* config/tc-mips.c (macro): One more use of load_delay_nop.
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 02111-1307, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #include <stdarg.h>
32
33 #include "opcode/mips.h"
34 #include "itbl-ops.h"
35 #include "dwarf2dbg.h"
36
37 #ifdef DEBUG
38 #define DBG(x) printf x
39 #else
40 #define DBG(x)
41 #endif
42
43 #ifdef OBJ_MAYBE_ELF
44 /* Clean up namespace so we can include obj-elf.h too. */
45 static int mips_output_flavor (void);
46 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
47 #undef OBJ_PROCESS_STAB
48 #undef OUTPUT_FLAVOR
49 #undef S_GET_ALIGN
50 #undef S_GET_SIZE
51 #undef S_SET_ALIGN
52 #undef S_SET_SIZE
53 #undef obj_frob_file
54 #undef obj_frob_file_after_relocs
55 #undef obj_frob_symbol
56 #undef obj_pop_insert
57 #undef obj_sec_sym_ok_for_reloc
58 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
59
60 #include "obj-elf.h"
61 /* Fix any of them that we actually care about. */
62 #undef OUTPUT_FLAVOR
63 #define OUTPUT_FLAVOR mips_output_flavor()
64 #endif
65
66 #if defined (OBJ_ELF)
67 #include "elf/mips.h"
68 #endif
69
70 #ifndef ECOFF_DEBUGGING
71 #define NO_ECOFF_DEBUGGING
72 #define ECOFF_DEBUGGING 0
73 #endif
74
75 int mips_flag_mdebug = -1;
76
77 /* Control generation of .pdr sections. Off by default on IRIX: the native
78 linker doesn't know about and discards them, but relocations against them
79 remain, leading to rld crashes. */
80 #ifdef TE_IRIX
81 int mips_flag_pdr = FALSE;
82 #else
83 int mips_flag_pdr = TRUE;
84 #endif
85
86 #include "ecoff.h"
87
88 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
89 static char *mips_regmask_frag;
90 #endif
91
92 #define ZERO 0
93 #define AT 1
94 #define TREG 24
95 #define PIC_CALL_REG 25
96 #define KT0 26
97 #define KT1 27
98 #define GP 28
99 #define SP 29
100 #define FP 30
101 #define RA 31
102
103 #define ILLEGAL_REG (32)
104
105 /* Allow override of standard little-endian ECOFF format. */
106
107 #ifndef ECOFF_LITTLE_FORMAT
108 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
109 #endif
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_aout_flavour \
115 ? ".data" \
116 : OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
117 ? ".rdata" \
118 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
119 ? ".rdata" \
120 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
121 ? ".rodata" \
122 : (abort (), ""))
123
124 /* The ABI to use. */
125 enum mips_abi_level
126 {
127 NO_ABI = 0,
128 O32_ABI,
129 O64_ABI,
130 N32_ABI,
131 N64_ABI,
132 EABI_ABI
133 };
134
135 /* MIPS ABI we are using for this output file. */
136 static enum mips_abi_level mips_abi = NO_ABI;
137
138 /* Whether or not we have code that can call pic code. */
139 int mips_abicalls = FALSE;
140
141 /* This is the set of options which may be modified by the .set
142 pseudo-op. We use a struct so that .set push and .set pop are more
143 reliable. */
144
145 struct mips_set_options
146 {
147 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
148 if it has not been initialized. Changed by `.set mipsN', and the
149 -mipsN command line option, and the default CPU. */
150 int isa;
151 /* Enabled Application Specific Extensions (ASEs). These are set to -1
152 if they have not been initialized. Changed by `.set <asename>', by
153 command line options, and based on the default architecture. */
154 int ase_mips3d;
155 int ase_mdmx;
156 /* Whether we are assembling for the mips16 processor. 0 if we are
157 not, 1 if we are, and -1 if the value has not been initialized.
158 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
159 -nomips16 command line options, and the default CPU. */
160 int mips16;
161 /* Non-zero if we should not reorder instructions. Changed by `.set
162 reorder' and `.set noreorder'. */
163 int noreorder;
164 /* Non-zero if we should not permit the $at ($1) register to be used
165 in instructions. Changed by `.set at' and `.set noat'. */
166 int noat;
167 /* Non-zero if we should warn when a macro instruction expands into
168 more than one machine instruction. Changed by `.set nomacro' and
169 `.set macro'. */
170 int warn_about_macros;
171 /* Non-zero if we should not move instructions. Changed by `.set
172 move', `.set volatile', `.set nomove', and `.set novolatile'. */
173 int nomove;
174 /* Non-zero if we should not optimize branches by moving the target
175 of the branch into the delay slot. Actually, we don't perform
176 this optimization anyhow. Changed by `.set bopt' and `.set
177 nobopt'. */
178 int nobopt;
179 /* Non-zero if we should not autoextend mips16 instructions.
180 Changed by `.set autoextend' and `.set noautoextend'. */
181 int noautoextend;
182 /* Restrict general purpose registers and floating point registers
183 to 32 bit. This is initially determined when -mgp32 or -mfp32
184 is passed but can changed if the assembler code uses .set mipsN. */
185 int gp32;
186 int fp32;
187 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
188 command line option, and the default CPU. */
189 int arch;
190 };
191
192 /* True if -mgp32 was passed. */
193 static int file_mips_gp32 = -1;
194
195 /* True if -mfp32 was passed. */
196 static int file_mips_fp32 = -1;
197
198 /* This is the struct we use to hold the current set of options. Note
199 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
200 -1 to indicate that they have not been initialized. */
201
202 static struct mips_set_options mips_opts =
203 {
204 ISA_UNKNOWN, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, CPU_UNKNOWN
205 };
206
207 /* These variables are filled in with the masks of registers used.
208 The object format code reads them and puts them in the appropriate
209 place. */
210 unsigned long mips_gprmask;
211 unsigned long mips_cprmask[4];
212
213 /* MIPS ISA we are using for this output file. */
214 static int file_mips_isa = ISA_UNKNOWN;
215
216 /* True if -mips16 was passed or implied by arguments passed on the
217 command line (e.g., by -march). */
218 static int file_ase_mips16;
219
220 /* True if -mips3d was passed or implied by arguments passed on the
221 command line (e.g., by -march). */
222 static int file_ase_mips3d;
223
224 /* True if -mdmx was passed or implied by arguments passed on the
225 command line (e.g., by -march). */
226 static int file_ase_mdmx;
227
228 /* The argument of the -march= flag. The architecture we are assembling. */
229 static int file_mips_arch = CPU_UNKNOWN;
230 static const char *mips_arch_string;
231
232 /* The argument of the -mtune= flag. The architecture for which we
233 are optimizing. */
234 static int mips_tune = CPU_UNKNOWN;
235 static const char *mips_tune_string;
236
237 /* True when generating 32-bit code for a 64-bit processor. */
238 static int mips_32bitmode = 0;
239
240 /* True if the given ABI requires 32-bit registers. */
241 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
242
243 /* Likewise 64-bit registers. */
244 #define ABI_NEEDS_64BIT_REGS(ABI) \
245 ((ABI) == N32_ABI \
246 || (ABI) == N64_ABI \
247 || (ABI) == O64_ABI)
248
249 /* Return true if ISA supports 64 bit gp register instructions. */
250 #define ISA_HAS_64BIT_REGS(ISA) ( \
251 (ISA) == ISA_MIPS3 \
252 || (ISA) == ISA_MIPS4 \
253 || (ISA) == ISA_MIPS5 \
254 || (ISA) == ISA_MIPS64 \
255 || (ISA) == ISA_MIPS64R2 \
256 )
257
258 /* Return true if ISA supports 64-bit right rotate (dror et al.)
259 instructions. */
260 #define ISA_HAS_DROR(ISA) ( \
261 (ISA) == ISA_MIPS64R2 \
262 )
263
264 /* Return true if ISA supports 32-bit right rotate (ror et al.)
265 instructions. */
266 #define ISA_HAS_ROR(ISA) ( \
267 (ISA) == ISA_MIPS32R2 \
268 || (ISA) == ISA_MIPS64R2 \
269 )
270
271 #define HAVE_32BIT_GPRS \
272 (mips_opts.gp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
273
274 #define HAVE_32BIT_FPRS \
275 (mips_opts.fp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
276
277 #define HAVE_64BIT_GPRS (! HAVE_32BIT_GPRS)
278 #define HAVE_64BIT_FPRS (! HAVE_32BIT_FPRS)
279
280 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
281
282 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
283
284 /* We can only have 64bit addresses if the object file format
285 supports it. */
286 #define HAVE_32BIT_ADDRESSES \
287 (HAVE_32BIT_GPRS \
288 || ((bfd_arch_bits_per_address (stdoutput) == 32 \
289 || ! HAVE_64BIT_OBJECTS) \
290 && mips_pic != EMBEDDED_PIC))
291
292 #define HAVE_64BIT_ADDRESSES (! HAVE_32BIT_ADDRESSES)
293
294 /* Addresses are loaded in different ways, depending on the address size
295 in use. The n32 ABI Documentation also mandates the use of additions
296 with overflow checking, but existing implementations don't follow it. */
297 #define ADDRESS_ADD_INSN \
298 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
299
300 #define ADDRESS_ADDI_INSN \
301 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
302
303 #define ADDRESS_LOAD_INSN \
304 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
305
306 #define ADDRESS_STORE_INSN \
307 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
308
309 /* Return true if the given CPU supports the MIPS16 ASE. */
310 #define CPU_HAS_MIPS16(cpu) \
311 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
312 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
313
314 /* Return true if the given CPU supports the MIPS3D ASE. */
315 #define CPU_HAS_MIPS3D(cpu) ((cpu) == CPU_SB1 \
316 )
317
318 /* Return true if the given CPU supports the MDMX ASE. */
319 #define CPU_HAS_MDMX(cpu) (FALSE \
320 )
321
322 /* True if CPU has a dror instruction. */
323 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
324
325 /* True if CPU has a ror instruction. */
326 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
327
328 /* True if mflo and mfhi can be immediately followed by instructions
329 which write to the HI and LO registers.
330
331 According to MIPS specifications, MIPS ISAs I, II, and III need
332 (at least) two instructions between the reads of HI/LO and
333 instructions which write them, and later ISAs do not. Contradicting
334 the MIPS specifications, some MIPS IV processor user manuals (e.g.
335 the UM for the NEC Vr5000) document needing the instructions between
336 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
337 MIPS64 and later ISAs to have the interlocks, plus any specific
338 earlier-ISA CPUs for which CPU documentation declares that the
339 instructions are really interlocked. */
340 #define hilo_interlocks \
341 (mips_opts.isa == ISA_MIPS32 \
342 || mips_opts.isa == ISA_MIPS32R2 \
343 || mips_opts.isa == ISA_MIPS64 \
344 || mips_opts.isa == ISA_MIPS64R2 \
345 || mips_opts.arch == CPU_R4010 \
346 || mips_opts.arch == CPU_R10000 \
347 || mips_opts.arch == CPU_R12000 \
348 || mips_opts.arch == CPU_RM7000 \
349 || mips_opts.arch == CPU_VR5500 \
350 )
351
352 /* Whether the processor uses hardware interlocks to protect reads
353 from the GPRs after they are loaded from memory, and thus does not
354 require nops to be inserted. This applies to instructions marked
355 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
356 level I. */
357 #define gpr_interlocks \
358 (mips_opts.isa != ISA_MIPS1 \
359 || mips_opts.arch == CPU_R3900)
360
361 /* Whether the processor uses hardware interlocks to avoid delays
362 required by coprocessor instructions, and thus does not require
363 nops to be inserted. This applies to instructions marked
364 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
365 between instructions marked INSN_WRITE_COND_CODE and ones marked
366 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
367 levels I, II, and III. */
368 /* Itbl support may require additional care here. */
369 #define cop_interlocks \
370 ((mips_opts.isa != ISA_MIPS1 \
371 && mips_opts.isa != ISA_MIPS2 \
372 && mips_opts.isa != ISA_MIPS3) \
373 || mips_opts.arch == CPU_R4300 \
374 )
375
376 /* Whether the processor uses hardware interlocks to protect reads
377 from coprocessor registers after they are loaded from memory, and
378 thus does not require nops to be inserted. This applies to
379 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
380 requires at MIPS ISA level I. */
381 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
382
383 /* Is this a mfhi or mflo instruction? */
384 #define MF_HILO_INSN(PINFO) \
385 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
386
387 /* MIPS PIC level. */
388
389 enum mips_pic_level mips_pic;
390
391 /* 1 if we should generate 32 bit offsets from the $gp register in
392 SVR4_PIC mode. Currently has no meaning in other modes. */
393 static int mips_big_got = 0;
394
395 /* 1 if trap instructions should used for overflow rather than break
396 instructions. */
397 static int mips_trap = 0;
398
399 /* 1 if double width floating point constants should not be constructed
400 by assembling two single width halves into two single width floating
401 point registers which just happen to alias the double width destination
402 register. On some architectures this aliasing can be disabled by a bit
403 in the status register, and the setting of this bit cannot be determined
404 automatically at assemble time. */
405 static int mips_disable_float_construction;
406
407 /* Non-zero if any .set noreorder directives were used. */
408
409 static int mips_any_noreorder;
410
411 /* Non-zero if nops should be inserted when the register referenced in
412 an mfhi/mflo instruction is read in the next two instructions. */
413 static int mips_7000_hilo_fix;
414
415 /* The size of the small data section. */
416 static unsigned int g_switch_value = 8;
417 /* Whether the -G option was used. */
418 static int g_switch_seen = 0;
419
420 #define N_RMASK 0xc4
421 #define N_VFP 0xd4
422
423 /* If we can determine in advance that GP optimization won't be
424 possible, we can skip the relaxation stuff that tries to produce
425 GP-relative references. This makes delay slot optimization work
426 better.
427
428 This function can only provide a guess, but it seems to work for
429 gcc output. It needs to guess right for gcc, otherwise gcc
430 will put what it thinks is a GP-relative instruction in a branch
431 delay slot.
432
433 I don't know if a fix is needed for the SVR4_PIC mode. I've only
434 fixed it for the non-PIC mode. KR 95/04/07 */
435 static int nopic_need_relax (symbolS *, int);
436
437 /* handle of the OPCODE hash table */
438 static struct hash_control *op_hash = NULL;
439
440 /* The opcode hash table we use for the mips16. */
441 static struct hash_control *mips16_op_hash = NULL;
442
443 /* This array holds the chars that always start a comment. If the
444 pre-processor is disabled, these aren't very useful */
445 const char comment_chars[] = "#";
446
447 /* This array holds the chars that only start a comment at the beginning of
448 a line. If the line seems to have the form '# 123 filename'
449 .line and .file directives will appear in the pre-processed output */
450 /* Note that input_file.c hand checks for '#' at the beginning of the
451 first line of the input file. This is because the compiler outputs
452 #NO_APP at the beginning of its output. */
453 /* Also note that C style comments are always supported. */
454 const char line_comment_chars[] = "#";
455
456 /* This array holds machine specific line separator characters. */
457 const char line_separator_chars[] = ";";
458
459 /* Chars that can be used to separate mant from exp in floating point nums */
460 const char EXP_CHARS[] = "eE";
461
462 /* Chars that mean this number is a floating point constant */
463 /* As in 0f12.456 */
464 /* or 0d1.2345e12 */
465 const char FLT_CHARS[] = "rRsSfFdDxXpP";
466
467 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
468 changed in read.c . Ideally it shouldn't have to know about it at all,
469 but nothing is ideal around here.
470 */
471
472 static char *insn_error;
473
474 static int auto_align = 1;
475
476 /* When outputting SVR4 PIC code, the assembler needs to know the
477 offset in the stack frame from which to restore the $gp register.
478 This is set by the .cprestore pseudo-op, and saved in this
479 variable. */
480 static offsetT mips_cprestore_offset = -1;
481
482 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
483 more optimizations, it can use a register value instead of a memory-saved
484 offset and even an other register than $gp as global pointer. */
485 static offsetT mips_cpreturn_offset = -1;
486 static int mips_cpreturn_register = -1;
487 static int mips_gp_register = GP;
488 static int mips_gprel_offset = 0;
489
490 /* Whether mips_cprestore_offset has been set in the current function
491 (or whether it has already been warned about, if not). */
492 static int mips_cprestore_valid = 0;
493
494 /* This is the register which holds the stack frame, as set by the
495 .frame pseudo-op. This is needed to implement .cprestore. */
496 static int mips_frame_reg = SP;
497
498 /* Whether mips_frame_reg has been set in the current function
499 (or whether it has already been warned about, if not). */
500 static int mips_frame_reg_valid = 0;
501
502 /* To output NOP instructions correctly, we need to keep information
503 about the previous two instructions. */
504
505 /* Whether we are optimizing. The default value of 2 means to remove
506 unneeded NOPs and swap branch instructions when possible. A value
507 of 1 means to not swap branches. A value of 0 means to always
508 insert NOPs. */
509 static int mips_optimize = 2;
510
511 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
512 equivalent to seeing no -g option at all. */
513 static int mips_debug = 0;
514
515 /* The previous instruction. */
516 static struct mips_cl_insn prev_insn;
517
518 /* The instruction before prev_insn. */
519 static struct mips_cl_insn prev_prev_insn;
520
521 /* If we don't want information for prev_insn or prev_prev_insn, we
522 point the insn_mo field at this dummy integer. */
523 static const struct mips_opcode dummy_opcode = { NULL, NULL, 0, 0, 0, 0 };
524
525 /* Non-zero if prev_insn is valid. */
526 static int prev_insn_valid;
527
528 /* The frag for the previous instruction. */
529 static struct frag *prev_insn_frag;
530
531 /* The offset into prev_insn_frag for the previous instruction. */
532 static long prev_insn_where;
533
534 /* The reloc type for the previous instruction, if any. */
535 static bfd_reloc_code_real_type prev_insn_reloc_type[3];
536
537 /* The reloc for the previous instruction, if any. */
538 static fixS *prev_insn_fixp[3];
539
540 /* Non-zero if the previous instruction was in a delay slot. */
541 static int prev_insn_is_delay_slot;
542
543 /* Non-zero if the previous instruction was in a .set noreorder. */
544 static int prev_insn_unreordered;
545
546 /* Non-zero if the previous instruction uses an extend opcode (if
547 mips16). */
548 static int prev_insn_extended;
549
550 /* Non-zero if the previous previous instruction was in a .set
551 noreorder. */
552 static int prev_prev_insn_unreordered;
553
554 /* If this is set, it points to a frag holding nop instructions which
555 were inserted before the start of a noreorder section. If those
556 nops turn out to be unnecessary, the size of the frag can be
557 decreased. */
558 static fragS *prev_nop_frag;
559
560 /* The number of nop instructions we created in prev_nop_frag. */
561 static int prev_nop_frag_holds;
562
563 /* The number of nop instructions that we know we need in
564 prev_nop_frag. */
565 static int prev_nop_frag_required;
566
567 /* The number of instructions we've seen since prev_nop_frag. */
568 static int prev_nop_frag_since;
569
570 /* For ECOFF and ELF, relocations against symbols are done in two
571 parts, with a HI relocation and a LO relocation. Each relocation
572 has only 16 bits of space to store an addend. This means that in
573 order for the linker to handle carries correctly, it must be able
574 to locate both the HI and the LO relocation. This means that the
575 relocations must appear in order in the relocation table.
576
577 In order to implement this, we keep track of each unmatched HI
578 relocation. We then sort them so that they immediately precede the
579 corresponding LO relocation. */
580
581 struct mips_hi_fixup
582 {
583 /* Next HI fixup. */
584 struct mips_hi_fixup *next;
585 /* This fixup. */
586 fixS *fixp;
587 /* The section this fixup is in. */
588 segT seg;
589 };
590
591 /* The list of unmatched HI relocs. */
592
593 static struct mips_hi_fixup *mips_hi_fixup_list;
594
595 /* The frag containing the last explicit relocation operator.
596 Null if explicit relocations have not been used. */
597
598 static fragS *prev_reloc_op_frag;
599
600 /* Map normal MIPS register numbers to mips16 register numbers. */
601
602 #define X ILLEGAL_REG
603 static const int mips32_to_16_reg_map[] =
604 {
605 X, X, 2, 3, 4, 5, 6, 7,
606 X, X, X, X, X, X, X, X,
607 0, 1, X, X, X, X, X, X,
608 X, X, X, X, X, X, X, X
609 };
610 #undef X
611
612 /* Map mips16 register numbers to normal MIPS register numbers. */
613
614 static const unsigned int mips16_to_32_reg_map[] =
615 {
616 16, 17, 2, 3, 4, 5, 6, 7
617 };
618
619 static int mips_fix_vr4120;
620
621 /* We don't relax branches by default, since this causes us to expand
622 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
623 fail to compute the offset before expanding the macro to the most
624 efficient expansion. */
625
626 static int mips_relax_branch;
627 \f
628 /* The expansion of many macros depends on the type of symbol that
629 they refer to. For example, when generating position-dependent code,
630 a macro that refers to a symbol may have two different expansions,
631 one which uses GP-relative addresses and one which uses absolute
632 addresses. When generating SVR4-style PIC, a macro may have
633 different expansions for local and global symbols.
634
635 We handle these situations by generating both sequences and putting
636 them in variant frags. In position-dependent code, the first sequence
637 will be the GP-relative one and the second sequence will be the
638 absolute one. In SVR4 PIC, the first sequence will be for global
639 symbols and the second will be for local symbols.
640
641 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
642 SECOND are the lengths of the two sequences in bytes. These fields
643 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
644 the subtype has the following flags:
645
646 RELAX_USE_SECOND
647 Set if it has been decided that we should use the second
648 sequence instead of the first.
649
650 RELAX_SECOND_LONGER
651 Set in the first variant frag if the macro's second implementation
652 is longer than its first. This refers to the macro as a whole,
653 not an individual relaxation.
654
655 RELAX_NOMACRO
656 Set in the first variant frag if the macro appeared in a .set nomacro
657 block and if one alternative requires a warning but the other does not.
658
659 RELAX_DELAY_SLOT
660 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
661 delay slot.
662
663 The frag's "opcode" points to the first fixup for relaxable code.
664
665 Relaxable macros are generated using a sequence such as:
666
667 relax_start (SYMBOL);
668 ... generate first expansion ...
669 relax_switch ();
670 ... generate second expansion ...
671 relax_end ();
672
673 The code and fixups for the unwanted alternative are discarded
674 by md_convert_frag. */
675 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
676
677 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
678 #define RELAX_SECOND(X) ((X) & 0xff)
679 #define RELAX_USE_SECOND 0x10000
680 #define RELAX_SECOND_LONGER 0x20000
681 #define RELAX_NOMACRO 0x40000
682 #define RELAX_DELAY_SLOT 0x80000
683
684 /* Branch without likely bit. If label is out of range, we turn:
685
686 beq reg1, reg2, label
687 delay slot
688
689 into
690
691 bne reg1, reg2, 0f
692 nop
693 j label
694 0: delay slot
695
696 with the following opcode replacements:
697
698 beq <-> bne
699 blez <-> bgtz
700 bltz <-> bgez
701 bc1f <-> bc1t
702
703 bltzal <-> bgezal (with jal label instead of j label)
704
705 Even though keeping the delay slot instruction in the delay slot of
706 the branch would be more efficient, it would be very tricky to do
707 correctly, because we'd have to introduce a variable frag *after*
708 the delay slot instruction, and expand that instead. Let's do it
709 the easy way for now, even if the branch-not-taken case now costs
710 one additional instruction. Out-of-range branches are not supposed
711 to be common, anyway.
712
713 Branch likely. If label is out of range, we turn:
714
715 beql reg1, reg2, label
716 delay slot (annulled if branch not taken)
717
718 into
719
720 beql reg1, reg2, 1f
721 nop
722 beql $0, $0, 2f
723 nop
724 1: j[al] label
725 delay slot (executed only if branch taken)
726 2:
727
728 It would be possible to generate a shorter sequence by losing the
729 likely bit, generating something like:
730
731 bne reg1, reg2, 0f
732 nop
733 j[al] label
734 delay slot (executed only if branch taken)
735 0:
736
737 beql -> bne
738 bnel -> beq
739 blezl -> bgtz
740 bgtzl -> blez
741 bltzl -> bgez
742 bgezl -> bltz
743 bc1fl -> bc1t
744 bc1tl -> bc1f
745
746 bltzall -> bgezal (with jal label instead of j label)
747 bgezall -> bltzal (ditto)
748
749
750 but it's not clear that it would actually improve performance. */
751 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
752 ((relax_substateT) \
753 (0xc0000000 \
754 | ((toofar) ? 1 : 0) \
755 | ((link) ? 2 : 0) \
756 | ((likely) ? 4 : 0) \
757 | ((uncond) ? 8 : 0)))
758 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
759 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
760 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
761 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
762 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
763
764 /* For mips16 code, we use an entirely different form of relaxation.
765 mips16 supports two versions of most instructions which take
766 immediate values: a small one which takes some small value, and a
767 larger one which takes a 16 bit value. Since branches also follow
768 this pattern, relaxing these values is required.
769
770 We can assemble both mips16 and normal MIPS code in a single
771 object. Therefore, we need to support this type of relaxation at
772 the same time that we support the relaxation described above. We
773 use the high bit of the subtype field to distinguish these cases.
774
775 The information we store for this type of relaxation is the
776 argument code found in the opcode file for this relocation, whether
777 the user explicitly requested a small or extended form, and whether
778 the relocation is in a jump or jal delay slot. That tells us the
779 size of the value, and how it should be stored. We also store
780 whether the fragment is considered to be extended or not. We also
781 store whether this is known to be a branch to a different section,
782 whether we have tried to relax this frag yet, and whether we have
783 ever extended a PC relative fragment because of a shift count. */
784 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
785 (0x80000000 \
786 | ((type) & 0xff) \
787 | ((small) ? 0x100 : 0) \
788 | ((ext) ? 0x200 : 0) \
789 | ((dslot) ? 0x400 : 0) \
790 | ((jal_dslot) ? 0x800 : 0))
791 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
792 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
793 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
794 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
795 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
796 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
797 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
798 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
799 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
800 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
801 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
802 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
803
804 /* Is the given value a sign-extended 32-bit value? */
805 #define IS_SEXT_32BIT_NUM(x) \
806 (((x) &~ (offsetT) 0x7fffffff) == 0 \
807 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
808
809 /* Is the given value a sign-extended 16-bit value? */
810 #define IS_SEXT_16BIT_NUM(x) \
811 (((x) &~ (offsetT) 0x7fff) == 0 \
812 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
813
814 \f
815 /* Global variables used when generating relaxable macros. See the
816 comment above RELAX_ENCODE for more details about how relaxation
817 is used. */
818 static struct {
819 /* 0 if we're not emitting a relaxable macro.
820 1 if we're emitting the first of the two relaxation alternatives.
821 2 if we're emitting the second alternative. */
822 int sequence;
823
824 /* The first relaxable fixup in the current frag. (In other words,
825 the first fixup that refers to relaxable code.) */
826 fixS *first_fixup;
827
828 /* sizes[0] says how many bytes of the first alternative are stored in
829 the current frag. Likewise sizes[1] for the second alternative. */
830 unsigned int sizes[2];
831
832 /* The symbol on which the choice of sequence depends. */
833 symbolS *symbol;
834 } mips_relax;
835 \f
836 /* Global variables used to decide whether a macro needs a warning. */
837 static struct {
838 /* True if the macro is in a branch delay slot. */
839 bfd_boolean delay_slot_p;
840
841 /* For relaxable macros, sizes[0] is the length of the first alternative
842 in bytes and sizes[1] is the length of the second alternative.
843 For non-relaxable macros, both elements give the length of the
844 macro in bytes. */
845 unsigned int sizes[2];
846
847 /* The first variant frag for this macro. */
848 fragS *first_frag;
849 } mips_macro_warning;
850 \f
851 /* Prototypes for static functions. */
852
853 #define internalError() \
854 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
855
856 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
857
858 static void append_insn
859 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r);
860 static void mips_no_prev_insn (int);
861 static void mips16_macro_build
862 (expressionS *, const char *, const char *, va_list);
863 static void load_register (int, expressionS *, int);
864 static void macro_start (void);
865 static void macro_end (void);
866 static void macro (struct mips_cl_insn * ip);
867 static void mips16_macro (struct mips_cl_insn * ip);
868 #ifdef LOSING_COMPILER
869 static void macro2 (struct mips_cl_insn * ip);
870 #endif
871 static void mips_ip (char *str, struct mips_cl_insn * ip);
872 static void mips16_ip (char *str, struct mips_cl_insn * ip);
873 static void mips16_immed
874 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
875 unsigned long *, bfd_boolean *, unsigned short *);
876 static size_t my_getSmallExpression
877 (expressionS *, bfd_reloc_code_real_type *, char *);
878 static void my_getExpression (expressionS *, char *);
879 static void s_align (int);
880 static void s_change_sec (int);
881 static void s_change_section (int);
882 static void s_cons (int);
883 static void s_float_cons (int);
884 static void s_mips_globl (int);
885 static void s_option (int);
886 static void s_mipsset (int);
887 static void s_abicalls (int);
888 static void s_cpload (int);
889 static void s_cpsetup (int);
890 static void s_cplocal (int);
891 static void s_cprestore (int);
892 static void s_cpreturn (int);
893 static void s_gpvalue (int);
894 static void s_gpword (int);
895 static void s_gpdword (int);
896 static void s_cpadd (int);
897 static void s_insn (int);
898 static void md_obj_begin (void);
899 static void md_obj_end (void);
900 static void s_mips_ent (int);
901 static void s_mips_end (int);
902 static void s_mips_frame (int);
903 static void s_mips_mask (int reg_type);
904 static void s_mips_stab (int);
905 static void s_mips_weakext (int);
906 static void s_mips_file (int);
907 static void s_mips_loc (int);
908 static bfd_boolean pic_need_relax (symbolS *, asection *);
909 static int relaxed_branch_length (fragS *, asection *, int);
910 static int validate_mips_insn (const struct mips_opcode *);
911
912 /* Table and functions used to map between CPU/ISA names, and
913 ISA levels, and CPU numbers. */
914
915 struct mips_cpu_info
916 {
917 const char *name; /* CPU or ISA name. */
918 int is_isa; /* Is this an ISA? (If 0, a CPU.) */
919 int isa; /* ISA level. */
920 int cpu; /* CPU number (default CPU if ISA). */
921 };
922
923 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
924 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
925 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
926 \f
927 /* Pseudo-op table.
928
929 The following pseudo-ops from the Kane and Heinrich MIPS book
930 should be defined here, but are currently unsupported: .alias,
931 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
932
933 The following pseudo-ops from the Kane and Heinrich MIPS book are
934 specific to the type of debugging information being generated, and
935 should be defined by the object format: .aent, .begin, .bend,
936 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
937 .vreg.
938
939 The following pseudo-ops from the Kane and Heinrich MIPS book are
940 not MIPS CPU specific, but are also not specific to the object file
941 format. This file is probably the best place to define them, but
942 they are not currently supported: .asm0, .endr, .lab, .repeat,
943 .struct. */
944
945 static const pseudo_typeS mips_pseudo_table[] =
946 {
947 /* MIPS specific pseudo-ops. */
948 {"option", s_option, 0},
949 {"set", s_mipsset, 0},
950 {"rdata", s_change_sec, 'r'},
951 {"sdata", s_change_sec, 's'},
952 {"livereg", s_ignore, 0},
953 {"abicalls", s_abicalls, 0},
954 {"cpload", s_cpload, 0},
955 {"cpsetup", s_cpsetup, 0},
956 {"cplocal", s_cplocal, 0},
957 {"cprestore", s_cprestore, 0},
958 {"cpreturn", s_cpreturn, 0},
959 {"gpvalue", s_gpvalue, 0},
960 {"gpword", s_gpword, 0},
961 {"gpdword", s_gpdword, 0},
962 {"cpadd", s_cpadd, 0},
963 {"insn", s_insn, 0},
964
965 /* Relatively generic pseudo-ops that happen to be used on MIPS
966 chips. */
967 {"asciiz", stringer, 1},
968 {"bss", s_change_sec, 'b'},
969 {"err", s_err, 0},
970 {"half", s_cons, 1},
971 {"dword", s_cons, 3},
972 {"weakext", s_mips_weakext, 0},
973
974 /* These pseudo-ops are defined in read.c, but must be overridden
975 here for one reason or another. */
976 {"align", s_align, 0},
977 {"byte", s_cons, 0},
978 {"data", s_change_sec, 'd'},
979 {"double", s_float_cons, 'd'},
980 {"float", s_float_cons, 'f'},
981 {"globl", s_mips_globl, 0},
982 {"global", s_mips_globl, 0},
983 {"hword", s_cons, 1},
984 {"int", s_cons, 2},
985 {"long", s_cons, 2},
986 {"octa", s_cons, 4},
987 {"quad", s_cons, 3},
988 {"section", s_change_section, 0},
989 {"short", s_cons, 1},
990 {"single", s_float_cons, 'f'},
991 {"stabn", s_mips_stab, 'n'},
992 {"text", s_change_sec, 't'},
993 {"word", s_cons, 2},
994
995 { "extern", ecoff_directive_extern, 0},
996
997 { NULL, NULL, 0 },
998 };
999
1000 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1001 {
1002 /* These pseudo-ops should be defined by the object file format.
1003 However, a.out doesn't support them, so we have versions here. */
1004 {"aent", s_mips_ent, 1},
1005 {"bgnb", s_ignore, 0},
1006 {"end", s_mips_end, 0},
1007 {"endb", s_ignore, 0},
1008 {"ent", s_mips_ent, 0},
1009 {"file", s_mips_file, 0},
1010 {"fmask", s_mips_mask, 'F'},
1011 {"frame", s_mips_frame, 0},
1012 {"loc", s_mips_loc, 0},
1013 {"mask", s_mips_mask, 'R'},
1014 {"verstamp", s_ignore, 0},
1015 { NULL, NULL, 0 },
1016 };
1017
1018 extern void pop_insert (const pseudo_typeS *);
1019
1020 void
1021 mips_pop_insert (void)
1022 {
1023 pop_insert (mips_pseudo_table);
1024 if (! ECOFF_DEBUGGING)
1025 pop_insert (mips_nonecoff_pseudo_table);
1026 }
1027 \f
1028 /* Symbols labelling the current insn. */
1029
1030 struct insn_label_list
1031 {
1032 struct insn_label_list *next;
1033 symbolS *label;
1034 };
1035
1036 static struct insn_label_list *insn_labels;
1037 static struct insn_label_list *free_insn_labels;
1038
1039 static void mips_clear_insn_labels (void);
1040
1041 static inline void
1042 mips_clear_insn_labels (void)
1043 {
1044 register struct insn_label_list **pl;
1045
1046 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1047 ;
1048 *pl = insn_labels;
1049 insn_labels = NULL;
1050 }
1051 \f
1052 static char *expr_end;
1053
1054 /* Expressions which appear in instructions. These are set by
1055 mips_ip. */
1056
1057 static expressionS imm_expr;
1058 static expressionS imm2_expr;
1059 static expressionS offset_expr;
1060
1061 /* Relocs associated with imm_expr and offset_expr. */
1062
1063 static bfd_reloc_code_real_type imm_reloc[3]
1064 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1065 static bfd_reloc_code_real_type offset_reloc[3]
1066 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1067
1068 /* These are set by mips16_ip if an explicit extension is used. */
1069
1070 static bfd_boolean mips16_small, mips16_ext;
1071
1072 #ifdef OBJ_ELF
1073 /* The pdr segment for per procedure frame/regmask info. Not used for
1074 ECOFF debugging. */
1075
1076 static segT pdr_seg;
1077 #endif
1078
1079 /* The default target format to use. */
1080
1081 const char *
1082 mips_target_format (void)
1083 {
1084 switch (OUTPUT_FLAVOR)
1085 {
1086 case bfd_target_aout_flavour:
1087 return target_big_endian ? "a.out-mips-big" : "a.out-mips-little";
1088 case bfd_target_ecoff_flavour:
1089 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1090 case bfd_target_coff_flavour:
1091 return "pe-mips";
1092 case bfd_target_elf_flavour:
1093 #ifdef TE_TMIPS
1094 /* This is traditional mips. */
1095 return (target_big_endian
1096 ? (HAVE_64BIT_OBJECTS
1097 ? "elf64-tradbigmips"
1098 : (HAVE_NEWABI
1099 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1100 : (HAVE_64BIT_OBJECTS
1101 ? "elf64-tradlittlemips"
1102 : (HAVE_NEWABI
1103 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1104 #else
1105 return (target_big_endian
1106 ? (HAVE_64BIT_OBJECTS
1107 ? "elf64-bigmips"
1108 : (HAVE_NEWABI
1109 ? "elf32-nbigmips" : "elf32-bigmips"))
1110 : (HAVE_64BIT_OBJECTS
1111 ? "elf64-littlemips"
1112 : (HAVE_NEWABI
1113 ? "elf32-nlittlemips" : "elf32-littlemips")));
1114 #endif
1115 default:
1116 abort ();
1117 return NULL;
1118 }
1119 }
1120
1121 /* This function is called once, at assembler startup time. It should
1122 set up all the tables, etc. that the MD part of the assembler will need. */
1123
1124 void
1125 md_begin (void)
1126 {
1127 register const char *retval = NULL;
1128 int i = 0;
1129 int broken = 0;
1130
1131 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1132 as_warn (_("Could not set architecture and machine"));
1133
1134 op_hash = hash_new ();
1135
1136 for (i = 0; i < NUMOPCODES;)
1137 {
1138 const char *name = mips_opcodes[i].name;
1139
1140 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1141 if (retval != NULL)
1142 {
1143 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1144 mips_opcodes[i].name, retval);
1145 /* Probably a memory allocation problem? Give up now. */
1146 as_fatal (_("Broken assembler. No assembly attempted."));
1147 }
1148 do
1149 {
1150 if (mips_opcodes[i].pinfo != INSN_MACRO)
1151 {
1152 if (!validate_mips_insn (&mips_opcodes[i]))
1153 broken = 1;
1154 }
1155 ++i;
1156 }
1157 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1158 }
1159
1160 mips16_op_hash = hash_new ();
1161
1162 i = 0;
1163 while (i < bfd_mips16_num_opcodes)
1164 {
1165 const char *name = mips16_opcodes[i].name;
1166
1167 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1168 if (retval != NULL)
1169 as_fatal (_("internal: can't hash `%s': %s"),
1170 mips16_opcodes[i].name, retval);
1171 do
1172 {
1173 if (mips16_opcodes[i].pinfo != INSN_MACRO
1174 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1175 != mips16_opcodes[i].match))
1176 {
1177 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1178 mips16_opcodes[i].name, mips16_opcodes[i].args);
1179 broken = 1;
1180 }
1181 ++i;
1182 }
1183 while (i < bfd_mips16_num_opcodes
1184 && strcmp (mips16_opcodes[i].name, name) == 0);
1185 }
1186
1187 if (broken)
1188 as_fatal (_("Broken assembler. No assembly attempted."));
1189
1190 /* We add all the general register names to the symbol table. This
1191 helps us detect invalid uses of them. */
1192 for (i = 0; i < 32; i++)
1193 {
1194 char buf[5];
1195
1196 sprintf (buf, "$%d", i);
1197 symbol_table_insert (symbol_new (buf, reg_section, i,
1198 &zero_address_frag));
1199 }
1200 symbol_table_insert (symbol_new ("$ra", reg_section, RA,
1201 &zero_address_frag));
1202 symbol_table_insert (symbol_new ("$fp", reg_section, FP,
1203 &zero_address_frag));
1204 symbol_table_insert (symbol_new ("$sp", reg_section, SP,
1205 &zero_address_frag));
1206 symbol_table_insert (symbol_new ("$gp", reg_section, GP,
1207 &zero_address_frag));
1208 symbol_table_insert (symbol_new ("$at", reg_section, AT,
1209 &zero_address_frag));
1210 symbol_table_insert (symbol_new ("$kt0", reg_section, KT0,
1211 &zero_address_frag));
1212 symbol_table_insert (symbol_new ("$kt1", reg_section, KT1,
1213 &zero_address_frag));
1214 symbol_table_insert (symbol_new ("$zero", reg_section, ZERO,
1215 &zero_address_frag));
1216 symbol_table_insert (symbol_new ("$pc", reg_section, -1,
1217 &zero_address_frag));
1218
1219 /* If we don't add these register names to the symbol table, they
1220 may end up being added as regular symbols by operand(), and then
1221 make it to the object file as undefined in case they're not
1222 regarded as local symbols. They're local in o32, since `$' is a
1223 local symbol prefix, but not in n32 or n64. */
1224 for (i = 0; i < 8; i++)
1225 {
1226 char buf[6];
1227
1228 sprintf (buf, "$fcc%i", i);
1229 symbol_table_insert (symbol_new (buf, reg_section, -1,
1230 &zero_address_frag));
1231 }
1232
1233 mips_no_prev_insn (FALSE);
1234
1235 mips_gprmask = 0;
1236 mips_cprmask[0] = 0;
1237 mips_cprmask[1] = 0;
1238 mips_cprmask[2] = 0;
1239 mips_cprmask[3] = 0;
1240
1241 /* set the default alignment for the text section (2**2) */
1242 record_alignment (text_section, 2);
1243
1244 if (USE_GLOBAL_POINTER_OPT)
1245 bfd_set_gp_size (stdoutput, g_switch_value);
1246
1247 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1248 {
1249 /* On a native system, sections must be aligned to 16 byte
1250 boundaries. When configured for an embedded ELF target, we
1251 don't bother. */
1252 if (strcmp (TARGET_OS, "elf") != 0)
1253 {
1254 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
1255 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
1256 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
1257 }
1258
1259 /* Create a .reginfo section for register masks and a .mdebug
1260 section for debugging information. */
1261 {
1262 segT seg;
1263 subsegT subseg;
1264 flagword flags;
1265 segT sec;
1266
1267 seg = now_seg;
1268 subseg = now_subseg;
1269
1270 /* The ABI says this section should be loaded so that the
1271 running program can access it. However, we don't load it
1272 if we are configured for an embedded target */
1273 flags = SEC_READONLY | SEC_DATA;
1274 if (strcmp (TARGET_OS, "elf") != 0)
1275 flags |= SEC_ALLOC | SEC_LOAD;
1276
1277 if (mips_abi != N64_ABI)
1278 {
1279 sec = subseg_new (".reginfo", (subsegT) 0);
1280
1281 bfd_set_section_flags (stdoutput, sec, flags);
1282 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
1283
1284 #ifdef OBJ_ELF
1285 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
1286 #endif
1287 }
1288 else
1289 {
1290 /* The 64-bit ABI uses a .MIPS.options section rather than
1291 .reginfo section. */
1292 sec = subseg_new (".MIPS.options", (subsegT) 0);
1293 bfd_set_section_flags (stdoutput, sec, flags);
1294 bfd_set_section_alignment (stdoutput, sec, 3);
1295
1296 #ifdef OBJ_ELF
1297 /* Set up the option header. */
1298 {
1299 Elf_Internal_Options opthdr;
1300 char *f;
1301
1302 opthdr.kind = ODK_REGINFO;
1303 opthdr.size = (sizeof (Elf_External_Options)
1304 + sizeof (Elf64_External_RegInfo));
1305 opthdr.section = 0;
1306 opthdr.info = 0;
1307 f = frag_more (sizeof (Elf_External_Options));
1308 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
1309 (Elf_External_Options *) f);
1310
1311 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
1312 }
1313 #endif
1314 }
1315
1316 if (ECOFF_DEBUGGING)
1317 {
1318 sec = subseg_new (".mdebug", (subsegT) 0);
1319 (void) bfd_set_section_flags (stdoutput, sec,
1320 SEC_HAS_CONTENTS | SEC_READONLY);
1321 (void) bfd_set_section_alignment (stdoutput, sec, 2);
1322 }
1323 #ifdef OBJ_ELF
1324 else if (OUTPUT_FLAVOR == bfd_target_elf_flavour && mips_flag_pdr)
1325 {
1326 pdr_seg = subseg_new (".pdr", (subsegT) 0);
1327 (void) bfd_set_section_flags (stdoutput, pdr_seg,
1328 SEC_READONLY | SEC_RELOC
1329 | SEC_DEBUGGING);
1330 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
1331 }
1332 #endif
1333
1334 subseg_set (seg, subseg);
1335 }
1336 }
1337
1338 if (! ECOFF_DEBUGGING)
1339 md_obj_begin ();
1340 }
1341
1342 void
1343 md_mips_end (void)
1344 {
1345 if (! ECOFF_DEBUGGING)
1346 md_obj_end ();
1347 }
1348
1349 void
1350 md_assemble (char *str)
1351 {
1352 struct mips_cl_insn insn;
1353 bfd_reloc_code_real_type unused_reloc[3]
1354 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1355
1356 imm_expr.X_op = O_absent;
1357 imm2_expr.X_op = O_absent;
1358 offset_expr.X_op = O_absent;
1359 imm_reloc[0] = BFD_RELOC_UNUSED;
1360 imm_reloc[1] = BFD_RELOC_UNUSED;
1361 imm_reloc[2] = BFD_RELOC_UNUSED;
1362 offset_reloc[0] = BFD_RELOC_UNUSED;
1363 offset_reloc[1] = BFD_RELOC_UNUSED;
1364 offset_reloc[2] = BFD_RELOC_UNUSED;
1365
1366 if (mips_opts.mips16)
1367 mips16_ip (str, &insn);
1368 else
1369 {
1370 mips_ip (str, &insn);
1371 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
1372 str, insn.insn_opcode));
1373 }
1374
1375 if (insn_error)
1376 {
1377 as_bad ("%s `%s'", insn_error, str);
1378 return;
1379 }
1380
1381 if (insn.insn_mo->pinfo == INSN_MACRO)
1382 {
1383 macro_start ();
1384 if (mips_opts.mips16)
1385 mips16_macro (&insn);
1386 else
1387 macro (&insn);
1388 macro_end ();
1389 }
1390 else
1391 {
1392 if (imm_expr.X_op != O_absent)
1393 append_insn (&insn, &imm_expr, imm_reloc);
1394 else if (offset_expr.X_op != O_absent)
1395 append_insn (&insn, &offset_expr, offset_reloc);
1396 else
1397 append_insn (&insn, NULL, unused_reloc);
1398 }
1399 }
1400
1401 /* Return true if the given relocation might need a matching %lo().
1402 Note that R_MIPS_GOT16 relocations only need a matching %lo() when
1403 applied to local symbols. */
1404
1405 static inline bfd_boolean
1406 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
1407 {
1408 return (reloc == BFD_RELOC_HI16_S
1409 || reloc == BFD_RELOC_MIPS_GOT16);
1410 }
1411
1412 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
1413 relocation. */
1414
1415 static inline bfd_boolean
1416 fixup_has_matching_lo_p (fixS *fixp)
1417 {
1418 return (fixp->fx_next != NULL
1419 && fixp->fx_next->fx_r_type == BFD_RELOC_LO16
1420 && fixp->fx_addsy == fixp->fx_next->fx_addsy
1421 && fixp->fx_offset == fixp->fx_next->fx_offset);
1422 }
1423
1424 /* See whether instruction IP reads register REG. CLASS is the type
1425 of register. */
1426
1427 static int
1428 insn_uses_reg (struct mips_cl_insn *ip, unsigned int reg,
1429 enum mips_regclass class)
1430 {
1431 if (class == MIPS16_REG)
1432 {
1433 assert (mips_opts.mips16);
1434 reg = mips16_to_32_reg_map[reg];
1435 class = MIPS_GR_REG;
1436 }
1437
1438 /* Don't report on general register ZERO, since it never changes. */
1439 if (class == MIPS_GR_REG && reg == ZERO)
1440 return 0;
1441
1442 if (class == MIPS_FP_REG)
1443 {
1444 assert (! mips_opts.mips16);
1445 /* If we are called with either $f0 or $f1, we must check $f0.
1446 This is not optimal, because it will introduce an unnecessary
1447 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
1448 need to distinguish reading both $f0 and $f1 or just one of
1449 them. Note that we don't have to check the other way,
1450 because there is no instruction that sets both $f0 and $f1
1451 and requires a delay. */
1452 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
1453 && ((((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS) &~(unsigned)1)
1454 == (reg &~ (unsigned) 1)))
1455 return 1;
1456 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
1457 && ((((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT) &~(unsigned)1)
1458 == (reg &~ (unsigned) 1)))
1459 return 1;
1460 }
1461 else if (! mips_opts.mips16)
1462 {
1463 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
1464 && ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == reg)
1465 return 1;
1466 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
1467 && ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT) == reg)
1468 return 1;
1469 }
1470 else
1471 {
1472 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
1473 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_RX)
1474 & MIPS16OP_MASK_RX)]
1475 == reg))
1476 return 1;
1477 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
1478 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_RY)
1479 & MIPS16OP_MASK_RY)]
1480 == reg))
1481 return 1;
1482 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
1483 && (mips16_to_32_reg_map[((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z)
1484 & MIPS16OP_MASK_MOVE32Z)]
1485 == reg))
1486 return 1;
1487 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
1488 return 1;
1489 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
1490 return 1;
1491 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
1492 return 1;
1493 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
1494 && ((ip->insn_opcode >> MIPS16OP_SH_REGR32)
1495 & MIPS16OP_MASK_REGR32) == reg)
1496 return 1;
1497 }
1498
1499 return 0;
1500 }
1501
1502 /* This function returns true if modifying a register requires a
1503 delay. */
1504
1505 static int
1506 reg_needs_delay (unsigned int reg)
1507 {
1508 unsigned long prev_pinfo;
1509
1510 prev_pinfo = prev_insn.insn_mo->pinfo;
1511 if (! mips_opts.noreorder
1512 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
1513 && ! gpr_interlocks)
1514 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
1515 && ! cop_interlocks)))
1516 {
1517 /* A load from a coprocessor or from memory. All load delays
1518 delay the use of general register rt for one instruction. */
1519 /* Itbl support may require additional care here. */
1520 know (prev_pinfo & INSN_WRITE_GPR_T);
1521 if (reg == ((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT))
1522 return 1;
1523 }
1524
1525 return 0;
1526 }
1527
1528 /* Mark instruction labels in mips16 mode. This permits the linker to
1529 handle them specially, such as generating jalx instructions when
1530 needed. We also make them odd for the duration of the assembly, in
1531 order to generate the right sort of code. We will make them even
1532 in the adjust_symtab routine, while leaving them marked. This is
1533 convenient for the debugger and the disassembler. The linker knows
1534 to make them odd again. */
1535
1536 static void
1537 mips16_mark_labels (void)
1538 {
1539 if (mips_opts.mips16)
1540 {
1541 struct insn_label_list *l;
1542 valueT val;
1543
1544 for (l = insn_labels; l != NULL; l = l->next)
1545 {
1546 #ifdef OBJ_ELF
1547 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1548 S_SET_OTHER (l->label, STO_MIPS16);
1549 #endif
1550 val = S_GET_VALUE (l->label);
1551 if ((val & 1) == 0)
1552 S_SET_VALUE (l->label, val + 1);
1553 }
1554 }
1555 }
1556
1557 /* End the current frag. Make it a variant frag and record the
1558 relaxation info. */
1559
1560 static void
1561 relax_close_frag (void)
1562 {
1563 mips_macro_warning.first_frag = frag_now;
1564 frag_var (rs_machine_dependent, 0, 0,
1565 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
1566 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
1567
1568 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
1569 mips_relax.first_fixup = 0;
1570 }
1571
1572 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
1573 See the comment above RELAX_ENCODE for more details. */
1574
1575 static void
1576 relax_start (symbolS *symbol)
1577 {
1578 assert (mips_relax.sequence == 0);
1579 mips_relax.sequence = 1;
1580 mips_relax.symbol = symbol;
1581 }
1582
1583 /* Start generating the second version of a relaxable sequence.
1584 See the comment above RELAX_ENCODE for more details. */
1585
1586 static void
1587 relax_switch (void)
1588 {
1589 assert (mips_relax.sequence == 1);
1590 mips_relax.sequence = 2;
1591 }
1592
1593 /* End the current relaxable sequence. */
1594
1595 static void
1596 relax_end (void)
1597 {
1598 assert (mips_relax.sequence == 2);
1599 relax_close_frag ();
1600 mips_relax.sequence = 0;
1601 }
1602
1603 /* Output an instruction. IP is the instruction information.
1604 ADDRESS_EXPR is an operand of the instruction to be used with
1605 RELOC_TYPE. */
1606
1607 static void
1608 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
1609 bfd_reloc_code_real_type *reloc_type)
1610 {
1611 register unsigned long prev_pinfo, pinfo;
1612 char *f;
1613 fixS *fixp[3];
1614 int nops = 0;
1615 relax_stateT prev_insn_frag_type = 0;
1616 bfd_boolean relaxed_branch = FALSE;
1617 bfd_boolean force_new_frag = FALSE;
1618
1619 /* Mark instruction labels in mips16 mode. */
1620 mips16_mark_labels ();
1621
1622 prev_pinfo = prev_insn.insn_mo->pinfo;
1623 pinfo = ip->insn_mo->pinfo;
1624
1625 if (mips_relax.sequence != 2
1626 && (!mips_opts.noreorder || prev_nop_frag != NULL))
1627 {
1628 int prev_prev_nop;
1629
1630 /* If the previous insn required any delay slots, see if we need
1631 to insert a NOP or two. There are eight kinds of possible
1632 hazards, of which an instruction can have at most one type.
1633 (1) a load from memory delay
1634 (2) a load from a coprocessor delay
1635 (3) an unconditional branch delay
1636 (4) a conditional branch delay
1637 (5) a move to coprocessor register delay
1638 (6) a load coprocessor register from memory delay
1639 (7) a coprocessor condition code delay
1640 (8) a HI/LO special register delay
1641
1642 There are a lot of optimizations we could do that we don't.
1643 In particular, we do not, in general, reorder instructions.
1644 If you use gcc with optimization, it will reorder
1645 instructions and generally do much more optimization then we
1646 do here; repeating all that work in the assembler would only
1647 benefit hand written assembly code, and does not seem worth
1648 it. */
1649
1650 /* This is how a NOP is emitted. */
1651 #define emit_nop() \
1652 (mips_opts.mips16 \
1653 ? md_number_to_chars (frag_more (2), 0x6500, 2) \
1654 : md_number_to_chars (frag_more (4), 0, 4))
1655
1656 /* The previous insn might require a delay slot, depending upon
1657 the contents of the current insn. */
1658 if (! mips_opts.mips16
1659 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
1660 && ! gpr_interlocks)
1661 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
1662 && ! cop_interlocks)))
1663 {
1664 /* A load from a coprocessor or from memory. All load
1665 delays delay the use of general register rt for one
1666 instruction. */
1667 /* Itbl support may require additional care here. */
1668 know (prev_pinfo & INSN_WRITE_GPR_T);
1669 if (mips_optimize == 0
1670 || insn_uses_reg (ip,
1671 ((prev_insn.insn_opcode >> OP_SH_RT)
1672 & OP_MASK_RT),
1673 MIPS_GR_REG))
1674 ++nops;
1675 }
1676 else if (! mips_opts.mips16
1677 && (((prev_pinfo & INSN_COPROC_MOVE_DELAY)
1678 && ! cop_interlocks)
1679 || ((prev_pinfo & INSN_COPROC_MEMORY_DELAY)
1680 && ! cop_mem_interlocks)))
1681 {
1682 /* A generic coprocessor delay. The previous instruction
1683 modified a coprocessor general or control register. If
1684 it modified a control register, we need to avoid any
1685 coprocessor instruction (this is probably not always
1686 required, but it sometimes is). If it modified a general
1687 register, we avoid using that register.
1688
1689 This case is not handled very well. There is no special
1690 knowledge of CP0 handling, and the coprocessors other
1691 than the floating point unit are not distinguished at
1692 all. */
1693 /* Itbl support may require additional care here. FIXME!
1694 Need to modify this to include knowledge about
1695 user specified delays! */
1696 if (prev_pinfo & INSN_WRITE_FPR_T)
1697 {
1698 if (mips_optimize == 0
1699 || insn_uses_reg (ip,
1700 ((prev_insn.insn_opcode >> OP_SH_FT)
1701 & OP_MASK_FT),
1702 MIPS_FP_REG))
1703 ++nops;
1704 }
1705 else if (prev_pinfo & INSN_WRITE_FPR_S)
1706 {
1707 if (mips_optimize == 0
1708 || insn_uses_reg (ip,
1709 ((prev_insn.insn_opcode >> OP_SH_FS)
1710 & OP_MASK_FS),
1711 MIPS_FP_REG))
1712 ++nops;
1713 }
1714 else
1715 {
1716 /* We don't know exactly what the previous instruction
1717 does. If the current instruction uses a coprocessor
1718 register, we must insert a NOP. If previous
1719 instruction may set the condition codes, and the
1720 current instruction uses them, we must insert two
1721 NOPS. */
1722 /* Itbl support may require additional care here. */
1723 if (mips_optimize == 0
1724 || ((prev_pinfo & INSN_WRITE_COND_CODE)
1725 && (pinfo & INSN_READ_COND_CODE)))
1726 nops += 2;
1727 else if (pinfo & INSN_COP)
1728 ++nops;
1729 }
1730 }
1731 else if (! mips_opts.mips16
1732 && (prev_pinfo & INSN_WRITE_COND_CODE)
1733 && ! cop_interlocks)
1734 {
1735 /* The previous instruction sets the coprocessor condition
1736 codes, but does not require a general coprocessor delay
1737 (this means it is a floating point comparison
1738 instruction). If this instruction uses the condition
1739 codes, we need to insert a single NOP. */
1740 /* Itbl support may require additional care here. */
1741 if (mips_optimize == 0
1742 || (pinfo & INSN_READ_COND_CODE))
1743 ++nops;
1744 }
1745
1746 /* If we're fixing up mfhi/mflo for the r7000 and the
1747 previous insn was an mfhi/mflo and the current insn
1748 reads the register that the mfhi/mflo wrote to, then
1749 insert two nops. */
1750
1751 else if (mips_7000_hilo_fix
1752 && MF_HILO_INSN (prev_pinfo)
1753 && insn_uses_reg (ip, ((prev_insn.insn_opcode >> OP_SH_RD)
1754 & OP_MASK_RD),
1755 MIPS_GR_REG))
1756 {
1757 nops += 2;
1758 }
1759
1760 /* If we're fixing up mfhi/mflo for the r7000 and the
1761 2nd previous insn was an mfhi/mflo and the current insn
1762 reads the register that the mfhi/mflo wrote to, then
1763 insert one nop. */
1764
1765 else if (mips_7000_hilo_fix
1766 && MF_HILO_INSN (prev_prev_insn.insn_opcode)
1767 && insn_uses_reg (ip, ((prev_prev_insn.insn_opcode >> OP_SH_RD)
1768 & OP_MASK_RD),
1769 MIPS_GR_REG))
1770
1771 {
1772 ++nops;
1773 }
1774
1775 else if (prev_pinfo & INSN_READ_LO)
1776 {
1777 /* The previous instruction reads the LO register; if the
1778 current instruction writes to the LO register, we must
1779 insert two NOPS. Some newer processors have interlocks.
1780 Also the tx39's multiply instructions can be executed
1781 immediately after a read from HI/LO (without the delay),
1782 though the tx39's divide insns still do require the
1783 delay. */
1784 if (! (hilo_interlocks
1785 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))
1786 && (mips_optimize == 0
1787 || (pinfo & INSN_WRITE_LO)))
1788 nops += 2;
1789 /* Most mips16 branch insns don't have a delay slot.
1790 If a read from LO is immediately followed by a branch
1791 to a write to LO we have a read followed by a write
1792 less than 2 insns away. We assume the target of
1793 a branch might be a write to LO, and insert a nop
1794 between a read and an immediately following branch. */
1795 else if (mips_opts.mips16
1796 && (mips_optimize == 0
1797 || (pinfo & MIPS16_INSN_BRANCH)))
1798 ++nops;
1799 }
1800 else if (prev_insn.insn_mo->pinfo & INSN_READ_HI)
1801 {
1802 /* The previous instruction reads the HI register; if the
1803 current instruction writes to the HI register, we must
1804 insert a NOP. Some newer processors have interlocks.
1805 Also the note tx39's multiply above. */
1806 if (! (hilo_interlocks
1807 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))
1808 && (mips_optimize == 0
1809 || (pinfo & INSN_WRITE_HI)))
1810 nops += 2;
1811 /* Most mips16 branch insns don't have a delay slot.
1812 If a read from HI is immediately followed by a branch
1813 to a write to HI we have a read followed by a write
1814 less than 2 insns away. We assume the target of
1815 a branch might be a write to HI, and insert a nop
1816 between a read and an immediately following branch. */
1817 else if (mips_opts.mips16
1818 && (mips_optimize == 0
1819 || (pinfo & MIPS16_INSN_BRANCH)))
1820 ++nops;
1821 }
1822
1823 /* If the previous instruction was in a noreorder section, then
1824 we don't want to insert the nop after all. */
1825 /* Itbl support may require additional care here. */
1826 if (prev_insn_unreordered)
1827 nops = 0;
1828
1829 /* There are two cases which require two intervening
1830 instructions: 1) setting the condition codes using a move to
1831 coprocessor instruction which requires a general coprocessor
1832 delay and then reading the condition codes 2) reading the HI
1833 or LO register and then writing to it (except on processors
1834 which have interlocks). If we are not already emitting a NOP
1835 instruction, we must check for these cases compared to the
1836 instruction previous to the previous instruction. */
1837 if ((! mips_opts.mips16
1838 && (prev_prev_insn.insn_mo->pinfo & INSN_COPROC_MOVE_DELAY)
1839 && (prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
1840 && (pinfo & INSN_READ_COND_CODE)
1841 && ! cop_interlocks)
1842 || ((prev_prev_insn.insn_mo->pinfo & INSN_READ_LO)
1843 && (pinfo & INSN_WRITE_LO)
1844 && ! (hilo_interlocks
1845 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT))))
1846 || ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
1847 && (pinfo & INSN_WRITE_HI)
1848 && ! (hilo_interlocks
1849 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))))
1850 prev_prev_nop = 1;
1851 else
1852 prev_prev_nop = 0;
1853
1854 if (prev_prev_insn_unreordered)
1855 prev_prev_nop = 0;
1856
1857 if (prev_prev_nop && nops == 0)
1858 ++nops;
1859
1860 if (mips_fix_vr4120 && prev_insn.insn_mo->name)
1861 {
1862 /* We're out of bits in pinfo, so we must resort to string
1863 ops here. Shortcuts are selected based on opcodes being
1864 limited to the VR4120 instruction set. */
1865 int min_nops = 0;
1866 const char *pn = prev_insn.insn_mo->name;
1867 const char *tn = ip->insn_mo->name;
1868 if (strncmp(pn, "macc", 4) == 0
1869 || strncmp(pn, "dmacc", 5) == 0)
1870 {
1871 /* Errata 21 - [D]DIV[U] after [D]MACC */
1872 if (strstr (tn, "div"))
1873 {
1874 min_nops = 1;
1875 }
1876
1877 /* Errata 23 - Continuous DMULT[U]/DMACC instructions */
1878 if (pn[0] == 'd' /* dmacc */
1879 && (strncmp(tn, "dmult", 5) == 0
1880 || strncmp(tn, "dmacc", 5) == 0))
1881 {
1882 min_nops = 1;
1883 }
1884
1885 /* Errata 24 - MT{LO,HI} after [D]MACC */
1886 if (strcmp (tn, "mtlo") == 0
1887 || strcmp (tn, "mthi") == 0)
1888 {
1889 min_nops = 1;
1890 }
1891
1892 }
1893 else if (strncmp(pn, "dmult", 5) == 0
1894 && (strncmp(tn, "dmult", 5) == 0
1895 || strncmp(tn, "dmacc", 5) == 0))
1896 {
1897 /* Here is the rest of errata 23. */
1898 min_nops = 1;
1899 }
1900 if (nops < min_nops)
1901 nops = min_nops;
1902 }
1903
1904 /* If we are being given a nop instruction, don't bother with
1905 one of the nops we would otherwise output. This will only
1906 happen when a nop instruction is used with mips_optimize set
1907 to 0. */
1908 if (nops > 0
1909 && ! mips_opts.noreorder
1910 && ip->insn_opcode == (unsigned) (mips_opts.mips16 ? 0x6500 : 0))
1911 --nops;
1912
1913 /* Now emit the right number of NOP instructions. */
1914 if (nops > 0 && ! mips_opts.noreorder)
1915 {
1916 fragS *old_frag;
1917 unsigned long old_frag_offset;
1918 int i;
1919 struct insn_label_list *l;
1920
1921 old_frag = frag_now;
1922 old_frag_offset = frag_now_fix ();
1923
1924 for (i = 0; i < nops; i++)
1925 emit_nop ();
1926
1927 if (listing)
1928 {
1929 listing_prev_line ();
1930 /* We may be at the start of a variant frag. In case we
1931 are, make sure there is enough space for the frag
1932 after the frags created by listing_prev_line. The
1933 argument to frag_grow here must be at least as large
1934 as the argument to all other calls to frag_grow in
1935 this file. We don't have to worry about being in the
1936 middle of a variant frag, because the variants insert
1937 all needed nop instructions themselves. */
1938 frag_grow (40);
1939 }
1940
1941 for (l = insn_labels; l != NULL; l = l->next)
1942 {
1943 valueT val;
1944
1945 assert (S_GET_SEGMENT (l->label) == now_seg);
1946 symbol_set_frag (l->label, frag_now);
1947 val = (valueT) frag_now_fix ();
1948 /* mips16 text labels are stored as odd. */
1949 if (mips_opts.mips16)
1950 ++val;
1951 S_SET_VALUE (l->label, val);
1952 }
1953
1954 #ifndef NO_ECOFF_DEBUGGING
1955 if (ECOFF_DEBUGGING)
1956 ecoff_fix_loc (old_frag, old_frag_offset);
1957 #endif
1958 }
1959 else if (prev_nop_frag != NULL)
1960 {
1961 /* We have a frag holding nops we may be able to remove. If
1962 we don't need any nops, we can decrease the size of
1963 prev_nop_frag by the size of one instruction. If we do
1964 need some nops, we count them in prev_nops_required. */
1965 if (prev_nop_frag_since == 0)
1966 {
1967 if (nops == 0)
1968 {
1969 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
1970 --prev_nop_frag_holds;
1971 }
1972 else
1973 prev_nop_frag_required += nops;
1974 }
1975 else
1976 {
1977 if (prev_prev_nop == 0)
1978 {
1979 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
1980 --prev_nop_frag_holds;
1981 }
1982 else
1983 ++prev_nop_frag_required;
1984 }
1985
1986 if (prev_nop_frag_holds <= prev_nop_frag_required)
1987 prev_nop_frag = NULL;
1988
1989 ++prev_nop_frag_since;
1990
1991 /* Sanity check: by the time we reach the second instruction
1992 after prev_nop_frag, we should have used up all the nops
1993 one way or another. */
1994 assert (prev_nop_frag_since <= 1 || prev_nop_frag == NULL);
1995 }
1996 }
1997
1998 /* Record the frag type before frag_var. */
1999 if (prev_insn_frag)
2000 prev_insn_frag_type = prev_insn_frag->fr_type;
2001
2002 if (address_expr
2003 && *reloc_type == BFD_RELOC_16_PCREL_S2
2004 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2005 || pinfo & INSN_COND_BRANCH_LIKELY)
2006 && mips_relax_branch
2007 /* Don't try branch relaxation within .set nomacro, or within
2008 .set noat if we use $at for PIC computations. If it turns
2009 out that the branch was out-of-range, we'll get an error. */
2010 && !mips_opts.warn_about_macros
2011 && !(mips_opts.noat && mips_pic != NO_PIC)
2012 && !mips_opts.mips16)
2013 {
2014 relaxed_branch = TRUE;
2015 f = frag_var (rs_machine_dependent,
2016 relaxed_branch_length
2017 (NULL, NULL,
2018 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2019 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1 : 0), 4,
2020 RELAX_BRANCH_ENCODE
2021 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2022 pinfo & INSN_COND_BRANCH_LIKELY,
2023 pinfo & INSN_WRITE_GPR_31,
2024 0),
2025 address_expr->X_add_symbol,
2026 address_expr->X_add_number,
2027 0);
2028 *reloc_type = BFD_RELOC_UNUSED;
2029 }
2030 else if (*reloc_type > BFD_RELOC_UNUSED)
2031 {
2032 /* We need to set up a variant frag. */
2033 assert (mips_opts.mips16 && address_expr != NULL);
2034 f = frag_var (rs_machine_dependent, 4, 0,
2035 RELAX_MIPS16_ENCODE (*reloc_type - BFD_RELOC_UNUSED,
2036 mips16_small, mips16_ext,
2037 (prev_pinfo
2038 & INSN_UNCOND_BRANCH_DELAY),
2039 (*prev_insn_reloc_type
2040 == BFD_RELOC_MIPS16_JMP)),
2041 make_expr_symbol (address_expr), 0, NULL);
2042 }
2043 else if (mips_opts.mips16
2044 && ! ip->use_extend
2045 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2046 {
2047 /* Make sure there is enough room to swap this instruction with
2048 a following jump instruction. */
2049 frag_grow (6);
2050 f = frag_more (2);
2051 }
2052 else
2053 {
2054 if (mips_opts.mips16
2055 && mips_opts.noreorder
2056 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2057 as_warn (_("extended instruction in delay slot"));
2058
2059 if (mips_relax.sequence)
2060 {
2061 /* If we've reached the end of this frag, turn it into a variant
2062 frag and record the information for the instructions we've
2063 written so far. */
2064 if (frag_room () < 4)
2065 relax_close_frag ();
2066 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2067 }
2068
2069 if (mips_relax.sequence != 2)
2070 mips_macro_warning.sizes[0] += 4;
2071 if (mips_relax.sequence != 1)
2072 mips_macro_warning.sizes[1] += 4;
2073
2074 f = frag_more (4);
2075 }
2076
2077 fixp[0] = fixp[1] = fixp[2] = NULL;
2078 if (address_expr != NULL && *reloc_type < BFD_RELOC_UNUSED)
2079 {
2080 if (address_expr->X_op == O_constant)
2081 {
2082 valueT tmp;
2083
2084 switch (*reloc_type)
2085 {
2086 case BFD_RELOC_32:
2087 ip->insn_opcode |= address_expr->X_add_number;
2088 break;
2089
2090 case BFD_RELOC_MIPS_HIGHEST:
2091 tmp = (address_expr->X_add_number
2092 + ((valueT) 0x8000 << 32) + 0x80008000) >> 16;
2093 tmp >>= 16;
2094 ip->insn_opcode |= (tmp >> 16) & 0xffff;
2095 break;
2096
2097 case BFD_RELOC_MIPS_HIGHER:
2098 tmp = (address_expr->X_add_number + 0x80008000) >> 16;
2099 ip->insn_opcode |= (tmp >> 16) & 0xffff;
2100 break;
2101
2102 case BFD_RELOC_HI16_S:
2103 ip->insn_opcode |= ((address_expr->X_add_number + 0x8000)
2104 >> 16) & 0xffff;
2105 break;
2106
2107 case BFD_RELOC_HI16:
2108 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
2109 break;
2110
2111 case BFD_RELOC_LO16:
2112 case BFD_RELOC_MIPS_GOT_DISP:
2113 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
2114 break;
2115
2116 case BFD_RELOC_MIPS_JMP:
2117 if ((address_expr->X_add_number & 3) != 0)
2118 as_bad (_("jump to misaligned address (0x%lx)"),
2119 (unsigned long) address_expr->X_add_number);
2120 if (address_expr->X_add_number & ~0xfffffff)
2121 as_bad (_("jump address range overflow (0x%lx)"),
2122 (unsigned long) address_expr->X_add_number);
2123 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
2124 break;
2125
2126 case BFD_RELOC_MIPS16_JMP:
2127 if ((address_expr->X_add_number & 3) != 0)
2128 as_bad (_("jump to misaligned address (0x%lx)"),
2129 (unsigned long) address_expr->X_add_number);
2130 if (address_expr->X_add_number & ~0xfffffff)
2131 as_bad (_("jump address range overflow (0x%lx)"),
2132 (unsigned long) address_expr->X_add_number);
2133 ip->insn_opcode |=
2134 (((address_expr->X_add_number & 0x7c0000) << 3)
2135 | ((address_expr->X_add_number & 0xf800000) >> 7)
2136 | ((address_expr->X_add_number & 0x3fffc) >> 2));
2137 break;
2138
2139 case BFD_RELOC_16_PCREL_S2:
2140 goto need_reloc;
2141
2142 default:
2143 internalError ();
2144 }
2145 }
2146 else
2147 need_reloc:
2148 {
2149 reloc_howto_type *howto;
2150 int i;
2151
2152 /* In a compound relocation, it is the final (outermost)
2153 operator that determines the relocated field. */
2154 for (i = 1; i < 3; i++)
2155 if (reloc_type[i] == BFD_RELOC_UNUSED)
2156 break;
2157
2158 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
2159 fixp[0] = fix_new_exp (frag_now, f - frag_now->fr_literal,
2160 bfd_get_reloc_size(howto),
2161 address_expr,
2162 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
2163 reloc_type[0]);
2164
2165 /* These relocations can have an addend that won't fit in
2166 4 octets for 64bit assembly. */
2167 if (HAVE_64BIT_GPRS
2168 && ! howto->partial_inplace
2169 && (reloc_type[0] == BFD_RELOC_16
2170 || reloc_type[0] == BFD_RELOC_32
2171 || reloc_type[0] == BFD_RELOC_MIPS_JMP
2172 || reloc_type[0] == BFD_RELOC_HI16_S
2173 || reloc_type[0] == BFD_RELOC_LO16
2174 || reloc_type[0] == BFD_RELOC_GPREL16
2175 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
2176 || reloc_type[0] == BFD_RELOC_GPREL32
2177 || reloc_type[0] == BFD_RELOC_64
2178 || reloc_type[0] == BFD_RELOC_CTOR
2179 || reloc_type[0] == BFD_RELOC_MIPS_SUB
2180 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
2181 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
2182 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
2183 || reloc_type[0] == BFD_RELOC_MIPS_REL16
2184 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT))
2185 fixp[0]->fx_no_overflow = 1;
2186
2187 if (mips_relax.sequence)
2188 {
2189 if (mips_relax.first_fixup == 0)
2190 mips_relax.first_fixup = fixp[0];
2191 }
2192 else if (reloc_needs_lo_p (*reloc_type))
2193 {
2194 struct mips_hi_fixup *hi_fixup;
2195
2196 /* Reuse the last entry if it already has a matching %lo. */
2197 hi_fixup = mips_hi_fixup_list;
2198 if (hi_fixup == 0
2199 || !fixup_has_matching_lo_p (hi_fixup->fixp))
2200 {
2201 hi_fixup = ((struct mips_hi_fixup *)
2202 xmalloc (sizeof (struct mips_hi_fixup)));
2203 hi_fixup->next = mips_hi_fixup_list;
2204 mips_hi_fixup_list = hi_fixup;
2205 }
2206 hi_fixup->fixp = fixp[0];
2207 hi_fixup->seg = now_seg;
2208 }
2209
2210 /* Add fixups for the second and third relocations, if given.
2211 Note that the ABI allows the second relocation to be
2212 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
2213 moment we only use RSS_UNDEF, but we could add support
2214 for the others if it ever becomes necessary. */
2215 for (i = 1; i < 3; i++)
2216 if (reloc_type[i] != BFD_RELOC_UNUSED)
2217 {
2218 address_expr->X_op = O_absent;
2219 address_expr->X_add_symbol = 0;
2220 address_expr->X_add_number = 0;
2221
2222 fixp[i] = fix_new_exp (frag_now, fixp[0]->fx_where,
2223 fixp[0]->fx_size, address_expr,
2224 FALSE, reloc_type[i]);
2225 }
2226 }
2227 }
2228
2229 if (! mips_opts.mips16)
2230 {
2231 md_number_to_chars (f, ip->insn_opcode, 4);
2232 #ifdef OBJ_ELF
2233 dwarf2_emit_insn (4);
2234 #endif
2235 }
2236 else if (*reloc_type == BFD_RELOC_MIPS16_JMP)
2237 {
2238 md_number_to_chars (f, ip->insn_opcode >> 16, 2);
2239 md_number_to_chars (f + 2, ip->insn_opcode & 0xffff, 2);
2240 #ifdef OBJ_ELF
2241 dwarf2_emit_insn (4);
2242 #endif
2243 }
2244 else
2245 {
2246 if (ip->use_extend)
2247 {
2248 md_number_to_chars (f, 0xf000 | ip->extend, 2);
2249 f += 2;
2250 }
2251 md_number_to_chars (f, ip->insn_opcode, 2);
2252 #ifdef OBJ_ELF
2253 dwarf2_emit_insn (ip->use_extend ? 4 : 2);
2254 #endif
2255 }
2256
2257 /* Update the register mask information. */
2258 if (! mips_opts.mips16)
2259 {
2260 if (pinfo & INSN_WRITE_GPR_D)
2261 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD);
2262 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
2263 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RT) & OP_MASK_RT);
2264 if (pinfo & INSN_READ_GPR_S)
2265 mips_gprmask |= 1 << ((ip->insn_opcode >> OP_SH_RS) & OP_MASK_RS);
2266 if (pinfo & INSN_WRITE_GPR_31)
2267 mips_gprmask |= 1 << RA;
2268 if (pinfo & INSN_WRITE_FPR_D)
2269 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FD) & OP_MASK_FD);
2270 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
2271 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FS) & OP_MASK_FS);
2272 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
2273 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FT) & OP_MASK_FT);
2274 if ((pinfo & INSN_READ_FPR_R) != 0)
2275 mips_cprmask[1] |= 1 << ((ip->insn_opcode >> OP_SH_FR) & OP_MASK_FR);
2276 if (pinfo & INSN_COP)
2277 {
2278 /* We don't keep enough information to sort these cases out.
2279 The itbl support does keep this information however, although
2280 we currently don't support itbl fprmats as part of the cop
2281 instruction. May want to add this support in the future. */
2282 }
2283 /* Never set the bit for $0, which is always zero. */
2284 mips_gprmask &= ~1 << 0;
2285 }
2286 else
2287 {
2288 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
2289 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RX)
2290 & MIPS16OP_MASK_RX);
2291 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
2292 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RY)
2293 & MIPS16OP_MASK_RY);
2294 if (pinfo & MIPS16_INSN_WRITE_Z)
2295 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_RZ)
2296 & MIPS16OP_MASK_RZ);
2297 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
2298 mips_gprmask |= 1 << TREG;
2299 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
2300 mips_gprmask |= 1 << SP;
2301 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
2302 mips_gprmask |= 1 << RA;
2303 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
2304 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
2305 if (pinfo & MIPS16_INSN_READ_Z)
2306 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_MOVE32Z)
2307 & MIPS16OP_MASK_MOVE32Z);
2308 if (pinfo & MIPS16_INSN_READ_GPR_X)
2309 mips_gprmask |= 1 << ((ip->insn_opcode >> MIPS16OP_SH_REGR32)
2310 & MIPS16OP_MASK_REGR32);
2311 }
2312
2313 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2314 {
2315 /* Filling the branch delay slot is more complex. We try to
2316 switch the branch with the previous instruction, which we can
2317 do if the previous instruction does not set up a condition
2318 that the branch tests and if the branch is not itself the
2319 target of any branch. */
2320 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
2321 || (pinfo & INSN_COND_BRANCH_DELAY))
2322 {
2323 if (mips_optimize < 2
2324 /* If we have seen .set volatile or .set nomove, don't
2325 optimize. */
2326 || mips_opts.nomove != 0
2327 /* If we had to emit any NOP instructions, then we
2328 already know we can not swap. */
2329 || nops != 0
2330 /* If we don't even know the previous insn, we can not
2331 swap. */
2332 || ! prev_insn_valid
2333 /* If the previous insn is already in a branch delay
2334 slot, then we can not swap. */
2335 || prev_insn_is_delay_slot
2336 /* If the previous previous insn was in a .set
2337 noreorder, we can't swap. Actually, the MIPS
2338 assembler will swap in this situation. However, gcc
2339 configured -with-gnu-as will generate code like
2340 .set noreorder
2341 lw $4,XXX
2342 .set reorder
2343 INSN
2344 bne $4,$0,foo
2345 in which we can not swap the bne and INSN. If gcc is
2346 not configured -with-gnu-as, it does not output the
2347 .set pseudo-ops. We don't have to check
2348 prev_insn_unreordered, because prev_insn_valid will
2349 be 0 in that case. We don't want to use
2350 prev_prev_insn_valid, because we do want to be able
2351 to swap at the start of a function. */
2352 || prev_prev_insn_unreordered
2353 /* If the branch is itself the target of a branch, we
2354 can not swap. We cheat on this; all we check for is
2355 whether there is a label on this instruction. If
2356 there are any branches to anything other than a
2357 label, users must use .set noreorder. */
2358 || insn_labels != NULL
2359 /* If the previous instruction is in a variant frag
2360 other than this branch's one, we cannot do the swap.
2361 This does not apply to the mips16, which uses variant
2362 frags for different purposes. */
2363 || (! mips_opts.mips16
2364 && prev_insn_frag_type == rs_machine_dependent)
2365 /* If the branch reads the condition codes, we don't
2366 even try to swap, because in the sequence
2367 ctc1 $X,$31
2368 INSN
2369 INSN
2370 bc1t LABEL
2371 we can not swap, and I don't feel like handling that
2372 case. */
2373 || (! mips_opts.mips16
2374 && (pinfo & INSN_READ_COND_CODE)
2375 && ! cop_interlocks)
2376 /* We can not swap with an instruction that requires a
2377 delay slot, because the target of the branch might
2378 interfere with that instruction. */
2379 || (! mips_opts.mips16
2380 && (prev_pinfo
2381 /* Itbl support may require additional care here. */
2382 & (INSN_LOAD_COPROC_DELAY
2383 | INSN_COPROC_MOVE_DELAY
2384 | INSN_WRITE_COND_CODE))
2385 && ! cop_interlocks)
2386 || (! (hilo_interlocks
2387 || (mips_opts.arch == CPU_R3900 && (pinfo & INSN_MULT)))
2388 && (prev_pinfo
2389 & (INSN_READ_LO
2390 | INSN_READ_HI)))
2391 || (! mips_opts.mips16
2392 && (prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2393 && ! gpr_interlocks)
2394 || (! mips_opts.mips16
2395 /* Itbl support may require additional care here. */
2396 && (prev_pinfo & INSN_COPROC_MEMORY_DELAY)
2397 && ! cop_mem_interlocks)
2398 /* We can not swap with a branch instruction. */
2399 || (prev_pinfo
2400 & (INSN_UNCOND_BRANCH_DELAY
2401 | INSN_COND_BRANCH_DELAY
2402 | INSN_COND_BRANCH_LIKELY))
2403 /* We do not swap with a trap instruction, since it
2404 complicates trap handlers to have the trap
2405 instruction be in a delay slot. */
2406 || (prev_pinfo & INSN_TRAP)
2407 /* If the branch reads a register that the previous
2408 instruction sets, we can not swap. */
2409 || (! mips_opts.mips16
2410 && (prev_pinfo & INSN_WRITE_GPR_T)
2411 && insn_uses_reg (ip,
2412 ((prev_insn.insn_opcode >> OP_SH_RT)
2413 & OP_MASK_RT),
2414 MIPS_GR_REG))
2415 || (! mips_opts.mips16
2416 && (prev_pinfo & INSN_WRITE_GPR_D)
2417 && insn_uses_reg (ip,
2418 ((prev_insn.insn_opcode >> OP_SH_RD)
2419 & OP_MASK_RD),
2420 MIPS_GR_REG))
2421 || (mips_opts.mips16
2422 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
2423 && insn_uses_reg (ip,
2424 ((prev_insn.insn_opcode
2425 >> MIPS16OP_SH_RX)
2426 & MIPS16OP_MASK_RX),
2427 MIPS16_REG))
2428 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
2429 && insn_uses_reg (ip,
2430 ((prev_insn.insn_opcode
2431 >> MIPS16OP_SH_RY)
2432 & MIPS16OP_MASK_RY),
2433 MIPS16_REG))
2434 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
2435 && insn_uses_reg (ip,
2436 ((prev_insn.insn_opcode
2437 >> MIPS16OP_SH_RZ)
2438 & MIPS16OP_MASK_RZ),
2439 MIPS16_REG))
2440 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
2441 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
2442 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
2443 && insn_uses_reg (ip, RA, MIPS_GR_REG))
2444 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2445 && insn_uses_reg (ip,
2446 MIPS16OP_EXTRACT_REG32R (prev_insn.
2447 insn_opcode),
2448 MIPS_GR_REG))))
2449 /* If the branch writes a register that the previous
2450 instruction sets, we can not swap (we know that
2451 branches write only to RD or to $31). */
2452 || (! mips_opts.mips16
2453 && (prev_pinfo & INSN_WRITE_GPR_T)
2454 && (((pinfo & INSN_WRITE_GPR_D)
2455 && (((prev_insn.insn_opcode >> OP_SH_RT) & OP_MASK_RT)
2456 == ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
2457 || ((pinfo & INSN_WRITE_GPR_31)
2458 && (((prev_insn.insn_opcode >> OP_SH_RT)
2459 & OP_MASK_RT)
2460 == RA))))
2461 || (! mips_opts.mips16
2462 && (prev_pinfo & INSN_WRITE_GPR_D)
2463 && (((pinfo & INSN_WRITE_GPR_D)
2464 && (((prev_insn.insn_opcode >> OP_SH_RD) & OP_MASK_RD)
2465 == ((ip->insn_opcode >> OP_SH_RD) & OP_MASK_RD)))
2466 || ((pinfo & INSN_WRITE_GPR_31)
2467 && (((prev_insn.insn_opcode >> OP_SH_RD)
2468 & OP_MASK_RD)
2469 == RA))))
2470 || (mips_opts.mips16
2471 && (pinfo & MIPS16_INSN_WRITE_31)
2472 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
2473 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2474 && (MIPS16OP_EXTRACT_REG32R (prev_insn.insn_opcode)
2475 == RA))))
2476 /* If the branch writes a register that the previous
2477 instruction reads, we can not swap (we know that
2478 branches only write to RD or to $31). */
2479 || (! mips_opts.mips16
2480 && (pinfo & INSN_WRITE_GPR_D)
2481 && insn_uses_reg (&prev_insn,
2482 ((ip->insn_opcode >> OP_SH_RD)
2483 & OP_MASK_RD),
2484 MIPS_GR_REG))
2485 || (! mips_opts.mips16
2486 && (pinfo & INSN_WRITE_GPR_31)
2487 && insn_uses_reg (&prev_insn, RA, MIPS_GR_REG))
2488 || (mips_opts.mips16
2489 && (pinfo & MIPS16_INSN_WRITE_31)
2490 && insn_uses_reg (&prev_insn, RA, MIPS_GR_REG))
2491 /* If we are generating embedded PIC code, the branch
2492 might be expanded into a sequence which uses $at, so
2493 we can't swap with an instruction which reads it. */
2494 || (mips_pic == EMBEDDED_PIC
2495 && insn_uses_reg (&prev_insn, AT, MIPS_GR_REG))
2496 /* If the previous previous instruction has a load
2497 delay, and sets a register that the branch reads, we
2498 can not swap. */
2499 || (! mips_opts.mips16
2500 /* Itbl support may require additional care here. */
2501 && (((prev_prev_insn.insn_mo->pinfo & INSN_LOAD_COPROC_DELAY)
2502 && ! cop_interlocks)
2503 || ((prev_prev_insn.insn_mo->pinfo
2504 & INSN_LOAD_MEMORY_DELAY)
2505 && ! gpr_interlocks))
2506 && insn_uses_reg (ip,
2507 ((prev_prev_insn.insn_opcode >> OP_SH_RT)
2508 & OP_MASK_RT),
2509 MIPS_GR_REG))
2510 /* If one instruction sets a condition code and the
2511 other one uses a condition code, we can not swap. */
2512 || ((pinfo & INSN_READ_COND_CODE)
2513 && (prev_pinfo & INSN_WRITE_COND_CODE))
2514 || ((pinfo & INSN_WRITE_COND_CODE)
2515 && (prev_pinfo & INSN_READ_COND_CODE))
2516 /* If the previous instruction uses the PC, we can not
2517 swap. */
2518 || (mips_opts.mips16
2519 && (prev_pinfo & MIPS16_INSN_READ_PC))
2520 /* If the previous instruction was extended, we can not
2521 swap. */
2522 || (mips_opts.mips16 && prev_insn_extended)
2523 /* If the previous instruction had a fixup in mips16
2524 mode, we can not swap. This normally means that the
2525 previous instruction was a 4 byte branch anyhow. */
2526 || (mips_opts.mips16 && prev_insn_fixp[0])
2527 /* If the previous instruction is a sync, sync.l, or
2528 sync.p, we can not swap. */
2529 || (prev_pinfo & INSN_SYNC))
2530 {
2531 /* We could do even better for unconditional branches to
2532 portions of this object file; we could pick up the
2533 instruction at the destination, put it in the delay
2534 slot, and bump the destination address. */
2535 emit_nop ();
2536 /* Update the previous insn information. */
2537 prev_prev_insn = *ip;
2538 prev_insn.insn_mo = &dummy_opcode;
2539 }
2540 else
2541 {
2542 /* It looks like we can actually do the swap. */
2543 if (! mips_opts.mips16)
2544 {
2545 char *prev_f;
2546 char temp[4];
2547
2548 prev_f = prev_insn_frag->fr_literal + prev_insn_where;
2549 if (!relaxed_branch)
2550 {
2551 /* If this is not a relaxed branch, then just
2552 swap the instructions. */
2553 memcpy (temp, prev_f, 4);
2554 memcpy (prev_f, f, 4);
2555 memcpy (f, temp, 4);
2556 }
2557 else
2558 {
2559 /* If this is a relaxed branch, then we move the
2560 instruction to be placed in the delay slot to
2561 the current frag, shrinking the fixed part of
2562 the originating frag. If the branch occupies
2563 the tail of the latter, we move it backwards,
2564 into the space freed by the moved instruction. */
2565 f = frag_more (4);
2566 memcpy (f, prev_f, 4);
2567 prev_insn_frag->fr_fix -= 4;
2568 if (prev_insn_frag->fr_type == rs_machine_dependent)
2569 memmove (prev_f, prev_f + 4, prev_insn_frag->fr_var);
2570 }
2571
2572 if (prev_insn_fixp[0])
2573 {
2574 prev_insn_fixp[0]->fx_frag = frag_now;
2575 prev_insn_fixp[0]->fx_where = f - frag_now->fr_literal;
2576 }
2577 if (prev_insn_fixp[1])
2578 {
2579 prev_insn_fixp[1]->fx_frag = frag_now;
2580 prev_insn_fixp[1]->fx_where = f - frag_now->fr_literal;
2581 }
2582 if (prev_insn_fixp[2])
2583 {
2584 prev_insn_fixp[2]->fx_frag = frag_now;
2585 prev_insn_fixp[2]->fx_where = f - frag_now->fr_literal;
2586 }
2587 if (prev_insn_fixp[0] && HAVE_NEWABI
2588 && prev_insn_frag != frag_now
2589 && (prev_insn_fixp[0]->fx_r_type
2590 == BFD_RELOC_MIPS_GOT_DISP
2591 || (prev_insn_fixp[0]->fx_r_type
2592 == BFD_RELOC_MIPS_CALL16)))
2593 {
2594 /* To avoid confusion in tc_gen_reloc, we must
2595 ensure that this does not become a variant
2596 frag. */
2597 force_new_frag = TRUE;
2598 }
2599
2600 if (!relaxed_branch)
2601 {
2602 if (fixp[0])
2603 {
2604 fixp[0]->fx_frag = prev_insn_frag;
2605 fixp[0]->fx_where = prev_insn_where;
2606 }
2607 if (fixp[1])
2608 {
2609 fixp[1]->fx_frag = prev_insn_frag;
2610 fixp[1]->fx_where = prev_insn_where;
2611 }
2612 if (fixp[2])
2613 {
2614 fixp[2]->fx_frag = prev_insn_frag;
2615 fixp[2]->fx_where = prev_insn_where;
2616 }
2617 }
2618 else if (prev_insn_frag->fr_type == rs_machine_dependent)
2619 {
2620 if (fixp[0])
2621 fixp[0]->fx_where -= 4;
2622 if (fixp[1])
2623 fixp[1]->fx_where -= 4;
2624 if (fixp[2])
2625 fixp[2]->fx_where -= 4;
2626 }
2627 }
2628 else
2629 {
2630 char *prev_f;
2631 char temp[2];
2632
2633 assert (prev_insn_fixp[0] == NULL);
2634 assert (prev_insn_fixp[1] == NULL);
2635 assert (prev_insn_fixp[2] == NULL);
2636 prev_f = prev_insn_frag->fr_literal + prev_insn_where;
2637 memcpy (temp, prev_f, 2);
2638 memcpy (prev_f, f, 2);
2639 if (*reloc_type != BFD_RELOC_MIPS16_JMP)
2640 {
2641 assert (*reloc_type == BFD_RELOC_UNUSED);
2642 memcpy (f, temp, 2);
2643 }
2644 else
2645 {
2646 memcpy (f, f + 2, 2);
2647 memcpy (f + 2, temp, 2);
2648 }
2649 if (fixp[0])
2650 {
2651 fixp[0]->fx_frag = prev_insn_frag;
2652 fixp[0]->fx_where = prev_insn_where;
2653 }
2654 if (fixp[1])
2655 {
2656 fixp[1]->fx_frag = prev_insn_frag;
2657 fixp[1]->fx_where = prev_insn_where;
2658 }
2659 if (fixp[2])
2660 {
2661 fixp[2]->fx_frag = prev_insn_frag;
2662 fixp[2]->fx_where = prev_insn_where;
2663 }
2664 }
2665
2666 /* Update the previous insn information; leave prev_insn
2667 unchanged. */
2668 prev_prev_insn = *ip;
2669 }
2670 prev_insn_is_delay_slot = 1;
2671
2672 /* If that was an unconditional branch, forget the previous
2673 insn information. */
2674 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
2675 {
2676 prev_prev_insn.insn_mo = &dummy_opcode;
2677 prev_insn.insn_mo = &dummy_opcode;
2678 }
2679
2680 prev_insn_fixp[0] = NULL;
2681 prev_insn_fixp[1] = NULL;
2682 prev_insn_fixp[2] = NULL;
2683 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2684 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2685 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2686 prev_insn_extended = 0;
2687 }
2688 else if (pinfo & INSN_COND_BRANCH_LIKELY)
2689 {
2690 /* We don't yet optimize a branch likely. What we should do
2691 is look at the target, copy the instruction found there
2692 into the delay slot, and increment the branch to jump to
2693 the next instruction. */
2694 emit_nop ();
2695 /* Update the previous insn information. */
2696 prev_prev_insn = *ip;
2697 prev_insn.insn_mo = &dummy_opcode;
2698 prev_insn_fixp[0] = NULL;
2699 prev_insn_fixp[1] = NULL;
2700 prev_insn_fixp[2] = NULL;
2701 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2702 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2703 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2704 prev_insn_extended = 0;
2705 }
2706 else
2707 {
2708 /* Update the previous insn information. */
2709 if (nops > 0)
2710 prev_prev_insn.insn_mo = &dummy_opcode;
2711 else
2712 prev_prev_insn = prev_insn;
2713 prev_insn = *ip;
2714
2715 /* Any time we see a branch, we always fill the delay slot
2716 immediately; since this insn is not a branch, we know it
2717 is not in a delay slot. */
2718 prev_insn_is_delay_slot = 0;
2719
2720 prev_insn_fixp[0] = fixp[0];
2721 prev_insn_fixp[1] = fixp[1];
2722 prev_insn_fixp[2] = fixp[2];
2723 prev_insn_reloc_type[0] = reloc_type[0];
2724 prev_insn_reloc_type[1] = reloc_type[1];
2725 prev_insn_reloc_type[2] = reloc_type[2];
2726 if (mips_opts.mips16)
2727 prev_insn_extended = (ip->use_extend
2728 || *reloc_type > BFD_RELOC_UNUSED);
2729 }
2730
2731 prev_prev_insn_unreordered = prev_insn_unreordered;
2732 prev_insn_unreordered = 0;
2733 prev_insn_frag = frag_now;
2734 prev_insn_where = f - frag_now->fr_literal;
2735 prev_insn_valid = 1;
2736 }
2737 else if (mips_relax.sequence != 2)
2738 {
2739 /* We need to record a bit of information even when we are not
2740 reordering, in order to determine the base address for mips16
2741 PC relative relocs. */
2742 prev_prev_insn = prev_insn;
2743 prev_insn = *ip;
2744 prev_insn_reloc_type[0] = reloc_type[0];
2745 prev_insn_reloc_type[1] = reloc_type[1];
2746 prev_insn_reloc_type[2] = reloc_type[2];
2747 prev_prev_insn_unreordered = prev_insn_unreordered;
2748 prev_insn_unreordered = 1;
2749 }
2750
2751 /* We just output an insn, so the next one doesn't have a label. */
2752 mips_clear_insn_labels ();
2753 }
2754
2755 /* This function forgets that there was any previous instruction or
2756 label. If PRESERVE is non-zero, it remembers enough information to
2757 know whether nops are needed before a noreorder section. */
2758
2759 static void
2760 mips_no_prev_insn (int preserve)
2761 {
2762 if (! preserve)
2763 {
2764 prev_insn.insn_mo = &dummy_opcode;
2765 prev_prev_insn.insn_mo = &dummy_opcode;
2766 prev_nop_frag = NULL;
2767 prev_nop_frag_holds = 0;
2768 prev_nop_frag_required = 0;
2769 prev_nop_frag_since = 0;
2770 }
2771 prev_insn_valid = 0;
2772 prev_insn_is_delay_slot = 0;
2773 prev_insn_unreordered = 0;
2774 prev_insn_extended = 0;
2775 prev_insn_reloc_type[0] = BFD_RELOC_UNUSED;
2776 prev_insn_reloc_type[1] = BFD_RELOC_UNUSED;
2777 prev_insn_reloc_type[2] = BFD_RELOC_UNUSED;
2778 prev_prev_insn_unreordered = 0;
2779 mips_clear_insn_labels ();
2780 }
2781
2782 /* This function must be called whenever we turn on noreorder or emit
2783 something other than instructions. It inserts any NOPS which might
2784 be needed by the previous instruction, and clears the information
2785 kept for the previous instructions. The INSNS parameter is true if
2786 instructions are to follow. */
2787
2788 static void
2789 mips_emit_delays (bfd_boolean insns)
2790 {
2791 if (! mips_opts.noreorder)
2792 {
2793 int nops;
2794
2795 nops = 0;
2796 if ((! mips_opts.mips16
2797 && ((prev_insn.insn_mo->pinfo
2798 & (INSN_LOAD_COPROC_DELAY
2799 | INSN_COPROC_MOVE_DELAY
2800 | INSN_WRITE_COND_CODE))
2801 && ! cop_interlocks))
2802 || (! hilo_interlocks
2803 && (prev_insn.insn_mo->pinfo
2804 & (INSN_READ_LO
2805 | INSN_READ_HI)))
2806 || (! mips_opts.mips16
2807 && (prev_insn.insn_mo->pinfo & INSN_LOAD_MEMORY_DELAY)
2808 && ! gpr_interlocks)
2809 || (! mips_opts.mips16
2810 && (prev_insn.insn_mo->pinfo & INSN_COPROC_MEMORY_DELAY)
2811 && ! cop_mem_interlocks))
2812 {
2813 /* Itbl support may require additional care here. */
2814 ++nops;
2815 if ((! mips_opts.mips16
2816 && ((prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
2817 && ! cop_interlocks))
2818 || (! hilo_interlocks
2819 && ((prev_insn.insn_mo->pinfo & INSN_READ_HI)
2820 || (prev_insn.insn_mo->pinfo & INSN_READ_LO))))
2821 ++nops;
2822
2823 if (prev_insn_unreordered)
2824 nops = 0;
2825 }
2826 else if ((! mips_opts.mips16
2827 && ((prev_prev_insn.insn_mo->pinfo & INSN_WRITE_COND_CODE)
2828 && ! cop_interlocks))
2829 || (! hilo_interlocks
2830 && ((prev_prev_insn.insn_mo->pinfo & INSN_READ_HI)
2831 || (prev_prev_insn.insn_mo->pinfo & INSN_READ_LO))))
2832 {
2833 /* Itbl support may require additional care here. */
2834 if (! prev_prev_insn_unreordered)
2835 ++nops;
2836 }
2837
2838 if (mips_fix_vr4120 && prev_insn.insn_mo->name)
2839 {
2840 int min_nops = 0;
2841 const char *pn = prev_insn.insn_mo->name;
2842 if (strncmp(pn, "macc", 4) == 0
2843 || strncmp(pn, "dmacc", 5) == 0
2844 || strncmp(pn, "dmult", 5) == 0)
2845 {
2846 min_nops = 1;
2847 }
2848 if (nops < min_nops)
2849 nops = min_nops;
2850 }
2851
2852 if (nops > 0)
2853 {
2854 struct insn_label_list *l;
2855
2856 if (insns)
2857 {
2858 /* Record the frag which holds the nop instructions, so
2859 that we can remove them if we don't need them. */
2860 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
2861 prev_nop_frag = frag_now;
2862 prev_nop_frag_holds = nops;
2863 prev_nop_frag_required = 0;
2864 prev_nop_frag_since = 0;
2865 }
2866
2867 for (; nops > 0; --nops)
2868 emit_nop ();
2869
2870 if (insns)
2871 {
2872 /* Move on to a new frag, so that it is safe to simply
2873 decrease the size of prev_nop_frag. */
2874 frag_wane (frag_now);
2875 frag_new (0);
2876 }
2877
2878 for (l = insn_labels; l != NULL; l = l->next)
2879 {
2880 valueT val;
2881
2882 assert (S_GET_SEGMENT (l->label) == now_seg);
2883 symbol_set_frag (l->label, frag_now);
2884 val = (valueT) frag_now_fix ();
2885 /* mips16 text labels are stored as odd. */
2886 if (mips_opts.mips16)
2887 ++val;
2888 S_SET_VALUE (l->label, val);
2889 }
2890 }
2891 }
2892
2893 /* Mark instruction labels in mips16 mode. */
2894 if (insns)
2895 mips16_mark_labels ();
2896
2897 mips_no_prev_insn (insns);
2898 }
2899
2900 /* Set up global variables for the start of a new macro. */
2901
2902 static void
2903 macro_start (void)
2904 {
2905 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
2906 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
2907 && (prev_insn.insn_mo->pinfo
2908 & (INSN_UNCOND_BRANCH_DELAY
2909 | INSN_COND_BRANCH_DELAY
2910 | INSN_COND_BRANCH_LIKELY)) != 0);
2911 }
2912
2913 /* Given that a macro is longer than 4 bytes, return the appropriate warning
2914 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
2915 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
2916
2917 static const char *
2918 macro_warning (relax_substateT subtype)
2919 {
2920 if (subtype & RELAX_DELAY_SLOT)
2921 return _("Macro instruction expanded into multiple instructions"
2922 " in a branch delay slot");
2923 else if (subtype & RELAX_NOMACRO)
2924 return _("Macro instruction expanded into multiple instructions");
2925 else
2926 return 0;
2927 }
2928
2929 /* Finish up a macro. Emit warnings as appropriate. */
2930
2931 static void
2932 macro_end (void)
2933 {
2934 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
2935 {
2936 relax_substateT subtype;
2937
2938 /* Set up the relaxation warning flags. */
2939 subtype = 0;
2940 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
2941 subtype |= RELAX_SECOND_LONGER;
2942 if (mips_opts.warn_about_macros)
2943 subtype |= RELAX_NOMACRO;
2944 if (mips_macro_warning.delay_slot_p)
2945 subtype |= RELAX_DELAY_SLOT;
2946
2947 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
2948 {
2949 /* Either the macro has a single implementation or both
2950 implementations are longer than 4 bytes. Emit the
2951 warning now. */
2952 const char *msg = macro_warning (subtype);
2953 if (msg != 0)
2954 as_warn (msg);
2955 }
2956 else
2957 {
2958 /* One implementation might need a warning but the other
2959 definitely doesn't. */
2960 mips_macro_warning.first_frag->fr_subtype |= subtype;
2961 }
2962 }
2963 }
2964
2965 /* Build an instruction created by a macro expansion. This is passed
2966 a pointer to the count of instructions created so far, an
2967 expression, the name of the instruction to build, an operand format
2968 string, and corresponding arguments. */
2969
2970 static void
2971 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
2972 {
2973 struct mips_cl_insn insn;
2974 bfd_reloc_code_real_type r[3];
2975 va_list args;
2976
2977 va_start (args, fmt);
2978
2979 if (mips_opts.mips16)
2980 {
2981 mips16_macro_build (ep, name, fmt, args);
2982 va_end (args);
2983 return;
2984 }
2985
2986 r[0] = BFD_RELOC_UNUSED;
2987 r[1] = BFD_RELOC_UNUSED;
2988 r[2] = BFD_RELOC_UNUSED;
2989 insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
2990 assert (insn.insn_mo);
2991 assert (strcmp (name, insn.insn_mo->name) == 0);
2992
2993 /* Search until we get a match for NAME. */
2994 while (1)
2995 {
2996 /* It is assumed here that macros will never generate
2997 MDMX or MIPS-3D instructions. */
2998 if (strcmp (fmt, insn.insn_mo->args) == 0
2999 && insn.insn_mo->pinfo != INSN_MACRO
3000 && OPCODE_IS_MEMBER (insn.insn_mo,
3001 (mips_opts.isa
3002 | (file_ase_mips16 ? INSN_MIPS16 : 0)),
3003 mips_opts.arch)
3004 && (mips_opts.arch != CPU_R4650 || (insn.insn_mo->pinfo & FP_D) == 0))
3005 break;
3006
3007 ++insn.insn_mo;
3008 assert (insn.insn_mo->name);
3009 assert (strcmp (name, insn.insn_mo->name) == 0);
3010 }
3011
3012 insn.insn_opcode = insn.insn_mo->match;
3013 for (;;)
3014 {
3015 switch (*fmt++)
3016 {
3017 case '\0':
3018 break;
3019
3020 case ',':
3021 case '(':
3022 case ')':
3023 continue;
3024
3025 case '+':
3026 switch (*fmt++)
3027 {
3028 case 'A':
3029 case 'E':
3030 insn.insn_opcode |= (va_arg (args, int)
3031 & OP_MASK_SHAMT) << OP_SH_SHAMT;
3032 continue;
3033
3034 case 'B':
3035 case 'F':
3036 /* Note that in the macro case, these arguments are already
3037 in MSB form. (When handling the instruction in the
3038 non-macro case, these arguments are sizes from which
3039 MSB values must be calculated.) */
3040 insn.insn_opcode |= (va_arg (args, int)
3041 & OP_MASK_INSMSB) << OP_SH_INSMSB;
3042 continue;
3043
3044 case 'C':
3045 case 'G':
3046 case 'H':
3047 /* Note that in the macro case, these arguments are already
3048 in MSBD form. (When handling the instruction in the
3049 non-macro case, these arguments are sizes from which
3050 MSBD values must be calculated.) */
3051 insn.insn_opcode |= (va_arg (args, int)
3052 & OP_MASK_EXTMSBD) << OP_SH_EXTMSBD;
3053 continue;
3054
3055 default:
3056 internalError ();
3057 }
3058 continue;
3059
3060 case 't':
3061 case 'w':
3062 case 'E':
3063 insn.insn_opcode |= va_arg (args, int) << OP_SH_RT;
3064 continue;
3065
3066 case 'c':
3067 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE;
3068 continue;
3069
3070 case 'T':
3071 case 'W':
3072 insn.insn_opcode |= va_arg (args, int) << OP_SH_FT;
3073 continue;
3074
3075 case 'd':
3076 case 'G':
3077 case 'K':
3078 insn.insn_opcode |= va_arg (args, int) << OP_SH_RD;
3079 continue;
3080
3081 case 'U':
3082 {
3083 int tmp = va_arg (args, int);
3084
3085 insn.insn_opcode |= tmp << OP_SH_RT;
3086 insn.insn_opcode |= tmp << OP_SH_RD;
3087 continue;
3088 }
3089
3090 case 'V':
3091 case 'S':
3092 insn.insn_opcode |= va_arg (args, int) << OP_SH_FS;
3093 continue;
3094
3095 case 'z':
3096 continue;
3097
3098 case '<':
3099 insn.insn_opcode |= va_arg (args, int) << OP_SH_SHAMT;
3100 continue;
3101
3102 case 'D':
3103 insn.insn_opcode |= va_arg (args, int) << OP_SH_FD;
3104 continue;
3105
3106 case 'B':
3107 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE20;
3108 continue;
3109
3110 case 'J':
3111 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE19;
3112 continue;
3113
3114 case 'q':
3115 insn.insn_opcode |= va_arg (args, int) << OP_SH_CODE2;
3116 continue;
3117
3118 case 'b':
3119 case 's':
3120 case 'r':
3121 case 'v':
3122 insn.insn_opcode |= va_arg (args, int) << OP_SH_RS;
3123 continue;
3124
3125 case 'i':
3126 case 'j':
3127 case 'o':
3128 *r = (bfd_reloc_code_real_type) va_arg (args, int);
3129 assert (*r == BFD_RELOC_GPREL16
3130 || *r == BFD_RELOC_MIPS_LITERAL
3131 || *r == BFD_RELOC_MIPS_HIGHER
3132 || *r == BFD_RELOC_HI16_S
3133 || *r == BFD_RELOC_LO16
3134 || *r == BFD_RELOC_MIPS_GOT16
3135 || *r == BFD_RELOC_MIPS_CALL16
3136 || *r == BFD_RELOC_MIPS_GOT_DISP
3137 || *r == BFD_RELOC_MIPS_GOT_PAGE
3138 || *r == BFD_RELOC_MIPS_GOT_OFST
3139 || *r == BFD_RELOC_MIPS_GOT_LO16
3140 || *r == BFD_RELOC_MIPS_CALL_LO16
3141 || (ep->X_op == O_subtract
3142 && *r == BFD_RELOC_PCREL_LO16));
3143 continue;
3144
3145 case 'u':
3146 *r = (bfd_reloc_code_real_type) va_arg (args, int);
3147 assert (ep != NULL
3148 && (ep->X_op == O_constant
3149 || (ep->X_op == O_symbol
3150 && (*r == BFD_RELOC_MIPS_HIGHEST
3151 || *r == BFD_RELOC_HI16_S
3152 || *r == BFD_RELOC_HI16
3153 || *r == BFD_RELOC_GPREL16
3154 || *r == BFD_RELOC_MIPS_GOT_HI16
3155 || *r == BFD_RELOC_MIPS_CALL_HI16))
3156 || (ep->X_op == O_subtract
3157 && *r == BFD_RELOC_PCREL_HI16_S)));
3158 continue;
3159
3160 case 'p':
3161 assert (ep != NULL);
3162 /*
3163 * This allows macro() to pass an immediate expression for
3164 * creating short branches without creating a symbol.
3165 * Note that the expression still might come from the assembly
3166 * input, in which case the value is not checked for range nor
3167 * is a relocation entry generated (yuck).
3168 */
3169 if (ep->X_op == O_constant)
3170 {
3171 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3172 ep = NULL;
3173 }
3174 else
3175 *r = BFD_RELOC_16_PCREL_S2;
3176 continue;
3177
3178 case 'a':
3179 assert (ep != NULL);
3180 *r = BFD_RELOC_MIPS_JMP;
3181 continue;
3182
3183 case 'C':
3184 insn.insn_opcode |= va_arg (args, unsigned long);
3185 continue;
3186
3187 default:
3188 internalError ();
3189 }
3190 break;
3191 }
3192 va_end (args);
3193 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3194
3195 append_insn (&insn, ep, r);
3196 }
3197
3198 static void
3199 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3200 va_list args)
3201 {
3202 struct mips_cl_insn insn;
3203 bfd_reloc_code_real_type r[3]
3204 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3205
3206 insn.insn_mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3207 assert (insn.insn_mo);
3208 assert (strcmp (name, insn.insn_mo->name) == 0);
3209
3210 while (strcmp (fmt, insn.insn_mo->args) != 0
3211 || insn.insn_mo->pinfo == INSN_MACRO)
3212 {
3213 ++insn.insn_mo;
3214 assert (insn.insn_mo->name);
3215 assert (strcmp (name, insn.insn_mo->name) == 0);
3216 }
3217
3218 insn.insn_opcode = insn.insn_mo->match;
3219 insn.use_extend = FALSE;
3220
3221 for (;;)
3222 {
3223 int c;
3224
3225 c = *fmt++;
3226 switch (c)
3227 {
3228 case '\0':
3229 break;
3230
3231 case ',':
3232 case '(':
3233 case ')':
3234 continue;
3235
3236 case 'y':
3237 case 'w':
3238 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RY;
3239 continue;
3240
3241 case 'x':
3242 case 'v':
3243 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RX;
3244 continue;
3245
3246 case 'z':
3247 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_RZ;
3248 continue;
3249
3250 case 'Z':
3251 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_MOVE32Z;
3252 continue;
3253
3254 case '0':
3255 case 'S':
3256 case 'P':
3257 case 'R':
3258 continue;
3259
3260 case 'X':
3261 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_REGR32;
3262 continue;
3263
3264 case 'Y':
3265 {
3266 int regno;
3267
3268 regno = va_arg (args, int);
3269 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3270 insn.insn_opcode |= regno << MIPS16OP_SH_REG32R;
3271 }
3272 continue;
3273
3274 case '<':
3275 case '>':
3276 case '4':
3277 case '5':
3278 case 'H':
3279 case 'W':
3280 case 'D':
3281 case 'j':
3282 case '8':
3283 case 'V':
3284 case 'C':
3285 case 'U':
3286 case 'k':
3287 case 'K':
3288 case 'p':
3289 case 'q':
3290 {
3291 assert (ep != NULL);
3292
3293 if (ep->X_op != O_constant)
3294 *r = (int) BFD_RELOC_UNUSED + c;
3295 else
3296 {
3297 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3298 FALSE, &insn.insn_opcode, &insn.use_extend,
3299 &insn.extend);
3300 ep = NULL;
3301 *r = BFD_RELOC_UNUSED;
3302 }
3303 }
3304 continue;
3305
3306 case '6':
3307 insn.insn_opcode |= va_arg (args, int) << MIPS16OP_SH_IMM6;
3308 continue;
3309 }
3310
3311 break;
3312 }
3313
3314 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3315
3316 append_insn (&insn, ep, r);
3317 }
3318
3319 /*
3320 * Generate a "jalr" instruction with a relocation hint to the called
3321 * function. This occurs in NewABI PIC code.
3322 */
3323 static void
3324 macro_build_jalr (expressionS *ep)
3325 {
3326 char *f = NULL;
3327
3328 if (HAVE_NEWABI)
3329 {
3330 frag_grow (8);
3331 f = frag_more (0);
3332 }
3333 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
3334 if (HAVE_NEWABI)
3335 fix_new_exp (frag_now, f - frag_now->fr_literal,
3336 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
3337 }
3338
3339 /*
3340 * Generate a "lui" instruction.
3341 */
3342 static void
3343 macro_build_lui (expressionS *ep, int regnum)
3344 {
3345 expressionS high_expr;
3346 struct mips_cl_insn insn;
3347 bfd_reloc_code_real_type r[3]
3348 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3349 const char *name = "lui";
3350 const char *fmt = "t,u";
3351
3352 assert (! mips_opts.mips16);
3353
3354 high_expr = *ep;
3355
3356 if (high_expr.X_op == O_constant)
3357 {
3358 /* we can compute the instruction now without a relocation entry */
3359 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
3360 >> 16) & 0xffff;
3361 *r = BFD_RELOC_UNUSED;
3362 }
3363 else
3364 {
3365 assert (ep->X_op == O_symbol);
3366 /* _gp_disp is a special case, used from s_cpload. */
3367 assert (mips_pic == NO_PIC
3368 || (! HAVE_NEWABI
3369 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0));
3370 *r = BFD_RELOC_HI16_S;
3371 }
3372
3373 insn.insn_mo = (struct mips_opcode *) hash_find (op_hash, name);
3374 assert (insn.insn_mo);
3375 assert (strcmp (name, insn.insn_mo->name) == 0);
3376 assert (strcmp (fmt, insn.insn_mo->args) == 0);
3377
3378 insn.insn_opcode = insn.insn_mo->match | (regnum << OP_SH_RT);
3379 if (*r == BFD_RELOC_UNUSED)
3380 {
3381 insn.insn_opcode |= high_expr.X_add_number;
3382 append_insn (&insn, NULL, r);
3383 }
3384 else
3385 append_insn (&insn, &high_expr, r);
3386 }
3387
3388 /* Generate a sequence of instructions to do a load or store from a constant
3389 offset off of a base register (breg) into/from a target register (treg),
3390 using AT if necessary. */
3391 static void
3392 macro_build_ldst_constoffset (expressionS *ep, const char *op,
3393 int treg, int breg, int dbl)
3394 {
3395 assert (ep->X_op == O_constant);
3396
3397 /* Sign-extending 32-bit constants makes their handling easier. */
3398 if (! dbl && ! ((ep->X_add_number & ~((bfd_vma) 0x7fffffff))
3399 == ~((bfd_vma) 0x7fffffff)))
3400 {
3401 if (ep->X_add_number & ~((bfd_vma) 0xffffffff))
3402 as_bad (_("constant too large"));
3403
3404 ep->X_add_number = (((ep->X_add_number & 0xffffffff) ^ 0x80000000)
3405 - 0x80000000);
3406 }
3407
3408 /* Right now, this routine can only handle signed 32-bit constants. */
3409 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
3410 as_warn (_("operand overflow"));
3411
3412 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
3413 {
3414 /* Signed 16-bit offset will fit in the op. Easy! */
3415 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
3416 }
3417 else
3418 {
3419 /* 32-bit offset, need multiple instructions and AT, like:
3420 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
3421 addu $tempreg,$tempreg,$breg
3422 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
3423 to handle the complete offset. */
3424 macro_build_lui (ep, AT);
3425 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
3426 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
3427
3428 if (mips_opts.noat)
3429 as_warn (_("Macro used $at after \".set noat\""));
3430 }
3431 }
3432
3433 /* set_at()
3434 * Generates code to set the $at register to true (one)
3435 * if reg is less than the immediate expression.
3436 */
3437 static void
3438 set_at (int reg, int unsignedp)
3439 {
3440 if (imm_expr.X_op == O_constant
3441 && imm_expr.X_add_number >= -0x8000
3442 && imm_expr.X_add_number < 0x8000)
3443 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
3444 AT, reg, BFD_RELOC_LO16);
3445 else
3446 {
3447 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
3448 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
3449 }
3450 }
3451
3452 static void
3453 normalize_constant_expr (expressionS *ex)
3454 {
3455 if (ex->X_op == O_constant && HAVE_32BIT_GPRS)
3456 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3457 - 0x80000000);
3458 }
3459
3460 /* Warn if an expression is not a constant. */
3461
3462 static void
3463 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
3464 {
3465 if (ex->X_op == O_big)
3466 as_bad (_("unsupported large constant"));
3467 else if (ex->X_op != O_constant)
3468 as_bad (_("Instruction %s requires absolute expression"), ip->insn_mo->name);
3469
3470 normalize_constant_expr (ex);
3471 }
3472
3473 /* Count the leading zeroes by performing a binary chop. This is a
3474 bulky bit of source, but performance is a LOT better for the
3475 majority of values than a simple loop to count the bits:
3476 for (lcnt = 0; (lcnt < 32); lcnt++)
3477 if ((v) & (1 << (31 - lcnt)))
3478 break;
3479 However it is not code size friendly, and the gain will drop a bit
3480 on certain cached systems.
3481 */
3482 #define COUNT_TOP_ZEROES(v) \
3483 (((v) & ~0xffff) == 0 \
3484 ? ((v) & ~0xff) == 0 \
3485 ? ((v) & ~0xf) == 0 \
3486 ? ((v) & ~0x3) == 0 \
3487 ? ((v) & ~0x1) == 0 \
3488 ? !(v) \
3489 ? 32 \
3490 : 31 \
3491 : 30 \
3492 : ((v) & ~0x7) == 0 \
3493 ? 29 \
3494 : 28 \
3495 : ((v) & ~0x3f) == 0 \
3496 ? ((v) & ~0x1f) == 0 \
3497 ? 27 \
3498 : 26 \
3499 : ((v) & ~0x7f) == 0 \
3500 ? 25 \
3501 : 24 \
3502 : ((v) & ~0xfff) == 0 \
3503 ? ((v) & ~0x3ff) == 0 \
3504 ? ((v) & ~0x1ff) == 0 \
3505 ? 23 \
3506 : 22 \
3507 : ((v) & ~0x7ff) == 0 \
3508 ? 21 \
3509 : 20 \
3510 : ((v) & ~0x3fff) == 0 \
3511 ? ((v) & ~0x1fff) == 0 \
3512 ? 19 \
3513 : 18 \
3514 : ((v) & ~0x7fff) == 0 \
3515 ? 17 \
3516 : 16 \
3517 : ((v) & ~0xffffff) == 0 \
3518 ? ((v) & ~0xfffff) == 0 \
3519 ? ((v) & ~0x3ffff) == 0 \
3520 ? ((v) & ~0x1ffff) == 0 \
3521 ? 15 \
3522 : 14 \
3523 : ((v) & ~0x7ffff) == 0 \
3524 ? 13 \
3525 : 12 \
3526 : ((v) & ~0x3fffff) == 0 \
3527 ? ((v) & ~0x1fffff) == 0 \
3528 ? 11 \
3529 : 10 \
3530 : ((v) & ~0x7fffff) == 0 \
3531 ? 9 \
3532 : 8 \
3533 : ((v) & ~0xfffffff) == 0 \
3534 ? ((v) & ~0x3ffffff) == 0 \
3535 ? ((v) & ~0x1ffffff) == 0 \
3536 ? 7 \
3537 : 6 \
3538 : ((v) & ~0x7ffffff) == 0 \
3539 ? 5 \
3540 : 4 \
3541 : ((v) & ~0x3fffffff) == 0 \
3542 ? ((v) & ~0x1fffffff) == 0 \
3543 ? 3 \
3544 : 2 \
3545 : ((v) & ~0x7fffffff) == 0 \
3546 ? 1 \
3547 : 0)
3548
3549 /* load_register()
3550 * This routine generates the least number of instructions necessary to load
3551 * an absolute expression value into a register.
3552 */
3553 static void
3554 load_register (int reg, expressionS *ep, int dbl)
3555 {
3556 int freg;
3557 expressionS hi32, lo32;
3558
3559 if (ep->X_op != O_big)
3560 {
3561 assert (ep->X_op == O_constant);
3562
3563 /* Sign-extending 32-bit constants makes their handling easier. */
3564 if (! dbl && ! ((ep->X_add_number & ~((bfd_vma) 0x7fffffff))
3565 == ~((bfd_vma) 0x7fffffff)))
3566 {
3567 if (ep->X_add_number & ~((bfd_vma) 0xffffffff))
3568 as_bad (_("constant too large"));
3569
3570 ep->X_add_number = (((ep->X_add_number & 0xffffffff) ^ 0x80000000)
3571 - 0x80000000);
3572 }
3573
3574 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
3575 {
3576 /* We can handle 16 bit signed values with an addiu to
3577 $zero. No need to ever use daddiu here, since $zero and
3578 the result are always correct in 32 bit mode. */
3579 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3580 return;
3581 }
3582 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
3583 {
3584 /* We can handle 16 bit unsigned values with an ori to
3585 $zero. */
3586 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
3587 return;
3588 }
3589 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
3590 {
3591 /* 32 bit values require an lui. */
3592 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
3593 if ((ep->X_add_number & 0xffff) != 0)
3594 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
3595 return;
3596 }
3597 }
3598
3599 /* The value is larger than 32 bits. */
3600
3601 if (HAVE_32BIT_GPRS)
3602 {
3603 as_bad (_("Number (0x%lx) larger than 32 bits"),
3604 (unsigned long) ep->X_add_number);
3605 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3606 return;
3607 }
3608
3609 if (ep->X_op != O_big)
3610 {
3611 hi32 = *ep;
3612 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3613 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3614 hi32.X_add_number &= 0xffffffff;
3615 lo32 = *ep;
3616 lo32.X_add_number &= 0xffffffff;
3617 }
3618 else
3619 {
3620 assert (ep->X_add_number > 2);
3621 if (ep->X_add_number == 3)
3622 generic_bignum[3] = 0;
3623 else if (ep->X_add_number > 4)
3624 as_bad (_("Number larger than 64 bits"));
3625 lo32.X_op = O_constant;
3626 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
3627 hi32.X_op = O_constant;
3628 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
3629 }
3630
3631 if (hi32.X_add_number == 0)
3632 freg = 0;
3633 else
3634 {
3635 int shift, bit;
3636 unsigned long hi, lo;
3637
3638 if (hi32.X_add_number == (offsetT) 0xffffffff)
3639 {
3640 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
3641 {
3642 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3643 return;
3644 }
3645 if (lo32.X_add_number & 0x80000000)
3646 {
3647 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
3648 if (lo32.X_add_number & 0xffff)
3649 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
3650 return;
3651 }
3652 }
3653
3654 /* Check for 16bit shifted constant. We know that hi32 is
3655 non-zero, so start the mask on the first bit of the hi32
3656 value. */
3657 shift = 17;
3658 do
3659 {
3660 unsigned long himask, lomask;
3661
3662 if (shift < 32)
3663 {
3664 himask = 0xffff >> (32 - shift);
3665 lomask = (0xffff << shift) & 0xffffffff;
3666 }
3667 else
3668 {
3669 himask = 0xffff << (shift - 32);
3670 lomask = 0;
3671 }
3672 if ((hi32.X_add_number & ~(offsetT) himask) == 0
3673 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
3674 {
3675 expressionS tmp;
3676
3677 tmp.X_op = O_constant;
3678 if (shift < 32)
3679 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
3680 | (lo32.X_add_number >> shift));
3681 else
3682 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
3683 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
3684 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
3685 reg, reg, (shift >= 32) ? shift - 32 : shift);
3686 return;
3687 }
3688 ++shift;
3689 }
3690 while (shift <= (64 - 16));
3691
3692 /* Find the bit number of the lowest one bit, and store the
3693 shifted value in hi/lo. */
3694 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
3695 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
3696 if (lo != 0)
3697 {
3698 bit = 0;
3699 while ((lo & 1) == 0)
3700 {
3701 lo >>= 1;
3702 ++bit;
3703 }
3704 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
3705 hi >>= bit;
3706 }
3707 else
3708 {
3709 bit = 32;
3710 while ((hi & 1) == 0)
3711 {
3712 hi >>= 1;
3713 ++bit;
3714 }
3715 lo = hi;
3716 hi = 0;
3717 }
3718
3719 /* Optimize if the shifted value is a (power of 2) - 1. */
3720 if ((hi == 0 && ((lo + 1) & lo) == 0)
3721 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
3722 {
3723 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
3724 if (shift != 0)
3725 {
3726 expressionS tmp;
3727
3728 /* This instruction will set the register to be all
3729 ones. */
3730 tmp.X_op = O_constant;
3731 tmp.X_add_number = (offsetT) -1;
3732 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3733 if (bit != 0)
3734 {
3735 bit += shift;
3736 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
3737 reg, reg, (bit >= 32) ? bit - 32 : bit);
3738 }
3739 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
3740 reg, reg, (shift >= 32) ? shift - 32 : shift);
3741 return;
3742 }
3743 }
3744
3745 /* Sign extend hi32 before calling load_register, because we can
3746 generally get better code when we load a sign extended value. */
3747 if ((hi32.X_add_number & 0x80000000) != 0)
3748 hi32.X_add_number |= ~(offsetT) 0xffffffff;
3749 load_register (reg, &hi32, 0);
3750 freg = reg;
3751 }
3752 if ((lo32.X_add_number & 0xffff0000) == 0)
3753 {
3754 if (freg != 0)
3755 {
3756 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
3757 freg = reg;
3758 }
3759 }
3760 else
3761 {
3762 expressionS mid16;
3763
3764 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
3765 {
3766 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
3767 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
3768 return;
3769 }
3770
3771 if (freg != 0)
3772 {
3773 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
3774 freg = reg;
3775 }
3776 mid16 = lo32;
3777 mid16.X_add_number >>= 16;
3778 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
3779 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3780 freg = reg;
3781 }
3782 if ((lo32.X_add_number & 0xffff) != 0)
3783 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
3784 }
3785
3786 static inline void
3787 load_delay_nop (void)
3788 {
3789 if (!gpr_interlocks)
3790 macro_build (NULL, "nop", "");
3791 }
3792
3793 /* Load an address into a register. */
3794
3795 static void
3796 load_address (int reg, expressionS *ep, int *used_at)
3797 {
3798 if (ep->X_op != O_constant
3799 && ep->X_op != O_symbol)
3800 {
3801 as_bad (_("expression too complex"));
3802 ep->X_op = O_constant;
3803 }
3804
3805 if (ep->X_op == O_constant)
3806 {
3807 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
3808 return;
3809 }
3810
3811 if (mips_pic == NO_PIC)
3812 {
3813 /* If this is a reference to a GP relative symbol, we want
3814 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
3815 Otherwise we want
3816 lui $reg,<sym> (BFD_RELOC_HI16_S)
3817 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3818 If we have an addend, we always use the latter form.
3819
3820 With 64bit address space and a usable $at we want
3821 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3822 lui $at,<sym> (BFD_RELOC_HI16_S)
3823 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3824 daddiu $at,<sym> (BFD_RELOC_LO16)
3825 dsll32 $reg,0
3826 daddu $reg,$reg,$at
3827
3828 If $at is already in use, we use a path which is suboptimal
3829 on superscalar processors.
3830 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3831 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3832 dsll $reg,16
3833 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
3834 dsll $reg,16
3835 daddiu $reg,<sym> (BFD_RELOC_LO16)
3836 */
3837 if (HAVE_64BIT_ADDRESSES)
3838 {
3839 /* ??? We don't provide a GP-relative alternative for these macros.
3840 It used not to be possible with the original relaxation code,
3841 but it could be done now. */
3842
3843 if (*used_at == 0 && ! mips_opts.noat)
3844 {
3845 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
3846 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
3847 macro_build (ep, "daddiu", "t,r,j", reg, reg,
3848 BFD_RELOC_MIPS_HIGHER);
3849 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
3850 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
3851 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
3852 *used_at = 1;
3853 }
3854 else
3855 {
3856 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
3857 macro_build (ep, "daddiu", "t,r,j", reg, reg,
3858 BFD_RELOC_MIPS_HIGHER);
3859 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3860 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
3861 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3862 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
3863 }
3864 }
3865 else
3866 {
3867 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
3868 && ! nopic_need_relax (ep->X_add_symbol, 1))
3869 {
3870 relax_start (ep->X_add_symbol);
3871 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
3872 mips_gp_register, BFD_RELOC_GPREL16);
3873 relax_switch ();
3874 }
3875 macro_build_lui (ep, reg);
3876 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
3877 reg, reg, BFD_RELOC_LO16);
3878 if (mips_relax.sequence)
3879 relax_end ();
3880 }
3881 }
3882 else if (mips_pic == SVR4_PIC && ! mips_big_got)
3883 {
3884 expressionS ex;
3885
3886 /* If this is a reference to an external symbol, we want
3887 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3888 Otherwise we want
3889 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3890 nop
3891 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3892 If there is a constant, it must be added in after.
3893
3894 If we have NewABI, we want
3895 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
3896 unless we're referencing a global symbol with a non-zero
3897 offset, in which case cst must be added separately. */
3898 if (HAVE_NEWABI)
3899 {
3900 if (ep->X_add_number)
3901 {
3902 ex.X_add_number = ep->X_add_number;
3903 ep->X_add_number = 0;
3904 relax_start (ep->X_add_symbol);
3905 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3906 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
3907 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3908 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3909 ex.X_op = O_constant;
3910 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
3911 reg, reg, BFD_RELOC_LO16);
3912 ep->X_add_number = ex.X_add_number;
3913 relax_switch ();
3914 }
3915 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3916 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
3917 if (mips_relax.sequence)
3918 relax_end ();
3919 }
3920 else
3921 {
3922 ex.X_add_number = ep->X_add_number;
3923 ep->X_add_number = 0;
3924 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3925 BFD_RELOC_MIPS_GOT16, mips_gp_register);
3926 load_delay_nop ();
3927 relax_start (ep->X_add_symbol);
3928 relax_switch ();
3929 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
3930 BFD_RELOC_LO16);
3931 relax_end ();
3932
3933 if (ex.X_add_number != 0)
3934 {
3935 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3936 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3937 ex.X_op = O_constant;
3938 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
3939 reg, reg, BFD_RELOC_LO16);
3940 }
3941 }
3942 }
3943 else if (mips_pic == SVR4_PIC)
3944 {
3945 expressionS ex;
3946
3947 /* This is the large GOT case. If this is a reference to an
3948 external symbol, we want
3949 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
3950 addu $reg,$reg,$gp
3951 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
3952
3953 Otherwise, for a reference to a local symbol in old ABI, we want
3954 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3955 nop
3956 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3957 If there is a constant, it must be added in after.
3958
3959 In the NewABI, for local symbols, with or without offsets, we want:
3960 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
3961 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
3962 */
3963 if (HAVE_NEWABI)
3964 {
3965 ex.X_add_number = ep->X_add_number;
3966 ep->X_add_number = 0;
3967 relax_start (ep->X_add_symbol);
3968 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
3969 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
3970 reg, reg, mips_gp_register);
3971 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
3972 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
3973 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3974 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3975 else if (ex.X_add_number)
3976 {
3977 ex.X_op = O_constant;
3978 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
3979 BFD_RELOC_LO16);
3980 }
3981
3982 ep->X_add_number = ex.X_add_number;
3983 relax_switch ();
3984 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3985 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
3986 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
3987 BFD_RELOC_MIPS_GOT_OFST);
3988 relax_end ();
3989 }
3990 else
3991 {
3992 ex.X_add_number = ep->X_add_number;
3993 ep->X_add_number = 0;
3994 relax_start (ep->X_add_symbol);
3995 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
3996 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
3997 reg, reg, mips_gp_register);
3998 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
3999 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4000 relax_switch ();
4001 if (reg_needs_delay (mips_gp_register))
4002 {
4003 /* We need a nop before loading from $gp. This special
4004 check is required because the lui which starts the main
4005 instruction stream does not refer to $gp, and so will not
4006 insert the nop which may be required. */
4007 macro_build (NULL, "nop", "");
4008 }
4009 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4010 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4011 load_delay_nop ();
4012 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4013 BFD_RELOC_LO16);
4014 relax_end ();
4015
4016 if (ex.X_add_number != 0)
4017 {
4018 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4019 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4020 ex.X_op = O_constant;
4021 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4022 BFD_RELOC_LO16);
4023 }
4024 }
4025 }
4026 else if (mips_pic == EMBEDDED_PIC)
4027 {
4028 /* We always do
4029 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4030 */
4031 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4032 reg, mips_gp_register, BFD_RELOC_GPREL16);
4033 }
4034 else
4035 abort ();
4036 }
4037
4038 /* Move the contents of register SOURCE into register DEST. */
4039
4040 static void
4041 move_register (int dest, int source)
4042 {
4043 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4044 dest, source, 0);
4045 }
4046
4047 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4048 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4049 The two alternatives are:
4050
4051 Global symbol Local sybmol
4052 ------------- ------------
4053 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4054 ... ...
4055 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4056
4057 load_got_offset emits the first instruction and add_got_offset
4058 emits the second for a 16-bit offset or add_got_offset_hilo emits
4059 a sequence to add a 32-bit offset using a scratch register. */
4060
4061 static void
4062 load_got_offset (int dest, expressionS *local)
4063 {
4064 expressionS global;
4065
4066 global = *local;
4067 global.X_add_number = 0;
4068
4069 relax_start (local->X_add_symbol);
4070 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4071 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4072 relax_switch ();
4073 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4074 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4075 relax_end ();
4076 }
4077
4078 static void
4079 add_got_offset (int dest, expressionS *local)
4080 {
4081 expressionS global;
4082
4083 global.X_op = O_constant;
4084 global.X_op_symbol = NULL;
4085 global.X_add_symbol = NULL;
4086 global.X_add_number = local->X_add_number;
4087
4088 relax_start (local->X_add_symbol);
4089 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4090 dest, dest, BFD_RELOC_LO16);
4091 relax_switch ();
4092 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4093 relax_end ();
4094 }
4095
4096 static void
4097 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4098 {
4099 expressionS global;
4100 int hold_mips_optimize;
4101
4102 global.X_op = O_constant;
4103 global.X_op_symbol = NULL;
4104 global.X_add_symbol = NULL;
4105 global.X_add_number = local->X_add_number;
4106
4107 relax_start (local->X_add_symbol);
4108 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4109 relax_switch ();
4110 /* Set mips_optimize around the lui instruction to avoid
4111 inserting an unnecessary nop after the lw. */
4112 hold_mips_optimize = mips_optimize;
4113 mips_optimize = 2;
4114 macro_build_lui (&global, tmp);
4115 mips_optimize = hold_mips_optimize;
4116 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4117 relax_end ();
4118
4119 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4120 }
4121
4122 /*
4123 * Build macros
4124 * This routine implements the seemingly endless macro or synthesized
4125 * instructions and addressing modes in the mips assembly language. Many
4126 * of these macros are simple and are similar to each other. These could
4127 * probably be handled by some kind of table or grammar approach instead of
4128 * this verbose method. Others are not simple macros but are more like
4129 * optimizing code generation.
4130 * One interesting optimization is when several store macros appear
4131 * consecutively that would load AT with the upper half of the same address.
4132 * The ensuing load upper instructions are ommited. This implies some kind
4133 * of global optimization. We currently only optimize within a single macro.
4134 * For many of the load and store macros if the address is specified as a
4135 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4136 * first load register 'at' with zero and use it as the base register. The
4137 * mips assembler simply uses register $zero. Just one tiny optimization
4138 * we're missing.
4139 */
4140 static void
4141 macro (struct mips_cl_insn *ip)
4142 {
4143 register int treg, sreg, dreg, breg;
4144 int tempreg;
4145 int mask;
4146 int used_at = 0;
4147 expressionS expr1;
4148 const char *s;
4149 const char *s2;
4150 const char *fmt;
4151 int likely = 0;
4152 int dbl = 0;
4153 int coproc = 0;
4154 int lr = 0;
4155 int imm = 0;
4156 int call = 0;
4157 int off;
4158 offsetT maxnum;
4159 bfd_reloc_code_real_type r;
4160 int hold_mips_optimize;
4161
4162 assert (! mips_opts.mips16);
4163
4164 treg = (ip->insn_opcode >> 16) & 0x1f;
4165 dreg = (ip->insn_opcode >> 11) & 0x1f;
4166 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4167 mask = ip->insn_mo->mask;
4168
4169 expr1.X_op = O_constant;
4170 expr1.X_op_symbol = NULL;
4171 expr1.X_add_symbol = NULL;
4172 expr1.X_add_number = 1;
4173
4174 switch (mask)
4175 {
4176 case M_DABS:
4177 dbl = 1;
4178 case M_ABS:
4179 /* bgez $a0,.+12
4180 move v0,$a0
4181 sub v0,$zero,$a0
4182 */
4183
4184 mips_emit_delays (TRUE);
4185 ++mips_opts.noreorder;
4186 mips_any_noreorder = 1;
4187
4188 expr1.X_add_number = 8;
4189 macro_build (&expr1, "bgez", "s,p", sreg);
4190 if (dreg == sreg)
4191 macro_build (NULL, "nop", "", 0);
4192 else
4193 move_register (dreg, sreg);
4194 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4195
4196 --mips_opts.noreorder;
4197 return;
4198
4199 case M_ADD_I:
4200 s = "addi";
4201 s2 = "add";
4202 goto do_addi;
4203 case M_ADDU_I:
4204 s = "addiu";
4205 s2 = "addu";
4206 goto do_addi;
4207 case M_DADD_I:
4208 dbl = 1;
4209 s = "daddi";
4210 s2 = "dadd";
4211 goto do_addi;
4212 case M_DADDU_I:
4213 dbl = 1;
4214 s = "daddiu";
4215 s2 = "daddu";
4216 do_addi:
4217 if (imm_expr.X_op == O_constant
4218 && imm_expr.X_add_number >= -0x8000
4219 && imm_expr.X_add_number < 0x8000)
4220 {
4221 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4222 return;
4223 }
4224 load_register (AT, &imm_expr, dbl);
4225 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4226 break;
4227
4228 case M_AND_I:
4229 s = "andi";
4230 s2 = "and";
4231 goto do_bit;
4232 case M_OR_I:
4233 s = "ori";
4234 s2 = "or";
4235 goto do_bit;
4236 case M_NOR_I:
4237 s = "";
4238 s2 = "nor";
4239 goto do_bit;
4240 case M_XOR_I:
4241 s = "xori";
4242 s2 = "xor";
4243 do_bit:
4244 if (imm_expr.X_op == O_constant
4245 && imm_expr.X_add_number >= 0
4246 && imm_expr.X_add_number < 0x10000)
4247 {
4248 if (mask != M_NOR_I)
4249 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4250 else
4251 {
4252 macro_build (&imm_expr, "ori", "t,r,i",
4253 treg, sreg, BFD_RELOC_LO16);
4254 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4255 }
4256 return;
4257 }
4258
4259 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4260 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4261 break;
4262
4263 case M_BEQ_I:
4264 s = "beq";
4265 goto beq_i;
4266 case M_BEQL_I:
4267 s = "beql";
4268 likely = 1;
4269 goto beq_i;
4270 case M_BNE_I:
4271 s = "bne";
4272 goto beq_i;
4273 case M_BNEL_I:
4274 s = "bnel";
4275 likely = 1;
4276 beq_i:
4277 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4278 {
4279 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4280 return;
4281 }
4282 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4283 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4284 break;
4285
4286 case M_BGEL:
4287 likely = 1;
4288 case M_BGE:
4289 if (treg == 0)
4290 {
4291 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4292 return;
4293 }
4294 if (sreg == 0)
4295 {
4296 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4297 return;
4298 }
4299 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4300 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4301 break;
4302
4303 case M_BGTL_I:
4304 likely = 1;
4305 case M_BGT_I:
4306 /* check for > max integer */
4307 maxnum = 0x7fffffff;
4308 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4309 {
4310 maxnum <<= 16;
4311 maxnum |= 0xffff;
4312 maxnum <<= 16;
4313 maxnum |= 0xffff;
4314 }
4315 if (imm_expr.X_op == O_constant
4316 && imm_expr.X_add_number >= maxnum
4317 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4318 {
4319 do_false:
4320 /* result is always false */
4321 if (! likely)
4322 macro_build (NULL, "nop", "", 0);
4323 else
4324 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
4325 return;
4326 }
4327 if (imm_expr.X_op != O_constant)
4328 as_bad (_("Unsupported large constant"));
4329 ++imm_expr.X_add_number;
4330 /* FALLTHROUGH */
4331 case M_BGE_I:
4332 case M_BGEL_I:
4333 if (mask == M_BGEL_I)
4334 likely = 1;
4335 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4336 {
4337 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4338 return;
4339 }
4340 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4341 {
4342 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4343 return;
4344 }
4345 maxnum = 0x7fffffff;
4346 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4347 {
4348 maxnum <<= 16;
4349 maxnum |= 0xffff;
4350 maxnum <<= 16;
4351 maxnum |= 0xffff;
4352 }
4353 maxnum = - maxnum - 1;
4354 if (imm_expr.X_op == O_constant
4355 && imm_expr.X_add_number <= maxnum
4356 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4357 {
4358 do_true:
4359 /* result is always true */
4360 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
4361 macro_build (&offset_expr, "b", "p");
4362 return;
4363 }
4364 set_at (sreg, 0);
4365 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4366 break;
4367
4368 case M_BGEUL:
4369 likely = 1;
4370 case M_BGEU:
4371 if (treg == 0)
4372 goto do_true;
4373 if (sreg == 0)
4374 {
4375 macro_build (&offset_expr, likely ? "beql" : "beq",
4376 "s,t,p", 0, treg);
4377 return;
4378 }
4379 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4380 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4381 break;
4382
4383 case M_BGTUL_I:
4384 likely = 1;
4385 case M_BGTU_I:
4386 if (sreg == 0
4387 || (HAVE_32BIT_GPRS
4388 && imm_expr.X_op == O_constant
4389 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4390 goto do_false;
4391 if (imm_expr.X_op != O_constant)
4392 as_bad (_("Unsupported large constant"));
4393 ++imm_expr.X_add_number;
4394 /* FALLTHROUGH */
4395 case M_BGEU_I:
4396 case M_BGEUL_I:
4397 if (mask == M_BGEUL_I)
4398 likely = 1;
4399 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4400 goto do_true;
4401 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4402 {
4403 macro_build (&offset_expr, likely ? "bnel" : "bne",
4404 "s,t,p", sreg, 0);
4405 return;
4406 }
4407 set_at (sreg, 1);
4408 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4409 break;
4410
4411 case M_BGTL:
4412 likely = 1;
4413 case M_BGT:
4414 if (treg == 0)
4415 {
4416 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4417 return;
4418 }
4419 if (sreg == 0)
4420 {
4421 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
4422 return;
4423 }
4424 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4425 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4426 break;
4427
4428 case M_BGTUL:
4429 likely = 1;
4430 case M_BGTU:
4431 if (treg == 0)
4432 {
4433 macro_build (&offset_expr, likely ? "bnel" : "bne",
4434 "s,t,p", sreg, 0);
4435 return;
4436 }
4437 if (sreg == 0)
4438 goto do_false;
4439 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
4440 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4441 break;
4442
4443 case M_BLEL:
4444 likely = 1;
4445 case M_BLE:
4446 if (treg == 0)
4447 {
4448 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
4449 return;
4450 }
4451 if (sreg == 0)
4452 {
4453 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
4454 return;
4455 }
4456 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4457 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4458 break;
4459
4460 case M_BLEL_I:
4461 likely = 1;
4462 case M_BLE_I:
4463 maxnum = 0x7fffffff;
4464 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4465 {
4466 maxnum <<= 16;
4467 maxnum |= 0xffff;
4468 maxnum <<= 16;
4469 maxnum |= 0xffff;
4470 }
4471 if (imm_expr.X_op == O_constant
4472 && imm_expr.X_add_number >= maxnum
4473 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4474 goto do_true;
4475 if (imm_expr.X_op != O_constant)
4476 as_bad (_("Unsupported large constant"));
4477 ++imm_expr.X_add_number;
4478 /* FALLTHROUGH */
4479 case M_BLT_I:
4480 case M_BLTL_I:
4481 if (mask == M_BLTL_I)
4482 likely = 1;
4483 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4484 {
4485 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
4486 return;
4487 }
4488 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4489 {
4490 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
4491 return;
4492 }
4493 set_at (sreg, 0);
4494 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4495 break;
4496
4497 case M_BLEUL:
4498 likely = 1;
4499 case M_BLEU:
4500 if (treg == 0)
4501 {
4502 macro_build (&offset_expr, likely ? "beql" : "beq",
4503 "s,t,p", sreg, 0);
4504 return;
4505 }
4506 if (sreg == 0)
4507 goto do_true;
4508 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
4509 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4510 break;
4511
4512 case M_BLEUL_I:
4513 likely = 1;
4514 case M_BLEU_I:
4515 if (sreg == 0
4516 || (HAVE_32BIT_GPRS
4517 && imm_expr.X_op == O_constant
4518 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4519 goto do_true;
4520 if (imm_expr.X_op != O_constant)
4521 as_bad (_("Unsupported large constant"));
4522 ++imm_expr.X_add_number;
4523 /* FALLTHROUGH */
4524 case M_BLTU_I:
4525 case M_BLTUL_I:
4526 if (mask == M_BLTUL_I)
4527 likely = 1;
4528 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4529 goto do_false;
4530 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4531 {
4532 macro_build (&offset_expr, likely ? "beql" : "beq",
4533 "s,t,p", sreg, 0);
4534 return;
4535 }
4536 set_at (sreg, 1);
4537 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4538 break;
4539
4540 case M_BLTL:
4541 likely = 1;
4542 case M_BLT:
4543 if (treg == 0)
4544 {
4545 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
4546 return;
4547 }
4548 if (sreg == 0)
4549 {
4550 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
4551 return;
4552 }
4553 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4554 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4555 break;
4556
4557 case M_BLTUL:
4558 likely = 1;
4559 case M_BLTU:
4560 if (treg == 0)
4561 goto do_false;
4562 if (sreg == 0)
4563 {
4564 macro_build (&offset_expr, likely ? "bnel" : "bne",
4565 "s,t,p", 0, treg);
4566 return;
4567 }
4568 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4569 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4570 break;
4571
4572 case M_DEXT:
4573 {
4574 unsigned long pos;
4575 unsigned long size;
4576
4577 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
4578 {
4579 as_bad (_("Unsupported large constant"));
4580 pos = size = 1;
4581 }
4582 else
4583 {
4584 pos = (unsigned long) imm_expr.X_add_number;
4585 size = (unsigned long) imm2_expr.X_add_number;
4586 }
4587
4588 if (pos > 63)
4589 {
4590 as_bad (_("Improper position (%lu)"), pos);
4591 pos = 1;
4592 }
4593 if (size == 0 || size > 64
4594 || (pos + size - 1) > 63)
4595 {
4596 as_bad (_("Improper extract size (%lu, position %lu)"),
4597 size, pos);
4598 size = 1;
4599 }
4600
4601 if (size <= 32 && pos < 32)
4602 {
4603 s = "dext";
4604 fmt = "t,r,+A,+C";
4605 }
4606 else if (size <= 32)
4607 {
4608 s = "dextu";
4609 fmt = "t,r,+E,+H";
4610 }
4611 else
4612 {
4613 s = "dextm";
4614 fmt = "t,r,+A,+G";
4615 }
4616 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
4617 }
4618 return;
4619
4620 case M_DINS:
4621 {
4622 unsigned long pos;
4623 unsigned long size;
4624
4625 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
4626 {
4627 as_bad (_("Unsupported large constant"));
4628 pos = size = 1;
4629 }
4630 else
4631 {
4632 pos = (unsigned long) imm_expr.X_add_number;
4633 size = (unsigned long) imm2_expr.X_add_number;
4634 }
4635
4636 if (pos > 63)
4637 {
4638 as_bad (_("Improper position (%lu)"), pos);
4639 pos = 1;
4640 }
4641 if (size == 0 || size > 64
4642 || (pos + size - 1) > 63)
4643 {
4644 as_bad (_("Improper insert size (%lu, position %lu)"),
4645 size, pos);
4646 size = 1;
4647 }
4648
4649 if (pos < 32 && (pos + size - 1) < 32)
4650 {
4651 s = "dins";
4652 fmt = "t,r,+A,+B";
4653 }
4654 else if (pos >= 32)
4655 {
4656 s = "dinsu";
4657 fmt = "t,r,+E,+F";
4658 }
4659 else
4660 {
4661 s = "dinsm";
4662 fmt = "t,r,+A,+F";
4663 }
4664 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos,
4665 pos + size - 1);
4666 }
4667 return;
4668
4669 case M_DDIV_3:
4670 dbl = 1;
4671 case M_DIV_3:
4672 s = "mflo";
4673 goto do_div3;
4674 case M_DREM_3:
4675 dbl = 1;
4676 case M_REM_3:
4677 s = "mfhi";
4678 do_div3:
4679 if (treg == 0)
4680 {
4681 as_warn (_("Divide by zero."));
4682 if (mips_trap)
4683 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
4684 else
4685 macro_build (NULL, "break", "c", 7);
4686 return;
4687 }
4688
4689 mips_emit_delays (TRUE);
4690 ++mips_opts.noreorder;
4691 mips_any_noreorder = 1;
4692 if (mips_trap)
4693 {
4694 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
4695 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4696 }
4697 else
4698 {
4699 expr1.X_add_number = 8;
4700 macro_build (&expr1, "bne", "s,t,p", treg, 0);
4701 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4702 macro_build (NULL, "break", "c", 7);
4703 }
4704 expr1.X_add_number = -1;
4705 load_register (AT, &expr1, dbl);
4706 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
4707 macro_build (&expr1, "bne", "s,t,p", treg, AT);
4708 if (dbl)
4709 {
4710 expr1.X_add_number = 1;
4711 load_register (AT, &expr1, dbl);
4712 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
4713 }
4714 else
4715 {
4716 expr1.X_add_number = 0x80000000;
4717 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
4718 }
4719 if (mips_trap)
4720 {
4721 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
4722 /* We want to close the noreorder block as soon as possible, so
4723 that later insns are available for delay slot filling. */
4724 --mips_opts.noreorder;
4725 }
4726 else
4727 {
4728 expr1.X_add_number = 8;
4729 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
4730 macro_build (NULL, "nop", "", 0);
4731
4732 /* We want to close the noreorder block as soon as possible, so
4733 that later insns are available for delay slot filling. */
4734 --mips_opts.noreorder;
4735
4736 macro_build (NULL, "break", "c", 6);
4737 }
4738 macro_build (NULL, s, "d", dreg);
4739 break;
4740
4741 case M_DIV_3I:
4742 s = "div";
4743 s2 = "mflo";
4744 goto do_divi;
4745 case M_DIVU_3I:
4746 s = "divu";
4747 s2 = "mflo";
4748 goto do_divi;
4749 case M_REM_3I:
4750 s = "div";
4751 s2 = "mfhi";
4752 goto do_divi;
4753 case M_REMU_3I:
4754 s = "divu";
4755 s2 = "mfhi";
4756 goto do_divi;
4757 case M_DDIV_3I:
4758 dbl = 1;
4759 s = "ddiv";
4760 s2 = "mflo";
4761 goto do_divi;
4762 case M_DDIVU_3I:
4763 dbl = 1;
4764 s = "ddivu";
4765 s2 = "mflo";
4766 goto do_divi;
4767 case M_DREM_3I:
4768 dbl = 1;
4769 s = "ddiv";
4770 s2 = "mfhi";
4771 goto do_divi;
4772 case M_DREMU_3I:
4773 dbl = 1;
4774 s = "ddivu";
4775 s2 = "mfhi";
4776 do_divi:
4777 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4778 {
4779 as_warn (_("Divide by zero."));
4780 if (mips_trap)
4781 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
4782 else
4783 macro_build (NULL, "break", "c", 7);
4784 return;
4785 }
4786 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4787 {
4788 if (strcmp (s2, "mflo") == 0)
4789 move_register (dreg, sreg);
4790 else
4791 move_register (dreg, 0);
4792 return;
4793 }
4794 if (imm_expr.X_op == O_constant
4795 && imm_expr.X_add_number == -1
4796 && s[strlen (s) - 1] != 'u')
4797 {
4798 if (strcmp (s2, "mflo") == 0)
4799 {
4800 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
4801 }
4802 else
4803 move_register (dreg, 0);
4804 return;
4805 }
4806
4807 load_register (AT, &imm_expr, dbl);
4808 macro_build (NULL, s, "z,s,t", sreg, AT);
4809 macro_build (NULL, s2, "d", dreg);
4810 break;
4811
4812 case M_DIVU_3:
4813 s = "divu";
4814 s2 = "mflo";
4815 goto do_divu3;
4816 case M_REMU_3:
4817 s = "divu";
4818 s2 = "mfhi";
4819 goto do_divu3;
4820 case M_DDIVU_3:
4821 s = "ddivu";
4822 s2 = "mflo";
4823 goto do_divu3;
4824 case M_DREMU_3:
4825 s = "ddivu";
4826 s2 = "mfhi";
4827 do_divu3:
4828 mips_emit_delays (TRUE);
4829 ++mips_opts.noreorder;
4830 mips_any_noreorder = 1;
4831 if (mips_trap)
4832 {
4833 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
4834 macro_build (NULL, s, "z,s,t", sreg, treg);
4835 /* We want to close the noreorder block as soon as possible, so
4836 that later insns are available for delay slot filling. */
4837 --mips_opts.noreorder;
4838 }
4839 else
4840 {
4841 expr1.X_add_number = 8;
4842 macro_build (&expr1, "bne", "s,t,p", treg, 0);
4843 macro_build (NULL, s, "z,s,t", sreg, treg);
4844
4845 /* We want to close the noreorder block as soon as possible, so
4846 that later insns are available for delay slot filling. */
4847 --mips_opts.noreorder;
4848 macro_build (NULL, "break", "c", 7);
4849 }
4850 macro_build (NULL, s2, "d", dreg);
4851 return;
4852
4853 case M_DLCA_AB:
4854 dbl = 1;
4855 case M_LCA_AB:
4856 call = 1;
4857 goto do_la;
4858 case M_DLA_AB:
4859 dbl = 1;
4860 case M_LA_AB:
4861 do_la:
4862 /* Load the address of a symbol into a register. If breg is not
4863 zero, we then add a base register to it. */
4864
4865 if (dbl && HAVE_32BIT_GPRS)
4866 as_warn (_("dla used to load 32-bit register"));
4867
4868 if (! dbl && HAVE_64BIT_OBJECTS)
4869 as_warn (_("la used to load 64-bit address"));
4870
4871 if (offset_expr.X_op == O_constant
4872 && offset_expr.X_add_number >= -0x8000
4873 && offset_expr.X_add_number < 0x8000)
4874 {
4875 macro_build (&offset_expr,
4876 (dbl || HAVE_64BIT_ADDRESSES) ? "daddiu" : "addiu",
4877 "t,r,j", treg, sreg, BFD_RELOC_LO16);
4878 return;
4879 }
4880
4881 if (treg == breg)
4882 {
4883 tempreg = AT;
4884 used_at = 1;
4885 }
4886 else
4887 {
4888 tempreg = treg;
4889 used_at = 0;
4890 }
4891
4892 /* When generating embedded PIC code, we permit expressions of
4893 the form
4894 la $treg,foo-bar
4895 la $treg,foo-bar($breg)
4896 where bar is an address in the current section. These are used
4897 when getting the addresses of functions. We don't permit
4898 X_add_number to be non-zero, because if the symbol is
4899 external the relaxing code needs to know that any addend is
4900 purely the offset to X_op_symbol. */
4901 if (mips_pic == EMBEDDED_PIC
4902 && offset_expr.X_op == O_subtract
4903 && (symbol_constant_p (offset_expr.X_op_symbol)
4904 ? S_GET_SEGMENT (offset_expr.X_op_symbol) == now_seg
4905 : (symbol_equated_p (offset_expr.X_op_symbol)
4906 && (S_GET_SEGMENT
4907 (symbol_get_value_expression (offset_expr.X_op_symbol)
4908 ->X_add_symbol)
4909 == now_seg)))
4910 && (offset_expr.X_add_number == 0
4911 || OUTPUT_FLAVOR == bfd_target_elf_flavour))
4912 {
4913 if (breg == 0)
4914 {
4915 tempreg = treg;
4916 used_at = 0;
4917 macro_build (&offset_expr, "lui", "t,u",
4918 tempreg, BFD_RELOC_PCREL_HI16_S);
4919 }
4920 else
4921 {
4922 macro_build (&offset_expr, "lui", "t,u",
4923 tempreg, BFD_RELOC_PCREL_HI16_S);
4924 macro_build (NULL,
4925 (dbl || HAVE_64BIT_ADDRESSES) ? "daddu" : "addu",
4926 "d,v,t", tempreg, tempreg, breg);
4927 }
4928 macro_build (&offset_expr,
4929 (dbl || HAVE_64BIT_ADDRESSES) ? "daddiu" : "addiu",
4930 "t,r,j", treg, tempreg, BFD_RELOC_PCREL_LO16);
4931 if (! used_at)
4932 return;
4933 break;
4934 }
4935
4936 if (offset_expr.X_op != O_symbol
4937 && offset_expr.X_op != O_constant)
4938 {
4939 as_bad (_("expression too complex"));
4940 offset_expr.X_op = O_constant;
4941 }
4942
4943 if (offset_expr.X_op == O_constant)
4944 load_register (tempreg, &offset_expr,
4945 ((mips_pic == EMBEDDED_PIC || mips_pic == NO_PIC)
4946 ? (dbl || HAVE_64BIT_ADDRESSES)
4947 : HAVE_64BIT_ADDRESSES));
4948 else if (mips_pic == NO_PIC)
4949 {
4950 /* If this is a reference to a GP relative symbol, we want
4951 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
4952 Otherwise we want
4953 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
4954 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
4955 If we have a constant, we need two instructions anyhow,
4956 so we may as well always use the latter form.
4957
4958 With 64bit address space and a usable $at we want
4959 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4960 lui $at,<sym> (BFD_RELOC_HI16_S)
4961 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4962 daddiu $at,<sym> (BFD_RELOC_LO16)
4963 dsll32 $tempreg,0
4964 daddu $tempreg,$tempreg,$at
4965
4966 If $at is already in use, we use a path which is suboptimal
4967 on superscalar processors.
4968 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4969 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4970 dsll $tempreg,16
4971 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
4972 dsll $tempreg,16
4973 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
4974 */
4975 if (HAVE_64BIT_ADDRESSES)
4976 {
4977 /* ??? We don't provide a GP-relative alternative for
4978 these macros. It used not to be possible with the
4979 original relaxation code, but it could be done now. */
4980
4981 if (used_at == 0 && ! mips_opts.noat)
4982 {
4983 macro_build (&offset_expr, "lui", "t,u",
4984 tempreg, BFD_RELOC_MIPS_HIGHEST);
4985 macro_build (&offset_expr, "lui", "t,u",
4986 AT, BFD_RELOC_HI16_S);
4987 macro_build (&offset_expr, "daddiu", "t,r,j",
4988 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
4989 macro_build (&offset_expr, "daddiu", "t,r,j",
4990 AT, AT, BFD_RELOC_LO16);
4991 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
4992 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
4993 used_at = 1;
4994 }
4995 else
4996 {
4997 macro_build (&offset_expr, "lui", "t,u",
4998 tempreg, BFD_RELOC_MIPS_HIGHEST);
4999 macro_build (&offset_expr, "daddiu", "t,r,j",
5000 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5001 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5002 macro_build (&offset_expr, "daddiu", "t,r,j",
5003 tempreg, tempreg, BFD_RELOC_HI16_S);
5004 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5005 macro_build (&offset_expr, "daddiu", "t,r,j",
5006 tempreg, tempreg, BFD_RELOC_LO16);
5007 }
5008 }
5009 else
5010 {
5011 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5012 && ! nopic_need_relax (offset_expr.X_add_symbol, 1))
5013 {
5014 relax_start (offset_expr.X_add_symbol);
5015 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5016 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5017 relax_switch ();
5018 }
5019 macro_build_lui (&offset_expr, tempreg);
5020 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5021 tempreg, tempreg, BFD_RELOC_LO16);
5022 if (mips_relax.sequence)
5023 relax_end ();
5024 }
5025 }
5026 else if (mips_pic == SVR4_PIC && ! mips_big_got && ! HAVE_NEWABI)
5027 {
5028 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5029
5030 /* If this is a reference to an external symbol, and there
5031 is no constant, we want
5032 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5033 or for lca or if tempreg is PIC_CALL_REG
5034 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5035 For a local symbol, we want
5036 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5037 nop
5038 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5039
5040 If we have a small constant, and this is a reference to
5041 an external symbol, we want
5042 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5043 nop
5044 addiu $tempreg,$tempreg,<constant>
5045 For a local symbol, we want the same instruction
5046 sequence, but we output a BFD_RELOC_LO16 reloc on the
5047 addiu instruction.
5048
5049 If we have a large constant, and this is a reference to
5050 an external symbol, we want
5051 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5052 lui $at,<hiconstant>
5053 addiu $at,$at,<loconstant>
5054 addu $tempreg,$tempreg,$at
5055 For a local symbol, we want the same instruction
5056 sequence, but we output a BFD_RELOC_LO16 reloc on the
5057 addiu instruction.
5058 */
5059
5060 if (offset_expr.X_add_number == 0)
5061 {
5062 if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5063 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5064
5065 relax_start (offset_expr.X_add_symbol);
5066 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5067 lw_reloc_type, mips_gp_register);
5068 if (breg != 0)
5069 {
5070 /* We're going to put in an addu instruction using
5071 tempreg, so we may as well insert the nop right
5072 now. */
5073 load_delay_nop ();
5074 }
5075 relax_switch ();
5076 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5077 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5078 load_delay_nop ();
5079 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5080 tempreg, tempreg, BFD_RELOC_LO16);
5081 relax_end ();
5082 /* FIXME: If breg == 0, and the next instruction uses
5083 $tempreg, then if this variant case is used an extra
5084 nop will be generated. */
5085 }
5086 else if (offset_expr.X_add_number >= -0x8000
5087 && offset_expr.X_add_number < 0x8000)
5088 {
5089 load_got_offset (tempreg, &offset_expr);
5090 load_delay_nop ();
5091 add_got_offset (tempreg, &offset_expr);
5092 }
5093 else
5094 {
5095 expr1.X_add_number = offset_expr.X_add_number;
5096 offset_expr.X_add_number =
5097 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5098 load_got_offset (tempreg, &offset_expr);
5099 offset_expr.X_add_number = expr1.X_add_number;
5100 /* If we are going to add in a base register, and the
5101 target register and the base register are the same,
5102 then we are using AT as a temporary register. Since
5103 we want to load the constant into AT, we add our
5104 current AT (from the global offset table) and the
5105 register into the register now, and pretend we were
5106 not using a base register. */
5107 if (breg == treg)
5108 {
5109 load_delay_nop ();
5110 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5111 treg, AT, breg);
5112 breg = 0;
5113 tempreg = treg;
5114 }
5115 add_got_offset_hilo (tempreg, &offset_expr, AT);
5116 used_at = 1;
5117 }
5118 }
5119 else if (mips_pic == SVR4_PIC && ! mips_big_got && HAVE_NEWABI)
5120 {
5121 int add_breg_early = 0;
5122
5123 /* If this is a reference to an external, and there is no
5124 constant, or local symbol (*), with or without a
5125 constant, we want
5126 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5127 or for lca or if tempreg is PIC_CALL_REG
5128 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5129
5130 If we have a small constant, and this is a reference to
5131 an external symbol, we want
5132 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5133 addiu $tempreg,$tempreg,<constant>
5134
5135 If we have a large constant, and this is a reference to
5136 an external symbol, we want
5137 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5138 lui $at,<hiconstant>
5139 addiu $at,$at,<loconstant>
5140 addu $tempreg,$tempreg,$at
5141
5142 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5143 local symbols, even though it introduces an additional
5144 instruction. */
5145
5146 if (offset_expr.X_add_number)
5147 {
5148 expr1.X_add_number = offset_expr.X_add_number;
5149 offset_expr.X_add_number = 0;
5150
5151 relax_start (offset_expr.X_add_symbol);
5152 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5153 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5154
5155 if (expr1.X_add_number >= -0x8000
5156 && expr1.X_add_number < 0x8000)
5157 {
5158 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5159 tempreg, tempreg, BFD_RELOC_LO16);
5160 }
5161 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5162 {
5163 int dreg;
5164
5165 /* If we are going to add in a base register, and the
5166 target register and the base register are the same,
5167 then we are using AT as a temporary register. Since
5168 we want to load the constant into AT, we add our
5169 current AT (from the global offset table) and the
5170 register into the register now, and pretend we were
5171 not using a base register. */
5172 if (breg != treg)
5173 dreg = tempreg;
5174 else
5175 {
5176 assert (tempreg == AT);
5177 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5178 treg, AT, breg);
5179 dreg = treg;
5180 add_breg_early = 1;
5181 }
5182
5183 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5184 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5185 dreg, dreg, AT);
5186
5187 used_at = 1;
5188 }
5189 else
5190 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5191
5192 relax_switch ();
5193 offset_expr.X_add_number = expr1.X_add_number;
5194
5195 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5196 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5197 if (add_breg_early)
5198 {
5199 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5200 treg, tempreg, breg);
5201 breg = 0;
5202 tempreg = treg;
5203 }
5204 relax_end ();
5205 }
5206 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5207 {
5208 relax_start (offset_expr.X_add_symbol);
5209 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5210 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5211 relax_switch ();
5212 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5213 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5214 relax_end ();
5215 }
5216 else
5217 {
5218 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5219 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5220 }
5221 }
5222 else if (mips_pic == SVR4_PIC && ! HAVE_NEWABI)
5223 {
5224 int gpdelay;
5225 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5226 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5227 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5228
5229 /* This is the large GOT case. If this is a reference to an
5230 external symbol, and there is no constant, we want
5231 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5232 addu $tempreg,$tempreg,$gp
5233 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5234 or for lca or if tempreg is PIC_CALL_REG
5235 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5236 addu $tempreg,$tempreg,$gp
5237 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5238 For a local symbol, we want
5239 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5240 nop
5241 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5242
5243 If we have a small constant, and this is a reference to
5244 an external symbol, we want
5245 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5246 addu $tempreg,$tempreg,$gp
5247 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5248 nop
5249 addiu $tempreg,$tempreg,<constant>
5250 For a local symbol, we want
5251 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5252 nop
5253 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5254
5255 If we have a large constant, and this is a reference to
5256 an external symbol, we want
5257 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5258 addu $tempreg,$tempreg,$gp
5259 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5260 lui $at,<hiconstant>
5261 addiu $at,$at,<loconstant>
5262 addu $tempreg,$tempreg,$at
5263 For a local symbol, we want
5264 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5265 lui $at,<hiconstant>
5266 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5267 addu $tempreg,$tempreg,$at
5268 */
5269
5270 expr1.X_add_number = offset_expr.X_add_number;
5271 offset_expr.X_add_number = 0;
5272 relax_start (offset_expr.X_add_symbol);
5273 gpdelay = reg_needs_delay (mips_gp_register);
5274 if (expr1.X_add_number == 0 && breg == 0
5275 && (call || tempreg == PIC_CALL_REG))
5276 {
5277 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5278 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5279 }
5280 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5281 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5282 tempreg, tempreg, mips_gp_register);
5283 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5284 tempreg, lw_reloc_type, tempreg);
5285 if (expr1.X_add_number == 0)
5286 {
5287 if (breg != 0)
5288 {
5289 /* We're going to put in an addu instruction using
5290 tempreg, so we may as well insert the nop right
5291 now. */
5292 load_delay_nop ();
5293 }
5294 }
5295 else if (expr1.X_add_number >= -0x8000
5296 && expr1.X_add_number < 0x8000)
5297 {
5298 load_delay_nop ();
5299 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5300 tempreg, tempreg, BFD_RELOC_LO16);
5301 }
5302 else
5303 {
5304 int dreg;
5305
5306 /* If we are going to add in a base register, and the
5307 target register and the base register are the same,
5308 then we are using AT as a temporary register. Since
5309 we want to load the constant into AT, we add our
5310 current AT (from the global offset table) and the
5311 register into the register now, and pretend we were
5312 not using a base register. */
5313 if (breg != treg)
5314 dreg = tempreg;
5315 else
5316 {
5317 assert (tempreg == AT);
5318 load_delay_nop ();
5319 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5320 treg, AT, breg);
5321 dreg = treg;
5322 }
5323
5324 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5325 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5326
5327 used_at = 1;
5328 }
5329 offset_expr.X_add_number =
5330 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5331 relax_switch ();
5332
5333 if (gpdelay)
5334 {
5335 /* This is needed because this instruction uses $gp, but
5336 the first instruction on the main stream does not. */
5337 macro_build (NULL, "nop", "");
5338 }
5339
5340 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5341 local_reloc_type, mips_gp_register);
5342 if (expr1.X_add_number >= -0x8000
5343 && expr1.X_add_number < 0x8000)
5344 {
5345 load_delay_nop ();
5346 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5347 tempreg, tempreg, BFD_RELOC_LO16);
5348 /* FIXME: If add_number is 0, and there was no base
5349 register, the external symbol case ended with a load,
5350 so if the symbol turns out to not be external, and
5351 the next instruction uses tempreg, an unnecessary nop
5352 will be inserted. */
5353 }
5354 else
5355 {
5356 if (breg == treg)
5357 {
5358 /* We must add in the base register now, as in the
5359 external symbol case. */
5360 assert (tempreg == AT);
5361 load_delay_nop ();
5362 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5363 treg, AT, breg);
5364 tempreg = treg;
5365 /* We set breg to 0 because we have arranged to add
5366 it in in both cases. */
5367 breg = 0;
5368 }
5369
5370 macro_build_lui (&expr1, AT);
5371 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5372 AT, AT, BFD_RELOC_LO16);
5373 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5374 tempreg, tempreg, AT);
5375 }
5376 relax_end ();
5377 }
5378 else if (mips_pic == SVR4_PIC && HAVE_NEWABI)
5379 {
5380 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5381 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5382 int add_breg_early = 0;
5383
5384 /* This is the large GOT case. If this is a reference to an
5385 external symbol, and there is no constant, we want
5386 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5387 add $tempreg,$tempreg,$gp
5388 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5389 or for lca or if tempreg is PIC_CALL_REG
5390 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5391 add $tempreg,$tempreg,$gp
5392 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5393
5394 If we have a small constant, and this is a reference to
5395 an external symbol, we want
5396 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5397 add $tempreg,$tempreg,$gp
5398 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5399 addi $tempreg,$tempreg,<constant>
5400
5401 If we have a large constant, and this is a reference to
5402 an external symbol, we want
5403 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5404 addu $tempreg,$tempreg,$gp
5405 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5406 lui $at,<hiconstant>
5407 addi $at,$at,<loconstant>
5408 add $tempreg,$tempreg,$at
5409
5410 If we have NewABI, and we know it's a local symbol, we want
5411 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5412 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5413 otherwise we have to resort to GOT_HI16/GOT_LO16. */
5414
5415 relax_start (offset_expr.X_add_symbol);
5416
5417 expr1.X_add_number = offset_expr.X_add_number;
5418 offset_expr.X_add_number = 0;
5419
5420 if (expr1.X_add_number == 0 && breg == 0
5421 && (call || tempreg == PIC_CALL_REG))
5422 {
5423 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5424 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5425 }
5426 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5427 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5428 tempreg, tempreg, mips_gp_register);
5429 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5430 tempreg, lw_reloc_type, tempreg);
5431
5432 if (expr1.X_add_number == 0)
5433 ;
5434 else if (expr1.X_add_number >= -0x8000
5435 && expr1.X_add_number < 0x8000)
5436 {
5437 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5438 tempreg, tempreg, BFD_RELOC_LO16);
5439 }
5440 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5441 {
5442 int dreg;
5443
5444 /* If we are going to add in a base register, and the
5445 target register and the base register are the same,
5446 then we are using AT as a temporary register. Since
5447 we want to load the constant into AT, we add our
5448 current AT (from the global offset table) and the
5449 register into the register now, and pretend we were
5450 not using a base register. */
5451 if (breg != treg)
5452 dreg = tempreg;
5453 else
5454 {
5455 assert (tempreg == AT);
5456 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5457 treg, AT, breg);
5458 dreg = treg;
5459 add_breg_early = 1;
5460 }
5461
5462 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5463 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5464
5465 used_at = 1;
5466 }
5467 else
5468 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5469
5470 relax_switch ();
5471 offset_expr.X_add_number = expr1.X_add_number;
5472 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5473 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
5474 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
5475 tempreg, BFD_RELOC_MIPS_GOT_OFST);
5476 if (add_breg_early)
5477 {
5478 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5479 treg, tempreg, breg);
5480 breg = 0;
5481 tempreg = treg;
5482 }
5483 relax_end ();
5484 }
5485 else if (mips_pic == EMBEDDED_PIC)
5486 {
5487 /* We use
5488 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5489 */
5490 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
5491 mips_gp_register, BFD_RELOC_GPREL16);
5492 }
5493 else
5494 abort ();
5495
5496 if (breg != 0)
5497 {
5498 char *s;
5499
5500 if (mips_pic == EMBEDDED_PIC || mips_pic == NO_PIC)
5501 s = (dbl || HAVE_64BIT_ADDRESSES) ? "daddu" : "addu";
5502 else
5503 s = ADDRESS_ADD_INSN;
5504
5505 macro_build (NULL, s, "d,v,t", treg, tempreg, breg);
5506 }
5507
5508 if (! used_at)
5509 return;
5510
5511 break;
5512
5513 case M_J_A:
5514 /* The j instruction may not be used in PIC code, since it
5515 requires an absolute address. We convert it to a b
5516 instruction. */
5517 if (mips_pic == NO_PIC)
5518 macro_build (&offset_expr, "j", "a");
5519 else
5520 macro_build (&offset_expr, "b", "p");
5521 return;
5522
5523 /* The jal instructions must be handled as macros because when
5524 generating PIC code they expand to multi-instruction
5525 sequences. Normally they are simple instructions. */
5526 case M_JAL_1:
5527 dreg = RA;
5528 /* Fall through. */
5529 case M_JAL_2:
5530 if (mips_pic == NO_PIC
5531 || mips_pic == EMBEDDED_PIC)
5532 macro_build (NULL, "jalr", "d,s", dreg, sreg);
5533 else if (mips_pic == SVR4_PIC)
5534 {
5535 if (sreg != PIC_CALL_REG)
5536 as_warn (_("MIPS PIC call to register other than $25"));
5537
5538 macro_build (NULL, "jalr", "d,s", dreg, sreg);
5539 if (! HAVE_NEWABI)
5540 {
5541 if (mips_cprestore_offset < 0)
5542 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5543 else
5544 {
5545 if (! mips_frame_reg_valid)
5546 {
5547 as_warn (_("No .frame pseudo-op used in PIC code"));
5548 /* Quiet this warning. */
5549 mips_frame_reg_valid = 1;
5550 }
5551 if (! mips_cprestore_valid)
5552 {
5553 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5554 /* Quiet this warning. */
5555 mips_cprestore_valid = 1;
5556 }
5557 expr1.X_add_number = mips_cprestore_offset;
5558 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
5559 mips_gp_register,
5560 mips_frame_reg,
5561 HAVE_64BIT_ADDRESSES);
5562 }
5563 }
5564 }
5565 else
5566 abort ();
5567
5568 return;
5569
5570 case M_JAL_A:
5571 if (mips_pic == NO_PIC)
5572 macro_build (&offset_expr, "jal", "a");
5573 else if (mips_pic == SVR4_PIC)
5574 {
5575 /* If this is a reference to an external symbol, and we are
5576 using a small GOT, we want
5577 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5578 nop
5579 jalr $ra,$25
5580 nop
5581 lw $gp,cprestore($sp)
5582 The cprestore value is set using the .cprestore
5583 pseudo-op. If we are using a big GOT, we want
5584 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5585 addu $25,$25,$gp
5586 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
5587 nop
5588 jalr $ra,$25
5589 nop
5590 lw $gp,cprestore($sp)
5591 If the symbol is not external, we want
5592 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5593 nop
5594 addiu $25,$25,<sym> (BFD_RELOC_LO16)
5595 jalr $ra,$25
5596 nop
5597 lw $gp,cprestore($sp)
5598
5599 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
5600 sequences above, minus nops, unless the symbol is local,
5601 which enables us to use GOT_PAGE/GOT_OFST (big got) or
5602 GOT_DISP. */
5603 if (HAVE_NEWABI)
5604 {
5605 if (! mips_big_got)
5606 {
5607 relax_start (offset_expr.X_add_symbol);
5608 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5609 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
5610 mips_gp_register);
5611 relax_switch ();
5612 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5613 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
5614 mips_gp_register);
5615 relax_end ();
5616 }
5617 else
5618 {
5619 relax_start (offset_expr.X_add_symbol);
5620 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
5621 BFD_RELOC_MIPS_CALL_HI16);
5622 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
5623 PIC_CALL_REG, mips_gp_register);
5624 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5625 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
5626 PIC_CALL_REG);
5627 relax_switch ();
5628 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5629 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
5630 mips_gp_register);
5631 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5632 PIC_CALL_REG, PIC_CALL_REG,
5633 BFD_RELOC_MIPS_GOT_OFST);
5634 relax_end ();
5635 }
5636
5637 macro_build_jalr (&offset_expr);
5638 }
5639 else
5640 {
5641 relax_start (offset_expr.X_add_symbol);
5642 if (! mips_big_got)
5643 {
5644 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5645 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
5646 mips_gp_register);
5647 load_delay_nop ();
5648 relax_switch ();
5649 }
5650 else
5651 {
5652 int gpdelay;
5653
5654 gpdelay = reg_needs_delay (mips_gp_register);
5655 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
5656 BFD_RELOC_MIPS_CALL_HI16);
5657 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
5658 PIC_CALL_REG, mips_gp_register);
5659 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5660 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
5661 PIC_CALL_REG);
5662 load_delay_nop ();
5663 relax_switch ();
5664 if (gpdelay)
5665 macro_build (NULL, "nop", "");
5666 }
5667 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5668 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
5669 mips_gp_register);
5670 load_delay_nop ();
5671 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5672 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
5673 relax_end ();
5674 macro_build_jalr (&offset_expr);
5675
5676 if (mips_cprestore_offset < 0)
5677 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5678 else
5679 {
5680 if (! mips_frame_reg_valid)
5681 {
5682 as_warn (_("No .frame pseudo-op used in PIC code"));
5683 /* Quiet this warning. */
5684 mips_frame_reg_valid = 1;
5685 }
5686 if (! mips_cprestore_valid)
5687 {
5688 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5689 /* Quiet this warning. */
5690 mips_cprestore_valid = 1;
5691 }
5692 if (mips_opts.noreorder)
5693 macro_build (NULL, "nop", "");
5694 expr1.X_add_number = mips_cprestore_offset;
5695 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
5696 mips_gp_register,
5697 mips_frame_reg,
5698 HAVE_64BIT_ADDRESSES);
5699 }
5700 }
5701 }
5702 else if (mips_pic == EMBEDDED_PIC)
5703 {
5704 macro_build (&offset_expr, "bal", "p");
5705 /* The linker may expand the call to a longer sequence which
5706 uses $at, so we must break rather than return. */
5707 break;
5708 }
5709 else
5710 abort ();
5711
5712 return;
5713
5714 case M_LB_AB:
5715 s = "lb";
5716 goto ld;
5717 case M_LBU_AB:
5718 s = "lbu";
5719 goto ld;
5720 case M_LH_AB:
5721 s = "lh";
5722 goto ld;
5723 case M_LHU_AB:
5724 s = "lhu";
5725 goto ld;
5726 case M_LW_AB:
5727 s = "lw";
5728 goto ld;
5729 case M_LWC0_AB:
5730 s = "lwc0";
5731 /* Itbl support may require additional care here. */
5732 coproc = 1;
5733 goto ld;
5734 case M_LWC1_AB:
5735 s = "lwc1";
5736 /* Itbl support may require additional care here. */
5737 coproc = 1;
5738 goto ld;
5739 case M_LWC2_AB:
5740 s = "lwc2";
5741 /* Itbl support may require additional care here. */
5742 coproc = 1;
5743 goto ld;
5744 case M_LWC3_AB:
5745 s = "lwc3";
5746 /* Itbl support may require additional care here. */
5747 coproc = 1;
5748 goto ld;
5749 case M_LWL_AB:
5750 s = "lwl";
5751 lr = 1;
5752 goto ld;
5753 case M_LWR_AB:
5754 s = "lwr";
5755 lr = 1;
5756 goto ld;
5757 case M_LDC1_AB:
5758 if (mips_opts.arch == CPU_R4650)
5759 {
5760 as_bad (_("opcode not supported on this processor"));
5761 return;
5762 }
5763 s = "ldc1";
5764 /* Itbl support may require additional care here. */
5765 coproc = 1;
5766 goto ld;
5767 case M_LDC2_AB:
5768 s = "ldc2";
5769 /* Itbl support may require additional care here. */
5770 coproc = 1;
5771 goto ld;
5772 case M_LDC3_AB:
5773 s = "ldc3";
5774 /* Itbl support may require additional care here. */
5775 coproc = 1;
5776 goto ld;
5777 case M_LDL_AB:
5778 s = "ldl";
5779 lr = 1;
5780 goto ld;
5781 case M_LDR_AB:
5782 s = "ldr";
5783 lr = 1;
5784 goto ld;
5785 case M_LL_AB:
5786 s = "ll";
5787 goto ld;
5788 case M_LLD_AB:
5789 s = "lld";
5790 goto ld;
5791 case M_LWU_AB:
5792 s = "lwu";
5793 ld:
5794 if (breg == treg || coproc || lr)
5795 {
5796 tempreg = AT;
5797 used_at = 1;
5798 }
5799 else
5800 {
5801 tempreg = treg;
5802 used_at = 0;
5803 }
5804 goto ld_st;
5805 case M_SB_AB:
5806 s = "sb";
5807 goto st;
5808 case M_SH_AB:
5809 s = "sh";
5810 goto st;
5811 case M_SW_AB:
5812 s = "sw";
5813 goto st;
5814 case M_SWC0_AB:
5815 s = "swc0";
5816 /* Itbl support may require additional care here. */
5817 coproc = 1;
5818 goto st;
5819 case M_SWC1_AB:
5820 s = "swc1";
5821 /* Itbl support may require additional care here. */
5822 coproc = 1;
5823 goto st;
5824 case M_SWC2_AB:
5825 s = "swc2";
5826 /* Itbl support may require additional care here. */
5827 coproc = 1;
5828 goto st;
5829 case M_SWC3_AB:
5830 s = "swc3";
5831 /* Itbl support may require additional care here. */
5832 coproc = 1;
5833 goto st;
5834 case M_SWL_AB:
5835 s = "swl";
5836 goto st;
5837 case M_SWR_AB:
5838 s = "swr";
5839 goto st;
5840 case M_SC_AB:
5841 s = "sc";
5842 goto st;
5843 case M_SCD_AB:
5844 s = "scd";
5845 goto st;
5846 case M_SDC1_AB:
5847 if (mips_opts.arch == CPU_R4650)
5848 {
5849 as_bad (_("opcode not supported on this processor"));
5850 return;
5851 }
5852 s = "sdc1";
5853 coproc = 1;
5854 /* Itbl support may require additional care here. */
5855 goto st;
5856 case M_SDC2_AB:
5857 s = "sdc2";
5858 /* Itbl support may require additional care here. */
5859 coproc = 1;
5860 goto st;
5861 case M_SDC3_AB:
5862 s = "sdc3";
5863 /* Itbl support may require additional care here. */
5864 coproc = 1;
5865 goto st;
5866 case M_SDL_AB:
5867 s = "sdl";
5868 goto st;
5869 case M_SDR_AB:
5870 s = "sdr";
5871 st:
5872 tempreg = AT;
5873 used_at = 1;
5874 ld_st:
5875 /* Itbl support may require additional care here. */
5876 if (mask == M_LWC1_AB
5877 || mask == M_SWC1_AB
5878 || mask == M_LDC1_AB
5879 || mask == M_SDC1_AB
5880 || mask == M_L_DAB
5881 || mask == M_S_DAB)
5882 fmt = "T,o(b)";
5883 else if (coproc)
5884 fmt = "E,o(b)";
5885 else
5886 fmt = "t,o(b)";
5887
5888 /* Sign-extending 32-bit constants makes their handling easier.
5889 The HAVE_64BIT_GPRS... part is due to the linux kernel hack
5890 described below. */
5891 if ((! HAVE_64BIT_ADDRESSES
5892 && (! HAVE_64BIT_GPRS && offset_expr.X_op == O_constant))
5893 && (offset_expr.X_op == O_constant)
5894 && ! ((offset_expr.X_add_number & ~((bfd_vma) 0x7fffffff))
5895 == ~((bfd_vma) 0x7fffffff)))
5896 {
5897 if (offset_expr.X_add_number & ~((bfd_vma) 0xffffffff))
5898 as_bad (_("constant too large"));
5899
5900 offset_expr.X_add_number = (((offset_expr.X_add_number & 0xffffffff)
5901 ^ 0x80000000) - 0x80000000);
5902 }
5903
5904 /* For embedded PIC, we allow loads where the offset is calculated
5905 by subtracting a symbol in the current segment from an unknown
5906 symbol, relative to a base register, e.g.:
5907 <op> $treg, <sym>-<localsym>($breg)
5908 This is used by the compiler for switch statements. */
5909 if (mips_pic == EMBEDDED_PIC
5910 && offset_expr.X_op == O_subtract
5911 && (symbol_constant_p (offset_expr.X_op_symbol)
5912 ? S_GET_SEGMENT (offset_expr.X_op_symbol) == now_seg
5913 : (symbol_equated_p (offset_expr.X_op_symbol)
5914 && (S_GET_SEGMENT
5915 (symbol_get_value_expression (offset_expr.X_op_symbol)
5916 ->X_add_symbol)
5917 == now_seg)))
5918 && breg != 0
5919 && (offset_expr.X_add_number == 0
5920 || OUTPUT_FLAVOR == bfd_target_elf_flavour))
5921 {
5922 /* For this case, we output the instructions:
5923 lui $tempreg,<sym> (BFD_RELOC_PCREL_HI16_S)
5924 addiu $tempreg,$tempreg,$breg
5925 <op> $treg,<sym>($tempreg) (BFD_RELOC_PCREL_LO16)
5926 If the relocation would fit entirely in 16 bits, it would be
5927 nice to emit:
5928 <op> $treg,<sym>($breg) (BFD_RELOC_PCREL_LO16)
5929 instead, but that seems quite difficult. */
5930 macro_build (&offset_expr, "lui", "t,u", tempreg,
5931 BFD_RELOC_PCREL_HI16_S);
5932 macro_build (NULL,
5933 ((bfd_arch_bits_per_address (stdoutput) == 32
5934 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
5935 ? "addu" : "daddu"),
5936 "d,v,t", tempreg, tempreg, breg);
5937 macro_build (&offset_expr, s, fmt, treg,
5938 BFD_RELOC_PCREL_LO16, tempreg);
5939 if (! used_at)
5940 return;
5941 break;
5942 }
5943
5944 if (offset_expr.X_op != O_constant
5945 && offset_expr.X_op != O_symbol)
5946 {
5947 as_bad (_("expression too complex"));
5948 offset_expr.X_op = O_constant;
5949 }
5950
5951 /* A constant expression in PIC code can be handled just as it
5952 is in non PIC code. */
5953 if (mips_pic == NO_PIC
5954 || offset_expr.X_op == O_constant)
5955 {
5956 /* If this is a reference to a GP relative symbol, and there
5957 is no base register, we want
5958 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
5959 Otherwise, if there is no base register, we want
5960 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5961 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5962 If we have a constant, we need two instructions anyhow,
5963 so we always use the latter form.
5964
5965 If we have a base register, and this is a reference to a
5966 GP relative symbol, we want
5967 addu $tempreg,$breg,$gp
5968 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
5969 Otherwise we want
5970 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5971 addu $tempreg,$tempreg,$breg
5972 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5973 With a constant we always use the latter case.
5974
5975 With 64bit address space and no base register and $at usable,
5976 we want
5977 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5978 lui $at,<sym> (BFD_RELOC_HI16_S)
5979 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5980 dsll32 $tempreg,0
5981 daddu $tempreg,$at
5982 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5983 If we have a base register, we want
5984 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5985 lui $at,<sym> (BFD_RELOC_HI16_S)
5986 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5987 daddu $at,$breg
5988 dsll32 $tempreg,0
5989 daddu $tempreg,$at
5990 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5991
5992 Without $at we can't generate the optimal path for superscalar
5993 processors here since this would require two temporary registers.
5994 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5995 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5996 dsll $tempreg,16
5997 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5998 dsll $tempreg,16
5999 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6000 If we have a base register, we want
6001 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6002 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6003 dsll $tempreg,16
6004 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6005 dsll $tempreg,16
6006 daddu $tempreg,$tempreg,$breg
6007 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6008
6009 If we have 64-bit addresses, as an optimization, for
6010 addresses which are 32-bit constants (e.g. kseg0/kseg1
6011 addresses) we fall back to the 32-bit address generation
6012 mechanism since it is more efficient. Note that due to
6013 the signed offset used by memory operations, the 32-bit
6014 range is shifted down by 32768 here. This code should
6015 probably attempt to generate 64-bit constants more
6016 efficiently in general.
6017
6018 As an extension for architectures with 64-bit registers,
6019 we don't truncate 64-bit addresses given as literal
6020 constants down to 32 bits, to support existing practice
6021 in the mips64 Linux (the kernel), that compiles source
6022 files with -mabi=64, assembling them as o32 or n32 (with
6023 -Wa,-32 or -Wa,-n32). This is not beautiful, but since
6024 the whole kernel is loaded into a memory region that is
6025 addressable with sign-extended 32-bit addresses, it is
6026 wasteful to compute the upper 32 bits of every
6027 non-literal address, that takes more space and time.
6028 Some day this should probably be implemented as an
6029 assembler option, such that the kernel doesn't have to
6030 use such ugly hacks, even though it will still have to
6031 end up converting the binary to ELF32 for a number of
6032 platforms whose boot loaders don't support ELF64
6033 binaries. */
6034 if ((HAVE_64BIT_ADDRESSES
6035 && ! (offset_expr.X_op == O_constant
6036 && IS_SEXT_32BIT_NUM (offset_expr.X_add_number + 0x8000)))
6037 || (HAVE_64BIT_GPRS
6038 && offset_expr.X_op == O_constant
6039 && ! IS_SEXT_32BIT_NUM (offset_expr.X_add_number + 0x8000)))
6040 {
6041 /* ??? We don't provide a GP-relative alternative for
6042 these macros. It used not to be possible with the
6043 original relaxation code, but it could be done now. */
6044
6045 if (used_at == 0 && ! mips_opts.noat)
6046 {
6047 macro_build (&offset_expr, "lui", "t,u", tempreg,
6048 BFD_RELOC_MIPS_HIGHEST);
6049 macro_build (&offset_expr, "lui", "t,u", AT,
6050 BFD_RELOC_HI16_S);
6051 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6052 tempreg, BFD_RELOC_MIPS_HIGHER);
6053 if (breg != 0)
6054 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6055 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6056 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6057 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6058 tempreg);
6059 used_at = 1;
6060 }
6061 else
6062 {
6063 macro_build (&offset_expr, "lui", "t,u", tempreg,
6064 BFD_RELOC_MIPS_HIGHEST);
6065 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6066 tempreg, BFD_RELOC_MIPS_HIGHER);
6067 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6068 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6069 tempreg, BFD_RELOC_HI16_S);
6070 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6071 if (breg != 0)
6072 macro_build (NULL, "daddu", "d,v,t",
6073 tempreg, tempreg, breg);
6074 macro_build (&offset_expr, s, fmt, treg,
6075 BFD_RELOC_LO16, tempreg);
6076 }
6077
6078 return;
6079 }
6080
6081 if (offset_expr.X_op == O_constant
6082 && ! IS_SEXT_32BIT_NUM (offset_expr.X_add_number + 0x8000))
6083 as_bad (_("load/store address overflow (max 32 bits)"));
6084
6085 if (breg == 0)
6086 {
6087 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6088 && ! nopic_need_relax (offset_expr.X_add_symbol, 1))
6089 {
6090 relax_start (offset_expr.X_add_symbol);
6091 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6092 mips_gp_register);
6093 relax_switch ();
6094 used_at = 0;
6095 }
6096 macro_build_lui (&offset_expr, tempreg);
6097 macro_build (&offset_expr, s, fmt, treg,
6098 BFD_RELOC_LO16, tempreg);
6099 if (mips_relax.sequence)
6100 relax_end ();
6101 }
6102 else
6103 {
6104 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6105 && ! nopic_need_relax (offset_expr.X_add_symbol, 1))
6106 {
6107 relax_start (offset_expr.X_add_symbol);
6108 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6109 tempreg, breg, mips_gp_register);
6110 macro_build (&offset_expr, s, fmt, treg,
6111 BFD_RELOC_GPREL16, tempreg);
6112 relax_switch ();
6113 }
6114 macro_build_lui (&offset_expr, tempreg);
6115 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6116 tempreg, tempreg, breg);
6117 macro_build (&offset_expr, s, fmt, treg,
6118 BFD_RELOC_LO16, tempreg);
6119 if (mips_relax.sequence)
6120 relax_end ();
6121 }
6122 }
6123 else if (mips_pic == SVR4_PIC && ! mips_big_got)
6124 {
6125 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6126
6127 /* If this is a reference to an external symbol, we want
6128 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6129 nop
6130 <op> $treg,0($tempreg)
6131 Otherwise we want
6132 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6133 nop
6134 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6135 <op> $treg,0($tempreg)
6136
6137 For NewABI, we want
6138 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6139 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6140
6141 If there is a base register, we add it to $tempreg before
6142 the <op>. If there is a constant, we stick it in the
6143 <op> instruction. We don't handle constants larger than
6144 16 bits, because we have no way to load the upper 16 bits
6145 (actually, we could handle them for the subset of cases
6146 in which we are not using $at). */
6147 assert (offset_expr.X_op == O_symbol);
6148 if (HAVE_NEWABI)
6149 {
6150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6151 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6152 if (breg != 0)
6153 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6154 tempreg, tempreg, breg);
6155 macro_build (&offset_expr, s, fmt, treg,
6156 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6157
6158 if (! used_at)
6159 return;
6160
6161 break;
6162 }
6163 expr1.X_add_number = offset_expr.X_add_number;
6164 offset_expr.X_add_number = 0;
6165 if (expr1.X_add_number < -0x8000
6166 || expr1.X_add_number >= 0x8000)
6167 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6168 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6169 lw_reloc_type, mips_gp_register);
6170 load_delay_nop ();
6171 relax_start (offset_expr.X_add_symbol);
6172 relax_switch ();
6173 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6174 tempreg, BFD_RELOC_LO16);
6175 relax_end ();
6176 if (breg != 0)
6177 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6178 tempreg, tempreg, breg);
6179 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6180 }
6181 else if (mips_pic == SVR4_PIC && ! HAVE_NEWABI)
6182 {
6183 int gpdelay;
6184
6185 /* If this is a reference to an external symbol, we want
6186 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6187 addu $tempreg,$tempreg,$gp
6188 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6189 <op> $treg,0($tempreg)
6190 Otherwise we want
6191 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6192 nop
6193 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6194 <op> $treg,0($tempreg)
6195 If there is a base register, we add it to $tempreg before
6196 the <op>. If there is a constant, we stick it in the
6197 <op> instruction. We don't handle constants larger than
6198 16 bits, because we have no way to load the upper 16 bits
6199 (actually, we could handle them for the subset of cases
6200 in which we are not using $at). */
6201 assert (offset_expr.X_op == O_symbol);
6202 expr1.X_add_number = offset_expr.X_add_number;
6203 offset_expr.X_add_number = 0;
6204 if (expr1.X_add_number < -0x8000
6205 || expr1.X_add_number >= 0x8000)
6206 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6207 gpdelay = reg_needs_delay (mips_gp_register);
6208 relax_start (offset_expr.X_add_symbol);
6209 macro_build (&offset_expr, "lui", "t,u", tempreg,
6210 BFD_RELOC_MIPS_GOT_HI16);
6211 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6212 mips_gp_register);
6213 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6214 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6215 relax_switch ();
6216 if (gpdelay)
6217 macro_build (NULL, "nop", "");
6218 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6219 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6220 load_delay_nop ();
6221 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6222 tempreg, BFD_RELOC_LO16);
6223 relax_end ();
6224
6225 if (breg != 0)
6226 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6227 tempreg, tempreg, breg);
6228 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6229 }
6230 else if (mips_pic == SVR4_PIC && HAVE_NEWABI)
6231 {
6232 /* If this is a reference to an external symbol, we want
6233 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6234 add $tempreg,$tempreg,$gp
6235 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6236 <op> $treg,<ofst>($tempreg)
6237 Otherwise, for local symbols, we want:
6238 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6239 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6240 assert (offset_expr.X_op == O_symbol);
6241 expr1.X_add_number = offset_expr.X_add_number;
6242 offset_expr.X_add_number = 0;
6243 if (expr1.X_add_number < -0x8000
6244 || expr1.X_add_number >= 0x8000)
6245 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6246 relax_start (offset_expr.X_add_symbol);
6247 macro_build (&offset_expr, "lui", "t,u", tempreg,
6248 BFD_RELOC_MIPS_GOT_HI16);
6249 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6250 mips_gp_register);
6251 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6252 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6253 if (breg != 0)
6254 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6255 tempreg, tempreg, breg);
6256 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6257
6258 relax_switch ();
6259 offset_expr.X_add_number = expr1.X_add_number;
6260 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6261 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6262 if (breg != 0)
6263 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6264 tempreg, tempreg, breg);
6265 macro_build (&offset_expr, s, fmt, treg,
6266 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6267 relax_end ();
6268 }
6269 else if (mips_pic == EMBEDDED_PIC)
6270 {
6271 /* If there is no base register, we want
6272 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6273 If there is a base register, we want
6274 addu $tempreg,$breg,$gp
6275 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6276 */
6277 assert (offset_expr.X_op == O_symbol);
6278 if (breg == 0)
6279 {
6280 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6281 mips_gp_register);
6282 used_at = 0;
6283 }
6284 else
6285 {
6286 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6287 tempreg, breg, mips_gp_register);
6288 macro_build (&offset_expr, s, fmt, treg,
6289 BFD_RELOC_GPREL16, tempreg);
6290 }
6291 }
6292 else
6293 abort ();
6294
6295 if (! used_at)
6296 return;
6297
6298 break;
6299
6300 case M_LI:
6301 case M_LI_S:
6302 load_register (treg, &imm_expr, 0);
6303 return;
6304
6305 case M_DLI:
6306 load_register (treg, &imm_expr, 1);
6307 return;
6308
6309 case M_LI_SS:
6310 if (imm_expr.X_op == O_constant)
6311 {
6312 load_register (AT, &imm_expr, 0);
6313 macro_build (NULL, "mtc1", "t,G", AT, treg);
6314 break;
6315 }
6316 else
6317 {
6318 assert (offset_expr.X_op == O_symbol
6319 && strcmp (segment_name (S_GET_SEGMENT
6320 (offset_expr.X_add_symbol)),
6321 ".lit4") == 0
6322 && offset_expr.X_add_number == 0);
6323 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6324 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6325 return;
6326 }
6327
6328 case M_LI_D:
6329 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6330 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6331 order 32 bits of the value and the low order 32 bits are either
6332 zero or in OFFSET_EXPR. */
6333 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6334 {
6335 if (HAVE_64BIT_GPRS)
6336 load_register (treg, &imm_expr, 1);
6337 else
6338 {
6339 int hreg, lreg;
6340
6341 if (target_big_endian)
6342 {
6343 hreg = treg;
6344 lreg = treg + 1;
6345 }
6346 else
6347 {
6348 hreg = treg + 1;
6349 lreg = treg;
6350 }
6351
6352 if (hreg <= 31)
6353 load_register (hreg, &imm_expr, 0);
6354 if (lreg <= 31)
6355 {
6356 if (offset_expr.X_op == O_absent)
6357 move_register (lreg, 0);
6358 else
6359 {
6360 assert (offset_expr.X_op == O_constant);
6361 load_register (lreg, &offset_expr, 0);
6362 }
6363 }
6364 }
6365 return;
6366 }
6367
6368 /* We know that sym is in the .rdata section. First we get the
6369 upper 16 bits of the address. */
6370 if (mips_pic == NO_PIC)
6371 {
6372 macro_build_lui (&offset_expr, AT);
6373 }
6374 else if (mips_pic == SVR4_PIC)
6375 {
6376 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6377 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6378 }
6379 else if (mips_pic == EMBEDDED_PIC)
6380 {
6381 /* For embedded PIC we pick up the entire address off $gp in
6382 a single instruction. */
6383 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT,
6384 mips_gp_register, BFD_RELOC_GPREL16);
6385 offset_expr.X_op = O_constant;
6386 offset_expr.X_add_number = 0;
6387 }
6388 else
6389 abort ();
6390
6391 /* Now we load the register(s). */
6392 if (HAVE_64BIT_GPRS)
6393 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6394 else
6395 {
6396 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6397 if (treg != RA)
6398 {
6399 /* FIXME: How in the world do we deal with the possible
6400 overflow here? */
6401 offset_expr.X_add_number += 4;
6402 macro_build (&offset_expr, "lw", "t,o(b)",
6403 treg + 1, BFD_RELOC_LO16, AT);
6404 }
6405 }
6406 break;
6407
6408 case M_LI_DD:
6409 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6410 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6411 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6412 the value and the low order 32 bits are either zero or in
6413 OFFSET_EXPR. */
6414 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6415 {
6416 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6417 if (HAVE_64BIT_FPRS)
6418 {
6419 assert (HAVE_64BIT_GPRS);
6420 macro_build (NULL, "dmtc1", "t,S", AT, treg);
6421 }
6422 else
6423 {
6424 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
6425 if (offset_expr.X_op == O_absent)
6426 macro_build (NULL, "mtc1", "t,G", 0, treg);
6427 else
6428 {
6429 assert (offset_expr.X_op == O_constant);
6430 load_register (AT, &offset_expr, 0);
6431 macro_build (NULL, "mtc1", "t,G", AT, treg);
6432 }
6433 }
6434 break;
6435 }
6436
6437 assert (offset_expr.X_op == O_symbol
6438 && offset_expr.X_add_number == 0);
6439 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
6440 if (strcmp (s, ".lit8") == 0)
6441 {
6442 if (mips_opts.isa != ISA_MIPS1)
6443 {
6444 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
6445 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6446 return;
6447 }
6448 breg = mips_gp_register;
6449 r = BFD_RELOC_MIPS_LITERAL;
6450 goto dob;
6451 }
6452 else
6453 {
6454 assert (strcmp (s, RDATA_SECTION_NAME) == 0);
6455 if (mips_pic == SVR4_PIC)
6456 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6457 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6458 else
6459 {
6460 /* FIXME: This won't work for a 64 bit address. */
6461 macro_build_lui (&offset_expr, AT);
6462 }
6463
6464 if (mips_opts.isa != ISA_MIPS1)
6465 {
6466 macro_build (&offset_expr, "ldc1", "T,o(b)",
6467 treg, BFD_RELOC_LO16, AT);
6468 break;
6469 }
6470 breg = AT;
6471 r = BFD_RELOC_LO16;
6472 goto dob;
6473 }
6474
6475 case M_L_DOB:
6476 if (mips_opts.arch == CPU_R4650)
6477 {
6478 as_bad (_("opcode not supported on this processor"));
6479 return;
6480 }
6481 /* Even on a big endian machine $fn comes before $fn+1. We have
6482 to adjust when loading from memory. */
6483 r = BFD_RELOC_LO16;
6484 dob:
6485 assert (mips_opts.isa == ISA_MIPS1);
6486 macro_build (&offset_expr, "lwc1", "T,o(b)",
6487 target_big_endian ? treg + 1 : treg, r, breg);
6488 /* FIXME: A possible overflow which I don't know how to deal
6489 with. */
6490 offset_expr.X_add_number += 4;
6491 macro_build (&offset_expr, "lwc1", "T,o(b)",
6492 target_big_endian ? treg : treg + 1, r, breg);
6493
6494 if (breg != AT)
6495 return;
6496 break;
6497
6498 case M_L_DAB:
6499 /*
6500 * The MIPS assembler seems to check for X_add_number not
6501 * being double aligned and generating:
6502 * lui at,%hi(foo+1)
6503 * addu at,at,v1
6504 * addiu at,at,%lo(foo+1)
6505 * lwc1 f2,0(at)
6506 * lwc1 f3,4(at)
6507 * But, the resulting address is the same after relocation so why
6508 * generate the extra instruction?
6509 */
6510 if (mips_opts.arch == CPU_R4650)
6511 {
6512 as_bad (_("opcode not supported on this processor"));
6513 return;
6514 }
6515 /* Itbl support may require additional care here. */
6516 coproc = 1;
6517 if (mips_opts.isa != ISA_MIPS1)
6518 {
6519 s = "ldc1";
6520 goto ld;
6521 }
6522
6523 s = "lwc1";
6524 fmt = "T,o(b)";
6525 goto ldd_std;
6526
6527 case M_S_DAB:
6528 if (mips_opts.arch == CPU_R4650)
6529 {
6530 as_bad (_("opcode not supported on this processor"));
6531 return;
6532 }
6533
6534 if (mips_opts.isa != ISA_MIPS1)
6535 {
6536 s = "sdc1";
6537 goto st;
6538 }
6539
6540 s = "swc1";
6541 fmt = "T,o(b)";
6542 /* Itbl support may require additional care here. */
6543 coproc = 1;
6544 goto ldd_std;
6545
6546 case M_LD_AB:
6547 if (HAVE_64BIT_GPRS)
6548 {
6549 s = "ld";
6550 goto ld;
6551 }
6552
6553 s = "lw";
6554 fmt = "t,o(b)";
6555 goto ldd_std;
6556
6557 case M_SD_AB:
6558 if (HAVE_64BIT_GPRS)
6559 {
6560 s = "sd";
6561 goto st;
6562 }
6563
6564 s = "sw";
6565 fmt = "t,o(b)";
6566
6567 ldd_std:
6568 /* We do _not_ bother to allow embedded PIC (symbol-local_symbol)
6569 loads for the case of doing a pair of loads to simulate an 'ld'.
6570 This is not currently done by the compiler, and assembly coders
6571 writing embedded-pic code can cope. */
6572
6573 if (offset_expr.X_op != O_symbol
6574 && offset_expr.X_op != O_constant)
6575 {
6576 as_bad (_("expression too complex"));
6577 offset_expr.X_op = O_constant;
6578 }
6579
6580 /* Even on a big endian machine $fn comes before $fn+1. We have
6581 to adjust when loading from memory. We set coproc if we must
6582 load $fn+1 first. */
6583 /* Itbl support may require additional care here. */
6584 if (! target_big_endian)
6585 coproc = 0;
6586
6587 if (mips_pic == NO_PIC
6588 || offset_expr.X_op == O_constant)
6589 {
6590 /* If this is a reference to a GP relative symbol, we want
6591 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6592 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
6593 If we have a base register, we use this
6594 addu $at,$breg,$gp
6595 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
6596 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
6597 If this is not a GP relative symbol, we want
6598 lui $at,<sym> (BFD_RELOC_HI16_S)
6599 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6600 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6601 If there is a base register, we add it to $at after the
6602 lui instruction. If there is a constant, we always use
6603 the last case. */
6604 if ((valueT) offset_expr.X_add_number > MAX_GPREL_OFFSET
6605 || nopic_need_relax (offset_expr.X_add_symbol, 1))
6606 used_at = 1;
6607 else
6608 {
6609 relax_start (offset_expr.X_add_symbol);
6610 if (breg == 0)
6611 {
6612 tempreg = mips_gp_register;
6613 used_at = 0;
6614 }
6615 else
6616 {
6617 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6618 AT, breg, mips_gp_register);
6619 tempreg = AT;
6620 used_at = 1;
6621 }
6622
6623 /* Itbl support may require additional care here. */
6624 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6625 BFD_RELOC_GPREL16, tempreg);
6626 offset_expr.X_add_number += 4;
6627
6628 /* Set mips_optimize to 2 to avoid inserting an
6629 undesired nop. */
6630 hold_mips_optimize = mips_optimize;
6631 mips_optimize = 2;
6632 /* Itbl support may require additional care here. */
6633 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6634 BFD_RELOC_GPREL16, tempreg);
6635 mips_optimize = hold_mips_optimize;
6636
6637 relax_switch ();
6638
6639 /* We just generated two relocs. When tc_gen_reloc
6640 handles this case, it will skip the first reloc and
6641 handle the second. The second reloc already has an
6642 extra addend of 4, which we added above. We must
6643 subtract it out, and then subtract another 4 to make
6644 the first reloc come out right. The second reloc
6645 will come out right because we are going to add 4 to
6646 offset_expr when we build its instruction below.
6647
6648 If we have a symbol, then we don't want to include
6649 the offset, because it will wind up being included
6650 when we generate the reloc. */
6651
6652 if (offset_expr.X_op == O_constant)
6653 offset_expr.X_add_number -= 8;
6654 else
6655 {
6656 offset_expr.X_add_number = -4;
6657 offset_expr.X_op = O_constant;
6658 }
6659 }
6660 macro_build_lui (&offset_expr, AT);
6661 if (breg != 0)
6662 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6663 /* Itbl support may require additional care here. */
6664 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6665 BFD_RELOC_LO16, AT);
6666 /* FIXME: How do we handle overflow here? */
6667 offset_expr.X_add_number += 4;
6668 /* Itbl support may require additional care here. */
6669 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6670 BFD_RELOC_LO16, AT);
6671 if (mips_relax.sequence)
6672 relax_end ();
6673 }
6674 else if (mips_pic == SVR4_PIC && ! mips_big_got)
6675 {
6676 /* If this is a reference to an external symbol, we want
6677 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6678 nop
6679 <op> $treg,0($at)
6680 <op> $treg+1,4($at)
6681 Otherwise we want
6682 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6683 nop
6684 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6685 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6686 If there is a base register we add it to $at before the
6687 lwc1 instructions. If there is a constant we include it
6688 in the lwc1 instructions. */
6689 used_at = 1;
6690 expr1.X_add_number = offset_expr.X_add_number;
6691 if (expr1.X_add_number < -0x8000
6692 || expr1.X_add_number >= 0x8000 - 4)
6693 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6694 load_got_offset (AT, &offset_expr);
6695 load_delay_nop ();
6696 if (breg != 0)
6697 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6698
6699 /* Set mips_optimize to 2 to avoid inserting an undesired
6700 nop. */
6701 hold_mips_optimize = mips_optimize;
6702 mips_optimize = 2;
6703
6704 /* Itbl support may require additional care here. */
6705 relax_start (offset_expr.X_add_symbol);
6706 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
6707 BFD_RELOC_LO16, AT);
6708 expr1.X_add_number += 4;
6709 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
6710 BFD_RELOC_LO16, AT);
6711 relax_switch ();
6712 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6713 BFD_RELOC_LO16, AT);
6714 offset_expr.X_add_number += 4;
6715 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6716 BFD_RELOC_LO16, AT);
6717 relax_end ();
6718
6719 mips_optimize = hold_mips_optimize;
6720 }
6721 else if (mips_pic == SVR4_PIC)
6722 {
6723 int gpdelay;
6724
6725 /* If this is a reference to an external symbol, we want
6726 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6727 addu $at,$at,$gp
6728 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
6729 nop
6730 <op> $treg,0($at)
6731 <op> $treg+1,4($at)
6732 Otherwise we want
6733 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6734 nop
6735 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6736 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6737 If there is a base register we add it to $at before the
6738 lwc1 instructions. If there is a constant we include it
6739 in the lwc1 instructions. */
6740 used_at = 1;
6741 expr1.X_add_number = offset_expr.X_add_number;
6742 offset_expr.X_add_number = 0;
6743 if (expr1.X_add_number < -0x8000
6744 || expr1.X_add_number >= 0x8000 - 4)
6745 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6746 gpdelay = reg_needs_delay (mips_gp_register);
6747 relax_start (offset_expr.X_add_symbol);
6748 macro_build (&offset_expr, "lui", "t,u",
6749 AT, BFD_RELOC_MIPS_GOT_HI16);
6750 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6751 AT, AT, mips_gp_register);
6752 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6753 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
6754 load_delay_nop ();
6755 if (breg != 0)
6756 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6757 /* Itbl support may require additional care here. */
6758 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
6759 BFD_RELOC_LO16, AT);
6760 expr1.X_add_number += 4;
6761
6762 /* Set mips_optimize to 2 to avoid inserting an undesired
6763 nop. */
6764 hold_mips_optimize = mips_optimize;
6765 mips_optimize = 2;
6766 /* Itbl support may require additional care here. */
6767 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
6768 BFD_RELOC_LO16, AT);
6769 mips_optimize = hold_mips_optimize;
6770 expr1.X_add_number -= 4;
6771
6772 relax_switch ();
6773 offset_expr.X_add_number = expr1.X_add_number;
6774 if (gpdelay)
6775 macro_build (NULL, "nop", "");
6776 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6777 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6778 load_delay_nop ();
6779 if (breg != 0)
6780 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6781 /* Itbl support may require additional care here. */
6782 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6783 BFD_RELOC_LO16, AT);
6784 offset_expr.X_add_number += 4;
6785
6786 /* Set mips_optimize to 2 to avoid inserting an undesired
6787 nop. */
6788 hold_mips_optimize = mips_optimize;
6789 mips_optimize = 2;
6790 /* Itbl support may require additional care here. */
6791 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6792 BFD_RELOC_LO16, AT);
6793 mips_optimize = hold_mips_optimize;
6794 relax_end ();
6795 }
6796 else if (mips_pic == EMBEDDED_PIC)
6797 {
6798 /* If there is no base register, we use
6799 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6800 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
6801 If we have a base register, we use
6802 addu $at,$breg,$gp
6803 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
6804 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
6805 */
6806 if (breg == 0)
6807 {
6808 tempreg = mips_gp_register;
6809 used_at = 0;
6810 }
6811 else
6812 {
6813 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6814 AT, breg, mips_gp_register);
6815 tempreg = AT;
6816 used_at = 1;
6817 }
6818
6819 /* Itbl support may require additional care here. */
6820 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6821 BFD_RELOC_GPREL16, tempreg);
6822 offset_expr.X_add_number += 4;
6823 /* Itbl support may require additional care here. */
6824 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6825 BFD_RELOC_GPREL16, tempreg);
6826 }
6827 else
6828 abort ();
6829
6830 if (! used_at)
6831 return;
6832
6833 break;
6834
6835 case M_LD_OB:
6836 s = "lw";
6837 goto sd_ob;
6838 case M_SD_OB:
6839 s = "sw";
6840 sd_ob:
6841 assert (HAVE_32BIT_ADDRESSES);
6842 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
6843 offset_expr.X_add_number += 4;
6844 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
6845 return;
6846
6847 /* New code added to support COPZ instructions.
6848 This code builds table entries out of the macros in mip_opcodes.
6849 R4000 uses interlocks to handle coproc delays.
6850 Other chips (like the R3000) require nops to be inserted for delays.
6851
6852 FIXME: Currently, we require that the user handle delays.
6853 In order to fill delay slots for non-interlocked chips,
6854 we must have a way to specify delays based on the coprocessor.
6855 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
6856 What are the side-effects of the cop instruction?
6857 What cache support might we have and what are its effects?
6858 Both coprocessor & memory require delays. how long???
6859 What registers are read/set/modified?
6860
6861 If an itbl is provided to interpret cop instructions,
6862 this knowledge can be encoded in the itbl spec. */
6863
6864 case M_COP0:
6865 s = "c0";
6866 goto copz;
6867 case M_COP1:
6868 s = "c1";
6869 goto copz;
6870 case M_COP2:
6871 s = "c2";
6872 goto copz;
6873 case M_COP3:
6874 s = "c3";
6875 copz:
6876 /* For now we just do C (same as Cz). The parameter will be
6877 stored in insn_opcode by mips_ip. */
6878 macro_build (NULL, s, "C", ip->insn_opcode);
6879 return;
6880
6881 case M_MOVE:
6882 move_register (dreg, sreg);
6883 return;
6884
6885 #ifdef LOSING_COMPILER
6886 default:
6887 /* Try and see if this is a new itbl instruction.
6888 This code builds table entries out of the macros in mip_opcodes.
6889 FIXME: For now we just assemble the expression and pass it's
6890 value along as a 32-bit immediate.
6891 We may want to have the assembler assemble this value,
6892 so that we gain the assembler's knowledge of delay slots,
6893 symbols, etc.
6894 Would it be more efficient to use mask (id) here? */
6895 if (itbl_have_entries
6896 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
6897 {
6898 s = ip->insn_mo->name;
6899 s2 = "cop3";
6900 coproc = ITBL_DECODE_PNUM (immed_expr);;
6901 macro_build (&immed_expr, s, "C");
6902 return;
6903 }
6904 macro2 (ip);
6905 return;
6906 }
6907 if (mips_opts.noat)
6908 as_warn (_("Macro used $at after \".set noat\""));
6909 }
6910
6911 static void
6912 macro2 (struct mips_cl_insn *ip)
6913 {
6914 register int treg, sreg, dreg, breg;
6915 int tempreg;
6916 int mask;
6917 int used_at;
6918 expressionS expr1;
6919 const char *s;
6920 const char *s2;
6921 const char *fmt;
6922 int likely = 0;
6923 int dbl = 0;
6924 int coproc = 0;
6925 int lr = 0;
6926 int imm = 0;
6927 int off;
6928 offsetT maxnum;
6929 bfd_reloc_code_real_type r;
6930
6931 treg = (ip->insn_opcode >> 16) & 0x1f;
6932 dreg = (ip->insn_opcode >> 11) & 0x1f;
6933 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
6934 mask = ip->insn_mo->mask;
6935
6936 expr1.X_op = O_constant;
6937 expr1.X_op_symbol = NULL;
6938 expr1.X_add_symbol = NULL;
6939 expr1.X_add_number = 1;
6940
6941 switch (mask)
6942 {
6943 #endif /* LOSING_COMPILER */
6944
6945 case M_DMUL:
6946 dbl = 1;
6947 case M_MUL:
6948 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
6949 macro_build (NULL, "mflo", "d", dreg);
6950 return;
6951
6952 case M_DMUL_I:
6953 dbl = 1;
6954 case M_MUL_I:
6955 /* The MIPS assembler some times generates shifts and adds. I'm
6956 not trying to be that fancy. GCC should do this for us
6957 anyway. */
6958 load_register (AT, &imm_expr, dbl);
6959 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
6960 macro_build (NULL, "mflo", "d", dreg);
6961 break;
6962
6963 case M_DMULO_I:
6964 dbl = 1;
6965 case M_MULO_I:
6966 imm = 1;
6967 goto do_mulo;
6968
6969 case M_DMULO:
6970 dbl = 1;
6971 case M_MULO:
6972 do_mulo:
6973 mips_emit_delays (TRUE);
6974 ++mips_opts.noreorder;
6975 mips_any_noreorder = 1;
6976 if (imm)
6977 load_register (AT, &imm_expr, dbl);
6978 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
6979 macro_build (NULL, "mflo", "d", dreg);
6980 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
6981 macro_build (NULL, "mfhi", "d", AT);
6982 if (mips_trap)
6983 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
6984 else
6985 {
6986 expr1.X_add_number = 8;
6987 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
6988 macro_build (NULL, "nop", "", 0);
6989 macro_build (NULL, "break", "c", 6);
6990 }
6991 --mips_opts.noreorder;
6992 macro_build (NULL, "mflo", "d", dreg);
6993 break;
6994
6995 case M_DMULOU_I:
6996 dbl = 1;
6997 case M_MULOU_I:
6998 imm = 1;
6999 goto do_mulou;
7000
7001 case M_DMULOU:
7002 dbl = 1;
7003 case M_MULOU:
7004 do_mulou:
7005 mips_emit_delays (TRUE);
7006 ++mips_opts.noreorder;
7007 mips_any_noreorder = 1;
7008 if (imm)
7009 load_register (AT, &imm_expr, dbl);
7010 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7011 sreg, imm ? AT : treg);
7012 macro_build (NULL, "mfhi", "d", AT);
7013 macro_build (NULL, "mflo", "d", dreg);
7014 if (mips_trap)
7015 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7016 else
7017 {
7018 expr1.X_add_number = 8;
7019 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7020 macro_build (NULL, "nop", "", 0);
7021 macro_build (NULL, "break", "c", 6);
7022 }
7023 --mips_opts.noreorder;
7024 break;
7025
7026 case M_DROL:
7027 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7028 {
7029 if (dreg == sreg)
7030 {
7031 tempreg = AT;
7032 used_at = 1;
7033 }
7034 else
7035 {
7036 tempreg = dreg;
7037 used_at = 0;
7038 }
7039 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7040 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7041 if (used_at)
7042 break;
7043 return;
7044 }
7045 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7046 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7047 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7048 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7049 break;
7050
7051 case M_ROL:
7052 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7053 {
7054 if (dreg == sreg)
7055 {
7056 tempreg = AT;
7057 used_at = 1;
7058 }
7059 else
7060 {
7061 tempreg = dreg;
7062 used_at = 0;
7063 }
7064 macro_build (NULL, "negu", "d,w", tempreg, treg);
7065 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7066 if (used_at)
7067 break;
7068 return;
7069 }
7070 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7071 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7072 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7073 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7074 break;
7075
7076 case M_DROL_I:
7077 {
7078 unsigned int rot;
7079 char *l, *r;
7080
7081 if (imm_expr.X_op != O_constant)
7082 as_bad (_("Improper rotate count"));
7083 rot = imm_expr.X_add_number & 0x3f;
7084 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7085 {
7086 rot = (64 - rot) & 0x3f;
7087 if (rot >= 32)
7088 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7089 else
7090 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7091 return;
7092 }
7093 if (rot == 0)
7094 {
7095 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7096 return;
7097 }
7098 l = (rot < 0x20) ? "dsll" : "dsll32";
7099 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7100 rot &= 0x1f;
7101 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7102 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7103 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7104 }
7105 break;
7106
7107 case M_ROL_I:
7108 {
7109 unsigned int rot;
7110
7111 if (imm_expr.X_op != O_constant)
7112 as_bad (_("Improper rotate count"));
7113 rot = imm_expr.X_add_number & 0x1f;
7114 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7115 {
7116 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7117 return;
7118 }
7119 if (rot == 0)
7120 {
7121 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7122 return;
7123 }
7124 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7125 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7126 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7127 }
7128 break;
7129
7130 case M_DROR:
7131 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7132 {
7133 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7134 return;
7135 }
7136 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7137 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7138 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7139 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7140 break;
7141
7142 case M_ROR:
7143 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7144 {
7145 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7146 return;
7147 }
7148 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7149 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7150 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7151 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7152 break;
7153
7154 case M_DROR_I:
7155 {
7156 unsigned int rot;
7157 char *l, *r;
7158
7159 if (imm_expr.X_op != O_constant)
7160 as_bad (_("Improper rotate count"));
7161 rot = imm_expr.X_add_number & 0x3f;
7162 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7163 {
7164 if (rot >= 32)
7165 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7166 else
7167 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7168 return;
7169 }
7170 if (rot == 0)
7171 {
7172 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7173 return;
7174 }
7175 r = (rot < 0x20) ? "dsrl" : "dsrl32";
7176 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7177 rot &= 0x1f;
7178 macro_build (NULL, r, "d,w,<", AT, sreg, rot);
7179 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7180 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7181 }
7182 break;
7183
7184 case M_ROR_I:
7185 {
7186 unsigned int rot;
7187
7188 if (imm_expr.X_op != O_constant)
7189 as_bad (_("Improper rotate count"));
7190 rot = imm_expr.X_add_number & 0x1f;
7191 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7192 {
7193 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7194 return;
7195 }
7196 if (rot == 0)
7197 {
7198 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7199 return;
7200 }
7201 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7202 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7203 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7204 }
7205 break;
7206
7207 case M_S_DOB:
7208 if (mips_opts.arch == CPU_R4650)
7209 {
7210 as_bad (_("opcode not supported on this processor"));
7211 return;
7212 }
7213 assert (mips_opts.isa == ISA_MIPS1);
7214 /* Even on a big endian machine $fn comes before $fn+1. We have
7215 to adjust when storing to memory. */
7216 macro_build (&offset_expr, "swc1", "T,o(b)",
7217 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7218 offset_expr.X_add_number += 4;
7219 macro_build (&offset_expr, "swc1", "T,o(b)",
7220 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7221 return;
7222
7223 case M_SEQ:
7224 if (sreg == 0)
7225 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7226 else if (treg == 0)
7227 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7228 else
7229 {
7230 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7231 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7232 }
7233 return;
7234
7235 case M_SEQ_I:
7236 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7237 {
7238 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7239 return;
7240 }
7241 if (sreg == 0)
7242 {
7243 as_warn (_("Instruction %s: result is always false"),
7244 ip->insn_mo->name);
7245 move_register (dreg, 0);
7246 return;
7247 }
7248 if (imm_expr.X_op == O_constant
7249 && imm_expr.X_add_number >= 0
7250 && imm_expr.X_add_number < 0x10000)
7251 {
7252 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7253 used_at = 0;
7254 }
7255 else if (imm_expr.X_op == O_constant
7256 && imm_expr.X_add_number > -0x8000
7257 && imm_expr.X_add_number < 0)
7258 {
7259 imm_expr.X_add_number = -imm_expr.X_add_number;
7260 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7261 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7262 used_at = 0;
7263 }
7264 else
7265 {
7266 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7267 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7268 used_at = 1;
7269 }
7270 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7271 if (used_at)
7272 break;
7273 return;
7274
7275 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7276 s = "slt";
7277 goto sge;
7278 case M_SGEU:
7279 s = "sltu";
7280 sge:
7281 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7282 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7283 return;
7284
7285 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7286 case M_SGEU_I:
7287 if (imm_expr.X_op == O_constant
7288 && imm_expr.X_add_number >= -0x8000
7289 && imm_expr.X_add_number < 0x8000)
7290 {
7291 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7292 dreg, sreg, BFD_RELOC_LO16);
7293 used_at = 0;
7294 }
7295 else
7296 {
7297 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7298 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7299 dreg, sreg, AT);
7300 used_at = 1;
7301 }
7302 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7303 if (used_at)
7304 break;
7305 return;
7306
7307 case M_SGT: /* sreg > treg <==> treg < sreg */
7308 s = "slt";
7309 goto sgt;
7310 case M_SGTU:
7311 s = "sltu";
7312 sgt:
7313 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7314 return;
7315
7316 case M_SGT_I: /* sreg > I <==> I < sreg */
7317 s = "slt";
7318 goto sgti;
7319 case M_SGTU_I:
7320 s = "sltu";
7321 sgti:
7322 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7323 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7324 break;
7325
7326 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7327 s = "slt";
7328 goto sle;
7329 case M_SLEU:
7330 s = "sltu";
7331 sle:
7332 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7333 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7334 return;
7335
7336 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7337 s = "slt";
7338 goto slei;
7339 case M_SLEU_I:
7340 s = "sltu";
7341 slei:
7342 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7343 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7344 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7345 break;
7346
7347 case M_SLT_I:
7348 if (imm_expr.X_op == O_constant
7349 && imm_expr.X_add_number >= -0x8000
7350 && imm_expr.X_add_number < 0x8000)
7351 {
7352 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7353 return;
7354 }
7355 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7356 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7357 break;
7358
7359 case M_SLTU_I:
7360 if (imm_expr.X_op == O_constant
7361 && imm_expr.X_add_number >= -0x8000
7362 && imm_expr.X_add_number < 0x8000)
7363 {
7364 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7365 BFD_RELOC_LO16);
7366 return;
7367 }
7368 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7369 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7370 break;
7371
7372 case M_SNE:
7373 if (sreg == 0)
7374 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7375 else if (treg == 0)
7376 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7377 else
7378 {
7379 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7380 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7381 }
7382 return;
7383
7384 case M_SNE_I:
7385 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7386 {
7387 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7388 return;
7389 }
7390 if (sreg == 0)
7391 {
7392 as_warn (_("Instruction %s: result is always true"),
7393 ip->insn_mo->name);
7394 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7395 dreg, 0, BFD_RELOC_LO16);
7396 return;
7397 }
7398 if (imm_expr.X_op == O_constant
7399 && imm_expr.X_add_number >= 0
7400 && imm_expr.X_add_number < 0x10000)
7401 {
7402 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7403 used_at = 0;
7404 }
7405 else if (imm_expr.X_op == O_constant
7406 && imm_expr.X_add_number > -0x8000
7407 && imm_expr.X_add_number < 0)
7408 {
7409 imm_expr.X_add_number = -imm_expr.X_add_number;
7410 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7411 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7412 used_at = 0;
7413 }
7414 else
7415 {
7416 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7417 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7418 used_at = 1;
7419 }
7420 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7421 if (used_at)
7422 break;
7423 return;
7424
7425 case M_DSUB_I:
7426 dbl = 1;
7427 case M_SUB_I:
7428 if (imm_expr.X_op == O_constant
7429 && imm_expr.X_add_number > -0x8000
7430 && imm_expr.X_add_number <= 0x8000)
7431 {
7432 imm_expr.X_add_number = -imm_expr.X_add_number;
7433 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7434 dreg, sreg, BFD_RELOC_LO16);
7435 return;
7436 }
7437 load_register (AT, &imm_expr, dbl);
7438 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7439 break;
7440
7441 case M_DSUBU_I:
7442 dbl = 1;
7443 case M_SUBU_I:
7444 if (imm_expr.X_op == O_constant
7445 && imm_expr.X_add_number > -0x8000
7446 && imm_expr.X_add_number <= 0x8000)
7447 {
7448 imm_expr.X_add_number = -imm_expr.X_add_number;
7449 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7450 dreg, sreg, BFD_RELOC_LO16);
7451 return;
7452 }
7453 load_register (AT, &imm_expr, dbl);
7454 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7455 break;
7456
7457 case M_TEQ_I:
7458 s = "teq";
7459 goto trap;
7460 case M_TGE_I:
7461 s = "tge";
7462 goto trap;
7463 case M_TGEU_I:
7464 s = "tgeu";
7465 goto trap;
7466 case M_TLT_I:
7467 s = "tlt";
7468 goto trap;
7469 case M_TLTU_I:
7470 s = "tltu";
7471 goto trap;
7472 case M_TNE_I:
7473 s = "tne";
7474 trap:
7475 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7476 macro_build (NULL, s, "s,t", sreg, AT);
7477 break;
7478
7479 case M_TRUNCWS:
7480 case M_TRUNCWD:
7481 assert (mips_opts.isa == ISA_MIPS1);
7482 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7483 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7484
7485 /*
7486 * Is the double cfc1 instruction a bug in the mips assembler;
7487 * or is there a reason for it?
7488 */
7489 mips_emit_delays (TRUE);
7490 ++mips_opts.noreorder;
7491 mips_any_noreorder = 1;
7492 macro_build (NULL, "cfc1", "t,G", treg, RA);
7493 macro_build (NULL, "cfc1", "t,G", treg, RA);
7494 macro_build (NULL, "nop", "");
7495 expr1.X_add_number = 3;
7496 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7497 expr1.X_add_number = 2;
7498 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7499 macro_build (NULL, "ctc1", "t,G", AT, RA);
7500 macro_build (NULL, "nop", "");
7501 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7502 dreg, sreg);
7503 macro_build (NULL, "ctc1", "t,G", treg, RA);
7504 macro_build (NULL, "nop", "");
7505 --mips_opts.noreorder;
7506 break;
7507
7508 case M_ULH:
7509 s = "lb";
7510 goto ulh;
7511 case M_ULHU:
7512 s = "lbu";
7513 ulh:
7514 if (offset_expr.X_add_number >= 0x7fff)
7515 as_bad (_("operand overflow"));
7516 if (! target_big_endian)
7517 ++offset_expr.X_add_number;
7518 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
7519 if (! target_big_endian)
7520 --offset_expr.X_add_number;
7521 else
7522 ++offset_expr.X_add_number;
7523 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7524 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
7525 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7526 break;
7527
7528 case M_ULD:
7529 s = "ldl";
7530 s2 = "ldr";
7531 off = 7;
7532 goto ulw;
7533 case M_ULW:
7534 s = "lwl";
7535 s2 = "lwr";
7536 off = 3;
7537 ulw:
7538 if (offset_expr.X_add_number >= 0x8000 - off)
7539 as_bad (_("operand overflow"));
7540 if (treg != breg)
7541 tempreg = treg;
7542 else
7543 tempreg = AT;
7544 if (! target_big_endian)
7545 offset_expr.X_add_number += off;
7546 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7547 if (! target_big_endian)
7548 offset_expr.X_add_number -= off;
7549 else
7550 offset_expr.X_add_number += off;
7551 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7552
7553 /* If necessary, move the result in tempreg the final destination. */
7554 if (treg == tempreg)
7555 return;
7556 /* Protect second load's delay slot. */
7557 load_delay_nop ();
7558 move_register (treg, tempreg);
7559 break;
7560
7561 case M_ULD_A:
7562 s = "ldl";
7563 s2 = "ldr";
7564 off = 7;
7565 goto ulwa;
7566 case M_ULW_A:
7567 s = "lwl";
7568 s2 = "lwr";
7569 off = 3;
7570 ulwa:
7571 used_at = 1;
7572 load_address (AT, &offset_expr, &used_at);
7573 if (breg != 0)
7574 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7575 if (! target_big_endian)
7576 expr1.X_add_number = off;
7577 else
7578 expr1.X_add_number = 0;
7579 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7580 if (! target_big_endian)
7581 expr1.X_add_number = 0;
7582 else
7583 expr1.X_add_number = off;
7584 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7585 break;
7586
7587 case M_ULH_A:
7588 case M_ULHU_A:
7589 used_at = 1;
7590 load_address (AT, &offset_expr, &used_at);
7591 if (breg != 0)
7592 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7593 if (target_big_endian)
7594 expr1.X_add_number = 0;
7595 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
7596 treg, BFD_RELOC_LO16, AT);
7597 if (target_big_endian)
7598 expr1.X_add_number = 1;
7599 else
7600 expr1.X_add_number = 0;
7601 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
7602 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
7603 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7604 break;
7605
7606 case M_USH:
7607 if (offset_expr.X_add_number >= 0x7fff)
7608 as_bad (_("operand overflow"));
7609 if (target_big_endian)
7610 ++offset_expr.X_add_number;
7611 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7612 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
7613 if (target_big_endian)
7614 --offset_expr.X_add_number;
7615 else
7616 ++offset_expr.X_add_number;
7617 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
7618 break;
7619
7620 case M_USD:
7621 s = "sdl";
7622 s2 = "sdr";
7623 off = 7;
7624 goto usw;
7625 case M_USW:
7626 s = "swl";
7627 s2 = "swr";
7628 off = 3;
7629 usw:
7630 if (offset_expr.X_add_number >= 0x8000 - off)
7631 as_bad (_("operand overflow"));
7632 if (! target_big_endian)
7633 offset_expr.X_add_number += off;
7634 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7635 if (! target_big_endian)
7636 offset_expr.X_add_number -= off;
7637 else
7638 offset_expr.X_add_number += off;
7639 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7640 return;
7641
7642 case M_USD_A:
7643 s = "sdl";
7644 s2 = "sdr";
7645 off = 7;
7646 goto uswa;
7647 case M_USW_A:
7648 s = "swl";
7649 s2 = "swr";
7650 off = 3;
7651 uswa:
7652 used_at = 1;
7653 load_address (AT, &offset_expr, &used_at);
7654 if (breg != 0)
7655 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7656 if (! target_big_endian)
7657 expr1.X_add_number = off;
7658 else
7659 expr1.X_add_number = 0;
7660 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7661 if (! target_big_endian)
7662 expr1.X_add_number = 0;
7663 else
7664 expr1.X_add_number = off;
7665 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7666 break;
7667
7668 case M_USH_A:
7669 used_at = 1;
7670 load_address (AT, &offset_expr, &used_at);
7671 if (breg != 0)
7672 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7673 if (! target_big_endian)
7674 expr1.X_add_number = 0;
7675 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7676 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
7677 if (! target_big_endian)
7678 expr1.X_add_number = 1;
7679 else
7680 expr1.X_add_number = 0;
7681 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7682 if (! target_big_endian)
7683 expr1.X_add_number = 0;
7684 else
7685 expr1.X_add_number = 1;
7686 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
7687 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
7688 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7689 break;
7690
7691 default:
7692 /* FIXME: Check if this is one of the itbl macros, since they
7693 are added dynamically. */
7694 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
7695 break;
7696 }
7697 if (mips_opts.noat)
7698 as_warn (_("Macro used $at after \".set noat\""));
7699 }
7700
7701 /* Implement macros in mips16 mode. */
7702
7703 static void
7704 mips16_macro (struct mips_cl_insn *ip)
7705 {
7706 int mask;
7707 int xreg, yreg, zreg, tmp;
7708 expressionS expr1;
7709 int dbl;
7710 const char *s, *s2, *s3;
7711
7712 mask = ip->insn_mo->mask;
7713
7714 xreg = (ip->insn_opcode >> MIPS16OP_SH_RX) & MIPS16OP_MASK_RX;
7715 yreg = (ip->insn_opcode >> MIPS16OP_SH_RY) & MIPS16OP_MASK_RY;
7716 zreg = (ip->insn_opcode >> MIPS16OP_SH_RZ) & MIPS16OP_MASK_RZ;
7717
7718 expr1.X_op = O_constant;
7719 expr1.X_op_symbol = NULL;
7720 expr1.X_add_symbol = NULL;
7721 expr1.X_add_number = 1;
7722
7723 dbl = 0;
7724
7725 switch (mask)
7726 {
7727 default:
7728 internalError ();
7729
7730 case M_DDIV_3:
7731 dbl = 1;
7732 case M_DIV_3:
7733 s = "mflo";
7734 goto do_div3;
7735 case M_DREM_3:
7736 dbl = 1;
7737 case M_REM_3:
7738 s = "mfhi";
7739 do_div3:
7740 mips_emit_delays (TRUE);
7741 ++mips_opts.noreorder;
7742 mips_any_noreorder = 1;
7743 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
7744 expr1.X_add_number = 2;
7745 macro_build (&expr1, "bnez", "x,p", yreg);
7746 macro_build (NULL, "break", "6", 7);
7747
7748 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
7749 since that causes an overflow. We should do that as well,
7750 but I don't see how to do the comparisons without a temporary
7751 register. */
7752 --mips_opts.noreorder;
7753 macro_build (NULL, s, "x", zreg);
7754 break;
7755
7756 case M_DIVU_3:
7757 s = "divu";
7758 s2 = "mflo";
7759 goto do_divu3;
7760 case M_REMU_3:
7761 s = "divu";
7762 s2 = "mfhi";
7763 goto do_divu3;
7764 case M_DDIVU_3:
7765 s = "ddivu";
7766 s2 = "mflo";
7767 goto do_divu3;
7768 case M_DREMU_3:
7769 s = "ddivu";
7770 s2 = "mfhi";
7771 do_divu3:
7772 mips_emit_delays (TRUE);
7773 ++mips_opts.noreorder;
7774 mips_any_noreorder = 1;
7775 macro_build (NULL, s, "0,x,y", xreg, yreg);
7776 expr1.X_add_number = 2;
7777 macro_build (&expr1, "bnez", "x,p", yreg);
7778 macro_build (NULL, "break", "6", 7);
7779 --mips_opts.noreorder;
7780 macro_build (NULL, s2, "x", zreg);
7781 break;
7782
7783 case M_DMUL:
7784 dbl = 1;
7785 case M_MUL:
7786 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
7787 macro_build (NULL, "mflo", "x", zreg);
7788 return;
7789
7790 case M_DSUBU_I:
7791 dbl = 1;
7792 goto do_subu;
7793 case M_SUBU_I:
7794 do_subu:
7795 if (imm_expr.X_op != O_constant)
7796 as_bad (_("Unsupported large constant"));
7797 imm_expr.X_add_number = -imm_expr.X_add_number;
7798 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
7799 break;
7800
7801 case M_SUBU_I_2:
7802 if (imm_expr.X_op != O_constant)
7803 as_bad (_("Unsupported large constant"));
7804 imm_expr.X_add_number = -imm_expr.X_add_number;
7805 macro_build (&imm_expr, "addiu", "x,k", xreg);
7806 break;
7807
7808 case M_DSUBU_I_2:
7809 if (imm_expr.X_op != O_constant)
7810 as_bad (_("Unsupported large constant"));
7811 imm_expr.X_add_number = -imm_expr.X_add_number;
7812 macro_build (&imm_expr, "daddiu", "y,j", yreg);
7813 break;
7814
7815 case M_BEQ:
7816 s = "cmp";
7817 s2 = "bteqz";
7818 goto do_branch;
7819 case M_BNE:
7820 s = "cmp";
7821 s2 = "btnez";
7822 goto do_branch;
7823 case M_BLT:
7824 s = "slt";
7825 s2 = "btnez";
7826 goto do_branch;
7827 case M_BLTU:
7828 s = "sltu";
7829 s2 = "btnez";
7830 goto do_branch;
7831 case M_BLE:
7832 s = "slt";
7833 s2 = "bteqz";
7834 goto do_reverse_branch;
7835 case M_BLEU:
7836 s = "sltu";
7837 s2 = "bteqz";
7838 goto do_reverse_branch;
7839 case M_BGE:
7840 s = "slt";
7841 s2 = "bteqz";
7842 goto do_branch;
7843 case M_BGEU:
7844 s = "sltu";
7845 s2 = "bteqz";
7846 goto do_branch;
7847 case M_BGT:
7848 s = "slt";
7849 s2 = "btnez";
7850 goto do_reverse_branch;
7851 case M_BGTU:
7852 s = "sltu";
7853 s2 = "btnez";
7854
7855 do_reverse_branch:
7856 tmp = xreg;
7857 xreg = yreg;
7858 yreg = tmp;
7859
7860 do_branch:
7861 macro_build (NULL, s, "x,y", xreg, yreg);
7862 macro_build (&offset_expr, s2, "p");
7863 break;
7864
7865 case M_BEQ_I:
7866 s = "cmpi";
7867 s2 = "bteqz";
7868 s3 = "x,U";
7869 goto do_branch_i;
7870 case M_BNE_I:
7871 s = "cmpi";
7872 s2 = "btnez";
7873 s3 = "x,U";
7874 goto do_branch_i;
7875 case M_BLT_I:
7876 s = "slti";
7877 s2 = "btnez";
7878 s3 = "x,8";
7879 goto do_branch_i;
7880 case M_BLTU_I:
7881 s = "sltiu";
7882 s2 = "btnez";
7883 s3 = "x,8";
7884 goto do_branch_i;
7885 case M_BLE_I:
7886 s = "slti";
7887 s2 = "btnez";
7888 s3 = "x,8";
7889 goto do_addone_branch_i;
7890 case M_BLEU_I:
7891 s = "sltiu";
7892 s2 = "btnez";
7893 s3 = "x,8";
7894 goto do_addone_branch_i;
7895 case M_BGE_I:
7896 s = "slti";
7897 s2 = "bteqz";
7898 s3 = "x,8";
7899 goto do_branch_i;
7900 case M_BGEU_I:
7901 s = "sltiu";
7902 s2 = "bteqz";
7903 s3 = "x,8";
7904 goto do_branch_i;
7905 case M_BGT_I:
7906 s = "slti";
7907 s2 = "bteqz";
7908 s3 = "x,8";
7909 goto do_addone_branch_i;
7910 case M_BGTU_I:
7911 s = "sltiu";
7912 s2 = "bteqz";
7913 s3 = "x,8";
7914
7915 do_addone_branch_i:
7916 if (imm_expr.X_op != O_constant)
7917 as_bad (_("Unsupported large constant"));
7918 ++imm_expr.X_add_number;
7919
7920 do_branch_i:
7921 macro_build (&imm_expr, s, s3, xreg);
7922 macro_build (&offset_expr, s2, "p");
7923 break;
7924
7925 case M_ABS:
7926 expr1.X_add_number = 0;
7927 macro_build (&expr1, "slti", "x,8", yreg);
7928 if (xreg != yreg)
7929 move_register (xreg, yreg);
7930 expr1.X_add_number = 2;
7931 macro_build (&expr1, "bteqz", "p");
7932 macro_build (NULL, "neg", "x,w", xreg, xreg);
7933 }
7934 }
7935
7936 /* For consistency checking, verify that all bits are specified either
7937 by the match/mask part of the instruction definition, or by the
7938 operand list. */
7939 static int
7940 validate_mips_insn (const struct mips_opcode *opc)
7941 {
7942 const char *p = opc->args;
7943 char c;
7944 unsigned long used_bits = opc->mask;
7945
7946 if ((used_bits & opc->match) != opc->match)
7947 {
7948 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
7949 opc->name, opc->args);
7950 return 0;
7951 }
7952 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
7953 while (*p)
7954 switch (c = *p++)
7955 {
7956 case ',': break;
7957 case '(': break;
7958 case ')': break;
7959 case '+':
7960 switch (c = *p++)
7961 {
7962 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7963 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
7964 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7965 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
7966 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7967 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7968 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
7969 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7970 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7971 case 'I': break;
7972 default:
7973 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
7974 c, opc->name, opc->args);
7975 return 0;
7976 }
7977 break;
7978 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7979 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7980 case 'A': break;
7981 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
7982 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
7983 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
7984 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7985 case 'F': break;
7986 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7987 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7988 case 'I': break;
7989 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
7990 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7991 case 'L': break;
7992 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
7993 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
7994 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
7995 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
7996 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7997 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
7998 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7999 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8000 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8001 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8002 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8003 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8004 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8005 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8006 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8007 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8008 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8009 case 'f': break;
8010 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8011 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8012 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8013 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8014 case 'l': break;
8015 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8016 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8017 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8018 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8019 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8020 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8021 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8022 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8023 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8024 case 'x': break;
8025 case 'z': break;
8026 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8027 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8028 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8029 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8030 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8031 case '[': break;
8032 case ']': break;
8033 default:
8034 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8035 c, opc->name, opc->args);
8036 return 0;
8037 }
8038 #undef USE_BITS
8039 if (used_bits != 0xffffffff)
8040 {
8041 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8042 ~used_bits & 0xffffffff, opc->name, opc->args);
8043 return 0;
8044 }
8045 return 1;
8046 }
8047
8048 /* This routine assembles an instruction into its binary format. As a
8049 side effect, it sets one of the global variables imm_reloc or
8050 offset_reloc to the type of relocation to do if one of the operands
8051 is an address expression. */
8052
8053 static void
8054 mips_ip (char *str, struct mips_cl_insn *ip)
8055 {
8056 char *s;
8057 const char *args;
8058 char c = 0;
8059 struct mips_opcode *insn;
8060 char *argsStart;
8061 unsigned int regno;
8062 unsigned int lastregno = 0;
8063 unsigned int lastpos = 0;
8064 unsigned int limlo, limhi;
8065 char *s_reset;
8066 char save_c = 0;
8067
8068 insn_error = NULL;
8069
8070 /* If the instruction contains a '.', we first try to match an instruction
8071 including the '.'. Then we try again without the '.'. */
8072 insn = NULL;
8073 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8074 continue;
8075
8076 /* If we stopped on whitespace, then replace the whitespace with null for
8077 the call to hash_find. Save the character we replaced just in case we
8078 have to re-parse the instruction. */
8079 if (ISSPACE (*s))
8080 {
8081 save_c = *s;
8082 *s++ = '\0';
8083 }
8084
8085 insn = (struct mips_opcode *) hash_find (op_hash, str);
8086
8087 /* If we didn't find the instruction in the opcode table, try again, but
8088 this time with just the instruction up to, but not including the
8089 first '.'. */
8090 if (insn == NULL)
8091 {
8092 /* Restore the character we overwrite above (if any). */
8093 if (save_c)
8094 *(--s) = save_c;
8095
8096 /* Scan up to the first '.' or whitespace. */
8097 for (s = str;
8098 *s != '\0' && *s != '.' && !ISSPACE (*s);
8099 ++s)
8100 continue;
8101
8102 /* If we did not find a '.', then we can quit now. */
8103 if (*s != '.')
8104 {
8105 insn_error = "unrecognized opcode";
8106 return;
8107 }
8108
8109 /* Lookup the instruction in the hash table. */
8110 *s++ = '\0';
8111 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8112 {
8113 insn_error = "unrecognized opcode";
8114 return;
8115 }
8116 }
8117
8118 argsStart = s;
8119 for (;;)
8120 {
8121 bfd_boolean ok;
8122
8123 assert (strcmp (insn->name, str) == 0);
8124
8125 if (OPCODE_IS_MEMBER (insn,
8126 (mips_opts.isa
8127 | (file_ase_mips16 ? INSN_MIPS16 : 0)
8128 | (mips_opts.ase_mdmx ? INSN_MDMX : 0)
8129 | (mips_opts.ase_mips3d ? INSN_MIPS3D : 0)),
8130 mips_opts.arch))
8131 ok = TRUE;
8132 else
8133 ok = FALSE;
8134
8135 if (insn->pinfo != INSN_MACRO)
8136 {
8137 if (mips_opts.arch == CPU_R4650 && (insn->pinfo & FP_D) != 0)
8138 ok = FALSE;
8139 }
8140
8141 if (! ok)
8142 {
8143 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8144 && strcmp (insn->name, insn[1].name) == 0)
8145 {
8146 ++insn;
8147 continue;
8148 }
8149 else
8150 {
8151 if (!insn_error)
8152 {
8153 static char buf[100];
8154 sprintf (buf,
8155 _("opcode not supported on this processor: %s (%s)"),
8156 mips_cpu_info_from_arch (mips_opts.arch)->name,
8157 mips_cpu_info_from_isa (mips_opts.isa)->name);
8158 insn_error = buf;
8159 }
8160 if (save_c)
8161 *(--s) = save_c;
8162 return;
8163 }
8164 }
8165
8166 ip->insn_mo = insn;
8167 ip->insn_opcode = insn->match;
8168 insn_error = NULL;
8169 for (args = insn->args;; ++args)
8170 {
8171 int is_mdmx;
8172
8173 s += strspn (s, " \t");
8174 is_mdmx = 0;
8175 switch (*args)
8176 {
8177 case '\0': /* end of args */
8178 if (*s == '\0')
8179 return;
8180 break;
8181
8182 case ',':
8183 if (*s++ == *args)
8184 continue;
8185 s--;
8186 switch (*++args)
8187 {
8188 case 'r':
8189 case 'v':
8190 ip->insn_opcode |= lastregno << OP_SH_RS;
8191 continue;
8192
8193 case 'w':
8194 ip->insn_opcode |= lastregno << OP_SH_RT;
8195 continue;
8196
8197 case 'W':
8198 ip->insn_opcode |= lastregno << OP_SH_FT;
8199 continue;
8200
8201 case 'V':
8202 ip->insn_opcode |= lastregno << OP_SH_FS;
8203 continue;
8204 }
8205 break;
8206
8207 case '(':
8208 /* Handle optional base register.
8209 Either the base register is omitted or
8210 we must have a left paren. */
8211 /* This is dependent on the next operand specifier
8212 is a base register specification. */
8213 assert (args[1] == 'b' || args[1] == '5'
8214 || args[1] == '-' || args[1] == '4');
8215 if (*s == '\0')
8216 return;
8217
8218 case ')': /* these must match exactly */
8219 case '[':
8220 case ']':
8221 if (*s++ == *args)
8222 continue;
8223 break;
8224
8225 case '+': /* Opcode extension character. */
8226 switch (*++args)
8227 {
8228 case 'A': /* ins/ext position, becomes LSB. */
8229 limlo = 0;
8230 limhi = 31;
8231 goto do_lsb;
8232 case 'E':
8233 limlo = 32;
8234 limhi = 63;
8235 goto do_lsb;
8236 do_lsb:
8237 my_getExpression (&imm_expr, s);
8238 check_absolute_expr (ip, &imm_expr);
8239 if ((unsigned long) imm_expr.X_add_number < limlo
8240 || (unsigned long) imm_expr.X_add_number > limhi)
8241 {
8242 as_bad (_("Improper position (%lu)"),
8243 (unsigned long) imm_expr.X_add_number);
8244 imm_expr.X_add_number = limlo;
8245 }
8246 lastpos = imm_expr.X_add_number;
8247 ip->insn_opcode |= (imm_expr.X_add_number
8248 & OP_MASK_SHAMT) << OP_SH_SHAMT;
8249 imm_expr.X_op = O_absent;
8250 s = expr_end;
8251 continue;
8252
8253 case 'B': /* ins size, becomes MSB. */
8254 limlo = 1;
8255 limhi = 32;
8256 goto do_msb;
8257 case 'F':
8258 limlo = 33;
8259 limhi = 64;
8260 goto do_msb;
8261 do_msb:
8262 my_getExpression (&imm_expr, s);
8263 check_absolute_expr (ip, &imm_expr);
8264 /* Check for negative input so that small negative numbers
8265 will not succeed incorrectly. The checks against
8266 (pos+size) transitively check "size" itself,
8267 assuming that "pos" is reasonable. */
8268 if ((long) imm_expr.X_add_number < 0
8269 || ((unsigned long) imm_expr.X_add_number
8270 + lastpos) < limlo
8271 || ((unsigned long) imm_expr.X_add_number
8272 + lastpos) > limhi)
8273 {
8274 as_bad (_("Improper insert size (%lu, position %lu)"),
8275 (unsigned long) imm_expr.X_add_number,
8276 (unsigned long) lastpos);
8277 imm_expr.X_add_number = limlo - lastpos;
8278 }
8279 ip->insn_opcode |= ((lastpos + imm_expr.X_add_number - 1)
8280 & OP_MASK_INSMSB) << OP_SH_INSMSB;
8281 imm_expr.X_op = O_absent;
8282 s = expr_end;
8283 continue;
8284
8285 case 'C': /* ext size, becomes MSBD. */
8286 limlo = 1;
8287 limhi = 32;
8288 goto do_msbd;
8289 case 'G':
8290 limlo = 33;
8291 limhi = 64;
8292 goto do_msbd;
8293 case 'H':
8294 limlo = 33;
8295 limhi = 64;
8296 goto do_msbd;
8297 do_msbd:
8298 my_getExpression (&imm_expr, s);
8299 check_absolute_expr (ip, &imm_expr);
8300 /* Check for negative input so that small negative numbers
8301 will not succeed incorrectly. The checks against
8302 (pos+size) transitively check "size" itself,
8303 assuming that "pos" is reasonable. */
8304 if ((long) imm_expr.X_add_number < 0
8305 || ((unsigned long) imm_expr.X_add_number
8306 + lastpos) < limlo
8307 || ((unsigned long) imm_expr.X_add_number
8308 + lastpos) > limhi)
8309 {
8310 as_bad (_("Improper extract size (%lu, position %lu)"),
8311 (unsigned long) imm_expr.X_add_number,
8312 (unsigned long) lastpos);
8313 imm_expr.X_add_number = limlo - lastpos;
8314 }
8315 ip->insn_opcode |= ((imm_expr.X_add_number - 1)
8316 & OP_MASK_EXTMSBD) << OP_SH_EXTMSBD;
8317 imm_expr.X_op = O_absent;
8318 s = expr_end;
8319 continue;
8320
8321 case 'D':
8322 /* +D is for disassembly only; never match. */
8323 break;
8324
8325 case 'I':
8326 /* "+I" is like "I", except that imm2_expr is used. */
8327 my_getExpression (&imm2_expr, s);
8328 if (imm2_expr.X_op != O_big
8329 && imm2_expr.X_op != O_constant)
8330 insn_error = _("absolute expression required");
8331 normalize_constant_expr (&imm2_expr);
8332 s = expr_end;
8333 continue;
8334
8335 default:
8336 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8337 *args, insn->name, insn->args);
8338 /* Further processing is fruitless. */
8339 return;
8340 }
8341 break;
8342
8343 case '<': /* must be at least one digit */
8344 /*
8345 * According to the manual, if the shift amount is greater
8346 * than 31 or less than 0, then the shift amount should be
8347 * mod 32. In reality the mips assembler issues an error.
8348 * We issue a warning and mask out all but the low 5 bits.
8349 */
8350 my_getExpression (&imm_expr, s);
8351 check_absolute_expr (ip, &imm_expr);
8352 if ((unsigned long) imm_expr.X_add_number > 31)
8353 {
8354 as_warn (_("Improper shift amount (%lu)"),
8355 (unsigned long) imm_expr.X_add_number);
8356 imm_expr.X_add_number &= OP_MASK_SHAMT;
8357 }
8358 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_SHAMT;
8359 imm_expr.X_op = O_absent;
8360 s = expr_end;
8361 continue;
8362
8363 case '>': /* shift amount minus 32 */
8364 my_getExpression (&imm_expr, s);
8365 check_absolute_expr (ip, &imm_expr);
8366 if ((unsigned long) imm_expr.X_add_number < 32
8367 || (unsigned long) imm_expr.X_add_number > 63)
8368 break;
8369 ip->insn_opcode |= (imm_expr.X_add_number - 32) << OP_SH_SHAMT;
8370 imm_expr.X_op = O_absent;
8371 s = expr_end;
8372 continue;
8373
8374 case 'k': /* cache code */
8375 case 'h': /* prefx code */
8376 my_getExpression (&imm_expr, s);
8377 check_absolute_expr (ip, &imm_expr);
8378 if ((unsigned long) imm_expr.X_add_number > 31)
8379 {
8380 as_warn (_("Invalid value for `%s' (%lu)"),
8381 ip->insn_mo->name,
8382 (unsigned long) imm_expr.X_add_number);
8383 imm_expr.X_add_number &= 0x1f;
8384 }
8385 if (*args == 'k')
8386 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CACHE;
8387 else
8388 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_PREFX;
8389 imm_expr.X_op = O_absent;
8390 s = expr_end;
8391 continue;
8392
8393 case 'c': /* break code */
8394 my_getExpression (&imm_expr, s);
8395 check_absolute_expr (ip, &imm_expr);
8396 if ((unsigned long) imm_expr.X_add_number > 1023)
8397 {
8398 as_warn (_("Illegal break code (%lu)"),
8399 (unsigned long) imm_expr.X_add_number);
8400 imm_expr.X_add_number &= OP_MASK_CODE;
8401 }
8402 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE;
8403 imm_expr.X_op = O_absent;
8404 s = expr_end;
8405 continue;
8406
8407 case 'q': /* lower break code */
8408 my_getExpression (&imm_expr, s);
8409 check_absolute_expr (ip, &imm_expr);
8410 if ((unsigned long) imm_expr.X_add_number > 1023)
8411 {
8412 as_warn (_("Illegal lower break code (%lu)"),
8413 (unsigned long) imm_expr.X_add_number);
8414 imm_expr.X_add_number &= OP_MASK_CODE2;
8415 }
8416 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE2;
8417 imm_expr.X_op = O_absent;
8418 s = expr_end;
8419 continue;
8420
8421 case 'B': /* 20-bit syscall/break code. */
8422 my_getExpression (&imm_expr, s);
8423 check_absolute_expr (ip, &imm_expr);
8424 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
8425 as_warn (_("Illegal 20-bit code (%lu)"),
8426 (unsigned long) imm_expr.X_add_number);
8427 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE20;
8428 imm_expr.X_op = O_absent;
8429 s = expr_end;
8430 continue;
8431
8432 case 'C': /* Coprocessor code */
8433 my_getExpression (&imm_expr, s);
8434 check_absolute_expr (ip, &imm_expr);
8435 if ((unsigned long) imm_expr.X_add_number >= (1 << 25))
8436 {
8437 as_warn (_("Coproccesor code > 25 bits (%lu)"),
8438 (unsigned long) imm_expr.X_add_number);
8439 imm_expr.X_add_number &= ((1 << 25) - 1);
8440 }
8441 ip->insn_opcode |= imm_expr.X_add_number;
8442 imm_expr.X_op = O_absent;
8443 s = expr_end;
8444 continue;
8445
8446 case 'J': /* 19-bit wait code. */
8447 my_getExpression (&imm_expr, s);
8448 check_absolute_expr (ip, &imm_expr);
8449 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
8450 as_warn (_("Illegal 19-bit code (%lu)"),
8451 (unsigned long) imm_expr.X_add_number);
8452 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_CODE19;
8453 imm_expr.X_op = O_absent;
8454 s = expr_end;
8455 continue;
8456
8457 case 'P': /* Performance register */
8458 my_getExpression (&imm_expr, s);
8459 check_absolute_expr (ip, &imm_expr);
8460 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
8461 {
8462 as_warn (_("Invalid performance register (%lu)"),
8463 (unsigned long) imm_expr.X_add_number);
8464 imm_expr.X_add_number &= OP_MASK_PERFREG;
8465 }
8466 ip->insn_opcode |= (imm_expr.X_add_number << OP_SH_PERFREG);
8467 imm_expr.X_op = O_absent;
8468 s = expr_end;
8469 continue;
8470
8471 case 'b': /* base register */
8472 case 'd': /* destination register */
8473 case 's': /* source register */
8474 case 't': /* target register */
8475 case 'r': /* both target and source */
8476 case 'v': /* both dest and source */
8477 case 'w': /* both dest and target */
8478 case 'E': /* coprocessor target register */
8479 case 'G': /* coprocessor destination register */
8480 case 'K': /* 'rdhwr' destination register */
8481 case 'x': /* ignore register name */
8482 case 'z': /* must be zero register */
8483 case 'U': /* destination register (clo/clz). */
8484 s_reset = s;
8485 if (s[0] == '$')
8486 {
8487
8488 if (ISDIGIT (s[1]))
8489 {
8490 ++s;
8491 regno = 0;
8492 do
8493 {
8494 regno *= 10;
8495 regno += *s - '0';
8496 ++s;
8497 }
8498 while (ISDIGIT (*s));
8499 if (regno > 31)
8500 as_bad (_("Invalid register number (%d)"), regno);
8501 }
8502 else if (*args == 'E' || *args == 'G' || *args == 'K')
8503 goto notreg;
8504 else
8505 {
8506 if (s[1] == 'r' && s[2] == 'a')
8507 {
8508 s += 3;
8509 regno = RA;
8510 }
8511 else if (s[1] == 'f' && s[2] == 'p')
8512 {
8513 s += 3;
8514 regno = FP;
8515 }
8516 else if (s[1] == 's' && s[2] == 'p')
8517 {
8518 s += 3;
8519 regno = SP;
8520 }
8521 else if (s[1] == 'g' && s[2] == 'p')
8522 {
8523 s += 3;
8524 regno = GP;
8525 }
8526 else if (s[1] == 'a' && s[2] == 't')
8527 {
8528 s += 3;
8529 regno = AT;
8530 }
8531 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
8532 {
8533 s += 4;
8534 regno = KT0;
8535 }
8536 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
8537 {
8538 s += 4;
8539 regno = KT1;
8540 }
8541 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
8542 {
8543 s += 5;
8544 regno = ZERO;
8545 }
8546 else if (itbl_have_entries)
8547 {
8548 char *p, *n;
8549 unsigned long r;
8550
8551 p = s + 1; /* advance past '$' */
8552 n = itbl_get_field (&p); /* n is name */
8553
8554 /* See if this is a register defined in an
8555 itbl entry. */
8556 if (itbl_get_reg_val (n, &r))
8557 {
8558 /* Get_field advances to the start of
8559 the next field, so we need to back
8560 rack to the end of the last field. */
8561 if (p)
8562 s = p - 1;
8563 else
8564 s = strchr (s, '\0');
8565 regno = r;
8566 }
8567 else
8568 goto notreg;
8569 }
8570 else
8571 goto notreg;
8572 }
8573 if (regno == AT
8574 && ! mips_opts.noat
8575 && *args != 'E'
8576 && *args != 'G'
8577 && *args != 'K')
8578 as_warn (_("Used $at without \".set noat\""));
8579 c = *args;
8580 if (*s == ' ')
8581 ++s;
8582 if (args[1] != *s)
8583 {
8584 if (c == 'r' || c == 'v' || c == 'w')
8585 {
8586 regno = lastregno;
8587 s = s_reset;
8588 ++args;
8589 }
8590 }
8591 /* 'z' only matches $0. */
8592 if (c == 'z' && regno != 0)
8593 break;
8594
8595 /* Now that we have assembled one operand, we use the args string
8596 * to figure out where it goes in the instruction. */
8597 switch (c)
8598 {
8599 case 'r':
8600 case 's':
8601 case 'v':
8602 case 'b':
8603 ip->insn_opcode |= regno << OP_SH_RS;
8604 break;
8605 case 'd':
8606 case 'G':
8607 case 'K':
8608 ip->insn_opcode |= regno << OP_SH_RD;
8609 break;
8610 case 'U':
8611 ip->insn_opcode |= regno << OP_SH_RD;
8612 ip->insn_opcode |= regno << OP_SH_RT;
8613 break;
8614 case 'w':
8615 case 't':
8616 case 'E':
8617 ip->insn_opcode |= regno << OP_SH_RT;
8618 break;
8619 case 'x':
8620 /* This case exists because on the r3000 trunc
8621 expands into a macro which requires a gp
8622 register. On the r6000 or r4000 it is
8623 assembled into a single instruction which
8624 ignores the register. Thus the insn version
8625 is MIPS_ISA2 and uses 'x', and the macro
8626 version is MIPS_ISA1 and uses 't'. */
8627 break;
8628 case 'z':
8629 /* This case is for the div instruction, which
8630 acts differently if the destination argument
8631 is $0. This only matches $0, and is checked
8632 outside the switch. */
8633 break;
8634 case 'D':
8635 /* Itbl operand; not yet implemented. FIXME ?? */
8636 break;
8637 /* What about all other operands like 'i', which
8638 can be specified in the opcode table? */
8639 }
8640 lastregno = regno;
8641 continue;
8642 }
8643 notreg:
8644 switch (*args++)
8645 {
8646 case 'r':
8647 case 'v':
8648 ip->insn_opcode |= lastregno << OP_SH_RS;
8649 continue;
8650 case 'w':
8651 ip->insn_opcode |= lastregno << OP_SH_RT;
8652 continue;
8653 }
8654 break;
8655
8656 case 'O': /* MDMX alignment immediate constant. */
8657 my_getExpression (&imm_expr, s);
8658 check_absolute_expr (ip, &imm_expr);
8659 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
8660 {
8661 as_warn ("Improper align amount (%ld), using low bits",
8662 (long) imm_expr.X_add_number);
8663 imm_expr.X_add_number &= OP_MASK_ALN;
8664 }
8665 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_ALN;
8666 imm_expr.X_op = O_absent;
8667 s = expr_end;
8668 continue;
8669
8670 case 'Q': /* MDMX vector, element sel, or const. */
8671 if (s[0] != '$')
8672 {
8673 /* MDMX Immediate. */
8674 my_getExpression (&imm_expr, s);
8675 check_absolute_expr (ip, &imm_expr);
8676 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
8677 {
8678 as_warn (_("Invalid MDMX Immediate (%ld)"),
8679 (long) imm_expr.X_add_number);
8680 imm_expr.X_add_number &= OP_MASK_FT;
8681 }
8682 imm_expr.X_add_number &= OP_MASK_FT;
8683 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8684 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
8685 else
8686 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
8687 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_FT;
8688 imm_expr.X_op = O_absent;
8689 s = expr_end;
8690 continue;
8691 }
8692 /* Not MDMX Immediate. Fall through. */
8693 case 'X': /* MDMX destination register. */
8694 case 'Y': /* MDMX source register. */
8695 case 'Z': /* MDMX target register. */
8696 is_mdmx = 1;
8697 case 'D': /* floating point destination register */
8698 case 'S': /* floating point source register */
8699 case 'T': /* floating point target register */
8700 case 'R': /* floating point source register */
8701 case 'V':
8702 case 'W':
8703 s_reset = s;
8704 /* Accept $fN for FP and MDMX register numbers, and in
8705 addition accept $vN for MDMX register numbers. */
8706 if ((s[0] == '$' && s[1] == 'f' && ISDIGIT (s[2]))
8707 || (is_mdmx != 0 && s[0] == '$' && s[1] == 'v'
8708 && ISDIGIT (s[2])))
8709 {
8710 s += 2;
8711 regno = 0;
8712 do
8713 {
8714 regno *= 10;
8715 regno += *s - '0';
8716 ++s;
8717 }
8718 while (ISDIGIT (*s));
8719
8720 if (regno > 31)
8721 as_bad (_("Invalid float register number (%d)"), regno);
8722
8723 if ((regno & 1) != 0
8724 && HAVE_32BIT_FPRS
8725 && ! (strcmp (str, "mtc1") == 0
8726 || strcmp (str, "mfc1") == 0
8727 || strcmp (str, "lwc1") == 0
8728 || strcmp (str, "swc1") == 0
8729 || strcmp (str, "l.s") == 0
8730 || strcmp (str, "s.s") == 0))
8731 as_warn (_("Float register should be even, was %d"),
8732 regno);
8733
8734 c = *args;
8735 if (*s == ' ')
8736 ++s;
8737 if (args[1] != *s)
8738 {
8739 if (c == 'V' || c == 'W')
8740 {
8741 regno = lastregno;
8742 s = s_reset;
8743 ++args;
8744 }
8745 }
8746 switch (c)
8747 {
8748 case 'D':
8749 case 'X':
8750 ip->insn_opcode |= regno << OP_SH_FD;
8751 break;
8752 case 'V':
8753 case 'S':
8754 case 'Y':
8755 ip->insn_opcode |= regno << OP_SH_FS;
8756 break;
8757 case 'Q':
8758 /* This is like 'Z', but also needs to fix the MDMX
8759 vector/scalar select bits. Note that the
8760 scalar immediate case is handled above. */
8761 if (*s == '[')
8762 {
8763 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
8764 int max_el = (is_qh ? 3 : 7);
8765 s++;
8766 my_getExpression(&imm_expr, s);
8767 check_absolute_expr (ip, &imm_expr);
8768 s = expr_end;
8769 if (imm_expr.X_add_number > max_el)
8770 as_bad(_("Bad element selector %ld"),
8771 (long) imm_expr.X_add_number);
8772 imm_expr.X_add_number &= max_el;
8773 ip->insn_opcode |= (imm_expr.X_add_number
8774 << (OP_SH_VSEL +
8775 (is_qh ? 2 : 1)));
8776 if (*s != ']')
8777 as_warn(_("Expecting ']' found '%s'"), s);
8778 else
8779 s++;
8780 }
8781 else
8782 {
8783 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8784 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
8785 << OP_SH_VSEL);
8786 else
8787 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
8788 OP_SH_VSEL);
8789 }
8790 /* Fall through */
8791 case 'W':
8792 case 'T':
8793 case 'Z':
8794 ip->insn_opcode |= regno << OP_SH_FT;
8795 break;
8796 case 'R':
8797 ip->insn_opcode |= regno << OP_SH_FR;
8798 break;
8799 }
8800 lastregno = regno;
8801 continue;
8802 }
8803
8804 switch (*args++)
8805 {
8806 case 'V':
8807 ip->insn_opcode |= lastregno << OP_SH_FS;
8808 continue;
8809 case 'W':
8810 ip->insn_opcode |= lastregno << OP_SH_FT;
8811 continue;
8812 }
8813 break;
8814
8815 case 'I':
8816 my_getExpression (&imm_expr, s);
8817 if (imm_expr.X_op != O_big
8818 && imm_expr.X_op != O_constant)
8819 insn_error = _("absolute expression required");
8820 normalize_constant_expr (&imm_expr);
8821 s = expr_end;
8822 continue;
8823
8824 case 'A':
8825 my_getExpression (&offset_expr, s);
8826 *imm_reloc = BFD_RELOC_32;
8827 s = expr_end;
8828 continue;
8829
8830 case 'F':
8831 case 'L':
8832 case 'f':
8833 case 'l':
8834 {
8835 int f64;
8836 int using_gprs;
8837 char *save_in;
8838 char *err;
8839 unsigned char temp[8];
8840 int len;
8841 unsigned int length;
8842 segT seg;
8843 subsegT subseg;
8844 char *p;
8845
8846 /* These only appear as the last operand in an
8847 instruction, and every instruction that accepts
8848 them in any variant accepts them in all variants.
8849 This means we don't have to worry about backing out
8850 any changes if the instruction does not match.
8851
8852 The difference between them is the size of the
8853 floating point constant and where it goes. For 'F'
8854 and 'L' the constant is 64 bits; for 'f' and 'l' it
8855 is 32 bits. Where the constant is placed is based
8856 on how the MIPS assembler does things:
8857 F -- .rdata
8858 L -- .lit8
8859 f -- immediate value
8860 l -- .lit4
8861
8862 The .lit4 and .lit8 sections are only used if
8863 permitted by the -G argument.
8864
8865 When generating embedded PIC code, we use the
8866 .lit8 section but not the .lit4 section (we can do
8867 .lit4 inline easily; we need to put .lit8
8868 somewhere in the data segment, and using .lit8
8869 permits the linker to eventually combine identical
8870 .lit8 entries).
8871
8872 The code below needs to know whether the target register
8873 is 32 or 64 bits wide. It relies on the fact 'f' and
8874 'F' are used with GPR-based instructions and 'l' and
8875 'L' are used with FPR-based instructions. */
8876
8877 f64 = *args == 'F' || *args == 'L';
8878 using_gprs = *args == 'F' || *args == 'f';
8879
8880 save_in = input_line_pointer;
8881 input_line_pointer = s;
8882 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
8883 length = len;
8884 s = input_line_pointer;
8885 input_line_pointer = save_in;
8886 if (err != NULL && *err != '\0')
8887 {
8888 as_bad (_("Bad floating point constant: %s"), err);
8889 memset (temp, '\0', sizeof temp);
8890 length = f64 ? 8 : 4;
8891 }
8892
8893 assert (length == (unsigned) (f64 ? 8 : 4));
8894
8895 if (*args == 'f'
8896 || (*args == 'l'
8897 && (! USE_GLOBAL_POINTER_OPT
8898 || mips_pic == EMBEDDED_PIC
8899 || g_switch_value < 4
8900 || (temp[0] == 0 && temp[1] == 0)
8901 || (temp[2] == 0 && temp[3] == 0))))
8902 {
8903 imm_expr.X_op = O_constant;
8904 if (! target_big_endian)
8905 imm_expr.X_add_number = bfd_getl32 (temp);
8906 else
8907 imm_expr.X_add_number = bfd_getb32 (temp);
8908 }
8909 else if (length > 4
8910 && ! mips_disable_float_construction
8911 /* Constants can only be constructed in GPRs and
8912 copied to FPRs if the GPRs are at least as wide
8913 as the FPRs. Force the constant into memory if
8914 we are using 64-bit FPRs but the GPRs are only
8915 32 bits wide. */
8916 && (using_gprs
8917 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
8918 && ((temp[0] == 0 && temp[1] == 0)
8919 || (temp[2] == 0 && temp[3] == 0))
8920 && ((temp[4] == 0 && temp[5] == 0)
8921 || (temp[6] == 0 && temp[7] == 0)))
8922 {
8923 /* The value is simple enough to load with a couple of
8924 instructions. If using 32-bit registers, set
8925 imm_expr to the high order 32 bits and offset_expr to
8926 the low order 32 bits. Otherwise, set imm_expr to
8927 the entire 64 bit constant. */
8928 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
8929 {
8930 imm_expr.X_op = O_constant;
8931 offset_expr.X_op = O_constant;
8932 if (! target_big_endian)
8933 {
8934 imm_expr.X_add_number = bfd_getl32 (temp + 4);
8935 offset_expr.X_add_number = bfd_getl32 (temp);
8936 }
8937 else
8938 {
8939 imm_expr.X_add_number = bfd_getb32 (temp);
8940 offset_expr.X_add_number = bfd_getb32 (temp + 4);
8941 }
8942 if (offset_expr.X_add_number == 0)
8943 offset_expr.X_op = O_absent;
8944 }
8945 else if (sizeof (imm_expr.X_add_number) > 4)
8946 {
8947 imm_expr.X_op = O_constant;
8948 if (! target_big_endian)
8949 imm_expr.X_add_number = bfd_getl64 (temp);
8950 else
8951 imm_expr.X_add_number = bfd_getb64 (temp);
8952 }
8953 else
8954 {
8955 imm_expr.X_op = O_big;
8956 imm_expr.X_add_number = 4;
8957 if (! target_big_endian)
8958 {
8959 generic_bignum[0] = bfd_getl16 (temp);
8960 generic_bignum[1] = bfd_getl16 (temp + 2);
8961 generic_bignum[2] = bfd_getl16 (temp + 4);
8962 generic_bignum[3] = bfd_getl16 (temp + 6);
8963 }
8964 else
8965 {
8966 generic_bignum[0] = bfd_getb16 (temp + 6);
8967 generic_bignum[1] = bfd_getb16 (temp + 4);
8968 generic_bignum[2] = bfd_getb16 (temp + 2);
8969 generic_bignum[3] = bfd_getb16 (temp);
8970 }
8971 }
8972 }
8973 else
8974 {
8975 const char *newname;
8976 segT new_seg;
8977
8978 /* Switch to the right section. */
8979 seg = now_seg;
8980 subseg = now_subseg;
8981 switch (*args)
8982 {
8983 default: /* unused default case avoids warnings. */
8984 case 'L':
8985 newname = RDATA_SECTION_NAME;
8986 if ((USE_GLOBAL_POINTER_OPT && g_switch_value >= 8)
8987 || mips_pic == EMBEDDED_PIC)
8988 newname = ".lit8";
8989 break;
8990 case 'F':
8991 if (mips_pic == EMBEDDED_PIC)
8992 newname = ".lit8";
8993 else
8994 newname = RDATA_SECTION_NAME;
8995 break;
8996 case 'l':
8997 assert (!USE_GLOBAL_POINTER_OPT
8998 || g_switch_value >= 4);
8999 newname = ".lit4";
9000 break;
9001 }
9002 new_seg = subseg_new (newname, (subsegT) 0);
9003 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
9004 bfd_set_section_flags (stdoutput, new_seg,
9005 (SEC_ALLOC
9006 | SEC_LOAD
9007 | SEC_READONLY
9008 | SEC_DATA));
9009 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9010 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
9011 && strcmp (TARGET_OS, "elf") != 0)
9012 record_alignment (new_seg, 4);
9013 else
9014 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9015 if (seg == now_seg)
9016 as_bad (_("Can't use floating point insn in this section"));
9017
9018 /* Set the argument to the current address in the
9019 section. */
9020 offset_expr.X_op = O_symbol;
9021 offset_expr.X_add_symbol =
9022 symbol_new ("L0\001", now_seg,
9023 (valueT) frag_now_fix (), frag_now);
9024 offset_expr.X_add_number = 0;
9025
9026 /* Put the floating point number into the section. */
9027 p = frag_more ((int) length);
9028 memcpy (p, temp, length);
9029
9030 /* Switch back to the original section. */
9031 subseg_set (seg, subseg);
9032 }
9033 }
9034 continue;
9035
9036 case 'i': /* 16 bit unsigned immediate */
9037 case 'j': /* 16 bit signed immediate */
9038 *imm_reloc = BFD_RELOC_LO16;
9039 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9040 {
9041 int more;
9042 offsetT minval, maxval;
9043
9044 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9045 && strcmp (insn->name, insn[1].name) == 0);
9046
9047 /* If the expression was written as an unsigned number,
9048 only treat it as signed if there are no more
9049 alternatives. */
9050 if (more
9051 && *args == 'j'
9052 && sizeof (imm_expr.X_add_number) <= 4
9053 && imm_expr.X_op == O_constant
9054 && imm_expr.X_add_number < 0
9055 && imm_expr.X_unsigned
9056 && HAVE_64BIT_GPRS)
9057 break;
9058
9059 /* For compatibility with older assemblers, we accept
9060 0x8000-0xffff as signed 16-bit numbers when only
9061 signed numbers are allowed. */
9062 if (*args == 'i')
9063 minval = 0, maxval = 0xffff;
9064 else if (more)
9065 minval = -0x8000, maxval = 0x7fff;
9066 else
9067 minval = -0x8000, maxval = 0xffff;
9068
9069 if (imm_expr.X_op != O_constant
9070 || imm_expr.X_add_number < minval
9071 || imm_expr.X_add_number > maxval)
9072 {
9073 if (more)
9074 break;
9075 if (imm_expr.X_op == O_constant
9076 || imm_expr.X_op == O_big)
9077 as_bad (_("expression out of range"));
9078 }
9079 }
9080 s = expr_end;
9081 continue;
9082
9083 case 'o': /* 16 bit offset */
9084 /* Check whether there is only a single bracketed expression
9085 left. If so, it must be the base register and the
9086 constant must be zero. */
9087 if (*s == '(' && strchr (s + 1, '(') == 0)
9088 {
9089 offset_expr.X_op = O_constant;
9090 offset_expr.X_add_number = 0;
9091 continue;
9092 }
9093
9094 /* If this value won't fit into a 16 bit offset, then go
9095 find a macro that will generate the 32 bit offset
9096 code pattern. */
9097 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9098 && (offset_expr.X_op != O_constant
9099 || offset_expr.X_add_number >= 0x8000
9100 || offset_expr.X_add_number < -0x8000))
9101 break;
9102
9103 s = expr_end;
9104 continue;
9105
9106 case 'p': /* pc relative offset */
9107 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9108 my_getExpression (&offset_expr, s);
9109 s = expr_end;
9110 continue;
9111
9112 case 'u': /* upper 16 bits */
9113 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
9114 && imm_expr.X_op == O_constant
9115 && (imm_expr.X_add_number < 0
9116 || imm_expr.X_add_number >= 0x10000))
9117 as_bad (_("lui expression not in range 0..65535"));
9118 s = expr_end;
9119 continue;
9120
9121 case 'a': /* 26 bit address */
9122 my_getExpression (&offset_expr, s);
9123 s = expr_end;
9124 *offset_reloc = BFD_RELOC_MIPS_JMP;
9125 continue;
9126
9127 case 'N': /* 3 bit branch condition code */
9128 case 'M': /* 3 bit compare condition code */
9129 if (strncmp (s, "$fcc", 4) != 0)
9130 break;
9131 s += 4;
9132 regno = 0;
9133 do
9134 {
9135 regno *= 10;
9136 regno += *s - '0';
9137 ++s;
9138 }
9139 while (ISDIGIT (*s));
9140 if (regno > 7)
9141 as_bad (_("Invalid condition code register $fcc%d"), regno);
9142 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
9143 || strcmp(str + strlen(str) - 5, "any2f") == 0
9144 || strcmp(str + strlen(str) - 5, "any2t") == 0)
9145 && (regno & 1) != 0)
9146 as_warn(_("Condition code register should be even for %s, was %d"),
9147 str, regno);
9148 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
9149 || strcmp(str + strlen(str) - 5, "any4t") == 0)
9150 && (regno & 3) != 0)
9151 as_warn(_("Condition code register should be 0 or 4 for %s, was %d"),
9152 str, regno);
9153 if (*args == 'N')
9154 ip->insn_opcode |= regno << OP_SH_BCC;
9155 else
9156 ip->insn_opcode |= regno << OP_SH_CCC;
9157 continue;
9158
9159 case 'H':
9160 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
9161 s += 2;
9162 if (ISDIGIT (*s))
9163 {
9164 c = 0;
9165 do
9166 {
9167 c *= 10;
9168 c += *s - '0';
9169 ++s;
9170 }
9171 while (ISDIGIT (*s));
9172 }
9173 else
9174 c = 8; /* Invalid sel value. */
9175
9176 if (c > 7)
9177 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
9178 ip->insn_opcode |= c;
9179 continue;
9180
9181 case 'e':
9182 /* Must be at least one digit. */
9183 my_getExpression (&imm_expr, s);
9184 check_absolute_expr (ip, &imm_expr);
9185
9186 if ((unsigned long) imm_expr.X_add_number
9187 > (unsigned long) OP_MASK_VECBYTE)
9188 {
9189 as_bad (_("bad byte vector index (%ld)"),
9190 (long) imm_expr.X_add_number);
9191 imm_expr.X_add_number = 0;
9192 }
9193
9194 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_VECBYTE;
9195 imm_expr.X_op = O_absent;
9196 s = expr_end;
9197 continue;
9198
9199 case '%':
9200 my_getExpression (&imm_expr, s);
9201 check_absolute_expr (ip, &imm_expr);
9202
9203 if ((unsigned long) imm_expr.X_add_number
9204 > (unsigned long) OP_MASK_VECALIGN)
9205 {
9206 as_bad (_("bad byte vector index (%ld)"),
9207 (long) imm_expr.X_add_number);
9208 imm_expr.X_add_number = 0;
9209 }
9210
9211 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_VECALIGN;
9212 imm_expr.X_op = O_absent;
9213 s = expr_end;
9214 continue;
9215
9216 default:
9217 as_bad (_("bad char = '%c'\n"), *args);
9218 internalError ();
9219 }
9220 break;
9221 }
9222 /* Args don't match. */
9223 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
9224 !strcmp (insn->name, insn[1].name))
9225 {
9226 ++insn;
9227 s = argsStart;
9228 insn_error = _("illegal operands");
9229 continue;
9230 }
9231 if (save_c)
9232 *(--s) = save_c;
9233 insn_error = _("illegal operands");
9234 return;
9235 }
9236 }
9237
9238 /* This routine assembles an instruction into its binary format when
9239 assembling for the mips16. As a side effect, it sets one of the
9240 global variables imm_reloc or offset_reloc to the type of
9241 relocation to do if one of the operands is an address expression.
9242 It also sets mips16_small and mips16_ext if the user explicitly
9243 requested a small or extended instruction. */
9244
9245 static void
9246 mips16_ip (char *str, struct mips_cl_insn *ip)
9247 {
9248 char *s;
9249 const char *args;
9250 struct mips_opcode *insn;
9251 char *argsstart;
9252 unsigned int regno;
9253 unsigned int lastregno = 0;
9254 char *s_reset;
9255
9256 insn_error = NULL;
9257
9258 mips16_small = FALSE;
9259 mips16_ext = FALSE;
9260
9261 for (s = str; ISLOWER (*s); ++s)
9262 ;
9263 switch (*s)
9264 {
9265 case '\0':
9266 break;
9267
9268 case ' ':
9269 *s++ = '\0';
9270 break;
9271
9272 case '.':
9273 if (s[1] == 't' && s[2] == ' ')
9274 {
9275 *s = '\0';
9276 mips16_small = TRUE;
9277 s += 3;
9278 break;
9279 }
9280 else if (s[1] == 'e' && s[2] == ' ')
9281 {
9282 *s = '\0';
9283 mips16_ext = TRUE;
9284 s += 3;
9285 break;
9286 }
9287 /* Fall through. */
9288 default:
9289 insn_error = _("unknown opcode");
9290 return;
9291 }
9292
9293 if (mips_opts.noautoextend && ! mips16_ext)
9294 mips16_small = TRUE;
9295
9296 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
9297 {
9298 insn_error = _("unrecognized opcode");
9299 return;
9300 }
9301
9302 argsstart = s;
9303 for (;;)
9304 {
9305 assert (strcmp (insn->name, str) == 0);
9306
9307 ip->insn_mo = insn;
9308 ip->insn_opcode = insn->match;
9309 ip->use_extend = FALSE;
9310 imm_expr.X_op = O_absent;
9311 imm_reloc[0] = BFD_RELOC_UNUSED;
9312 imm_reloc[1] = BFD_RELOC_UNUSED;
9313 imm_reloc[2] = BFD_RELOC_UNUSED;
9314 imm2_expr.X_op = O_absent;
9315 offset_expr.X_op = O_absent;
9316 offset_reloc[0] = BFD_RELOC_UNUSED;
9317 offset_reloc[1] = BFD_RELOC_UNUSED;
9318 offset_reloc[2] = BFD_RELOC_UNUSED;
9319 for (args = insn->args; 1; ++args)
9320 {
9321 int c;
9322
9323 if (*s == ' ')
9324 ++s;
9325
9326 /* In this switch statement we call break if we did not find
9327 a match, continue if we did find a match, or return if we
9328 are done. */
9329
9330 c = *args;
9331 switch (c)
9332 {
9333 case '\0':
9334 if (*s == '\0')
9335 {
9336 /* Stuff the immediate value in now, if we can. */
9337 if (imm_expr.X_op == O_constant
9338 && *imm_reloc > BFD_RELOC_UNUSED
9339 && insn->pinfo != INSN_MACRO)
9340 {
9341 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
9342 imm_expr.X_add_number, TRUE, mips16_small,
9343 mips16_ext, &ip->insn_opcode,
9344 &ip->use_extend, &ip->extend);
9345 imm_expr.X_op = O_absent;
9346 *imm_reloc = BFD_RELOC_UNUSED;
9347 }
9348
9349 return;
9350 }
9351 break;
9352
9353 case ',':
9354 if (*s++ == c)
9355 continue;
9356 s--;
9357 switch (*++args)
9358 {
9359 case 'v':
9360 ip->insn_opcode |= lastregno << MIPS16OP_SH_RX;
9361 continue;
9362 case 'w':
9363 ip->insn_opcode |= lastregno << MIPS16OP_SH_RY;
9364 continue;
9365 }
9366 break;
9367
9368 case '(':
9369 case ')':
9370 if (*s++ == c)
9371 continue;
9372 break;
9373
9374 case 'v':
9375 case 'w':
9376 if (s[0] != '$')
9377 {
9378 if (c == 'v')
9379 ip->insn_opcode |= lastregno << MIPS16OP_SH_RX;
9380 else
9381 ip->insn_opcode |= lastregno << MIPS16OP_SH_RY;
9382 ++args;
9383 continue;
9384 }
9385 /* Fall through. */
9386 case 'x':
9387 case 'y':
9388 case 'z':
9389 case 'Z':
9390 case '0':
9391 case 'S':
9392 case 'R':
9393 case 'X':
9394 case 'Y':
9395 if (s[0] != '$')
9396 break;
9397 s_reset = s;
9398 if (ISDIGIT (s[1]))
9399 {
9400 ++s;
9401 regno = 0;
9402 do
9403 {
9404 regno *= 10;
9405 regno += *s - '0';
9406 ++s;
9407 }
9408 while (ISDIGIT (*s));
9409 if (regno > 31)
9410 {
9411 as_bad (_("invalid register number (%d)"), regno);
9412 regno = 2;
9413 }
9414 }
9415 else
9416 {
9417 if (s[1] == 'r' && s[2] == 'a')
9418 {
9419 s += 3;
9420 regno = RA;
9421 }
9422 else if (s[1] == 'f' && s[2] == 'p')
9423 {
9424 s += 3;
9425 regno = FP;
9426 }
9427 else if (s[1] == 's' && s[2] == 'p')
9428 {
9429 s += 3;
9430 regno = SP;
9431 }
9432 else if (s[1] == 'g' && s[2] == 'p')
9433 {
9434 s += 3;
9435 regno = GP;
9436 }
9437 else if (s[1] == 'a' && s[2] == 't')
9438 {
9439 s += 3;
9440 regno = AT;
9441 }
9442 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
9443 {
9444 s += 4;
9445 regno = KT0;
9446 }
9447 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
9448 {
9449 s += 4;
9450 regno = KT1;
9451 }
9452 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
9453 {
9454 s += 5;
9455 regno = ZERO;
9456 }
9457 else
9458 break;
9459 }
9460
9461 if (*s == ' ')
9462 ++s;
9463 if (args[1] != *s)
9464 {
9465 if (c == 'v' || c == 'w')
9466 {
9467 regno = mips16_to_32_reg_map[lastregno];
9468 s = s_reset;
9469 ++args;
9470 }
9471 }
9472
9473 switch (c)
9474 {
9475 case 'x':
9476 case 'y':
9477 case 'z':
9478 case 'v':
9479 case 'w':
9480 case 'Z':
9481 regno = mips32_to_16_reg_map[regno];
9482 break;
9483
9484 case '0':
9485 if (regno != 0)
9486 regno = ILLEGAL_REG;
9487 break;
9488
9489 case 'S':
9490 if (regno != SP)
9491 regno = ILLEGAL_REG;
9492 break;
9493
9494 case 'R':
9495 if (regno != RA)
9496 regno = ILLEGAL_REG;
9497 break;
9498
9499 case 'X':
9500 case 'Y':
9501 if (regno == AT && ! mips_opts.noat)
9502 as_warn (_("used $at without \".set noat\""));
9503 break;
9504
9505 default:
9506 internalError ();
9507 }
9508
9509 if (regno == ILLEGAL_REG)
9510 break;
9511
9512 switch (c)
9513 {
9514 case 'x':
9515 case 'v':
9516 ip->insn_opcode |= regno << MIPS16OP_SH_RX;
9517 break;
9518 case 'y':
9519 case 'w':
9520 ip->insn_opcode |= regno << MIPS16OP_SH_RY;
9521 break;
9522 case 'z':
9523 ip->insn_opcode |= regno << MIPS16OP_SH_RZ;
9524 break;
9525 case 'Z':
9526 ip->insn_opcode |= regno << MIPS16OP_SH_MOVE32Z;
9527 case '0':
9528 case 'S':
9529 case 'R':
9530 break;
9531 case 'X':
9532 ip->insn_opcode |= regno << MIPS16OP_SH_REGR32;
9533 break;
9534 case 'Y':
9535 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
9536 ip->insn_opcode |= regno << MIPS16OP_SH_REG32R;
9537 break;
9538 default:
9539 internalError ();
9540 }
9541
9542 lastregno = regno;
9543 continue;
9544
9545 case 'P':
9546 if (strncmp (s, "$pc", 3) == 0)
9547 {
9548 s += 3;
9549 continue;
9550 }
9551 break;
9552
9553 case '<':
9554 case '>':
9555 case '[':
9556 case ']':
9557 case '4':
9558 case '5':
9559 case 'H':
9560 case 'W':
9561 case 'D':
9562 case 'j':
9563 case '8':
9564 case 'V':
9565 case 'C':
9566 case 'U':
9567 case 'k':
9568 case 'K':
9569 if (s[0] == '%'
9570 && strncmp (s + 1, "gprel(", sizeof "gprel(" - 1) == 0)
9571 {
9572 /* This is %gprel(SYMBOL). We need to read SYMBOL,
9573 and generate the appropriate reloc. If the text
9574 inside %gprel is not a symbol name with an
9575 optional offset, then we generate a normal reloc
9576 and will probably fail later. */
9577 my_getExpression (&imm_expr, s + sizeof "%gprel" - 1);
9578 if (imm_expr.X_op == O_symbol)
9579 {
9580 mips16_ext = TRUE;
9581 *imm_reloc = BFD_RELOC_MIPS16_GPREL;
9582 s = expr_end;
9583 ip->use_extend = TRUE;
9584 ip->extend = 0;
9585 continue;
9586 }
9587 }
9588 else
9589 {
9590 /* Just pick up a normal expression. */
9591 my_getExpression (&imm_expr, s);
9592 }
9593
9594 if (imm_expr.X_op == O_register)
9595 {
9596 /* What we thought was an expression turned out to
9597 be a register. */
9598
9599 if (s[0] == '(' && args[1] == '(')
9600 {
9601 /* It looks like the expression was omitted
9602 before a register indirection, which means
9603 that the expression is implicitly zero. We
9604 still set up imm_expr, so that we handle
9605 explicit extensions correctly. */
9606 imm_expr.X_op = O_constant;
9607 imm_expr.X_add_number = 0;
9608 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9609 continue;
9610 }
9611
9612 break;
9613 }
9614
9615 /* We need to relax this instruction. */
9616 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9617 s = expr_end;
9618 continue;
9619
9620 case 'p':
9621 case 'q':
9622 case 'A':
9623 case 'B':
9624 case 'E':
9625 /* We use offset_reloc rather than imm_reloc for the PC
9626 relative operands. This lets macros with both
9627 immediate and address operands work correctly. */
9628 my_getExpression (&offset_expr, s);
9629
9630 if (offset_expr.X_op == O_register)
9631 break;
9632
9633 /* We need to relax this instruction. */
9634 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
9635 s = expr_end;
9636 continue;
9637
9638 case '6': /* break code */
9639 my_getExpression (&imm_expr, s);
9640 check_absolute_expr (ip, &imm_expr);
9641 if ((unsigned long) imm_expr.X_add_number > 63)
9642 {
9643 as_warn (_("Invalid value for `%s' (%lu)"),
9644 ip->insn_mo->name,
9645 (unsigned long) imm_expr.X_add_number);
9646 imm_expr.X_add_number &= 0x3f;
9647 }
9648 ip->insn_opcode |= imm_expr.X_add_number << MIPS16OP_SH_IMM6;
9649 imm_expr.X_op = O_absent;
9650 s = expr_end;
9651 continue;
9652
9653 case 'a': /* 26 bit address */
9654 my_getExpression (&offset_expr, s);
9655 s = expr_end;
9656 *offset_reloc = BFD_RELOC_MIPS16_JMP;
9657 ip->insn_opcode <<= 16;
9658 continue;
9659
9660 case 'l': /* register list for entry macro */
9661 case 'L': /* register list for exit macro */
9662 {
9663 int mask;
9664
9665 if (c == 'l')
9666 mask = 0;
9667 else
9668 mask = 7 << 3;
9669 while (*s != '\0')
9670 {
9671 int freg, reg1, reg2;
9672
9673 while (*s == ' ' || *s == ',')
9674 ++s;
9675 if (*s != '$')
9676 {
9677 as_bad (_("can't parse register list"));
9678 break;
9679 }
9680 ++s;
9681 if (*s != 'f')
9682 freg = 0;
9683 else
9684 {
9685 freg = 1;
9686 ++s;
9687 }
9688 reg1 = 0;
9689 while (ISDIGIT (*s))
9690 {
9691 reg1 *= 10;
9692 reg1 += *s - '0';
9693 ++s;
9694 }
9695 if (*s == ' ')
9696 ++s;
9697 if (*s != '-')
9698 reg2 = reg1;
9699 else
9700 {
9701 ++s;
9702 if (*s != '$')
9703 break;
9704 ++s;
9705 if (freg)
9706 {
9707 if (*s == 'f')
9708 ++s;
9709 else
9710 {
9711 as_bad (_("invalid register list"));
9712 break;
9713 }
9714 }
9715 reg2 = 0;
9716 while (ISDIGIT (*s))
9717 {
9718 reg2 *= 10;
9719 reg2 += *s - '0';
9720 ++s;
9721 }
9722 }
9723 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
9724 {
9725 mask &= ~ (7 << 3);
9726 mask |= 5 << 3;
9727 }
9728 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
9729 {
9730 mask &= ~ (7 << 3);
9731 mask |= 6 << 3;
9732 }
9733 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
9734 mask |= (reg2 - 3) << 3;
9735 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
9736 mask |= (reg2 - 15) << 1;
9737 else if (reg1 == RA && reg2 == RA)
9738 mask |= 1;
9739 else
9740 {
9741 as_bad (_("invalid register list"));
9742 break;
9743 }
9744 }
9745 /* The mask is filled in in the opcode table for the
9746 benefit of the disassembler. We remove it before
9747 applying the actual mask. */
9748 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
9749 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
9750 }
9751 continue;
9752
9753 case 'e': /* extend code */
9754 my_getExpression (&imm_expr, s);
9755 check_absolute_expr (ip, &imm_expr);
9756 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
9757 {
9758 as_warn (_("Invalid value for `%s' (%lu)"),
9759 ip->insn_mo->name,
9760 (unsigned long) imm_expr.X_add_number);
9761 imm_expr.X_add_number &= 0x7ff;
9762 }
9763 ip->insn_opcode |= imm_expr.X_add_number;
9764 imm_expr.X_op = O_absent;
9765 s = expr_end;
9766 continue;
9767
9768 default:
9769 internalError ();
9770 }
9771 break;
9772 }
9773
9774 /* Args don't match. */
9775 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
9776 strcmp (insn->name, insn[1].name) == 0)
9777 {
9778 ++insn;
9779 s = argsstart;
9780 continue;
9781 }
9782
9783 insn_error = _("illegal operands");
9784
9785 return;
9786 }
9787 }
9788
9789 /* This structure holds information we know about a mips16 immediate
9790 argument type. */
9791
9792 struct mips16_immed_operand
9793 {
9794 /* The type code used in the argument string in the opcode table. */
9795 int type;
9796 /* The number of bits in the short form of the opcode. */
9797 int nbits;
9798 /* The number of bits in the extended form of the opcode. */
9799 int extbits;
9800 /* The amount by which the short form is shifted when it is used;
9801 for example, the sw instruction has a shift count of 2. */
9802 int shift;
9803 /* The amount by which the short form is shifted when it is stored
9804 into the instruction code. */
9805 int op_shift;
9806 /* Non-zero if the short form is unsigned. */
9807 int unsp;
9808 /* Non-zero if the extended form is unsigned. */
9809 int extu;
9810 /* Non-zero if the value is PC relative. */
9811 int pcrel;
9812 };
9813
9814 /* The mips16 immediate operand types. */
9815
9816 static const struct mips16_immed_operand mips16_immed_operands[] =
9817 {
9818 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
9819 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
9820 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
9821 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
9822 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
9823 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
9824 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
9825 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
9826 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
9827 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
9828 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
9829 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
9830 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
9831 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
9832 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
9833 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
9834 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
9835 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
9836 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
9837 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
9838 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
9839 };
9840
9841 #define MIPS16_NUM_IMMED \
9842 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
9843
9844 /* Handle a mips16 instruction with an immediate value. This or's the
9845 small immediate value into *INSN. It sets *USE_EXTEND to indicate
9846 whether an extended value is needed; if one is needed, it sets
9847 *EXTEND to the value. The argument type is TYPE. The value is VAL.
9848 If SMALL is true, an unextended opcode was explicitly requested.
9849 If EXT is true, an extended opcode was explicitly requested. If
9850 WARN is true, warn if EXT does not match reality. */
9851
9852 static void
9853 mips16_immed (char *file, unsigned int line, int type, offsetT val,
9854 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
9855 unsigned long *insn, bfd_boolean *use_extend,
9856 unsigned short *extend)
9857 {
9858 register const struct mips16_immed_operand *op;
9859 int mintiny, maxtiny;
9860 bfd_boolean needext;
9861
9862 op = mips16_immed_operands;
9863 while (op->type != type)
9864 {
9865 ++op;
9866 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
9867 }
9868
9869 if (op->unsp)
9870 {
9871 if (type == '<' || type == '>' || type == '[' || type == ']')
9872 {
9873 mintiny = 1;
9874 maxtiny = 1 << op->nbits;
9875 }
9876 else
9877 {
9878 mintiny = 0;
9879 maxtiny = (1 << op->nbits) - 1;
9880 }
9881 }
9882 else
9883 {
9884 mintiny = - (1 << (op->nbits - 1));
9885 maxtiny = (1 << (op->nbits - 1)) - 1;
9886 }
9887
9888 /* Branch offsets have an implicit 0 in the lowest bit. */
9889 if (type == 'p' || type == 'q')
9890 val /= 2;
9891
9892 if ((val & ((1 << op->shift) - 1)) != 0
9893 || val < (mintiny << op->shift)
9894 || val > (maxtiny << op->shift))
9895 needext = TRUE;
9896 else
9897 needext = FALSE;
9898
9899 if (warn && ext && ! needext)
9900 as_warn_where (file, line,
9901 _("extended operand requested but not required"));
9902 if (small && needext)
9903 as_bad_where (file, line, _("invalid unextended operand value"));
9904
9905 if (small || (! ext && ! needext))
9906 {
9907 int insnval;
9908
9909 *use_extend = FALSE;
9910 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
9911 insnval <<= op->op_shift;
9912 *insn |= insnval;
9913 }
9914 else
9915 {
9916 long minext, maxext;
9917 int extval;
9918
9919 if (op->extu)
9920 {
9921 minext = 0;
9922 maxext = (1 << op->extbits) - 1;
9923 }
9924 else
9925 {
9926 minext = - (1 << (op->extbits - 1));
9927 maxext = (1 << (op->extbits - 1)) - 1;
9928 }
9929 if (val < minext || val > maxext)
9930 as_bad_where (file, line,
9931 _("operand value out of range for instruction"));
9932
9933 *use_extend = TRUE;
9934 if (op->extbits == 16)
9935 {
9936 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
9937 val &= 0x1f;
9938 }
9939 else if (op->extbits == 15)
9940 {
9941 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
9942 val &= 0xf;
9943 }
9944 else
9945 {
9946 extval = ((val & 0x1f) << 6) | (val & 0x20);
9947 val = 0;
9948 }
9949
9950 *extend = (unsigned short) extval;
9951 *insn |= val;
9952 }
9953 }
9954 \f
9955 static const struct percent_op_match
9956 {
9957 const char *str;
9958 bfd_reloc_code_real_type reloc;
9959 } percent_op[] =
9960 {
9961 {"%lo", BFD_RELOC_LO16},
9962 #ifdef OBJ_ELF
9963 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
9964 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
9965 {"%call16", BFD_RELOC_MIPS_CALL16},
9966 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
9967 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
9968 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
9969 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
9970 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
9971 {"%got", BFD_RELOC_MIPS_GOT16},
9972 {"%gp_rel", BFD_RELOC_GPREL16},
9973 {"%half", BFD_RELOC_16},
9974 {"%highest", BFD_RELOC_MIPS_HIGHEST},
9975 {"%higher", BFD_RELOC_MIPS_HIGHER},
9976 {"%neg", BFD_RELOC_MIPS_SUB},
9977 #endif
9978 {"%hi", BFD_RELOC_HI16_S}
9979 };
9980
9981
9982 /* Return true if *STR points to a relocation operator. When returning true,
9983 move *STR over the operator and store its relocation code in *RELOC.
9984 Leave both *STR and *RELOC alone when returning false. */
9985
9986 static bfd_boolean
9987 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
9988 {
9989 size_t i;
9990
9991 for (i = 0; i < ARRAY_SIZE (percent_op); i++)
9992 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
9993 {
9994 *str += strlen (percent_op[i].str);
9995 *reloc = percent_op[i].reloc;
9996
9997 /* Check whether the output BFD supports this relocation.
9998 If not, issue an error and fall back on something safe. */
9999 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
10000 {
10001 as_bad ("relocation %s isn't supported by the current ABI",
10002 percent_op[i].str);
10003 *reloc = BFD_RELOC_LO16;
10004 }
10005 return TRUE;
10006 }
10007 return FALSE;
10008 }
10009
10010
10011 /* Parse string STR as a 16-bit relocatable operand. Store the
10012 expression in *EP and the relocations in the array starting
10013 at RELOC. Return the number of relocation operators used.
10014
10015 On exit, EXPR_END points to the first character after the expression.
10016 If no relocation operators are used, RELOC[0] is set to BFD_RELOC_LO16. */
10017
10018 static size_t
10019 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
10020 char *str)
10021 {
10022 bfd_reloc_code_real_type reversed_reloc[3];
10023 size_t reloc_index, i;
10024 int crux_depth, str_depth;
10025 char *crux;
10026
10027 /* Search for the start of the main expression, recoding relocations
10028 in REVERSED_RELOC. End the loop with CRUX pointing to the start
10029 of the main expression and with CRUX_DEPTH containing the number
10030 of open brackets at that point. */
10031 reloc_index = -1;
10032 str_depth = 0;
10033 do
10034 {
10035 reloc_index++;
10036 crux = str;
10037 crux_depth = str_depth;
10038
10039 /* Skip over whitespace and brackets, keeping count of the number
10040 of brackets. */
10041 while (*str == ' ' || *str == '\t' || *str == '(')
10042 if (*str++ == '(')
10043 str_depth++;
10044 }
10045 while (*str == '%'
10046 && reloc_index < (HAVE_NEWABI ? 3 : 1)
10047 && parse_relocation (&str, &reversed_reloc[reloc_index]));
10048
10049 my_getExpression (ep, crux);
10050 str = expr_end;
10051
10052 /* Match every open bracket. */
10053 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
10054 if (*str++ == ')')
10055 crux_depth--;
10056
10057 if (crux_depth > 0)
10058 as_bad ("unclosed '('");
10059
10060 expr_end = str;
10061
10062 if (reloc_index == 0)
10063 reloc[0] = BFD_RELOC_LO16;
10064 else
10065 {
10066 prev_reloc_op_frag = frag_now;
10067 for (i = 0; i < reloc_index; i++)
10068 reloc[i] = reversed_reloc[reloc_index - 1 - i];
10069 }
10070
10071 return reloc_index;
10072 }
10073
10074 static void
10075 my_getExpression (expressionS *ep, char *str)
10076 {
10077 char *save_in;
10078 valueT val;
10079
10080 save_in = input_line_pointer;
10081 input_line_pointer = str;
10082 expression (ep);
10083 expr_end = input_line_pointer;
10084 input_line_pointer = save_in;
10085
10086 /* If we are in mips16 mode, and this is an expression based on `.',
10087 then we bump the value of the symbol by 1 since that is how other
10088 text symbols are handled. We don't bother to handle complex
10089 expressions, just `.' plus or minus a constant. */
10090 if (mips_opts.mips16
10091 && ep->X_op == O_symbol
10092 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
10093 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
10094 && symbol_get_frag (ep->X_add_symbol) == frag_now
10095 && symbol_constant_p (ep->X_add_symbol)
10096 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
10097 S_SET_VALUE (ep->X_add_symbol, val + 1);
10098 }
10099
10100 /* Turn a string in input_line_pointer into a floating point constant
10101 of type TYPE, and store the appropriate bytes in *LITP. The number
10102 of LITTLENUMS emitted is stored in *SIZEP. An error message is
10103 returned, or NULL on OK. */
10104
10105 char *
10106 md_atof (int type, char *litP, int *sizeP)
10107 {
10108 int prec;
10109 LITTLENUM_TYPE words[4];
10110 char *t;
10111 int i;
10112
10113 switch (type)
10114 {
10115 case 'f':
10116 prec = 2;
10117 break;
10118
10119 case 'd':
10120 prec = 4;
10121 break;
10122
10123 default:
10124 *sizeP = 0;
10125 return _("bad call to md_atof");
10126 }
10127
10128 t = atof_ieee (input_line_pointer, type, words);
10129 if (t)
10130 input_line_pointer = t;
10131
10132 *sizeP = prec * 2;
10133
10134 if (! target_big_endian)
10135 {
10136 for (i = prec - 1; i >= 0; i--)
10137 {
10138 md_number_to_chars (litP, words[i], 2);
10139 litP += 2;
10140 }
10141 }
10142 else
10143 {
10144 for (i = 0; i < prec; i++)
10145 {
10146 md_number_to_chars (litP, words[i], 2);
10147 litP += 2;
10148 }
10149 }
10150
10151 return NULL;
10152 }
10153
10154 void
10155 md_number_to_chars (char *buf, valueT val, int n)
10156 {
10157 if (target_big_endian)
10158 number_to_chars_bigendian (buf, val, n);
10159 else
10160 number_to_chars_littleendian (buf, val, n);
10161 }
10162 \f
10163 #ifdef OBJ_ELF
10164 static int support_64bit_objects(void)
10165 {
10166 const char **list, **l;
10167 int yes;
10168
10169 list = bfd_target_list ();
10170 for (l = list; *l != NULL; l++)
10171 #ifdef TE_TMIPS
10172 /* This is traditional mips */
10173 if (strcmp (*l, "elf64-tradbigmips") == 0
10174 || strcmp (*l, "elf64-tradlittlemips") == 0)
10175 #else
10176 if (strcmp (*l, "elf64-bigmips") == 0
10177 || strcmp (*l, "elf64-littlemips") == 0)
10178 #endif
10179 break;
10180 yes = (*l != NULL);
10181 free (list);
10182 return yes;
10183 }
10184 #endif /* OBJ_ELF */
10185
10186 const char *md_shortopts = "O::g::G:";
10187
10188 struct option md_longopts[] =
10189 {
10190 /* Options which specify architecture. */
10191 #define OPTION_ARCH_BASE (OPTION_MD_BASE)
10192 #define OPTION_MARCH (OPTION_ARCH_BASE + 0)
10193 {"march", required_argument, NULL, OPTION_MARCH},
10194 #define OPTION_MTUNE (OPTION_ARCH_BASE + 1)
10195 {"mtune", required_argument, NULL, OPTION_MTUNE},
10196 #define OPTION_MIPS1 (OPTION_ARCH_BASE + 2)
10197 {"mips0", no_argument, NULL, OPTION_MIPS1},
10198 {"mips1", no_argument, NULL, OPTION_MIPS1},
10199 #define OPTION_MIPS2 (OPTION_ARCH_BASE + 3)
10200 {"mips2", no_argument, NULL, OPTION_MIPS2},
10201 #define OPTION_MIPS3 (OPTION_ARCH_BASE + 4)
10202 {"mips3", no_argument, NULL, OPTION_MIPS3},
10203 #define OPTION_MIPS4 (OPTION_ARCH_BASE + 5)
10204 {"mips4", no_argument, NULL, OPTION_MIPS4},
10205 #define OPTION_MIPS5 (OPTION_ARCH_BASE + 6)
10206 {"mips5", no_argument, NULL, OPTION_MIPS5},
10207 #define OPTION_MIPS32 (OPTION_ARCH_BASE + 7)
10208 {"mips32", no_argument, NULL, OPTION_MIPS32},
10209 #define OPTION_MIPS64 (OPTION_ARCH_BASE + 8)
10210 {"mips64", no_argument, NULL, OPTION_MIPS64},
10211 #define OPTION_MIPS32R2 (OPTION_ARCH_BASE + 9)
10212 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
10213 #define OPTION_MIPS64R2 (OPTION_ARCH_BASE + 10)
10214 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
10215
10216 /* Options which specify Application Specific Extensions (ASEs). */
10217 #define OPTION_ASE_BASE (OPTION_ARCH_BASE + 11)
10218 #define OPTION_MIPS16 (OPTION_ASE_BASE + 0)
10219 {"mips16", no_argument, NULL, OPTION_MIPS16},
10220 #define OPTION_NO_MIPS16 (OPTION_ASE_BASE + 1)
10221 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
10222 #define OPTION_MIPS3D (OPTION_ASE_BASE + 2)
10223 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
10224 #define OPTION_NO_MIPS3D (OPTION_ASE_BASE + 3)
10225 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
10226 #define OPTION_MDMX (OPTION_ASE_BASE + 4)
10227 {"mdmx", no_argument, NULL, OPTION_MDMX},
10228 #define OPTION_NO_MDMX (OPTION_ASE_BASE + 5)
10229 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
10230
10231 /* Old-style architecture options. Don't add more of these. */
10232 #define OPTION_COMPAT_ARCH_BASE (OPTION_ASE_BASE + 6)
10233 #define OPTION_M4650 (OPTION_COMPAT_ARCH_BASE + 0)
10234 {"m4650", no_argument, NULL, OPTION_M4650},
10235 #define OPTION_NO_M4650 (OPTION_COMPAT_ARCH_BASE + 1)
10236 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
10237 #define OPTION_M4010 (OPTION_COMPAT_ARCH_BASE + 2)
10238 {"m4010", no_argument, NULL, OPTION_M4010},
10239 #define OPTION_NO_M4010 (OPTION_COMPAT_ARCH_BASE + 3)
10240 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
10241 #define OPTION_M4100 (OPTION_COMPAT_ARCH_BASE + 4)
10242 {"m4100", no_argument, NULL, OPTION_M4100},
10243 #define OPTION_NO_M4100 (OPTION_COMPAT_ARCH_BASE + 5)
10244 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
10245 #define OPTION_M3900 (OPTION_COMPAT_ARCH_BASE + 6)
10246 {"m3900", no_argument, NULL, OPTION_M3900},
10247 #define OPTION_NO_M3900 (OPTION_COMPAT_ARCH_BASE + 7)
10248 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
10249
10250 /* Options which enable bug fixes. */
10251 #define OPTION_FIX_BASE (OPTION_COMPAT_ARCH_BASE + 8)
10252 #define OPTION_M7000_HILO_FIX (OPTION_FIX_BASE + 0)
10253 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
10254 #define OPTION_MNO_7000_HILO_FIX (OPTION_FIX_BASE + 1)
10255 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
10256 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
10257 #define OPTION_FIX_VR4120 (OPTION_FIX_BASE + 2)
10258 #define OPTION_NO_FIX_VR4120 (OPTION_FIX_BASE + 3)
10259 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
10260 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
10261
10262 /* Miscellaneous options. */
10263 #define OPTION_MISC_BASE (OPTION_FIX_BASE + 4)
10264 #define OPTION_MEMBEDDED_PIC (OPTION_MISC_BASE + 0)
10265 {"membedded-pic", no_argument, NULL, OPTION_MEMBEDDED_PIC},
10266 #define OPTION_TRAP (OPTION_MISC_BASE + 1)
10267 {"trap", no_argument, NULL, OPTION_TRAP},
10268 {"no-break", no_argument, NULL, OPTION_TRAP},
10269 #define OPTION_BREAK (OPTION_MISC_BASE + 2)
10270 {"break", no_argument, NULL, OPTION_BREAK},
10271 {"no-trap", no_argument, NULL, OPTION_BREAK},
10272 #define OPTION_EB (OPTION_MISC_BASE + 3)
10273 {"EB", no_argument, NULL, OPTION_EB},
10274 #define OPTION_EL (OPTION_MISC_BASE + 4)
10275 {"EL", no_argument, NULL, OPTION_EL},
10276 #define OPTION_FP32 (OPTION_MISC_BASE + 5)
10277 {"mfp32", no_argument, NULL, OPTION_FP32},
10278 #define OPTION_GP32 (OPTION_MISC_BASE + 6)
10279 {"mgp32", no_argument, NULL, OPTION_GP32},
10280 #define OPTION_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 7)
10281 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
10282 #define OPTION_NO_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 8)
10283 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
10284 #define OPTION_FP64 (OPTION_MISC_BASE + 9)
10285 {"mfp64", no_argument, NULL, OPTION_FP64},
10286 #define OPTION_GP64 (OPTION_MISC_BASE + 10)
10287 {"mgp64", no_argument, NULL, OPTION_GP64},
10288 #define OPTION_RELAX_BRANCH (OPTION_MISC_BASE + 11)
10289 #define OPTION_NO_RELAX_BRANCH (OPTION_MISC_BASE + 12)
10290 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
10291 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
10292
10293 /* ELF-specific options. */
10294 #ifdef OBJ_ELF
10295 #define OPTION_ELF_BASE (OPTION_MISC_BASE + 13)
10296 #define OPTION_CALL_SHARED (OPTION_ELF_BASE + 0)
10297 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
10298 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
10299 #define OPTION_NON_SHARED (OPTION_ELF_BASE + 1)
10300 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
10301 #define OPTION_XGOT (OPTION_ELF_BASE + 2)
10302 {"xgot", no_argument, NULL, OPTION_XGOT},
10303 #define OPTION_MABI (OPTION_ELF_BASE + 3)
10304 {"mabi", required_argument, NULL, OPTION_MABI},
10305 #define OPTION_32 (OPTION_ELF_BASE + 4)
10306 {"32", no_argument, NULL, OPTION_32},
10307 #define OPTION_N32 (OPTION_ELF_BASE + 5)
10308 {"n32", no_argument, NULL, OPTION_N32},
10309 #define OPTION_64 (OPTION_ELF_BASE + 6)
10310 {"64", no_argument, NULL, OPTION_64},
10311 #define OPTION_MDEBUG (OPTION_ELF_BASE + 7)
10312 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
10313 #define OPTION_NO_MDEBUG (OPTION_ELF_BASE + 8)
10314 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
10315 #define OPTION_PDR (OPTION_ELF_BASE + 9)
10316 {"mpdr", no_argument, NULL, OPTION_PDR},
10317 #define OPTION_NO_PDR (OPTION_ELF_BASE + 10)
10318 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
10319 #endif /* OBJ_ELF */
10320
10321 {NULL, no_argument, NULL, 0}
10322 };
10323 size_t md_longopts_size = sizeof (md_longopts);
10324
10325 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
10326 NEW_VALUE. Warn if another value was already specified. Note:
10327 we have to defer parsing the -march and -mtune arguments in order
10328 to handle 'from-abi' correctly, since the ABI might be specified
10329 in a later argument. */
10330
10331 static void
10332 mips_set_option_string (const char **string_ptr, const char *new_value)
10333 {
10334 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
10335 as_warn (_("A different %s was already specified, is now %s"),
10336 string_ptr == &mips_arch_string ? "-march" : "-mtune",
10337 new_value);
10338
10339 *string_ptr = new_value;
10340 }
10341
10342 int
10343 md_parse_option (int c, char *arg)
10344 {
10345 switch (c)
10346 {
10347 case OPTION_CONSTRUCT_FLOATS:
10348 mips_disable_float_construction = 0;
10349 break;
10350
10351 case OPTION_NO_CONSTRUCT_FLOATS:
10352 mips_disable_float_construction = 1;
10353 break;
10354
10355 case OPTION_TRAP:
10356 mips_trap = 1;
10357 break;
10358
10359 case OPTION_BREAK:
10360 mips_trap = 0;
10361 break;
10362
10363 case OPTION_EB:
10364 target_big_endian = 1;
10365 break;
10366
10367 case OPTION_EL:
10368 target_big_endian = 0;
10369 break;
10370
10371 case 'O':
10372 if (arg && arg[1] == '0')
10373 mips_optimize = 1;
10374 else
10375 mips_optimize = 2;
10376 break;
10377
10378 case 'g':
10379 if (arg == NULL)
10380 mips_debug = 2;
10381 else
10382 mips_debug = atoi (arg);
10383 /* When the MIPS assembler sees -g or -g2, it does not do
10384 optimizations which limit full symbolic debugging. We take
10385 that to be equivalent to -O0. */
10386 if (mips_debug == 2)
10387 mips_optimize = 1;
10388 break;
10389
10390 case OPTION_MIPS1:
10391 file_mips_isa = ISA_MIPS1;
10392 break;
10393
10394 case OPTION_MIPS2:
10395 file_mips_isa = ISA_MIPS2;
10396 break;
10397
10398 case OPTION_MIPS3:
10399 file_mips_isa = ISA_MIPS3;
10400 break;
10401
10402 case OPTION_MIPS4:
10403 file_mips_isa = ISA_MIPS4;
10404 break;
10405
10406 case OPTION_MIPS5:
10407 file_mips_isa = ISA_MIPS5;
10408 break;
10409
10410 case OPTION_MIPS32:
10411 file_mips_isa = ISA_MIPS32;
10412 break;
10413
10414 case OPTION_MIPS32R2:
10415 file_mips_isa = ISA_MIPS32R2;
10416 break;
10417
10418 case OPTION_MIPS64R2:
10419 file_mips_isa = ISA_MIPS64R2;
10420 break;
10421
10422 case OPTION_MIPS64:
10423 file_mips_isa = ISA_MIPS64;
10424 break;
10425
10426 case OPTION_MTUNE:
10427 mips_set_option_string (&mips_tune_string, arg);
10428 break;
10429
10430 case OPTION_MARCH:
10431 mips_set_option_string (&mips_arch_string, arg);
10432 break;
10433
10434 case OPTION_M4650:
10435 mips_set_option_string (&mips_arch_string, "4650");
10436 mips_set_option_string (&mips_tune_string, "4650");
10437 break;
10438
10439 case OPTION_NO_M4650:
10440 break;
10441
10442 case OPTION_M4010:
10443 mips_set_option_string (&mips_arch_string, "4010");
10444 mips_set_option_string (&mips_tune_string, "4010");
10445 break;
10446
10447 case OPTION_NO_M4010:
10448 break;
10449
10450 case OPTION_M4100:
10451 mips_set_option_string (&mips_arch_string, "4100");
10452 mips_set_option_string (&mips_tune_string, "4100");
10453 break;
10454
10455 case OPTION_NO_M4100:
10456 break;
10457
10458 case OPTION_M3900:
10459 mips_set_option_string (&mips_arch_string, "3900");
10460 mips_set_option_string (&mips_tune_string, "3900");
10461 break;
10462
10463 case OPTION_NO_M3900:
10464 break;
10465
10466 case OPTION_MDMX:
10467 mips_opts.ase_mdmx = 1;
10468 break;
10469
10470 case OPTION_NO_MDMX:
10471 mips_opts.ase_mdmx = 0;
10472 break;
10473
10474 case OPTION_MIPS16:
10475 mips_opts.mips16 = 1;
10476 mips_no_prev_insn (FALSE);
10477 break;
10478
10479 case OPTION_NO_MIPS16:
10480 mips_opts.mips16 = 0;
10481 mips_no_prev_insn (FALSE);
10482 break;
10483
10484 case OPTION_MIPS3D:
10485 mips_opts.ase_mips3d = 1;
10486 break;
10487
10488 case OPTION_NO_MIPS3D:
10489 mips_opts.ase_mips3d = 0;
10490 break;
10491
10492 case OPTION_MEMBEDDED_PIC:
10493 mips_pic = EMBEDDED_PIC;
10494 if (USE_GLOBAL_POINTER_OPT && g_switch_seen)
10495 {
10496 as_bad (_("-G may not be used with embedded PIC code"));
10497 return 0;
10498 }
10499 g_switch_value = 0x7fffffff;
10500 break;
10501
10502 case OPTION_FIX_VR4120:
10503 mips_fix_vr4120 = 1;
10504 break;
10505
10506 case OPTION_NO_FIX_VR4120:
10507 mips_fix_vr4120 = 0;
10508 break;
10509
10510 case OPTION_RELAX_BRANCH:
10511 mips_relax_branch = 1;
10512 break;
10513
10514 case OPTION_NO_RELAX_BRANCH:
10515 mips_relax_branch = 0;
10516 break;
10517
10518 #ifdef OBJ_ELF
10519 /* When generating ELF code, we permit -KPIC and -call_shared to
10520 select SVR4_PIC, and -non_shared to select no PIC. This is
10521 intended to be compatible with Irix 5. */
10522 case OPTION_CALL_SHARED:
10523 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10524 {
10525 as_bad (_("-call_shared is supported only for ELF format"));
10526 return 0;
10527 }
10528 mips_pic = SVR4_PIC;
10529 mips_abicalls = TRUE;
10530 if (g_switch_seen && g_switch_value != 0)
10531 {
10532 as_bad (_("-G may not be used with SVR4 PIC code"));
10533 return 0;
10534 }
10535 g_switch_value = 0;
10536 break;
10537
10538 case OPTION_NON_SHARED:
10539 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10540 {
10541 as_bad (_("-non_shared is supported only for ELF format"));
10542 return 0;
10543 }
10544 mips_pic = NO_PIC;
10545 mips_abicalls = FALSE;
10546 break;
10547
10548 /* The -xgot option tells the assembler to use 32 offsets when
10549 accessing the got in SVR4_PIC mode. It is for Irix
10550 compatibility. */
10551 case OPTION_XGOT:
10552 mips_big_got = 1;
10553 break;
10554 #endif /* OBJ_ELF */
10555
10556 case 'G':
10557 if (! USE_GLOBAL_POINTER_OPT)
10558 {
10559 as_bad (_("-G is not supported for this configuration"));
10560 return 0;
10561 }
10562 else if (mips_pic == SVR4_PIC || mips_pic == EMBEDDED_PIC)
10563 {
10564 as_bad (_("-G may not be used with SVR4 or embedded PIC code"));
10565 return 0;
10566 }
10567 else
10568 g_switch_value = atoi (arg);
10569 g_switch_seen = 1;
10570 break;
10571
10572 #ifdef OBJ_ELF
10573 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
10574 and -mabi=64. */
10575 case OPTION_32:
10576 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10577 {
10578 as_bad (_("-32 is supported for ELF format only"));
10579 return 0;
10580 }
10581 mips_abi = O32_ABI;
10582 break;
10583
10584 case OPTION_N32:
10585 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10586 {
10587 as_bad (_("-n32 is supported for ELF format only"));
10588 return 0;
10589 }
10590 mips_abi = N32_ABI;
10591 break;
10592
10593 case OPTION_64:
10594 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10595 {
10596 as_bad (_("-64 is supported for ELF format only"));
10597 return 0;
10598 }
10599 mips_abi = N64_ABI;
10600 if (! support_64bit_objects())
10601 as_fatal (_("No compiled in support for 64 bit object file format"));
10602 break;
10603 #endif /* OBJ_ELF */
10604
10605 case OPTION_GP32:
10606 file_mips_gp32 = 1;
10607 break;
10608
10609 case OPTION_GP64:
10610 file_mips_gp32 = 0;
10611 break;
10612
10613 case OPTION_FP32:
10614 file_mips_fp32 = 1;
10615 break;
10616
10617 case OPTION_FP64:
10618 file_mips_fp32 = 0;
10619 break;
10620
10621 #ifdef OBJ_ELF
10622 case OPTION_MABI:
10623 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10624 {
10625 as_bad (_("-mabi is supported for ELF format only"));
10626 return 0;
10627 }
10628 if (strcmp (arg, "32") == 0)
10629 mips_abi = O32_ABI;
10630 else if (strcmp (arg, "o64") == 0)
10631 mips_abi = O64_ABI;
10632 else if (strcmp (arg, "n32") == 0)
10633 mips_abi = N32_ABI;
10634 else if (strcmp (arg, "64") == 0)
10635 {
10636 mips_abi = N64_ABI;
10637 if (! support_64bit_objects())
10638 as_fatal (_("No compiled in support for 64 bit object file "
10639 "format"));
10640 }
10641 else if (strcmp (arg, "eabi") == 0)
10642 mips_abi = EABI_ABI;
10643 else
10644 {
10645 as_fatal (_("invalid abi -mabi=%s"), arg);
10646 return 0;
10647 }
10648 break;
10649 #endif /* OBJ_ELF */
10650
10651 case OPTION_M7000_HILO_FIX:
10652 mips_7000_hilo_fix = TRUE;
10653 break;
10654
10655 case OPTION_MNO_7000_HILO_FIX:
10656 mips_7000_hilo_fix = FALSE;
10657 break;
10658
10659 #ifdef OBJ_ELF
10660 case OPTION_MDEBUG:
10661 mips_flag_mdebug = TRUE;
10662 break;
10663
10664 case OPTION_NO_MDEBUG:
10665 mips_flag_mdebug = FALSE;
10666 break;
10667
10668 case OPTION_PDR:
10669 mips_flag_pdr = TRUE;
10670 break;
10671
10672 case OPTION_NO_PDR:
10673 mips_flag_pdr = FALSE;
10674 break;
10675 #endif /* OBJ_ELF */
10676
10677 default:
10678 return 0;
10679 }
10680
10681 return 1;
10682 }
10683 \f
10684 /* Set up globals to generate code for the ISA or processor
10685 described by INFO. */
10686
10687 static void
10688 mips_set_architecture (const struct mips_cpu_info *info)
10689 {
10690 if (info != 0)
10691 {
10692 file_mips_arch = info->cpu;
10693 mips_opts.arch = info->cpu;
10694 mips_opts.isa = info->isa;
10695 }
10696 }
10697
10698
10699 /* Likewise for tuning. */
10700
10701 static void
10702 mips_set_tune (const struct mips_cpu_info *info)
10703 {
10704 if (info != 0)
10705 mips_tune = info->cpu;
10706 }
10707
10708
10709 void
10710 mips_after_parse_args (void)
10711 {
10712 const struct mips_cpu_info *arch_info = 0;
10713 const struct mips_cpu_info *tune_info = 0;
10714
10715 /* GP relative stuff not working for PE */
10716 if (strncmp (TARGET_OS, "pe", 2) == 0
10717 && g_switch_value != 0)
10718 {
10719 if (g_switch_seen)
10720 as_bad (_("-G not supported in this configuration."));
10721 g_switch_value = 0;
10722 }
10723
10724 if (mips_abi == NO_ABI)
10725 mips_abi = MIPS_DEFAULT_ABI;
10726
10727 /* The following code determines the architecture and register size.
10728 Similar code was added to GCC 3.3 (see override_options() in
10729 config/mips/mips.c). The GAS and GCC code should be kept in sync
10730 as much as possible. */
10731
10732 if (mips_arch_string != 0)
10733 arch_info = mips_parse_cpu ("-march", mips_arch_string);
10734
10735 if (file_mips_isa != ISA_UNKNOWN)
10736 {
10737 /* Handle -mipsN. At this point, file_mips_isa contains the
10738 ISA level specified by -mipsN, while arch_info->isa contains
10739 the -march selection (if any). */
10740 if (arch_info != 0)
10741 {
10742 /* -march takes precedence over -mipsN, since it is more descriptive.
10743 There's no harm in specifying both as long as the ISA levels
10744 are the same. */
10745 if (file_mips_isa != arch_info->isa)
10746 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
10747 mips_cpu_info_from_isa (file_mips_isa)->name,
10748 mips_cpu_info_from_isa (arch_info->isa)->name);
10749 }
10750 else
10751 arch_info = mips_cpu_info_from_isa (file_mips_isa);
10752 }
10753
10754 if (arch_info == 0)
10755 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
10756
10757 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
10758 as_bad ("-march=%s is not compatible with the selected ABI",
10759 arch_info->name);
10760
10761 mips_set_architecture (arch_info);
10762
10763 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
10764 if (mips_tune_string != 0)
10765 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
10766
10767 if (tune_info == 0)
10768 mips_set_tune (arch_info);
10769 else
10770 mips_set_tune (tune_info);
10771
10772 if (file_mips_gp32 >= 0)
10773 {
10774 /* The user specified the size of the integer registers. Make sure
10775 it agrees with the ABI and ISA. */
10776 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
10777 as_bad (_("-mgp64 used with a 32-bit processor"));
10778 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
10779 as_bad (_("-mgp32 used with a 64-bit ABI"));
10780 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
10781 as_bad (_("-mgp64 used with a 32-bit ABI"));
10782 }
10783 else
10784 {
10785 /* Infer the integer register size from the ABI and processor.
10786 Restrict ourselves to 32-bit registers if that's all the
10787 processor has, or if the ABI cannot handle 64-bit registers. */
10788 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
10789 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
10790 }
10791
10792 /* ??? GAS treats single-float processors as though they had 64-bit
10793 float registers (although it complains when double-precision
10794 instructions are used). As things stand, saying they have 32-bit
10795 registers would lead to spurious "register must be even" messages.
10796 So here we assume float registers are always the same size as
10797 integer ones, unless the user says otherwise. */
10798 if (file_mips_fp32 < 0)
10799 file_mips_fp32 = file_mips_gp32;
10800
10801 /* End of GCC-shared inference code. */
10802
10803 /* This flag is set when we have a 64-bit capable CPU but use only
10804 32-bit wide registers. Note that EABI does not use it. */
10805 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
10806 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
10807 || mips_abi == O32_ABI))
10808 mips_32bitmode = 1;
10809
10810 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
10811 as_bad (_("trap exception not supported at ISA 1"));
10812
10813 /* If the selected architecture includes support for ASEs, enable
10814 generation of code for them. */
10815 if (mips_opts.mips16 == -1)
10816 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
10817 if (mips_opts.ase_mips3d == -1)
10818 mips_opts.ase_mips3d = (CPU_HAS_MIPS3D (file_mips_arch)) ? 1 : 0;
10819 if (mips_opts.ase_mdmx == -1)
10820 mips_opts.ase_mdmx = (CPU_HAS_MDMX (file_mips_arch)) ? 1 : 0;
10821
10822 file_mips_isa = mips_opts.isa;
10823 file_ase_mips16 = mips_opts.mips16;
10824 file_ase_mips3d = mips_opts.ase_mips3d;
10825 file_ase_mdmx = mips_opts.ase_mdmx;
10826 mips_opts.gp32 = file_mips_gp32;
10827 mips_opts.fp32 = file_mips_fp32;
10828
10829 if (mips_flag_mdebug < 0)
10830 {
10831 #ifdef OBJ_MAYBE_ECOFF
10832 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
10833 mips_flag_mdebug = 1;
10834 else
10835 #endif /* OBJ_MAYBE_ECOFF */
10836 mips_flag_mdebug = 0;
10837 }
10838 }
10839 \f
10840 void
10841 mips_init_after_args (void)
10842 {
10843 /* initialize opcodes */
10844 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
10845 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
10846 }
10847
10848 long
10849 md_pcrel_from (fixS *fixP)
10850 {
10851 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
10852 switch (fixP->fx_r_type)
10853 {
10854 case BFD_RELOC_16_PCREL_S2:
10855 case BFD_RELOC_MIPS_JMP:
10856 /* Return the address of the delay slot. */
10857 return addr + 4;
10858 default:
10859 return addr;
10860 }
10861 }
10862
10863 /* This is called before the symbol table is processed. In order to
10864 work with gcc when using mips-tfile, we must keep all local labels.
10865 However, in other cases, we want to discard them. If we were
10866 called with -g, but we didn't see any debugging information, it may
10867 mean that gcc is smuggling debugging information through to
10868 mips-tfile, in which case we must generate all local labels. */
10869
10870 void
10871 mips_frob_file_before_adjust (void)
10872 {
10873 #ifndef NO_ECOFF_DEBUGGING
10874 if (ECOFF_DEBUGGING
10875 && mips_debug != 0
10876 && ! ecoff_debugging_seen)
10877 flag_keep_locals = 1;
10878 #endif
10879 }
10880
10881 /* Sort any unmatched HI16_S relocs so that they immediately precede
10882 the corresponding LO reloc. This is called before md_apply_fix3 and
10883 tc_gen_reloc. Unmatched HI16_S relocs can only be generated by
10884 explicit use of the %hi modifier. */
10885
10886 void
10887 mips_frob_file (void)
10888 {
10889 struct mips_hi_fixup *l;
10890
10891 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
10892 {
10893 segment_info_type *seginfo;
10894 int pass;
10895
10896 assert (reloc_needs_lo_p (l->fixp->fx_r_type));
10897
10898 /* If a GOT16 relocation turns out to be against a global symbol,
10899 there isn't supposed to be a matching LO. */
10900 if (l->fixp->fx_r_type == BFD_RELOC_MIPS_GOT16
10901 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
10902 continue;
10903
10904 /* Check quickly whether the next fixup happens to be a matching %lo. */
10905 if (fixup_has_matching_lo_p (l->fixp))
10906 continue;
10907
10908 /* Look through the fixups for this segment for a matching %lo.
10909 When we find one, move the %hi just in front of it. We do
10910 this in two passes. In the first pass, we try to find a
10911 unique %lo. In the second pass, we permit multiple %hi
10912 relocs for a single %lo (this is a GNU extension). */
10913 seginfo = seg_info (l->seg);
10914 for (pass = 0; pass < 2; pass++)
10915 {
10916 fixS *f, *prev;
10917
10918 prev = NULL;
10919 for (f = seginfo->fix_root; f != NULL; f = f->fx_next)
10920 {
10921 /* Check whether this is a %lo fixup which matches l->fixp. */
10922 if (f->fx_r_type == BFD_RELOC_LO16
10923 && f->fx_addsy == l->fixp->fx_addsy
10924 && f->fx_offset == l->fixp->fx_offset
10925 && (pass == 1
10926 || prev == NULL
10927 || !reloc_needs_lo_p (prev->fx_r_type)
10928 || !fixup_has_matching_lo_p (prev)))
10929 {
10930 fixS **pf;
10931
10932 /* Move l->fixp before f. */
10933 for (pf = &seginfo->fix_root;
10934 *pf != l->fixp;
10935 pf = &(*pf)->fx_next)
10936 assert (*pf != NULL);
10937
10938 *pf = l->fixp->fx_next;
10939
10940 l->fixp->fx_next = f;
10941 if (prev == NULL)
10942 seginfo->fix_root = l->fixp;
10943 else
10944 prev->fx_next = l->fixp;
10945
10946 break;
10947 }
10948
10949 prev = f;
10950 }
10951
10952 if (f != NULL)
10953 break;
10954
10955 #if 0 /* GCC code motion plus incomplete dead code elimination
10956 can leave a %hi without a %lo. */
10957 if (pass == 1)
10958 as_warn_where (l->fixp->fx_file, l->fixp->fx_line,
10959 _("Unmatched %%hi reloc"));
10960 #endif
10961 }
10962 }
10963 }
10964
10965 /* When generating embedded PIC code we need to use a special
10966 relocation to represent the difference of two symbols in the .text
10967 section (switch tables use a difference of this sort). See
10968 include/coff/mips.h for details. This macro checks whether this
10969 fixup requires the special reloc. */
10970 #define SWITCH_TABLE(fixp) \
10971 ((fixp)->fx_r_type == BFD_RELOC_32 \
10972 && OUTPUT_FLAVOR != bfd_target_elf_flavour \
10973 && (fixp)->fx_addsy != NULL \
10974 && (fixp)->fx_subsy != NULL \
10975 && S_GET_SEGMENT ((fixp)->fx_addsy) == text_section \
10976 && S_GET_SEGMENT ((fixp)->fx_subsy) == text_section)
10977
10978 /* When generating embedded PIC code we must keep all PC relative
10979 relocations, in case the linker has to relax a call. We also need
10980 to keep relocations for switch table entries.
10981
10982 We may have combined relocations without symbols in the N32/N64 ABI.
10983 We have to prevent gas from dropping them. */
10984
10985 int
10986 mips_force_relocation (fixS *fixp)
10987 {
10988 if (generic_force_reloc (fixp))
10989 return 1;
10990
10991 if (HAVE_NEWABI
10992 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
10993 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
10994 || fixp->fx_r_type == BFD_RELOC_HI16_S
10995 || fixp->fx_r_type == BFD_RELOC_LO16))
10996 return 1;
10997
10998 return (mips_pic == EMBEDDED_PIC
10999 && (fixp->fx_pcrel
11000 || SWITCH_TABLE (fixp)
11001 || fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S
11002 || fixp->fx_r_type == BFD_RELOC_PCREL_LO16));
11003 }
11004
11005 /* This hook is called before a fix is simplified. We don't really
11006 decide whether to skip a fix here. Rather, we turn global symbols
11007 used as branch targets into local symbols, such that they undergo
11008 simplification. We can only do this if the symbol is defined and
11009 it is in the same section as the branch. If this doesn't hold, we
11010 emit a better error message than just saying the relocation is not
11011 valid for the selected object format.
11012
11013 FIXP is the fix-up we're going to try to simplify, SEG is the
11014 segment in which the fix up occurs. The return value should be
11015 non-zero to indicate the fix-up is valid for further
11016 simplifications. */
11017
11018 int
11019 mips_validate_fix (struct fix *fixP, asection *seg)
11020 {
11021 /* There's a lot of discussion on whether it should be possible to
11022 use R_MIPS_PC16 to represent branch relocations. The outcome
11023 seems to be that it can, but gas/bfd are very broken in creating
11024 RELA relocations for this, so for now we only accept branches to
11025 symbols in the same section. Anything else is of dubious value,
11026 since there's no guarantee that at link time the symbol would be
11027 in range. Even for branches to local symbols this is arguably
11028 wrong, since it we assume the symbol is not going to be
11029 overridden, which should be possible per ELF library semantics,
11030 but then, there isn't a dynamic relocation that could be used to
11031 this effect, and the target would likely be out of range as well.
11032
11033 Unfortunately, it seems that there is too much code out there
11034 that relies on branches to symbols that are global to be resolved
11035 as if they were local, like the IRIX tools do, so we do it as
11036 well, but with a warning so that people are reminded to fix their
11037 code. If we ever get back to using R_MIPS_PC16 for branch
11038 targets, this entire block should go away (and probably the
11039 whole function). */
11040
11041 if (fixP->fx_r_type == BFD_RELOC_16_PCREL_S2
11042 && (((OUTPUT_FLAVOR == bfd_target_ecoff_flavour
11043 || OUTPUT_FLAVOR == bfd_target_elf_flavour)
11044 && mips_pic != EMBEDDED_PIC)
11045 || bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16_PCREL_S2) == NULL)
11046 && fixP->fx_addsy)
11047 {
11048 if (! S_IS_DEFINED (fixP->fx_addsy))
11049 {
11050 as_bad_where (fixP->fx_file, fixP->fx_line,
11051 _("Cannot branch to undefined symbol."));
11052 /* Avoid any further errors about this fixup. */
11053 fixP->fx_done = 1;
11054 }
11055 else if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
11056 {
11057 as_bad_where (fixP->fx_file, fixP->fx_line,
11058 _("Cannot branch to symbol in another section."));
11059 fixP->fx_done = 1;
11060 }
11061 else if (S_IS_EXTERNAL (fixP->fx_addsy))
11062 {
11063 symbolS *sym = fixP->fx_addsy;
11064
11065 if (mips_pic == SVR4_PIC)
11066 as_warn_where (fixP->fx_file, fixP->fx_line,
11067 _("Pretending global symbol used as branch target is local."));
11068
11069 fixP->fx_addsy = symbol_create (S_GET_NAME (sym),
11070 S_GET_SEGMENT (sym),
11071 S_GET_VALUE (sym),
11072 symbol_get_frag (sym));
11073 copy_symbol_attributes (fixP->fx_addsy, sym);
11074 S_CLEAR_EXTERNAL (fixP->fx_addsy);
11075 assert (symbol_resolved_p (sym));
11076 symbol_mark_resolved (fixP->fx_addsy);
11077 }
11078 }
11079
11080 return 1;
11081 }
11082
11083 /* Apply a fixup to the object file. */
11084
11085 void
11086 md_apply_fix3 (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11087 {
11088 bfd_byte *buf;
11089 long insn;
11090 static int previous_fx_r_type = 0;
11091 reloc_howto_type *howto;
11092
11093 /* We ignore generic BFD relocations we don't know about. */
11094 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
11095 if (! howto)
11096 return;
11097
11098 assert (fixP->fx_size == 4
11099 || fixP->fx_r_type == BFD_RELOC_16
11100 || fixP->fx_r_type == BFD_RELOC_64
11101 || fixP->fx_r_type == BFD_RELOC_CTOR
11102 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
11103 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
11104 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY);
11105
11106 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
11107
11108 /* We are not done if this is a composite relocation to set up gp. */
11109 if (fixP->fx_addsy == NULL && ! fixP->fx_pcrel
11110 && !(fixP->fx_r_type == BFD_RELOC_MIPS_SUB
11111 || (fixP->fx_r_type == BFD_RELOC_64
11112 && (previous_fx_r_type == BFD_RELOC_GPREL32
11113 || previous_fx_r_type == BFD_RELOC_GPREL16))
11114 || (previous_fx_r_type == BFD_RELOC_MIPS_SUB
11115 && (fixP->fx_r_type == BFD_RELOC_HI16_S
11116 || fixP->fx_r_type == BFD_RELOC_LO16))))
11117 fixP->fx_done = 1;
11118 previous_fx_r_type = fixP->fx_r_type;
11119
11120 switch (fixP->fx_r_type)
11121 {
11122 case BFD_RELOC_MIPS_JMP:
11123 case BFD_RELOC_MIPS_SHIFT5:
11124 case BFD_RELOC_MIPS_SHIFT6:
11125 case BFD_RELOC_MIPS_GOT_DISP:
11126 case BFD_RELOC_MIPS_GOT_PAGE:
11127 case BFD_RELOC_MIPS_GOT_OFST:
11128 case BFD_RELOC_MIPS_SUB:
11129 case BFD_RELOC_MIPS_INSERT_A:
11130 case BFD_RELOC_MIPS_INSERT_B:
11131 case BFD_RELOC_MIPS_DELETE:
11132 case BFD_RELOC_MIPS_HIGHEST:
11133 case BFD_RELOC_MIPS_HIGHER:
11134 case BFD_RELOC_MIPS_SCN_DISP:
11135 case BFD_RELOC_MIPS_REL16:
11136 case BFD_RELOC_MIPS_RELGOT:
11137 case BFD_RELOC_MIPS_JALR:
11138 case BFD_RELOC_HI16:
11139 case BFD_RELOC_HI16_S:
11140 case BFD_RELOC_GPREL16:
11141 case BFD_RELOC_MIPS_LITERAL:
11142 case BFD_RELOC_MIPS_CALL16:
11143 case BFD_RELOC_MIPS_GOT16:
11144 case BFD_RELOC_GPREL32:
11145 case BFD_RELOC_MIPS_GOT_HI16:
11146 case BFD_RELOC_MIPS_GOT_LO16:
11147 case BFD_RELOC_MIPS_CALL_HI16:
11148 case BFD_RELOC_MIPS_CALL_LO16:
11149 case BFD_RELOC_MIPS16_GPREL:
11150 if (fixP->fx_pcrel)
11151 as_bad_where (fixP->fx_file, fixP->fx_line,
11152 _("Invalid PC relative reloc"));
11153 /* Nothing needed to do. The value comes from the reloc entry */
11154 break;
11155
11156 case BFD_RELOC_MIPS16_JMP:
11157 /* We currently always generate a reloc against a symbol, which
11158 means that we don't want an addend even if the symbol is
11159 defined. */
11160 *valP = 0;
11161 break;
11162
11163 case BFD_RELOC_PCREL_HI16_S:
11164 /* The addend for this is tricky if it is internal, so we just
11165 do everything here rather than in bfd_install_relocation. */
11166 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && !fixP->fx_done)
11167 break;
11168 if (fixP->fx_addsy
11169 && (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_SECTION_SYM) == 0)
11170 {
11171 /* For an external symbol adjust by the address to make it
11172 pcrel_offset. We use the address of the RELLO reloc
11173 which follows this one. */
11174 *valP += (fixP->fx_next->fx_frag->fr_address
11175 + fixP->fx_next->fx_where);
11176 }
11177 *valP = ((*valP + 0x8000) >> 16) & 0xffff;
11178 if (target_big_endian)
11179 buf += 2;
11180 md_number_to_chars (buf, *valP, 2);
11181 break;
11182
11183 case BFD_RELOC_PCREL_LO16:
11184 /* The addend for this is tricky if it is internal, so we just
11185 do everything here rather than in bfd_install_relocation. */
11186 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && !fixP->fx_done)
11187 break;
11188 if (fixP->fx_addsy
11189 && (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_SECTION_SYM) == 0)
11190 *valP += fixP->fx_frag->fr_address + fixP->fx_where;
11191 if (target_big_endian)
11192 buf += 2;
11193 md_number_to_chars (buf, *valP, 2);
11194 break;
11195
11196 case BFD_RELOC_64:
11197 /* This is handled like BFD_RELOC_32, but we output a sign
11198 extended value if we are only 32 bits. */
11199 if (fixP->fx_done
11200 || (mips_pic == EMBEDDED_PIC && SWITCH_TABLE (fixP)))
11201 {
11202 if (8 <= sizeof (valueT))
11203 md_number_to_chars (buf, *valP, 8);
11204 else
11205 {
11206 valueT hiv;
11207
11208 if ((*valP & 0x80000000) != 0)
11209 hiv = 0xffffffff;
11210 else
11211 hiv = 0;
11212 md_number_to_chars ((char *)(buf + target_big_endian ? 4 : 0),
11213 *valP, 4);
11214 md_number_to_chars ((char *)(buf + target_big_endian ? 0 : 4),
11215 hiv, 4);
11216 }
11217 }
11218 break;
11219
11220 case BFD_RELOC_RVA:
11221 case BFD_RELOC_32:
11222 /* If we are deleting this reloc entry, we must fill in the
11223 value now. This can happen if we have a .word which is not
11224 resolved when it appears but is later defined. We also need
11225 to fill in the value if this is an embedded PIC switch table
11226 entry. */
11227 if (fixP->fx_done
11228 || (mips_pic == EMBEDDED_PIC && SWITCH_TABLE (fixP)))
11229 md_number_to_chars (buf, *valP, 4);
11230 break;
11231
11232 case BFD_RELOC_16:
11233 /* If we are deleting this reloc entry, we must fill in the
11234 value now. */
11235 assert (fixP->fx_size == 2);
11236 if (fixP->fx_done)
11237 md_number_to_chars (buf, *valP, 2);
11238 break;
11239
11240 case BFD_RELOC_LO16:
11241 /* When handling an embedded PIC switch statement, we can wind
11242 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
11243 if (fixP->fx_done)
11244 {
11245 if (*valP + 0x8000 > 0xffff)
11246 as_bad_where (fixP->fx_file, fixP->fx_line,
11247 _("relocation overflow"));
11248 if (target_big_endian)
11249 buf += 2;
11250 md_number_to_chars (buf, *valP, 2);
11251 }
11252 break;
11253
11254 case BFD_RELOC_16_PCREL_S2:
11255 if ((*valP & 0x3) != 0)
11256 as_bad_where (fixP->fx_file, fixP->fx_line,
11257 _("Branch to odd address (%lx)"), (long) *valP);
11258
11259 /*
11260 * We need to save the bits in the instruction since fixup_segment()
11261 * might be deleting the relocation entry (i.e., a branch within
11262 * the current segment).
11263 */
11264 if (! fixP->fx_done)
11265 break;
11266
11267 /* update old instruction data */
11268 if (target_big_endian)
11269 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
11270 else
11271 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
11272
11273 if (*valP + 0x20000 <= 0x3ffff)
11274 {
11275 insn |= (*valP >> 2) & 0xffff;
11276 md_number_to_chars (buf, insn, 4);
11277 }
11278 else if (mips_pic == NO_PIC
11279 && fixP->fx_done
11280 && fixP->fx_frag->fr_address >= text_section->vma
11281 && (fixP->fx_frag->fr_address
11282 < text_section->vma + text_section->_raw_size)
11283 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
11284 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
11285 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
11286 {
11287 /* The branch offset is too large. If this is an
11288 unconditional branch, and we are not generating PIC code,
11289 we can convert it to an absolute jump instruction. */
11290 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
11291 insn = 0x0c000000; /* jal */
11292 else
11293 insn = 0x08000000; /* j */
11294 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
11295 fixP->fx_done = 0;
11296 fixP->fx_addsy = section_symbol (text_section);
11297 *valP += md_pcrel_from (fixP);
11298 md_number_to_chars (buf, insn, 4);
11299 }
11300 else
11301 {
11302 /* If we got here, we have branch-relaxation disabled,
11303 and there's nothing we can do to fix this instruction
11304 without turning it into a longer sequence. */
11305 as_bad_where (fixP->fx_file, fixP->fx_line,
11306 _("Branch out of range"));
11307 }
11308 break;
11309
11310 case BFD_RELOC_VTABLE_INHERIT:
11311 fixP->fx_done = 0;
11312 if (fixP->fx_addsy
11313 && !S_IS_DEFINED (fixP->fx_addsy)
11314 && !S_IS_WEAK (fixP->fx_addsy))
11315 S_SET_WEAK (fixP->fx_addsy);
11316 break;
11317
11318 case BFD_RELOC_VTABLE_ENTRY:
11319 fixP->fx_done = 0;
11320 break;
11321
11322 default:
11323 internalError ();
11324 }
11325
11326 /* Remember value for tc_gen_reloc. */
11327 fixP->fx_addnumber = *valP;
11328 }
11329
11330 #if 0
11331 void
11332 printInsn (unsigned long oc)
11333 {
11334 const struct mips_opcode *p;
11335 int treg, sreg, dreg, shamt;
11336 short imm;
11337 const char *args;
11338 int i;
11339
11340 for (i = 0; i < NUMOPCODES; ++i)
11341 {
11342 p = &mips_opcodes[i];
11343 if (((oc & p->mask) == p->match) && (p->pinfo != INSN_MACRO))
11344 {
11345 printf ("%08lx %s\t", oc, p->name);
11346 treg = (oc >> 16) & 0x1f;
11347 sreg = (oc >> 21) & 0x1f;
11348 dreg = (oc >> 11) & 0x1f;
11349 shamt = (oc >> 6) & 0x1f;
11350 imm = oc;
11351 for (args = p->args;; ++args)
11352 {
11353 switch (*args)
11354 {
11355 case '\0':
11356 printf ("\n");
11357 break;
11358
11359 case ',':
11360 case '(':
11361 case ')':
11362 printf ("%c", *args);
11363 continue;
11364
11365 case 'r':
11366 assert (treg == sreg);
11367 printf ("$%d,$%d", treg, sreg);
11368 continue;
11369
11370 case 'd':
11371 case 'G':
11372 printf ("$%d", dreg);
11373 continue;
11374
11375 case 't':
11376 case 'E':
11377 printf ("$%d", treg);
11378 continue;
11379
11380 case 'k':
11381 printf ("0x%x", treg);
11382 continue;
11383
11384 case 'b':
11385 case 's':
11386 printf ("$%d", sreg);
11387 continue;
11388
11389 case 'a':
11390 printf ("0x%08lx", oc & 0x1ffffff);
11391 continue;
11392
11393 case 'i':
11394 case 'j':
11395 case 'o':
11396 case 'u':
11397 printf ("%d", imm);
11398 continue;
11399
11400 case '<':
11401 case '>':
11402 printf ("$%d", shamt);
11403 continue;
11404
11405 default:
11406 internalError ();
11407 }
11408 break;
11409 }
11410 return;
11411 }
11412 }
11413 printf (_("%08lx UNDEFINED\n"), oc);
11414 }
11415 #endif
11416
11417 static symbolS *
11418 get_symbol (void)
11419 {
11420 int c;
11421 char *name;
11422 symbolS *p;
11423
11424 name = input_line_pointer;
11425 c = get_symbol_end ();
11426 p = (symbolS *) symbol_find_or_make (name);
11427 *input_line_pointer = c;
11428 return p;
11429 }
11430
11431 /* Align the current frag to a given power of two. The MIPS assembler
11432 also automatically adjusts any preceding label. */
11433
11434 static void
11435 mips_align (int to, int fill, symbolS *label)
11436 {
11437 mips_emit_delays (FALSE);
11438 frag_align (to, fill, 0);
11439 record_alignment (now_seg, to);
11440 if (label != NULL)
11441 {
11442 assert (S_GET_SEGMENT (label) == now_seg);
11443 symbol_set_frag (label, frag_now);
11444 S_SET_VALUE (label, (valueT) frag_now_fix ());
11445 }
11446 }
11447
11448 /* Align to a given power of two. .align 0 turns off the automatic
11449 alignment used by the data creating pseudo-ops. */
11450
11451 static void
11452 s_align (int x ATTRIBUTE_UNUSED)
11453 {
11454 register int temp;
11455 register long temp_fill;
11456 long max_alignment = 15;
11457
11458 /*
11459
11460 o Note that the assembler pulls down any immediately preceding label
11461 to the aligned address.
11462 o It's not documented but auto alignment is reinstated by
11463 a .align pseudo instruction.
11464 o Note also that after auto alignment is turned off the mips assembler
11465 issues an error on attempt to assemble an improperly aligned data item.
11466 We don't.
11467
11468 */
11469
11470 temp = get_absolute_expression ();
11471 if (temp > max_alignment)
11472 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
11473 else if (temp < 0)
11474 {
11475 as_warn (_("Alignment negative: 0 assumed."));
11476 temp = 0;
11477 }
11478 if (*input_line_pointer == ',')
11479 {
11480 ++input_line_pointer;
11481 temp_fill = get_absolute_expression ();
11482 }
11483 else
11484 temp_fill = 0;
11485 if (temp)
11486 {
11487 auto_align = 1;
11488 mips_align (temp, (int) temp_fill,
11489 insn_labels != NULL ? insn_labels->label : NULL);
11490 }
11491 else
11492 {
11493 auto_align = 0;
11494 }
11495
11496 demand_empty_rest_of_line ();
11497 }
11498
11499 void
11500 mips_flush_pending_output (void)
11501 {
11502 mips_emit_delays (FALSE);
11503 mips_clear_insn_labels ();
11504 }
11505
11506 static void
11507 s_change_sec (int sec)
11508 {
11509 segT seg;
11510
11511 /* When generating embedded PIC code, we only use the .text, .lit8,
11512 .sdata and .sbss sections. We change the .data and .rdata
11513 pseudo-ops to use .sdata. */
11514 if (mips_pic == EMBEDDED_PIC
11515 && (sec == 'd' || sec == 'r'))
11516 sec = 's';
11517
11518 #ifdef OBJ_ELF
11519 /* The ELF backend needs to know that we are changing sections, so
11520 that .previous works correctly. We could do something like check
11521 for an obj_section_change_hook macro, but that might be confusing
11522 as it would not be appropriate to use it in the section changing
11523 functions in read.c, since obj-elf.c intercepts those. FIXME:
11524 This should be cleaner, somehow. */
11525 obj_elf_section_change_hook ();
11526 #endif
11527
11528 mips_emit_delays (FALSE);
11529 switch (sec)
11530 {
11531 case 't':
11532 s_text (0);
11533 break;
11534 case 'd':
11535 s_data (0);
11536 break;
11537 case 'b':
11538 subseg_set (bss_section, (subsegT) get_absolute_expression ());
11539 demand_empty_rest_of_line ();
11540 break;
11541
11542 case 'r':
11543 if (USE_GLOBAL_POINTER_OPT)
11544 {
11545 seg = subseg_new (RDATA_SECTION_NAME,
11546 (subsegT) get_absolute_expression ());
11547 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11548 {
11549 bfd_set_section_flags (stdoutput, seg,
11550 (SEC_ALLOC
11551 | SEC_LOAD
11552 | SEC_READONLY
11553 | SEC_RELOC
11554 | SEC_DATA));
11555 if (strcmp (TARGET_OS, "elf") != 0)
11556 record_alignment (seg, 4);
11557 }
11558 demand_empty_rest_of_line ();
11559 }
11560 else
11561 {
11562 as_bad (_("No read only data section in this object file format"));
11563 demand_empty_rest_of_line ();
11564 return;
11565 }
11566 break;
11567
11568 case 's':
11569 if (USE_GLOBAL_POINTER_OPT)
11570 {
11571 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
11572 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11573 {
11574 bfd_set_section_flags (stdoutput, seg,
11575 SEC_ALLOC | SEC_LOAD | SEC_RELOC
11576 | SEC_DATA);
11577 if (strcmp (TARGET_OS, "elf") != 0)
11578 record_alignment (seg, 4);
11579 }
11580 demand_empty_rest_of_line ();
11581 break;
11582 }
11583 else
11584 {
11585 as_bad (_("Global pointers not supported; recompile -G 0"));
11586 demand_empty_rest_of_line ();
11587 return;
11588 }
11589 }
11590
11591 auto_align = 1;
11592 }
11593
11594 void
11595 s_change_section (int ignore ATTRIBUTE_UNUSED)
11596 {
11597 #ifdef OBJ_ELF
11598 char *section_name;
11599 char c;
11600 char next_c = 0;
11601 int section_type;
11602 int section_flag;
11603 int section_entry_size;
11604 int section_alignment;
11605
11606 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
11607 return;
11608
11609 section_name = input_line_pointer;
11610 c = get_symbol_end ();
11611 if (c)
11612 next_c = *(input_line_pointer + 1);
11613
11614 /* Do we have .section Name<,"flags">? */
11615 if (c != ',' || (c == ',' && next_c == '"'))
11616 {
11617 /* just after name is now '\0'. */
11618 *input_line_pointer = c;
11619 input_line_pointer = section_name;
11620 obj_elf_section (ignore);
11621 return;
11622 }
11623 input_line_pointer++;
11624
11625 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
11626 if (c == ',')
11627 section_type = get_absolute_expression ();
11628 else
11629 section_type = 0;
11630 if (*input_line_pointer++ == ',')
11631 section_flag = get_absolute_expression ();
11632 else
11633 section_flag = 0;
11634 if (*input_line_pointer++ == ',')
11635 section_entry_size = get_absolute_expression ();
11636 else
11637 section_entry_size = 0;
11638 if (*input_line_pointer++ == ',')
11639 section_alignment = get_absolute_expression ();
11640 else
11641 section_alignment = 0;
11642
11643 section_name = xstrdup (section_name);
11644
11645 /* When using the generic form of .section (as implemented by obj-elf.c),
11646 there's no way to set the section type to SHT_MIPS_DWARF. Users have
11647 traditionally had to fall back on the more common @progbits instead.
11648
11649 There's nothing really harmful in this, since bfd will correct
11650 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
11651 means that, for backwards compatibiltiy, the special_section entries
11652 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
11653
11654 Even so, we shouldn't force users of the MIPS .section syntax to
11655 incorrectly label the sections as SHT_PROGBITS. The best compromise
11656 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
11657 generic type-checking code. */
11658 if (section_type == SHT_MIPS_DWARF)
11659 section_type = SHT_PROGBITS;
11660
11661 obj_elf_change_section (section_name, section_type, section_flag,
11662 section_entry_size, 0, 0, 0);
11663
11664 if (now_seg->name != section_name)
11665 free (section_name);
11666 #endif /* OBJ_ELF */
11667 }
11668
11669 void
11670 mips_enable_auto_align (void)
11671 {
11672 auto_align = 1;
11673 }
11674
11675 static void
11676 s_cons (int log_size)
11677 {
11678 symbolS *label;
11679
11680 label = insn_labels != NULL ? insn_labels->label : NULL;
11681 mips_emit_delays (FALSE);
11682 if (log_size > 0 && auto_align)
11683 mips_align (log_size, 0, label);
11684 mips_clear_insn_labels ();
11685 cons (1 << log_size);
11686 }
11687
11688 static void
11689 s_float_cons (int type)
11690 {
11691 symbolS *label;
11692
11693 label = insn_labels != NULL ? insn_labels->label : NULL;
11694
11695 mips_emit_delays (FALSE);
11696
11697 if (auto_align)
11698 {
11699 if (type == 'd')
11700 mips_align (3, 0, label);
11701 else
11702 mips_align (2, 0, label);
11703 }
11704
11705 mips_clear_insn_labels ();
11706
11707 float_cons (type);
11708 }
11709
11710 /* Handle .globl. We need to override it because on Irix 5 you are
11711 permitted to say
11712 .globl foo .text
11713 where foo is an undefined symbol, to mean that foo should be
11714 considered to be the address of a function. */
11715
11716 static void
11717 s_mips_globl (int x ATTRIBUTE_UNUSED)
11718 {
11719 char *name;
11720 int c;
11721 symbolS *symbolP;
11722 flagword flag;
11723
11724 name = input_line_pointer;
11725 c = get_symbol_end ();
11726 symbolP = symbol_find_or_make (name);
11727 *input_line_pointer = c;
11728 SKIP_WHITESPACE ();
11729
11730 /* On Irix 5, every global symbol that is not explicitly labelled as
11731 being a function is apparently labelled as being an object. */
11732 flag = BSF_OBJECT;
11733
11734 if (! is_end_of_line[(unsigned char) *input_line_pointer])
11735 {
11736 char *secname;
11737 asection *sec;
11738
11739 secname = input_line_pointer;
11740 c = get_symbol_end ();
11741 sec = bfd_get_section_by_name (stdoutput, secname);
11742 if (sec == NULL)
11743 as_bad (_("%s: no such section"), secname);
11744 *input_line_pointer = c;
11745
11746 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
11747 flag = BSF_FUNCTION;
11748 }
11749
11750 symbol_get_bfdsym (symbolP)->flags |= flag;
11751
11752 S_SET_EXTERNAL (symbolP);
11753 demand_empty_rest_of_line ();
11754 }
11755
11756 static void
11757 s_option (int x ATTRIBUTE_UNUSED)
11758 {
11759 char *opt;
11760 char c;
11761
11762 opt = input_line_pointer;
11763 c = get_symbol_end ();
11764
11765 if (*opt == 'O')
11766 {
11767 /* FIXME: What does this mean? */
11768 }
11769 else if (strncmp (opt, "pic", 3) == 0)
11770 {
11771 int i;
11772
11773 i = atoi (opt + 3);
11774 if (i == 0)
11775 mips_pic = NO_PIC;
11776 else if (i == 2)
11777 {
11778 mips_pic = SVR4_PIC;
11779 mips_abicalls = TRUE;
11780 }
11781 else
11782 as_bad (_(".option pic%d not supported"), i);
11783
11784 if (USE_GLOBAL_POINTER_OPT && mips_pic == SVR4_PIC)
11785 {
11786 if (g_switch_seen && g_switch_value != 0)
11787 as_warn (_("-G may not be used with SVR4 PIC code"));
11788 g_switch_value = 0;
11789 bfd_set_gp_size (stdoutput, 0);
11790 }
11791 }
11792 else
11793 as_warn (_("Unrecognized option \"%s\""), opt);
11794
11795 *input_line_pointer = c;
11796 demand_empty_rest_of_line ();
11797 }
11798
11799 /* This structure is used to hold a stack of .set values. */
11800
11801 struct mips_option_stack
11802 {
11803 struct mips_option_stack *next;
11804 struct mips_set_options options;
11805 };
11806
11807 static struct mips_option_stack *mips_opts_stack;
11808
11809 /* Handle the .set pseudo-op. */
11810
11811 static void
11812 s_mipsset (int x ATTRIBUTE_UNUSED)
11813 {
11814 char *name = input_line_pointer, ch;
11815
11816 while (!is_end_of_line[(unsigned char) *input_line_pointer])
11817 ++input_line_pointer;
11818 ch = *input_line_pointer;
11819 *input_line_pointer = '\0';
11820
11821 if (strcmp (name, "reorder") == 0)
11822 {
11823 if (mips_opts.noreorder && prev_nop_frag != NULL)
11824 {
11825 /* If we still have pending nops, we can discard them. The
11826 usual nop handling will insert any that are still
11827 needed. */
11828 prev_nop_frag->fr_fix -= (prev_nop_frag_holds
11829 * (mips_opts.mips16 ? 2 : 4));
11830 prev_nop_frag = NULL;
11831 }
11832 mips_opts.noreorder = 0;
11833 }
11834 else if (strcmp (name, "noreorder") == 0)
11835 {
11836 mips_emit_delays (TRUE);
11837 mips_opts.noreorder = 1;
11838 mips_any_noreorder = 1;
11839 }
11840 else if (strcmp (name, "at") == 0)
11841 {
11842 mips_opts.noat = 0;
11843 }
11844 else if (strcmp (name, "noat") == 0)
11845 {
11846 mips_opts.noat = 1;
11847 }
11848 else if (strcmp (name, "macro") == 0)
11849 {
11850 mips_opts.warn_about_macros = 0;
11851 }
11852 else if (strcmp (name, "nomacro") == 0)
11853 {
11854 if (mips_opts.noreorder == 0)
11855 as_bad (_("`noreorder' must be set before `nomacro'"));
11856 mips_opts.warn_about_macros = 1;
11857 }
11858 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
11859 {
11860 mips_opts.nomove = 0;
11861 }
11862 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
11863 {
11864 mips_opts.nomove = 1;
11865 }
11866 else if (strcmp (name, "bopt") == 0)
11867 {
11868 mips_opts.nobopt = 0;
11869 }
11870 else if (strcmp (name, "nobopt") == 0)
11871 {
11872 mips_opts.nobopt = 1;
11873 }
11874 else if (strcmp (name, "mips16") == 0
11875 || strcmp (name, "MIPS-16") == 0)
11876 mips_opts.mips16 = 1;
11877 else if (strcmp (name, "nomips16") == 0
11878 || strcmp (name, "noMIPS-16") == 0)
11879 mips_opts.mips16 = 0;
11880 else if (strcmp (name, "mips3d") == 0)
11881 mips_opts.ase_mips3d = 1;
11882 else if (strcmp (name, "nomips3d") == 0)
11883 mips_opts.ase_mips3d = 0;
11884 else if (strcmp (name, "mdmx") == 0)
11885 mips_opts.ase_mdmx = 1;
11886 else if (strcmp (name, "nomdmx") == 0)
11887 mips_opts.ase_mdmx = 0;
11888 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
11889 {
11890 int reset = 0;
11891
11892 /* Permit the user to change the ISA and architecture on the fly.
11893 Needless to say, misuse can cause serious problems. */
11894 if (strcmp (name, "mips0") == 0)
11895 {
11896 reset = 1;
11897 mips_opts.isa = file_mips_isa;
11898 }
11899 else if (strcmp (name, "mips1") == 0)
11900 mips_opts.isa = ISA_MIPS1;
11901 else if (strcmp (name, "mips2") == 0)
11902 mips_opts.isa = ISA_MIPS2;
11903 else if (strcmp (name, "mips3") == 0)
11904 mips_opts.isa = ISA_MIPS3;
11905 else if (strcmp (name, "mips4") == 0)
11906 mips_opts.isa = ISA_MIPS4;
11907 else if (strcmp (name, "mips5") == 0)
11908 mips_opts.isa = ISA_MIPS5;
11909 else if (strcmp (name, "mips32") == 0)
11910 mips_opts.isa = ISA_MIPS32;
11911 else if (strcmp (name, "mips32r2") == 0)
11912 mips_opts.isa = ISA_MIPS32R2;
11913 else if (strcmp (name, "mips64") == 0)
11914 mips_opts.isa = ISA_MIPS64;
11915 else if (strcmp (name, "mips64r2") == 0)
11916 mips_opts.isa = ISA_MIPS64R2;
11917 else if (strcmp (name, "arch=default") == 0)
11918 {
11919 reset = 1;
11920 mips_opts.arch = file_mips_arch;
11921 mips_opts.isa = file_mips_isa;
11922 }
11923 else if (strncmp (name, "arch=", 5) == 0)
11924 {
11925 const struct mips_cpu_info *p;
11926
11927 p = mips_parse_cpu("internal use", name + 5);
11928 if (!p)
11929 as_bad (_("unknown architecture %s"), name + 5);
11930 else
11931 {
11932 mips_opts.arch = p->cpu;
11933 mips_opts.isa = p->isa;
11934 }
11935 }
11936 else
11937 as_bad (_("unknown ISA level %s"), name + 4);
11938
11939 switch (mips_opts.isa)
11940 {
11941 case 0:
11942 break;
11943 case ISA_MIPS1:
11944 case ISA_MIPS2:
11945 case ISA_MIPS32:
11946 case ISA_MIPS32R2:
11947 mips_opts.gp32 = 1;
11948 mips_opts.fp32 = 1;
11949 break;
11950 case ISA_MIPS3:
11951 case ISA_MIPS4:
11952 case ISA_MIPS5:
11953 case ISA_MIPS64:
11954 case ISA_MIPS64R2:
11955 mips_opts.gp32 = 0;
11956 mips_opts.fp32 = 0;
11957 break;
11958 default:
11959 as_bad (_("unknown ISA level %s"), name + 4);
11960 break;
11961 }
11962 if (reset)
11963 {
11964 mips_opts.gp32 = file_mips_gp32;
11965 mips_opts.fp32 = file_mips_fp32;
11966 }
11967 }
11968 else if (strcmp (name, "autoextend") == 0)
11969 mips_opts.noautoextend = 0;
11970 else if (strcmp (name, "noautoextend") == 0)
11971 mips_opts.noautoextend = 1;
11972 else if (strcmp (name, "push") == 0)
11973 {
11974 struct mips_option_stack *s;
11975
11976 s = (struct mips_option_stack *) xmalloc (sizeof *s);
11977 s->next = mips_opts_stack;
11978 s->options = mips_opts;
11979 mips_opts_stack = s;
11980 }
11981 else if (strcmp (name, "pop") == 0)
11982 {
11983 struct mips_option_stack *s;
11984
11985 s = mips_opts_stack;
11986 if (s == NULL)
11987 as_bad (_(".set pop with no .set push"));
11988 else
11989 {
11990 /* If we're changing the reorder mode we need to handle
11991 delay slots correctly. */
11992 if (s->options.noreorder && ! mips_opts.noreorder)
11993 mips_emit_delays (TRUE);
11994 else if (! s->options.noreorder && mips_opts.noreorder)
11995 {
11996 if (prev_nop_frag != NULL)
11997 {
11998 prev_nop_frag->fr_fix -= (prev_nop_frag_holds
11999 * (mips_opts.mips16 ? 2 : 4));
12000 prev_nop_frag = NULL;
12001 }
12002 }
12003
12004 mips_opts = s->options;
12005 mips_opts_stack = s->next;
12006 free (s);
12007 }
12008 }
12009 else
12010 {
12011 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
12012 }
12013 *input_line_pointer = ch;
12014 demand_empty_rest_of_line ();
12015 }
12016
12017 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
12018 .option pic2. It means to generate SVR4 PIC calls. */
12019
12020 static void
12021 s_abicalls (int ignore ATTRIBUTE_UNUSED)
12022 {
12023 mips_pic = SVR4_PIC;
12024 mips_abicalls = TRUE;
12025 if (USE_GLOBAL_POINTER_OPT)
12026 {
12027 if (g_switch_seen && g_switch_value != 0)
12028 as_warn (_("-G may not be used with SVR4 PIC code"));
12029 g_switch_value = 0;
12030 }
12031 bfd_set_gp_size (stdoutput, 0);
12032 demand_empty_rest_of_line ();
12033 }
12034
12035 /* Handle the .cpload pseudo-op. This is used when generating SVR4
12036 PIC code. It sets the $gp register for the function based on the
12037 function address, which is in the register named in the argument.
12038 This uses a relocation against _gp_disp, which is handled specially
12039 by the linker. The result is:
12040 lui $gp,%hi(_gp_disp)
12041 addiu $gp,$gp,%lo(_gp_disp)
12042 addu $gp,$gp,.cpload argument
12043 The .cpload argument is normally $25 == $t9. */
12044
12045 static void
12046 s_cpload (int ignore ATTRIBUTE_UNUSED)
12047 {
12048 expressionS ex;
12049
12050 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
12051 .cpload is ignored. */
12052 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
12053 {
12054 s_ignore (0);
12055 return;
12056 }
12057
12058 /* .cpload should be in a .set noreorder section. */
12059 if (mips_opts.noreorder == 0)
12060 as_warn (_(".cpload not in noreorder section"));
12061
12062 ex.X_op = O_symbol;
12063 ex.X_add_symbol = symbol_find_or_make ("_gp_disp");
12064 ex.X_op_symbol = NULL;
12065 ex.X_add_number = 0;
12066
12067 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
12068 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
12069
12070 macro_start ();
12071 macro_build_lui (&ex, mips_gp_register);
12072 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
12073 mips_gp_register, BFD_RELOC_LO16);
12074 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
12075 mips_gp_register, tc_get_register (0));
12076 macro_end ();
12077
12078 demand_empty_rest_of_line ();
12079 }
12080
12081 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
12082 .cpsetup $reg1, offset|$reg2, label
12083
12084 If offset is given, this results in:
12085 sd $gp, offset($sp)
12086 lui $gp, %hi(%neg(%gp_rel(label)))
12087 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
12088 daddu $gp, $gp, $reg1
12089
12090 If $reg2 is given, this results in:
12091 daddu $reg2, $gp, $0
12092 lui $gp, %hi(%neg(%gp_rel(label)))
12093 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
12094 daddu $gp, $gp, $reg1
12095 $reg1 is normally $25 == $t9. */
12096 static void
12097 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
12098 {
12099 expressionS ex_off;
12100 expressionS ex_sym;
12101 int reg1;
12102 char *f;
12103
12104 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
12105 We also need NewABI support. */
12106 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12107 {
12108 s_ignore (0);
12109 return;
12110 }
12111
12112 reg1 = tc_get_register (0);
12113 SKIP_WHITESPACE ();
12114 if (*input_line_pointer != ',')
12115 {
12116 as_bad (_("missing argument separator ',' for .cpsetup"));
12117 return;
12118 }
12119 else
12120 ++input_line_pointer;
12121 SKIP_WHITESPACE ();
12122 if (*input_line_pointer == '$')
12123 {
12124 mips_cpreturn_register = tc_get_register (0);
12125 mips_cpreturn_offset = -1;
12126 }
12127 else
12128 {
12129 mips_cpreturn_offset = get_absolute_expression ();
12130 mips_cpreturn_register = -1;
12131 }
12132 SKIP_WHITESPACE ();
12133 if (*input_line_pointer != ',')
12134 {
12135 as_bad (_("missing argument separator ',' for .cpsetup"));
12136 return;
12137 }
12138 else
12139 ++input_line_pointer;
12140 SKIP_WHITESPACE ();
12141 expression (&ex_sym);
12142
12143 macro_start ();
12144 if (mips_cpreturn_register == -1)
12145 {
12146 ex_off.X_op = O_constant;
12147 ex_off.X_add_symbol = NULL;
12148 ex_off.X_op_symbol = NULL;
12149 ex_off.X_add_number = mips_cpreturn_offset;
12150
12151 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
12152 BFD_RELOC_LO16, SP);
12153 }
12154 else
12155 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
12156 mips_gp_register, 0);
12157
12158 /* Ensure there's room for the next two instructions, so that `f'
12159 doesn't end up with an address in the wrong frag. */
12160 frag_grow (8);
12161 f = frag_more (0);
12162 macro_build (&ex_sym, "lui", "t,u", mips_gp_register, BFD_RELOC_GPREL16);
12163 fix_new (frag_now, f - frag_now->fr_literal,
12164 8, NULL, 0, 0, BFD_RELOC_MIPS_SUB);
12165 fix_new (frag_now, f - frag_now->fr_literal,
12166 4, NULL, 0, 0, BFD_RELOC_HI16_S);
12167
12168 f = frag_more (0);
12169 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
12170 mips_gp_register, BFD_RELOC_GPREL16);
12171 fix_new (frag_now, f - frag_now->fr_literal,
12172 8, NULL, 0, 0, BFD_RELOC_MIPS_SUB);
12173 fix_new (frag_now, f - frag_now->fr_literal,
12174 4, NULL, 0, 0, BFD_RELOC_LO16);
12175
12176 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
12177 mips_gp_register, reg1);
12178 macro_end ();
12179
12180 demand_empty_rest_of_line ();
12181 }
12182
12183 static void
12184 s_cplocal (int ignore ATTRIBUTE_UNUSED)
12185 {
12186 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
12187 .cplocal is ignored. */
12188 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12189 {
12190 s_ignore (0);
12191 return;
12192 }
12193
12194 mips_gp_register = tc_get_register (0);
12195 demand_empty_rest_of_line ();
12196 }
12197
12198 /* Handle the .cprestore pseudo-op. This stores $gp into a given
12199 offset from $sp. The offset is remembered, and after making a PIC
12200 call $gp is restored from that location. */
12201
12202 static void
12203 s_cprestore (int ignore ATTRIBUTE_UNUSED)
12204 {
12205 expressionS ex;
12206
12207 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
12208 .cprestore is ignored. */
12209 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
12210 {
12211 s_ignore (0);
12212 return;
12213 }
12214
12215 mips_cprestore_offset = get_absolute_expression ();
12216 mips_cprestore_valid = 1;
12217
12218 ex.X_op = O_constant;
12219 ex.X_add_symbol = NULL;
12220 ex.X_op_symbol = NULL;
12221 ex.X_add_number = mips_cprestore_offset;
12222
12223 macro_start ();
12224 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
12225 SP, HAVE_64BIT_ADDRESSES);
12226 macro_end ();
12227
12228 demand_empty_rest_of_line ();
12229 }
12230
12231 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
12232 was given in the preceding .cpsetup, it results in:
12233 ld $gp, offset($sp)
12234
12235 If a register $reg2 was given there, it results in:
12236 daddu $gp, $reg2, $0
12237 */
12238 static void
12239 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
12240 {
12241 expressionS ex;
12242
12243 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
12244 We also need NewABI support. */
12245 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12246 {
12247 s_ignore (0);
12248 return;
12249 }
12250
12251 macro_start ();
12252 if (mips_cpreturn_register == -1)
12253 {
12254 ex.X_op = O_constant;
12255 ex.X_add_symbol = NULL;
12256 ex.X_op_symbol = NULL;
12257 ex.X_add_number = mips_cpreturn_offset;
12258
12259 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
12260 }
12261 else
12262 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
12263 mips_cpreturn_register, 0);
12264 macro_end ();
12265
12266 demand_empty_rest_of_line ();
12267 }
12268
12269 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
12270 code. It sets the offset to use in gp_rel relocations. */
12271
12272 static void
12273 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
12274 {
12275 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
12276 We also need NewABI support. */
12277 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12278 {
12279 s_ignore (0);
12280 return;
12281 }
12282
12283 mips_gprel_offset = get_absolute_expression ();
12284
12285 demand_empty_rest_of_line ();
12286 }
12287
12288 /* Handle the .gpword pseudo-op. This is used when generating PIC
12289 code. It generates a 32 bit GP relative reloc. */
12290
12291 static void
12292 s_gpword (int ignore ATTRIBUTE_UNUSED)
12293 {
12294 symbolS *label;
12295 expressionS ex;
12296 char *p;
12297
12298 /* When not generating PIC code, this is treated as .word. */
12299 if (mips_pic != SVR4_PIC)
12300 {
12301 s_cons (2);
12302 return;
12303 }
12304
12305 label = insn_labels != NULL ? insn_labels->label : NULL;
12306 mips_emit_delays (TRUE);
12307 if (auto_align)
12308 mips_align (2, 0, label);
12309 mips_clear_insn_labels ();
12310
12311 expression (&ex);
12312
12313 if (ex.X_op != O_symbol || ex.X_add_number != 0)
12314 {
12315 as_bad (_("Unsupported use of .gpword"));
12316 ignore_rest_of_line ();
12317 }
12318
12319 p = frag_more (4);
12320 md_number_to_chars (p, 0, 4);
12321 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
12322 BFD_RELOC_GPREL32);
12323
12324 demand_empty_rest_of_line ();
12325 }
12326
12327 static void
12328 s_gpdword (int ignore ATTRIBUTE_UNUSED)
12329 {
12330 symbolS *label;
12331 expressionS ex;
12332 char *p;
12333
12334 /* When not generating PIC code, this is treated as .dword. */
12335 if (mips_pic != SVR4_PIC)
12336 {
12337 s_cons (3);
12338 return;
12339 }
12340
12341 label = insn_labels != NULL ? insn_labels->label : NULL;
12342 mips_emit_delays (TRUE);
12343 if (auto_align)
12344 mips_align (3, 0, label);
12345 mips_clear_insn_labels ();
12346
12347 expression (&ex);
12348
12349 if (ex.X_op != O_symbol || ex.X_add_number != 0)
12350 {
12351 as_bad (_("Unsupported use of .gpdword"));
12352 ignore_rest_of_line ();
12353 }
12354
12355 p = frag_more (8);
12356 md_number_to_chars (p, 0, 8);
12357 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
12358 BFD_RELOC_GPREL32);
12359
12360 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
12361 ex.X_op = O_absent;
12362 ex.X_add_symbol = 0;
12363 ex.X_add_number = 0;
12364 fix_new_exp (frag_now, p - frag_now->fr_literal, 8, &ex, FALSE,
12365 BFD_RELOC_64);
12366
12367 demand_empty_rest_of_line ();
12368 }
12369
12370 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
12371 tables in SVR4 PIC code. */
12372
12373 static void
12374 s_cpadd (int ignore ATTRIBUTE_UNUSED)
12375 {
12376 int reg;
12377
12378 /* This is ignored when not generating SVR4 PIC code. */
12379 if (mips_pic != SVR4_PIC)
12380 {
12381 s_ignore (0);
12382 return;
12383 }
12384
12385 /* Add $gp to the register named as an argument. */
12386 macro_start ();
12387 reg = tc_get_register (0);
12388 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
12389 macro_end ();
12390
12391 demand_empty_rest_of_line ();
12392 }
12393
12394 /* Handle the .insn pseudo-op. This marks instruction labels in
12395 mips16 mode. This permits the linker to handle them specially,
12396 such as generating jalx instructions when needed. We also make
12397 them odd for the duration of the assembly, in order to generate the
12398 right sort of code. We will make them even in the adjust_symtab
12399 routine, while leaving them marked. This is convenient for the
12400 debugger and the disassembler. The linker knows to make them odd
12401 again. */
12402
12403 static void
12404 s_insn (int ignore ATTRIBUTE_UNUSED)
12405 {
12406 mips16_mark_labels ();
12407
12408 demand_empty_rest_of_line ();
12409 }
12410
12411 /* Handle a .stabn directive. We need these in order to mark a label
12412 as being a mips16 text label correctly. Sometimes the compiler
12413 will emit a label, followed by a .stabn, and then switch sections.
12414 If the label and .stabn are in mips16 mode, then the label is
12415 really a mips16 text label. */
12416
12417 static void
12418 s_mips_stab (int type)
12419 {
12420 if (type == 'n')
12421 mips16_mark_labels ();
12422
12423 s_stab (type);
12424 }
12425
12426 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich.
12427 */
12428
12429 static void
12430 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
12431 {
12432 char *name;
12433 int c;
12434 symbolS *symbolP;
12435 expressionS exp;
12436
12437 name = input_line_pointer;
12438 c = get_symbol_end ();
12439 symbolP = symbol_find_or_make (name);
12440 S_SET_WEAK (symbolP);
12441 *input_line_pointer = c;
12442
12443 SKIP_WHITESPACE ();
12444
12445 if (! is_end_of_line[(unsigned char) *input_line_pointer])
12446 {
12447 if (S_IS_DEFINED (symbolP))
12448 {
12449 as_bad ("ignoring attempt to redefine symbol %s",
12450 S_GET_NAME (symbolP));
12451 ignore_rest_of_line ();
12452 return;
12453 }
12454
12455 if (*input_line_pointer == ',')
12456 {
12457 ++input_line_pointer;
12458 SKIP_WHITESPACE ();
12459 }
12460
12461 expression (&exp);
12462 if (exp.X_op != O_symbol)
12463 {
12464 as_bad ("bad .weakext directive");
12465 ignore_rest_of_line ();
12466 return;
12467 }
12468 symbol_set_value_expression (symbolP, &exp);
12469 }
12470
12471 demand_empty_rest_of_line ();
12472 }
12473
12474 /* Parse a register string into a number. Called from the ECOFF code
12475 to parse .frame. The argument is non-zero if this is the frame
12476 register, so that we can record it in mips_frame_reg. */
12477
12478 int
12479 tc_get_register (int frame)
12480 {
12481 int reg;
12482
12483 SKIP_WHITESPACE ();
12484 if (*input_line_pointer++ != '$')
12485 {
12486 as_warn (_("expected `$'"));
12487 reg = ZERO;
12488 }
12489 else if (ISDIGIT (*input_line_pointer))
12490 {
12491 reg = get_absolute_expression ();
12492 if (reg < 0 || reg >= 32)
12493 {
12494 as_warn (_("Bad register number"));
12495 reg = ZERO;
12496 }
12497 }
12498 else
12499 {
12500 if (strncmp (input_line_pointer, "ra", 2) == 0)
12501 {
12502 reg = RA;
12503 input_line_pointer += 2;
12504 }
12505 else if (strncmp (input_line_pointer, "fp", 2) == 0)
12506 {
12507 reg = FP;
12508 input_line_pointer += 2;
12509 }
12510 else if (strncmp (input_line_pointer, "sp", 2) == 0)
12511 {
12512 reg = SP;
12513 input_line_pointer += 2;
12514 }
12515 else if (strncmp (input_line_pointer, "gp", 2) == 0)
12516 {
12517 reg = GP;
12518 input_line_pointer += 2;
12519 }
12520 else if (strncmp (input_line_pointer, "at", 2) == 0)
12521 {
12522 reg = AT;
12523 input_line_pointer += 2;
12524 }
12525 else if (strncmp (input_line_pointer, "kt0", 3) == 0)
12526 {
12527 reg = KT0;
12528 input_line_pointer += 3;
12529 }
12530 else if (strncmp (input_line_pointer, "kt1", 3) == 0)
12531 {
12532 reg = KT1;
12533 input_line_pointer += 3;
12534 }
12535 else if (strncmp (input_line_pointer, "zero", 4) == 0)
12536 {
12537 reg = ZERO;
12538 input_line_pointer += 4;
12539 }
12540 else
12541 {
12542 as_warn (_("Unrecognized register name"));
12543 reg = ZERO;
12544 while (ISALNUM(*input_line_pointer))
12545 input_line_pointer++;
12546 }
12547 }
12548 if (frame)
12549 {
12550 mips_frame_reg = reg != 0 ? reg : SP;
12551 mips_frame_reg_valid = 1;
12552 mips_cprestore_valid = 0;
12553 }
12554 return reg;
12555 }
12556
12557 valueT
12558 md_section_align (asection *seg, valueT addr)
12559 {
12560 int align = bfd_get_section_alignment (stdoutput, seg);
12561
12562 #ifdef OBJ_ELF
12563 /* We don't need to align ELF sections to the full alignment.
12564 However, Irix 5 may prefer that we align them at least to a 16
12565 byte boundary. We don't bother to align the sections if we are
12566 targeted for an embedded system. */
12567 if (strcmp (TARGET_OS, "elf") == 0)
12568 return addr;
12569 if (align > 4)
12570 align = 4;
12571 #endif
12572
12573 return ((addr + (1 << align) - 1) & (-1 << align));
12574 }
12575
12576 /* Utility routine, called from above as well. If called while the
12577 input file is still being read, it's only an approximation. (For
12578 example, a symbol may later become defined which appeared to be
12579 undefined earlier.) */
12580
12581 static int
12582 nopic_need_relax (symbolS *sym, int before_relaxing)
12583 {
12584 if (sym == 0)
12585 return 0;
12586
12587 if (USE_GLOBAL_POINTER_OPT && g_switch_value > 0)
12588 {
12589 const char *symname;
12590 int change;
12591
12592 /* Find out whether this symbol can be referenced off the $gp
12593 register. It can be if it is smaller than the -G size or if
12594 it is in the .sdata or .sbss section. Certain symbols can
12595 not be referenced off the $gp, although it appears as though
12596 they can. */
12597 symname = S_GET_NAME (sym);
12598 if (symname != (const char *) NULL
12599 && (strcmp (symname, "eprol") == 0
12600 || strcmp (symname, "etext") == 0
12601 || strcmp (symname, "_gp") == 0
12602 || strcmp (symname, "edata") == 0
12603 || strcmp (symname, "_fbss") == 0
12604 || strcmp (symname, "_fdata") == 0
12605 || strcmp (symname, "_ftext") == 0
12606 || strcmp (symname, "end") == 0
12607 || strcmp (symname, "_gp_disp") == 0))
12608 change = 1;
12609 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
12610 && (0
12611 #ifndef NO_ECOFF_DEBUGGING
12612 || (symbol_get_obj (sym)->ecoff_extern_size != 0
12613 && (symbol_get_obj (sym)->ecoff_extern_size
12614 <= g_switch_value))
12615 #endif
12616 /* We must defer this decision until after the whole
12617 file has been read, since there might be a .extern
12618 after the first use of this symbol. */
12619 || (before_relaxing
12620 #ifndef NO_ECOFF_DEBUGGING
12621 && symbol_get_obj (sym)->ecoff_extern_size == 0
12622 #endif
12623 && S_GET_VALUE (sym) == 0)
12624 || (S_GET_VALUE (sym) != 0
12625 && S_GET_VALUE (sym) <= g_switch_value)))
12626 change = 0;
12627 else
12628 {
12629 const char *segname;
12630
12631 segname = segment_name (S_GET_SEGMENT (sym));
12632 assert (strcmp (segname, ".lit8") != 0
12633 && strcmp (segname, ".lit4") != 0);
12634 change = (strcmp (segname, ".sdata") != 0
12635 && strcmp (segname, ".sbss") != 0
12636 && strncmp (segname, ".sdata.", 7) != 0
12637 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
12638 }
12639 return change;
12640 }
12641 else
12642 /* We are not optimizing for the $gp register. */
12643 return 1;
12644 }
12645
12646
12647 /* Return true if the given symbol should be considered local for SVR4 PIC. */
12648
12649 static bfd_boolean
12650 pic_need_relax (symbolS *sym, asection *segtype)
12651 {
12652 asection *symsec;
12653 bfd_boolean linkonce;
12654
12655 /* Handle the case of a symbol equated to another symbol. */
12656 while (symbol_equated_reloc_p (sym))
12657 {
12658 symbolS *n;
12659
12660 /* It's possible to get a loop here in a badly written
12661 program. */
12662 n = symbol_get_value_expression (sym)->X_add_symbol;
12663 if (n == sym)
12664 break;
12665 sym = n;
12666 }
12667
12668 symsec = S_GET_SEGMENT (sym);
12669
12670 /* duplicate the test for LINK_ONCE sections as in adjust_reloc_syms */
12671 linkonce = FALSE;
12672 if (symsec != segtype && ! S_IS_LOCAL (sym))
12673 {
12674 if ((bfd_get_section_flags (stdoutput, symsec) & SEC_LINK_ONCE)
12675 != 0)
12676 linkonce = TRUE;
12677
12678 /* The GNU toolchain uses an extension for ELF: a section
12679 beginning with the magic string .gnu.linkonce is a linkonce
12680 section. */
12681 if (strncmp (segment_name (symsec), ".gnu.linkonce",
12682 sizeof ".gnu.linkonce" - 1) == 0)
12683 linkonce = TRUE;
12684 }
12685
12686 /* This must duplicate the test in adjust_reloc_syms. */
12687 return (symsec != &bfd_und_section
12688 && symsec != &bfd_abs_section
12689 && ! bfd_is_com_section (symsec)
12690 && !linkonce
12691 #ifdef OBJ_ELF
12692 /* A global or weak symbol is treated as external. */
12693 && (OUTPUT_FLAVOR != bfd_target_elf_flavour
12694 || (! S_IS_WEAK (sym)
12695 && (! S_IS_EXTERNAL (sym)
12696 || mips_pic == EMBEDDED_PIC)))
12697 #endif
12698 );
12699 }
12700
12701
12702 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
12703 extended opcode. SEC is the section the frag is in. */
12704
12705 static int
12706 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
12707 {
12708 int type;
12709 register const struct mips16_immed_operand *op;
12710 offsetT val;
12711 int mintiny, maxtiny;
12712 segT symsec;
12713 fragS *sym_frag;
12714
12715 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
12716 return 0;
12717 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
12718 return 1;
12719
12720 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
12721 op = mips16_immed_operands;
12722 while (op->type != type)
12723 {
12724 ++op;
12725 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
12726 }
12727
12728 if (op->unsp)
12729 {
12730 if (type == '<' || type == '>' || type == '[' || type == ']')
12731 {
12732 mintiny = 1;
12733 maxtiny = 1 << op->nbits;
12734 }
12735 else
12736 {
12737 mintiny = 0;
12738 maxtiny = (1 << op->nbits) - 1;
12739 }
12740 }
12741 else
12742 {
12743 mintiny = - (1 << (op->nbits - 1));
12744 maxtiny = (1 << (op->nbits - 1)) - 1;
12745 }
12746
12747 sym_frag = symbol_get_frag (fragp->fr_symbol);
12748 val = S_GET_VALUE (fragp->fr_symbol);
12749 symsec = S_GET_SEGMENT (fragp->fr_symbol);
12750
12751 if (op->pcrel)
12752 {
12753 addressT addr;
12754
12755 /* We won't have the section when we are called from
12756 mips_relax_frag. However, we will always have been called
12757 from md_estimate_size_before_relax first. If this is a
12758 branch to a different section, we mark it as such. If SEC is
12759 NULL, and the frag is not marked, then it must be a branch to
12760 the same section. */
12761 if (sec == NULL)
12762 {
12763 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
12764 return 1;
12765 }
12766 else
12767 {
12768 /* Must have been called from md_estimate_size_before_relax. */
12769 if (symsec != sec)
12770 {
12771 fragp->fr_subtype =
12772 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12773
12774 /* FIXME: We should support this, and let the linker
12775 catch branches and loads that are out of range. */
12776 as_bad_where (fragp->fr_file, fragp->fr_line,
12777 _("unsupported PC relative reference to different section"));
12778
12779 return 1;
12780 }
12781 if (fragp != sym_frag && sym_frag->fr_address == 0)
12782 /* Assume non-extended on the first relaxation pass.
12783 The address we have calculated will be bogus if this is
12784 a forward branch to another frag, as the forward frag
12785 will have fr_address == 0. */
12786 return 0;
12787 }
12788
12789 /* In this case, we know for sure that the symbol fragment is in
12790 the same section. If the relax_marker of the symbol fragment
12791 differs from the relax_marker of this fragment, we have not
12792 yet adjusted the symbol fragment fr_address. We want to add
12793 in STRETCH in order to get a better estimate of the address.
12794 This particularly matters because of the shift bits. */
12795 if (stretch != 0
12796 && sym_frag->relax_marker != fragp->relax_marker)
12797 {
12798 fragS *f;
12799
12800 /* Adjust stretch for any alignment frag. Note that if have
12801 been expanding the earlier code, the symbol may be
12802 defined in what appears to be an earlier frag. FIXME:
12803 This doesn't handle the fr_subtype field, which specifies
12804 a maximum number of bytes to skip when doing an
12805 alignment. */
12806 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
12807 {
12808 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
12809 {
12810 if (stretch < 0)
12811 stretch = - ((- stretch)
12812 & ~ ((1 << (int) f->fr_offset) - 1));
12813 else
12814 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
12815 if (stretch == 0)
12816 break;
12817 }
12818 }
12819 if (f != NULL)
12820 val += stretch;
12821 }
12822
12823 addr = fragp->fr_address + fragp->fr_fix;
12824
12825 /* The base address rules are complicated. The base address of
12826 a branch is the following instruction. The base address of a
12827 PC relative load or add is the instruction itself, but if it
12828 is in a delay slot (in which case it can not be extended) use
12829 the address of the instruction whose delay slot it is in. */
12830 if (type == 'p' || type == 'q')
12831 {
12832 addr += 2;
12833
12834 /* If we are currently assuming that this frag should be
12835 extended, then, the current address is two bytes
12836 higher. */
12837 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
12838 addr += 2;
12839
12840 /* Ignore the low bit in the target, since it will be set
12841 for a text label. */
12842 if ((val & 1) != 0)
12843 --val;
12844 }
12845 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
12846 addr -= 4;
12847 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
12848 addr -= 2;
12849
12850 val -= addr & ~ ((1 << op->shift) - 1);
12851
12852 /* Branch offsets have an implicit 0 in the lowest bit. */
12853 if (type == 'p' || type == 'q')
12854 val /= 2;
12855
12856 /* If any of the shifted bits are set, we must use an extended
12857 opcode. If the address depends on the size of this
12858 instruction, this can lead to a loop, so we arrange to always
12859 use an extended opcode. We only check this when we are in
12860 the main relaxation loop, when SEC is NULL. */
12861 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
12862 {
12863 fragp->fr_subtype =
12864 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12865 return 1;
12866 }
12867
12868 /* If we are about to mark a frag as extended because the value
12869 is precisely maxtiny + 1, then there is a chance of an
12870 infinite loop as in the following code:
12871 la $4,foo
12872 .skip 1020
12873 .align 2
12874 foo:
12875 In this case when the la is extended, foo is 0x3fc bytes
12876 away, so the la can be shrunk, but then foo is 0x400 away, so
12877 the la must be extended. To avoid this loop, we mark the
12878 frag as extended if it was small, and is about to become
12879 extended with a value of maxtiny + 1. */
12880 if (val == ((maxtiny + 1) << op->shift)
12881 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
12882 && sec == NULL)
12883 {
12884 fragp->fr_subtype =
12885 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12886 return 1;
12887 }
12888 }
12889 else if (symsec != absolute_section && sec != NULL)
12890 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
12891
12892 if ((val & ((1 << op->shift) - 1)) != 0
12893 || val < (mintiny << op->shift)
12894 || val > (maxtiny << op->shift))
12895 return 1;
12896 else
12897 return 0;
12898 }
12899
12900 /* Compute the length of a branch sequence, and adjust the
12901 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
12902 worst-case length is computed, with UPDATE being used to indicate
12903 whether an unconditional (-1), branch-likely (+1) or regular (0)
12904 branch is to be computed. */
12905 static int
12906 relaxed_branch_length (fragS *fragp, asection *sec, int update)
12907 {
12908 bfd_boolean toofar;
12909 int length;
12910
12911 if (fragp
12912 && S_IS_DEFINED (fragp->fr_symbol)
12913 && sec == S_GET_SEGMENT (fragp->fr_symbol))
12914 {
12915 addressT addr;
12916 offsetT val;
12917
12918 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
12919
12920 addr = fragp->fr_address + fragp->fr_fix + 4;
12921
12922 val -= addr;
12923
12924 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
12925 }
12926 else if (fragp)
12927 /* If the symbol is not defined or it's in a different segment,
12928 assume the user knows what's going on and emit a short
12929 branch. */
12930 toofar = FALSE;
12931 else
12932 toofar = TRUE;
12933
12934 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
12935 fragp->fr_subtype
12936 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
12937 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
12938 RELAX_BRANCH_LINK (fragp->fr_subtype),
12939 toofar);
12940
12941 length = 4;
12942 if (toofar)
12943 {
12944 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
12945 length += 8;
12946
12947 if (mips_pic != NO_PIC)
12948 {
12949 /* Additional space for PIC loading of target address. */
12950 length += 8;
12951 if (mips_opts.isa == ISA_MIPS1)
12952 /* Additional space for $at-stabilizing nop. */
12953 length += 4;
12954 }
12955
12956 /* If branch is conditional. */
12957 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
12958 length += 8;
12959 }
12960
12961 return length;
12962 }
12963
12964 /* Estimate the size of a frag before relaxing. Unless this is the
12965 mips16, we are not really relaxing here, and the final size is
12966 encoded in the subtype information. For the mips16, we have to
12967 decide whether we are using an extended opcode or not. */
12968
12969 int
12970 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
12971 {
12972 int change;
12973
12974 if (RELAX_BRANCH_P (fragp->fr_subtype))
12975 {
12976
12977 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
12978
12979 return fragp->fr_var;
12980 }
12981
12982 if (RELAX_MIPS16_P (fragp->fr_subtype))
12983 /* We don't want to modify the EXTENDED bit here; it might get us
12984 into infinite loops. We change it only in mips_relax_frag(). */
12985 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
12986
12987 if (mips_pic == NO_PIC)
12988 change = nopic_need_relax (fragp->fr_symbol, 0);
12989 else if (mips_pic == SVR4_PIC)
12990 change = pic_need_relax (fragp->fr_symbol, segtype);
12991 else
12992 abort ();
12993
12994 if (change)
12995 {
12996 fragp->fr_subtype |= RELAX_USE_SECOND;
12997 return -RELAX_FIRST (fragp->fr_subtype);
12998 }
12999 else
13000 return -RELAX_SECOND (fragp->fr_subtype);
13001 }
13002
13003 /* This is called to see whether a reloc against a defined symbol
13004 should be converted into a reloc against a section. Don't adjust
13005 MIPS16 jump relocations, so we don't have to worry about the format
13006 of the offset in the .o file. Don't adjust relocations against
13007 mips16 symbols, so that the linker can find them if it needs to set
13008 up a stub. */
13009
13010 int
13011 mips_fix_adjustable (fixS *fixp)
13012 {
13013 if (fixp->fx_r_type == BFD_RELOC_MIPS16_JMP)
13014 return 0;
13015
13016 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
13017 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13018 return 0;
13019
13020 if (fixp->fx_addsy == NULL)
13021 return 1;
13022
13023 #ifdef OBJ_ELF
13024 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
13025 && S_GET_OTHER (fixp->fx_addsy) == STO_MIPS16
13026 && fixp->fx_subsy == NULL)
13027 return 0;
13028 #endif
13029
13030 return 1;
13031 }
13032
13033 /* Translate internal representation of relocation info to BFD target
13034 format. */
13035
13036 arelent **
13037 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13038 {
13039 static arelent *retval[4];
13040 arelent *reloc;
13041 bfd_reloc_code_real_type code;
13042
13043 memset (retval, 0, sizeof(retval));
13044 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
13045 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
13046 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13047 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
13048
13049 if (mips_pic == EMBEDDED_PIC
13050 && SWITCH_TABLE (fixp))
13051 {
13052 /* For a switch table entry we use a special reloc. The addend
13053 is actually the difference between the reloc address and the
13054 subtrahend. */
13055 reloc->addend = reloc->address - S_GET_VALUE (fixp->fx_subsy);
13056 if (OUTPUT_FLAVOR != bfd_target_ecoff_flavour)
13057 as_fatal (_("Double check fx_r_type in tc-mips.c:tc_gen_reloc"));
13058 fixp->fx_r_type = BFD_RELOC_GPREL32;
13059 }
13060 else if (fixp->fx_pcrel)
13061 {
13062 bfd_vma pcrel_address;
13063
13064 /* Set PCREL_ADDRESS to this relocation's "PC". The PC for high
13065 high-part relocs is the address of the low-part reloc. */
13066 if (fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S)
13067 {
13068 assert (fixp->fx_next != NULL
13069 && fixp->fx_next->fx_r_type == BFD_RELOC_PCREL_LO16);
13070 pcrel_address = (fixp->fx_next->fx_where
13071 + fixp->fx_next->fx_frag->fr_address);
13072 }
13073 else
13074 pcrel_address = reloc->address;
13075
13076 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
13077 {
13078 /* At this point, fx_addnumber is "symbol offset - pcrel_address".
13079 Relocations want only the symbol offset. */
13080 reloc->addend = fixp->fx_addnumber + pcrel_address;
13081 }
13082 else if (fixp->fx_r_type == BFD_RELOC_PCREL_LO16
13083 || fixp->fx_r_type == BFD_RELOC_PCREL_HI16_S)
13084 {
13085 /* We use a special addend for an internal RELLO or RELHI reloc. */
13086 if (symbol_section_p (fixp->fx_addsy))
13087 reloc->addend = pcrel_address - S_GET_VALUE (fixp->fx_subsy);
13088 else
13089 reloc->addend = fixp->fx_addnumber + pcrel_address;
13090 }
13091 else
13092 {
13093 if (OUTPUT_FLAVOR != bfd_target_aout_flavour)
13094 /* A gruesome hack which is a result of the gruesome gas reloc
13095 handling. */
13096 reloc->addend = pcrel_address;
13097 else
13098 reloc->addend = -pcrel_address;
13099 }
13100 }
13101 else
13102 reloc->addend = fixp->fx_addnumber;
13103
13104 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
13105 entry to be used in the relocation's section offset. */
13106 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13107 {
13108 reloc->address = reloc->addend;
13109 reloc->addend = 0;
13110 }
13111
13112 /* Since DIFF_EXPR_OK is defined in tc-mips.h, it is possible that
13113 fixup_segment converted a non-PC relative reloc into a PC
13114 relative reloc. In such a case, we need to convert the reloc
13115 code. */
13116 code = fixp->fx_r_type;
13117 if (fixp->fx_pcrel)
13118 {
13119 switch (code)
13120 {
13121 case BFD_RELOC_8:
13122 code = BFD_RELOC_8_PCREL;
13123 break;
13124 case BFD_RELOC_16:
13125 code = BFD_RELOC_16_PCREL;
13126 break;
13127 case BFD_RELOC_32:
13128 code = BFD_RELOC_32_PCREL;
13129 break;
13130 case BFD_RELOC_64:
13131 code = BFD_RELOC_64_PCREL;
13132 break;
13133 case BFD_RELOC_8_PCREL:
13134 case BFD_RELOC_16_PCREL:
13135 case BFD_RELOC_32_PCREL:
13136 case BFD_RELOC_64_PCREL:
13137 case BFD_RELOC_16_PCREL_S2:
13138 case BFD_RELOC_PCREL_HI16_S:
13139 case BFD_RELOC_PCREL_LO16:
13140 break;
13141 default:
13142 as_bad_where (fixp->fx_file, fixp->fx_line,
13143 _("Cannot make %s relocation PC relative"),
13144 bfd_get_reloc_code_name (code));
13145 }
13146 }
13147
13148 /* To support a PC relative reloc when generating embedded PIC code
13149 for ECOFF, we use a Cygnus extension. We check for that here to
13150 make sure that we don't let such a reloc escape normally. */
13151 if ((OUTPUT_FLAVOR == bfd_target_ecoff_flavour
13152 || OUTPUT_FLAVOR == bfd_target_elf_flavour)
13153 && code == BFD_RELOC_16_PCREL_S2
13154 && mips_pic != EMBEDDED_PIC)
13155 reloc->howto = NULL;
13156 else
13157 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
13158
13159 if (reloc->howto == NULL)
13160 {
13161 as_bad_where (fixp->fx_file, fixp->fx_line,
13162 _("Can not represent %s relocation in this object file format"),
13163 bfd_get_reloc_code_name (code));
13164 retval[0] = NULL;
13165 }
13166
13167 return retval;
13168 }
13169
13170 /* Relax a machine dependent frag. This returns the amount by which
13171 the current size of the frag should change. */
13172
13173 int
13174 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
13175 {
13176 if (RELAX_BRANCH_P (fragp->fr_subtype))
13177 {
13178 offsetT old_var = fragp->fr_var;
13179
13180 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
13181
13182 return fragp->fr_var - old_var;
13183 }
13184
13185 if (! RELAX_MIPS16_P (fragp->fr_subtype))
13186 return 0;
13187
13188 if (mips16_extended_frag (fragp, NULL, stretch))
13189 {
13190 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13191 return 0;
13192 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
13193 return 2;
13194 }
13195 else
13196 {
13197 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13198 return 0;
13199 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
13200 return -2;
13201 }
13202
13203 return 0;
13204 }
13205
13206 /* Convert a machine dependent frag. */
13207
13208 void
13209 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
13210 {
13211 if (RELAX_BRANCH_P (fragp->fr_subtype))
13212 {
13213 bfd_byte *buf;
13214 unsigned long insn;
13215 expressionS exp;
13216 fixS *fixp;
13217
13218 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
13219
13220 if (target_big_endian)
13221 insn = bfd_getb32 (buf);
13222 else
13223 insn = bfd_getl32 (buf);
13224
13225 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
13226 {
13227 /* We generate a fixup instead of applying it right now
13228 because, if there are linker relaxations, we're going to
13229 need the relocations. */
13230 exp.X_op = O_symbol;
13231 exp.X_add_symbol = fragp->fr_symbol;
13232 exp.X_add_number = fragp->fr_offset;
13233
13234 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13235 4, &exp, 1,
13236 BFD_RELOC_16_PCREL_S2);
13237 fixp->fx_file = fragp->fr_file;
13238 fixp->fx_line = fragp->fr_line;
13239
13240 md_number_to_chars (buf, insn, 4);
13241 buf += 4;
13242 }
13243 else
13244 {
13245 int i;
13246
13247 as_warn_where (fragp->fr_file, fragp->fr_line,
13248 _("relaxed out-of-range branch into a jump"));
13249
13250 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
13251 goto uncond;
13252
13253 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13254 {
13255 /* Reverse the branch. */
13256 switch ((insn >> 28) & 0xf)
13257 {
13258 case 4:
13259 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
13260 have the condition reversed by tweaking a single
13261 bit, and their opcodes all have 0x4???????. */
13262 assert ((insn & 0xf1000000) == 0x41000000);
13263 insn ^= 0x00010000;
13264 break;
13265
13266 case 0:
13267 /* bltz 0x04000000 bgez 0x04010000
13268 bltzal 0x04100000 bgezal 0x04110000 */
13269 assert ((insn & 0xfc0e0000) == 0x04000000);
13270 insn ^= 0x00010000;
13271 break;
13272
13273 case 1:
13274 /* beq 0x10000000 bne 0x14000000
13275 blez 0x18000000 bgtz 0x1c000000 */
13276 insn ^= 0x04000000;
13277 break;
13278
13279 default:
13280 abort ();
13281 }
13282 }
13283
13284 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
13285 {
13286 /* Clear the and-link bit. */
13287 assert ((insn & 0xfc1c0000) == 0x04100000);
13288
13289 /* bltzal 0x04100000 bgezal 0x04110000
13290 bltzall 0x04120000 bgezall 0x04130000 */
13291 insn &= ~0x00100000;
13292 }
13293
13294 /* Branch over the branch (if the branch was likely) or the
13295 full jump (not likely case). Compute the offset from the
13296 current instruction to branch to. */
13297 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13298 i = 16;
13299 else
13300 {
13301 /* How many bytes in instructions we've already emitted? */
13302 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
13303 /* How many bytes in instructions from here to the end? */
13304 i = fragp->fr_var - i;
13305 }
13306 /* Convert to instruction count. */
13307 i >>= 2;
13308 /* Branch counts from the next instruction. */
13309 i--;
13310 insn |= i;
13311 /* Branch over the jump. */
13312 md_number_to_chars (buf, insn, 4);
13313 buf += 4;
13314
13315 /* Nop */
13316 md_number_to_chars (buf, 0, 4);
13317 buf += 4;
13318
13319 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13320 {
13321 /* beql $0, $0, 2f */
13322 insn = 0x50000000;
13323 /* Compute the PC offset from the current instruction to
13324 the end of the variable frag. */
13325 /* How many bytes in instructions we've already emitted? */
13326 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
13327 /* How many bytes in instructions from here to the end? */
13328 i = fragp->fr_var - i;
13329 /* Convert to instruction count. */
13330 i >>= 2;
13331 /* Don't decrement i, because we want to branch over the
13332 delay slot. */
13333
13334 insn |= i;
13335 md_number_to_chars (buf, insn, 4);
13336 buf += 4;
13337
13338 md_number_to_chars (buf, 0, 4);
13339 buf += 4;
13340 }
13341
13342 uncond:
13343 if (mips_pic == NO_PIC)
13344 {
13345 /* j or jal. */
13346 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
13347 ? 0x0c000000 : 0x08000000);
13348 exp.X_op = O_symbol;
13349 exp.X_add_symbol = fragp->fr_symbol;
13350 exp.X_add_number = fragp->fr_offset;
13351
13352 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13353 4, &exp, 0, BFD_RELOC_MIPS_JMP);
13354 fixp->fx_file = fragp->fr_file;
13355 fixp->fx_line = fragp->fr_line;
13356
13357 md_number_to_chars (buf, insn, 4);
13358 buf += 4;
13359 }
13360 else
13361 {
13362 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
13363 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
13364 exp.X_op = O_symbol;
13365 exp.X_add_symbol = fragp->fr_symbol;
13366 exp.X_add_number = fragp->fr_offset;
13367
13368 if (fragp->fr_offset)
13369 {
13370 exp.X_add_symbol = make_expr_symbol (&exp);
13371 exp.X_add_number = 0;
13372 }
13373
13374 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13375 4, &exp, 0, BFD_RELOC_MIPS_GOT16);
13376 fixp->fx_file = fragp->fr_file;
13377 fixp->fx_line = fragp->fr_line;
13378
13379 md_number_to_chars (buf, insn, 4);
13380 buf += 4;
13381
13382 if (mips_opts.isa == ISA_MIPS1)
13383 {
13384 /* nop */
13385 md_number_to_chars (buf, 0, 4);
13386 buf += 4;
13387 }
13388
13389 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
13390 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
13391
13392 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13393 4, &exp, 0, BFD_RELOC_LO16);
13394 fixp->fx_file = fragp->fr_file;
13395 fixp->fx_line = fragp->fr_line;
13396
13397 md_number_to_chars (buf, insn, 4);
13398 buf += 4;
13399
13400 /* j(al)r $at. */
13401 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
13402 insn = 0x0020f809;
13403 else
13404 insn = 0x00200008;
13405
13406 md_number_to_chars (buf, insn, 4);
13407 buf += 4;
13408 }
13409 }
13410
13411 assert (buf == (bfd_byte *)fragp->fr_literal
13412 + fragp->fr_fix + fragp->fr_var);
13413
13414 fragp->fr_fix += fragp->fr_var;
13415
13416 return;
13417 }
13418
13419 if (RELAX_MIPS16_P (fragp->fr_subtype))
13420 {
13421 int type;
13422 register const struct mips16_immed_operand *op;
13423 bfd_boolean small, ext;
13424 offsetT val;
13425 bfd_byte *buf;
13426 unsigned long insn;
13427 bfd_boolean use_extend;
13428 unsigned short extend;
13429
13430 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13431 op = mips16_immed_operands;
13432 while (op->type != type)
13433 ++op;
13434
13435 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13436 {
13437 small = FALSE;
13438 ext = TRUE;
13439 }
13440 else
13441 {
13442 small = TRUE;
13443 ext = FALSE;
13444 }
13445
13446 resolve_symbol_value (fragp->fr_symbol);
13447 val = S_GET_VALUE (fragp->fr_symbol);
13448 if (op->pcrel)
13449 {
13450 addressT addr;
13451
13452 addr = fragp->fr_address + fragp->fr_fix;
13453
13454 /* The rules for the base address of a PC relative reloc are
13455 complicated; see mips16_extended_frag. */
13456 if (type == 'p' || type == 'q')
13457 {
13458 addr += 2;
13459 if (ext)
13460 addr += 2;
13461 /* Ignore the low bit in the target, since it will be
13462 set for a text label. */
13463 if ((val & 1) != 0)
13464 --val;
13465 }
13466 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13467 addr -= 4;
13468 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13469 addr -= 2;
13470
13471 addr &= ~ (addressT) ((1 << op->shift) - 1);
13472 val -= addr;
13473
13474 /* Make sure the section winds up with the alignment we have
13475 assumed. */
13476 if (op->shift > 0)
13477 record_alignment (asec, op->shift);
13478 }
13479
13480 if (ext
13481 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
13482 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
13483 as_warn_where (fragp->fr_file, fragp->fr_line,
13484 _("extended instruction in delay slot"));
13485
13486 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
13487
13488 if (target_big_endian)
13489 insn = bfd_getb16 (buf);
13490 else
13491 insn = bfd_getl16 (buf);
13492
13493 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
13494 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
13495 small, ext, &insn, &use_extend, &extend);
13496
13497 if (use_extend)
13498 {
13499 md_number_to_chars (buf, 0xf000 | extend, 2);
13500 fragp->fr_fix += 2;
13501 buf += 2;
13502 }
13503
13504 md_number_to_chars (buf, insn, 2);
13505 fragp->fr_fix += 2;
13506 buf += 2;
13507 }
13508 else
13509 {
13510 int first, second;
13511 fixS *fixp;
13512
13513 first = RELAX_FIRST (fragp->fr_subtype);
13514 second = RELAX_SECOND (fragp->fr_subtype);
13515 fixp = (fixS *) fragp->fr_opcode;
13516
13517 /* Possibly emit a warning if we've chosen the longer option. */
13518 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
13519 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
13520 {
13521 const char *msg = macro_warning (fragp->fr_subtype);
13522 if (msg != 0)
13523 as_warn_where (fragp->fr_file, fragp->fr_line, msg);
13524 }
13525
13526 /* Go through all the fixups for the first sequence. Disable them
13527 (by marking them as done) if we're going to use the second
13528 sequence instead. */
13529 while (fixp
13530 && fixp->fx_frag == fragp
13531 && fixp->fx_where < fragp->fr_fix - second)
13532 {
13533 if (fragp->fr_subtype & RELAX_USE_SECOND)
13534 fixp->fx_done = 1;
13535 fixp = fixp->fx_next;
13536 }
13537
13538 /* Go through the fixups for the second sequence. Disable them if
13539 we're going to use the first sequence, otherwise adjust their
13540 addresses to account for the relaxation. */
13541 while (fixp && fixp->fx_frag == fragp)
13542 {
13543 if (fragp->fr_subtype & RELAX_USE_SECOND)
13544 fixp->fx_where -= first;
13545 else
13546 fixp->fx_done = 1;
13547 fixp = fixp->fx_next;
13548 }
13549
13550 /* Now modify the frag contents. */
13551 if (fragp->fr_subtype & RELAX_USE_SECOND)
13552 {
13553 char *start;
13554
13555 start = fragp->fr_literal + fragp->fr_fix - first - second;
13556 memmove (start, start + first, second);
13557 fragp->fr_fix -= first;
13558 }
13559 else
13560 fragp->fr_fix -= second;
13561 }
13562 }
13563
13564 #ifdef OBJ_ELF
13565
13566 /* This function is called after the relocs have been generated.
13567 We've been storing mips16 text labels as odd. Here we convert them
13568 back to even for the convenience of the debugger. */
13569
13570 void
13571 mips_frob_file_after_relocs (void)
13572 {
13573 asymbol **syms;
13574 unsigned int count, i;
13575
13576 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
13577 return;
13578
13579 syms = bfd_get_outsymbols (stdoutput);
13580 count = bfd_get_symcount (stdoutput);
13581 for (i = 0; i < count; i++, syms++)
13582 {
13583 if (elf_symbol (*syms)->internal_elf_sym.st_other == STO_MIPS16
13584 && ((*syms)->value & 1) != 0)
13585 {
13586 (*syms)->value &= ~1;
13587 /* If the symbol has an odd size, it was probably computed
13588 incorrectly, so adjust that as well. */
13589 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
13590 ++elf_symbol (*syms)->internal_elf_sym.st_size;
13591 }
13592 }
13593 }
13594
13595 #endif
13596
13597 /* This function is called whenever a label is defined. It is used
13598 when handling branch delays; if a branch has a label, we assume we
13599 can not move it. */
13600
13601 void
13602 mips_define_label (symbolS *sym)
13603 {
13604 struct insn_label_list *l;
13605
13606 if (free_insn_labels == NULL)
13607 l = (struct insn_label_list *) xmalloc (sizeof *l);
13608 else
13609 {
13610 l = free_insn_labels;
13611 free_insn_labels = l->next;
13612 }
13613
13614 l->label = sym;
13615 l->next = insn_labels;
13616 insn_labels = l;
13617 }
13618 \f
13619 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13620
13621 /* Some special processing for a MIPS ELF file. */
13622
13623 void
13624 mips_elf_final_processing (void)
13625 {
13626 /* Write out the register information. */
13627 if (mips_abi != N64_ABI)
13628 {
13629 Elf32_RegInfo s;
13630
13631 s.ri_gprmask = mips_gprmask;
13632 s.ri_cprmask[0] = mips_cprmask[0];
13633 s.ri_cprmask[1] = mips_cprmask[1];
13634 s.ri_cprmask[2] = mips_cprmask[2];
13635 s.ri_cprmask[3] = mips_cprmask[3];
13636 /* The gp_value field is set by the MIPS ELF backend. */
13637
13638 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
13639 ((Elf32_External_RegInfo *)
13640 mips_regmask_frag));
13641 }
13642 else
13643 {
13644 Elf64_Internal_RegInfo s;
13645
13646 s.ri_gprmask = mips_gprmask;
13647 s.ri_pad = 0;
13648 s.ri_cprmask[0] = mips_cprmask[0];
13649 s.ri_cprmask[1] = mips_cprmask[1];
13650 s.ri_cprmask[2] = mips_cprmask[2];
13651 s.ri_cprmask[3] = mips_cprmask[3];
13652 /* The gp_value field is set by the MIPS ELF backend. */
13653
13654 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
13655 ((Elf64_External_RegInfo *)
13656 mips_regmask_frag));
13657 }
13658
13659 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
13660 sort of BFD interface for this. */
13661 if (mips_any_noreorder)
13662 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
13663 if (mips_pic != NO_PIC)
13664 {
13665 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
13666 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
13667 }
13668 if (mips_abicalls)
13669 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
13670
13671 /* Set MIPS ELF flags for ASEs. */
13672 if (file_ase_mips16)
13673 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
13674 #if 0 /* XXX FIXME */
13675 if (file_ase_mips3d)
13676 elf_elfheader (stdoutput)->e_flags |= ???;
13677 #endif
13678 if (file_ase_mdmx)
13679 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
13680
13681 /* Set the MIPS ELF ABI flags. */
13682 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
13683 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
13684 else if (mips_abi == O64_ABI)
13685 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
13686 else if (mips_abi == EABI_ABI)
13687 {
13688 if (!file_mips_gp32)
13689 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
13690 else
13691 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
13692 }
13693 else if (mips_abi == N32_ABI)
13694 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
13695
13696 /* Nothing to do for N64_ABI. */
13697
13698 if (mips_32bitmode)
13699 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
13700 }
13701
13702 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
13703 \f
13704 typedef struct proc {
13705 symbolS *isym;
13706 unsigned long reg_mask;
13707 unsigned long reg_offset;
13708 unsigned long fpreg_mask;
13709 unsigned long fpreg_offset;
13710 unsigned long frame_offset;
13711 unsigned long frame_reg;
13712 unsigned long pc_reg;
13713 } procS;
13714
13715 static procS cur_proc;
13716 static procS *cur_proc_ptr;
13717 static int numprocs;
13718
13719 /* Fill in an rs_align_code fragment. */
13720
13721 void
13722 mips_handle_align (fragS *fragp)
13723 {
13724 if (fragp->fr_type != rs_align_code)
13725 return;
13726
13727 if (mips_opts.mips16)
13728 {
13729 static const unsigned char be_nop[] = { 0x65, 0x00 };
13730 static const unsigned char le_nop[] = { 0x00, 0x65 };
13731
13732 int bytes;
13733 char *p;
13734
13735 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
13736 p = fragp->fr_literal + fragp->fr_fix;
13737
13738 if (bytes & 1)
13739 {
13740 *p++ = 0;
13741 fragp->fr_fix++;
13742 }
13743
13744 memcpy (p, (target_big_endian ? be_nop : le_nop), 2);
13745 fragp->fr_var = 2;
13746 }
13747
13748 /* For mips32, a nop is a zero, which we trivially get by doing nothing. */
13749 }
13750
13751 static void
13752 md_obj_begin (void)
13753 {
13754 }
13755
13756 static void
13757 md_obj_end (void)
13758 {
13759 /* check for premature end, nesting errors, etc */
13760 if (cur_proc_ptr)
13761 as_warn (_("missing .end at end of assembly"));
13762 }
13763
13764 static long
13765 get_number (void)
13766 {
13767 int negative = 0;
13768 long val = 0;
13769
13770 if (*input_line_pointer == '-')
13771 {
13772 ++input_line_pointer;
13773 negative = 1;
13774 }
13775 if (!ISDIGIT (*input_line_pointer))
13776 as_bad (_("expected simple number"));
13777 if (input_line_pointer[0] == '0')
13778 {
13779 if (input_line_pointer[1] == 'x')
13780 {
13781 input_line_pointer += 2;
13782 while (ISXDIGIT (*input_line_pointer))
13783 {
13784 val <<= 4;
13785 val |= hex_value (*input_line_pointer++);
13786 }
13787 return negative ? -val : val;
13788 }
13789 else
13790 {
13791 ++input_line_pointer;
13792 while (ISDIGIT (*input_line_pointer))
13793 {
13794 val <<= 3;
13795 val |= *input_line_pointer++ - '0';
13796 }
13797 return negative ? -val : val;
13798 }
13799 }
13800 if (!ISDIGIT (*input_line_pointer))
13801 {
13802 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
13803 *input_line_pointer, *input_line_pointer);
13804 as_warn (_("invalid number"));
13805 return -1;
13806 }
13807 while (ISDIGIT (*input_line_pointer))
13808 {
13809 val *= 10;
13810 val += *input_line_pointer++ - '0';
13811 }
13812 return negative ? -val : val;
13813 }
13814
13815 /* The .file directive; just like the usual .file directive, but there
13816 is an initial number which is the ECOFF file index. In the non-ECOFF
13817 case .file implies DWARF-2. */
13818
13819 static void
13820 s_mips_file (int x ATTRIBUTE_UNUSED)
13821 {
13822 static int first_file_directive = 0;
13823
13824 if (ECOFF_DEBUGGING)
13825 {
13826 get_number ();
13827 s_app_file (0);
13828 }
13829 else
13830 {
13831 char *filename;
13832
13833 filename = dwarf2_directive_file (0);
13834
13835 /* Versions of GCC up to 3.1 start files with a ".file"
13836 directive even for stabs output. Make sure that this
13837 ".file" is handled. Note that you need a version of GCC
13838 after 3.1 in order to support DWARF-2 on MIPS. */
13839 if (filename != NULL && ! first_file_directive)
13840 {
13841 (void) new_logical_line (filename, -1);
13842 s_app_file_string (filename);
13843 }
13844 first_file_directive = 1;
13845 }
13846 }
13847
13848 /* The .loc directive, implying DWARF-2. */
13849
13850 static void
13851 s_mips_loc (int x ATTRIBUTE_UNUSED)
13852 {
13853 if (!ECOFF_DEBUGGING)
13854 dwarf2_directive_loc (0);
13855 }
13856
13857 /* The .end directive. */
13858
13859 static void
13860 s_mips_end (int x ATTRIBUTE_UNUSED)
13861 {
13862 symbolS *p;
13863
13864 /* Following functions need their own .frame and .cprestore directives. */
13865 mips_frame_reg_valid = 0;
13866 mips_cprestore_valid = 0;
13867
13868 if (!is_end_of_line[(unsigned char) *input_line_pointer])
13869 {
13870 p = get_symbol ();
13871 demand_empty_rest_of_line ();
13872 }
13873 else
13874 p = NULL;
13875
13876 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
13877 as_warn (_(".end not in text section"));
13878
13879 if (!cur_proc_ptr)
13880 {
13881 as_warn (_(".end directive without a preceding .ent directive."));
13882 demand_empty_rest_of_line ();
13883 return;
13884 }
13885
13886 if (p != NULL)
13887 {
13888 assert (S_GET_NAME (p));
13889 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->isym)))
13890 as_warn (_(".end symbol does not match .ent symbol."));
13891
13892 if (debug_type == DEBUG_STABS)
13893 stabs_generate_asm_endfunc (S_GET_NAME (p),
13894 S_GET_NAME (p));
13895 }
13896 else
13897 as_warn (_(".end directive missing or unknown symbol"));
13898
13899 #ifdef OBJ_ELF
13900 /* Generate a .pdr section. */
13901 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING
13902 && mips_flag_pdr)
13903 {
13904 segT saved_seg = now_seg;
13905 subsegT saved_subseg = now_subseg;
13906 valueT dot;
13907 expressionS exp;
13908 char *fragp;
13909
13910 dot = frag_now_fix ();
13911
13912 #ifdef md_flush_pending_output
13913 md_flush_pending_output ();
13914 #endif
13915
13916 assert (pdr_seg);
13917 subseg_set (pdr_seg, 0);
13918
13919 /* Write the symbol. */
13920 exp.X_op = O_symbol;
13921 exp.X_add_symbol = p;
13922 exp.X_add_number = 0;
13923 emit_expr (&exp, 4);
13924
13925 fragp = frag_more (7 * 4);
13926
13927 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
13928 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
13929 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
13930 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
13931 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
13932 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
13933 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
13934
13935 subseg_set (saved_seg, saved_subseg);
13936 }
13937 #endif /* OBJ_ELF */
13938
13939 cur_proc_ptr = NULL;
13940 }
13941
13942 /* The .aent and .ent directives. */
13943
13944 static void
13945 s_mips_ent (int aent)
13946 {
13947 symbolS *symbolP;
13948
13949 symbolP = get_symbol ();
13950 if (*input_line_pointer == ',')
13951 ++input_line_pointer;
13952 SKIP_WHITESPACE ();
13953 if (ISDIGIT (*input_line_pointer)
13954 || *input_line_pointer == '-')
13955 get_number ();
13956
13957 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
13958 as_warn (_(".ent or .aent not in text section."));
13959
13960 if (!aent && cur_proc_ptr)
13961 as_warn (_("missing .end"));
13962
13963 if (!aent)
13964 {
13965 /* This function needs its own .frame and .cprestore directives. */
13966 mips_frame_reg_valid = 0;
13967 mips_cprestore_valid = 0;
13968
13969 cur_proc_ptr = &cur_proc;
13970 memset (cur_proc_ptr, '\0', sizeof (procS));
13971
13972 cur_proc_ptr->isym = symbolP;
13973
13974 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
13975
13976 ++numprocs;
13977
13978 if (debug_type == DEBUG_STABS)
13979 stabs_generate_asm_func (S_GET_NAME (symbolP),
13980 S_GET_NAME (symbolP));
13981 }
13982
13983 demand_empty_rest_of_line ();
13984 }
13985
13986 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
13987 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
13988 s_mips_frame is used so that we can set the PDR information correctly.
13989 We can't use the ecoff routines because they make reference to the ecoff
13990 symbol table (in the mdebug section). */
13991
13992 static void
13993 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
13994 {
13995 #ifdef OBJ_ELF
13996 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
13997 {
13998 long val;
13999
14000 if (cur_proc_ptr == (procS *) NULL)
14001 {
14002 as_warn (_(".frame outside of .ent"));
14003 demand_empty_rest_of_line ();
14004 return;
14005 }
14006
14007 cur_proc_ptr->frame_reg = tc_get_register (1);
14008
14009 SKIP_WHITESPACE ();
14010 if (*input_line_pointer++ != ','
14011 || get_absolute_expression_and_terminator (&val) != ',')
14012 {
14013 as_warn (_("Bad .frame directive"));
14014 --input_line_pointer;
14015 demand_empty_rest_of_line ();
14016 return;
14017 }
14018
14019 cur_proc_ptr->frame_offset = val;
14020 cur_proc_ptr->pc_reg = tc_get_register (0);
14021
14022 demand_empty_rest_of_line ();
14023 }
14024 else
14025 #endif /* OBJ_ELF */
14026 s_ignore (ignore);
14027 }
14028
14029 /* The .fmask and .mask directives. If the mdebug section is present
14030 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
14031 embedded targets, s_mips_mask is used so that we can set the PDR
14032 information correctly. We can't use the ecoff routines because they
14033 make reference to the ecoff symbol table (in the mdebug section). */
14034
14035 static void
14036 s_mips_mask (int reg_type)
14037 {
14038 #ifdef OBJ_ELF
14039 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
14040 {
14041 long mask, off;
14042
14043 if (cur_proc_ptr == (procS *) NULL)
14044 {
14045 as_warn (_(".mask/.fmask outside of .ent"));
14046 demand_empty_rest_of_line ();
14047 return;
14048 }
14049
14050 if (get_absolute_expression_and_terminator (&mask) != ',')
14051 {
14052 as_warn (_("Bad .mask/.fmask directive"));
14053 --input_line_pointer;
14054 demand_empty_rest_of_line ();
14055 return;
14056 }
14057
14058 off = get_absolute_expression ();
14059
14060 if (reg_type == 'F')
14061 {
14062 cur_proc_ptr->fpreg_mask = mask;
14063 cur_proc_ptr->fpreg_offset = off;
14064 }
14065 else
14066 {
14067 cur_proc_ptr->reg_mask = mask;
14068 cur_proc_ptr->reg_offset = off;
14069 }
14070
14071 demand_empty_rest_of_line ();
14072 }
14073 else
14074 #endif /* OBJ_ELF */
14075 s_ignore (reg_type);
14076 }
14077
14078 /* The .loc directive. */
14079
14080 #if 0
14081 static void
14082 s_loc (int x)
14083 {
14084 symbolS *symbolP;
14085 int lineno;
14086 int addroff;
14087
14088 assert (now_seg == text_section);
14089
14090 lineno = get_number ();
14091 addroff = frag_now_fix ();
14092
14093 symbolP = symbol_new ("", N_SLINE, addroff, frag_now);
14094 S_SET_TYPE (symbolP, N_SLINE);
14095 S_SET_OTHER (symbolP, 0);
14096 S_SET_DESC (symbolP, lineno);
14097 symbolP->sy_segment = now_seg;
14098 }
14099 #endif
14100
14101 /* A table describing all the processors gas knows about. Names are
14102 matched in the order listed.
14103
14104 To ease comparison, please keep this table in the same order as
14105 gcc's mips_cpu_info_table[]. */
14106 static const struct mips_cpu_info mips_cpu_info_table[] =
14107 {
14108 /* Entries for generic ISAs */
14109 { "mips1", 1, ISA_MIPS1, CPU_R3000 },
14110 { "mips2", 1, ISA_MIPS2, CPU_R6000 },
14111 { "mips3", 1, ISA_MIPS3, CPU_R4000 },
14112 { "mips4", 1, ISA_MIPS4, CPU_R8000 },
14113 { "mips5", 1, ISA_MIPS5, CPU_MIPS5 },
14114 { "mips32", 1, ISA_MIPS32, CPU_MIPS32 },
14115 { "mips32r2", 1, ISA_MIPS32R2, CPU_MIPS32R2 },
14116 { "mips64", 1, ISA_MIPS64, CPU_MIPS64 },
14117 { "mips64r2", 1, ISA_MIPS64R2, CPU_MIPS64R2 },
14118
14119 /* MIPS I */
14120 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
14121 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
14122 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
14123
14124 /* MIPS II */
14125 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
14126
14127 /* MIPS III */
14128 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
14129 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
14130 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
14131 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
14132 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
14133 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
14134 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
14135 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
14136 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
14137 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
14138 { "orion", 0, ISA_MIPS3, CPU_R4600 },
14139 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
14140
14141 /* MIPS IV */
14142 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
14143 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
14144 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
14145 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
14146 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
14147 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
14148 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
14149 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
14150 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
14151 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
14152 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
14153 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
14154 { "rm9000", 0, ISA_MIPS4, CPU_RM7000 },
14155
14156 /* MIPS 32 */
14157 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
14158 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
14159 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
14160
14161 /* MIPS 64 */
14162 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
14163 { "20kc", 0, ISA_MIPS64, CPU_MIPS64 },
14164
14165 /* Broadcom SB-1 CPU core */
14166 { "sb1", 0, ISA_MIPS64, CPU_SB1 },
14167
14168 /* End marker */
14169 { NULL, 0, 0, 0 }
14170 };
14171
14172
14173 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
14174 with a final "000" replaced by "k". Ignore case.
14175
14176 Note: this function is shared between GCC and GAS. */
14177
14178 static bfd_boolean
14179 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
14180 {
14181 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
14182 given++, canonical++;
14183
14184 return ((*given == 0 && *canonical == 0)
14185 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
14186 }
14187
14188
14189 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
14190 CPU name. We've traditionally allowed a lot of variation here.
14191
14192 Note: this function is shared between GCC and GAS. */
14193
14194 static bfd_boolean
14195 mips_matching_cpu_name_p (const char *canonical, const char *given)
14196 {
14197 /* First see if the name matches exactly, or with a final "000"
14198 turned into "k". */
14199 if (mips_strict_matching_cpu_name_p (canonical, given))
14200 return TRUE;
14201
14202 /* If not, try comparing based on numerical designation alone.
14203 See if GIVEN is an unadorned number, or 'r' followed by a number. */
14204 if (TOLOWER (*given) == 'r')
14205 given++;
14206 if (!ISDIGIT (*given))
14207 return FALSE;
14208
14209 /* Skip over some well-known prefixes in the canonical name,
14210 hoping to find a number there too. */
14211 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
14212 canonical += 2;
14213 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
14214 canonical += 2;
14215 else if (TOLOWER (canonical[0]) == 'r')
14216 canonical += 1;
14217
14218 return mips_strict_matching_cpu_name_p (canonical, given);
14219 }
14220
14221
14222 /* Parse an option that takes the name of a processor as its argument.
14223 OPTION is the name of the option and CPU_STRING is the argument.
14224 Return the corresponding processor enumeration if the CPU_STRING is
14225 recognized, otherwise report an error and return null.
14226
14227 A similar function exists in GCC. */
14228
14229 static const struct mips_cpu_info *
14230 mips_parse_cpu (const char *option, const char *cpu_string)
14231 {
14232 const struct mips_cpu_info *p;
14233
14234 /* 'from-abi' selects the most compatible architecture for the given
14235 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
14236 EABIs, we have to decide whether we're using the 32-bit or 64-bit
14237 version. Look first at the -mgp options, if given, otherwise base
14238 the choice on MIPS_DEFAULT_64BIT.
14239
14240 Treat NO_ABI like the EABIs. One reason to do this is that the
14241 plain 'mips' and 'mips64' configs have 'from-abi' as their default
14242 architecture. This code picks MIPS I for 'mips' and MIPS III for
14243 'mips64', just as we did in the days before 'from-abi'. */
14244 if (strcasecmp (cpu_string, "from-abi") == 0)
14245 {
14246 if (ABI_NEEDS_32BIT_REGS (mips_abi))
14247 return mips_cpu_info_from_isa (ISA_MIPS1);
14248
14249 if (ABI_NEEDS_64BIT_REGS (mips_abi))
14250 return mips_cpu_info_from_isa (ISA_MIPS3);
14251
14252 if (file_mips_gp32 >= 0)
14253 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
14254
14255 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
14256 ? ISA_MIPS3
14257 : ISA_MIPS1);
14258 }
14259
14260 /* 'default' has traditionally been a no-op. Probably not very useful. */
14261 if (strcasecmp (cpu_string, "default") == 0)
14262 return 0;
14263
14264 for (p = mips_cpu_info_table; p->name != 0; p++)
14265 if (mips_matching_cpu_name_p (p->name, cpu_string))
14266 return p;
14267
14268 as_bad ("Bad value (%s) for %s", cpu_string, option);
14269 return 0;
14270 }
14271
14272 /* Return the canonical processor information for ISA (a member of the
14273 ISA_MIPS* enumeration). */
14274
14275 static const struct mips_cpu_info *
14276 mips_cpu_info_from_isa (int isa)
14277 {
14278 int i;
14279
14280 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14281 if (mips_cpu_info_table[i].is_isa
14282 && isa == mips_cpu_info_table[i].isa)
14283 return (&mips_cpu_info_table[i]);
14284
14285 return NULL;
14286 }
14287
14288 static const struct mips_cpu_info *
14289 mips_cpu_info_from_arch (int arch)
14290 {
14291 int i;
14292
14293 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14294 if (arch == mips_cpu_info_table[i].cpu)
14295 return (&mips_cpu_info_table[i]);
14296
14297 return NULL;
14298 }
14299 \f
14300 static void
14301 show (FILE *stream, const char *string, int *col_p, int *first_p)
14302 {
14303 if (*first_p)
14304 {
14305 fprintf (stream, "%24s", "");
14306 *col_p = 24;
14307 }
14308 else
14309 {
14310 fprintf (stream, ", ");
14311 *col_p += 2;
14312 }
14313
14314 if (*col_p + strlen (string) > 72)
14315 {
14316 fprintf (stream, "\n%24s", "");
14317 *col_p = 24;
14318 }
14319
14320 fprintf (stream, "%s", string);
14321 *col_p += strlen (string);
14322
14323 *first_p = 0;
14324 }
14325
14326 void
14327 md_show_usage (FILE *stream)
14328 {
14329 int column, first;
14330 size_t i;
14331
14332 fprintf (stream, _("\
14333 MIPS options:\n\
14334 -membedded-pic generate embedded position independent code\n\
14335 -EB generate big endian output\n\
14336 -EL generate little endian output\n\
14337 -g, -g2 do not remove unneeded NOPs or swap branches\n\
14338 -G NUM allow referencing objects up to NUM bytes\n\
14339 implicitly with the gp register [default 8]\n"));
14340 fprintf (stream, _("\
14341 -mips1 generate MIPS ISA I instructions\n\
14342 -mips2 generate MIPS ISA II instructions\n\
14343 -mips3 generate MIPS ISA III instructions\n\
14344 -mips4 generate MIPS ISA IV instructions\n\
14345 -mips5 generate MIPS ISA V instructions\n\
14346 -mips32 generate MIPS32 ISA instructions\n\
14347 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
14348 -mips64 generate MIPS64 ISA instructions\n\
14349 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
14350 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
14351
14352 first = 1;
14353
14354 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14355 show (stream, mips_cpu_info_table[i].name, &column, &first);
14356 show (stream, "from-abi", &column, &first);
14357 fputc ('\n', stream);
14358
14359 fprintf (stream, _("\
14360 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
14361 -no-mCPU don't generate code specific to CPU.\n\
14362 For -mCPU and -no-mCPU, CPU must be one of:\n"));
14363
14364 first = 1;
14365
14366 show (stream, "3900", &column, &first);
14367 show (stream, "4010", &column, &first);
14368 show (stream, "4100", &column, &first);
14369 show (stream, "4650", &column, &first);
14370 fputc ('\n', stream);
14371
14372 fprintf (stream, _("\
14373 -mips16 generate mips16 instructions\n\
14374 -no-mips16 do not generate mips16 instructions\n"));
14375 fprintf (stream, _("\
14376 -mfix-vr4120 work around certain VR4120 errata\n\
14377 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
14378 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
14379 -O0 remove unneeded NOPs, do not swap branches\n\
14380 -O remove unneeded NOPs and swap branches\n\
14381 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
14382 --trap, --no-break trap exception on div by 0 and mult overflow\n\
14383 --break, --no-trap break exception on div by 0 and mult overflow\n"));
14384 #ifdef OBJ_ELF
14385 fprintf (stream, _("\
14386 -KPIC, -call_shared generate SVR4 position independent code\n\
14387 -non_shared do not generate position independent code\n\
14388 -xgot assume a 32 bit GOT\n\
14389 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
14390 -mabi=ABI create ABI conformant object file for:\n"));
14391
14392 first = 1;
14393
14394 show (stream, "32", &column, &first);
14395 show (stream, "o64", &column, &first);
14396 show (stream, "n32", &column, &first);
14397 show (stream, "64", &column, &first);
14398 show (stream, "eabi", &column, &first);
14399
14400 fputc ('\n', stream);
14401
14402 fprintf (stream, _("\
14403 -32 create o32 ABI object file (default)\n\
14404 -n32 create n32 ABI object file\n\
14405 -64 create 64 ABI object file\n"));
14406 #endif
14407 }
14408
14409 enum dwarf2_format
14410 mips_dwarf2_format (void)
14411 {
14412 if (mips_abi == N64_ABI)
14413 {
14414 #ifdef TE_IRIX
14415 return dwarf2_format_64bit_irix;
14416 #else
14417 return dwarf2_format_64bit;
14418 #endif
14419 }
14420 else
14421 return dwarf2_format_32bit;
14422 }
14423
14424 int
14425 mips_dwarf2_addr_size (void)
14426 {
14427 if (mips_abi == N64_ABI)
14428 return 8;
14429 else
14430 return 4;
14431 }
This page took 0.34114 seconds and 5 git commands to generate.