Richard Sandiford <richard@codesourcery.com>
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #include <stdarg.h>
32
33 #include "opcode/mips.h"
34 #include "itbl-ops.h"
35 #include "dwarf2dbg.h"
36 #include "dw2gencfi.h"
37
38 #ifdef DEBUG
39 #define DBG(x) printf x
40 #else
41 #define DBG(x)
42 #endif
43
44 #ifdef OBJ_MAYBE_ELF
45 /* Clean up namespace so we can include obj-elf.h too. */
46 static int mips_output_flavor (void);
47 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
48 #undef OBJ_PROCESS_STAB
49 #undef OUTPUT_FLAVOR
50 #undef S_GET_ALIGN
51 #undef S_GET_SIZE
52 #undef S_SET_ALIGN
53 #undef S_SET_SIZE
54 #undef obj_frob_file
55 #undef obj_frob_file_after_relocs
56 #undef obj_frob_symbol
57 #undef obj_pop_insert
58 #undef obj_sec_sym_ok_for_reloc
59 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
60
61 #include "obj-elf.h"
62 /* Fix any of them that we actually care about. */
63 #undef OUTPUT_FLAVOR
64 #define OUTPUT_FLAVOR mips_output_flavor()
65 #endif
66
67 #if defined (OBJ_ELF)
68 #include "elf/mips.h"
69 #endif
70
71 #ifndef ECOFF_DEBUGGING
72 #define NO_ECOFF_DEBUGGING
73 #define ECOFF_DEBUGGING 0
74 #endif
75
76 int mips_flag_mdebug = -1;
77
78 /* Control generation of .pdr sections. Off by default on IRIX: the native
79 linker doesn't know about and discards them, but relocations against them
80 remain, leading to rld crashes. */
81 #ifdef TE_IRIX
82 int mips_flag_pdr = FALSE;
83 #else
84 int mips_flag_pdr = TRUE;
85 #endif
86
87 #include "ecoff.h"
88
89 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
90 static char *mips_regmask_frag;
91 #endif
92
93 #define ZERO 0
94 #define AT 1
95 #define TREG 24
96 #define PIC_CALL_REG 25
97 #define KT0 26
98 #define KT1 27
99 #define GP 28
100 #define SP 29
101 #define FP 30
102 #define RA 31
103
104 #define ILLEGAL_REG (32)
105
106 /* Allow override of standard little-endian ECOFF format. */
107
108 #ifndef ECOFF_LITTLE_FORMAT
109 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
110 #endif
111
112 extern int target_big_endian;
113
114 /* The name of the readonly data section. */
115 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
116 ? ".rdata" \
117 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
118 ? ".rdata" \
119 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
120 ? ".rodata" \
121 : (abort (), ""))
122
123 /* Information about an instruction, including its format, operands
124 and fixups. */
125 struct mips_cl_insn
126 {
127 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
128 const struct mips_opcode *insn_mo;
129
130 /* True if this is a mips16 instruction and if we want the extended
131 form of INSN_MO. */
132 bfd_boolean use_extend;
133
134 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
135 unsigned short extend;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. */
139 unsigned long insn_opcode;
140
141 /* The frag that contains the instruction. */
142 struct frag *frag;
143
144 /* The offset into FRAG of the first instruction byte. */
145 long where;
146
147 /* The relocs associated with the instruction, if any. */
148 fixS *fixp[3];
149
150 /* True if this entry cannot be moved from its current position. */
151 unsigned int fixed_p : 1;
152
153 /* True if this instruction occured in a .set noreorder block. */
154 unsigned int noreorder_p : 1;
155
156 /* True for mips16 instructions that jump to an absolute address. */
157 unsigned int mips16_absolute_jump_p : 1;
158 };
159
160 /* The ABI to use. */
161 enum mips_abi_level
162 {
163 NO_ABI = 0,
164 O32_ABI,
165 O64_ABI,
166 N32_ABI,
167 N64_ABI,
168 EABI_ABI
169 };
170
171 /* MIPS ABI we are using for this output file. */
172 static enum mips_abi_level mips_abi = NO_ABI;
173
174 /* Whether or not we have code that can call pic code. */
175 int mips_abicalls = FALSE;
176
177 /* Whether or not we have code which can be put into a shared
178 library. */
179 static bfd_boolean mips_in_shared = TRUE;
180
181 /* This is the set of options which may be modified by the .set
182 pseudo-op. We use a struct so that .set push and .set pop are more
183 reliable. */
184
185 struct mips_set_options
186 {
187 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
188 if it has not been initialized. Changed by `.set mipsN', and the
189 -mipsN command line option, and the default CPU. */
190 int isa;
191 /* Enabled Application Specific Extensions (ASEs). These are set to -1
192 if they have not been initialized. Changed by `.set <asename>', by
193 command line options, and based on the default architecture. */
194 int ase_mips3d;
195 int ase_mdmx;
196 int ase_dsp;
197 int ase_mt;
198 /* Whether we are assembling for the mips16 processor. 0 if we are
199 not, 1 if we are, and -1 if the value has not been initialized.
200 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
201 -nomips16 command line options, and the default CPU. */
202 int mips16;
203 /* Non-zero if we should not reorder instructions. Changed by `.set
204 reorder' and `.set noreorder'. */
205 int noreorder;
206 /* Non-zero if we should not permit the $at ($1) register to be used
207 in instructions. Changed by `.set at' and `.set noat'. */
208 int noat;
209 /* Non-zero if we should warn when a macro instruction expands into
210 more than one machine instruction. Changed by `.set nomacro' and
211 `.set macro'. */
212 int warn_about_macros;
213 /* Non-zero if we should not move instructions. Changed by `.set
214 move', `.set volatile', `.set nomove', and `.set novolatile'. */
215 int nomove;
216 /* Non-zero if we should not optimize branches by moving the target
217 of the branch into the delay slot. Actually, we don't perform
218 this optimization anyhow. Changed by `.set bopt' and `.set
219 nobopt'. */
220 int nobopt;
221 /* Non-zero if we should not autoextend mips16 instructions.
222 Changed by `.set autoextend' and `.set noautoextend'. */
223 int noautoextend;
224 /* Restrict general purpose registers and floating point registers
225 to 32 bit. This is initially determined when -mgp32 or -mfp32
226 is passed but can changed if the assembler code uses .set mipsN. */
227 int gp32;
228 int fp32;
229 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
230 command line option, and the default CPU. */
231 int arch;
232 /* True if ".set sym32" is in effect. */
233 bfd_boolean sym32;
234 };
235
236 /* True if -mgp32 was passed. */
237 static int file_mips_gp32 = -1;
238
239 /* True if -mfp32 was passed. */
240 static int file_mips_fp32 = -1;
241
242 /* This is the struct we use to hold the current set of options. Note
243 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
244 -1 to indicate that they have not been initialized. */
245
246 static struct mips_set_options mips_opts =
247 {
248 ISA_UNKNOWN, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, CPU_UNKNOWN, FALSE
249 };
250
251 /* These variables are filled in with the masks of registers used.
252 The object format code reads them and puts them in the appropriate
253 place. */
254 unsigned long mips_gprmask;
255 unsigned long mips_cprmask[4];
256
257 /* MIPS ISA we are using for this output file. */
258 static int file_mips_isa = ISA_UNKNOWN;
259
260 /* True if -mips16 was passed or implied by arguments passed on the
261 command line (e.g., by -march). */
262 static int file_ase_mips16;
263
264 /* True if -mips3d was passed or implied by arguments passed on the
265 command line (e.g., by -march). */
266 static int file_ase_mips3d;
267
268 /* True if -mdmx was passed or implied by arguments passed on the
269 command line (e.g., by -march). */
270 static int file_ase_mdmx;
271
272 /* True if -mdsp was passed or implied by arguments passed on the
273 command line (e.g., by -march). */
274 static int file_ase_dsp;
275
276 /* True if -mmt was passed or implied by arguments passed on the
277 command line (e.g., by -march). */
278 static int file_ase_mt;
279
280 /* The argument of the -march= flag. The architecture we are assembling. */
281 static int file_mips_arch = CPU_UNKNOWN;
282 static const char *mips_arch_string;
283
284 /* The argument of the -mtune= flag. The architecture for which we
285 are optimizing. */
286 static int mips_tune = CPU_UNKNOWN;
287 static const char *mips_tune_string;
288
289 /* True when generating 32-bit code for a 64-bit processor. */
290 static int mips_32bitmode = 0;
291
292 /* True if the given ABI requires 32-bit registers. */
293 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
294
295 /* Likewise 64-bit registers. */
296 #define ABI_NEEDS_64BIT_REGS(ABI) \
297 ((ABI) == N32_ABI \
298 || (ABI) == N64_ABI \
299 || (ABI) == O64_ABI)
300
301 /* Return true if ISA supports 64 bit gp register instructions. */
302 #define ISA_HAS_64BIT_REGS(ISA) ( \
303 (ISA) == ISA_MIPS3 \
304 || (ISA) == ISA_MIPS4 \
305 || (ISA) == ISA_MIPS5 \
306 || (ISA) == ISA_MIPS64 \
307 || (ISA) == ISA_MIPS64R2 \
308 )
309
310 /* Return true if ISA supports 64-bit right rotate (dror et al.)
311 instructions. */
312 #define ISA_HAS_DROR(ISA) ( \
313 (ISA) == ISA_MIPS64R2 \
314 )
315
316 /* Return true if ISA supports 32-bit right rotate (ror et al.)
317 instructions. */
318 #define ISA_HAS_ROR(ISA) ( \
319 (ISA) == ISA_MIPS32R2 \
320 || (ISA) == ISA_MIPS64R2 \
321 )
322
323 #define HAVE_32BIT_GPRS \
324 (mips_opts.gp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
325
326 #define HAVE_32BIT_FPRS \
327 (mips_opts.fp32 || ! ISA_HAS_64BIT_REGS (mips_opts.isa))
328
329 #define HAVE_64BIT_GPRS (! HAVE_32BIT_GPRS)
330 #define HAVE_64BIT_FPRS (! HAVE_32BIT_FPRS)
331
332 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
333
334 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
335
336 /* True if relocations are stored in-place. */
337 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
338
339 /* The ABI-derived address size. */
340 #define HAVE_64BIT_ADDRESSES \
341 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
342 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
343
344 /* The size of symbolic constants (i.e., expressions of the form
345 "SYMBOL" or "SYMBOL + OFFSET"). */
346 #define HAVE_32BIT_SYMBOLS \
347 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
348 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
349
350 /* Addresses are loaded in different ways, depending on the address size
351 in use. The n32 ABI Documentation also mandates the use of additions
352 with overflow checking, but existing implementations don't follow it. */
353 #define ADDRESS_ADD_INSN \
354 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
355
356 #define ADDRESS_ADDI_INSN \
357 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
358
359 #define ADDRESS_LOAD_INSN \
360 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
361
362 #define ADDRESS_STORE_INSN \
363 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
364
365 /* Return true if the given CPU supports the MIPS16 ASE. */
366 #define CPU_HAS_MIPS16(cpu) \
367 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
368 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
369
370 /* Return true if the given CPU supports the MIPS3D ASE. */
371 #define CPU_HAS_MIPS3D(cpu) ((cpu) == CPU_SB1 \
372 )
373
374 /* Return true if the given CPU supports the MDMX ASE. */
375 #define CPU_HAS_MDMX(cpu) (FALSE \
376 )
377
378 /* Return true if the given CPU supports the DSP ASE. */
379 #define CPU_HAS_DSP(cpu) (FALSE \
380 )
381
382 /* Return true if the given CPU supports the MT ASE. */
383 #define CPU_HAS_MT(cpu) (FALSE \
384 )
385
386 /* True if CPU has a dror instruction. */
387 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
388
389 /* True if CPU has a ror instruction. */
390 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
391
392 /* True if mflo and mfhi can be immediately followed by instructions
393 which write to the HI and LO registers.
394
395 According to MIPS specifications, MIPS ISAs I, II, and III need
396 (at least) two instructions between the reads of HI/LO and
397 instructions which write them, and later ISAs do not. Contradicting
398 the MIPS specifications, some MIPS IV processor user manuals (e.g.
399 the UM for the NEC Vr5000) document needing the instructions between
400 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
401 MIPS64 and later ISAs to have the interlocks, plus any specific
402 earlier-ISA CPUs for which CPU documentation declares that the
403 instructions are really interlocked. */
404 #define hilo_interlocks \
405 (mips_opts.isa == ISA_MIPS32 \
406 || mips_opts.isa == ISA_MIPS32R2 \
407 || mips_opts.isa == ISA_MIPS64 \
408 || mips_opts.isa == ISA_MIPS64R2 \
409 || mips_opts.arch == CPU_R4010 \
410 || mips_opts.arch == CPU_R10000 \
411 || mips_opts.arch == CPU_R12000 \
412 || mips_opts.arch == CPU_RM7000 \
413 || mips_opts.arch == CPU_VR5500 \
414 )
415
416 /* Whether the processor uses hardware interlocks to protect reads
417 from the GPRs after they are loaded from memory, and thus does not
418 require nops to be inserted. This applies to instructions marked
419 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
420 level I. */
421 #define gpr_interlocks \
422 (mips_opts.isa != ISA_MIPS1 \
423 || mips_opts.arch == CPU_R3900)
424
425 /* Whether the processor uses hardware interlocks to avoid delays
426 required by coprocessor instructions, and thus does not require
427 nops to be inserted. This applies to instructions marked
428 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
429 between instructions marked INSN_WRITE_COND_CODE and ones marked
430 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
431 levels I, II, and III. */
432 /* Itbl support may require additional care here. */
433 #define cop_interlocks \
434 ((mips_opts.isa != ISA_MIPS1 \
435 && mips_opts.isa != ISA_MIPS2 \
436 && mips_opts.isa != ISA_MIPS3) \
437 || mips_opts.arch == CPU_R4300 \
438 )
439
440 /* Whether the processor uses hardware interlocks to protect reads
441 from coprocessor registers after they are loaded from memory, and
442 thus does not require nops to be inserted. This applies to
443 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
444 requires at MIPS ISA level I. */
445 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
446
447 /* Is this a mfhi or mflo instruction? */
448 #define MF_HILO_INSN(PINFO) \
449 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
450
451 /* MIPS PIC level. */
452
453 enum mips_pic_level mips_pic;
454
455 /* 1 if we should generate 32 bit offsets from the $gp register in
456 SVR4_PIC mode. Currently has no meaning in other modes. */
457 static int mips_big_got = 0;
458
459 /* 1 if trap instructions should used for overflow rather than break
460 instructions. */
461 static int mips_trap = 0;
462
463 /* 1 if double width floating point constants should not be constructed
464 by assembling two single width halves into two single width floating
465 point registers which just happen to alias the double width destination
466 register. On some architectures this aliasing can be disabled by a bit
467 in the status register, and the setting of this bit cannot be determined
468 automatically at assemble time. */
469 static int mips_disable_float_construction;
470
471 /* Non-zero if any .set noreorder directives were used. */
472
473 static int mips_any_noreorder;
474
475 /* Non-zero if nops should be inserted when the register referenced in
476 an mfhi/mflo instruction is read in the next two instructions. */
477 static int mips_7000_hilo_fix;
478
479 /* The size of the small data section. */
480 static unsigned int g_switch_value = 8;
481 /* Whether the -G option was used. */
482 static int g_switch_seen = 0;
483
484 #define N_RMASK 0xc4
485 #define N_VFP 0xd4
486
487 /* If we can determine in advance that GP optimization won't be
488 possible, we can skip the relaxation stuff that tries to produce
489 GP-relative references. This makes delay slot optimization work
490 better.
491
492 This function can only provide a guess, but it seems to work for
493 gcc output. It needs to guess right for gcc, otherwise gcc
494 will put what it thinks is a GP-relative instruction in a branch
495 delay slot.
496
497 I don't know if a fix is needed for the SVR4_PIC mode. I've only
498 fixed it for the non-PIC mode. KR 95/04/07 */
499 static int nopic_need_relax (symbolS *, int);
500
501 /* handle of the OPCODE hash table */
502 static struct hash_control *op_hash = NULL;
503
504 /* The opcode hash table we use for the mips16. */
505 static struct hash_control *mips16_op_hash = NULL;
506
507 /* This array holds the chars that always start a comment. If the
508 pre-processor is disabled, these aren't very useful */
509 const char comment_chars[] = "#";
510
511 /* This array holds the chars that only start a comment at the beginning of
512 a line. If the line seems to have the form '# 123 filename'
513 .line and .file directives will appear in the pre-processed output */
514 /* Note that input_file.c hand checks for '#' at the beginning of the
515 first line of the input file. This is because the compiler outputs
516 #NO_APP at the beginning of its output. */
517 /* Also note that C style comments are always supported. */
518 const char line_comment_chars[] = "#";
519
520 /* This array holds machine specific line separator characters. */
521 const char line_separator_chars[] = ";";
522
523 /* Chars that can be used to separate mant from exp in floating point nums */
524 const char EXP_CHARS[] = "eE";
525
526 /* Chars that mean this number is a floating point constant */
527 /* As in 0f12.456 */
528 /* or 0d1.2345e12 */
529 const char FLT_CHARS[] = "rRsSfFdDxXpP";
530
531 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
532 changed in read.c . Ideally it shouldn't have to know about it at all,
533 but nothing is ideal around here.
534 */
535
536 static char *insn_error;
537
538 static int auto_align = 1;
539
540 /* When outputting SVR4 PIC code, the assembler needs to know the
541 offset in the stack frame from which to restore the $gp register.
542 This is set by the .cprestore pseudo-op, and saved in this
543 variable. */
544 static offsetT mips_cprestore_offset = -1;
545
546 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
547 more optimizations, it can use a register value instead of a memory-saved
548 offset and even an other register than $gp as global pointer. */
549 static offsetT mips_cpreturn_offset = -1;
550 static int mips_cpreturn_register = -1;
551 static int mips_gp_register = GP;
552 static int mips_gprel_offset = 0;
553
554 /* Whether mips_cprestore_offset has been set in the current function
555 (or whether it has already been warned about, if not). */
556 static int mips_cprestore_valid = 0;
557
558 /* This is the register which holds the stack frame, as set by the
559 .frame pseudo-op. This is needed to implement .cprestore. */
560 static int mips_frame_reg = SP;
561
562 /* Whether mips_frame_reg has been set in the current function
563 (or whether it has already been warned about, if not). */
564 static int mips_frame_reg_valid = 0;
565
566 /* To output NOP instructions correctly, we need to keep information
567 about the previous two instructions. */
568
569 /* Whether we are optimizing. The default value of 2 means to remove
570 unneeded NOPs and swap branch instructions when possible. A value
571 of 1 means to not swap branches. A value of 0 means to always
572 insert NOPs. */
573 static int mips_optimize = 2;
574
575 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
576 equivalent to seeing no -g option at all. */
577 static int mips_debug = 0;
578
579 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
580 #define MAX_VR4130_NOPS 4
581
582 /* The maximum number of NOPs needed to fill delay slots. */
583 #define MAX_DELAY_NOPS 2
584
585 /* The maximum number of NOPs needed for any purpose. */
586 #define MAX_NOPS 4
587
588 /* A list of previous instructions, with index 0 being the most recent.
589 We need to look back MAX_NOPS instructions when filling delay slots
590 or working around processor errata. We need to look back one
591 instruction further if we're thinking about using history[0] to
592 fill a branch delay slot. */
593 static struct mips_cl_insn history[1 + MAX_NOPS];
594
595 /* Nop instructions used by emit_nop. */
596 static struct mips_cl_insn nop_insn, mips16_nop_insn;
597
598 /* The appropriate nop for the current mode. */
599 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
600
601 /* If this is set, it points to a frag holding nop instructions which
602 were inserted before the start of a noreorder section. If those
603 nops turn out to be unnecessary, the size of the frag can be
604 decreased. */
605 static fragS *prev_nop_frag;
606
607 /* The number of nop instructions we created in prev_nop_frag. */
608 static int prev_nop_frag_holds;
609
610 /* The number of nop instructions that we know we need in
611 prev_nop_frag. */
612 static int prev_nop_frag_required;
613
614 /* The number of instructions we've seen since prev_nop_frag. */
615 static int prev_nop_frag_since;
616
617 /* For ECOFF and ELF, relocations against symbols are done in two
618 parts, with a HI relocation and a LO relocation. Each relocation
619 has only 16 bits of space to store an addend. This means that in
620 order for the linker to handle carries correctly, it must be able
621 to locate both the HI and the LO relocation. This means that the
622 relocations must appear in order in the relocation table.
623
624 In order to implement this, we keep track of each unmatched HI
625 relocation. We then sort them so that they immediately precede the
626 corresponding LO relocation. */
627
628 struct mips_hi_fixup
629 {
630 /* Next HI fixup. */
631 struct mips_hi_fixup *next;
632 /* This fixup. */
633 fixS *fixp;
634 /* The section this fixup is in. */
635 segT seg;
636 };
637
638 /* The list of unmatched HI relocs. */
639
640 static struct mips_hi_fixup *mips_hi_fixup_list;
641
642 /* The frag containing the last explicit relocation operator.
643 Null if explicit relocations have not been used. */
644
645 static fragS *prev_reloc_op_frag;
646
647 /* Map normal MIPS register numbers to mips16 register numbers. */
648
649 #define X ILLEGAL_REG
650 static const int mips32_to_16_reg_map[] =
651 {
652 X, X, 2, 3, 4, 5, 6, 7,
653 X, X, X, X, X, X, X, X,
654 0, 1, X, X, X, X, X, X,
655 X, X, X, X, X, X, X, X
656 };
657 #undef X
658
659 /* Map mips16 register numbers to normal MIPS register numbers. */
660
661 static const unsigned int mips16_to_32_reg_map[] =
662 {
663 16, 17, 2, 3, 4, 5, 6, 7
664 };
665
666 /* Classifies the kind of instructions we're interested in when
667 implementing -mfix-vr4120. */
668 enum fix_vr4120_class {
669 FIX_VR4120_MACC,
670 FIX_VR4120_DMACC,
671 FIX_VR4120_MULT,
672 FIX_VR4120_DMULT,
673 FIX_VR4120_DIV,
674 FIX_VR4120_MTHILO,
675 NUM_FIX_VR4120_CLASSES
676 };
677
678 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
679 there must be at least one other instruction between an instruction
680 of type X and an instruction of type Y. */
681 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
682
683 /* True if -mfix-vr4120 is in force. */
684 static int mips_fix_vr4120;
685
686 /* ...likewise -mfix-vr4130. */
687 static int mips_fix_vr4130;
688
689 /* We don't relax branches by default, since this causes us to expand
690 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
691 fail to compute the offset before expanding the macro to the most
692 efficient expansion. */
693
694 static int mips_relax_branch;
695 \f
696 /* The expansion of many macros depends on the type of symbol that
697 they refer to. For example, when generating position-dependent code,
698 a macro that refers to a symbol may have two different expansions,
699 one which uses GP-relative addresses and one which uses absolute
700 addresses. When generating SVR4-style PIC, a macro may have
701 different expansions for local and global symbols.
702
703 We handle these situations by generating both sequences and putting
704 them in variant frags. In position-dependent code, the first sequence
705 will be the GP-relative one and the second sequence will be the
706 absolute one. In SVR4 PIC, the first sequence will be for global
707 symbols and the second will be for local symbols.
708
709 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
710 SECOND are the lengths of the two sequences in bytes. These fields
711 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
712 the subtype has the following flags:
713
714 RELAX_USE_SECOND
715 Set if it has been decided that we should use the second
716 sequence instead of the first.
717
718 RELAX_SECOND_LONGER
719 Set in the first variant frag if the macro's second implementation
720 is longer than its first. This refers to the macro as a whole,
721 not an individual relaxation.
722
723 RELAX_NOMACRO
724 Set in the first variant frag if the macro appeared in a .set nomacro
725 block and if one alternative requires a warning but the other does not.
726
727 RELAX_DELAY_SLOT
728 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
729 delay slot.
730
731 The frag's "opcode" points to the first fixup for relaxable code.
732
733 Relaxable macros are generated using a sequence such as:
734
735 relax_start (SYMBOL);
736 ... generate first expansion ...
737 relax_switch ();
738 ... generate second expansion ...
739 relax_end ();
740
741 The code and fixups for the unwanted alternative are discarded
742 by md_convert_frag. */
743 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
744
745 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
746 #define RELAX_SECOND(X) ((X) & 0xff)
747 #define RELAX_USE_SECOND 0x10000
748 #define RELAX_SECOND_LONGER 0x20000
749 #define RELAX_NOMACRO 0x40000
750 #define RELAX_DELAY_SLOT 0x80000
751
752 /* Branch without likely bit. If label is out of range, we turn:
753
754 beq reg1, reg2, label
755 delay slot
756
757 into
758
759 bne reg1, reg2, 0f
760 nop
761 j label
762 0: delay slot
763
764 with the following opcode replacements:
765
766 beq <-> bne
767 blez <-> bgtz
768 bltz <-> bgez
769 bc1f <-> bc1t
770
771 bltzal <-> bgezal (with jal label instead of j label)
772
773 Even though keeping the delay slot instruction in the delay slot of
774 the branch would be more efficient, it would be very tricky to do
775 correctly, because we'd have to introduce a variable frag *after*
776 the delay slot instruction, and expand that instead. Let's do it
777 the easy way for now, even if the branch-not-taken case now costs
778 one additional instruction. Out-of-range branches are not supposed
779 to be common, anyway.
780
781 Branch likely. If label is out of range, we turn:
782
783 beql reg1, reg2, label
784 delay slot (annulled if branch not taken)
785
786 into
787
788 beql reg1, reg2, 1f
789 nop
790 beql $0, $0, 2f
791 nop
792 1: j[al] label
793 delay slot (executed only if branch taken)
794 2:
795
796 It would be possible to generate a shorter sequence by losing the
797 likely bit, generating something like:
798
799 bne reg1, reg2, 0f
800 nop
801 j[al] label
802 delay slot (executed only if branch taken)
803 0:
804
805 beql -> bne
806 bnel -> beq
807 blezl -> bgtz
808 bgtzl -> blez
809 bltzl -> bgez
810 bgezl -> bltz
811 bc1fl -> bc1t
812 bc1tl -> bc1f
813
814 bltzall -> bgezal (with jal label instead of j label)
815 bgezall -> bltzal (ditto)
816
817
818 but it's not clear that it would actually improve performance. */
819 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
820 ((relax_substateT) \
821 (0xc0000000 \
822 | ((toofar) ? 1 : 0) \
823 | ((link) ? 2 : 0) \
824 | ((likely) ? 4 : 0) \
825 | ((uncond) ? 8 : 0)))
826 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
827 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
828 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
829 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
830 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
831
832 /* For mips16 code, we use an entirely different form of relaxation.
833 mips16 supports two versions of most instructions which take
834 immediate values: a small one which takes some small value, and a
835 larger one which takes a 16 bit value. Since branches also follow
836 this pattern, relaxing these values is required.
837
838 We can assemble both mips16 and normal MIPS code in a single
839 object. Therefore, we need to support this type of relaxation at
840 the same time that we support the relaxation described above. We
841 use the high bit of the subtype field to distinguish these cases.
842
843 The information we store for this type of relaxation is the
844 argument code found in the opcode file for this relocation, whether
845 the user explicitly requested a small or extended form, and whether
846 the relocation is in a jump or jal delay slot. That tells us the
847 size of the value, and how it should be stored. We also store
848 whether the fragment is considered to be extended or not. We also
849 store whether this is known to be a branch to a different section,
850 whether we have tried to relax this frag yet, and whether we have
851 ever extended a PC relative fragment because of a shift count. */
852 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
853 (0x80000000 \
854 | ((type) & 0xff) \
855 | ((small) ? 0x100 : 0) \
856 | ((ext) ? 0x200 : 0) \
857 | ((dslot) ? 0x400 : 0) \
858 | ((jal_dslot) ? 0x800 : 0))
859 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
860 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
861 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
862 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
863 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
864 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
865 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
866 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
867 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
868 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
869 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
870 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
871
872 /* Is the given value a sign-extended 32-bit value? */
873 #define IS_SEXT_32BIT_NUM(x) \
874 (((x) &~ (offsetT) 0x7fffffff) == 0 \
875 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
876
877 /* Is the given value a sign-extended 16-bit value? */
878 #define IS_SEXT_16BIT_NUM(x) \
879 (((x) &~ (offsetT) 0x7fff) == 0 \
880 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
881
882 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
883 #define IS_ZEXT_32BIT_NUM(x) \
884 (((x) &~ (offsetT) 0xffffffff) == 0 \
885 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
886
887 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
888 VALUE << SHIFT. VALUE is evaluated exactly once. */
889 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
890 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
891 | (((VALUE) & (MASK)) << (SHIFT)))
892
893 /* Extract bits MASK << SHIFT from STRUCT and shift them right
894 SHIFT places. */
895 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
896 (((STRUCT) >> (SHIFT)) & (MASK))
897
898 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
899 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
900
901 include/opcode/mips.h specifies operand fields using the macros
902 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
903 with "MIPS16OP" instead of "OP". */
904 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
905 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
906 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
907 INSERT_BITS ((INSN).insn_opcode, VALUE, \
908 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
909
910 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
911 #define EXTRACT_OPERAND(FIELD, INSN) \
912 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
913 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
914 EXTRACT_BITS ((INSN).insn_opcode, \
915 MIPS16OP_MASK_##FIELD, \
916 MIPS16OP_SH_##FIELD)
917 \f
918 /* Global variables used when generating relaxable macros. See the
919 comment above RELAX_ENCODE for more details about how relaxation
920 is used. */
921 static struct {
922 /* 0 if we're not emitting a relaxable macro.
923 1 if we're emitting the first of the two relaxation alternatives.
924 2 if we're emitting the second alternative. */
925 int sequence;
926
927 /* The first relaxable fixup in the current frag. (In other words,
928 the first fixup that refers to relaxable code.) */
929 fixS *first_fixup;
930
931 /* sizes[0] says how many bytes of the first alternative are stored in
932 the current frag. Likewise sizes[1] for the second alternative. */
933 unsigned int sizes[2];
934
935 /* The symbol on which the choice of sequence depends. */
936 symbolS *symbol;
937 } mips_relax;
938 \f
939 /* Global variables used to decide whether a macro needs a warning. */
940 static struct {
941 /* True if the macro is in a branch delay slot. */
942 bfd_boolean delay_slot_p;
943
944 /* For relaxable macros, sizes[0] is the length of the first alternative
945 in bytes and sizes[1] is the length of the second alternative.
946 For non-relaxable macros, both elements give the length of the
947 macro in bytes. */
948 unsigned int sizes[2];
949
950 /* The first variant frag for this macro. */
951 fragS *first_frag;
952 } mips_macro_warning;
953 \f
954 /* Prototypes for static functions. */
955
956 #define internalError() \
957 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
958
959 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
960
961 static void append_insn
962 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r);
963 static void mips_no_prev_insn (void);
964 static void mips16_macro_build
965 (expressionS *, const char *, const char *, va_list);
966 static void load_register (int, expressionS *, int);
967 static void macro_start (void);
968 static void macro_end (void);
969 static void macro (struct mips_cl_insn * ip);
970 static void mips16_macro (struct mips_cl_insn * ip);
971 #ifdef LOSING_COMPILER
972 static void macro2 (struct mips_cl_insn * ip);
973 #endif
974 static void mips_ip (char *str, struct mips_cl_insn * ip);
975 static void mips16_ip (char *str, struct mips_cl_insn * ip);
976 static void mips16_immed
977 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
978 unsigned long *, bfd_boolean *, unsigned short *);
979 static size_t my_getSmallExpression
980 (expressionS *, bfd_reloc_code_real_type *, char *);
981 static void my_getExpression (expressionS *, char *);
982 static void s_align (int);
983 static void s_change_sec (int);
984 static void s_change_section (int);
985 static void s_cons (int);
986 static void s_float_cons (int);
987 static void s_mips_globl (int);
988 static void s_option (int);
989 static void s_mipsset (int);
990 static void s_abicalls (int);
991 static void s_cpload (int);
992 static void s_cpsetup (int);
993 static void s_cplocal (int);
994 static void s_cprestore (int);
995 static void s_cpreturn (int);
996 static void s_gpvalue (int);
997 static void s_gpword (int);
998 static void s_gpdword (int);
999 static void s_cpadd (int);
1000 static void s_insn (int);
1001 static void md_obj_begin (void);
1002 static void md_obj_end (void);
1003 static void s_mips_ent (int);
1004 static void s_mips_end (int);
1005 static void s_mips_frame (int);
1006 static void s_mips_mask (int reg_type);
1007 static void s_mips_stab (int);
1008 static void s_mips_weakext (int);
1009 static void s_mips_file (int);
1010 static void s_mips_loc (int);
1011 static bfd_boolean pic_need_relax (symbolS *, asection *);
1012 static int relaxed_branch_length (fragS *, asection *, int);
1013 static int validate_mips_insn (const struct mips_opcode *);
1014
1015 /* Table and functions used to map between CPU/ISA names, and
1016 ISA levels, and CPU numbers. */
1017
1018 struct mips_cpu_info
1019 {
1020 const char *name; /* CPU or ISA name. */
1021 int is_isa; /* Is this an ISA? (If 0, a CPU.) */
1022 int isa; /* ISA level. */
1023 int cpu; /* CPU number (default CPU if ISA). */
1024 };
1025
1026 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1027 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1028 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1029 \f
1030 /* Pseudo-op table.
1031
1032 The following pseudo-ops from the Kane and Heinrich MIPS book
1033 should be defined here, but are currently unsupported: .alias,
1034 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1035
1036 The following pseudo-ops from the Kane and Heinrich MIPS book are
1037 specific to the type of debugging information being generated, and
1038 should be defined by the object format: .aent, .begin, .bend,
1039 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1040 .vreg.
1041
1042 The following pseudo-ops from the Kane and Heinrich MIPS book are
1043 not MIPS CPU specific, but are also not specific to the object file
1044 format. This file is probably the best place to define them, but
1045 they are not currently supported: .asm0, .endr, .lab, .repeat,
1046 .struct. */
1047
1048 static const pseudo_typeS mips_pseudo_table[] =
1049 {
1050 /* MIPS specific pseudo-ops. */
1051 {"option", s_option, 0},
1052 {"set", s_mipsset, 0},
1053 {"rdata", s_change_sec, 'r'},
1054 {"sdata", s_change_sec, 's'},
1055 {"livereg", s_ignore, 0},
1056 {"abicalls", s_abicalls, 0},
1057 {"cpload", s_cpload, 0},
1058 {"cpsetup", s_cpsetup, 0},
1059 {"cplocal", s_cplocal, 0},
1060 {"cprestore", s_cprestore, 0},
1061 {"cpreturn", s_cpreturn, 0},
1062 {"gpvalue", s_gpvalue, 0},
1063 {"gpword", s_gpword, 0},
1064 {"gpdword", s_gpdword, 0},
1065 {"cpadd", s_cpadd, 0},
1066 {"insn", s_insn, 0},
1067
1068 /* Relatively generic pseudo-ops that happen to be used on MIPS
1069 chips. */
1070 {"asciiz", stringer, 1},
1071 {"bss", s_change_sec, 'b'},
1072 {"err", s_err, 0},
1073 {"half", s_cons, 1},
1074 {"dword", s_cons, 3},
1075 {"weakext", s_mips_weakext, 0},
1076
1077 /* These pseudo-ops are defined in read.c, but must be overridden
1078 here for one reason or another. */
1079 {"align", s_align, 0},
1080 {"byte", s_cons, 0},
1081 {"data", s_change_sec, 'd'},
1082 {"double", s_float_cons, 'd'},
1083 {"float", s_float_cons, 'f'},
1084 {"globl", s_mips_globl, 0},
1085 {"global", s_mips_globl, 0},
1086 {"hword", s_cons, 1},
1087 {"int", s_cons, 2},
1088 {"long", s_cons, 2},
1089 {"octa", s_cons, 4},
1090 {"quad", s_cons, 3},
1091 {"section", s_change_section, 0},
1092 {"short", s_cons, 1},
1093 {"single", s_float_cons, 'f'},
1094 {"stabn", s_mips_stab, 'n'},
1095 {"text", s_change_sec, 't'},
1096 {"word", s_cons, 2},
1097
1098 { "extern", ecoff_directive_extern, 0},
1099
1100 { NULL, NULL, 0 },
1101 };
1102
1103 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1104 {
1105 /* These pseudo-ops should be defined by the object file format.
1106 However, a.out doesn't support them, so we have versions here. */
1107 {"aent", s_mips_ent, 1},
1108 {"bgnb", s_ignore, 0},
1109 {"end", s_mips_end, 0},
1110 {"endb", s_ignore, 0},
1111 {"ent", s_mips_ent, 0},
1112 {"file", s_mips_file, 0},
1113 {"fmask", s_mips_mask, 'F'},
1114 {"frame", s_mips_frame, 0},
1115 {"loc", s_mips_loc, 0},
1116 {"mask", s_mips_mask, 'R'},
1117 {"verstamp", s_ignore, 0},
1118 { NULL, NULL, 0 },
1119 };
1120
1121 extern void pop_insert (const pseudo_typeS *);
1122
1123 void
1124 mips_pop_insert (void)
1125 {
1126 pop_insert (mips_pseudo_table);
1127 if (! ECOFF_DEBUGGING)
1128 pop_insert (mips_nonecoff_pseudo_table);
1129 }
1130 \f
1131 /* Symbols labelling the current insn. */
1132
1133 struct insn_label_list
1134 {
1135 struct insn_label_list *next;
1136 symbolS *label;
1137 };
1138
1139 static struct insn_label_list *insn_labels;
1140 static struct insn_label_list *free_insn_labels;
1141
1142 static void mips_clear_insn_labels (void);
1143
1144 static inline void
1145 mips_clear_insn_labels (void)
1146 {
1147 register struct insn_label_list **pl;
1148
1149 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1150 ;
1151 *pl = insn_labels;
1152 insn_labels = NULL;
1153 }
1154 \f
1155 static char *expr_end;
1156
1157 /* Expressions which appear in instructions. These are set by
1158 mips_ip. */
1159
1160 static expressionS imm_expr;
1161 static expressionS imm2_expr;
1162 static expressionS offset_expr;
1163
1164 /* Relocs associated with imm_expr and offset_expr. */
1165
1166 static bfd_reloc_code_real_type imm_reloc[3]
1167 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1168 static bfd_reloc_code_real_type offset_reloc[3]
1169 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1170
1171 /* These are set by mips16_ip if an explicit extension is used. */
1172
1173 static bfd_boolean mips16_small, mips16_ext;
1174
1175 #ifdef OBJ_ELF
1176 /* The pdr segment for per procedure frame/regmask info. Not used for
1177 ECOFF debugging. */
1178
1179 static segT pdr_seg;
1180 #endif
1181
1182 /* The default target format to use. */
1183
1184 const char *
1185 mips_target_format (void)
1186 {
1187 switch (OUTPUT_FLAVOR)
1188 {
1189 case bfd_target_ecoff_flavour:
1190 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1191 case bfd_target_coff_flavour:
1192 return "pe-mips";
1193 case bfd_target_elf_flavour:
1194 #ifdef TE_VXWORKS
1195 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1196 return (target_big_endian
1197 ? "elf32-bigmips-vxworks"
1198 : "elf32-littlemips-vxworks");
1199 #endif
1200 #ifdef TE_TMIPS
1201 /* This is traditional mips. */
1202 return (target_big_endian
1203 ? (HAVE_64BIT_OBJECTS
1204 ? "elf64-tradbigmips"
1205 : (HAVE_NEWABI
1206 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1207 : (HAVE_64BIT_OBJECTS
1208 ? "elf64-tradlittlemips"
1209 : (HAVE_NEWABI
1210 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1211 #else
1212 return (target_big_endian
1213 ? (HAVE_64BIT_OBJECTS
1214 ? "elf64-bigmips"
1215 : (HAVE_NEWABI
1216 ? "elf32-nbigmips" : "elf32-bigmips"))
1217 : (HAVE_64BIT_OBJECTS
1218 ? "elf64-littlemips"
1219 : (HAVE_NEWABI
1220 ? "elf32-nlittlemips" : "elf32-littlemips")));
1221 #endif
1222 default:
1223 abort ();
1224 return NULL;
1225 }
1226 }
1227
1228 /* Return the length of instruction INSN. */
1229
1230 static inline unsigned int
1231 insn_length (const struct mips_cl_insn *insn)
1232 {
1233 if (!mips_opts.mips16)
1234 return 4;
1235 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1236 }
1237
1238 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1239
1240 static void
1241 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1242 {
1243 size_t i;
1244
1245 insn->insn_mo = mo;
1246 insn->use_extend = FALSE;
1247 insn->extend = 0;
1248 insn->insn_opcode = mo->match;
1249 insn->frag = NULL;
1250 insn->where = 0;
1251 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1252 insn->fixp[i] = NULL;
1253 insn->fixed_p = (mips_opts.noreorder > 0);
1254 insn->noreorder_p = (mips_opts.noreorder > 0);
1255 insn->mips16_absolute_jump_p = 0;
1256 }
1257
1258 /* Install INSN at the location specified by its "frag" and "where" fields. */
1259
1260 static void
1261 install_insn (const struct mips_cl_insn *insn)
1262 {
1263 char *f = insn->frag->fr_literal + insn->where;
1264 if (!mips_opts.mips16)
1265 md_number_to_chars (f, insn->insn_opcode, 4);
1266 else if (insn->mips16_absolute_jump_p)
1267 {
1268 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1269 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1270 }
1271 else
1272 {
1273 if (insn->use_extend)
1274 {
1275 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1276 f += 2;
1277 }
1278 md_number_to_chars (f, insn->insn_opcode, 2);
1279 }
1280 }
1281
1282 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1283 and install the opcode in the new location. */
1284
1285 static void
1286 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1287 {
1288 size_t i;
1289
1290 insn->frag = frag;
1291 insn->where = where;
1292 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1293 if (insn->fixp[i] != NULL)
1294 {
1295 insn->fixp[i]->fx_frag = frag;
1296 insn->fixp[i]->fx_where = where;
1297 }
1298 install_insn (insn);
1299 }
1300
1301 /* Add INSN to the end of the output. */
1302
1303 static void
1304 add_fixed_insn (struct mips_cl_insn *insn)
1305 {
1306 char *f = frag_more (insn_length (insn));
1307 move_insn (insn, frag_now, f - frag_now->fr_literal);
1308 }
1309
1310 /* Start a variant frag and move INSN to the start of the variant part,
1311 marking it as fixed. The other arguments are as for frag_var. */
1312
1313 static void
1314 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1315 relax_substateT subtype, symbolS *symbol, offsetT offset)
1316 {
1317 frag_grow (max_chars);
1318 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1319 insn->fixed_p = 1;
1320 frag_var (rs_machine_dependent, max_chars, var,
1321 subtype, symbol, offset, NULL);
1322 }
1323
1324 /* Insert N copies of INSN into the history buffer, starting at
1325 position FIRST. Neither FIRST nor N need to be clipped. */
1326
1327 static void
1328 insert_into_history (unsigned int first, unsigned int n,
1329 const struct mips_cl_insn *insn)
1330 {
1331 if (mips_relax.sequence != 2)
1332 {
1333 unsigned int i;
1334
1335 for (i = ARRAY_SIZE (history); i-- > first;)
1336 if (i >= first + n)
1337 history[i] = history[i - n];
1338 else
1339 history[i] = *insn;
1340 }
1341 }
1342
1343 /* Emit a nop instruction, recording it in the history buffer. */
1344
1345 static void
1346 emit_nop (void)
1347 {
1348 add_fixed_insn (NOP_INSN);
1349 insert_into_history (0, 1, NOP_INSN);
1350 }
1351
1352 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1353 the idea is to make it obvious at a glance that each errata is
1354 included. */
1355
1356 static void
1357 init_vr4120_conflicts (void)
1358 {
1359 #define CONFLICT(FIRST, SECOND) \
1360 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1361
1362 /* Errata 21 - [D]DIV[U] after [D]MACC */
1363 CONFLICT (MACC, DIV);
1364 CONFLICT (DMACC, DIV);
1365
1366 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1367 CONFLICT (DMULT, DMULT);
1368 CONFLICT (DMULT, DMACC);
1369 CONFLICT (DMACC, DMULT);
1370 CONFLICT (DMACC, DMACC);
1371
1372 /* Errata 24 - MT{LO,HI} after [D]MACC */
1373 CONFLICT (MACC, MTHILO);
1374 CONFLICT (DMACC, MTHILO);
1375
1376 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1377 instruction is executed immediately after a MACC or DMACC
1378 instruction, the result of [either instruction] is incorrect." */
1379 CONFLICT (MACC, MULT);
1380 CONFLICT (MACC, DMULT);
1381 CONFLICT (DMACC, MULT);
1382 CONFLICT (DMACC, DMULT);
1383
1384 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1385 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1386 DDIV or DDIVU instruction, the result of the MACC or
1387 DMACC instruction is incorrect.". */
1388 CONFLICT (DMULT, MACC);
1389 CONFLICT (DMULT, DMACC);
1390 CONFLICT (DIV, MACC);
1391 CONFLICT (DIV, DMACC);
1392
1393 #undef CONFLICT
1394 }
1395
1396 /* This function is called once, at assembler startup time. It should
1397 set up all the tables, etc. that the MD part of the assembler will need. */
1398
1399 void
1400 md_begin (void)
1401 {
1402 register const char *retval = NULL;
1403 int i = 0;
1404 int broken = 0;
1405
1406 if (mips_pic != NO_PIC)
1407 {
1408 if (g_switch_seen && g_switch_value != 0)
1409 as_bad (_("-G may not be used in position-independent code"));
1410 g_switch_value = 0;
1411 }
1412
1413 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1414 as_warn (_("Could not set architecture and machine"));
1415
1416 op_hash = hash_new ();
1417
1418 for (i = 0; i < NUMOPCODES;)
1419 {
1420 const char *name = mips_opcodes[i].name;
1421
1422 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1423 if (retval != NULL)
1424 {
1425 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1426 mips_opcodes[i].name, retval);
1427 /* Probably a memory allocation problem? Give up now. */
1428 as_fatal (_("Broken assembler. No assembly attempted."));
1429 }
1430 do
1431 {
1432 if (mips_opcodes[i].pinfo != INSN_MACRO)
1433 {
1434 if (!validate_mips_insn (&mips_opcodes[i]))
1435 broken = 1;
1436 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1437 {
1438 create_insn (&nop_insn, mips_opcodes + i);
1439 nop_insn.fixed_p = 1;
1440 }
1441 }
1442 ++i;
1443 }
1444 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1445 }
1446
1447 mips16_op_hash = hash_new ();
1448
1449 i = 0;
1450 while (i < bfd_mips16_num_opcodes)
1451 {
1452 const char *name = mips16_opcodes[i].name;
1453
1454 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1455 if (retval != NULL)
1456 as_fatal (_("internal: can't hash `%s': %s"),
1457 mips16_opcodes[i].name, retval);
1458 do
1459 {
1460 if (mips16_opcodes[i].pinfo != INSN_MACRO
1461 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1462 != mips16_opcodes[i].match))
1463 {
1464 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1465 mips16_opcodes[i].name, mips16_opcodes[i].args);
1466 broken = 1;
1467 }
1468 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1469 {
1470 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1471 mips16_nop_insn.fixed_p = 1;
1472 }
1473 ++i;
1474 }
1475 while (i < bfd_mips16_num_opcodes
1476 && strcmp (mips16_opcodes[i].name, name) == 0);
1477 }
1478
1479 if (broken)
1480 as_fatal (_("Broken assembler. No assembly attempted."));
1481
1482 /* We add all the general register names to the symbol table. This
1483 helps us detect invalid uses of them. */
1484 for (i = 0; i < 32; i++)
1485 {
1486 char buf[5];
1487
1488 sprintf (buf, "$%d", i);
1489 symbol_table_insert (symbol_new (buf, reg_section, i,
1490 &zero_address_frag));
1491 }
1492 symbol_table_insert (symbol_new ("$ra", reg_section, RA,
1493 &zero_address_frag));
1494 symbol_table_insert (symbol_new ("$fp", reg_section, FP,
1495 &zero_address_frag));
1496 symbol_table_insert (symbol_new ("$sp", reg_section, SP,
1497 &zero_address_frag));
1498 symbol_table_insert (symbol_new ("$gp", reg_section, GP,
1499 &zero_address_frag));
1500 symbol_table_insert (symbol_new ("$at", reg_section, AT,
1501 &zero_address_frag));
1502 symbol_table_insert (symbol_new ("$kt0", reg_section, KT0,
1503 &zero_address_frag));
1504 symbol_table_insert (symbol_new ("$kt1", reg_section, KT1,
1505 &zero_address_frag));
1506 symbol_table_insert (symbol_new ("$zero", reg_section, ZERO,
1507 &zero_address_frag));
1508 symbol_table_insert (symbol_new ("$pc", reg_section, -1,
1509 &zero_address_frag));
1510
1511 /* If we don't add these register names to the symbol table, they
1512 may end up being added as regular symbols by operand(), and then
1513 make it to the object file as undefined in case they're not
1514 regarded as local symbols. They're local in o32, since `$' is a
1515 local symbol prefix, but not in n32 or n64. */
1516 for (i = 0; i < 8; i++)
1517 {
1518 char buf[6];
1519
1520 sprintf (buf, "$fcc%i", i);
1521 symbol_table_insert (symbol_new (buf, reg_section, -1,
1522 &zero_address_frag));
1523 }
1524
1525 mips_no_prev_insn ();
1526
1527 mips_gprmask = 0;
1528 mips_cprmask[0] = 0;
1529 mips_cprmask[1] = 0;
1530 mips_cprmask[2] = 0;
1531 mips_cprmask[3] = 0;
1532
1533 /* set the default alignment for the text section (2**2) */
1534 record_alignment (text_section, 2);
1535
1536 bfd_set_gp_size (stdoutput, g_switch_value);
1537
1538 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1539 {
1540 /* On a native system other than VxWorks, sections must be aligned
1541 to 16 byte boundaries. When configured for an embedded ELF
1542 target, we don't bother. */
1543 if (strcmp (TARGET_OS, "elf") != 0
1544 && strcmp (TARGET_OS, "vxworks") != 0)
1545 {
1546 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
1547 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
1548 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
1549 }
1550
1551 /* Create a .reginfo section for register masks and a .mdebug
1552 section for debugging information. */
1553 {
1554 segT seg;
1555 subsegT subseg;
1556 flagword flags;
1557 segT sec;
1558
1559 seg = now_seg;
1560 subseg = now_subseg;
1561
1562 /* The ABI says this section should be loaded so that the
1563 running program can access it. However, we don't load it
1564 if we are configured for an embedded target */
1565 flags = SEC_READONLY | SEC_DATA;
1566 if (strcmp (TARGET_OS, "elf") != 0)
1567 flags |= SEC_ALLOC | SEC_LOAD;
1568
1569 if (mips_abi != N64_ABI)
1570 {
1571 sec = subseg_new (".reginfo", (subsegT) 0);
1572
1573 bfd_set_section_flags (stdoutput, sec, flags);
1574 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
1575
1576 #ifdef OBJ_ELF
1577 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
1578 #endif
1579 }
1580 else
1581 {
1582 /* The 64-bit ABI uses a .MIPS.options section rather than
1583 .reginfo section. */
1584 sec = subseg_new (".MIPS.options", (subsegT) 0);
1585 bfd_set_section_flags (stdoutput, sec, flags);
1586 bfd_set_section_alignment (stdoutput, sec, 3);
1587
1588 #ifdef OBJ_ELF
1589 /* Set up the option header. */
1590 {
1591 Elf_Internal_Options opthdr;
1592 char *f;
1593
1594 opthdr.kind = ODK_REGINFO;
1595 opthdr.size = (sizeof (Elf_External_Options)
1596 + sizeof (Elf64_External_RegInfo));
1597 opthdr.section = 0;
1598 opthdr.info = 0;
1599 f = frag_more (sizeof (Elf_External_Options));
1600 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
1601 (Elf_External_Options *) f);
1602
1603 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
1604 }
1605 #endif
1606 }
1607
1608 if (ECOFF_DEBUGGING)
1609 {
1610 sec = subseg_new (".mdebug", (subsegT) 0);
1611 (void) bfd_set_section_flags (stdoutput, sec,
1612 SEC_HAS_CONTENTS | SEC_READONLY);
1613 (void) bfd_set_section_alignment (stdoutput, sec, 2);
1614 }
1615 #ifdef OBJ_ELF
1616 else if (OUTPUT_FLAVOR == bfd_target_elf_flavour && mips_flag_pdr)
1617 {
1618 pdr_seg = subseg_new (".pdr", (subsegT) 0);
1619 (void) bfd_set_section_flags (stdoutput, pdr_seg,
1620 SEC_READONLY | SEC_RELOC
1621 | SEC_DEBUGGING);
1622 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
1623 }
1624 #endif
1625
1626 subseg_set (seg, subseg);
1627 }
1628 }
1629
1630 if (! ECOFF_DEBUGGING)
1631 md_obj_begin ();
1632
1633 if (mips_fix_vr4120)
1634 init_vr4120_conflicts ();
1635 }
1636
1637 void
1638 md_mips_end (void)
1639 {
1640 if (! ECOFF_DEBUGGING)
1641 md_obj_end ();
1642 }
1643
1644 void
1645 md_assemble (char *str)
1646 {
1647 struct mips_cl_insn insn;
1648 bfd_reloc_code_real_type unused_reloc[3]
1649 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1650
1651 imm_expr.X_op = O_absent;
1652 imm2_expr.X_op = O_absent;
1653 offset_expr.X_op = O_absent;
1654 imm_reloc[0] = BFD_RELOC_UNUSED;
1655 imm_reloc[1] = BFD_RELOC_UNUSED;
1656 imm_reloc[2] = BFD_RELOC_UNUSED;
1657 offset_reloc[0] = BFD_RELOC_UNUSED;
1658 offset_reloc[1] = BFD_RELOC_UNUSED;
1659 offset_reloc[2] = BFD_RELOC_UNUSED;
1660
1661 if (mips_opts.mips16)
1662 mips16_ip (str, &insn);
1663 else
1664 {
1665 mips_ip (str, &insn);
1666 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
1667 str, insn.insn_opcode));
1668 }
1669
1670 if (insn_error)
1671 {
1672 as_bad ("%s `%s'", insn_error, str);
1673 return;
1674 }
1675
1676 if (insn.insn_mo->pinfo == INSN_MACRO)
1677 {
1678 macro_start ();
1679 if (mips_opts.mips16)
1680 mips16_macro (&insn);
1681 else
1682 macro (&insn);
1683 macro_end ();
1684 }
1685 else
1686 {
1687 if (imm_expr.X_op != O_absent)
1688 append_insn (&insn, &imm_expr, imm_reloc);
1689 else if (offset_expr.X_op != O_absent)
1690 append_insn (&insn, &offset_expr, offset_reloc);
1691 else
1692 append_insn (&insn, NULL, unused_reloc);
1693 }
1694 }
1695
1696 /* Return true if the given relocation might need a matching %lo().
1697 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
1698 need a matching %lo() when applied to local symbols. */
1699
1700 static inline bfd_boolean
1701 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
1702 {
1703 return (HAVE_IN_PLACE_ADDENDS
1704 && (reloc == BFD_RELOC_HI16_S
1705 || reloc == BFD_RELOC_MIPS16_HI16_S
1706 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
1707 all GOT16 relocations evaluate to "G". */
1708 || (reloc == BFD_RELOC_MIPS_GOT16 && mips_pic != VXWORKS_PIC)));
1709 }
1710
1711 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
1712 relocation. */
1713
1714 static inline bfd_boolean
1715 fixup_has_matching_lo_p (fixS *fixp)
1716 {
1717 return (fixp->fx_next != NULL
1718 && (fixp->fx_next->fx_r_type == BFD_RELOC_LO16
1719 || fixp->fx_next->fx_r_type == BFD_RELOC_MIPS16_LO16)
1720 && fixp->fx_addsy == fixp->fx_next->fx_addsy
1721 && fixp->fx_offset == fixp->fx_next->fx_offset);
1722 }
1723
1724 /* See whether instruction IP reads register REG. CLASS is the type
1725 of register. */
1726
1727 static int
1728 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
1729 enum mips_regclass class)
1730 {
1731 if (class == MIPS16_REG)
1732 {
1733 assert (mips_opts.mips16);
1734 reg = mips16_to_32_reg_map[reg];
1735 class = MIPS_GR_REG;
1736 }
1737
1738 /* Don't report on general register ZERO, since it never changes. */
1739 if (class == MIPS_GR_REG && reg == ZERO)
1740 return 0;
1741
1742 if (class == MIPS_FP_REG)
1743 {
1744 assert (! mips_opts.mips16);
1745 /* If we are called with either $f0 or $f1, we must check $f0.
1746 This is not optimal, because it will introduce an unnecessary
1747 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
1748 need to distinguish reading both $f0 and $f1 or just one of
1749 them. Note that we don't have to check the other way,
1750 because there is no instruction that sets both $f0 and $f1
1751 and requires a delay. */
1752 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
1753 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
1754 == (reg &~ (unsigned) 1)))
1755 return 1;
1756 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
1757 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
1758 == (reg &~ (unsigned) 1)))
1759 return 1;
1760 }
1761 else if (! mips_opts.mips16)
1762 {
1763 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
1764 && EXTRACT_OPERAND (RS, *ip) == reg)
1765 return 1;
1766 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
1767 && EXTRACT_OPERAND (RT, *ip) == reg)
1768 return 1;
1769 }
1770 else
1771 {
1772 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
1773 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
1774 return 1;
1775 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
1776 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
1777 return 1;
1778 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
1779 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
1780 == reg))
1781 return 1;
1782 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
1783 return 1;
1784 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
1785 return 1;
1786 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
1787 return 1;
1788 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
1789 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
1790 return 1;
1791 }
1792
1793 return 0;
1794 }
1795
1796 /* This function returns true if modifying a register requires a
1797 delay. */
1798
1799 static int
1800 reg_needs_delay (unsigned int reg)
1801 {
1802 unsigned long prev_pinfo;
1803
1804 prev_pinfo = history[0].insn_mo->pinfo;
1805 if (! mips_opts.noreorder
1806 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
1807 && ! gpr_interlocks)
1808 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
1809 && ! cop_interlocks)))
1810 {
1811 /* A load from a coprocessor or from memory. All load delays
1812 delay the use of general register rt for one instruction. */
1813 /* Itbl support may require additional care here. */
1814 know (prev_pinfo & INSN_WRITE_GPR_T);
1815 if (reg == EXTRACT_OPERAND (RT, history[0]))
1816 return 1;
1817 }
1818
1819 return 0;
1820 }
1821
1822 /* Move all labels in insn_labels to the current insertion point. */
1823
1824 static void
1825 mips_move_labels (void)
1826 {
1827 struct insn_label_list *l;
1828 valueT val;
1829
1830 for (l = insn_labels; l != NULL; l = l->next)
1831 {
1832 assert (S_GET_SEGMENT (l->label) == now_seg);
1833 symbol_set_frag (l->label, frag_now);
1834 val = (valueT) frag_now_fix ();
1835 /* mips16 text labels are stored as odd. */
1836 if (mips_opts.mips16)
1837 ++val;
1838 S_SET_VALUE (l->label, val);
1839 }
1840 }
1841
1842 /* Mark instruction labels in mips16 mode. This permits the linker to
1843 handle them specially, such as generating jalx instructions when
1844 needed. We also make them odd for the duration of the assembly, in
1845 order to generate the right sort of code. We will make them even
1846 in the adjust_symtab routine, while leaving them marked. This is
1847 convenient for the debugger and the disassembler. The linker knows
1848 to make them odd again. */
1849
1850 static void
1851 mips16_mark_labels (void)
1852 {
1853 if (mips_opts.mips16)
1854 {
1855 struct insn_label_list *l;
1856 valueT val;
1857
1858 for (l = insn_labels; l != NULL; l = l->next)
1859 {
1860 #ifdef OBJ_ELF
1861 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1862 S_SET_OTHER (l->label, STO_MIPS16);
1863 #endif
1864 val = S_GET_VALUE (l->label);
1865 if ((val & 1) == 0)
1866 S_SET_VALUE (l->label, val + 1);
1867 }
1868 }
1869 }
1870
1871 /* End the current frag. Make it a variant frag and record the
1872 relaxation info. */
1873
1874 static void
1875 relax_close_frag (void)
1876 {
1877 mips_macro_warning.first_frag = frag_now;
1878 frag_var (rs_machine_dependent, 0, 0,
1879 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
1880 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
1881
1882 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
1883 mips_relax.first_fixup = 0;
1884 }
1885
1886 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
1887 See the comment above RELAX_ENCODE for more details. */
1888
1889 static void
1890 relax_start (symbolS *symbol)
1891 {
1892 assert (mips_relax.sequence == 0);
1893 mips_relax.sequence = 1;
1894 mips_relax.symbol = symbol;
1895 }
1896
1897 /* Start generating the second version of a relaxable sequence.
1898 See the comment above RELAX_ENCODE for more details. */
1899
1900 static void
1901 relax_switch (void)
1902 {
1903 assert (mips_relax.sequence == 1);
1904 mips_relax.sequence = 2;
1905 }
1906
1907 /* End the current relaxable sequence. */
1908
1909 static void
1910 relax_end (void)
1911 {
1912 assert (mips_relax.sequence == 2);
1913 relax_close_frag ();
1914 mips_relax.sequence = 0;
1915 }
1916
1917 /* Classify an instruction according to the FIX_VR4120_* enumeration.
1918 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
1919 by VR4120 errata. */
1920
1921 static unsigned int
1922 classify_vr4120_insn (const char *name)
1923 {
1924 if (strncmp (name, "macc", 4) == 0)
1925 return FIX_VR4120_MACC;
1926 if (strncmp (name, "dmacc", 5) == 0)
1927 return FIX_VR4120_DMACC;
1928 if (strncmp (name, "mult", 4) == 0)
1929 return FIX_VR4120_MULT;
1930 if (strncmp (name, "dmult", 5) == 0)
1931 return FIX_VR4120_DMULT;
1932 if (strstr (name, "div"))
1933 return FIX_VR4120_DIV;
1934 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
1935 return FIX_VR4120_MTHILO;
1936 return NUM_FIX_VR4120_CLASSES;
1937 }
1938
1939 /* Return the number of instructions that must separate INSN1 and INSN2,
1940 where INSN1 is the earlier instruction. Return the worst-case value
1941 for any INSN2 if INSN2 is null. */
1942
1943 static unsigned int
1944 insns_between (const struct mips_cl_insn *insn1,
1945 const struct mips_cl_insn *insn2)
1946 {
1947 unsigned long pinfo1, pinfo2;
1948
1949 /* This function needs to know which pinfo flags are set for INSN2
1950 and which registers INSN2 uses. The former is stored in PINFO2 and
1951 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
1952 will have every flag set and INSN2_USES_REG will always return true. */
1953 pinfo1 = insn1->insn_mo->pinfo;
1954 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
1955
1956 #define INSN2_USES_REG(REG, CLASS) \
1957 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
1958
1959 /* For most targets, write-after-read dependencies on the HI and LO
1960 registers must be separated by at least two instructions. */
1961 if (!hilo_interlocks)
1962 {
1963 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
1964 return 2;
1965 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
1966 return 2;
1967 }
1968
1969 /* If we're working around r7000 errata, there must be two instructions
1970 between an mfhi or mflo and any instruction that uses the result. */
1971 if (mips_7000_hilo_fix
1972 && MF_HILO_INSN (pinfo1)
1973 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
1974 return 2;
1975
1976 /* If working around VR4120 errata, check for combinations that need
1977 a single intervening instruction. */
1978 if (mips_fix_vr4120)
1979 {
1980 unsigned int class1, class2;
1981
1982 class1 = classify_vr4120_insn (insn1->insn_mo->name);
1983 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
1984 {
1985 if (insn2 == NULL)
1986 return 1;
1987 class2 = classify_vr4120_insn (insn2->insn_mo->name);
1988 if (vr4120_conflicts[class1] & (1 << class2))
1989 return 1;
1990 }
1991 }
1992
1993 if (!mips_opts.mips16)
1994 {
1995 /* Check for GPR or coprocessor load delays. All such delays
1996 are on the RT register. */
1997 /* Itbl support may require additional care here. */
1998 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
1999 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2000 {
2001 know (pinfo1 & INSN_WRITE_GPR_T);
2002 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2003 return 1;
2004 }
2005
2006 /* Check for generic coprocessor hazards.
2007
2008 This case is not handled very well. There is no special
2009 knowledge of CP0 handling, and the coprocessors other than
2010 the floating point unit are not distinguished at all. */
2011 /* Itbl support may require additional care here. FIXME!
2012 Need to modify this to include knowledge about
2013 user specified delays! */
2014 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2015 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2016 {
2017 /* Handle cases where INSN1 writes to a known general coprocessor
2018 register. There must be a one instruction delay before INSN2
2019 if INSN2 reads that register, otherwise no delay is needed. */
2020 if (pinfo1 & INSN_WRITE_FPR_T)
2021 {
2022 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2023 return 1;
2024 }
2025 else if (pinfo1 & INSN_WRITE_FPR_S)
2026 {
2027 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2028 return 1;
2029 }
2030 else
2031 {
2032 /* Read-after-write dependencies on the control registers
2033 require a two-instruction gap. */
2034 if ((pinfo1 & INSN_WRITE_COND_CODE)
2035 && (pinfo2 & INSN_READ_COND_CODE))
2036 return 2;
2037
2038 /* We don't know exactly what INSN1 does. If INSN2 is
2039 also a coprocessor instruction, assume there must be
2040 a one instruction gap. */
2041 if (pinfo2 & INSN_COP)
2042 return 1;
2043 }
2044 }
2045
2046 /* Check for read-after-write dependencies on the coprocessor
2047 control registers in cases where INSN1 does not need a general
2048 coprocessor delay. This means that INSN1 is a floating point
2049 comparison instruction. */
2050 /* Itbl support may require additional care here. */
2051 else if (!cop_interlocks
2052 && (pinfo1 & INSN_WRITE_COND_CODE)
2053 && (pinfo2 & INSN_READ_COND_CODE))
2054 return 1;
2055 }
2056
2057 #undef INSN2_USES_REG
2058
2059 return 0;
2060 }
2061
2062 /* Return the number of nops that would be needed to work around the
2063 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2064 the MAX_VR4130_NOPS instructions described by HISTORY. */
2065
2066 static int
2067 nops_for_vr4130 (const struct mips_cl_insn *history,
2068 const struct mips_cl_insn *insn)
2069 {
2070 int i, j, reg;
2071
2072 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2073 are not affected by the errata. */
2074 if (insn != 0
2075 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2076 || strcmp (insn->insn_mo->name, "mtlo") == 0
2077 || strcmp (insn->insn_mo->name, "mthi") == 0))
2078 return 0;
2079
2080 /* Search for the first MFLO or MFHI. */
2081 for (i = 0; i < MAX_VR4130_NOPS; i++)
2082 if (!history[i].noreorder_p && MF_HILO_INSN (history[i].insn_mo->pinfo))
2083 {
2084 /* Extract the destination register. */
2085 if (mips_opts.mips16)
2086 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, history[i])];
2087 else
2088 reg = EXTRACT_OPERAND (RD, history[i]);
2089
2090 /* No nops are needed if INSN reads that register. */
2091 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2092 return 0;
2093
2094 /* ...or if any of the intervening instructions do. */
2095 for (j = 0; j < i; j++)
2096 if (insn_uses_reg (&history[j], reg, MIPS_GR_REG))
2097 return 0;
2098
2099 return MAX_VR4130_NOPS - i;
2100 }
2101 return 0;
2102 }
2103
2104 /* Return the number of nops that would be needed if instruction INSN
2105 immediately followed the MAX_NOPS instructions given by HISTORY,
2106 where HISTORY[0] is the most recent instruction. If INSN is null,
2107 return the worse-case number of nops for any instruction. */
2108
2109 static int
2110 nops_for_insn (const struct mips_cl_insn *history,
2111 const struct mips_cl_insn *insn)
2112 {
2113 int i, nops, tmp_nops;
2114
2115 nops = 0;
2116 for (i = 0; i < MAX_DELAY_NOPS; i++)
2117 if (!history[i].noreorder_p)
2118 {
2119 tmp_nops = insns_between (history + i, insn) - i;
2120 if (tmp_nops > nops)
2121 nops = tmp_nops;
2122 }
2123
2124 if (mips_fix_vr4130)
2125 {
2126 tmp_nops = nops_for_vr4130 (history, insn);
2127 if (tmp_nops > nops)
2128 nops = tmp_nops;
2129 }
2130
2131 return nops;
2132 }
2133
2134 /* The variable arguments provide NUM_INSNS extra instructions that
2135 might be added to HISTORY. Return the largest number of nops that
2136 would be needed after the extended sequence. */
2137
2138 static int
2139 nops_for_sequence (int num_insns, const struct mips_cl_insn *history, ...)
2140 {
2141 va_list args;
2142 struct mips_cl_insn buffer[MAX_NOPS];
2143 struct mips_cl_insn *cursor;
2144 int nops;
2145
2146 va_start (args, history);
2147 cursor = buffer + num_insns;
2148 memcpy (cursor, history, (MAX_NOPS - num_insns) * sizeof (*cursor));
2149 while (cursor > buffer)
2150 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2151
2152 nops = nops_for_insn (buffer, NULL);
2153 va_end (args);
2154 return nops;
2155 }
2156
2157 /* Like nops_for_insn, but if INSN is a branch, take into account the
2158 worst-case delay for the branch target. */
2159
2160 static int
2161 nops_for_insn_or_target (const struct mips_cl_insn *history,
2162 const struct mips_cl_insn *insn)
2163 {
2164 int nops, tmp_nops;
2165
2166 nops = nops_for_insn (history, insn);
2167 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2168 | INSN_COND_BRANCH_DELAY
2169 | INSN_COND_BRANCH_LIKELY))
2170 {
2171 tmp_nops = nops_for_sequence (2, history, insn, NOP_INSN);
2172 if (tmp_nops > nops)
2173 nops = tmp_nops;
2174 }
2175 else if (mips_opts.mips16 && (insn->insn_mo->pinfo & MIPS16_INSN_BRANCH))
2176 {
2177 tmp_nops = nops_for_sequence (1, history, insn);
2178 if (tmp_nops > nops)
2179 nops = tmp_nops;
2180 }
2181 return nops;
2182 }
2183
2184 /* Output an instruction. IP is the instruction information.
2185 ADDRESS_EXPR is an operand of the instruction to be used with
2186 RELOC_TYPE. */
2187
2188 static void
2189 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2190 bfd_reloc_code_real_type *reloc_type)
2191 {
2192 register unsigned long prev_pinfo, pinfo;
2193 relax_stateT prev_insn_frag_type = 0;
2194 bfd_boolean relaxed_branch = FALSE;
2195
2196 /* Mark instruction labels in mips16 mode. */
2197 mips16_mark_labels ();
2198
2199 prev_pinfo = history[0].insn_mo->pinfo;
2200 pinfo = ip->insn_mo->pinfo;
2201
2202 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2203 {
2204 /* There are a lot of optimizations we could do that we don't.
2205 In particular, we do not, in general, reorder instructions.
2206 If you use gcc with optimization, it will reorder
2207 instructions and generally do much more optimization then we
2208 do here; repeating all that work in the assembler would only
2209 benefit hand written assembly code, and does not seem worth
2210 it. */
2211 int nops = (mips_optimize == 0
2212 ? nops_for_insn (history, NULL)
2213 : nops_for_insn_or_target (history, ip));
2214 if (nops > 0)
2215 {
2216 fragS *old_frag;
2217 unsigned long old_frag_offset;
2218 int i;
2219
2220 old_frag = frag_now;
2221 old_frag_offset = frag_now_fix ();
2222
2223 for (i = 0; i < nops; i++)
2224 emit_nop ();
2225
2226 if (listing)
2227 {
2228 listing_prev_line ();
2229 /* We may be at the start of a variant frag. In case we
2230 are, make sure there is enough space for the frag
2231 after the frags created by listing_prev_line. The
2232 argument to frag_grow here must be at least as large
2233 as the argument to all other calls to frag_grow in
2234 this file. We don't have to worry about being in the
2235 middle of a variant frag, because the variants insert
2236 all needed nop instructions themselves. */
2237 frag_grow (40);
2238 }
2239
2240 mips_move_labels ();
2241
2242 #ifndef NO_ECOFF_DEBUGGING
2243 if (ECOFF_DEBUGGING)
2244 ecoff_fix_loc (old_frag, old_frag_offset);
2245 #endif
2246 }
2247 }
2248 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2249 {
2250 /* Work out how many nops in prev_nop_frag are needed by IP. */
2251 int nops = nops_for_insn_or_target (history, ip);
2252 assert (nops <= prev_nop_frag_holds);
2253
2254 /* Enforce NOPS as a minimum. */
2255 if (nops > prev_nop_frag_required)
2256 prev_nop_frag_required = nops;
2257
2258 if (prev_nop_frag_holds == prev_nop_frag_required)
2259 {
2260 /* Settle for the current number of nops. Update the history
2261 accordingly (for the benefit of any future .set reorder code). */
2262 prev_nop_frag = NULL;
2263 insert_into_history (prev_nop_frag_since,
2264 prev_nop_frag_holds, NOP_INSN);
2265 }
2266 else
2267 {
2268 /* Allow this instruction to replace one of the nops that was
2269 tentatively added to prev_nop_frag. */
2270 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2271 prev_nop_frag_holds--;
2272 prev_nop_frag_since++;
2273 }
2274 }
2275
2276 #ifdef OBJ_ELF
2277 /* The value passed to dwarf2_emit_insn is the distance between
2278 the beginning of the current instruction and the address that
2279 should be recorded in the debug tables. For MIPS16 debug info
2280 we want to use ISA-encoded addresses, so we pass -1 for an
2281 address higher by one than the current. */
2282 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2283 #endif
2284
2285 /* Record the frag type before frag_var. */
2286 if (history[0].frag)
2287 prev_insn_frag_type = history[0].frag->fr_type;
2288
2289 if (address_expr
2290 && *reloc_type == BFD_RELOC_16_PCREL_S2
2291 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2292 || pinfo & INSN_COND_BRANCH_LIKELY)
2293 && mips_relax_branch
2294 /* Don't try branch relaxation within .set nomacro, or within
2295 .set noat if we use $at for PIC computations. If it turns
2296 out that the branch was out-of-range, we'll get an error. */
2297 && !mips_opts.warn_about_macros
2298 && !(mips_opts.noat && mips_pic != NO_PIC)
2299 && !mips_opts.mips16)
2300 {
2301 relaxed_branch = TRUE;
2302 add_relaxed_insn (ip, (relaxed_branch_length
2303 (NULL, NULL,
2304 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2305 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2306 : 0)), 4,
2307 RELAX_BRANCH_ENCODE
2308 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2309 pinfo & INSN_COND_BRANCH_LIKELY,
2310 pinfo & INSN_WRITE_GPR_31,
2311 0),
2312 address_expr->X_add_symbol,
2313 address_expr->X_add_number);
2314 *reloc_type = BFD_RELOC_UNUSED;
2315 }
2316 else if (*reloc_type > BFD_RELOC_UNUSED)
2317 {
2318 /* We need to set up a variant frag. */
2319 assert (mips_opts.mips16 && address_expr != NULL);
2320 add_relaxed_insn (ip, 4, 0,
2321 RELAX_MIPS16_ENCODE
2322 (*reloc_type - BFD_RELOC_UNUSED,
2323 mips16_small, mips16_ext,
2324 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2325 history[0].mips16_absolute_jump_p),
2326 make_expr_symbol (address_expr), 0);
2327 }
2328 else if (mips_opts.mips16
2329 && ! ip->use_extend
2330 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2331 {
2332 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2333 /* Make sure there is enough room to swap this instruction with
2334 a following jump instruction. */
2335 frag_grow (6);
2336 add_fixed_insn (ip);
2337 }
2338 else
2339 {
2340 if (mips_opts.mips16
2341 && mips_opts.noreorder
2342 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2343 as_warn (_("extended instruction in delay slot"));
2344
2345 if (mips_relax.sequence)
2346 {
2347 /* If we've reached the end of this frag, turn it into a variant
2348 frag and record the information for the instructions we've
2349 written so far. */
2350 if (frag_room () < 4)
2351 relax_close_frag ();
2352 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2353 }
2354
2355 if (mips_relax.sequence != 2)
2356 mips_macro_warning.sizes[0] += 4;
2357 if (mips_relax.sequence != 1)
2358 mips_macro_warning.sizes[1] += 4;
2359
2360 if (mips_opts.mips16)
2361 {
2362 ip->fixed_p = 1;
2363 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2364 }
2365 add_fixed_insn (ip);
2366 }
2367
2368 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2369 {
2370 if (address_expr->X_op == O_constant)
2371 {
2372 unsigned int tmp;
2373
2374 switch (*reloc_type)
2375 {
2376 case BFD_RELOC_32:
2377 ip->insn_opcode |= address_expr->X_add_number;
2378 break;
2379
2380 case BFD_RELOC_MIPS_HIGHEST:
2381 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2382 ip->insn_opcode |= tmp & 0xffff;
2383 break;
2384
2385 case BFD_RELOC_MIPS_HIGHER:
2386 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
2387 ip->insn_opcode |= tmp & 0xffff;
2388 break;
2389
2390 case BFD_RELOC_HI16_S:
2391 tmp = (address_expr->X_add_number + 0x8000) >> 16;
2392 ip->insn_opcode |= tmp & 0xffff;
2393 break;
2394
2395 case BFD_RELOC_HI16:
2396 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
2397 break;
2398
2399 case BFD_RELOC_UNUSED:
2400 case BFD_RELOC_LO16:
2401 case BFD_RELOC_MIPS_GOT_DISP:
2402 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
2403 break;
2404
2405 case BFD_RELOC_MIPS_JMP:
2406 if ((address_expr->X_add_number & 3) != 0)
2407 as_bad (_("jump to misaligned address (0x%lx)"),
2408 (unsigned long) address_expr->X_add_number);
2409 if (address_expr->X_add_number & ~0xfffffff)
2410 as_bad (_("jump address range overflow (0x%lx)"),
2411 (unsigned long) address_expr->X_add_number);
2412 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
2413 break;
2414
2415 case BFD_RELOC_MIPS16_JMP:
2416 if ((address_expr->X_add_number & 3) != 0)
2417 as_bad (_("jump to misaligned address (0x%lx)"),
2418 (unsigned long) address_expr->X_add_number);
2419 if (address_expr->X_add_number & ~0xfffffff)
2420 as_bad (_("jump address range overflow (0x%lx)"),
2421 (unsigned long) address_expr->X_add_number);
2422 ip->insn_opcode |=
2423 (((address_expr->X_add_number & 0x7c0000) << 3)
2424 | ((address_expr->X_add_number & 0xf800000) >> 7)
2425 | ((address_expr->X_add_number & 0x3fffc) >> 2));
2426 break;
2427
2428 case BFD_RELOC_16_PCREL_S2:
2429 if ((address_expr->X_add_number & 3) != 0)
2430 as_bad (_("branch to misaligned address (0x%lx)"),
2431 (unsigned long) address_expr->X_add_number);
2432 if (mips_relax_branch)
2433 goto need_reloc;
2434 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
2435 as_bad (_("branch address range overflow (0x%lx)"),
2436 (unsigned long) address_expr->X_add_number);
2437 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
2438 break;
2439
2440 default:
2441 internalError ();
2442 }
2443 }
2444 else if (*reloc_type < BFD_RELOC_UNUSED)
2445 need_reloc:
2446 {
2447 reloc_howto_type *howto;
2448 int i;
2449
2450 /* In a compound relocation, it is the final (outermost)
2451 operator that determines the relocated field. */
2452 for (i = 1; i < 3; i++)
2453 if (reloc_type[i] == BFD_RELOC_UNUSED)
2454 break;
2455
2456 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
2457 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
2458 bfd_get_reloc_size (howto),
2459 address_expr,
2460 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
2461 reloc_type[0]);
2462
2463 /* These relocations can have an addend that won't fit in
2464 4 octets for 64bit assembly. */
2465 if (HAVE_64BIT_GPRS
2466 && ! howto->partial_inplace
2467 && (reloc_type[0] == BFD_RELOC_16
2468 || reloc_type[0] == BFD_RELOC_32
2469 || reloc_type[0] == BFD_RELOC_MIPS_JMP
2470 || reloc_type[0] == BFD_RELOC_HI16_S
2471 || reloc_type[0] == BFD_RELOC_LO16
2472 || reloc_type[0] == BFD_RELOC_GPREL16
2473 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
2474 || reloc_type[0] == BFD_RELOC_GPREL32
2475 || reloc_type[0] == BFD_RELOC_64
2476 || reloc_type[0] == BFD_RELOC_CTOR
2477 || reloc_type[0] == BFD_RELOC_MIPS_SUB
2478 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
2479 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
2480 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
2481 || reloc_type[0] == BFD_RELOC_MIPS_REL16
2482 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
2483 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
2484 || reloc_type[0] == BFD_RELOC_MIPS16_HI16_S
2485 || reloc_type[0] == BFD_RELOC_MIPS16_LO16))
2486 ip->fixp[0]->fx_no_overflow = 1;
2487
2488 if (mips_relax.sequence)
2489 {
2490 if (mips_relax.first_fixup == 0)
2491 mips_relax.first_fixup = ip->fixp[0];
2492 }
2493 else if (reloc_needs_lo_p (*reloc_type))
2494 {
2495 struct mips_hi_fixup *hi_fixup;
2496
2497 /* Reuse the last entry if it already has a matching %lo. */
2498 hi_fixup = mips_hi_fixup_list;
2499 if (hi_fixup == 0
2500 || !fixup_has_matching_lo_p (hi_fixup->fixp))
2501 {
2502 hi_fixup = ((struct mips_hi_fixup *)
2503 xmalloc (sizeof (struct mips_hi_fixup)));
2504 hi_fixup->next = mips_hi_fixup_list;
2505 mips_hi_fixup_list = hi_fixup;
2506 }
2507 hi_fixup->fixp = ip->fixp[0];
2508 hi_fixup->seg = now_seg;
2509 }
2510
2511 /* Add fixups for the second and third relocations, if given.
2512 Note that the ABI allows the second relocation to be
2513 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
2514 moment we only use RSS_UNDEF, but we could add support
2515 for the others if it ever becomes necessary. */
2516 for (i = 1; i < 3; i++)
2517 if (reloc_type[i] != BFD_RELOC_UNUSED)
2518 {
2519 ip->fixp[i] = fix_new (ip->frag, ip->where,
2520 ip->fixp[0]->fx_size, NULL, 0,
2521 FALSE, reloc_type[i]);
2522
2523 /* Use fx_tcbit to mark compound relocs. */
2524 ip->fixp[0]->fx_tcbit = 1;
2525 ip->fixp[i]->fx_tcbit = 1;
2526 }
2527 }
2528 }
2529 install_insn (ip);
2530
2531 /* Update the register mask information. */
2532 if (! mips_opts.mips16)
2533 {
2534 if (pinfo & INSN_WRITE_GPR_D)
2535 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
2536 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
2537 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
2538 if (pinfo & INSN_READ_GPR_S)
2539 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
2540 if (pinfo & INSN_WRITE_GPR_31)
2541 mips_gprmask |= 1 << RA;
2542 if (pinfo & INSN_WRITE_FPR_D)
2543 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
2544 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
2545 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
2546 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
2547 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
2548 if ((pinfo & INSN_READ_FPR_R) != 0)
2549 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
2550 if (pinfo & INSN_COP)
2551 {
2552 /* We don't keep enough information to sort these cases out.
2553 The itbl support does keep this information however, although
2554 we currently don't support itbl fprmats as part of the cop
2555 instruction. May want to add this support in the future. */
2556 }
2557 /* Never set the bit for $0, which is always zero. */
2558 mips_gprmask &= ~1 << 0;
2559 }
2560 else
2561 {
2562 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
2563 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
2564 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
2565 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
2566 if (pinfo & MIPS16_INSN_WRITE_Z)
2567 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
2568 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
2569 mips_gprmask |= 1 << TREG;
2570 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
2571 mips_gprmask |= 1 << SP;
2572 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
2573 mips_gprmask |= 1 << RA;
2574 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
2575 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
2576 if (pinfo & MIPS16_INSN_READ_Z)
2577 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
2578 if (pinfo & MIPS16_INSN_READ_GPR_X)
2579 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
2580 }
2581
2582 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2583 {
2584 /* Filling the branch delay slot is more complex. We try to
2585 switch the branch with the previous instruction, which we can
2586 do if the previous instruction does not set up a condition
2587 that the branch tests and if the branch is not itself the
2588 target of any branch. */
2589 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
2590 || (pinfo & INSN_COND_BRANCH_DELAY))
2591 {
2592 if (mips_optimize < 2
2593 /* If we have seen .set volatile or .set nomove, don't
2594 optimize. */
2595 || mips_opts.nomove != 0
2596 /* We can't swap if the previous instruction's position
2597 is fixed. */
2598 || history[0].fixed_p
2599 /* If the previous previous insn was in a .set
2600 noreorder, we can't swap. Actually, the MIPS
2601 assembler will swap in this situation. However, gcc
2602 configured -with-gnu-as will generate code like
2603 .set noreorder
2604 lw $4,XXX
2605 .set reorder
2606 INSN
2607 bne $4,$0,foo
2608 in which we can not swap the bne and INSN. If gcc is
2609 not configured -with-gnu-as, it does not output the
2610 .set pseudo-ops. */
2611 || history[1].noreorder_p
2612 /* If the branch is itself the target of a branch, we
2613 can not swap. We cheat on this; all we check for is
2614 whether there is a label on this instruction. If
2615 there are any branches to anything other than a
2616 label, users must use .set noreorder. */
2617 || insn_labels != NULL
2618 /* If the previous instruction is in a variant frag
2619 other than this branch's one, we cannot do the swap.
2620 This does not apply to the mips16, which uses variant
2621 frags for different purposes. */
2622 || (! mips_opts.mips16
2623 && prev_insn_frag_type == rs_machine_dependent)
2624 /* Check for conflicts between the branch and the instructions
2625 before the candidate delay slot. */
2626 || nops_for_insn (history + 1, ip) > 0
2627 /* Check for conflicts between the swapped sequence and the
2628 target of the branch. */
2629 || nops_for_sequence (2, history + 1, ip, history) > 0
2630 /* We do not swap with a trap instruction, since it
2631 complicates trap handlers to have the trap
2632 instruction be in a delay slot. */
2633 || (prev_pinfo & INSN_TRAP)
2634 /* If the branch reads a register that the previous
2635 instruction sets, we can not swap. */
2636 || (! mips_opts.mips16
2637 && (prev_pinfo & INSN_WRITE_GPR_T)
2638 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
2639 MIPS_GR_REG))
2640 || (! mips_opts.mips16
2641 && (prev_pinfo & INSN_WRITE_GPR_D)
2642 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
2643 MIPS_GR_REG))
2644 || (mips_opts.mips16
2645 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
2646 && (insn_uses_reg
2647 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
2648 MIPS16_REG)))
2649 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
2650 && (insn_uses_reg
2651 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
2652 MIPS16_REG)))
2653 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
2654 && (insn_uses_reg
2655 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
2656 MIPS16_REG)))
2657 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
2658 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
2659 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
2660 && insn_uses_reg (ip, RA, MIPS_GR_REG))
2661 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2662 && insn_uses_reg (ip,
2663 MIPS16OP_EXTRACT_REG32R
2664 (history[0].insn_opcode),
2665 MIPS_GR_REG))))
2666 /* If the branch writes a register that the previous
2667 instruction sets, we can not swap (we know that
2668 branches write only to RD or to $31). */
2669 || (! mips_opts.mips16
2670 && (prev_pinfo & INSN_WRITE_GPR_T)
2671 && (((pinfo & INSN_WRITE_GPR_D)
2672 && (EXTRACT_OPERAND (RT, history[0])
2673 == EXTRACT_OPERAND (RD, *ip)))
2674 || ((pinfo & INSN_WRITE_GPR_31)
2675 && EXTRACT_OPERAND (RT, history[0]) == RA)))
2676 || (! mips_opts.mips16
2677 && (prev_pinfo & INSN_WRITE_GPR_D)
2678 && (((pinfo & INSN_WRITE_GPR_D)
2679 && (EXTRACT_OPERAND (RD, history[0])
2680 == EXTRACT_OPERAND (RD, *ip)))
2681 || ((pinfo & INSN_WRITE_GPR_31)
2682 && EXTRACT_OPERAND (RD, history[0]) == RA)))
2683 || (mips_opts.mips16
2684 && (pinfo & MIPS16_INSN_WRITE_31)
2685 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
2686 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
2687 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
2688 == RA))))
2689 /* If the branch writes a register that the previous
2690 instruction reads, we can not swap (we know that
2691 branches only write to RD or to $31). */
2692 || (! mips_opts.mips16
2693 && (pinfo & INSN_WRITE_GPR_D)
2694 && insn_uses_reg (&history[0],
2695 EXTRACT_OPERAND (RD, *ip),
2696 MIPS_GR_REG))
2697 || (! mips_opts.mips16
2698 && (pinfo & INSN_WRITE_GPR_31)
2699 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
2700 || (mips_opts.mips16
2701 && (pinfo & MIPS16_INSN_WRITE_31)
2702 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
2703 /* If one instruction sets a condition code and the
2704 other one uses a condition code, we can not swap. */
2705 || ((pinfo & INSN_READ_COND_CODE)
2706 && (prev_pinfo & INSN_WRITE_COND_CODE))
2707 || ((pinfo & INSN_WRITE_COND_CODE)
2708 && (prev_pinfo & INSN_READ_COND_CODE))
2709 /* If the previous instruction uses the PC, we can not
2710 swap. */
2711 || (mips_opts.mips16
2712 && (prev_pinfo & MIPS16_INSN_READ_PC))
2713 /* If the previous instruction had a fixup in mips16
2714 mode, we can not swap. This normally means that the
2715 previous instruction was a 4 byte branch anyhow. */
2716 || (mips_opts.mips16 && history[0].fixp[0])
2717 /* If the previous instruction is a sync, sync.l, or
2718 sync.p, we can not swap. */
2719 || (prev_pinfo & INSN_SYNC))
2720 {
2721 if (mips_opts.mips16
2722 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
2723 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
2724 && (mips_opts.isa == ISA_MIPS32
2725 || mips_opts.isa == ISA_MIPS32R2
2726 || mips_opts.isa == ISA_MIPS64
2727 || mips_opts.isa == ISA_MIPS64R2))
2728 {
2729 /* Convert MIPS16 jr/jalr into a "compact" jump. */
2730 ip->insn_opcode |= 0x0080;
2731 install_insn (ip);
2732 insert_into_history (0, 1, ip);
2733 }
2734 else
2735 {
2736 /* We could do even better for unconditional branches to
2737 portions of this object file; we could pick up the
2738 instruction at the destination, put it in the delay
2739 slot, and bump the destination address. */
2740 insert_into_history (0, 1, ip);
2741 emit_nop ();
2742 }
2743
2744 if (mips_relax.sequence)
2745 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2746 }
2747 else
2748 {
2749 /* It looks like we can actually do the swap. */
2750 struct mips_cl_insn delay = history[0];
2751 if (mips_opts.mips16)
2752 {
2753 know (delay.frag == ip->frag);
2754 move_insn (ip, delay.frag, delay.where);
2755 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
2756 }
2757 else if (relaxed_branch)
2758 {
2759 /* Add the delay slot instruction to the end of the
2760 current frag and shrink the fixed part of the
2761 original frag. If the branch occupies the tail of
2762 the latter, move it backwards to cover the gap. */
2763 delay.frag->fr_fix -= 4;
2764 if (delay.frag == ip->frag)
2765 move_insn (ip, ip->frag, ip->where - 4);
2766 add_fixed_insn (&delay);
2767 }
2768 else
2769 {
2770 move_insn (&delay, ip->frag, ip->where);
2771 move_insn (ip, history[0].frag, history[0].where);
2772 }
2773 history[0] = *ip;
2774 delay.fixed_p = 1;
2775 insert_into_history (0, 1, &delay);
2776 }
2777
2778 /* If that was an unconditional branch, forget the previous
2779 insn information. */
2780 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
2781 mips_no_prev_insn ();
2782 }
2783 else if (pinfo & INSN_COND_BRANCH_LIKELY)
2784 {
2785 /* We don't yet optimize a branch likely. What we should do
2786 is look at the target, copy the instruction found there
2787 into the delay slot, and increment the branch to jump to
2788 the next instruction. */
2789 insert_into_history (0, 1, ip);
2790 emit_nop ();
2791 }
2792 else
2793 insert_into_history (0, 1, ip);
2794 }
2795 else
2796 insert_into_history (0, 1, ip);
2797
2798 /* We just output an insn, so the next one doesn't have a label. */
2799 mips_clear_insn_labels ();
2800 }
2801
2802 /* Forget that there was any previous instruction or label. */
2803
2804 static void
2805 mips_no_prev_insn (void)
2806 {
2807 prev_nop_frag = NULL;
2808 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
2809 mips_clear_insn_labels ();
2810 }
2811
2812 /* This function must be called before we emit something other than
2813 instructions. It is like mips_no_prev_insn except that it inserts
2814 any NOPS that might be needed by previous instructions. */
2815
2816 void
2817 mips_emit_delays (void)
2818 {
2819 if (! mips_opts.noreorder)
2820 {
2821 int nops = nops_for_insn (history, NULL);
2822 if (nops > 0)
2823 {
2824 while (nops-- > 0)
2825 add_fixed_insn (NOP_INSN);
2826 mips_move_labels ();
2827 }
2828 }
2829 mips_no_prev_insn ();
2830 }
2831
2832 /* Start a (possibly nested) noreorder block. */
2833
2834 static void
2835 start_noreorder (void)
2836 {
2837 if (mips_opts.noreorder == 0)
2838 {
2839 unsigned int i;
2840 int nops;
2841
2842 /* None of the instructions before the .set noreorder can be moved. */
2843 for (i = 0; i < ARRAY_SIZE (history); i++)
2844 history[i].fixed_p = 1;
2845
2846 /* Insert any nops that might be needed between the .set noreorder
2847 block and the previous instructions. We will later remove any
2848 nops that turn out not to be needed. */
2849 nops = nops_for_insn (history, NULL);
2850 if (nops > 0)
2851 {
2852 if (mips_optimize != 0)
2853 {
2854 /* Record the frag which holds the nop instructions, so
2855 that we can remove them if we don't need them. */
2856 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
2857 prev_nop_frag = frag_now;
2858 prev_nop_frag_holds = nops;
2859 prev_nop_frag_required = 0;
2860 prev_nop_frag_since = 0;
2861 }
2862
2863 for (; nops > 0; --nops)
2864 add_fixed_insn (NOP_INSN);
2865
2866 /* Move on to a new frag, so that it is safe to simply
2867 decrease the size of prev_nop_frag. */
2868 frag_wane (frag_now);
2869 frag_new (0);
2870 mips_move_labels ();
2871 }
2872 mips16_mark_labels ();
2873 mips_clear_insn_labels ();
2874 }
2875 mips_opts.noreorder++;
2876 mips_any_noreorder = 1;
2877 }
2878
2879 /* End a nested noreorder block. */
2880
2881 static void
2882 end_noreorder (void)
2883 {
2884 mips_opts.noreorder--;
2885 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
2886 {
2887 /* Commit to inserting prev_nop_frag_required nops and go back to
2888 handling nop insertion the .set reorder way. */
2889 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
2890 * (mips_opts.mips16 ? 2 : 4));
2891 insert_into_history (prev_nop_frag_since,
2892 prev_nop_frag_required, NOP_INSN);
2893 prev_nop_frag = NULL;
2894 }
2895 }
2896
2897 /* Set up global variables for the start of a new macro. */
2898
2899 static void
2900 macro_start (void)
2901 {
2902 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
2903 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
2904 && (history[0].insn_mo->pinfo
2905 & (INSN_UNCOND_BRANCH_DELAY
2906 | INSN_COND_BRANCH_DELAY
2907 | INSN_COND_BRANCH_LIKELY)) != 0);
2908 }
2909
2910 /* Given that a macro is longer than 4 bytes, return the appropriate warning
2911 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
2912 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
2913
2914 static const char *
2915 macro_warning (relax_substateT subtype)
2916 {
2917 if (subtype & RELAX_DELAY_SLOT)
2918 return _("Macro instruction expanded into multiple instructions"
2919 " in a branch delay slot");
2920 else if (subtype & RELAX_NOMACRO)
2921 return _("Macro instruction expanded into multiple instructions");
2922 else
2923 return 0;
2924 }
2925
2926 /* Finish up a macro. Emit warnings as appropriate. */
2927
2928 static void
2929 macro_end (void)
2930 {
2931 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
2932 {
2933 relax_substateT subtype;
2934
2935 /* Set up the relaxation warning flags. */
2936 subtype = 0;
2937 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
2938 subtype |= RELAX_SECOND_LONGER;
2939 if (mips_opts.warn_about_macros)
2940 subtype |= RELAX_NOMACRO;
2941 if (mips_macro_warning.delay_slot_p)
2942 subtype |= RELAX_DELAY_SLOT;
2943
2944 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
2945 {
2946 /* Either the macro has a single implementation or both
2947 implementations are longer than 4 bytes. Emit the
2948 warning now. */
2949 const char *msg = macro_warning (subtype);
2950 if (msg != 0)
2951 as_warn (msg);
2952 }
2953 else
2954 {
2955 /* One implementation might need a warning but the other
2956 definitely doesn't. */
2957 mips_macro_warning.first_frag->fr_subtype |= subtype;
2958 }
2959 }
2960 }
2961
2962 /* Read a macro's relocation codes from *ARGS and store them in *R.
2963 The first argument in *ARGS will be either the code for a single
2964 relocation or -1 followed by the three codes that make up a
2965 composite relocation. */
2966
2967 static void
2968 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
2969 {
2970 int i, next;
2971
2972 next = va_arg (*args, int);
2973 if (next >= 0)
2974 r[0] = (bfd_reloc_code_real_type) next;
2975 else
2976 for (i = 0; i < 3; i++)
2977 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
2978 }
2979
2980 /* Build an instruction created by a macro expansion. This is passed
2981 a pointer to the count of instructions created so far, an
2982 expression, the name of the instruction to build, an operand format
2983 string, and corresponding arguments. */
2984
2985 static void
2986 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
2987 {
2988 const struct mips_opcode *mo;
2989 struct mips_cl_insn insn;
2990 bfd_reloc_code_real_type r[3];
2991 va_list args;
2992
2993 va_start (args, fmt);
2994
2995 if (mips_opts.mips16)
2996 {
2997 mips16_macro_build (ep, name, fmt, args);
2998 va_end (args);
2999 return;
3000 }
3001
3002 r[0] = BFD_RELOC_UNUSED;
3003 r[1] = BFD_RELOC_UNUSED;
3004 r[2] = BFD_RELOC_UNUSED;
3005 mo = (struct mips_opcode *) hash_find (op_hash, name);
3006 assert (mo);
3007 assert (strcmp (name, mo->name) == 0);
3008
3009 /* Search until we get a match for NAME. It is assumed here that
3010 macros will never generate MDMX or MIPS-3D instructions. */
3011 while (strcmp (fmt, mo->args) != 0
3012 || mo->pinfo == INSN_MACRO
3013 || !OPCODE_IS_MEMBER (mo,
3014 (mips_opts.isa
3015 | (file_ase_mips16 ? INSN_MIPS16 : 0)),
3016 mips_opts.arch)
3017 || (mips_opts.arch == CPU_R4650 && (mo->pinfo & FP_D) != 0))
3018 {
3019 ++mo;
3020 assert (mo->name);
3021 assert (strcmp (name, mo->name) == 0);
3022 }
3023
3024 create_insn (&insn, mo);
3025 for (;;)
3026 {
3027 switch (*fmt++)
3028 {
3029 case '\0':
3030 break;
3031
3032 case ',':
3033 case '(':
3034 case ')':
3035 continue;
3036
3037 case '+':
3038 switch (*fmt++)
3039 {
3040 case 'A':
3041 case 'E':
3042 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3043 continue;
3044
3045 case 'B':
3046 case 'F':
3047 /* Note that in the macro case, these arguments are already
3048 in MSB form. (When handling the instruction in the
3049 non-macro case, these arguments are sizes from which
3050 MSB values must be calculated.) */
3051 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3052 continue;
3053
3054 case 'C':
3055 case 'G':
3056 case 'H':
3057 /* Note that in the macro case, these arguments are already
3058 in MSBD form. (When handling the instruction in the
3059 non-macro case, these arguments are sizes from which
3060 MSBD values must be calculated.) */
3061 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3062 continue;
3063
3064 default:
3065 internalError ();
3066 }
3067 continue;
3068
3069 case 't':
3070 case 'w':
3071 case 'E':
3072 INSERT_OPERAND (RT, insn, va_arg (args, int));
3073 continue;
3074
3075 case 'c':
3076 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3077 continue;
3078
3079 case 'T':
3080 case 'W':
3081 INSERT_OPERAND (FT, insn, va_arg (args, int));
3082 continue;
3083
3084 case 'd':
3085 case 'G':
3086 case 'K':
3087 INSERT_OPERAND (RD, insn, va_arg (args, int));
3088 continue;
3089
3090 case 'U':
3091 {
3092 int tmp = va_arg (args, int);
3093
3094 INSERT_OPERAND (RT, insn, tmp);
3095 INSERT_OPERAND (RD, insn, tmp);
3096 continue;
3097 }
3098
3099 case 'V':
3100 case 'S':
3101 INSERT_OPERAND (FS, insn, va_arg (args, int));
3102 continue;
3103
3104 case 'z':
3105 continue;
3106
3107 case '<':
3108 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3109 continue;
3110
3111 case 'D':
3112 INSERT_OPERAND (FD, insn, va_arg (args, int));
3113 continue;
3114
3115 case 'B':
3116 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3117 continue;
3118
3119 case 'J':
3120 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3121 continue;
3122
3123 case 'q':
3124 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3125 continue;
3126
3127 case 'b':
3128 case 's':
3129 case 'r':
3130 case 'v':
3131 INSERT_OPERAND (RS, insn, va_arg (args, int));
3132 continue;
3133
3134 case 'i':
3135 case 'j':
3136 case 'o':
3137 macro_read_relocs (&args, r);
3138 assert (*r == BFD_RELOC_GPREL16
3139 || *r == BFD_RELOC_MIPS_LITERAL
3140 || *r == BFD_RELOC_MIPS_HIGHER
3141 || *r == BFD_RELOC_HI16_S
3142 || *r == BFD_RELOC_LO16
3143 || *r == BFD_RELOC_MIPS_GOT16
3144 || *r == BFD_RELOC_MIPS_CALL16
3145 || *r == BFD_RELOC_MIPS_GOT_DISP
3146 || *r == BFD_RELOC_MIPS_GOT_PAGE
3147 || *r == BFD_RELOC_MIPS_GOT_OFST
3148 || *r == BFD_RELOC_MIPS_GOT_LO16
3149 || *r == BFD_RELOC_MIPS_CALL_LO16);
3150 continue;
3151
3152 case 'u':
3153 macro_read_relocs (&args, r);
3154 assert (ep != NULL
3155 && (ep->X_op == O_constant
3156 || (ep->X_op == O_symbol
3157 && (*r == BFD_RELOC_MIPS_HIGHEST
3158 || *r == BFD_RELOC_HI16_S
3159 || *r == BFD_RELOC_HI16
3160 || *r == BFD_RELOC_GPREL16
3161 || *r == BFD_RELOC_MIPS_GOT_HI16
3162 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3163 continue;
3164
3165 case 'p':
3166 assert (ep != NULL);
3167
3168 /*
3169 * This allows macro() to pass an immediate expression for
3170 * creating short branches without creating a symbol.
3171 *
3172 * We don't allow branch relaxation for these branches, as
3173 * they should only appear in ".set nomacro" anyway.
3174 */
3175 if (ep->X_op == O_constant)
3176 {
3177 if ((ep->X_add_number & 3) != 0)
3178 as_bad (_("branch to misaligned address (0x%lx)"),
3179 (unsigned long) ep->X_add_number);
3180 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3181 as_bad (_("branch address range overflow (0x%lx)"),
3182 (unsigned long) ep->X_add_number);
3183 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3184 ep = NULL;
3185 }
3186 else
3187 *r = BFD_RELOC_16_PCREL_S2;
3188 continue;
3189
3190 case 'a':
3191 assert (ep != NULL);
3192 *r = BFD_RELOC_MIPS_JMP;
3193 continue;
3194
3195 case 'C':
3196 insn.insn_opcode |= va_arg (args, unsigned long);
3197 continue;
3198
3199 default:
3200 internalError ();
3201 }
3202 break;
3203 }
3204 va_end (args);
3205 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3206
3207 append_insn (&insn, ep, r);
3208 }
3209
3210 static void
3211 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3212 va_list args)
3213 {
3214 struct mips_opcode *mo;
3215 struct mips_cl_insn insn;
3216 bfd_reloc_code_real_type r[3]
3217 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3218
3219 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3220 assert (mo);
3221 assert (strcmp (name, mo->name) == 0);
3222
3223 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3224 {
3225 ++mo;
3226 assert (mo->name);
3227 assert (strcmp (name, mo->name) == 0);
3228 }
3229
3230 create_insn (&insn, mo);
3231 for (;;)
3232 {
3233 int c;
3234
3235 c = *fmt++;
3236 switch (c)
3237 {
3238 case '\0':
3239 break;
3240
3241 case ',':
3242 case '(':
3243 case ')':
3244 continue;
3245
3246 case 'y':
3247 case 'w':
3248 MIPS16_INSERT_OPERAND (RY, insn, va_arg (args, int));
3249 continue;
3250
3251 case 'x':
3252 case 'v':
3253 MIPS16_INSERT_OPERAND (RX, insn, va_arg (args, int));
3254 continue;
3255
3256 case 'z':
3257 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (args, int));
3258 continue;
3259
3260 case 'Z':
3261 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (args, int));
3262 continue;
3263
3264 case '0':
3265 case 'S':
3266 case 'P':
3267 case 'R':
3268 continue;
3269
3270 case 'X':
3271 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (args, int));
3272 continue;
3273
3274 case 'Y':
3275 {
3276 int regno;
3277
3278 regno = va_arg (args, int);
3279 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3280 insn.insn_opcode |= regno << MIPS16OP_SH_REG32R;
3281 }
3282 continue;
3283
3284 case '<':
3285 case '>':
3286 case '4':
3287 case '5':
3288 case 'H':
3289 case 'W':
3290 case 'D':
3291 case 'j':
3292 case '8':
3293 case 'V':
3294 case 'C':
3295 case 'U':
3296 case 'k':
3297 case 'K':
3298 case 'p':
3299 case 'q':
3300 {
3301 assert (ep != NULL);
3302
3303 if (ep->X_op != O_constant)
3304 *r = (int) BFD_RELOC_UNUSED + c;
3305 else
3306 {
3307 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3308 FALSE, &insn.insn_opcode, &insn.use_extend,
3309 &insn.extend);
3310 ep = NULL;
3311 *r = BFD_RELOC_UNUSED;
3312 }
3313 }
3314 continue;
3315
3316 case '6':
3317 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (args, int));
3318 continue;
3319 }
3320
3321 break;
3322 }
3323
3324 assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3325
3326 append_insn (&insn, ep, r);
3327 }
3328
3329 /*
3330 * Sign-extend 32-bit mode constants that have bit 31 set and all
3331 * higher bits unset.
3332 */
3333 static void
3334 normalize_constant_expr (expressionS *ex)
3335 {
3336 if (ex->X_op == O_constant
3337 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3338 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3339 - 0x80000000);
3340 }
3341
3342 /*
3343 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3344 * all higher bits unset.
3345 */
3346 static void
3347 normalize_address_expr (expressionS *ex)
3348 {
3349 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3350 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3351 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3352 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3353 - 0x80000000);
3354 }
3355
3356 /*
3357 * Generate a "jalr" instruction with a relocation hint to the called
3358 * function. This occurs in NewABI PIC code.
3359 */
3360 static void
3361 macro_build_jalr (expressionS *ep)
3362 {
3363 char *f = NULL;
3364
3365 if (HAVE_NEWABI)
3366 {
3367 frag_grow (8);
3368 f = frag_more (0);
3369 }
3370 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
3371 if (HAVE_NEWABI)
3372 fix_new_exp (frag_now, f - frag_now->fr_literal,
3373 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
3374 }
3375
3376 /*
3377 * Generate a "lui" instruction.
3378 */
3379 static void
3380 macro_build_lui (expressionS *ep, int regnum)
3381 {
3382 expressionS high_expr;
3383 const struct mips_opcode *mo;
3384 struct mips_cl_insn insn;
3385 bfd_reloc_code_real_type r[3]
3386 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3387 const char *name = "lui";
3388 const char *fmt = "t,u";
3389
3390 assert (! mips_opts.mips16);
3391
3392 high_expr = *ep;
3393
3394 if (high_expr.X_op == O_constant)
3395 {
3396 /* we can compute the instruction now without a relocation entry */
3397 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
3398 >> 16) & 0xffff;
3399 *r = BFD_RELOC_UNUSED;
3400 }
3401 else
3402 {
3403 assert (ep->X_op == O_symbol);
3404 /* _gp_disp is a special case, used from s_cpload.
3405 __gnu_local_gp is used if mips_no_shared. */
3406 assert (mips_pic == NO_PIC
3407 || (! HAVE_NEWABI
3408 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
3409 || (! mips_in_shared
3410 && strcmp (S_GET_NAME (ep->X_add_symbol),
3411 "__gnu_local_gp") == 0));
3412 *r = BFD_RELOC_HI16_S;
3413 }
3414
3415 mo = hash_find (op_hash, name);
3416 assert (strcmp (name, mo->name) == 0);
3417 assert (strcmp (fmt, mo->args) == 0);
3418 create_insn (&insn, mo);
3419
3420 insn.insn_opcode = insn.insn_mo->match;
3421 INSERT_OPERAND (RT, insn, regnum);
3422 if (*r == BFD_RELOC_UNUSED)
3423 {
3424 insn.insn_opcode |= high_expr.X_add_number;
3425 append_insn (&insn, NULL, r);
3426 }
3427 else
3428 append_insn (&insn, &high_expr, r);
3429 }
3430
3431 /* Generate a sequence of instructions to do a load or store from a constant
3432 offset off of a base register (breg) into/from a target register (treg),
3433 using AT if necessary. */
3434 static void
3435 macro_build_ldst_constoffset (expressionS *ep, const char *op,
3436 int treg, int breg, int dbl)
3437 {
3438 assert (ep->X_op == O_constant);
3439
3440 /* Sign-extending 32-bit constants makes their handling easier. */
3441 if (!dbl)
3442 normalize_constant_expr (ep);
3443
3444 /* Right now, this routine can only handle signed 32-bit constants. */
3445 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
3446 as_warn (_("operand overflow"));
3447
3448 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
3449 {
3450 /* Signed 16-bit offset will fit in the op. Easy! */
3451 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
3452 }
3453 else
3454 {
3455 /* 32-bit offset, need multiple instructions and AT, like:
3456 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
3457 addu $tempreg,$tempreg,$breg
3458 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
3459 to handle the complete offset. */
3460 macro_build_lui (ep, AT);
3461 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
3462 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
3463
3464 if (mips_opts.noat)
3465 as_bad (_("Macro used $at after \".set noat\""));
3466 }
3467 }
3468
3469 /* set_at()
3470 * Generates code to set the $at register to true (one)
3471 * if reg is less than the immediate expression.
3472 */
3473 static void
3474 set_at (int reg, int unsignedp)
3475 {
3476 if (imm_expr.X_op == O_constant
3477 && imm_expr.X_add_number >= -0x8000
3478 && imm_expr.X_add_number < 0x8000)
3479 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
3480 AT, reg, BFD_RELOC_LO16);
3481 else
3482 {
3483 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
3484 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
3485 }
3486 }
3487
3488 /* Warn if an expression is not a constant. */
3489
3490 static void
3491 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
3492 {
3493 if (ex->X_op == O_big)
3494 as_bad (_("unsupported large constant"));
3495 else if (ex->X_op != O_constant)
3496 as_bad (_("Instruction %s requires absolute expression"),
3497 ip->insn_mo->name);
3498
3499 if (HAVE_32BIT_GPRS)
3500 normalize_constant_expr (ex);
3501 }
3502
3503 /* Count the leading zeroes by performing a binary chop. This is a
3504 bulky bit of source, but performance is a LOT better for the
3505 majority of values than a simple loop to count the bits:
3506 for (lcnt = 0; (lcnt < 32); lcnt++)
3507 if ((v) & (1 << (31 - lcnt)))
3508 break;
3509 However it is not code size friendly, and the gain will drop a bit
3510 on certain cached systems.
3511 */
3512 #define COUNT_TOP_ZEROES(v) \
3513 (((v) & ~0xffff) == 0 \
3514 ? ((v) & ~0xff) == 0 \
3515 ? ((v) & ~0xf) == 0 \
3516 ? ((v) & ~0x3) == 0 \
3517 ? ((v) & ~0x1) == 0 \
3518 ? !(v) \
3519 ? 32 \
3520 : 31 \
3521 : 30 \
3522 : ((v) & ~0x7) == 0 \
3523 ? 29 \
3524 : 28 \
3525 : ((v) & ~0x3f) == 0 \
3526 ? ((v) & ~0x1f) == 0 \
3527 ? 27 \
3528 : 26 \
3529 : ((v) & ~0x7f) == 0 \
3530 ? 25 \
3531 : 24 \
3532 : ((v) & ~0xfff) == 0 \
3533 ? ((v) & ~0x3ff) == 0 \
3534 ? ((v) & ~0x1ff) == 0 \
3535 ? 23 \
3536 : 22 \
3537 : ((v) & ~0x7ff) == 0 \
3538 ? 21 \
3539 : 20 \
3540 : ((v) & ~0x3fff) == 0 \
3541 ? ((v) & ~0x1fff) == 0 \
3542 ? 19 \
3543 : 18 \
3544 : ((v) & ~0x7fff) == 0 \
3545 ? 17 \
3546 : 16 \
3547 : ((v) & ~0xffffff) == 0 \
3548 ? ((v) & ~0xfffff) == 0 \
3549 ? ((v) & ~0x3ffff) == 0 \
3550 ? ((v) & ~0x1ffff) == 0 \
3551 ? 15 \
3552 : 14 \
3553 : ((v) & ~0x7ffff) == 0 \
3554 ? 13 \
3555 : 12 \
3556 : ((v) & ~0x3fffff) == 0 \
3557 ? ((v) & ~0x1fffff) == 0 \
3558 ? 11 \
3559 : 10 \
3560 : ((v) & ~0x7fffff) == 0 \
3561 ? 9 \
3562 : 8 \
3563 : ((v) & ~0xfffffff) == 0 \
3564 ? ((v) & ~0x3ffffff) == 0 \
3565 ? ((v) & ~0x1ffffff) == 0 \
3566 ? 7 \
3567 : 6 \
3568 : ((v) & ~0x7ffffff) == 0 \
3569 ? 5 \
3570 : 4 \
3571 : ((v) & ~0x3fffffff) == 0 \
3572 ? ((v) & ~0x1fffffff) == 0 \
3573 ? 3 \
3574 : 2 \
3575 : ((v) & ~0x7fffffff) == 0 \
3576 ? 1 \
3577 : 0)
3578
3579 /* load_register()
3580 * This routine generates the least number of instructions necessary to load
3581 * an absolute expression value into a register.
3582 */
3583 static void
3584 load_register (int reg, expressionS *ep, int dbl)
3585 {
3586 int freg;
3587 expressionS hi32, lo32;
3588
3589 if (ep->X_op != O_big)
3590 {
3591 assert (ep->X_op == O_constant);
3592
3593 /* Sign-extending 32-bit constants makes their handling easier. */
3594 if (!dbl)
3595 normalize_constant_expr (ep);
3596
3597 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
3598 {
3599 /* We can handle 16 bit signed values with an addiu to
3600 $zero. No need to ever use daddiu here, since $zero and
3601 the result are always correct in 32 bit mode. */
3602 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3603 return;
3604 }
3605 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
3606 {
3607 /* We can handle 16 bit unsigned values with an ori to
3608 $zero. */
3609 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
3610 return;
3611 }
3612 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
3613 {
3614 /* 32 bit values require an lui. */
3615 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
3616 if ((ep->X_add_number & 0xffff) != 0)
3617 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
3618 return;
3619 }
3620 }
3621
3622 /* The value is larger than 32 bits. */
3623
3624 if (!dbl || HAVE_32BIT_GPRS)
3625 {
3626 char value[32];
3627
3628 sprintf_vma (value, ep->X_add_number);
3629 as_bad (_("Number (0x%s) larger than 32 bits"), value);
3630 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3631 return;
3632 }
3633
3634 if (ep->X_op != O_big)
3635 {
3636 hi32 = *ep;
3637 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3638 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
3639 hi32.X_add_number &= 0xffffffff;
3640 lo32 = *ep;
3641 lo32.X_add_number &= 0xffffffff;
3642 }
3643 else
3644 {
3645 assert (ep->X_add_number > 2);
3646 if (ep->X_add_number == 3)
3647 generic_bignum[3] = 0;
3648 else if (ep->X_add_number > 4)
3649 as_bad (_("Number larger than 64 bits"));
3650 lo32.X_op = O_constant;
3651 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
3652 hi32.X_op = O_constant;
3653 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
3654 }
3655
3656 if (hi32.X_add_number == 0)
3657 freg = 0;
3658 else
3659 {
3660 int shift, bit;
3661 unsigned long hi, lo;
3662
3663 if (hi32.X_add_number == (offsetT) 0xffffffff)
3664 {
3665 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
3666 {
3667 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3668 return;
3669 }
3670 if (lo32.X_add_number & 0x80000000)
3671 {
3672 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
3673 if (lo32.X_add_number & 0xffff)
3674 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
3675 return;
3676 }
3677 }
3678
3679 /* Check for 16bit shifted constant. We know that hi32 is
3680 non-zero, so start the mask on the first bit of the hi32
3681 value. */
3682 shift = 17;
3683 do
3684 {
3685 unsigned long himask, lomask;
3686
3687 if (shift < 32)
3688 {
3689 himask = 0xffff >> (32 - shift);
3690 lomask = (0xffff << shift) & 0xffffffff;
3691 }
3692 else
3693 {
3694 himask = 0xffff << (shift - 32);
3695 lomask = 0;
3696 }
3697 if ((hi32.X_add_number & ~(offsetT) himask) == 0
3698 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
3699 {
3700 expressionS tmp;
3701
3702 tmp.X_op = O_constant;
3703 if (shift < 32)
3704 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
3705 | (lo32.X_add_number >> shift));
3706 else
3707 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
3708 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
3709 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
3710 reg, reg, (shift >= 32) ? shift - 32 : shift);
3711 return;
3712 }
3713 ++shift;
3714 }
3715 while (shift <= (64 - 16));
3716
3717 /* Find the bit number of the lowest one bit, and store the
3718 shifted value in hi/lo. */
3719 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
3720 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
3721 if (lo != 0)
3722 {
3723 bit = 0;
3724 while ((lo & 1) == 0)
3725 {
3726 lo >>= 1;
3727 ++bit;
3728 }
3729 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
3730 hi >>= bit;
3731 }
3732 else
3733 {
3734 bit = 32;
3735 while ((hi & 1) == 0)
3736 {
3737 hi >>= 1;
3738 ++bit;
3739 }
3740 lo = hi;
3741 hi = 0;
3742 }
3743
3744 /* Optimize if the shifted value is a (power of 2) - 1. */
3745 if ((hi == 0 && ((lo + 1) & lo) == 0)
3746 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
3747 {
3748 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
3749 if (shift != 0)
3750 {
3751 expressionS tmp;
3752
3753 /* This instruction will set the register to be all
3754 ones. */
3755 tmp.X_op = O_constant;
3756 tmp.X_add_number = (offsetT) -1;
3757 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
3758 if (bit != 0)
3759 {
3760 bit += shift;
3761 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
3762 reg, reg, (bit >= 32) ? bit - 32 : bit);
3763 }
3764 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
3765 reg, reg, (shift >= 32) ? shift - 32 : shift);
3766 return;
3767 }
3768 }
3769
3770 /* Sign extend hi32 before calling load_register, because we can
3771 generally get better code when we load a sign extended value. */
3772 if ((hi32.X_add_number & 0x80000000) != 0)
3773 hi32.X_add_number |= ~(offsetT) 0xffffffff;
3774 load_register (reg, &hi32, 0);
3775 freg = reg;
3776 }
3777 if ((lo32.X_add_number & 0xffff0000) == 0)
3778 {
3779 if (freg != 0)
3780 {
3781 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
3782 freg = reg;
3783 }
3784 }
3785 else
3786 {
3787 expressionS mid16;
3788
3789 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
3790 {
3791 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
3792 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
3793 return;
3794 }
3795
3796 if (freg != 0)
3797 {
3798 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
3799 freg = reg;
3800 }
3801 mid16 = lo32;
3802 mid16.X_add_number >>= 16;
3803 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
3804 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3805 freg = reg;
3806 }
3807 if ((lo32.X_add_number & 0xffff) != 0)
3808 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
3809 }
3810
3811 static inline void
3812 load_delay_nop (void)
3813 {
3814 if (!gpr_interlocks)
3815 macro_build (NULL, "nop", "");
3816 }
3817
3818 /* Load an address into a register. */
3819
3820 static void
3821 load_address (int reg, expressionS *ep, int *used_at)
3822 {
3823 if (ep->X_op != O_constant
3824 && ep->X_op != O_symbol)
3825 {
3826 as_bad (_("expression too complex"));
3827 ep->X_op = O_constant;
3828 }
3829
3830 if (ep->X_op == O_constant)
3831 {
3832 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
3833 return;
3834 }
3835
3836 if (mips_pic == NO_PIC)
3837 {
3838 /* If this is a reference to a GP relative symbol, we want
3839 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
3840 Otherwise we want
3841 lui $reg,<sym> (BFD_RELOC_HI16_S)
3842 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3843 If we have an addend, we always use the latter form.
3844
3845 With 64bit address space and a usable $at we want
3846 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3847 lui $at,<sym> (BFD_RELOC_HI16_S)
3848 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3849 daddiu $at,<sym> (BFD_RELOC_LO16)
3850 dsll32 $reg,0
3851 daddu $reg,$reg,$at
3852
3853 If $at is already in use, we use a path which is suboptimal
3854 on superscalar processors.
3855 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
3856 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
3857 dsll $reg,16
3858 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
3859 dsll $reg,16
3860 daddiu $reg,<sym> (BFD_RELOC_LO16)
3861
3862 For GP relative symbols in 64bit address space we can use
3863 the same sequence as in 32bit address space. */
3864 if (HAVE_64BIT_SYMBOLS)
3865 {
3866 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
3867 && !nopic_need_relax (ep->X_add_symbol, 1))
3868 {
3869 relax_start (ep->X_add_symbol);
3870 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
3871 mips_gp_register, BFD_RELOC_GPREL16);
3872 relax_switch ();
3873 }
3874
3875 if (*used_at == 0 && !mips_opts.noat)
3876 {
3877 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
3878 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
3879 macro_build (ep, "daddiu", "t,r,j", reg, reg,
3880 BFD_RELOC_MIPS_HIGHER);
3881 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
3882 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
3883 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
3884 *used_at = 1;
3885 }
3886 else
3887 {
3888 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
3889 macro_build (ep, "daddiu", "t,r,j", reg, reg,
3890 BFD_RELOC_MIPS_HIGHER);
3891 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3892 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
3893 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
3894 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
3895 }
3896
3897 if (mips_relax.sequence)
3898 relax_end ();
3899 }
3900 else
3901 {
3902 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
3903 && !nopic_need_relax (ep->X_add_symbol, 1))
3904 {
3905 relax_start (ep->X_add_symbol);
3906 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
3907 mips_gp_register, BFD_RELOC_GPREL16);
3908 relax_switch ();
3909 }
3910 macro_build_lui (ep, reg);
3911 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
3912 reg, reg, BFD_RELOC_LO16);
3913 if (mips_relax.sequence)
3914 relax_end ();
3915 }
3916 }
3917 else if (!mips_big_got)
3918 {
3919 expressionS ex;
3920
3921 /* If this is a reference to an external symbol, we want
3922 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3923 Otherwise we want
3924 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3925 nop
3926 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3927 If there is a constant, it must be added in after.
3928
3929 If we have NewABI, we want
3930 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
3931 unless we're referencing a global symbol with a non-zero
3932 offset, in which case cst must be added separately. */
3933 if (HAVE_NEWABI)
3934 {
3935 if (ep->X_add_number)
3936 {
3937 ex.X_add_number = ep->X_add_number;
3938 ep->X_add_number = 0;
3939 relax_start (ep->X_add_symbol);
3940 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3941 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
3942 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3943 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3944 ex.X_op = O_constant;
3945 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
3946 reg, reg, BFD_RELOC_LO16);
3947 ep->X_add_number = ex.X_add_number;
3948 relax_switch ();
3949 }
3950 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3951 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
3952 if (mips_relax.sequence)
3953 relax_end ();
3954 }
3955 else
3956 {
3957 ex.X_add_number = ep->X_add_number;
3958 ep->X_add_number = 0;
3959 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
3960 BFD_RELOC_MIPS_GOT16, mips_gp_register);
3961 load_delay_nop ();
3962 relax_start (ep->X_add_symbol);
3963 relax_switch ();
3964 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
3965 BFD_RELOC_LO16);
3966 relax_end ();
3967
3968 if (ex.X_add_number != 0)
3969 {
3970 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
3971 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
3972 ex.X_op = O_constant;
3973 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
3974 reg, reg, BFD_RELOC_LO16);
3975 }
3976 }
3977 }
3978 else if (mips_big_got)
3979 {
3980 expressionS ex;
3981
3982 /* This is the large GOT case. If this is a reference to an
3983 external symbol, we want
3984 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
3985 addu $reg,$reg,$gp
3986 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
3987
3988 Otherwise, for a reference to a local symbol in old ABI, we want
3989 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
3990 nop
3991 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
3992 If there is a constant, it must be added in after.
3993
3994 In the NewABI, for local symbols, with or without offsets, we want:
3995 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
3996 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
3997 */
3998 if (HAVE_NEWABI)
3999 {
4000 ex.X_add_number = ep->X_add_number;
4001 ep->X_add_number = 0;
4002 relax_start (ep->X_add_symbol);
4003 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4004 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4005 reg, reg, mips_gp_register);
4006 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4007 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4008 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4009 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4010 else if (ex.X_add_number)
4011 {
4012 ex.X_op = O_constant;
4013 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4014 BFD_RELOC_LO16);
4015 }
4016
4017 ep->X_add_number = ex.X_add_number;
4018 relax_switch ();
4019 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4020 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4021 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4022 BFD_RELOC_MIPS_GOT_OFST);
4023 relax_end ();
4024 }
4025 else
4026 {
4027 ex.X_add_number = ep->X_add_number;
4028 ep->X_add_number = 0;
4029 relax_start (ep->X_add_symbol);
4030 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4031 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4032 reg, reg, mips_gp_register);
4033 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4034 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4035 relax_switch ();
4036 if (reg_needs_delay (mips_gp_register))
4037 {
4038 /* We need a nop before loading from $gp. This special
4039 check is required because the lui which starts the main
4040 instruction stream does not refer to $gp, and so will not
4041 insert the nop which may be required. */
4042 macro_build (NULL, "nop", "");
4043 }
4044 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4045 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4046 load_delay_nop ();
4047 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4048 BFD_RELOC_LO16);
4049 relax_end ();
4050
4051 if (ex.X_add_number != 0)
4052 {
4053 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4054 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4055 ex.X_op = O_constant;
4056 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4057 BFD_RELOC_LO16);
4058 }
4059 }
4060 }
4061 else
4062 abort ();
4063
4064 if (mips_opts.noat && *used_at == 1)
4065 as_bad (_("Macro used $at after \".set noat\""));
4066 }
4067
4068 /* Move the contents of register SOURCE into register DEST. */
4069
4070 static void
4071 move_register (int dest, int source)
4072 {
4073 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4074 dest, source, 0);
4075 }
4076
4077 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4078 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4079 The two alternatives are:
4080
4081 Global symbol Local sybmol
4082 ------------- ------------
4083 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4084 ... ...
4085 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4086
4087 load_got_offset emits the first instruction and add_got_offset
4088 emits the second for a 16-bit offset or add_got_offset_hilo emits
4089 a sequence to add a 32-bit offset using a scratch register. */
4090
4091 static void
4092 load_got_offset (int dest, expressionS *local)
4093 {
4094 expressionS global;
4095
4096 global = *local;
4097 global.X_add_number = 0;
4098
4099 relax_start (local->X_add_symbol);
4100 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4101 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4102 relax_switch ();
4103 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4104 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4105 relax_end ();
4106 }
4107
4108 static void
4109 add_got_offset (int dest, expressionS *local)
4110 {
4111 expressionS global;
4112
4113 global.X_op = O_constant;
4114 global.X_op_symbol = NULL;
4115 global.X_add_symbol = NULL;
4116 global.X_add_number = local->X_add_number;
4117
4118 relax_start (local->X_add_symbol);
4119 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4120 dest, dest, BFD_RELOC_LO16);
4121 relax_switch ();
4122 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4123 relax_end ();
4124 }
4125
4126 static void
4127 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4128 {
4129 expressionS global;
4130 int hold_mips_optimize;
4131
4132 global.X_op = O_constant;
4133 global.X_op_symbol = NULL;
4134 global.X_add_symbol = NULL;
4135 global.X_add_number = local->X_add_number;
4136
4137 relax_start (local->X_add_symbol);
4138 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4139 relax_switch ();
4140 /* Set mips_optimize around the lui instruction to avoid
4141 inserting an unnecessary nop after the lw. */
4142 hold_mips_optimize = mips_optimize;
4143 mips_optimize = 2;
4144 macro_build_lui (&global, tmp);
4145 mips_optimize = hold_mips_optimize;
4146 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4147 relax_end ();
4148
4149 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4150 }
4151
4152 /*
4153 * Build macros
4154 * This routine implements the seemingly endless macro or synthesized
4155 * instructions and addressing modes in the mips assembly language. Many
4156 * of these macros are simple and are similar to each other. These could
4157 * probably be handled by some kind of table or grammar approach instead of
4158 * this verbose method. Others are not simple macros but are more like
4159 * optimizing code generation.
4160 * One interesting optimization is when several store macros appear
4161 * consecutively that would load AT with the upper half of the same address.
4162 * The ensuing load upper instructions are ommited. This implies some kind
4163 * of global optimization. We currently only optimize within a single macro.
4164 * For many of the load and store macros if the address is specified as a
4165 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4166 * first load register 'at' with zero and use it as the base register. The
4167 * mips assembler simply uses register $zero. Just one tiny optimization
4168 * we're missing.
4169 */
4170 static void
4171 macro (struct mips_cl_insn *ip)
4172 {
4173 register int treg, sreg, dreg, breg;
4174 int tempreg;
4175 int mask;
4176 int used_at = 0;
4177 expressionS expr1;
4178 const char *s;
4179 const char *s2;
4180 const char *fmt;
4181 int likely = 0;
4182 int dbl = 0;
4183 int coproc = 0;
4184 int lr = 0;
4185 int imm = 0;
4186 int call = 0;
4187 int off;
4188 offsetT maxnum;
4189 bfd_reloc_code_real_type r;
4190 int hold_mips_optimize;
4191
4192 assert (! mips_opts.mips16);
4193
4194 treg = (ip->insn_opcode >> 16) & 0x1f;
4195 dreg = (ip->insn_opcode >> 11) & 0x1f;
4196 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4197 mask = ip->insn_mo->mask;
4198
4199 expr1.X_op = O_constant;
4200 expr1.X_op_symbol = NULL;
4201 expr1.X_add_symbol = NULL;
4202 expr1.X_add_number = 1;
4203
4204 switch (mask)
4205 {
4206 case M_DABS:
4207 dbl = 1;
4208 case M_ABS:
4209 /* bgez $a0,.+12
4210 move v0,$a0
4211 sub v0,$zero,$a0
4212 */
4213
4214 start_noreorder ();
4215
4216 expr1.X_add_number = 8;
4217 macro_build (&expr1, "bgez", "s,p", sreg);
4218 if (dreg == sreg)
4219 macro_build (NULL, "nop", "", 0);
4220 else
4221 move_register (dreg, sreg);
4222 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4223
4224 end_noreorder ();
4225 break;
4226
4227 case M_ADD_I:
4228 s = "addi";
4229 s2 = "add";
4230 goto do_addi;
4231 case M_ADDU_I:
4232 s = "addiu";
4233 s2 = "addu";
4234 goto do_addi;
4235 case M_DADD_I:
4236 dbl = 1;
4237 s = "daddi";
4238 s2 = "dadd";
4239 goto do_addi;
4240 case M_DADDU_I:
4241 dbl = 1;
4242 s = "daddiu";
4243 s2 = "daddu";
4244 do_addi:
4245 if (imm_expr.X_op == O_constant
4246 && imm_expr.X_add_number >= -0x8000
4247 && imm_expr.X_add_number < 0x8000)
4248 {
4249 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4250 break;
4251 }
4252 used_at = 1;
4253 load_register (AT, &imm_expr, dbl);
4254 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4255 break;
4256
4257 case M_AND_I:
4258 s = "andi";
4259 s2 = "and";
4260 goto do_bit;
4261 case M_OR_I:
4262 s = "ori";
4263 s2 = "or";
4264 goto do_bit;
4265 case M_NOR_I:
4266 s = "";
4267 s2 = "nor";
4268 goto do_bit;
4269 case M_XOR_I:
4270 s = "xori";
4271 s2 = "xor";
4272 do_bit:
4273 if (imm_expr.X_op == O_constant
4274 && imm_expr.X_add_number >= 0
4275 && imm_expr.X_add_number < 0x10000)
4276 {
4277 if (mask != M_NOR_I)
4278 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4279 else
4280 {
4281 macro_build (&imm_expr, "ori", "t,r,i",
4282 treg, sreg, BFD_RELOC_LO16);
4283 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4284 }
4285 break;
4286 }
4287
4288 used_at = 1;
4289 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4290 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4291 break;
4292
4293 case M_BEQ_I:
4294 s = "beq";
4295 goto beq_i;
4296 case M_BEQL_I:
4297 s = "beql";
4298 likely = 1;
4299 goto beq_i;
4300 case M_BNE_I:
4301 s = "bne";
4302 goto beq_i;
4303 case M_BNEL_I:
4304 s = "bnel";
4305 likely = 1;
4306 beq_i:
4307 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4308 {
4309 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4310 break;
4311 }
4312 used_at = 1;
4313 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4314 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4315 break;
4316
4317 case M_BGEL:
4318 likely = 1;
4319 case M_BGE:
4320 if (treg == 0)
4321 {
4322 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4323 break;
4324 }
4325 if (sreg == 0)
4326 {
4327 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4328 break;
4329 }
4330 used_at = 1;
4331 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4332 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4333 break;
4334
4335 case M_BGTL_I:
4336 likely = 1;
4337 case M_BGT_I:
4338 /* check for > max integer */
4339 maxnum = 0x7fffffff;
4340 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4341 {
4342 maxnum <<= 16;
4343 maxnum |= 0xffff;
4344 maxnum <<= 16;
4345 maxnum |= 0xffff;
4346 }
4347 if (imm_expr.X_op == O_constant
4348 && imm_expr.X_add_number >= maxnum
4349 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4350 {
4351 do_false:
4352 /* result is always false */
4353 if (! likely)
4354 macro_build (NULL, "nop", "", 0);
4355 else
4356 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
4357 break;
4358 }
4359 if (imm_expr.X_op != O_constant)
4360 as_bad (_("Unsupported large constant"));
4361 ++imm_expr.X_add_number;
4362 /* FALLTHROUGH */
4363 case M_BGE_I:
4364 case M_BGEL_I:
4365 if (mask == M_BGEL_I)
4366 likely = 1;
4367 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4368 {
4369 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4370 break;
4371 }
4372 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4373 {
4374 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4375 break;
4376 }
4377 maxnum = 0x7fffffff;
4378 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4379 {
4380 maxnum <<= 16;
4381 maxnum |= 0xffff;
4382 maxnum <<= 16;
4383 maxnum |= 0xffff;
4384 }
4385 maxnum = - maxnum - 1;
4386 if (imm_expr.X_op == O_constant
4387 && imm_expr.X_add_number <= maxnum
4388 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4389 {
4390 do_true:
4391 /* result is always true */
4392 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
4393 macro_build (&offset_expr, "b", "p");
4394 break;
4395 }
4396 used_at = 1;
4397 set_at (sreg, 0);
4398 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4399 break;
4400
4401 case M_BGEUL:
4402 likely = 1;
4403 case M_BGEU:
4404 if (treg == 0)
4405 goto do_true;
4406 if (sreg == 0)
4407 {
4408 macro_build (&offset_expr, likely ? "beql" : "beq",
4409 "s,t,p", 0, treg);
4410 break;
4411 }
4412 used_at = 1;
4413 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4414 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4415 break;
4416
4417 case M_BGTUL_I:
4418 likely = 1;
4419 case M_BGTU_I:
4420 if (sreg == 0
4421 || (HAVE_32BIT_GPRS
4422 && imm_expr.X_op == O_constant
4423 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4424 goto do_false;
4425 if (imm_expr.X_op != O_constant)
4426 as_bad (_("Unsupported large constant"));
4427 ++imm_expr.X_add_number;
4428 /* FALLTHROUGH */
4429 case M_BGEU_I:
4430 case M_BGEUL_I:
4431 if (mask == M_BGEUL_I)
4432 likely = 1;
4433 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4434 goto do_true;
4435 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4436 {
4437 macro_build (&offset_expr, likely ? "bnel" : "bne",
4438 "s,t,p", sreg, 0);
4439 break;
4440 }
4441 used_at = 1;
4442 set_at (sreg, 1);
4443 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4444 break;
4445
4446 case M_BGTL:
4447 likely = 1;
4448 case M_BGT:
4449 if (treg == 0)
4450 {
4451 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4452 break;
4453 }
4454 if (sreg == 0)
4455 {
4456 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
4457 break;
4458 }
4459 used_at = 1;
4460 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4461 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4462 break;
4463
4464 case M_BGTUL:
4465 likely = 1;
4466 case M_BGTU:
4467 if (treg == 0)
4468 {
4469 macro_build (&offset_expr, likely ? "bnel" : "bne",
4470 "s,t,p", sreg, 0);
4471 break;
4472 }
4473 if (sreg == 0)
4474 goto do_false;
4475 used_at = 1;
4476 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
4477 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4478 break;
4479
4480 case M_BLEL:
4481 likely = 1;
4482 case M_BLE:
4483 if (treg == 0)
4484 {
4485 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
4486 break;
4487 }
4488 if (sreg == 0)
4489 {
4490 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
4491 break;
4492 }
4493 used_at = 1;
4494 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
4495 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4496 break;
4497
4498 case M_BLEL_I:
4499 likely = 1;
4500 case M_BLE_I:
4501 maxnum = 0x7fffffff;
4502 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4503 {
4504 maxnum <<= 16;
4505 maxnum |= 0xffff;
4506 maxnum <<= 16;
4507 maxnum |= 0xffff;
4508 }
4509 if (imm_expr.X_op == O_constant
4510 && imm_expr.X_add_number >= maxnum
4511 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4512 goto do_true;
4513 if (imm_expr.X_op != O_constant)
4514 as_bad (_("Unsupported large constant"));
4515 ++imm_expr.X_add_number;
4516 /* FALLTHROUGH */
4517 case M_BLT_I:
4518 case M_BLTL_I:
4519 if (mask == M_BLTL_I)
4520 likely = 1;
4521 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4522 {
4523 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
4524 break;
4525 }
4526 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4527 {
4528 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
4529 break;
4530 }
4531 used_at = 1;
4532 set_at (sreg, 0);
4533 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4534 break;
4535
4536 case M_BLEUL:
4537 likely = 1;
4538 case M_BLEU:
4539 if (treg == 0)
4540 {
4541 macro_build (&offset_expr, likely ? "beql" : "beq",
4542 "s,t,p", sreg, 0);
4543 break;
4544 }
4545 if (sreg == 0)
4546 goto do_true;
4547 used_at = 1;
4548 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
4549 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4550 break;
4551
4552 case M_BLEUL_I:
4553 likely = 1;
4554 case M_BLEU_I:
4555 if (sreg == 0
4556 || (HAVE_32BIT_GPRS
4557 && imm_expr.X_op == O_constant
4558 && imm_expr.X_add_number == (offsetT) 0xffffffff))
4559 goto do_true;
4560 if (imm_expr.X_op != O_constant)
4561 as_bad (_("Unsupported large constant"));
4562 ++imm_expr.X_add_number;
4563 /* FALLTHROUGH */
4564 case M_BLTU_I:
4565 case M_BLTUL_I:
4566 if (mask == M_BLTUL_I)
4567 likely = 1;
4568 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4569 goto do_false;
4570 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4571 {
4572 macro_build (&offset_expr, likely ? "beql" : "beq",
4573 "s,t,p", sreg, 0);
4574 break;
4575 }
4576 used_at = 1;
4577 set_at (sreg, 1);
4578 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4579 break;
4580
4581 case M_BLTL:
4582 likely = 1;
4583 case M_BLT:
4584 if (treg == 0)
4585 {
4586 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
4587 break;
4588 }
4589 if (sreg == 0)
4590 {
4591 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
4592 break;
4593 }
4594 used_at = 1;
4595 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4596 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4597 break;
4598
4599 case M_BLTUL:
4600 likely = 1;
4601 case M_BLTU:
4602 if (treg == 0)
4603 goto do_false;
4604 if (sreg == 0)
4605 {
4606 macro_build (&offset_expr, likely ? "bnel" : "bne",
4607 "s,t,p", 0, treg);
4608 break;
4609 }
4610 used_at = 1;
4611 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4612 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
4613 break;
4614
4615 case M_DEXT:
4616 {
4617 unsigned long pos;
4618 unsigned long size;
4619
4620 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
4621 {
4622 as_bad (_("Unsupported large constant"));
4623 pos = size = 1;
4624 }
4625 else
4626 {
4627 pos = (unsigned long) imm_expr.X_add_number;
4628 size = (unsigned long) imm2_expr.X_add_number;
4629 }
4630
4631 if (pos > 63)
4632 {
4633 as_bad (_("Improper position (%lu)"), pos);
4634 pos = 1;
4635 }
4636 if (size == 0 || size > 64
4637 || (pos + size - 1) > 63)
4638 {
4639 as_bad (_("Improper extract size (%lu, position %lu)"),
4640 size, pos);
4641 size = 1;
4642 }
4643
4644 if (size <= 32 && pos < 32)
4645 {
4646 s = "dext";
4647 fmt = "t,r,+A,+C";
4648 }
4649 else if (size <= 32)
4650 {
4651 s = "dextu";
4652 fmt = "t,r,+E,+H";
4653 }
4654 else
4655 {
4656 s = "dextm";
4657 fmt = "t,r,+A,+G";
4658 }
4659 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
4660 }
4661 break;
4662
4663 case M_DINS:
4664 {
4665 unsigned long pos;
4666 unsigned long size;
4667
4668 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
4669 {
4670 as_bad (_("Unsupported large constant"));
4671 pos = size = 1;
4672 }
4673 else
4674 {
4675 pos = (unsigned long) imm_expr.X_add_number;
4676 size = (unsigned long) imm2_expr.X_add_number;
4677 }
4678
4679 if (pos > 63)
4680 {
4681 as_bad (_("Improper position (%lu)"), pos);
4682 pos = 1;
4683 }
4684 if (size == 0 || size > 64
4685 || (pos + size - 1) > 63)
4686 {
4687 as_bad (_("Improper insert size (%lu, position %lu)"),
4688 size, pos);
4689 size = 1;
4690 }
4691
4692 if (pos < 32 && (pos + size - 1) < 32)
4693 {
4694 s = "dins";
4695 fmt = "t,r,+A,+B";
4696 }
4697 else if (pos >= 32)
4698 {
4699 s = "dinsu";
4700 fmt = "t,r,+E,+F";
4701 }
4702 else
4703 {
4704 s = "dinsm";
4705 fmt = "t,r,+A,+F";
4706 }
4707 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos,
4708 pos + size - 1);
4709 }
4710 break;
4711
4712 case M_DDIV_3:
4713 dbl = 1;
4714 case M_DIV_3:
4715 s = "mflo";
4716 goto do_div3;
4717 case M_DREM_3:
4718 dbl = 1;
4719 case M_REM_3:
4720 s = "mfhi";
4721 do_div3:
4722 if (treg == 0)
4723 {
4724 as_warn (_("Divide by zero."));
4725 if (mips_trap)
4726 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
4727 else
4728 macro_build (NULL, "break", "c", 7);
4729 break;
4730 }
4731
4732 start_noreorder ();
4733 if (mips_trap)
4734 {
4735 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
4736 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4737 }
4738 else
4739 {
4740 expr1.X_add_number = 8;
4741 macro_build (&expr1, "bne", "s,t,p", treg, 0);
4742 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
4743 macro_build (NULL, "break", "c", 7);
4744 }
4745 expr1.X_add_number = -1;
4746 used_at = 1;
4747 load_register (AT, &expr1, dbl);
4748 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
4749 macro_build (&expr1, "bne", "s,t,p", treg, AT);
4750 if (dbl)
4751 {
4752 expr1.X_add_number = 1;
4753 load_register (AT, &expr1, dbl);
4754 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
4755 }
4756 else
4757 {
4758 expr1.X_add_number = 0x80000000;
4759 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
4760 }
4761 if (mips_trap)
4762 {
4763 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
4764 /* We want to close the noreorder block as soon as possible, so
4765 that later insns are available for delay slot filling. */
4766 end_noreorder ();
4767 }
4768 else
4769 {
4770 expr1.X_add_number = 8;
4771 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
4772 macro_build (NULL, "nop", "", 0);
4773
4774 /* We want to close the noreorder block as soon as possible, so
4775 that later insns are available for delay slot filling. */
4776 end_noreorder ();
4777
4778 macro_build (NULL, "break", "c", 6);
4779 }
4780 macro_build (NULL, s, "d", dreg);
4781 break;
4782
4783 case M_DIV_3I:
4784 s = "div";
4785 s2 = "mflo";
4786 goto do_divi;
4787 case M_DIVU_3I:
4788 s = "divu";
4789 s2 = "mflo";
4790 goto do_divi;
4791 case M_REM_3I:
4792 s = "div";
4793 s2 = "mfhi";
4794 goto do_divi;
4795 case M_REMU_3I:
4796 s = "divu";
4797 s2 = "mfhi";
4798 goto do_divi;
4799 case M_DDIV_3I:
4800 dbl = 1;
4801 s = "ddiv";
4802 s2 = "mflo";
4803 goto do_divi;
4804 case M_DDIVU_3I:
4805 dbl = 1;
4806 s = "ddivu";
4807 s2 = "mflo";
4808 goto do_divi;
4809 case M_DREM_3I:
4810 dbl = 1;
4811 s = "ddiv";
4812 s2 = "mfhi";
4813 goto do_divi;
4814 case M_DREMU_3I:
4815 dbl = 1;
4816 s = "ddivu";
4817 s2 = "mfhi";
4818 do_divi:
4819 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4820 {
4821 as_warn (_("Divide by zero."));
4822 if (mips_trap)
4823 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
4824 else
4825 macro_build (NULL, "break", "c", 7);
4826 break;
4827 }
4828 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4829 {
4830 if (strcmp (s2, "mflo") == 0)
4831 move_register (dreg, sreg);
4832 else
4833 move_register (dreg, 0);
4834 break;
4835 }
4836 if (imm_expr.X_op == O_constant
4837 && imm_expr.X_add_number == -1
4838 && s[strlen (s) - 1] != 'u')
4839 {
4840 if (strcmp (s2, "mflo") == 0)
4841 {
4842 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
4843 }
4844 else
4845 move_register (dreg, 0);
4846 break;
4847 }
4848
4849 used_at = 1;
4850 load_register (AT, &imm_expr, dbl);
4851 macro_build (NULL, s, "z,s,t", sreg, AT);
4852 macro_build (NULL, s2, "d", dreg);
4853 break;
4854
4855 case M_DIVU_3:
4856 s = "divu";
4857 s2 = "mflo";
4858 goto do_divu3;
4859 case M_REMU_3:
4860 s = "divu";
4861 s2 = "mfhi";
4862 goto do_divu3;
4863 case M_DDIVU_3:
4864 s = "ddivu";
4865 s2 = "mflo";
4866 goto do_divu3;
4867 case M_DREMU_3:
4868 s = "ddivu";
4869 s2 = "mfhi";
4870 do_divu3:
4871 start_noreorder ();
4872 if (mips_trap)
4873 {
4874 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
4875 macro_build (NULL, s, "z,s,t", sreg, treg);
4876 /* We want to close the noreorder block as soon as possible, so
4877 that later insns are available for delay slot filling. */
4878 end_noreorder ();
4879 }
4880 else
4881 {
4882 expr1.X_add_number = 8;
4883 macro_build (&expr1, "bne", "s,t,p", treg, 0);
4884 macro_build (NULL, s, "z,s,t", sreg, treg);
4885
4886 /* We want to close the noreorder block as soon as possible, so
4887 that later insns are available for delay slot filling. */
4888 end_noreorder ();
4889 macro_build (NULL, "break", "c", 7);
4890 }
4891 macro_build (NULL, s2, "d", dreg);
4892 break;
4893
4894 case M_DLCA_AB:
4895 dbl = 1;
4896 case M_LCA_AB:
4897 call = 1;
4898 goto do_la;
4899 case M_DLA_AB:
4900 dbl = 1;
4901 case M_LA_AB:
4902 do_la:
4903 /* Load the address of a symbol into a register. If breg is not
4904 zero, we then add a base register to it. */
4905
4906 if (dbl && HAVE_32BIT_GPRS)
4907 as_warn (_("dla used to load 32-bit register"));
4908
4909 if (! dbl && HAVE_64BIT_OBJECTS)
4910 as_warn (_("la used to load 64-bit address"));
4911
4912 if (offset_expr.X_op == O_constant
4913 && offset_expr.X_add_number >= -0x8000
4914 && offset_expr.X_add_number < 0x8000)
4915 {
4916 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
4917 "t,r,j", treg, sreg, BFD_RELOC_LO16);
4918 break;
4919 }
4920
4921 if (!mips_opts.noat && (treg == breg))
4922 {
4923 tempreg = AT;
4924 used_at = 1;
4925 }
4926 else
4927 {
4928 tempreg = treg;
4929 }
4930
4931 if (offset_expr.X_op != O_symbol
4932 && offset_expr.X_op != O_constant)
4933 {
4934 as_bad (_("expression too complex"));
4935 offset_expr.X_op = O_constant;
4936 }
4937
4938 if (offset_expr.X_op == O_constant)
4939 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
4940 else if (mips_pic == NO_PIC)
4941 {
4942 /* If this is a reference to a GP relative symbol, we want
4943 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
4944 Otherwise we want
4945 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
4946 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
4947 If we have a constant, we need two instructions anyhow,
4948 so we may as well always use the latter form.
4949
4950 With 64bit address space and a usable $at we want
4951 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4952 lui $at,<sym> (BFD_RELOC_HI16_S)
4953 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4954 daddiu $at,<sym> (BFD_RELOC_LO16)
4955 dsll32 $tempreg,0
4956 daddu $tempreg,$tempreg,$at
4957
4958 If $at is already in use, we use a path which is suboptimal
4959 on superscalar processors.
4960 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4961 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
4962 dsll $tempreg,16
4963 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
4964 dsll $tempreg,16
4965 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
4966
4967 For GP relative symbols in 64bit address space we can use
4968 the same sequence as in 32bit address space. */
4969 if (HAVE_64BIT_SYMBOLS)
4970 {
4971 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
4972 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
4973 {
4974 relax_start (offset_expr.X_add_symbol);
4975 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
4976 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
4977 relax_switch ();
4978 }
4979
4980 if (used_at == 0 && !mips_opts.noat)
4981 {
4982 macro_build (&offset_expr, "lui", "t,u",
4983 tempreg, BFD_RELOC_MIPS_HIGHEST);
4984 macro_build (&offset_expr, "lui", "t,u",
4985 AT, BFD_RELOC_HI16_S);
4986 macro_build (&offset_expr, "daddiu", "t,r,j",
4987 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
4988 macro_build (&offset_expr, "daddiu", "t,r,j",
4989 AT, AT, BFD_RELOC_LO16);
4990 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
4991 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
4992 used_at = 1;
4993 }
4994 else
4995 {
4996 macro_build (&offset_expr, "lui", "t,u",
4997 tempreg, BFD_RELOC_MIPS_HIGHEST);
4998 macro_build (&offset_expr, "daddiu", "t,r,j",
4999 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5000 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5001 macro_build (&offset_expr, "daddiu", "t,r,j",
5002 tempreg, tempreg, BFD_RELOC_HI16_S);
5003 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5004 macro_build (&offset_expr, "daddiu", "t,r,j",
5005 tempreg, tempreg, BFD_RELOC_LO16);
5006 }
5007
5008 if (mips_relax.sequence)
5009 relax_end ();
5010 }
5011 else
5012 {
5013 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5014 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5015 {
5016 relax_start (offset_expr.X_add_symbol);
5017 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5018 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5019 relax_switch ();
5020 }
5021 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5022 as_bad (_("offset too large"));
5023 macro_build_lui (&offset_expr, tempreg);
5024 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5025 tempreg, tempreg, BFD_RELOC_LO16);
5026 if (mips_relax.sequence)
5027 relax_end ();
5028 }
5029 }
5030 else if (!mips_big_got && !HAVE_NEWABI)
5031 {
5032 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5033
5034 /* If this is a reference to an external symbol, and there
5035 is no constant, we want
5036 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5037 or for lca or if tempreg is PIC_CALL_REG
5038 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5039 For a local symbol, we want
5040 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5041 nop
5042 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5043
5044 If we have a small constant, and this is a reference to
5045 an external symbol, we want
5046 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5047 nop
5048 addiu $tempreg,$tempreg,<constant>
5049 For a local symbol, we want the same instruction
5050 sequence, but we output a BFD_RELOC_LO16 reloc on the
5051 addiu instruction.
5052
5053 If we have a large constant, and this is a reference to
5054 an external symbol, we want
5055 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5056 lui $at,<hiconstant>
5057 addiu $at,$at,<loconstant>
5058 addu $tempreg,$tempreg,$at
5059 For a local symbol, we want the same instruction
5060 sequence, but we output a BFD_RELOC_LO16 reloc on the
5061 addiu instruction.
5062 */
5063
5064 if (offset_expr.X_add_number == 0)
5065 {
5066 if (mips_pic == SVR4_PIC
5067 && breg == 0
5068 && (call || tempreg == PIC_CALL_REG))
5069 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5070
5071 relax_start (offset_expr.X_add_symbol);
5072 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5073 lw_reloc_type, mips_gp_register);
5074 if (breg != 0)
5075 {
5076 /* We're going to put in an addu instruction using
5077 tempreg, so we may as well insert the nop right
5078 now. */
5079 load_delay_nop ();
5080 }
5081 relax_switch ();
5082 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5083 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5084 load_delay_nop ();
5085 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5086 tempreg, tempreg, BFD_RELOC_LO16);
5087 relax_end ();
5088 /* FIXME: If breg == 0, and the next instruction uses
5089 $tempreg, then if this variant case is used an extra
5090 nop will be generated. */
5091 }
5092 else if (offset_expr.X_add_number >= -0x8000
5093 && offset_expr.X_add_number < 0x8000)
5094 {
5095 load_got_offset (tempreg, &offset_expr);
5096 load_delay_nop ();
5097 add_got_offset (tempreg, &offset_expr);
5098 }
5099 else
5100 {
5101 expr1.X_add_number = offset_expr.X_add_number;
5102 offset_expr.X_add_number =
5103 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5104 load_got_offset (tempreg, &offset_expr);
5105 offset_expr.X_add_number = expr1.X_add_number;
5106 /* If we are going to add in a base register, and the
5107 target register and the base register are the same,
5108 then we are using AT as a temporary register. Since
5109 we want to load the constant into AT, we add our
5110 current AT (from the global offset table) and the
5111 register into the register now, and pretend we were
5112 not using a base register. */
5113 if (breg == treg)
5114 {
5115 load_delay_nop ();
5116 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5117 treg, AT, breg);
5118 breg = 0;
5119 tempreg = treg;
5120 }
5121 add_got_offset_hilo (tempreg, &offset_expr, AT);
5122 used_at = 1;
5123 }
5124 }
5125 else if (!mips_big_got && HAVE_NEWABI)
5126 {
5127 int add_breg_early = 0;
5128
5129 /* If this is a reference to an external, and there is no
5130 constant, or local symbol (*), with or without a
5131 constant, we want
5132 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5133 or for lca or if tempreg is PIC_CALL_REG
5134 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5135
5136 If we have a small constant, and this is a reference to
5137 an external symbol, we want
5138 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5139 addiu $tempreg,$tempreg,<constant>
5140
5141 If we have a large constant, and this is a reference to
5142 an external symbol, we want
5143 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5144 lui $at,<hiconstant>
5145 addiu $at,$at,<loconstant>
5146 addu $tempreg,$tempreg,$at
5147
5148 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5149 local symbols, even though it introduces an additional
5150 instruction. */
5151
5152 if (offset_expr.X_add_number)
5153 {
5154 expr1.X_add_number = offset_expr.X_add_number;
5155 offset_expr.X_add_number = 0;
5156
5157 relax_start (offset_expr.X_add_symbol);
5158 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5159 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5160
5161 if (expr1.X_add_number >= -0x8000
5162 && expr1.X_add_number < 0x8000)
5163 {
5164 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5165 tempreg, tempreg, BFD_RELOC_LO16);
5166 }
5167 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5168 {
5169 int dreg;
5170
5171 /* If we are going to add in a base register, and the
5172 target register and the base register are the same,
5173 then we are using AT as a temporary register. Since
5174 we want to load the constant into AT, we add our
5175 current AT (from the global offset table) and the
5176 register into the register now, and pretend we were
5177 not using a base register. */
5178 if (breg != treg)
5179 dreg = tempreg;
5180 else
5181 {
5182 assert (tempreg == AT);
5183 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5184 treg, AT, breg);
5185 dreg = treg;
5186 add_breg_early = 1;
5187 }
5188
5189 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5190 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5191 dreg, dreg, AT);
5192
5193 used_at = 1;
5194 }
5195 else
5196 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5197
5198 relax_switch ();
5199 offset_expr.X_add_number = expr1.X_add_number;
5200
5201 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5202 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5203 if (add_breg_early)
5204 {
5205 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5206 treg, tempreg, breg);
5207 breg = 0;
5208 tempreg = treg;
5209 }
5210 relax_end ();
5211 }
5212 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5213 {
5214 relax_start (offset_expr.X_add_symbol);
5215 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5216 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5217 relax_switch ();
5218 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5219 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5220 relax_end ();
5221 }
5222 else
5223 {
5224 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5225 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5226 }
5227 }
5228 else if (mips_big_got && !HAVE_NEWABI)
5229 {
5230 int gpdelay;
5231 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5232 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5233 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5234
5235 /* This is the large GOT case. If this is a reference to an
5236 external symbol, and there is no constant, we want
5237 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5238 addu $tempreg,$tempreg,$gp
5239 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5240 or for lca or if tempreg is PIC_CALL_REG
5241 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5242 addu $tempreg,$tempreg,$gp
5243 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5244 For a local symbol, we want
5245 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5246 nop
5247 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5248
5249 If we have a small constant, and this is a reference to
5250 an external symbol, we want
5251 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5252 addu $tempreg,$tempreg,$gp
5253 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5254 nop
5255 addiu $tempreg,$tempreg,<constant>
5256 For a local symbol, we want
5257 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5258 nop
5259 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5260
5261 If we have a large constant, and this is a reference to
5262 an external symbol, we want
5263 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5264 addu $tempreg,$tempreg,$gp
5265 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5266 lui $at,<hiconstant>
5267 addiu $at,$at,<loconstant>
5268 addu $tempreg,$tempreg,$at
5269 For a local symbol, we want
5270 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5271 lui $at,<hiconstant>
5272 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5273 addu $tempreg,$tempreg,$at
5274 */
5275
5276 expr1.X_add_number = offset_expr.X_add_number;
5277 offset_expr.X_add_number = 0;
5278 relax_start (offset_expr.X_add_symbol);
5279 gpdelay = reg_needs_delay (mips_gp_register);
5280 if (expr1.X_add_number == 0 && breg == 0
5281 && (call || tempreg == PIC_CALL_REG))
5282 {
5283 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5284 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5285 }
5286 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5287 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5288 tempreg, tempreg, mips_gp_register);
5289 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5290 tempreg, lw_reloc_type, tempreg);
5291 if (expr1.X_add_number == 0)
5292 {
5293 if (breg != 0)
5294 {
5295 /* We're going to put in an addu instruction using
5296 tempreg, so we may as well insert the nop right
5297 now. */
5298 load_delay_nop ();
5299 }
5300 }
5301 else if (expr1.X_add_number >= -0x8000
5302 && expr1.X_add_number < 0x8000)
5303 {
5304 load_delay_nop ();
5305 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5306 tempreg, tempreg, BFD_RELOC_LO16);
5307 }
5308 else
5309 {
5310 int dreg;
5311
5312 /* If we are going to add in a base register, and the
5313 target register and the base register are the same,
5314 then we are using AT as a temporary register. Since
5315 we want to load the constant into AT, we add our
5316 current AT (from the global offset table) and the
5317 register into the register now, and pretend we were
5318 not using a base register. */
5319 if (breg != treg)
5320 dreg = tempreg;
5321 else
5322 {
5323 assert (tempreg == AT);
5324 load_delay_nop ();
5325 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5326 treg, AT, breg);
5327 dreg = treg;
5328 }
5329
5330 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5331 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5332
5333 used_at = 1;
5334 }
5335 offset_expr.X_add_number =
5336 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5337 relax_switch ();
5338
5339 if (gpdelay)
5340 {
5341 /* This is needed because this instruction uses $gp, but
5342 the first instruction on the main stream does not. */
5343 macro_build (NULL, "nop", "");
5344 }
5345
5346 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5347 local_reloc_type, mips_gp_register);
5348 if (expr1.X_add_number >= -0x8000
5349 && expr1.X_add_number < 0x8000)
5350 {
5351 load_delay_nop ();
5352 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5353 tempreg, tempreg, BFD_RELOC_LO16);
5354 /* FIXME: If add_number is 0, and there was no base
5355 register, the external symbol case ended with a load,
5356 so if the symbol turns out to not be external, and
5357 the next instruction uses tempreg, an unnecessary nop
5358 will be inserted. */
5359 }
5360 else
5361 {
5362 if (breg == treg)
5363 {
5364 /* We must add in the base register now, as in the
5365 external symbol case. */
5366 assert (tempreg == AT);
5367 load_delay_nop ();
5368 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5369 treg, AT, breg);
5370 tempreg = treg;
5371 /* We set breg to 0 because we have arranged to add
5372 it in in both cases. */
5373 breg = 0;
5374 }
5375
5376 macro_build_lui (&expr1, AT);
5377 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5378 AT, AT, BFD_RELOC_LO16);
5379 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5380 tempreg, tempreg, AT);
5381 used_at = 1;
5382 }
5383 relax_end ();
5384 }
5385 else if (mips_big_got && HAVE_NEWABI)
5386 {
5387 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5388 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5389 int add_breg_early = 0;
5390
5391 /* This is the large GOT case. If this is a reference to an
5392 external symbol, and there is no constant, we want
5393 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5394 add $tempreg,$tempreg,$gp
5395 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5396 or for lca or if tempreg is PIC_CALL_REG
5397 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5398 add $tempreg,$tempreg,$gp
5399 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5400
5401 If we have a small constant, and this is a reference to
5402 an external symbol, we want
5403 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5404 add $tempreg,$tempreg,$gp
5405 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5406 addi $tempreg,$tempreg,<constant>
5407
5408 If we have a large constant, and this is a reference to
5409 an external symbol, we want
5410 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5411 addu $tempreg,$tempreg,$gp
5412 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5413 lui $at,<hiconstant>
5414 addi $at,$at,<loconstant>
5415 add $tempreg,$tempreg,$at
5416
5417 If we have NewABI, and we know it's a local symbol, we want
5418 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5419 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5420 otherwise we have to resort to GOT_HI16/GOT_LO16. */
5421
5422 relax_start (offset_expr.X_add_symbol);
5423
5424 expr1.X_add_number = offset_expr.X_add_number;
5425 offset_expr.X_add_number = 0;
5426
5427 if (expr1.X_add_number == 0 && breg == 0
5428 && (call || tempreg == PIC_CALL_REG))
5429 {
5430 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5431 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5432 }
5433 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5434 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5435 tempreg, tempreg, mips_gp_register);
5436 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5437 tempreg, lw_reloc_type, tempreg);
5438
5439 if (expr1.X_add_number == 0)
5440 ;
5441 else if (expr1.X_add_number >= -0x8000
5442 && expr1.X_add_number < 0x8000)
5443 {
5444 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5445 tempreg, tempreg, BFD_RELOC_LO16);
5446 }
5447 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5448 {
5449 int dreg;
5450
5451 /* If we are going to add in a base register, and the
5452 target register and the base register are the same,
5453 then we are using AT as a temporary register. Since
5454 we want to load the constant into AT, we add our
5455 current AT (from the global offset table) and the
5456 register into the register now, and pretend we were
5457 not using a base register. */
5458 if (breg != treg)
5459 dreg = tempreg;
5460 else
5461 {
5462 assert (tempreg == AT);
5463 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5464 treg, AT, breg);
5465 dreg = treg;
5466 add_breg_early = 1;
5467 }
5468
5469 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5470 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5471
5472 used_at = 1;
5473 }
5474 else
5475 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5476
5477 relax_switch ();
5478 offset_expr.X_add_number = expr1.X_add_number;
5479 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5480 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
5481 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
5482 tempreg, BFD_RELOC_MIPS_GOT_OFST);
5483 if (add_breg_early)
5484 {
5485 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5486 treg, tempreg, breg);
5487 breg = 0;
5488 tempreg = treg;
5489 }
5490 relax_end ();
5491 }
5492 else
5493 abort ();
5494
5495 if (breg != 0)
5496 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
5497 break;
5498
5499 case M_J_A:
5500 /* The j instruction may not be used in PIC code, since it
5501 requires an absolute address. We convert it to a b
5502 instruction. */
5503 if (mips_pic == NO_PIC)
5504 macro_build (&offset_expr, "j", "a");
5505 else
5506 macro_build (&offset_expr, "b", "p");
5507 break;
5508
5509 /* The jal instructions must be handled as macros because when
5510 generating PIC code they expand to multi-instruction
5511 sequences. Normally they are simple instructions. */
5512 case M_JAL_1:
5513 dreg = RA;
5514 /* Fall through. */
5515 case M_JAL_2:
5516 if (mips_pic == NO_PIC)
5517 macro_build (NULL, "jalr", "d,s", dreg, sreg);
5518 else
5519 {
5520 if (sreg != PIC_CALL_REG)
5521 as_warn (_("MIPS PIC call to register other than $25"));
5522
5523 macro_build (NULL, "jalr", "d,s", dreg, sreg);
5524 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
5525 {
5526 if (mips_cprestore_offset < 0)
5527 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5528 else
5529 {
5530 if (! mips_frame_reg_valid)
5531 {
5532 as_warn (_("No .frame pseudo-op used in PIC code"));
5533 /* Quiet this warning. */
5534 mips_frame_reg_valid = 1;
5535 }
5536 if (! mips_cprestore_valid)
5537 {
5538 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5539 /* Quiet this warning. */
5540 mips_cprestore_valid = 1;
5541 }
5542 expr1.X_add_number = mips_cprestore_offset;
5543 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
5544 mips_gp_register,
5545 mips_frame_reg,
5546 HAVE_64BIT_ADDRESSES);
5547 }
5548 }
5549 }
5550
5551 break;
5552
5553 case M_JAL_A:
5554 if (mips_pic == NO_PIC)
5555 macro_build (&offset_expr, "jal", "a");
5556 else if (mips_pic == SVR4_PIC)
5557 {
5558 /* If this is a reference to an external symbol, and we are
5559 using a small GOT, we want
5560 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5561 nop
5562 jalr $ra,$25
5563 nop
5564 lw $gp,cprestore($sp)
5565 The cprestore value is set using the .cprestore
5566 pseudo-op. If we are using a big GOT, we want
5567 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5568 addu $25,$25,$gp
5569 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
5570 nop
5571 jalr $ra,$25
5572 nop
5573 lw $gp,cprestore($sp)
5574 If the symbol is not external, we want
5575 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5576 nop
5577 addiu $25,$25,<sym> (BFD_RELOC_LO16)
5578 jalr $ra,$25
5579 nop
5580 lw $gp,cprestore($sp)
5581
5582 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
5583 sequences above, minus nops, unless the symbol is local,
5584 which enables us to use GOT_PAGE/GOT_OFST (big got) or
5585 GOT_DISP. */
5586 if (HAVE_NEWABI)
5587 {
5588 if (! mips_big_got)
5589 {
5590 relax_start (offset_expr.X_add_symbol);
5591 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5592 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
5593 mips_gp_register);
5594 relax_switch ();
5595 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5596 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
5597 mips_gp_register);
5598 relax_end ();
5599 }
5600 else
5601 {
5602 relax_start (offset_expr.X_add_symbol);
5603 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
5604 BFD_RELOC_MIPS_CALL_HI16);
5605 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
5606 PIC_CALL_REG, mips_gp_register);
5607 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5608 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
5609 PIC_CALL_REG);
5610 relax_switch ();
5611 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5612 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
5613 mips_gp_register);
5614 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5615 PIC_CALL_REG, PIC_CALL_REG,
5616 BFD_RELOC_MIPS_GOT_OFST);
5617 relax_end ();
5618 }
5619
5620 macro_build_jalr (&offset_expr);
5621 }
5622 else
5623 {
5624 relax_start (offset_expr.X_add_symbol);
5625 if (! mips_big_got)
5626 {
5627 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5628 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
5629 mips_gp_register);
5630 load_delay_nop ();
5631 relax_switch ();
5632 }
5633 else
5634 {
5635 int gpdelay;
5636
5637 gpdelay = reg_needs_delay (mips_gp_register);
5638 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
5639 BFD_RELOC_MIPS_CALL_HI16);
5640 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
5641 PIC_CALL_REG, mips_gp_register);
5642 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5643 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
5644 PIC_CALL_REG);
5645 load_delay_nop ();
5646 relax_switch ();
5647 if (gpdelay)
5648 macro_build (NULL, "nop", "");
5649 }
5650 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5651 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
5652 mips_gp_register);
5653 load_delay_nop ();
5654 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5655 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
5656 relax_end ();
5657 macro_build_jalr (&offset_expr);
5658
5659 if (mips_cprestore_offset < 0)
5660 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5661 else
5662 {
5663 if (! mips_frame_reg_valid)
5664 {
5665 as_warn (_("No .frame pseudo-op used in PIC code"));
5666 /* Quiet this warning. */
5667 mips_frame_reg_valid = 1;
5668 }
5669 if (! mips_cprestore_valid)
5670 {
5671 as_warn (_("No .cprestore pseudo-op used in PIC code"));
5672 /* Quiet this warning. */
5673 mips_cprestore_valid = 1;
5674 }
5675 if (mips_opts.noreorder)
5676 macro_build (NULL, "nop", "");
5677 expr1.X_add_number = mips_cprestore_offset;
5678 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
5679 mips_gp_register,
5680 mips_frame_reg,
5681 HAVE_64BIT_ADDRESSES);
5682 }
5683 }
5684 }
5685 else if (mips_pic == VXWORKS_PIC)
5686 as_bad (_("Non-PIC jump used in PIC library"));
5687 else
5688 abort ();
5689
5690 break;
5691
5692 case M_LB_AB:
5693 s = "lb";
5694 goto ld;
5695 case M_LBU_AB:
5696 s = "lbu";
5697 goto ld;
5698 case M_LH_AB:
5699 s = "lh";
5700 goto ld;
5701 case M_LHU_AB:
5702 s = "lhu";
5703 goto ld;
5704 case M_LW_AB:
5705 s = "lw";
5706 goto ld;
5707 case M_LWC0_AB:
5708 s = "lwc0";
5709 /* Itbl support may require additional care here. */
5710 coproc = 1;
5711 goto ld;
5712 case M_LWC1_AB:
5713 s = "lwc1";
5714 /* Itbl support may require additional care here. */
5715 coproc = 1;
5716 goto ld;
5717 case M_LWC2_AB:
5718 s = "lwc2";
5719 /* Itbl support may require additional care here. */
5720 coproc = 1;
5721 goto ld;
5722 case M_LWC3_AB:
5723 s = "lwc3";
5724 /* Itbl support may require additional care here. */
5725 coproc = 1;
5726 goto ld;
5727 case M_LWL_AB:
5728 s = "lwl";
5729 lr = 1;
5730 goto ld;
5731 case M_LWR_AB:
5732 s = "lwr";
5733 lr = 1;
5734 goto ld;
5735 case M_LDC1_AB:
5736 if (mips_opts.arch == CPU_R4650)
5737 {
5738 as_bad (_("opcode not supported on this processor"));
5739 break;
5740 }
5741 s = "ldc1";
5742 /* Itbl support may require additional care here. */
5743 coproc = 1;
5744 goto ld;
5745 case M_LDC2_AB:
5746 s = "ldc2";
5747 /* Itbl support may require additional care here. */
5748 coproc = 1;
5749 goto ld;
5750 case M_LDC3_AB:
5751 s = "ldc3";
5752 /* Itbl support may require additional care here. */
5753 coproc = 1;
5754 goto ld;
5755 case M_LDL_AB:
5756 s = "ldl";
5757 lr = 1;
5758 goto ld;
5759 case M_LDR_AB:
5760 s = "ldr";
5761 lr = 1;
5762 goto ld;
5763 case M_LL_AB:
5764 s = "ll";
5765 goto ld;
5766 case M_LLD_AB:
5767 s = "lld";
5768 goto ld;
5769 case M_LWU_AB:
5770 s = "lwu";
5771 ld:
5772 if (breg == treg || coproc || lr)
5773 {
5774 tempreg = AT;
5775 used_at = 1;
5776 }
5777 else
5778 {
5779 tempreg = treg;
5780 }
5781 goto ld_st;
5782 case M_SB_AB:
5783 s = "sb";
5784 goto st;
5785 case M_SH_AB:
5786 s = "sh";
5787 goto st;
5788 case M_SW_AB:
5789 s = "sw";
5790 goto st;
5791 case M_SWC0_AB:
5792 s = "swc0";
5793 /* Itbl support may require additional care here. */
5794 coproc = 1;
5795 goto st;
5796 case M_SWC1_AB:
5797 s = "swc1";
5798 /* Itbl support may require additional care here. */
5799 coproc = 1;
5800 goto st;
5801 case M_SWC2_AB:
5802 s = "swc2";
5803 /* Itbl support may require additional care here. */
5804 coproc = 1;
5805 goto st;
5806 case M_SWC3_AB:
5807 s = "swc3";
5808 /* Itbl support may require additional care here. */
5809 coproc = 1;
5810 goto st;
5811 case M_SWL_AB:
5812 s = "swl";
5813 goto st;
5814 case M_SWR_AB:
5815 s = "swr";
5816 goto st;
5817 case M_SC_AB:
5818 s = "sc";
5819 goto st;
5820 case M_SCD_AB:
5821 s = "scd";
5822 goto st;
5823 case M_SDC1_AB:
5824 if (mips_opts.arch == CPU_R4650)
5825 {
5826 as_bad (_("opcode not supported on this processor"));
5827 break;
5828 }
5829 s = "sdc1";
5830 coproc = 1;
5831 /* Itbl support may require additional care here. */
5832 goto st;
5833 case M_SDC2_AB:
5834 s = "sdc2";
5835 /* Itbl support may require additional care here. */
5836 coproc = 1;
5837 goto st;
5838 case M_SDC3_AB:
5839 s = "sdc3";
5840 /* Itbl support may require additional care here. */
5841 coproc = 1;
5842 goto st;
5843 case M_SDL_AB:
5844 s = "sdl";
5845 goto st;
5846 case M_SDR_AB:
5847 s = "sdr";
5848 st:
5849 tempreg = AT;
5850 used_at = 1;
5851 ld_st:
5852 /* Itbl support may require additional care here. */
5853 if (mask == M_LWC1_AB
5854 || mask == M_SWC1_AB
5855 || mask == M_LDC1_AB
5856 || mask == M_SDC1_AB
5857 || mask == M_L_DAB
5858 || mask == M_S_DAB)
5859 fmt = "T,o(b)";
5860 else if (coproc)
5861 fmt = "E,o(b)";
5862 else
5863 fmt = "t,o(b)";
5864
5865 if (offset_expr.X_op != O_constant
5866 && offset_expr.X_op != O_symbol)
5867 {
5868 as_bad (_("expression too complex"));
5869 offset_expr.X_op = O_constant;
5870 }
5871
5872 if (HAVE_32BIT_ADDRESSES
5873 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5874 {
5875 char value [32];
5876
5877 sprintf_vma (value, offset_expr.X_add_number);
5878 as_bad (_("Number (0x%s) larger than 32 bits"), value);
5879 }
5880
5881 /* A constant expression in PIC code can be handled just as it
5882 is in non PIC code. */
5883 if (offset_expr.X_op == O_constant)
5884 {
5885 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
5886 & ~(bfd_vma) 0xffff);
5887 normalize_address_expr (&expr1);
5888 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
5889 if (breg != 0)
5890 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5891 tempreg, tempreg, breg);
5892 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
5893 }
5894 else if (mips_pic == NO_PIC)
5895 {
5896 /* If this is a reference to a GP relative symbol, and there
5897 is no base register, we want
5898 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
5899 Otherwise, if there is no base register, we want
5900 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5901 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5902 If we have a constant, we need two instructions anyhow,
5903 so we always use the latter form.
5904
5905 If we have a base register, and this is a reference to a
5906 GP relative symbol, we want
5907 addu $tempreg,$breg,$gp
5908 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
5909 Otherwise we want
5910 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5911 addu $tempreg,$tempreg,$breg
5912 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5913 With a constant we always use the latter case.
5914
5915 With 64bit address space and no base register and $at usable,
5916 we want
5917 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5918 lui $at,<sym> (BFD_RELOC_HI16_S)
5919 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5920 dsll32 $tempreg,0
5921 daddu $tempreg,$at
5922 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5923 If we have a base register, we want
5924 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5925 lui $at,<sym> (BFD_RELOC_HI16_S)
5926 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5927 daddu $at,$breg
5928 dsll32 $tempreg,0
5929 daddu $tempreg,$at
5930 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5931
5932 Without $at we can't generate the optimal path for superscalar
5933 processors here since this would require two temporary registers.
5934 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5935 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5936 dsll $tempreg,16
5937 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5938 dsll $tempreg,16
5939 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5940 If we have a base register, we want
5941 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5942 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5943 dsll $tempreg,16
5944 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5945 dsll $tempreg,16
5946 daddu $tempreg,$tempreg,$breg
5947 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
5948
5949 For GP relative symbols in 64bit address space we can use
5950 the same sequence as in 32bit address space. */
5951 if (HAVE_64BIT_SYMBOLS)
5952 {
5953 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5954 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5955 {
5956 relax_start (offset_expr.X_add_symbol);
5957 if (breg == 0)
5958 {
5959 macro_build (&offset_expr, s, fmt, treg,
5960 BFD_RELOC_GPREL16, mips_gp_register);
5961 }
5962 else
5963 {
5964 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5965 tempreg, breg, mips_gp_register);
5966 macro_build (&offset_expr, s, fmt, treg,
5967 BFD_RELOC_GPREL16, tempreg);
5968 }
5969 relax_switch ();
5970 }
5971
5972 if (used_at == 0 && !mips_opts.noat)
5973 {
5974 macro_build (&offset_expr, "lui", "t,u", tempreg,
5975 BFD_RELOC_MIPS_HIGHEST);
5976 macro_build (&offset_expr, "lui", "t,u", AT,
5977 BFD_RELOC_HI16_S);
5978 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
5979 tempreg, BFD_RELOC_MIPS_HIGHER);
5980 if (breg != 0)
5981 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
5982 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5983 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5984 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
5985 tempreg);
5986 used_at = 1;
5987 }
5988 else
5989 {
5990 macro_build (&offset_expr, "lui", "t,u", tempreg,
5991 BFD_RELOC_MIPS_HIGHEST);
5992 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
5993 tempreg, BFD_RELOC_MIPS_HIGHER);
5994 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5995 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
5996 tempreg, BFD_RELOC_HI16_S);
5997 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5998 if (breg != 0)
5999 macro_build (NULL, "daddu", "d,v,t",
6000 tempreg, tempreg, breg);
6001 macro_build (&offset_expr, s, fmt, treg,
6002 BFD_RELOC_LO16, tempreg);
6003 }
6004
6005 if (mips_relax.sequence)
6006 relax_end ();
6007 break;
6008 }
6009
6010 if (breg == 0)
6011 {
6012 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6013 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6014 {
6015 relax_start (offset_expr.X_add_symbol);
6016 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6017 mips_gp_register);
6018 relax_switch ();
6019 }
6020 macro_build_lui (&offset_expr, tempreg);
6021 macro_build (&offset_expr, s, fmt, treg,
6022 BFD_RELOC_LO16, tempreg);
6023 if (mips_relax.sequence)
6024 relax_end ();
6025 }
6026 else
6027 {
6028 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6029 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6030 {
6031 relax_start (offset_expr.X_add_symbol);
6032 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6033 tempreg, breg, mips_gp_register);
6034 macro_build (&offset_expr, s, fmt, treg,
6035 BFD_RELOC_GPREL16, tempreg);
6036 relax_switch ();
6037 }
6038 macro_build_lui (&offset_expr, tempreg);
6039 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6040 tempreg, tempreg, breg);
6041 macro_build (&offset_expr, s, fmt, treg,
6042 BFD_RELOC_LO16, tempreg);
6043 if (mips_relax.sequence)
6044 relax_end ();
6045 }
6046 }
6047 else if (!mips_big_got)
6048 {
6049 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6050
6051 /* If this is a reference to an external symbol, we want
6052 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6053 nop
6054 <op> $treg,0($tempreg)
6055 Otherwise we want
6056 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6057 nop
6058 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6059 <op> $treg,0($tempreg)
6060
6061 For NewABI, we want
6062 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6063 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6064
6065 If there is a base register, we add it to $tempreg before
6066 the <op>. If there is a constant, we stick it in the
6067 <op> instruction. We don't handle constants larger than
6068 16 bits, because we have no way to load the upper 16 bits
6069 (actually, we could handle them for the subset of cases
6070 in which we are not using $at). */
6071 assert (offset_expr.X_op == O_symbol);
6072 if (HAVE_NEWABI)
6073 {
6074 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6075 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6076 if (breg != 0)
6077 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6078 tempreg, tempreg, breg);
6079 macro_build (&offset_expr, s, fmt, treg,
6080 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6081 break;
6082 }
6083 expr1.X_add_number = offset_expr.X_add_number;
6084 offset_expr.X_add_number = 0;
6085 if (expr1.X_add_number < -0x8000
6086 || expr1.X_add_number >= 0x8000)
6087 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6088 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6089 lw_reloc_type, mips_gp_register);
6090 load_delay_nop ();
6091 relax_start (offset_expr.X_add_symbol);
6092 relax_switch ();
6093 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6094 tempreg, BFD_RELOC_LO16);
6095 relax_end ();
6096 if (breg != 0)
6097 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6098 tempreg, tempreg, breg);
6099 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6100 }
6101 else if (mips_big_got && !HAVE_NEWABI)
6102 {
6103 int gpdelay;
6104
6105 /* If this is a reference to an external symbol, we want
6106 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6107 addu $tempreg,$tempreg,$gp
6108 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6109 <op> $treg,0($tempreg)
6110 Otherwise we want
6111 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6112 nop
6113 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6114 <op> $treg,0($tempreg)
6115 If there is a base register, we add it to $tempreg before
6116 the <op>. If there is a constant, we stick it in the
6117 <op> instruction. We don't handle constants larger than
6118 16 bits, because we have no way to load the upper 16 bits
6119 (actually, we could handle them for the subset of cases
6120 in which we are not using $at). */
6121 assert (offset_expr.X_op == O_symbol);
6122 expr1.X_add_number = offset_expr.X_add_number;
6123 offset_expr.X_add_number = 0;
6124 if (expr1.X_add_number < -0x8000
6125 || expr1.X_add_number >= 0x8000)
6126 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6127 gpdelay = reg_needs_delay (mips_gp_register);
6128 relax_start (offset_expr.X_add_symbol);
6129 macro_build (&offset_expr, "lui", "t,u", tempreg,
6130 BFD_RELOC_MIPS_GOT_HI16);
6131 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6132 mips_gp_register);
6133 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6134 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6135 relax_switch ();
6136 if (gpdelay)
6137 macro_build (NULL, "nop", "");
6138 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6139 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6140 load_delay_nop ();
6141 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6142 tempreg, BFD_RELOC_LO16);
6143 relax_end ();
6144
6145 if (breg != 0)
6146 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6147 tempreg, tempreg, breg);
6148 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6149 }
6150 else if (mips_big_got && HAVE_NEWABI)
6151 {
6152 /* If this is a reference to an external symbol, we want
6153 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6154 add $tempreg,$tempreg,$gp
6155 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6156 <op> $treg,<ofst>($tempreg)
6157 Otherwise, for local symbols, we want:
6158 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6159 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6160 assert (offset_expr.X_op == O_symbol);
6161 expr1.X_add_number = offset_expr.X_add_number;
6162 offset_expr.X_add_number = 0;
6163 if (expr1.X_add_number < -0x8000
6164 || expr1.X_add_number >= 0x8000)
6165 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6166 relax_start (offset_expr.X_add_symbol);
6167 macro_build (&offset_expr, "lui", "t,u", tempreg,
6168 BFD_RELOC_MIPS_GOT_HI16);
6169 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6170 mips_gp_register);
6171 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6172 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6173 if (breg != 0)
6174 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6175 tempreg, tempreg, breg);
6176 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6177
6178 relax_switch ();
6179 offset_expr.X_add_number = expr1.X_add_number;
6180 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6181 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6182 if (breg != 0)
6183 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6184 tempreg, tempreg, breg);
6185 macro_build (&offset_expr, s, fmt, treg,
6186 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6187 relax_end ();
6188 }
6189 else
6190 abort ();
6191
6192 break;
6193
6194 case M_LI:
6195 case M_LI_S:
6196 load_register (treg, &imm_expr, 0);
6197 break;
6198
6199 case M_DLI:
6200 load_register (treg, &imm_expr, 1);
6201 break;
6202
6203 case M_LI_SS:
6204 if (imm_expr.X_op == O_constant)
6205 {
6206 used_at = 1;
6207 load_register (AT, &imm_expr, 0);
6208 macro_build (NULL, "mtc1", "t,G", AT, treg);
6209 break;
6210 }
6211 else
6212 {
6213 assert (offset_expr.X_op == O_symbol
6214 && strcmp (segment_name (S_GET_SEGMENT
6215 (offset_expr.X_add_symbol)),
6216 ".lit4") == 0
6217 && offset_expr.X_add_number == 0);
6218 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6219 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6220 break;
6221 }
6222
6223 case M_LI_D:
6224 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6225 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6226 order 32 bits of the value and the low order 32 bits are either
6227 zero or in OFFSET_EXPR. */
6228 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6229 {
6230 if (HAVE_64BIT_GPRS)
6231 load_register (treg, &imm_expr, 1);
6232 else
6233 {
6234 int hreg, lreg;
6235
6236 if (target_big_endian)
6237 {
6238 hreg = treg;
6239 lreg = treg + 1;
6240 }
6241 else
6242 {
6243 hreg = treg + 1;
6244 lreg = treg;
6245 }
6246
6247 if (hreg <= 31)
6248 load_register (hreg, &imm_expr, 0);
6249 if (lreg <= 31)
6250 {
6251 if (offset_expr.X_op == O_absent)
6252 move_register (lreg, 0);
6253 else
6254 {
6255 assert (offset_expr.X_op == O_constant);
6256 load_register (lreg, &offset_expr, 0);
6257 }
6258 }
6259 }
6260 break;
6261 }
6262
6263 /* We know that sym is in the .rdata section. First we get the
6264 upper 16 bits of the address. */
6265 if (mips_pic == NO_PIC)
6266 {
6267 macro_build_lui (&offset_expr, AT);
6268 used_at = 1;
6269 }
6270 else
6271 {
6272 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6273 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6274 used_at = 1;
6275 }
6276
6277 /* Now we load the register(s). */
6278 if (HAVE_64BIT_GPRS)
6279 {
6280 used_at = 1;
6281 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6282 }
6283 else
6284 {
6285 used_at = 1;
6286 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6287 if (treg != RA)
6288 {
6289 /* FIXME: How in the world do we deal with the possible
6290 overflow here? */
6291 offset_expr.X_add_number += 4;
6292 macro_build (&offset_expr, "lw", "t,o(b)",
6293 treg + 1, BFD_RELOC_LO16, AT);
6294 }
6295 }
6296 break;
6297
6298 case M_LI_DD:
6299 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6300 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6301 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6302 the value and the low order 32 bits are either zero or in
6303 OFFSET_EXPR. */
6304 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6305 {
6306 used_at = 1;
6307 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6308 if (HAVE_64BIT_FPRS)
6309 {
6310 assert (HAVE_64BIT_GPRS);
6311 macro_build (NULL, "dmtc1", "t,S", AT, treg);
6312 }
6313 else
6314 {
6315 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
6316 if (offset_expr.X_op == O_absent)
6317 macro_build (NULL, "mtc1", "t,G", 0, treg);
6318 else
6319 {
6320 assert (offset_expr.X_op == O_constant);
6321 load_register (AT, &offset_expr, 0);
6322 macro_build (NULL, "mtc1", "t,G", AT, treg);
6323 }
6324 }
6325 break;
6326 }
6327
6328 assert (offset_expr.X_op == O_symbol
6329 && offset_expr.X_add_number == 0);
6330 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
6331 if (strcmp (s, ".lit8") == 0)
6332 {
6333 if (mips_opts.isa != ISA_MIPS1)
6334 {
6335 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
6336 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6337 break;
6338 }
6339 breg = mips_gp_register;
6340 r = BFD_RELOC_MIPS_LITERAL;
6341 goto dob;
6342 }
6343 else
6344 {
6345 assert (strcmp (s, RDATA_SECTION_NAME) == 0);
6346 used_at = 1;
6347 if (mips_pic != NO_PIC)
6348 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6349 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6350 else
6351 {
6352 /* FIXME: This won't work for a 64 bit address. */
6353 macro_build_lui (&offset_expr, AT);
6354 }
6355
6356 if (mips_opts.isa != ISA_MIPS1)
6357 {
6358 macro_build (&offset_expr, "ldc1", "T,o(b)",
6359 treg, BFD_RELOC_LO16, AT);
6360 break;
6361 }
6362 breg = AT;
6363 r = BFD_RELOC_LO16;
6364 goto dob;
6365 }
6366
6367 case M_L_DOB:
6368 if (mips_opts.arch == CPU_R4650)
6369 {
6370 as_bad (_("opcode not supported on this processor"));
6371 break;
6372 }
6373 /* Even on a big endian machine $fn comes before $fn+1. We have
6374 to adjust when loading from memory. */
6375 r = BFD_RELOC_LO16;
6376 dob:
6377 assert (mips_opts.isa == ISA_MIPS1);
6378 macro_build (&offset_expr, "lwc1", "T,o(b)",
6379 target_big_endian ? treg + 1 : treg, r, breg);
6380 /* FIXME: A possible overflow which I don't know how to deal
6381 with. */
6382 offset_expr.X_add_number += 4;
6383 macro_build (&offset_expr, "lwc1", "T,o(b)",
6384 target_big_endian ? treg : treg + 1, r, breg);
6385 break;
6386
6387 case M_L_DAB:
6388 /*
6389 * The MIPS assembler seems to check for X_add_number not
6390 * being double aligned and generating:
6391 * lui at,%hi(foo+1)
6392 * addu at,at,v1
6393 * addiu at,at,%lo(foo+1)
6394 * lwc1 f2,0(at)
6395 * lwc1 f3,4(at)
6396 * But, the resulting address is the same after relocation so why
6397 * generate the extra instruction?
6398 */
6399 if (mips_opts.arch == CPU_R4650)
6400 {
6401 as_bad (_("opcode not supported on this processor"));
6402 break;
6403 }
6404 /* Itbl support may require additional care here. */
6405 coproc = 1;
6406 if (mips_opts.isa != ISA_MIPS1)
6407 {
6408 s = "ldc1";
6409 goto ld;
6410 }
6411
6412 s = "lwc1";
6413 fmt = "T,o(b)";
6414 goto ldd_std;
6415
6416 case M_S_DAB:
6417 if (mips_opts.arch == CPU_R4650)
6418 {
6419 as_bad (_("opcode not supported on this processor"));
6420 break;
6421 }
6422
6423 if (mips_opts.isa != ISA_MIPS1)
6424 {
6425 s = "sdc1";
6426 goto st;
6427 }
6428
6429 s = "swc1";
6430 fmt = "T,o(b)";
6431 /* Itbl support may require additional care here. */
6432 coproc = 1;
6433 goto ldd_std;
6434
6435 case M_LD_AB:
6436 if (HAVE_64BIT_GPRS)
6437 {
6438 s = "ld";
6439 goto ld;
6440 }
6441
6442 s = "lw";
6443 fmt = "t,o(b)";
6444 goto ldd_std;
6445
6446 case M_SD_AB:
6447 if (HAVE_64BIT_GPRS)
6448 {
6449 s = "sd";
6450 goto st;
6451 }
6452
6453 s = "sw";
6454 fmt = "t,o(b)";
6455
6456 ldd_std:
6457 if (offset_expr.X_op != O_symbol
6458 && offset_expr.X_op != O_constant)
6459 {
6460 as_bad (_("expression too complex"));
6461 offset_expr.X_op = O_constant;
6462 }
6463
6464 if (HAVE_32BIT_ADDRESSES
6465 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6466 {
6467 char value [32];
6468
6469 sprintf_vma (value, offset_expr.X_add_number);
6470 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6471 }
6472
6473 /* Even on a big endian machine $fn comes before $fn+1. We have
6474 to adjust when loading from memory. We set coproc if we must
6475 load $fn+1 first. */
6476 /* Itbl support may require additional care here. */
6477 if (! target_big_endian)
6478 coproc = 0;
6479
6480 if (mips_pic == NO_PIC
6481 || offset_expr.X_op == O_constant)
6482 {
6483 /* If this is a reference to a GP relative symbol, we want
6484 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6485 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
6486 If we have a base register, we use this
6487 addu $at,$breg,$gp
6488 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
6489 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
6490 If this is not a GP relative symbol, we want
6491 lui $at,<sym> (BFD_RELOC_HI16_S)
6492 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6493 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6494 If there is a base register, we add it to $at after the
6495 lui instruction. If there is a constant, we always use
6496 the last case. */
6497 if (offset_expr.X_op == O_symbol
6498 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6499 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6500 {
6501 relax_start (offset_expr.X_add_symbol);
6502 if (breg == 0)
6503 {
6504 tempreg = mips_gp_register;
6505 }
6506 else
6507 {
6508 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6509 AT, breg, mips_gp_register);
6510 tempreg = AT;
6511 used_at = 1;
6512 }
6513
6514 /* Itbl support may require additional care here. */
6515 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6516 BFD_RELOC_GPREL16, tempreg);
6517 offset_expr.X_add_number += 4;
6518
6519 /* Set mips_optimize to 2 to avoid inserting an
6520 undesired nop. */
6521 hold_mips_optimize = mips_optimize;
6522 mips_optimize = 2;
6523 /* Itbl support may require additional care here. */
6524 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6525 BFD_RELOC_GPREL16, tempreg);
6526 mips_optimize = hold_mips_optimize;
6527
6528 relax_switch ();
6529
6530 /* We just generated two relocs. When tc_gen_reloc
6531 handles this case, it will skip the first reloc and
6532 handle the second. The second reloc already has an
6533 extra addend of 4, which we added above. We must
6534 subtract it out, and then subtract another 4 to make
6535 the first reloc come out right. The second reloc
6536 will come out right because we are going to add 4 to
6537 offset_expr when we build its instruction below.
6538
6539 If we have a symbol, then we don't want to include
6540 the offset, because it will wind up being included
6541 when we generate the reloc. */
6542
6543 if (offset_expr.X_op == O_constant)
6544 offset_expr.X_add_number -= 8;
6545 else
6546 {
6547 offset_expr.X_add_number = -4;
6548 offset_expr.X_op = O_constant;
6549 }
6550 }
6551 used_at = 1;
6552 macro_build_lui (&offset_expr, AT);
6553 if (breg != 0)
6554 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6555 /* Itbl support may require additional care here. */
6556 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6557 BFD_RELOC_LO16, AT);
6558 /* FIXME: How do we handle overflow here? */
6559 offset_expr.X_add_number += 4;
6560 /* Itbl support may require additional care here. */
6561 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6562 BFD_RELOC_LO16, AT);
6563 if (mips_relax.sequence)
6564 relax_end ();
6565 }
6566 else if (!mips_big_got)
6567 {
6568 /* If this is a reference to an external symbol, we want
6569 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6570 nop
6571 <op> $treg,0($at)
6572 <op> $treg+1,4($at)
6573 Otherwise we want
6574 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6575 nop
6576 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6577 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6578 If there is a base register we add it to $at before the
6579 lwc1 instructions. If there is a constant we include it
6580 in the lwc1 instructions. */
6581 used_at = 1;
6582 expr1.X_add_number = offset_expr.X_add_number;
6583 if (expr1.X_add_number < -0x8000
6584 || expr1.X_add_number >= 0x8000 - 4)
6585 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6586 load_got_offset (AT, &offset_expr);
6587 load_delay_nop ();
6588 if (breg != 0)
6589 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6590
6591 /* Set mips_optimize to 2 to avoid inserting an undesired
6592 nop. */
6593 hold_mips_optimize = mips_optimize;
6594 mips_optimize = 2;
6595
6596 /* Itbl support may require additional care here. */
6597 relax_start (offset_expr.X_add_symbol);
6598 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
6599 BFD_RELOC_LO16, AT);
6600 expr1.X_add_number += 4;
6601 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
6602 BFD_RELOC_LO16, AT);
6603 relax_switch ();
6604 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6605 BFD_RELOC_LO16, AT);
6606 offset_expr.X_add_number += 4;
6607 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6608 BFD_RELOC_LO16, AT);
6609 relax_end ();
6610
6611 mips_optimize = hold_mips_optimize;
6612 }
6613 else if (mips_big_got)
6614 {
6615 int gpdelay;
6616
6617 /* If this is a reference to an external symbol, we want
6618 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6619 addu $at,$at,$gp
6620 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
6621 nop
6622 <op> $treg,0($at)
6623 <op> $treg+1,4($at)
6624 Otherwise we want
6625 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6626 nop
6627 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
6628 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
6629 If there is a base register we add it to $at before the
6630 lwc1 instructions. If there is a constant we include it
6631 in the lwc1 instructions. */
6632 used_at = 1;
6633 expr1.X_add_number = offset_expr.X_add_number;
6634 offset_expr.X_add_number = 0;
6635 if (expr1.X_add_number < -0x8000
6636 || expr1.X_add_number >= 0x8000 - 4)
6637 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6638 gpdelay = reg_needs_delay (mips_gp_register);
6639 relax_start (offset_expr.X_add_symbol);
6640 macro_build (&offset_expr, "lui", "t,u",
6641 AT, BFD_RELOC_MIPS_GOT_HI16);
6642 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6643 AT, AT, mips_gp_register);
6644 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6645 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
6646 load_delay_nop ();
6647 if (breg != 0)
6648 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6649 /* Itbl support may require additional care here. */
6650 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
6651 BFD_RELOC_LO16, AT);
6652 expr1.X_add_number += 4;
6653
6654 /* Set mips_optimize to 2 to avoid inserting an undesired
6655 nop. */
6656 hold_mips_optimize = mips_optimize;
6657 mips_optimize = 2;
6658 /* Itbl support may require additional care here. */
6659 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
6660 BFD_RELOC_LO16, AT);
6661 mips_optimize = hold_mips_optimize;
6662 expr1.X_add_number -= 4;
6663
6664 relax_switch ();
6665 offset_expr.X_add_number = expr1.X_add_number;
6666 if (gpdelay)
6667 macro_build (NULL, "nop", "");
6668 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6669 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6670 load_delay_nop ();
6671 if (breg != 0)
6672 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
6673 /* Itbl support may require additional care here. */
6674 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
6675 BFD_RELOC_LO16, AT);
6676 offset_expr.X_add_number += 4;
6677
6678 /* Set mips_optimize to 2 to avoid inserting an undesired
6679 nop. */
6680 hold_mips_optimize = mips_optimize;
6681 mips_optimize = 2;
6682 /* Itbl support may require additional care here. */
6683 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
6684 BFD_RELOC_LO16, AT);
6685 mips_optimize = hold_mips_optimize;
6686 relax_end ();
6687 }
6688 else
6689 abort ();
6690
6691 break;
6692
6693 case M_LD_OB:
6694 s = "lw";
6695 goto sd_ob;
6696 case M_SD_OB:
6697 s = "sw";
6698 sd_ob:
6699 assert (HAVE_32BIT_ADDRESSES);
6700 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
6701 offset_expr.X_add_number += 4;
6702 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
6703 break;
6704
6705 /* New code added to support COPZ instructions.
6706 This code builds table entries out of the macros in mip_opcodes.
6707 R4000 uses interlocks to handle coproc delays.
6708 Other chips (like the R3000) require nops to be inserted for delays.
6709
6710 FIXME: Currently, we require that the user handle delays.
6711 In order to fill delay slots for non-interlocked chips,
6712 we must have a way to specify delays based on the coprocessor.
6713 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
6714 What are the side-effects of the cop instruction?
6715 What cache support might we have and what are its effects?
6716 Both coprocessor & memory require delays. how long???
6717 What registers are read/set/modified?
6718
6719 If an itbl is provided to interpret cop instructions,
6720 this knowledge can be encoded in the itbl spec. */
6721
6722 case M_COP0:
6723 s = "c0";
6724 goto copz;
6725 case M_COP1:
6726 s = "c1";
6727 goto copz;
6728 case M_COP2:
6729 s = "c2";
6730 goto copz;
6731 case M_COP3:
6732 s = "c3";
6733 copz:
6734 /* For now we just do C (same as Cz). The parameter will be
6735 stored in insn_opcode by mips_ip. */
6736 macro_build (NULL, s, "C", ip->insn_opcode);
6737 break;
6738
6739 case M_MOVE:
6740 move_register (dreg, sreg);
6741 break;
6742
6743 #ifdef LOSING_COMPILER
6744 default:
6745 /* Try and see if this is a new itbl instruction.
6746 This code builds table entries out of the macros in mip_opcodes.
6747 FIXME: For now we just assemble the expression and pass it's
6748 value along as a 32-bit immediate.
6749 We may want to have the assembler assemble this value,
6750 so that we gain the assembler's knowledge of delay slots,
6751 symbols, etc.
6752 Would it be more efficient to use mask (id) here? */
6753 if (itbl_have_entries
6754 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
6755 {
6756 s = ip->insn_mo->name;
6757 s2 = "cop3";
6758 coproc = ITBL_DECODE_PNUM (immed_expr);;
6759 macro_build (&immed_expr, s, "C");
6760 break;
6761 }
6762 macro2 (ip);
6763 break;
6764 }
6765 if (mips_opts.noat && used_at)
6766 as_bad (_("Macro used $at after \".set noat\""));
6767 }
6768
6769 static void
6770 macro2 (struct mips_cl_insn *ip)
6771 {
6772 register int treg, sreg, dreg, breg;
6773 int tempreg;
6774 int mask;
6775 int used_at;
6776 expressionS expr1;
6777 const char *s;
6778 const char *s2;
6779 const char *fmt;
6780 int likely = 0;
6781 int dbl = 0;
6782 int coproc = 0;
6783 int lr = 0;
6784 int imm = 0;
6785 int off;
6786 offsetT maxnum;
6787 bfd_reloc_code_real_type r;
6788
6789 treg = (ip->insn_opcode >> 16) & 0x1f;
6790 dreg = (ip->insn_opcode >> 11) & 0x1f;
6791 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
6792 mask = ip->insn_mo->mask;
6793
6794 expr1.X_op = O_constant;
6795 expr1.X_op_symbol = NULL;
6796 expr1.X_add_symbol = NULL;
6797 expr1.X_add_number = 1;
6798
6799 switch (mask)
6800 {
6801 #endif /* LOSING_COMPILER */
6802
6803 case M_DMUL:
6804 dbl = 1;
6805 case M_MUL:
6806 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
6807 macro_build (NULL, "mflo", "d", dreg);
6808 break;
6809
6810 case M_DMUL_I:
6811 dbl = 1;
6812 case M_MUL_I:
6813 /* The MIPS assembler some times generates shifts and adds. I'm
6814 not trying to be that fancy. GCC should do this for us
6815 anyway. */
6816 used_at = 1;
6817 load_register (AT, &imm_expr, dbl);
6818 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
6819 macro_build (NULL, "mflo", "d", dreg);
6820 break;
6821
6822 case M_DMULO_I:
6823 dbl = 1;
6824 case M_MULO_I:
6825 imm = 1;
6826 goto do_mulo;
6827
6828 case M_DMULO:
6829 dbl = 1;
6830 case M_MULO:
6831 do_mulo:
6832 start_noreorder ();
6833 used_at = 1;
6834 if (imm)
6835 load_register (AT, &imm_expr, dbl);
6836 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
6837 macro_build (NULL, "mflo", "d", dreg);
6838 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
6839 macro_build (NULL, "mfhi", "d", AT);
6840 if (mips_trap)
6841 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
6842 else
6843 {
6844 expr1.X_add_number = 8;
6845 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
6846 macro_build (NULL, "nop", "", 0);
6847 macro_build (NULL, "break", "c", 6);
6848 }
6849 end_noreorder ();
6850 macro_build (NULL, "mflo", "d", dreg);
6851 break;
6852
6853 case M_DMULOU_I:
6854 dbl = 1;
6855 case M_MULOU_I:
6856 imm = 1;
6857 goto do_mulou;
6858
6859 case M_DMULOU:
6860 dbl = 1;
6861 case M_MULOU:
6862 do_mulou:
6863 start_noreorder ();
6864 used_at = 1;
6865 if (imm)
6866 load_register (AT, &imm_expr, dbl);
6867 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
6868 sreg, imm ? AT : treg);
6869 macro_build (NULL, "mfhi", "d", AT);
6870 macro_build (NULL, "mflo", "d", dreg);
6871 if (mips_trap)
6872 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
6873 else
6874 {
6875 expr1.X_add_number = 8;
6876 macro_build (&expr1, "beq", "s,t,p", AT, 0);
6877 macro_build (NULL, "nop", "", 0);
6878 macro_build (NULL, "break", "c", 6);
6879 }
6880 end_noreorder ();
6881 break;
6882
6883 case M_DROL:
6884 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
6885 {
6886 if (dreg == sreg)
6887 {
6888 tempreg = AT;
6889 used_at = 1;
6890 }
6891 else
6892 {
6893 tempreg = dreg;
6894 }
6895 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
6896 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
6897 break;
6898 }
6899 used_at = 1;
6900 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
6901 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
6902 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
6903 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6904 break;
6905
6906 case M_ROL:
6907 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
6908 {
6909 if (dreg == sreg)
6910 {
6911 tempreg = AT;
6912 used_at = 1;
6913 }
6914 else
6915 {
6916 tempreg = dreg;
6917 }
6918 macro_build (NULL, "negu", "d,w", tempreg, treg);
6919 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
6920 break;
6921 }
6922 used_at = 1;
6923 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
6924 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
6925 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
6926 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6927 break;
6928
6929 case M_DROL_I:
6930 {
6931 unsigned int rot;
6932 char *l, *r;
6933
6934 if (imm_expr.X_op != O_constant)
6935 as_bad (_("Improper rotate count"));
6936 rot = imm_expr.X_add_number & 0x3f;
6937 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
6938 {
6939 rot = (64 - rot) & 0x3f;
6940 if (rot >= 32)
6941 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
6942 else
6943 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
6944 break;
6945 }
6946 if (rot == 0)
6947 {
6948 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
6949 break;
6950 }
6951 l = (rot < 0x20) ? "dsll" : "dsll32";
6952 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
6953 rot &= 0x1f;
6954 used_at = 1;
6955 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
6956 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
6957 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6958 }
6959 break;
6960
6961 case M_ROL_I:
6962 {
6963 unsigned int rot;
6964
6965 if (imm_expr.X_op != O_constant)
6966 as_bad (_("Improper rotate count"));
6967 rot = imm_expr.X_add_number & 0x1f;
6968 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
6969 {
6970 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
6971 break;
6972 }
6973 if (rot == 0)
6974 {
6975 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
6976 break;
6977 }
6978 used_at = 1;
6979 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
6980 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
6981 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6982 }
6983 break;
6984
6985 case M_DROR:
6986 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
6987 {
6988 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
6989 break;
6990 }
6991 used_at = 1;
6992 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
6993 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
6994 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
6995 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
6996 break;
6997
6998 case M_ROR:
6999 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7000 {
7001 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7002 break;
7003 }
7004 used_at = 1;
7005 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7006 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7007 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7008 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7009 break;
7010
7011 case M_DROR_I:
7012 {
7013 unsigned int rot;
7014 char *l, *r;
7015
7016 if (imm_expr.X_op != O_constant)
7017 as_bad (_("Improper rotate count"));
7018 rot = imm_expr.X_add_number & 0x3f;
7019 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7020 {
7021 if (rot >= 32)
7022 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7023 else
7024 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7025 break;
7026 }
7027 if (rot == 0)
7028 {
7029 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7030 break;
7031 }
7032 r = (rot < 0x20) ? "dsrl" : "dsrl32";
7033 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7034 rot &= 0x1f;
7035 used_at = 1;
7036 macro_build (NULL, r, "d,w,<", AT, sreg, rot);
7037 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7038 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7039 }
7040 break;
7041
7042 case M_ROR_I:
7043 {
7044 unsigned int rot;
7045
7046 if (imm_expr.X_op != O_constant)
7047 as_bad (_("Improper rotate count"));
7048 rot = imm_expr.X_add_number & 0x1f;
7049 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7050 {
7051 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7052 break;
7053 }
7054 if (rot == 0)
7055 {
7056 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7057 break;
7058 }
7059 used_at = 1;
7060 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7061 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7062 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7063 }
7064 break;
7065
7066 case M_S_DOB:
7067 if (mips_opts.arch == CPU_R4650)
7068 {
7069 as_bad (_("opcode not supported on this processor"));
7070 break;
7071 }
7072 assert (mips_opts.isa == ISA_MIPS1);
7073 /* Even on a big endian machine $fn comes before $fn+1. We have
7074 to adjust when storing to memory. */
7075 macro_build (&offset_expr, "swc1", "T,o(b)",
7076 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7077 offset_expr.X_add_number += 4;
7078 macro_build (&offset_expr, "swc1", "T,o(b)",
7079 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7080 break;
7081
7082 case M_SEQ:
7083 if (sreg == 0)
7084 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7085 else if (treg == 0)
7086 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7087 else
7088 {
7089 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7090 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7091 }
7092 break;
7093
7094 case M_SEQ_I:
7095 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7096 {
7097 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7098 break;
7099 }
7100 if (sreg == 0)
7101 {
7102 as_warn (_("Instruction %s: result is always false"),
7103 ip->insn_mo->name);
7104 move_register (dreg, 0);
7105 break;
7106 }
7107 if (imm_expr.X_op == O_constant
7108 && imm_expr.X_add_number >= 0
7109 && imm_expr.X_add_number < 0x10000)
7110 {
7111 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7112 }
7113 else if (imm_expr.X_op == O_constant
7114 && imm_expr.X_add_number > -0x8000
7115 && imm_expr.X_add_number < 0)
7116 {
7117 imm_expr.X_add_number = -imm_expr.X_add_number;
7118 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7119 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7120 }
7121 else
7122 {
7123 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7124 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7125 used_at = 1;
7126 }
7127 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7128 break;
7129
7130 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7131 s = "slt";
7132 goto sge;
7133 case M_SGEU:
7134 s = "sltu";
7135 sge:
7136 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7137 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7138 break;
7139
7140 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7141 case M_SGEU_I:
7142 if (imm_expr.X_op == O_constant
7143 && imm_expr.X_add_number >= -0x8000
7144 && imm_expr.X_add_number < 0x8000)
7145 {
7146 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7147 dreg, sreg, BFD_RELOC_LO16);
7148 }
7149 else
7150 {
7151 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7152 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7153 dreg, sreg, AT);
7154 used_at = 1;
7155 }
7156 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7157 break;
7158
7159 case M_SGT: /* sreg > treg <==> treg < sreg */
7160 s = "slt";
7161 goto sgt;
7162 case M_SGTU:
7163 s = "sltu";
7164 sgt:
7165 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7166 break;
7167
7168 case M_SGT_I: /* sreg > I <==> I < sreg */
7169 s = "slt";
7170 goto sgti;
7171 case M_SGTU_I:
7172 s = "sltu";
7173 sgti:
7174 used_at = 1;
7175 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7176 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7177 break;
7178
7179 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7180 s = "slt";
7181 goto sle;
7182 case M_SLEU:
7183 s = "sltu";
7184 sle:
7185 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7186 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7187 break;
7188
7189 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7190 s = "slt";
7191 goto slei;
7192 case M_SLEU_I:
7193 s = "sltu";
7194 slei:
7195 used_at = 1;
7196 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7197 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7198 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7199 break;
7200
7201 case M_SLT_I:
7202 if (imm_expr.X_op == O_constant
7203 && imm_expr.X_add_number >= -0x8000
7204 && imm_expr.X_add_number < 0x8000)
7205 {
7206 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7207 break;
7208 }
7209 used_at = 1;
7210 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7211 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7212 break;
7213
7214 case M_SLTU_I:
7215 if (imm_expr.X_op == O_constant
7216 && imm_expr.X_add_number >= -0x8000
7217 && imm_expr.X_add_number < 0x8000)
7218 {
7219 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7220 BFD_RELOC_LO16);
7221 break;
7222 }
7223 used_at = 1;
7224 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7225 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7226 break;
7227
7228 case M_SNE:
7229 if (sreg == 0)
7230 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7231 else if (treg == 0)
7232 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7233 else
7234 {
7235 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7236 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7237 }
7238 break;
7239
7240 case M_SNE_I:
7241 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7242 {
7243 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7244 break;
7245 }
7246 if (sreg == 0)
7247 {
7248 as_warn (_("Instruction %s: result is always true"),
7249 ip->insn_mo->name);
7250 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7251 dreg, 0, BFD_RELOC_LO16);
7252 break;
7253 }
7254 if (imm_expr.X_op == O_constant
7255 && imm_expr.X_add_number >= 0
7256 && imm_expr.X_add_number < 0x10000)
7257 {
7258 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7259 }
7260 else if (imm_expr.X_op == O_constant
7261 && imm_expr.X_add_number > -0x8000
7262 && imm_expr.X_add_number < 0)
7263 {
7264 imm_expr.X_add_number = -imm_expr.X_add_number;
7265 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7266 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7267 }
7268 else
7269 {
7270 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7271 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7272 used_at = 1;
7273 }
7274 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7275 break;
7276
7277 case M_DSUB_I:
7278 dbl = 1;
7279 case M_SUB_I:
7280 if (imm_expr.X_op == O_constant
7281 && imm_expr.X_add_number > -0x8000
7282 && imm_expr.X_add_number <= 0x8000)
7283 {
7284 imm_expr.X_add_number = -imm_expr.X_add_number;
7285 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7286 dreg, sreg, BFD_RELOC_LO16);
7287 break;
7288 }
7289 used_at = 1;
7290 load_register (AT, &imm_expr, dbl);
7291 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7292 break;
7293
7294 case M_DSUBU_I:
7295 dbl = 1;
7296 case M_SUBU_I:
7297 if (imm_expr.X_op == O_constant
7298 && imm_expr.X_add_number > -0x8000
7299 && imm_expr.X_add_number <= 0x8000)
7300 {
7301 imm_expr.X_add_number = -imm_expr.X_add_number;
7302 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7303 dreg, sreg, BFD_RELOC_LO16);
7304 break;
7305 }
7306 used_at = 1;
7307 load_register (AT, &imm_expr, dbl);
7308 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7309 break;
7310
7311 case M_TEQ_I:
7312 s = "teq";
7313 goto trap;
7314 case M_TGE_I:
7315 s = "tge";
7316 goto trap;
7317 case M_TGEU_I:
7318 s = "tgeu";
7319 goto trap;
7320 case M_TLT_I:
7321 s = "tlt";
7322 goto trap;
7323 case M_TLTU_I:
7324 s = "tltu";
7325 goto trap;
7326 case M_TNE_I:
7327 s = "tne";
7328 trap:
7329 used_at = 1;
7330 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7331 macro_build (NULL, s, "s,t", sreg, AT);
7332 break;
7333
7334 case M_TRUNCWS:
7335 case M_TRUNCWD:
7336 assert (mips_opts.isa == ISA_MIPS1);
7337 used_at = 1;
7338 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7339 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7340
7341 /*
7342 * Is the double cfc1 instruction a bug in the mips assembler;
7343 * or is there a reason for it?
7344 */
7345 start_noreorder ();
7346 macro_build (NULL, "cfc1", "t,G", treg, RA);
7347 macro_build (NULL, "cfc1", "t,G", treg, RA);
7348 macro_build (NULL, "nop", "");
7349 expr1.X_add_number = 3;
7350 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7351 expr1.X_add_number = 2;
7352 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7353 macro_build (NULL, "ctc1", "t,G", AT, RA);
7354 macro_build (NULL, "nop", "");
7355 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7356 dreg, sreg);
7357 macro_build (NULL, "ctc1", "t,G", treg, RA);
7358 macro_build (NULL, "nop", "");
7359 end_noreorder ();
7360 break;
7361
7362 case M_ULH:
7363 s = "lb";
7364 goto ulh;
7365 case M_ULHU:
7366 s = "lbu";
7367 ulh:
7368 used_at = 1;
7369 if (offset_expr.X_add_number >= 0x7fff)
7370 as_bad (_("operand overflow"));
7371 if (! target_big_endian)
7372 ++offset_expr.X_add_number;
7373 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
7374 if (! target_big_endian)
7375 --offset_expr.X_add_number;
7376 else
7377 ++offset_expr.X_add_number;
7378 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7379 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
7380 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7381 break;
7382
7383 case M_ULD:
7384 s = "ldl";
7385 s2 = "ldr";
7386 off = 7;
7387 goto ulw;
7388 case M_ULW:
7389 s = "lwl";
7390 s2 = "lwr";
7391 off = 3;
7392 ulw:
7393 if (offset_expr.X_add_number >= 0x8000 - off)
7394 as_bad (_("operand overflow"));
7395 if (treg != breg)
7396 tempreg = treg;
7397 else
7398 {
7399 used_at = 1;
7400 tempreg = AT;
7401 }
7402 if (! target_big_endian)
7403 offset_expr.X_add_number += off;
7404 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7405 if (! target_big_endian)
7406 offset_expr.X_add_number -= off;
7407 else
7408 offset_expr.X_add_number += off;
7409 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
7410
7411 /* If necessary, move the result in tempreg the final destination. */
7412 if (treg == tempreg)
7413 break;
7414 /* Protect second load's delay slot. */
7415 load_delay_nop ();
7416 move_register (treg, tempreg);
7417 break;
7418
7419 case M_ULD_A:
7420 s = "ldl";
7421 s2 = "ldr";
7422 off = 7;
7423 goto ulwa;
7424 case M_ULW_A:
7425 s = "lwl";
7426 s2 = "lwr";
7427 off = 3;
7428 ulwa:
7429 used_at = 1;
7430 load_address (AT, &offset_expr, &used_at);
7431 if (breg != 0)
7432 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7433 if (! target_big_endian)
7434 expr1.X_add_number = off;
7435 else
7436 expr1.X_add_number = 0;
7437 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7438 if (! target_big_endian)
7439 expr1.X_add_number = 0;
7440 else
7441 expr1.X_add_number = off;
7442 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7443 break;
7444
7445 case M_ULH_A:
7446 case M_ULHU_A:
7447 used_at = 1;
7448 load_address (AT, &offset_expr, &used_at);
7449 if (breg != 0)
7450 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7451 if (target_big_endian)
7452 expr1.X_add_number = 0;
7453 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
7454 treg, BFD_RELOC_LO16, AT);
7455 if (target_big_endian)
7456 expr1.X_add_number = 1;
7457 else
7458 expr1.X_add_number = 0;
7459 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
7460 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
7461 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7462 break;
7463
7464 case M_USH:
7465 used_at = 1;
7466 if (offset_expr.X_add_number >= 0x7fff)
7467 as_bad (_("operand overflow"));
7468 if (target_big_endian)
7469 ++offset_expr.X_add_number;
7470 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
7471 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
7472 if (target_big_endian)
7473 --offset_expr.X_add_number;
7474 else
7475 ++offset_expr.X_add_number;
7476 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
7477 break;
7478
7479 case M_USD:
7480 s = "sdl";
7481 s2 = "sdr";
7482 off = 7;
7483 goto usw;
7484 case M_USW:
7485 s = "swl";
7486 s2 = "swr";
7487 off = 3;
7488 usw:
7489 if (offset_expr.X_add_number >= 0x8000 - off)
7490 as_bad (_("operand overflow"));
7491 if (! target_big_endian)
7492 offset_expr.X_add_number += off;
7493 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7494 if (! target_big_endian)
7495 offset_expr.X_add_number -= off;
7496 else
7497 offset_expr.X_add_number += off;
7498 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7499 break;
7500
7501 case M_USD_A:
7502 s = "sdl";
7503 s2 = "sdr";
7504 off = 7;
7505 goto uswa;
7506 case M_USW_A:
7507 s = "swl";
7508 s2 = "swr";
7509 off = 3;
7510 uswa:
7511 used_at = 1;
7512 load_address (AT, &offset_expr, &used_at);
7513 if (breg != 0)
7514 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7515 if (! target_big_endian)
7516 expr1.X_add_number = off;
7517 else
7518 expr1.X_add_number = 0;
7519 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7520 if (! target_big_endian)
7521 expr1.X_add_number = 0;
7522 else
7523 expr1.X_add_number = off;
7524 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
7525 break;
7526
7527 case M_USH_A:
7528 used_at = 1;
7529 load_address (AT, &offset_expr, &used_at);
7530 if (breg != 0)
7531 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
7532 if (! target_big_endian)
7533 expr1.X_add_number = 0;
7534 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7535 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
7536 if (! target_big_endian)
7537 expr1.X_add_number = 1;
7538 else
7539 expr1.X_add_number = 0;
7540 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
7541 if (! target_big_endian)
7542 expr1.X_add_number = 0;
7543 else
7544 expr1.X_add_number = 1;
7545 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
7546 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
7547 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
7548 break;
7549
7550 default:
7551 /* FIXME: Check if this is one of the itbl macros, since they
7552 are added dynamically. */
7553 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
7554 break;
7555 }
7556 if (mips_opts.noat && used_at)
7557 as_bad (_("Macro used $at after \".set noat\""));
7558 }
7559
7560 /* Implement macros in mips16 mode. */
7561
7562 static void
7563 mips16_macro (struct mips_cl_insn *ip)
7564 {
7565 int mask;
7566 int xreg, yreg, zreg, tmp;
7567 expressionS expr1;
7568 int dbl;
7569 const char *s, *s2, *s3;
7570
7571 mask = ip->insn_mo->mask;
7572
7573 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
7574 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
7575 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
7576
7577 expr1.X_op = O_constant;
7578 expr1.X_op_symbol = NULL;
7579 expr1.X_add_symbol = NULL;
7580 expr1.X_add_number = 1;
7581
7582 dbl = 0;
7583
7584 switch (mask)
7585 {
7586 default:
7587 internalError ();
7588
7589 case M_DDIV_3:
7590 dbl = 1;
7591 case M_DIV_3:
7592 s = "mflo";
7593 goto do_div3;
7594 case M_DREM_3:
7595 dbl = 1;
7596 case M_REM_3:
7597 s = "mfhi";
7598 do_div3:
7599 start_noreorder ();
7600 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
7601 expr1.X_add_number = 2;
7602 macro_build (&expr1, "bnez", "x,p", yreg);
7603 macro_build (NULL, "break", "6", 7);
7604
7605 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
7606 since that causes an overflow. We should do that as well,
7607 but I don't see how to do the comparisons without a temporary
7608 register. */
7609 end_noreorder ();
7610 macro_build (NULL, s, "x", zreg);
7611 break;
7612
7613 case M_DIVU_3:
7614 s = "divu";
7615 s2 = "mflo";
7616 goto do_divu3;
7617 case M_REMU_3:
7618 s = "divu";
7619 s2 = "mfhi";
7620 goto do_divu3;
7621 case M_DDIVU_3:
7622 s = "ddivu";
7623 s2 = "mflo";
7624 goto do_divu3;
7625 case M_DREMU_3:
7626 s = "ddivu";
7627 s2 = "mfhi";
7628 do_divu3:
7629 start_noreorder ();
7630 macro_build (NULL, s, "0,x,y", xreg, yreg);
7631 expr1.X_add_number = 2;
7632 macro_build (&expr1, "bnez", "x,p", yreg);
7633 macro_build (NULL, "break", "6", 7);
7634 end_noreorder ();
7635 macro_build (NULL, s2, "x", zreg);
7636 break;
7637
7638 case M_DMUL:
7639 dbl = 1;
7640 case M_MUL:
7641 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
7642 macro_build (NULL, "mflo", "x", zreg);
7643 break;
7644
7645 case M_DSUBU_I:
7646 dbl = 1;
7647 goto do_subu;
7648 case M_SUBU_I:
7649 do_subu:
7650 if (imm_expr.X_op != O_constant)
7651 as_bad (_("Unsupported large constant"));
7652 imm_expr.X_add_number = -imm_expr.X_add_number;
7653 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
7654 break;
7655
7656 case M_SUBU_I_2:
7657 if (imm_expr.X_op != O_constant)
7658 as_bad (_("Unsupported large constant"));
7659 imm_expr.X_add_number = -imm_expr.X_add_number;
7660 macro_build (&imm_expr, "addiu", "x,k", xreg);
7661 break;
7662
7663 case M_DSUBU_I_2:
7664 if (imm_expr.X_op != O_constant)
7665 as_bad (_("Unsupported large constant"));
7666 imm_expr.X_add_number = -imm_expr.X_add_number;
7667 macro_build (&imm_expr, "daddiu", "y,j", yreg);
7668 break;
7669
7670 case M_BEQ:
7671 s = "cmp";
7672 s2 = "bteqz";
7673 goto do_branch;
7674 case M_BNE:
7675 s = "cmp";
7676 s2 = "btnez";
7677 goto do_branch;
7678 case M_BLT:
7679 s = "slt";
7680 s2 = "btnez";
7681 goto do_branch;
7682 case M_BLTU:
7683 s = "sltu";
7684 s2 = "btnez";
7685 goto do_branch;
7686 case M_BLE:
7687 s = "slt";
7688 s2 = "bteqz";
7689 goto do_reverse_branch;
7690 case M_BLEU:
7691 s = "sltu";
7692 s2 = "bteqz";
7693 goto do_reverse_branch;
7694 case M_BGE:
7695 s = "slt";
7696 s2 = "bteqz";
7697 goto do_branch;
7698 case M_BGEU:
7699 s = "sltu";
7700 s2 = "bteqz";
7701 goto do_branch;
7702 case M_BGT:
7703 s = "slt";
7704 s2 = "btnez";
7705 goto do_reverse_branch;
7706 case M_BGTU:
7707 s = "sltu";
7708 s2 = "btnez";
7709
7710 do_reverse_branch:
7711 tmp = xreg;
7712 xreg = yreg;
7713 yreg = tmp;
7714
7715 do_branch:
7716 macro_build (NULL, s, "x,y", xreg, yreg);
7717 macro_build (&offset_expr, s2, "p");
7718 break;
7719
7720 case M_BEQ_I:
7721 s = "cmpi";
7722 s2 = "bteqz";
7723 s3 = "x,U";
7724 goto do_branch_i;
7725 case M_BNE_I:
7726 s = "cmpi";
7727 s2 = "btnez";
7728 s3 = "x,U";
7729 goto do_branch_i;
7730 case M_BLT_I:
7731 s = "slti";
7732 s2 = "btnez";
7733 s3 = "x,8";
7734 goto do_branch_i;
7735 case M_BLTU_I:
7736 s = "sltiu";
7737 s2 = "btnez";
7738 s3 = "x,8";
7739 goto do_branch_i;
7740 case M_BLE_I:
7741 s = "slti";
7742 s2 = "btnez";
7743 s3 = "x,8";
7744 goto do_addone_branch_i;
7745 case M_BLEU_I:
7746 s = "sltiu";
7747 s2 = "btnez";
7748 s3 = "x,8";
7749 goto do_addone_branch_i;
7750 case M_BGE_I:
7751 s = "slti";
7752 s2 = "bteqz";
7753 s3 = "x,8";
7754 goto do_branch_i;
7755 case M_BGEU_I:
7756 s = "sltiu";
7757 s2 = "bteqz";
7758 s3 = "x,8";
7759 goto do_branch_i;
7760 case M_BGT_I:
7761 s = "slti";
7762 s2 = "bteqz";
7763 s3 = "x,8";
7764 goto do_addone_branch_i;
7765 case M_BGTU_I:
7766 s = "sltiu";
7767 s2 = "bteqz";
7768 s3 = "x,8";
7769
7770 do_addone_branch_i:
7771 if (imm_expr.X_op != O_constant)
7772 as_bad (_("Unsupported large constant"));
7773 ++imm_expr.X_add_number;
7774
7775 do_branch_i:
7776 macro_build (&imm_expr, s, s3, xreg);
7777 macro_build (&offset_expr, s2, "p");
7778 break;
7779
7780 case M_ABS:
7781 expr1.X_add_number = 0;
7782 macro_build (&expr1, "slti", "x,8", yreg);
7783 if (xreg != yreg)
7784 move_register (xreg, yreg);
7785 expr1.X_add_number = 2;
7786 macro_build (&expr1, "bteqz", "p");
7787 macro_build (NULL, "neg", "x,w", xreg, xreg);
7788 }
7789 }
7790
7791 /* For consistency checking, verify that all bits are specified either
7792 by the match/mask part of the instruction definition, or by the
7793 operand list. */
7794 static int
7795 validate_mips_insn (const struct mips_opcode *opc)
7796 {
7797 const char *p = opc->args;
7798 char c;
7799 unsigned long used_bits = opc->mask;
7800
7801 if ((used_bits & opc->match) != opc->match)
7802 {
7803 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
7804 opc->name, opc->args);
7805 return 0;
7806 }
7807 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
7808 while (*p)
7809 switch (c = *p++)
7810 {
7811 case ',': break;
7812 case '(': break;
7813 case ')': break;
7814 case '+':
7815 switch (c = *p++)
7816 {
7817 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7818 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
7819 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7820 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
7821 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7822 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7823 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
7824 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7825 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
7826 case 'I': break;
7827 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7828 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
7829 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7830 default:
7831 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
7832 c, opc->name, opc->args);
7833 return 0;
7834 }
7835 break;
7836 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7837 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
7838 case 'A': break;
7839 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
7840 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
7841 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
7842 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7843 case 'F': break;
7844 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7845 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
7846 case 'I': break;
7847 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
7848 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7849 case 'L': break;
7850 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
7851 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
7852 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
7853 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
7854 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7855 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
7856 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7857 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7858 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7859 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7860 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
7861 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
7862 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
7863 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
7864 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7865 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
7866 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7867 case 'f': break;
7868 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
7869 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
7870 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7871 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
7872 case 'l': break;
7873 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7874 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
7875 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
7876 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7877 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7878 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7879 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
7880 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7881 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7882 case 'x': break;
7883 case 'z': break;
7884 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
7885 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
7886 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
7887 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
7888 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
7889 case '[': break;
7890 case ']': break;
7891 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
7892 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
7893 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
7894 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
7895 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
7896 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
7897 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
7898 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
7899 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
7900 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
7901 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
7902 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
7903 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
7904 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
7905 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
7906 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
7907 default:
7908 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
7909 c, opc->name, opc->args);
7910 return 0;
7911 }
7912 #undef USE_BITS
7913 if (used_bits != 0xffffffff)
7914 {
7915 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
7916 ~used_bits & 0xffffffff, opc->name, opc->args);
7917 return 0;
7918 }
7919 return 1;
7920 }
7921
7922 /* This routine assembles an instruction into its binary format. As a
7923 side effect, it sets one of the global variables imm_reloc or
7924 offset_reloc to the type of relocation to do if one of the operands
7925 is an address expression. */
7926
7927 static void
7928 mips_ip (char *str, struct mips_cl_insn *ip)
7929 {
7930 char *s;
7931 const char *args;
7932 char c = 0;
7933 struct mips_opcode *insn;
7934 char *argsStart;
7935 unsigned int regno;
7936 unsigned int lastregno = 0;
7937 unsigned int lastpos = 0;
7938 unsigned int limlo, limhi;
7939 char *s_reset;
7940 char save_c = 0;
7941 offsetT min_range, max_range;
7942
7943 insn_error = NULL;
7944
7945 /* If the instruction contains a '.', we first try to match an instruction
7946 including the '.'. Then we try again without the '.'. */
7947 insn = NULL;
7948 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
7949 continue;
7950
7951 /* If we stopped on whitespace, then replace the whitespace with null for
7952 the call to hash_find. Save the character we replaced just in case we
7953 have to re-parse the instruction. */
7954 if (ISSPACE (*s))
7955 {
7956 save_c = *s;
7957 *s++ = '\0';
7958 }
7959
7960 insn = (struct mips_opcode *) hash_find (op_hash, str);
7961
7962 /* If we didn't find the instruction in the opcode table, try again, but
7963 this time with just the instruction up to, but not including the
7964 first '.'. */
7965 if (insn == NULL)
7966 {
7967 /* Restore the character we overwrite above (if any). */
7968 if (save_c)
7969 *(--s) = save_c;
7970
7971 /* Scan up to the first '.' or whitespace. */
7972 for (s = str;
7973 *s != '\0' && *s != '.' && !ISSPACE (*s);
7974 ++s)
7975 continue;
7976
7977 /* If we did not find a '.', then we can quit now. */
7978 if (*s != '.')
7979 {
7980 insn_error = "unrecognized opcode";
7981 return;
7982 }
7983
7984 /* Lookup the instruction in the hash table. */
7985 *s++ = '\0';
7986 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
7987 {
7988 insn_error = "unrecognized opcode";
7989 return;
7990 }
7991 }
7992
7993 argsStart = s;
7994 for (;;)
7995 {
7996 bfd_boolean ok;
7997
7998 assert (strcmp (insn->name, str) == 0);
7999
8000 if (OPCODE_IS_MEMBER (insn,
8001 (mips_opts.isa
8002 | (file_ase_mips16 ? INSN_MIPS16 : 0)
8003 | (mips_opts.ase_mdmx ? INSN_MDMX : 0)
8004 | (mips_opts.ase_dsp ? INSN_DSP : 0)
8005 | (mips_opts.ase_mt ? INSN_MT : 0)
8006 | (mips_opts.ase_mips3d ? INSN_MIPS3D : 0)),
8007 mips_opts.arch))
8008 ok = TRUE;
8009 else
8010 ok = FALSE;
8011
8012 if (insn->pinfo != INSN_MACRO)
8013 {
8014 if (mips_opts.arch == CPU_R4650 && (insn->pinfo & FP_D) != 0)
8015 ok = FALSE;
8016 }
8017
8018 if (! ok)
8019 {
8020 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8021 && strcmp (insn->name, insn[1].name) == 0)
8022 {
8023 ++insn;
8024 continue;
8025 }
8026 else
8027 {
8028 if (!insn_error)
8029 {
8030 static char buf[100];
8031 sprintf (buf,
8032 _("opcode not supported on this processor: %s (%s)"),
8033 mips_cpu_info_from_arch (mips_opts.arch)->name,
8034 mips_cpu_info_from_isa (mips_opts.isa)->name);
8035 insn_error = buf;
8036 }
8037 if (save_c)
8038 *(--s) = save_c;
8039 return;
8040 }
8041 }
8042
8043 create_insn (ip, insn);
8044 insn_error = NULL;
8045 for (args = insn->args;; ++args)
8046 {
8047 int is_mdmx;
8048
8049 s += strspn (s, " \t");
8050 is_mdmx = 0;
8051 switch (*args)
8052 {
8053 case '\0': /* end of args */
8054 if (*s == '\0')
8055 return;
8056 break;
8057
8058 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8059 my_getExpression (&imm_expr, s);
8060 check_absolute_expr (ip, &imm_expr);
8061 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8062 {
8063 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8064 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8065 imm_expr.X_add_number &= OP_MASK_SA3;
8066 }
8067 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_SA3;
8068 imm_expr.X_op = O_absent;
8069 s = expr_end;
8070 continue;
8071
8072 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8073 my_getExpression (&imm_expr, s);
8074 check_absolute_expr (ip, &imm_expr);
8075 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8076 {
8077 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8078 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8079 imm_expr.X_add_number &= OP_MASK_SA4;
8080 }
8081 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_SA4;
8082 imm_expr.X_op = O_absent;
8083 s = expr_end;
8084 continue;
8085
8086 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8087 my_getExpression (&imm_expr, s);
8088 check_absolute_expr (ip, &imm_expr);
8089 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8090 {
8091 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8092 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8093 imm_expr.X_add_number &= OP_MASK_IMM8;
8094 }
8095 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_IMM8;
8096 imm_expr.X_op = O_absent;
8097 s = expr_end;
8098 continue;
8099
8100 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8101 my_getExpression (&imm_expr, s);
8102 check_absolute_expr (ip, &imm_expr);
8103 if (imm_expr.X_add_number & ~OP_MASK_RS)
8104 {
8105 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8106 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8107 imm_expr.X_add_number &= OP_MASK_RS;
8108 }
8109 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_RS;
8110 imm_expr.X_op = O_absent;
8111 s = expr_end;
8112 continue;
8113
8114 case '7': /* four dsp accumulators in bits 11,12 */
8115 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8116 s[3] >= '0' && s[3] <= '3')
8117 {
8118 regno = s[3] - '0';
8119 s += 4;
8120 ip->insn_opcode |= regno << OP_SH_DSPACC;
8121 continue;
8122 }
8123 else
8124 as_bad (_("Invalid dsp acc register"));
8125 break;
8126
8127 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8128 my_getExpression (&imm_expr, s);
8129 check_absolute_expr (ip, &imm_expr);
8130 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8131 {
8132 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8133 OP_MASK_WRDSP,
8134 (unsigned long) imm_expr.X_add_number);
8135 imm_expr.X_add_number &= OP_MASK_WRDSP;
8136 }
8137 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_WRDSP;
8138 imm_expr.X_op = O_absent;
8139 s = expr_end;
8140 continue;
8141
8142 case '9': /* four dsp accumulators in bits 21,22 */
8143 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8144 s[3] >= '0' && s[3] <= '3')
8145 {
8146 regno = s[3] - '0';
8147 s += 4;
8148 ip->insn_opcode |= regno << OP_SH_DSPACC_S;
8149 continue;
8150 }
8151 else
8152 as_bad (_("Invalid dsp acc register"));
8153 break;
8154
8155 case '0': /* dsp 6-bit signed immediate in bit 20 */
8156 my_getExpression (&imm_expr, s);
8157 check_absolute_expr (ip, &imm_expr);
8158 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8159 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8160 if (imm_expr.X_add_number < min_range ||
8161 imm_expr.X_add_number > max_range)
8162 {
8163 as_warn (_("DSP immediate not in range %ld..%ld (%ld)"),
8164 (long) min_range, (long) max_range,
8165 (long) imm_expr.X_add_number);
8166 }
8167 imm_expr.X_add_number &= OP_MASK_DSPSFT;
8168 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
8169 << OP_SH_DSPSFT);
8170 imm_expr.X_op = O_absent;
8171 s = expr_end;
8172 continue;
8173
8174 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8175 my_getExpression (&imm_expr, s);
8176 check_absolute_expr (ip, &imm_expr);
8177 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8178 {
8179 as_warn (_("DSP immediate not in range 0..%d (%lu)"),
8180 OP_MASK_RDDSP,
8181 (unsigned long) imm_expr.X_add_number);
8182 imm_expr.X_add_number &= OP_MASK_RDDSP;
8183 }
8184 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_RDDSP;
8185 imm_expr.X_op = O_absent;
8186 s = expr_end;
8187 continue;
8188
8189 case ':': /* dsp 7-bit signed immediate in bit 19 */
8190 my_getExpression (&imm_expr, s);
8191 check_absolute_expr (ip, &imm_expr);
8192 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8193 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8194 if (imm_expr.X_add_number < min_range ||
8195 imm_expr.X_add_number > max_range)
8196 {
8197 as_warn (_("DSP immediate not in range %ld..%ld (%ld)"),
8198 (long) min_range, (long) max_range,
8199 (long) imm_expr.X_add_number);
8200 }
8201 imm_expr.X_add_number &= OP_MASK_DSPSFT_7;
8202 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
8203 << OP_SH_DSPSFT_7);
8204 imm_expr.X_op = O_absent;
8205 s = expr_end;
8206 continue;
8207
8208 case '@': /* dsp 10-bit signed immediate in bit 16 */
8209 my_getExpression (&imm_expr, s);
8210 check_absolute_expr (ip, &imm_expr);
8211 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8212 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8213 if (imm_expr.X_add_number < min_range ||
8214 imm_expr.X_add_number > max_range)
8215 {
8216 as_warn (_("DSP immediate not in range %ld..%ld (%ld)"),
8217 (long) min_range, (long) max_range,
8218 (long) imm_expr.X_add_number);
8219 }
8220 imm_expr.X_add_number &= OP_MASK_IMM10;
8221 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
8222 << OP_SH_IMM10);
8223 imm_expr.X_op = O_absent;
8224 s = expr_end;
8225 continue;
8226
8227 case '!': /* mt 1-bit unsigned immediate in bit 5 */
8228 my_getExpression (&imm_expr, s);
8229 check_absolute_expr (ip, &imm_expr);
8230 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8231 {
8232 as_warn (_("MT immediate not in range 0..%d (%lu)"),
8233 OP_MASK_MT_U, (unsigned long) imm_expr.X_add_number);
8234 imm_expr.X_add_number &= OP_MASK_MT_U;
8235 }
8236 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_MT_U;
8237 imm_expr.X_op = O_absent;
8238 s = expr_end;
8239 continue;
8240
8241 case '$': /* mt 1-bit unsigned immediate in bit 4 */
8242 my_getExpression (&imm_expr, s);
8243 check_absolute_expr (ip, &imm_expr);
8244 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8245 {
8246 as_warn (_("MT immediate not in range 0..%d (%lu)"),
8247 OP_MASK_MT_H, (unsigned long) imm_expr.X_add_number);
8248 imm_expr.X_add_number &= OP_MASK_MT_H;
8249 }
8250 ip->insn_opcode |= imm_expr.X_add_number << OP_SH_MT_H;
8251 imm_expr.X_op = O_absent;
8252 s = expr_end;
8253 continue;
8254
8255 case '*': /* four dsp accumulators in bits 18,19 */
8256 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8257 s[3] >= '0' && s[3] <= '3')
8258 {
8259 regno = s[3] - '0';
8260 s += 4;
8261 ip->insn_opcode |= regno << OP_SH_MTACC_T;
8262 continue;
8263 }
8264 else
8265 as_bad (_("Invalid dsp/smartmips acc register"));
8266 break;
8267
8268 case '&': /* four dsp accumulators in bits 13,14 */
8269 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8270 s[3] >= '0' && s[3] <= '3')
8271 {
8272 regno = s[3] - '0';
8273 s += 4;
8274 ip->insn_opcode |= regno << OP_SH_MTACC_D;
8275 continue;
8276 }
8277 else
8278 as_bad (_("Invalid dsp/smartmips acc register"));
8279 break;
8280
8281 case ',':
8282 if (*s++ == *args)
8283 continue;
8284 s--;
8285 switch (*++args)
8286 {
8287 case 'r':
8288 case 'v':
8289 INSERT_OPERAND (RS, *ip, lastregno);
8290 continue;
8291
8292 case 'w':
8293 INSERT_OPERAND (RT, *ip, lastregno);
8294 continue;
8295
8296 case 'W':
8297 INSERT_OPERAND (FT, *ip, lastregno);
8298 continue;
8299
8300 case 'V':
8301 INSERT_OPERAND (FS, *ip, lastregno);
8302 continue;
8303 }
8304 break;
8305
8306 case '(':
8307 /* Handle optional base register.
8308 Either the base register is omitted or
8309 we must have a left paren. */
8310 /* This is dependent on the next operand specifier
8311 is a base register specification. */
8312 assert (args[1] == 'b' || args[1] == '5'
8313 || args[1] == '-' || args[1] == '4');
8314 if (*s == '\0')
8315 return;
8316
8317 case ')': /* these must match exactly */
8318 case '[':
8319 case ']':
8320 if (*s++ == *args)
8321 continue;
8322 break;
8323
8324 case '+': /* Opcode extension character. */
8325 switch (*++args)
8326 {
8327 case 'A': /* ins/ext position, becomes LSB. */
8328 limlo = 0;
8329 limhi = 31;
8330 goto do_lsb;
8331 case 'E':
8332 limlo = 32;
8333 limhi = 63;
8334 goto do_lsb;
8335 do_lsb:
8336 my_getExpression (&imm_expr, s);
8337 check_absolute_expr (ip, &imm_expr);
8338 if ((unsigned long) imm_expr.X_add_number < limlo
8339 || (unsigned long) imm_expr.X_add_number > limhi)
8340 {
8341 as_bad (_("Improper position (%lu)"),
8342 (unsigned long) imm_expr.X_add_number);
8343 imm_expr.X_add_number = limlo;
8344 }
8345 lastpos = imm_expr.X_add_number;
8346 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
8347 imm_expr.X_op = O_absent;
8348 s = expr_end;
8349 continue;
8350
8351 case 'B': /* ins size, becomes MSB. */
8352 limlo = 1;
8353 limhi = 32;
8354 goto do_msb;
8355 case 'F':
8356 limlo = 33;
8357 limhi = 64;
8358 goto do_msb;
8359 do_msb:
8360 my_getExpression (&imm_expr, s);
8361 check_absolute_expr (ip, &imm_expr);
8362 /* Check for negative input so that small negative numbers
8363 will not succeed incorrectly. The checks against
8364 (pos+size) transitively check "size" itself,
8365 assuming that "pos" is reasonable. */
8366 if ((long) imm_expr.X_add_number < 0
8367 || ((unsigned long) imm_expr.X_add_number
8368 + lastpos) < limlo
8369 || ((unsigned long) imm_expr.X_add_number
8370 + lastpos) > limhi)
8371 {
8372 as_bad (_("Improper insert size (%lu, position %lu)"),
8373 (unsigned long) imm_expr.X_add_number,
8374 (unsigned long) lastpos);
8375 imm_expr.X_add_number = limlo - lastpos;
8376 }
8377 INSERT_OPERAND (INSMSB, *ip,
8378 lastpos + imm_expr.X_add_number - 1);
8379 imm_expr.X_op = O_absent;
8380 s = expr_end;
8381 continue;
8382
8383 case 'C': /* ext size, becomes MSBD. */
8384 limlo = 1;
8385 limhi = 32;
8386 goto do_msbd;
8387 case 'G':
8388 limlo = 33;
8389 limhi = 64;
8390 goto do_msbd;
8391 case 'H':
8392 limlo = 33;
8393 limhi = 64;
8394 goto do_msbd;
8395 do_msbd:
8396 my_getExpression (&imm_expr, s);
8397 check_absolute_expr (ip, &imm_expr);
8398 /* Check for negative input so that small negative numbers
8399 will not succeed incorrectly. The checks against
8400 (pos+size) transitively check "size" itself,
8401 assuming that "pos" is reasonable. */
8402 if ((long) imm_expr.X_add_number < 0
8403 || ((unsigned long) imm_expr.X_add_number
8404 + lastpos) < limlo
8405 || ((unsigned long) imm_expr.X_add_number
8406 + lastpos) > limhi)
8407 {
8408 as_bad (_("Improper extract size (%lu, position %lu)"),
8409 (unsigned long) imm_expr.X_add_number,
8410 (unsigned long) lastpos);
8411 imm_expr.X_add_number = limlo - lastpos;
8412 }
8413 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
8414 imm_expr.X_op = O_absent;
8415 s = expr_end;
8416 continue;
8417
8418 case 'D':
8419 /* +D is for disassembly only; never match. */
8420 break;
8421
8422 case 'I':
8423 /* "+I" is like "I", except that imm2_expr is used. */
8424 my_getExpression (&imm2_expr, s);
8425 if (imm2_expr.X_op != O_big
8426 && imm2_expr.X_op != O_constant)
8427 insn_error = _("absolute expression required");
8428 if (HAVE_32BIT_GPRS)
8429 normalize_constant_expr (&imm2_expr);
8430 s = expr_end;
8431 continue;
8432
8433 case 'T': /* Coprocessor register */
8434 /* +T is for disassembly only; never match. */
8435 break;
8436
8437 case 't': /* Coprocessor register number */
8438 if (s[0] == '$' && ISDIGIT (s[1]))
8439 {
8440 ++s;
8441 regno = 0;
8442 do
8443 {
8444 regno *= 10;
8445 regno += *s - '0';
8446 ++s;
8447 }
8448 while (ISDIGIT (*s));
8449 if (regno > 31)
8450 as_bad (_("Invalid register number (%d)"), regno);
8451 else
8452 {
8453 ip->insn_opcode |= regno << OP_SH_RT;
8454 continue;
8455 }
8456 }
8457 else
8458 as_bad (_("Invalid coprocessor 0 register number"));
8459 break;
8460
8461 default:
8462 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8463 *args, insn->name, insn->args);
8464 /* Further processing is fruitless. */
8465 return;
8466 }
8467 break;
8468
8469 case '<': /* must be at least one digit */
8470 /*
8471 * According to the manual, if the shift amount is greater
8472 * than 31 or less than 0, then the shift amount should be
8473 * mod 32. In reality the mips assembler issues an error.
8474 * We issue a warning and mask out all but the low 5 bits.
8475 */
8476 my_getExpression (&imm_expr, s);
8477 check_absolute_expr (ip, &imm_expr);
8478 if ((unsigned long) imm_expr.X_add_number > 31)
8479 as_warn (_("Improper shift amount (%lu)"),
8480 (unsigned long) imm_expr.X_add_number);
8481 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
8482 imm_expr.X_op = O_absent;
8483 s = expr_end;
8484 continue;
8485
8486 case '>': /* shift amount minus 32 */
8487 my_getExpression (&imm_expr, s);
8488 check_absolute_expr (ip, &imm_expr);
8489 if ((unsigned long) imm_expr.X_add_number < 32
8490 || (unsigned long) imm_expr.X_add_number > 63)
8491 break;
8492 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
8493 imm_expr.X_op = O_absent;
8494 s = expr_end;
8495 continue;
8496
8497 case 'k': /* cache code */
8498 case 'h': /* prefx code */
8499 my_getExpression (&imm_expr, s);
8500 check_absolute_expr (ip, &imm_expr);
8501 if ((unsigned long) imm_expr.X_add_number > 31)
8502 as_warn (_("Invalid value for `%s' (%lu)"),
8503 ip->insn_mo->name,
8504 (unsigned long) imm_expr.X_add_number);
8505 if (*args == 'k')
8506 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
8507 else
8508 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
8509 imm_expr.X_op = O_absent;
8510 s = expr_end;
8511 continue;
8512
8513 case 'c': /* break code */
8514 my_getExpression (&imm_expr, s);
8515 check_absolute_expr (ip, &imm_expr);
8516 if ((unsigned long) imm_expr.X_add_number > 1023)
8517 as_warn (_("Illegal break code (%lu)"),
8518 (unsigned long) imm_expr.X_add_number);
8519 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
8520 imm_expr.X_op = O_absent;
8521 s = expr_end;
8522 continue;
8523
8524 case 'q': /* lower break code */
8525 my_getExpression (&imm_expr, s);
8526 check_absolute_expr (ip, &imm_expr);
8527 if ((unsigned long) imm_expr.X_add_number > 1023)
8528 as_warn (_("Illegal lower break code (%lu)"),
8529 (unsigned long) imm_expr.X_add_number);
8530 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
8531 imm_expr.X_op = O_absent;
8532 s = expr_end;
8533 continue;
8534
8535 case 'B': /* 20-bit syscall/break code. */
8536 my_getExpression (&imm_expr, s);
8537 check_absolute_expr (ip, &imm_expr);
8538 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
8539 as_warn (_("Illegal 20-bit code (%lu)"),
8540 (unsigned long) imm_expr.X_add_number);
8541 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
8542 imm_expr.X_op = O_absent;
8543 s = expr_end;
8544 continue;
8545
8546 case 'C': /* Coprocessor code */
8547 my_getExpression (&imm_expr, s);
8548 check_absolute_expr (ip, &imm_expr);
8549 if ((unsigned long) imm_expr.X_add_number >= (1 << 25))
8550 {
8551 as_warn (_("Coproccesor code > 25 bits (%lu)"),
8552 (unsigned long) imm_expr.X_add_number);
8553 imm_expr.X_add_number &= ((1 << 25) - 1);
8554 }
8555 ip->insn_opcode |= imm_expr.X_add_number;
8556 imm_expr.X_op = O_absent;
8557 s = expr_end;
8558 continue;
8559
8560 case 'J': /* 19-bit wait code. */
8561 my_getExpression (&imm_expr, s);
8562 check_absolute_expr (ip, &imm_expr);
8563 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
8564 as_warn (_("Illegal 19-bit code (%lu)"),
8565 (unsigned long) imm_expr.X_add_number);
8566 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
8567 imm_expr.X_op = O_absent;
8568 s = expr_end;
8569 continue;
8570
8571 case 'P': /* Performance register */
8572 my_getExpression (&imm_expr, s);
8573 check_absolute_expr (ip, &imm_expr);
8574 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
8575 as_warn (_("Invalid performance register (%lu)"),
8576 (unsigned long) imm_expr.X_add_number);
8577 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
8578 imm_expr.X_op = O_absent;
8579 s = expr_end;
8580 continue;
8581
8582 case 'b': /* base register */
8583 case 'd': /* destination register */
8584 case 's': /* source register */
8585 case 't': /* target register */
8586 case 'r': /* both target and source */
8587 case 'v': /* both dest and source */
8588 case 'w': /* both dest and target */
8589 case 'E': /* coprocessor target register */
8590 case 'G': /* coprocessor destination register */
8591 case 'K': /* 'rdhwr' destination register */
8592 case 'x': /* ignore register name */
8593 case 'z': /* must be zero register */
8594 case 'U': /* destination register (clo/clz). */
8595 case 'g': /* coprocessor destination register */
8596 s_reset = s;
8597 if (s[0] == '$')
8598 {
8599 if (ISDIGIT (s[1]))
8600 {
8601 ++s;
8602 regno = 0;
8603 do
8604 {
8605 regno *= 10;
8606 regno += *s - '0';
8607 ++s;
8608 }
8609 while (ISDIGIT (*s));
8610 if (regno > 31)
8611 as_bad (_("Invalid register number (%d)"), regno);
8612 }
8613 else if (*args == 'E' || *args == 'G' || *args == 'K')
8614 goto notreg;
8615 else
8616 {
8617 if (s[1] == 'r' && s[2] == 'a')
8618 {
8619 s += 3;
8620 regno = RA;
8621 }
8622 else if (s[1] == 'f' && s[2] == 'p')
8623 {
8624 s += 3;
8625 regno = FP;
8626 }
8627 else if (s[1] == 's' && s[2] == 'p')
8628 {
8629 s += 3;
8630 regno = SP;
8631 }
8632 else if (s[1] == 'g' && s[2] == 'p')
8633 {
8634 s += 3;
8635 regno = GP;
8636 }
8637 else if (s[1] == 'a' && s[2] == 't')
8638 {
8639 s += 3;
8640 regno = AT;
8641 }
8642 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
8643 {
8644 s += 4;
8645 regno = KT0;
8646 }
8647 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
8648 {
8649 s += 4;
8650 regno = KT1;
8651 }
8652 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
8653 {
8654 s += 5;
8655 regno = ZERO;
8656 }
8657 else if (itbl_have_entries)
8658 {
8659 char *p, *n;
8660 unsigned long r;
8661
8662 p = s + 1; /* advance past '$' */
8663 n = itbl_get_field (&p); /* n is name */
8664
8665 /* See if this is a register defined in an
8666 itbl entry. */
8667 if (itbl_get_reg_val (n, &r))
8668 {
8669 /* Get_field advances to the start of
8670 the next field, so we need to back
8671 rack to the end of the last field. */
8672 if (p)
8673 s = p - 1;
8674 else
8675 s = strchr (s, '\0');
8676 regno = r;
8677 }
8678 else
8679 goto notreg;
8680 }
8681 else
8682 goto notreg;
8683 }
8684 if (regno == AT
8685 && ! mips_opts.noat
8686 && *args != 'E'
8687 && *args != 'G'
8688 && *args != 'K')
8689 as_warn (_("Used $at without \".set noat\""));
8690 c = *args;
8691 if (*s == ' ')
8692 ++s;
8693 if (args[1] != *s)
8694 {
8695 if (c == 'r' || c == 'v' || c == 'w')
8696 {
8697 regno = lastregno;
8698 s = s_reset;
8699 ++args;
8700 }
8701 }
8702 /* 'z' only matches $0. */
8703 if (c == 'z' && regno != 0)
8704 break;
8705
8706 /* Now that we have assembled one operand, we use the args string
8707 * to figure out where it goes in the instruction. */
8708 switch (c)
8709 {
8710 case 'r':
8711 case 's':
8712 case 'v':
8713 case 'b':
8714 INSERT_OPERAND (RS, *ip, regno);
8715 break;
8716 case 'd':
8717 case 'G':
8718 case 'K':
8719 case 'g':
8720 INSERT_OPERAND (RD, *ip, regno);
8721 break;
8722 case 'U':
8723 INSERT_OPERAND (RD, *ip, regno);
8724 INSERT_OPERAND (RT, *ip, regno);
8725 break;
8726 case 'w':
8727 case 't':
8728 case 'E':
8729 INSERT_OPERAND (RT, *ip, regno);
8730 break;
8731 case 'x':
8732 /* This case exists because on the r3000 trunc
8733 expands into a macro which requires a gp
8734 register. On the r6000 or r4000 it is
8735 assembled into a single instruction which
8736 ignores the register. Thus the insn version
8737 is MIPS_ISA2 and uses 'x', and the macro
8738 version is MIPS_ISA1 and uses 't'. */
8739 break;
8740 case 'z':
8741 /* This case is for the div instruction, which
8742 acts differently if the destination argument
8743 is $0. This only matches $0, and is checked
8744 outside the switch. */
8745 break;
8746 case 'D':
8747 /* Itbl operand; not yet implemented. FIXME ?? */
8748 break;
8749 /* What about all other operands like 'i', which
8750 can be specified in the opcode table? */
8751 }
8752 lastregno = regno;
8753 continue;
8754 }
8755 notreg:
8756 switch (*args++)
8757 {
8758 case 'r':
8759 case 'v':
8760 INSERT_OPERAND (RS, *ip, lastregno);
8761 continue;
8762 case 'w':
8763 INSERT_OPERAND (RT, *ip, lastregno);
8764 continue;
8765 }
8766 break;
8767
8768 case 'O': /* MDMX alignment immediate constant. */
8769 my_getExpression (&imm_expr, s);
8770 check_absolute_expr (ip, &imm_expr);
8771 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
8772 as_warn ("Improper align amount (%ld), using low bits",
8773 (long) imm_expr.X_add_number);
8774 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
8775 imm_expr.X_op = O_absent;
8776 s = expr_end;
8777 continue;
8778
8779 case 'Q': /* MDMX vector, element sel, or const. */
8780 if (s[0] != '$')
8781 {
8782 /* MDMX Immediate. */
8783 my_getExpression (&imm_expr, s);
8784 check_absolute_expr (ip, &imm_expr);
8785 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
8786 as_warn (_("Invalid MDMX Immediate (%ld)"),
8787 (long) imm_expr.X_add_number);
8788 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
8789 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8790 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
8791 else
8792 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
8793 imm_expr.X_op = O_absent;
8794 s = expr_end;
8795 continue;
8796 }
8797 /* Not MDMX Immediate. Fall through. */
8798 case 'X': /* MDMX destination register. */
8799 case 'Y': /* MDMX source register. */
8800 case 'Z': /* MDMX target register. */
8801 is_mdmx = 1;
8802 case 'D': /* floating point destination register */
8803 case 'S': /* floating point source register */
8804 case 'T': /* floating point target register */
8805 case 'R': /* floating point source register */
8806 case 'V':
8807 case 'W':
8808 s_reset = s;
8809 /* Accept $fN for FP and MDMX register numbers, and in
8810 addition accept $vN for MDMX register numbers. */
8811 if ((s[0] == '$' && s[1] == 'f' && ISDIGIT (s[2]))
8812 || (is_mdmx != 0 && s[0] == '$' && s[1] == 'v'
8813 && ISDIGIT (s[2])))
8814 {
8815 s += 2;
8816 regno = 0;
8817 do
8818 {
8819 regno *= 10;
8820 regno += *s - '0';
8821 ++s;
8822 }
8823 while (ISDIGIT (*s));
8824
8825 if (regno > 31)
8826 as_bad (_("Invalid float register number (%d)"), regno);
8827
8828 if ((regno & 1) != 0
8829 && HAVE_32BIT_FPRS
8830 && ! (strcmp (str, "mtc1") == 0
8831 || strcmp (str, "mfc1") == 0
8832 || strcmp (str, "lwc1") == 0
8833 || strcmp (str, "swc1") == 0
8834 || strcmp (str, "l.s") == 0
8835 || strcmp (str, "s.s") == 0
8836 || strcmp (str, "mftc1") == 0
8837 || strcmp (str, "mfthc1") == 0
8838 || strcmp (str, "cftc1") == 0
8839 || strcmp (str, "mttc1") == 0
8840 || strcmp (str, "mtthc1") == 0
8841 || strcmp (str, "cttc1") == 0))
8842 as_warn (_("Float register should be even, was %d"),
8843 regno);
8844
8845 c = *args;
8846 if (*s == ' ')
8847 ++s;
8848 if (args[1] != *s)
8849 {
8850 if (c == 'V' || c == 'W')
8851 {
8852 regno = lastregno;
8853 s = s_reset;
8854 ++args;
8855 }
8856 }
8857 switch (c)
8858 {
8859 case 'D':
8860 case 'X':
8861 INSERT_OPERAND (FD, *ip, regno);
8862 break;
8863 case 'V':
8864 case 'S':
8865 case 'Y':
8866 INSERT_OPERAND (FS, *ip, regno);
8867 break;
8868 case 'Q':
8869 /* This is like 'Z', but also needs to fix the MDMX
8870 vector/scalar select bits. Note that the
8871 scalar immediate case is handled above. */
8872 if (*s == '[')
8873 {
8874 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
8875 int max_el = (is_qh ? 3 : 7);
8876 s++;
8877 my_getExpression(&imm_expr, s);
8878 check_absolute_expr (ip, &imm_expr);
8879 s = expr_end;
8880 if (imm_expr.X_add_number > max_el)
8881 as_bad(_("Bad element selector %ld"),
8882 (long) imm_expr.X_add_number);
8883 imm_expr.X_add_number &= max_el;
8884 ip->insn_opcode |= (imm_expr.X_add_number
8885 << (OP_SH_VSEL +
8886 (is_qh ? 2 : 1)));
8887 imm_expr.X_op = O_absent;
8888 if (*s != ']')
8889 as_warn(_("Expecting ']' found '%s'"), s);
8890 else
8891 s++;
8892 }
8893 else
8894 {
8895 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
8896 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
8897 << OP_SH_VSEL);
8898 else
8899 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
8900 OP_SH_VSEL);
8901 }
8902 /* Fall through */
8903 case 'W':
8904 case 'T':
8905 case 'Z':
8906 INSERT_OPERAND (FT, *ip, regno);
8907 break;
8908 case 'R':
8909 INSERT_OPERAND (FR, *ip, regno);
8910 break;
8911 }
8912 lastregno = regno;
8913 continue;
8914 }
8915
8916 switch (*args++)
8917 {
8918 case 'V':
8919 INSERT_OPERAND (FS, *ip, lastregno);
8920 continue;
8921 case 'W':
8922 INSERT_OPERAND (FT, *ip, lastregno);
8923 continue;
8924 }
8925 break;
8926
8927 case 'I':
8928 my_getExpression (&imm_expr, s);
8929 if (imm_expr.X_op != O_big
8930 && imm_expr.X_op != O_constant)
8931 insn_error = _("absolute expression required");
8932 if (HAVE_32BIT_GPRS)
8933 normalize_constant_expr (&imm_expr);
8934 s = expr_end;
8935 continue;
8936
8937 case 'A':
8938 my_getExpression (&offset_expr, s);
8939 normalize_address_expr (&offset_expr);
8940 *imm_reloc = BFD_RELOC_32;
8941 s = expr_end;
8942 continue;
8943
8944 case 'F':
8945 case 'L':
8946 case 'f':
8947 case 'l':
8948 {
8949 int f64;
8950 int using_gprs;
8951 char *save_in;
8952 char *err;
8953 unsigned char temp[8];
8954 int len;
8955 unsigned int length;
8956 segT seg;
8957 subsegT subseg;
8958 char *p;
8959
8960 /* These only appear as the last operand in an
8961 instruction, and every instruction that accepts
8962 them in any variant accepts them in all variants.
8963 This means we don't have to worry about backing out
8964 any changes if the instruction does not match.
8965
8966 The difference between them is the size of the
8967 floating point constant and where it goes. For 'F'
8968 and 'L' the constant is 64 bits; for 'f' and 'l' it
8969 is 32 bits. Where the constant is placed is based
8970 on how the MIPS assembler does things:
8971 F -- .rdata
8972 L -- .lit8
8973 f -- immediate value
8974 l -- .lit4
8975
8976 The .lit4 and .lit8 sections are only used if
8977 permitted by the -G argument.
8978
8979 The code below needs to know whether the target register
8980 is 32 or 64 bits wide. It relies on the fact 'f' and
8981 'F' are used with GPR-based instructions and 'l' and
8982 'L' are used with FPR-based instructions. */
8983
8984 f64 = *args == 'F' || *args == 'L';
8985 using_gprs = *args == 'F' || *args == 'f';
8986
8987 save_in = input_line_pointer;
8988 input_line_pointer = s;
8989 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
8990 length = len;
8991 s = input_line_pointer;
8992 input_line_pointer = save_in;
8993 if (err != NULL && *err != '\0')
8994 {
8995 as_bad (_("Bad floating point constant: %s"), err);
8996 memset (temp, '\0', sizeof temp);
8997 length = f64 ? 8 : 4;
8998 }
8999
9000 assert (length == (unsigned) (f64 ? 8 : 4));
9001
9002 if (*args == 'f'
9003 || (*args == 'l'
9004 && (g_switch_value < 4
9005 || (temp[0] == 0 && temp[1] == 0)
9006 || (temp[2] == 0 && temp[3] == 0))))
9007 {
9008 imm_expr.X_op = O_constant;
9009 if (! target_big_endian)
9010 imm_expr.X_add_number = bfd_getl32 (temp);
9011 else
9012 imm_expr.X_add_number = bfd_getb32 (temp);
9013 }
9014 else if (length > 4
9015 && ! mips_disable_float_construction
9016 /* Constants can only be constructed in GPRs and
9017 copied to FPRs if the GPRs are at least as wide
9018 as the FPRs. Force the constant into memory if
9019 we are using 64-bit FPRs but the GPRs are only
9020 32 bits wide. */
9021 && (using_gprs
9022 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9023 && ((temp[0] == 0 && temp[1] == 0)
9024 || (temp[2] == 0 && temp[3] == 0))
9025 && ((temp[4] == 0 && temp[5] == 0)
9026 || (temp[6] == 0 && temp[7] == 0)))
9027 {
9028 /* The value is simple enough to load with a couple of
9029 instructions. If using 32-bit registers, set
9030 imm_expr to the high order 32 bits and offset_expr to
9031 the low order 32 bits. Otherwise, set imm_expr to
9032 the entire 64 bit constant. */
9033 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9034 {
9035 imm_expr.X_op = O_constant;
9036 offset_expr.X_op = O_constant;
9037 if (! target_big_endian)
9038 {
9039 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9040 offset_expr.X_add_number = bfd_getl32 (temp);
9041 }
9042 else
9043 {
9044 imm_expr.X_add_number = bfd_getb32 (temp);
9045 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9046 }
9047 if (offset_expr.X_add_number == 0)
9048 offset_expr.X_op = O_absent;
9049 }
9050 else if (sizeof (imm_expr.X_add_number) > 4)
9051 {
9052 imm_expr.X_op = O_constant;
9053 if (! target_big_endian)
9054 imm_expr.X_add_number = bfd_getl64 (temp);
9055 else
9056 imm_expr.X_add_number = bfd_getb64 (temp);
9057 }
9058 else
9059 {
9060 imm_expr.X_op = O_big;
9061 imm_expr.X_add_number = 4;
9062 if (! target_big_endian)
9063 {
9064 generic_bignum[0] = bfd_getl16 (temp);
9065 generic_bignum[1] = bfd_getl16 (temp + 2);
9066 generic_bignum[2] = bfd_getl16 (temp + 4);
9067 generic_bignum[3] = bfd_getl16 (temp + 6);
9068 }
9069 else
9070 {
9071 generic_bignum[0] = bfd_getb16 (temp + 6);
9072 generic_bignum[1] = bfd_getb16 (temp + 4);
9073 generic_bignum[2] = bfd_getb16 (temp + 2);
9074 generic_bignum[3] = bfd_getb16 (temp);
9075 }
9076 }
9077 }
9078 else
9079 {
9080 const char *newname;
9081 segT new_seg;
9082
9083 /* Switch to the right section. */
9084 seg = now_seg;
9085 subseg = now_subseg;
9086 switch (*args)
9087 {
9088 default: /* unused default case avoids warnings. */
9089 case 'L':
9090 newname = RDATA_SECTION_NAME;
9091 if (g_switch_value >= 8)
9092 newname = ".lit8";
9093 break;
9094 case 'F':
9095 newname = RDATA_SECTION_NAME;
9096 break;
9097 case 'l':
9098 assert (g_switch_value >= 4);
9099 newname = ".lit4";
9100 break;
9101 }
9102 new_seg = subseg_new (newname, (subsegT) 0);
9103 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
9104 bfd_set_section_flags (stdoutput, new_seg,
9105 (SEC_ALLOC
9106 | SEC_LOAD
9107 | SEC_READONLY
9108 | SEC_DATA));
9109 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9110 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
9111 && strcmp (TARGET_OS, "elf") != 0)
9112 record_alignment (new_seg, 4);
9113 else
9114 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9115 if (seg == now_seg)
9116 as_bad (_("Can't use floating point insn in this section"));
9117
9118 /* Set the argument to the current address in the
9119 section. */
9120 offset_expr.X_op = O_symbol;
9121 offset_expr.X_add_symbol =
9122 symbol_new ("L0\001", now_seg,
9123 (valueT) frag_now_fix (), frag_now);
9124 offset_expr.X_add_number = 0;
9125
9126 /* Put the floating point number into the section. */
9127 p = frag_more ((int) length);
9128 memcpy (p, temp, length);
9129
9130 /* Switch back to the original section. */
9131 subseg_set (seg, subseg);
9132 }
9133 }
9134 continue;
9135
9136 case 'i': /* 16 bit unsigned immediate */
9137 case 'j': /* 16 bit signed immediate */
9138 *imm_reloc = BFD_RELOC_LO16;
9139 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9140 {
9141 int more;
9142 offsetT minval, maxval;
9143
9144 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9145 && strcmp (insn->name, insn[1].name) == 0);
9146
9147 /* If the expression was written as an unsigned number,
9148 only treat it as signed if there are no more
9149 alternatives. */
9150 if (more
9151 && *args == 'j'
9152 && sizeof (imm_expr.X_add_number) <= 4
9153 && imm_expr.X_op == O_constant
9154 && imm_expr.X_add_number < 0
9155 && imm_expr.X_unsigned
9156 && HAVE_64BIT_GPRS)
9157 break;
9158
9159 /* For compatibility with older assemblers, we accept
9160 0x8000-0xffff as signed 16-bit numbers when only
9161 signed numbers are allowed. */
9162 if (*args == 'i')
9163 minval = 0, maxval = 0xffff;
9164 else if (more)
9165 minval = -0x8000, maxval = 0x7fff;
9166 else
9167 minval = -0x8000, maxval = 0xffff;
9168
9169 if (imm_expr.X_op != O_constant
9170 || imm_expr.X_add_number < minval
9171 || imm_expr.X_add_number > maxval)
9172 {
9173 if (more)
9174 break;
9175 if (imm_expr.X_op == O_constant
9176 || imm_expr.X_op == O_big)
9177 as_bad (_("expression out of range"));
9178 }
9179 }
9180 s = expr_end;
9181 continue;
9182
9183 case 'o': /* 16 bit offset */
9184 /* Check whether there is only a single bracketed expression
9185 left. If so, it must be the base register and the
9186 constant must be zero. */
9187 if (*s == '(' && strchr (s + 1, '(') == 0)
9188 {
9189 offset_expr.X_op = O_constant;
9190 offset_expr.X_add_number = 0;
9191 continue;
9192 }
9193
9194 /* If this value won't fit into a 16 bit offset, then go
9195 find a macro that will generate the 32 bit offset
9196 code pattern. */
9197 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9198 && (offset_expr.X_op != O_constant
9199 || offset_expr.X_add_number >= 0x8000
9200 || offset_expr.X_add_number < -0x8000))
9201 break;
9202
9203 s = expr_end;
9204 continue;
9205
9206 case 'p': /* pc relative offset */
9207 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9208 my_getExpression (&offset_expr, s);
9209 s = expr_end;
9210 continue;
9211
9212 case 'u': /* upper 16 bits */
9213 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
9214 && imm_expr.X_op == O_constant
9215 && (imm_expr.X_add_number < 0
9216 || imm_expr.X_add_number >= 0x10000))
9217 as_bad (_("lui expression not in range 0..65535"));
9218 s = expr_end;
9219 continue;
9220
9221 case 'a': /* 26 bit address */
9222 my_getExpression (&offset_expr, s);
9223 s = expr_end;
9224 *offset_reloc = BFD_RELOC_MIPS_JMP;
9225 continue;
9226
9227 case 'N': /* 3 bit branch condition code */
9228 case 'M': /* 3 bit compare condition code */
9229 if (strncmp (s, "$fcc", 4) != 0)
9230 break;
9231 s += 4;
9232 regno = 0;
9233 do
9234 {
9235 regno *= 10;
9236 regno += *s - '0';
9237 ++s;
9238 }
9239 while (ISDIGIT (*s));
9240 if (regno > 7)
9241 as_bad (_("Invalid condition code register $fcc%d"), regno);
9242 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
9243 || strcmp(str + strlen(str) - 5, "any2f") == 0
9244 || strcmp(str + strlen(str) - 5, "any2t") == 0)
9245 && (regno & 1) != 0)
9246 as_warn(_("Condition code register should be even for %s, was %d"),
9247 str, regno);
9248 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
9249 || strcmp(str + strlen(str) - 5, "any4t") == 0)
9250 && (regno & 3) != 0)
9251 as_warn(_("Condition code register should be 0 or 4 for %s, was %d"),
9252 str, regno);
9253 if (*args == 'N')
9254 INSERT_OPERAND (BCC, *ip, regno);
9255 else
9256 INSERT_OPERAND (CCC, *ip, regno);
9257 continue;
9258
9259 case 'H':
9260 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
9261 s += 2;
9262 if (ISDIGIT (*s))
9263 {
9264 c = 0;
9265 do
9266 {
9267 c *= 10;
9268 c += *s - '0';
9269 ++s;
9270 }
9271 while (ISDIGIT (*s));
9272 }
9273 else
9274 c = 8; /* Invalid sel value. */
9275
9276 if (c > 7)
9277 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
9278 ip->insn_opcode |= c;
9279 continue;
9280
9281 case 'e':
9282 /* Must be at least one digit. */
9283 my_getExpression (&imm_expr, s);
9284 check_absolute_expr (ip, &imm_expr);
9285
9286 if ((unsigned long) imm_expr.X_add_number
9287 > (unsigned long) OP_MASK_VECBYTE)
9288 {
9289 as_bad (_("bad byte vector index (%ld)"),
9290 (long) imm_expr.X_add_number);
9291 imm_expr.X_add_number = 0;
9292 }
9293
9294 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
9295 imm_expr.X_op = O_absent;
9296 s = expr_end;
9297 continue;
9298
9299 case '%':
9300 my_getExpression (&imm_expr, s);
9301 check_absolute_expr (ip, &imm_expr);
9302
9303 if ((unsigned long) imm_expr.X_add_number
9304 > (unsigned long) OP_MASK_VECALIGN)
9305 {
9306 as_bad (_("bad byte vector index (%ld)"),
9307 (long) imm_expr.X_add_number);
9308 imm_expr.X_add_number = 0;
9309 }
9310
9311 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
9312 imm_expr.X_op = O_absent;
9313 s = expr_end;
9314 continue;
9315
9316 default:
9317 as_bad (_("bad char = '%c'\n"), *args);
9318 internalError ();
9319 }
9320 break;
9321 }
9322 /* Args don't match. */
9323 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
9324 !strcmp (insn->name, insn[1].name))
9325 {
9326 ++insn;
9327 s = argsStart;
9328 insn_error = _("illegal operands");
9329 continue;
9330 }
9331 if (save_c)
9332 *(--s) = save_c;
9333 insn_error = _("illegal operands");
9334 return;
9335 }
9336 }
9337
9338 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
9339
9340 /* This routine assembles an instruction into its binary format when
9341 assembling for the mips16. As a side effect, it sets one of the
9342 global variables imm_reloc or offset_reloc to the type of
9343 relocation to do if one of the operands is an address expression.
9344 It also sets mips16_small and mips16_ext if the user explicitly
9345 requested a small or extended instruction. */
9346
9347 static void
9348 mips16_ip (char *str, struct mips_cl_insn *ip)
9349 {
9350 char *s;
9351 const char *args;
9352 struct mips_opcode *insn;
9353 char *argsstart;
9354 unsigned int regno;
9355 unsigned int lastregno = 0;
9356 char *s_reset;
9357 size_t i;
9358
9359 insn_error = NULL;
9360
9361 mips16_small = FALSE;
9362 mips16_ext = FALSE;
9363
9364 for (s = str; ISLOWER (*s); ++s)
9365 ;
9366 switch (*s)
9367 {
9368 case '\0':
9369 break;
9370
9371 case ' ':
9372 *s++ = '\0';
9373 break;
9374
9375 case '.':
9376 if (s[1] == 't' && s[2] == ' ')
9377 {
9378 *s = '\0';
9379 mips16_small = TRUE;
9380 s += 3;
9381 break;
9382 }
9383 else if (s[1] == 'e' && s[2] == ' ')
9384 {
9385 *s = '\0';
9386 mips16_ext = TRUE;
9387 s += 3;
9388 break;
9389 }
9390 /* Fall through. */
9391 default:
9392 insn_error = _("unknown opcode");
9393 return;
9394 }
9395
9396 if (mips_opts.noautoextend && ! mips16_ext)
9397 mips16_small = TRUE;
9398
9399 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
9400 {
9401 insn_error = _("unrecognized opcode");
9402 return;
9403 }
9404
9405 argsstart = s;
9406 for (;;)
9407 {
9408 assert (strcmp (insn->name, str) == 0);
9409
9410 create_insn (ip, insn);
9411 imm_expr.X_op = O_absent;
9412 imm_reloc[0] = BFD_RELOC_UNUSED;
9413 imm_reloc[1] = BFD_RELOC_UNUSED;
9414 imm_reloc[2] = BFD_RELOC_UNUSED;
9415 imm2_expr.X_op = O_absent;
9416 offset_expr.X_op = O_absent;
9417 offset_reloc[0] = BFD_RELOC_UNUSED;
9418 offset_reloc[1] = BFD_RELOC_UNUSED;
9419 offset_reloc[2] = BFD_RELOC_UNUSED;
9420 for (args = insn->args; 1; ++args)
9421 {
9422 int c;
9423
9424 if (*s == ' ')
9425 ++s;
9426
9427 /* In this switch statement we call break if we did not find
9428 a match, continue if we did find a match, or return if we
9429 are done. */
9430
9431 c = *args;
9432 switch (c)
9433 {
9434 case '\0':
9435 if (*s == '\0')
9436 {
9437 /* Stuff the immediate value in now, if we can. */
9438 if (imm_expr.X_op == O_constant
9439 && *imm_reloc > BFD_RELOC_UNUSED
9440 && insn->pinfo != INSN_MACRO)
9441 {
9442 valueT tmp;
9443
9444 switch (*offset_reloc)
9445 {
9446 case BFD_RELOC_MIPS16_HI16_S:
9447 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
9448 break;
9449
9450 case BFD_RELOC_MIPS16_HI16:
9451 tmp = imm_expr.X_add_number >> 16;
9452 break;
9453
9454 case BFD_RELOC_MIPS16_LO16:
9455 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
9456 - 0x8000;
9457 break;
9458
9459 case BFD_RELOC_UNUSED:
9460 tmp = imm_expr.X_add_number;
9461 break;
9462
9463 default:
9464 internalError ();
9465 }
9466 *offset_reloc = BFD_RELOC_UNUSED;
9467
9468 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
9469 tmp, TRUE, mips16_small,
9470 mips16_ext, &ip->insn_opcode,
9471 &ip->use_extend, &ip->extend);
9472 imm_expr.X_op = O_absent;
9473 *imm_reloc = BFD_RELOC_UNUSED;
9474 }
9475
9476 return;
9477 }
9478 break;
9479
9480 case ',':
9481 if (*s++ == c)
9482 continue;
9483 s--;
9484 switch (*++args)
9485 {
9486 case 'v':
9487 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
9488 continue;
9489 case 'w':
9490 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
9491 continue;
9492 }
9493 break;
9494
9495 case '(':
9496 case ')':
9497 if (*s++ == c)
9498 continue;
9499 break;
9500
9501 case 'v':
9502 case 'w':
9503 if (s[0] != '$')
9504 {
9505 if (c == 'v')
9506 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
9507 else
9508 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
9509 ++args;
9510 continue;
9511 }
9512 /* Fall through. */
9513 case 'x':
9514 case 'y':
9515 case 'z':
9516 case 'Z':
9517 case '0':
9518 case 'S':
9519 case 'R':
9520 case 'X':
9521 case 'Y':
9522 if (s[0] != '$')
9523 break;
9524 s_reset = s;
9525 if (ISDIGIT (s[1]))
9526 {
9527 ++s;
9528 regno = 0;
9529 do
9530 {
9531 regno *= 10;
9532 regno += *s - '0';
9533 ++s;
9534 }
9535 while (ISDIGIT (*s));
9536 if (regno > 31)
9537 {
9538 as_bad (_("invalid register number (%d)"), regno);
9539 regno = 2;
9540 }
9541 }
9542 else
9543 {
9544 if (s[1] == 'r' && s[2] == 'a')
9545 {
9546 s += 3;
9547 regno = RA;
9548 }
9549 else if (s[1] == 'f' && s[2] == 'p')
9550 {
9551 s += 3;
9552 regno = FP;
9553 }
9554 else if (s[1] == 's' && s[2] == 'p')
9555 {
9556 s += 3;
9557 regno = SP;
9558 }
9559 else if (s[1] == 'g' && s[2] == 'p')
9560 {
9561 s += 3;
9562 regno = GP;
9563 }
9564 else if (s[1] == 'a' && s[2] == 't')
9565 {
9566 s += 3;
9567 regno = AT;
9568 }
9569 else if (s[1] == 'k' && s[2] == 't' && s[3] == '0')
9570 {
9571 s += 4;
9572 regno = KT0;
9573 }
9574 else if (s[1] == 'k' && s[2] == 't' && s[3] == '1')
9575 {
9576 s += 4;
9577 regno = KT1;
9578 }
9579 else if (s[1] == 'z' && s[2] == 'e' && s[3] == 'r' && s[4] == 'o')
9580 {
9581 s += 5;
9582 regno = ZERO;
9583 }
9584 else
9585 break;
9586 }
9587
9588 if (*s == ' ')
9589 ++s;
9590 if (args[1] != *s)
9591 {
9592 if (c == 'v' || c == 'w')
9593 {
9594 regno = mips16_to_32_reg_map[lastregno];
9595 s = s_reset;
9596 ++args;
9597 }
9598 }
9599
9600 switch (c)
9601 {
9602 case 'x':
9603 case 'y':
9604 case 'z':
9605 case 'v':
9606 case 'w':
9607 case 'Z':
9608 regno = mips32_to_16_reg_map[regno];
9609 break;
9610
9611 case '0':
9612 if (regno != 0)
9613 regno = ILLEGAL_REG;
9614 break;
9615
9616 case 'S':
9617 if (regno != SP)
9618 regno = ILLEGAL_REG;
9619 break;
9620
9621 case 'R':
9622 if (regno != RA)
9623 regno = ILLEGAL_REG;
9624 break;
9625
9626 case 'X':
9627 case 'Y':
9628 if (regno == AT && ! mips_opts.noat)
9629 as_warn (_("used $at without \".set noat\""));
9630 break;
9631
9632 default:
9633 internalError ();
9634 }
9635
9636 if (regno == ILLEGAL_REG)
9637 break;
9638
9639 switch (c)
9640 {
9641 case 'x':
9642 case 'v':
9643 MIPS16_INSERT_OPERAND (RX, *ip, regno);
9644 break;
9645 case 'y':
9646 case 'w':
9647 MIPS16_INSERT_OPERAND (RY, *ip, regno);
9648 break;
9649 case 'z':
9650 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
9651 break;
9652 case 'Z':
9653 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
9654 case '0':
9655 case 'S':
9656 case 'R':
9657 break;
9658 case 'X':
9659 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
9660 break;
9661 case 'Y':
9662 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
9663 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
9664 break;
9665 default:
9666 internalError ();
9667 }
9668
9669 lastregno = regno;
9670 continue;
9671
9672 case 'P':
9673 if (strncmp (s, "$pc", 3) == 0)
9674 {
9675 s += 3;
9676 continue;
9677 }
9678 break;
9679
9680 case '5':
9681 case 'H':
9682 case 'W':
9683 case 'D':
9684 case 'j':
9685 case 'V':
9686 case 'C':
9687 case 'U':
9688 case 'k':
9689 case 'K':
9690 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
9691 if (i > 0)
9692 {
9693 if (imm_expr.X_op != O_constant)
9694 {
9695 mips16_ext = TRUE;
9696 ip->use_extend = TRUE;
9697 ip->extend = 0;
9698 }
9699 else
9700 {
9701 /* We need to relax this instruction. */
9702 *offset_reloc = *imm_reloc;
9703 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9704 }
9705 s = expr_end;
9706 continue;
9707 }
9708 *imm_reloc = BFD_RELOC_UNUSED;
9709 /* Fall through. */
9710 case '<':
9711 case '>':
9712 case '[':
9713 case ']':
9714 case '4':
9715 case '8':
9716 my_getExpression (&imm_expr, s);
9717 if (imm_expr.X_op == O_register)
9718 {
9719 /* What we thought was an expression turned out to
9720 be a register. */
9721
9722 if (s[0] == '(' && args[1] == '(')
9723 {
9724 /* It looks like the expression was omitted
9725 before a register indirection, which means
9726 that the expression is implicitly zero. We
9727 still set up imm_expr, so that we handle
9728 explicit extensions correctly. */
9729 imm_expr.X_op = O_constant;
9730 imm_expr.X_add_number = 0;
9731 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9732 continue;
9733 }
9734
9735 break;
9736 }
9737
9738 /* We need to relax this instruction. */
9739 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
9740 s = expr_end;
9741 continue;
9742
9743 case 'p':
9744 case 'q':
9745 case 'A':
9746 case 'B':
9747 case 'E':
9748 /* We use offset_reloc rather than imm_reloc for the PC
9749 relative operands. This lets macros with both
9750 immediate and address operands work correctly. */
9751 my_getExpression (&offset_expr, s);
9752
9753 if (offset_expr.X_op == O_register)
9754 break;
9755
9756 /* We need to relax this instruction. */
9757 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
9758 s = expr_end;
9759 continue;
9760
9761 case '6': /* break code */
9762 my_getExpression (&imm_expr, s);
9763 check_absolute_expr (ip, &imm_expr);
9764 if ((unsigned long) imm_expr.X_add_number > 63)
9765 as_warn (_("Invalid value for `%s' (%lu)"),
9766 ip->insn_mo->name,
9767 (unsigned long) imm_expr.X_add_number);
9768 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
9769 imm_expr.X_op = O_absent;
9770 s = expr_end;
9771 continue;
9772
9773 case 'a': /* 26 bit address */
9774 my_getExpression (&offset_expr, s);
9775 s = expr_end;
9776 *offset_reloc = BFD_RELOC_MIPS16_JMP;
9777 ip->insn_opcode <<= 16;
9778 continue;
9779
9780 case 'l': /* register list for entry macro */
9781 case 'L': /* register list for exit macro */
9782 {
9783 int mask;
9784
9785 if (c == 'l')
9786 mask = 0;
9787 else
9788 mask = 7 << 3;
9789 while (*s != '\0')
9790 {
9791 int freg, reg1, reg2;
9792
9793 while (*s == ' ' || *s == ',')
9794 ++s;
9795 if (*s != '$')
9796 {
9797 as_bad (_("can't parse register list"));
9798 break;
9799 }
9800 ++s;
9801 if (*s != 'f')
9802 freg = 0;
9803 else
9804 {
9805 freg = 1;
9806 ++s;
9807 }
9808 reg1 = 0;
9809 while (ISDIGIT (*s))
9810 {
9811 reg1 *= 10;
9812 reg1 += *s - '0';
9813 ++s;
9814 }
9815 if (*s == ' ')
9816 ++s;
9817 if (*s != '-')
9818 reg2 = reg1;
9819 else
9820 {
9821 ++s;
9822 if (*s != '$')
9823 break;
9824 ++s;
9825 if (freg)
9826 {
9827 if (*s == 'f')
9828 ++s;
9829 else
9830 {
9831 as_bad (_("invalid register list"));
9832 break;
9833 }
9834 }
9835 reg2 = 0;
9836 while (ISDIGIT (*s))
9837 {
9838 reg2 *= 10;
9839 reg2 += *s - '0';
9840 ++s;
9841 }
9842 }
9843 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
9844 {
9845 mask &= ~ (7 << 3);
9846 mask |= 5 << 3;
9847 }
9848 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
9849 {
9850 mask &= ~ (7 << 3);
9851 mask |= 6 << 3;
9852 }
9853 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
9854 mask |= (reg2 - 3) << 3;
9855 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
9856 mask |= (reg2 - 15) << 1;
9857 else if (reg1 == RA && reg2 == RA)
9858 mask |= 1;
9859 else
9860 {
9861 as_bad (_("invalid register list"));
9862 break;
9863 }
9864 }
9865 /* The mask is filled in in the opcode table for the
9866 benefit of the disassembler. We remove it before
9867 applying the actual mask. */
9868 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
9869 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
9870 }
9871 continue;
9872
9873 case 'm': /* Register list for save insn. */
9874 case 'M': /* Register list for restore insn. */
9875 {
9876 int opcode = 0;
9877 int framesz = 0, seen_framesz = 0;
9878 int args = 0, statics = 0, sregs = 0;
9879
9880 while (*s != '\0')
9881 {
9882 unsigned int reg1, reg2;
9883
9884 SKIP_SPACE_TABS (s);
9885 while (*s == ',')
9886 ++s;
9887 SKIP_SPACE_TABS (s);
9888
9889 my_getExpression (&imm_expr, s);
9890 if (imm_expr.X_op == O_constant)
9891 {
9892 /* Handle the frame size. */
9893 if (seen_framesz)
9894 {
9895 as_bad (_("more than one frame size in list"));
9896 break;
9897 }
9898 seen_framesz = 1;
9899 framesz = imm_expr.X_add_number;
9900 imm_expr.X_op = O_absent;
9901 s = expr_end;
9902 continue;
9903 }
9904
9905 if (*s != '$')
9906 {
9907 as_bad (_("can't parse register list"));
9908 break;
9909 }
9910 ++s;
9911
9912 reg1 = 0;
9913 while (ISDIGIT (*s))
9914 {
9915 reg1 *= 10;
9916 reg1 += *s - '0';
9917 ++s;
9918 }
9919 SKIP_SPACE_TABS (s);
9920 if (*s != '-')
9921 reg2 = reg1;
9922 else
9923 {
9924 ++s;
9925 if (*s != '$')
9926 {
9927 as_bad (_("can't parse register list"));
9928 break;
9929 }
9930 ++s;
9931 reg2 = 0;
9932 while (ISDIGIT (*s))
9933 {
9934 reg2 *= 10;
9935 reg2 += *s - '0';
9936 ++s;
9937 }
9938 }
9939
9940 while (reg1 <= reg2)
9941 {
9942 if (reg1 >= 4 && reg1 <= 7)
9943 {
9944 if (c == 'm' && !seen_framesz)
9945 /* args $a0-$a3 */
9946 args |= 1 << (reg1 - 4);
9947 else
9948 /* statics $a0-$a3 */
9949 statics |= 1 << (reg1 - 4);
9950 }
9951 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
9952 {
9953 /* $s0-$s8 */
9954 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
9955 }
9956 else if (reg1 == 31)
9957 {
9958 /* Add $ra to insn. */
9959 opcode |= 0x40;
9960 }
9961 else
9962 {
9963 as_bad (_("unexpected register in list"));
9964 break;
9965 }
9966 if (++reg1 == 24)
9967 reg1 = 30;
9968 }
9969 }
9970
9971 /* Encode args/statics combination. */
9972 if (args & statics)
9973 as_bad (_("arg/static registers overlap"));
9974 else if (args == 0xf)
9975 /* All $a0-$a3 are args. */
9976 opcode |= MIPS16_ALL_ARGS << 16;
9977 else if (statics == 0xf)
9978 /* All $a0-$a3 are statics. */
9979 opcode |= MIPS16_ALL_STATICS << 16;
9980 else
9981 {
9982 int narg = 0, nstat = 0;
9983
9984 /* Count arg registers. */
9985 while (args & 0x1)
9986 {
9987 args >>= 1;
9988 narg++;
9989 }
9990 if (args != 0)
9991 as_bad (_("invalid arg register list"));
9992
9993 /* Count static registers. */
9994 while (statics & 0x8)
9995 {
9996 statics = (statics << 1) & 0xf;
9997 nstat++;
9998 }
9999 if (statics != 0)
10000 as_bad (_("invalid static register list"));
10001
10002 /* Encode args/statics. */
10003 opcode |= ((narg << 2) | nstat) << 16;
10004 }
10005
10006 /* Encode $s0/$s1. */
10007 if (sregs & (1 << 0)) /* $s0 */
10008 opcode |= 0x20;
10009 if (sregs & (1 << 1)) /* $s1 */
10010 opcode |= 0x10;
10011 sregs >>= 2;
10012
10013 if (sregs != 0)
10014 {
10015 /* Count regs $s2-$s8. */
10016 int nsreg = 0;
10017 while (sregs & 1)
10018 {
10019 sregs >>= 1;
10020 nsreg++;
10021 }
10022 if (sregs != 0)
10023 as_bad (_("invalid static register list"));
10024 /* Encode $s2-$s8. */
10025 opcode |= nsreg << 24;
10026 }
10027
10028 /* Encode frame size. */
10029 if (!seen_framesz)
10030 as_bad (_("missing frame size"));
10031 else if ((framesz & 7) != 0 || framesz < 0
10032 || framesz > 0xff * 8)
10033 as_bad (_("invalid frame size"));
10034 else if (framesz != 128 || (opcode >> 16) != 0)
10035 {
10036 framesz /= 8;
10037 opcode |= (((framesz & 0xf0) << 16)
10038 | (framesz & 0x0f));
10039 }
10040
10041 /* Finally build the instruction. */
10042 if ((opcode >> 16) != 0 || framesz == 0)
10043 {
10044 ip->use_extend = TRUE;
10045 ip->extend = opcode >> 16;
10046 }
10047 ip->insn_opcode |= opcode & 0x7f;
10048 }
10049 continue;
10050
10051 case 'e': /* extend code */
10052 my_getExpression (&imm_expr, s);
10053 check_absolute_expr (ip, &imm_expr);
10054 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10055 {
10056 as_warn (_("Invalid value for `%s' (%lu)"),
10057 ip->insn_mo->name,
10058 (unsigned long) imm_expr.X_add_number);
10059 imm_expr.X_add_number &= 0x7ff;
10060 }
10061 ip->insn_opcode |= imm_expr.X_add_number;
10062 imm_expr.X_op = O_absent;
10063 s = expr_end;
10064 continue;
10065
10066 default:
10067 internalError ();
10068 }
10069 break;
10070 }
10071
10072 /* Args don't match. */
10073 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10074 strcmp (insn->name, insn[1].name) == 0)
10075 {
10076 ++insn;
10077 s = argsstart;
10078 continue;
10079 }
10080
10081 insn_error = _("illegal operands");
10082
10083 return;
10084 }
10085 }
10086
10087 /* This structure holds information we know about a mips16 immediate
10088 argument type. */
10089
10090 struct mips16_immed_operand
10091 {
10092 /* The type code used in the argument string in the opcode table. */
10093 int type;
10094 /* The number of bits in the short form of the opcode. */
10095 int nbits;
10096 /* The number of bits in the extended form of the opcode. */
10097 int extbits;
10098 /* The amount by which the short form is shifted when it is used;
10099 for example, the sw instruction has a shift count of 2. */
10100 int shift;
10101 /* The amount by which the short form is shifted when it is stored
10102 into the instruction code. */
10103 int op_shift;
10104 /* Non-zero if the short form is unsigned. */
10105 int unsp;
10106 /* Non-zero if the extended form is unsigned. */
10107 int extu;
10108 /* Non-zero if the value is PC relative. */
10109 int pcrel;
10110 };
10111
10112 /* The mips16 immediate operand types. */
10113
10114 static const struct mips16_immed_operand mips16_immed_operands[] =
10115 {
10116 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10117 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10118 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10119 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10120 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10121 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10122 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10123 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10124 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10125 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10126 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10127 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10128 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10129 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10130 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10131 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10132 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10133 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10134 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10135 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10136 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10137 };
10138
10139 #define MIPS16_NUM_IMMED \
10140 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10141
10142 /* Handle a mips16 instruction with an immediate value. This or's the
10143 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10144 whether an extended value is needed; if one is needed, it sets
10145 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10146 If SMALL is true, an unextended opcode was explicitly requested.
10147 If EXT is true, an extended opcode was explicitly requested. If
10148 WARN is true, warn if EXT does not match reality. */
10149
10150 static void
10151 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10152 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10153 unsigned long *insn, bfd_boolean *use_extend,
10154 unsigned short *extend)
10155 {
10156 register const struct mips16_immed_operand *op;
10157 int mintiny, maxtiny;
10158 bfd_boolean needext;
10159
10160 op = mips16_immed_operands;
10161 while (op->type != type)
10162 {
10163 ++op;
10164 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10165 }
10166
10167 if (op->unsp)
10168 {
10169 if (type == '<' || type == '>' || type == '[' || type == ']')
10170 {
10171 mintiny = 1;
10172 maxtiny = 1 << op->nbits;
10173 }
10174 else
10175 {
10176 mintiny = 0;
10177 maxtiny = (1 << op->nbits) - 1;
10178 }
10179 }
10180 else
10181 {
10182 mintiny = - (1 << (op->nbits - 1));
10183 maxtiny = (1 << (op->nbits - 1)) - 1;
10184 }
10185
10186 /* Branch offsets have an implicit 0 in the lowest bit. */
10187 if (type == 'p' || type == 'q')
10188 val /= 2;
10189
10190 if ((val & ((1 << op->shift) - 1)) != 0
10191 || val < (mintiny << op->shift)
10192 || val > (maxtiny << op->shift))
10193 needext = TRUE;
10194 else
10195 needext = FALSE;
10196
10197 if (warn && ext && ! needext)
10198 as_warn_where (file, line,
10199 _("extended operand requested but not required"));
10200 if (small && needext)
10201 as_bad_where (file, line, _("invalid unextended operand value"));
10202
10203 if (small || (! ext && ! needext))
10204 {
10205 int insnval;
10206
10207 *use_extend = FALSE;
10208 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10209 insnval <<= op->op_shift;
10210 *insn |= insnval;
10211 }
10212 else
10213 {
10214 long minext, maxext;
10215 int extval;
10216
10217 if (op->extu)
10218 {
10219 minext = 0;
10220 maxext = (1 << op->extbits) - 1;
10221 }
10222 else
10223 {
10224 minext = - (1 << (op->extbits - 1));
10225 maxext = (1 << (op->extbits - 1)) - 1;
10226 }
10227 if (val < minext || val > maxext)
10228 as_bad_where (file, line,
10229 _("operand value out of range for instruction"));
10230
10231 *use_extend = TRUE;
10232 if (op->extbits == 16)
10233 {
10234 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
10235 val &= 0x1f;
10236 }
10237 else if (op->extbits == 15)
10238 {
10239 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
10240 val &= 0xf;
10241 }
10242 else
10243 {
10244 extval = ((val & 0x1f) << 6) | (val & 0x20);
10245 val = 0;
10246 }
10247
10248 *extend = (unsigned short) extval;
10249 *insn |= val;
10250 }
10251 }
10252 \f
10253 struct percent_op_match
10254 {
10255 const char *str;
10256 bfd_reloc_code_real_type reloc;
10257 };
10258
10259 static const struct percent_op_match mips_percent_op[] =
10260 {
10261 {"%lo", BFD_RELOC_LO16},
10262 #ifdef OBJ_ELF
10263 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
10264 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
10265 {"%call16", BFD_RELOC_MIPS_CALL16},
10266 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
10267 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
10268 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
10269 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
10270 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
10271 {"%got", BFD_RELOC_MIPS_GOT16},
10272 {"%gp_rel", BFD_RELOC_GPREL16},
10273 {"%half", BFD_RELOC_16},
10274 {"%highest", BFD_RELOC_MIPS_HIGHEST},
10275 {"%higher", BFD_RELOC_MIPS_HIGHER},
10276 {"%neg", BFD_RELOC_MIPS_SUB},
10277 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
10278 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
10279 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
10280 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
10281 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
10282 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
10283 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
10284 #endif
10285 {"%hi", BFD_RELOC_HI16_S}
10286 };
10287
10288 static const struct percent_op_match mips16_percent_op[] =
10289 {
10290 {"%lo", BFD_RELOC_MIPS16_LO16},
10291 {"%gprel", BFD_RELOC_MIPS16_GPREL},
10292 {"%hi", BFD_RELOC_MIPS16_HI16_S}
10293 };
10294
10295
10296 /* Return true if *STR points to a relocation operator. When returning true,
10297 move *STR over the operator and store its relocation code in *RELOC.
10298 Leave both *STR and *RELOC alone when returning false. */
10299
10300 static bfd_boolean
10301 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
10302 {
10303 const struct percent_op_match *percent_op;
10304 size_t limit, i;
10305
10306 if (mips_opts.mips16)
10307 {
10308 percent_op = mips16_percent_op;
10309 limit = ARRAY_SIZE (mips16_percent_op);
10310 }
10311 else
10312 {
10313 percent_op = mips_percent_op;
10314 limit = ARRAY_SIZE (mips_percent_op);
10315 }
10316
10317 for (i = 0; i < limit; i++)
10318 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
10319 {
10320 int len = strlen (percent_op[i].str);
10321
10322 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
10323 continue;
10324
10325 *str += strlen (percent_op[i].str);
10326 *reloc = percent_op[i].reloc;
10327
10328 /* Check whether the output BFD supports this relocation.
10329 If not, issue an error and fall back on something safe. */
10330 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
10331 {
10332 as_bad ("relocation %s isn't supported by the current ABI",
10333 percent_op[i].str);
10334 *reloc = BFD_RELOC_UNUSED;
10335 }
10336 return TRUE;
10337 }
10338 return FALSE;
10339 }
10340
10341
10342 /* Parse string STR as a 16-bit relocatable operand. Store the
10343 expression in *EP and the relocations in the array starting
10344 at RELOC. Return the number of relocation operators used.
10345
10346 On exit, EXPR_END points to the first character after the expression. */
10347
10348 static size_t
10349 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
10350 char *str)
10351 {
10352 bfd_reloc_code_real_type reversed_reloc[3];
10353 size_t reloc_index, i;
10354 int crux_depth, str_depth;
10355 char *crux;
10356
10357 /* Search for the start of the main expression, recoding relocations
10358 in REVERSED_RELOC. End the loop with CRUX pointing to the start
10359 of the main expression and with CRUX_DEPTH containing the number
10360 of open brackets at that point. */
10361 reloc_index = -1;
10362 str_depth = 0;
10363 do
10364 {
10365 reloc_index++;
10366 crux = str;
10367 crux_depth = str_depth;
10368
10369 /* Skip over whitespace and brackets, keeping count of the number
10370 of brackets. */
10371 while (*str == ' ' || *str == '\t' || *str == '(')
10372 if (*str++ == '(')
10373 str_depth++;
10374 }
10375 while (*str == '%'
10376 && reloc_index < (HAVE_NEWABI ? 3 : 1)
10377 && parse_relocation (&str, &reversed_reloc[reloc_index]));
10378
10379 my_getExpression (ep, crux);
10380 str = expr_end;
10381
10382 /* Match every open bracket. */
10383 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
10384 if (*str++ == ')')
10385 crux_depth--;
10386
10387 if (crux_depth > 0)
10388 as_bad ("unclosed '('");
10389
10390 expr_end = str;
10391
10392 if (reloc_index != 0)
10393 {
10394 prev_reloc_op_frag = frag_now;
10395 for (i = 0; i < reloc_index; i++)
10396 reloc[i] = reversed_reloc[reloc_index - 1 - i];
10397 }
10398
10399 return reloc_index;
10400 }
10401
10402 static void
10403 my_getExpression (expressionS *ep, char *str)
10404 {
10405 char *save_in;
10406 valueT val;
10407
10408 save_in = input_line_pointer;
10409 input_line_pointer = str;
10410 expression (ep);
10411 expr_end = input_line_pointer;
10412 input_line_pointer = save_in;
10413
10414 /* If we are in mips16 mode, and this is an expression based on `.',
10415 then we bump the value of the symbol by 1 since that is how other
10416 text symbols are handled. We don't bother to handle complex
10417 expressions, just `.' plus or minus a constant. */
10418 if (mips_opts.mips16
10419 && ep->X_op == O_symbol
10420 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
10421 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
10422 && symbol_get_frag (ep->X_add_symbol) == frag_now
10423 && symbol_constant_p (ep->X_add_symbol)
10424 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
10425 S_SET_VALUE (ep->X_add_symbol, val + 1);
10426 }
10427
10428 /* Turn a string in input_line_pointer into a floating point constant
10429 of type TYPE, and store the appropriate bytes in *LITP. The number
10430 of LITTLENUMS emitted is stored in *SIZEP. An error message is
10431 returned, or NULL on OK. */
10432
10433 char *
10434 md_atof (int type, char *litP, int *sizeP)
10435 {
10436 int prec;
10437 LITTLENUM_TYPE words[4];
10438 char *t;
10439 int i;
10440
10441 switch (type)
10442 {
10443 case 'f':
10444 prec = 2;
10445 break;
10446
10447 case 'd':
10448 prec = 4;
10449 break;
10450
10451 default:
10452 *sizeP = 0;
10453 return _("bad call to md_atof");
10454 }
10455
10456 t = atof_ieee (input_line_pointer, type, words);
10457 if (t)
10458 input_line_pointer = t;
10459
10460 *sizeP = prec * 2;
10461
10462 if (! target_big_endian)
10463 {
10464 for (i = prec - 1; i >= 0; i--)
10465 {
10466 md_number_to_chars (litP, words[i], 2);
10467 litP += 2;
10468 }
10469 }
10470 else
10471 {
10472 for (i = 0; i < prec; i++)
10473 {
10474 md_number_to_chars (litP, words[i], 2);
10475 litP += 2;
10476 }
10477 }
10478
10479 return NULL;
10480 }
10481
10482 void
10483 md_number_to_chars (char *buf, valueT val, int n)
10484 {
10485 if (target_big_endian)
10486 number_to_chars_bigendian (buf, val, n);
10487 else
10488 number_to_chars_littleendian (buf, val, n);
10489 }
10490 \f
10491 #ifdef OBJ_ELF
10492 static int support_64bit_objects(void)
10493 {
10494 const char **list, **l;
10495 int yes;
10496
10497 list = bfd_target_list ();
10498 for (l = list; *l != NULL; l++)
10499 #ifdef TE_TMIPS
10500 /* This is traditional mips */
10501 if (strcmp (*l, "elf64-tradbigmips") == 0
10502 || strcmp (*l, "elf64-tradlittlemips") == 0)
10503 #else
10504 if (strcmp (*l, "elf64-bigmips") == 0
10505 || strcmp (*l, "elf64-littlemips") == 0)
10506 #endif
10507 break;
10508 yes = (*l != NULL);
10509 free (list);
10510 return yes;
10511 }
10512 #endif /* OBJ_ELF */
10513
10514 const char *md_shortopts = "O::g::G:";
10515
10516 struct option md_longopts[] =
10517 {
10518 /* Options which specify architecture. */
10519 #define OPTION_ARCH_BASE (OPTION_MD_BASE)
10520 #define OPTION_MARCH (OPTION_ARCH_BASE + 0)
10521 {"march", required_argument, NULL, OPTION_MARCH},
10522 #define OPTION_MTUNE (OPTION_ARCH_BASE + 1)
10523 {"mtune", required_argument, NULL, OPTION_MTUNE},
10524 #define OPTION_MIPS1 (OPTION_ARCH_BASE + 2)
10525 {"mips0", no_argument, NULL, OPTION_MIPS1},
10526 {"mips1", no_argument, NULL, OPTION_MIPS1},
10527 #define OPTION_MIPS2 (OPTION_ARCH_BASE + 3)
10528 {"mips2", no_argument, NULL, OPTION_MIPS2},
10529 #define OPTION_MIPS3 (OPTION_ARCH_BASE + 4)
10530 {"mips3", no_argument, NULL, OPTION_MIPS3},
10531 #define OPTION_MIPS4 (OPTION_ARCH_BASE + 5)
10532 {"mips4", no_argument, NULL, OPTION_MIPS4},
10533 #define OPTION_MIPS5 (OPTION_ARCH_BASE + 6)
10534 {"mips5", no_argument, NULL, OPTION_MIPS5},
10535 #define OPTION_MIPS32 (OPTION_ARCH_BASE + 7)
10536 {"mips32", no_argument, NULL, OPTION_MIPS32},
10537 #define OPTION_MIPS64 (OPTION_ARCH_BASE + 8)
10538 {"mips64", no_argument, NULL, OPTION_MIPS64},
10539 #define OPTION_MIPS32R2 (OPTION_ARCH_BASE + 9)
10540 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
10541 #define OPTION_MIPS64R2 (OPTION_ARCH_BASE + 10)
10542 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
10543
10544 /* Options which specify Application Specific Extensions (ASEs). */
10545 #define OPTION_ASE_BASE (OPTION_ARCH_BASE + 11)
10546 #define OPTION_MIPS16 (OPTION_ASE_BASE + 0)
10547 {"mips16", no_argument, NULL, OPTION_MIPS16},
10548 #define OPTION_NO_MIPS16 (OPTION_ASE_BASE + 1)
10549 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
10550 #define OPTION_MIPS3D (OPTION_ASE_BASE + 2)
10551 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
10552 #define OPTION_NO_MIPS3D (OPTION_ASE_BASE + 3)
10553 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
10554 #define OPTION_MDMX (OPTION_ASE_BASE + 4)
10555 {"mdmx", no_argument, NULL, OPTION_MDMX},
10556 #define OPTION_NO_MDMX (OPTION_ASE_BASE + 5)
10557 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
10558 #define OPTION_DSP (OPTION_ASE_BASE + 6)
10559 {"mdsp", no_argument, NULL, OPTION_DSP},
10560 #define OPTION_NO_DSP (OPTION_ASE_BASE + 7)
10561 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
10562 #define OPTION_MT (OPTION_ASE_BASE + 8)
10563 {"mmt", no_argument, NULL, OPTION_MT},
10564 #define OPTION_NO_MT (OPTION_ASE_BASE + 9)
10565 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
10566
10567 /* Old-style architecture options. Don't add more of these. */
10568 #define OPTION_COMPAT_ARCH_BASE (OPTION_ASE_BASE + 10)
10569 #define OPTION_M4650 (OPTION_COMPAT_ARCH_BASE + 0)
10570 {"m4650", no_argument, NULL, OPTION_M4650},
10571 #define OPTION_NO_M4650 (OPTION_COMPAT_ARCH_BASE + 1)
10572 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
10573 #define OPTION_M4010 (OPTION_COMPAT_ARCH_BASE + 2)
10574 {"m4010", no_argument, NULL, OPTION_M4010},
10575 #define OPTION_NO_M4010 (OPTION_COMPAT_ARCH_BASE + 3)
10576 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
10577 #define OPTION_M4100 (OPTION_COMPAT_ARCH_BASE + 4)
10578 {"m4100", no_argument, NULL, OPTION_M4100},
10579 #define OPTION_NO_M4100 (OPTION_COMPAT_ARCH_BASE + 5)
10580 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
10581 #define OPTION_M3900 (OPTION_COMPAT_ARCH_BASE + 6)
10582 {"m3900", no_argument, NULL, OPTION_M3900},
10583 #define OPTION_NO_M3900 (OPTION_COMPAT_ARCH_BASE + 7)
10584 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
10585
10586 /* Options which enable bug fixes. */
10587 #define OPTION_FIX_BASE (OPTION_COMPAT_ARCH_BASE + 8)
10588 #define OPTION_M7000_HILO_FIX (OPTION_FIX_BASE + 0)
10589 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
10590 #define OPTION_MNO_7000_HILO_FIX (OPTION_FIX_BASE + 1)
10591 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
10592 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
10593 #define OPTION_FIX_VR4120 (OPTION_FIX_BASE + 2)
10594 #define OPTION_NO_FIX_VR4120 (OPTION_FIX_BASE + 3)
10595 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
10596 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
10597 #define OPTION_FIX_VR4130 (OPTION_FIX_BASE + 4)
10598 #define OPTION_NO_FIX_VR4130 (OPTION_FIX_BASE + 5)
10599 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
10600 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
10601
10602 /* Miscellaneous options. */
10603 #define OPTION_MISC_BASE (OPTION_FIX_BASE + 6)
10604 #define OPTION_TRAP (OPTION_MISC_BASE + 0)
10605 {"trap", no_argument, NULL, OPTION_TRAP},
10606 {"no-break", no_argument, NULL, OPTION_TRAP},
10607 #define OPTION_BREAK (OPTION_MISC_BASE + 1)
10608 {"break", no_argument, NULL, OPTION_BREAK},
10609 {"no-trap", no_argument, NULL, OPTION_BREAK},
10610 #define OPTION_EB (OPTION_MISC_BASE + 2)
10611 {"EB", no_argument, NULL, OPTION_EB},
10612 #define OPTION_EL (OPTION_MISC_BASE + 3)
10613 {"EL", no_argument, NULL, OPTION_EL},
10614 #define OPTION_FP32 (OPTION_MISC_BASE + 4)
10615 {"mfp32", no_argument, NULL, OPTION_FP32},
10616 #define OPTION_GP32 (OPTION_MISC_BASE + 5)
10617 {"mgp32", no_argument, NULL, OPTION_GP32},
10618 #define OPTION_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 6)
10619 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
10620 #define OPTION_NO_CONSTRUCT_FLOATS (OPTION_MISC_BASE + 7)
10621 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
10622 #define OPTION_FP64 (OPTION_MISC_BASE + 8)
10623 {"mfp64", no_argument, NULL, OPTION_FP64},
10624 #define OPTION_GP64 (OPTION_MISC_BASE + 9)
10625 {"mgp64", no_argument, NULL, OPTION_GP64},
10626 #define OPTION_RELAX_BRANCH (OPTION_MISC_BASE + 10)
10627 #define OPTION_NO_RELAX_BRANCH (OPTION_MISC_BASE + 11)
10628 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
10629 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
10630 #define OPTION_MSHARED (OPTION_MISC_BASE + 12)
10631 #define OPTION_MNO_SHARED (OPTION_MISC_BASE + 13)
10632 {"mshared", no_argument, NULL, OPTION_MSHARED},
10633 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
10634 #define OPTION_MSYM32 (OPTION_MISC_BASE + 14)
10635 #define OPTION_MNO_SYM32 (OPTION_MISC_BASE + 15)
10636 {"msym32", no_argument, NULL, OPTION_MSYM32},
10637 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
10638
10639 /* ELF-specific options. */
10640 #ifdef OBJ_ELF
10641 #define OPTION_ELF_BASE (OPTION_MISC_BASE + 16)
10642 #define OPTION_CALL_SHARED (OPTION_ELF_BASE + 0)
10643 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
10644 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
10645 #define OPTION_NON_SHARED (OPTION_ELF_BASE + 1)
10646 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
10647 #define OPTION_XGOT (OPTION_ELF_BASE + 2)
10648 {"xgot", no_argument, NULL, OPTION_XGOT},
10649 #define OPTION_MABI (OPTION_ELF_BASE + 3)
10650 {"mabi", required_argument, NULL, OPTION_MABI},
10651 #define OPTION_32 (OPTION_ELF_BASE + 4)
10652 {"32", no_argument, NULL, OPTION_32},
10653 #define OPTION_N32 (OPTION_ELF_BASE + 5)
10654 {"n32", no_argument, NULL, OPTION_N32},
10655 #define OPTION_64 (OPTION_ELF_BASE + 6)
10656 {"64", no_argument, NULL, OPTION_64},
10657 #define OPTION_MDEBUG (OPTION_ELF_BASE + 7)
10658 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
10659 #define OPTION_NO_MDEBUG (OPTION_ELF_BASE + 8)
10660 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
10661 #define OPTION_PDR (OPTION_ELF_BASE + 9)
10662 {"mpdr", no_argument, NULL, OPTION_PDR},
10663 #define OPTION_NO_PDR (OPTION_ELF_BASE + 10)
10664 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
10665 #define OPTION_MVXWORKS_PIC (OPTION_ELF_BASE + 11)
10666 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
10667 #endif /* OBJ_ELF */
10668
10669 {NULL, no_argument, NULL, 0}
10670 };
10671 size_t md_longopts_size = sizeof (md_longopts);
10672
10673 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
10674 NEW_VALUE. Warn if another value was already specified. Note:
10675 we have to defer parsing the -march and -mtune arguments in order
10676 to handle 'from-abi' correctly, since the ABI might be specified
10677 in a later argument. */
10678
10679 static void
10680 mips_set_option_string (const char **string_ptr, const char *new_value)
10681 {
10682 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
10683 as_warn (_("A different %s was already specified, is now %s"),
10684 string_ptr == &mips_arch_string ? "-march" : "-mtune",
10685 new_value);
10686
10687 *string_ptr = new_value;
10688 }
10689
10690 int
10691 md_parse_option (int c, char *arg)
10692 {
10693 switch (c)
10694 {
10695 case OPTION_CONSTRUCT_FLOATS:
10696 mips_disable_float_construction = 0;
10697 break;
10698
10699 case OPTION_NO_CONSTRUCT_FLOATS:
10700 mips_disable_float_construction = 1;
10701 break;
10702
10703 case OPTION_TRAP:
10704 mips_trap = 1;
10705 break;
10706
10707 case OPTION_BREAK:
10708 mips_trap = 0;
10709 break;
10710
10711 case OPTION_EB:
10712 target_big_endian = 1;
10713 break;
10714
10715 case OPTION_EL:
10716 target_big_endian = 0;
10717 break;
10718
10719 case 'O':
10720 if (arg && arg[1] == '0')
10721 mips_optimize = 1;
10722 else
10723 mips_optimize = 2;
10724 break;
10725
10726 case 'g':
10727 if (arg == NULL)
10728 mips_debug = 2;
10729 else
10730 mips_debug = atoi (arg);
10731 /* When the MIPS assembler sees -g or -g2, it does not do
10732 optimizations which limit full symbolic debugging. We take
10733 that to be equivalent to -O0. */
10734 if (mips_debug == 2)
10735 mips_optimize = 1;
10736 break;
10737
10738 case OPTION_MIPS1:
10739 file_mips_isa = ISA_MIPS1;
10740 break;
10741
10742 case OPTION_MIPS2:
10743 file_mips_isa = ISA_MIPS2;
10744 break;
10745
10746 case OPTION_MIPS3:
10747 file_mips_isa = ISA_MIPS3;
10748 break;
10749
10750 case OPTION_MIPS4:
10751 file_mips_isa = ISA_MIPS4;
10752 break;
10753
10754 case OPTION_MIPS5:
10755 file_mips_isa = ISA_MIPS5;
10756 break;
10757
10758 case OPTION_MIPS32:
10759 file_mips_isa = ISA_MIPS32;
10760 break;
10761
10762 case OPTION_MIPS32R2:
10763 file_mips_isa = ISA_MIPS32R2;
10764 break;
10765
10766 case OPTION_MIPS64R2:
10767 file_mips_isa = ISA_MIPS64R2;
10768 break;
10769
10770 case OPTION_MIPS64:
10771 file_mips_isa = ISA_MIPS64;
10772 break;
10773
10774 case OPTION_MTUNE:
10775 mips_set_option_string (&mips_tune_string, arg);
10776 break;
10777
10778 case OPTION_MARCH:
10779 mips_set_option_string (&mips_arch_string, arg);
10780 break;
10781
10782 case OPTION_M4650:
10783 mips_set_option_string (&mips_arch_string, "4650");
10784 mips_set_option_string (&mips_tune_string, "4650");
10785 break;
10786
10787 case OPTION_NO_M4650:
10788 break;
10789
10790 case OPTION_M4010:
10791 mips_set_option_string (&mips_arch_string, "4010");
10792 mips_set_option_string (&mips_tune_string, "4010");
10793 break;
10794
10795 case OPTION_NO_M4010:
10796 break;
10797
10798 case OPTION_M4100:
10799 mips_set_option_string (&mips_arch_string, "4100");
10800 mips_set_option_string (&mips_tune_string, "4100");
10801 break;
10802
10803 case OPTION_NO_M4100:
10804 break;
10805
10806 case OPTION_M3900:
10807 mips_set_option_string (&mips_arch_string, "3900");
10808 mips_set_option_string (&mips_tune_string, "3900");
10809 break;
10810
10811 case OPTION_NO_M3900:
10812 break;
10813
10814 case OPTION_MDMX:
10815 mips_opts.ase_mdmx = 1;
10816 break;
10817
10818 case OPTION_NO_MDMX:
10819 mips_opts.ase_mdmx = 0;
10820 break;
10821
10822 case OPTION_DSP:
10823 mips_opts.ase_dsp = 1;
10824 break;
10825
10826 case OPTION_NO_DSP:
10827 mips_opts.ase_dsp = 0;
10828 break;
10829
10830 case OPTION_MT:
10831 mips_opts.ase_mt = 1;
10832 break;
10833
10834 case OPTION_NO_MT:
10835 mips_opts.ase_mt = 0;
10836 break;
10837
10838 case OPTION_MIPS16:
10839 mips_opts.mips16 = 1;
10840 mips_no_prev_insn ();
10841 break;
10842
10843 case OPTION_NO_MIPS16:
10844 mips_opts.mips16 = 0;
10845 mips_no_prev_insn ();
10846 break;
10847
10848 case OPTION_MIPS3D:
10849 mips_opts.ase_mips3d = 1;
10850 break;
10851
10852 case OPTION_NO_MIPS3D:
10853 mips_opts.ase_mips3d = 0;
10854 break;
10855
10856 case OPTION_FIX_VR4120:
10857 mips_fix_vr4120 = 1;
10858 break;
10859
10860 case OPTION_NO_FIX_VR4120:
10861 mips_fix_vr4120 = 0;
10862 break;
10863
10864 case OPTION_FIX_VR4130:
10865 mips_fix_vr4130 = 1;
10866 break;
10867
10868 case OPTION_NO_FIX_VR4130:
10869 mips_fix_vr4130 = 0;
10870 break;
10871
10872 case OPTION_RELAX_BRANCH:
10873 mips_relax_branch = 1;
10874 break;
10875
10876 case OPTION_NO_RELAX_BRANCH:
10877 mips_relax_branch = 0;
10878 break;
10879
10880 case OPTION_MSHARED:
10881 mips_in_shared = TRUE;
10882 break;
10883
10884 case OPTION_MNO_SHARED:
10885 mips_in_shared = FALSE;
10886 break;
10887
10888 case OPTION_MSYM32:
10889 mips_opts.sym32 = TRUE;
10890 break;
10891
10892 case OPTION_MNO_SYM32:
10893 mips_opts.sym32 = FALSE;
10894 break;
10895
10896 #ifdef OBJ_ELF
10897 /* When generating ELF code, we permit -KPIC and -call_shared to
10898 select SVR4_PIC, and -non_shared to select no PIC. This is
10899 intended to be compatible with Irix 5. */
10900 case OPTION_CALL_SHARED:
10901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10902 {
10903 as_bad (_("-call_shared is supported only for ELF format"));
10904 return 0;
10905 }
10906 mips_pic = SVR4_PIC;
10907 mips_abicalls = TRUE;
10908 break;
10909
10910 case OPTION_NON_SHARED:
10911 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10912 {
10913 as_bad (_("-non_shared is supported only for ELF format"));
10914 return 0;
10915 }
10916 mips_pic = NO_PIC;
10917 mips_abicalls = FALSE;
10918 break;
10919
10920 /* The -xgot option tells the assembler to use 32 bit offsets
10921 when accessing the got in SVR4_PIC mode. It is for Irix
10922 compatibility. */
10923 case OPTION_XGOT:
10924 mips_big_got = 1;
10925 break;
10926 #endif /* OBJ_ELF */
10927
10928 case 'G':
10929 g_switch_value = atoi (arg);
10930 g_switch_seen = 1;
10931 break;
10932
10933 #ifdef OBJ_ELF
10934 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
10935 and -mabi=64. */
10936 case OPTION_32:
10937 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10938 {
10939 as_bad (_("-32 is supported for ELF format only"));
10940 return 0;
10941 }
10942 mips_abi = O32_ABI;
10943 break;
10944
10945 case OPTION_N32:
10946 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10947 {
10948 as_bad (_("-n32 is supported for ELF format only"));
10949 return 0;
10950 }
10951 mips_abi = N32_ABI;
10952 break;
10953
10954 case OPTION_64:
10955 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10956 {
10957 as_bad (_("-64 is supported for ELF format only"));
10958 return 0;
10959 }
10960 mips_abi = N64_ABI;
10961 if (! support_64bit_objects())
10962 as_fatal (_("No compiled in support for 64 bit object file format"));
10963 break;
10964 #endif /* OBJ_ELF */
10965
10966 case OPTION_GP32:
10967 file_mips_gp32 = 1;
10968 break;
10969
10970 case OPTION_GP64:
10971 file_mips_gp32 = 0;
10972 break;
10973
10974 case OPTION_FP32:
10975 file_mips_fp32 = 1;
10976 break;
10977
10978 case OPTION_FP64:
10979 file_mips_fp32 = 0;
10980 break;
10981
10982 #ifdef OBJ_ELF
10983 case OPTION_MABI:
10984 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
10985 {
10986 as_bad (_("-mabi is supported for ELF format only"));
10987 return 0;
10988 }
10989 if (strcmp (arg, "32") == 0)
10990 mips_abi = O32_ABI;
10991 else if (strcmp (arg, "o64") == 0)
10992 mips_abi = O64_ABI;
10993 else if (strcmp (arg, "n32") == 0)
10994 mips_abi = N32_ABI;
10995 else if (strcmp (arg, "64") == 0)
10996 {
10997 mips_abi = N64_ABI;
10998 if (! support_64bit_objects())
10999 as_fatal (_("No compiled in support for 64 bit object file "
11000 "format"));
11001 }
11002 else if (strcmp (arg, "eabi") == 0)
11003 mips_abi = EABI_ABI;
11004 else
11005 {
11006 as_fatal (_("invalid abi -mabi=%s"), arg);
11007 return 0;
11008 }
11009 break;
11010 #endif /* OBJ_ELF */
11011
11012 case OPTION_M7000_HILO_FIX:
11013 mips_7000_hilo_fix = TRUE;
11014 break;
11015
11016 case OPTION_MNO_7000_HILO_FIX:
11017 mips_7000_hilo_fix = FALSE;
11018 break;
11019
11020 #ifdef OBJ_ELF
11021 case OPTION_MDEBUG:
11022 mips_flag_mdebug = TRUE;
11023 break;
11024
11025 case OPTION_NO_MDEBUG:
11026 mips_flag_mdebug = FALSE;
11027 break;
11028
11029 case OPTION_PDR:
11030 mips_flag_pdr = TRUE;
11031 break;
11032
11033 case OPTION_NO_PDR:
11034 mips_flag_pdr = FALSE;
11035 break;
11036
11037 case OPTION_MVXWORKS_PIC:
11038 mips_pic = VXWORKS_PIC;
11039 break;
11040 #endif /* OBJ_ELF */
11041
11042 default:
11043 return 0;
11044 }
11045
11046 return 1;
11047 }
11048 \f
11049 /* Set up globals to generate code for the ISA or processor
11050 described by INFO. */
11051
11052 static void
11053 mips_set_architecture (const struct mips_cpu_info *info)
11054 {
11055 if (info != 0)
11056 {
11057 file_mips_arch = info->cpu;
11058 mips_opts.arch = info->cpu;
11059 mips_opts.isa = info->isa;
11060 }
11061 }
11062
11063
11064 /* Likewise for tuning. */
11065
11066 static void
11067 mips_set_tune (const struct mips_cpu_info *info)
11068 {
11069 if (info != 0)
11070 mips_tune = info->cpu;
11071 }
11072
11073
11074 void
11075 mips_after_parse_args (void)
11076 {
11077 const struct mips_cpu_info *arch_info = 0;
11078 const struct mips_cpu_info *tune_info = 0;
11079
11080 /* GP relative stuff not working for PE */
11081 if (strncmp (TARGET_OS, "pe", 2) == 0)
11082 {
11083 if (g_switch_seen && g_switch_value != 0)
11084 as_bad (_("-G not supported in this configuration."));
11085 g_switch_value = 0;
11086 }
11087
11088 if (mips_abi == NO_ABI)
11089 mips_abi = MIPS_DEFAULT_ABI;
11090
11091 /* The following code determines the architecture and register size.
11092 Similar code was added to GCC 3.3 (see override_options() in
11093 config/mips/mips.c). The GAS and GCC code should be kept in sync
11094 as much as possible. */
11095
11096 if (mips_arch_string != 0)
11097 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11098
11099 if (file_mips_isa != ISA_UNKNOWN)
11100 {
11101 /* Handle -mipsN. At this point, file_mips_isa contains the
11102 ISA level specified by -mipsN, while arch_info->isa contains
11103 the -march selection (if any). */
11104 if (arch_info != 0)
11105 {
11106 /* -march takes precedence over -mipsN, since it is more descriptive.
11107 There's no harm in specifying both as long as the ISA levels
11108 are the same. */
11109 if (file_mips_isa != arch_info->isa)
11110 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11111 mips_cpu_info_from_isa (file_mips_isa)->name,
11112 mips_cpu_info_from_isa (arch_info->isa)->name);
11113 }
11114 else
11115 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11116 }
11117
11118 if (arch_info == 0)
11119 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11120
11121 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11122 as_bad ("-march=%s is not compatible with the selected ABI",
11123 arch_info->name);
11124
11125 mips_set_architecture (arch_info);
11126
11127 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11128 if (mips_tune_string != 0)
11129 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11130
11131 if (tune_info == 0)
11132 mips_set_tune (arch_info);
11133 else
11134 mips_set_tune (tune_info);
11135
11136 if (file_mips_gp32 >= 0)
11137 {
11138 /* The user specified the size of the integer registers. Make sure
11139 it agrees with the ABI and ISA. */
11140 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11141 as_bad (_("-mgp64 used with a 32-bit processor"));
11142 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11143 as_bad (_("-mgp32 used with a 64-bit ABI"));
11144 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11145 as_bad (_("-mgp64 used with a 32-bit ABI"));
11146 }
11147 else
11148 {
11149 /* Infer the integer register size from the ABI and processor.
11150 Restrict ourselves to 32-bit registers if that's all the
11151 processor has, or if the ABI cannot handle 64-bit registers. */
11152 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11153 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11154 }
11155
11156 /* ??? GAS treats single-float processors as though they had 64-bit
11157 float registers (although it complains when double-precision
11158 instructions are used). As things stand, saying they have 32-bit
11159 registers would lead to spurious "register must be even" messages.
11160 So here we assume float registers are always the same size as
11161 integer ones, unless the user says otherwise. */
11162 if (file_mips_fp32 < 0)
11163 file_mips_fp32 = file_mips_gp32;
11164
11165 /* End of GCC-shared inference code. */
11166
11167 /* This flag is set when we have a 64-bit capable CPU but use only
11168 32-bit wide registers. Note that EABI does not use it. */
11169 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
11170 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
11171 || mips_abi == O32_ABI))
11172 mips_32bitmode = 1;
11173
11174 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
11175 as_bad (_("trap exception not supported at ISA 1"));
11176
11177 /* If the selected architecture includes support for ASEs, enable
11178 generation of code for them. */
11179 if (mips_opts.mips16 == -1)
11180 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
11181 if (mips_opts.ase_mips3d == -1)
11182 mips_opts.ase_mips3d = (CPU_HAS_MIPS3D (file_mips_arch)) ? 1 : 0;
11183 if (mips_opts.ase_mdmx == -1)
11184 mips_opts.ase_mdmx = (CPU_HAS_MDMX (file_mips_arch)) ? 1 : 0;
11185 if (mips_opts.ase_dsp == -1)
11186 mips_opts.ase_dsp = (CPU_HAS_DSP (file_mips_arch)) ? 1 : 0;
11187 if (mips_opts.ase_mt == -1)
11188 mips_opts.ase_mt = (CPU_HAS_MT (file_mips_arch)) ? 1 : 0;
11189
11190 file_mips_isa = mips_opts.isa;
11191 file_ase_mips16 = mips_opts.mips16;
11192 file_ase_mips3d = mips_opts.ase_mips3d;
11193 file_ase_mdmx = mips_opts.ase_mdmx;
11194 file_ase_dsp = mips_opts.ase_dsp;
11195 file_ase_mt = mips_opts.ase_mt;
11196 mips_opts.gp32 = file_mips_gp32;
11197 mips_opts.fp32 = file_mips_fp32;
11198
11199 if (mips_flag_mdebug < 0)
11200 {
11201 #ifdef OBJ_MAYBE_ECOFF
11202 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
11203 mips_flag_mdebug = 1;
11204 else
11205 #endif /* OBJ_MAYBE_ECOFF */
11206 mips_flag_mdebug = 0;
11207 }
11208 }
11209 \f
11210 void
11211 mips_init_after_args (void)
11212 {
11213 /* initialize opcodes */
11214 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
11215 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
11216 }
11217
11218 long
11219 md_pcrel_from (fixS *fixP)
11220 {
11221 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
11222 switch (fixP->fx_r_type)
11223 {
11224 case BFD_RELOC_16_PCREL_S2:
11225 case BFD_RELOC_MIPS_JMP:
11226 /* Return the address of the delay slot. */
11227 return addr + 4;
11228 default:
11229 return addr;
11230 }
11231 }
11232
11233 /* This is called before the symbol table is processed. In order to
11234 work with gcc when using mips-tfile, we must keep all local labels.
11235 However, in other cases, we want to discard them. If we were
11236 called with -g, but we didn't see any debugging information, it may
11237 mean that gcc is smuggling debugging information through to
11238 mips-tfile, in which case we must generate all local labels. */
11239
11240 void
11241 mips_frob_file_before_adjust (void)
11242 {
11243 #ifndef NO_ECOFF_DEBUGGING
11244 if (ECOFF_DEBUGGING
11245 && mips_debug != 0
11246 && ! ecoff_debugging_seen)
11247 flag_keep_locals = 1;
11248 #endif
11249 }
11250
11251 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
11252 the corresponding LO16 reloc. This is called before md_apply_fix and
11253 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
11254 relocation operators.
11255
11256 For our purposes, a %lo() expression matches a %got() or %hi()
11257 expression if:
11258
11259 (a) it refers to the same symbol; and
11260 (b) the offset applied in the %lo() expression is no lower than
11261 the offset applied in the %got() or %hi().
11262
11263 (b) allows us to cope with code like:
11264
11265 lui $4,%hi(foo)
11266 lh $4,%lo(foo+2)($4)
11267
11268 ...which is legal on RELA targets, and has a well-defined behaviour
11269 if the user knows that adding 2 to "foo" will not induce a carry to
11270 the high 16 bits.
11271
11272 When several %lo()s match a particular %got() or %hi(), we use the
11273 following rules to distinguish them:
11274
11275 (1) %lo()s with smaller offsets are a better match than %lo()s with
11276 higher offsets.
11277
11278 (2) %lo()s with no matching %got() or %hi() are better than those
11279 that already have a matching %got() or %hi().
11280
11281 (3) later %lo()s are better than earlier %lo()s.
11282
11283 These rules are applied in order.
11284
11285 (1) means, among other things, that %lo()s with identical offsets are
11286 chosen if they exist.
11287
11288 (2) means that we won't associate several high-part relocations with
11289 the same low-part relocation unless there's no alternative. Having
11290 several high parts for the same low part is a GNU extension; this rule
11291 allows careful users to avoid it.
11292
11293 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
11294 with the last high-part relocation being at the front of the list.
11295 It therefore makes sense to choose the last matching low-part
11296 relocation, all other things being equal. It's also easier
11297 to code that way. */
11298
11299 void
11300 mips_frob_file (void)
11301 {
11302 struct mips_hi_fixup *l;
11303
11304 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
11305 {
11306 segment_info_type *seginfo;
11307 bfd_boolean matched_lo_p;
11308 fixS **hi_pos, **lo_pos, **pos;
11309
11310 assert (reloc_needs_lo_p (l->fixp->fx_r_type));
11311
11312 /* If a GOT16 relocation turns out to be against a global symbol,
11313 there isn't supposed to be a matching LO. */
11314 if (l->fixp->fx_r_type == BFD_RELOC_MIPS_GOT16
11315 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
11316 continue;
11317
11318 /* Check quickly whether the next fixup happens to be a matching %lo. */
11319 if (fixup_has_matching_lo_p (l->fixp))
11320 continue;
11321
11322 seginfo = seg_info (l->seg);
11323
11324 /* Set HI_POS to the position of this relocation in the chain.
11325 Set LO_POS to the position of the chosen low-part relocation.
11326 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
11327 relocation that matches an immediately-preceding high-part
11328 relocation. */
11329 hi_pos = NULL;
11330 lo_pos = NULL;
11331 matched_lo_p = FALSE;
11332 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
11333 {
11334 if (*pos == l->fixp)
11335 hi_pos = pos;
11336
11337 if (((*pos)->fx_r_type == BFD_RELOC_LO16
11338 || (*pos)->fx_r_type == BFD_RELOC_MIPS16_LO16)
11339 && (*pos)->fx_addsy == l->fixp->fx_addsy
11340 && (*pos)->fx_offset >= l->fixp->fx_offset
11341 && (lo_pos == NULL
11342 || (*pos)->fx_offset < (*lo_pos)->fx_offset
11343 || (!matched_lo_p
11344 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
11345 lo_pos = pos;
11346
11347 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
11348 && fixup_has_matching_lo_p (*pos));
11349 }
11350
11351 /* If we found a match, remove the high-part relocation from its
11352 current position and insert it before the low-part relocation.
11353 Make the offsets match so that fixup_has_matching_lo_p()
11354 will return true.
11355
11356 We don't warn about unmatched high-part relocations since some
11357 versions of gcc have been known to emit dead "lui ...%hi(...)"
11358 instructions. */
11359 if (lo_pos != NULL)
11360 {
11361 l->fixp->fx_offset = (*lo_pos)->fx_offset;
11362 if (l->fixp->fx_next != *lo_pos)
11363 {
11364 *hi_pos = l->fixp->fx_next;
11365 l->fixp->fx_next = *lo_pos;
11366 *lo_pos = l->fixp;
11367 }
11368 }
11369 }
11370 }
11371
11372 /* We may have combined relocations without symbols in the N32/N64 ABI.
11373 We have to prevent gas from dropping them. */
11374
11375 int
11376 mips_force_relocation (fixS *fixp)
11377 {
11378 if (generic_force_reloc (fixp))
11379 return 1;
11380
11381 if (HAVE_NEWABI
11382 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
11383 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
11384 || fixp->fx_r_type == BFD_RELOC_HI16_S
11385 || fixp->fx_r_type == BFD_RELOC_LO16))
11386 return 1;
11387
11388 return 0;
11389 }
11390
11391 /* Apply a fixup to the object file. */
11392
11393 void
11394 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11395 {
11396 bfd_byte *buf;
11397 long insn;
11398 reloc_howto_type *howto;
11399
11400 /* We ignore generic BFD relocations we don't know about. */
11401 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
11402 if (! howto)
11403 return;
11404
11405 assert (fixP->fx_size == 4
11406 || fixP->fx_r_type == BFD_RELOC_16
11407 || fixP->fx_r_type == BFD_RELOC_64
11408 || fixP->fx_r_type == BFD_RELOC_CTOR
11409 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
11410 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
11411 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY);
11412
11413 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
11414
11415 assert (! fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
11416
11417 /* Don't treat parts of a composite relocation as done. There are two
11418 reasons for this:
11419
11420 (1) The second and third parts will be against 0 (RSS_UNDEF) but
11421 should nevertheless be emitted if the first part is.
11422
11423 (2) In normal usage, composite relocations are never assembly-time
11424 constants. The easiest way of dealing with the pathological
11425 exceptions is to generate a relocation against STN_UNDEF and
11426 leave everything up to the linker. */
11427 if (fixP->fx_addsy == NULL && ! fixP->fx_pcrel && fixP->fx_tcbit == 0)
11428 fixP->fx_done = 1;
11429
11430 switch (fixP->fx_r_type)
11431 {
11432 case BFD_RELOC_MIPS_TLS_GD:
11433 case BFD_RELOC_MIPS_TLS_LDM:
11434 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
11435 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
11436 case BFD_RELOC_MIPS_TLS_GOTTPREL:
11437 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
11438 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
11439 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11440 /* fall through */
11441
11442 case BFD_RELOC_MIPS_JMP:
11443 case BFD_RELOC_MIPS_SHIFT5:
11444 case BFD_RELOC_MIPS_SHIFT6:
11445 case BFD_RELOC_MIPS_GOT_DISP:
11446 case BFD_RELOC_MIPS_GOT_PAGE:
11447 case BFD_RELOC_MIPS_GOT_OFST:
11448 case BFD_RELOC_MIPS_SUB:
11449 case BFD_RELOC_MIPS_INSERT_A:
11450 case BFD_RELOC_MIPS_INSERT_B:
11451 case BFD_RELOC_MIPS_DELETE:
11452 case BFD_RELOC_MIPS_HIGHEST:
11453 case BFD_RELOC_MIPS_HIGHER:
11454 case BFD_RELOC_MIPS_SCN_DISP:
11455 case BFD_RELOC_MIPS_REL16:
11456 case BFD_RELOC_MIPS_RELGOT:
11457 case BFD_RELOC_MIPS_JALR:
11458 case BFD_RELOC_HI16:
11459 case BFD_RELOC_HI16_S:
11460 case BFD_RELOC_GPREL16:
11461 case BFD_RELOC_MIPS_LITERAL:
11462 case BFD_RELOC_MIPS_CALL16:
11463 case BFD_RELOC_MIPS_GOT16:
11464 case BFD_RELOC_GPREL32:
11465 case BFD_RELOC_MIPS_GOT_HI16:
11466 case BFD_RELOC_MIPS_GOT_LO16:
11467 case BFD_RELOC_MIPS_CALL_HI16:
11468 case BFD_RELOC_MIPS_CALL_LO16:
11469 case BFD_RELOC_MIPS16_GPREL:
11470 case BFD_RELOC_MIPS16_HI16:
11471 case BFD_RELOC_MIPS16_HI16_S:
11472 /* Nothing needed to do. The value comes from the reloc entry */
11473 break;
11474
11475 case BFD_RELOC_MIPS16_JMP:
11476 /* We currently always generate a reloc against a symbol, which
11477 means that we don't want an addend even if the symbol is
11478 defined. */
11479 *valP = 0;
11480 break;
11481
11482 case BFD_RELOC_64:
11483 /* This is handled like BFD_RELOC_32, but we output a sign
11484 extended value if we are only 32 bits. */
11485 if (fixP->fx_done)
11486 {
11487 if (8 <= sizeof (valueT))
11488 md_number_to_chars ((char *) buf, *valP, 8);
11489 else
11490 {
11491 valueT hiv;
11492
11493 if ((*valP & 0x80000000) != 0)
11494 hiv = 0xffffffff;
11495 else
11496 hiv = 0;
11497 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
11498 *valP, 4);
11499 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
11500 hiv, 4);
11501 }
11502 }
11503 break;
11504
11505 case BFD_RELOC_RVA:
11506 case BFD_RELOC_32:
11507 /* If we are deleting this reloc entry, we must fill in the
11508 value now. This can happen if we have a .word which is not
11509 resolved when it appears but is later defined. */
11510 if (fixP->fx_done)
11511 md_number_to_chars ((char *) buf, *valP, 4);
11512 break;
11513
11514 case BFD_RELOC_16:
11515 /* If we are deleting this reloc entry, we must fill in the
11516 value now. */
11517 if (fixP->fx_done)
11518 md_number_to_chars ((char *) buf, *valP, 2);
11519 break;
11520
11521 case BFD_RELOC_LO16:
11522 case BFD_RELOC_MIPS16_LO16:
11523 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
11524 may be safe to remove, but if so it's not obvious. */
11525 /* When handling an embedded PIC switch statement, we can wind
11526 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
11527 if (fixP->fx_done)
11528 {
11529 if (*valP + 0x8000 > 0xffff)
11530 as_bad_where (fixP->fx_file, fixP->fx_line,
11531 _("relocation overflow"));
11532 if (target_big_endian)
11533 buf += 2;
11534 md_number_to_chars ((char *) buf, *valP, 2);
11535 }
11536 break;
11537
11538 case BFD_RELOC_16_PCREL_S2:
11539 if ((*valP & 0x3) != 0)
11540 as_bad_where (fixP->fx_file, fixP->fx_line,
11541 _("Branch to misaligned address (%lx)"), (long) *valP);
11542
11543 /*
11544 * We need to save the bits in the instruction since fixup_segment()
11545 * might be deleting the relocation entry (i.e., a branch within
11546 * the current segment).
11547 */
11548 if (! fixP->fx_done)
11549 break;
11550
11551 /* update old instruction data */
11552 if (target_big_endian)
11553 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
11554 else
11555 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
11556
11557 if (*valP + 0x20000 <= 0x3ffff)
11558 {
11559 insn |= (*valP >> 2) & 0xffff;
11560 md_number_to_chars ((char *) buf, insn, 4);
11561 }
11562 else if (mips_pic == NO_PIC
11563 && fixP->fx_done
11564 && fixP->fx_frag->fr_address >= text_section->vma
11565 && (fixP->fx_frag->fr_address
11566 < text_section->vma + bfd_get_section_size (text_section))
11567 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
11568 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
11569 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
11570 {
11571 /* The branch offset is too large. If this is an
11572 unconditional branch, and we are not generating PIC code,
11573 we can convert it to an absolute jump instruction. */
11574 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
11575 insn = 0x0c000000; /* jal */
11576 else
11577 insn = 0x08000000; /* j */
11578 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
11579 fixP->fx_done = 0;
11580 fixP->fx_addsy = section_symbol (text_section);
11581 *valP += md_pcrel_from (fixP);
11582 md_number_to_chars ((char *) buf, insn, 4);
11583 }
11584 else
11585 {
11586 /* If we got here, we have branch-relaxation disabled,
11587 and there's nothing we can do to fix this instruction
11588 without turning it into a longer sequence. */
11589 as_bad_where (fixP->fx_file, fixP->fx_line,
11590 _("Branch out of range"));
11591 }
11592 break;
11593
11594 case BFD_RELOC_VTABLE_INHERIT:
11595 fixP->fx_done = 0;
11596 if (fixP->fx_addsy
11597 && !S_IS_DEFINED (fixP->fx_addsy)
11598 && !S_IS_WEAK (fixP->fx_addsy))
11599 S_SET_WEAK (fixP->fx_addsy);
11600 break;
11601
11602 case BFD_RELOC_VTABLE_ENTRY:
11603 fixP->fx_done = 0;
11604 break;
11605
11606 default:
11607 internalError ();
11608 }
11609
11610 /* Remember value for tc_gen_reloc. */
11611 fixP->fx_addnumber = *valP;
11612 }
11613
11614 static symbolS *
11615 get_symbol (void)
11616 {
11617 int c;
11618 char *name;
11619 symbolS *p;
11620
11621 name = input_line_pointer;
11622 c = get_symbol_end ();
11623 p = (symbolS *) symbol_find_or_make (name);
11624 *input_line_pointer = c;
11625 return p;
11626 }
11627
11628 /* Align the current frag to a given power of two. The MIPS assembler
11629 also automatically adjusts any preceding label. */
11630
11631 static void
11632 mips_align (int to, int fill, symbolS *label)
11633 {
11634 mips_emit_delays ();
11635 frag_align (to, fill, 0);
11636 record_alignment (now_seg, to);
11637 if (label != NULL)
11638 {
11639 assert (S_GET_SEGMENT (label) == now_seg);
11640 symbol_set_frag (label, frag_now);
11641 S_SET_VALUE (label, (valueT) frag_now_fix ());
11642 }
11643 }
11644
11645 /* Align to a given power of two. .align 0 turns off the automatic
11646 alignment used by the data creating pseudo-ops. */
11647
11648 static void
11649 s_align (int x ATTRIBUTE_UNUSED)
11650 {
11651 register int temp;
11652 register long temp_fill;
11653 long max_alignment = 15;
11654
11655 /*
11656
11657 o Note that the assembler pulls down any immediately preceding label
11658 to the aligned address.
11659 o It's not documented but auto alignment is reinstated by
11660 a .align pseudo instruction.
11661 o Note also that after auto alignment is turned off the mips assembler
11662 issues an error on attempt to assemble an improperly aligned data item.
11663 We don't.
11664
11665 */
11666
11667 temp = get_absolute_expression ();
11668 if (temp > max_alignment)
11669 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
11670 else if (temp < 0)
11671 {
11672 as_warn (_("Alignment negative: 0 assumed."));
11673 temp = 0;
11674 }
11675 if (*input_line_pointer == ',')
11676 {
11677 ++input_line_pointer;
11678 temp_fill = get_absolute_expression ();
11679 }
11680 else
11681 temp_fill = 0;
11682 if (temp)
11683 {
11684 auto_align = 1;
11685 mips_align (temp, (int) temp_fill,
11686 insn_labels != NULL ? insn_labels->label : NULL);
11687 }
11688 else
11689 {
11690 auto_align = 0;
11691 }
11692
11693 demand_empty_rest_of_line ();
11694 }
11695
11696 static void
11697 s_change_sec (int sec)
11698 {
11699 segT seg;
11700
11701 #ifdef OBJ_ELF
11702 /* The ELF backend needs to know that we are changing sections, so
11703 that .previous works correctly. We could do something like check
11704 for an obj_section_change_hook macro, but that might be confusing
11705 as it would not be appropriate to use it in the section changing
11706 functions in read.c, since obj-elf.c intercepts those. FIXME:
11707 This should be cleaner, somehow. */
11708 obj_elf_section_change_hook ();
11709 #endif
11710
11711 mips_emit_delays ();
11712 switch (sec)
11713 {
11714 case 't':
11715 s_text (0);
11716 break;
11717 case 'd':
11718 s_data (0);
11719 break;
11720 case 'b':
11721 subseg_set (bss_section, (subsegT) get_absolute_expression ());
11722 demand_empty_rest_of_line ();
11723 break;
11724
11725 case 'r':
11726 seg = subseg_new (RDATA_SECTION_NAME,
11727 (subsegT) get_absolute_expression ());
11728 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11729 {
11730 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
11731 | SEC_READONLY | SEC_RELOC
11732 | SEC_DATA));
11733 if (strcmp (TARGET_OS, "elf") != 0)
11734 record_alignment (seg, 4);
11735 }
11736 demand_empty_rest_of_line ();
11737 break;
11738
11739 case 's':
11740 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
11741 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
11742 {
11743 bfd_set_section_flags (stdoutput, seg,
11744 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
11745 if (strcmp (TARGET_OS, "elf") != 0)
11746 record_alignment (seg, 4);
11747 }
11748 demand_empty_rest_of_line ();
11749 break;
11750 }
11751
11752 auto_align = 1;
11753 }
11754
11755 void
11756 s_change_section (int ignore ATTRIBUTE_UNUSED)
11757 {
11758 #ifdef OBJ_ELF
11759 char *section_name;
11760 char c;
11761 char next_c = 0;
11762 int section_type;
11763 int section_flag;
11764 int section_entry_size;
11765 int section_alignment;
11766
11767 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
11768 return;
11769
11770 section_name = input_line_pointer;
11771 c = get_symbol_end ();
11772 if (c)
11773 next_c = *(input_line_pointer + 1);
11774
11775 /* Do we have .section Name<,"flags">? */
11776 if (c != ',' || (c == ',' && next_c == '"'))
11777 {
11778 /* just after name is now '\0'. */
11779 *input_line_pointer = c;
11780 input_line_pointer = section_name;
11781 obj_elf_section (ignore);
11782 return;
11783 }
11784 input_line_pointer++;
11785
11786 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
11787 if (c == ',')
11788 section_type = get_absolute_expression ();
11789 else
11790 section_type = 0;
11791 if (*input_line_pointer++ == ',')
11792 section_flag = get_absolute_expression ();
11793 else
11794 section_flag = 0;
11795 if (*input_line_pointer++ == ',')
11796 section_entry_size = get_absolute_expression ();
11797 else
11798 section_entry_size = 0;
11799 if (*input_line_pointer++ == ',')
11800 section_alignment = get_absolute_expression ();
11801 else
11802 section_alignment = 0;
11803
11804 section_name = xstrdup (section_name);
11805
11806 /* When using the generic form of .section (as implemented by obj-elf.c),
11807 there's no way to set the section type to SHT_MIPS_DWARF. Users have
11808 traditionally had to fall back on the more common @progbits instead.
11809
11810 There's nothing really harmful in this, since bfd will correct
11811 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
11812 means that, for backwards compatibiltiy, the special_section entries
11813 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
11814
11815 Even so, we shouldn't force users of the MIPS .section syntax to
11816 incorrectly label the sections as SHT_PROGBITS. The best compromise
11817 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
11818 generic type-checking code. */
11819 if (section_type == SHT_MIPS_DWARF)
11820 section_type = SHT_PROGBITS;
11821
11822 obj_elf_change_section (section_name, section_type, section_flag,
11823 section_entry_size, 0, 0, 0);
11824
11825 if (now_seg->name != section_name)
11826 free (section_name);
11827 #endif /* OBJ_ELF */
11828 }
11829
11830 void
11831 mips_enable_auto_align (void)
11832 {
11833 auto_align = 1;
11834 }
11835
11836 static void
11837 s_cons (int log_size)
11838 {
11839 symbolS *label;
11840
11841 label = insn_labels != NULL ? insn_labels->label : NULL;
11842 mips_emit_delays ();
11843 if (log_size > 0 && auto_align)
11844 mips_align (log_size, 0, label);
11845 mips_clear_insn_labels ();
11846 cons (1 << log_size);
11847 }
11848
11849 static void
11850 s_float_cons (int type)
11851 {
11852 symbolS *label;
11853
11854 label = insn_labels != NULL ? insn_labels->label : NULL;
11855
11856 mips_emit_delays ();
11857
11858 if (auto_align)
11859 {
11860 if (type == 'd')
11861 mips_align (3, 0, label);
11862 else
11863 mips_align (2, 0, label);
11864 }
11865
11866 mips_clear_insn_labels ();
11867
11868 float_cons (type);
11869 }
11870
11871 /* Handle .globl. We need to override it because on Irix 5 you are
11872 permitted to say
11873 .globl foo .text
11874 where foo is an undefined symbol, to mean that foo should be
11875 considered to be the address of a function. */
11876
11877 static void
11878 s_mips_globl (int x ATTRIBUTE_UNUSED)
11879 {
11880 char *name;
11881 int c;
11882 symbolS *symbolP;
11883 flagword flag;
11884
11885 do
11886 {
11887 name = input_line_pointer;
11888 c = get_symbol_end ();
11889 symbolP = symbol_find_or_make (name);
11890 S_SET_EXTERNAL (symbolP);
11891
11892 *input_line_pointer = c;
11893 SKIP_WHITESPACE ();
11894
11895 /* On Irix 5, every global symbol that is not explicitly labelled as
11896 being a function is apparently labelled as being an object. */
11897 flag = BSF_OBJECT;
11898
11899 if (!is_end_of_line[(unsigned char) *input_line_pointer]
11900 && (*input_line_pointer != ','))
11901 {
11902 char *secname;
11903 asection *sec;
11904
11905 secname = input_line_pointer;
11906 c = get_symbol_end ();
11907 sec = bfd_get_section_by_name (stdoutput, secname);
11908 if (sec == NULL)
11909 as_bad (_("%s: no such section"), secname);
11910 *input_line_pointer = c;
11911
11912 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
11913 flag = BSF_FUNCTION;
11914 }
11915
11916 symbol_get_bfdsym (symbolP)->flags |= flag;
11917
11918 c = *input_line_pointer;
11919 if (c == ',')
11920 {
11921 input_line_pointer++;
11922 SKIP_WHITESPACE ();
11923 if (is_end_of_line[(unsigned char) *input_line_pointer])
11924 c = '\n';
11925 }
11926 }
11927 while (c == ',');
11928
11929 demand_empty_rest_of_line ();
11930 }
11931
11932 static void
11933 s_option (int x ATTRIBUTE_UNUSED)
11934 {
11935 char *opt;
11936 char c;
11937
11938 opt = input_line_pointer;
11939 c = get_symbol_end ();
11940
11941 if (*opt == 'O')
11942 {
11943 /* FIXME: What does this mean? */
11944 }
11945 else if (strncmp (opt, "pic", 3) == 0)
11946 {
11947 int i;
11948
11949 i = atoi (opt + 3);
11950 if (i == 0)
11951 mips_pic = NO_PIC;
11952 else if (i == 2)
11953 {
11954 mips_pic = SVR4_PIC;
11955 mips_abicalls = TRUE;
11956 }
11957 else
11958 as_bad (_(".option pic%d not supported"), i);
11959
11960 if (mips_pic == SVR4_PIC)
11961 {
11962 if (g_switch_seen && g_switch_value != 0)
11963 as_warn (_("-G may not be used with SVR4 PIC code"));
11964 g_switch_value = 0;
11965 bfd_set_gp_size (stdoutput, 0);
11966 }
11967 }
11968 else
11969 as_warn (_("Unrecognized option \"%s\""), opt);
11970
11971 *input_line_pointer = c;
11972 demand_empty_rest_of_line ();
11973 }
11974
11975 /* This structure is used to hold a stack of .set values. */
11976
11977 struct mips_option_stack
11978 {
11979 struct mips_option_stack *next;
11980 struct mips_set_options options;
11981 };
11982
11983 static struct mips_option_stack *mips_opts_stack;
11984
11985 /* Handle the .set pseudo-op. */
11986
11987 static void
11988 s_mipsset (int x ATTRIBUTE_UNUSED)
11989 {
11990 char *name = input_line_pointer, ch;
11991
11992 while (!is_end_of_line[(unsigned char) *input_line_pointer])
11993 ++input_line_pointer;
11994 ch = *input_line_pointer;
11995 *input_line_pointer = '\0';
11996
11997 if (strcmp (name, "reorder") == 0)
11998 {
11999 if (mips_opts.noreorder)
12000 end_noreorder ();
12001 }
12002 else if (strcmp (name, "noreorder") == 0)
12003 {
12004 if (!mips_opts.noreorder)
12005 start_noreorder ();
12006 }
12007 else if (strcmp (name, "at") == 0)
12008 {
12009 mips_opts.noat = 0;
12010 }
12011 else if (strcmp (name, "noat") == 0)
12012 {
12013 mips_opts.noat = 1;
12014 }
12015 else if (strcmp (name, "macro") == 0)
12016 {
12017 mips_opts.warn_about_macros = 0;
12018 }
12019 else if (strcmp (name, "nomacro") == 0)
12020 {
12021 if (mips_opts.noreorder == 0)
12022 as_bad (_("`noreorder' must be set before `nomacro'"));
12023 mips_opts.warn_about_macros = 1;
12024 }
12025 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12026 {
12027 mips_opts.nomove = 0;
12028 }
12029 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12030 {
12031 mips_opts.nomove = 1;
12032 }
12033 else if (strcmp (name, "bopt") == 0)
12034 {
12035 mips_opts.nobopt = 0;
12036 }
12037 else if (strcmp (name, "nobopt") == 0)
12038 {
12039 mips_opts.nobopt = 1;
12040 }
12041 else if (strcmp (name, "mips16") == 0
12042 || strcmp (name, "MIPS-16") == 0)
12043 mips_opts.mips16 = 1;
12044 else if (strcmp (name, "nomips16") == 0
12045 || strcmp (name, "noMIPS-16") == 0)
12046 mips_opts.mips16 = 0;
12047 else if (strcmp (name, "mips3d") == 0)
12048 mips_opts.ase_mips3d = 1;
12049 else if (strcmp (name, "nomips3d") == 0)
12050 mips_opts.ase_mips3d = 0;
12051 else if (strcmp (name, "mdmx") == 0)
12052 mips_opts.ase_mdmx = 1;
12053 else if (strcmp (name, "nomdmx") == 0)
12054 mips_opts.ase_mdmx = 0;
12055 else if (strcmp (name, "dsp") == 0)
12056 mips_opts.ase_dsp = 1;
12057 else if (strcmp (name, "nodsp") == 0)
12058 mips_opts.ase_dsp = 0;
12059 else if (strcmp (name, "mt") == 0)
12060 mips_opts.ase_mt = 1;
12061 else if (strcmp (name, "nomt") == 0)
12062 mips_opts.ase_mt = 0;
12063 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
12064 {
12065 int reset = 0;
12066
12067 /* Permit the user to change the ISA and architecture on the fly.
12068 Needless to say, misuse can cause serious problems. */
12069 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
12070 {
12071 reset = 1;
12072 mips_opts.isa = file_mips_isa;
12073 mips_opts.arch = file_mips_arch;
12074 }
12075 else if (strncmp (name, "arch=", 5) == 0)
12076 {
12077 const struct mips_cpu_info *p;
12078
12079 p = mips_parse_cpu("internal use", name + 5);
12080 if (!p)
12081 as_bad (_("unknown architecture %s"), name + 5);
12082 else
12083 {
12084 mips_opts.arch = p->cpu;
12085 mips_opts.isa = p->isa;
12086 }
12087 }
12088 else if (strncmp (name, "mips", 4) == 0)
12089 {
12090 const struct mips_cpu_info *p;
12091
12092 p = mips_parse_cpu("internal use", name);
12093 if (!p)
12094 as_bad (_("unknown ISA level %s"), name + 4);
12095 else
12096 {
12097 mips_opts.arch = p->cpu;
12098 mips_opts.isa = p->isa;
12099 }
12100 }
12101 else
12102 as_bad (_("unknown ISA or architecture %s"), name);
12103
12104 switch (mips_opts.isa)
12105 {
12106 case 0:
12107 break;
12108 case ISA_MIPS1:
12109 case ISA_MIPS2:
12110 case ISA_MIPS32:
12111 case ISA_MIPS32R2:
12112 mips_opts.gp32 = 1;
12113 mips_opts.fp32 = 1;
12114 break;
12115 case ISA_MIPS3:
12116 case ISA_MIPS4:
12117 case ISA_MIPS5:
12118 case ISA_MIPS64:
12119 case ISA_MIPS64R2:
12120 mips_opts.gp32 = 0;
12121 mips_opts.fp32 = 0;
12122 break;
12123 default:
12124 as_bad (_("unknown ISA level %s"), name + 4);
12125 break;
12126 }
12127 if (reset)
12128 {
12129 mips_opts.gp32 = file_mips_gp32;
12130 mips_opts.fp32 = file_mips_fp32;
12131 }
12132 }
12133 else if (strcmp (name, "autoextend") == 0)
12134 mips_opts.noautoextend = 0;
12135 else if (strcmp (name, "noautoextend") == 0)
12136 mips_opts.noautoextend = 1;
12137 else if (strcmp (name, "push") == 0)
12138 {
12139 struct mips_option_stack *s;
12140
12141 s = (struct mips_option_stack *) xmalloc (sizeof *s);
12142 s->next = mips_opts_stack;
12143 s->options = mips_opts;
12144 mips_opts_stack = s;
12145 }
12146 else if (strcmp (name, "pop") == 0)
12147 {
12148 struct mips_option_stack *s;
12149
12150 s = mips_opts_stack;
12151 if (s == NULL)
12152 as_bad (_(".set pop with no .set push"));
12153 else
12154 {
12155 /* If we're changing the reorder mode we need to handle
12156 delay slots correctly. */
12157 if (s->options.noreorder && ! mips_opts.noreorder)
12158 start_noreorder ();
12159 else if (! s->options.noreorder && mips_opts.noreorder)
12160 end_noreorder ();
12161
12162 mips_opts = s->options;
12163 mips_opts_stack = s->next;
12164 free (s);
12165 }
12166 }
12167 else if (strcmp (name, "sym32") == 0)
12168 mips_opts.sym32 = TRUE;
12169 else if (strcmp (name, "nosym32") == 0)
12170 mips_opts.sym32 = FALSE;
12171 else
12172 {
12173 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
12174 }
12175 *input_line_pointer = ch;
12176 demand_empty_rest_of_line ();
12177 }
12178
12179 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
12180 .option pic2. It means to generate SVR4 PIC calls. */
12181
12182 static void
12183 s_abicalls (int ignore ATTRIBUTE_UNUSED)
12184 {
12185 mips_pic = SVR4_PIC;
12186 mips_abicalls = TRUE;
12187
12188 if (g_switch_seen && g_switch_value != 0)
12189 as_warn (_("-G may not be used with SVR4 PIC code"));
12190 g_switch_value = 0;
12191
12192 bfd_set_gp_size (stdoutput, 0);
12193 demand_empty_rest_of_line ();
12194 }
12195
12196 /* Handle the .cpload pseudo-op. This is used when generating SVR4
12197 PIC code. It sets the $gp register for the function based on the
12198 function address, which is in the register named in the argument.
12199 This uses a relocation against _gp_disp, which is handled specially
12200 by the linker. The result is:
12201 lui $gp,%hi(_gp_disp)
12202 addiu $gp,$gp,%lo(_gp_disp)
12203 addu $gp,$gp,.cpload argument
12204 The .cpload argument is normally $25 == $t9.
12205
12206 The -mno-shared option changes this to:
12207 lui $gp,%hi(__gnu_local_gp)
12208 addiu $gp,$gp,%lo(__gnu_local_gp)
12209 and the argument is ignored. This saves an instruction, but the
12210 resulting code is not position independent; it uses an absolute
12211 address for __gnu_local_gp. Thus code assembled with -mno-shared
12212 can go into an ordinary executable, but not into a shared library. */
12213
12214 static void
12215 s_cpload (int ignore ATTRIBUTE_UNUSED)
12216 {
12217 expressionS ex;
12218 int reg;
12219 int in_shared;
12220
12221 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
12222 .cpload is ignored. */
12223 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
12224 {
12225 s_ignore (0);
12226 return;
12227 }
12228
12229 /* .cpload should be in a .set noreorder section. */
12230 if (mips_opts.noreorder == 0)
12231 as_warn (_(".cpload not in noreorder section"));
12232
12233 reg = tc_get_register (0);
12234
12235 /* If we need to produce a 64-bit address, we are better off using
12236 the default instruction sequence. */
12237 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
12238
12239 ex.X_op = O_symbol;
12240 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
12241 "__gnu_local_gp");
12242 ex.X_op_symbol = NULL;
12243 ex.X_add_number = 0;
12244
12245 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
12246 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
12247
12248 macro_start ();
12249 macro_build_lui (&ex, mips_gp_register);
12250 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
12251 mips_gp_register, BFD_RELOC_LO16);
12252 if (in_shared)
12253 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
12254 mips_gp_register, reg);
12255 macro_end ();
12256
12257 demand_empty_rest_of_line ();
12258 }
12259
12260 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
12261 .cpsetup $reg1, offset|$reg2, label
12262
12263 If offset is given, this results in:
12264 sd $gp, offset($sp)
12265 lui $gp, %hi(%neg(%gp_rel(label)))
12266 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
12267 daddu $gp, $gp, $reg1
12268
12269 If $reg2 is given, this results in:
12270 daddu $reg2, $gp, $0
12271 lui $gp, %hi(%neg(%gp_rel(label)))
12272 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
12273 daddu $gp, $gp, $reg1
12274 $reg1 is normally $25 == $t9.
12275
12276 The -mno-shared option replaces the last three instructions with
12277 lui $gp,%hi(_gp)
12278 addiu $gp,$gp,%lo(_gp)
12279 */
12280
12281 static void
12282 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
12283 {
12284 expressionS ex_off;
12285 expressionS ex_sym;
12286 int reg1;
12287
12288 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
12289 We also need NewABI support. */
12290 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12291 {
12292 s_ignore (0);
12293 return;
12294 }
12295
12296 reg1 = tc_get_register (0);
12297 SKIP_WHITESPACE ();
12298 if (*input_line_pointer != ',')
12299 {
12300 as_bad (_("missing argument separator ',' for .cpsetup"));
12301 return;
12302 }
12303 else
12304 ++input_line_pointer;
12305 SKIP_WHITESPACE ();
12306 if (*input_line_pointer == '$')
12307 {
12308 mips_cpreturn_register = tc_get_register (0);
12309 mips_cpreturn_offset = -1;
12310 }
12311 else
12312 {
12313 mips_cpreturn_offset = get_absolute_expression ();
12314 mips_cpreturn_register = -1;
12315 }
12316 SKIP_WHITESPACE ();
12317 if (*input_line_pointer != ',')
12318 {
12319 as_bad (_("missing argument separator ',' for .cpsetup"));
12320 return;
12321 }
12322 else
12323 ++input_line_pointer;
12324 SKIP_WHITESPACE ();
12325 expression (&ex_sym);
12326
12327 macro_start ();
12328 if (mips_cpreturn_register == -1)
12329 {
12330 ex_off.X_op = O_constant;
12331 ex_off.X_add_symbol = NULL;
12332 ex_off.X_op_symbol = NULL;
12333 ex_off.X_add_number = mips_cpreturn_offset;
12334
12335 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
12336 BFD_RELOC_LO16, SP);
12337 }
12338 else
12339 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
12340 mips_gp_register, 0);
12341
12342 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
12343 {
12344 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
12345 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
12346 BFD_RELOC_HI16_S);
12347
12348 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
12349 mips_gp_register, -1, BFD_RELOC_GPREL16,
12350 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
12351
12352 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
12353 mips_gp_register, reg1);
12354 }
12355 else
12356 {
12357 expressionS ex;
12358
12359 ex.X_op = O_symbol;
12360 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
12361 ex.X_op_symbol = NULL;
12362 ex.X_add_number = 0;
12363
12364 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
12365 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
12366
12367 macro_build_lui (&ex, mips_gp_register);
12368 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
12369 mips_gp_register, BFD_RELOC_LO16);
12370 }
12371
12372 macro_end ();
12373
12374 demand_empty_rest_of_line ();
12375 }
12376
12377 static void
12378 s_cplocal (int ignore ATTRIBUTE_UNUSED)
12379 {
12380 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
12381 .cplocal is ignored. */
12382 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12383 {
12384 s_ignore (0);
12385 return;
12386 }
12387
12388 mips_gp_register = tc_get_register (0);
12389 demand_empty_rest_of_line ();
12390 }
12391
12392 /* Handle the .cprestore pseudo-op. This stores $gp into a given
12393 offset from $sp. The offset is remembered, and after making a PIC
12394 call $gp is restored from that location. */
12395
12396 static void
12397 s_cprestore (int ignore ATTRIBUTE_UNUSED)
12398 {
12399 expressionS ex;
12400
12401 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
12402 .cprestore is ignored. */
12403 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
12404 {
12405 s_ignore (0);
12406 return;
12407 }
12408
12409 mips_cprestore_offset = get_absolute_expression ();
12410 mips_cprestore_valid = 1;
12411
12412 ex.X_op = O_constant;
12413 ex.X_add_symbol = NULL;
12414 ex.X_op_symbol = NULL;
12415 ex.X_add_number = mips_cprestore_offset;
12416
12417 macro_start ();
12418 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
12419 SP, HAVE_64BIT_ADDRESSES);
12420 macro_end ();
12421
12422 demand_empty_rest_of_line ();
12423 }
12424
12425 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
12426 was given in the preceding .cpsetup, it results in:
12427 ld $gp, offset($sp)
12428
12429 If a register $reg2 was given there, it results in:
12430 daddu $gp, $reg2, $0
12431 */
12432 static void
12433 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
12434 {
12435 expressionS ex;
12436
12437 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
12438 We also need NewABI support. */
12439 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12440 {
12441 s_ignore (0);
12442 return;
12443 }
12444
12445 macro_start ();
12446 if (mips_cpreturn_register == -1)
12447 {
12448 ex.X_op = O_constant;
12449 ex.X_add_symbol = NULL;
12450 ex.X_op_symbol = NULL;
12451 ex.X_add_number = mips_cpreturn_offset;
12452
12453 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
12454 }
12455 else
12456 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
12457 mips_cpreturn_register, 0);
12458 macro_end ();
12459
12460 demand_empty_rest_of_line ();
12461 }
12462
12463 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
12464 code. It sets the offset to use in gp_rel relocations. */
12465
12466 static void
12467 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
12468 {
12469 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
12470 We also need NewABI support. */
12471 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
12472 {
12473 s_ignore (0);
12474 return;
12475 }
12476
12477 mips_gprel_offset = get_absolute_expression ();
12478
12479 demand_empty_rest_of_line ();
12480 }
12481
12482 /* Handle the .gpword pseudo-op. This is used when generating PIC
12483 code. It generates a 32 bit GP relative reloc. */
12484
12485 static void
12486 s_gpword (int ignore ATTRIBUTE_UNUSED)
12487 {
12488 symbolS *label;
12489 expressionS ex;
12490 char *p;
12491
12492 /* When not generating PIC code, this is treated as .word. */
12493 if (mips_pic != SVR4_PIC)
12494 {
12495 s_cons (2);
12496 return;
12497 }
12498
12499 label = insn_labels != NULL ? insn_labels->label : NULL;
12500 mips_emit_delays ();
12501 if (auto_align)
12502 mips_align (2, 0, label);
12503 mips_clear_insn_labels ();
12504
12505 expression (&ex);
12506
12507 if (ex.X_op != O_symbol || ex.X_add_number != 0)
12508 {
12509 as_bad (_("Unsupported use of .gpword"));
12510 ignore_rest_of_line ();
12511 }
12512
12513 p = frag_more (4);
12514 md_number_to_chars (p, 0, 4);
12515 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
12516 BFD_RELOC_GPREL32);
12517
12518 demand_empty_rest_of_line ();
12519 }
12520
12521 static void
12522 s_gpdword (int ignore ATTRIBUTE_UNUSED)
12523 {
12524 symbolS *label;
12525 expressionS ex;
12526 char *p;
12527
12528 /* When not generating PIC code, this is treated as .dword. */
12529 if (mips_pic != SVR4_PIC)
12530 {
12531 s_cons (3);
12532 return;
12533 }
12534
12535 label = insn_labels != NULL ? insn_labels->label : NULL;
12536 mips_emit_delays ();
12537 if (auto_align)
12538 mips_align (3, 0, label);
12539 mips_clear_insn_labels ();
12540
12541 expression (&ex);
12542
12543 if (ex.X_op != O_symbol || ex.X_add_number != 0)
12544 {
12545 as_bad (_("Unsupported use of .gpdword"));
12546 ignore_rest_of_line ();
12547 }
12548
12549 p = frag_more (8);
12550 md_number_to_chars (p, 0, 8);
12551 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
12552 BFD_RELOC_GPREL32)->fx_tcbit = 1;
12553
12554 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
12555 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
12556 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
12557
12558 demand_empty_rest_of_line ();
12559 }
12560
12561 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
12562 tables in SVR4 PIC code. */
12563
12564 static void
12565 s_cpadd (int ignore ATTRIBUTE_UNUSED)
12566 {
12567 int reg;
12568
12569 /* This is ignored when not generating SVR4 PIC code. */
12570 if (mips_pic != SVR4_PIC)
12571 {
12572 s_ignore (0);
12573 return;
12574 }
12575
12576 /* Add $gp to the register named as an argument. */
12577 macro_start ();
12578 reg = tc_get_register (0);
12579 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
12580 macro_end ();
12581
12582 demand_empty_rest_of_line ();
12583 }
12584
12585 /* Handle the .insn pseudo-op. This marks instruction labels in
12586 mips16 mode. This permits the linker to handle them specially,
12587 such as generating jalx instructions when needed. We also make
12588 them odd for the duration of the assembly, in order to generate the
12589 right sort of code. We will make them even in the adjust_symtab
12590 routine, while leaving them marked. This is convenient for the
12591 debugger and the disassembler. The linker knows to make them odd
12592 again. */
12593
12594 static void
12595 s_insn (int ignore ATTRIBUTE_UNUSED)
12596 {
12597 mips16_mark_labels ();
12598
12599 demand_empty_rest_of_line ();
12600 }
12601
12602 /* Handle a .stabn directive. We need these in order to mark a label
12603 as being a mips16 text label correctly. Sometimes the compiler
12604 will emit a label, followed by a .stabn, and then switch sections.
12605 If the label and .stabn are in mips16 mode, then the label is
12606 really a mips16 text label. */
12607
12608 static void
12609 s_mips_stab (int type)
12610 {
12611 if (type == 'n')
12612 mips16_mark_labels ();
12613
12614 s_stab (type);
12615 }
12616
12617 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich.
12618 */
12619
12620 static void
12621 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
12622 {
12623 char *name;
12624 int c;
12625 symbolS *symbolP;
12626 expressionS exp;
12627
12628 name = input_line_pointer;
12629 c = get_symbol_end ();
12630 symbolP = symbol_find_or_make (name);
12631 S_SET_WEAK (symbolP);
12632 *input_line_pointer = c;
12633
12634 SKIP_WHITESPACE ();
12635
12636 if (! is_end_of_line[(unsigned char) *input_line_pointer])
12637 {
12638 if (S_IS_DEFINED (symbolP))
12639 {
12640 as_bad ("ignoring attempt to redefine symbol %s",
12641 S_GET_NAME (symbolP));
12642 ignore_rest_of_line ();
12643 return;
12644 }
12645
12646 if (*input_line_pointer == ',')
12647 {
12648 ++input_line_pointer;
12649 SKIP_WHITESPACE ();
12650 }
12651
12652 expression (&exp);
12653 if (exp.X_op != O_symbol)
12654 {
12655 as_bad ("bad .weakext directive");
12656 ignore_rest_of_line ();
12657 return;
12658 }
12659 symbol_set_value_expression (symbolP, &exp);
12660 }
12661
12662 demand_empty_rest_of_line ();
12663 }
12664
12665 /* Parse a register string into a number. Called from the ECOFF code
12666 to parse .frame. The argument is non-zero if this is the frame
12667 register, so that we can record it in mips_frame_reg. */
12668
12669 int
12670 tc_get_register (int frame)
12671 {
12672 int reg;
12673
12674 SKIP_WHITESPACE ();
12675 if (*input_line_pointer++ != '$')
12676 {
12677 as_warn (_("expected `$'"));
12678 reg = ZERO;
12679 }
12680 else if (ISDIGIT (*input_line_pointer))
12681 {
12682 reg = get_absolute_expression ();
12683 if (reg < 0 || reg >= 32)
12684 {
12685 as_warn (_("Bad register number"));
12686 reg = ZERO;
12687 }
12688 }
12689 else
12690 {
12691 if (strncmp (input_line_pointer, "ra", 2) == 0)
12692 {
12693 reg = RA;
12694 input_line_pointer += 2;
12695 }
12696 else if (strncmp (input_line_pointer, "fp", 2) == 0)
12697 {
12698 reg = FP;
12699 input_line_pointer += 2;
12700 }
12701 else if (strncmp (input_line_pointer, "sp", 2) == 0)
12702 {
12703 reg = SP;
12704 input_line_pointer += 2;
12705 }
12706 else if (strncmp (input_line_pointer, "gp", 2) == 0)
12707 {
12708 reg = GP;
12709 input_line_pointer += 2;
12710 }
12711 else if (strncmp (input_line_pointer, "at", 2) == 0)
12712 {
12713 reg = AT;
12714 input_line_pointer += 2;
12715 }
12716 else if (strncmp (input_line_pointer, "kt0", 3) == 0)
12717 {
12718 reg = KT0;
12719 input_line_pointer += 3;
12720 }
12721 else if (strncmp (input_line_pointer, "kt1", 3) == 0)
12722 {
12723 reg = KT1;
12724 input_line_pointer += 3;
12725 }
12726 else if (strncmp (input_line_pointer, "zero", 4) == 0)
12727 {
12728 reg = ZERO;
12729 input_line_pointer += 4;
12730 }
12731 else
12732 {
12733 as_warn (_("Unrecognized register name"));
12734 reg = ZERO;
12735 while (ISALNUM(*input_line_pointer))
12736 input_line_pointer++;
12737 }
12738 }
12739 if (frame)
12740 {
12741 mips_frame_reg = reg != 0 ? reg : SP;
12742 mips_frame_reg_valid = 1;
12743 mips_cprestore_valid = 0;
12744 }
12745 return reg;
12746 }
12747
12748 valueT
12749 md_section_align (asection *seg, valueT addr)
12750 {
12751 int align = bfd_get_section_alignment (stdoutput, seg);
12752
12753 #ifdef OBJ_ELF
12754 /* We don't need to align ELF sections to the full alignment.
12755 However, Irix 5 may prefer that we align them at least to a 16
12756 byte boundary. We don't bother to align the sections if we are
12757 targeted for an embedded system. */
12758 if (strcmp (TARGET_OS, "elf") == 0)
12759 return addr;
12760 if (align > 4)
12761 align = 4;
12762 #endif
12763
12764 return ((addr + (1 << align) - 1) & (-1 << align));
12765 }
12766
12767 /* Utility routine, called from above as well. If called while the
12768 input file is still being read, it's only an approximation. (For
12769 example, a symbol may later become defined which appeared to be
12770 undefined earlier.) */
12771
12772 static int
12773 nopic_need_relax (symbolS *sym, int before_relaxing)
12774 {
12775 if (sym == 0)
12776 return 0;
12777
12778 if (g_switch_value > 0)
12779 {
12780 const char *symname;
12781 int change;
12782
12783 /* Find out whether this symbol can be referenced off the $gp
12784 register. It can be if it is smaller than the -G size or if
12785 it is in the .sdata or .sbss section. Certain symbols can
12786 not be referenced off the $gp, although it appears as though
12787 they can. */
12788 symname = S_GET_NAME (sym);
12789 if (symname != (const char *) NULL
12790 && (strcmp (symname, "eprol") == 0
12791 || strcmp (symname, "etext") == 0
12792 || strcmp (symname, "_gp") == 0
12793 || strcmp (symname, "edata") == 0
12794 || strcmp (symname, "_fbss") == 0
12795 || strcmp (symname, "_fdata") == 0
12796 || strcmp (symname, "_ftext") == 0
12797 || strcmp (symname, "end") == 0
12798 || strcmp (symname, "_gp_disp") == 0))
12799 change = 1;
12800 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
12801 && (0
12802 #ifndef NO_ECOFF_DEBUGGING
12803 || (symbol_get_obj (sym)->ecoff_extern_size != 0
12804 && (symbol_get_obj (sym)->ecoff_extern_size
12805 <= g_switch_value))
12806 #endif
12807 /* We must defer this decision until after the whole
12808 file has been read, since there might be a .extern
12809 after the first use of this symbol. */
12810 || (before_relaxing
12811 #ifndef NO_ECOFF_DEBUGGING
12812 && symbol_get_obj (sym)->ecoff_extern_size == 0
12813 #endif
12814 && S_GET_VALUE (sym) == 0)
12815 || (S_GET_VALUE (sym) != 0
12816 && S_GET_VALUE (sym) <= g_switch_value)))
12817 change = 0;
12818 else
12819 {
12820 const char *segname;
12821
12822 segname = segment_name (S_GET_SEGMENT (sym));
12823 assert (strcmp (segname, ".lit8") != 0
12824 && strcmp (segname, ".lit4") != 0);
12825 change = (strcmp (segname, ".sdata") != 0
12826 && strcmp (segname, ".sbss") != 0
12827 && strncmp (segname, ".sdata.", 7) != 0
12828 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
12829 }
12830 return change;
12831 }
12832 else
12833 /* We are not optimizing for the $gp register. */
12834 return 1;
12835 }
12836
12837
12838 /* Return true if the given symbol should be considered local for SVR4 PIC. */
12839
12840 static bfd_boolean
12841 pic_need_relax (symbolS *sym, asection *segtype)
12842 {
12843 asection *symsec;
12844 bfd_boolean linkonce;
12845
12846 /* Handle the case of a symbol equated to another symbol. */
12847 while (symbol_equated_reloc_p (sym))
12848 {
12849 symbolS *n;
12850
12851 /* It's possible to get a loop here in a badly written
12852 program. */
12853 n = symbol_get_value_expression (sym)->X_add_symbol;
12854 if (n == sym)
12855 break;
12856 sym = n;
12857 }
12858
12859 symsec = S_GET_SEGMENT (sym);
12860
12861 /* duplicate the test for LINK_ONCE sections as in adjust_reloc_syms */
12862 linkonce = FALSE;
12863 if (symsec != segtype && ! S_IS_LOCAL (sym))
12864 {
12865 if ((bfd_get_section_flags (stdoutput, symsec) & SEC_LINK_ONCE)
12866 != 0)
12867 linkonce = TRUE;
12868
12869 /* The GNU toolchain uses an extension for ELF: a section
12870 beginning with the magic string .gnu.linkonce is a linkonce
12871 section. */
12872 if (strncmp (segment_name (symsec), ".gnu.linkonce",
12873 sizeof ".gnu.linkonce" - 1) == 0)
12874 linkonce = TRUE;
12875 }
12876
12877 /* This must duplicate the test in adjust_reloc_syms. */
12878 return (symsec != &bfd_und_section
12879 && symsec != &bfd_abs_section
12880 && ! bfd_is_com_section (symsec)
12881 && !linkonce
12882 #ifdef OBJ_ELF
12883 /* A global or weak symbol is treated as external. */
12884 && (OUTPUT_FLAVOR != bfd_target_elf_flavour
12885 || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
12886 #endif
12887 );
12888 }
12889
12890
12891 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
12892 extended opcode. SEC is the section the frag is in. */
12893
12894 static int
12895 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
12896 {
12897 int type;
12898 register const struct mips16_immed_operand *op;
12899 offsetT val;
12900 int mintiny, maxtiny;
12901 segT symsec;
12902 fragS *sym_frag;
12903
12904 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
12905 return 0;
12906 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
12907 return 1;
12908
12909 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
12910 op = mips16_immed_operands;
12911 while (op->type != type)
12912 {
12913 ++op;
12914 assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
12915 }
12916
12917 if (op->unsp)
12918 {
12919 if (type == '<' || type == '>' || type == '[' || type == ']')
12920 {
12921 mintiny = 1;
12922 maxtiny = 1 << op->nbits;
12923 }
12924 else
12925 {
12926 mintiny = 0;
12927 maxtiny = (1 << op->nbits) - 1;
12928 }
12929 }
12930 else
12931 {
12932 mintiny = - (1 << (op->nbits - 1));
12933 maxtiny = (1 << (op->nbits - 1)) - 1;
12934 }
12935
12936 sym_frag = symbol_get_frag (fragp->fr_symbol);
12937 val = S_GET_VALUE (fragp->fr_symbol);
12938 symsec = S_GET_SEGMENT (fragp->fr_symbol);
12939
12940 if (op->pcrel)
12941 {
12942 addressT addr;
12943
12944 /* We won't have the section when we are called from
12945 mips_relax_frag. However, we will always have been called
12946 from md_estimate_size_before_relax first. If this is a
12947 branch to a different section, we mark it as such. If SEC is
12948 NULL, and the frag is not marked, then it must be a branch to
12949 the same section. */
12950 if (sec == NULL)
12951 {
12952 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
12953 return 1;
12954 }
12955 else
12956 {
12957 /* Must have been called from md_estimate_size_before_relax. */
12958 if (symsec != sec)
12959 {
12960 fragp->fr_subtype =
12961 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
12962
12963 /* FIXME: We should support this, and let the linker
12964 catch branches and loads that are out of range. */
12965 as_bad_where (fragp->fr_file, fragp->fr_line,
12966 _("unsupported PC relative reference to different section"));
12967
12968 return 1;
12969 }
12970 if (fragp != sym_frag && sym_frag->fr_address == 0)
12971 /* Assume non-extended on the first relaxation pass.
12972 The address we have calculated will be bogus if this is
12973 a forward branch to another frag, as the forward frag
12974 will have fr_address == 0. */
12975 return 0;
12976 }
12977
12978 /* In this case, we know for sure that the symbol fragment is in
12979 the same section. If the relax_marker of the symbol fragment
12980 differs from the relax_marker of this fragment, we have not
12981 yet adjusted the symbol fragment fr_address. We want to add
12982 in STRETCH in order to get a better estimate of the address.
12983 This particularly matters because of the shift bits. */
12984 if (stretch != 0
12985 && sym_frag->relax_marker != fragp->relax_marker)
12986 {
12987 fragS *f;
12988
12989 /* Adjust stretch for any alignment frag. Note that if have
12990 been expanding the earlier code, the symbol may be
12991 defined in what appears to be an earlier frag. FIXME:
12992 This doesn't handle the fr_subtype field, which specifies
12993 a maximum number of bytes to skip when doing an
12994 alignment. */
12995 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
12996 {
12997 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
12998 {
12999 if (stretch < 0)
13000 stretch = - ((- stretch)
13001 & ~ ((1 << (int) f->fr_offset) - 1));
13002 else
13003 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13004 if (stretch == 0)
13005 break;
13006 }
13007 }
13008 if (f != NULL)
13009 val += stretch;
13010 }
13011
13012 addr = fragp->fr_address + fragp->fr_fix;
13013
13014 /* The base address rules are complicated. The base address of
13015 a branch is the following instruction. The base address of a
13016 PC relative load or add is the instruction itself, but if it
13017 is in a delay slot (in which case it can not be extended) use
13018 the address of the instruction whose delay slot it is in. */
13019 if (type == 'p' || type == 'q')
13020 {
13021 addr += 2;
13022
13023 /* If we are currently assuming that this frag should be
13024 extended, then, the current address is two bytes
13025 higher. */
13026 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13027 addr += 2;
13028
13029 /* Ignore the low bit in the target, since it will be set
13030 for a text label. */
13031 if ((val & 1) != 0)
13032 --val;
13033 }
13034 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13035 addr -= 4;
13036 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13037 addr -= 2;
13038
13039 val -= addr & ~ ((1 << op->shift) - 1);
13040
13041 /* Branch offsets have an implicit 0 in the lowest bit. */
13042 if (type == 'p' || type == 'q')
13043 val /= 2;
13044
13045 /* If any of the shifted bits are set, we must use an extended
13046 opcode. If the address depends on the size of this
13047 instruction, this can lead to a loop, so we arrange to always
13048 use an extended opcode. We only check this when we are in
13049 the main relaxation loop, when SEC is NULL. */
13050 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13051 {
13052 fragp->fr_subtype =
13053 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13054 return 1;
13055 }
13056
13057 /* If we are about to mark a frag as extended because the value
13058 is precisely maxtiny + 1, then there is a chance of an
13059 infinite loop as in the following code:
13060 la $4,foo
13061 .skip 1020
13062 .align 2
13063 foo:
13064 In this case when the la is extended, foo is 0x3fc bytes
13065 away, so the la can be shrunk, but then foo is 0x400 away, so
13066 the la must be extended. To avoid this loop, we mark the
13067 frag as extended if it was small, and is about to become
13068 extended with a value of maxtiny + 1. */
13069 if (val == ((maxtiny + 1) << op->shift)
13070 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
13071 && sec == NULL)
13072 {
13073 fragp->fr_subtype =
13074 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13075 return 1;
13076 }
13077 }
13078 else if (symsec != absolute_section && sec != NULL)
13079 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
13080
13081 if ((val & ((1 << op->shift) - 1)) != 0
13082 || val < (mintiny << op->shift)
13083 || val > (maxtiny << op->shift))
13084 return 1;
13085 else
13086 return 0;
13087 }
13088
13089 /* Compute the length of a branch sequence, and adjust the
13090 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
13091 worst-case length is computed, with UPDATE being used to indicate
13092 whether an unconditional (-1), branch-likely (+1) or regular (0)
13093 branch is to be computed. */
13094 static int
13095 relaxed_branch_length (fragS *fragp, asection *sec, int update)
13096 {
13097 bfd_boolean toofar;
13098 int length;
13099
13100 if (fragp
13101 && S_IS_DEFINED (fragp->fr_symbol)
13102 && sec == S_GET_SEGMENT (fragp->fr_symbol))
13103 {
13104 addressT addr;
13105 offsetT val;
13106
13107 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
13108
13109 addr = fragp->fr_address + fragp->fr_fix + 4;
13110
13111 val -= addr;
13112
13113 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
13114 }
13115 else if (fragp)
13116 /* If the symbol is not defined or it's in a different segment,
13117 assume the user knows what's going on and emit a short
13118 branch. */
13119 toofar = FALSE;
13120 else
13121 toofar = TRUE;
13122
13123 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
13124 fragp->fr_subtype
13125 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
13126 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
13127 RELAX_BRANCH_LINK (fragp->fr_subtype),
13128 toofar);
13129
13130 length = 4;
13131 if (toofar)
13132 {
13133 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
13134 length += 8;
13135
13136 if (mips_pic != NO_PIC)
13137 {
13138 /* Additional space for PIC loading of target address. */
13139 length += 8;
13140 if (mips_opts.isa == ISA_MIPS1)
13141 /* Additional space for $at-stabilizing nop. */
13142 length += 4;
13143 }
13144
13145 /* If branch is conditional. */
13146 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
13147 length += 8;
13148 }
13149
13150 return length;
13151 }
13152
13153 /* Estimate the size of a frag before relaxing. Unless this is the
13154 mips16, we are not really relaxing here, and the final size is
13155 encoded in the subtype information. For the mips16, we have to
13156 decide whether we are using an extended opcode or not. */
13157
13158 int
13159 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
13160 {
13161 int change;
13162
13163 if (RELAX_BRANCH_P (fragp->fr_subtype))
13164 {
13165
13166 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
13167
13168 return fragp->fr_var;
13169 }
13170
13171 if (RELAX_MIPS16_P (fragp->fr_subtype))
13172 /* We don't want to modify the EXTENDED bit here; it might get us
13173 into infinite loops. We change it only in mips_relax_frag(). */
13174 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
13175
13176 if (mips_pic == NO_PIC)
13177 change = nopic_need_relax (fragp->fr_symbol, 0);
13178 else if (mips_pic == SVR4_PIC)
13179 change = pic_need_relax (fragp->fr_symbol, segtype);
13180 else if (mips_pic == VXWORKS_PIC)
13181 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
13182 change = 0;
13183 else
13184 abort ();
13185
13186 if (change)
13187 {
13188 fragp->fr_subtype |= RELAX_USE_SECOND;
13189 return -RELAX_FIRST (fragp->fr_subtype);
13190 }
13191 else
13192 return -RELAX_SECOND (fragp->fr_subtype);
13193 }
13194
13195 /* This is called to see whether a reloc against a defined symbol
13196 should be converted into a reloc against a section. */
13197
13198 int
13199 mips_fix_adjustable (fixS *fixp)
13200 {
13201 /* Don't adjust MIPS16 jump relocations, so we don't have to worry
13202 about the format of the offset in the .o file. */
13203 if (fixp->fx_r_type == BFD_RELOC_MIPS16_JMP)
13204 return 0;
13205
13206 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
13207 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13208 return 0;
13209
13210 if (fixp->fx_addsy == NULL)
13211 return 1;
13212
13213 /* If symbol SYM is in a mergeable section, relocations of the form
13214 SYM + 0 can usually be made section-relative. The mergeable data
13215 is then identified by the section offset rather than by the symbol.
13216
13217 However, if we're generating REL LO16 relocations, the offset is split
13218 between the LO16 and parterning high part relocation. The linker will
13219 need to recalculate the complete offset in order to correctly identify
13220 the merge data.
13221
13222 The linker has traditionally not looked for the parterning high part
13223 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
13224 placed anywhere. Rather than break backwards compatibility by changing
13225 this, it seems better not to force the issue, and instead keep the
13226 original symbol. This will work with either linker behavior. */
13227 if ((fixp->fx_r_type == BFD_RELOC_LO16
13228 || fixp->fx_r_type == BFD_RELOC_MIPS16_LO16
13229 || reloc_needs_lo_p (fixp->fx_r_type))
13230 && HAVE_IN_PLACE_ADDENDS
13231 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
13232 return 0;
13233
13234 #ifdef OBJ_ELF
13235 /* Don't adjust relocations against mips16 symbols, so that the linker
13236 can find them if it needs to set up a stub. */
13237 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
13238 && S_GET_OTHER (fixp->fx_addsy) == STO_MIPS16
13239 && fixp->fx_subsy == NULL)
13240 return 0;
13241 #endif
13242
13243 return 1;
13244 }
13245
13246 /* Translate internal representation of relocation info to BFD target
13247 format. */
13248
13249 arelent **
13250 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13251 {
13252 static arelent *retval[4];
13253 arelent *reloc;
13254 bfd_reloc_code_real_type code;
13255
13256 memset (retval, 0, sizeof(retval));
13257 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
13258 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
13259 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13260 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
13261
13262 if (fixp->fx_pcrel)
13263 {
13264 assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
13265
13266 /* At this point, fx_addnumber is "symbol offset - pcrel address".
13267 Relocations want only the symbol offset. */
13268 reloc->addend = fixp->fx_addnumber + reloc->address;
13269 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
13270 {
13271 /* A gruesome hack which is a result of the gruesome gas
13272 reloc handling. What's worse, for COFF (as opposed to
13273 ECOFF), we might need yet another copy of reloc->address.
13274 See bfd_install_relocation. */
13275 reloc->addend += reloc->address;
13276 }
13277 }
13278 else
13279 reloc->addend = fixp->fx_addnumber;
13280
13281 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
13282 entry to be used in the relocation's section offset. */
13283 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13284 {
13285 reloc->address = reloc->addend;
13286 reloc->addend = 0;
13287 }
13288
13289 code = fixp->fx_r_type;
13290
13291 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
13292 if (reloc->howto == NULL)
13293 {
13294 as_bad_where (fixp->fx_file, fixp->fx_line,
13295 _("Can not represent %s relocation in this object file format"),
13296 bfd_get_reloc_code_name (code));
13297 retval[0] = NULL;
13298 }
13299
13300 return retval;
13301 }
13302
13303 /* Relax a machine dependent frag. This returns the amount by which
13304 the current size of the frag should change. */
13305
13306 int
13307 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
13308 {
13309 if (RELAX_BRANCH_P (fragp->fr_subtype))
13310 {
13311 offsetT old_var = fragp->fr_var;
13312
13313 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
13314
13315 return fragp->fr_var - old_var;
13316 }
13317
13318 if (! RELAX_MIPS16_P (fragp->fr_subtype))
13319 return 0;
13320
13321 if (mips16_extended_frag (fragp, NULL, stretch))
13322 {
13323 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13324 return 0;
13325 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
13326 return 2;
13327 }
13328 else
13329 {
13330 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13331 return 0;
13332 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
13333 return -2;
13334 }
13335
13336 return 0;
13337 }
13338
13339 /* Convert a machine dependent frag. */
13340
13341 void
13342 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
13343 {
13344 if (RELAX_BRANCH_P (fragp->fr_subtype))
13345 {
13346 bfd_byte *buf;
13347 unsigned long insn;
13348 expressionS exp;
13349 fixS *fixp;
13350
13351 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
13352
13353 if (target_big_endian)
13354 insn = bfd_getb32 (buf);
13355 else
13356 insn = bfd_getl32 (buf);
13357
13358 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
13359 {
13360 /* We generate a fixup instead of applying it right now
13361 because, if there are linker relaxations, we're going to
13362 need the relocations. */
13363 exp.X_op = O_symbol;
13364 exp.X_add_symbol = fragp->fr_symbol;
13365 exp.X_add_number = fragp->fr_offset;
13366
13367 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13368 4, &exp, 1, BFD_RELOC_16_PCREL_S2);
13369 fixp->fx_file = fragp->fr_file;
13370 fixp->fx_line = fragp->fr_line;
13371
13372 md_number_to_chars ((char *) buf, insn, 4);
13373 buf += 4;
13374 }
13375 else
13376 {
13377 int i;
13378
13379 as_warn_where (fragp->fr_file, fragp->fr_line,
13380 _("relaxed out-of-range branch into a jump"));
13381
13382 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
13383 goto uncond;
13384
13385 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13386 {
13387 /* Reverse the branch. */
13388 switch ((insn >> 28) & 0xf)
13389 {
13390 case 4:
13391 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
13392 have the condition reversed by tweaking a single
13393 bit, and their opcodes all have 0x4???????. */
13394 assert ((insn & 0xf1000000) == 0x41000000);
13395 insn ^= 0x00010000;
13396 break;
13397
13398 case 0:
13399 /* bltz 0x04000000 bgez 0x04010000
13400 bltzal 0x04100000 bgezal 0x04110000 */
13401 assert ((insn & 0xfc0e0000) == 0x04000000);
13402 insn ^= 0x00010000;
13403 break;
13404
13405 case 1:
13406 /* beq 0x10000000 bne 0x14000000
13407 blez 0x18000000 bgtz 0x1c000000 */
13408 insn ^= 0x04000000;
13409 break;
13410
13411 default:
13412 abort ();
13413 }
13414 }
13415
13416 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
13417 {
13418 /* Clear the and-link bit. */
13419 assert ((insn & 0xfc1c0000) == 0x04100000);
13420
13421 /* bltzal 0x04100000 bgezal 0x04110000
13422 bltzall 0x04120000 bgezall 0x04130000 */
13423 insn &= ~0x00100000;
13424 }
13425
13426 /* Branch over the branch (if the branch was likely) or the
13427 full jump (not likely case). Compute the offset from the
13428 current instruction to branch to. */
13429 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13430 i = 16;
13431 else
13432 {
13433 /* How many bytes in instructions we've already emitted? */
13434 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
13435 /* How many bytes in instructions from here to the end? */
13436 i = fragp->fr_var - i;
13437 }
13438 /* Convert to instruction count. */
13439 i >>= 2;
13440 /* Branch counts from the next instruction. */
13441 i--;
13442 insn |= i;
13443 /* Branch over the jump. */
13444 md_number_to_chars ((char *) buf, insn, 4);
13445 buf += 4;
13446
13447 /* Nop */
13448 md_number_to_chars ((char *) buf, 0, 4);
13449 buf += 4;
13450
13451 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
13452 {
13453 /* beql $0, $0, 2f */
13454 insn = 0x50000000;
13455 /* Compute the PC offset from the current instruction to
13456 the end of the variable frag. */
13457 /* How many bytes in instructions we've already emitted? */
13458 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
13459 /* How many bytes in instructions from here to the end? */
13460 i = fragp->fr_var - i;
13461 /* Convert to instruction count. */
13462 i >>= 2;
13463 /* Don't decrement i, because we want to branch over the
13464 delay slot. */
13465
13466 insn |= i;
13467 md_number_to_chars ((char *) buf, insn, 4);
13468 buf += 4;
13469
13470 md_number_to_chars ((char *) buf, 0, 4);
13471 buf += 4;
13472 }
13473
13474 uncond:
13475 if (mips_pic == NO_PIC)
13476 {
13477 /* j or jal. */
13478 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
13479 ? 0x0c000000 : 0x08000000);
13480 exp.X_op = O_symbol;
13481 exp.X_add_symbol = fragp->fr_symbol;
13482 exp.X_add_number = fragp->fr_offset;
13483
13484 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13485 4, &exp, 0, BFD_RELOC_MIPS_JMP);
13486 fixp->fx_file = fragp->fr_file;
13487 fixp->fx_line = fragp->fr_line;
13488
13489 md_number_to_chars ((char *) buf, insn, 4);
13490 buf += 4;
13491 }
13492 else
13493 {
13494 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
13495 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
13496 exp.X_op = O_symbol;
13497 exp.X_add_symbol = fragp->fr_symbol;
13498 exp.X_add_number = fragp->fr_offset;
13499
13500 if (fragp->fr_offset)
13501 {
13502 exp.X_add_symbol = make_expr_symbol (&exp);
13503 exp.X_add_number = 0;
13504 }
13505
13506 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13507 4, &exp, 0, BFD_RELOC_MIPS_GOT16);
13508 fixp->fx_file = fragp->fr_file;
13509 fixp->fx_line = fragp->fr_line;
13510
13511 md_number_to_chars ((char *) buf, insn, 4);
13512 buf += 4;
13513
13514 if (mips_opts.isa == ISA_MIPS1)
13515 {
13516 /* nop */
13517 md_number_to_chars ((char *) buf, 0, 4);
13518 buf += 4;
13519 }
13520
13521 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
13522 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
13523
13524 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
13525 4, &exp, 0, BFD_RELOC_LO16);
13526 fixp->fx_file = fragp->fr_file;
13527 fixp->fx_line = fragp->fr_line;
13528
13529 md_number_to_chars ((char *) buf, insn, 4);
13530 buf += 4;
13531
13532 /* j(al)r $at. */
13533 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
13534 insn = 0x0020f809;
13535 else
13536 insn = 0x00200008;
13537
13538 md_number_to_chars ((char *) buf, insn, 4);
13539 buf += 4;
13540 }
13541 }
13542
13543 assert (buf == (bfd_byte *)fragp->fr_literal
13544 + fragp->fr_fix + fragp->fr_var);
13545
13546 fragp->fr_fix += fragp->fr_var;
13547
13548 return;
13549 }
13550
13551 if (RELAX_MIPS16_P (fragp->fr_subtype))
13552 {
13553 int type;
13554 register const struct mips16_immed_operand *op;
13555 bfd_boolean small, ext;
13556 offsetT val;
13557 bfd_byte *buf;
13558 unsigned long insn;
13559 bfd_boolean use_extend;
13560 unsigned short extend;
13561
13562 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13563 op = mips16_immed_operands;
13564 while (op->type != type)
13565 ++op;
13566
13567 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13568 {
13569 small = FALSE;
13570 ext = TRUE;
13571 }
13572 else
13573 {
13574 small = TRUE;
13575 ext = FALSE;
13576 }
13577
13578 resolve_symbol_value (fragp->fr_symbol);
13579 val = S_GET_VALUE (fragp->fr_symbol);
13580 if (op->pcrel)
13581 {
13582 addressT addr;
13583
13584 addr = fragp->fr_address + fragp->fr_fix;
13585
13586 /* The rules for the base address of a PC relative reloc are
13587 complicated; see mips16_extended_frag. */
13588 if (type == 'p' || type == 'q')
13589 {
13590 addr += 2;
13591 if (ext)
13592 addr += 2;
13593 /* Ignore the low bit in the target, since it will be
13594 set for a text label. */
13595 if ((val & 1) != 0)
13596 --val;
13597 }
13598 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13599 addr -= 4;
13600 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13601 addr -= 2;
13602
13603 addr &= ~ (addressT) ((1 << op->shift) - 1);
13604 val -= addr;
13605
13606 /* Make sure the section winds up with the alignment we have
13607 assumed. */
13608 if (op->shift > 0)
13609 record_alignment (asec, op->shift);
13610 }
13611
13612 if (ext
13613 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
13614 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
13615 as_warn_where (fragp->fr_file, fragp->fr_line,
13616 _("extended instruction in delay slot"));
13617
13618 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
13619
13620 if (target_big_endian)
13621 insn = bfd_getb16 (buf);
13622 else
13623 insn = bfd_getl16 (buf);
13624
13625 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
13626 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
13627 small, ext, &insn, &use_extend, &extend);
13628
13629 if (use_extend)
13630 {
13631 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
13632 fragp->fr_fix += 2;
13633 buf += 2;
13634 }
13635
13636 md_number_to_chars ((char *) buf, insn, 2);
13637 fragp->fr_fix += 2;
13638 buf += 2;
13639 }
13640 else
13641 {
13642 int first, second;
13643 fixS *fixp;
13644
13645 first = RELAX_FIRST (fragp->fr_subtype);
13646 second = RELAX_SECOND (fragp->fr_subtype);
13647 fixp = (fixS *) fragp->fr_opcode;
13648
13649 /* Possibly emit a warning if we've chosen the longer option. */
13650 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
13651 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
13652 {
13653 const char *msg = macro_warning (fragp->fr_subtype);
13654 if (msg != 0)
13655 as_warn_where (fragp->fr_file, fragp->fr_line, msg);
13656 }
13657
13658 /* Go through all the fixups for the first sequence. Disable them
13659 (by marking them as done) if we're going to use the second
13660 sequence instead. */
13661 while (fixp
13662 && fixp->fx_frag == fragp
13663 && fixp->fx_where < fragp->fr_fix - second)
13664 {
13665 if (fragp->fr_subtype & RELAX_USE_SECOND)
13666 fixp->fx_done = 1;
13667 fixp = fixp->fx_next;
13668 }
13669
13670 /* Go through the fixups for the second sequence. Disable them if
13671 we're going to use the first sequence, otherwise adjust their
13672 addresses to account for the relaxation. */
13673 while (fixp && fixp->fx_frag == fragp)
13674 {
13675 if (fragp->fr_subtype & RELAX_USE_SECOND)
13676 fixp->fx_where -= first;
13677 else
13678 fixp->fx_done = 1;
13679 fixp = fixp->fx_next;
13680 }
13681
13682 /* Now modify the frag contents. */
13683 if (fragp->fr_subtype & RELAX_USE_SECOND)
13684 {
13685 char *start;
13686
13687 start = fragp->fr_literal + fragp->fr_fix - first - second;
13688 memmove (start, start + first, second);
13689 fragp->fr_fix -= first;
13690 }
13691 else
13692 fragp->fr_fix -= second;
13693 }
13694 }
13695
13696 #ifdef OBJ_ELF
13697
13698 /* This function is called after the relocs have been generated.
13699 We've been storing mips16 text labels as odd. Here we convert them
13700 back to even for the convenience of the debugger. */
13701
13702 void
13703 mips_frob_file_after_relocs (void)
13704 {
13705 asymbol **syms;
13706 unsigned int count, i;
13707
13708 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
13709 return;
13710
13711 syms = bfd_get_outsymbols (stdoutput);
13712 count = bfd_get_symcount (stdoutput);
13713 for (i = 0; i < count; i++, syms++)
13714 {
13715 if (elf_symbol (*syms)->internal_elf_sym.st_other == STO_MIPS16
13716 && ((*syms)->value & 1) != 0)
13717 {
13718 (*syms)->value &= ~1;
13719 /* If the symbol has an odd size, it was probably computed
13720 incorrectly, so adjust that as well. */
13721 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
13722 ++elf_symbol (*syms)->internal_elf_sym.st_size;
13723 }
13724 }
13725 }
13726
13727 #endif
13728
13729 /* This function is called whenever a label is defined. It is used
13730 when handling branch delays; if a branch has a label, we assume we
13731 can not move it. */
13732
13733 void
13734 mips_define_label (symbolS *sym)
13735 {
13736 struct insn_label_list *l;
13737
13738 if (free_insn_labels == NULL)
13739 l = (struct insn_label_list *) xmalloc (sizeof *l);
13740 else
13741 {
13742 l = free_insn_labels;
13743 free_insn_labels = l->next;
13744 }
13745
13746 l->label = sym;
13747 l->next = insn_labels;
13748 insn_labels = l;
13749
13750 #ifdef OBJ_ELF
13751 dwarf2_emit_label (sym);
13752 #endif
13753 }
13754 \f
13755 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13756
13757 /* Some special processing for a MIPS ELF file. */
13758
13759 void
13760 mips_elf_final_processing (void)
13761 {
13762 /* Write out the register information. */
13763 if (mips_abi != N64_ABI)
13764 {
13765 Elf32_RegInfo s;
13766
13767 s.ri_gprmask = mips_gprmask;
13768 s.ri_cprmask[0] = mips_cprmask[0];
13769 s.ri_cprmask[1] = mips_cprmask[1];
13770 s.ri_cprmask[2] = mips_cprmask[2];
13771 s.ri_cprmask[3] = mips_cprmask[3];
13772 /* The gp_value field is set by the MIPS ELF backend. */
13773
13774 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
13775 ((Elf32_External_RegInfo *)
13776 mips_regmask_frag));
13777 }
13778 else
13779 {
13780 Elf64_Internal_RegInfo s;
13781
13782 s.ri_gprmask = mips_gprmask;
13783 s.ri_pad = 0;
13784 s.ri_cprmask[0] = mips_cprmask[0];
13785 s.ri_cprmask[1] = mips_cprmask[1];
13786 s.ri_cprmask[2] = mips_cprmask[2];
13787 s.ri_cprmask[3] = mips_cprmask[3];
13788 /* The gp_value field is set by the MIPS ELF backend. */
13789
13790 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
13791 ((Elf64_External_RegInfo *)
13792 mips_regmask_frag));
13793 }
13794
13795 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
13796 sort of BFD interface for this. */
13797 if (mips_any_noreorder)
13798 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
13799 if (mips_pic != NO_PIC)
13800 {
13801 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
13802 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
13803 }
13804 if (mips_abicalls)
13805 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
13806
13807 /* Set MIPS ELF flags for ASEs. */
13808 /* We may need to define a new flag for DSP ASE, and set this flag when
13809 file_ase_dsp is true. */
13810 /* We may need to define a new flag for MT ASE, and set this flag when
13811 file_ase_mt is true. */
13812 if (file_ase_mips16)
13813 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
13814 #if 0 /* XXX FIXME */
13815 if (file_ase_mips3d)
13816 elf_elfheader (stdoutput)->e_flags |= ???;
13817 #endif
13818 if (file_ase_mdmx)
13819 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
13820
13821 /* Set the MIPS ELF ABI flags. */
13822 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
13823 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
13824 else if (mips_abi == O64_ABI)
13825 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
13826 else if (mips_abi == EABI_ABI)
13827 {
13828 if (!file_mips_gp32)
13829 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
13830 else
13831 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
13832 }
13833 else if (mips_abi == N32_ABI)
13834 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
13835
13836 /* Nothing to do for N64_ABI. */
13837
13838 if (mips_32bitmode)
13839 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
13840 }
13841
13842 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
13843 \f
13844 typedef struct proc {
13845 symbolS *func_sym;
13846 symbolS *func_end_sym;
13847 unsigned long reg_mask;
13848 unsigned long reg_offset;
13849 unsigned long fpreg_mask;
13850 unsigned long fpreg_offset;
13851 unsigned long frame_offset;
13852 unsigned long frame_reg;
13853 unsigned long pc_reg;
13854 } procS;
13855
13856 static procS cur_proc;
13857 static procS *cur_proc_ptr;
13858 static int numprocs;
13859
13860 /* Fill in an rs_align_code fragment. */
13861
13862 void
13863 mips_handle_align (fragS *fragp)
13864 {
13865 if (fragp->fr_type != rs_align_code)
13866 return;
13867
13868 if (mips_opts.mips16)
13869 {
13870 static const unsigned char be_nop[] = { 0x65, 0x00 };
13871 static const unsigned char le_nop[] = { 0x00, 0x65 };
13872
13873 int bytes;
13874 char *p;
13875
13876 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
13877 p = fragp->fr_literal + fragp->fr_fix;
13878
13879 if (bytes & 1)
13880 {
13881 *p++ = 0;
13882 fragp->fr_fix++;
13883 }
13884
13885 memcpy (p, (target_big_endian ? be_nop : le_nop), 2);
13886 fragp->fr_var = 2;
13887 }
13888
13889 /* For mips32, a nop is a zero, which we trivially get by doing nothing. */
13890 }
13891
13892 static void
13893 md_obj_begin (void)
13894 {
13895 }
13896
13897 static void
13898 md_obj_end (void)
13899 {
13900 /* check for premature end, nesting errors, etc */
13901 if (cur_proc_ptr)
13902 as_warn (_("missing .end at end of assembly"));
13903 }
13904
13905 static long
13906 get_number (void)
13907 {
13908 int negative = 0;
13909 long val = 0;
13910
13911 if (*input_line_pointer == '-')
13912 {
13913 ++input_line_pointer;
13914 negative = 1;
13915 }
13916 if (!ISDIGIT (*input_line_pointer))
13917 as_bad (_("expected simple number"));
13918 if (input_line_pointer[0] == '0')
13919 {
13920 if (input_line_pointer[1] == 'x')
13921 {
13922 input_line_pointer += 2;
13923 while (ISXDIGIT (*input_line_pointer))
13924 {
13925 val <<= 4;
13926 val |= hex_value (*input_line_pointer++);
13927 }
13928 return negative ? -val : val;
13929 }
13930 else
13931 {
13932 ++input_line_pointer;
13933 while (ISDIGIT (*input_line_pointer))
13934 {
13935 val <<= 3;
13936 val |= *input_line_pointer++ - '0';
13937 }
13938 return negative ? -val : val;
13939 }
13940 }
13941 if (!ISDIGIT (*input_line_pointer))
13942 {
13943 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
13944 *input_line_pointer, *input_line_pointer);
13945 as_warn (_("invalid number"));
13946 return -1;
13947 }
13948 while (ISDIGIT (*input_line_pointer))
13949 {
13950 val *= 10;
13951 val += *input_line_pointer++ - '0';
13952 }
13953 return negative ? -val : val;
13954 }
13955
13956 /* The .file directive; just like the usual .file directive, but there
13957 is an initial number which is the ECOFF file index. In the non-ECOFF
13958 case .file implies DWARF-2. */
13959
13960 static void
13961 s_mips_file (int x ATTRIBUTE_UNUSED)
13962 {
13963 static int first_file_directive = 0;
13964
13965 if (ECOFF_DEBUGGING)
13966 {
13967 get_number ();
13968 s_app_file (0);
13969 }
13970 else
13971 {
13972 char *filename;
13973
13974 filename = dwarf2_directive_file (0);
13975
13976 /* Versions of GCC up to 3.1 start files with a ".file"
13977 directive even for stabs output. Make sure that this
13978 ".file" is handled. Note that you need a version of GCC
13979 after 3.1 in order to support DWARF-2 on MIPS. */
13980 if (filename != NULL && ! first_file_directive)
13981 {
13982 (void) new_logical_line (filename, -1);
13983 s_app_file_string (filename, 0);
13984 }
13985 first_file_directive = 1;
13986 }
13987 }
13988
13989 /* The .loc directive, implying DWARF-2. */
13990
13991 static void
13992 s_mips_loc (int x ATTRIBUTE_UNUSED)
13993 {
13994 if (!ECOFF_DEBUGGING)
13995 dwarf2_directive_loc (0);
13996 }
13997
13998 /* The .end directive. */
13999
14000 static void
14001 s_mips_end (int x ATTRIBUTE_UNUSED)
14002 {
14003 symbolS *p;
14004
14005 /* Following functions need their own .frame and .cprestore directives. */
14006 mips_frame_reg_valid = 0;
14007 mips_cprestore_valid = 0;
14008
14009 if (!is_end_of_line[(unsigned char) *input_line_pointer])
14010 {
14011 p = get_symbol ();
14012 demand_empty_rest_of_line ();
14013 }
14014 else
14015 p = NULL;
14016
14017 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14018 as_warn (_(".end not in text section"));
14019
14020 if (!cur_proc_ptr)
14021 {
14022 as_warn (_(".end directive without a preceding .ent directive."));
14023 demand_empty_rest_of_line ();
14024 return;
14025 }
14026
14027 if (p != NULL)
14028 {
14029 assert (S_GET_NAME (p));
14030 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
14031 as_warn (_(".end symbol does not match .ent symbol."));
14032
14033 if (debug_type == DEBUG_STABS)
14034 stabs_generate_asm_endfunc (S_GET_NAME (p),
14035 S_GET_NAME (p));
14036 }
14037 else
14038 as_warn (_(".end directive missing or unknown symbol"));
14039
14040 #ifdef OBJ_ELF
14041 /* Create an expression to calculate the size of the function. */
14042 if (p && cur_proc_ptr)
14043 {
14044 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
14045 expressionS *exp = xmalloc (sizeof (expressionS));
14046
14047 obj->size = exp;
14048 exp->X_op = O_subtract;
14049 exp->X_add_symbol = symbol_temp_new_now ();
14050 exp->X_op_symbol = p;
14051 exp->X_add_number = 0;
14052
14053 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
14054 }
14055
14056 /* Generate a .pdr section. */
14057 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING
14058 && mips_flag_pdr)
14059 {
14060 segT saved_seg = now_seg;
14061 subsegT saved_subseg = now_subseg;
14062 valueT dot;
14063 expressionS exp;
14064 char *fragp;
14065
14066 dot = frag_now_fix ();
14067
14068 #ifdef md_flush_pending_output
14069 md_flush_pending_output ();
14070 #endif
14071
14072 assert (pdr_seg);
14073 subseg_set (pdr_seg, 0);
14074
14075 /* Write the symbol. */
14076 exp.X_op = O_symbol;
14077 exp.X_add_symbol = p;
14078 exp.X_add_number = 0;
14079 emit_expr (&exp, 4);
14080
14081 fragp = frag_more (7 * 4);
14082
14083 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
14084 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
14085 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
14086 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
14087 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
14088 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
14089 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
14090
14091 subseg_set (saved_seg, saved_subseg);
14092 }
14093 #endif /* OBJ_ELF */
14094
14095 cur_proc_ptr = NULL;
14096 }
14097
14098 /* The .aent and .ent directives. */
14099
14100 static void
14101 s_mips_ent (int aent)
14102 {
14103 symbolS *symbolP;
14104
14105 symbolP = get_symbol ();
14106 if (*input_line_pointer == ',')
14107 ++input_line_pointer;
14108 SKIP_WHITESPACE ();
14109 if (ISDIGIT (*input_line_pointer)
14110 || *input_line_pointer == '-')
14111 get_number ();
14112
14113 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14114 as_warn (_(".ent or .aent not in text section."));
14115
14116 if (!aent && cur_proc_ptr)
14117 as_warn (_("missing .end"));
14118
14119 if (!aent)
14120 {
14121 /* This function needs its own .frame and .cprestore directives. */
14122 mips_frame_reg_valid = 0;
14123 mips_cprestore_valid = 0;
14124
14125 cur_proc_ptr = &cur_proc;
14126 memset (cur_proc_ptr, '\0', sizeof (procS));
14127
14128 cur_proc_ptr->func_sym = symbolP;
14129
14130 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
14131
14132 ++numprocs;
14133
14134 if (debug_type == DEBUG_STABS)
14135 stabs_generate_asm_func (S_GET_NAME (symbolP),
14136 S_GET_NAME (symbolP));
14137 }
14138
14139 demand_empty_rest_of_line ();
14140 }
14141
14142 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
14143 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
14144 s_mips_frame is used so that we can set the PDR information correctly.
14145 We can't use the ecoff routines because they make reference to the ecoff
14146 symbol table (in the mdebug section). */
14147
14148 static void
14149 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
14150 {
14151 #ifdef OBJ_ELF
14152 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
14153 {
14154 long val;
14155
14156 if (cur_proc_ptr == (procS *) NULL)
14157 {
14158 as_warn (_(".frame outside of .ent"));
14159 demand_empty_rest_of_line ();
14160 return;
14161 }
14162
14163 cur_proc_ptr->frame_reg = tc_get_register (1);
14164
14165 SKIP_WHITESPACE ();
14166 if (*input_line_pointer++ != ','
14167 || get_absolute_expression_and_terminator (&val) != ',')
14168 {
14169 as_warn (_("Bad .frame directive"));
14170 --input_line_pointer;
14171 demand_empty_rest_of_line ();
14172 return;
14173 }
14174
14175 cur_proc_ptr->frame_offset = val;
14176 cur_proc_ptr->pc_reg = tc_get_register (0);
14177
14178 demand_empty_rest_of_line ();
14179 }
14180 else
14181 #endif /* OBJ_ELF */
14182 s_ignore (ignore);
14183 }
14184
14185 /* The .fmask and .mask directives. If the mdebug section is present
14186 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
14187 embedded targets, s_mips_mask is used so that we can set the PDR
14188 information correctly. We can't use the ecoff routines because they
14189 make reference to the ecoff symbol table (in the mdebug section). */
14190
14191 static void
14192 s_mips_mask (int reg_type)
14193 {
14194 #ifdef OBJ_ELF
14195 if (OUTPUT_FLAVOR == bfd_target_elf_flavour && ! ECOFF_DEBUGGING)
14196 {
14197 long mask, off;
14198
14199 if (cur_proc_ptr == (procS *) NULL)
14200 {
14201 as_warn (_(".mask/.fmask outside of .ent"));
14202 demand_empty_rest_of_line ();
14203 return;
14204 }
14205
14206 if (get_absolute_expression_and_terminator (&mask) != ',')
14207 {
14208 as_warn (_("Bad .mask/.fmask directive"));
14209 --input_line_pointer;
14210 demand_empty_rest_of_line ();
14211 return;
14212 }
14213
14214 off = get_absolute_expression ();
14215
14216 if (reg_type == 'F')
14217 {
14218 cur_proc_ptr->fpreg_mask = mask;
14219 cur_proc_ptr->fpreg_offset = off;
14220 }
14221 else
14222 {
14223 cur_proc_ptr->reg_mask = mask;
14224 cur_proc_ptr->reg_offset = off;
14225 }
14226
14227 demand_empty_rest_of_line ();
14228 }
14229 else
14230 #endif /* OBJ_ELF */
14231 s_ignore (reg_type);
14232 }
14233
14234 /* A table describing all the processors gas knows about. Names are
14235 matched in the order listed.
14236
14237 To ease comparison, please keep this table in the same order as
14238 gcc's mips_cpu_info_table[]. */
14239 static const struct mips_cpu_info mips_cpu_info_table[] =
14240 {
14241 /* Entries for generic ISAs */
14242 { "mips1", 1, ISA_MIPS1, CPU_R3000 },
14243 { "mips2", 1, ISA_MIPS2, CPU_R6000 },
14244 { "mips3", 1, ISA_MIPS3, CPU_R4000 },
14245 { "mips4", 1, ISA_MIPS4, CPU_R8000 },
14246 { "mips5", 1, ISA_MIPS5, CPU_MIPS5 },
14247 { "mips32", 1, ISA_MIPS32, CPU_MIPS32 },
14248 { "mips32r2", 1, ISA_MIPS32R2, CPU_MIPS32R2 },
14249 { "mips64", 1, ISA_MIPS64, CPU_MIPS64 },
14250 { "mips64r2", 1, ISA_MIPS64R2, CPU_MIPS64R2 },
14251
14252 /* MIPS I */
14253 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
14254 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
14255 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
14256
14257 /* MIPS II */
14258 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
14259
14260 /* MIPS III */
14261 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
14262 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
14263 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
14264 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
14265 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
14266 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
14267 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
14268 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
14269 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
14270 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
14271 { "orion", 0, ISA_MIPS3, CPU_R4600 },
14272 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
14273
14274 /* MIPS IV */
14275 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
14276 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
14277 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
14278 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
14279 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
14280 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
14281 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
14282 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
14283 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
14284 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
14285 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
14286 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
14287 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
14288
14289 /* MIPS 32 */
14290 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
14291 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
14292 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
14293
14294 /* MIPS32 Release 2 */
14295 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
14296 { "24k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
14297 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
14298 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
14299 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
14300
14301 /* MIPS 64 */
14302 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
14303 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
14304 { "20kc", 0, ISA_MIPS64, CPU_MIPS64 },
14305
14306 /* Broadcom SB-1 CPU core */
14307 { "sb1", 0, ISA_MIPS64, CPU_SB1 },
14308
14309 /* End marker */
14310 { NULL, 0, 0, 0 }
14311 };
14312
14313
14314 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
14315 with a final "000" replaced by "k". Ignore case.
14316
14317 Note: this function is shared between GCC and GAS. */
14318
14319 static bfd_boolean
14320 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
14321 {
14322 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
14323 given++, canonical++;
14324
14325 return ((*given == 0 && *canonical == 0)
14326 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
14327 }
14328
14329
14330 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
14331 CPU name. We've traditionally allowed a lot of variation here.
14332
14333 Note: this function is shared between GCC and GAS. */
14334
14335 static bfd_boolean
14336 mips_matching_cpu_name_p (const char *canonical, const char *given)
14337 {
14338 /* First see if the name matches exactly, or with a final "000"
14339 turned into "k". */
14340 if (mips_strict_matching_cpu_name_p (canonical, given))
14341 return TRUE;
14342
14343 /* If not, try comparing based on numerical designation alone.
14344 See if GIVEN is an unadorned number, or 'r' followed by a number. */
14345 if (TOLOWER (*given) == 'r')
14346 given++;
14347 if (!ISDIGIT (*given))
14348 return FALSE;
14349
14350 /* Skip over some well-known prefixes in the canonical name,
14351 hoping to find a number there too. */
14352 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
14353 canonical += 2;
14354 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
14355 canonical += 2;
14356 else if (TOLOWER (canonical[0]) == 'r')
14357 canonical += 1;
14358
14359 return mips_strict_matching_cpu_name_p (canonical, given);
14360 }
14361
14362
14363 /* Parse an option that takes the name of a processor as its argument.
14364 OPTION is the name of the option and CPU_STRING is the argument.
14365 Return the corresponding processor enumeration if the CPU_STRING is
14366 recognized, otherwise report an error and return null.
14367
14368 A similar function exists in GCC. */
14369
14370 static const struct mips_cpu_info *
14371 mips_parse_cpu (const char *option, const char *cpu_string)
14372 {
14373 const struct mips_cpu_info *p;
14374
14375 /* 'from-abi' selects the most compatible architecture for the given
14376 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
14377 EABIs, we have to decide whether we're using the 32-bit or 64-bit
14378 version. Look first at the -mgp options, if given, otherwise base
14379 the choice on MIPS_DEFAULT_64BIT.
14380
14381 Treat NO_ABI like the EABIs. One reason to do this is that the
14382 plain 'mips' and 'mips64' configs have 'from-abi' as their default
14383 architecture. This code picks MIPS I for 'mips' and MIPS III for
14384 'mips64', just as we did in the days before 'from-abi'. */
14385 if (strcasecmp (cpu_string, "from-abi") == 0)
14386 {
14387 if (ABI_NEEDS_32BIT_REGS (mips_abi))
14388 return mips_cpu_info_from_isa (ISA_MIPS1);
14389
14390 if (ABI_NEEDS_64BIT_REGS (mips_abi))
14391 return mips_cpu_info_from_isa (ISA_MIPS3);
14392
14393 if (file_mips_gp32 >= 0)
14394 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
14395
14396 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
14397 ? ISA_MIPS3
14398 : ISA_MIPS1);
14399 }
14400
14401 /* 'default' has traditionally been a no-op. Probably not very useful. */
14402 if (strcasecmp (cpu_string, "default") == 0)
14403 return 0;
14404
14405 for (p = mips_cpu_info_table; p->name != 0; p++)
14406 if (mips_matching_cpu_name_p (p->name, cpu_string))
14407 return p;
14408
14409 as_bad ("Bad value (%s) for %s", cpu_string, option);
14410 return 0;
14411 }
14412
14413 /* Return the canonical processor information for ISA (a member of the
14414 ISA_MIPS* enumeration). */
14415
14416 static const struct mips_cpu_info *
14417 mips_cpu_info_from_isa (int isa)
14418 {
14419 int i;
14420
14421 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14422 if (mips_cpu_info_table[i].is_isa
14423 && isa == mips_cpu_info_table[i].isa)
14424 return (&mips_cpu_info_table[i]);
14425
14426 return NULL;
14427 }
14428
14429 static const struct mips_cpu_info *
14430 mips_cpu_info_from_arch (int arch)
14431 {
14432 int i;
14433
14434 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14435 if (arch == mips_cpu_info_table[i].cpu)
14436 return (&mips_cpu_info_table[i]);
14437
14438 return NULL;
14439 }
14440 \f
14441 static void
14442 show (FILE *stream, const char *string, int *col_p, int *first_p)
14443 {
14444 if (*first_p)
14445 {
14446 fprintf (stream, "%24s", "");
14447 *col_p = 24;
14448 }
14449 else
14450 {
14451 fprintf (stream, ", ");
14452 *col_p += 2;
14453 }
14454
14455 if (*col_p + strlen (string) > 72)
14456 {
14457 fprintf (stream, "\n%24s", "");
14458 *col_p = 24;
14459 }
14460
14461 fprintf (stream, "%s", string);
14462 *col_p += strlen (string);
14463
14464 *first_p = 0;
14465 }
14466
14467 void
14468 md_show_usage (FILE *stream)
14469 {
14470 int column, first;
14471 size_t i;
14472
14473 fprintf (stream, _("\
14474 MIPS options:\n\
14475 -EB generate big endian output\n\
14476 -EL generate little endian output\n\
14477 -g, -g2 do not remove unneeded NOPs or swap branches\n\
14478 -G NUM allow referencing objects up to NUM bytes\n\
14479 implicitly with the gp register [default 8]\n"));
14480 fprintf (stream, _("\
14481 -mips1 generate MIPS ISA I instructions\n\
14482 -mips2 generate MIPS ISA II instructions\n\
14483 -mips3 generate MIPS ISA III instructions\n\
14484 -mips4 generate MIPS ISA IV instructions\n\
14485 -mips5 generate MIPS ISA V instructions\n\
14486 -mips32 generate MIPS32 ISA instructions\n\
14487 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
14488 -mips64 generate MIPS64 ISA instructions\n\
14489 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
14490 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
14491
14492 first = 1;
14493
14494 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
14495 show (stream, mips_cpu_info_table[i].name, &column, &first);
14496 show (stream, "from-abi", &column, &first);
14497 fputc ('\n', stream);
14498
14499 fprintf (stream, _("\
14500 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
14501 -no-mCPU don't generate code specific to CPU.\n\
14502 For -mCPU and -no-mCPU, CPU must be one of:\n"));
14503
14504 first = 1;
14505
14506 show (stream, "3900", &column, &first);
14507 show (stream, "4010", &column, &first);
14508 show (stream, "4100", &column, &first);
14509 show (stream, "4650", &column, &first);
14510 fputc ('\n', stream);
14511
14512 fprintf (stream, _("\
14513 -mips16 generate mips16 instructions\n\
14514 -no-mips16 do not generate mips16 instructions\n"));
14515 fprintf (stream, _("\
14516 -mdsp generate DSP instructions\n\
14517 -mno-dsp do not generate DSP instructions\n"));
14518 fprintf (stream, _("\
14519 -mmt generate MT instructions\n\
14520 -mno-mt do not generate MT instructions\n"));
14521 fprintf (stream, _("\
14522 -mfix-vr4120 work around certain VR4120 errata\n\
14523 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
14524 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
14525 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
14526 -mno-shared optimize output for executables\n\
14527 -msym32 assume all symbols have 32-bit values\n\
14528 -O0 remove unneeded NOPs, do not swap branches\n\
14529 -O remove unneeded NOPs and swap branches\n\
14530 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
14531 --trap, --no-break trap exception on div by 0 and mult overflow\n\
14532 --break, --no-trap break exception on div by 0 and mult overflow\n"));
14533 #ifdef OBJ_ELF
14534 fprintf (stream, _("\
14535 -KPIC, -call_shared generate SVR4 position independent code\n\
14536 -non_shared do not generate position independent code\n\
14537 -xgot assume a 32 bit GOT\n\
14538 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
14539 -mshared, -mno-shared disable/enable .cpload optimization for\n\
14540 non-shared code\n\
14541 -mabi=ABI create ABI conformant object file for:\n"));
14542
14543 first = 1;
14544
14545 show (stream, "32", &column, &first);
14546 show (stream, "o64", &column, &first);
14547 show (stream, "n32", &column, &first);
14548 show (stream, "64", &column, &first);
14549 show (stream, "eabi", &column, &first);
14550
14551 fputc ('\n', stream);
14552
14553 fprintf (stream, _("\
14554 -32 create o32 ABI object file (default)\n\
14555 -n32 create n32 ABI object file\n\
14556 -64 create 64 ABI object file\n"));
14557 #endif
14558 }
14559
14560 enum dwarf2_format
14561 mips_dwarf2_format (void)
14562 {
14563 if (mips_abi == N64_ABI)
14564 {
14565 #ifdef TE_IRIX
14566 return dwarf2_format_64bit_irix;
14567 #else
14568 return dwarf2_format_64bit;
14569 #endif
14570 }
14571 else
14572 return dwarf2_format_32bit;
14573 }
14574
14575 int
14576 mips_dwarf2_addr_size (void)
14577 {
14578 if (mips_abi == N64_ABI)
14579 return 8;
14580 else
14581 return 4;
14582 }
14583
14584 /* Standard calling conventions leave the CFA at SP on entry. */
14585 void
14586 mips_cfi_frame_initial_instructions (void)
14587 {
14588 cfi_add_CFA_def_cfa_register (SP);
14589 }
14590
This page took 0.309792 seconds and 5 git commands to generate.