goto do_divu3;
10284 case M_REMU_3:
10285 s = "divu";
10286 s2 = "mfhi";
10287 goto do_divu3;
10288 case M_DDIVU_3:
10289 s = "ddivu";
10290 s2 = "mflo";
10291 goto do_divu3;
10292 case M_DREMU_3:
10293 s = "ddivu";
10294 s2 = "mfhi";
10295 do_divu3:
10296 start_noreorder ();
10297 if (mips_trap)
10298 {
10299 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10300 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10301 /* We want to close the noreorder block as soon as possible, so
10302 that later insns are available for delay slot filling. */
10303 end_noreorder ();
10304 }
10305 else
10306 {
10307 if (mips_opts.micromips)
10308 micromips_label_expr (&label_expr);
10309 else
10310 label_expr.X_add_number = 8;
10311 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10312 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10313
10314 /* We want to close the noreorder block as soon as possible, so
10315 that later insns are available for delay slot filling. */
10316 end_noreorder ();
10317 macro_build (NULL, "break", BRK_FMT, 7);
10318 if (mips_opts.micromips)
10319 micromips_add_label ();
10320 }
10321 macro_build (NULL, s2, MFHL_FMT, op[0]);
10322 break;
10323
10324 case M_DLCA_AB:
10325 dbl = 1;
10326 case M_LCA_AB:
10327 call = 1;
10328 goto do_la;
10329 case M_DLA_AB:
10330 dbl = 1;
10331 case M_LA_AB:
10332 do_la:
10333 /* Load the address of a symbol into a register. If breg is not
10334 zero, we then add a base register to it. */
10335
10336 breg = op[2];
10337 if (dbl && GPR_SIZE == 32)
10338 as_warn (_("dla used to load 32-bit register; recommend using la "
10339 "instead"));
10340
10341 if (!dbl && HAVE_64BIT_OBJECTS)
10342 as_warn (_("la used to load 64-bit address; recommend using dla "
10343 "instead"));
10344
10345 if (small_offset_p (0, align, 16))
10346 {
10347 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10348 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10349 break;
10350 }
10351
10352 if (mips_opts.at && (op[0] == breg))
10353 {
10354 tempreg = AT;
10355 used_at = 1;
10356 }
10357 else
10358 tempreg = op[0];
10359
10360 if (offset_expr.X_op != O_symbol
10361 && offset_expr.X_op != O_constant)
10362 {
10363 as_bad (_("expression too complex"));
10364 offset_expr.X_op = O_constant;
10365 }
10366
10367 if (offset_expr.X_op == O_constant)
10368 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10369 else if (mips_pic == NO_PIC)
10370 {
10371 /* If this is a reference to a GP relative symbol, we want
10372 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10373 Otherwise we want
10374 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10375 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10376 If we have a constant, we need two instructions anyhow,
10377 so we may as well always use the latter form.
10378
10379 With 64bit address space and a usable $at we want
10380 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10381 lui $at,<sym> (BFD_RELOC_HI16_S)
10382 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10383 daddiu $at,<sym> (BFD_RELOC_LO16)
10384 dsll32 $tempreg,0
10385 daddu $tempreg,$tempreg,$at
10386
10387 If $at is already in use, we use a path which is suboptimal
10388 on superscalar processors.
10389 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10390 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10391 dsll $tempreg,16
10392 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10393 dsll $tempreg,16
10394 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10395
10396 For GP relative symbols in 64bit address space we can use
10397 the same sequence as in 32bit address space. */
10398 if (HAVE_64BIT_SYMBOLS)
10399 {
10400 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10401 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10402 {
10403 relax_start (offset_expr.X_add_symbol);
10404 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10405 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10406 relax_switch ();
10407 }
10408
10409 if (used_at == 0 && mips_opts.at)
10410 {
10411 macro_build (&offset_expr, "lui", LUI_FMT,
10412 tempreg, BFD_RELOC_MIPS_HIGHEST);
10413 macro_build (&offset_expr, "lui", LUI_FMT,
10414 AT, BFD_RELOC_HI16_S);
10415 macro_build (&offset_expr, "daddiu", "t,r,j",
10416 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10417 macro_build (&offset_expr, "daddiu", "t,r,j",
10418 AT, AT, BFD_RELOC_LO16);
10419 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10420 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10421 used_at = 1;
10422 }
10423 else
10424 {
10425 macro_build (&offset_expr, "lui", LUI_FMT,
10426 tempreg, BFD_RELOC_MIPS_HIGHEST);
10427 macro_build (&offset_expr, "daddiu", "t,r,j",
10428 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10429 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10430 macro_build (&offset_expr, "daddiu", "t,r,j",
10431 tempreg, tempreg, BFD_RELOC_HI16_S);
10432 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10433 macro_build (&offset_expr, "daddiu", "t,r,j",
10434 tempreg, tempreg, BFD_RELOC_LO16);
10435 }
10436
10437 if (mips_relax.sequence)
10438 relax_end ();
10439 }
10440 else
10441 {
10442 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10443 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10444 {
10445 relax_start (offset_expr.X_add_symbol);
10446 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10447 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10448 relax_switch ();
10449 }
10450 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10451 as_bad (_("offset too large"));
10452 macro_build_lui (&offset_expr, tempreg);
10453 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10454 tempreg, tempreg, BFD_RELOC_LO16);
10455 if (mips_relax.sequence)
10456 relax_end ();
10457 }
10458 }
10459 else if (!mips_big_got && !HAVE_NEWABI)
10460 {
10461 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10462
10463 /* If this is a reference to an external symbol, and there
10464 is no constant, we want
10465 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10466 or for lca or if tempreg is PIC_CALL_REG
10467 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10468 For a local symbol, we want
10469 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10470 nop
10471 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10472
10473 If we have a small constant, and this is a reference to
10474 an external symbol, we want
10475 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10476 nop
10477 addiu $tempreg,$tempreg,<constant>
10478 For a local symbol, we want the same instruction
10479 sequence, but we output a BFD_RELOC_LO16 reloc on the
10480 addiu instruction.
10481
10482 If we have a large constant, and this is a reference to
10483 an external symbol, we want
10484 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10485 lui $at,<hiconstant>
10486 addiu $at,$at,<loconstant>
10487 addu $tempreg,$tempreg,$at
10488 For a local symbol, we want the same instruction
10489 sequence, but we output a BFD_RELOC_LO16 reloc on the
10490 addiu instruction.
10491 */
10492
10493 if (offset_expr.X_add_number == 0)
10494 {
10495 if (mips_pic == SVR4_PIC
10496 && breg == 0
10497 && (call || tempreg == PIC_CALL_REG))
10498 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10499
10500 relax_start (offset_expr.X_add_symbol);
10501 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10502 lw_reloc_type, mips_gp_register);
10503 if (breg != 0)
10504 {
10505 /* We're going to put in an addu instruction using
10506 tempreg, so we may as well insert the nop right
10507 now. */
10508 load_delay_nop ();
10509 }
10510 relax_switch ();
10511 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10512 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10513 load_delay_nop ();
10514 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10515 tempreg, tempreg, BFD_RELOC_LO16);
10516 relax_end ();
10517 /* FIXME: If breg == 0, and the next instruction uses
10518 $tempreg, then if this variant case is used an extra
10519 nop will be generated. */
10520 }
10521 else if (offset_expr.X_add_number >= -0x8000
10522 && offset_expr.X_add_number < 0x8000)
10523 {
10524 load_got_offset (tempreg, &offset_expr);
10525 load_delay_nop ();
10526 add_got_offset (tempreg, &offset_expr);
10527 }
10528 else
10529 {
10530 expr1.X_add_number = offset_expr.X_add_number;
10531 offset_expr.X_add_number =
10532 SEXT_16BIT (offset_expr.X_add_number);
10533 load_got_offset (tempreg, &offset_expr);
10534 offset_expr.X_add_number = expr1.X_add_number;
10535 /* If we are going to add in a base register, and the
10536 target register and the base register are the same,
10537 then we are using AT as a temporary register. Since
10538 we want to load the constant into AT, we add our
10539 current AT (from the global offset table) and the
10540 register into the register now, and pretend we were
10541 not using a base register. */
10542 if (breg == op[0])
10543 {
10544 load_delay_nop ();
10545 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10546 op[0], AT, breg);
10547 breg = 0;
10548 tempreg = op[0];
10549 }
10550 add_got_offset_hilo (tempreg, &offset_expr, AT);
10551 used_at = 1;
10552 }
10553 }
10554 else if (!mips_big_got && HAVE_NEWABI)
10555 {
10556 int add_breg_early = 0;
10557
10558 /* If this is a reference to an external, and there is no
10559 constant, or local symbol (*), with or without a
10560 constant, we want
10561 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10562 or for lca or if tempreg is PIC_CALL_REG
10563 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10564
10565 If we have a small constant, and this is a reference to
10566 an external symbol, we want
10567 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10568 addiu $tempreg,$tempreg,<constant>
10569
10570 If we have a large constant, and this is a reference to
10571 an external symbol, we want
10572 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10573 lui $at,<hiconstant>
10574 addiu $at,$at,<loconstant>
10575 addu $tempreg,$tempreg,$at
10576
10577 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10578 local symbols, even though it introduces an additional
10579 instruction. */
10580
10581 if (offset_expr.X_add_number)
10582 {
10583 expr1.X_add_number = offset_expr.X_add_number;
10584 offset_expr.X_add_number = 0;
10585
10586 relax_start (offset_expr.X_add_symbol);
10587 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10588 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10589
10590 if (expr1.X_add_number >= -0x8000
10591 && expr1.X_add_number < 0x8000)
10592 {
10593 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10594 tempreg, tempreg, BFD_RELOC_LO16);
10595 }
10596 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10597 {
10598 unsigned int dreg;
10599
10600 /* If we are going to add in a base register, and the
10601 target register and the base register are the same,
10602 then we are using AT as a temporary register. Since
10603 we want to load the constant into AT, we add our
10604 current AT (from the global offset table) and the
10605 register into the register now, and pretend we were
10606 not using a base register. */
10607 if (breg != op[0])
10608 dreg = tempreg;
10609 else
10610 {
10611 gas_assert (tempreg == AT);
10612 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10613 op[0], AT, breg);
10614 dreg = op[0];
10615 add_breg_early = 1;
10616 }
10617
10618 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10619 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10620 dreg, dreg, AT);
10621
10622 used_at = 1;
10623 }
10624 else
10625 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10626
10627 relax_switch ();
10628 offset_expr.X_add_number = expr1.X_add_number;
10629
10630 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10631 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10632 if (add_breg_early)
10633 {
10634 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10635 op[0], tempreg, breg);
10636 breg = 0;
10637 tempreg = op[0];
10638 }
10639 relax_end ();
10640 }
10641 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10642 {
10643 relax_start (offset_expr.X_add_symbol);
10644 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10645 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10646 relax_switch ();
10647 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10648 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10649 relax_end ();
10650 }
10651 else
10652 {
10653 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10654 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10655 }
10656 }
10657 else if (mips_big_got && !HAVE_NEWABI)
10658 {
10659 int gpdelay;
10660 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10661 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10662 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10663
10664 /* This is the large GOT case. If this is a reference to an
10665 external symbol, and there is no constant, we want
10666 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10667 addu $tempreg,$tempreg,$gp
10668 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10669 or for lca or if tempreg is PIC_CALL_REG
10670 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10671 addu $tempreg,$tempreg,$gp
10672 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10673 For a local symbol, we want
10674 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10675 nop
10676 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10677
10678 If we have a small constant, and this is a reference to
10679 an external symbol, we want
10680 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10681 addu $tempreg,$tempreg,$gp
10682 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10683 nop
10684 addiu $tempreg,$tempreg,<constant>
10685 For a local symbol, we want
10686 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10687 nop
10688 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10689
10690 If we have a large constant, and this is a reference to
10691 an external symbol, we want
10692 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10693 addu $tempreg,$tempreg,$gp
10694 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10695 lui $at,<hiconstant>
10696 addiu $at,$at,<loconstant>
10697 addu $tempreg,$tempreg,$at
10698 For a local symbol, we want
10699 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10700 lui $at,<hiconstant>
10701 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10702 addu $tempreg,$tempreg,$at
10703 */
10704
10705 expr1.X_add_number = offset_expr.X_add_number;
10706 offset_expr.X_add_number = 0;
10707 relax_start (offset_expr.X_add_symbol);
10708 gpdelay = reg_needs_delay (mips_gp_register);
10709 if (expr1.X_add_number == 0 && breg == 0
10710 && (call || tempreg == PIC_CALL_REG))
10711 {
10712 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10713 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10714 }
10715 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10716 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10717 tempreg, tempreg, mips_gp_register);
10718 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10719 tempreg, lw_reloc_type, tempreg);
10720 if (expr1.X_add_number == 0)
10721 {
10722 if (breg != 0)
10723 {
10724 /* We're going to put in an addu instruction using
10725 tempreg, so we may as well insert the nop right
10726 now. */
10727 load_delay_nop ();
10728 }
10729 }
10730 else if (expr1.X_add_number >= -0x8000
10731 && expr1.X_add_number < 0x8000)
10732 {
10733 load_delay_nop ();
10734 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10735 tempreg, tempreg, BFD_RELOC_LO16);
10736 }
10737 else
10738 {
10739 unsigned int dreg;
10740
10741 /* If we are going to add in a base register, and the
10742 target register and the base register are the same,
10743 then we are using AT as a temporary register. Since
10744 we want to load the constant into AT, we add our
10745 current AT (from the global offset table) and the
10746 register into the register now, and pretend we were
10747 not using a base register. */
10748 if (breg != op[0])
10749 dreg = tempreg;
10750 else
10751 {
10752 gas_assert (tempreg == AT);
10753 load_delay_nop ();
10754 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10755 op[0], AT, breg);
10756 dreg = op[0];
10757 }
10758
10759 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10760 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10761
10762 used_at = 1;
10763 }
10764 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10765 relax_switch ();
10766
10767 if (gpdelay)
10768 {
10769 /* This is needed because this instruction uses $gp, but
10770 the first instruction on the main stream does not. */
10771 macro_build (NULL, "nop", "");
10772 }
10773
10774 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10775 local_reloc_type, mips_gp_register);
10776 if (expr1.X_add_number >= -0x8000
10777 && expr1.X_add_number < 0x8000)
10778 {
10779 load_delay_nop ();
10780 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10781 tempreg, tempreg, BFD_RELOC_LO16);
10782 /* FIXME: If add_number is 0, and there was no base
10783 register, the external symbol case ended with a load,
10784 so if the symbol turns out to not be external, and
10785 the next instruction uses tempreg, an unnecessary nop
10786 will be inserted. */
10787 }
10788 else
10789 {
10790 if (breg == op[0])
10791 {
10792 /* We must add in the base register now, as in the
10793 external symbol case. */
10794 gas_assert (tempreg == AT);
10795 load_delay_nop ();
10796 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10797 op[0], AT, breg);
10798 tempreg = op[0];
10799 /* We set breg to 0 because we have arranged to add
10800 it in in both cases. */
10801 breg = 0;
10802 }
10803
10804 macro_build_lui (&expr1, AT);
10805 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10806 AT, AT, BFD_RELOC_LO16);
10807 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10808 tempreg, tempreg, AT);
10809 used_at = 1;
10810 }
10811 relax_end ();
10812 }
10813 else if (mips_big_got && HAVE_NEWABI)
10814 {
10815 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10816 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10817 int add_breg_early = 0;
10818
10819 /* This is the large GOT case. If this is a reference to an
10820 external symbol, and there is no constant, we want
10821 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10822 add $tempreg,$tempreg,$gp
10823 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10824 or for lca or if tempreg is PIC_CALL_REG
10825 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10826 add $tempreg,$tempreg,$gp
10827 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10828
10829 If we have a small constant, and this is a reference to
10830 an external symbol, we want
10831 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10832 add $tempreg,$tempreg,$gp
10833 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10834 addi $tempreg,$tempreg,<constant>
10835
10836 If we have a large constant, and this is a reference to
10837 an external symbol, we want
10838 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10839 addu $tempreg,$tempreg,$gp
10840 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10841 lui $at,<hiconstant>
10842 addi $at,$at,<loconstant>
10843 add $tempreg,$tempreg,$at
10844
10845 If we have NewABI, and we know it's a local symbol, we want
10846 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10847 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10848 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10849
10850 relax_start (offset_expr.X_add_symbol);
10851
10852 expr1.X_add_number = offset_expr.X_add_number;
10853 offset_expr.X_add_number = 0;
10854
10855 if (expr1.X_add_number == 0 && breg == 0
10856 && (call || tempreg == PIC_CALL_REG))
10857 {
10858 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10859 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10860 }
10861 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10862 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10863 tempreg, tempreg, mips_gp_register);
10864 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10865 tempreg, lw_reloc_type, tempreg);
10866
10867 if (expr1.X_add_number == 0)
10868 ;
10869 else if (expr1.X_add_number >= -0x8000
10870 && expr1.X_add_number < 0x8000)
10871 {
10872 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10873 tempreg, tempreg, BFD_RELOC_LO16);
10874 }
10875 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10876 {
10877 unsigned int dreg;
10878
10879 /* If we are going to add in a base register, and the
10880 target register and the base register are the same,
10881 then we are using AT as a temporary register. Since
10882 we want to load the constant into AT, we add our
10883 current AT (from the global offset table) and the
10884 register into the register now, and pretend we were
10885 not using a base register. */
10886 if (breg != op[0])
10887 dreg = tempreg;
10888 else
10889 {
10890 gas_assert (tempreg == AT);
10891 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10892 op[0], AT, breg);
10893 dreg = op[0];
10894 add_breg_early = 1;
10895 }
10896
10897 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10898 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10899
10900 used_at = 1;
10901 }
10902 else
10903 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10904
10905 relax_switch ();
10906 offset_expr.X_add_number = expr1.X_add_number;
10907 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10908 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10909 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10910 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10911 if (add_breg_early)
10912 {
10913 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10914 op[0], tempreg, breg);
10915 breg = 0;
10916 tempreg = op[0];
10917 }
10918 relax_end ();
10919 }
10920 else
10921 abort ();
10922
10923 if (breg != 0)
10924 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10925 break;
10926
10927 case M_MSGSND:
10928 gas_assert (!mips_opts.micromips);
10929 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10930 break;
10931
10932 case M_MSGLD:
10933 gas_assert (!mips_opts.micromips);
10934 macro_build (NULL, "c2", "C", 0x02);
10935 break;
10936
10937 case M_MSGLD_T:
10938 gas_assert (!mips_opts.micromips);
10939 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10940 break;
10941
10942 case M_MSGWAIT:
10943 gas_assert (!mips_opts.micromips);
10944 macro_build (NULL, "c2", "C", 3);
10945 break;
10946
10947 case M_MSGWAIT_T:
10948 gas_assert (!mips_opts.micromips);
10949 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10950 break;
10951
10952 case M_J_A:
10953 /* The j instruction may not be used in PIC code, since it
10954 requires an absolute address. We convert it to a b
10955 instruction. */
10956 if (mips_pic == NO_PIC)
10957 macro_build (&offset_expr, "j", "a");
10958 else
10959 macro_build (&offset_expr, "b", "p");
10960 break;
10961
10962 /* The jal instructions must be handled as macros because when
10963 generating PIC code they expand to multi-instruction
10964 sequences. Normally they are simple instructions. */
10965 case M_JALS_1:
10966 op[1] = op[0];
10967 op[0] = RA;
10968 /* Fall through. */
10969 case M_JALS_2:
10970 gas_assert (mips_opts.micromips);
10971 if (mips_opts.insn32)
10972 {
10973 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10974 break;
10975 }
10976 jals = 1;
10977 goto jal;
10978 case M_JAL_1:
10979 op[1] = op[0];
10980 op[0] = RA;
10981 /* Fall through. */
10982 case M_JAL_2:
10983 jal:
10984 if (mips_pic == NO_PIC)
10985 {
10986 s = jals ? "jalrs" : "jalr";
10987 if (mips_opts.micromips
10988 && !mips_opts.insn32
10989 && op[0] == RA
10990 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10991 macro_build (NULL, s, "mj", op[1]);
10992 else
10993 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10994 }
10995 else
10996 {
10997 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
10998 && mips_cprestore_offset >= 0);
10999
11000 if (op[1] != PIC_CALL_REG)
11001 as_warn (_("MIPS PIC call to register other than $25"));
11002
11003 s = ((mips_opts.micromips
11004 && !mips_opts.insn32
11005 && (!mips_opts.noreorder || cprestore))
11006 ? "jalrs" : "jalr");
11007 if (mips_opts.micromips
11008 && !mips_opts.insn32
11009 && op[0] == RA
11010 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11011 macro_build (NULL, s, "mj", op[1]);
11012 else
11013 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11014 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11015 {
11016 if (mips_cprestore_offset < 0)
11017 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11018 else
11019 {
11020 if (!mips_frame_reg_valid)
11021 {
11022 as_warn (_("no .frame pseudo-op used in PIC code"));
11023 /* Quiet this warning. */
11024 mips_frame_reg_valid = 1;
11025 }
11026 if (!mips_cprestore_valid)
11027 {
11028 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11029 /* Quiet this warning. */
11030 mips_cprestore_valid = 1;
11031 }
11032 if (mips_opts.noreorder)
11033 macro_build (NULL, "nop", "");
11034 expr1.X_add_number = mips_cprestore_offset;
11035 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11036 mips_gp_register,
11037 mips_frame_reg,
11038 HAVE_64BIT_ADDRESSES);
11039 }
11040 }
11041 }
11042
11043 break;
11044
11045 case M_JALS_A:
11046 gas_assert (mips_opts.micromips);
11047 if (mips_opts.insn32)
11048 {
11049 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11050 break;
11051 }
11052 jals = 1;
11053 /* Fall through. */
11054 case M_JAL_A:
11055 if (mips_pic == NO_PIC)
11056 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11057 else if (mips_pic == SVR4_PIC)
11058 {
11059 /* If this is a reference to an external symbol, and we are
11060 using a small GOT, we want
11061 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11062 nop
11063 jalr $ra,$25
11064 nop
11065 lw $gp,cprestore($sp)
11066 The cprestore value is set using the .cprestore
11067 pseudo-op. If we are using a big GOT, we want
11068 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11069 addu $25,$25,$gp
11070 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11071 nop
11072 jalr $ra,$25
11073 nop
11074 lw $gp,cprestore($sp)
11075 If the symbol is not external, we want
11076 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11077 nop
11078 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11079 jalr $ra,$25
11080 nop
11081 lw $gp,cprestore($sp)
11082
11083 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11084 sequences above, minus nops, unless the symbol is local,
11085 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11086 GOT_DISP. */
11087 if (HAVE_NEWABI)
11088 {
11089 if (!mips_big_got)
11090 {
11091 relax_start (offset_expr.X_add_symbol);
11092 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11093 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11094 mips_gp_register);
11095 relax_switch ();
11096 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11097 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11098 mips_gp_register);
11099 relax_end ();
11100 }
11101 else
11102 {
11103 relax_start (offset_expr.X_add_symbol);
11104 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11105 BFD_RELOC_MIPS_CALL_HI16);
11106 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11107 PIC_CALL_REG, mips_gp_register);
11108 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11109 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11110 PIC_CALL_REG);
11111 relax_switch ();
11112 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11113 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11114 mips_gp_register);
11115 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11116 PIC_CALL_REG, PIC_CALL_REG,
11117 BFD_RELOC_MIPS_GOT_OFST);
11118 relax_end ();
11119 }
11120
11121 macro_build_jalr (&offset_expr, 0);
11122 }
11123 else
11124 {
11125 relax_start (offset_expr.X_add_symbol);
11126 if (!mips_big_got)
11127 {
11128 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11129 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11130 mips_gp_register);
11131 load_delay_nop ();
11132 relax_switch ();
11133 }
11134 else
11135 {
11136 int gpdelay;
11137
11138 gpdelay = reg_needs_delay (mips_gp_register);
11139 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11140 BFD_RELOC_MIPS_CALL_HI16);
11141 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11142 PIC_CALL_REG, mips_gp_register);
11143 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11144 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11145 PIC_CALL_REG);
11146 load_delay_nop ();
11147 relax_switch ();
11148 if (gpdelay)
11149 macro_build (NULL, "nop", "");
11150 }
11151 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11152 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11153 mips_gp_register);
11154 load_delay_nop ();
11155 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11156 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11157 relax_end ();
11158 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11159
11160 if (mips_cprestore_offset < 0)
11161 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11162 else
11163 {
11164 if (!mips_frame_reg_valid)
11165 {
11166 as_warn (_("no .frame pseudo-op used in PIC code"));
11167 /* Quiet this warning. */
11168 mips_frame_reg_valid = 1;
11169 }
11170 if (!mips_cprestore_valid)
11171 {
11172 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11173 /* Quiet this warning. */
11174 mips_cprestore_valid = 1;
11175 }
11176 if (mips_opts.noreorder)
11177 macro_build (NULL, "nop", "");
11178 expr1.X_add_number = mips_cprestore_offset;
11179 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11180 mips_gp_register,
11181 mips_frame_reg,
11182 HAVE_64BIT_ADDRESSES);
11183 }
11184 }
11185 }
11186 else if (mips_pic == VXWORKS_PIC)
11187 as_bad (_("non-PIC jump used in PIC library"));
11188 else
11189 abort ();
11190
11191 break;
11192
11193 case M_LBUE_AB:
11194 s = "lbue";
11195 fmt = "t,+j(b)";
11196 offbits = 9;
11197 goto ld_st;
11198 case M_LHUE_AB:
11199 s = "lhue";
11200 fmt = "t,+j(b)";
11201 offbits = 9;
11202 goto ld_st;
11203 case M_LBE_AB:
11204 s = "lbe";
11205 fmt = "t,+j(b)";
11206 offbits = 9;
11207 goto ld_st;
11208 case M_LHE_AB:
11209 s = "lhe";
11210 fmt = "t,+j(b)";
11211 offbits = 9;
11212 goto ld_st;
11213 case M_LLE_AB:
11214 s = "lle";
11215 fmt = "t,+j(b)";
11216 offbits = 9;
11217 goto ld_st;
11218 case M_LWE_AB:
11219 s = "lwe";
11220 fmt = "t,+j(b)";
11221 offbits = 9;
11222 goto ld_st;
11223 case M_LWLE_AB:
11224 s = "lwle";
11225 fmt = "t,+j(b)";
11226 offbits = 9;
11227 goto ld_st;
11228 case M_LWRE_AB:
11229 s = "lwre";
11230 fmt = "t,+j(b)";
11231 offbits = 9;
11232 goto ld_st;
11233 case M_SBE_AB:
11234 s = "sbe";
11235 fmt = "t,+j(b)";
11236 offbits = 9;
11237 goto ld_st;
11238 case M_SCE_AB:
11239 s = "sce";
11240 fmt = "t,+j(b)";
11241 offbits = 9;
11242 goto ld_st;
11243 case M_SHE_AB:
11244 s = "she";
11245 fmt = "t,+j(b)";
11246 offbits = 9;
11247 goto ld_st;
11248 case M_SWE_AB:
11249 s = "swe";
11250 fmt = "t,+j(b)";
11251 offbits = 9;
11252 goto ld_st;
11253 case M_SWLE_AB:
11254 s = "swle";
11255 fmt = "t,+j(b)";
11256 offbits = 9;
11257 goto ld_st;
11258 case M_SWRE_AB:
11259 s = "swre";
11260 fmt = "t,+j(b)";
11261 offbits = 9;
11262 goto ld_st;
11263 case M_ACLR_AB:
11264 s = "aclr";
11265 fmt = "\\,~(b)";
11266 offbits = 12;
11267 goto ld_st;
11268 case M_ASET_AB:
11269 s = "aset";
11270 fmt = "\\,~(b)";
11271 offbits = 12;
11272 goto ld_st;
11273 case M_LB_AB:
11274 s = "lb";
11275 fmt = "t,o(b)";
11276 goto ld;
11277 case M_LBU_AB:
11278 s = "lbu";
11279 fmt = "t,o(b)";
11280 goto ld;
11281 case M_LH_AB:
11282 s = "lh";
11283 fmt = "t,o(b)";
11284 goto ld;
11285 case M_LHU_AB:
11286 s = "lhu";
11287 fmt = "t,o(b)";
11288 goto ld;
11289 case M_LW_AB:
11290 s = "lw";
11291 fmt = "t,o(b)";
11292 goto ld;
11293 case M_LWC0_AB:
11294 gas_assert (!mips_opts.micromips);
11295 s = "lwc0";
11296 fmt = "E,o(b)";
11297 /* Itbl support may require additional care here. */
11298 coproc = 1;
11299 goto ld_st;
11300 case M_LWC1_AB:
11301 s = "lwc1";
11302 fmt = "T,o(b)";
11303 /* Itbl support may require additional care here. */
11304 coproc = 1;
11305 goto ld_st;
11306 case M_LWC2_AB:
11307 s = "lwc2";
11308 fmt = COP12_FMT;
11309 offbits = (mips_opts.micromips ? 12
11310 : ISA_IS_R6 (mips_opts.isa) ? 11
11311 : 16);
11312 /* Itbl support may require additional care here. */
11313 coproc = 1;
11314 goto ld_st;
11315 case M_LWC3_AB:
11316 gas_assert (!mips_opts.micromips);
11317 s = "lwc3";
11318 fmt = "E,o(b)";
11319 /* Itbl support may require additional care here. */
11320 coproc = 1;
11321 goto ld_st;
11322 case M_LWL_AB:
11323 s = "lwl";
11324 fmt = MEM12_FMT;
11325 offbits = (mips_opts.micromips ? 12 : 16);
11326 goto ld_st;
11327 case M_LWR_AB:
11328 s = "lwr";
11329 fmt = MEM12_FMT;
11330 offbits = (mips_opts.micromips ? 12 : 16);
11331 goto ld_st;
11332 case M_LDC1_AB:
11333 s = "ldc1";
11334 fmt = "T,o(b)";
11335 /* Itbl support may require additional care here. */
11336 coproc = 1;
11337 goto ld_st;
11338 case M_LDC2_AB:
11339 s = "ldc2";
11340 fmt = COP12_FMT;
11341 offbits = (mips_opts.micromips ? 12
11342 : ISA_IS_R6 (mips_opts.isa) ? 11
11343 : 16);
11344 /* Itbl support may require additional care here. */
11345 coproc = 1;
11346 goto ld_st;
11347 case M_LQC2_AB:
11348 s = "lqc2";
11349 fmt = "+7,o(b)";
11350 /* Itbl support may require additional care here. */
11351 coproc = 1;
11352 goto ld_st;
11353 case M_LDC3_AB:
11354 s = "ldc3";
11355 fmt = "E,o(b)";
11356 /* Itbl support may require additional care here. */
11357 coproc = 1;
11358 goto ld_st;
11359 case M_LDL_AB:
11360 s = "ldl";
11361 fmt = MEM12_FMT;
11362 offbits = (mips_opts.micromips ? 12 : 16);
11363 goto ld_st;
11364 case M_LDR_AB:
11365 s = "ldr";
11366 fmt = MEM12_FMT;
11367 offbits = (mips_opts.micromips ? 12 : 16);
11368 goto ld_st;
11369 case M_LL_AB:
11370 s = "ll";
11371 fmt = LL_SC_FMT;
11372 offbits = (mips_opts.micromips ? 12
11373 : ISA_IS_R6 (mips_opts.isa) ? 9
11374 : 16);
11375 goto ld;
11376 case M_LLD_AB:
11377 s = "lld";
11378 fmt = LL_SC_FMT;
11379 offbits = (mips_opts.micromips ? 12
11380 : ISA_IS_R6 (mips_opts.isa) ? 9
11381 : 16);
11382 goto ld;
11383 case M_LWU_AB:
11384 s = "lwu";
11385 fmt = MEM12_FMT;
11386 offbits = (mips_opts.micromips ? 12 : 16);
11387 goto ld;
11388 case M_LWP_AB:
11389 gas_assert (mips_opts.micromips);
11390 s = "lwp";
11391 fmt = "t,~(b)";
11392 offbits = 12;
11393 lp = 1;
11394 goto ld;
11395 case M_LDP_AB:
11396 gas_assert (mips_opts.micromips);
11397 s = "ldp";
11398 fmt = "t,~(b)";
11399 offbits = 12;
11400 lp = 1;
11401 goto ld;
11402 case M_LWM_AB:
11403 gas_assert (mips_opts.micromips);
11404 s = "lwm";
11405 fmt = "n,~(b)";
11406 offbits = 12;
11407 goto ld_st;
11408 case M_LDM_AB:
11409 gas_assert (mips_opts.micromips);
11410 s = "ldm";
11411 fmt = "n,~(b)";
11412 offbits = 12;
11413 goto ld_st;
11414
11415 ld:
11416 /* We don't want to use $0 as tempreg. */
11417 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11418 goto ld_st;
11419 else
11420 tempreg = op[0] + lp;
11421 goto ld_noat;
11422
11423 case M_SB_AB:
11424 s = "sb";
11425 fmt = "t,o(b)";
11426 goto ld_st;
11427 case M_SH_AB:
11428 s = "sh";
11429 fmt = "t,o(b)";
11430 goto ld_st;
11431 case M_SW_AB:
11432 s = "sw";
11433 fmt = "t,o(b)";
11434 goto ld_st;
11435 case M_SWC0_AB:
11436 gas_assert (!mips_opts.micromips);
11437 s = "swc0";
11438 fmt = "E,o(b)";
11439 /* Itbl support may require additional care here. */
11440 coproc = 1;
11441 goto ld_st;
11442 case M_SWC1_AB:
11443 s = "swc1";
11444 fmt = "T,o(b)";
11445 /* Itbl support may require additional care here. */
11446 coproc = 1;
11447 goto ld_st;
11448 case M_SWC2_AB:
11449 s = "swc2";
11450 fmt = COP12_FMT;
11451 offbits = (mips_opts.micromips ? 12
11452 : ISA_IS_R6 (mips_opts.isa) ? 11
11453 : 16);
11454 /* Itbl support may require additional care here. */
11455 coproc = 1;
11456 goto ld_st;
11457 case M_SWC3_AB:
11458 gas_assert (!mips_opts.micromips);
11459 s = "swc3";
11460 fmt = "E,o(b)";
11461 /* Itbl support may require additional care here. */
11462 coproc = 1;
11463 goto ld_st;
11464 case M_SWL_AB:
11465 s = "swl";
11466 fmt = MEM12_FMT;
11467 offbits = (mips_opts.micromips ? 12 : 16);
11468 goto ld_st;
11469 case M_SWR_AB:
11470 s = "swr";
11471 fmt = MEM12_FMT;
11472 offbits = (mips_opts.micromips ? 12 : 16);
11473 goto ld_st;
11474 case M_SC_AB:
11475 s = "sc";
11476 fmt = LL_SC_FMT;
11477 offbits = (mips_opts.micromips ? 12
11478 : ISA_IS_R6 (mips_opts.isa) ? 9
11479 : 16);
11480 goto ld_st;
11481 case M_SCD_AB:
11482 s = "scd";
11483 fmt = LL_SC_FMT;
11484 offbits = (mips_opts.micromips ? 12
11485 : ISA_IS_R6 (mips_opts.isa) ? 9
11486 : 16);
11487 goto ld_st;
11488 case M_CACHE_AB:
11489 s = "cache";
11490 fmt = (mips_opts.micromips ? "k,~(b)"
11491 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11492 : "k,o(b)");
11493 offbits = (mips_opts.micromips ? 12
11494 : ISA_IS_R6 (mips_opts.isa) ? 9
11495 : 16);
11496 goto ld_st;
11497 case M_CACHEE_AB:
11498 s = "cachee";
11499 fmt = "k,+j(b)";
11500 offbits = 9;
11501 goto ld_st;
11502 case M_PREF_AB:
11503 s = "pref";
11504 fmt = (mips_opts.micromips ? "k,~(b)"
11505 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11506 : "k,o(b)");
11507 offbits = (mips_opts.micromips ? 12
11508 : ISA_IS_R6 (mips_opts.isa) ? 9
11509 : 16);
11510 goto ld_st;
11511 case M_PREFE_AB:
11512 s = "prefe";
11513 fmt = "k,+j(b)";
11514 offbits = 9;
11515 goto ld_st;
11516 case M_SDC1_AB:
11517 s = "sdc1";
11518 fmt = "T,o(b)";
11519 coproc = 1;
11520 /* Itbl support may require additional care here. */
11521 goto ld_st;
11522 case M_SDC2_AB:
11523 s = "sdc2";
11524 fmt = COP12_FMT;
11525 offbits = (mips_opts.micromips ? 12
11526 : ISA_IS_R6 (mips_opts.isa) ? 11
11527 : 16);
11528 /* Itbl support may require additional care here. */
11529 coproc = 1;
11530 goto ld_st;
11531 case M_SQC2_AB:
11532 s = "sqc2";
11533 fmt = "+7,o(b)";
11534 /* Itbl support may require additional care here. */
11535 coproc = 1;
11536 goto ld_st;
11537 case M_SDC3_AB:
11538 gas_assert (!mips_opts.micromips);
11539 s = "sdc3";
11540 fmt = "E,o(b)";
11541 /* Itbl support may require additional care here. */
11542 coproc = 1;
11543 goto ld_st;
11544 case M_SDL_AB:
11545 s = "sdl";
11546 fmt = MEM12_FMT;
11547 offbits = (mips_opts.micromips ? 12 : 16);
11548 goto ld_st;
11549 case M_SDR_AB:
11550 s = "sdr";
11551 fmt = MEM12_FMT;
11552 offbits = (mips_opts.micromips ? 12 : 16);
11553 goto ld_st;
11554 case M_SWP_AB:
11555 gas_assert (mips_opts.micromips);
11556 s = "swp";
11557 fmt = "t,~(b)";
11558 offbits = 12;
11559 goto ld_st;
11560 case M_SDP_AB:
11561 gas_assert (mips_opts.micromips);
11562 s = "sdp";
11563 fmt = "t,~(b)";
11564 offbits = 12;
11565 goto ld_st;
11566 case M_SWM_AB:
11567 gas_assert (mips_opts.micromips);
11568 s = "swm";
11569 fmt = "n,~(b)";
11570 offbits = 12;
11571 goto ld_st;
11572 case M_SDM_AB:
11573 gas_assert (mips_opts.micromips);
11574 s = "sdm";
11575 fmt = "n,~(b)";
11576 offbits = 12;
11577
11578 ld_st:
11579 tempreg = AT;
11580 ld_noat:
11581 breg = op[2];
11582 if (small_offset_p (0, align, 16))
11583 {
11584 /* The first case exists for M_LD_AB and M_SD_AB, which are
11585 macros for o32 but which should act like normal instructions
11586 otherwise. */
11587 if (offbits == 16)
11588 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11589 offset_reloc[1], offset_reloc[2], breg);
11590 else if (small_offset_p (0, align, offbits))
11591 {
11592 if (offbits == 0)
11593 macro_build (NULL, s, fmt, op[0], breg);
11594 else
11595 macro_build (NULL, s, fmt, op[0],
11596 (int) offset_expr.X_add_number, breg);
11597 }
11598 else
11599 {
11600 if (tempreg == AT)
11601 used_at = 1;
11602 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11603 tempreg, breg, -1, offset_reloc[0],
11604 offset_reloc[1], offset_reloc[2]);
11605 if (offbits == 0)
11606 macro_build (NULL, s, fmt, op[0], tempreg);
11607 else
11608 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11609 }
11610 break;
11611 }
11612
11613 if (tempreg == AT)
11614 used_at = 1;
11615
11616 if (offset_expr.X_op != O_constant
11617 && offset_expr.X_op != O_symbol)
11618 {
11619 as_bad (_("expression too complex"));
11620 offset_expr.X_op = O_constant;
11621 }
11622
11623 if (HAVE_32BIT_ADDRESSES
11624 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11625 {
11626 char value [32];
11627
11628 sprintf_vma (value, offset_expr.X_add_number);
11629 as_bad (_("number (0x%s) larger than 32 bits"), value);
11630 }
11631
11632 /* A constant expression in PIC code can be handled just as it
11633 is in non PIC code. */
11634 if (offset_expr.X_op == O_constant)
11635 {
11636 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11637 offbits == 0 ? 16 : offbits);
11638 offset_expr.X_add_number -= expr1.X_add_number;
11639
11640 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11641 if (breg != 0)
11642 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11643 tempreg, tempreg, breg);
11644 if (offbits == 0)
11645 {
11646 if (offset_expr.X_add_number != 0)
11647 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11648 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11649 macro_build (NULL, s, fmt, op[0], tempreg);
11650 }
11651 else if (offbits == 16)
11652 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11653 else
11654 macro_build (NULL, s, fmt, op[0],
11655 (int) offset_expr.X_add_number, tempreg);
11656 }
11657 else if (offbits != 16)
11658 {
11659 /* The offset field is too narrow to be used for a low-part
11660 relocation, so load the whole address into the auxillary
11661 register. */
11662 load_address (tempreg, &offset_expr, &used_at);
11663 if (breg != 0)
11664 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11665 tempreg, tempreg, breg);
11666 if (offbits == 0)
11667 macro_build (NULL, s, fmt, op[0], tempreg);
11668 else
11669 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11670 }
11671 else if (mips_pic == NO_PIC)
11672 {
11673 /* If this is a reference to a GP relative symbol, and there
11674 is no base register, we want
11675 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11676 Otherwise, if there is no base register, we want
11677 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11678 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11679 If we have a constant, we need two instructions anyhow,
11680 so we always use the latter form.
11681
11682 If we have a base register, and this is a reference to a
11683 GP relative symbol, we want
11684 addu $tempreg,$breg,$gp
11685 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11686 Otherwise we want
11687 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11688 addu $tempreg,$tempreg,$breg
11689 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11690 With a constant we always use the latter case.
11691
11692 With 64bit address space and no base register and $at usable,
11693 we want
11694 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11695 lui $at,<sym> (BFD_RELOC_HI16_S)
11696 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11697 dsll32 $tempreg,0
11698 daddu $tempreg,$at
11699 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11700 If we have a base register, we want
11701 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11702 lui $at,<sym> (BFD_RELOC_HI16_S)
11703 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11704 daddu $at,$breg
11705 dsll32 $tempreg,0
11706 daddu $tempreg,$at
11707 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11708
11709 Without $at we can't generate the optimal path for superscalar
11710 processors here since this would require two temporary registers.
11711 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11712 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11713 dsll $tempreg,16
11714 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11715 dsll $tempreg,16
11716 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11717 If we have a base register, we want
11718 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11719 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11720 dsll $tempreg,16
11721 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11722 dsll $tempreg,16
11723 daddu $tempreg,$tempreg,$breg
11724 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11725
11726 For GP relative symbols in 64bit address space we can use
11727 the same sequence as in 32bit address space. */
11728 if (HAVE_64BIT_SYMBOLS)
11729 {
11730 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11731 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11732 {
11733 relax_start (offset_expr.X_add_symbol);
11734 if (breg == 0)
11735 {
11736 macro_build (&offset_expr, s, fmt, op[0],
11737 BFD_RELOC_GPREL16, mips_gp_register);
11738 }
11739 else
11740 {
11741 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11742 tempreg, breg, mips_gp_register);
11743 macro_build (&offset_expr, s, fmt, op[0],
11744 BFD_RELOC_GPREL16, tempreg);
11745 }
11746 relax_switch ();
11747 }
11748
11749 if (used_at == 0 && mips_opts.at)
11750 {
11751 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11752 BFD_RELOC_MIPS_HIGHEST);
11753 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11754 BFD_RELOC_HI16_S);
11755 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11756 tempreg, BFD_RELOC_MIPS_HIGHER);
11757 if (breg != 0)
11758 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11759 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11760 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11761 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11762 tempreg);
11763 used_at = 1;
11764 }
11765 else
11766 {
11767 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11768 BFD_RELOC_MIPS_HIGHEST);
11769 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11770 tempreg, BFD_RELOC_MIPS_HIGHER);
11771 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11772 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11773 tempreg, BFD_RELOC_HI16_S);
11774 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11775 if (breg != 0)
11776 macro_build (NULL, "daddu", "d,v,t",
11777 tempreg, tempreg, breg);
11778 macro_build (&offset_expr, s, fmt, op[0],
11779 BFD_RELOC_LO16, tempreg);
11780 }
11781
11782 if (mips_relax.sequence)
11783 relax_end ();
11784 break;
11785 }
11786
11787 if (breg == 0)
11788 {
11789 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11790 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11791 {
11792 relax_start (offset_expr.X_add_symbol);
11793 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11794 mips_gp_register);
11795 relax_switch ();
11796 }
11797 macro_build_lui (&offset_expr, tempreg);
11798 macro_build (&offset_expr, s, fmt, op[0],
11799 BFD_RELOC_LO16, tempreg);
11800 if (mips_relax.sequence)
11801 relax_end ();
11802 }
11803 else
11804 {
11805 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11806 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11807 {
11808 relax_start (offset_expr.X_add_symbol);
11809 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11810 tempreg, breg, mips_gp_register);
11811 macro_build (&offset_expr, s, fmt, op[0],
11812 BFD_RELOC_GPREL16, tempreg);
11813 relax_switch ();
11814 }
11815 macro_build_lui (&offset_expr, tempreg);
11816 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11817 tempreg, tempreg, breg);
11818 macro_build (&offset_expr, s, fmt, op[0],
11819 BFD_RELOC_LO16, tempreg);
11820 if (mips_relax.sequence)
11821 relax_end ();
11822 }
11823 }
11824 else if (!mips_big_got)
11825 {
11826 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11827
11828 /* If this is a reference to an external symbol, we want
11829 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11830 nop
11831 <op> op[0],0($tempreg)
11832 Otherwise we want
11833 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11834 nop
11835 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11836 <op> op[0],0($tempreg)
11837
11838 For NewABI, we want
11839 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11840 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11841
11842 If there is a base register, we add it to $tempreg before
11843 the <op>. If there is a constant, we stick it in the
11844 <op> instruction. We don't handle constants larger than
11845 16 bits, because we have no way to load the upper 16 bits
11846 (actually, we could handle them for the subset of cases
11847 in which we are not using $at). */
11848 gas_assert (offset_expr.X_op == O_symbol);
11849 if (HAVE_NEWABI)
11850 {
11851 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11852 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11853 if (breg != 0)
11854 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11855 tempreg, tempreg, breg);
11856 macro_build (&offset_expr, s, fmt, op[0],
11857 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11858 break;
11859 }
11860 expr1.X_add_number = offset_expr.X_add_number;
11861 offset_expr.X_add_number = 0;
11862 if (expr1.X_add_number < -0x8000
11863 || expr1.X_add_number >= 0x8000)
11864 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11865 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11866 lw_reloc_type, mips_gp_register);
11867 load_delay_nop ();
11868 relax_start (offset_expr.X_add_symbol);
11869 relax_switch ();
11870 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11871 tempreg, BFD_RELOC_LO16);
11872 relax_end ();
11873 if (breg != 0)
11874 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11875 tempreg, tempreg, breg);
11876 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11877 }
11878 else if (mips_big_got && !HAVE_NEWABI)
11879 {
11880 int gpdelay;
11881
11882 /* If this is a reference to an external symbol, we want
11883 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11884 addu $tempreg,$tempreg,$gp
11885 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11886 <op> op[0],0($tempreg)
11887 Otherwise we want
11888 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11889 nop
11890 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11891 <op> op[0],0($tempreg)
11892 If there is a base register, we add it to $tempreg before
11893 the <op>. If there is a constant, we stick it in the
11894 <op> instruction. We don't handle constants larger than
11895 16 bits, because we have no way to load the upper 16 bits
11896 (actually, we could handle them for the subset of cases
11897 in which we are not using $at). */
11898 gas_assert (offset_expr.X_op == O_symbol);
11899 expr1.X_add_number = offset_expr.X_add_number;
11900 offset_expr.X_add_number = 0;
11901 if (expr1.X_add_number < -0x8000
11902 || expr1.X_add_number >= 0x8000)
11903 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11904 gpdelay = reg_needs_delay (mips_gp_register);
11905 relax_start (offset_expr.X_add_symbol);
11906 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11907 BFD_RELOC_MIPS_GOT_HI16);
11908 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11909 mips_gp_register);
11910 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11911 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11912 relax_switch ();
11913 if (gpdelay)
11914 macro_build (NULL, "nop", "");
11915 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11916 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11917 load_delay_nop ();
11918 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11919 tempreg, BFD_RELOC_LO16);
11920 relax_end ();
11921
11922 if (breg != 0)
11923 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11924 tempreg, tempreg, breg);
11925 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11926 }
11927 else if (mips_big_got && HAVE_NEWABI)
11928 {
11929 /* If this is a reference to an external symbol, we want
11930 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11931 add $tempreg,$tempreg,$gp
11932 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11933 <op> op[0],<ofst>($tempreg)
11934 Otherwise, for local symbols, we want:
11935 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11936 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11937 gas_assert (offset_expr.X_op == O_symbol);
11938 expr1.X_add_number = offset_expr.X_add_number;
11939 offset_expr.X_add_number = 0;
11940 if (expr1.X_add_number < -0x8000
11941 || expr1.X_add_number >= 0x8000)
11942 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11943 relax_start (offset_expr.X_add_symbol);
11944 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11945 BFD_RELOC_MIPS_GOT_HI16);
11946 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11947 mips_gp_register);
11948 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11949 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11950 if (breg != 0)
11951 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11952 tempreg, tempreg, breg);
11953 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11954
11955 relax_switch ();
11956 offset_expr.X_add_number = expr1.X_add_number;
11957 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11958 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11959 if (breg != 0)
11960 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11961 tempreg, tempreg, breg);
11962 macro_build (&offset_expr, s, fmt, op[0],
11963 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11964 relax_end ();
11965 }
11966 else
11967 abort ();
11968
11969 break;
11970
11971 case M_JRADDIUSP:
11972 gas_assert (mips_opts.micromips);
11973 gas_assert (mips_opts.insn32);
11974 start_noreorder ();
11975 macro_build (NULL, "jr", "s", RA);
11976 expr1.X_add_number = op[0] << 2;
11977 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11978 end_noreorder ();
11979 break;
11980
11981 case M_JRC:
11982 gas_assert (mips_opts.micromips);
11983 gas_assert (mips_opts.insn32);
11984 macro_build (NULL, "jr", "s", op[0]);
11985 if (mips_opts.noreorder)
11986 macro_build (NULL, "nop", "");
11987 break;
11988
11989 case M_LI:
11990 case M_LI_S:
11991 load_register (op[0], &imm_expr, 0);
11992 break;
11993
11994 case M_DLI:
11995 load_register (op[0], &imm_expr, 1);
11996 break;
11997
11998 case M_LI_SS:
11999 if (imm_expr.X_op == O_constant)
12000 {
12001 used_at = 1;
12002 load_register (AT, &imm_expr, 0);
12003 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12004 break;
12005 }
12006 else
12007 {
12008 gas_assert (imm_expr.X_op == O_absent
12009 && offset_expr.X_op == O_symbol
12010 && strcmp (segment_name (S_GET_SEGMENT
12011 (offset_expr.X_add_symbol)),
12012 ".lit4") == 0
12013 && offset_expr.X_add_number == 0);
12014 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12015 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12016 break;
12017 }
12018
12019 case M_LI_D:
12020 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12021 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12022 order 32 bits of the value and the low order 32 bits are either
12023 zero or in OFFSET_EXPR. */
12024 if (imm_expr.X_op == O_constant)
12025 {
12026 if (GPR_SIZE == 64)
12027 load_register (op[0], &imm_expr, 1);
12028 else
12029 {
12030 int hreg, lreg;
12031
12032 if (target_big_endian)
12033 {
12034 hreg = op[0];
12035 lreg = op[0] + 1;
12036 }
12037 else
12038 {
12039 hreg = op[0] + 1;
12040 lreg = op[0];
12041 }
12042
12043 if (hreg <= 31)
12044 load_register (hreg, &imm_expr, 0);
12045 if (lreg <= 31)
12046 {
12047 if (offset_expr.X_op == O_absent)
12048 move_register (lreg, 0);
12049 else
12050 {
12051 gas_assert (offset_expr.X_op == O_constant);
12052 load_register (lreg, &offset_expr, 0);
12053 }
12054 }
12055 }
12056 break;
12057 }
12058 gas_assert (imm_expr.X_op == O_absent);
12059
12060 /* We know that sym is in the .rdata section. First we get the
12061 upper 16 bits of the address. */
12062 if (mips_pic == NO_PIC)
12063 {
12064 macro_build_lui (&offset_expr, AT);
12065 used_at = 1;
12066 }
12067 else
12068 {
12069 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12070 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12071 used_at = 1;
12072 }
12073
12074 /* Now we load the register(s). */
12075 if (GPR_SIZE == 64)
12076 {
12077 used_at = 1;
12078 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12079 BFD_RELOC_LO16, AT);
12080 }
12081 else
12082 {
12083 used_at = 1;
12084 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12085 BFD_RELOC_LO16, AT);
12086 if (op[0] != RA)
12087 {
12088 /* FIXME: How in the world do we deal with the possible
12089 overflow here? */
12090 offset_expr.X_add_number += 4;
12091 macro_build (&offset_expr, "lw", "t,o(b)",
12092 op[0] + 1, BFD_RELOC_LO16, AT);
12093 }
12094 }
12095 break;
12096
12097 case M_LI_DD:
12098 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12099 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12100 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12101 the value and the low order 32 bits are either zero or in
12102 OFFSET_EXPR. */
12103 if (imm_expr.X_op == O_constant)
12104 {
12105 used_at = 1;
12106 load_register (AT, &imm_expr, FPR_SIZE == 64);
12107 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12108 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12109 else
12110 {
12111 if (ISA_HAS_MXHC1 (mips_opts.isa))
12112 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12113 else if (FPR_SIZE != 32)
12114 as_bad (_("Unable to generate `%s' compliant code "
12115 "without mthc1"),
12116 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12117 else
12118 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12119 if (offset_expr.X_op == O_absent)
12120 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12121 else
12122 {
12123 gas_assert (offset_expr.X_op == O_constant);
12124 load_register (AT, &offset_expr, 0);
12125 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12126 }
12127 }
12128 break;
12129 }
12130
12131 gas_assert (imm_expr.X_op == O_absent
12132 && offset_expr.X_op == O_symbol
12133 && offset_expr.X_add_number == 0);
12134 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12135 if (strcmp (s, ".lit8") == 0)
12136 {
12137 op[2] = mips_gp_register;
12138 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12139 offset_reloc[1] = BFD_RELOC_UNUSED;
12140 offset_reloc[2] = BFD_RELOC_UNUSED;
12141 }
12142 else
12143 {
12144 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12145 used_at = 1;
12146 if (mips_pic != NO_PIC)
12147 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12148 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12149 else
12150 {
12151 /* FIXME: This won't work for a 64 bit address. */
12152 macro_build_lui (&offset_expr, AT);
12153 }
12154
12155 op[2] = AT;
12156 offset_reloc[0] = BFD_RELOC_LO16;
12157 offset_reloc[1] = BFD_RELOC_UNUSED;
12158 offset_reloc[2] = BFD_RELOC_UNUSED;
12159 }
12160 align = 8;
12161 /* Fall through */
12162
12163 case M_L_DAB:
12164 /*
12165 * The MIPS assembler seems to check for X_add_number not
12166 * being double aligned and generating:
12167 * lui at,%hi(foo+1)
12168 * addu at,at,v1
12169 * addiu at,at,%lo(foo+1)
12170 * lwc1 f2,0(at)
12171 * lwc1 f3,4(at)
12172 * But, the resulting address is the same after relocation so why
12173 * generate the extra instruction?
12174 */
12175 /* Itbl support may require additional care here. */
12176 coproc = 1;
12177 fmt = "T,o(b)";
12178 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12179 {
12180 s = "ldc1";
12181 goto ld_st;
12182 }
12183 s = "lwc1";
12184 goto ldd_std;
12185
12186 case M_S_DAB:
12187 gas_assert (!mips_opts.micromips);
12188 /* Itbl support may require additional care here. */
12189 coproc = 1;
12190 fmt = "T,o(b)";
12191 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12192 {
12193 s = "sdc1";
12194 goto ld_st;
12195 }
12196 s = "swc1";
12197 goto ldd_std;
12198
12199 case M_LQ_AB:
12200 fmt = "t,o(b)";
12201 s = "lq";
12202 goto ld;
12203
12204 case M_SQ_AB:
12205 fmt = "t,o(b)";
12206 s = "sq";
12207 goto ld_st;
12208
12209 case M_LD_AB:
12210 fmt = "t,o(b)";
12211 if (GPR_SIZE == 64)
12212 {
12213 s = "ld";
12214 goto ld;
12215 }
12216 s = "lw";
12217 goto ldd_std;
12218
12219 case M_SD_AB:
12220 fmt = "t,o(b)";
12221 if (GPR_SIZE == 64)
12222 {
12223 s = "sd";
12224 goto ld_st;
12225 }
12226 s = "sw";
12227
12228 ldd_std:
12229 /* Even on a big endian machine $fn comes before $fn+1. We have
12230 to adjust when loading from memory. We set coproc if we must
12231 load $fn+1 first. */
12232 /* Itbl support may require additional care here. */
12233 if (!target_big_endian)
12234 coproc = 0;
12235
12236 breg = op[2];
12237 if (small_offset_p (0, align, 16))
12238 {
12239 ep = &offset_expr;
12240 if (!small_offset_p (4, align, 16))
12241 {
12242 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12243 -1, offset_reloc[0], offset_reloc[1],
12244 offset_reloc[2]);
12245 expr1.X_add_number = 0;
12246 ep = &expr1;
12247 breg = AT;
12248 used_at = 1;
12249 offset_reloc[0] = BFD_RELOC_LO16;
12250 offset_reloc[1] = BFD_RELOC_UNUSED;
12251 offset_reloc[2] = BFD_RELOC_UNUSED;
12252 }
12253 if (strcmp (s, "lw") == 0 && op[0] == breg)
12254 {
12255 ep->X_add_number += 4;
12256 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12257 offset_reloc[1], offset_reloc[2], breg);
12258 ep->X_add_number -= 4;
12259 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12260 offset_reloc[1], offset_reloc[2], breg);
12261 }
12262 else
12263 {
12264 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12265 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12266 breg);
12267 ep->X_add_number += 4;
12268 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12269 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12270 breg);
12271 }
12272 break;
12273 }
12274
12275 if (offset_expr.X_op != O_symbol
12276 && offset_expr.X_op != O_constant)
12277 {
12278 as_bad (_("expression too complex"));
12279 offset_expr.X_op = O_constant;
12280 }
12281
12282 if (HAVE_32BIT_ADDRESSES
12283 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12284 {
12285 char value [32];
12286
12287 sprintf_vma (value, offset_expr.X_add_number);
12288 as_bad (_("number (0x%s) larger than 32 bits"), value);
12289 }
12290
12291 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12292 {
12293 /* If this is a reference to a GP relative symbol, we want
12294 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12295 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12296 If we have a base register, we use this
12297 addu $at,$breg,$gp
12298 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12299 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12300 If this is not a GP relative symbol, we want
12301 lui $at,<sym> (BFD_RELOC_HI16_S)
12302 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12303 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12304 If there is a base register, we add it to $at after the
12305 lui instruction. If there is a constant, we always use
12306 the last case. */
12307 if (offset_expr.X_op == O_symbol
12308 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12309 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12310 {
12311 relax_start (offset_expr.X_add_symbol);
12312 if (breg == 0)
12313 {
12314 tempreg = mips_gp_register;
12315 }
12316 else
12317 {
12318 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12319 AT, breg, mips_gp_register);
12320 tempreg = AT;
12321 used_at = 1;
12322 }
12323
12324 /* Itbl support may require additional care here. */
12325 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12326 BFD_RELOC_GPREL16, tempreg);
12327 offset_expr.X_add_number += 4;
12328
12329 /* Set mips_optimize to 2 to avoid inserting an
12330 undesired nop. */
12331 hold_mips_optimize = mips_optimize;
12332 mips_optimize = 2;
12333 /* Itbl support may require additional care here. */
12334 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12335 BFD_RELOC_GPREL16, tempreg);
12336 mips_optimize = hold_mips_optimize;
12337
12338 relax_switch ();
12339
12340 offset_expr.X_add_number -= 4;
12341 }
12342 used_at = 1;
12343 if (offset_high_part (offset_expr.X_add_number, 16)
12344 != offset_high_part (offset_expr.X_add_number + 4, 16))
12345 {
12346 load_address (AT, &offset_expr, &used_at);
12347 offset_expr.X_op = O_constant;
12348 offset_expr.X_add_number = 0;
12349 }
12350 else
12351 macro_build_lui (&offset_expr, AT);
12352 if (breg != 0)
12353 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12354 /* Itbl support may require additional care here. */
12355 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12356 BFD_RELOC_LO16, AT);
12357 /* FIXME: How do we handle overflow here? */
12358 offset_expr.X_add_number += 4;
12359 /* Itbl support may require additional care here. */
12360 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12361 BFD_RELOC_LO16, AT);
12362 if (mips_relax.sequence)
12363 relax_end ();
12364 }
12365 else if (!mips_big_got)
12366 {
12367 /* If this is a reference to an external symbol, we want
12368 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12369 nop
12370 <op> op[0],0($at)
12371 <op> op[0]+1,4($at)
12372 Otherwise we want
12373 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12374 nop
12375 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12376 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12377 If there is a base register we add it to $at before the
12378 lwc1 instructions. If there is a constant we include it
12379 in the lwc1 instructions. */
12380 used_at = 1;
12381 expr1.X_add_number = offset_expr.X_add_number;
12382 if (expr1.X_add_number < -0x8000
12383 || expr1.X_add_number >= 0x8000 - 4)
12384 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12385 load_got_offset (AT, &offset_expr);
12386 load_delay_nop ();
12387 if (breg != 0)
12388 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12389
12390 /* Set mips_optimize to 2 to avoid inserting an undesired
12391 nop. */
12392 hold_mips_optimize = mips_optimize;
12393 mips_optimize = 2;
12394
12395 /* Itbl support may require additional care here. */
12396 relax_start (offset_expr.X_add_symbol);
12397 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12398 BFD_RELOC_LO16, AT);
12399 expr1.X_add_number += 4;
12400 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12401 BFD_RELOC_LO16, AT);
12402 relax_switch ();
12403 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12404 BFD_RELOC_LO16, AT);
12405 offset_expr.X_add_number += 4;
12406 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12407 BFD_RELOC_LO16, AT);
12408 relax_end ();
12409
12410 mips_optimize = hold_mips_optimize;
12411 }
12412 else if (mips_big_got)
12413 {
12414 int gpdelay;
12415
12416 /* If this is a reference to an external symbol, we want
12417 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12418 addu $at,$at,$gp
12419 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12420 nop
12421 <op> op[0],0($at)
12422 <op> op[0]+1,4($at)
12423 Otherwise we want
12424 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12425 nop
12426 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12427 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12428 If there is a base register we add it to $at before the
12429 lwc1 instructions. If there is a constant we include it
12430 in the lwc1 instructions. */
12431 used_at = 1;
12432 expr1.X_add_number = offset_expr.X_add_number;
12433 offset_expr.X_add_number = 0;
12434 if (expr1.X_add_number < -0x8000
12435 || expr1.X_add_number >= 0x8000 - 4)
12436 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12437 gpdelay = reg_needs_delay (mips_gp_register);
12438 relax_start (offset_expr.X_add_symbol);
12439 macro_build (&offset_expr, "lui", LUI_FMT,
12440 AT, BFD_RELOC_MIPS_GOT_HI16);
12441 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12442 AT, AT, mips_gp_register);
12443 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12444 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12445 load_delay_nop ();
12446 if (breg != 0)
12447 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12448 /* Itbl support may require additional care here. */
12449 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12450 BFD_RELOC_LO16, AT);
12451 expr1.X_add_number += 4;
12452
12453 /* Set mips_optimize to 2 to avoid inserting an undesired
12454 nop. */
12455 hold_mips_optimize = mips_optimize;
12456 mips_optimize = 2;
12457 /* Itbl support may require additional care here. */
12458 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12459 BFD_RELOC_LO16, AT);
12460 mips_optimize = hold_mips_optimize;
12461 expr1.X_add_number -= 4;
12462
12463 relax_switch ();
12464 offset_expr.X_add_number = expr1.X_add_number;
12465 if (gpdelay)
12466 macro_build (NULL, "nop", "");
12467 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12468 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12469 load_delay_nop ();
12470 if (breg != 0)
12471 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12472 /* Itbl support may require additional care here. */
12473 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12474 BFD_RELOC_LO16, AT);
12475 offset_expr.X_add_number += 4;
12476
12477 /* Set mips_optimize to 2 to avoid inserting an undesired
12478 nop. */
12479 hold_mips_optimize = mips_optimize;
12480 mips_optimize = 2;
12481 /* Itbl support may require additional care here. */
12482 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12483 BFD_RELOC_LO16, AT);
12484 mips_optimize = hold_mips_optimize;
12485 relax_end ();
12486 }
12487 else
12488 abort ();
12489
12490 break;
12491
12492 case M_SAA_AB:
12493 s = "saa";
12494 goto saa_saad;
12495 case M_SAAD_AB:
12496 s = "saad";
12497 saa_saad:
12498 gas_assert (!mips_opts.micromips);
12499 offbits = 0;
12500 fmt = "t,(b)";
12501 goto ld_st;
12502
12503 /* New code added to support COPZ instructions.
12504 This code builds table entries out of the macros in mip_opcodes.
12505 R4000 uses interlocks to handle coproc delays.
12506 Other chips (like the R3000) require nops to be inserted for delays.
12507
12508 FIXME: Currently, we require that the user handle delays.
12509 In order to fill delay slots for non-interlocked chips,
12510 we must have a way to specify delays based on the coprocessor.
12511 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12512 What are the side-effects of the cop instruction?
12513 What cache support might we have and what are its effects?
12514 Both coprocessor & memory require delays. how long???
12515 What registers are read/set/modified?
12516
12517 If an itbl is provided to interpret cop instructions,
12518 this knowledge can be encoded in the itbl spec. */
12519
12520 case M_COP0:
12521 s = "c0";
12522 goto copz;
12523 case M_COP1:
12524 s = "c1";
12525 goto copz;
12526 case M_COP2:
12527 s = "c2";
12528 goto copz;
12529 case M_COP3:
12530 s = "c3";
12531 copz:
12532 gas_assert (!mips_opts.micromips);
12533 /* For now we just do C (same as Cz). The parameter will be
12534 stored in insn_opcode by mips_ip. */
12535 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12536 break;
12537
12538 case M_MOVE:
12539 move_register (op[0], op[1]);
12540 break;
12541
12542 case M_MOVEP:
12543 gas_assert (mips_opts.micromips);
12544 gas_assert (mips_opts.insn32);
12545 move_register (micromips_to_32_reg_h_map1[op[0]],
12546 micromips_to_32_reg_m_map[op[1]]);
12547 move_register (micromips_to_32_reg_h_map2[op[0]],
12548 micromips_to_32_reg_n_map[op[2]]);
12549 break;
12550
12551 case M_DMUL:
12552 dbl = 1;
12553 case M_MUL:
12554 if (mips_opts.arch == CPU_R5900)
12555 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12556 op[2]);
12557 else
12558 {
12559 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12560 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12561 }
12562 break;
12563
12564 case M_DMUL_I:
12565 dbl = 1;
12566 case M_MUL_I:
12567 /* The MIPS assembler some times generates shifts and adds. I'm
12568 not trying to be that fancy. GCC should do this for us
12569 anyway. */
12570 used_at = 1;
12571 load_register (AT, &imm_expr, dbl);
12572 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12573 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12574 break;
12575
12576 case M_DMULO_I:
12577 dbl = 1;
12578 case M_MULO_I:
12579 imm = 1;
12580 goto do_mulo;
12581
12582 case M_DMULO:
12583 dbl = 1;
12584 case M_MULO:
12585 do_mulo:
12586 start_noreorder ();
12587 used_at = 1;
12588 if (imm)
12589 load_register (AT, &imm_expr, dbl);
12590 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12591 op[1], imm ? AT : op[2]);
12592 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12593 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12594 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12595 if (mips_trap)
12596 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12597 else
12598 {
12599 if (mips_opts.micromips)
12600 micromips_label_expr (&label_expr);
12601 else
12602 label_expr.X_add_number = 8;
12603 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12604 macro_build (NULL, "nop", "");
12605 macro_build (NULL, "break", BRK_FMT, 6);
12606 if (mips_opts.micromips)
12607 micromips_add_label ();
12608 }
12609 end_noreorder ();
12610 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12611 break;
12612
12613 case M_DMULOU_I:
12614 dbl = 1;
12615 case M_MULOU_I:
12616 imm = 1;
12617 goto do_mulou;
12618
12619 case M_DMULOU:
12620 dbl = 1;
12621 case M_MULOU:
12622 do_mulou:
12623 start_noreorder ();
12624 used_at = 1;
12625 if (imm)
12626 load_register (AT, &imm_expr, dbl);
12627 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12628 op[1], imm ? AT : op[2]);
12629 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12630 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12631 if (mips_trap)
12632 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12633 else
12634 {
12635 if (mips_opts.micromips)
12636 micromips_label_expr (&label_expr);
12637 else
12638 label_expr.X_add_number = 8;
12639 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12640 macro_build (NULL, "nop", "");
12641 macro_build (NULL, "break", BRK_FMT, 6);
12642 if (mips_opts.micromips)
12643 micromips_add_label ();
12644 }
12645 end_noreorder ();
12646 break;
12647
12648 case M_DROL:
12649 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12650 {
12651 if (op[0] == op[1])
12652 {
12653 tempreg = AT;
12654 used_at = 1;
12655 }
12656 else
12657 tempreg = op[0];
12658 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12659 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12660 break;
12661 }
12662 used_at = 1;
12663 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12664 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12665 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12666 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12667 break;
12668
12669 case M_ROL:
12670 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12671 {
12672 if (op[0] == op[1])
12673 {
12674 tempreg = AT;
12675 used_at = 1;
12676 }
12677 else
12678 tempreg = op[0];
12679 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12680 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12681 break;
12682 }
12683 used_at = 1;
12684 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12685 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12686 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12687 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12688 break;
12689
12690 case M_DROL_I:
12691 {
12692 unsigned int rot;
12693 char *l;
12694 char *rr;
12695
12696 rot = imm_expr.X_add_number & 0x3f;
12697 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12698 {
12699 rot = (64 - rot) & 0x3f;
12700 if (rot >= 32)
12701 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12702 else
12703 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12704 break;
12705 }
12706 if (rot == 0)
12707 {
12708 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12709 break;
12710 }
12711 l = (rot < 0x20) ? "dsll" : "dsll32";
12712 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12713 rot &= 0x1f;
12714 used_at = 1;
12715 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12716 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12717 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12718 }
12719 break;
12720
12721 case M_ROL_I:
12722 {
12723 unsigned int rot;
12724
12725 rot = imm_expr.X_add_number & 0x1f;
12726 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12727 {
12728 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12729 (32 - rot) & 0x1f);
12730 break;
12731 }
12732 if (rot == 0)
12733 {
12734 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12735 break;
12736 }
12737 used_at = 1;
12738 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12739 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12740 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12741 }
12742 break;
12743
12744 case M_DROR:
12745 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12746 {
12747 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12748 break;
12749 }
12750 used_at = 1;
12751 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12752 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12753 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12754 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12755 break;
12756
12757 case M_ROR:
12758 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12759 {
12760 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12761 break;
12762 }
12763 used_at = 1;
12764 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12765 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12766 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12767 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12768 break;
12769
12770 case M_DROR_I:
12771 {
12772 unsigned int rot;
12773 char *l;
12774 char *rr;
12775
12776 rot = imm_expr.X_add_number & 0x3f;
12777 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12778 {
12779 if (rot >= 32)
12780 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12781 else
12782 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12783 break;
12784 }
12785 if (rot == 0)
12786 {
12787 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12788 break;
12789 }
12790 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12791 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12792 rot &= 0x1f;
12793 used_at = 1;
12794 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12795 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12796 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12797 }
12798 break;
12799
12800 case M_ROR_I:
12801 {
12802 unsigned int rot;
12803
12804 rot = imm_expr.X_add_number & 0x1f;
12805 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12806 {
12807 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12808 break;
12809 }
12810 if (rot == 0)
12811 {
12812 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12813 break;
12814 }
12815 used_at = 1;
12816 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12817 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12818 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12819 }
12820 break;
12821
12822 case M_SEQ:
12823 if (op[1] == 0)
12824 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12825 else if (op[2] == 0)
12826 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12827 else
12828 {
12829 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12830 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12831 }
12832 break;
12833
12834 case M_SEQ_I:
12835 if (imm_expr.X_add_number == 0)
12836 {
12837 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12838 break;
12839 }
12840 if (op[1] == 0)
12841 {
12842 as_warn (_("instruction %s: result is always false"),
12843 ip->insn_mo->name);
12844 move_register (op[0], 0);
12845 break;
12846 }
12847 if (CPU_HAS_SEQ (mips_opts.arch)
12848 && -512 <= imm_expr.X_add_number
12849 && imm_expr.X_add_number < 512)
12850 {
12851 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12852 (int) imm_expr.X_add_number);
12853 break;
12854 }
12855 if (imm_expr.X_add_number >= 0
12856 && imm_expr.X_add_number < 0x10000)
12857 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12858 else if (imm_expr.X_add_number > -0x8000
12859 && imm_expr.X_add_number < 0)
12860 {
12861 imm_expr.X_add_number = -imm_expr.X_add_number;
12862 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12863 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12864 }
12865 else if (CPU_HAS_SEQ (mips_opts.arch))
12866 {
12867 used_at = 1;
12868 load_register (AT, &imm_expr, GPR_SIZE == 64);
12869 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12870 break;
12871 }
12872 else
12873 {
12874 load_register (AT, &imm_expr, GPR_SIZE == 64);
12875 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12876 used_at = 1;
12877 }
12878 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12879 break;
12880
12881 case M_SGE: /* X >= Y <==> not (X < Y) */
12882 s = "slt";
12883 goto sge;
12884 case M_SGEU:
12885 s = "sltu";
12886 sge:
12887 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12888 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12889 break;
12890
12891 case M_SGE_I: /* X >= I <==> not (X < I) */
12892 case M_SGEU_I:
12893 if (imm_expr.X_add_number >= -0x8000
12894 && imm_expr.X_add_number < 0x8000)
12895 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12896 op[0], op[1], BFD_RELOC_LO16);
12897 else
12898 {
12899 load_register (AT, &imm_expr, GPR_SIZE == 64);
12900 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12901 op[0], op[1], AT);
12902 used_at = 1;
12903 }
12904 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12905 break;
12906
12907 case M_SGT: /* X > Y <==> Y < X */
12908 s = "slt";
12909 goto sgt;
12910 case M_SGTU:
12911 s = "sltu";
12912 sgt:
12913 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12914 break;
12915
12916 case M_SGT_I: /* X > I <==> I < X */
12917 s = "slt";
12918 goto sgti;
12919 case M_SGTU_I:
12920 s = "sltu";
12921 sgti:
12922 used_at = 1;
12923 load_register (AT, &imm_expr, GPR_SIZE == 64);
12924 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12925 break;
12926
12927 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12928 s = "slt";
12929 goto sle;
12930 case M_SLEU:
12931 s = "sltu";
12932 sle:
12933 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12934 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12935 break;
12936
12937 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12938 s = "slt";
12939 goto slei;
12940 case M_SLEU_I:
12941 s = "sltu";
12942 slei:
12943 used_at = 1;
12944 load_register (AT, &imm_expr, GPR_SIZE == 64);
12945 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12946 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12947 break;
12948
12949 case M_SLT_I:
12950 if (imm_expr.X_add_number >= -0x8000
12951 && imm_expr.X_add_number < 0x8000)
12952 {
12953 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12954 BFD_RELOC_LO16);
12955 break;
12956 }
12957 used_at = 1;
12958 load_register (AT, &imm_expr, GPR_SIZE == 64);
12959 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12960 break;
12961
12962 case M_SLTU_I:
12963 if (imm_expr.X_add_number >= -0x8000
12964 && imm_expr.X_add_number < 0x8000)
12965 {
12966 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12967 BFD_RELOC_LO16);
12968 break;
12969 }
12970 used_at = 1;
12971 load_register (AT, &imm_expr, GPR_SIZE == 64);
12972 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12973 break;
12974
12975 case M_SNE:
12976 if (op[1] == 0)
12977 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12978 else if (op[2] == 0)
12979 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12980 else
12981 {
12982 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12983 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12984 }
12985 break;
12986
12987 case M_SNE_I:
12988 if (imm_expr.X_add_number == 0)
12989 {
12990 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12991 break;
12992 }
12993 if (op[1] == 0)
12994 {
12995 as_warn (_("instruction %s: result is always true"),
12996 ip->insn_mo->name);
12997 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
12998 op[0], 0, BFD_RELOC_LO16);
12999 break;
13000 }
13001 if (CPU_HAS_SEQ (mips_opts.arch)
13002 && -512 <= imm_expr.X_add_number
13003 && imm_expr.X_add_number < 512)
13004 {
13005 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13006 (int) imm_expr.X_add_number);
13007 break;
13008 }
13009 if (imm_expr.X_add_number >= 0
13010 && imm_expr.X_add_number < 0x10000)
13011 {
13012 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13013 BFD_RELOC_LO16);
13014 }
13015 else if (imm_expr.X_add_number > -0x8000
13016 && imm_expr.X_add_number < 0)
13017 {
13018 imm_expr.X_add_number = -imm_expr.X_add_number;
13019 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13020 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13021 }
13022 else if (CPU_HAS_SEQ (mips_opts.arch))
13023 {
13024 used_at = 1;
13025 load_register (AT, &imm_expr, GPR_SIZE == 64);
13026 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13027 break;
13028 }
13029 else
13030 {
13031 load_register (AT, &imm_expr, GPR_SIZE == 64);
13032 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13033 used_at = 1;
13034 }
13035 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13036 break;
13037
13038 case M_SUB_I:
13039 s = "addi";
13040 s2 = "sub";
13041 goto do_subi;
13042 case M_SUBU_I:
13043 s = "addiu";
13044 s2 = "subu";
13045 goto do_subi;
13046 case M_DSUB_I:
13047 dbl = 1;
13048 s = "daddi";
13049 s2 = "dsub";
13050 if (!mips_opts.micromips)
13051 goto do_subi;
13052 if (imm_expr.X_add_number > -0x200
13053 && imm_expr.X_add_number <= 0x200)
13054 {
13055 macro_build (NULL, s, "t,r,.", op[0], op[1],
13056 (int) -imm_expr.X_add_number);
13057 break;
13058 }
13059 goto do_subi_i;
13060 case M_DSUBU_I:
13061 dbl = 1;
13062 s = "daddiu";
13063 s2 = "dsubu";
13064 do_subi:
13065 if (imm_expr.X_add_number > -0x8000
13066 && imm_expr.X_add_number <= 0x8000)
13067 {
13068 imm_expr.X_add_number = -imm_expr.X_add_number;
13069 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13070 break;
13071 }
13072 do_subi_i:
13073 used_at = 1;
13074 load_register (AT, &imm_expr, dbl);
13075 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13076 break;
13077
13078 case M_TEQ_I:
13079 s = "teq";
13080 goto trap;
13081 case M_TGE_I:
13082 s = "tge";
13083 goto trap;
13084 case M_TGEU_I:
13085 s = "tgeu";
13086 goto trap;
13087 case M_TLT_I:
13088 s = "tlt";
13089 goto trap;
13090 case M_TLTU_I:
13091 s = "tltu";
13092 goto trap;
13093 case M_TNE_I:
13094 s = "tne";
13095 trap:
13096 used_at = 1;
13097 load_register (AT, &imm_expr, GPR_SIZE == 64);
13098 macro_build (NULL, s, "s,t", op[0], AT);
13099 break;
13100
13101 case M_TRUNCWS:
13102 case M_TRUNCWD:
13103 gas_assert (!mips_opts.micromips);
13104 gas_assert (mips_opts.isa == ISA_MIPS1);
13105 used_at = 1;
13106
13107 /*
13108 * Is the double cfc1 instruction a bug in the mips assembler;
13109 * or is there a reason for it?
13110 */
13111 start_noreorder ();
13112 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13113 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13114 macro_build (NULL, "nop", "");
13115 expr1.X_add_number = 3;
13116 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13117 expr1.X_add_number = 2;
13118 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13119 macro_build (NULL, "ctc1", "t,G", AT, RA);
13120 macro_build (NULL, "nop", "");
13121 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13122 op[0], op[1]);
13123 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13124 macro_build (NULL, "nop", "");
13125 end_noreorder ();
13126 break;
13127
13128 case M_ULH_AB:
13129 s = "lb";
13130 s2 = "lbu";
13131 off = 1;
13132 goto uld_st;
13133 case M_ULHU_AB:
13134 s = "lbu";
13135 s2 = "lbu";
13136 off = 1;
13137 goto uld_st;
13138 case M_ULW_AB:
13139 s = "lwl";
13140 s2 = "lwr";
13141 offbits = (mips_opts.micromips ? 12 : 16);
13142 off = 3;
13143 goto uld_st;
13144 case M_ULD_AB:
13145 s = "ldl";
13146 s2 = "ldr";
13147 offbits = (mips_opts.micromips ? 12 : 16);
13148 off = 7;
13149 goto uld_st;
13150 case M_USH_AB:
13151 s = "sb";
13152 s2 = "sb";
13153 off = 1;
13154 ust = 1;
13155 goto uld_st;
13156 case M_USW_AB:
13157 s = "swl";
13158 s2 = "swr";
13159 offbits = (mips_opts.micromips ? 12 : 16);
13160 off = 3;
13161 ust = 1;
13162 goto uld_st;
13163 case M_USD_AB:
13164 s = "sdl";
13165 s2 = "sdr";
13166 offbits = (mips_opts.micromips ? 12 : 16);
13167 off = 7;
13168 ust = 1;
13169
13170 uld_st:
13171 breg = op[2];
13172 large_offset = !small_offset_p (off, align, offbits);
13173 ep = &offset_expr;
13174 expr1.X_add_number = 0;
13175 if (large_offset)
13176 {
13177 used_at = 1;
13178 tempreg = AT;
13179 if (small_offset_p (0, align, 16))
13180 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13181 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13182 else
13183 {
13184 load_address (tempreg, ep, &used_at);
13185 if (breg != 0)
13186 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13187 tempreg, tempreg, breg);
13188 }
13189 offset_reloc[0] = BFD_RELOC_LO16;
13190 offset_reloc[1] = BFD_RELOC_UNUSED;
13191 offset_reloc[2] = BFD_RELOC_UNUSED;
13192 breg = tempreg;
13193 tempreg = op[0];
13194 ep = &expr1;
13195 }
13196 else if (!ust && op[0] == breg)
13197 {
13198 used_at = 1;
13199 tempreg = AT;
13200 }
13201 else
13202 tempreg = op[0];
13203
13204 if (off == 1)
13205 goto ulh_sh;
13206
13207 if (!target_big_endian)
13208 ep->X_add_number += off;
13209 if (offbits == 12)
13210 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13211 else
13212 macro_build (ep, s, "t,o(b)", tempreg, -1,
13213 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13214
13215 if (!target_big_endian)
13216 ep->X_add_number -= off;
13217 else
13218 ep->X_add_number += off;
13219 if (offbits == 12)
13220 macro_build (NULL, s2, "t,~(b)",
13221 tempreg, (int) ep->X_add_number, breg);
13222 else
13223 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13224 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13225
13226 /* If necessary, move the result in tempreg to the final destination. */
13227 if (!ust && op[0] != tempreg)
13228 {
13229 /* Protect second load's delay slot. */
13230 load_delay_nop ();
13231 move_register (op[0], tempreg);
13232 }
13233 break;
13234
13235 ulh_sh:
13236 used_at = 1;
13237 if (target_big_endian == ust)
13238 ep->X_add_number += off;
13239 tempreg = ust || large_offset ? op[0] : AT;
13240 macro_build (ep, s, "t,o(b)", tempreg, -1,
13241 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13242
13243 /* For halfword transfers we need a temporary register to shuffle
13244 bytes. Unfortunately for M_USH_A we have none available before
13245 the next store as AT holds the base address. We deal with this
13246 case by clobbering TREG and then restoring it as with ULH. */
13247 tempreg = ust == large_offset ? op[0] : AT;
13248 if (ust)
13249 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13250
13251 if (target_big_endian == ust)
13252 ep->X_add_number -= off;
13253 else
13254 ep->X_add_number += off;
13255 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13256 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13257
13258 /* For M_USH_A re-retrieve the LSB. */
13259 if (ust && large_offset)
13260 {
13261 if (target_big_endian)
13262 ep->X_add_number += off;
13263 else
13264 ep->X_add_number -= off;
13265 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13266 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13267 }
13268 /* For ULH and M_USH_A OR the LSB in. */
13269 if (!ust || large_offset)
13270 {
13271 tempreg = !large_offset ? AT : op[0];
13272 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13273 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13274 }
13275 break;
13276
13277 default:
13278 /* FIXME: Check if this is one of the itbl macros, since they
13279 are added dynamically. */
13280 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13281 break;
13282 }
13283 if (!mips_opts.at && used_at)
13284 as_bad (_("macro used $at after \".set noat\""));
13285 }
13286
13287 /* Implement macros in mips16 mode. */
13288
13289 static void
13290 mips16_macro (struct mips_cl_insn *ip)
13291 {
13292 const struct mips_operand_array *operands;
13293 int mask;
13294 int tmp;
13295 expressionS expr1;
13296 int dbl;
13297 const char *s, *s2, *s3;
13298 unsigned int op[MAX_OPERANDS];
13299 unsigned int i;
13300
13301 mask = ip->insn_mo->mask;
13302
13303 operands = insn_operands (ip);
13304 for (i = 0; i < MAX_OPERANDS; i++)
13305 if (operands->operand[i])
13306 op[i] = insn_extract_operand (ip, operands->operand[i]);
13307 else
13308 op[i] = -1;
13309
13310 expr1.X_op = O_constant;
13311 expr1.X_op_symbol = NULL;
13312 expr1.X_add_symbol = NULL;
13313 expr1.X_add_number = 1;
13314
13315 dbl = 0;
13316
13317 switch (mask)
13318 {
13319 default:
13320 abort ();
13321
13322 case M_DDIV_3:
13323 dbl = 1;
13324 case M_DIV_3:
13325 s = "mflo";
13326 goto do_div3;
13327 case M_DREM_3:
13328 dbl = 1;
13329 case M_REM_3:
13330 s = "mfhi";
13331 do_div3:
13332 start_noreorder ();
13333 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13334 expr1.X_add_number = 2;
13335 macro_build (&expr1, "bnez", "x,p", op[2]);
13336 macro_build (NULL, "break", "6", 7);
13337
13338 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13339 since that causes an overflow. We should do that as well,
13340 but I don't see how to do the comparisons without a temporary
13341 register. */
13342 end_noreorder ();
13343 macro_build (NULL, s, "x", op[0]);
13344 break;
13345
13346 case M_DIVU_3:
13347 s = "divu";
13348 s2 = "mflo";
13349 goto do_divu3;
13350 case M_REMU_3:
13351 s = "divu";
13352 s2 = "mfhi";
13353 goto do_divu3;
13354 case M_DDIVU_3:
13355 s = "ddivu";
13356 s2 = "mflo";
13357 goto do_divu3;
13358 case M_DREMU_3:
13359 s = "ddivu";
13360 s2 = "mfhi";
13361 do_divu3:
13362 start_noreorder ();
13363 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13364 expr1.X_add_number = 2;
13365 macro_build (&expr1, "bnez", "x,p", op[2]);
13366 macro_build (NULL, "break", "6", 7);
13367 end_noreorder ();
13368 macro_build (NULL, s2, "x", op[0]);
13369 break;
13370
13371 case M_DMUL:
13372 dbl = 1;
13373 case M_MUL:
13374 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13375 macro_build (NULL, "mflo", "x", op[0]);
13376 break;
13377
13378 case M_DSUBU_I:
13379 dbl = 1;
13380 goto do_subu;
13381 case M_SUBU_I:
13382 do_subu:
13383 imm_expr.X_add_number = -imm_expr.X_add_number;
13384 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13385 break;
13386
13387 case M_SUBU_I_2:
13388 imm_expr.X_add_number = -imm_expr.X_add_number;
13389 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13390 break;
13391
13392 case M_DSUBU_I_2:
13393 imm_expr.X_add_number = -imm_expr.X_add_number;
13394 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13395 break;
13396
13397 case M_BEQ:
13398 s = "cmp";
13399 s2 = "bteqz";
13400 goto do_branch;
13401 case M_BNE:
13402 s = "cmp";
13403 s2 = "btnez";
13404 goto do_branch;
13405 case M_BLT:
13406 s = "slt";
13407 s2 = "btnez";
13408 goto do_branch;
13409 case M_BLTU:
13410 s = "sltu";
13411 s2 = "btnez";
13412 goto do_branch;
13413 case M_BLE:
13414 s = "slt";
13415 s2 = "bteqz";
13416 goto do_reverse_branch;
13417 case M_BLEU:
13418 s = "sltu";
13419 s2 = "bteqz";
13420 goto do_reverse_branch;
13421 case M_BGE:
13422 s = "slt";
13423 s2 = "bteqz";
13424 goto do_branch;
13425 case M_BGEU:
13426 s = "sltu";
13427 s2 = "bteqz";
13428 goto do_branch;
13429 case M_BGT:
13430 s = "slt";
13431 s2 = "btnez";
13432 goto do_reverse_branch;
13433 case M_BGTU:
13434 s = "sltu";
13435 s2 = "btnez";
13436
13437 do_reverse_branch:
13438 tmp = op[1];
13439 op[1] = op[0];
13440 op[0] = tmp;
13441
13442 do_branch:
13443 macro_build (NULL, s, "x,y", op[0], op[1]);
13444 macro_build (&offset_expr, s2, "p");
13445 break;
13446
13447 case M_BEQ_I:
13448 s = "cmpi";
13449 s2 = "bteqz";
13450 s3 = "x,U";
13451 goto do_branch_i;
13452 case M_BNE_I:
13453 s = "cmpi";
13454 s2 = "btnez";
13455 s3 = "x,U";
13456 goto do_branch_i;
13457 case M_BLT_I:
13458 s = "slti";
13459 s2 = "btnez";
13460 s3 = "x,8";
13461 goto do_branch_i;
13462 case M_BLTU_I:
13463 s = "sltiu";
13464 s2 = "btnez";
13465 s3 = "x,8";
13466 goto do_branch_i;
13467 case M_BLE_I:
13468 s = "slti";
13469 s2 = "btnez";
13470 s3 = "x,8";
13471 goto do_addone_branch_i;
13472 case M_BLEU_I:
13473 s = "sltiu";
13474 s2 = "btnez";
13475 s3 = "x,8";
13476 goto do_addone_branch_i;
13477 case M_BGE_I:
13478 s = "slti";
13479 s2 = "bteqz";
13480 s3 = "x,8";
13481 goto do_branch_i;
13482 case M_BGEU_I:
13483 s = "sltiu";
13484 s2 = "bteqz";
13485 s3 = "x,8";
13486 goto do_branch_i;
13487 case M_BGT_I:
13488 s = "slti";
13489 s2 = "bteqz";
13490 s3 = "x,8";
13491 goto do_addone_branch_i;
13492 case M_BGTU_I:
13493 s = "sltiu";
13494 s2 = "bteqz";
13495 s3 = "x,8";
13496
13497 do_addone_branch_i:
13498 ++imm_expr.X_add_number;
13499
13500 do_branch_i:
13501 macro_build (&imm_expr, s, s3, op[0]);
13502 macro_build (&offset_expr, s2, "p");
13503 break;
13504
13505 case M_ABS:
13506 expr1.X_add_number = 0;
13507 macro_build (&expr1, "slti", "x,8", op[1]);
13508 if (op[0] != op[1])
13509 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13510 expr1.X_add_number = 2;
13511 macro_build (&expr1, "bteqz", "p");
13512 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13513 break;
13514 }
13515 }
13516
13517 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13518 opcode bits in *OPCODE_EXTRA. */
13519
13520 static struct mips_opcode *
13521 mips_lookup_insn (struct hash_control *hash, const char *start,
13522 ssize_t length, unsigned int *opcode_extra)
13523 {
13524 char *name, *dot, *p;
13525 unsigned int mask, suffix;
13526 ssize_t opend;
13527 struct mips_opcode *insn;
13528
13529 /* Make a copy of the instruction so that we can fiddle with it. */
13530 name = alloca (length + 1);
13531 memcpy (name, start, length);
13532 name[length] = '\0';
13533
13534 /* Look up the instruction as-is. */
13535 insn = (struct mips_opcode *) hash_find (hash, name);
13536 if (insn)
13537 return insn;
13538
13539 dot = strchr (name, '.');
13540 if (dot && dot[1])
13541 {
13542 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13543 p = mips_parse_vu0_channels (dot + 1, &mask);
13544 if (*p == 0 && mask != 0)
13545 {
13546 *dot = 0;
13547 insn = (struct mips_opcode *) hash_find (hash, name);
13548 *dot = '.';
13549 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13550 {
13551 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13552 return insn;
13553 }
13554 }
13555 }
13556
13557 if (mips_opts.micromips)
13558 {
13559 /* See if there's an instruction size override suffix,
13560 either `16' or `32', at the end of the mnemonic proper,
13561 that defines the operation, i.e. before the first `.'
13562 character if any. Strip it and retry. */
13563 opend = dot != NULL ? dot - name : length;
13564 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13565 suffix = 2;
13566 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13567 suffix = 4;
13568 else
13569 suffix = 0;
13570 if (suffix)
13571 {
13572 memcpy (name + opend - 2, name + opend, length - opend + 1);
13573 insn = (struct mips_opcode *) hash_find (hash, name);
13574 if (insn)
13575 {
13576 forced_insn_length = suffix;
13577 return insn;
13578 }
13579 }
13580 }
13581
13582 return NULL;
13583 }
13584
13585 /* Assemble an instruction into its binary format. If the instruction
13586 is a macro, set imm_expr and offset_expr to the values associated
13587 with "I" and "A" operands respectively. Otherwise store the value
13588 of the relocatable field (if any) in offset_expr. In both cases
13589 set offset_reloc to the relocation operators applied to offset_expr. */
13590
13591 static void
13592 mips_ip (char *str, struct mips_cl_insn *insn)
13593 {
13594 const struct mips_opcode *first, *past;
13595 struct hash_control *hash;
13596 char format;
13597 size_t end;
13598 struct mips_operand_token *tokens;
13599 unsigned int opcode_extra;
13600
13601 if (mips_opts.micromips)
13602 {
13603 hash = micromips_op_hash;
13604 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13605 }
13606 else
13607 {
13608 hash = op_hash;
13609 past = &mips_opcodes[NUMOPCODES];
13610 }
13611 forced_insn_length = 0;
13612 opcode_extra = 0;
13613
13614 /* We first try to match an instruction up to a space or to the end. */
13615 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13616 continue;
13617
13618 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13619 if (first == NULL)
13620 {
13621 set_insn_error (0, _("unrecognized opcode"));
13622 return;
13623 }
13624
13625 if (strcmp (first->name, "li.s") == 0)
13626 format = 'f';
13627 else if (strcmp (first->name, "li.d") == 0)
13628 format = 'd';
13629 else
13630 format = 0;
13631 tokens = mips_parse_arguments (str + end, format);
13632 if (!tokens)
13633 return;
13634
13635 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13636 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13637 set_insn_error (0, _("invalid operands"));
13638
13639 obstack_free (&mips_operand_tokens, tokens);
13640 }
13641
13642 /* As for mips_ip, but used when assembling MIPS16 code.
13643 Also set forced_insn_length to the resulting instruction size in
13644 bytes if the user explicitly requested a small or extended instruction. */
13645
13646 static void
13647 mips16_ip (char *str, struct mips_cl_insn *insn)
13648 {
13649 char *end, *s, c;
13650 struct mips_opcode *first;
13651 struct mips_operand_token *tokens;
13652
13653 forced_insn_length = 0;
13654
13655 for (s = str; ISLOWER (*s); ++s)
13656 ;
13657 end = s;
13658 c = *end;
13659 switch (c)
13660 {
13661 case '\0':
13662 break;
13663
13664 case ' ':
13665 s++;
13666 break;
13667
13668 case '.':
13669 if (s[1] == 't' && s[2] == ' ')
13670 {
13671 forced_insn_length = 2;
13672 s += 3;
13673 break;
13674 }
13675 else if (s[1] == 'e' && s[2] == ' ')
13676 {
13677 forced_insn_length = 4;
13678 s += 3;
13679 break;
13680 }
13681 /* Fall through. */
13682 default:
13683 set_insn_error (0, _("unrecognized opcode"));
13684 return;
13685 }
13686
13687 if (mips_opts.noautoextend && !forced_insn_length)
13688 forced_insn_length = 2;
13689
13690 *end = 0;
13691 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13692 *end = c;
13693
13694 if (!first)
13695 {
13696 set_insn_error (0, _("unrecognized opcode"));
13697 return;
13698 }
13699
13700 tokens = mips_parse_arguments (s, 0);
13701 if (!tokens)
13702 return;
13703
13704 if (!match_mips16_insns (insn, first, tokens))
13705 set_insn_error (0, _("invalid operands"));
13706
13707 obstack_free (&mips_operand_tokens, tokens);
13708 }
13709
13710 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13711 NBITS is the number of significant bits in VAL. */
13712
13713 static unsigned long
13714 mips16_immed_extend (offsetT val, unsigned int nbits)
13715 {
13716 int extval;
13717 if (nbits == 16)
13718 {
13719 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13720 val &= 0x1f;
13721 }
13722 else if (nbits == 15)
13723 {
13724 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13725 val &= 0xf;
13726 }
13727 else
13728 {
13729 extval = ((val & 0x1f) << 6) | (val & 0x20);
13730 val = 0;
13731 }
13732 return (extval << 16) | val;
13733 }
13734
13735 /* Like decode_mips16_operand, but require the operand to be defined and
13736 require it to be an integer. */
13737
13738 static const struct mips_int_operand *
13739 mips16_immed_operand (int type, bfd_boolean extended_p)
13740 {
13741 const struct mips_operand *operand;
13742
13743 operand = decode_mips16_operand (type, extended_p);
13744 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13745 abort ();
13746 return (const struct mips_int_operand *) operand;
13747 }
13748
13749 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13750
13751 static bfd_boolean
13752 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13753 bfd_reloc_code_real_type reloc, offsetT sval)
13754 {
13755 int min_val, max_val;
13756
13757 min_val = mips_int_operand_min (operand);
13758 max_val = mips_int_operand_max (operand);
13759 if (reloc != BFD_RELOC_UNUSED)
13760 {
13761 if (min_val < 0)
13762 sval = SEXT_16BIT (sval);
13763 else
13764 sval &= 0xffff;
13765 }
13766
13767 return (sval >= min_val
13768 && sval <= max_val
13769 && (sval & ((1 << operand->shift) - 1)) == 0);
13770 }
13771
13772 /* Install immediate value VAL into MIPS16 instruction *INSN,
13773 extending it if necessary. The instruction in *INSN may
13774 already be extended.
13775
13776 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13777 if none. In the former case, VAL is a 16-bit number with no
13778 defined signedness.
13779
13780 TYPE is the type of the immediate field. USER_INSN_LENGTH
13781 is the length that the user requested, or 0 if none. */
13782
13783 static void
13784 mips16_immed (char *file, unsigned int line, int type,
13785 bfd_reloc_code_real_type reloc, offsetT val,
13786 unsigned int user_insn_length, unsigned long *insn)
13787 {
13788 const struct mips_int_operand *operand;
13789 unsigned int uval, length;
13790
13791 operand = mips16_immed_operand (type, FALSE);
13792 if (!mips16_immed_in_range_p (operand, reloc, val))
13793 {
13794 /* We need an extended instruction. */
13795 if (user_insn_length == 2)
13796 as_bad_where (file, line, _("invalid unextended operand value"));
13797 else
13798 *insn |= MIPS16_EXTEND;
13799 }
13800 else if (user_insn_length == 4)
13801 {
13802 /* The operand doesn't force an unextended instruction to be extended.
13803 Warn if the user wanted an extended instruction anyway. */
13804 *insn |= MIPS16_EXTEND;
13805 as_warn_where (file, line,
13806 _("extended operand requested but not required"));
13807 }
13808
13809 length = mips16_opcode_length (*insn);
13810 if (length == 4)
13811 {
13812 operand = mips16_immed_operand (type, TRUE);
13813 if (!mips16_immed_in_range_p (operand, reloc, val))
13814 as_bad_where (file, line,
13815 _("operand value out of range for instruction"));
13816 }
13817 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13818 if (length == 2)
13819 *insn = mips_insert_operand (&operand->root, *insn, uval);
13820 else
13821 *insn |= mips16_immed_extend (uval, operand->root.size);
13822 }
13823 \f
13824 struct percent_op_match
13825 {
13826 const char *str;
13827 bfd_reloc_code_real_type reloc;
13828 };
13829
13830 static const struct percent_op_match mips_percent_op[] =
13831 {
13832 {"%lo", BFD_RELOC_LO16},
13833 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13834 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13835 {"%call16", BFD_RELOC_MIPS_CALL16},
13836 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13837 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13838 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13839 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13840 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13841 {"%got", BFD_RELOC_MIPS_GOT16},
13842 {"%gp_rel", BFD_RELOC_GPREL16},
13843 {"%half", BFD_RELOC_16},
13844 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13845 {"%higher", BFD_RELOC_MIPS_HIGHER},
13846 {"%neg", BFD_RELOC_MIPS_SUB},
13847 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13848 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13849 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13850 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13851 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13852 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13853 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13854 {"%hi", BFD_RELOC_HI16_S},
13855 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13856 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13857 };
13858
13859 static const struct percent_op_match mips16_percent_op[] =
13860 {
13861 {"%lo", BFD_RELOC_MIPS16_LO16},
13862 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13863 {"%got", BFD_RELOC_MIPS16_GOT16},
13864 {"%call16", BFD_RELOC_MIPS16_CALL16},
13865 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13866 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13867 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13868 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13869 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13870 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13871 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13872 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13873 };
13874
13875
13876 /* Return true if *STR points to a relocation operator. When returning true,
13877 move *STR over the operator and store its relocation code in *RELOC.
13878 Leave both *STR and *RELOC alone when returning false. */
13879
13880 static bfd_boolean
13881 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13882 {
13883 const struct percent_op_match *percent_op;
13884 size_t limit, i;
13885
13886 if (mips_opts.mips16)
13887 {
13888 percent_op = mips16_percent_op;
13889 limit = ARRAY_SIZE (mips16_percent_op);
13890 }
13891 else
13892 {
13893 percent_op = mips_percent_op;
13894 limit = ARRAY_SIZE (mips_percent_op);
13895 }
13896
13897 for (i = 0; i < limit; i++)
13898 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13899 {
13900 int len = strlen (percent_op[i].str);
13901
13902 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13903 continue;
13904
13905 *str += strlen (percent_op[i].str);
13906 *reloc = percent_op[i].reloc;
13907
13908 /* Check whether the output BFD supports this relocation.
13909 If not, issue an error and fall back on something safe. */
13910 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13911 {
13912 as_bad (_("relocation %s isn't supported by the current ABI"),
13913 percent_op[i].str);
13914 *reloc = BFD_RELOC_UNUSED;
13915 }
13916 return TRUE;
13917 }
13918 return FALSE;
13919 }
13920
13921
13922 /* Parse string STR as a 16-bit relocatable operand. Store the
13923 expression in *EP and the relocations in the array starting
13924 at RELOC. Return the number of relocation operators used.
13925
13926 On exit, EXPR_END points to the first character after the expression. */
13927
13928 static size_t
13929 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13930 char *str)
13931 {
13932 bfd_reloc_code_real_type reversed_reloc[3];
13933 size_t reloc_index, i;
13934 int crux_depth, str_depth;
13935 char *crux;
13936
13937 /* Search for the start of the main expression, recoding relocations
13938 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13939 of the main expression and with CRUX_DEPTH containing the number
13940 of open brackets at that point. */
13941 reloc_index = -1;
13942 str_depth = 0;
13943 do
13944 {
13945 reloc_index++;
13946 crux = str;
13947 crux_depth = str_depth;
13948
13949 /* Skip over whitespace and brackets, keeping count of the number
13950 of brackets. */
13951 while (*str == ' ' || *str == '\t' || *str == '(')
13952 if (*str++ == '(')
13953 str_depth++;
13954 }
13955 while (*str == '%'
13956 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13957 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13958
13959 my_getExpression (ep, crux);
13960 str = expr_end;
13961
13962 /* Match every open bracket. */
13963 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13964 if (*str++ == ')')
13965 crux_depth--;
13966
13967 if (crux_depth > 0)
13968 as_bad (_("unclosed '('"));
13969
13970 expr_end = str;
13971
13972 if (reloc_index != 0)
13973 {
13974 prev_reloc_op_frag = frag_now;
13975 for (i = 0; i < reloc_index; i++)
13976 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13977 }
13978
13979 return reloc_index;
13980 }
13981
13982 static void
13983 my_getExpression (expressionS *ep, char *str)
13984 {
13985 char *save_in;
13986
13987 save_in = input_line_pointer;
13988 input_line_pointer = str;
13989 expression (ep);
13990 expr_end = input_line_pointer;
13991 input_line_pointer = save_in;
13992 }
13993
13994 char *
13995 md_atof (int type, char *litP, int *sizeP)
13996 {
13997 return ieee_md_atof (type, litP, sizeP, target_big_endian);
13998 }
13999
14000 void
14001 md_number_to_chars (char *buf, valueT val, int n)
14002 {
14003 if (target_big_endian)
14004 number_to_chars_bigendian (buf, val, n);
14005 else
14006 number_to_chars_littleendian (buf, val, n);
14007 }
14008 \f
14009 static int support_64bit_objects(void)
14010 {
14011 const char **list, **l;
14012 int yes;
14013
14014 list = bfd_target_list ();
14015 for (l = list; *l != NULL; l++)
14016 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14017 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14018 break;
14019 yes = (*l != NULL);
14020 free (list);
14021 return yes;
14022 }
14023
14024 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14025 NEW_VALUE. Warn if another value was already specified. Note:
14026 we have to defer parsing the -march and -mtune arguments in order
14027 to handle 'from-abi' correctly, since the ABI might be specified
14028 in a later argument. */
14029
14030 static void
14031 mips_set_option_string (const char **string_ptr, const char *new_value)
14032 {
14033 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14034 as_warn (_("a different %s was already specified, is now %s"),
14035 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14036 new_value);
14037
14038 *string_ptr = new_value;
14039 }
14040
14041 int
14042 md_parse_option (int c, char *arg)
14043 {
14044 unsigned int i;
14045
14046 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14047 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14048 {
14049 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14050 c == mips_ases[i].option_on);
14051 return 1;
14052 }
14053
14054 switch (c)
14055 {
14056 case OPTION_CONSTRUCT_FLOATS:
14057 mips_disable_float_construction = 0;
14058 break;
14059
14060 case OPTION_NO_CONSTRUCT_FLOATS:
14061 mips_disable_float_construction = 1;
14062 break;
14063
14064 case OPTION_TRAP:
14065 mips_trap = 1;
14066 break;
14067
14068 case OPTION_BREAK:
14069 mips_trap = 0;
14070 break;
14071
14072 case OPTION_EB:
14073 target_big_endian = 1;
14074 break;
14075
14076 case OPTION_EL:
14077 target_big_endian = 0;
14078 break;
14079
14080 case 'O':
14081 if (arg == NULL)
14082 mips_optimize = 1;
14083 else if (arg[0] == '0')
14084 mips_optimize = 0;
14085 else if (arg[0] == '1')
14086 mips_optimize = 1;
14087 else
14088 mips_optimize = 2;
14089 break;
14090
14091 case 'g':
14092 if (arg == NULL)
14093 mips_debug = 2;
14094 else
14095 mips_debug = atoi (arg);
14096 break;
14097
14098 case OPTION_MIPS1:
14099 file_mips_opts.isa = ISA_MIPS1;
14100 break;
14101
14102 case OPTION_MIPS2:
14103 file_mips_opts.isa = ISA_MIPS2;
14104 break;
14105
14106 case OPTION_MIPS3:
14107 file_mips_opts.isa = ISA_MIPS3;
14108 break;
14109
14110 case OPTION_MIPS4:
14111 file_mips_opts.isa = ISA_MIPS4;
14112 break;
14113
14114 case OPTION_MIPS5:
14115 file_mips_opts.isa = ISA_MIPS5;
14116 break;
14117
14118 case OPTION_MIPS32:
14119 file_mips_opts.isa = ISA_MIPS32;
14120 break;
14121
14122 case OPTION_MIPS32R2:
14123 file_mips_opts.isa = ISA_MIPS32R2;
14124 break;
14125
14126 case OPTION_MIPS32R3:
14127 file_mips_opts.isa = ISA_MIPS32R3;
14128 break;
14129
14130 case OPTION_MIPS32R5:
14131 file_mips_opts.isa = ISA_MIPS32R5;
14132 break;
14133
14134 case OPTION_MIPS32R6:
14135 file_mips_opts.isa = ISA_MIPS32R6;
14136 break;
14137
14138 case OPTION_MIPS64R2:
14139 file_mips_opts.isa = ISA_MIPS64R2;
14140 break;
14141
14142 case OPTION_MIPS64R3:
14143 file_mips_opts.isa = ISA_MIPS64R3;
14144 break;
14145
14146 case OPTION_MIPS64R5:
14147 file_mips_opts.isa = ISA_MIPS64R5;
14148 break;
14149
14150 case OPTION_MIPS64R6:
14151 file_mips_opts.isa = ISA_MIPS64R6;
14152 break;
14153
14154 case OPTION_MIPS64:
14155 file_mips_opts.isa = ISA_MIPS64;
14156 break;
14157
14158 case OPTION_MTUNE:
14159 mips_set_option_string (&mips_tune_string, arg);
14160 break;
14161
14162 case OPTION_MARCH:
14163 mips_set_option_string (&mips_arch_string, arg);
14164 break;
14165
14166 case OPTION_M4650:
14167 mips_set_option_string (&mips_arch_string, "4650");
14168 mips_set_option_string (&mips_tune_string, "4650");
14169 break;
14170
14171 case OPTION_NO_M4650:
14172 break;
14173
14174 case OPTION_M4010:
14175 mips_set_option_string (&mips_arch_string, "4010");
14176 mips_set_option_string (&mips_tune_string, "4010");
14177 break;
14178
14179 case OPTION_NO_M4010:
14180 break;
14181
14182 case OPTION_M4100:
14183 mips_set_option_string (&mips_arch_string, "4100");
14184 mips_set_option_string (&mips_tune_string, "4100");
14185 break;
14186
14187 case OPTION_NO_M4100:
14188 break;
14189
14190 case OPTION_M3900:
14191 mips_set_option_string (&mips_arch_string, "3900");
14192 mips_set_option_string (&mips_tune_string, "3900");
14193 break;
14194
14195 case OPTION_NO_M3900:
14196 break;
14197
14198 case OPTION_MICROMIPS:
14199 if (file_mips_opts.mips16 == 1)
14200 {
14201 as_bad (_("-mmicromips cannot be used with -mips16"));
14202 return 0;
14203 }
14204 file_mips_opts.micromips = 1;
14205 mips_no_prev_insn ();
14206 break;
14207
14208 case OPTION_NO_MICROMIPS:
14209 file_mips_opts.micromips = 0;
14210 mips_no_prev_insn ();
14211 break;
14212
14213 case OPTION_MIPS16:
14214 if (file_mips_opts.micromips == 1)
14215 {
14216 as_bad (_("-mips16 cannot be used with -micromips"));
14217 return 0;
14218 }
14219 file_mips_opts.mips16 = 1;
14220 mips_no_prev_insn ();
14221 break;
14222
14223 case OPTION_NO_MIPS16:
14224 file_mips_opts.mips16 = 0;
14225 mips_no_prev_insn ();
14226 break;
14227
14228 case OPTION_FIX_24K:
14229 mips_fix_24k = 1;
14230 break;
14231
14232 case OPTION_NO_FIX_24K:
14233 mips_fix_24k = 0;
14234 break;
14235
14236 case OPTION_FIX_RM7000:
14237 mips_fix_rm7000 = 1;
14238 break;
14239
14240 case OPTION_NO_FIX_RM7000:
14241 mips_fix_rm7000 = 0;
14242 break;
14243
14244 case OPTION_FIX_LOONGSON2F_JUMP:
14245 mips_fix_loongson2f_jump = TRUE;
14246 break;
14247
14248 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14249 mips_fix_loongson2f_jump = FALSE;
14250 break;
14251
14252 case OPTION_FIX_LOONGSON2F_NOP:
14253 mips_fix_loongson2f_nop = TRUE;
14254 break;
14255
14256 case OPTION_NO_FIX_LOONGSON2F_NOP:
14257 mips_fix_loongson2f_nop = FALSE;
14258 break;
14259
14260 case OPTION_FIX_VR4120:
14261 mips_fix_vr4120 = 1;
14262 break;
14263
14264 case OPTION_NO_FIX_VR4120:
14265 mips_fix_vr4120 = 0;
14266 break;
14267
14268 case OPTION_FIX_VR4130:
14269 mips_fix_vr4130 = 1;
14270 break;
14271
14272 case OPTION_NO_FIX_VR4130:
14273 mips_fix_vr4130 = 0;
14274 break;
14275
14276 case OPTION_FIX_CN63XXP1:
14277 mips_fix_cn63xxp1 = TRUE;
14278 break;
14279
14280 case OPTION_NO_FIX_CN63XXP1:
14281 mips_fix_cn63xxp1 = FALSE;
14282 break;
14283
14284 case OPTION_RELAX_BRANCH:
14285 mips_relax_branch = 1;
14286 break;
14287
14288 case OPTION_NO_RELAX_BRANCH:
14289 mips_relax_branch = 0;
14290 break;
14291
14292 case OPTION_INSN32:
14293 file_mips_opts.insn32 = TRUE;
14294 break;
14295
14296 case OPTION_NO_INSN32:
14297 file_mips_opts.insn32 = FALSE;
14298 break;
14299
14300 case OPTION_MSHARED:
14301 mips_in_shared = TRUE;
14302 break;
14303
14304 case OPTION_MNO_SHARED:
14305 mips_in_shared = FALSE;
14306 break;
14307
14308 case OPTION_MSYM32:
14309 file_mips_opts.sym32 = TRUE;
14310 break;
14311
14312 case OPTION_MNO_SYM32:
14313 file_mips_opts.sym32 = FALSE;
14314 break;
14315
14316 /* When generating ELF code, we permit -KPIC and -call_shared to
14317 select SVR4_PIC, and -non_shared to select no PIC. This is
14318 intended to be compatible with Irix 5. */
14319 case OPTION_CALL_SHARED:
14320 mips_pic = SVR4_PIC;
14321 mips_abicalls = TRUE;
14322 break;
14323
14324 case OPTION_CALL_NONPIC:
14325 mips_pic = NO_PIC;
14326 mips_abicalls = TRUE;
14327 break;
14328
14329 case OPTION_NON_SHARED:
14330 mips_pic = NO_PIC;
14331 mips_abicalls = FALSE;
14332 break;
14333
14334 /* The -xgot option tells the assembler to use 32 bit offsets
14335 when accessing the got in SVR4_PIC mode. It is for Irix
14336 compatibility. */
14337 case OPTION_XGOT:
14338 mips_big_got = 1;
14339 break;
14340
14341 case 'G':
14342 g_switch_value = atoi (arg);
14343 g_switch_seen = 1;
14344 break;
14345
14346 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14347 and -mabi=64. */
14348 case OPTION_32:
14349 mips_abi = O32_ABI;
14350 break;
14351
14352 case OPTION_N32:
14353 mips_abi = N32_ABI;
14354 break;
14355
14356 case OPTION_64:
14357 mips_abi = N64_ABI;
14358 if (!support_64bit_objects())
14359 as_fatal (_("no compiled in support for 64 bit object file format"));
14360 break;
14361
14362 case OPTION_GP32:
14363 file_mips_opts.gp = 32;
14364 break;
14365
14366 case OPTION_GP64:
14367 file_mips_opts.gp = 64;
14368 break;
14369
14370 case OPTION_FP32:
14371 file_mips_opts.fp = 32;
14372 break;
14373
14374 case OPTION_FPXX:
14375 file_mips_opts.fp = 0;
14376 break;
14377
14378 case OPTION_FP64:
14379 file_mips_opts.fp = 64;
14380 break;
14381
14382 case OPTION_ODD_SPREG:
14383 file_mips_opts.oddspreg = 1;
14384 break;
14385
14386 case OPTION_NO_ODD_SPREG:
14387 file_mips_opts.oddspreg = 0;
14388 break;
14389
14390 case OPTION_SINGLE_FLOAT:
14391 file_mips_opts.single_float = 1;
14392 break;
14393
14394 case OPTION_DOUBLE_FLOAT:
14395 file_mips_opts.single_float = 0;
14396 break;
14397
14398 case OPTION_SOFT_FLOAT:
14399 file_mips_opts.soft_float = 1;
14400 break;
14401
14402 case OPTION_HARD_FLOAT:
14403 file_mips_opts.soft_float = 0;
14404 break;
14405
14406 case OPTION_MABI:
14407 if (strcmp (arg, "32") == 0)
14408 mips_abi = O32_ABI;
14409 else if (strcmp (arg, "o64") == 0)
14410 mips_abi = O64_ABI;
14411 else if (strcmp (arg, "n32") == 0)
14412 mips_abi = N32_ABI;
14413 else if (strcmp (arg, "64") == 0)
14414 {
14415 mips_abi = N64_ABI;
14416 if (! support_64bit_objects())
14417 as_fatal (_("no compiled in support for 64 bit object file "
14418 "format"));
14419 }
14420 else if (strcmp (arg, "eabi") == 0)
14421 mips_abi = EABI_ABI;
14422 else
14423 {
14424 as_fatal (_("invalid abi -mabi=%s"), arg);
14425 return 0;
14426 }
14427 break;
14428
14429 case OPTION_M7000_HILO_FIX:
14430 mips_7000_hilo_fix = TRUE;
14431 break;
14432
14433 case OPTION_MNO_7000_HILO_FIX:
14434 mips_7000_hilo_fix = FALSE;
14435 break;
14436
14437 case OPTION_MDEBUG:
14438 mips_flag_mdebug = TRUE;
14439 break;
14440
14441 case OPTION_NO_MDEBUG:
14442 mips_flag_mdebug = FALSE;
14443 break;
14444
14445 case OPTION_PDR:
14446 mips_flag_pdr = TRUE;
14447 break;
14448
14449 case OPTION_NO_PDR:
14450 mips_flag_pdr = FALSE;
14451 break;
14452
14453 case OPTION_MVXWORKS_PIC:
14454 mips_pic = VXWORKS_PIC;
14455 break;
14456
14457 case OPTION_NAN:
14458 if (strcmp (arg, "2008") == 0)
14459 mips_nan2008 = 1;
14460 else if (strcmp (arg, "legacy") == 0)
14461 mips_nan2008 = 0;
14462 else
14463 {
14464 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14465 return 0;
14466 }
14467 break;
14468
14469 default:
14470 return 0;
14471 }
14472
14473 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14474
14475 return 1;
14476 }
14477 \f
14478 /* Set up globals to tune for the ISA or processor described by INFO. */
14479
14480 static void
14481 mips_set_tune (const struct mips_cpu_info *info)
14482 {
14483 if (info != 0)
14484 mips_tune = info->cpu;
14485 }
14486
14487
14488 void
14489 mips_after_parse_args (void)
14490 {
14491 const struct mips_cpu_info *arch_info = 0;
14492 const struct mips_cpu_info *tune_info = 0;
14493
14494 /* GP relative stuff not working for PE */
14495 if (strncmp (TARGET_OS, "pe", 2) == 0)
14496 {
14497 if (g_switch_seen && g_switch_value != 0)
14498 as_bad (_("-G not supported in this configuration"));
14499 g_switch_value = 0;
14500 }
14501
14502 if (mips_abi == NO_ABI)
14503 mips_abi = MIPS_DEFAULT_ABI;
14504
14505 /* The following code determines the architecture.
14506 Similar code was added to GCC 3.3 (see override_options() in
14507 config/mips/mips.c). The GAS and GCC code should be kept in sync
14508 as much as possible. */
14509
14510 if (mips_arch_string != 0)
14511 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14512
14513 if (file_mips_opts.isa != ISA_UNKNOWN)
14514 {
14515 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14516 ISA level specified by -mipsN, while arch_info->isa contains
14517 the -march selection (if any). */
14518 if (arch_info != 0)
14519 {
14520 /* -march takes precedence over -mipsN, since it is more descriptive.
14521 There's no harm in specifying both as long as the ISA levels
14522 are the same. */
14523 if (file_mips_opts.isa != arch_info->isa)
14524 as_bad (_("-%s conflicts with the other architecture options,"
14525 " which imply -%s"),
14526 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14527 mips_cpu_info_from_isa (arch_info->isa)->name);
14528 }
14529 else
14530 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14531 }
14532
14533 if (arch_info == 0)
14534 {
14535 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14536 gas_assert (arch_info);
14537 }
14538
14539 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14540 as_bad (_("-march=%s is not compatible with the selected ABI"),
14541 arch_info->name);
14542
14543 file_mips_opts.arch = arch_info->cpu;
14544 file_mips_opts.isa = arch_info->isa;
14545
14546 /* Set up initial mips_opts state. */
14547 mips_opts = file_mips_opts;
14548
14549 /* The register size inference code is now placed in
14550 file_mips_check_options. */
14551
14552 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14553 processor. */
14554 if (mips_tune_string != 0)
14555 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14556
14557 if (tune_info == 0)
14558 mips_set_tune (arch_info);
14559 else
14560 mips_set_tune (tune_info);
14561
14562 if (mips_flag_mdebug < 0)
14563 mips_flag_mdebug = 0;
14564 }
14565 \f
14566 void
14567 mips_init_after_args (void)
14568 {
14569 /* initialize opcodes */
14570 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14571 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14572 }
14573
14574 long
14575 md_pcrel_from (fixS *fixP)
14576 {
14577 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14578 switch (fixP->fx_r_type)
14579 {
14580 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14581 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14582 /* Return the address of the delay slot. */
14583 return addr + 2;
14584
14585 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14586 case BFD_RELOC_MICROMIPS_JMP:
14587 case BFD_RELOC_16_PCREL_S2:
14588 case BFD_RELOC_MIPS_21_PCREL_S2:
14589 case BFD_RELOC_MIPS_26_PCREL_S2:
14590 case BFD_RELOC_MIPS_JMP:
14591 /* Return the address of the delay slot. */
14592 return addr + 4;
14593
14594 default:
14595 return addr;
14596 }
14597 }
14598
14599 /* This is called before the symbol table is processed. In order to
14600 work with gcc when using mips-tfile, we must keep all local labels.
14601 However, in other cases, we want to discard them. If we were
14602 called with -g, but we didn't see any debugging information, it may
14603 mean that gcc is smuggling debugging information through to
14604 mips-tfile, in which case we must generate all local labels. */
14605
14606 void
14607 mips_frob_file_before_adjust (void)
14608 {
14609 #ifndef NO_ECOFF_DEBUGGING
14610 if (ECOFF_DEBUGGING
14611 && mips_debug != 0
14612 && ! ecoff_debugging_seen)
14613 flag_keep_locals = 1;
14614 #endif
14615 }
14616
14617 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14618 the corresponding LO16 reloc. This is called before md_apply_fix and
14619 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14620 relocation operators.
14621
14622 For our purposes, a %lo() expression matches a %got() or %hi()
14623 expression if:
14624
14625 (a) it refers to the same symbol; and
14626 (b) the offset applied in the %lo() expression is no lower than
14627 the offset applied in the %got() or %hi().
14628
14629 (b) allows us to cope with code like:
14630
14631 lui $4,%hi(foo)
14632 lh $4,%lo(foo+2)($4)
14633
14634 ...which is legal on RELA targets, and has a well-defined behaviour
14635 if the user knows that adding 2 to "foo" will not induce a carry to
14636 the high 16 bits.
14637
14638 When several %lo()s match a particular %got() or %hi(), we use the
14639 following rules to distinguish them:
14640
14641 (1) %lo()s with smaller offsets are a better match than %lo()s with
14642 higher offsets.
14643
14644 (2) %lo()s with no matching %got() or %hi() are better than those
14645 that already have a matching %got() or %hi().
14646
14647 (3) later %lo()s are better than earlier %lo()s.
14648
14649 These rules are applied in order.
14650
14651 (1) means, among other things, that %lo()s with identical offsets are
14652 chosen if they exist.
14653
14654 (2) means that we won't associate several high-part relocations with
14655 the same low-part relocation unless there's no alternative. Having
14656 several high parts for the same low part is a GNU extension; this rule
14657 allows careful users to avoid it.
14658
14659 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14660 with the last high-part relocation being at the front of the list.
14661 It therefore makes sense to choose the last matching low-part
14662 relocation, all other things being equal. It's also easier
14663 to code that way. */
14664
14665 void
14666 mips_frob_file (void)
14667 {
14668 struct mips_hi_fixup *l;
14669 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14670
14671 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14672 {
14673 segment_info_type *seginfo;
14674 bfd_boolean matched_lo_p;
14675 fixS **hi_pos, **lo_pos, **pos;
14676
14677 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14678
14679 /* If a GOT16 relocation turns out to be against a global symbol,
14680 there isn't supposed to be a matching LO. Ignore %gots against
14681 constants; we'll report an error for those later. */
14682 if (got16_reloc_p (l->fixp->fx_r_type)
14683 && !(l->fixp->fx_addsy
14684 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14685 continue;
14686
14687 /* Check quickly whether the next fixup happens to be a matching %lo. */
14688 if (fixup_has_matching_lo_p (l->fixp))
14689 continue;
14690
14691 seginfo = seg_info (l->seg);
14692
14693 /* Set HI_POS to the position of this relocation in the chain.
14694 Set LO_POS to the position of the chosen low-part relocation.
14695 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14696 relocation that matches an immediately-preceding high-part
14697 relocation. */
14698 hi_pos = NULL;
14699 lo_pos = NULL;
14700 matched_lo_p = FALSE;
14701 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14702
14703 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14704 {
14705 if (*pos == l->fixp)
14706 hi_pos = pos;
14707
14708 if ((*pos)->fx_r_type == looking_for_rtype
14709 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14710 && (*pos)->fx_offset >= l->fixp->fx_offset
14711 && (lo_pos == NULL
14712 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14713 || (!matched_lo_p
14714 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14715 lo_pos = pos;
14716
14717 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14718 && fixup_has_matching_lo_p (*pos));
14719 }
14720
14721 /* If we found a match, remove the high-part relocation from its
14722 current position and insert it before the low-part relocation.
14723 Make the offsets match so that fixup_has_matching_lo_p()
14724 will return true.
14725
14726 We don't warn about unmatched high-part relocations since some
14727 versions of gcc have been known to emit dead "lui ...%hi(...)"
14728 instructions. */
14729 if (lo_pos != NULL)
14730 {
14731 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14732 if (l->fixp->fx_next != *lo_pos)
14733 {
14734 *hi_pos = l->fixp->fx_next;
14735 l->fixp->fx_next = *lo_pos;
14736 *lo_pos = l->fixp;
14737 }
14738 }
14739 }
14740 }
14741
14742 int
14743 mips_force_relocation (fixS *fixp)
14744 {
14745 if (generic_force_reloc (fixp))
14746 return 1;
14747
14748 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14749 so that the linker relaxation can update targets. */
14750 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14751 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14752 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14753 return 1;
14754
14755 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14756 if (ISA_IS_R6 (mips_opts.isa)
14757 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14758 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14759 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14760 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14761 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14762 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14763 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14764 return 1;
14765
14766 return 0;
14767 }
14768
14769 /* Read the instruction associated with RELOC from BUF. */
14770
14771 static unsigned int
14772 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14773 {
14774 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14775 return read_compressed_insn (buf, 4);
14776 else
14777 return read_insn (buf);
14778 }
14779
14780 /* Write instruction INSN to BUF, given that it has been relocated
14781 by RELOC. */
14782
14783 static void
14784 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14785 unsigned long insn)
14786 {
14787 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14788 write_compressed_insn (buf, insn, 4);
14789 else
14790 write_insn (buf, insn);
14791 }
14792
14793 /* Apply a fixup to the object file. */
14794
14795 void
14796 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14797 {
14798 char *buf;
14799 unsigned long insn;
14800 reloc_howto_type *howto;
14801
14802 if (fixP->fx_pcrel)
14803 switch (fixP->fx_r_type)
14804 {
14805 case BFD_RELOC_16_PCREL_S2:
14806 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14807 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14808 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14809 case BFD_RELOC_32_PCREL:
14810 case BFD_RELOC_MIPS_21_PCREL_S2:
14811 case BFD_RELOC_MIPS_26_PCREL_S2:
14812 case BFD_RELOC_MIPS_18_PCREL_S3:
14813 case BFD_RELOC_MIPS_19_PCREL_S2:
14814 case BFD_RELOC_HI16_S_PCREL:
14815 case BFD_RELOC_LO16_PCREL:
14816 break;
14817
14818 case BFD_RELOC_32:
14819 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14820 break;
14821
14822 default:
14823 as_bad_where (fixP->fx_file, fixP->fx_line,
14824 _("PC-relative reference to a different section"));
14825 break;
14826 }
14827
14828 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14829 that have no MIPS ELF equivalent. */
14830 if (fixP->fx_r_type != BFD_RELOC_8)
14831 {
14832 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14833 if (!howto)
14834 return;
14835 }
14836
14837 gas_assert (fixP->fx_size == 2
14838 || fixP->fx_size == 4
14839 || fixP->fx_r_type == BFD_RELOC_8
14840 || fixP->fx_r_type == BFD_RELOC_16
14841 || fixP->fx_r_type == BFD_RELOC_64
14842 || fixP->fx_r_type == BFD_RELOC_CTOR
14843 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14844 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14845 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14846 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14847 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14848 || fixP->fx_r_type == BFD_RELOC_NONE);
14849
14850 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14851
14852 /* Don't treat parts of a composite relocation as done. There are two
14853 reasons for this:
14854
14855 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14856 should nevertheless be emitted if the first part is.
14857
14858 (2) In normal usage, composite relocations are never assembly-time
14859 constants. The easiest way of dealing with the pathological
14860 exceptions is to generate a relocation against STN_UNDEF and
14861 leave everything up to the linker. */
14862 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14863 fixP->fx_done = 1;
14864
14865 switch (fixP->fx_r_type)
14866 {
14867 case BFD_RELOC_MIPS_TLS_GD:
14868 case BFD_RELOC_MIPS_TLS_LDM:
14869 case BFD_RELOC_MIPS_TLS_DTPREL32:
14870 case BFD_RELOC_MIPS_TLS_DTPREL64:
14871 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14872 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14873 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14874 case BFD_RELOC_MIPS_TLS_TPREL32:
14875 case BFD_RELOC_MIPS_TLS_TPREL64:
14876 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14877 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14878 case BFD_RELOC_MICROMIPS_TLS_GD:
14879 case BFD_RELOC_MICROMIPS_TLS_LDM:
14880 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14881 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14882 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14883 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14884 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14885 case BFD_RELOC_MIPS16_TLS_GD:
14886 case BFD_RELOC_MIPS16_TLS_LDM:
14887 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14888 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14889 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14890 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14891 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14892 if (!fixP->fx_addsy)
14893 {
14894 as_bad_where (fixP->fx_file, fixP->fx_line,
14895 _("TLS relocation against a constant"));
14896 break;
14897 }
14898 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14899 /* fall through */
14900
14901 case BFD_RELOC_MIPS_JMP:
14902 case BFD_RELOC_MIPS_SHIFT5:
14903 case BFD_RELOC_MIPS_SHIFT6:
14904 case BFD_RELOC_MIPS_GOT_DISP:
14905 case BFD_RELOC_MIPS_GOT_PAGE:
14906 case BFD_RELOC_MIPS_GOT_OFST:
14907 case BFD_RELOC_MIPS_SUB:
14908 case BFD_RELOC_MIPS_INSERT_A:
14909 case BFD_RELOC_MIPS_INSERT_B:
14910 case BFD_RELOC_MIPS_DELETE:
14911 case BFD_RELOC_MIPS_HIGHEST:
14912 case BFD_RELOC_MIPS_HIGHER:
14913 case BFD_RELOC_MIPS_SCN_DISP:
14914 case BFD_RELOC_MIPS_REL16:
14915 case BFD_RELOC_MIPS_RELGOT:
14916 case BFD_RELOC_MIPS_JALR:
14917 case BFD_RELOC_HI16:
14918 case BFD_RELOC_HI16_S:
14919 case BFD_RELOC_LO16:
14920 case BFD_RELOC_GPREL16:
14921 case BFD_RELOC_MIPS_LITERAL:
14922 case BFD_RELOC_MIPS_CALL16:
14923 case BFD_RELOC_MIPS_GOT16:
14924 case BFD_RELOC_GPREL32:
14925 case BFD_RELOC_MIPS_GOT_HI16:
14926 case BFD_RELOC_MIPS_GOT_LO16:
14927 case BFD_RELOC_MIPS_CALL_HI16:
14928 case BFD_RELOC_MIPS_CALL_LO16:
14929 case BFD_RELOC_MIPS16_GPREL:
14930 case BFD_RELOC_MIPS16_GOT16:
14931 case BFD_RELOC_MIPS16_CALL16:
14932 case BFD_RELOC_MIPS16_HI16:
14933 case BFD_RELOC_MIPS16_HI16_S:
14934 case BFD_RELOC_MIPS16_LO16:
14935 case BFD_RELOC_MIPS16_JMP:
14936 case BFD_RELOC_MICROMIPS_JMP:
14937 case BFD_RELOC_MICROMIPS_GOT_DISP:
14938 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14939 case BFD_RELOC_MICROMIPS_GOT_OFST:
14940 case BFD_RELOC_MICROMIPS_SUB:
14941 case BFD_RELOC_MICROMIPS_HIGHEST:
14942 case BFD_RELOC_MICROMIPS_HIGHER:
14943 case BFD_RELOC_MICROMIPS_SCN_DISP:
14944 case BFD_RELOC_MICROMIPS_JALR:
14945 case BFD_RELOC_MICROMIPS_HI16:
14946 case BFD_RELOC_MICROMIPS_HI16_S:
14947 case BFD_RELOC_MICROMIPS_LO16:
14948 case BFD_RELOC_MICROMIPS_GPREL16:
14949 case BFD_RELOC_MICROMIPS_LITERAL:
14950 case BFD_RELOC_MICROMIPS_CALL16:
14951 case BFD_RELOC_MICROMIPS_GOT16:
14952 case BFD_RELOC_MICROMIPS_GOT_HI16:
14953 case BFD_RELOC_MICROMIPS_GOT_LO16:
14954 case BFD_RELOC_MICROMIPS_CALL_HI16:
14955 case BFD_RELOC_MICROMIPS_CALL_LO16:
14956 case BFD_RELOC_MIPS_EH:
14957 if (fixP->fx_done)
14958 {
14959 offsetT value;
14960
14961 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14962 {
14963 insn = read_reloc_insn (buf, fixP->fx_r_type);
14964 if (mips16_reloc_p (fixP->fx_r_type))
14965 insn |= mips16_immed_extend (value, 16);
14966 else
14967 insn |= (value & 0xffff);
14968 write_reloc_insn (buf, fixP->fx_r_type, insn);
14969 }
14970 else
14971 as_bad_where (fixP->fx_file, fixP->fx_line,
14972 _("unsupported constant in relocation"));
14973 }
14974 break;
14975
14976 case BFD_RELOC_64:
14977 /* This is handled like BFD_RELOC_32, but we output a sign
14978 extended value if we are only 32 bits. */
14979 if (fixP->fx_done)
14980 {
14981 if (8 <= sizeof (valueT))
14982 md_number_to_chars (buf, *valP, 8);
14983 else
14984 {
14985 valueT hiv;
14986
14987 if ((*valP & 0x80000000) != 0)
14988 hiv = 0xffffffff;
14989 else
14990 hiv = 0;
14991 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14992 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
14993 }
14994 }
14995 break;
14996
14997 case BFD_RELOC_RVA:
14998 case BFD_RELOC_32:
14999 case BFD_RELOC_32_PCREL:
15000 case BFD_RELOC_16:
15001 case BFD_RELOC_8:
15002 /* If we are deleting this reloc entry, we must fill in the
15003 value now. This can happen if we have a .word which is not
15004 resolved when it appears but is later defined. */
15005 if (fixP->fx_done)
15006 md_number_to_chars (buf, *valP, fixP->fx_size);
15007 break;
15008
15009 case BFD_RELOC_MIPS_21_PCREL_S2:
15010 case BFD_RELOC_MIPS_26_PCREL_S2:
15011 if ((*valP & 0x3) != 0)
15012 as_bad_where (fixP->fx_file, fixP->fx_line,
15013 _("branch to misaligned address (%lx)"), (long) *valP);
15014
15015 gas_assert (!fixP->fx_done);
15016 break;
15017
15018 case BFD_RELOC_MIPS_18_PCREL_S3:
15019 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15020 as_bad_where (fixP->fx_file, fixP->fx_line,
15021 _("PC-relative access using misaligned symbol (%lx)"),
15022 (long) S_GET_VALUE (fixP->fx_addsy));
15023 if ((fixP->fx_offset & 0x7) != 0)
15024 as_bad_where (fixP->fx_file, fixP->fx_line,
15025 _("PC-relative access using misaligned offset (%lx)"),
15026 (long) fixP->fx_offset);
15027
15028 gas_assert (!fixP->fx_done);
15029 break;
15030
15031 case BFD_RELOC_MIPS_19_PCREL_S2:
15032 if ((*valP & 0x3) != 0)
15033 as_bad_where (fixP->fx_file, fixP->fx_line,
15034 _("PC-relative access to misaligned address (%lx)"),
15035 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15036
15037 gas_assert (!fixP->fx_done);
15038 break;
15039
15040 case BFD_RELOC_HI16_S_PCREL:
15041 case BFD_RELOC_LO16_PCREL:
15042 gas_assert (!fixP->fx_done);
15043 break;
15044
15045 case BFD_RELOC_16_PCREL_S2:
15046 if ((*valP & 0x3) != 0)
15047 as_bad_where (fixP->fx_file, fixP->fx_line,
15048 _("branch to misaligned address (%lx)"), (long) *valP);
15049
15050 /* We need to save the bits in the instruction since fixup_segment()
15051 might be deleting the relocation entry (i.e., a branch within
15052 the current segment). */
15053 if (! fixP->fx_done)
15054 break;
15055
15056 /* Update old instruction data. */
15057 insn = read_insn (buf);
15058
15059 if (*valP + 0x20000 <= 0x3ffff)
15060 {
15061 insn |= (*valP >> 2) & 0xffff;
15062 write_insn (buf, insn);
15063 }
15064 else if (mips_pic == NO_PIC
15065 && fixP->fx_done
15066 && fixP->fx_frag->fr_address >= text_section->vma
15067 && (fixP->fx_frag->fr_address
15068 < text_section->vma + bfd_get_section_size (text_section))
15069 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15070 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15071 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15072 {
15073 /* The branch offset is too large. If this is an
15074 unconditional branch, and we are not generating PIC code,
15075 we can convert it to an absolute jump instruction. */
15076 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15077 insn = 0x0c000000; /* jal */
15078 else
15079 insn = 0x08000000; /* j */
15080 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15081 fixP->fx_done = 0;
15082 fixP->fx_addsy = section_symbol (text_section);
15083 *valP += md_pcrel_from (fixP);
15084 write_insn (buf, insn);
15085 }
15086 else
15087 {
15088 /* If we got here, we have branch-relaxation disabled,
15089 and there's nothing we can do to fix this instruction
15090 without turning it into a longer sequence. */
15091 as_bad_where (fixP->fx_file, fixP->fx_line,
15092 _("branch out of range"));
15093 }
15094 break;
15095
15096 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15097 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15098 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15099 /* We adjust the offset back to even. */
15100 if ((*valP & 0x1) != 0)
15101 --(*valP);
15102
15103 if (! fixP->fx_done)
15104 break;
15105
15106 /* Should never visit here, because we keep the relocation. */
15107 abort ();
15108 break;
15109
15110 case BFD_RELOC_VTABLE_INHERIT:
15111 fixP->fx_done = 0;
15112 if (fixP->fx_addsy
15113 && !S_IS_DEFINED (fixP->fx_addsy)
15114 && !S_IS_WEAK (fixP->fx_addsy))
15115 S_SET_WEAK (fixP->fx_addsy);
15116 break;
15117
15118 case BFD_RELOC_NONE:
15119 case BFD_RELOC_VTABLE_ENTRY:
15120 fixP->fx_done = 0;
15121 break;
15122
15123 default:
15124 abort ();
15125 }
15126
15127 /* Remember value for tc_gen_reloc. */
15128 fixP->fx_addnumber = *valP;
15129 }
15130
15131 static symbolS *
15132 get_symbol (void)
15133 {
15134 int c;
15135 char *name;
15136 symbolS *p;
15137
15138 name = input_line_pointer;
15139 c = get_symbol_end ();
15140 p = (symbolS *) symbol_find_or_make (name);
15141 *input_line_pointer = c;
15142 return p;
15143 }
15144
15145 /* Align the current frag to a given power of two. If a particular
15146 fill byte should be used, FILL points to an integer that contains
15147 that byte, otherwise FILL is null.
15148
15149 This function used to have the comment:
15150
15151 The MIPS assembler also automatically adjusts any preceding label.
15152
15153 The implementation therefore applied the adjustment to a maximum of
15154 one label. However, other label adjustments are applied to batches
15155 of labels, and adjusting just one caused problems when new labels
15156 were added for the sake of debugging or unwind information.
15157 We therefore adjust all preceding labels (given as LABELS) instead. */
15158
15159 static void
15160 mips_align (int to, int *fill, struct insn_label_list *labels)
15161 {
15162 mips_emit_delays ();
15163 mips_record_compressed_mode ();
15164 if (fill == NULL && subseg_text_p (now_seg))
15165 frag_align_code (to, 0);
15166 else
15167 frag_align (to, fill ? *fill : 0, 0);
15168 record_alignment (now_seg, to);
15169 mips_move_labels (labels, FALSE);
15170 }
15171
15172 /* Align to a given power of two. .align 0 turns off the automatic
15173 alignment used by the data creating pseudo-ops. */
15174
15175 static void
15176 s_align (int x ATTRIBUTE_UNUSED)
15177 {
15178 int temp, fill_value, *fill_ptr;
15179 long max_alignment = 28;
15180
15181 /* o Note that the assembler pulls down any immediately preceding label
15182 to the aligned address.
15183 o It's not documented but auto alignment is reinstated by
15184 a .align pseudo instruction.
15185 o Note also that after auto alignment is turned off the mips assembler
15186 issues an error on attempt to assemble an improperly aligned data item.
15187 We don't. */
15188
15189 temp = get_absolute_expression ();
15190 if (temp > max_alignment)
15191 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15192 else if (temp < 0)
15193 {
15194 as_warn (_("alignment negative, 0 assumed"));
15195 temp = 0;
15196 }
15197 if (*input_line_pointer == ',')
15198 {
15199 ++input_line_pointer;
15200 fill_value = get_absolute_expression ();
15201 fill_ptr = &fill_value;
15202 }
15203 else
15204 fill_ptr = 0;
15205 if (temp)
15206 {
15207 segment_info_type *si = seg_info (now_seg);
15208 struct insn_label_list *l = si->label_list;
15209 /* Auto alignment should be switched on by next section change. */
15210 auto_align = 1;
15211 mips_align (temp, fill_ptr, l);
15212 }
15213 else
15214 {
15215 auto_align = 0;
15216 }
15217
15218 demand_empty_rest_of_line ();
15219 }
15220
15221 static void
15222 s_change_sec (int sec)
15223 {
15224 segT seg;
15225
15226 /* The ELF backend needs to know that we are changing sections, so
15227 that .previous works correctly. We could do something like check
15228 for an obj_section_change_hook macro, but that might be confusing
15229 as it would not be appropriate to use it in the section changing
15230 functions in read.c, since obj-elf.c intercepts those. FIXME:
15231 This should be cleaner, somehow. */
15232 obj_elf_section_change_hook ();
15233
15234 mips_emit_delays ();
15235
15236 switch (sec)
15237 {
15238 case 't':
15239 s_text (0);
15240 break;
15241 case 'd':
15242 s_data (0);
15243 break;
15244 case 'b':
15245 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15246 demand_empty_rest_of_line ();
15247 break;
15248
15249 case 'r':
15250 seg = subseg_new (RDATA_SECTION_NAME,
15251 (subsegT) get_absolute_expression ());
15252 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15253 | SEC_READONLY | SEC_RELOC
15254 | SEC_DATA));
15255 if (strncmp (TARGET_OS, "elf", 3) != 0)
15256 record_alignment (seg, 4);
15257 demand_empty_rest_of_line ();
15258 break;
15259
15260 case 's':
15261 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15262 bfd_set_section_flags (stdoutput, seg,
15263 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15264 if (strncmp (TARGET_OS, "elf", 3) != 0)
15265 record_alignment (seg, 4);
15266 demand_empty_rest_of_line ();
15267 break;
15268
15269 case 'B':
15270 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15271 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15272 if (strncmp (TARGET_OS, "elf", 3) != 0)
15273 record_alignment (seg, 4);
15274 demand_empty_rest_of_line ();
15275 break;
15276 }
15277
15278 auto_align = 1;
15279 }
15280
15281 void
15282 s_change_section (int ignore ATTRIBUTE_UNUSED)
15283 {
15284 char *section_name;
15285 char c;
15286 char next_c = 0;
15287 int section_type;
15288 int section_flag;
15289 int section_entry_size;
15290 int section_alignment;
15291
15292 section_name = input_line_pointer;
15293 c = get_symbol_end ();
15294 if (c)
15295 next_c = *(input_line_pointer + 1);
15296
15297 /* Do we have .section Name<,"flags">? */
15298 if (c != ',' || (c == ',' && next_c == '"'))
15299 {
15300 /* just after name is now '\0'. */
15301 *input_line_pointer = c;
15302 input_line_pointer = section_name;
15303 obj_elf_section (ignore);
15304 return;
15305 }
15306 input_line_pointer++;
15307
15308 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15309 if (c == ',')
15310 section_type = get_absolute_expression ();
15311 else
15312 section_type = 0;
15313 if (*input_line_pointer++ == ',')
15314 section_flag = get_absolute_expression ();
15315 else
15316 section_flag = 0;
15317 if (*input_line_pointer++ == ',')
15318 section_entry_size = get_absolute_expression ();
15319 else
15320 section_entry_size = 0;
15321 if (*input_line_pointer++ == ',')
15322 section_alignment = get_absolute_expression ();
15323 else
15324 section_alignment = 0;
15325 /* FIXME: really ignore? */
15326 (void) section_alignment;
15327
15328 section_name = xstrdup (section_name);
15329
15330 /* When using the generic form of .section (as implemented by obj-elf.c),
15331 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15332 traditionally had to fall back on the more common @progbits instead.
15333
15334 There's nothing really harmful in this, since bfd will correct
15335 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15336 means that, for backwards compatibility, the special_section entries
15337 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15338
15339 Even so, we shouldn't force users of the MIPS .section syntax to
15340 incorrectly label the sections as SHT_PROGBITS. The best compromise
15341 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15342 generic type-checking code. */
15343 if (section_type == SHT_MIPS_DWARF)
15344 section_type = SHT_PROGBITS;
15345
15346 obj_elf_change_section (section_name, section_type, section_flag,
15347 section_entry_size, 0, 0, 0);
15348
15349 if (now_seg->name != section_name)
15350 free (section_name);
15351 }
15352
15353 void
15354 mips_enable_auto_align (void)
15355 {
15356 auto_align = 1;
15357 }
15358
15359 static void
15360 s_cons (int log_size)
15361 {
15362 segment_info_type *si = seg_info (now_seg);
15363 struct insn_label_list *l = si->label_list;
15364
15365 mips_emit_delays ();
15366 if (log_size > 0 && auto_align)
15367 mips_align (log_size, 0, l);
15368 cons (1 << log_size);
15369 mips_clear_insn_labels ();
15370 }
15371
15372 static void
15373 s_float_cons (int type)
15374 {
15375 segment_info_type *si = seg_info (now_seg);
15376 struct insn_label_list *l = si->label_list;
15377
15378 mips_emit_delays ();
15379
15380 if (auto_align)
15381 {
15382 if (type == 'd')
15383 mips_align (3, 0, l);
15384 else
15385 mips_align (2, 0, l);
15386 }
15387
15388 float_cons (type);
15389 mips_clear_insn_labels ();
15390 }
15391
15392 /* Handle .globl. We need to override it because on Irix 5 you are
15393 permitted to say
15394 .globl foo .text
15395 where foo is an undefined symbol, to mean that foo should be
15396 considered to be the address of a function. */
15397
15398 static void
15399 s_mips_globl (int x ATTRIBUTE_UNUSED)
15400 {
15401 char *name;
15402 int c;
15403 symbolS *symbolP;
15404 flagword flag;
15405
15406 do
15407 {
15408 name = input_line_pointer;
15409 c = get_symbol_end ();
15410 symbolP = symbol_find_or_make (name);
15411 S_SET_EXTERNAL (symbolP);
15412
15413 *input_line_pointer = c;
15414 SKIP_WHITESPACE ();
15415
15416 /* On Irix 5, every global symbol that is not explicitly labelled as
15417 being a function is apparently labelled as being an object. */
15418 flag = BSF_OBJECT;
15419
15420 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15421 && (*input_line_pointer != ','))
15422 {
15423 char *secname;
15424 asection *sec;
15425
15426 secname = input_line_pointer;
15427 c = get_symbol_end ();
15428 sec = bfd_get_section_by_name (stdoutput, secname);
15429 if (sec == NULL)
15430 as_bad (_("%s: no such section"), secname);
15431 *input_line_pointer = c;
15432
15433 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15434 flag = BSF_FUNCTION;
15435 }
15436
15437 symbol_get_bfdsym (symbolP)->flags |= flag;
15438
15439 c = *input_line_pointer;
15440 if (c == ',')
15441 {
15442 input_line_pointer++;
15443 SKIP_WHITESPACE ();
15444 if (is_end_of_line[(unsigned char) *input_line_pointer])
15445 c = '\n';
15446 }
15447 }
15448 while (c == ',');
15449
15450 demand_empty_rest_of_line ();
15451 }
15452
15453 static void
15454 s_option (int x ATTRIBUTE_UNUSED)
15455 {
15456 char *opt;
15457 char c;
15458
15459 opt = input_line_pointer;
15460 c = get_symbol_end ();
15461
15462 if (*opt == 'O')
15463 {
15464 /* FIXME: What does this mean? */
15465 }
15466 else if (strncmp (opt, "pic", 3) == 0)
15467 {
15468 int i;
15469
15470 i = atoi (opt + 3);
15471 if (i == 0)
15472 mips_pic = NO_PIC;
15473 else if (i == 2)
15474 {
15475 mips_pic = SVR4_PIC;
15476 mips_abicalls = TRUE;
15477 }
15478 else
15479 as_bad (_(".option pic%d not supported"), i);
15480
15481 if (mips_pic == SVR4_PIC)
15482 {
15483 if (g_switch_seen && g_switch_value != 0)
15484 as_warn (_("-G may not be used with SVR4 PIC code"));
15485 g_switch_value = 0;
15486 bfd_set_gp_size (stdoutput, 0);
15487 }
15488 }
15489 else
15490 as_warn (_("unrecognized option \"%s\""), opt);
15491
15492 *input_line_pointer = c;
15493 demand_empty_rest_of_line ();
15494 }
15495
15496 /* This structure is used to hold a stack of .set values. */
15497
15498 struct mips_option_stack
15499 {
15500 struct mips_option_stack *next;
15501 struct mips_set_options options;
15502 };
15503
15504 static struct mips_option_stack *mips_opts_stack;
15505
15506 static bfd_boolean
15507 parse_code_option (char * name)
15508 {
15509 const struct mips_ase *ase;
15510 if (strncmp (name, "at=", 3) == 0)
15511 {
15512 char *s = name + 3;
15513
15514 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15515 as_bad (_("unrecognized register name `%s'"), s);
15516 }
15517 else if (strcmp (name, "at") == 0)
15518 mips_opts.at = ATREG;
15519 else if (strcmp (name, "noat") == 0)
15520 mips_opts.at = ZERO;
15521 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15522 mips_opts.nomove = 0;
15523 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15524 mips_opts.nomove = 1;
15525 else if (strcmp (name, "bopt") == 0)
15526 mips_opts.nobopt = 0;
15527 else if (strcmp (name, "nobopt") == 0)
15528 mips_opts.nobopt = 1;
15529 else if (strcmp (name, "gp=32") == 0)
15530 mips_opts.gp = 32;
15531 else if (strcmp (name, "gp=64") == 0)
15532 mips_opts.gp = 64;
15533 else if (strcmp (name, "fp=32") == 0)
15534 mips_opts.fp = 32;
15535 else if (strcmp (name, "fp=xx") == 0)
15536 mips_opts.fp = 0;
15537 else if (strcmp (name, "fp=64") == 0)
15538 mips_opts.fp = 64;
15539 else if (strcmp (name, "softfloat") == 0)
15540 mips_opts.soft_float = 1;
15541 else if (strcmp (name, "hardfloat") == 0)
15542 mips_opts.soft_float = 0;
15543 else if (strcmp (name, "singlefloat") == 0)
15544 mips_opts.single_float = 1;
15545 else if (strcmp (name, "doublefloat") == 0)
15546 mips_opts.single_float = 0;
15547 else if (strcmp (name, "nooddspreg") == 0)
15548 mips_opts.oddspreg = 0;
15549 else if (strcmp (name, "oddspreg") == 0)
15550 mips_opts.oddspreg = 1;
15551 else if (strcmp (name, "mips16") == 0
15552 || strcmp (name, "MIPS-16") == 0)
15553 mips_opts.mips16 = 1;
15554 else if (strcmp (name, "nomips16") == 0
15555 || strcmp (name, "noMIPS-16") == 0)
15556 mips_opts.mips16 = 0;
15557 else if (strcmp (name, "micromips") == 0)
15558 mips_opts.micromips = 1;
15559 else if (strcmp (name, "nomicromips") == 0)
15560 mips_opts.micromips = 0;
15561 else if (name[0] == 'n'
15562 && name[1] == 'o'
15563 && (ase = mips_lookup_ase (name + 2)))
15564 mips_set_ase (ase, &mips_opts, FALSE);
15565 else if ((ase = mips_lookup_ase (name)))
15566 mips_set_ase (ase, &mips_opts, TRUE);
15567 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15568 {
15569 /* Permit the user to change the ISA and architecture on the fly.
15570 Needless to say, misuse can cause serious problems. */
15571 if (strncmp (name, "arch=", 5) == 0)
15572 {
15573 const struct mips_cpu_info *p;
15574
15575 p = mips_parse_cpu ("internal use", name + 5);
15576 if (!p)
15577 as_bad (_("unknown architecture %s"), name + 5);
15578 else
15579 {
15580 mips_opts.arch = p->cpu;
15581 mips_opts.isa = p->isa;
15582 }
15583 }
15584 else if (strncmp (name, "mips", 4) == 0)
15585 {
15586 const struct mips_cpu_info *p;
15587
15588 p = mips_parse_cpu ("internal use", name);
15589 if (!p)
15590 as_bad (_("unknown ISA level %s"), name + 4);
15591 else
15592 {
15593 mips_opts.arch = p->cpu;
15594 mips_opts.isa = p->isa;
15595 }
15596 }
15597 else
15598 as_bad (_("unknown ISA or architecture %s"), name);
15599 }
15600 else if (strcmp (name, "autoextend") == 0)
15601 mips_opts.noautoextend = 0;
15602 else if (strcmp (name, "noautoextend") == 0)
15603 mips_opts.noautoextend = 1;
15604 else if (strcmp (name, "insn32") == 0)
15605 mips_opts.insn32 = TRUE;
15606 else if (strcmp (name, "noinsn32") == 0)
15607 mips_opts.insn32 = FALSE;
15608 else if (strcmp (name, "sym32") == 0)
15609 mips_opts.sym32 = TRUE;
15610 else if (strcmp (name, "nosym32") == 0)
15611 mips_opts.sym32 = FALSE;
15612 else
15613 return FALSE;
15614 return TRUE;
15615 }
15616
15617 /* Handle the .set pseudo-op. */
15618
15619 static void
15620 s_mipsset (int x ATTRIBUTE_UNUSED)
15621 {
15622 char *name = input_line_pointer, ch;
15623 int prev_isa = mips_opts.isa;
15624
15625 file_mips_check_options ();
15626
15627 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15628 ++input_line_pointer;
15629 ch = *input_line_pointer;
15630 *input_line_pointer = '\0';
15631
15632 if (strchr (name, ','))
15633 {
15634 /* Generic ".set" directive; use the generic handler. */
15635 *input_line_pointer = ch;
15636 input_line_pointer = name;
15637 s_set (0);
15638 return;
15639 }
15640
15641 if (strcmp (name, "reorder") == 0)
15642 {
15643 if (mips_opts.noreorder)
15644 end_noreorder ();
15645 }
15646 else if (strcmp (name, "noreorder") == 0)
15647 {
15648 if (!mips_opts.noreorder)
15649 start_noreorder ();
15650 }
15651 else if (strcmp (name, "macro") == 0)
15652 mips_opts.warn_about_macros = 0;
15653 else if (strcmp (name, "nomacro") == 0)
15654 {
15655 if (mips_opts.noreorder == 0)
15656 as_bad (_("`noreorder' must be set before `nomacro'"));
15657 mips_opts.warn_about_macros = 1;
15658 }
15659 else if (strcmp (name, "gp=default") == 0)
15660 mips_opts.gp = file_mips_opts.gp;
15661 else if (strcmp (name, "fp=default") == 0)
15662 mips_opts.fp = file_mips_opts.fp;
15663 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15664 {
15665 mips_opts.isa = file_mips_opts.isa;
15666 mips_opts.arch = file_mips_opts.arch;
15667 mips_opts.gp = file_mips_opts.gp;
15668 mips_opts.fp = file_mips_opts.fp;
15669 }
15670 else if (strcmp (name, "push") == 0)
15671 {
15672 struct mips_option_stack *s;
15673
15674 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15675 s->next = mips_opts_stack;
15676 s->options = mips_opts;
15677 mips_opts_stack = s;
15678 }
15679 else if (strcmp (name, "pop") == 0)
15680 {
15681 struct mips_option_stack *s;
15682
15683 s = mips_opts_stack;
15684 if (s == NULL)
15685 as_bad (_(".set pop with no .set push"));
15686 else
15687 {
15688 /* If we're changing the reorder mode we need to handle
15689 delay slots correctly. */
15690 if (s->options.noreorder && ! mips_opts.noreorder)
15691 start_noreorder ();
15692 else if (! s->options.noreorder && mips_opts.noreorder)
15693 end_noreorder ();
15694
15695 mips_opts = s->options;
15696 mips_opts_stack = s->next;
15697 free (s);
15698 }
15699 }
15700 else if (!parse_code_option (name))
15701 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15702
15703 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15704 registers based on what is supported by the arch/cpu. */
15705 if (mips_opts.isa != prev_isa)
15706 {
15707 switch (mips_opts.isa)
15708 {
15709 case 0:
15710 break;
15711 case ISA_MIPS1:
15712 /* MIPS I cannot support FPXX. */
15713 mips_opts.fp = 32;
15714 /* fall-through. */
15715 case ISA_MIPS2:
15716 case ISA_MIPS32:
15717 case ISA_MIPS32R2:
15718 case ISA_MIPS32R3:
15719 case ISA_MIPS32R5:
15720 mips_opts.gp = 32;
15721 if (mips_opts.fp != 0)
15722 mips_opts.fp = 32;
15723 break;
15724 case ISA_MIPS32R6:
15725 mips_opts.gp = 32;
15726 mips_opts.fp = 64;
15727 break;
15728 case ISA_MIPS3:
15729 case ISA_MIPS4:
15730 case ISA_MIPS5:
15731 case ISA_MIPS64:
15732 case ISA_MIPS64R2:
15733 case ISA_MIPS64R3:
15734 case ISA_MIPS64R5:
15735 case ISA_MIPS64R6:
15736 mips_opts.gp = 64;
15737 if (mips_opts.fp != 0)
15738 {
15739 if (mips_opts.arch == CPU_R5900)
15740 mips_opts.fp = 32;
15741 else
15742 mips_opts.fp = 64;
15743 }
15744 break;
15745 default:
15746 as_bad (_("unknown ISA level %s"), name + 4);
15747 break;
15748 }
15749 }
15750
15751 mips_check_options (&mips_opts, FALSE);
15752
15753 mips_check_isa_supports_ases ();
15754 *input_line_pointer = ch;
15755 demand_empty_rest_of_line ();
15756 }
15757
15758 /* Handle the .module pseudo-op. */
15759
15760 static void
15761 s_module (int ignore ATTRIBUTE_UNUSED)
15762 {
15763 char *name = input_line_pointer, ch;
15764
15765 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15766 ++input_line_pointer;
15767 ch = *input_line_pointer;
15768 *input_line_pointer = '\0';
15769
15770 if (!file_mips_opts_checked)
15771 {
15772 if (!parse_code_option (name))
15773 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15774
15775 /* Update module level settings from mips_opts. */
15776 file_mips_opts = mips_opts;
15777 }
15778 else
15779 as_bad (_(".module is not permitted after generating code"));
15780
15781 *input_line_pointer = ch;
15782 demand_empty_rest_of_line ();
15783 }
15784
15785 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15786 .option pic2. It means to generate SVR4 PIC calls. */
15787
15788 static void
15789 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15790 {
15791 mips_pic = SVR4_PIC;
15792 mips_abicalls = TRUE;
15793
15794 if (g_switch_seen && g_switch_value != 0)
15795 as_warn (_("-G may not be used with SVR4 PIC code"));
15796 g_switch_value = 0;
15797
15798 bfd_set_gp_size (stdoutput, 0);
15799 demand_empty_rest_of_line ();
15800 }
15801
15802 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15803 PIC code. It sets the $gp register for the function based on the
15804 function address, which is in the register named in the argument.
15805 This uses a relocation against _gp_disp, which is handled specially
15806 by the linker. The result is:
15807 lui $gp,%hi(_gp_disp)
15808 addiu $gp,$gp,%lo(_gp_disp)
15809 addu $gp,$gp,.cpload argument
15810 The .cpload argument is normally $25 == $t9.
15811
15812 The -mno-shared option changes this to:
15813 lui $gp,%hi(__gnu_local_gp)
15814 addiu $gp,$gp,%lo(__gnu_local_gp)
15815 and the argument is ignored. This saves an instruction, but the
15816 resulting code is not position independent; it uses an absolute
15817 address for __gnu_local_gp. Thus code assembled with -mno-shared
15818 can go into an ordinary executable, but not into a shared library. */
15819
15820 static void
15821 s_cpload (int ignore ATTRIBUTE_UNUSED)
15822 {
15823 expressionS ex;
15824 int reg;
15825 int in_shared;
15826
15827 file_mips_check_options ();
15828
15829 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15830 .cpload is ignored. */
15831 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15832 {
15833 s_ignore (0);
15834 return;
15835 }
15836
15837 if (mips_opts.mips16)
15838 {
15839 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15840 ignore_rest_of_line ();
15841 return;
15842 }
15843
15844 /* .cpload should be in a .set noreorder section. */
15845 if (mips_opts.noreorder == 0)
15846 as_warn (_(".cpload not in noreorder section"));
15847
15848 reg = tc_get_register (0);
15849
15850 /* If we need to produce a 64-bit address, we are better off using
15851 the default instruction sequence. */
15852 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15853
15854 ex.X_op = O_symbol;
15855 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15856 "__gnu_local_gp");
15857 ex.X_op_symbol = NULL;
15858 ex.X_add_number = 0;
15859
15860 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15861 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15862
15863 mips_mark_labels ();
15864 mips_assembling_insn = TRUE;
15865
15866 macro_start ();
15867 macro_build_lui (&ex, mips_gp_register);
15868 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15869 mips_gp_register, BFD_RELOC_LO16);
15870 if (in_shared)
15871 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15872 mips_gp_register, reg);
15873 macro_end ();
15874
15875 mips_assembling_insn = FALSE;
15876 demand_empty_rest_of_line ();
15877 }
15878
15879 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15880 .cpsetup $reg1, offset|$reg2, label
15881
15882 If offset is given, this results in:
15883 sd $gp, offset($sp)
15884 lui $gp, %hi(%neg(%gp_rel(label)))
15885 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15886 daddu $gp, $gp, $reg1
15887
15888 If $reg2 is given, this results in:
15889 daddu $reg2, $gp, $0
15890 lui $gp, %hi(%neg(%gp_rel(label)))
15891 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15892 daddu $gp, $gp, $reg1
15893 $reg1 is normally $25 == $t9.
15894
15895 The -mno-shared option replaces the last three instructions with
15896 lui $gp,%hi(_gp)
15897 addiu $gp,$gp,%lo(_gp) */
15898
15899 static void
15900 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15901 {
15902 expressionS ex_off;
15903 expressionS ex_sym;
15904 int reg1;
15905
15906 file_mips_check_options ();
15907
15908 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15909 We also need NewABI support. */
15910 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15911 {
15912 s_ignore (0);
15913 return;
15914 }
15915
15916 if (mips_opts.mips16)
15917 {
15918 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15919 ignore_rest_of_line ();
15920 return;
15921 }
15922
15923 reg1 = tc_get_register (0);
15924 SKIP_WHITESPACE ();
15925 if (*input_line_pointer != ',')
15926 {
15927 as_bad (_("missing argument separator ',' for .cpsetup"));
15928 return;
15929 }
15930 else
15931 ++input_line_pointer;
15932 SKIP_WHITESPACE ();
15933 if (*input_line_pointer == '$')
15934 {
15935 mips_cpreturn_register = tc_get_register (0);
15936 mips_cpreturn_offset = -1;
15937 }
15938 else
15939 {
15940 mips_cpreturn_offset = get_absolute_expression ();
15941 mips_cpreturn_register = -1;
15942 }
15943 SKIP_WHITESPACE ();
15944 if (*input_line_pointer != ',')
15945 {
15946 as_bad (_("missing argument separator ',' for .cpsetup"));
15947 return;
15948 }
15949 else
15950 ++input_line_pointer;
15951 SKIP_WHITESPACE ();
15952 expression (&ex_sym);
15953
15954 mips_mark_labels ();
15955 mips_assembling_insn = TRUE;
15956
15957 macro_start ();
15958 if (mips_cpreturn_register == -1)
15959 {
15960 ex_off.X_op = O_constant;
15961 ex_off.X_add_symbol = NULL;
15962 ex_off.X_op_symbol = NULL;
15963 ex_off.X_add_number = mips_cpreturn_offset;
15964
15965 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15966 BFD_RELOC_LO16, SP);
15967 }
15968 else
15969 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
15970 mips_gp_register, 0);
15971
15972 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15973 {
15974 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15975 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15976 BFD_RELOC_HI16_S);
15977
15978 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15979 mips_gp_register, -1, BFD_RELOC_GPREL16,
15980 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15981
15982 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15983 mips_gp_register, reg1);
15984 }
15985 else
15986 {
15987 expressionS ex;
15988
15989 ex.X_op = O_symbol;
15990 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
15991 ex.X_op_symbol = NULL;
15992 ex.X_add_number = 0;
15993
15994 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15995 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15996
15997 macro_build_lui (&ex, mips_gp_register);
15998 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15999 mips_gp_register, BFD_RELOC_LO16);
16000 }
16001
16002 macro_end ();
16003
16004 mips_assembling_insn = FALSE;
16005 demand_empty_rest_of_line ();
16006 }
16007
16008 static void
16009 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16010 {
16011 file_mips_check_options ();
16012
16013 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16014 .cplocal is ignored. */
16015 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16016 {
16017 s_ignore (0);
16018 return;
16019 }
16020
16021 if (mips_opts.mips16)
16022 {
16023 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16024 ignore_rest_of_line ();
16025 return;
16026 }
16027
16028 mips_gp_register = tc_get_register (0);
16029 demand_empty_rest_of_line ();
16030 }
16031
16032 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16033 offset from $sp. The offset is remembered, and after making a PIC
16034 call $gp is restored from that location. */
16035
16036 static void
16037 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16038 {
16039 expressionS ex;
16040
16041 file_mips_check_options ();
16042
16043 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16044 .cprestore is ignored. */
16045 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16046 {
16047 s_ignore (0);
16048 return;
16049 }
16050
16051 if (mips_opts.mips16)
16052 {
16053 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16054 ignore_rest_of_line ();
16055 return;
16056 }
16057
16058 mips_cprestore_offset = get_absolute_expression ();
16059 mips_cprestore_valid = 1;
16060
16061 ex.X_op = O_constant;
16062 ex.X_add_symbol = NULL;
16063 ex.X_op_symbol = NULL;
16064 ex.X_add_number = mips_cprestore_offset;
16065
16066 mips_mark_labels ();
16067 mips_assembling_insn = TRUE;
16068
16069 macro_start ();
16070 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16071 SP, HAVE_64BIT_ADDRESSES);
16072 macro_end ();
16073
16074 mips_assembling_insn = FALSE;
16075 demand_empty_rest_of_line ();
16076 }
16077
16078 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16079 was given in the preceding .cpsetup, it results in:
16080 ld $gp, offset($sp)
16081
16082 If a register $reg2 was given there, it results in:
16083 daddu $gp, $reg2, $0 */
16084
16085 static void
16086 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16087 {
16088 expressionS ex;
16089
16090 file_mips_check_options ();
16091
16092 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16093 We also need NewABI support. */
16094 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16095 {
16096 s_ignore (0);
16097 return;
16098 }
16099
16100 if (mips_opts.mips16)
16101 {
16102 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16103 ignore_rest_of_line ();
16104 return;
16105 }
16106
16107 mips_mark_labels ();
16108 mips_assembling_insn = TRUE;
16109
16110 macro_start ();
16111 if (mips_cpreturn_register == -1)
16112 {
16113 ex.X_op = O_constant;
16114 ex.X_add_symbol = NULL;
16115 ex.X_op_symbol = NULL;
16116 ex.X_add_number = mips_cpreturn_offset;
16117
16118 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16119 }
16120 else
16121 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
16122 mips_cpreturn_register, 0);
16123 macro_end ();
16124
16125 mips_assembling_insn = FALSE;
16126 demand_empty_rest_of_line ();
16127 }
16128
16129 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16130 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16131 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16132 debug information or MIPS16 TLS. */
16133
16134 static void
16135 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16136 bfd_reloc_code_real_type rtype)
16137 {
16138 expressionS ex;
16139 char *p;
16140
16141 expression (&ex);
16142
16143 if (ex.X_op != O_symbol)
16144 {
16145 as_bad (_("unsupported use of %s"), dirstr);
16146 ignore_rest_of_line ();
16147 }
16148
16149 p = frag_more (bytes);
16150 md_number_to_chars (p, 0, bytes);
16151 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16152 demand_empty_rest_of_line ();
16153 mips_clear_insn_labels ();
16154 }
16155
16156 /* Handle .dtprelword. */
16157
16158 static void
16159 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16160 {
16161 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16162 }
16163
16164 /* Handle .dtpreldword. */
16165
16166 static void
16167 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16168 {
16169 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16170 }
16171
16172 /* Handle .tprelword. */
16173
16174 static void
16175 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16176 {
16177 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16178 }
16179
16180 /* Handle .tpreldword. */
16181
16182 static void
16183 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16184 {
16185 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16186 }
16187
16188 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16189 code. It sets the offset to use in gp_rel relocations. */
16190
16191 static void
16192 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16193 {
16194 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16195 We also need NewABI support. */
16196 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16197 {
16198 s_ignore (0);
16199 return;
16200 }
16201
16202 mips_gprel_offset = get_absolute_expression ();
16203
16204 demand_empty_rest_of_line ();
16205 }
16206
16207 /* Handle the .gpword pseudo-op. This is used when generating PIC
16208 code. It generates a 32 bit GP relative reloc. */
16209
16210 static void
16211 s_gpword (int ignore ATTRIBUTE_UNUSED)
16212 {
16213 segment_info_type *si;
16214 struct insn_label_list *l;
16215 expressionS ex;
16216 char *p;
16217
16218 /* When not generating PIC code, this is treated as .word. */
16219 if (mips_pic != SVR4_PIC)
16220 {
16221 s_cons (2);
16222 return;
16223 }
16224
16225 si = seg_info (now_seg);
16226 l = si->label_list;
16227 mips_emit_delays ();
16228 if (auto_align)
16229 mips_align (2, 0, l);
16230
16231 expression (&ex);
16232 mips_clear_insn_labels ();
16233
16234 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16235 {
16236 as_bad (_("unsupported use of .gpword"));
16237 ignore_rest_of_line ();
16238 }
16239
16240 p = frag_more (4);
16241 md_number_to_chars (p, 0, 4);
16242 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16243 BFD_RELOC_GPREL32);
16244
16245 demand_empty_rest_of_line ();
16246 }
16247
16248 static void
16249 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16250 {
16251 segment_info_type *si;
16252 struct insn_label_list *l;
16253 expressionS ex;
16254 char *p;
16255
16256 /* When not generating PIC code, this is treated as .dword. */
16257 if (mips_pic != SVR4_PIC)
16258 {
16259 s_cons (3);
16260 return;
16261 }
16262
16263 si = seg_info (now_seg);
16264 l = si->label_list;
16265 mips_emit_delays ();
16266 if (auto_align)
16267 mips_align (3, 0, l);
16268
16269 expression (&ex);
16270 mips_clear_insn_labels ();
16271
16272 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16273 {
16274 as_bad (_("unsupported use of .gpdword"));
16275 ignore_rest_of_line ();
16276 }
16277
16278 p = frag_more (8);
16279 md_number_to_chars (p, 0, 8);
16280 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16281 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16282
16283 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16284 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16285 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16286
16287 demand_empty_rest_of_line ();
16288 }
16289
16290 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16291 tables. It generates a R_MIPS_EH reloc. */
16292
16293 static void
16294 s_ehword (int ignore ATTRIBUTE_UNUSED)
16295 {
16296 expressionS ex;
16297 char *p;
16298
16299 mips_emit_delays ();
16300
16301 expression (&ex);
16302 mips_clear_insn_labels ();
16303
16304 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16305 {
16306 as_bad (_("unsupported use of .ehword"));
16307 ignore_rest_of_line ();
16308 }
16309
16310 p = frag_more (4);
16311 md_number_to_chars (p, 0, 4);
16312 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16313 BFD_RELOC_32_PCREL);
16314
16315 demand_empty_rest_of_line ();
16316 }
16317
16318 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16319 tables in SVR4 PIC code. */
16320
16321 static void
16322 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16323 {
16324 int reg;
16325
16326 file_mips_check_options ();
16327
16328 /* This is ignored when not generating SVR4 PIC code. */
16329 if (mips_pic != SVR4_PIC)
16330 {
16331 s_ignore (0);
16332 return;
16333 }
16334
16335 mips_mark_labels ();
16336 mips_assembling_insn = TRUE;
16337
16338 /* Add $gp to the register named as an argument. */
16339 macro_start ();
16340 reg = tc_get_register (0);
16341 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16342 macro_end ();
16343
16344 mips_assembling_insn = FALSE;
16345 demand_empty_rest_of_line ();
16346 }
16347
16348 /* Handle the .insn pseudo-op. This marks instruction labels in
16349 mips16/micromips mode. This permits the linker to handle them specially,
16350 such as generating jalx instructions when needed. We also make
16351 them odd for the duration of the assembly, in order to generate the
16352 right sort of code. We will make them even in the adjust_symtab
16353 routine, while leaving them marked. This is convenient for the
16354 debugger and the disassembler. The linker knows to make them odd
16355 again. */
16356
16357 static void
16358 s_insn (int ignore ATTRIBUTE_UNUSED)
16359 {
16360 file_mips_check_options ();
16361 file_ase_mips16 |= mips_opts.mips16;
16362 file_ase_micromips |= mips_opts.micromips;
16363
16364 mips_mark_labels ();
16365
16366 demand_empty_rest_of_line ();
16367 }
16368
16369 /* Handle the .nan pseudo-op. */
16370
16371 static void
16372 s_nan (int ignore ATTRIBUTE_UNUSED)
16373 {
16374 static const char str_legacy[] = "legacy";
16375 static const char str_2008[] = "2008";
16376 size_t i;
16377
16378 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16379
16380 if (i == sizeof (str_2008) - 1
16381 && memcmp (input_line_pointer, str_2008, i) == 0)
16382 mips_nan2008 = 1;
16383 else if (i == sizeof (str_legacy) - 1
16384 && memcmp (input_line_pointer, str_legacy, i) == 0)
16385 {
16386 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16387 mips_nan2008 = 0;
16388 else
16389 as_bad (_("`%s' does not support legacy NaN"),
16390 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16391 }
16392 else
16393 as_bad (_("bad .nan directive"));
16394
16395 input_line_pointer += i;
16396 demand_empty_rest_of_line ();
16397 }
16398
16399 /* Handle a .stab[snd] directive. Ideally these directives would be
16400 implemented in a transparent way, so that removing them would not
16401 have any effect on the generated instructions. However, s_stab
16402 internally changes the section, so in practice we need to decide
16403 now whether the preceding label marks compressed code. We do not
16404 support changing the compression mode of a label after a .stab*
16405 directive, such as in:
16406
16407 foo:
16408 .stabs ...
16409 .set mips16
16410
16411 so the current mode wins. */
16412
16413 static void
16414 s_mips_stab (int type)
16415 {
16416 mips_mark_labels ();
16417 s_stab (type);
16418 }
16419
16420 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16421
16422 static void
16423 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16424 {
16425 char *name;
16426 int c;
16427 symbolS *symbolP;
16428 expressionS exp;
16429
16430 name = input_line_pointer;
16431 c = get_symbol_end ();
16432 symbolP = symbol_find_or_make (name);
16433 S_SET_WEAK (symbolP);
16434 *input_line_pointer = c;
16435
16436 SKIP_WHITESPACE ();
16437
16438 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16439 {
16440 if (S_IS_DEFINED (symbolP))
16441 {
16442 as_bad (_("ignoring attempt to redefine symbol %s"),
16443 S_GET_NAME (symbolP));
16444 ignore_rest_of_line ();
16445 return;
16446 }
16447
16448 if (*input_line_pointer == ',')
16449 {
16450 ++input_line_pointer;
16451 SKIP_WHITESPACE ();
16452 }
16453
16454 expression (&exp);
16455 if (exp.X_op != O_symbol)
16456 {
16457 as_bad (_("bad .weakext directive"));
16458 ignore_rest_of_line ();
16459 return;
16460 }
16461 symbol_set_value_expression (symbolP, &exp);
16462 }
16463
16464 demand_empty_rest_of_line ();
16465 }
16466
16467 /* Parse a register string into a number. Called from the ECOFF code
16468 to parse .frame. The argument is non-zero if this is the frame
16469 register, so that we can record it in mips_frame_reg. */
16470
16471 int
16472 tc_get_register (int frame)
16473 {
16474 unsigned int reg;
16475
16476 SKIP_WHITESPACE ();
16477 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16478 reg = 0;
16479 if (frame)
16480 {
16481 mips_frame_reg = reg != 0 ? reg : SP;
16482 mips_frame_reg_valid = 1;
16483 mips_cprestore_valid = 0;
16484 }
16485 return reg;
16486 }
16487
16488 valueT
16489 md_section_align (asection *seg, valueT addr)
16490 {
16491 int align = bfd_get_section_alignment (stdoutput, seg);
16492
16493 /* We don't need to align ELF sections to the full alignment.
16494 However, Irix 5 may prefer that we align them at least to a 16
16495 byte boundary. We don't bother to align the sections if we
16496 are targeted for an embedded system. */
16497 if (strncmp (TARGET_OS, "elf", 3) == 0)
16498 return addr;
16499 if (align > 4)
16500 align = 4;
16501
16502 return ((addr + (1 << align) - 1) & (-1 << align));
16503 }
16504
16505 /* Utility routine, called from above as well. If called while the
16506 input file is still being read, it's only an approximation. (For
16507 example, a symbol may later become defined which appeared to be
16508 undefined earlier.) */
16509
16510 static int
16511 nopic_need_relax (symbolS *sym, int before_relaxing)
16512 {
16513 if (sym == 0)
16514 return 0;
16515
16516 if (g_switch_value > 0)
16517 {
16518 const char *symname;
16519 int change;
16520
16521 /* Find out whether this symbol can be referenced off the $gp
16522 register. It can be if it is smaller than the -G size or if
16523 it is in the .sdata or .sbss section. Certain symbols can
16524 not be referenced off the $gp, although it appears as though
16525 they can. */
16526 symname = S_GET_NAME (sym);
16527 if (symname != (const char *) NULL
16528 && (strcmp (symname, "eprol") == 0
16529 || strcmp (symname, "etext") == 0
16530 || strcmp (symname, "_gp") == 0
16531 || strcmp (symname, "edata") == 0
16532 || strcmp (symname, "_fbss") == 0
16533 || strcmp (symname, "_fdata") == 0
16534 || strcmp (symname, "_ftext") == 0
16535 || strcmp (symname, "end") == 0
16536 || strcmp (symname, "_gp_disp") == 0))
16537 change = 1;
16538 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16539 && (0
16540 #ifndef NO_ECOFF_DEBUGGING
16541 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16542 && (symbol_get_obj (sym)->ecoff_extern_size
16543 <= g_switch_value))
16544 #endif
16545 /* We must defer this decision until after the whole
16546 file has been read, since there might be a .extern
16547 after the first use of this symbol. */
16548 || (before_relaxing
16549 #ifndef NO_ECOFF_DEBUGGING
16550 && symbol_get_obj (sym)->ecoff_extern_size == 0
16551 #endif
16552 && S_GET_VALUE (sym) == 0)
16553 || (S_GET_VALUE (sym) != 0
16554 && S_GET_VALUE (sym) <= g_switch_value)))
16555 change = 0;
16556 else
16557 {
16558 const char *segname;
16559
16560 segname = segment_name (S_GET_SEGMENT (sym));
16561 gas_assert (strcmp (segname, ".lit8") != 0
16562 && strcmp (segname, ".lit4") != 0);
16563 change = (strcmp (segname, ".sdata") != 0
16564 && strcmp (segname, ".sbss") != 0
16565 && strncmp (segname, ".sdata.", 7) != 0
16566 && strncmp (segname, ".sbss.", 6) != 0
16567 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16568 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16569 }
16570 return change;
16571 }
16572 else
16573 /* We are not optimizing for the $gp register. */
16574 return 1;
16575 }
16576
16577
16578 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16579
16580 static bfd_boolean
16581 pic_need_relax (symbolS *sym, asection *segtype)
16582 {
16583 asection *symsec;
16584
16585 /* Handle the case of a symbol equated to another symbol. */
16586 while (symbol_equated_reloc_p (sym))
16587 {
16588 symbolS *n;
16589
16590 /* It's possible to get a loop here in a badly written program. */
16591 n = symbol_get_value_expression (sym)->X_add_symbol;
16592 if (n == sym)
16593 break;
16594 sym = n;
16595 }
16596
16597 if (symbol_section_p (sym))
16598 return TRUE;
16599
16600 symsec = S_GET_SEGMENT (sym);
16601
16602 /* This must duplicate the test in adjust_reloc_syms. */
16603 return (!bfd_is_und_section (symsec)
16604 && !bfd_is_abs_section (symsec)
16605 && !bfd_is_com_section (symsec)
16606 && !s_is_linkonce (sym, segtype)
16607 /* A global or weak symbol is treated as external. */
16608 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16609 }
16610
16611
16612 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16613 extended opcode. SEC is the section the frag is in. */
16614
16615 static int
16616 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16617 {
16618 int type;
16619 const struct mips_int_operand *operand;
16620 offsetT val;
16621 segT symsec;
16622 fragS *sym_frag;
16623
16624 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16625 return 0;
16626 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16627 return 1;
16628
16629 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16630 operand = mips16_immed_operand (type, FALSE);
16631
16632 sym_frag = symbol_get_frag (fragp->fr_symbol);
16633 val = S_GET_VALUE (fragp->fr_symbol);
16634 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16635
16636 if (operand->root.type == OP_PCREL)
16637 {
16638 const struct mips_pcrel_operand *pcrel_op;
16639 addressT addr;
16640 offsetT maxtiny;
16641
16642 /* We won't have the section when we are called from
16643 mips_relax_frag. However, we will always have been called
16644 from md_estimate_size_before_relax first. If this is a
16645 branch to a different section, we mark it as such. If SEC is
16646 NULL, and the frag is not marked, then it must be a branch to
16647 the same section. */
16648 pcrel_op = (const struct mips_pcrel_operand *) operand;
16649 if (sec == NULL)
16650 {
16651 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16652 return 1;
16653 }
16654 else
16655 {
16656 /* Must have been called from md_estimate_size_before_relax. */
16657 if (symsec != sec)
16658 {
16659 fragp->fr_subtype =
16660 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16661
16662 /* FIXME: We should support this, and let the linker
16663 catch branches and loads that are out of range. */
16664 as_bad_where (fragp->fr_file, fragp->fr_line,
16665 _("unsupported PC relative reference to different section"));
16666
16667 return 1;
16668 }
16669 if (fragp != sym_frag && sym_frag->fr_address == 0)
16670 /* Assume non-extended on the first relaxation pass.
16671 The address we have calculated will be bogus if this is
16672 a forward branch to another frag, as the forward frag
16673 will have fr_address == 0. */
16674 return 0;
16675 }
16676
16677 /* In this case, we know for sure that the symbol fragment is in
16678 the same section. If the relax_marker of the symbol fragment
16679 differs from the relax_marker of this fragment, we have not
16680 yet adjusted the symbol fragment fr_address. We want to add
16681 in STRETCH in order to get a better estimate of the address.
16682 This particularly matters because of the shift bits. */
16683 if (stretch != 0
16684 && sym_frag->relax_marker != fragp->relax_marker)
16685 {
16686 fragS *f;
16687
16688 /* Adjust stretch for any alignment frag. Note that if have
16689 been expanding the earlier code, the symbol may be
16690 defined in what appears to be an earlier frag. FIXME:
16691 This doesn't handle the fr_subtype field, which specifies
16692 a maximum number of bytes to skip when doing an
16693 alignment. */
16694 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16695 {
16696 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16697 {
16698 if (stretch < 0)
16699 stretch = - ((- stretch)
16700 & ~ ((1 << (int) f->fr_offset) - 1));
16701 else
16702 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16703 if (stretch == 0)
16704 break;
16705 }
16706 }
16707 if (f != NULL)
16708 val += stretch;
16709 }
16710
16711 addr = fragp->fr_address + fragp->fr_fix;
16712
16713 /* The base address rules are complicated. The base address of
16714 a branch is the following instruction. The base address of a
16715 PC relative load or add is the instruction itself, but if it
16716 is in a delay slot (in which case it can not be extended) use
16717 the address of the instruction whose delay slot it is in. */
16718 if (pcrel_op->include_isa_bit)
16719 {
16720 addr += 2;
16721
16722 /* If we are currently assuming that this frag should be
16723 extended, then, the current address is two bytes
16724 higher. */
16725 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16726 addr += 2;
16727
16728 /* Ignore the low bit in the target, since it will be set
16729 for a text label. */
16730 val &= -2;
16731 }
16732 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16733 addr -= 4;
16734 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16735 addr -= 2;
16736
16737 val -= addr & -(1 << pcrel_op->align_log2);
16738
16739 /* If any of the shifted bits are set, we must use an extended
16740 opcode. If the address depends on the size of this
16741 instruction, this can lead to a loop, so we arrange to always
16742 use an extended opcode. We only check this when we are in
16743 the main relaxation loop, when SEC is NULL. */
16744 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16745 {
16746 fragp->fr_subtype =
16747 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16748 return 1;
16749 }
16750
16751 /* If we are about to mark a frag as extended because the value
16752 is precisely the next value above maxtiny, then there is a
16753 chance of an infinite loop as in the following code:
16754 la $4,foo
16755 .skip 1020
16756 .align 2
16757 foo:
16758 In this case when the la is extended, foo is 0x3fc bytes
16759 away, so the la can be shrunk, but then foo is 0x400 away, so
16760 the la must be extended. To avoid this loop, we mark the
16761 frag as extended if it was small, and is about to become
16762 extended with the next value above maxtiny. */
16763 maxtiny = mips_int_operand_max (operand);
16764 if (val == maxtiny + (1 << operand->shift)
16765 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16766 && sec == NULL)
16767 {
16768 fragp->fr_subtype =
16769 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16770 return 1;
16771 }
16772 }
16773 else if (symsec != absolute_section && sec != NULL)
16774 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16775
16776 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16777 }
16778
16779 /* Compute the length of a branch sequence, and adjust the
16780 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16781 worst-case length is computed, with UPDATE being used to indicate
16782 whether an unconditional (-1), branch-likely (+1) or regular (0)
16783 branch is to be computed. */
16784 static int
16785 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16786 {
16787 bfd_boolean toofar;
16788 int length;
16789
16790 if (fragp
16791 && S_IS_DEFINED (fragp->fr_symbol)
16792 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16793 {
16794 addressT addr;
16795 offsetT val;
16796
16797 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16798
16799 addr = fragp->fr_address + fragp->fr_fix + 4;
16800
16801 val -= addr;
16802
16803 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16804 }
16805 else if (fragp)
16806 /* If the symbol is not defined or it's in a different segment,
16807 assume the user knows what's going on and emit a short
16808 branch. */
16809 toofar = FALSE;
16810 else
16811 toofar = TRUE;
16812
16813 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16814 fragp->fr_subtype
16815 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16816 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16817 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16818 RELAX_BRANCH_LINK (fragp->fr_subtype),
16819 toofar);
16820
16821 length = 4;
16822 if (toofar)
16823 {
16824 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16825 length += 8;
16826
16827 if (mips_pic != NO_PIC)
16828 {
16829 /* Additional space for PIC loading of target address. */
16830 length += 8;
16831 if (mips_opts.isa == ISA_MIPS1)
16832 /* Additional space for $at-stabilizing nop. */
16833 length += 4;
16834 }
16835
16836 /* If branch is conditional. */
16837 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16838 length += 8;
16839 }
16840
16841 return length;
16842 }
16843
16844 /* Compute the length of a branch sequence, and adjust the
16845 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16846 worst-case length is computed, with UPDATE being used to indicate
16847 whether an unconditional (-1), or regular (0) branch is to be
16848 computed. */
16849
16850 static int
16851 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16852 {
16853 bfd_boolean toofar;
16854 int length;
16855
16856 if (fragp
16857 && S_IS_DEFINED (fragp->fr_symbol)
16858 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16859 {
16860 addressT addr;
16861 offsetT val;
16862
16863 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16864 /* Ignore the low bit in the target, since it will be set
16865 for a text label. */
16866 if ((val & 1) != 0)
16867 --val;
16868
16869 addr = fragp->fr_address + fragp->fr_fix + 4;
16870
16871 val -= addr;
16872
16873 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16874 }
16875 else if (fragp)
16876 /* If the symbol is not defined or it's in a different segment,
16877 assume the user knows what's going on and emit a short
16878 branch. */
16879 toofar = FALSE;
16880 else
16881 toofar = TRUE;
16882
16883 if (fragp && update
16884 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16885 fragp->fr_subtype = (toofar
16886 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16887 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16888
16889 length = 4;
16890 if (toofar)
16891 {
16892 bfd_boolean compact_known = fragp != NULL;
16893 bfd_boolean compact = FALSE;
16894 bfd_boolean uncond;
16895
16896 if (compact_known)
16897 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16898 if (fragp)
16899 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16900 else
16901 uncond = update < 0;
16902
16903 /* If label is out of range, we turn branch <br>:
16904
16905 <br> label # 4 bytes
16906 0:
16907
16908 into:
16909
16910 j label # 4 bytes
16911 nop # 2 bytes if compact && !PIC
16912 0:
16913 */
16914 if (mips_pic == NO_PIC && (!compact_known || compact))
16915 length += 2;
16916
16917 /* If assembling PIC code, we further turn:
16918
16919 j label # 4 bytes
16920
16921 into:
16922
16923 lw/ld at, %got(label)(gp) # 4 bytes
16924 d/addiu at, %lo(label) # 4 bytes
16925 jr/c at # 2 bytes
16926 */
16927 if (mips_pic != NO_PIC)
16928 length += 6;
16929
16930 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16931
16932 <brneg> 0f # 4 bytes
16933 nop # 2 bytes if !compact
16934 */
16935 if (!uncond)
16936 length += (compact_known && compact) ? 4 : 6;
16937 }
16938
16939 return length;
16940 }
16941
16942 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16943 bit accordingly. */
16944
16945 static int
16946 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16947 {
16948 bfd_boolean toofar;
16949
16950 if (fragp
16951 && S_IS_DEFINED (fragp->fr_symbol)
16952 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16953 {
16954 addressT addr;
16955 offsetT val;
16956 int type;
16957
16958 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16959 /* Ignore the low bit in the target, since it will be set
16960 for a text label. */
16961 if ((val & 1) != 0)
16962 --val;
16963
16964 /* Assume this is a 2-byte branch. */
16965 addr = fragp->fr_address + fragp->fr_fix + 2;
16966
16967 /* We try to avoid the infinite loop by not adding 2 more bytes for
16968 long branches. */
16969
16970 val -= addr;
16971
16972 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16973 if (type == 'D')
16974 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16975 else if (type == 'E')
16976 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16977 else
16978 abort ();
16979 }
16980 else
16981 /* If the symbol is not defined or it's in a different segment,
16982 we emit a normal 32-bit branch. */
16983 toofar = TRUE;
16984
16985 if (fragp && update
16986 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16987 fragp->fr_subtype
16988 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16989 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16990
16991 if (toofar)
16992 return 4;
16993
16994 return 2;
16995 }
16996
16997 /* Estimate the size of a frag before relaxing. Unless this is the
16998 mips16, we are not really relaxing here, and the final size is
16999 encoded in the subtype information. For the mips16, we have to
17000 decide whether we are using an extended opcode or not. */
17001
17002 int
17003 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17004 {
17005 int change;
17006
17007 if (RELAX_BRANCH_P (fragp->fr_subtype))
17008 {
17009
17010 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17011
17012 return fragp->fr_var;
17013 }
17014
17015 if (RELAX_MIPS16_P (fragp->fr_subtype))
17016 /* We don't want to modify the EXTENDED bit here; it might get us
17017 into infinite loops. We change it only in mips_relax_frag(). */
17018 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17019
17020 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17021 {
17022 int length = 4;
17023
17024 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17025 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17026 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17027 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17028 fragp->fr_var = length;
17029
17030 return length;
17031 }
17032
17033 if (mips_pic == NO_PIC)
17034 change = nopic_need_relax (fragp->fr_symbol, 0);
17035 else if (mips_pic == SVR4_PIC)
17036 change = pic_need_relax (fragp->fr_symbol, segtype);
17037 else if (mips_pic == VXWORKS_PIC)
17038 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17039 change = 0;
17040 else
17041 abort ();
17042
17043 if (change)
17044 {
17045 fragp->fr_subtype |= RELAX_USE_SECOND;
17046 return -RELAX_FIRST (fragp->fr_subtype);
17047 }
17048 else
17049 return -RELAX_SECOND (fragp->fr_subtype);
17050 }
17051
17052 /* This is called to see whether a reloc against a defined symbol
17053 should be converted into a reloc against a section. */
17054
17055 int
17056 mips_fix_adjustable (fixS *fixp)
17057 {
17058 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17059 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17060 return 0;
17061
17062 if (fixp->fx_addsy == NULL)
17063 return 1;
17064
17065 /* Allow relocs used for EH tables. */
17066 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17067 return 1;
17068
17069 /* If symbol SYM is in a mergeable section, relocations of the form
17070 SYM + 0 can usually be made section-relative. The mergeable data
17071 is then identified by the section offset rather than by the symbol.
17072
17073 However, if we're generating REL LO16 relocations, the offset is split
17074 between the LO16 and parterning high part relocation. The linker will
17075 need to recalculate the complete offset in order to correctly identify
17076 the merge data.
17077
17078 The linker has traditionally not looked for the parterning high part
17079 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17080 placed anywhere. Rather than break backwards compatibility by changing
17081 this, it seems better not to force the issue, and instead keep the
17082 original symbol. This will work with either linker behavior. */
17083 if ((lo16_reloc_p (fixp->fx_r_type)
17084 || reloc_needs_lo_p (fixp->fx_r_type))
17085 && HAVE_IN_PLACE_ADDENDS
17086 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17087 return 0;
17088
17089 /* There is no place to store an in-place offset for JALR relocations.
17090 Likewise an in-range offset of limited PC-relative relocations may
17091 overflow the in-place relocatable field if recalculated against the
17092 start address of the symbol's containing section.
17093
17094 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17095 section relative to allow linker relaxations to be performed later on. */
17096 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
17097 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17098 || jalr_reloc_p (fixp->fx_r_type)))
17099 return 0;
17100
17101 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17102 to a floating-point stub. The same is true for non-R_MIPS16_26
17103 relocations against MIPS16 functions; in this case, the stub becomes
17104 the function's canonical address.
17105
17106 Floating-point stubs are stored in unique .mips16.call.* or
17107 .mips16.fn.* sections. If a stub T for function F is in section S,
17108 the first relocation in section S must be against F; this is how the
17109 linker determines the target function. All relocations that might
17110 resolve to T must also be against F. We therefore have the following
17111 restrictions, which are given in an intentionally-redundant way:
17112
17113 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17114 symbols.
17115
17116 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17117 if that stub might be used.
17118
17119 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17120 symbols.
17121
17122 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17123 that stub might be used.
17124
17125 There is a further restriction:
17126
17127 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17128 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17129 targets with in-place addends; the relocation field cannot
17130 encode the low bit.
17131
17132 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17133 against a MIPS16 symbol. We deal with (5) by by not reducing any
17134 such relocations on REL targets.
17135
17136 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17137 relocation against some symbol R, no relocation against R may be
17138 reduced. (Note that this deals with (2) as well as (1) because
17139 relocations against global symbols will never be reduced on ELF
17140 targets.) This approach is a little simpler than trying to detect
17141 stub sections, and gives the "all or nothing" per-symbol consistency
17142 that we have for MIPS16 symbols. */
17143 if (fixp->fx_subsy == NULL
17144 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17145 || *symbol_get_tc (fixp->fx_addsy)
17146 || (HAVE_IN_PLACE_ADDENDS
17147 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17148 && jmp_reloc_p (fixp->fx_r_type))))
17149 return 0;
17150
17151 return 1;
17152 }
17153
17154 /* Translate internal representation of relocation info to BFD target
17155 format. */
17156
17157 arelent **
17158 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17159 {
17160 static arelent *retval[4];
17161 arelent *reloc;
17162 bfd_reloc_code_real_type code;
17163
17164 memset (retval, 0, sizeof(retval));
17165 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
17166 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17167 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17168 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17169
17170 if (fixp->fx_pcrel)
17171 {
17172 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17173 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17174 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17175 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17176 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17177 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17178 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17179 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17180 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17181 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17182 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17183
17184 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17185 Relocations want only the symbol offset. */
17186 reloc->addend = fixp->fx_addnumber + reloc->address;
17187 }
17188 else
17189 reloc->addend = fixp->fx_addnumber;
17190
17191 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17192 entry to be used in the relocation's section offset. */
17193 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17194 {
17195 reloc->address = reloc->addend;
17196 reloc->addend = 0;
17197 }
17198
17199 code = fixp->fx_r_type;
17200
17201 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17202 if (reloc->howto == NULL)
17203 {
17204 as_bad_where (fixp->fx_file, fixp->fx_line,
17205 _("cannot represent %s relocation in this object file"
17206 " format"),
17207 bfd_get_reloc_code_name (code));
17208 retval[0] = NULL;
17209 }
17210
17211 return retval;
17212 }
17213
17214 /* Relax a machine dependent frag. This returns the amount by which
17215 the current size of the frag should change. */
17216
17217 int
17218 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17219 {
17220 if (RELAX_BRANCH_P (fragp->fr_subtype))
17221 {
17222 offsetT old_var = fragp->fr_var;
17223
17224 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17225
17226 return fragp->fr_var - old_var;
17227 }
17228
17229 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17230 {
17231 offsetT old_var = fragp->fr_var;
17232 offsetT new_var = 4;
17233
17234 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17235 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17236 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17237 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17238 fragp->fr_var = new_var;
17239
17240 return new_var - old_var;
17241 }
17242
17243 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17244 return 0;
17245
17246 if (mips16_extended_frag (fragp, NULL, stretch))
17247 {
17248 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17249 return 0;
17250 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17251 return 2;
17252 }
17253 else
17254 {
17255 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17256 return 0;
17257 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17258 return -2;
17259 }
17260
17261 return 0;
17262 }
17263
17264 /* Convert a machine dependent frag. */
17265
17266 void
17267 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17268 {
17269 if (RELAX_BRANCH_P (fragp->fr_subtype))
17270 {
17271 char *buf;
17272 unsigned long insn;
17273 expressionS exp;
17274 fixS *fixp;
17275
17276 buf = fragp->fr_literal + fragp->fr_fix;
17277 insn = read_insn (buf);
17278
17279 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17280 {
17281 /* We generate a fixup instead of applying it right now
17282 because, if there are linker relaxations, we're going to
17283 need the relocations. */
17284 exp.X_op = O_symbol;
17285 exp.X_add_symbol = fragp->fr_symbol;
17286 exp.X_add_number = fragp->fr_offset;
17287
17288 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17289 BFD_RELOC_16_PCREL_S2);
17290 fixp->fx_file = fragp->fr_file;
17291 fixp->fx_line = fragp->fr_line;
17292
17293 buf = write_insn (buf, insn);
17294 }
17295 else
17296 {
17297 int i;
17298
17299 as_warn_where (fragp->fr_file, fragp->fr_line,
17300 _("relaxed out-of-range branch into a jump"));
17301
17302 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17303 goto uncond;
17304
17305 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17306 {
17307 /* Reverse the branch. */
17308 switch ((insn >> 28) & 0xf)
17309 {
17310 case 4:
17311 if ((insn & 0xff000000) == 0x47000000
17312 || (insn & 0xff600000) == 0x45600000)
17313 {
17314 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17315 reversed by tweaking bit 23. */
17316 insn ^= 0x00800000;
17317 }
17318 else
17319 {
17320 /* bc[0-3][tf]l? instructions can have the condition
17321 reversed by tweaking a single TF bit, and their
17322 opcodes all have 0x4???????. */
17323 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17324 insn ^= 0x00010000;
17325 }
17326 break;
17327
17328 case 0:
17329 /* bltz 0x04000000 bgez 0x04010000
17330 bltzal 0x04100000 bgezal 0x04110000 */
17331 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17332 insn ^= 0x00010000;
17333 break;
17334
17335 case 1:
17336 /* beq 0x10000000 bne 0x14000000
17337 blez 0x18000000 bgtz 0x1c000000 */
17338 insn ^= 0x04000000;
17339 break;
17340
17341 default:
17342 abort ();
17343 }
17344 }
17345
17346 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17347 {
17348 /* Clear the and-link bit. */
17349 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17350
17351 /* bltzal 0x04100000 bgezal 0x04110000
17352 bltzall 0x04120000 bgezall 0x04130000 */
17353 insn &= ~0x00100000;
17354 }
17355
17356 /* Branch over the branch (if the branch was likely) or the
17357 full jump (not likely case). Compute the offset from the
17358 current instruction to branch to. */
17359 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17360 i = 16;
17361 else
17362 {
17363 /* How many bytes in instructions we've already emitted? */
17364 i = buf - fragp->fr_literal - fragp->fr_fix;
17365 /* How many bytes in instructions from here to the end? */
17366 i = fragp->fr_var - i;
17367 }
17368 /* Convert to instruction count. */
17369 i >>= 2;
17370 /* Branch counts from the next instruction. */
17371 i--;
17372 insn |= i;
17373 /* Branch over the jump. */
17374 buf = write_insn (buf, insn);
17375
17376 /* nop */
17377 buf = write_insn (buf, 0);
17378
17379 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17380 {
17381 /* beql $0, $0, 2f */
17382 insn = 0x50000000;
17383 /* Compute the PC offset from the current instruction to
17384 the end of the variable frag. */
17385 /* How many bytes in instructions we've already emitted? */
17386 i = buf - fragp->fr_literal - fragp->fr_fix;
17387 /* How many bytes in instructions from here to the end? */
17388 i = fragp->fr_var - i;
17389 /* Convert to instruction count. */
17390 i >>= 2;
17391 /* Don't decrement i, because we want to branch over the
17392 delay slot. */
17393 insn |= i;
17394
17395 buf = write_insn (buf, insn);
17396 buf = write_insn (buf, 0);
17397 }
17398
17399 uncond:
17400 if (mips_pic == NO_PIC)
17401 {
17402 /* j or jal. */
17403 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17404 ? 0x0c000000 : 0x08000000);
17405 exp.X_op = O_symbol;
17406 exp.X_add_symbol = fragp->fr_symbol;
17407 exp.X_add_number = fragp->fr_offset;
17408
17409 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17410 FALSE, BFD_RELOC_MIPS_JMP);
17411 fixp->fx_file = fragp->fr_file;
17412 fixp->fx_line = fragp->fr_line;
17413
17414 buf = write_insn (buf, insn);
17415 }
17416 else
17417 {
17418 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17419
17420 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17421 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17422 insn |= at << OP_SH_RT;
17423 exp.X_op = O_symbol;
17424 exp.X_add_symbol = fragp->fr_symbol;
17425 exp.X_add_number = fragp->fr_offset;
17426
17427 if (fragp->fr_offset)
17428 {
17429 exp.X_add_symbol = make_expr_symbol (&exp);
17430 exp.X_add_number = 0;
17431 }
17432
17433 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17434 FALSE, BFD_RELOC_MIPS_GOT16);
17435 fixp->fx_file = fragp->fr_file;
17436 fixp->fx_line = fragp->fr_line;
17437
17438 buf = write_insn (buf, insn);
17439
17440 if (mips_opts.isa == ISA_MIPS1)
17441 /* nop */
17442 buf = write_insn (buf, 0);
17443
17444 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17445 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17446 insn |= at << OP_SH_RS | at << OP_SH_RT;
17447
17448 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17449 FALSE, BFD_RELOC_LO16);
17450 fixp->fx_file = fragp->fr_file;
17451 fixp->fx_line = fragp->fr_line;
17452
17453 buf = write_insn (buf, insn);
17454
17455 /* j(al)r $at. */
17456 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17457 insn = 0x0000f809;
17458 else
17459 insn = 0x00000008;
17460 insn |= at << OP_SH_RS;
17461
17462 buf = write_insn (buf, insn);
17463 }
17464 }
17465
17466 fragp->fr_fix += fragp->fr_var;
17467 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17468 return;
17469 }
17470
17471 /* Relax microMIPS branches. */
17472 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17473 {
17474 char *buf = fragp->fr_literal + fragp->fr_fix;
17475 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17476 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17477 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17478 bfd_boolean short_ds;
17479 unsigned long insn;
17480 expressionS exp;
17481 fixS *fixp;
17482
17483 exp.X_op = O_symbol;
17484 exp.X_add_symbol = fragp->fr_symbol;
17485 exp.X_add_number = fragp->fr_offset;
17486
17487 fragp->fr_fix += fragp->fr_var;
17488
17489 /* Handle 16-bit branches that fit or are forced to fit. */
17490 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17491 {
17492 /* We generate a fixup instead of applying it right now,
17493 because if there is linker relaxation, we're going to
17494 need the relocations. */
17495 if (type == 'D')
17496 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17497 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17498 else if (type == 'E')
17499 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17500 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17501 else
17502 abort ();
17503
17504 fixp->fx_file = fragp->fr_file;
17505 fixp->fx_line = fragp->fr_line;
17506
17507 /* These relocations can have an addend that won't fit in
17508 2 octets. */
17509 fixp->fx_no_overflow = 1;
17510
17511 return;
17512 }
17513
17514 /* Handle 32-bit branches that fit or are forced to fit. */
17515 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17516 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17517 {
17518 /* We generate a fixup instead of applying it right now,
17519 because if there is linker relaxation, we're going to
17520 need the relocations. */
17521 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17522 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17523 fixp->fx_file = fragp->fr_file;
17524 fixp->fx_line = fragp->fr_line;
17525
17526 if (type == 0)
17527 return;
17528 }
17529
17530 /* Relax 16-bit branches to 32-bit branches. */
17531 if (type != 0)
17532 {
17533 insn = read_compressed_insn (buf, 2);
17534
17535 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17536 insn = 0x94000000; /* beq */
17537 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17538 {
17539 unsigned long regno;
17540
17541 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17542 regno = micromips_to_32_reg_d_map [regno];
17543 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17544 insn |= regno << MICROMIPSOP_SH_RS;
17545 }
17546 else
17547 abort ();
17548
17549 /* Nothing else to do, just write it out. */
17550 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17551 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17552 {
17553 buf = write_compressed_insn (buf, insn, 4);
17554 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17555 return;
17556 }
17557 }
17558 else
17559 insn = read_compressed_insn (buf, 4);
17560
17561 /* Relax 32-bit branches to a sequence of instructions. */
17562 as_warn_where (fragp->fr_file, fragp->fr_line,
17563 _("relaxed out-of-range branch into a jump"));
17564
17565 /* Set the short-delay-slot bit. */
17566 short_ds = al && (insn & 0x02000000) != 0;
17567
17568 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17569 {
17570 symbolS *l;
17571
17572 /* Reverse the branch. */
17573 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17574 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17575 insn ^= 0x20000000;
17576 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17577 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17578 || (insn & 0xffe00000) == 0x40800000 /* blez */
17579 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17580 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17581 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17582 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17583 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17584 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17585 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17586 insn ^= 0x00400000;
17587 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17588 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17589 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17590 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17591 insn ^= 0x00200000;
17592 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17593 BNZ.df */
17594 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17595 BNZ.V */
17596 insn ^= 0x00800000;
17597 else
17598 abort ();
17599
17600 if (al)
17601 {
17602 /* Clear the and-link and short-delay-slot bits. */
17603 gas_assert ((insn & 0xfda00000) == 0x40200000);
17604
17605 /* bltzal 0x40200000 bgezal 0x40600000 */
17606 /* bltzals 0x42200000 bgezals 0x42600000 */
17607 insn &= ~0x02200000;
17608 }
17609
17610 /* Make a label at the end for use with the branch. */
17611 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17612 micromips_label_inc ();
17613 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17614
17615 /* Refer to it. */
17616 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17617 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17618 fixp->fx_file = fragp->fr_file;
17619 fixp->fx_line = fragp->fr_line;
17620
17621 /* Branch over the jump. */
17622 buf = write_compressed_insn (buf, insn, 4);
17623 if (!compact)
17624 /* nop */
17625 buf = write_compressed_insn (buf, 0x0c00, 2);
17626 }
17627
17628 if (mips_pic == NO_PIC)
17629 {
17630 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17631
17632 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17633 insn = al ? jal : 0xd4000000;
17634
17635 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17636 BFD_RELOC_MICROMIPS_JMP);
17637 fixp->fx_file = fragp->fr_file;
17638 fixp->fx_line = fragp->fr_line;
17639
17640 buf = write_compressed_insn (buf, insn, 4);
17641 if (compact)
17642 /* nop */
17643 buf = write_compressed_insn (buf, 0x0c00, 2);
17644 }
17645 else
17646 {
17647 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17648 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17649 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17650
17651 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17652 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17653 insn |= at << MICROMIPSOP_SH_RT;
17654
17655 if (exp.X_add_number)
17656 {
17657 exp.X_add_symbol = make_expr_symbol (&exp);
17658 exp.X_add_number = 0;
17659 }
17660
17661 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17662 BFD_RELOC_MICROMIPS_GOT16);
17663 fixp->fx_file = fragp->fr_file;
17664 fixp->fx_line = fragp->fr_line;
17665
17666 buf = write_compressed_insn (buf, insn, 4);
17667
17668 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17669 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17670 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17671
17672 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17673 BFD_RELOC_MICROMIPS_LO16);
17674 fixp->fx_file = fragp->fr_file;
17675 fixp->fx_line = fragp->fr_line;
17676
17677 buf = write_compressed_insn (buf, insn, 4);
17678
17679 /* jr/jrc/jalr/jalrs $at */
17680 insn = al ? jalr : jr;
17681 insn |= at << MICROMIPSOP_SH_MJ;
17682
17683 buf = write_compressed_insn (buf, insn, 2);
17684 }
17685
17686 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17687 return;
17688 }
17689
17690 if (RELAX_MIPS16_P (fragp->fr_subtype))
17691 {
17692 int type;
17693 const struct mips_int_operand *operand;
17694 offsetT val;
17695 char *buf;
17696 unsigned int user_length, length;
17697 unsigned long insn;
17698 bfd_boolean ext;
17699
17700 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17701 operand = mips16_immed_operand (type, FALSE);
17702
17703 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17704 val = resolve_symbol_value (fragp->fr_symbol);
17705 if (operand->root.type == OP_PCREL)
17706 {
17707 const struct mips_pcrel_operand *pcrel_op;
17708 addressT addr;
17709
17710 pcrel_op = (const struct mips_pcrel_operand *) operand;
17711 addr = fragp->fr_address + fragp->fr_fix;
17712
17713 /* The rules for the base address of a PC relative reloc are
17714 complicated; see mips16_extended_frag. */
17715 if (pcrel_op->include_isa_bit)
17716 {
17717 addr += 2;
17718 if (ext)
17719 addr += 2;
17720 /* Ignore the low bit in the target, since it will be
17721 set for a text label. */
17722 val &= -2;
17723 }
17724 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17725 addr -= 4;
17726 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17727 addr -= 2;
17728
17729 addr &= -(1 << pcrel_op->align_log2);
17730 val -= addr;
17731
17732 /* Make sure the section winds up with the alignment we have
17733 assumed. */
17734 if (operand->shift > 0)
17735 record_alignment (asec, operand->shift);
17736 }
17737
17738 if (ext
17739 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17740 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17741 as_warn_where (fragp->fr_file, fragp->fr_line,
17742 _("extended instruction in delay slot"));
17743
17744 buf = fragp->fr_literal + fragp->fr_fix;
17745
17746 insn = read_compressed_insn (buf, 2);
17747 if (ext)
17748 insn |= MIPS16_EXTEND;
17749
17750 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17751 user_length = 4;
17752 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17753 user_length = 2;
17754 else
17755 user_length = 0;
17756
17757 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17758 BFD_RELOC_UNUSED, val, user_length, &insn);
17759
17760 length = (ext ? 4 : 2);
17761 gas_assert (mips16_opcode_length (insn) == length);
17762 write_compressed_insn (buf, insn, length);
17763 fragp->fr_fix += length;
17764 }
17765 else
17766 {
17767 relax_substateT subtype = fragp->fr_subtype;
17768 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17769 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17770 int first, second;
17771 fixS *fixp;
17772
17773 first = RELAX_FIRST (subtype);
17774 second = RELAX_SECOND (subtype);
17775 fixp = (fixS *) fragp->fr_opcode;
17776
17777 /* If the delay slot chosen does not match the size of the instruction,
17778 then emit a warning. */
17779 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17780 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17781 {
17782 relax_substateT s;
17783 const char *msg;
17784
17785 s = subtype & (RELAX_DELAY_SLOT_16BIT
17786 | RELAX_DELAY_SLOT_SIZE_FIRST
17787 | RELAX_DELAY_SLOT_SIZE_SECOND);
17788 msg = macro_warning (s);
17789 if (msg != NULL)
17790 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17791 subtype &= ~s;
17792 }
17793
17794 /* Possibly emit a warning if we've chosen the longer option. */
17795 if (use_second == second_longer)
17796 {
17797 relax_substateT s;
17798 const char *msg;
17799
17800 s = (subtype
17801 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17802 msg = macro_warning (s);
17803 if (msg != NULL)
17804 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17805 subtype &= ~s;
17806 }
17807
17808 /* Go through all the fixups for the first sequence. Disable them
17809 (by marking them as done) if we're going to use the second
17810 sequence instead. */
17811 while (fixp
17812 && fixp->fx_frag == fragp
17813 && fixp->fx_where < fragp->fr_fix - second)
17814 {
17815 if (subtype & RELAX_USE_SECOND)
17816 fixp->fx_done = 1;
17817 fixp = fixp->fx_next;
17818 }
17819
17820 /* Go through the fixups for the second sequence. Disable them if
17821 we're going to use the first sequence, otherwise adjust their
17822 addresses to account for the relaxation. */
17823 while (fixp && fixp->fx_frag == fragp)
17824 {
17825 if (subtype & RELAX_USE_SECOND)
17826 fixp->fx_where -= first;
17827 else
17828 fixp->fx_done = 1;
17829 fixp = fixp->fx_next;
17830 }
17831
17832 /* Now modify the frag contents. */
17833 if (subtype & RELAX_USE_SECOND)
17834 {
17835 char *start;
17836
17837 start = fragp->fr_literal + fragp->fr_fix - first - second;
17838 memmove (start, start + first, second);
17839 fragp->fr_fix -= first;
17840 }
17841 else
17842 fragp->fr_fix -= second;
17843 }
17844 }
17845
17846 /* This function is called after the relocs have been generated.
17847 We've been storing mips16 text labels as odd. Here we convert them
17848 back to even for the convenience of the debugger. */
17849
17850 void
17851 mips_frob_file_after_relocs (void)
17852 {
17853 asymbol **syms;
17854 unsigned int count, i;
17855
17856 syms = bfd_get_outsymbols (stdoutput);
17857 count = bfd_get_symcount (stdoutput);
17858 for (i = 0; i < count; i++, syms++)
17859 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17860 && ((*syms)->value & 1) != 0)
17861 {
17862 (*syms)->value &= ~1;
17863 /* If the symbol has an odd size, it was probably computed
17864 incorrectly, so adjust that as well. */
17865 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17866 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17867 }
17868 }
17869
17870 /* This function is called whenever a label is defined, including fake
17871 labels instantiated off the dot special symbol. It is used when
17872 handling branch delays; if a branch has a label, we assume we cannot
17873 move it. This also bumps the value of the symbol by 1 in compressed
17874 code. */
17875
17876 static void
17877 mips_record_label (symbolS *sym)
17878 {
17879 segment_info_type *si = seg_info (now_seg);
17880 struct insn_label_list *l;
17881
17882 if (free_insn_labels == NULL)
17883 l = (struct insn_label_list *) xmalloc (sizeof *l);
17884 else
17885 {
17886 l = free_insn_labels;
17887 free_insn_labels = l->next;
17888 }
17889
17890 l->label = sym;
17891 l->next = si->label_list;
17892 si->label_list = l;
17893 }
17894
17895 /* This function is called as tc_frob_label() whenever a label is defined
17896 and adds a DWARF-2 record we only want for true labels. */
17897
17898 void
17899 mips_define_label (symbolS *sym)
17900 {
17901 mips_record_label (sym);
17902 dwarf2_emit_label (sym);
17903 }
17904
17905 /* This function is called by tc_new_dot_label whenever a new dot symbol
17906 is defined. */
17907
17908 void
17909 mips_add_dot_label (symbolS *sym)
17910 {
17911 mips_record_label (sym);
17912 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17913 mips_compressed_mark_label (sym);
17914 }
17915 \f
17916 /* Converting ASE flags from internal to .MIPS.abiflags values. */
17917 static unsigned int
17918 mips_convert_ase_flags (int ase)
17919 {
17920 unsigned int ext_ases = 0;
17921
17922 if (ase & ASE_DSP)
17923 ext_ases |= AFL_ASE_DSP;
17924 if (ase & ASE_DSPR2)
17925 ext_ases |= AFL_ASE_DSPR2;
17926 if (ase & ASE_EVA)
17927 ext_ases |= AFL_ASE_EVA;
17928 if (ase & ASE_MCU)
17929 ext_ases |= AFL_ASE_MCU;
17930 if (ase & ASE_MDMX)
17931 ext_ases |= AFL_ASE_MDMX;
17932 if (ase & ASE_MIPS3D)
17933 ext_ases |= AFL_ASE_MIPS3D;
17934 if (ase & ASE_MT)
17935 ext_ases |= AFL_ASE_MT;
17936 if (ase & ASE_SMARTMIPS)
17937 ext_ases |= AFL_ASE_SMARTMIPS;
17938 if (ase & ASE_VIRT)
17939 ext_ases |= AFL_ASE_VIRT;
17940 if (ase & ASE_MSA)
17941 ext_ases |= AFL_ASE_MSA;
17942 if (ase & ASE_XPA)
17943 ext_ases |= AFL_ASE_XPA;
17944
17945 return ext_ases;
17946 }
17947 /* Some special processing for a MIPS ELF file. */
17948
17949 void
17950 mips_elf_final_processing (void)
17951 {
17952 int fpabi;
17953 Elf_Internal_ABIFlags_v0 flags;
17954
17955 flags.version = 0;
17956 flags.isa_rev = 0;
17957 switch (file_mips_opts.isa)
17958 {
17959 case INSN_ISA1:
17960 flags.isa_level = 1;
17961 break;
17962 case INSN_ISA2:
17963 flags.isa_level = 2;
17964 break;
17965 case INSN_ISA3:
17966 flags.isa_level = 3;
17967 break;
17968 case INSN_ISA4:
17969 flags.isa_level = 4;
17970 break;
17971 case INSN_ISA5:
17972 flags.isa_level = 5;
17973 break;
17974 case INSN_ISA32:
17975 flags.isa_level = 32;
17976 flags.isa_rev = 1;
17977 break;
17978 case INSN_ISA32R2:
17979 flags.isa_level = 32;
17980 flags.isa_rev = 2;
17981 break;
17982 case INSN_ISA32R3:
17983 flags.isa_level = 32;
17984 flags.isa_rev = 3;
17985 break;
17986 case INSN_ISA32R5:
17987 flags.isa_level = 32;
17988 flags.isa_rev = 5;
17989 break;
17990 case INSN_ISA32R6:
17991 flags.isa_level = 32;
17992 flags.isa_rev = 6;
17993 break;
17994 case INSN_ISA64:
17995 flags.isa_level = 64;
17996 flags.isa_rev = 1;
17997 break;
17998 case INSN_ISA64R2:
17999 flags.isa_level = 64;
18000 flags.isa_rev = 2;
18001 break;
18002 case INSN_ISA64R3:
18003 flags.isa_level = 64;
18004 flags.isa_rev = 3;
18005 break;
18006 case INSN_ISA64R5:
18007 flags.isa_level = 64;
18008 flags.isa_rev = 5;
18009 break;
18010 case INSN_ISA64R6:
18011 flags.isa_level = 64;
18012 flags.isa_rev = 6;
18013 break;
18014 }
18015
18016 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18017 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18018 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18019 : (file_mips_opts.fp == 64) ? AFL_REG_64
18020 : AFL_REG_32;
18021 flags.cpr2_size = AFL_REG_NONE;
18022 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18023 Tag_GNU_MIPS_ABI_FP);
18024 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18025 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18026 if (file_ase_mips16)
18027 flags.ases |= AFL_ASE_MIPS16;
18028 if (file_ase_micromips)
18029 flags.ases |= AFL_ASE_MICROMIPS;
18030 flags.flags1 = 0;
18031 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18032 || file_mips_opts.fp == 64)
18033 && file_mips_opts.oddspreg)
18034 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18035 flags.flags2 = 0;
18036
18037 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18038 ((Elf_External_ABIFlags_v0 *)
18039 mips_flags_frag));
18040
18041 /* Write out the register information. */
18042 if (mips_abi != N64_ABI)
18043 {
18044 Elf32_RegInfo s;
18045
18046 s.ri_gprmask = mips_gprmask;
18047 s.ri_cprmask[0] = mips_cprmask[0];
18048 s.ri_cprmask[1] = mips_cprmask[1];
18049 s.ri_cprmask[2] = mips_cprmask[2];
18050 s.ri_cprmask[3] = mips_cprmask[3];
18051 /* The gp_value field is set by the MIPS ELF backend. */
18052
18053 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18054 ((Elf32_External_RegInfo *)
18055 mips_regmask_frag));
18056 }
18057 else
18058 {
18059 Elf64_Internal_RegInfo s;
18060
18061 s.ri_gprmask = mips_gprmask;
18062 s.ri_pad = 0;
18063 s.ri_cprmask[0] = mips_cprmask[0];
18064 s.ri_cprmask[1] = mips_cprmask[1];
18065 s.ri_cprmask[2] = mips_cprmask[2];
18066 s.ri_cprmask[3] = mips_cprmask[3];
18067 /* The gp_value field is set by the MIPS ELF backend. */
18068
18069 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18070 ((Elf64_External_RegInfo *)
18071 mips_regmask_frag));
18072 }
18073
18074 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18075 sort of BFD interface for this. */
18076 if (mips_any_noreorder)
18077 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18078 if (mips_pic != NO_PIC)
18079 {
18080 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18081 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18082 }
18083 if (mips_abicalls)
18084 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18085
18086 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18087 defined at present; this might need to change in future. */
18088 if (file_ase_mips16)
18089 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18090 if (file_ase_micromips)
18091 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18092 if (file_mips_opts.ase & ASE_MDMX)
18093 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18094
18095 /* Set the MIPS ELF ABI flags. */
18096 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18097 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18098 else if (mips_abi == O64_ABI)
18099 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18100 else if (mips_abi == EABI_ABI)
18101 {
18102 if (file_mips_opts.gp == 64)
18103 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18104 else
18105 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18106 }
18107 else if (mips_abi == N32_ABI)
18108 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18109
18110 /* Nothing to do for N64_ABI. */
18111
18112 if (mips_32bitmode)
18113 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18114
18115 if (mips_nan2008 == 1)
18116 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18117
18118 /* 32 bit code with 64 bit FP registers. */
18119 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18120 Tag_GNU_MIPS_ABI_FP);
18121 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18122 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18123 }
18124 \f
18125 typedef struct proc {
18126 symbolS *func_sym;
18127 symbolS *func_end_sym;
18128 unsigned long reg_mask;
18129 unsigned long reg_offset;
18130 unsigned long fpreg_mask;
18131 unsigned long fpreg_offset;
18132 unsigned long frame_offset;
18133 unsigned long frame_reg;
18134 unsigned long pc_reg;
18135 } procS;
18136
18137 static procS cur_proc;
18138 static procS *cur_proc_ptr;
18139 static int numprocs;
18140
18141 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18142 as "2", and a normal nop as "0". */
18143
18144 #define NOP_OPCODE_MIPS 0
18145 #define NOP_OPCODE_MIPS16 1
18146 #define NOP_OPCODE_MICROMIPS 2
18147
18148 char
18149 mips_nop_opcode (void)
18150 {
18151 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18152 return NOP_OPCODE_MICROMIPS;
18153 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18154 return NOP_OPCODE_MIPS16;
18155 else
18156 return NOP_OPCODE_MIPS;
18157 }
18158
18159 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18160 32-bit microMIPS NOPs here (if applicable). */
18161
18162 void
18163 mips_handle_align (fragS *fragp)
18164 {
18165 char nop_opcode;
18166 char *p;
18167 int bytes, size, excess;
18168 valueT opcode;
18169
18170 if (fragp->fr_type != rs_align_code)
18171 return;
18172
18173 p = fragp->fr_literal + fragp->fr_fix;
18174 nop_opcode = *p;
18175 switch (nop_opcode)
18176 {
18177 case NOP_OPCODE_MICROMIPS:
18178 opcode = micromips_nop32_insn.insn_opcode;
18179 size = 4;
18180 break;
18181 case NOP_OPCODE_MIPS16:
18182 opcode = mips16_nop_insn.insn_opcode;
18183 size = 2;
18184 break;
18185 case NOP_OPCODE_MIPS:
18186 default:
18187 opcode = nop_insn.insn_opcode;
18188 size = 4;
18189 break;
18190 }
18191
18192 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18193 excess = bytes % size;
18194
18195 /* Handle the leading part if we're not inserting a whole number of
18196 instructions, and make it the end of the fixed part of the frag.
18197 Try to fit in a short microMIPS NOP if applicable and possible,
18198 and use zeroes otherwise. */
18199 gas_assert (excess < 4);
18200 fragp->fr_fix += excess;
18201 switch (excess)
18202 {
18203 case 3:
18204 *p++ = '\0';
18205 /* Fall through. */
18206 case 2:
18207 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18208 {
18209 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18210 break;
18211 }
18212 *p++ = '\0';
18213 /* Fall through. */
18214 case 1:
18215 *p++ = '\0';
18216 /* Fall through. */
18217 case 0:
18218 break;
18219 }
18220
18221 md_number_to_chars (p, opcode, size);
18222 fragp->fr_var = size;
18223 }
18224
18225 static long
18226 get_number (void)
18227 {
18228 int negative = 0;
18229 long val = 0;
18230
18231 if (*input_line_pointer == '-')
18232 {
18233 ++input_line_pointer;
18234 negative = 1;
18235 }
18236 if (!ISDIGIT (*input_line_pointer))
18237 as_bad (_("expected simple number"));
18238 if (input_line_pointer[0] == '0')
18239 {
18240 if (input_line_pointer[1] == 'x')
18241 {
18242 input_line_pointer += 2;
18243 while (ISXDIGIT (*input_line_pointer))
18244 {
18245 val <<= 4;
18246 val |= hex_value (*input_line_pointer++);
18247 }
18248 return negative ? -val : val;
18249 }
18250 else
18251 {
18252 ++input_line_pointer;
18253 while (ISDIGIT (*input_line_pointer))
18254 {
18255 val <<= 3;
18256 val |= *input_line_pointer++ - '0';
18257 }
18258 return negative ? -val : val;
18259 }
18260 }
18261 if (!ISDIGIT (*input_line_pointer))
18262 {
18263 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18264 *input_line_pointer, *input_line_pointer);
18265 as_warn (_("invalid number"));
18266 return -1;
18267 }
18268 while (ISDIGIT (*input_line_pointer))
18269 {
18270 val *= 10;
18271 val += *input_line_pointer++ - '0';
18272 }
18273 return negative ? -val : val;
18274 }
18275
18276 /* The .file directive; just like the usual .file directive, but there
18277 is an initial number which is the ECOFF file index. In the non-ECOFF
18278 case .file implies DWARF-2. */
18279
18280 static void
18281 s_mips_file (int x ATTRIBUTE_UNUSED)
18282 {
18283 static int first_file_directive = 0;
18284
18285 if (ECOFF_DEBUGGING)
18286 {
18287 get_number ();
18288 s_app_file (0);
18289 }
18290 else
18291 {
18292 char *filename;
18293
18294 filename = dwarf2_directive_file (0);
18295
18296 /* Versions of GCC up to 3.1 start files with a ".file"
18297 directive even for stabs output. Make sure that this
18298 ".file" is handled. Note that you need a version of GCC
18299 after 3.1 in order to support DWARF-2 on MIPS. */
18300 if (filename != NULL && ! first_file_directive)
18301 {
18302 (void) new_logical_line (filename, -1);
18303 s_app_file_string (filename, 0);
18304 }
18305 first_file_directive = 1;
18306 }
18307 }
18308
18309 /* The .loc directive, implying DWARF-2. */
18310
18311 static void
18312 s_mips_loc (int x ATTRIBUTE_UNUSED)
18313 {
18314 if (!ECOFF_DEBUGGING)
18315 dwarf2_directive_loc (0);
18316 }
18317
18318 /* The .end directive. */
18319
18320 static void
18321 s_mips_end (int x ATTRIBUTE_UNUSED)
18322 {
18323 symbolS *p;
18324
18325 /* Following functions need their own .frame and .cprestore directives. */
18326 mips_frame_reg_valid = 0;
18327 mips_cprestore_valid = 0;
18328
18329 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18330 {
18331 p = get_symbol ();
18332 demand_empty_rest_of_line ();
18333 }
18334 else
18335 p = NULL;
18336
18337 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18338 as_warn (_(".end not in text section"));
18339
18340 if (!cur_proc_ptr)
18341 {
18342 as_warn (_(".end directive without a preceding .ent directive"));
18343 demand_empty_rest_of_line ();
18344 return;
18345 }
18346
18347 if (p != NULL)
18348 {
18349 gas_assert (S_GET_NAME (p));
18350 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18351 as_warn (_(".end symbol does not match .ent symbol"));
18352
18353 if (debug_type == DEBUG_STABS)
18354 stabs_generate_asm_endfunc (S_GET_NAME (p),
18355 S_GET_NAME (p));
18356 }
18357 else
18358 as_warn (_(".end directive missing or unknown symbol"));
18359
18360 /* Create an expression to calculate the size of the function. */
18361 if (p && cur_proc_ptr)
18362 {
18363 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18364 expressionS *exp = xmalloc (sizeof (expressionS));
18365
18366 obj->size = exp;
18367 exp->X_op = O_subtract;
18368 exp->X_add_symbol = symbol_temp_new_now ();
18369 exp->X_op_symbol = p;
18370 exp->X_add_number = 0;
18371
18372 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18373 }
18374
18375 /* Generate a .pdr section. */
18376 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18377 {
18378 segT saved_seg = now_seg;
18379 subsegT saved_subseg = now_subseg;
18380 expressionS exp;
18381 char *fragp;
18382
18383 #ifdef md_flush_pending_output
18384 md_flush_pending_output ();
18385 #endif
18386
18387 gas_assert (pdr_seg);
18388 subseg_set (pdr_seg, 0);
18389
18390 /* Write the symbol. */
18391 exp.X_op = O_symbol;
18392 exp.X_add_symbol = p;
18393 exp.X_add_number = 0;
18394 emit_expr (&exp, 4);
18395
18396 fragp = frag_more (7 * 4);
18397
18398 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18399 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18400 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18401 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18402 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18403 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18404 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18405
18406 subseg_set (saved_seg, saved_subseg);
18407 }
18408
18409 cur_proc_ptr = NULL;
18410 }
18411
18412 /* The .aent and .ent directives. */
18413
18414 static void
18415 s_mips_ent (int aent)
18416 {
18417 symbolS *symbolP;
18418
18419 symbolP = get_symbol ();
18420 if (*input_line_pointer == ',')
18421 ++input_line_pointer;
18422 SKIP_WHITESPACE ();
18423 if (ISDIGIT (*input_line_pointer)
18424 || *input_line_pointer == '-')
18425 get_number ();
18426
18427 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18428 as_warn (_(".ent or .aent not in text section"));
18429
18430 if (!aent && cur_proc_ptr)
18431 as_warn (_("missing .end"));
18432
18433 if (!aent)
18434 {
18435 /* This function needs its own .frame and .cprestore directives. */
18436 mips_frame_reg_valid = 0;
18437 mips_cprestore_valid = 0;
18438
18439 cur_proc_ptr = &cur_proc;
18440 memset (cur_proc_ptr, '\0', sizeof (procS));
18441
18442 cur_proc_ptr->func_sym = symbolP;
18443
18444 ++numprocs;
18445
18446 if (debug_type == DEBUG_STABS)
18447 stabs_generate_asm_func (S_GET_NAME (symbolP),
18448 S_GET_NAME (symbolP));
18449 }
18450
18451 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18452
18453 demand_empty_rest_of_line ();
18454 }
18455
18456 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18457 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18458 s_mips_frame is used so that we can set the PDR information correctly.
18459 We can't use the ecoff routines because they make reference to the ecoff
18460 symbol table (in the mdebug section). */
18461
18462 static void
18463 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18464 {
18465 if (ECOFF_DEBUGGING)
18466 s_ignore (ignore);
18467 else
18468 {
18469 long val;
18470
18471 if (cur_proc_ptr == (procS *) NULL)
18472 {
18473 as_warn (_(".frame outside of .ent"));
18474 demand_empty_rest_of_line ();
18475 return;
18476 }
18477
18478 cur_proc_ptr->frame_reg = tc_get_register (1);
18479
18480 SKIP_WHITESPACE ();
18481 if (*input_line_pointer++ != ','
18482 || get_absolute_expression_and_terminator (&val) != ',')
18483 {
18484 as_warn (_("bad .frame directive"));
18485 --input_line_pointer;
18486 demand_empty_rest_of_line ();
18487 return;
18488 }
18489
18490 cur_proc_ptr->frame_offset = val;
18491 cur_proc_ptr->pc_reg = tc_get_register (0);
18492
18493 demand_empty_rest_of_line ();
18494 }
18495 }
18496
18497 /* The .fmask and .mask directives. If the mdebug section is present
18498 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18499 embedded targets, s_mips_mask is used so that we can set the PDR
18500 information correctly. We can't use the ecoff routines because they
18501 make reference to the ecoff symbol table (in the mdebug section). */
18502
18503 static void
18504 s_mips_mask (int reg_type)
18505 {
18506 if (ECOFF_DEBUGGING)
18507 s_ignore (reg_type);
18508 else
18509 {
18510 long mask, off;
18511
18512 if (cur_proc_ptr == (procS *) NULL)
18513 {
18514 as_warn (_(".mask/.fmask outside of .ent"));
18515 demand_empty_rest_of_line ();
18516 return;
18517 }
18518
18519 if (get_absolute_expression_and_terminator (&mask) != ',')
18520 {
18521 as_warn (_("bad .mask/.fmask directive"));
18522 --input_line_pointer;
18523 demand_empty_rest_of_line ();
18524 return;
18525 }
18526
18527 off = get_absolute_expression ();
18528
18529 if (reg_type == 'F')
18530 {
18531 cur_proc_ptr->fpreg_mask = mask;
18532 cur_proc_ptr->fpreg_offset = off;
18533 }
18534 else
18535 {
18536 cur_proc_ptr->reg_mask = mask;
18537 cur_proc_ptr->reg_offset = off;
18538 }
18539
18540 demand_empty_rest_of_line ();
18541 }
18542 }
18543
18544 /* A table describing all the processors gas knows about. Names are
18545 matched in the order listed.
18546
18547 To ease comparison, please keep this table in the same order as
18548 gcc's mips_cpu_info_table[]. */
18549 static const struct mips_cpu_info mips_cpu_info_table[] =
18550 {
18551 /* Entries for generic ISAs */
18552 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18553 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18554 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18555 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18556 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18557 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18558 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18559 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18560 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18561 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18562 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18563 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18564 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18565 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18566 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18567
18568 /* MIPS I */
18569 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18570 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18571 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18572
18573 /* MIPS II */
18574 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18575
18576 /* MIPS III */
18577 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18578 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18579 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18580 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18581 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18582 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18583 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18584 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18585 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18586 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18587 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18588 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18589 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18590 /* ST Microelectronics Loongson 2E and 2F cores */
18591 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18592 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18593
18594 /* MIPS IV */
18595 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18596 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18597 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18598 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18599 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18600 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18601 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18602 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18603 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18604 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18605 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18606 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18607 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18608 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18609 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18610
18611 /* MIPS 32 */
18612 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18613 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18614 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18615 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18616
18617 /* MIPS 32 Release 2 */
18618 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18619 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18620 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18621 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18622 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18623 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18624 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18625 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18626 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18627 ISA_MIPS32R2, CPU_MIPS32R2 },
18628 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18629 ISA_MIPS32R2, CPU_MIPS32R2 },
18630 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18631 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18632 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18633 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18634 /* Deprecated forms of the above. */
18635 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18636 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18637 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18638 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18639 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18640 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18641 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18642 /* Deprecated forms of the above. */
18643 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18644 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18645 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18646 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18647 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18648 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18649 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18650 /* Deprecated forms of the above. */
18651 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18652 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 /* 34Kn is a 34kc without DSP. */
18654 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18655 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18656 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18657 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18658 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18659 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18660 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18661 /* Deprecated forms of the above. */
18662 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18663 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 /* 1004K cores are multiprocessor versions of the 34K. */
18665 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18666 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18667 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18668 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18669 /* interaptiv is the new name for 1004kf */
18670 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18671 /* M5100 family */
18672 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18673 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18674 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18675 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18676
18677 /* MIPS 64 */
18678 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18679 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18680 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18681 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18682
18683 /* Broadcom SB-1 CPU core */
18684 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18685 /* Broadcom SB-1A CPU core */
18686 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18687
18688 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18689
18690 /* MIPS 64 Release 2 */
18691
18692 /* Cavium Networks Octeon CPU core */
18693 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18694 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18695 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18696 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18697
18698 /* RMI Xlr */
18699 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18700
18701 /* Broadcom XLP.
18702 XLP is mostly like XLR, with the prominent exception that it is
18703 MIPS64R2 rather than MIPS64. */
18704 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18705
18706 /* i6400. */
18707 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18708
18709 /* End marker */
18710 { NULL, 0, 0, 0, 0 }
18711 };
18712
18713
18714 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18715 with a final "000" replaced by "k". Ignore case.
18716
18717 Note: this function is shared between GCC and GAS. */
18718
18719 static bfd_boolean
18720 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18721 {
18722 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18723 given++, canonical++;
18724
18725 return ((*given == 0 && *canonical == 0)
18726 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18727 }
18728
18729
18730 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18731 CPU name. We've traditionally allowed a lot of variation here.
18732
18733 Note: this function is shared between GCC and GAS. */
18734
18735 static bfd_boolean
18736 mips_matching_cpu_name_p (const char *canonical, const char *given)
18737 {
18738 /* First see if the name matches exactly, or with a final "000"
18739 turned into "k". */
18740 if (mips_strict_matching_cpu_name_p (canonical, given))
18741 return TRUE;
18742
18743 /* If not, try comparing based on numerical designation alone.
18744 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18745 if (TOLOWER (*given) == 'r')
18746 given++;
18747 if (!ISDIGIT (*given))
18748 return FALSE;
18749
18750 /* Skip over some well-known prefixes in the canonical name,
18751 hoping to find a number there too. */
18752 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18753 canonical += 2;
18754 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18755 canonical += 2;
18756 else if (TOLOWER (canonical[0]) == 'r')
18757 canonical += 1;
18758
18759 return mips_strict_matching_cpu_name_p (canonical, given);
18760 }
18761
18762
18763 /* Parse an option that takes the name of a processor as its argument.
18764 OPTION is the name of the option and CPU_STRING is the argument.
18765 Return the corresponding processor enumeration if the CPU_STRING is
18766 recognized, otherwise report an error and return null.
18767
18768 A similar function exists in GCC. */
18769
18770 static const struct mips_cpu_info *
18771 mips_parse_cpu (const char *option, const char *cpu_string)
18772 {
18773 const struct mips_cpu_info *p;
18774
18775 /* 'from-abi' selects the most compatible architecture for the given
18776 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18777 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18778 version. Look first at the -mgp options, if given, otherwise base
18779 the choice on MIPS_DEFAULT_64BIT.
18780
18781 Treat NO_ABI like the EABIs. One reason to do this is that the
18782 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18783 architecture. This code picks MIPS I for 'mips' and MIPS III for
18784 'mips64', just as we did in the days before 'from-abi'. */
18785 if (strcasecmp (cpu_string, "from-abi") == 0)
18786 {
18787 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18788 return mips_cpu_info_from_isa (ISA_MIPS1);
18789
18790 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18791 return mips_cpu_info_from_isa (ISA_MIPS3);
18792
18793 if (file_mips_opts.gp >= 0)
18794 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18795 ? ISA_MIPS1 : ISA_MIPS3);
18796
18797 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18798 ? ISA_MIPS3
18799 : ISA_MIPS1);
18800 }
18801
18802 /* 'default' has traditionally been a no-op. Probably not very useful. */
18803 if (strcasecmp (cpu_string, "default") == 0)
18804 return 0;
18805
18806 for (p = mips_cpu_info_table; p->name != 0; p++)
18807 if (mips_matching_cpu_name_p (p->name, cpu_string))
18808 return p;
18809
18810 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18811 return 0;
18812 }
18813
18814 /* Return the canonical processor information for ISA (a member of the
18815 ISA_MIPS* enumeration). */
18816
18817 static const struct mips_cpu_info *
18818 mips_cpu_info_from_isa (int isa)
18819 {
18820 int i;
18821
18822 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18823 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18824 && isa == mips_cpu_info_table[i].isa)
18825 return (&mips_cpu_info_table[i]);
18826
18827 return NULL;
18828 }
18829
18830 static const struct mips_cpu_info *
18831 mips_cpu_info_from_arch (int arch)
18832 {
18833 int i;
18834
18835 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18836 if (arch == mips_cpu_info_table[i].cpu)
18837 return (&mips_cpu_info_table[i]);
18838
18839 return NULL;
18840 }
18841 \f
18842 static void
18843 show (FILE *stream, const char *string, int *col_p, int *first_p)
18844 {
18845 if (*first_p)
18846 {
18847 fprintf (stream, "%24s", "");
18848 *col_p = 24;
18849 }
18850 else
18851 {
18852 fprintf (stream, ", ");
18853 *col_p += 2;
18854 }
18855
18856 if (*col_p + strlen (string) > 72)
18857 {
18858 fprintf (stream, "\n%24s", "");
18859 *col_p = 24;
18860 }
18861
18862 fprintf (stream, "%s", string);
18863 *col_p += strlen (string);
18864
18865 *first_p = 0;
18866 }
18867
18868 void
18869 md_show_usage (FILE *stream)
18870 {
18871 int column, first;
18872 size_t i;
18873
18874 fprintf (stream, _("\
18875 MIPS options:\n\
18876 -EB generate big endian output\n\
18877 -EL generate little endian output\n\
18878 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18879 -G NUM allow referencing objects up to NUM bytes\n\
18880 implicitly with the gp register [default 8]\n"));
18881 fprintf (stream, _("\
18882 -mips1 generate MIPS ISA I instructions\n\
18883 -mips2 generate MIPS ISA II instructions\n\
18884 -mips3 generate MIPS ISA III instructions\n\
18885 -mips4 generate MIPS ISA IV instructions\n\
18886 -mips5 generate MIPS ISA V instructions\n\
18887 -mips32 generate MIPS32 ISA instructions\n\
18888 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18889 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18890 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18891 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
18892 -mips64 generate MIPS64 ISA instructions\n\
18893 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18894 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18895 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18896 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
18897 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18898
18899 first = 1;
18900
18901 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18902 show (stream, mips_cpu_info_table[i].name, &column, &first);
18903 show (stream, "from-abi", &column, &first);
18904 fputc ('\n', stream);
18905
18906 fprintf (stream, _("\
18907 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18908 -no-mCPU don't generate code specific to CPU.\n\
18909 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18910
18911 first = 1;
18912
18913 show (stream, "3900", &column, &first);
18914 show (stream, "4010", &column, &first);
18915 show (stream, "4100", &column, &first);
18916 show (stream, "4650", &column, &first);
18917 fputc ('\n', stream);
18918
18919 fprintf (stream, _("\
18920 -mips16 generate mips16 instructions\n\
18921 -no-mips16 do not generate mips16 instructions\n"));
18922 fprintf (stream, _("\
18923 -mmicromips generate microMIPS instructions\n\
18924 -mno-micromips do not generate microMIPS instructions\n"));
18925 fprintf (stream, _("\
18926 -msmartmips generate smartmips instructions\n\
18927 -mno-smartmips do not generate smartmips instructions\n"));
18928 fprintf (stream, _("\
18929 -mdsp generate DSP instructions\n\
18930 -mno-dsp do not generate DSP instructions\n"));
18931 fprintf (stream, _("\
18932 -mdspr2 generate DSP R2 instructions\n\
18933 -mno-dspr2 do not generate DSP R2 instructions\n"));
18934 fprintf (stream, _("\
18935 -mmt generate MT instructions\n\
18936 -mno-mt do not generate MT instructions\n"));
18937 fprintf (stream, _("\
18938 -mmcu generate MCU instructions\n\
18939 -mno-mcu do not generate MCU instructions\n"));
18940 fprintf (stream, _("\
18941 -mmsa generate MSA instructions\n\
18942 -mno-msa do not generate MSA instructions\n"));
18943 fprintf (stream, _("\
18944 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18945 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18946 fprintf (stream, _("\
18947 -mvirt generate Virtualization instructions\n\
18948 -mno-virt do not generate Virtualization instructions\n"));
18949 fprintf (stream, _("\
18950 -minsn32 only generate 32-bit microMIPS instructions\n\
18951 -mno-insn32 generate all microMIPS instructions\n"));
18952 fprintf (stream, _("\
18953 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18954 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18955 -mfix-vr4120 work around certain VR4120 errata\n\
18956 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18957 -mfix-24k insert a nop after ERET and DERET instructions\n\
18958 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18959 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18960 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18961 -msym32 assume all symbols have 32-bit values\n\
18962 -O0 remove unneeded NOPs, do not swap branches\n\
18963 -O remove unneeded NOPs and swap branches\n\
18964 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18965 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18966 fprintf (stream, _("\
18967 -mhard-float allow floating-point instructions\n\
18968 -msoft-float do not allow floating-point instructions\n\
18969 -msingle-float only allow 32-bit floating-point operations\n\
18970 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18971 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18972 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18973 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18974
18975 first = 1;
18976
18977 show (stream, "legacy", &column, &first);
18978 show (stream, "2008", &column, &first);
18979
18980 fputc ('\n', stream);
18981
18982 fprintf (stream, _("\
18983 -KPIC, -call_shared generate SVR4 position independent code\n\
18984 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18985 -mvxworks-pic generate VxWorks position independent code\n\
18986 -non_shared do not generate code that can operate with DSOs\n\
18987 -xgot assume a 32 bit GOT\n\
18988 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18989 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18990 position dependent (non shared) code\n\
18991 -mabi=ABI create ABI conformant object file for:\n"));
18992
18993 first = 1;
18994
18995 show (stream, "32", &column, &first);
18996 show (stream, "o64", &column, &first);
18997 show (stream, "n32", &column, &first);
18998 show (stream, "64", &column, &first);
18999 show (stream, "eabi", &column, &first);
19000
19001 fputc ('\n', stream);
19002
19003 fprintf (stream, _("\
19004 -32 create o32 ABI object file (default)\n\
19005 -n32 create n32 ABI object file\n\
19006 -64 create 64 ABI object file\n"));
19007 }
19008
19009 #ifdef TE_IRIX
19010 enum dwarf2_format
19011 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19012 {
19013 if (HAVE_64BIT_SYMBOLS)
19014 return dwarf2_format_64bit_irix;
19015 else
19016 return dwarf2_format_32bit;
19017 }
19018 #endif
19019
19020 int
19021 mips_dwarf2_addr_size (void)
19022 {
19023 if (HAVE_64BIT_OBJECTS)
19024 return 8;
19025 else
19026 return 4;
19027 }
19028
19029 /* Standard calling conventions leave the CFA at SP on entry. */
19030 void
19031 mips_cfi_frame_initial_instructions (void)
19032 {
19033 cfi_add_CFA_def_cfa_register (SP);
19034 }
19035
19036 int
19037 tc_mips_regname_to_dw2regnum (char *regname)
19038 {
19039 unsigned int regnum = -1;
19040 unsigned int reg;
19041
19042 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19043 regnum = reg;
19044
19045 return regnum;
19046 }
19047
19048 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19049 Given a symbolic attribute NAME, return the proper integer value.
19050 Returns -1 if the attribute is not known. */
19051
19052 int
19053 mips_convert_symbolic_attribute (const char *name)
19054 {
19055 static const struct
19056 {
19057 const char * name;
19058 const int tag;
19059 }
19060 attribute_table[] =
19061 {
19062 #define T(tag) {#tag, tag}
19063 T (Tag_GNU_MIPS_ABI_FP),
19064 T (Tag_GNU_MIPS_ABI_MSA),
19065 #undef T
19066 };
19067 unsigned int i;
19068
19069 if (name == NULL)
19070 return -1;
19071
19072 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19073 if (streq (name, attribute_table[i].name))
19074 return attribute_table[i].tag;
19075
19076 return -1;
19077 }
19078
19079 void
19080 md_mips_end (void)
19081 {
19082 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19083
19084 mips_emit_delays ();
19085 if (cur_proc_ptr)
19086 as_warn (_("missing .end at end of assembly"));
19087
19088 /* Just in case no code was emitted, do the consistency check. */
19089 file_mips_check_options ();
19090
19091 /* Set a floating-point ABI if the user did not. */
19092 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19093 {
19094 /* Perform consistency checks on the floating-point ABI. */
19095 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19096 Tag_GNU_MIPS_ABI_FP);
19097 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19098 check_fpabi (fpabi);
19099 }
19100 else
19101 {
19102 /* Soft-float gets precedence over single-float, the two options should
19103 not be used together so this should not matter. */
19104 if (file_mips_opts.soft_float == 1)
19105 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19106 /* Single-float gets precedence over all double_float cases. */
19107 else if (file_mips_opts.single_float == 1)
19108 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19109 else
19110 {
19111 switch (file_mips_opts.fp)
19112 {
19113 case 32:
19114 if (file_mips_opts.gp == 32)
19115 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19116 break;
19117 case 0:
19118 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19119 break;
19120 case 64:
19121 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19122 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19123 else if (file_mips_opts.gp == 32)
19124 fpabi = Val_GNU_MIPS_ABI_FP_64;
19125 else
19126 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19127 break;
19128 }
19129 }
19130
19131 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19132 Tag_GNU_MIPS_ABI_FP, fpabi);
19133 }
19134 }
19135
19136 /* Returns the relocation type required for a particular CFI encoding. */
19137
19138 bfd_reloc_code_real_type
19139 mips_cfi_reloc_for_encoding (int encoding)
19140 {
19141 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19142 return BFD_RELOC_32_PCREL;
19143 else return BFD_RELOC_NONE;
19144 }
This page took 0.436036 seconds and 4 git commands to generate.