bfd/
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by the OSF and Ralph Campbell.
6 Written by Keith Knowles and Ralph Campbell, working independently.
7 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
8 Support.
9
10 This file is part of GAS.
11
12 GAS is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3, or (at your option)
15 any later version.
16
17 GAS is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with GAS; see the file COPYING. If not, write to the Free
24 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
25 02110-1301, USA. */
26
27 #include "as.h"
28 #include "config.h"
29 #include "subsegs.h"
30 #include "safe-ctype.h"
31
32 #include "opcode/mips.h"
33 #include "itbl-ops.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define ATREG 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
102
103 #define ILLEGAL_REG (32)
104
105 #define AT mips_opts.at
106
107 /* Allow override of standard little-endian ECOFF format. */
108
109 #ifndef ECOFF_LITTLE_FORMAT
110 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
111 #endif
112
113 extern int target_big_endian;
114
115 /* The name of the readonly data section. */
116 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
123
124 /* Information about an instruction, including its format, operands
125 and fixups. */
126 struct mips_cl_insn
127 {
128 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
129 const struct mips_opcode *insn_mo;
130
131 /* True if this is a mips16 instruction and if we want the extended
132 form of INSN_MO. */
133 bfd_boolean use_extend;
134
135 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
136 unsigned short extend;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. */
140 unsigned long insn_opcode;
141
142 /* The frag that contains the instruction. */
143 struct frag *frag;
144
145 /* The offset into FRAG of the first instruction byte. */
146 long where;
147
148 /* The relocs associated with the instruction, if any. */
149 fixS *fixp[3];
150
151 /* True if this entry cannot be moved from its current position. */
152 unsigned int fixed_p : 1;
153
154 /* True if this instruction occurred in a .set noreorder block. */
155 unsigned int noreorder_p : 1;
156
157 /* True for mips16 instructions that jump to an absolute address. */
158 unsigned int mips16_absolute_jump_p : 1;
159 };
160
161 /* The ABI to use. */
162 enum mips_abi_level
163 {
164 NO_ABI = 0,
165 O32_ABI,
166 O64_ABI,
167 N32_ABI,
168 N64_ABI,
169 EABI_ABI
170 };
171
172 /* MIPS ABI we are using for this output file. */
173 static enum mips_abi_level mips_abi = NO_ABI;
174
175 /* Whether or not we have code that can call pic code. */
176 int mips_abicalls = FALSE;
177
178 /* Whether or not we have code which can be put into a shared
179 library. */
180 static bfd_boolean mips_in_shared = TRUE;
181
182 /* This is the set of options which may be modified by the .set
183 pseudo-op. We use a struct so that .set push and .set pop are more
184 reliable. */
185
186 struct mips_set_options
187 {
188 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
189 if it has not been initialized. Changed by `.set mipsN', and the
190 -mipsN command line option, and the default CPU. */
191 int isa;
192 /* Enabled Application Specific Extensions (ASEs). These are set to -1
193 if they have not been initialized. Changed by `.set <asename>', by
194 command line options, and based on the default architecture. */
195 int ase_mips3d;
196 int ase_mdmx;
197 int ase_smartmips;
198 int ase_dsp;
199 int ase_dspr2;
200 int ase_mt;
201 /* Whether we are assembling for the mips16 processor. 0 if we are
202 not, 1 if we are, and -1 if the value has not been initialized.
203 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
204 -nomips16 command line options, and the default CPU. */
205 int mips16;
206 /* Non-zero if we should not reorder instructions. Changed by `.set
207 reorder' and `.set noreorder'. */
208 int noreorder;
209 /* Non-zero if we should not permit the register designated "assembler
210 temporary" to be used in instructions. The value is the register
211 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
212 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
213 unsigned int at;
214 /* Non-zero if we should warn when a macro instruction expands into
215 more than one machine instruction. Changed by `.set nomacro' and
216 `.set macro'. */
217 int warn_about_macros;
218 /* Non-zero if we should not move instructions. Changed by `.set
219 move', `.set volatile', `.set nomove', and `.set novolatile'. */
220 int nomove;
221 /* Non-zero if we should not optimize branches by moving the target
222 of the branch into the delay slot. Actually, we don't perform
223 this optimization anyhow. Changed by `.set bopt' and `.set
224 nobopt'. */
225 int nobopt;
226 /* Non-zero if we should not autoextend mips16 instructions.
227 Changed by `.set autoextend' and `.set noautoextend'. */
228 int noautoextend;
229 /* Restrict general purpose registers and floating point registers
230 to 32 bit. This is initially determined when -mgp32 or -mfp32
231 is passed but can changed if the assembler code uses .set mipsN. */
232 int gp32;
233 int fp32;
234 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
235 command line option, and the default CPU. */
236 int arch;
237 /* True if ".set sym32" is in effect. */
238 bfd_boolean sym32;
239 /* True if floating-point operations are not allowed. Changed by .set
240 softfloat or .set hardfloat, by command line options -msoft-float or
241 -mhard-float. The default is false. */
242 bfd_boolean soft_float;
243
244 /* True if only single-precision floating-point operations are allowed.
245 Changed by .set singlefloat or .set doublefloat, command-line options
246 -msingle-float or -mdouble-float. The default is false. */
247 bfd_boolean single_float;
248 };
249
250 /* This is the struct we use to hold the current set of options. Note
251 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
252 -1 to indicate that they have not been initialized. */
253
254 /* True if -mgp32 was passed. */
255 static int file_mips_gp32 = -1;
256
257 /* True if -mfp32 was passed. */
258 static int file_mips_fp32 = -1;
259
260 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
261 static int file_mips_soft_float = 0;
262
263 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
264 static int file_mips_single_float = 0;
265
266 static struct mips_set_options mips_opts =
267 {
268 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
269 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
270 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
271 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
272 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
273 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
274 };
275
276 /* These variables are filled in with the masks of registers used.
277 The object format code reads them and puts them in the appropriate
278 place. */
279 unsigned long mips_gprmask;
280 unsigned long mips_cprmask[4];
281
282 /* MIPS ISA we are using for this output file. */
283 static int file_mips_isa = ISA_UNKNOWN;
284
285 /* True if any MIPS16 code was produced. */
286 static int file_ase_mips16;
287
288 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
289 || mips_opts.isa == ISA_MIPS32R2 \
290 || mips_opts.isa == ISA_MIPS64 \
291 || mips_opts.isa == ISA_MIPS64R2)
292
293 /* True if we want to create R_MIPS_JALR for jalr $25. */
294 #ifdef TE_IRIX
295 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
296 #else
297 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
298 because there's no place for any addend, the only acceptable
299 expression is a bare symbol. */
300 #define MIPS_JALR_HINT_P(EXPR) \
301 (!HAVE_IN_PLACE_ADDENDS \
302 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
303 #endif
304
305 /* True if -mips3d was passed or implied by arguments passed on the
306 command line (e.g., by -march). */
307 static int file_ase_mips3d;
308
309 /* True if -mdmx was passed or implied by arguments passed on the
310 command line (e.g., by -march). */
311 static int file_ase_mdmx;
312
313 /* True if -msmartmips was passed or implied by arguments passed on the
314 command line (e.g., by -march). */
315 static int file_ase_smartmips;
316
317 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
318 || mips_opts.isa == ISA_MIPS32R2)
319
320 /* True if -mdsp was passed or implied by arguments passed on the
321 command line (e.g., by -march). */
322 static int file_ase_dsp;
323
324 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
325 || mips_opts.isa == ISA_MIPS64R2)
326
327 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
328
329 /* True if -mdspr2 was passed or implied by arguments passed on the
330 command line (e.g., by -march). */
331 static int file_ase_dspr2;
332
333 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
334 || mips_opts.isa == ISA_MIPS64R2)
335
336 /* True if -mmt was passed or implied by arguments passed on the
337 command line (e.g., by -march). */
338 static int file_ase_mt;
339
340 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
341 || mips_opts.isa == ISA_MIPS64R2)
342
343 /* The argument of the -march= flag. The architecture we are assembling. */
344 static int file_mips_arch = CPU_UNKNOWN;
345 static const char *mips_arch_string;
346
347 /* The argument of the -mtune= flag. The architecture for which we
348 are optimizing. */
349 static int mips_tune = CPU_UNKNOWN;
350 static const char *mips_tune_string;
351
352 /* True when generating 32-bit code for a 64-bit processor. */
353 static int mips_32bitmode = 0;
354
355 /* True if the given ABI requires 32-bit registers. */
356 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
357
358 /* Likewise 64-bit registers. */
359 #define ABI_NEEDS_64BIT_REGS(ABI) \
360 ((ABI) == N32_ABI \
361 || (ABI) == N64_ABI \
362 || (ABI) == O64_ABI)
363
364 /* Return true if ISA supports 64 bit wide gp registers. */
365 #define ISA_HAS_64BIT_REGS(ISA) \
366 ((ISA) == ISA_MIPS3 \
367 || (ISA) == ISA_MIPS4 \
368 || (ISA) == ISA_MIPS5 \
369 || (ISA) == ISA_MIPS64 \
370 || (ISA) == ISA_MIPS64R2)
371
372 /* Return true if ISA supports 64 bit wide float registers. */
373 #define ISA_HAS_64BIT_FPRS(ISA) \
374 ((ISA) == ISA_MIPS3 \
375 || (ISA) == ISA_MIPS4 \
376 || (ISA) == ISA_MIPS5 \
377 || (ISA) == ISA_MIPS32R2 \
378 || (ISA) == ISA_MIPS64 \
379 || (ISA) == ISA_MIPS64R2)
380
381 /* Return true if ISA supports 64-bit right rotate (dror et al.)
382 instructions. */
383 #define ISA_HAS_DROR(ISA) \
384 ((ISA) == ISA_MIPS64R2)
385
386 /* Return true if ISA supports 32-bit right rotate (ror et al.)
387 instructions. */
388 #define ISA_HAS_ROR(ISA) \
389 ((ISA) == ISA_MIPS32R2 \
390 || (ISA) == ISA_MIPS64R2 \
391 || mips_opts.ase_smartmips)
392
393 /* Return true if ISA supports single-precision floats in odd registers. */
394 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
395 ((ISA) == ISA_MIPS32 \
396 || (ISA) == ISA_MIPS32R2 \
397 || (ISA) == ISA_MIPS64 \
398 || (ISA) == ISA_MIPS64R2)
399
400 /* Return true if ISA supports move to/from high part of a 64-bit
401 floating-point register. */
402 #define ISA_HAS_MXHC1(ISA) \
403 ((ISA) == ISA_MIPS32R2 \
404 || (ISA) == ISA_MIPS64R2)
405
406 #define HAVE_32BIT_GPRS \
407 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
408
409 #define HAVE_32BIT_FPRS \
410 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
411
412 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
413 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
414
415 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
416
417 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
418
419 /* True if relocations are stored in-place. */
420 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
421
422 /* The ABI-derived address size. */
423 #define HAVE_64BIT_ADDRESSES \
424 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
425 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
426
427 /* The size of symbolic constants (i.e., expressions of the form
428 "SYMBOL" or "SYMBOL + OFFSET"). */
429 #define HAVE_32BIT_SYMBOLS \
430 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
431 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
432
433 /* Addresses are loaded in different ways, depending on the address size
434 in use. The n32 ABI Documentation also mandates the use of additions
435 with overflow checking, but existing implementations don't follow it. */
436 #define ADDRESS_ADD_INSN \
437 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
438
439 #define ADDRESS_ADDI_INSN \
440 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
441
442 #define ADDRESS_LOAD_INSN \
443 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
444
445 #define ADDRESS_STORE_INSN \
446 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
447
448 /* Return true if the given CPU supports the MIPS16 ASE. */
449 #define CPU_HAS_MIPS16(cpu) \
450 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
451 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
452
453 /* True if CPU has a dror instruction. */
454 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
455
456 /* True if CPU has a ror instruction. */
457 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
458
459 /* True if CPU has seq/sne and seqi/snei instructions. */
460 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
461
462 /* True if CPU does not implement the all the coprocessor insns. For these
463 CPUs only those COP insns are accepted that are explicitly marked to be
464 available on the CPU. ISA membership for COP insns is ignored. */
465 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
466
467 /* True if mflo and mfhi can be immediately followed by instructions
468 which write to the HI and LO registers.
469
470 According to MIPS specifications, MIPS ISAs I, II, and III need
471 (at least) two instructions between the reads of HI/LO and
472 instructions which write them, and later ISAs do not. Contradicting
473 the MIPS specifications, some MIPS IV processor user manuals (e.g.
474 the UM for the NEC Vr5000) document needing the instructions between
475 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
476 MIPS64 and later ISAs to have the interlocks, plus any specific
477 earlier-ISA CPUs for which CPU documentation declares that the
478 instructions are really interlocked. */
479 #define hilo_interlocks \
480 (mips_opts.isa == ISA_MIPS32 \
481 || mips_opts.isa == ISA_MIPS32R2 \
482 || mips_opts.isa == ISA_MIPS64 \
483 || mips_opts.isa == ISA_MIPS64R2 \
484 || mips_opts.arch == CPU_R4010 \
485 || mips_opts.arch == CPU_R10000 \
486 || mips_opts.arch == CPU_R12000 \
487 || mips_opts.arch == CPU_R14000 \
488 || mips_opts.arch == CPU_R16000 \
489 || mips_opts.arch == CPU_RM7000 \
490 || mips_opts.arch == CPU_VR5500 \
491 )
492
493 /* Whether the processor uses hardware interlocks to protect reads
494 from the GPRs after they are loaded from memory, and thus does not
495 require nops to be inserted. This applies to instructions marked
496 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
497 level I. */
498 #define gpr_interlocks \
499 (mips_opts.isa != ISA_MIPS1 \
500 || mips_opts.arch == CPU_R3900)
501
502 /* Whether the processor uses hardware interlocks to avoid delays
503 required by coprocessor instructions, and thus does not require
504 nops to be inserted. This applies to instructions marked
505 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
506 between instructions marked INSN_WRITE_COND_CODE and ones marked
507 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
508 levels I, II, and III. */
509 /* Itbl support may require additional care here. */
510 #define cop_interlocks \
511 ((mips_opts.isa != ISA_MIPS1 \
512 && mips_opts.isa != ISA_MIPS2 \
513 && mips_opts.isa != ISA_MIPS3) \
514 || mips_opts.arch == CPU_R4300 \
515 )
516
517 /* Whether the processor uses hardware interlocks to protect reads
518 from coprocessor registers after they are loaded from memory, and
519 thus does not require nops to be inserted. This applies to
520 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
521 requires at MIPS ISA level I. */
522 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
523
524 /* Is this a mfhi or mflo instruction? */
525 #define MF_HILO_INSN(PINFO) \
526 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
527
528 /* Returns true for a (non floating-point) coprocessor instruction. Reading
529 or writing the condition code is only possible on the coprocessors and
530 these insns are not marked with INSN_COP. Thus for these insns use the
531 condition-code flags. */
532 #define COP_INSN(PINFO) \
533 (PINFO != INSN_MACRO \
534 && ((PINFO) & (FP_S | FP_D)) == 0 \
535 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
536
537 /* MIPS PIC level. */
538
539 enum mips_pic_level mips_pic;
540
541 /* 1 if we should generate 32 bit offsets from the $gp register in
542 SVR4_PIC mode. Currently has no meaning in other modes. */
543 static int mips_big_got = 0;
544
545 /* 1 if trap instructions should used for overflow rather than break
546 instructions. */
547 static int mips_trap = 0;
548
549 /* 1 if double width floating point constants should not be constructed
550 by assembling two single width halves into two single width floating
551 point registers which just happen to alias the double width destination
552 register. On some architectures this aliasing can be disabled by a bit
553 in the status register, and the setting of this bit cannot be determined
554 automatically at assemble time. */
555 static int mips_disable_float_construction;
556
557 /* Non-zero if any .set noreorder directives were used. */
558
559 static int mips_any_noreorder;
560
561 /* Non-zero if nops should be inserted when the register referenced in
562 an mfhi/mflo instruction is read in the next two instructions. */
563 static int mips_7000_hilo_fix;
564
565 /* The size of objects in the small data section. */
566 static unsigned int g_switch_value = 8;
567 /* Whether the -G option was used. */
568 static int g_switch_seen = 0;
569
570 #define N_RMASK 0xc4
571 #define N_VFP 0xd4
572
573 /* If we can determine in advance that GP optimization won't be
574 possible, we can skip the relaxation stuff that tries to produce
575 GP-relative references. This makes delay slot optimization work
576 better.
577
578 This function can only provide a guess, but it seems to work for
579 gcc output. It needs to guess right for gcc, otherwise gcc
580 will put what it thinks is a GP-relative instruction in a branch
581 delay slot.
582
583 I don't know if a fix is needed for the SVR4_PIC mode. I've only
584 fixed it for the non-PIC mode. KR 95/04/07 */
585 static int nopic_need_relax (symbolS *, int);
586
587 /* handle of the OPCODE hash table */
588 static struct hash_control *op_hash = NULL;
589
590 /* The opcode hash table we use for the mips16. */
591 static struct hash_control *mips16_op_hash = NULL;
592
593 /* This array holds the chars that always start a comment. If the
594 pre-processor is disabled, these aren't very useful */
595 const char comment_chars[] = "#";
596
597 /* This array holds the chars that only start a comment at the beginning of
598 a line. If the line seems to have the form '# 123 filename'
599 .line and .file directives will appear in the pre-processed output */
600 /* Note that input_file.c hand checks for '#' at the beginning of the
601 first line of the input file. This is because the compiler outputs
602 #NO_APP at the beginning of its output. */
603 /* Also note that C style comments are always supported. */
604 const char line_comment_chars[] = "#";
605
606 /* This array holds machine specific line separator characters. */
607 const char line_separator_chars[] = ";";
608
609 /* Chars that can be used to separate mant from exp in floating point nums */
610 const char EXP_CHARS[] = "eE";
611
612 /* Chars that mean this number is a floating point constant */
613 /* As in 0f12.456 */
614 /* or 0d1.2345e12 */
615 const char FLT_CHARS[] = "rRsSfFdDxXpP";
616
617 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
618 changed in read.c . Ideally it shouldn't have to know about it at all,
619 but nothing is ideal around here.
620 */
621
622 static char *insn_error;
623
624 static int auto_align = 1;
625
626 /* When outputting SVR4 PIC code, the assembler needs to know the
627 offset in the stack frame from which to restore the $gp register.
628 This is set by the .cprestore pseudo-op, and saved in this
629 variable. */
630 static offsetT mips_cprestore_offset = -1;
631
632 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
633 more optimizations, it can use a register value instead of a memory-saved
634 offset and even an other register than $gp as global pointer. */
635 static offsetT mips_cpreturn_offset = -1;
636 static int mips_cpreturn_register = -1;
637 static int mips_gp_register = GP;
638 static int mips_gprel_offset = 0;
639
640 /* Whether mips_cprestore_offset has been set in the current function
641 (or whether it has already been warned about, if not). */
642 static int mips_cprestore_valid = 0;
643
644 /* This is the register which holds the stack frame, as set by the
645 .frame pseudo-op. This is needed to implement .cprestore. */
646 static int mips_frame_reg = SP;
647
648 /* Whether mips_frame_reg has been set in the current function
649 (or whether it has already been warned about, if not). */
650 static int mips_frame_reg_valid = 0;
651
652 /* To output NOP instructions correctly, we need to keep information
653 about the previous two instructions. */
654
655 /* Whether we are optimizing. The default value of 2 means to remove
656 unneeded NOPs and swap branch instructions when possible. A value
657 of 1 means to not swap branches. A value of 0 means to always
658 insert NOPs. */
659 static int mips_optimize = 2;
660
661 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
662 equivalent to seeing no -g option at all. */
663 static int mips_debug = 0;
664
665 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
666 #define MAX_VR4130_NOPS 4
667
668 /* The maximum number of NOPs needed to fill delay slots. */
669 #define MAX_DELAY_NOPS 2
670
671 /* The maximum number of NOPs needed for any purpose. */
672 #define MAX_NOPS 4
673
674 /* A list of previous instructions, with index 0 being the most recent.
675 We need to look back MAX_NOPS instructions when filling delay slots
676 or working around processor errata. We need to look back one
677 instruction further if we're thinking about using history[0] to
678 fill a branch delay slot. */
679 static struct mips_cl_insn history[1 + MAX_NOPS];
680
681 /* Nop instructions used by emit_nop. */
682 static struct mips_cl_insn nop_insn, mips16_nop_insn;
683
684 /* The appropriate nop for the current mode. */
685 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
686
687 /* If this is set, it points to a frag holding nop instructions which
688 were inserted before the start of a noreorder section. If those
689 nops turn out to be unnecessary, the size of the frag can be
690 decreased. */
691 static fragS *prev_nop_frag;
692
693 /* The number of nop instructions we created in prev_nop_frag. */
694 static int prev_nop_frag_holds;
695
696 /* The number of nop instructions that we know we need in
697 prev_nop_frag. */
698 static int prev_nop_frag_required;
699
700 /* The number of instructions we've seen since prev_nop_frag. */
701 static int prev_nop_frag_since;
702
703 /* For ECOFF and ELF, relocations against symbols are done in two
704 parts, with a HI relocation and a LO relocation. Each relocation
705 has only 16 bits of space to store an addend. This means that in
706 order for the linker to handle carries correctly, it must be able
707 to locate both the HI and the LO relocation. This means that the
708 relocations must appear in order in the relocation table.
709
710 In order to implement this, we keep track of each unmatched HI
711 relocation. We then sort them so that they immediately precede the
712 corresponding LO relocation. */
713
714 struct mips_hi_fixup
715 {
716 /* Next HI fixup. */
717 struct mips_hi_fixup *next;
718 /* This fixup. */
719 fixS *fixp;
720 /* The section this fixup is in. */
721 segT seg;
722 };
723
724 /* The list of unmatched HI relocs. */
725
726 static struct mips_hi_fixup *mips_hi_fixup_list;
727
728 /* The frag containing the last explicit relocation operator.
729 Null if explicit relocations have not been used. */
730
731 static fragS *prev_reloc_op_frag;
732
733 /* Map normal MIPS register numbers to mips16 register numbers. */
734
735 #define X ILLEGAL_REG
736 static const int mips32_to_16_reg_map[] =
737 {
738 X, X, 2, 3, 4, 5, 6, 7,
739 X, X, X, X, X, X, X, X,
740 0, 1, X, X, X, X, X, X,
741 X, X, X, X, X, X, X, X
742 };
743 #undef X
744
745 /* Map mips16 register numbers to normal MIPS register numbers. */
746
747 static const unsigned int mips16_to_32_reg_map[] =
748 {
749 16, 17, 2, 3, 4, 5, 6, 7
750 };
751
752 /* Classifies the kind of instructions we're interested in when
753 implementing -mfix-vr4120. */
754 enum fix_vr4120_class
755 {
756 FIX_VR4120_MACC,
757 FIX_VR4120_DMACC,
758 FIX_VR4120_MULT,
759 FIX_VR4120_DMULT,
760 FIX_VR4120_DIV,
761 FIX_VR4120_MTHILO,
762 NUM_FIX_VR4120_CLASSES
763 };
764
765 /* ...likewise -mfix-loongson2f-jump. */
766 static bfd_boolean mips_fix_loongson2f_jump;
767
768 /* ...likewise -mfix-loongson2f-nop. */
769 static bfd_boolean mips_fix_loongson2f_nop;
770
771 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
772 static bfd_boolean mips_fix_loongson2f;
773
774 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
775 there must be at least one other instruction between an instruction
776 of type X and an instruction of type Y. */
777 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
778
779 /* True if -mfix-vr4120 is in force. */
780 static int mips_fix_vr4120;
781
782 /* ...likewise -mfix-vr4130. */
783 static int mips_fix_vr4130;
784
785 /* ...likewise -mfix-24k. */
786 static int mips_fix_24k;
787
788 /* ...likewise -mfix-cn63xxp1 */
789 static bfd_boolean mips_fix_cn63xxp1;
790
791 /* We don't relax branches by default, since this causes us to expand
792 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
793 fail to compute the offset before expanding the macro to the most
794 efficient expansion. */
795
796 static int mips_relax_branch;
797 \f
798 /* The expansion of many macros depends on the type of symbol that
799 they refer to. For example, when generating position-dependent code,
800 a macro that refers to a symbol may have two different expansions,
801 one which uses GP-relative addresses and one which uses absolute
802 addresses. When generating SVR4-style PIC, a macro may have
803 different expansions for local and global symbols.
804
805 We handle these situations by generating both sequences and putting
806 them in variant frags. In position-dependent code, the first sequence
807 will be the GP-relative one and the second sequence will be the
808 absolute one. In SVR4 PIC, the first sequence will be for global
809 symbols and the second will be for local symbols.
810
811 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
812 SECOND are the lengths of the two sequences in bytes. These fields
813 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
814 the subtype has the following flags:
815
816 RELAX_USE_SECOND
817 Set if it has been decided that we should use the second
818 sequence instead of the first.
819
820 RELAX_SECOND_LONGER
821 Set in the first variant frag if the macro's second implementation
822 is longer than its first. This refers to the macro as a whole,
823 not an individual relaxation.
824
825 RELAX_NOMACRO
826 Set in the first variant frag if the macro appeared in a .set nomacro
827 block and if one alternative requires a warning but the other does not.
828
829 RELAX_DELAY_SLOT
830 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
831 delay slot.
832
833 The frag's "opcode" points to the first fixup for relaxable code.
834
835 Relaxable macros are generated using a sequence such as:
836
837 relax_start (SYMBOL);
838 ... generate first expansion ...
839 relax_switch ();
840 ... generate second expansion ...
841 relax_end ();
842
843 The code and fixups for the unwanted alternative are discarded
844 by md_convert_frag. */
845 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
846
847 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
848 #define RELAX_SECOND(X) ((X) & 0xff)
849 #define RELAX_USE_SECOND 0x10000
850 #define RELAX_SECOND_LONGER 0x20000
851 #define RELAX_NOMACRO 0x40000
852 #define RELAX_DELAY_SLOT 0x80000
853
854 /* Branch without likely bit. If label is out of range, we turn:
855
856 beq reg1, reg2, label
857 delay slot
858
859 into
860
861 bne reg1, reg2, 0f
862 nop
863 j label
864 0: delay slot
865
866 with the following opcode replacements:
867
868 beq <-> bne
869 blez <-> bgtz
870 bltz <-> bgez
871 bc1f <-> bc1t
872
873 bltzal <-> bgezal (with jal label instead of j label)
874
875 Even though keeping the delay slot instruction in the delay slot of
876 the branch would be more efficient, it would be very tricky to do
877 correctly, because we'd have to introduce a variable frag *after*
878 the delay slot instruction, and expand that instead. Let's do it
879 the easy way for now, even if the branch-not-taken case now costs
880 one additional instruction. Out-of-range branches are not supposed
881 to be common, anyway.
882
883 Branch likely. If label is out of range, we turn:
884
885 beql reg1, reg2, label
886 delay slot (annulled if branch not taken)
887
888 into
889
890 beql reg1, reg2, 1f
891 nop
892 beql $0, $0, 2f
893 nop
894 1: j[al] label
895 delay slot (executed only if branch taken)
896 2:
897
898 It would be possible to generate a shorter sequence by losing the
899 likely bit, generating something like:
900
901 bne reg1, reg2, 0f
902 nop
903 j[al] label
904 delay slot (executed only if branch taken)
905 0:
906
907 beql -> bne
908 bnel -> beq
909 blezl -> bgtz
910 bgtzl -> blez
911 bltzl -> bgez
912 bgezl -> bltz
913 bc1fl -> bc1t
914 bc1tl -> bc1f
915
916 bltzall -> bgezal (with jal label instead of j label)
917 bgezall -> bltzal (ditto)
918
919
920 but it's not clear that it would actually improve performance. */
921 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
922 ((relax_substateT) \
923 (0xc0000000 \
924 | ((toofar) ? 1 : 0) \
925 | ((link) ? 2 : 0) \
926 | ((likely) ? 4 : 0) \
927 | ((uncond) ? 8 : 0)))
928 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
929 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
930 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
931 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
932 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
933
934 /* For mips16 code, we use an entirely different form of relaxation.
935 mips16 supports two versions of most instructions which take
936 immediate values: a small one which takes some small value, and a
937 larger one which takes a 16 bit value. Since branches also follow
938 this pattern, relaxing these values is required.
939
940 We can assemble both mips16 and normal MIPS code in a single
941 object. Therefore, we need to support this type of relaxation at
942 the same time that we support the relaxation described above. We
943 use the high bit of the subtype field to distinguish these cases.
944
945 The information we store for this type of relaxation is the
946 argument code found in the opcode file for this relocation, whether
947 the user explicitly requested a small or extended form, and whether
948 the relocation is in a jump or jal delay slot. That tells us the
949 size of the value, and how it should be stored. We also store
950 whether the fragment is considered to be extended or not. We also
951 store whether this is known to be a branch to a different section,
952 whether we have tried to relax this frag yet, and whether we have
953 ever extended a PC relative fragment because of a shift count. */
954 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
955 (0x80000000 \
956 | ((type) & 0xff) \
957 | ((small) ? 0x100 : 0) \
958 | ((ext) ? 0x200 : 0) \
959 | ((dslot) ? 0x400 : 0) \
960 | ((jal_dslot) ? 0x800 : 0))
961 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
962 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
963 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
964 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
965 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
966 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
967 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
968 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
969 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
970 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
971 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
972 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
973
974 /* Is the given value a sign-extended 32-bit value? */
975 #define IS_SEXT_32BIT_NUM(x) \
976 (((x) &~ (offsetT) 0x7fffffff) == 0 \
977 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
978
979 /* Is the given value a sign-extended 16-bit value? */
980 #define IS_SEXT_16BIT_NUM(x) \
981 (((x) &~ (offsetT) 0x7fff) == 0 \
982 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
983
984 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
985 #define IS_ZEXT_32BIT_NUM(x) \
986 (((x) &~ (offsetT) 0xffffffff) == 0 \
987 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
988
989 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
990 VALUE << SHIFT. VALUE is evaluated exactly once. */
991 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
992 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
993 | (((VALUE) & (MASK)) << (SHIFT)))
994
995 /* Extract bits MASK << SHIFT from STRUCT and shift them right
996 SHIFT places. */
997 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
998 (((STRUCT) >> (SHIFT)) & (MASK))
999
1000 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
1001 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
1002
1003 include/opcode/mips.h specifies operand fields using the macros
1004 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
1005 with "MIPS16OP" instead of "OP". */
1006 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
1007 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
1008 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
1009 INSERT_BITS ((INSN).insn_opcode, VALUE, \
1010 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
1011
1012 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1013 #define EXTRACT_OPERAND(FIELD, INSN) \
1014 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
1015 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1016 EXTRACT_BITS ((INSN).insn_opcode, \
1017 MIPS16OP_MASK_##FIELD, \
1018 MIPS16OP_SH_##FIELD)
1019 \f
1020 /* Global variables used when generating relaxable macros. See the
1021 comment above RELAX_ENCODE for more details about how relaxation
1022 is used. */
1023 static struct {
1024 /* 0 if we're not emitting a relaxable macro.
1025 1 if we're emitting the first of the two relaxation alternatives.
1026 2 if we're emitting the second alternative. */
1027 int sequence;
1028
1029 /* The first relaxable fixup in the current frag. (In other words,
1030 the first fixup that refers to relaxable code.) */
1031 fixS *first_fixup;
1032
1033 /* sizes[0] says how many bytes of the first alternative are stored in
1034 the current frag. Likewise sizes[1] for the second alternative. */
1035 unsigned int sizes[2];
1036
1037 /* The symbol on which the choice of sequence depends. */
1038 symbolS *symbol;
1039 } mips_relax;
1040 \f
1041 /* Global variables used to decide whether a macro needs a warning. */
1042 static struct {
1043 /* True if the macro is in a branch delay slot. */
1044 bfd_boolean delay_slot_p;
1045
1046 /* For relaxable macros, sizes[0] is the length of the first alternative
1047 in bytes and sizes[1] is the length of the second alternative.
1048 For non-relaxable macros, both elements give the length of the
1049 macro in bytes. */
1050 unsigned int sizes[2];
1051
1052 /* The first variant frag for this macro. */
1053 fragS *first_frag;
1054 } mips_macro_warning;
1055 \f
1056 /* Prototypes for static functions. */
1057
1058 #define internalError() \
1059 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1060
1061 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1062
1063 static void append_insn
1064 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *);
1065 static void mips_no_prev_insn (void);
1066 static void macro_build (expressionS *, const char *, const char *, ...);
1067 static void mips16_macro_build
1068 (expressionS *, const char *, const char *, va_list *);
1069 static void load_register (int, expressionS *, int);
1070 static void macro_start (void);
1071 static void macro_end (void);
1072 static void macro (struct mips_cl_insn * ip);
1073 static void mips16_macro (struct mips_cl_insn * ip);
1074 static void mips_ip (char *str, struct mips_cl_insn * ip);
1075 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1076 static void mips16_immed
1077 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1078 unsigned long *, bfd_boolean *, unsigned short *);
1079 static size_t my_getSmallExpression
1080 (expressionS *, bfd_reloc_code_real_type *, char *);
1081 static void my_getExpression (expressionS *, char *);
1082 static void s_align (int);
1083 static void s_change_sec (int);
1084 static void s_change_section (int);
1085 static void s_cons (int);
1086 static void s_float_cons (int);
1087 static void s_mips_globl (int);
1088 static void s_option (int);
1089 static void s_mipsset (int);
1090 static void s_abicalls (int);
1091 static void s_cpload (int);
1092 static void s_cpsetup (int);
1093 static void s_cplocal (int);
1094 static void s_cprestore (int);
1095 static void s_cpreturn (int);
1096 static void s_dtprelword (int);
1097 static void s_dtpreldword (int);
1098 static void s_gpvalue (int);
1099 static void s_gpword (int);
1100 static void s_gpdword (int);
1101 static void s_cpadd (int);
1102 static void s_insn (int);
1103 static void md_obj_begin (void);
1104 static void md_obj_end (void);
1105 static void s_mips_ent (int);
1106 static void s_mips_end (int);
1107 static void s_mips_frame (int);
1108 static void s_mips_mask (int reg_type);
1109 static void s_mips_stab (int);
1110 static void s_mips_weakext (int);
1111 static void s_mips_file (int);
1112 static void s_mips_loc (int);
1113 static bfd_boolean pic_need_relax (symbolS *, asection *);
1114 static int relaxed_branch_length (fragS *, asection *, int);
1115 static int validate_mips_insn (const struct mips_opcode *);
1116
1117 /* Table and functions used to map between CPU/ISA names, and
1118 ISA levels, and CPU numbers. */
1119
1120 struct mips_cpu_info
1121 {
1122 const char *name; /* CPU or ISA name. */
1123 int flags; /* ASEs available, or ISA flag. */
1124 int isa; /* ISA level. */
1125 int cpu; /* CPU number (default CPU if ISA). */
1126 };
1127
1128 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1129 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1130 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1131 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1132 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1133 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1134 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1135
1136 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1137 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1138 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1139 \f
1140 /* Pseudo-op table.
1141
1142 The following pseudo-ops from the Kane and Heinrich MIPS book
1143 should be defined here, but are currently unsupported: .alias,
1144 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1145
1146 The following pseudo-ops from the Kane and Heinrich MIPS book are
1147 specific to the type of debugging information being generated, and
1148 should be defined by the object format: .aent, .begin, .bend,
1149 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1150 .vreg.
1151
1152 The following pseudo-ops from the Kane and Heinrich MIPS book are
1153 not MIPS CPU specific, but are also not specific to the object file
1154 format. This file is probably the best place to define them, but
1155 they are not currently supported: .asm0, .endr, .lab, .struct. */
1156
1157 static const pseudo_typeS mips_pseudo_table[] =
1158 {
1159 /* MIPS specific pseudo-ops. */
1160 {"option", s_option, 0},
1161 {"set", s_mipsset, 0},
1162 {"rdata", s_change_sec, 'r'},
1163 {"sdata", s_change_sec, 's'},
1164 {"livereg", s_ignore, 0},
1165 {"abicalls", s_abicalls, 0},
1166 {"cpload", s_cpload, 0},
1167 {"cpsetup", s_cpsetup, 0},
1168 {"cplocal", s_cplocal, 0},
1169 {"cprestore", s_cprestore, 0},
1170 {"cpreturn", s_cpreturn, 0},
1171 {"dtprelword", s_dtprelword, 0},
1172 {"dtpreldword", s_dtpreldword, 0},
1173 {"gpvalue", s_gpvalue, 0},
1174 {"gpword", s_gpword, 0},
1175 {"gpdword", s_gpdword, 0},
1176 {"cpadd", s_cpadd, 0},
1177 {"insn", s_insn, 0},
1178
1179 /* Relatively generic pseudo-ops that happen to be used on MIPS
1180 chips. */
1181 {"asciiz", stringer, 8 + 1},
1182 {"bss", s_change_sec, 'b'},
1183 {"err", s_err, 0},
1184 {"half", s_cons, 1},
1185 {"dword", s_cons, 3},
1186 {"weakext", s_mips_weakext, 0},
1187 {"origin", s_org, 0},
1188 {"repeat", s_rept, 0},
1189
1190 /* For MIPS this is non-standard, but we define it for consistency. */
1191 {"sbss", s_change_sec, 'B'},
1192
1193 /* These pseudo-ops are defined in read.c, but must be overridden
1194 here for one reason or another. */
1195 {"align", s_align, 0},
1196 {"byte", s_cons, 0},
1197 {"data", s_change_sec, 'd'},
1198 {"double", s_float_cons, 'd'},
1199 {"float", s_float_cons, 'f'},
1200 {"globl", s_mips_globl, 0},
1201 {"global", s_mips_globl, 0},
1202 {"hword", s_cons, 1},
1203 {"int", s_cons, 2},
1204 {"long", s_cons, 2},
1205 {"octa", s_cons, 4},
1206 {"quad", s_cons, 3},
1207 {"section", s_change_section, 0},
1208 {"short", s_cons, 1},
1209 {"single", s_float_cons, 'f'},
1210 {"stabn", s_mips_stab, 'n'},
1211 {"text", s_change_sec, 't'},
1212 {"word", s_cons, 2},
1213
1214 { "extern", ecoff_directive_extern, 0},
1215
1216 { NULL, NULL, 0 },
1217 };
1218
1219 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1220 {
1221 /* These pseudo-ops should be defined by the object file format.
1222 However, a.out doesn't support them, so we have versions here. */
1223 {"aent", s_mips_ent, 1},
1224 {"bgnb", s_ignore, 0},
1225 {"end", s_mips_end, 0},
1226 {"endb", s_ignore, 0},
1227 {"ent", s_mips_ent, 0},
1228 {"file", s_mips_file, 0},
1229 {"fmask", s_mips_mask, 'F'},
1230 {"frame", s_mips_frame, 0},
1231 {"loc", s_mips_loc, 0},
1232 {"mask", s_mips_mask, 'R'},
1233 {"verstamp", s_ignore, 0},
1234 { NULL, NULL, 0 },
1235 };
1236
1237 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1238 purpose of the `.dc.a' internal pseudo-op. */
1239
1240 int
1241 mips_address_bytes (void)
1242 {
1243 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1244 }
1245
1246 extern void pop_insert (const pseudo_typeS *);
1247
1248 void
1249 mips_pop_insert (void)
1250 {
1251 pop_insert (mips_pseudo_table);
1252 if (! ECOFF_DEBUGGING)
1253 pop_insert (mips_nonecoff_pseudo_table);
1254 }
1255 \f
1256 /* Symbols labelling the current insn. */
1257
1258 struct insn_label_list
1259 {
1260 struct insn_label_list *next;
1261 symbolS *label;
1262 };
1263
1264 static struct insn_label_list *free_insn_labels;
1265 #define label_list tc_segment_info_data.labels
1266
1267 static void mips_clear_insn_labels (void);
1268
1269 static inline void
1270 mips_clear_insn_labels (void)
1271 {
1272 register struct insn_label_list **pl;
1273 segment_info_type *si;
1274
1275 if (now_seg)
1276 {
1277 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1278 ;
1279
1280 si = seg_info (now_seg);
1281 *pl = si->label_list;
1282 si->label_list = NULL;
1283 }
1284 }
1285
1286 \f
1287 static char *expr_end;
1288
1289 /* Expressions which appear in instructions. These are set by
1290 mips_ip. */
1291
1292 static expressionS imm_expr;
1293 static expressionS imm2_expr;
1294 static expressionS offset_expr;
1295
1296 /* Relocs associated with imm_expr and offset_expr. */
1297
1298 static bfd_reloc_code_real_type imm_reloc[3]
1299 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1300 static bfd_reloc_code_real_type offset_reloc[3]
1301 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1302
1303 /* These are set by mips16_ip if an explicit extension is used. */
1304
1305 static bfd_boolean mips16_small, mips16_ext;
1306
1307 #ifdef OBJ_ELF
1308 /* The pdr segment for per procedure frame/regmask info. Not used for
1309 ECOFF debugging. */
1310
1311 static segT pdr_seg;
1312 #endif
1313
1314 /* The default target format to use. */
1315
1316 #if defined (TE_FreeBSD)
1317 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1318 #elif defined (TE_TMIPS)
1319 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1320 #else
1321 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1322 #endif
1323
1324 const char *
1325 mips_target_format (void)
1326 {
1327 switch (OUTPUT_FLAVOR)
1328 {
1329 case bfd_target_ecoff_flavour:
1330 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1331 case bfd_target_coff_flavour:
1332 return "pe-mips";
1333 case bfd_target_elf_flavour:
1334 #ifdef TE_VXWORKS
1335 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1336 return (target_big_endian
1337 ? "elf32-bigmips-vxworks"
1338 : "elf32-littlemips-vxworks");
1339 #endif
1340 return (target_big_endian
1341 ? (HAVE_64BIT_OBJECTS
1342 ? ELF_TARGET ("elf64-", "big")
1343 : (HAVE_NEWABI
1344 ? ELF_TARGET ("elf32-n", "big")
1345 : ELF_TARGET ("elf32-", "big")))
1346 : (HAVE_64BIT_OBJECTS
1347 ? ELF_TARGET ("elf64-", "little")
1348 : (HAVE_NEWABI
1349 ? ELF_TARGET ("elf32-n", "little")
1350 : ELF_TARGET ("elf32-", "little"))));
1351 default:
1352 abort ();
1353 return NULL;
1354 }
1355 }
1356
1357 /* Return the length of instruction INSN. */
1358
1359 static inline unsigned int
1360 insn_length (const struct mips_cl_insn *insn)
1361 {
1362 if (!mips_opts.mips16)
1363 return 4;
1364 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1365 }
1366
1367 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1368
1369 static void
1370 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1371 {
1372 size_t i;
1373
1374 insn->insn_mo = mo;
1375 insn->use_extend = FALSE;
1376 insn->extend = 0;
1377 insn->insn_opcode = mo->match;
1378 insn->frag = NULL;
1379 insn->where = 0;
1380 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1381 insn->fixp[i] = NULL;
1382 insn->fixed_p = (mips_opts.noreorder > 0);
1383 insn->noreorder_p = (mips_opts.noreorder > 0);
1384 insn->mips16_absolute_jump_p = 0;
1385 }
1386
1387 /* Record the current MIPS16 mode in now_seg. */
1388
1389 static void
1390 mips_record_mips16_mode (void)
1391 {
1392 segment_info_type *si;
1393
1394 si = seg_info (now_seg);
1395 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1396 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1397 }
1398
1399 /* Install INSN at the location specified by its "frag" and "where" fields. */
1400
1401 static void
1402 install_insn (const struct mips_cl_insn *insn)
1403 {
1404 char *f = insn->frag->fr_literal + insn->where;
1405 if (!mips_opts.mips16)
1406 md_number_to_chars (f, insn->insn_opcode, 4);
1407 else if (insn->mips16_absolute_jump_p)
1408 {
1409 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1410 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1411 }
1412 else
1413 {
1414 if (insn->use_extend)
1415 {
1416 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1417 f += 2;
1418 }
1419 md_number_to_chars (f, insn->insn_opcode, 2);
1420 }
1421 mips_record_mips16_mode ();
1422 }
1423
1424 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1425 and install the opcode in the new location. */
1426
1427 static void
1428 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1429 {
1430 size_t i;
1431
1432 insn->frag = frag;
1433 insn->where = where;
1434 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1435 if (insn->fixp[i] != NULL)
1436 {
1437 insn->fixp[i]->fx_frag = frag;
1438 insn->fixp[i]->fx_where = where;
1439 }
1440 install_insn (insn);
1441 }
1442
1443 /* Add INSN to the end of the output. */
1444
1445 static void
1446 add_fixed_insn (struct mips_cl_insn *insn)
1447 {
1448 char *f = frag_more (insn_length (insn));
1449 move_insn (insn, frag_now, f - frag_now->fr_literal);
1450 }
1451
1452 /* Start a variant frag and move INSN to the start of the variant part,
1453 marking it as fixed. The other arguments are as for frag_var. */
1454
1455 static void
1456 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1457 relax_substateT subtype, symbolS *symbol, offsetT offset)
1458 {
1459 frag_grow (max_chars);
1460 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1461 insn->fixed_p = 1;
1462 frag_var (rs_machine_dependent, max_chars, var,
1463 subtype, symbol, offset, NULL);
1464 }
1465
1466 /* Insert N copies of INSN into the history buffer, starting at
1467 position FIRST. Neither FIRST nor N need to be clipped. */
1468
1469 static void
1470 insert_into_history (unsigned int first, unsigned int n,
1471 const struct mips_cl_insn *insn)
1472 {
1473 if (mips_relax.sequence != 2)
1474 {
1475 unsigned int i;
1476
1477 for (i = ARRAY_SIZE (history); i-- > first;)
1478 if (i >= first + n)
1479 history[i] = history[i - n];
1480 else
1481 history[i] = *insn;
1482 }
1483 }
1484
1485 /* Emit a nop instruction, recording it in the history buffer. */
1486
1487 static void
1488 emit_nop (void)
1489 {
1490 add_fixed_insn (NOP_INSN);
1491 insert_into_history (0, 1, NOP_INSN);
1492 }
1493
1494 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1495 the idea is to make it obvious at a glance that each errata is
1496 included. */
1497
1498 static void
1499 init_vr4120_conflicts (void)
1500 {
1501 #define CONFLICT(FIRST, SECOND) \
1502 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1503
1504 /* Errata 21 - [D]DIV[U] after [D]MACC */
1505 CONFLICT (MACC, DIV);
1506 CONFLICT (DMACC, DIV);
1507
1508 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1509 CONFLICT (DMULT, DMULT);
1510 CONFLICT (DMULT, DMACC);
1511 CONFLICT (DMACC, DMULT);
1512 CONFLICT (DMACC, DMACC);
1513
1514 /* Errata 24 - MT{LO,HI} after [D]MACC */
1515 CONFLICT (MACC, MTHILO);
1516 CONFLICT (DMACC, MTHILO);
1517
1518 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1519 instruction is executed immediately after a MACC or DMACC
1520 instruction, the result of [either instruction] is incorrect." */
1521 CONFLICT (MACC, MULT);
1522 CONFLICT (MACC, DMULT);
1523 CONFLICT (DMACC, MULT);
1524 CONFLICT (DMACC, DMULT);
1525
1526 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1527 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1528 DDIV or DDIVU instruction, the result of the MACC or
1529 DMACC instruction is incorrect.". */
1530 CONFLICT (DMULT, MACC);
1531 CONFLICT (DMULT, DMACC);
1532 CONFLICT (DIV, MACC);
1533 CONFLICT (DIV, DMACC);
1534
1535 #undef CONFLICT
1536 }
1537
1538 struct regname {
1539 const char *name;
1540 unsigned int num;
1541 };
1542
1543 #define RTYPE_MASK 0x1ff00
1544 #define RTYPE_NUM 0x00100
1545 #define RTYPE_FPU 0x00200
1546 #define RTYPE_FCC 0x00400
1547 #define RTYPE_VEC 0x00800
1548 #define RTYPE_GP 0x01000
1549 #define RTYPE_CP0 0x02000
1550 #define RTYPE_PC 0x04000
1551 #define RTYPE_ACC 0x08000
1552 #define RTYPE_CCC 0x10000
1553 #define RNUM_MASK 0x000ff
1554 #define RWARN 0x80000
1555
1556 #define GENERIC_REGISTER_NUMBERS \
1557 {"$0", RTYPE_NUM | 0}, \
1558 {"$1", RTYPE_NUM | 1}, \
1559 {"$2", RTYPE_NUM | 2}, \
1560 {"$3", RTYPE_NUM | 3}, \
1561 {"$4", RTYPE_NUM | 4}, \
1562 {"$5", RTYPE_NUM | 5}, \
1563 {"$6", RTYPE_NUM | 6}, \
1564 {"$7", RTYPE_NUM | 7}, \
1565 {"$8", RTYPE_NUM | 8}, \
1566 {"$9", RTYPE_NUM | 9}, \
1567 {"$10", RTYPE_NUM | 10}, \
1568 {"$11", RTYPE_NUM | 11}, \
1569 {"$12", RTYPE_NUM | 12}, \
1570 {"$13", RTYPE_NUM | 13}, \
1571 {"$14", RTYPE_NUM | 14}, \
1572 {"$15", RTYPE_NUM | 15}, \
1573 {"$16", RTYPE_NUM | 16}, \
1574 {"$17", RTYPE_NUM | 17}, \
1575 {"$18", RTYPE_NUM | 18}, \
1576 {"$19", RTYPE_NUM | 19}, \
1577 {"$20", RTYPE_NUM | 20}, \
1578 {"$21", RTYPE_NUM | 21}, \
1579 {"$22", RTYPE_NUM | 22}, \
1580 {"$23", RTYPE_NUM | 23}, \
1581 {"$24", RTYPE_NUM | 24}, \
1582 {"$25", RTYPE_NUM | 25}, \
1583 {"$26", RTYPE_NUM | 26}, \
1584 {"$27", RTYPE_NUM | 27}, \
1585 {"$28", RTYPE_NUM | 28}, \
1586 {"$29", RTYPE_NUM | 29}, \
1587 {"$30", RTYPE_NUM | 30}, \
1588 {"$31", RTYPE_NUM | 31}
1589
1590 #define FPU_REGISTER_NAMES \
1591 {"$f0", RTYPE_FPU | 0}, \
1592 {"$f1", RTYPE_FPU | 1}, \
1593 {"$f2", RTYPE_FPU | 2}, \
1594 {"$f3", RTYPE_FPU | 3}, \
1595 {"$f4", RTYPE_FPU | 4}, \
1596 {"$f5", RTYPE_FPU | 5}, \
1597 {"$f6", RTYPE_FPU | 6}, \
1598 {"$f7", RTYPE_FPU | 7}, \
1599 {"$f8", RTYPE_FPU | 8}, \
1600 {"$f9", RTYPE_FPU | 9}, \
1601 {"$f10", RTYPE_FPU | 10}, \
1602 {"$f11", RTYPE_FPU | 11}, \
1603 {"$f12", RTYPE_FPU | 12}, \
1604 {"$f13", RTYPE_FPU | 13}, \
1605 {"$f14", RTYPE_FPU | 14}, \
1606 {"$f15", RTYPE_FPU | 15}, \
1607 {"$f16", RTYPE_FPU | 16}, \
1608 {"$f17", RTYPE_FPU | 17}, \
1609 {"$f18", RTYPE_FPU | 18}, \
1610 {"$f19", RTYPE_FPU | 19}, \
1611 {"$f20", RTYPE_FPU | 20}, \
1612 {"$f21", RTYPE_FPU | 21}, \
1613 {"$f22", RTYPE_FPU | 22}, \
1614 {"$f23", RTYPE_FPU | 23}, \
1615 {"$f24", RTYPE_FPU | 24}, \
1616 {"$f25", RTYPE_FPU | 25}, \
1617 {"$f26", RTYPE_FPU | 26}, \
1618 {"$f27", RTYPE_FPU | 27}, \
1619 {"$f28", RTYPE_FPU | 28}, \
1620 {"$f29", RTYPE_FPU | 29}, \
1621 {"$f30", RTYPE_FPU | 30}, \
1622 {"$f31", RTYPE_FPU | 31}
1623
1624 #define FPU_CONDITION_CODE_NAMES \
1625 {"$fcc0", RTYPE_FCC | 0}, \
1626 {"$fcc1", RTYPE_FCC | 1}, \
1627 {"$fcc2", RTYPE_FCC | 2}, \
1628 {"$fcc3", RTYPE_FCC | 3}, \
1629 {"$fcc4", RTYPE_FCC | 4}, \
1630 {"$fcc5", RTYPE_FCC | 5}, \
1631 {"$fcc6", RTYPE_FCC | 6}, \
1632 {"$fcc7", RTYPE_FCC | 7}
1633
1634 #define COPROC_CONDITION_CODE_NAMES \
1635 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1636 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1637 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1638 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1639 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1640 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1641 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1642 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1643
1644 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1645 {"$a4", RTYPE_GP | 8}, \
1646 {"$a5", RTYPE_GP | 9}, \
1647 {"$a6", RTYPE_GP | 10}, \
1648 {"$a7", RTYPE_GP | 11}, \
1649 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1650 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1651 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1652 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1653 {"$t0", RTYPE_GP | 12}, \
1654 {"$t1", RTYPE_GP | 13}, \
1655 {"$t2", RTYPE_GP | 14}, \
1656 {"$t3", RTYPE_GP | 15}
1657
1658 #define O32_SYMBOLIC_REGISTER_NAMES \
1659 {"$t0", RTYPE_GP | 8}, \
1660 {"$t1", RTYPE_GP | 9}, \
1661 {"$t2", RTYPE_GP | 10}, \
1662 {"$t3", RTYPE_GP | 11}, \
1663 {"$t4", RTYPE_GP | 12}, \
1664 {"$t5", RTYPE_GP | 13}, \
1665 {"$t6", RTYPE_GP | 14}, \
1666 {"$t7", RTYPE_GP | 15}, \
1667 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1668 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1669 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1670 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1671
1672 /* Remaining symbolic register names */
1673 #define SYMBOLIC_REGISTER_NAMES \
1674 {"$zero", RTYPE_GP | 0}, \
1675 {"$at", RTYPE_GP | 1}, \
1676 {"$AT", RTYPE_GP | 1}, \
1677 {"$v0", RTYPE_GP | 2}, \
1678 {"$v1", RTYPE_GP | 3}, \
1679 {"$a0", RTYPE_GP | 4}, \
1680 {"$a1", RTYPE_GP | 5}, \
1681 {"$a2", RTYPE_GP | 6}, \
1682 {"$a3", RTYPE_GP | 7}, \
1683 {"$s0", RTYPE_GP | 16}, \
1684 {"$s1", RTYPE_GP | 17}, \
1685 {"$s2", RTYPE_GP | 18}, \
1686 {"$s3", RTYPE_GP | 19}, \
1687 {"$s4", RTYPE_GP | 20}, \
1688 {"$s5", RTYPE_GP | 21}, \
1689 {"$s6", RTYPE_GP | 22}, \
1690 {"$s7", RTYPE_GP | 23}, \
1691 {"$t8", RTYPE_GP | 24}, \
1692 {"$t9", RTYPE_GP | 25}, \
1693 {"$k0", RTYPE_GP | 26}, \
1694 {"$kt0", RTYPE_GP | 26}, \
1695 {"$k1", RTYPE_GP | 27}, \
1696 {"$kt1", RTYPE_GP | 27}, \
1697 {"$gp", RTYPE_GP | 28}, \
1698 {"$sp", RTYPE_GP | 29}, \
1699 {"$s8", RTYPE_GP | 30}, \
1700 {"$fp", RTYPE_GP | 30}, \
1701 {"$ra", RTYPE_GP | 31}
1702
1703 #define MIPS16_SPECIAL_REGISTER_NAMES \
1704 {"$pc", RTYPE_PC | 0}
1705
1706 #define MDMX_VECTOR_REGISTER_NAMES \
1707 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1708 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1709 {"$v2", RTYPE_VEC | 2}, \
1710 {"$v3", RTYPE_VEC | 3}, \
1711 {"$v4", RTYPE_VEC | 4}, \
1712 {"$v5", RTYPE_VEC | 5}, \
1713 {"$v6", RTYPE_VEC | 6}, \
1714 {"$v7", RTYPE_VEC | 7}, \
1715 {"$v8", RTYPE_VEC | 8}, \
1716 {"$v9", RTYPE_VEC | 9}, \
1717 {"$v10", RTYPE_VEC | 10}, \
1718 {"$v11", RTYPE_VEC | 11}, \
1719 {"$v12", RTYPE_VEC | 12}, \
1720 {"$v13", RTYPE_VEC | 13}, \
1721 {"$v14", RTYPE_VEC | 14}, \
1722 {"$v15", RTYPE_VEC | 15}, \
1723 {"$v16", RTYPE_VEC | 16}, \
1724 {"$v17", RTYPE_VEC | 17}, \
1725 {"$v18", RTYPE_VEC | 18}, \
1726 {"$v19", RTYPE_VEC | 19}, \
1727 {"$v20", RTYPE_VEC | 20}, \
1728 {"$v21", RTYPE_VEC | 21}, \
1729 {"$v22", RTYPE_VEC | 22}, \
1730 {"$v23", RTYPE_VEC | 23}, \
1731 {"$v24", RTYPE_VEC | 24}, \
1732 {"$v25", RTYPE_VEC | 25}, \
1733 {"$v26", RTYPE_VEC | 26}, \
1734 {"$v27", RTYPE_VEC | 27}, \
1735 {"$v28", RTYPE_VEC | 28}, \
1736 {"$v29", RTYPE_VEC | 29}, \
1737 {"$v30", RTYPE_VEC | 30}, \
1738 {"$v31", RTYPE_VEC | 31}
1739
1740 #define MIPS_DSP_ACCUMULATOR_NAMES \
1741 {"$ac0", RTYPE_ACC | 0}, \
1742 {"$ac1", RTYPE_ACC | 1}, \
1743 {"$ac2", RTYPE_ACC | 2}, \
1744 {"$ac3", RTYPE_ACC | 3}
1745
1746 static const struct regname reg_names[] = {
1747 GENERIC_REGISTER_NUMBERS,
1748 FPU_REGISTER_NAMES,
1749 FPU_CONDITION_CODE_NAMES,
1750 COPROC_CONDITION_CODE_NAMES,
1751
1752 /* The $txx registers depends on the abi,
1753 these will be added later into the symbol table from
1754 one of the tables below once mips_abi is set after
1755 parsing of arguments from the command line. */
1756 SYMBOLIC_REGISTER_NAMES,
1757
1758 MIPS16_SPECIAL_REGISTER_NAMES,
1759 MDMX_VECTOR_REGISTER_NAMES,
1760 MIPS_DSP_ACCUMULATOR_NAMES,
1761 {0, 0}
1762 };
1763
1764 static const struct regname reg_names_o32[] = {
1765 O32_SYMBOLIC_REGISTER_NAMES,
1766 {0, 0}
1767 };
1768
1769 static const struct regname reg_names_n32n64[] = {
1770 N32N64_SYMBOLIC_REGISTER_NAMES,
1771 {0, 0}
1772 };
1773
1774 static int
1775 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1776 {
1777 symbolS *symbolP;
1778 char *e;
1779 char save_c;
1780 int reg = -1;
1781
1782 /* Find end of name. */
1783 e = *s;
1784 if (is_name_beginner (*e))
1785 ++e;
1786 while (is_part_of_name (*e))
1787 ++e;
1788
1789 /* Terminate name. */
1790 save_c = *e;
1791 *e = '\0';
1792
1793 /* Look for a register symbol. */
1794 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1795 {
1796 int r = S_GET_VALUE (symbolP);
1797 if (r & types)
1798 reg = r & RNUM_MASK;
1799 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1800 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1801 reg = (r & RNUM_MASK) - 2;
1802 }
1803 /* Else see if this is a register defined in an itbl entry. */
1804 else if ((types & RTYPE_GP) && itbl_have_entries)
1805 {
1806 char *n = *s;
1807 unsigned long r;
1808
1809 if (*n == '$')
1810 ++n;
1811 if (itbl_get_reg_val (n, &r))
1812 reg = r & RNUM_MASK;
1813 }
1814
1815 /* Advance to next token if a register was recognised. */
1816 if (reg >= 0)
1817 *s = e;
1818 else if (types & RWARN)
1819 as_warn (_("Unrecognized register name `%s'"), *s);
1820
1821 *e = save_c;
1822 if (regnop)
1823 *regnop = reg;
1824 return reg >= 0;
1825 }
1826
1827 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1828 architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
1829
1830 static bfd_boolean
1831 is_opcode_valid (const struct mips_opcode *mo)
1832 {
1833 int isa = mips_opts.isa;
1834 int fp_s, fp_d;
1835
1836 if (mips_opts.ase_mdmx)
1837 isa |= INSN_MDMX;
1838 if (mips_opts.ase_dsp)
1839 isa |= INSN_DSP;
1840 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1841 isa |= INSN_DSP64;
1842 if (mips_opts.ase_dspr2)
1843 isa |= INSN_DSPR2;
1844 if (mips_opts.ase_mt)
1845 isa |= INSN_MT;
1846 if (mips_opts.ase_mips3d)
1847 isa |= INSN_MIPS3D;
1848 if (mips_opts.ase_smartmips)
1849 isa |= INSN_SMARTMIPS;
1850
1851 /* Don't accept instructions based on the ISA if the CPU does not implement
1852 all the coprocessor insns. */
1853 if (NO_ISA_COP (mips_opts.arch)
1854 && COP_INSN (mo->pinfo))
1855 isa = 0;
1856
1857 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1858 return FALSE;
1859
1860 /* Check whether the instruction or macro requires single-precision or
1861 double-precision floating-point support. Note that this information is
1862 stored differently in the opcode table for insns and macros. */
1863 if (mo->pinfo == INSN_MACRO)
1864 {
1865 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1866 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1867 }
1868 else
1869 {
1870 fp_s = mo->pinfo & FP_S;
1871 fp_d = mo->pinfo & FP_D;
1872 }
1873
1874 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1875 return FALSE;
1876
1877 if (fp_s && mips_opts.soft_float)
1878 return FALSE;
1879
1880 return TRUE;
1881 }
1882
1883 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1884 selected ISA and architecture. */
1885
1886 static bfd_boolean
1887 is_opcode_valid_16 (const struct mips_opcode *mo)
1888 {
1889 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1890 }
1891
1892 /* This function is called once, at assembler startup time. It should set up
1893 all the tables, etc. that the MD part of the assembler will need. */
1894
1895 void
1896 md_begin (void)
1897 {
1898 const char *retval = NULL;
1899 int i = 0;
1900 int broken = 0;
1901
1902 if (mips_pic != NO_PIC)
1903 {
1904 if (g_switch_seen && g_switch_value != 0)
1905 as_bad (_("-G may not be used in position-independent code"));
1906 g_switch_value = 0;
1907 }
1908
1909 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1910 as_warn (_("Could not set architecture and machine"));
1911
1912 op_hash = hash_new ();
1913
1914 for (i = 0; i < NUMOPCODES;)
1915 {
1916 const char *name = mips_opcodes[i].name;
1917
1918 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1919 if (retval != NULL)
1920 {
1921 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1922 mips_opcodes[i].name, retval);
1923 /* Probably a memory allocation problem? Give up now. */
1924 as_fatal (_("Broken assembler. No assembly attempted."));
1925 }
1926 do
1927 {
1928 if (mips_opcodes[i].pinfo != INSN_MACRO)
1929 {
1930 if (!validate_mips_insn (&mips_opcodes[i]))
1931 broken = 1;
1932 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1933 {
1934 create_insn (&nop_insn, mips_opcodes + i);
1935 if (mips_fix_loongson2f_nop)
1936 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
1937 nop_insn.fixed_p = 1;
1938 }
1939 }
1940 ++i;
1941 }
1942 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1943 }
1944
1945 mips16_op_hash = hash_new ();
1946
1947 i = 0;
1948 while (i < bfd_mips16_num_opcodes)
1949 {
1950 const char *name = mips16_opcodes[i].name;
1951
1952 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1953 if (retval != NULL)
1954 as_fatal (_("internal: can't hash `%s': %s"),
1955 mips16_opcodes[i].name, retval);
1956 do
1957 {
1958 if (mips16_opcodes[i].pinfo != INSN_MACRO
1959 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1960 != mips16_opcodes[i].match))
1961 {
1962 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1963 mips16_opcodes[i].name, mips16_opcodes[i].args);
1964 broken = 1;
1965 }
1966 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1967 {
1968 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1969 mips16_nop_insn.fixed_p = 1;
1970 }
1971 ++i;
1972 }
1973 while (i < bfd_mips16_num_opcodes
1974 && strcmp (mips16_opcodes[i].name, name) == 0);
1975 }
1976
1977 if (broken)
1978 as_fatal (_("Broken assembler. No assembly attempted."));
1979
1980 /* We add all the general register names to the symbol table. This
1981 helps us detect invalid uses of them. */
1982 for (i = 0; reg_names[i].name; i++)
1983 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1984 reg_names[i].num, /* & RNUM_MASK, */
1985 &zero_address_frag));
1986 if (HAVE_NEWABI)
1987 for (i = 0; reg_names_n32n64[i].name; i++)
1988 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1989 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1990 &zero_address_frag));
1991 else
1992 for (i = 0; reg_names_o32[i].name; i++)
1993 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1994 reg_names_o32[i].num, /* & RNUM_MASK, */
1995 &zero_address_frag));
1996
1997 mips_no_prev_insn ();
1998
1999 mips_gprmask = 0;
2000 mips_cprmask[0] = 0;
2001 mips_cprmask[1] = 0;
2002 mips_cprmask[2] = 0;
2003 mips_cprmask[3] = 0;
2004
2005 /* set the default alignment for the text section (2**2) */
2006 record_alignment (text_section, 2);
2007
2008 bfd_set_gp_size (stdoutput, g_switch_value);
2009
2010 #ifdef OBJ_ELF
2011 if (IS_ELF)
2012 {
2013 /* On a native system other than VxWorks, sections must be aligned
2014 to 16 byte boundaries. When configured for an embedded ELF
2015 target, we don't bother. */
2016 if (strncmp (TARGET_OS, "elf", 3) != 0
2017 && strncmp (TARGET_OS, "vxworks", 7) != 0)
2018 {
2019 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
2020 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
2021 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
2022 }
2023
2024 /* Create a .reginfo section for register masks and a .mdebug
2025 section for debugging information. */
2026 {
2027 segT seg;
2028 subsegT subseg;
2029 flagword flags;
2030 segT sec;
2031
2032 seg = now_seg;
2033 subseg = now_subseg;
2034
2035 /* The ABI says this section should be loaded so that the
2036 running program can access it. However, we don't load it
2037 if we are configured for an embedded target */
2038 flags = SEC_READONLY | SEC_DATA;
2039 if (strncmp (TARGET_OS, "elf", 3) != 0)
2040 flags |= SEC_ALLOC | SEC_LOAD;
2041
2042 if (mips_abi != N64_ABI)
2043 {
2044 sec = subseg_new (".reginfo", (subsegT) 0);
2045
2046 bfd_set_section_flags (stdoutput, sec, flags);
2047 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2048
2049 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2050 }
2051 else
2052 {
2053 /* The 64-bit ABI uses a .MIPS.options section rather than
2054 .reginfo section. */
2055 sec = subseg_new (".MIPS.options", (subsegT) 0);
2056 bfd_set_section_flags (stdoutput, sec, flags);
2057 bfd_set_section_alignment (stdoutput, sec, 3);
2058
2059 /* Set up the option header. */
2060 {
2061 Elf_Internal_Options opthdr;
2062 char *f;
2063
2064 opthdr.kind = ODK_REGINFO;
2065 opthdr.size = (sizeof (Elf_External_Options)
2066 + sizeof (Elf64_External_RegInfo));
2067 opthdr.section = 0;
2068 opthdr.info = 0;
2069 f = frag_more (sizeof (Elf_External_Options));
2070 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2071 (Elf_External_Options *) f);
2072
2073 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2074 }
2075 }
2076
2077 if (ECOFF_DEBUGGING)
2078 {
2079 sec = subseg_new (".mdebug", (subsegT) 0);
2080 (void) bfd_set_section_flags (stdoutput, sec,
2081 SEC_HAS_CONTENTS | SEC_READONLY);
2082 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2083 }
2084 else if (mips_flag_pdr)
2085 {
2086 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2087 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2088 SEC_READONLY | SEC_RELOC
2089 | SEC_DEBUGGING);
2090 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2091 }
2092
2093 subseg_set (seg, subseg);
2094 }
2095 }
2096 #endif /* OBJ_ELF */
2097
2098 if (! ECOFF_DEBUGGING)
2099 md_obj_begin ();
2100
2101 if (mips_fix_vr4120)
2102 init_vr4120_conflicts ();
2103 }
2104
2105 void
2106 md_mips_end (void)
2107 {
2108 if (! ECOFF_DEBUGGING)
2109 md_obj_end ();
2110 }
2111
2112 void
2113 md_assemble (char *str)
2114 {
2115 struct mips_cl_insn insn;
2116 bfd_reloc_code_real_type unused_reloc[3]
2117 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2118
2119 imm_expr.X_op = O_absent;
2120 imm2_expr.X_op = O_absent;
2121 offset_expr.X_op = O_absent;
2122 imm_reloc[0] = BFD_RELOC_UNUSED;
2123 imm_reloc[1] = BFD_RELOC_UNUSED;
2124 imm_reloc[2] = BFD_RELOC_UNUSED;
2125 offset_reloc[0] = BFD_RELOC_UNUSED;
2126 offset_reloc[1] = BFD_RELOC_UNUSED;
2127 offset_reloc[2] = BFD_RELOC_UNUSED;
2128
2129 if (mips_opts.mips16)
2130 mips16_ip (str, &insn);
2131 else
2132 {
2133 mips_ip (str, &insn);
2134 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2135 str, insn.insn_opcode));
2136 }
2137
2138 if (insn_error)
2139 {
2140 as_bad ("%s `%s'", insn_error, str);
2141 return;
2142 }
2143
2144 if (insn.insn_mo->pinfo == INSN_MACRO)
2145 {
2146 macro_start ();
2147 if (mips_opts.mips16)
2148 mips16_macro (&insn);
2149 else
2150 macro (&insn);
2151 macro_end ();
2152 }
2153 else
2154 {
2155 if (imm_expr.X_op != O_absent)
2156 append_insn (&insn, &imm_expr, imm_reloc);
2157 else if (offset_expr.X_op != O_absent)
2158 append_insn (&insn, &offset_expr, offset_reloc);
2159 else
2160 append_insn (&insn, NULL, unused_reloc);
2161 }
2162 }
2163
2164 /* Convenience functions for abstracting away the differences between
2165 MIPS16 and non-MIPS16 relocations. */
2166
2167 static inline bfd_boolean
2168 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2169 {
2170 switch (reloc)
2171 {
2172 case BFD_RELOC_MIPS16_JMP:
2173 case BFD_RELOC_MIPS16_GPREL:
2174 case BFD_RELOC_MIPS16_GOT16:
2175 case BFD_RELOC_MIPS16_CALL16:
2176 case BFD_RELOC_MIPS16_HI16_S:
2177 case BFD_RELOC_MIPS16_HI16:
2178 case BFD_RELOC_MIPS16_LO16:
2179 return TRUE;
2180
2181 default:
2182 return FALSE;
2183 }
2184 }
2185
2186 static inline bfd_boolean
2187 got16_reloc_p (bfd_reloc_code_real_type reloc)
2188 {
2189 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2190 }
2191
2192 static inline bfd_boolean
2193 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2194 {
2195 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2196 }
2197
2198 static inline bfd_boolean
2199 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2200 {
2201 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2202 }
2203
2204 /* Return true if the given relocation might need a matching %lo().
2205 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2206 need a matching %lo() when applied to local symbols. */
2207
2208 static inline bfd_boolean
2209 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2210 {
2211 return (HAVE_IN_PLACE_ADDENDS
2212 && (hi16_reloc_p (reloc)
2213 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2214 all GOT16 relocations evaluate to "G". */
2215 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2216 }
2217
2218 /* Return the type of %lo() reloc needed by RELOC, given that
2219 reloc_needs_lo_p. */
2220
2221 static inline bfd_reloc_code_real_type
2222 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2223 {
2224 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2225 }
2226
2227 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2228 relocation. */
2229
2230 static inline bfd_boolean
2231 fixup_has_matching_lo_p (fixS *fixp)
2232 {
2233 return (fixp->fx_next != NULL
2234 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2235 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2236 && fixp->fx_offset == fixp->fx_next->fx_offset);
2237 }
2238
2239 /* See whether instruction IP reads register REG. CLASS is the type
2240 of register. */
2241
2242 static int
2243 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2244 enum mips_regclass regclass)
2245 {
2246 if (regclass == MIPS16_REG)
2247 {
2248 gas_assert (mips_opts.mips16);
2249 reg = mips16_to_32_reg_map[reg];
2250 regclass = MIPS_GR_REG;
2251 }
2252
2253 /* Don't report on general register ZERO, since it never changes. */
2254 if (regclass == MIPS_GR_REG && reg == ZERO)
2255 return 0;
2256
2257 if (regclass == MIPS_FP_REG)
2258 {
2259 gas_assert (! mips_opts.mips16);
2260 /* If we are called with either $f0 or $f1, we must check $f0.
2261 This is not optimal, because it will introduce an unnecessary
2262 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2263 need to distinguish reading both $f0 and $f1 or just one of
2264 them. Note that we don't have to check the other way,
2265 because there is no instruction that sets both $f0 and $f1
2266 and requires a delay. */
2267 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2268 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2269 == (reg &~ (unsigned) 1)))
2270 return 1;
2271 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2272 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2273 == (reg &~ (unsigned) 1)))
2274 return 1;
2275 if ((ip->insn_mo->pinfo2 & INSN2_READ_FPR_Z)
2276 && ((EXTRACT_OPERAND (FZ, *ip) & ~(unsigned) 1)
2277 == (reg &~ (unsigned) 1)))
2278 return 1;
2279 }
2280 else if (! mips_opts.mips16)
2281 {
2282 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2283 && EXTRACT_OPERAND (RS, *ip) == reg)
2284 return 1;
2285 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2286 && EXTRACT_OPERAND (RT, *ip) == reg)
2287 return 1;
2288 if ((ip->insn_mo->pinfo2 & INSN2_READ_GPR_D)
2289 && EXTRACT_OPERAND (RD, *ip) == reg)
2290 return 1;
2291 if ((ip->insn_mo->pinfo2 & INSN2_READ_GPR_Z)
2292 && EXTRACT_OPERAND (RZ, *ip) == reg)
2293 return 1;
2294 }
2295 else
2296 {
2297 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2298 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2299 return 1;
2300 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2301 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2302 return 1;
2303 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2304 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2305 == reg))
2306 return 1;
2307 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2308 return 1;
2309 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2310 return 1;
2311 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2312 return 1;
2313 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2314 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2315 return 1;
2316 }
2317
2318 return 0;
2319 }
2320
2321 /* This function returns true if modifying a register requires a
2322 delay. */
2323
2324 static int
2325 reg_needs_delay (unsigned int reg)
2326 {
2327 unsigned long prev_pinfo;
2328
2329 prev_pinfo = history[0].insn_mo->pinfo;
2330 if (! mips_opts.noreorder
2331 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2332 && ! gpr_interlocks)
2333 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2334 && ! cop_interlocks)))
2335 {
2336 /* A load from a coprocessor or from memory. All load delays
2337 delay the use of general register rt for one instruction. */
2338 /* Itbl support may require additional care here. */
2339 know (prev_pinfo & INSN_WRITE_GPR_T);
2340 if (reg == EXTRACT_OPERAND (RT, history[0]))
2341 return 1;
2342 }
2343
2344 return 0;
2345 }
2346
2347 /* Move all labels in insn_labels to the current insertion point. */
2348
2349 static void
2350 mips_move_labels (void)
2351 {
2352 segment_info_type *si = seg_info (now_seg);
2353 struct insn_label_list *l;
2354 valueT val;
2355
2356 for (l = si->label_list; l != NULL; l = l->next)
2357 {
2358 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2359 symbol_set_frag (l->label, frag_now);
2360 val = (valueT) frag_now_fix ();
2361 /* mips16 text labels are stored as odd. */
2362 if (mips_opts.mips16)
2363 ++val;
2364 S_SET_VALUE (l->label, val);
2365 }
2366 }
2367
2368 static bfd_boolean
2369 s_is_linkonce (symbolS *sym, segT from_seg)
2370 {
2371 bfd_boolean linkonce = FALSE;
2372 segT symseg = S_GET_SEGMENT (sym);
2373
2374 if (symseg != from_seg && !S_IS_LOCAL (sym))
2375 {
2376 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2377 linkonce = TRUE;
2378 #ifdef OBJ_ELF
2379 /* The GNU toolchain uses an extension for ELF: a section
2380 beginning with the magic string .gnu.linkonce is a
2381 linkonce section. */
2382 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2383 sizeof ".gnu.linkonce" - 1) == 0)
2384 linkonce = TRUE;
2385 #endif
2386 }
2387 return linkonce;
2388 }
2389
2390 /* Mark instruction labels in mips16 mode. This permits the linker to
2391 handle them specially, such as generating jalx instructions when
2392 needed. We also make them odd for the duration of the assembly, in
2393 order to generate the right sort of code. We will make them even
2394 in the adjust_symtab routine, while leaving them marked. This is
2395 convenient for the debugger and the disassembler. The linker knows
2396 to make them odd again. */
2397
2398 static void
2399 mips16_mark_labels (void)
2400 {
2401 segment_info_type *si = seg_info (now_seg);
2402 struct insn_label_list *l;
2403
2404 if (!mips_opts.mips16)
2405 return;
2406
2407 for (l = si->label_list; l != NULL; l = l->next)
2408 {
2409 symbolS *label = l->label;
2410
2411 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2412 if (IS_ELF)
2413 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2414 #endif
2415 if ((S_GET_VALUE (label) & 1) == 0
2416 /* Don't adjust the address if the label is global or weak, or
2417 in a link-once section, since we'll be emitting symbol reloc
2418 references to it which will be patched up by the linker, and
2419 the final value of the symbol may or may not be MIPS16. */
2420 && ! S_IS_WEAK (label)
2421 && ! S_IS_EXTERNAL (label)
2422 && ! s_is_linkonce (label, now_seg))
2423 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2424 }
2425 }
2426
2427 /* End the current frag. Make it a variant frag and record the
2428 relaxation info. */
2429
2430 static void
2431 relax_close_frag (void)
2432 {
2433 mips_macro_warning.first_frag = frag_now;
2434 frag_var (rs_machine_dependent, 0, 0,
2435 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2436 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2437
2438 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2439 mips_relax.first_fixup = 0;
2440 }
2441
2442 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2443 See the comment above RELAX_ENCODE for more details. */
2444
2445 static void
2446 relax_start (symbolS *symbol)
2447 {
2448 gas_assert (mips_relax.sequence == 0);
2449 mips_relax.sequence = 1;
2450 mips_relax.symbol = symbol;
2451 }
2452
2453 /* Start generating the second version of a relaxable sequence.
2454 See the comment above RELAX_ENCODE for more details. */
2455
2456 static void
2457 relax_switch (void)
2458 {
2459 gas_assert (mips_relax.sequence == 1);
2460 mips_relax.sequence = 2;
2461 }
2462
2463 /* End the current relaxable sequence. */
2464
2465 static void
2466 relax_end (void)
2467 {
2468 gas_assert (mips_relax.sequence == 2);
2469 relax_close_frag ();
2470 mips_relax.sequence = 0;
2471 }
2472
2473 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2474 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2475 by VR4120 errata. */
2476
2477 static unsigned int
2478 classify_vr4120_insn (const char *name)
2479 {
2480 if (strncmp (name, "macc", 4) == 0)
2481 return FIX_VR4120_MACC;
2482 if (strncmp (name, "dmacc", 5) == 0)
2483 return FIX_VR4120_DMACC;
2484 if (strncmp (name, "mult", 4) == 0)
2485 return FIX_VR4120_MULT;
2486 if (strncmp (name, "dmult", 5) == 0)
2487 return FIX_VR4120_DMULT;
2488 if (strstr (name, "div"))
2489 return FIX_VR4120_DIV;
2490 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2491 return FIX_VR4120_MTHILO;
2492 return NUM_FIX_VR4120_CLASSES;
2493 }
2494
2495 #define INSN_ERET 0x42000018
2496 #define INSN_DERET 0x4200001f
2497
2498 /* Return the number of instructions that must separate INSN1 and INSN2,
2499 where INSN1 is the earlier instruction. Return the worst-case value
2500 for any INSN2 if INSN2 is null. */
2501
2502 static unsigned int
2503 insns_between (const struct mips_cl_insn *insn1,
2504 const struct mips_cl_insn *insn2)
2505 {
2506 unsigned long pinfo1, pinfo2;
2507
2508 /* This function needs to know which pinfo flags are set for INSN2
2509 and which registers INSN2 uses. The former is stored in PINFO2 and
2510 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2511 will have every flag set and INSN2_USES_REG will always return true. */
2512 pinfo1 = insn1->insn_mo->pinfo;
2513 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2514
2515 #define INSN2_USES_REG(REG, CLASS) \
2516 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2517
2518 /* For most targets, write-after-read dependencies on the HI and LO
2519 registers must be separated by at least two instructions. */
2520 if (!hilo_interlocks)
2521 {
2522 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2523 return 2;
2524 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2525 return 2;
2526 }
2527
2528 /* If we're working around r7000 errata, there must be two instructions
2529 between an mfhi or mflo and any instruction that uses the result. */
2530 if (mips_7000_hilo_fix
2531 && MF_HILO_INSN (pinfo1)
2532 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2533 return 2;
2534
2535 /* If we're working around 24K errata, one instruction is required
2536 if an ERET or DERET is followed by a branch instruction. */
2537 if (mips_fix_24k)
2538 {
2539 if (insn1->insn_opcode == INSN_ERET
2540 || insn1->insn_opcode == INSN_DERET)
2541 {
2542 if (insn2 == NULL
2543 || insn2->insn_opcode == INSN_ERET
2544 || insn2->insn_opcode == INSN_DERET
2545 || (insn2->insn_mo->pinfo
2546 & (INSN_UNCOND_BRANCH_DELAY
2547 | INSN_COND_BRANCH_DELAY
2548 | INSN_COND_BRANCH_LIKELY)) != 0)
2549 return 1;
2550 }
2551 }
2552
2553 /* If working around VR4120 errata, check for combinations that need
2554 a single intervening instruction. */
2555 if (mips_fix_vr4120)
2556 {
2557 unsigned int class1, class2;
2558
2559 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2560 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2561 {
2562 if (insn2 == NULL)
2563 return 1;
2564 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2565 if (vr4120_conflicts[class1] & (1 << class2))
2566 return 1;
2567 }
2568 }
2569
2570 if (!mips_opts.mips16)
2571 {
2572 /* Check for GPR or coprocessor load delays. All such delays
2573 are on the RT register. */
2574 /* Itbl support may require additional care here. */
2575 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2576 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2577 {
2578 know (pinfo1 & INSN_WRITE_GPR_T);
2579 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2580 return 1;
2581 }
2582
2583 /* Check for generic coprocessor hazards.
2584
2585 This case is not handled very well. There is no special
2586 knowledge of CP0 handling, and the coprocessors other than
2587 the floating point unit are not distinguished at all. */
2588 /* Itbl support may require additional care here. FIXME!
2589 Need to modify this to include knowledge about
2590 user specified delays! */
2591 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2592 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2593 {
2594 /* Handle cases where INSN1 writes to a known general coprocessor
2595 register. There must be a one instruction delay before INSN2
2596 if INSN2 reads that register, otherwise no delay is needed. */
2597 if (pinfo1 & INSN_WRITE_FPR_T)
2598 {
2599 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2600 return 1;
2601 }
2602 else if (pinfo1 & INSN_WRITE_FPR_S)
2603 {
2604 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2605 return 1;
2606 }
2607 else
2608 {
2609 /* Read-after-write dependencies on the control registers
2610 require a two-instruction gap. */
2611 if ((pinfo1 & INSN_WRITE_COND_CODE)
2612 && (pinfo2 & INSN_READ_COND_CODE))
2613 return 2;
2614
2615 /* We don't know exactly what INSN1 does. If INSN2 is
2616 also a coprocessor instruction, assume there must be
2617 a one instruction gap. */
2618 if (pinfo2 & INSN_COP)
2619 return 1;
2620 }
2621 }
2622
2623 /* Check for read-after-write dependencies on the coprocessor
2624 control registers in cases where INSN1 does not need a general
2625 coprocessor delay. This means that INSN1 is a floating point
2626 comparison instruction. */
2627 /* Itbl support may require additional care here. */
2628 else if (!cop_interlocks
2629 && (pinfo1 & INSN_WRITE_COND_CODE)
2630 && (pinfo2 & INSN_READ_COND_CODE))
2631 return 1;
2632 }
2633
2634 #undef INSN2_USES_REG
2635
2636 return 0;
2637 }
2638
2639 /* Return the number of nops that would be needed to work around the
2640 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2641 the MAX_VR4130_NOPS instructions described by HIST. */
2642
2643 static int
2644 nops_for_vr4130 (const struct mips_cl_insn *hist,
2645 const struct mips_cl_insn *insn)
2646 {
2647 int i, j, reg;
2648
2649 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2650 are not affected by the errata. */
2651 if (insn != 0
2652 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2653 || strcmp (insn->insn_mo->name, "mtlo") == 0
2654 || strcmp (insn->insn_mo->name, "mthi") == 0))
2655 return 0;
2656
2657 /* Search for the first MFLO or MFHI. */
2658 for (i = 0; i < MAX_VR4130_NOPS; i++)
2659 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
2660 {
2661 /* Extract the destination register. */
2662 if (mips_opts.mips16)
2663 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, hist[i])];
2664 else
2665 reg = EXTRACT_OPERAND (RD, hist[i]);
2666
2667 /* No nops are needed if INSN reads that register. */
2668 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2669 return 0;
2670
2671 /* ...or if any of the intervening instructions do. */
2672 for (j = 0; j < i; j++)
2673 if (insn_uses_reg (&hist[j], reg, MIPS_GR_REG))
2674 return 0;
2675
2676 return MAX_VR4130_NOPS - i;
2677 }
2678 return 0;
2679 }
2680
2681 /* Return the number of nops that would be needed if instruction INSN
2682 immediately followed the MAX_NOPS instructions given by HIST,
2683 where HIST[0] is the most recent instruction. If INSN is null,
2684 return the worse-case number of nops for any instruction. */
2685
2686 static int
2687 nops_for_insn (const struct mips_cl_insn *hist,
2688 const struct mips_cl_insn *insn)
2689 {
2690 int i, nops, tmp_nops;
2691
2692 nops = 0;
2693 for (i = 0; i < MAX_DELAY_NOPS; i++)
2694 {
2695 tmp_nops = insns_between (hist + i, insn) - i;
2696 if (tmp_nops > nops)
2697 nops = tmp_nops;
2698 }
2699
2700 if (mips_fix_vr4130)
2701 {
2702 tmp_nops = nops_for_vr4130 (hist, insn);
2703 if (tmp_nops > nops)
2704 nops = tmp_nops;
2705 }
2706
2707 return nops;
2708 }
2709
2710 /* The variable arguments provide NUM_INSNS extra instructions that
2711 might be added to HIST. Return the largest number of nops that
2712 would be needed after the extended sequence. */
2713
2714 static int
2715 nops_for_sequence (int num_insns, const struct mips_cl_insn *hist, ...)
2716 {
2717 va_list args;
2718 struct mips_cl_insn buffer[MAX_NOPS];
2719 struct mips_cl_insn *cursor;
2720 int nops;
2721
2722 va_start (args, hist);
2723 cursor = buffer + num_insns;
2724 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
2725 while (cursor > buffer)
2726 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2727
2728 nops = nops_for_insn (buffer, NULL);
2729 va_end (args);
2730 return nops;
2731 }
2732
2733 /* Like nops_for_insn, but if INSN is a branch, take into account the
2734 worst-case delay for the branch target. */
2735
2736 static int
2737 nops_for_insn_or_target (const struct mips_cl_insn *hist,
2738 const struct mips_cl_insn *insn)
2739 {
2740 int nops, tmp_nops;
2741
2742 nops = nops_for_insn (hist, insn);
2743 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2744 | INSN_COND_BRANCH_DELAY
2745 | INSN_COND_BRANCH_LIKELY))
2746 {
2747 tmp_nops = nops_for_sequence (2, hist, insn, NOP_INSN);
2748 if (tmp_nops > nops)
2749 nops = tmp_nops;
2750 }
2751 else if (mips_opts.mips16
2752 && (insn->insn_mo->pinfo & (MIPS16_INSN_UNCOND_BRANCH
2753 | MIPS16_INSN_COND_BRANCH)))
2754 {
2755 tmp_nops = nops_for_sequence (1, hist, insn);
2756 if (tmp_nops > nops)
2757 nops = tmp_nops;
2758 }
2759 return nops;
2760 }
2761
2762 /* Fix NOP issue: Replace nops by "or at,at,zero". */
2763
2764 static void
2765 fix_loongson2f_nop (struct mips_cl_insn * ip)
2766 {
2767 if (strcmp (ip->insn_mo->name, "nop") == 0)
2768 ip->insn_opcode = LOONGSON2F_NOP_INSN;
2769 }
2770
2771 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
2772 jr target pc &= 'hffff_ffff_cfff_ffff. */
2773
2774 static void
2775 fix_loongson2f_jump (struct mips_cl_insn * ip)
2776 {
2777 if (strcmp (ip->insn_mo->name, "j") == 0
2778 || strcmp (ip->insn_mo->name, "jr") == 0
2779 || strcmp (ip->insn_mo->name, "jalr") == 0)
2780 {
2781 int sreg;
2782 expressionS ep;
2783
2784 if (! mips_opts.at)
2785 return;
2786
2787 sreg = EXTRACT_OPERAND (RS, *ip);
2788 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
2789 return;
2790
2791 ep.X_op = O_constant;
2792 ep.X_add_number = 0xcfff0000;
2793 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
2794 ep.X_add_number = 0xffff;
2795 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
2796 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
2797 }
2798 }
2799
2800 static void
2801 fix_loongson2f (struct mips_cl_insn * ip)
2802 {
2803 if (mips_fix_loongson2f_nop)
2804 fix_loongson2f_nop (ip);
2805
2806 if (mips_fix_loongson2f_jump)
2807 fix_loongson2f_jump (ip);
2808 }
2809
2810 /* Output an instruction. IP is the instruction information.
2811 ADDRESS_EXPR is an operand of the instruction to be used with
2812 RELOC_TYPE. */
2813
2814 static void
2815 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2816 bfd_reloc_code_real_type *reloc_type)
2817 {
2818 unsigned long prev_pinfo, pinfo;
2819 unsigned long prev_pinfo2, pinfo2;
2820 relax_stateT prev_insn_frag_type = 0;
2821 bfd_boolean relaxed_branch = FALSE;
2822 segment_info_type *si = seg_info (now_seg);
2823
2824 if (mips_fix_loongson2f)
2825 fix_loongson2f (ip);
2826
2827 /* Mark instruction labels in mips16 mode. */
2828 mips16_mark_labels ();
2829
2830 file_ase_mips16 |= mips_opts.mips16;
2831
2832 prev_pinfo = history[0].insn_mo->pinfo;
2833 prev_pinfo2 = history[0].insn_mo->pinfo2;
2834 pinfo = ip->insn_mo->pinfo;
2835 pinfo2 = ip->insn_mo->pinfo2;
2836
2837 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2838 {
2839 /* There are a lot of optimizations we could do that we don't.
2840 In particular, we do not, in general, reorder instructions.
2841 If you use gcc with optimization, it will reorder
2842 instructions and generally do much more optimization then we
2843 do here; repeating all that work in the assembler would only
2844 benefit hand written assembly code, and does not seem worth
2845 it. */
2846 int nops = (mips_optimize == 0
2847 ? nops_for_insn (history, NULL)
2848 : nops_for_insn_or_target (history, ip));
2849 if (nops > 0)
2850 {
2851 fragS *old_frag;
2852 unsigned long old_frag_offset;
2853 int i;
2854
2855 old_frag = frag_now;
2856 old_frag_offset = frag_now_fix ();
2857
2858 for (i = 0; i < nops; i++)
2859 emit_nop ();
2860
2861 if (listing)
2862 {
2863 listing_prev_line ();
2864 /* We may be at the start of a variant frag. In case we
2865 are, make sure there is enough space for the frag
2866 after the frags created by listing_prev_line. The
2867 argument to frag_grow here must be at least as large
2868 as the argument to all other calls to frag_grow in
2869 this file. We don't have to worry about being in the
2870 middle of a variant frag, because the variants insert
2871 all needed nop instructions themselves. */
2872 frag_grow (40);
2873 }
2874
2875 mips_move_labels ();
2876
2877 #ifndef NO_ECOFF_DEBUGGING
2878 if (ECOFF_DEBUGGING)
2879 ecoff_fix_loc (old_frag, old_frag_offset);
2880 #endif
2881 }
2882 }
2883 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2884 {
2885 /* Work out how many nops in prev_nop_frag are needed by IP. */
2886 int nops = nops_for_insn_or_target (history, ip);
2887 gas_assert (nops <= prev_nop_frag_holds);
2888
2889 /* Enforce NOPS as a minimum. */
2890 if (nops > prev_nop_frag_required)
2891 prev_nop_frag_required = nops;
2892
2893 if (prev_nop_frag_holds == prev_nop_frag_required)
2894 {
2895 /* Settle for the current number of nops. Update the history
2896 accordingly (for the benefit of any future .set reorder code). */
2897 prev_nop_frag = NULL;
2898 insert_into_history (prev_nop_frag_since,
2899 prev_nop_frag_holds, NOP_INSN);
2900 }
2901 else
2902 {
2903 /* Allow this instruction to replace one of the nops that was
2904 tentatively added to prev_nop_frag. */
2905 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2906 prev_nop_frag_holds--;
2907 prev_nop_frag_since++;
2908 }
2909 }
2910
2911 #ifdef OBJ_ELF
2912 /* The value passed to dwarf2_emit_insn is the distance between
2913 the beginning of the current instruction and the address that
2914 should be recorded in the debug tables. For MIPS16 debug info
2915 we want to use ISA-encoded addresses, so we pass -1 for an
2916 address higher by one than the current. */
2917 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2918 #endif
2919
2920 /* Record the frag type before frag_var. */
2921 if (history[0].frag)
2922 prev_insn_frag_type = history[0].frag->fr_type;
2923
2924 if (address_expr
2925 && *reloc_type == BFD_RELOC_16_PCREL_S2
2926 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2927 || pinfo & INSN_COND_BRANCH_LIKELY)
2928 && mips_relax_branch
2929 /* Don't try branch relaxation within .set nomacro, or within
2930 .set noat if we use $at for PIC computations. If it turns
2931 out that the branch was out-of-range, we'll get an error. */
2932 && !mips_opts.warn_about_macros
2933 && (mips_opts.at || mips_pic == NO_PIC)
2934 && !mips_opts.mips16)
2935 {
2936 relaxed_branch = TRUE;
2937 add_relaxed_insn (ip, (relaxed_branch_length
2938 (NULL, NULL,
2939 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2940 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2941 : 0)), 4,
2942 RELAX_BRANCH_ENCODE
2943 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2944 pinfo & INSN_COND_BRANCH_LIKELY,
2945 pinfo & INSN_WRITE_GPR_31,
2946 0),
2947 address_expr->X_add_symbol,
2948 address_expr->X_add_number);
2949 *reloc_type = BFD_RELOC_UNUSED;
2950 }
2951 else if (*reloc_type > BFD_RELOC_UNUSED)
2952 {
2953 /* We need to set up a variant frag. */
2954 gas_assert (mips_opts.mips16 && address_expr != NULL);
2955 add_relaxed_insn (ip, 4, 0,
2956 RELAX_MIPS16_ENCODE
2957 (*reloc_type - BFD_RELOC_UNUSED,
2958 mips16_small, mips16_ext,
2959 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2960 history[0].mips16_absolute_jump_p),
2961 make_expr_symbol (address_expr), 0);
2962 }
2963 else if (mips_opts.mips16
2964 && ! ip->use_extend
2965 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2966 {
2967 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2968 /* Make sure there is enough room to swap this instruction with
2969 a following jump instruction. */
2970 frag_grow (6);
2971 add_fixed_insn (ip);
2972 }
2973 else
2974 {
2975 if (mips_opts.mips16
2976 && mips_opts.noreorder
2977 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2978 as_warn (_("extended instruction in delay slot"));
2979
2980 if (mips_relax.sequence)
2981 {
2982 /* If we've reached the end of this frag, turn it into a variant
2983 frag and record the information for the instructions we've
2984 written so far. */
2985 if (frag_room () < 4)
2986 relax_close_frag ();
2987 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2988 }
2989
2990 if (mips_relax.sequence != 2)
2991 mips_macro_warning.sizes[0] += 4;
2992 if (mips_relax.sequence != 1)
2993 mips_macro_warning.sizes[1] += 4;
2994
2995 if (mips_opts.mips16)
2996 {
2997 ip->fixed_p = 1;
2998 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2999 }
3000 add_fixed_insn (ip);
3001 }
3002
3003 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
3004 {
3005 if (address_expr->X_op == O_constant)
3006 {
3007 unsigned int tmp;
3008
3009 switch (*reloc_type)
3010 {
3011 case BFD_RELOC_32:
3012 ip->insn_opcode |= address_expr->X_add_number;
3013 break;
3014
3015 case BFD_RELOC_MIPS_HIGHEST:
3016 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
3017 ip->insn_opcode |= tmp & 0xffff;
3018 break;
3019
3020 case BFD_RELOC_MIPS_HIGHER:
3021 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
3022 ip->insn_opcode |= tmp & 0xffff;
3023 break;
3024
3025 case BFD_RELOC_HI16_S:
3026 tmp = (address_expr->X_add_number + 0x8000) >> 16;
3027 ip->insn_opcode |= tmp & 0xffff;
3028 break;
3029
3030 case BFD_RELOC_HI16:
3031 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
3032 break;
3033
3034 case BFD_RELOC_UNUSED:
3035 case BFD_RELOC_LO16:
3036 case BFD_RELOC_MIPS_GOT_DISP:
3037 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
3038 break;
3039
3040 case BFD_RELOC_MIPS_JMP:
3041 if ((address_expr->X_add_number & 3) != 0)
3042 as_bad (_("jump to misaligned address (0x%lx)"),
3043 (unsigned long) address_expr->X_add_number);
3044 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
3045 break;
3046
3047 case BFD_RELOC_MIPS16_JMP:
3048 if ((address_expr->X_add_number & 3) != 0)
3049 as_bad (_("jump to misaligned address (0x%lx)"),
3050 (unsigned long) address_expr->X_add_number);
3051 ip->insn_opcode |=
3052 (((address_expr->X_add_number & 0x7c0000) << 3)
3053 | ((address_expr->X_add_number & 0xf800000) >> 7)
3054 | ((address_expr->X_add_number & 0x3fffc) >> 2));
3055 break;
3056
3057 case BFD_RELOC_16_PCREL_S2:
3058 if ((address_expr->X_add_number & 3) != 0)
3059 as_bad (_("branch to misaligned address (0x%lx)"),
3060 (unsigned long) address_expr->X_add_number);
3061 if (mips_relax_branch)
3062 goto need_reloc;
3063 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
3064 as_bad (_("branch address range overflow (0x%lx)"),
3065 (unsigned long) address_expr->X_add_number);
3066 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
3067 break;
3068
3069 default:
3070 internalError ();
3071 }
3072 }
3073 else if (*reloc_type < BFD_RELOC_UNUSED)
3074 need_reloc:
3075 {
3076 reloc_howto_type *howto;
3077 int i;
3078
3079 /* In a compound relocation, it is the final (outermost)
3080 operator that determines the relocated field. */
3081 for (i = 1; i < 3; i++)
3082 if (reloc_type[i] == BFD_RELOC_UNUSED)
3083 break;
3084
3085 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
3086 if (howto == NULL)
3087 {
3088 /* To reproduce this failure try assembling gas/testsuites/
3089 gas/mips/mips16-intermix.s with a mips-ecoff targeted
3090 assembler. */
3091 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
3092 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
3093 }
3094
3095 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3096 bfd_get_reloc_size (howto),
3097 address_expr,
3098 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3099 reloc_type[0]);
3100
3101 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3102 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3103 && ip->fixp[0]->fx_addsy)
3104 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3105
3106 /* These relocations can have an addend that won't fit in
3107 4 octets for 64bit assembly. */
3108 if (HAVE_64BIT_GPRS
3109 && ! howto->partial_inplace
3110 && (reloc_type[0] == BFD_RELOC_16
3111 || reloc_type[0] == BFD_RELOC_32
3112 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3113 || reloc_type[0] == BFD_RELOC_GPREL16
3114 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3115 || reloc_type[0] == BFD_RELOC_GPREL32
3116 || reloc_type[0] == BFD_RELOC_64
3117 || reloc_type[0] == BFD_RELOC_CTOR
3118 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3119 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3120 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3121 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3122 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3123 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3124 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3125 || hi16_reloc_p (reloc_type[0])
3126 || lo16_reloc_p (reloc_type[0])))
3127 ip->fixp[0]->fx_no_overflow = 1;
3128
3129 if (mips_relax.sequence)
3130 {
3131 if (mips_relax.first_fixup == 0)
3132 mips_relax.first_fixup = ip->fixp[0];
3133 }
3134 else if (reloc_needs_lo_p (*reloc_type))
3135 {
3136 struct mips_hi_fixup *hi_fixup;
3137
3138 /* Reuse the last entry if it already has a matching %lo. */
3139 hi_fixup = mips_hi_fixup_list;
3140 if (hi_fixup == 0
3141 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3142 {
3143 hi_fixup = ((struct mips_hi_fixup *)
3144 xmalloc (sizeof (struct mips_hi_fixup)));
3145 hi_fixup->next = mips_hi_fixup_list;
3146 mips_hi_fixup_list = hi_fixup;
3147 }
3148 hi_fixup->fixp = ip->fixp[0];
3149 hi_fixup->seg = now_seg;
3150 }
3151
3152 /* Add fixups for the second and third relocations, if given.
3153 Note that the ABI allows the second relocation to be
3154 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3155 moment we only use RSS_UNDEF, but we could add support
3156 for the others if it ever becomes necessary. */
3157 for (i = 1; i < 3; i++)
3158 if (reloc_type[i] != BFD_RELOC_UNUSED)
3159 {
3160 ip->fixp[i] = fix_new (ip->frag, ip->where,
3161 ip->fixp[0]->fx_size, NULL, 0,
3162 FALSE, reloc_type[i]);
3163
3164 /* Use fx_tcbit to mark compound relocs. */
3165 ip->fixp[0]->fx_tcbit = 1;
3166 ip->fixp[i]->fx_tcbit = 1;
3167 }
3168 }
3169 }
3170 install_insn (ip);
3171
3172 /* Update the register mask information. */
3173 if (! mips_opts.mips16)
3174 {
3175 if ((pinfo & INSN_WRITE_GPR_D) || (pinfo2 & INSN2_READ_GPR_D))
3176 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3177 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3178 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3179 if (pinfo & INSN_READ_GPR_S)
3180 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3181 if (pinfo & INSN_WRITE_GPR_31)
3182 mips_gprmask |= 1 << RA;
3183 if (pinfo2 & (INSN2_WRITE_GPR_Z | INSN2_READ_GPR_Z))
3184 mips_gprmask |= 1 << EXTRACT_OPERAND (RZ, *ip);
3185 if (pinfo & INSN_WRITE_FPR_D)
3186 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3187 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3188 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3189 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3190 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3191 if ((pinfo & INSN_READ_FPR_R) != 0)
3192 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3193 if (pinfo2 & (INSN2_WRITE_FPR_Z | INSN2_READ_FPR_Z))
3194 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FZ, *ip);
3195 if (pinfo & INSN_COP)
3196 {
3197 /* We don't keep enough information to sort these cases out.
3198 The itbl support does keep this information however, although
3199 we currently don't support itbl fprmats as part of the cop
3200 instruction. May want to add this support in the future. */
3201 }
3202 /* Never set the bit for $0, which is always zero. */
3203 mips_gprmask &= ~1 << 0;
3204 }
3205 else
3206 {
3207 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3208 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3209 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3210 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3211 if (pinfo & MIPS16_INSN_WRITE_Z)
3212 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3213 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3214 mips_gprmask |= 1 << TREG;
3215 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3216 mips_gprmask |= 1 << SP;
3217 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3218 mips_gprmask |= 1 << RA;
3219 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3220 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3221 if (pinfo & MIPS16_INSN_READ_Z)
3222 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3223 if (pinfo & MIPS16_INSN_READ_GPR_X)
3224 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3225 }
3226
3227 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3228 {
3229 /* Filling the branch delay slot is more complex. We try to
3230 switch the branch with the previous instruction, which we can
3231 do if the previous instruction does not set up a condition
3232 that the branch tests and if the branch is not itself the
3233 target of any branch. */
3234 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3235 || (pinfo & INSN_COND_BRANCH_DELAY))
3236 {
3237 if (mips_optimize < 2
3238 /* If we have seen .set volatile or .set nomove, don't
3239 optimize. */
3240 || mips_opts.nomove != 0
3241 /* We can't swap if the previous instruction's position
3242 is fixed. */
3243 || history[0].fixed_p
3244 /* If the previous previous insn was in a .set
3245 noreorder, we can't swap. Actually, the MIPS
3246 assembler will swap in this situation. However, gcc
3247 configured -with-gnu-as will generate code like
3248 .set noreorder
3249 lw $4,XXX
3250 .set reorder
3251 INSN
3252 bne $4,$0,foo
3253 in which we can not swap the bne and INSN. If gcc is
3254 not configured -with-gnu-as, it does not output the
3255 .set pseudo-ops. */
3256 || history[1].noreorder_p
3257 /* If the branch is itself the target of a branch, we
3258 can not swap. We cheat on this; all we check for is
3259 whether there is a label on this instruction. If
3260 there are any branches to anything other than a
3261 label, users must use .set noreorder. */
3262 || si->label_list != NULL
3263 /* If the previous instruction is in a variant frag
3264 other than this branch's one, we cannot do the swap.
3265 This does not apply to the mips16, which uses variant
3266 frags for different purposes. */
3267 || (! mips_opts.mips16
3268 && prev_insn_frag_type == rs_machine_dependent)
3269 /* Check for conflicts between the branch and the instructions
3270 before the candidate delay slot. */
3271 || nops_for_insn (history + 1, ip) > 0
3272 /* Check for conflicts between the swapped sequence and the
3273 target of the branch. */
3274 || nops_for_sequence (2, history + 1, ip, history) > 0
3275 /* We do not swap with a trap instruction, since it
3276 complicates trap handlers to have the trap
3277 instruction be in a delay slot. */
3278 || (prev_pinfo & INSN_TRAP)
3279 /* If the branch reads a register that the previous
3280 instruction sets, we can not swap. */
3281 || (! mips_opts.mips16
3282 && (prev_pinfo & INSN_WRITE_GPR_T)
3283 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3284 MIPS_GR_REG))
3285 || (! mips_opts.mips16
3286 && (prev_pinfo & INSN_WRITE_GPR_D)
3287 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3288 MIPS_GR_REG))
3289 || (! mips_opts.mips16
3290 && (prev_pinfo2 & INSN2_WRITE_GPR_Z)
3291 && insn_uses_reg (ip, EXTRACT_OPERAND (RZ, history[0]),
3292 MIPS_GR_REG))
3293 || (mips_opts.mips16
3294 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3295 && (insn_uses_reg
3296 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3297 MIPS16_REG)))
3298 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3299 && (insn_uses_reg
3300 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3301 MIPS16_REG)))
3302 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3303 && (insn_uses_reg
3304 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3305 MIPS16_REG)))
3306 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3307 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3308 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3309 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3310 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3311 && insn_uses_reg (ip,
3312 MIPS16OP_EXTRACT_REG32R
3313 (history[0].insn_opcode),
3314 MIPS_GR_REG))))
3315 /* If the branch writes a register that the previous
3316 instruction sets, we can not swap (we know that
3317 branches write only to RD or to $31). */
3318 || (! mips_opts.mips16
3319 && (prev_pinfo & INSN_WRITE_GPR_T)
3320 && (((pinfo & INSN_WRITE_GPR_D)
3321 && (EXTRACT_OPERAND (RT, history[0])
3322 == EXTRACT_OPERAND (RD, *ip)))
3323 || ((pinfo & INSN_WRITE_GPR_31)
3324 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3325 || (! mips_opts.mips16
3326 && (prev_pinfo & INSN_WRITE_GPR_D)
3327 && (((pinfo & INSN_WRITE_GPR_D)
3328 && (EXTRACT_OPERAND (RD, history[0])
3329 == EXTRACT_OPERAND (RD, *ip)))
3330 || ((pinfo & INSN_WRITE_GPR_31)
3331 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3332 || (mips_opts.mips16
3333 && (pinfo & MIPS16_INSN_WRITE_31)
3334 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3335 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3336 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3337 == RA))))
3338 /* If the branch writes a register that the previous
3339 instruction reads, we can not swap (we know that
3340 branches only write to RD or to $31). */
3341 || (! mips_opts.mips16
3342 && (pinfo & INSN_WRITE_GPR_D)
3343 && insn_uses_reg (&history[0],
3344 EXTRACT_OPERAND (RD, *ip),
3345 MIPS_GR_REG))
3346 || (! mips_opts.mips16
3347 && (pinfo & INSN_WRITE_GPR_31)
3348 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3349 || (mips_opts.mips16
3350 && (pinfo & MIPS16_INSN_WRITE_31)
3351 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3352 /* If one instruction sets a condition code and the
3353 other one uses a condition code, we can not swap. */
3354 || ((pinfo & INSN_READ_COND_CODE)
3355 && (prev_pinfo & INSN_WRITE_COND_CODE))
3356 || ((pinfo & INSN_WRITE_COND_CODE)
3357 && (prev_pinfo & INSN_READ_COND_CODE))
3358 /* If the previous instruction uses the PC, we can not
3359 swap. */
3360 || (mips_opts.mips16
3361 && (prev_pinfo & MIPS16_INSN_READ_PC))
3362 /* If the previous instruction had a fixup in mips16
3363 mode, we can not swap. This normally means that the
3364 previous instruction was a 4 byte branch anyhow. */
3365 || (mips_opts.mips16 && history[0].fixp[0])
3366 /* If the previous instruction is a sync, sync.l, or
3367 sync.p, we can not swap. */
3368 || (prev_pinfo & INSN_SYNC)
3369 /* If the previous instruction is an ERET or
3370 DERET, avoid the swap. */
3371 || (history[0].insn_opcode == INSN_ERET)
3372 || (history[0].insn_opcode == INSN_DERET))
3373 {
3374 if (mips_opts.mips16
3375 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3376 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3377 && ISA_SUPPORTS_MIPS16E)
3378 {
3379 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3380 ip->insn_opcode |= 0x0080;
3381 install_insn (ip);
3382 insert_into_history (0, 1, ip);
3383 }
3384 else
3385 {
3386 /* We could do even better for unconditional branches to
3387 portions of this object file; we could pick up the
3388 instruction at the destination, put it in the delay
3389 slot, and bump the destination address. */
3390 insert_into_history (0, 1, ip);
3391 emit_nop ();
3392 }
3393
3394 if (mips_relax.sequence)
3395 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3396 }
3397 else
3398 {
3399 /* It looks like we can actually do the swap. */
3400 struct mips_cl_insn delay = history[0];
3401 if (mips_opts.mips16)
3402 {
3403 know (delay.frag == ip->frag);
3404 move_insn (ip, delay.frag, delay.where);
3405 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3406 }
3407 else if (relaxed_branch)
3408 {
3409 /* Add the delay slot instruction to the end of the
3410 current frag and shrink the fixed part of the
3411 original frag. If the branch occupies the tail of
3412 the latter, move it backwards to cover the gap. */
3413 delay.frag->fr_fix -= 4;
3414 if (delay.frag == ip->frag)
3415 move_insn (ip, ip->frag, ip->where - 4);
3416 add_fixed_insn (&delay);
3417 }
3418 else
3419 {
3420 move_insn (&delay, ip->frag, ip->where);
3421 move_insn (ip, history[0].frag, history[0].where);
3422 }
3423 history[0] = *ip;
3424 delay.fixed_p = 1;
3425 insert_into_history (0, 1, &delay);
3426 }
3427
3428 /* If that was an unconditional branch, forget the previous
3429 insn information. */
3430 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3431 {
3432 mips_no_prev_insn ();
3433 }
3434 }
3435 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3436 {
3437 /* We don't yet optimize a branch likely. What we should do
3438 is look at the target, copy the instruction found there
3439 into the delay slot, and increment the branch to jump to
3440 the next instruction. */
3441 insert_into_history (0, 1, ip);
3442 emit_nop ();
3443 }
3444 else
3445 insert_into_history (0, 1, ip);
3446 }
3447 else
3448 insert_into_history (0, 1, ip);
3449
3450 /* We just output an insn, so the next one doesn't have a label. */
3451 mips_clear_insn_labels ();
3452 }
3453
3454 /* Forget that there was any previous instruction or label. */
3455
3456 static void
3457 mips_no_prev_insn (void)
3458 {
3459 prev_nop_frag = NULL;
3460 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3461 mips_clear_insn_labels ();
3462 }
3463
3464 /* This function must be called before we emit something other than
3465 instructions. It is like mips_no_prev_insn except that it inserts
3466 any NOPS that might be needed by previous instructions. */
3467
3468 void
3469 mips_emit_delays (void)
3470 {
3471 if (! mips_opts.noreorder)
3472 {
3473 int nops = nops_for_insn (history, NULL);
3474 if (nops > 0)
3475 {
3476 while (nops-- > 0)
3477 add_fixed_insn (NOP_INSN);
3478 mips_move_labels ();
3479 }
3480 }
3481 mips_no_prev_insn ();
3482 }
3483
3484 /* Start a (possibly nested) noreorder block. */
3485
3486 static void
3487 start_noreorder (void)
3488 {
3489 if (mips_opts.noreorder == 0)
3490 {
3491 unsigned int i;
3492 int nops;
3493
3494 /* None of the instructions before the .set noreorder can be moved. */
3495 for (i = 0; i < ARRAY_SIZE (history); i++)
3496 history[i].fixed_p = 1;
3497
3498 /* Insert any nops that might be needed between the .set noreorder
3499 block and the previous instructions. We will later remove any
3500 nops that turn out not to be needed. */
3501 nops = nops_for_insn (history, NULL);
3502 if (nops > 0)
3503 {
3504 if (mips_optimize != 0)
3505 {
3506 /* Record the frag which holds the nop instructions, so
3507 that we can remove them if we don't need them. */
3508 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3509 prev_nop_frag = frag_now;
3510 prev_nop_frag_holds = nops;
3511 prev_nop_frag_required = 0;
3512 prev_nop_frag_since = 0;
3513 }
3514
3515 for (; nops > 0; --nops)
3516 add_fixed_insn (NOP_INSN);
3517
3518 /* Move on to a new frag, so that it is safe to simply
3519 decrease the size of prev_nop_frag. */
3520 frag_wane (frag_now);
3521 frag_new (0);
3522 mips_move_labels ();
3523 }
3524 mips16_mark_labels ();
3525 mips_clear_insn_labels ();
3526 }
3527 mips_opts.noreorder++;
3528 mips_any_noreorder = 1;
3529 }
3530
3531 /* End a nested noreorder block. */
3532
3533 static void
3534 end_noreorder (void)
3535 {
3536
3537 mips_opts.noreorder--;
3538 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3539 {
3540 /* Commit to inserting prev_nop_frag_required nops and go back to
3541 handling nop insertion the .set reorder way. */
3542 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3543 * (mips_opts.mips16 ? 2 : 4));
3544 insert_into_history (prev_nop_frag_since,
3545 prev_nop_frag_required, NOP_INSN);
3546 prev_nop_frag = NULL;
3547 }
3548 }
3549
3550 /* Set up global variables for the start of a new macro. */
3551
3552 static void
3553 macro_start (void)
3554 {
3555 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3556 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3557 && (history[0].insn_mo->pinfo
3558 & (INSN_UNCOND_BRANCH_DELAY
3559 | INSN_COND_BRANCH_DELAY
3560 | INSN_COND_BRANCH_LIKELY)) != 0);
3561 }
3562
3563 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3564 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3565 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3566
3567 static const char *
3568 macro_warning (relax_substateT subtype)
3569 {
3570 if (subtype & RELAX_DELAY_SLOT)
3571 return _("Macro instruction expanded into multiple instructions"
3572 " in a branch delay slot");
3573 else if (subtype & RELAX_NOMACRO)
3574 return _("Macro instruction expanded into multiple instructions");
3575 else
3576 return 0;
3577 }
3578
3579 /* Finish up a macro. Emit warnings as appropriate. */
3580
3581 static void
3582 macro_end (void)
3583 {
3584 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3585 {
3586 relax_substateT subtype;
3587
3588 /* Set up the relaxation warning flags. */
3589 subtype = 0;
3590 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3591 subtype |= RELAX_SECOND_LONGER;
3592 if (mips_opts.warn_about_macros)
3593 subtype |= RELAX_NOMACRO;
3594 if (mips_macro_warning.delay_slot_p)
3595 subtype |= RELAX_DELAY_SLOT;
3596
3597 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3598 {
3599 /* Either the macro has a single implementation or both
3600 implementations are longer than 4 bytes. Emit the
3601 warning now. */
3602 const char *msg = macro_warning (subtype);
3603 if (msg != 0)
3604 as_warn ("%s", msg);
3605 }
3606 else
3607 {
3608 /* One implementation might need a warning but the other
3609 definitely doesn't. */
3610 mips_macro_warning.first_frag->fr_subtype |= subtype;
3611 }
3612 }
3613 }
3614
3615 /* Read a macro's relocation codes from *ARGS and store them in *R.
3616 The first argument in *ARGS will be either the code for a single
3617 relocation or -1 followed by the three codes that make up a
3618 composite relocation. */
3619
3620 static void
3621 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3622 {
3623 int i, next;
3624
3625 next = va_arg (*args, int);
3626 if (next >= 0)
3627 r[0] = (bfd_reloc_code_real_type) next;
3628 else
3629 for (i = 0; i < 3; i++)
3630 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3631 }
3632
3633 /* Build an instruction created by a macro expansion. This is passed
3634 a pointer to the count of instructions created so far, an
3635 expression, the name of the instruction to build, an operand format
3636 string, and corresponding arguments. */
3637
3638 static void
3639 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3640 {
3641 const struct mips_opcode *mo;
3642 struct mips_cl_insn insn;
3643 bfd_reloc_code_real_type r[3];
3644 va_list args;
3645
3646 va_start (args, fmt);
3647
3648 if (mips_opts.mips16)
3649 {
3650 mips16_macro_build (ep, name, fmt, &args);
3651 va_end (args);
3652 return;
3653 }
3654
3655 r[0] = BFD_RELOC_UNUSED;
3656 r[1] = BFD_RELOC_UNUSED;
3657 r[2] = BFD_RELOC_UNUSED;
3658 mo = (struct mips_opcode *) hash_find (op_hash, name);
3659 gas_assert (mo);
3660 gas_assert (strcmp (name, mo->name) == 0);
3661
3662 while (1)
3663 {
3664 /* Search until we get a match for NAME. It is assumed here that
3665 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3666 if (strcmp (fmt, mo->args) == 0
3667 && mo->pinfo != INSN_MACRO
3668 && is_opcode_valid (mo))
3669 break;
3670
3671 ++mo;
3672 gas_assert (mo->name);
3673 gas_assert (strcmp (name, mo->name) == 0);
3674 }
3675
3676 create_insn (&insn, mo);
3677 for (;;)
3678 {
3679 switch (*fmt++)
3680 {
3681 case '\0':
3682 break;
3683
3684 case ',':
3685 case '(':
3686 case ')':
3687 continue;
3688
3689 case '+':
3690 switch (*fmt++)
3691 {
3692 case 'A':
3693 case 'E':
3694 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3695 continue;
3696
3697 case 'B':
3698 case 'F':
3699 /* Note that in the macro case, these arguments are already
3700 in MSB form. (When handling the instruction in the
3701 non-macro case, these arguments are sizes from which
3702 MSB values must be calculated.) */
3703 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3704 continue;
3705
3706 case 'C':
3707 case 'G':
3708 case 'H':
3709 /* Note that in the macro case, these arguments are already
3710 in MSBD form. (When handling the instruction in the
3711 non-macro case, these arguments are sizes from which
3712 MSBD values must be calculated.) */
3713 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3714 continue;
3715
3716 case 'Q':
3717 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3718 continue;
3719
3720 default:
3721 internalError ();
3722 }
3723 continue;
3724
3725 case '2':
3726 INSERT_OPERAND (BP, insn, va_arg (args, int));
3727 continue;
3728
3729 case 't':
3730 case 'w':
3731 case 'E':
3732 INSERT_OPERAND (RT, insn, va_arg (args, int));
3733 continue;
3734
3735 case 'c':
3736 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3737 continue;
3738
3739 case 'T':
3740 case 'W':
3741 INSERT_OPERAND (FT, insn, va_arg (args, int));
3742 continue;
3743
3744 case 'd':
3745 case 'G':
3746 case 'K':
3747 INSERT_OPERAND (RD, insn, va_arg (args, int));
3748 continue;
3749
3750 case 'U':
3751 {
3752 int tmp = va_arg (args, int);
3753
3754 INSERT_OPERAND (RT, insn, tmp);
3755 INSERT_OPERAND (RD, insn, tmp);
3756 continue;
3757 }
3758
3759 case 'V':
3760 case 'S':
3761 INSERT_OPERAND (FS, insn, va_arg (args, int));
3762 continue;
3763
3764 case 'z':
3765 continue;
3766
3767 case '<':
3768 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3769 continue;
3770
3771 case 'D':
3772 INSERT_OPERAND (FD, insn, va_arg (args, int));
3773 continue;
3774
3775 case 'B':
3776 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3777 continue;
3778
3779 case 'J':
3780 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3781 continue;
3782
3783 case 'q':
3784 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3785 continue;
3786
3787 case 'b':
3788 case 's':
3789 case 'r':
3790 case 'v':
3791 INSERT_OPERAND (RS, insn, va_arg (args, int));
3792 continue;
3793
3794 case 'i':
3795 case 'j':
3796 macro_read_relocs (&args, r);
3797 gas_assert (*r == BFD_RELOC_GPREL16
3798 || *r == BFD_RELOC_MIPS_HIGHER
3799 || *r == BFD_RELOC_HI16_S
3800 || *r == BFD_RELOC_LO16
3801 || *r == BFD_RELOC_MIPS_GOT_OFST);
3802 continue;
3803
3804 case 'o':
3805 macro_read_relocs (&args, r);
3806 continue;
3807
3808 case 'u':
3809 macro_read_relocs (&args, r);
3810 gas_assert (ep != NULL
3811 && (ep->X_op == O_constant
3812 || (ep->X_op == O_symbol
3813 && (*r == BFD_RELOC_MIPS_HIGHEST
3814 || *r == BFD_RELOC_HI16_S
3815 || *r == BFD_RELOC_HI16
3816 || *r == BFD_RELOC_GPREL16
3817 || *r == BFD_RELOC_MIPS_GOT_HI16
3818 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3819 continue;
3820
3821 case 'p':
3822 gas_assert (ep != NULL);
3823
3824 /*
3825 * This allows macro() to pass an immediate expression for
3826 * creating short branches without creating a symbol.
3827 *
3828 * We don't allow branch relaxation for these branches, as
3829 * they should only appear in ".set nomacro" anyway.
3830 */
3831 if (ep->X_op == O_constant)
3832 {
3833 if ((ep->X_add_number & 3) != 0)
3834 as_bad (_("branch to misaligned address (0x%lx)"),
3835 (unsigned long) ep->X_add_number);
3836 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3837 as_bad (_("branch address range overflow (0x%lx)"),
3838 (unsigned long) ep->X_add_number);
3839 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3840 ep = NULL;
3841 }
3842 else
3843 *r = BFD_RELOC_16_PCREL_S2;
3844 continue;
3845
3846 case 'a':
3847 gas_assert (ep != NULL);
3848 *r = BFD_RELOC_MIPS_JMP;
3849 continue;
3850
3851 case 'C':
3852 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3853 continue;
3854
3855 case 'k':
3856 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3857 continue;
3858
3859 default:
3860 internalError ();
3861 }
3862 break;
3863 }
3864 va_end (args);
3865 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3866
3867 append_insn (&insn, ep, r);
3868 }
3869
3870 static void
3871 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3872 va_list *args)
3873 {
3874 struct mips_opcode *mo;
3875 struct mips_cl_insn insn;
3876 bfd_reloc_code_real_type r[3]
3877 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3878
3879 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3880 gas_assert (mo);
3881 gas_assert (strcmp (name, mo->name) == 0);
3882
3883 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3884 {
3885 ++mo;
3886 gas_assert (mo->name);
3887 gas_assert (strcmp (name, mo->name) == 0);
3888 }
3889
3890 create_insn (&insn, mo);
3891 for (;;)
3892 {
3893 int c;
3894
3895 c = *fmt++;
3896 switch (c)
3897 {
3898 case '\0':
3899 break;
3900
3901 case ',':
3902 case '(':
3903 case ')':
3904 continue;
3905
3906 case 'y':
3907 case 'w':
3908 MIPS16_INSERT_OPERAND (RY, insn, va_arg (*args, int));
3909 continue;
3910
3911 case 'x':
3912 case 'v':
3913 MIPS16_INSERT_OPERAND (RX, insn, va_arg (*args, int));
3914 continue;
3915
3916 case 'z':
3917 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (*args, int));
3918 continue;
3919
3920 case 'Z':
3921 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (*args, int));
3922 continue;
3923
3924 case '0':
3925 case 'S':
3926 case 'P':
3927 case 'R':
3928 continue;
3929
3930 case 'X':
3931 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (*args, int));
3932 continue;
3933
3934 case 'Y':
3935 {
3936 int regno;
3937
3938 regno = va_arg (*args, int);
3939 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3940 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3941 }
3942 continue;
3943
3944 case '<':
3945 case '>':
3946 case '4':
3947 case '5':
3948 case 'H':
3949 case 'W':
3950 case 'D':
3951 case 'j':
3952 case '8':
3953 case 'V':
3954 case 'C':
3955 case 'U':
3956 case 'k':
3957 case 'K':
3958 case 'p':
3959 case 'q':
3960 {
3961 gas_assert (ep != NULL);
3962
3963 if (ep->X_op != O_constant)
3964 *r = (int) BFD_RELOC_UNUSED + c;
3965 else
3966 {
3967 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3968 FALSE, &insn.insn_opcode, &insn.use_extend,
3969 &insn.extend);
3970 ep = NULL;
3971 *r = BFD_RELOC_UNUSED;
3972 }
3973 }
3974 continue;
3975
3976 case '6':
3977 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (*args, int));
3978 continue;
3979 }
3980
3981 break;
3982 }
3983
3984 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3985
3986 append_insn (&insn, ep, r);
3987 }
3988
3989 /*
3990 * Sign-extend 32-bit mode constants that have bit 31 set and all
3991 * higher bits unset.
3992 */
3993 static void
3994 normalize_constant_expr (expressionS *ex)
3995 {
3996 if (ex->X_op == O_constant
3997 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3998 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3999 - 0x80000000);
4000 }
4001
4002 /*
4003 * Sign-extend 32-bit mode address offsets that have bit 31 set and
4004 * all higher bits unset.
4005 */
4006 static void
4007 normalize_address_expr (expressionS *ex)
4008 {
4009 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
4010 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
4011 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
4012 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
4013 - 0x80000000);
4014 }
4015
4016 /*
4017 * Generate a "jalr" instruction with a relocation hint to the called
4018 * function. This occurs in NewABI PIC code.
4019 */
4020 static void
4021 macro_build_jalr (expressionS *ep)
4022 {
4023 char *f = NULL;
4024
4025 if (MIPS_JALR_HINT_P (ep))
4026 {
4027 frag_grow (8);
4028 f = frag_more (0);
4029 }
4030 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
4031 if (MIPS_JALR_HINT_P (ep))
4032 fix_new_exp (frag_now, f - frag_now->fr_literal,
4033 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
4034 }
4035
4036 /*
4037 * Generate a "lui" instruction.
4038 */
4039 static void
4040 macro_build_lui (expressionS *ep, int regnum)
4041 {
4042 expressionS high_expr;
4043 const struct mips_opcode *mo;
4044 struct mips_cl_insn insn;
4045 bfd_reloc_code_real_type r[3]
4046 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4047 const char *name = "lui";
4048 const char *fmt = "t,u";
4049
4050 gas_assert (! mips_opts.mips16);
4051
4052 high_expr = *ep;
4053
4054 if (high_expr.X_op == O_constant)
4055 {
4056 /* We can compute the instruction now without a relocation entry. */
4057 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
4058 >> 16) & 0xffff;
4059 *r = BFD_RELOC_UNUSED;
4060 }
4061 else
4062 {
4063 gas_assert (ep->X_op == O_symbol);
4064 /* _gp_disp is a special case, used from s_cpload.
4065 __gnu_local_gp is used if mips_no_shared. */
4066 gas_assert (mips_pic == NO_PIC
4067 || (! HAVE_NEWABI
4068 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
4069 || (! mips_in_shared
4070 && strcmp (S_GET_NAME (ep->X_add_symbol),
4071 "__gnu_local_gp") == 0));
4072 *r = BFD_RELOC_HI16_S;
4073 }
4074
4075 mo = hash_find (op_hash, name);
4076 gas_assert (strcmp (name, mo->name) == 0);
4077 gas_assert (strcmp (fmt, mo->args) == 0);
4078 create_insn (&insn, mo);
4079
4080 insn.insn_opcode = insn.insn_mo->match;
4081 INSERT_OPERAND (RT, insn, regnum);
4082 if (*r == BFD_RELOC_UNUSED)
4083 {
4084 insn.insn_opcode |= high_expr.X_add_number;
4085 append_insn (&insn, NULL, r);
4086 }
4087 else
4088 append_insn (&insn, &high_expr, r);
4089 }
4090
4091 /* Generate a sequence of instructions to do a load or store from a constant
4092 offset off of a base register (breg) into/from a target register (treg),
4093 using AT if necessary. */
4094 static void
4095 macro_build_ldst_constoffset (expressionS *ep, const char *op,
4096 int treg, int breg, int dbl)
4097 {
4098 gas_assert (ep->X_op == O_constant);
4099
4100 /* Sign-extending 32-bit constants makes their handling easier. */
4101 if (!dbl)
4102 normalize_constant_expr (ep);
4103
4104 /* Right now, this routine can only handle signed 32-bit constants. */
4105 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4106 as_warn (_("operand overflow"));
4107
4108 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4109 {
4110 /* Signed 16-bit offset will fit in the op. Easy! */
4111 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4112 }
4113 else
4114 {
4115 /* 32-bit offset, need multiple instructions and AT, like:
4116 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4117 addu $tempreg,$tempreg,$breg
4118 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4119 to handle the complete offset. */
4120 macro_build_lui (ep, AT);
4121 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4122 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4123
4124 if (!mips_opts.at)
4125 as_bad (_("Macro used $at after \".set noat\""));
4126 }
4127 }
4128
4129 /* set_at()
4130 * Generates code to set the $at register to true (one)
4131 * if reg is less than the immediate expression.
4132 */
4133 static void
4134 set_at (int reg, int unsignedp)
4135 {
4136 if (imm_expr.X_op == O_constant
4137 && imm_expr.X_add_number >= -0x8000
4138 && imm_expr.X_add_number < 0x8000)
4139 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4140 AT, reg, BFD_RELOC_LO16);
4141 else
4142 {
4143 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4144 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4145 }
4146 }
4147
4148 /* Warn if an expression is not a constant. */
4149
4150 static void
4151 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4152 {
4153 if (ex->X_op == O_big)
4154 as_bad (_("unsupported large constant"));
4155 else if (ex->X_op != O_constant)
4156 as_bad (_("Instruction %s requires absolute expression"),
4157 ip->insn_mo->name);
4158
4159 if (HAVE_32BIT_GPRS)
4160 normalize_constant_expr (ex);
4161 }
4162
4163 /* Count the leading zeroes by performing a binary chop. This is a
4164 bulky bit of source, but performance is a LOT better for the
4165 majority of values than a simple loop to count the bits:
4166 for (lcnt = 0; (lcnt < 32); lcnt++)
4167 if ((v) & (1 << (31 - lcnt)))
4168 break;
4169 However it is not code size friendly, and the gain will drop a bit
4170 on certain cached systems.
4171 */
4172 #define COUNT_TOP_ZEROES(v) \
4173 (((v) & ~0xffff) == 0 \
4174 ? ((v) & ~0xff) == 0 \
4175 ? ((v) & ~0xf) == 0 \
4176 ? ((v) & ~0x3) == 0 \
4177 ? ((v) & ~0x1) == 0 \
4178 ? !(v) \
4179 ? 32 \
4180 : 31 \
4181 : 30 \
4182 : ((v) & ~0x7) == 0 \
4183 ? 29 \
4184 : 28 \
4185 : ((v) & ~0x3f) == 0 \
4186 ? ((v) & ~0x1f) == 0 \
4187 ? 27 \
4188 : 26 \
4189 : ((v) & ~0x7f) == 0 \
4190 ? 25 \
4191 : 24 \
4192 : ((v) & ~0xfff) == 0 \
4193 ? ((v) & ~0x3ff) == 0 \
4194 ? ((v) & ~0x1ff) == 0 \
4195 ? 23 \
4196 : 22 \
4197 : ((v) & ~0x7ff) == 0 \
4198 ? 21 \
4199 : 20 \
4200 : ((v) & ~0x3fff) == 0 \
4201 ? ((v) & ~0x1fff) == 0 \
4202 ? 19 \
4203 : 18 \
4204 : ((v) & ~0x7fff) == 0 \
4205 ? 17 \
4206 : 16 \
4207 : ((v) & ~0xffffff) == 0 \
4208 ? ((v) & ~0xfffff) == 0 \
4209 ? ((v) & ~0x3ffff) == 0 \
4210 ? ((v) & ~0x1ffff) == 0 \
4211 ? 15 \
4212 : 14 \
4213 : ((v) & ~0x7ffff) == 0 \
4214 ? 13 \
4215 : 12 \
4216 : ((v) & ~0x3fffff) == 0 \
4217 ? ((v) & ~0x1fffff) == 0 \
4218 ? 11 \
4219 : 10 \
4220 : ((v) & ~0x7fffff) == 0 \
4221 ? 9 \
4222 : 8 \
4223 : ((v) & ~0xfffffff) == 0 \
4224 ? ((v) & ~0x3ffffff) == 0 \
4225 ? ((v) & ~0x1ffffff) == 0 \
4226 ? 7 \
4227 : 6 \
4228 : ((v) & ~0x7ffffff) == 0 \
4229 ? 5 \
4230 : 4 \
4231 : ((v) & ~0x3fffffff) == 0 \
4232 ? ((v) & ~0x1fffffff) == 0 \
4233 ? 3 \
4234 : 2 \
4235 : ((v) & ~0x7fffffff) == 0 \
4236 ? 1 \
4237 : 0)
4238
4239 /* load_register()
4240 * This routine generates the least number of instructions necessary to load
4241 * an absolute expression value into a register.
4242 */
4243 static void
4244 load_register (int reg, expressionS *ep, int dbl)
4245 {
4246 int freg;
4247 expressionS hi32, lo32;
4248
4249 if (ep->X_op != O_big)
4250 {
4251 gas_assert (ep->X_op == O_constant);
4252
4253 /* Sign-extending 32-bit constants makes their handling easier. */
4254 if (!dbl)
4255 normalize_constant_expr (ep);
4256
4257 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4258 {
4259 /* We can handle 16 bit signed values with an addiu to
4260 $zero. No need to ever use daddiu here, since $zero and
4261 the result are always correct in 32 bit mode. */
4262 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4263 return;
4264 }
4265 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4266 {
4267 /* We can handle 16 bit unsigned values with an ori to
4268 $zero. */
4269 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4270 return;
4271 }
4272 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4273 {
4274 /* 32 bit values require an lui. */
4275 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4276 if ((ep->X_add_number & 0xffff) != 0)
4277 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4278 return;
4279 }
4280 }
4281
4282 /* The value is larger than 32 bits. */
4283
4284 if (!dbl || HAVE_32BIT_GPRS)
4285 {
4286 char value[32];
4287
4288 sprintf_vma (value, ep->X_add_number);
4289 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4290 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4291 return;
4292 }
4293
4294 if (ep->X_op != O_big)
4295 {
4296 hi32 = *ep;
4297 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4298 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4299 hi32.X_add_number &= 0xffffffff;
4300 lo32 = *ep;
4301 lo32.X_add_number &= 0xffffffff;
4302 }
4303 else
4304 {
4305 gas_assert (ep->X_add_number > 2);
4306 if (ep->X_add_number == 3)
4307 generic_bignum[3] = 0;
4308 else if (ep->X_add_number > 4)
4309 as_bad (_("Number larger than 64 bits"));
4310 lo32.X_op = O_constant;
4311 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4312 hi32.X_op = O_constant;
4313 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4314 }
4315
4316 if (hi32.X_add_number == 0)
4317 freg = 0;
4318 else
4319 {
4320 int shift, bit;
4321 unsigned long hi, lo;
4322
4323 if (hi32.X_add_number == (offsetT) 0xffffffff)
4324 {
4325 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4326 {
4327 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4328 return;
4329 }
4330 if (lo32.X_add_number & 0x80000000)
4331 {
4332 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4333 if (lo32.X_add_number & 0xffff)
4334 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4335 return;
4336 }
4337 }
4338
4339 /* Check for 16bit shifted constant. We know that hi32 is
4340 non-zero, so start the mask on the first bit of the hi32
4341 value. */
4342 shift = 17;
4343 do
4344 {
4345 unsigned long himask, lomask;
4346
4347 if (shift < 32)
4348 {
4349 himask = 0xffff >> (32 - shift);
4350 lomask = (0xffff << shift) & 0xffffffff;
4351 }
4352 else
4353 {
4354 himask = 0xffff << (shift - 32);
4355 lomask = 0;
4356 }
4357 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4358 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4359 {
4360 expressionS tmp;
4361
4362 tmp.X_op = O_constant;
4363 if (shift < 32)
4364 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4365 | (lo32.X_add_number >> shift));
4366 else
4367 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4368 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4369 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4370 reg, reg, (shift >= 32) ? shift - 32 : shift);
4371 return;
4372 }
4373 ++shift;
4374 }
4375 while (shift <= (64 - 16));
4376
4377 /* Find the bit number of the lowest one bit, and store the
4378 shifted value in hi/lo. */
4379 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4380 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4381 if (lo != 0)
4382 {
4383 bit = 0;
4384 while ((lo & 1) == 0)
4385 {
4386 lo >>= 1;
4387 ++bit;
4388 }
4389 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4390 hi >>= bit;
4391 }
4392 else
4393 {
4394 bit = 32;
4395 while ((hi & 1) == 0)
4396 {
4397 hi >>= 1;
4398 ++bit;
4399 }
4400 lo = hi;
4401 hi = 0;
4402 }
4403
4404 /* Optimize if the shifted value is a (power of 2) - 1. */
4405 if ((hi == 0 && ((lo + 1) & lo) == 0)
4406 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4407 {
4408 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4409 if (shift != 0)
4410 {
4411 expressionS tmp;
4412
4413 /* This instruction will set the register to be all
4414 ones. */
4415 tmp.X_op = O_constant;
4416 tmp.X_add_number = (offsetT) -1;
4417 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4418 if (bit != 0)
4419 {
4420 bit += shift;
4421 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4422 reg, reg, (bit >= 32) ? bit - 32 : bit);
4423 }
4424 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4425 reg, reg, (shift >= 32) ? shift - 32 : shift);
4426 return;
4427 }
4428 }
4429
4430 /* Sign extend hi32 before calling load_register, because we can
4431 generally get better code when we load a sign extended value. */
4432 if ((hi32.X_add_number & 0x80000000) != 0)
4433 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4434 load_register (reg, &hi32, 0);
4435 freg = reg;
4436 }
4437 if ((lo32.X_add_number & 0xffff0000) == 0)
4438 {
4439 if (freg != 0)
4440 {
4441 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4442 freg = reg;
4443 }
4444 }
4445 else
4446 {
4447 expressionS mid16;
4448
4449 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4450 {
4451 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4452 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4453 return;
4454 }
4455
4456 if (freg != 0)
4457 {
4458 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4459 freg = reg;
4460 }
4461 mid16 = lo32;
4462 mid16.X_add_number >>= 16;
4463 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4464 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4465 freg = reg;
4466 }
4467 if ((lo32.X_add_number & 0xffff) != 0)
4468 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4469 }
4470
4471 static inline void
4472 load_delay_nop (void)
4473 {
4474 if (!gpr_interlocks)
4475 macro_build (NULL, "nop", "");
4476 }
4477
4478 /* Load an address into a register. */
4479
4480 static void
4481 load_address (int reg, expressionS *ep, int *used_at)
4482 {
4483 if (ep->X_op != O_constant
4484 && ep->X_op != O_symbol)
4485 {
4486 as_bad (_("expression too complex"));
4487 ep->X_op = O_constant;
4488 }
4489
4490 if (ep->X_op == O_constant)
4491 {
4492 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4493 return;
4494 }
4495
4496 if (mips_pic == NO_PIC)
4497 {
4498 /* If this is a reference to a GP relative symbol, we want
4499 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4500 Otherwise we want
4501 lui $reg,<sym> (BFD_RELOC_HI16_S)
4502 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4503 If we have an addend, we always use the latter form.
4504
4505 With 64bit address space and a usable $at we want
4506 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4507 lui $at,<sym> (BFD_RELOC_HI16_S)
4508 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4509 daddiu $at,<sym> (BFD_RELOC_LO16)
4510 dsll32 $reg,0
4511 daddu $reg,$reg,$at
4512
4513 If $at is already in use, we use a path which is suboptimal
4514 on superscalar processors.
4515 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4516 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4517 dsll $reg,16
4518 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4519 dsll $reg,16
4520 daddiu $reg,<sym> (BFD_RELOC_LO16)
4521
4522 For GP relative symbols in 64bit address space we can use
4523 the same sequence as in 32bit address space. */
4524 if (HAVE_64BIT_SYMBOLS)
4525 {
4526 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4527 && !nopic_need_relax (ep->X_add_symbol, 1))
4528 {
4529 relax_start (ep->X_add_symbol);
4530 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4531 mips_gp_register, BFD_RELOC_GPREL16);
4532 relax_switch ();
4533 }
4534
4535 if (*used_at == 0 && mips_opts.at)
4536 {
4537 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4538 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4539 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4540 BFD_RELOC_MIPS_HIGHER);
4541 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4542 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4543 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4544 *used_at = 1;
4545 }
4546 else
4547 {
4548 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4549 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4550 BFD_RELOC_MIPS_HIGHER);
4551 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4552 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4553 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4554 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4555 }
4556
4557 if (mips_relax.sequence)
4558 relax_end ();
4559 }
4560 else
4561 {
4562 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4563 && !nopic_need_relax (ep->X_add_symbol, 1))
4564 {
4565 relax_start (ep->X_add_symbol);
4566 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4567 mips_gp_register, BFD_RELOC_GPREL16);
4568 relax_switch ();
4569 }
4570 macro_build_lui (ep, reg);
4571 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4572 reg, reg, BFD_RELOC_LO16);
4573 if (mips_relax.sequence)
4574 relax_end ();
4575 }
4576 }
4577 else if (!mips_big_got)
4578 {
4579 expressionS ex;
4580
4581 /* If this is a reference to an external symbol, we want
4582 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4583 Otherwise we want
4584 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4585 nop
4586 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4587 If there is a constant, it must be added in after.
4588
4589 If we have NewABI, we want
4590 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4591 unless we're referencing a global symbol with a non-zero
4592 offset, in which case cst must be added separately. */
4593 if (HAVE_NEWABI)
4594 {
4595 if (ep->X_add_number)
4596 {
4597 ex.X_add_number = ep->X_add_number;
4598 ep->X_add_number = 0;
4599 relax_start (ep->X_add_symbol);
4600 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4601 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4602 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4603 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4604 ex.X_op = O_constant;
4605 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4606 reg, reg, BFD_RELOC_LO16);
4607 ep->X_add_number = ex.X_add_number;
4608 relax_switch ();
4609 }
4610 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4611 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4612 if (mips_relax.sequence)
4613 relax_end ();
4614 }
4615 else
4616 {
4617 ex.X_add_number = ep->X_add_number;
4618 ep->X_add_number = 0;
4619 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4620 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4621 load_delay_nop ();
4622 relax_start (ep->X_add_symbol);
4623 relax_switch ();
4624 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4625 BFD_RELOC_LO16);
4626 relax_end ();
4627
4628 if (ex.X_add_number != 0)
4629 {
4630 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4631 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4632 ex.X_op = O_constant;
4633 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4634 reg, reg, BFD_RELOC_LO16);
4635 }
4636 }
4637 }
4638 else if (mips_big_got)
4639 {
4640 expressionS ex;
4641
4642 /* This is the large GOT case. If this is a reference to an
4643 external symbol, we want
4644 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4645 addu $reg,$reg,$gp
4646 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4647
4648 Otherwise, for a reference to a local symbol in old ABI, we want
4649 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4650 nop
4651 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4652 If there is a constant, it must be added in after.
4653
4654 In the NewABI, for local symbols, with or without offsets, we want:
4655 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4656 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4657 */
4658 if (HAVE_NEWABI)
4659 {
4660 ex.X_add_number = ep->X_add_number;
4661 ep->X_add_number = 0;
4662 relax_start (ep->X_add_symbol);
4663 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4664 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4665 reg, reg, mips_gp_register);
4666 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4667 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4668 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4669 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4670 else if (ex.X_add_number)
4671 {
4672 ex.X_op = O_constant;
4673 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4674 BFD_RELOC_LO16);
4675 }
4676
4677 ep->X_add_number = ex.X_add_number;
4678 relax_switch ();
4679 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4680 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4681 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4682 BFD_RELOC_MIPS_GOT_OFST);
4683 relax_end ();
4684 }
4685 else
4686 {
4687 ex.X_add_number = ep->X_add_number;
4688 ep->X_add_number = 0;
4689 relax_start (ep->X_add_symbol);
4690 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4691 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4692 reg, reg, mips_gp_register);
4693 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4694 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4695 relax_switch ();
4696 if (reg_needs_delay (mips_gp_register))
4697 {
4698 /* We need a nop before loading from $gp. This special
4699 check is required because the lui which starts the main
4700 instruction stream does not refer to $gp, and so will not
4701 insert the nop which may be required. */
4702 macro_build (NULL, "nop", "");
4703 }
4704 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4705 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4706 load_delay_nop ();
4707 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4708 BFD_RELOC_LO16);
4709 relax_end ();
4710
4711 if (ex.X_add_number != 0)
4712 {
4713 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4714 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4715 ex.X_op = O_constant;
4716 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4717 BFD_RELOC_LO16);
4718 }
4719 }
4720 }
4721 else
4722 abort ();
4723
4724 if (!mips_opts.at && *used_at == 1)
4725 as_bad (_("Macro used $at after \".set noat\""));
4726 }
4727
4728 /* Move the contents of register SOURCE into register DEST. */
4729
4730 static void
4731 move_register (int dest, int source)
4732 {
4733 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4734 dest, source, 0);
4735 }
4736
4737 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4738 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4739 The two alternatives are:
4740
4741 Global symbol Local sybmol
4742 ------------- ------------
4743 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4744 ... ...
4745 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4746
4747 load_got_offset emits the first instruction and add_got_offset
4748 emits the second for a 16-bit offset or add_got_offset_hilo emits
4749 a sequence to add a 32-bit offset using a scratch register. */
4750
4751 static void
4752 load_got_offset (int dest, expressionS *local)
4753 {
4754 expressionS global;
4755
4756 global = *local;
4757 global.X_add_number = 0;
4758
4759 relax_start (local->X_add_symbol);
4760 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4761 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4762 relax_switch ();
4763 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4764 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4765 relax_end ();
4766 }
4767
4768 static void
4769 add_got_offset (int dest, expressionS *local)
4770 {
4771 expressionS global;
4772
4773 global.X_op = O_constant;
4774 global.X_op_symbol = NULL;
4775 global.X_add_symbol = NULL;
4776 global.X_add_number = local->X_add_number;
4777
4778 relax_start (local->X_add_symbol);
4779 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4780 dest, dest, BFD_RELOC_LO16);
4781 relax_switch ();
4782 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4783 relax_end ();
4784 }
4785
4786 static void
4787 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4788 {
4789 expressionS global;
4790 int hold_mips_optimize;
4791
4792 global.X_op = O_constant;
4793 global.X_op_symbol = NULL;
4794 global.X_add_symbol = NULL;
4795 global.X_add_number = local->X_add_number;
4796
4797 relax_start (local->X_add_symbol);
4798 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4799 relax_switch ();
4800 /* Set mips_optimize around the lui instruction to avoid
4801 inserting an unnecessary nop after the lw. */
4802 hold_mips_optimize = mips_optimize;
4803 mips_optimize = 2;
4804 macro_build_lui (&global, tmp);
4805 mips_optimize = hold_mips_optimize;
4806 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4807 relax_end ();
4808
4809 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4810 }
4811
4812 /*
4813 * Build macros
4814 * This routine implements the seemingly endless macro or synthesized
4815 * instructions and addressing modes in the mips assembly language. Many
4816 * of these macros are simple and are similar to each other. These could
4817 * probably be handled by some kind of table or grammar approach instead of
4818 * this verbose method. Others are not simple macros but are more like
4819 * optimizing code generation.
4820 * One interesting optimization is when several store macros appear
4821 * consecutively that would load AT with the upper half of the same address.
4822 * The ensuing load upper instructions are ommited. This implies some kind
4823 * of global optimization. We currently only optimize within a single macro.
4824 * For many of the load and store macros if the address is specified as a
4825 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4826 * first load register 'at' with zero and use it as the base register. The
4827 * mips assembler simply uses register $zero. Just one tiny optimization
4828 * we're missing.
4829 */
4830 static void
4831 macro (struct mips_cl_insn *ip)
4832 {
4833 unsigned int treg, sreg, dreg, breg;
4834 unsigned int tempreg;
4835 int mask;
4836 int used_at = 0;
4837 expressionS expr1;
4838 const char *s;
4839 const char *s2;
4840 const char *fmt;
4841 int likely = 0;
4842 int dbl = 0;
4843 int coproc = 0;
4844 int lr = 0;
4845 int imm = 0;
4846 int call = 0;
4847 int off;
4848 offsetT maxnum;
4849 bfd_reloc_code_real_type r;
4850 int hold_mips_optimize;
4851
4852 gas_assert (! mips_opts.mips16);
4853
4854 treg = EXTRACT_OPERAND (RT, *ip);
4855 dreg = EXTRACT_OPERAND (RD, *ip);
4856 sreg = breg = EXTRACT_OPERAND (RS, *ip);
4857 mask = ip->insn_mo->mask;
4858
4859 expr1.X_op = O_constant;
4860 expr1.X_op_symbol = NULL;
4861 expr1.X_add_symbol = NULL;
4862 expr1.X_add_number = 1;
4863
4864 switch (mask)
4865 {
4866 case M_DABS:
4867 dbl = 1;
4868 case M_ABS:
4869 /* bgez $a0,.+12
4870 move v0,$a0
4871 sub v0,$zero,$a0
4872 */
4873
4874 start_noreorder ();
4875
4876 expr1.X_add_number = 8;
4877 macro_build (&expr1, "bgez", "s,p", sreg);
4878 if (dreg == sreg)
4879 macro_build (NULL, "nop", "");
4880 else
4881 move_register (dreg, sreg);
4882 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4883
4884 end_noreorder ();
4885 break;
4886
4887 case M_ADD_I:
4888 s = "addi";
4889 s2 = "add";
4890 goto do_addi;
4891 case M_ADDU_I:
4892 s = "addiu";
4893 s2 = "addu";
4894 goto do_addi;
4895 case M_DADD_I:
4896 dbl = 1;
4897 s = "daddi";
4898 s2 = "dadd";
4899 goto do_addi;
4900 case M_DADDU_I:
4901 dbl = 1;
4902 s = "daddiu";
4903 s2 = "daddu";
4904 do_addi:
4905 if (imm_expr.X_op == O_constant
4906 && imm_expr.X_add_number >= -0x8000
4907 && imm_expr.X_add_number < 0x8000)
4908 {
4909 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4910 break;
4911 }
4912 used_at = 1;
4913 load_register (AT, &imm_expr, dbl);
4914 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4915 break;
4916
4917 case M_AND_I:
4918 s = "andi";
4919 s2 = "and";
4920 goto do_bit;
4921 case M_OR_I:
4922 s = "ori";
4923 s2 = "or";
4924 goto do_bit;
4925 case M_NOR_I:
4926 s = "";
4927 s2 = "nor";
4928 goto do_bit;
4929 case M_XOR_I:
4930 s = "xori";
4931 s2 = "xor";
4932 do_bit:
4933 if (imm_expr.X_op == O_constant
4934 && imm_expr.X_add_number >= 0
4935 && imm_expr.X_add_number < 0x10000)
4936 {
4937 if (mask != M_NOR_I)
4938 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4939 else
4940 {
4941 macro_build (&imm_expr, "ori", "t,r,i",
4942 treg, sreg, BFD_RELOC_LO16);
4943 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4944 }
4945 break;
4946 }
4947
4948 used_at = 1;
4949 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4950 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4951 break;
4952
4953 case M_BALIGN:
4954 switch (imm_expr.X_add_number)
4955 {
4956 case 0:
4957 macro_build (NULL, "nop", "");
4958 break;
4959 case 2:
4960 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4961 break;
4962 default:
4963 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4964 (int) imm_expr.X_add_number);
4965 break;
4966 }
4967 break;
4968
4969 case M_BEQ_I:
4970 s = "beq";
4971 goto beq_i;
4972 case M_BEQL_I:
4973 s = "beql";
4974 likely = 1;
4975 goto beq_i;
4976 case M_BNE_I:
4977 s = "bne";
4978 goto beq_i;
4979 case M_BNEL_I:
4980 s = "bnel";
4981 likely = 1;
4982 beq_i:
4983 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4984 {
4985 macro_build (&offset_expr, s, "s,t,p", sreg, ZERO);
4986 break;
4987 }
4988 used_at = 1;
4989 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4990 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4991 break;
4992
4993 case M_BGEL:
4994 likely = 1;
4995 case M_BGE:
4996 if (treg == 0)
4997 {
4998 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4999 break;
5000 }
5001 if (sreg == 0)
5002 {
5003 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
5004 break;
5005 }
5006 used_at = 1;
5007 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5008 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5009 break;
5010
5011 case M_BGTL_I:
5012 likely = 1;
5013 case M_BGT_I:
5014 /* Check for > max integer. */
5015 maxnum = 0x7fffffff;
5016 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5017 {
5018 maxnum <<= 16;
5019 maxnum |= 0xffff;
5020 maxnum <<= 16;
5021 maxnum |= 0xffff;
5022 }
5023 if (imm_expr.X_op == O_constant
5024 && imm_expr.X_add_number >= maxnum
5025 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5026 {
5027 do_false:
5028 /* Result is always false. */
5029 if (! likely)
5030 macro_build (NULL, "nop", "");
5031 else
5032 macro_build (&offset_expr, "bnel", "s,t,p", ZERO, ZERO);
5033 break;
5034 }
5035 if (imm_expr.X_op != O_constant)
5036 as_bad (_("Unsupported large constant"));
5037 ++imm_expr.X_add_number;
5038 /* FALLTHROUGH */
5039 case M_BGE_I:
5040 case M_BGEL_I:
5041 if (mask == M_BGEL_I)
5042 likely = 1;
5043 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5044 {
5045 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
5046 break;
5047 }
5048 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5049 {
5050 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5051 break;
5052 }
5053 maxnum = 0x7fffffff;
5054 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5055 {
5056 maxnum <<= 16;
5057 maxnum |= 0xffff;
5058 maxnum <<= 16;
5059 maxnum |= 0xffff;
5060 }
5061 maxnum = - maxnum - 1;
5062 if (imm_expr.X_op == O_constant
5063 && imm_expr.X_add_number <= maxnum
5064 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5065 {
5066 do_true:
5067 /* result is always true */
5068 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
5069 macro_build (&offset_expr, "b", "p");
5070 break;
5071 }
5072 used_at = 1;
5073 set_at (sreg, 0);
5074 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5075 break;
5076
5077 case M_BGEUL:
5078 likely = 1;
5079 case M_BGEU:
5080 if (treg == 0)
5081 goto do_true;
5082 if (sreg == 0)
5083 {
5084 macro_build (&offset_expr, likely ? "beql" : "beq",
5085 "s,t,p", ZERO, treg);
5086 break;
5087 }
5088 used_at = 1;
5089 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5090 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5091 break;
5092
5093 case M_BGTUL_I:
5094 likely = 1;
5095 case M_BGTU_I:
5096 if (sreg == 0
5097 || (HAVE_32BIT_GPRS
5098 && imm_expr.X_op == O_constant
5099 && imm_expr.X_add_number == -1))
5100 goto do_false;
5101 if (imm_expr.X_op != O_constant)
5102 as_bad (_("Unsupported large constant"));
5103 ++imm_expr.X_add_number;
5104 /* FALLTHROUGH */
5105 case M_BGEU_I:
5106 case M_BGEUL_I:
5107 if (mask == M_BGEUL_I)
5108 likely = 1;
5109 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5110 goto do_true;
5111 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5112 {
5113 macro_build (&offset_expr, likely ? "bnel" : "bne",
5114 "s,t,p", sreg, ZERO);
5115 break;
5116 }
5117 used_at = 1;
5118 set_at (sreg, 1);
5119 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5120 break;
5121
5122 case M_BGTL:
5123 likely = 1;
5124 case M_BGT:
5125 if (treg == 0)
5126 {
5127 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5128 break;
5129 }
5130 if (sreg == 0)
5131 {
5132 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5133 break;
5134 }
5135 used_at = 1;
5136 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5137 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5138 break;
5139
5140 case M_BGTUL:
5141 likely = 1;
5142 case M_BGTU:
5143 if (treg == 0)
5144 {
5145 macro_build (&offset_expr, likely ? "bnel" : "bne",
5146 "s,t,p", sreg, ZERO);
5147 break;
5148 }
5149 if (sreg == 0)
5150 goto do_false;
5151 used_at = 1;
5152 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5153 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5154 break;
5155
5156 case M_BLEL:
5157 likely = 1;
5158 case M_BLE:
5159 if (treg == 0)
5160 {
5161 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5162 break;
5163 }
5164 if (sreg == 0)
5165 {
5166 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5167 break;
5168 }
5169 used_at = 1;
5170 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5171 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5172 break;
5173
5174 case M_BLEL_I:
5175 likely = 1;
5176 case M_BLE_I:
5177 maxnum = 0x7fffffff;
5178 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5179 {
5180 maxnum <<= 16;
5181 maxnum |= 0xffff;
5182 maxnum <<= 16;
5183 maxnum |= 0xffff;
5184 }
5185 if (imm_expr.X_op == O_constant
5186 && imm_expr.X_add_number >= maxnum
5187 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5188 goto do_true;
5189 if (imm_expr.X_op != O_constant)
5190 as_bad (_("Unsupported large constant"));
5191 ++imm_expr.X_add_number;
5192 /* FALLTHROUGH */
5193 case M_BLT_I:
5194 case M_BLTL_I:
5195 if (mask == M_BLTL_I)
5196 likely = 1;
5197 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5198 {
5199 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5200 break;
5201 }
5202 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5203 {
5204 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5205 break;
5206 }
5207 used_at = 1;
5208 set_at (sreg, 0);
5209 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5210 break;
5211
5212 case M_BLEUL:
5213 likely = 1;
5214 case M_BLEU:
5215 if (treg == 0)
5216 {
5217 macro_build (&offset_expr, likely ? "beql" : "beq",
5218 "s,t,p", sreg, ZERO);
5219 break;
5220 }
5221 if (sreg == 0)
5222 goto do_true;
5223 used_at = 1;
5224 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5225 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, ZERO);
5226 break;
5227
5228 case M_BLEUL_I:
5229 likely = 1;
5230 case M_BLEU_I:
5231 if (sreg == 0
5232 || (HAVE_32BIT_GPRS
5233 && imm_expr.X_op == O_constant
5234 && imm_expr.X_add_number == -1))
5235 goto do_true;
5236 if (imm_expr.X_op != O_constant)
5237 as_bad (_("Unsupported large constant"));
5238 ++imm_expr.X_add_number;
5239 /* FALLTHROUGH */
5240 case M_BLTU_I:
5241 case M_BLTUL_I:
5242 if (mask == M_BLTUL_I)
5243 likely = 1;
5244 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5245 goto do_false;
5246 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5247 {
5248 macro_build (&offset_expr, likely ? "beql" : "beq",
5249 "s,t,p", sreg, ZERO);
5250 break;
5251 }
5252 used_at = 1;
5253 set_at (sreg, 1);
5254 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5255 break;
5256
5257 case M_BLTL:
5258 likely = 1;
5259 case M_BLT:
5260 if (treg == 0)
5261 {
5262 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5263 break;
5264 }
5265 if (sreg == 0)
5266 {
5267 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5268 break;
5269 }
5270 used_at = 1;
5271 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5272 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5273 break;
5274
5275 case M_BLTUL:
5276 likely = 1;
5277 case M_BLTU:
5278 if (treg == 0)
5279 goto do_false;
5280 if (sreg == 0)
5281 {
5282 macro_build (&offset_expr, likely ? "bnel" : "bne",
5283 "s,t,p", ZERO, treg);
5284 break;
5285 }
5286 used_at = 1;
5287 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5288 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, ZERO);
5289 break;
5290
5291 case M_DEXT:
5292 {
5293 /* Use unsigned arithmetic. */
5294 addressT pos;
5295 addressT size;
5296
5297 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5298 {
5299 as_bad (_("Unsupported large constant"));
5300 pos = size = 1;
5301 }
5302 else
5303 {
5304 pos = imm_expr.X_add_number;
5305 size = imm2_expr.X_add_number;
5306 }
5307
5308 if (pos > 63)
5309 {
5310 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5311 pos = 1;
5312 }
5313 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5314 {
5315 as_bad (_("Improper extract size (%lu, position %lu)"),
5316 (unsigned long) size, (unsigned long) pos);
5317 size = 1;
5318 }
5319
5320 if (size <= 32 && pos < 32)
5321 {
5322 s = "dext";
5323 fmt = "t,r,+A,+C";
5324 }
5325 else if (size <= 32)
5326 {
5327 s = "dextu";
5328 fmt = "t,r,+E,+H";
5329 }
5330 else
5331 {
5332 s = "dextm";
5333 fmt = "t,r,+A,+G";
5334 }
5335 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5336 (int) (size - 1));
5337 }
5338 break;
5339
5340 case M_DINS:
5341 {
5342 /* Use unsigned arithmetic. */
5343 addressT pos;
5344 addressT size;
5345
5346 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5347 {
5348 as_bad (_("Unsupported large constant"));
5349 pos = size = 1;
5350 }
5351 else
5352 {
5353 pos = imm_expr.X_add_number;
5354 size = imm2_expr.X_add_number;
5355 }
5356
5357 if (pos > 63)
5358 {
5359 as_bad (_("Improper position (%lu)"), (unsigned long) pos);
5360 pos = 1;
5361 }
5362 if (size == 0 || size > 64 || (pos + size - 1) > 63)
5363 {
5364 as_bad (_("Improper insert size (%lu, position %lu)"),
5365 (unsigned long) size, (unsigned long) pos);
5366 size = 1;
5367 }
5368
5369 if (pos < 32 && (pos + size - 1) < 32)
5370 {
5371 s = "dins";
5372 fmt = "t,r,+A,+B";
5373 }
5374 else if (pos >= 32)
5375 {
5376 s = "dinsu";
5377 fmt = "t,r,+E,+F";
5378 }
5379 else
5380 {
5381 s = "dinsm";
5382 fmt = "t,r,+A,+F";
5383 }
5384 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5385 (int) (pos + size - 1));
5386 }
5387 break;
5388
5389 case M_DDIV_3:
5390 dbl = 1;
5391 case M_DIV_3:
5392 s = "mflo";
5393 goto do_div3;
5394 case M_DREM_3:
5395 dbl = 1;
5396 case M_REM_3:
5397 s = "mfhi";
5398 do_div3:
5399 if (treg == 0)
5400 {
5401 as_warn (_("Divide by zero."));
5402 if (mips_trap)
5403 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5404 else
5405 macro_build (NULL, "break", "c", 7);
5406 break;
5407 }
5408
5409 start_noreorder ();
5410 if (mips_trap)
5411 {
5412 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5413 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5414 }
5415 else
5416 {
5417 expr1.X_add_number = 8;
5418 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5419 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5420 macro_build (NULL, "break", "c", 7);
5421 }
5422 expr1.X_add_number = -1;
5423 used_at = 1;
5424 load_register (AT, &expr1, dbl);
5425 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5426 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5427 if (dbl)
5428 {
5429 expr1.X_add_number = 1;
5430 load_register (AT, &expr1, dbl);
5431 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5432 }
5433 else
5434 {
5435 expr1.X_add_number = 0x80000000;
5436 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5437 }
5438 if (mips_trap)
5439 {
5440 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5441 /* We want to close the noreorder block as soon as possible, so
5442 that later insns are available for delay slot filling. */
5443 end_noreorder ();
5444 }
5445 else
5446 {
5447 expr1.X_add_number = 8;
5448 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5449 macro_build (NULL, "nop", "");
5450
5451 /* We want to close the noreorder block as soon as possible, so
5452 that later insns are available for delay slot filling. */
5453 end_noreorder ();
5454
5455 macro_build (NULL, "break", "c", 6);
5456 }
5457 macro_build (NULL, s, "d", dreg);
5458 break;
5459
5460 case M_DIV_3I:
5461 s = "div";
5462 s2 = "mflo";
5463 goto do_divi;
5464 case M_DIVU_3I:
5465 s = "divu";
5466 s2 = "mflo";
5467 goto do_divi;
5468 case M_REM_3I:
5469 s = "div";
5470 s2 = "mfhi";
5471 goto do_divi;
5472 case M_REMU_3I:
5473 s = "divu";
5474 s2 = "mfhi";
5475 goto do_divi;
5476 case M_DDIV_3I:
5477 dbl = 1;
5478 s = "ddiv";
5479 s2 = "mflo";
5480 goto do_divi;
5481 case M_DDIVU_3I:
5482 dbl = 1;
5483 s = "ddivu";
5484 s2 = "mflo";
5485 goto do_divi;
5486 case M_DREM_3I:
5487 dbl = 1;
5488 s = "ddiv";
5489 s2 = "mfhi";
5490 goto do_divi;
5491 case M_DREMU_3I:
5492 dbl = 1;
5493 s = "ddivu";
5494 s2 = "mfhi";
5495 do_divi:
5496 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5497 {
5498 as_warn (_("Divide by zero."));
5499 if (mips_trap)
5500 macro_build (NULL, "teq", "s,t,q", ZERO, ZERO, 7);
5501 else
5502 macro_build (NULL, "break", "c", 7);
5503 break;
5504 }
5505 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5506 {
5507 if (strcmp (s2, "mflo") == 0)
5508 move_register (dreg, sreg);
5509 else
5510 move_register (dreg, ZERO);
5511 break;
5512 }
5513 if (imm_expr.X_op == O_constant
5514 && imm_expr.X_add_number == -1
5515 && s[strlen (s) - 1] != 'u')
5516 {
5517 if (strcmp (s2, "mflo") == 0)
5518 {
5519 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5520 }
5521 else
5522 move_register (dreg, ZERO);
5523 break;
5524 }
5525
5526 used_at = 1;
5527 load_register (AT, &imm_expr, dbl);
5528 macro_build (NULL, s, "z,s,t", sreg, AT);
5529 macro_build (NULL, s2, "d", dreg);
5530 break;
5531
5532 case M_DIVU_3:
5533 s = "divu";
5534 s2 = "mflo";
5535 goto do_divu3;
5536 case M_REMU_3:
5537 s = "divu";
5538 s2 = "mfhi";
5539 goto do_divu3;
5540 case M_DDIVU_3:
5541 s = "ddivu";
5542 s2 = "mflo";
5543 goto do_divu3;
5544 case M_DREMU_3:
5545 s = "ddivu";
5546 s2 = "mfhi";
5547 do_divu3:
5548 start_noreorder ();
5549 if (mips_trap)
5550 {
5551 macro_build (NULL, "teq", "s,t,q", treg, ZERO, 7);
5552 macro_build (NULL, s, "z,s,t", sreg, treg);
5553 /* We want to close the noreorder block as soon as possible, so
5554 that later insns are available for delay slot filling. */
5555 end_noreorder ();
5556 }
5557 else
5558 {
5559 expr1.X_add_number = 8;
5560 macro_build (&expr1, "bne", "s,t,p", treg, ZERO);
5561 macro_build (NULL, s, "z,s,t", sreg, treg);
5562
5563 /* We want to close the noreorder block as soon as possible, so
5564 that later insns are available for delay slot filling. */
5565 end_noreorder ();
5566 macro_build (NULL, "break", "c", 7);
5567 }
5568 macro_build (NULL, s2, "d", dreg);
5569 break;
5570
5571 case M_DLCA_AB:
5572 dbl = 1;
5573 case M_LCA_AB:
5574 call = 1;
5575 goto do_la;
5576 case M_DLA_AB:
5577 dbl = 1;
5578 case M_LA_AB:
5579 do_la:
5580 /* Load the address of a symbol into a register. If breg is not
5581 zero, we then add a base register to it. */
5582
5583 if (dbl && HAVE_32BIT_GPRS)
5584 as_warn (_("dla used to load 32-bit register"));
5585
5586 if (!dbl && HAVE_64BIT_OBJECTS)
5587 as_warn (_("la used to load 64-bit address"));
5588
5589 if (offset_expr.X_op == O_constant
5590 && offset_expr.X_add_number >= -0x8000
5591 && offset_expr.X_add_number < 0x8000)
5592 {
5593 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5594 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5595 break;
5596 }
5597
5598 if (mips_opts.at && (treg == breg))
5599 {
5600 tempreg = AT;
5601 used_at = 1;
5602 }
5603 else
5604 {
5605 tempreg = treg;
5606 }
5607
5608 if (offset_expr.X_op != O_symbol
5609 && offset_expr.X_op != O_constant)
5610 {
5611 as_bad (_("Expression too complex"));
5612 offset_expr.X_op = O_constant;
5613 }
5614
5615 if (offset_expr.X_op == O_constant)
5616 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5617 else if (mips_pic == NO_PIC)
5618 {
5619 /* If this is a reference to a GP relative symbol, we want
5620 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5621 Otherwise we want
5622 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5623 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5624 If we have a constant, we need two instructions anyhow,
5625 so we may as well always use the latter form.
5626
5627 With 64bit address space and a usable $at we want
5628 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5629 lui $at,<sym> (BFD_RELOC_HI16_S)
5630 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5631 daddiu $at,<sym> (BFD_RELOC_LO16)
5632 dsll32 $tempreg,0
5633 daddu $tempreg,$tempreg,$at
5634
5635 If $at is already in use, we use a path which is suboptimal
5636 on superscalar processors.
5637 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5638 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5639 dsll $tempreg,16
5640 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5641 dsll $tempreg,16
5642 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5643
5644 For GP relative symbols in 64bit address space we can use
5645 the same sequence as in 32bit address space. */
5646 if (HAVE_64BIT_SYMBOLS)
5647 {
5648 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5649 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5650 {
5651 relax_start (offset_expr.X_add_symbol);
5652 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5653 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5654 relax_switch ();
5655 }
5656
5657 if (used_at == 0 && mips_opts.at)
5658 {
5659 macro_build (&offset_expr, "lui", "t,u",
5660 tempreg, BFD_RELOC_MIPS_HIGHEST);
5661 macro_build (&offset_expr, "lui", "t,u",
5662 AT, BFD_RELOC_HI16_S);
5663 macro_build (&offset_expr, "daddiu", "t,r,j",
5664 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5665 macro_build (&offset_expr, "daddiu", "t,r,j",
5666 AT, AT, BFD_RELOC_LO16);
5667 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5668 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5669 used_at = 1;
5670 }
5671 else
5672 {
5673 macro_build (&offset_expr, "lui", "t,u",
5674 tempreg, BFD_RELOC_MIPS_HIGHEST);
5675 macro_build (&offset_expr, "daddiu", "t,r,j",
5676 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5677 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5678 macro_build (&offset_expr, "daddiu", "t,r,j",
5679 tempreg, tempreg, BFD_RELOC_HI16_S);
5680 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5681 macro_build (&offset_expr, "daddiu", "t,r,j",
5682 tempreg, tempreg, BFD_RELOC_LO16);
5683 }
5684
5685 if (mips_relax.sequence)
5686 relax_end ();
5687 }
5688 else
5689 {
5690 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5691 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5692 {
5693 relax_start (offset_expr.X_add_symbol);
5694 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5695 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5696 relax_switch ();
5697 }
5698 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5699 as_bad (_("Offset too large"));
5700 macro_build_lui (&offset_expr, tempreg);
5701 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5702 tempreg, tempreg, BFD_RELOC_LO16);
5703 if (mips_relax.sequence)
5704 relax_end ();
5705 }
5706 }
5707 else if (!mips_big_got && !HAVE_NEWABI)
5708 {
5709 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5710
5711 /* If this is a reference to an external symbol, and there
5712 is no constant, we want
5713 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5714 or for lca or if tempreg is PIC_CALL_REG
5715 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5716 For a local symbol, we want
5717 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5718 nop
5719 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5720
5721 If we have a small constant, and this is a reference to
5722 an external symbol, we want
5723 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5724 nop
5725 addiu $tempreg,$tempreg,<constant>
5726 For a local symbol, we want the same instruction
5727 sequence, but we output a BFD_RELOC_LO16 reloc on the
5728 addiu instruction.
5729
5730 If we have a large constant, and this is a reference to
5731 an external symbol, we want
5732 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5733 lui $at,<hiconstant>
5734 addiu $at,$at,<loconstant>
5735 addu $tempreg,$tempreg,$at
5736 For a local symbol, we want the same instruction
5737 sequence, but we output a BFD_RELOC_LO16 reloc on the
5738 addiu instruction.
5739 */
5740
5741 if (offset_expr.X_add_number == 0)
5742 {
5743 if (mips_pic == SVR4_PIC
5744 && breg == 0
5745 && (call || tempreg == PIC_CALL_REG))
5746 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5747
5748 relax_start (offset_expr.X_add_symbol);
5749 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5750 lw_reloc_type, mips_gp_register);
5751 if (breg != 0)
5752 {
5753 /* We're going to put in an addu instruction using
5754 tempreg, so we may as well insert the nop right
5755 now. */
5756 load_delay_nop ();
5757 }
5758 relax_switch ();
5759 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5760 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5761 load_delay_nop ();
5762 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5763 tempreg, tempreg, BFD_RELOC_LO16);
5764 relax_end ();
5765 /* FIXME: If breg == 0, and the next instruction uses
5766 $tempreg, then if this variant case is used an extra
5767 nop will be generated. */
5768 }
5769 else if (offset_expr.X_add_number >= -0x8000
5770 && offset_expr.X_add_number < 0x8000)
5771 {
5772 load_got_offset (tempreg, &offset_expr);
5773 load_delay_nop ();
5774 add_got_offset (tempreg, &offset_expr);
5775 }
5776 else
5777 {
5778 expr1.X_add_number = offset_expr.X_add_number;
5779 offset_expr.X_add_number =
5780 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5781 load_got_offset (tempreg, &offset_expr);
5782 offset_expr.X_add_number = expr1.X_add_number;
5783 /* If we are going to add in a base register, and the
5784 target register and the base register are the same,
5785 then we are using AT as a temporary register. Since
5786 we want to load the constant into AT, we add our
5787 current AT (from the global offset table) and the
5788 register into the register now, and pretend we were
5789 not using a base register. */
5790 if (breg == treg)
5791 {
5792 load_delay_nop ();
5793 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5794 treg, AT, breg);
5795 breg = 0;
5796 tempreg = treg;
5797 }
5798 add_got_offset_hilo (tempreg, &offset_expr, AT);
5799 used_at = 1;
5800 }
5801 }
5802 else if (!mips_big_got && HAVE_NEWABI)
5803 {
5804 int add_breg_early = 0;
5805
5806 /* If this is a reference to an external, and there is no
5807 constant, or local symbol (*), with or without a
5808 constant, we want
5809 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5810 or for lca or if tempreg is PIC_CALL_REG
5811 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5812
5813 If we have a small constant, and this is a reference to
5814 an external symbol, we want
5815 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5816 addiu $tempreg,$tempreg,<constant>
5817
5818 If we have a large constant, and this is a reference to
5819 an external symbol, we want
5820 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5821 lui $at,<hiconstant>
5822 addiu $at,$at,<loconstant>
5823 addu $tempreg,$tempreg,$at
5824
5825 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5826 local symbols, even though it introduces an additional
5827 instruction. */
5828
5829 if (offset_expr.X_add_number)
5830 {
5831 expr1.X_add_number = offset_expr.X_add_number;
5832 offset_expr.X_add_number = 0;
5833
5834 relax_start (offset_expr.X_add_symbol);
5835 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5836 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5837
5838 if (expr1.X_add_number >= -0x8000
5839 && expr1.X_add_number < 0x8000)
5840 {
5841 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5842 tempreg, tempreg, BFD_RELOC_LO16);
5843 }
5844 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5845 {
5846 /* If we are going to add in a base register, and the
5847 target register and the base register are the same,
5848 then we are using AT as a temporary register. Since
5849 we want to load the constant into AT, we add our
5850 current AT (from the global offset table) and the
5851 register into the register now, and pretend we were
5852 not using a base register. */
5853 if (breg != treg)
5854 dreg = tempreg;
5855 else
5856 {
5857 gas_assert (tempreg == AT);
5858 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5859 treg, AT, breg);
5860 dreg = treg;
5861 add_breg_early = 1;
5862 }
5863
5864 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5865 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5866 dreg, dreg, AT);
5867
5868 used_at = 1;
5869 }
5870 else
5871 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5872
5873 relax_switch ();
5874 offset_expr.X_add_number = expr1.X_add_number;
5875
5876 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5877 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5878 if (add_breg_early)
5879 {
5880 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5881 treg, tempreg, breg);
5882 breg = 0;
5883 tempreg = treg;
5884 }
5885 relax_end ();
5886 }
5887 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5888 {
5889 relax_start (offset_expr.X_add_symbol);
5890 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5891 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5892 relax_switch ();
5893 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5894 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5895 relax_end ();
5896 }
5897 else
5898 {
5899 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5900 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5901 }
5902 }
5903 else if (mips_big_got && !HAVE_NEWABI)
5904 {
5905 int gpdelay;
5906 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5907 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5908 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5909
5910 /* This is the large GOT case. If this is a reference to an
5911 external symbol, and there is no constant, we want
5912 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5913 addu $tempreg,$tempreg,$gp
5914 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5915 or for lca or if tempreg is PIC_CALL_REG
5916 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5917 addu $tempreg,$tempreg,$gp
5918 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5919 For a local symbol, we want
5920 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5921 nop
5922 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5923
5924 If we have a small constant, and this is a reference to
5925 an external symbol, we want
5926 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5927 addu $tempreg,$tempreg,$gp
5928 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5929 nop
5930 addiu $tempreg,$tempreg,<constant>
5931 For a local symbol, we want
5932 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5933 nop
5934 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5935
5936 If we have a large constant, and this is a reference to
5937 an external symbol, we want
5938 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5939 addu $tempreg,$tempreg,$gp
5940 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5941 lui $at,<hiconstant>
5942 addiu $at,$at,<loconstant>
5943 addu $tempreg,$tempreg,$at
5944 For a local symbol, we want
5945 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5946 lui $at,<hiconstant>
5947 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5948 addu $tempreg,$tempreg,$at
5949 */
5950
5951 expr1.X_add_number = offset_expr.X_add_number;
5952 offset_expr.X_add_number = 0;
5953 relax_start (offset_expr.X_add_symbol);
5954 gpdelay = reg_needs_delay (mips_gp_register);
5955 if (expr1.X_add_number == 0 && breg == 0
5956 && (call || tempreg == PIC_CALL_REG))
5957 {
5958 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5959 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5960 }
5961 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5962 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5963 tempreg, tempreg, mips_gp_register);
5964 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5965 tempreg, lw_reloc_type, tempreg);
5966 if (expr1.X_add_number == 0)
5967 {
5968 if (breg != 0)
5969 {
5970 /* We're going to put in an addu instruction using
5971 tempreg, so we may as well insert the nop right
5972 now. */
5973 load_delay_nop ();
5974 }
5975 }
5976 else if (expr1.X_add_number >= -0x8000
5977 && expr1.X_add_number < 0x8000)
5978 {
5979 load_delay_nop ();
5980 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5981 tempreg, tempreg, BFD_RELOC_LO16);
5982 }
5983 else
5984 {
5985 /* If we are going to add in a base register, and the
5986 target register and the base register are the same,
5987 then we are using AT as a temporary register. Since
5988 we want to load the constant into AT, we add our
5989 current AT (from the global offset table) and the
5990 register into the register now, and pretend we were
5991 not using a base register. */
5992 if (breg != treg)
5993 dreg = tempreg;
5994 else
5995 {
5996 gas_assert (tempreg == AT);
5997 load_delay_nop ();
5998 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5999 treg, AT, breg);
6000 dreg = treg;
6001 }
6002
6003 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6004 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6005
6006 used_at = 1;
6007 }
6008 offset_expr.X_add_number =
6009 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
6010 relax_switch ();
6011
6012 if (gpdelay)
6013 {
6014 /* This is needed because this instruction uses $gp, but
6015 the first instruction on the main stream does not. */
6016 macro_build (NULL, "nop", "");
6017 }
6018
6019 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6020 local_reloc_type, mips_gp_register);
6021 if (expr1.X_add_number >= -0x8000
6022 && expr1.X_add_number < 0x8000)
6023 {
6024 load_delay_nop ();
6025 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6026 tempreg, tempreg, BFD_RELOC_LO16);
6027 /* FIXME: If add_number is 0, and there was no base
6028 register, the external symbol case ended with a load,
6029 so if the symbol turns out to not be external, and
6030 the next instruction uses tempreg, an unnecessary nop
6031 will be inserted. */
6032 }
6033 else
6034 {
6035 if (breg == treg)
6036 {
6037 /* We must add in the base register now, as in the
6038 external symbol case. */
6039 gas_assert (tempreg == AT);
6040 load_delay_nop ();
6041 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6042 treg, AT, breg);
6043 tempreg = treg;
6044 /* We set breg to 0 because we have arranged to add
6045 it in in both cases. */
6046 breg = 0;
6047 }
6048
6049 macro_build_lui (&expr1, AT);
6050 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6051 AT, AT, BFD_RELOC_LO16);
6052 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6053 tempreg, tempreg, AT);
6054 used_at = 1;
6055 }
6056 relax_end ();
6057 }
6058 else if (mips_big_got && HAVE_NEWABI)
6059 {
6060 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
6061 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
6062 int add_breg_early = 0;
6063
6064 /* This is the large GOT case. If this is a reference to an
6065 external symbol, and there is no constant, we want
6066 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6067 add $tempreg,$tempreg,$gp
6068 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6069 or for lca or if tempreg is PIC_CALL_REG
6070 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6071 add $tempreg,$tempreg,$gp
6072 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
6073
6074 If we have a small constant, and this is a reference to
6075 an external symbol, we want
6076 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6077 add $tempreg,$tempreg,$gp
6078 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6079 addi $tempreg,$tempreg,<constant>
6080
6081 If we have a large constant, and this is a reference to
6082 an external symbol, we want
6083 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6084 addu $tempreg,$tempreg,$gp
6085 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6086 lui $at,<hiconstant>
6087 addi $at,$at,<loconstant>
6088 add $tempreg,$tempreg,$at
6089
6090 If we have NewABI, and we know it's a local symbol, we want
6091 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6092 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
6093 otherwise we have to resort to GOT_HI16/GOT_LO16. */
6094
6095 relax_start (offset_expr.X_add_symbol);
6096
6097 expr1.X_add_number = offset_expr.X_add_number;
6098 offset_expr.X_add_number = 0;
6099
6100 if (expr1.X_add_number == 0 && breg == 0
6101 && (call || tempreg == PIC_CALL_REG))
6102 {
6103 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6104 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6105 }
6106 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6107 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6108 tempreg, tempreg, mips_gp_register);
6109 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6110 tempreg, lw_reloc_type, tempreg);
6111
6112 if (expr1.X_add_number == 0)
6113 ;
6114 else if (expr1.X_add_number >= -0x8000
6115 && expr1.X_add_number < 0x8000)
6116 {
6117 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6118 tempreg, tempreg, BFD_RELOC_LO16);
6119 }
6120 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6121 {
6122 /* If we are going to add in a base register, and the
6123 target register and the base register are the same,
6124 then we are using AT as a temporary register. Since
6125 we want to load the constant into AT, we add our
6126 current AT (from the global offset table) and the
6127 register into the register now, and pretend we were
6128 not using a base register. */
6129 if (breg != treg)
6130 dreg = tempreg;
6131 else
6132 {
6133 gas_assert (tempreg == AT);
6134 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6135 treg, AT, breg);
6136 dreg = treg;
6137 add_breg_early = 1;
6138 }
6139
6140 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6141 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6142
6143 used_at = 1;
6144 }
6145 else
6146 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6147
6148 relax_switch ();
6149 offset_expr.X_add_number = expr1.X_add_number;
6150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6151 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6152 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6153 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6154 if (add_breg_early)
6155 {
6156 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6157 treg, tempreg, breg);
6158 breg = 0;
6159 tempreg = treg;
6160 }
6161 relax_end ();
6162 }
6163 else
6164 abort ();
6165
6166 if (breg != 0)
6167 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6168 break;
6169
6170 case M_MSGSND:
6171 {
6172 unsigned long temp = (treg << 16) | (0x01);
6173 macro_build (NULL, "c2", "C", temp);
6174 }
6175 break;
6176
6177 case M_MSGLD:
6178 {
6179 unsigned long temp = (0x02);
6180 macro_build (NULL, "c2", "C", temp);
6181 }
6182 break;
6183
6184 case M_MSGLD_T:
6185 {
6186 unsigned long temp = (treg << 16) | (0x02);
6187 macro_build (NULL, "c2", "C", temp);
6188 }
6189 break;
6190
6191 case M_MSGWAIT:
6192 macro_build (NULL, "c2", "C", 3);
6193 break;
6194
6195 case M_MSGWAIT_T:
6196 {
6197 unsigned long temp = (treg << 16) | 0x03;
6198 macro_build (NULL, "c2", "C", temp);
6199 }
6200 break;
6201
6202 case M_J_A:
6203 /* The j instruction may not be used in PIC code, since it
6204 requires an absolute address. We convert it to a b
6205 instruction. */
6206 if (mips_pic == NO_PIC)
6207 macro_build (&offset_expr, "j", "a");
6208 else
6209 macro_build (&offset_expr, "b", "p");
6210 break;
6211
6212 /* The jal instructions must be handled as macros because when
6213 generating PIC code they expand to multi-instruction
6214 sequences. Normally they are simple instructions. */
6215 case M_JAL_1:
6216 dreg = RA;
6217 /* Fall through. */
6218 case M_JAL_2:
6219 if (mips_pic == NO_PIC)
6220 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6221 else
6222 {
6223 if (sreg != PIC_CALL_REG)
6224 as_warn (_("MIPS PIC call to register other than $25"));
6225
6226 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6227 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6228 {
6229 if (mips_cprestore_offset < 0)
6230 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6231 else
6232 {
6233 if (!mips_frame_reg_valid)
6234 {
6235 as_warn (_("No .frame pseudo-op used in PIC code"));
6236 /* Quiet this warning. */
6237 mips_frame_reg_valid = 1;
6238 }
6239 if (!mips_cprestore_valid)
6240 {
6241 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6242 /* Quiet this warning. */
6243 mips_cprestore_valid = 1;
6244 }
6245 if (mips_opts.noreorder)
6246 macro_build (NULL, "nop", "");
6247 expr1.X_add_number = mips_cprestore_offset;
6248 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6249 mips_gp_register,
6250 mips_frame_reg,
6251 HAVE_64BIT_ADDRESSES);
6252 }
6253 }
6254 }
6255
6256 break;
6257
6258 case M_JAL_A:
6259 if (mips_pic == NO_PIC)
6260 macro_build (&offset_expr, "jal", "a");
6261 else if (mips_pic == SVR4_PIC)
6262 {
6263 /* If this is a reference to an external symbol, and we are
6264 using a small GOT, we want
6265 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6266 nop
6267 jalr $ra,$25
6268 nop
6269 lw $gp,cprestore($sp)
6270 The cprestore value is set using the .cprestore
6271 pseudo-op. If we are using a big GOT, we want
6272 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6273 addu $25,$25,$gp
6274 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6275 nop
6276 jalr $ra,$25
6277 nop
6278 lw $gp,cprestore($sp)
6279 If the symbol is not external, we want
6280 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6281 nop
6282 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6283 jalr $ra,$25
6284 nop
6285 lw $gp,cprestore($sp)
6286
6287 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6288 sequences above, minus nops, unless the symbol is local,
6289 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6290 GOT_DISP. */
6291 if (HAVE_NEWABI)
6292 {
6293 if (!mips_big_got)
6294 {
6295 relax_start (offset_expr.X_add_symbol);
6296 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6297 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6298 mips_gp_register);
6299 relax_switch ();
6300 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6301 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6302 mips_gp_register);
6303 relax_end ();
6304 }
6305 else
6306 {
6307 relax_start (offset_expr.X_add_symbol);
6308 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6309 BFD_RELOC_MIPS_CALL_HI16);
6310 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6311 PIC_CALL_REG, mips_gp_register);
6312 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6313 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6314 PIC_CALL_REG);
6315 relax_switch ();
6316 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6317 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6318 mips_gp_register);
6319 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6320 PIC_CALL_REG, PIC_CALL_REG,
6321 BFD_RELOC_MIPS_GOT_OFST);
6322 relax_end ();
6323 }
6324
6325 macro_build_jalr (&offset_expr);
6326 }
6327 else
6328 {
6329 relax_start (offset_expr.X_add_symbol);
6330 if (!mips_big_got)
6331 {
6332 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6333 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6334 mips_gp_register);
6335 load_delay_nop ();
6336 relax_switch ();
6337 }
6338 else
6339 {
6340 int gpdelay;
6341
6342 gpdelay = reg_needs_delay (mips_gp_register);
6343 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6344 BFD_RELOC_MIPS_CALL_HI16);
6345 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6346 PIC_CALL_REG, mips_gp_register);
6347 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6348 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6349 PIC_CALL_REG);
6350 load_delay_nop ();
6351 relax_switch ();
6352 if (gpdelay)
6353 macro_build (NULL, "nop", "");
6354 }
6355 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6356 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6357 mips_gp_register);
6358 load_delay_nop ();
6359 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6360 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6361 relax_end ();
6362 macro_build_jalr (&offset_expr);
6363
6364 if (mips_cprestore_offset < 0)
6365 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6366 else
6367 {
6368 if (!mips_frame_reg_valid)
6369 {
6370 as_warn (_("No .frame pseudo-op used in PIC code"));
6371 /* Quiet this warning. */
6372 mips_frame_reg_valid = 1;
6373 }
6374 if (!mips_cprestore_valid)
6375 {
6376 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6377 /* Quiet this warning. */
6378 mips_cprestore_valid = 1;
6379 }
6380 if (mips_opts.noreorder)
6381 macro_build (NULL, "nop", "");
6382 expr1.X_add_number = mips_cprestore_offset;
6383 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6384 mips_gp_register,
6385 mips_frame_reg,
6386 HAVE_64BIT_ADDRESSES);
6387 }
6388 }
6389 }
6390 else if (mips_pic == VXWORKS_PIC)
6391 as_bad (_("Non-PIC jump used in PIC library"));
6392 else
6393 abort ();
6394
6395 break;
6396
6397 case M_LB_AB:
6398 s = "lb";
6399 goto ld;
6400 case M_LBU_AB:
6401 s = "lbu";
6402 goto ld;
6403 case M_LH_AB:
6404 s = "lh";
6405 goto ld;
6406 case M_LHU_AB:
6407 s = "lhu";
6408 goto ld;
6409 case M_LW_AB:
6410 s = "lw";
6411 goto ld;
6412 case M_LWC0_AB:
6413 s = "lwc0";
6414 /* Itbl support may require additional care here. */
6415 coproc = 1;
6416 goto ld;
6417 case M_LWC1_AB:
6418 s = "lwc1";
6419 /* Itbl support may require additional care here. */
6420 coproc = 1;
6421 goto ld;
6422 case M_LWC2_AB:
6423 s = "lwc2";
6424 /* Itbl support may require additional care here. */
6425 coproc = 1;
6426 goto ld;
6427 case M_LWC3_AB:
6428 s = "lwc3";
6429 /* Itbl support may require additional care here. */
6430 coproc = 1;
6431 goto ld;
6432 case M_LWL_AB:
6433 s = "lwl";
6434 lr = 1;
6435 goto ld;
6436 case M_LWR_AB:
6437 s = "lwr";
6438 lr = 1;
6439 goto ld;
6440 case M_LDC1_AB:
6441 s = "ldc1";
6442 /* Itbl support may require additional care here. */
6443 coproc = 1;
6444 goto ld;
6445 case M_LDC2_AB:
6446 s = "ldc2";
6447 /* Itbl support may require additional care here. */
6448 coproc = 1;
6449 goto ld;
6450 case M_LDC3_AB:
6451 s = "ldc3";
6452 /* Itbl support may require additional care here. */
6453 coproc = 1;
6454 goto ld;
6455 case M_LDL_AB:
6456 s = "ldl";
6457 lr = 1;
6458 goto ld;
6459 case M_LDR_AB:
6460 s = "ldr";
6461 lr = 1;
6462 goto ld;
6463 case M_LL_AB:
6464 s = "ll";
6465 goto ld;
6466 case M_LLD_AB:
6467 s = "lld";
6468 goto ld;
6469 case M_LWU_AB:
6470 s = "lwu";
6471 ld:
6472 if (breg == treg || coproc || lr)
6473 {
6474 tempreg = AT;
6475 used_at = 1;
6476 }
6477 else
6478 {
6479 tempreg = treg;
6480 }
6481 goto ld_st;
6482 case M_SB_AB:
6483 s = "sb";
6484 goto st;
6485 case M_SH_AB:
6486 s = "sh";
6487 goto st;
6488 case M_SW_AB:
6489 s = "sw";
6490 goto st;
6491 case M_SWC0_AB:
6492 s = "swc0";
6493 /* Itbl support may require additional care here. */
6494 coproc = 1;
6495 goto st;
6496 case M_SWC1_AB:
6497 s = "swc1";
6498 /* Itbl support may require additional care here. */
6499 coproc = 1;
6500 goto st;
6501 case M_SWC2_AB:
6502 s = "swc2";
6503 /* Itbl support may require additional care here. */
6504 coproc = 1;
6505 goto st;
6506 case M_SWC3_AB:
6507 s = "swc3";
6508 /* Itbl support may require additional care here. */
6509 coproc = 1;
6510 goto st;
6511 case M_SWL_AB:
6512 s = "swl";
6513 goto st;
6514 case M_SWR_AB:
6515 s = "swr";
6516 goto st;
6517 case M_SC_AB:
6518 s = "sc";
6519 goto st;
6520 case M_SCD_AB:
6521 s = "scd";
6522 goto st;
6523 case M_CACHE_AB:
6524 s = "cache";
6525 goto st;
6526 case M_SDC1_AB:
6527 s = "sdc1";
6528 coproc = 1;
6529 /* Itbl support may require additional care here. */
6530 goto st;
6531 case M_SDC2_AB:
6532 s = "sdc2";
6533 /* Itbl support may require additional care here. */
6534 coproc = 1;
6535 goto st;
6536 case M_SDC3_AB:
6537 s = "sdc3";
6538 /* Itbl support may require additional care here. */
6539 coproc = 1;
6540 goto st;
6541 case M_SDL_AB:
6542 s = "sdl";
6543 goto st;
6544 case M_SDR_AB:
6545 s = "sdr";
6546 st:
6547 tempreg = AT;
6548 used_at = 1;
6549 ld_st:
6550 if (coproc
6551 && NO_ISA_COP (mips_opts.arch)
6552 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6553 {
6554 as_bad (_("Opcode not supported on this processor: %s"),
6555 mips_cpu_info_from_arch (mips_opts.arch)->name);
6556 break;
6557 }
6558
6559 /* Itbl support may require additional care here. */
6560 if (mask == M_LWC1_AB
6561 || mask == M_SWC1_AB
6562 || mask == M_LDC1_AB
6563 || mask == M_SDC1_AB
6564 || mask == M_L_DAB
6565 || mask == M_S_DAB)
6566 fmt = "T,o(b)";
6567 else if (mask == M_CACHE_AB)
6568 fmt = "k,o(b)";
6569 else if (coproc)
6570 fmt = "E,o(b)";
6571 else
6572 fmt = "t,o(b)";
6573
6574 if (offset_expr.X_op != O_constant
6575 && offset_expr.X_op != O_symbol)
6576 {
6577 as_bad (_("Expression too complex"));
6578 offset_expr.X_op = O_constant;
6579 }
6580
6581 if (HAVE_32BIT_ADDRESSES
6582 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6583 {
6584 char value [32];
6585
6586 sprintf_vma (value, offset_expr.X_add_number);
6587 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6588 }
6589
6590 /* A constant expression in PIC code can be handled just as it
6591 is in non PIC code. */
6592 if (offset_expr.X_op == O_constant)
6593 {
6594 expr1.X_add_number = offset_expr.X_add_number;
6595 normalize_address_expr (&expr1);
6596 if (!IS_SEXT_16BIT_NUM (expr1.X_add_number))
6597 {
6598 expr1.X_add_number = ((expr1.X_add_number + 0x8000)
6599 & ~(bfd_vma) 0xffff);
6600 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6601 if (breg != 0)
6602 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6603 tempreg, tempreg, breg);
6604 breg = tempreg;
6605 }
6606 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, breg);
6607 }
6608 else if (mips_pic == NO_PIC)
6609 {
6610 /* If this is a reference to a GP relative symbol, and there
6611 is no base register, we want
6612 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6613 Otherwise, if there is no base register, we want
6614 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6615 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6616 If we have a constant, we need two instructions anyhow,
6617 so we always use the latter form.
6618
6619 If we have a base register, and this is a reference to a
6620 GP relative symbol, we want
6621 addu $tempreg,$breg,$gp
6622 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6623 Otherwise we want
6624 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6625 addu $tempreg,$tempreg,$breg
6626 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6627 With a constant we always use the latter case.
6628
6629 With 64bit address space and no base register and $at usable,
6630 we want
6631 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6632 lui $at,<sym> (BFD_RELOC_HI16_S)
6633 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6634 dsll32 $tempreg,0
6635 daddu $tempreg,$at
6636 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6637 If we have a base register, we want
6638 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6639 lui $at,<sym> (BFD_RELOC_HI16_S)
6640 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6641 daddu $at,$breg
6642 dsll32 $tempreg,0
6643 daddu $tempreg,$at
6644 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6645
6646 Without $at we can't generate the optimal path for superscalar
6647 processors here since this would require two temporary registers.
6648 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6649 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6650 dsll $tempreg,16
6651 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6652 dsll $tempreg,16
6653 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6654 If we have a base register, we want
6655 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6656 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6657 dsll $tempreg,16
6658 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6659 dsll $tempreg,16
6660 daddu $tempreg,$tempreg,$breg
6661 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6662
6663 For GP relative symbols in 64bit address space we can use
6664 the same sequence as in 32bit address space. */
6665 if (HAVE_64BIT_SYMBOLS)
6666 {
6667 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6668 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6669 {
6670 relax_start (offset_expr.X_add_symbol);
6671 if (breg == 0)
6672 {
6673 macro_build (&offset_expr, s, fmt, treg,
6674 BFD_RELOC_GPREL16, mips_gp_register);
6675 }
6676 else
6677 {
6678 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6679 tempreg, breg, mips_gp_register);
6680 macro_build (&offset_expr, s, fmt, treg,
6681 BFD_RELOC_GPREL16, tempreg);
6682 }
6683 relax_switch ();
6684 }
6685
6686 if (used_at == 0 && mips_opts.at)
6687 {
6688 macro_build (&offset_expr, "lui", "t,u", tempreg,
6689 BFD_RELOC_MIPS_HIGHEST);
6690 macro_build (&offset_expr, "lui", "t,u", AT,
6691 BFD_RELOC_HI16_S);
6692 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6693 tempreg, BFD_RELOC_MIPS_HIGHER);
6694 if (breg != 0)
6695 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6696 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6697 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6698 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6699 tempreg);
6700 used_at = 1;
6701 }
6702 else
6703 {
6704 macro_build (&offset_expr, "lui", "t,u", tempreg,
6705 BFD_RELOC_MIPS_HIGHEST);
6706 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6707 tempreg, BFD_RELOC_MIPS_HIGHER);
6708 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6709 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6710 tempreg, BFD_RELOC_HI16_S);
6711 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6712 if (breg != 0)
6713 macro_build (NULL, "daddu", "d,v,t",
6714 tempreg, tempreg, breg);
6715 macro_build (&offset_expr, s, fmt, treg,
6716 BFD_RELOC_LO16, tempreg);
6717 }
6718
6719 if (mips_relax.sequence)
6720 relax_end ();
6721 break;
6722 }
6723
6724 if (breg == 0)
6725 {
6726 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6727 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6728 {
6729 relax_start (offset_expr.X_add_symbol);
6730 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6731 mips_gp_register);
6732 relax_switch ();
6733 }
6734 macro_build_lui (&offset_expr, tempreg);
6735 macro_build (&offset_expr, s, fmt, treg,
6736 BFD_RELOC_LO16, tempreg);
6737 if (mips_relax.sequence)
6738 relax_end ();
6739 }
6740 else
6741 {
6742 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6743 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6744 {
6745 relax_start (offset_expr.X_add_symbol);
6746 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6747 tempreg, breg, mips_gp_register);
6748 macro_build (&offset_expr, s, fmt, treg,
6749 BFD_RELOC_GPREL16, tempreg);
6750 relax_switch ();
6751 }
6752 macro_build_lui (&offset_expr, tempreg);
6753 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6754 tempreg, tempreg, breg);
6755 macro_build (&offset_expr, s, fmt, treg,
6756 BFD_RELOC_LO16, tempreg);
6757 if (mips_relax.sequence)
6758 relax_end ();
6759 }
6760 }
6761 else if (!mips_big_got)
6762 {
6763 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6764
6765 /* If this is a reference to an external symbol, we want
6766 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6767 nop
6768 <op> $treg,0($tempreg)
6769 Otherwise we want
6770 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6771 nop
6772 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6773 <op> $treg,0($tempreg)
6774
6775 For NewABI, we want
6776 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6777 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6778
6779 If there is a base register, we add it to $tempreg before
6780 the <op>. If there is a constant, we stick it in the
6781 <op> instruction. We don't handle constants larger than
6782 16 bits, because we have no way to load the upper 16 bits
6783 (actually, we could handle them for the subset of cases
6784 in which we are not using $at). */
6785 gas_assert (offset_expr.X_op == O_symbol);
6786 if (HAVE_NEWABI)
6787 {
6788 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6789 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6790 if (breg != 0)
6791 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6792 tempreg, tempreg, breg);
6793 macro_build (&offset_expr, s, fmt, treg,
6794 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6795 break;
6796 }
6797 expr1.X_add_number = offset_expr.X_add_number;
6798 offset_expr.X_add_number = 0;
6799 if (expr1.X_add_number < -0x8000
6800 || expr1.X_add_number >= 0x8000)
6801 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6802 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6803 lw_reloc_type, mips_gp_register);
6804 load_delay_nop ();
6805 relax_start (offset_expr.X_add_symbol);
6806 relax_switch ();
6807 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6808 tempreg, BFD_RELOC_LO16);
6809 relax_end ();
6810 if (breg != 0)
6811 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6812 tempreg, tempreg, breg);
6813 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6814 }
6815 else if (mips_big_got && !HAVE_NEWABI)
6816 {
6817 int gpdelay;
6818
6819 /* If this is a reference to an external symbol, we want
6820 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6821 addu $tempreg,$tempreg,$gp
6822 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6823 <op> $treg,0($tempreg)
6824 Otherwise we want
6825 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6826 nop
6827 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6828 <op> $treg,0($tempreg)
6829 If there is a base register, we add it to $tempreg before
6830 the <op>. If there is a constant, we stick it in the
6831 <op> instruction. We don't handle constants larger than
6832 16 bits, because we have no way to load the upper 16 bits
6833 (actually, we could handle them for the subset of cases
6834 in which we are not using $at). */
6835 gas_assert (offset_expr.X_op == O_symbol);
6836 expr1.X_add_number = offset_expr.X_add_number;
6837 offset_expr.X_add_number = 0;
6838 if (expr1.X_add_number < -0x8000
6839 || expr1.X_add_number >= 0x8000)
6840 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6841 gpdelay = reg_needs_delay (mips_gp_register);
6842 relax_start (offset_expr.X_add_symbol);
6843 macro_build (&offset_expr, "lui", "t,u", tempreg,
6844 BFD_RELOC_MIPS_GOT_HI16);
6845 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6846 mips_gp_register);
6847 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6848 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6849 relax_switch ();
6850 if (gpdelay)
6851 macro_build (NULL, "nop", "");
6852 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6853 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6854 load_delay_nop ();
6855 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6856 tempreg, BFD_RELOC_LO16);
6857 relax_end ();
6858
6859 if (breg != 0)
6860 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6861 tempreg, tempreg, breg);
6862 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6863 }
6864 else if (mips_big_got && HAVE_NEWABI)
6865 {
6866 /* If this is a reference to an external symbol, we want
6867 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6868 add $tempreg,$tempreg,$gp
6869 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6870 <op> $treg,<ofst>($tempreg)
6871 Otherwise, for local symbols, we want:
6872 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6873 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6874 gas_assert (offset_expr.X_op == O_symbol);
6875 expr1.X_add_number = offset_expr.X_add_number;
6876 offset_expr.X_add_number = 0;
6877 if (expr1.X_add_number < -0x8000
6878 || expr1.X_add_number >= 0x8000)
6879 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6880 relax_start (offset_expr.X_add_symbol);
6881 macro_build (&offset_expr, "lui", "t,u", tempreg,
6882 BFD_RELOC_MIPS_GOT_HI16);
6883 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6884 mips_gp_register);
6885 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6886 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6887 if (breg != 0)
6888 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6889 tempreg, tempreg, breg);
6890 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6891
6892 relax_switch ();
6893 offset_expr.X_add_number = expr1.X_add_number;
6894 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6895 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6896 if (breg != 0)
6897 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6898 tempreg, tempreg, breg);
6899 macro_build (&offset_expr, s, fmt, treg,
6900 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6901 relax_end ();
6902 }
6903 else
6904 abort ();
6905
6906 break;
6907
6908 case M_LI:
6909 case M_LI_S:
6910 load_register (treg, &imm_expr, 0);
6911 break;
6912
6913 case M_DLI:
6914 load_register (treg, &imm_expr, 1);
6915 break;
6916
6917 case M_LI_SS:
6918 if (imm_expr.X_op == O_constant)
6919 {
6920 used_at = 1;
6921 load_register (AT, &imm_expr, 0);
6922 macro_build (NULL, "mtc1", "t,G", AT, treg);
6923 break;
6924 }
6925 else
6926 {
6927 gas_assert (offset_expr.X_op == O_symbol
6928 && strcmp (segment_name (S_GET_SEGMENT
6929 (offset_expr.X_add_symbol)),
6930 ".lit4") == 0
6931 && offset_expr.X_add_number == 0);
6932 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6933 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6934 break;
6935 }
6936
6937 case M_LI_D:
6938 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6939 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6940 order 32 bits of the value and the low order 32 bits are either
6941 zero or in OFFSET_EXPR. */
6942 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6943 {
6944 if (HAVE_64BIT_GPRS)
6945 load_register (treg, &imm_expr, 1);
6946 else
6947 {
6948 int hreg, lreg;
6949
6950 if (target_big_endian)
6951 {
6952 hreg = treg;
6953 lreg = treg + 1;
6954 }
6955 else
6956 {
6957 hreg = treg + 1;
6958 lreg = treg;
6959 }
6960
6961 if (hreg <= 31)
6962 load_register (hreg, &imm_expr, 0);
6963 if (lreg <= 31)
6964 {
6965 if (offset_expr.X_op == O_absent)
6966 move_register (lreg, 0);
6967 else
6968 {
6969 gas_assert (offset_expr.X_op == O_constant);
6970 load_register (lreg, &offset_expr, 0);
6971 }
6972 }
6973 }
6974 break;
6975 }
6976
6977 /* We know that sym is in the .rdata section. First we get the
6978 upper 16 bits of the address. */
6979 if (mips_pic == NO_PIC)
6980 {
6981 macro_build_lui (&offset_expr, AT);
6982 used_at = 1;
6983 }
6984 else
6985 {
6986 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6987 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6988 used_at = 1;
6989 }
6990
6991 /* Now we load the register(s). */
6992 if (HAVE_64BIT_GPRS)
6993 {
6994 used_at = 1;
6995 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6996 }
6997 else
6998 {
6999 used_at = 1;
7000 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7001 if (treg != RA)
7002 {
7003 /* FIXME: How in the world do we deal with the possible
7004 overflow here? */
7005 offset_expr.X_add_number += 4;
7006 macro_build (&offset_expr, "lw", "t,o(b)",
7007 treg + 1, BFD_RELOC_LO16, AT);
7008 }
7009 }
7010 break;
7011
7012 case M_LI_DD:
7013 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
7014 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
7015 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
7016 the value and the low order 32 bits are either zero or in
7017 OFFSET_EXPR. */
7018 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
7019 {
7020 used_at = 1;
7021 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
7022 if (HAVE_64BIT_FPRS)
7023 {
7024 gas_assert (HAVE_64BIT_GPRS);
7025 macro_build (NULL, "dmtc1", "t,S", AT, treg);
7026 }
7027 else
7028 {
7029 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
7030 if (offset_expr.X_op == O_absent)
7031 macro_build (NULL, "mtc1", "t,G", 0, treg);
7032 else
7033 {
7034 gas_assert (offset_expr.X_op == O_constant);
7035 load_register (AT, &offset_expr, 0);
7036 macro_build (NULL, "mtc1", "t,G", AT, treg);
7037 }
7038 }
7039 break;
7040 }
7041
7042 gas_assert (offset_expr.X_op == O_symbol
7043 && offset_expr.X_add_number == 0);
7044 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
7045 if (strcmp (s, ".lit8") == 0)
7046 {
7047 if (mips_opts.isa != ISA_MIPS1)
7048 {
7049 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
7050 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
7051 break;
7052 }
7053 breg = mips_gp_register;
7054 r = BFD_RELOC_MIPS_LITERAL;
7055 goto dob;
7056 }
7057 else
7058 {
7059 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
7060 used_at = 1;
7061 if (mips_pic != NO_PIC)
7062 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7063 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7064 else
7065 {
7066 /* FIXME: This won't work for a 64 bit address. */
7067 macro_build_lui (&offset_expr, AT);
7068 }
7069
7070 if (mips_opts.isa != ISA_MIPS1)
7071 {
7072 macro_build (&offset_expr, "ldc1", "T,o(b)",
7073 treg, BFD_RELOC_LO16, AT);
7074 break;
7075 }
7076 breg = AT;
7077 r = BFD_RELOC_LO16;
7078 goto dob;
7079 }
7080
7081 case M_L_DOB:
7082 /* Even on a big endian machine $fn comes before $fn+1. We have
7083 to adjust when loading from memory. */
7084 r = BFD_RELOC_LO16;
7085 dob:
7086 gas_assert (mips_opts.isa == ISA_MIPS1);
7087 macro_build (&offset_expr, "lwc1", "T,o(b)",
7088 target_big_endian ? treg + 1 : treg, r, breg);
7089 /* FIXME: A possible overflow which I don't know how to deal
7090 with. */
7091 offset_expr.X_add_number += 4;
7092 macro_build (&offset_expr, "lwc1", "T,o(b)",
7093 target_big_endian ? treg : treg + 1, r, breg);
7094 break;
7095
7096 case M_S_DOB:
7097 gas_assert (mips_opts.isa == ISA_MIPS1);
7098 /* Even on a big endian machine $fn comes before $fn+1. We have
7099 to adjust when storing to memory. */
7100 macro_build (&offset_expr, "swc1", "T,o(b)",
7101 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7102 offset_expr.X_add_number += 4;
7103 macro_build (&offset_expr, "swc1", "T,o(b)",
7104 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7105 break;
7106
7107 case M_L_DAB:
7108 /*
7109 * The MIPS assembler seems to check for X_add_number not
7110 * being double aligned and generating:
7111 * lui at,%hi(foo+1)
7112 * addu at,at,v1
7113 * addiu at,at,%lo(foo+1)
7114 * lwc1 f2,0(at)
7115 * lwc1 f3,4(at)
7116 * But, the resulting address is the same after relocation so why
7117 * generate the extra instruction?
7118 */
7119 /* Itbl support may require additional care here. */
7120 coproc = 1;
7121 if (mips_opts.isa != ISA_MIPS1)
7122 {
7123 s = "ldc1";
7124 goto ld;
7125 }
7126
7127 s = "lwc1";
7128 fmt = "T,o(b)";
7129 goto ldd_std;
7130
7131 case M_S_DAB:
7132 if (mips_opts.isa != ISA_MIPS1)
7133 {
7134 s = "sdc1";
7135 goto st;
7136 }
7137
7138 s = "swc1";
7139 fmt = "T,o(b)";
7140 /* Itbl support may require additional care here. */
7141 coproc = 1;
7142 goto ldd_std;
7143
7144 case M_LD_AB:
7145 if (HAVE_64BIT_GPRS)
7146 {
7147 s = "ld";
7148 goto ld;
7149 }
7150
7151 s = "lw";
7152 fmt = "t,o(b)";
7153 goto ldd_std;
7154
7155 case M_SD_AB:
7156 if (HAVE_64BIT_GPRS)
7157 {
7158 s = "sd";
7159 goto st;
7160 }
7161
7162 s = "sw";
7163 fmt = "t,o(b)";
7164
7165 ldd_std:
7166 if (offset_expr.X_op != O_symbol
7167 && offset_expr.X_op != O_constant)
7168 {
7169 as_bad (_("Expression too complex"));
7170 offset_expr.X_op = O_constant;
7171 }
7172
7173 if (HAVE_32BIT_ADDRESSES
7174 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7175 {
7176 char value [32];
7177
7178 sprintf_vma (value, offset_expr.X_add_number);
7179 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7180 }
7181
7182 /* Even on a big endian machine $fn comes before $fn+1. We have
7183 to adjust when loading from memory. We set coproc if we must
7184 load $fn+1 first. */
7185 /* Itbl support may require additional care here. */
7186 if (!target_big_endian)
7187 coproc = 0;
7188
7189 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
7190 {
7191 /* If this is a reference to a GP relative symbol, we want
7192 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7193 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7194 If we have a base register, we use this
7195 addu $at,$breg,$gp
7196 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7197 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7198 If this is not a GP relative symbol, we want
7199 lui $at,<sym> (BFD_RELOC_HI16_S)
7200 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7201 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7202 If there is a base register, we add it to $at after the
7203 lui instruction. If there is a constant, we always use
7204 the last case. */
7205 if (offset_expr.X_op == O_symbol
7206 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7207 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7208 {
7209 relax_start (offset_expr.X_add_symbol);
7210 if (breg == 0)
7211 {
7212 tempreg = mips_gp_register;
7213 }
7214 else
7215 {
7216 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7217 AT, breg, mips_gp_register);
7218 tempreg = AT;
7219 used_at = 1;
7220 }
7221
7222 /* Itbl support may require additional care here. */
7223 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7224 BFD_RELOC_GPREL16, tempreg);
7225 offset_expr.X_add_number += 4;
7226
7227 /* Set mips_optimize to 2 to avoid inserting an
7228 undesired nop. */
7229 hold_mips_optimize = mips_optimize;
7230 mips_optimize = 2;
7231 /* Itbl support may require additional care here. */
7232 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7233 BFD_RELOC_GPREL16, tempreg);
7234 mips_optimize = hold_mips_optimize;
7235
7236 relax_switch ();
7237
7238 offset_expr.X_add_number -= 4;
7239 }
7240 used_at = 1;
7241 macro_build_lui (&offset_expr, AT);
7242 if (breg != 0)
7243 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7244 /* Itbl support may require additional care here. */
7245 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7246 BFD_RELOC_LO16, AT);
7247 /* FIXME: How do we handle overflow here? */
7248 offset_expr.X_add_number += 4;
7249 /* Itbl support may require additional care here. */
7250 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7251 BFD_RELOC_LO16, AT);
7252 if (mips_relax.sequence)
7253 relax_end ();
7254 }
7255 else if (!mips_big_got)
7256 {
7257 /* If this is a reference to an external symbol, we want
7258 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7259 nop
7260 <op> $treg,0($at)
7261 <op> $treg+1,4($at)
7262 Otherwise we want
7263 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7264 nop
7265 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7266 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7267 If there is a base register we add it to $at before the
7268 lwc1 instructions. If there is a constant we include it
7269 in the lwc1 instructions. */
7270 used_at = 1;
7271 expr1.X_add_number = offset_expr.X_add_number;
7272 if (expr1.X_add_number < -0x8000
7273 || expr1.X_add_number >= 0x8000 - 4)
7274 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7275 load_got_offset (AT, &offset_expr);
7276 load_delay_nop ();
7277 if (breg != 0)
7278 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7279
7280 /* Set mips_optimize to 2 to avoid inserting an undesired
7281 nop. */
7282 hold_mips_optimize = mips_optimize;
7283 mips_optimize = 2;
7284
7285 /* Itbl support may require additional care here. */
7286 relax_start (offset_expr.X_add_symbol);
7287 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7288 BFD_RELOC_LO16, AT);
7289 expr1.X_add_number += 4;
7290 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7291 BFD_RELOC_LO16, AT);
7292 relax_switch ();
7293 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7294 BFD_RELOC_LO16, AT);
7295 offset_expr.X_add_number += 4;
7296 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7297 BFD_RELOC_LO16, AT);
7298 relax_end ();
7299
7300 mips_optimize = hold_mips_optimize;
7301 }
7302 else if (mips_big_got)
7303 {
7304 int gpdelay;
7305
7306 /* If this is a reference to an external symbol, we want
7307 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7308 addu $at,$at,$gp
7309 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7310 nop
7311 <op> $treg,0($at)
7312 <op> $treg+1,4($at)
7313 Otherwise we want
7314 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7315 nop
7316 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7317 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7318 If there is a base register we add it to $at before the
7319 lwc1 instructions. If there is a constant we include it
7320 in the lwc1 instructions. */
7321 used_at = 1;
7322 expr1.X_add_number = offset_expr.X_add_number;
7323 offset_expr.X_add_number = 0;
7324 if (expr1.X_add_number < -0x8000
7325 || expr1.X_add_number >= 0x8000 - 4)
7326 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7327 gpdelay = reg_needs_delay (mips_gp_register);
7328 relax_start (offset_expr.X_add_symbol);
7329 macro_build (&offset_expr, "lui", "t,u",
7330 AT, BFD_RELOC_MIPS_GOT_HI16);
7331 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7332 AT, AT, mips_gp_register);
7333 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7334 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7335 load_delay_nop ();
7336 if (breg != 0)
7337 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7338 /* Itbl support may require additional care here. */
7339 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7340 BFD_RELOC_LO16, AT);
7341 expr1.X_add_number += 4;
7342
7343 /* Set mips_optimize to 2 to avoid inserting an undesired
7344 nop. */
7345 hold_mips_optimize = mips_optimize;
7346 mips_optimize = 2;
7347 /* Itbl support may require additional care here. */
7348 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7349 BFD_RELOC_LO16, AT);
7350 mips_optimize = hold_mips_optimize;
7351 expr1.X_add_number -= 4;
7352
7353 relax_switch ();
7354 offset_expr.X_add_number = expr1.X_add_number;
7355 if (gpdelay)
7356 macro_build (NULL, "nop", "");
7357 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7358 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7359 load_delay_nop ();
7360 if (breg != 0)
7361 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7362 /* Itbl support may require additional care here. */
7363 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7364 BFD_RELOC_LO16, AT);
7365 offset_expr.X_add_number += 4;
7366
7367 /* Set mips_optimize to 2 to avoid inserting an undesired
7368 nop. */
7369 hold_mips_optimize = mips_optimize;
7370 mips_optimize = 2;
7371 /* Itbl support may require additional care here. */
7372 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7373 BFD_RELOC_LO16, AT);
7374 mips_optimize = hold_mips_optimize;
7375 relax_end ();
7376 }
7377 else
7378 abort ();
7379
7380 break;
7381
7382 case M_LD_OB:
7383 s = HAVE_64BIT_GPRS ? "ld" : "lw";
7384 goto sd_ob;
7385 case M_SD_OB:
7386 s = HAVE_64BIT_GPRS ? "sd" : "sw";
7387 sd_ob:
7388 macro_build (&offset_expr, s, "t,o(b)", treg,
7389 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7390 breg);
7391 if (!HAVE_64BIT_GPRS)
7392 {
7393 offset_expr.X_add_number += 4;
7394 macro_build (&offset_expr, s, "t,o(b)", treg + 1,
7395 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2],
7396 breg);
7397 }
7398 break;
7399
7400 /* New code added to support COPZ instructions.
7401 This code builds table entries out of the macros in mip_opcodes.
7402 R4000 uses interlocks to handle coproc delays.
7403 Other chips (like the R3000) require nops to be inserted for delays.
7404
7405 FIXME: Currently, we require that the user handle delays.
7406 In order to fill delay slots for non-interlocked chips,
7407 we must have a way to specify delays based on the coprocessor.
7408 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7409 What are the side-effects of the cop instruction?
7410 What cache support might we have and what are its effects?
7411 Both coprocessor & memory require delays. how long???
7412 What registers are read/set/modified?
7413
7414 If an itbl is provided to interpret cop instructions,
7415 this knowledge can be encoded in the itbl spec. */
7416
7417 case M_COP0:
7418 s = "c0";
7419 goto copz;
7420 case M_COP1:
7421 s = "c1";
7422 goto copz;
7423 case M_COP2:
7424 s = "c2";
7425 goto copz;
7426 case M_COP3:
7427 s = "c3";
7428 copz:
7429 if (NO_ISA_COP (mips_opts.arch)
7430 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7431 {
7432 as_bad (_("opcode not supported on this processor: %s"),
7433 mips_cpu_info_from_arch (mips_opts.arch)->name);
7434 break;
7435 }
7436
7437 /* For now we just do C (same as Cz). The parameter will be
7438 stored in insn_opcode by mips_ip. */
7439 macro_build (NULL, s, "C", ip->insn_opcode);
7440 break;
7441
7442 case M_MOVE:
7443 move_register (dreg, sreg);
7444 break;
7445
7446 case M_DMUL:
7447 dbl = 1;
7448 case M_MUL:
7449 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7450 macro_build (NULL, "mflo", "d", dreg);
7451 break;
7452
7453 case M_DMUL_I:
7454 dbl = 1;
7455 case M_MUL_I:
7456 /* The MIPS assembler some times generates shifts and adds. I'm
7457 not trying to be that fancy. GCC should do this for us
7458 anyway. */
7459 used_at = 1;
7460 load_register (AT, &imm_expr, dbl);
7461 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7462 macro_build (NULL, "mflo", "d", dreg);
7463 break;
7464
7465 case M_DMULO_I:
7466 dbl = 1;
7467 case M_MULO_I:
7468 imm = 1;
7469 goto do_mulo;
7470
7471 case M_DMULO:
7472 dbl = 1;
7473 case M_MULO:
7474 do_mulo:
7475 start_noreorder ();
7476 used_at = 1;
7477 if (imm)
7478 load_register (AT, &imm_expr, dbl);
7479 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7480 macro_build (NULL, "mflo", "d", dreg);
7481 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7482 macro_build (NULL, "mfhi", "d", AT);
7483 if (mips_trap)
7484 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7485 else
7486 {
7487 expr1.X_add_number = 8;
7488 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7489 macro_build (NULL, "nop", "");
7490 macro_build (NULL, "break", "c", 6);
7491 }
7492 end_noreorder ();
7493 macro_build (NULL, "mflo", "d", dreg);
7494 break;
7495
7496 case M_DMULOU_I:
7497 dbl = 1;
7498 case M_MULOU_I:
7499 imm = 1;
7500 goto do_mulou;
7501
7502 case M_DMULOU:
7503 dbl = 1;
7504 case M_MULOU:
7505 do_mulou:
7506 start_noreorder ();
7507 used_at = 1;
7508 if (imm)
7509 load_register (AT, &imm_expr, dbl);
7510 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7511 sreg, imm ? AT : treg);
7512 macro_build (NULL, "mfhi", "d", AT);
7513 macro_build (NULL, "mflo", "d", dreg);
7514 if (mips_trap)
7515 macro_build (NULL, "tne", "s,t,q", AT, ZERO, 6);
7516 else
7517 {
7518 expr1.X_add_number = 8;
7519 macro_build (&expr1, "beq", "s,t,p", AT, ZERO);
7520 macro_build (NULL, "nop", "");
7521 macro_build (NULL, "break", "c", 6);
7522 }
7523 end_noreorder ();
7524 break;
7525
7526 case M_DROL:
7527 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7528 {
7529 if (dreg == sreg)
7530 {
7531 tempreg = AT;
7532 used_at = 1;
7533 }
7534 else
7535 {
7536 tempreg = dreg;
7537 }
7538 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7539 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7540 break;
7541 }
7542 used_at = 1;
7543 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7544 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7545 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7546 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7547 break;
7548
7549 case M_ROL:
7550 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7551 {
7552 if (dreg == sreg)
7553 {
7554 tempreg = AT;
7555 used_at = 1;
7556 }
7557 else
7558 {
7559 tempreg = dreg;
7560 }
7561 macro_build (NULL, "negu", "d,w", tempreg, treg);
7562 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7563 break;
7564 }
7565 used_at = 1;
7566 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7567 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7568 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7569 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7570 break;
7571
7572 case M_DROL_I:
7573 {
7574 unsigned int rot;
7575 char *l;
7576 char *rr;
7577
7578 if (imm_expr.X_op != O_constant)
7579 as_bad (_("Improper rotate count"));
7580 rot = imm_expr.X_add_number & 0x3f;
7581 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7582 {
7583 rot = (64 - rot) & 0x3f;
7584 if (rot >= 32)
7585 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7586 else
7587 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7588 break;
7589 }
7590 if (rot == 0)
7591 {
7592 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7593 break;
7594 }
7595 l = (rot < 0x20) ? "dsll" : "dsll32";
7596 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7597 rot &= 0x1f;
7598 used_at = 1;
7599 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7600 macro_build (NULL, rr, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7601 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7602 }
7603 break;
7604
7605 case M_ROL_I:
7606 {
7607 unsigned int rot;
7608
7609 if (imm_expr.X_op != O_constant)
7610 as_bad (_("Improper rotate count"));
7611 rot = imm_expr.X_add_number & 0x1f;
7612 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7613 {
7614 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7615 break;
7616 }
7617 if (rot == 0)
7618 {
7619 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7620 break;
7621 }
7622 used_at = 1;
7623 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7624 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7625 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7626 }
7627 break;
7628
7629 case M_DROR:
7630 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7631 {
7632 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7633 break;
7634 }
7635 used_at = 1;
7636 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, treg);
7637 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7638 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7639 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7640 break;
7641
7642 case M_ROR:
7643 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7644 {
7645 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7646 break;
7647 }
7648 used_at = 1;
7649 macro_build (NULL, "subu", "d,v,t", AT, ZERO, treg);
7650 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7651 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7652 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7653 break;
7654
7655 case M_DROR_I:
7656 {
7657 unsigned int rot;
7658 char *l;
7659 char *rr;
7660
7661 if (imm_expr.X_op != O_constant)
7662 as_bad (_("Improper rotate count"));
7663 rot = imm_expr.X_add_number & 0x3f;
7664 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7665 {
7666 if (rot >= 32)
7667 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7668 else
7669 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7670 break;
7671 }
7672 if (rot == 0)
7673 {
7674 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7675 break;
7676 }
7677 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
7678 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7679 rot &= 0x1f;
7680 used_at = 1;
7681 macro_build (NULL, rr, "d,w,<", AT, sreg, rot);
7682 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7683 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7684 }
7685 break;
7686
7687 case M_ROR_I:
7688 {
7689 unsigned int rot;
7690
7691 if (imm_expr.X_op != O_constant)
7692 as_bad (_("Improper rotate count"));
7693 rot = imm_expr.X_add_number & 0x1f;
7694 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7695 {
7696 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7697 break;
7698 }
7699 if (rot == 0)
7700 {
7701 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7702 break;
7703 }
7704 used_at = 1;
7705 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7706 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7707 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7708 }
7709 break;
7710
7711 case M_SEQ:
7712 if (sreg == 0)
7713 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7714 else if (treg == 0)
7715 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7716 else
7717 {
7718 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7719 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7720 }
7721 break;
7722
7723 case M_SEQ_I:
7724 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7725 {
7726 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7727 break;
7728 }
7729 if (sreg == 0)
7730 {
7731 as_warn (_("Instruction %s: result is always false"),
7732 ip->insn_mo->name);
7733 move_register (dreg, 0);
7734 break;
7735 }
7736 if (CPU_HAS_SEQ (mips_opts.arch)
7737 && -512 <= imm_expr.X_add_number
7738 && imm_expr.X_add_number < 512)
7739 {
7740 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7741 (int) imm_expr.X_add_number);
7742 break;
7743 }
7744 if (imm_expr.X_op == O_constant
7745 && imm_expr.X_add_number >= 0
7746 && imm_expr.X_add_number < 0x10000)
7747 {
7748 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7749 }
7750 else if (imm_expr.X_op == O_constant
7751 && imm_expr.X_add_number > -0x8000
7752 && imm_expr.X_add_number < 0)
7753 {
7754 imm_expr.X_add_number = -imm_expr.X_add_number;
7755 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7756 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7757 }
7758 else if (CPU_HAS_SEQ (mips_opts.arch))
7759 {
7760 used_at = 1;
7761 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7762 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7763 break;
7764 }
7765 else
7766 {
7767 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7768 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7769 used_at = 1;
7770 }
7771 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7772 break;
7773
7774 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7775 s = "slt";
7776 goto sge;
7777 case M_SGEU:
7778 s = "sltu";
7779 sge:
7780 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7781 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7782 break;
7783
7784 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7785 case M_SGEU_I:
7786 if (imm_expr.X_op == O_constant
7787 && imm_expr.X_add_number >= -0x8000
7788 && imm_expr.X_add_number < 0x8000)
7789 {
7790 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7791 dreg, sreg, BFD_RELOC_LO16);
7792 }
7793 else
7794 {
7795 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7796 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7797 dreg, sreg, AT);
7798 used_at = 1;
7799 }
7800 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7801 break;
7802
7803 case M_SGT: /* sreg > treg <==> treg < sreg */
7804 s = "slt";
7805 goto sgt;
7806 case M_SGTU:
7807 s = "sltu";
7808 sgt:
7809 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7810 break;
7811
7812 case M_SGT_I: /* sreg > I <==> I < sreg */
7813 s = "slt";
7814 goto sgti;
7815 case M_SGTU_I:
7816 s = "sltu";
7817 sgti:
7818 used_at = 1;
7819 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7820 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7821 break;
7822
7823 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7824 s = "slt";
7825 goto sle;
7826 case M_SLEU:
7827 s = "sltu";
7828 sle:
7829 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7830 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7831 break;
7832
7833 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7834 s = "slt";
7835 goto slei;
7836 case M_SLEU_I:
7837 s = "sltu";
7838 slei:
7839 used_at = 1;
7840 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7841 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7842 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7843 break;
7844
7845 case M_SLT_I:
7846 if (imm_expr.X_op == O_constant
7847 && imm_expr.X_add_number >= -0x8000
7848 && imm_expr.X_add_number < 0x8000)
7849 {
7850 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7851 break;
7852 }
7853 used_at = 1;
7854 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7855 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7856 break;
7857
7858 case M_SLTU_I:
7859 if (imm_expr.X_op == O_constant
7860 && imm_expr.X_add_number >= -0x8000
7861 && imm_expr.X_add_number < 0x8000)
7862 {
7863 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7864 BFD_RELOC_LO16);
7865 break;
7866 }
7867 used_at = 1;
7868 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7869 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7870 break;
7871
7872 case M_SNE:
7873 if (sreg == 0)
7874 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7875 else if (treg == 0)
7876 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7877 else
7878 {
7879 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7880 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7881 }
7882 break;
7883
7884 case M_SNE_I:
7885 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7886 {
7887 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7888 break;
7889 }
7890 if (sreg == 0)
7891 {
7892 as_warn (_("Instruction %s: result is always true"),
7893 ip->insn_mo->name);
7894 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7895 dreg, 0, BFD_RELOC_LO16);
7896 break;
7897 }
7898 if (CPU_HAS_SEQ (mips_opts.arch)
7899 && -512 <= imm_expr.X_add_number
7900 && imm_expr.X_add_number < 512)
7901 {
7902 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7903 (int) imm_expr.X_add_number);
7904 break;
7905 }
7906 if (imm_expr.X_op == O_constant
7907 && imm_expr.X_add_number >= 0
7908 && imm_expr.X_add_number < 0x10000)
7909 {
7910 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7911 }
7912 else if (imm_expr.X_op == O_constant
7913 && imm_expr.X_add_number > -0x8000
7914 && imm_expr.X_add_number < 0)
7915 {
7916 imm_expr.X_add_number = -imm_expr.X_add_number;
7917 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7918 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7919 }
7920 else if (CPU_HAS_SEQ (mips_opts.arch))
7921 {
7922 used_at = 1;
7923 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7924 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7925 break;
7926 }
7927 else
7928 {
7929 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7930 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7931 used_at = 1;
7932 }
7933 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7934 break;
7935
7936 case M_DSUB_I:
7937 dbl = 1;
7938 case M_SUB_I:
7939 if (imm_expr.X_op == O_constant
7940 && imm_expr.X_add_number > -0x8000
7941 && imm_expr.X_add_number <= 0x8000)
7942 {
7943 imm_expr.X_add_number = -imm_expr.X_add_number;
7944 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7945 dreg, sreg, BFD_RELOC_LO16);
7946 break;
7947 }
7948 used_at = 1;
7949 load_register (AT, &imm_expr, dbl);
7950 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7951 break;
7952
7953 case M_DSUBU_I:
7954 dbl = 1;
7955 case M_SUBU_I:
7956 if (imm_expr.X_op == O_constant
7957 && imm_expr.X_add_number > -0x8000
7958 && imm_expr.X_add_number <= 0x8000)
7959 {
7960 imm_expr.X_add_number = -imm_expr.X_add_number;
7961 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7962 dreg, sreg, BFD_RELOC_LO16);
7963 break;
7964 }
7965 used_at = 1;
7966 load_register (AT, &imm_expr, dbl);
7967 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7968 break;
7969
7970 case M_TEQ_I:
7971 s = "teq";
7972 goto trap;
7973 case M_TGE_I:
7974 s = "tge";
7975 goto trap;
7976 case M_TGEU_I:
7977 s = "tgeu";
7978 goto trap;
7979 case M_TLT_I:
7980 s = "tlt";
7981 goto trap;
7982 case M_TLTU_I:
7983 s = "tltu";
7984 goto trap;
7985 case M_TNE_I:
7986 s = "tne";
7987 trap:
7988 used_at = 1;
7989 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7990 macro_build (NULL, s, "s,t", sreg, AT);
7991 break;
7992
7993 case M_TRUNCWS:
7994 case M_TRUNCWD:
7995 gas_assert (mips_opts.isa == ISA_MIPS1);
7996 used_at = 1;
7997 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7998 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7999
8000 /*
8001 * Is the double cfc1 instruction a bug in the mips assembler;
8002 * or is there a reason for it?
8003 */
8004 start_noreorder ();
8005 macro_build (NULL, "cfc1", "t,G", treg, RA);
8006 macro_build (NULL, "cfc1", "t,G", treg, RA);
8007 macro_build (NULL, "nop", "");
8008 expr1.X_add_number = 3;
8009 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
8010 expr1.X_add_number = 2;
8011 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
8012 macro_build (NULL, "ctc1", "t,G", AT, RA);
8013 macro_build (NULL, "nop", "");
8014 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
8015 dreg, sreg);
8016 macro_build (NULL, "ctc1", "t,G", treg, RA);
8017 macro_build (NULL, "nop", "");
8018 end_noreorder ();
8019 break;
8020
8021 case M_ULH:
8022 s = "lb";
8023 goto ulh;
8024 case M_ULHU:
8025 s = "lbu";
8026 ulh:
8027 used_at = 1;
8028 if (offset_expr.X_add_number >= 0x7fff)
8029 as_bad (_("Operand overflow"));
8030 if (!target_big_endian)
8031 ++offset_expr.X_add_number;
8032 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8033 if (!target_big_endian)
8034 --offset_expr.X_add_number;
8035 else
8036 ++offset_expr.X_add_number;
8037 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8038 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8039 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8040 break;
8041
8042 case M_ULD:
8043 s = "ldl";
8044 s2 = "ldr";
8045 off = 7;
8046 goto ulw;
8047 case M_ULW:
8048 s = "lwl";
8049 s2 = "lwr";
8050 off = 3;
8051 ulw:
8052 if (offset_expr.X_add_number >= 0x8000 - off)
8053 as_bad (_("Operand overflow"));
8054 if (treg != breg)
8055 tempreg = treg;
8056 else
8057 {
8058 used_at = 1;
8059 tempreg = AT;
8060 }
8061 if (!target_big_endian)
8062 offset_expr.X_add_number += off;
8063 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8064 if (!target_big_endian)
8065 offset_expr.X_add_number -= off;
8066 else
8067 offset_expr.X_add_number += off;
8068 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8069
8070 /* If necessary, move the result in tempreg to the final destination. */
8071 if (treg == tempreg)
8072 break;
8073 /* Protect second load's delay slot. */
8074 load_delay_nop ();
8075 move_register (treg, tempreg);
8076 break;
8077
8078 case M_ULD_A:
8079 s = "ldl";
8080 s2 = "ldr";
8081 off = 7;
8082 goto ulwa;
8083 case M_ULW_A:
8084 s = "lwl";
8085 s2 = "lwr";
8086 off = 3;
8087 ulwa:
8088 used_at = 1;
8089 load_address (AT, &offset_expr, &used_at);
8090 if (breg != 0)
8091 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8092 if (!target_big_endian)
8093 expr1.X_add_number = off;
8094 else
8095 expr1.X_add_number = 0;
8096 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8097 if (!target_big_endian)
8098 expr1.X_add_number = 0;
8099 else
8100 expr1.X_add_number = off;
8101 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8102 break;
8103
8104 case M_ULH_A:
8105 case M_ULHU_A:
8106 used_at = 1;
8107 load_address (AT, &offset_expr, &used_at);
8108 if (breg != 0)
8109 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8110 if (target_big_endian)
8111 expr1.X_add_number = 0;
8112 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8113 treg, BFD_RELOC_LO16, AT);
8114 if (target_big_endian)
8115 expr1.X_add_number = 1;
8116 else
8117 expr1.X_add_number = 0;
8118 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8119 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8120 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8121 break;
8122
8123 case M_USH:
8124 used_at = 1;
8125 if (offset_expr.X_add_number >= 0x7fff)
8126 as_bad (_("Operand overflow"));
8127 if (target_big_endian)
8128 ++offset_expr.X_add_number;
8129 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8130 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8131 if (target_big_endian)
8132 --offset_expr.X_add_number;
8133 else
8134 ++offset_expr.X_add_number;
8135 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8136 break;
8137
8138 case M_USD:
8139 s = "sdl";
8140 s2 = "sdr";
8141 off = 7;
8142 goto usw;
8143 case M_USW:
8144 s = "swl";
8145 s2 = "swr";
8146 off = 3;
8147 usw:
8148 if (offset_expr.X_add_number >= 0x8000 - off)
8149 as_bad (_("Operand overflow"));
8150 if (!target_big_endian)
8151 offset_expr.X_add_number += off;
8152 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8153 if (!target_big_endian)
8154 offset_expr.X_add_number -= off;
8155 else
8156 offset_expr.X_add_number += off;
8157 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8158 break;
8159
8160 case M_USD_A:
8161 s = "sdl";
8162 s2 = "sdr";
8163 off = 7;
8164 goto uswa;
8165 case M_USW_A:
8166 s = "swl";
8167 s2 = "swr";
8168 off = 3;
8169 uswa:
8170 used_at = 1;
8171 load_address (AT, &offset_expr, &used_at);
8172 if (breg != 0)
8173 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8174 if (!target_big_endian)
8175 expr1.X_add_number = off;
8176 else
8177 expr1.X_add_number = 0;
8178 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8179 if (!target_big_endian)
8180 expr1.X_add_number = 0;
8181 else
8182 expr1.X_add_number = off;
8183 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8184 break;
8185
8186 case M_USH_A:
8187 used_at = 1;
8188 load_address (AT, &offset_expr, &used_at);
8189 if (breg != 0)
8190 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8191 if (!target_big_endian)
8192 expr1.X_add_number = 0;
8193 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8194 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8195 if (!target_big_endian)
8196 expr1.X_add_number = 1;
8197 else
8198 expr1.X_add_number = 0;
8199 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8200 if (!target_big_endian)
8201 expr1.X_add_number = 0;
8202 else
8203 expr1.X_add_number = 1;
8204 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8205 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8206 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8207 break;
8208
8209 default:
8210 /* FIXME: Check if this is one of the itbl macros, since they
8211 are added dynamically. */
8212 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8213 break;
8214 }
8215 if (!mips_opts.at && used_at)
8216 as_bad (_("Macro used $at after \".set noat\""));
8217 }
8218
8219 /* Implement macros in mips16 mode. */
8220
8221 static void
8222 mips16_macro (struct mips_cl_insn *ip)
8223 {
8224 int mask;
8225 int xreg, yreg, zreg, tmp;
8226 expressionS expr1;
8227 int dbl;
8228 const char *s, *s2, *s3;
8229
8230 mask = ip->insn_mo->mask;
8231
8232 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8233 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8234 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8235
8236 expr1.X_op = O_constant;
8237 expr1.X_op_symbol = NULL;
8238 expr1.X_add_symbol = NULL;
8239 expr1.X_add_number = 1;
8240
8241 dbl = 0;
8242
8243 switch (mask)
8244 {
8245 default:
8246 internalError ();
8247
8248 case M_DDIV_3:
8249 dbl = 1;
8250 case M_DIV_3:
8251 s = "mflo";
8252 goto do_div3;
8253 case M_DREM_3:
8254 dbl = 1;
8255 case M_REM_3:
8256 s = "mfhi";
8257 do_div3:
8258 start_noreorder ();
8259 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8260 expr1.X_add_number = 2;
8261 macro_build (&expr1, "bnez", "x,p", yreg);
8262 macro_build (NULL, "break", "6", 7);
8263
8264 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8265 since that causes an overflow. We should do that as well,
8266 but I don't see how to do the comparisons without a temporary
8267 register. */
8268 end_noreorder ();
8269 macro_build (NULL, s, "x", zreg);
8270 break;
8271
8272 case M_DIVU_3:
8273 s = "divu";
8274 s2 = "mflo";
8275 goto do_divu3;
8276 case M_REMU_3:
8277 s = "divu";
8278 s2 = "mfhi";
8279 goto do_divu3;
8280 case M_DDIVU_3:
8281 s = "ddivu";
8282 s2 = "mflo";
8283 goto do_divu3;
8284 case M_DREMU_3:
8285 s = "ddivu";
8286 s2 = "mfhi";
8287 do_divu3:
8288 start_noreorder ();
8289 macro_build (NULL, s, "0,x,y", xreg, yreg);
8290 expr1.X_add_number = 2;
8291 macro_build (&expr1, "bnez", "x,p", yreg);
8292 macro_build (NULL, "break", "6", 7);
8293 end_noreorder ();
8294 macro_build (NULL, s2, "x", zreg);
8295 break;
8296
8297 case M_DMUL:
8298 dbl = 1;
8299 case M_MUL:
8300 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8301 macro_build (NULL, "mflo", "x", zreg);
8302 break;
8303
8304 case M_DSUBU_I:
8305 dbl = 1;
8306 goto do_subu;
8307 case M_SUBU_I:
8308 do_subu:
8309 if (imm_expr.X_op != O_constant)
8310 as_bad (_("Unsupported large constant"));
8311 imm_expr.X_add_number = -imm_expr.X_add_number;
8312 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8313 break;
8314
8315 case M_SUBU_I_2:
8316 if (imm_expr.X_op != O_constant)
8317 as_bad (_("Unsupported large constant"));
8318 imm_expr.X_add_number = -imm_expr.X_add_number;
8319 macro_build (&imm_expr, "addiu", "x,k", xreg);
8320 break;
8321
8322 case M_DSUBU_I_2:
8323 if (imm_expr.X_op != O_constant)
8324 as_bad (_("Unsupported large constant"));
8325 imm_expr.X_add_number = -imm_expr.X_add_number;
8326 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8327 break;
8328
8329 case M_BEQ:
8330 s = "cmp";
8331 s2 = "bteqz";
8332 goto do_branch;
8333 case M_BNE:
8334 s = "cmp";
8335 s2 = "btnez";
8336 goto do_branch;
8337 case M_BLT:
8338 s = "slt";
8339 s2 = "btnez";
8340 goto do_branch;
8341 case M_BLTU:
8342 s = "sltu";
8343 s2 = "btnez";
8344 goto do_branch;
8345 case M_BLE:
8346 s = "slt";
8347 s2 = "bteqz";
8348 goto do_reverse_branch;
8349 case M_BLEU:
8350 s = "sltu";
8351 s2 = "bteqz";
8352 goto do_reverse_branch;
8353 case M_BGE:
8354 s = "slt";
8355 s2 = "bteqz";
8356 goto do_branch;
8357 case M_BGEU:
8358 s = "sltu";
8359 s2 = "bteqz";
8360 goto do_branch;
8361 case M_BGT:
8362 s = "slt";
8363 s2 = "btnez";
8364 goto do_reverse_branch;
8365 case M_BGTU:
8366 s = "sltu";
8367 s2 = "btnez";
8368
8369 do_reverse_branch:
8370 tmp = xreg;
8371 xreg = yreg;
8372 yreg = tmp;
8373
8374 do_branch:
8375 macro_build (NULL, s, "x,y", xreg, yreg);
8376 macro_build (&offset_expr, s2, "p");
8377 break;
8378
8379 case M_BEQ_I:
8380 s = "cmpi";
8381 s2 = "bteqz";
8382 s3 = "x,U";
8383 goto do_branch_i;
8384 case M_BNE_I:
8385 s = "cmpi";
8386 s2 = "btnez";
8387 s3 = "x,U";
8388 goto do_branch_i;
8389 case M_BLT_I:
8390 s = "slti";
8391 s2 = "btnez";
8392 s3 = "x,8";
8393 goto do_branch_i;
8394 case M_BLTU_I:
8395 s = "sltiu";
8396 s2 = "btnez";
8397 s3 = "x,8";
8398 goto do_branch_i;
8399 case M_BLE_I:
8400 s = "slti";
8401 s2 = "btnez";
8402 s3 = "x,8";
8403 goto do_addone_branch_i;
8404 case M_BLEU_I:
8405 s = "sltiu";
8406 s2 = "btnez";
8407 s3 = "x,8";
8408 goto do_addone_branch_i;
8409 case M_BGE_I:
8410 s = "slti";
8411 s2 = "bteqz";
8412 s3 = "x,8";
8413 goto do_branch_i;
8414 case M_BGEU_I:
8415 s = "sltiu";
8416 s2 = "bteqz";
8417 s3 = "x,8";
8418 goto do_branch_i;
8419 case M_BGT_I:
8420 s = "slti";
8421 s2 = "bteqz";
8422 s3 = "x,8";
8423 goto do_addone_branch_i;
8424 case M_BGTU_I:
8425 s = "sltiu";
8426 s2 = "bteqz";
8427 s3 = "x,8";
8428
8429 do_addone_branch_i:
8430 if (imm_expr.X_op != O_constant)
8431 as_bad (_("Unsupported large constant"));
8432 ++imm_expr.X_add_number;
8433
8434 do_branch_i:
8435 macro_build (&imm_expr, s, s3, xreg);
8436 macro_build (&offset_expr, s2, "p");
8437 break;
8438
8439 case M_ABS:
8440 expr1.X_add_number = 0;
8441 macro_build (&expr1, "slti", "x,8", yreg);
8442 if (xreg != yreg)
8443 move_register (xreg, yreg);
8444 expr1.X_add_number = 2;
8445 macro_build (&expr1, "bteqz", "p");
8446 macro_build (NULL, "neg", "x,w", xreg, xreg);
8447 }
8448 }
8449
8450 /* For consistency checking, verify that all bits are specified either
8451 by the match/mask part of the instruction definition, or by the
8452 operand list. */
8453 static int
8454 validate_mips_insn (const struct mips_opcode *opc)
8455 {
8456 const char *p = opc->args;
8457 char c;
8458 unsigned long used_bits = opc->mask;
8459
8460 if ((used_bits & opc->match) != opc->match)
8461 {
8462 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8463 opc->name, opc->args);
8464 return 0;
8465 }
8466 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8467 while (*p)
8468 switch (c = *p++)
8469 {
8470 case ',': break;
8471 case '(': break;
8472 case ')': break;
8473 case '+':
8474 switch (c = *p++)
8475 {
8476 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8477 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8478 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8479 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8480 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8481 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8482 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8483 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8484 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8485 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8486 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8487 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8488 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8489 case 'I': break;
8490 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8491 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8492 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8493 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8494 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8495 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8496 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8497 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8498 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8499 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8500 case 'z': USE_BITS (OP_MASK_RZ, OP_SH_RZ); break;
8501 case 'Z': USE_BITS (OP_MASK_FZ, OP_SH_FZ); break;
8502 case 'a': USE_BITS (OP_MASK_OFFSET_A, OP_SH_OFFSET_A); break;
8503 case 'b': USE_BITS (OP_MASK_OFFSET_B, OP_SH_OFFSET_B); break;
8504 case 'c': USE_BITS (OP_MASK_OFFSET_C, OP_SH_OFFSET_C); break;
8505
8506 default:
8507 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8508 c, opc->name, opc->args);
8509 return 0;
8510 }
8511 break;
8512 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8513 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8514 case 'A': break;
8515 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8516 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8517 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8518 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8519 case 'F': break;
8520 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8521 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8522 case 'I': break;
8523 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8524 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8525 case 'L': break;
8526 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8527 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8528 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8529 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8530 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8531 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8532 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8533 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8534 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8535 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8536 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8537 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8538 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8539 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8540 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8541 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8542 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8543 case 'f': break;
8544 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8545 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8546 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8547 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8548 case 'l': break;
8549 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8550 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8551 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8552 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8553 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8554 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8555 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8556 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8557 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8558 case 'x': break;
8559 case 'z': break;
8560 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8561 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8562 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8563 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8564 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8565 case '[': break;
8566 case ']': break;
8567 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8568 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8569 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8570 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8571 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8572 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8573 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8574 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8575 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8576 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8577 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8578 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8579 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8580 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8581 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8582 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8583 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8584 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8585 default:
8586 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8587 c, opc->name, opc->args);
8588 return 0;
8589 }
8590 #undef USE_BITS
8591 if (used_bits != 0xffffffff)
8592 {
8593 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8594 ~used_bits & 0xffffffff, opc->name, opc->args);
8595 return 0;
8596 }
8597 return 1;
8598 }
8599
8600 /* UDI immediates. */
8601 struct mips_immed {
8602 char type;
8603 unsigned int shift;
8604 unsigned long mask;
8605 const char * desc;
8606 };
8607
8608 static const struct mips_immed mips_immed[] = {
8609 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8610 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8611 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8612 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8613 { 0,0,0,0 }
8614 };
8615
8616 /* Check whether an odd floating-point register is allowed. */
8617 static int
8618 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8619 {
8620 const char *s = insn->name;
8621
8622 if (insn->pinfo == INSN_MACRO)
8623 /* Let a macro pass, we'll catch it later when it is expanded. */
8624 return 1;
8625
8626 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8627 {
8628 /* Allow odd registers for single-precision ops. */
8629 switch (insn->pinfo & (FP_S | FP_D))
8630 {
8631 case FP_S:
8632 case 0:
8633 return 1; /* both single precision - ok */
8634 case FP_D:
8635 return 0; /* both double precision - fail */
8636 default:
8637 break;
8638 }
8639
8640 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8641 s = strchr (insn->name, '.');
8642 if (argnum == 2)
8643 s = s != NULL ? strchr (s + 1, '.') : NULL;
8644 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8645 }
8646
8647 /* Single-precision coprocessor loads and moves are OK too. */
8648 if ((insn->pinfo & FP_S)
8649 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8650 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8651 return 1;
8652
8653 return 0;
8654 }
8655
8656 /* This routine assembles an instruction into its binary format. As a
8657 side effect, it sets one of the global variables imm_reloc or
8658 offset_reloc to the type of relocation to do if one of the operands
8659 is an address expression. */
8660
8661 static void
8662 mips_ip (char *str, struct mips_cl_insn *ip)
8663 {
8664 char *s;
8665 const char *args;
8666 char c = 0;
8667 struct mips_opcode *insn;
8668 char *argsStart;
8669 unsigned int regno;
8670 unsigned int lastregno;
8671 unsigned int lastpos = 0;
8672 unsigned int limlo, limhi;
8673 char *s_reset;
8674 char save_c = 0;
8675 offsetT min_range, max_range;
8676 int argnum;
8677 unsigned int rtype;
8678
8679 insn_error = NULL;
8680
8681 /* If the instruction contains a '.', we first try to match an instruction
8682 including the '.'. Then we try again without the '.'. */
8683 insn = NULL;
8684 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8685 continue;
8686
8687 /* If we stopped on whitespace, then replace the whitespace with null for
8688 the call to hash_find. Save the character we replaced just in case we
8689 have to re-parse the instruction. */
8690 if (ISSPACE (*s))
8691 {
8692 save_c = *s;
8693 *s++ = '\0';
8694 }
8695
8696 insn = (struct mips_opcode *) hash_find (op_hash, str);
8697
8698 /* If we didn't find the instruction in the opcode table, try again, but
8699 this time with just the instruction up to, but not including the
8700 first '.'. */
8701 if (insn == NULL)
8702 {
8703 /* Restore the character we overwrite above (if any). */
8704 if (save_c)
8705 *(--s) = save_c;
8706
8707 /* Scan up to the first '.' or whitespace. */
8708 for (s = str;
8709 *s != '\0' && *s != '.' && !ISSPACE (*s);
8710 ++s)
8711 continue;
8712
8713 /* If we did not find a '.', then we can quit now. */
8714 if (*s != '.')
8715 {
8716 insn_error = _("Unrecognized opcode");
8717 return;
8718 }
8719
8720 /* Lookup the instruction in the hash table. */
8721 *s++ = '\0';
8722 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8723 {
8724 insn_error = _("Unrecognized opcode");
8725 return;
8726 }
8727 }
8728
8729 argsStart = s;
8730 for (;;)
8731 {
8732 bfd_boolean ok;
8733
8734 gas_assert (strcmp (insn->name, str) == 0);
8735
8736 ok = is_opcode_valid (insn);
8737 if (! ok)
8738 {
8739 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8740 && strcmp (insn->name, insn[1].name) == 0)
8741 {
8742 ++insn;
8743 continue;
8744 }
8745 else
8746 {
8747 if (!insn_error)
8748 {
8749 static char buf[100];
8750 sprintf (buf,
8751 _("opcode not supported on this processor: %s (%s)"),
8752 mips_cpu_info_from_arch (mips_opts.arch)->name,
8753 mips_cpu_info_from_isa (mips_opts.isa)->name);
8754 insn_error = buf;
8755 }
8756 if (save_c)
8757 *(--s) = save_c;
8758 return;
8759 }
8760 }
8761
8762 create_insn (ip, insn);
8763 insn_error = NULL;
8764 argnum = 1;
8765 lastregno = 0xffffffff;
8766 for (args = insn->args;; ++args)
8767 {
8768 int is_mdmx;
8769
8770 s += strspn (s, " \t");
8771 is_mdmx = 0;
8772 switch (*args)
8773 {
8774 case '\0': /* end of args */
8775 if (*s == '\0')
8776 return;
8777 break;
8778
8779 case '2': /* DSP 2-bit unsigned immediate in bit 11. */
8780 my_getExpression (&imm_expr, s);
8781 check_absolute_expr (ip, &imm_expr);
8782 if ((unsigned long) imm_expr.X_add_number != 1
8783 && (unsigned long) imm_expr.X_add_number != 3)
8784 {
8785 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8786 (unsigned long) imm_expr.X_add_number);
8787 }
8788 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8789 imm_expr.X_op = O_absent;
8790 s = expr_end;
8791 continue;
8792
8793 case '3': /* DSP 3-bit unsigned immediate in bit 21. */
8794 my_getExpression (&imm_expr, s);
8795 check_absolute_expr (ip, &imm_expr);
8796 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8797 {
8798 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8799 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8800 }
8801 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8802 imm_expr.X_op = O_absent;
8803 s = expr_end;
8804 continue;
8805
8806 case '4': /* DSP 4-bit unsigned immediate in bit 21. */
8807 my_getExpression (&imm_expr, s);
8808 check_absolute_expr (ip, &imm_expr);
8809 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8810 {
8811 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8812 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8813 }
8814 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8815 imm_expr.X_op = O_absent;
8816 s = expr_end;
8817 continue;
8818
8819 case '5': /* DSP 8-bit unsigned immediate in bit 16. */
8820 my_getExpression (&imm_expr, s);
8821 check_absolute_expr (ip, &imm_expr);
8822 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8823 {
8824 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8825 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8826 }
8827 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8828 imm_expr.X_op = O_absent;
8829 s = expr_end;
8830 continue;
8831
8832 case '6': /* DSP 5-bit unsigned immediate in bit 21. */
8833 my_getExpression (&imm_expr, s);
8834 check_absolute_expr (ip, &imm_expr);
8835 if (imm_expr.X_add_number & ~OP_MASK_RS)
8836 {
8837 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8838 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8839 }
8840 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8841 imm_expr.X_op = O_absent;
8842 s = expr_end;
8843 continue;
8844
8845 case '7': /* Four DSP accumulators in bits 11,12. */
8846 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8847 s[3] >= '0' && s[3] <= '3')
8848 {
8849 regno = s[3] - '0';
8850 s += 4;
8851 INSERT_OPERAND (DSPACC, *ip, regno);
8852 continue;
8853 }
8854 else
8855 as_bad (_("Invalid dsp acc register"));
8856 break;
8857
8858 case '8': /* DSP 6-bit unsigned immediate in bit 11. */
8859 my_getExpression (&imm_expr, s);
8860 check_absolute_expr (ip, &imm_expr);
8861 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8862 {
8863 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8864 OP_MASK_WRDSP,
8865 (unsigned long) imm_expr.X_add_number);
8866 }
8867 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8868 imm_expr.X_op = O_absent;
8869 s = expr_end;
8870 continue;
8871
8872 case '9': /* Four DSP accumulators in bits 21,22. */
8873 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8874 s[3] >= '0' && s[3] <= '3')
8875 {
8876 regno = s[3] - '0';
8877 s += 4;
8878 INSERT_OPERAND (DSPACC_S, *ip, regno);
8879 continue;
8880 }
8881 else
8882 as_bad (_("Invalid dsp acc register"));
8883 break;
8884
8885 case '0': /* DSP 6-bit signed immediate in bit 20. */
8886 my_getExpression (&imm_expr, s);
8887 check_absolute_expr (ip, &imm_expr);
8888 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8889 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8890 if (imm_expr.X_add_number < min_range ||
8891 imm_expr.X_add_number > max_range)
8892 {
8893 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8894 (long) min_range, (long) max_range,
8895 (long) imm_expr.X_add_number);
8896 }
8897 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8898 imm_expr.X_op = O_absent;
8899 s = expr_end;
8900 continue;
8901
8902 case '\'': /* DSP 6-bit unsigned immediate in bit 16. */
8903 my_getExpression (&imm_expr, s);
8904 check_absolute_expr (ip, &imm_expr);
8905 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8906 {
8907 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8908 OP_MASK_RDDSP,
8909 (unsigned long) imm_expr.X_add_number);
8910 }
8911 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8912 imm_expr.X_op = O_absent;
8913 s = expr_end;
8914 continue;
8915
8916 case ':': /* DSP 7-bit signed immediate in bit 19. */
8917 my_getExpression (&imm_expr, s);
8918 check_absolute_expr (ip, &imm_expr);
8919 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8920 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8921 if (imm_expr.X_add_number < min_range ||
8922 imm_expr.X_add_number > max_range)
8923 {
8924 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8925 (long) min_range, (long) max_range,
8926 (long) imm_expr.X_add_number);
8927 }
8928 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8929 imm_expr.X_op = O_absent;
8930 s = expr_end;
8931 continue;
8932
8933 case '@': /* DSP 10-bit signed immediate in bit 16. */
8934 my_getExpression (&imm_expr, s);
8935 check_absolute_expr (ip, &imm_expr);
8936 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8937 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8938 if (imm_expr.X_add_number < min_range ||
8939 imm_expr.X_add_number > max_range)
8940 {
8941 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8942 (long) min_range, (long) max_range,
8943 (long) imm_expr.X_add_number);
8944 }
8945 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8946 imm_expr.X_op = O_absent;
8947 s = expr_end;
8948 continue;
8949
8950 case '!': /* MT usermode flag bit. */
8951 my_getExpression (&imm_expr, s);
8952 check_absolute_expr (ip, &imm_expr);
8953 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8954 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8955 (unsigned long) imm_expr.X_add_number);
8956 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8957 imm_expr.X_op = O_absent;
8958 s = expr_end;
8959 continue;
8960
8961 case '$': /* MT load high flag bit. */
8962 my_getExpression (&imm_expr, s);
8963 check_absolute_expr (ip, &imm_expr);
8964 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8965 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8966 (unsigned long) imm_expr.X_add_number);
8967 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8968 imm_expr.X_op = O_absent;
8969 s = expr_end;
8970 continue;
8971
8972 case '*': /* Four DSP accumulators in bits 18,19. */
8973 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8974 s[3] >= '0' && s[3] <= '3')
8975 {
8976 regno = s[3] - '0';
8977 s += 4;
8978 INSERT_OPERAND (MTACC_T, *ip, regno);
8979 continue;
8980 }
8981 else
8982 as_bad (_("Invalid dsp/smartmips acc register"));
8983 break;
8984
8985 case '&': /* Four DSP accumulators in bits 13,14. */
8986 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8987 s[3] >= '0' && s[3] <= '3')
8988 {
8989 regno = s[3] - '0';
8990 s += 4;
8991 INSERT_OPERAND (MTACC_D, *ip, regno);
8992 continue;
8993 }
8994 else
8995 as_bad (_("Invalid dsp/smartmips acc register"));
8996 break;
8997
8998 case ',':
8999 ++argnum;
9000 if (*s++ == *args)
9001 continue;
9002 s--;
9003 switch (*++args)
9004 {
9005 case 'r':
9006 case 'v':
9007 INSERT_OPERAND (RS, *ip, lastregno);
9008 continue;
9009
9010 case 'w':
9011 INSERT_OPERAND (RT, *ip, lastregno);
9012 continue;
9013
9014 case 'W':
9015 INSERT_OPERAND (FT, *ip, lastregno);
9016 continue;
9017
9018 case 'V':
9019 INSERT_OPERAND (FS, *ip, lastregno);
9020 continue;
9021 }
9022 break;
9023
9024 case '(':
9025 /* Handle optional base register.
9026 Either the base register is omitted or
9027 we must have a left paren. */
9028 /* This is dependent on the next operand specifier
9029 is a base register specification. */
9030 gas_assert (args[1] == 'b');
9031 if (*s == '\0')
9032 return;
9033
9034 case ')': /* These must match exactly. */
9035 case '[':
9036 case ']':
9037 if (*s++ == *args)
9038 continue;
9039 break;
9040
9041 case '+': /* Opcode extension character. */
9042 switch (*++args)
9043 {
9044 case '1': /* UDI immediates. */
9045 case '2':
9046 case '3':
9047 case '4':
9048 {
9049 const struct mips_immed *imm = mips_immed;
9050
9051 while (imm->type && imm->type != *args)
9052 ++imm;
9053 if (! imm->type)
9054 internalError ();
9055 my_getExpression (&imm_expr, s);
9056 check_absolute_expr (ip, &imm_expr);
9057 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9058 {
9059 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9060 imm->desc ? imm->desc : ip->insn_mo->name,
9061 (unsigned long) imm_expr.X_add_number,
9062 (unsigned long) imm_expr.X_add_number);
9063 imm_expr.X_add_number &= imm->mask;
9064 }
9065 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9066 << imm->shift);
9067 imm_expr.X_op = O_absent;
9068 s = expr_end;
9069 }
9070 continue;
9071
9072 case 'A': /* ins/ext position, becomes LSB. */
9073 limlo = 0;
9074 limhi = 31;
9075 goto do_lsb;
9076 case 'E':
9077 limlo = 32;
9078 limhi = 63;
9079 goto do_lsb;
9080 do_lsb:
9081 my_getExpression (&imm_expr, s);
9082 check_absolute_expr (ip, &imm_expr);
9083 if ((unsigned long) imm_expr.X_add_number < limlo
9084 || (unsigned long) imm_expr.X_add_number > limhi)
9085 {
9086 as_bad (_("Improper position (%lu)"),
9087 (unsigned long) imm_expr.X_add_number);
9088 imm_expr.X_add_number = limlo;
9089 }
9090 lastpos = imm_expr.X_add_number;
9091 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9092 imm_expr.X_op = O_absent;
9093 s = expr_end;
9094 continue;
9095
9096 case 'B': /* ins size, becomes MSB. */
9097 limlo = 1;
9098 limhi = 32;
9099 goto do_msb;
9100 case 'F':
9101 limlo = 33;
9102 limhi = 64;
9103 goto do_msb;
9104 do_msb:
9105 my_getExpression (&imm_expr, s);
9106 check_absolute_expr (ip, &imm_expr);
9107 /* Check for negative input so that small negative numbers
9108 will not succeed incorrectly. The checks against
9109 (pos+size) transitively check "size" itself,
9110 assuming that "pos" is reasonable. */
9111 if ((long) imm_expr.X_add_number < 0
9112 || ((unsigned long) imm_expr.X_add_number
9113 + lastpos) < limlo
9114 || ((unsigned long) imm_expr.X_add_number
9115 + lastpos) > limhi)
9116 {
9117 as_bad (_("Improper insert size (%lu, position %lu)"),
9118 (unsigned long) imm_expr.X_add_number,
9119 (unsigned long) lastpos);
9120 imm_expr.X_add_number = limlo - lastpos;
9121 }
9122 INSERT_OPERAND (INSMSB, *ip,
9123 lastpos + imm_expr.X_add_number - 1);
9124 imm_expr.X_op = O_absent;
9125 s = expr_end;
9126 continue;
9127
9128 case 'C': /* ext size, becomes MSBD. */
9129 limlo = 1;
9130 limhi = 32;
9131 goto do_msbd;
9132 case 'G':
9133 limlo = 33;
9134 limhi = 64;
9135 goto do_msbd;
9136 case 'H':
9137 limlo = 33;
9138 limhi = 64;
9139 goto do_msbd;
9140 do_msbd:
9141 my_getExpression (&imm_expr, s);
9142 check_absolute_expr (ip, &imm_expr);
9143 /* Check for negative input so that small negative numbers
9144 will not succeed incorrectly. The checks against
9145 (pos+size) transitively check "size" itself,
9146 assuming that "pos" is reasonable. */
9147 if ((long) imm_expr.X_add_number < 0
9148 || ((unsigned long) imm_expr.X_add_number
9149 + lastpos) < limlo
9150 || ((unsigned long) imm_expr.X_add_number
9151 + lastpos) > limhi)
9152 {
9153 as_bad (_("Improper extract size (%lu, position %lu)"),
9154 (unsigned long) imm_expr.X_add_number,
9155 (unsigned long) lastpos);
9156 imm_expr.X_add_number = limlo - lastpos;
9157 }
9158 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9159 imm_expr.X_op = O_absent;
9160 s = expr_end;
9161 continue;
9162
9163 case 'D':
9164 /* +D is for disassembly only; never match. */
9165 break;
9166
9167 case 'I':
9168 /* "+I" is like "I", except that imm2_expr is used. */
9169 my_getExpression (&imm2_expr, s);
9170 if (imm2_expr.X_op != O_big
9171 && imm2_expr.X_op != O_constant)
9172 insn_error = _("absolute expression required");
9173 if (HAVE_32BIT_GPRS)
9174 normalize_constant_expr (&imm2_expr);
9175 s = expr_end;
9176 continue;
9177
9178 case 'T': /* Coprocessor register. */
9179 /* +T is for disassembly only; never match. */
9180 break;
9181
9182 case 't': /* Coprocessor register number. */
9183 if (s[0] == '$' && ISDIGIT (s[1]))
9184 {
9185 ++s;
9186 regno = 0;
9187 do
9188 {
9189 regno *= 10;
9190 regno += *s - '0';
9191 ++s;
9192 }
9193 while (ISDIGIT (*s));
9194 if (regno > 31)
9195 as_bad (_("Invalid register number (%d)"), regno);
9196 else
9197 {
9198 INSERT_OPERAND (RT, *ip, regno);
9199 continue;
9200 }
9201 }
9202 else
9203 as_bad (_("Invalid coprocessor 0 register number"));
9204 break;
9205
9206 case 'x':
9207 /* bbit[01] and bbit[01]32 bit index. Give error if index
9208 is not in the valid range. */
9209 my_getExpression (&imm_expr, s);
9210 check_absolute_expr (ip, &imm_expr);
9211 if ((unsigned) imm_expr.X_add_number > 31)
9212 {
9213 as_bad (_("Improper bit index (%lu)"),
9214 (unsigned long) imm_expr.X_add_number);
9215 imm_expr.X_add_number = 0;
9216 }
9217 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9218 imm_expr.X_op = O_absent;
9219 s = expr_end;
9220 continue;
9221
9222 case 'X':
9223 /* bbit[01] bit index when bbit is used but we generate
9224 bbit[01]32 because the index is over 32. Move to the
9225 next candidate if index is not in the valid range. */
9226 my_getExpression (&imm_expr, s);
9227 check_absolute_expr (ip, &imm_expr);
9228 if ((unsigned) imm_expr.X_add_number < 32
9229 || (unsigned) imm_expr.X_add_number > 63)
9230 break;
9231 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9232 imm_expr.X_op = O_absent;
9233 s = expr_end;
9234 continue;
9235
9236 case 'p':
9237 /* cins, cins32, exts and exts32 position field. Give error
9238 if it's not in the valid range. */
9239 my_getExpression (&imm_expr, s);
9240 check_absolute_expr (ip, &imm_expr);
9241 if ((unsigned) imm_expr.X_add_number > 31)
9242 {
9243 as_bad (_("Improper position (%lu)"),
9244 (unsigned long) imm_expr.X_add_number);
9245 imm_expr.X_add_number = 0;
9246 }
9247 /* Make the pos explicit to simplify +S. */
9248 lastpos = imm_expr.X_add_number + 32;
9249 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9250 imm_expr.X_op = O_absent;
9251 s = expr_end;
9252 continue;
9253
9254 case 'P':
9255 /* cins, cins32, exts and exts32 position field. Move to
9256 the next candidate if it's not in the valid range. */
9257 my_getExpression (&imm_expr, s);
9258 check_absolute_expr (ip, &imm_expr);
9259 if ((unsigned) imm_expr.X_add_number < 32
9260 || (unsigned) imm_expr.X_add_number > 63)
9261 break;
9262 lastpos = imm_expr.X_add_number;
9263 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9264 imm_expr.X_op = O_absent;
9265 s = expr_end;
9266 continue;
9267
9268 case 's':
9269 /* cins and exts length-minus-one field. */
9270 my_getExpression (&imm_expr, s);
9271 check_absolute_expr (ip, &imm_expr);
9272 if ((unsigned long) imm_expr.X_add_number > 31)
9273 {
9274 as_bad (_("Improper size (%lu)"),
9275 (unsigned long) imm_expr.X_add_number);
9276 imm_expr.X_add_number = 0;
9277 }
9278 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9279 imm_expr.X_op = O_absent;
9280 s = expr_end;
9281 continue;
9282
9283 case 'S':
9284 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9285 length-minus-one field. */
9286 my_getExpression (&imm_expr, s);
9287 check_absolute_expr (ip, &imm_expr);
9288 if ((long) imm_expr.X_add_number < 0
9289 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9290 {
9291 as_bad (_("Improper size (%lu)"),
9292 (unsigned long) imm_expr.X_add_number);
9293 imm_expr.X_add_number = 0;
9294 }
9295 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9296 imm_expr.X_op = O_absent;
9297 s = expr_end;
9298 continue;
9299
9300 case 'Q':
9301 /* seqi/snei immediate field. */
9302 my_getExpression (&imm_expr, s);
9303 check_absolute_expr (ip, &imm_expr);
9304 if ((long) imm_expr.X_add_number < -512
9305 || (long) imm_expr.X_add_number >= 512)
9306 {
9307 as_bad (_("Improper immediate (%ld)"),
9308 (long) imm_expr.X_add_number);
9309 imm_expr.X_add_number = 0;
9310 }
9311 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9312 imm_expr.X_op = O_absent;
9313 s = expr_end;
9314 continue;
9315
9316 case 'a': /* 8-bit signed offset in bit 6 */
9317 my_getExpression (&imm_expr, s);
9318 check_absolute_expr (ip, &imm_expr);
9319 min_range = -((OP_MASK_OFFSET_A + 1) >> 1);
9320 max_range = ((OP_MASK_OFFSET_A + 1) >> 1) - 1;
9321 if (imm_expr.X_add_number < min_range
9322 || imm_expr.X_add_number > max_range)
9323 {
9324 as_bad (_("immediate not in range %ld..%ld (%ld)"),
9325 (long) min_range, (long) max_range,
9326 (long) imm_expr.X_add_number);
9327 }
9328 INSERT_OPERAND (OFFSET_A, *ip, imm_expr.X_add_number);
9329 imm_expr.X_op = O_absent;
9330 s = expr_end;
9331 continue;
9332
9333 case 'b': /* 8-bit signed offset in bit 3 */
9334 my_getExpression (&imm_expr, s);
9335 check_absolute_expr (ip, &imm_expr);
9336 min_range = -((OP_MASK_OFFSET_B + 1) >> 1);
9337 max_range = ((OP_MASK_OFFSET_B + 1) >> 1) - 1;
9338 if (imm_expr.X_add_number < min_range
9339 || imm_expr.X_add_number > max_range)
9340 {
9341 as_bad (_("immediate not in range %ld..%ld (%ld)"),
9342 (long) min_range, (long) max_range,
9343 (long) imm_expr.X_add_number);
9344 }
9345 INSERT_OPERAND (OFFSET_B, *ip, imm_expr.X_add_number);
9346 imm_expr.X_op = O_absent;
9347 s = expr_end;
9348 continue;
9349
9350 case 'c': /* 9-bit signed offset in bit 6 */
9351 my_getExpression (&imm_expr, s);
9352 check_absolute_expr (ip, &imm_expr);
9353 min_range = -((OP_MASK_OFFSET_C + 1) >> 1);
9354 max_range = ((OP_MASK_OFFSET_C + 1) >> 1) - 1;
9355 if (imm_expr.X_add_number < min_range
9356 || imm_expr.X_add_number > max_range)
9357 {
9358 as_bad (_("immediate not in range %ld..%ld (%ld)"),
9359 (long) min_range, (long) max_range,
9360 (long) imm_expr.X_add_number);
9361 }
9362 INSERT_OPERAND (OFFSET_C, *ip, imm_expr.X_add_number);
9363 imm_expr.X_op = O_absent;
9364 s = expr_end;
9365 continue;
9366
9367 case 'z':
9368 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
9369 break;
9370 if (regno == AT && mips_opts.at)
9371 {
9372 if (mips_opts.at == ATREG)
9373 as_warn (_("used $at without \".set noat\""));
9374 else
9375 as_warn (_("used $%u with \".set at=$%u\""),
9376 regno, mips_opts.at);
9377 }
9378 INSERT_OPERAND (RZ, *ip, regno);
9379 continue;
9380
9381 case 'Z':
9382 if (!reg_lookup (&s, RTYPE_FPU, &regno))
9383 break;
9384 INSERT_OPERAND (FZ, *ip, regno);
9385 continue;
9386
9387 default:
9388 as_bad (_("Internal error: bad mips opcode "
9389 "(unknown extension operand type `+%c'): %s %s"),
9390 *args, insn->name, insn->args);
9391 /* Further processing is fruitless. */
9392 return;
9393 }
9394 break;
9395
9396 case '<': /* must be at least one digit */
9397 /*
9398 * According to the manual, if the shift amount is greater
9399 * than 31 or less than 0, then the shift amount should be
9400 * mod 32. In reality the mips assembler issues an error.
9401 * We issue a warning and mask out all but the low 5 bits.
9402 */
9403 my_getExpression (&imm_expr, s);
9404 check_absolute_expr (ip, &imm_expr);
9405 if ((unsigned long) imm_expr.X_add_number > 31)
9406 as_warn (_("Improper shift amount (%lu)"),
9407 (unsigned long) imm_expr.X_add_number);
9408 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9409 imm_expr.X_op = O_absent;
9410 s = expr_end;
9411 continue;
9412
9413 case '>': /* shift amount minus 32 */
9414 my_getExpression (&imm_expr, s);
9415 check_absolute_expr (ip, &imm_expr);
9416 if ((unsigned long) imm_expr.X_add_number < 32
9417 || (unsigned long) imm_expr.X_add_number > 63)
9418 break;
9419 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9420 imm_expr.X_op = O_absent;
9421 s = expr_end;
9422 continue;
9423
9424 case 'k': /* CACHE code. */
9425 case 'h': /* PREFX code. */
9426 case '1': /* SYNC type. */
9427 my_getExpression (&imm_expr, s);
9428 check_absolute_expr (ip, &imm_expr);
9429 if ((unsigned long) imm_expr.X_add_number > 31)
9430 as_warn (_("Invalid value for `%s' (%lu)"),
9431 ip->insn_mo->name,
9432 (unsigned long) imm_expr.X_add_number);
9433 if (*args == 'k')
9434 {
9435 if (mips_fix_cn63xxp1 && strcmp ("pref", insn->name) == 0)
9436 switch (imm_expr.X_add_number)
9437 {
9438 case 5:
9439 case 25:
9440 case 26:
9441 case 27:
9442 case 28:
9443 case 29:
9444 case 30:
9445 case 31: /* These are ok. */
9446 break;
9447
9448 default: /* The rest must be changed to 28. */
9449 imm_expr.X_add_number = 28;
9450 break;
9451 }
9452 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9453 }
9454 else if (*args == 'h')
9455 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9456 else
9457 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9458 imm_expr.X_op = O_absent;
9459 s = expr_end;
9460 continue;
9461
9462 case 'c': /* BREAK code. */
9463 my_getExpression (&imm_expr, s);
9464 check_absolute_expr (ip, &imm_expr);
9465 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9466 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9467 ip->insn_mo->name,
9468 (unsigned long) imm_expr.X_add_number);
9469 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9470 imm_expr.X_op = O_absent;
9471 s = expr_end;
9472 continue;
9473
9474 case 'q': /* Lower BREAK code. */
9475 my_getExpression (&imm_expr, s);
9476 check_absolute_expr (ip, &imm_expr);
9477 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9478 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9479 ip->insn_mo->name,
9480 (unsigned long) imm_expr.X_add_number);
9481 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9482 imm_expr.X_op = O_absent;
9483 s = expr_end;
9484 continue;
9485
9486 case 'B': /* 20-bit SYSCALL/BREAK code. */
9487 my_getExpression (&imm_expr, s);
9488 check_absolute_expr (ip, &imm_expr);
9489 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9490 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9491 ip->insn_mo->name,
9492 (unsigned long) imm_expr.X_add_number);
9493 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9494 imm_expr.X_op = O_absent;
9495 s = expr_end;
9496 continue;
9497
9498 case 'C': /* Coprocessor code. */
9499 my_getExpression (&imm_expr, s);
9500 check_absolute_expr (ip, &imm_expr);
9501 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9502 {
9503 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9504 (unsigned long) imm_expr.X_add_number);
9505 imm_expr.X_add_number &= OP_MASK_COPZ;
9506 }
9507 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9508 imm_expr.X_op = O_absent;
9509 s = expr_end;
9510 continue;
9511
9512 case 'J': /* 19-bit WAIT code. */
9513 my_getExpression (&imm_expr, s);
9514 check_absolute_expr (ip, &imm_expr);
9515 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9516 {
9517 as_warn (_("Illegal 19-bit code (%lu)"),
9518 (unsigned long) imm_expr.X_add_number);
9519 imm_expr.X_add_number &= OP_MASK_CODE19;
9520 }
9521 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9522 imm_expr.X_op = O_absent;
9523 s = expr_end;
9524 continue;
9525
9526 case 'P': /* Performance register. */
9527 my_getExpression (&imm_expr, s);
9528 check_absolute_expr (ip, &imm_expr);
9529 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9530 as_warn (_("Invalid performance register (%lu)"),
9531 (unsigned long) imm_expr.X_add_number);
9532 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9533 imm_expr.X_op = O_absent;
9534 s = expr_end;
9535 continue;
9536
9537 case 'G': /* Coprocessor destination register. */
9538 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9539 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9540 else
9541 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9542 INSERT_OPERAND (RD, *ip, regno);
9543 if (ok)
9544 {
9545 lastregno = regno;
9546 continue;
9547 }
9548 else
9549 break;
9550
9551 case 'b': /* Base register. */
9552 case 'd': /* Destination register. */
9553 case 's': /* Source register. */
9554 case 't': /* Target register. */
9555 case 'r': /* Both target and source. */
9556 case 'v': /* Both dest and source. */
9557 case 'w': /* Both dest and target. */
9558 case 'E': /* Coprocessor target register. */
9559 case 'K': /* RDHWR destination register. */
9560 case 'x': /* Ignore register name. */
9561 case 'z': /* Must be zero register. */
9562 case 'U': /* Destination register (CLO/CLZ). */
9563 case 'g': /* Coprocessor destination register. */
9564 s_reset = s;
9565 if (*args == 'E' || *args == 'K')
9566 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9567 else
9568 {
9569 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9570 if (regno == AT && mips_opts.at)
9571 {
9572 if (mips_opts.at == ATREG)
9573 as_warn (_("Used $at without \".set noat\""));
9574 else
9575 as_warn (_("Used $%u with \".set at=$%u\""),
9576 regno, mips_opts.at);
9577 }
9578 }
9579 if (ok)
9580 {
9581 c = *args;
9582 if (*s == ' ')
9583 ++s;
9584 if (args[1] != *s)
9585 {
9586 if (c == 'r' || c == 'v' || c == 'w')
9587 {
9588 regno = lastregno;
9589 s = s_reset;
9590 ++args;
9591 }
9592 }
9593 /* 'z' only matches $0. */
9594 if (c == 'z' && regno != 0)
9595 break;
9596
9597 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9598 {
9599 if (regno == lastregno)
9600 {
9601 insn_error
9602 = _("Source and destination must be different");
9603 continue;
9604 }
9605 if (regno == 31 && lastregno == 0xffffffff)
9606 {
9607 insn_error
9608 = _("A destination register must be supplied");
9609 continue;
9610 }
9611 }
9612 /* Now that we have assembled one operand, we use the args
9613 string to figure out where it goes in the instruction. */
9614 switch (c)
9615 {
9616 case 'r':
9617 case 's':
9618 case 'v':
9619 case 'b':
9620 INSERT_OPERAND (RS, *ip, regno);
9621 break;
9622 case 'd':
9623 case 'K':
9624 case 'g':
9625 INSERT_OPERAND (RD, *ip, regno);
9626 break;
9627 case 'U':
9628 INSERT_OPERAND (RD, *ip, regno);
9629 INSERT_OPERAND (RT, *ip, regno);
9630 break;
9631 case 'w':
9632 case 't':
9633 case 'E':
9634 INSERT_OPERAND (RT, *ip, regno);
9635 break;
9636 case 'x':
9637 /* This case exists because on the r3000 trunc
9638 expands into a macro which requires a gp
9639 register. On the r6000 or r4000 it is
9640 assembled into a single instruction which
9641 ignores the register. Thus the insn version
9642 is MIPS_ISA2 and uses 'x', and the macro
9643 version is MIPS_ISA1 and uses 't'. */
9644 break;
9645 case 'z':
9646 /* This case is for the div instruction, which
9647 acts differently if the destination argument
9648 is $0. This only matches $0, and is checked
9649 outside the switch. */
9650 break;
9651 }
9652 lastregno = regno;
9653 continue;
9654 }
9655 switch (*args++)
9656 {
9657 case 'r':
9658 case 'v':
9659 INSERT_OPERAND (RS, *ip, lastregno);
9660 continue;
9661 case 'w':
9662 INSERT_OPERAND (RT, *ip, lastregno);
9663 continue;
9664 }
9665 break;
9666
9667 case 'O': /* MDMX alignment immediate constant. */
9668 my_getExpression (&imm_expr, s);
9669 check_absolute_expr (ip, &imm_expr);
9670 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9671 as_warn (_("Improper align amount (%ld), using low bits"),
9672 (long) imm_expr.X_add_number);
9673 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9674 imm_expr.X_op = O_absent;
9675 s = expr_end;
9676 continue;
9677
9678 case 'Q': /* MDMX vector, element sel, or const. */
9679 if (s[0] != '$')
9680 {
9681 /* MDMX Immediate. */
9682 my_getExpression (&imm_expr, s);
9683 check_absolute_expr (ip, &imm_expr);
9684 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9685 as_warn (_("Invalid MDMX Immediate (%ld)"),
9686 (long) imm_expr.X_add_number);
9687 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9688 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9689 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9690 else
9691 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9692 imm_expr.X_op = O_absent;
9693 s = expr_end;
9694 continue;
9695 }
9696 /* Not MDMX Immediate. Fall through. */
9697 case 'X': /* MDMX destination register. */
9698 case 'Y': /* MDMX source register. */
9699 case 'Z': /* MDMX target register. */
9700 is_mdmx = 1;
9701 case 'D': /* Floating point destination register. */
9702 case 'S': /* Floating point source register. */
9703 case 'T': /* Floating point target register. */
9704 case 'R': /* Floating point source register. */
9705 case 'V':
9706 case 'W':
9707 rtype = RTYPE_FPU;
9708 if (is_mdmx
9709 || (mips_opts.ase_mdmx
9710 && (ip->insn_mo->pinfo & FP_D)
9711 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9712 | INSN_COPROC_MEMORY_DELAY
9713 | INSN_LOAD_COPROC_DELAY
9714 | INSN_LOAD_MEMORY_DELAY
9715 | INSN_STORE_MEMORY))))
9716 rtype |= RTYPE_VEC;
9717 s_reset = s;
9718 if (reg_lookup (&s, rtype, &regno))
9719 {
9720 if ((regno & 1) != 0
9721 && HAVE_32BIT_FPRS
9722 && !mips_oddfpreg_ok (ip->insn_mo, argnum))
9723 as_warn (_("Float register should be even, was %d"),
9724 regno);
9725
9726 c = *args;
9727 if (*s == ' ')
9728 ++s;
9729 if (args[1] != *s)
9730 {
9731 if (c == 'V' || c == 'W')
9732 {
9733 regno = lastregno;
9734 s = s_reset;
9735 ++args;
9736 }
9737 }
9738 switch (c)
9739 {
9740 case 'D':
9741 case 'X':
9742 INSERT_OPERAND (FD, *ip, regno);
9743 break;
9744 case 'V':
9745 case 'S':
9746 case 'Y':
9747 INSERT_OPERAND (FS, *ip, regno);
9748 break;
9749 case 'Q':
9750 /* This is like 'Z', but also needs to fix the MDMX
9751 vector/scalar select bits. Note that the
9752 scalar immediate case is handled above. */
9753 if (*s == '[')
9754 {
9755 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9756 int max_el = (is_qh ? 3 : 7);
9757 s++;
9758 my_getExpression(&imm_expr, s);
9759 check_absolute_expr (ip, &imm_expr);
9760 s = expr_end;
9761 if (imm_expr.X_add_number > max_el)
9762 as_bad (_("Bad element selector %ld"),
9763 (long) imm_expr.X_add_number);
9764 imm_expr.X_add_number &= max_el;
9765 ip->insn_opcode |= (imm_expr.X_add_number
9766 << (OP_SH_VSEL +
9767 (is_qh ? 2 : 1)));
9768 imm_expr.X_op = O_absent;
9769 if (*s != ']')
9770 as_warn (_("Expecting ']' found '%s'"), s);
9771 else
9772 s++;
9773 }
9774 else
9775 {
9776 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9777 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9778 << OP_SH_VSEL);
9779 else
9780 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9781 OP_SH_VSEL);
9782 }
9783 /* Fall through. */
9784 case 'W':
9785 case 'T':
9786 case 'Z':
9787 INSERT_OPERAND (FT, *ip, regno);
9788 break;
9789 case 'R':
9790 INSERT_OPERAND (FR, *ip, regno);
9791 break;
9792 }
9793 lastregno = regno;
9794 continue;
9795 }
9796
9797 switch (*args++)
9798 {
9799 case 'V':
9800 INSERT_OPERAND (FS, *ip, lastregno);
9801 continue;
9802 case 'W':
9803 INSERT_OPERAND (FT, *ip, lastregno);
9804 continue;
9805 }
9806 break;
9807
9808 case 'I':
9809 my_getExpression (&imm_expr, s);
9810 if (imm_expr.X_op != O_big
9811 && imm_expr.X_op != O_constant)
9812 insn_error = _("absolute expression required");
9813 if (HAVE_32BIT_GPRS)
9814 normalize_constant_expr (&imm_expr);
9815 s = expr_end;
9816 continue;
9817
9818 case 'A':
9819 my_getExpression (&offset_expr, s);
9820 normalize_address_expr (&offset_expr);
9821 *imm_reloc = BFD_RELOC_32;
9822 s = expr_end;
9823 continue;
9824
9825 case 'F':
9826 case 'L':
9827 case 'f':
9828 case 'l':
9829 {
9830 int f64;
9831 int using_gprs;
9832 char *save_in;
9833 char *err;
9834 unsigned char temp[8];
9835 int len;
9836 unsigned int length;
9837 segT seg;
9838 subsegT subseg;
9839 char *p;
9840
9841 /* These only appear as the last operand in an
9842 instruction, and every instruction that accepts
9843 them in any variant accepts them in all variants.
9844 This means we don't have to worry about backing out
9845 any changes if the instruction does not match.
9846
9847 The difference between them is the size of the
9848 floating point constant and where it goes. For 'F'
9849 and 'L' the constant is 64 bits; for 'f' and 'l' it
9850 is 32 bits. Where the constant is placed is based
9851 on how the MIPS assembler does things:
9852 F -- .rdata
9853 L -- .lit8
9854 f -- immediate value
9855 l -- .lit4
9856
9857 The .lit4 and .lit8 sections are only used if
9858 permitted by the -G argument.
9859
9860 The code below needs to know whether the target register
9861 is 32 or 64 bits wide. It relies on the fact 'f' and
9862 'F' are used with GPR-based instructions and 'l' and
9863 'L' are used with FPR-based instructions. */
9864
9865 f64 = *args == 'F' || *args == 'L';
9866 using_gprs = *args == 'F' || *args == 'f';
9867
9868 save_in = input_line_pointer;
9869 input_line_pointer = s;
9870 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9871 length = len;
9872 s = input_line_pointer;
9873 input_line_pointer = save_in;
9874 if (err != NULL && *err != '\0')
9875 {
9876 as_bad (_("Bad floating point constant: %s"), err);
9877 memset (temp, '\0', sizeof temp);
9878 length = f64 ? 8 : 4;
9879 }
9880
9881 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9882
9883 if (*args == 'f'
9884 || (*args == 'l'
9885 && (g_switch_value < 4
9886 || (temp[0] == 0 && temp[1] == 0)
9887 || (temp[2] == 0 && temp[3] == 0))))
9888 {
9889 imm_expr.X_op = O_constant;
9890 if (!target_big_endian)
9891 imm_expr.X_add_number = bfd_getl32 (temp);
9892 else
9893 imm_expr.X_add_number = bfd_getb32 (temp);
9894 }
9895 else if (length > 4
9896 && !mips_disable_float_construction
9897 /* Constants can only be constructed in GPRs and
9898 copied to FPRs if the GPRs are at least as wide
9899 as the FPRs. Force the constant into memory if
9900 we are using 64-bit FPRs but the GPRs are only
9901 32 bits wide. */
9902 && (using_gprs
9903 || !(HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9904 && ((temp[0] == 0 && temp[1] == 0)
9905 || (temp[2] == 0 && temp[3] == 0))
9906 && ((temp[4] == 0 && temp[5] == 0)
9907 || (temp[6] == 0 && temp[7] == 0)))
9908 {
9909 /* The value is simple enough to load with a couple of
9910 instructions. If using 32-bit registers, set
9911 imm_expr to the high order 32 bits and offset_expr to
9912 the low order 32 bits. Otherwise, set imm_expr to
9913 the entire 64 bit constant. */
9914 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9915 {
9916 imm_expr.X_op = O_constant;
9917 offset_expr.X_op = O_constant;
9918 if (!target_big_endian)
9919 {
9920 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9921 offset_expr.X_add_number = bfd_getl32 (temp);
9922 }
9923 else
9924 {
9925 imm_expr.X_add_number = bfd_getb32 (temp);
9926 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9927 }
9928 if (offset_expr.X_add_number == 0)
9929 offset_expr.X_op = O_absent;
9930 }
9931 else if (sizeof (imm_expr.X_add_number) > 4)
9932 {
9933 imm_expr.X_op = O_constant;
9934 if (!target_big_endian)
9935 imm_expr.X_add_number = bfd_getl64 (temp);
9936 else
9937 imm_expr.X_add_number = bfd_getb64 (temp);
9938 }
9939 else
9940 {
9941 imm_expr.X_op = O_big;
9942 imm_expr.X_add_number = 4;
9943 if (!target_big_endian)
9944 {
9945 generic_bignum[0] = bfd_getl16 (temp);
9946 generic_bignum[1] = bfd_getl16 (temp + 2);
9947 generic_bignum[2] = bfd_getl16 (temp + 4);
9948 generic_bignum[3] = bfd_getl16 (temp + 6);
9949 }
9950 else
9951 {
9952 generic_bignum[0] = bfd_getb16 (temp + 6);
9953 generic_bignum[1] = bfd_getb16 (temp + 4);
9954 generic_bignum[2] = bfd_getb16 (temp + 2);
9955 generic_bignum[3] = bfd_getb16 (temp);
9956 }
9957 }
9958 }
9959 else
9960 {
9961 const char *newname;
9962 segT new_seg;
9963
9964 /* Switch to the right section. */
9965 seg = now_seg;
9966 subseg = now_subseg;
9967 switch (*args)
9968 {
9969 default: /* unused default case avoids warnings. */
9970 case 'L':
9971 newname = RDATA_SECTION_NAME;
9972 if (g_switch_value >= 8)
9973 newname = ".lit8";
9974 break;
9975 case 'F':
9976 newname = RDATA_SECTION_NAME;
9977 break;
9978 case 'l':
9979 gas_assert (g_switch_value >= 4);
9980 newname = ".lit4";
9981 break;
9982 }
9983 new_seg = subseg_new (newname, (subsegT) 0);
9984 if (IS_ELF)
9985 bfd_set_section_flags (stdoutput, new_seg,
9986 (SEC_ALLOC
9987 | SEC_LOAD
9988 | SEC_READONLY
9989 | SEC_DATA));
9990 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9991 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9992 record_alignment (new_seg, 4);
9993 else
9994 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9995 if (seg == now_seg)
9996 as_bad (_("Can't use floating point insn in this section"));
9997
9998 /* Set the argument to the current address in the
9999 section. */
10000 offset_expr.X_op = O_symbol;
10001 offset_expr.X_add_symbol = symbol_temp_new_now ();
10002 offset_expr.X_add_number = 0;
10003
10004 /* Put the floating point number into the section. */
10005 p = frag_more ((int) length);
10006 memcpy (p, temp, length);
10007
10008 /* Switch back to the original section. */
10009 subseg_set (seg, subseg);
10010 }
10011 }
10012 continue;
10013
10014 case 'i': /* 16-bit unsigned immediate. */
10015 case 'j': /* 16-bit signed immediate. */
10016 *imm_reloc = BFD_RELOC_LO16;
10017 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
10018 {
10019 int more;
10020 offsetT minval, maxval;
10021
10022 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
10023 && strcmp (insn->name, insn[1].name) == 0);
10024
10025 /* If the expression was written as an unsigned number,
10026 only treat it as signed if there are no more
10027 alternatives. */
10028 if (more
10029 && *args == 'j'
10030 && sizeof (imm_expr.X_add_number) <= 4
10031 && imm_expr.X_op == O_constant
10032 && imm_expr.X_add_number < 0
10033 && imm_expr.X_unsigned
10034 && HAVE_64BIT_GPRS)
10035 break;
10036
10037 /* For compatibility with older assemblers, we accept
10038 0x8000-0xffff as signed 16-bit numbers when only
10039 signed numbers are allowed. */
10040 if (*args == 'i')
10041 minval = 0, maxval = 0xffff;
10042 else if (more)
10043 minval = -0x8000, maxval = 0x7fff;
10044 else
10045 minval = -0x8000, maxval = 0xffff;
10046
10047 if (imm_expr.X_op != O_constant
10048 || imm_expr.X_add_number < minval
10049 || imm_expr.X_add_number > maxval)
10050 {
10051 if (more)
10052 break;
10053 if (imm_expr.X_op == O_constant
10054 || imm_expr.X_op == O_big)
10055 as_bad (_("Expression out of range"));
10056 }
10057 }
10058 s = expr_end;
10059 continue;
10060
10061 case 'o': /* 16-bit offset. */
10062 offset_reloc[0] = BFD_RELOC_LO16;
10063 offset_reloc[1] = BFD_RELOC_UNUSED;
10064 offset_reloc[2] = BFD_RELOC_UNUSED;
10065
10066 /* Check whether there is only a single bracketed expression
10067 left. If so, it must be the base register and the
10068 constant must be zero. */
10069 offset_reloc[0] = BFD_RELOC_LO16;
10070 offset_reloc[1] = BFD_RELOC_UNUSED;
10071 offset_reloc[2] = BFD_RELOC_UNUSED;
10072 if (*s == '(' && strchr (s + 1, '(') == 0)
10073 {
10074 offset_expr.X_op = O_constant;
10075 offset_expr.X_add_number = 0;
10076 continue;
10077 }
10078
10079 /* If this value won't fit into a 16 bit offset, then go
10080 find a macro that will generate the 32 bit offset
10081 code pattern. */
10082 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
10083 && (offset_expr.X_op != O_constant
10084 || offset_expr.X_add_number >= 0x8000
10085 || offset_expr.X_add_number < -0x8000))
10086 break;
10087
10088 s = expr_end;
10089 continue;
10090
10091 case 'p': /* PC-relative offset. */
10092 *offset_reloc = BFD_RELOC_16_PCREL_S2;
10093 my_getExpression (&offset_expr, s);
10094 s = expr_end;
10095 continue;
10096
10097 case 'u': /* Upper 16 bits. */
10098 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
10099 && imm_expr.X_op == O_constant
10100 && (imm_expr.X_add_number < 0
10101 || imm_expr.X_add_number >= 0x10000))
10102 as_bad (_("lui expression (%lu) not in range 0..65535"),
10103 (unsigned long) imm_expr.X_add_number);
10104 s = expr_end;
10105 continue;
10106
10107 case 'a': /* 26-bit address. */
10108 my_getExpression (&offset_expr, s);
10109 s = expr_end;
10110 *offset_reloc = BFD_RELOC_MIPS_JMP;
10111 continue;
10112
10113 case 'N': /* 3-bit branch condition code. */
10114 case 'M': /* 3-bit compare condition code. */
10115 rtype = RTYPE_CCC;
10116 if (ip->insn_mo->pinfo & (FP_D | FP_S))
10117 rtype |= RTYPE_FCC;
10118 if (!reg_lookup (&s, rtype, &regno))
10119 break;
10120 if ((strcmp (str + strlen (str) - 3, ".ps") == 0
10121 || strcmp (str + strlen (str) - 5, "any2f") == 0
10122 || strcmp (str + strlen (str) - 5, "any2t") == 0)
10123 && (regno & 1) != 0)
10124 as_warn (_("Condition code register should be even for %s, "
10125 "was %d"),
10126 str, regno);
10127 if ((strcmp (str + strlen (str) - 5, "any4f") == 0
10128 || strcmp (str + strlen (str) - 5, "any4t") == 0)
10129 && (regno & 3) != 0)
10130 as_warn (_("Condition code register should be 0 or 4 for %s, "
10131 "was %d"),
10132 str, regno);
10133 if (*args == 'N')
10134 INSERT_OPERAND (BCC, *ip, regno);
10135 else
10136 INSERT_OPERAND (CCC, *ip, regno);
10137 continue;
10138
10139 case 'H':
10140 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10141 s += 2;
10142 if (ISDIGIT (*s))
10143 {
10144 c = 0;
10145 do
10146 {
10147 c *= 10;
10148 c += *s - '0';
10149 ++s;
10150 }
10151 while (ISDIGIT (*s));
10152 }
10153 else
10154 c = 8; /* Invalid sel value. */
10155
10156 if (c > 7)
10157 as_bad (_("Invalid coprocessor sub-selection value (0-7)"));
10158 ip->insn_opcode |= c;
10159 continue;
10160
10161 case 'e':
10162 /* Must be at least one digit. */
10163 my_getExpression (&imm_expr, s);
10164 check_absolute_expr (ip, &imm_expr);
10165
10166 if ((unsigned long) imm_expr.X_add_number
10167 > (unsigned long) OP_MASK_VECBYTE)
10168 {
10169 as_bad (_("bad byte vector index (%ld)"),
10170 (long) imm_expr.X_add_number);
10171 imm_expr.X_add_number = 0;
10172 }
10173
10174 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10175 imm_expr.X_op = O_absent;
10176 s = expr_end;
10177 continue;
10178
10179 case '%':
10180 my_getExpression (&imm_expr, s);
10181 check_absolute_expr (ip, &imm_expr);
10182
10183 if ((unsigned long) imm_expr.X_add_number
10184 > (unsigned long) OP_MASK_VECALIGN)
10185 {
10186 as_bad (_("bad byte vector index (%ld)"),
10187 (long) imm_expr.X_add_number);
10188 imm_expr.X_add_number = 0;
10189 }
10190
10191 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10192 imm_expr.X_op = O_absent;
10193 s = expr_end;
10194 continue;
10195
10196 default:
10197 as_bad (_("Bad char = '%c'\n"), *args);
10198 internalError ();
10199 }
10200 break;
10201 }
10202 /* Args don't match. */
10203 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10204 !strcmp (insn->name, insn[1].name))
10205 {
10206 ++insn;
10207 s = argsStart;
10208 insn_error = _("Illegal operands");
10209 continue;
10210 }
10211 if (save_c)
10212 *(--argsStart) = save_c;
10213 insn_error = _("Illegal operands");
10214 return;
10215 }
10216 }
10217
10218 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10219
10220 /* This routine assembles an instruction into its binary format when
10221 assembling for the mips16. As a side effect, it sets one of the
10222 global variables imm_reloc or offset_reloc to the type of
10223 relocation to do if one of the operands is an address expression.
10224 It also sets mips16_small and mips16_ext if the user explicitly
10225 requested a small or extended instruction. */
10226
10227 static void
10228 mips16_ip (char *str, struct mips_cl_insn *ip)
10229 {
10230 char *s;
10231 const char *args;
10232 struct mips_opcode *insn;
10233 char *argsstart;
10234 unsigned int regno;
10235 unsigned int lastregno = 0;
10236 char *s_reset;
10237 size_t i;
10238
10239 insn_error = NULL;
10240
10241 mips16_small = FALSE;
10242 mips16_ext = FALSE;
10243
10244 for (s = str; ISLOWER (*s); ++s)
10245 ;
10246 switch (*s)
10247 {
10248 case '\0':
10249 break;
10250
10251 case ' ':
10252 *s++ = '\0';
10253 break;
10254
10255 case '.':
10256 if (s[1] == 't' && s[2] == ' ')
10257 {
10258 *s = '\0';
10259 mips16_small = TRUE;
10260 s += 3;
10261 break;
10262 }
10263 else if (s[1] == 'e' && s[2] == ' ')
10264 {
10265 *s = '\0';
10266 mips16_ext = TRUE;
10267 s += 3;
10268 break;
10269 }
10270 /* Fall through. */
10271 default:
10272 insn_error = _("unknown opcode");
10273 return;
10274 }
10275
10276 if (mips_opts.noautoextend && ! mips16_ext)
10277 mips16_small = TRUE;
10278
10279 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10280 {
10281 insn_error = _("unrecognized opcode");
10282 return;
10283 }
10284
10285 argsstart = s;
10286 for (;;)
10287 {
10288 bfd_boolean ok;
10289
10290 gas_assert (strcmp (insn->name, str) == 0);
10291
10292 ok = is_opcode_valid_16 (insn);
10293 if (! ok)
10294 {
10295 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10296 && strcmp (insn->name, insn[1].name) == 0)
10297 {
10298 ++insn;
10299 continue;
10300 }
10301 else
10302 {
10303 if (!insn_error)
10304 {
10305 static char buf[100];
10306 sprintf (buf,
10307 _("opcode not supported on this processor: %s (%s)"),
10308 mips_cpu_info_from_arch (mips_opts.arch)->name,
10309 mips_cpu_info_from_isa (mips_opts.isa)->name);
10310 insn_error = buf;
10311 }
10312 return;
10313 }
10314 }
10315
10316 create_insn (ip, insn);
10317 imm_expr.X_op = O_absent;
10318 imm_reloc[0] = BFD_RELOC_UNUSED;
10319 imm_reloc[1] = BFD_RELOC_UNUSED;
10320 imm_reloc[2] = BFD_RELOC_UNUSED;
10321 imm2_expr.X_op = O_absent;
10322 offset_expr.X_op = O_absent;
10323 offset_reloc[0] = BFD_RELOC_UNUSED;
10324 offset_reloc[1] = BFD_RELOC_UNUSED;
10325 offset_reloc[2] = BFD_RELOC_UNUSED;
10326 for (args = insn->args; 1; ++args)
10327 {
10328 int c;
10329
10330 if (*s == ' ')
10331 ++s;
10332
10333 /* In this switch statement we call break if we did not find
10334 a match, continue if we did find a match, or return if we
10335 are done. */
10336
10337 c = *args;
10338 switch (c)
10339 {
10340 case '\0':
10341 if (*s == '\0')
10342 {
10343 /* Stuff the immediate value in now, if we can. */
10344 if (imm_expr.X_op == O_constant
10345 && *imm_reloc > BFD_RELOC_UNUSED
10346 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10347 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10348 && insn->pinfo != INSN_MACRO)
10349 {
10350 valueT tmp;
10351
10352 switch (*offset_reloc)
10353 {
10354 case BFD_RELOC_MIPS16_HI16_S:
10355 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10356 break;
10357
10358 case BFD_RELOC_MIPS16_HI16:
10359 tmp = imm_expr.X_add_number >> 16;
10360 break;
10361
10362 case BFD_RELOC_MIPS16_LO16:
10363 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10364 - 0x8000;
10365 break;
10366
10367 case BFD_RELOC_UNUSED:
10368 tmp = imm_expr.X_add_number;
10369 break;
10370
10371 default:
10372 internalError ();
10373 }
10374 *offset_reloc = BFD_RELOC_UNUSED;
10375
10376 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10377 tmp, TRUE, mips16_small,
10378 mips16_ext, &ip->insn_opcode,
10379 &ip->use_extend, &ip->extend);
10380 imm_expr.X_op = O_absent;
10381 *imm_reloc = BFD_RELOC_UNUSED;
10382 }
10383
10384 return;
10385 }
10386 break;
10387
10388 case ',':
10389 if (*s++ == c)
10390 continue;
10391 s--;
10392 switch (*++args)
10393 {
10394 case 'v':
10395 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10396 continue;
10397 case 'w':
10398 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10399 continue;
10400 }
10401 break;
10402
10403 case '(':
10404 case ')':
10405 if (*s++ == c)
10406 continue;
10407 break;
10408
10409 case 'v':
10410 case 'w':
10411 if (s[0] != '$')
10412 {
10413 if (c == 'v')
10414 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10415 else
10416 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10417 ++args;
10418 continue;
10419 }
10420 /* Fall through. */
10421 case 'x':
10422 case 'y':
10423 case 'z':
10424 case 'Z':
10425 case '0':
10426 case 'S':
10427 case 'R':
10428 case 'X':
10429 case 'Y':
10430 s_reset = s;
10431 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10432 {
10433 if (c == 'v' || c == 'w')
10434 {
10435 if (c == 'v')
10436 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10437 else
10438 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10439 ++args;
10440 continue;
10441 }
10442 break;
10443 }
10444
10445 if (*s == ' ')
10446 ++s;
10447 if (args[1] != *s)
10448 {
10449 if (c == 'v' || c == 'w')
10450 {
10451 regno = mips16_to_32_reg_map[lastregno];
10452 s = s_reset;
10453 ++args;
10454 }
10455 }
10456
10457 switch (c)
10458 {
10459 case 'x':
10460 case 'y':
10461 case 'z':
10462 case 'v':
10463 case 'w':
10464 case 'Z':
10465 regno = mips32_to_16_reg_map[regno];
10466 break;
10467
10468 case '0':
10469 if (regno != 0)
10470 regno = ILLEGAL_REG;
10471 break;
10472
10473 case 'S':
10474 if (regno != SP)
10475 regno = ILLEGAL_REG;
10476 break;
10477
10478 case 'R':
10479 if (regno != RA)
10480 regno = ILLEGAL_REG;
10481 break;
10482
10483 case 'X':
10484 case 'Y':
10485 if (regno == AT && mips_opts.at)
10486 {
10487 if (mips_opts.at == ATREG)
10488 as_warn (_("used $at without \".set noat\""));
10489 else
10490 as_warn (_("used $%u with \".set at=$%u\""),
10491 regno, mips_opts.at);
10492 }
10493 break;
10494
10495 default:
10496 internalError ();
10497 }
10498
10499 if (regno == ILLEGAL_REG)
10500 break;
10501
10502 switch (c)
10503 {
10504 case 'x':
10505 case 'v':
10506 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10507 break;
10508 case 'y':
10509 case 'w':
10510 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10511 break;
10512 case 'z':
10513 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10514 break;
10515 case 'Z':
10516 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10517 case '0':
10518 case 'S':
10519 case 'R':
10520 break;
10521 case 'X':
10522 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10523 break;
10524 case 'Y':
10525 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10526 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10527 break;
10528 default:
10529 internalError ();
10530 }
10531
10532 lastregno = regno;
10533 continue;
10534
10535 case 'P':
10536 if (strncmp (s, "$pc", 3) == 0)
10537 {
10538 s += 3;
10539 continue;
10540 }
10541 break;
10542
10543 case '5':
10544 case 'H':
10545 case 'W':
10546 case 'D':
10547 case 'j':
10548 case 'V':
10549 case 'C':
10550 case 'U':
10551 case 'k':
10552 case 'K':
10553 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10554 if (i > 0)
10555 {
10556 if (imm_expr.X_op != O_constant)
10557 {
10558 mips16_ext = TRUE;
10559 ip->use_extend = TRUE;
10560 ip->extend = 0;
10561 }
10562 else
10563 {
10564 /* We need to relax this instruction. */
10565 *offset_reloc = *imm_reloc;
10566 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10567 }
10568 s = expr_end;
10569 continue;
10570 }
10571 *imm_reloc = BFD_RELOC_UNUSED;
10572 /* Fall through. */
10573 case '<':
10574 case '>':
10575 case '[':
10576 case ']':
10577 case '4':
10578 case '8':
10579 my_getExpression (&imm_expr, s);
10580 if (imm_expr.X_op == O_register)
10581 {
10582 /* What we thought was an expression turned out to
10583 be a register. */
10584
10585 if (s[0] == '(' && args[1] == '(')
10586 {
10587 /* It looks like the expression was omitted
10588 before a register indirection, which means
10589 that the expression is implicitly zero. We
10590 still set up imm_expr, so that we handle
10591 explicit extensions correctly. */
10592 imm_expr.X_op = O_constant;
10593 imm_expr.X_add_number = 0;
10594 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10595 continue;
10596 }
10597
10598 break;
10599 }
10600
10601 /* We need to relax this instruction. */
10602 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10603 s = expr_end;
10604 continue;
10605
10606 case 'p':
10607 case 'q':
10608 case 'A':
10609 case 'B':
10610 case 'E':
10611 /* We use offset_reloc rather than imm_reloc for the PC
10612 relative operands. This lets macros with both
10613 immediate and address operands work correctly. */
10614 my_getExpression (&offset_expr, s);
10615
10616 if (offset_expr.X_op == O_register)
10617 break;
10618
10619 /* We need to relax this instruction. */
10620 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10621 s = expr_end;
10622 continue;
10623
10624 case '6': /* break code */
10625 my_getExpression (&imm_expr, s);
10626 check_absolute_expr (ip, &imm_expr);
10627 if ((unsigned long) imm_expr.X_add_number > 63)
10628 as_warn (_("Invalid value for `%s' (%lu)"),
10629 ip->insn_mo->name,
10630 (unsigned long) imm_expr.X_add_number);
10631 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10632 imm_expr.X_op = O_absent;
10633 s = expr_end;
10634 continue;
10635
10636 case 'a': /* 26 bit address */
10637 my_getExpression (&offset_expr, s);
10638 s = expr_end;
10639 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10640 ip->insn_opcode <<= 16;
10641 continue;
10642
10643 case 'l': /* register list for entry macro */
10644 case 'L': /* register list for exit macro */
10645 {
10646 int mask;
10647
10648 if (c == 'l')
10649 mask = 0;
10650 else
10651 mask = 7 << 3;
10652 while (*s != '\0')
10653 {
10654 unsigned int freg, reg1, reg2;
10655
10656 while (*s == ' ' || *s == ',')
10657 ++s;
10658 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10659 freg = 0;
10660 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10661 freg = 1;
10662 else
10663 {
10664 as_bad (_("can't parse register list"));
10665 break;
10666 }
10667 if (*s == ' ')
10668 ++s;
10669 if (*s != '-')
10670 reg2 = reg1;
10671 else
10672 {
10673 ++s;
10674 if (!reg_lookup (&s, freg ? RTYPE_FPU
10675 : (RTYPE_GP | RTYPE_NUM), &reg2))
10676 {
10677 as_bad (_("invalid register list"));
10678 break;
10679 }
10680 }
10681 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10682 {
10683 mask &= ~ (7 << 3);
10684 mask |= 5 << 3;
10685 }
10686 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10687 {
10688 mask &= ~ (7 << 3);
10689 mask |= 6 << 3;
10690 }
10691 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10692 mask |= (reg2 - 3) << 3;
10693 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10694 mask |= (reg2 - 15) << 1;
10695 else if (reg1 == RA && reg2 == RA)
10696 mask |= 1;
10697 else
10698 {
10699 as_bad (_("invalid register list"));
10700 break;
10701 }
10702 }
10703 /* The mask is filled in in the opcode table for the
10704 benefit of the disassembler. We remove it before
10705 applying the actual mask. */
10706 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10707 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10708 }
10709 continue;
10710
10711 case 'm': /* Register list for save insn. */
10712 case 'M': /* Register list for restore insn. */
10713 {
10714 int opcode = 0;
10715 int framesz = 0, seen_framesz = 0;
10716 int nargs = 0, statics = 0, sregs = 0;
10717
10718 while (*s != '\0')
10719 {
10720 unsigned int reg1, reg2;
10721
10722 SKIP_SPACE_TABS (s);
10723 while (*s == ',')
10724 ++s;
10725 SKIP_SPACE_TABS (s);
10726
10727 my_getExpression (&imm_expr, s);
10728 if (imm_expr.X_op == O_constant)
10729 {
10730 /* Handle the frame size. */
10731 if (seen_framesz)
10732 {
10733 as_bad (_("more than one frame size in list"));
10734 break;
10735 }
10736 seen_framesz = 1;
10737 framesz = imm_expr.X_add_number;
10738 imm_expr.X_op = O_absent;
10739 s = expr_end;
10740 continue;
10741 }
10742
10743 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10744 {
10745 as_bad (_("can't parse register list"));
10746 break;
10747 }
10748
10749 while (*s == ' ')
10750 ++s;
10751
10752 if (*s != '-')
10753 reg2 = reg1;
10754 else
10755 {
10756 ++s;
10757 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10758 || reg2 < reg1)
10759 {
10760 as_bad (_("can't parse register list"));
10761 break;
10762 }
10763 }
10764
10765 while (reg1 <= reg2)
10766 {
10767 if (reg1 >= 4 && reg1 <= 7)
10768 {
10769 if (!seen_framesz)
10770 /* args $a0-$a3 */
10771 nargs |= 1 << (reg1 - 4);
10772 else
10773 /* statics $a0-$a3 */
10774 statics |= 1 << (reg1 - 4);
10775 }
10776 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10777 {
10778 /* $s0-$s8 */
10779 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10780 }
10781 else if (reg1 == 31)
10782 {
10783 /* Add $ra to insn. */
10784 opcode |= 0x40;
10785 }
10786 else
10787 {
10788 as_bad (_("unexpected register in list"));
10789 break;
10790 }
10791 if (++reg1 == 24)
10792 reg1 = 30;
10793 }
10794 }
10795
10796 /* Encode args/statics combination. */
10797 if (nargs & statics)
10798 as_bad (_("arg/static registers overlap"));
10799 else if (nargs == 0xf)
10800 /* All $a0-$a3 are args. */
10801 opcode |= MIPS16_ALL_ARGS << 16;
10802 else if (statics == 0xf)
10803 /* All $a0-$a3 are statics. */
10804 opcode |= MIPS16_ALL_STATICS << 16;
10805 else
10806 {
10807 int narg = 0, nstat = 0;
10808
10809 /* Count arg registers. */
10810 while (nargs & 0x1)
10811 {
10812 nargs >>= 1;
10813 narg++;
10814 }
10815 if (nargs != 0)
10816 as_bad (_("invalid arg register list"));
10817
10818 /* Count static registers. */
10819 while (statics & 0x8)
10820 {
10821 statics = (statics << 1) & 0xf;
10822 nstat++;
10823 }
10824 if (statics != 0)
10825 as_bad (_("invalid static register list"));
10826
10827 /* Encode args/statics. */
10828 opcode |= ((narg << 2) | nstat) << 16;
10829 }
10830
10831 /* Encode $s0/$s1. */
10832 if (sregs & (1 << 0)) /* $s0 */
10833 opcode |= 0x20;
10834 if (sregs & (1 << 1)) /* $s1 */
10835 opcode |= 0x10;
10836 sregs >>= 2;
10837
10838 if (sregs != 0)
10839 {
10840 /* Count regs $s2-$s8. */
10841 int nsreg = 0;
10842 while (sregs & 1)
10843 {
10844 sregs >>= 1;
10845 nsreg++;
10846 }
10847 if (sregs != 0)
10848 as_bad (_("invalid static register list"));
10849 /* Encode $s2-$s8. */
10850 opcode |= nsreg << 24;
10851 }
10852
10853 /* Encode frame size. */
10854 if (!seen_framesz)
10855 as_bad (_("missing frame size"));
10856 else if ((framesz & 7) != 0 || framesz < 0
10857 || framesz > 0xff * 8)
10858 as_bad (_("invalid frame size"));
10859 else if (framesz != 128 || (opcode >> 16) != 0)
10860 {
10861 framesz /= 8;
10862 opcode |= (((framesz & 0xf0) << 16)
10863 | (framesz & 0x0f));
10864 }
10865
10866 /* Finally build the instruction. */
10867 if ((opcode >> 16) != 0 || framesz == 0)
10868 {
10869 ip->use_extend = TRUE;
10870 ip->extend = opcode >> 16;
10871 }
10872 ip->insn_opcode |= opcode & 0x7f;
10873 }
10874 continue;
10875
10876 case 'e': /* extend code */
10877 my_getExpression (&imm_expr, s);
10878 check_absolute_expr (ip, &imm_expr);
10879 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10880 {
10881 as_warn (_("Invalid value for `%s' (%lu)"),
10882 ip->insn_mo->name,
10883 (unsigned long) imm_expr.X_add_number);
10884 imm_expr.X_add_number &= 0x7ff;
10885 }
10886 ip->insn_opcode |= imm_expr.X_add_number;
10887 imm_expr.X_op = O_absent;
10888 s = expr_end;
10889 continue;
10890
10891 default:
10892 internalError ();
10893 }
10894 break;
10895 }
10896
10897 /* Args don't match. */
10898 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10899 strcmp (insn->name, insn[1].name) == 0)
10900 {
10901 ++insn;
10902 s = argsstart;
10903 continue;
10904 }
10905
10906 insn_error = _("illegal operands");
10907
10908 return;
10909 }
10910 }
10911
10912 /* This structure holds information we know about a mips16 immediate
10913 argument type. */
10914
10915 struct mips16_immed_operand
10916 {
10917 /* The type code used in the argument string in the opcode table. */
10918 int type;
10919 /* The number of bits in the short form of the opcode. */
10920 int nbits;
10921 /* The number of bits in the extended form of the opcode. */
10922 int extbits;
10923 /* The amount by which the short form is shifted when it is used;
10924 for example, the sw instruction has a shift count of 2. */
10925 int shift;
10926 /* The amount by which the short form is shifted when it is stored
10927 into the instruction code. */
10928 int op_shift;
10929 /* Non-zero if the short form is unsigned. */
10930 int unsp;
10931 /* Non-zero if the extended form is unsigned. */
10932 int extu;
10933 /* Non-zero if the value is PC relative. */
10934 int pcrel;
10935 };
10936
10937 /* The mips16 immediate operand types. */
10938
10939 static const struct mips16_immed_operand mips16_immed_operands[] =
10940 {
10941 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10942 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10943 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10944 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10945 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10946 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10947 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10948 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10949 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10950 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10951 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10952 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10953 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10954 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10955 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10956 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10957 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10958 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10959 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10960 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10961 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10962 };
10963
10964 #define MIPS16_NUM_IMMED \
10965 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10966
10967 /* Handle a mips16 instruction with an immediate value. This or's the
10968 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10969 whether an extended value is needed; if one is needed, it sets
10970 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10971 If SMALL is true, an unextended opcode was explicitly requested.
10972 If EXT is true, an extended opcode was explicitly requested. If
10973 WARN is true, warn if EXT does not match reality. */
10974
10975 static void
10976 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10977 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10978 unsigned long *insn, bfd_boolean *use_extend,
10979 unsigned short *extend)
10980 {
10981 const struct mips16_immed_operand *op;
10982 int mintiny, maxtiny;
10983 bfd_boolean needext;
10984
10985 op = mips16_immed_operands;
10986 while (op->type != type)
10987 {
10988 ++op;
10989 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10990 }
10991
10992 if (op->unsp)
10993 {
10994 if (type == '<' || type == '>' || type == '[' || type == ']')
10995 {
10996 mintiny = 1;
10997 maxtiny = 1 << op->nbits;
10998 }
10999 else
11000 {
11001 mintiny = 0;
11002 maxtiny = (1 << op->nbits) - 1;
11003 }
11004 }
11005 else
11006 {
11007 mintiny = - (1 << (op->nbits - 1));
11008 maxtiny = (1 << (op->nbits - 1)) - 1;
11009 }
11010
11011 /* Branch offsets have an implicit 0 in the lowest bit. */
11012 if (type == 'p' || type == 'q')
11013 val /= 2;
11014
11015 if ((val & ((1 << op->shift) - 1)) != 0
11016 || val < (mintiny << op->shift)
11017 || val > (maxtiny << op->shift))
11018 needext = TRUE;
11019 else
11020 needext = FALSE;
11021
11022 if (warn && ext && ! needext)
11023 as_warn_where (file, line,
11024 _("extended operand requested but not required"));
11025 if (small && needext)
11026 as_bad_where (file, line, _("invalid unextended operand value"));
11027
11028 if (small || (! ext && ! needext))
11029 {
11030 int insnval;
11031
11032 *use_extend = FALSE;
11033 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
11034 insnval <<= op->op_shift;
11035 *insn |= insnval;
11036 }
11037 else
11038 {
11039 long minext, maxext;
11040 int extval;
11041
11042 if (op->extu)
11043 {
11044 minext = 0;
11045 maxext = (1 << op->extbits) - 1;
11046 }
11047 else
11048 {
11049 minext = - (1 << (op->extbits - 1));
11050 maxext = (1 << (op->extbits - 1)) - 1;
11051 }
11052 if (val < minext || val > maxext)
11053 as_bad_where (file, line,
11054 _("operand value out of range for instruction"));
11055
11056 *use_extend = TRUE;
11057 if (op->extbits == 16)
11058 {
11059 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
11060 val &= 0x1f;
11061 }
11062 else if (op->extbits == 15)
11063 {
11064 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
11065 val &= 0xf;
11066 }
11067 else
11068 {
11069 extval = ((val & 0x1f) << 6) | (val & 0x20);
11070 val = 0;
11071 }
11072
11073 *extend = (unsigned short) extval;
11074 *insn |= val;
11075 }
11076 }
11077 \f
11078 struct percent_op_match
11079 {
11080 const char *str;
11081 bfd_reloc_code_real_type reloc;
11082 };
11083
11084 static const struct percent_op_match mips_percent_op[] =
11085 {
11086 {"%lo", BFD_RELOC_LO16},
11087 #ifdef OBJ_ELF
11088 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
11089 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
11090 {"%call16", BFD_RELOC_MIPS_CALL16},
11091 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
11092 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
11093 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
11094 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
11095 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
11096 {"%got", BFD_RELOC_MIPS_GOT16},
11097 {"%gp_rel", BFD_RELOC_GPREL16},
11098 {"%half", BFD_RELOC_16},
11099 {"%highest", BFD_RELOC_MIPS_HIGHEST},
11100 {"%higher", BFD_RELOC_MIPS_HIGHER},
11101 {"%neg", BFD_RELOC_MIPS_SUB},
11102 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
11103 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
11104 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
11105 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
11106 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
11107 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
11108 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
11109 #endif
11110 {"%hi", BFD_RELOC_HI16_S}
11111 };
11112
11113 static const struct percent_op_match mips16_percent_op[] =
11114 {
11115 {"%lo", BFD_RELOC_MIPS16_LO16},
11116 {"%gprel", BFD_RELOC_MIPS16_GPREL},
11117 {"%got", BFD_RELOC_MIPS16_GOT16},
11118 {"%call16", BFD_RELOC_MIPS16_CALL16},
11119 {"%hi", BFD_RELOC_MIPS16_HI16_S}
11120 };
11121
11122
11123 /* Return true if *STR points to a relocation operator. When returning true,
11124 move *STR over the operator and store its relocation code in *RELOC.
11125 Leave both *STR and *RELOC alone when returning false. */
11126
11127 static bfd_boolean
11128 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11129 {
11130 const struct percent_op_match *percent_op;
11131 size_t limit, i;
11132
11133 if (mips_opts.mips16)
11134 {
11135 percent_op = mips16_percent_op;
11136 limit = ARRAY_SIZE (mips16_percent_op);
11137 }
11138 else
11139 {
11140 percent_op = mips_percent_op;
11141 limit = ARRAY_SIZE (mips_percent_op);
11142 }
11143
11144 for (i = 0; i < limit; i++)
11145 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11146 {
11147 int len = strlen (percent_op[i].str);
11148
11149 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11150 continue;
11151
11152 *str += strlen (percent_op[i].str);
11153 *reloc = percent_op[i].reloc;
11154
11155 /* Check whether the output BFD supports this relocation.
11156 If not, issue an error and fall back on something safe. */
11157 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11158 {
11159 as_bad (_("relocation %s isn't supported by the current ABI"),
11160 percent_op[i].str);
11161 *reloc = BFD_RELOC_UNUSED;
11162 }
11163 return TRUE;
11164 }
11165 return FALSE;
11166 }
11167
11168
11169 /* Parse string STR as a 16-bit relocatable operand. Store the
11170 expression in *EP and the relocations in the array starting
11171 at RELOC. Return the number of relocation operators used.
11172
11173 On exit, EXPR_END points to the first character after the expression. */
11174
11175 static size_t
11176 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11177 char *str)
11178 {
11179 bfd_reloc_code_real_type reversed_reloc[3];
11180 size_t reloc_index, i;
11181 int crux_depth, str_depth;
11182 char *crux;
11183
11184 /* Search for the start of the main expression, recoding relocations
11185 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11186 of the main expression and with CRUX_DEPTH containing the number
11187 of open brackets at that point. */
11188 reloc_index = -1;
11189 str_depth = 0;
11190 do
11191 {
11192 reloc_index++;
11193 crux = str;
11194 crux_depth = str_depth;
11195
11196 /* Skip over whitespace and brackets, keeping count of the number
11197 of brackets. */
11198 while (*str == ' ' || *str == '\t' || *str == '(')
11199 if (*str++ == '(')
11200 str_depth++;
11201 }
11202 while (*str == '%'
11203 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11204 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11205
11206 my_getExpression (ep, crux);
11207 str = expr_end;
11208
11209 /* Match every open bracket. */
11210 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11211 if (*str++ == ')')
11212 crux_depth--;
11213
11214 if (crux_depth > 0)
11215 as_bad (_("unclosed '('"));
11216
11217 expr_end = str;
11218
11219 if (reloc_index != 0)
11220 {
11221 prev_reloc_op_frag = frag_now;
11222 for (i = 0; i < reloc_index; i++)
11223 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11224 }
11225
11226 return reloc_index;
11227 }
11228
11229 static void
11230 my_getExpression (expressionS *ep, char *str)
11231 {
11232 char *save_in;
11233
11234 save_in = input_line_pointer;
11235 input_line_pointer = str;
11236 expression (ep);
11237 expr_end = input_line_pointer;
11238 input_line_pointer = save_in;
11239 }
11240
11241 char *
11242 md_atof (int type, char *litP, int *sizeP)
11243 {
11244 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11245 }
11246
11247 void
11248 md_number_to_chars (char *buf, valueT val, int n)
11249 {
11250 if (target_big_endian)
11251 number_to_chars_bigendian (buf, val, n);
11252 else
11253 number_to_chars_littleendian (buf, val, n);
11254 }
11255 \f
11256 #ifdef OBJ_ELF
11257 static int support_64bit_objects(void)
11258 {
11259 const char **list, **l;
11260 int yes;
11261
11262 list = bfd_target_list ();
11263 for (l = list; *l != NULL; l++)
11264 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
11265 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
11266 break;
11267 yes = (*l != NULL);
11268 free (list);
11269 return yes;
11270 }
11271 #endif /* OBJ_ELF */
11272
11273 const char *md_shortopts = "O::g::G:";
11274
11275 enum options
11276 {
11277 OPTION_MARCH = OPTION_MD_BASE,
11278 OPTION_MTUNE,
11279 OPTION_MIPS1,
11280 OPTION_MIPS2,
11281 OPTION_MIPS3,
11282 OPTION_MIPS4,
11283 OPTION_MIPS5,
11284 OPTION_MIPS32,
11285 OPTION_MIPS64,
11286 OPTION_MIPS32R2,
11287 OPTION_MIPS64R2,
11288 OPTION_MIPS16,
11289 OPTION_NO_MIPS16,
11290 OPTION_MIPS3D,
11291 OPTION_NO_MIPS3D,
11292 OPTION_MDMX,
11293 OPTION_NO_MDMX,
11294 OPTION_DSP,
11295 OPTION_NO_DSP,
11296 OPTION_MT,
11297 OPTION_NO_MT,
11298 OPTION_SMARTMIPS,
11299 OPTION_NO_SMARTMIPS,
11300 OPTION_DSPR2,
11301 OPTION_NO_DSPR2,
11302 OPTION_COMPAT_ARCH_BASE,
11303 OPTION_M4650,
11304 OPTION_NO_M4650,
11305 OPTION_M4010,
11306 OPTION_NO_M4010,
11307 OPTION_M4100,
11308 OPTION_NO_M4100,
11309 OPTION_M3900,
11310 OPTION_NO_M3900,
11311 OPTION_M7000_HILO_FIX,
11312 OPTION_MNO_7000_HILO_FIX,
11313 OPTION_FIX_24K,
11314 OPTION_NO_FIX_24K,
11315 OPTION_FIX_LOONGSON2F_JUMP,
11316 OPTION_NO_FIX_LOONGSON2F_JUMP,
11317 OPTION_FIX_LOONGSON2F_NOP,
11318 OPTION_NO_FIX_LOONGSON2F_NOP,
11319 OPTION_FIX_VR4120,
11320 OPTION_NO_FIX_VR4120,
11321 OPTION_FIX_VR4130,
11322 OPTION_NO_FIX_VR4130,
11323 OPTION_FIX_CN63XXP1,
11324 OPTION_NO_FIX_CN63XXP1,
11325 OPTION_TRAP,
11326 OPTION_BREAK,
11327 OPTION_EB,
11328 OPTION_EL,
11329 OPTION_FP32,
11330 OPTION_GP32,
11331 OPTION_CONSTRUCT_FLOATS,
11332 OPTION_NO_CONSTRUCT_FLOATS,
11333 OPTION_FP64,
11334 OPTION_GP64,
11335 OPTION_RELAX_BRANCH,
11336 OPTION_NO_RELAX_BRANCH,
11337 OPTION_MSHARED,
11338 OPTION_MNO_SHARED,
11339 OPTION_MSYM32,
11340 OPTION_MNO_SYM32,
11341 OPTION_SOFT_FLOAT,
11342 OPTION_HARD_FLOAT,
11343 OPTION_SINGLE_FLOAT,
11344 OPTION_DOUBLE_FLOAT,
11345 OPTION_32,
11346 #ifdef OBJ_ELF
11347 OPTION_CALL_SHARED,
11348 OPTION_CALL_NONPIC,
11349 OPTION_NON_SHARED,
11350 OPTION_XGOT,
11351 OPTION_MABI,
11352 OPTION_N32,
11353 OPTION_64,
11354 OPTION_MDEBUG,
11355 OPTION_NO_MDEBUG,
11356 OPTION_PDR,
11357 OPTION_NO_PDR,
11358 OPTION_MVXWORKS_PIC,
11359 #endif /* OBJ_ELF */
11360 OPTION_END_OF_ENUM
11361 };
11362
11363 struct option md_longopts[] =
11364 {
11365 /* Options which specify architecture. */
11366 {"march", required_argument, NULL, OPTION_MARCH},
11367 {"mtune", required_argument, NULL, OPTION_MTUNE},
11368 {"mips0", no_argument, NULL, OPTION_MIPS1},
11369 {"mips1", no_argument, NULL, OPTION_MIPS1},
11370 {"mips2", no_argument, NULL, OPTION_MIPS2},
11371 {"mips3", no_argument, NULL, OPTION_MIPS3},
11372 {"mips4", no_argument, NULL, OPTION_MIPS4},
11373 {"mips5", no_argument, NULL, OPTION_MIPS5},
11374 {"mips32", no_argument, NULL, OPTION_MIPS32},
11375 {"mips64", no_argument, NULL, OPTION_MIPS64},
11376 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11377 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11378
11379 /* Options which specify Application Specific Extensions (ASEs). */
11380 {"mips16", no_argument, NULL, OPTION_MIPS16},
11381 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11382 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11383 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11384 {"mdmx", no_argument, NULL, OPTION_MDMX},
11385 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11386 {"mdsp", no_argument, NULL, OPTION_DSP},
11387 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11388 {"mmt", no_argument, NULL, OPTION_MT},
11389 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11390 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11391 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11392 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11393 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11394
11395 /* Old-style architecture options. Don't add more of these. */
11396 {"m4650", no_argument, NULL, OPTION_M4650},
11397 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11398 {"m4010", no_argument, NULL, OPTION_M4010},
11399 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11400 {"m4100", no_argument, NULL, OPTION_M4100},
11401 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11402 {"m3900", no_argument, NULL, OPTION_M3900},
11403 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11404
11405 /* Options which enable bug fixes. */
11406 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11407 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11408 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11409 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
11410 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
11411 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
11412 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
11413 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11414 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11415 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11416 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11417 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11418 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11419 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
11420 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
11421
11422 /* Miscellaneous options. */
11423 {"trap", no_argument, NULL, OPTION_TRAP},
11424 {"no-break", no_argument, NULL, OPTION_TRAP},
11425 {"break", no_argument, NULL, OPTION_BREAK},
11426 {"no-trap", no_argument, NULL, OPTION_BREAK},
11427 {"EB", no_argument, NULL, OPTION_EB},
11428 {"EL", no_argument, NULL, OPTION_EL},
11429 {"mfp32", no_argument, NULL, OPTION_FP32},
11430 {"mgp32", no_argument, NULL, OPTION_GP32},
11431 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11432 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11433 {"mfp64", no_argument, NULL, OPTION_FP64},
11434 {"mgp64", no_argument, NULL, OPTION_GP64},
11435 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11436 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11437 {"mshared", no_argument, NULL, OPTION_MSHARED},
11438 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11439 {"msym32", no_argument, NULL, OPTION_MSYM32},
11440 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11441 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11442 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11443 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11444 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11445
11446 /* Strictly speaking this next option is ELF specific,
11447 but we allow it for other ports as well in order to
11448 make testing easier. */
11449 {"32", no_argument, NULL, OPTION_32},
11450
11451 /* ELF-specific options. */
11452 #ifdef OBJ_ELF
11453 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11454 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11455 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11456 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11457 {"xgot", no_argument, NULL, OPTION_XGOT},
11458 {"mabi", required_argument, NULL, OPTION_MABI},
11459 {"n32", no_argument, NULL, OPTION_N32},
11460 {"64", no_argument, NULL, OPTION_64},
11461 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11462 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11463 {"mpdr", no_argument, NULL, OPTION_PDR},
11464 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11465 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11466 #endif /* OBJ_ELF */
11467
11468 {NULL, no_argument, NULL, 0}
11469 };
11470 size_t md_longopts_size = sizeof (md_longopts);
11471
11472 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11473 NEW_VALUE. Warn if another value was already specified. Note:
11474 we have to defer parsing the -march and -mtune arguments in order
11475 to handle 'from-abi' correctly, since the ABI might be specified
11476 in a later argument. */
11477
11478 static void
11479 mips_set_option_string (const char **string_ptr, const char *new_value)
11480 {
11481 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11482 as_warn (_("A different %s was already specified, is now %s"),
11483 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11484 new_value);
11485
11486 *string_ptr = new_value;
11487 }
11488
11489 int
11490 md_parse_option (int c, char *arg)
11491 {
11492 switch (c)
11493 {
11494 case OPTION_CONSTRUCT_FLOATS:
11495 mips_disable_float_construction = 0;
11496 break;
11497
11498 case OPTION_NO_CONSTRUCT_FLOATS:
11499 mips_disable_float_construction = 1;
11500 break;
11501
11502 case OPTION_TRAP:
11503 mips_trap = 1;
11504 break;
11505
11506 case OPTION_BREAK:
11507 mips_trap = 0;
11508 break;
11509
11510 case OPTION_EB:
11511 target_big_endian = 1;
11512 break;
11513
11514 case OPTION_EL:
11515 target_big_endian = 0;
11516 break;
11517
11518 case 'O':
11519 if (arg == NULL)
11520 mips_optimize = 1;
11521 else if (arg[0] == '0')
11522 mips_optimize = 0;
11523 else if (arg[0] == '1')
11524 mips_optimize = 1;
11525 else
11526 mips_optimize = 2;
11527 break;
11528
11529 case 'g':
11530 if (arg == NULL)
11531 mips_debug = 2;
11532 else
11533 mips_debug = atoi (arg);
11534 break;
11535
11536 case OPTION_MIPS1:
11537 file_mips_isa = ISA_MIPS1;
11538 break;
11539
11540 case OPTION_MIPS2:
11541 file_mips_isa = ISA_MIPS2;
11542 break;
11543
11544 case OPTION_MIPS3:
11545 file_mips_isa = ISA_MIPS3;
11546 break;
11547
11548 case OPTION_MIPS4:
11549 file_mips_isa = ISA_MIPS4;
11550 break;
11551
11552 case OPTION_MIPS5:
11553 file_mips_isa = ISA_MIPS5;
11554 break;
11555
11556 case OPTION_MIPS32:
11557 file_mips_isa = ISA_MIPS32;
11558 break;
11559
11560 case OPTION_MIPS32R2:
11561 file_mips_isa = ISA_MIPS32R2;
11562 break;
11563
11564 case OPTION_MIPS64R2:
11565 file_mips_isa = ISA_MIPS64R2;
11566 break;
11567
11568 case OPTION_MIPS64:
11569 file_mips_isa = ISA_MIPS64;
11570 break;
11571
11572 case OPTION_MTUNE:
11573 mips_set_option_string (&mips_tune_string, arg);
11574 break;
11575
11576 case OPTION_MARCH:
11577 mips_set_option_string (&mips_arch_string, arg);
11578 break;
11579
11580 case OPTION_M4650:
11581 mips_set_option_string (&mips_arch_string, "4650");
11582 mips_set_option_string (&mips_tune_string, "4650");
11583 break;
11584
11585 case OPTION_NO_M4650:
11586 break;
11587
11588 case OPTION_M4010:
11589 mips_set_option_string (&mips_arch_string, "4010");
11590 mips_set_option_string (&mips_tune_string, "4010");
11591 break;
11592
11593 case OPTION_NO_M4010:
11594 break;
11595
11596 case OPTION_M4100:
11597 mips_set_option_string (&mips_arch_string, "4100");
11598 mips_set_option_string (&mips_tune_string, "4100");
11599 break;
11600
11601 case OPTION_NO_M4100:
11602 break;
11603
11604 case OPTION_M3900:
11605 mips_set_option_string (&mips_arch_string, "3900");
11606 mips_set_option_string (&mips_tune_string, "3900");
11607 break;
11608
11609 case OPTION_NO_M3900:
11610 break;
11611
11612 case OPTION_MDMX:
11613 mips_opts.ase_mdmx = 1;
11614 break;
11615
11616 case OPTION_NO_MDMX:
11617 mips_opts.ase_mdmx = 0;
11618 break;
11619
11620 case OPTION_DSP:
11621 mips_opts.ase_dsp = 1;
11622 mips_opts.ase_dspr2 = 0;
11623 break;
11624
11625 case OPTION_NO_DSP:
11626 mips_opts.ase_dsp = 0;
11627 mips_opts.ase_dspr2 = 0;
11628 break;
11629
11630 case OPTION_DSPR2:
11631 mips_opts.ase_dspr2 = 1;
11632 mips_opts.ase_dsp = 1;
11633 break;
11634
11635 case OPTION_NO_DSPR2:
11636 mips_opts.ase_dspr2 = 0;
11637 mips_opts.ase_dsp = 0;
11638 break;
11639
11640 case OPTION_MT:
11641 mips_opts.ase_mt = 1;
11642 break;
11643
11644 case OPTION_NO_MT:
11645 mips_opts.ase_mt = 0;
11646 break;
11647
11648 case OPTION_MIPS16:
11649 mips_opts.mips16 = 1;
11650 mips_no_prev_insn ();
11651 break;
11652
11653 case OPTION_NO_MIPS16:
11654 mips_opts.mips16 = 0;
11655 mips_no_prev_insn ();
11656 break;
11657
11658 case OPTION_MIPS3D:
11659 mips_opts.ase_mips3d = 1;
11660 break;
11661
11662 case OPTION_NO_MIPS3D:
11663 mips_opts.ase_mips3d = 0;
11664 break;
11665
11666 case OPTION_SMARTMIPS:
11667 mips_opts.ase_smartmips = 1;
11668 break;
11669
11670 case OPTION_NO_SMARTMIPS:
11671 mips_opts.ase_smartmips = 0;
11672 break;
11673
11674 case OPTION_FIX_24K:
11675 mips_fix_24k = 1;
11676 break;
11677
11678 case OPTION_NO_FIX_24K:
11679 mips_fix_24k = 0;
11680 break;
11681
11682 case OPTION_FIX_LOONGSON2F_JUMP:
11683 mips_fix_loongson2f_jump = TRUE;
11684 break;
11685
11686 case OPTION_NO_FIX_LOONGSON2F_JUMP:
11687 mips_fix_loongson2f_jump = FALSE;
11688 break;
11689
11690 case OPTION_FIX_LOONGSON2F_NOP:
11691 mips_fix_loongson2f_nop = TRUE;
11692 break;
11693
11694 case OPTION_NO_FIX_LOONGSON2F_NOP:
11695 mips_fix_loongson2f_nop = FALSE;
11696 break;
11697
11698 case OPTION_FIX_VR4120:
11699 mips_fix_vr4120 = 1;
11700 break;
11701
11702 case OPTION_NO_FIX_VR4120:
11703 mips_fix_vr4120 = 0;
11704 break;
11705
11706 case OPTION_FIX_VR4130:
11707 mips_fix_vr4130 = 1;
11708 break;
11709
11710 case OPTION_NO_FIX_VR4130:
11711 mips_fix_vr4130 = 0;
11712 break;
11713
11714 case OPTION_FIX_CN63XXP1:
11715 mips_fix_cn63xxp1 = TRUE;
11716 break;
11717
11718 case OPTION_NO_FIX_CN63XXP1:
11719 mips_fix_cn63xxp1 = FALSE;
11720 break;
11721
11722 case OPTION_RELAX_BRANCH:
11723 mips_relax_branch = 1;
11724 break;
11725
11726 case OPTION_NO_RELAX_BRANCH:
11727 mips_relax_branch = 0;
11728 break;
11729
11730 case OPTION_MSHARED:
11731 mips_in_shared = TRUE;
11732 break;
11733
11734 case OPTION_MNO_SHARED:
11735 mips_in_shared = FALSE;
11736 break;
11737
11738 case OPTION_MSYM32:
11739 mips_opts.sym32 = TRUE;
11740 break;
11741
11742 case OPTION_MNO_SYM32:
11743 mips_opts.sym32 = FALSE;
11744 break;
11745
11746 #ifdef OBJ_ELF
11747 /* When generating ELF code, we permit -KPIC and -call_shared to
11748 select SVR4_PIC, and -non_shared to select no PIC. This is
11749 intended to be compatible with Irix 5. */
11750 case OPTION_CALL_SHARED:
11751 if (!IS_ELF)
11752 {
11753 as_bad (_("-call_shared is supported only for ELF format"));
11754 return 0;
11755 }
11756 mips_pic = SVR4_PIC;
11757 mips_abicalls = TRUE;
11758 break;
11759
11760 case OPTION_CALL_NONPIC:
11761 if (!IS_ELF)
11762 {
11763 as_bad (_("-call_nonpic is supported only for ELF format"));
11764 return 0;
11765 }
11766 mips_pic = NO_PIC;
11767 mips_abicalls = TRUE;
11768 break;
11769
11770 case OPTION_NON_SHARED:
11771 if (!IS_ELF)
11772 {
11773 as_bad (_("-non_shared is supported only for ELF format"));
11774 return 0;
11775 }
11776 mips_pic = NO_PIC;
11777 mips_abicalls = FALSE;
11778 break;
11779
11780 /* The -xgot option tells the assembler to use 32 bit offsets
11781 when accessing the got in SVR4_PIC mode. It is for Irix
11782 compatibility. */
11783 case OPTION_XGOT:
11784 mips_big_got = 1;
11785 break;
11786 #endif /* OBJ_ELF */
11787
11788 case 'G':
11789 g_switch_value = atoi (arg);
11790 g_switch_seen = 1;
11791 break;
11792
11793 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11794 and -mabi=64. */
11795 case OPTION_32:
11796 if (IS_ELF)
11797 mips_abi = O32_ABI;
11798 /* We silently ignore -32 for non-ELF targets. This greatly
11799 simplifies the construction of the MIPS GAS test cases. */
11800 break;
11801
11802 #ifdef OBJ_ELF
11803 case OPTION_N32:
11804 if (!IS_ELF)
11805 {
11806 as_bad (_("-n32 is supported for ELF format only"));
11807 return 0;
11808 }
11809 mips_abi = N32_ABI;
11810 break;
11811
11812 case OPTION_64:
11813 if (!IS_ELF)
11814 {
11815 as_bad (_("-64 is supported for ELF format only"));
11816 return 0;
11817 }
11818 mips_abi = N64_ABI;
11819 if (!support_64bit_objects())
11820 as_fatal (_("No compiled in support for 64 bit object file format"));
11821 break;
11822 #endif /* OBJ_ELF */
11823
11824 case OPTION_GP32:
11825 file_mips_gp32 = 1;
11826 break;
11827
11828 case OPTION_GP64:
11829 file_mips_gp32 = 0;
11830 break;
11831
11832 case OPTION_FP32:
11833 file_mips_fp32 = 1;
11834 break;
11835
11836 case OPTION_FP64:
11837 file_mips_fp32 = 0;
11838 break;
11839
11840 case OPTION_SINGLE_FLOAT:
11841 file_mips_single_float = 1;
11842 break;
11843
11844 case OPTION_DOUBLE_FLOAT:
11845 file_mips_single_float = 0;
11846 break;
11847
11848 case OPTION_SOFT_FLOAT:
11849 file_mips_soft_float = 1;
11850 break;
11851
11852 case OPTION_HARD_FLOAT:
11853 file_mips_soft_float = 0;
11854 break;
11855
11856 #ifdef OBJ_ELF
11857 case OPTION_MABI:
11858 if (!IS_ELF)
11859 {
11860 as_bad (_("-mabi is supported for ELF format only"));
11861 return 0;
11862 }
11863 if (strcmp (arg, "32") == 0)
11864 mips_abi = O32_ABI;
11865 else if (strcmp (arg, "o64") == 0)
11866 mips_abi = O64_ABI;
11867 else if (strcmp (arg, "n32") == 0)
11868 mips_abi = N32_ABI;
11869 else if (strcmp (arg, "64") == 0)
11870 {
11871 mips_abi = N64_ABI;
11872 if (! support_64bit_objects())
11873 as_fatal (_("No compiled in support for 64 bit object file "
11874 "format"));
11875 }
11876 else if (strcmp (arg, "eabi") == 0)
11877 mips_abi = EABI_ABI;
11878 else
11879 {
11880 as_fatal (_("invalid abi -mabi=%s"), arg);
11881 return 0;
11882 }
11883 break;
11884 #endif /* OBJ_ELF */
11885
11886 case OPTION_M7000_HILO_FIX:
11887 mips_7000_hilo_fix = TRUE;
11888 break;
11889
11890 case OPTION_MNO_7000_HILO_FIX:
11891 mips_7000_hilo_fix = FALSE;
11892 break;
11893
11894 #ifdef OBJ_ELF
11895 case OPTION_MDEBUG:
11896 mips_flag_mdebug = TRUE;
11897 break;
11898
11899 case OPTION_NO_MDEBUG:
11900 mips_flag_mdebug = FALSE;
11901 break;
11902
11903 case OPTION_PDR:
11904 mips_flag_pdr = TRUE;
11905 break;
11906
11907 case OPTION_NO_PDR:
11908 mips_flag_pdr = FALSE;
11909 break;
11910
11911 case OPTION_MVXWORKS_PIC:
11912 mips_pic = VXWORKS_PIC;
11913 break;
11914 #endif /* OBJ_ELF */
11915
11916 default:
11917 return 0;
11918 }
11919
11920 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
11921
11922 return 1;
11923 }
11924 \f
11925 /* Set up globals to generate code for the ISA or processor
11926 described by INFO. */
11927
11928 static void
11929 mips_set_architecture (const struct mips_cpu_info *info)
11930 {
11931 if (info != 0)
11932 {
11933 file_mips_arch = info->cpu;
11934 mips_opts.arch = info->cpu;
11935 mips_opts.isa = info->isa;
11936 }
11937 }
11938
11939
11940 /* Likewise for tuning. */
11941
11942 static void
11943 mips_set_tune (const struct mips_cpu_info *info)
11944 {
11945 if (info != 0)
11946 mips_tune = info->cpu;
11947 }
11948
11949
11950 void
11951 mips_after_parse_args (void)
11952 {
11953 const struct mips_cpu_info *arch_info = 0;
11954 const struct mips_cpu_info *tune_info = 0;
11955
11956 /* GP relative stuff not working for PE */
11957 if (strncmp (TARGET_OS, "pe", 2) == 0)
11958 {
11959 if (g_switch_seen && g_switch_value != 0)
11960 as_bad (_("-G not supported in this configuration."));
11961 g_switch_value = 0;
11962 }
11963
11964 if (mips_abi == NO_ABI)
11965 mips_abi = MIPS_DEFAULT_ABI;
11966
11967 /* The following code determines the architecture and register size.
11968 Similar code was added to GCC 3.3 (see override_options() in
11969 config/mips/mips.c). The GAS and GCC code should be kept in sync
11970 as much as possible. */
11971
11972 if (mips_arch_string != 0)
11973 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11974
11975 if (file_mips_isa != ISA_UNKNOWN)
11976 {
11977 /* Handle -mipsN. At this point, file_mips_isa contains the
11978 ISA level specified by -mipsN, while arch_info->isa contains
11979 the -march selection (if any). */
11980 if (arch_info != 0)
11981 {
11982 /* -march takes precedence over -mipsN, since it is more descriptive.
11983 There's no harm in specifying both as long as the ISA levels
11984 are the same. */
11985 if (file_mips_isa != arch_info->isa)
11986 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11987 mips_cpu_info_from_isa (file_mips_isa)->name,
11988 mips_cpu_info_from_isa (arch_info->isa)->name);
11989 }
11990 else
11991 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11992 }
11993
11994 if (arch_info == 0)
11995 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11996
11997 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11998 as_bad (_("-march=%s is not compatible with the selected ABI"),
11999 arch_info->name);
12000
12001 mips_set_architecture (arch_info);
12002
12003 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
12004 if (mips_tune_string != 0)
12005 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
12006
12007 if (tune_info == 0)
12008 mips_set_tune (arch_info);
12009 else
12010 mips_set_tune (tune_info);
12011
12012 if (file_mips_gp32 >= 0)
12013 {
12014 /* The user specified the size of the integer registers. Make sure
12015 it agrees with the ABI and ISA. */
12016 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
12017 as_bad (_("-mgp64 used with a 32-bit processor"));
12018 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
12019 as_bad (_("-mgp32 used with a 64-bit ABI"));
12020 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
12021 as_bad (_("-mgp64 used with a 32-bit ABI"));
12022 }
12023 else
12024 {
12025 /* Infer the integer register size from the ABI and processor.
12026 Restrict ourselves to 32-bit registers if that's all the
12027 processor has, or if the ABI cannot handle 64-bit registers. */
12028 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
12029 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
12030 }
12031
12032 switch (file_mips_fp32)
12033 {
12034 default:
12035 case -1:
12036 /* No user specified float register size.
12037 ??? GAS treats single-float processors as though they had 64-bit
12038 float registers (although it complains when double-precision
12039 instructions are used). As things stand, saying they have 32-bit
12040 registers would lead to spurious "register must be even" messages.
12041 So here we assume float registers are never smaller than the
12042 integer ones. */
12043 if (file_mips_gp32 == 0)
12044 /* 64-bit integer registers implies 64-bit float registers. */
12045 file_mips_fp32 = 0;
12046 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
12047 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
12048 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
12049 file_mips_fp32 = 0;
12050 else
12051 /* 32-bit float registers. */
12052 file_mips_fp32 = 1;
12053 break;
12054
12055 /* The user specified the size of the float registers. Check if it
12056 agrees with the ABI and ISA. */
12057 case 0:
12058 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12059 as_bad (_("-mfp64 used with a 32-bit fpu"));
12060 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
12061 && !ISA_HAS_MXHC1 (mips_opts.isa))
12062 as_warn (_("-mfp64 used with a 32-bit ABI"));
12063 break;
12064 case 1:
12065 if (ABI_NEEDS_64BIT_REGS (mips_abi))
12066 as_warn (_("-mfp32 used with a 64-bit ABI"));
12067 break;
12068 }
12069
12070 /* End of GCC-shared inference code. */
12071
12072 /* This flag is set when we have a 64-bit capable CPU but use only
12073 32-bit wide registers. Note that EABI does not use it. */
12074 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
12075 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
12076 || mips_abi == O32_ABI))
12077 mips_32bitmode = 1;
12078
12079 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
12080 as_bad (_("trap exception not supported at ISA 1"));
12081
12082 /* If the selected architecture includes support for ASEs, enable
12083 generation of code for them. */
12084 if (mips_opts.mips16 == -1)
12085 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
12086 if (mips_opts.ase_mips3d == -1)
12087 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
12088 && file_mips_fp32 == 0) ? 1 : 0;
12089 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
12090 as_bad (_("-mfp32 used with -mips3d"));
12091
12092 if (mips_opts.ase_mdmx == -1)
12093 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
12094 && file_mips_fp32 == 0) ? 1 : 0;
12095 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
12096 as_bad (_("-mfp32 used with -mdmx"));
12097
12098 if (mips_opts.ase_smartmips == -1)
12099 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
12100 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
12101 as_warn (_("%s ISA does not support SmartMIPS"),
12102 mips_cpu_info_from_isa (mips_opts.isa)->name);
12103
12104 if (mips_opts.ase_dsp == -1)
12105 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12106 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
12107 as_warn (_("%s ISA does not support DSP ASE"),
12108 mips_cpu_info_from_isa (mips_opts.isa)->name);
12109
12110 if (mips_opts.ase_dspr2 == -1)
12111 {
12112 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
12113 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
12114 }
12115 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
12116 as_warn (_("%s ISA does not support DSP R2 ASE"),
12117 mips_cpu_info_from_isa (mips_opts.isa)->name);
12118
12119 if (mips_opts.ase_mt == -1)
12120 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
12121 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
12122 as_warn (_("%s ISA does not support MT ASE"),
12123 mips_cpu_info_from_isa (mips_opts.isa)->name);
12124
12125 file_mips_isa = mips_opts.isa;
12126 file_ase_mips3d = mips_opts.ase_mips3d;
12127 file_ase_mdmx = mips_opts.ase_mdmx;
12128 file_ase_smartmips = mips_opts.ase_smartmips;
12129 file_ase_dsp = mips_opts.ase_dsp;
12130 file_ase_dspr2 = mips_opts.ase_dspr2;
12131 file_ase_mt = mips_opts.ase_mt;
12132 mips_opts.gp32 = file_mips_gp32;
12133 mips_opts.fp32 = file_mips_fp32;
12134 mips_opts.soft_float = file_mips_soft_float;
12135 mips_opts.single_float = file_mips_single_float;
12136
12137 if (mips_flag_mdebug < 0)
12138 {
12139 #ifdef OBJ_MAYBE_ECOFF
12140 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12141 mips_flag_mdebug = 1;
12142 else
12143 #endif /* OBJ_MAYBE_ECOFF */
12144 mips_flag_mdebug = 0;
12145 }
12146 }
12147 \f
12148 void
12149 mips_init_after_args (void)
12150 {
12151 /* initialize opcodes */
12152 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12153 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12154 }
12155
12156 long
12157 md_pcrel_from (fixS *fixP)
12158 {
12159 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12160 switch (fixP->fx_r_type)
12161 {
12162 case BFD_RELOC_16_PCREL_S2:
12163 case BFD_RELOC_MIPS_JMP:
12164 /* Return the address of the delay slot. */
12165 return addr + 4;
12166 default:
12167 /* We have no relocation type for PC relative MIPS16 instructions. */
12168 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12169 as_bad_where (fixP->fx_file, fixP->fx_line,
12170 _("PC relative MIPS16 instruction references a different section"));
12171 return addr;
12172 }
12173 }
12174
12175 /* This is called before the symbol table is processed. In order to
12176 work with gcc when using mips-tfile, we must keep all local labels.
12177 However, in other cases, we want to discard them. If we were
12178 called with -g, but we didn't see any debugging information, it may
12179 mean that gcc is smuggling debugging information through to
12180 mips-tfile, in which case we must generate all local labels. */
12181
12182 void
12183 mips_frob_file_before_adjust (void)
12184 {
12185 #ifndef NO_ECOFF_DEBUGGING
12186 if (ECOFF_DEBUGGING
12187 && mips_debug != 0
12188 && ! ecoff_debugging_seen)
12189 flag_keep_locals = 1;
12190 #endif
12191 }
12192
12193 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12194 the corresponding LO16 reloc. This is called before md_apply_fix and
12195 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12196 relocation operators.
12197
12198 For our purposes, a %lo() expression matches a %got() or %hi()
12199 expression if:
12200
12201 (a) it refers to the same symbol; and
12202 (b) the offset applied in the %lo() expression is no lower than
12203 the offset applied in the %got() or %hi().
12204
12205 (b) allows us to cope with code like:
12206
12207 lui $4,%hi(foo)
12208 lh $4,%lo(foo+2)($4)
12209
12210 ...which is legal on RELA targets, and has a well-defined behaviour
12211 if the user knows that adding 2 to "foo" will not induce a carry to
12212 the high 16 bits.
12213
12214 When several %lo()s match a particular %got() or %hi(), we use the
12215 following rules to distinguish them:
12216
12217 (1) %lo()s with smaller offsets are a better match than %lo()s with
12218 higher offsets.
12219
12220 (2) %lo()s with no matching %got() or %hi() are better than those
12221 that already have a matching %got() or %hi().
12222
12223 (3) later %lo()s are better than earlier %lo()s.
12224
12225 These rules are applied in order.
12226
12227 (1) means, among other things, that %lo()s with identical offsets are
12228 chosen if they exist.
12229
12230 (2) means that we won't associate several high-part relocations with
12231 the same low-part relocation unless there's no alternative. Having
12232 several high parts for the same low part is a GNU extension; this rule
12233 allows careful users to avoid it.
12234
12235 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12236 with the last high-part relocation being at the front of the list.
12237 It therefore makes sense to choose the last matching low-part
12238 relocation, all other things being equal. It's also easier
12239 to code that way. */
12240
12241 void
12242 mips_frob_file (void)
12243 {
12244 struct mips_hi_fixup *l;
12245 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12246
12247 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12248 {
12249 segment_info_type *seginfo;
12250 bfd_boolean matched_lo_p;
12251 fixS **hi_pos, **lo_pos, **pos;
12252
12253 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12254
12255 /* If a GOT16 relocation turns out to be against a global symbol,
12256 there isn't supposed to be a matching LO. */
12257 if (got16_reloc_p (l->fixp->fx_r_type)
12258 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12259 continue;
12260
12261 /* Check quickly whether the next fixup happens to be a matching %lo. */
12262 if (fixup_has_matching_lo_p (l->fixp))
12263 continue;
12264
12265 seginfo = seg_info (l->seg);
12266
12267 /* Set HI_POS to the position of this relocation in the chain.
12268 Set LO_POS to the position of the chosen low-part relocation.
12269 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12270 relocation that matches an immediately-preceding high-part
12271 relocation. */
12272 hi_pos = NULL;
12273 lo_pos = NULL;
12274 matched_lo_p = FALSE;
12275 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12276
12277 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12278 {
12279 if (*pos == l->fixp)
12280 hi_pos = pos;
12281
12282 if ((*pos)->fx_r_type == looking_for_rtype
12283 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
12284 && (*pos)->fx_offset >= l->fixp->fx_offset
12285 && (lo_pos == NULL
12286 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12287 || (!matched_lo_p
12288 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12289 lo_pos = pos;
12290
12291 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12292 && fixup_has_matching_lo_p (*pos));
12293 }
12294
12295 /* If we found a match, remove the high-part relocation from its
12296 current position and insert it before the low-part relocation.
12297 Make the offsets match so that fixup_has_matching_lo_p()
12298 will return true.
12299
12300 We don't warn about unmatched high-part relocations since some
12301 versions of gcc have been known to emit dead "lui ...%hi(...)"
12302 instructions. */
12303 if (lo_pos != NULL)
12304 {
12305 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12306 if (l->fixp->fx_next != *lo_pos)
12307 {
12308 *hi_pos = l->fixp->fx_next;
12309 l->fixp->fx_next = *lo_pos;
12310 *lo_pos = l->fixp;
12311 }
12312 }
12313 }
12314 }
12315
12316 /* We may have combined relocations without symbols in the N32/N64 ABI.
12317 We have to prevent gas from dropping them. */
12318
12319 int
12320 mips_force_relocation (fixS *fixp)
12321 {
12322 if (generic_force_reloc (fixp))
12323 return 1;
12324
12325 if (HAVE_NEWABI
12326 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12327 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12328 || hi16_reloc_p (fixp->fx_r_type)
12329 || lo16_reloc_p (fixp->fx_r_type)))
12330 return 1;
12331
12332 return 0;
12333 }
12334
12335 /* Apply a fixup to the object file. */
12336
12337 void
12338 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12339 {
12340 bfd_byte *buf;
12341 long insn;
12342 reloc_howto_type *howto;
12343
12344 /* We ignore generic BFD relocations we don't know about. */
12345 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12346 if (! howto)
12347 return;
12348
12349 gas_assert (fixP->fx_size == 4
12350 || fixP->fx_r_type == BFD_RELOC_16
12351 || fixP->fx_r_type == BFD_RELOC_64
12352 || fixP->fx_r_type == BFD_RELOC_CTOR
12353 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12354 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12355 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12356 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12357
12358 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12359
12360 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12361
12362 /* Don't treat parts of a composite relocation as done. There are two
12363 reasons for this:
12364
12365 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12366 should nevertheless be emitted if the first part is.
12367
12368 (2) In normal usage, composite relocations are never assembly-time
12369 constants. The easiest way of dealing with the pathological
12370 exceptions is to generate a relocation against STN_UNDEF and
12371 leave everything up to the linker. */
12372 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12373 fixP->fx_done = 1;
12374
12375 switch (fixP->fx_r_type)
12376 {
12377 case BFD_RELOC_MIPS_TLS_GD:
12378 case BFD_RELOC_MIPS_TLS_LDM:
12379 case BFD_RELOC_MIPS_TLS_DTPREL32:
12380 case BFD_RELOC_MIPS_TLS_DTPREL64:
12381 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12382 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12383 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12384 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12385 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12386 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12387 /* fall through */
12388
12389 case BFD_RELOC_MIPS_JMP:
12390 case BFD_RELOC_MIPS_SHIFT5:
12391 case BFD_RELOC_MIPS_SHIFT6:
12392 case BFD_RELOC_MIPS_GOT_DISP:
12393 case BFD_RELOC_MIPS_GOT_PAGE:
12394 case BFD_RELOC_MIPS_GOT_OFST:
12395 case BFD_RELOC_MIPS_SUB:
12396 case BFD_RELOC_MIPS_INSERT_A:
12397 case BFD_RELOC_MIPS_INSERT_B:
12398 case BFD_RELOC_MIPS_DELETE:
12399 case BFD_RELOC_MIPS_HIGHEST:
12400 case BFD_RELOC_MIPS_HIGHER:
12401 case BFD_RELOC_MIPS_SCN_DISP:
12402 case BFD_RELOC_MIPS_REL16:
12403 case BFD_RELOC_MIPS_RELGOT:
12404 case BFD_RELOC_MIPS_JALR:
12405 case BFD_RELOC_HI16:
12406 case BFD_RELOC_HI16_S:
12407 case BFD_RELOC_GPREL16:
12408 case BFD_RELOC_MIPS_LITERAL:
12409 case BFD_RELOC_MIPS_CALL16:
12410 case BFD_RELOC_MIPS_GOT16:
12411 case BFD_RELOC_GPREL32:
12412 case BFD_RELOC_MIPS_GOT_HI16:
12413 case BFD_RELOC_MIPS_GOT_LO16:
12414 case BFD_RELOC_MIPS_CALL_HI16:
12415 case BFD_RELOC_MIPS_CALL_LO16:
12416 case BFD_RELOC_MIPS16_GPREL:
12417 case BFD_RELOC_MIPS16_GOT16:
12418 case BFD_RELOC_MIPS16_CALL16:
12419 case BFD_RELOC_MIPS16_HI16:
12420 case BFD_RELOC_MIPS16_HI16_S:
12421 case BFD_RELOC_MIPS16_JMP:
12422 /* Nothing needed to do. The value comes from the reloc entry. */
12423 break;
12424
12425 case BFD_RELOC_64:
12426 /* This is handled like BFD_RELOC_32, but we output a sign
12427 extended value if we are only 32 bits. */
12428 if (fixP->fx_done)
12429 {
12430 if (8 <= sizeof (valueT))
12431 md_number_to_chars ((char *) buf, *valP, 8);
12432 else
12433 {
12434 valueT hiv;
12435
12436 if ((*valP & 0x80000000) != 0)
12437 hiv = 0xffffffff;
12438 else
12439 hiv = 0;
12440 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12441 *valP, 4);
12442 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12443 hiv, 4);
12444 }
12445 }
12446 break;
12447
12448 case BFD_RELOC_RVA:
12449 case BFD_RELOC_32:
12450 case BFD_RELOC_16:
12451 /* If we are deleting this reloc entry, we must fill in the
12452 value now. This can happen if we have a .word which is not
12453 resolved when it appears but is later defined. */
12454 if (fixP->fx_done)
12455 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12456 break;
12457
12458 case BFD_RELOC_LO16:
12459 case BFD_RELOC_MIPS16_LO16:
12460 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12461 may be safe to remove, but if so it's not obvious. */
12462 /* When handling an embedded PIC switch statement, we can wind
12463 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12464 if (fixP->fx_done)
12465 {
12466 if (*valP + 0x8000 > 0xffff)
12467 as_bad_where (fixP->fx_file, fixP->fx_line,
12468 _("relocation overflow"));
12469 if (target_big_endian)
12470 buf += 2;
12471 md_number_to_chars ((char *) buf, *valP, 2);
12472 }
12473 break;
12474
12475 case BFD_RELOC_16_PCREL_S2:
12476 if ((*valP & 0x3) != 0)
12477 as_bad_where (fixP->fx_file, fixP->fx_line,
12478 _("Branch to misaligned address (%lx)"), (long) *valP);
12479
12480 /* We need to save the bits in the instruction since fixup_segment()
12481 might be deleting the relocation entry (i.e., a branch within
12482 the current segment). */
12483 if (! fixP->fx_done)
12484 break;
12485
12486 /* Update old instruction data. */
12487 if (target_big_endian)
12488 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12489 else
12490 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12491
12492 if (*valP + 0x20000 <= 0x3ffff)
12493 {
12494 insn |= (*valP >> 2) & 0xffff;
12495 md_number_to_chars ((char *) buf, insn, 4);
12496 }
12497 else if (mips_pic == NO_PIC
12498 && fixP->fx_done
12499 && fixP->fx_frag->fr_address >= text_section->vma
12500 && (fixP->fx_frag->fr_address
12501 < text_section->vma + bfd_get_section_size (text_section))
12502 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12503 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12504 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12505 {
12506 /* The branch offset is too large. If this is an
12507 unconditional branch, and we are not generating PIC code,
12508 we can convert it to an absolute jump instruction. */
12509 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12510 insn = 0x0c000000; /* jal */
12511 else
12512 insn = 0x08000000; /* j */
12513 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12514 fixP->fx_done = 0;
12515 fixP->fx_addsy = section_symbol (text_section);
12516 *valP += md_pcrel_from (fixP);
12517 md_number_to_chars ((char *) buf, insn, 4);
12518 }
12519 else
12520 {
12521 /* If we got here, we have branch-relaxation disabled,
12522 and there's nothing we can do to fix this instruction
12523 without turning it into a longer sequence. */
12524 as_bad_where (fixP->fx_file, fixP->fx_line,
12525 _("Branch out of range"));
12526 }
12527 break;
12528
12529 case BFD_RELOC_VTABLE_INHERIT:
12530 fixP->fx_done = 0;
12531 if (fixP->fx_addsy
12532 && !S_IS_DEFINED (fixP->fx_addsy)
12533 && !S_IS_WEAK (fixP->fx_addsy))
12534 S_SET_WEAK (fixP->fx_addsy);
12535 break;
12536
12537 case BFD_RELOC_VTABLE_ENTRY:
12538 fixP->fx_done = 0;
12539 break;
12540
12541 default:
12542 internalError ();
12543 }
12544
12545 /* Remember value for tc_gen_reloc. */
12546 fixP->fx_addnumber = *valP;
12547 }
12548
12549 static symbolS *
12550 get_symbol (void)
12551 {
12552 int c;
12553 char *name;
12554 symbolS *p;
12555
12556 name = input_line_pointer;
12557 c = get_symbol_end ();
12558 p = (symbolS *) symbol_find_or_make (name);
12559 *input_line_pointer = c;
12560 return p;
12561 }
12562
12563 /* Align the current frag to a given power of two. If a particular
12564 fill byte should be used, FILL points to an integer that contains
12565 that byte, otherwise FILL is null.
12566
12567 The MIPS assembler also automatically adjusts any preceding
12568 label. */
12569
12570 static void
12571 mips_align (int to, int *fill, symbolS *label)
12572 {
12573 mips_emit_delays ();
12574 mips_record_mips16_mode ();
12575 if (fill == NULL && subseg_text_p (now_seg))
12576 frag_align_code (to, 0);
12577 else
12578 frag_align (to, fill ? *fill : 0, 0);
12579 record_alignment (now_seg, to);
12580 if (label != NULL)
12581 {
12582 gas_assert (S_GET_SEGMENT (label) == now_seg);
12583 symbol_set_frag (label, frag_now);
12584 S_SET_VALUE (label, (valueT) frag_now_fix ());
12585 }
12586 }
12587
12588 /* Align to a given power of two. .align 0 turns off the automatic
12589 alignment used by the data creating pseudo-ops. */
12590
12591 static void
12592 s_align (int x ATTRIBUTE_UNUSED)
12593 {
12594 int temp, fill_value, *fill_ptr;
12595 long max_alignment = 28;
12596
12597 /* o Note that the assembler pulls down any immediately preceding label
12598 to the aligned address.
12599 o It's not documented but auto alignment is reinstated by
12600 a .align pseudo instruction.
12601 o Note also that after auto alignment is turned off the mips assembler
12602 issues an error on attempt to assemble an improperly aligned data item.
12603 We don't. */
12604
12605 temp = get_absolute_expression ();
12606 if (temp > max_alignment)
12607 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12608 else if (temp < 0)
12609 {
12610 as_warn (_("Alignment negative: 0 assumed."));
12611 temp = 0;
12612 }
12613 if (*input_line_pointer == ',')
12614 {
12615 ++input_line_pointer;
12616 fill_value = get_absolute_expression ();
12617 fill_ptr = &fill_value;
12618 }
12619 else
12620 fill_ptr = 0;
12621 if (temp)
12622 {
12623 segment_info_type *si = seg_info (now_seg);
12624 struct insn_label_list *l = si->label_list;
12625 /* Auto alignment should be switched on by next section change. */
12626 auto_align = 1;
12627 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12628 }
12629 else
12630 {
12631 auto_align = 0;
12632 }
12633
12634 demand_empty_rest_of_line ();
12635 }
12636
12637 static void
12638 s_change_sec (int sec)
12639 {
12640 segT seg;
12641
12642 #ifdef OBJ_ELF
12643 /* The ELF backend needs to know that we are changing sections, so
12644 that .previous works correctly. We could do something like check
12645 for an obj_section_change_hook macro, but that might be confusing
12646 as it would not be appropriate to use it in the section changing
12647 functions in read.c, since obj-elf.c intercepts those. FIXME:
12648 This should be cleaner, somehow. */
12649 if (IS_ELF)
12650 obj_elf_section_change_hook ();
12651 #endif
12652
12653 mips_emit_delays ();
12654
12655 switch (sec)
12656 {
12657 case 't':
12658 s_text (0);
12659 break;
12660 case 'd':
12661 s_data (0);
12662 break;
12663 case 'b':
12664 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12665 demand_empty_rest_of_line ();
12666 break;
12667
12668 case 'r':
12669 seg = subseg_new (RDATA_SECTION_NAME,
12670 (subsegT) get_absolute_expression ());
12671 if (IS_ELF)
12672 {
12673 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12674 | SEC_READONLY | SEC_RELOC
12675 | SEC_DATA));
12676 if (strncmp (TARGET_OS, "elf", 3) != 0)
12677 record_alignment (seg, 4);
12678 }
12679 demand_empty_rest_of_line ();
12680 break;
12681
12682 case 's':
12683 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12684 if (IS_ELF)
12685 {
12686 bfd_set_section_flags (stdoutput, seg,
12687 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12688 if (strncmp (TARGET_OS, "elf", 3) != 0)
12689 record_alignment (seg, 4);
12690 }
12691 demand_empty_rest_of_line ();
12692 break;
12693
12694 case 'B':
12695 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
12696 if (IS_ELF)
12697 {
12698 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
12699 if (strncmp (TARGET_OS, "elf", 3) != 0)
12700 record_alignment (seg, 4);
12701 }
12702 demand_empty_rest_of_line ();
12703 break;
12704 }
12705
12706 auto_align = 1;
12707 }
12708
12709 void
12710 s_change_section (int ignore ATTRIBUTE_UNUSED)
12711 {
12712 #ifdef OBJ_ELF
12713 char *section_name;
12714 char c;
12715 char next_c = 0;
12716 int section_type;
12717 int section_flag;
12718 int section_entry_size;
12719 int section_alignment;
12720
12721 if (!IS_ELF)
12722 return;
12723
12724 section_name = input_line_pointer;
12725 c = get_symbol_end ();
12726 if (c)
12727 next_c = *(input_line_pointer + 1);
12728
12729 /* Do we have .section Name<,"flags">? */
12730 if (c != ',' || (c == ',' && next_c == '"'))
12731 {
12732 /* just after name is now '\0'. */
12733 *input_line_pointer = c;
12734 input_line_pointer = section_name;
12735 obj_elf_section (ignore);
12736 return;
12737 }
12738 input_line_pointer++;
12739
12740 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12741 if (c == ',')
12742 section_type = get_absolute_expression ();
12743 else
12744 section_type = 0;
12745 if (*input_line_pointer++ == ',')
12746 section_flag = get_absolute_expression ();
12747 else
12748 section_flag = 0;
12749 if (*input_line_pointer++ == ',')
12750 section_entry_size = get_absolute_expression ();
12751 else
12752 section_entry_size = 0;
12753 if (*input_line_pointer++ == ',')
12754 section_alignment = get_absolute_expression ();
12755 else
12756 section_alignment = 0;
12757 /* FIXME: really ignore? */
12758 (void) section_alignment;
12759
12760 section_name = xstrdup (section_name);
12761
12762 /* When using the generic form of .section (as implemented by obj-elf.c),
12763 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12764 traditionally had to fall back on the more common @progbits instead.
12765
12766 There's nothing really harmful in this, since bfd will correct
12767 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12768 means that, for backwards compatibility, the special_section entries
12769 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12770
12771 Even so, we shouldn't force users of the MIPS .section syntax to
12772 incorrectly label the sections as SHT_PROGBITS. The best compromise
12773 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12774 generic type-checking code. */
12775 if (section_type == SHT_MIPS_DWARF)
12776 section_type = SHT_PROGBITS;
12777
12778 obj_elf_change_section (section_name, section_type, section_flag,
12779 section_entry_size, 0, 0, 0);
12780
12781 if (now_seg->name != section_name)
12782 free (section_name);
12783 #endif /* OBJ_ELF */
12784 }
12785
12786 void
12787 mips_enable_auto_align (void)
12788 {
12789 auto_align = 1;
12790 }
12791
12792 static void
12793 s_cons (int log_size)
12794 {
12795 segment_info_type *si = seg_info (now_seg);
12796 struct insn_label_list *l = si->label_list;
12797 symbolS *label;
12798
12799 label = l != NULL ? l->label : NULL;
12800 mips_emit_delays ();
12801 if (log_size > 0 && auto_align)
12802 mips_align (log_size, 0, label);
12803 cons (1 << log_size);
12804 mips_clear_insn_labels ();
12805 }
12806
12807 static void
12808 s_float_cons (int type)
12809 {
12810 segment_info_type *si = seg_info (now_seg);
12811 struct insn_label_list *l = si->label_list;
12812 symbolS *label;
12813
12814 label = l != NULL ? l->label : NULL;
12815
12816 mips_emit_delays ();
12817
12818 if (auto_align)
12819 {
12820 if (type == 'd')
12821 mips_align (3, 0, label);
12822 else
12823 mips_align (2, 0, label);
12824 }
12825
12826 float_cons (type);
12827 mips_clear_insn_labels ();
12828 }
12829
12830 /* Handle .globl. We need to override it because on Irix 5 you are
12831 permitted to say
12832 .globl foo .text
12833 where foo is an undefined symbol, to mean that foo should be
12834 considered to be the address of a function. */
12835
12836 static void
12837 s_mips_globl (int x ATTRIBUTE_UNUSED)
12838 {
12839 char *name;
12840 int c;
12841 symbolS *symbolP;
12842 flagword flag;
12843
12844 do
12845 {
12846 name = input_line_pointer;
12847 c = get_symbol_end ();
12848 symbolP = symbol_find_or_make (name);
12849 S_SET_EXTERNAL (symbolP);
12850
12851 *input_line_pointer = c;
12852 SKIP_WHITESPACE ();
12853
12854 /* On Irix 5, every global symbol that is not explicitly labelled as
12855 being a function is apparently labelled as being an object. */
12856 flag = BSF_OBJECT;
12857
12858 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12859 && (*input_line_pointer != ','))
12860 {
12861 char *secname;
12862 asection *sec;
12863
12864 secname = input_line_pointer;
12865 c = get_symbol_end ();
12866 sec = bfd_get_section_by_name (stdoutput, secname);
12867 if (sec == NULL)
12868 as_bad (_("%s: no such section"), secname);
12869 *input_line_pointer = c;
12870
12871 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12872 flag = BSF_FUNCTION;
12873 }
12874
12875 symbol_get_bfdsym (symbolP)->flags |= flag;
12876
12877 c = *input_line_pointer;
12878 if (c == ',')
12879 {
12880 input_line_pointer++;
12881 SKIP_WHITESPACE ();
12882 if (is_end_of_line[(unsigned char) *input_line_pointer])
12883 c = '\n';
12884 }
12885 }
12886 while (c == ',');
12887
12888 demand_empty_rest_of_line ();
12889 }
12890
12891 static void
12892 s_option (int x ATTRIBUTE_UNUSED)
12893 {
12894 char *opt;
12895 char c;
12896
12897 opt = input_line_pointer;
12898 c = get_symbol_end ();
12899
12900 if (*opt == 'O')
12901 {
12902 /* FIXME: What does this mean? */
12903 }
12904 else if (strncmp (opt, "pic", 3) == 0)
12905 {
12906 int i;
12907
12908 i = atoi (opt + 3);
12909 if (i == 0)
12910 mips_pic = NO_PIC;
12911 else if (i == 2)
12912 {
12913 mips_pic = SVR4_PIC;
12914 mips_abicalls = TRUE;
12915 }
12916 else
12917 as_bad (_(".option pic%d not supported"), i);
12918
12919 if (mips_pic == SVR4_PIC)
12920 {
12921 if (g_switch_seen && g_switch_value != 0)
12922 as_warn (_("-G may not be used with SVR4 PIC code"));
12923 g_switch_value = 0;
12924 bfd_set_gp_size (stdoutput, 0);
12925 }
12926 }
12927 else
12928 as_warn (_("Unrecognized option \"%s\""), opt);
12929
12930 *input_line_pointer = c;
12931 demand_empty_rest_of_line ();
12932 }
12933
12934 /* This structure is used to hold a stack of .set values. */
12935
12936 struct mips_option_stack
12937 {
12938 struct mips_option_stack *next;
12939 struct mips_set_options options;
12940 };
12941
12942 static struct mips_option_stack *mips_opts_stack;
12943
12944 /* Handle the .set pseudo-op. */
12945
12946 static void
12947 s_mipsset (int x ATTRIBUTE_UNUSED)
12948 {
12949 char *name = input_line_pointer, ch;
12950
12951 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12952 ++input_line_pointer;
12953 ch = *input_line_pointer;
12954 *input_line_pointer = '\0';
12955
12956 if (strcmp (name, "reorder") == 0)
12957 {
12958 if (mips_opts.noreorder)
12959 end_noreorder ();
12960 }
12961 else if (strcmp (name, "noreorder") == 0)
12962 {
12963 if (!mips_opts.noreorder)
12964 start_noreorder ();
12965 }
12966 else if (strncmp (name, "at=", 3) == 0)
12967 {
12968 char *s = name + 3;
12969
12970 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12971 as_bad (_("Unrecognized register name `%s'"), s);
12972 }
12973 else if (strcmp (name, "at") == 0)
12974 {
12975 mips_opts.at = ATREG;
12976 }
12977 else if (strcmp (name, "noat") == 0)
12978 {
12979 mips_opts.at = ZERO;
12980 }
12981 else if (strcmp (name, "macro") == 0)
12982 {
12983 mips_opts.warn_about_macros = 0;
12984 }
12985 else if (strcmp (name, "nomacro") == 0)
12986 {
12987 if (mips_opts.noreorder == 0)
12988 as_bad (_("`noreorder' must be set before `nomacro'"));
12989 mips_opts.warn_about_macros = 1;
12990 }
12991 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12992 {
12993 mips_opts.nomove = 0;
12994 }
12995 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12996 {
12997 mips_opts.nomove = 1;
12998 }
12999 else if (strcmp (name, "bopt") == 0)
13000 {
13001 mips_opts.nobopt = 0;
13002 }
13003 else if (strcmp (name, "nobopt") == 0)
13004 {
13005 mips_opts.nobopt = 1;
13006 }
13007 else if (strcmp (name, "gp=default") == 0)
13008 mips_opts.gp32 = file_mips_gp32;
13009 else if (strcmp (name, "gp=32") == 0)
13010 mips_opts.gp32 = 1;
13011 else if (strcmp (name, "gp=64") == 0)
13012 {
13013 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
13014 as_warn (_("%s isa does not support 64-bit registers"),
13015 mips_cpu_info_from_isa (mips_opts.isa)->name);
13016 mips_opts.gp32 = 0;
13017 }
13018 else if (strcmp (name, "fp=default") == 0)
13019 mips_opts.fp32 = file_mips_fp32;
13020 else if (strcmp (name, "fp=32") == 0)
13021 mips_opts.fp32 = 1;
13022 else if (strcmp (name, "fp=64") == 0)
13023 {
13024 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
13025 as_warn (_("%s isa does not support 64-bit floating point registers"),
13026 mips_cpu_info_from_isa (mips_opts.isa)->name);
13027 mips_opts.fp32 = 0;
13028 }
13029 else if (strcmp (name, "softfloat") == 0)
13030 mips_opts.soft_float = 1;
13031 else if (strcmp (name, "hardfloat") == 0)
13032 mips_opts.soft_float = 0;
13033 else if (strcmp (name, "singlefloat") == 0)
13034 mips_opts.single_float = 1;
13035 else if (strcmp (name, "doublefloat") == 0)
13036 mips_opts.single_float = 0;
13037 else if (strcmp (name, "mips16") == 0
13038 || strcmp (name, "MIPS-16") == 0)
13039 mips_opts.mips16 = 1;
13040 else if (strcmp (name, "nomips16") == 0
13041 || strcmp (name, "noMIPS-16") == 0)
13042 mips_opts.mips16 = 0;
13043 else if (strcmp (name, "smartmips") == 0)
13044 {
13045 if (!ISA_SUPPORTS_SMARTMIPS)
13046 as_warn (_("%s ISA does not support SmartMIPS ASE"),
13047 mips_cpu_info_from_isa (mips_opts.isa)->name);
13048 mips_opts.ase_smartmips = 1;
13049 }
13050 else if (strcmp (name, "nosmartmips") == 0)
13051 mips_opts.ase_smartmips = 0;
13052 else if (strcmp (name, "mips3d") == 0)
13053 mips_opts.ase_mips3d = 1;
13054 else if (strcmp (name, "nomips3d") == 0)
13055 mips_opts.ase_mips3d = 0;
13056 else if (strcmp (name, "mdmx") == 0)
13057 mips_opts.ase_mdmx = 1;
13058 else if (strcmp (name, "nomdmx") == 0)
13059 mips_opts.ase_mdmx = 0;
13060 else if (strcmp (name, "dsp") == 0)
13061 {
13062 if (!ISA_SUPPORTS_DSP_ASE)
13063 as_warn (_("%s ISA does not support DSP ASE"),
13064 mips_cpu_info_from_isa (mips_opts.isa)->name);
13065 mips_opts.ase_dsp = 1;
13066 mips_opts.ase_dspr2 = 0;
13067 }
13068 else if (strcmp (name, "nodsp") == 0)
13069 {
13070 mips_opts.ase_dsp = 0;
13071 mips_opts.ase_dspr2 = 0;
13072 }
13073 else if (strcmp (name, "dspr2") == 0)
13074 {
13075 if (!ISA_SUPPORTS_DSPR2_ASE)
13076 as_warn (_("%s ISA does not support DSP R2 ASE"),
13077 mips_cpu_info_from_isa (mips_opts.isa)->name);
13078 mips_opts.ase_dspr2 = 1;
13079 mips_opts.ase_dsp = 1;
13080 }
13081 else if (strcmp (name, "nodspr2") == 0)
13082 {
13083 mips_opts.ase_dspr2 = 0;
13084 mips_opts.ase_dsp = 0;
13085 }
13086 else if (strcmp (name, "mt") == 0)
13087 {
13088 if (!ISA_SUPPORTS_MT_ASE)
13089 as_warn (_("%s ISA does not support MT ASE"),
13090 mips_cpu_info_from_isa (mips_opts.isa)->name);
13091 mips_opts.ase_mt = 1;
13092 }
13093 else if (strcmp (name, "nomt") == 0)
13094 mips_opts.ase_mt = 0;
13095 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
13096 {
13097 int reset = 0;
13098
13099 /* Permit the user to change the ISA and architecture on the fly.
13100 Needless to say, misuse can cause serious problems. */
13101 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
13102 {
13103 reset = 1;
13104 mips_opts.isa = file_mips_isa;
13105 mips_opts.arch = file_mips_arch;
13106 }
13107 else if (strncmp (name, "arch=", 5) == 0)
13108 {
13109 const struct mips_cpu_info *p;
13110
13111 p = mips_parse_cpu("internal use", name + 5);
13112 if (!p)
13113 as_bad (_("unknown architecture %s"), name + 5);
13114 else
13115 {
13116 mips_opts.arch = p->cpu;
13117 mips_opts.isa = p->isa;
13118 }
13119 }
13120 else if (strncmp (name, "mips", 4) == 0)
13121 {
13122 const struct mips_cpu_info *p;
13123
13124 p = mips_parse_cpu("internal use", name);
13125 if (!p)
13126 as_bad (_("unknown ISA level %s"), name + 4);
13127 else
13128 {
13129 mips_opts.arch = p->cpu;
13130 mips_opts.isa = p->isa;
13131 }
13132 }
13133 else
13134 as_bad (_("unknown ISA or architecture %s"), name);
13135
13136 switch (mips_opts.isa)
13137 {
13138 case 0:
13139 break;
13140 case ISA_MIPS1:
13141 case ISA_MIPS2:
13142 case ISA_MIPS32:
13143 case ISA_MIPS32R2:
13144 mips_opts.gp32 = 1;
13145 mips_opts.fp32 = 1;
13146 break;
13147 case ISA_MIPS3:
13148 case ISA_MIPS4:
13149 case ISA_MIPS5:
13150 case ISA_MIPS64:
13151 case ISA_MIPS64R2:
13152 mips_opts.gp32 = 0;
13153 mips_opts.fp32 = 0;
13154 break;
13155 default:
13156 as_bad (_("unknown ISA level %s"), name + 4);
13157 break;
13158 }
13159 if (reset)
13160 {
13161 mips_opts.gp32 = file_mips_gp32;
13162 mips_opts.fp32 = file_mips_fp32;
13163 }
13164 }
13165 else if (strcmp (name, "autoextend") == 0)
13166 mips_opts.noautoextend = 0;
13167 else if (strcmp (name, "noautoextend") == 0)
13168 mips_opts.noautoextend = 1;
13169 else if (strcmp (name, "push") == 0)
13170 {
13171 struct mips_option_stack *s;
13172
13173 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13174 s->next = mips_opts_stack;
13175 s->options = mips_opts;
13176 mips_opts_stack = s;
13177 }
13178 else if (strcmp (name, "pop") == 0)
13179 {
13180 struct mips_option_stack *s;
13181
13182 s = mips_opts_stack;
13183 if (s == NULL)
13184 as_bad (_(".set pop with no .set push"));
13185 else
13186 {
13187 /* If we're changing the reorder mode we need to handle
13188 delay slots correctly. */
13189 if (s->options.noreorder && ! mips_opts.noreorder)
13190 start_noreorder ();
13191 else if (! s->options.noreorder && mips_opts.noreorder)
13192 end_noreorder ();
13193
13194 mips_opts = s->options;
13195 mips_opts_stack = s->next;
13196 free (s);
13197 }
13198 }
13199 else if (strcmp (name, "sym32") == 0)
13200 mips_opts.sym32 = TRUE;
13201 else if (strcmp (name, "nosym32") == 0)
13202 mips_opts.sym32 = FALSE;
13203 else if (strchr (name, ','))
13204 {
13205 /* Generic ".set" directive; use the generic handler. */
13206 *input_line_pointer = ch;
13207 input_line_pointer = name;
13208 s_set (0);
13209 return;
13210 }
13211 else
13212 {
13213 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13214 }
13215 *input_line_pointer = ch;
13216 demand_empty_rest_of_line ();
13217 }
13218
13219 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13220 .option pic2. It means to generate SVR4 PIC calls. */
13221
13222 static void
13223 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13224 {
13225 mips_pic = SVR4_PIC;
13226 mips_abicalls = TRUE;
13227
13228 if (g_switch_seen && g_switch_value != 0)
13229 as_warn (_("-G may not be used with SVR4 PIC code"));
13230 g_switch_value = 0;
13231
13232 bfd_set_gp_size (stdoutput, 0);
13233 demand_empty_rest_of_line ();
13234 }
13235
13236 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13237 PIC code. It sets the $gp register for the function based on the
13238 function address, which is in the register named in the argument.
13239 This uses a relocation against _gp_disp, which is handled specially
13240 by the linker. The result is:
13241 lui $gp,%hi(_gp_disp)
13242 addiu $gp,$gp,%lo(_gp_disp)
13243 addu $gp,$gp,.cpload argument
13244 The .cpload argument is normally $25 == $t9.
13245
13246 The -mno-shared option changes this to:
13247 lui $gp,%hi(__gnu_local_gp)
13248 addiu $gp,$gp,%lo(__gnu_local_gp)
13249 and the argument is ignored. This saves an instruction, but the
13250 resulting code is not position independent; it uses an absolute
13251 address for __gnu_local_gp. Thus code assembled with -mno-shared
13252 can go into an ordinary executable, but not into a shared library. */
13253
13254 static void
13255 s_cpload (int ignore ATTRIBUTE_UNUSED)
13256 {
13257 expressionS ex;
13258 int reg;
13259 int in_shared;
13260
13261 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13262 .cpload is ignored. */
13263 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13264 {
13265 s_ignore (0);
13266 return;
13267 }
13268
13269 /* .cpload should be in a .set noreorder section. */
13270 if (mips_opts.noreorder == 0)
13271 as_warn (_(".cpload not in noreorder section"));
13272
13273 reg = tc_get_register (0);
13274
13275 /* If we need to produce a 64-bit address, we are better off using
13276 the default instruction sequence. */
13277 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13278
13279 ex.X_op = O_symbol;
13280 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13281 "__gnu_local_gp");
13282 ex.X_op_symbol = NULL;
13283 ex.X_add_number = 0;
13284
13285 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13286 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13287
13288 macro_start ();
13289 macro_build_lui (&ex, mips_gp_register);
13290 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13291 mips_gp_register, BFD_RELOC_LO16);
13292 if (in_shared)
13293 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13294 mips_gp_register, reg);
13295 macro_end ();
13296
13297 demand_empty_rest_of_line ();
13298 }
13299
13300 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13301 .cpsetup $reg1, offset|$reg2, label
13302
13303 If offset is given, this results in:
13304 sd $gp, offset($sp)
13305 lui $gp, %hi(%neg(%gp_rel(label)))
13306 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13307 daddu $gp, $gp, $reg1
13308
13309 If $reg2 is given, this results in:
13310 daddu $reg2, $gp, $0
13311 lui $gp, %hi(%neg(%gp_rel(label)))
13312 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13313 daddu $gp, $gp, $reg1
13314 $reg1 is normally $25 == $t9.
13315
13316 The -mno-shared option replaces the last three instructions with
13317 lui $gp,%hi(_gp)
13318 addiu $gp,$gp,%lo(_gp) */
13319
13320 static void
13321 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13322 {
13323 expressionS ex_off;
13324 expressionS ex_sym;
13325 int reg1;
13326
13327 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13328 We also need NewABI support. */
13329 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13330 {
13331 s_ignore (0);
13332 return;
13333 }
13334
13335 reg1 = tc_get_register (0);
13336 SKIP_WHITESPACE ();
13337 if (*input_line_pointer != ',')
13338 {
13339 as_bad (_("missing argument separator ',' for .cpsetup"));
13340 return;
13341 }
13342 else
13343 ++input_line_pointer;
13344 SKIP_WHITESPACE ();
13345 if (*input_line_pointer == '$')
13346 {
13347 mips_cpreturn_register = tc_get_register (0);
13348 mips_cpreturn_offset = -1;
13349 }
13350 else
13351 {
13352 mips_cpreturn_offset = get_absolute_expression ();
13353 mips_cpreturn_register = -1;
13354 }
13355 SKIP_WHITESPACE ();
13356 if (*input_line_pointer != ',')
13357 {
13358 as_bad (_("missing argument separator ',' for .cpsetup"));
13359 return;
13360 }
13361 else
13362 ++input_line_pointer;
13363 SKIP_WHITESPACE ();
13364 expression (&ex_sym);
13365
13366 macro_start ();
13367 if (mips_cpreturn_register == -1)
13368 {
13369 ex_off.X_op = O_constant;
13370 ex_off.X_add_symbol = NULL;
13371 ex_off.X_op_symbol = NULL;
13372 ex_off.X_add_number = mips_cpreturn_offset;
13373
13374 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13375 BFD_RELOC_LO16, SP);
13376 }
13377 else
13378 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13379 mips_gp_register, 0);
13380
13381 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13382 {
13383 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13384 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13385 BFD_RELOC_HI16_S);
13386
13387 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13388 mips_gp_register, -1, BFD_RELOC_GPREL16,
13389 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13390
13391 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13392 mips_gp_register, reg1);
13393 }
13394 else
13395 {
13396 expressionS ex;
13397
13398 ex.X_op = O_symbol;
13399 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13400 ex.X_op_symbol = NULL;
13401 ex.X_add_number = 0;
13402
13403 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13404 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13405
13406 macro_build_lui (&ex, mips_gp_register);
13407 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13408 mips_gp_register, BFD_RELOC_LO16);
13409 }
13410
13411 macro_end ();
13412
13413 demand_empty_rest_of_line ();
13414 }
13415
13416 static void
13417 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13418 {
13419 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13420 .cplocal is ignored. */
13421 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13422 {
13423 s_ignore (0);
13424 return;
13425 }
13426
13427 mips_gp_register = tc_get_register (0);
13428 demand_empty_rest_of_line ();
13429 }
13430
13431 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13432 offset from $sp. The offset is remembered, and after making a PIC
13433 call $gp is restored from that location. */
13434
13435 static void
13436 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13437 {
13438 expressionS ex;
13439
13440 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13441 .cprestore is ignored. */
13442 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13443 {
13444 s_ignore (0);
13445 return;
13446 }
13447
13448 mips_cprestore_offset = get_absolute_expression ();
13449 mips_cprestore_valid = 1;
13450
13451 ex.X_op = O_constant;
13452 ex.X_add_symbol = NULL;
13453 ex.X_op_symbol = NULL;
13454 ex.X_add_number = mips_cprestore_offset;
13455
13456 macro_start ();
13457 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13458 SP, HAVE_64BIT_ADDRESSES);
13459 macro_end ();
13460
13461 demand_empty_rest_of_line ();
13462 }
13463
13464 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13465 was given in the preceding .cpsetup, it results in:
13466 ld $gp, offset($sp)
13467
13468 If a register $reg2 was given there, it results in:
13469 daddu $gp, $reg2, $0 */
13470
13471 static void
13472 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13473 {
13474 expressionS ex;
13475
13476 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13477 We also need NewABI support. */
13478 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13479 {
13480 s_ignore (0);
13481 return;
13482 }
13483
13484 macro_start ();
13485 if (mips_cpreturn_register == -1)
13486 {
13487 ex.X_op = O_constant;
13488 ex.X_add_symbol = NULL;
13489 ex.X_op_symbol = NULL;
13490 ex.X_add_number = mips_cpreturn_offset;
13491
13492 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13493 }
13494 else
13495 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13496 mips_cpreturn_register, 0);
13497 macro_end ();
13498
13499 demand_empty_rest_of_line ();
13500 }
13501
13502 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13503 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13504 use in DWARF debug information. */
13505
13506 static void
13507 s_dtprel_internal (size_t bytes)
13508 {
13509 expressionS ex;
13510 char *p;
13511
13512 expression (&ex);
13513
13514 if (ex.X_op != O_symbol)
13515 {
13516 as_bad (_("Unsupported use of %s"), (bytes == 8
13517 ? ".dtpreldword"
13518 : ".dtprelword"));
13519 ignore_rest_of_line ();
13520 }
13521
13522 p = frag_more (bytes);
13523 md_number_to_chars (p, 0, bytes);
13524 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13525 (bytes == 8
13526 ? BFD_RELOC_MIPS_TLS_DTPREL64
13527 : BFD_RELOC_MIPS_TLS_DTPREL32));
13528
13529 demand_empty_rest_of_line ();
13530 }
13531
13532 /* Handle .dtprelword. */
13533
13534 static void
13535 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13536 {
13537 s_dtprel_internal (4);
13538 }
13539
13540 /* Handle .dtpreldword. */
13541
13542 static void
13543 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13544 {
13545 s_dtprel_internal (8);
13546 }
13547
13548 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13549 code. It sets the offset to use in gp_rel relocations. */
13550
13551 static void
13552 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13553 {
13554 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13555 We also need NewABI support. */
13556 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13557 {
13558 s_ignore (0);
13559 return;
13560 }
13561
13562 mips_gprel_offset = get_absolute_expression ();
13563
13564 demand_empty_rest_of_line ();
13565 }
13566
13567 /* Handle the .gpword pseudo-op. This is used when generating PIC
13568 code. It generates a 32 bit GP relative reloc. */
13569
13570 static void
13571 s_gpword (int ignore ATTRIBUTE_UNUSED)
13572 {
13573 segment_info_type *si;
13574 struct insn_label_list *l;
13575 symbolS *label;
13576 expressionS ex;
13577 char *p;
13578
13579 /* When not generating PIC code, this is treated as .word. */
13580 if (mips_pic != SVR4_PIC)
13581 {
13582 s_cons (2);
13583 return;
13584 }
13585
13586 si = seg_info (now_seg);
13587 l = si->label_list;
13588 label = l != NULL ? l->label : NULL;
13589 mips_emit_delays ();
13590 if (auto_align)
13591 mips_align (2, 0, label);
13592
13593 expression (&ex);
13594 mips_clear_insn_labels ();
13595
13596 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13597 {
13598 as_bad (_("Unsupported use of .gpword"));
13599 ignore_rest_of_line ();
13600 }
13601
13602 p = frag_more (4);
13603 md_number_to_chars (p, 0, 4);
13604 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13605 BFD_RELOC_GPREL32);
13606
13607 demand_empty_rest_of_line ();
13608 }
13609
13610 static void
13611 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13612 {
13613 segment_info_type *si;
13614 struct insn_label_list *l;
13615 symbolS *label;
13616 expressionS ex;
13617 char *p;
13618
13619 /* When not generating PIC code, this is treated as .dword. */
13620 if (mips_pic != SVR4_PIC)
13621 {
13622 s_cons (3);
13623 return;
13624 }
13625
13626 si = seg_info (now_seg);
13627 l = si->label_list;
13628 label = l != NULL ? l->label : NULL;
13629 mips_emit_delays ();
13630 if (auto_align)
13631 mips_align (3, 0, label);
13632
13633 expression (&ex);
13634 mips_clear_insn_labels ();
13635
13636 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13637 {
13638 as_bad (_("Unsupported use of .gpdword"));
13639 ignore_rest_of_line ();
13640 }
13641
13642 p = frag_more (8);
13643 md_number_to_chars (p, 0, 8);
13644 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13645 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13646
13647 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13648 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13649 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13650
13651 demand_empty_rest_of_line ();
13652 }
13653
13654 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13655 tables in SVR4 PIC code. */
13656
13657 static void
13658 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13659 {
13660 int reg;
13661
13662 /* This is ignored when not generating SVR4 PIC code. */
13663 if (mips_pic != SVR4_PIC)
13664 {
13665 s_ignore (0);
13666 return;
13667 }
13668
13669 /* Add $gp to the register named as an argument. */
13670 macro_start ();
13671 reg = tc_get_register (0);
13672 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13673 macro_end ();
13674
13675 demand_empty_rest_of_line ();
13676 }
13677
13678 /* Handle the .insn pseudo-op. This marks instruction labels in
13679 mips16 mode. This permits the linker to handle them specially,
13680 such as generating jalx instructions when needed. We also make
13681 them odd for the duration of the assembly, in order to generate the
13682 right sort of code. We will make them even in the adjust_symtab
13683 routine, while leaving them marked. This is convenient for the
13684 debugger and the disassembler. The linker knows to make them odd
13685 again. */
13686
13687 static void
13688 s_insn (int ignore ATTRIBUTE_UNUSED)
13689 {
13690 mips16_mark_labels ();
13691
13692 demand_empty_rest_of_line ();
13693 }
13694
13695 /* Handle a .stabn directive. We need these in order to mark a label
13696 as being a mips16 text label correctly. Sometimes the compiler
13697 will emit a label, followed by a .stabn, and then switch sections.
13698 If the label and .stabn are in mips16 mode, then the label is
13699 really a mips16 text label. */
13700
13701 static void
13702 s_mips_stab (int type)
13703 {
13704 if (type == 'n')
13705 mips16_mark_labels ();
13706
13707 s_stab (type);
13708 }
13709
13710 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13711
13712 static void
13713 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13714 {
13715 char *name;
13716 int c;
13717 symbolS *symbolP;
13718 expressionS exp;
13719
13720 name = input_line_pointer;
13721 c = get_symbol_end ();
13722 symbolP = symbol_find_or_make (name);
13723 S_SET_WEAK (symbolP);
13724 *input_line_pointer = c;
13725
13726 SKIP_WHITESPACE ();
13727
13728 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13729 {
13730 if (S_IS_DEFINED (symbolP))
13731 {
13732 as_bad (_("ignoring attempt to redefine symbol %s"),
13733 S_GET_NAME (symbolP));
13734 ignore_rest_of_line ();
13735 return;
13736 }
13737
13738 if (*input_line_pointer == ',')
13739 {
13740 ++input_line_pointer;
13741 SKIP_WHITESPACE ();
13742 }
13743
13744 expression (&exp);
13745 if (exp.X_op != O_symbol)
13746 {
13747 as_bad (_("bad .weakext directive"));
13748 ignore_rest_of_line ();
13749 return;
13750 }
13751 symbol_set_value_expression (symbolP, &exp);
13752 }
13753
13754 demand_empty_rest_of_line ();
13755 }
13756
13757 /* Parse a register string into a number. Called from the ECOFF code
13758 to parse .frame. The argument is non-zero if this is the frame
13759 register, so that we can record it in mips_frame_reg. */
13760
13761 int
13762 tc_get_register (int frame)
13763 {
13764 unsigned int reg;
13765
13766 SKIP_WHITESPACE ();
13767 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13768 reg = 0;
13769 if (frame)
13770 {
13771 mips_frame_reg = reg != 0 ? reg : SP;
13772 mips_frame_reg_valid = 1;
13773 mips_cprestore_valid = 0;
13774 }
13775 return reg;
13776 }
13777
13778 valueT
13779 md_section_align (asection *seg, valueT addr)
13780 {
13781 int align = bfd_get_section_alignment (stdoutput, seg);
13782
13783 if (IS_ELF)
13784 {
13785 /* We don't need to align ELF sections to the full alignment.
13786 However, Irix 5 may prefer that we align them at least to a 16
13787 byte boundary. We don't bother to align the sections if we
13788 are targeted for an embedded system. */
13789 if (strncmp (TARGET_OS, "elf", 3) == 0)
13790 return addr;
13791 if (align > 4)
13792 align = 4;
13793 }
13794
13795 return ((addr + (1 << align) - 1) & (-1 << align));
13796 }
13797
13798 /* Utility routine, called from above as well. If called while the
13799 input file is still being read, it's only an approximation. (For
13800 example, a symbol may later become defined which appeared to be
13801 undefined earlier.) */
13802
13803 static int
13804 nopic_need_relax (symbolS *sym, int before_relaxing)
13805 {
13806 if (sym == 0)
13807 return 0;
13808
13809 if (g_switch_value > 0)
13810 {
13811 const char *symname;
13812 int change;
13813
13814 /* Find out whether this symbol can be referenced off the $gp
13815 register. It can be if it is smaller than the -G size or if
13816 it is in the .sdata or .sbss section. Certain symbols can
13817 not be referenced off the $gp, although it appears as though
13818 they can. */
13819 symname = S_GET_NAME (sym);
13820 if (symname != (const char *) NULL
13821 && (strcmp (symname, "eprol") == 0
13822 || strcmp (symname, "etext") == 0
13823 || strcmp (symname, "_gp") == 0
13824 || strcmp (symname, "edata") == 0
13825 || strcmp (symname, "_fbss") == 0
13826 || strcmp (symname, "_fdata") == 0
13827 || strcmp (symname, "_ftext") == 0
13828 || strcmp (symname, "end") == 0
13829 || strcmp (symname, "_gp_disp") == 0))
13830 change = 1;
13831 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13832 && (0
13833 #ifndef NO_ECOFF_DEBUGGING
13834 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13835 && (symbol_get_obj (sym)->ecoff_extern_size
13836 <= g_switch_value))
13837 #endif
13838 /* We must defer this decision until after the whole
13839 file has been read, since there might be a .extern
13840 after the first use of this symbol. */
13841 || (before_relaxing
13842 #ifndef NO_ECOFF_DEBUGGING
13843 && symbol_get_obj (sym)->ecoff_extern_size == 0
13844 #endif
13845 && S_GET_VALUE (sym) == 0)
13846 || (S_GET_VALUE (sym) != 0
13847 && S_GET_VALUE (sym) <= g_switch_value)))
13848 change = 0;
13849 else
13850 {
13851 const char *segname;
13852
13853 segname = segment_name (S_GET_SEGMENT (sym));
13854 gas_assert (strcmp (segname, ".lit8") != 0
13855 && strcmp (segname, ".lit4") != 0);
13856 change = (strcmp (segname, ".sdata") != 0
13857 && strcmp (segname, ".sbss") != 0
13858 && strncmp (segname, ".sdata.", 7) != 0
13859 && strncmp (segname, ".sbss.", 6) != 0
13860 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13861 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13862 }
13863 return change;
13864 }
13865 else
13866 /* We are not optimizing for the $gp register. */
13867 return 1;
13868 }
13869
13870
13871 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13872
13873 static bfd_boolean
13874 pic_need_relax (symbolS *sym, asection *segtype)
13875 {
13876 asection *symsec;
13877
13878 /* Handle the case of a symbol equated to another symbol. */
13879 while (symbol_equated_reloc_p (sym))
13880 {
13881 symbolS *n;
13882
13883 /* It's possible to get a loop here in a badly written program. */
13884 n = symbol_get_value_expression (sym)->X_add_symbol;
13885 if (n == sym)
13886 break;
13887 sym = n;
13888 }
13889
13890 if (symbol_section_p (sym))
13891 return TRUE;
13892
13893 symsec = S_GET_SEGMENT (sym);
13894
13895 /* This must duplicate the test in adjust_reloc_syms. */
13896 return (symsec != &bfd_und_section
13897 && symsec != &bfd_abs_section
13898 && !bfd_is_com_section (symsec)
13899 && !s_is_linkonce (sym, segtype)
13900 #ifdef OBJ_ELF
13901 /* A global or weak symbol is treated as external. */
13902 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13903 #endif
13904 );
13905 }
13906
13907
13908 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13909 extended opcode. SEC is the section the frag is in. */
13910
13911 static int
13912 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13913 {
13914 int type;
13915 const struct mips16_immed_operand *op;
13916 offsetT val;
13917 int mintiny, maxtiny;
13918 segT symsec;
13919 fragS *sym_frag;
13920
13921 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13922 return 0;
13923 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13924 return 1;
13925
13926 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13927 op = mips16_immed_operands;
13928 while (op->type != type)
13929 {
13930 ++op;
13931 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13932 }
13933
13934 if (op->unsp)
13935 {
13936 if (type == '<' || type == '>' || type == '[' || type == ']')
13937 {
13938 mintiny = 1;
13939 maxtiny = 1 << op->nbits;
13940 }
13941 else
13942 {
13943 mintiny = 0;
13944 maxtiny = (1 << op->nbits) - 1;
13945 }
13946 }
13947 else
13948 {
13949 mintiny = - (1 << (op->nbits - 1));
13950 maxtiny = (1 << (op->nbits - 1)) - 1;
13951 }
13952
13953 sym_frag = symbol_get_frag (fragp->fr_symbol);
13954 val = S_GET_VALUE (fragp->fr_symbol);
13955 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13956
13957 if (op->pcrel)
13958 {
13959 addressT addr;
13960
13961 /* We won't have the section when we are called from
13962 mips_relax_frag. However, we will always have been called
13963 from md_estimate_size_before_relax first. If this is a
13964 branch to a different section, we mark it as such. If SEC is
13965 NULL, and the frag is not marked, then it must be a branch to
13966 the same section. */
13967 if (sec == NULL)
13968 {
13969 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13970 return 1;
13971 }
13972 else
13973 {
13974 /* Must have been called from md_estimate_size_before_relax. */
13975 if (symsec != sec)
13976 {
13977 fragp->fr_subtype =
13978 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13979
13980 /* FIXME: We should support this, and let the linker
13981 catch branches and loads that are out of range. */
13982 as_bad_where (fragp->fr_file, fragp->fr_line,
13983 _("unsupported PC relative reference to different section"));
13984
13985 return 1;
13986 }
13987 if (fragp != sym_frag && sym_frag->fr_address == 0)
13988 /* Assume non-extended on the first relaxation pass.
13989 The address we have calculated will be bogus if this is
13990 a forward branch to another frag, as the forward frag
13991 will have fr_address == 0. */
13992 return 0;
13993 }
13994
13995 /* In this case, we know for sure that the symbol fragment is in
13996 the same section. If the relax_marker of the symbol fragment
13997 differs from the relax_marker of this fragment, we have not
13998 yet adjusted the symbol fragment fr_address. We want to add
13999 in STRETCH in order to get a better estimate of the address.
14000 This particularly matters because of the shift bits. */
14001 if (stretch != 0
14002 && sym_frag->relax_marker != fragp->relax_marker)
14003 {
14004 fragS *f;
14005
14006 /* Adjust stretch for any alignment frag. Note that if have
14007 been expanding the earlier code, the symbol may be
14008 defined in what appears to be an earlier frag. FIXME:
14009 This doesn't handle the fr_subtype field, which specifies
14010 a maximum number of bytes to skip when doing an
14011 alignment. */
14012 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
14013 {
14014 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
14015 {
14016 if (stretch < 0)
14017 stretch = - ((- stretch)
14018 & ~ ((1 << (int) f->fr_offset) - 1));
14019 else
14020 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
14021 if (stretch == 0)
14022 break;
14023 }
14024 }
14025 if (f != NULL)
14026 val += stretch;
14027 }
14028
14029 addr = fragp->fr_address + fragp->fr_fix;
14030
14031 /* The base address rules are complicated. The base address of
14032 a branch is the following instruction. The base address of a
14033 PC relative load or add is the instruction itself, but if it
14034 is in a delay slot (in which case it can not be extended) use
14035 the address of the instruction whose delay slot it is in. */
14036 if (type == 'p' || type == 'q')
14037 {
14038 addr += 2;
14039
14040 /* If we are currently assuming that this frag should be
14041 extended, then, the current address is two bytes
14042 higher. */
14043 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14044 addr += 2;
14045
14046 /* Ignore the low bit in the target, since it will be set
14047 for a text label. */
14048 if ((val & 1) != 0)
14049 --val;
14050 }
14051 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14052 addr -= 4;
14053 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14054 addr -= 2;
14055
14056 val -= addr & ~ ((1 << op->shift) - 1);
14057
14058 /* Branch offsets have an implicit 0 in the lowest bit. */
14059 if (type == 'p' || type == 'q')
14060 val /= 2;
14061
14062 /* If any of the shifted bits are set, we must use an extended
14063 opcode. If the address depends on the size of this
14064 instruction, this can lead to a loop, so we arrange to always
14065 use an extended opcode. We only check this when we are in
14066 the main relaxation loop, when SEC is NULL. */
14067 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
14068 {
14069 fragp->fr_subtype =
14070 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14071 return 1;
14072 }
14073
14074 /* If we are about to mark a frag as extended because the value
14075 is precisely maxtiny + 1, then there is a chance of an
14076 infinite loop as in the following code:
14077 la $4,foo
14078 .skip 1020
14079 .align 2
14080 foo:
14081 In this case when the la is extended, foo is 0x3fc bytes
14082 away, so the la can be shrunk, but then foo is 0x400 away, so
14083 the la must be extended. To avoid this loop, we mark the
14084 frag as extended if it was small, and is about to become
14085 extended with a value of maxtiny + 1. */
14086 if (val == ((maxtiny + 1) << op->shift)
14087 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
14088 && sec == NULL)
14089 {
14090 fragp->fr_subtype =
14091 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
14092 return 1;
14093 }
14094 }
14095 else if (symsec != absolute_section && sec != NULL)
14096 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
14097
14098 if ((val & ((1 << op->shift) - 1)) != 0
14099 || val < (mintiny << op->shift)
14100 || val > (maxtiny << op->shift))
14101 return 1;
14102 else
14103 return 0;
14104 }
14105
14106 /* Compute the length of a branch sequence, and adjust the
14107 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
14108 worst-case length is computed, with UPDATE being used to indicate
14109 whether an unconditional (-1), branch-likely (+1) or regular (0)
14110 branch is to be computed. */
14111 static int
14112 relaxed_branch_length (fragS *fragp, asection *sec, int update)
14113 {
14114 bfd_boolean toofar;
14115 int length;
14116
14117 if (fragp
14118 && S_IS_DEFINED (fragp->fr_symbol)
14119 && sec == S_GET_SEGMENT (fragp->fr_symbol))
14120 {
14121 addressT addr;
14122 offsetT val;
14123
14124 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
14125
14126 addr = fragp->fr_address + fragp->fr_fix + 4;
14127
14128 val -= addr;
14129
14130 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
14131 }
14132 else if (fragp)
14133 /* If the symbol is not defined or it's in a different segment,
14134 assume the user knows what's going on and emit a short
14135 branch. */
14136 toofar = FALSE;
14137 else
14138 toofar = TRUE;
14139
14140 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14141 fragp->fr_subtype
14142 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
14143 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
14144 RELAX_BRANCH_LINK (fragp->fr_subtype),
14145 toofar);
14146
14147 length = 4;
14148 if (toofar)
14149 {
14150 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
14151 length += 8;
14152
14153 if (mips_pic != NO_PIC)
14154 {
14155 /* Additional space for PIC loading of target address. */
14156 length += 8;
14157 if (mips_opts.isa == ISA_MIPS1)
14158 /* Additional space for $at-stabilizing nop. */
14159 length += 4;
14160 }
14161
14162 /* If branch is conditional. */
14163 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14164 length += 8;
14165 }
14166
14167 return length;
14168 }
14169
14170 /* Estimate the size of a frag before relaxing. Unless this is the
14171 mips16, we are not really relaxing here, and the final size is
14172 encoded in the subtype information. For the mips16, we have to
14173 decide whether we are using an extended opcode or not. */
14174
14175 int
14176 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14177 {
14178 int change;
14179
14180 if (RELAX_BRANCH_P (fragp->fr_subtype))
14181 {
14182
14183 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14184
14185 return fragp->fr_var;
14186 }
14187
14188 if (RELAX_MIPS16_P (fragp->fr_subtype))
14189 /* We don't want to modify the EXTENDED bit here; it might get us
14190 into infinite loops. We change it only in mips_relax_frag(). */
14191 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14192
14193 if (mips_pic == NO_PIC)
14194 change = nopic_need_relax (fragp->fr_symbol, 0);
14195 else if (mips_pic == SVR4_PIC)
14196 change = pic_need_relax (fragp->fr_symbol, segtype);
14197 else if (mips_pic == VXWORKS_PIC)
14198 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14199 change = 0;
14200 else
14201 abort ();
14202
14203 if (change)
14204 {
14205 fragp->fr_subtype |= RELAX_USE_SECOND;
14206 return -RELAX_FIRST (fragp->fr_subtype);
14207 }
14208 else
14209 return -RELAX_SECOND (fragp->fr_subtype);
14210 }
14211
14212 /* This is called to see whether a reloc against a defined symbol
14213 should be converted into a reloc against a section. */
14214
14215 int
14216 mips_fix_adjustable (fixS *fixp)
14217 {
14218 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14219 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14220 return 0;
14221
14222 if (fixp->fx_addsy == NULL)
14223 return 1;
14224
14225 /* If symbol SYM is in a mergeable section, relocations of the form
14226 SYM + 0 can usually be made section-relative. The mergeable data
14227 is then identified by the section offset rather than by the symbol.
14228
14229 However, if we're generating REL LO16 relocations, the offset is split
14230 between the LO16 and parterning high part relocation. The linker will
14231 need to recalculate the complete offset in order to correctly identify
14232 the merge data.
14233
14234 The linker has traditionally not looked for the parterning high part
14235 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14236 placed anywhere. Rather than break backwards compatibility by changing
14237 this, it seems better not to force the issue, and instead keep the
14238 original symbol. This will work with either linker behavior. */
14239 if ((lo16_reloc_p (fixp->fx_r_type)
14240 || reloc_needs_lo_p (fixp->fx_r_type))
14241 && HAVE_IN_PLACE_ADDENDS
14242 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14243 return 0;
14244
14245 /* There is no place to store an in-place offset for JALR relocations. */
14246 if (fixp->fx_r_type == BFD_RELOC_MIPS_JALR && HAVE_IN_PLACE_ADDENDS)
14247 return 0;
14248
14249 #ifdef OBJ_ELF
14250 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14251 to a floating-point stub. The same is true for non-R_MIPS16_26
14252 relocations against MIPS16 functions; in this case, the stub becomes
14253 the function's canonical address.
14254
14255 Floating-point stubs are stored in unique .mips16.call.* or
14256 .mips16.fn.* sections. If a stub T for function F is in section S,
14257 the first relocation in section S must be against F; this is how the
14258 linker determines the target function. All relocations that might
14259 resolve to T must also be against F. We therefore have the following
14260 restrictions, which are given in an intentionally-redundant way:
14261
14262 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14263 symbols.
14264
14265 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14266 if that stub might be used.
14267
14268 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14269 symbols.
14270
14271 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14272 that stub might be used.
14273
14274 There is a further restriction:
14275
14276 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14277 on targets with in-place addends; the relocation field cannot
14278 encode the low bit.
14279
14280 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14281 against a MIPS16 symbol.
14282
14283 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14284 relocation against some symbol R, no relocation against R may be
14285 reduced. (Note that this deals with (2) as well as (1) because
14286 relocations against global symbols will never be reduced on ELF
14287 targets.) This approach is a little simpler than trying to detect
14288 stub sections, and gives the "all or nothing" per-symbol consistency
14289 that we have for MIPS16 symbols. */
14290 if (IS_ELF
14291 && fixp->fx_subsy == NULL
14292 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14293 || *symbol_get_tc (fixp->fx_addsy)))
14294 return 0;
14295 #endif
14296
14297 return 1;
14298 }
14299
14300 /* Translate internal representation of relocation info to BFD target
14301 format. */
14302
14303 arelent **
14304 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14305 {
14306 static arelent *retval[4];
14307 arelent *reloc;
14308 bfd_reloc_code_real_type code;
14309
14310 memset (retval, 0, sizeof(retval));
14311 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14312 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14313 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14314 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14315
14316 if (fixp->fx_pcrel)
14317 {
14318 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14319
14320 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14321 Relocations want only the symbol offset. */
14322 reloc->addend = fixp->fx_addnumber + reloc->address;
14323 if (!IS_ELF)
14324 {
14325 /* A gruesome hack which is a result of the gruesome gas
14326 reloc handling. What's worse, for COFF (as opposed to
14327 ECOFF), we might need yet another copy of reloc->address.
14328 See bfd_install_relocation. */
14329 reloc->addend += reloc->address;
14330 }
14331 }
14332 else
14333 reloc->addend = fixp->fx_addnumber;
14334
14335 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14336 entry to be used in the relocation's section offset. */
14337 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14338 {
14339 reloc->address = reloc->addend;
14340 reloc->addend = 0;
14341 }
14342
14343 code = fixp->fx_r_type;
14344
14345 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14346 if (reloc->howto == NULL)
14347 {
14348 as_bad_where (fixp->fx_file, fixp->fx_line,
14349 _("Can not represent %s relocation in this object file format"),
14350 bfd_get_reloc_code_name (code));
14351 retval[0] = NULL;
14352 }
14353
14354 return retval;
14355 }
14356
14357 /* Relax a machine dependent frag. This returns the amount by which
14358 the current size of the frag should change. */
14359
14360 int
14361 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14362 {
14363 if (RELAX_BRANCH_P (fragp->fr_subtype))
14364 {
14365 offsetT old_var = fragp->fr_var;
14366
14367 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14368
14369 return fragp->fr_var - old_var;
14370 }
14371
14372 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14373 return 0;
14374
14375 if (mips16_extended_frag (fragp, NULL, stretch))
14376 {
14377 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14378 return 0;
14379 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14380 return 2;
14381 }
14382 else
14383 {
14384 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14385 return 0;
14386 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14387 return -2;
14388 }
14389
14390 return 0;
14391 }
14392
14393 /* Convert a machine dependent frag. */
14394
14395 void
14396 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14397 {
14398 if (RELAX_BRANCH_P (fragp->fr_subtype))
14399 {
14400 bfd_byte *buf;
14401 unsigned long insn;
14402 expressionS exp;
14403 fixS *fixp;
14404
14405 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14406
14407 if (target_big_endian)
14408 insn = bfd_getb32 (buf);
14409 else
14410 insn = bfd_getl32 (buf);
14411
14412 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14413 {
14414 /* We generate a fixup instead of applying it right now
14415 because, if there are linker relaxations, we're going to
14416 need the relocations. */
14417 exp.X_op = O_symbol;
14418 exp.X_add_symbol = fragp->fr_symbol;
14419 exp.X_add_number = fragp->fr_offset;
14420
14421 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14422 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14423 fixp->fx_file = fragp->fr_file;
14424 fixp->fx_line = fragp->fr_line;
14425
14426 md_number_to_chars ((char *) buf, insn, 4);
14427 buf += 4;
14428 }
14429 else
14430 {
14431 int i;
14432
14433 as_warn_where (fragp->fr_file, fragp->fr_line,
14434 _("relaxed out-of-range branch into a jump"));
14435
14436 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14437 goto uncond;
14438
14439 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14440 {
14441 /* Reverse the branch. */
14442 switch ((insn >> 28) & 0xf)
14443 {
14444 case 4:
14445 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14446 have the condition reversed by tweaking a single
14447 bit, and their opcodes all have 0x4???????. */
14448 gas_assert ((insn & 0xf1000000) == 0x41000000);
14449 insn ^= 0x00010000;
14450 break;
14451
14452 case 0:
14453 /* bltz 0x04000000 bgez 0x04010000
14454 bltzal 0x04100000 bgezal 0x04110000 */
14455 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14456 insn ^= 0x00010000;
14457 break;
14458
14459 case 1:
14460 /* beq 0x10000000 bne 0x14000000
14461 blez 0x18000000 bgtz 0x1c000000 */
14462 insn ^= 0x04000000;
14463 break;
14464
14465 default:
14466 abort ();
14467 }
14468 }
14469
14470 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14471 {
14472 /* Clear the and-link bit. */
14473 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14474
14475 /* bltzal 0x04100000 bgezal 0x04110000
14476 bltzall 0x04120000 bgezall 0x04130000 */
14477 insn &= ~0x00100000;
14478 }
14479
14480 /* Branch over the branch (if the branch was likely) or the
14481 full jump (not likely case). Compute the offset from the
14482 current instruction to branch to. */
14483 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14484 i = 16;
14485 else
14486 {
14487 /* How many bytes in instructions we've already emitted? */
14488 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14489 /* How many bytes in instructions from here to the end? */
14490 i = fragp->fr_var - i;
14491 }
14492 /* Convert to instruction count. */
14493 i >>= 2;
14494 /* Branch counts from the next instruction. */
14495 i--;
14496 insn |= i;
14497 /* Branch over the jump. */
14498 md_number_to_chars ((char *) buf, insn, 4);
14499 buf += 4;
14500
14501 /* nop */
14502 md_number_to_chars ((char *) buf, 0, 4);
14503 buf += 4;
14504
14505 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14506 {
14507 /* beql $0, $0, 2f */
14508 insn = 0x50000000;
14509 /* Compute the PC offset from the current instruction to
14510 the end of the variable frag. */
14511 /* How many bytes in instructions we've already emitted? */
14512 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14513 /* How many bytes in instructions from here to the end? */
14514 i = fragp->fr_var - i;
14515 /* Convert to instruction count. */
14516 i >>= 2;
14517 /* Don't decrement i, because we want to branch over the
14518 delay slot. */
14519
14520 insn |= i;
14521 md_number_to_chars ((char *) buf, insn, 4);
14522 buf += 4;
14523
14524 md_number_to_chars ((char *) buf, 0, 4);
14525 buf += 4;
14526 }
14527
14528 uncond:
14529 if (mips_pic == NO_PIC)
14530 {
14531 /* j or jal. */
14532 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14533 ? 0x0c000000 : 0x08000000);
14534 exp.X_op = O_symbol;
14535 exp.X_add_symbol = fragp->fr_symbol;
14536 exp.X_add_number = fragp->fr_offset;
14537
14538 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14539 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14540 fixp->fx_file = fragp->fr_file;
14541 fixp->fx_line = fragp->fr_line;
14542
14543 md_number_to_chars ((char *) buf, insn, 4);
14544 buf += 4;
14545 }
14546 else
14547 {
14548 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14549 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14550 exp.X_op = O_symbol;
14551 exp.X_add_symbol = fragp->fr_symbol;
14552 exp.X_add_number = fragp->fr_offset;
14553
14554 if (fragp->fr_offset)
14555 {
14556 exp.X_add_symbol = make_expr_symbol (&exp);
14557 exp.X_add_number = 0;
14558 }
14559
14560 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14561 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14562 fixp->fx_file = fragp->fr_file;
14563 fixp->fx_line = fragp->fr_line;
14564
14565 md_number_to_chars ((char *) buf, insn, 4);
14566 buf += 4;
14567
14568 if (mips_opts.isa == ISA_MIPS1)
14569 {
14570 /* nop */
14571 md_number_to_chars ((char *) buf, 0, 4);
14572 buf += 4;
14573 }
14574
14575 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14576 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14577
14578 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14579 4, &exp, FALSE, BFD_RELOC_LO16);
14580 fixp->fx_file = fragp->fr_file;
14581 fixp->fx_line = fragp->fr_line;
14582
14583 md_number_to_chars ((char *) buf, insn, 4);
14584 buf += 4;
14585
14586 /* j(al)r $at. */
14587 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14588 insn = 0x0020f809;
14589 else
14590 insn = 0x00200008;
14591
14592 md_number_to_chars ((char *) buf, insn, 4);
14593 buf += 4;
14594 }
14595 }
14596
14597 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14598 + fragp->fr_fix + fragp->fr_var);
14599
14600 fragp->fr_fix += fragp->fr_var;
14601
14602 return;
14603 }
14604
14605 if (RELAX_MIPS16_P (fragp->fr_subtype))
14606 {
14607 int type;
14608 const struct mips16_immed_operand *op;
14609 bfd_boolean small, ext;
14610 offsetT val;
14611 bfd_byte *buf;
14612 unsigned long insn;
14613 bfd_boolean use_extend;
14614 unsigned short extend;
14615
14616 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14617 op = mips16_immed_operands;
14618 while (op->type != type)
14619 ++op;
14620
14621 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14622 {
14623 small = FALSE;
14624 ext = TRUE;
14625 }
14626 else
14627 {
14628 small = TRUE;
14629 ext = FALSE;
14630 }
14631
14632 val = resolve_symbol_value (fragp->fr_symbol);
14633 if (op->pcrel)
14634 {
14635 addressT addr;
14636
14637 addr = fragp->fr_address + fragp->fr_fix;
14638
14639 /* The rules for the base address of a PC relative reloc are
14640 complicated; see mips16_extended_frag. */
14641 if (type == 'p' || type == 'q')
14642 {
14643 addr += 2;
14644 if (ext)
14645 addr += 2;
14646 /* Ignore the low bit in the target, since it will be
14647 set for a text label. */
14648 if ((val & 1) != 0)
14649 --val;
14650 }
14651 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14652 addr -= 4;
14653 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14654 addr -= 2;
14655
14656 addr &= ~ (addressT) ((1 << op->shift) - 1);
14657 val -= addr;
14658
14659 /* Make sure the section winds up with the alignment we have
14660 assumed. */
14661 if (op->shift > 0)
14662 record_alignment (asec, op->shift);
14663 }
14664
14665 if (ext
14666 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14667 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14668 as_warn_where (fragp->fr_file, fragp->fr_line,
14669 _("extended instruction in delay slot"));
14670
14671 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14672
14673 if (target_big_endian)
14674 insn = bfd_getb16 (buf);
14675 else
14676 insn = bfd_getl16 (buf);
14677
14678 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14679 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14680 small, ext, &insn, &use_extend, &extend);
14681
14682 if (use_extend)
14683 {
14684 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14685 fragp->fr_fix += 2;
14686 buf += 2;
14687 }
14688
14689 md_number_to_chars ((char *) buf, insn, 2);
14690 fragp->fr_fix += 2;
14691 buf += 2;
14692 }
14693 else
14694 {
14695 int first, second;
14696 fixS *fixp;
14697
14698 first = RELAX_FIRST (fragp->fr_subtype);
14699 second = RELAX_SECOND (fragp->fr_subtype);
14700 fixp = (fixS *) fragp->fr_opcode;
14701
14702 /* Possibly emit a warning if we've chosen the longer option. */
14703 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14704 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14705 {
14706 const char *msg = macro_warning (fragp->fr_subtype);
14707 if (msg != 0)
14708 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14709 }
14710
14711 /* Go through all the fixups for the first sequence. Disable them
14712 (by marking them as done) if we're going to use the second
14713 sequence instead. */
14714 while (fixp
14715 && fixp->fx_frag == fragp
14716 && fixp->fx_where < fragp->fr_fix - second)
14717 {
14718 if (fragp->fr_subtype & RELAX_USE_SECOND)
14719 fixp->fx_done = 1;
14720 fixp = fixp->fx_next;
14721 }
14722
14723 /* Go through the fixups for the second sequence. Disable them if
14724 we're going to use the first sequence, otherwise adjust their
14725 addresses to account for the relaxation. */
14726 while (fixp && fixp->fx_frag == fragp)
14727 {
14728 if (fragp->fr_subtype & RELAX_USE_SECOND)
14729 fixp->fx_where -= first;
14730 else
14731 fixp->fx_done = 1;
14732 fixp = fixp->fx_next;
14733 }
14734
14735 /* Now modify the frag contents. */
14736 if (fragp->fr_subtype & RELAX_USE_SECOND)
14737 {
14738 char *start;
14739
14740 start = fragp->fr_literal + fragp->fr_fix - first - second;
14741 memmove (start, start + first, second);
14742 fragp->fr_fix -= first;
14743 }
14744 else
14745 fragp->fr_fix -= second;
14746 }
14747 }
14748
14749 #ifdef OBJ_ELF
14750
14751 /* This function is called after the relocs have been generated.
14752 We've been storing mips16 text labels as odd. Here we convert them
14753 back to even for the convenience of the debugger. */
14754
14755 void
14756 mips_frob_file_after_relocs (void)
14757 {
14758 asymbol **syms;
14759 unsigned int count, i;
14760
14761 if (!IS_ELF)
14762 return;
14763
14764 syms = bfd_get_outsymbols (stdoutput);
14765 count = bfd_get_symcount (stdoutput);
14766 for (i = 0; i < count; i++, syms++)
14767 {
14768 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14769 && ((*syms)->value & 1) != 0)
14770 {
14771 (*syms)->value &= ~1;
14772 /* If the symbol has an odd size, it was probably computed
14773 incorrectly, so adjust that as well. */
14774 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14775 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14776 }
14777 }
14778 }
14779
14780 #endif
14781
14782 /* This function is called whenever a label is defined, including fake
14783 labels instantiated off the dot special symbol. It is used when
14784 handling branch delays; if a branch has a label, we assume we cannot
14785 move it. This also bumps the value of the symbol by 1 in compressed
14786 code. */
14787
14788 void
14789 mips_record_label (symbolS *sym)
14790 {
14791 segment_info_type *si = seg_info (now_seg);
14792 struct insn_label_list *l;
14793
14794 if (free_insn_labels == NULL)
14795 l = (struct insn_label_list *) xmalloc (sizeof *l);
14796 else
14797 {
14798 l = free_insn_labels;
14799 free_insn_labels = l->next;
14800 }
14801
14802 l->label = sym;
14803 l->next = si->label_list;
14804 si->label_list = l;
14805 }
14806
14807 /* This function is called as tc_frob_label() whenever a label is defined
14808 and adds a DWARF-2 record we only want for true labels. */
14809
14810 void
14811 mips_define_label (symbolS *sym)
14812 {
14813 mips_record_label (sym);
14814 #ifdef OBJ_ELF
14815 dwarf2_emit_label (sym);
14816 #endif
14817 }
14818 \f
14819 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14820
14821 /* Some special processing for a MIPS ELF file. */
14822
14823 void
14824 mips_elf_final_processing (void)
14825 {
14826 /* Write out the register information. */
14827 if (mips_abi != N64_ABI)
14828 {
14829 Elf32_RegInfo s;
14830
14831 s.ri_gprmask = mips_gprmask;
14832 s.ri_cprmask[0] = mips_cprmask[0];
14833 s.ri_cprmask[1] = mips_cprmask[1];
14834 s.ri_cprmask[2] = mips_cprmask[2];
14835 s.ri_cprmask[3] = mips_cprmask[3];
14836 /* The gp_value field is set by the MIPS ELF backend. */
14837
14838 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14839 ((Elf32_External_RegInfo *)
14840 mips_regmask_frag));
14841 }
14842 else
14843 {
14844 Elf64_Internal_RegInfo s;
14845
14846 s.ri_gprmask = mips_gprmask;
14847 s.ri_pad = 0;
14848 s.ri_cprmask[0] = mips_cprmask[0];
14849 s.ri_cprmask[1] = mips_cprmask[1];
14850 s.ri_cprmask[2] = mips_cprmask[2];
14851 s.ri_cprmask[3] = mips_cprmask[3];
14852 /* The gp_value field is set by the MIPS ELF backend. */
14853
14854 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14855 ((Elf64_External_RegInfo *)
14856 mips_regmask_frag));
14857 }
14858
14859 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14860 sort of BFD interface for this. */
14861 if (mips_any_noreorder)
14862 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14863 if (mips_pic != NO_PIC)
14864 {
14865 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14866 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14867 }
14868 if (mips_abicalls)
14869 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14870
14871 /* Set MIPS ELF flags for ASEs. */
14872 /* We may need to define a new flag for DSP ASE, and set this flag when
14873 file_ase_dsp is true. */
14874 /* Same for DSP R2. */
14875 /* We may need to define a new flag for MT ASE, and set this flag when
14876 file_ase_mt is true. */
14877 if (file_ase_mips16)
14878 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14879 #if 0 /* XXX FIXME */
14880 if (file_ase_mips3d)
14881 elf_elfheader (stdoutput)->e_flags |= ???;
14882 #endif
14883 if (file_ase_mdmx)
14884 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14885
14886 /* Set the MIPS ELF ABI flags. */
14887 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14888 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14889 else if (mips_abi == O64_ABI)
14890 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14891 else if (mips_abi == EABI_ABI)
14892 {
14893 if (!file_mips_gp32)
14894 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14895 else
14896 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14897 }
14898 else if (mips_abi == N32_ABI)
14899 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14900
14901 /* Nothing to do for N64_ABI. */
14902
14903 if (mips_32bitmode)
14904 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14905
14906 #if 0 /* XXX FIXME */
14907 /* 32 bit code with 64 bit FP registers. */
14908 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14909 elf_elfheader (stdoutput)->e_flags |= ???;
14910 #endif
14911 }
14912
14913 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14914 \f
14915 typedef struct proc {
14916 symbolS *func_sym;
14917 symbolS *func_end_sym;
14918 unsigned long reg_mask;
14919 unsigned long reg_offset;
14920 unsigned long fpreg_mask;
14921 unsigned long fpreg_offset;
14922 unsigned long frame_offset;
14923 unsigned long frame_reg;
14924 unsigned long pc_reg;
14925 } procS;
14926
14927 static procS cur_proc;
14928 static procS *cur_proc_ptr;
14929 static int numprocs;
14930
14931 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14932 nop as "0". */
14933
14934 char
14935 mips_nop_opcode (void)
14936 {
14937 return seg_info (now_seg)->tc_segment_info_data.mips16;
14938 }
14939
14940 /* Fill in an rs_align_code fragment. This only needs to do something
14941 for MIPS16 code, where 0 is not a nop. */
14942
14943 void
14944 mips_handle_align (fragS *fragp)
14945 {
14946 char *p;
14947 int bytes, size, excess;
14948 valueT opcode;
14949
14950 if (fragp->fr_type != rs_align_code)
14951 return;
14952
14953 p = fragp->fr_literal + fragp->fr_fix;
14954 if (*p)
14955 {
14956 opcode = mips16_nop_insn.insn_opcode;
14957 size = 2;
14958 }
14959 else
14960 {
14961 opcode = nop_insn.insn_opcode;
14962 size = 4;
14963 }
14964
14965 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14966 excess = bytes % size;
14967 if (excess != 0)
14968 {
14969 /* If we're not inserting a whole number of instructions,
14970 pad the end of the fixed part of the frag with zeros. */
14971 memset (p, 0, excess);
14972 p += excess;
14973 fragp->fr_fix += excess;
14974 }
14975
14976 md_number_to_chars (p, opcode, size);
14977 fragp->fr_var = size;
14978 }
14979
14980 static void
14981 md_obj_begin (void)
14982 {
14983 }
14984
14985 static void
14986 md_obj_end (void)
14987 {
14988 /* Check for premature end, nesting errors, etc. */
14989 if (cur_proc_ptr)
14990 as_warn (_("missing .end at end of assembly"));
14991 }
14992
14993 static long
14994 get_number (void)
14995 {
14996 int negative = 0;
14997 long val = 0;
14998
14999 if (*input_line_pointer == '-')
15000 {
15001 ++input_line_pointer;
15002 negative = 1;
15003 }
15004 if (!ISDIGIT (*input_line_pointer))
15005 as_bad (_("expected simple number"));
15006 if (input_line_pointer[0] == '0')
15007 {
15008 if (input_line_pointer[1] == 'x')
15009 {
15010 input_line_pointer += 2;
15011 while (ISXDIGIT (*input_line_pointer))
15012 {
15013 val <<= 4;
15014 val |= hex_value (*input_line_pointer++);
15015 }
15016 return negative ? -val : val;
15017 }
15018 else
15019 {
15020 ++input_line_pointer;
15021 while (ISDIGIT (*input_line_pointer))
15022 {
15023 val <<= 3;
15024 val |= *input_line_pointer++ - '0';
15025 }
15026 return negative ? -val : val;
15027 }
15028 }
15029 if (!ISDIGIT (*input_line_pointer))
15030 {
15031 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
15032 *input_line_pointer, *input_line_pointer);
15033 as_warn (_("invalid number"));
15034 return -1;
15035 }
15036 while (ISDIGIT (*input_line_pointer))
15037 {
15038 val *= 10;
15039 val += *input_line_pointer++ - '0';
15040 }
15041 return negative ? -val : val;
15042 }
15043
15044 /* The .file directive; just like the usual .file directive, but there
15045 is an initial number which is the ECOFF file index. In the non-ECOFF
15046 case .file implies DWARF-2. */
15047
15048 static void
15049 s_mips_file (int x ATTRIBUTE_UNUSED)
15050 {
15051 static int first_file_directive = 0;
15052
15053 if (ECOFF_DEBUGGING)
15054 {
15055 get_number ();
15056 s_app_file (0);
15057 }
15058 else
15059 {
15060 char *filename;
15061
15062 filename = dwarf2_directive_file (0);
15063
15064 /* Versions of GCC up to 3.1 start files with a ".file"
15065 directive even for stabs output. Make sure that this
15066 ".file" is handled. Note that you need a version of GCC
15067 after 3.1 in order to support DWARF-2 on MIPS. */
15068 if (filename != NULL && ! first_file_directive)
15069 {
15070 (void) new_logical_line (filename, -1);
15071 s_app_file_string (filename, 0);
15072 }
15073 first_file_directive = 1;
15074 }
15075 }
15076
15077 /* The .loc directive, implying DWARF-2. */
15078
15079 static void
15080 s_mips_loc (int x ATTRIBUTE_UNUSED)
15081 {
15082 if (!ECOFF_DEBUGGING)
15083 dwarf2_directive_loc (0);
15084 }
15085
15086 /* The .end directive. */
15087
15088 static void
15089 s_mips_end (int x ATTRIBUTE_UNUSED)
15090 {
15091 symbolS *p;
15092
15093 /* Following functions need their own .frame and .cprestore directives. */
15094 mips_frame_reg_valid = 0;
15095 mips_cprestore_valid = 0;
15096
15097 if (!is_end_of_line[(unsigned char) *input_line_pointer])
15098 {
15099 p = get_symbol ();
15100 demand_empty_rest_of_line ();
15101 }
15102 else
15103 p = NULL;
15104
15105 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15106 as_warn (_(".end not in text section"));
15107
15108 if (!cur_proc_ptr)
15109 {
15110 as_warn (_(".end directive without a preceding .ent directive."));
15111 demand_empty_rest_of_line ();
15112 return;
15113 }
15114
15115 if (p != NULL)
15116 {
15117 gas_assert (S_GET_NAME (p));
15118 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
15119 as_warn (_(".end symbol does not match .ent symbol."));
15120
15121 if (debug_type == DEBUG_STABS)
15122 stabs_generate_asm_endfunc (S_GET_NAME (p),
15123 S_GET_NAME (p));
15124 }
15125 else
15126 as_warn (_(".end directive missing or unknown symbol"));
15127
15128 #ifdef OBJ_ELF
15129 /* Create an expression to calculate the size of the function. */
15130 if (p && cur_proc_ptr)
15131 {
15132 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
15133 expressionS *exp = xmalloc (sizeof (expressionS));
15134
15135 obj->size = exp;
15136 exp->X_op = O_subtract;
15137 exp->X_add_symbol = symbol_temp_new_now ();
15138 exp->X_op_symbol = p;
15139 exp->X_add_number = 0;
15140
15141 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
15142 }
15143
15144 /* Generate a .pdr section. */
15145 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
15146 {
15147 segT saved_seg = now_seg;
15148 subsegT saved_subseg = now_subseg;
15149 expressionS exp;
15150 char *fragp;
15151
15152 #ifdef md_flush_pending_output
15153 md_flush_pending_output ();
15154 #endif
15155
15156 gas_assert (pdr_seg);
15157 subseg_set (pdr_seg, 0);
15158
15159 /* Write the symbol. */
15160 exp.X_op = O_symbol;
15161 exp.X_add_symbol = p;
15162 exp.X_add_number = 0;
15163 emit_expr (&exp, 4);
15164
15165 fragp = frag_more (7 * 4);
15166
15167 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
15168 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
15169 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
15170 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
15171 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
15172 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
15173 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
15174
15175 subseg_set (saved_seg, saved_subseg);
15176 }
15177 #endif /* OBJ_ELF */
15178
15179 cur_proc_ptr = NULL;
15180 }
15181
15182 /* The .aent and .ent directives. */
15183
15184 static void
15185 s_mips_ent (int aent)
15186 {
15187 symbolS *symbolP;
15188
15189 symbolP = get_symbol ();
15190 if (*input_line_pointer == ',')
15191 ++input_line_pointer;
15192 SKIP_WHITESPACE ();
15193 if (ISDIGIT (*input_line_pointer)
15194 || *input_line_pointer == '-')
15195 get_number ();
15196
15197 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15198 as_warn (_(".ent or .aent not in text section."));
15199
15200 if (!aent && cur_proc_ptr)
15201 as_warn (_("missing .end"));
15202
15203 if (!aent)
15204 {
15205 /* This function needs its own .frame and .cprestore directives. */
15206 mips_frame_reg_valid = 0;
15207 mips_cprestore_valid = 0;
15208
15209 cur_proc_ptr = &cur_proc;
15210 memset (cur_proc_ptr, '\0', sizeof (procS));
15211
15212 cur_proc_ptr->func_sym = symbolP;
15213
15214 ++numprocs;
15215
15216 if (debug_type == DEBUG_STABS)
15217 stabs_generate_asm_func (S_GET_NAME (symbolP),
15218 S_GET_NAME (symbolP));
15219 }
15220
15221 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15222
15223 demand_empty_rest_of_line ();
15224 }
15225
15226 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15227 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15228 s_mips_frame is used so that we can set the PDR information correctly.
15229 We can't use the ecoff routines because they make reference to the ecoff
15230 symbol table (in the mdebug section). */
15231
15232 static void
15233 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15234 {
15235 #ifdef OBJ_ELF
15236 if (IS_ELF && !ECOFF_DEBUGGING)
15237 {
15238 long val;
15239
15240 if (cur_proc_ptr == (procS *) NULL)
15241 {
15242 as_warn (_(".frame outside of .ent"));
15243 demand_empty_rest_of_line ();
15244 return;
15245 }
15246
15247 cur_proc_ptr->frame_reg = tc_get_register (1);
15248
15249 SKIP_WHITESPACE ();
15250 if (*input_line_pointer++ != ','
15251 || get_absolute_expression_and_terminator (&val) != ',')
15252 {
15253 as_warn (_("Bad .frame directive"));
15254 --input_line_pointer;
15255 demand_empty_rest_of_line ();
15256 return;
15257 }
15258
15259 cur_proc_ptr->frame_offset = val;
15260 cur_proc_ptr->pc_reg = tc_get_register (0);
15261
15262 demand_empty_rest_of_line ();
15263 }
15264 else
15265 #endif /* OBJ_ELF */
15266 s_ignore (ignore);
15267 }
15268
15269 /* The .fmask and .mask directives. If the mdebug section is present
15270 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15271 embedded targets, s_mips_mask is used so that we can set the PDR
15272 information correctly. We can't use the ecoff routines because they
15273 make reference to the ecoff symbol table (in the mdebug section). */
15274
15275 static void
15276 s_mips_mask (int reg_type)
15277 {
15278 #ifdef OBJ_ELF
15279 if (IS_ELF && !ECOFF_DEBUGGING)
15280 {
15281 long mask, off;
15282
15283 if (cur_proc_ptr == (procS *) NULL)
15284 {
15285 as_warn (_(".mask/.fmask outside of .ent"));
15286 demand_empty_rest_of_line ();
15287 return;
15288 }
15289
15290 if (get_absolute_expression_and_terminator (&mask) != ',')
15291 {
15292 as_warn (_("Bad .mask/.fmask directive"));
15293 --input_line_pointer;
15294 demand_empty_rest_of_line ();
15295 return;
15296 }
15297
15298 off = get_absolute_expression ();
15299
15300 if (reg_type == 'F')
15301 {
15302 cur_proc_ptr->fpreg_mask = mask;
15303 cur_proc_ptr->fpreg_offset = off;
15304 }
15305 else
15306 {
15307 cur_proc_ptr->reg_mask = mask;
15308 cur_proc_ptr->reg_offset = off;
15309 }
15310
15311 demand_empty_rest_of_line ();
15312 }
15313 else
15314 #endif /* OBJ_ELF */
15315 s_ignore (reg_type);
15316 }
15317
15318 /* A table describing all the processors gas knows about. Names are
15319 matched in the order listed.
15320
15321 To ease comparison, please keep this table in the same order as
15322 gcc's mips_cpu_info_table[]. */
15323 static const struct mips_cpu_info mips_cpu_info_table[] =
15324 {
15325 /* Entries for generic ISAs */
15326 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15327 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15328 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15329 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15330 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15331 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15332 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15333 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15334 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15335
15336 /* MIPS I */
15337 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15338 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15339 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15340
15341 /* MIPS II */
15342 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15343
15344 /* MIPS III */
15345 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15346 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15347 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15348 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15349 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15350 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15351 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15352 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15353 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15354 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15355 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15356 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15357 /* ST Microelectronics Loongson 2E and 2F cores */
15358 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15359 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15360
15361 /* MIPS IV */
15362 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15363 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15364 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15365 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15366 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15367 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15368 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15369 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15370 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15371 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15372 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15373 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15374 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15375 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15376 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15377
15378 /* MIPS 32 */
15379 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15380 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15381 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15382 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15383
15384 /* MIPS 32 Release 2 */
15385 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15386 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15387 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15388 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15389 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15390 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15391 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15392 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15393 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15394 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15395 /* Deprecated forms of the above. */
15396 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15397 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15398 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15399 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15400 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15401 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15402 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15403 /* Deprecated forms of the above. */
15404 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15405 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15406 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15407 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15408 ISA_MIPS32R2, CPU_MIPS32R2 },
15409 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15410 ISA_MIPS32R2, CPU_MIPS32R2 },
15411 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15412 ISA_MIPS32R2, CPU_MIPS32R2 },
15413 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15414 ISA_MIPS32R2, CPU_MIPS32R2 },
15415 /* Deprecated forms of the above. */
15416 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15417 ISA_MIPS32R2, CPU_MIPS32R2 },
15418 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15419 ISA_MIPS32R2, CPU_MIPS32R2 },
15420 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15421 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15422 ISA_MIPS32R2, CPU_MIPS32R2 },
15423 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15424 ISA_MIPS32R2, CPU_MIPS32R2 },
15425 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15426 ISA_MIPS32R2, CPU_MIPS32R2 },
15427 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15428 ISA_MIPS32R2, CPU_MIPS32R2 },
15429 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15430 ISA_MIPS32R2, CPU_MIPS32R2 },
15431 /* Deprecated forms of the above. */
15432 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15433 ISA_MIPS32R2, CPU_MIPS32R2 },
15434 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15435 ISA_MIPS32R2, CPU_MIPS32R2 },
15436 /* 1004K cores are multiprocessor versions of the 34K. */
15437 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15438 ISA_MIPS32R2, CPU_MIPS32R2 },
15439 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15440 ISA_MIPS32R2, CPU_MIPS32R2 },
15441 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15442 ISA_MIPS32R2, CPU_MIPS32R2 },
15443 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15444 ISA_MIPS32R2, CPU_MIPS32R2 },
15445
15446 /* MIPS 64 */
15447 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15448 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15449 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15450 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15451
15452 /* Broadcom SB-1 CPU core */
15453 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15454 ISA_MIPS64, CPU_SB1 },
15455 /* Broadcom SB-1A CPU core */
15456 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15457 ISA_MIPS64, CPU_SB1 },
15458
15459 { "loongson3a", 0, ISA_MIPS64, CPU_LOONGSON_3A },
15460
15461 /* MIPS 64 Release 2 */
15462
15463 /* Cavium Networks Octeon CPU core */
15464 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15465
15466 /* RMI Xlr */
15467 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15468
15469 /* End marker */
15470 { NULL, 0, 0, 0 }
15471 };
15472
15473
15474 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15475 with a final "000" replaced by "k". Ignore case.
15476
15477 Note: this function is shared between GCC and GAS. */
15478
15479 static bfd_boolean
15480 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15481 {
15482 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15483 given++, canonical++;
15484
15485 return ((*given == 0 && *canonical == 0)
15486 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15487 }
15488
15489
15490 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15491 CPU name. We've traditionally allowed a lot of variation here.
15492
15493 Note: this function is shared between GCC and GAS. */
15494
15495 static bfd_boolean
15496 mips_matching_cpu_name_p (const char *canonical, const char *given)
15497 {
15498 /* First see if the name matches exactly, or with a final "000"
15499 turned into "k". */
15500 if (mips_strict_matching_cpu_name_p (canonical, given))
15501 return TRUE;
15502
15503 /* If not, try comparing based on numerical designation alone.
15504 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15505 if (TOLOWER (*given) == 'r')
15506 given++;
15507 if (!ISDIGIT (*given))
15508 return FALSE;
15509
15510 /* Skip over some well-known prefixes in the canonical name,
15511 hoping to find a number there too. */
15512 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15513 canonical += 2;
15514 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15515 canonical += 2;
15516 else if (TOLOWER (canonical[0]) == 'r')
15517 canonical += 1;
15518
15519 return mips_strict_matching_cpu_name_p (canonical, given);
15520 }
15521
15522
15523 /* Parse an option that takes the name of a processor as its argument.
15524 OPTION is the name of the option and CPU_STRING is the argument.
15525 Return the corresponding processor enumeration if the CPU_STRING is
15526 recognized, otherwise report an error and return null.
15527
15528 A similar function exists in GCC. */
15529
15530 static const struct mips_cpu_info *
15531 mips_parse_cpu (const char *option, const char *cpu_string)
15532 {
15533 const struct mips_cpu_info *p;
15534
15535 /* 'from-abi' selects the most compatible architecture for the given
15536 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15537 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15538 version. Look first at the -mgp options, if given, otherwise base
15539 the choice on MIPS_DEFAULT_64BIT.
15540
15541 Treat NO_ABI like the EABIs. One reason to do this is that the
15542 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15543 architecture. This code picks MIPS I for 'mips' and MIPS III for
15544 'mips64', just as we did in the days before 'from-abi'. */
15545 if (strcasecmp (cpu_string, "from-abi") == 0)
15546 {
15547 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15548 return mips_cpu_info_from_isa (ISA_MIPS1);
15549
15550 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15551 return mips_cpu_info_from_isa (ISA_MIPS3);
15552
15553 if (file_mips_gp32 >= 0)
15554 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15555
15556 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15557 ? ISA_MIPS3
15558 : ISA_MIPS1);
15559 }
15560
15561 /* 'default' has traditionally been a no-op. Probably not very useful. */
15562 if (strcasecmp (cpu_string, "default") == 0)
15563 return 0;
15564
15565 for (p = mips_cpu_info_table; p->name != 0; p++)
15566 if (mips_matching_cpu_name_p (p->name, cpu_string))
15567 return p;
15568
15569 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15570 return 0;
15571 }
15572
15573 /* Return the canonical processor information for ISA (a member of the
15574 ISA_MIPS* enumeration). */
15575
15576 static const struct mips_cpu_info *
15577 mips_cpu_info_from_isa (int isa)
15578 {
15579 int i;
15580
15581 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15582 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15583 && isa == mips_cpu_info_table[i].isa)
15584 return (&mips_cpu_info_table[i]);
15585
15586 return NULL;
15587 }
15588
15589 static const struct mips_cpu_info *
15590 mips_cpu_info_from_arch (int arch)
15591 {
15592 int i;
15593
15594 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15595 if (arch == mips_cpu_info_table[i].cpu)
15596 return (&mips_cpu_info_table[i]);
15597
15598 return NULL;
15599 }
15600 \f
15601 static void
15602 show (FILE *stream, const char *string, int *col_p, int *first_p)
15603 {
15604 if (*first_p)
15605 {
15606 fprintf (stream, "%24s", "");
15607 *col_p = 24;
15608 }
15609 else
15610 {
15611 fprintf (stream, ", ");
15612 *col_p += 2;
15613 }
15614
15615 if (*col_p + strlen (string) > 72)
15616 {
15617 fprintf (stream, "\n%24s", "");
15618 *col_p = 24;
15619 }
15620
15621 fprintf (stream, "%s", string);
15622 *col_p += strlen (string);
15623
15624 *first_p = 0;
15625 }
15626
15627 void
15628 md_show_usage (FILE *stream)
15629 {
15630 int column, first;
15631 size_t i;
15632
15633 fprintf (stream, _("\
15634 MIPS options:\n\
15635 -EB generate big endian output\n\
15636 -EL generate little endian output\n\
15637 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15638 -G NUM allow referencing objects up to NUM bytes\n\
15639 implicitly with the gp register [default 8]\n"));
15640 fprintf (stream, _("\
15641 -mips1 generate MIPS ISA I instructions\n\
15642 -mips2 generate MIPS ISA II instructions\n\
15643 -mips3 generate MIPS ISA III instructions\n\
15644 -mips4 generate MIPS ISA IV instructions\n\
15645 -mips5 generate MIPS ISA V instructions\n\
15646 -mips32 generate MIPS32 ISA instructions\n\
15647 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15648 -mips64 generate MIPS64 ISA instructions\n\
15649 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15650 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15651
15652 first = 1;
15653
15654 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15655 show (stream, mips_cpu_info_table[i].name, &column, &first);
15656 show (stream, "from-abi", &column, &first);
15657 fputc ('\n', stream);
15658
15659 fprintf (stream, _("\
15660 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15661 -no-mCPU don't generate code specific to CPU.\n\
15662 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15663
15664 first = 1;
15665
15666 show (stream, "3900", &column, &first);
15667 show (stream, "4010", &column, &first);
15668 show (stream, "4100", &column, &first);
15669 show (stream, "4650", &column, &first);
15670 fputc ('\n', stream);
15671
15672 fprintf (stream, _("\
15673 -mips16 generate mips16 instructions\n\
15674 -no-mips16 do not generate mips16 instructions\n"));
15675 fprintf (stream, _("\
15676 -msmartmips generate smartmips instructions\n\
15677 -mno-smartmips do not generate smartmips instructions\n"));
15678 fprintf (stream, _("\
15679 -mdsp generate DSP instructions\n\
15680 -mno-dsp do not generate DSP instructions\n"));
15681 fprintf (stream, _("\
15682 -mdspr2 generate DSP R2 instructions\n\
15683 -mno-dspr2 do not generate DSP R2 instructions\n"));
15684 fprintf (stream, _("\
15685 -mmt generate MT instructions\n\
15686 -mno-mt do not generate MT instructions\n"));
15687 fprintf (stream, _("\
15688 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
15689 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
15690 -mfix-vr4120 work around certain VR4120 errata\n\
15691 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15692 -mfix-24k insert a nop after ERET and DERET instructions\n\
15693 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
15694 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15695 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15696 -msym32 assume all symbols have 32-bit values\n\
15697 -O0 remove unneeded NOPs, do not swap branches\n\
15698 -O remove unneeded NOPs and swap branches\n\
15699 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15700 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15701 fprintf (stream, _("\
15702 -mhard-float allow floating-point instructions\n\
15703 -msoft-float do not allow floating-point instructions\n\
15704 -msingle-float only allow 32-bit floating-point operations\n\
15705 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15706 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15707 ));
15708 #ifdef OBJ_ELF
15709 fprintf (stream, _("\
15710 -KPIC, -call_shared generate SVR4 position independent code\n\
15711 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15712 -mvxworks-pic generate VxWorks position independent code\n\
15713 -non_shared do not generate code that can operate with DSOs\n\
15714 -xgot assume a 32 bit GOT\n\
15715 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15716 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15717 position dependent (non shared) code\n\
15718 -mabi=ABI create ABI conformant object file for:\n"));
15719
15720 first = 1;
15721
15722 show (stream, "32", &column, &first);
15723 show (stream, "o64", &column, &first);
15724 show (stream, "n32", &column, &first);
15725 show (stream, "64", &column, &first);
15726 show (stream, "eabi", &column, &first);
15727
15728 fputc ('\n', stream);
15729
15730 fprintf (stream, _("\
15731 -32 create o32 ABI object file (default)\n\
15732 -n32 create n32 ABI object file\n\
15733 -64 create 64 ABI object file\n"));
15734 #endif
15735 }
15736
15737 #ifdef TE_IRIX
15738 enum dwarf2_format
15739 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15740 {
15741 if (HAVE_64BIT_SYMBOLS)
15742 return dwarf2_format_64bit_irix;
15743 else
15744 return dwarf2_format_32bit;
15745 }
15746 #endif
15747
15748 int
15749 mips_dwarf2_addr_size (void)
15750 {
15751 if (HAVE_64BIT_OBJECTS)
15752 return 8;
15753 else
15754 return 4;
15755 }
15756
15757 /* Standard calling conventions leave the CFA at SP on entry. */
15758 void
15759 mips_cfi_frame_initial_instructions (void)
15760 {
15761 cfi_add_CFA_def_cfa_register (SP);
15762 }
15763
15764 int
15765 tc_mips_regname_to_dw2regnum (char *regname)
15766 {
15767 unsigned int regnum = -1;
15768 unsigned int reg;
15769
15770 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15771 regnum = reg;
15772
15773 return regnum;
15774 }
This page took 0.442174 seconds and 4 git commands to generate.