Initialize variables in i386_linux_handle_segmentation_fault
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946 \f
947 /* The expansion of many macros depends on the type of symbol that
948 they refer to. For example, when generating position-dependent code,
949 a macro that refers to a symbol may have two different expansions,
950 one which uses GP-relative addresses and one which uses absolute
951 addresses. When generating SVR4-style PIC, a macro may have
952 different expansions for local and global symbols.
953
954 We handle these situations by generating both sequences and putting
955 them in variant frags. In position-dependent code, the first sequence
956 will be the GP-relative one and the second sequence will be the
957 absolute one. In SVR4 PIC, the first sequence will be for global
958 symbols and the second will be for local symbols.
959
960 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
961 SECOND are the lengths of the two sequences in bytes. These fields
962 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
963 the subtype has the following flags:
964
965 RELAX_USE_SECOND
966 Set if it has been decided that we should use the second
967 sequence instead of the first.
968
969 RELAX_SECOND_LONGER
970 Set in the first variant frag if the macro's second implementation
971 is longer than its first. This refers to the macro as a whole,
972 not an individual relaxation.
973
974 RELAX_NOMACRO
975 Set in the first variant frag if the macro appeared in a .set nomacro
976 block and if one alternative requires a warning but the other does not.
977
978 RELAX_DELAY_SLOT
979 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
980 delay slot.
981
982 RELAX_DELAY_SLOT_16BIT
983 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
984 16-bit instruction.
985
986 RELAX_DELAY_SLOT_SIZE_FIRST
987 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
988 the macro is of the wrong size for the branch delay slot.
989
990 RELAX_DELAY_SLOT_SIZE_SECOND
991 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
992 the macro is of the wrong size for the branch delay slot.
993
994 The frag's "opcode" points to the first fixup for relaxable code.
995
996 Relaxable macros are generated using a sequence such as:
997
998 relax_start (SYMBOL);
999 ... generate first expansion ...
1000 relax_switch ();
1001 ... generate second expansion ...
1002 relax_end ();
1003
1004 The code and fixups for the unwanted alternative are discarded
1005 by md_convert_frag. */
1006 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
1007
1008 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1009 #define RELAX_SECOND(X) ((X) & 0xff)
1010 #define RELAX_USE_SECOND 0x10000
1011 #define RELAX_SECOND_LONGER 0x20000
1012 #define RELAX_NOMACRO 0x40000
1013 #define RELAX_DELAY_SLOT 0x80000
1014 #define RELAX_DELAY_SLOT_16BIT 0x100000
1015 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x200000
1016 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x400000
1017
1018 /* Branch without likely bit. If label is out of range, we turn:
1019
1020 beq reg1, reg2, label
1021 delay slot
1022
1023 into
1024
1025 bne reg1, reg2, 0f
1026 nop
1027 j label
1028 0: delay slot
1029
1030 with the following opcode replacements:
1031
1032 beq <-> bne
1033 blez <-> bgtz
1034 bltz <-> bgez
1035 bc1f <-> bc1t
1036
1037 bltzal <-> bgezal (with jal label instead of j label)
1038
1039 Even though keeping the delay slot instruction in the delay slot of
1040 the branch would be more efficient, it would be very tricky to do
1041 correctly, because we'd have to introduce a variable frag *after*
1042 the delay slot instruction, and expand that instead. Let's do it
1043 the easy way for now, even if the branch-not-taken case now costs
1044 one additional instruction. Out-of-range branches are not supposed
1045 to be common, anyway.
1046
1047 Branch likely. If label is out of range, we turn:
1048
1049 beql reg1, reg2, label
1050 delay slot (annulled if branch not taken)
1051
1052 into
1053
1054 beql reg1, reg2, 1f
1055 nop
1056 beql $0, $0, 2f
1057 nop
1058 1: j[al] label
1059 delay slot (executed only if branch taken)
1060 2:
1061
1062 It would be possible to generate a shorter sequence by losing the
1063 likely bit, generating something like:
1064
1065 bne reg1, reg2, 0f
1066 nop
1067 j[al] label
1068 delay slot (executed only if branch taken)
1069 0:
1070
1071 beql -> bne
1072 bnel -> beq
1073 blezl -> bgtz
1074 bgtzl -> blez
1075 bltzl -> bgez
1076 bgezl -> bltz
1077 bc1fl -> bc1t
1078 bc1tl -> bc1f
1079
1080 bltzall -> bgezal (with jal label instead of j label)
1081 bgezall -> bltzal (ditto)
1082
1083
1084 but it's not clear that it would actually improve performance. */
1085 #define RELAX_BRANCH_ENCODE(at, uncond, likely, link, toofar) \
1086 ((relax_substateT) \
1087 (0xc0000000 \
1088 | ((at) & 0x1f) \
1089 | ((toofar) ? 0x20 : 0) \
1090 | ((link) ? 0x40 : 0) \
1091 | ((likely) ? 0x80 : 0) \
1092 | ((uncond) ? 0x100 : 0)))
1093 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1094 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x100) != 0)
1095 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x80) != 0)
1096 #define RELAX_BRANCH_LINK(i) (((i) & 0x40) != 0)
1097 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x20) != 0)
1098 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1099
1100 /* For mips16 code, we use an entirely different form of relaxation.
1101 mips16 supports two versions of most instructions which take
1102 immediate values: a small one which takes some small value, and a
1103 larger one which takes a 16 bit value. Since branches also follow
1104 this pattern, relaxing these values is required.
1105
1106 We can assemble both mips16 and normal MIPS code in a single
1107 object. Therefore, we need to support this type of relaxation at
1108 the same time that we support the relaxation described above. We
1109 use the high bit of the subtype field to distinguish these cases.
1110
1111 The information we store for this type of relaxation is the
1112 argument code found in the opcode file for this relocation, whether
1113 the user explicitly requested a small or extended form, and whether
1114 the relocation is in a jump or jal delay slot. That tells us the
1115 size of the value, and how it should be stored. We also store
1116 whether the fragment is considered to be extended or not. We also
1117 store whether this is known to be a branch to a different section,
1118 whether we have tried to relax this frag yet, and whether we have
1119 ever extended a PC relative fragment because of a shift count. */
1120 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
1121 (0x80000000 \
1122 | ((type) & 0xff) \
1123 | ((small) ? 0x100 : 0) \
1124 | ((ext) ? 0x200 : 0) \
1125 | ((dslot) ? 0x400 : 0) \
1126 | ((jal_dslot) ? 0x800 : 0))
1127 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1128 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1129 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
1130 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
1131 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
1132 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
1133 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
1134 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
1135 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
1136 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
1137 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
1138 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
1139
1140 /* For microMIPS code, we use relaxation similar to one we use for
1141 MIPS16 code. Some instructions that take immediate values support
1142 two encodings: a small one which takes some small value, and a
1143 larger one which takes a 16 bit value. As some branches also follow
1144 this pattern, relaxing these values is required.
1145
1146 We can assemble both microMIPS and normal MIPS code in a single
1147 object. Therefore, we need to support this type of relaxation at
1148 the same time that we support the relaxation described above. We
1149 use one of the high bits of the subtype field to distinguish these
1150 cases.
1151
1152 The information we store for this type of relaxation is the argument
1153 code found in the opcode file for this relocation, the register
1154 selected as the assembler temporary, whether the branch is
1155 unconditional, whether it is compact, whether it stores the link
1156 address implicitly in $ra, whether relaxation of out-of-range 32-bit
1157 branches to a sequence of instructions is enabled, and whether the
1158 displacement of a branch is too large to fit as an immediate argument
1159 of a 16-bit and a 32-bit branch, respectively. */
1160 #define RELAX_MICROMIPS_ENCODE(type, at, uncond, compact, link, \
1161 relax32, toofar16, toofar32) \
1162 (0x40000000 \
1163 | ((type) & 0xff) \
1164 | (((at) & 0x1f) << 8) \
1165 | ((uncond) ? 0x2000 : 0) \
1166 | ((compact) ? 0x4000 : 0) \
1167 | ((link) ? 0x8000 : 0) \
1168 | ((relax32) ? 0x10000 : 0) \
1169 | ((toofar16) ? 0x20000 : 0) \
1170 | ((toofar32) ? 0x40000 : 0))
1171 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1172 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1173 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1174 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x2000) != 0)
1175 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x4000) != 0)
1176 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x8000) != 0)
1177 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x10000) != 0)
1178
1179 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x20000) != 0)
1180 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x20000)
1181 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x20000)
1182 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x40000) != 0)
1183 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x40000)
1184 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x40000)
1185
1186 /* Sign-extend 16-bit value X. */
1187 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1188
1189 /* Is the given value a sign-extended 32-bit value? */
1190 #define IS_SEXT_32BIT_NUM(x) \
1191 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1192 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1193
1194 /* Is the given value a sign-extended 16-bit value? */
1195 #define IS_SEXT_16BIT_NUM(x) \
1196 (((x) &~ (offsetT) 0x7fff) == 0 \
1197 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1198
1199 /* Is the given value a sign-extended 12-bit value? */
1200 #define IS_SEXT_12BIT_NUM(x) \
1201 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1202
1203 /* Is the given value a sign-extended 9-bit value? */
1204 #define IS_SEXT_9BIT_NUM(x) \
1205 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1206
1207 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1208 #define IS_ZEXT_32BIT_NUM(x) \
1209 (((x) &~ (offsetT) 0xffffffff) == 0 \
1210 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1211
1212 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1213 SHIFT places. */
1214 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1215 (((STRUCT) >> (SHIFT)) & (MASK))
1216
1217 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1218 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1219 (!(MICROMIPS) \
1220 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1221 : EXTRACT_BITS ((INSN).insn_opcode, \
1222 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1223 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1224 EXTRACT_BITS ((INSN).insn_opcode, \
1225 MIPS16OP_MASK_##FIELD, \
1226 MIPS16OP_SH_##FIELD)
1227
1228 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1229 #define MIPS16_EXTEND (0xf000U << 16)
1230 \f
1231 /* Whether or not we are emitting a branch-likely macro. */
1232 static bfd_boolean emit_branch_likely_macro = FALSE;
1233
1234 /* Global variables used when generating relaxable macros. See the
1235 comment above RELAX_ENCODE for more details about how relaxation
1236 is used. */
1237 static struct {
1238 /* 0 if we're not emitting a relaxable macro.
1239 1 if we're emitting the first of the two relaxation alternatives.
1240 2 if we're emitting the second alternative. */
1241 int sequence;
1242
1243 /* The first relaxable fixup in the current frag. (In other words,
1244 the first fixup that refers to relaxable code.) */
1245 fixS *first_fixup;
1246
1247 /* sizes[0] says how many bytes of the first alternative are stored in
1248 the current frag. Likewise sizes[1] for the second alternative. */
1249 unsigned int sizes[2];
1250
1251 /* The symbol on which the choice of sequence depends. */
1252 symbolS *symbol;
1253 } mips_relax;
1254 \f
1255 /* Global variables used to decide whether a macro needs a warning. */
1256 static struct {
1257 /* True if the macro is in a branch delay slot. */
1258 bfd_boolean delay_slot_p;
1259
1260 /* Set to the length in bytes required if the macro is in a delay slot
1261 that requires a specific length of instruction, otherwise zero. */
1262 unsigned int delay_slot_length;
1263
1264 /* For relaxable macros, sizes[0] is the length of the first alternative
1265 in bytes and sizes[1] is the length of the second alternative.
1266 For non-relaxable macros, both elements give the length of the
1267 macro in bytes. */
1268 unsigned int sizes[2];
1269
1270 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1271 instruction of the first alternative in bytes and first_insn_sizes[1]
1272 is the length of the first instruction of the second alternative.
1273 For non-relaxable macros, both elements give the length of the first
1274 instruction in bytes.
1275
1276 Set to zero if we haven't yet seen the first instruction. */
1277 unsigned int first_insn_sizes[2];
1278
1279 /* For relaxable macros, insns[0] is the number of instructions for the
1280 first alternative and insns[1] is the number of instructions for the
1281 second alternative.
1282
1283 For non-relaxable macros, both elements give the number of
1284 instructions for the macro. */
1285 unsigned int insns[2];
1286
1287 /* The first variant frag for this macro. */
1288 fragS *first_frag;
1289 } mips_macro_warning;
1290 \f
1291 /* Prototypes for static functions. */
1292
1293 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1294
1295 static void append_insn
1296 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1297 bfd_boolean expansionp);
1298 static void mips_no_prev_insn (void);
1299 static void macro_build (expressionS *, const char *, const char *, ...);
1300 static void mips16_macro_build
1301 (expressionS *, const char *, const char *, va_list *);
1302 static void load_register (int, expressionS *, int);
1303 static void macro_start (void);
1304 static void macro_end (void);
1305 static void macro (struct mips_cl_insn *ip, char *str);
1306 static void mips16_macro (struct mips_cl_insn * ip);
1307 static void mips_ip (char *str, struct mips_cl_insn * ip);
1308 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1309 static void mips16_immed
1310 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1311 unsigned int, unsigned long *);
1312 static size_t my_getSmallExpression
1313 (expressionS *, bfd_reloc_code_real_type *, char *);
1314 static void my_getExpression (expressionS *, char *);
1315 static void s_align (int);
1316 static void s_change_sec (int);
1317 static void s_change_section (int);
1318 static void s_cons (int);
1319 static void s_float_cons (int);
1320 static void s_mips_globl (int);
1321 static void s_option (int);
1322 static void s_mipsset (int);
1323 static void s_abicalls (int);
1324 static void s_cpload (int);
1325 static void s_cpsetup (int);
1326 static void s_cplocal (int);
1327 static void s_cprestore (int);
1328 static void s_cpreturn (int);
1329 static void s_dtprelword (int);
1330 static void s_dtpreldword (int);
1331 static void s_tprelword (int);
1332 static void s_tpreldword (int);
1333 static void s_gpvalue (int);
1334 static void s_gpword (int);
1335 static void s_gpdword (int);
1336 static void s_ehword (int);
1337 static void s_cpadd (int);
1338 static void s_insn (int);
1339 static void s_nan (int);
1340 static void s_module (int);
1341 static void s_mips_ent (int);
1342 static void s_mips_end (int);
1343 static void s_mips_frame (int);
1344 static void s_mips_mask (int reg_type);
1345 static void s_mips_stab (int);
1346 static void s_mips_weakext (int);
1347 static void s_mips_file (int);
1348 static void s_mips_loc (int);
1349 static bfd_boolean pic_need_relax (symbolS *, asection *);
1350 static int relaxed_branch_length (fragS *, asection *, int);
1351 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1352 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1353 static void file_mips_check_options (void);
1354
1355 /* Table and functions used to map between CPU/ISA names, and
1356 ISA levels, and CPU numbers. */
1357
1358 struct mips_cpu_info
1359 {
1360 const char *name; /* CPU or ISA name. */
1361 int flags; /* MIPS_CPU_* flags. */
1362 int ase; /* Set of ASEs implemented by the CPU. */
1363 int isa; /* ISA level. */
1364 int cpu; /* CPU number (default CPU if ISA). */
1365 };
1366
1367 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1368
1369 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1370 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1371 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1372 \f
1373 /* Command-line options. */
1374 const char *md_shortopts = "O::g::G:";
1375
1376 enum options
1377 {
1378 OPTION_MARCH = OPTION_MD_BASE,
1379 OPTION_MTUNE,
1380 OPTION_MIPS1,
1381 OPTION_MIPS2,
1382 OPTION_MIPS3,
1383 OPTION_MIPS4,
1384 OPTION_MIPS5,
1385 OPTION_MIPS32,
1386 OPTION_MIPS64,
1387 OPTION_MIPS32R2,
1388 OPTION_MIPS32R3,
1389 OPTION_MIPS32R5,
1390 OPTION_MIPS32R6,
1391 OPTION_MIPS64R2,
1392 OPTION_MIPS64R3,
1393 OPTION_MIPS64R5,
1394 OPTION_MIPS64R6,
1395 OPTION_MIPS16,
1396 OPTION_NO_MIPS16,
1397 OPTION_MIPS3D,
1398 OPTION_NO_MIPS3D,
1399 OPTION_MDMX,
1400 OPTION_NO_MDMX,
1401 OPTION_DSP,
1402 OPTION_NO_DSP,
1403 OPTION_MT,
1404 OPTION_NO_MT,
1405 OPTION_VIRT,
1406 OPTION_NO_VIRT,
1407 OPTION_MSA,
1408 OPTION_NO_MSA,
1409 OPTION_SMARTMIPS,
1410 OPTION_NO_SMARTMIPS,
1411 OPTION_DSPR2,
1412 OPTION_NO_DSPR2,
1413 OPTION_EVA,
1414 OPTION_NO_EVA,
1415 OPTION_XPA,
1416 OPTION_NO_XPA,
1417 OPTION_MICROMIPS,
1418 OPTION_NO_MICROMIPS,
1419 OPTION_MCU,
1420 OPTION_NO_MCU,
1421 OPTION_COMPAT_ARCH_BASE,
1422 OPTION_M4650,
1423 OPTION_NO_M4650,
1424 OPTION_M4010,
1425 OPTION_NO_M4010,
1426 OPTION_M4100,
1427 OPTION_NO_M4100,
1428 OPTION_M3900,
1429 OPTION_NO_M3900,
1430 OPTION_M7000_HILO_FIX,
1431 OPTION_MNO_7000_HILO_FIX,
1432 OPTION_FIX_24K,
1433 OPTION_NO_FIX_24K,
1434 OPTION_FIX_RM7000,
1435 OPTION_NO_FIX_RM7000,
1436 OPTION_FIX_LOONGSON2F_JUMP,
1437 OPTION_NO_FIX_LOONGSON2F_JUMP,
1438 OPTION_FIX_LOONGSON2F_NOP,
1439 OPTION_NO_FIX_LOONGSON2F_NOP,
1440 OPTION_FIX_VR4120,
1441 OPTION_NO_FIX_VR4120,
1442 OPTION_FIX_VR4130,
1443 OPTION_NO_FIX_VR4130,
1444 OPTION_FIX_CN63XXP1,
1445 OPTION_NO_FIX_CN63XXP1,
1446 OPTION_TRAP,
1447 OPTION_BREAK,
1448 OPTION_EB,
1449 OPTION_EL,
1450 OPTION_FP32,
1451 OPTION_GP32,
1452 OPTION_CONSTRUCT_FLOATS,
1453 OPTION_NO_CONSTRUCT_FLOATS,
1454 OPTION_FP64,
1455 OPTION_FPXX,
1456 OPTION_GP64,
1457 OPTION_RELAX_BRANCH,
1458 OPTION_NO_RELAX_BRANCH,
1459 OPTION_INSN32,
1460 OPTION_NO_INSN32,
1461 OPTION_MSHARED,
1462 OPTION_MNO_SHARED,
1463 OPTION_MSYM32,
1464 OPTION_MNO_SYM32,
1465 OPTION_SOFT_FLOAT,
1466 OPTION_HARD_FLOAT,
1467 OPTION_SINGLE_FLOAT,
1468 OPTION_DOUBLE_FLOAT,
1469 OPTION_32,
1470 OPTION_CALL_SHARED,
1471 OPTION_CALL_NONPIC,
1472 OPTION_NON_SHARED,
1473 OPTION_XGOT,
1474 OPTION_MABI,
1475 OPTION_N32,
1476 OPTION_64,
1477 OPTION_MDEBUG,
1478 OPTION_NO_MDEBUG,
1479 OPTION_PDR,
1480 OPTION_NO_PDR,
1481 OPTION_MVXWORKS_PIC,
1482 OPTION_NAN,
1483 OPTION_ODD_SPREG,
1484 OPTION_NO_ODD_SPREG,
1485 OPTION_END_OF_ENUM
1486 };
1487
1488 struct option md_longopts[] =
1489 {
1490 /* Options which specify architecture. */
1491 {"march", required_argument, NULL, OPTION_MARCH},
1492 {"mtune", required_argument, NULL, OPTION_MTUNE},
1493 {"mips0", no_argument, NULL, OPTION_MIPS1},
1494 {"mips1", no_argument, NULL, OPTION_MIPS1},
1495 {"mips2", no_argument, NULL, OPTION_MIPS2},
1496 {"mips3", no_argument, NULL, OPTION_MIPS3},
1497 {"mips4", no_argument, NULL, OPTION_MIPS4},
1498 {"mips5", no_argument, NULL, OPTION_MIPS5},
1499 {"mips32", no_argument, NULL, OPTION_MIPS32},
1500 {"mips64", no_argument, NULL, OPTION_MIPS64},
1501 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1502 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1503 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1504 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1505 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1506 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1507 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1508 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1509
1510 /* Options which specify Application Specific Extensions (ASEs). */
1511 {"mips16", no_argument, NULL, OPTION_MIPS16},
1512 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1513 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1514 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1515 {"mdmx", no_argument, NULL, OPTION_MDMX},
1516 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1517 {"mdsp", no_argument, NULL, OPTION_DSP},
1518 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1519 {"mmt", no_argument, NULL, OPTION_MT},
1520 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1521 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1522 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1523 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1524 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1525 {"meva", no_argument, NULL, OPTION_EVA},
1526 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1527 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1528 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1529 {"mmcu", no_argument, NULL, OPTION_MCU},
1530 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1531 {"mvirt", no_argument, NULL, OPTION_VIRT},
1532 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1533 {"mmsa", no_argument, NULL, OPTION_MSA},
1534 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1535 {"mxpa", no_argument, NULL, OPTION_XPA},
1536 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1537
1538 /* Old-style architecture options. Don't add more of these. */
1539 {"m4650", no_argument, NULL, OPTION_M4650},
1540 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1541 {"m4010", no_argument, NULL, OPTION_M4010},
1542 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1543 {"m4100", no_argument, NULL, OPTION_M4100},
1544 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1545 {"m3900", no_argument, NULL, OPTION_M3900},
1546 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1547
1548 /* Options which enable bug fixes. */
1549 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1550 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1551 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1552 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1553 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1554 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1555 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1556 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1557 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1558 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1559 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1560 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1561 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1562 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1563 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1564 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1565 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1566
1567 /* Miscellaneous options. */
1568 {"trap", no_argument, NULL, OPTION_TRAP},
1569 {"no-break", no_argument, NULL, OPTION_TRAP},
1570 {"break", no_argument, NULL, OPTION_BREAK},
1571 {"no-trap", no_argument, NULL, OPTION_BREAK},
1572 {"EB", no_argument, NULL, OPTION_EB},
1573 {"EL", no_argument, NULL, OPTION_EL},
1574 {"mfp32", no_argument, NULL, OPTION_FP32},
1575 {"mgp32", no_argument, NULL, OPTION_GP32},
1576 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1577 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1578 {"mfp64", no_argument, NULL, OPTION_FP64},
1579 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1580 {"mgp64", no_argument, NULL, OPTION_GP64},
1581 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1582 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1583 {"minsn32", no_argument, NULL, OPTION_INSN32},
1584 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1585 {"mshared", no_argument, NULL, OPTION_MSHARED},
1586 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1587 {"msym32", no_argument, NULL, OPTION_MSYM32},
1588 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1589 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1590 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1591 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1592 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1593 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1594 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1595
1596 /* Strictly speaking this next option is ELF specific,
1597 but we allow it for other ports as well in order to
1598 make testing easier. */
1599 {"32", no_argument, NULL, OPTION_32},
1600
1601 /* ELF-specific options. */
1602 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1603 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1604 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1605 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1606 {"xgot", no_argument, NULL, OPTION_XGOT},
1607 {"mabi", required_argument, NULL, OPTION_MABI},
1608 {"n32", no_argument, NULL, OPTION_N32},
1609 {"64", no_argument, NULL, OPTION_64},
1610 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1611 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1612 {"mpdr", no_argument, NULL, OPTION_PDR},
1613 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1614 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1615 {"mnan", required_argument, NULL, OPTION_NAN},
1616
1617 {NULL, no_argument, NULL, 0}
1618 };
1619 size_t md_longopts_size = sizeof (md_longopts);
1620 \f
1621 /* Information about either an Application Specific Extension or an
1622 optional architecture feature that, for simplicity, we treat in the
1623 same way as an ASE. */
1624 struct mips_ase
1625 {
1626 /* The name of the ASE, used in both the command-line and .set options. */
1627 const char *name;
1628
1629 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1630 and 64-bit architectures, the flags here refer to the subset that
1631 is available on both. */
1632 unsigned int flags;
1633
1634 /* The ASE_* flag used for instructions that are available on 64-bit
1635 architectures but that are not included in FLAGS. */
1636 unsigned int flags64;
1637
1638 /* The command-line options that turn the ASE on and off. */
1639 int option_on;
1640 int option_off;
1641
1642 /* The minimum required architecture revisions for MIPS32, MIPS64,
1643 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1644 int mips32_rev;
1645 int mips64_rev;
1646 int micromips32_rev;
1647 int micromips64_rev;
1648
1649 /* The architecture where the ASE was removed or -1 if the extension has not
1650 been removed. */
1651 int rem_rev;
1652 };
1653
1654 /* A table of all supported ASEs. */
1655 static const struct mips_ase mips_ases[] = {
1656 { "dsp", ASE_DSP, ASE_DSP64,
1657 OPTION_DSP, OPTION_NO_DSP,
1658 2, 2, 2, 2,
1659 -1 },
1660
1661 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1662 OPTION_DSPR2, OPTION_NO_DSPR2,
1663 2, 2, 2, 2,
1664 -1 },
1665
1666 { "eva", ASE_EVA, 0,
1667 OPTION_EVA, OPTION_NO_EVA,
1668 2, 2, 2, 2,
1669 -1 },
1670
1671 { "mcu", ASE_MCU, 0,
1672 OPTION_MCU, OPTION_NO_MCU,
1673 2, 2, 2, 2,
1674 -1 },
1675
1676 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1677 { "mdmx", ASE_MDMX, 0,
1678 OPTION_MDMX, OPTION_NO_MDMX,
1679 -1, 1, -1, -1,
1680 6 },
1681
1682 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1683 { "mips3d", ASE_MIPS3D, 0,
1684 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1685 2, 1, -1, -1,
1686 6 },
1687
1688 { "mt", ASE_MT, 0,
1689 OPTION_MT, OPTION_NO_MT,
1690 2, 2, -1, -1,
1691 -1 },
1692
1693 { "smartmips", ASE_SMARTMIPS, 0,
1694 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1695 1, -1, -1, -1,
1696 6 },
1697
1698 { "virt", ASE_VIRT, ASE_VIRT64,
1699 OPTION_VIRT, OPTION_NO_VIRT,
1700 2, 2, 2, 2,
1701 -1 },
1702
1703 { "msa", ASE_MSA, ASE_MSA64,
1704 OPTION_MSA, OPTION_NO_MSA,
1705 2, 2, 2, 2,
1706 -1 },
1707
1708 { "xpa", ASE_XPA, 0,
1709 OPTION_XPA, OPTION_NO_XPA,
1710 2, 2, -1, -1,
1711 -1 },
1712 };
1713
1714 /* The set of ASEs that require -mfp64. */
1715 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1716
1717 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1718 static const unsigned int mips_ase_groups[] = {
1719 ASE_DSP | ASE_DSPR2
1720 };
1721 \f
1722 /* Pseudo-op table.
1723
1724 The following pseudo-ops from the Kane and Heinrich MIPS book
1725 should be defined here, but are currently unsupported: .alias,
1726 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1727
1728 The following pseudo-ops from the Kane and Heinrich MIPS book are
1729 specific to the type of debugging information being generated, and
1730 should be defined by the object format: .aent, .begin, .bend,
1731 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1732 .vreg.
1733
1734 The following pseudo-ops from the Kane and Heinrich MIPS book are
1735 not MIPS CPU specific, but are also not specific to the object file
1736 format. This file is probably the best place to define them, but
1737 they are not currently supported: .asm0, .endr, .lab, .struct. */
1738
1739 static const pseudo_typeS mips_pseudo_table[] =
1740 {
1741 /* MIPS specific pseudo-ops. */
1742 {"option", s_option, 0},
1743 {"set", s_mipsset, 0},
1744 {"rdata", s_change_sec, 'r'},
1745 {"sdata", s_change_sec, 's'},
1746 {"livereg", s_ignore, 0},
1747 {"abicalls", s_abicalls, 0},
1748 {"cpload", s_cpload, 0},
1749 {"cpsetup", s_cpsetup, 0},
1750 {"cplocal", s_cplocal, 0},
1751 {"cprestore", s_cprestore, 0},
1752 {"cpreturn", s_cpreturn, 0},
1753 {"dtprelword", s_dtprelword, 0},
1754 {"dtpreldword", s_dtpreldword, 0},
1755 {"tprelword", s_tprelword, 0},
1756 {"tpreldword", s_tpreldword, 0},
1757 {"gpvalue", s_gpvalue, 0},
1758 {"gpword", s_gpword, 0},
1759 {"gpdword", s_gpdword, 0},
1760 {"ehword", s_ehword, 0},
1761 {"cpadd", s_cpadd, 0},
1762 {"insn", s_insn, 0},
1763 {"nan", s_nan, 0},
1764 {"module", s_module, 0},
1765
1766 /* Relatively generic pseudo-ops that happen to be used on MIPS
1767 chips. */
1768 {"asciiz", stringer, 8 + 1},
1769 {"bss", s_change_sec, 'b'},
1770 {"err", s_err, 0},
1771 {"half", s_cons, 1},
1772 {"dword", s_cons, 3},
1773 {"weakext", s_mips_weakext, 0},
1774 {"origin", s_org, 0},
1775 {"repeat", s_rept, 0},
1776
1777 /* For MIPS this is non-standard, but we define it for consistency. */
1778 {"sbss", s_change_sec, 'B'},
1779
1780 /* These pseudo-ops are defined in read.c, but must be overridden
1781 here for one reason or another. */
1782 {"align", s_align, 0},
1783 {"byte", s_cons, 0},
1784 {"data", s_change_sec, 'd'},
1785 {"double", s_float_cons, 'd'},
1786 {"float", s_float_cons, 'f'},
1787 {"globl", s_mips_globl, 0},
1788 {"global", s_mips_globl, 0},
1789 {"hword", s_cons, 1},
1790 {"int", s_cons, 2},
1791 {"long", s_cons, 2},
1792 {"octa", s_cons, 4},
1793 {"quad", s_cons, 3},
1794 {"section", s_change_section, 0},
1795 {"short", s_cons, 1},
1796 {"single", s_float_cons, 'f'},
1797 {"stabd", s_mips_stab, 'd'},
1798 {"stabn", s_mips_stab, 'n'},
1799 {"stabs", s_mips_stab, 's'},
1800 {"text", s_change_sec, 't'},
1801 {"word", s_cons, 2},
1802
1803 { "extern", ecoff_directive_extern, 0},
1804
1805 { NULL, NULL, 0 },
1806 };
1807
1808 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1809 {
1810 /* These pseudo-ops should be defined by the object file format.
1811 However, a.out doesn't support them, so we have versions here. */
1812 {"aent", s_mips_ent, 1},
1813 {"bgnb", s_ignore, 0},
1814 {"end", s_mips_end, 0},
1815 {"endb", s_ignore, 0},
1816 {"ent", s_mips_ent, 0},
1817 {"file", s_mips_file, 0},
1818 {"fmask", s_mips_mask, 'F'},
1819 {"frame", s_mips_frame, 0},
1820 {"loc", s_mips_loc, 0},
1821 {"mask", s_mips_mask, 'R'},
1822 {"verstamp", s_ignore, 0},
1823 { NULL, NULL, 0 },
1824 };
1825
1826 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1827 purpose of the `.dc.a' internal pseudo-op. */
1828
1829 int
1830 mips_address_bytes (void)
1831 {
1832 file_mips_check_options ();
1833 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1834 }
1835
1836 extern void pop_insert (const pseudo_typeS *);
1837
1838 void
1839 mips_pop_insert (void)
1840 {
1841 pop_insert (mips_pseudo_table);
1842 if (! ECOFF_DEBUGGING)
1843 pop_insert (mips_nonecoff_pseudo_table);
1844 }
1845 \f
1846 /* Symbols labelling the current insn. */
1847
1848 struct insn_label_list
1849 {
1850 struct insn_label_list *next;
1851 symbolS *label;
1852 };
1853
1854 static struct insn_label_list *free_insn_labels;
1855 #define label_list tc_segment_info_data.labels
1856
1857 static void mips_clear_insn_labels (void);
1858 static void mips_mark_labels (void);
1859 static void mips_compressed_mark_labels (void);
1860
1861 static inline void
1862 mips_clear_insn_labels (void)
1863 {
1864 struct insn_label_list **pl;
1865 segment_info_type *si;
1866
1867 if (now_seg)
1868 {
1869 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1870 ;
1871
1872 si = seg_info (now_seg);
1873 *pl = si->label_list;
1874 si->label_list = NULL;
1875 }
1876 }
1877
1878 /* Mark instruction labels in MIPS16/microMIPS mode. */
1879
1880 static inline void
1881 mips_mark_labels (void)
1882 {
1883 if (HAVE_CODE_COMPRESSION)
1884 mips_compressed_mark_labels ();
1885 }
1886 \f
1887 static char *expr_end;
1888
1889 /* An expression in a macro instruction. This is set by mips_ip and
1890 mips16_ip and when populated is always an O_constant. */
1891
1892 static expressionS imm_expr;
1893
1894 /* The relocatable field in an instruction and the relocs associated
1895 with it. These variables are used for instructions like LUI and
1896 JAL as well as true offsets. They are also used for address
1897 operands in macros. */
1898
1899 static expressionS offset_expr;
1900 static bfd_reloc_code_real_type offset_reloc[3]
1901 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1902
1903 /* This is set to the resulting size of the instruction to be produced
1904 by mips16_ip if an explicit extension is used or by mips_ip if an
1905 explicit size is supplied. */
1906
1907 static unsigned int forced_insn_length;
1908
1909 /* True if we are assembling an instruction. All dot symbols defined during
1910 this time should be treated as code labels. */
1911
1912 static bfd_boolean mips_assembling_insn;
1913
1914 /* The pdr segment for per procedure frame/regmask info. Not used for
1915 ECOFF debugging. */
1916
1917 static segT pdr_seg;
1918
1919 /* The default target format to use. */
1920
1921 #if defined (TE_FreeBSD)
1922 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1923 #elif defined (TE_TMIPS)
1924 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1925 #else
1926 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1927 #endif
1928
1929 const char *
1930 mips_target_format (void)
1931 {
1932 switch (OUTPUT_FLAVOR)
1933 {
1934 case bfd_target_elf_flavour:
1935 #ifdef TE_VXWORKS
1936 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1937 return (target_big_endian
1938 ? "elf32-bigmips-vxworks"
1939 : "elf32-littlemips-vxworks");
1940 #endif
1941 return (target_big_endian
1942 ? (HAVE_64BIT_OBJECTS
1943 ? ELF_TARGET ("elf64-", "big")
1944 : (HAVE_NEWABI
1945 ? ELF_TARGET ("elf32-n", "big")
1946 : ELF_TARGET ("elf32-", "big")))
1947 : (HAVE_64BIT_OBJECTS
1948 ? ELF_TARGET ("elf64-", "little")
1949 : (HAVE_NEWABI
1950 ? ELF_TARGET ("elf32-n", "little")
1951 : ELF_TARGET ("elf32-", "little"))));
1952 default:
1953 abort ();
1954 return NULL;
1955 }
1956 }
1957
1958 /* Return the ISA revision that is currently in use, or 0 if we are
1959 generating code for MIPS V or below. */
1960
1961 static int
1962 mips_isa_rev (void)
1963 {
1964 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
1965 return 2;
1966
1967 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
1968 return 3;
1969
1970 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
1971 return 5;
1972
1973 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
1974 return 6;
1975
1976 /* microMIPS implies revision 2 or above. */
1977 if (mips_opts.micromips)
1978 return 2;
1979
1980 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
1981 return 1;
1982
1983 return 0;
1984 }
1985
1986 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
1987
1988 static unsigned int
1989 mips_ase_mask (unsigned int flags)
1990 {
1991 unsigned int i;
1992
1993 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
1994 if (flags & mips_ase_groups[i])
1995 flags |= mips_ase_groups[i];
1996 return flags;
1997 }
1998
1999 /* Check whether the current ISA supports ASE. Issue a warning if
2000 appropriate. */
2001
2002 static void
2003 mips_check_isa_supports_ase (const struct mips_ase *ase)
2004 {
2005 const char *base;
2006 int min_rev, size;
2007 static unsigned int warned_isa;
2008 static unsigned int warned_fp32;
2009
2010 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2011 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2012 else
2013 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2014 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2015 && (warned_isa & ase->flags) != ase->flags)
2016 {
2017 warned_isa |= ase->flags;
2018 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2019 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2020 if (min_rev < 0)
2021 as_warn (_("the %d-bit %s architecture does not support the"
2022 " `%s' extension"), size, base, ase->name);
2023 else
2024 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2025 ase->name, base, size, min_rev);
2026 }
2027 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2028 && (warned_isa & ase->flags) != ase->flags)
2029 {
2030 warned_isa |= ase->flags;
2031 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2032 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2033 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2034 ase->name, base, size, ase->rem_rev);
2035 }
2036
2037 if ((ase->flags & FP64_ASES)
2038 && mips_opts.fp != 64
2039 && (warned_fp32 & ase->flags) != ase->flags)
2040 {
2041 warned_fp32 |= ase->flags;
2042 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2043 }
2044 }
2045
2046 /* Check all enabled ASEs to see whether they are supported by the
2047 chosen architecture. */
2048
2049 static void
2050 mips_check_isa_supports_ases (void)
2051 {
2052 unsigned int i, mask;
2053
2054 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2055 {
2056 mask = mips_ase_mask (mips_ases[i].flags);
2057 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2058 mips_check_isa_supports_ase (&mips_ases[i]);
2059 }
2060 }
2061
2062 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2063 that were affected. */
2064
2065 static unsigned int
2066 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2067 bfd_boolean enabled_p)
2068 {
2069 unsigned int mask;
2070
2071 mask = mips_ase_mask (ase->flags);
2072 opts->ase &= ~mask;
2073 if (enabled_p)
2074 opts->ase |= ase->flags;
2075 return mask;
2076 }
2077
2078 /* Return the ASE called NAME, or null if none. */
2079
2080 static const struct mips_ase *
2081 mips_lookup_ase (const char *name)
2082 {
2083 unsigned int i;
2084
2085 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2086 if (strcmp (name, mips_ases[i].name) == 0)
2087 return &mips_ases[i];
2088 return NULL;
2089 }
2090
2091 /* Return the length of a microMIPS instruction in bytes. If bits of
2092 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2093 otherwise it is a 32-bit instruction. */
2094
2095 static inline unsigned int
2096 micromips_insn_length (const struct mips_opcode *mo)
2097 {
2098 return (mo->mask >> 16) == 0 ? 2 : 4;
2099 }
2100
2101 /* Return the length of MIPS16 instruction OPCODE. */
2102
2103 static inline unsigned int
2104 mips16_opcode_length (unsigned long opcode)
2105 {
2106 return (opcode >> 16) == 0 ? 2 : 4;
2107 }
2108
2109 /* Return the length of instruction INSN. */
2110
2111 static inline unsigned int
2112 insn_length (const struct mips_cl_insn *insn)
2113 {
2114 if (mips_opts.micromips)
2115 return micromips_insn_length (insn->insn_mo);
2116 else if (mips_opts.mips16)
2117 return mips16_opcode_length (insn->insn_opcode);
2118 else
2119 return 4;
2120 }
2121
2122 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2123
2124 static void
2125 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2126 {
2127 size_t i;
2128
2129 insn->insn_mo = mo;
2130 insn->insn_opcode = mo->match;
2131 insn->frag = NULL;
2132 insn->where = 0;
2133 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2134 insn->fixp[i] = NULL;
2135 insn->fixed_p = (mips_opts.noreorder > 0);
2136 insn->noreorder_p = (mips_opts.noreorder > 0);
2137 insn->mips16_absolute_jump_p = 0;
2138 insn->complete_p = 0;
2139 insn->cleared_p = 0;
2140 }
2141
2142 /* Get a list of all the operands in INSN. */
2143
2144 static const struct mips_operand_array *
2145 insn_operands (const struct mips_cl_insn *insn)
2146 {
2147 if (insn->insn_mo >= &mips_opcodes[0]
2148 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2149 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2150
2151 if (insn->insn_mo >= &mips16_opcodes[0]
2152 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2153 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2154
2155 if (insn->insn_mo >= &micromips_opcodes[0]
2156 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2157 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2158
2159 abort ();
2160 }
2161
2162 /* Get a description of operand OPNO of INSN. */
2163
2164 static const struct mips_operand *
2165 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2166 {
2167 const struct mips_operand_array *operands;
2168
2169 operands = insn_operands (insn);
2170 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2171 abort ();
2172 return operands->operand[opno];
2173 }
2174
2175 /* Install UVAL as the value of OPERAND in INSN. */
2176
2177 static inline void
2178 insn_insert_operand (struct mips_cl_insn *insn,
2179 const struct mips_operand *operand, unsigned int uval)
2180 {
2181 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2182 }
2183
2184 /* Extract the value of OPERAND from INSN. */
2185
2186 static inline unsigned
2187 insn_extract_operand (const struct mips_cl_insn *insn,
2188 const struct mips_operand *operand)
2189 {
2190 return mips_extract_operand (operand, insn->insn_opcode);
2191 }
2192
2193 /* Record the current MIPS16/microMIPS mode in now_seg. */
2194
2195 static void
2196 mips_record_compressed_mode (void)
2197 {
2198 segment_info_type *si;
2199
2200 si = seg_info (now_seg);
2201 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2202 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2203 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2204 si->tc_segment_info_data.micromips = mips_opts.micromips;
2205 }
2206
2207 /* Read a standard MIPS instruction from BUF. */
2208
2209 static unsigned long
2210 read_insn (char *buf)
2211 {
2212 if (target_big_endian)
2213 return bfd_getb32 ((bfd_byte *) buf);
2214 else
2215 return bfd_getl32 ((bfd_byte *) buf);
2216 }
2217
2218 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2219 the next byte. */
2220
2221 static char *
2222 write_insn (char *buf, unsigned int insn)
2223 {
2224 md_number_to_chars (buf, insn, 4);
2225 return buf + 4;
2226 }
2227
2228 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2229 has length LENGTH. */
2230
2231 static unsigned long
2232 read_compressed_insn (char *buf, unsigned int length)
2233 {
2234 unsigned long insn;
2235 unsigned int i;
2236
2237 insn = 0;
2238 for (i = 0; i < length; i += 2)
2239 {
2240 insn <<= 16;
2241 if (target_big_endian)
2242 insn |= bfd_getb16 ((char *) buf);
2243 else
2244 insn |= bfd_getl16 ((char *) buf);
2245 buf += 2;
2246 }
2247 return insn;
2248 }
2249
2250 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2251 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2252
2253 static char *
2254 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2255 {
2256 unsigned int i;
2257
2258 for (i = 0; i < length; i += 2)
2259 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2260 return buf + length;
2261 }
2262
2263 /* Install INSN at the location specified by its "frag" and "where" fields. */
2264
2265 static void
2266 install_insn (const struct mips_cl_insn *insn)
2267 {
2268 char *f = insn->frag->fr_literal + insn->where;
2269 if (HAVE_CODE_COMPRESSION)
2270 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2271 else
2272 write_insn (f, insn->insn_opcode);
2273 mips_record_compressed_mode ();
2274 }
2275
2276 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2277 and install the opcode in the new location. */
2278
2279 static void
2280 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2281 {
2282 size_t i;
2283
2284 insn->frag = frag;
2285 insn->where = where;
2286 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2287 if (insn->fixp[i] != NULL)
2288 {
2289 insn->fixp[i]->fx_frag = frag;
2290 insn->fixp[i]->fx_where = where;
2291 }
2292 install_insn (insn);
2293 }
2294
2295 /* Add INSN to the end of the output. */
2296
2297 static void
2298 add_fixed_insn (struct mips_cl_insn *insn)
2299 {
2300 char *f = frag_more (insn_length (insn));
2301 move_insn (insn, frag_now, f - frag_now->fr_literal);
2302 }
2303
2304 /* Start a variant frag and move INSN to the start of the variant part,
2305 marking it as fixed. The other arguments are as for frag_var. */
2306
2307 static void
2308 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2309 relax_substateT subtype, symbolS *symbol, offsetT offset)
2310 {
2311 frag_grow (max_chars);
2312 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2313 insn->fixed_p = 1;
2314 frag_var (rs_machine_dependent, max_chars, var,
2315 subtype, symbol, offset, NULL);
2316 }
2317
2318 /* Insert N copies of INSN into the history buffer, starting at
2319 position FIRST. Neither FIRST nor N need to be clipped. */
2320
2321 static void
2322 insert_into_history (unsigned int first, unsigned int n,
2323 const struct mips_cl_insn *insn)
2324 {
2325 if (mips_relax.sequence != 2)
2326 {
2327 unsigned int i;
2328
2329 for (i = ARRAY_SIZE (history); i-- > first;)
2330 if (i >= first + n)
2331 history[i] = history[i - n];
2332 else
2333 history[i] = *insn;
2334 }
2335 }
2336
2337 /* Clear the error in insn_error. */
2338
2339 static void
2340 clear_insn_error (void)
2341 {
2342 memset (&insn_error, 0, sizeof (insn_error));
2343 }
2344
2345 /* Possibly record error message MSG for the current instruction.
2346 If the error is about a particular argument, ARGNUM is the 1-based
2347 number of that argument, otherwise it is 0. FORMAT is the format
2348 of MSG. Return true if MSG was used, false if the current message
2349 was kept. */
2350
2351 static bfd_boolean
2352 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2353 const char *msg)
2354 {
2355 if (argnum == 0)
2356 {
2357 /* Give priority to errors against specific arguments, and to
2358 the first whole-instruction message. */
2359 if (insn_error.msg)
2360 return FALSE;
2361 }
2362 else
2363 {
2364 /* Keep insn_error if it is against a later argument. */
2365 if (argnum < insn_error.min_argnum)
2366 return FALSE;
2367
2368 /* If both errors are against the same argument but are different,
2369 give up on reporting a specific error for this argument.
2370 See the comment about mips_insn_error for details. */
2371 if (argnum == insn_error.min_argnum
2372 && insn_error.msg
2373 && strcmp (insn_error.msg, msg) != 0)
2374 {
2375 insn_error.msg = 0;
2376 insn_error.min_argnum += 1;
2377 return FALSE;
2378 }
2379 }
2380 insn_error.min_argnum = argnum;
2381 insn_error.format = format;
2382 insn_error.msg = msg;
2383 return TRUE;
2384 }
2385
2386 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2387 as for set_insn_error_format. */
2388
2389 static void
2390 set_insn_error (int argnum, const char *msg)
2391 {
2392 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2393 }
2394
2395 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2396 as for set_insn_error_format. */
2397
2398 static void
2399 set_insn_error_i (int argnum, const char *msg, int i)
2400 {
2401 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2402 insn_error.u.i = i;
2403 }
2404
2405 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2406 are as for set_insn_error_format. */
2407
2408 static void
2409 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2410 {
2411 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2412 {
2413 insn_error.u.ss[0] = s1;
2414 insn_error.u.ss[1] = s2;
2415 }
2416 }
2417
2418 /* Report the error in insn_error, which is against assembly code STR. */
2419
2420 static void
2421 report_insn_error (const char *str)
2422 {
2423 const char *msg;
2424
2425 msg = ACONCAT ((insn_error.msg, " `%s'", NULL));
2426 switch (insn_error.format)
2427 {
2428 case ERR_FMT_PLAIN:
2429 as_bad (msg, str);
2430 break;
2431
2432 case ERR_FMT_I:
2433 as_bad (msg, insn_error.u.i, str);
2434 break;
2435
2436 case ERR_FMT_SS:
2437 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2438 break;
2439 }
2440 }
2441
2442 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2443 the idea is to make it obvious at a glance that each errata is
2444 included. */
2445
2446 static void
2447 init_vr4120_conflicts (void)
2448 {
2449 #define CONFLICT(FIRST, SECOND) \
2450 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2451
2452 /* Errata 21 - [D]DIV[U] after [D]MACC */
2453 CONFLICT (MACC, DIV);
2454 CONFLICT (DMACC, DIV);
2455
2456 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2457 CONFLICT (DMULT, DMULT);
2458 CONFLICT (DMULT, DMACC);
2459 CONFLICT (DMACC, DMULT);
2460 CONFLICT (DMACC, DMACC);
2461
2462 /* Errata 24 - MT{LO,HI} after [D]MACC */
2463 CONFLICT (MACC, MTHILO);
2464 CONFLICT (DMACC, MTHILO);
2465
2466 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2467 instruction is executed immediately after a MACC or DMACC
2468 instruction, the result of [either instruction] is incorrect." */
2469 CONFLICT (MACC, MULT);
2470 CONFLICT (MACC, DMULT);
2471 CONFLICT (DMACC, MULT);
2472 CONFLICT (DMACC, DMULT);
2473
2474 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2475 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2476 DDIV or DDIVU instruction, the result of the MACC or
2477 DMACC instruction is incorrect.". */
2478 CONFLICT (DMULT, MACC);
2479 CONFLICT (DMULT, DMACC);
2480 CONFLICT (DIV, MACC);
2481 CONFLICT (DIV, DMACC);
2482
2483 #undef CONFLICT
2484 }
2485
2486 struct regname {
2487 const char *name;
2488 unsigned int num;
2489 };
2490
2491 #define RNUM_MASK 0x00000ff
2492 #define RTYPE_MASK 0x0ffff00
2493 #define RTYPE_NUM 0x0000100
2494 #define RTYPE_FPU 0x0000200
2495 #define RTYPE_FCC 0x0000400
2496 #define RTYPE_VEC 0x0000800
2497 #define RTYPE_GP 0x0001000
2498 #define RTYPE_CP0 0x0002000
2499 #define RTYPE_PC 0x0004000
2500 #define RTYPE_ACC 0x0008000
2501 #define RTYPE_CCC 0x0010000
2502 #define RTYPE_VI 0x0020000
2503 #define RTYPE_VF 0x0040000
2504 #define RTYPE_R5900_I 0x0080000
2505 #define RTYPE_R5900_Q 0x0100000
2506 #define RTYPE_R5900_R 0x0200000
2507 #define RTYPE_R5900_ACC 0x0400000
2508 #define RTYPE_MSA 0x0800000
2509 #define RWARN 0x8000000
2510
2511 #define GENERIC_REGISTER_NUMBERS \
2512 {"$0", RTYPE_NUM | 0}, \
2513 {"$1", RTYPE_NUM | 1}, \
2514 {"$2", RTYPE_NUM | 2}, \
2515 {"$3", RTYPE_NUM | 3}, \
2516 {"$4", RTYPE_NUM | 4}, \
2517 {"$5", RTYPE_NUM | 5}, \
2518 {"$6", RTYPE_NUM | 6}, \
2519 {"$7", RTYPE_NUM | 7}, \
2520 {"$8", RTYPE_NUM | 8}, \
2521 {"$9", RTYPE_NUM | 9}, \
2522 {"$10", RTYPE_NUM | 10}, \
2523 {"$11", RTYPE_NUM | 11}, \
2524 {"$12", RTYPE_NUM | 12}, \
2525 {"$13", RTYPE_NUM | 13}, \
2526 {"$14", RTYPE_NUM | 14}, \
2527 {"$15", RTYPE_NUM | 15}, \
2528 {"$16", RTYPE_NUM | 16}, \
2529 {"$17", RTYPE_NUM | 17}, \
2530 {"$18", RTYPE_NUM | 18}, \
2531 {"$19", RTYPE_NUM | 19}, \
2532 {"$20", RTYPE_NUM | 20}, \
2533 {"$21", RTYPE_NUM | 21}, \
2534 {"$22", RTYPE_NUM | 22}, \
2535 {"$23", RTYPE_NUM | 23}, \
2536 {"$24", RTYPE_NUM | 24}, \
2537 {"$25", RTYPE_NUM | 25}, \
2538 {"$26", RTYPE_NUM | 26}, \
2539 {"$27", RTYPE_NUM | 27}, \
2540 {"$28", RTYPE_NUM | 28}, \
2541 {"$29", RTYPE_NUM | 29}, \
2542 {"$30", RTYPE_NUM | 30}, \
2543 {"$31", RTYPE_NUM | 31}
2544
2545 #define FPU_REGISTER_NAMES \
2546 {"$f0", RTYPE_FPU | 0}, \
2547 {"$f1", RTYPE_FPU | 1}, \
2548 {"$f2", RTYPE_FPU | 2}, \
2549 {"$f3", RTYPE_FPU | 3}, \
2550 {"$f4", RTYPE_FPU | 4}, \
2551 {"$f5", RTYPE_FPU | 5}, \
2552 {"$f6", RTYPE_FPU | 6}, \
2553 {"$f7", RTYPE_FPU | 7}, \
2554 {"$f8", RTYPE_FPU | 8}, \
2555 {"$f9", RTYPE_FPU | 9}, \
2556 {"$f10", RTYPE_FPU | 10}, \
2557 {"$f11", RTYPE_FPU | 11}, \
2558 {"$f12", RTYPE_FPU | 12}, \
2559 {"$f13", RTYPE_FPU | 13}, \
2560 {"$f14", RTYPE_FPU | 14}, \
2561 {"$f15", RTYPE_FPU | 15}, \
2562 {"$f16", RTYPE_FPU | 16}, \
2563 {"$f17", RTYPE_FPU | 17}, \
2564 {"$f18", RTYPE_FPU | 18}, \
2565 {"$f19", RTYPE_FPU | 19}, \
2566 {"$f20", RTYPE_FPU | 20}, \
2567 {"$f21", RTYPE_FPU | 21}, \
2568 {"$f22", RTYPE_FPU | 22}, \
2569 {"$f23", RTYPE_FPU | 23}, \
2570 {"$f24", RTYPE_FPU | 24}, \
2571 {"$f25", RTYPE_FPU | 25}, \
2572 {"$f26", RTYPE_FPU | 26}, \
2573 {"$f27", RTYPE_FPU | 27}, \
2574 {"$f28", RTYPE_FPU | 28}, \
2575 {"$f29", RTYPE_FPU | 29}, \
2576 {"$f30", RTYPE_FPU | 30}, \
2577 {"$f31", RTYPE_FPU | 31}
2578
2579 #define FPU_CONDITION_CODE_NAMES \
2580 {"$fcc0", RTYPE_FCC | 0}, \
2581 {"$fcc1", RTYPE_FCC | 1}, \
2582 {"$fcc2", RTYPE_FCC | 2}, \
2583 {"$fcc3", RTYPE_FCC | 3}, \
2584 {"$fcc4", RTYPE_FCC | 4}, \
2585 {"$fcc5", RTYPE_FCC | 5}, \
2586 {"$fcc6", RTYPE_FCC | 6}, \
2587 {"$fcc7", RTYPE_FCC | 7}
2588
2589 #define COPROC_CONDITION_CODE_NAMES \
2590 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2591 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2592 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2593 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2594 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2595 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2596 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2597 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2598
2599 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2600 {"$a4", RTYPE_GP | 8}, \
2601 {"$a5", RTYPE_GP | 9}, \
2602 {"$a6", RTYPE_GP | 10}, \
2603 {"$a7", RTYPE_GP | 11}, \
2604 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2605 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2606 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2607 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2608 {"$t0", RTYPE_GP | 12}, \
2609 {"$t1", RTYPE_GP | 13}, \
2610 {"$t2", RTYPE_GP | 14}, \
2611 {"$t3", RTYPE_GP | 15}
2612
2613 #define O32_SYMBOLIC_REGISTER_NAMES \
2614 {"$t0", RTYPE_GP | 8}, \
2615 {"$t1", RTYPE_GP | 9}, \
2616 {"$t2", RTYPE_GP | 10}, \
2617 {"$t3", RTYPE_GP | 11}, \
2618 {"$t4", RTYPE_GP | 12}, \
2619 {"$t5", RTYPE_GP | 13}, \
2620 {"$t6", RTYPE_GP | 14}, \
2621 {"$t7", RTYPE_GP | 15}, \
2622 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2623 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2624 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2625 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2626
2627 /* Remaining symbolic register names */
2628 #define SYMBOLIC_REGISTER_NAMES \
2629 {"$zero", RTYPE_GP | 0}, \
2630 {"$at", RTYPE_GP | 1}, \
2631 {"$AT", RTYPE_GP | 1}, \
2632 {"$v0", RTYPE_GP | 2}, \
2633 {"$v1", RTYPE_GP | 3}, \
2634 {"$a0", RTYPE_GP | 4}, \
2635 {"$a1", RTYPE_GP | 5}, \
2636 {"$a2", RTYPE_GP | 6}, \
2637 {"$a3", RTYPE_GP | 7}, \
2638 {"$s0", RTYPE_GP | 16}, \
2639 {"$s1", RTYPE_GP | 17}, \
2640 {"$s2", RTYPE_GP | 18}, \
2641 {"$s3", RTYPE_GP | 19}, \
2642 {"$s4", RTYPE_GP | 20}, \
2643 {"$s5", RTYPE_GP | 21}, \
2644 {"$s6", RTYPE_GP | 22}, \
2645 {"$s7", RTYPE_GP | 23}, \
2646 {"$t8", RTYPE_GP | 24}, \
2647 {"$t9", RTYPE_GP | 25}, \
2648 {"$k0", RTYPE_GP | 26}, \
2649 {"$kt0", RTYPE_GP | 26}, \
2650 {"$k1", RTYPE_GP | 27}, \
2651 {"$kt1", RTYPE_GP | 27}, \
2652 {"$gp", RTYPE_GP | 28}, \
2653 {"$sp", RTYPE_GP | 29}, \
2654 {"$s8", RTYPE_GP | 30}, \
2655 {"$fp", RTYPE_GP | 30}, \
2656 {"$ra", RTYPE_GP | 31}
2657
2658 #define MIPS16_SPECIAL_REGISTER_NAMES \
2659 {"$pc", RTYPE_PC | 0}
2660
2661 #define MDMX_VECTOR_REGISTER_NAMES \
2662 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2663 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2664 {"$v2", RTYPE_VEC | 2}, \
2665 {"$v3", RTYPE_VEC | 3}, \
2666 {"$v4", RTYPE_VEC | 4}, \
2667 {"$v5", RTYPE_VEC | 5}, \
2668 {"$v6", RTYPE_VEC | 6}, \
2669 {"$v7", RTYPE_VEC | 7}, \
2670 {"$v8", RTYPE_VEC | 8}, \
2671 {"$v9", RTYPE_VEC | 9}, \
2672 {"$v10", RTYPE_VEC | 10}, \
2673 {"$v11", RTYPE_VEC | 11}, \
2674 {"$v12", RTYPE_VEC | 12}, \
2675 {"$v13", RTYPE_VEC | 13}, \
2676 {"$v14", RTYPE_VEC | 14}, \
2677 {"$v15", RTYPE_VEC | 15}, \
2678 {"$v16", RTYPE_VEC | 16}, \
2679 {"$v17", RTYPE_VEC | 17}, \
2680 {"$v18", RTYPE_VEC | 18}, \
2681 {"$v19", RTYPE_VEC | 19}, \
2682 {"$v20", RTYPE_VEC | 20}, \
2683 {"$v21", RTYPE_VEC | 21}, \
2684 {"$v22", RTYPE_VEC | 22}, \
2685 {"$v23", RTYPE_VEC | 23}, \
2686 {"$v24", RTYPE_VEC | 24}, \
2687 {"$v25", RTYPE_VEC | 25}, \
2688 {"$v26", RTYPE_VEC | 26}, \
2689 {"$v27", RTYPE_VEC | 27}, \
2690 {"$v28", RTYPE_VEC | 28}, \
2691 {"$v29", RTYPE_VEC | 29}, \
2692 {"$v30", RTYPE_VEC | 30}, \
2693 {"$v31", RTYPE_VEC | 31}
2694
2695 #define R5900_I_NAMES \
2696 {"$I", RTYPE_R5900_I | 0}
2697
2698 #define R5900_Q_NAMES \
2699 {"$Q", RTYPE_R5900_Q | 0}
2700
2701 #define R5900_R_NAMES \
2702 {"$R", RTYPE_R5900_R | 0}
2703
2704 #define R5900_ACC_NAMES \
2705 {"$ACC", RTYPE_R5900_ACC | 0 }
2706
2707 #define MIPS_DSP_ACCUMULATOR_NAMES \
2708 {"$ac0", RTYPE_ACC | 0}, \
2709 {"$ac1", RTYPE_ACC | 1}, \
2710 {"$ac2", RTYPE_ACC | 2}, \
2711 {"$ac3", RTYPE_ACC | 3}
2712
2713 static const struct regname reg_names[] = {
2714 GENERIC_REGISTER_NUMBERS,
2715 FPU_REGISTER_NAMES,
2716 FPU_CONDITION_CODE_NAMES,
2717 COPROC_CONDITION_CODE_NAMES,
2718
2719 /* The $txx registers depends on the abi,
2720 these will be added later into the symbol table from
2721 one of the tables below once mips_abi is set after
2722 parsing of arguments from the command line. */
2723 SYMBOLIC_REGISTER_NAMES,
2724
2725 MIPS16_SPECIAL_REGISTER_NAMES,
2726 MDMX_VECTOR_REGISTER_NAMES,
2727 R5900_I_NAMES,
2728 R5900_Q_NAMES,
2729 R5900_R_NAMES,
2730 R5900_ACC_NAMES,
2731 MIPS_DSP_ACCUMULATOR_NAMES,
2732 {0, 0}
2733 };
2734
2735 static const struct regname reg_names_o32[] = {
2736 O32_SYMBOLIC_REGISTER_NAMES,
2737 {0, 0}
2738 };
2739
2740 static const struct regname reg_names_n32n64[] = {
2741 N32N64_SYMBOLIC_REGISTER_NAMES,
2742 {0, 0}
2743 };
2744
2745 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2746 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2747 of these register symbols, return the associated vector register,
2748 otherwise return SYMVAL itself. */
2749
2750 static unsigned int
2751 mips_prefer_vec_regno (unsigned int symval)
2752 {
2753 if ((symval & -2) == (RTYPE_GP | 2))
2754 return RTYPE_VEC | (symval & 1);
2755 return symval;
2756 }
2757
2758 /* Return true if string [S, E) is a valid register name, storing its
2759 symbol value in *SYMVAL_PTR if so. */
2760
2761 static bfd_boolean
2762 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2763 {
2764 char save_c;
2765 symbolS *symbol;
2766
2767 /* Terminate name. */
2768 save_c = *e;
2769 *e = '\0';
2770
2771 /* Look up the name. */
2772 symbol = symbol_find (s);
2773 *e = save_c;
2774
2775 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2776 return FALSE;
2777
2778 *symval_ptr = S_GET_VALUE (symbol);
2779 return TRUE;
2780 }
2781
2782 /* Return true if the string at *SPTR is a valid register name. Allow it
2783 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2784 is nonnull.
2785
2786 When returning true, move *SPTR past the register, store the
2787 register's symbol value in *SYMVAL_PTR and the channel mask in
2788 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2789 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2790 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2791
2792 static bfd_boolean
2793 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2794 unsigned int *channels_ptr)
2795 {
2796 char *s, *e, *m;
2797 const char *q;
2798 unsigned int channels, symval, bit;
2799
2800 /* Find end of name. */
2801 s = e = *sptr;
2802 if (is_name_beginner (*e))
2803 ++e;
2804 while (is_part_of_name (*e))
2805 ++e;
2806
2807 channels = 0;
2808 if (!mips_parse_register_1 (s, e, &symval))
2809 {
2810 if (!channels_ptr)
2811 return FALSE;
2812
2813 /* Eat characters from the end of the string that are valid
2814 channel suffixes. The preceding register must be $ACC or
2815 end with a digit, so there is no ambiguity. */
2816 bit = 1;
2817 m = e;
2818 for (q = "wzyx"; *q; q++, bit <<= 1)
2819 if (m > s && m[-1] == *q)
2820 {
2821 --m;
2822 channels |= bit;
2823 }
2824
2825 if (channels == 0
2826 || !mips_parse_register_1 (s, m, &symval)
2827 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2828 return FALSE;
2829 }
2830
2831 *sptr = e;
2832 *symval_ptr = symval;
2833 if (channels_ptr)
2834 *channels_ptr = channels;
2835 return TRUE;
2836 }
2837
2838 /* Check if SPTR points at a valid register specifier according to TYPES.
2839 If so, then return 1, advance S to consume the specifier and store
2840 the register's number in REGNOP, otherwise return 0. */
2841
2842 static int
2843 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2844 {
2845 unsigned int regno;
2846
2847 if (mips_parse_register (s, &regno, NULL))
2848 {
2849 if (types & RTYPE_VEC)
2850 regno = mips_prefer_vec_regno (regno);
2851 if (regno & types)
2852 regno &= RNUM_MASK;
2853 else
2854 regno = ~0;
2855 }
2856 else
2857 {
2858 if (types & RWARN)
2859 as_warn (_("unrecognized register name `%s'"), *s);
2860 regno = ~0;
2861 }
2862 if (regnop)
2863 *regnop = regno;
2864 return regno <= RNUM_MASK;
2865 }
2866
2867 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2868 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2869
2870 static char *
2871 mips_parse_vu0_channels (char *s, unsigned int *channels)
2872 {
2873 unsigned int i;
2874
2875 *channels = 0;
2876 for (i = 0; i < 4; i++)
2877 if (*s == "xyzw"[i])
2878 {
2879 *channels |= 1 << (3 - i);
2880 ++s;
2881 }
2882 return s;
2883 }
2884
2885 /* Token types for parsed operand lists. */
2886 enum mips_operand_token_type {
2887 /* A plain register, e.g. $f2. */
2888 OT_REG,
2889
2890 /* A 4-bit XYZW channel mask. */
2891 OT_CHANNELS,
2892
2893 /* A constant vector index, e.g. [1]. */
2894 OT_INTEGER_INDEX,
2895
2896 /* A register vector index, e.g. [$2]. */
2897 OT_REG_INDEX,
2898
2899 /* A continuous range of registers, e.g. $s0-$s4. */
2900 OT_REG_RANGE,
2901
2902 /* A (possibly relocated) expression. */
2903 OT_INTEGER,
2904
2905 /* A floating-point value. */
2906 OT_FLOAT,
2907
2908 /* A single character. This can be '(', ')' or ',', but '(' only appears
2909 before OT_REGs. */
2910 OT_CHAR,
2911
2912 /* A doubled character, either "--" or "++". */
2913 OT_DOUBLE_CHAR,
2914
2915 /* The end of the operand list. */
2916 OT_END
2917 };
2918
2919 /* A parsed operand token. */
2920 struct mips_operand_token
2921 {
2922 /* The type of token. */
2923 enum mips_operand_token_type type;
2924 union
2925 {
2926 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2927 unsigned int regno;
2928
2929 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2930 unsigned int channels;
2931
2932 /* The integer value of an OT_INTEGER_INDEX. */
2933 addressT index;
2934
2935 /* The two register symbol values involved in an OT_REG_RANGE. */
2936 struct {
2937 unsigned int regno1;
2938 unsigned int regno2;
2939 } reg_range;
2940
2941 /* The value of an OT_INTEGER. The value is represented as an
2942 expression and the relocation operators that were applied to
2943 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2944 relocation operators were used. */
2945 struct {
2946 expressionS value;
2947 bfd_reloc_code_real_type relocs[3];
2948 } integer;
2949
2950 /* The binary data for an OT_FLOAT constant, and the number of bytes
2951 in the constant. */
2952 struct {
2953 unsigned char data[8];
2954 int length;
2955 } flt;
2956
2957 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
2958 char ch;
2959 } u;
2960 };
2961
2962 /* An obstack used to construct lists of mips_operand_tokens. */
2963 static struct obstack mips_operand_tokens;
2964
2965 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
2966
2967 static void
2968 mips_add_token (struct mips_operand_token *token,
2969 enum mips_operand_token_type type)
2970 {
2971 token->type = type;
2972 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
2973 }
2974
2975 /* Check whether S is '(' followed by a register name. Add OT_CHAR
2976 and OT_REG tokens for them if so, and return a pointer to the first
2977 unconsumed character. Return null otherwise. */
2978
2979 static char *
2980 mips_parse_base_start (char *s)
2981 {
2982 struct mips_operand_token token;
2983 unsigned int regno, channels;
2984 bfd_boolean decrement_p;
2985
2986 if (*s != '(')
2987 return 0;
2988
2989 ++s;
2990 SKIP_SPACE_TABS (s);
2991
2992 /* Only match "--" as part of a base expression. In other contexts "--X"
2993 is a double negative. */
2994 decrement_p = (s[0] == '-' && s[1] == '-');
2995 if (decrement_p)
2996 {
2997 s += 2;
2998 SKIP_SPACE_TABS (s);
2999 }
3000
3001 /* Allow a channel specifier because that leads to better error messages
3002 than treating something like "$vf0x++" as an expression. */
3003 if (!mips_parse_register (&s, &regno, &channels))
3004 return 0;
3005
3006 token.u.ch = '(';
3007 mips_add_token (&token, OT_CHAR);
3008
3009 if (decrement_p)
3010 {
3011 token.u.ch = '-';
3012 mips_add_token (&token, OT_DOUBLE_CHAR);
3013 }
3014
3015 token.u.regno = regno;
3016 mips_add_token (&token, OT_REG);
3017
3018 if (channels)
3019 {
3020 token.u.channels = channels;
3021 mips_add_token (&token, OT_CHANNELS);
3022 }
3023
3024 /* For consistency, only match "++" as part of base expressions too. */
3025 SKIP_SPACE_TABS (s);
3026 if (s[0] == '+' && s[1] == '+')
3027 {
3028 s += 2;
3029 token.u.ch = '+';
3030 mips_add_token (&token, OT_DOUBLE_CHAR);
3031 }
3032
3033 return s;
3034 }
3035
3036 /* Parse one or more tokens from S. Return a pointer to the first
3037 unconsumed character on success. Return null if an error was found
3038 and store the error text in insn_error. FLOAT_FORMAT is as for
3039 mips_parse_arguments. */
3040
3041 static char *
3042 mips_parse_argument_token (char *s, char float_format)
3043 {
3044 char *end, *save_in, *err;
3045 unsigned int regno1, regno2, channels;
3046 struct mips_operand_token token;
3047
3048 /* First look for "($reg", since we want to treat that as an
3049 OT_CHAR and OT_REG rather than an expression. */
3050 end = mips_parse_base_start (s);
3051 if (end)
3052 return end;
3053
3054 /* Handle other characters that end up as OT_CHARs. */
3055 if (*s == ')' || *s == ',')
3056 {
3057 token.u.ch = *s;
3058 mips_add_token (&token, OT_CHAR);
3059 ++s;
3060 return s;
3061 }
3062
3063 /* Handle tokens that start with a register. */
3064 if (mips_parse_register (&s, &regno1, &channels))
3065 {
3066 if (channels)
3067 {
3068 /* A register and a VU0 channel suffix. */
3069 token.u.regno = regno1;
3070 mips_add_token (&token, OT_REG);
3071
3072 token.u.channels = channels;
3073 mips_add_token (&token, OT_CHANNELS);
3074 return s;
3075 }
3076
3077 SKIP_SPACE_TABS (s);
3078 if (*s == '-')
3079 {
3080 /* A register range. */
3081 ++s;
3082 SKIP_SPACE_TABS (s);
3083 if (!mips_parse_register (&s, &regno2, NULL))
3084 {
3085 set_insn_error (0, _("invalid register range"));
3086 return 0;
3087 }
3088
3089 token.u.reg_range.regno1 = regno1;
3090 token.u.reg_range.regno2 = regno2;
3091 mips_add_token (&token, OT_REG_RANGE);
3092 return s;
3093 }
3094
3095 /* Add the register itself. */
3096 token.u.regno = regno1;
3097 mips_add_token (&token, OT_REG);
3098
3099 /* Check for a vector index. */
3100 if (*s == '[')
3101 {
3102 ++s;
3103 SKIP_SPACE_TABS (s);
3104 if (mips_parse_register (&s, &token.u.regno, NULL))
3105 mips_add_token (&token, OT_REG_INDEX);
3106 else
3107 {
3108 expressionS element;
3109
3110 my_getExpression (&element, s);
3111 if (element.X_op != O_constant)
3112 {
3113 set_insn_error (0, _("vector element must be constant"));
3114 return 0;
3115 }
3116 s = expr_end;
3117 token.u.index = element.X_add_number;
3118 mips_add_token (&token, OT_INTEGER_INDEX);
3119 }
3120 SKIP_SPACE_TABS (s);
3121 if (*s != ']')
3122 {
3123 set_insn_error (0, _("missing `]'"));
3124 return 0;
3125 }
3126 ++s;
3127 }
3128 return s;
3129 }
3130
3131 if (float_format)
3132 {
3133 /* First try to treat expressions as floats. */
3134 save_in = input_line_pointer;
3135 input_line_pointer = s;
3136 err = md_atof (float_format, (char *) token.u.flt.data,
3137 &token.u.flt.length);
3138 end = input_line_pointer;
3139 input_line_pointer = save_in;
3140 if (err && *err)
3141 {
3142 set_insn_error (0, err);
3143 return 0;
3144 }
3145 if (s != end)
3146 {
3147 mips_add_token (&token, OT_FLOAT);
3148 return end;
3149 }
3150 }
3151
3152 /* Treat everything else as an integer expression. */
3153 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3154 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3155 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3156 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3157 s = expr_end;
3158 mips_add_token (&token, OT_INTEGER);
3159 return s;
3160 }
3161
3162 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3163 if expressions should be treated as 32-bit floating-point constants,
3164 'd' if they should be treated as 64-bit floating-point constants,
3165 or 0 if they should be treated as integer expressions (the usual case).
3166
3167 Return a list of tokens on success, otherwise return 0. The caller
3168 must obstack_free the list after use. */
3169
3170 static struct mips_operand_token *
3171 mips_parse_arguments (char *s, char float_format)
3172 {
3173 struct mips_operand_token token;
3174
3175 SKIP_SPACE_TABS (s);
3176 while (*s)
3177 {
3178 s = mips_parse_argument_token (s, float_format);
3179 if (!s)
3180 {
3181 obstack_free (&mips_operand_tokens,
3182 obstack_finish (&mips_operand_tokens));
3183 return 0;
3184 }
3185 SKIP_SPACE_TABS (s);
3186 }
3187 mips_add_token (&token, OT_END);
3188 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3189 }
3190
3191 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3192 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3193
3194 static bfd_boolean
3195 is_opcode_valid (const struct mips_opcode *mo)
3196 {
3197 int isa = mips_opts.isa;
3198 int ase = mips_opts.ase;
3199 int fp_s, fp_d;
3200 unsigned int i;
3201
3202 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
3203 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3204 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3205 ase |= mips_ases[i].flags64;
3206
3207 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3208 return FALSE;
3209
3210 /* Check whether the instruction or macro requires single-precision or
3211 double-precision floating-point support. Note that this information is
3212 stored differently in the opcode table for insns and macros. */
3213 if (mo->pinfo == INSN_MACRO)
3214 {
3215 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3216 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3217 }
3218 else
3219 {
3220 fp_s = mo->pinfo & FP_S;
3221 fp_d = mo->pinfo & FP_D;
3222 }
3223
3224 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3225 return FALSE;
3226
3227 if (fp_s && mips_opts.soft_float)
3228 return FALSE;
3229
3230 return TRUE;
3231 }
3232
3233 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3234 selected ISA and architecture. */
3235
3236 static bfd_boolean
3237 is_opcode_valid_16 (const struct mips_opcode *mo)
3238 {
3239 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3240 }
3241
3242 /* Return TRUE if the size of the microMIPS opcode MO matches one
3243 explicitly requested. Always TRUE in the standard MIPS mode. */
3244
3245 static bfd_boolean
3246 is_size_valid (const struct mips_opcode *mo)
3247 {
3248 if (!mips_opts.micromips)
3249 return TRUE;
3250
3251 if (mips_opts.insn32)
3252 {
3253 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3254 return FALSE;
3255 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3256 return FALSE;
3257 }
3258 if (!forced_insn_length)
3259 return TRUE;
3260 if (mo->pinfo == INSN_MACRO)
3261 return FALSE;
3262 return forced_insn_length == micromips_insn_length (mo);
3263 }
3264
3265 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3266 of the preceding instruction. Always TRUE in the standard MIPS mode.
3267
3268 We don't accept macros in 16-bit delay slots to avoid a case where
3269 a macro expansion fails because it relies on a preceding 32-bit real
3270 instruction to have matched and does not handle the operands correctly.
3271 The only macros that may expand to 16-bit instructions are JAL that
3272 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3273 and BGT (that likewise cannot be placed in a delay slot) that decay to
3274 a NOP. In all these cases the macros precede any corresponding real
3275 instruction definitions in the opcode table, so they will match in the
3276 second pass where the size of the delay slot is ignored and therefore
3277 produce correct code. */
3278
3279 static bfd_boolean
3280 is_delay_slot_valid (const struct mips_opcode *mo)
3281 {
3282 if (!mips_opts.micromips)
3283 return TRUE;
3284
3285 if (mo->pinfo == INSN_MACRO)
3286 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3287 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3288 && micromips_insn_length (mo) != 4)
3289 return FALSE;
3290 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3291 && micromips_insn_length (mo) != 2)
3292 return FALSE;
3293
3294 return TRUE;
3295 }
3296
3297 /* For consistency checking, verify that all bits of OPCODE are specified
3298 either by the match/mask part of the instruction definition, or by the
3299 operand list. Also build up a list of operands in OPERANDS.
3300
3301 INSN_BITS says which bits of the instruction are significant.
3302 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3303 provides the mips_operand description of each operand. DECODE_OPERAND
3304 is null for MIPS16 instructions. */
3305
3306 static int
3307 validate_mips_insn (const struct mips_opcode *opcode,
3308 unsigned long insn_bits,
3309 const struct mips_operand *(*decode_operand) (const char *),
3310 struct mips_operand_array *operands)
3311 {
3312 const char *s;
3313 unsigned long used_bits, doubled, undefined, opno, mask;
3314 const struct mips_operand *operand;
3315
3316 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3317 if ((mask & opcode->match) != opcode->match)
3318 {
3319 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3320 opcode->name, opcode->args);
3321 return 0;
3322 }
3323 used_bits = 0;
3324 opno = 0;
3325 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3326 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3327 for (s = opcode->args; *s; ++s)
3328 switch (*s)
3329 {
3330 case ',':
3331 case '(':
3332 case ')':
3333 break;
3334
3335 case '#':
3336 s++;
3337 break;
3338
3339 default:
3340 if (!decode_operand)
3341 operand = decode_mips16_operand (*s, FALSE);
3342 else
3343 operand = decode_operand (s);
3344 if (!operand && opcode->pinfo != INSN_MACRO)
3345 {
3346 as_bad (_("internal: unknown operand type: %s %s"),
3347 opcode->name, opcode->args);
3348 return 0;
3349 }
3350 gas_assert (opno < MAX_OPERANDS);
3351 operands->operand[opno] = operand;
3352 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3353 {
3354 used_bits = mips_insert_operand (operand, used_bits, -1);
3355 if (operand->type == OP_MDMX_IMM_REG)
3356 /* Bit 5 is the format selector (OB vs QH). The opcode table
3357 has separate entries for each format. */
3358 used_bits &= ~(1 << (operand->lsb + 5));
3359 if (operand->type == OP_ENTRY_EXIT_LIST)
3360 used_bits &= ~(mask & 0x700);
3361 }
3362 /* Skip prefix characters. */
3363 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3364 ++s;
3365 opno += 1;
3366 break;
3367 }
3368 doubled = used_bits & mask & insn_bits;
3369 if (doubled)
3370 {
3371 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3372 " %s %s"), doubled, opcode->name, opcode->args);
3373 return 0;
3374 }
3375 used_bits |= mask;
3376 undefined = ~used_bits & insn_bits;
3377 if (opcode->pinfo != INSN_MACRO && undefined)
3378 {
3379 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3380 undefined, opcode->name, opcode->args);
3381 return 0;
3382 }
3383 used_bits &= ~insn_bits;
3384 if (used_bits)
3385 {
3386 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3387 used_bits, opcode->name, opcode->args);
3388 return 0;
3389 }
3390 return 1;
3391 }
3392
3393 /* The MIPS16 version of validate_mips_insn. */
3394
3395 static int
3396 validate_mips16_insn (const struct mips_opcode *opcode,
3397 struct mips_operand_array *operands)
3398 {
3399 if (opcode->args[0] == 'a' || opcode->args[0] == 'i')
3400 {
3401 /* In this case OPCODE defines the first 16 bits in a 32-bit jump
3402 instruction. Use TMP to describe the full instruction. */
3403 struct mips_opcode tmp;
3404
3405 tmp = *opcode;
3406 tmp.match <<= 16;
3407 tmp.mask <<= 16;
3408 return validate_mips_insn (&tmp, 0xffffffff, 0, operands);
3409 }
3410 return validate_mips_insn (opcode, 0xffff, 0, operands);
3411 }
3412
3413 /* The microMIPS version of validate_mips_insn. */
3414
3415 static int
3416 validate_micromips_insn (const struct mips_opcode *opc,
3417 struct mips_operand_array *operands)
3418 {
3419 unsigned long insn_bits;
3420 unsigned long major;
3421 unsigned int length;
3422
3423 if (opc->pinfo == INSN_MACRO)
3424 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3425 operands);
3426
3427 length = micromips_insn_length (opc);
3428 if (length != 2 && length != 4)
3429 {
3430 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3431 "%s %s"), length, opc->name, opc->args);
3432 return 0;
3433 }
3434 major = opc->match >> (10 + 8 * (length - 2));
3435 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3436 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3437 {
3438 as_bad (_("internal error: bad microMIPS opcode "
3439 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3440 return 0;
3441 }
3442
3443 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3444 insn_bits = 1 << 4 * length;
3445 insn_bits <<= 4 * length;
3446 insn_bits -= 1;
3447 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3448 operands);
3449 }
3450
3451 /* This function is called once, at assembler startup time. It should set up
3452 all the tables, etc. that the MD part of the assembler will need. */
3453
3454 void
3455 md_begin (void)
3456 {
3457 const char *retval = NULL;
3458 int i = 0;
3459 int broken = 0;
3460
3461 if (mips_pic != NO_PIC)
3462 {
3463 if (g_switch_seen && g_switch_value != 0)
3464 as_bad (_("-G may not be used in position-independent code"));
3465 g_switch_value = 0;
3466 }
3467 else if (mips_abicalls)
3468 {
3469 if (g_switch_seen && g_switch_value != 0)
3470 as_bad (_("-G may not be used with abicalls"));
3471 g_switch_value = 0;
3472 }
3473
3474 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3475 as_warn (_("could not set architecture and machine"));
3476
3477 op_hash = hash_new ();
3478
3479 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3480 for (i = 0; i < NUMOPCODES;)
3481 {
3482 const char *name = mips_opcodes[i].name;
3483
3484 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3485 if (retval != NULL)
3486 {
3487 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3488 mips_opcodes[i].name, retval);
3489 /* Probably a memory allocation problem? Give up now. */
3490 as_fatal (_("broken assembler, no assembly attempted"));
3491 }
3492 do
3493 {
3494 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3495 decode_mips_operand, &mips_operands[i]))
3496 broken = 1;
3497 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3498 {
3499 create_insn (&nop_insn, mips_opcodes + i);
3500 if (mips_fix_loongson2f_nop)
3501 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3502 nop_insn.fixed_p = 1;
3503 }
3504 ++i;
3505 }
3506 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3507 }
3508
3509 mips16_op_hash = hash_new ();
3510 mips16_operands = XCNEWVEC (struct mips_operand_array,
3511 bfd_mips16_num_opcodes);
3512
3513 i = 0;
3514 while (i < bfd_mips16_num_opcodes)
3515 {
3516 const char *name = mips16_opcodes[i].name;
3517
3518 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3519 if (retval != NULL)
3520 as_fatal (_("internal: can't hash `%s': %s"),
3521 mips16_opcodes[i].name, retval);
3522 do
3523 {
3524 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3525 broken = 1;
3526 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3527 {
3528 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3529 mips16_nop_insn.fixed_p = 1;
3530 }
3531 ++i;
3532 }
3533 while (i < bfd_mips16_num_opcodes
3534 && strcmp (mips16_opcodes[i].name, name) == 0);
3535 }
3536
3537 micromips_op_hash = hash_new ();
3538 micromips_operands = XCNEWVEC (struct mips_operand_array,
3539 bfd_micromips_num_opcodes);
3540
3541 i = 0;
3542 while (i < bfd_micromips_num_opcodes)
3543 {
3544 const char *name = micromips_opcodes[i].name;
3545
3546 retval = hash_insert (micromips_op_hash, name,
3547 (void *) &micromips_opcodes[i]);
3548 if (retval != NULL)
3549 as_fatal (_("internal: can't hash `%s': %s"),
3550 micromips_opcodes[i].name, retval);
3551 do
3552 {
3553 struct mips_cl_insn *micromips_nop_insn;
3554
3555 if (!validate_micromips_insn (&micromips_opcodes[i],
3556 &micromips_operands[i]))
3557 broken = 1;
3558
3559 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3560 {
3561 if (micromips_insn_length (micromips_opcodes + i) == 2)
3562 micromips_nop_insn = &micromips_nop16_insn;
3563 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3564 micromips_nop_insn = &micromips_nop32_insn;
3565 else
3566 continue;
3567
3568 if (micromips_nop_insn->insn_mo == NULL
3569 && strcmp (name, "nop") == 0)
3570 {
3571 create_insn (micromips_nop_insn, micromips_opcodes + i);
3572 micromips_nop_insn->fixed_p = 1;
3573 }
3574 }
3575 }
3576 while (++i < bfd_micromips_num_opcodes
3577 && strcmp (micromips_opcodes[i].name, name) == 0);
3578 }
3579
3580 if (broken)
3581 as_fatal (_("broken assembler, no assembly attempted"));
3582
3583 /* We add all the general register names to the symbol table. This
3584 helps us detect invalid uses of them. */
3585 for (i = 0; reg_names[i].name; i++)
3586 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3587 reg_names[i].num, /* & RNUM_MASK, */
3588 &zero_address_frag));
3589 if (HAVE_NEWABI)
3590 for (i = 0; reg_names_n32n64[i].name; i++)
3591 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3592 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3593 &zero_address_frag));
3594 else
3595 for (i = 0; reg_names_o32[i].name; i++)
3596 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3597 reg_names_o32[i].num, /* & RNUM_MASK, */
3598 &zero_address_frag));
3599
3600 for (i = 0; i < 32; i++)
3601 {
3602 char regname[7];
3603
3604 /* R5900 VU0 floating-point register. */
3605 regname[sizeof (rename) - 1] = 0;
3606 snprintf (regname, sizeof (regname) - 1, "$vf%d", i);
3607 symbol_table_insert (symbol_new (regname, reg_section,
3608 RTYPE_VF | i, &zero_address_frag));
3609
3610 /* R5900 VU0 integer register. */
3611 snprintf (regname, sizeof (regname) - 1, "$vi%d", i);
3612 symbol_table_insert (symbol_new (regname, reg_section,
3613 RTYPE_VI | i, &zero_address_frag));
3614
3615 /* MSA register. */
3616 snprintf (regname, sizeof (regname) - 1, "$w%d", i);
3617 symbol_table_insert (symbol_new (regname, reg_section,
3618 RTYPE_MSA | i, &zero_address_frag));
3619 }
3620
3621 obstack_init (&mips_operand_tokens);
3622
3623 mips_no_prev_insn ();
3624
3625 mips_gprmask = 0;
3626 mips_cprmask[0] = 0;
3627 mips_cprmask[1] = 0;
3628 mips_cprmask[2] = 0;
3629 mips_cprmask[3] = 0;
3630
3631 /* set the default alignment for the text section (2**2) */
3632 record_alignment (text_section, 2);
3633
3634 bfd_set_gp_size (stdoutput, g_switch_value);
3635
3636 /* On a native system other than VxWorks, sections must be aligned
3637 to 16 byte boundaries. When configured for an embedded ELF
3638 target, we don't bother. */
3639 if (strncmp (TARGET_OS, "elf", 3) != 0
3640 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3641 {
3642 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3643 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3644 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3645 }
3646
3647 /* Create a .reginfo section for register masks and a .mdebug
3648 section for debugging information. */
3649 {
3650 segT seg;
3651 subsegT subseg;
3652 flagword flags;
3653 segT sec;
3654
3655 seg = now_seg;
3656 subseg = now_subseg;
3657
3658 /* The ABI says this section should be loaded so that the
3659 running program can access it. However, we don't load it
3660 if we are configured for an embedded target */
3661 flags = SEC_READONLY | SEC_DATA;
3662 if (strncmp (TARGET_OS, "elf", 3) != 0)
3663 flags |= SEC_ALLOC | SEC_LOAD;
3664
3665 if (mips_abi != N64_ABI)
3666 {
3667 sec = subseg_new (".reginfo", (subsegT) 0);
3668
3669 bfd_set_section_flags (stdoutput, sec, flags);
3670 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3671
3672 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3673 }
3674 else
3675 {
3676 /* The 64-bit ABI uses a .MIPS.options section rather than
3677 .reginfo section. */
3678 sec = subseg_new (".MIPS.options", (subsegT) 0);
3679 bfd_set_section_flags (stdoutput, sec, flags);
3680 bfd_set_section_alignment (stdoutput, sec, 3);
3681
3682 /* Set up the option header. */
3683 {
3684 Elf_Internal_Options opthdr;
3685 char *f;
3686
3687 opthdr.kind = ODK_REGINFO;
3688 opthdr.size = (sizeof (Elf_External_Options)
3689 + sizeof (Elf64_External_RegInfo));
3690 opthdr.section = 0;
3691 opthdr.info = 0;
3692 f = frag_more (sizeof (Elf_External_Options));
3693 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3694 (Elf_External_Options *) f);
3695
3696 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3697 }
3698 }
3699
3700 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3701 bfd_set_section_flags (stdoutput, sec,
3702 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3703 bfd_set_section_alignment (stdoutput, sec, 3);
3704 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3705
3706 if (ECOFF_DEBUGGING)
3707 {
3708 sec = subseg_new (".mdebug", (subsegT) 0);
3709 (void) bfd_set_section_flags (stdoutput, sec,
3710 SEC_HAS_CONTENTS | SEC_READONLY);
3711 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3712 }
3713 else if (mips_flag_pdr)
3714 {
3715 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3716 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3717 SEC_READONLY | SEC_RELOC
3718 | SEC_DEBUGGING);
3719 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3720 }
3721
3722 subseg_set (seg, subseg);
3723 }
3724
3725 if (mips_fix_vr4120)
3726 init_vr4120_conflicts ();
3727 }
3728
3729 static inline void
3730 fpabi_incompatible_with (int fpabi, const char *what)
3731 {
3732 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3733 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3734 }
3735
3736 static inline void
3737 fpabi_requires (int fpabi, const char *what)
3738 {
3739 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3740 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3741 }
3742
3743 /* Check -mabi and register sizes against the specified FP ABI. */
3744 static void
3745 check_fpabi (int fpabi)
3746 {
3747 switch (fpabi)
3748 {
3749 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3750 if (file_mips_opts.soft_float)
3751 fpabi_incompatible_with (fpabi, "softfloat");
3752 else if (file_mips_opts.single_float)
3753 fpabi_incompatible_with (fpabi, "singlefloat");
3754 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3755 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3756 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3757 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3758 break;
3759
3760 case Val_GNU_MIPS_ABI_FP_XX:
3761 if (mips_abi != O32_ABI)
3762 fpabi_requires (fpabi, "-mabi=32");
3763 else if (file_mips_opts.soft_float)
3764 fpabi_incompatible_with (fpabi, "softfloat");
3765 else if (file_mips_opts.single_float)
3766 fpabi_incompatible_with (fpabi, "singlefloat");
3767 else if (file_mips_opts.fp != 0)
3768 fpabi_requires (fpabi, "fp=xx");
3769 break;
3770
3771 case Val_GNU_MIPS_ABI_FP_64A:
3772 case Val_GNU_MIPS_ABI_FP_64:
3773 if (mips_abi != O32_ABI)
3774 fpabi_requires (fpabi, "-mabi=32");
3775 else if (file_mips_opts.soft_float)
3776 fpabi_incompatible_with (fpabi, "softfloat");
3777 else if (file_mips_opts.single_float)
3778 fpabi_incompatible_with (fpabi, "singlefloat");
3779 else if (file_mips_opts.fp != 64)
3780 fpabi_requires (fpabi, "fp=64");
3781 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3782 fpabi_incompatible_with (fpabi, "nooddspreg");
3783 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3784 fpabi_requires (fpabi, "nooddspreg");
3785 break;
3786
3787 case Val_GNU_MIPS_ABI_FP_SINGLE:
3788 if (file_mips_opts.soft_float)
3789 fpabi_incompatible_with (fpabi, "softfloat");
3790 else if (!file_mips_opts.single_float)
3791 fpabi_requires (fpabi, "singlefloat");
3792 break;
3793
3794 case Val_GNU_MIPS_ABI_FP_SOFT:
3795 if (!file_mips_opts.soft_float)
3796 fpabi_requires (fpabi, "softfloat");
3797 break;
3798
3799 case Val_GNU_MIPS_ABI_FP_OLD_64:
3800 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3801 Tag_GNU_MIPS_ABI_FP, fpabi);
3802 break;
3803
3804 case Val_GNU_MIPS_ABI_FP_NAN2008:
3805 /* Silently ignore compatibility value. */
3806 break;
3807
3808 default:
3809 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3810 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3811 break;
3812 }
3813 }
3814
3815 /* Perform consistency checks on the current options. */
3816
3817 static void
3818 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3819 {
3820 /* Check the size of integer registers agrees with the ABI and ISA. */
3821 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3822 as_bad (_("`gp=64' used with a 32-bit processor"));
3823 else if (abi_checks
3824 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3825 as_bad (_("`gp=32' used with a 64-bit ABI"));
3826 else if (abi_checks
3827 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3828 as_bad (_("`gp=64' used with a 32-bit ABI"));
3829
3830 /* Check the size of the float registers agrees with the ABI and ISA. */
3831 switch (opts->fp)
3832 {
3833 case 0:
3834 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3835 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3836 else if (opts->single_float == 1)
3837 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3838 break;
3839 case 64:
3840 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3841 as_bad (_("`fp=64' used with a 32-bit fpu"));
3842 else if (abi_checks
3843 && ABI_NEEDS_32BIT_REGS (mips_abi)
3844 && !ISA_HAS_MXHC1 (opts->isa))
3845 as_warn (_("`fp=64' used with a 32-bit ABI"));
3846 break;
3847 case 32:
3848 if (abi_checks
3849 && ABI_NEEDS_64BIT_REGS (mips_abi))
3850 as_warn (_("`fp=32' used with a 64-bit ABI"));
3851 if (ISA_IS_R6 (mips_opts.isa) && opts->single_float == 0)
3852 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3853 break;
3854 default:
3855 as_bad (_("Unknown size of floating point registers"));
3856 break;
3857 }
3858
3859 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3860 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3861
3862 if (opts->micromips == 1 && opts->mips16 == 1)
3863 as_bad (_("`mips16' cannot be used with `micromips'"));
3864 else if (ISA_IS_R6 (mips_opts.isa)
3865 && (opts->micromips == 1
3866 || opts->mips16 == 1))
3867 as_fatal (_("`%s' can not be used with `%s'"),
3868 opts->micromips ? "micromips" : "mips16",
3869 mips_cpu_info_from_isa (mips_opts.isa)->name);
3870
3871 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3872 as_fatal (_("branch relaxation is not supported in `%s'"),
3873 mips_cpu_info_from_isa (opts->isa)->name);
3874 }
3875
3876 /* Perform consistency checks on the module level options exactly once.
3877 This is a deferred check that happens:
3878 at the first .set directive
3879 or, at the first pseudo op that generates code (inc .dc.a)
3880 or, at the first instruction
3881 or, at the end. */
3882
3883 static void
3884 file_mips_check_options (void)
3885 {
3886 const struct mips_cpu_info *arch_info = 0;
3887
3888 if (file_mips_opts_checked)
3889 return;
3890
3891 /* The following code determines the register size.
3892 Similar code was added to GCC 3.3 (see override_options() in
3893 config/mips/mips.c). The GAS and GCC code should be kept in sync
3894 as much as possible. */
3895
3896 if (file_mips_opts.gp < 0)
3897 {
3898 /* Infer the integer register size from the ABI and processor.
3899 Restrict ourselves to 32-bit registers if that's all the
3900 processor has, or if the ABI cannot handle 64-bit registers. */
3901 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3902 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3903 ? 32 : 64;
3904 }
3905
3906 if (file_mips_opts.fp < 0)
3907 {
3908 /* No user specified float register size.
3909 ??? GAS treats single-float processors as though they had 64-bit
3910 float registers (although it complains when double-precision
3911 instructions are used). As things stand, saying they have 32-bit
3912 registers would lead to spurious "register must be even" messages.
3913 So here we assume float registers are never smaller than the
3914 integer ones. */
3915 if (file_mips_opts.gp == 64)
3916 /* 64-bit integer registers implies 64-bit float registers. */
3917 file_mips_opts.fp = 64;
3918 else if ((file_mips_opts.ase & FP64_ASES)
3919 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3920 /* Handle ASEs that require 64-bit float registers, if possible. */
3921 file_mips_opts.fp = 64;
3922 else if (ISA_IS_R6 (mips_opts.isa))
3923 /* R6 implies 64-bit float registers. */
3924 file_mips_opts.fp = 64;
3925 else
3926 /* 32-bit float registers. */
3927 file_mips_opts.fp = 32;
3928 }
3929
3930 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3931
3932 /* Disable operations on odd-numbered floating-point registers by default
3933 when using the FPXX ABI. */
3934 if (file_mips_opts.oddspreg < 0)
3935 {
3936 if (file_mips_opts.fp == 0)
3937 file_mips_opts.oddspreg = 0;
3938 else
3939 file_mips_opts.oddspreg = 1;
3940 }
3941
3942 /* End of GCC-shared inference code. */
3943
3944 /* This flag is set when we have a 64-bit capable CPU but use only
3945 32-bit wide registers. Note that EABI does not use it. */
3946 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
3947 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
3948 || mips_abi == O32_ABI))
3949 mips_32bitmode = 1;
3950
3951 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
3952 as_bad (_("trap exception not supported at ISA 1"));
3953
3954 /* If the selected architecture includes support for ASEs, enable
3955 generation of code for them. */
3956 if (file_mips_opts.mips16 == -1)
3957 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
3958 if (file_mips_opts.micromips == -1)
3959 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
3960 ? 1 : 0;
3961
3962 if (mips_nan2008 == -1)
3963 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
3964 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
3965 as_fatal (_("`%s' does not support legacy NaN"),
3966 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
3967
3968 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
3969 being selected implicitly. */
3970 if (file_mips_opts.fp != 64)
3971 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
3972
3973 /* If the user didn't explicitly select or deselect a particular ASE,
3974 use the default setting for the CPU. */
3975 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
3976
3977 /* Set up the current options. These may change throughout assembly. */
3978 mips_opts = file_mips_opts;
3979
3980 mips_check_isa_supports_ases ();
3981 mips_check_options (&file_mips_opts, TRUE);
3982 file_mips_opts_checked = TRUE;
3983
3984 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3985 as_warn (_("could not set architecture and machine"));
3986 }
3987
3988 void
3989 md_assemble (char *str)
3990 {
3991 struct mips_cl_insn insn;
3992 bfd_reloc_code_real_type unused_reloc[3]
3993 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3994
3995 file_mips_check_options ();
3996
3997 imm_expr.X_op = O_absent;
3998 offset_expr.X_op = O_absent;
3999 offset_reloc[0] = BFD_RELOC_UNUSED;
4000 offset_reloc[1] = BFD_RELOC_UNUSED;
4001 offset_reloc[2] = BFD_RELOC_UNUSED;
4002
4003 mips_mark_labels ();
4004 mips_assembling_insn = TRUE;
4005 clear_insn_error ();
4006
4007 if (mips_opts.mips16)
4008 mips16_ip (str, &insn);
4009 else
4010 {
4011 mips_ip (str, &insn);
4012 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4013 str, insn.insn_opcode));
4014 }
4015
4016 if (insn_error.msg)
4017 report_insn_error (str);
4018 else if (insn.insn_mo->pinfo == INSN_MACRO)
4019 {
4020 macro_start ();
4021 if (mips_opts.mips16)
4022 mips16_macro (&insn);
4023 else
4024 macro (&insn, str);
4025 macro_end ();
4026 }
4027 else
4028 {
4029 if (offset_expr.X_op != O_absent)
4030 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4031 else
4032 append_insn (&insn, NULL, unused_reloc, FALSE);
4033 }
4034
4035 mips_assembling_insn = FALSE;
4036 }
4037
4038 /* Convenience functions for abstracting away the differences between
4039 MIPS16 and non-MIPS16 relocations. */
4040
4041 static inline bfd_boolean
4042 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4043 {
4044 switch (reloc)
4045 {
4046 case BFD_RELOC_MIPS16_JMP:
4047 case BFD_RELOC_MIPS16_GPREL:
4048 case BFD_RELOC_MIPS16_GOT16:
4049 case BFD_RELOC_MIPS16_CALL16:
4050 case BFD_RELOC_MIPS16_HI16_S:
4051 case BFD_RELOC_MIPS16_HI16:
4052 case BFD_RELOC_MIPS16_LO16:
4053 return TRUE;
4054
4055 default:
4056 return FALSE;
4057 }
4058 }
4059
4060 static inline bfd_boolean
4061 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4062 {
4063 switch (reloc)
4064 {
4065 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4066 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4067 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4068 case BFD_RELOC_MICROMIPS_GPREL16:
4069 case BFD_RELOC_MICROMIPS_JMP:
4070 case BFD_RELOC_MICROMIPS_HI16:
4071 case BFD_RELOC_MICROMIPS_HI16_S:
4072 case BFD_RELOC_MICROMIPS_LO16:
4073 case BFD_RELOC_MICROMIPS_LITERAL:
4074 case BFD_RELOC_MICROMIPS_GOT16:
4075 case BFD_RELOC_MICROMIPS_CALL16:
4076 case BFD_RELOC_MICROMIPS_GOT_HI16:
4077 case BFD_RELOC_MICROMIPS_GOT_LO16:
4078 case BFD_RELOC_MICROMIPS_CALL_HI16:
4079 case BFD_RELOC_MICROMIPS_CALL_LO16:
4080 case BFD_RELOC_MICROMIPS_SUB:
4081 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4082 case BFD_RELOC_MICROMIPS_GOT_OFST:
4083 case BFD_RELOC_MICROMIPS_GOT_DISP:
4084 case BFD_RELOC_MICROMIPS_HIGHEST:
4085 case BFD_RELOC_MICROMIPS_HIGHER:
4086 case BFD_RELOC_MICROMIPS_SCN_DISP:
4087 case BFD_RELOC_MICROMIPS_JALR:
4088 return TRUE;
4089
4090 default:
4091 return FALSE;
4092 }
4093 }
4094
4095 static inline bfd_boolean
4096 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4097 {
4098 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4099 }
4100
4101 static inline bfd_boolean
4102 got16_reloc_p (bfd_reloc_code_real_type reloc)
4103 {
4104 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4105 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4106 }
4107
4108 static inline bfd_boolean
4109 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4110 {
4111 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4112 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4113 }
4114
4115 static inline bfd_boolean
4116 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4117 {
4118 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4119 || reloc == BFD_RELOC_MICROMIPS_LO16);
4120 }
4121
4122 static inline bfd_boolean
4123 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4124 {
4125 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4126 }
4127
4128 static inline bfd_boolean
4129 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4130 {
4131 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4132 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4133 }
4134
4135 /* Return true if RELOC is a PC-relative relocation that does not have
4136 full address range. */
4137
4138 static inline bfd_boolean
4139 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4140 {
4141 switch (reloc)
4142 {
4143 case BFD_RELOC_16_PCREL_S2:
4144 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4145 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4146 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4147 case BFD_RELOC_MIPS_21_PCREL_S2:
4148 case BFD_RELOC_MIPS_26_PCREL_S2:
4149 case BFD_RELOC_MIPS_18_PCREL_S3:
4150 case BFD_RELOC_MIPS_19_PCREL_S2:
4151 return TRUE;
4152
4153 case BFD_RELOC_32_PCREL:
4154 case BFD_RELOC_HI16_S_PCREL:
4155 case BFD_RELOC_LO16_PCREL:
4156 return HAVE_64BIT_ADDRESSES;
4157
4158 default:
4159 return FALSE;
4160 }
4161 }
4162
4163 /* Return true if the given relocation might need a matching %lo().
4164 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4165 need a matching %lo() when applied to local symbols. */
4166
4167 static inline bfd_boolean
4168 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4169 {
4170 return (HAVE_IN_PLACE_ADDENDS
4171 && (hi16_reloc_p (reloc)
4172 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4173 all GOT16 relocations evaluate to "G". */
4174 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4175 }
4176
4177 /* Return the type of %lo() reloc needed by RELOC, given that
4178 reloc_needs_lo_p. */
4179
4180 static inline bfd_reloc_code_real_type
4181 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4182 {
4183 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4184 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4185 : BFD_RELOC_LO16));
4186 }
4187
4188 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4189 relocation. */
4190
4191 static inline bfd_boolean
4192 fixup_has_matching_lo_p (fixS *fixp)
4193 {
4194 return (fixp->fx_next != NULL
4195 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4196 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4197 && fixp->fx_offset == fixp->fx_next->fx_offset);
4198 }
4199
4200 /* Move all labels in LABELS to the current insertion point. TEXT_P
4201 says whether the labels refer to text or data. */
4202
4203 static void
4204 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4205 {
4206 struct insn_label_list *l;
4207 valueT val;
4208
4209 for (l = labels; l != NULL; l = l->next)
4210 {
4211 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4212 symbol_set_frag (l->label, frag_now);
4213 val = (valueT) frag_now_fix ();
4214 /* MIPS16/microMIPS text labels are stored as odd. */
4215 if (text_p && HAVE_CODE_COMPRESSION)
4216 ++val;
4217 S_SET_VALUE (l->label, val);
4218 }
4219 }
4220
4221 /* Move all labels in insn_labels to the current insertion point
4222 and treat them as text labels. */
4223
4224 static void
4225 mips_move_text_labels (void)
4226 {
4227 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4228 }
4229
4230 static bfd_boolean
4231 s_is_linkonce (symbolS *sym, segT from_seg)
4232 {
4233 bfd_boolean linkonce = FALSE;
4234 segT symseg = S_GET_SEGMENT (sym);
4235
4236 if (symseg != from_seg && !S_IS_LOCAL (sym))
4237 {
4238 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4239 linkonce = TRUE;
4240 /* The GNU toolchain uses an extension for ELF: a section
4241 beginning with the magic string .gnu.linkonce is a
4242 linkonce section. */
4243 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4244 sizeof ".gnu.linkonce" - 1) == 0)
4245 linkonce = TRUE;
4246 }
4247 return linkonce;
4248 }
4249
4250 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4251 linker to handle them specially, such as generating jalx instructions
4252 when needed. We also make them odd for the duration of the assembly,
4253 in order to generate the right sort of code. We will make them even
4254 in the adjust_symtab routine, while leaving them marked. This is
4255 convenient for the debugger and the disassembler. The linker knows
4256 to make them odd again. */
4257
4258 static void
4259 mips_compressed_mark_label (symbolS *label)
4260 {
4261 gas_assert (HAVE_CODE_COMPRESSION);
4262
4263 if (mips_opts.mips16)
4264 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4265 else
4266 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4267 if ((S_GET_VALUE (label) & 1) == 0
4268 /* Don't adjust the address if the label is global or weak, or
4269 in a link-once section, since we'll be emitting symbol reloc
4270 references to it which will be patched up by the linker, and
4271 the final value of the symbol may or may not be MIPS16/microMIPS. */
4272 && !S_IS_WEAK (label)
4273 && !S_IS_EXTERNAL (label)
4274 && !s_is_linkonce (label, now_seg))
4275 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4276 }
4277
4278 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4279
4280 static void
4281 mips_compressed_mark_labels (void)
4282 {
4283 struct insn_label_list *l;
4284
4285 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4286 mips_compressed_mark_label (l->label);
4287 }
4288
4289 /* End the current frag. Make it a variant frag and record the
4290 relaxation info. */
4291
4292 static void
4293 relax_close_frag (void)
4294 {
4295 mips_macro_warning.first_frag = frag_now;
4296 frag_var (rs_machine_dependent, 0, 0,
4297 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
4298 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4299
4300 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4301 mips_relax.first_fixup = 0;
4302 }
4303
4304 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4305 See the comment above RELAX_ENCODE for more details. */
4306
4307 static void
4308 relax_start (symbolS *symbol)
4309 {
4310 gas_assert (mips_relax.sequence == 0);
4311 mips_relax.sequence = 1;
4312 mips_relax.symbol = symbol;
4313 }
4314
4315 /* Start generating the second version of a relaxable sequence.
4316 See the comment above RELAX_ENCODE for more details. */
4317
4318 static void
4319 relax_switch (void)
4320 {
4321 gas_assert (mips_relax.sequence == 1);
4322 mips_relax.sequence = 2;
4323 }
4324
4325 /* End the current relaxable sequence. */
4326
4327 static void
4328 relax_end (void)
4329 {
4330 gas_assert (mips_relax.sequence == 2);
4331 relax_close_frag ();
4332 mips_relax.sequence = 0;
4333 }
4334
4335 /* Return true if IP is a delayed branch or jump. */
4336
4337 static inline bfd_boolean
4338 delayed_branch_p (const struct mips_cl_insn *ip)
4339 {
4340 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4341 | INSN_COND_BRANCH_DELAY
4342 | INSN_COND_BRANCH_LIKELY)) != 0;
4343 }
4344
4345 /* Return true if IP is a compact branch or jump. */
4346
4347 static inline bfd_boolean
4348 compact_branch_p (const struct mips_cl_insn *ip)
4349 {
4350 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4351 | INSN2_COND_BRANCH)) != 0;
4352 }
4353
4354 /* Return true if IP is an unconditional branch or jump. */
4355
4356 static inline bfd_boolean
4357 uncond_branch_p (const struct mips_cl_insn *ip)
4358 {
4359 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4360 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4361 }
4362
4363 /* Return true if IP is a branch-likely instruction. */
4364
4365 static inline bfd_boolean
4366 branch_likely_p (const struct mips_cl_insn *ip)
4367 {
4368 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4369 }
4370
4371 /* Return the type of nop that should be used to fill the delay slot
4372 of delayed branch IP. */
4373
4374 static struct mips_cl_insn *
4375 get_delay_slot_nop (const struct mips_cl_insn *ip)
4376 {
4377 if (mips_opts.micromips
4378 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4379 return &micromips_nop32_insn;
4380 return NOP_INSN;
4381 }
4382
4383 /* Return a mask that has bit N set if OPCODE reads the register(s)
4384 in operand N. */
4385
4386 static unsigned int
4387 insn_read_mask (const struct mips_opcode *opcode)
4388 {
4389 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4390 }
4391
4392 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4393 in operand N. */
4394
4395 static unsigned int
4396 insn_write_mask (const struct mips_opcode *opcode)
4397 {
4398 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4399 }
4400
4401 /* Return a mask of the registers specified by operand OPERAND of INSN.
4402 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4403 is set. */
4404
4405 static unsigned int
4406 operand_reg_mask (const struct mips_cl_insn *insn,
4407 const struct mips_operand *operand,
4408 unsigned int type_mask)
4409 {
4410 unsigned int uval, vsel;
4411
4412 switch (operand->type)
4413 {
4414 case OP_INT:
4415 case OP_MAPPED_INT:
4416 case OP_MSB:
4417 case OP_PCREL:
4418 case OP_PERF_REG:
4419 case OP_ADDIUSP_INT:
4420 case OP_ENTRY_EXIT_LIST:
4421 case OP_REPEAT_DEST_REG:
4422 case OP_REPEAT_PREV_REG:
4423 case OP_PC:
4424 case OP_VU0_SUFFIX:
4425 case OP_VU0_MATCH_SUFFIX:
4426 case OP_IMM_INDEX:
4427 abort ();
4428
4429 case OP_REG:
4430 case OP_OPTIONAL_REG:
4431 {
4432 const struct mips_reg_operand *reg_op;
4433
4434 reg_op = (const struct mips_reg_operand *) operand;
4435 if (!(type_mask & (1 << reg_op->reg_type)))
4436 return 0;
4437 uval = insn_extract_operand (insn, operand);
4438 return 1 << mips_decode_reg_operand (reg_op, uval);
4439 }
4440
4441 case OP_REG_PAIR:
4442 {
4443 const struct mips_reg_pair_operand *pair_op;
4444
4445 pair_op = (const struct mips_reg_pair_operand *) operand;
4446 if (!(type_mask & (1 << pair_op->reg_type)))
4447 return 0;
4448 uval = insn_extract_operand (insn, operand);
4449 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4450 }
4451
4452 case OP_CLO_CLZ_DEST:
4453 if (!(type_mask & (1 << OP_REG_GP)))
4454 return 0;
4455 uval = insn_extract_operand (insn, operand);
4456 return (1 << (uval & 31)) | (1 << (uval >> 5));
4457
4458 case OP_SAME_RS_RT:
4459 if (!(type_mask & (1 << OP_REG_GP)))
4460 return 0;
4461 uval = insn_extract_operand (insn, operand);
4462 gas_assert ((uval & 31) == (uval >> 5));
4463 return 1 << (uval & 31);
4464
4465 case OP_CHECK_PREV:
4466 case OP_NON_ZERO_REG:
4467 if (!(type_mask & (1 << OP_REG_GP)))
4468 return 0;
4469 uval = insn_extract_operand (insn, operand);
4470 return 1 << (uval & 31);
4471
4472 case OP_LWM_SWM_LIST:
4473 abort ();
4474
4475 case OP_SAVE_RESTORE_LIST:
4476 abort ();
4477
4478 case OP_MDMX_IMM_REG:
4479 if (!(type_mask & (1 << OP_REG_VEC)))
4480 return 0;
4481 uval = insn_extract_operand (insn, operand);
4482 vsel = uval >> 5;
4483 if ((vsel & 0x18) == 0x18)
4484 return 0;
4485 return 1 << (uval & 31);
4486
4487 case OP_REG_INDEX:
4488 if (!(type_mask & (1 << OP_REG_GP)))
4489 return 0;
4490 return 1 << insn_extract_operand (insn, operand);
4491 }
4492 abort ();
4493 }
4494
4495 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4496 where bit N of OPNO_MASK is set if operand N should be included.
4497 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4498 is set. */
4499
4500 static unsigned int
4501 insn_reg_mask (const struct mips_cl_insn *insn,
4502 unsigned int type_mask, unsigned int opno_mask)
4503 {
4504 unsigned int opno, reg_mask;
4505
4506 opno = 0;
4507 reg_mask = 0;
4508 while (opno_mask != 0)
4509 {
4510 if (opno_mask & 1)
4511 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4512 opno_mask >>= 1;
4513 opno += 1;
4514 }
4515 return reg_mask;
4516 }
4517
4518 /* Return the mask of core registers that IP reads. */
4519
4520 static unsigned int
4521 gpr_read_mask (const struct mips_cl_insn *ip)
4522 {
4523 unsigned long pinfo, pinfo2;
4524 unsigned int mask;
4525
4526 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4527 pinfo = ip->insn_mo->pinfo;
4528 pinfo2 = ip->insn_mo->pinfo2;
4529 if (pinfo & INSN_UDI)
4530 {
4531 /* UDI instructions have traditionally been assumed to read RS
4532 and RT. */
4533 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4534 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4535 }
4536 if (pinfo & INSN_READ_GPR_24)
4537 mask |= 1 << 24;
4538 if (pinfo2 & INSN2_READ_GPR_16)
4539 mask |= 1 << 16;
4540 if (pinfo2 & INSN2_READ_SP)
4541 mask |= 1 << SP;
4542 if (pinfo2 & INSN2_READ_GPR_31)
4543 mask |= 1 << 31;
4544 /* Don't include register 0. */
4545 return mask & ~1;
4546 }
4547
4548 /* Return the mask of core registers that IP writes. */
4549
4550 static unsigned int
4551 gpr_write_mask (const struct mips_cl_insn *ip)
4552 {
4553 unsigned long pinfo, pinfo2;
4554 unsigned int mask;
4555
4556 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4557 pinfo = ip->insn_mo->pinfo;
4558 pinfo2 = ip->insn_mo->pinfo2;
4559 if (pinfo & INSN_WRITE_GPR_24)
4560 mask |= 1 << 24;
4561 if (pinfo & INSN_WRITE_GPR_31)
4562 mask |= 1 << 31;
4563 if (pinfo & INSN_UDI)
4564 /* UDI instructions have traditionally been assumed to write to RD. */
4565 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4566 if (pinfo2 & INSN2_WRITE_SP)
4567 mask |= 1 << SP;
4568 /* Don't include register 0. */
4569 return mask & ~1;
4570 }
4571
4572 /* Return the mask of floating-point registers that IP reads. */
4573
4574 static unsigned int
4575 fpr_read_mask (const struct mips_cl_insn *ip)
4576 {
4577 unsigned long pinfo;
4578 unsigned int mask;
4579
4580 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4581 | (1 << OP_REG_MSA)),
4582 insn_read_mask (ip->insn_mo));
4583 pinfo = ip->insn_mo->pinfo;
4584 /* Conservatively treat all operands to an FP_D instruction are doubles.
4585 (This is overly pessimistic for things like cvt.d.s.) */
4586 if (FPR_SIZE != 64 && (pinfo & FP_D))
4587 mask |= mask << 1;
4588 return mask;
4589 }
4590
4591 /* Return the mask of floating-point registers that IP writes. */
4592
4593 static unsigned int
4594 fpr_write_mask (const struct mips_cl_insn *ip)
4595 {
4596 unsigned long pinfo;
4597 unsigned int mask;
4598
4599 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4600 | (1 << OP_REG_MSA)),
4601 insn_write_mask (ip->insn_mo));
4602 pinfo = ip->insn_mo->pinfo;
4603 /* Conservatively treat all operands to an FP_D instruction are doubles.
4604 (This is overly pessimistic for things like cvt.s.d.) */
4605 if (FPR_SIZE != 64 && (pinfo & FP_D))
4606 mask |= mask << 1;
4607 return mask;
4608 }
4609
4610 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4611 Check whether that is allowed. */
4612
4613 static bfd_boolean
4614 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4615 {
4616 const char *s = insn->name;
4617 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4618 || FPR_SIZE == 64)
4619 && mips_opts.oddspreg;
4620
4621 if (insn->pinfo == INSN_MACRO)
4622 /* Let a macro pass, we'll catch it later when it is expanded. */
4623 return TRUE;
4624
4625 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4626 otherwise it depends on oddspreg. */
4627 if ((insn->pinfo & FP_S)
4628 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4629 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4630 return FPR_SIZE == 32 || oddspreg;
4631
4632 /* Allow odd registers for single-precision ops and double-precision if the
4633 floating-point registers are 64-bit wide. */
4634 switch (insn->pinfo & (FP_S | FP_D))
4635 {
4636 case FP_S:
4637 case 0:
4638 return oddspreg;
4639 case FP_D:
4640 return FPR_SIZE == 64;
4641 default:
4642 break;
4643 }
4644
4645 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4646 s = strchr (insn->name, '.');
4647 if (s != NULL && opnum == 2)
4648 s = strchr (s + 1, '.');
4649 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4650 return oddspreg;
4651
4652 return FPR_SIZE == 64;
4653 }
4654
4655 /* Information about an instruction argument that we're trying to match. */
4656 struct mips_arg_info
4657 {
4658 /* The instruction so far. */
4659 struct mips_cl_insn *insn;
4660
4661 /* The first unconsumed operand token. */
4662 struct mips_operand_token *token;
4663
4664 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4665 int opnum;
4666
4667 /* The 1-based argument number, for error reporting. This does not
4668 count elided optional registers, etc.. */
4669 int argnum;
4670
4671 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4672 unsigned int last_regno;
4673
4674 /* If the first operand was an OP_REG, this is the register that it
4675 specified, otherwise it is ILLEGAL_REG. */
4676 unsigned int dest_regno;
4677
4678 /* The value of the last OP_INT operand. Only used for OP_MSB,
4679 where it gives the lsb position. */
4680 unsigned int last_op_int;
4681
4682 /* If true, match routines should assume that no later instruction
4683 alternative matches and should therefore be as accomodating as
4684 possible. Match routines should not report errors if something
4685 is only invalid for !LAX_MATCH. */
4686 bfd_boolean lax_match;
4687
4688 /* True if a reference to the current AT register was seen. */
4689 bfd_boolean seen_at;
4690 };
4691
4692 /* Record that the argument is out of range. */
4693
4694 static void
4695 match_out_of_range (struct mips_arg_info *arg)
4696 {
4697 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4698 }
4699
4700 /* Record that the argument isn't constant but needs to be. */
4701
4702 static void
4703 match_not_constant (struct mips_arg_info *arg)
4704 {
4705 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4706 arg->argnum);
4707 }
4708
4709 /* Try to match an OT_CHAR token for character CH. Consume the token
4710 and return true on success, otherwise return false. */
4711
4712 static bfd_boolean
4713 match_char (struct mips_arg_info *arg, char ch)
4714 {
4715 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4716 {
4717 ++arg->token;
4718 if (ch == ',')
4719 arg->argnum += 1;
4720 return TRUE;
4721 }
4722 return FALSE;
4723 }
4724
4725 /* Try to get an expression from the next tokens in ARG. Consume the
4726 tokens and return true on success, storing the expression value in
4727 VALUE and relocation types in R. */
4728
4729 static bfd_boolean
4730 match_expression (struct mips_arg_info *arg, expressionS *value,
4731 bfd_reloc_code_real_type *r)
4732 {
4733 /* If the next token is a '(' that was parsed as being part of a base
4734 expression, assume we have an elided offset. The later match will fail
4735 if this turns out to be wrong. */
4736 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4737 {
4738 value->X_op = O_constant;
4739 value->X_add_number = 0;
4740 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4741 return TRUE;
4742 }
4743
4744 /* Reject register-based expressions such as "0+$2" and "(($2))".
4745 For plain registers the default error seems more appropriate. */
4746 if (arg->token->type == OT_INTEGER
4747 && arg->token->u.integer.value.X_op == O_register)
4748 {
4749 set_insn_error (arg->argnum, _("register value used as expression"));
4750 return FALSE;
4751 }
4752
4753 if (arg->token->type == OT_INTEGER)
4754 {
4755 *value = arg->token->u.integer.value;
4756 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4757 ++arg->token;
4758 return TRUE;
4759 }
4760
4761 set_insn_error_i
4762 (arg->argnum, _("operand %d must be an immediate expression"),
4763 arg->argnum);
4764 return FALSE;
4765 }
4766
4767 /* Try to get a constant expression from the next tokens in ARG. Consume
4768 the tokens and return return true on success, storing the constant value
4769 in *VALUE. Use FALLBACK as the value if the match succeeded with an
4770 error. */
4771
4772 static bfd_boolean
4773 match_const_int (struct mips_arg_info *arg, offsetT *value)
4774 {
4775 expressionS ex;
4776 bfd_reloc_code_real_type r[3];
4777
4778 if (!match_expression (arg, &ex, r))
4779 return FALSE;
4780
4781 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4782 *value = ex.X_add_number;
4783 else
4784 {
4785 match_not_constant (arg);
4786 return FALSE;
4787 }
4788 return TRUE;
4789 }
4790
4791 /* Return the RTYPE_* flags for a register operand of type TYPE that
4792 appears in instruction OPCODE. */
4793
4794 static unsigned int
4795 convert_reg_type (const struct mips_opcode *opcode,
4796 enum mips_reg_operand_type type)
4797 {
4798 switch (type)
4799 {
4800 case OP_REG_GP:
4801 return RTYPE_NUM | RTYPE_GP;
4802
4803 case OP_REG_FP:
4804 /* Allow vector register names for MDMX if the instruction is a 64-bit
4805 FPR load, store or move (including moves to and from GPRs). */
4806 if ((mips_opts.ase & ASE_MDMX)
4807 && (opcode->pinfo & FP_D)
4808 && (opcode->pinfo & (INSN_COPROC_MOVE
4809 | INSN_COPROC_MEMORY_DELAY
4810 | INSN_LOAD_COPROC
4811 | INSN_LOAD_MEMORY
4812 | INSN_STORE_MEMORY)))
4813 return RTYPE_FPU | RTYPE_VEC;
4814 return RTYPE_FPU;
4815
4816 case OP_REG_CCC:
4817 if (opcode->pinfo & (FP_D | FP_S))
4818 return RTYPE_CCC | RTYPE_FCC;
4819 return RTYPE_CCC;
4820
4821 case OP_REG_VEC:
4822 if (opcode->membership & INSN_5400)
4823 return RTYPE_FPU;
4824 return RTYPE_FPU | RTYPE_VEC;
4825
4826 case OP_REG_ACC:
4827 return RTYPE_ACC;
4828
4829 case OP_REG_COPRO:
4830 if (opcode->name[strlen (opcode->name) - 1] == '0')
4831 return RTYPE_NUM | RTYPE_CP0;
4832 return RTYPE_NUM;
4833
4834 case OP_REG_HW:
4835 return RTYPE_NUM;
4836
4837 case OP_REG_VI:
4838 return RTYPE_NUM | RTYPE_VI;
4839
4840 case OP_REG_VF:
4841 return RTYPE_NUM | RTYPE_VF;
4842
4843 case OP_REG_R5900_I:
4844 return RTYPE_R5900_I;
4845
4846 case OP_REG_R5900_Q:
4847 return RTYPE_R5900_Q;
4848
4849 case OP_REG_R5900_R:
4850 return RTYPE_R5900_R;
4851
4852 case OP_REG_R5900_ACC:
4853 return RTYPE_R5900_ACC;
4854
4855 case OP_REG_MSA:
4856 return RTYPE_MSA;
4857
4858 case OP_REG_MSA_CTRL:
4859 return RTYPE_NUM;
4860 }
4861 abort ();
4862 }
4863
4864 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4865
4866 static void
4867 check_regno (struct mips_arg_info *arg,
4868 enum mips_reg_operand_type type, unsigned int regno)
4869 {
4870 if (AT && type == OP_REG_GP && regno == AT)
4871 arg->seen_at = TRUE;
4872
4873 if (type == OP_REG_FP
4874 && (regno & 1) != 0
4875 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4876 {
4877 /* This was a warning prior to introducing O32 FPXX and FP64 support
4878 so maintain a warning for FP32 but raise an error for the new
4879 cases. */
4880 if (FPR_SIZE == 32)
4881 as_warn (_("float register should be even, was %d"), regno);
4882 else
4883 as_bad (_("float register should be even, was %d"), regno);
4884 }
4885
4886 if (type == OP_REG_CCC)
4887 {
4888 const char *name;
4889 size_t length;
4890
4891 name = arg->insn->insn_mo->name;
4892 length = strlen (name);
4893 if ((regno & 1) != 0
4894 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4895 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4896 as_warn (_("condition code register should be even for %s, was %d"),
4897 name, regno);
4898
4899 if ((regno & 3) != 0
4900 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4901 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4902 name, regno);
4903 }
4904 }
4905
4906 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4907 a register of type TYPE. Return true on success, storing the register
4908 number in *REGNO and warning about any dubious uses. */
4909
4910 static bfd_boolean
4911 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4912 unsigned int symval, unsigned int *regno)
4913 {
4914 if (type == OP_REG_VEC)
4915 symval = mips_prefer_vec_regno (symval);
4916 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4917 return FALSE;
4918
4919 *regno = symval & RNUM_MASK;
4920 check_regno (arg, type, *regno);
4921 return TRUE;
4922 }
4923
4924 /* Try to interpret the next token in ARG as a register of type TYPE.
4925 Consume the token and return true on success, storing the register
4926 number in *REGNO. Return false on failure. */
4927
4928 static bfd_boolean
4929 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4930 unsigned int *regno)
4931 {
4932 if (arg->token->type == OT_REG
4933 && match_regno (arg, type, arg->token->u.regno, regno))
4934 {
4935 ++arg->token;
4936 return TRUE;
4937 }
4938 return FALSE;
4939 }
4940
4941 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
4942 Consume the token and return true on success, storing the register numbers
4943 in *REGNO1 and *REGNO2. Return false on failure. */
4944
4945 static bfd_boolean
4946 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4947 unsigned int *regno1, unsigned int *regno2)
4948 {
4949 if (match_reg (arg, type, regno1))
4950 {
4951 *regno2 = *regno1;
4952 return TRUE;
4953 }
4954 if (arg->token->type == OT_REG_RANGE
4955 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
4956 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
4957 && *regno1 <= *regno2)
4958 {
4959 ++arg->token;
4960 return TRUE;
4961 }
4962 return FALSE;
4963 }
4964
4965 /* OP_INT matcher. */
4966
4967 static bfd_boolean
4968 match_int_operand (struct mips_arg_info *arg,
4969 const struct mips_operand *operand_base)
4970 {
4971 const struct mips_int_operand *operand;
4972 unsigned int uval;
4973 int min_val, max_val, factor;
4974 offsetT sval;
4975
4976 operand = (const struct mips_int_operand *) operand_base;
4977 factor = 1 << operand->shift;
4978 min_val = mips_int_operand_min (operand);
4979 max_val = mips_int_operand_max (operand);
4980
4981 if (operand_base->lsb == 0
4982 && operand_base->size == 16
4983 && operand->shift == 0
4984 && operand->bias == 0
4985 && (operand->max_val == 32767 || operand->max_val == 65535))
4986 {
4987 /* The operand can be relocated. */
4988 if (!match_expression (arg, &offset_expr, offset_reloc))
4989 return FALSE;
4990
4991 if (offset_reloc[0] != BFD_RELOC_UNUSED)
4992 /* Relocation operators were used. Accept the arguent and
4993 leave the relocation value in offset_expr and offset_relocs
4994 for the caller to process. */
4995 return TRUE;
4996
4997 if (offset_expr.X_op != O_constant)
4998 {
4999 /* Accept non-constant operands if no later alternative matches,
5000 leaving it for the caller to process. */
5001 if (!arg->lax_match)
5002 return FALSE;
5003 offset_reloc[0] = BFD_RELOC_LO16;
5004 return TRUE;
5005 }
5006
5007 /* Clear the global state; we're going to install the operand
5008 ourselves. */
5009 sval = offset_expr.X_add_number;
5010 offset_expr.X_op = O_absent;
5011
5012 /* For compatibility with older assemblers, we accept
5013 0x8000-0xffff as signed 16-bit numbers when only
5014 signed numbers are allowed. */
5015 if (sval > max_val)
5016 {
5017 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5018 if (!arg->lax_match && sval <= max_val)
5019 return FALSE;
5020 }
5021 }
5022 else
5023 {
5024 if (!match_const_int (arg, &sval))
5025 return FALSE;
5026 }
5027
5028 arg->last_op_int = sval;
5029
5030 if (sval < min_val || sval > max_val || sval % factor)
5031 {
5032 match_out_of_range (arg);
5033 return FALSE;
5034 }
5035
5036 uval = (unsigned int) sval >> operand->shift;
5037 uval -= operand->bias;
5038
5039 /* Handle -mfix-cn63xxp1. */
5040 if (arg->opnum == 1
5041 && mips_fix_cn63xxp1
5042 && !mips_opts.micromips
5043 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5044 switch (uval)
5045 {
5046 case 5:
5047 case 25:
5048 case 26:
5049 case 27:
5050 case 28:
5051 case 29:
5052 case 30:
5053 case 31:
5054 /* These are ok. */
5055 break;
5056
5057 default:
5058 /* The rest must be changed to 28. */
5059 uval = 28;
5060 break;
5061 }
5062
5063 insn_insert_operand (arg->insn, operand_base, uval);
5064 return TRUE;
5065 }
5066
5067 /* OP_MAPPED_INT matcher. */
5068
5069 static bfd_boolean
5070 match_mapped_int_operand (struct mips_arg_info *arg,
5071 const struct mips_operand *operand_base)
5072 {
5073 const struct mips_mapped_int_operand *operand;
5074 unsigned int uval, num_vals;
5075 offsetT sval;
5076
5077 operand = (const struct mips_mapped_int_operand *) operand_base;
5078 if (!match_const_int (arg, &sval))
5079 return FALSE;
5080
5081 num_vals = 1 << operand_base->size;
5082 for (uval = 0; uval < num_vals; uval++)
5083 if (operand->int_map[uval] == sval)
5084 break;
5085 if (uval == num_vals)
5086 {
5087 match_out_of_range (arg);
5088 return FALSE;
5089 }
5090
5091 insn_insert_operand (arg->insn, operand_base, uval);
5092 return TRUE;
5093 }
5094
5095 /* OP_MSB matcher. */
5096
5097 static bfd_boolean
5098 match_msb_operand (struct mips_arg_info *arg,
5099 const struct mips_operand *operand_base)
5100 {
5101 const struct mips_msb_operand *operand;
5102 int min_val, max_val, max_high;
5103 offsetT size, sval, high;
5104
5105 operand = (const struct mips_msb_operand *) operand_base;
5106 min_val = operand->bias;
5107 max_val = min_val + (1 << operand_base->size) - 1;
5108 max_high = operand->opsize;
5109
5110 if (!match_const_int (arg, &size))
5111 return FALSE;
5112
5113 high = size + arg->last_op_int;
5114 sval = operand->add_lsb ? high : size;
5115
5116 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5117 {
5118 match_out_of_range (arg);
5119 return FALSE;
5120 }
5121 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5122 return TRUE;
5123 }
5124
5125 /* OP_REG matcher. */
5126
5127 static bfd_boolean
5128 match_reg_operand (struct mips_arg_info *arg,
5129 const struct mips_operand *operand_base)
5130 {
5131 const struct mips_reg_operand *operand;
5132 unsigned int regno, uval, num_vals;
5133
5134 operand = (const struct mips_reg_operand *) operand_base;
5135 if (!match_reg (arg, operand->reg_type, &regno))
5136 return FALSE;
5137
5138 if (operand->reg_map)
5139 {
5140 num_vals = 1 << operand->root.size;
5141 for (uval = 0; uval < num_vals; uval++)
5142 if (operand->reg_map[uval] == regno)
5143 break;
5144 if (num_vals == uval)
5145 return FALSE;
5146 }
5147 else
5148 uval = regno;
5149
5150 arg->last_regno = regno;
5151 if (arg->opnum == 1)
5152 arg->dest_regno = regno;
5153 insn_insert_operand (arg->insn, operand_base, uval);
5154 return TRUE;
5155 }
5156
5157 /* OP_REG_PAIR matcher. */
5158
5159 static bfd_boolean
5160 match_reg_pair_operand (struct mips_arg_info *arg,
5161 const struct mips_operand *operand_base)
5162 {
5163 const struct mips_reg_pair_operand *operand;
5164 unsigned int regno1, regno2, uval, num_vals;
5165
5166 operand = (const struct mips_reg_pair_operand *) operand_base;
5167 if (!match_reg (arg, operand->reg_type, &regno1)
5168 || !match_char (arg, ',')
5169 || !match_reg (arg, operand->reg_type, &regno2))
5170 return FALSE;
5171
5172 num_vals = 1 << operand_base->size;
5173 for (uval = 0; uval < num_vals; uval++)
5174 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5175 break;
5176 if (uval == num_vals)
5177 return FALSE;
5178
5179 insn_insert_operand (arg->insn, operand_base, uval);
5180 return TRUE;
5181 }
5182
5183 /* OP_PCREL matcher. The caller chooses the relocation type. */
5184
5185 static bfd_boolean
5186 match_pcrel_operand (struct mips_arg_info *arg)
5187 {
5188 bfd_reloc_code_real_type r[3];
5189
5190 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5191 }
5192
5193 /* OP_PERF_REG matcher. */
5194
5195 static bfd_boolean
5196 match_perf_reg_operand (struct mips_arg_info *arg,
5197 const struct mips_operand *operand)
5198 {
5199 offsetT sval;
5200
5201 if (!match_const_int (arg, &sval))
5202 return FALSE;
5203
5204 if (sval != 0
5205 && (sval != 1
5206 || (mips_opts.arch == CPU_R5900
5207 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5208 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5209 {
5210 set_insn_error (arg->argnum, _("invalid performance register"));
5211 return FALSE;
5212 }
5213
5214 insn_insert_operand (arg->insn, operand, sval);
5215 return TRUE;
5216 }
5217
5218 /* OP_ADDIUSP matcher. */
5219
5220 static bfd_boolean
5221 match_addiusp_operand (struct mips_arg_info *arg,
5222 const struct mips_operand *operand)
5223 {
5224 offsetT sval;
5225 unsigned int uval;
5226
5227 if (!match_const_int (arg, &sval))
5228 return FALSE;
5229
5230 if (sval % 4)
5231 {
5232 match_out_of_range (arg);
5233 return FALSE;
5234 }
5235
5236 sval /= 4;
5237 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5238 {
5239 match_out_of_range (arg);
5240 return FALSE;
5241 }
5242
5243 uval = (unsigned int) sval;
5244 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5245 insn_insert_operand (arg->insn, operand, uval);
5246 return TRUE;
5247 }
5248
5249 /* OP_CLO_CLZ_DEST matcher. */
5250
5251 static bfd_boolean
5252 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5253 const struct mips_operand *operand)
5254 {
5255 unsigned int regno;
5256
5257 if (!match_reg (arg, OP_REG_GP, &regno))
5258 return FALSE;
5259
5260 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5261 return TRUE;
5262 }
5263
5264 /* OP_CHECK_PREV matcher. */
5265
5266 static bfd_boolean
5267 match_check_prev_operand (struct mips_arg_info *arg,
5268 const struct mips_operand *operand_base)
5269 {
5270 const struct mips_check_prev_operand *operand;
5271 unsigned int regno;
5272
5273 operand = (const struct mips_check_prev_operand *) operand_base;
5274
5275 if (!match_reg (arg, OP_REG_GP, &regno))
5276 return FALSE;
5277
5278 if (!operand->zero_ok && regno == 0)
5279 return FALSE;
5280
5281 if ((operand->less_than_ok && regno < arg->last_regno)
5282 || (operand->greater_than_ok && regno > arg->last_regno)
5283 || (operand->equal_ok && regno == arg->last_regno))
5284 {
5285 arg->last_regno = regno;
5286 insn_insert_operand (arg->insn, operand_base, regno);
5287 return TRUE;
5288 }
5289
5290 return FALSE;
5291 }
5292
5293 /* OP_SAME_RS_RT matcher. */
5294
5295 static bfd_boolean
5296 match_same_rs_rt_operand (struct mips_arg_info *arg,
5297 const struct mips_operand *operand)
5298 {
5299 unsigned int regno;
5300
5301 if (!match_reg (arg, OP_REG_GP, &regno))
5302 return FALSE;
5303
5304 if (regno == 0)
5305 {
5306 set_insn_error (arg->argnum, _("the source register must not be $0"));
5307 return FALSE;
5308 }
5309
5310 arg->last_regno = regno;
5311
5312 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5313 return TRUE;
5314 }
5315
5316 /* OP_LWM_SWM_LIST matcher. */
5317
5318 static bfd_boolean
5319 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5320 const struct mips_operand *operand)
5321 {
5322 unsigned int reglist, sregs, ra, regno1, regno2;
5323 struct mips_arg_info reset;
5324
5325 reglist = 0;
5326 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5327 return FALSE;
5328 do
5329 {
5330 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5331 {
5332 reglist |= 1 << FP;
5333 regno2 = S7;
5334 }
5335 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5336 reset = *arg;
5337 }
5338 while (match_char (arg, ',')
5339 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5340 *arg = reset;
5341
5342 if (operand->size == 2)
5343 {
5344 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5345
5346 s0, ra
5347 s0, s1, ra, s2, s3
5348 s0-s2, ra
5349
5350 and any permutations of these. */
5351 if ((reglist & 0xfff1ffff) != 0x80010000)
5352 return FALSE;
5353
5354 sregs = (reglist >> 17) & 7;
5355 ra = 0;
5356 }
5357 else
5358 {
5359 /* The list must include at least one of ra and s0-sN,
5360 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5361 which are $23 and $30 respectively.) E.g.:
5362
5363 ra
5364 s0
5365 ra, s0, s1, s2
5366 s0-s8
5367 s0-s5, ra
5368
5369 and any permutations of these. */
5370 if ((reglist & 0x3f00ffff) != 0)
5371 return FALSE;
5372
5373 ra = (reglist >> 27) & 0x10;
5374 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5375 }
5376 sregs += 1;
5377 if ((sregs & -sregs) != sregs)
5378 return FALSE;
5379
5380 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5381 return TRUE;
5382 }
5383
5384 /* OP_ENTRY_EXIT_LIST matcher. */
5385
5386 static unsigned int
5387 match_entry_exit_operand (struct mips_arg_info *arg,
5388 const struct mips_operand *operand)
5389 {
5390 unsigned int mask;
5391 bfd_boolean is_exit;
5392
5393 /* The format is the same for both ENTRY and EXIT, but the constraints
5394 are different. */
5395 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5396 mask = (is_exit ? 7 << 3 : 0);
5397 do
5398 {
5399 unsigned int regno1, regno2;
5400 bfd_boolean is_freg;
5401
5402 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5403 is_freg = FALSE;
5404 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5405 is_freg = TRUE;
5406 else
5407 return FALSE;
5408
5409 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5410 {
5411 mask &= ~(7 << 3);
5412 mask |= (5 + regno2) << 3;
5413 }
5414 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5415 mask |= (regno2 - 3) << 3;
5416 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5417 mask |= (regno2 - 15) << 1;
5418 else if (regno1 == RA && regno2 == RA)
5419 mask |= 1;
5420 else
5421 return FALSE;
5422 }
5423 while (match_char (arg, ','));
5424
5425 insn_insert_operand (arg->insn, operand, mask);
5426 return TRUE;
5427 }
5428
5429 /* OP_SAVE_RESTORE_LIST matcher. */
5430
5431 static bfd_boolean
5432 match_save_restore_list_operand (struct mips_arg_info *arg)
5433 {
5434 unsigned int opcode, args, statics, sregs;
5435 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5436 offsetT frame_size;
5437
5438 opcode = arg->insn->insn_opcode;
5439 frame_size = 0;
5440 num_frame_sizes = 0;
5441 args = 0;
5442 statics = 0;
5443 sregs = 0;
5444 do
5445 {
5446 unsigned int regno1, regno2;
5447
5448 if (arg->token->type == OT_INTEGER)
5449 {
5450 /* Handle the frame size. */
5451 if (!match_const_int (arg, &frame_size))
5452 return FALSE;
5453 num_frame_sizes += 1;
5454 }
5455 else
5456 {
5457 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5458 return FALSE;
5459
5460 while (regno1 <= regno2)
5461 {
5462 if (regno1 >= 4 && regno1 <= 7)
5463 {
5464 if (num_frame_sizes == 0)
5465 /* args $a0-$a3 */
5466 args |= 1 << (regno1 - 4);
5467 else
5468 /* statics $a0-$a3 */
5469 statics |= 1 << (regno1 - 4);
5470 }
5471 else if (regno1 >= 16 && regno1 <= 23)
5472 /* $s0-$s7 */
5473 sregs |= 1 << (regno1 - 16);
5474 else if (regno1 == 30)
5475 /* $s8 */
5476 sregs |= 1 << 8;
5477 else if (regno1 == 31)
5478 /* Add $ra to insn. */
5479 opcode |= 0x40;
5480 else
5481 return FALSE;
5482 regno1 += 1;
5483 if (regno1 == 24)
5484 regno1 = 30;
5485 }
5486 }
5487 }
5488 while (match_char (arg, ','));
5489
5490 /* Encode args/statics combination. */
5491 if (args & statics)
5492 return FALSE;
5493 else if (args == 0xf)
5494 /* All $a0-$a3 are args. */
5495 opcode |= MIPS16_ALL_ARGS << 16;
5496 else if (statics == 0xf)
5497 /* All $a0-$a3 are statics. */
5498 opcode |= MIPS16_ALL_STATICS << 16;
5499 else
5500 {
5501 /* Count arg registers. */
5502 num_args = 0;
5503 while (args & 0x1)
5504 {
5505 args >>= 1;
5506 num_args += 1;
5507 }
5508 if (args != 0)
5509 return FALSE;
5510
5511 /* Count static registers. */
5512 num_statics = 0;
5513 while (statics & 0x8)
5514 {
5515 statics = (statics << 1) & 0xf;
5516 num_statics += 1;
5517 }
5518 if (statics != 0)
5519 return FALSE;
5520
5521 /* Encode args/statics. */
5522 opcode |= ((num_args << 2) | num_statics) << 16;
5523 }
5524
5525 /* Encode $s0/$s1. */
5526 if (sregs & (1 << 0)) /* $s0 */
5527 opcode |= 0x20;
5528 if (sregs & (1 << 1)) /* $s1 */
5529 opcode |= 0x10;
5530 sregs >>= 2;
5531
5532 /* Encode $s2-$s8. */
5533 num_sregs = 0;
5534 while (sregs & 1)
5535 {
5536 sregs >>= 1;
5537 num_sregs += 1;
5538 }
5539 if (sregs != 0)
5540 return FALSE;
5541 opcode |= num_sregs << 24;
5542
5543 /* Encode frame size. */
5544 if (num_frame_sizes == 0)
5545 {
5546 set_insn_error (arg->argnum, _("missing frame size"));
5547 return FALSE;
5548 }
5549 if (num_frame_sizes > 1)
5550 {
5551 set_insn_error (arg->argnum, _("frame size specified twice"));
5552 return FALSE;
5553 }
5554 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5555 {
5556 set_insn_error (arg->argnum, _("invalid frame size"));
5557 return FALSE;
5558 }
5559 if (frame_size != 128 || (opcode >> 16) != 0)
5560 {
5561 frame_size /= 8;
5562 opcode |= (((frame_size & 0xf0) << 16)
5563 | (frame_size & 0x0f));
5564 }
5565
5566 /* Finally build the instruction. */
5567 if ((opcode >> 16) != 0 || frame_size == 0)
5568 opcode |= MIPS16_EXTEND;
5569 arg->insn->insn_opcode = opcode;
5570 return TRUE;
5571 }
5572
5573 /* OP_MDMX_IMM_REG matcher. */
5574
5575 static bfd_boolean
5576 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5577 const struct mips_operand *operand)
5578 {
5579 unsigned int regno, uval;
5580 bfd_boolean is_qh;
5581 const struct mips_opcode *opcode;
5582
5583 /* The mips_opcode records whether this is an octobyte or quadhalf
5584 instruction. Start out with that bit in place. */
5585 opcode = arg->insn->insn_mo;
5586 uval = mips_extract_operand (operand, opcode->match);
5587 is_qh = (uval != 0);
5588
5589 if (arg->token->type == OT_REG)
5590 {
5591 if ((opcode->membership & INSN_5400)
5592 && strcmp (opcode->name, "rzu.ob") == 0)
5593 {
5594 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5595 arg->argnum);
5596 return FALSE;
5597 }
5598
5599 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5600 return FALSE;
5601 ++arg->token;
5602
5603 /* Check whether this is a vector register or a broadcast of
5604 a single element. */
5605 if (arg->token->type == OT_INTEGER_INDEX)
5606 {
5607 if (arg->token->u.index > (is_qh ? 3 : 7))
5608 {
5609 set_insn_error (arg->argnum, _("invalid element selector"));
5610 return FALSE;
5611 }
5612 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5613 ++arg->token;
5614 }
5615 else
5616 {
5617 /* A full vector. */
5618 if ((opcode->membership & INSN_5400)
5619 && (strcmp (opcode->name, "sll.ob") == 0
5620 || strcmp (opcode->name, "srl.ob") == 0))
5621 {
5622 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5623 arg->argnum);
5624 return FALSE;
5625 }
5626
5627 if (is_qh)
5628 uval |= MDMX_FMTSEL_VEC_QH << 5;
5629 else
5630 uval |= MDMX_FMTSEL_VEC_OB << 5;
5631 }
5632 uval |= regno;
5633 }
5634 else
5635 {
5636 offsetT sval;
5637
5638 if (!match_const_int (arg, &sval))
5639 return FALSE;
5640 if (sval < 0 || sval > 31)
5641 {
5642 match_out_of_range (arg);
5643 return FALSE;
5644 }
5645 uval |= (sval & 31);
5646 if (is_qh)
5647 uval |= MDMX_FMTSEL_IMM_QH << 5;
5648 else
5649 uval |= MDMX_FMTSEL_IMM_OB << 5;
5650 }
5651 insn_insert_operand (arg->insn, operand, uval);
5652 return TRUE;
5653 }
5654
5655 /* OP_IMM_INDEX matcher. */
5656
5657 static bfd_boolean
5658 match_imm_index_operand (struct mips_arg_info *arg,
5659 const struct mips_operand *operand)
5660 {
5661 unsigned int max_val;
5662
5663 if (arg->token->type != OT_INTEGER_INDEX)
5664 return FALSE;
5665
5666 max_val = (1 << operand->size) - 1;
5667 if (arg->token->u.index > max_val)
5668 {
5669 match_out_of_range (arg);
5670 return FALSE;
5671 }
5672 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5673 ++arg->token;
5674 return TRUE;
5675 }
5676
5677 /* OP_REG_INDEX matcher. */
5678
5679 static bfd_boolean
5680 match_reg_index_operand (struct mips_arg_info *arg,
5681 const struct mips_operand *operand)
5682 {
5683 unsigned int regno;
5684
5685 if (arg->token->type != OT_REG_INDEX)
5686 return FALSE;
5687
5688 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5689 return FALSE;
5690
5691 insn_insert_operand (arg->insn, operand, regno);
5692 ++arg->token;
5693 return TRUE;
5694 }
5695
5696 /* OP_PC matcher. */
5697
5698 static bfd_boolean
5699 match_pc_operand (struct mips_arg_info *arg)
5700 {
5701 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5702 {
5703 ++arg->token;
5704 return TRUE;
5705 }
5706 return FALSE;
5707 }
5708
5709 /* OP_NON_ZERO_REG matcher. */
5710
5711 static bfd_boolean
5712 match_non_zero_reg_operand (struct mips_arg_info *arg,
5713 const struct mips_operand *operand)
5714 {
5715 unsigned int regno;
5716
5717 if (!match_reg (arg, OP_REG_GP, &regno))
5718 return FALSE;
5719
5720 if (regno == 0)
5721 return FALSE;
5722
5723 arg->last_regno = regno;
5724 insn_insert_operand (arg->insn, operand, regno);
5725 return TRUE;
5726 }
5727
5728 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5729 register that we need to match. */
5730
5731 static bfd_boolean
5732 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5733 {
5734 unsigned int regno;
5735
5736 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5737 }
5738
5739 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5740 the length of the value in bytes (4 for float, 8 for double) and
5741 USING_GPRS says whether the destination is a GPR rather than an FPR.
5742
5743 Return the constant in IMM and OFFSET as follows:
5744
5745 - If the constant should be loaded via memory, set IMM to O_absent and
5746 OFFSET to the memory address.
5747
5748 - Otherwise, if the constant should be loaded into two 32-bit registers,
5749 set IMM to the O_constant to load into the high register and OFFSET
5750 to the corresponding value for the low register.
5751
5752 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5753
5754 These constants only appear as the last operand in an instruction,
5755 and every instruction that accepts them in any variant accepts them
5756 in all variants. This means we don't have to worry about backing out
5757 any changes if the instruction does not match. We just match
5758 unconditionally and report an error if the constant is invalid. */
5759
5760 static bfd_boolean
5761 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5762 expressionS *offset, int length, bfd_boolean using_gprs)
5763 {
5764 char *p;
5765 segT seg, new_seg;
5766 subsegT subseg;
5767 const char *newname;
5768 unsigned char *data;
5769
5770 /* Where the constant is placed is based on how the MIPS assembler
5771 does things:
5772
5773 length == 4 && using_gprs -- immediate value only
5774 length == 8 && using_gprs -- .rdata or immediate value
5775 length == 4 && !using_gprs -- .lit4 or immediate value
5776 length == 8 && !using_gprs -- .lit8 or immediate value
5777
5778 The .lit4 and .lit8 sections are only used if permitted by the
5779 -G argument. */
5780 if (arg->token->type != OT_FLOAT)
5781 {
5782 set_insn_error (arg->argnum, _("floating-point expression required"));
5783 return FALSE;
5784 }
5785
5786 gas_assert (arg->token->u.flt.length == length);
5787 data = arg->token->u.flt.data;
5788 ++arg->token;
5789
5790 /* Handle 32-bit constants for which an immediate value is best. */
5791 if (length == 4
5792 && (using_gprs
5793 || g_switch_value < 4
5794 || (data[0] == 0 && data[1] == 0)
5795 || (data[2] == 0 && data[3] == 0)))
5796 {
5797 imm->X_op = O_constant;
5798 if (!target_big_endian)
5799 imm->X_add_number = bfd_getl32 (data);
5800 else
5801 imm->X_add_number = bfd_getb32 (data);
5802 offset->X_op = O_absent;
5803 return TRUE;
5804 }
5805
5806 /* Handle 64-bit constants for which an immediate value is best. */
5807 if (length == 8
5808 && !mips_disable_float_construction
5809 /* Constants can only be constructed in GPRs and copied to FPRs if the
5810 GPRs are at least as wide as the FPRs or MTHC1 is available.
5811 Unlike most tests for 32-bit floating-point registers this check
5812 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5813 permit 64-bit moves without MXHC1.
5814 Force the constant into memory otherwise. */
5815 && (using_gprs
5816 || GPR_SIZE == 64
5817 || ISA_HAS_MXHC1 (mips_opts.isa)
5818 || FPR_SIZE == 32)
5819 && ((data[0] == 0 && data[1] == 0)
5820 || (data[2] == 0 && data[3] == 0))
5821 && ((data[4] == 0 && data[5] == 0)
5822 || (data[6] == 0 && data[7] == 0)))
5823 {
5824 /* The value is simple enough to load with a couple of instructions.
5825 If using 32-bit registers, set IMM to the high order 32 bits and
5826 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5827 64 bit constant. */
5828 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5829 {
5830 imm->X_op = O_constant;
5831 offset->X_op = O_constant;
5832 if (!target_big_endian)
5833 {
5834 imm->X_add_number = bfd_getl32 (data + 4);
5835 offset->X_add_number = bfd_getl32 (data);
5836 }
5837 else
5838 {
5839 imm->X_add_number = bfd_getb32 (data);
5840 offset->X_add_number = bfd_getb32 (data + 4);
5841 }
5842 if (offset->X_add_number == 0)
5843 offset->X_op = O_absent;
5844 }
5845 else
5846 {
5847 imm->X_op = O_constant;
5848 if (!target_big_endian)
5849 imm->X_add_number = bfd_getl64 (data);
5850 else
5851 imm->X_add_number = bfd_getb64 (data);
5852 offset->X_op = O_absent;
5853 }
5854 return TRUE;
5855 }
5856
5857 /* Switch to the right section. */
5858 seg = now_seg;
5859 subseg = now_subseg;
5860 if (length == 4)
5861 {
5862 gas_assert (!using_gprs && g_switch_value >= 4);
5863 newname = ".lit4";
5864 }
5865 else
5866 {
5867 if (using_gprs || g_switch_value < 8)
5868 newname = RDATA_SECTION_NAME;
5869 else
5870 newname = ".lit8";
5871 }
5872
5873 new_seg = subseg_new (newname, (subsegT) 0);
5874 bfd_set_section_flags (stdoutput, new_seg,
5875 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5876 frag_align (length == 4 ? 2 : 3, 0, 0);
5877 if (strncmp (TARGET_OS, "elf", 3) != 0)
5878 record_alignment (new_seg, 4);
5879 else
5880 record_alignment (new_seg, length == 4 ? 2 : 3);
5881 if (seg == now_seg)
5882 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5883
5884 /* Set the argument to the current address in the section. */
5885 imm->X_op = O_absent;
5886 offset->X_op = O_symbol;
5887 offset->X_add_symbol = symbol_temp_new_now ();
5888 offset->X_add_number = 0;
5889
5890 /* Put the floating point number into the section. */
5891 p = frag_more (length);
5892 memcpy (p, data, length);
5893
5894 /* Switch back to the original section. */
5895 subseg_set (seg, subseg);
5896 return TRUE;
5897 }
5898
5899 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5900 them. */
5901
5902 static bfd_boolean
5903 match_vu0_suffix_operand (struct mips_arg_info *arg,
5904 const struct mips_operand *operand,
5905 bfd_boolean match_p)
5906 {
5907 unsigned int uval;
5908
5909 /* The operand can be an XYZW mask or a single 2-bit channel index
5910 (with X being 0). */
5911 gas_assert (operand->size == 2 || operand->size == 4);
5912
5913 /* The suffix can be omitted when it is already part of the opcode. */
5914 if (arg->token->type != OT_CHANNELS)
5915 return match_p;
5916
5917 uval = arg->token->u.channels;
5918 if (operand->size == 2)
5919 {
5920 /* Check that a single bit is set and convert it into a 2-bit index. */
5921 if ((uval & -uval) != uval)
5922 return FALSE;
5923 uval = 4 - ffs (uval);
5924 }
5925
5926 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
5927 return FALSE;
5928
5929 ++arg->token;
5930 if (!match_p)
5931 insn_insert_operand (arg->insn, operand, uval);
5932 return TRUE;
5933 }
5934
5935 /* S is the text seen for ARG. Match it against OPERAND. Return the end
5936 of the argument text if the match is successful, otherwise return null. */
5937
5938 static bfd_boolean
5939 match_operand (struct mips_arg_info *arg,
5940 const struct mips_operand *operand)
5941 {
5942 switch (operand->type)
5943 {
5944 case OP_INT:
5945 return match_int_operand (arg, operand);
5946
5947 case OP_MAPPED_INT:
5948 return match_mapped_int_operand (arg, operand);
5949
5950 case OP_MSB:
5951 return match_msb_operand (arg, operand);
5952
5953 case OP_REG:
5954 case OP_OPTIONAL_REG:
5955 return match_reg_operand (arg, operand);
5956
5957 case OP_REG_PAIR:
5958 return match_reg_pair_operand (arg, operand);
5959
5960 case OP_PCREL:
5961 return match_pcrel_operand (arg);
5962
5963 case OP_PERF_REG:
5964 return match_perf_reg_operand (arg, operand);
5965
5966 case OP_ADDIUSP_INT:
5967 return match_addiusp_operand (arg, operand);
5968
5969 case OP_CLO_CLZ_DEST:
5970 return match_clo_clz_dest_operand (arg, operand);
5971
5972 case OP_LWM_SWM_LIST:
5973 return match_lwm_swm_list_operand (arg, operand);
5974
5975 case OP_ENTRY_EXIT_LIST:
5976 return match_entry_exit_operand (arg, operand);
5977
5978 case OP_SAVE_RESTORE_LIST:
5979 return match_save_restore_list_operand (arg);
5980
5981 case OP_MDMX_IMM_REG:
5982 return match_mdmx_imm_reg_operand (arg, operand);
5983
5984 case OP_REPEAT_DEST_REG:
5985 return match_tied_reg_operand (arg, arg->dest_regno);
5986
5987 case OP_REPEAT_PREV_REG:
5988 return match_tied_reg_operand (arg, arg->last_regno);
5989
5990 case OP_PC:
5991 return match_pc_operand (arg);
5992
5993 case OP_VU0_SUFFIX:
5994 return match_vu0_suffix_operand (arg, operand, FALSE);
5995
5996 case OP_VU0_MATCH_SUFFIX:
5997 return match_vu0_suffix_operand (arg, operand, TRUE);
5998
5999 case OP_IMM_INDEX:
6000 return match_imm_index_operand (arg, operand);
6001
6002 case OP_REG_INDEX:
6003 return match_reg_index_operand (arg, operand);
6004
6005 case OP_SAME_RS_RT:
6006 return match_same_rs_rt_operand (arg, operand);
6007
6008 case OP_CHECK_PREV:
6009 return match_check_prev_operand (arg, operand);
6010
6011 case OP_NON_ZERO_REG:
6012 return match_non_zero_reg_operand (arg, operand);
6013 }
6014 abort ();
6015 }
6016
6017 /* ARG is the state after successfully matching an instruction.
6018 Issue any queued-up warnings. */
6019
6020 static void
6021 check_completed_insn (struct mips_arg_info *arg)
6022 {
6023 if (arg->seen_at)
6024 {
6025 if (AT == ATREG)
6026 as_warn (_("used $at without \".set noat\""));
6027 else
6028 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6029 }
6030 }
6031
6032 /* Return true if modifying general-purpose register REG needs a delay. */
6033
6034 static bfd_boolean
6035 reg_needs_delay (unsigned int reg)
6036 {
6037 unsigned long prev_pinfo;
6038
6039 prev_pinfo = history[0].insn_mo->pinfo;
6040 if (!mips_opts.noreorder
6041 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6042 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6043 && (gpr_write_mask (&history[0]) & (1 << reg)))
6044 return TRUE;
6045
6046 return FALSE;
6047 }
6048
6049 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6050 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6051 by VR4120 errata. */
6052
6053 static unsigned int
6054 classify_vr4120_insn (const char *name)
6055 {
6056 if (strncmp (name, "macc", 4) == 0)
6057 return FIX_VR4120_MACC;
6058 if (strncmp (name, "dmacc", 5) == 0)
6059 return FIX_VR4120_DMACC;
6060 if (strncmp (name, "mult", 4) == 0)
6061 return FIX_VR4120_MULT;
6062 if (strncmp (name, "dmult", 5) == 0)
6063 return FIX_VR4120_DMULT;
6064 if (strstr (name, "div"))
6065 return FIX_VR4120_DIV;
6066 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6067 return FIX_VR4120_MTHILO;
6068 return NUM_FIX_VR4120_CLASSES;
6069 }
6070
6071 #define INSN_ERET 0x42000018
6072 #define INSN_DERET 0x4200001f
6073 #define INSN_DMULT 0x1c
6074 #define INSN_DMULTU 0x1d
6075
6076 /* Return the number of instructions that must separate INSN1 and INSN2,
6077 where INSN1 is the earlier instruction. Return the worst-case value
6078 for any INSN2 if INSN2 is null. */
6079
6080 static unsigned int
6081 insns_between (const struct mips_cl_insn *insn1,
6082 const struct mips_cl_insn *insn2)
6083 {
6084 unsigned long pinfo1, pinfo2;
6085 unsigned int mask;
6086
6087 /* If INFO2 is null, pessimistically assume that all flags are set for
6088 the second instruction. */
6089 pinfo1 = insn1->insn_mo->pinfo;
6090 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6091
6092 /* For most targets, write-after-read dependencies on the HI and LO
6093 registers must be separated by at least two instructions. */
6094 if (!hilo_interlocks)
6095 {
6096 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6097 return 2;
6098 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6099 return 2;
6100 }
6101
6102 /* If we're working around r7000 errata, there must be two instructions
6103 between an mfhi or mflo and any instruction that uses the result. */
6104 if (mips_7000_hilo_fix
6105 && !mips_opts.micromips
6106 && MF_HILO_INSN (pinfo1)
6107 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6108 return 2;
6109
6110 /* If we're working around 24K errata, one instruction is required
6111 if an ERET or DERET is followed by a branch instruction. */
6112 if (mips_fix_24k && !mips_opts.micromips)
6113 {
6114 if (insn1->insn_opcode == INSN_ERET
6115 || insn1->insn_opcode == INSN_DERET)
6116 {
6117 if (insn2 == NULL
6118 || insn2->insn_opcode == INSN_ERET
6119 || insn2->insn_opcode == INSN_DERET
6120 || delayed_branch_p (insn2))
6121 return 1;
6122 }
6123 }
6124
6125 /* If we're working around PMC RM7000 errata, there must be three
6126 nops between a dmult and a load instruction. */
6127 if (mips_fix_rm7000 && !mips_opts.micromips)
6128 {
6129 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6130 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6131 {
6132 if (pinfo2 & INSN_LOAD_MEMORY)
6133 return 3;
6134 }
6135 }
6136
6137 /* If working around VR4120 errata, check for combinations that need
6138 a single intervening instruction. */
6139 if (mips_fix_vr4120 && !mips_opts.micromips)
6140 {
6141 unsigned int class1, class2;
6142
6143 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6144 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6145 {
6146 if (insn2 == NULL)
6147 return 1;
6148 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6149 if (vr4120_conflicts[class1] & (1 << class2))
6150 return 1;
6151 }
6152 }
6153
6154 if (!HAVE_CODE_COMPRESSION)
6155 {
6156 /* Check for GPR or coprocessor load delays. All such delays
6157 are on the RT register. */
6158 /* Itbl support may require additional care here. */
6159 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6160 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6161 {
6162 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6163 return 1;
6164 }
6165
6166 /* Check for generic coprocessor hazards.
6167
6168 This case is not handled very well. There is no special
6169 knowledge of CP0 handling, and the coprocessors other than
6170 the floating point unit are not distinguished at all. */
6171 /* Itbl support may require additional care here. FIXME!
6172 Need to modify this to include knowledge about
6173 user specified delays! */
6174 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6175 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6176 {
6177 /* Handle cases where INSN1 writes to a known general coprocessor
6178 register. There must be a one instruction delay before INSN2
6179 if INSN2 reads that register, otherwise no delay is needed. */
6180 mask = fpr_write_mask (insn1);
6181 if (mask != 0)
6182 {
6183 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6184 return 1;
6185 }
6186 else
6187 {
6188 /* Read-after-write dependencies on the control registers
6189 require a two-instruction gap. */
6190 if ((pinfo1 & INSN_WRITE_COND_CODE)
6191 && (pinfo2 & INSN_READ_COND_CODE))
6192 return 2;
6193
6194 /* We don't know exactly what INSN1 does. If INSN2 is
6195 also a coprocessor instruction, assume there must be
6196 a one instruction gap. */
6197 if (pinfo2 & INSN_COP)
6198 return 1;
6199 }
6200 }
6201
6202 /* Check for read-after-write dependencies on the coprocessor
6203 control registers in cases where INSN1 does not need a general
6204 coprocessor delay. This means that INSN1 is a floating point
6205 comparison instruction. */
6206 /* Itbl support may require additional care here. */
6207 else if (!cop_interlocks
6208 && (pinfo1 & INSN_WRITE_COND_CODE)
6209 && (pinfo2 & INSN_READ_COND_CODE))
6210 return 1;
6211 }
6212
6213 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6214 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6215 and pause. */
6216 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6217 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6218 || (insn2 && delayed_branch_p (insn2))))
6219 return 1;
6220
6221 return 0;
6222 }
6223
6224 /* Return the number of nops that would be needed to work around the
6225 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6226 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6227 that are contained within the first IGNORE instructions of HIST. */
6228
6229 static int
6230 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6231 const struct mips_cl_insn *insn)
6232 {
6233 int i, j;
6234 unsigned int mask;
6235
6236 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6237 are not affected by the errata. */
6238 if (insn != 0
6239 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6240 || strcmp (insn->insn_mo->name, "mtlo") == 0
6241 || strcmp (insn->insn_mo->name, "mthi") == 0))
6242 return 0;
6243
6244 /* Search for the first MFLO or MFHI. */
6245 for (i = 0; i < MAX_VR4130_NOPS; i++)
6246 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6247 {
6248 /* Extract the destination register. */
6249 mask = gpr_write_mask (&hist[i]);
6250
6251 /* No nops are needed if INSN reads that register. */
6252 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6253 return 0;
6254
6255 /* ...or if any of the intervening instructions do. */
6256 for (j = 0; j < i; j++)
6257 if (gpr_read_mask (&hist[j]) & mask)
6258 return 0;
6259
6260 if (i >= ignore)
6261 return MAX_VR4130_NOPS - i;
6262 }
6263 return 0;
6264 }
6265
6266 #define BASE_REG_EQ(INSN1, INSN2) \
6267 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6268 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6269
6270 /* Return the minimum alignment for this store instruction. */
6271
6272 static int
6273 fix_24k_align_to (const struct mips_opcode *mo)
6274 {
6275 if (strcmp (mo->name, "sh") == 0)
6276 return 2;
6277
6278 if (strcmp (mo->name, "swc1") == 0
6279 || strcmp (mo->name, "swc2") == 0
6280 || strcmp (mo->name, "sw") == 0
6281 || strcmp (mo->name, "sc") == 0
6282 || strcmp (mo->name, "s.s") == 0)
6283 return 4;
6284
6285 if (strcmp (mo->name, "sdc1") == 0
6286 || strcmp (mo->name, "sdc2") == 0
6287 || strcmp (mo->name, "s.d") == 0)
6288 return 8;
6289
6290 /* sb, swl, swr */
6291 return 1;
6292 }
6293
6294 struct fix_24k_store_info
6295 {
6296 /* Immediate offset, if any, for this store instruction. */
6297 short off;
6298 /* Alignment required by this store instruction. */
6299 int align_to;
6300 /* True for register offsets. */
6301 int register_offset;
6302 };
6303
6304 /* Comparison function used by qsort. */
6305
6306 static int
6307 fix_24k_sort (const void *a, const void *b)
6308 {
6309 const struct fix_24k_store_info *pos1 = a;
6310 const struct fix_24k_store_info *pos2 = b;
6311
6312 return (pos1->off - pos2->off);
6313 }
6314
6315 /* INSN is a store instruction. Try to record the store information
6316 in STINFO. Return false if the information isn't known. */
6317
6318 static bfd_boolean
6319 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6320 const struct mips_cl_insn *insn)
6321 {
6322 /* The instruction must have a known offset. */
6323 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6324 return FALSE;
6325
6326 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6327 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6328 return TRUE;
6329 }
6330
6331 /* Return the number of nops that would be needed to work around the 24k
6332 "lost data on stores during refill" errata if instruction INSN
6333 immediately followed the 2 instructions described by HIST.
6334 Ignore hazards that are contained within the first IGNORE
6335 instructions of HIST.
6336
6337 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6338 for the data cache refills and store data. The following describes
6339 the scenario where the store data could be lost.
6340
6341 * A data cache miss, due to either a load or a store, causing fill
6342 data to be supplied by the memory subsystem
6343 * The first three doublewords of fill data are returned and written
6344 into the cache
6345 * A sequence of four stores occurs in consecutive cycles around the
6346 final doubleword of the fill:
6347 * Store A
6348 * Store B
6349 * Store C
6350 * Zero, One or more instructions
6351 * Store D
6352
6353 The four stores A-D must be to different doublewords of the line that
6354 is being filled. The fourth instruction in the sequence above permits
6355 the fill of the final doubleword to be transferred from the FSB into
6356 the cache. In the sequence above, the stores may be either integer
6357 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6358 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6359 different doublewords on the line. If the floating point unit is
6360 running in 1:2 mode, it is not possible to create the sequence above
6361 using only floating point store instructions.
6362
6363 In this case, the cache line being filled is incorrectly marked
6364 invalid, thereby losing the data from any store to the line that
6365 occurs between the original miss and the completion of the five
6366 cycle sequence shown above.
6367
6368 The workarounds are:
6369
6370 * Run the data cache in write-through mode.
6371 * Insert a non-store instruction between
6372 Store A and Store B or Store B and Store C. */
6373
6374 static int
6375 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6376 const struct mips_cl_insn *insn)
6377 {
6378 struct fix_24k_store_info pos[3];
6379 int align, i, base_offset;
6380
6381 if (ignore >= 2)
6382 return 0;
6383
6384 /* If the previous instruction wasn't a store, there's nothing to
6385 worry about. */
6386 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6387 return 0;
6388
6389 /* If the instructions after the previous one are unknown, we have
6390 to assume the worst. */
6391 if (!insn)
6392 return 1;
6393
6394 /* Check whether we are dealing with three consecutive stores. */
6395 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6396 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6397 return 0;
6398
6399 /* If we don't know the relationship between the store addresses,
6400 assume the worst. */
6401 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6402 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6403 return 1;
6404
6405 if (!fix_24k_record_store_info (&pos[0], insn)
6406 || !fix_24k_record_store_info (&pos[1], &hist[0])
6407 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6408 return 1;
6409
6410 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6411
6412 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6413 X bytes and such that the base register + X is known to be aligned
6414 to align bytes. */
6415
6416 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6417 align = 8;
6418 else
6419 {
6420 align = pos[0].align_to;
6421 base_offset = pos[0].off;
6422 for (i = 1; i < 3; i++)
6423 if (align < pos[i].align_to)
6424 {
6425 align = pos[i].align_to;
6426 base_offset = pos[i].off;
6427 }
6428 for (i = 0; i < 3; i++)
6429 pos[i].off -= base_offset;
6430 }
6431
6432 pos[0].off &= ~align + 1;
6433 pos[1].off &= ~align + 1;
6434 pos[2].off &= ~align + 1;
6435
6436 /* If any two stores write to the same chunk, they also write to the
6437 same doubleword. The offsets are still sorted at this point. */
6438 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6439 return 0;
6440
6441 /* A range of at least 9 bytes is needed for the stores to be in
6442 non-overlapping doublewords. */
6443 if (pos[2].off - pos[0].off <= 8)
6444 return 0;
6445
6446 if (pos[2].off - pos[1].off >= 24
6447 || pos[1].off - pos[0].off >= 24
6448 || pos[2].off - pos[0].off >= 32)
6449 return 0;
6450
6451 return 1;
6452 }
6453
6454 /* Return the number of nops that would be needed if instruction INSN
6455 immediately followed the MAX_NOPS instructions given by HIST,
6456 where HIST[0] is the most recent instruction. Ignore hazards
6457 between INSN and the first IGNORE instructions in HIST.
6458
6459 If INSN is null, return the worse-case number of nops for any
6460 instruction. */
6461
6462 static int
6463 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6464 const struct mips_cl_insn *insn)
6465 {
6466 int i, nops, tmp_nops;
6467
6468 nops = 0;
6469 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6470 {
6471 tmp_nops = insns_between (hist + i, insn) - i;
6472 if (tmp_nops > nops)
6473 nops = tmp_nops;
6474 }
6475
6476 if (mips_fix_vr4130 && !mips_opts.micromips)
6477 {
6478 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6479 if (tmp_nops > nops)
6480 nops = tmp_nops;
6481 }
6482
6483 if (mips_fix_24k && !mips_opts.micromips)
6484 {
6485 tmp_nops = nops_for_24k (ignore, hist, insn);
6486 if (tmp_nops > nops)
6487 nops = tmp_nops;
6488 }
6489
6490 return nops;
6491 }
6492
6493 /* The variable arguments provide NUM_INSNS extra instructions that
6494 might be added to HIST. Return the largest number of nops that
6495 would be needed after the extended sequence, ignoring hazards
6496 in the first IGNORE instructions. */
6497
6498 static int
6499 nops_for_sequence (int num_insns, int ignore,
6500 const struct mips_cl_insn *hist, ...)
6501 {
6502 va_list args;
6503 struct mips_cl_insn buffer[MAX_NOPS];
6504 struct mips_cl_insn *cursor;
6505 int nops;
6506
6507 va_start (args, hist);
6508 cursor = buffer + num_insns;
6509 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6510 while (cursor > buffer)
6511 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6512
6513 nops = nops_for_insn (ignore, buffer, NULL);
6514 va_end (args);
6515 return nops;
6516 }
6517
6518 /* Like nops_for_insn, but if INSN is a branch, take into account the
6519 worst-case delay for the branch target. */
6520
6521 static int
6522 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6523 const struct mips_cl_insn *insn)
6524 {
6525 int nops, tmp_nops;
6526
6527 nops = nops_for_insn (ignore, hist, insn);
6528 if (delayed_branch_p (insn))
6529 {
6530 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6531 hist, insn, get_delay_slot_nop (insn));
6532 if (tmp_nops > nops)
6533 nops = tmp_nops;
6534 }
6535 else if (compact_branch_p (insn))
6536 {
6537 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6538 if (tmp_nops > nops)
6539 nops = tmp_nops;
6540 }
6541 return nops;
6542 }
6543
6544 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6545
6546 static void
6547 fix_loongson2f_nop (struct mips_cl_insn * ip)
6548 {
6549 gas_assert (!HAVE_CODE_COMPRESSION);
6550 if (strcmp (ip->insn_mo->name, "nop") == 0)
6551 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6552 }
6553
6554 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6555 jr target pc &= 'hffff_ffff_cfff_ffff. */
6556
6557 static void
6558 fix_loongson2f_jump (struct mips_cl_insn * ip)
6559 {
6560 gas_assert (!HAVE_CODE_COMPRESSION);
6561 if (strcmp (ip->insn_mo->name, "j") == 0
6562 || strcmp (ip->insn_mo->name, "jr") == 0
6563 || strcmp (ip->insn_mo->name, "jalr") == 0)
6564 {
6565 int sreg;
6566 expressionS ep;
6567
6568 if (! mips_opts.at)
6569 return;
6570
6571 sreg = EXTRACT_OPERAND (0, RS, *ip);
6572 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6573 return;
6574
6575 ep.X_op = O_constant;
6576 ep.X_add_number = 0xcfff0000;
6577 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6578 ep.X_add_number = 0xffff;
6579 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6580 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6581 }
6582 }
6583
6584 static void
6585 fix_loongson2f (struct mips_cl_insn * ip)
6586 {
6587 if (mips_fix_loongson2f_nop)
6588 fix_loongson2f_nop (ip);
6589
6590 if (mips_fix_loongson2f_jump)
6591 fix_loongson2f_jump (ip);
6592 }
6593
6594 /* IP is a branch that has a delay slot, and we need to fill it
6595 automatically. Return true if we can do that by swapping IP
6596 with the previous instruction.
6597 ADDRESS_EXPR is an operand of the instruction to be used with
6598 RELOC_TYPE. */
6599
6600 static bfd_boolean
6601 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6602 bfd_reloc_code_real_type *reloc_type)
6603 {
6604 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6605 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6606 unsigned int fpr_read, prev_fpr_write;
6607
6608 /* -O2 and above is required for this optimization. */
6609 if (mips_optimize < 2)
6610 return FALSE;
6611
6612 /* If we have seen .set volatile or .set nomove, don't optimize. */
6613 if (mips_opts.nomove)
6614 return FALSE;
6615
6616 /* We can't swap if the previous instruction's position is fixed. */
6617 if (history[0].fixed_p)
6618 return FALSE;
6619
6620 /* If the previous previous insn was in a .set noreorder, we can't
6621 swap. Actually, the MIPS assembler will swap in this situation.
6622 However, gcc configured -with-gnu-as will generate code like
6623
6624 .set noreorder
6625 lw $4,XXX
6626 .set reorder
6627 INSN
6628 bne $4,$0,foo
6629
6630 in which we can not swap the bne and INSN. If gcc is not configured
6631 -with-gnu-as, it does not output the .set pseudo-ops. */
6632 if (history[1].noreorder_p)
6633 return FALSE;
6634
6635 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6636 This means that the previous instruction was a 4-byte one anyhow. */
6637 if (mips_opts.mips16 && history[0].fixp[0])
6638 return FALSE;
6639
6640 /* If the branch is itself the target of a branch, we can not swap.
6641 We cheat on this; all we check for is whether there is a label on
6642 this instruction. If there are any branches to anything other than
6643 a label, users must use .set noreorder. */
6644 if (seg_info (now_seg)->label_list)
6645 return FALSE;
6646
6647 /* If the previous instruction is in a variant frag other than this
6648 branch's one, we cannot do the swap. This does not apply to
6649 MIPS16 code, which uses variant frags for different purposes. */
6650 if (!mips_opts.mips16
6651 && history[0].frag
6652 && history[0].frag->fr_type == rs_machine_dependent)
6653 return FALSE;
6654
6655 /* We do not swap with instructions that cannot architecturally
6656 be placed in a branch delay slot, such as SYNC or ERET. We
6657 also refrain from swapping with a trap instruction, since it
6658 complicates trap handlers to have the trap instruction be in
6659 a delay slot. */
6660 prev_pinfo = history[0].insn_mo->pinfo;
6661 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6662 return FALSE;
6663
6664 /* Check for conflicts between the branch and the instructions
6665 before the candidate delay slot. */
6666 if (nops_for_insn (0, history + 1, ip) > 0)
6667 return FALSE;
6668
6669 /* Check for conflicts between the swapped sequence and the
6670 target of the branch. */
6671 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6672 return FALSE;
6673
6674 /* If the branch reads a register that the previous
6675 instruction sets, we can not swap. */
6676 gpr_read = gpr_read_mask (ip);
6677 prev_gpr_write = gpr_write_mask (&history[0]);
6678 if (gpr_read & prev_gpr_write)
6679 return FALSE;
6680
6681 fpr_read = fpr_read_mask (ip);
6682 prev_fpr_write = fpr_write_mask (&history[0]);
6683 if (fpr_read & prev_fpr_write)
6684 return FALSE;
6685
6686 /* If the branch writes a register that the previous
6687 instruction sets, we can not swap. */
6688 gpr_write = gpr_write_mask (ip);
6689 if (gpr_write & prev_gpr_write)
6690 return FALSE;
6691
6692 /* If the branch writes a register that the previous
6693 instruction reads, we can not swap. */
6694 prev_gpr_read = gpr_read_mask (&history[0]);
6695 if (gpr_write & prev_gpr_read)
6696 return FALSE;
6697
6698 /* If one instruction sets a condition code and the
6699 other one uses a condition code, we can not swap. */
6700 pinfo = ip->insn_mo->pinfo;
6701 if ((pinfo & INSN_READ_COND_CODE)
6702 && (prev_pinfo & INSN_WRITE_COND_CODE))
6703 return FALSE;
6704 if ((pinfo & INSN_WRITE_COND_CODE)
6705 && (prev_pinfo & INSN_READ_COND_CODE))
6706 return FALSE;
6707
6708 /* If the previous instruction uses the PC, we can not swap. */
6709 prev_pinfo2 = history[0].insn_mo->pinfo2;
6710 if (prev_pinfo2 & INSN2_READ_PC)
6711 return FALSE;
6712
6713 /* If the previous instruction has an incorrect size for a fixed
6714 branch delay slot in microMIPS mode, we cannot swap. */
6715 pinfo2 = ip->insn_mo->pinfo2;
6716 if (mips_opts.micromips
6717 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6718 && insn_length (history) != 2)
6719 return FALSE;
6720 if (mips_opts.micromips
6721 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6722 && insn_length (history) != 4)
6723 return FALSE;
6724
6725 /* On R5900 short loops need to be fixed by inserting a nop in
6726 the branch delay slots.
6727 A short loop can be terminated too early. */
6728 if (mips_opts.arch == CPU_R5900
6729 /* Check if instruction has a parameter, ignore "j $31". */
6730 && (address_expr != NULL)
6731 /* Parameter must be 16 bit. */
6732 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6733 /* Branch to same segment. */
6734 && (S_GET_SEGMENT(address_expr->X_add_symbol) == now_seg)
6735 /* Branch to same code fragment. */
6736 && (symbol_get_frag(address_expr->X_add_symbol) == frag_now)
6737 /* Can only calculate branch offset if value is known. */
6738 && symbol_constant_p(address_expr->X_add_symbol)
6739 /* Check if branch is really conditional. */
6740 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6741 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6742 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6743 {
6744 int distance;
6745 /* Check if loop is shorter than 6 instructions including
6746 branch and delay slot. */
6747 distance = frag_now_fix() - S_GET_VALUE(address_expr->X_add_symbol);
6748 if (distance <= 20)
6749 {
6750 int i;
6751 int rv;
6752
6753 rv = FALSE;
6754 /* When the loop includes branches or jumps,
6755 it is not a short loop. */
6756 for (i = 0; i < (distance / 4); i++)
6757 {
6758 if ((history[i].cleared_p)
6759 || delayed_branch_p(&history[i]))
6760 {
6761 rv = TRUE;
6762 break;
6763 }
6764 }
6765 if (rv == FALSE)
6766 {
6767 /* Insert nop after branch to fix short loop. */
6768 return FALSE;
6769 }
6770 }
6771 }
6772
6773 return TRUE;
6774 }
6775
6776 /* Decide how we should add IP to the instruction stream.
6777 ADDRESS_EXPR is an operand of the instruction to be used with
6778 RELOC_TYPE. */
6779
6780 static enum append_method
6781 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6782 bfd_reloc_code_real_type *reloc_type)
6783 {
6784 /* The relaxed version of a macro sequence must be inherently
6785 hazard-free. */
6786 if (mips_relax.sequence == 2)
6787 return APPEND_ADD;
6788
6789 /* We must not dabble with instructions in a ".set norerorder" block. */
6790 if (mips_opts.noreorder)
6791 return APPEND_ADD;
6792
6793 /* Otherwise, it's our responsibility to fill branch delay slots. */
6794 if (delayed_branch_p (ip))
6795 {
6796 if (!branch_likely_p (ip)
6797 && can_swap_branch_p (ip, address_expr, reloc_type))
6798 return APPEND_SWAP;
6799
6800 if (mips_opts.mips16
6801 && ISA_SUPPORTS_MIPS16E
6802 && gpr_read_mask (ip) != 0)
6803 return APPEND_ADD_COMPACT;
6804
6805 return APPEND_ADD_WITH_NOP;
6806 }
6807
6808 return APPEND_ADD;
6809 }
6810
6811 /* IP is a MIPS16 instruction whose opcode we have just changed.
6812 Point IP->insn_mo to the new opcode's definition. */
6813
6814 static void
6815 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6816 {
6817 const struct mips_opcode *mo, *end;
6818
6819 end = &mips16_opcodes[bfd_mips16_num_opcodes];
6820 for (mo = ip->insn_mo; mo < end; mo++)
6821 if ((ip->insn_opcode & mo->mask) == mo->match)
6822 {
6823 ip->insn_mo = mo;
6824 return;
6825 }
6826 abort ();
6827 }
6828
6829 /* For microMIPS macros, we need to generate a local number label
6830 as the target of branches. */
6831 #define MICROMIPS_LABEL_CHAR '\037'
6832 static unsigned long micromips_target_label;
6833 static char micromips_target_name[32];
6834
6835 static char *
6836 micromips_label_name (void)
6837 {
6838 char *p = micromips_target_name;
6839 char symbol_name_temporary[24];
6840 unsigned long l;
6841 int i;
6842
6843 if (*p)
6844 return p;
6845
6846 i = 0;
6847 l = micromips_target_label;
6848 #ifdef LOCAL_LABEL_PREFIX
6849 *p++ = LOCAL_LABEL_PREFIX;
6850 #endif
6851 *p++ = 'L';
6852 *p++ = MICROMIPS_LABEL_CHAR;
6853 do
6854 {
6855 symbol_name_temporary[i++] = l % 10 + '0';
6856 l /= 10;
6857 }
6858 while (l != 0);
6859 while (i > 0)
6860 *p++ = symbol_name_temporary[--i];
6861 *p = '\0';
6862
6863 return micromips_target_name;
6864 }
6865
6866 static void
6867 micromips_label_expr (expressionS *label_expr)
6868 {
6869 label_expr->X_op = O_symbol;
6870 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6871 label_expr->X_add_number = 0;
6872 }
6873
6874 static void
6875 micromips_label_inc (void)
6876 {
6877 micromips_target_label++;
6878 *micromips_target_name = '\0';
6879 }
6880
6881 static void
6882 micromips_add_label (void)
6883 {
6884 symbolS *s;
6885
6886 s = colon (micromips_label_name ());
6887 micromips_label_inc ();
6888 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6889 }
6890
6891 /* If assembling microMIPS code, then return the microMIPS reloc
6892 corresponding to the requested one if any. Otherwise return
6893 the reloc unchanged. */
6894
6895 static bfd_reloc_code_real_type
6896 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6897 {
6898 static const bfd_reloc_code_real_type relocs[][2] =
6899 {
6900 /* Keep sorted incrementally by the left-hand key. */
6901 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
6902 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
6903 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
6904 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
6905 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
6906 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
6907 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
6908 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
6909 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
6910 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
6911 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
6912 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
6913 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
6914 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
6915 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
6916 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
6917 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
6918 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
6919 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
6920 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
6921 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
6922 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
6923 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
6924 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
6925 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
6926 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
6927 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
6928 };
6929 bfd_reloc_code_real_type r;
6930 size_t i;
6931
6932 if (!mips_opts.micromips)
6933 return reloc;
6934 for (i = 0; i < ARRAY_SIZE (relocs); i++)
6935 {
6936 r = relocs[i][0];
6937 if (r > reloc)
6938 return reloc;
6939 if (r == reloc)
6940 return relocs[i][1];
6941 }
6942 return reloc;
6943 }
6944
6945 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
6946 Return true on success, storing the resolved value in RESULT. */
6947
6948 static bfd_boolean
6949 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
6950 offsetT *result)
6951 {
6952 switch (reloc)
6953 {
6954 case BFD_RELOC_MIPS_HIGHEST:
6955 case BFD_RELOC_MICROMIPS_HIGHEST:
6956 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
6957 return TRUE;
6958
6959 case BFD_RELOC_MIPS_HIGHER:
6960 case BFD_RELOC_MICROMIPS_HIGHER:
6961 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
6962 return TRUE;
6963
6964 case BFD_RELOC_HI16_S:
6965 case BFD_RELOC_MICROMIPS_HI16_S:
6966 case BFD_RELOC_MIPS16_HI16_S:
6967 *result = ((operand + 0x8000) >> 16) & 0xffff;
6968 return TRUE;
6969
6970 case BFD_RELOC_HI16:
6971 case BFD_RELOC_MICROMIPS_HI16:
6972 case BFD_RELOC_MIPS16_HI16:
6973 *result = (operand >> 16) & 0xffff;
6974 return TRUE;
6975
6976 case BFD_RELOC_LO16:
6977 case BFD_RELOC_MICROMIPS_LO16:
6978 case BFD_RELOC_MIPS16_LO16:
6979 *result = operand & 0xffff;
6980 return TRUE;
6981
6982 case BFD_RELOC_UNUSED:
6983 *result = operand;
6984 return TRUE;
6985
6986 default:
6987 return FALSE;
6988 }
6989 }
6990
6991 /* Output an instruction. IP is the instruction information.
6992 ADDRESS_EXPR is an operand of the instruction to be used with
6993 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
6994 a macro expansion. */
6995
6996 static void
6997 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
6998 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
6999 {
7000 unsigned long prev_pinfo2, pinfo;
7001 bfd_boolean relaxed_branch = FALSE;
7002 enum append_method method;
7003 bfd_boolean relax32;
7004 int branch_disp;
7005
7006 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7007 fix_loongson2f (ip);
7008
7009 file_ase_mips16 |= mips_opts.mips16;
7010 file_ase_micromips |= mips_opts.micromips;
7011
7012 prev_pinfo2 = history[0].insn_mo->pinfo2;
7013 pinfo = ip->insn_mo->pinfo;
7014
7015 if (mips_opts.micromips
7016 && !expansionp
7017 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7018 && micromips_insn_length (ip->insn_mo) != 2)
7019 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7020 && micromips_insn_length (ip->insn_mo) != 4)))
7021 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7022 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7023
7024 if (address_expr == NULL)
7025 ip->complete_p = 1;
7026 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7027 && reloc_type[1] == BFD_RELOC_UNUSED
7028 && reloc_type[2] == BFD_RELOC_UNUSED
7029 && address_expr->X_op == O_constant)
7030 {
7031 switch (*reloc_type)
7032 {
7033 case BFD_RELOC_MIPS_JMP:
7034 {
7035 int shift;
7036
7037 shift = mips_opts.micromips ? 1 : 2;
7038 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7039 as_bad (_("jump to misaligned address (0x%lx)"),
7040 (unsigned long) address_expr->X_add_number);
7041 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7042 & 0x3ffffff);
7043 ip->complete_p = 1;
7044 }
7045 break;
7046
7047 case BFD_RELOC_MIPS16_JMP:
7048 if ((address_expr->X_add_number & 3) != 0)
7049 as_bad (_("jump to misaligned address (0x%lx)"),
7050 (unsigned long) address_expr->X_add_number);
7051 ip->insn_opcode |=
7052 (((address_expr->X_add_number & 0x7c0000) << 3)
7053 | ((address_expr->X_add_number & 0xf800000) >> 7)
7054 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7055 ip->complete_p = 1;
7056 break;
7057
7058 case BFD_RELOC_16_PCREL_S2:
7059 {
7060 int shift;
7061
7062 shift = mips_opts.micromips ? 1 : 2;
7063 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7064 as_bad (_("branch to misaligned address (0x%lx)"),
7065 (unsigned long) address_expr->X_add_number);
7066 if (!mips_relax_branch)
7067 {
7068 if ((address_expr->X_add_number + (1 << (shift + 15)))
7069 & ~((1 << (shift + 16)) - 1))
7070 as_bad (_("branch address range overflow (0x%lx)"),
7071 (unsigned long) address_expr->X_add_number);
7072 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7073 & 0xffff);
7074 }
7075 }
7076 break;
7077
7078 case BFD_RELOC_MIPS_21_PCREL_S2:
7079 {
7080 int shift;
7081
7082 shift = 2;
7083 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7084 as_bad (_("branch to misaligned address (0x%lx)"),
7085 (unsigned long) address_expr->X_add_number);
7086 if ((address_expr->X_add_number + (1 << (shift + 20)))
7087 & ~((1 << (shift + 21)) - 1))
7088 as_bad (_("branch address range overflow (0x%lx)"),
7089 (unsigned long) address_expr->X_add_number);
7090 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7091 & 0x1fffff);
7092 }
7093 break;
7094
7095 case BFD_RELOC_MIPS_26_PCREL_S2:
7096 {
7097 int shift;
7098
7099 shift = 2;
7100 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7101 as_bad (_("branch to misaligned address (0x%lx)"),
7102 (unsigned long) address_expr->X_add_number);
7103 if ((address_expr->X_add_number + (1 << (shift + 25)))
7104 & ~((1 << (shift + 26)) - 1))
7105 as_bad (_("branch address range overflow (0x%lx)"),
7106 (unsigned long) address_expr->X_add_number);
7107 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7108 & 0x3ffffff);
7109 }
7110 break;
7111
7112 default:
7113 {
7114 offsetT value;
7115
7116 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7117 &value))
7118 {
7119 ip->insn_opcode |= value & 0xffff;
7120 ip->complete_p = 1;
7121 }
7122 }
7123 break;
7124 }
7125 }
7126
7127 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7128 {
7129 /* There are a lot of optimizations we could do that we don't.
7130 In particular, we do not, in general, reorder instructions.
7131 If you use gcc with optimization, it will reorder
7132 instructions and generally do much more optimization then we
7133 do here; repeating all that work in the assembler would only
7134 benefit hand written assembly code, and does not seem worth
7135 it. */
7136 int nops = (mips_optimize == 0
7137 ? nops_for_insn (0, history, NULL)
7138 : nops_for_insn_or_target (0, history, ip));
7139 if (nops > 0)
7140 {
7141 fragS *old_frag;
7142 unsigned long old_frag_offset;
7143 int i;
7144
7145 old_frag = frag_now;
7146 old_frag_offset = frag_now_fix ();
7147
7148 for (i = 0; i < nops; i++)
7149 add_fixed_insn (NOP_INSN);
7150 insert_into_history (0, nops, NOP_INSN);
7151
7152 if (listing)
7153 {
7154 listing_prev_line ();
7155 /* We may be at the start of a variant frag. In case we
7156 are, make sure there is enough space for the frag
7157 after the frags created by listing_prev_line. The
7158 argument to frag_grow here must be at least as large
7159 as the argument to all other calls to frag_grow in
7160 this file. We don't have to worry about being in the
7161 middle of a variant frag, because the variants insert
7162 all needed nop instructions themselves. */
7163 frag_grow (40);
7164 }
7165
7166 mips_move_text_labels ();
7167
7168 #ifndef NO_ECOFF_DEBUGGING
7169 if (ECOFF_DEBUGGING)
7170 ecoff_fix_loc (old_frag, old_frag_offset);
7171 #endif
7172 }
7173 }
7174 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7175 {
7176 int nops;
7177
7178 /* Work out how many nops in prev_nop_frag are needed by IP,
7179 ignoring hazards generated by the first prev_nop_frag_since
7180 instructions. */
7181 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7182 gas_assert (nops <= prev_nop_frag_holds);
7183
7184 /* Enforce NOPS as a minimum. */
7185 if (nops > prev_nop_frag_required)
7186 prev_nop_frag_required = nops;
7187
7188 if (prev_nop_frag_holds == prev_nop_frag_required)
7189 {
7190 /* Settle for the current number of nops. Update the history
7191 accordingly (for the benefit of any future .set reorder code). */
7192 prev_nop_frag = NULL;
7193 insert_into_history (prev_nop_frag_since,
7194 prev_nop_frag_holds, NOP_INSN);
7195 }
7196 else
7197 {
7198 /* Allow this instruction to replace one of the nops that was
7199 tentatively added to prev_nop_frag. */
7200 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7201 prev_nop_frag_holds--;
7202 prev_nop_frag_since++;
7203 }
7204 }
7205
7206 method = get_append_method (ip, address_expr, reloc_type);
7207 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7208
7209 dwarf2_emit_insn (0);
7210 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7211 so "move" the instruction address accordingly.
7212
7213 Also, it doesn't seem appropriate for the assembler to reorder .loc
7214 entries. If this instruction is a branch that we are going to swap
7215 with the previous instruction, the two instructions should be
7216 treated as a unit, and the debug information for both instructions
7217 should refer to the start of the branch sequence. Using the
7218 current position is certainly wrong when swapping a 32-bit branch
7219 and a 16-bit delay slot, since the current position would then be
7220 in the middle of a branch. */
7221 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7222
7223 relax32 = (mips_relax_branch
7224 /* Don't try branch relaxation within .set nomacro, or within
7225 .set noat if we use $at for PIC computations. If it turns
7226 out that the branch was out-of-range, we'll get an error. */
7227 && !mips_opts.warn_about_macros
7228 && (mips_opts.at || mips_pic == NO_PIC)
7229 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7230 as they have no complementing branches. */
7231 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7232
7233 if (!HAVE_CODE_COMPRESSION
7234 && address_expr
7235 && relax32
7236 && *reloc_type == BFD_RELOC_16_PCREL_S2
7237 && delayed_branch_p (ip))
7238 {
7239 relaxed_branch = TRUE;
7240 add_relaxed_insn (ip, (relaxed_branch_length
7241 (NULL, NULL,
7242 uncond_branch_p (ip) ? -1
7243 : branch_likely_p (ip) ? 1
7244 : 0)), 4,
7245 RELAX_BRANCH_ENCODE
7246 (AT,
7247 uncond_branch_p (ip),
7248 branch_likely_p (ip),
7249 pinfo & INSN_WRITE_GPR_31,
7250 0),
7251 address_expr->X_add_symbol,
7252 address_expr->X_add_number);
7253 *reloc_type = BFD_RELOC_UNUSED;
7254 }
7255 else if (mips_opts.micromips
7256 && address_expr
7257 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7258 || *reloc_type > BFD_RELOC_UNUSED)
7259 && (delayed_branch_p (ip) || compact_branch_p (ip))
7260 /* Don't try branch relaxation when users specify
7261 16-bit/32-bit instructions. */
7262 && !forced_insn_length)
7263 {
7264 bfd_boolean relax16 = *reloc_type > BFD_RELOC_UNUSED;
7265 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7266 int uncond = uncond_branch_p (ip) ? -1 : 0;
7267 int compact = compact_branch_p (ip);
7268 int al = pinfo & INSN_WRITE_GPR_31;
7269 int length32;
7270
7271 gas_assert (address_expr != NULL);
7272 gas_assert (!mips_relax.sequence);
7273
7274 relaxed_branch = TRUE;
7275 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7276 add_relaxed_insn (ip, relax32 ? length32 : 4, relax16 ? 2 : 4,
7277 RELAX_MICROMIPS_ENCODE (type, AT, uncond, compact, al,
7278 relax32, 0, 0),
7279 address_expr->X_add_symbol,
7280 address_expr->X_add_number);
7281 *reloc_type = BFD_RELOC_UNUSED;
7282 }
7283 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7284 {
7285 /* We need to set up a variant frag. */
7286 gas_assert (address_expr != NULL);
7287 add_relaxed_insn (ip, 4, 0,
7288 RELAX_MIPS16_ENCODE
7289 (*reloc_type - BFD_RELOC_UNUSED,
7290 forced_insn_length == 2, forced_insn_length == 4,
7291 delayed_branch_p (&history[0]),
7292 history[0].mips16_absolute_jump_p),
7293 make_expr_symbol (address_expr), 0);
7294 }
7295 else if (mips_opts.mips16 && insn_length (ip) == 2)
7296 {
7297 if (!delayed_branch_p (ip))
7298 /* Make sure there is enough room to swap this instruction with
7299 a following jump instruction. */
7300 frag_grow (6);
7301 add_fixed_insn (ip);
7302 }
7303 else
7304 {
7305 if (mips_opts.mips16
7306 && mips_opts.noreorder
7307 && delayed_branch_p (&history[0]))
7308 as_warn (_("extended instruction in delay slot"));
7309
7310 if (mips_relax.sequence)
7311 {
7312 /* If we've reached the end of this frag, turn it into a variant
7313 frag and record the information for the instructions we've
7314 written so far. */
7315 if (frag_room () < 4)
7316 relax_close_frag ();
7317 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7318 }
7319
7320 if (mips_relax.sequence != 2)
7321 {
7322 if (mips_macro_warning.first_insn_sizes[0] == 0)
7323 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7324 mips_macro_warning.sizes[0] += insn_length (ip);
7325 mips_macro_warning.insns[0]++;
7326 }
7327 if (mips_relax.sequence != 1)
7328 {
7329 if (mips_macro_warning.first_insn_sizes[1] == 0)
7330 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7331 mips_macro_warning.sizes[1] += insn_length (ip);
7332 mips_macro_warning.insns[1]++;
7333 }
7334
7335 if (mips_opts.mips16)
7336 {
7337 ip->fixed_p = 1;
7338 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7339 }
7340 add_fixed_insn (ip);
7341 }
7342
7343 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7344 {
7345 bfd_reloc_code_real_type final_type[3];
7346 reloc_howto_type *howto0;
7347 reloc_howto_type *howto;
7348 int i;
7349
7350 /* Perform any necessary conversion to microMIPS relocations
7351 and find out how many relocations there actually are. */
7352 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7353 final_type[i] = micromips_map_reloc (reloc_type[i]);
7354
7355 /* In a compound relocation, it is the final (outermost)
7356 operator that determines the relocated field. */
7357 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7358 if (!howto)
7359 abort ();
7360
7361 if (i > 1)
7362 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7363 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7364 bfd_get_reloc_size (howto),
7365 address_expr,
7366 howto0 && howto0->pc_relative,
7367 final_type[0]);
7368
7369 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7370 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7371 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7372
7373 /* These relocations can have an addend that won't fit in
7374 4 octets for 64bit assembly. */
7375 if (GPR_SIZE == 64
7376 && ! howto->partial_inplace
7377 && (reloc_type[0] == BFD_RELOC_16
7378 || reloc_type[0] == BFD_RELOC_32
7379 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7380 || reloc_type[0] == BFD_RELOC_GPREL16
7381 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7382 || reloc_type[0] == BFD_RELOC_GPREL32
7383 || reloc_type[0] == BFD_RELOC_64
7384 || reloc_type[0] == BFD_RELOC_CTOR
7385 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7386 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7387 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7388 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7389 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7390 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7391 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7392 || hi16_reloc_p (reloc_type[0])
7393 || lo16_reloc_p (reloc_type[0])))
7394 ip->fixp[0]->fx_no_overflow = 1;
7395
7396 /* These relocations can have an addend that won't fit in 2 octets. */
7397 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7398 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7399 ip->fixp[0]->fx_no_overflow = 1;
7400
7401 if (mips_relax.sequence)
7402 {
7403 if (mips_relax.first_fixup == 0)
7404 mips_relax.first_fixup = ip->fixp[0];
7405 }
7406 else if (reloc_needs_lo_p (*reloc_type))
7407 {
7408 struct mips_hi_fixup *hi_fixup;
7409
7410 /* Reuse the last entry if it already has a matching %lo. */
7411 hi_fixup = mips_hi_fixup_list;
7412 if (hi_fixup == 0
7413 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7414 {
7415 hi_fixup = ((struct mips_hi_fixup *)
7416 xmalloc (sizeof (struct mips_hi_fixup)));
7417 hi_fixup->next = mips_hi_fixup_list;
7418 mips_hi_fixup_list = hi_fixup;
7419 }
7420 hi_fixup->fixp = ip->fixp[0];
7421 hi_fixup->seg = now_seg;
7422 }
7423
7424 /* Add fixups for the second and third relocations, if given.
7425 Note that the ABI allows the second relocation to be
7426 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7427 moment we only use RSS_UNDEF, but we could add support
7428 for the others if it ever becomes necessary. */
7429 for (i = 1; i < 3; i++)
7430 if (reloc_type[i] != BFD_RELOC_UNUSED)
7431 {
7432 ip->fixp[i] = fix_new (ip->frag, ip->where,
7433 ip->fixp[0]->fx_size, NULL, 0,
7434 FALSE, final_type[i]);
7435
7436 /* Use fx_tcbit to mark compound relocs. */
7437 ip->fixp[0]->fx_tcbit = 1;
7438 ip->fixp[i]->fx_tcbit = 1;
7439 }
7440 }
7441 install_insn (ip);
7442
7443 /* Update the register mask information. */
7444 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7445 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7446
7447 switch (method)
7448 {
7449 case APPEND_ADD:
7450 insert_into_history (0, 1, ip);
7451 break;
7452
7453 case APPEND_ADD_WITH_NOP:
7454 {
7455 struct mips_cl_insn *nop;
7456
7457 insert_into_history (0, 1, ip);
7458 nop = get_delay_slot_nop (ip);
7459 add_fixed_insn (nop);
7460 insert_into_history (0, 1, nop);
7461 if (mips_relax.sequence)
7462 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7463 }
7464 break;
7465
7466 case APPEND_ADD_COMPACT:
7467 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7468 gas_assert (mips_opts.mips16);
7469 ip->insn_opcode |= 0x0080;
7470 find_altered_mips16_opcode (ip);
7471 install_insn (ip);
7472 insert_into_history (0, 1, ip);
7473 break;
7474
7475 case APPEND_SWAP:
7476 {
7477 struct mips_cl_insn delay = history[0];
7478 if (mips_opts.mips16)
7479 {
7480 know (delay.frag == ip->frag);
7481 move_insn (ip, delay.frag, delay.where);
7482 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7483 }
7484 else if (relaxed_branch || delay.frag != ip->frag)
7485 {
7486 /* Add the delay slot instruction to the end of the
7487 current frag and shrink the fixed part of the
7488 original frag. If the branch occupies the tail of
7489 the latter, move it backwards to cover the gap. */
7490 delay.frag->fr_fix -= branch_disp;
7491 if (delay.frag == ip->frag)
7492 move_insn (ip, ip->frag, ip->where - branch_disp);
7493 add_fixed_insn (&delay);
7494 }
7495 else
7496 {
7497 move_insn (&delay, ip->frag,
7498 ip->where - branch_disp + insn_length (ip));
7499 move_insn (ip, history[0].frag, history[0].where);
7500 }
7501 history[0] = *ip;
7502 delay.fixed_p = 1;
7503 insert_into_history (0, 1, &delay);
7504 }
7505 break;
7506 }
7507
7508 /* If we have just completed an unconditional branch, clear the history. */
7509 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7510 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7511 {
7512 unsigned int i;
7513
7514 mips_no_prev_insn ();
7515
7516 for (i = 0; i < ARRAY_SIZE (history); i++)
7517 history[i].cleared_p = 1;
7518 }
7519
7520 /* We need to emit a label at the end of branch-likely macros. */
7521 if (emit_branch_likely_macro)
7522 {
7523 emit_branch_likely_macro = FALSE;
7524 micromips_add_label ();
7525 }
7526
7527 /* We just output an insn, so the next one doesn't have a label. */
7528 mips_clear_insn_labels ();
7529 }
7530
7531 /* Forget that there was any previous instruction or label.
7532 When BRANCH is true, the branch history is also flushed. */
7533
7534 static void
7535 mips_no_prev_insn (void)
7536 {
7537 prev_nop_frag = NULL;
7538 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7539 mips_clear_insn_labels ();
7540 }
7541
7542 /* This function must be called before we emit something other than
7543 instructions. It is like mips_no_prev_insn except that it inserts
7544 any NOPS that might be needed by previous instructions. */
7545
7546 void
7547 mips_emit_delays (void)
7548 {
7549 if (! mips_opts.noreorder)
7550 {
7551 int nops = nops_for_insn (0, history, NULL);
7552 if (nops > 0)
7553 {
7554 while (nops-- > 0)
7555 add_fixed_insn (NOP_INSN);
7556 mips_move_text_labels ();
7557 }
7558 }
7559 mips_no_prev_insn ();
7560 }
7561
7562 /* Start a (possibly nested) noreorder block. */
7563
7564 static void
7565 start_noreorder (void)
7566 {
7567 if (mips_opts.noreorder == 0)
7568 {
7569 unsigned int i;
7570 int nops;
7571
7572 /* None of the instructions before the .set noreorder can be moved. */
7573 for (i = 0; i < ARRAY_SIZE (history); i++)
7574 history[i].fixed_p = 1;
7575
7576 /* Insert any nops that might be needed between the .set noreorder
7577 block and the previous instructions. We will later remove any
7578 nops that turn out not to be needed. */
7579 nops = nops_for_insn (0, history, NULL);
7580 if (nops > 0)
7581 {
7582 if (mips_optimize != 0)
7583 {
7584 /* Record the frag which holds the nop instructions, so
7585 that we can remove them if we don't need them. */
7586 frag_grow (nops * NOP_INSN_SIZE);
7587 prev_nop_frag = frag_now;
7588 prev_nop_frag_holds = nops;
7589 prev_nop_frag_required = 0;
7590 prev_nop_frag_since = 0;
7591 }
7592
7593 for (; nops > 0; --nops)
7594 add_fixed_insn (NOP_INSN);
7595
7596 /* Move on to a new frag, so that it is safe to simply
7597 decrease the size of prev_nop_frag. */
7598 frag_wane (frag_now);
7599 frag_new (0);
7600 mips_move_text_labels ();
7601 }
7602 mips_mark_labels ();
7603 mips_clear_insn_labels ();
7604 }
7605 mips_opts.noreorder++;
7606 mips_any_noreorder = 1;
7607 }
7608
7609 /* End a nested noreorder block. */
7610
7611 static void
7612 end_noreorder (void)
7613 {
7614 mips_opts.noreorder--;
7615 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7616 {
7617 /* Commit to inserting prev_nop_frag_required nops and go back to
7618 handling nop insertion the .set reorder way. */
7619 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7620 * NOP_INSN_SIZE);
7621 insert_into_history (prev_nop_frag_since,
7622 prev_nop_frag_required, NOP_INSN);
7623 prev_nop_frag = NULL;
7624 }
7625 }
7626
7627 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7628 higher bits unset. */
7629
7630 static void
7631 normalize_constant_expr (expressionS *ex)
7632 {
7633 if (ex->X_op == O_constant
7634 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7635 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7636 - 0x80000000);
7637 }
7638
7639 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7640 all higher bits unset. */
7641
7642 static void
7643 normalize_address_expr (expressionS *ex)
7644 {
7645 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7646 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7647 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7648 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7649 - 0x80000000);
7650 }
7651
7652 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7653 Return true if the match was successful.
7654
7655 OPCODE_EXTRA is a value that should be ORed into the opcode
7656 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7657 there are more alternatives after OPCODE and SOFT_MATCH is
7658 as for mips_arg_info. */
7659
7660 static bfd_boolean
7661 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7662 struct mips_operand_token *tokens, unsigned int opcode_extra,
7663 bfd_boolean lax_match, bfd_boolean complete_p)
7664 {
7665 const char *args;
7666 struct mips_arg_info arg;
7667 const struct mips_operand *operand;
7668 char c;
7669
7670 imm_expr.X_op = O_absent;
7671 offset_expr.X_op = O_absent;
7672 offset_reloc[0] = BFD_RELOC_UNUSED;
7673 offset_reloc[1] = BFD_RELOC_UNUSED;
7674 offset_reloc[2] = BFD_RELOC_UNUSED;
7675
7676 create_insn (insn, opcode);
7677 /* When no opcode suffix is specified, assume ".xyzw". */
7678 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7679 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7680 else
7681 insn->insn_opcode |= opcode_extra;
7682 memset (&arg, 0, sizeof (arg));
7683 arg.insn = insn;
7684 arg.token = tokens;
7685 arg.argnum = 1;
7686 arg.last_regno = ILLEGAL_REG;
7687 arg.dest_regno = ILLEGAL_REG;
7688 arg.lax_match = lax_match;
7689 for (args = opcode->args;; ++args)
7690 {
7691 if (arg.token->type == OT_END)
7692 {
7693 /* Handle unary instructions in which only one operand is given.
7694 The source is then the same as the destination. */
7695 if (arg.opnum == 1 && *args == ',')
7696 {
7697 operand = (mips_opts.micromips
7698 ? decode_micromips_operand (args + 1)
7699 : decode_mips_operand (args + 1));
7700 if (operand && mips_optional_operand_p (operand))
7701 {
7702 arg.token = tokens;
7703 arg.argnum = 1;
7704 continue;
7705 }
7706 }
7707
7708 /* Treat elided base registers as $0. */
7709 if (strcmp (args, "(b)") == 0)
7710 args += 3;
7711
7712 if (args[0] == '+')
7713 switch (args[1])
7714 {
7715 case 'K':
7716 case 'N':
7717 /* The register suffix is optional. */
7718 args += 2;
7719 break;
7720 }
7721
7722 /* Fail the match if there were too few operands. */
7723 if (*args)
7724 return FALSE;
7725
7726 /* Successful match. */
7727 if (!complete_p)
7728 return TRUE;
7729 clear_insn_error ();
7730 if (arg.dest_regno == arg.last_regno
7731 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7732 {
7733 if (arg.opnum == 2)
7734 set_insn_error
7735 (0, _("source and destination must be different"));
7736 else if (arg.last_regno == 31)
7737 set_insn_error
7738 (0, _("a destination register must be supplied"));
7739 }
7740 else if (arg.last_regno == 31
7741 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7742 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7743 set_insn_error (0, _("the source register must not be $31"));
7744 check_completed_insn (&arg);
7745 return TRUE;
7746 }
7747
7748 /* Fail the match if the line has too many operands. */
7749 if (*args == 0)
7750 return FALSE;
7751
7752 /* Handle characters that need to match exactly. */
7753 if (*args == '(' || *args == ')' || *args == ',')
7754 {
7755 if (match_char (&arg, *args))
7756 continue;
7757 return FALSE;
7758 }
7759 if (*args == '#')
7760 {
7761 ++args;
7762 if (arg.token->type == OT_DOUBLE_CHAR
7763 && arg.token->u.ch == *args)
7764 {
7765 ++arg.token;
7766 continue;
7767 }
7768 return FALSE;
7769 }
7770
7771 /* Handle special macro operands. Work out the properties of
7772 other operands. */
7773 arg.opnum += 1;
7774 switch (*args)
7775 {
7776 case '-':
7777 switch (args[1])
7778 {
7779 case 'A':
7780 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7781 break;
7782
7783 case 'B':
7784 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7785 break;
7786 }
7787 break;
7788
7789 case '+':
7790 switch (args[1])
7791 {
7792 case 'i':
7793 *offset_reloc = BFD_RELOC_MIPS_JMP;
7794 break;
7795
7796 case '\'':
7797 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7798 break;
7799
7800 case '\"':
7801 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7802 break;
7803 }
7804 break;
7805
7806 case 'I':
7807 if (!match_const_int (&arg, &imm_expr.X_add_number))
7808 return FALSE;
7809 imm_expr.X_op = O_constant;
7810 if (GPR_SIZE == 32)
7811 normalize_constant_expr (&imm_expr);
7812 continue;
7813
7814 case 'A':
7815 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
7816 {
7817 /* Assume that the offset has been elided and that what
7818 we saw was a base register. The match will fail later
7819 if that assumption turns out to be wrong. */
7820 offset_expr.X_op = O_constant;
7821 offset_expr.X_add_number = 0;
7822 }
7823 else
7824 {
7825 if (!match_expression (&arg, &offset_expr, offset_reloc))
7826 return FALSE;
7827 normalize_address_expr (&offset_expr);
7828 }
7829 continue;
7830
7831 case 'F':
7832 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7833 8, TRUE))
7834 return FALSE;
7835 continue;
7836
7837 case 'L':
7838 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7839 8, FALSE))
7840 return FALSE;
7841 continue;
7842
7843 case 'f':
7844 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7845 4, TRUE))
7846 return FALSE;
7847 continue;
7848
7849 case 'l':
7850 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
7851 4, FALSE))
7852 return FALSE;
7853 continue;
7854
7855 case 'p':
7856 *offset_reloc = BFD_RELOC_16_PCREL_S2;
7857 break;
7858
7859 case 'a':
7860 *offset_reloc = BFD_RELOC_MIPS_JMP;
7861 break;
7862
7863 case 'm':
7864 gas_assert (mips_opts.micromips);
7865 c = args[1];
7866 switch (c)
7867 {
7868 case 'D':
7869 case 'E':
7870 if (!forced_insn_length)
7871 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
7872 else if (c == 'D')
7873 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
7874 else
7875 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
7876 break;
7877 }
7878 break;
7879 }
7880
7881 operand = (mips_opts.micromips
7882 ? decode_micromips_operand (args)
7883 : decode_mips_operand (args));
7884 if (!operand)
7885 abort ();
7886
7887 /* Skip prefixes. */
7888 if (*args == '+' || *args == 'm' || *args == '-')
7889 args++;
7890
7891 if (mips_optional_operand_p (operand)
7892 && args[1] == ','
7893 && (arg.token[0].type != OT_REG
7894 || arg.token[1].type == OT_END))
7895 {
7896 /* Assume that the register has been elided and is the
7897 same as the first operand. */
7898 arg.token = tokens;
7899 arg.argnum = 1;
7900 }
7901
7902 if (!match_operand (&arg, operand))
7903 return FALSE;
7904 }
7905 }
7906
7907 /* Like match_insn, but for MIPS16. */
7908
7909 static bfd_boolean
7910 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7911 struct mips_operand_token *tokens)
7912 {
7913 const char *args;
7914 const struct mips_operand *operand;
7915 const struct mips_operand *ext_operand;
7916 struct mips_arg_info arg;
7917 int relax_char;
7918
7919 create_insn (insn, opcode);
7920 imm_expr.X_op = O_absent;
7921 offset_expr.X_op = O_absent;
7922 offset_reloc[0] = BFD_RELOC_UNUSED;
7923 offset_reloc[1] = BFD_RELOC_UNUSED;
7924 offset_reloc[2] = BFD_RELOC_UNUSED;
7925 relax_char = 0;
7926
7927 memset (&arg, 0, sizeof (arg));
7928 arg.insn = insn;
7929 arg.token = tokens;
7930 arg.argnum = 1;
7931 arg.last_regno = ILLEGAL_REG;
7932 arg.dest_regno = ILLEGAL_REG;
7933 relax_char = 0;
7934 for (args = opcode->args;; ++args)
7935 {
7936 int c;
7937
7938 if (arg.token->type == OT_END)
7939 {
7940 offsetT value;
7941
7942 /* Handle unary instructions in which only one operand is given.
7943 The source is then the same as the destination. */
7944 if (arg.opnum == 1 && *args == ',')
7945 {
7946 operand = decode_mips16_operand (args[1], FALSE);
7947 if (operand && mips_optional_operand_p (operand))
7948 {
7949 arg.token = tokens;
7950 arg.argnum = 1;
7951 continue;
7952 }
7953 }
7954
7955 /* Fail the match if there were too few operands. */
7956 if (*args)
7957 return FALSE;
7958
7959 /* Successful match. Stuff the immediate value in now, if
7960 we can. */
7961 clear_insn_error ();
7962 if (opcode->pinfo == INSN_MACRO)
7963 {
7964 gas_assert (relax_char == 0 || relax_char == 'p');
7965 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
7966 }
7967 else if (relax_char
7968 && offset_expr.X_op == O_constant
7969 && calculate_reloc (*offset_reloc,
7970 offset_expr.X_add_number,
7971 &value))
7972 {
7973 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
7974 forced_insn_length, &insn->insn_opcode);
7975 offset_expr.X_op = O_absent;
7976 *offset_reloc = BFD_RELOC_UNUSED;
7977 }
7978 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
7979 {
7980 if (forced_insn_length == 2)
7981 set_insn_error (0, _("invalid unextended operand value"));
7982 forced_insn_length = 4;
7983 insn->insn_opcode |= MIPS16_EXTEND;
7984 }
7985 else if (relax_char)
7986 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
7987
7988 check_completed_insn (&arg);
7989 return TRUE;
7990 }
7991
7992 /* Fail the match if the line has too many operands. */
7993 if (*args == 0)
7994 return FALSE;
7995
7996 /* Handle characters that need to match exactly. */
7997 if (*args == '(' || *args == ')' || *args == ',')
7998 {
7999 if (match_char (&arg, *args))
8000 continue;
8001 return FALSE;
8002 }
8003
8004 arg.opnum += 1;
8005 c = *args;
8006 switch (c)
8007 {
8008 case 'p':
8009 case 'q':
8010 case 'A':
8011 case 'B':
8012 case 'E':
8013 relax_char = c;
8014 break;
8015
8016 case 'I':
8017 if (!match_const_int (&arg, &imm_expr.X_add_number))
8018 return FALSE;
8019 imm_expr.X_op = O_constant;
8020 if (GPR_SIZE == 32)
8021 normalize_constant_expr (&imm_expr);
8022 continue;
8023
8024 case 'a':
8025 case 'i':
8026 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8027 insn->insn_opcode <<= 16;
8028 break;
8029 }
8030
8031 operand = decode_mips16_operand (c, FALSE);
8032 if (!operand)
8033 abort ();
8034
8035 /* '6' is a special case. It is used for BREAK and SDBBP,
8036 whose operands are only meaningful to the software that decodes
8037 them. This means that there is no architectural reason why
8038 they cannot be prefixed by EXTEND, but in practice,
8039 exception handlers will only look at the instruction
8040 itself. We therefore allow '6' to be extended when
8041 disassembling but not when assembling. */
8042 if (operand->type != OP_PCREL && c != '6')
8043 {
8044 ext_operand = decode_mips16_operand (c, TRUE);
8045 if (operand != ext_operand)
8046 {
8047 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8048 {
8049 offset_expr.X_op = O_constant;
8050 offset_expr.X_add_number = 0;
8051 relax_char = c;
8052 continue;
8053 }
8054
8055 /* We need the OT_INTEGER check because some MIPS16
8056 immediate variants are listed before the register ones. */
8057 if (arg.token->type != OT_INTEGER
8058 || !match_expression (&arg, &offset_expr, offset_reloc))
8059 return FALSE;
8060
8061 /* '8' is used for SLTI(U) and has traditionally not
8062 been allowed to take relocation operators. */
8063 if (offset_reloc[0] != BFD_RELOC_UNUSED
8064 && (ext_operand->size != 16 || c == '8'))
8065 return FALSE;
8066
8067 relax_char = c;
8068 continue;
8069 }
8070 }
8071
8072 if (mips_optional_operand_p (operand)
8073 && args[1] == ','
8074 && (arg.token[0].type != OT_REG
8075 || arg.token[1].type == OT_END))
8076 {
8077 /* Assume that the register has been elided and is the
8078 same as the first operand. */
8079 arg.token = tokens;
8080 arg.argnum = 1;
8081 }
8082
8083 if (!match_operand (&arg, operand))
8084 return FALSE;
8085 }
8086 }
8087
8088 /* Record that the current instruction is invalid for the current ISA. */
8089
8090 static void
8091 match_invalid_for_isa (void)
8092 {
8093 set_insn_error_ss
8094 (0, _("opcode not supported on this processor: %s (%s)"),
8095 mips_cpu_info_from_arch (mips_opts.arch)->name,
8096 mips_cpu_info_from_isa (mips_opts.isa)->name);
8097 }
8098
8099 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8100 Return true if a definite match or failure was found, storing any match
8101 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8102 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8103 tried and failed to match under normal conditions and now want to try a
8104 more relaxed match. */
8105
8106 static bfd_boolean
8107 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8108 const struct mips_opcode *past, struct mips_operand_token *tokens,
8109 int opcode_extra, bfd_boolean lax_match)
8110 {
8111 const struct mips_opcode *opcode;
8112 const struct mips_opcode *invalid_delay_slot;
8113 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8114
8115 /* Search for a match, ignoring alternatives that don't satisfy the
8116 current ISA or forced_length. */
8117 invalid_delay_slot = 0;
8118 seen_valid_for_isa = FALSE;
8119 seen_valid_for_size = FALSE;
8120 opcode = first;
8121 do
8122 {
8123 gas_assert (strcmp (opcode->name, first->name) == 0);
8124 if (is_opcode_valid (opcode))
8125 {
8126 seen_valid_for_isa = TRUE;
8127 if (is_size_valid (opcode))
8128 {
8129 bfd_boolean delay_slot_ok;
8130
8131 seen_valid_for_size = TRUE;
8132 delay_slot_ok = is_delay_slot_valid (opcode);
8133 if (match_insn (insn, opcode, tokens, opcode_extra,
8134 lax_match, delay_slot_ok))
8135 {
8136 if (!delay_slot_ok)
8137 {
8138 if (!invalid_delay_slot)
8139 invalid_delay_slot = opcode;
8140 }
8141 else
8142 return TRUE;
8143 }
8144 }
8145 }
8146 ++opcode;
8147 }
8148 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8149
8150 /* If the only matches we found had the wrong length for the delay slot,
8151 pick the first such match. We'll issue an appropriate warning later. */
8152 if (invalid_delay_slot)
8153 {
8154 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8155 lax_match, TRUE))
8156 return TRUE;
8157 abort ();
8158 }
8159
8160 /* Handle the case where we didn't try to match an instruction because
8161 all the alternatives were incompatible with the current ISA. */
8162 if (!seen_valid_for_isa)
8163 {
8164 match_invalid_for_isa ();
8165 return TRUE;
8166 }
8167
8168 /* Handle the case where we didn't try to match an instruction because
8169 all the alternatives were of the wrong size. */
8170 if (!seen_valid_for_size)
8171 {
8172 if (mips_opts.insn32)
8173 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8174 else
8175 set_insn_error_i
8176 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8177 8 * forced_insn_length);
8178 return TRUE;
8179 }
8180
8181 return FALSE;
8182 }
8183
8184 /* Like match_insns, but for MIPS16. */
8185
8186 static bfd_boolean
8187 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8188 struct mips_operand_token *tokens)
8189 {
8190 const struct mips_opcode *opcode;
8191 bfd_boolean seen_valid_for_isa;
8192
8193 /* Search for a match, ignoring alternatives that don't satisfy the
8194 current ISA. There are no separate entries for extended forms so
8195 we deal with forced_length later. */
8196 seen_valid_for_isa = FALSE;
8197 opcode = first;
8198 do
8199 {
8200 gas_assert (strcmp (opcode->name, first->name) == 0);
8201 if (is_opcode_valid_16 (opcode))
8202 {
8203 seen_valid_for_isa = TRUE;
8204 if (match_mips16_insn (insn, opcode, tokens))
8205 return TRUE;
8206 }
8207 ++opcode;
8208 }
8209 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8210 && strcmp (opcode->name, first->name) == 0);
8211
8212 /* Handle the case where we didn't try to match an instruction because
8213 all the alternatives were incompatible with the current ISA. */
8214 if (!seen_valid_for_isa)
8215 {
8216 match_invalid_for_isa ();
8217 return TRUE;
8218 }
8219
8220 return FALSE;
8221 }
8222
8223 /* Set up global variables for the start of a new macro. */
8224
8225 static void
8226 macro_start (void)
8227 {
8228 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8229 memset (&mips_macro_warning.first_insn_sizes, 0,
8230 sizeof (mips_macro_warning.first_insn_sizes));
8231 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8232 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8233 && delayed_branch_p (&history[0]));
8234 switch (history[0].insn_mo->pinfo2
8235 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8236 {
8237 case INSN2_BRANCH_DELAY_32BIT:
8238 mips_macro_warning.delay_slot_length = 4;
8239 break;
8240 case INSN2_BRANCH_DELAY_16BIT:
8241 mips_macro_warning.delay_slot_length = 2;
8242 break;
8243 default:
8244 mips_macro_warning.delay_slot_length = 0;
8245 break;
8246 }
8247 mips_macro_warning.first_frag = NULL;
8248 }
8249
8250 /* Given that a macro is longer than one instruction or of the wrong size,
8251 return the appropriate warning for it. Return null if no warning is
8252 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8253 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8254 and RELAX_NOMACRO. */
8255
8256 static const char *
8257 macro_warning (relax_substateT subtype)
8258 {
8259 if (subtype & RELAX_DELAY_SLOT)
8260 return _("macro instruction expanded into multiple instructions"
8261 " in a branch delay slot");
8262 else if (subtype & RELAX_NOMACRO)
8263 return _("macro instruction expanded into multiple instructions");
8264 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8265 | RELAX_DELAY_SLOT_SIZE_SECOND))
8266 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8267 ? _("macro instruction expanded into a wrong size instruction"
8268 " in a 16-bit branch delay slot")
8269 : _("macro instruction expanded into a wrong size instruction"
8270 " in a 32-bit branch delay slot"));
8271 else
8272 return 0;
8273 }
8274
8275 /* Finish up a macro. Emit warnings as appropriate. */
8276
8277 static void
8278 macro_end (void)
8279 {
8280 /* Relaxation warning flags. */
8281 relax_substateT subtype = 0;
8282
8283 /* Check delay slot size requirements. */
8284 if (mips_macro_warning.delay_slot_length == 2)
8285 subtype |= RELAX_DELAY_SLOT_16BIT;
8286 if (mips_macro_warning.delay_slot_length != 0)
8287 {
8288 if (mips_macro_warning.delay_slot_length
8289 != mips_macro_warning.first_insn_sizes[0])
8290 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8291 if (mips_macro_warning.delay_slot_length
8292 != mips_macro_warning.first_insn_sizes[1])
8293 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8294 }
8295
8296 /* Check instruction count requirements. */
8297 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8298 {
8299 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8300 subtype |= RELAX_SECOND_LONGER;
8301 if (mips_opts.warn_about_macros)
8302 subtype |= RELAX_NOMACRO;
8303 if (mips_macro_warning.delay_slot_p)
8304 subtype |= RELAX_DELAY_SLOT;
8305 }
8306
8307 /* If both alternatives fail to fill a delay slot correctly,
8308 emit the warning now. */
8309 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8310 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8311 {
8312 relax_substateT s;
8313 const char *msg;
8314
8315 s = subtype & (RELAX_DELAY_SLOT_16BIT
8316 | RELAX_DELAY_SLOT_SIZE_FIRST
8317 | RELAX_DELAY_SLOT_SIZE_SECOND);
8318 msg = macro_warning (s);
8319 if (msg != NULL)
8320 as_warn ("%s", msg);
8321 subtype &= ~s;
8322 }
8323
8324 /* If both implementations are longer than 1 instruction, then emit the
8325 warning now. */
8326 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8327 {
8328 relax_substateT s;
8329 const char *msg;
8330
8331 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8332 msg = macro_warning (s);
8333 if (msg != NULL)
8334 as_warn ("%s", msg);
8335 subtype &= ~s;
8336 }
8337
8338 /* If any flags still set, then one implementation might need a warning
8339 and the other either will need one of a different kind or none at all.
8340 Pass any remaining flags over to relaxation. */
8341 if (mips_macro_warning.first_frag != NULL)
8342 mips_macro_warning.first_frag->fr_subtype |= subtype;
8343 }
8344
8345 /* Instruction operand formats used in macros that vary between
8346 standard MIPS and microMIPS code. */
8347
8348 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8349 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8350 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8351 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8352 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8353 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8354 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8355 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8356
8357 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8358 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8359 : cop12_fmt[mips_opts.micromips])
8360 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8361 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8362 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8363 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8364 : mem12_fmt[mips_opts.micromips])
8365 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8366 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8367 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8368
8369 /* Read a macro's relocation codes from *ARGS and store them in *R.
8370 The first argument in *ARGS will be either the code for a single
8371 relocation or -1 followed by the three codes that make up a
8372 composite relocation. */
8373
8374 static void
8375 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8376 {
8377 int i, next;
8378
8379 next = va_arg (*args, int);
8380 if (next >= 0)
8381 r[0] = (bfd_reloc_code_real_type) next;
8382 else
8383 {
8384 for (i = 0; i < 3; i++)
8385 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8386 /* This function is only used for 16-bit relocation fields.
8387 To make the macro code simpler, treat an unrelocated value
8388 in the same way as BFD_RELOC_LO16. */
8389 if (r[0] == BFD_RELOC_UNUSED)
8390 r[0] = BFD_RELOC_LO16;
8391 }
8392 }
8393
8394 /* Build an instruction created by a macro expansion. This is passed
8395 a pointer to the count of instructions created so far, an
8396 expression, the name of the instruction to build, an operand format
8397 string, and corresponding arguments. */
8398
8399 static void
8400 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8401 {
8402 const struct mips_opcode *mo = NULL;
8403 bfd_reloc_code_real_type r[3];
8404 const struct mips_opcode *amo;
8405 const struct mips_operand *operand;
8406 struct hash_control *hash;
8407 struct mips_cl_insn insn;
8408 va_list args;
8409 unsigned int uval;
8410
8411 va_start (args, fmt);
8412
8413 if (mips_opts.mips16)
8414 {
8415 mips16_macro_build (ep, name, fmt, &args);
8416 va_end (args);
8417 return;
8418 }
8419
8420 r[0] = BFD_RELOC_UNUSED;
8421 r[1] = BFD_RELOC_UNUSED;
8422 r[2] = BFD_RELOC_UNUSED;
8423 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8424 amo = (struct mips_opcode *) hash_find (hash, name);
8425 gas_assert (amo);
8426 gas_assert (strcmp (name, amo->name) == 0);
8427
8428 do
8429 {
8430 /* Search until we get a match for NAME. It is assumed here that
8431 macros will never generate MDMX, MIPS-3D, or MT instructions.
8432 We try to match an instruction that fulfils the branch delay
8433 slot instruction length requirement (if any) of the previous
8434 instruction. While doing this we record the first instruction
8435 seen that matches all the other conditions and use it anyway
8436 if the requirement cannot be met; we will issue an appropriate
8437 warning later on. */
8438 if (strcmp (fmt, amo->args) == 0
8439 && amo->pinfo != INSN_MACRO
8440 && is_opcode_valid (amo)
8441 && is_size_valid (amo))
8442 {
8443 if (is_delay_slot_valid (amo))
8444 {
8445 mo = amo;
8446 break;
8447 }
8448 else if (!mo)
8449 mo = amo;
8450 }
8451
8452 ++amo;
8453 gas_assert (amo->name);
8454 }
8455 while (strcmp (name, amo->name) == 0);
8456
8457 gas_assert (mo);
8458 create_insn (&insn, mo);
8459 for (; *fmt; ++fmt)
8460 {
8461 switch (*fmt)
8462 {
8463 case ',':
8464 case '(':
8465 case ')':
8466 case 'z':
8467 break;
8468
8469 case 'i':
8470 case 'j':
8471 macro_read_relocs (&args, r);
8472 gas_assert (*r == BFD_RELOC_GPREL16
8473 || *r == BFD_RELOC_MIPS_HIGHER
8474 || *r == BFD_RELOC_HI16_S
8475 || *r == BFD_RELOC_LO16
8476 || *r == BFD_RELOC_MIPS_GOT_OFST);
8477 break;
8478
8479 case 'o':
8480 macro_read_relocs (&args, r);
8481 break;
8482
8483 case 'u':
8484 macro_read_relocs (&args, r);
8485 gas_assert (ep != NULL
8486 && (ep->X_op == O_constant
8487 || (ep->X_op == O_symbol
8488 && (*r == BFD_RELOC_MIPS_HIGHEST
8489 || *r == BFD_RELOC_HI16_S
8490 || *r == BFD_RELOC_HI16
8491 || *r == BFD_RELOC_GPREL16
8492 || *r == BFD_RELOC_MIPS_GOT_HI16
8493 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8494 break;
8495
8496 case 'p':
8497 gas_assert (ep != NULL);
8498
8499 /*
8500 * This allows macro() to pass an immediate expression for
8501 * creating short branches without creating a symbol.
8502 *
8503 * We don't allow branch relaxation for these branches, as
8504 * they should only appear in ".set nomacro" anyway.
8505 */
8506 if (ep->X_op == O_constant)
8507 {
8508 /* For microMIPS we always use relocations for branches.
8509 So we should not resolve immediate values. */
8510 gas_assert (!mips_opts.micromips);
8511
8512 if ((ep->X_add_number & 3) != 0)
8513 as_bad (_("branch to misaligned address (0x%lx)"),
8514 (unsigned long) ep->X_add_number);
8515 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8516 as_bad (_("branch address range overflow (0x%lx)"),
8517 (unsigned long) ep->X_add_number);
8518 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8519 ep = NULL;
8520 }
8521 else
8522 *r = BFD_RELOC_16_PCREL_S2;
8523 break;
8524
8525 case 'a':
8526 gas_assert (ep != NULL);
8527 *r = BFD_RELOC_MIPS_JMP;
8528 break;
8529
8530 default:
8531 operand = (mips_opts.micromips
8532 ? decode_micromips_operand (fmt)
8533 : decode_mips_operand (fmt));
8534 if (!operand)
8535 abort ();
8536
8537 uval = va_arg (args, int);
8538 if (operand->type == OP_CLO_CLZ_DEST)
8539 uval |= (uval << 5);
8540 insn_insert_operand (&insn, operand, uval);
8541
8542 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8543 ++fmt;
8544 break;
8545 }
8546 }
8547 va_end (args);
8548 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8549
8550 append_insn (&insn, ep, r, TRUE);
8551 }
8552
8553 static void
8554 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8555 va_list *args)
8556 {
8557 struct mips_opcode *mo;
8558 struct mips_cl_insn insn;
8559 const struct mips_operand *operand;
8560 bfd_reloc_code_real_type r[3]
8561 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8562
8563 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8564 gas_assert (mo);
8565 gas_assert (strcmp (name, mo->name) == 0);
8566
8567 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8568 {
8569 ++mo;
8570 gas_assert (mo->name);
8571 gas_assert (strcmp (name, mo->name) == 0);
8572 }
8573
8574 create_insn (&insn, mo);
8575 for (; *fmt; ++fmt)
8576 {
8577 int c;
8578
8579 c = *fmt;
8580 switch (c)
8581 {
8582 case ',':
8583 case '(':
8584 case ')':
8585 break;
8586
8587 case '0':
8588 case 'S':
8589 case 'P':
8590 case 'R':
8591 break;
8592
8593 case '<':
8594 case '>':
8595 case '4':
8596 case '5':
8597 case 'H':
8598 case 'W':
8599 case 'D':
8600 case 'j':
8601 case '8':
8602 case 'V':
8603 case 'C':
8604 case 'U':
8605 case 'k':
8606 case 'K':
8607 case 'p':
8608 case 'q':
8609 {
8610 offsetT value;
8611
8612 gas_assert (ep != NULL);
8613
8614 if (ep->X_op != O_constant)
8615 *r = (int) BFD_RELOC_UNUSED + c;
8616 else if (calculate_reloc (*r, ep->X_add_number, &value))
8617 {
8618 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8619 ep = NULL;
8620 *r = BFD_RELOC_UNUSED;
8621 }
8622 }
8623 break;
8624
8625 default:
8626 operand = decode_mips16_operand (c, FALSE);
8627 if (!operand)
8628 abort ();
8629
8630 insn_insert_operand (&insn, operand, va_arg (*args, int));
8631 break;
8632 }
8633 }
8634
8635 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8636
8637 append_insn (&insn, ep, r, TRUE);
8638 }
8639
8640 /*
8641 * Generate a "jalr" instruction with a relocation hint to the called
8642 * function. This occurs in NewABI PIC code.
8643 */
8644 static void
8645 macro_build_jalr (expressionS *ep, int cprestore)
8646 {
8647 static const bfd_reloc_code_real_type jalr_relocs[2]
8648 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8649 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8650 const char *jalr;
8651 char *f = NULL;
8652
8653 if (MIPS_JALR_HINT_P (ep))
8654 {
8655 frag_grow (8);
8656 f = frag_more (0);
8657 }
8658 if (mips_opts.micromips)
8659 {
8660 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8661 ? "jalr" : "jalrs");
8662 if (MIPS_JALR_HINT_P (ep)
8663 || mips_opts.insn32
8664 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8665 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8666 else
8667 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8668 }
8669 else
8670 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8671 if (MIPS_JALR_HINT_P (ep))
8672 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8673 }
8674
8675 /*
8676 * Generate a "lui" instruction.
8677 */
8678 static void
8679 macro_build_lui (expressionS *ep, int regnum)
8680 {
8681 gas_assert (! mips_opts.mips16);
8682
8683 if (ep->X_op != O_constant)
8684 {
8685 gas_assert (ep->X_op == O_symbol);
8686 /* _gp_disp is a special case, used from s_cpload.
8687 __gnu_local_gp is used if mips_no_shared. */
8688 gas_assert (mips_pic == NO_PIC
8689 || (! HAVE_NEWABI
8690 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8691 || (! mips_in_shared
8692 && strcmp (S_GET_NAME (ep->X_add_symbol),
8693 "__gnu_local_gp") == 0));
8694 }
8695
8696 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8697 }
8698
8699 /* Generate a sequence of instructions to do a load or store from a constant
8700 offset off of a base register (breg) into/from a target register (treg),
8701 using AT if necessary. */
8702 static void
8703 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8704 int treg, int breg, int dbl)
8705 {
8706 gas_assert (ep->X_op == O_constant);
8707
8708 /* Sign-extending 32-bit constants makes their handling easier. */
8709 if (!dbl)
8710 normalize_constant_expr (ep);
8711
8712 /* Right now, this routine can only handle signed 32-bit constants. */
8713 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8714 as_warn (_("operand overflow"));
8715
8716 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8717 {
8718 /* Signed 16-bit offset will fit in the op. Easy! */
8719 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8720 }
8721 else
8722 {
8723 /* 32-bit offset, need multiple instructions and AT, like:
8724 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8725 addu $tempreg,$tempreg,$breg
8726 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8727 to handle the complete offset. */
8728 macro_build_lui (ep, AT);
8729 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8730 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8731
8732 if (!mips_opts.at)
8733 as_bad (_("macro used $at after \".set noat\""));
8734 }
8735 }
8736
8737 /* set_at()
8738 * Generates code to set the $at register to true (one)
8739 * if reg is less than the immediate expression.
8740 */
8741 static void
8742 set_at (int reg, int unsignedp)
8743 {
8744 if (imm_expr.X_add_number >= -0x8000
8745 && imm_expr.X_add_number < 0x8000)
8746 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8747 AT, reg, BFD_RELOC_LO16);
8748 else
8749 {
8750 load_register (AT, &imm_expr, GPR_SIZE == 64);
8751 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8752 }
8753 }
8754
8755 /* Count the leading zeroes by performing a binary chop. This is a
8756 bulky bit of source, but performance is a LOT better for the
8757 majority of values than a simple loop to count the bits:
8758 for (lcnt = 0; (lcnt < 32); lcnt++)
8759 if ((v) & (1 << (31 - lcnt)))
8760 break;
8761 However it is not code size friendly, and the gain will drop a bit
8762 on certain cached systems.
8763 */
8764 #define COUNT_TOP_ZEROES(v) \
8765 (((v) & ~0xffff) == 0 \
8766 ? ((v) & ~0xff) == 0 \
8767 ? ((v) & ~0xf) == 0 \
8768 ? ((v) & ~0x3) == 0 \
8769 ? ((v) & ~0x1) == 0 \
8770 ? !(v) \
8771 ? 32 \
8772 : 31 \
8773 : 30 \
8774 : ((v) & ~0x7) == 0 \
8775 ? 29 \
8776 : 28 \
8777 : ((v) & ~0x3f) == 0 \
8778 ? ((v) & ~0x1f) == 0 \
8779 ? 27 \
8780 : 26 \
8781 : ((v) & ~0x7f) == 0 \
8782 ? 25 \
8783 : 24 \
8784 : ((v) & ~0xfff) == 0 \
8785 ? ((v) & ~0x3ff) == 0 \
8786 ? ((v) & ~0x1ff) == 0 \
8787 ? 23 \
8788 : 22 \
8789 : ((v) & ~0x7ff) == 0 \
8790 ? 21 \
8791 : 20 \
8792 : ((v) & ~0x3fff) == 0 \
8793 ? ((v) & ~0x1fff) == 0 \
8794 ? 19 \
8795 : 18 \
8796 : ((v) & ~0x7fff) == 0 \
8797 ? 17 \
8798 : 16 \
8799 : ((v) & ~0xffffff) == 0 \
8800 ? ((v) & ~0xfffff) == 0 \
8801 ? ((v) & ~0x3ffff) == 0 \
8802 ? ((v) & ~0x1ffff) == 0 \
8803 ? 15 \
8804 : 14 \
8805 : ((v) & ~0x7ffff) == 0 \
8806 ? 13 \
8807 : 12 \
8808 : ((v) & ~0x3fffff) == 0 \
8809 ? ((v) & ~0x1fffff) == 0 \
8810 ? 11 \
8811 : 10 \
8812 : ((v) & ~0x7fffff) == 0 \
8813 ? 9 \
8814 : 8 \
8815 : ((v) & ~0xfffffff) == 0 \
8816 ? ((v) & ~0x3ffffff) == 0 \
8817 ? ((v) & ~0x1ffffff) == 0 \
8818 ? 7 \
8819 : 6 \
8820 : ((v) & ~0x7ffffff) == 0 \
8821 ? 5 \
8822 : 4 \
8823 : ((v) & ~0x3fffffff) == 0 \
8824 ? ((v) & ~0x1fffffff) == 0 \
8825 ? 3 \
8826 : 2 \
8827 : ((v) & ~0x7fffffff) == 0 \
8828 ? 1 \
8829 : 0)
8830
8831 /* load_register()
8832 * This routine generates the least number of instructions necessary to load
8833 * an absolute expression value into a register.
8834 */
8835 static void
8836 load_register (int reg, expressionS *ep, int dbl)
8837 {
8838 int freg;
8839 expressionS hi32, lo32;
8840
8841 if (ep->X_op != O_big)
8842 {
8843 gas_assert (ep->X_op == O_constant);
8844
8845 /* Sign-extending 32-bit constants makes their handling easier. */
8846 if (!dbl)
8847 normalize_constant_expr (ep);
8848
8849 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
8850 {
8851 /* We can handle 16 bit signed values with an addiu to
8852 $zero. No need to ever use daddiu here, since $zero and
8853 the result are always correct in 32 bit mode. */
8854 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8855 return;
8856 }
8857 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
8858 {
8859 /* We can handle 16 bit unsigned values with an ori to
8860 $zero. */
8861 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8862 return;
8863 }
8864 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
8865 {
8866 /* 32 bit values require an lui. */
8867 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8868 if ((ep->X_add_number & 0xffff) != 0)
8869 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8870 return;
8871 }
8872 }
8873
8874 /* The value is larger than 32 bits. */
8875
8876 if (!dbl || GPR_SIZE == 32)
8877 {
8878 char value[32];
8879
8880 sprintf_vma (value, ep->X_add_number);
8881 as_bad (_("number (0x%s) larger than 32 bits"), value);
8882 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8883 return;
8884 }
8885
8886 if (ep->X_op != O_big)
8887 {
8888 hi32 = *ep;
8889 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8890 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
8891 hi32.X_add_number &= 0xffffffff;
8892 lo32 = *ep;
8893 lo32.X_add_number &= 0xffffffff;
8894 }
8895 else
8896 {
8897 gas_assert (ep->X_add_number > 2);
8898 if (ep->X_add_number == 3)
8899 generic_bignum[3] = 0;
8900 else if (ep->X_add_number > 4)
8901 as_bad (_("number larger than 64 bits"));
8902 lo32.X_op = O_constant;
8903 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
8904 hi32.X_op = O_constant;
8905 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
8906 }
8907
8908 if (hi32.X_add_number == 0)
8909 freg = 0;
8910 else
8911 {
8912 int shift, bit;
8913 unsigned long hi, lo;
8914
8915 if (hi32.X_add_number == (offsetT) 0xffffffff)
8916 {
8917 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
8918 {
8919 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
8920 return;
8921 }
8922 if (lo32.X_add_number & 0x80000000)
8923 {
8924 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
8925 if (lo32.X_add_number & 0xffff)
8926 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
8927 return;
8928 }
8929 }
8930
8931 /* Check for 16bit shifted constant. We know that hi32 is
8932 non-zero, so start the mask on the first bit of the hi32
8933 value. */
8934 shift = 17;
8935 do
8936 {
8937 unsigned long himask, lomask;
8938
8939 if (shift < 32)
8940 {
8941 himask = 0xffff >> (32 - shift);
8942 lomask = (0xffff << shift) & 0xffffffff;
8943 }
8944 else
8945 {
8946 himask = 0xffff << (shift - 32);
8947 lomask = 0;
8948 }
8949 if ((hi32.X_add_number & ~(offsetT) himask) == 0
8950 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
8951 {
8952 expressionS tmp;
8953
8954 tmp.X_op = O_constant;
8955 if (shift < 32)
8956 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
8957 | (lo32.X_add_number >> shift));
8958 else
8959 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
8960 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
8961 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
8962 reg, reg, (shift >= 32) ? shift - 32 : shift);
8963 return;
8964 }
8965 ++shift;
8966 }
8967 while (shift <= (64 - 16));
8968
8969 /* Find the bit number of the lowest one bit, and store the
8970 shifted value in hi/lo. */
8971 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
8972 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
8973 if (lo != 0)
8974 {
8975 bit = 0;
8976 while ((lo & 1) == 0)
8977 {
8978 lo >>= 1;
8979 ++bit;
8980 }
8981 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
8982 hi >>= bit;
8983 }
8984 else
8985 {
8986 bit = 32;
8987 while ((hi & 1) == 0)
8988 {
8989 hi >>= 1;
8990 ++bit;
8991 }
8992 lo = hi;
8993 hi = 0;
8994 }
8995
8996 /* Optimize if the shifted value is a (power of 2) - 1. */
8997 if ((hi == 0 && ((lo + 1) & lo) == 0)
8998 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
8999 {
9000 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9001 if (shift != 0)
9002 {
9003 expressionS tmp;
9004
9005 /* This instruction will set the register to be all
9006 ones. */
9007 tmp.X_op = O_constant;
9008 tmp.X_add_number = (offsetT) -1;
9009 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9010 if (bit != 0)
9011 {
9012 bit += shift;
9013 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9014 reg, reg, (bit >= 32) ? bit - 32 : bit);
9015 }
9016 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9017 reg, reg, (shift >= 32) ? shift - 32 : shift);
9018 return;
9019 }
9020 }
9021
9022 /* Sign extend hi32 before calling load_register, because we can
9023 generally get better code when we load a sign extended value. */
9024 if ((hi32.X_add_number & 0x80000000) != 0)
9025 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9026 load_register (reg, &hi32, 0);
9027 freg = reg;
9028 }
9029 if ((lo32.X_add_number & 0xffff0000) == 0)
9030 {
9031 if (freg != 0)
9032 {
9033 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9034 freg = reg;
9035 }
9036 }
9037 else
9038 {
9039 expressionS mid16;
9040
9041 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9042 {
9043 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9044 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9045 return;
9046 }
9047
9048 if (freg != 0)
9049 {
9050 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9051 freg = reg;
9052 }
9053 mid16 = lo32;
9054 mid16.X_add_number >>= 16;
9055 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9056 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9057 freg = reg;
9058 }
9059 if ((lo32.X_add_number & 0xffff) != 0)
9060 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9061 }
9062
9063 static inline void
9064 load_delay_nop (void)
9065 {
9066 if (!gpr_interlocks)
9067 macro_build (NULL, "nop", "");
9068 }
9069
9070 /* Load an address into a register. */
9071
9072 static void
9073 load_address (int reg, expressionS *ep, int *used_at)
9074 {
9075 if (ep->X_op != O_constant
9076 && ep->X_op != O_symbol)
9077 {
9078 as_bad (_("expression too complex"));
9079 ep->X_op = O_constant;
9080 }
9081
9082 if (ep->X_op == O_constant)
9083 {
9084 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9085 return;
9086 }
9087
9088 if (mips_pic == NO_PIC)
9089 {
9090 /* If this is a reference to a GP relative symbol, we want
9091 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9092 Otherwise we want
9093 lui $reg,<sym> (BFD_RELOC_HI16_S)
9094 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9095 If we have an addend, we always use the latter form.
9096
9097 With 64bit address space and a usable $at we want
9098 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9099 lui $at,<sym> (BFD_RELOC_HI16_S)
9100 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9101 daddiu $at,<sym> (BFD_RELOC_LO16)
9102 dsll32 $reg,0
9103 daddu $reg,$reg,$at
9104
9105 If $at is already in use, we use a path which is suboptimal
9106 on superscalar processors.
9107 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9108 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9109 dsll $reg,16
9110 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9111 dsll $reg,16
9112 daddiu $reg,<sym> (BFD_RELOC_LO16)
9113
9114 For GP relative symbols in 64bit address space we can use
9115 the same sequence as in 32bit address space. */
9116 if (HAVE_64BIT_SYMBOLS)
9117 {
9118 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9119 && !nopic_need_relax (ep->X_add_symbol, 1))
9120 {
9121 relax_start (ep->X_add_symbol);
9122 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9123 mips_gp_register, BFD_RELOC_GPREL16);
9124 relax_switch ();
9125 }
9126
9127 if (*used_at == 0 && mips_opts.at)
9128 {
9129 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9130 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9131 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9132 BFD_RELOC_MIPS_HIGHER);
9133 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9134 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9135 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9136 *used_at = 1;
9137 }
9138 else
9139 {
9140 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9141 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9142 BFD_RELOC_MIPS_HIGHER);
9143 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9144 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9145 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9146 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9147 }
9148
9149 if (mips_relax.sequence)
9150 relax_end ();
9151 }
9152 else
9153 {
9154 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9155 && !nopic_need_relax (ep->X_add_symbol, 1))
9156 {
9157 relax_start (ep->X_add_symbol);
9158 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9159 mips_gp_register, BFD_RELOC_GPREL16);
9160 relax_switch ();
9161 }
9162 macro_build_lui (ep, reg);
9163 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9164 reg, reg, BFD_RELOC_LO16);
9165 if (mips_relax.sequence)
9166 relax_end ();
9167 }
9168 }
9169 else if (!mips_big_got)
9170 {
9171 expressionS ex;
9172
9173 /* If this is a reference to an external symbol, we want
9174 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9175 Otherwise we want
9176 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9177 nop
9178 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9179 If there is a constant, it must be added in after.
9180
9181 If we have NewABI, we want
9182 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9183 unless we're referencing a global symbol with a non-zero
9184 offset, in which case cst must be added separately. */
9185 if (HAVE_NEWABI)
9186 {
9187 if (ep->X_add_number)
9188 {
9189 ex.X_add_number = ep->X_add_number;
9190 ep->X_add_number = 0;
9191 relax_start (ep->X_add_symbol);
9192 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9193 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9194 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9195 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9196 ex.X_op = O_constant;
9197 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9198 reg, reg, BFD_RELOC_LO16);
9199 ep->X_add_number = ex.X_add_number;
9200 relax_switch ();
9201 }
9202 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9203 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9204 if (mips_relax.sequence)
9205 relax_end ();
9206 }
9207 else
9208 {
9209 ex.X_add_number = ep->X_add_number;
9210 ep->X_add_number = 0;
9211 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9212 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9213 load_delay_nop ();
9214 relax_start (ep->X_add_symbol);
9215 relax_switch ();
9216 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9217 BFD_RELOC_LO16);
9218 relax_end ();
9219
9220 if (ex.X_add_number != 0)
9221 {
9222 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9223 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9224 ex.X_op = O_constant;
9225 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9226 reg, reg, BFD_RELOC_LO16);
9227 }
9228 }
9229 }
9230 else if (mips_big_got)
9231 {
9232 expressionS ex;
9233
9234 /* This is the large GOT case. If this is a reference to an
9235 external symbol, we want
9236 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9237 addu $reg,$reg,$gp
9238 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9239
9240 Otherwise, for a reference to a local symbol in old ABI, we want
9241 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9242 nop
9243 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9244 If there is a constant, it must be added in after.
9245
9246 In the NewABI, for local symbols, with or without offsets, we want:
9247 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9248 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9249 */
9250 if (HAVE_NEWABI)
9251 {
9252 ex.X_add_number = ep->X_add_number;
9253 ep->X_add_number = 0;
9254 relax_start (ep->X_add_symbol);
9255 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9256 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9257 reg, reg, mips_gp_register);
9258 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9259 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9260 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9261 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9262 else if (ex.X_add_number)
9263 {
9264 ex.X_op = O_constant;
9265 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9266 BFD_RELOC_LO16);
9267 }
9268
9269 ep->X_add_number = ex.X_add_number;
9270 relax_switch ();
9271 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9272 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9273 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9274 BFD_RELOC_MIPS_GOT_OFST);
9275 relax_end ();
9276 }
9277 else
9278 {
9279 ex.X_add_number = ep->X_add_number;
9280 ep->X_add_number = 0;
9281 relax_start (ep->X_add_symbol);
9282 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9283 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9284 reg, reg, mips_gp_register);
9285 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9286 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9287 relax_switch ();
9288 if (reg_needs_delay (mips_gp_register))
9289 {
9290 /* We need a nop before loading from $gp. This special
9291 check is required because the lui which starts the main
9292 instruction stream does not refer to $gp, and so will not
9293 insert the nop which may be required. */
9294 macro_build (NULL, "nop", "");
9295 }
9296 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9297 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9298 load_delay_nop ();
9299 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9300 BFD_RELOC_LO16);
9301 relax_end ();
9302
9303 if (ex.X_add_number != 0)
9304 {
9305 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9306 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9307 ex.X_op = O_constant;
9308 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9309 BFD_RELOC_LO16);
9310 }
9311 }
9312 }
9313 else
9314 abort ();
9315
9316 if (!mips_opts.at && *used_at == 1)
9317 as_bad (_("macro used $at after \".set noat\""));
9318 }
9319
9320 /* Move the contents of register SOURCE into register DEST. */
9321
9322 static void
9323 move_register (int dest, int source)
9324 {
9325 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9326 instruction specifically requires a 32-bit one. */
9327 if (mips_opts.micromips
9328 && !mips_opts.insn32
9329 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9330 macro_build (NULL, "move", "mp,mj", dest, source);
9331 else
9332 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9333 }
9334
9335 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9336 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9337 The two alternatives are:
9338
9339 Global symbol Local sybmol
9340 ------------- ------------
9341 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9342 ... ...
9343 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9344
9345 load_got_offset emits the first instruction and add_got_offset
9346 emits the second for a 16-bit offset or add_got_offset_hilo emits
9347 a sequence to add a 32-bit offset using a scratch register. */
9348
9349 static void
9350 load_got_offset (int dest, expressionS *local)
9351 {
9352 expressionS global;
9353
9354 global = *local;
9355 global.X_add_number = 0;
9356
9357 relax_start (local->X_add_symbol);
9358 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9359 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9360 relax_switch ();
9361 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9362 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9363 relax_end ();
9364 }
9365
9366 static void
9367 add_got_offset (int dest, expressionS *local)
9368 {
9369 expressionS global;
9370
9371 global.X_op = O_constant;
9372 global.X_op_symbol = NULL;
9373 global.X_add_symbol = NULL;
9374 global.X_add_number = local->X_add_number;
9375
9376 relax_start (local->X_add_symbol);
9377 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9378 dest, dest, BFD_RELOC_LO16);
9379 relax_switch ();
9380 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9381 relax_end ();
9382 }
9383
9384 static void
9385 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9386 {
9387 expressionS global;
9388 int hold_mips_optimize;
9389
9390 global.X_op = O_constant;
9391 global.X_op_symbol = NULL;
9392 global.X_add_symbol = NULL;
9393 global.X_add_number = local->X_add_number;
9394
9395 relax_start (local->X_add_symbol);
9396 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9397 relax_switch ();
9398 /* Set mips_optimize around the lui instruction to avoid
9399 inserting an unnecessary nop after the lw. */
9400 hold_mips_optimize = mips_optimize;
9401 mips_optimize = 2;
9402 macro_build_lui (&global, tmp);
9403 mips_optimize = hold_mips_optimize;
9404 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9405 relax_end ();
9406
9407 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9408 }
9409
9410 /* Emit a sequence of instructions to emulate a branch likely operation.
9411 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9412 is its complementing branch with the original condition negated.
9413 CALL is set if the original branch specified the link operation.
9414 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9415
9416 Code like this is produced in the noreorder mode:
9417
9418 BRNEG <args>, 1f
9419 nop
9420 b <sym>
9421 delay slot (executed only if branch taken)
9422 1:
9423
9424 or, if CALL is set:
9425
9426 BRNEG <args>, 1f
9427 nop
9428 bal <sym>
9429 delay slot (executed only if branch taken)
9430 1:
9431
9432 In the reorder mode the delay slot would be filled with a nop anyway,
9433 so code produced is simply:
9434
9435 BR <args>, <sym>
9436 nop
9437
9438 This function is used when producing code for the microMIPS ASE that
9439 does not implement branch likely instructions in hardware. */
9440
9441 static void
9442 macro_build_branch_likely (const char *br, const char *brneg,
9443 int call, expressionS *ep, const char *fmt,
9444 unsigned int sreg, unsigned int treg)
9445 {
9446 int noreorder = mips_opts.noreorder;
9447 expressionS expr1;
9448
9449 gas_assert (mips_opts.micromips);
9450 start_noreorder ();
9451 if (noreorder)
9452 {
9453 micromips_label_expr (&expr1);
9454 macro_build (&expr1, brneg, fmt, sreg, treg);
9455 macro_build (NULL, "nop", "");
9456 macro_build (ep, call ? "bal" : "b", "p");
9457
9458 /* Set to true so that append_insn adds a label. */
9459 emit_branch_likely_macro = TRUE;
9460 }
9461 else
9462 {
9463 macro_build (ep, br, fmt, sreg, treg);
9464 macro_build (NULL, "nop", "");
9465 }
9466 end_noreorder ();
9467 }
9468
9469 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9470 the condition code tested. EP specifies the branch target. */
9471
9472 static void
9473 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9474 {
9475 const int call = 0;
9476 const char *brneg;
9477 const char *br;
9478
9479 switch (type)
9480 {
9481 case M_BC1FL:
9482 br = "bc1f";
9483 brneg = "bc1t";
9484 break;
9485 case M_BC1TL:
9486 br = "bc1t";
9487 brneg = "bc1f";
9488 break;
9489 case M_BC2FL:
9490 br = "bc2f";
9491 brneg = "bc2t";
9492 break;
9493 case M_BC2TL:
9494 br = "bc2t";
9495 brneg = "bc2f";
9496 break;
9497 default:
9498 abort ();
9499 }
9500 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9501 }
9502
9503 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9504 the register tested. EP specifies the branch target. */
9505
9506 static void
9507 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9508 {
9509 const char *brneg = NULL;
9510 const char *br;
9511 int call = 0;
9512
9513 switch (type)
9514 {
9515 case M_BGEZ:
9516 br = "bgez";
9517 break;
9518 case M_BGEZL:
9519 br = mips_opts.micromips ? "bgez" : "bgezl";
9520 brneg = "bltz";
9521 break;
9522 case M_BGEZALL:
9523 gas_assert (mips_opts.micromips);
9524 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9525 brneg = "bltz";
9526 call = 1;
9527 break;
9528 case M_BGTZ:
9529 br = "bgtz";
9530 break;
9531 case M_BGTZL:
9532 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9533 brneg = "blez";
9534 break;
9535 case M_BLEZ:
9536 br = "blez";
9537 break;
9538 case M_BLEZL:
9539 br = mips_opts.micromips ? "blez" : "blezl";
9540 brneg = "bgtz";
9541 break;
9542 case M_BLTZ:
9543 br = "bltz";
9544 break;
9545 case M_BLTZL:
9546 br = mips_opts.micromips ? "bltz" : "bltzl";
9547 brneg = "bgez";
9548 break;
9549 case M_BLTZALL:
9550 gas_assert (mips_opts.micromips);
9551 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9552 brneg = "bgez";
9553 call = 1;
9554 break;
9555 default:
9556 abort ();
9557 }
9558 if (mips_opts.micromips && brneg)
9559 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9560 else
9561 macro_build (ep, br, "s,p", sreg);
9562 }
9563
9564 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9565 TREG as the registers tested. EP specifies the branch target. */
9566
9567 static void
9568 macro_build_branch_rsrt (int type, expressionS *ep,
9569 unsigned int sreg, unsigned int treg)
9570 {
9571 const char *brneg = NULL;
9572 const int call = 0;
9573 const char *br;
9574
9575 switch (type)
9576 {
9577 case M_BEQ:
9578 case M_BEQ_I:
9579 br = "beq";
9580 break;
9581 case M_BEQL:
9582 case M_BEQL_I:
9583 br = mips_opts.micromips ? "beq" : "beql";
9584 brneg = "bne";
9585 break;
9586 case M_BNE:
9587 case M_BNE_I:
9588 br = "bne";
9589 break;
9590 case M_BNEL:
9591 case M_BNEL_I:
9592 br = mips_opts.micromips ? "bne" : "bnel";
9593 brneg = "beq";
9594 break;
9595 default:
9596 abort ();
9597 }
9598 if (mips_opts.micromips && brneg)
9599 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9600 else
9601 macro_build (ep, br, "s,t,p", sreg, treg);
9602 }
9603
9604 /* Return the high part that should be loaded in order to make the low
9605 part of VALUE accessible using an offset of OFFBITS bits. */
9606
9607 static offsetT
9608 offset_high_part (offsetT value, unsigned int offbits)
9609 {
9610 offsetT bias;
9611 addressT low_mask;
9612
9613 if (offbits == 0)
9614 return value;
9615 bias = 1 << (offbits - 1);
9616 low_mask = bias * 2 - 1;
9617 return (value + bias) & ~low_mask;
9618 }
9619
9620 /* Return true if the value stored in offset_expr and offset_reloc
9621 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9622 amount that the caller wants to add without inducing overflow
9623 and ALIGN is the known alignment of the value in bytes. */
9624
9625 static bfd_boolean
9626 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9627 {
9628 if (offbits == 16)
9629 {
9630 /* Accept any relocation operator if overflow isn't a concern. */
9631 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9632 return TRUE;
9633
9634 /* These relocations are guaranteed not to overflow in correct links. */
9635 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9636 || gprel16_reloc_p (*offset_reloc))
9637 return TRUE;
9638 }
9639 if (offset_expr.X_op == O_constant
9640 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9641 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9642 return TRUE;
9643 return FALSE;
9644 }
9645
9646 /*
9647 * Build macros
9648 * This routine implements the seemingly endless macro or synthesized
9649 * instructions and addressing modes in the mips assembly language. Many
9650 * of these macros are simple and are similar to each other. These could
9651 * probably be handled by some kind of table or grammar approach instead of
9652 * this verbose method. Others are not simple macros but are more like
9653 * optimizing code generation.
9654 * One interesting optimization is when several store macros appear
9655 * consecutively that would load AT with the upper half of the same address.
9656 * The ensuing load upper instructions are ommited. This implies some kind
9657 * of global optimization. We currently only optimize within a single macro.
9658 * For many of the load and store macros if the address is specified as a
9659 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9660 * first load register 'at' with zero and use it as the base register. The
9661 * mips assembler simply uses register $zero. Just one tiny optimization
9662 * we're missing.
9663 */
9664 static void
9665 macro (struct mips_cl_insn *ip, char *str)
9666 {
9667 const struct mips_operand_array *operands;
9668 unsigned int breg, i;
9669 unsigned int tempreg;
9670 int mask;
9671 int used_at = 0;
9672 expressionS label_expr;
9673 expressionS expr1;
9674 expressionS *ep;
9675 const char *s;
9676 const char *s2;
9677 const char *fmt;
9678 int likely = 0;
9679 int coproc = 0;
9680 int offbits = 16;
9681 int call = 0;
9682 int jals = 0;
9683 int dbl = 0;
9684 int imm = 0;
9685 int ust = 0;
9686 int lp = 0;
9687 bfd_boolean large_offset;
9688 int off;
9689 int hold_mips_optimize;
9690 unsigned int align;
9691 unsigned int op[MAX_OPERANDS];
9692
9693 gas_assert (! mips_opts.mips16);
9694
9695 operands = insn_operands (ip);
9696 for (i = 0; i < MAX_OPERANDS; i++)
9697 if (operands->operand[i])
9698 op[i] = insn_extract_operand (ip, operands->operand[i]);
9699 else
9700 op[i] = -1;
9701
9702 mask = ip->insn_mo->mask;
9703
9704 label_expr.X_op = O_constant;
9705 label_expr.X_op_symbol = NULL;
9706 label_expr.X_add_symbol = NULL;
9707 label_expr.X_add_number = 0;
9708
9709 expr1.X_op = O_constant;
9710 expr1.X_op_symbol = NULL;
9711 expr1.X_add_symbol = NULL;
9712 expr1.X_add_number = 1;
9713 align = 1;
9714
9715 switch (mask)
9716 {
9717 case M_DABS:
9718 dbl = 1;
9719 case M_ABS:
9720 /* bgez $a0,1f
9721 move v0,$a0
9722 sub v0,$zero,$a0
9723 1:
9724 */
9725
9726 start_noreorder ();
9727
9728 if (mips_opts.micromips)
9729 micromips_label_expr (&label_expr);
9730 else
9731 label_expr.X_add_number = 8;
9732 macro_build (&label_expr, "bgez", "s,p", op[1]);
9733 if (op[0] == op[1])
9734 macro_build (NULL, "nop", "");
9735 else
9736 move_register (op[0], op[1]);
9737 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9738 if (mips_opts.micromips)
9739 micromips_add_label ();
9740
9741 end_noreorder ();
9742 break;
9743
9744 case M_ADD_I:
9745 s = "addi";
9746 s2 = "add";
9747 goto do_addi;
9748 case M_ADDU_I:
9749 s = "addiu";
9750 s2 = "addu";
9751 goto do_addi;
9752 case M_DADD_I:
9753 dbl = 1;
9754 s = "daddi";
9755 s2 = "dadd";
9756 if (!mips_opts.micromips)
9757 goto do_addi;
9758 if (imm_expr.X_add_number >= -0x200
9759 && imm_expr.X_add_number < 0x200)
9760 {
9761 macro_build (NULL, s, "t,r,.", op[0], op[1],
9762 (int) imm_expr.X_add_number);
9763 break;
9764 }
9765 goto do_addi_i;
9766 case M_DADDU_I:
9767 dbl = 1;
9768 s = "daddiu";
9769 s2 = "daddu";
9770 do_addi:
9771 if (imm_expr.X_add_number >= -0x8000
9772 && imm_expr.X_add_number < 0x8000)
9773 {
9774 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9775 break;
9776 }
9777 do_addi_i:
9778 used_at = 1;
9779 load_register (AT, &imm_expr, dbl);
9780 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9781 break;
9782
9783 case M_AND_I:
9784 s = "andi";
9785 s2 = "and";
9786 goto do_bit;
9787 case M_OR_I:
9788 s = "ori";
9789 s2 = "or";
9790 goto do_bit;
9791 case M_NOR_I:
9792 s = "";
9793 s2 = "nor";
9794 goto do_bit;
9795 case M_XOR_I:
9796 s = "xori";
9797 s2 = "xor";
9798 do_bit:
9799 if (imm_expr.X_add_number >= 0
9800 && imm_expr.X_add_number < 0x10000)
9801 {
9802 if (mask != M_NOR_I)
9803 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
9804 else
9805 {
9806 macro_build (&imm_expr, "ori", "t,r,i",
9807 op[0], op[1], BFD_RELOC_LO16);
9808 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
9809 }
9810 break;
9811 }
9812
9813 used_at = 1;
9814 load_register (AT, &imm_expr, GPR_SIZE == 64);
9815 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
9816 break;
9817
9818 case M_BALIGN:
9819 switch (imm_expr.X_add_number)
9820 {
9821 case 0:
9822 macro_build (NULL, "nop", "");
9823 break;
9824 case 2:
9825 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
9826 break;
9827 case 1:
9828 case 3:
9829 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
9830 (int) imm_expr.X_add_number);
9831 break;
9832 default:
9833 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
9834 (unsigned long) imm_expr.X_add_number);
9835 break;
9836 }
9837 break;
9838
9839 case M_BC1FL:
9840 case M_BC1TL:
9841 case M_BC2FL:
9842 case M_BC2TL:
9843 gas_assert (mips_opts.micromips);
9844 macro_build_branch_ccl (mask, &offset_expr,
9845 EXTRACT_OPERAND (1, BCC, *ip));
9846 break;
9847
9848 case M_BEQ_I:
9849 case M_BEQL_I:
9850 case M_BNE_I:
9851 case M_BNEL_I:
9852 if (imm_expr.X_add_number == 0)
9853 op[1] = 0;
9854 else
9855 {
9856 op[1] = AT;
9857 used_at = 1;
9858 load_register (op[1], &imm_expr, GPR_SIZE == 64);
9859 }
9860 /* Fall through. */
9861 case M_BEQL:
9862 case M_BNEL:
9863 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
9864 break;
9865
9866 case M_BGEL:
9867 likely = 1;
9868 case M_BGE:
9869 if (op[1] == 0)
9870 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
9871 else if (op[0] == 0)
9872 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
9873 else
9874 {
9875 used_at = 1;
9876 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
9877 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9878 &offset_expr, AT, ZERO);
9879 }
9880 break;
9881
9882 case M_BGEZL:
9883 case M_BGEZALL:
9884 case M_BGTZL:
9885 case M_BLEZL:
9886 case M_BLTZL:
9887 case M_BLTZALL:
9888 macro_build_branch_rs (mask, &offset_expr, op[0]);
9889 break;
9890
9891 case M_BGTL_I:
9892 likely = 1;
9893 case M_BGT_I:
9894 /* Check for > max integer. */
9895 if (imm_expr.X_add_number >= GPR_SMAX)
9896 {
9897 do_false:
9898 /* Result is always false. */
9899 if (! likely)
9900 macro_build (NULL, "nop", "");
9901 else
9902 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
9903 break;
9904 }
9905 ++imm_expr.X_add_number;
9906 /* FALLTHROUGH */
9907 case M_BGE_I:
9908 case M_BGEL_I:
9909 if (mask == M_BGEL_I)
9910 likely = 1;
9911 if (imm_expr.X_add_number == 0)
9912 {
9913 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
9914 &offset_expr, op[0]);
9915 break;
9916 }
9917 if (imm_expr.X_add_number == 1)
9918 {
9919 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
9920 &offset_expr, op[0]);
9921 break;
9922 }
9923 if (imm_expr.X_add_number <= GPR_SMIN)
9924 {
9925 do_true:
9926 /* result is always true */
9927 as_warn (_("branch %s is always true"), ip->insn_mo->name);
9928 macro_build (&offset_expr, "b", "p");
9929 break;
9930 }
9931 used_at = 1;
9932 set_at (op[0], 0);
9933 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9934 &offset_expr, AT, ZERO);
9935 break;
9936
9937 case M_BGEUL:
9938 likely = 1;
9939 case M_BGEU:
9940 if (op[1] == 0)
9941 goto do_true;
9942 else if (op[0] == 0)
9943 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9944 &offset_expr, ZERO, op[1]);
9945 else
9946 {
9947 used_at = 1;
9948 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
9949 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9950 &offset_expr, AT, ZERO);
9951 }
9952 break;
9953
9954 case M_BGTUL_I:
9955 likely = 1;
9956 case M_BGTU_I:
9957 if (op[0] == 0
9958 || (GPR_SIZE == 32
9959 && imm_expr.X_add_number == -1))
9960 goto do_false;
9961 ++imm_expr.X_add_number;
9962 /* FALLTHROUGH */
9963 case M_BGEU_I:
9964 case M_BGEUL_I:
9965 if (mask == M_BGEUL_I)
9966 likely = 1;
9967 if (imm_expr.X_add_number == 0)
9968 goto do_true;
9969 else if (imm_expr.X_add_number == 1)
9970 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9971 &offset_expr, op[0], ZERO);
9972 else
9973 {
9974 used_at = 1;
9975 set_at (op[0], 1);
9976 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
9977 &offset_expr, AT, ZERO);
9978 }
9979 break;
9980
9981 case M_BGTL:
9982 likely = 1;
9983 case M_BGT:
9984 if (op[1] == 0)
9985 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
9986 else if (op[0] == 0)
9987 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
9988 else
9989 {
9990 used_at = 1;
9991 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
9992 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
9993 &offset_expr, AT, ZERO);
9994 }
9995 break;
9996
9997 case M_BGTUL:
9998 likely = 1;
9999 case M_BGTU:
10000 if (op[1] == 0)
10001 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10002 &offset_expr, op[0], ZERO);
10003 else if (op[0] == 0)
10004 goto do_false;
10005 else
10006 {
10007 used_at = 1;
10008 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10009 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10010 &offset_expr, AT, ZERO);
10011 }
10012 break;
10013
10014 case M_BLEL:
10015 likely = 1;
10016 case M_BLE:
10017 if (op[1] == 0)
10018 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10019 else if (op[0] == 0)
10020 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10021 else
10022 {
10023 used_at = 1;
10024 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10025 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10026 &offset_expr, AT, ZERO);
10027 }
10028 break;
10029
10030 case M_BLEL_I:
10031 likely = 1;
10032 case M_BLE_I:
10033 if (imm_expr.X_add_number >= GPR_SMAX)
10034 goto do_true;
10035 ++imm_expr.X_add_number;
10036 /* FALLTHROUGH */
10037 case M_BLT_I:
10038 case M_BLTL_I:
10039 if (mask == M_BLTL_I)
10040 likely = 1;
10041 if (imm_expr.X_add_number == 0)
10042 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10043 else if (imm_expr.X_add_number == 1)
10044 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10045 else
10046 {
10047 used_at = 1;
10048 set_at (op[0], 0);
10049 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10050 &offset_expr, AT, ZERO);
10051 }
10052 break;
10053
10054 case M_BLEUL:
10055 likely = 1;
10056 case M_BLEU:
10057 if (op[1] == 0)
10058 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10059 &offset_expr, op[0], ZERO);
10060 else if (op[0] == 0)
10061 goto do_true;
10062 else
10063 {
10064 used_at = 1;
10065 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10066 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10067 &offset_expr, AT, ZERO);
10068 }
10069 break;
10070
10071 case M_BLEUL_I:
10072 likely = 1;
10073 case M_BLEU_I:
10074 if (op[0] == 0
10075 || (GPR_SIZE == 32
10076 && imm_expr.X_add_number == -1))
10077 goto do_true;
10078 ++imm_expr.X_add_number;
10079 /* FALLTHROUGH */
10080 case M_BLTU_I:
10081 case M_BLTUL_I:
10082 if (mask == M_BLTUL_I)
10083 likely = 1;
10084 if (imm_expr.X_add_number == 0)
10085 goto do_false;
10086 else if (imm_expr.X_add_number == 1)
10087 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10088 &offset_expr, op[0], ZERO);
10089 else
10090 {
10091 used_at = 1;
10092 set_at (op[0], 1);
10093 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10094 &offset_expr, AT, ZERO);
10095 }
10096 break;
10097
10098 case M_BLTL:
10099 likely = 1;
10100 case M_BLT:
10101 if (op[1] == 0)
10102 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10103 else if (op[0] == 0)
10104 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10105 else
10106 {
10107 used_at = 1;
10108 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10109 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10110 &offset_expr, AT, ZERO);
10111 }
10112 break;
10113
10114 case M_BLTUL:
10115 likely = 1;
10116 case M_BLTU:
10117 if (op[1] == 0)
10118 goto do_false;
10119 else if (op[0] == 0)
10120 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10121 &offset_expr, ZERO, op[1]);
10122 else
10123 {
10124 used_at = 1;
10125 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10126 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10127 &offset_expr, AT, ZERO);
10128 }
10129 break;
10130
10131 case M_DDIV_3:
10132 dbl = 1;
10133 case M_DIV_3:
10134 s = "mflo";
10135 goto do_div3;
10136 case M_DREM_3:
10137 dbl = 1;
10138 case M_REM_3:
10139 s = "mfhi";
10140 do_div3:
10141 if (op[2] == 0)
10142 {
10143 as_warn (_("divide by zero"));
10144 if (mips_trap)
10145 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10146 else
10147 macro_build (NULL, "break", BRK_FMT, 7);
10148 break;
10149 }
10150
10151 start_noreorder ();
10152 if (mips_trap)
10153 {
10154 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10155 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10156 }
10157 else
10158 {
10159 if (mips_opts.micromips)
10160 micromips_label_expr (&label_expr);
10161 else
10162 label_expr.X_add_number = 8;
10163 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10164 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10165 macro_build (NULL, "break", BRK_FMT, 7);
10166 if (mips_opts.micromips)
10167 micromips_add_label ();
10168 }
10169 expr1.X_add_number = -1;
10170 used_at = 1;
10171 load_register (AT, &expr1, dbl);
10172 if (mips_opts.micromips)
10173 micromips_label_expr (&label_expr);
10174 else
10175 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10176 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10177 if (dbl)
10178 {
10179 expr1.X_add_number = 1;
10180 load_register (AT, &expr1, dbl);
10181 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10182 }
10183 else
10184 {
10185 expr1.X_add_number = 0x80000000;
10186 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10187 }
10188 if (mips_trap)
10189 {
10190 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10191 /* We want to close the noreorder block as soon as possible, so
10192 that later insns are available for delay slot filling. */
10193 end_noreorder ();
10194 }
10195 else
10196 {
10197 if (mips_opts.micromips)
10198 micromips_label_expr (&label_expr);
10199 else
10200 label_expr.X_add_number = 8;
10201 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10202 macro_build (NULL, "nop", "");
10203
10204 /* We want to close the noreorder block as soon as possible, so
10205 that later insns are available for delay slot filling. */
10206 end_noreorder ();
10207
10208 macro_build (NULL, "break", BRK_FMT, 6);
10209 }
10210 if (mips_opts.micromips)
10211 micromips_add_label ();
10212 macro_build (NULL, s, MFHL_FMT, op[0]);
10213 break;
10214
10215 case M_DIV_3I:
10216 s = "div";
10217 s2 = "mflo";
10218 goto do_divi;
10219 case M_DIVU_3I:
10220 s = "divu";
10221 s2 = "mflo";
10222 goto do_divi;
10223 case M_REM_3I:
10224 s = "div";
10225 s2 = "mfhi";
10226 goto do_divi;
10227 case M_REMU_3I:
10228 s = "divu";
10229 s2 = "mfhi";
10230 goto do_divi;
10231 case M_DDIV_3I:
10232 dbl = 1;
10233 s = "ddiv";
10234 s2 = "mflo";
10235 goto do_divi;
10236 case M_DDIVU_3I:
10237 dbl = 1;
10238 s = "ddivu";
10239 s2 = "mflo";
10240 goto do_divi;
10241 case M_DREM_3I:
10242 dbl = 1;
10243 s = "ddiv";
10244 s2 = "mfhi";
10245 goto do_divi;
10246 case M_DREMU_3I:
10247 dbl = 1;
10248 s = "ddivu";
10249 s2 = "mfhi";
10250 do_divi:
10251 if (imm_expr.X_add_number == 0)
10252 {
10253 as_warn (_("divide by zero"));
10254 if (mips_trap)
10255 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10256 else
10257 macro_build (NULL, "break", BRK_FMT, 7);
10258 break;
10259 }
10260 if (imm_expr.X_add_number == 1)
10261 {
10262 if (strcmp (s2, "mflo") == 0)
10263 move_register (op[0], op[1]);
10264 else
10265 move_register (op[0], ZERO);
10266 break;
10267 }
10268 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10269 {
10270 if (strcmp (s2, "mflo") == 0)
10271 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10272 else
10273 move_register (op[0], ZERO);
10274 break;
10275 }
10276
10277 used_at = 1;
10278 load_register (AT, &imm_expr, dbl);
10279 macro_build (NULL, s, "z,s,t", op[1], AT);
10280 macro_build (NULL, s2, MFHL_FMT, op[0]);
10281 break;
10282
10283 case M_DIVU_3:
10284 s = "divu";
10285 s2 = "mflo";
10286 goto do_divu3;
10287 case M_REMU_3:
10288 s = "divu";
10289 s2 = "mfhi";
10290 goto do_divu3;
10291 case M_DDIVU_3:
10292 s = "ddivu";
10293 s2 = "mflo";
10294 goto do_divu3;
10295 case M_DREMU_3:
10296 s = "ddivu";
10297 s2 = "mfhi";
10298 do_divu3:
10299 start_noreorder ();
10300 if (mips_trap)
10301 {
10302 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10303 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10304 /* We want to close the noreorder block as soon as possible, so
10305 that later insns are available for delay slot filling. */
10306 end_noreorder ();
10307 }
10308 else
10309 {
10310 if (mips_opts.micromips)
10311 micromips_label_expr (&label_expr);
10312 else
10313 label_expr.X_add_number = 8;
10314 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10315 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10316
10317 /* We want to close the noreorder block as soon as possible, so
10318 that later insns are available for delay slot filling. */
10319 end_noreorder ();
10320 macro_build (NULL, "break", BRK_FMT, 7);
10321 if (mips_opts.micromips)
10322 micromips_add_label ();
10323 }
10324 macro_build (NULL, s2, MFHL_FMT, op[0]);
10325 break;
10326
10327 case M_DLCA_AB:
10328 dbl = 1;
10329 case M_LCA_AB:
10330 call = 1;
10331 goto do_la;
10332 case M_DLA_AB:
10333 dbl = 1;
10334 case M_LA_AB:
10335 do_la:
10336 /* Load the address of a symbol into a register. If breg is not
10337 zero, we then add a base register to it. */
10338
10339 breg = op[2];
10340 if (dbl && GPR_SIZE == 32)
10341 as_warn (_("dla used to load 32-bit register; recommend using la "
10342 "instead"));
10343
10344 if (!dbl && HAVE_64BIT_OBJECTS)
10345 as_warn (_("la used to load 64-bit address; recommend using dla "
10346 "instead"));
10347
10348 if (small_offset_p (0, align, 16))
10349 {
10350 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10351 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10352 break;
10353 }
10354
10355 if (mips_opts.at && (op[0] == breg))
10356 {
10357 tempreg = AT;
10358 used_at = 1;
10359 }
10360 else
10361 tempreg = op[0];
10362
10363 if (offset_expr.X_op != O_symbol
10364 && offset_expr.X_op != O_constant)
10365 {
10366 as_bad (_("expression too complex"));
10367 offset_expr.X_op = O_constant;
10368 }
10369
10370 if (offset_expr.X_op == O_constant)
10371 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10372 else if (mips_pic == NO_PIC)
10373 {
10374 /* If this is a reference to a GP relative symbol, we want
10375 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10376 Otherwise we want
10377 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10378 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10379 If we have a constant, we need two instructions anyhow,
10380 so we may as well always use the latter form.
10381
10382 With 64bit address space and a usable $at we want
10383 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10384 lui $at,<sym> (BFD_RELOC_HI16_S)
10385 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10386 daddiu $at,<sym> (BFD_RELOC_LO16)
10387 dsll32 $tempreg,0
10388 daddu $tempreg,$tempreg,$at
10389
10390 If $at is already in use, we use a path which is suboptimal
10391 on superscalar processors.
10392 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10393 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10394 dsll $tempreg,16
10395 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10396 dsll $tempreg,16
10397 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10398
10399 For GP relative symbols in 64bit address space we can use
10400 the same sequence as in 32bit address space. */
10401 if (HAVE_64BIT_SYMBOLS)
10402 {
10403 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10404 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10405 {
10406 relax_start (offset_expr.X_add_symbol);
10407 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10408 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10409 relax_switch ();
10410 }
10411
10412 if (used_at == 0 && mips_opts.at)
10413 {
10414 macro_build (&offset_expr, "lui", LUI_FMT,
10415 tempreg, BFD_RELOC_MIPS_HIGHEST);
10416 macro_build (&offset_expr, "lui", LUI_FMT,
10417 AT, BFD_RELOC_HI16_S);
10418 macro_build (&offset_expr, "daddiu", "t,r,j",
10419 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10420 macro_build (&offset_expr, "daddiu", "t,r,j",
10421 AT, AT, BFD_RELOC_LO16);
10422 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10423 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10424 used_at = 1;
10425 }
10426 else
10427 {
10428 macro_build (&offset_expr, "lui", LUI_FMT,
10429 tempreg, BFD_RELOC_MIPS_HIGHEST);
10430 macro_build (&offset_expr, "daddiu", "t,r,j",
10431 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10432 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10433 macro_build (&offset_expr, "daddiu", "t,r,j",
10434 tempreg, tempreg, BFD_RELOC_HI16_S);
10435 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10436 macro_build (&offset_expr, "daddiu", "t,r,j",
10437 tempreg, tempreg, BFD_RELOC_LO16);
10438 }
10439
10440 if (mips_relax.sequence)
10441 relax_end ();
10442 }
10443 else
10444 {
10445 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10446 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10447 {
10448 relax_start (offset_expr.X_add_symbol);
10449 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10450 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10451 relax_switch ();
10452 }
10453 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10454 as_bad (_("offset too large"));
10455 macro_build_lui (&offset_expr, tempreg);
10456 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10457 tempreg, tempreg, BFD_RELOC_LO16);
10458 if (mips_relax.sequence)
10459 relax_end ();
10460 }
10461 }
10462 else if (!mips_big_got && !HAVE_NEWABI)
10463 {
10464 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10465
10466 /* If this is a reference to an external symbol, and there
10467 is no constant, we want
10468 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10469 or for lca or if tempreg is PIC_CALL_REG
10470 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10471 For a local symbol, we want
10472 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10473 nop
10474 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10475
10476 If we have a small constant, and this is a reference to
10477 an external symbol, we want
10478 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10479 nop
10480 addiu $tempreg,$tempreg,<constant>
10481 For a local symbol, we want the same instruction
10482 sequence, but we output a BFD_RELOC_LO16 reloc on the
10483 addiu instruction.
10484
10485 If we have a large constant, and this is a reference to
10486 an external symbol, we want
10487 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10488 lui $at,<hiconstant>
10489 addiu $at,$at,<loconstant>
10490 addu $tempreg,$tempreg,$at
10491 For a local symbol, we want the same instruction
10492 sequence, but we output a BFD_RELOC_LO16 reloc on the
10493 addiu instruction.
10494 */
10495
10496 if (offset_expr.X_add_number == 0)
10497 {
10498 if (mips_pic == SVR4_PIC
10499 && breg == 0
10500 && (call || tempreg == PIC_CALL_REG))
10501 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10502
10503 relax_start (offset_expr.X_add_symbol);
10504 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10505 lw_reloc_type, mips_gp_register);
10506 if (breg != 0)
10507 {
10508 /* We're going to put in an addu instruction using
10509 tempreg, so we may as well insert the nop right
10510 now. */
10511 load_delay_nop ();
10512 }
10513 relax_switch ();
10514 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10515 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10516 load_delay_nop ();
10517 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10518 tempreg, tempreg, BFD_RELOC_LO16);
10519 relax_end ();
10520 /* FIXME: If breg == 0, and the next instruction uses
10521 $tempreg, then if this variant case is used an extra
10522 nop will be generated. */
10523 }
10524 else if (offset_expr.X_add_number >= -0x8000
10525 && offset_expr.X_add_number < 0x8000)
10526 {
10527 load_got_offset (tempreg, &offset_expr);
10528 load_delay_nop ();
10529 add_got_offset (tempreg, &offset_expr);
10530 }
10531 else
10532 {
10533 expr1.X_add_number = offset_expr.X_add_number;
10534 offset_expr.X_add_number =
10535 SEXT_16BIT (offset_expr.X_add_number);
10536 load_got_offset (tempreg, &offset_expr);
10537 offset_expr.X_add_number = expr1.X_add_number;
10538 /* If we are going to add in a base register, and the
10539 target register and the base register are the same,
10540 then we are using AT as a temporary register. Since
10541 we want to load the constant into AT, we add our
10542 current AT (from the global offset table) and the
10543 register into the register now, and pretend we were
10544 not using a base register. */
10545 if (breg == op[0])
10546 {
10547 load_delay_nop ();
10548 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10549 op[0], AT, breg);
10550 breg = 0;
10551 tempreg = op[0];
10552 }
10553 add_got_offset_hilo (tempreg, &offset_expr, AT);
10554 used_at = 1;
10555 }
10556 }
10557 else if (!mips_big_got && HAVE_NEWABI)
10558 {
10559 int add_breg_early = 0;
10560
10561 /* If this is a reference to an external, and there is no
10562 constant, or local symbol (*), with or without a
10563 constant, we want
10564 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10565 or for lca or if tempreg is PIC_CALL_REG
10566 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10567
10568 If we have a small constant, and this is a reference to
10569 an external symbol, we want
10570 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10571 addiu $tempreg,$tempreg,<constant>
10572
10573 If we have a large constant, and this is a reference to
10574 an external symbol, we want
10575 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10576 lui $at,<hiconstant>
10577 addiu $at,$at,<loconstant>
10578 addu $tempreg,$tempreg,$at
10579
10580 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10581 local symbols, even though it introduces an additional
10582 instruction. */
10583
10584 if (offset_expr.X_add_number)
10585 {
10586 expr1.X_add_number = offset_expr.X_add_number;
10587 offset_expr.X_add_number = 0;
10588
10589 relax_start (offset_expr.X_add_symbol);
10590 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10591 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10592
10593 if (expr1.X_add_number >= -0x8000
10594 && expr1.X_add_number < 0x8000)
10595 {
10596 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10597 tempreg, tempreg, BFD_RELOC_LO16);
10598 }
10599 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10600 {
10601 unsigned int dreg;
10602
10603 /* If we are going to add in a base register, and the
10604 target register and the base register are the same,
10605 then we are using AT as a temporary register. Since
10606 we want to load the constant into AT, we add our
10607 current AT (from the global offset table) and the
10608 register into the register now, and pretend we were
10609 not using a base register. */
10610 if (breg != op[0])
10611 dreg = tempreg;
10612 else
10613 {
10614 gas_assert (tempreg == AT);
10615 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10616 op[0], AT, breg);
10617 dreg = op[0];
10618 add_breg_early = 1;
10619 }
10620
10621 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10622 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10623 dreg, dreg, AT);
10624
10625 used_at = 1;
10626 }
10627 else
10628 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10629
10630 relax_switch ();
10631 offset_expr.X_add_number = expr1.X_add_number;
10632
10633 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10634 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10635 if (add_breg_early)
10636 {
10637 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10638 op[0], tempreg, breg);
10639 breg = 0;
10640 tempreg = op[0];
10641 }
10642 relax_end ();
10643 }
10644 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10645 {
10646 relax_start (offset_expr.X_add_symbol);
10647 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10648 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10649 relax_switch ();
10650 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10651 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10652 relax_end ();
10653 }
10654 else
10655 {
10656 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10657 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10658 }
10659 }
10660 else if (mips_big_got && !HAVE_NEWABI)
10661 {
10662 int gpdelay;
10663 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10664 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10665 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10666
10667 /* This is the large GOT case. If this is a reference to an
10668 external symbol, and there is no constant, we want
10669 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10670 addu $tempreg,$tempreg,$gp
10671 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10672 or for lca or if tempreg is PIC_CALL_REG
10673 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10674 addu $tempreg,$tempreg,$gp
10675 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10676 For a local symbol, we want
10677 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10678 nop
10679 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10680
10681 If we have a small constant, and this is a reference to
10682 an external symbol, we want
10683 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10684 addu $tempreg,$tempreg,$gp
10685 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10686 nop
10687 addiu $tempreg,$tempreg,<constant>
10688 For a local symbol, we want
10689 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10690 nop
10691 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10692
10693 If we have a large constant, and this is a reference to
10694 an external symbol, we want
10695 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10696 addu $tempreg,$tempreg,$gp
10697 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10698 lui $at,<hiconstant>
10699 addiu $at,$at,<loconstant>
10700 addu $tempreg,$tempreg,$at
10701 For a local symbol, we want
10702 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10703 lui $at,<hiconstant>
10704 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10705 addu $tempreg,$tempreg,$at
10706 */
10707
10708 expr1.X_add_number = offset_expr.X_add_number;
10709 offset_expr.X_add_number = 0;
10710 relax_start (offset_expr.X_add_symbol);
10711 gpdelay = reg_needs_delay (mips_gp_register);
10712 if (expr1.X_add_number == 0 && breg == 0
10713 && (call || tempreg == PIC_CALL_REG))
10714 {
10715 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10716 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10717 }
10718 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10719 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10720 tempreg, tempreg, mips_gp_register);
10721 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10722 tempreg, lw_reloc_type, tempreg);
10723 if (expr1.X_add_number == 0)
10724 {
10725 if (breg != 0)
10726 {
10727 /* We're going to put in an addu instruction using
10728 tempreg, so we may as well insert the nop right
10729 now. */
10730 load_delay_nop ();
10731 }
10732 }
10733 else if (expr1.X_add_number >= -0x8000
10734 && expr1.X_add_number < 0x8000)
10735 {
10736 load_delay_nop ();
10737 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10738 tempreg, tempreg, BFD_RELOC_LO16);
10739 }
10740 else
10741 {
10742 unsigned int dreg;
10743
10744 /* If we are going to add in a base register, and the
10745 target register and the base register are the same,
10746 then we are using AT as a temporary register. Since
10747 we want to load the constant into AT, we add our
10748 current AT (from the global offset table) and the
10749 register into the register now, and pretend we were
10750 not using a base register. */
10751 if (breg != op[0])
10752 dreg = tempreg;
10753 else
10754 {
10755 gas_assert (tempreg == AT);
10756 load_delay_nop ();
10757 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10758 op[0], AT, breg);
10759 dreg = op[0];
10760 }
10761
10762 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10763 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10764
10765 used_at = 1;
10766 }
10767 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
10768 relax_switch ();
10769
10770 if (gpdelay)
10771 {
10772 /* This is needed because this instruction uses $gp, but
10773 the first instruction on the main stream does not. */
10774 macro_build (NULL, "nop", "");
10775 }
10776
10777 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10778 local_reloc_type, mips_gp_register);
10779 if (expr1.X_add_number >= -0x8000
10780 && expr1.X_add_number < 0x8000)
10781 {
10782 load_delay_nop ();
10783 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10784 tempreg, tempreg, BFD_RELOC_LO16);
10785 /* FIXME: If add_number is 0, and there was no base
10786 register, the external symbol case ended with a load,
10787 so if the symbol turns out to not be external, and
10788 the next instruction uses tempreg, an unnecessary nop
10789 will be inserted. */
10790 }
10791 else
10792 {
10793 if (breg == op[0])
10794 {
10795 /* We must add in the base register now, as in the
10796 external symbol case. */
10797 gas_assert (tempreg == AT);
10798 load_delay_nop ();
10799 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10800 op[0], AT, breg);
10801 tempreg = op[0];
10802 /* We set breg to 0 because we have arranged to add
10803 it in in both cases. */
10804 breg = 0;
10805 }
10806
10807 macro_build_lui (&expr1, AT);
10808 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10809 AT, AT, BFD_RELOC_LO16);
10810 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10811 tempreg, tempreg, AT);
10812 used_at = 1;
10813 }
10814 relax_end ();
10815 }
10816 else if (mips_big_got && HAVE_NEWABI)
10817 {
10818 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10819 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10820 int add_breg_early = 0;
10821
10822 /* This is the large GOT case. If this is a reference to an
10823 external symbol, and there is no constant, we want
10824 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10825 add $tempreg,$tempreg,$gp
10826 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10827 or for lca or if tempreg is PIC_CALL_REG
10828 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10829 add $tempreg,$tempreg,$gp
10830 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10831
10832 If we have a small constant, and this is a reference to
10833 an external symbol, we want
10834 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10835 add $tempreg,$tempreg,$gp
10836 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10837 addi $tempreg,$tempreg,<constant>
10838
10839 If we have a large constant, and this is a reference to
10840 an external symbol, we want
10841 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10842 addu $tempreg,$tempreg,$gp
10843 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10844 lui $at,<hiconstant>
10845 addi $at,$at,<loconstant>
10846 add $tempreg,$tempreg,$at
10847
10848 If we have NewABI, and we know it's a local symbol, we want
10849 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
10850 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
10851 otherwise we have to resort to GOT_HI16/GOT_LO16. */
10852
10853 relax_start (offset_expr.X_add_symbol);
10854
10855 expr1.X_add_number = offset_expr.X_add_number;
10856 offset_expr.X_add_number = 0;
10857
10858 if (expr1.X_add_number == 0 && breg == 0
10859 && (call || tempreg == PIC_CALL_REG))
10860 {
10861 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10862 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10863 }
10864 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10865 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10866 tempreg, tempreg, mips_gp_register);
10867 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10868 tempreg, lw_reloc_type, tempreg);
10869
10870 if (expr1.X_add_number == 0)
10871 ;
10872 else if (expr1.X_add_number >= -0x8000
10873 && expr1.X_add_number < 0x8000)
10874 {
10875 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10876 tempreg, tempreg, BFD_RELOC_LO16);
10877 }
10878 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10879 {
10880 unsigned int dreg;
10881
10882 /* If we are going to add in a base register, and the
10883 target register and the base register are the same,
10884 then we are using AT as a temporary register. Since
10885 we want to load the constant into AT, we add our
10886 current AT (from the global offset table) and the
10887 register into the register now, and pretend we were
10888 not using a base register. */
10889 if (breg != op[0])
10890 dreg = tempreg;
10891 else
10892 {
10893 gas_assert (tempreg == AT);
10894 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10895 op[0], AT, breg);
10896 dreg = op[0];
10897 add_breg_early = 1;
10898 }
10899
10900 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10901 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
10902
10903 used_at = 1;
10904 }
10905 else
10906 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10907
10908 relax_switch ();
10909 offset_expr.X_add_number = expr1.X_add_number;
10910 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10911 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
10912 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
10913 tempreg, BFD_RELOC_MIPS_GOT_OFST);
10914 if (add_breg_early)
10915 {
10916 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10917 op[0], tempreg, breg);
10918 breg = 0;
10919 tempreg = op[0];
10920 }
10921 relax_end ();
10922 }
10923 else
10924 abort ();
10925
10926 if (breg != 0)
10927 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
10928 break;
10929
10930 case M_MSGSND:
10931 gas_assert (!mips_opts.micromips);
10932 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
10933 break;
10934
10935 case M_MSGLD:
10936 gas_assert (!mips_opts.micromips);
10937 macro_build (NULL, "c2", "C", 0x02);
10938 break;
10939
10940 case M_MSGLD_T:
10941 gas_assert (!mips_opts.micromips);
10942 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
10943 break;
10944
10945 case M_MSGWAIT:
10946 gas_assert (!mips_opts.micromips);
10947 macro_build (NULL, "c2", "C", 3);
10948 break;
10949
10950 case M_MSGWAIT_T:
10951 gas_assert (!mips_opts.micromips);
10952 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
10953 break;
10954
10955 case M_J_A:
10956 /* The j instruction may not be used in PIC code, since it
10957 requires an absolute address. We convert it to a b
10958 instruction. */
10959 if (mips_pic == NO_PIC)
10960 macro_build (&offset_expr, "j", "a");
10961 else
10962 macro_build (&offset_expr, "b", "p");
10963 break;
10964
10965 /* The jal instructions must be handled as macros because when
10966 generating PIC code they expand to multi-instruction
10967 sequences. Normally they are simple instructions. */
10968 case M_JALS_1:
10969 op[1] = op[0];
10970 op[0] = RA;
10971 /* Fall through. */
10972 case M_JALS_2:
10973 gas_assert (mips_opts.micromips);
10974 if (mips_opts.insn32)
10975 {
10976 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
10977 break;
10978 }
10979 jals = 1;
10980 goto jal;
10981 case M_JAL_1:
10982 op[1] = op[0];
10983 op[0] = RA;
10984 /* Fall through. */
10985 case M_JAL_2:
10986 jal:
10987 if (mips_pic == NO_PIC)
10988 {
10989 s = jals ? "jalrs" : "jalr";
10990 if (mips_opts.micromips
10991 && !mips_opts.insn32
10992 && op[0] == RA
10993 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
10994 macro_build (NULL, s, "mj", op[1]);
10995 else
10996 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
10997 }
10998 else
10999 {
11000 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11001 && mips_cprestore_offset >= 0);
11002
11003 if (op[1] != PIC_CALL_REG)
11004 as_warn (_("MIPS PIC call to register other than $25"));
11005
11006 s = ((mips_opts.micromips
11007 && !mips_opts.insn32
11008 && (!mips_opts.noreorder || cprestore))
11009 ? "jalrs" : "jalr");
11010 if (mips_opts.micromips
11011 && !mips_opts.insn32
11012 && op[0] == RA
11013 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11014 macro_build (NULL, s, "mj", op[1]);
11015 else
11016 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11017 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11018 {
11019 if (mips_cprestore_offset < 0)
11020 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11021 else
11022 {
11023 if (!mips_frame_reg_valid)
11024 {
11025 as_warn (_("no .frame pseudo-op used in PIC code"));
11026 /* Quiet this warning. */
11027 mips_frame_reg_valid = 1;
11028 }
11029 if (!mips_cprestore_valid)
11030 {
11031 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11032 /* Quiet this warning. */
11033 mips_cprestore_valid = 1;
11034 }
11035 if (mips_opts.noreorder)
11036 macro_build (NULL, "nop", "");
11037 expr1.X_add_number = mips_cprestore_offset;
11038 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11039 mips_gp_register,
11040 mips_frame_reg,
11041 HAVE_64BIT_ADDRESSES);
11042 }
11043 }
11044 }
11045
11046 break;
11047
11048 case M_JALS_A:
11049 gas_assert (mips_opts.micromips);
11050 if (mips_opts.insn32)
11051 {
11052 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11053 break;
11054 }
11055 jals = 1;
11056 /* Fall through. */
11057 case M_JAL_A:
11058 if (mips_pic == NO_PIC)
11059 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11060 else if (mips_pic == SVR4_PIC)
11061 {
11062 /* If this is a reference to an external symbol, and we are
11063 using a small GOT, we want
11064 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11065 nop
11066 jalr $ra,$25
11067 nop
11068 lw $gp,cprestore($sp)
11069 The cprestore value is set using the .cprestore
11070 pseudo-op. If we are using a big GOT, we want
11071 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11072 addu $25,$25,$gp
11073 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11074 nop
11075 jalr $ra,$25
11076 nop
11077 lw $gp,cprestore($sp)
11078 If the symbol is not external, we want
11079 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11080 nop
11081 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11082 jalr $ra,$25
11083 nop
11084 lw $gp,cprestore($sp)
11085
11086 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11087 sequences above, minus nops, unless the symbol is local,
11088 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11089 GOT_DISP. */
11090 if (HAVE_NEWABI)
11091 {
11092 if (!mips_big_got)
11093 {
11094 relax_start (offset_expr.X_add_symbol);
11095 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11096 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11097 mips_gp_register);
11098 relax_switch ();
11099 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11100 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11101 mips_gp_register);
11102 relax_end ();
11103 }
11104 else
11105 {
11106 relax_start (offset_expr.X_add_symbol);
11107 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11108 BFD_RELOC_MIPS_CALL_HI16);
11109 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11110 PIC_CALL_REG, mips_gp_register);
11111 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11112 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11113 PIC_CALL_REG);
11114 relax_switch ();
11115 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11116 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11117 mips_gp_register);
11118 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11119 PIC_CALL_REG, PIC_CALL_REG,
11120 BFD_RELOC_MIPS_GOT_OFST);
11121 relax_end ();
11122 }
11123
11124 macro_build_jalr (&offset_expr, 0);
11125 }
11126 else
11127 {
11128 relax_start (offset_expr.X_add_symbol);
11129 if (!mips_big_got)
11130 {
11131 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11132 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11133 mips_gp_register);
11134 load_delay_nop ();
11135 relax_switch ();
11136 }
11137 else
11138 {
11139 int gpdelay;
11140
11141 gpdelay = reg_needs_delay (mips_gp_register);
11142 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11143 BFD_RELOC_MIPS_CALL_HI16);
11144 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11145 PIC_CALL_REG, mips_gp_register);
11146 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11147 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11148 PIC_CALL_REG);
11149 load_delay_nop ();
11150 relax_switch ();
11151 if (gpdelay)
11152 macro_build (NULL, "nop", "");
11153 }
11154 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11155 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11156 mips_gp_register);
11157 load_delay_nop ();
11158 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11159 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11160 relax_end ();
11161 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11162
11163 if (mips_cprestore_offset < 0)
11164 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11165 else
11166 {
11167 if (!mips_frame_reg_valid)
11168 {
11169 as_warn (_("no .frame pseudo-op used in PIC code"));
11170 /* Quiet this warning. */
11171 mips_frame_reg_valid = 1;
11172 }
11173 if (!mips_cprestore_valid)
11174 {
11175 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11176 /* Quiet this warning. */
11177 mips_cprestore_valid = 1;
11178 }
11179 if (mips_opts.noreorder)
11180 macro_build (NULL, "nop", "");
11181 expr1.X_add_number = mips_cprestore_offset;
11182 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11183 mips_gp_register,
11184 mips_frame_reg,
11185 HAVE_64BIT_ADDRESSES);
11186 }
11187 }
11188 }
11189 else if (mips_pic == VXWORKS_PIC)
11190 as_bad (_("non-PIC jump used in PIC library"));
11191 else
11192 abort ();
11193
11194 break;
11195
11196 case M_LBUE_AB:
11197 s = "lbue";
11198 fmt = "t,+j(b)";
11199 offbits = 9;
11200 goto ld_st;
11201 case M_LHUE_AB:
11202 s = "lhue";
11203 fmt = "t,+j(b)";
11204 offbits = 9;
11205 goto ld_st;
11206 case M_LBE_AB:
11207 s = "lbe";
11208 fmt = "t,+j(b)";
11209 offbits = 9;
11210 goto ld_st;
11211 case M_LHE_AB:
11212 s = "lhe";
11213 fmt = "t,+j(b)";
11214 offbits = 9;
11215 goto ld_st;
11216 case M_LLE_AB:
11217 s = "lle";
11218 fmt = "t,+j(b)";
11219 offbits = 9;
11220 goto ld_st;
11221 case M_LWE_AB:
11222 s = "lwe";
11223 fmt = "t,+j(b)";
11224 offbits = 9;
11225 goto ld_st;
11226 case M_LWLE_AB:
11227 s = "lwle";
11228 fmt = "t,+j(b)";
11229 offbits = 9;
11230 goto ld_st;
11231 case M_LWRE_AB:
11232 s = "lwre";
11233 fmt = "t,+j(b)";
11234 offbits = 9;
11235 goto ld_st;
11236 case M_SBE_AB:
11237 s = "sbe";
11238 fmt = "t,+j(b)";
11239 offbits = 9;
11240 goto ld_st;
11241 case M_SCE_AB:
11242 s = "sce";
11243 fmt = "t,+j(b)";
11244 offbits = 9;
11245 goto ld_st;
11246 case M_SHE_AB:
11247 s = "she";
11248 fmt = "t,+j(b)";
11249 offbits = 9;
11250 goto ld_st;
11251 case M_SWE_AB:
11252 s = "swe";
11253 fmt = "t,+j(b)";
11254 offbits = 9;
11255 goto ld_st;
11256 case M_SWLE_AB:
11257 s = "swle";
11258 fmt = "t,+j(b)";
11259 offbits = 9;
11260 goto ld_st;
11261 case M_SWRE_AB:
11262 s = "swre";
11263 fmt = "t,+j(b)";
11264 offbits = 9;
11265 goto ld_st;
11266 case M_ACLR_AB:
11267 s = "aclr";
11268 fmt = "\\,~(b)";
11269 offbits = 12;
11270 goto ld_st;
11271 case M_ASET_AB:
11272 s = "aset";
11273 fmt = "\\,~(b)";
11274 offbits = 12;
11275 goto ld_st;
11276 case M_LB_AB:
11277 s = "lb";
11278 fmt = "t,o(b)";
11279 goto ld;
11280 case M_LBU_AB:
11281 s = "lbu";
11282 fmt = "t,o(b)";
11283 goto ld;
11284 case M_LH_AB:
11285 s = "lh";
11286 fmt = "t,o(b)";
11287 goto ld;
11288 case M_LHU_AB:
11289 s = "lhu";
11290 fmt = "t,o(b)";
11291 goto ld;
11292 case M_LW_AB:
11293 s = "lw";
11294 fmt = "t,o(b)";
11295 goto ld;
11296 case M_LWC0_AB:
11297 gas_assert (!mips_opts.micromips);
11298 s = "lwc0";
11299 fmt = "E,o(b)";
11300 /* Itbl support may require additional care here. */
11301 coproc = 1;
11302 goto ld_st;
11303 case M_LWC1_AB:
11304 s = "lwc1";
11305 fmt = "T,o(b)";
11306 /* Itbl support may require additional care here. */
11307 coproc = 1;
11308 goto ld_st;
11309 case M_LWC2_AB:
11310 s = "lwc2";
11311 fmt = COP12_FMT;
11312 offbits = (mips_opts.micromips ? 12
11313 : ISA_IS_R6 (mips_opts.isa) ? 11
11314 : 16);
11315 /* Itbl support may require additional care here. */
11316 coproc = 1;
11317 goto ld_st;
11318 case M_LWC3_AB:
11319 gas_assert (!mips_opts.micromips);
11320 s = "lwc3";
11321 fmt = "E,o(b)";
11322 /* Itbl support may require additional care here. */
11323 coproc = 1;
11324 goto ld_st;
11325 case M_LWL_AB:
11326 s = "lwl";
11327 fmt = MEM12_FMT;
11328 offbits = (mips_opts.micromips ? 12 : 16);
11329 goto ld_st;
11330 case M_LWR_AB:
11331 s = "lwr";
11332 fmt = MEM12_FMT;
11333 offbits = (mips_opts.micromips ? 12 : 16);
11334 goto ld_st;
11335 case M_LDC1_AB:
11336 s = "ldc1";
11337 fmt = "T,o(b)";
11338 /* Itbl support may require additional care here. */
11339 coproc = 1;
11340 goto ld_st;
11341 case M_LDC2_AB:
11342 s = "ldc2";
11343 fmt = COP12_FMT;
11344 offbits = (mips_opts.micromips ? 12
11345 : ISA_IS_R6 (mips_opts.isa) ? 11
11346 : 16);
11347 /* Itbl support may require additional care here. */
11348 coproc = 1;
11349 goto ld_st;
11350 case M_LQC2_AB:
11351 s = "lqc2";
11352 fmt = "+7,o(b)";
11353 /* Itbl support may require additional care here. */
11354 coproc = 1;
11355 goto ld_st;
11356 case M_LDC3_AB:
11357 s = "ldc3";
11358 fmt = "E,o(b)";
11359 /* Itbl support may require additional care here. */
11360 coproc = 1;
11361 goto ld_st;
11362 case M_LDL_AB:
11363 s = "ldl";
11364 fmt = MEM12_FMT;
11365 offbits = (mips_opts.micromips ? 12 : 16);
11366 goto ld_st;
11367 case M_LDR_AB:
11368 s = "ldr";
11369 fmt = MEM12_FMT;
11370 offbits = (mips_opts.micromips ? 12 : 16);
11371 goto ld_st;
11372 case M_LL_AB:
11373 s = "ll";
11374 fmt = LL_SC_FMT;
11375 offbits = (mips_opts.micromips ? 12
11376 : ISA_IS_R6 (mips_opts.isa) ? 9
11377 : 16);
11378 goto ld;
11379 case M_LLD_AB:
11380 s = "lld";
11381 fmt = LL_SC_FMT;
11382 offbits = (mips_opts.micromips ? 12
11383 : ISA_IS_R6 (mips_opts.isa) ? 9
11384 : 16);
11385 goto ld;
11386 case M_LWU_AB:
11387 s = "lwu";
11388 fmt = MEM12_FMT;
11389 offbits = (mips_opts.micromips ? 12 : 16);
11390 goto ld;
11391 case M_LWP_AB:
11392 gas_assert (mips_opts.micromips);
11393 s = "lwp";
11394 fmt = "t,~(b)";
11395 offbits = 12;
11396 lp = 1;
11397 goto ld;
11398 case M_LDP_AB:
11399 gas_assert (mips_opts.micromips);
11400 s = "ldp";
11401 fmt = "t,~(b)";
11402 offbits = 12;
11403 lp = 1;
11404 goto ld;
11405 case M_LWM_AB:
11406 gas_assert (mips_opts.micromips);
11407 s = "lwm";
11408 fmt = "n,~(b)";
11409 offbits = 12;
11410 goto ld_st;
11411 case M_LDM_AB:
11412 gas_assert (mips_opts.micromips);
11413 s = "ldm";
11414 fmt = "n,~(b)";
11415 offbits = 12;
11416 goto ld_st;
11417
11418 ld:
11419 /* We don't want to use $0 as tempreg. */
11420 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11421 goto ld_st;
11422 else
11423 tempreg = op[0] + lp;
11424 goto ld_noat;
11425
11426 case M_SB_AB:
11427 s = "sb";
11428 fmt = "t,o(b)";
11429 goto ld_st;
11430 case M_SH_AB:
11431 s = "sh";
11432 fmt = "t,o(b)";
11433 goto ld_st;
11434 case M_SW_AB:
11435 s = "sw";
11436 fmt = "t,o(b)";
11437 goto ld_st;
11438 case M_SWC0_AB:
11439 gas_assert (!mips_opts.micromips);
11440 s = "swc0";
11441 fmt = "E,o(b)";
11442 /* Itbl support may require additional care here. */
11443 coproc = 1;
11444 goto ld_st;
11445 case M_SWC1_AB:
11446 s = "swc1";
11447 fmt = "T,o(b)";
11448 /* Itbl support may require additional care here. */
11449 coproc = 1;
11450 goto ld_st;
11451 case M_SWC2_AB:
11452 s = "swc2";
11453 fmt = COP12_FMT;
11454 offbits = (mips_opts.micromips ? 12
11455 : ISA_IS_R6 (mips_opts.isa) ? 11
11456 : 16);
11457 /* Itbl support may require additional care here. */
11458 coproc = 1;
11459 goto ld_st;
11460 case M_SWC3_AB:
11461 gas_assert (!mips_opts.micromips);
11462 s = "swc3";
11463 fmt = "E,o(b)";
11464 /* Itbl support may require additional care here. */
11465 coproc = 1;
11466 goto ld_st;
11467 case M_SWL_AB:
11468 s = "swl";
11469 fmt = MEM12_FMT;
11470 offbits = (mips_opts.micromips ? 12 : 16);
11471 goto ld_st;
11472 case M_SWR_AB:
11473 s = "swr";
11474 fmt = MEM12_FMT;
11475 offbits = (mips_opts.micromips ? 12 : 16);
11476 goto ld_st;
11477 case M_SC_AB:
11478 s = "sc";
11479 fmt = LL_SC_FMT;
11480 offbits = (mips_opts.micromips ? 12
11481 : ISA_IS_R6 (mips_opts.isa) ? 9
11482 : 16);
11483 goto ld_st;
11484 case M_SCD_AB:
11485 s = "scd";
11486 fmt = LL_SC_FMT;
11487 offbits = (mips_opts.micromips ? 12
11488 : ISA_IS_R6 (mips_opts.isa) ? 9
11489 : 16);
11490 goto ld_st;
11491 case M_CACHE_AB:
11492 s = "cache";
11493 fmt = (mips_opts.micromips ? "k,~(b)"
11494 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11495 : "k,o(b)");
11496 offbits = (mips_opts.micromips ? 12
11497 : ISA_IS_R6 (mips_opts.isa) ? 9
11498 : 16);
11499 goto ld_st;
11500 case M_CACHEE_AB:
11501 s = "cachee";
11502 fmt = "k,+j(b)";
11503 offbits = 9;
11504 goto ld_st;
11505 case M_PREF_AB:
11506 s = "pref";
11507 fmt = (mips_opts.micromips ? "k,~(b)"
11508 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11509 : "k,o(b)");
11510 offbits = (mips_opts.micromips ? 12
11511 : ISA_IS_R6 (mips_opts.isa) ? 9
11512 : 16);
11513 goto ld_st;
11514 case M_PREFE_AB:
11515 s = "prefe";
11516 fmt = "k,+j(b)";
11517 offbits = 9;
11518 goto ld_st;
11519 case M_SDC1_AB:
11520 s = "sdc1";
11521 fmt = "T,o(b)";
11522 coproc = 1;
11523 /* Itbl support may require additional care here. */
11524 goto ld_st;
11525 case M_SDC2_AB:
11526 s = "sdc2";
11527 fmt = COP12_FMT;
11528 offbits = (mips_opts.micromips ? 12
11529 : ISA_IS_R6 (mips_opts.isa) ? 11
11530 : 16);
11531 /* Itbl support may require additional care here. */
11532 coproc = 1;
11533 goto ld_st;
11534 case M_SQC2_AB:
11535 s = "sqc2";
11536 fmt = "+7,o(b)";
11537 /* Itbl support may require additional care here. */
11538 coproc = 1;
11539 goto ld_st;
11540 case M_SDC3_AB:
11541 gas_assert (!mips_opts.micromips);
11542 s = "sdc3";
11543 fmt = "E,o(b)";
11544 /* Itbl support may require additional care here. */
11545 coproc = 1;
11546 goto ld_st;
11547 case M_SDL_AB:
11548 s = "sdl";
11549 fmt = MEM12_FMT;
11550 offbits = (mips_opts.micromips ? 12 : 16);
11551 goto ld_st;
11552 case M_SDR_AB:
11553 s = "sdr";
11554 fmt = MEM12_FMT;
11555 offbits = (mips_opts.micromips ? 12 : 16);
11556 goto ld_st;
11557 case M_SWP_AB:
11558 gas_assert (mips_opts.micromips);
11559 s = "swp";
11560 fmt = "t,~(b)";
11561 offbits = 12;
11562 goto ld_st;
11563 case M_SDP_AB:
11564 gas_assert (mips_opts.micromips);
11565 s = "sdp";
11566 fmt = "t,~(b)";
11567 offbits = 12;
11568 goto ld_st;
11569 case M_SWM_AB:
11570 gas_assert (mips_opts.micromips);
11571 s = "swm";
11572 fmt = "n,~(b)";
11573 offbits = 12;
11574 goto ld_st;
11575 case M_SDM_AB:
11576 gas_assert (mips_opts.micromips);
11577 s = "sdm";
11578 fmt = "n,~(b)";
11579 offbits = 12;
11580
11581 ld_st:
11582 tempreg = AT;
11583 ld_noat:
11584 breg = op[2];
11585 if (small_offset_p (0, align, 16))
11586 {
11587 /* The first case exists for M_LD_AB and M_SD_AB, which are
11588 macros for o32 but which should act like normal instructions
11589 otherwise. */
11590 if (offbits == 16)
11591 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11592 offset_reloc[1], offset_reloc[2], breg);
11593 else if (small_offset_p (0, align, offbits))
11594 {
11595 if (offbits == 0)
11596 macro_build (NULL, s, fmt, op[0], breg);
11597 else
11598 macro_build (NULL, s, fmt, op[0],
11599 (int) offset_expr.X_add_number, breg);
11600 }
11601 else
11602 {
11603 if (tempreg == AT)
11604 used_at = 1;
11605 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11606 tempreg, breg, -1, offset_reloc[0],
11607 offset_reloc[1], offset_reloc[2]);
11608 if (offbits == 0)
11609 macro_build (NULL, s, fmt, op[0], tempreg);
11610 else
11611 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11612 }
11613 break;
11614 }
11615
11616 if (tempreg == AT)
11617 used_at = 1;
11618
11619 if (offset_expr.X_op != O_constant
11620 && offset_expr.X_op != O_symbol)
11621 {
11622 as_bad (_("expression too complex"));
11623 offset_expr.X_op = O_constant;
11624 }
11625
11626 if (HAVE_32BIT_ADDRESSES
11627 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11628 {
11629 char value [32];
11630
11631 sprintf_vma (value, offset_expr.X_add_number);
11632 as_bad (_("number (0x%s) larger than 32 bits"), value);
11633 }
11634
11635 /* A constant expression in PIC code can be handled just as it
11636 is in non PIC code. */
11637 if (offset_expr.X_op == O_constant)
11638 {
11639 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11640 offbits == 0 ? 16 : offbits);
11641 offset_expr.X_add_number -= expr1.X_add_number;
11642
11643 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11644 if (breg != 0)
11645 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11646 tempreg, tempreg, breg);
11647 if (offbits == 0)
11648 {
11649 if (offset_expr.X_add_number != 0)
11650 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11651 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11652 macro_build (NULL, s, fmt, op[0], tempreg);
11653 }
11654 else if (offbits == 16)
11655 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11656 else
11657 macro_build (NULL, s, fmt, op[0],
11658 (int) offset_expr.X_add_number, tempreg);
11659 }
11660 else if (offbits != 16)
11661 {
11662 /* The offset field is too narrow to be used for a low-part
11663 relocation, so load the whole address into the auxillary
11664 register. */
11665 load_address (tempreg, &offset_expr, &used_at);
11666 if (breg != 0)
11667 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11668 tempreg, tempreg, breg);
11669 if (offbits == 0)
11670 macro_build (NULL, s, fmt, op[0], tempreg);
11671 else
11672 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11673 }
11674 else if (mips_pic == NO_PIC)
11675 {
11676 /* If this is a reference to a GP relative symbol, and there
11677 is no base register, we want
11678 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11679 Otherwise, if there is no base register, we want
11680 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11681 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11682 If we have a constant, we need two instructions anyhow,
11683 so we always use the latter form.
11684
11685 If we have a base register, and this is a reference to a
11686 GP relative symbol, we want
11687 addu $tempreg,$breg,$gp
11688 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11689 Otherwise we want
11690 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11691 addu $tempreg,$tempreg,$breg
11692 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11693 With a constant we always use the latter case.
11694
11695 With 64bit address space and no base register and $at usable,
11696 we want
11697 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11698 lui $at,<sym> (BFD_RELOC_HI16_S)
11699 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11700 dsll32 $tempreg,0
11701 daddu $tempreg,$at
11702 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11703 If we have a base register, we want
11704 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11705 lui $at,<sym> (BFD_RELOC_HI16_S)
11706 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11707 daddu $at,$breg
11708 dsll32 $tempreg,0
11709 daddu $tempreg,$at
11710 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11711
11712 Without $at we can't generate the optimal path for superscalar
11713 processors here since this would require two temporary registers.
11714 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11715 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11716 dsll $tempreg,16
11717 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11718 dsll $tempreg,16
11719 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11720 If we have a base register, we want
11721 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11722 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11723 dsll $tempreg,16
11724 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11725 dsll $tempreg,16
11726 daddu $tempreg,$tempreg,$breg
11727 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11728
11729 For GP relative symbols in 64bit address space we can use
11730 the same sequence as in 32bit address space. */
11731 if (HAVE_64BIT_SYMBOLS)
11732 {
11733 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11734 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11735 {
11736 relax_start (offset_expr.X_add_symbol);
11737 if (breg == 0)
11738 {
11739 macro_build (&offset_expr, s, fmt, op[0],
11740 BFD_RELOC_GPREL16, mips_gp_register);
11741 }
11742 else
11743 {
11744 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11745 tempreg, breg, mips_gp_register);
11746 macro_build (&offset_expr, s, fmt, op[0],
11747 BFD_RELOC_GPREL16, tempreg);
11748 }
11749 relax_switch ();
11750 }
11751
11752 if (used_at == 0 && mips_opts.at)
11753 {
11754 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11755 BFD_RELOC_MIPS_HIGHEST);
11756 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11757 BFD_RELOC_HI16_S);
11758 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11759 tempreg, BFD_RELOC_MIPS_HIGHER);
11760 if (breg != 0)
11761 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
11762 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11763 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11764 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
11765 tempreg);
11766 used_at = 1;
11767 }
11768 else
11769 {
11770 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11771 BFD_RELOC_MIPS_HIGHEST);
11772 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11773 tempreg, BFD_RELOC_MIPS_HIGHER);
11774 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11775 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11776 tempreg, BFD_RELOC_HI16_S);
11777 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11778 if (breg != 0)
11779 macro_build (NULL, "daddu", "d,v,t",
11780 tempreg, tempreg, breg);
11781 macro_build (&offset_expr, s, fmt, op[0],
11782 BFD_RELOC_LO16, tempreg);
11783 }
11784
11785 if (mips_relax.sequence)
11786 relax_end ();
11787 break;
11788 }
11789
11790 if (breg == 0)
11791 {
11792 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11793 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11794 {
11795 relax_start (offset_expr.X_add_symbol);
11796 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
11797 mips_gp_register);
11798 relax_switch ();
11799 }
11800 macro_build_lui (&offset_expr, tempreg);
11801 macro_build (&offset_expr, s, fmt, op[0],
11802 BFD_RELOC_LO16, tempreg);
11803 if (mips_relax.sequence)
11804 relax_end ();
11805 }
11806 else
11807 {
11808 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11809 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11810 {
11811 relax_start (offset_expr.X_add_symbol);
11812 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11813 tempreg, breg, mips_gp_register);
11814 macro_build (&offset_expr, s, fmt, op[0],
11815 BFD_RELOC_GPREL16, tempreg);
11816 relax_switch ();
11817 }
11818 macro_build_lui (&offset_expr, tempreg);
11819 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11820 tempreg, tempreg, breg);
11821 macro_build (&offset_expr, s, fmt, op[0],
11822 BFD_RELOC_LO16, tempreg);
11823 if (mips_relax.sequence)
11824 relax_end ();
11825 }
11826 }
11827 else if (!mips_big_got)
11828 {
11829 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11830
11831 /* If this is a reference to an external symbol, we want
11832 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11833 nop
11834 <op> op[0],0($tempreg)
11835 Otherwise we want
11836 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11837 nop
11838 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11839 <op> op[0],0($tempreg)
11840
11841 For NewABI, we want
11842 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11843 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
11844
11845 If there is a base register, we add it to $tempreg before
11846 the <op>. If there is a constant, we stick it in the
11847 <op> instruction. We don't handle constants larger than
11848 16 bits, because we have no way to load the upper 16 bits
11849 (actually, we could handle them for the subset of cases
11850 in which we are not using $at). */
11851 gas_assert (offset_expr.X_op == O_symbol);
11852 if (HAVE_NEWABI)
11853 {
11854 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11855 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11856 if (breg != 0)
11857 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11858 tempreg, tempreg, breg);
11859 macro_build (&offset_expr, s, fmt, op[0],
11860 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11861 break;
11862 }
11863 expr1.X_add_number = offset_expr.X_add_number;
11864 offset_expr.X_add_number = 0;
11865 if (expr1.X_add_number < -0x8000
11866 || expr1.X_add_number >= 0x8000)
11867 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11868 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11869 lw_reloc_type, mips_gp_register);
11870 load_delay_nop ();
11871 relax_start (offset_expr.X_add_symbol);
11872 relax_switch ();
11873 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11874 tempreg, BFD_RELOC_LO16);
11875 relax_end ();
11876 if (breg != 0)
11877 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11878 tempreg, tempreg, breg);
11879 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11880 }
11881 else if (mips_big_got && !HAVE_NEWABI)
11882 {
11883 int gpdelay;
11884
11885 /* If this is a reference to an external symbol, we want
11886 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11887 addu $tempreg,$tempreg,$gp
11888 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11889 <op> op[0],0($tempreg)
11890 Otherwise we want
11891 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11892 nop
11893 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11894 <op> op[0],0($tempreg)
11895 If there is a base register, we add it to $tempreg before
11896 the <op>. If there is a constant, we stick it in the
11897 <op> instruction. We don't handle constants larger than
11898 16 bits, because we have no way to load the upper 16 bits
11899 (actually, we could handle them for the subset of cases
11900 in which we are not using $at). */
11901 gas_assert (offset_expr.X_op == O_symbol);
11902 expr1.X_add_number = offset_expr.X_add_number;
11903 offset_expr.X_add_number = 0;
11904 if (expr1.X_add_number < -0x8000
11905 || expr1.X_add_number >= 0x8000)
11906 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11907 gpdelay = reg_needs_delay (mips_gp_register);
11908 relax_start (offset_expr.X_add_symbol);
11909 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11910 BFD_RELOC_MIPS_GOT_HI16);
11911 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11912 mips_gp_register);
11913 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11914 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11915 relax_switch ();
11916 if (gpdelay)
11917 macro_build (NULL, "nop", "");
11918 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11919 BFD_RELOC_MIPS_GOT16, mips_gp_register);
11920 load_delay_nop ();
11921 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11922 tempreg, BFD_RELOC_LO16);
11923 relax_end ();
11924
11925 if (breg != 0)
11926 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11927 tempreg, tempreg, breg);
11928 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11929 }
11930 else if (mips_big_got && HAVE_NEWABI)
11931 {
11932 /* If this is a reference to an external symbol, we want
11933 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11934 add $tempreg,$tempreg,$gp
11935 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11936 <op> op[0],<ofst>($tempreg)
11937 Otherwise, for local symbols, we want:
11938 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11939 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
11940 gas_assert (offset_expr.X_op == O_symbol);
11941 expr1.X_add_number = offset_expr.X_add_number;
11942 offset_expr.X_add_number = 0;
11943 if (expr1.X_add_number < -0x8000
11944 || expr1.X_add_number >= 0x8000)
11945 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
11946 relax_start (offset_expr.X_add_symbol);
11947 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11948 BFD_RELOC_MIPS_GOT_HI16);
11949 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
11950 mips_gp_register);
11951 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11952 BFD_RELOC_MIPS_GOT_LO16, tempreg);
11953 if (breg != 0)
11954 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11955 tempreg, tempreg, breg);
11956 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11957
11958 relax_switch ();
11959 offset_expr.X_add_number = expr1.X_add_number;
11960 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11961 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11962 if (breg != 0)
11963 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11964 tempreg, tempreg, breg);
11965 macro_build (&offset_expr, s, fmt, op[0],
11966 BFD_RELOC_MIPS_GOT_OFST, tempreg);
11967 relax_end ();
11968 }
11969 else
11970 abort ();
11971
11972 break;
11973
11974 case M_JRADDIUSP:
11975 gas_assert (mips_opts.micromips);
11976 gas_assert (mips_opts.insn32);
11977 start_noreorder ();
11978 macro_build (NULL, "jr", "s", RA);
11979 expr1.X_add_number = op[0] << 2;
11980 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
11981 end_noreorder ();
11982 break;
11983
11984 case M_JRC:
11985 gas_assert (mips_opts.micromips);
11986 gas_assert (mips_opts.insn32);
11987 macro_build (NULL, "jr", "s", op[0]);
11988 if (mips_opts.noreorder)
11989 macro_build (NULL, "nop", "");
11990 break;
11991
11992 case M_LI:
11993 case M_LI_S:
11994 load_register (op[0], &imm_expr, 0);
11995 break;
11996
11997 case M_DLI:
11998 load_register (op[0], &imm_expr, 1);
11999 break;
12000
12001 case M_LI_SS:
12002 if (imm_expr.X_op == O_constant)
12003 {
12004 used_at = 1;
12005 load_register (AT, &imm_expr, 0);
12006 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12007 break;
12008 }
12009 else
12010 {
12011 gas_assert (imm_expr.X_op == O_absent
12012 && offset_expr.X_op == O_symbol
12013 && strcmp (segment_name (S_GET_SEGMENT
12014 (offset_expr.X_add_symbol)),
12015 ".lit4") == 0
12016 && offset_expr.X_add_number == 0);
12017 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12018 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12019 break;
12020 }
12021
12022 case M_LI_D:
12023 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12024 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12025 order 32 bits of the value and the low order 32 bits are either
12026 zero or in OFFSET_EXPR. */
12027 if (imm_expr.X_op == O_constant)
12028 {
12029 if (GPR_SIZE == 64)
12030 load_register (op[0], &imm_expr, 1);
12031 else
12032 {
12033 int hreg, lreg;
12034
12035 if (target_big_endian)
12036 {
12037 hreg = op[0];
12038 lreg = op[0] + 1;
12039 }
12040 else
12041 {
12042 hreg = op[0] + 1;
12043 lreg = op[0];
12044 }
12045
12046 if (hreg <= 31)
12047 load_register (hreg, &imm_expr, 0);
12048 if (lreg <= 31)
12049 {
12050 if (offset_expr.X_op == O_absent)
12051 move_register (lreg, 0);
12052 else
12053 {
12054 gas_assert (offset_expr.X_op == O_constant);
12055 load_register (lreg, &offset_expr, 0);
12056 }
12057 }
12058 }
12059 break;
12060 }
12061 gas_assert (imm_expr.X_op == O_absent);
12062
12063 /* We know that sym is in the .rdata section. First we get the
12064 upper 16 bits of the address. */
12065 if (mips_pic == NO_PIC)
12066 {
12067 macro_build_lui (&offset_expr, AT);
12068 used_at = 1;
12069 }
12070 else
12071 {
12072 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12073 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12074 used_at = 1;
12075 }
12076
12077 /* Now we load the register(s). */
12078 if (GPR_SIZE == 64)
12079 {
12080 used_at = 1;
12081 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12082 BFD_RELOC_LO16, AT);
12083 }
12084 else
12085 {
12086 used_at = 1;
12087 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12088 BFD_RELOC_LO16, AT);
12089 if (op[0] != RA)
12090 {
12091 /* FIXME: How in the world do we deal with the possible
12092 overflow here? */
12093 offset_expr.X_add_number += 4;
12094 macro_build (&offset_expr, "lw", "t,o(b)",
12095 op[0] + 1, BFD_RELOC_LO16, AT);
12096 }
12097 }
12098 break;
12099
12100 case M_LI_DD:
12101 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12102 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12103 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12104 the value and the low order 32 bits are either zero or in
12105 OFFSET_EXPR. */
12106 if (imm_expr.X_op == O_constant)
12107 {
12108 used_at = 1;
12109 load_register (AT, &imm_expr, FPR_SIZE == 64);
12110 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12111 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12112 else
12113 {
12114 if (ISA_HAS_MXHC1 (mips_opts.isa))
12115 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12116 else if (FPR_SIZE != 32)
12117 as_bad (_("Unable to generate `%s' compliant code "
12118 "without mthc1"),
12119 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12120 else
12121 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12122 if (offset_expr.X_op == O_absent)
12123 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12124 else
12125 {
12126 gas_assert (offset_expr.X_op == O_constant);
12127 load_register (AT, &offset_expr, 0);
12128 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12129 }
12130 }
12131 break;
12132 }
12133
12134 gas_assert (imm_expr.X_op == O_absent
12135 && offset_expr.X_op == O_symbol
12136 && offset_expr.X_add_number == 0);
12137 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12138 if (strcmp (s, ".lit8") == 0)
12139 {
12140 op[2] = mips_gp_register;
12141 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12142 offset_reloc[1] = BFD_RELOC_UNUSED;
12143 offset_reloc[2] = BFD_RELOC_UNUSED;
12144 }
12145 else
12146 {
12147 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12148 used_at = 1;
12149 if (mips_pic != NO_PIC)
12150 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12151 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12152 else
12153 {
12154 /* FIXME: This won't work for a 64 bit address. */
12155 macro_build_lui (&offset_expr, AT);
12156 }
12157
12158 op[2] = AT;
12159 offset_reloc[0] = BFD_RELOC_LO16;
12160 offset_reloc[1] = BFD_RELOC_UNUSED;
12161 offset_reloc[2] = BFD_RELOC_UNUSED;
12162 }
12163 align = 8;
12164 /* Fall through */
12165
12166 case M_L_DAB:
12167 /*
12168 * The MIPS assembler seems to check for X_add_number not
12169 * being double aligned and generating:
12170 * lui at,%hi(foo+1)
12171 * addu at,at,v1
12172 * addiu at,at,%lo(foo+1)
12173 * lwc1 f2,0(at)
12174 * lwc1 f3,4(at)
12175 * But, the resulting address is the same after relocation so why
12176 * generate the extra instruction?
12177 */
12178 /* Itbl support may require additional care here. */
12179 coproc = 1;
12180 fmt = "T,o(b)";
12181 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12182 {
12183 s = "ldc1";
12184 goto ld_st;
12185 }
12186 s = "lwc1";
12187 goto ldd_std;
12188
12189 case M_S_DAB:
12190 gas_assert (!mips_opts.micromips);
12191 /* Itbl support may require additional care here. */
12192 coproc = 1;
12193 fmt = "T,o(b)";
12194 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12195 {
12196 s = "sdc1";
12197 goto ld_st;
12198 }
12199 s = "swc1";
12200 goto ldd_std;
12201
12202 case M_LQ_AB:
12203 fmt = "t,o(b)";
12204 s = "lq";
12205 goto ld;
12206
12207 case M_SQ_AB:
12208 fmt = "t,o(b)";
12209 s = "sq";
12210 goto ld_st;
12211
12212 case M_LD_AB:
12213 fmt = "t,o(b)";
12214 if (GPR_SIZE == 64)
12215 {
12216 s = "ld";
12217 goto ld;
12218 }
12219 s = "lw";
12220 goto ldd_std;
12221
12222 case M_SD_AB:
12223 fmt = "t,o(b)";
12224 if (GPR_SIZE == 64)
12225 {
12226 s = "sd";
12227 goto ld_st;
12228 }
12229 s = "sw";
12230
12231 ldd_std:
12232 /* Even on a big endian machine $fn comes before $fn+1. We have
12233 to adjust when loading from memory. We set coproc if we must
12234 load $fn+1 first. */
12235 /* Itbl support may require additional care here. */
12236 if (!target_big_endian)
12237 coproc = 0;
12238
12239 breg = op[2];
12240 if (small_offset_p (0, align, 16))
12241 {
12242 ep = &offset_expr;
12243 if (!small_offset_p (4, align, 16))
12244 {
12245 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12246 -1, offset_reloc[0], offset_reloc[1],
12247 offset_reloc[2]);
12248 expr1.X_add_number = 0;
12249 ep = &expr1;
12250 breg = AT;
12251 used_at = 1;
12252 offset_reloc[0] = BFD_RELOC_LO16;
12253 offset_reloc[1] = BFD_RELOC_UNUSED;
12254 offset_reloc[2] = BFD_RELOC_UNUSED;
12255 }
12256 if (strcmp (s, "lw") == 0 && op[0] == breg)
12257 {
12258 ep->X_add_number += 4;
12259 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12260 offset_reloc[1], offset_reloc[2], breg);
12261 ep->X_add_number -= 4;
12262 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12263 offset_reloc[1], offset_reloc[2], breg);
12264 }
12265 else
12266 {
12267 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12268 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12269 breg);
12270 ep->X_add_number += 4;
12271 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12272 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12273 breg);
12274 }
12275 break;
12276 }
12277
12278 if (offset_expr.X_op != O_symbol
12279 && offset_expr.X_op != O_constant)
12280 {
12281 as_bad (_("expression too complex"));
12282 offset_expr.X_op = O_constant;
12283 }
12284
12285 if (HAVE_32BIT_ADDRESSES
12286 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12287 {
12288 char value [32];
12289
12290 sprintf_vma (value, offset_expr.X_add_number);
12291 as_bad (_("number (0x%s) larger than 32 bits"), value);
12292 }
12293
12294 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12295 {
12296 /* If this is a reference to a GP relative symbol, we want
12297 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12298 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12299 If we have a base register, we use this
12300 addu $at,$breg,$gp
12301 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12302 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12303 If this is not a GP relative symbol, we want
12304 lui $at,<sym> (BFD_RELOC_HI16_S)
12305 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12306 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12307 If there is a base register, we add it to $at after the
12308 lui instruction. If there is a constant, we always use
12309 the last case. */
12310 if (offset_expr.X_op == O_symbol
12311 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12312 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12313 {
12314 relax_start (offset_expr.X_add_symbol);
12315 if (breg == 0)
12316 {
12317 tempreg = mips_gp_register;
12318 }
12319 else
12320 {
12321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12322 AT, breg, mips_gp_register);
12323 tempreg = AT;
12324 used_at = 1;
12325 }
12326
12327 /* Itbl support may require additional care here. */
12328 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12329 BFD_RELOC_GPREL16, tempreg);
12330 offset_expr.X_add_number += 4;
12331
12332 /* Set mips_optimize to 2 to avoid inserting an
12333 undesired nop. */
12334 hold_mips_optimize = mips_optimize;
12335 mips_optimize = 2;
12336 /* Itbl support may require additional care here. */
12337 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12338 BFD_RELOC_GPREL16, tempreg);
12339 mips_optimize = hold_mips_optimize;
12340
12341 relax_switch ();
12342
12343 offset_expr.X_add_number -= 4;
12344 }
12345 used_at = 1;
12346 if (offset_high_part (offset_expr.X_add_number, 16)
12347 != offset_high_part (offset_expr.X_add_number + 4, 16))
12348 {
12349 load_address (AT, &offset_expr, &used_at);
12350 offset_expr.X_op = O_constant;
12351 offset_expr.X_add_number = 0;
12352 }
12353 else
12354 macro_build_lui (&offset_expr, AT);
12355 if (breg != 0)
12356 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12357 /* Itbl support may require additional care here. */
12358 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12359 BFD_RELOC_LO16, AT);
12360 /* FIXME: How do we handle overflow here? */
12361 offset_expr.X_add_number += 4;
12362 /* Itbl support may require additional care here. */
12363 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12364 BFD_RELOC_LO16, AT);
12365 if (mips_relax.sequence)
12366 relax_end ();
12367 }
12368 else if (!mips_big_got)
12369 {
12370 /* If this is a reference to an external symbol, we want
12371 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12372 nop
12373 <op> op[0],0($at)
12374 <op> op[0]+1,4($at)
12375 Otherwise we want
12376 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12377 nop
12378 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12379 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12380 If there is a base register we add it to $at before the
12381 lwc1 instructions. If there is a constant we include it
12382 in the lwc1 instructions. */
12383 used_at = 1;
12384 expr1.X_add_number = offset_expr.X_add_number;
12385 if (expr1.X_add_number < -0x8000
12386 || expr1.X_add_number >= 0x8000 - 4)
12387 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12388 load_got_offset (AT, &offset_expr);
12389 load_delay_nop ();
12390 if (breg != 0)
12391 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12392
12393 /* Set mips_optimize to 2 to avoid inserting an undesired
12394 nop. */
12395 hold_mips_optimize = mips_optimize;
12396 mips_optimize = 2;
12397
12398 /* Itbl support may require additional care here. */
12399 relax_start (offset_expr.X_add_symbol);
12400 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12401 BFD_RELOC_LO16, AT);
12402 expr1.X_add_number += 4;
12403 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12404 BFD_RELOC_LO16, AT);
12405 relax_switch ();
12406 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12407 BFD_RELOC_LO16, AT);
12408 offset_expr.X_add_number += 4;
12409 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12410 BFD_RELOC_LO16, AT);
12411 relax_end ();
12412
12413 mips_optimize = hold_mips_optimize;
12414 }
12415 else if (mips_big_got)
12416 {
12417 int gpdelay;
12418
12419 /* If this is a reference to an external symbol, we want
12420 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12421 addu $at,$at,$gp
12422 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12423 nop
12424 <op> op[0],0($at)
12425 <op> op[0]+1,4($at)
12426 Otherwise we want
12427 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12428 nop
12429 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12430 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12431 If there is a base register we add it to $at before the
12432 lwc1 instructions. If there is a constant we include it
12433 in the lwc1 instructions. */
12434 used_at = 1;
12435 expr1.X_add_number = offset_expr.X_add_number;
12436 offset_expr.X_add_number = 0;
12437 if (expr1.X_add_number < -0x8000
12438 || expr1.X_add_number >= 0x8000 - 4)
12439 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12440 gpdelay = reg_needs_delay (mips_gp_register);
12441 relax_start (offset_expr.X_add_symbol);
12442 macro_build (&offset_expr, "lui", LUI_FMT,
12443 AT, BFD_RELOC_MIPS_GOT_HI16);
12444 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12445 AT, AT, mips_gp_register);
12446 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12447 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12448 load_delay_nop ();
12449 if (breg != 0)
12450 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12451 /* Itbl support may require additional care here. */
12452 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12453 BFD_RELOC_LO16, AT);
12454 expr1.X_add_number += 4;
12455
12456 /* Set mips_optimize to 2 to avoid inserting an undesired
12457 nop. */
12458 hold_mips_optimize = mips_optimize;
12459 mips_optimize = 2;
12460 /* Itbl support may require additional care here. */
12461 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12462 BFD_RELOC_LO16, AT);
12463 mips_optimize = hold_mips_optimize;
12464 expr1.X_add_number -= 4;
12465
12466 relax_switch ();
12467 offset_expr.X_add_number = expr1.X_add_number;
12468 if (gpdelay)
12469 macro_build (NULL, "nop", "");
12470 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12471 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12472 load_delay_nop ();
12473 if (breg != 0)
12474 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12475 /* Itbl support may require additional care here. */
12476 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12477 BFD_RELOC_LO16, AT);
12478 offset_expr.X_add_number += 4;
12479
12480 /* Set mips_optimize to 2 to avoid inserting an undesired
12481 nop. */
12482 hold_mips_optimize = mips_optimize;
12483 mips_optimize = 2;
12484 /* Itbl support may require additional care here. */
12485 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12486 BFD_RELOC_LO16, AT);
12487 mips_optimize = hold_mips_optimize;
12488 relax_end ();
12489 }
12490 else
12491 abort ();
12492
12493 break;
12494
12495 case M_SAA_AB:
12496 s = "saa";
12497 goto saa_saad;
12498 case M_SAAD_AB:
12499 s = "saad";
12500 saa_saad:
12501 gas_assert (!mips_opts.micromips);
12502 offbits = 0;
12503 fmt = "t,(b)";
12504 goto ld_st;
12505
12506 /* New code added to support COPZ instructions.
12507 This code builds table entries out of the macros in mip_opcodes.
12508 R4000 uses interlocks to handle coproc delays.
12509 Other chips (like the R3000) require nops to be inserted for delays.
12510
12511 FIXME: Currently, we require that the user handle delays.
12512 In order to fill delay slots for non-interlocked chips,
12513 we must have a way to specify delays based on the coprocessor.
12514 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12515 What are the side-effects of the cop instruction?
12516 What cache support might we have and what are its effects?
12517 Both coprocessor & memory require delays. how long???
12518 What registers are read/set/modified?
12519
12520 If an itbl is provided to interpret cop instructions,
12521 this knowledge can be encoded in the itbl spec. */
12522
12523 case M_COP0:
12524 s = "c0";
12525 goto copz;
12526 case M_COP1:
12527 s = "c1";
12528 goto copz;
12529 case M_COP2:
12530 s = "c2";
12531 goto copz;
12532 case M_COP3:
12533 s = "c3";
12534 copz:
12535 gas_assert (!mips_opts.micromips);
12536 /* For now we just do C (same as Cz). The parameter will be
12537 stored in insn_opcode by mips_ip. */
12538 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12539 break;
12540
12541 case M_MOVE:
12542 move_register (op[0], op[1]);
12543 break;
12544
12545 case M_MOVEP:
12546 gas_assert (mips_opts.micromips);
12547 gas_assert (mips_opts.insn32);
12548 move_register (micromips_to_32_reg_h_map1[op[0]],
12549 micromips_to_32_reg_m_map[op[1]]);
12550 move_register (micromips_to_32_reg_h_map2[op[0]],
12551 micromips_to_32_reg_n_map[op[2]]);
12552 break;
12553
12554 case M_DMUL:
12555 dbl = 1;
12556 case M_MUL:
12557 if (mips_opts.arch == CPU_R5900)
12558 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12559 op[2]);
12560 else
12561 {
12562 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12563 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12564 }
12565 break;
12566
12567 case M_DMUL_I:
12568 dbl = 1;
12569 case M_MUL_I:
12570 /* The MIPS assembler some times generates shifts and adds. I'm
12571 not trying to be that fancy. GCC should do this for us
12572 anyway. */
12573 used_at = 1;
12574 load_register (AT, &imm_expr, dbl);
12575 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12576 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12577 break;
12578
12579 case M_DMULO_I:
12580 dbl = 1;
12581 case M_MULO_I:
12582 imm = 1;
12583 goto do_mulo;
12584
12585 case M_DMULO:
12586 dbl = 1;
12587 case M_MULO:
12588 do_mulo:
12589 start_noreorder ();
12590 used_at = 1;
12591 if (imm)
12592 load_register (AT, &imm_expr, dbl);
12593 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12594 op[1], imm ? AT : op[2]);
12595 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12596 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12597 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12598 if (mips_trap)
12599 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12600 else
12601 {
12602 if (mips_opts.micromips)
12603 micromips_label_expr (&label_expr);
12604 else
12605 label_expr.X_add_number = 8;
12606 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12607 macro_build (NULL, "nop", "");
12608 macro_build (NULL, "break", BRK_FMT, 6);
12609 if (mips_opts.micromips)
12610 micromips_add_label ();
12611 }
12612 end_noreorder ();
12613 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12614 break;
12615
12616 case M_DMULOU_I:
12617 dbl = 1;
12618 case M_MULOU_I:
12619 imm = 1;
12620 goto do_mulou;
12621
12622 case M_DMULOU:
12623 dbl = 1;
12624 case M_MULOU:
12625 do_mulou:
12626 start_noreorder ();
12627 used_at = 1;
12628 if (imm)
12629 load_register (AT, &imm_expr, dbl);
12630 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12631 op[1], imm ? AT : op[2]);
12632 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12633 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12634 if (mips_trap)
12635 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12636 else
12637 {
12638 if (mips_opts.micromips)
12639 micromips_label_expr (&label_expr);
12640 else
12641 label_expr.X_add_number = 8;
12642 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12643 macro_build (NULL, "nop", "");
12644 macro_build (NULL, "break", BRK_FMT, 6);
12645 if (mips_opts.micromips)
12646 micromips_add_label ();
12647 }
12648 end_noreorder ();
12649 break;
12650
12651 case M_DROL:
12652 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12653 {
12654 if (op[0] == op[1])
12655 {
12656 tempreg = AT;
12657 used_at = 1;
12658 }
12659 else
12660 tempreg = op[0];
12661 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12662 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12663 break;
12664 }
12665 used_at = 1;
12666 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12667 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12668 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12669 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12670 break;
12671
12672 case M_ROL:
12673 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12674 {
12675 if (op[0] == op[1])
12676 {
12677 tempreg = AT;
12678 used_at = 1;
12679 }
12680 else
12681 tempreg = op[0];
12682 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12683 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12684 break;
12685 }
12686 used_at = 1;
12687 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12688 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12689 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12690 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12691 break;
12692
12693 case M_DROL_I:
12694 {
12695 unsigned int rot;
12696 char *l;
12697 char *rr;
12698
12699 rot = imm_expr.X_add_number & 0x3f;
12700 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12701 {
12702 rot = (64 - rot) & 0x3f;
12703 if (rot >= 32)
12704 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12705 else
12706 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12707 break;
12708 }
12709 if (rot == 0)
12710 {
12711 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12712 break;
12713 }
12714 l = (rot < 0x20) ? "dsll" : "dsll32";
12715 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12716 rot &= 0x1f;
12717 used_at = 1;
12718 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12719 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12720 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12721 }
12722 break;
12723
12724 case M_ROL_I:
12725 {
12726 unsigned int rot;
12727
12728 rot = imm_expr.X_add_number & 0x1f;
12729 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12730 {
12731 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12732 (32 - rot) & 0x1f);
12733 break;
12734 }
12735 if (rot == 0)
12736 {
12737 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12738 break;
12739 }
12740 used_at = 1;
12741 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12742 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12743 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12744 }
12745 break;
12746
12747 case M_DROR:
12748 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12749 {
12750 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12751 break;
12752 }
12753 used_at = 1;
12754 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12755 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
12756 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
12757 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12758 break;
12759
12760 case M_ROR:
12761 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12762 {
12763 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
12764 break;
12765 }
12766 used_at = 1;
12767 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12768 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
12769 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
12770 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12771 break;
12772
12773 case M_DROR_I:
12774 {
12775 unsigned int rot;
12776 char *l;
12777 char *rr;
12778
12779 rot = imm_expr.X_add_number & 0x3f;
12780 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12781 {
12782 if (rot >= 32)
12783 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12784 else
12785 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12786 break;
12787 }
12788 if (rot == 0)
12789 {
12790 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12791 break;
12792 }
12793 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
12794 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
12795 rot &= 0x1f;
12796 used_at = 1;
12797 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
12798 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12799 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12800 }
12801 break;
12802
12803 case M_ROR_I:
12804 {
12805 unsigned int rot;
12806
12807 rot = imm_expr.X_add_number & 0x1f;
12808 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12809 {
12810 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
12811 break;
12812 }
12813 if (rot == 0)
12814 {
12815 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12816 break;
12817 }
12818 used_at = 1;
12819 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
12820 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12821 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12822 }
12823 break;
12824
12825 case M_SEQ:
12826 if (op[1] == 0)
12827 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
12828 else if (op[2] == 0)
12829 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12830 else
12831 {
12832 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12833 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12834 }
12835 break;
12836
12837 case M_SEQ_I:
12838 if (imm_expr.X_add_number == 0)
12839 {
12840 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12841 break;
12842 }
12843 if (op[1] == 0)
12844 {
12845 as_warn (_("instruction %s: result is always false"),
12846 ip->insn_mo->name);
12847 move_register (op[0], 0);
12848 break;
12849 }
12850 if (CPU_HAS_SEQ (mips_opts.arch)
12851 && -512 <= imm_expr.X_add_number
12852 && imm_expr.X_add_number < 512)
12853 {
12854 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
12855 (int) imm_expr.X_add_number);
12856 break;
12857 }
12858 if (imm_expr.X_add_number >= 0
12859 && imm_expr.X_add_number < 0x10000)
12860 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
12861 else if (imm_expr.X_add_number > -0x8000
12862 && imm_expr.X_add_number < 0)
12863 {
12864 imm_expr.X_add_number = -imm_expr.X_add_number;
12865 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
12866 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
12867 }
12868 else if (CPU_HAS_SEQ (mips_opts.arch))
12869 {
12870 used_at = 1;
12871 load_register (AT, &imm_expr, GPR_SIZE == 64);
12872 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
12873 break;
12874 }
12875 else
12876 {
12877 load_register (AT, &imm_expr, GPR_SIZE == 64);
12878 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
12879 used_at = 1;
12880 }
12881 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
12882 break;
12883
12884 case M_SGE: /* X >= Y <==> not (X < Y) */
12885 s = "slt";
12886 goto sge;
12887 case M_SGEU:
12888 s = "sltu";
12889 sge:
12890 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
12891 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12892 break;
12893
12894 case M_SGE_I: /* X >= I <==> not (X < I) */
12895 case M_SGEU_I:
12896 if (imm_expr.X_add_number >= -0x8000
12897 && imm_expr.X_add_number < 0x8000)
12898 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
12899 op[0], op[1], BFD_RELOC_LO16);
12900 else
12901 {
12902 load_register (AT, &imm_expr, GPR_SIZE == 64);
12903 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
12904 op[0], op[1], AT);
12905 used_at = 1;
12906 }
12907 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12908 break;
12909
12910 case M_SGT: /* X > Y <==> Y < X */
12911 s = "slt";
12912 goto sgt;
12913 case M_SGTU:
12914 s = "sltu";
12915 sgt:
12916 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12917 break;
12918
12919 case M_SGT_I: /* X > I <==> I < X */
12920 s = "slt";
12921 goto sgti;
12922 case M_SGTU_I:
12923 s = "sltu";
12924 sgti:
12925 used_at = 1;
12926 load_register (AT, &imm_expr, GPR_SIZE == 64);
12927 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12928 break;
12929
12930 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
12931 s = "slt";
12932 goto sle;
12933 case M_SLEU:
12934 s = "sltu";
12935 sle:
12936 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
12937 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12938 break;
12939
12940 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
12941 s = "slt";
12942 goto slei;
12943 case M_SLEU_I:
12944 s = "sltu";
12945 slei:
12946 used_at = 1;
12947 load_register (AT, &imm_expr, GPR_SIZE == 64);
12948 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
12949 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
12950 break;
12951
12952 case M_SLT_I:
12953 if (imm_expr.X_add_number >= -0x8000
12954 && imm_expr.X_add_number < 0x8000)
12955 {
12956 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
12957 BFD_RELOC_LO16);
12958 break;
12959 }
12960 used_at = 1;
12961 load_register (AT, &imm_expr, GPR_SIZE == 64);
12962 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
12963 break;
12964
12965 case M_SLTU_I:
12966 if (imm_expr.X_add_number >= -0x8000
12967 && imm_expr.X_add_number < 0x8000)
12968 {
12969 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
12970 BFD_RELOC_LO16);
12971 break;
12972 }
12973 used_at = 1;
12974 load_register (AT, &imm_expr, GPR_SIZE == 64);
12975 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
12976 break;
12977
12978 case M_SNE:
12979 if (op[1] == 0)
12980 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
12981 else if (op[2] == 0)
12982 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12983 else
12984 {
12985 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
12986 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
12987 }
12988 break;
12989
12990 case M_SNE_I:
12991 if (imm_expr.X_add_number == 0)
12992 {
12993 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
12994 break;
12995 }
12996 if (op[1] == 0)
12997 {
12998 as_warn (_("instruction %s: result is always true"),
12999 ip->insn_mo->name);
13000 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13001 op[0], 0, BFD_RELOC_LO16);
13002 break;
13003 }
13004 if (CPU_HAS_SEQ (mips_opts.arch)
13005 && -512 <= imm_expr.X_add_number
13006 && imm_expr.X_add_number < 512)
13007 {
13008 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13009 (int) imm_expr.X_add_number);
13010 break;
13011 }
13012 if (imm_expr.X_add_number >= 0
13013 && imm_expr.X_add_number < 0x10000)
13014 {
13015 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13016 BFD_RELOC_LO16);
13017 }
13018 else if (imm_expr.X_add_number > -0x8000
13019 && imm_expr.X_add_number < 0)
13020 {
13021 imm_expr.X_add_number = -imm_expr.X_add_number;
13022 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13023 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13024 }
13025 else if (CPU_HAS_SEQ (mips_opts.arch))
13026 {
13027 used_at = 1;
13028 load_register (AT, &imm_expr, GPR_SIZE == 64);
13029 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13030 break;
13031 }
13032 else
13033 {
13034 load_register (AT, &imm_expr, GPR_SIZE == 64);
13035 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13036 used_at = 1;
13037 }
13038 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13039 break;
13040
13041 case M_SUB_I:
13042 s = "addi";
13043 s2 = "sub";
13044 goto do_subi;
13045 case M_SUBU_I:
13046 s = "addiu";
13047 s2 = "subu";
13048 goto do_subi;
13049 case M_DSUB_I:
13050 dbl = 1;
13051 s = "daddi";
13052 s2 = "dsub";
13053 if (!mips_opts.micromips)
13054 goto do_subi;
13055 if (imm_expr.X_add_number > -0x200
13056 && imm_expr.X_add_number <= 0x200)
13057 {
13058 macro_build (NULL, s, "t,r,.", op[0], op[1],
13059 (int) -imm_expr.X_add_number);
13060 break;
13061 }
13062 goto do_subi_i;
13063 case M_DSUBU_I:
13064 dbl = 1;
13065 s = "daddiu";
13066 s2 = "dsubu";
13067 do_subi:
13068 if (imm_expr.X_add_number > -0x8000
13069 && imm_expr.X_add_number <= 0x8000)
13070 {
13071 imm_expr.X_add_number = -imm_expr.X_add_number;
13072 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13073 break;
13074 }
13075 do_subi_i:
13076 used_at = 1;
13077 load_register (AT, &imm_expr, dbl);
13078 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13079 break;
13080
13081 case M_TEQ_I:
13082 s = "teq";
13083 goto trap;
13084 case M_TGE_I:
13085 s = "tge";
13086 goto trap;
13087 case M_TGEU_I:
13088 s = "tgeu";
13089 goto trap;
13090 case M_TLT_I:
13091 s = "tlt";
13092 goto trap;
13093 case M_TLTU_I:
13094 s = "tltu";
13095 goto trap;
13096 case M_TNE_I:
13097 s = "tne";
13098 trap:
13099 used_at = 1;
13100 load_register (AT, &imm_expr, GPR_SIZE == 64);
13101 macro_build (NULL, s, "s,t", op[0], AT);
13102 break;
13103
13104 case M_TRUNCWS:
13105 case M_TRUNCWD:
13106 gas_assert (!mips_opts.micromips);
13107 gas_assert (mips_opts.isa == ISA_MIPS1);
13108 used_at = 1;
13109
13110 /*
13111 * Is the double cfc1 instruction a bug in the mips assembler;
13112 * or is there a reason for it?
13113 */
13114 start_noreorder ();
13115 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13116 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13117 macro_build (NULL, "nop", "");
13118 expr1.X_add_number = 3;
13119 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13120 expr1.X_add_number = 2;
13121 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13122 macro_build (NULL, "ctc1", "t,G", AT, RA);
13123 macro_build (NULL, "nop", "");
13124 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13125 op[0], op[1]);
13126 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13127 macro_build (NULL, "nop", "");
13128 end_noreorder ();
13129 break;
13130
13131 case M_ULH_AB:
13132 s = "lb";
13133 s2 = "lbu";
13134 off = 1;
13135 goto uld_st;
13136 case M_ULHU_AB:
13137 s = "lbu";
13138 s2 = "lbu";
13139 off = 1;
13140 goto uld_st;
13141 case M_ULW_AB:
13142 s = "lwl";
13143 s2 = "lwr";
13144 offbits = (mips_opts.micromips ? 12 : 16);
13145 off = 3;
13146 goto uld_st;
13147 case M_ULD_AB:
13148 s = "ldl";
13149 s2 = "ldr";
13150 offbits = (mips_opts.micromips ? 12 : 16);
13151 off = 7;
13152 goto uld_st;
13153 case M_USH_AB:
13154 s = "sb";
13155 s2 = "sb";
13156 off = 1;
13157 ust = 1;
13158 goto uld_st;
13159 case M_USW_AB:
13160 s = "swl";
13161 s2 = "swr";
13162 offbits = (mips_opts.micromips ? 12 : 16);
13163 off = 3;
13164 ust = 1;
13165 goto uld_st;
13166 case M_USD_AB:
13167 s = "sdl";
13168 s2 = "sdr";
13169 offbits = (mips_opts.micromips ? 12 : 16);
13170 off = 7;
13171 ust = 1;
13172
13173 uld_st:
13174 breg = op[2];
13175 large_offset = !small_offset_p (off, align, offbits);
13176 ep = &offset_expr;
13177 expr1.X_add_number = 0;
13178 if (large_offset)
13179 {
13180 used_at = 1;
13181 tempreg = AT;
13182 if (small_offset_p (0, align, 16))
13183 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13184 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13185 else
13186 {
13187 load_address (tempreg, ep, &used_at);
13188 if (breg != 0)
13189 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13190 tempreg, tempreg, breg);
13191 }
13192 offset_reloc[0] = BFD_RELOC_LO16;
13193 offset_reloc[1] = BFD_RELOC_UNUSED;
13194 offset_reloc[2] = BFD_RELOC_UNUSED;
13195 breg = tempreg;
13196 tempreg = op[0];
13197 ep = &expr1;
13198 }
13199 else if (!ust && op[0] == breg)
13200 {
13201 used_at = 1;
13202 tempreg = AT;
13203 }
13204 else
13205 tempreg = op[0];
13206
13207 if (off == 1)
13208 goto ulh_sh;
13209
13210 if (!target_big_endian)
13211 ep->X_add_number += off;
13212 if (offbits == 12)
13213 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13214 else
13215 macro_build (ep, s, "t,o(b)", tempreg, -1,
13216 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13217
13218 if (!target_big_endian)
13219 ep->X_add_number -= off;
13220 else
13221 ep->X_add_number += off;
13222 if (offbits == 12)
13223 macro_build (NULL, s2, "t,~(b)",
13224 tempreg, (int) ep->X_add_number, breg);
13225 else
13226 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13227 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13228
13229 /* If necessary, move the result in tempreg to the final destination. */
13230 if (!ust && op[0] != tempreg)
13231 {
13232 /* Protect second load's delay slot. */
13233 load_delay_nop ();
13234 move_register (op[0], tempreg);
13235 }
13236 break;
13237
13238 ulh_sh:
13239 used_at = 1;
13240 if (target_big_endian == ust)
13241 ep->X_add_number += off;
13242 tempreg = ust || large_offset ? op[0] : AT;
13243 macro_build (ep, s, "t,o(b)", tempreg, -1,
13244 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13245
13246 /* For halfword transfers we need a temporary register to shuffle
13247 bytes. Unfortunately for M_USH_A we have none available before
13248 the next store as AT holds the base address. We deal with this
13249 case by clobbering TREG and then restoring it as with ULH. */
13250 tempreg = ust == large_offset ? op[0] : AT;
13251 if (ust)
13252 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13253
13254 if (target_big_endian == ust)
13255 ep->X_add_number -= off;
13256 else
13257 ep->X_add_number += off;
13258 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13259 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13260
13261 /* For M_USH_A re-retrieve the LSB. */
13262 if (ust && large_offset)
13263 {
13264 if (target_big_endian)
13265 ep->X_add_number += off;
13266 else
13267 ep->X_add_number -= off;
13268 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13269 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13270 }
13271 /* For ULH and M_USH_A OR the LSB in. */
13272 if (!ust || large_offset)
13273 {
13274 tempreg = !large_offset ? AT : op[0];
13275 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13276 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13277 }
13278 break;
13279
13280 default:
13281 /* FIXME: Check if this is one of the itbl macros, since they
13282 are added dynamically. */
13283 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13284 break;
13285 }
13286 if (!mips_opts.at && used_at)
13287 as_bad (_("macro used $at after \".set noat\""));
13288 }
13289
13290 /* Implement macros in mips16 mode. */
13291
13292 static void
13293 mips16_macro (struct mips_cl_insn *ip)
13294 {
13295 const struct mips_operand_array *operands;
13296 int mask;
13297 int tmp;
13298 expressionS expr1;
13299 int dbl;
13300 const char *s, *s2, *s3;
13301 unsigned int op[MAX_OPERANDS];
13302 unsigned int i;
13303
13304 mask = ip->insn_mo->mask;
13305
13306 operands = insn_operands (ip);
13307 for (i = 0; i < MAX_OPERANDS; i++)
13308 if (operands->operand[i])
13309 op[i] = insn_extract_operand (ip, operands->operand[i]);
13310 else
13311 op[i] = -1;
13312
13313 expr1.X_op = O_constant;
13314 expr1.X_op_symbol = NULL;
13315 expr1.X_add_symbol = NULL;
13316 expr1.X_add_number = 1;
13317
13318 dbl = 0;
13319
13320 switch (mask)
13321 {
13322 default:
13323 abort ();
13324
13325 case M_DDIV_3:
13326 dbl = 1;
13327 case M_DIV_3:
13328 s = "mflo";
13329 goto do_div3;
13330 case M_DREM_3:
13331 dbl = 1;
13332 case M_REM_3:
13333 s = "mfhi";
13334 do_div3:
13335 start_noreorder ();
13336 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", op[1], op[2]);
13337 expr1.X_add_number = 2;
13338 macro_build (&expr1, "bnez", "x,p", op[2]);
13339 macro_build (NULL, "break", "6", 7);
13340
13341 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13342 since that causes an overflow. We should do that as well,
13343 but I don't see how to do the comparisons without a temporary
13344 register. */
13345 end_noreorder ();
13346 macro_build (NULL, s, "x", op[0]);
13347 break;
13348
13349 case M_DIVU_3:
13350 s = "divu";
13351 s2 = "mflo";
13352 goto do_divu3;
13353 case M_REMU_3:
13354 s = "divu";
13355 s2 = "mfhi";
13356 goto do_divu3;
13357 case M_DDIVU_3:
13358 s = "ddivu";
13359 s2 = "mflo";
13360 goto do_divu3;
13361 case M_DREMU_3:
13362 s = "ddivu";
13363 s2 = "mfhi";
13364 do_divu3:
13365 start_noreorder ();
13366 macro_build (NULL, s, "0,x,y", op[1], op[2]);
13367 expr1.X_add_number = 2;
13368 macro_build (&expr1, "bnez", "x,p", op[2]);
13369 macro_build (NULL, "break", "6", 7);
13370 end_noreorder ();
13371 macro_build (NULL, s2, "x", op[0]);
13372 break;
13373
13374 case M_DMUL:
13375 dbl = 1;
13376 case M_MUL:
13377 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13378 macro_build (NULL, "mflo", "x", op[0]);
13379 break;
13380
13381 case M_DSUBU_I:
13382 dbl = 1;
13383 goto do_subu;
13384 case M_SUBU_I:
13385 do_subu:
13386 imm_expr.X_add_number = -imm_expr.X_add_number;
13387 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", op[0], op[1]);
13388 break;
13389
13390 case M_SUBU_I_2:
13391 imm_expr.X_add_number = -imm_expr.X_add_number;
13392 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13393 break;
13394
13395 case M_DSUBU_I_2:
13396 imm_expr.X_add_number = -imm_expr.X_add_number;
13397 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13398 break;
13399
13400 case M_BEQ:
13401 s = "cmp";
13402 s2 = "bteqz";
13403 goto do_branch;
13404 case M_BNE:
13405 s = "cmp";
13406 s2 = "btnez";
13407 goto do_branch;
13408 case M_BLT:
13409 s = "slt";
13410 s2 = "btnez";
13411 goto do_branch;
13412 case M_BLTU:
13413 s = "sltu";
13414 s2 = "btnez";
13415 goto do_branch;
13416 case M_BLE:
13417 s = "slt";
13418 s2 = "bteqz";
13419 goto do_reverse_branch;
13420 case M_BLEU:
13421 s = "sltu";
13422 s2 = "bteqz";
13423 goto do_reverse_branch;
13424 case M_BGE:
13425 s = "slt";
13426 s2 = "bteqz";
13427 goto do_branch;
13428 case M_BGEU:
13429 s = "sltu";
13430 s2 = "bteqz";
13431 goto do_branch;
13432 case M_BGT:
13433 s = "slt";
13434 s2 = "btnez";
13435 goto do_reverse_branch;
13436 case M_BGTU:
13437 s = "sltu";
13438 s2 = "btnez";
13439
13440 do_reverse_branch:
13441 tmp = op[1];
13442 op[1] = op[0];
13443 op[0] = tmp;
13444
13445 do_branch:
13446 macro_build (NULL, s, "x,y", op[0], op[1]);
13447 macro_build (&offset_expr, s2, "p");
13448 break;
13449
13450 case M_BEQ_I:
13451 s = "cmpi";
13452 s2 = "bteqz";
13453 s3 = "x,U";
13454 goto do_branch_i;
13455 case M_BNE_I:
13456 s = "cmpi";
13457 s2 = "btnez";
13458 s3 = "x,U";
13459 goto do_branch_i;
13460 case M_BLT_I:
13461 s = "slti";
13462 s2 = "btnez";
13463 s3 = "x,8";
13464 goto do_branch_i;
13465 case M_BLTU_I:
13466 s = "sltiu";
13467 s2 = "btnez";
13468 s3 = "x,8";
13469 goto do_branch_i;
13470 case M_BLE_I:
13471 s = "slti";
13472 s2 = "btnez";
13473 s3 = "x,8";
13474 goto do_addone_branch_i;
13475 case M_BLEU_I:
13476 s = "sltiu";
13477 s2 = "btnez";
13478 s3 = "x,8";
13479 goto do_addone_branch_i;
13480 case M_BGE_I:
13481 s = "slti";
13482 s2 = "bteqz";
13483 s3 = "x,8";
13484 goto do_branch_i;
13485 case M_BGEU_I:
13486 s = "sltiu";
13487 s2 = "bteqz";
13488 s3 = "x,8";
13489 goto do_branch_i;
13490 case M_BGT_I:
13491 s = "slti";
13492 s2 = "bteqz";
13493 s3 = "x,8";
13494 goto do_addone_branch_i;
13495 case M_BGTU_I:
13496 s = "sltiu";
13497 s2 = "bteqz";
13498 s3 = "x,8";
13499
13500 do_addone_branch_i:
13501 ++imm_expr.X_add_number;
13502
13503 do_branch_i:
13504 macro_build (&imm_expr, s, s3, op[0]);
13505 macro_build (&offset_expr, s2, "p");
13506 break;
13507
13508 case M_ABS:
13509 expr1.X_add_number = 0;
13510 macro_build (&expr1, "slti", "x,8", op[1]);
13511 if (op[0] != op[1])
13512 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13513 expr1.X_add_number = 2;
13514 macro_build (&expr1, "bteqz", "p");
13515 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13516 break;
13517 }
13518 }
13519
13520 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13521 opcode bits in *OPCODE_EXTRA. */
13522
13523 static struct mips_opcode *
13524 mips_lookup_insn (struct hash_control *hash, const char *start,
13525 ssize_t length, unsigned int *opcode_extra)
13526 {
13527 char *name, *dot, *p;
13528 unsigned int mask, suffix;
13529 ssize_t opend;
13530 struct mips_opcode *insn;
13531
13532 /* Make a copy of the instruction so that we can fiddle with it. */
13533 name = alloca (length + 1);
13534 memcpy (name, start, length);
13535 name[length] = '\0';
13536
13537 /* Look up the instruction as-is. */
13538 insn = (struct mips_opcode *) hash_find (hash, name);
13539 if (insn)
13540 return insn;
13541
13542 dot = strchr (name, '.');
13543 if (dot && dot[1])
13544 {
13545 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13546 p = mips_parse_vu0_channels (dot + 1, &mask);
13547 if (*p == 0 && mask != 0)
13548 {
13549 *dot = 0;
13550 insn = (struct mips_opcode *) hash_find (hash, name);
13551 *dot = '.';
13552 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13553 {
13554 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13555 return insn;
13556 }
13557 }
13558 }
13559
13560 if (mips_opts.micromips)
13561 {
13562 /* See if there's an instruction size override suffix,
13563 either `16' or `32', at the end of the mnemonic proper,
13564 that defines the operation, i.e. before the first `.'
13565 character if any. Strip it and retry. */
13566 opend = dot != NULL ? dot - name : length;
13567 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13568 suffix = 2;
13569 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13570 suffix = 4;
13571 else
13572 suffix = 0;
13573 if (suffix)
13574 {
13575 memcpy (name + opend - 2, name + opend, length - opend + 1);
13576 insn = (struct mips_opcode *) hash_find (hash, name);
13577 if (insn)
13578 {
13579 forced_insn_length = suffix;
13580 return insn;
13581 }
13582 }
13583 }
13584
13585 return NULL;
13586 }
13587
13588 /* Assemble an instruction into its binary format. If the instruction
13589 is a macro, set imm_expr and offset_expr to the values associated
13590 with "I" and "A" operands respectively. Otherwise store the value
13591 of the relocatable field (if any) in offset_expr. In both cases
13592 set offset_reloc to the relocation operators applied to offset_expr. */
13593
13594 static void
13595 mips_ip (char *str, struct mips_cl_insn *insn)
13596 {
13597 const struct mips_opcode *first, *past;
13598 struct hash_control *hash;
13599 char format;
13600 size_t end;
13601 struct mips_operand_token *tokens;
13602 unsigned int opcode_extra;
13603
13604 if (mips_opts.micromips)
13605 {
13606 hash = micromips_op_hash;
13607 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13608 }
13609 else
13610 {
13611 hash = op_hash;
13612 past = &mips_opcodes[NUMOPCODES];
13613 }
13614 forced_insn_length = 0;
13615 opcode_extra = 0;
13616
13617 /* We first try to match an instruction up to a space or to the end. */
13618 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13619 continue;
13620
13621 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13622 if (first == NULL)
13623 {
13624 set_insn_error (0, _("unrecognized opcode"));
13625 return;
13626 }
13627
13628 if (strcmp (first->name, "li.s") == 0)
13629 format = 'f';
13630 else if (strcmp (first->name, "li.d") == 0)
13631 format = 'd';
13632 else
13633 format = 0;
13634 tokens = mips_parse_arguments (str + end, format);
13635 if (!tokens)
13636 return;
13637
13638 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13639 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13640 set_insn_error (0, _("invalid operands"));
13641
13642 obstack_free (&mips_operand_tokens, tokens);
13643 }
13644
13645 /* As for mips_ip, but used when assembling MIPS16 code.
13646 Also set forced_insn_length to the resulting instruction size in
13647 bytes if the user explicitly requested a small or extended instruction. */
13648
13649 static void
13650 mips16_ip (char *str, struct mips_cl_insn *insn)
13651 {
13652 char *end, *s, c;
13653 struct mips_opcode *first;
13654 struct mips_operand_token *tokens;
13655
13656 forced_insn_length = 0;
13657
13658 for (s = str; ISLOWER (*s); ++s)
13659 ;
13660 end = s;
13661 c = *end;
13662 switch (c)
13663 {
13664 case '\0':
13665 break;
13666
13667 case ' ':
13668 s++;
13669 break;
13670
13671 case '.':
13672 if (s[1] == 't' && s[2] == ' ')
13673 {
13674 forced_insn_length = 2;
13675 s += 3;
13676 break;
13677 }
13678 else if (s[1] == 'e' && s[2] == ' ')
13679 {
13680 forced_insn_length = 4;
13681 s += 3;
13682 break;
13683 }
13684 /* Fall through. */
13685 default:
13686 set_insn_error (0, _("unrecognized opcode"));
13687 return;
13688 }
13689
13690 if (mips_opts.noautoextend && !forced_insn_length)
13691 forced_insn_length = 2;
13692
13693 *end = 0;
13694 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13695 *end = c;
13696
13697 if (!first)
13698 {
13699 set_insn_error (0, _("unrecognized opcode"));
13700 return;
13701 }
13702
13703 tokens = mips_parse_arguments (s, 0);
13704 if (!tokens)
13705 return;
13706
13707 if (!match_mips16_insns (insn, first, tokens))
13708 set_insn_error (0, _("invalid operands"));
13709
13710 obstack_free (&mips_operand_tokens, tokens);
13711 }
13712
13713 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13714 NBITS is the number of significant bits in VAL. */
13715
13716 static unsigned long
13717 mips16_immed_extend (offsetT val, unsigned int nbits)
13718 {
13719 int extval;
13720 if (nbits == 16)
13721 {
13722 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13723 val &= 0x1f;
13724 }
13725 else if (nbits == 15)
13726 {
13727 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13728 val &= 0xf;
13729 }
13730 else
13731 {
13732 extval = ((val & 0x1f) << 6) | (val & 0x20);
13733 val = 0;
13734 }
13735 return (extval << 16) | val;
13736 }
13737
13738 /* Like decode_mips16_operand, but require the operand to be defined and
13739 require it to be an integer. */
13740
13741 static const struct mips_int_operand *
13742 mips16_immed_operand (int type, bfd_boolean extended_p)
13743 {
13744 const struct mips_operand *operand;
13745
13746 operand = decode_mips16_operand (type, extended_p);
13747 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13748 abort ();
13749 return (const struct mips_int_operand *) operand;
13750 }
13751
13752 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
13753
13754 static bfd_boolean
13755 mips16_immed_in_range_p (const struct mips_int_operand *operand,
13756 bfd_reloc_code_real_type reloc, offsetT sval)
13757 {
13758 int min_val, max_val;
13759
13760 min_val = mips_int_operand_min (operand);
13761 max_val = mips_int_operand_max (operand);
13762 if (reloc != BFD_RELOC_UNUSED)
13763 {
13764 if (min_val < 0)
13765 sval = SEXT_16BIT (sval);
13766 else
13767 sval &= 0xffff;
13768 }
13769
13770 return (sval >= min_val
13771 && sval <= max_val
13772 && (sval & ((1 << operand->shift) - 1)) == 0);
13773 }
13774
13775 /* Install immediate value VAL into MIPS16 instruction *INSN,
13776 extending it if necessary. The instruction in *INSN may
13777 already be extended.
13778
13779 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
13780 if none. In the former case, VAL is a 16-bit number with no
13781 defined signedness.
13782
13783 TYPE is the type of the immediate field. USER_INSN_LENGTH
13784 is the length that the user requested, or 0 if none. */
13785
13786 static void
13787 mips16_immed (const char *file, unsigned int line, int type,
13788 bfd_reloc_code_real_type reloc, offsetT val,
13789 unsigned int user_insn_length, unsigned long *insn)
13790 {
13791 const struct mips_int_operand *operand;
13792 unsigned int uval, length;
13793
13794 operand = mips16_immed_operand (type, FALSE);
13795 if (!mips16_immed_in_range_p (operand, reloc, val))
13796 {
13797 /* We need an extended instruction. */
13798 if (user_insn_length == 2)
13799 as_bad_where (file, line, _("invalid unextended operand value"));
13800 else
13801 *insn |= MIPS16_EXTEND;
13802 }
13803 else if (user_insn_length == 4)
13804 {
13805 /* The operand doesn't force an unextended instruction to be extended.
13806 Warn if the user wanted an extended instruction anyway. */
13807 *insn |= MIPS16_EXTEND;
13808 as_warn_where (file, line,
13809 _("extended operand requested but not required"));
13810 }
13811
13812 length = mips16_opcode_length (*insn);
13813 if (length == 4)
13814 {
13815 operand = mips16_immed_operand (type, TRUE);
13816 if (!mips16_immed_in_range_p (operand, reloc, val))
13817 as_bad_where (file, line,
13818 _("operand value out of range for instruction"));
13819 }
13820 uval = ((unsigned int) val >> operand->shift) - operand->bias;
13821 if (length == 2)
13822 *insn = mips_insert_operand (&operand->root, *insn, uval);
13823 else
13824 *insn |= mips16_immed_extend (uval, operand->root.size);
13825 }
13826 \f
13827 struct percent_op_match
13828 {
13829 const char *str;
13830 bfd_reloc_code_real_type reloc;
13831 };
13832
13833 static const struct percent_op_match mips_percent_op[] =
13834 {
13835 {"%lo", BFD_RELOC_LO16},
13836 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
13837 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
13838 {"%call16", BFD_RELOC_MIPS_CALL16},
13839 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
13840 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
13841 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
13842 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
13843 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
13844 {"%got", BFD_RELOC_MIPS_GOT16},
13845 {"%gp_rel", BFD_RELOC_GPREL16},
13846 {"%half", BFD_RELOC_16},
13847 {"%highest", BFD_RELOC_MIPS_HIGHEST},
13848 {"%higher", BFD_RELOC_MIPS_HIGHER},
13849 {"%neg", BFD_RELOC_MIPS_SUB},
13850 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
13851 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
13852 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
13853 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
13854 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
13855 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
13856 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
13857 {"%hi", BFD_RELOC_HI16_S},
13858 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
13859 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
13860 };
13861
13862 static const struct percent_op_match mips16_percent_op[] =
13863 {
13864 {"%lo", BFD_RELOC_MIPS16_LO16},
13865 {"%gprel", BFD_RELOC_MIPS16_GPREL},
13866 {"%got", BFD_RELOC_MIPS16_GOT16},
13867 {"%call16", BFD_RELOC_MIPS16_CALL16},
13868 {"%hi", BFD_RELOC_MIPS16_HI16_S},
13869 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
13870 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
13871 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
13872 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
13873 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
13874 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
13875 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
13876 };
13877
13878
13879 /* Return true if *STR points to a relocation operator. When returning true,
13880 move *STR over the operator and store its relocation code in *RELOC.
13881 Leave both *STR and *RELOC alone when returning false. */
13882
13883 static bfd_boolean
13884 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
13885 {
13886 const struct percent_op_match *percent_op;
13887 size_t limit, i;
13888
13889 if (mips_opts.mips16)
13890 {
13891 percent_op = mips16_percent_op;
13892 limit = ARRAY_SIZE (mips16_percent_op);
13893 }
13894 else
13895 {
13896 percent_op = mips_percent_op;
13897 limit = ARRAY_SIZE (mips_percent_op);
13898 }
13899
13900 for (i = 0; i < limit; i++)
13901 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
13902 {
13903 int len = strlen (percent_op[i].str);
13904
13905 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
13906 continue;
13907
13908 *str += strlen (percent_op[i].str);
13909 *reloc = percent_op[i].reloc;
13910
13911 /* Check whether the output BFD supports this relocation.
13912 If not, issue an error and fall back on something safe. */
13913 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
13914 {
13915 as_bad (_("relocation %s isn't supported by the current ABI"),
13916 percent_op[i].str);
13917 *reloc = BFD_RELOC_UNUSED;
13918 }
13919 return TRUE;
13920 }
13921 return FALSE;
13922 }
13923
13924
13925 /* Parse string STR as a 16-bit relocatable operand. Store the
13926 expression in *EP and the relocations in the array starting
13927 at RELOC. Return the number of relocation operators used.
13928
13929 On exit, EXPR_END points to the first character after the expression. */
13930
13931 static size_t
13932 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
13933 char *str)
13934 {
13935 bfd_reloc_code_real_type reversed_reloc[3];
13936 size_t reloc_index, i;
13937 int crux_depth, str_depth;
13938 char *crux;
13939
13940 /* Search for the start of the main expression, recoding relocations
13941 in REVERSED_RELOC. End the loop with CRUX pointing to the start
13942 of the main expression and with CRUX_DEPTH containing the number
13943 of open brackets at that point. */
13944 reloc_index = -1;
13945 str_depth = 0;
13946 do
13947 {
13948 reloc_index++;
13949 crux = str;
13950 crux_depth = str_depth;
13951
13952 /* Skip over whitespace and brackets, keeping count of the number
13953 of brackets. */
13954 while (*str == ' ' || *str == '\t' || *str == '(')
13955 if (*str++ == '(')
13956 str_depth++;
13957 }
13958 while (*str == '%'
13959 && reloc_index < (HAVE_NEWABI ? 3 : 1)
13960 && parse_relocation (&str, &reversed_reloc[reloc_index]));
13961
13962 my_getExpression (ep, crux);
13963 str = expr_end;
13964
13965 /* Match every open bracket. */
13966 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
13967 if (*str++ == ')')
13968 crux_depth--;
13969
13970 if (crux_depth > 0)
13971 as_bad (_("unclosed '('"));
13972
13973 expr_end = str;
13974
13975 if (reloc_index != 0)
13976 {
13977 prev_reloc_op_frag = frag_now;
13978 for (i = 0; i < reloc_index; i++)
13979 reloc[i] = reversed_reloc[reloc_index - 1 - i];
13980 }
13981
13982 return reloc_index;
13983 }
13984
13985 static void
13986 my_getExpression (expressionS *ep, char *str)
13987 {
13988 char *save_in;
13989
13990 save_in = input_line_pointer;
13991 input_line_pointer = str;
13992 expression (ep);
13993 expr_end = input_line_pointer;
13994 input_line_pointer = save_in;
13995 }
13996
13997 char *
13998 md_atof (int type, char *litP, int *sizeP)
13999 {
14000 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14001 }
14002
14003 void
14004 md_number_to_chars (char *buf, valueT val, int n)
14005 {
14006 if (target_big_endian)
14007 number_to_chars_bigendian (buf, val, n);
14008 else
14009 number_to_chars_littleendian (buf, val, n);
14010 }
14011 \f
14012 static int support_64bit_objects(void)
14013 {
14014 const char **list, **l;
14015 int yes;
14016
14017 list = bfd_target_list ();
14018 for (l = list; *l != NULL; l++)
14019 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14020 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14021 break;
14022 yes = (*l != NULL);
14023 free (list);
14024 return yes;
14025 }
14026
14027 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14028 NEW_VALUE. Warn if another value was already specified. Note:
14029 we have to defer parsing the -march and -mtune arguments in order
14030 to handle 'from-abi' correctly, since the ABI might be specified
14031 in a later argument. */
14032
14033 static void
14034 mips_set_option_string (const char **string_ptr, const char *new_value)
14035 {
14036 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14037 as_warn (_("a different %s was already specified, is now %s"),
14038 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14039 new_value);
14040
14041 *string_ptr = new_value;
14042 }
14043
14044 int
14045 md_parse_option (int c, char *arg)
14046 {
14047 unsigned int i;
14048
14049 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14050 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14051 {
14052 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14053 c == mips_ases[i].option_on);
14054 return 1;
14055 }
14056
14057 switch (c)
14058 {
14059 case OPTION_CONSTRUCT_FLOATS:
14060 mips_disable_float_construction = 0;
14061 break;
14062
14063 case OPTION_NO_CONSTRUCT_FLOATS:
14064 mips_disable_float_construction = 1;
14065 break;
14066
14067 case OPTION_TRAP:
14068 mips_trap = 1;
14069 break;
14070
14071 case OPTION_BREAK:
14072 mips_trap = 0;
14073 break;
14074
14075 case OPTION_EB:
14076 target_big_endian = 1;
14077 break;
14078
14079 case OPTION_EL:
14080 target_big_endian = 0;
14081 break;
14082
14083 case 'O':
14084 if (arg == NULL)
14085 mips_optimize = 1;
14086 else if (arg[0] == '0')
14087 mips_optimize = 0;
14088 else if (arg[0] == '1')
14089 mips_optimize = 1;
14090 else
14091 mips_optimize = 2;
14092 break;
14093
14094 case 'g':
14095 if (arg == NULL)
14096 mips_debug = 2;
14097 else
14098 mips_debug = atoi (arg);
14099 break;
14100
14101 case OPTION_MIPS1:
14102 file_mips_opts.isa = ISA_MIPS1;
14103 break;
14104
14105 case OPTION_MIPS2:
14106 file_mips_opts.isa = ISA_MIPS2;
14107 break;
14108
14109 case OPTION_MIPS3:
14110 file_mips_opts.isa = ISA_MIPS3;
14111 break;
14112
14113 case OPTION_MIPS4:
14114 file_mips_opts.isa = ISA_MIPS4;
14115 break;
14116
14117 case OPTION_MIPS5:
14118 file_mips_opts.isa = ISA_MIPS5;
14119 break;
14120
14121 case OPTION_MIPS32:
14122 file_mips_opts.isa = ISA_MIPS32;
14123 break;
14124
14125 case OPTION_MIPS32R2:
14126 file_mips_opts.isa = ISA_MIPS32R2;
14127 break;
14128
14129 case OPTION_MIPS32R3:
14130 file_mips_opts.isa = ISA_MIPS32R3;
14131 break;
14132
14133 case OPTION_MIPS32R5:
14134 file_mips_opts.isa = ISA_MIPS32R5;
14135 break;
14136
14137 case OPTION_MIPS32R6:
14138 file_mips_opts.isa = ISA_MIPS32R6;
14139 break;
14140
14141 case OPTION_MIPS64R2:
14142 file_mips_opts.isa = ISA_MIPS64R2;
14143 break;
14144
14145 case OPTION_MIPS64R3:
14146 file_mips_opts.isa = ISA_MIPS64R3;
14147 break;
14148
14149 case OPTION_MIPS64R5:
14150 file_mips_opts.isa = ISA_MIPS64R5;
14151 break;
14152
14153 case OPTION_MIPS64R6:
14154 file_mips_opts.isa = ISA_MIPS64R6;
14155 break;
14156
14157 case OPTION_MIPS64:
14158 file_mips_opts.isa = ISA_MIPS64;
14159 break;
14160
14161 case OPTION_MTUNE:
14162 mips_set_option_string (&mips_tune_string, arg);
14163 break;
14164
14165 case OPTION_MARCH:
14166 mips_set_option_string (&mips_arch_string, arg);
14167 break;
14168
14169 case OPTION_M4650:
14170 mips_set_option_string (&mips_arch_string, "4650");
14171 mips_set_option_string (&mips_tune_string, "4650");
14172 break;
14173
14174 case OPTION_NO_M4650:
14175 break;
14176
14177 case OPTION_M4010:
14178 mips_set_option_string (&mips_arch_string, "4010");
14179 mips_set_option_string (&mips_tune_string, "4010");
14180 break;
14181
14182 case OPTION_NO_M4010:
14183 break;
14184
14185 case OPTION_M4100:
14186 mips_set_option_string (&mips_arch_string, "4100");
14187 mips_set_option_string (&mips_tune_string, "4100");
14188 break;
14189
14190 case OPTION_NO_M4100:
14191 break;
14192
14193 case OPTION_M3900:
14194 mips_set_option_string (&mips_arch_string, "3900");
14195 mips_set_option_string (&mips_tune_string, "3900");
14196 break;
14197
14198 case OPTION_NO_M3900:
14199 break;
14200
14201 case OPTION_MICROMIPS:
14202 if (file_mips_opts.mips16 == 1)
14203 {
14204 as_bad (_("-mmicromips cannot be used with -mips16"));
14205 return 0;
14206 }
14207 file_mips_opts.micromips = 1;
14208 mips_no_prev_insn ();
14209 break;
14210
14211 case OPTION_NO_MICROMIPS:
14212 file_mips_opts.micromips = 0;
14213 mips_no_prev_insn ();
14214 break;
14215
14216 case OPTION_MIPS16:
14217 if (file_mips_opts.micromips == 1)
14218 {
14219 as_bad (_("-mips16 cannot be used with -micromips"));
14220 return 0;
14221 }
14222 file_mips_opts.mips16 = 1;
14223 mips_no_prev_insn ();
14224 break;
14225
14226 case OPTION_NO_MIPS16:
14227 file_mips_opts.mips16 = 0;
14228 mips_no_prev_insn ();
14229 break;
14230
14231 case OPTION_FIX_24K:
14232 mips_fix_24k = 1;
14233 break;
14234
14235 case OPTION_NO_FIX_24K:
14236 mips_fix_24k = 0;
14237 break;
14238
14239 case OPTION_FIX_RM7000:
14240 mips_fix_rm7000 = 1;
14241 break;
14242
14243 case OPTION_NO_FIX_RM7000:
14244 mips_fix_rm7000 = 0;
14245 break;
14246
14247 case OPTION_FIX_LOONGSON2F_JUMP:
14248 mips_fix_loongson2f_jump = TRUE;
14249 break;
14250
14251 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14252 mips_fix_loongson2f_jump = FALSE;
14253 break;
14254
14255 case OPTION_FIX_LOONGSON2F_NOP:
14256 mips_fix_loongson2f_nop = TRUE;
14257 break;
14258
14259 case OPTION_NO_FIX_LOONGSON2F_NOP:
14260 mips_fix_loongson2f_nop = FALSE;
14261 break;
14262
14263 case OPTION_FIX_VR4120:
14264 mips_fix_vr4120 = 1;
14265 break;
14266
14267 case OPTION_NO_FIX_VR4120:
14268 mips_fix_vr4120 = 0;
14269 break;
14270
14271 case OPTION_FIX_VR4130:
14272 mips_fix_vr4130 = 1;
14273 break;
14274
14275 case OPTION_NO_FIX_VR4130:
14276 mips_fix_vr4130 = 0;
14277 break;
14278
14279 case OPTION_FIX_CN63XXP1:
14280 mips_fix_cn63xxp1 = TRUE;
14281 break;
14282
14283 case OPTION_NO_FIX_CN63XXP1:
14284 mips_fix_cn63xxp1 = FALSE;
14285 break;
14286
14287 case OPTION_RELAX_BRANCH:
14288 mips_relax_branch = 1;
14289 break;
14290
14291 case OPTION_NO_RELAX_BRANCH:
14292 mips_relax_branch = 0;
14293 break;
14294
14295 case OPTION_INSN32:
14296 file_mips_opts.insn32 = TRUE;
14297 break;
14298
14299 case OPTION_NO_INSN32:
14300 file_mips_opts.insn32 = FALSE;
14301 break;
14302
14303 case OPTION_MSHARED:
14304 mips_in_shared = TRUE;
14305 break;
14306
14307 case OPTION_MNO_SHARED:
14308 mips_in_shared = FALSE;
14309 break;
14310
14311 case OPTION_MSYM32:
14312 file_mips_opts.sym32 = TRUE;
14313 break;
14314
14315 case OPTION_MNO_SYM32:
14316 file_mips_opts.sym32 = FALSE;
14317 break;
14318
14319 /* When generating ELF code, we permit -KPIC and -call_shared to
14320 select SVR4_PIC, and -non_shared to select no PIC. This is
14321 intended to be compatible with Irix 5. */
14322 case OPTION_CALL_SHARED:
14323 mips_pic = SVR4_PIC;
14324 mips_abicalls = TRUE;
14325 break;
14326
14327 case OPTION_CALL_NONPIC:
14328 mips_pic = NO_PIC;
14329 mips_abicalls = TRUE;
14330 break;
14331
14332 case OPTION_NON_SHARED:
14333 mips_pic = NO_PIC;
14334 mips_abicalls = FALSE;
14335 break;
14336
14337 /* The -xgot option tells the assembler to use 32 bit offsets
14338 when accessing the got in SVR4_PIC mode. It is for Irix
14339 compatibility. */
14340 case OPTION_XGOT:
14341 mips_big_got = 1;
14342 break;
14343
14344 case 'G':
14345 g_switch_value = atoi (arg);
14346 g_switch_seen = 1;
14347 break;
14348
14349 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14350 and -mabi=64. */
14351 case OPTION_32:
14352 mips_abi = O32_ABI;
14353 break;
14354
14355 case OPTION_N32:
14356 mips_abi = N32_ABI;
14357 break;
14358
14359 case OPTION_64:
14360 mips_abi = N64_ABI;
14361 if (!support_64bit_objects())
14362 as_fatal (_("no compiled in support for 64 bit object file format"));
14363 break;
14364
14365 case OPTION_GP32:
14366 file_mips_opts.gp = 32;
14367 break;
14368
14369 case OPTION_GP64:
14370 file_mips_opts.gp = 64;
14371 break;
14372
14373 case OPTION_FP32:
14374 file_mips_opts.fp = 32;
14375 break;
14376
14377 case OPTION_FPXX:
14378 file_mips_opts.fp = 0;
14379 break;
14380
14381 case OPTION_FP64:
14382 file_mips_opts.fp = 64;
14383 break;
14384
14385 case OPTION_ODD_SPREG:
14386 file_mips_opts.oddspreg = 1;
14387 break;
14388
14389 case OPTION_NO_ODD_SPREG:
14390 file_mips_opts.oddspreg = 0;
14391 break;
14392
14393 case OPTION_SINGLE_FLOAT:
14394 file_mips_opts.single_float = 1;
14395 break;
14396
14397 case OPTION_DOUBLE_FLOAT:
14398 file_mips_opts.single_float = 0;
14399 break;
14400
14401 case OPTION_SOFT_FLOAT:
14402 file_mips_opts.soft_float = 1;
14403 break;
14404
14405 case OPTION_HARD_FLOAT:
14406 file_mips_opts.soft_float = 0;
14407 break;
14408
14409 case OPTION_MABI:
14410 if (strcmp (arg, "32") == 0)
14411 mips_abi = O32_ABI;
14412 else if (strcmp (arg, "o64") == 0)
14413 mips_abi = O64_ABI;
14414 else if (strcmp (arg, "n32") == 0)
14415 mips_abi = N32_ABI;
14416 else if (strcmp (arg, "64") == 0)
14417 {
14418 mips_abi = N64_ABI;
14419 if (! support_64bit_objects())
14420 as_fatal (_("no compiled in support for 64 bit object file "
14421 "format"));
14422 }
14423 else if (strcmp (arg, "eabi") == 0)
14424 mips_abi = EABI_ABI;
14425 else
14426 {
14427 as_fatal (_("invalid abi -mabi=%s"), arg);
14428 return 0;
14429 }
14430 break;
14431
14432 case OPTION_M7000_HILO_FIX:
14433 mips_7000_hilo_fix = TRUE;
14434 break;
14435
14436 case OPTION_MNO_7000_HILO_FIX:
14437 mips_7000_hilo_fix = FALSE;
14438 break;
14439
14440 case OPTION_MDEBUG:
14441 mips_flag_mdebug = TRUE;
14442 break;
14443
14444 case OPTION_NO_MDEBUG:
14445 mips_flag_mdebug = FALSE;
14446 break;
14447
14448 case OPTION_PDR:
14449 mips_flag_pdr = TRUE;
14450 break;
14451
14452 case OPTION_NO_PDR:
14453 mips_flag_pdr = FALSE;
14454 break;
14455
14456 case OPTION_MVXWORKS_PIC:
14457 mips_pic = VXWORKS_PIC;
14458 break;
14459
14460 case OPTION_NAN:
14461 if (strcmp (arg, "2008") == 0)
14462 mips_nan2008 = 1;
14463 else if (strcmp (arg, "legacy") == 0)
14464 mips_nan2008 = 0;
14465 else
14466 {
14467 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14468 return 0;
14469 }
14470 break;
14471
14472 default:
14473 return 0;
14474 }
14475
14476 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14477
14478 return 1;
14479 }
14480 \f
14481 /* Set up globals to tune for the ISA or processor described by INFO. */
14482
14483 static void
14484 mips_set_tune (const struct mips_cpu_info *info)
14485 {
14486 if (info != 0)
14487 mips_tune = info->cpu;
14488 }
14489
14490
14491 void
14492 mips_after_parse_args (void)
14493 {
14494 const struct mips_cpu_info *arch_info = 0;
14495 const struct mips_cpu_info *tune_info = 0;
14496
14497 /* GP relative stuff not working for PE */
14498 if (strncmp (TARGET_OS, "pe", 2) == 0)
14499 {
14500 if (g_switch_seen && g_switch_value != 0)
14501 as_bad (_("-G not supported in this configuration"));
14502 g_switch_value = 0;
14503 }
14504
14505 if (mips_abi == NO_ABI)
14506 mips_abi = MIPS_DEFAULT_ABI;
14507
14508 /* The following code determines the architecture.
14509 Similar code was added to GCC 3.3 (see override_options() in
14510 config/mips/mips.c). The GAS and GCC code should be kept in sync
14511 as much as possible. */
14512
14513 if (mips_arch_string != 0)
14514 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14515
14516 if (file_mips_opts.isa != ISA_UNKNOWN)
14517 {
14518 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14519 ISA level specified by -mipsN, while arch_info->isa contains
14520 the -march selection (if any). */
14521 if (arch_info != 0)
14522 {
14523 /* -march takes precedence over -mipsN, since it is more descriptive.
14524 There's no harm in specifying both as long as the ISA levels
14525 are the same. */
14526 if (file_mips_opts.isa != arch_info->isa)
14527 as_bad (_("-%s conflicts with the other architecture options,"
14528 " which imply -%s"),
14529 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14530 mips_cpu_info_from_isa (arch_info->isa)->name);
14531 }
14532 else
14533 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14534 }
14535
14536 if (arch_info == 0)
14537 {
14538 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14539 gas_assert (arch_info);
14540 }
14541
14542 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14543 as_bad (_("-march=%s is not compatible with the selected ABI"),
14544 arch_info->name);
14545
14546 file_mips_opts.arch = arch_info->cpu;
14547 file_mips_opts.isa = arch_info->isa;
14548
14549 /* Set up initial mips_opts state. */
14550 mips_opts = file_mips_opts;
14551
14552 /* The register size inference code is now placed in
14553 file_mips_check_options. */
14554
14555 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14556 processor. */
14557 if (mips_tune_string != 0)
14558 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14559
14560 if (tune_info == 0)
14561 mips_set_tune (arch_info);
14562 else
14563 mips_set_tune (tune_info);
14564
14565 if (mips_flag_mdebug < 0)
14566 mips_flag_mdebug = 0;
14567 }
14568 \f
14569 void
14570 mips_init_after_args (void)
14571 {
14572 /* initialize opcodes */
14573 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14574 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14575 }
14576
14577 long
14578 md_pcrel_from (fixS *fixP)
14579 {
14580 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14581 switch (fixP->fx_r_type)
14582 {
14583 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14584 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14585 /* Return the address of the delay slot. */
14586 return addr + 2;
14587
14588 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14589 case BFD_RELOC_MICROMIPS_JMP:
14590 case BFD_RELOC_16_PCREL_S2:
14591 case BFD_RELOC_MIPS_21_PCREL_S2:
14592 case BFD_RELOC_MIPS_26_PCREL_S2:
14593 case BFD_RELOC_MIPS_JMP:
14594 /* Return the address of the delay slot. */
14595 return addr + 4;
14596
14597 default:
14598 return addr;
14599 }
14600 }
14601
14602 /* This is called before the symbol table is processed. In order to
14603 work with gcc when using mips-tfile, we must keep all local labels.
14604 However, in other cases, we want to discard them. If we were
14605 called with -g, but we didn't see any debugging information, it may
14606 mean that gcc is smuggling debugging information through to
14607 mips-tfile, in which case we must generate all local labels. */
14608
14609 void
14610 mips_frob_file_before_adjust (void)
14611 {
14612 #ifndef NO_ECOFF_DEBUGGING
14613 if (ECOFF_DEBUGGING
14614 && mips_debug != 0
14615 && ! ecoff_debugging_seen)
14616 flag_keep_locals = 1;
14617 #endif
14618 }
14619
14620 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14621 the corresponding LO16 reloc. This is called before md_apply_fix and
14622 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14623 relocation operators.
14624
14625 For our purposes, a %lo() expression matches a %got() or %hi()
14626 expression if:
14627
14628 (a) it refers to the same symbol; and
14629 (b) the offset applied in the %lo() expression is no lower than
14630 the offset applied in the %got() or %hi().
14631
14632 (b) allows us to cope with code like:
14633
14634 lui $4,%hi(foo)
14635 lh $4,%lo(foo+2)($4)
14636
14637 ...which is legal on RELA targets, and has a well-defined behaviour
14638 if the user knows that adding 2 to "foo" will not induce a carry to
14639 the high 16 bits.
14640
14641 When several %lo()s match a particular %got() or %hi(), we use the
14642 following rules to distinguish them:
14643
14644 (1) %lo()s with smaller offsets are a better match than %lo()s with
14645 higher offsets.
14646
14647 (2) %lo()s with no matching %got() or %hi() are better than those
14648 that already have a matching %got() or %hi().
14649
14650 (3) later %lo()s are better than earlier %lo()s.
14651
14652 These rules are applied in order.
14653
14654 (1) means, among other things, that %lo()s with identical offsets are
14655 chosen if they exist.
14656
14657 (2) means that we won't associate several high-part relocations with
14658 the same low-part relocation unless there's no alternative. Having
14659 several high parts for the same low part is a GNU extension; this rule
14660 allows careful users to avoid it.
14661
14662 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14663 with the last high-part relocation being at the front of the list.
14664 It therefore makes sense to choose the last matching low-part
14665 relocation, all other things being equal. It's also easier
14666 to code that way. */
14667
14668 void
14669 mips_frob_file (void)
14670 {
14671 struct mips_hi_fixup *l;
14672 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14673
14674 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14675 {
14676 segment_info_type *seginfo;
14677 bfd_boolean matched_lo_p;
14678 fixS **hi_pos, **lo_pos, **pos;
14679
14680 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14681
14682 /* If a GOT16 relocation turns out to be against a global symbol,
14683 there isn't supposed to be a matching LO. Ignore %gots against
14684 constants; we'll report an error for those later. */
14685 if (got16_reloc_p (l->fixp->fx_r_type)
14686 && !(l->fixp->fx_addsy
14687 && pic_need_relax (l->fixp->fx_addsy, l->seg)))
14688 continue;
14689
14690 /* Check quickly whether the next fixup happens to be a matching %lo. */
14691 if (fixup_has_matching_lo_p (l->fixp))
14692 continue;
14693
14694 seginfo = seg_info (l->seg);
14695
14696 /* Set HI_POS to the position of this relocation in the chain.
14697 Set LO_POS to the position of the chosen low-part relocation.
14698 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14699 relocation that matches an immediately-preceding high-part
14700 relocation. */
14701 hi_pos = NULL;
14702 lo_pos = NULL;
14703 matched_lo_p = FALSE;
14704 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14705
14706 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14707 {
14708 if (*pos == l->fixp)
14709 hi_pos = pos;
14710
14711 if ((*pos)->fx_r_type == looking_for_rtype
14712 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14713 && (*pos)->fx_offset >= l->fixp->fx_offset
14714 && (lo_pos == NULL
14715 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14716 || (!matched_lo_p
14717 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14718 lo_pos = pos;
14719
14720 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14721 && fixup_has_matching_lo_p (*pos));
14722 }
14723
14724 /* If we found a match, remove the high-part relocation from its
14725 current position and insert it before the low-part relocation.
14726 Make the offsets match so that fixup_has_matching_lo_p()
14727 will return true.
14728
14729 We don't warn about unmatched high-part relocations since some
14730 versions of gcc have been known to emit dead "lui ...%hi(...)"
14731 instructions. */
14732 if (lo_pos != NULL)
14733 {
14734 l->fixp->fx_offset = (*lo_pos)->fx_offset;
14735 if (l->fixp->fx_next != *lo_pos)
14736 {
14737 *hi_pos = l->fixp->fx_next;
14738 l->fixp->fx_next = *lo_pos;
14739 *lo_pos = l->fixp;
14740 }
14741 }
14742 }
14743 }
14744
14745 int
14746 mips_force_relocation (fixS *fixp)
14747 {
14748 if (generic_force_reloc (fixp))
14749 return 1;
14750
14751 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
14752 so that the linker relaxation can update targets. */
14753 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
14754 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
14755 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
14756 return 1;
14757
14758 /* We want all PC-relative relocations to be kept for R6 relaxation. */
14759 if (ISA_IS_R6 (mips_opts.isa)
14760 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
14761 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
14762 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
14763 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
14764 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
14765 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
14766 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
14767 return 1;
14768
14769 return 0;
14770 }
14771
14772 /* Read the instruction associated with RELOC from BUF. */
14773
14774 static unsigned int
14775 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
14776 {
14777 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14778 return read_compressed_insn (buf, 4);
14779 else
14780 return read_insn (buf);
14781 }
14782
14783 /* Write instruction INSN to BUF, given that it has been relocated
14784 by RELOC. */
14785
14786 static void
14787 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
14788 unsigned long insn)
14789 {
14790 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
14791 write_compressed_insn (buf, insn, 4);
14792 else
14793 write_insn (buf, insn);
14794 }
14795
14796 /* Apply a fixup to the object file. */
14797
14798 void
14799 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
14800 {
14801 char *buf;
14802 unsigned long insn;
14803 reloc_howto_type *howto;
14804
14805 if (fixP->fx_pcrel)
14806 switch (fixP->fx_r_type)
14807 {
14808 case BFD_RELOC_16_PCREL_S2:
14809 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14810 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14811 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14812 case BFD_RELOC_32_PCREL:
14813 case BFD_RELOC_MIPS_21_PCREL_S2:
14814 case BFD_RELOC_MIPS_26_PCREL_S2:
14815 case BFD_RELOC_MIPS_18_PCREL_S3:
14816 case BFD_RELOC_MIPS_19_PCREL_S2:
14817 case BFD_RELOC_HI16_S_PCREL:
14818 case BFD_RELOC_LO16_PCREL:
14819 break;
14820
14821 case BFD_RELOC_32:
14822 fixP->fx_r_type = BFD_RELOC_32_PCREL;
14823 break;
14824
14825 default:
14826 as_bad_where (fixP->fx_file, fixP->fx_line,
14827 _("PC-relative reference to a different section"));
14828 break;
14829 }
14830
14831 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
14832 that have no MIPS ELF equivalent. */
14833 if (fixP->fx_r_type != BFD_RELOC_8)
14834 {
14835 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
14836 if (!howto)
14837 return;
14838 }
14839
14840 gas_assert (fixP->fx_size == 2
14841 || fixP->fx_size == 4
14842 || fixP->fx_r_type == BFD_RELOC_8
14843 || fixP->fx_r_type == BFD_RELOC_16
14844 || fixP->fx_r_type == BFD_RELOC_64
14845 || fixP->fx_r_type == BFD_RELOC_CTOR
14846 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
14847 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
14848 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14849 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
14850 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
14851 || fixP->fx_r_type == BFD_RELOC_NONE);
14852
14853 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
14854
14855 /* Don't treat parts of a composite relocation as done. There are two
14856 reasons for this:
14857
14858 (1) The second and third parts will be against 0 (RSS_UNDEF) but
14859 should nevertheless be emitted if the first part is.
14860
14861 (2) In normal usage, composite relocations are never assembly-time
14862 constants. The easiest way of dealing with the pathological
14863 exceptions is to generate a relocation against STN_UNDEF and
14864 leave everything up to the linker. */
14865 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
14866 fixP->fx_done = 1;
14867
14868 switch (fixP->fx_r_type)
14869 {
14870 case BFD_RELOC_MIPS_TLS_GD:
14871 case BFD_RELOC_MIPS_TLS_LDM:
14872 case BFD_RELOC_MIPS_TLS_DTPREL32:
14873 case BFD_RELOC_MIPS_TLS_DTPREL64:
14874 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
14875 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
14876 case BFD_RELOC_MIPS_TLS_GOTTPREL:
14877 case BFD_RELOC_MIPS_TLS_TPREL32:
14878 case BFD_RELOC_MIPS_TLS_TPREL64:
14879 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
14880 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
14881 case BFD_RELOC_MICROMIPS_TLS_GD:
14882 case BFD_RELOC_MICROMIPS_TLS_LDM:
14883 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
14884 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
14885 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
14886 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
14887 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
14888 case BFD_RELOC_MIPS16_TLS_GD:
14889 case BFD_RELOC_MIPS16_TLS_LDM:
14890 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
14891 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
14892 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
14893 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
14894 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
14895 if (!fixP->fx_addsy)
14896 {
14897 as_bad_where (fixP->fx_file, fixP->fx_line,
14898 _("TLS relocation against a constant"));
14899 break;
14900 }
14901 S_SET_THREAD_LOCAL (fixP->fx_addsy);
14902 /* fall through */
14903
14904 case BFD_RELOC_MIPS_JMP:
14905 case BFD_RELOC_MIPS_SHIFT5:
14906 case BFD_RELOC_MIPS_SHIFT6:
14907 case BFD_RELOC_MIPS_GOT_DISP:
14908 case BFD_RELOC_MIPS_GOT_PAGE:
14909 case BFD_RELOC_MIPS_GOT_OFST:
14910 case BFD_RELOC_MIPS_SUB:
14911 case BFD_RELOC_MIPS_INSERT_A:
14912 case BFD_RELOC_MIPS_INSERT_B:
14913 case BFD_RELOC_MIPS_DELETE:
14914 case BFD_RELOC_MIPS_HIGHEST:
14915 case BFD_RELOC_MIPS_HIGHER:
14916 case BFD_RELOC_MIPS_SCN_DISP:
14917 case BFD_RELOC_MIPS_REL16:
14918 case BFD_RELOC_MIPS_RELGOT:
14919 case BFD_RELOC_MIPS_JALR:
14920 case BFD_RELOC_HI16:
14921 case BFD_RELOC_HI16_S:
14922 case BFD_RELOC_LO16:
14923 case BFD_RELOC_GPREL16:
14924 case BFD_RELOC_MIPS_LITERAL:
14925 case BFD_RELOC_MIPS_CALL16:
14926 case BFD_RELOC_MIPS_GOT16:
14927 case BFD_RELOC_GPREL32:
14928 case BFD_RELOC_MIPS_GOT_HI16:
14929 case BFD_RELOC_MIPS_GOT_LO16:
14930 case BFD_RELOC_MIPS_CALL_HI16:
14931 case BFD_RELOC_MIPS_CALL_LO16:
14932 case BFD_RELOC_MIPS16_GPREL:
14933 case BFD_RELOC_MIPS16_GOT16:
14934 case BFD_RELOC_MIPS16_CALL16:
14935 case BFD_RELOC_MIPS16_HI16:
14936 case BFD_RELOC_MIPS16_HI16_S:
14937 case BFD_RELOC_MIPS16_LO16:
14938 case BFD_RELOC_MIPS16_JMP:
14939 case BFD_RELOC_MICROMIPS_JMP:
14940 case BFD_RELOC_MICROMIPS_GOT_DISP:
14941 case BFD_RELOC_MICROMIPS_GOT_PAGE:
14942 case BFD_RELOC_MICROMIPS_GOT_OFST:
14943 case BFD_RELOC_MICROMIPS_SUB:
14944 case BFD_RELOC_MICROMIPS_HIGHEST:
14945 case BFD_RELOC_MICROMIPS_HIGHER:
14946 case BFD_RELOC_MICROMIPS_SCN_DISP:
14947 case BFD_RELOC_MICROMIPS_JALR:
14948 case BFD_RELOC_MICROMIPS_HI16:
14949 case BFD_RELOC_MICROMIPS_HI16_S:
14950 case BFD_RELOC_MICROMIPS_LO16:
14951 case BFD_RELOC_MICROMIPS_GPREL16:
14952 case BFD_RELOC_MICROMIPS_LITERAL:
14953 case BFD_RELOC_MICROMIPS_CALL16:
14954 case BFD_RELOC_MICROMIPS_GOT16:
14955 case BFD_RELOC_MICROMIPS_GOT_HI16:
14956 case BFD_RELOC_MICROMIPS_GOT_LO16:
14957 case BFD_RELOC_MICROMIPS_CALL_HI16:
14958 case BFD_RELOC_MICROMIPS_CALL_LO16:
14959 case BFD_RELOC_MIPS_EH:
14960 if (fixP->fx_done)
14961 {
14962 offsetT value;
14963
14964 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
14965 {
14966 insn = read_reloc_insn (buf, fixP->fx_r_type);
14967 if (mips16_reloc_p (fixP->fx_r_type))
14968 insn |= mips16_immed_extend (value, 16);
14969 else
14970 insn |= (value & 0xffff);
14971 write_reloc_insn (buf, fixP->fx_r_type, insn);
14972 }
14973 else
14974 as_bad_where (fixP->fx_file, fixP->fx_line,
14975 _("unsupported constant in relocation"));
14976 }
14977 break;
14978
14979 case BFD_RELOC_64:
14980 /* This is handled like BFD_RELOC_32, but we output a sign
14981 extended value if we are only 32 bits. */
14982 if (fixP->fx_done)
14983 {
14984 if (8 <= sizeof (valueT))
14985 md_number_to_chars (buf, *valP, 8);
14986 else
14987 {
14988 valueT hiv;
14989
14990 if ((*valP & 0x80000000) != 0)
14991 hiv = 0xffffffff;
14992 else
14993 hiv = 0;
14994 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
14995 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
14996 }
14997 }
14998 break;
14999
15000 case BFD_RELOC_RVA:
15001 case BFD_RELOC_32:
15002 case BFD_RELOC_32_PCREL:
15003 case BFD_RELOC_16:
15004 case BFD_RELOC_8:
15005 /* If we are deleting this reloc entry, we must fill in the
15006 value now. This can happen if we have a .word which is not
15007 resolved when it appears but is later defined. */
15008 if (fixP->fx_done)
15009 md_number_to_chars (buf, *valP, fixP->fx_size);
15010 break;
15011
15012 case BFD_RELOC_MIPS_21_PCREL_S2:
15013 case BFD_RELOC_MIPS_26_PCREL_S2:
15014 if ((*valP & 0x3) != 0)
15015 as_bad_where (fixP->fx_file, fixP->fx_line,
15016 _("branch to misaligned address (%lx)"), (long) *valP);
15017
15018 gas_assert (!fixP->fx_done);
15019 break;
15020
15021 case BFD_RELOC_MIPS_18_PCREL_S3:
15022 if ((S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15023 as_bad_where (fixP->fx_file, fixP->fx_line,
15024 _("PC-relative access using misaligned symbol (%lx)"),
15025 (long) S_GET_VALUE (fixP->fx_addsy));
15026 if ((fixP->fx_offset & 0x7) != 0)
15027 as_bad_where (fixP->fx_file, fixP->fx_line,
15028 _("PC-relative access using misaligned offset (%lx)"),
15029 (long) fixP->fx_offset);
15030
15031 gas_assert (!fixP->fx_done);
15032 break;
15033
15034 case BFD_RELOC_MIPS_19_PCREL_S2:
15035 if ((*valP & 0x3) != 0)
15036 as_bad_where (fixP->fx_file, fixP->fx_line,
15037 _("PC-relative access to misaligned address (%lx)"),
15038 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15039
15040 gas_assert (!fixP->fx_done);
15041 break;
15042
15043 case BFD_RELOC_HI16_S_PCREL:
15044 case BFD_RELOC_LO16_PCREL:
15045 gas_assert (!fixP->fx_done);
15046 break;
15047
15048 case BFD_RELOC_16_PCREL_S2:
15049 if ((*valP & 0x3) != 0)
15050 as_bad_where (fixP->fx_file, fixP->fx_line,
15051 _("branch to misaligned address (%lx)"), (long) *valP);
15052
15053 /* We need to save the bits in the instruction since fixup_segment()
15054 might be deleting the relocation entry (i.e., a branch within
15055 the current segment). */
15056 if (! fixP->fx_done)
15057 break;
15058
15059 /* Update old instruction data. */
15060 insn = read_insn (buf);
15061
15062 if (*valP + 0x20000 <= 0x3ffff)
15063 {
15064 insn |= (*valP >> 2) & 0xffff;
15065 write_insn (buf, insn);
15066 }
15067 else if (mips_pic == NO_PIC
15068 && fixP->fx_done
15069 && fixP->fx_frag->fr_address >= text_section->vma
15070 && (fixP->fx_frag->fr_address
15071 < text_section->vma + bfd_get_section_size (text_section))
15072 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15073 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15074 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15075 {
15076 /* The branch offset is too large. If this is an
15077 unconditional branch, and we are not generating PIC code,
15078 we can convert it to an absolute jump instruction. */
15079 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15080 insn = 0x0c000000; /* jal */
15081 else
15082 insn = 0x08000000; /* j */
15083 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15084 fixP->fx_done = 0;
15085 fixP->fx_addsy = section_symbol (text_section);
15086 *valP += md_pcrel_from (fixP);
15087 write_insn (buf, insn);
15088 }
15089 else
15090 {
15091 /* If we got here, we have branch-relaxation disabled,
15092 and there's nothing we can do to fix this instruction
15093 without turning it into a longer sequence. */
15094 as_bad_where (fixP->fx_file, fixP->fx_line,
15095 _("branch out of range"));
15096 }
15097 break;
15098
15099 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15100 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15101 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15102 /* We adjust the offset back to even. */
15103 if ((*valP & 0x1) != 0)
15104 --(*valP);
15105
15106 if (! fixP->fx_done)
15107 break;
15108
15109 /* Should never visit here, because we keep the relocation. */
15110 abort ();
15111 break;
15112
15113 case BFD_RELOC_VTABLE_INHERIT:
15114 fixP->fx_done = 0;
15115 if (fixP->fx_addsy
15116 && !S_IS_DEFINED (fixP->fx_addsy)
15117 && !S_IS_WEAK (fixP->fx_addsy))
15118 S_SET_WEAK (fixP->fx_addsy);
15119 break;
15120
15121 case BFD_RELOC_NONE:
15122 case BFD_RELOC_VTABLE_ENTRY:
15123 fixP->fx_done = 0;
15124 break;
15125
15126 default:
15127 abort ();
15128 }
15129
15130 /* Remember value for tc_gen_reloc. */
15131 fixP->fx_addnumber = *valP;
15132 }
15133
15134 static symbolS *
15135 get_symbol (void)
15136 {
15137 int c;
15138 char *name;
15139 symbolS *p;
15140
15141 c = get_symbol_name (&name);
15142 p = (symbolS *) symbol_find_or_make (name);
15143 (void) restore_line_pointer (c);
15144 return p;
15145 }
15146
15147 /* Align the current frag to a given power of two. If a particular
15148 fill byte should be used, FILL points to an integer that contains
15149 that byte, otherwise FILL is null.
15150
15151 This function used to have the comment:
15152
15153 The MIPS assembler also automatically adjusts any preceding label.
15154
15155 The implementation therefore applied the adjustment to a maximum of
15156 one label. However, other label adjustments are applied to batches
15157 of labels, and adjusting just one caused problems when new labels
15158 were added for the sake of debugging or unwind information.
15159 We therefore adjust all preceding labels (given as LABELS) instead. */
15160
15161 static void
15162 mips_align (int to, int *fill, struct insn_label_list *labels)
15163 {
15164 mips_emit_delays ();
15165 mips_record_compressed_mode ();
15166 if (fill == NULL && subseg_text_p (now_seg))
15167 frag_align_code (to, 0);
15168 else
15169 frag_align (to, fill ? *fill : 0, 0);
15170 record_alignment (now_seg, to);
15171 mips_move_labels (labels, FALSE);
15172 }
15173
15174 /* Align to a given power of two. .align 0 turns off the automatic
15175 alignment used by the data creating pseudo-ops. */
15176
15177 static void
15178 s_align (int x ATTRIBUTE_UNUSED)
15179 {
15180 int temp, fill_value, *fill_ptr;
15181 long max_alignment = 28;
15182
15183 /* o Note that the assembler pulls down any immediately preceding label
15184 to the aligned address.
15185 o It's not documented but auto alignment is reinstated by
15186 a .align pseudo instruction.
15187 o Note also that after auto alignment is turned off the mips assembler
15188 issues an error on attempt to assemble an improperly aligned data item.
15189 We don't. */
15190
15191 temp = get_absolute_expression ();
15192 if (temp > max_alignment)
15193 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15194 else if (temp < 0)
15195 {
15196 as_warn (_("alignment negative, 0 assumed"));
15197 temp = 0;
15198 }
15199 if (*input_line_pointer == ',')
15200 {
15201 ++input_line_pointer;
15202 fill_value = get_absolute_expression ();
15203 fill_ptr = &fill_value;
15204 }
15205 else
15206 fill_ptr = 0;
15207 if (temp)
15208 {
15209 segment_info_type *si = seg_info (now_seg);
15210 struct insn_label_list *l = si->label_list;
15211 /* Auto alignment should be switched on by next section change. */
15212 auto_align = 1;
15213 mips_align (temp, fill_ptr, l);
15214 }
15215 else
15216 {
15217 auto_align = 0;
15218 }
15219
15220 demand_empty_rest_of_line ();
15221 }
15222
15223 static void
15224 s_change_sec (int sec)
15225 {
15226 segT seg;
15227
15228 /* The ELF backend needs to know that we are changing sections, so
15229 that .previous works correctly. We could do something like check
15230 for an obj_section_change_hook macro, but that might be confusing
15231 as it would not be appropriate to use it in the section changing
15232 functions in read.c, since obj-elf.c intercepts those. FIXME:
15233 This should be cleaner, somehow. */
15234 obj_elf_section_change_hook ();
15235
15236 mips_emit_delays ();
15237
15238 switch (sec)
15239 {
15240 case 't':
15241 s_text (0);
15242 break;
15243 case 'd':
15244 s_data (0);
15245 break;
15246 case 'b':
15247 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15248 demand_empty_rest_of_line ();
15249 break;
15250
15251 case 'r':
15252 seg = subseg_new (RDATA_SECTION_NAME,
15253 (subsegT) get_absolute_expression ());
15254 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15255 | SEC_READONLY | SEC_RELOC
15256 | SEC_DATA));
15257 if (strncmp (TARGET_OS, "elf", 3) != 0)
15258 record_alignment (seg, 4);
15259 demand_empty_rest_of_line ();
15260 break;
15261
15262 case 's':
15263 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15264 bfd_set_section_flags (stdoutput, seg,
15265 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15266 if (strncmp (TARGET_OS, "elf", 3) != 0)
15267 record_alignment (seg, 4);
15268 demand_empty_rest_of_line ();
15269 break;
15270
15271 case 'B':
15272 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15273 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15274 if (strncmp (TARGET_OS, "elf", 3) != 0)
15275 record_alignment (seg, 4);
15276 demand_empty_rest_of_line ();
15277 break;
15278 }
15279
15280 auto_align = 1;
15281 }
15282
15283 void
15284 s_change_section (int ignore ATTRIBUTE_UNUSED)
15285 {
15286 char *saved_ilp;
15287 char *section_name;
15288 char c, endc;
15289 char next_c = 0;
15290 int section_type;
15291 int section_flag;
15292 int section_entry_size;
15293 int section_alignment;
15294
15295 saved_ilp = input_line_pointer;
15296 endc = get_symbol_name (&section_name);
15297 c = (endc == '"' ? input_line_pointer[1] : endc);
15298 if (c)
15299 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15300
15301 /* Do we have .section Name<,"flags">? */
15302 if (c != ',' || (c == ',' && next_c == '"'))
15303 {
15304 /* Just after name is now '\0'. */
15305 (void) restore_line_pointer (endc);
15306 input_line_pointer = saved_ilp;
15307 obj_elf_section (ignore);
15308 return;
15309 }
15310
15311 section_name = xstrdup (section_name);
15312 c = restore_line_pointer (endc);
15313
15314 input_line_pointer++;
15315
15316 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15317 if (c == ',')
15318 section_type = get_absolute_expression ();
15319 else
15320 section_type = 0;
15321
15322 if (*input_line_pointer++ == ',')
15323 section_flag = get_absolute_expression ();
15324 else
15325 section_flag = 0;
15326
15327 if (*input_line_pointer++ == ',')
15328 section_entry_size = get_absolute_expression ();
15329 else
15330 section_entry_size = 0;
15331
15332 if (*input_line_pointer++ == ',')
15333 section_alignment = get_absolute_expression ();
15334 else
15335 section_alignment = 0;
15336
15337 /* FIXME: really ignore? */
15338 (void) section_alignment;
15339
15340 /* When using the generic form of .section (as implemented by obj-elf.c),
15341 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15342 traditionally had to fall back on the more common @progbits instead.
15343
15344 There's nothing really harmful in this, since bfd will correct
15345 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15346 means that, for backwards compatibility, the special_section entries
15347 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15348
15349 Even so, we shouldn't force users of the MIPS .section syntax to
15350 incorrectly label the sections as SHT_PROGBITS. The best compromise
15351 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15352 generic type-checking code. */
15353 if (section_type == SHT_MIPS_DWARF)
15354 section_type = SHT_PROGBITS;
15355
15356 obj_elf_change_section (section_name, section_type, section_flag,
15357 section_entry_size, 0, 0, 0);
15358
15359 if (now_seg->name != section_name)
15360 free (section_name);
15361 }
15362
15363 void
15364 mips_enable_auto_align (void)
15365 {
15366 auto_align = 1;
15367 }
15368
15369 static void
15370 s_cons (int log_size)
15371 {
15372 segment_info_type *si = seg_info (now_seg);
15373 struct insn_label_list *l = si->label_list;
15374
15375 mips_emit_delays ();
15376 if (log_size > 0 && auto_align)
15377 mips_align (log_size, 0, l);
15378 cons (1 << log_size);
15379 mips_clear_insn_labels ();
15380 }
15381
15382 static void
15383 s_float_cons (int type)
15384 {
15385 segment_info_type *si = seg_info (now_seg);
15386 struct insn_label_list *l = si->label_list;
15387
15388 mips_emit_delays ();
15389
15390 if (auto_align)
15391 {
15392 if (type == 'd')
15393 mips_align (3, 0, l);
15394 else
15395 mips_align (2, 0, l);
15396 }
15397
15398 float_cons (type);
15399 mips_clear_insn_labels ();
15400 }
15401
15402 /* Handle .globl. We need to override it because on Irix 5 you are
15403 permitted to say
15404 .globl foo .text
15405 where foo is an undefined symbol, to mean that foo should be
15406 considered to be the address of a function. */
15407
15408 static void
15409 s_mips_globl (int x ATTRIBUTE_UNUSED)
15410 {
15411 char *name;
15412 int c;
15413 symbolS *symbolP;
15414 flagword flag;
15415
15416 do
15417 {
15418 c = get_symbol_name (&name);
15419 symbolP = symbol_find_or_make (name);
15420 S_SET_EXTERNAL (symbolP);
15421
15422 *input_line_pointer = c;
15423 SKIP_WHITESPACE_AFTER_NAME ();
15424
15425 /* On Irix 5, every global symbol that is not explicitly labelled as
15426 being a function is apparently labelled as being an object. */
15427 flag = BSF_OBJECT;
15428
15429 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15430 && (*input_line_pointer != ','))
15431 {
15432 char *secname;
15433 asection *sec;
15434
15435 c = get_symbol_name (&secname);
15436 sec = bfd_get_section_by_name (stdoutput, secname);
15437 if (sec == NULL)
15438 as_bad (_("%s: no such section"), secname);
15439 (void) restore_line_pointer (c);
15440
15441 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
15442 flag = BSF_FUNCTION;
15443 }
15444
15445 symbol_get_bfdsym (symbolP)->flags |= flag;
15446
15447 c = *input_line_pointer;
15448 if (c == ',')
15449 {
15450 input_line_pointer++;
15451 SKIP_WHITESPACE ();
15452 if (is_end_of_line[(unsigned char) *input_line_pointer])
15453 c = '\n';
15454 }
15455 }
15456 while (c == ',');
15457
15458 demand_empty_rest_of_line ();
15459 }
15460
15461 static void
15462 s_option (int x ATTRIBUTE_UNUSED)
15463 {
15464 char *opt;
15465 char c;
15466
15467 c = get_symbol_name (&opt);
15468
15469 if (*opt == 'O')
15470 {
15471 /* FIXME: What does this mean? */
15472 }
15473 else if (strncmp (opt, "pic", 3) == 0)
15474 {
15475 int i;
15476
15477 i = atoi (opt + 3);
15478 if (i == 0)
15479 mips_pic = NO_PIC;
15480 else if (i == 2)
15481 {
15482 mips_pic = SVR4_PIC;
15483 mips_abicalls = TRUE;
15484 }
15485 else
15486 as_bad (_(".option pic%d not supported"), i);
15487
15488 if (mips_pic == SVR4_PIC)
15489 {
15490 if (g_switch_seen && g_switch_value != 0)
15491 as_warn (_("-G may not be used with SVR4 PIC code"));
15492 g_switch_value = 0;
15493 bfd_set_gp_size (stdoutput, 0);
15494 }
15495 }
15496 else
15497 as_warn (_("unrecognized option \"%s\""), opt);
15498
15499 (void) restore_line_pointer (c);
15500 demand_empty_rest_of_line ();
15501 }
15502
15503 /* This structure is used to hold a stack of .set values. */
15504
15505 struct mips_option_stack
15506 {
15507 struct mips_option_stack *next;
15508 struct mips_set_options options;
15509 };
15510
15511 static struct mips_option_stack *mips_opts_stack;
15512
15513 static bfd_boolean
15514 parse_code_option (char * name)
15515 {
15516 const struct mips_ase *ase;
15517 if (strncmp (name, "at=", 3) == 0)
15518 {
15519 char *s = name + 3;
15520
15521 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
15522 as_bad (_("unrecognized register name `%s'"), s);
15523 }
15524 else if (strcmp (name, "at") == 0)
15525 mips_opts.at = ATREG;
15526 else if (strcmp (name, "noat") == 0)
15527 mips_opts.at = ZERO;
15528 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
15529 mips_opts.nomove = 0;
15530 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
15531 mips_opts.nomove = 1;
15532 else if (strcmp (name, "bopt") == 0)
15533 mips_opts.nobopt = 0;
15534 else if (strcmp (name, "nobopt") == 0)
15535 mips_opts.nobopt = 1;
15536 else if (strcmp (name, "gp=32") == 0)
15537 mips_opts.gp = 32;
15538 else if (strcmp (name, "gp=64") == 0)
15539 mips_opts.gp = 64;
15540 else if (strcmp (name, "fp=32") == 0)
15541 mips_opts.fp = 32;
15542 else if (strcmp (name, "fp=xx") == 0)
15543 mips_opts.fp = 0;
15544 else if (strcmp (name, "fp=64") == 0)
15545 mips_opts.fp = 64;
15546 else if (strcmp (name, "softfloat") == 0)
15547 mips_opts.soft_float = 1;
15548 else if (strcmp (name, "hardfloat") == 0)
15549 mips_opts.soft_float = 0;
15550 else if (strcmp (name, "singlefloat") == 0)
15551 mips_opts.single_float = 1;
15552 else if (strcmp (name, "doublefloat") == 0)
15553 mips_opts.single_float = 0;
15554 else if (strcmp (name, "nooddspreg") == 0)
15555 mips_opts.oddspreg = 0;
15556 else if (strcmp (name, "oddspreg") == 0)
15557 mips_opts.oddspreg = 1;
15558 else if (strcmp (name, "mips16") == 0
15559 || strcmp (name, "MIPS-16") == 0)
15560 mips_opts.mips16 = 1;
15561 else if (strcmp (name, "nomips16") == 0
15562 || strcmp (name, "noMIPS-16") == 0)
15563 mips_opts.mips16 = 0;
15564 else if (strcmp (name, "micromips") == 0)
15565 mips_opts.micromips = 1;
15566 else if (strcmp (name, "nomicromips") == 0)
15567 mips_opts.micromips = 0;
15568 else if (name[0] == 'n'
15569 && name[1] == 'o'
15570 && (ase = mips_lookup_ase (name + 2)))
15571 mips_set_ase (ase, &mips_opts, FALSE);
15572 else if ((ase = mips_lookup_ase (name)))
15573 mips_set_ase (ase, &mips_opts, TRUE);
15574 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
15575 {
15576 /* Permit the user to change the ISA and architecture on the fly.
15577 Needless to say, misuse can cause serious problems. */
15578 if (strncmp (name, "arch=", 5) == 0)
15579 {
15580 const struct mips_cpu_info *p;
15581
15582 p = mips_parse_cpu ("internal use", name + 5);
15583 if (!p)
15584 as_bad (_("unknown architecture %s"), name + 5);
15585 else
15586 {
15587 mips_opts.arch = p->cpu;
15588 mips_opts.isa = p->isa;
15589 }
15590 }
15591 else if (strncmp (name, "mips", 4) == 0)
15592 {
15593 const struct mips_cpu_info *p;
15594
15595 p = mips_parse_cpu ("internal use", name);
15596 if (!p)
15597 as_bad (_("unknown ISA level %s"), name + 4);
15598 else
15599 {
15600 mips_opts.arch = p->cpu;
15601 mips_opts.isa = p->isa;
15602 }
15603 }
15604 else
15605 as_bad (_("unknown ISA or architecture %s"), name);
15606 }
15607 else if (strcmp (name, "autoextend") == 0)
15608 mips_opts.noautoextend = 0;
15609 else if (strcmp (name, "noautoextend") == 0)
15610 mips_opts.noautoextend = 1;
15611 else if (strcmp (name, "insn32") == 0)
15612 mips_opts.insn32 = TRUE;
15613 else if (strcmp (name, "noinsn32") == 0)
15614 mips_opts.insn32 = FALSE;
15615 else if (strcmp (name, "sym32") == 0)
15616 mips_opts.sym32 = TRUE;
15617 else if (strcmp (name, "nosym32") == 0)
15618 mips_opts.sym32 = FALSE;
15619 else
15620 return FALSE;
15621 return TRUE;
15622 }
15623
15624 /* Handle the .set pseudo-op. */
15625
15626 static void
15627 s_mipsset (int x ATTRIBUTE_UNUSED)
15628 {
15629 char *name = input_line_pointer, ch;
15630 int prev_isa = mips_opts.isa;
15631
15632 file_mips_check_options ();
15633
15634 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15635 ++input_line_pointer;
15636 ch = *input_line_pointer;
15637 *input_line_pointer = '\0';
15638
15639 if (strchr (name, ','))
15640 {
15641 /* Generic ".set" directive; use the generic handler. */
15642 *input_line_pointer = ch;
15643 input_line_pointer = name;
15644 s_set (0);
15645 return;
15646 }
15647
15648 if (strcmp (name, "reorder") == 0)
15649 {
15650 if (mips_opts.noreorder)
15651 end_noreorder ();
15652 }
15653 else if (strcmp (name, "noreorder") == 0)
15654 {
15655 if (!mips_opts.noreorder)
15656 start_noreorder ();
15657 }
15658 else if (strcmp (name, "macro") == 0)
15659 mips_opts.warn_about_macros = 0;
15660 else if (strcmp (name, "nomacro") == 0)
15661 {
15662 if (mips_opts.noreorder == 0)
15663 as_bad (_("`noreorder' must be set before `nomacro'"));
15664 mips_opts.warn_about_macros = 1;
15665 }
15666 else if (strcmp (name, "gp=default") == 0)
15667 mips_opts.gp = file_mips_opts.gp;
15668 else if (strcmp (name, "fp=default") == 0)
15669 mips_opts.fp = file_mips_opts.fp;
15670 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
15671 {
15672 mips_opts.isa = file_mips_opts.isa;
15673 mips_opts.arch = file_mips_opts.arch;
15674 mips_opts.gp = file_mips_opts.gp;
15675 mips_opts.fp = file_mips_opts.fp;
15676 }
15677 else if (strcmp (name, "push") == 0)
15678 {
15679 struct mips_option_stack *s;
15680
15681 s = (struct mips_option_stack *) xmalloc (sizeof *s);
15682 s->next = mips_opts_stack;
15683 s->options = mips_opts;
15684 mips_opts_stack = s;
15685 }
15686 else if (strcmp (name, "pop") == 0)
15687 {
15688 struct mips_option_stack *s;
15689
15690 s = mips_opts_stack;
15691 if (s == NULL)
15692 as_bad (_(".set pop with no .set push"));
15693 else
15694 {
15695 /* If we're changing the reorder mode we need to handle
15696 delay slots correctly. */
15697 if (s->options.noreorder && ! mips_opts.noreorder)
15698 start_noreorder ();
15699 else if (! s->options.noreorder && mips_opts.noreorder)
15700 end_noreorder ();
15701
15702 mips_opts = s->options;
15703 mips_opts_stack = s->next;
15704 free (s);
15705 }
15706 }
15707 else if (!parse_code_option (name))
15708 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
15709
15710 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
15711 registers based on what is supported by the arch/cpu. */
15712 if (mips_opts.isa != prev_isa)
15713 {
15714 switch (mips_opts.isa)
15715 {
15716 case 0:
15717 break;
15718 case ISA_MIPS1:
15719 /* MIPS I cannot support FPXX. */
15720 mips_opts.fp = 32;
15721 /* fall-through. */
15722 case ISA_MIPS2:
15723 case ISA_MIPS32:
15724 case ISA_MIPS32R2:
15725 case ISA_MIPS32R3:
15726 case ISA_MIPS32R5:
15727 mips_opts.gp = 32;
15728 if (mips_opts.fp != 0)
15729 mips_opts.fp = 32;
15730 break;
15731 case ISA_MIPS32R6:
15732 mips_opts.gp = 32;
15733 mips_opts.fp = 64;
15734 break;
15735 case ISA_MIPS3:
15736 case ISA_MIPS4:
15737 case ISA_MIPS5:
15738 case ISA_MIPS64:
15739 case ISA_MIPS64R2:
15740 case ISA_MIPS64R3:
15741 case ISA_MIPS64R5:
15742 case ISA_MIPS64R6:
15743 mips_opts.gp = 64;
15744 if (mips_opts.fp != 0)
15745 {
15746 if (mips_opts.arch == CPU_R5900)
15747 mips_opts.fp = 32;
15748 else
15749 mips_opts.fp = 64;
15750 }
15751 break;
15752 default:
15753 as_bad (_("unknown ISA level %s"), name + 4);
15754 break;
15755 }
15756 }
15757
15758 mips_check_options (&mips_opts, FALSE);
15759
15760 mips_check_isa_supports_ases ();
15761 *input_line_pointer = ch;
15762 demand_empty_rest_of_line ();
15763 }
15764
15765 /* Handle the .module pseudo-op. */
15766
15767 static void
15768 s_module (int ignore ATTRIBUTE_UNUSED)
15769 {
15770 char *name = input_line_pointer, ch;
15771
15772 while (!is_end_of_line[(unsigned char) *input_line_pointer])
15773 ++input_line_pointer;
15774 ch = *input_line_pointer;
15775 *input_line_pointer = '\0';
15776
15777 if (!file_mips_opts_checked)
15778 {
15779 if (!parse_code_option (name))
15780 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
15781
15782 /* Update module level settings from mips_opts. */
15783 file_mips_opts = mips_opts;
15784 }
15785 else
15786 as_bad (_(".module is not permitted after generating code"));
15787
15788 *input_line_pointer = ch;
15789 demand_empty_rest_of_line ();
15790 }
15791
15792 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
15793 .option pic2. It means to generate SVR4 PIC calls. */
15794
15795 static void
15796 s_abicalls (int ignore ATTRIBUTE_UNUSED)
15797 {
15798 mips_pic = SVR4_PIC;
15799 mips_abicalls = TRUE;
15800
15801 if (g_switch_seen && g_switch_value != 0)
15802 as_warn (_("-G may not be used with SVR4 PIC code"));
15803 g_switch_value = 0;
15804
15805 bfd_set_gp_size (stdoutput, 0);
15806 demand_empty_rest_of_line ();
15807 }
15808
15809 /* Handle the .cpload pseudo-op. This is used when generating SVR4
15810 PIC code. It sets the $gp register for the function based on the
15811 function address, which is in the register named in the argument.
15812 This uses a relocation against _gp_disp, which is handled specially
15813 by the linker. The result is:
15814 lui $gp,%hi(_gp_disp)
15815 addiu $gp,$gp,%lo(_gp_disp)
15816 addu $gp,$gp,.cpload argument
15817 The .cpload argument is normally $25 == $t9.
15818
15819 The -mno-shared option changes this to:
15820 lui $gp,%hi(__gnu_local_gp)
15821 addiu $gp,$gp,%lo(__gnu_local_gp)
15822 and the argument is ignored. This saves an instruction, but the
15823 resulting code is not position independent; it uses an absolute
15824 address for __gnu_local_gp. Thus code assembled with -mno-shared
15825 can go into an ordinary executable, but not into a shared library. */
15826
15827 static void
15828 s_cpload (int ignore ATTRIBUTE_UNUSED)
15829 {
15830 expressionS ex;
15831 int reg;
15832 int in_shared;
15833
15834 file_mips_check_options ();
15835
15836 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
15837 .cpload is ignored. */
15838 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
15839 {
15840 s_ignore (0);
15841 return;
15842 }
15843
15844 if (mips_opts.mips16)
15845 {
15846 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
15847 ignore_rest_of_line ();
15848 return;
15849 }
15850
15851 /* .cpload should be in a .set noreorder section. */
15852 if (mips_opts.noreorder == 0)
15853 as_warn (_(".cpload not in noreorder section"));
15854
15855 reg = tc_get_register (0);
15856
15857 /* If we need to produce a 64-bit address, we are better off using
15858 the default instruction sequence. */
15859 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
15860
15861 ex.X_op = O_symbol;
15862 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
15863 "__gnu_local_gp");
15864 ex.X_op_symbol = NULL;
15865 ex.X_add_number = 0;
15866
15867 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
15868 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
15869
15870 mips_mark_labels ();
15871 mips_assembling_insn = TRUE;
15872
15873 macro_start ();
15874 macro_build_lui (&ex, mips_gp_register);
15875 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
15876 mips_gp_register, BFD_RELOC_LO16);
15877 if (in_shared)
15878 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
15879 mips_gp_register, reg);
15880 macro_end ();
15881
15882 mips_assembling_insn = FALSE;
15883 demand_empty_rest_of_line ();
15884 }
15885
15886 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
15887 .cpsetup $reg1, offset|$reg2, label
15888
15889 If offset is given, this results in:
15890 sd $gp, offset($sp)
15891 lui $gp, %hi(%neg(%gp_rel(label)))
15892 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15893 daddu $gp, $gp, $reg1
15894
15895 If $reg2 is given, this results in:
15896 or $reg2, $gp, $0
15897 lui $gp, %hi(%neg(%gp_rel(label)))
15898 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
15899 daddu $gp, $gp, $reg1
15900 $reg1 is normally $25 == $t9.
15901
15902 The -mno-shared option replaces the last three instructions with
15903 lui $gp,%hi(_gp)
15904 addiu $gp,$gp,%lo(_gp) */
15905
15906 static void
15907 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
15908 {
15909 expressionS ex_off;
15910 expressionS ex_sym;
15911 int reg1;
15912
15913 file_mips_check_options ();
15914
15915 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
15916 We also need NewABI support. */
15917 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
15918 {
15919 s_ignore (0);
15920 return;
15921 }
15922
15923 if (mips_opts.mips16)
15924 {
15925 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
15926 ignore_rest_of_line ();
15927 return;
15928 }
15929
15930 reg1 = tc_get_register (0);
15931 SKIP_WHITESPACE ();
15932 if (*input_line_pointer != ',')
15933 {
15934 as_bad (_("missing argument separator ',' for .cpsetup"));
15935 return;
15936 }
15937 else
15938 ++input_line_pointer;
15939 SKIP_WHITESPACE ();
15940 if (*input_line_pointer == '$')
15941 {
15942 mips_cpreturn_register = tc_get_register (0);
15943 mips_cpreturn_offset = -1;
15944 }
15945 else
15946 {
15947 mips_cpreturn_offset = get_absolute_expression ();
15948 mips_cpreturn_register = -1;
15949 }
15950 SKIP_WHITESPACE ();
15951 if (*input_line_pointer != ',')
15952 {
15953 as_bad (_("missing argument separator ',' for .cpsetup"));
15954 return;
15955 }
15956 else
15957 ++input_line_pointer;
15958 SKIP_WHITESPACE ();
15959 expression (&ex_sym);
15960
15961 mips_mark_labels ();
15962 mips_assembling_insn = TRUE;
15963
15964 macro_start ();
15965 if (mips_cpreturn_register == -1)
15966 {
15967 ex_off.X_op = O_constant;
15968 ex_off.X_add_symbol = NULL;
15969 ex_off.X_op_symbol = NULL;
15970 ex_off.X_add_number = mips_cpreturn_offset;
15971
15972 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
15973 BFD_RELOC_LO16, SP);
15974 }
15975 else
15976 move_register (mips_cpreturn_register, mips_gp_register);
15977
15978 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
15979 {
15980 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
15981 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
15982 BFD_RELOC_HI16_S);
15983
15984 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
15985 mips_gp_register, -1, BFD_RELOC_GPREL16,
15986 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
15987
15988 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
15989 mips_gp_register, reg1);
15990 }
15991 else
15992 {
15993 expressionS ex;
15994
15995 ex.X_op = O_symbol;
15996 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
15997 ex.X_op_symbol = NULL;
15998 ex.X_add_number = 0;
15999
16000 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16001 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16002
16003 macro_build_lui (&ex, mips_gp_register);
16004 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16005 mips_gp_register, BFD_RELOC_LO16);
16006 }
16007
16008 macro_end ();
16009
16010 mips_assembling_insn = FALSE;
16011 demand_empty_rest_of_line ();
16012 }
16013
16014 static void
16015 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16016 {
16017 file_mips_check_options ();
16018
16019 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16020 .cplocal is ignored. */
16021 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16022 {
16023 s_ignore (0);
16024 return;
16025 }
16026
16027 if (mips_opts.mips16)
16028 {
16029 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16030 ignore_rest_of_line ();
16031 return;
16032 }
16033
16034 mips_gp_register = tc_get_register (0);
16035 demand_empty_rest_of_line ();
16036 }
16037
16038 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16039 offset from $sp. The offset is remembered, and after making a PIC
16040 call $gp is restored from that location. */
16041
16042 static void
16043 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16044 {
16045 expressionS ex;
16046
16047 file_mips_check_options ();
16048
16049 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16050 .cprestore is ignored. */
16051 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16052 {
16053 s_ignore (0);
16054 return;
16055 }
16056
16057 if (mips_opts.mips16)
16058 {
16059 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16060 ignore_rest_of_line ();
16061 return;
16062 }
16063
16064 mips_cprestore_offset = get_absolute_expression ();
16065 mips_cprestore_valid = 1;
16066
16067 ex.X_op = O_constant;
16068 ex.X_add_symbol = NULL;
16069 ex.X_op_symbol = NULL;
16070 ex.X_add_number = mips_cprestore_offset;
16071
16072 mips_mark_labels ();
16073 mips_assembling_insn = TRUE;
16074
16075 macro_start ();
16076 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16077 SP, HAVE_64BIT_ADDRESSES);
16078 macro_end ();
16079
16080 mips_assembling_insn = FALSE;
16081 demand_empty_rest_of_line ();
16082 }
16083
16084 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16085 was given in the preceding .cpsetup, it results in:
16086 ld $gp, offset($sp)
16087
16088 If a register $reg2 was given there, it results in:
16089 or $gp, $reg2, $0 */
16090
16091 static void
16092 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16093 {
16094 expressionS ex;
16095
16096 file_mips_check_options ();
16097
16098 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16099 We also need NewABI support. */
16100 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16101 {
16102 s_ignore (0);
16103 return;
16104 }
16105
16106 if (mips_opts.mips16)
16107 {
16108 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16109 ignore_rest_of_line ();
16110 return;
16111 }
16112
16113 mips_mark_labels ();
16114 mips_assembling_insn = TRUE;
16115
16116 macro_start ();
16117 if (mips_cpreturn_register == -1)
16118 {
16119 ex.X_op = O_constant;
16120 ex.X_add_symbol = NULL;
16121 ex.X_op_symbol = NULL;
16122 ex.X_add_number = mips_cpreturn_offset;
16123
16124 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16125 }
16126 else
16127 move_register (mips_gp_register, mips_cpreturn_register);
16128
16129 macro_end ();
16130
16131 mips_assembling_insn = FALSE;
16132 demand_empty_rest_of_line ();
16133 }
16134
16135 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16136 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16137 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16138 debug information or MIPS16 TLS. */
16139
16140 static void
16141 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16142 bfd_reloc_code_real_type rtype)
16143 {
16144 expressionS ex;
16145 char *p;
16146
16147 expression (&ex);
16148
16149 if (ex.X_op != O_symbol)
16150 {
16151 as_bad (_("unsupported use of %s"), dirstr);
16152 ignore_rest_of_line ();
16153 }
16154
16155 p = frag_more (bytes);
16156 md_number_to_chars (p, 0, bytes);
16157 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16158 demand_empty_rest_of_line ();
16159 mips_clear_insn_labels ();
16160 }
16161
16162 /* Handle .dtprelword. */
16163
16164 static void
16165 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16166 {
16167 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16168 }
16169
16170 /* Handle .dtpreldword. */
16171
16172 static void
16173 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16174 {
16175 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16176 }
16177
16178 /* Handle .tprelword. */
16179
16180 static void
16181 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16182 {
16183 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16184 }
16185
16186 /* Handle .tpreldword. */
16187
16188 static void
16189 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16190 {
16191 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16192 }
16193
16194 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16195 code. It sets the offset to use in gp_rel relocations. */
16196
16197 static void
16198 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16199 {
16200 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16201 We also need NewABI support. */
16202 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16203 {
16204 s_ignore (0);
16205 return;
16206 }
16207
16208 mips_gprel_offset = get_absolute_expression ();
16209
16210 demand_empty_rest_of_line ();
16211 }
16212
16213 /* Handle the .gpword pseudo-op. This is used when generating PIC
16214 code. It generates a 32 bit GP relative reloc. */
16215
16216 static void
16217 s_gpword (int ignore ATTRIBUTE_UNUSED)
16218 {
16219 segment_info_type *si;
16220 struct insn_label_list *l;
16221 expressionS ex;
16222 char *p;
16223
16224 /* When not generating PIC code, this is treated as .word. */
16225 if (mips_pic != SVR4_PIC)
16226 {
16227 s_cons (2);
16228 return;
16229 }
16230
16231 si = seg_info (now_seg);
16232 l = si->label_list;
16233 mips_emit_delays ();
16234 if (auto_align)
16235 mips_align (2, 0, l);
16236
16237 expression (&ex);
16238 mips_clear_insn_labels ();
16239
16240 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16241 {
16242 as_bad (_("unsupported use of .gpword"));
16243 ignore_rest_of_line ();
16244 }
16245
16246 p = frag_more (4);
16247 md_number_to_chars (p, 0, 4);
16248 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16249 BFD_RELOC_GPREL32);
16250
16251 demand_empty_rest_of_line ();
16252 }
16253
16254 static void
16255 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16256 {
16257 segment_info_type *si;
16258 struct insn_label_list *l;
16259 expressionS ex;
16260 char *p;
16261
16262 /* When not generating PIC code, this is treated as .dword. */
16263 if (mips_pic != SVR4_PIC)
16264 {
16265 s_cons (3);
16266 return;
16267 }
16268
16269 si = seg_info (now_seg);
16270 l = si->label_list;
16271 mips_emit_delays ();
16272 if (auto_align)
16273 mips_align (3, 0, l);
16274
16275 expression (&ex);
16276 mips_clear_insn_labels ();
16277
16278 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16279 {
16280 as_bad (_("unsupported use of .gpdword"));
16281 ignore_rest_of_line ();
16282 }
16283
16284 p = frag_more (8);
16285 md_number_to_chars (p, 0, 8);
16286 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16287 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16288
16289 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16290 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16291 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16292
16293 demand_empty_rest_of_line ();
16294 }
16295
16296 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16297 tables. It generates a R_MIPS_EH reloc. */
16298
16299 static void
16300 s_ehword (int ignore ATTRIBUTE_UNUSED)
16301 {
16302 expressionS ex;
16303 char *p;
16304
16305 mips_emit_delays ();
16306
16307 expression (&ex);
16308 mips_clear_insn_labels ();
16309
16310 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16311 {
16312 as_bad (_("unsupported use of .ehword"));
16313 ignore_rest_of_line ();
16314 }
16315
16316 p = frag_more (4);
16317 md_number_to_chars (p, 0, 4);
16318 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16319 BFD_RELOC_32_PCREL);
16320
16321 demand_empty_rest_of_line ();
16322 }
16323
16324 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16325 tables in SVR4 PIC code. */
16326
16327 static void
16328 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16329 {
16330 int reg;
16331
16332 file_mips_check_options ();
16333
16334 /* This is ignored when not generating SVR4 PIC code. */
16335 if (mips_pic != SVR4_PIC)
16336 {
16337 s_ignore (0);
16338 return;
16339 }
16340
16341 mips_mark_labels ();
16342 mips_assembling_insn = TRUE;
16343
16344 /* Add $gp to the register named as an argument. */
16345 macro_start ();
16346 reg = tc_get_register (0);
16347 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16348 macro_end ();
16349
16350 mips_assembling_insn = FALSE;
16351 demand_empty_rest_of_line ();
16352 }
16353
16354 /* Handle the .insn pseudo-op. This marks instruction labels in
16355 mips16/micromips mode. This permits the linker to handle them specially,
16356 such as generating jalx instructions when needed. We also make
16357 them odd for the duration of the assembly, in order to generate the
16358 right sort of code. We will make them even in the adjust_symtab
16359 routine, while leaving them marked. This is convenient for the
16360 debugger and the disassembler. The linker knows to make them odd
16361 again. */
16362
16363 static void
16364 s_insn (int ignore ATTRIBUTE_UNUSED)
16365 {
16366 file_mips_check_options ();
16367 file_ase_mips16 |= mips_opts.mips16;
16368 file_ase_micromips |= mips_opts.micromips;
16369
16370 mips_mark_labels ();
16371
16372 demand_empty_rest_of_line ();
16373 }
16374
16375 /* Handle the .nan pseudo-op. */
16376
16377 static void
16378 s_nan (int ignore ATTRIBUTE_UNUSED)
16379 {
16380 static const char str_legacy[] = "legacy";
16381 static const char str_2008[] = "2008";
16382 size_t i;
16383
16384 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16385
16386 if (i == sizeof (str_2008) - 1
16387 && memcmp (input_line_pointer, str_2008, i) == 0)
16388 mips_nan2008 = 1;
16389 else if (i == sizeof (str_legacy) - 1
16390 && memcmp (input_line_pointer, str_legacy, i) == 0)
16391 {
16392 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16393 mips_nan2008 = 0;
16394 else
16395 as_bad (_("`%s' does not support legacy NaN"),
16396 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16397 }
16398 else
16399 as_bad (_("bad .nan directive"));
16400
16401 input_line_pointer += i;
16402 demand_empty_rest_of_line ();
16403 }
16404
16405 /* Handle a .stab[snd] directive. Ideally these directives would be
16406 implemented in a transparent way, so that removing them would not
16407 have any effect on the generated instructions. However, s_stab
16408 internally changes the section, so in practice we need to decide
16409 now whether the preceding label marks compressed code. We do not
16410 support changing the compression mode of a label after a .stab*
16411 directive, such as in:
16412
16413 foo:
16414 .stabs ...
16415 .set mips16
16416
16417 so the current mode wins. */
16418
16419 static void
16420 s_mips_stab (int type)
16421 {
16422 mips_mark_labels ();
16423 s_stab (type);
16424 }
16425
16426 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
16427
16428 static void
16429 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
16430 {
16431 char *name;
16432 int c;
16433 symbolS *symbolP;
16434 expressionS exp;
16435
16436 c = get_symbol_name (&name);
16437 symbolP = symbol_find_or_make (name);
16438 S_SET_WEAK (symbolP);
16439 *input_line_pointer = c;
16440
16441 SKIP_WHITESPACE_AFTER_NAME ();
16442
16443 if (! is_end_of_line[(unsigned char) *input_line_pointer])
16444 {
16445 if (S_IS_DEFINED (symbolP))
16446 {
16447 as_bad (_("ignoring attempt to redefine symbol %s"),
16448 S_GET_NAME (symbolP));
16449 ignore_rest_of_line ();
16450 return;
16451 }
16452
16453 if (*input_line_pointer == ',')
16454 {
16455 ++input_line_pointer;
16456 SKIP_WHITESPACE ();
16457 }
16458
16459 expression (&exp);
16460 if (exp.X_op != O_symbol)
16461 {
16462 as_bad (_("bad .weakext directive"));
16463 ignore_rest_of_line ();
16464 return;
16465 }
16466 symbol_set_value_expression (symbolP, &exp);
16467 }
16468
16469 demand_empty_rest_of_line ();
16470 }
16471
16472 /* Parse a register string into a number. Called from the ECOFF code
16473 to parse .frame. The argument is non-zero if this is the frame
16474 register, so that we can record it in mips_frame_reg. */
16475
16476 int
16477 tc_get_register (int frame)
16478 {
16479 unsigned int reg;
16480
16481 SKIP_WHITESPACE ();
16482 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
16483 reg = 0;
16484 if (frame)
16485 {
16486 mips_frame_reg = reg != 0 ? reg : SP;
16487 mips_frame_reg_valid = 1;
16488 mips_cprestore_valid = 0;
16489 }
16490 return reg;
16491 }
16492
16493 valueT
16494 md_section_align (asection *seg, valueT addr)
16495 {
16496 int align = bfd_get_section_alignment (stdoutput, seg);
16497
16498 /* We don't need to align ELF sections to the full alignment.
16499 However, Irix 5 may prefer that we align them at least to a 16
16500 byte boundary. We don't bother to align the sections if we
16501 are targeted for an embedded system. */
16502 if (strncmp (TARGET_OS, "elf", 3) == 0)
16503 return addr;
16504 if (align > 4)
16505 align = 4;
16506
16507 return ((addr + (1 << align) - 1) & -(1 << align));
16508 }
16509
16510 /* Utility routine, called from above as well. If called while the
16511 input file is still being read, it's only an approximation. (For
16512 example, a symbol may later become defined which appeared to be
16513 undefined earlier.) */
16514
16515 static int
16516 nopic_need_relax (symbolS *sym, int before_relaxing)
16517 {
16518 if (sym == 0)
16519 return 0;
16520
16521 if (g_switch_value > 0)
16522 {
16523 const char *symname;
16524 int change;
16525
16526 /* Find out whether this symbol can be referenced off the $gp
16527 register. It can be if it is smaller than the -G size or if
16528 it is in the .sdata or .sbss section. Certain symbols can
16529 not be referenced off the $gp, although it appears as though
16530 they can. */
16531 symname = S_GET_NAME (sym);
16532 if (symname != (const char *) NULL
16533 && (strcmp (symname, "eprol") == 0
16534 || strcmp (symname, "etext") == 0
16535 || strcmp (symname, "_gp") == 0
16536 || strcmp (symname, "edata") == 0
16537 || strcmp (symname, "_fbss") == 0
16538 || strcmp (symname, "_fdata") == 0
16539 || strcmp (symname, "_ftext") == 0
16540 || strcmp (symname, "end") == 0
16541 || strcmp (symname, "_gp_disp") == 0))
16542 change = 1;
16543 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
16544 && (0
16545 #ifndef NO_ECOFF_DEBUGGING
16546 || (symbol_get_obj (sym)->ecoff_extern_size != 0
16547 && (symbol_get_obj (sym)->ecoff_extern_size
16548 <= g_switch_value))
16549 #endif
16550 /* We must defer this decision until after the whole
16551 file has been read, since there might be a .extern
16552 after the first use of this symbol. */
16553 || (before_relaxing
16554 #ifndef NO_ECOFF_DEBUGGING
16555 && symbol_get_obj (sym)->ecoff_extern_size == 0
16556 #endif
16557 && S_GET_VALUE (sym) == 0)
16558 || (S_GET_VALUE (sym) != 0
16559 && S_GET_VALUE (sym) <= g_switch_value)))
16560 change = 0;
16561 else
16562 {
16563 const char *segname;
16564
16565 segname = segment_name (S_GET_SEGMENT (sym));
16566 gas_assert (strcmp (segname, ".lit8") != 0
16567 && strcmp (segname, ".lit4") != 0);
16568 change = (strcmp (segname, ".sdata") != 0
16569 && strcmp (segname, ".sbss") != 0
16570 && strncmp (segname, ".sdata.", 7) != 0
16571 && strncmp (segname, ".sbss.", 6) != 0
16572 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
16573 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
16574 }
16575 return change;
16576 }
16577 else
16578 /* We are not optimizing for the $gp register. */
16579 return 1;
16580 }
16581
16582
16583 /* Return true if the given symbol should be considered local for SVR4 PIC. */
16584
16585 static bfd_boolean
16586 pic_need_relax (symbolS *sym, asection *segtype)
16587 {
16588 asection *symsec;
16589
16590 /* Handle the case of a symbol equated to another symbol. */
16591 while (symbol_equated_reloc_p (sym))
16592 {
16593 symbolS *n;
16594
16595 /* It's possible to get a loop here in a badly written program. */
16596 n = symbol_get_value_expression (sym)->X_add_symbol;
16597 if (n == sym)
16598 break;
16599 sym = n;
16600 }
16601
16602 if (symbol_section_p (sym))
16603 return TRUE;
16604
16605 symsec = S_GET_SEGMENT (sym);
16606
16607 /* This must duplicate the test in adjust_reloc_syms. */
16608 return (!bfd_is_und_section (symsec)
16609 && !bfd_is_abs_section (symsec)
16610 && !bfd_is_com_section (symsec)
16611 && !s_is_linkonce (sym, segtype)
16612 /* A global or weak symbol is treated as external. */
16613 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
16614 }
16615
16616
16617 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
16618 extended opcode. SEC is the section the frag is in. */
16619
16620 static int
16621 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
16622 {
16623 int type;
16624 const struct mips_int_operand *operand;
16625 offsetT val;
16626 segT symsec;
16627 fragS *sym_frag;
16628
16629 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
16630 return 0;
16631 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
16632 return 1;
16633
16634 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
16635 operand = mips16_immed_operand (type, FALSE);
16636
16637 sym_frag = symbol_get_frag (fragp->fr_symbol);
16638 val = S_GET_VALUE (fragp->fr_symbol);
16639 symsec = S_GET_SEGMENT (fragp->fr_symbol);
16640
16641 if (operand->root.type == OP_PCREL)
16642 {
16643 const struct mips_pcrel_operand *pcrel_op;
16644 addressT addr;
16645 offsetT maxtiny;
16646
16647 /* We won't have the section when we are called from
16648 mips_relax_frag. However, we will always have been called
16649 from md_estimate_size_before_relax first. If this is a
16650 branch to a different section, we mark it as such. If SEC is
16651 NULL, and the frag is not marked, then it must be a branch to
16652 the same section. */
16653 pcrel_op = (const struct mips_pcrel_operand *) operand;
16654 if (sec == NULL)
16655 {
16656 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
16657 return 1;
16658 }
16659 else
16660 {
16661 /* Must have been called from md_estimate_size_before_relax. */
16662 if (symsec != sec)
16663 {
16664 fragp->fr_subtype =
16665 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16666
16667 /* FIXME: We should support this, and let the linker
16668 catch branches and loads that are out of range. */
16669 as_bad_where (fragp->fr_file, fragp->fr_line,
16670 _("unsupported PC relative reference to different section"));
16671
16672 return 1;
16673 }
16674 if (fragp != sym_frag && sym_frag->fr_address == 0)
16675 /* Assume non-extended on the first relaxation pass.
16676 The address we have calculated will be bogus if this is
16677 a forward branch to another frag, as the forward frag
16678 will have fr_address == 0. */
16679 return 0;
16680 }
16681
16682 /* In this case, we know for sure that the symbol fragment is in
16683 the same section. If the relax_marker of the symbol fragment
16684 differs from the relax_marker of this fragment, we have not
16685 yet adjusted the symbol fragment fr_address. We want to add
16686 in STRETCH in order to get a better estimate of the address.
16687 This particularly matters because of the shift bits. */
16688 if (stretch != 0
16689 && sym_frag->relax_marker != fragp->relax_marker)
16690 {
16691 fragS *f;
16692
16693 /* Adjust stretch for any alignment frag. Note that if have
16694 been expanding the earlier code, the symbol may be
16695 defined in what appears to be an earlier frag. FIXME:
16696 This doesn't handle the fr_subtype field, which specifies
16697 a maximum number of bytes to skip when doing an
16698 alignment. */
16699 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
16700 {
16701 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
16702 {
16703 if (stretch < 0)
16704 stretch = - ((- stretch)
16705 & ~ ((1 << (int) f->fr_offset) - 1));
16706 else
16707 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
16708 if (stretch == 0)
16709 break;
16710 }
16711 }
16712 if (f != NULL)
16713 val += stretch;
16714 }
16715
16716 addr = fragp->fr_address + fragp->fr_fix;
16717
16718 /* The base address rules are complicated. The base address of
16719 a branch is the following instruction. The base address of a
16720 PC relative load or add is the instruction itself, but if it
16721 is in a delay slot (in which case it can not be extended) use
16722 the address of the instruction whose delay slot it is in. */
16723 if (pcrel_op->include_isa_bit)
16724 {
16725 addr += 2;
16726
16727 /* If we are currently assuming that this frag should be
16728 extended, then, the current address is two bytes
16729 higher. */
16730 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
16731 addr += 2;
16732
16733 /* Ignore the low bit in the target, since it will be set
16734 for a text label. */
16735 val &= -2;
16736 }
16737 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
16738 addr -= 4;
16739 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
16740 addr -= 2;
16741
16742 val -= addr & -(1 << pcrel_op->align_log2);
16743
16744 /* If any of the shifted bits are set, we must use an extended
16745 opcode. If the address depends on the size of this
16746 instruction, this can lead to a loop, so we arrange to always
16747 use an extended opcode. We only check this when we are in
16748 the main relaxation loop, when SEC is NULL. */
16749 if ((val & ((1 << operand->shift) - 1)) != 0 && sec == NULL)
16750 {
16751 fragp->fr_subtype =
16752 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16753 return 1;
16754 }
16755
16756 /* If we are about to mark a frag as extended because the value
16757 is precisely the next value above maxtiny, then there is a
16758 chance of an infinite loop as in the following code:
16759 la $4,foo
16760 .skip 1020
16761 .align 2
16762 foo:
16763 In this case when the la is extended, foo is 0x3fc bytes
16764 away, so the la can be shrunk, but then foo is 0x400 away, so
16765 the la must be extended. To avoid this loop, we mark the
16766 frag as extended if it was small, and is about to become
16767 extended with the next value above maxtiny. */
16768 maxtiny = mips_int_operand_max (operand);
16769 if (val == maxtiny + (1 << operand->shift)
16770 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
16771 && sec == NULL)
16772 {
16773 fragp->fr_subtype =
16774 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
16775 return 1;
16776 }
16777 }
16778 else if (symsec != absolute_section && sec != NULL)
16779 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
16780
16781 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
16782 }
16783
16784 /* Compute the length of a branch sequence, and adjust the
16785 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
16786 worst-case length is computed, with UPDATE being used to indicate
16787 whether an unconditional (-1), branch-likely (+1) or regular (0)
16788 branch is to be computed. */
16789 static int
16790 relaxed_branch_length (fragS *fragp, asection *sec, int update)
16791 {
16792 bfd_boolean toofar;
16793 int length;
16794
16795 if (fragp
16796 && S_IS_DEFINED (fragp->fr_symbol)
16797 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16798 {
16799 addressT addr;
16800 offsetT val;
16801
16802 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16803
16804 addr = fragp->fr_address + fragp->fr_fix + 4;
16805
16806 val -= addr;
16807
16808 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
16809 }
16810 else if (fragp)
16811 /* If the symbol is not defined or it's in a different segment,
16812 assume the user knows what's going on and emit a short
16813 branch. */
16814 toofar = FALSE;
16815 else
16816 toofar = TRUE;
16817
16818 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
16819 fragp->fr_subtype
16820 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
16821 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
16822 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
16823 RELAX_BRANCH_LINK (fragp->fr_subtype),
16824 toofar);
16825
16826 length = 4;
16827 if (toofar)
16828 {
16829 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
16830 length += 8;
16831
16832 if (mips_pic != NO_PIC)
16833 {
16834 /* Additional space for PIC loading of target address. */
16835 length += 8;
16836 if (mips_opts.isa == ISA_MIPS1)
16837 /* Additional space for $at-stabilizing nop. */
16838 length += 4;
16839 }
16840
16841 /* If branch is conditional. */
16842 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
16843 length += 8;
16844 }
16845
16846 return length;
16847 }
16848
16849 /* Compute the length of a branch sequence, and adjust the
16850 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
16851 worst-case length is computed, with UPDATE being used to indicate
16852 whether an unconditional (-1), or regular (0) branch is to be
16853 computed. */
16854
16855 static int
16856 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
16857 {
16858 bfd_boolean toofar;
16859 int length;
16860
16861 if (fragp
16862 && S_IS_DEFINED (fragp->fr_symbol)
16863 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16864 {
16865 addressT addr;
16866 offsetT val;
16867
16868 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16869 /* Ignore the low bit in the target, since it will be set
16870 for a text label. */
16871 if ((val & 1) != 0)
16872 --val;
16873
16874 addr = fragp->fr_address + fragp->fr_fix + 4;
16875
16876 val -= addr;
16877
16878 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
16879 }
16880 else if (fragp)
16881 /* If the symbol is not defined or it's in a different segment,
16882 assume the user knows what's going on and emit a short
16883 branch. */
16884 toofar = FALSE;
16885 else
16886 toofar = TRUE;
16887
16888 if (fragp && update
16889 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
16890 fragp->fr_subtype = (toofar
16891 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
16892 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
16893
16894 length = 4;
16895 if (toofar)
16896 {
16897 bfd_boolean compact_known = fragp != NULL;
16898 bfd_boolean compact = FALSE;
16899 bfd_boolean uncond;
16900
16901 if (compact_known)
16902 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
16903 if (fragp)
16904 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
16905 else
16906 uncond = update < 0;
16907
16908 /* If label is out of range, we turn branch <br>:
16909
16910 <br> label # 4 bytes
16911 0:
16912
16913 into:
16914
16915 j label # 4 bytes
16916 nop # 2 bytes if compact && !PIC
16917 0:
16918 */
16919 if (mips_pic == NO_PIC && (!compact_known || compact))
16920 length += 2;
16921
16922 /* If assembling PIC code, we further turn:
16923
16924 j label # 4 bytes
16925
16926 into:
16927
16928 lw/ld at, %got(label)(gp) # 4 bytes
16929 d/addiu at, %lo(label) # 4 bytes
16930 jr/c at # 2 bytes
16931 */
16932 if (mips_pic != NO_PIC)
16933 length += 6;
16934
16935 /* If branch <br> is conditional, we prepend negated branch <brneg>:
16936
16937 <brneg> 0f # 4 bytes
16938 nop # 2 bytes if !compact
16939 */
16940 if (!uncond)
16941 length += (compact_known && compact) ? 4 : 6;
16942 }
16943
16944 return length;
16945 }
16946
16947 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
16948 bit accordingly. */
16949
16950 static int
16951 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
16952 {
16953 bfd_boolean toofar;
16954
16955 if (fragp
16956 && S_IS_DEFINED (fragp->fr_symbol)
16957 && sec == S_GET_SEGMENT (fragp->fr_symbol))
16958 {
16959 addressT addr;
16960 offsetT val;
16961 int type;
16962
16963 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
16964 /* Ignore the low bit in the target, since it will be set
16965 for a text label. */
16966 if ((val & 1) != 0)
16967 --val;
16968
16969 /* Assume this is a 2-byte branch. */
16970 addr = fragp->fr_address + fragp->fr_fix + 2;
16971
16972 /* We try to avoid the infinite loop by not adding 2 more bytes for
16973 long branches. */
16974
16975 val -= addr;
16976
16977 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
16978 if (type == 'D')
16979 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
16980 else if (type == 'E')
16981 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
16982 else
16983 abort ();
16984 }
16985 else
16986 /* If the symbol is not defined or it's in a different segment,
16987 we emit a normal 32-bit branch. */
16988 toofar = TRUE;
16989
16990 if (fragp && update
16991 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
16992 fragp->fr_subtype
16993 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
16994 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
16995
16996 if (toofar)
16997 return 4;
16998
16999 return 2;
17000 }
17001
17002 /* Estimate the size of a frag before relaxing. Unless this is the
17003 mips16, we are not really relaxing here, and the final size is
17004 encoded in the subtype information. For the mips16, we have to
17005 decide whether we are using an extended opcode or not. */
17006
17007 int
17008 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17009 {
17010 int change;
17011
17012 if (RELAX_BRANCH_P (fragp->fr_subtype))
17013 {
17014
17015 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17016
17017 return fragp->fr_var;
17018 }
17019
17020 if (RELAX_MIPS16_P (fragp->fr_subtype))
17021 /* We don't want to modify the EXTENDED bit here; it might get us
17022 into infinite loops. We change it only in mips_relax_frag(). */
17023 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
17024
17025 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17026 {
17027 int length = 4;
17028
17029 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17030 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17031 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17032 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17033 fragp->fr_var = length;
17034
17035 return length;
17036 }
17037
17038 if (mips_pic == NO_PIC)
17039 change = nopic_need_relax (fragp->fr_symbol, 0);
17040 else if (mips_pic == SVR4_PIC)
17041 change = pic_need_relax (fragp->fr_symbol, segtype);
17042 else if (mips_pic == VXWORKS_PIC)
17043 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17044 change = 0;
17045 else
17046 abort ();
17047
17048 if (change)
17049 {
17050 fragp->fr_subtype |= RELAX_USE_SECOND;
17051 return -RELAX_FIRST (fragp->fr_subtype);
17052 }
17053 else
17054 return -RELAX_SECOND (fragp->fr_subtype);
17055 }
17056
17057 /* This is called to see whether a reloc against a defined symbol
17058 should be converted into a reloc against a section. */
17059
17060 int
17061 mips_fix_adjustable (fixS *fixp)
17062 {
17063 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17064 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17065 return 0;
17066
17067 if (fixp->fx_addsy == NULL)
17068 return 1;
17069
17070 /* Allow relocs used for EH tables. */
17071 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17072 return 1;
17073
17074 /* If symbol SYM is in a mergeable section, relocations of the form
17075 SYM + 0 can usually be made section-relative. The mergeable data
17076 is then identified by the section offset rather than by the symbol.
17077
17078 However, if we're generating REL LO16 relocations, the offset is split
17079 between the LO16 and parterning high part relocation. The linker will
17080 need to recalculate the complete offset in order to correctly identify
17081 the merge data.
17082
17083 The linker has traditionally not looked for the parterning high part
17084 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17085 placed anywhere. Rather than break backwards compatibility by changing
17086 this, it seems better not to force the issue, and instead keep the
17087 original symbol. This will work with either linker behavior. */
17088 if ((lo16_reloc_p (fixp->fx_r_type)
17089 || reloc_needs_lo_p (fixp->fx_r_type))
17090 && HAVE_IN_PLACE_ADDENDS
17091 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17092 return 0;
17093
17094 /* There is no place to store an in-place offset for JALR relocations.
17095 Likewise an in-range offset of limited PC-relative relocations may
17096 overflow the in-place relocatable field if recalculated against the
17097 start address of the symbol's containing section.
17098
17099 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17100 section relative to allow linker relaxations to be performed later on. */
17101 if ((HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (mips_opts.isa))
17102 && (limited_pcrel_reloc_p (fixp->fx_r_type)
17103 || jalr_reloc_p (fixp->fx_r_type)))
17104 return 0;
17105
17106 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17107 to a floating-point stub. The same is true for non-R_MIPS16_26
17108 relocations against MIPS16 functions; in this case, the stub becomes
17109 the function's canonical address.
17110
17111 Floating-point stubs are stored in unique .mips16.call.* or
17112 .mips16.fn.* sections. If a stub T for function F is in section S,
17113 the first relocation in section S must be against F; this is how the
17114 linker determines the target function. All relocations that might
17115 resolve to T must also be against F. We therefore have the following
17116 restrictions, which are given in an intentionally-redundant way:
17117
17118 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17119 symbols.
17120
17121 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17122 if that stub might be used.
17123
17124 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17125 symbols.
17126
17127 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17128 that stub might be used.
17129
17130 There is a further restriction:
17131
17132 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17133 R_MICROMIPS_26_S1) against MIPS16 or microMIPS symbols on
17134 targets with in-place addends; the relocation field cannot
17135 encode the low bit.
17136
17137 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17138 against a MIPS16 symbol. We deal with (5) by by not reducing any
17139 such relocations on REL targets.
17140
17141 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17142 relocation against some symbol R, no relocation against R may be
17143 reduced. (Note that this deals with (2) as well as (1) because
17144 relocations against global symbols will never be reduced on ELF
17145 targets.) This approach is a little simpler than trying to detect
17146 stub sections, and gives the "all or nothing" per-symbol consistency
17147 that we have for MIPS16 symbols. */
17148 if (fixp->fx_subsy == NULL
17149 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17150 || *symbol_get_tc (fixp->fx_addsy)
17151 || (HAVE_IN_PLACE_ADDENDS
17152 && ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17153 && jmp_reloc_p (fixp->fx_r_type))))
17154 return 0;
17155
17156 return 1;
17157 }
17158
17159 /* Translate internal representation of relocation info to BFD target
17160 format. */
17161
17162 arelent **
17163 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17164 {
17165 static arelent *retval[4];
17166 arelent *reloc;
17167 bfd_reloc_code_real_type code;
17168
17169 memset (retval, 0, sizeof(retval));
17170 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
17171 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
17172 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17173 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17174
17175 if (fixp->fx_pcrel)
17176 {
17177 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17178 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17179 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17180 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17181 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17182 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17183 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17184 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17185 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17186 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17187 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17188
17189 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17190 Relocations want only the symbol offset. */
17191 reloc->addend = fixp->fx_addnumber + reloc->address;
17192 }
17193 else
17194 reloc->addend = fixp->fx_addnumber;
17195
17196 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17197 entry to be used in the relocation's section offset. */
17198 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17199 {
17200 reloc->address = reloc->addend;
17201 reloc->addend = 0;
17202 }
17203
17204 code = fixp->fx_r_type;
17205
17206 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17207 if (reloc->howto == NULL)
17208 {
17209 as_bad_where (fixp->fx_file, fixp->fx_line,
17210 _("cannot represent %s relocation in this object file"
17211 " format"),
17212 bfd_get_reloc_code_name (code));
17213 retval[0] = NULL;
17214 }
17215
17216 return retval;
17217 }
17218
17219 /* Relax a machine dependent frag. This returns the amount by which
17220 the current size of the frag should change. */
17221
17222 int
17223 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17224 {
17225 if (RELAX_BRANCH_P (fragp->fr_subtype))
17226 {
17227 offsetT old_var = fragp->fr_var;
17228
17229 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17230
17231 return fragp->fr_var - old_var;
17232 }
17233
17234 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17235 {
17236 offsetT old_var = fragp->fr_var;
17237 offsetT new_var = 4;
17238
17239 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17240 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17241 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17242 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17243 fragp->fr_var = new_var;
17244
17245 return new_var - old_var;
17246 }
17247
17248 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17249 return 0;
17250
17251 if (mips16_extended_frag (fragp, NULL, stretch))
17252 {
17253 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17254 return 0;
17255 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17256 return 2;
17257 }
17258 else
17259 {
17260 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17261 return 0;
17262 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17263 return -2;
17264 }
17265
17266 return 0;
17267 }
17268
17269 /* Convert a machine dependent frag. */
17270
17271 void
17272 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17273 {
17274 if (RELAX_BRANCH_P (fragp->fr_subtype))
17275 {
17276 char *buf;
17277 unsigned long insn;
17278 expressionS exp;
17279 fixS *fixp;
17280
17281 buf = fragp->fr_literal + fragp->fr_fix;
17282 insn = read_insn (buf);
17283
17284 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17285 {
17286 /* We generate a fixup instead of applying it right now
17287 because, if there are linker relaxations, we're going to
17288 need the relocations. */
17289 exp.X_op = O_symbol;
17290 exp.X_add_symbol = fragp->fr_symbol;
17291 exp.X_add_number = fragp->fr_offset;
17292
17293 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17294 BFD_RELOC_16_PCREL_S2);
17295 fixp->fx_file = fragp->fr_file;
17296 fixp->fx_line = fragp->fr_line;
17297
17298 buf = write_insn (buf, insn);
17299 }
17300 else
17301 {
17302 int i;
17303
17304 as_warn_where (fragp->fr_file, fragp->fr_line,
17305 _("relaxed out-of-range branch into a jump"));
17306
17307 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
17308 goto uncond;
17309
17310 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17311 {
17312 /* Reverse the branch. */
17313 switch ((insn >> 28) & 0xf)
17314 {
17315 case 4:
17316 if ((insn & 0xff000000) == 0x47000000
17317 || (insn & 0xff600000) == 0x45600000)
17318 {
17319 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
17320 reversed by tweaking bit 23. */
17321 insn ^= 0x00800000;
17322 }
17323 else
17324 {
17325 /* bc[0-3][tf]l? instructions can have the condition
17326 reversed by tweaking a single TF bit, and their
17327 opcodes all have 0x4???????. */
17328 gas_assert ((insn & 0xf3e00000) == 0x41000000);
17329 insn ^= 0x00010000;
17330 }
17331 break;
17332
17333 case 0:
17334 /* bltz 0x04000000 bgez 0x04010000
17335 bltzal 0x04100000 bgezal 0x04110000 */
17336 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
17337 insn ^= 0x00010000;
17338 break;
17339
17340 case 1:
17341 /* beq 0x10000000 bne 0x14000000
17342 blez 0x18000000 bgtz 0x1c000000 */
17343 insn ^= 0x04000000;
17344 break;
17345
17346 default:
17347 abort ();
17348 }
17349 }
17350
17351 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17352 {
17353 /* Clear the and-link bit. */
17354 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
17355
17356 /* bltzal 0x04100000 bgezal 0x04110000
17357 bltzall 0x04120000 bgezall 0x04130000 */
17358 insn &= ~0x00100000;
17359 }
17360
17361 /* Branch over the branch (if the branch was likely) or the
17362 full jump (not likely case). Compute the offset from the
17363 current instruction to branch to. */
17364 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17365 i = 16;
17366 else
17367 {
17368 /* How many bytes in instructions we've already emitted? */
17369 i = buf - fragp->fr_literal - fragp->fr_fix;
17370 /* How many bytes in instructions from here to the end? */
17371 i = fragp->fr_var - i;
17372 }
17373 /* Convert to instruction count. */
17374 i >>= 2;
17375 /* Branch counts from the next instruction. */
17376 i--;
17377 insn |= i;
17378 /* Branch over the jump. */
17379 buf = write_insn (buf, insn);
17380
17381 /* nop */
17382 buf = write_insn (buf, 0);
17383
17384 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
17385 {
17386 /* beql $0, $0, 2f */
17387 insn = 0x50000000;
17388 /* Compute the PC offset from the current instruction to
17389 the end of the variable frag. */
17390 /* How many bytes in instructions we've already emitted? */
17391 i = buf - fragp->fr_literal - fragp->fr_fix;
17392 /* How many bytes in instructions from here to the end? */
17393 i = fragp->fr_var - i;
17394 /* Convert to instruction count. */
17395 i >>= 2;
17396 /* Don't decrement i, because we want to branch over the
17397 delay slot. */
17398 insn |= i;
17399
17400 buf = write_insn (buf, insn);
17401 buf = write_insn (buf, 0);
17402 }
17403
17404 uncond:
17405 if (mips_pic == NO_PIC)
17406 {
17407 /* j or jal. */
17408 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
17409 ? 0x0c000000 : 0x08000000);
17410 exp.X_op = O_symbol;
17411 exp.X_add_symbol = fragp->fr_symbol;
17412 exp.X_add_number = fragp->fr_offset;
17413
17414 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17415 FALSE, BFD_RELOC_MIPS_JMP);
17416 fixp->fx_file = fragp->fr_file;
17417 fixp->fx_line = fragp->fr_line;
17418
17419 buf = write_insn (buf, insn);
17420 }
17421 else
17422 {
17423 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
17424
17425 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
17426 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
17427 insn |= at << OP_SH_RT;
17428 exp.X_op = O_symbol;
17429 exp.X_add_symbol = fragp->fr_symbol;
17430 exp.X_add_number = fragp->fr_offset;
17431
17432 if (fragp->fr_offset)
17433 {
17434 exp.X_add_symbol = make_expr_symbol (&exp);
17435 exp.X_add_number = 0;
17436 }
17437
17438 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17439 FALSE, BFD_RELOC_MIPS_GOT16);
17440 fixp->fx_file = fragp->fr_file;
17441 fixp->fx_line = fragp->fr_line;
17442
17443 buf = write_insn (buf, insn);
17444
17445 if (mips_opts.isa == ISA_MIPS1)
17446 /* nop */
17447 buf = write_insn (buf, 0);
17448
17449 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
17450 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
17451 insn |= at << OP_SH_RS | at << OP_SH_RT;
17452
17453 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
17454 FALSE, BFD_RELOC_LO16);
17455 fixp->fx_file = fragp->fr_file;
17456 fixp->fx_line = fragp->fr_line;
17457
17458 buf = write_insn (buf, insn);
17459
17460 /* j(al)r $at. */
17461 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
17462 insn = 0x0000f809;
17463 else
17464 insn = 0x00000008;
17465 insn |= at << OP_SH_RS;
17466
17467 buf = write_insn (buf, insn);
17468 }
17469 }
17470
17471 fragp->fr_fix += fragp->fr_var;
17472 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17473 return;
17474 }
17475
17476 /* Relax microMIPS branches. */
17477 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17478 {
17479 char *buf = fragp->fr_literal + fragp->fr_fix;
17480 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17481 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17482 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17483 bfd_boolean short_ds;
17484 unsigned long insn;
17485 expressionS exp;
17486 fixS *fixp;
17487
17488 exp.X_op = O_symbol;
17489 exp.X_add_symbol = fragp->fr_symbol;
17490 exp.X_add_number = fragp->fr_offset;
17491
17492 fragp->fr_fix += fragp->fr_var;
17493
17494 /* Handle 16-bit branches that fit or are forced to fit. */
17495 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17496 {
17497 /* We generate a fixup instead of applying it right now,
17498 because if there is linker relaxation, we're going to
17499 need the relocations. */
17500 if (type == 'D')
17501 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17502 BFD_RELOC_MICROMIPS_10_PCREL_S1);
17503 else if (type == 'E')
17504 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
17505 BFD_RELOC_MICROMIPS_7_PCREL_S1);
17506 else
17507 abort ();
17508
17509 fixp->fx_file = fragp->fr_file;
17510 fixp->fx_line = fragp->fr_line;
17511
17512 /* These relocations can have an addend that won't fit in
17513 2 octets. */
17514 fixp->fx_no_overflow = 1;
17515
17516 return;
17517 }
17518
17519 /* Handle 32-bit branches that fit or are forced to fit. */
17520 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17521 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17522 {
17523 /* We generate a fixup instead of applying it right now,
17524 because if there is linker relaxation, we're going to
17525 need the relocations. */
17526 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
17527 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17528 fixp->fx_file = fragp->fr_file;
17529 fixp->fx_line = fragp->fr_line;
17530
17531 if (type == 0)
17532 return;
17533 }
17534
17535 /* Relax 16-bit branches to 32-bit branches. */
17536 if (type != 0)
17537 {
17538 insn = read_compressed_insn (buf, 2);
17539
17540 if ((insn & 0xfc00) == 0xcc00) /* b16 */
17541 insn = 0x94000000; /* beq */
17542 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
17543 {
17544 unsigned long regno;
17545
17546 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
17547 regno = micromips_to_32_reg_d_map [regno];
17548 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
17549 insn |= regno << MICROMIPSOP_SH_RS;
17550 }
17551 else
17552 abort ();
17553
17554 /* Nothing else to do, just write it out. */
17555 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
17556 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17557 {
17558 buf = write_compressed_insn (buf, insn, 4);
17559 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17560 return;
17561 }
17562 }
17563 else
17564 insn = read_compressed_insn (buf, 4);
17565
17566 /* Relax 32-bit branches to a sequence of instructions. */
17567 as_warn_where (fragp->fr_file, fragp->fr_line,
17568 _("relaxed out-of-range branch into a jump"));
17569
17570 /* Set the short-delay-slot bit. */
17571 short_ds = al && (insn & 0x02000000) != 0;
17572
17573 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
17574 {
17575 symbolS *l;
17576
17577 /* Reverse the branch. */
17578 if ((insn & 0xfc000000) == 0x94000000 /* beq */
17579 || (insn & 0xfc000000) == 0xb4000000) /* bne */
17580 insn ^= 0x20000000;
17581 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
17582 || (insn & 0xffe00000) == 0x40400000 /* bgez */
17583 || (insn & 0xffe00000) == 0x40800000 /* blez */
17584 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
17585 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
17586 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
17587 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
17588 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
17589 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
17590 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
17591 insn ^= 0x00400000;
17592 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
17593 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
17594 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
17595 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
17596 insn ^= 0x00200000;
17597 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
17598 BNZ.df */
17599 || (insn & 0xff600000) == 0x81600000) /* BZ.V
17600 BNZ.V */
17601 insn ^= 0x00800000;
17602 else
17603 abort ();
17604
17605 if (al)
17606 {
17607 /* Clear the and-link and short-delay-slot bits. */
17608 gas_assert ((insn & 0xfda00000) == 0x40200000);
17609
17610 /* bltzal 0x40200000 bgezal 0x40600000 */
17611 /* bltzals 0x42200000 bgezals 0x42600000 */
17612 insn &= ~0x02200000;
17613 }
17614
17615 /* Make a label at the end for use with the branch. */
17616 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
17617 micromips_label_inc ();
17618 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
17619
17620 /* Refer to it. */
17621 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
17622 BFD_RELOC_MICROMIPS_16_PCREL_S1);
17623 fixp->fx_file = fragp->fr_file;
17624 fixp->fx_line = fragp->fr_line;
17625
17626 /* Branch over the jump. */
17627 buf = write_compressed_insn (buf, insn, 4);
17628 if (!compact)
17629 /* nop */
17630 buf = write_compressed_insn (buf, 0x0c00, 2);
17631 }
17632
17633 if (mips_pic == NO_PIC)
17634 {
17635 unsigned long jal = short_ds ? 0x74000000 : 0xf4000000; /* jal/s */
17636
17637 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
17638 insn = al ? jal : 0xd4000000;
17639
17640 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17641 BFD_RELOC_MICROMIPS_JMP);
17642 fixp->fx_file = fragp->fr_file;
17643 fixp->fx_line = fragp->fr_line;
17644
17645 buf = write_compressed_insn (buf, insn, 4);
17646 if (compact)
17647 /* nop */
17648 buf = write_compressed_insn (buf, 0x0c00, 2);
17649 }
17650 else
17651 {
17652 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
17653 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
17654 unsigned long jr = compact ? 0x45a0 : 0x4580; /* jr/c */
17655
17656 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
17657 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
17658 insn |= at << MICROMIPSOP_SH_RT;
17659
17660 if (exp.X_add_number)
17661 {
17662 exp.X_add_symbol = make_expr_symbol (&exp);
17663 exp.X_add_number = 0;
17664 }
17665
17666 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17667 BFD_RELOC_MICROMIPS_GOT16);
17668 fixp->fx_file = fragp->fr_file;
17669 fixp->fx_line = fragp->fr_line;
17670
17671 buf = write_compressed_insn (buf, insn, 4);
17672
17673 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
17674 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
17675 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
17676
17677 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
17678 BFD_RELOC_MICROMIPS_LO16);
17679 fixp->fx_file = fragp->fr_file;
17680 fixp->fx_line = fragp->fr_line;
17681
17682 buf = write_compressed_insn (buf, insn, 4);
17683
17684 /* jr/jrc/jalr/jalrs $at */
17685 insn = al ? jalr : jr;
17686 insn |= at << MICROMIPSOP_SH_MJ;
17687
17688 buf = write_compressed_insn (buf, insn, 2);
17689 }
17690
17691 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
17692 return;
17693 }
17694
17695 if (RELAX_MIPS16_P (fragp->fr_subtype))
17696 {
17697 int type;
17698 const struct mips_int_operand *operand;
17699 offsetT val;
17700 char *buf;
17701 unsigned int user_length, length;
17702 unsigned long insn;
17703 bfd_boolean ext;
17704
17705 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17706 operand = mips16_immed_operand (type, FALSE);
17707
17708 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
17709 val = resolve_symbol_value (fragp->fr_symbol);
17710 if (operand->root.type == OP_PCREL)
17711 {
17712 const struct mips_pcrel_operand *pcrel_op;
17713 addressT addr;
17714
17715 pcrel_op = (const struct mips_pcrel_operand *) operand;
17716 addr = fragp->fr_address + fragp->fr_fix;
17717
17718 /* The rules for the base address of a PC relative reloc are
17719 complicated; see mips16_extended_frag. */
17720 if (pcrel_op->include_isa_bit)
17721 {
17722 addr += 2;
17723 if (ext)
17724 addr += 2;
17725 /* Ignore the low bit in the target, since it will be
17726 set for a text label. */
17727 val &= -2;
17728 }
17729 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17730 addr -= 4;
17731 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17732 addr -= 2;
17733
17734 addr &= -(1 << pcrel_op->align_log2);
17735 val -= addr;
17736
17737 /* Make sure the section winds up with the alignment we have
17738 assumed. */
17739 if (operand->shift > 0)
17740 record_alignment (asec, operand->shift);
17741 }
17742
17743 if (ext
17744 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
17745 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
17746 as_warn_where (fragp->fr_file, fragp->fr_line,
17747 _("extended instruction in delay slot"));
17748
17749 buf = fragp->fr_literal + fragp->fr_fix;
17750
17751 insn = read_compressed_insn (buf, 2);
17752 if (ext)
17753 insn |= MIPS16_EXTEND;
17754
17755 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17756 user_length = 4;
17757 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17758 user_length = 2;
17759 else
17760 user_length = 0;
17761
17762 mips16_immed (fragp->fr_file, fragp->fr_line, type,
17763 BFD_RELOC_UNUSED, val, user_length, &insn);
17764
17765 length = (ext ? 4 : 2);
17766 gas_assert (mips16_opcode_length (insn) == length);
17767 write_compressed_insn (buf, insn, length);
17768 fragp->fr_fix += length;
17769 }
17770 else
17771 {
17772 relax_substateT subtype = fragp->fr_subtype;
17773 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
17774 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
17775 int first, second;
17776 fixS *fixp;
17777
17778 first = RELAX_FIRST (subtype);
17779 second = RELAX_SECOND (subtype);
17780 fixp = (fixS *) fragp->fr_opcode;
17781
17782 /* If the delay slot chosen does not match the size of the instruction,
17783 then emit a warning. */
17784 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
17785 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
17786 {
17787 relax_substateT s;
17788 const char *msg;
17789
17790 s = subtype & (RELAX_DELAY_SLOT_16BIT
17791 | RELAX_DELAY_SLOT_SIZE_FIRST
17792 | RELAX_DELAY_SLOT_SIZE_SECOND);
17793 msg = macro_warning (s);
17794 if (msg != NULL)
17795 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17796 subtype &= ~s;
17797 }
17798
17799 /* Possibly emit a warning if we've chosen the longer option. */
17800 if (use_second == second_longer)
17801 {
17802 relax_substateT s;
17803 const char *msg;
17804
17805 s = (subtype
17806 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
17807 msg = macro_warning (s);
17808 if (msg != NULL)
17809 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
17810 subtype &= ~s;
17811 }
17812
17813 /* Go through all the fixups for the first sequence. Disable them
17814 (by marking them as done) if we're going to use the second
17815 sequence instead. */
17816 while (fixp
17817 && fixp->fx_frag == fragp
17818 && fixp->fx_where < fragp->fr_fix - second)
17819 {
17820 if (subtype & RELAX_USE_SECOND)
17821 fixp->fx_done = 1;
17822 fixp = fixp->fx_next;
17823 }
17824
17825 /* Go through the fixups for the second sequence. Disable them if
17826 we're going to use the first sequence, otherwise adjust their
17827 addresses to account for the relaxation. */
17828 while (fixp && fixp->fx_frag == fragp)
17829 {
17830 if (subtype & RELAX_USE_SECOND)
17831 fixp->fx_where -= first;
17832 else
17833 fixp->fx_done = 1;
17834 fixp = fixp->fx_next;
17835 }
17836
17837 /* Now modify the frag contents. */
17838 if (subtype & RELAX_USE_SECOND)
17839 {
17840 char *start;
17841
17842 start = fragp->fr_literal + fragp->fr_fix - first - second;
17843 memmove (start, start + first, second);
17844 fragp->fr_fix -= first;
17845 }
17846 else
17847 fragp->fr_fix -= second;
17848 }
17849 }
17850
17851 /* This function is called after the relocs have been generated.
17852 We've been storing mips16 text labels as odd. Here we convert them
17853 back to even for the convenience of the debugger. */
17854
17855 void
17856 mips_frob_file_after_relocs (void)
17857 {
17858 asymbol **syms;
17859 unsigned int count, i;
17860
17861 syms = bfd_get_outsymbols (stdoutput);
17862 count = bfd_get_symcount (stdoutput);
17863 for (i = 0; i < count; i++, syms++)
17864 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
17865 && ((*syms)->value & 1) != 0)
17866 {
17867 (*syms)->value &= ~1;
17868 /* If the symbol has an odd size, it was probably computed
17869 incorrectly, so adjust that as well. */
17870 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
17871 ++elf_symbol (*syms)->internal_elf_sym.st_size;
17872 }
17873 }
17874
17875 /* This function is called whenever a label is defined, including fake
17876 labels instantiated off the dot special symbol. It is used when
17877 handling branch delays; if a branch has a label, we assume we cannot
17878 move it. This also bumps the value of the symbol by 1 in compressed
17879 code. */
17880
17881 static void
17882 mips_record_label (symbolS *sym)
17883 {
17884 segment_info_type *si = seg_info (now_seg);
17885 struct insn_label_list *l;
17886
17887 if (free_insn_labels == NULL)
17888 l = (struct insn_label_list *) xmalloc (sizeof *l);
17889 else
17890 {
17891 l = free_insn_labels;
17892 free_insn_labels = l->next;
17893 }
17894
17895 l->label = sym;
17896 l->next = si->label_list;
17897 si->label_list = l;
17898 }
17899
17900 /* This function is called as tc_frob_label() whenever a label is defined
17901 and adds a DWARF-2 record we only want for true labels. */
17902
17903 void
17904 mips_define_label (symbolS *sym)
17905 {
17906 mips_record_label (sym);
17907 dwarf2_emit_label (sym);
17908 }
17909
17910 /* This function is called by tc_new_dot_label whenever a new dot symbol
17911 is defined. */
17912
17913 void
17914 mips_add_dot_label (symbolS *sym)
17915 {
17916 mips_record_label (sym);
17917 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
17918 mips_compressed_mark_label (sym);
17919 }
17920 \f
17921 /* Converting ASE flags from internal to .MIPS.abiflags values. */
17922 static unsigned int
17923 mips_convert_ase_flags (int ase)
17924 {
17925 unsigned int ext_ases = 0;
17926
17927 if (ase & ASE_DSP)
17928 ext_ases |= AFL_ASE_DSP;
17929 if (ase & ASE_DSPR2)
17930 ext_ases |= AFL_ASE_DSPR2;
17931 if (ase & ASE_EVA)
17932 ext_ases |= AFL_ASE_EVA;
17933 if (ase & ASE_MCU)
17934 ext_ases |= AFL_ASE_MCU;
17935 if (ase & ASE_MDMX)
17936 ext_ases |= AFL_ASE_MDMX;
17937 if (ase & ASE_MIPS3D)
17938 ext_ases |= AFL_ASE_MIPS3D;
17939 if (ase & ASE_MT)
17940 ext_ases |= AFL_ASE_MT;
17941 if (ase & ASE_SMARTMIPS)
17942 ext_ases |= AFL_ASE_SMARTMIPS;
17943 if (ase & ASE_VIRT)
17944 ext_ases |= AFL_ASE_VIRT;
17945 if (ase & ASE_MSA)
17946 ext_ases |= AFL_ASE_MSA;
17947 if (ase & ASE_XPA)
17948 ext_ases |= AFL_ASE_XPA;
17949
17950 return ext_ases;
17951 }
17952 /* Some special processing for a MIPS ELF file. */
17953
17954 void
17955 mips_elf_final_processing (void)
17956 {
17957 int fpabi;
17958 Elf_Internal_ABIFlags_v0 flags;
17959
17960 flags.version = 0;
17961 flags.isa_rev = 0;
17962 switch (file_mips_opts.isa)
17963 {
17964 case INSN_ISA1:
17965 flags.isa_level = 1;
17966 break;
17967 case INSN_ISA2:
17968 flags.isa_level = 2;
17969 break;
17970 case INSN_ISA3:
17971 flags.isa_level = 3;
17972 break;
17973 case INSN_ISA4:
17974 flags.isa_level = 4;
17975 break;
17976 case INSN_ISA5:
17977 flags.isa_level = 5;
17978 break;
17979 case INSN_ISA32:
17980 flags.isa_level = 32;
17981 flags.isa_rev = 1;
17982 break;
17983 case INSN_ISA32R2:
17984 flags.isa_level = 32;
17985 flags.isa_rev = 2;
17986 break;
17987 case INSN_ISA32R3:
17988 flags.isa_level = 32;
17989 flags.isa_rev = 3;
17990 break;
17991 case INSN_ISA32R5:
17992 flags.isa_level = 32;
17993 flags.isa_rev = 5;
17994 break;
17995 case INSN_ISA32R6:
17996 flags.isa_level = 32;
17997 flags.isa_rev = 6;
17998 break;
17999 case INSN_ISA64:
18000 flags.isa_level = 64;
18001 flags.isa_rev = 1;
18002 break;
18003 case INSN_ISA64R2:
18004 flags.isa_level = 64;
18005 flags.isa_rev = 2;
18006 break;
18007 case INSN_ISA64R3:
18008 flags.isa_level = 64;
18009 flags.isa_rev = 3;
18010 break;
18011 case INSN_ISA64R5:
18012 flags.isa_level = 64;
18013 flags.isa_rev = 5;
18014 break;
18015 case INSN_ISA64R6:
18016 flags.isa_level = 64;
18017 flags.isa_rev = 6;
18018 break;
18019 }
18020
18021 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18022 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18023 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18024 : (file_mips_opts.fp == 64) ? AFL_REG_64
18025 : AFL_REG_32;
18026 flags.cpr2_size = AFL_REG_NONE;
18027 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18028 Tag_GNU_MIPS_ABI_FP);
18029 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18030 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18031 if (file_ase_mips16)
18032 flags.ases |= AFL_ASE_MIPS16;
18033 if (file_ase_micromips)
18034 flags.ases |= AFL_ASE_MICROMIPS;
18035 flags.flags1 = 0;
18036 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18037 || file_mips_opts.fp == 64)
18038 && file_mips_opts.oddspreg)
18039 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18040 flags.flags2 = 0;
18041
18042 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18043 ((Elf_External_ABIFlags_v0 *)
18044 mips_flags_frag));
18045
18046 /* Write out the register information. */
18047 if (mips_abi != N64_ABI)
18048 {
18049 Elf32_RegInfo s;
18050
18051 s.ri_gprmask = mips_gprmask;
18052 s.ri_cprmask[0] = mips_cprmask[0];
18053 s.ri_cprmask[1] = mips_cprmask[1];
18054 s.ri_cprmask[2] = mips_cprmask[2];
18055 s.ri_cprmask[3] = mips_cprmask[3];
18056 /* The gp_value field is set by the MIPS ELF backend. */
18057
18058 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18059 ((Elf32_External_RegInfo *)
18060 mips_regmask_frag));
18061 }
18062 else
18063 {
18064 Elf64_Internal_RegInfo s;
18065
18066 s.ri_gprmask = mips_gprmask;
18067 s.ri_pad = 0;
18068 s.ri_cprmask[0] = mips_cprmask[0];
18069 s.ri_cprmask[1] = mips_cprmask[1];
18070 s.ri_cprmask[2] = mips_cprmask[2];
18071 s.ri_cprmask[3] = mips_cprmask[3];
18072 /* The gp_value field is set by the MIPS ELF backend. */
18073
18074 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18075 ((Elf64_External_RegInfo *)
18076 mips_regmask_frag));
18077 }
18078
18079 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18080 sort of BFD interface for this. */
18081 if (mips_any_noreorder)
18082 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18083 if (mips_pic != NO_PIC)
18084 {
18085 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18086 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18087 }
18088 if (mips_abicalls)
18089 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18090
18091 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18092 defined at present; this might need to change in future. */
18093 if (file_ase_mips16)
18094 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18095 if (file_ase_micromips)
18096 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18097 if (file_mips_opts.ase & ASE_MDMX)
18098 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18099
18100 /* Set the MIPS ELF ABI flags. */
18101 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
18102 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
18103 else if (mips_abi == O64_ABI)
18104 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
18105 else if (mips_abi == EABI_ABI)
18106 {
18107 if (file_mips_opts.gp == 64)
18108 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
18109 else
18110 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
18111 }
18112 else if (mips_abi == N32_ABI)
18113 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
18114
18115 /* Nothing to do for N64_ABI. */
18116
18117 if (mips_32bitmode)
18118 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
18119
18120 if (mips_nan2008 == 1)
18121 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
18122
18123 /* 32 bit code with 64 bit FP registers. */
18124 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18125 Tag_GNU_MIPS_ABI_FP);
18126 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
18127 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
18128 }
18129 \f
18130 typedef struct proc {
18131 symbolS *func_sym;
18132 symbolS *func_end_sym;
18133 unsigned long reg_mask;
18134 unsigned long reg_offset;
18135 unsigned long fpreg_mask;
18136 unsigned long fpreg_offset;
18137 unsigned long frame_offset;
18138 unsigned long frame_reg;
18139 unsigned long pc_reg;
18140 } procS;
18141
18142 static procS cur_proc;
18143 static procS *cur_proc_ptr;
18144 static int numprocs;
18145
18146 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
18147 as "2", and a normal nop as "0". */
18148
18149 #define NOP_OPCODE_MIPS 0
18150 #define NOP_OPCODE_MIPS16 1
18151 #define NOP_OPCODE_MICROMIPS 2
18152
18153 char
18154 mips_nop_opcode (void)
18155 {
18156 if (seg_info (now_seg)->tc_segment_info_data.micromips)
18157 return NOP_OPCODE_MICROMIPS;
18158 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
18159 return NOP_OPCODE_MIPS16;
18160 else
18161 return NOP_OPCODE_MIPS;
18162 }
18163
18164 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
18165 32-bit microMIPS NOPs here (if applicable). */
18166
18167 void
18168 mips_handle_align (fragS *fragp)
18169 {
18170 char nop_opcode;
18171 char *p;
18172 int bytes, size, excess;
18173 valueT opcode;
18174
18175 if (fragp->fr_type != rs_align_code)
18176 return;
18177
18178 p = fragp->fr_literal + fragp->fr_fix;
18179 nop_opcode = *p;
18180 switch (nop_opcode)
18181 {
18182 case NOP_OPCODE_MICROMIPS:
18183 opcode = micromips_nop32_insn.insn_opcode;
18184 size = 4;
18185 break;
18186 case NOP_OPCODE_MIPS16:
18187 opcode = mips16_nop_insn.insn_opcode;
18188 size = 2;
18189 break;
18190 case NOP_OPCODE_MIPS:
18191 default:
18192 opcode = nop_insn.insn_opcode;
18193 size = 4;
18194 break;
18195 }
18196
18197 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
18198 excess = bytes % size;
18199
18200 /* Handle the leading part if we're not inserting a whole number of
18201 instructions, and make it the end of the fixed part of the frag.
18202 Try to fit in a short microMIPS NOP if applicable and possible,
18203 and use zeroes otherwise. */
18204 gas_assert (excess < 4);
18205 fragp->fr_fix += excess;
18206 switch (excess)
18207 {
18208 case 3:
18209 *p++ = '\0';
18210 /* Fall through. */
18211 case 2:
18212 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
18213 {
18214 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
18215 break;
18216 }
18217 *p++ = '\0';
18218 /* Fall through. */
18219 case 1:
18220 *p++ = '\0';
18221 /* Fall through. */
18222 case 0:
18223 break;
18224 }
18225
18226 md_number_to_chars (p, opcode, size);
18227 fragp->fr_var = size;
18228 }
18229
18230 static long
18231 get_number (void)
18232 {
18233 int negative = 0;
18234 long val = 0;
18235
18236 if (*input_line_pointer == '-')
18237 {
18238 ++input_line_pointer;
18239 negative = 1;
18240 }
18241 if (!ISDIGIT (*input_line_pointer))
18242 as_bad (_("expected simple number"));
18243 if (input_line_pointer[0] == '0')
18244 {
18245 if (input_line_pointer[1] == 'x')
18246 {
18247 input_line_pointer += 2;
18248 while (ISXDIGIT (*input_line_pointer))
18249 {
18250 val <<= 4;
18251 val |= hex_value (*input_line_pointer++);
18252 }
18253 return negative ? -val : val;
18254 }
18255 else
18256 {
18257 ++input_line_pointer;
18258 while (ISDIGIT (*input_line_pointer))
18259 {
18260 val <<= 3;
18261 val |= *input_line_pointer++ - '0';
18262 }
18263 return negative ? -val : val;
18264 }
18265 }
18266 if (!ISDIGIT (*input_line_pointer))
18267 {
18268 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
18269 *input_line_pointer, *input_line_pointer);
18270 as_warn (_("invalid number"));
18271 return -1;
18272 }
18273 while (ISDIGIT (*input_line_pointer))
18274 {
18275 val *= 10;
18276 val += *input_line_pointer++ - '0';
18277 }
18278 return negative ? -val : val;
18279 }
18280
18281 /* The .file directive; just like the usual .file directive, but there
18282 is an initial number which is the ECOFF file index. In the non-ECOFF
18283 case .file implies DWARF-2. */
18284
18285 static void
18286 s_mips_file (int x ATTRIBUTE_UNUSED)
18287 {
18288 static int first_file_directive = 0;
18289
18290 if (ECOFF_DEBUGGING)
18291 {
18292 get_number ();
18293 s_app_file (0);
18294 }
18295 else
18296 {
18297 char *filename;
18298
18299 filename = dwarf2_directive_file (0);
18300
18301 /* Versions of GCC up to 3.1 start files with a ".file"
18302 directive even for stabs output. Make sure that this
18303 ".file" is handled. Note that you need a version of GCC
18304 after 3.1 in order to support DWARF-2 on MIPS. */
18305 if (filename != NULL && ! first_file_directive)
18306 {
18307 (void) new_logical_line (filename, -1);
18308 s_app_file_string (filename, 0);
18309 }
18310 first_file_directive = 1;
18311 }
18312 }
18313
18314 /* The .loc directive, implying DWARF-2. */
18315
18316 static void
18317 s_mips_loc (int x ATTRIBUTE_UNUSED)
18318 {
18319 if (!ECOFF_DEBUGGING)
18320 dwarf2_directive_loc (0);
18321 }
18322
18323 /* The .end directive. */
18324
18325 static void
18326 s_mips_end (int x ATTRIBUTE_UNUSED)
18327 {
18328 symbolS *p;
18329
18330 /* Following functions need their own .frame and .cprestore directives. */
18331 mips_frame_reg_valid = 0;
18332 mips_cprestore_valid = 0;
18333
18334 if (!is_end_of_line[(unsigned char) *input_line_pointer])
18335 {
18336 p = get_symbol ();
18337 demand_empty_rest_of_line ();
18338 }
18339 else
18340 p = NULL;
18341
18342 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18343 as_warn (_(".end not in text section"));
18344
18345 if (!cur_proc_ptr)
18346 {
18347 as_warn (_(".end directive without a preceding .ent directive"));
18348 demand_empty_rest_of_line ();
18349 return;
18350 }
18351
18352 if (p != NULL)
18353 {
18354 gas_assert (S_GET_NAME (p));
18355 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
18356 as_warn (_(".end symbol does not match .ent symbol"));
18357
18358 if (debug_type == DEBUG_STABS)
18359 stabs_generate_asm_endfunc (S_GET_NAME (p),
18360 S_GET_NAME (p));
18361 }
18362 else
18363 as_warn (_(".end directive missing or unknown symbol"));
18364
18365 /* Create an expression to calculate the size of the function. */
18366 if (p && cur_proc_ptr)
18367 {
18368 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
18369 expressionS *exp = xmalloc (sizeof (expressionS));
18370
18371 obj->size = exp;
18372 exp->X_op = O_subtract;
18373 exp->X_add_symbol = symbol_temp_new_now ();
18374 exp->X_op_symbol = p;
18375 exp->X_add_number = 0;
18376
18377 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
18378 }
18379
18380 /* Generate a .pdr section. */
18381 if (!ECOFF_DEBUGGING && mips_flag_pdr)
18382 {
18383 segT saved_seg = now_seg;
18384 subsegT saved_subseg = now_subseg;
18385 expressionS exp;
18386 char *fragp;
18387
18388 #ifdef md_flush_pending_output
18389 md_flush_pending_output ();
18390 #endif
18391
18392 gas_assert (pdr_seg);
18393 subseg_set (pdr_seg, 0);
18394
18395 /* Write the symbol. */
18396 exp.X_op = O_symbol;
18397 exp.X_add_symbol = p;
18398 exp.X_add_number = 0;
18399 emit_expr (&exp, 4);
18400
18401 fragp = frag_more (7 * 4);
18402
18403 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
18404 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
18405 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
18406 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
18407 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
18408 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
18409 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
18410
18411 subseg_set (saved_seg, saved_subseg);
18412 }
18413
18414 cur_proc_ptr = NULL;
18415 }
18416
18417 /* The .aent and .ent directives. */
18418
18419 static void
18420 s_mips_ent (int aent)
18421 {
18422 symbolS *symbolP;
18423
18424 symbolP = get_symbol ();
18425 if (*input_line_pointer == ',')
18426 ++input_line_pointer;
18427 SKIP_WHITESPACE ();
18428 if (ISDIGIT (*input_line_pointer)
18429 || *input_line_pointer == '-')
18430 get_number ();
18431
18432 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
18433 as_warn (_(".ent or .aent not in text section"));
18434
18435 if (!aent && cur_proc_ptr)
18436 as_warn (_("missing .end"));
18437
18438 if (!aent)
18439 {
18440 /* This function needs its own .frame and .cprestore directives. */
18441 mips_frame_reg_valid = 0;
18442 mips_cprestore_valid = 0;
18443
18444 cur_proc_ptr = &cur_proc;
18445 memset (cur_proc_ptr, '\0', sizeof (procS));
18446
18447 cur_proc_ptr->func_sym = symbolP;
18448
18449 ++numprocs;
18450
18451 if (debug_type == DEBUG_STABS)
18452 stabs_generate_asm_func (S_GET_NAME (symbolP),
18453 S_GET_NAME (symbolP));
18454 }
18455
18456 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
18457
18458 demand_empty_rest_of_line ();
18459 }
18460
18461 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
18462 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
18463 s_mips_frame is used so that we can set the PDR information correctly.
18464 We can't use the ecoff routines because they make reference to the ecoff
18465 symbol table (in the mdebug section). */
18466
18467 static void
18468 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
18469 {
18470 if (ECOFF_DEBUGGING)
18471 s_ignore (ignore);
18472 else
18473 {
18474 long val;
18475
18476 if (cur_proc_ptr == (procS *) NULL)
18477 {
18478 as_warn (_(".frame outside of .ent"));
18479 demand_empty_rest_of_line ();
18480 return;
18481 }
18482
18483 cur_proc_ptr->frame_reg = tc_get_register (1);
18484
18485 SKIP_WHITESPACE ();
18486 if (*input_line_pointer++ != ','
18487 || get_absolute_expression_and_terminator (&val) != ',')
18488 {
18489 as_warn (_("bad .frame directive"));
18490 --input_line_pointer;
18491 demand_empty_rest_of_line ();
18492 return;
18493 }
18494
18495 cur_proc_ptr->frame_offset = val;
18496 cur_proc_ptr->pc_reg = tc_get_register (0);
18497
18498 demand_empty_rest_of_line ();
18499 }
18500 }
18501
18502 /* The .fmask and .mask directives. If the mdebug section is present
18503 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
18504 embedded targets, s_mips_mask is used so that we can set the PDR
18505 information correctly. We can't use the ecoff routines because they
18506 make reference to the ecoff symbol table (in the mdebug section). */
18507
18508 static void
18509 s_mips_mask (int reg_type)
18510 {
18511 if (ECOFF_DEBUGGING)
18512 s_ignore (reg_type);
18513 else
18514 {
18515 long mask, off;
18516
18517 if (cur_proc_ptr == (procS *) NULL)
18518 {
18519 as_warn (_(".mask/.fmask outside of .ent"));
18520 demand_empty_rest_of_line ();
18521 return;
18522 }
18523
18524 if (get_absolute_expression_and_terminator (&mask) != ',')
18525 {
18526 as_warn (_("bad .mask/.fmask directive"));
18527 --input_line_pointer;
18528 demand_empty_rest_of_line ();
18529 return;
18530 }
18531
18532 off = get_absolute_expression ();
18533
18534 if (reg_type == 'F')
18535 {
18536 cur_proc_ptr->fpreg_mask = mask;
18537 cur_proc_ptr->fpreg_offset = off;
18538 }
18539 else
18540 {
18541 cur_proc_ptr->reg_mask = mask;
18542 cur_proc_ptr->reg_offset = off;
18543 }
18544
18545 demand_empty_rest_of_line ();
18546 }
18547 }
18548
18549 /* A table describing all the processors gas knows about. Names are
18550 matched in the order listed.
18551
18552 To ease comparison, please keep this table in the same order as
18553 gcc's mips_cpu_info_table[]. */
18554 static const struct mips_cpu_info mips_cpu_info_table[] =
18555 {
18556 /* Entries for generic ISAs */
18557 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
18558 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
18559 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
18560 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
18561 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
18562 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
18563 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18564 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
18565 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
18566 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
18567 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
18568 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
18569 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
18570 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
18571 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
18572
18573 /* MIPS I */
18574 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
18575 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
18576 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
18577
18578 /* MIPS II */
18579 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
18580
18581 /* MIPS III */
18582 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
18583 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
18584 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
18585 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
18586 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
18587 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
18588 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
18589 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
18590 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
18591 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
18592 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
18593 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
18594 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
18595 /* ST Microelectronics Loongson 2E and 2F cores */
18596 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
18597 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
18598
18599 /* MIPS IV */
18600 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
18601 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
18602 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
18603 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
18604 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
18605 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
18606 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
18607 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
18608 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
18609 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
18610 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
18611 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
18612 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
18613 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
18614 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
18615
18616 /* MIPS 32 */
18617 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18618 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18619 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
18620 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
18621
18622 /* MIPS 32 Release 2 */
18623 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18624 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18625 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18626 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
18627 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18628 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18629 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18630 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
18631 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18632 ISA_MIPS32R2, CPU_MIPS32R2 },
18633 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
18634 ISA_MIPS32R2, CPU_MIPS32R2 },
18635 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18636 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18637 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18638 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18639 /* Deprecated forms of the above. */
18640 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18641 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
18642 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
18643 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18644 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18645 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18646 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18647 /* Deprecated forms of the above. */
18648 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18649 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
18650 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
18651 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18652 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18653 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18654 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18655 /* Deprecated forms of the above. */
18656 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18657 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18658 /* 34Kn is a 34kc without DSP. */
18659 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18660 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
18661 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18662 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18663 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18664 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18665 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18666 /* Deprecated forms of the above. */
18667 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18668 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
18669 /* 1004K cores are multiprocessor versions of the 34K. */
18670 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18671 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18672 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18673 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18674 /* interaptiv is the new name for 1004kf */
18675 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
18676 /* M5100 family */
18677 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18678 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
18679 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
18680 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
18681
18682 /* MIPS 64 */
18683 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18684 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
18685 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18686 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
18687
18688 /* Broadcom SB-1 CPU core */
18689 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18690 /* Broadcom SB-1A CPU core */
18691 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
18692
18693 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
18694
18695 /* MIPS 64 Release 2 */
18696
18697 /* Cavium Networks Octeon CPU core */
18698 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
18699 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
18700 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
18701 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
18702
18703 /* RMI Xlr */
18704 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
18705
18706 /* Broadcom XLP.
18707 XLP is mostly like XLR, with the prominent exception that it is
18708 MIPS64R2 rather than MIPS64. */
18709 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
18710
18711 /* i6400. */
18712 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
18713
18714 /* End marker */
18715 { NULL, 0, 0, 0, 0 }
18716 };
18717
18718
18719 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
18720 with a final "000" replaced by "k". Ignore case.
18721
18722 Note: this function is shared between GCC and GAS. */
18723
18724 static bfd_boolean
18725 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
18726 {
18727 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
18728 given++, canonical++;
18729
18730 return ((*given == 0 && *canonical == 0)
18731 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
18732 }
18733
18734
18735 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
18736 CPU name. We've traditionally allowed a lot of variation here.
18737
18738 Note: this function is shared between GCC and GAS. */
18739
18740 static bfd_boolean
18741 mips_matching_cpu_name_p (const char *canonical, const char *given)
18742 {
18743 /* First see if the name matches exactly, or with a final "000"
18744 turned into "k". */
18745 if (mips_strict_matching_cpu_name_p (canonical, given))
18746 return TRUE;
18747
18748 /* If not, try comparing based on numerical designation alone.
18749 See if GIVEN is an unadorned number, or 'r' followed by a number. */
18750 if (TOLOWER (*given) == 'r')
18751 given++;
18752 if (!ISDIGIT (*given))
18753 return FALSE;
18754
18755 /* Skip over some well-known prefixes in the canonical name,
18756 hoping to find a number there too. */
18757 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
18758 canonical += 2;
18759 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
18760 canonical += 2;
18761 else if (TOLOWER (canonical[0]) == 'r')
18762 canonical += 1;
18763
18764 return mips_strict_matching_cpu_name_p (canonical, given);
18765 }
18766
18767
18768 /* Parse an option that takes the name of a processor as its argument.
18769 OPTION is the name of the option and CPU_STRING is the argument.
18770 Return the corresponding processor enumeration if the CPU_STRING is
18771 recognized, otherwise report an error and return null.
18772
18773 A similar function exists in GCC. */
18774
18775 static const struct mips_cpu_info *
18776 mips_parse_cpu (const char *option, const char *cpu_string)
18777 {
18778 const struct mips_cpu_info *p;
18779
18780 /* 'from-abi' selects the most compatible architecture for the given
18781 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
18782 EABIs, we have to decide whether we're using the 32-bit or 64-bit
18783 version. Look first at the -mgp options, if given, otherwise base
18784 the choice on MIPS_DEFAULT_64BIT.
18785
18786 Treat NO_ABI like the EABIs. One reason to do this is that the
18787 plain 'mips' and 'mips64' configs have 'from-abi' as their default
18788 architecture. This code picks MIPS I for 'mips' and MIPS III for
18789 'mips64', just as we did in the days before 'from-abi'. */
18790 if (strcasecmp (cpu_string, "from-abi") == 0)
18791 {
18792 if (ABI_NEEDS_32BIT_REGS (mips_abi))
18793 return mips_cpu_info_from_isa (ISA_MIPS1);
18794
18795 if (ABI_NEEDS_64BIT_REGS (mips_abi))
18796 return mips_cpu_info_from_isa (ISA_MIPS3);
18797
18798 if (file_mips_opts.gp >= 0)
18799 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
18800 ? ISA_MIPS1 : ISA_MIPS3);
18801
18802 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
18803 ? ISA_MIPS3
18804 : ISA_MIPS1);
18805 }
18806
18807 /* 'default' has traditionally been a no-op. Probably not very useful. */
18808 if (strcasecmp (cpu_string, "default") == 0)
18809 return 0;
18810
18811 for (p = mips_cpu_info_table; p->name != 0; p++)
18812 if (mips_matching_cpu_name_p (p->name, cpu_string))
18813 return p;
18814
18815 as_bad (_("bad value (%s) for %s"), cpu_string, option);
18816 return 0;
18817 }
18818
18819 /* Return the canonical processor information for ISA (a member of the
18820 ISA_MIPS* enumeration). */
18821
18822 static const struct mips_cpu_info *
18823 mips_cpu_info_from_isa (int isa)
18824 {
18825 int i;
18826
18827 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18828 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
18829 && isa == mips_cpu_info_table[i].isa)
18830 return (&mips_cpu_info_table[i]);
18831
18832 return NULL;
18833 }
18834
18835 static const struct mips_cpu_info *
18836 mips_cpu_info_from_arch (int arch)
18837 {
18838 int i;
18839
18840 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18841 if (arch == mips_cpu_info_table[i].cpu)
18842 return (&mips_cpu_info_table[i]);
18843
18844 return NULL;
18845 }
18846 \f
18847 static void
18848 show (FILE *stream, const char *string, int *col_p, int *first_p)
18849 {
18850 if (*first_p)
18851 {
18852 fprintf (stream, "%24s", "");
18853 *col_p = 24;
18854 }
18855 else
18856 {
18857 fprintf (stream, ", ");
18858 *col_p += 2;
18859 }
18860
18861 if (*col_p + strlen (string) > 72)
18862 {
18863 fprintf (stream, "\n%24s", "");
18864 *col_p = 24;
18865 }
18866
18867 fprintf (stream, "%s", string);
18868 *col_p += strlen (string);
18869
18870 *first_p = 0;
18871 }
18872
18873 void
18874 md_show_usage (FILE *stream)
18875 {
18876 int column, first;
18877 size_t i;
18878
18879 fprintf (stream, _("\
18880 MIPS options:\n\
18881 -EB generate big endian output\n\
18882 -EL generate little endian output\n\
18883 -g, -g2 do not remove unneeded NOPs or swap branches\n\
18884 -G NUM allow referencing objects up to NUM bytes\n\
18885 implicitly with the gp register [default 8]\n"));
18886 fprintf (stream, _("\
18887 -mips1 generate MIPS ISA I instructions\n\
18888 -mips2 generate MIPS ISA II instructions\n\
18889 -mips3 generate MIPS ISA III instructions\n\
18890 -mips4 generate MIPS ISA IV instructions\n\
18891 -mips5 generate MIPS ISA V instructions\n\
18892 -mips32 generate MIPS32 ISA instructions\n\
18893 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
18894 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
18895 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
18896 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
18897 -mips64 generate MIPS64 ISA instructions\n\
18898 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
18899 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
18900 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
18901 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
18902 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
18903
18904 first = 1;
18905
18906 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
18907 show (stream, mips_cpu_info_table[i].name, &column, &first);
18908 show (stream, "from-abi", &column, &first);
18909 fputc ('\n', stream);
18910
18911 fprintf (stream, _("\
18912 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
18913 -no-mCPU don't generate code specific to CPU.\n\
18914 For -mCPU and -no-mCPU, CPU must be one of:\n"));
18915
18916 first = 1;
18917
18918 show (stream, "3900", &column, &first);
18919 show (stream, "4010", &column, &first);
18920 show (stream, "4100", &column, &first);
18921 show (stream, "4650", &column, &first);
18922 fputc ('\n', stream);
18923
18924 fprintf (stream, _("\
18925 -mips16 generate mips16 instructions\n\
18926 -no-mips16 do not generate mips16 instructions\n"));
18927 fprintf (stream, _("\
18928 -mmicromips generate microMIPS instructions\n\
18929 -mno-micromips do not generate microMIPS instructions\n"));
18930 fprintf (stream, _("\
18931 -msmartmips generate smartmips instructions\n\
18932 -mno-smartmips do not generate smartmips instructions\n"));
18933 fprintf (stream, _("\
18934 -mdsp generate DSP instructions\n\
18935 -mno-dsp do not generate DSP instructions\n"));
18936 fprintf (stream, _("\
18937 -mdspr2 generate DSP R2 instructions\n\
18938 -mno-dspr2 do not generate DSP R2 instructions\n"));
18939 fprintf (stream, _("\
18940 -mmt generate MT instructions\n\
18941 -mno-mt do not generate MT instructions\n"));
18942 fprintf (stream, _("\
18943 -mmcu generate MCU instructions\n\
18944 -mno-mcu do not generate MCU instructions\n"));
18945 fprintf (stream, _("\
18946 -mmsa generate MSA instructions\n\
18947 -mno-msa do not generate MSA instructions\n"));
18948 fprintf (stream, _("\
18949 -mxpa generate eXtended Physical Address (XPA) instructions\n\
18950 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
18951 fprintf (stream, _("\
18952 -mvirt generate Virtualization instructions\n\
18953 -mno-virt do not generate Virtualization instructions\n"));
18954 fprintf (stream, _("\
18955 -minsn32 only generate 32-bit microMIPS instructions\n\
18956 -mno-insn32 generate all microMIPS instructions\n"));
18957 fprintf (stream, _("\
18958 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
18959 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
18960 -mfix-vr4120 work around certain VR4120 errata\n\
18961 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
18962 -mfix-24k insert a nop after ERET and DERET instructions\n\
18963 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
18964 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
18965 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
18966 -msym32 assume all symbols have 32-bit values\n\
18967 -O0 remove unneeded NOPs, do not swap branches\n\
18968 -O remove unneeded NOPs and swap branches\n\
18969 --trap, --no-break trap exception on div by 0 and mult overflow\n\
18970 --break, --no-trap break exception on div by 0 and mult overflow\n"));
18971 fprintf (stream, _("\
18972 -mhard-float allow floating-point instructions\n\
18973 -msoft-float do not allow floating-point instructions\n\
18974 -msingle-float only allow 32-bit floating-point operations\n\
18975 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
18976 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
18977 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
18978 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
18979
18980 first = 1;
18981
18982 show (stream, "legacy", &column, &first);
18983 show (stream, "2008", &column, &first);
18984
18985 fputc ('\n', stream);
18986
18987 fprintf (stream, _("\
18988 -KPIC, -call_shared generate SVR4 position independent code\n\
18989 -call_nonpic generate non-PIC code that can operate with DSOs\n\
18990 -mvxworks-pic generate VxWorks position independent code\n\
18991 -non_shared do not generate code that can operate with DSOs\n\
18992 -xgot assume a 32 bit GOT\n\
18993 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
18994 -mshared, -mno-shared disable/enable .cpload optimization for\n\
18995 position dependent (non shared) code\n\
18996 -mabi=ABI create ABI conformant object file for:\n"));
18997
18998 first = 1;
18999
19000 show (stream, "32", &column, &first);
19001 show (stream, "o64", &column, &first);
19002 show (stream, "n32", &column, &first);
19003 show (stream, "64", &column, &first);
19004 show (stream, "eabi", &column, &first);
19005
19006 fputc ('\n', stream);
19007
19008 fprintf (stream, _("\
19009 -32 create o32 ABI object file (default)\n\
19010 -n32 create n32 ABI object file\n\
19011 -64 create 64 ABI object file\n"));
19012 }
19013
19014 #ifdef TE_IRIX
19015 enum dwarf2_format
19016 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19017 {
19018 if (HAVE_64BIT_SYMBOLS)
19019 return dwarf2_format_64bit_irix;
19020 else
19021 return dwarf2_format_32bit;
19022 }
19023 #endif
19024
19025 int
19026 mips_dwarf2_addr_size (void)
19027 {
19028 if (HAVE_64BIT_OBJECTS)
19029 return 8;
19030 else
19031 return 4;
19032 }
19033
19034 /* Standard calling conventions leave the CFA at SP on entry. */
19035 void
19036 mips_cfi_frame_initial_instructions (void)
19037 {
19038 cfi_add_CFA_def_cfa_register (SP);
19039 }
19040
19041 int
19042 tc_mips_regname_to_dw2regnum (char *regname)
19043 {
19044 unsigned int regnum = -1;
19045 unsigned int reg;
19046
19047 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19048 regnum = reg;
19049
19050 return regnum;
19051 }
19052
19053 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19054 Given a symbolic attribute NAME, return the proper integer value.
19055 Returns -1 if the attribute is not known. */
19056
19057 int
19058 mips_convert_symbolic_attribute (const char *name)
19059 {
19060 static const struct
19061 {
19062 const char * name;
19063 const int tag;
19064 }
19065 attribute_table[] =
19066 {
19067 #define T(tag) {#tag, tag}
19068 T (Tag_GNU_MIPS_ABI_FP),
19069 T (Tag_GNU_MIPS_ABI_MSA),
19070 #undef T
19071 };
19072 unsigned int i;
19073
19074 if (name == NULL)
19075 return -1;
19076
19077 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19078 if (streq (name, attribute_table[i].name))
19079 return attribute_table[i].tag;
19080
19081 return -1;
19082 }
19083
19084 void
19085 md_mips_end (void)
19086 {
19087 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19088
19089 mips_emit_delays ();
19090 if (cur_proc_ptr)
19091 as_warn (_("missing .end at end of assembly"));
19092
19093 /* Just in case no code was emitted, do the consistency check. */
19094 file_mips_check_options ();
19095
19096 /* Set a floating-point ABI if the user did not. */
19097 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
19098 {
19099 /* Perform consistency checks on the floating-point ABI. */
19100 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19101 Tag_GNU_MIPS_ABI_FP);
19102 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
19103 check_fpabi (fpabi);
19104 }
19105 else
19106 {
19107 /* Soft-float gets precedence over single-float, the two options should
19108 not be used together so this should not matter. */
19109 if (file_mips_opts.soft_float == 1)
19110 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
19111 /* Single-float gets precedence over all double_float cases. */
19112 else if (file_mips_opts.single_float == 1)
19113 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
19114 else
19115 {
19116 switch (file_mips_opts.fp)
19117 {
19118 case 32:
19119 if (file_mips_opts.gp == 32)
19120 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19121 break;
19122 case 0:
19123 fpabi = Val_GNU_MIPS_ABI_FP_XX;
19124 break;
19125 case 64:
19126 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
19127 fpabi = Val_GNU_MIPS_ABI_FP_64A;
19128 else if (file_mips_opts.gp == 32)
19129 fpabi = Val_GNU_MIPS_ABI_FP_64;
19130 else
19131 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
19132 break;
19133 }
19134 }
19135
19136 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19137 Tag_GNU_MIPS_ABI_FP, fpabi);
19138 }
19139 }
19140
19141 /* Returns the relocation type required for a particular CFI encoding. */
19142
19143 bfd_reloc_code_real_type
19144 mips_cfi_reloc_for_encoding (int encoding)
19145 {
19146 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
19147 return BFD_RELOC_32_PCREL;
19148 else return BFD_RELOC_NONE;
19149 }
This page took 0.417471 seconds and 5 git commands to generate.