MIPS16/GAS: Improve non-immediate operand error diagnostics
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The frag that contains the instruction. */
145 struct frag *frag;
146
147 /* The offset into FRAG of the first instruction byte. */
148 long where;
149
150 /* The relocs associated with the instruction, if any. */
151 fixS *fixp[3];
152
153 /* True if this entry cannot be moved from its current position. */
154 unsigned int fixed_p : 1;
155
156 /* True if this instruction occurred in a .set noreorder block. */
157 unsigned int noreorder_p : 1;
158
159 /* True for mips16 instructions that jump to an absolute address. */
160 unsigned int mips16_absolute_jump_p : 1;
161
162 /* True if this instruction is complete. */
163 unsigned int complete_p : 1;
164
165 /* True if this instruction is cleared from history by unconditional
166 branch. */
167 unsigned int cleared_p : 1;
168 };
169
170 /* The ABI to use. */
171 enum mips_abi_level
172 {
173 NO_ABI = 0,
174 O32_ABI,
175 O64_ABI,
176 N32_ABI,
177 N64_ABI,
178 EABI_ABI
179 };
180
181 /* MIPS ABI we are using for this output file. */
182 static enum mips_abi_level mips_abi = NO_ABI;
183
184 /* Whether or not we have code that can call pic code. */
185 int mips_abicalls = FALSE;
186
187 /* Whether or not we have code which can be put into a shared
188 library. */
189 static bfd_boolean mips_in_shared = TRUE;
190
191 /* This is the set of options which may be modified by the .set
192 pseudo-op. We use a struct so that .set push and .set pop are more
193 reliable. */
194
195 struct mips_set_options
196 {
197 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
198 if it has not been initialized. Changed by `.set mipsN', and the
199 -mipsN command line option, and the default CPU. */
200 int isa;
201 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
202 <asename>', by command line options, and based on the default
203 architecture. */
204 int ase;
205 /* Whether we are assembling for the mips16 processor. 0 if we are
206 not, 1 if we are, and -1 if the value has not been initialized.
207 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
208 -nomips16 command line options, and the default CPU. */
209 int mips16;
210 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
211 1 if we are, and -1 if the value has not been initialized. Changed
212 by `.set micromips' and `.set nomicromips', and the -mmicromips
213 and -mno-micromips command line options, and the default CPU. */
214 int micromips;
215 /* Non-zero if we should not reorder instructions. Changed by `.set
216 reorder' and `.set noreorder'. */
217 int noreorder;
218 /* Non-zero if we should not permit the register designated "assembler
219 temporary" to be used in instructions. The value is the register
220 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
221 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
222 unsigned int at;
223 /* Non-zero if we should warn when a macro instruction expands into
224 more than one machine instruction. Changed by `.set nomacro' and
225 `.set macro'. */
226 int warn_about_macros;
227 /* Non-zero if we should not move instructions. Changed by `.set
228 move', `.set volatile', `.set nomove', and `.set novolatile'. */
229 int nomove;
230 /* Non-zero if we should not optimize branches by moving the target
231 of the branch into the delay slot. Actually, we don't perform
232 this optimization anyhow. Changed by `.set bopt' and `.set
233 nobopt'. */
234 int nobopt;
235 /* Non-zero if we should not autoextend mips16 instructions.
236 Changed by `.set autoextend' and `.set noautoextend'. */
237 int noautoextend;
238 /* True if we should only emit 32-bit microMIPS instructions.
239 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
240 and -mno-insn32 command line options. */
241 bfd_boolean insn32;
242 /* Restrict general purpose registers and floating point registers
243 to 32 bit. This is initially determined when -mgp32 or -mfp32
244 is passed but can changed if the assembler code uses .set mipsN. */
245 int gp;
246 int fp;
247 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
248 command line option, and the default CPU. */
249 int arch;
250 /* True if ".set sym32" is in effect. */
251 bfd_boolean sym32;
252 /* True if floating-point operations are not allowed. Changed by .set
253 softfloat or .set hardfloat, by command line options -msoft-float or
254 -mhard-float. The default is false. */
255 bfd_boolean soft_float;
256
257 /* True if only single-precision floating-point operations are allowed.
258 Changed by .set singlefloat or .set doublefloat, command-line options
259 -msingle-float or -mdouble-float. The default is false. */
260 bfd_boolean single_float;
261
262 /* 1 if single-precision operations on odd-numbered registers are
263 allowed. */
264 int oddspreg;
265 };
266
267 /* Specifies whether module level options have been checked yet. */
268 static bfd_boolean file_mips_opts_checked = FALSE;
269
270 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
271 value has not been initialized. Changed by `.nan legacy' and
272 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
273 options, and the default CPU. */
274 static int mips_nan2008 = -1;
275
276 /* This is the struct we use to hold the module level set of options.
277 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
278 fp fields to -1 to indicate that they have not been initialized. */
279
280 static struct mips_set_options file_mips_opts =
281 {
282 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
283 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
284 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
285 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
286 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
287 };
288
289 /* This is similar to file_mips_opts, but for the current set of options. */
290
291 static struct mips_set_options mips_opts =
292 {
293 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
294 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
295 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
296 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
297 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1
298 };
299
300 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
301 static unsigned int file_ase_explicit;
302
303 /* These variables are filled in with the masks of registers used.
304 The object format code reads them and puts them in the appropriate
305 place. */
306 unsigned long mips_gprmask;
307 unsigned long mips_cprmask[4];
308
309 /* True if any MIPS16 code was produced. */
310 static int file_ase_mips16;
311
312 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
313 || mips_opts.isa == ISA_MIPS32R2 \
314 || mips_opts.isa == ISA_MIPS32R3 \
315 || mips_opts.isa == ISA_MIPS32R5 \
316 || mips_opts.isa == ISA_MIPS64 \
317 || mips_opts.isa == ISA_MIPS64R2 \
318 || mips_opts.isa == ISA_MIPS64R3 \
319 || mips_opts.isa == ISA_MIPS64R5)
320
321 /* True if any microMIPS code was produced. */
322 static int file_ase_micromips;
323
324 /* True if we want to create R_MIPS_JALR for jalr $25. */
325 #ifdef TE_IRIX
326 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
327 #else
328 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
329 because there's no place for any addend, the only acceptable
330 expression is a bare symbol. */
331 #define MIPS_JALR_HINT_P(EXPR) \
332 (!HAVE_IN_PLACE_ADDENDS \
333 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
334 #endif
335
336 /* The argument of the -march= flag. The architecture we are assembling. */
337 static const char *mips_arch_string;
338
339 /* The argument of the -mtune= flag. The architecture for which we
340 are optimizing. */
341 static int mips_tune = CPU_UNKNOWN;
342 static const char *mips_tune_string;
343
344 /* True when generating 32-bit code for a 64-bit processor. */
345 static int mips_32bitmode = 0;
346
347 /* True if the given ABI requires 32-bit registers. */
348 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
349
350 /* Likewise 64-bit registers. */
351 #define ABI_NEEDS_64BIT_REGS(ABI) \
352 ((ABI) == N32_ABI \
353 || (ABI) == N64_ABI \
354 || (ABI) == O64_ABI)
355
356 #define ISA_IS_R6(ISA) \
357 ((ISA) == ISA_MIPS32R6 \
358 || (ISA) == ISA_MIPS64R6)
359
360 /* Return true if ISA supports 64 bit wide gp registers. */
361 #define ISA_HAS_64BIT_REGS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS64 \
366 || (ISA) == ISA_MIPS64R2 \
367 || (ISA) == ISA_MIPS64R3 \
368 || (ISA) == ISA_MIPS64R5 \
369 || (ISA) == ISA_MIPS64R6)
370
371 /* Return true if ISA supports 64 bit wide float registers. */
372 #define ISA_HAS_64BIT_FPRS(ISA) \
373 ((ISA) == ISA_MIPS3 \
374 || (ISA) == ISA_MIPS4 \
375 || (ISA) == ISA_MIPS5 \
376 || (ISA) == ISA_MIPS32R2 \
377 || (ISA) == ISA_MIPS32R3 \
378 || (ISA) == ISA_MIPS32R5 \
379 || (ISA) == ISA_MIPS32R6 \
380 || (ISA) == ISA_MIPS64 \
381 || (ISA) == ISA_MIPS64R2 \
382 || (ISA) == ISA_MIPS64R3 \
383 || (ISA) == ISA_MIPS64R5 \
384 || (ISA) == ISA_MIPS64R6)
385
386 /* Return true if ISA supports 64-bit right rotate (dror et al.)
387 instructions. */
388 #define ISA_HAS_DROR(ISA) \
389 ((ISA) == ISA_MIPS64R2 \
390 || (ISA) == ISA_MIPS64R3 \
391 || (ISA) == ISA_MIPS64R5 \
392 || (ISA) == ISA_MIPS64R6 \
393 || (mips_opts.micromips \
394 && ISA_HAS_64BIT_REGS (ISA)) \
395 )
396
397 /* Return true if ISA supports 32-bit right rotate (ror et al.)
398 instructions. */
399 #define ISA_HAS_ROR(ISA) \
400 ((ISA) == ISA_MIPS32R2 \
401 || (ISA) == ISA_MIPS32R3 \
402 || (ISA) == ISA_MIPS32R5 \
403 || (ISA) == ISA_MIPS32R6 \
404 || (ISA) == ISA_MIPS64R2 \
405 || (ISA) == ISA_MIPS64R3 \
406 || (ISA) == ISA_MIPS64R5 \
407 || (ISA) == ISA_MIPS64R6 \
408 || (mips_opts.ase & ASE_SMARTMIPS) \
409 || mips_opts.micromips \
410 )
411
412 /* Return true if ISA supports single-precision floats in odd registers. */
413 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
414 (((ISA) == ISA_MIPS32 \
415 || (ISA) == ISA_MIPS32R2 \
416 || (ISA) == ISA_MIPS32R3 \
417 || (ISA) == ISA_MIPS32R5 \
418 || (ISA) == ISA_MIPS32R6 \
419 || (ISA) == ISA_MIPS64 \
420 || (ISA) == ISA_MIPS64R2 \
421 || (ISA) == ISA_MIPS64R3 \
422 || (ISA) == ISA_MIPS64R5 \
423 || (ISA) == ISA_MIPS64R6 \
424 || (CPU) == CPU_R5900) \
425 && (CPU) != CPU_LOONGSON_3A)
426
427 /* Return true if ISA supports move to/from high part of a 64-bit
428 floating-point register. */
429 #define ISA_HAS_MXHC1(ISA) \
430 ((ISA) == ISA_MIPS32R2 \
431 || (ISA) == ISA_MIPS32R3 \
432 || (ISA) == ISA_MIPS32R5 \
433 || (ISA) == ISA_MIPS32R6 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6)
438
439 /* Return true if ISA supports legacy NAN. */
440 #define ISA_HAS_LEGACY_NAN(ISA) \
441 ((ISA) == ISA_MIPS1 \
442 || (ISA) == ISA_MIPS2 \
443 || (ISA) == ISA_MIPS3 \
444 || (ISA) == ISA_MIPS4 \
445 || (ISA) == ISA_MIPS5 \
446 || (ISA) == ISA_MIPS32 \
447 || (ISA) == ISA_MIPS32R2 \
448 || (ISA) == ISA_MIPS32R3 \
449 || (ISA) == ISA_MIPS32R5 \
450 || (ISA) == ISA_MIPS64 \
451 || (ISA) == ISA_MIPS64R2 \
452 || (ISA) == ISA_MIPS64R3 \
453 || (ISA) == ISA_MIPS64R5)
454
455 #define GPR_SIZE \
456 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
457 ? 32 \
458 : mips_opts.gp)
459
460 #define FPR_SIZE \
461 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
462 ? 32 \
463 : mips_opts.fp)
464
465 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
466
467 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
468
469 /* True if relocations are stored in-place. */
470 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
471
472 /* The ABI-derived address size. */
473 #define HAVE_64BIT_ADDRESSES \
474 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
475 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
476
477 /* The size of symbolic constants (i.e., expressions of the form
478 "SYMBOL" or "SYMBOL + OFFSET"). */
479 #define HAVE_32BIT_SYMBOLS \
480 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
481 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
482
483 /* Addresses are loaded in different ways, depending on the address size
484 in use. The n32 ABI Documentation also mandates the use of additions
485 with overflow checking, but existing implementations don't follow it. */
486 #define ADDRESS_ADD_INSN \
487 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
488
489 #define ADDRESS_ADDI_INSN \
490 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
491
492 #define ADDRESS_LOAD_INSN \
493 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
494
495 #define ADDRESS_STORE_INSN \
496 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
497
498 /* Return true if the given CPU supports the MIPS16 ASE. */
499 #define CPU_HAS_MIPS16(cpu) \
500 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
501 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
502
503 /* Return true if the given CPU supports the microMIPS ASE. */
504 #define CPU_HAS_MICROMIPS(cpu) 0
505
506 /* True if CPU has a dror instruction. */
507 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
508
509 /* True if CPU has a ror instruction. */
510 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
511
512 /* True if CPU is in the Octeon family */
513 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
514 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
515
516 /* True if CPU has seq/sne and seqi/snei instructions. */
517 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
518
519 /* True, if CPU has support for ldc1 and sdc1. */
520 #define CPU_HAS_LDC1_SDC1(CPU) \
521 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
522
523 /* True if mflo and mfhi can be immediately followed by instructions
524 which write to the HI and LO registers.
525
526 According to MIPS specifications, MIPS ISAs I, II, and III need
527 (at least) two instructions between the reads of HI/LO and
528 instructions which write them, and later ISAs do not. Contradicting
529 the MIPS specifications, some MIPS IV processor user manuals (e.g.
530 the UM for the NEC Vr5000) document needing the instructions between
531 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
532 MIPS64 and later ISAs to have the interlocks, plus any specific
533 earlier-ISA CPUs for which CPU documentation declares that the
534 instructions are really interlocked. */
535 #define hilo_interlocks \
536 (mips_opts.isa == ISA_MIPS32 \
537 || mips_opts.isa == ISA_MIPS32R2 \
538 || mips_opts.isa == ISA_MIPS32R3 \
539 || mips_opts.isa == ISA_MIPS32R5 \
540 || mips_opts.isa == ISA_MIPS32R6 \
541 || mips_opts.isa == ISA_MIPS64 \
542 || mips_opts.isa == ISA_MIPS64R2 \
543 || mips_opts.isa == ISA_MIPS64R3 \
544 || mips_opts.isa == ISA_MIPS64R5 \
545 || mips_opts.isa == ISA_MIPS64R6 \
546 || mips_opts.arch == CPU_R4010 \
547 || mips_opts.arch == CPU_R5900 \
548 || mips_opts.arch == CPU_R10000 \
549 || mips_opts.arch == CPU_R12000 \
550 || mips_opts.arch == CPU_R14000 \
551 || mips_opts.arch == CPU_R16000 \
552 || mips_opts.arch == CPU_RM7000 \
553 || mips_opts.arch == CPU_VR5500 \
554 || mips_opts.micromips \
555 )
556
557 /* Whether the processor uses hardware interlocks to protect reads
558 from the GPRs after they are loaded from memory, and thus does not
559 require nops to be inserted. This applies to instructions marked
560 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
561 level I and microMIPS mode instructions are always interlocked. */
562 #define gpr_interlocks \
563 (mips_opts.isa != ISA_MIPS1 \
564 || mips_opts.arch == CPU_R3900 \
565 || mips_opts.arch == CPU_R5900 \
566 || mips_opts.micromips \
567 )
568
569 /* Whether the processor uses hardware interlocks to avoid delays
570 required by coprocessor instructions, and thus does not require
571 nops to be inserted. This applies to instructions marked
572 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
573 instructions marked INSN_WRITE_COND_CODE and ones marked
574 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
575 levels I, II, and III and microMIPS mode instructions are always
576 interlocked. */
577 /* Itbl support may require additional care here. */
578 #define cop_interlocks \
579 ((mips_opts.isa != ISA_MIPS1 \
580 && mips_opts.isa != ISA_MIPS2 \
581 && mips_opts.isa != ISA_MIPS3) \
582 || mips_opts.arch == CPU_R4300 \
583 || mips_opts.micromips \
584 )
585
586 /* Whether the processor uses hardware interlocks to protect reads
587 from coprocessor registers after they are loaded from memory, and
588 thus does not require nops to be inserted. This applies to
589 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
590 requires at MIPS ISA level I and microMIPS mode instructions are
591 always interlocked. */
592 #define cop_mem_interlocks \
593 (mips_opts.isa != ISA_MIPS1 \
594 || mips_opts.micromips \
595 )
596
597 /* Is this a mfhi or mflo instruction? */
598 #define MF_HILO_INSN(PINFO) \
599 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
600
601 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
602 has been selected. This implies, in particular, that addresses of text
603 labels have their LSB set. */
604 #define HAVE_CODE_COMPRESSION \
605 ((mips_opts.mips16 | mips_opts.micromips) != 0)
606
607 /* The minimum and maximum signed values that can be stored in a GPR. */
608 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
609 #define GPR_SMIN (-GPR_SMAX - 1)
610
611 /* MIPS PIC level. */
612
613 enum mips_pic_level mips_pic;
614
615 /* 1 if we should generate 32 bit offsets from the $gp register in
616 SVR4_PIC mode. Currently has no meaning in other modes. */
617 static int mips_big_got = 0;
618
619 /* 1 if trap instructions should used for overflow rather than break
620 instructions. */
621 static int mips_trap = 0;
622
623 /* 1 if double width floating point constants should not be constructed
624 by assembling two single width halves into two single width floating
625 point registers which just happen to alias the double width destination
626 register. On some architectures this aliasing can be disabled by a bit
627 in the status register, and the setting of this bit cannot be determined
628 automatically at assemble time. */
629 static int mips_disable_float_construction;
630
631 /* Non-zero if any .set noreorder directives were used. */
632
633 static int mips_any_noreorder;
634
635 /* Non-zero if nops should be inserted when the register referenced in
636 an mfhi/mflo instruction is read in the next two instructions. */
637 static int mips_7000_hilo_fix;
638
639 /* The size of objects in the small data section. */
640 static unsigned int g_switch_value = 8;
641 /* Whether the -G option was used. */
642 static int g_switch_seen = 0;
643
644 #define N_RMASK 0xc4
645 #define N_VFP 0xd4
646
647 /* If we can determine in advance that GP optimization won't be
648 possible, we can skip the relaxation stuff that tries to produce
649 GP-relative references. This makes delay slot optimization work
650 better.
651
652 This function can only provide a guess, but it seems to work for
653 gcc output. It needs to guess right for gcc, otherwise gcc
654 will put what it thinks is a GP-relative instruction in a branch
655 delay slot.
656
657 I don't know if a fix is needed for the SVR4_PIC mode. I've only
658 fixed it for the non-PIC mode. KR 95/04/07 */
659 static int nopic_need_relax (symbolS *, int);
660
661 /* handle of the OPCODE hash table */
662 static struct hash_control *op_hash = NULL;
663
664 /* The opcode hash table we use for the mips16. */
665 static struct hash_control *mips16_op_hash = NULL;
666
667 /* The opcode hash table we use for the microMIPS ASE. */
668 static struct hash_control *micromips_op_hash = NULL;
669
670 /* This array holds the chars that always start a comment. If the
671 pre-processor is disabled, these aren't very useful */
672 const char comment_chars[] = "#";
673
674 /* This array holds the chars that only start a comment at the beginning of
675 a line. If the line seems to have the form '# 123 filename'
676 .line and .file directives will appear in the pre-processed output */
677 /* Note that input_file.c hand checks for '#' at the beginning of the
678 first line of the input file. This is because the compiler outputs
679 #NO_APP at the beginning of its output. */
680 /* Also note that C style comments are always supported. */
681 const char line_comment_chars[] = "#";
682
683 /* This array holds machine specific line separator characters. */
684 const char line_separator_chars[] = ";";
685
686 /* Chars that can be used to separate mant from exp in floating point nums */
687 const char EXP_CHARS[] = "eE";
688
689 /* Chars that mean this number is a floating point constant */
690 /* As in 0f12.456 */
691 /* or 0d1.2345e12 */
692 const char FLT_CHARS[] = "rRsSfFdDxXpP";
693
694 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
695 changed in read.c . Ideally it shouldn't have to know about it at all,
696 but nothing is ideal around here.
697 */
698
699 /* Types of printf format used for instruction-related error messages.
700 "I" means int ("%d") and "S" means string ("%s"). */
701 enum mips_insn_error_format {
702 ERR_FMT_PLAIN,
703 ERR_FMT_I,
704 ERR_FMT_SS,
705 };
706
707 /* Information about an error that was found while assembling the current
708 instruction. */
709 struct mips_insn_error {
710 /* We sometimes need to match an instruction against more than one
711 opcode table entry. Errors found during this matching are reported
712 against a particular syntactic argument rather than against the
713 instruction as a whole. We grade these messages so that errors
714 against argument N have a greater priority than an error against
715 any argument < N, since the former implies that arguments up to N
716 were acceptable and that the opcode entry was therefore a closer match.
717 If several matches report an error against the same argument,
718 we only use that error if it is the same in all cases.
719
720 min_argnum is the minimum argument number for which an error message
721 should be accepted. It is 0 if MSG is against the instruction as
722 a whole. */
723 int min_argnum;
724
725 /* The printf()-style message, including its format and arguments. */
726 enum mips_insn_error_format format;
727 const char *msg;
728 union {
729 int i;
730 const char *ss[2];
731 } u;
732 };
733
734 /* The error that should be reported for the current instruction. */
735 static struct mips_insn_error insn_error;
736
737 static int auto_align = 1;
738
739 /* When outputting SVR4 PIC code, the assembler needs to know the
740 offset in the stack frame from which to restore the $gp register.
741 This is set by the .cprestore pseudo-op, and saved in this
742 variable. */
743 static offsetT mips_cprestore_offset = -1;
744
745 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
746 more optimizations, it can use a register value instead of a memory-saved
747 offset and even an other register than $gp as global pointer. */
748 static offsetT mips_cpreturn_offset = -1;
749 static int mips_cpreturn_register = -1;
750 static int mips_gp_register = GP;
751 static int mips_gprel_offset = 0;
752
753 /* Whether mips_cprestore_offset has been set in the current function
754 (or whether it has already been warned about, if not). */
755 static int mips_cprestore_valid = 0;
756
757 /* This is the register which holds the stack frame, as set by the
758 .frame pseudo-op. This is needed to implement .cprestore. */
759 static int mips_frame_reg = SP;
760
761 /* Whether mips_frame_reg has been set in the current function
762 (or whether it has already been warned about, if not). */
763 static int mips_frame_reg_valid = 0;
764
765 /* To output NOP instructions correctly, we need to keep information
766 about the previous two instructions. */
767
768 /* Whether we are optimizing. The default value of 2 means to remove
769 unneeded NOPs and swap branch instructions when possible. A value
770 of 1 means to not swap branches. A value of 0 means to always
771 insert NOPs. */
772 static int mips_optimize = 2;
773
774 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
775 equivalent to seeing no -g option at all. */
776 static int mips_debug = 0;
777
778 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
779 #define MAX_VR4130_NOPS 4
780
781 /* The maximum number of NOPs needed to fill delay slots. */
782 #define MAX_DELAY_NOPS 2
783
784 /* The maximum number of NOPs needed for any purpose. */
785 #define MAX_NOPS 4
786
787 /* A list of previous instructions, with index 0 being the most recent.
788 We need to look back MAX_NOPS instructions when filling delay slots
789 or working around processor errata. We need to look back one
790 instruction further if we're thinking about using history[0] to
791 fill a branch delay slot. */
792 static struct mips_cl_insn history[1 + MAX_NOPS];
793
794 /* Arrays of operands for each instruction. */
795 #define MAX_OPERANDS 6
796 struct mips_operand_array {
797 const struct mips_operand *operand[MAX_OPERANDS];
798 };
799 static struct mips_operand_array *mips_operands;
800 static struct mips_operand_array *mips16_operands;
801 static struct mips_operand_array *micromips_operands;
802
803 /* Nop instructions used by emit_nop. */
804 static struct mips_cl_insn nop_insn;
805 static struct mips_cl_insn mips16_nop_insn;
806 static struct mips_cl_insn micromips_nop16_insn;
807 static struct mips_cl_insn micromips_nop32_insn;
808
809 /* The appropriate nop for the current mode. */
810 #define NOP_INSN (mips_opts.mips16 \
811 ? &mips16_nop_insn \
812 : (mips_opts.micromips \
813 ? (mips_opts.insn32 \
814 ? &micromips_nop32_insn \
815 : &micromips_nop16_insn) \
816 : &nop_insn))
817
818 /* The size of NOP_INSN in bytes. */
819 #define NOP_INSN_SIZE ((mips_opts.mips16 \
820 || (mips_opts.micromips && !mips_opts.insn32)) \
821 ? 2 : 4)
822
823 /* If this is set, it points to a frag holding nop instructions which
824 were inserted before the start of a noreorder section. If those
825 nops turn out to be unnecessary, the size of the frag can be
826 decreased. */
827 static fragS *prev_nop_frag;
828
829 /* The number of nop instructions we created in prev_nop_frag. */
830 static int prev_nop_frag_holds;
831
832 /* The number of nop instructions that we know we need in
833 prev_nop_frag. */
834 static int prev_nop_frag_required;
835
836 /* The number of instructions we've seen since prev_nop_frag. */
837 static int prev_nop_frag_since;
838
839 /* Relocations against symbols are sometimes done in two parts, with a HI
840 relocation and a LO relocation. Each relocation has only 16 bits of
841 space to store an addend. This means that in order for the linker to
842 handle carries correctly, it must be able to locate both the HI and
843 the LO relocation. This means that the relocations must appear in
844 order in the relocation table.
845
846 In order to implement this, we keep track of each unmatched HI
847 relocation. We then sort them so that they immediately precede the
848 corresponding LO relocation. */
849
850 struct mips_hi_fixup
851 {
852 /* Next HI fixup. */
853 struct mips_hi_fixup *next;
854 /* This fixup. */
855 fixS *fixp;
856 /* The section this fixup is in. */
857 segT seg;
858 };
859
860 /* The list of unmatched HI relocs. */
861
862 static struct mips_hi_fixup *mips_hi_fixup_list;
863
864 /* The frag containing the last explicit relocation operator.
865 Null if explicit relocations have not been used. */
866
867 static fragS *prev_reloc_op_frag;
868
869 /* Map mips16 register numbers to normal MIPS register numbers. */
870
871 static const unsigned int mips16_to_32_reg_map[] =
872 {
873 16, 17, 2, 3, 4, 5, 6, 7
874 };
875
876 /* Map microMIPS register numbers to normal MIPS register numbers. */
877
878 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
879
880 /* The microMIPS registers with type h. */
881 static const unsigned int micromips_to_32_reg_h_map1[] =
882 {
883 5, 5, 6, 4, 4, 4, 4, 4
884 };
885 static const unsigned int micromips_to_32_reg_h_map2[] =
886 {
887 6, 7, 7, 21, 22, 5, 6, 7
888 };
889
890 /* The microMIPS registers with type m. */
891 static const unsigned int micromips_to_32_reg_m_map[] =
892 {
893 0, 17, 2, 3, 16, 18, 19, 20
894 };
895
896 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
897
898 /* Classifies the kind of instructions we're interested in when
899 implementing -mfix-vr4120. */
900 enum fix_vr4120_class
901 {
902 FIX_VR4120_MACC,
903 FIX_VR4120_DMACC,
904 FIX_VR4120_MULT,
905 FIX_VR4120_DMULT,
906 FIX_VR4120_DIV,
907 FIX_VR4120_MTHILO,
908 NUM_FIX_VR4120_CLASSES
909 };
910
911 /* ...likewise -mfix-loongson2f-jump. */
912 static bfd_boolean mips_fix_loongson2f_jump;
913
914 /* ...likewise -mfix-loongson2f-nop. */
915 static bfd_boolean mips_fix_loongson2f_nop;
916
917 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
918 static bfd_boolean mips_fix_loongson2f;
919
920 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
921 there must be at least one other instruction between an instruction
922 of type X and an instruction of type Y. */
923 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
924
925 /* True if -mfix-vr4120 is in force. */
926 static int mips_fix_vr4120;
927
928 /* ...likewise -mfix-vr4130. */
929 static int mips_fix_vr4130;
930
931 /* ...likewise -mfix-24k. */
932 static int mips_fix_24k;
933
934 /* ...likewise -mfix-rm7000 */
935 static int mips_fix_rm7000;
936
937 /* ...likewise -mfix-cn63xxp1 */
938 static bfd_boolean mips_fix_cn63xxp1;
939
940 /* We don't relax branches by default, since this causes us to expand
941 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
942 fail to compute the offset before expanding the macro to the most
943 efficient expansion. */
944
945 static int mips_relax_branch;
946
947 /* TRUE if checks are suppressed for invalid branches between ISA modes.
948 Needed for broken assembly produced by some GCC versions and some
949 sloppy code out there, where branches to data labels are present. */
950 static bfd_boolean mips_ignore_branch_isa;
951 \f
952 /* The expansion of many macros depends on the type of symbol that
953 they refer to. For example, when generating position-dependent code,
954 a macro that refers to a symbol may have two different expansions,
955 one which uses GP-relative addresses and one which uses absolute
956 addresses. When generating SVR4-style PIC, a macro may have
957 different expansions for local and global symbols.
958
959 We handle these situations by generating both sequences and putting
960 them in variant frags. In position-dependent code, the first sequence
961 will be the GP-relative one and the second sequence will be the
962 absolute one. In SVR4 PIC, the first sequence will be for global
963 symbols and the second will be for local symbols.
964
965 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
966 SECOND are the lengths of the two sequences in bytes. These fields
967 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
968 the subtype has the following flags:
969
970 RELAX_PIC
971 Set if generating PIC code.
972
973 RELAX_USE_SECOND
974 Set if it has been decided that we should use the second
975 sequence instead of the first.
976
977 RELAX_SECOND_LONGER
978 Set in the first variant frag if the macro's second implementation
979 is longer than its first. This refers to the macro as a whole,
980 not an individual relaxation.
981
982 RELAX_NOMACRO
983 Set in the first variant frag if the macro appeared in a .set nomacro
984 block and if one alternative requires a warning but the other does not.
985
986 RELAX_DELAY_SLOT
987 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
988 delay slot.
989
990 RELAX_DELAY_SLOT_16BIT
991 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
992 16-bit instruction.
993
994 RELAX_DELAY_SLOT_SIZE_FIRST
995 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
996 the macro is of the wrong size for the branch delay slot.
997
998 RELAX_DELAY_SLOT_SIZE_SECOND
999 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1000 the macro is of the wrong size for the branch delay slot.
1001
1002 The frag's "opcode" points to the first fixup for relaxable code.
1003
1004 Relaxable macros are generated using a sequence such as:
1005
1006 relax_start (SYMBOL);
1007 ... generate first expansion ...
1008 relax_switch ();
1009 ... generate second expansion ...
1010 relax_end ();
1011
1012 The code and fixups for the unwanted alternative are discarded
1013 by md_convert_frag. */
1014 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1015 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1016
1017 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1018 #define RELAX_SECOND(X) ((X) & 0xff)
1019 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1020 #define RELAX_USE_SECOND 0x20000
1021 #define RELAX_SECOND_LONGER 0x40000
1022 #define RELAX_NOMACRO 0x80000
1023 #define RELAX_DELAY_SLOT 0x100000
1024 #define RELAX_DELAY_SLOT_16BIT 0x200000
1025 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1026 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1027
1028 /* Branch without likely bit. If label is out of range, we turn:
1029
1030 beq reg1, reg2, label
1031 delay slot
1032
1033 into
1034
1035 bne reg1, reg2, 0f
1036 nop
1037 j label
1038 0: delay slot
1039
1040 with the following opcode replacements:
1041
1042 beq <-> bne
1043 blez <-> bgtz
1044 bltz <-> bgez
1045 bc1f <-> bc1t
1046
1047 bltzal <-> bgezal (with jal label instead of j label)
1048
1049 Even though keeping the delay slot instruction in the delay slot of
1050 the branch would be more efficient, it would be very tricky to do
1051 correctly, because we'd have to introduce a variable frag *after*
1052 the delay slot instruction, and expand that instead. Let's do it
1053 the easy way for now, even if the branch-not-taken case now costs
1054 one additional instruction. Out-of-range branches are not supposed
1055 to be common, anyway.
1056
1057 Branch likely. If label is out of range, we turn:
1058
1059 beql reg1, reg2, label
1060 delay slot (annulled if branch not taken)
1061
1062 into
1063
1064 beql reg1, reg2, 1f
1065 nop
1066 beql $0, $0, 2f
1067 nop
1068 1: j[al] label
1069 delay slot (executed only if branch taken)
1070 2:
1071
1072 It would be possible to generate a shorter sequence by losing the
1073 likely bit, generating something like:
1074
1075 bne reg1, reg2, 0f
1076 nop
1077 j[al] label
1078 delay slot (executed only if branch taken)
1079 0:
1080
1081 beql -> bne
1082 bnel -> beq
1083 blezl -> bgtz
1084 bgtzl -> blez
1085 bltzl -> bgez
1086 bgezl -> bltz
1087 bc1fl -> bc1t
1088 bc1tl -> bc1f
1089
1090 bltzall -> bgezal (with jal label instead of j label)
1091 bgezall -> bltzal (ditto)
1092
1093
1094 but it's not clear that it would actually improve performance. */
1095 #define RELAX_BRANCH_ENCODE(at, pic, \
1096 uncond, likely, link, toofar) \
1097 ((relax_substateT) \
1098 (0xc0000000 \
1099 | ((at) & 0x1f) \
1100 | ((pic) ? 0x20 : 0) \
1101 | ((toofar) ? 0x40 : 0) \
1102 | ((link) ? 0x80 : 0) \
1103 | ((likely) ? 0x100 : 0) \
1104 | ((uncond) ? 0x200 : 0)))
1105 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1106 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1107 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1108 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1109 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1110 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1111 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1112
1113 /* For mips16 code, we use an entirely different form of relaxation.
1114 mips16 supports two versions of most instructions which take
1115 immediate values: a small one which takes some small value, and a
1116 larger one which takes a 16 bit value. Since branches also follow
1117 this pattern, relaxing these values is required.
1118
1119 We can assemble both mips16 and normal MIPS code in a single
1120 object. Therefore, we need to support this type of relaxation at
1121 the same time that we support the relaxation described above. We
1122 use the high bit of the subtype field to distinguish these cases.
1123
1124 The information we store for this type of relaxation is the
1125 argument code found in the opcode file for this relocation, whether
1126 the user explicitly requested a small or extended form, and whether
1127 the relocation is in a jump or jal delay slot. That tells us the
1128 size of the value, and how it should be stored. We also store
1129 whether the fragment is considered to be extended or not. We also
1130 store whether this is known to be a branch to a different section,
1131 whether we have tried to relax this frag yet, and whether we have
1132 ever extended a PC relative fragment because of a shift count. */
1133 #define RELAX_MIPS16_ENCODE(type, pic, sym32, nomacro, \
1134 small, ext, \
1135 dslot, jal_dslot) \
1136 (0x80000000 \
1137 | ((type) & 0xff) \
1138 | ((pic) ? 0x100 : 0) \
1139 | ((sym32) ? 0x200 : 0) \
1140 | ((nomacro) ? 0x400 : 0) \
1141 | ((small) ? 0x800 : 0) \
1142 | ((ext) ? 0x1000 : 0) \
1143 | ((dslot) ? 0x2000 : 0) \
1144 | ((jal_dslot) ? 0x4000 : 0))
1145
1146 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1147 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1148 #define RELAX_MIPS16_PIC(i) (((i) & 0x100) != 0)
1149 #define RELAX_MIPS16_SYM32(i) (((i) & 0x200) != 0)
1150 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x400) != 0)
1151 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x800) != 0)
1152 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x1000) != 0)
1153 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x2000) != 0)
1154 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x4000) != 0)
1155
1156 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x8000) != 0)
1157 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x8000)
1158 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x8000)
1159 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x10000) != 0)
1160 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x10000)
1161 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x10000)
1162 #define RELAX_MIPS16_MACRO(i) (((i) & 0x20000) != 0)
1163 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x20000)
1164 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x20000)
1165
1166 /* For microMIPS code, we use relaxation similar to one we use for
1167 MIPS16 code. Some instructions that take immediate values support
1168 two encodings: a small one which takes some small value, and a
1169 larger one which takes a 16 bit value. As some branches also follow
1170 this pattern, relaxing these values is required.
1171
1172 We can assemble both microMIPS and normal MIPS code in a single
1173 object. Therefore, we need to support this type of relaxation at
1174 the same time that we support the relaxation described above. We
1175 use one of the high bits of the subtype field to distinguish these
1176 cases.
1177
1178 The information we store for this type of relaxation is the argument
1179 code found in the opcode file for this relocation, the register
1180 selected as the assembler temporary, whether in the 32-bit
1181 instruction mode, whether the branch is unconditional, whether it is
1182 compact, whether there is no delay-slot instruction available to fill
1183 in, whether it stores the link address implicitly in $ra, whether
1184 relaxation of out-of-range 32-bit branches to a sequence of
1185 instructions is enabled, and whether the displacement of a branch is
1186 too large to fit as an immediate argument of a 16-bit and a 32-bit
1187 branch, respectively. */
1188 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1189 uncond, compact, link, nods, \
1190 relax32, toofar16, toofar32) \
1191 (0x40000000 \
1192 | ((type) & 0xff) \
1193 | (((at) & 0x1f) << 8) \
1194 | ((insn32) ? 0x2000 : 0) \
1195 | ((pic) ? 0x4000 : 0) \
1196 | ((uncond) ? 0x8000 : 0) \
1197 | ((compact) ? 0x10000 : 0) \
1198 | ((link) ? 0x20000 : 0) \
1199 | ((nods) ? 0x40000 : 0) \
1200 | ((relax32) ? 0x80000 : 0) \
1201 | ((toofar16) ? 0x100000 : 0) \
1202 | ((toofar32) ? 0x200000 : 0))
1203 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1204 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1205 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1206 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1207 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1208 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1209 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1210 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1211 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1212 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1213
1214 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1215 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1216 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1217 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1218 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1219 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1220
1221 /* Sign-extend 16-bit value X. */
1222 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1223
1224 /* Is the given value a sign-extended 32-bit value? */
1225 #define IS_SEXT_32BIT_NUM(x) \
1226 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1227 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1228
1229 /* Is the given value a sign-extended 16-bit value? */
1230 #define IS_SEXT_16BIT_NUM(x) \
1231 (((x) &~ (offsetT) 0x7fff) == 0 \
1232 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1233
1234 /* Is the given value a sign-extended 12-bit value? */
1235 #define IS_SEXT_12BIT_NUM(x) \
1236 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1237
1238 /* Is the given value a sign-extended 9-bit value? */
1239 #define IS_SEXT_9BIT_NUM(x) \
1240 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1241
1242 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1243 #define IS_ZEXT_32BIT_NUM(x) \
1244 (((x) &~ (offsetT) 0xffffffff) == 0 \
1245 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1246
1247 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1248 SHIFT places. */
1249 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1250 (((STRUCT) >> (SHIFT)) & (MASK))
1251
1252 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1253 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1254 (!(MICROMIPS) \
1255 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1256 : EXTRACT_BITS ((INSN).insn_opcode, \
1257 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1258 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1259 EXTRACT_BITS ((INSN).insn_opcode, \
1260 MIPS16OP_MASK_##FIELD, \
1261 MIPS16OP_SH_##FIELD)
1262
1263 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1264 #define MIPS16_EXTEND (0xf000U << 16)
1265 \f
1266 /* Whether or not we are emitting a branch-likely macro. */
1267 static bfd_boolean emit_branch_likely_macro = FALSE;
1268
1269 /* Global variables used when generating relaxable macros. See the
1270 comment above RELAX_ENCODE for more details about how relaxation
1271 is used. */
1272 static struct {
1273 /* 0 if we're not emitting a relaxable macro.
1274 1 if we're emitting the first of the two relaxation alternatives.
1275 2 if we're emitting the second alternative. */
1276 int sequence;
1277
1278 /* The first relaxable fixup in the current frag. (In other words,
1279 the first fixup that refers to relaxable code.) */
1280 fixS *first_fixup;
1281
1282 /* sizes[0] says how many bytes of the first alternative are stored in
1283 the current frag. Likewise sizes[1] for the second alternative. */
1284 unsigned int sizes[2];
1285
1286 /* The symbol on which the choice of sequence depends. */
1287 symbolS *symbol;
1288 } mips_relax;
1289 \f
1290 /* Global variables used to decide whether a macro needs a warning. */
1291 static struct {
1292 /* True if the macro is in a branch delay slot. */
1293 bfd_boolean delay_slot_p;
1294
1295 /* Set to the length in bytes required if the macro is in a delay slot
1296 that requires a specific length of instruction, otherwise zero. */
1297 unsigned int delay_slot_length;
1298
1299 /* For relaxable macros, sizes[0] is the length of the first alternative
1300 in bytes and sizes[1] is the length of the second alternative.
1301 For non-relaxable macros, both elements give the length of the
1302 macro in bytes. */
1303 unsigned int sizes[2];
1304
1305 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1306 instruction of the first alternative in bytes and first_insn_sizes[1]
1307 is the length of the first instruction of the second alternative.
1308 For non-relaxable macros, both elements give the length of the first
1309 instruction in bytes.
1310
1311 Set to zero if we haven't yet seen the first instruction. */
1312 unsigned int first_insn_sizes[2];
1313
1314 /* For relaxable macros, insns[0] is the number of instructions for the
1315 first alternative and insns[1] is the number of instructions for the
1316 second alternative.
1317
1318 For non-relaxable macros, both elements give the number of
1319 instructions for the macro. */
1320 unsigned int insns[2];
1321
1322 /* The first variant frag for this macro. */
1323 fragS *first_frag;
1324 } mips_macro_warning;
1325 \f
1326 /* Prototypes for static functions. */
1327
1328 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1329
1330 static void append_insn
1331 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1332 bfd_boolean expansionp);
1333 static void mips_no_prev_insn (void);
1334 static void macro_build (expressionS *, const char *, const char *, ...);
1335 static void mips16_macro_build
1336 (expressionS *, const char *, const char *, va_list *);
1337 static void load_register (int, expressionS *, int);
1338 static void macro_start (void);
1339 static void macro_end (void);
1340 static void macro (struct mips_cl_insn *ip, char *str);
1341 static void mips16_macro (struct mips_cl_insn * ip);
1342 static void mips_ip (char *str, struct mips_cl_insn * ip);
1343 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1344 static void mips16_immed
1345 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1346 unsigned int, unsigned long *);
1347 static size_t my_getSmallExpression
1348 (expressionS *, bfd_reloc_code_real_type *, char *);
1349 static void my_getExpression (expressionS *, char *);
1350 static void s_align (int);
1351 static void s_change_sec (int);
1352 static void s_change_section (int);
1353 static void s_cons (int);
1354 static void s_float_cons (int);
1355 static void s_mips_globl (int);
1356 static void s_option (int);
1357 static void s_mipsset (int);
1358 static void s_abicalls (int);
1359 static void s_cpload (int);
1360 static void s_cpsetup (int);
1361 static void s_cplocal (int);
1362 static void s_cprestore (int);
1363 static void s_cpreturn (int);
1364 static void s_dtprelword (int);
1365 static void s_dtpreldword (int);
1366 static void s_tprelword (int);
1367 static void s_tpreldword (int);
1368 static void s_gpvalue (int);
1369 static void s_gpword (int);
1370 static void s_gpdword (int);
1371 static void s_ehword (int);
1372 static void s_cpadd (int);
1373 static void s_insn (int);
1374 static void s_nan (int);
1375 static void s_module (int);
1376 static void s_mips_ent (int);
1377 static void s_mips_end (int);
1378 static void s_mips_frame (int);
1379 static void s_mips_mask (int reg_type);
1380 static void s_mips_stab (int);
1381 static void s_mips_weakext (int);
1382 static void s_mips_file (int);
1383 static void s_mips_loc (int);
1384 static bfd_boolean pic_need_relax (symbolS *);
1385 static int relaxed_branch_length (fragS *, asection *, int);
1386 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1387 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1388 static void file_mips_check_options (void);
1389
1390 /* Table and functions used to map between CPU/ISA names, and
1391 ISA levels, and CPU numbers. */
1392
1393 struct mips_cpu_info
1394 {
1395 const char *name; /* CPU or ISA name. */
1396 int flags; /* MIPS_CPU_* flags. */
1397 int ase; /* Set of ASEs implemented by the CPU. */
1398 int isa; /* ISA level. */
1399 int cpu; /* CPU number (default CPU if ISA). */
1400 };
1401
1402 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1403
1404 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1405 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1406 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1407 \f
1408 /* Command-line options. */
1409 const char *md_shortopts = "O::g::G:";
1410
1411 enum options
1412 {
1413 OPTION_MARCH = OPTION_MD_BASE,
1414 OPTION_MTUNE,
1415 OPTION_MIPS1,
1416 OPTION_MIPS2,
1417 OPTION_MIPS3,
1418 OPTION_MIPS4,
1419 OPTION_MIPS5,
1420 OPTION_MIPS32,
1421 OPTION_MIPS64,
1422 OPTION_MIPS32R2,
1423 OPTION_MIPS32R3,
1424 OPTION_MIPS32R5,
1425 OPTION_MIPS32R6,
1426 OPTION_MIPS64R2,
1427 OPTION_MIPS64R3,
1428 OPTION_MIPS64R5,
1429 OPTION_MIPS64R6,
1430 OPTION_MIPS16,
1431 OPTION_NO_MIPS16,
1432 OPTION_MIPS3D,
1433 OPTION_NO_MIPS3D,
1434 OPTION_MDMX,
1435 OPTION_NO_MDMX,
1436 OPTION_DSP,
1437 OPTION_NO_DSP,
1438 OPTION_MT,
1439 OPTION_NO_MT,
1440 OPTION_VIRT,
1441 OPTION_NO_VIRT,
1442 OPTION_MSA,
1443 OPTION_NO_MSA,
1444 OPTION_SMARTMIPS,
1445 OPTION_NO_SMARTMIPS,
1446 OPTION_DSPR2,
1447 OPTION_NO_DSPR2,
1448 OPTION_DSPR3,
1449 OPTION_NO_DSPR3,
1450 OPTION_EVA,
1451 OPTION_NO_EVA,
1452 OPTION_XPA,
1453 OPTION_NO_XPA,
1454 OPTION_MICROMIPS,
1455 OPTION_NO_MICROMIPS,
1456 OPTION_MCU,
1457 OPTION_NO_MCU,
1458 OPTION_COMPAT_ARCH_BASE,
1459 OPTION_M4650,
1460 OPTION_NO_M4650,
1461 OPTION_M4010,
1462 OPTION_NO_M4010,
1463 OPTION_M4100,
1464 OPTION_NO_M4100,
1465 OPTION_M3900,
1466 OPTION_NO_M3900,
1467 OPTION_M7000_HILO_FIX,
1468 OPTION_MNO_7000_HILO_FIX,
1469 OPTION_FIX_24K,
1470 OPTION_NO_FIX_24K,
1471 OPTION_FIX_RM7000,
1472 OPTION_NO_FIX_RM7000,
1473 OPTION_FIX_LOONGSON2F_JUMP,
1474 OPTION_NO_FIX_LOONGSON2F_JUMP,
1475 OPTION_FIX_LOONGSON2F_NOP,
1476 OPTION_NO_FIX_LOONGSON2F_NOP,
1477 OPTION_FIX_VR4120,
1478 OPTION_NO_FIX_VR4120,
1479 OPTION_FIX_VR4130,
1480 OPTION_NO_FIX_VR4130,
1481 OPTION_FIX_CN63XXP1,
1482 OPTION_NO_FIX_CN63XXP1,
1483 OPTION_TRAP,
1484 OPTION_BREAK,
1485 OPTION_EB,
1486 OPTION_EL,
1487 OPTION_FP32,
1488 OPTION_GP32,
1489 OPTION_CONSTRUCT_FLOATS,
1490 OPTION_NO_CONSTRUCT_FLOATS,
1491 OPTION_FP64,
1492 OPTION_FPXX,
1493 OPTION_GP64,
1494 OPTION_RELAX_BRANCH,
1495 OPTION_NO_RELAX_BRANCH,
1496 OPTION_IGNORE_BRANCH_ISA,
1497 OPTION_NO_IGNORE_BRANCH_ISA,
1498 OPTION_INSN32,
1499 OPTION_NO_INSN32,
1500 OPTION_MSHARED,
1501 OPTION_MNO_SHARED,
1502 OPTION_MSYM32,
1503 OPTION_MNO_SYM32,
1504 OPTION_SOFT_FLOAT,
1505 OPTION_HARD_FLOAT,
1506 OPTION_SINGLE_FLOAT,
1507 OPTION_DOUBLE_FLOAT,
1508 OPTION_32,
1509 OPTION_CALL_SHARED,
1510 OPTION_CALL_NONPIC,
1511 OPTION_NON_SHARED,
1512 OPTION_XGOT,
1513 OPTION_MABI,
1514 OPTION_N32,
1515 OPTION_64,
1516 OPTION_MDEBUG,
1517 OPTION_NO_MDEBUG,
1518 OPTION_PDR,
1519 OPTION_NO_PDR,
1520 OPTION_MVXWORKS_PIC,
1521 OPTION_NAN,
1522 OPTION_ODD_SPREG,
1523 OPTION_NO_ODD_SPREG,
1524 OPTION_END_OF_ENUM
1525 };
1526
1527 struct option md_longopts[] =
1528 {
1529 /* Options which specify architecture. */
1530 {"march", required_argument, NULL, OPTION_MARCH},
1531 {"mtune", required_argument, NULL, OPTION_MTUNE},
1532 {"mips0", no_argument, NULL, OPTION_MIPS1},
1533 {"mips1", no_argument, NULL, OPTION_MIPS1},
1534 {"mips2", no_argument, NULL, OPTION_MIPS2},
1535 {"mips3", no_argument, NULL, OPTION_MIPS3},
1536 {"mips4", no_argument, NULL, OPTION_MIPS4},
1537 {"mips5", no_argument, NULL, OPTION_MIPS5},
1538 {"mips32", no_argument, NULL, OPTION_MIPS32},
1539 {"mips64", no_argument, NULL, OPTION_MIPS64},
1540 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1541 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1542 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1543 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1544 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1545 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1546 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1547 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1548
1549 /* Options which specify Application Specific Extensions (ASEs). */
1550 {"mips16", no_argument, NULL, OPTION_MIPS16},
1551 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1552 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1553 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1554 {"mdmx", no_argument, NULL, OPTION_MDMX},
1555 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1556 {"mdsp", no_argument, NULL, OPTION_DSP},
1557 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1558 {"mmt", no_argument, NULL, OPTION_MT},
1559 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1560 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1561 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1562 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1563 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1564 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1565 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1566 {"meva", no_argument, NULL, OPTION_EVA},
1567 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1568 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1569 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1570 {"mmcu", no_argument, NULL, OPTION_MCU},
1571 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1572 {"mvirt", no_argument, NULL, OPTION_VIRT},
1573 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1574 {"mmsa", no_argument, NULL, OPTION_MSA},
1575 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1576 {"mxpa", no_argument, NULL, OPTION_XPA},
1577 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1578
1579 /* Old-style architecture options. Don't add more of these. */
1580 {"m4650", no_argument, NULL, OPTION_M4650},
1581 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1582 {"m4010", no_argument, NULL, OPTION_M4010},
1583 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1584 {"m4100", no_argument, NULL, OPTION_M4100},
1585 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1586 {"m3900", no_argument, NULL, OPTION_M3900},
1587 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1588
1589 /* Options which enable bug fixes. */
1590 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1591 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1592 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1593 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1594 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1595 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1596 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1597 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1598 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1599 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1600 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1601 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1602 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1603 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1604 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1605 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1606 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1607
1608 /* Miscellaneous options. */
1609 {"trap", no_argument, NULL, OPTION_TRAP},
1610 {"no-break", no_argument, NULL, OPTION_TRAP},
1611 {"break", no_argument, NULL, OPTION_BREAK},
1612 {"no-trap", no_argument, NULL, OPTION_BREAK},
1613 {"EB", no_argument, NULL, OPTION_EB},
1614 {"EL", no_argument, NULL, OPTION_EL},
1615 {"mfp32", no_argument, NULL, OPTION_FP32},
1616 {"mgp32", no_argument, NULL, OPTION_GP32},
1617 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1618 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1619 {"mfp64", no_argument, NULL, OPTION_FP64},
1620 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1621 {"mgp64", no_argument, NULL, OPTION_GP64},
1622 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1623 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1624 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1625 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1626 {"minsn32", no_argument, NULL, OPTION_INSN32},
1627 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1628 {"mshared", no_argument, NULL, OPTION_MSHARED},
1629 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1630 {"msym32", no_argument, NULL, OPTION_MSYM32},
1631 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1632 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1633 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1634 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1635 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1636 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1637 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1638
1639 /* Strictly speaking this next option is ELF specific,
1640 but we allow it for other ports as well in order to
1641 make testing easier. */
1642 {"32", no_argument, NULL, OPTION_32},
1643
1644 /* ELF-specific options. */
1645 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1646 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1647 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1648 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1649 {"xgot", no_argument, NULL, OPTION_XGOT},
1650 {"mabi", required_argument, NULL, OPTION_MABI},
1651 {"n32", no_argument, NULL, OPTION_N32},
1652 {"64", no_argument, NULL, OPTION_64},
1653 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1654 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1655 {"mpdr", no_argument, NULL, OPTION_PDR},
1656 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1657 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1658 {"mnan", required_argument, NULL, OPTION_NAN},
1659
1660 {NULL, no_argument, NULL, 0}
1661 };
1662 size_t md_longopts_size = sizeof (md_longopts);
1663 \f
1664 /* Information about either an Application Specific Extension or an
1665 optional architecture feature that, for simplicity, we treat in the
1666 same way as an ASE. */
1667 struct mips_ase
1668 {
1669 /* The name of the ASE, used in both the command-line and .set options. */
1670 const char *name;
1671
1672 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1673 and 64-bit architectures, the flags here refer to the subset that
1674 is available on both. */
1675 unsigned int flags;
1676
1677 /* The ASE_* flag used for instructions that are available on 64-bit
1678 architectures but that are not included in FLAGS. */
1679 unsigned int flags64;
1680
1681 /* The command-line options that turn the ASE on and off. */
1682 int option_on;
1683 int option_off;
1684
1685 /* The minimum required architecture revisions for MIPS32, MIPS64,
1686 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1687 int mips32_rev;
1688 int mips64_rev;
1689 int micromips32_rev;
1690 int micromips64_rev;
1691
1692 /* The architecture where the ASE was removed or -1 if the extension has not
1693 been removed. */
1694 int rem_rev;
1695 };
1696
1697 /* A table of all supported ASEs. */
1698 static const struct mips_ase mips_ases[] = {
1699 { "dsp", ASE_DSP, ASE_DSP64,
1700 OPTION_DSP, OPTION_NO_DSP,
1701 2, 2, 2, 2,
1702 -1 },
1703
1704 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1705 OPTION_DSPR2, OPTION_NO_DSPR2,
1706 2, 2, 2, 2,
1707 -1 },
1708
1709 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1710 OPTION_DSPR3, OPTION_NO_DSPR3,
1711 6, 6, -1, -1,
1712 -1 },
1713
1714 { "eva", ASE_EVA, 0,
1715 OPTION_EVA, OPTION_NO_EVA,
1716 2, 2, 2, 2,
1717 -1 },
1718
1719 { "mcu", ASE_MCU, 0,
1720 OPTION_MCU, OPTION_NO_MCU,
1721 2, 2, 2, 2,
1722 -1 },
1723
1724 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1725 { "mdmx", ASE_MDMX, 0,
1726 OPTION_MDMX, OPTION_NO_MDMX,
1727 -1, 1, -1, -1,
1728 6 },
1729
1730 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1731 { "mips3d", ASE_MIPS3D, 0,
1732 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1733 2, 1, -1, -1,
1734 6 },
1735
1736 { "mt", ASE_MT, 0,
1737 OPTION_MT, OPTION_NO_MT,
1738 2, 2, -1, -1,
1739 -1 },
1740
1741 { "smartmips", ASE_SMARTMIPS, 0,
1742 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1743 1, -1, -1, -1,
1744 6 },
1745
1746 { "virt", ASE_VIRT, ASE_VIRT64,
1747 OPTION_VIRT, OPTION_NO_VIRT,
1748 2, 2, 2, 2,
1749 -1 },
1750
1751 { "msa", ASE_MSA, ASE_MSA64,
1752 OPTION_MSA, OPTION_NO_MSA,
1753 2, 2, 2, 2,
1754 -1 },
1755
1756 { "xpa", ASE_XPA, 0,
1757 OPTION_XPA, OPTION_NO_XPA,
1758 2, 2, -1, -1,
1759 -1 },
1760 };
1761
1762 /* The set of ASEs that require -mfp64. */
1763 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1764
1765 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1766 static const unsigned int mips_ase_groups[] = {
1767 ASE_DSP | ASE_DSPR2 | ASE_DSPR3
1768 };
1769 \f
1770 /* Pseudo-op table.
1771
1772 The following pseudo-ops from the Kane and Heinrich MIPS book
1773 should be defined here, but are currently unsupported: .alias,
1774 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1775
1776 The following pseudo-ops from the Kane and Heinrich MIPS book are
1777 specific to the type of debugging information being generated, and
1778 should be defined by the object format: .aent, .begin, .bend,
1779 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1780 .vreg.
1781
1782 The following pseudo-ops from the Kane and Heinrich MIPS book are
1783 not MIPS CPU specific, but are also not specific to the object file
1784 format. This file is probably the best place to define them, but
1785 they are not currently supported: .asm0, .endr, .lab, .struct. */
1786
1787 static const pseudo_typeS mips_pseudo_table[] =
1788 {
1789 /* MIPS specific pseudo-ops. */
1790 {"option", s_option, 0},
1791 {"set", s_mipsset, 0},
1792 {"rdata", s_change_sec, 'r'},
1793 {"sdata", s_change_sec, 's'},
1794 {"livereg", s_ignore, 0},
1795 {"abicalls", s_abicalls, 0},
1796 {"cpload", s_cpload, 0},
1797 {"cpsetup", s_cpsetup, 0},
1798 {"cplocal", s_cplocal, 0},
1799 {"cprestore", s_cprestore, 0},
1800 {"cpreturn", s_cpreturn, 0},
1801 {"dtprelword", s_dtprelword, 0},
1802 {"dtpreldword", s_dtpreldword, 0},
1803 {"tprelword", s_tprelword, 0},
1804 {"tpreldword", s_tpreldword, 0},
1805 {"gpvalue", s_gpvalue, 0},
1806 {"gpword", s_gpword, 0},
1807 {"gpdword", s_gpdword, 0},
1808 {"ehword", s_ehword, 0},
1809 {"cpadd", s_cpadd, 0},
1810 {"insn", s_insn, 0},
1811 {"nan", s_nan, 0},
1812 {"module", s_module, 0},
1813
1814 /* Relatively generic pseudo-ops that happen to be used on MIPS
1815 chips. */
1816 {"asciiz", stringer, 8 + 1},
1817 {"bss", s_change_sec, 'b'},
1818 {"err", s_err, 0},
1819 {"half", s_cons, 1},
1820 {"dword", s_cons, 3},
1821 {"weakext", s_mips_weakext, 0},
1822 {"origin", s_org, 0},
1823 {"repeat", s_rept, 0},
1824
1825 /* For MIPS this is non-standard, but we define it for consistency. */
1826 {"sbss", s_change_sec, 'B'},
1827
1828 /* These pseudo-ops are defined in read.c, but must be overridden
1829 here for one reason or another. */
1830 {"align", s_align, 0},
1831 {"byte", s_cons, 0},
1832 {"data", s_change_sec, 'd'},
1833 {"double", s_float_cons, 'd'},
1834 {"float", s_float_cons, 'f'},
1835 {"globl", s_mips_globl, 0},
1836 {"global", s_mips_globl, 0},
1837 {"hword", s_cons, 1},
1838 {"int", s_cons, 2},
1839 {"long", s_cons, 2},
1840 {"octa", s_cons, 4},
1841 {"quad", s_cons, 3},
1842 {"section", s_change_section, 0},
1843 {"short", s_cons, 1},
1844 {"single", s_float_cons, 'f'},
1845 {"stabd", s_mips_stab, 'd'},
1846 {"stabn", s_mips_stab, 'n'},
1847 {"stabs", s_mips_stab, 's'},
1848 {"text", s_change_sec, 't'},
1849 {"word", s_cons, 2},
1850
1851 { "extern", ecoff_directive_extern, 0},
1852
1853 { NULL, NULL, 0 },
1854 };
1855
1856 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1857 {
1858 /* These pseudo-ops should be defined by the object file format.
1859 However, a.out doesn't support them, so we have versions here. */
1860 {"aent", s_mips_ent, 1},
1861 {"bgnb", s_ignore, 0},
1862 {"end", s_mips_end, 0},
1863 {"endb", s_ignore, 0},
1864 {"ent", s_mips_ent, 0},
1865 {"file", s_mips_file, 0},
1866 {"fmask", s_mips_mask, 'F'},
1867 {"frame", s_mips_frame, 0},
1868 {"loc", s_mips_loc, 0},
1869 {"mask", s_mips_mask, 'R'},
1870 {"verstamp", s_ignore, 0},
1871 { NULL, NULL, 0 },
1872 };
1873
1874 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1875 purpose of the `.dc.a' internal pseudo-op. */
1876
1877 int
1878 mips_address_bytes (void)
1879 {
1880 file_mips_check_options ();
1881 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1882 }
1883
1884 extern void pop_insert (const pseudo_typeS *);
1885
1886 void
1887 mips_pop_insert (void)
1888 {
1889 pop_insert (mips_pseudo_table);
1890 if (! ECOFF_DEBUGGING)
1891 pop_insert (mips_nonecoff_pseudo_table);
1892 }
1893 \f
1894 /* Symbols labelling the current insn. */
1895
1896 struct insn_label_list
1897 {
1898 struct insn_label_list *next;
1899 symbolS *label;
1900 };
1901
1902 static struct insn_label_list *free_insn_labels;
1903 #define label_list tc_segment_info_data.labels
1904
1905 static void mips_clear_insn_labels (void);
1906 static void mips_mark_labels (void);
1907 static void mips_compressed_mark_labels (void);
1908
1909 static inline void
1910 mips_clear_insn_labels (void)
1911 {
1912 struct insn_label_list **pl;
1913 segment_info_type *si;
1914
1915 if (now_seg)
1916 {
1917 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1918 ;
1919
1920 si = seg_info (now_seg);
1921 *pl = si->label_list;
1922 si->label_list = NULL;
1923 }
1924 }
1925
1926 /* Mark instruction labels in MIPS16/microMIPS mode. */
1927
1928 static inline void
1929 mips_mark_labels (void)
1930 {
1931 if (HAVE_CODE_COMPRESSION)
1932 mips_compressed_mark_labels ();
1933 }
1934 \f
1935 static char *expr_end;
1936
1937 /* An expression in a macro instruction. This is set by mips_ip and
1938 mips16_ip and when populated is always an O_constant. */
1939
1940 static expressionS imm_expr;
1941
1942 /* The relocatable field in an instruction and the relocs associated
1943 with it. These variables are used for instructions like LUI and
1944 JAL as well as true offsets. They are also used for address
1945 operands in macros. */
1946
1947 static expressionS offset_expr;
1948 static bfd_reloc_code_real_type offset_reloc[3]
1949 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1950
1951 /* This is set to the resulting size of the instruction to be produced
1952 by mips16_ip if an explicit extension is used or by mips_ip if an
1953 explicit size is supplied. */
1954
1955 static unsigned int forced_insn_length;
1956
1957 /* True if we are assembling an instruction. All dot symbols defined during
1958 this time should be treated as code labels. */
1959
1960 static bfd_boolean mips_assembling_insn;
1961
1962 /* The pdr segment for per procedure frame/regmask info. Not used for
1963 ECOFF debugging. */
1964
1965 static segT pdr_seg;
1966
1967 /* The default target format to use. */
1968
1969 #if defined (TE_FreeBSD)
1970 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
1971 #elif defined (TE_TMIPS)
1972 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
1973 #else
1974 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
1975 #endif
1976
1977 const char *
1978 mips_target_format (void)
1979 {
1980 switch (OUTPUT_FLAVOR)
1981 {
1982 case bfd_target_elf_flavour:
1983 #ifdef TE_VXWORKS
1984 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1985 return (target_big_endian
1986 ? "elf32-bigmips-vxworks"
1987 : "elf32-littlemips-vxworks");
1988 #endif
1989 return (target_big_endian
1990 ? (HAVE_64BIT_OBJECTS
1991 ? ELF_TARGET ("elf64-", "big")
1992 : (HAVE_NEWABI
1993 ? ELF_TARGET ("elf32-n", "big")
1994 : ELF_TARGET ("elf32-", "big")))
1995 : (HAVE_64BIT_OBJECTS
1996 ? ELF_TARGET ("elf64-", "little")
1997 : (HAVE_NEWABI
1998 ? ELF_TARGET ("elf32-n", "little")
1999 : ELF_TARGET ("elf32-", "little"))));
2000 default:
2001 abort ();
2002 return NULL;
2003 }
2004 }
2005
2006 /* Return the ISA revision that is currently in use, or 0 if we are
2007 generating code for MIPS V or below. */
2008
2009 static int
2010 mips_isa_rev (void)
2011 {
2012 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2013 return 2;
2014
2015 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2016 return 3;
2017
2018 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2019 return 5;
2020
2021 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2022 return 6;
2023
2024 /* microMIPS implies revision 2 or above. */
2025 if (mips_opts.micromips)
2026 return 2;
2027
2028 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2029 return 1;
2030
2031 return 0;
2032 }
2033
2034 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2035
2036 static unsigned int
2037 mips_ase_mask (unsigned int flags)
2038 {
2039 unsigned int i;
2040
2041 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2042 if (flags & mips_ase_groups[i])
2043 flags |= mips_ase_groups[i];
2044 return flags;
2045 }
2046
2047 /* Check whether the current ISA supports ASE. Issue a warning if
2048 appropriate. */
2049
2050 static void
2051 mips_check_isa_supports_ase (const struct mips_ase *ase)
2052 {
2053 const char *base;
2054 int min_rev, size;
2055 static unsigned int warned_isa;
2056 static unsigned int warned_fp32;
2057
2058 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2059 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2060 else
2061 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2062 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2063 && (warned_isa & ase->flags) != ase->flags)
2064 {
2065 warned_isa |= ase->flags;
2066 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2067 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2068 if (min_rev < 0)
2069 as_warn (_("the %d-bit %s architecture does not support the"
2070 " `%s' extension"), size, base, ase->name);
2071 else
2072 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2073 ase->name, base, size, min_rev);
2074 }
2075 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2076 && (warned_isa & ase->flags) != ase->flags)
2077 {
2078 warned_isa |= ase->flags;
2079 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2080 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2081 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2082 ase->name, base, size, ase->rem_rev);
2083 }
2084
2085 if ((ase->flags & FP64_ASES)
2086 && mips_opts.fp != 64
2087 && (warned_fp32 & ase->flags) != ase->flags)
2088 {
2089 warned_fp32 |= ase->flags;
2090 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2091 }
2092 }
2093
2094 /* Check all enabled ASEs to see whether they are supported by the
2095 chosen architecture. */
2096
2097 static void
2098 mips_check_isa_supports_ases (void)
2099 {
2100 unsigned int i, mask;
2101
2102 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2103 {
2104 mask = mips_ase_mask (mips_ases[i].flags);
2105 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2106 mips_check_isa_supports_ase (&mips_ases[i]);
2107 }
2108 }
2109
2110 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2111 that were affected. */
2112
2113 static unsigned int
2114 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2115 bfd_boolean enabled_p)
2116 {
2117 unsigned int mask;
2118
2119 mask = mips_ase_mask (ase->flags);
2120 opts->ase &= ~mask;
2121 if (enabled_p)
2122 opts->ase |= ase->flags;
2123 return mask;
2124 }
2125
2126 /* Return the ASE called NAME, or null if none. */
2127
2128 static const struct mips_ase *
2129 mips_lookup_ase (const char *name)
2130 {
2131 unsigned int i;
2132
2133 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2134 if (strcmp (name, mips_ases[i].name) == 0)
2135 return &mips_ases[i];
2136 return NULL;
2137 }
2138
2139 /* Return the length of a microMIPS instruction in bytes. If bits of
2140 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2141 otherwise it is a 32-bit instruction. */
2142
2143 static inline unsigned int
2144 micromips_insn_length (const struct mips_opcode *mo)
2145 {
2146 return mips_opcode_32bit_p (mo) ? 4 : 2;
2147 }
2148
2149 /* Return the length of MIPS16 instruction OPCODE. */
2150
2151 static inline unsigned int
2152 mips16_opcode_length (unsigned long opcode)
2153 {
2154 return (opcode >> 16) == 0 ? 2 : 4;
2155 }
2156
2157 /* Return the length of instruction INSN. */
2158
2159 static inline unsigned int
2160 insn_length (const struct mips_cl_insn *insn)
2161 {
2162 if (mips_opts.micromips)
2163 return micromips_insn_length (insn->insn_mo);
2164 else if (mips_opts.mips16)
2165 return mips16_opcode_length (insn->insn_opcode);
2166 else
2167 return 4;
2168 }
2169
2170 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2171
2172 static void
2173 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2174 {
2175 size_t i;
2176
2177 insn->insn_mo = mo;
2178 insn->insn_opcode = mo->match;
2179 insn->frag = NULL;
2180 insn->where = 0;
2181 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2182 insn->fixp[i] = NULL;
2183 insn->fixed_p = (mips_opts.noreorder > 0);
2184 insn->noreorder_p = (mips_opts.noreorder > 0);
2185 insn->mips16_absolute_jump_p = 0;
2186 insn->complete_p = 0;
2187 insn->cleared_p = 0;
2188 }
2189
2190 /* Get a list of all the operands in INSN. */
2191
2192 static const struct mips_operand_array *
2193 insn_operands (const struct mips_cl_insn *insn)
2194 {
2195 if (insn->insn_mo >= &mips_opcodes[0]
2196 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2197 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2198
2199 if (insn->insn_mo >= &mips16_opcodes[0]
2200 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2201 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2202
2203 if (insn->insn_mo >= &micromips_opcodes[0]
2204 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2205 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2206
2207 abort ();
2208 }
2209
2210 /* Get a description of operand OPNO of INSN. */
2211
2212 static const struct mips_operand *
2213 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2214 {
2215 const struct mips_operand_array *operands;
2216
2217 operands = insn_operands (insn);
2218 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2219 abort ();
2220 return operands->operand[opno];
2221 }
2222
2223 /* Install UVAL as the value of OPERAND in INSN. */
2224
2225 static inline void
2226 insn_insert_operand (struct mips_cl_insn *insn,
2227 const struct mips_operand *operand, unsigned int uval)
2228 {
2229 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2230 }
2231
2232 /* Extract the value of OPERAND from INSN. */
2233
2234 static inline unsigned
2235 insn_extract_operand (const struct mips_cl_insn *insn,
2236 const struct mips_operand *operand)
2237 {
2238 return mips_extract_operand (operand, insn->insn_opcode);
2239 }
2240
2241 /* Record the current MIPS16/microMIPS mode in now_seg. */
2242
2243 static void
2244 mips_record_compressed_mode (void)
2245 {
2246 segment_info_type *si;
2247
2248 si = seg_info (now_seg);
2249 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2250 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2251 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2252 si->tc_segment_info_data.micromips = mips_opts.micromips;
2253 }
2254
2255 /* Read a standard MIPS instruction from BUF. */
2256
2257 static unsigned long
2258 read_insn (char *buf)
2259 {
2260 if (target_big_endian)
2261 return bfd_getb32 ((bfd_byte *) buf);
2262 else
2263 return bfd_getl32 ((bfd_byte *) buf);
2264 }
2265
2266 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2267 the next byte. */
2268
2269 static char *
2270 write_insn (char *buf, unsigned int insn)
2271 {
2272 md_number_to_chars (buf, insn, 4);
2273 return buf + 4;
2274 }
2275
2276 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2277 has length LENGTH. */
2278
2279 static unsigned long
2280 read_compressed_insn (char *buf, unsigned int length)
2281 {
2282 unsigned long insn;
2283 unsigned int i;
2284
2285 insn = 0;
2286 for (i = 0; i < length; i += 2)
2287 {
2288 insn <<= 16;
2289 if (target_big_endian)
2290 insn |= bfd_getb16 ((char *) buf);
2291 else
2292 insn |= bfd_getl16 ((char *) buf);
2293 buf += 2;
2294 }
2295 return insn;
2296 }
2297
2298 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2299 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2300
2301 static char *
2302 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2303 {
2304 unsigned int i;
2305
2306 for (i = 0; i < length; i += 2)
2307 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2308 return buf + length;
2309 }
2310
2311 /* Install INSN at the location specified by its "frag" and "where" fields. */
2312
2313 static void
2314 install_insn (const struct mips_cl_insn *insn)
2315 {
2316 char *f = insn->frag->fr_literal + insn->where;
2317 if (HAVE_CODE_COMPRESSION)
2318 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2319 else
2320 write_insn (f, insn->insn_opcode);
2321 mips_record_compressed_mode ();
2322 }
2323
2324 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2325 and install the opcode in the new location. */
2326
2327 static void
2328 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2329 {
2330 size_t i;
2331
2332 insn->frag = frag;
2333 insn->where = where;
2334 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2335 if (insn->fixp[i] != NULL)
2336 {
2337 insn->fixp[i]->fx_frag = frag;
2338 insn->fixp[i]->fx_where = where;
2339 }
2340 install_insn (insn);
2341 }
2342
2343 /* Add INSN to the end of the output. */
2344
2345 static void
2346 add_fixed_insn (struct mips_cl_insn *insn)
2347 {
2348 char *f = frag_more (insn_length (insn));
2349 move_insn (insn, frag_now, f - frag_now->fr_literal);
2350 }
2351
2352 /* Start a variant frag and move INSN to the start of the variant part,
2353 marking it as fixed. The other arguments are as for frag_var. */
2354
2355 static void
2356 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2357 relax_substateT subtype, symbolS *symbol, offsetT offset)
2358 {
2359 frag_grow (max_chars);
2360 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2361 insn->fixed_p = 1;
2362 frag_var (rs_machine_dependent, max_chars, var,
2363 subtype, symbol, offset, NULL);
2364 }
2365
2366 /* Insert N copies of INSN into the history buffer, starting at
2367 position FIRST. Neither FIRST nor N need to be clipped. */
2368
2369 static void
2370 insert_into_history (unsigned int first, unsigned int n,
2371 const struct mips_cl_insn *insn)
2372 {
2373 if (mips_relax.sequence != 2)
2374 {
2375 unsigned int i;
2376
2377 for (i = ARRAY_SIZE (history); i-- > first;)
2378 if (i >= first + n)
2379 history[i] = history[i - n];
2380 else
2381 history[i] = *insn;
2382 }
2383 }
2384
2385 /* Clear the error in insn_error. */
2386
2387 static void
2388 clear_insn_error (void)
2389 {
2390 memset (&insn_error, 0, sizeof (insn_error));
2391 }
2392
2393 /* Possibly record error message MSG for the current instruction.
2394 If the error is about a particular argument, ARGNUM is the 1-based
2395 number of that argument, otherwise it is 0. FORMAT is the format
2396 of MSG. Return true if MSG was used, false if the current message
2397 was kept. */
2398
2399 static bfd_boolean
2400 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2401 const char *msg)
2402 {
2403 if (argnum == 0)
2404 {
2405 /* Give priority to errors against specific arguments, and to
2406 the first whole-instruction message. */
2407 if (insn_error.msg)
2408 return FALSE;
2409 }
2410 else
2411 {
2412 /* Keep insn_error if it is against a later argument. */
2413 if (argnum < insn_error.min_argnum)
2414 return FALSE;
2415
2416 /* If both errors are against the same argument but are different,
2417 give up on reporting a specific error for this argument.
2418 See the comment about mips_insn_error for details. */
2419 if (argnum == insn_error.min_argnum
2420 && insn_error.msg
2421 && strcmp (insn_error.msg, msg) != 0)
2422 {
2423 insn_error.msg = 0;
2424 insn_error.min_argnum += 1;
2425 return FALSE;
2426 }
2427 }
2428 insn_error.min_argnum = argnum;
2429 insn_error.format = format;
2430 insn_error.msg = msg;
2431 return TRUE;
2432 }
2433
2434 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2435 as for set_insn_error_format. */
2436
2437 static void
2438 set_insn_error (int argnum, const char *msg)
2439 {
2440 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2441 }
2442
2443 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2444 as for set_insn_error_format. */
2445
2446 static void
2447 set_insn_error_i (int argnum, const char *msg, int i)
2448 {
2449 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2450 insn_error.u.i = i;
2451 }
2452
2453 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2454 are as for set_insn_error_format. */
2455
2456 static void
2457 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2458 {
2459 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2460 {
2461 insn_error.u.ss[0] = s1;
2462 insn_error.u.ss[1] = s2;
2463 }
2464 }
2465
2466 /* Report the error in insn_error, which is against assembly code STR. */
2467
2468 static void
2469 report_insn_error (const char *str)
2470 {
2471 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2472
2473 switch (insn_error.format)
2474 {
2475 case ERR_FMT_PLAIN:
2476 as_bad (msg, str);
2477 break;
2478
2479 case ERR_FMT_I:
2480 as_bad (msg, insn_error.u.i, str);
2481 break;
2482
2483 case ERR_FMT_SS:
2484 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2485 break;
2486 }
2487
2488 free ((char *) msg);
2489 }
2490
2491 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2492 the idea is to make it obvious at a glance that each errata is
2493 included. */
2494
2495 static void
2496 init_vr4120_conflicts (void)
2497 {
2498 #define CONFLICT(FIRST, SECOND) \
2499 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2500
2501 /* Errata 21 - [D]DIV[U] after [D]MACC */
2502 CONFLICT (MACC, DIV);
2503 CONFLICT (DMACC, DIV);
2504
2505 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2506 CONFLICT (DMULT, DMULT);
2507 CONFLICT (DMULT, DMACC);
2508 CONFLICT (DMACC, DMULT);
2509 CONFLICT (DMACC, DMACC);
2510
2511 /* Errata 24 - MT{LO,HI} after [D]MACC */
2512 CONFLICT (MACC, MTHILO);
2513 CONFLICT (DMACC, MTHILO);
2514
2515 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2516 instruction is executed immediately after a MACC or DMACC
2517 instruction, the result of [either instruction] is incorrect." */
2518 CONFLICT (MACC, MULT);
2519 CONFLICT (MACC, DMULT);
2520 CONFLICT (DMACC, MULT);
2521 CONFLICT (DMACC, DMULT);
2522
2523 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2524 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2525 DDIV or DDIVU instruction, the result of the MACC or
2526 DMACC instruction is incorrect.". */
2527 CONFLICT (DMULT, MACC);
2528 CONFLICT (DMULT, DMACC);
2529 CONFLICT (DIV, MACC);
2530 CONFLICT (DIV, DMACC);
2531
2532 #undef CONFLICT
2533 }
2534
2535 struct regname {
2536 const char *name;
2537 unsigned int num;
2538 };
2539
2540 #define RNUM_MASK 0x00000ff
2541 #define RTYPE_MASK 0x0ffff00
2542 #define RTYPE_NUM 0x0000100
2543 #define RTYPE_FPU 0x0000200
2544 #define RTYPE_FCC 0x0000400
2545 #define RTYPE_VEC 0x0000800
2546 #define RTYPE_GP 0x0001000
2547 #define RTYPE_CP0 0x0002000
2548 #define RTYPE_PC 0x0004000
2549 #define RTYPE_ACC 0x0008000
2550 #define RTYPE_CCC 0x0010000
2551 #define RTYPE_VI 0x0020000
2552 #define RTYPE_VF 0x0040000
2553 #define RTYPE_R5900_I 0x0080000
2554 #define RTYPE_R5900_Q 0x0100000
2555 #define RTYPE_R5900_R 0x0200000
2556 #define RTYPE_R5900_ACC 0x0400000
2557 #define RTYPE_MSA 0x0800000
2558 #define RWARN 0x8000000
2559
2560 #define GENERIC_REGISTER_NUMBERS \
2561 {"$0", RTYPE_NUM | 0}, \
2562 {"$1", RTYPE_NUM | 1}, \
2563 {"$2", RTYPE_NUM | 2}, \
2564 {"$3", RTYPE_NUM | 3}, \
2565 {"$4", RTYPE_NUM | 4}, \
2566 {"$5", RTYPE_NUM | 5}, \
2567 {"$6", RTYPE_NUM | 6}, \
2568 {"$7", RTYPE_NUM | 7}, \
2569 {"$8", RTYPE_NUM | 8}, \
2570 {"$9", RTYPE_NUM | 9}, \
2571 {"$10", RTYPE_NUM | 10}, \
2572 {"$11", RTYPE_NUM | 11}, \
2573 {"$12", RTYPE_NUM | 12}, \
2574 {"$13", RTYPE_NUM | 13}, \
2575 {"$14", RTYPE_NUM | 14}, \
2576 {"$15", RTYPE_NUM | 15}, \
2577 {"$16", RTYPE_NUM | 16}, \
2578 {"$17", RTYPE_NUM | 17}, \
2579 {"$18", RTYPE_NUM | 18}, \
2580 {"$19", RTYPE_NUM | 19}, \
2581 {"$20", RTYPE_NUM | 20}, \
2582 {"$21", RTYPE_NUM | 21}, \
2583 {"$22", RTYPE_NUM | 22}, \
2584 {"$23", RTYPE_NUM | 23}, \
2585 {"$24", RTYPE_NUM | 24}, \
2586 {"$25", RTYPE_NUM | 25}, \
2587 {"$26", RTYPE_NUM | 26}, \
2588 {"$27", RTYPE_NUM | 27}, \
2589 {"$28", RTYPE_NUM | 28}, \
2590 {"$29", RTYPE_NUM | 29}, \
2591 {"$30", RTYPE_NUM | 30}, \
2592 {"$31", RTYPE_NUM | 31}
2593
2594 #define FPU_REGISTER_NAMES \
2595 {"$f0", RTYPE_FPU | 0}, \
2596 {"$f1", RTYPE_FPU | 1}, \
2597 {"$f2", RTYPE_FPU | 2}, \
2598 {"$f3", RTYPE_FPU | 3}, \
2599 {"$f4", RTYPE_FPU | 4}, \
2600 {"$f5", RTYPE_FPU | 5}, \
2601 {"$f6", RTYPE_FPU | 6}, \
2602 {"$f7", RTYPE_FPU | 7}, \
2603 {"$f8", RTYPE_FPU | 8}, \
2604 {"$f9", RTYPE_FPU | 9}, \
2605 {"$f10", RTYPE_FPU | 10}, \
2606 {"$f11", RTYPE_FPU | 11}, \
2607 {"$f12", RTYPE_FPU | 12}, \
2608 {"$f13", RTYPE_FPU | 13}, \
2609 {"$f14", RTYPE_FPU | 14}, \
2610 {"$f15", RTYPE_FPU | 15}, \
2611 {"$f16", RTYPE_FPU | 16}, \
2612 {"$f17", RTYPE_FPU | 17}, \
2613 {"$f18", RTYPE_FPU | 18}, \
2614 {"$f19", RTYPE_FPU | 19}, \
2615 {"$f20", RTYPE_FPU | 20}, \
2616 {"$f21", RTYPE_FPU | 21}, \
2617 {"$f22", RTYPE_FPU | 22}, \
2618 {"$f23", RTYPE_FPU | 23}, \
2619 {"$f24", RTYPE_FPU | 24}, \
2620 {"$f25", RTYPE_FPU | 25}, \
2621 {"$f26", RTYPE_FPU | 26}, \
2622 {"$f27", RTYPE_FPU | 27}, \
2623 {"$f28", RTYPE_FPU | 28}, \
2624 {"$f29", RTYPE_FPU | 29}, \
2625 {"$f30", RTYPE_FPU | 30}, \
2626 {"$f31", RTYPE_FPU | 31}
2627
2628 #define FPU_CONDITION_CODE_NAMES \
2629 {"$fcc0", RTYPE_FCC | 0}, \
2630 {"$fcc1", RTYPE_FCC | 1}, \
2631 {"$fcc2", RTYPE_FCC | 2}, \
2632 {"$fcc3", RTYPE_FCC | 3}, \
2633 {"$fcc4", RTYPE_FCC | 4}, \
2634 {"$fcc5", RTYPE_FCC | 5}, \
2635 {"$fcc6", RTYPE_FCC | 6}, \
2636 {"$fcc7", RTYPE_FCC | 7}
2637
2638 #define COPROC_CONDITION_CODE_NAMES \
2639 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2640 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2641 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2642 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2643 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2644 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2645 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2646 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2647
2648 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2649 {"$a4", RTYPE_GP | 8}, \
2650 {"$a5", RTYPE_GP | 9}, \
2651 {"$a6", RTYPE_GP | 10}, \
2652 {"$a7", RTYPE_GP | 11}, \
2653 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2654 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2655 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2656 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2657 {"$t0", RTYPE_GP | 12}, \
2658 {"$t1", RTYPE_GP | 13}, \
2659 {"$t2", RTYPE_GP | 14}, \
2660 {"$t3", RTYPE_GP | 15}
2661
2662 #define O32_SYMBOLIC_REGISTER_NAMES \
2663 {"$t0", RTYPE_GP | 8}, \
2664 {"$t1", RTYPE_GP | 9}, \
2665 {"$t2", RTYPE_GP | 10}, \
2666 {"$t3", RTYPE_GP | 11}, \
2667 {"$t4", RTYPE_GP | 12}, \
2668 {"$t5", RTYPE_GP | 13}, \
2669 {"$t6", RTYPE_GP | 14}, \
2670 {"$t7", RTYPE_GP | 15}, \
2671 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2672 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2673 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2674 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2675
2676 /* Remaining symbolic register names */
2677 #define SYMBOLIC_REGISTER_NAMES \
2678 {"$zero", RTYPE_GP | 0}, \
2679 {"$at", RTYPE_GP | 1}, \
2680 {"$AT", RTYPE_GP | 1}, \
2681 {"$v0", RTYPE_GP | 2}, \
2682 {"$v1", RTYPE_GP | 3}, \
2683 {"$a0", RTYPE_GP | 4}, \
2684 {"$a1", RTYPE_GP | 5}, \
2685 {"$a2", RTYPE_GP | 6}, \
2686 {"$a3", RTYPE_GP | 7}, \
2687 {"$s0", RTYPE_GP | 16}, \
2688 {"$s1", RTYPE_GP | 17}, \
2689 {"$s2", RTYPE_GP | 18}, \
2690 {"$s3", RTYPE_GP | 19}, \
2691 {"$s4", RTYPE_GP | 20}, \
2692 {"$s5", RTYPE_GP | 21}, \
2693 {"$s6", RTYPE_GP | 22}, \
2694 {"$s7", RTYPE_GP | 23}, \
2695 {"$t8", RTYPE_GP | 24}, \
2696 {"$t9", RTYPE_GP | 25}, \
2697 {"$k0", RTYPE_GP | 26}, \
2698 {"$kt0", RTYPE_GP | 26}, \
2699 {"$k1", RTYPE_GP | 27}, \
2700 {"$kt1", RTYPE_GP | 27}, \
2701 {"$gp", RTYPE_GP | 28}, \
2702 {"$sp", RTYPE_GP | 29}, \
2703 {"$s8", RTYPE_GP | 30}, \
2704 {"$fp", RTYPE_GP | 30}, \
2705 {"$ra", RTYPE_GP | 31}
2706
2707 #define MIPS16_SPECIAL_REGISTER_NAMES \
2708 {"$pc", RTYPE_PC | 0}
2709
2710 #define MDMX_VECTOR_REGISTER_NAMES \
2711 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
2712 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
2713 {"$v2", RTYPE_VEC | 2}, \
2714 {"$v3", RTYPE_VEC | 3}, \
2715 {"$v4", RTYPE_VEC | 4}, \
2716 {"$v5", RTYPE_VEC | 5}, \
2717 {"$v6", RTYPE_VEC | 6}, \
2718 {"$v7", RTYPE_VEC | 7}, \
2719 {"$v8", RTYPE_VEC | 8}, \
2720 {"$v9", RTYPE_VEC | 9}, \
2721 {"$v10", RTYPE_VEC | 10}, \
2722 {"$v11", RTYPE_VEC | 11}, \
2723 {"$v12", RTYPE_VEC | 12}, \
2724 {"$v13", RTYPE_VEC | 13}, \
2725 {"$v14", RTYPE_VEC | 14}, \
2726 {"$v15", RTYPE_VEC | 15}, \
2727 {"$v16", RTYPE_VEC | 16}, \
2728 {"$v17", RTYPE_VEC | 17}, \
2729 {"$v18", RTYPE_VEC | 18}, \
2730 {"$v19", RTYPE_VEC | 19}, \
2731 {"$v20", RTYPE_VEC | 20}, \
2732 {"$v21", RTYPE_VEC | 21}, \
2733 {"$v22", RTYPE_VEC | 22}, \
2734 {"$v23", RTYPE_VEC | 23}, \
2735 {"$v24", RTYPE_VEC | 24}, \
2736 {"$v25", RTYPE_VEC | 25}, \
2737 {"$v26", RTYPE_VEC | 26}, \
2738 {"$v27", RTYPE_VEC | 27}, \
2739 {"$v28", RTYPE_VEC | 28}, \
2740 {"$v29", RTYPE_VEC | 29}, \
2741 {"$v30", RTYPE_VEC | 30}, \
2742 {"$v31", RTYPE_VEC | 31}
2743
2744 #define R5900_I_NAMES \
2745 {"$I", RTYPE_R5900_I | 0}
2746
2747 #define R5900_Q_NAMES \
2748 {"$Q", RTYPE_R5900_Q | 0}
2749
2750 #define R5900_R_NAMES \
2751 {"$R", RTYPE_R5900_R | 0}
2752
2753 #define R5900_ACC_NAMES \
2754 {"$ACC", RTYPE_R5900_ACC | 0 }
2755
2756 #define MIPS_DSP_ACCUMULATOR_NAMES \
2757 {"$ac0", RTYPE_ACC | 0}, \
2758 {"$ac1", RTYPE_ACC | 1}, \
2759 {"$ac2", RTYPE_ACC | 2}, \
2760 {"$ac3", RTYPE_ACC | 3}
2761
2762 static const struct regname reg_names[] = {
2763 GENERIC_REGISTER_NUMBERS,
2764 FPU_REGISTER_NAMES,
2765 FPU_CONDITION_CODE_NAMES,
2766 COPROC_CONDITION_CODE_NAMES,
2767
2768 /* The $txx registers depends on the abi,
2769 these will be added later into the symbol table from
2770 one of the tables below once mips_abi is set after
2771 parsing of arguments from the command line. */
2772 SYMBOLIC_REGISTER_NAMES,
2773
2774 MIPS16_SPECIAL_REGISTER_NAMES,
2775 MDMX_VECTOR_REGISTER_NAMES,
2776 R5900_I_NAMES,
2777 R5900_Q_NAMES,
2778 R5900_R_NAMES,
2779 R5900_ACC_NAMES,
2780 MIPS_DSP_ACCUMULATOR_NAMES,
2781 {0, 0}
2782 };
2783
2784 static const struct regname reg_names_o32[] = {
2785 O32_SYMBOLIC_REGISTER_NAMES,
2786 {0, 0}
2787 };
2788
2789 static const struct regname reg_names_n32n64[] = {
2790 N32N64_SYMBOLIC_REGISTER_NAMES,
2791 {0, 0}
2792 };
2793
2794 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2795 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2796 of these register symbols, return the associated vector register,
2797 otherwise return SYMVAL itself. */
2798
2799 static unsigned int
2800 mips_prefer_vec_regno (unsigned int symval)
2801 {
2802 if ((symval & -2) == (RTYPE_GP | 2))
2803 return RTYPE_VEC | (symval & 1);
2804 return symval;
2805 }
2806
2807 /* Return true if string [S, E) is a valid register name, storing its
2808 symbol value in *SYMVAL_PTR if so. */
2809
2810 static bfd_boolean
2811 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2812 {
2813 char save_c;
2814 symbolS *symbol;
2815
2816 /* Terminate name. */
2817 save_c = *e;
2818 *e = '\0';
2819
2820 /* Look up the name. */
2821 symbol = symbol_find (s);
2822 *e = save_c;
2823
2824 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2825 return FALSE;
2826
2827 *symval_ptr = S_GET_VALUE (symbol);
2828 return TRUE;
2829 }
2830
2831 /* Return true if the string at *SPTR is a valid register name. Allow it
2832 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2833 is nonnull.
2834
2835 When returning true, move *SPTR past the register, store the
2836 register's symbol value in *SYMVAL_PTR and the channel mask in
2837 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2838 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2839 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2840
2841 static bfd_boolean
2842 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2843 unsigned int *channels_ptr)
2844 {
2845 char *s, *e, *m;
2846 const char *q;
2847 unsigned int channels, symval, bit;
2848
2849 /* Find end of name. */
2850 s = e = *sptr;
2851 if (is_name_beginner (*e))
2852 ++e;
2853 while (is_part_of_name (*e))
2854 ++e;
2855
2856 channels = 0;
2857 if (!mips_parse_register_1 (s, e, &symval))
2858 {
2859 if (!channels_ptr)
2860 return FALSE;
2861
2862 /* Eat characters from the end of the string that are valid
2863 channel suffixes. The preceding register must be $ACC or
2864 end with a digit, so there is no ambiguity. */
2865 bit = 1;
2866 m = e;
2867 for (q = "wzyx"; *q; q++, bit <<= 1)
2868 if (m > s && m[-1] == *q)
2869 {
2870 --m;
2871 channels |= bit;
2872 }
2873
2874 if (channels == 0
2875 || !mips_parse_register_1 (s, m, &symval)
2876 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
2877 return FALSE;
2878 }
2879
2880 *sptr = e;
2881 *symval_ptr = symval;
2882 if (channels_ptr)
2883 *channels_ptr = channels;
2884 return TRUE;
2885 }
2886
2887 /* Check if SPTR points at a valid register specifier according to TYPES.
2888 If so, then return 1, advance S to consume the specifier and store
2889 the register's number in REGNOP, otherwise return 0. */
2890
2891 static int
2892 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
2893 {
2894 unsigned int regno;
2895
2896 if (mips_parse_register (s, &regno, NULL))
2897 {
2898 if (types & RTYPE_VEC)
2899 regno = mips_prefer_vec_regno (regno);
2900 if (regno & types)
2901 regno &= RNUM_MASK;
2902 else
2903 regno = ~0;
2904 }
2905 else
2906 {
2907 if (types & RWARN)
2908 as_warn (_("unrecognized register name `%s'"), *s);
2909 regno = ~0;
2910 }
2911 if (regnop)
2912 *regnop = regno;
2913 return regno <= RNUM_MASK;
2914 }
2915
2916 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
2917 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
2918
2919 static char *
2920 mips_parse_vu0_channels (char *s, unsigned int *channels)
2921 {
2922 unsigned int i;
2923
2924 *channels = 0;
2925 for (i = 0; i < 4; i++)
2926 if (*s == "xyzw"[i])
2927 {
2928 *channels |= 1 << (3 - i);
2929 ++s;
2930 }
2931 return s;
2932 }
2933
2934 /* Token types for parsed operand lists. */
2935 enum mips_operand_token_type {
2936 /* A plain register, e.g. $f2. */
2937 OT_REG,
2938
2939 /* A 4-bit XYZW channel mask. */
2940 OT_CHANNELS,
2941
2942 /* A constant vector index, e.g. [1]. */
2943 OT_INTEGER_INDEX,
2944
2945 /* A register vector index, e.g. [$2]. */
2946 OT_REG_INDEX,
2947
2948 /* A continuous range of registers, e.g. $s0-$s4. */
2949 OT_REG_RANGE,
2950
2951 /* A (possibly relocated) expression. */
2952 OT_INTEGER,
2953
2954 /* A floating-point value. */
2955 OT_FLOAT,
2956
2957 /* A single character. This can be '(', ')' or ',', but '(' only appears
2958 before OT_REGs. */
2959 OT_CHAR,
2960
2961 /* A doubled character, either "--" or "++". */
2962 OT_DOUBLE_CHAR,
2963
2964 /* The end of the operand list. */
2965 OT_END
2966 };
2967
2968 /* A parsed operand token. */
2969 struct mips_operand_token
2970 {
2971 /* The type of token. */
2972 enum mips_operand_token_type type;
2973 union
2974 {
2975 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
2976 unsigned int regno;
2977
2978 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
2979 unsigned int channels;
2980
2981 /* The integer value of an OT_INTEGER_INDEX. */
2982 addressT index;
2983
2984 /* The two register symbol values involved in an OT_REG_RANGE. */
2985 struct {
2986 unsigned int regno1;
2987 unsigned int regno2;
2988 } reg_range;
2989
2990 /* The value of an OT_INTEGER. The value is represented as an
2991 expression and the relocation operators that were applied to
2992 that expression. The reloc entries are BFD_RELOC_UNUSED if no
2993 relocation operators were used. */
2994 struct {
2995 expressionS value;
2996 bfd_reloc_code_real_type relocs[3];
2997 } integer;
2998
2999 /* The binary data for an OT_FLOAT constant, and the number of bytes
3000 in the constant. */
3001 struct {
3002 unsigned char data[8];
3003 int length;
3004 } flt;
3005
3006 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3007 char ch;
3008 } u;
3009 };
3010
3011 /* An obstack used to construct lists of mips_operand_tokens. */
3012 static struct obstack mips_operand_tokens;
3013
3014 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3015
3016 static void
3017 mips_add_token (struct mips_operand_token *token,
3018 enum mips_operand_token_type type)
3019 {
3020 token->type = type;
3021 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3022 }
3023
3024 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3025 and OT_REG tokens for them if so, and return a pointer to the first
3026 unconsumed character. Return null otherwise. */
3027
3028 static char *
3029 mips_parse_base_start (char *s)
3030 {
3031 struct mips_operand_token token;
3032 unsigned int regno, channels;
3033 bfd_boolean decrement_p;
3034
3035 if (*s != '(')
3036 return 0;
3037
3038 ++s;
3039 SKIP_SPACE_TABS (s);
3040
3041 /* Only match "--" as part of a base expression. In other contexts "--X"
3042 is a double negative. */
3043 decrement_p = (s[0] == '-' && s[1] == '-');
3044 if (decrement_p)
3045 {
3046 s += 2;
3047 SKIP_SPACE_TABS (s);
3048 }
3049
3050 /* Allow a channel specifier because that leads to better error messages
3051 than treating something like "$vf0x++" as an expression. */
3052 if (!mips_parse_register (&s, &regno, &channels))
3053 return 0;
3054
3055 token.u.ch = '(';
3056 mips_add_token (&token, OT_CHAR);
3057
3058 if (decrement_p)
3059 {
3060 token.u.ch = '-';
3061 mips_add_token (&token, OT_DOUBLE_CHAR);
3062 }
3063
3064 token.u.regno = regno;
3065 mips_add_token (&token, OT_REG);
3066
3067 if (channels)
3068 {
3069 token.u.channels = channels;
3070 mips_add_token (&token, OT_CHANNELS);
3071 }
3072
3073 /* For consistency, only match "++" as part of base expressions too. */
3074 SKIP_SPACE_TABS (s);
3075 if (s[0] == '+' && s[1] == '+')
3076 {
3077 s += 2;
3078 token.u.ch = '+';
3079 mips_add_token (&token, OT_DOUBLE_CHAR);
3080 }
3081
3082 return s;
3083 }
3084
3085 /* Parse one or more tokens from S. Return a pointer to the first
3086 unconsumed character on success. Return null if an error was found
3087 and store the error text in insn_error. FLOAT_FORMAT is as for
3088 mips_parse_arguments. */
3089
3090 static char *
3091 mips_parse_argument_token (char *s, char float_format)
3092 {
3093 char *end, *save_in;
3094 const char *err;
3095 unsigned int regno1, regno2, channels;
3096 struct mips_operand_token token;
3097
3098 /* First look for "($reg", since we want to treat that as an
3099 OT_CHAR and OT_REG rather than an expression. */
3100 end = mips_parse_base_start (s);
3101 if (end)
3102 return end;
3103
3104 /* Handle other characters that end up as OT_CHARs. */
3105 if (*s == ')' || *s == ',')
3106 {
3107 token.u.ch = *s;
3108 mips_add_token (&token, OT_CHAR);
3109 ++s;
3110 return s;
3111 }
3112
3113 /* Handle tokens that start with a register. */
3114 if (mips_parse_register (&s, &regno1, &channels))
3115 {
3116 if (channels)
3117 {
3118 /* A register and a VU0 channel suffix. */
3119 token.u.regno = regno1;
3120 mips_add_token (&token, OT_REG);
3121
3122 token.u.channels = channels;
3123 mips_add_token (&token, OT_CHANNELS);
3124 return s;
3125 }
3126
3127 SKIP_SPACE_TABS (s);
3128 if (*s == '-')
3129 {
3130 /* A register range. */
3131 ++s;
3132 SKIP_SPACE_TABS (s);
3133 if (!mips_parse_register (&s, &regno2, NULL))
3134 {
3135 set_insn_error (0, _("invalid register range"));
3136 return 0;
3137 }
3138
3139 token.u.reg_range.regno1 = regno1;
3140 token.u.reg_range.regno2 = regno2;
3141 mips_add_token (&token, OT_REG_RANGE);
3142 return s;
3143 }
3144
3145 /* Add the register itself. */
3146 token.u.regno = regno1;
3147 mips_add_token (&token, OT_REG);
3148
3149 /* Check for a vector index. */
3150 if (*s == '[')
3151 {
3152 ++s;
3153 SKIP_SPACE_TABS (s);
3154 if (mips_parse_register (&s, &token.u.regno, NULL))
3155 mips_add_token (&token, OT_REG_INDEX);
3156 else
3157 {
3158 expressionS element;
3159
3160 my_getExpression (&element, s);
3161 if (element.X_op != O_constant)
3162 {
3163 set_insn_error (0, _("vector element must be constant"));
3164 return 0;
3165 }
3166 s = expr_end;
3167 token.u.index = element.X_add_number;
3168 mips_add_token (&token, OT_INTEGER_INDEX);
3169 }
3170 SKIP_SPACE_TABS (s);
3171 if (*s != ']')
3172 {
3173 set_insn_error (0, _("missing `]'"));
3174 return 0;
3175 }
3176 ++s;
3177 }
3178 return s;
3179 }
3180
3181 if (float_format)
3182 {
3183 /* First try to treat expressions as floats. */
3184 save_in = input_line_pointer;
3185 input_line_pointer = s;
3186 err = md_atof (float_format, (char *) token.u.flt.data,
3187 &token.u.flt.length);
3188 end = input_line_pointer;
3189 input_line_pointer = save_in;
3190 if (err && *err)
3191 {
3192 set_insn_error (0, err);
3193 return 0;
3194 }
3195 if (s != end)
3196 {
3197 mips_add_token (&token, OT_FLOAT);
3198 return end;
3199 }
3200 }
3201
3202 /* Treat everything else as an integer expression. */
3203 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3204 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3205 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3206 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3207 s = expr_end;
3208 mips_add_token (&token, OT_INTEGER);
3209 return s;
3210 }
3211
3212 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3213 if expressions should be treated as 32-bit floating-point constants,
3214 'd' if they should be treated as 64-bit floating-point constants,
3215 or 0 if they should be treated as integer expressions (the usual case).
3216
3217 Return a list of tokens on success, otherwise return 0. The caller
3218 must obstack_free the list after use. */
3219
3220 static struct mips_operand_token *
3221 mips_parse_arguments (char *s, char float_format)
3222 {
3223 struct mips_operand_token token;
3224
3225 SKIP_SPACE_TABS (s);
3226 while (*s)
3227 {
3228 s = mips_parse_argument_token (s, float_format);
3229 if (!s)
3230 {
3231 obstack_free (&mips_operand_tokens,
3232 obstack_finish (&mips_operand_tokens));
3233 return 0;
3234 }
3235 SKIP_SPACE_TABS (s);
3236 }
3237 mips_add_token (&token, OT_END);
3238 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3239 }
3240
3241 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3242 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3243
3244 static bfd_boolean
3245 is_opcode_valid (const struct mips_opcode *mo)
3246 {
3247 int isa = mips_opts.isa;
3248 int ase = mips_opts.ase;
3249 int fp_s, fp_d;
3250 unsigned int i;
3251
3252 if (ISA_HAS_64BIT_REGS (isa))
3253 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3254 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3255 ase |= mips_ases[i].flags64;
3256
3257 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3258 return FALSE;
3259
3260 /* Check whether the instruction or macro requires single-precision or
3261 double-precision floating-point support. Note that this information is
3262 stored differently in the opcode table for insns and macros. */
3263 if (mo->pinfo == INSN_MACRO)
3264 {
3265 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3266 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3267 }
3268 else
3269 {
3270 fp_s = mo->pinfo & FP_S;
3271 fp_d = mo->pinfo & FP_D;
3272 }
3273
3274 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3275 return FALSE;
3276
3277 if (fp_s && mips_opts.soft_float)
3278 return FALSE;
3279
3280 return TRUE;
3281 }
3282
3283 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3284 selected ISA and architecture. */
3285
3286 static bfd_boolean
3287 is_opcode_valid_16 (const struct mips_opcode *mo)
3288 {
3289 return opcode_is_member (mo, mips_opts.isa, 0, mips_opts.arch);
3290 }
3291
3292 /* Return TRUE if the size of the microMIPS opcode MO matches one
3293 explicitly requested. Always TRUE in the standard MIPS mode.
3294 Use is_size_valid_16 for MIPS16 opcodes. */
3295
3296 static bfd_boolean
3297 is_size_valid (const struct mips_opcode *mo)
3298 {
3299 if (!mips_opts.micromips)
3300 return TRUE;
3301
3302 if (mips_opts.insn32)
3303 {
3304 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3305 return FALSE;
3306 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3307 return FALSE;
3308 }
3309 if (!forced_insn_length)
3310 return TRUE;
3311 if (mo->pinfo == INSN_MACRO)
3312 return FALSE;
3313 return forced_insn_length == micromips_insn_length (mo);
3314 }
3315
3316 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3317 explicitly requested. */
3318
3319 static bfd_boolean
3320 is_size_valid_16 (const struct mips_opcode *mo)
3321 {
3322 if (!forced_insn_length)
3323 return TRUE;
3324 if (mo->pinfo == INSN_MACRO)
3325 return FALSE;
3326 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3327 return FALSE;
3328 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3329 return FALSE;
3330 return TRUE;
3331 }
3332
3333 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3334 of the preceding instruction. Always TRUE in the standard MIPS mode.
3335
3336 We don't accept macros in 16-bit delay slots to avoid a case where
3337 a macro expansion fails because it relies on a preceding 32-bit real
3338 instruction to have matched and does not handle the operands correctly.
3339 The only macros that may expand to 16-bit instructions are JAL that
3340 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3341 and BGT (that likewise cannot be placed in a delay slot) that decay to
3342 a NOP. In all these cases the macros precede any corresponding real
3343 instruction definitions in the opcode table, so they will match in the
3344 second pass where the size of the delay slot is ignored and therefore
3345 produce correct code. */
3346
3347 static bfd_boolean
3348 is_delay_slot_valid (const struct mips_opcode *mo)
3349 {
3350 if (!mips_opts.micromips)
3351 return TRUE;
3352
3353 if (mo->pinfo == INSN_MACRO)
3354 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3355 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3356 && micromips_insn_length (mo) != 4)
3357 return FALSE;
3358 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3359 && micromips_insn_length (mo) != 2)
3360 return FALSE;
3361
3362 return TRUE;
3363 }
3364
3365 /* For consistency checking, verify that all bits of OPCODE are specified
3366 either by the match/mask part of the instruction definition, or by the
3367 operand list. Also build up a list of operands in OPERANDS.
3368
3369 INSN_BITS says which bits of the instruction are significant.
3370 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3371 provides the mips_operand description of each operand. DECODE_OPERAND
3372 is null for MIPS16 instructions. */
3373
3374 static int
3375 validate_mips_insn (const struct mips_opcode *opcode,
3376 unsigned long insn_bits,
3377 const struct mips_operand *(*decode_operand) (const char *),
3378 struct mips_operand_array *operands)
3379 {
3380 const char *s;
3381 unsigned long used_bits, doubled, undefined, opno, mask;
3382 const struct mips_operand *operand;
3383
3384 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3385 if ((mask & opcode->match) != opcode->match)
3386 {
3387 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3388 opcode->name, opcode->args);
3389 return 0;
3390 }
3391 used_bits = 0;
3392 opno = 0;
3393 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3394 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3395 for (s = opcode->args; *s; ++s)
3396 switch (*s)
3397 {
3398 case ',':
3399 case '(':
3400 case ')':
3401 break;
3402
3403 case '#':
3404 s++;
3405 break;
3406
3407 default:
3408 if (!decode_operand)
3409 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3410 else
3411 operand = decode_operand (s);
3412 if (!operand && opcode->pinfo != INSN_MACRO)
3413 {
3414 as_bad (_("internal: unknown operand type: %s %s"),
3415 opcode->name, opcode->args);
3416 return 0;
3417 }
3418 gas_assert (opno < MAX_OPERANDS);
3419 operands->operand[opno] = operand;
3420 if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3421 {
3422 used_bits = mips_insert_operand (operand, used_bits, -1);
3423 if (operand->type == OP_MDMX_IMM_REG)
3424 /* Bit 5 is the format selector (OB vs QH). The opcode table
3425 has separate entries for each format. */
3426 used_bits &= ~(1 << (operand->lsb + 5));
3427 if (operand->type == OP_ENTRY_EXIT_LIST)
3428 used_bits &= ~(mask & 0x700);
3429 }
3430 /* Skip prefix characters. */
3431 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3432 ++s;
3433 opno += 1;
3434 break;
3435 }
3436 doubled = used_bits & mask & insn_bits;
3437 if (doubled)
3438 {
3439 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3440 " %s %s"), doubled, opcode->name, opcode->args);
3441 return 0;
3442 }
3443 used_bits |= mask;
3444 undefined = ~used_bits & insn_bits;
3445 if (opcode->pinfo != INSN_MACRO && undefined)
3446 {
3447 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3448 undefined, opcode->name, opcode->args);
3449 return 0;
3450 }
3451 used_bits &= ~insn_bits;
3452 if (used_bits)
3453 {
3454 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3455 used_bits, opcode->name, opcode->args);
3456 return 0;
3457 }
3458 return 1;
3459 }
3460
3461 /* The MIPS16 version of validate_mips_insn. */
3462
3463 static int
3464 validate_mips16_insn (const struct mips_opcode *opcode,
3465 struct mips_operand_array *operands)
3466 {
3467 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3468
3469 return validate_mips_insn (opcode, insn_bits, 0, operands);
3470 }
3471
3472 /* The microMIPS version of validate_mips_insn. */
3473
3474 static int
3475 validate_micromips_insn (const struct mips_opcode *opc,
3476 struct mips_operand_array *operands)
3477 {
3478 unsigned long insn_bits;
3479 unsigned long major;
3480 unsigned int length;
3481
3482 if (opc->pinfo == INSN_MACRO)
3483 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3484 operands);
3485
3486 length = micromips_insn_length (opc);
3487 if (length != 2 && length != 4)
3488 {
3489 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3490 "%s %s"), length, opc->name, opc->args);
3491 return 0;
3492 }
3493 major = opc->match >> (10 + 8 * (length - 2));
3494 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3495 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3496 {
3497 as_bad (_("internal error: bad microMIPS opcode "
3498 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3499 return 0;
3500 }
3501
3502 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3503 insn_bits = 1 << 4 * length;
3504 insn_bits <<= 4 * length;
3505 insn_bits -= 1;
3506 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3507 operands);
3508 }
3509
3510 /* This function is called once, at assembler startup time. It should set up
3511 all the tables, etc. that the MD part of the assembler will need. */
3512
3513 void
3514 md_begin (void)
3515 {
3516 const char *retval = NULL;
3517 int i = 0;
3518 int broken = 0;
3519
3520 if (mips_pic != NO_PIC)
3521 {
3522 if (g_switch_seen && g_switch_value != 0)
3523 as_bad (_("-G may not be used in position-independent code"));
3524 g_switch_value = 0;
3525 }
3526 else if (mips_abicalls)
3527 {
3528 if (g_switch_seen && g_switch_value != 0)
3529 as_bad (_("-G may not be used with abicalls"));
3530 g_switch_value = 0;
3531 }
3532
3533 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3534 as_warn (_("could not set architecture and machine"));
3535
3536 op_hash = hash_new ();
3537
3538 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3539 for (i = 0; i < NUMOPCODES;)
3540 {
3541 const char *name = mips_opcodes[i].name;
3542
3543 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3544 if (retval != NULL)
3545 {
3546 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3547 mips_opcodes[i].name, retval);
3548 /* Probably a memory allocation problem? Give up now. */
3549 as_fatal (_("broken assembler, no assembly attempted"));
3550 }
3551 do
3552 {
3553 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3554 decode_mips_operand, &mips_operands[i]))
3555 broken = 1;
3556 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3557 {
3558 create_insn (&nop_insn, mips_opcodes + i);
3559 if (mips_fix_loongson2f_nop)
3560 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3561 nop_insn.fixed_p = 1;
3562 }
3563 ++i;
3564 }
3565 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3566 }
3567
3568 mips16_op_hash = hash_new ();
3569 mips16_operands = XCNEWVEC (struct mips_operand_array,
3570 bfd_mips16_num_opcodes);
3571
3572 i = 0;
3573 while (i < bfd_mips16_num_opcodes)
3574 {
3575 const char *name = mips16_opcodes[i].name;
3576
3577 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3578 if (retval != NULL)
3579 as_fatal (_("internal: can't hash `%s': %s"),
3580 mips16_opcodes[i].name, retval);
3581 do
3582 {
3583 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3584 broken = 1;
3585 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3586 {
3587 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3588 mips16_nop_insn.fixed_p = 1;
3589 }
3590 ++i;
3591 }
3592 while (i < bfd_mips16_num_opcodes
3593 && strcmp (mips16_opcodes[i].name, name) == 0);
3594 }
3595
3596 micromips_op_hash = hash_new ();
3597 micromips_operands = XCNEWVEC (struct mips_operand_array,
3598 bfd_micromips_num_opcodes);
3599
3600 i = 0;
3601 while (i < bfd_micromips_num_opcodes)
3602 {
3603 const char *name = micromips_opcodes[i].name;
3604
3605 retval = hash_insert (micromips_op_hash, name,
3606 (void *) &micromips_opcodes[i]);
3607 if (retval != NULL)
3608 as_fatal (_("internal: can't hash `%s': %s"),
3609 micromips_opcodes[i].name, retval);
3610 do
3611 {
3612 struct mips_cl_insn *micromips_nop_insn;
3613
3614 if (!validate_micromips_insn (&micromips_opcodes[i],
3615 &micromips_operands[i]))
3616 broken = 1;
3617
3618 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3619 {
3620 if (micromips_insn_length (micromips_opcodes + i) == 2)
3621 micromips_nop_insn = &micromips_nop16_insn;
3622 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3623 micromips_nop_insn = &micromips_nop32_insn;
3624 else
3625 continue;
3626
3627 if (micromips_nop_insn->insn_mo == NULL
3628 && strcmp (name, "nop") == 0)
3629 {
3630 create_insn (micromips_nop_insn, micromips_opcodes + i);
3631 micromips_nop_insn->fixed_p = 1;
3632 }
3633 }
3634 }
3635 while (++i < bfd_micromips_num_opcodes
3636 && strcmp (micromips_opcodes[i].name, name) == 0);
3637 }
3638
3639 if (broken)
3640 as_fatal (_("broken assembler, no assembly attempted"));
3641
3642 /* We add all the general register names to the symbol table. This
3643 helps us detect invalid uses of them. */
3644 for (i = 0; reg_names[i].name; i++)
3645 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3646 reg_names[i].num, /* & RNUM_MASK, */
3647 &zero_address_frag));
3648 if (HAVE_NEWABI)
3649 for (i = 0; reg_names_n32n64[i].name; i++)
3650 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3651 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3652 &zero_address_frag));
3653 else
3654 for (i = 0; reg_names_o32[i].name; i++)
3655 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3656 reg_names_o32[i].num, /* & RNUM_MASK, */
3657 &zero_address_frag));
3658
3659 for (i = 0; i < 32; i++)
3660 {
3661 char regname[6];
3662
3663 /* R5900 VU0 floating-point register. */
3664 sprintf (regname, "$vf%d", i);
3665 symbol_table_insert (symbol_new (regname, reg_section,
3666 RTYPE_VF | i, &zero_address_frag));
3667
3668 /* R5900 VU0 integer register. */
3669 sprintf (regname, "$vi%d", i);
3670 symbol_table_insert (symbol_new (regname, reg_section,
3671 RTYPE_VI | i, &zero_address_frag));
3672
3673 /* MSA register. */
3674 sprintf (regname, "$w%d", i);
3675 symbol_table_insert (symbol_new (regname, reg_section,
3676 RTYPE_MSA | i, &zero_address_frag));
3677 }
3678
3679 obstack_init (&mips_operand_tokens);
3680
3681 mips_no_prev_insn ();
3682
3683 mips_gprmask = 0;
3684 mips_cprmask[0] = 0;
3685 mips_cprmask[1] = 0;
3686 mips_cprmask[2] = 0;
3687 mips_cprmask[3] = 0;
3688
3689 /* set the default alignment for the text section (2**2) */
3690 record_alignment (text_section, 2);
3691
3692 bfd_set_gp_size (stdoutput, g_switch_value);
3693
3694 /* On a native system other than VxWorks, sections must be aligned
3695 to 16 byte boundaries. When configured for an embedded ELF
3696 target, we don't bother. */
3697 if (strncmp (TARGET_OS, "elf", 3) != 0
3698 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3699 {
3700 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3701 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3702 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3703 }
3704
3705 /* Create a .reginfo section for register masks and a .mdebug
3706 section for debugging information. */
3707 {
3708 segT seg;
3709 subsegT subseg;
3710 flagword flags;
3711 segT sec;
3712
3713 seg = now_seg;
3714 subseg = now_subseg;
3715
3716 /* The ABI says this section should be loaded so that the
3717 running program can access it. However, we don't load it
3718 if we are configured for an embedded target */
3719 flags = SEC_READONLY | SEC_DATA;
3720 if (strncmp (TARGET_OS, "elf", 3) != 0)
3721 flags |= SEC_ALLOC | SEC_LOAD;
3722
3723 if (mips_abi != N64_ABI)
3724 {
3725 sec = subseg_new (".reginfo", (subsegT) 0);
3726
3727 bfd_set_section_flags (stdoutput, sec, flags);
3728 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3729
3730 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3731 }
3732 else
3733 {
3734 /* The 64-bit ABI uses a .MIPS.options section rather than
3735 .reginfo section. */
3736 sec = subseg_new (".MIPS.options", (subsegT) 0);
3737 bfd_set_section_flags (stdoutput, sec, flags);
3738 bfd_set_section_alignment (stdoutput, sec, 3);
3739
3740 /* Set up the option header. */
3741 {
3742 Elf_Internal_Options opthdr;
3743 char *f;
3744
3745 opthdr.kind = ODK_REGINFO;
3746 opthdr.size = (sizeof (Elf_External_Options)
3747 + sizeof (Elf64_External_RegInfo));
3748 opthdr.section = 0;
3749 opthdr.info = 0;
3750 f = frag_more (sizeof (Elf_External_Options));
3751 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3752 (Elf_External_Options *) f);
3753
3754 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3755 }
3756 }
3757
3758 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3759 bfd_set_section_flags (stdoutput, sec,
3760 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3761 bfd_set_section_alignment (stdoutput, sec, 3);
3762 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3763
3764 if (ECOFF_DEBUGGING)
3765 {
3766 sec = subseg_new (".mdebug", (subsegT) 0);
3767 (void) bfd_set_section_flags (stdoutput, sec,
3768 SEC_HAS_CONTENTS | SEC_READONLY);
3769 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3770 }
3771 else if (mips_flag_pdr)
3772 {
3773 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3774 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3775 SEC_READONLY | SEC_RELOC
3776 | SEC_DEBUGGING);
3777 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3778 }
3779
3780 subseg_set (seg, subseg);
3781 }
3782
3783 if (mips_fix_vr4120)
3784 init_vr4120_conflicts ();
3785 }
3786
3787 static inline void
3788 fpabi_incompatible_with (int fpabi, const char *what)
3789 {
3790 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3791 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3792 }
3793
3794 static inline void
3795 fpabi_requires (int fpabi, const char *what)
3796 {
3797 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3798 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3799 }
3800
3801 /* Check -mabi and register sizes against the specified FP ABI. */
3802 static void
3803 check_fpabi (int fpabi)
3804 {
3805 switch (fpabi)
3806 {
3807 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3808 if (file_mips_opts.soft_float)
3809 fpabi_incompatible_with (fpabi, "softfloat");
3810 else if (file_mips_opts.single_float)
3811 fpabi_incompatible_with (fpabi, "singlefloat");
3812 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3813 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3814 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3815 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3816 break;
3817
3818 case Val_GNU_MIPS_ABI_FP_XX:
3819 if (mips_abi != O32_ABI)
3820 fpabi_requires (fpabi, "-mabi=32");
3821 else if (file_mips_opts.soft_float)
3822 fpabi_incompatible_with (fpabi, "softfloat");
3823 else if (file_mips_opts.single_float)
3824 fpabi_incompatible_with (fpabi, "singlefloat");
3825 else if (file_mips_opts.fp != 0)
3826 fpabi_requires (fpabi, "fp=xx");
3827 break;
3828
3829 case Val_GNU_MIPS_ABI_FP_64A:
3830 case Val_GNU_MIPS_ABI_FP_64:
3831 if (mips_abi != O32_ABI)
3832 fpabi_requires (fpabi, "-mabi=32");
3833 else if (file_mips_opts.soft_float)
3834 fpabi_incompatible_with (fpabi, "softfloat");
3835 else if (file_mips_opts.single_float)
3836 fpabi_incompatible_with (fpabi, "singlefloat");
3837 else if (file_mips_opts.fp != 64)
3838 fpabi_requires (fpabi, "fp=64");
3839 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3840 fpabi_incompatible_with (fpabi, "nooddspreg");
3841 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3842 fpabi_requires (fpabi, "nooddspreg");
3843 break;
3844
3845 case Val_GNU_MIPS_ABI_FP_SINGLE:
3846 if (file_mips_opts.soft_float)
3847 fpabi_incompatible_with (fpabi, "softfloat");
3848 else if (!file_mips_opts.single_float)
3849 fpabi_requires (fpabi, "singlefloat");
3850 break;
3851
3852 case Val_GNU_MIPS_ABI_FP_SOFT:
3853 if (!file_mips_opts.soft_float)
3854 fpabi_requires (fpabi, "softfloat");
3855 break;
3856
3857 case Val_GNU_MIPS_ABI_FP_OLD_64:
3858 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
3859 Tag_GNU_MIPS_ABI_FP, fpabi);
3860 break;
3861
3862 case Val_GNU_MIPS_ABI_FP_NAN2008:
3863 /* Silently ignore compatibility value. */
3864 break;
3865
3866 default:
3867 as_warn (_(".gnu_attribute %d,%d is not a recognized"
3868 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
3869 break;
3870 }
3871 }
3872
3873 /* Perform consistency checks on the current options. */
3874
3875 static void
3876 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
3877 {
3878 /* Check the size of integer registers agrees with the ABI and ISA. */
3879 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
3880 as_bad (_("`gp=64' used with a 32-bit processor"));
3881 else if (abi_checks
3882 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
3883 as_bad (_("`gp=32' used with a 64-bit ABI"));
3884 else if (abi_checks
3885 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
3886 as_bad (_("`gp=64' used with a 32-bit ABI"));
3887
3888 /* Check the size of the float registers agrees with the ABI and ISA. */
3889 switch (opts->fp)
3890 {
3891 case 0:
3892 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
3893 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
3894 else if (opts->single_float == 1)
3895 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
3896 break;
3897 case 64:
3898 if (!ISA_HAS_64BIT_FPRS (opts->isa))
3899 as_bad (_("`fp=64' used with a 32-bit fpu"));
3900 else if (abi_checks
3901 && ABI_NEEDS_32BIT_REGS (mips_abi)
3902 && !ISA_HAS_MXHC1 (opts->isa))
3903 as_warn (_("`fp=64' used with a 32-bit ABI"));
3904 break;
3905 case 32:
3906 if (abi_checks
3907 && ABI_NEEDS_64BIT_REGS (mips_abi))
3908 as_warn (_("`fp=32' used with a 64-bit ABI"));
3909 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
3910 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
3911 break;
3912 default:
3913 as_bad (_("Unknown size of floating point registers"));
3914 break;
3915 }
3916
3917 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
3918 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
3919
3920 if (opts->micromips == 1 && opts->mips16 == 1)
3921 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
3922 else if (ISA_IS_R6 (opts->isa)
3923 && (opts->micromips == 1
3924 || opts->mips16 == 1))
3925 as_fatal (_("`%s' cannot be used with `%s'"),
3926 opts->micromips ? "micromips" : "mips16",
3927 mips_cpu_info_from_isa (opts->isa)->name);
3928
3929 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
3930 as_fatal (_("branch relaxation is not supported in `%s'"),
3931 mips_cpu_info_from_isa (opts->isa)->name);
3932 }
3933
3934 /* Perform consistency checks on the module level options exactly once.
3935 This is a deferred check that happens:
3936 at the first .set directive
3937 or, at the first pseudo op that generates code (inc .dc.a)
3938 or, at the first instruction
3939 or, at the end. */
3940
3941 static void
3942 file_mips_check_options (void)
3943 {
3944 const struct mips_cpu_info *arch_info = 0;
3945
3946 if (file_mips_opts_checked)
3947 return;
3948
3949 /* The following code determines the register size.
3950 Similar code was added to GCC 3.3 (see override_options() in
3951 config/mips/mips.c). The GAS and GCC code should be kept in sync
3952 as much as possible. */
3953
3954 if (file_mips_opts.gp < 0)
3955 {
3956 /* Infer the integer register size from the ABI and processor.
3957 Restrict ourselves to 32-bit registers if that's all the
3958 processor has, or if the ABI cannot handle 64-bit registers. */
3959 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
3960 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
3961 ? 32 : 64;
3962 }
3963
3964 if (file_mips_opts.fp < 0)
3965 {
3966 /* No user specified float register size.
3967 ??? GAS treats single-float processors as though they had 64-bit
3968 float registers (although it complains when double-precision
3969 instructions are used). As things stand, saying they have 32-bit
3970 registers would lead to spurious "register must be even" messages.
3971 So here we assume float registers are never smaller than the
3972 integer ones. */
3973 if (file_mips_opts.gp == 64)
3974 /* 64-bit integer registers implies 64-bit float registers. */
3975 file_mips_opts.fp = 64;
3976 else if ((file_mips_opts.ase & FP64_ASES)
3977 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
3978 /* Handle ASEs that require 64-bit float registers, if possible. */
3979 file_mips_opts.fp = 64;
3980 else if (ISA_IS_R6 (mips_opts.isa))
3981 /* R6 implies 64-bit float registers. */
3982 file_mips_opts.fp = 64;
3983 else
3984 /* 32-bit float registers. */
3985 file_mips_opts.fp = 32;
3986 }
3987
3988 arch_info = mips_cpu_info_from_arch (file_mips_opts.arch);
3989
3990 /* Disable operations on odd-numbered floating-point registers by default
3991 when using the FPXX ABI. */
3992 if (file_mips_opts.oddspreg < 0)
3993 {
3994 if (file_mips_opts.fp == 0)
3995 file_mips_opts.oddspreg = 0;
3996 else
3997 file_mips_opts.oddspreg = 1;
3998 }
3999
4000 /* End of GCC-shared inference code. */
4001
4002 /* This flag is set when we have a 64-bit capable CPU but use only
4003 32-bit wide registers. Note that EABI does not use it. */
4004 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4005 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4006 || mips_abi == O32_ABI))
4007 mips_32bitmode = 1;
4008
4009 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4010 as_bad (_("trap exception not supported at ISA 1"));
4011
4012 /* If the selected architecture includes support for ASEs, enable
4013 generation of code for them. */
4014 if (file_mips_opts.mips16 == -1)
4015 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4016 if (file_mips_opts.micromips == -1)
4017 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4018 ? 1 : 0;
4019
4020 if (mips_nan2008 == -1)
4021 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4022 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4023 as_fatal (_("`%s' does not support legacy NaN"),
4024 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4025
4026 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4027 being selected implicitly. */
4028 if (file_mips_opts.fp != 64)
4029 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4030
4031 /* If the user didn't explicitly select or deselect a particular ASE,
4032 use the default setting for the CPU. */
4033 file_mips_opts.ase |= (arch_info->ase & ~file_ase_explicit);
4034
4035 /* Set up the current options. These may change throughout assembly. */
4036 mips_opts = file_mips_opts;
4037
4038 mips_check_isa_supports_ases ();
4039 mips_check_options (&file_mips_opts, TRUE);
4040 file_mips_opts_checked = TRUE;
4041
4042 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4043 as_warn (_("could not set architecture and machine"));
4044 }
4045
4046 void
4047 md_assemble (char *str)
4048 {
4049 struct mips_cl_insn insn;
4050 bfd_reloc_code_real_type unused_reloc[3]
4051 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4052
4053 file_mips_check_options ();
4054
4055 imm_expr.X_op = O_absent;
4056 offset_expr.X_op = O_absent;
4057 offset_reloc[0] = BFD_RELOC_UNUSED;
4058 offset_reloc[1] = BFD_RELOC_UNUSED;
4059 offset_reloc[2] = BFD_RELOC_UNUSED;
4060
4061 mips_mark_labels ();
4062 mips_assembling_insn = TRUE;
4063 clear_insn_error ();
4064
4065 if (mips_opts.mips16)
4066 mips16_ip (str, &insn);
4067 else
4068 {
4069 mips_ip (str, &insn);
4070 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4071 str, insn.insn_opcode));
4072 }
4073
4074 if (insn_error.msg)
4075 report_insn_error (str);
4076 else if (insn.insn_mo->pinfo == INSN_MACRO)
4077 {
4078 macro_start ();
4079 if (mips_opts.mips16)
4080 mips16_macro (&insn);
4081 else
4082 macro (&insn, str);
4083 macro_end ();
4084 }
4085 else
4086 {
4087 if (offset_expr.X_op != O_absent)
4088 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4089 else
4090 append_insn (&insn, NULL, unused_reloc, FALSE);
4091 }
4092
4093 mips_assembling_insn = FALSE;
4094 }
4095
4096 /* Convenience functions for abstracting away the differences between
4097 MIPS16 and non-MIPS16 relocations. */
4098
4099 static inline bfd_boolean
4100 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4101 {
4102 switch (reloc)
4103 {
4104 case BFD_RELOC_MIPS16_JMP:
4105 case BFD_RELOC_MIPS16_GPREL:
4106 case BFD_RELOC_MIPS16_GOT16:
4107 case BFD_RELOC_MIPS16_CALL16:
4108 case BFD_RELOC_MIPS16_HI16_S:
4109 case BFD_RELOC_MIPS16_HI16:
4110 case BFD_RELOC_MIPS16_LO16:
4111 case BFD_RELOC_MIPS16_16_PCREL_S1:
4112 return TRUE;
4113
4114 default:
4115 return FALSE;
4116 }
4117 }
4118
4119 static inline bfd_boolean
4120 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4121 {
4122 switch (reloc)
4123 {
4124 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4125 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4126 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4127 case BFD_RELOC_MICROMIPS_GPREL16:
4128 case BFD_RELOC_MICROMIPS_JMP:
4129 case BFD_RELOC_MICROMIPS_HI16:
4130 case BFD_RELOC_MICROMIPS_HI16_S:
4131 case BFD_RELOC_MICROMIPS_LO16:
4132 case BFD_RELOC_MICROMIPS_LITERAL:
4133 case BFD_RELOC_MICROMIPS_GOT16:
4134 case BFD_RELOC_MICROMIPS_CALL16:
4135 case BFD_RELOC_MICROMIPS_GOT_HI16:
4136 case BFD_RELOC_MICROMIPS_GOT_LO16:
4137 case BFD_RELOC_MICROMIPS_CALL_HI16:
4138 case BFD_RELOC_MICROMIPS_CALL_LO16:
4139 case BFD_RELOC_MICROMIPS_SUB:
4140 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4141 case BFD_RELOC_MICROMIPS_GOT_OFST:
4142 case BFD_RELOC_MICROMIPS_GOT_DISP:
4143 case BFD_RELOC_MICROMIPS_HIGHEST:
4144 case BFD_RELOC_MICROMIPS_HIGHER:
4145 case BFD_RELOC_MICROMIPS_SCN_DISP:
4146 case BFD_RELOC_MICROMIPS_JALR:
4147 return TRUE;
4148
4149 default:
4150 return FALSE;
4151 }
4152 }
4153
4154 static inline bfd_boolean
4155 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4156 {
4157 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4158 }
4159
4160 static inline bfd_boolean
4161 b_reloc_p (bfd_reloc_code_real_type reloc)
4162 {
4163 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4164 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4165 || reloc == BFD_RELOC_16_PCREL_S2
4166 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4167 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4168 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4169 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4170 }
4171
4172 static inline bfd_boolean
4173 got16_reloc_p (bfd_reloc_code_real_type reloc)
4174 {
4175 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4176 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4177 }
4178
4179 static inline bfd_boolean
4180 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4181 {
4182 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4183 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4184 }
4185
4186 static inline bfd_boolean
4187 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4188 {
4189 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4190 || reloc == BFD_RELOC_MICROMIPS_LO16);
4191 }
4192
4193 static inline bfd_boolean
4194 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4195 {
4196 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4197 }
4198
4199 static inline bfd_boolean
4200 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4201 {
4202 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4203 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4204 }
4205
4206 /* Return true if RELOC is a PC-relative relocation that does not have
4207 full address range. */
4208
4209 static inline bfd_boolean
4210 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4211 {
4212 switch (reloc)
4213 {
4214 case BFD_RELOC_16_PCREL_S2:
4215 case BFD_RELOC_MIPS16_16_PCREL_S1:
4216 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4217 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4218 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4219 case BFD_RELOC_MIPS_21_PCREL_S2:
4220 case BFD_RELOC_MIPS_26_PCREL_S2:
4221 case BFD_RELOC_MIPS_18_PCREL_S3:
4222 case BFD_RELOC_MIPS_19_PCREL_S2:
4223 return TRUE;
4224
4225 case BFD_RELOC_32_PCREL:
4226 case BFD_RELOC_HI16_S_PCREL:
4227 case BFD_RELOC_LO16_PCREL:
4228 return HAVE_64BIT_ADDRESSES;
4229
4230 default:
4231 return FALSE;
4232 }
4233 }
4234
4235 /* Return true if the given relocation might need a matching %lo().
4236 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4237 need a matching %lo() when applied to local symbols. */
4238
4239 static inline bfd_boolean
4240 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4241 {
4242 return (HAVE_IN_PLACE_ADDENDS
4243 && (hi16_reloc_p (reloc)
4244 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4245 all GOT16 relocations evaluate to "G". */
4246 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4247 }
4248
4249 /* Return the type of %lo() reloc needed by RELOC, given that
4250 reloc_needs_lo_p. */
4251
4252 static inline bfd_reloc_code_real_type
4253 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4254 {
4255 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4256 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4257 : BFD_RELOC_LO16));
4258 }
4259
4260 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4261 relocation. */
4262
4263 static inline bfd_boolean
4264 fixup_has_matching_lo_p (fixS *fixp)
4265 {
4266 return (fixp->fx_next != NULL
4267 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4268 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4269 && fixp->fx_offset == fixp->fx_next->fx_offset);
4270 }
4271
4272 /* Move all labels in LABELS to the current insertion point. TEXT_P
4273 says whether the labels refer to text or data. */
4274
4275 static void
4276 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4277 {
4278 struct insn_label_list *l;
4279 valueT val;
4280
4281 for (l = labels; l != NULL; l = l->next)
4282 {
4283 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4284 symbol_set_frag (l->label, frag_now);
4285 val = (valueT) frag_now_fix ();
4286 /* MIPS16/microMIPS text labels are stored as odd. */
4287 if (text_p && HAVE_CODE_COMPRESSION)
4288 ++val;
4289 S_SET_VALUE (l->label, val);
4290 }
4291 }
4292
4293 /* Move all labels in insn_labels to the current insertion point
4294 and treat them as text labels. */
4295
4296 static void
4297 mips_move_text_labels (void)
4298 {
4299 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4300 }
4301
4302 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4303
4304 static bfd_boolean
4305 s_is_linkonce (symbolS *sym, segT from_seg)
4306 {
4307 bfd_boolean linkonce = FALSE;
4308 segT symseg = S_GET_SEGMENT (sym);
4309
4310 if (symseg != from_seg && !S_IS_LOCAL (sym))
4311 {
4312 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4313 linkonce = TRUE;
4314 /* The GNU toolchain uses an extension for ELF: a section
4315 beginning with the magic string .gnu.linkonce is a
4316 linkonce section. */
4317 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4318 sizeof ".gnu.linkonce" - 1) == 0)
4319 linkonce = TRUE;
4320 }
4321 return linkonce;
4322 }
4323
4324 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4325 linker to handle them specially, such as generating jalx instructions
4326 when needed. We also make them odd for the duration of the assembly,
4327 in order to generate the right sort of code. We will make them even
4328 in the adjust_symtab routine, while leaving them marked. This is
4329 convenient for the debugger and the disassembler. The linker knows
4330 to make them odd again. */
4331
4332 static void
4333 mips_compressed_mark_label (symbolS *label)
4334 {
4335 gas_assert (HAVE_CODE_COMPRESSION);
4336
4337 if (mips_opts.mips16)
4338 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4339 else
4340 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4341 if ((S_GET_VALUE (label) & 1) == 0
4342 /* Don't adjust the address if the label is global or weak, or
4343 in a link-once section, since we'll be emitting symbol reloc
4344 references to it which will be patched up by the linker, and
4345 the final value of the symbol may or may not be MIPS16/microMIPS. */
4346 && !S_IS_WEAK (label)
4347 && !S_IS_EXTERNAL (label)
4348 && !s_is_linkonce (label, now_seg))
4349 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4350 }
4351
4352 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4353
4354 static void
4355 mips_compressed_mark_labels (void)
4356 {
4357 struct insn_label_list *l;
4358
4359 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4360 mips_compressed_mark_label (l->label);
4361 }
4362
4363 /* End the current frag. Make it a variant frag and record the
4364 relaxation info. */
4365
4366 static void
4367 relax_close_frag (void)
4368 {
4369 mips_macro_warning.first_frag = frag_now;
4370 frag_var (rs_machine_dependent, 0, 0,
4371 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4372 mips_pic != NO_PIC),
4373 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4374
4375 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4376 mips_relax.first_fixup = 0;
4377 }
4378
4379 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4380 See the comment above RELAX_ENCODE for more details. */
4381
4382 static void
4383 relax_start (symbolS *symbol)
4384 {
4385 gas_assert (mips_relax.sequence == 0);
4386 mips_relax.sequence = 1;
4387 mips_relax.symbol = symbol;
4388 }
4389
4390 /* Start generating the second version of a relaxable sequence.
4391 See the comment above RELAX_ENCODE for more details. */
4392
4393 static void
4394 relax_switch (void)
4395 {
4396 gas_assert (mips_relax.sequence == 1);
4397 mips_relax.sequence = 2;
4398 }
4399
4400 /* End the current relaxable sequence. */
4401
4402 static void
4403 relax_end (void)
4404 {
4405 gas_assert (mips_relax.sequence == 2);
4406 relax_close_frag ();
4407 mips_relax.sequence = 0;
4408 }
4409
4410 /* Return true if IP is a delayed branch or jump. */
4411
4412 static inline bfd_boolean
4413 delayed_branch_p (const struct mips_cl_insn *ip)
4414 {
4415 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4416 | INSN_COND_BRANCH_DELAY
4417 | INSN_COND_BRANCH_LIKELY)) != 0;
4418 }
4419
4420 /* Return true if IP is a compact branch or jump. */
4421
4422 static inline bfd_boolean
4423 compact_branch_p (const struct mips_cl_insn *ip)
4424 {
4425 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4426 | INSN2_COND_BRANCH)) != 0;
4427 }
4428
4429 /* Return true if IP is an unconditional branch or jump. */
4430
4431 static inline bfd_boolean
4432 uncond_branch_p (const struct mips_cl_insn *ip)
4433 {
4434 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4435 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4436 }
4437
4438 /* Return true if IP is a branch-likely instruction. */
4439
4440 static inline bfd_boolean
4441 branch_likely_p (const struct mips_cl_insn *ip)
4442 {
4443 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4444 }
4445
4446 /* Return the type of nop that should be used to fill the delay slot
4447 of delayed branch IP. */
4448
4449 static struct mips_cl_insn *
4450 get_delay_slot_nop (const struct mips_cl_insn *ip)
4451 {
4452 if (mips_opts.micromips
4453 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4454 return &micromips_nop32_insn;
4455 return NOP_INSN;
4456 }
4457
4458 /* Return a mask that has bit N set if OPCODE reads the register(s)
4459 in operand N. */
4460
4461 static unsigned int
4462 insn_read_mask (const struct mips_opcode *opcode)
4463 {
4464 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4465 }
4466
4467 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4468 in operand N. */
4469
4470 static unsigned int
4471 insn_write_mask (const struct mips_opcode *opcode)
4472 {
4473 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4474 }
4475
4476 /* Return a mask of the registers specified by operand OPERAND of INSN.
4477 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4478 is set. */
4479
4480 static unsigned int
4481 operand_reg_mask (const struct mips_cl_insn *insn,
4482 const struct mips_operand *operand,
4483 unsigned int type_mask)
4484 {
4485 unsigned int uval, vsel;
4486
4487 switch (operand->type)
4488 {
4489 case OP_INT:
4490 case OP_MAPPED_INT:
4491 case OP_MSB:
4492 case OP_PCREL:
4493 case OP_PERF_REG:
4494 case OP_ADDIUSP_INT:
4495 case OP_ENTRY_EXIT_LIST:
4496 case OP_REPEAT_DEST_REG:
4497 case OP_REPEAT_PREV_REG:
4498 case OP_PC:
4499 case OP_VU0_SUFFIX:
4500 case OP_VU0_MATCH_SUFFIX:
4501 case OP_IMM_INDEX:
4502 abort ();
4503
4504 case OP_REG:
4505 case OP_OPTIONAL_REG:
4506 {
4507 const struct mips_reg_operand *reg_op;
4508
4509 reg_op = (const struct mips_reg_operand *) operand;
4510 if (!(type_mask & (1 << reg_op->reg_type)))
4511 return 0;
4512 uval = insn_extract_operand (insn, operand);
4513 return 1 << mips_decode_reg_operand (reg_op, uval);
4514 }
4515
4516 case OP_REG_PAIR:
4517 {
4518 const struct mips_reg_pair_operand *pair_op;
4519
4520 pair_op = (const struct mips_reg_pair_operand *) operand;
4521 if (!(type_mask & (1 << pair_op->reg_type)))
4522 return 0;
4523 uval = insn_extract_operand (insn, operand);
4524 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4525 }
4526
4527 case OP_CLO_CLZ_DEST:
4528 if (!(type_mask & (1 << OP_REG_GP)))
4529 return 0;
4530 uval = insn_extract_operand (insn, operand);
4531 return (1 << (uval & 31)) | (1 << (uval >> 5));
4532
4533 case OP_SAME_RS_RT:
4534 if (!(type_mask & (1 << OP_REG_GP)))
4535 return 0;
4536 uval = insn_extract_operand (insn, operand);
4537 gas_assert ((uval & 31) == (uval >> 5));
4538 return 1 << (uval & 31);
4539
4540 case OP_CHECK_PREV:
4541 case OP_NON_ZERO_REG:
4542 if (!(type_mask & (1 << OP_REG_GP)))
4543 return 0;
4544 uval = insn_extract_operand (insn, operand);
4545 return 1 << (uval & 31);
4546
4547 case OP_LWM_SWM_LIST:
4548 abort ();
4549
4550 case OP_SAVE_RESTORE_LIST:
4551 abort ();
4552
4553 case OP_MDMX_IMM_REG:
4554 if (!(type_mask & (1 << OP_REG_VEC)))
4555 return 0;
4556 uval = insn_extract_operand (insn, operand);
4557 vsel = uval >> 5;
4558 if ((vsel & 0x18) == 0x18)
4559 return 0;
4560 return 1 << (uval & 31);
4561
4562 case OP_REG_INDEX:
4563 if (!(type_mask & (1 << OP_REG_GP)))
4564 return 0;
4565 return 1 << insn_extract_operand (insn, operand);
4566 }
4567 abort ();
4568 }
4569
4570 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4571 where bit N of OPNO_MASK is set if operand N should be included.
4572 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4573 is set. */
4574
4575 static unsigned int
4576 insn_reg_mask (const struct mips_cl_insn *insn,
4577 unsigned int type_mask, unsigned int opno_mask)
4578 {
4579 unsigned int opno, reg_mask;
4580
4581 opno = 0;
4582 reg_mask = 0;
4583 while (opno_mask != 0)
4584 {
4585 if (opno_mask & 1)
4586 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4587 opno_mask >>= 1;
4588 opno += 1;
4589 }
4590 return reg_mask;
4591 }
4592
4593 /* Return the mask of core registers that IP reads. */
4594
4595 static unsigned int
4596 gpr_read_mask (const struct mips_cl_insn *ip)
4597 {
4598 unsigned long pinfo, pinfo2;
4599 unsigned int mask;
4600
4601 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4602 pinfo = ip->insn_mo->pinfo;
4603 pinfo2 = ip->insn_mo->pinfo2;
4604 if (pinfo & INSN_UDI)
4605 {
4606 /* UDI instructions have traditionally been assumed to read RS
4607 and RT. */
4608 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4609 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4610 }
4611 if (pinfo & INSN_READ_GPR_24)
4612 mask |= 1 << 24;
4613 if (pinfo2 & INSN2_READ_GPR_16)
4614 mask |= 1 << 16;
4615 if (pinfo2 & INSN2_READ_SP)
4616 mask |= 1 << SP;
4617 if (pinfo2 & INSN2_READ_GPR_31)
4618 mask |= 1 << 31;
4619 /* Don't include register 0. */
4620 return mask & ~1;
4621 }
4622
4623 /* Return the mask of core registers that IP writes. */
4624
4625 static unsigned int
4626 gpr_write_mask (const struct mips_cl_insn *ip)
4627 {
4628 unsigned long pinfo, pinfo2;
4629 unsigned int mask;
4630
4631 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4632 pinfo = ip->insn_mo->pinfo;
4633 pinfo2 = ip->insn_mo->pinfo2;
4634 if (pinfo & INSN_WRITE_GPR_24)
4635 mask |= 1 << 24;
4636 if (pinfo & INSN_WRITE_GPR_31)
4637 mask |= 1 << 31;
4638 if (pinfo & INSN_UDI)
4639 /* UDI instructions have traditionally been assumed to write to RD. */
4640 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4641 if (pinfo2 & INSN2_WRITE_SP)
4642 mask |= 1 << SP;
4643 /* Don't include register 0. */
4644 return mask & ~1;
4645 }
4646
4647 /* Return the mask of floating-point registers that IP reads. */
4648
4649 static unsigned int
4650 fpr_read_mask (const struct mips_cl_insn *ip)
4651 {
4652 unsigned long pinfo;
4653 unsigned int mask;
4654
4655 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4656 | (1 << OP_REG_MSA)),
4657 insn_read_mask (ip->insn_mo));
4658 pinfo = ip->insn_mo->pinfo;
4659 /* Conservatively treat all operands to an FP_D instruction are doubles.
4660 (This is overly pessimistic for things like cvt.d.s.) */
4661 if (FPR_SIZE != 64 && (pinfo & FP_D))
4662 mask |= mask << 1;
4663 return mask;
4664 }
4665
4666 /* Return the mask of floating-point registers that IP writes. */
4667
4668 static unsigned int
4669 fpr_write_mask (const struct mips_cl_insn *ip)
4670 {
4671 unsigned long pinfo;
4672 unsigned int mask;
4673
4674 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4675 | (1 << OP_REG_MSA)),
4676 insn_write_mask (ip->insn_mo));
4677 pinfo = ip->insn_mo->pinfo;
4678 /* Conservatively treat all operands to an FP_D instruction are doubles.
4679 (This is overly pessimistic for things like cvt.s.d.) */
4680 if (FPR_SIZE != 64 && (pinfo & FP_D))
4681 mask |= mask << 1;
4682 return mask;
4683 }
4684
4685 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4686 Check whether that is allowed. */
4687
4688 static bfd_boolean
4689 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4690 {
4691 const char *s = insn->name;
4692 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4693 || FPR_SIZE == 64)
4694 && mips_opts.oddspreg;
4695
4696 if (insn->pinfo == INSN_MACRO)
4697 /* Let a macro pass, we'll catch it later when it is expanded. */
4698 return TRUE;
4699
4700 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4701 otherwise it depends on oddspreg. */
4702 if ((insn->pinfo & FP_S)
4703 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4704 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4705 return FPR_SIZE == 32 || oddspreg;
4706
4707 /* Allow odd registers for single-precision ops and double-precision if the
4708 floating-point registers are 64-bit wide. */
4709 switch (insn->pinfo & (FP_S | FP_D))
4710 {
4711 case FP_S:
4712 case 0:
4713 return oddspreg;
4714 case FP_D:
4715 return FPR_SIZE == 64;
4716 default:
4717 break;
4718 }
4719
4720 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4721 s = strchr (insn->name, '.');
4722 if (s != NULL && opnum == 2)
4723 s = strchr (s + 1, '.');
4724 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4725 return oddspreg;
4726
4727 return FPR_SIZE == 64;
4728 }
4729
4730 /* Information about an instruction argument that we're trying to match. */
4731 struct mips_arg_info
4732 {
4733 /* The instruction so far. */
4734 struct mips_cl_insn *insn;
4735
4736 /* The first unconsumed operand token. */
4737 struct mips_operand_token *token;
4738
4739 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4740 int opnum;
4741
4742 /* The 1-based argument number, for error reporting. This does not
4743 count elided optional registers, etc.. */
4744 int argnum;
4745
4746 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4747 unsigned int last_regno;
4748
4749 /* If the first operand was an OP_REG, this is the register that it
4750 specified, otherwise it is ILLEGAL_REG. */
4751 unsigned int dest_regno;
4752
4753 /* The value of the last OP_INT operand. Only used for OP_MSB,
4754 where it gives the lsb position. */
4755 unsigned int last_op_int;
4756
4757 /* If true, match routines should assume that no later instruction
4758 alternative matches and should therefore be as accommodating as
4759 possible. Match routines should not report errors if something
4760 is only invalid for !LAX_MATCH. */
4761 bfd_boolean lax_match;
4762
4763 /* True if a reference to the current AT register was seen. */
4764 bfd_boolean seen_at;
4765 };
4766
4767 /* Record that the argument is out of range. */
4768
4769 static void
4770 match_out_of_range (struct mips_arg_info *arg)
4771 {
4772 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4773 }
4774
4775 /* Record that the argument isn't constant but needs to be. */
4776
4777 static void
4778 match_not_constant (struct mips_arg_info *arg)
4779 {
4780 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4781 arg->argnum);
4782 }
4783
4784 /* Try to match an OT_CHAR token for character CH. Consume the token
4785 and return true on success, otherwise return false. */
4786
4787 static bfd_boolean
4788 match_char (struct mips_arg_info *arg, char ch)
4789 {
4790 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4791 {
4792 ++arg->token;
4793 if (ch == ',')
4794 arg->argnum += 1;
4795 return TRUE;
4796 }
4797 return FALSE;
4798 }
4799
4800 /* Try to get an expression from the next tokens in ARG. Consume the
4801 tokens and return true on success, storing the expression value in
4802 VALUE and relocation types in R. */
4803
4804 static bfd_boolean
4805 match_expression (struct mips_arg_info *arg, expressionS *value,
4806 bfd_reloc_code_real_type *r)
4807 {
4808 /* If the next token is a '(' that was parsed as being part of a base
4809 expression, assume we have an elided offset. The later match will fail
4810 if this turns out to be wrong. */
4811 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4812 {
4813 value->X_op = O_constant;
4814 value->X_add_number = 0;
4815 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4816 return TRUE;
4817 }
4818
4819 /* Reject register-based expressions such as "0+$2" and "(($2))".
4820 For plain registers the default error seems more appropriate. */
4821 if (arg->token->type == OT_INTEGER
4822 && arg->token->u.integer.value.X_op == O_register)
4823 {
4824 set_insn_error (arg->argnum, _("register value used as expression"));
4825 return FALSE;
4826 }
4827
4828 if (arg->token->type == OT_INTEGER)
4829 {
4830 *value = arg->token->u.integer.value;
4831 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4832 ++arg->token;
4833 return TRUE;
4834 }
4835
4836 set_insn_error_i
4837 (arg->argnum, _("operand %d must be an immediate expression"),
4838 arg->argnum);
4839 return FALSE;
4840 }
4841
4842 /* Try to get a constant expression from the next tokens in ARG. Consume
4843 the tokens and return return true on success, storing the constant value
4844 in *VALUE. */
4845
4846 static bfd_boolean
4847 match_const_int (struct mips_arg_info *arg, offsetT *value)
4848 {
4849 expressionS ex;
4850 bfd_reloc_code_real_type r[3];
4851
4852 if (!match_expression (arg, &ex, r))
4853 return FALSE;
4854
4855 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
4856 *value = ex.X_add_number;
4857 else
4858 {
4859 match_not_constant (arg);
4860 return FALSE;
4861 }
4862 return TRUE;
4863 }
4864
4865 /* Return the RTYPE_* flags for a register operand of type TYPE that
4866 appears in instruction OPCODE. */
4867
4868 static unsigned int
4869 convert_reg_type (const struct mips_opcode *opcode,
4870 enum mips_reg_operand_type type)
4871 {
4872 switch (type)
4873 {
4874 case OP_REG_GP:
4875 return RTYPE_NUM | RTYPE_GP;
4876
4877 case OP_REG_FP:
4878 /* Allow vector register names for MDMX if the instruction is a 64-bit
4879 FPR load, store or move (including moves to and from GPRs). */
4880 if ((mips_opts.ase & ASE_MDMX)
4881 && (opcode->pinfo & FP_D)
4882 && (opcode->pinfo & (INSN_COPROC_MOVE
4883 | INSN_COPROC_MEMORY_DELAY
4884 | INSN_LOAD_COPROC
4885 | INSN_LOAD_MEMORY
4886 | INSN_STORE_MEMORY)))
4887 return RTYPE_FPU | RTYPE_VEC;
4888 return RTYPE_FPU;
4889
4890 case OP_REG_CCC:
4891 if (opcode->pinfo & (FP_D | FP_S))
4892 return RTYPE_CCC | RTYPE_FCC;
4893 return RTYPE_CCC;
4894
4895 case OP_REG_VEC:
4896 if (opcode->membership & INSN_5400)
4897 return RTYPE_FPU;
4898 return RTYPE_FPU | RTYPE_VEC;
4899
4900 case OP_REG_ACC:
4901 return RTYPE_ACC;
4902
4903 case OP_REG_COPRO:
4904 if (opcode->name[strlen (opcode->name) - 1] == '0')
4905 return RTYPE_NUM | RTYPE_CP0;
4906 return RTYPE_NUM;
4907
4908 case OP_REG_HW:
4909 return RTYPE_NUM;
4910
4911 case OP_REG_VI:
4912 return RTYPE_NUM | RTYPE_VI;
4913
4914 case OP_REG_VF:
4915 return RTYPE_NUM | RTYPE_VF;
4916
4917 case OP_REG_R5900_I:
4918 return RTYPE_R5900_I;
4919
4920 case OP_REG_R5900_Q:
4921 return RTYPE_R5900_Q;
4922
4923 case OP_REG_R5900_R:
4924 return RTYPE_R5900_R;
4925
4926 case OP_REG_R5900_ACC:
4927 return RTYPE_R5900_ACC;
4928
4929 case OP_REG_MSA:
4930 return RTYPE_MSA;
4931
4932 case OP_REG_MSA_CTRL:
4933 return RTYPE_NUM;
4934 }
4935 abort ();
4936 }
4937
4938 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
4939
4940 static void
4941 check_regno (struct mips_arg_info *arg,
4942 enum mips_reg_operand_type type, unsigned int regno)
4943 {
4944 if (AT && type == OP_REG_GP && regno == AT)
4945 arg->seen_at = TRUE;
4946
4947 if (type == OP_REG_FP
4948 && (regno & 1) != 0
4949 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
4950 {
4951 /* This was a warning prior to introducing O32 FPXX and FP64 support
4952 so maintain a warning for FP32 but raise an error for the new
4953 cases. */
4954 if (FPR_SIZE == 32)
4955 as_warn (_("float register should be even, was %d"), regno);
4956 else
4957 as_bad (_("float register should be even, was %d"), regno);
4958 }
4959
4960 if (type == OP_REG_CCC)
4961 {
4962 const char *name;
4963 size_t length;
4964
4965 name = arg->insn->insn_mo->name;
4966 length = strlen (name);
4967 if ((regno & 1) != 0
4968 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
4969 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
4970 as_warn (_("condition code register should be even for %s, was %d"),
4971 name, regno);
4972
4973 if ((regno & 3) != 0
4974 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
4975 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
4976 name, regno);
4977 }
4978 }
4979
4980 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
4981 a register of type TYPE. Return true on success, storing the register
4982 number in *REGNO and warning about any dubious uses. */
4983
4984 static bfd_boolean
4985 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
4986 unsigned int symval, unsigned int *regno)
4987 {
4988 if (type == OP_REG_VEC)
4989 symval = mips_prefer_vec_regno (symval);
4990 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
4991 return FALSE;
4992
4993 *regno = symval & RNUM_MASK;
4994 check_regno (arg, type, *regno);
4995 return TRUE;
4996 }
4997
4998 /* Try to interpret the next token in ARG as a register of type TYPE.
4999 Consume the token and return true on success, storing the register
5000 number in *REGNO. Return false on failure. */
5001
5002 static bfd_boolean
5003 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5004 unsigned int *regno)
5005 {
5006 if (arg->token->type == OT_REG
5007 && match_regno (arg, type, arg->token->u.regno, regno))
5008 {
5009 ++arg->token;
5010 return TRUE;
5011 }
5012 return FALSE;
5013 }
5014
5015 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5016 Consume the token and return true on success, storing the register numbers
5017 in *REGNO1 and *REGNO2. Return false on failure. */
5018
5019 static bfd_boolean
5020 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5021 unsigned int *regno1, unsigned int *regno2)
5022 {
5023 if (match_reg (arg, type, regno1))
5024 {
5025 *regno2 = *regno1;
5026 return TRUE;
5027 }
5028 if (arg->token->type == OT_REG_RANGE
5029 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5030 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5031 && *regno1 <= *regno2)
5032 {
5033 ++arg->token;
5034 return TRUE;
5035 }
5036 return FALSE;
5037 }
5038
5039 /* OP_INT matcher. */
5040
5041 static bfd_boolean
5042 match_int_operand (struct mips_arg_info *arg,
5043 const struct mips_operand *operand_base)
5044 {
5045 const struct mips_int_operand *operand;
5046 unsigned int uval;
5047 int min_val, max_val, factor;
5048 offsetT sval;
5049
5050 operand = (const struct mips_int_operand *) operand_base;
5051 factor = 1 << operand->shift;
5052 min_val = mips_int_operand_min (operand);
5053 max_val = mips_int_operand_max (operand);
5054
5055 if (operand_base->lsb == 0
5056 && operand_base->size == 16
5057 && operand->shift == 0
5058 && operand->bias == 0
5059 && (operand->max_val == 32767 || operand->max_val == 65535))
5060 {
5061 /* The operand can be relocated. */
5062 if (!match_expression (arg, &offset_expr, offset_reloc))
5063 return FALSE;
5064
5065 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5066 /* Relocation operators were used. Accept the argument and
5067 leave the relocation value in offset_expr and offset_relocs
5068 for the caller to process. */
5069 return TRUE;
5070
5071 if (offset_expr.X_op != O_constant)
5072 {
5073 /* Accept non-constant operands if no later alternative matches,
5074 leaving it for the caller to process. */
5075 if (!arg->lax_match)
5076 return FALSE;
5077 offset_reloc[0] = BFD_RELOC_LO16;
5078 return TRUE;
5079 }
5080
5081 /* Clear the global state; we're going to install the operand
5082 ourselves. */
5083 sval = offset_expr.X_add_number;
5084 offset_expr.X_op = O_absent;
5085
5086 /* For compatibility with older assemblers, we accept
5087 0x8000-0xffff as signed 16-bit numbers when only
5088 signed numbers are allowed. */
5089 if (sval > max_val)
5090 {
5091 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5092 if (!arg->lax_match && sval <= max_val)
5093 return FALSE;
5094 }
5095 }
5096 else
5097 {
5098 if (!match_const_int (arg, &sval))
5099 return FALSE;
5100 }
5101
5102 arg->last_op_int = sval;
5103
5104 if (sval < min_val || sval > max_val || sval % factor)
5105 {
5106 match_out_of_range (arg);
5107 return FALSE;
5108 }
5109
5110 uval = (unsigned int) sval >> operand->shift;
5111 uval -= operand->bias;
5112
5113 /* Handle -mfix-cn63xxp1. */
5114 if (arg->opnum == 1
5115 && mips_fix_cn63xxp1
5116 && !mips_opts.micromips
5117 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5118 switch (uval)
5119 {
5120 case 5:
5121 case 25:
5122 case 26:
5123 case 27:
5124 case 28:
5125 case 29:
5126 case 30:
5127 case 31:
5128 /* These are ok. */
5129 break;
5130
5131 default:
5132 /* The rest must be changed to 28. */
5133 uval = 28;
5134 break;
5135 }
5136
5137 insn_insert_operand (arg->insn, operand_base, uval);
5138 return TRUE;
5139 }
5140
5141 /* OP_MAPPED_INT matcher. */
5142
5143 static bfd_boolean
5144 match_mapped_int_operand (struct mips_arg_info *arg,
5145 const struct mips_operand *operand_base)
5146 {
5147 const struct mips_mapped_int_operand *operand;
5148 unsigned int uval, num_vals;
5149 offsetT sval;
5150
5151 operand = (const struct mips_mapped_int_operand *) operand_base;
5152 if (!match_const_int (arg, &sval))
5153 return FALSE;
5154
5155 num_vals = 1 << operand_base->size;
5156 for (uval = 0; uval < num_vals; uval++)
5157 if (operand->int_map[uval] == sval)
5158 break;
5159 if (uval == num_vals)
5160 {
5161 match_out_of_range (arg);
5162 return FALSE;
5163 }
5164
5165 insn_insert_operand (arg->insn, operand_base, uval);
5166 return TRUE;
5167 }
5168
5169 /* OP_MSB matcher. */
5170
5171 static bfd_boolean
5172 match_msb_operand (struct mips_arg_info *arg,
5173 const struct mips_operand *operand_base)
5174 {
5175 const struct mips_msb_operand *operand;
5176 int min_val, max_val, max_high;
5177 offsetT size, sval, high;
5178
5179 operand = (const struct mips_msb_operand *) operand_base;
5180 min_val = operand->bias;
5181 max_val = min_val + (1 << operand_base->size) - 1;
5182 max_high = operand->opsize;
5183
5184 if (!match_const_int (arg, &size))
5185 return FALSE;
5186
5187 high = size + arg->last_op_int;
5188 sval = operand->add_lsb ? high : size;
5189
5190 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5191 {
5192 match_out_of_range (arg);
5193 return FALSE;
5194 }
5195 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5196 return TRUE;
5197 }
5198
5199 /* OP_REG matcher. */
5200
5201 static bfd_boolean
5202 match_reg_operand (struct mips_arg_info *arg,
5203 const struct mips_operand *operand_base)
5204 {
5205 const struct mips_reg_operand *operand;
5206 unsigned int regno, uval, num_vals;
5207
5208 operand = (const struct mips_reg_operand *) operand_base;
5209 if (!match_reg (arg, operand->reg_type, &regno))
5210 return FALSE;
5211
5212 if (operand->reg_map)
5213 {
5214 num_vals = 1 << operand->root.size;
5215 for (uval = 0; uval < num_vals; uval++)
5216 if (operand->reg_map[uval] == regno)
5217 break;
5218 if (num_vals == uval)
5219 return FALSE;
5220 }
5221 else
5222 uval = regno;
5223
5224 arg->last_regno = regno;
5225 if (arg->opnum == 1)
5226 arg->dest_regno = regno;
5227 insn_insert_operand (arg->insn, operand_base, uval);
5228 return TRUE;
5229 }
5230
5231 /* OP_REG_PAIR matcher. */
5232
5233 static bfd_boolean
5234 match_reg_pair_operand (struct mips_arg_info *arg,
5235 const struct mips_operand *operand_base)
5236 {
5237 const struct mips_reg_pair_operand *operand;
5238 unsigned int regno1, regno2, uval, num_vals;
5239
5240 operand = (const struct mips_reg_pair_operand *) operand_base;
5241 if (!match_reg (arg, operand->reg_type, &regno1)
5242 || !match_char (arg, ',')
5243 || !match_reg (arg, operand->reg_type, &regno2))
5244 return FALSE;
5245
5246 num_vals = 1 << operand_base->size;
5247 for (uval = 0; uval < num_vals; uval++)
5248 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5249 break;
5250 if (uval == num_vals)
5251 return FALSE;
5252
5253 insn_insert_operand (arg->insn, operand_base, uval);
5254 return TRUE;
5255 }
5256
5257 /* OP_PCREL matcher. The caller chooses the relocation type. */
5258
5259 static bfd_boolean
5260 match_pcrel_operand (struct mips_arg_info *arg)
5261 {
5262 bfd_reloc_code_real_type r[3];
5263
5264 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5265 }
5266
5267 /* OP_PERF_REG matcher. */
5268
5269 static bfd_boolean
5270 match_perf_reg_operand (struct mips_arg_info *arg,
5271 const struct mips_operand *operand)
5272 {
5273 offsetT sval;
5274
5275 if (!match_const_int (arg, &sval))
5276 return FALSE;
5277
5278 if (sval != 0
5279 && (sval != 1
5280 || (mips_opts.arch == CPU_R5900
5281 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5282 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5283 {
5284 set_insn_error (arg->argnum, _("invalid performance register"));
5285 return FALSE;
5286 }
5287
5288 insn_insert_operand (arg->insn, operand, sval);
5289 return TRUE;
5290 }
5291
5292 /* OP_ADDIUSP matcher. */
5293
5294 static bfd_boolean
5295 match_addiusp_operand (struct mips_arg_info *arg,
5296 const struct mips_operand *operand)
5297 {
5298 offsetT sval;
5299 unsigned int uval;
5300
5301 if (!match_const_int (arg, &sval))
5302 return FALSE;
5303
5304 if (sval % 4)
5305 {
5306 match_out_of_range (arg);
5307 return FALSE;
5308 }
5309
5310 sval /= 4;
5311 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5312 {
5313 match_out_of_range (arg);
5314 return FALSE;
5315 }
5316
5317 uval = (unsigned int) sval;
5318 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5319 insn_insert_operand (arg->insn, operand, uval);
5320 return TRUE;
5321 }
5322
5323 /* OP_CLO_CLZ_DEST matcher. */
5324
5325 static bfd_boolean
5326 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5327 const struct mips_operand *operand)
5328 {
5329 unsigned int regno;
5330
5331 if (!match_reg (arg, OP_REG_GP, &regno))
5332 return FALSE;
5333
5334 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5335 return TRUE;
5336 }
5337
5338 /* OP_CHECK_PREV matcher. */
5339
5340 static bfd_boolean
5341 match_check_prev_operand (struct mips_arg_info *arg,
5342 const struct mips_operand *operand_base)
5343 {
5344 const struct mips_check_prev_operand *operand;
5345 unsigned int regno;
5346
5347 operand = (const struct mips_check_prev_operand *) operand_base;
5348
5349 if (!match_reg (arg, OP_REG_GP, &regno))
5350 return FALSE;
5351
5352 if (!operand->zero_ok && regno == 0)
5353 return FALSE;
5354
5355 if ((operand->less_than_ok && regno < arg->last_regno)
5356 || (operand->greater_than_ok && regno > arg->last_regno)
5357 || (operand->equal_ok && regno == arg->last_regno))
5358 {
5359 arg->last_regno = regno;
5360 insn_insert_operand (arg->insn, operand_base, regno);
5361 return TRUE;
5362 }
5363
5364 return FALSE;
5365 }
5366
5367 /* OP_SAME_RS_RT matcher. */
5368
5369 static bfd_boolean
5370 match_same_rs_rt_operand (struct mips_arg_info *arg,
5371 const struct mips_operand *operand)
5372 {
5373 unsigned int regno;
5374
5375 if (!match_reg (arg, OP_REG_GP, &regno))
5376 return FALSE;
5377
5378 if (regno == 0)
5379 {
5380 set_insn_error (arg->argnum, _("the source register must not be $0"));
5381 return FALSE;
5382 }
5383
5384 arg->last_regno = regno;
5385
5386 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5387 return TRUE;
5388 }
5389
5390 /* OP_LWM_SWM_LIST matcher. */
5391
5392 static bfd_boolean
5393 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5394 const struct mips_operand *operand)
5395 {
5396 unsigned int reglist, sregs, ra, regno1, regno2;
5397 struct mips_arg_info reset;
5398
5399 reglist = 0;
5400 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5401 return FALSE;
5402 do
5403 {
5404 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5405 {
5406 reglist |= 1 << FP;
5407 regno2 = S7;
5408 }
5409 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5410 reset = *arg;
5411 }
5412 while (match_char (arg, ',')
5413 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5414 *arg = reset;
5415
5416 if (operand->size == 2)
5417 {
5418 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5419
5420 s0, ra
5421 s0, s1, ra, s2, s3
5422 s0-s2, ra
5423
5424 and any permutations of these. */
5425 if ((reglist & 0xfff1ffff) != 0x80010000)
5426 return FALSE;
5427
5428 sregs = (reglist >> 17) & 7;
5429 ra = 0;
5430 }
5431 else
5432 {
5433 /* The list must include at least one of ra and s0-sN,
5434 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5435 which are $23 and $30 respectively.) E.g.:
5436
5437 ra
5438 s0
5439 ra, s0, s1, s2
5440 s0-s8
5441 s0-s5, ra
5442
5443 and any permutations of these. */
5444 if ((reglist & 0x3f00ffff) != 0)
5445 return FALSE;
5446
5447 ra = (reglist >> 27) & 0x10;
5448 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5449 }
5450 sregs += 1;
5451 if ((sregs & -sregs) != sregs)
5452 return FALSE;
5453
5454 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5455 return TRUE;
5456 }
5457
5458 /* OP_ENTRY_EXIT_LIST matcher. */
5459
5460 static unsigned int
5461 match_entry_exit_operand (struct mips_arg_info *arg,
5462 const struct mips_operand *operand)
5463 {
5464 unsigned int mask;
5465 bfd_boolean is_exit;
5466
5467 /* The format is the same for both ENTRY and EXIT, but the constraints
5468 are different. */
5469 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5470 mask = (is_exit ? 7 << 3 : 0);
5471 do
5472 {
5473 unsigned int regno1, regno2;
5474 bfd_boolean is_freg;
5475
5476 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5477 is_freg = FALSE;
5478 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5479 is_freg = TRUE;
5480 else
5481 return FALSE;
5482
5483 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5484 {
5485 mask &= ~(7 << 3);
5486 mask |= (5 + regno2) << 3;
5487 }
5488 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5489 mask |= (regno2 - 3) << 3;
5490 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5491 mask |= (regno2 - 15) << 1;
5492 else if (regno1 == RA && regno2 == RA)
5493 mask |= 1;
5494 else
5495 return FALSE;
5496 }
5497 while (match_char (arg, ','));
5498
5499 insn_insert_operand (arg->insn, operand, mask);
5500 return TRUE;
5501 }
5502
5503 /* OP_SAVE_RESTORE_LIST matcher. */
5504
5505 static bfd_boolean
5506 match_save_restore_list_operand (struct mips_arg_info *arg)
5507 {
5508 unsigned int opcode, args, statics, sregs;
5509 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5510 offsetT frame_size;
5511
5512 opcode = arg->insn->insn_opcode;
5513 frame_size = 0;
5514 num_frame_sizes = 0;
5515 args = 0;
5516 statics = 0;
5517 sregs = 0;
5518 do
5519 {
5520 unsigned int regno1, regno2;
5521
5522 if (arg->token->type == OT_INTEGER)
5523 {
5524 /* Handle the frame size. */
5525 if (!match_const_int (arg, &frame_size))
5526 return FALSE;
5527 num_frame_sizes += 1;
5528 }
5529 else
5530 {
5531 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5532 return FALSE;
5533
5534 while (regno1 <= regno2)
5535 {
5536 if (regno1 >= 4 && regno1 <= 7)
5537 {
5538 if (num_frame_sizes == 0)
5539 /* args $a0-$a3 */
5540 args |= 1 << (regno1 - 4);
5541 else
5542 /* statics $a0-$a3 */
5543 statics |= 1 << (regno1 - 4);
5544 }
5545 else if (regno1 >= 16 && regno1 <= 23)
5546 /* $s0-$s7 */
5547 sregs |= 1 << (regno1 - 16);
5548 else if (regno1 == 30)
5549 /* $s8 */
5550 sregs |= 1 << 8;
5551 else if (regno1 == 31)
5552 /* Add $ra to insn. */
5553 opcode |= 0x40;
5554 else
5555 return FALSE;
5556 regno1 += 1;
5557 if (regno1 == 24)
5558 regno1 = 30;
5559 }
5560 }
5561 }
5562 while (match_char (arg, ','));
5563
5564 /* Encode args/statics combination. */
5565 if (args & statics)
5566 return FALSE;
5567 else if (args == 0xf)
5568 /* All $a0-$a3 are args. */
5569 opcode |= MIPS16_ALL_ARGS << 16;
5570 else if (statics == 0xf)
5571 /* All $a0-$a3 are statics. */
5572 opcode |= MIPS16_ALL_STATICS << 16;
5573 else
5574 {
5575 /* Count arg registers. */
5576 num_args = 0;
5577 while (args & 0x1)
5578 {
5579 args >>= 1;
5580 num_args += 1;
5581 }
5582 if (args != 0)
5583 return FALSE;
5584
5585 /* Count static registers. */
5586 num_statics = 0;
5587 while (statics & 0x8)
5588 {
5589 statics = (statics << 1) & 0xf;
5590 num_statics += 1;
5591 }
5592 if (statics != 0)
5593 return FALSE;
5594
5595 /* Encode args/statics. */
5596 opcode |= ((num_args << 2) | num_statics) << 16;
5597 }
5598
5599 /* Encode $s0/$s1. */
5600 if (sregs & (1 << 0)) /* $s0 */
5601 opcode |= 0x20;
5602 if (sregs & (1 << 1)) /* $s1 */
5603 opcode |= 0x10;
5604 sregs >>= 2;
5605
5606 /* Encode $s2-$s8. */
5607 num_sregs = 0;
5608 while (sregs & 1)
5609 {
5610 sregs >>= 1;
5611 num_sregs += 1;
5612 }
5613 if (sregs != 0)
5614 return FALSE;
5615 opcode |= num_sregs << 24;
5616
5617 /* Encode frame size. */
5618 if (num_frame_sizes == 0)
5619 {
5620 set_insn_error (arg->argnum, _("missing frame size"));
5621 return FALSE;
5622 }
5623 if (num_frame_sizes > 1)
5624 {
5625 set_insn_error (arg->argnum, _("frame size specified twice"));
5626 return FALSE;
5627 }
5628 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5629 {
5630 set_insn_error (arg->argnum, _("invalid frame size"));
5631 return FALSE;
5632 }
5633 if (frame_size != 128 || (opcode >> 16) != 0)
5634 {
5635 frame_size /= 8;
5636 opcode |= (((frame_size & 0xf0) << 16)
5637 | (frame_size & 0x0f));
5638 }
5639
5640 /* Finally build the instruction. */
5641 if ((opcode >> 16) != 0 || frame_size == 0)
5642 opcode |= MIPS16_EXTEND;
5643 arg->insn->insn_opcode = opcode;
5644 return TRUE;
5645 }
5646
5647 /* OP_MDMX_IMM_REG matcher. */
5648
5649 static bfd_boolean
5650 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5651 const struct mips_operand *operand)
5652 {
5653 unsigned int regno, uval;
5654 bfd_boolean is_qh;
5655 const struct mips_opcode *opcode;
5656
5657 /* The mips_opcode records whether this is an octobyte or quadhalf
5658 instruction. Start out with that bit in place. */
5659 opcode = arg->insn->insn_mo;
5660 uval = mips_extract_operand (operand, opcode->match);
5661 is_qh = (uval != 0);
5662
5663 if (arg->token->type == OT_REG)
5664 {
5665 if ((opcode->membership & INSN_5400)
5666 && strcmp (opcode->name, "rzu.ob") == 0)
5667 {
5668 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5669 arg->argnum);
5670 return FALSE;
5671 }
5672
5673 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5674 return FALSE;
5675 ++arg->token;
5676
5677 /* Check whether this is a vector register or a broadcast of
5678 a single element. */
5679 if (arg->token->type == OT_INTEGER_INDEX)
5680 {
5681 if (arg->token->u.index > (is_qh ? 3 : 7))
5682 {
5683 set_insn_error (arg->argnum, _("invalid element selector"));
5684 return FALSE;
5685 }
5686 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5687 ++arg->token;
5688 }
5689 else
5690 {
5691 /* A full vector. */
5692 if ((opcode->membership & INSN_5400)
5693 && (strcmp (opcode->name, "sll.ob") == 0
5694 || strcmp (opcode->name, "srl.ob") == 0))
5695 {
5696 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5697 arg->argnum);
5698 return FALSE;
5699 }
5700
5701 if (is_qh)
5702 uval |= MDMX_FMTSEL_VEC_QH << 5;
5703 else
5704 uval |= MDMX_FMTSEL_VEC_OB << 5;
5705 }
5706 uval |= regno;
5707 }
5708 else
5709 {
5710 offsetT sval;
5711
5712 if (!match_const_int (arg, &sval))
5713 return FALSE;
5714 if (sval < 0 || sval > 31)
5715 {
5716 match_out_of_range (arg);
5717 return FALSE;
5718 }
5719 uval |= (sval & 31);
5720 if (is_qh)
5721 uval |= MDMX_FMTSEL_IMM_QH << 5;
5722 else
5723 uval |= MDMX_FMTSEL_IMM_OB << 5;
5724 }
5725 insn_insert_operand (arg->insn, operand, uval);
5726 return TRUE;
5727 }
5728
5729 /* OP_IMM_INDEX matcher. */
5730
5731 static bfd_boolean
5732 match_imm_index_operand (struct mips_arg_info *arg,
5733 const struct mips_operand *operand)
5734 {
5735 unsigned int max_val;
5736
5737 if (arg->token->type != OT_INTEGER_INDEX)
5738 return FALSE;
5739
5740 max_val = (1 << operand->size) - 1;
5741 if (arg->token->u.index > max_val)
5742 {
5743 match_out_of_range (arg);
5744 return FALSE;
5745 }
5746 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5747 ++arg->token;
5748 return TRUE;
5749 }
5750
5751 /* OP_REG_INDEX matcher. */
5752
5753 static bfd_boolean
5754 match_reg_index_operand (struct mips_arg_info *arg,
5755 const struct mips_operand *operand)
5756 {
5757 unsigned int regno;
5758
5759 if (arg->token->type != OT_REG_INDEX)
5760 return FALSE;
5761
5762 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5763 return FALSE;
5764
5765 insn_insert_operand (arg->insn, operand, regno);
5766 ++arg->token;
5767 return TRUE;
5768 }
5769
5770 /* OP_PC matcher. */
5771
5772 static bfd_boolean
5773 match_pc_operand (struct mips_arg_info *arg)
5774 {
5775 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5776 {
5777 ++arg->token;
5778 return TRUE;
5779 }
5780 return FALSE;
5781 }
5782
5783 /* OP_NON_ZERO_REG matcher. */
5784
5785 static bfd_boolean
5786 match_non_zero_reg_operand (struct mips_arg_info *arg,
5787 const struct mips_operand *operand)
5788 {
5789 unsigned int regno;
5790
5791 if (!match_reg (arg, OP_REG_GP, &regno))
5792 return FALSE;
5793
5794 if (regno == 0)
5795 return FALSE;
5796
5797 arg->last_regno = regno;
5798 insn_insert_operand (arg->insn, operand, regno);
5799 return TRUE;
5800 }
5801
5802 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
5803 register that we need to match. */
5804
5805 static bfd_boolean
5806 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
5807 {
5808 unsigned int regno;
5809
5810 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
5811 }
5812
5813 /* Read a floating-point constant from S for LI.S or LI.D. LENGTH is
5814 the length of the value in bytes (4 for float, 8 for double) and
5815 USING_GPRS says whether the destination is a GPR rather than an FPR.
5816
5817 Return the constant in IMM and OFFSET as follows:
5818
5819 - If the constant should be loaded via memory, set IMM to O_absent and
5820 OFFSET to the memory address.
5821
5822 - Otherwise, if the constant should be loaded into two 32-bit registers,
5823 set IMM to the O_constant to load into the high register and OFFSET
5824 to the corresponding value for the low register.
5825
5826 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
5827
5828 These constants only appear as the last operand in an instruction,
5829 and every instruction that accepts them in any variant accepts them
5830 in all variants. This means we don't have to worry about backing out
5831 any changes if the instruction does not match. We just match
5832 unconditionally and report an error if the constant is invalid. */
5833
5834 static bfd_boolean
5835 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
5836 expressionS *offset, int length, bfd_boolean using_gprs)
5837 {
5838 char *p;
5839 segT seg, new_seg;
5840 subsegT subseg;
5841 const char *newname;
5842 unsigned char *data;
5843
5844 /* Where the constant is placed is based on how the MIPS assembler
5845 does things:
5846
5847 length == 4 && using_gprs -- immediate value only
5848 length == 8 && using_gprs -- .rdata or immediate value
5849 length == 4 && !using_gprs -- .lit4 or immediate value
5850 length == 8 && !using_gprs -- .lit8 or immediate value
5851
5852 The .lit4 and .lit8 sections are only used if permitted by the
5853 -G argument. */
5854 if (arg->token->type != OT_FLOAT)
5855 {
5856 set_insn_error (arg->argnum, _("floating-point expression required"));
5857 return FALSE;
5858 }
5859
5860 gas_assert (arg->token->u.flt.length == length);
5861 data = arg->token->u.flt.data;
5862 ++arg->token;
5863
5864 /* Handle 32-bit constants for which an immediate value is best. */
5865 if (length == 4
5866 && (using_gprs
5867 || g_switch_value < 4
5868 || (data[0] == 0 && data[1] == 0)
5869 || (data[2] == 0 && data[3] == 0)))
5870 {
5871 imm->X_op = O_constant;
5872 if (!target_big_endian)
5873 imm->X_add_number = bfd_getl32 (data);
5874 else
5875 imm->X_add_number = bfd_getb32 (data);
5876 offset->X_op = O_absent;
5877 return TRUE;
5878 }
5879
5880 /* Handle 64-bit constants for which an immediate value is best. */
5881 if (length == 8
5882 && !mips_disable_float_construction
5883 /* Constants can only be constructed in GPRs and copied to FPRs if the
5884 GPRs are at least as wide as the FPRs or MTHC1 is available.
5885 Unlike most tests for 32-bit floating-point registers this check
5886 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
5887 permit 64-bit moves without MXHC1.
5888 Force the constant into memory otherwise. */
5889 && (using_gprs
5890 || GPR_SIZE == 64
5891 || ISA_HAS_MXHC1 (mips_opts.isa)
5892 || FPR_SIZE == 32)
5893 && ((data[0] == 0 && data[1] == 0)
5894 || (data[2] == 0 && data[3] == 0))
5895 && ((data[4] == 0 && data[5] == 0)
5896 || (data[6] == 0 && data[7] == 0)))
5897 {
5898 /* The value is simple enough to load with a couple of instructions.
5899 If using 32-bit registers, set IMM to the high order 32 bits and
5900 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
5901 64 bit constant. */
5902 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
5903 {
5904 imm->X_op = O_constant;
5905 offset->X_op = O_constant;
5906 if (!target_big_endian)
5907 {
5908 imm->X_add_number = bfd_getl32 (data + 4);
5909 offset->X_add_number = bfd_getl32 (data);
5910 }
5911 else
5912 {
5913 imm->X_add_number = bfd_getb32 (data);
5914 offset->X_add_number = bfd_getb32 (data + 4);
5915 }
5916 if (offset->X_add_number == 0)
5917 offset->X_op = O_absent;
5918 }
5919 else
5920 {
5921 imm->X_op = O_constant;
5922 if (!target_big_endian)
5923 imm->X_add_number = bfd_getl64 (data);
5924 else
5925 imm->X_add_number = bfd_getb64 (data);
5926 offset->X_op = O_absent;
5927 }
5928 return TRUE;
5929 }
5930
5931 /* Switch to the right section. */
5932 seg = now_seg;
5933 subseg = now_subseg;
5934 if (length == 4)
5935 {
5936 gas_assert (!using_gprs && g_switch_value >= 4);
5937 newname = ".lit4";
5938 }
5939 else
5940 {
5941 if (using_gprs || g_switch_value < 8)
5942 newname = RDATA_SECTION_NAME;
5943 else
5944 newname = ".lit8";
5945 }
5946
5947 new_seg = subseg_new (newname, (subsegT) 0);
5948 bfd_set_section_flags (stdoutput, new_seg,
5949 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
5950 frag_align (length == 4 ? 2 : 3, 0, 0);
5951 if (strncmp (TARGET_OS, "elf", 3) != 0)
5952 record_alignment (new_seg, 4);
5953 else
5954 record_alignment (new_seg, length == 4 ? 2 : 3);
5955 if (seg == now_seg)
5956 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
5957
5958 /* Set the argument to the current address in the section. */
5959 imm->X_op = O_absent;
5960 offset->X_op = O_symbol;
5961 offset->X_add_symbol = symbol_temp_new_now ();
5962 offset->X_add_number = 0;
5963
5964 /* Put the floating point number into the section. */
5965 p = frag_more (length);
5966 memcpy (p, data, length);
5967
5968 /* Switch back to the original section. */
5969 subseg_set (seg, subseg);
5970 return TRUE;
5971 }
5972
5973 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
5974 them. */
5975
5976 static bfd_boolean
5977 match_vu0_suffix_operand (struct mips_arg_info *arg,
5978 const struct mips_operand *operand,
5979 bfd_boolean match_p)
5980 {
5981 unsigned int uval;
5982
5983 /* The operand can be an XYZW mask or a single 2-bit channel index
5984 (with X being 0). */
5985 gas_assert (operand->size == 2 || operand->size == 4);
5986
5987 /* The suffix can be omitted when it is already part of the opcode. */
5988 if (arg->token->type != OT_CHANNELS)
5989 return match_p;
5990
5991 uval = arg->token->u.channels;
5992 if (operand->size == 2)
5993 {
5994 /* Check that a single bit is set and convert it into a 2-bit index. */
5995 if ((uval & -uval) != uval)
5996 return FALSE;
5997 uval = 4 - ffs (uval);
5998 }
5999
6000 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6001 return FALSE;
6002
6003 ++arg->token;
6004 if (!match_p)
6005 insn_insert_operand (arg->insn, operand, uval);
6006 return TRUE;
6007 }
6008
6009 /* S is the text seen for ARG. Match it against OPERAND. Return the end
6010 of the argument text if the match is successful, otherwise return null. */
6011
6012 static bfd_boolean
6013 match_operand (struct mips_arg_info *arg,
6014 const struct mips_operand *operand)
6015 {
6016 switch (operand->type)
6017 {
6018 case OP_INT:
6019 return match_int_operand (arg, operand);
6020
6021 case OP_MAPPED_INT:
6022 return match_mapped_int_operand (arg, operand);
6023
6024 case OP_MSB:
6025 return match_msb_operand (arg, operand);
6026
6027 case OP_REG:
6028 case OP_OPTIONAL_REG:
6029 return match_reg_operand (arg, operand);
6030
6031 case OP_REG_PAIR:
6032 return match_reg_pair_operand (arg, operand);
6033
6034 case OP_PCREL:
6035 return match_pcrel_operand (arg);
6036
6037 case OP_PERF_REG:
6038 return match_perf_reg_operand (arg, operand);
6039
6040 case OP_ADDIUSP_INT:
6041 return match_addiusp_operand (arg, operand);
6042
6043 case OP_CLO_CLZ_DEST:
6044 return match_clo_clz_dest_operand (arg, operand);
6045
6046 case OP_LWM_SWM_LIST:
6047 return match_lwm_swm_list_operand (arg, operand);
6048
6049 case OP_ENTRY_EXIT_LIST:
6050 return match_entry_exit_operand (arg, operand);
6051
6052 case OP_SAVE_RESTORE_LIST:
6053 return match_save_restore_list_operand (arg);
6054
6055 case OP_MDMX_IMM_REG:
6056 return match_mdmx_imm_reg_operand (arg, operand);
6057
6058 case OP_REPEAT_DEST_REG:
6059 return match_tied_reg_operand (arg, arg->dest_regno);
6060
6061 case OP_REPEAT_PREV_REG:
6062 return match_tied_reg_operand (arg, arg->last_regno);
6063
6064 case OP_PC:
6065 return match_pc_operand (arg);
6066
6067 case OP_VU0_SUFFIX:
6068 return match_vu0_suffix_operand (arg, operand, FALSE);
6069
6070 case OP_VU0_MATCH_SUFFIX:
6071 return match_vu0_suffix_operand (arg, operand, TRUE);
6072
6073 case OP_IMM_INDEX:
6074 return match_imm_index_operand (arg, operand);
6075
6076 case OP_REG_INDEX:
6077 return match_reg_index_operand (arg, operand);
6078
6079 case OP_SAME_RS_RT:
6080 return match_same_rs_rt_operand (arg, operand);
6081
6082 case OP_CHECK_PREV:
6083 return match_check_prev_operand (arg, operand);
6084
6085 case OP_NON_ZERO_REG:
6086 return match_non_zero_reg_operand (arg, operand);
6087 }
6088 abort ();
6089 }
6090
6091 /* ARG is the state after successfully matching an instruction.
6092 Issue any queued-up warnings. */
6093
6094 static void
6095 check_completed_insn (struct mips_arg_info *arg)
6096 {
6097 if (arg->seen_at)
6098 {
6099 if (AT == ATREG)
6100 as_warn (_("used $at without \".set noat\""));
6101 else
6102 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6103 }
6104 }
6105
6106 /* Return true if modifying general-purpose register REG needs a delay. */
6107
6108 static bfd_boolean
6109 reg_needs_delay (unsigned int reg)
6110 {
6111 unsigned long prev_pinfo;
6112
6113 prev_pinfo = history[0].insn_mo->pinfo;
6114 if (!mips_opts.noreorder
6115 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6116 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6117 && (gpr_write_mask (&history[0]) & (1 << reg)))
6118 return TRUE;
6119
6120 return FALSE;
6121 }
6122
6123 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6124 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6125 by VR4120 errata. */
6126
6127 static unsigned int
6128 classify_vr4120_insn (const char *name)
6129 {
6130 if (strncmp (name, "macc", 4) == 0)
6131 return FIX_VR4120_MACC;
6132 if (strncmp (name, "dmacc", 5) == 0)
6133 return FIX_VR4120_DMACC;
6134 if (strncmp (name, "mult", 4) == 0)
6135 return FIX_VR4120_MULT;
6136 if (strncmp (name, "dmult", 5) == 0)
6137 return FIX_VR4120_DMULT;
6138 if (strstr (name, "div"))
6139 return FIX_VR4120_DIV;
6140 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6141 return FIX_VR4120_MTHILO;
6142 return NUM_FIX_VR4120_CLASSES;
6143 }
6144
6145 #define INSN_ERET 0x42000018
6146 #define INSN_DERET 0x4200001f
6147 #define INSN_DMULT 0x1c
6148 #define INSN_DMULTU 0x1d
6149
6150 /* Return the number of instructions that must separate INSN1 and INSN2,
6151 where INSN1 is the earlier instruction. Return the worst-case value
6152 for any INSN2 if INSN2 is null. */
6153
6154 static unsigned int
6155 insns_between (const struct mips_cl_insn *insn1,
6156 const struct mips_cl_insn *insn2)
6157 {
6158 unsigned long pinfo1, pinfo2;
6159 unsigned int mask;
6160
6161 /* If INFO2 is null, pessimistically assume that all flags are set for
6162 the second instruction. */
6163 pinfo1 = insn1->insn_mo->pinfo;
6164 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6165
6166 /* For most targets, write-after-read dependencies on the HI and LO
6167 registers must be separated by at least two instructions. */
6168 if (!hilo_interlocks)
6169 {
6170 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6171 return 2;
6172 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6173 return 2;
6174 }
6175
6176 /* If we're working around r7000 errata, there must be two instructions
6177 between an mfhi or mflo and any instruction that uses the result. */
6178 if (mips_7000_hilo_fix
6179 && !mips_opts.micromips
6180 && MF_HILO_INSN (pinfo1)
6181 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6182 return 2;
6183
6184 /* If we're working around 24K errata, one instruction is required
6185 if an ERET or DERET is followed by a branch instruction. */
6186 if (mips_fix_24k && !mips_opts.micromips)
6187 {
6188 if (insn1->insn_opcode == INSN_ERET
6189 || insn1->insn_opcode == INSN_DERET)
6190 {
6191 if (insn2 == NULL
6192 || insn2->insn_opcode == INSN_ERET
6193 || insn2->insn_opcode == INSN_DERET
6194 || delayed_branch_p (insn2))
6195 return 1;
6196 }
6197 }
6198
6199 /* If we're working around PMC RM7000 errata, there must be three
6200 nops between a dmult and a load instruction. */
6201 if (mips_fix_rm7000 && !mips_opts.micromips)
6202 {
6203 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6204 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6205 {
6206 if (pinfo2 & INSN_LOAD_MEMORY)
6207 return 3;
6208 }
6209 }
6210
6211 /* If working around VR4120 errata, check for combinations that need
6212 a single intervening instruction. */
6213 if (mips_fix_vr4120 && !mips_opts.micromips)
6214 {
6215 unsigned int class1, class2;
6216
6217 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6218 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6219 {
6220 if (insn2 == NULL)
6221 return 1;
6222 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6223 if (vr4120_conflicts[class1] & (1 << class2))
6224 return 1;
6225 }
6226 }
6227
6228 if (!HAVE_CODE_COMPRESSION)
6229 {
6230 /* Check for GPR or coprocessor load delays. All such delays
6231 are on the RT register. */
6232 /* Itbl support may require additional care here. */
6233 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6234 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6235 {
6236 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6237 return 1;
6238 }
6239
6240 /* Check for generic coprocessor hazards.
6241
6242 This case is not handled very well. There is no special
6243 knowledge of CP0 handling, and the coprocessors other than
6244 the floating point unit are not distinguished at all. */
6245 /* Itbl support may require additional care here. FIXME!
6246 Need to modify this to include knowledge about
6247 user specified delays! */
6248 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6249 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6250 {
6251 /* Handle cases where INSN1 writes to a known general coprocessor
6252 register. There must be a one instruction delay before INSN2
6253 if INSN2 reads that register, otherwise no delay is needed. */
6254 mask = fpr_write_mask (insn1);
6255 if (mask != 0)
6256 {
6257 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6258 return 1;
6259 }
6260 else
6261 {
6262 /* Read-after-write dependencies on the control registers
6263 require a two-instruction gap. */
6264 if ((pinfo1 & INSN_WRITE_COND_CODE)
6265 && (pinfo2 & INSN_READ_COND_CODE))
6266 return 2;
6267
6268 /* We don't know exactly what INSN1 does. If INSN2 is
6269 also a coprocessor instruction, assume there must be
6270 a one instruction gap. */
6271 if (pinfo2 & INSN_COP)
6272 return 1;
6273 }
6274 }
6275
6276 /* Check for read-after-write dependencies on the coprocessor
6277 control registers in cases where INSN1 does not need a general
6278 coprocessor delay. This means that INSN1 is a floating point
6279 comparison instruction. */
6280 /* Itbl support may require additional care here. */
6281 else if (!cop_interlocks
6282 && (pinfo1 & INSN_WRITE_COND_CODE)
6283 && (pinfo2 & INSN_READ_COND_CODE))
6284 return 1;
6285 }
6286
6287 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6288 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6289 and pause. */
6290 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6291 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6292 || (insn2 && delayed_branch_p (insn2))))
6293 return 1;
6294
6295 return 0;
6296 }
6297
6298 /* Return the number of nops that would be needed to work around the
6299 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6300 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6301 that are contained within the first IGNORE instructions of HIST. */
6302
6303 static int
6304 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6305 const struct mips_cl_insn *insn)
6306 {
6307 int i, j;
6308 unsigned int mask;
6309
6310 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6311 are not affected by the errata. */
6312 if (insn != 0
6313 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6314 || strcmp (insn->insn_mo->name, "mtlo") == 0
6315 || strcmp (insn->insn_mo->name, "mthi") == 0))
6316 return 0;
6317
6318 /* Search for the first MFLO or MFHI. */
6319 for (i = 0; i < MAX_VR4130_NOPS; i++)
6320 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6321 {
6322 /* Extract the destination register. */
6323 mask = gpr_write_mask (&hist[i]);
6324
6325 /* No nops are needed if INSN reads that register. */
6326 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6327 return 0;
6328
6329 /* ...or if any of the intervening instructions do. */
6330 for (j = 0; j < i; j++)
6331 if (gpr_read_mask (&hist[j]) & mask)
6332 return 0;
6333
6334 if (i >= ignore)
6335 return MAX_VR4130_NOPS - i;
6336 }
6337 return 0;
6338 }
6339
6340 #define BASE_REG_EQ(INSN1, INSN2) \
6341 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6342 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6343
6344 /* Return the minimum alignment for this store instruction. */
6345
6346 static int
6347 fix_24k_align_to (const struct mips_opcode *mo)
6348 {
6349 if (strcmp (mo->name, "sh") == 0)
6350 return 2;
6351
6352 if (strcmp (mo->name, "swc1") == 0
6353 || strcmp (mo->name, "swc2") == 0
6354 || strcmp (mo->name, "sw") == 0
6355 || strcmp (mo->name, "sc") == 0
6356 || strcmp (mo->name, "s.s") == 0)
6357 return 4;
6358
6359 if (strcmp (mo->name, "sdc1") == 0
6360 || strcmp (mo->name, "sdc2") == 0
6361 || strcmp (mo->name, "s.d") == 0)
6362 return 8;
6363
6364 /* sb, swl, swr */
6365 return 1;
6366 }
6367
6368 struct fix_24k_store_info
6369 {
6370 /* Immediate offset, if any, for this store instruction. */
6371 short off;
6372 /* Alignment required by this store instruction. */
6373 int align_to;
6374 /* True for register offsets. */
6375 int register_offset;
6376 };
6377
6378 /* Comparison function used by qsort. */
6379
6380 static int
6381 fix_24k_sort (const void *a, const void *b)
6382 {
6383 const struct fix_24k_store_info *pos1 = a;
6384 const struct fix_24k_store_info *pos2 = b;
6385
6386 return (pos1->off - pos2->off);
6387 }
6388
6389 /* INSN is a store instruction. Try to record the store information
6390 in STINFO. Return false if the information isn't known. */
6391
6392 static bfd_boolean
6393 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6394 const struct mips_cl_insn *insn)
6395 {
6396 /* The instruction must have a known offset. */
6397 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6398 return FALSE;
6399
6400 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6401 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6402 return TRUE;
6403 }
6404
6405 /* Return the number of nops that would be needed to work around the 24k
6406 "lost data on stores during refill" errata if instruction INSN
6407 immediately followed the 2 instructions described by HIST.
6408 Ignore hazards that are contained within the first IGNORE
6409 instructions of HIST.
6410
6411 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6412 for the data cache refills and store data. The following describes
6413 the scenario where the store data could be lost.
6414
6415 * A data cache miss, due to either a load or a store, causing fill
6416 data to be supplied by the memory subsystem
6417 * The first three doublewords of fill data are returned and written
6418 into the cache
6419 * A sequence of four stores occurs in consecutive cycles around the
6420 final doubleword of the fill:
6421 * Store A
6422 * Store B
6423 * Store C
6424 * Zero, One or more instructions
6425 * Store D
6426
6427 The four stores A-D must be to different doublewords of the line that
6428 is being filled. The fourth instruction in the sequence above permits
6429 the fill of the final doubleword to be transferred from the FSB into
6430 the cache. In the sequence above, the stores may be either integer
6431 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6432 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6433 different doublewords on the line. If the floating point unit is
6434 running in 1:2 mode, it is not possible to create the sequence above
6435 using only floating point store instructions.
6436
6437 In this case, the cache line being filled is incorrectly marked
6438 invalid, thereby losing the data from any store to the line that
6439 occurs between the original miss and the completion of the five
6440 cycle sequence shown above.
6441
6442 The workarounds are:
6443
6444 * Run the data cache in write-through mode.
6445 * Insert a non-store instruction between
6446 Store A and Store B or Store B and Store C. */
6447
6448 static int
6449 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6450 const struct mips_cl_insn *insn)
6451 {
6452 struct fix_24k_store_info pos[3];
6453 int align, i, base_offset;
6454
6455 if (ignore >= 2)
6456 return 0;
6457
6458 /* If the previous instruction wasn't a store, there's nothing to
6459 worry about. */
6460 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6461 return 0;
6462
6463 /* If the instructions after the previous one are unknown, we have
6464 to assume the worst. */
6465 if (!insn)
6466 return 1;
6467
6468 /* Check whether we are dealing with three consecutive stores. */
6469 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6470 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6471 return 0;
6472
6473 /* If we don't know the relationship between the store addresses,
6474 assume the worst. */
6475 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6476 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6477 return 1;
6478
6479 if (!fix_24k_record_store_info (&pos[0], insn)
6480 || !fix_24k_record_store_info (&pos[1], &hist[0])
6481 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6482 return 1;
6483
6484 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6485
6486 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6487 X bytes and such that the base register + X is known to be aligned
6488 to align bytes. */
6489
6490 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6491 align = 8;
6492 else
6493 {
6494 align = pos[0].align_to;
6495 base_offset = pos[0].off;
6496 for (i = 1; i < 3; i++)
6497 if (align < pos[i].align_to)
6498 {
6499 align = pos[i].align_to;
6500 base_offset = pos[i].off;
6501 }
6502 for (i = 0; i < 3; i++)
6503 pos[i].off -= base_offset;
6504 }
6505
6506 pos[0].off &= ~align + 1;
6507 pos[1].off &= ~align + 1;
6508 pos[2].off &= ~align + 1;
6509
6510 /* If any two stores write to the same chunk, they also write to the
6511 same doubleword. The offsets are still sorted at this point. */
6512 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6513 return 0;
6514
6515 /* A range of at least 9 bytes is needed for the stores to be in
6516 non-overlapping doublewords. */
6517 if (pos[2].off - pos[0].off <= 8)
6518 return 0;
6519
6520 if (pos[2].off - pos[1].off >= 24
6521 || pos[1].off - pos[0].off >= 24
6522 || pos[2].off - pos[0].off >= 32)
6523 return 0;
6524
6525 return 1;
6526 }
6527
6528 /* Return the number of nops that would be needed if instruction INSN
6529 immediately followed the MAX_NOPS instructions given by HIST,
6530 where HIST[0] is the most recent instruction. Ignore hazards
6531 between INSN and the first IGNORE instructions in HIST.
6532
6533 If INSN is null, return the worse-case number of nops for any
6534 instruction. */
6535
6536 static int
6537 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6538 const struct mips_cl_insn *insn)
6539 {
6540 int i, nops, tmp_nops;
6541
6542 nops = 0;
6543 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6544 {
6545 tmp_nops = insns_between (hist + i, insn) - i;
6546 if (tmp_nops > nops)
6547 nops = tmp_nops;
6548 }
6549
6550 if (mips_fix_vr4130 && !mips_opts.micromips)
6551 {
6552 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6553 if (tmp_nops > nops)
6554 nops = tmp_nops;
6555 }
6556
6557 if (mips_fix_24k && !mips_opts.micromips)
6558 {
6559 tmp_nops = nops_for_24k (ignore, hist, insn);
6560 if (tmp_nops > nops)
6561 nops = tmp_nops;
6562 }
6563
6564 return nops;
6565 }
6566
6567 /* The variable arguments provide NUM_INSNS extra instructions that
6568 might be added to HIST. Return the largest number of nops that
6569 would be needed after the extended sequence, ignoring hazards
6570 in the first IGNORE instructions. */
6571
6572 static int
6573 nops_for_sequence (int num_insns, int ignore,
6574 const struct mips_cl_insn *hist, ...)
6575 {
6576 va_list args;
6577 struct mips_cl_insn buffer[MAX_NOPS];
6578 struct mips_cl_insn *cursor;
6579 int nops;
6580
6581 va_start (args, hist);
6582 cursor = buffer + num_insns;
6583 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6584 while (cursor > buffer)
6585 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6586
6587 nops = nops_for_insn (ignore, buffer, NULL);
6588 va_end (args);
6589 return nops;
6590 }
6591
6592 /* Like nops_for_insn, but if INSN is a branch, take into account the
6593 worst-case delay for the branch target. */
6594
6595 static int
6596 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6597 const struct mips_cl_insn *insn)
6598 {
6599 int nops, tmp_nops;
6600
6601 nops = nops_for_insn (ignore, hist, insn);
6602 if (delayed_branch_p (insn))
6603 {
6604 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6605 hist, insn, get_delay_slot_nop (insn));
6606 if (tmp_nops > nops)
6607 nops = tmp_nops;
6608 }
6609 else if (compact_branch_p (insn))
6610 {
6611 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6612 if (tmp_nops > nops)
6613 nops = tmp_nops;
6614 }
6615 return nops;
6616 }
6617
6618 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6619
6620 static void
6621 fix_loongson2f_nop (struct mips_cl_insn * ip)
6622 {
6623 gas_assert (!HAVE_CODE_COMPRESSION);
6624 if (strcmp (ip->insn_mo->name, "nop") == 0)
6625 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6626 }
6627
6628 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6629 jr target pc &= 'hffff_ffff_cfff_ffff. */
6630
6631 static void
6632 fix_loongson2f_jump (struct mips_cl_insn * ip)
6633 {
6634 gas_assert (!HAVE_CODE_COMPRESSION);
6635 if (strcmp (ip->insn_mo->name, "j") == 0
6636 || strcmp (ip->insn_mo->name, "jr") == 0
6637 || strcmp (ip->insn_mo->name, "jalr") == 0)
6638 {
6639 int sreg;
6640 expressionS ep;
6641
6642 if (! mips_opts.at)
6643 return;
6644
6645 sreg = EXTRACT_OPERAND (0, RS, *ip);
6646 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6647 return;
6648
6649 ep.X_op = O_constant;
6650 ep.X_add_number = 0xcfff0000;
6651 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6652 ep.X_add_number = 0xffff;
6653 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6654 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6655 }
6656 }
6657
6658 static void
6659 fix_loongson2f (struct mips_cl_insn * ip)
6660 {
6661 if (mips_fix_loongson2f_nop)
6662 fix_loongson2f_nop (ip);
6663
6664 if (mips_fix_loongson2f_jump)
6665 fix_loongson2f_jump (ip);
6666 }
6667
6668 /* IP is a branch that has a delay slot, and we need to fill it
6669 automatically. Return true if we can do that by swapping IP
6670 with the previous instruction.
6671 ADDRESS_EXPR is an operand of the instruction to be used with
6672 RELOC_TYPE. */
6673
6674 static bfd_boolean
6675 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6676 bfd_reloc_code_real_type *reloc_type)
6677 {
6678 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
6679 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
6680 unsigned int fpr_read, prev_fpr_write;
6681
6682 /* -O2 and above is required for this optimization. */
6683 if (mips_optimize < 2)
6684 return FALSE;
6685
6686 /* If we have seen .set volatile or .set nomove, don't optimize. */
6687 if (mips_opts.nomove)
6688 return FALSE;
6689
6690 /* We can't swap if the previous instruction's position is fixed. */
6691 if (history[0].fixed_p)
6692 return FALSE;
6693
6694 /* If the previous previous insn was in a .set noreorder, we can't
6695 swap. Actually, the MIPS assembler will swap in this situation.
6696 However, gcc configured -with-gnu-as will generate code like
6697
6698 .set noreorder
6699 lw $4,XXX
6700 .set reorder
6701 INSN
6702 bne $4,$0,foo
6703
6704 in which we can not swap the bne and INSN. If gcc is not configured
6705 -with-gnu-as, it does not output the .set pseudo-ops. */
6706 if (history[1].noreorder_p)
6707 return FALSE;
6708
6709 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
6710 This means that the previous instruction was a 4-byte one anyhow. */
6711 if (mips_opts.mips16 && history[0].fixp[0])
6712 return FALSE;
6713
6714 /* If the branch is itself the target of a branch, we can not swap.
6715 We cheat on this; all we check for is whether there is a label on
6716 this instruction. If there are any branches to anything other than
6717 a label, users must use .set noreorder. */
6718 if (seg_info (now_seg)->label_list)
6719 return FALSE;
6720
6721 /* If the previous instruction is in a variant frag other than this
6722 branch's one, we cannot do the swap. This does not apply to
6723 MIPS16 code, which uses variant frags for different purposes. */
6724 if (!mips_opts.mips16
6725 && history[0].frag
6726 && history[0].frag->fr_type == rs_machine_dependent)
6727 return FALSE;
6728
6729 /* We do not swap with instructions that cannot architecturally
6730 be placed in a branch delay slot, such as SYNC or ERET. We
6731 also refrain from swapping with a trap instruction, since it
6732 complicates trap handlers to have the trap instruction be in
6733 a delay slot. */
6734 prev_pinfo = history[0].insn_mo->pinfo;
6735 if (prev_pinfo & INSN_NO_DELAY_SLOT)
6736 return FALSE;
6737
6738 /* Check for conflicts between the branch and the instructions
6739 before the candidate delay slot. */
6740 if (nops_for_insn (0, history + 1, ip) > 0)
6741 return FALSE;
6742
6743 /* Check for conflicts between the swapped sequence and the
6744 target of the branch. */
6745 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
6746 return FALSE;
6747
6748 /* If the branch reads a register that the previous
6749 instruction sets, we can not swap. */
6750 gpr_read = gpr_read_mask (ip);
6751 prev_gpr_write = gpr_write_mask (&history[0]);
6752 if (gpr_read & prev_gpr_write)
6753 return FALSE;
6754
6755 fpr_read = fpr_read_mask (ip);
6756 prev_fpr_write = fpr_write_mask (&history[0]);
6757 if (fpr_read & prev_fpr_write)
6758 return FALSE;
6759
6760 /* If the branch writes a register that the previous
6761 instruction sets, we can not swap. */
6762 gpr_write = gpr_write_mask (ip);
6763 if (gpr_write & prev_gpr_write)
6764 return FALSE;
6765
6766 /* If the branch writes a register that the previous
6767 instruction reads, we can not swap. */
6768 prev_gpr_read = gpr_read_mask (&history[0]);
6769 if (gpr_write & prev_gpr_read)
6770 return FALSE;
6771
6772 /* If one instruction sets a condition code and the
6773 other one uses a condition code, we can not swap. */
6774 pinfo = ip->insn_mo->pinfo;
6775 if ((pinfo & INSN_READ_COND_CODE)
6776 && (prev_pinfo & INSN_WRITE_COND_CODE))
6777 return FALSE;
6778 if ((pinfo & INSN_WRITE_COND_CODE)
6779 && (prev_pinfo & INSN_READ_COND_CODE))
6780 return FALSE;
6781
6782 /* If the previous instruction uses the PC, we can not swap. */
6783 prev_pinfo2 = history[0].insn_mo->pinfo2;
6784 if (prev_pinfo2 & INSN2_READ_PC)
6785 return FALSE;
6786
6787 /* If the previous instruction has an incorrect size for a fixed
6788 branch delay slot in microMIPS mode, we cannot swap. */
6789 pinfo2 = ip->insn_mo->pinfo2;
6790 if (mips_opts.micromips
6791 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
6792 && insn_length (history) != 2)
6793 return FALSE;
6794 if (mips_opts.micromips
6795 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
6796 && insn_length (history) != 4)
6797 return FALSE;
6798
6799 /* On R5900 short loops need to be fixed by inserting a nop in
6800 the branch delay slots.
6801 A short loop can be terminated too early. */
6802 if (mips_opts.arch == CPU_R5900
6803 /* Check if instruction has a parameter, ignore "j $31". */
6804 && (address_expr != NULL)
6805 /* Parameter must be 16 bit. */
6806 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
6807 /* Branch to same segment. */
6808 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
6809 /* Branch to same code fragment. */
6810 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
6811 /* Can only calculate branch offset if value is known. */
6812 && symbol_constant_p (address_expr->X_add_symbol)
6813 /* Check if branch is really conditional. */
6814 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
6815 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
6816 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
6817 {
6818 int distance;
6819 /* Check if loop is shorter than 6 instructions including
6820 branch and delay slot. */
6821 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
6822 if (distance <= 20)
6823 {
6824 int i;
6825 int rv;
6826
6827 rv = FALSE;
6828 /* When the loop includes branches or jumps,
6829 it is not a short loop. */
6830 for (i = 0; i < (distance / 4); i++)
6831 {
6832 if ((history[i].cleared_p)
6833 || delayed_branch_p (&history[i]))
6834 {
6835 rv = TRUE;
6836 break;
6837 }
6838 }
6839 if (rv == FALSE)
6840 {
6841 /* Insert nop after branch to fix short loop. */
6842 return FALSE;
6843 }
6844 }
6845 }
6846
6847 return TRUE;
6848 }
6849
6850 /* Decide how we should add IP to the instruction stream.
6851 ADDRESS_EXPR is an operand of the instruction to be used with
6852 RELOC_TYPE. */
6853
6854 static enum append_method
6855 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
6856 bfd_reloc_code_real_type *reloc_type)
6857 {
6858 /* The relaxed version of a macro sequence must be inherently
6859 hazard-free. */
6860 if (mips_relax.sequence == 2)
6861 return APPEND_ADD;
6862
6863 /* We must not dabble with instructions in a ".set noreorder" block. */
6864 if (mips_opts.noreorder)
6865 return APPEND_ADD;
6866
6867 /* Otherwise, it's our responsibility to fill branch delay slots. */
6868 if (delayed_branch_p (ip))
6869 {
6870 if (!branch_likely_p (ip)
6871 && can_swap_branch_p (ip, address_expr, reloc_type))
6872 return APPEND_SWAP;
6873
6874 if (mips_opts.mips16
6875 && ISA_SUPPORTS_MIPS16E
6876 && gpr_read_mask (ip) != 0)
6877 return APPEND_ADD_COMPACT;
6878
6879 if (mips_opts.micromips
6880 && ((ip->insn_opcode & 0xffe0) == 0x4580
6881 || (!forced_insn_length
6882 && ((ip->insn_opcode & 0xfc00) == 0xcc00
6883 || (ip->insn_opcode & 0xdc00) == 0x8c00))
6884 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
6885 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
6886 return APPEND_ADD_COMPACT;
6887
6888 return APPEND_ADD_WITH_NOP;
6889 }
6890
6891 return APPEND_ADD;
6892 }
6893
6894 /* IP is an instruction whose opcode we have just changed, END points
6895 to the end of the opcode table processed. Point IP->insn_mo to the
6896 new opcode's definition. */
6897
6898 static void
6899 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
6900 {
6901 const struct mips_opcode *mo;
6902
6903 for (mo = ip->insn_mo; mo < end; mo++)
6904 if (mo->pinfo != INSN_MACRO
6905 && (ip->insn_opcode & mo->mask) == mo->match)
6906 {
6907 ip->insn_mo = mo;
6908 return;
6909 }
6910 abort ();
6911 }
6912
6913 /* IP is a MIPS16 instruction whose opcode we have just changed.
6914 Point IP->insn_mo to the new opcode's definition. */
6915
6916 static void
6917 find_altered_mips16_opcode (struct mips_cl_insn *ip)
6918 {
6919 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
6920 }
6921
6922 /* IP is a microMIPS instruction whose opcode we have just changed.
6923 Point IP->insn_mo to the new opcode's definition. */
6924
6925 static void
6926 find_altered_micromips_opcode (struct mips_cl_insn *ip)
6927 {
6928 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
6929 }
6930
6931 /* For microMIPS macros, we need to generate a local number label
6932 as the target of branches. */
6933 #define MICROMIPS_LABEL_CHAR '\037'
6934 static unsigned long micromips_target_label;
6935 static char micromips_target_name[32];
6936
6937 static char *
6938 micromips_label_name (void)
6939 {
6940 char *p = micromips_target_name;
6941 char symbol_name_temporary[24];
6942 unsigned long l;
6943 int i;
6944
6945 if (*p)
6946 return p;
6947
6948 i = 0;
6949 l = micromips_target_label;
6950 #ifdef LOCAL_LABEL_PREFIX
6951 *p++ = LOCAL_LABEL_PREFIX;
6952 #endif
6953 *p++ = 'L';
6954 *p++ = MICROMIPS_LABEL_CHAR;
6955 do
6956 {
6957 symbol_name_temporary[i++] = l % 10 + '0';
6958 l /= 10;
6959 }
6960 while (l != 0);
6961 while (i > 0)
6962 *p++ = symbol_name_temporary[--i];
6963 *p = '\0';
6964
6965 return micromips_target_name;
6966 }
6967
6968 static void
6969 micromips_label_expr (expressionS *label_expr)
6970 {
6971 label_expr->X_op = O_symbol;
6972 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
6973 label_expr->X_add_number = 0;
6974 }
6975
6976 static void
6977 micromips_label_inc (void)
6978 {
6979 micromips_target_label++;
6980 *micromips_target_name = '\0';
6981 }
6982
6983 static void
6984 micromips_add_label (void)
6985 {
6986 symbolS *s;
6987
6988 s = colon (micromips_label_name ());
6989 micromips_label_inc ();
6990 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
6991 }
6992
6993 /* If assembling microMIPS code, then return the microMIPS reloc
6994 corresponding to the requested one if any. Otherwise return
6995 the reloc unchanged. */
6996
6997 static bfd_reloc_code_real_type
6998 micromips_map_reloc (bfd_reloc_code_real_type reloc)
6999 {
7000 static const bfd_reloc_code_real_type relocs[][2] =
7001 {
7002 /* Keep sorted incrementally by the left-hand key. */
7003 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7004 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7005 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7006 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7007 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7008 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7009 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7010 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7011 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7012 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7013 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7014 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7015 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7016 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7017 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7018 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7019 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7020 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7021 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7022 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7023 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7024 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7025 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7026 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7027 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7028 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7029 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7030 };
7031 bfd_reloc_code_real_type r;
7032 size_t i;
7033
7034 if (!mips_opts.micromips)
7035 return reloc;
7036 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7037 {
7038 r = relocs[i][0];
7039 if (r > reloc)
7040 return reloc;
7041 if (r == reloc)
7042 return relocs[i][1];
7043 }
7044 return reloc;
7045 }
7046
7047 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7048 Return true on success, storing the resolved value in RESULT. */
7049
7050 static bfd_boolean
7051 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7052 offsetT *result)
7053 {
7054 switch (reloc)
7055 {
7056 case BFD_RELOC_MIPS_HIGHEST:
7057 case BFD_RELOC_MICROMIPS_HIGHEST:
7058 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7059 return TRUE;
7060
7061 case BFD_RELOC_MIPS_HIGHER:
7062 case BFD_RELOC_MICROMIPS_HIGHER:
7063 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7064 return TRUE;
7065
7066 case BFD_RELOC_HI16_S:
7067 case BFD_RELOC_HI16_S_PCREL:
7068 case BFD_RELOC_MICROMIPS_HI16_S:
7069 case BFD_RELOC_MIPS16_HI16_S:
7070 *result = ((operand + 0x8000) >> 16) & 0xffff;
7071 return TRUE;
7072
7073 case BFD_RELOC_HI16:
7074 case BFD_RELOC_MICROMIPS_HI16:
7075 case BFD_RELOC_MIPS16_HI16:
7076 *result = (operand >> 16) & 0xffff;
7077 return TRUE;
7078
7079 case BFD_RELOC_LO16:
7080 case BFD_RELOC_LO16_PCREL:
7081 case BFD_RELOC_MICROMIPS_LO16:
7082 case BFD_RELOC_MIPS16_LO16:
7083 *result = operand & 0xffff;
7084 return TRUE;
7085
7086 case BFD_RELOC_UNUSED:
7087 *result = operand;
7088 return TRUE;
7089
7090 default:
7091 return FALSE;
7092 }
7093 }
7094
7095 /* Output an instruction. IP is the instruction information.
7096 ADDRESS_EXPR is an operand of the instruction to be used with
7097 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7098 a macro expansion. */
7099
7100 static void
7101 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7102 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7103 {
7104 unsigned long prev_pinfo2, pinfo;
7105 bfd_boolean relaxed_branch = FALSE;
7106 enum append_method method;
7107 bfd_boolean relax32;
7108 int branch_disp;
7109
7110 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7111 fix_loongson2f (ip);
7112
7113 file_ase_mips16 |= mips_opts.mips16;
7114 file_ase_micromips |= mips_opts.micromips;
7115
7116 prev_pinfo2 = history[0].insn_mo->pinfo2;
7117 pinfo = ip->insn_mo->pinfo;
7118
7119 /* Don't raise alarm about `nods' frags as they'll fill in the right
7120 kind of nop in relaxation if required. */
7121 if (mips_opts.micromips
7122 && !expansionp
7123 && !(history[0].frag
7124 && history[0].frag->fr_type == rs_machine_dependent
7125 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7126 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7127 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7128 && micromips_insn_length (ip->insn_mo) != 2)
7129 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7130 && micromips_insn_length (ip->insn_mo) != 4)))
7131 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7132 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7133
7134 if (address_expr == NULL)
7135 ip->complete_p = 1;
7136 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7137 && reloc_type[1] == BFD_RELOC_UNUSED
7138 && reloc_type[2] == BFD_RELOC_UNUSED
7139 && address_expr->X_op == O_constant)
7140 {
7141 switch (*reloc_type)
7142 {
7143 case BFD_RELOC_MIPS_JMP:
7144 {
7145 int shift;
7146
7147 /* Shift is 2, unusually, for microMIPS JALX. */
7148 shift = (mips_opts.micromips
7149 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7150 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7151 as_bad (_("jump to misaligned address (0x%lx)"),
7152 (unsigned long) address_expr->X_add_number);
7153 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7154 & 0x3ffffff);
7155 ip->complete_p = 1;
7156 }
7157 break;
7158
7159 case BFD_RELOC_MIPS16_JMP:
7160 if ((address_expr->X_add_number & 3) != 0)
7161 as_bad (_("jump to misaligned address (0x%lx)"),
7162 (unsigned long) address_expr->X_add_number);
7163 ip->insn_opcode |=
7164 (((address_expr->X_add_number & 0x7c0000) << 3)
7165 | ((address_expr->X_add_number & 0xf800000) >> 7)
7166 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7167 ip->complete_p = 1;
7168 break;
7169
7170 case BFD_RELOC_16_PCREL_S2:
7171 {
7172 int shift;
7173
7174 shift = mips_opts.micromips ? 1 : 2;
7175 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7176 as_bad (_("branch to misaligned address (0x%lx)"),
7177 (unsigned long) address_expr->X_add_number);
7178 if (!mips_relax_branch)
7179 {
7180 if ((address_expr->X_add_number + (1 << (shift + 15)))
7181 & ~((1 << (shift + 16)) - 1))
7182 as_bad (_("branch address range overflow (0x%lx)"),
7183 (unsigned long) address_expr->X_add_number);
7184 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7185 & 0xffff);
7186 }
7187 }
7188 break;
7189
7190 case BFD_RELOC_MIPS_21_PCREL_S2:
7191 {
7192 int shift;
7193
7194 shift = 2;
7195 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7196 as_bad (_("branch to misaligned address (0x%lx)"),
7197 (unsigned long) address_expr->X_add_number);
7198 if ((address_expr->X_add_number + (1 << (shift + 20)))
7199 & ~((1 << (shift + 21)) - 1))
7200 as_bad (_("branch address range overflow (0x%lx)"),
7201 (unsigned long) address_expr->X_add_number);
7202 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7203 & 0x1fffff);
7204 }
7205 break;
7206
7207 case BFD_RELOC_MIPS_26_PCREL_S2:
7208 {
7209 int shift;
7210
7211 shift = 2;
7212 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7213 as_bad (_("branch to misaligned address (0x%lx)"),
7214 (unsigned long) address_expr->X_add_number);
7215 if ((address_expr->X_add_number + (1 << (shift + 25)))
7216 & ~((1 << (shift + 26)) - 1))
7217 as_bad (_("branch address range overflow (0x%lx)"),
7218 (unsigned long) address_expr->X_add_number);
7219 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7220 & 0x3ffffff);
7221 }
7222 break;
7223
7224 default:
7225 {
7226 offsetT value;
7227
7228 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7229 &value))
7230 {
7231 ip->insn_opcode |= value & 0xffff;
7232 ip->complete_p = 1;
7233 }
7234 }
7235 break;
7236 }
7237 }
7238
7239 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7240 {
7241 /* There are a lot of optimizations we could do that we don't.
7242 In particular, we do not, in general, reorder instructions.
7243 If you use gcc with optimization, it will reorder
7244 instructions and generally do much more optimization then we
7245 do here; repeating all that work in the assembler would only
7246 benefit hand written assembly code, and does not seem worth
7247 it. */
7248 int nops = (mips_optimize == 0
7249 ? nops_for_insn (0, history, NULL)
7250 : nops_for_insn_or_target (0, history, ip));
7251 if (nops > 0)
7252 {
7253 fragS *old_frag;
7254 unsigned long old_frag_offset;
7255 int i;
7256
7257 old_frag = frag_now;
7258 old_frag_offset = frag_now_fix ();
7259
7260 for (i = 0; i < nops; i++)
7261 add_fixed_insn (NOP_INSN);
7262 insert_into_history (0, nops, NOP_INSN);
7263
7264 if (listing)
7265 {
7266 listing_prev_line ();
7267 /* We may be at the start of a variant frag. In case we
7268 are, make sure there is enough space for the frag
7269 after the frags created by listing_prev_line. The
7270 argument to frag_grow here must be at least as large
7271 as the argument to all other calls to frag_grow in
7272 this file. We don't have to worry about being in the
7273 middle of a variant frag, because the variants insert
7274 all needed nop instructions themselves. */
7275 frag_grow (40);
7276 }
7277
7278 mips_move_text_labels ();
7279
7280 #ifndef NO_ECOFF_DEBUGGING
7281 if (ECOFF_DEBUGGING)
7282 ecoff_fix_loc (old_frag, old_frag_offset);
7283 #endif
7284 }
7285 }
7286 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7287 {
7288 int nops;
7289
7290 /* Work out how many nops in prev_nop_frag are needed by IP,
7291 ignoring hazards generated by the first prev_nop_frag_since
7292 instructions. */
7293 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7294 gas_assert (nops <= prev_nop_frag_holds);
7295
7296 /* Enforce NOPS as a minimum. */
7297 if (nops > prev_nop_frag_required)
7298 prev_nop_frag_required = nops;
7299
7300 if (prev_nop_frag_holds == prev_nop_frag_required)
7301 {
7302 /* Settle for the current number of nops. Update the history
7303 accordingly (for the benefit of any future .set reorder code). */
7304 prev_nop_frag = NULL;
7305 insert_into_history (prev_nop_frag_since,
7306 prev_nop_frag_holds, NOP_INSN);
7307 }
7308 else
7309 {
7310 /* Allow this instruction to replace one of the nops that was
7311 tentatively added to prev_nop_frag. */
7312 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7313 prev_nop_frag_holds--;
7314 prev_nop_frag_since++;
7315 }
7316 }
7317
7318 method = get_append_method (ip, address_expr, reloc_type);
7319 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7320
7321 dwarf2_emit_insn (0);
7322 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7323 so "move" the instruction address accordingly.
7324
7325 Also, it doesn't seem appropriate for the assembler to reorder .loc
7326 entries. If this instruction is a branch that we are going to swap
7327 with the previous instruction, the two instructions should be
7328 treated as a unit, and the debug information for both instructions
7329 should refer to the start of the branch sequence. Using the
7330 current position is certainly wrong when swapping a 32-bit branch
7331 and a 16-bit delay slot, since the current position would then be
7332 in the middle of a branch. */
7333 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7334
7335 relax32 = (mips_relax_branch
7336 /* Don't try branch relaxation within .set nomacro, or within
7337 .set noat if we use $at for PIC computations. If it turns
7338 out that the branch was out-of-range, we'll get an error. */
7339 && !mips_opts.warn_about_macros
7340 && (mips_opts.at || mips_pic == NO_PIC)
7341 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7342 as they have no complementing branches. */
7343 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7344
7345 if (!HAVE_CODE_COMPRESSION
7346 && address_expr
7347 && relax32
7348 && *reloc_type == BFD_RELOC_16_PCREL_S2
7349 && delayed_branch_p (ip))
7350 {
7351 relaxed_branch = TRUE;
7352 add_relaxed_insn (ip, (relaxed_branch_length
7353 (NULL, NULL,
7354 uncond_branch_p (ip) ? -1
7355 : branch_likely_p (ip) ? 1
7356 : 0)), 4,
7357 RELAX_BRANCH_ENCODE
7358 (AT, mips_pic != NO_PIC,
7359 uncond_branch_p (ip),
7360 branch_likely_p (ip),
7361 pinfo & INSN_WRITE_GPR_31,
7362 0),
7363 address_expr->X_add_symbol,
7364 address_expr->X_add_number);
7365 *reloc_type = BFD_RELOC_UNUSED;
7366 }
7367 else if (mips_opts.micromips
7368 && address_expr
7369 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7370 || *reloc_type > BFD_RELOC_UNUSED)
7371 && (delayed_branch_p (ip) || compact_branch_p (ip))
7372 /* Don't try branch relaxation when users specify
7373 16-bit/32-bit instructions. */
7374 && !forced_insn_length)
7375 {
7376 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7377 && *reloc_type > BFD_RELOC_UNUSED);
7378 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7379 int uncond = uncond_branch_p (ip) ? -1 : 0;
7380 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7381 int nods = method == APPEND_ADD_WITH_NOP;
7382 int al = pinfo & INSN_WRITE_GPR_31;
7383 int length32 = nods ? 8 : 4;
7384
7385 gas_assert (address_expr != NULL);
7386 gas_assert (!mips_relax.sequence);
7387
7388 relaxed_branch = TRUE;
7389 if (nods)
7390 method = APPEND_ADD;
7391 if (relax32)
7392 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7393 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7394 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7395 mips_pic != NO_PIC,
7396 uncond, compact, al, nods,
7397 relax32, 0, 0),
7398 address_expr->X_add_symbol,
7399 address_expr->X_add_number);
7400 *reloc_type = BFD_RELOC_UNUSED;
7401 }
7402 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7403 {
7404 bfd_boolean require_unextended;
7405 bfd_boolean require_extended;
7406 symbolS *symbol;
7407 offsetT offset;
7408
7409 if (forced_insn_length != 0)
7410 {
7411 require_unextended = forced_insn_length == 2;
7412 require_extended = forced_insn_length == 4;
7413 }
7414 else
7415 {
7416 require_unextended = (mips_opts.noautoextend
7417 && !mips_opcode_32bit_p (ip->insn_mo));
7418 require_extended = 0;
7419 }
7420
7421 /* We need to set up a variant frag. */
7422 gas_assert (address_expr != NULL);
7423 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7424 symbol created by `make_expr_symbol' may not get a necessary
7425 external relocation produced. */
7426 if (address_expr->X_op == O_symbol)
7427 {
7428 symbol = address_expr->X_add_symbol;
7429 offset = address_expr->X_add_number;
7430 }
7431 else
7432 {
7433 symbol = make_expr_symbol (address_expr);
7434 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7435 offset = 0;
7436 }
7437 add_relaxed_insn (ip, 12, 0,
7438 RELAX_MIPS16_ENCODE
7439 (*reloc_type - BFD_RELOC_UNUSED,
7440 mips_pic != NO_PIC,
7441 HAVE_32BIT_SYMBOLS,
7442 mips_opts.warn_about_macros,
7443 require_unextended, require_extended,
7444 delayed_branch_p (&history[0]),
7445 history[0].mips16_absolute_jump_p),
7446 symbol, offset);
7447 }
7448 else if (mips_opts.mips16 && insn_length (ip) == 2)
7449 {
7450 if (!delayed_branch_p (ip))
7451 /* Make sure there is enough room to swap this instruction with
7452 a following jump instruction. */
7453 frag_grow (6);
7454 add_fixed_insn (ip);
7455 }
7456 else
7457 {
7458 if (mips_opts.mips16
7459 && mips_opts.noreorder
7460 && delayed_branch_p (&history[0]))
7461 as_warn (_("extended instruction in delay slot"));
7462
7463 if (mips_relax.sequence)
7464 {
7465 /* If we've reached the end of this frag, turn it into a variant
7466 frag and record the information for the instructions we've
7467 written so far. */
7468 if (frag_room () < 4)
7469 relax_close_frag ();
7470 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7471 }
7472
7473 if (mips_relax.sequence != 2)
7474 {
7475 if (mips_macro_warning.first_insn_sizes[0] == 0)
7476 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7477 mips_macro_warning.sizes[0] += insn_length (ip);
7478 mips_macro_warning.insns[0]++;
7479 }
7480 if (mips_relax.sequence != 1)
7481 {
7482 if (mips_macro_warning.first_insn_sizes[1] == 0)
7483 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7484 mips_macro_warning.sizes[1] += insn_length (ip);
7485 mips_macro_warning.insns[1]++;
7486 }
7487
7488 if (mips_opts.mips16)
7489 {
7490 ip->fixed_p = 1;
7491 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7492 }
7493 add_fixed_insn (ip);
7494 }
7495
7496 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7497 {
7498 bfd_reloc_code_real_type final_type[3];
7499 reloc_howto_type *howto0;
7500 reloc_howto_type *howto;
7501 int i;
7502
7503 /* Perform any necessary conversion to microMIPS relocations
7504 and find out how many relocations there actually are. */
7505 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7506 final_type[i] = micromips_map_reloc (reloc_type[i]);
7507
7508 /* In a compound relocation, it is the final (outermost)
7509 operator that determines the relocated field. */
7510 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7511 if (!howto)
7512 abort ();
7513
7514 if (i > 1)
7515 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7516 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7517 bfd_get_reloc_size (howto),
7518 address_expr,
7519 howto0 && howto0->pc_relative,
7520 final_type[0]);
7521 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7522 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7523
7524 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7525 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7526 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7527
7528 /* These relocations can have an addend that won't fit in
7529 4 octets for 64bit assembly. */
7530 if (GPR_SIZE == 64
7531 && ! howto->partial_inplace
7532 && (reloc_type[0] == BFD_RELOC_16
7533 || reloc_type[0] == BFD_RELOC_32
7534 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7535 || reloc_type[0] == BFD_RELOC_GPREL16
7536 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7537 || reloc_type[0] == BFD_RELOC_GPREL32
7538 || reloc_type[0] == BFD_RELOC_64
7539 || reloc_type[0] == BFD_RELOC_CTOR
7540 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7541 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7542 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7543 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7544 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7545 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7546 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7547 || hi16_reloc_p (reloc_type[0])
7548 || lo16_reloc_p (reloc_type[0])))
7549 ip->fixp[0]->fx_no_overflow = 1;
7550
7551 /* These relocations can have an addend that won't fit in 2 octets. */
7552 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7553 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7554 ip->fixp[0]->fx_no_overflow = 1;
7555
7556 if (mips_relax.sequence)
7557 {
7558 if (mips_relax.first_fixup == 0)
7559 mips_relax.first_fixup = ip->fixp[0];
7560 }
7561 else if (reloc_needs_lo_p (*reloc_type))
7562 {
7563 struct mips_hi_fixup *hi_fixup;
7564
7565 /* Reuse the last entry if it already has a matching %lo. */
7566 hi_fixup = mips_hi_fixup_list;
7567 if (hi_fixup == 0
7568 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7569 {
7570 hi_fixup = XNEW (struct mips_hi_fixup);
7571 hi_fixup->next = mips_hi_fixup_list;
7572 mips_hi_fixup_list = hi_fixup;
7573 }
7574 hi_fixup->fixp = ip->fixp[0];
7575 hi_fixup->seg = now_seg;
7576 }
7577
7578 /* Add fixups for the second and third relocations, if given.
7579 Note that the ABI allows the second relocation to be
7580 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7581 moment we only use RSS_UNDEF, but we could add support
7582 for the others if it ever becomes necessary. */
7583 for (i = 1; i < 3; i++)
7584 if (reloc_type[i] != BFD_RELOC_UNUSED)
7585 {
7586 ip->fixp[i] = fix_new (ip->frag, ip->where,
7587 ip->fixp[0]->fx_size, NULL, 0,
7588 FALSE, final_type[i]);
7589
7590 /* Use fx_tcbit to mark compound relocs. */
7591 ip->fixp[0]->fx_tcbit = 1;
7592 ip->fixp[i]->fx_tcbit = 1;
7593 }
7594 }
7595
7596 /* Update the register mask information. */
7597 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7598 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7599
7600 switch (method)
7601 {
7602 case APPEND_ADD:
7603 insert_into_history (0, 1, ip);
7604 break;
7605
7606 case APPEND_ADD_WITH_NOP:
7607 {
7608 struct mips_cl_insn *nop;
7609
7610 insert_into_history (0, 1, ip);
7611 nop = get_delay_slot_nop (ip);
7612 add_fixed_insn (nop);
7613 insert_into_history (0, 1, nop);
7614 if (mips_relax.sequence)
7615 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7616 }
7617 break;
7618
7619 case APPEND_ADD_COMPACT:
7620 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7621 if (mips_opts.mips16)
7622 {
7623 ip->insn_opcode |= 0x0080;
7624 find_altered_mips16_opcode (ip);
7625 }
7626 /* Convert microMIPS instructions. */
7627 else if (mips_opts.micromips)
7628 {
7629 /* jr16->jrc */
7630 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7631 ip->insn_opcode |= 0x0020;
7632 /* b16->bc */
7633 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7634 ip->insn_opcode = 0x40e00000;
7635 /* beqz16->beqzc, bnez16->bnezc */
7636 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7637 {
7638 unsigned long regno;
7639
7640 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7641 regno &= MICROMIPSOP_MASK_MD;
7642 regno = micromips_to_32_reg_d_map[regno];
7643 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7644 | (regno << MICROMIPSOP_SH_RS)
7645 | 0x40a00000) ^ 0x00400000;
7646 }
7647 /* beqz->beqzc, bnez->bnezc */
7648 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7649 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7650 | ((ip->insn_opcode >> 7) & 0x00400000)
7651 | 0x40a00000) ^ 0x00400000;
7652 /* beq $0->beqzc, bne $0->bnezc */
7653 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7654 ip->insn_opcode = (((ip->insn_opcode >>
7655 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
7656 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
7657 | ((ip->insn_opcode >> 7) & 0x00400000)
7658 | 0x40a00000) ^ 0x00400000;
7659 else
7660 abort ();
7661 find_altered_micromips_opcode (ip);
7662 }
7663 else
7664 abort ();
7665 install_insn (ip);
7666 insert_into_history (0, 1, ip);
7667 break;
7668
7669 case APPEND_SWAP:
7670 {
7671 struct mips_cl_insn delay = history[0];
7672
7673 if (relaxed_branch || delay.frag != ip->frag)
7674 {
7675 /* Add the delay slot instruction to the end of the
7676 current frag and shrink the fixed part of the
7677 original frag. If the branch occupies the tail of
7678 the latter, move it backwards to cover the gap. */
7679 delay.frag->fr_fix -= branch_disp;
7680 if (delay.frag == ip->frag)
7681 move_insn (ip, ip->frag, ip->where - branch_disp);
7682 add_fixed_insn (&delay);
7683 }
7684 else
7685 {
7686 /* If this is not a relaxed branch and we are in the
7687 same frag, then just swap the instructions. */
7688 move_insn (ip, delay.frag, delay.where);
7689 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
7690 }
7691 history[0] = *ip;
7692 delay.fixed_p = 1;
7693 insert_into_history (0, 1, &delay);
7694 }
7695 break;
7696 }
7697
7698 /* If we have just completed an unconditional branch, clear the history. */
7699 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
7700 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
7701 {
7702 unsigned int i;
7703
7704 mips_no_prev_insn ();
7705
7706 for (i = 0; i < ARRAY_SIZE (history); i++)
7707 history[i].cleared_p = 1;
7708 }
7709
7710 /* We need to emit a label at the end of branch-likely macros. */
7711 if (emit_branch_likely_macro)
7712 {
7713 emit_branch_likely_macro = FALSE;
7714 micromips_add_label ();
7715 }
7716
7717 /* We just output an insn, so the next one doesn't have a label. */
7718 mips_clear_insn_labels ();
7719 }
7720
7721 /* Forget that there was any previous instruction or label.
7722 When BRANCH is true, the branch history is also flushed. */
7723
7724 static void
7725 mips_no_prev_insn (void)
7726 {
7727 prev_nop_frag = NULL;
7728 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
7729 mips_clear_insn_labels ();
7730 }
7731
7732 /* This function must be called before we emit something other than
7733 instructions. It is like mips_no_prev_insn except that it inserts
7734 any NOPS that might be needed by previous instructions. */
7735
7736 void
7737 mips_emit_delays (void)
7738 {
7739 if (! mips_opts.noreorder)
7740 {
7741 int nops = nops_for_insn (0, history, NULL);
7742 if (nops > 0)
7743 {
7744 while (nops-- > 0)
7745 add_fixed_insn (NOP_INSN);
7746 mips_move_text_labels ();
7747 }
7748 }
7749 mips_no_prev_insn ();
7750 }
7751
7752 /* Start a (possibly nested) noreorder block. */
7753
7754 static void
7755 start_noreorder (void)
7756 {
7757 if (mips_opts.noreorder == 0)
7758 {
7759 unsigned int i;
7760 int nops;
7761
7762 /* None of the instructions before the .set noreorder can be moved. */
7763 for (i = 0; i < ARRAY_SIZE (history); i++)
7764 history[i].fixed_p = 1;
7765
7766 /* Insert any nops that might be needed between the .set noreorder
7767 block and the previous instructions. We will later remove any
7768 nops that turn out not to be needed. */
7769 nops = nops_for_insn (0, history, NULL);
7770 if (nops > 0)
7771 {
7772 if (mips_optimize != 0)
7773 {
7774 /* Record the frag which holds the nop instructions, so
7775 that we can remove them if we don't need them. */
7776 frag_grow (nops * NOP_INSN_SIZE);
7777 prev_nop_frag = frag_now;
7778 prev_nop_frag_holds = nops;
7779 prev_nop_frag_required = 0;
7780 prev_nop_frag_since = 0;
7781 }
7782
7783 for (; nops > 0; --nops)
7784 add_fixed_insn (NOP_INSN);
7785
7786 /* Move on to a new frag, so that it is safe to simply
7787 decrease the size of prev_nop_frag. */
7788 frag_wane (frag_now);
7789 frag_new (0);
7790 mips_move_text_labels ();
7791 }
7792 mips_mark_labels ();
7793 mips_clear_insn_labels ();
7794 }
7795 mips_opts.noreorder++;
7796 mips_any_noreorder = 1;
7797 }
7798
7799 /* End a nested noreorder block. */
7800
7801 static void
7802 end_noreorder (void)
7803 {
7804 mips_opts.noreorder--;
7805 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
7806 {
7807 /* Commit to inserting prev_nop_frag_required nops and go back to
7808 handling nop insertion the .set reorder way. */
7809 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
7810 * NOP_INSN_SIZE);
7811 insert_into_history (prev_nop_frag_since,
7812 prev_nop_frag_required, NOP_INSN);
7813 prev_nop_frag = NULL;
7814 }
7815 }
7816
7817 /* Sign-extend 32-bit mode constants that have bit 31 set and all
7818 higher bits unset. */
7819
7820 static void
7821 normalize_constant_expr (expressionS *ex)
7822 {
7823 if (ex->X_op == O_constant
7824 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7825 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7826 - 0x80000000);
7827 }
7828
7829 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
7830 all higher bits unset. */
7831
7832 static void
7833 normalize_address_expr (expressionS *ex)
7834 {
7835 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
7836 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
7837 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
7838 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
7839 - 0x80000000);
7840 }
7841
7842 /* Try to match TOKENS against OPCODE, storing the result in INSN.
7843 Return true if the match was successful.
7844
7845 OPCODE_EXTRA is a value that should be ORed into the opcode
7846 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
7847 there are more alternatives after OPCODE and SOFT_MATCH is
7848 as for mips_arg_info. */
7849
7850 static bfd_boolean
7851 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
7852 struct mips_operand_token *tokens, unsigned int opcode_extra,
7853 bfd_boolean lax_match, bfd_boolean complete_p)
7854 {
7855 const char *args;
7856 struct mips_arg_info arg;
7857 const struct mips_operand *operand;
7858 char c;
7859
7860 imm_expr.X_op = O_absent;
7861 offset_expr.X_op = O_absent;
7862 offset_reloc[0] = BFD_RELOC_UNUSED;
7863 offset_reloc[1] = BFD_RELOC_UNUSED;
7864 offset_reloc[2] = BFD_RELOC_UNUSED;
7865
7866 create_insn (insn, opcode);
7867 /* When no opcode suffix is specified, assume ".xyzw". */
7868 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
7869 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
7870 else
7871 insn->insn_opcode |= opcode_extra;
7872 memset (&arg, 0, sizeof (arg));
7873 arg.insn = insn;
7874 arg.token = tokens;
7875 arg.argnum = 1;
7876 arg.last_regno = ILLEGAL_REG;
7877 arg.dest_regno = ILLEGAL_REG;
7878 arg.lax_match = lax_match;
7879 for (args = opcode->args;; ++args)
7880 {
7881 if (arg.token->type == OT_END)
7882 {
7883 /* Handle unary instructions in which only one operand is given.
7884 The source is then the same as the destination. */
7885 if (arg.opnum == 1 && *args == ',')
7886 {
7887 operand = (mips_opts.micromips
7888 ? decode_micromips_operand (args + 1)
7889 : decode_mips_operand (args + 1));
7890 if (operand && mips_optional_operand_p (operand))
7891 {
7892 arg.token = tokens;
7893 arg.argnum = 1;
7894 continue;
7895 }
7896 }
7897
7898 /* Treat elided base registers as $0. */
7899 if (strcmp (args, "(b)") == 0)
7900 args += 3;
7901
7902 if (args[0] == '+')
7903 switch (args[1])
7904 {
7905 case 'K':
7906 case 'N':
7907 /* The register suffix is optional. */
7908 args += 2;
7909 break;
7910 }
7911
7912 /* Fail the match if there were too few operands. */
7913 if (*args)
7914 return FALSE;
7915
7916 /* Successful match. */
7917 if (!complete_p)
7918 return TRUE;
7919 clear_insn_error ();
7920 if (arg.dest_regno == arg.last_regno
7921 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
7922 {
7923 if (arg.opnum == 2)
7924 set_insn_error
7925 (0, _("source and destination must be different"));
7926 else if (arg.last_regno == 31)
7927 set_insn_error
7928 (0, _("a destination register must be supplied"));
7929 }
7930 else if (arg.last_regno == 31
7931 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
7932 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
7933 set_insn_error (0, _("the source register must not be $31"));
7934 check_completed_insn (&arg);
7935 return TRUE;
7936 }
7937
7938 /* Fail the match if the line has too many operands. */
7939 if (*args == 0)
7940 return FALSE;
7941
7942 /* Handle characters that need to match exactly. */
7943 if (*args == '(' || *args == ')' || *args == ',')
7944 {
7945 if (match_char (&arg, *args))
7946 continue;
7947 return FALSE;
7948 }
7949 if (*args == '#')
7950 {
7951 ++args;
7952 if (arg.token->type == OT_DOUBLE_CHAR
7953 && arg.token->u.ch == *args)
7954 {
7955 ++arg.token;
7956 continue;
7957 }
7958 return FALSE;
7959 }
7960
7961 /* Handle special macro operands. Work out the properties of
7962 other operands. */
7963 arg.opnum += 1;
7964 switch (*args)
7965 {
7966 case '-':
7967 switch (args[1])
7968 {
7969 case 'A':
7970 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
7971 break;
7972
7973 case 'B':
7974 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
7975 break;
7976 }
7977 break;
7978
7979 case '+':
7980 switch (args[1])
7981 {
7982 case 'i':
7983 *offset_reloc = BFD_RELOC_MIPS_JMP;
7984 break;
7985
7986 case '\'':
7987 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
7988 break;
7989
7990 case '\"':
7991 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
7992 break;
7993 }
7994 break;
7995
7996 case 'I':
7997 if (!match_const_int (&arg, &imm_expr.X_add_number))
7998 return FALSE;
7999 imm_expr.X_op = O_constant;
8000 if (GPR_SIZE == 32)
8001 normalize_constant_expr (&imm_expr);
8002 continue;
8003
8004 case 'A':
8005 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8006 {
8007 /* Assume that the offset has been elided and that what
8008 we saw was a base register. The match will fail later
8009 if that assumption turns out to be wrong. */
8010 offset_expr.X_op = O_constant;
8011 offset_expr.X_add_number = 0;
8012 }
8013 else
8014 {
8015 if (!match_expression (&arg, &offset_expr, offset_reloc))
8016 return FALSE;
8017 normalize_address_expr (&offset_expr);
8018 }
8019 continue;
8020
8021 case 'F':
8022 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8023 8, TRUE))
8024 return FALSE;
8025 continue;
8026
8027 case 'L':
8028 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8029 8, FALSE))
8030 return FALSE;
8031 continue;
8032
8033 case 'f':
8034 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8035 4, TRUE))
8036 return FALSE;
8037 continue;
8038
8039 case 'l':
8040 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8041 4, FALSE))
8042 return FALSE;
8043 continue;
8044
8045 case 'p':
8046 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8047 break;
8048
8049 case 'a':
8050 *offset_reloc = BFD_RELOC_MIPS_JMP;
8051 break;
8052
8053 case 'm':
8054 gas_assert (mips_opts.micromips);
8055 c = args[1];
8056 switch (c)
8057 {
8058 case 'D':
8059 case 'E':
8060 if (!forced_insn_length)
8061 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8062 else if (c == 'D')
8063 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8064 else
8065 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8066 break;
8067 }
8068 break;
8069 }
8070
8071 operand = (mips_opts.micromips
8072 ? decode_micromips_operand (args)
8073 : decode_mips_operand (args));
8074 if (!operand)
8075 abort ();
8076
8077 /* Skip prefixes. */
8078 if (*args == '+' || *args == 'm' || *args == '-')
8079 args++;
8080
8081 if (mips_optional_operand_p (operand)
8082 && args[1] == ','
8083 && (arg.token[0].type != OT_REG
8084 || arg.token[1].type == OT_END))
8085 {
8086 /* Assume that the register has been elided and is the
8087 same as the first operand. */
8088 arg.token = tokens;
8089 arg.argnum = 1;
8090 }
8091
8092 if (!match_operand (&arg, operand))
8093 return FALSE;
8094 }
8095 }
8096
8097 /* Like match_insn, but for MIPS16. */
8098
8099 static bfd_boolean
8100 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8101 struct mips_operand_token *tokens)
8102 {
8103 const char *args;
8104 const struct mips_operand *operand;
8105 const struct mips_operand *ext_operand;
8106 bfd_boolean pcrel = FALSE;
8107 int required_insn_length;
8108 struct mips_arg_info arg;
8109 int relax_char;
8110
8111 if (forced_insn_length)
8112 required_insn_length = forced_insn_length;
8113 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8114 required_insn_length = 2;
8115 else
8116 required_insn_length = 0;
8117
8118 create_insn (insn, opcode);
8119 imm_expr.X_op = O_absent;
8120 offset_expr.X_op = O_absent;
8121 offset_reloc[0] = BFD_RELOC_UNUSED;
8122 offset_reloc[1] = BFD_RELOC_UNUSED;
8123 offset_reloc[2] = BFD_RELOC_UNUSED;
8124 relax_char = 0;
8125
8126 memset (&arg, 0, sizeof (arg));
8127 arg.insn = insn;
8128 arg.token = tokens;
8129 arg.argnum = 1;
8130 arg.last_regno = ILLEGAL_REG;
8131 arg.dest_regno = ILLEGAL_REG;
8132 relax_char = 0;
8133 for (args = opcode->args;; ++args)
8134 {
8135 int c;
8136
8137 if (arg.token->type == OT_END)
8138 {
8139 offsetT value;
8140
8141 /* Handle unary instructions in which only one operand is given.
8142 The source is then the same as the destination. */
8143 if (arg.opnum == 1 && *args == ',')
8144 {
8145 operand = decode_mips16_operand (args[1], FALSE);
8146 if (operand && mips_optional_operand_p (operand))
8147 {
8148 arg.token = tokens;
8149 arg.argnum = 1;
8150 continue;
8151 }
8152 }
8153
8154 /* Fail the match if there were too few operands. */
8155 if (*args)
8156 return FALSE;
8157
8158 /* Successful match. Stuff the immediate value in now, if
8159 we can. */
8160 clear_insn_error ();
8161 if (opcode->pinfo == INSN_MACRO)
8162 {
8163 gas_assert (relax_char == 0 || relax_char == 'p');
8164 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8165 }
8166 else if (relax_char
8167 && offset_expr.X_op == O_constant
8168 && !pcrel
8169 && calculate_reloc (*offset_reloc,
8170 offset_expr.X_add_number,
8171 &value))
8172 {
8173 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8174 required_insn_length, &insn->insn_opcode);
8175 offset_expr.X_op = O_absent;
8176 *offset_reloc = BFD_RELOC_UNUSED;
8177 }
8178 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8179 {
8180 if (required_insn_length == 2)
8181 set_insn_error (0, _("invalid unextended operand value"));
8182 else
8183 {
8184 forced_insn_length = 4;
8185 insn->insn_opcode |= MIPS16_EXTEND;
8186 }
8187 }
8188 else if (relax_char)
8189 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8190
8191 check_completed_insn (&arg);
8192 return TRUE;
8193 }
8194
8195 /* Fail the match if the line has too many operands. */
8196 if (*args == 0)
8197 return FALSE;
8198
8199 /* Handle characters that need to match exactly. */
8200 if (*args == '(' || *args == ')' || *args == ',')
8201 {
8202 if (match_char (&arg, *args))
8203 continue;
8204 return FALSE;
8205 }
8206
8207 arg.opnum += 1;
8208 c = *args;
8209 switch (c)
8210 {
8211 case 'p':
8212 case 'q':
8213 case 'A':
8214 case 'B':
8215 case 'E':
8216 relax_char = c;
8217 break;
8218
8219 case 'I':
8220 if (!match_const_int (&arg, &imm_expr.X_add_number))
8221 return FALSE;
8222 imm_expr.X_op = O_constant;
8223 if (GPR_SIZE == 32)
8224 normalize_constant_expr (&imm_expr);
8225 continue;
8226
8227 case 'a':
8228 case 'i':
8229 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8230 break;
8231 }
8232
8233 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8234 if (!operand)
8235 abort ();
8236
8237 if (operand->type == OP_PCREL)
8238 pcrel = TRUE;
8239 else
8240 {
8241 ext_operand = decode_mips16_operand (c, TRUE);
8242 if (operand != ext_operand)
8243 {
8244 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8245 {
8246 offset_expr.X_op = O_constant;
8247 offset_expr.X_add_number = 0;
8248 relax_char = c;
8249 continue;
8250 }
8251
8252 if (!match_expression (&arg, &offset_expr, offset_reloc))
8253 return FALSE;
8254
8255 /* '8' is used for SLTI(U) and has traditionally not
8256 been allowed to take relocation operators. */
8257 if (offset_reloc[0] != BFD_RELOC_UNUSED
8258 && (ext_operand->size != 16 || c == '8'))
8259 {
8260 match_not_constant (&arg);
8261 return FALSE;
8262 }
8263
8264 relax_char = c;
8265 continue;
8266 }
8267 }
8268
8269 if (mips_optional_operand_p (operand)
8270 && args[1] == ','
8271 && (arg.token[0].type != OT_REG
8272 || arg.token[1].type == OT_END))
8273 {
8274 /* Assume that the register has been elided and is the
8275 same as the first operand. */
8276 arg.token = tokens;
8277 arg.argnum = 1;
8278 }
8279
8280 if (!match_operand (&arg, operand))
8281 return FALSE;
8282 }
8283 }
8284
8285 /* Record that the current instruction is invalid for the current ISA. */
8286
8287 static void
8288 match_invalid_for_isa (void)
8289 {
8290 set_insn_error_ss
8291 (0, _("opcode not supported on this processor: %s (%s)"),
8292 mips_cpu_info_from_arch (mips_opts.arch)->name,
8293 mips_cpu_info_from_isa (mips_opts.isa)->name);
8294 }
8295
8296 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8297 Return true if a definite match or failure was found, storing any match
8298 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8299 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8300 tried and failed to match under normal conditions and now want to try a
8301 more relaxed match. */
8302
8303 static bfd_boolean
8304 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8305 const struct mips_opcode *past, struct mips_operand_token *tokens,
8306 int opcode_extra, bfd_boolean lax_match)
8307 {
8308 const struct mips_opcode *opcode;
8309 const struct mips_opcode *invalid_delay_slot;
8310 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8311
8312 /* Search for a match, ignoring alternatives that don't satisfy the
8313 current ISA or forced_length. */
8314 invalid_delay_slot = 0;
8315 seen_valid_for_isa = FALSE;
8316 seen_valid_for_size = FALSE;
8317 opcode = first;
8318 do
8319 {
8320 gas_assert (strcmp (opcode->name, first->name) == 0);
8321 if (is_opcode_valid (opcode))
8322 {
8323 seen_valid_for_isa = TRUE;
8324 if (is_size_valid (opcode))
8325 {
8326 bfd_boolean delay_slot_ok;
8327
8328 seen_valid_for_size = TRUE;
8329 delay_slot_ok = is_delay_slot_valid (opcode);
8330 if (match_insn (insn, opcode, tokens, opcode_extra,
8331 lax_match, delay_slot_ok))
8332 {
8333 if (!delay_slot_ok)
8334 {
8335 if (!invalid_delay_slot)
8336 invalid_delay_slot = opcode;
8337 }
8338 else
8339 return TRUE;
8340 }
8341 }
8342 }
8343 ++opcode;
8344 }
8345 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8346
8347 /* If the only matches we found had the wrong length for the delay slot,
8348 pick the first such match. We'll issue an appropriate warning later. */
8349 if (invalid_delay_slot)
8350 {
8351 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8352 lax_match, TRUE))
8353 return TRUE;
8354 abort ();
8355 }
8356
8357 /* Handle the case where we didn't try to match an instruction because
8358 all the alternatives were incompatible with the current ISA. */
8359 if (!seen_valid_for_isa)
8360 {
8361 match_invalid_for_isa ();
8362 return TRUE;
8363 }
8364
8365 /* Handle the case where we didn't try to match an instruction because
8366 all the alternatives were of the wrong size. */
8367 if (!seen_valid_for_size)
8368 {
8369 if (mips_opts.insn32)
8370 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8371 else
8372 set_insn_error_i
8373 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8374 8 * forced_insn_length);
8375 return TRUE;
8376 }
8377
8378 return FALSE;
8379 }
8380
8381 /* Like match_insns, but for MIPS16. */
8382
8383 static bfd_boolean
8384 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8385 struct mips_operand_token *tokens)
8386 {
8387 const struct mips_opcode *opcode;
8388 bfd_boolean seen_valid_for_isa;
8389 bfd_boolean seen_valid_for_size;
8390
8391 /* Search for a match, ignoring alternatives that don't satisfy the
8392 current ISA. There are no separate entries for extended forms so
8393 we deal with forced_length later. */
8394 seen_valid_for_isa = FALSE;
8395 seen_valid_for_size = FALSE;
8396 opcode = first;
8397 do
8398 {
8399 gas_assert (strcmp (opcode->name, first->name) == 0);
8400 if (is_opcode_valid_16 (opcode))
8401 {
8402 seen_valid_for_isa = TRUE;
8403 if (is_size_valid_16 (opcode))
8404 {
8405 seen_valid_for_size = TRUE;
8406 if (match_mips16_insn (insn, opcode, tokens))
8407 return TRUE;
8408 }
8409 }
8410 ++opcode;
8411 }
8412 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8413 && strcmp (opcode->name, first->name) == 0);
8414
8415 /* Handle the case where we didn't try to match an instruction because
8416 all the alternatives were incompatible with the current ISA. */
8417 if (!seen_valid_for_isa)
8418 {
8419 match_invalid_for_isa ();
8420 return TRUE;
8421 }
8422
8423 /* Handle the case where we didn't try to match an instruction because
8424 all the alternatives were of the wrong size. */
8425 if (!seen_valid_for_size)
8426 {
8427 if (forced_insn_length == 2)
8428 set_insn_error
8429 (0, _("unrecognized unextended version of MIPS16 opcode"));
8430 else
8431 set_insn_error
8432 (0, _("unrecognized extended version of MIPS16 opcode"));
8433 return TRUE;
8434 }
8435
8436 return FALSE;
8437 }
8438
8439 /* Set up global variables for the start of a new macro. */
8440
8441 static void
8442 macro_start (void)
8443 {
8444 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8445 memset (&mips_macro_warning.first_insn_sizes, 0,
8446 sizeof (mips_macro_warning.first_insn_sizes));
8447 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8448 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8449 && delayed_branch_p (&history[0]));
8450 if (history[0].frag
8451 && history[0].frag->fr_type == rs_machine_dependent
8452 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8453 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8454 mips_macro_warning.delay_slot_length = 0;
8455 else
8456 switch (history[0].insn_mo->pinfo2
8457 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8458 {
8459 case INSN2_BRANCH_DELAY_32BIT:
8460 mips_macro_warning.delay_slot_length = 4;
8461 break;
8462 case INSN2_BRANCH_DELAY_16BIT:
8463 mips_macro_warning.delay_slot_length = 2;
8464 break;
8465 default:
8466 mips_macro_warning.delay_slot_length = 0;
8467 break;
8468 }
8469 mips_macro_warning.first_frag = NULL;
8470 }
8471
8472 /* Given that a macro is longer than one instruction or of the wrong size,
8473 return the appropriate warning for it. Return null if no warning is
8474 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8475 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8476 and RELAX_NOMACRO. */
8477
8478 static const char *
8479 macro_warning (relax_substateT subtype)
8480 {
8481 if (subtype & RELAX_DELAY_SLOT)
8482 return _("macro instruction expanded into multiple instructions"
8483 " in a branch delay slot");
8484 else if (subtype & RELAX_NOMACRO)
8485 return _("macro instruction expanded into multiple instructions");
8486 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8487 | RELAX_DELAY_SLOT_SIZE_SECOND))
8488 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8489 ? _("macro instruction expanded into a wrong size instruction"
8490 " in a 16-bit branch delay slot")
8491 : _("macro instruction expanded into a wrong size instruction"
8492 " in a 32-bit branch delay slot"));
8493 else
8494 return 0;
8495 }
8496
8497 /* Finish up a macro. Emit warnings as appropriate. */
8498
8499 static void
8500 macro_end (void)
8501 {
8502 /* Relaxation warning flags. */
8503 relax_substateT subtype = 0;
8504
8505 /* Check delay slot size requirements. */
8506 if (mips_macro_warning.delay_slot_length == 2)
8507 subtype |= RELAX_DELAY_SLOT_16BIT;
8508 if (mips_macro_warning.delay_slot_length != 0)
8509 {
8510 if (mips_macro_warning.delay_slot_length
8511 != mips_macro_warning.first_insn_sizes[0])
8512 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8513 if (mips_macro_warning.delay_slot_length
8514 != mips_macro_warning.first_insn_sizes[1])
8515 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8516 }
8517
8518 /* Check instruction count requirements. */
8519 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8520 {
8521 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8522 subtype |= RELAX_SECOND_LONGER;
8523 if (mips_opts.warn_about_macros)
8524 subtype |= RELAX_NOMACRO;
8525 if (mips_macro_warning.delay_slot_p)
8526 subtype |= RELAX_DELAY_SLOT;
8527 }
8528
8529 /* If both alternatives fail to fill a delay slot correctly,
8530 emit the warning now. */
8531 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8532 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8533 {
8534 relax_substateT s;
8535 const char *msg;
8536
8537 s = subtype & (RELAX_DELAY_SLOT_16BIT
8538 | RELAX_DELAY_SLOT_SIZE_FIRST
8539 | RELAX_DELAY_SLOT_SIZE_SECOND);
8540 msg = macro_warning (s);
8541 if (msg != NULL)
8542 as_warn ("%s", msg);
8543 subtype &= ~s;
8544 }
8545
8546 /* If both implementations are longer than 1 instruction, then emit the
8547 warning now. */
8548 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8549 {
8550 relax_substateT s;
8551 const char *msg;
8552
8553 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8554 msg = macro_warning (s);
8555 if (msg != NULL)
8556 as_warn ("%s", msg);
8557 subtype &= ~s;
8558 }
8559
8560 /* If any flags still set, then one implementation might need a warning
8561 and the other either will need one of a different kind or none at all.
8562 Pass any remaining flags over to relaxation. */
8563 if (mips_macro_warning.first_frag != NULL)
8564 mips_macro_warning.first_frag->fr_subtype |= subtype;
8565 }
8566
8567 /* Instruction operand formats used in macros that vary between
8568 standard MIPS and microMIPS code. */
8569
8570 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8571 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8572 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8573 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8574 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8575 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8576 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8577 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8578
8579 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8580 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8581 : cop12_fmt[mips_opts.micromips])
8582 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8583 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8584 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8585 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8586 : mem12_fmt[mips_opts.micromips])
8587 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8588 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8589 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8590
8591 /* Read a macro's relocation codes from *ARGS and store them in *R.
8592 The first argument in *ARGS will be either the code for a single
8593 relocation or -1 followed by the three codes that make up a
8594 composite relocation. */
8595
8596 static void
8597 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8598 {
8599 int i, next;
8600
8601 next = va_arg (*args, int);
8602 if (next >= 0)
8603 r[0] = (bfd_reloc_code_real_type) next;
8604 else
8605 {
8606 for (i = 0; i < 3; i++)
8607 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8608 /* This function is only used for 16-bit relocation fields.
8609 To make the macro code simpler, treat an unrelocated value
8610 in the same way as BFD_RELOC_LO16. */
8611 if (r[0] == BFD_RELOC_UNUSED)
8612 r[0] = BFD_RELOC_LO16;
8613 }
8614 }
8615
8616 /* Build an instruction created by a macro expansion. This is passed
8617 a pointer to the count of instructions created so far, an
8618 expression, the name of the instruction to build, an operand format
8619 string, and corresponding arguments. */
8620
8621 static void
8622 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8623 {
8624 const struct mips_opcode *mo = NULL;
8625 bfd_reloc_code_real_type r[3];
8626 const struct mips_opcode *amo;
8627 const struct mips_operand *operand;
8628 struct hash_control *hash;
8629 struct mips_cl_insn insn;
8630 va_list args;
8631 unsigned int uval;
8632
8633 va_start (args, fmt);
8634
8635 if (mips_opts.mips16)
8636 {
8637 mips16_macro_build (ep, name, fmt, &args);
8638 va_end (args);
8639 return;
8640 }
8641
8642 r[0] = BFD_RELOC_UNUSED;
8643 r[1] = BFD_RELOC_UNUSED;
8644 r[2] = BFD_RELOC_UNUSED;
8645 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8646 amo = (struct mips_opcode *) hash_find (hash, name);
8647 gas_assert (amo);
8648 gas_assert (strcmp (name, amo->name) == 0);
8649
8650 do
8651 {
8652 /* Search until we get a match for NAME. It is assumed here that
8653 macros will never generate MDMX, MIPS-3D, or MT instructions.
8654 We try to match an instruction that fulfills the branch delay
8655 slot instruction length requirement (if any) of the previous
8656 instruction. While doing this we record the first instruction
8657 seen that matches all the other conditions and use it anyway
8658 if the requirement cannot be met; we will issue an appropriate
8659 warning later on. */
8660 if (strcmp (fmt, amo->args) == 0
8661 && amo->pinfo != INSN_MACRO
8662 && is_opcode_valid (amo)
8663 && is_size_valid (amo))
8664 {
8665 if (is_delay_slot_valid (amo))
8666 {
8667 mo = amo;
8668 break;
8669 }
8670 else if (!mo)
8671 mo = amo;
8672 }
8673
8674 ++amo;
8675 gas_assert (amo->name);
8676 }
8677 while (strcmp (name, amo->name) == 0);
8678
8679 gas_assert (mo);
8680 create_insn (&insn, mo);
8681 for (; *fmt; ++fmt)
8682 {
8683 switch (*fmt)
8684 {
8685 case ',':
8686 case '(':
8687 case ')':
8688 case 'z':
8689 break;
8690
8691 case 'i':
8692 case 'j':
8693 macro_read_relocs (&args, r);
8694 gas_assert (*r == BFD_RELOC_GPREL16
8695 || *r == BFD_RELOC_MIPS_HIGHER
8696 || *r == BFD_RELOC_HI16_S
8697 || *r == BFD_RELOC_LO16
8698 || *r == BFD_RELOC_MIPS_GOT_OFST);
8699 break;
8700
8701 case 'o':
8702 macro_read_relocs (&args, r);
8703 break;
8704
8705 case 'u':
8706 macro_read_relocs (&args, r);
8707 gas_assert (ep != NULL
8708 && (ep->X_op == O_constant
8709 || (ep->X_op == O_symbol
8710 && (*r == BFD_RELOC_MIPS_HIGHEST
8711 || *r == BFD_RELOC_HI16_S
8712 || *r == BFD_RELOC_HI16
8713 || *r == BFD_RELOC_GPREL16
8714 || *r == BFD_RELOC_MIPS_GOT_HI16
8715 || *r == BFD_RELOC_MIPS_CALL_HI16))));
8716 break;
8717
8718 case 'p':
8719 gas_assert (ep != NULL);
8720
8721 /*
8722 * This allows macro() to pass an immediate expression for
8723 * creating short branches without creating a symbol.
8724 *
8725 * We don't allow branch relaxation for these branches, as
8726 * they should only appear in ".set nomacro" anyway.
8727 */
8728 if (ep->X_op == O_constant)
8729 {
8730 /* For microMIPS we always use relocations for branches.
8731 So we should not resolve immediate values. */
8732 gas_assert (!mips_opts.micromips);
8733
8734 if ((ep->X_add_number & 3) != 0)
8735 as_bad (_("branch to misaligned address (0x%lx)"),
8736 (unsigned long) ep->X_add_number);
8737 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
8738 as_bad (_("branch address range overflow (0x%lx)"),
8739 (unsigned long) ep->X_add_number);
8740 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
8741 ep = NULL;
8742 }
8743 else
8744 *r = BFD_RELOC_16_PCREL_S2;
8745 break;
8746
8747 case 'a':
8748 gas_assert (ep != NULL);
8749 *r = BFD_RELOC_MIPS_JMP;
8750 break;
8751
8752 default:
8753 operand = (mips_opts.micromips
8754 ? decode_micromips_operand (fmt)
8755 : decode_mips_operand (fmt));
8756 if (!operand)
8757 abort ();
8758
8759 uval = va_arg (args, int);
8760 if (operand->type == OP_CLO_CLZ_DEST)
8761 uval |= (uval << 5);
8762 insn_insert_operand (&insn, operand, uval);
8763
8764 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
8765 ++fmt;
8766 break;
8767 }
8768 }
8769 va_end (args);
8770 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8771
8772 append_insn (&insn, ep, r, TRUE);
8773 }
8774
8775 static void
8776 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
8777 va_list *args)
8778 {
8779 struct mips_opcode *mo;
8780 struct mips_cl_insn insn;
8781 const struct mips_operand *operand;
8782 bfd_reloc_code_real_type r[3]
8783 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
8784
8785 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
8786 gas_assert (mo);
8787 gas_assert (strcmp (name, mo->name) == 0);
8788
8789 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
8790 {
8791 ++mo;
8792 gas_assert (mo->name);
8793 gas_assert (strcmp (name, mo->name) == 0);
8794 }
8795
8796 create_insn (&insn, mo);
8797 for (; *fmt; ++fmt)
8798 {
8799 int c;
8800
8801 c = *fmt;
8802 switch (c)
8803 {
8804 case ',':
8805 case '(':
8806 case ')':
8807 break;
8808
8809 case '.':
8810 case 'S':
8811 case 'P':
8812 case 'R':
8813 break;
8814
8815 case '<':
8816 case '5':
8817 case 'F':
8818 case 'H':
8819 case 'W':
8820 case 'D':
8821 case 'j':
8822 case '8':
8823 case 'V':
8824 case 'C':
8825 case 'U':
8826 case 'k':
8827 case 'K':
8828 case 'p':
8829 case 'q':
8830 {
8831 offsetT value;
8832
8833 gas_assert (ep != NULL);
8834
8835 if (ep->X_op != O_constant)
8836 *r = (int) BFD_RELOC_UNUSED + c;
8837 else if (calculate_reloc (*r, ep->X_add_number, &value))
8838 {
8839 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
8840 ep = NULL;
8841 *r = BFD_RELOC_UNUSED;
8842 }
8843 }
8844 break;
8845
8846 default:
8847 operand = decode_mips16_operand (c, FALSE);
8848 if (!operand)
8849 abort ();
8850
8851 insn_insert_operand (&insn, operand, va_arg (*args, int));
8852 break;
8853 }
8854 }
8855
8856 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
8857
8858 append_insn (&insn, ep, r, TRUE);
8859 }
8860
8861 /*
8862 * Generate a "jalr" instruction with a relocation hint to the called
8863 * function. This occurs in NewABI PIC code.
8864 */
8865 static void
8866 macro_build_jalr (expressionS *ep, int cprestore)
8867 {
8868 static const bfd_reloc_code_real_type jalr_relocs[2]
8869 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
8870 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
8871 const char *jalr;
8872 char *f = NULL;
8873
8874 if (MIPS_JALR_HINT_P (ep))
8875 {
8876 frag_grow (8);
8877 f = frag_more (0);
8878 }
8879 if (mips_opts.micromips)
8880 {
8881 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
8882 ? "jalr" : "jalrs");
8883 if (MIPS_JALR_HINT_P (ep)
8884 || mips_opts.insn32
8885 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
8886 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
8887 else
8888 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
8889 }
8890 else
8891 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
8892 if (MIPS_JALR_HINT_P (ep))
8893 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
8894 }
8895
8896 /*
8897 * Generate a "lui" instruction.
8898 */
8899 static void
8900 macro_build_lui (expressionS *ep, int regnum)
8901 {
8902 gas_assert (! mips_opts.mips16);
8903
8904 if (ep->X_op != O_constant)
8905 {
8906 gas_assert (ep->X_op == O_symbol);
8907 /* _gp_disp is a special case, used from s_cpload.
8908 __gnu_local_gp is used if mips_no_shared. */
8909 gas_assert (mips_pic == NO_PIC
8910 || (! HAVE_NEWABI
8911 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
8912 || (! mips_in_shared
8913 && strcmp (S_GET_NAME (ep->X_add_symbol),
8914 "__gnu_local_gp") == 0));
8915 }
8916
8917 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
8918 }
8919
8920 /* Generate a sequence of instructions to do a load or store from a constant
8921 offset off of a base register (breg) into/from a target register (treg),
8922 using AT if necessary. */
8923 static void
8924 macro_build_ldst_constoffset (expressionS *ep, const char *op,
8925 int treg, int breg, int dbl)
8926 {
8927 gas_assert (ep->X_op == O_constant);
8928
8929 /* Sign-extending 32-bit constants makes their handling easier. */
8930 if (!dbl)
8931 normalize_constant_expr (ep);
8932
8933 /* Right now, this routine can only handle signed 32-bit constants. */
8934 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
8935 as_warn (_("operand overflow"));
8936
8937 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
8938 {
8939 /* Signed 16-bit offset will fit in the op. Easy! */
8940 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8941 }
8942 else
8943 {
8944 /* 32-bit offset, need multiple instructions and AT, like:
8945 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
8946 addu $tempreg,$tempreg,$breg
8947 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
8948 to handle the complete offset. */
8949 macro_build_lui (ep, AT);
8950 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8951 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8952
8953 if (!mips_opts.at)
8954 as_bad (_("macro used $at after \".set noat\""));
8955 }
8956 }
8957
8958 /* set_at()
8959 * Generates code to set the $at register to true (one)
8960 * if reg is less than the immediate expression.
8961 */
8962 static void
8963 set_at (int reg, int unsignedp)
8964 {
8965 if (imm_expr.X_add_number >= -0x8000
8966 && imm_expr.X_add_number < 0x8000)
8967 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
8968 AT, reg, BFD_RELOC_LO16);
8969 else
8970 {
8971 load_register (AT, &imm_expr, GPR_SIZE == 64);
8972 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
8973 }
8974 }
8975
8976 /* Count the leading zeroes by performing a binary chop. This is a
8977 bulky bit of source, but performance is a LOT better for the
8978 majority of values than a simple loop to count the bits:
8979 for (lcnt = 0; (lcnt < 32); lcnt++)
8980 if ((v) & (1 << (31 - lcnt)))
8981 break;
8982 However it is not code size friendly, and the gain will drop a bit
8983 on certain cached systems.
8984 */
8985 #define COUNT_TOP_ZEROES(v) \
8986 (((v) & ~0xffff) == 0 \
8987 ? ((v) & ~0xff) == 0 \
8988 ? ((v) & ~0xf) == 0 \
8989 ? ((v) & ~0x3) == 0 \
8990 ? ((v) & ~0x1) == 0 \
8991 ? !(v) \
8992 ? 32 \
8993 : 31 \
8994 : 30 \
8995 : ((v) & ~0x7) == 0 \
8996 ? 29 \
8997 : 28 \
8998 : ((v) & ~0x3f) == 0 \
8999 ? ((v) & ~0x1f) == 0 \
9000 ? 27 \
9001 : 26 \
9002 : ((v) & ~0x7f) == 0 \
9003 ? 25 \
9004 : 24 \
9005 : ((v) & ~0xfff) == 0 \
9006 ? ((v) & ~0x3ff) == 0 \
9007 ? ((v) & ~0x1ff) == 0 \
9008 ? 23 \
9009 : 22 \
9010 : ((v) & ~0x7ff) == 0 \
9011 ? 21 \
9012 : 20 \
9013 : ((v) & ~0x3fff) == 0 \
9014 ? ((v) & ~0x1fff) == 0 \
9015 ? 19 \
9016 : 18 \
9017 : ((v) & ~0x7fff) == 0 \
9018 ? 17 \
9019 : 16 \
9020 : ((v) & ~0xffffff) == 0 \
9021 ? ((v) & ~0xfffff) == 0 \
9022 ? ((v) & ~0x3ffff) == 0 \
9023 ? ((v) & ~0x1ffff) == 0 \
9024 ? 15 \
9025 : 14 \
9026 : ((v) & ~0x7ffff) == 0 \
9027 ? 13 \
9028 : 12 \
9029 : ((v) & ~0x3fffff) == 0 \
9030 ? ((v) & ~0x1fffff) == 0 \
9031 ? 11 \
9032 : 10 \
9033 : ((v) & ~0x7fffff) == 0 \
9034 ? 9 \
9035 : 8 \
9036 : ((v) & ~0xfffffff) == 0 \
9037 ? ((v) & ~0x3ffffff) == 0 \
9038 ? ((v) & ~0x1ffffff) == 0 \
9039 ? 7 \
9040 : 6 \
9041 : ((v) & ~0x7ffffff) == 0 \
9042 ? 5 \
9043 : 4 \
9044 : ((v) & ~0x3fffffff) == 0 \
9045 ? ((v) & ~0x1fffffff) == 0 \
9046 ? 3 \
9047 : 2 \
9048 : ((v) & ~0x7fffffff) == 0 \
9049 ? 1 \
9050 : 0)
9051
9052 /* load_register()
9053 * This routine generates the least number of instructions necessary to load
9054 * an absolute expression value into a register.
9055 */
9056 static void
9057 load_register (int reg, expressionS *ep, int dbl)
9058 {
9059 int freg;
9060 expressionS hi32, lo32;
9061
9062 if (ep->X_op != O_big)
9063 {
9064 gas_assert (ep->X_op == O_constant);
9065
9066 /* Sign-extending 32-bit constants makes their handling easier. */
9067 if (!dbl)
9068 normalize_constant_expr (ep);
9069
9070 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9071 {
9072 /* We can handle 16 bit signed values with an addiu to
9073 $zero. No need to ever use daddiu here, since $zero and
9074 the result are always correct in 32 bit mode. */
9075 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9076 return;
9077 }
9078 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9079 {
9080 /* We can handle 16 bit unsigned values with an ori to
9081 $zero. */
9082 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9083 return;
9084 }
9085 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9086 {
9087 /* 32 bit values require an lui. */
9088 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9089 if ((ep->X_add_number & 0xffff) != 0)
9090 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9091 return;
9092 }
9093 }
9094
9095 /* The value is larger than 32 bits. */
9096
9097 if (!dbl || GPR_SIZE == 32)
9098 {
9099 char value[32];
9100
9101 sprintf_vma (value, ep->X_add_number);
9102 as_bad (_("number (0x%s) larger than 32 bits"), value);
9103 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9104 return;
9105 }
9106
9107 if (ep->X_op != O_big)
9108 {
9109 hi32 = *ep;
9110 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9111 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9112 hi32.X_add_number &= 0xffffffff;
9113 lo32 = *ep;
9114 lo32.X_add_number &= 0xffffffff;
9115 }
9116 else
9117 {
9118 gas_assert (ep->X_add_number > 2);
9119 if (ep->X_add_number == 3)
9120 generic_bignum[3] = 0;
9121 else if (ep->X_add_number > 4)
9122 as_bad (_("number larger than 64 bits"));
9123 lo32.X_op = O_constant;
9124 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9125 hi32.X_op = O_constant;
9126 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9127 }
9128
9129 if (hi32.X_add_number == 0)
9130 freg = 0;
9131 else
9132 {
9133 int shift, bit;
9134 unsigned long hi, lo;
9135
9136 if (hi32.X_add_number == (offsetT) 0xffffffff)
9137 {
9138 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9139 {
9140 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9141 return;
9142 }
9143 if (lo32.X_add_number & 0x80000000)
9144 {
9145 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9146 if (lo32.X_add_number & 0xffff)
9147 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9148 return;
9149 }
9150 }
9151
9152 /* Check for 16bit shifted constant. We know that hi32 is
9153 non-zero, so start the mask on the first bit of the hi32
9154 value. */
9155 shift = 17;
9156 do
9157 {
9158 unsigned long himask, lomask;
9159
9160 if (shift < 32)
9161 {
9162 himask = 0xffff >> (32 - shift);
9163 lomask = (0xffff << shift) & 0xffffffff;
9164 }
9165 else
9166 {
9167 himask = 0xffff << (shift - 32);
9168 lomask = 0;
9169 }
9170 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9171 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9172 {
9173 expressionS tmp;
9174
9175 tmp.X_op = O_constant;
9176 if (shift < 32)
9177 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9178 | (lo32.X_add_number >> shift));
9179 else
9180 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9181 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9182 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9183 reg, reg, (shift >= 32) ? shift - 32 : shift);
9184 return;
9185 }
9186 ++shift;
9187 }
9188 while (shift <= (64 - 16));
9189
9190 /* Find the bit number of the lowest one bit, and store the
9191 shifted value in hi/lo. */
9192 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9193 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9194 if (lo != 0)
9195 {
9196 bit = 0;
9197 while ((lo & 1) == 0)
9198 {
9199 lo >>= 1;
9200 ++bit;
9201 }
9202 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9203 hi >>= bit;
9204 }
9205 else
9206 {
9207 bit = 32;
9208 while ((hi & 1) == 0)
9209 {
9210 hi >>= 1;
9211 ++bit;
9212 }
9213 lo = hi;
9214 hi = 0;
9215 }
9216
9217 /* Optimize if the shifted value is a (power of 2) - 1. */
9218 if ((hi == 0 && ((lo + 1) & lo) == 0)
9219 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9220 {
9221 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9222 if (shift != 0)
9223 {
9224 expressionS tmp;
9225
9226 /* This instruction will set the register to be all
9227 ones. */
9228 tmp.X_op = O_constant;
9229 tmp.X_add_number = (offsetT) -1;
9230 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9231 if (bit != 0)
9232 {
9233 bit += shift;
9234 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9235 reg, reg, (bit >= 32) ? bit - 32 : bit);
9236 }
9237 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9238 reg, reg, (shift >= 32) ? shift - 32 : shift);
9239 return;
9240 }
9241 }
9242
9243 /* Sign extend hi32 before calling load_register, because we can
9244 generally get better code when we load a sign extended value. */
9245 if ((hi32.X_add_number & 0x80000000) != 0)
9246 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9247 load_register (reg, &hi32, 0);
9248 freg = reg;
9249 }
9250 if ((lo32.X_add_number & 0xffff0000) == 0)
9251 {
9252 if (freg != 0)
9253 {
9254 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9255 freg = reg;
9256 }
9257 }
9258 else
9259 {
9260 expressionS mid16;
9261
9262 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9263 {
9264 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9265 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9266 return;
9267 }
9268
9269 if (freg != 0)
9270 {
9271 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9272 freg = reg;
9273 }
9274 mid16 = lo32;
9275 mid16.X_add_number >>= 16;
9276 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9277 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9278 freg = reg;
9279 }
9280 if ((lo32.X_add_number & 0xffff) != 0)
9281 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9282 }
9283
9284 static inline void
9285 load_delay_nop (void)
9286 {
9287 if (!gpr_interlocks)
9288 macro_build (NULL, "nop", "");
9289 }
9290
9291 /* Load an address into a register. */
9292
9293 static void
9294 load_address (int reg, expressionS *ep, int *used_at)
9295 {
9296 if (ep->X_op != O_constant
9297 && ep->X_op != O_symbol)
9298 {
9299 as_bad (_("expression too complex"));
9300 ep->X_op = O_constant;
9301 }
9302
9303 if (ep->X_op == O_constant)
9304 {
9305 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9306 return;
9307 }
9308
9309 if (mips_pic == NO_PIC)
9310 {
9311 /* If this is a reference to a GP relative symbol, we want
9312 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9313 Otherwise we want
9314 lui $reg,<sym> (BFD_RELOC_HI16_S)
9315 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9316 If we have an addend, we always use the latter form.
9317
9318 With 64bit address space and a usable $at we want
9319 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9320 lui $at,<sym> (BFD_RELOC_HI16_S)
9321 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9322 daddiu $at,<sym> (BFD_RELOC_LO16)
9323 dsll32 $reg,0
9324 daddu $reg,$reg,$at
9325
9326 If $at is already in use, we use a path which is suboptimal
9327 on superscalar processors.
9328 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9329 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9330 dsll $reg,16
9331 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9332 dsll $reg,16
9333 daddiu $reg,<sym> (BFD_RELOC_LO16)
9334
9335 For GP relative symbols in 64bit address space we can use
9336 the same sequence as in 32bit address space. */
9337 if (HAVE_64BIT_SYMBOLS)
9338 {
9339 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9340 && !nopic_need_relax (ep->X_add_symbol, 1))
9341 {
9342 relax_start (ep->X_add_symbol);
9343 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9344 mips_gp_register, BFD_RELOC_GPREL16);
9345 relax_switch ();
9346 }
9347
9348 if (*used_at == 0 && mips_opts.at)
9349 {
9350 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9351 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9352 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9353 BFD_RELOC_MIPS_HIGHER);
9354 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9355 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9356 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9357 *used_at = 1;
9358 }
9359 else
9360 {
9361 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9362 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9363 BFD_RELOC_MIPS_HIGHER);
9364 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9365 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9366 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9367 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9368 }
9369
9370 if (mips_relax.sequence)
9371 relax_end ();
9372 }
9373 else
9374 {
9375 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9376 && !nopic_need_relax (ep->X_add_symbol, 1))
9377 {
9378 relax_start (ep->X_add_symbol);
9379 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9380 mips_gp_register, BFD_RELOC_GPREL16);
9381 relax_switch ();
9382 }
9383 macro_build_lui (ep, reg);
9384 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9385 reg, reg, BFD_RELOC_LO16);
9386 if (mips_relax.sequence)
9387 relax_end ();
9388 }
9389 }
9390 else if (!mips_big_got)
9391 {
9392 expressionS ex;
9393
9394 /* If this is a reference to an external symbol, we want
9395 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9396 Otherwise we want
9397 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9398 nop
9399 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9400 If there is a constant, it must be added in after.
9401
9402 If we have NewABI, we want
9403 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9404 unless we're referencing a global symbol with a non-zero
9405 offset, in which case cst must be added separately. */
9406 if (HAVE_NEWABI)
9407 {
9408 if (ep->X_add_number)
9409 {
9410 ex.X_add_number = ep->X_add_number;
9411 ep->X_add_number = 0;
9412 relax_start (ep->X_add_symbol);
9413 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9414 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9415 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9416 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9417 ex.X_op = O_constant;
9418 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9419 reg, reg, BFD_RELOC_LO16);
9420 ep->X_add_number = ex.X_add_number;
9421 relax_switch ();
9422 }
9423 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9424 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9425 if (mips_relax.sequence)
9426 relax_end ();
9427 }
9428 else
9429 {
9430 ex.X_add_number = ep->X_add_number;
9431 ep->X_add_number = 0;
9432 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9433 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9434 load_delay_nop ();
9435 relax_start (ep->X_add_symbol);
9436 relax_switch ();
9437 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9438 BFD_RELOC_LO16);
9439 relax_end ();
9440
9441 if (ex.X_add_number != 0)
9442 {
9443 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9444 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9445 ex.X_op = O_constant;
9446 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9447 reg, reg, BFD_RELOC_LO16);
9448 }
9449 }
9450 }
9451 else if (mips_big_got)
9452 {
9453 expressionS ex;
9454
9455 /* This is the large GOT case. If this is a reference to an
9456 external symbol, we want
9457 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9458 addu $reg,$reg,$gp
9459 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9460
9461 Otherwise, for a reference to a local symbol in old ABI, we want
9462 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9463 nop
9464 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9465 If there is a constant, it must be added in after.
9466
9467 In the NewABI, for local symbols, with or without offsets, we want:
9468 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9469 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9470 */
9471 if (HAVE_NEWABI)
9472 {
9473 ex.X_add_number = ep->X_add_number;
9474 ep->X_add_number = 0;
9475 relax_start (ep->X_add_symbol);
9476 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9477 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9478 reg, reg, mips_gp_register);
9479 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9480 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9481 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9482 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9483 else if (ex.X_add_number)
9484 {
9485 ex.X_op = O_constant;
9486 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9487 BFD_RELOC_LO16);
9488 }
9489
9490 ep->X_add_number = ex.X_add_number;
9491 relax_switch ();
9492 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9493 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9494 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9495 BFD_RELOC_MIPS_GOT_OFST);
9496 relax_end ();
9497 }
9498 else
9499 {
9500 ex.X_add_number = ep->X_add_number;
9501 ep->X_add_number = 0;
9502 relax_start (ep->X_add_symbol);
9503 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9504 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9505 reg, reg, mips_gp_register);
9506 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9507 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9508 relax_switch ();
9509 if (reg_needs_delay (mips_gp_register))
9510 {
9511 /* We need a nop before loading from $gp. This special
9512 check is required because the lui which starts the main
9513 instruction stream does not refer to $gp, and so will not
9514 insert the nop which may be required. */
9515 macro_build (NULL, "nop", "");
9516 }
9517 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9518 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9519 load_delay_nop ();
9520 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9521 BFD_RELOC_LO16);
9522 relax_end ();
9523
9524 if (ex.X_add_number != 0)
9525 {
9526 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9527 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9528 ex.X_op = O_constant;
9529 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9530 BFD_RELOC_LO16);
9531 }
9532 }
9533 }
9534 else
9535 abort ();
9536
9537 if (!mips_opts.at && *used_at == 1)
9538 as_bad (_("macro used $at after \".set noat\""));
9539 }
9540
9541 /* Move the contents of register SOURCE into register DEST. */
9542
9543 static void
9544 move_register (int dest, int source)
9545 {
9546 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9547 instruction specifically requires a 32-bit one. */
9548 if (mips_opts.micromips
9549 && !mips_opts.insn32
9550 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9551 macro_build (NULL, "move", "mp,mj", dest, source);
9552 else
9553 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9554 }
9555
9556 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9557 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9558 The two alternatives are:
9559
9560 Global symbol Local symbol
9561 ------------- ------------
9562 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9563 ... ...
9564 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9565
9566 load_got_offset emits the first instruction and add_got_offset
9567 emits the second for a 16-bit offset or add_got_offset_hilo emits
9568 a sequence to add a 32-bit offset using a scratch register. */
9569
9570 static void
9571 load_got_offset (int dest, expressionS *local)
9572 {
9573 expressionS global;
9574
9575 global = *local;
9576 global.X_add_number = 0;
9577
9578 relax_start (local->X_add_symbol);
9579 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9580 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9581 relax_switch ();
9582 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9583 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9584 relax_end ();
9585 }
9586
9587 static void
9588 add_got_offset (int dest, expressionS *local)
9589 {
9590 expressionS global;
9591
9592 global.X_op = O_constant;
9593 global.X_op_symbol = NULL;
9594 global.X_add_symbol = NULL;
9595 global.X_add_number = local->X_add_number;
9596
9597 relax_start (local->X_add_symbol);
9598 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9599 dest, dest, BFD_RELOC_LO16);
9600 relax_switch ();
9601 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9602 relax_end ();
9603 }
9604
9605 static void
9606 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9607 {
9608 expressionS global;
9609 int hold_mips_optimize;
9610
9611 global.X_op = O_constant;
9612 global.X_op_symbol = NULL;
9613 global.X_add_symbol = NULL;
9614 global.X_add_number = local->X_add_number;
9615
9616 relax_start (local->X_add_symbol);
9617 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9618 relax_switch ();
9619 /* Set mips_optimize around the lui instruction to avoid
9620 inserting an unnecessary nop after the lw. */
9621 hold_mips_optimize = mips_optimize;
9622 mips_optimize = 2;
9623 macro_build_lui (&global, tmp);
9624 mips_optimize = hold_mips_optimize;
9625 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9626 relax_end ();
9627
9628 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
9629 }
9630
9631 /* Emit a sequence of instructions to emulate a branch likely operation.
9632 BR is an ordinary branch corresponding to one to be emulated. BRNEG
9633 is its complementing branch with the original condition negated.
9634 CALL is set if the original branch specified the link operation.
9635 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
9636
9637 Code like this is produced in the noreorder mode:
9638
9639 BRNEG <args>, 1f
9640 nop
9641 b <sym>
9642 delay slot (executed only if branch taken)
9643 1:
9644
9645 or, if CALL is set:
9646
9647 BRNEG <args>, 1f
9648 nop
9649 bal <sym>
9650 delay slot (executed only if branch taken)
9651 1:
9652
9653 In the reorder mode the delay slot would be filled with a nop anyway,
9654 so code produced is simply:
9655
9656 BR <args>, <sym>
9657 nop
9658
9659 This function is used when producing code for the microMIPS ASE that
9660 does not implement branch likely instructions in hardware. */
9661
9662 static void
9663 macro_build_branch_likely (const char *br, const char *brneg,
9664 int call, expressionS *ep, const char *fmt,
9665 unsigned int sreg, unsigned int treg)
9666 {
9667 int noreorder = mips_opts.noreorder;
9668 expressionS expr1;
9669
9670 gas_assert (mips_opts.micromips);
9671 start_noreorder ();
9672 if (noreorder)
9673 {
9674 micromips_label_expr (&expr1);
9675 macro_build (&expr1, brneg, fmt, sreg, treg);
9676 macro_build (NULL, "nop", "");
9677 macro_build (ep, call ? "bal" : "b", "p");
9678
9679 /* Set to true so that append_insn adds a label. */
9680 emit_branch_likely_macro = TRUE;
9681 }
9682 else
9683 {
9684 macro_build (ep, br, fmt, sreg, treg);
9685 macro_build (NULL, "nop", "");
9686 }
9687 end_noreorder ();
9688 }
9689
9690 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
9691 the condition code tested. EP specifies the branch target. */
9692
9693 static void
9694 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
9695 {
9696 const int call = 0;
9697 const char *brneg;
9698 const char *br;
9699
9700 switch (type)
9701 {
9702 case M_BC1FL:
9703 br = "bc1f";
9704 brneg = "bc1t";
9705 break;
9706 case M_BC1TL:
9707 br = "bc1t";
9708 brneg = "bc1f";
9709 break;
9710 case M_BC2FL:
9711 br = "bc2f";
9712 brneg = "bc2t";
9713 break;
9714 case M_BC2TL:
9715 br = "bc2t";
9716 brneg = "bc2f";
9717 break;
9718 default:
9719 abort ();
9720 }
9721 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
9722 }
9723
9724 /* Emit a two-argument branch macro specified by TYPE, using SREG as
9725 the register tested. EP specifies the branch target. */
9726
9727 static void
9728 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
9729 {
9730 const char *brneg = NULL;
9731 const char *br;
9732 int call = 0;
9733
9734 switch (type)
9735 {
9736 case M_BGEZ:
9737 br = "bgez";
9738 break;
9739 case M_BGEZL:
9740 br = mips_opts.micromips ? "bgez" : "bgezl";
9741 brneg = "bltz";
9742 break;
9743 case M_BGEZALL:
9744 gas_assert (mips_opts.micromips);
9745 br = mips_opts.insn32 ? "bgezal" : "bgezals";
9746 brneg = "bltz";
9747 call = 1;
9748 break;
9749 case M_BGTZ:
9750 br = "bgtz";
9751 break;
9752 case M_BGTZL:
9753 br = mips_opts.micromips ? "bgtz" : "bgtzl";
9754 brneg = "blez";
9755 break;
9756 case M_BLEZ:
9757 br = "blez";
9758 break;
9759 case M_BLEZL:
9760 br = mips_opts.micromips ? "blez" : "blezl";
9761 brneg = "bgtz";
9762 break;
9763 case M_BLTZ:
9764 br = "bltz";
9765 break;
9766 case M_BLTZL:
9767 br = mips_opts.micromips ? "bltz" : "bltzl";
9768 brneg = "bgez";
9769 break;
9770 case M_BLTZALL:
9771 gas_assert (mips_opts.micromips);
9772 br = mips_opts.insn32 ? "bltzal" : "bltzals";
9773 brneg = "bgez";
9774 call = 1;
9775 break;
9776 default:
9777 abort ();
9778 }
9779 if (mips_opts.micromips && brneg)
9780 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
9781 else
9782 macro_build (ep, br, "s,p", sreg);
9783 }
9784
9785 /* Emit a three-argument branch macro specified by TYPE, using SREG and
9786 TREG as the registers tested. EP specifies the branch target. */
9787
9788 static void
9789 macro_build_branch_rsrt (int type, expressionS *ep,
9790 unsigned int sreg, unsigned int treg)
9791 {
9792 const char *brneg = NULL;
9793 const int call = 0;
9794 const char *br;
9795
9796 switch (type)
9797 {
9798 case M_BEQ:
9799 case M_BEQ_I:
9800 br = "beq";
9801 break;
9802 case M_BEQL:
9803 case M_BEQL_I:
9804 br = mips_opts.micromips ? "beq" : "beql";
9805 brneg = "bne";
9806 break;
9807 case M_BNE:
9808 case M_BNE_I:
9809 br = "bne";
9810 break;
9811 case M_BNEL:
9812 case M_BNEL_I:
9813 br = mips_opts.micromips ? "bne" : "bnel";
9814 brneg = "beq";
9815 break;
9816 default:
9817 abort ();
9818 }
9819 if (mips_opts.micromips && brneg)
9820 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
9821 else
9822 macro_build (ep, br, "s,t,p", sreg, treg);
9823 }
9824
9825 /* Return the high part that should be loaded in order to make the low
9826 part of VALUE accessible using an offset of OFFBITS bits. */
9827
9828 static offsetT
9829 offset_high_part (offsetT value, unsigned int offbits)
9830 {
9831 offsetT bias;
9832 addressT low_mask;
9833
9834 if (offbits == 0)
9835 return value;
9836 bias = 1 << (offbits - 1);
9837 low_mask = bias * 2 - 1;
9838 return (value + bias) & ~low_mask;
9839 }
9840
9841 /* Return true if the value stored in offset_expr and offset_reloc
9842 fits into a signed offset of OFFBITS bits. RANGE is the maximum
9843 amount that the caller wants to add without inducing overflow
9844 and ALIGN is the known alignment of the value in bytes. */
9845
9846 static bfd_boolean
9847 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
9848 {
9849 if (offbits == 16)
9850 {
9851 /* Accept any relocation operator if overflow isn't a concern. */
9852 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
9853 return TRUE;
9854
9855 /* These relocations are guaranteed not to overflow in correct links. */
9856 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
9857 || gprel16_reloc_p (*offset_reloc))
9858 return TRUE;
9859 }
9860 if (offset_expr.X_op == O_constant
9861 && offset_high_part (offset_expr.X_add_number, offbits) == 0
9862 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
9863 return TRUE;
9864 return FALSE;
9865 }
9866
9867 /*
9868 * Build macros
9869 * This routine implements the seemingly endless macro or synthesized
9870 * instructions and addressing modes in the mips assembly language. Many
9871 * of these macros are simple and are similar to each other. These could
9872 * probably be handled by some kind of table or grammar approach instead of
9873 * this verbose method. Others are not simple macros but are more like
9874 * optimizing code generation.
9875 * One interesting optimization is when several store macros appear
9876 * consecutively that would load AT with the upper half of the same address.
9877 * The ensuing load upper instructions are omitted. This implies some kind
9878 * of global optimization. We currently only optimize within a single macro.
9879 * For many of the load and store macros if the address is specified as a
9880 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
9881 * first load register 'at' with zero and use it as the base register. The
9882 * mips assembler simply uses register $zero. Just one tiny optimization
9883 * we're missing.
9884 */
9885 static void
9886 macro (struct mips_cl_insn *ip, char *str)
9887 {
9888 const struct mips_operand_array *operands;
9889 unsigned int breg, i;
9890 unsigned int tempreg;
9891 int mask;
9892 int used_at = 0;
9893 expressionS label_expr;
9894 expressionS expr1;
9895 expressionS *ep;
9896 const char *s;
9897 const char *s2;
9898 const char *fmt;
9899 int likely = 0;
9900 int coproc = 0;
9901 int offbits = 16;
9902 int call = 0;
9903 int jals = 0;
9904 int dbl = 0;
9905 int imm = 0;
9906 int ust = 0;
9907 int lp = 0;
9908 bfd_boolean large_offset;
9909 int off;
9910 int hold_mips_optimize;
9911 unsigned int align;
9912 unsigned int op[MAX_OPERANDS];
9913
9914 gas_assert (! mips_opts.mips16);
9915
9916 operands = insn_operands (ip);
9917 for (i = 0; i < MAX_OPERANDS; i++)
9918 if (operands->operand[i])
9919 op[i] = insn_extract_operand (ip, operands->operand[i]);
9920 else
9921 op[i] = -1;
9922
9923 mask = ip->insn_mo->mask;
9924
9925 label_expr.X_op = O_constant;
9926 label_expr.X_op_symbol = NULL;
9927 label_expr.X_add_symbol = NULL;
9928 label_expr.X_add_number = 0;
9929
9930 expr1.X_op = O_constant;
9931 expr1.X_op_symbol = NULL;
9932 expr1.X_add_symbol = NULL;
9933 expr1.X_add_number = 1;
9934 align = 1;
9935
9936 switch (mask)
9937 {
9938 case M_DABS:
9939 dbl = 1;
9940 /* Fall through. */
9941 case M_ABS:
9942 /* bgez $a0,1f
9943 move v0,$a0
9944 sub v0,$zero,$a0
9945 1:
9946 */
9947
9948 start_noreorder ();
9949
9950 if (mips_opts.micromips)
9951 micromips_label_expr (&label_expr);
9952 else
9953 label_expr.X_add_number = 8;
9954 macro_build (&label_expr, "bgez", "s,p", op[1]);
9955 if (op[0] == op[1])
9956 macro_build (NULL, "nop", "");
9957 else
9958 move_register (op[0], op[1]);
9959 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
9960 if (mips_opts.micromips)
9961 micromips_add_label ();
9962
9963 end_noreorder ();
9964 break;
9965
9966 case M_ADD_I:
9967 s = "addi";
9968 s2 = "add";
9969 goto do_addi;
9970 case M_ADDU_I:
9971 s = "addiu";
9972 s2 = "addu";
9973 goto do_addi;
9974 case M_DADD_I:
9975 dbl = 1;
9976 s = "daddi";
9977 s2 = "dadd";
9978 if (!mips_opts.micromips)
9979 goto do_addi;
9980 if (imm_expr.X_add_number >= -0x200
9981 && imm_expr.X_add_number < 0x200)
9982 {
9983 macro_build (NULL, s, "t,r,.", op[0], op[1],
9984 (int) imm_expr.X_add_number);
9985 break;
9986 }
9987 goto do_addi_i;
9988 case M_DADDU_I:
9989 dbl = 1;
9990 s = "daddiu";
9991 s2 = "daddu";
9992 do_addi:
9993 if (imm_expr.X_add_number >= -0x8000
9994 && imm_expr.X_add_number < 0x8000)
9995 {
9996 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
9997 break;
9998 }
9999 do_addi_i:
10000 used_at = 1;
10001 load_register (AT, &imm_expr, dbl);
10002 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10003 break;
10004
10005 case M_AND_I:
10006 s = "andi";
10007 s2 = "and";
10008 goto do_bit;
10009 case M_OR_I:
10010 s = "ori";
10011 s2 = "or";
10012 goto do_bit;
10013 case M_NOR_I:
10014 s = "";
10015 s2 = "nor";
10016 goto do_bit;
10017 case M_XOR_I:
10018 s = "xori";
10019 s2 = "xor";
10020 do_bit:
10021 if (imm_expr.X_add_number >= 0
10022 && imm_expr.X_add_number < 0x10000)
10023 {
10024 if (mask != M_NOR_I)
10025 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10026 else
10027 {
10028 macro_build (&imm_expr, "ori", "t,r,i",
10029 op[0], op[1], BFD_RELOC_LO16);
10030 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10031 }
10032 break;
10033 }
10034
10035 used_at = 1;
10036 load_register (AT, &imm_expr, GPR_SIZE == 64);
10037 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10038 break;
10039
10040 case M_BALIGN:
10041 switch (imm_expr.X_add_number)
10042 {
10043 case 0:
10044 macro_build (NULL, "nop", "");
10045 break;
10046 case 2:
10047 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10048 break;
10049 case 1:
10050 case 3:
10051 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10052 (int) imm_expr.X_add_number);
10053 break;
10054 default:
10055 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10056 (unsigned long) imm_expr.X_add_number);
10057 break;
10058 }
10059 break;
10060
10061 case M_BC1FL:
10062 case M_BC1TL:
10063 case M_BC2FL:
10064 case M_BC2TL:
10065 gas_assert (mips_opts.micromips);
10066 macro_build_branch_ccl (mask, &offset_expr,
10067 EXTRACT_OPERAND (1, BCC, *ip));
10068 break;
10069
10070 case M_BEQ_I:
10071 case M_BEQL_I:
10072 case M_BNE_I:
10073 case M_BNEL_I:
10074 if (imm_expr.X_add_number == 0)
10075 op[1] = 0;
10076 else
10077 {
10078 op[1] = AT;
10079 used_at = 1;
10080 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10081 }
10082 /* Fall through. */
10083 case M_BEQL:
10084 case M_BNEL:
10085 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10086 break;
10087
10088 case M_BGEL:
10089 likely = 1;
10090 /* Fall through. */
10091 case M_BGE:
10092 if (op[1] == 0)
10093 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10094 else if (op[0] == 0)
10095 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10096 else
10097 {
10098 used_at = 1;
10099 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10100 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10101 &offset_expr, AT, ZERO);
10102 }
10103 break;
10104
10105 case M_BGEZL:
10106 case M_BGEZALL:
10107 case M_BGTZL:
10108 case M_BLEZL:
10109 case M_BLTZL:
10110 case M_BLTZALL:
10111 macro_build_branch_rs (mask, &offset_expr, op[0]);
10112 break;
10113
10114 case M_BGTL_I:
10115 likely = 1;
10116 /* Fall through. */
10117 case M_BGT_I:
10118 /* Check for > max integer. */
10119 if (imm_expr.X_add_number >= GPR_SMAX)
10120 {
10121 do_false:
10122 /* Result is always false. */
10123 if (! likely)
10124 macro_build (NULL, "nop", "");
10125 else
10126 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10127 break;
10128 }
10129 ++imm_expr.X_add_number;
10130 /* FALLTHROUGH */
10131 case M_BGE_I:
10132 case M_BGEL_I:
10133 if (mask == M_BGEL_I)
10134 likely = 1;
10135 if (imm_expr.X_add_number == 0)
10136 {
10137 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10138 &offset_expr, op[0]);
10139 break;
10140 }
10141 if (imm_expr.X_add_number == 1)
10142 {
10143 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10144 &offset_expr, op[0]);
10145 break;
10146 }
10147 if (imm_expr.X_add_number <= GPR_SMIN)
10148 {
10149 do_true:
10150 /* result is always true */
10151 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10152 macro_build (&offset_expr, "b", "p");
10153 break;
10154 }
10155 used_at = 1;
10156 set_at (op[0], 0);
10157 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10158 &offset_expr, AT, ZERO);
10159 break;
10160
10161 case M_BGEUL:
10162 likely = 1;
10163 /* Fall through. */
10164 case M_BGEU:
10165 if (op[1] == 0)
10166 goto do_true;
10167 else if (op[0] == 0)
10168 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10169 &offset_expr, ZERO, op[1]);
10170 else
10171 {
10172 used_at = 1;
10173 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10174 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10175 &offset_expr, AT, ZERO);
10176 }
10177 break;
10178
10179 case M_BGTUL_I:
10180 likely = 1;
10181 /* Fall through. */
10182 case M_BGTU_I:
10183 if (op[0] == 0
10184 || (GPR_SIZE == 32
10185 && imm_expr.X_add_number == -1))
10186 goto do_false;
10187 ++imm_expr.X_add_number;
10188 /* FALLTHROUGH */
10189 case M_BGEU_I:
10190 case M_BGEUL_I:
10191 if (mask == M_BGEUL_I)
10192 likely = 1;
10193 if (imm_expr.X_add_number == 0)
10194 goto do_true;
10195 else if (imm_expr.X_add_number == 1)
10196 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10197 &offset_expr, op[0], ZERO);
10198 else
10199 {
10200 used_at = 1;
10201 set_at (op[0], 1);
10202 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10203 &offset_expr, AT, ZERO);
10204 }
10205 break;
10206
10207 case M_BGTL:
10208 likely = 1;
10209 /* Fall through. */
10210 case M_BGT:
10211 if (op[1] == 0)
10212 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10213 else if (op[0] == 0)
10214 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10215 else
10216 {
10217 used_at = 1;
10218 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10219 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10220 &offset_expr, AT, ZERO);
10221 }
10222 break;
10223
10224 case M_BGTUL:
10225 likely = 1;
10226 /* Fall through. */
10227 case M_BGTU:
10228 if (op[1] == 0)
10229 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10230 &offset_expr, op[0], ZERO);
10231 else if (op[0] == 0)
10232 goto do_false;
10233 else
10234 {
10235 used_at = 1;
10236 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10237 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10238 &offset_expr, AT, ZERO);
10239 }
10240 break;
10241
10242 case M_BLEL:
10243 likely = 1;
10244 /* Fall through. */
10245 case M_BLE:
10246 if (op[1] == 0)
10247 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10248 else if (op[0] == 0)
10249 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10250 else
10251 {
10252 used_at = 1;
10253 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10254 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10255 &offset_expr, AT, ZERO);
10256 }
10257 break;
10258
10259 case M_BLEL_I:
10260 likely = 1;
10261 /* Fall through. */
10262 case M_BLE_I:
10263 if (imm_expr.X_add_number >= GPR_SMAX)
10264 goto do_true;
10265 ++imm_expr.X_add_number;
10266 /* FALLTHROUGH */
10267 case M_BLT_I:
10268 case M_BLTL_I:
10269 if (mask == M_BLTL_I)
10270 likely = 1;
10271 if (imm_expr.X_add_number == 0)
10272 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10273 else if (imm_expr.X_add_number == 1)
10274 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10275 else
10276 {
10277 used_at = 1;
10278 set_at (op[0], 0);
10279 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10280 &offset_expr, AT, ZERO);
10281 }
10282 break;
10283
10284 case M_BLEUL:
10285 likely = 1;
10286 /* Fall through. */
10287 case M_BLEU:
10288 if (op[1] == 0)
10289 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10290 &offset_expr, op[0], ZERO);
10291 else if (op[0] == 0)
10292 goto do_true;
10293 else
10294 {
10295 used_at = 1;
10296 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10297 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10298 &offset_expr, AT, ZERO);
10299 }
10300 break;
10301
10302 case M_BLEUL_I:
10303 likely = 1;
10304 /* Fall through. */
10305 case M_BLEU_I:
10306 if (op[0] == 0
10307 || (GPR_SIZE == 32
10308 && imm_expr.X_add_number == -1))
10309 goto do_true;
10310 ++imm_expr.X_add_number;
10311 /* FALLTHROUGH */
10312 case M_BLTU_I:
10313 case M_BLTUL_I:
10314 if (mask == M_BLTUL_I)
10315 likely = 1;
10316 if (imm_expr.X_add_number == 0)
10317 goto do_false;
10318 else if (imm_expr.X_add_number == 1)
10319 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10320 &offset_expr, op[0], ZERO);
10321 else
10322 {
10323 used_at = 1;
10324 set_at (op[0], 1);
10325 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10326 &offset_expr, AT, ZERO);
10327 }
10328 break;
10329
10330 case M_BLTL:
10331 likely = 1;
10332 /* Fall through. */
10333 case M_BLT:
10334 if (op[1] == 0)
10335 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10336 else if (op[0] == 0)
10337 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10338 else
10339 {
10340 used_at = 1;
10341 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10342 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10343 &offset_expr, AT, ZERO);
10344 }
10345 break;
10346
10347 case M_BLTUL:
10348 likely = 1;
10349 /* Fall through. */
10350 case M_BLTU:
10351 if (op[1] == 0)
10352 goto do_false;
10353 else if (op[0] == 0)
10354 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10355 &offset_expr, ZERO, op[1]);
10356 else
10357 {
10358 used_at = 1;
10359 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10360 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10361 &offset_expr, AT, ZERO);
10362 }
10363 break;
10364
10365 case M_DDIV_3:
10366 dbl = 1;
10367 /* Fall through. */
10368 case M_DIV_3:
10369 s = "mflo";
10370 goto do_div3;
10371 case M_DREM_3:
10372 dbl = 1;
10373 /* Fall through. */
10374 case M_REM_3:
10375 s = "mfhi";
10376 do_div3:
10377 if (op[2] == 0)
10378 {
10379 as_warn (_("divide by zero"));
10380 if (mips_trap)
10381 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10382 else
10383 macro_build (NULL, "break", BRK_FMT, 7);
10384 break;
10385 }
10386
10387 start_noreorder ();
10388 if (mips_trap)
10389 {
10390 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10391 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10392 }
10393 else
10394 {
10395 if (mips_opts.micromips)
10396 micromips_label_expr (&label_expr);
10397 else
10398 label_expr.X_add_number = 8;
10399 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10400 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10401 macro_build (NULL, "break", BRK_FMT, 7);
10402 if (mips_opts.micromips)
10403 micromips_add_label ();
10404 }
10405 expr1.X_add_number = -1;
10406 used_at = 1;
10407 load_register (AT, &expr1, dbl);
10408 if (mips_opts.micromips)
10409 micromips_label_expr (&label_expr);
10410 else
10411 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10412 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10413 if (dbl)
10414 {
10415 expr1.X_add_number = 1;
10416 load_register (AT, &expr1, dbl);
10417 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10418 }
10419 else
10420 {
10421 expr1.X_add_number = 0x80000000;
10422 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10423 }
10424 if (mips_trap)
10425 {
10426 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10427 /* We want to close the noreorder block as soon as possible, so
10428 that later insns are available for delay slot filling. */
10429 end_noreorder ();
10430 }
10431 else
10432 {
10433 if (mips_opts.micromips)
10434 micromips_label_expr (&label_expr);
10435 else
10436 label_expr.X_add_number = 8;
10437 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10438 macro_build (NULL, "nop", "");
10439
10440 /* We want to close the noreorder block as soon as possible, so
10441 that later insns are available for delay slot filling. */
10442 end_noreorder ();
10443
10444 macro_build (NULL, "break", BRK_FMT, 6);
10445 }
10446 if (mips_opts.micromips)
10447 micromips_add_label ();
10448 macro_build (NULL, s, MFHL_FMT, op[0]);
10449 break;
10450
10451 case M_DIV_3I:
10452 s = "div";
10453 s2 = "mflo";
10454 goto do_divi;
10455 case M_DIVU_3I:
10456 s = "divu";
10457 s2 = "mflo";
10458 goto do_divi;
10459 case M_REM_3I:
10460 s = "div";
10461 s2 = "mfhi";
10462 goto do_divi;
10463 case M_REMU_3I:
10464 s = "divu";
10465 s2 = "mfhi";
10466 goto do_divi;
10467 case M_DDIV_3I:
10468 dbl = 1;
10469 s = "ddiv";
10470 s2 = "mflo";
10471 goto do_divi;
10472 case M_DDIVU_3I:
10473 dbl = 1;
10474 s = "ddivu";
10475 s2 = "mflo";
10476 goto do_divi;
10477 case M_DREM_3I:
10478 dbl = 1;
10479 s = "ddiv";
10480 s2 = "mfhi";
10481 goto do_divi;
10482 case M_DREMU_3I:
10483 dbl = 1;
10484 s = "ddivu";
10485 s2 = "mfhi";
10486 do_divi:
10487 if (imm_expr.X_add_number == 0)
10488 {
10489 as_warn (_("divide by zero"));
10490 if (mips_trap)
10491 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10492 else
10493 macro_build (NULL, "break", BRK_FMT, 7);
10494 break;
10495 }
10496 if (imm_expr.X_add_number == 1)
10497 {
10498 if (strcmp (s2, "mflo") == 0)
10499 move_register (op[0], op[1]);
10500 else
10501 move_register (op[0], ZERO);
10502 break;
10503 }
10504 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10505 {
10506 if (strcmp (s2, "mflo") == 0)
10507 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10508 else
10509 move_register (op[0], ZERO);
10510 break;
10511 }
10512
10513 used_at = 1;
10514 load_register (AT, &imm_expr, dbl);
10515 macro_build (NULL, s, "z,s,t", op[1], AT);
10516 macro_build (NULL, s2, MFHL_FMT, op[0]);
10517 break;
10518
10519 case M_DIVU_3:
10520 s = "divu";
10521 s2 = "mflo";
10522 goto do_divu3;
10523 case M_REMU_3:
10524 s = "divu";
10525 s2 = "mfhi";
10526 goto do_divu3;
10527 case M_DDIVU_3:
10528 s = "ddivu";
10529 s2 = "mflo";
10530 goto do_divu3;
10531 case M_DREMU_3:
10532 s = "ddivu";
10533 s2 = "mfhi";
10534 do_divu3:
10535 start_noreorder ();
10536 if (mips_trap)
10537 {
10538 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10539 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10540 /* We want to close the noreorder block as soon as possible, so
10541 that later insns are available for delay slot filling. */
10542 end_noreorder ();
10543 }
10544 else
10545 {
10546 if (mips_opts.micromips)
10547 micromips_label_expr (&label_expr);
10548 else
10549 label_expr.X_add_number = 8;
10550 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10551 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10552
10553 /* We want to close the noreorder block as soon as possible, so
10554 that later insns are available for delay slot filling. */
10555 end_noreorder ();
10556 macro_build (NULL, "break", BRK_FMT, 7);
10557 if (mips_opts.micromips)
10558 micromips_add_label ();
10559 }
10560 macro_build (NULL, s2, MFHL_FMT, op[0]);
10561 break;
10562
10563 case M_DLCA_AB:
10564 dbl = 1;
10565 /* Fall through. */
10566 case M_LCA_AB:
10567 call = 1;
10568 goto do_la;
10569 case M_DLA_AB:
10570 dbl = 1;
10571 /* Fall through. */
10572 case M_LA_AB:
10573 do_la:
10574 /* Load the address of a symbol into a register. If breg is not
10575 zero, we then add a base register to it. */
10576
10577 breg = op[2];
10578 if (dbl && GPR_SIZE == 32)
10579 as_warn (_("dla used to load 32-bit register; recommend using la "
10580 "instead"));
10581
10582 if (!dbl && HAVE_64BIT_OBJECTS)
10583 as_warn (_("la used to load 64-bit address; recommend using dla "
10584 "instead"));
10585
10586 if (small_offset_p (0, align, 16))
10587 {
10588 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10589 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10590 break;
10591 }
10592
10593 if (mips_opts.at && (op[0] == breg))
10594 {
10595 tempreg = AT;
10596 used_at = 1;
10597 }
10598 else
10599 tempreg = op[0];
10600
10601 if (offset_expr.X_op != O_symbol
10602 && offset_expr.X_op != O_constant)
10603 {
10604 as_bad (_("expression too complex"));
10605 offset_expr.X_op = O_constant;
10606 }
10607
10608 if (offset_expr.X_op == O_constant)
10609 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10610 else if (mips_pic == NO_PIC)
10611 {
10612 /* If this is a reference to a GP relative symbol, we want
10613 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10614 Otherwise we want
10615 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10616 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10617 If we have a constant, we need two instructions anyhow,
10618 so we may as well always use the latter form.
10619
10620 With 64bit address space and a usable $at we want
10621 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10622 lui $at,<sym> (BFD_RELOC_HI16_S)
10623 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10624 daddiu $at,<sym> (BFD_RELOC_LO16)
10625 dsll32 $tempreg,0
10626 daddu $tempreg,$tempreg,$at
10627
10628 If $at is already in use, we use a path which is suboptimal
10629 on superscalar processors.
10630 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10631 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10632 dsll $tempreg,16
10633 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
10634 dsll $tempreg,16
10635 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
10636
10637 For GP relative symbols in 64bit address space we can use
10638 the same sequence as in 32bit address space. */
10639 if (HAVE_64BIT_SYMBOLS)
10640 {
10641 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10642 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10643 {
10644 relax_start (offset_expr.X_add_symbol);
10645 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10646 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10647 relax_switch ();
10648 }
10649
10650 if (used_at == 0 && mips_opts.at)
10651 {
10652 macro_build (&offset_expr, "lui", LUI_FMT,
10653 tempreg, BFD_RELOC_MIPS_HIGHEST);
10654 macro_build (&offset_expr, "lui", LUI_FMT,
10655 AT, BFD_RELOC_HI16_S);
10656 macro_build (&offset_expr, "daddiu", "t,r,j",
10657 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10658 macro_build (&offset_expr, "daddiu", "t,r,j",
10659 AT, AT, BFD_RELOC_LO16);
10660 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
10661 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
10662 used_at = 1;
10663 }
10664 else
10665 {
10666 macro_build (&offset_expr, "lui", LUI_FMT,
10667 tempreg, BFD_RELOC_MIPS_HIGHEST);
10668 macro_build (&offset_expr, "daddiu", "t,r,j",
10669 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
10670 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10671 macro_build (&offset_expr, "daddiu", "t,r,j",
10672 tempreg, tempreg, BFD_RELOC_HI16_S);
10673 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
10674 macro_build (&offset_expr, "daddiu", "t,r,j",
10675 tempreg, tempreg, BFD_RELOC_LO16);
10676 }
10677
10678 if (mips_relax.sequence)
10679 relax_end ();
10680 }
10681 else
10682 {
10683 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
10684 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
10685 {
10686 relax_start (offset_expr.X_add_symbol);
10687 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10688 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
10689 relax_switch ();
10690 }
10691 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
10692 as_bad (_("offset too large"));
10693 macro_build_lui (&offset_expr, tempreg);
10694 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10695 tempreg, tempreg, BFD_RELOC_LO16);
10696 if (mips_relax.sequence)
10697 relax_end ();
10698 }
10699 }
10700 else if (!mips_big_got && !HAVE_NEWABI)
10701 {
10702 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10703
10704 /* If this is a reference to an external symbol, and there
10705 is no constant, we want
10706 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10707 or for lca or if tempreg is PIC_CALL_REG
10708 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10709 For a local symbol, we want
10710 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10711 nop
10712 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10713
10714 If we have a small constant, and this is a reference to
10715 an external symbol, we want
10716 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10717 nop
10718 addiu $tempreg,$tempreg,<constant>
10719 For a local symbol, we want the same instruction
10720 sequence, but we output a BFD_RELOC_LO16 reloc on the
10721 addiu instruction.
10722
10723 If we have a large constant, and this is a reference to
10724 an external symbol, we want
10725 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10726 lui $at,<hiconstant>
10727 addiu $at,$at,<loconstant>
10728 addu $tempreg,$tempreg,$at
10729 For a local symbol, we want the same instruction
10730 sequence, but we output a BFD_RELOC_LO16 reloc on the
10731 addiu instruction.
10732 */
10733
10734 if (offset_expr.X_add_number == 0)
10735 {
10736 if (mips_pic == SVR4_PIC
10737 && breg == 0
10738 && (call || tempreg == PIC_CALL_REG))
10739 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
10740
10741 relax_start (offset_expr.X_add_symbol);
10742 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10743 lw_reloc_type, mips_gp_register);
10744 if (breg != 0)
10745 {
10746 /* We're going to put in an addu instruction using
10747 tempreg, so we may as well insert the nop right
10748 now. */
10749 load_delay_nop ();
10750 }
10751 relax_switch ();
10752 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10753 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
10754 load_delay_nop ();
10755 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
10756 tempreg, tempreg, BFD_RELOC_LO16);
10757 relax_end ();
10758 /* FIXME: If breg == 0, and the next instruction uses
10759 $tempreg, then if this variant case is used an extra
10760 nop will be generated. */
10761 }
10762 else if (offset_expr.X_add_number >= -0x8000
10763 && offset_expr.X_add_number < 0x8000)
10764 {
10765 load_got_offset (tempreg, &offset_expr);
10766 load_delay_nop ();
10767 add_got_offset (tempreg, &offset_expr);
10768 }
10769 else
10770 {
10771 expr1.X_add_number = offset_expr.X_add_number;
10772 offset_expr.X_add_number =
10773 SEXT_16BIT (offset_expr.X_add_number);
10774 load_got_offset (tempreg, &offset_expr);
10775 offset_expr.X_add_number = expr1.X_add_number;
10776 /* If we are going to add in a base register, and the
10777 target register and the base register are the same,
10778 then we are using AT as a temporary register. Since
10779 we want to load the constant into AT, we add our
10780 current AT (from the global offset table) and the
10781 register into the register now, and pretend we were
10782 not using a base register. */
10783 if (breg == op[0])
10784 {
10785 load_delay_nop ();
10786 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10787 op[0], AT, breg);
10788 breg = 0;
10789 tempreg = op[0];
10790 }
10791 add_got_offset_hilo (tempreg, &offset_expr, AT);
10792 used_at = 1;
10793 }
10794 }
10795 else if (!mips_big_got && HAVE_NEWABI)
10796 {
10797 int add_breg_early = 0;
10798
10799 /* If this is a reference to an external, and there is no
10800 constant, or local symbol (*), with or without a
10801 constant, we want
10802 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10803 or for lca or if tempreg is PIC_CALL_REG
10804 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
10805
10806 If we have a small constant, and this is a reference to
10807 an external symbol, we want
10808 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10809 addiu $tempreg,$tempreg,<constant>
10810
10811 If we have a large constant, and this is a reference to
10812 an external symbol, we want
10813 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
10814 lui $at,<hiconstant>
10815 addiu $at,$at,<loconstant>
10816 addu $tempreg,$tempreg,$at
10817
10818 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
10819 local symbols, even though it introduces an additional
10820 instruction. */
10821
10822 if (offset_expr.X_add_number)
10823 {
10824 expr1.X_add_number = offset_expr.X_add_number;
10825 offset_expr.X_add_number = 0;
10826
10827 relax_start (offset_expr.X_add_symbol);
10828 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10829 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10830
10831 if (expr1.X_add_number >= -0x8000
10832 && expr1.X_add_number < 0x8000)
10833 {
10834 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10835 tempreg, tempreg, BFD_RELOC_LO16);
10836 }
10837 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
10838 {
10839 unsigned int dreg;
10840
10841 /* If we are going to add in a base register, and the
10842 target register and the base register are the same,
10843 then we are using AT as a temporary register. Since
10844 we want to load the constant into AT, we add our
10845 current AT (from the global offset table) and the
10846 register into the register now, and pretend we were
10847 not using a base register. */
10848 if (breg != op[0])
10849 dreg = tempreg;
10850 else
10851 {
10852 gas_assert (tempreg == AT);
10853 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10854 op[0], AT, breg);
10855 dreg = op[0];
10856 add_breg_early = 1;
10857 }
10858
10859 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
10860 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10861 dreg, dreg, AT);
10862
10863 used_at = 1;
10864 }
10865 else
10866 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
10867
10868 relax_switch ();
10869 offset_expr.X_add_number = expr1.X_add_number;
10870
10871 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10872 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10873 if (add_breg_early)
10874 {
10875 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10876 op[0], tempreg, breg);
10877 breg = 0;
10878 tempreg = op[0];
10879 }
10880 relax_end ();
10881 }
10882 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
10883 {
10884 relax_start (offset_expr.X_add_symbol);
10885 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10886 BFD_RELOC_MIPS_CALL16, mips_gp_register);
10887 relax_switch ();
10888 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10889 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10890 relax_end ();
10891 }
10892 else
10893 {
10894 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
10895 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
10896 }
10897 }
10898 else if (mips_big_got && !HAVE_NEWABI)
10899 {
10900 int gpdelay;
10901 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
10902 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
10903 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
10904
10905 /* This is the large GOT case. If this is a reference to an
10906 external symbol, and there is no constant, we want
10907 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10908 addu $tempreg,$tempreg,$gp
10909 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10910 or for lca or if tempreg is PIC_CALL_REG
10911 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
10912 addu $tempreg,$tempreg,$gp
10913 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
10914 For a local symbol, we want
10915 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10916 nop
10917 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10918
10919 If we have a small constant, and this is a reference to
10920 an external symbol, we want
10921 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10922 addu $tempreg,$tempreg,$gp
10923 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10924 nop
10925 addiu $tempreg,$tempreg,<constant>
10926 For a local symbol, we want
10927 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10928 nop
10929 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
10930
10931 If we have a large constant, and this is a reference to
10932 an external symbol, we want
10933 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
10934 addu $tempreg,$tempreg,$gp
10935 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
10936 lui $at,<hiconstant>
10937 addiu $at,$at,<loconstant>
10938 addu $tempreg,$tempreg,$at
10939 For a local symbol, we want
10940 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
10941 lui $at,<hiconstant>
10942 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
10943 addu $tempreg,$tempreg,$at
10944 */
10945
10946 expr1.X_add_number = offset_expr.X_add_number;
10947 offset_expr.X_add_number = 0;
10948 relax_start (offset_expr.X_add_symbol);
10949 gpdelay = reg_needs_delay (mips_gp_register);
10950 if (expr1.X_add_number == 0 && breg == 0
10951 && (call || tempreg == PIC_CALL_REG))
10952 {
10953 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
10954 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
10955 }
10956 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
10957 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10958 tempreg, tempreg, mips_gp_register);
10959 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
10960 tempreg, lw_reloc_type, tempreg);
10961 if (expr1.X_add_number == 0)
10962 {
10963 if (breg != 0)
10964 {
10965 /* We're going to put in an addu instruction using
10966 tempreg, so we may as well insert the nop right
10967 now. */
10968 load_delay_nop ();
10969 }
10970 }
10971 else if (expr1.X_add_number >= -0x8000
10972 && expr1.X_add_number < 0x8000)
10973 {
10974 load_delay_nop ();
10975 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
10976 tempreg, tempreg, BFD_RELOC_LO16);
10977 }
10978 else
10979 {
10980 unsigned int dreg;
10981
10982 /* If we are going to add in a base register, and the
10983 target register and the base register are the same,
10984 then we are using AT as a temporary register. Since
10985 we want to load the constant into AT, we add our
10986 current AT (from the global offset table) and the
10987 register into the register now, and pretend we were
10988 not using a base register. */
10989 if (breg != op[0])
10990 dreg = tempreg;
10991 else
10992 {
10993 gas_assert (tempreg == AT);
10994 load_delay_nop ();
10995 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
10996 op[0], AT, breg);
10997 dreg = op[0];
10998 }
10999
11000 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11001 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11002
11003 used_at = 1;
11004 }
11005 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11006 relax_switch ();
11007
11008 if (gpdelay)
11009 {
11010 /* This is needed because this instruction uses $gp, but
11011 the first instruction on the main stream does not. */
11012 macro_build (NULL, "nop", "");
11013 }
11014
11015 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11016 local_reloc_type, mips_gp_register);
11017 if (expr1.X_add_number >= -0x8000
11018 && expr1.X_add_number < 0x8000)
11019 {
11020 load_delay_nop ();
11021 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11022 tempreg, tempreg, BFD_RELOC_LO16);
11023 /* FIXME: If add_number is 0, and there was no base
11024 register, the external symbol case ended with a load,
11025 so if the symbol turns out to not be external, and
11026 the next instruction uses tempreg, an unnecessary nop
11027 will be inserted. */
11028 }
11029 else
11030 {
11031 if (breg == op[0])
11032 {
11033 /* We must add in the base register now, as in the
11034 external symbol case. */
11035 gas_assert (tempreg == AT);
11036 load_delay_nop ();
11037 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11038 op[0], AT, breg);
11039 tempreg = op[0];
11040 /* We set breg to 0 because we have arranged to add
11041 it in in both cases. */
11042 breg = 0;
11043 }
11044
11045 macro_build_lui (&expr1, AT);
11046 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11047 AT, AT, BFD_RELOC_LO16);
11048 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11049 tempreg, tempreg, AT);
11050 used_at = 1;
11051 }
11052 relax_end ();
11053 }
11054 else if (mips_big_got && HAVE_NEWABI)
11055 {
11056 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11057 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11058 int add_breg_early = 0;
11059
11060 /* This is the large GOT case. If this is a reference to an
11061 external symbol, and there is no constant, we want
11062 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11063 add $tempreg,$tempreg,$gp
11064 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11065 or for lca or if tempreg is PIC_CALL_REG
11066 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11067 add $tempreg,$tempreg,$gp
11068 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11069
11070 If we have a small constant, and this is a reference to
11071 an external symbol, we want
11072 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11073 add $tempreg,$tempreg,$gp
11074 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11075 addi $tempreg,$tempreg,<constant>
11076
11077 If we have a large constant, and this is a reference to
11078 an external symbol, we want
11079 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11080 addu $tempreg,$tempreg,$gp
11081 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11082 lui $at,<hiconstant>
11083 addi $at,$at,<loconstant>
11084 add $tempreg,$tempreg,$at
11085
11086 If we have NewABI, and we know it's a local symbol, we want
11087 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11088 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11089 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11090
11091 relax_start (offset_expr.X_add_symbol);
11092
11093 expr1.X_add_number = offset_expr.X_add_number;
11094 offset_expr.X_add_number = 0;
11095
11096 if (expr1.X_add_number == 0 && breg == 0
11097 && (call || tempreg == PIC_CALL_REG))
11098 {
11099 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11100 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11101 }
11102 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11103 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11104 tempreg, tempreg, mips_gp_register);
11105 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11106 tempreg, lw_reloc_type, tempreg);
11107
11108 if (expr1.X_add_number == 0)
11109 ;
11110 else if (expr1.X_add_number >= -0x8000
11111 && expr1.X_add_number < 0x8000)
11112 {
11113 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11114 tempreg, tempreg, BFD_RELOC_LO16);
11115 }
11116 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11117 {
11118 unsigned int dreg;
11119
11120 /* If we are going to add in a base register, and the
11121 target register and the base register are the same,
11122 then we are using AT as a temporary register. Since
11123 we want to load the constant into AT, we add our
11124 current AT (from the global offset table) and the
11125 register into the register now, and pretend we were
11126 not using a base register. */
11127 if (breg != op[0])
11128 dreg = tempreg;
11129 else
11130 {
11131 gas_assert (tempreg == AT);
11132 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11133 op[0], AT, breg);
11134 dreg = op[0];
11135 add_breg_early = 1;
11136 }
11137
11138 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11139 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11140
11141 used_at = 1;
11142 }
11143 else
11144 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11145
11146 relax_switch ();
11147 offset_expr.X_add_number = expr1.X_add_number;
11148 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11149 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11150 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11151 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11152 if (add_breg_early)
11153 {
11154 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11155 op[0], tempreg, breg);
11156 breg = 0;
11157 tempreg = op[0];
11158 }
11159 relax_end ();
11160 }
11161 else
11162 abort ();
11163
11164 if (breg != 0)
11165 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11166 break;
11167
11168 case M_MSGSND:
11169 gas_assert (!mips_opts.micromips);
11170 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11171 break;
11172
11173 case M_MSGLD:
11174 gas_assert (!mips_opts.micromips);
11175 macro_build (NULL, "c2", "C", 0x02);
11176 break;
11177
11178 case M_MSGLD_T:
11179 gas_assert (!mips_opts.micromips);
11180 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11181 break;
11182
11183 case M_MSGWAIT:
11184 gas_assert (!mips_opts.micromips);
11185 macro_build (NULL, "c2", "C", 3);
11186 break;
11187
11188 case M_MSGWAIT_T:
11189 gas_assert (!mips_opts.micromips);
11190 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11191 break;
11192
11193 case M_J_A:
11194 /* The j instruction may not be used in PIC code, since it
11195 requires an absolute address. We convert it to a b
11196 instruction. */
11197 if (mips_pic == NO_PIC)
11198 macro_build (&offset_expr, "j", "a");
11199 else
11200 macro_build (&offset_expr, "b", "p");
11201 break;
11202
11203 /* The jal instructions must be handled as macros because when
11204 generating PIC code they expand to multi-instruction
11205 sequences. Normally they are simple instructions. */
11206 case M_JALS_1:
11207 op[1] = op[0];
11208 op[0] = RA;
11209 /* Fall through. */
11210 case M_JALS_2:
11211 gas_assert (mips_opts.micromips);
11212 if (mips_opts.insn32)
11213 {
11214 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11215 break;
11216 }
11217 jals = 1;
11218 goto jal;
11219 case M_JAL_1:
11220 op[1] = op[0];
11221 op[0] = RA;
11222 /* Fall through. */
11223 case M_JAL_2:
11224 jal:
11225 if (mips_pic == NO_PIC)
11226 {
11227 s = jals ? "jalrs" : "jalr";
11228 if (mips_opts.micromips
11229 && !mips_opts.insn32
11230 && op[0] == RA
11231 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11232 macro_build (NULL, s, "mj", op[1]);
11233 else
11234 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11235 }
11236 else
11237 {
11238 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11239 && mips_cprestore_offset >= 0);
11240
11241 if (op[1] != PIC_CALL_REG)
11242 as_warn (_("MIPS PIC call to register other than $25"));
11243
11244 s = ((mips_opts.micromips
11245 && !mips_opts.insn32
11246 && (!mips_opts.noreorder || cprestore))
11247 ? "jalrs" : "jalr");
11248 if (mips_opts.micromips
11249 && !mips_opts.insn32
11250 && op[0] == RA
11251 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11252 macro_build (NULL, s, "mj", op[1]);
11253 else
11254 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11255 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11256 {
11257 if (mips_cprestore_offset < 0)
11258 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11259 else
11260 {
11261 if (!mips_frame_reg_valid)
11262 {
11263 as_warn (_("no .frame pseudo-op used in PIC code"));
11264 /* Quiet this warning. */
11265 mips_frame_reg_valid = 1;
11266 }
11267 if (!mips_cprestore_valid)
11268 {
11269 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11270 /* Quiet this warning. */
11271 mips_cprestore_valid = 1;
11272 }
11273 if (mips_opts.noreorder)
11274 macro_build (NULL, "nop", "");
11275 expr1.X_add_number = mips_cprestore_offset;
11276 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11277 mips_gp_register,
11278 mips_frame_reg,
11279 HAVE_64BIT_ADDRESSES);
11280 }
11281 }
11282 }
11283
11284 break;
11285
11286 case M_JALS_A:
11287 gas_assert (mips_opts.micromips);
11288 if (mips_opts.insn32)
11289 {
11290 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11291 break;
11292 }
11293 jals = 1;
11294 /* Fall through. */
11295 case M_JAL_A:
11296 if (mips_pic == NO_PIC)
11297 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11298 else if (mips_pic == SVR4_PIC)
11299 {
11300 /* If this is a reference to an external symbol, and we are
11301 using a small GOT, we want
11302 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11303 nop
11304 jalr $ra,$25
11305 nop
11306 lw $gp,cprestore($sp)
11307 The cprestore value is set using the .cprestore
11308 pseudo-op. If we are using a big GOT, we want
11309 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11310 addu $25,$25,$gp
11311 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11312 nop
11313 jalr $ra,$25
11314 nop
11315 lw $gp,cprestore($sp)
11316 If the symbol is not external, we want
11317 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11318 nop
11319 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11320 jalr $ra,$25
11321 nop
11322 lw $gp,cprestore($sp)
11323
11324 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11325 sequences above, minus nops, unless the symbol is local,
11326 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11327 GOT_DISP. */
11328 if (HAVE_NEWABI)
11329 {
11330 if (!mips_big_got)
11331 {
11332 relax_start (offset_expr.X_add_symbol);
11333 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11334 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11335 mips_gp_register);
11336 relax_switch ();
11337 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11338 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11339 mips_gp_register);
11340 relax_end ();
11341 }
11342 else
11343 {
11344 relax_start (offset_expr.X_add_symbol);
11345 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11346 BFD_RELOC_MIPS_CALL_HI16);
11347 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11348 PIC_CALL_REG, mips_gp_register);
11349 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11350 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11351 PIC_CALL_REG);
11352 relax_switch ();
11353 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11354 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11355 mips_gp_register);
11356 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11357 PIC_CALL_REG, PIC_CALL_REG,
11358 BFD_RELOC_MIPS_GOT_OFST);
11359 relax_end ();
11360 }
11361
11362 macro_build_jalr (&offset_expr, 0);
11363 }
11364 else
11365 {
11366 relax_start (offset_expr.X_add_symbol);
11367 if (!mips_big_got)
11368 {
11369 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11370 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11371 mips_gp_register);
11372 load_delay_nop ();
11373 relax_switch ();
11374 }
11375 else
11376 {
11377 int gpdelay;
11378
11379 gpdelay = reg_needs_delay (mips_gp_register);
11380 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11381 BFD_RELOC_MIPS_CALL_HI16);
11382 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11383 PIC_CALL_REG, mips_gp_register);
11384 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11385 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11386 PIC_CALL_REG);
11387 load_delay_nop ();
11388 relax_switch ();
11389 if (gpdelay)
11390 macro_build (NULL, "nop", "");
11391 }
11392 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11393 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11394 mips_gp_register);
11395 load_delay_nop ();
11396 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11397 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11398 relax_end ();
11399 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11400
11401 if (mips_cprestore_offset < 0)
11402 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11403 else
11404 {
11405 if (!mips_frame_reg_valid)
11406 {
11407 as_warn (_("no .frame pseudo-op used in PIC code"));
11408 /* Quiet this warning. */
11409 mips_frame_reg_valid = 1;
11410 }
11411 if (!mips_cprestore_valid)
11412 {
11413 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11414 /* Quiet this warning. */
11415 mips_cprestore_valid = 1;
11416 }
11417 if (mips_opts.noreorder)
11418 macro_build (NULL, "nop", "");
11419 expr1.X_add_number = mips_cprestore_offset;
11420 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11421 mips_gp_register,
11422 mips_frame_reg,
11423 HAVE_64BIT_ADDRESSES);
11424 }
11425 }
11426 }
11427 else if (mips_pic == VXWORKS_PIC)
11428 as_bad (_("non-PIC jump used in PIC library"));
11429 else
11430 abort ();
11431
11432 break;
11433
11434 case M_LBUE_AB:
11435 s = "lbue";
11436 fmt = "t,+j(b)";
11437 offbits = 9;
11438 goto ld_st;
11439 case M_LHUE_AB:
11440 s = "lhue";
11441 fmt = "t,+j(b)";
11442 offbits = 9;
11443 goto ld_st;
11444 case M_LBE_AB:
11445 s = "lbe";
11446 fmt = "t,+j(b)";
11447 offbits = 9;
11448 goto ld_st;
11449 case M_LHE_AB:
11450 s = "lhe";
11451 fmt = "t,+j(b)";
11452 offbits = 9;
11453 goto ld_st;
11454 case M_LLE_AB:
11455 s = "lle";
11456 fmt = "t,+j(b)";
11457 offbits = 9;
11458 goto ld_st;
11459 case M_LWE_AB:
11460 s = "lwe";
11461 fmt = "t,+j(b)";
11462 offbits = 9;
11463 goto ld_st;
11464 case M_LWLE_AB:
11465 s = "lwle";
11466 fmt = "t,+j(b)";
11467 offbits = 9;
11468 goto ld_st;
11469 case M_LWRE_AB:
11470 s = "lwre";
11471 fmt = "t,+j(b)";
11472 offbits = 9;
11473 goto ld_st;
11474 case M_SBE_AB:
11475 s = "sbe";
11476 fmt = "t,+j(b)";
11477 offbits = 9;
11478 goto ld_st;
11479 case M_SCE_AB:
11480 s = "sce";
11481 fmt = "t,+j(b)";
11482 offbits = 9;
11483 goto ld_st;
11484 case M_SHE_AB:
11485 s = "she";
11486 fmt = "t,+j(b)";
11487 offbits = 9;
11488 goto ld_st;
11489 case M_SWE_AB:
11490 s = "swe";
11491 fmt = "t,+j(b)";
11492 offbits = 9;
11493 goto ld_st;
11494 case M_SWLE_AB:
11495 s = "swle";
11496 fmt = "t,+j(b)";
11497 offbits = 9;
11498 goto ld_st;
11499 case M_SWRE_AB:
11500 s = "swre";
11501 fmt = "t,+j(b)";
11502 offbits = 9;
11503 goto ld_st;
11504 case M_ACLR_AB:
11505 s = "aclr";
11506 fmt = "\\,~(b)";
11507 offbits = 12;
11508 goto ld_st;
11509 case M_ASET_AB:
11510 s = "aset";
11511 fmt = "\\,~(b)";
11512 offbits = 12;
11513 goto ld_st;
11514 case M_LB_AB:
11515 s = "lb";
11516 fmt = "t,o(b)";
11517 goto ld;
11518 case M_LBU_AB:
11519 s = "lbu";
11520 fmt = "t,o(b)";
11521 goto ld;
11522 case M_LH_AB:
11523 s = "lh";
11524 fmt = "t,o(b)";
11525 goto ld;
11526 case M_LHU_AB:
11527 s = "lhu";
11528 fmt = "t,o(b)";
11529 goto ld;
11530 case M_LW_AB:
11531 s = "lw";
11532 fmt = "t,o(b)";
11533 goto ld;
11534 case M_LWC0_AB:
11535 gas_assert (!mips_opts.micromips);
11536 s = "lwc0";
11537 fmt = "E,o(b)";
11538 /* Itbl support may require additional care here. */
11539 coproc = 1;
11540 goto ld_st;
11541 case M_LWC1_AB:
11542 s = "lwc1";
11543 fmt = "T,o(b)";
11544 /* Itbl support may require additional care here. */
11545 coproc = 1;
11546 goto ld_st;
11547 case M_LWC2_AB:
11548 s = "lwc2";
11549 fmt = COP12_FMT;
11550 offbits = (mips_opts.micromips ? 12
11551 : ISA_IS_R6 (mips_opts.isa) ? 11
11552 : 16);
11553 /* Itbl support may require additional care here. */
11554 coproc = 1;
11555 goto ld_st;
11556 case M_LWC3_AB:
11557 gas_assert (!mips_opts.micromips);
11558 s = "lwc3";
11559 fmt = "E,o(b)";
11560 /* Itbl support may require additional care here. */
11561 coproc = 1;
11562 goto ld_st;
11563 case M_LWL_AB:
11564 s = "lwl";
11565 fmt = MEM12_FMT;
11566 offbits = (mips_opts.micromips ? 12 : 16);
11567 goto ld_st;
11568 case M_LWR_AB:
11569 s = "lwr";
11570 fmt = MEM12_FMT;
11571 offbits = (mips_opts.micromips ? 12 : 16);
11572 goto ld_st;
11573 case M_LDC1_AB:
11574 s = "ldc1";
11575 fmt = "T,o(b)";
11576 /* Itbl support may require additional care here. */
11577 coproc = 1;
11578 goto ld_st;
11579 case M_LDC2_AB:
11580 s = "ldc2";
11581 fmt = COP12_FMT;
11582 offbits = (mips_opts.micromips ? 12
11583 : ISA_IS_R6 (mips_opts.isa) ? 11
11584 : 16);
11585 /* Itbl support may require additional care here. */
11586 coproc = 1;
11587 goto ld_st;
11588 case M_LQC2_AB:
11589 s = "lqc2";
11590 fmt = "+7,o(b)";
11591 /* Itbl support may require additional care here. */
11592 coproc = 1;
11593 goto ld_st;
11594 case M_LDC3_AB:
11595 s = "ldc3";
11596 fmt = "E,o(b)";
11597 /* Itbl support may require additional care here. */
11598 coproc = 1;
11599 goto ld_st;
11600 case M_LDL_AB:
11601 s = "ldl";
11602 fmt = MEM12_FMT;
11603 offbits = (mips_opts.micromips ? 12 : 16);
11604 goto ld_st;
11605 case M_LDR_AB:
11606 s = "ldr";
11607 fmt = MEM12_FMT;
11608 offbits = (mips_opts.micromips ? 12 : 16);
11609 goto ld_st;
11610 case M_LL_AB:
11611 s = "ll";
11612 fmt = LL_SC_FMT;
11613 offbits = (mips_opts.micromips ? 12
11614 : ISA_IS_R6 (mips_opts.isa) ? 9
11615 : 16);
11616 goto ld;
11617 case M_LLD_AB:
11618 s = "lld";
11619 fmt = LL_SC_FMT;
11620 offbits = (mips_opts.micromips ? 12
11621 : ISA_IS_R6 (mips_opts.isa) ? 9
11622 : 16);
11623 goto ld;
11624 case M_LWU_AB:
11625 s = "lwu";
11626 fmt = MEM12_FMT;
11627 offbits = (mips_opts.micromips ? 12 : 16);
11628 goto ld;
11629 case M_LWP_AB:
11630 gas_assert (mips_opts.micromips);
11631 s = "lwp";
11632 fmt = "t,~(b)";
11633 offbits = 12;
11634 lp = 1;
11635 goto ld;
11636 case M_LDP_AB:
11637 gas_assert (mips_opts.micromips);
11638 s = "ldp";
11639 fmt = "t,~(b)";
11640 offbits = 12;
11641 lp = 1;
11642 goto ld;
11643 case M_LWM_AB:
11644 gas_assert (mips_opts.micromips);
11645 s = "lwm";
11646 fmt = "n,~(b)";
11647 offbits = 12;
11648 goto ld_st;
11649 case M_LDM_AB:
11650 gas_assert (mips_opts.micromips);
11651 s = "ldm";
11652 fmt = "n,~(b)";
11653 offbits = 12;
11654 goto ld_st;
11655
11656 ld:
11657 /* We don't want to use $0 as tempreg. */
11658 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
11659 goto ld_st;
11660 else
11661 tempreg = op[0] + lp;
11662 goto ld_noat;
11663
11664 case M_SB_AB:
11665 s = "sb";
11666 fmt = "t,o(b)";
11667 goto ld_st;
11668 case M_SH_AB:
11669 s = "sh";
11670 fmt = "t,o(b)";
11671 goto ld_st;
11672 case M_SW_AB:
11673 s = "sw";
11674 fmt = "t,o(b)";
11675 goto ld_st;
11676 case M_SWC0_AB:
11677 gas_assert (!mips_opts.micromips);
11678 s = "swc0";
11679 fmt = "E,o(b)";
11680 /* Itbl support may require additional care here. */
11681 coproc = 1;
11682 goto ld_st;
11683 case M_SWC1_AB:
11684 s = "swc1";
11685 fmt = "T,o(b)";
11686 /* Itbl support may require additional care here. */
11687 coproc = 1;
11688 goto ld_st;
11689 case M_SWC2_AB:
11690 s = "swc2";
11691 fmt = COP12_FMT;
11692 offbits = (mips_opts.micromips ? 12
11693 : ISA_IS_R6 (mips_opts.isa) ? 11
11694 : 16);
11695 /* Itbl support may require additional care here. */
11696 coproc = 1;
11697 goto ld_st;
11698 case M_SWC3_AB:
11699 gas_assert (!mips_opts.micromips);
11700 s = "swc3";
11701 fmt = "E,o(b)";
11702 /* Itbl support may require additional care here. */
11703 coproc = 1;
11704 goto ld_st;
11705 case M_SWL_AB:
11706 s = "swl";
11707 fmt = MEM12_FMT;
11708 offbits = (mips_opts.micromips ? 12 : 16);
11709 goto ld_st;
11710 case M_SWR_AB:
11711 s = "swr";
11712 fmt = MEM12_FMT;
11713 offbits = (mips_opts.micromips ? 12 : 16);
11714 goto ld_st;
11715 case M_SC_AB:
11716 s = "sc";
11717 fmt = LL_SC_FMT;
11718 offbits = (mips_opts.micromips ? 12
11719 : ISA_IS_R6 (mips_opts.isa) ? 9
11720 : 16);
11721 goto ld_st;
11722 case M_SCD_AB:
11723 s = "scd";
11724 fmt = LL_SC_FMT;
11725 offbits = (mips_opts.micromips ? 12
11726 : ISA_IS_R6 (mips_opts.isa) ? 9
11727 : 16);
11728 goto ld_st;
11729 case M_CACHE_AB:
11730 s = "cache";
11731 fmt = (mips_opts.micromips ? "k,~(b)"
11732 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11733 : "k,o(b)");
11734 offbits = (mips_opts.micromips ? 12
11735 : ISA_IS_R6 (mips_opts.isa) ? 9
11736 : 16);
11737 goto ld_st;
11738 case M_CACHEE_AB:
11739 s = "cachee";
11740 fmt = "k,+j(b)";
11741 offbits = 9;
11742 goto ld_st;
11743 case M_PREF_AB:
11744 s = "pref";
11745 fmt = (mips_opts.micromips ? "k,~(b)"
11746 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
11747 : "k,o(b)");
11748 offbits = (mips_opts.micromips ? 12
11749 : ISA_IS_R6 (mips_opts.isa) ? 9
11750 : 16);
11751 goto ld_st;
11752 case M_PREFE_AB:
11753 s = "prefe";
11754 fmt = "k,+j(b)";
11755 offbits = 9;
11756 goto ld_st;
11757 case M_SDC1_AB:
11758 s = "sdc1";
11759 fmt = "T,o(b)";
11760 coproc = 1;
11761 /* Itbl support may require additional care here. */
11762 goto ld_st;
11763 case M_SDC2_AB:
11764 s = "sdc2";
11765 fmt = COP12_FMT;
11766 offbits = (mips_opts.micromips ? 12
11767 : ISA_IS_R6 (mips_opts.isa) ? 11
11768 : 16);
11769 /* Itbl support may require additional care here. */
11770 coproc = 1;
11771 goto ld_st;
11772 case M_SQC2_AB:
11773 s = "sqc2";
11774 fmt = "+7,o(b)";
11775 /* Itbl support may require additional care here. */
11776 coproc = 1;
11777 goto ld_st;
11778 case M_SDC3_AB:
11779 gas_assert (!mips_opts.micromips);
11780 s = "sdc3";
11781 fmt = "E,o(b)";
11782 /* Itbl support may require additional care here. */
11783 coproc = 1;
11784 goto ld_st;
11785 case M_SDL_AB:
11786 s = "sdl";
11787 fmt = MEM12_FMT;
11788 offbits = (mips_opts.micromips ? 12 : 16);
11789 goto ld_st;
11790 case M_SDR_AB:
11791 s = "sdr";
11792 fmt = MEM12_FMT;
11793 offbits = (mips_opts.micromips ? 12 : 16);
11794 goto ld_st;
11795 case M_SWP_AB:
11796 gas_assert (mips_opts.micromips);
11797 s = "swp";
11798 fmt = "t,~(b)";
11799 offbits = 12;
11800 goto ld_st;
11801 case M_SDP_AB:
11802 gas_assert (mips_opts.micromips);
11803 s = "sdp";
11804 fmt = "t,~(b)";
11805 offbits = 12;
11806 goto ld_st;
11807 case M_SWM_AB:
11808 gas_assert (mips_opts.micromips);
11809 s = "swm";
11810 fmt = "n,~(b)";
11811 offbits = 12;
11812 goto ld_st;
11813 case M_SDM_AB:
11814 gas_assert (mips_opts.micromips);
11815 s = "sdm";
11816 fmt = "n,~(b)";
11817 offbits = 12;
11818
11819 ld_st:
11820 tempreg = AT;
11821 ld_noat:
11822 breg = op[2];
11823 if (small_offset_p (0, align, 16))
11824 {
11825 /* The first case exists for M_LD_AB and M_SD_AB, which are
11826 macros for o32 but which should act like normal instructions
11827 otherwise. */
11828 if (offbits == 16)
11829 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
11830 offset_reloc[1], offset_reloc[2], breg);
11831 else if (small_offset_p (0, align, offbits))
11832 {
11833 if (offbits == 0)
11834 macro_build (NULL, s, fmt, op[0], breg);
11835 else
11836 macro_build (NULL, s, fmt, op[0],
11837 (int) offset_expr.X_add_number, breg);
11838 }
11839 else
11840 {
11841 if (tempreg == AT)
11842 used_at = 1;
11843 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11844 tempreg, breg, -1, offset_reloc[0],
11845 offset_reloc[1], offset_reloc[2]);
11846 if (offbits == 0)
11847 macro_build (NULL, s, fmt, op[0], tempreg);
11848 else
11849 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11850 }
11851 break;
11852 }
11853
11854 if (tempreg == AT)
11855 used_at = 1;
11856
11857 if (offset_expr.X_op != O_constant
11858 && offset_expr.X_op != O_symbol)
11859 {
11860 as_bad (_("expression too complex"));
11861 offset_expr.X_op = O_constant;
11862 }
11863
11864 if (HAVE_32BIT_ADDRESSES
11865 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11866 {
11867 char value [32];
11868
11869 sprintf_vma (value, offset_expr.X_add_number);
11870 as_bad (_("number (0x%s) larger than 32 bits"), value);
11871 }
11872
11873 /* A constant expression in PIC code can be handled just as it
11874 is in non PIC code. */
11875 if (offset_expr.X_op == O_constant)
11876 {
11877 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
11878 offbits == 0 ? 16 : offbits);
11879 offset_expr.X_add_number -= expr1.X_add_number;
11880
11881 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
11882 if (breg != 0)
11883 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11884 tempreg, tempreg, breg);
11885 if (offbits == 0)
11886 {
11887 if (offset_expr.X_add_number != 0)
11888 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
11889 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
11890 macro_build (NULL, s, fmt, op[0], tempreg);
11891 }
11892 else if (offbits == 16)
11893 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
11894 else
11895 macro_build (NULL, s, fmt, op[0],
11896 (int) offset_expr.X_add_number, tempreg);
11897 }
11898 else if (offbits != 16)
11899 {
11900 /* The offset field is too narrow to be used for a low-part
11901 relocation, so load the whole address into the auxiliary
11902 register. */
11903 load_address (tempreg, &offset_expr, &used_at);
11904 if (breg != 0)
11905 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11906 tempreg, tempreg, breg);
11907 if (offbits == 0)
11908 macro_build (NULL, s, fmt, op[0], tempreg);
11909 else
11910 macro_build (NULL, s, fmt, op[0], 0, tempreg);
11911 }
11912 else if (mips_pic == NO_PIC)
11913 {
11914 /* If this is a reference to a GP relative symbol, and there
11915 is no base register, we want
11916 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
11917 Otherwise, if there is no base register, we want
11918 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11919 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11920 If we have a constant, we need two instructions anyhow,
11921 so we always use the latter form.
11922
11923 If we have a base register, and this is a reference to a
11924 GP relative symbol, we want
11925 addu $tempreg,$breg,$gp
11926 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
11927 Otherwise we want
11928 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
11929 addu $tempreg,$tempreg,$breg
11930 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11931 With a constant we always use the latter case.
11932
11933 With 64bit address space and no base register and $at usable,
11934 we want
11935 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11936 lui $at,<sym> (BFD_RELOC_HI16_S)
11937 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11938 dsll32 $tempreg,0
11939 daddu $tempreg,$at
11940 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11941 If we have a base register, we want
11942 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11943 lui $at,<sym> (BFD_RELOC_HI16_S)
11944 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11945 daddu $at,$breg
11946 dsll32 $tempreg,0
11947 daddu $tempreg,$at
11948 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11949
11950 Without $at we can't generate the optimal path for superscalar
11951 processors here since this would require two temporary registers.
11952 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11953 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11954 dsll $tempreg,16
11955 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11956 dsll $tempreg,16
11957 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11958 If we have a base register, we want
11959 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11960 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11961 dsll $tempreg,16
11962 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11963 dsll $tempreg,16
11964 daddu $tempreg,$tempreg,$breg
11965 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
11966
11967 For GP relative symbols in 64bit address space we can use
11968 the same sequence as in 32bit address space. */
11969 if (HAVE_64BIT_SYMBOLS)
11970 {
11971 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11972 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11973 {
11974 relax_start (offset_expr.X_add_symbol);
11975 if (breg == 0)
11976 {
11977 macro_build (&offset_expr, s, fmt, op[0],
11978 BFD_RELOC_GPREL16, mips_gp_register);
11979 }
11980 else
11981 {
11982 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11983 tempreg, breg, mips_gp_register);
11984 macro_build (&offset_expr, s, fmt, op[0],
11985 BFD_RELOC_GPREL16, tempreg);
11986 }
11987 relax_switch ();
11988 }
11989
11990 if (used_at == 0 && mips_opts.at)
11991 {
11992 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
11993 BFD_RELOC_MIPS_HIGHEST);
11994 macro_build (&offset_expr, "lui", LUI_FMT, AT,
11995 BFD_RELOC_HI16_S);
11996 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
11997 tempreg, BFD_RELOC_MIPS_HIGHER);
11998 if (breg != 0)
11999 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12000 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12001 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12002 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12003 tempreg);
12004 used_at = 1;
12005 }
12006 else
12007 {
12008 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12009 BFD_RELOC_MIPS_HIGHEST);
12010 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12011 tempreg, BFD_RELOC_MIPS_HIGHER);
12012 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12013 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12014 tempreg, BFD_RELOC_HI16_S);
12015 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12016 if (breg != 0)
12017 macro_build (NULL, "daddu", "d,v,t",
12018 tempreg, tempreg, breg);
12019 macro_build (&offset_expr, s, fmt, op[0],
12020 BFD_RELOC_LO16, tempreg);
12021 }
12022
12023 if (mips_relax.sequence)
12024 relax_end ();
12025 break;
12026 }
12027
12028 if (breg == 0)
12029 {
12030 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12031 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12032 {
12033 relax_start (offset_expr.X_add_symbol);
12034 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12035 mips_gp_register);
12036 relax_switch ();
12037 }
12038 macro_build_lui (&offset_expr, tempreg);
12039 macro_build (&offset_expr, s, fmt, op[0],
12040 BFD_RELOC_LO16, tempreg);
12041 if (mips_relax.sequence)
12042 relax_end ();
12043 }
12044 else
12045 {
12046 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12047 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12048 {
12049 relax_start (offset_expr.X_add_symbol);
12050 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12051 tempreg, breg, mips_gp_register);
12052 macro_build (&offset_expr, s, fmt, op[0],
12053 BFD_RELOC_GPREL16, tempreg);
12054 relax_switch ();
12055 }
12056 macro_build_lui (&offset_expr, tempreg);
12057 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12058 tempreg, tempreg, breg);
12059 macro_build (&offset_expr, s, fmt, op[0],
12060 BFD_RELOC_LO16, tempreg);
12061 if (mips_relax.sequence)
12062 relax_end ();
12063 }
12064 }
12065 else if (!mips_big_got)
12066 {
12067 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12068
12069 /* If this is a reference to an external symbol, we want
12070 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12071 nop
12072 <op> op[0],0($tempreg)
12073 Otherwise we want
12074 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12075 nop
12076 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12077 <op> op[0],0($tempreg)
12078
12079 For NewABI, we want
12080 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12081 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12082
12083 If there is a base register, we add it to $tempreg before
12084 the <op>. If there is a constant, we stick it in the
12085 <op> instruction. We don't handle constants larger than
12086 16 bits, because we have no way to load the upper 16 bits
12087 (actually, we could handle them for the subset of cases
12088 in which we are not using $at). */
12089 gas_assert (offset_expr.X_op == O_symbol);
12090 if (HAVE_NEWABI)
12091 {
12092 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12093 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12094 if (breg != 0)
12095 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12096 tempreg, tempreg, breg);
12097 macro_build (&offset_expr, s, fmt, op[0],
12098 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12099 break;
12100 }
12101 expr1.X_add_number = offset_expr.X_add_number;
12102 offset_expr.X_add_number = 0;
12103 if (expr1.X_add_number < -0x8000
12104 || expr1.X_add_number >= 0x8000)
12105 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12106 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12107 lw_reloc_type, mips_gp_register);
12108 load_delay_nop ();
12109 relax_start (offset_expr.X_add_symbol);
12110 relax_switch ();
12111 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12112 tempreg, BFD_RELOC_LO16);
12113 relax_end ();
12114 if (breg != 0)
12115 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12116 tempreg, tempreg, breg);
12117 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12118 }
12119 else if (mips_big_got && !HAVE_NEWABI)
12120 {
12121 int gpdelay;
12122
12123 /* If this is a reference to an external symbol, we want
12124 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12125 addu $tempreg,$tempreg,$gp
12126 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12127 <op> op[0],0($tempreg)
12128 Otherwise we want
12129 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12130 nop
12131 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12132 <op> op[0],0($tempreg)
12133 If there is a base register, we add it to $tempreg before
12134 the <op>. If there is a constant, we stick it in the
12135 <op> instruction. We don't handle constants larger than
12136 16 bits, because we have no way to load the upper 16 bits
12137 (actually, we could handle them for the subset of cases
12138 in which we are not using $at). */
12139 gas_assert (offset_expr.X_op == O_symbol);
12140 expr1.X_add_number = offset_expr.X_add_number;
12141 offset_expr.X_add_number = 0;
12142 if (expr1.X_add_number < -0x8000
12143 || expr1.X_add_number >= 0x8000)
12144 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12145 gpdelay = reg_needs_delay (mips_gp_register);
12146 relax_start (offset_expr.X_add_symbol);
12147 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12148 BFD_RELOC_MIPS_GOT_HI16);
12149 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12150 mips_gp_register);
12151 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12152 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12153 relax_switch ();
12154 if (gpdelay)
12155 macro_build (NULL, "nop", "");
12156 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12157 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12158 load_delay_nop ();
12159 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12160 tempreg, BFD_RELOC_LO16);
12161 relax_end ();
12162
12163 if (breg != 0)
12164 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12165 tempreg, tempreg, breg);
12166 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12167 }
12168 else if (mips_big_got && HAVE_NEWABI)
12169 {
12170 /* If this is a reference to an external symbol, we want
12171 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12172 add $tempreg,$tempreg,$gp
12173 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12174 <op> op[0],<ofst>($tempreg)
12175 Otherwise, for local symbols, we want:
12176 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12177 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12178 gas_assert (offset_expr.X_op == O_symbol);
12179 expr1.X_add_number = offset_expr.X_add_number;
12180 offset_expr.X_add_number = 0;
12181 if (expr1.X_add_number < -0x8000
12182 || expr1.X_add_number >= 0x8000)
12183 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12184 relax_start (offset_expr.X_add_symbol);
12185 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12186 BFD_RELOC_MIPS_GOT_HI16);
12187 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12188 mips_gp_register);
12189 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12190 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12191 if (breg != 0)
12192 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12193 tempreg, tempreg, breg);
12194 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12195
12196 relax_switch ();
12197 offset_expr.X_add_number = expr1.X_add_number;
12198 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12199 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12200 if (breg != 0)
12201 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12202 tempreg, tempreg, breg);
12203 macro_build (&offset_expr, s, fmt, op[0],
12204 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12205 relax_end ();
12206 }
12207 else
12208 abort ();
12209
12210 break;
12211
12212 case M_JRADDIUSP:
12213 gas_assert (mips_opts.micromips);
12214 gas_assert (mips_opts.insn32);
12215 start_noreorder ();
12216 macro_build (NULL, "jr", "s", RA);
12217 expr1.X_add_number = op[0] << 2;
12218 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12219 end_noreorder ();
12220 break;
12221
12222 case M_JRC:
12223 gas_assert (mips_opts.micromips);
12224 gas_assert (mips_opts.insn32);
12225 macro_build (NULL, "jr", "s", op[0]);
12226 if (mips_opts.noreorder)
12227 macro_build (NULL, "nop", "");
12228 break;
12229
12230 case M_LI:
12231 case M_LI_S:
12232 load_register (op[0], &imm_expr, 0);
12233 break;
12234
12235 case M_DLI:
12236 load_register (op[0], &imm_expr, 1);
12237 break;
12238
12239 case M_LI_SS:
12240 if (imm_expr.X_op == O_constant)
12241 {
12242 used_at = 1;
12243 load_register (AT, &imm_expr, 0);
12244 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12245 break;
12246 }
12247 else
12248 {
12249 gas_assert (imm_expr.X_op == O_absent
12250 && offset_expr.X_op == O_symbol
12251 && strcmp (segment_name (S_GET_SEGMENT
12252 (offset_expr.X_add_symbol)),
12253 ".lit4") == 0
12254 && offset_expr.X_add_number == 0);
12255 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12256 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12257 break;
12258 }
12259
12260 case M_LI_D:
12261 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12262 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12263 order 32 bits of the value and the low order 32 bits are either
12264 zero or in OFFSET_EXPR. */
12265 if (imm_expr.X_op == O_constant)
12266 {
12267 if (GPR_SIZE == 64)
12268 load_register (op[0], &imm_expr, 1);
12269 else
12270 {
12271 int hreg, lreg;
12272
12273 if (target_big_endian)
12274 {
12275 hreg = op[0];
12276 lreg = op[0] + 1;
12277 }
12278 else
12279 {
12280 hreg = op[0] + 1;
12281 lreg = op[0];
12282 }
12283
12284 if (hreg <= 31)
12285 load_register (hreg, &imm_expr, 0);
12286 if (lreg <= 31)
12287 {
12288 if (offset_expr.X_op == O_absent)
12289 move_register (lreg, 0);
12290 else
12291 {
12292 gas_assert (offset_expr.X_op == O_constant);
12293 load_register (lreg, &offset_expr, 0);
12294 }
12295 }
12296 }
12297 break;
12298 }
12299 gas_assert (imm_expr.X_op == O_absent);
12300
12301 /* We know that sym is in the .rdata section. First we get the
12302 upper 16 bits of the address. */
12303 if (mips_pic == NO_PIC)
12304 {
12305 macro_build_lui (&offset_expr, AT);
12306 used_at = 1;
12307 }
12308 else
12309 {
12310 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12311 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12312 used_at = 1;
12313 }
12314
12315 /* Now we load the register(s). */
12316 if (GPR_SIZE == 64)
12317 {
12318 used_at = 1;
12319 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12320 BFD_RELOC_LO16, AT);
12321 }
12322 else
12323 {
12324 used_at = 1;
12325 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12326 BFD_RELOC_LO16, AT);
12327 if (op[0] != RA)
12328 {
12329 /* FIXME: How in the world do we deal with the possible
12330 overflow here? */
12331 offset_expr.X_add_number += 4;
12332 macro_build (&offset_expr, "lw", "t,o(b)",
12333 op[0] + 1, BFD_RELOC_LO16, AT);
12334 }
12335 }
12336 break;
12337
12338 case M_LI_DD:
12339 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12340 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12341 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12342 the value and the low order 32 bits are either zero or in
12343 OFFSET_EXPR. */
12344 if (imm_expr.X_op == O_constant)
12345 {
12346 used_at = 1;
12347 load_register (AT, &imm_expr, FPR_SIZE == 64);
12348 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12349 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12350 else
12351 {
12352 if (ISA_HAS_MXHC1 (mips_opts.isa))
12353 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12354 else if (FPR_SIZE != 32)
12355 as_bad (_("Unable to generate `%s' compliant code "
12356 "without mthc1"),
12357 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12358 else
12359 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12360 if (offset_expr.X_op == O_absent)
12361 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12362 else
12363 {
12364 gas_assert (offset_expr.X_op == O_constant);
12365 load_register (AT, &offset_expr, 0);
12366 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12367 }
12368 }
12369 break;
12370 }
12371
12372 gas_assert (imm_expr.X_op == O_absent
12373 && offset_expr.X_op == O_symbol
12374 && offset_expr.X_add_number == 0);
12375 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12376 if (strcmp (s, ".lit8") == 0)
12377 {
12378 op[2] = mips_gp_register;
12379 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12380 offset_reloc[1] = BFD_RELOC_UNUSED;
12381 offset_reloc[2] = BFD_RELOC_UNUSED;
12382 }
12383 else
12384 {
12385 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12386 used_at = 1;
12387 if (mips_pic != NO_PIC)
12388 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12389 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12390 else
12391 {
12392 /* FIXME: This won't work for a 64 bit address. */
12393 macro_build_lui (&offset_expr, AT);
12394 }
12395
12396 op[2] = AT;
12397 offset_reloc[0] = BFD_RELOC_LO16;
12398 offset_reloc[1] = BFD_RELOC_UNUSED;
12399 offset_reloc[2] = BFD_RELOC_UNUSED;
12400 }
12401 align = 8;
12402 /* Fall through */
12403
12404 case M_L_DAB:
12405 /*
12406 * The MIPS assembler seems to check for X_add_number not
12407 * being double aligned and generating:
12408 * lui at,%hi(foo+1)
12409 * addu at,at,v1
12410 * addiu at,at,%lo(foo+1)
12411 * lwc1 f2,0(at)
12412 * lwc1 f3,4(at)
12413 * But, the resulting address is the same after relocation so why
12414 * generate the extra instruction?
12415 */
12416 /* Itbl support may require additional care here. */
12417 coproc = 1;
12418 fmt = "T,o(b)";
12419 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12420 {
12421 s = "ldc1";
12422 goto ld_st;
12423 }
12424 s = "lwc1";
12425 goto ldd_std;
12426
12427 case M_S_DAB:
12428 gas_assert (!mips_opts.micromips);
12429 /* Itbl support may require additional care here. */
12430 coproc = 1;
12431 fmt = "T,o(b)";
12432 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12433 {
12434 s = "sdc1";
12435 goto ld_st;
12436 }
12437 s = "swc1";
12438 goto ldd_std;
12439
12440 case M_LQ_AB:
12441 fmt = "t,o(b)";
12442 s = "lq";
12443 goto ld;
12444
12445 case M_SQ_AB:
12446 fmt = "t,o(b)";
12447 s = "sq";
12448 goto ld_st;
12449
12450 case M_LD_AB:
12451 fmt = "t,o(b)";
12452 if (GPR_SIZE == 64)
12453 {
12454 s = "ld";
12455 goto ld;
12456 }
12457 s = "lw";
12458 goto ldd_std;
12459
12460 case M_SD_AB:
12461 fmt = "t,o(b)";
12462 if (GPR_SIZE == 64)
12463 {
12464 s = "sd";
12465 goto ld_st;
12466 }
12467 s = "sw";
12468
12469 ldd_std:
12470 /* Even on a big endian machine $fn comes before $fn+1. We have
12471 to adjust when loading from memory. We set coproc if we must
12472 load $fn+1 first. */
12473 /* Itbl support may require additional care here. */
12474 if (!target_big_endian)
12475 coproc = 0;
12476
12477 breg = op[2];
12478 if (small_offset_p (0, align, 16))
12479 {
12480 ep = &offset_expr;
12481 if (!small_offset_p (4, align, 16))
12482 {
12483 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12484 -1, offset_reloc[0], offset_reloc[1],
12485 offset_reloc[2]);
12486 expr1.X_add_number = 0;
12487 ep = &expr1;
12488 breg = AT;
12489 used_at = 1;
12490 offset_reloc[0] = BFD_RELOC_LO16;
12491 offset_reloc[1] = BFD_RELOC_UNUSED;
12492 offset_reloc[2] = BFD_RELOC_UNUSED;
12493 }
12494 if (strcmp (s, "lw") == 0 && op[0] == breg)
12495 {
12496 ep->X_add_number += 4;
12497 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12498 offset_reloc[1], offset_reloc[2], breg);
12499 ep->X_add_number -= 4;
12500 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12501 offset_reloc[1], offset_reloc[2], breg);
12502 }
12503 else
12504 {
12505 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12506 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12507 breg);
12508 ep->X_add_number += 4;
12509 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12510 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12511 breg);
12512 }
12513 break;
12514 }
12515
12516 if (offset_expr.X_op != O_symbol
12517 && offset_expr.X_op != O_constant)
12518 {
12519 as_bad (_("expression too complex"));
12520 offset_expr.X_op = O_constant;
12521 }
12522
12523 if (HAVE_32BIT_ADDRESSES
12524 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12525 {
12526 char value [32];
12527
12528 sprintf_vma (value, offset_expr.X_add_number);
12529 as_bad (_("number (0x%s) larger than 32 bits"), value);
12530 }
12531
12532 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12533 {
12534 /* If this is a reference to a GP relative symbol, we want
12535 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12536 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12537 If we have a base register, we use this
12538 addu $at,$breg,$gp
12539 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12540 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12541 If this is not a GP relative symbol, we want
12542 lui $at,<sym> (BFD_RELOC_HI16_S)
12543 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12544 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12545 If there is a base register, we add it to $at after the
12546 lui instruction. If there is a constant, we always use
12547 the last case. */
12548 if (offset_expr.X_op == O_symbol
12549 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12550 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12551 {
12552 relax_start (offset_expr.X_add_symbol);
12553 if (breg == 0)
12554 {
12555 tempreg = mips_gp_register;
12556 }
12557 else
12558 {
12559 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12560 AT, breg, mips_gp_register);
12561 tempreg = AT;
12562 used_at = 1;
12563 }
12564
12565 /* Itbl support may require additional care here. */
12566 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12567 BFD_RELOC_GPREL16, tempreg);
12568 offset_expr.X_add_number += 4;
12569
12570 /* Set mips_optimize to 2 to avoid inserting an
12571 undesired nop. */
12572 hold_mips_optimize = mips_optimize;
12573 mips_optimize = 2;
12574 /* Itbl support may require additional care here. */
12575 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12576 BFD_RELOC_GPREL16, tempreg);
12577 mips_optimize = hold_mips_optimize;
12578
12579 relax_switch ();
12580
12581 offset_expr.X_add_number -= 4;
12582 }
12583 used_at = 1;
12584 if (offset_high_part (offset_expr.X_add_number, 16)
12585 != offset_high_part (offset_expr.X_add_number + 4, 16))
12586 {
12587 load_address (AT, &offset_expr, &used_at);
12588 offset_expr.X_op = O_constant;
12589 offset_expr.X_add_number = 0;
12590 }
12591 else
12592 macro_build_lui (&offset_expr, AT);
12593 if (breg != 0)
12594 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12595 /* Itbl support may require additional care here. */
12596 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12597 BFD_RELOC_LO16, AT);
12598 /* FIXME: How do we handle overflow here? */
12599 offset_expr.X_add_number += 4;
12600 /* Itbl support may require additional care here. */
12601 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12602 BFD_RELOC_LO16, AT);
12603 if (mips_relax.sequence)
12604 relax_end ();
12605 }
12606 else if (!mips_big_got)
12607 {
12608 /* If this is a reference to an external symbol, we want
12609 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12610 nop
12611 <op> op[0],0($at)
12612 <op> op[0]+1,4($at)
12613 Otherwise we want
12614 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12615 nop
12616 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12617 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12618 If there is a base register we add it to $at before the
12619 lwc1 instructions. If there is a constant we include it
12620 in the lwc1 instructions. */
12621 used_at = 1;
12622 expr1.X_add_number = offset_expr.X_add_number;
12623 if (expr1.X_add_number < -0x8000
12624 || expr1.X_add_number >= 0x8000 - 4)
12625 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12626 load_got_offset (AT, &offset_expr);
12627 load_delay_nop ();
12628 if (breg != 0)
12629 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12630
12631 /* Set mips_optimize to 2 to avoid inserting an undesired
12632 nop. */
12633 hold_mips_optimize = mips_optimize;
12634 mips_optimize = 2;
12635
12636 /* Itbl support may require additional care here. */
12637 relax_start (offset_expr.X_add_symbol);
12638 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12639 BFD_RELOC_LO16, AT);
12640 expr1.X_add_number += 4;
12641 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12642 BFD_RELOC_LO16, AT);
12643 relax_switch ();
12644 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12645 BFD_RELOC_LO16, AT);
12646 offset_expr.X_add_number += 4;
12647 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12648 BFD_RELOC_LO16, AT);
12649 relax_end ();
12650
12651 mips_optimize = hold_mips_optimize;
12652 }
12653 else if (mips_big_got)
12654 {
12655 int gpdelay;
12656
12657 /* If this is a reference to an external symbol, we want
12658 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12659 addu $at,$at,$gp
12660 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
12661 nop
12662 <op> op[0],0($at)
12663 <op> op[0]+1,4($at)
12664 Otherwise we want
12665 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12666 nop
12667 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12668 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12669 If there is a base register we add it to $at before the
12670 lwc1 instructions. If there is a constant we include it
12671 in the lwc1 instructions. */
12672 used_at = 1;
12673 expr1.X_add_number = offset_expr.X_add_number;
12674 offset_expr.X_add_number = 0;
12675 if (expr1.X_add_number < -0x8000
12676 || expr1.X_add_number >= 0x8000 - 4)
12677 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12678 gpdelay = reg_needs_delay (mips_gp_register);
12679 relax_start (offset_expr.X_add_symbol);
12680 macro_build (&offset_expr, "lui", LUI_FMT,
12681 AT, BFD_RELOC_MIPS_GOT_HI16);
12682 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12683 AT, AT, mips_gp_register);
12684 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
12685 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
12686 load_delay_nop ();
12687 if (breg != 0)
12688 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12689 /* Itbl support may require additional care here. */
12690 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
12691 BFD_RELOC_LO16, AT);
12692 expr1.X_add_number += 4;
12693
12694 /* Set mips_optimize to 2 to avoid inserting an undesired
12695 nop. */
12696 hold_mips_optimize = mips_optimize;
12697 mips_optimize = 2;
12698 /* Itbl support may require additional care here. */
12699 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
12700 BFD_RELOC_LO16, AT);
12701 mips_optimize = hold_mips_optimize;
12702 expr1.X_add_number -= 4;
12703
12704 relax_switch ();
12705 offset_expr.X_add_number = expr1.X_add_number;
12706 if (gpdelay)
12707 macro_build (NULL, "nop", "");
12708 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12709 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12710 load_delay_nop ();
12711 if (breg != 0)
12712 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12713 /* Itbl support may require additional care here. */
12714 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12715 BFD_RELOC_LO16, AT);
12716 offset_expr.X_add_number += 4;
12717
12718 /* Set mips_optimize to 2 to avoid inserting an undesired
12719 nop. */
12720 hold_mips_optimize = mips_optimize;
12721 mips_optimize = 2;
12722 /* Itbl support may require additional care here. */
12723 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12724 BFD_RELOC_LO16, AT);
12725 mips_optimize = hold_mips_optimize;
12726 relax_end ();
12727 }
12728 else
12729 abort ();
12730
12731 break;
12732
12733 case M_SAA_AB:
12734 s = "saa";
12735 goto saa_saad;
12736 case M_SAAD_AB:
12737 s = "saad";
12738 saa_saad:
12739 gas_assert (!mips_opts.micromips);
12740 offbits = 0;
12741 fmt = "t,(b)";
12742 goto ld_st;
12743
12744 /* New code added to support COPZ instructions.
12745 This code builds table entries out of the macros in mip_opcodes.
12746 R4000 uses interlocks to handle coproc delays.
12747 Other chips (like the R3000) require nops to be inserted for delays.
12748
12749 FIXME: Currently, we require that the user handle delays.
12750 In order to fill delay slots for non-interlocked chips,
12751 we must have a way to specify delays based on the coprocessor.
12752 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
12753 What are the side-effects of the cop instruction?
12754 What cache support might we have and what are its effects?
12755 Both coprocessor & memory require delays. how long???
12756 What registers are read/set/modified?
12757
12758 If an itbl is provided to interpret cop instructions,
12759 this knowledge can be encoded in the itbl spec. */
12760
12761 case M_COP0:
12762 s = "c0";
12763 goto copz;
12764 case M_COP1:
12765 s = "c1";
12766 goto copz;
12767 case M_COP2:
12768 s = "c2";
12769 goto copz;
12770 case M_COP3:
12771 s = "c3";
12772 copz:
12773 gas_assert (!mips_opts.micromips);
12774 /* For now we just do C (same as Cz). The parameter will be
12775 stored in insn_opcode by mips_ip. */
12776 macro_build (NULL, s, "C", (int) ip->insn_opcode);
12777 break;
12778
12779 case M_MOVE:
12780 move_register (op[0], op[1]);
12781 break;
12782
12783 case M_MOVEP:
12784 gas_assert (mips_opts.micromips);
12785 gas_assert (mips_opts.insn32);
12786 move_register (micromips_to_32_reg_h_map1[op[0]],
12787 micromips_to_32_reg_m_map[op[1]]);
12788 move_register (micromips_to_32_reg_h_map2[op[0]],
12789 micromips_to_32_reg_n_map[op[2]]);
12790 break;
12791
12792 case M_DMUL:
12793 dbl = 1;
12794 /* Fall through. */
12795 case M_MUL:
12796 if (mips_opts.arch == CPU_R5900)
12797 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
12798 op[2]);
12799 else
12800 {
12801 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
12802 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12803 }
12804 break;
12805
12806 case M_DMUL_I:
12807 dbl = 1;
12808 /* Fall through. */
12809 case M_MUL_I:
12810 /* The MIPS assembler some times generates shifts and adds. I'm
12811 not trying to be that fancy. GCC should do this for us
12812 anyway. */
12813 used_at = 1;
12814 load_register (AT, &imm_expr, dbl);
12815 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
12816 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12817 break;
12818
12819 case M_DMULO_I:
12820 dbl = 1;
12821 /* Fall through. */
12822 case M_MULO_I:
12823 imm = 1;
12824 goto do_mulo;
12825
12826 case M_DMULO:
12827 dbl = 1;
12828 /* Fall through. */
12829 case M_MULO:
12830 do_mulo:
12831 start_noreorder ();
12832 used_at = 1;
12833 if (imm)
12834 load_register (AT, &imm_expr, dbl);
12835 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
12836 op[1], imm ? AT : op[2]);
12837 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12838 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
12839 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12840 if (mips_trap)
12841 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
12842 else
12843 {
12844 if (mips_opts.micromips)
12845 micromips_label_expr (&label_expr);
12846 else
12847 label_expr.X_add_number = 8;
12848 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
12849 macro_build (NULL, "nop", "");
12850 macro_build (NULL, "break", BRK_FMT, 6);
12851 if (mips_opts.micromips)
12852 micromips_add_label ();
12853 }
12854 end_noreorder ();
12855 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12856 break;
12857
12858 case M_DMULOU_I:
12859 dbl = 1;
12860 /* Fall through. */
12861 case M_MULOU_I:
12862 imm = 1;
12863 goto do_mulou;
12864
12865 case M_DMULOU:
12866 dbl = 1;
12867 /* Fall through. */
12868 case M_MULOU:
12869 do_mulou:
12870 start_noreorder ();
12871 used_at = 1;
12872 if (imm)
12873 load_register (AT, &imm_expr, dbl);
12874 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
12875 op[1], imm ? AT : op[2]);
12876 macro_build (NULL, "mfhi", MFHL_FMT, AT);
12877 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
12878 if (mips_trap)
12879 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
12880 else
12881 {
12882 if (mips_opts.micromips)
12883 micromips_label_expr (&label_expr);
12884 else
12885 label_expr.X_add_number = 8;
12886 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
12887 macro_build (NULL, "nop", "");
12888 macro_build (NULL, "break", BRK_FMT, 6);
12889 if (mips_opts.micromips)
12890 micromips_add_label ();
12891 }
12892 end_noreorder ();
12893 break;
12894
12895 case M_DROL:
12896 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12897 {
12898 if (op[0] == op[1])
12899 {
12900 tempreg = AT;
12901 used_at = 1;
12902 }
12903 else
12904 tempreg = op[0];
12905 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
12906 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
12907 break;
12908 }
12909 used_at = 1;
12910 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12911 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
12912 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
12913 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12914 break;
12915
12916 case M_ROL:
12917 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12918 {
12919 if (op[0] == op[1])
12920 {
12921 tempreg = AT;
12922 used_at = 1;
12923 }
12924 else
12925 tempreg = op[0];
12926 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
12927 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
12928 break;
12929 }
12930 used_at = 1;
12931 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
12932 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
12933 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
12934 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12935 break;
12936
12937 case M_DROL_I:
12938 {
12939 unsigned int rot;
12940 const char *l;
12941 const char *rr;
12942
12943 rot = imm_expr.X_add_number & 0x3f;
12944 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12945 {
12946 rot = (64 - rot) & 0x3f;
12947 if (rot >= 32)
12948 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
12949 else
12950 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
12951 break;
12952 }
12953 if (rot == 0)
12954 {
12955 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
12956 break;
12957 }
12958 l = (rot < 0x20) ? "dsll" : "dsll32";
12959 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
12960 rot &= 0x1f;
12961 used_at = 1;
12962 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
12963 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12964 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12965 }
12966 break;
12967
12968 case M_ROL_I:
12969 {
12970 unsigned int rot;
12971
12972 rot = imm_expr.X_add_number & 0x1f;
12973 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
12974 {
12975 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
12976 (32 - rot) & 0x1f);
12977 break;
12978 }
12979 if (rot == 0)
12980 {
12981 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
12982 break;
12983 }
12984 used_at = 1;
12985 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
12986 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
12987 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
12988 }
12989 break;
12990
12991 case M_DROR:
12992 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
12993 {
12994 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
12995 break;
12996 }
12997 used_at = 1;
12998 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
12999 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13000 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13001 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13002 break;
13003
13004 case M_ROR:
13005 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13006 {
13007 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13008 break;
13009 }
13010 used_at = 1;
13011 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13012 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13013 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13014 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13015 break;
13016
13017 case M_DROR_I:
13018 {
13019 unsigned int rot;
13020 const char *l;
13021 const char *rr;
13022
13023 rot = imm_expr.X_add_number & 0x3f;
13024 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13025 {
13026 if (rot >= 32)
13027 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13028 else
13029 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13030 break;
13031 }
13032 if (rot == 0)
13033 {
13034 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13035 break;
13036 }
13037 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13038 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13039 rot &= 0x1f;
13040 used_at = 1;
13041 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13042 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13043 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13044 }
13045 break;
13046
13047 case M_ROR_I:
13048 {
13049 unsigned int rot;
13050
13051 rot = imm_expr.X_add_number & 0x1f;
13052 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13053 {
13054 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13055 break;
13056 }
13057 if (rot == 0)
13058 {
13059 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13060 break;
13061 }
13062 used_at = 1;
13063 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13064 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13065 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13066 }
13067 break;
13068
13069 case M_SEQ:
13070 if (op[1] == 0)
13071 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13072 else if (op[2] == 0)
13073 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13074 else
13075 {
13076 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13077 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13078 }
13079 break;
13080
13081 case M_SEQ_I:
13082 if (imm_expr.X_add_number == 0)
13083 {
13084 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13085 break;
13086 }
13087 if (op[1] == 0)
13088 {
13089 as_warn (_("instruction %s: result is always false"),
13090 ip->insn_mo->name);
13091 move_register (op[0], 0);
13092 break;
13093 }
13094 if (CPU_HAS_SEQ (mips_opts.arch)
13095 && -512 <= imm_expr.X_add_number
13096 && imm_expr.X_add_number < 512)
13097 {
13098 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13099 (int) imm_expr.X_add_number);
13100 break;
13101 }
13102 if (imm_expr.X_add_number >= 0
13103 && imm_expr.X_add_number < 0x10000)
13104 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13105 else if (imm_expr.X_add_number > -0x8000
13106 && imm_expr.X_add_number < 0)
13107 {
13108 imm_expr.X_add_number = -imm_expr.X_add_number;
13109 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13110 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13111 }
13112 else if (CPU_HAS_SEQ (mips_opts.arch))
13113 {
13114 used_at = 1;
13115 load_register (AT, &imm_expr, GPR_SIZE == 64);
13116 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13117 break;
13118 }
13119 else
13120 {
13121 load_register (AT, &imm_expr, GPR_SIZE == 64);
13122 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13123 used_at = 1;
13124 }
13125 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13126 break;
13127
13128 case M_SGE: /* X >= Y <==> not (X < Y) */
13129 s = "slt";
13130 goto sge;
13131 case M_SGEU:
13132 s = "sltu";
13133 sge:
13134 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13135 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13136 break;
13137
13138 case M_SGE_I: /* X >= I <==> not (X < I) */
13139 case M_SGEU_I:
13140 if (imm_expr.X_add_number >= -0x8000
13141 && imm_expr.X_add_number < 0x8000)
13142 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13143 op[0], op[1], BFD_RELOC_LO16);
13144 else
13145 {
13146 load_register (AT, &imm_expr, GPR_SIZE == 64);
13147 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13148 op[0], op[1], AT);
13149 used_at = 1;
13150 }
13151 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13152 break;
13153
13154 case M_SGT: /* X > Y <==> Y < X */
13155 s = "slt";
13156 goto sgt;
13157 case M_SGTU:
13158 s = "sltu";
13159 sgt:
13160 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13161 break;
13162
13163 case M_SGT_I: /* X > I <==> I < X */
13164 s = "slt";
13165 goto sgti;
13166 case M_SGTU_I:
13167 s = "sltu";
13168 sgti:
13169 used_at = 1;
13170 load_register (AT, &imm_expr, GPR_SIZE == 64);
13171 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13172 break;
13173
13174 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X) */
13175 s = "slt";
13176 goto sle;
13177 case M_SLEU:
13178 s = "sltu";
13179 sle:
13180 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13181 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13182 break;
13183
13184 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13185 s = "slt";
13186 goto slei;
13187 case M_SLEU_I:
13188 s = "sltu";
13189 slei:
13190 used_at = 1;
13191 load_register (AT, &imm_expr, GPR_SIZE == 64);
13192 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13193 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13194 break;
13195
13196 case M_SLT_I:
13197 if (imm_expr.X_add_number >= -0x8000
13198 && imm_expr.X_add_number < 0x8000)
13199 {
13200 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13201 BFD_RELOC_LO16);
13202 break;
13203 }
13204 used_at = 1;
13205 load_register (AT, &imm_expr, GPR_SIZE == 64);
13206 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13207 break;
13208
13209 case M_SLTU_I:
13210 if (imm_expr.X_add_number >= -0x8000
13211 && imm_expr.X_add_number < 0x8000)
13212 {
13213 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13214 BFD_RELOC_LO16);
13215 break;
13216 }
13217 used_at = 1;
13218 load_register (AT, &imm_expr, GPR_SIZE == 64);
13219 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13220 break;
13221
13222 case M_SNE:
13223 if (op[1] == 0)
13224 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13225 else if (op[2] == 0)
13226 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13227 else
13228 {
13229 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13230 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13231 }
13232 break;
13233
13234 case M_SNE_I:
13235 if (imm_expr.X_add_number == 0)
13236 {
13237 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13238 break;
13239 }
13240 if (op[1] == 0)
13241 {
13242 as_warn (_("instruction %s: result is always true"),
13243 ip->insn_mo->name);
13244 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13245 op[0], 0, BFD_RELOC_LO16);
13246 break;
13247 }
13248 if (CPU_HAS_SEQ (mips_opts.arch)
13249 && -512 <= imm_expr.X_add_number
13250 && imm_expr.X_add_number < 512)
13251 {
13252 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13253 (int) imm_expr.X_add_number);
13254 break;
13255 }
13256 if (imm_expr.X_add_number >= 0
13257 && imm_expr.X_add_number < 0x10000)
13258 {
13259 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13260 BFD_RELOC_LO16);
13261 }
13262 else if (imm_expr.X_add_number > -0x8000
13263 && imm_expr.X_add_number < 0)
13264 {
13265 imm_expr.X_add_number = -imm_expr.X_add_number;
13266 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13267 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13268 }
13269 else if (CPU_HAS_SEQ (mips_opts.arch))
13270 {
13271 used_at = 1;
13272 load_register (AT, &imm_expr, GPR_SIZE == 64);
13273 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13274 break;
13275 }
13276 else
13277 {
13278 load_register (AT, &imm_expr, GPR_SIZE == 64);
13279 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13280 used_at = 1;
13281 }
13282 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13283 break;
13284
13285 case M_SUB_I:
13286 s = "addi";
13287 s2 = "sub";
13288 goto do_subi;
13289 case M_SUBU_I:
13290 s = "addiu";
13291 s2 = "subu";
13292 goto do_subi;
13293 case M_DSUB_I:
13294 dbl = 1;
13295 s = "daddi";
13296 s2 = "dsub";
13297 if (!mips_opts.micromips)
13298 goto do_subi;
13299 if (imm_expr.X_add_number > -0x200
13300 && imm_expr.X_add_number <= 0x200)
13301 {
13302 macro_build (NULL, s, "t,r,.", op[0], op[1],
13303 (int) -imm_expr.X_add_number);
13304 break;
13305 }
13306 goto do_subi_i;
13307 case M_DSUBU_I:
13308 dbl = 1;
13309 s = "daddiu";
13310 s2 = "dsubu";
13311 do_subi:
13312 if (imm_expr.X_add_number > -0x8000
13313 && imm_expr.X_add_number <= 0x8000)
13314 {
13315 imm_expr.X_add_number = -imm_expr.X_add_number;
13316 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13317 break;
13318 }
13319 do_subi_i:
13320 used_at = 1;
13321 load_register (AT, &imm_expr, dbl);
13322 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13323 break;
13324
13325 case M_TEQ_I:
13326 s = "teq";
13327 goto trap;
13328 case M_TGE_I:
13329 s = "tge";
13330 goto trap;
13331 case M_TGEU_I:
13332 s = "tgeu";
13333 goto trap;
13334 case M_TLT_I:
13335 s = "tlt";
13336 goto trap;
13337 case M_TLTU_I:
13338 s = "tltu";
13339 goto trap;
13340 case M_TNE_I:
13341 s = "tne";
13342 trap:
13343 used_at = 1;
13344 load_register (AT, &imm_expr, GPR_SIZE == 64);
13345 macro_build (NULL, s, "s,t", op[0], AT);
13346 break;
13347
13348 case M_TRUNCWS:
13349 case M_TRUNCWD:
13350 gas_assert (!mips_opts.micromips);
13351 gas_assert (mips_opts.isa == ISA_MIPS1);
13352 used_at = 1;
13353
13354 /*
13355 * Is the double cfc1 instruction a bug in the mips assembler;
13356 * or is there a reason for it?
13357 */
13358 start_noreorder ();
13359 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13360 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13361 macro_build (NULL, "nop", "");
13362 expr1.X_add_number = 3;
13363 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13364 expr1.X_add_number = 2;
13365 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13366 macro_build (NULL, "ctc1", "t,G", AT, RA);
13367 macro_build (NULL, "nop", "");
13368 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13369 op[0], op[1]);
13370 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13371 macro_build (NULL, "nop", "");
13372 end_noreorder ();
13373 break;
13374
13375 case M_ULH_AB:
13376 s = "lb";
13377 s2 = "lbu";
13378 off = 1;
13379 goto uld_st;
13380 case M_ULHU_AB:
13381 s = "lbu";
13382 s2 = "lbu";
13383 off = 1;
13384 goto uld_st;
13385 case M_ULW_AB:
13386 s = "lwl";
13387 s2 = "lwr";
13388 offbits = (mips_opts.micromips ? 12 : 16);
13389 off = 3;
13390 goto uld_st;
13391 case M_ULD_AB:
13392 s = "ldl";
13393 s2 = "ldr";
13394 offbits = (mips_opts.micromips ? 12 : 16);
13395 off = 7;
13396 goto uld_st;
13397 case M_USH_AB:
13398 s = "sb";
13399 s2 = "sb";
13400 off = 1;
13401 ust = 1;
13402 goto uld_st;
13403 case M_USW_AB:
13404 s = "swl";
13405 s2 = "swr";
13406 offbits = (mips_opts.micromips ? 12 : 16);
13407 off = 3;
13408 ust = 1;
13409 goto uld_st;
13410 case M_USD_AB:
13411 s = "sdl";
13412 s2 = "sdr";
13413 offbits = (mips_opts.micromips ? 12 : 16);
13414 off = 7;
13415 ust = 1;
13416
13417 uld_st:
13418 breg = op[2];
13419 large_offset = !small_offset_p (off, align, offbits);
13420 ep = &offset_expr;
13421 expr1.X_add_number = 0;
13422 if (large_offset)
13423 {
13424 used_at = 1;
13425 tempreg = AT;
13426 if (small_offset_p (0, align, 16))
13427 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13428 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13429 else
13430 {
13431 load_address (tempreg, ep, &used_at);
13432 if (breg != 0)
13433 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13434 tempreg, tempreg, breg);
13435 }
13436 offset_reloc[0] = BFD_RELOC_LO16;
13437 offset_reloc[1] = BFD_RELOC_UNUSED;
13438 offset_reloc[2] = BFD_RELOC_UNUSED;
13439 breg = tempreg;
13440 tempreg = op[0];
13441 ep = &expr1;
13442 }
13443 else if (!ust && op[0] == breg)
13444 {
13445 used_at = 1;
13446 tempreg = AT;
13447 }
13448 else
13449 tempreg = op[0];
13450
13451 if (off == 1)
13452 goto ulh_sh;
13453
13454 if (!target_big_endian)
13455 ep->X_add_number += off;
13456 if (offbits == 12)
13457 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13458 else
13459 macro_build (ep, s, "t,o(b)", tempreg, -1,
13460 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13461
13462 if (!target_big_endian)
13463 ep->X_add_number -= off;
13464 else
13465 ep->X_add_number += off;
13466 if (offbits == 12)
13467 macro_build (NULL, s2, "t,~(b)",
13468 tempreg, (int) ep->X_add_number, breg);
13469 else
13470 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13471 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13472
13473 /* If necessary, move the result in tempreg to the final destination. */
13474 if (!ust && op[0] != tempreg)
13475 {
13476 /* Protect second load's delay slot. */
13477 load_delay_nop ();
13478 move_register (op[0], tempreg);
13479 }
13480 break;
13481
13482 ulh_sh:
13483 used_at = 1;
13484 if (target_big_endian == ust)
13485 ep->X_add_number += off;
13486 tempreg = ust || large_offset ? op[0] : AT;
13487 macro_build (ep, s, "t,o(b)", tempreg, -1,
13488 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13489
13490 /* For halfword transfers we need a temporary register to shuffle
13491 bytes. Unfortunately for M_USH_A we have none available before
13492 the next store as AT holds the base address. We deal with this
13493 case by clobbering TREG and then restoring it as with ULH. */
13494 tempreg = ust == large_offset ? op[0] : AT;
13495 if (ust)
13496 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13497
13498 if (target_big_endian == ust)
13499 ep->X_add_number -= off;
13500 else
13501 ep->X_add_number += off;
13502 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13503 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13504
13505 /* For M_USH_A re-retrieve the LSB. */
13506 if (ust && large_offset)
13507 {
13508 if (target_big_endian)
13509 ep->X_add_number += off;
13510 else
13511 ep->X_add_number -= off;
13512 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13513 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13514 }
13515 /* For ULH and M_USH_A OR the LSB in. */
13516 if (!ust || large_offset)
13517 {
13518 tempreg = !large_offset ? AT : op[0];
13519 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13520 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13521 }
13522 break;
13523
13524 default:
13525 /* FIXME: Check if this is one of the itbl macros, since they
13526 are added dynamically. */
13527 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13528 break;
13529 }
13530 if (!mips_opts.at && used_at)
13531 as_bad (_("macro used $at after \".set noat\""));
13532 }
13533
13534 /* Implement macros in mips16 mode. */
13535
13536 static void
13537 mips16_macro (struct mips_cl_insn *ip)
13538 {
13539 const struct mips_operand_array *operands;
13540 int mask;
13541 int tmp;
13542 expressionS expr1;
13543 int dbl;
13544 const char *s, *s2, *s3;
13545 unsigned int op[MAX_OPERANDS];
13546 unsigned int i;
13547
13548 mask = ip->insn_mo->mask;
13549
13550 operands = insn_operands (ip);
13551 for (i = 0; i < MAX_OPERANDS; i++)
13552 if (operands->operand[i])
13553 op[i] = insn_extract_operand (ip, operands->operand[i]);
13554 else
13555 op[i] = -1;
13556
13557 expr1.X_op = O_constant;
13558 expr1.X_op_symbol = NULL;
13559 expr1.X_add_symbol = NULL;
13560 expr1.X_add_number = 1;
13561
13562 dbl = 0;
13563
13564 switch (mask)
13565 {
13566 default:
13567 abort ();
13568
13569 case M_DDIV_3:
13570 dbl = 1;
13571 /* Fall through. */
13572 case M_DIV_3:
13573 s = "mflo";
13574 goto do_div3;
13575 case M_DREM_3:
13576 dbl = 1;
13577 /* Fall through. */
13578 case M_REM_3:
13579 s = "mfhi";
13580 do_div3:
13581 start_noreorder ();
13582 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13583 expr1.X_add_number = 2;
13584 macro_build (&expr1, "bnez", "x,p", op[2]);
13585 macro_build (NULL, "break", "6", 7);
13586
13587 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13588 since that causes an overflow. We should do that as well,
13589 but I don't see how to do the comparisons without a temporary
13590 register. */
13591 end_noreorder ();
13592 macro_build (NULL, s, "x", op[0]);
13593 break;
13594
13595 case M_DIVU_3:
13596 s = "divu";
13597 s2 = "mflo";
13598 goto do_divu3;
13599 case M_REMU_3:
13600 s = "divu";
13601 s2 = "mfhi";
13602 goto do_divu3;
13603 case M_DDIVU_3:
13604 s = "ddivu";
13605 s2 = "mflo";
13606 goto do_divu3;
13607 case M_DREMU_3:
13608 s = "ddivu";
13609 s2 = "mfhi";
13610 do_divu3:
13611 start_noreorder ();
13612 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13613 expr1.X_add_number = 2;
13614 macro_build (&expr1, "bnez", "x,p", op[2]);
13615 macro_build (NULL, "break", "6", 7);
13616 end_noreorder ();
13617 macro_build (NULL, s2, "x", op[0]);
13618 break;
13619
13620 case M_DMUL:
13621 dbl = 1;
13622 /* Fall through. */
13623 case M_MUL:
13624 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13625 macro_build (NULL, "mflo", "x", op[0]);
13626 break;
13627
13628 case M_DSUBU_I:
13629 dbl = 1;
13630 goto do_subu;
13631 case M_SUBU_I:
13632 do_subu:
13633 imm_expr.X_add_number = -imm_expr.X_add_number;
13634 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
13635 break;
13636
13637 case M_SUBU_I_2:
13638 imm_expr.X_add_number = -imm_expr.X_add_number;
13639 macro_build (&imm_expr, "addiu", "x,k", op[0]);
13640 break;
13641
13642 case M_DSUBU_I_2:
13643 imm_expr.X_add_number = -imm_expr.X_add_number;
13644 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
13645 break;
13646
13647 case M_BEQ:
13648 s = "cmp";
13649 s2 = "bteqz";
13650 goto do_branch;
13651 case M_BNE:
13652 s = "cmp";
13653 s2 = "btnez";
13654 goto do_branch;
13655 case M_BLT:
13656 s = "slt";
13657 s2 = "btnez";
13658 goto do_branch;
13659 case M_BLTU:
13660 s = "sltu";
13661 s2 = "btnez";
13662 goto do_branch;
13663 case M_BLE:
13664 s = "slt";
13665 s2 = "bteqz";
13666 goto do_reverse_branch;
13667 case M_BLEU:
13668 s = "sltu";
13669 s2 = "bteqz";
13670 goto do_reverse_branch;
13671 case M_BGE:
13672 s = "slt";
13673 s2 = "bteqz";
13674 goto do_branch;
13675 case M_BGEU:
13676 s = "sltu";
13677 s2 = "bteqz";
13678 goto do_branch;
13679 case M_BGT:
13680 s = "slt";
13681 s2 = "btnez";
13682 goto do_reverse_branch;
13683 case M_BGTU:
13684 s = "sltu";
13685 s2 = "btnez";
13686
13687 do_reverse_branch:
13688 tmp = op[1];
13689 op[1] = op[0];
13690 op[0] = tmp;
13691
13692 do_branch:
13693 macro_build (NULL, s, "x,y", op[0], op[1]);
13694 macro_build (&offset_expr, s2, "p");
13695 break;
13696
13697 case M_BEQ_I:
13698 s = "cmpi";
13699 s2 = "bteqz";
13700 s3 = "x,U";
13701 goto do_branch_i;
13702 case M_BNE_I:
13703 s = "cmpi";
13704 s2 = "btnez";
13705 s3 = "x,U";
13706 goto do_branch_i;
13707 case M_BLT_I:
13708 s = "slti";
13709 s2 = "btnez";
13710 s3 = "x,8";
13711 goto do_branch_i;
13712 case M_BLTU_I:
13713 s = "sltiu";
13714 s2 = "btnez";
13715 s3 = "x,8";
13716 goto do_branch_i;
13717 case M_BLE_I:
13718 s = "slti";
13719 s2 = "btnez";
13720 s3 = "x,8";
13721 goto do_addone_branch_i;
13722 case M_BLEU_I:
13723 s = "sltiu";
13724 s2 = "btnez";
13725 s3 = "x,8";
13726 goto do_addone_branch_i;
13727 case M_BGE_I:
13728 s = "slti";
13729 s2 = "bteqz";
13730 s3 = "x,8";
13731 goto do_branch_i;
13732 case M_BGEU_I:
13733 s = "sltiu";
13734 s2 = "bteqz";
13735 s3 = "x,8";
13736 goto do_branch_i;
13737 case M_BGT_I:
13738 s = "slti";
13739 s2 = "bteqz";
13740 s3 = "x,8";
13741 goto do_addone_branch_i;
13742 case M_BGTU_I:
13743 s = "sltiu";
13744 s2 = "bteqz";
13745 s3 = "x,8";
13746
13747 do_addone_branch_i:
13748 ++imm_expr.X_add_number;
13749
13750 do_branch_i:
13751 macro_build (&imm_expr, s, s3, op[0]);
13752 macro_build (&offset_expr, s2, "p");
13753 break;
13754
13755 case M_ABS:
13756 expr1.X_add_number = 0;
13757 macro_build (&expr1, "slti", "x,8", op[1]);
13758 if (op[0] != op[1])
13759 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
13760 expr1.X_add_number = 2;
13761 macro_build (&expr1, "bteqz", "p");
13762 macro_build (NULL, "neg", "x,w", op[0], op[0]);
13763 break;
13764 }
13765 }
13766
13767 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
13768 opcode bits in *OPCODE_EXTRA. */
13769
13770 static struct mips_opcode *
13771 mips_lookup_insn (struct hash_control *hash, const char *start,
13772 ssize_t length, unsigned int *opcode_extra)
13773 {
13774 char *name, *dot, *p;
13775 unsigned int mask, suffix;
13776 ssize_t opend;
13777 struct mips_opcode *insn;
13778
13779 /* Make a copy of the instruction so that we can fiddle with it. */
13780 name = xstrndup (start, length);
13781
13782 /* Look up the instruction as-is. */
13783 insn = (struct mips_opcode *) hash_find (hash, name);
13784 if (insn)
13785 goto end;
13786
13787 dot = strchr (name, '.');
13788 if (dot && dot[1])
13789 {
13790 /* Try to interpret the text after the dot as a VU0 channel suffix. */
13791 p = mips_parse_vu0_channels (dot + 1, &mask);
13792 if (*p == 0 && mask != 0)
13793 {
13794 *dot = 0;
13795 insn = (struct mips_opcode *) hash_find (hash, name);
13796 *dot = '.';
13797 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
13798 {
13799 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
13800 goto end;
13801 }
13802 }
13803 }
13804
13805 if (mips_opts.micromips)
13806 {
13807 /* See if there's an instruction size override suffix,
13808 either `16' or `32', at the end of the mnemonic proper,
13809 that defines the operation, i.e. before the first `.'
13810 character if any. Strip it and retry. */
13811 opend = dot != NULL ? dot - name : length;
13812 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
13813 suffix = 2;
13814 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
13815 suffix = 4;
13816 else
13817 suffix = 0;
13818 if (suffix)
13819 {
13820 memcpy (name + opend - 2, name + opend, length - opend + 1);
13821 insn = (struct mips_opcode *) hash_find (hash, name);
13822 if (insn)
13823 {
13824 forced_insn_length = suffix;
13825 goto end;
13826 }
13827 }
13828 }
13829
13830 insn = NULL;
13831 end:
13832 free (name);
13833 return insn;
13834 }
13835
13836 /* Assemble an instruction into its binary format. If the instruction
13837 is a macro, set imm_expr and offset_expr to the values associated
13838 with "I" and "A" operands respectively. Otherwise store the value
13839 of the relocatable field (if any) in offset_expr. In both cases
13840 set offset_reloc to the relocation operators applied to offset_expr. */
13841
13842 static void
13843 mips_ip (char *str, struct mips_cl_insn *insn)
13844 {
13845 const struct mips_opcode *first, *past;
13846 struct hash_control *hash;
13847 char format;
13848 size_t end;
13849 struct mips_operand_token *tokens;
13850 unsigned int opcode_extra;
13851
13852 if (mips_opts.micromips)
13853 {
13854 hash = micromips_op_hash;
13855 past = &micromips_opcodes[bfd_micromips_num_opcodes];
13856 }
13857 else
13858 {
13859 hash = op_hash;
13860 past = &mips_opcodes[NUMOPCODES];
13861 }
13862 forced_insn_length = 0;
13863 opcode_extra = 0;
13864
13865 /* We first try to match an instruction up to a space or to the end. */
13866 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
13867 continue;
13868
13869 first = mips_lookup_insn (hash, str, end, &opcode_extra);
13870 if (first == NULL)
13871 {
13872 set_insn_error (0, _("unrecognized opcode"));
13873 return;
13874 }
13875
13876 if (strcmp (first->name, "li.s") == 0)
13877 format = 'f';
13878 else if (strcmp (first->name, "li.d") == 0)
13879 format = 'd';
13880 else
13881 format = 0;
13882 tokens = mips_parse_arguments (str + end, format);
13883 if (!tokens)
13884 return;
13885
13886 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
13887 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
13888 set_insn_error (0, _("invalid operands"));
13889
13890 obstack_free (&mips_operand_tokens, tokens);
13891 }
13892
13893 /* As for mips_ip, but used when assembling MIPS16 code.
13894 Also set forced_insn_length to the resulting instruction size in
13895 bytes if the user explicitly requested a small or extended instruction. */
13896
13897 static void
13898 mips16_ip (char *str, struct mips_cl_insn *insn)
13899 {
13900 char *end, *s, c;
13901 struct mips_opcode *first;
13902 struct mips_operand_token *tokens;
13903 unsigned int l;
13904
13905 for (s = str; ISLOWER (*s); ++s)
13906 ;
13907 end = s;
13908 c = *end;
13909
13910 l = 0;
13911 switch (c)
13912 {
13913 case '\0':
13914 break;
13915
13916 case ' ':
13917 s++;
13918 break;
13919
13920 case '.':
13921 s++;
13922 if (*s == 't')
13923 {
13924 l = 2;
13925 s++;
13926 }
13927 else if (*s == 'e')
13928 {
13929 l = 4;
13930 s++;
13931 }
13932 if (*s == '\0')
13933 break;
13934 else if (*s++ == ' ')
13935 break;
13936 /* Fall through. */
13937 default:
13938 set_insn_error (0, _("unrecognized opcode"));
13939 return;
13940 }
13941 forced_insn_length = l;
13942
13943 *end = 0;
13944 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
13945 *end = c;
13946
13947 if (!first)
13948 {
13949 set_insn_error (0, _("unrecognized opcode"));
13950 return;
13951 }
13952
13953 tokens = mips_parse_arguments (s, 0);
13954 if (!tokens)
13955 return;
13956
13957 if (!match_mips16_insns (insn, first, tokens))
13958 set_insn_error (0, _("invalid operands"));
13959
13960 obstack_free (&mips_operand_tokens, tokens);
13961 }
13962
13963 /* Marshal immediate value VAL for an extended MIPS16 instruction.
13964 NBITS is the number of significant bits in VAL. */
13965
13966 static unsigned long
13967 mips16_immed_extend (offsetT val, unsigned int nbits)
13968 {
13969 int extval;
13970 if (nbits == 16)
13971 {
13972 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
13973 val &= 0x1f;
13974 }
13975 else if (nbits == 15)
13976 {
13977 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
13978 val &= 0xf;
13979 }
13980 else
13981 {
13982 extval = ((val & 0x1f) << 6) | (val & 0x20);
13983 val = 0;
13984 }
13985 return (extval << 16) | val;
13986 }
13987
13988 /* Like decode_mips16_operand, but require the operand to be defined and
13989 require it to be an integer. */
13990
13991 static const struct mips_int_operand *
13992 mips16_immed_operand (int type, bfd_boolean extended_p)
13993 {
13994 const struct mips_operand *operand;
13995
13996 operand = decode_mips16_operand (type, extended_p);
13997 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
13998 abort ();
13999 return (const struct mips_int_operand *) operand;
14000 }
14001
14002 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14003
14004 static bfd_boolean
14005 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14006 bfd_reloc_code_real_type reloc, offsetT sval)
14007 {
14008 int min_val, max_val;
14009
14010 min_val = mips_int_operand_min (operand);
14011 max_val = mips_int_operand_max (operand);
14012 if (reloc != BFD_RELOC_UNUSED)
14013 {
14014 if (min_val < 0)
14015 sval = SEXT_16BIT (sval);
14016 else
14017 sval &= 0xffff;
14018 }
14019
14020 return (sval >= min_val
14021 && sval <= max_val
14022 && (sval & ((1 << operand->shift) - 1)) == 0);
14023 }
14024
14025 /* Install immediate value VAL into MIPS16 instruction *INSN,
14026 extending it if necessary. The instruction in *INSN may
14027 already be extended.
14028
14029 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14030 if none. In the former case, VAL is a 16-bit number with no
14031 defined signedness.
14032
14033 TYPE is the type of the immediate field. USER_INSN_LENGTH
14034 is the length that the user requested, or 0 if none. */
14035
14036 static void
14037 mips16_immed (const char *file, unsigned int line, int type,
14038 bfd_reloc_code_real_type reloc, offsetT val,
14039 unsigned int user_insn_length, unsigned long *insn)
14040 {
14041 const struct mips_int_operand *operand;
14042 unsigned int uval, length;
14043
14044 operand = mips16_immed_operand (type, FALSE);
14045 if (!mips16_immed_in_range_p (operand, reloc, val))
14046 {
14047 /* We need an extended instruction. */
14048 if (user_insn_length == 2)
14049 as_bad_where (file, line, _("invalid unextended operand value"));
14050 else
14051 *insn |= MIPS16_EXTEND;
14052 }
14053 else if (user_insn_length == 4)
14054 {
14055 /* The operand doesn't force an unextended instruction to be extended.
14056 Warn if the user wanted an extended instruction anyway. */
14057 *insn |= MIPS16_EXTEND;
14058 as_warn_where (file, line,
14059 _("extended operand requested but not required"));
14060 }
14061
14062 length = mips16_opcode_length (*insn);
14063 if (length == 4)
14064 {
14065 operand = mips16_immed_operand (type, TRUE);
14066 if (!mips16_immed_in_range_p (operand, reloc, val))
14067 as_bad_where (file, line,
14068 _("operand value out of range for instruction"));
14069 }
14070 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14071 if (length == 2 || operand->root.lsb != 0)
14072 *insn = mips_insert_operand (&operand->root, *insn, uval);
14073 else
14074 *insn |= mips16_immed_extend (uval, operand->root.size);
14075 }
14076 \f
14077 struct percent_op_match
14078 {
14079 const char *str;
14080 bfd_reloc_code_real_type reloc;
14081 };
14082
14083 static const struct percent_op_match mips_percent_op[] =
14084 {
14085 {"%lo", BFD_RELOC_LO16},
14086 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14087 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14088 {"%call16", BFD_RELOC_MIPS_CALL16},
14089 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14090 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14091 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14092 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14093 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14094 {"%got", BFD_RELOC_MIPS_GOT16},
14095 {"%gp_rel", BFD_RELOC_GPREL16},
14096 {"%gprel", BFD_RELOC_GPREL16},
14097 {"%half", BFD_RELOC_16},
14098 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14099 {"%higher", BFD_RELOC_MIPS_HIGHER},
14100 {"%neg", BFD_RELOC_MIPS_SUB},
14101 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14102 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14103 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14104 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14105 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14106 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14107 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14108 {"%hi", BFD_RELOC_HI16_S},
14109 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14110 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14111 };
14112
14113 static const struct percent_op_match mips16_percent_op[] =
14114 {
14115 {"%lo", BFD_RELOC_MIPS16_LO16},
14116 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14117 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14118 {"%got", BFD_RELOC_MIPS16_GOT16},
14119 {"%call16", BFD_RELOC_MIPS16_CALL16},
14120 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14121 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14122 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14123 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14124 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14125 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14126 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14127 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14128 };
14129
14130
14131 /* Return true if *STR points to a relocation operator. When returning true,
14132 move *STR over the operator and store its relocation code in *RELOC.
14133 Leave both *STR and *RELOC alone when returning false. */
14134
14135 static bfd_boolean
14136 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14137 {
14138 const struct percent_op_match *percent_op;
14139 size_t limit, i;
14140
14141 if (mips_opts.mips16)
14142 {
14143 percent_op = mips16_percent_op;
14144 limit = ARRAY_SIZE (mips16_percent_op);
14145 }
14146 else
14147 {
14148 percent_op = mips_percent_op;
14149 limit = ARRAY_SIZE (mips_percent_op);
14150 }
14151
14152 for (i = 0; i < limit; i++)
14153 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14154 {
14155 int len = strlen (percent_op[i].str);
14156
14157 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14158 continue;
14159
14160 *str += strlen (percent_op[i].str);
14161 *reloc = percent_op[i].reloc;
14162
14163 /* Check whether the output BFD supports this relocation.
14164 If not, issue an error and fall back on something safe. */
14165 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14166 {
14167 as_bad (_("relocation %s isn't supported by the current ABI"),
14168 percent_op[i].str);
14169 *reloc = BFD_RELOC_UNUSED;
14170 }
14171 return TRUE;
14172 }
14173 return FALSE;
14174 }
14175
14176
14177 /* Parse string STR as a 16-bit relocatable operand. Store the
14178 expression in *EP and the relocations in the array starting
14179 at RELOC. Return the number of relocation operators used.
14180
14181 On exit, EXPR_END points to the first character after the expression. */
14182
14183 static size_t
14184 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14185 char *str)
14186 {
14187 bfd_reloc_code_real_type reversed_reloc[3];
14188 size_t reloc_index, i;
14189 int crux_depth, str_depth;
14190 char *crux;
14191
14192 /* Search for the start of the main expression, recoding relocations
14193 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14194 of the main expression and with CRUX_DEPTH containing the number
14195 of open brackets at that point. */
14196 reloc_index = -1;
14197 str_depth = 0;
14198 do
14199 {
14200 reloc_index++;
14201 crux = str;
14202 crux_depth = str_depth;
14203
14204 /* Skip over whitespace and brackets, keeping count of the number
14205 of brackets. */
14206 while (*str == ' ' || *str == '\t' || *str == '(')
14207 if (*str++ == '(')
14208 str_depth++;
14209 }
14210 while (*str == '%'
14211 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14212 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14213
14214 my_getExpression (ep, crux);
14215 str = expr_end;
14216
14217 /* Match every open bracket. */
14218 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14219 if (*str++ == ')')
14220 crux_depth--;
14221
14222 if (crux_depth > 0)
14223 as_bad (_("unclosed '('"));
14224
14225 expr_end = str;
14226
14227 if (reloc_index != 0)
14228 {
14229 prev_reloc_op_frag = frag_now;
14230 for (i = 0; i < reloc_index; i++)
14231 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14232 }
14233
14234 return reloc_index;
14235 }
14236
14237 static void
14238 my_getExpression (expressionS *ep, char *str)
14239 {
14240 char *save_in;
14241
14242 save_in = input_line_pointer;
14243 input_line_pointer = str;
14244 expression (ep);
14245 expr_end = input_line_pointer;
14246 input_line_pointer = save_in;
14247 }
14248
14249 const char *
14250 md_atof (int type, char *litP, int *sizeP)
14251 {
14252 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14253 }
14254
14255 void
14256 md_number_to_chars (char *buf, valueT val, int n)
14257 {
14258 if (target_big_endian)
14259 number_to_chars_bigendian (buf, val, n);
14260 else
14261 number_to_chars_littleendian (buf, val, n);
14262 }
14263 \f
14264 static int support_64bit_objects(void)
14265 {
14266 const char **list, **l;
14267 int yes;
14268
14269 list = bfd_target_list ();
14270 for (l = list; *l != NULL; l++)
14271 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14272 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14273 break;
14274 yes = (*l != NULL);
14275 free (list);
14276 return yes;
14277 }
14278
14279 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14280 NEW_VALUE. Warn if another value was already specified. Note:
14281 we have to defer parsing the -march and -mtune arguments in order
14282 to handle 'from-abi' correctly, since the ABI might be specified
14283 in a later argument. */
14284
14285 static void
14286 mips_set_option_string (const char **string_ptr, const char *new_value)
14287 {
14288 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14289 as_warn (_("a different %s was already specified, is now %s"),
14290 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14291 new_value);
14292
14293 *string_ptr = new_value;
14294 }
14295
14296 int
14297 md_parse_option (int c, const char *arg)
14298 {
14299 unsigned int i;
14300
14301 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14302 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14303 {
14304 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14305 c == mips_ases[i].option_on);
14306 return 1;
14307 }
14308
14309 switch (c)
14310 {
14311 case OPTION_CONSTRUCT_FLOATS:
14312 mips_disable_float_construction = 0;
14313 break;
14314
14315 case OPTION_NO_CONSTRUCT_FLOATS:
14316 mips_disable_float_construction = 1;
14317 break;
14318
14319 case OPTION_TRAP:
14320 mips_trap = 1;
14321 break;
14322
14323 case OPTION_BREAK:
14324 mips_trap = 0;
14325 break;
14326
14327 case OPTION_EB:
14328 target_big_endian = 1;
14329 break;
14330
14331 case OPTION_EL:
14332 target_big_endian = 0;
14333 break;
14334
14335 case 'O':
14336 if (arg == NULL)
14337 mips_optimize = 1;
14338 else if (arg[0] == '0')
14339 mips_optimize = 0;
14340 else if (arg[0] == '1')
14341 mips_optimize = 1;
14342 else
14343 mips_optimize = 2;
14344 break;
14345
14346 case 'g':
14347 if (arg == NULL)
14348 mips_debug = 2;
14349 else
14350 mips_debug = atoi (arg);
14351 break;
14352
14353 case OPTION_MIPS1:
14354 file_mips_opts.isa = ISA_MIPS1;
14355 break;
14356
14357 case OPTION_MIPS2:
14358 file_mips_opts.isa = ISA_MIPS2;
14359 break;
14360
14361 case OPTION_MIPS3:
14362 file_mips_opts.isa = ISA_MIPS3;
14363 break;
14364
14365 case OPTION_MIPS4:
14366 file_mips_opts.isa = ISA_MIPS4;
14367 break;
14368
14369 case OPTION_MIPS5:
14370 file_mips_opts.isa = ISA_MIPS5;
14371 break;
14372
14373 case OPTION_MIPS32:
14374 file_mips_opts.isa = ISA_MIPS32;
14375 break;
14376
14377 case OPTION_MIPS32R2:
14378 file_mips_opts.isa = ISA_MIPS32R2;
14379 break;
14380
14381 case OPTION_MIPS32R3:
14382 file_mips_opts.isa = ISA_MIPS32R3;
14383 break;
14384
14385 case OPTION_MIPS32R5:
14386 file_mips_opts.isa = ISA_MIPS32R5;
14387 break;
14388
14389 case OPTION_MIPS32R6:
14390 file_mips_opts.isa = ISA_MIPS32R6;
14391 break;
14392
14393 case OPTION_MIPS64R2:
14394 file_mips_opts.isa = ISA_MIPS64R2;
14395 break;
14396
14397 case OPTION_MIPS64R3:
14398 file_mips_opts.isa = ISA_MIPS64R3;
14399 break;
14400
14401 case OPTION_MIPS64R5:
14402 file_mips_opts.isa = ISA_MIPS64R5;
14403 break;
14404
14405 case OPTION_MIPS64R6:
14406 file_mips_opts.isa = ISA_MIPS64R6;
14407 break;
14408
14409 case OPTION_MIPS64:
14410 file_mips_opts.isa = ISA_MIPS64;
14411 break;
14412
14413 case OPTION_MTUNE:
14414 mips_set_option_string (&mips_tune_string, arg);
14415 break;
14416
14417 case OPTION_MARCH:
14418 mips_set_option_string (&mips_arch_string, arg);
14419 break;
14420
14421 case OPTION_M4650:
14422 mips_set_option_string (&mips_arch_string, "4650");
14423 mips_set_option_string (&mips_tune_string, "4650");
14424 break;
14425
14426 case OPTION_NO_M4650:
14427 break;
14428
14429 case OPTION_M4010:
14430 mips_set_option_string (&mips_arch_string, "4010");
14431 mips_set_option_string (&mips_tune_string, "4010");
14432 break;
14433
14434 case OPTION_NO_M4010:
14435 break;
14436
14437 case OPTION_M4100:
14438 mips_set_option_string (&mips_arch_string, "4100");
14439 mips_set_option_string (&mips_tune_string, "4100");
14440 break;
14441
14442 case OPTION_NO_M4100:
14443 break;
14444
14445 case OPTION_M3900:
14446 mips_set_option_string (&mips_arch_string, "3900");
14447 mips_set_option_string (&mips_tune_string, "3900");
14448 break;
14449
14450 case OPTION_NO_M3900:
14451 break;
14452
14453 case OPTION_MICROMIPS:
14454 if (file_mips_opts.mips16 == 1)
14455 {
14456 as_bad (_("-mmicromips cannot be used with -mips16"));
14457 return 0;
14458 }
14459 file_mips_opts.micromips = 1;
14460 mips_no_prev_insn ();
14461 break;
14462
14463 case OPTION_NO_MICROMIPS:
14464 file_mips_opts.micromips = 0;
14465 mips_no_prev_insn ();
14466 break;
14467
14468 case OPTION_MIPS16:
14469 if (file_mips_opts.micromips == 1)
14470 {
14471 as_bad (_("-mips16 cannot be used with -micromips"));
14472 return 0;
14473 }
14474 file_mips_opts.mips16 = 1;
14475 mips_no_prev_insn ();
14476 break;
14477
14478 case OPTION_NO_MIPS16:
14479 file_mips_opts.mips16 = 0;
14480 mips_no_prev_insn ();
14481 break;
14482
14483 case OPTION_FIX_24K:
14484 mips_fix_24k = 1;
14485 break;
14486
14487 case OPTION_NO_FIX_24K:
14488 mips_fix_24k = 0;
14489 break;
14490
14491 case OPTION_FIX_RM7000:
14492 mips_fix_rm7000 = 1;
14493 break;
14494
14495 case OPTION_NO_FIX_RM7000:
14496 mips_fix_rm7000 = 0;
14497 break;
14498
14499 case OPTION_FIX_LOONGSON2F_JUMP:
14500 mips_fix_loongson2f_jump = TRUE;
14501 break;
14502
14503 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14504 mips_fix_loongson2f_jump = FALSE;
14505 break;
14506
14507 case OPTION_FIX_LOONGSON2F_NOP:
14508 mips_fix_loongson2f_nop = TRUE;
14509 break;
14510
14511 case OPTION_NO_FIX_LOONGSON2F_NOP:
14512 mips_fix_loongson2f_nop = FALSE;
14513 break;
14514
14515 case OPTION_FIX_VR4120:
14516 mips_fix_vr4120 = 1;
14517 break;
14518
14519 case OPTION_NO_FIX_VR4120:
14520 mips_fix_vr4120 = 0;
14521 break;
14522
14523 case OPTION_FIX_VR4130:
14524 mips_fix_vr4130 = 1;
14525 break;
14526
14527 case OPTION_NO_FIX_VR4130:
14528 mips_fix_vr4130 = 0;
14529 break;
14530
14531 case OPTION_FIX_CN63XXP1:
14532 mips_fix_cn63xxp1 = TRUE;
14533 break;
14534
14535 case OPTION_NO_FIX_CN63XXP1:
14536 mips_fix_cn63xxp1 = FALSE;
14537 break;
14538
14539 case OPTION_RELAX_BRANCH:
14540 mips_relax_branch = 1;
14541 break;
14542
14543 case OPTION_NO_RELAX_BRANCH:
14544 mips_relax_branch = 0;
14545 break;
14546
14547 case OPTION_IGNORE_BRANCH_ISA:
14548 mips_ignore_branch_isa = TRUE;
14549 break;
14550
14551 case OPTION_NO_IGNORE_BRANCH_ISA:
14552 mips_ignore_branch_isa = FALSE;
14553 break;
14554
14555 case OPTION_INSN32:
14556 file_mips_opts.insn32 = TRUE;
14557 break;
14558
14559 case OPTION_NO_INSN32:
14560 file_mips_opts.insn32 = FALSE;
14561 break;
14562
14563 case OPTION_MSHARED:
14564 mips_in_shared = TRUE;
14565 break;
14566
14567 case OPTION_MNO_SHARED:
14568 mips_in_shared = FALSE;
14569 break;
14570
14571 case OPTION_MSYM32:
14572 file_mips_opts.sym32 = TRUE;
14573 break;
14574
14575 case OPTION_MNO_SYM32:
14576 file_mips_opts.sym32 = FALSE;
14577 break;
14578
14579 /* When generating ELF code, we permit -KPIC and -call_shared to
14580 select SVR4_PIC, and -non_shared to select no PIC. This is
14581 intended to be compatible with Irix 5. */
14582 case OPTION_CALL_SHARED:
14583 mips_pic = SVR4_PIC;
14584 mips_abicalls = TRUE;
14585 break;
14586
14587 case OPTION_CALL_NONPIC:
14588 mips_pic = NO_PIC;
14589 mips_abicalls = TRUE;
14590 break;
14591
14592 case OPTION_NON_SHARED:
14593 mips_pic = NO_PIC;
14594 mips_abicalls = FALSE;
14595 break;
14596
14597 /* The -xgot option tells the assembler to use 32 bit offsets
14598 when accessing the got in SVR4_PIC mode. It is for Irix
14599 compatibility. */
14600 case OPTION_XGOT:
14601 mips_big_got = 1;
14602 break;
14603
14604 case 'G':
14605 g_switch_value = atoi (arg);
14606 g_switch_seen = 1;
14607 break;
14608
14609 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14610 and -mabi=64. */
14611 case OPTION_32:
14612 mips_abi = O32_ABI;
14613 break;
14614
14615 case OPTION_N32:
14616 mips_abi = N32_ABI;
14617 break;
14618
14619 case OPTION_64:
14620 mips_abi = N64_ABI;
14621 if (!support_64bit_objects())
14622 as_fatal (_("no compiled in support for 64 bit object file format"));
14623 break;
14624
14625 case OPTION_GP32:
14626 file_mips_opts.gp = 32;
14627 break;
14628
14629 case OPTION_GP64:
14630 file_mips_opts.gp = 64;
14631 break;
14632
14633 case OPTION_FP32:
14634 file_mips_opts.fp = 32;
14635 break;
14636
14637 case OPTION_FPXX:
14638 file_mips_opts.fp = 0;
14639 break;
14640
14641 case OPTION_FP64:
14642 file_mips_opts.fp = 64;
14643 break;
14644
14645 case OPTION_ODD_SPREG:
14646 file_mips_opts.oddspreg = 1;
14647 break;
14648
14649 case OPTION_NO_ODD_SPREG:
14650 file_mips_opts.oddspreg = 0;
14651 break;
14652
14653 case OPTION_SINGLE_FLOAT:
14654 file_mips_opts.single_float = 1;
14655 break;
14656
14657 case OPTION_DOUBLE_FLOAT:
14658 file_mips_opts.single_float = 0;
14659 break;
14660
14661 case OPTION_SOFT_FLOAT:
14662 file_mips_opts.soft_float = 1;
14663 break;
14664
14665 case OPTION_HARD_FLOAT:
14666 file_mips_opts.soft_float = 0;
14667 break;
14668
14669 case OPTION_MABI:
14670 if (strcmp (arg, "32") == 0)
14671 mips_abi = O32_ABI;
14672 else if (strcmp (arg, "o64") == 0)
14673 mips_abi = O64_ABI;
14674 else if (strcmp (arg, "n32") == 0)
14675 mips_abi = N32_ABI;
14676 else if (strcmp (arg, "64") == 0)
14677 {
14678 mips_abi = N64_ABI;
14679 if (! support_64bit_objects())
14680 as_fatal (_("no compiled in support for 64 bit object file "
14681 "format"));
14682 }
14683 else if (strcmp (arg, "eabi") == 0)
14684 mips_abi = EABI_ABI;
14685 else
14686 {
14687 as_fatal (_("invalid abi -mabi=%s"), arg);
14688 return 0;
14689 }
14690 break;
14691
14692 case OPTION_M7000_HILO_FIX:
14693 mips_7000_hilo_fix = TRUE;
14694 break;
14695
14696 case OPTION_MNO_7000_HILO_FIX:
14697 mips_7000_hilo_fix = FALSE;
14698 break;
14699
14700 case OPTION_MDEBUG:
14701 mips_flag_mdebug = TRUE;
14702 break;
14703
14704 case OPTION_NO_MDEBUG:
14705 mips_flag_mdebug = FALSE;
14706 break;
14707
14708 case OPTION_PDR:
14709 mips_flag_pdr = TRUE;
14710 break;
14711
14712 case OPTION_NO_PDR:
14713 mips_flag_pdr = FALSE;
14714 break;
14715
14716 case OPTION_MVXWORKS_PIC:
14717 mips_pic = VXWORKS_PIC;
14718 break;
14719
14720 case OPTION_NAN:
14721 if (strcmp (arg, "2008") == 0)
14722 mips_nan2008 = 1;
14723 else if (strcmp (arg, "legacy") == 0)
14724 mips_nan2008 = 0;
14725 else
14726 {
14727 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
14728 return 0;
14729 }
14730 break;
14731
14732 default:
14733 return 0;
14734 }
14735
14736 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
14737
14738 return 1;
14739 }
14740 \f
14741 /* Set up globals to tune for the ISA or processor described by INFO. */
14742
14743 static void
14744 mips_set_tune (const struct mips_cpu_info *info)
14745 {
14746 if (info != 0)
14747 mips_tune = info->cpu;
14748 }
14749
14750
14751 void
14752 mips_after_parse_args (void)
14753 {
14754 const struct mips_cpu_info *arch_info = 0;
14755 const struct mips_cpu_info *tune_info = 0;
14756
14757 /* GP relative stuff not working for PE */
14758 if (strncmp (TARGET_OS, "pe", 2) == 0)
14759 {
14760 if (g_switch_seen && g_switch_value != 0)
14761 as_bad (_("-G not supported in this configuration"));
14762 g_switch_value = 0;
14763 }
14764
14765 if (mips_abi == NO_ABI)
14766 mips_abi = MIPS_DEFAULT_ABI;
14767
14768 /* The following code determines the architecture.
14769 Similar code was added to GCC 3.3 (see override_options() in
14770 config/mips/mips.c). The GAS and GCC code should be kept in sync
14771 as much as possible. */
14772
14773 if (mips_arch_string != 0)
14774 arch_info = mips_parse_cpu ("-march", mips_arch_string);
14775
14776 if (file_mips_opts.isa != ISA_UNKNOWN)
14777 {
14778 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
14779 ISA level specified by -mipsN, while arch_info->isa contains
14780 the -march selection (if any). */
14781 if (arch_info != 0)
14782 {
14783 /* -march takes precedence over -mipsN, since it is more descriptive.
14784 There's no harm in specifying both as long as the ISA levels
14785 are the same. */
14786 if (file_mips_opts.isa != arch_info->isa)
14787 as_bad (_("-%s conflicts with the other architecture options,"
14788 " which imply -%s"),
14789 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
14790 mips_cpu_info_from_isa (arch_info->isa)->name);
14791 }
14792 else
14793 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
14794 }
14795
14796 if (arch_info == 0)
14797 {
14798 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
14799 gas_assert (arch_info);
14800 }
14801
14802 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
14803 as_bad (_("-march=%s is not compatible with the selected ABI"),
14804 arch_info->name);
14805
14806 file_mips_opts.arch = arch_info->cpu;
14807 file_mips_opts.isa = arch_info->isa;
14808
14809 /* Set up initial mips_opts state. */
14810 mips_opts = file_mips_opts;
14811
14812 /* The register size inference code is now placed in
14813 file_mips_check_options. */
14814
14815 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
14816 processor. */
14817 if (mips_tune_string != 0)
14818 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
14819
14820 if (tune_info == 0)
14821 mips_set_tune (arch_info);
14822 else
14823 mips_set_tune (tune_info);
14824
14825 if (mips_flag_mdebug < 0)
14826 mips_flag_mdebug = 0;
14827 }
14828 \f
14829 void
14830 mips_init_after_args (void)
14831 {
14832 /* initialize opcodes */
14833 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
14834 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
14835 }
14836
14837 long
14838 md_pcrel_from (fixS *fixP)
14839 {
14840 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
14841 switch (fixP->fx_r_type)
14842 {
14843 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
14844 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
14845 /* Return the address of the delay slot. */
14846 return addr + 2;
14847
14848 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
14849 case BFD_RELOC_MICROMIPS_JMP:
14850 case BFD_RELOC_MIPS16_16_PCREL_S1:
14851 case BFD_RELOC_16_PCREL_S2:
14852 case BFD_RELOC_MIPS_21_PCREL_S2:
14853 case BFD_RELOC_MIPS_26_PCREL_S2:
14854 case BFD_RELOC_MIPS_JMP:
14855 /* Return the address of the delay slot. */
14856 return addr + 4;
14857
14858 case BFD_RELOC_MIPS_18_PCREL_S3:
14859 /* Return the aligned address of the doubleword containing
14860 the instruction. */
14861 return addr & ~7;
14862
14863 default:
14864 return addr;
14865 }
14866 }
14867
14868 /* This is called before the symbol table is processed. In order to
14869 work with gcc when using mips-tfile, we must keep all local labels.
14870 However, in other cases, we want to discard them. If we were
14871 called with -g, but we didn't see any debugging information, it may
14872 mean that gcc is smuggling debugging information through to
14873 mips-tfile, in which case we must generate all local labels. */
14874
14875 void
14876 mips_frob_file_before_adjust (void)
14877 {
14878 #ifndef NO_ECOFF_DEBUGGING
14879 if (ECOFF_DEBUGGING
14880 && mips_debug != 0
14881 && ! ecoff_debugging_seen)
14882 flag_keep_locals = 1;
14883 #endif
14884 }
14885
14886 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
14887 the corresponding LO16 reloc. This is called before md_apply_fix and
14888 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
14889 relocation operators.
14890
14891 For our purposes, a %lo() expression matches a %got() or %hi()
14892 expression if:
14893
14894 (a) it refers to the same symbol; and
14895 (b) the offset applied in the %lo() expression is no lower than
14896 the offset applied in the %got() or %hi().
14897
14898 (b) allows us to cope with code like:
14899
14900 lui $4,%hi(foo)
14901 lh $4,%lo(foo+2)($4)
14902
14903 ...which is legal on RELA targets, and has a well-defined behaviour
14904 if the user knows that adding 2 to "foo" will not induce a carry to
14905 the high 16 bits.
14906
14907 When several %lo()s match a particular %got() or %hi(), we use the
14908 following rules to distinguish them:
14909
14910 (1) %lo()s with smaller offsets are a better match than %lo()s with
14911 higher offsets.
14912
14913 (2) %lo()s with no matching %got() or %hi() are better than those
14914 that already have a matching %got() or %hi().
14915
14916 (3) later %lo()s are better than earlier %lo()s.
14917
14918 These rules are applied in order.
14919
14920 (1) means, among other things, that %lo()s with identical offsets are
14921 chosen if they exist.
14922
14923 (2) means that we won't associate several high-part relocations with
14924 the same low-part relocation unless there's no alternative. Having
14925 several high parts for the same low part is a GNU extension; this rule
14926 allows careful users to avoid it.
14927
14928 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
14929 with the last high-part relocation being at the front of the list.
14930 It therefore makes sense to choose the last matching low-part
14931 relocation, all other things being equal. It's also easier
14932 to code that way. */
14933
14934 void
14935 mips_frob_file (void)
14936 {
14937 struct mips_hi_fixup *l;
14938 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
14939
14940 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
14941 {
14942 segment_info_type *seginfo;
14943 bfd_boolean matched_lo_p;
14944 fixS **hi_pos, **lo_pos, **pos;
14945
14946 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
14947
14948 /* If a GOT16 relocation turns out to be against a global symbol,
14949 there isn't supposed to be a matching LO. Ignore %gots against
14950 constants; we'll report an error for those later. */
14951 if (got16_reloc_p (l->fixp->fx_r_type)
14952 && !(l->fixp->fx_addsy
14953 && pic_need_relax (l->fixp->fx_addsy)))
14954 continue;
14955
14956 /* Check quickly whether the next fixup happens to be a matching %lo. */
14957 if (fixup_has_matching_lo_p (l->fixp))
14958 continue;
14959
14960 seginfo = seg_info (l->seg);
14961
14962 /* Set HI_POS to the position of this relocation in the chain.
14963 Set LO_POS to the position of the chosen low-part relocation.
14964 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
14965 relocation that matches an immediately-preceding high-part
14966 relocation. */
14967 hi_pos = NULL;
14968 lo_pos = NULL;
14969 matched_lo_p = FALSE;
14970 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
14971
14972 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
14973 {
14974 if (*pos == l->fixp)
14975 hi_pos = pos;
14976
14977 if ((*pos)->fx_r_type == looking_for_rtype
14978 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
14979 && (*pos)->fx_offset >= l->fixp->fx_offset
14980 && (lo_pos == NULL
14981 || (*pos)->fx_offset < (*lo_pos)->fx_offset
14982 || (!matched_lo_p
14983 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
14984 lo_pos = pos;
14985
14986 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
14987 && fixup_has_matching_lo_p (*pos));
14988 }
14989
14990 /* If we found a match, remove the high-part relocation from its
14991 current position and insert it before the low-part relocation.
14992 Make the offsets match so that fixup_has_matching_lo_p()
14993 will return true.
14994
14995 We don't warn about unmatched high-part relocations since some
14996 versions of gcc have been known to emit dead "lui ...%hi(...)"
14997 instructions. */
14998 if (lo_pos != NULL)
14999 {
15000 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15001 if (l->fixp->fx_next != *lo_pos)
15002 {
15003 *hi_pos = l->fixp->fx_next;
15004 l->fixp->fx_next = *lo_pos;
15005 *lo_pos = l->fixp;
15006 }
15007 }
15008 }
15009 }
15010
15011 int
15012 mips_force_relocation (fixS *fixp)
15013 {
15014 if (generic_force_reloc (fixp))
15015 return 1;
15016
15017 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15018 so that the linker relaxation can update targets. */
15019 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15020 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15021 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15022 return 1;
15023
15024 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15025 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15026 microMIPS symbols so that we can do cross-mode branch diagnostics
15027 and BAL to JALX conversion by the linker. */
15028 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15029 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15030 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15031 && fixp->fx_addsy
15032 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15033 return 1;
15034
15035 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15036 if (ISA_IS_R6 (file_mips_opts.isa)
15037 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15038 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15039 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15040 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15041 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15042 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15043 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15044 return 1;
15045
15046 return 0;
15047 }
15048
15049 /* Implement TC_FORCE_RELOCATION_ABS. */
15050
15051 bfd_boolean
15052 mips_force_relocation_abs (fixS *fixp)
15053 {
15054 if (generic_force_reloc (fixp))
15055 return TRUE;
15056
15057 /* These relocations do not have enough bits in the in-place addend
15058 to hold an arbitrary absolute section's offset. */
15059 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15060 return TRUE;
15061
15062 return FALSE;
15063 }
15064
15065 /* Read the instruction associated with RELOC from BUF. */
15066
15067 static unsigned int
15068 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15069 {
15070 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15071 return read_compressed_insn (buf, 4);
15072 else
15073 return read_insn (buf);
15074 }
15075
15076 /* Write instruction INSN to BUF, given that it has been relocated
15077 by RELOC. */
15078
15079 static void
15080 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15081 unsigned long insn)
15082 {
15083 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15084 write_compressed_insn (buf, insn, 4);
15085 else
15086 write_insn (buf, insn);
15087 }
15088
15089 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15090 to a symbol in another ISA mode, which cannot be converted to JALX. */
15091
15092 static bfd_boolean
15093 fix_bad_cross_mode_jump_p (fixS *fixP)
15094 {
15095 unsigned long opcode;
15096 int other;
15097 char *buf;
15098
15099 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15100 return FALSE;
15101
15102 other = S_GET_OTHER (fixP->fx_addsy);
15103 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15104 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15105 switch (fixP->fx_r_type)
15106 {
15107 case BFD_RELOC_MIPS_JMP:
15108 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15109 case BFD_RELOC_MICROMIPS_JMP:
15110 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15111 default:
15112 return FALSE;
15113 }
15114 }
15115
15116 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15117 jump to a symbol in the same ISA mode. */
15118
15119 static bfd_boolean
15120 fix_bad_same_mode_jalx_p (fixS *fixP)
15121 {
15122 unsigned long opcode;
15123 int other;
15124 char *buf;
15125
15126 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15127 return FALSE;
15128
15129 other = S_GET_OTHER (fixP->fx_addsy);
15130 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15131 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15132 switch (fixP->fx_r_type)
15133 {
15134 case BFD_RELOC_MIPS_JMP:
15135 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15136 case BFD_RELOC_MIPS16_JMP:
15137 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15138 case BFD_RELOC_MICROMIPS_JMP:
15139 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15140 default:
15141 return FALSE;
15142 }
15143 }
15144
15145 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15146 to a symbol whose value plus addend is not aligned according to the
15147 ultimate (after linker relaxation) jump instruction's immediate field
15148 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15149 regular MIPS code, to (1 << 2). */
15150
15151 static bfd_boolean
15152 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15153 {
15154 bfd_boolean micro_to_mips_p;
15155 valueT val;
15156 int other;
15157
15158 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15159 return FALSE;
15160
15161 other = S_GET_OTHER (fixP->fx_addsy);
15162 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15163 val += fixP->fx_offset;
15164 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15165 && !ELF_ST_IS_MICROMIPS (other));
15166 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15167 != ELF_ST_IS_COMPRESSED (other));
15168 }
15169
15170 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15171 to a symbol whose annotation indicates another ISA mode. For absolute
15172 symbols check the ISA bit instead.
15173
15174 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15175 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15176 MIPS symbols and associated with BAL instructions as these instructions
15177 may be be converted to JALX by the linker. */
15178
15179 static bfd_boolean
15180 fix_bad_cross_mode_branch_p (fixS *fixP)
15181 {
15182 bfd_boolean absolute_p;
15183 unsigned long opcode;
15184 asection *symsec;
15185 valueT val;
15186 int other;
15187 char *buf;
15188
15189 if (mips_ignore_branch_isa)
15190 return FALSE;
15191
15192 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15193 return FALSE;
15194
15195 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15196 absolute_p = bfd_is_abs_section (symsec);
15197
15198 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15199 other = S_GET_OTHER (fixP->fx_addsy);
15200
15201 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15202 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15203 switch (fixP->fx_r_type)
15204 {
15205 case BFD_RELOC_16_PCREL_S2:
15206 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15207 && opcode != 0x0411);
15208 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15209 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15210 && opcode != 0x4060);
15211 case BFD_RELOC_MIPS_21_PCREL_S2:
15212 case BFD_RELOC_MIPS_26_PCREL_S2:
15213 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15214 case BFD_RELOC_MIPS16_16_PCREL_S1:
15215 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15216 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15217 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15218 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15219 default:
15220 abort ();
15221 }
15222 }
15223
15224 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15225 branch instruction pointed to by FIXP is not aligned according to the
15226 branch instruction's immediate field requirement. We need the addend
15227 to preserve the ISA bit and also the sum must not have bit 2 set. We
15228 must explicitly OR in the ISA bit from symbol annotation as the bit
15229 won't be set in the symbol's value then. */
15230
15231 static bfd_boolean
15232 fix_bad_misaligned_branch_p (fixS *fixP)
15233 {
15234 bfd_boolean absolute_p;
15235 asection *symsec;
15236 valueT isa_bit;
15237 valueT val;
15238 valueT off;
15239 int other;
15240
15241 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15242 return FALSE;
15243
15244 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15245 absolute_p = bfd_is_abs_section (symsec);
15246
15247 val = S_GET_VALUE (fixP->fx_addsy);
15248 other = S_GET_OTHER (fixP->fx_addsy);
15249 off = fixP->fx_offset;
15250
15251 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15252 val |= ELF_ST_IS_COMPRESSED (other);
15253 val += off;
15254 return (val & 0x3) != isa_bit;
15255 }
15256
15257 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15258 and its calculated value VAL. */
15259
15260 static void
15261 fix_validate_branch (fixS *fixP, valueT val)
15262 {
15263 if (fixP->fx_done && (val & 0x3) != 0)
15264 as_bad_where (fixP->fx_file, fixP->fx_line,
15265 _("branch to misaligned address (0x%lx)"),
15266 (long) (val + md_pcrel_from (fixP)));
15267 else if (fix_bad_cross_mode_branch_p (fixP))
15268 as_bad_where (fixP->fx_file, fixP->fx_line,
15269 _("branch to a symbol in another ISA mode"));
15270 else if (fix_bad_misaligned_branch_p (fixP))
15271 as_bad_where (fixP->fx_file, fixP->fx_line,
15272 _("branch to misaligned address (0x%lx)"),
15273 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15274 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15275 as_bad_where (fixP->fx_file, fixP->fx_line,
15276 _("cannot encode misaligned addend "
15277 "in the relocatable field (0x%lx)"),
15278 (long) fixP->fx_offset);
15279 }
15280
15281 /* Apply a fixup to the object file. */
15282
15283 void
15284 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15285 {
15286 char *buf;
15287 unsigned long insn;
15288 reloc_howto_type *howto;
15289
15290 if (fixP->fx_pcrel)
15291 switch (fixP->fx_r_type)
15292 {
15293 case BFD_RELOC_16_PCREL_S2:
15294 case BFD_RELOC_MIPS16_16_PCREL_S1:
15295 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15296 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15297 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15298 case BFD_RELOC_32_PCREL:
15299 case BFD_RELOC_MIPS_21_PCREL_S2:
15300 case BFD_RELOC_MIPS_26_PCREL_S2:
15301 case BFD_RELOC_MIPS_18_PCREL_S3:
15302 case BFD_RELOC_MIPS_19_PCREL_S2:
15303 case BFD_RELOC_HI16_S_PCREL:
15304 case BFD_RELOC_LO16_PCREL:
15305 break;
15306
15307 case BFD_RELOC_32:
15308 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15309 break;
15310
15311 default:
15312 as_bad_where (fixP->fx_file, fixP->fx_line,
15313 _("PC-relative reference to a different section"));
15314 break;
15315 }
15316
15317 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15318 that have no MIPS ELF equivalent. */
15319 if (fixP->fx_r_type != BFD_RELOC_8)
15320 {
15321 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15322 if (!howto)
15323 return;
15324 }
15325
15326 gas_assert (fixP->fx_size == 2
15327 || fixP->fx_size == 4
15328 || fixP->fx_r_type == BFD_RELOC_8
15329 || fixP->fx_r_type == BFD_RELOC_16
15330 || fixP->fx_r_type == BFD_RELOC_64
15331 || fixP->fx_r_type == BFD_RELOC_CTOR
15332 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15333 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15334 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15335 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15336 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15337 || fixP->fx_r_type == BFD_RELOC_NONE);
15338
15339 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15340
15341 /* Don't treat parts of a composite relocation as done. There are two
15342 reasons for this:
15343
15344 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15345 should nevertheless be emitted if the first part is.
15346
15347 (2) In normal usage, composite relocations are never assembly-time
15348 constants. The easiest way of dealing with the pathological
15349 exceptions is to generate a relocation against STN_UNDEF and
15350 leave everything up to the linker. */
15351 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15352 fixP->fx_done = 1;
15353
15354 switch (fixP->fx_r_type)
15355 {
15356 case BFD_RELOC_MIPS_TLS_GD:
15357 case BFD_RELOC_MIPS_TLS_LDM:
15358 case BFD_RELOC_MIPS_TLS_DTPREL32:
15359 case BFD_RELOC_MIPS_TLS_DTPREL64:
15360 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15361 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15362 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15363 case BFD_RELOC_MIPS_TLS_TPREL32:
15364 case BFD_RELOC_MIPS_TLS_TPREL64:
15365 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15366 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15367 case BFD_RELOC_MICROMIPS_TLS_GD:
15368 case BFD_RELOC_MICROMIPS_TLS_LDM:
15369 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15370 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15371 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15372 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15373 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15374 case BFD_RELOC_MIPS16_TLS_GD:
15375 case BFD_RELOC_MIPS16_TLS_LDM:
15376 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15377 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15378 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15379 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15380 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15381 if (fixP->fx_addsy)
15382 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15383 else
15384 as_bad_where (fixP->fx_file, fixP->fx_line,
15385 _("TLS relocation against a constant"));
15386 break;
15387
15388 case BFD_RELOC_MIPS_JMP:
15389 case BFD_RELOC_MIPS16_JMP:
15390 case BFD_RELOC_MICROMIPS_JMP:
15391 {
15392 int shift;
15393
15394 gas_assert (!fixP->fx_done);
15395
15396 /* Shift is 2, unusually, for microMIPS JALX. */
15397 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15398 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15399 shift = 1;
15400 else
15401 shift = 2;
15402
15403 if (fix_bad_cross_mode_jump_p (fixP))
15404 as_bad_where (fixP->fx_file, fixP->fx_line,
15405 _("jump to a symbol in another ISA mode"));
15406 else if (fix_bad_same_mode_jalx_p (fixP))
15407 as_bad_where (fixP->fx_file, fixP->fx_line,
15408 _("JALX to a symbol in the same ISA mode"));
15409 else if (fix_bad_misaligned_jump_p (fixP, shift))
15410 as_bad_where (fixP->fx_file, fixP->fx_line,
15411 _("jump to misaligned address (0x%lx)"),
15412 (long) (S_GET_VALUE (fixP->fx_addsy)
15413 + fixP->fx_offset));
15414 else if (HAVE_IN_PLACE_ADDENDS
15415 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15416 as_bad_where (fixP->fx_file, fixP->fx_line,
15417 _("cannot encode misaligned addend "
15418 "in the relocatable field (0x%lx)"),
15419 (long) fixP->fx_offset);
15420 }
15421 /* Fall through. */
15422
15423 case BFD_RELOC_MIPS_SHIFT5:
15424 case BFD_RELOC_MIPS_SHIFT6:
15425 case BFD_RELOC_MIPS_GOT_DISP:
15426 case BFD_RELOC_MIPS_GOT_PAGE:
15427 case BFD_RELOC_MIPS_GOT_OFST:
15428 case BFD_RELOC_MIPS_SUB:
15429 case BFD_RELOC_MIPS_INSERT_A:
15430 case BFD_RELOC_MIPS_INSERT_B:
15431 case BFD_RELOC_MIPS_DELETE:
15432 case BFD_RELOC_MIPS_HIGHEST:
15433 case BFD_RELOC_MIPS_HIGHER:
15434 case BFD_RELOC_MIPS_SCN_DISP:
15435 case BFD_RELOC_MIPS_REL16:
15436 case BFD_RELOC_MIPS_RELGOT:
15437 case BFD_RELOC_MIPS_JALR:
15438 case BFD_RELOC_HI16:
15439 case BFD_RELOC_HI16_S:
15440 case BFD_RELOC_LO16:
15441 case BFD_RELOC_GPREL16:
15442 case BFD_RELOC_MIPS_LITERAL:
15443 case BFD_RELOC_MIPS_CALL16:
15444 case BFD_RELOC_MIPS_GOT16:
15445 case BFD_RELOC_GPREL32:
15446 case BFD_RELOC_MIPS_GOT_HI16:
15447 case BFD_RELOC_MIPS_GOT_LO16:
15448 case BFD_RELOC_MIPS_CALL_HI16:
15449 case BFD_RELOC_MIPS_CALL_LO16:
15450 case BFD_RELOC_HI16_S_PCREL:
15451 case BFD_RELOC_LO16_PCREL:
15452 case BFD_RELOC_MIPS16_GPREL:
15453 case BFD_RELOC_MIPS16_GOT16:
15454 case BFD_RELOC_MIPS16_CALL16:
15455 case BFD_RELOC_MIPS16_HI16:
15456 case BFD_RELOC_MIPS16_HI16_S:
15457 case BFD_RELOC_MIPS16_LO16:
15458 case BFD_RELOC_MICROMIPS_GOT_DISP:
15459 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15460 case BFD_RELOC_MICROMIPS_GOT_OFST:
15461 case BFD_RELOC_MICROMIPS_SUB:
15462 case BFD_RELOC_MICROMIPS_HIGHEST:
15463 case BFD_RELOC_MICROMIPS_HIGHER:
15464 case BFD_RELOC_MICROMIPS_SCN_DISP:
15465 case BFD_RELOC_MICROMIPS_JALR:
15466 case BFD_RELOC_MICROMIPS_HI16:
15467 case BFD_RELOC_MICROMIPS_HI16_S:
15468 case BFD_RELOC_MICROMIPS_LO16:
15469 case BFD_RELOC_MICROMIPS_GPREL16:
15470 case BFD_RELOC_MICROMIPS_LITERAL:
15471 case BFD_RELOC_MICROMIPS_CALL16:
15472 case BFD_RELOC_MICROMIPS_GOT16:
15473 case BFD_RELOC_MICROMIPS_GOT_HI16:
15474 case BFD_RELOC_MICROMIPS_GOT_LO16:
15475 case BFD_RELOC_MICROMIPS_CALL_HI16:
15476 case BFD_RELOC_MICROMIPS_CALL_LO16:
15477 case BFD_RELOC_MIPS_EH:
15478 if (fixP->fx_done)
15479 {
15480 offsetT value;
15481
15482 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15483 {
15484 insn = read_reloc_insn (buf, fixP->fx_r_type);
15485 if (mips16_reloc_p (fixP->fx_r_type))
15486 insn |= mips16_immed_extend (value, 16);
15487 else
15488 insn |= (value & 0xffff);
15489 write_reloc_insn (buf, fixP->fx_r_type, insn);
15490 }
15491 else
15492 as_bad_where (fixP->fx_file, fixP->fx_line,
15493 _("unsupported constant in relocation"));
15494 }
15495 break;
15496
15497 case BFD_RELOC_64:
15498 /* This is handled like BFD_RELOC_32, but we output a sign
15499 extended value if we are only 32 bits. */
15500 if (fixP->fx_done)
15501 {
15502 if (8 <= sizeof (valueT))
15503 md_number_to_chars (buf, *valP, 8);
15504 else
15505 {
15506 valueT hiv;
15507
15508 if ((*valP & 0x80000000) != 0)
15509 hiv = 0xffffffff;
15510 else
15511 hiv = 0;
15512 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15513 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15514 }
15515 }
15516 break;
15517
15518 case BFD_RELOC_RVA:
15519 case BFD_RELOC_32:
15520 case BFD_RELOC_32_PCREL:
15521 case BFD_RELOC_16:
15522 case BFD_RELOC_8:
15523 /* If we are deleting this reloc entry, we must fill in the
15524 value now. This can happen if we have a .word which is not
15525 resolved when it appears but is later defined. */
15526 if (fixP->fx_done)
15527 md_number_to_chars (buf, *valP, fixP->fx_size);
15528 break;
15529
15530 case BFD_RELOC_MIPS_21_PCREL_S2:
15531 fix_validate_branch (fixP, *valP);
15532 if (!fixP->fx_done)
15533 break;
15534
15535 if (*valP + 0x400000 <= 0x7fffff)
15536 {
15537 insn = read_insn (buf);
15538 insn |= (*valP >> 2) & 0x1fffff;
15539 write_insn (buf, insn);
15540 }
15541 else
15542 as_bad_where (fixP->fx_file, fixP->fx_line,
15543 _("branch out of range"));
15544 break;
15545
15546 case BFD_RELOC_MIPS_26_PCREL_S2:
15547 fix_validate_branch (fixP, *valP);
15548 if (!fixP->fx_done)
15549 break;
15550
15551 if (*valP + 0x8000000 <= 0xfffffff)
15552 {
15553 insn = read_insn (buf);
15554 insn |= (*valP >> 2) & 0x3ffffff;
15555 write_insn (buf, insn);
15556 }
15557 else
15558 as_bad_where (fixP->fx_file, fixP->fx_line,
15559 _("branch out of range"));
15560 break;
15561
15562 case BFD_RELOC_MIPS_18_PCREL_S3:
15563 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15564 as_bad_where (fixP->fx_file, fixP->fx_line,
15565 _("PC-relative access using misaligned symbol (%lx)"),
15566 (long) S_GET_VALUE (fixP->fx_addsy));
15567 if ((fixP->fx_offset & 0x7) != 0)
15568 as_bad_where (fixP->fx_file, fixP->fx_line,
15569 _("PC-relative access using misaligned offset (%lx)"),
15570 (long) fixP->fx_offset);
15571 if (!fixP->fx_done)
15572 break;
15573
15574 if (*valP + 0x100000 <= 0x1fffff)
15575 {
15576 insn = read_insn (buf);
15577 insn |= (*valP >> 3) & 0x3ffff;
15578 write_insn (buf, insn);
15579 }
15580 else
15581 as_bad_where (fixP->fx_file, fixP->fx_line,
15582 _("PC-relative access out of range"));
15583 break;
15584
15585 case BFD_RELOC_MIPS_19_PCREL_S2:
15586 if ((*valP & 0x3) != 0)
15587 as_bad_where (fixP->fx_file, fixP->fx_line,
15588 _("PC-relative access to misaligned address (%lx)"),
15589 (long) *valP);
15590 if (!fixP->fx_done)
15591 break;
15592
15593 if (*valP + 0x100000 <= 0x1fffff)
15594 {
15595 insn = read_insn (buf);
15596 insn |= (*valP >> 2) & 0x7ffff;
15597 write_insn (buf, insn);
15598 }
15599 else
15600 as_bad_where (fixP->fx_file, fixP->fx_line,
15601 _("PC-relative access out of range"));
15602 break;
15603
15604 case BFD_RELOC_16_PCREL_S2:
15605 fix_validate_branch (fixP, *valP);
15606
15607 /* We need to save the bits in the instruction since fixup_segment()
15608 might be deleting the relocation entry (i.e., a branch within
15609 the current segment). */
15610 if (! fixP->fx_done)
15611 break;
15612
15613 /* Update old instruction data. */
15614 insn = read_insn (buf);
15615
15616 if (*valP + 0x20000 <= 0x3ffff)
15617 {
15618 insn |= (*valP >> 2) & 0xffff;
15619 write_insn (buf, insn);
15620 }
15621 else if (fixP->fx_tcbit2
15622 && fixP->fx_done
15623 && fixP->fx_frag->fr_address >= text_section->vma
15624 && (fixP->fx_frag->fr_address
15625 < text_section->vma + bfd_get_section_size (text_section))
15626 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
15627 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
15628 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
15629 {
15630 /* The branch offset is too large. If this is an
15631 unconditional branch, and we are not generating PIC code,
15632 we can convert it to an absolute jump instruction. */
15633 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
15634 insn = 0x0c000000; /* jal */
15635 else
15636 insn = 0x08000000; /* j */
15637 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
15638 fixP->fx_done = 0;
15639 fixP->fx_addsy = section_symbol (text_section);
15640 *valP += md_pcrel_from (fixP);
15641 write_insn (buf, insn);
15642 }
15643 else
15644 {
15645 /* If we got here, we have branch-relaxation disabled,
15646 and there's nothing we can do to fix this instruction
15647 without turning it into a longer sequence. */
15648 as_bad_where (fixP->fx_file, fixP->fx_line,
15649 _("branch out of range"));
15650 }
15651 break;
15652
15653 case BFD_RELOC_MIPS16_16_PCREL_S1:
15654 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15655 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15656 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15657 gas_assert (!fixP->fx_done);
15658 if (fix_bad_cross_mode_branch_p (fixP))
15659 as_bad_where (fixP->fx_file, fixP->fx_line,
15660 _("branch to a symbol in another ISA mode"));
15661 else if (fixP->fx_addsy
15662 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
15663 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
15664 && (fixP->fx_offset & 0x1) != 0)
15665 as_bad_where (fixP->fx_file, fixP->fx_line,
15666 _("branch to misaligned address (0x%lx)"),
15667 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15668 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
15669 as_bad_where (fixP->fx_file, fixP->fx_line,
15670 _("cannot encode misaligned addend "
15671 "in the relocatable field (0x%lx)"),
15672 (long) fixP->fx_offset);
15673 break;
15674
15675 case BFD_RELOC_VTABLE_INHERIT:
15676 fixP->fx_done = 0;
15677 if (fixP->fx_addsy
15678 && !S_IS_DEFINED (fixP->fx_addsy)
15679 && !S_IS_WEAK (fixP->fx_addsy))
15680 S_SET_WEAK (fixP->fx_addsy);
15681 break;
15682
15683 case BFD_RELOC_NONE:
15684 case BFD_RELOC_VTABLE_ENTRY:
15685 fixP->fx_done = 0;
15686 break;
15687
15688 default:
15689 abort ();
15690 }
15691
15692 /* Remember value for tc_gen_reloc. */
15693 fixP->fx_addnumber = *valP;
15694 }
15695
15696 static symbolS *
15697 get_symbol (void)
15698 {
15699 int c;
15700 char *name;
15701 symbolS *p;
15702
15703 c = get_symbol_name (&name);
15704 p = (symbolS *) symbol_find_or_make (name);
15705 (void) restore_line_pointer (c);
15706 return p;
15707 }
15708
15709 /* Align the current frag to a given power of two. If a particular
15710 fill byte should be used, FILL points to an integer that contains
15711 that byte, otherwise FILL is null.
15712
15713 This function used to have the comment:
15714
15715 The MIPS assembler also automatically adjusts any preceding label.
15716
15717 The implementation therefore applied the adjustment to a maximum of
15718 one label. However, other label adjustments are applied to batches
15719 of labels, and adjusting just one caused problems when new labels
15720 were added for the sake of debugging or unwind information.
15721 We therefore adjust all preceding labels (given as LABELS) instead. */
15722
15723 static void
15724 mips_align (int to, int *fill, struct insn_label_list *labels)
15725 {
15726 mips_emit_delays ();
15727 mips_record_compressed_mode ();
15728 if (fill == NULL && subseg_text_p (now_seg))
15729 frag_align_code (to, 0);
15730 else
15731 frag_align (to, fill ? *fill : 0, 0);
15732 record_alignment (now_seg, to);
15733 mips_move_labels (labels, FALSE);
15734 }
15735
15736 /* Align to a given power of two. .align 0 turns off the automatic
15737 alignment used by the data creating pseudo-ops. */
15738
15739 static void
15740 s_align (int x ATTRIBUTE_UNUSED)
15741 {
15742 int temp, fill_value, *fill_ptr;
15743 long max_alignment = 28;
15744
15745 /* o Note that the assembler pulls down any immediately preceding label
15746 to the aligned address.
15747 o It's not documented but auto alignment is reinstated by
15748 a .align pseudo instruction.
15749 o Note also that after auto alignment is turned off the mips assembler
15750 issues an error on attempt to assemble an improperly aligned data item.
15751 We don't. */
15752
15753 temp = get_absolute_expression ();
15754 if (temp > max_alignment)
15755 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
15756 else if (temp < 0)
15757 {
15758 as_warn (_("alignment negative, 0 assumed"));
15759 temp = 0;
15760 }
15761 if (*input_line_pointer == ',')
15762 {
15763 ++input_line_pointer;
15764 fill_value = get_absolute_expression ();
15765 fill_ptr = &fill_value;
15766 }
15767 else
15768 fill_ptr = 0;
15769 if (temp)
15770 {
15771 segment_info_type *si = seg_info (now_seg);
15772 struct insn_label_list *l = si->label_list;
15773 /* Auto alignment should be switched on by next section change. */
15774 auto_align = 1;
15775 mips_align (temp, fill_ptr, l);
15776 }
15777 else
15778 {
15779 auto_align = 0;
15780 }
15781
15782 demand_empty_rest_of_line ();
15783 }
15784
15785 static void
15786 s_change_sec (int sec)
15787 {
15788 segT seg;
15789
15790 /* The ELF backend needs to know that we are changing sections, so
15791 that .previous works correctly. We could do something like check
15792 for an obj_section_change_hook macro, but that might be confusing
15793 as it would not be appropriate to use it in the section changing
15794 functions in read.c, since obj-elf.c intercepts those. FIXME:
15795 This should be cleaner, somehow. */
15796 obj_elf_section_change_hook ();
15797
15798 mips_emit_delays ();
15799
15800 switch (sec)
15801 {
15802 case 't':
15803 s_text (0);
15804 break;
15805 case 'd':
15806 s_data (0);
15807 break;
15808 case 'b':
15809 subseg_set (bss_section, (subsegT) get_absolute_expression ());
15810 demand_empty_rest_of_line ();
15811 break;
15812
15813 case 'r':
15814 seg = subseg_new (RDATA_SECTION_NAME,
15815 (subsegT) get_absolute_expression ());
15816 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
15817 | SEC_READONLY | SEC_RELOC
15818 | SEC_DATA));
15819 if (strncmp (TARGET_OS, "elf", 3) != 0)
15820 record_alignment (seg, 4);
15821 demand_empty_rest_of_line ();
15822 break;
15823
15824 case 's':
15825 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
15826 bfd_set_section_flags (stdoutput, seg,
15827 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
15828 if (strncmp (TARGET_OS, "elf", 3) != 0)
15829 record_alignment (seg, 4);
15830 demand_empty_rest_of_line ();
15831 break;
15832
15833 case 'B':
15834 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
15835 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
15836 if (strncmp (TARGET_OS, "elf", 3) != 0)
15837 record_alignment (seg, 4);
15838 demand_empty_rest_of_line ();
15839 break;
15840 }
15841
15842 auto_align = 1;
15843 }
15844
15845 void
15846 s_change_section (int ignore ATTRIBUTE_UNUSED)
15847 {
15848 char *saved_ilp;
15849 char *section_name;
15850 char c, endc;
15851 char next_c = 0;
15852 int section_type;
15853 int section_flag;
15854 int section_entry_size;
15855 int section_alignment;
15856
15857 saved_ilp = input_line_pointer;
15858 endc = get_symbol_name (&section_name);
15859 c = (endc == '"' ? input_line_pointer[1] : endc);
15860 if (c)
15861 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
15862
15863 /* Do we have .section Name<,"flags">? */
15864 if (c != ',' || (c == ',' && next_c == '"'))
15865 {
15866 /* Just after name is now '\0'. */
15867 (void) restore_line_pointer (endc);
15868 input_line_pointer = saved_ilp;
15869 obj_elf_section (ignore);
15870 return;
15871 }
15872
15873 section_name = xstrdup (section_name);
15874 c = restore_line_pointer (endc);
15875
15876 input_line_pointer++;
15877
15878 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
15879 if (c == ',')
15880 section_type = get_absolute_expression ();
15881 else
15882 section_type = 0;
15883
15884 if (*input_line_pointer++ == ',')
15885 section_flag = get_absolute_expression ();
15886 else
15887 section_flag = 0;
15888
15889 if (*input_line_pointer++ == ',')
15890 section_entry_size = get_absolute_expression ();
15891 else
15892 section_entry_size = 0;
15893
15894 if (*input_line_pointer++ == ',')
15895 section_alignment = get_absolute_expression ();
15896 else
15897 section_alignment = 0;
15898
15899 /* FIXME: really ignore? */
15900 (void) section_alignment;
15901
15902 /* When using the generic form of .section (as implemented by obj-elf.c),
15903 there's no way to set the section type to SHT_MIPS_DWARF. Users have
15904 traditionally had to fall back on the more common @progbits instead.
15905
15906 There's nothing really harmful in this, since bfd will correct
15907 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
15908 means that, for backwards compatibility, the special_section entries
15909 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
15910
15911 Even so, we shouldn't force users of the MIPS .section syntax to
15912 incorrectly label the sections as SHT_PROGBITS. The best compromise
15913 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
15914 generic type-checking code. */
15915 if (section_type == SHT_MIPS_DWARF)
15916 section_type = SHT_PROGBITS;
15917
15918 obj_elf_change_section (section_name, section_type, 0, section_flag,
15919 section_entry_size, 0, 0, 0);
15920
15921 if (now_seg->name != section_name)
15922 free (section_name);
15923 }
15924
15925 void
15926 mips_enable_auto_align (void)
15927 {
15928 auto_align = 1;
15929 }
15930
15931 static void
15932 s_cons (int log_size)
15933 {
15934 segment_info_type *si = seg_info (now_seg);
15935 struct insn_label_list *l = si->label_list;
15936
15937 mips_emit_delays ();
15938 if (log_size > 0 && auto_align)
15939 mips_align (log_size, 0, l);
15940 cons (1 << log_size);
15941 mips_clear_insn_labels ();
15942 }
15943
15944 static void
15945 s_float_cons (int type)
15946 {
15947 segment_info_type *si = seg_info (now_seg);
15948 struct insn_label_list *l = si->label_list;
15949
15950 mips_emit_delays ();
15951
15952 if (auto_align)
15953 {
15954 if (type == 'd')
15955 mips_align (3, 0, l);
15956 else
15957 mips_align (2, 0, l);
15958 }
15959
15960 float_cons (type);
15961 mips_clear_insn_labels ();
15962 }
15963
15964 /* Handle .globl. We need to override it because on Irix 5 you are
15965 permitted to say
15966 .globl foo .text
15967 where foo is an undefined symbol, to mean that foo should be
15968 considered to be the address of a function. */
15969
15970 static void
15971 s_mips_globl (int x ATTRIBUTE_UNUSED)
15972 {
15973 char *name;
15974 int c;
15975 symbolS *symbolP;
15976 flagword flag;
15977
15978 do
15979 {
15980 c = get_symbol_name (&name);
15981 symbolP = symbol_find_or_make (name);
15982 S_SET_EXTERNAL (symbolP);
15983
15984 *input_line_pointer = c;
15985 SKIP_WHITESPACE_AFTER_NAME ();
15986
15987 /* On Irix 5, every global symbol that is not explicitly labelled as
15988 being a function is apparently labelled as being an object. */
15989 flag = BSF_OBJECT;
15990
15991 if (!is_end_of_line[(unsigned char) *input_line_pointer]
15992 && (*input_line_pointer != ','))
15993 {
15994 char *secname;
15995 asection *sec;
15996
15997 c = get_symbol_name (&secname);
15998 sec = bfd_get_section_by_name (stdoutput, secname);
15999 if (sec == NULL)
16000 as_bad (_("%s: no such section"), secname);
16001 (void) restore_line_pointer (c);
16002
16003 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16004 flag = BSF_FUNCTION;
16005 }
16006
16007 symbol_get_bfdsym (symbolP)->flags |= flag;
16008
16009 c = *input_line_pointer;
16010 if (c == ',')
16011 {
16012 input_line_pointer++;
16013 SKIP_WHITESPACE ();
16014 if (is_end_of_line[(unsigned char) *input_line_pointer])
16015 c = '\n';
16016 }
16017 }
16018 while (c == ',');
16019
16020 demand_empty_rest_of_line ();
16021 }
16022
16023 static void
16024 s_option (int x ATTRIBUTE_UNUSED)
16025 {
16026 char *opt;
16027 char c;
16028
16029 c = get_symbol_name (&opt);
16030
16031 if (*opt == 'O')
16032 {
16033 /* FIXME: What does this mean? */
16034 }
16035 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16036 {
16037 int i;
16038
16039 i = atoi (opt + 3);
16040 if (i != 0 && i != 2)
16041 as_bad (_(".option pic%d not supported"), i);
16042 else if (mips_pic == VXWORKS_PIC)
16043 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16044 else if (i == 0)
16045 mips_pic = NO_PIC;
16046 else if (i == 2)
16047 {
16048 mips_pic = SVR4_PIC;
16049 mips_abicalls = TRUE;
16050 }
16051
16052 if (mips_pic == SVR4_PIC)
16053 {
16054 if (g_switch_seen && g_switch_value != 0)
16055 as_warn (_("-G may not be used with SVR4 PIC code"));
16056 g_switch_value = 0;
16057 bfd_set_gp_size (stdoutput, 0);
16058 }
16059 }
16060 else
16061 as_warn (_("unrecognized option \"%s\""), opt);
16062
16063 (void) restore_line_pointer (c);
16064 demand_empty_rest_of_line ();
16065 }
16066
16067 /* This structure is used to hold a stack of .set values. */
16068
16069 struct mips_option_stack
16070 {
16071 struct mips_option_stack *next;
16072 struct mips_set_options options;
16073 };
16074
16075 static struct mips_option_stack *mips_opts_stack;
16076
16077 /* Return status for .set/.module option handling. */
16078
16079 enum code_option_type
16080 {
16081 /* Unrecognized option. */
16082 OPTION_TYPE_BAD = -1,
16083
16084 /* Ordinary option. */
16085 OPTION_TYPE_NORMAL,
16086
16087 /* ISA changing option. */
16088 OPTION_TYPE_ISA
16089 };
16090
16091 /* Handle common .set/.module options. Return status indicating option
16092 type. */
16093
16094 static enum code_option_type
16095 parse_code_option (char * name)
16096 {
16097 bfd_boolean isa_set = FALSE;
16098 const struct mips_ase *ase;
16099
16100 if (strncmp (name, "at=", 3) == 0)
16101 {
16102 char *s = name + 3;
16103
16104 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16105 as_bad (_("unrecognized register name `%s'"), s);
16106 }
16107 else if (strcmp (name, "at") == 0)
16108 mips_opts.at = ATREG;
16109 else if (strcmp (name, "noat") == 0)
16110 mips_opts.at = ZERO;
16111 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16112 mips_opts.nomove = 0;
16113 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16114 mips_opts.nomove = 1;
16115 else if (strcmp (name, "bopt") == 0)
16116 mips_opts.nobopt = 0;
16117 else if (strcmp (name, "nobopt") == 0)
16118 mips_opts.nobopt = 1;
16119 else if (strcmp (name, "gp=32") == 0)
16120 mips_opts.gp = 32;
16121 else if (strcmp (name, "gp=64") == 0)
16122 mips_opts.gp = 64;
16123 else if (strcmp (name, "fp=32") == 0)
16124 mips_opts.fp = 32;
16125 else if (strcmp (name, "fp=xx") == 0)
16126 mips_opts.fp = 0;
16127 else if (strcmp (name, "fp=64") == 0)
16128 mips_opts.fp = 64;
16129 else if (strcmp (name, "softfloat") == 0)
16130 mips_opts.soft_float = 1;
16131 else if (strcmp (name, "hardfloat") == 0)
16132 mips_opts.soft_float = 0;
16133 else if (strcmp (name, "singlefloat") == 0)
16134 mips_opts.single_float = 1;
16135 else if (strcmp (name, "doublefloat") == 0)
16136 mips_opts.single_float = 0;
16137 else if (strcmp (name, "nooddspreg") == 0)
16138 mips_opts.oddspreg = 0;
16139 else if (strcmp (name, "oddspreg") == 0)
16140 mips_opts.oddspreg = 1;
16141 else if (strcmp (name, "mips16") == 0
16142 || strcmp (name, "MIPS-16") == 0)
16143 mips_opts.mips16 = 1;
16144 else if (strcmp (name, "nomips16") == 0
16145 || strcmp (name, "noMIPS-16") == 0)
16146 mips_opts.mips16 = 0;
16147 else if (strcmp (name, "micromips") == 0)
16148 mips_opts.micromips = 1;
16149 else if (strcmp (name, "nomicromips") == 0)
16150 mips_opts.micromips = 0;
16151 else if (name[0] == 'n'
16152 && name[1] == 'o'
16153 && (ase = mips_lookup_ase (name + 2)))
16154 mips_set_ase (ase, &mips_opts, FALSE);
16155 else if ((ase = mips_lookup_ase (name)))
16156 mips_set_ase (ase, &mips_opts, TRUE);
16157 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16158 {
16159 /* Permit the user to change the ISA and architecture on the fly.
16160 Needless to say, misuse can cause serious problems. */
16161 if (strncmp (name, "arch=", 5) == 0)
16162 {
16163 const struct mips_cpu_info *p;
16164
16165 p = mips_parse_cpu ("internal use", name + 5);
16166 if (!p)
16167 as_bad (_("unknown architecture %s"), name + 5);
16168 else
16169 {
16170 mips_opts.arch = p->cpu;
16171 mips_opts.isa = p->isa;
16172 isa_set = TRUE;
16173 }
16174 }
16175 else if (strncmp (name, "mips", 4) == 0)
16176 {
16177 const struct mips_cpu_info *p;
16178
16179 p = mips_parse_cpu ("internal use", name);
16180 if (!p)
16181 as_bad (_("unknown ISA level %s"), name + 4);
16182 else
16183 {
16184 mips_opts.arch = p->cpu;
16185 mips_opts.isa = p->isa;
16186 isa_set = TRUE;
16187 }
16188 }
16189 else
16190 as_bad (_("unknown ISA or architecture %s"), name);
16191 }
16192 else if (strcmp (name, "autoextend") == 0)
16193 mips_opts.noautoextend = 0;
16194 else if (strcmp (name, "noautoextend") == 0)
16195 mips_opts.noautoextend = 1;
16196 else if (strcmp (name, "insn32") == 0)
16197 mips_opts.insn32 = TRUE;
16198 else if (strcmp (name, "noinsn32") == 0)
16199 mips_opts.insn32 = FALSE;
16200 else if (strcmp (name, "sym32") == 0)
16201 mips_opts.sym32 = TRUE;
16202 else if (strcmp (name, "nosym32") == 0)
16203 mips_opts.sym32 = FALSE;
16204 else
16205 return OPTION_TYPE_BAD;
16206
16207 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16208 }
16209
16210 /* Handle the .set pseudo-op. */
16211
16212 static void
16213 s_mipsset (int x ATTRIBUTE_UNUSED)
16214 {
16215 enum code_option_type type = OPTION_TYPE_NORMAL;
16216 char *name = input_line_pointer, ch;
16217
16218 file_mips_check_options ();
16219
16220 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16221 ++input_line_pointer;
16222 ch = *input_line_pointer;
16223 *input_line_pointer = '\0';
16224
16225 if (strchr (name, ','))
16226 {
16227 /* Generic ".set" directive; use the generic handler. */
16228 *input_line_pointer = ch;
16229 input_line_pointer = name;
16230 s_set (0);
16231 return;
16232 }
16233
16234 if (strcmp (name, "reorder") == 0)
16235 {
16236 if (mips_opts.noreorder)
16237 end_noreorder ();
16238 }
16239 else if (strcmp (name, "noreorder") == 0)
16240 {
16241 if (!mips_opts.noreorder)
16242 start_noreorder ();
16243 }
16244 else if (strcmp (name, "macro") == 0)
16245 mips_opts.warn_about_macros = 0;
16246 else if (strcmp (name, "nomacro") == 0)
16247 {
16248 if (mips_opts.noreorder == 0)
16249 as_bad (_("`noreorder' must be set before `nomacro'"));
16250 mips_opts.warn_about_macros = 1;
16251 }
16252 else if (strcmp (name, "gp=default") == 0)
16253 mips_opts.gp = file_mips_opts.gp;
16254 else if (strcmp (name, "fp=default") == 0)
16255 mips_opts.fp = file_mips_opts.fp;
16256 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16257 {
16258 mips_opts.isa = file_mips_opts.isa;
16259 mips_opts.arch = file_mips_opts.arch;
16260 mips_opts.gp = file_mips_opts.gp;
16261 mips_opts.fp = file_mips_opts.fp;
16262 }
16263 else if (strcmp (name, "push") == 0)
16264 {
16265 struct mips_option_stack *s;
16266
16267 s = XNEW (struct mips_option_stack);
16268 s->next = mips_opts_stack;
16269 s->options = mips_opts;
16270 mips_opts_stack = s;
16271 }
16272 else if (strcmp (name, "pop") == 0)
16273 {
16274 struct mips_option_stack *s;
16275
16276 s = mips_opts_stack;
16277 if (s == NULL)
16278 as_bad (_(".set pop with no .set push"));
16279 else
16280 {
16281 /* If we're changing the reorder mode we need to handle
16282 delay slots correctly. */
16283 if (s->options.noreorder && ! mips_opts.noreorder)
16284 start_noreorder ();
16285 else if (! s->options.noreorder && mips_opts.noreorder)
16286 end_noreorder ();
16287
16288 mips_opts = s->options;
16289 mips_opts_stack = s->next;
16290 free (s);
16291 }
16292 }
16293 else
16294 {
16295 type = parse_code_option (name);
16296 if (type == OPTION_TYPE_BAD)
16297 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16298 }
16299
16300 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16301 registers based on what is supported by the arch/cpu. */
16302 if (type == OPTION_TYPE_ISA)
16303 {
16304 switch (mips_opts.isa)
16305 {
16306 case 0:
16307 break;
16308 case ISA_MIPS1:
16309 /* MIPS I cannot support FPXX. */
16310 mips_opts.fp = 32;
16311 /* fall-through. */
16312 case ISA_MIPS2:
16313 case ISA_MIPS32:
16314 case ISA_MIPS32R2:
16315 case ISA_MIPS32R3:
16316 case ISA_MIPS32R5:
16317 mips_opts.gp = 32;
16318 if (mips_opts.fp != 0)
16319 mips_opts.fp = 32;
16320 break;
16321 case ISA_MIPS32R6:
16322 mips_opts.gp = 32;
16323 mips_opts.fp = 64;
16324 break;
16325 case ISA_MIPS3:
16326 case ISA_MIPS4:
16327 case ISA_MIPS5:
16328 case ISA_MIPS64:
16329 case ISA_MIPS64R2:
16330 case ISA_MIPS64R3:
16331 case ISA_MIPS64R5:
16332 case ISA_MIPS64R6:
16333 mips_opts.gp = 64;
16334 if (mips_opts.fp != 0)
16335 {
16336 if (mips_opts.arch == CPU_R5900)
16337 mips_opts.fp = 32;
16338 else
16339 mips_opts.fp = 64;
16340 }
16341 break;
16342 default:
16343 as_bad (_("unknown ISA level %s"), name + 4);
16344 break;
16345 }
16346 }
16347
16348 mips_check_options (&mips_opts, FALSE);
16349
16350 mips_check_isa_supports_ases ();
16351 *input_line_pointer = ch;
16352 demand_empty_rest_of_line ();
16353 }
16354
16355 /* Handle the .module pseudo-op. */
16356
16357 static void
16358 s_module (int ignore ATTRIBUTE_UNUSED)
16359 {
16360 char *name = input_line_pointer, ch;
16361
16362 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16363 ++input_line_pointer;
16364 ch = *input_line_pointer;
16365 *input_line_pointer = '\0';
16366
16367 if (!file_mips_opts_checked)
16368 {
16369 if (parse_code_option (name) == OPTION_TYPE_BAD)
16370 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16371
16372 /* Update module level settings from mips_opts. */
16373 file_mips_opts = mips_opts;
16374 }
16375 else
16376 as_bad (_(".module is not permitted after generating code"));
16377
16378 *input_line_pointer = ch;
16379 demand_empty_rest_of_line ();
16380 }
16381
16382 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16383 .option pic2. It means to generate SVR4 PIC calls. */
16384
16385 static void
16386 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16387 {
16388 mips_pic = SVR4_PIC;
16389 mips_abicalls = TRUE;
16390
16391 if (g_switch_seen && g_switch_value != 0)
16392 as_warn (_("-G may not be used with SVR4 PIC code"));
16393 g_switch_value = 0;
16394
16395 bfd_set_gp_size (stdoutput, 0);
16396 demand_empty_rest_of_line ();
16397 }
16398
16399 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16400 PIC code. It sets the $gp register for the function based on the
16401 function address, which is in the register named in the argument.
16402 This uses a relocation against _gp_disp, which is handled specially
16403 by the linker. The result is:
16404 lui $gp,%hi(_gp_disp)
16405 addiu $gp,$gp,%lo(_gp_disp)
16406 addu $gp,$gp,.cpload argument
16407 The .cpload argument is normally $25 == $t9.
16408
16409 The -mno-shared option changes this to:
16410 lui $gp,%hi(__gnu_local_gp)
16411 addiu $gp,$gp,%lo(__gnu_local_gp)
16412 and the argument is ignored. This saves an instruction, but the
16413 resulting code is not position independent; it uses an absolute
16414 address for __gnu_local_gp. Thus code assembled with -mno-shared
16415 can go into an ordinary executable, but not into a shared library. */
16416
16417 static void
16418 s_cpload (int ignore ATTRIBUTE_UNUSED)
16419 {
16420 expressionS ex;
16421 int reg;
16422 int in_shared;
16423
16424 file_mips_check_options ();
16425
16426 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16427 .cpload is ignored. */
16428 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16429 {
16430 s_ignore (0);
16431 return;
16432 }
16433
16434 if (mips_opts.mips16)
16435 {
16436 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16437 ignore_rest_of_line ();
16438 return;
16439 }
16440
16441 /* .cpload should be in a .set noreorder section. */
16442 if (mips_opts.noreorder == 0)
16443 as_warn (_(".cpload not in noreorder section"));
16444
16445 reg = tc_get_register (0);
16446
16447 /* If we need to produce a 64-bit address, we are better off using
16448 the default instruction sequence. */
16449 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16450
16451 ex.X_op = O_symbol;
16452 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16453 "__gnu_local_gp");
16454 ex.X_op_symbol = NULL;
16455 ex.X_add_number = 0;
16456
16457 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16458 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16459
16460 mips_mark_labels ();
16461 mips_assembling_insn = TRUE;
16462
16463 macro_start ();
16464 macro_build_lui (&ex, mips_gp_register);
16465 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16466 mips_gp_register, BFD_RELOC_LO16);
16467 if (in_shared)
16468 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16469 mips_gp_register, reg);
16470 macro_end ();
16471
16472 mips_assembling_insn = FALSE;
16473 demand_empty_rest_of_line ();
16474 }
16475
16476 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16477 .cpsetup $reg1, offset|$reg2, label
16478
16479 If offset is given, this results in:
16480 sd $gp, offset($sp)
16481 lui $gp, %hi(%neg(%gp_rel(label)))
16482 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16483 daddu $gp, $gp, $reg1
16484
16485 If $reg2 is given, this results in:
16486 or $reg2, $gp, $0
16487 lui $gp, %hi(%neg(%gp_rel(label)))
16488 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16489 daddu $gp, $gp, $reg1
16490 $reg1 is normally $25 == $t9.
16491
16492 The -mno-shared option replaces the last three instructions with
16493 lui $gp,%hi(_gp)
16494 addiu $gp,$gp,%lo(_gp) */
16495
16496 static void
16497 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16498 {
16499 expressionS ex_off;
16500 expressionS ex_sym;
16501 int reg1;
16502
16503 file_mips_check_options ();
16504
16505 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16506 We also need NewABI support. */
16507 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16508 {
16509 s_ignore (0);
16510 return;
16511 }
16512
16513 if (mips_opts.mips16)
16514 {
16515 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16516 ignore_rest_of_line ();
16517 return;
16518 }
16519
16520 reg1 = tc_get_register (0);
16521 SKIP_WHITESPACE ();
16522 if (*input_line_pointer != ',')
16523 {
16524 as_bad (_("missing argument separator ',' for .cpsetup"));
16525 return;
16526 }
16527 else
16528 ++input_line_pointer;
16529 SKIP_WHITESPACE ();
16530 if (*input_line_pointer == '$')
16531 {
16532 mips_cpreturn_register = tc_get_register (0);
16533 mips_cpreturn_offset = -1;
16534 }
16535 else
16536 {
16537 mips_cpreturn_offset = get_absolute_expression ();
16538 mips_cpreturn_register = -1;
16539 }
16540 SKIP_WHITESPACE ();
16541 if (*input_line_pointer != ',')
16542 {
16543 as_bad (_("missing argument separator ',' for .cpsetup"));
16544 return;
16545 }
16546 else
16547 ++input_line_pointer;
16548 SKIP_WHITESPACE ();
16549 expression (&ex_sym);
16550
16551 mips_mark_labels ();
16552 mips_assembling_insn = TRUE;
16553
16554 macro_start ();
16555 if (mips_cpreturn_register == -1)
16556 {
16557 ex_off.X_op = O_constant;
16558 ex_off.X_add_symbol = NULL;
16559 ex_off.X_op_symbol = NULL;
16560 ex_off.X_add_number = mips_cpreturn_offset;
16561
16562 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16563 BFD_RELOC_LO16, SP);
16564 }
16565 else
16566 move_register (mips_cpreturn_register, mips_gp_register);
16567
16568 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16569 {
16570 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16571 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16572 BFD_RELOC_HI16_S);
16573
16574 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16575 mips_gp_register, -1, BFD_RELOC_GPREL16,
16576 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16577
16578 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16579 mips_gp_register, reg1);
16580 }
16581 else
16582 {
16583 expressionS ex;
16584
16585 ex.X_op = O_symbol;
16586 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16587 ex.X_op_symbol = NULL;
16588 ex.X_add_number = 0;
16589
16590 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16591 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16592
16593 macro_build_lui (&ex, mips_gp_register);
16594 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16595 mips_gp_register, BFD_RELOC_LO16);
16596 }
16597
16598 macro_end ();
16599
16600 mips_assembling_insn = FALSE;
16601 demand_empty_rest_of_line ();
16602 }
16603
16604 static void
16605 s_cplocal (int ignore ATTRIBUTE_UNUSED)
16606 {
16607 file_mips_check_options ();
16608
16609 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
16610 .cplocal is ignored. */
16611 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16612 {
16613 s_ignore (0);
16614 return;
16615 }
16616
16617 if (mips_opts.mips16)
16618 {
16619 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
16620 ignore_rest_of_line ();
16621 return;
16622 }
16623
16624 mips_gp_register = tc_get_register (0);
16625 demand_empty_rest_of_line ();
16626 }
16627
16628 /* Handle the .cprestore pseudo-op. This stores $gp into a given
16629 offset from $sp. The offset is remembered, and after making a PIC
16630 call $gp is restored from that location. */
16631
16632 static void
16633 s_cprestore (int ignore ATTRIBUTE_UNUSED)
16634 {
16635 expressionS ex;
16636
16637 file_mips_check_options ();
16638
16639 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16640 .cprestore is ignored. */
16641 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16642 {
16643 s_ignore (0);
16644 return;
16645 }
16646
16647 if (mips_opts.mips16)
16648 {
16649 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
16650 ignore_rest_of_line ();
16651 return;
16652 }
16653
16654 mips_cprestore_offset = get_absolute_expression ();
16655 mips_cprestore_valid = 1;
16656
16657 ex.X_op = O_constant;
16658 ex.X_add_symbol = NULL;
16659 ex.X_op_symbol = NULL;
16660 ex.X_add_number = mips_cprestore_offset;
16661
16662 mips_mark_labels ();
16663 mips_assembling_insn = TRUE;
16664
16665 macro_start ();
16666 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
16667 SP, HAVE_64BIT_ADDRESSES);
16668 macro_end ();
16669
16670 mips_assembling_insn = FALSE;
16671 demand_empty_rest_of_line ();
16672 }
16673
16674 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
16675 was given in the preceding .cpsetup, it results in:
16676 ld $gp, offset($sp)
16677
16678 If a register $reg2 was given there, it results in:
16679 or $gp, $reg2, $0 */
16680
16681 static void
16682 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
16683 {
16684 expressionS ex;
16685
16686 file_mips_check_options ();
16687
16688 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
16689 We also need NewABI support. */
16690 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16691 {
16692 s_ignore (0);
16693 return;
16694 }
16695
16696 if (mips_opts.mips16)
16697 {
16698 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
16699 ignore_rest_of_line ();
16700 return;
16701 }
16702
16703 mips_mark_labels ();
16704 mips_assembling_insn = TRUE;
16705
16706 macro_start ();
16707 if (mips_cpreturn_register == -1)
16708 {
16709 ex.X_op = O_constant;
16710 ex.X_add_symbol = NULL;
16711 ex.X_op_symbol = NULL;
16712 ex.X_add_number = mips_cpreturn_offset;
16713
16714 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
16715 }
16716 else
16717 move_register (mips_gp_register, mips_cpreturn_register);
16718
16719 macro_end ();
16720
16721 mips_assembling_insn = FALSE;
16722 demand_empty_rest_of_line ();
16723 }
16724
16725 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
16726 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
16727 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
16728 debug information or MIPS16 TLS. */
16729
16730 static void
16731 s_tls_rel_directive (const size_t bytes, const char *dirstr,
16732 bfd_reloc_code_real_type rtype)
16733 {
16734 expressionS ex;
16735 char *p;
16736
16737 expression (&ex);
16738
16739 if (ex.X_op != O_symbol)
16740 {
16741 as_bad (_("unsupported use of %s"), dirstr);
16742 ignore_rest_of_line ();
16743 }
16744
16745 p = frag_more (bytes);
16746 md_number_to_chars (p, 0, bytes);
16747 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
16748 demand_empty_rest_of_line ();
16749 mips_clear_insn_labels ();
16750 }
16751
16752 /* Handle .dtprelword. */
16753
16754 static void
16755 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
16756 {
16757 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
16758 }
16759
16760 /* Handle .dtpreldword. */
16761
16762 static void
16763 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
16764 {
16765 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
16766 }
16767
16768 /* Handle .tprelword. */
16769
16770 static void
16771 s_tprelword (int ignore ATTRIBUTE_UNUSED)
16772 {
16773 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
16774 }
16775
16776 /* Handle .tpreldword. */
16777
16778 static void
16779 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
16780 {
16781 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
16782 }
16783
16784 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
16785 code. It sets the offset to use in gp_rel relocations. */
16786
16787 static void
16788 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
16789 {
16790 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
16791 We also need NewABI support. */
16792 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16793 {
16794 s_ignore (0);
16795 return;
16796 }
16797
16798 mips_gprel_offset = get_absolute_expression ();
16799
16800 demand_empty_rest_of_line ();
16801 }
16802
16803 /* Handle the .gpword pseudo-op. This is used when generating PIC
16804 code. It generates a 32 bit GP relative reloc. */
16805
16806 static void
16807 s_gpword (int ignore ATTRIBUTE_UNUSED)
16808 {
16809 segment_info_type *si;
16810 struct insn_label_list *l;
16811 expressionS ex;
16812 char *p;
16813
16814 /* When not generating PIC code, this is treated as .word. */
16815 if (mips_pic != SVR4_PIC)
16816 {
16817 s_cons (2);
16818 return;
16819 }
16820
16821 si = seg_info (now_seg);
16822 l = si->label_list;
16823 mips_emit_delays ();
16824 if (auto_align)
16825 mips_align (2, 0, l);
16826
16827 expression (&ex);
16828 mips_clear_insn_labels ();
16829
16830 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16831 {
16832 as_bad (_("unsupported use of .gpword"));
16833 ignore_rest_of_line ();
16834 }
16835
16836 p = frag_more (4);
16837 md_number_to_chars (p, 0, 4);
16838 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16839 BFD_RELOC_GPREL32);
16840
16841 demand_empty_rest_of_line ();
16842 }
16843
16844 static void
16845 s_gpdword (int ignore ATTRIBUTE_UNUSED)
16846 {
16847 segment_info_type *si;
16848 struct insn_label_list *l;
16849 expressionS ex;
16850 char *p;
16851
16852 /* When not generating PIC code, this is treated as .dword. */
16853 if (mips_pic != SVR4_PIC)
16854 {
16855 s_cons (3);
16856 return;
16857 }
16858
16859 si = seg_info (now_seg);
16860 l = si->label_list;
16861 mips_emit_delays ();
16862 if (auto_align)
16863 mips_align (3, 0, l);
16864
16865 expression (&ex);
16866 mips_clear_insn_labels ();
16867
16868 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16869 {
16870 as_bad (_("unsupported use of .gpdword"));
16871 ignore_rest_of_line ();
16872 }
16873
16874 p = frag_more (8);
16875 md_number_to_chars (p, 0, 8);
16876 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16877 BFD_RELOC_GPREL32)->fx_tcbit = 1;
16878
16879 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
16880 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
16881 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
16882
16883 demand_empty_rest_of_line ();
16884 }
16885
16886 /* Handle the .ehword pseudo-op. This is used when generating unwinding
16887 tables. It generates a R_MIPS_EH reloc. */
16888
16889 static void
16890 s_ehword (int ignore ATTRIBUTE_UNUSED)
16891 {
16892 expressionS ex;
16893 char *p;
16894
16895 mips_emit_delays ();
16896
16897 expression (&ex);
16898 mips_clear_insn_labels ();
16899
16900 if (ex.X_op != O_symbol || ex.X_add_number != 0)
16901 {
16902 as_bad (_("unsupported use of .ehword"));
16903 ignore_rest_of_line ();
16904 }
16905
16906 p = frag_more (4);
16907 md_number_to_chars (p, 0, 4);
16908 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
16909 BFD_RELOC_32_PCREL);
16910
16911 demand_empty_rest_of_line ();
16912 }
16913
16914 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
16915 tables in SVR4 PIC code. */
16916
16917 static void
16918 s_cpadd (int ignore ATTRIBUTE_UNUSED)
16919 {
16920 int reg;
16921
16922 file_mips_check_options ();
16923
16924 /* This is ignored when not generating SVR4 PIC code. */
16925 if (mips_pic != SVR4_PIC)
16926 {
16927 s_ignore (0);
16928 return;
16929 }
16930
16931 mips_mark_labels ();
16932 mips_assembling_insn = TRUE;
16933
16934 /* Add $gp to the register named as an argument. */
16935 macro_start ();
16936 reg = tc_get_register (0);
16937 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
16938 macro_end ();
16939
16940 mips_assembling_insn = FALSE;
16941 demand_empty_rest_of_line ();
16942 }
16943
16944 /* Handle the .insn pseudo-op. This marks instruction labels in
16945 mips16/micromips mode. This permits the linker to handle them specially,
16946 such as generating jalx instructions when needed. We also make
16947 them odd for the duration of the assembly, in order to generate the
16948 right sort of code. We will make them even in the adjust_symtab
16949 routine, while leaving them marked. This is convenient for the
16950 debugger and the disassembler. The linker knows to make them odd
16951 again. */
16952
16953 static void
16954 s_insn (int ignore ATTRIBUTE_UNUSED)
16955 {
16956 file_mips_check_options ();
16957 file_ase_mips16 |= mips_opts.mips16;
16958 file_ase_micromips |= mips_opts.micromips;
16959
16960 mips_mark_labels ();
16961
16962 demand_empty_rest_of_line ();
16963 }
16964
16965 /* Handle the .nan pseudo-op. */
16966
16967 static void
16968 s_nan (int ignore ATTRIBUTE_UNUSED)
16969 {
16970 static const char str_legacy[] = "legacy";
16971 static const char str_2008[] = "2008";
16972 size_t i;
16973
16974 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
16975
16976 if (i == sizeof (str_2008) - 1
16977 && memcmp (input_line_pointer, str_2008, i) == 0)
16978 mips_nan2008 = 1;
16979 else if (i == sizeof (str_legacy) - 1
16980 && memcmp (input_line_pointer, str_legacy, i) == 0)
16981 {
16982 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
16983 mips_nan2008 = 0;
16984 else
16985 as_bad (_("`%s' does not support legacy NaN"),
16986 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
16987 }
16988 else
16989 as_bad (_("bad .nan directive"));
16990
16991 input_line_pointer += i;
16992 demand_empty_rest_of_line ();
16993 }
16994
16995 /* Handle a .stab[snd] directive. Ideally these directives would be
16996 implemented in a transparent way, so that removing them would not
16997 have any effect on the generated instructions. However, s_stab
16998 internally changes the section, so in practice we need to decide
16999 now whether the preceding label marks compressed code. We do not
17000 support changing the compression mode of a label after a .stab*
17001 directive, such as in:
17002
17003 foo:
17004 .stabs ...
17005 .set mips16
17006
17007 so the current mode wins. */
17008
17009 static void
17010 s_mips_stab (int type)
17011 {
17012 mips_mark_labels ();
17013 s_stab (type);
17014 }
17015
17016 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17017
17018 static void
17019 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17020 {
17021 char *name;
17022 int c;
17023 symbolS *symbolP;
17024 expressionS exp;
17025
17026 c = get_symbol_name (&name);
17027 symbolP = symbol_find_or_make (name);
17028 S_SET_WEAK (symbolP);
17029 *input_line_pointer = c;
17030
17031 SKIP_WHITESPACE_AFTER_NAME ();
17032
17033 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17034 {
17035 if (S_IS_DEFINED (symbolP))
17036 {
17037 as_bad (_("ignoring attempt to redefine symbol %s"),
17038 S_GET_NAME (symbolP));
17039 ignore_rest_of_line ();
17040 return;
17041 }
17042
17043 if (*input_line_pointer == ',')
17044 {
17045 ++input_line_pointer;
17046 SKIP_WHITESPACE ();
17047 }
17048
17049 expression (&exp);
17050 if (exp.X_op != O_symbol)
17051 {
17052 as_bad (_("bad .weakext directive"));
17053 ignore_rest_of_line ();
17054 return;
17055 }
17056 symbol_set_value_expression (symbolP, &exp);
17057 }
17058
17059 demand_empty_rest_of_line ();
17060 }
17061
17062 /* Parse a register string into a number. Called from the ECOFF code
17063 to parse .frame. The argument is non-zero if this is the frame
17064 register, so that we can record it in mips_frame_reg. */
17065
17066 int
17067 tc_get_register (int frame)
17068 {
17069 unsigned int reg;
17070
17071 SKIP_WHITESPACE ();
17072 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17073 reg = 0;
17074 if (frame)
17075 {
17076 mips_frame_reg = reg != 0 ? reg : SP;
17077 mips_frame_reg_valid = 1;
17078 mips_cprestore_valid = 0;
17079 }
17080 return reg;
17081 }
17082
17083 valueT
17084 md_section_align (asection *seg, valueT addr)
17085 {
17086 int align = bfd_get_section_alignment (stdoutput, seg);
17087
17088 /* We don't need to align ELF sections to the full alignment.
17089 However, Irix 5 may prefer that we align them at least to a 16
17090 byte boundary. We don't bother to align the sections if we
17091 are targeted for an embedded system. */
17092 if (strncmp (TARGET_OS, "elf", 3) == 0)
17093 return addr;
17094 if (align > 4)
17095 align = 4;
17096
17097 return ((addr + (1 << align) - 1) & -(1 << align));
17098 }
17099
17100 /* Utility routine, called from above as well. If called while the
17101 input file is still being read, it's only an approximation. (For
17102 example, a symbol may later become defined which appeared to be
17103 undefined earlier.) */
17104
17105 static int
17106 nopic_need_relax (symbolS *sym, int before_relaxing)
17107 {
17108 if (sym == 0)
17109 return 0;
17110
17111 if (g_switch_value > 0)
17112 {
17113 const char *symname;
17114 int change;
17115
17116 /* Find out whether this symbol can be referenced off the $gp
17117 register. It can be if it is smaller than the -G size or if
17118 it is in the .sdata or .sbss section. Certain symbols can
17119 not be referenced off the $gp, although it appears as though
17120 they can. */
17121 symname = S_GET_NAME (sym);
17122 if (symname != (const char *) NULL
17123 && (strcmp (symname, "eprol") == 0
17124 || strcmp (symname, "etext") == 0
17125 || strcmp (symname, "_gp") == 0
17126 || strcmp (symname, "edata") == 0
17127 || strcmp (symname, "_fbss") == 0
17128 || strcmp (symname, "_fdata") == 0
17129 || strcmp (symname, "_ftext") == 0
17130 || strcmp (symname, "end") == 0
17131 || strcmp (symname, "_gp_disp") == 0))
17132 change = 1;
17133 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17134 && (0
17135 #ifndef NO_ECOFF_DEBUGGING
17136 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17137 && (symbol_get_obj (sym)->ecoff_extern_size
17138 <= g_switch_value))
17139 #endif
17140 /* We must defer this decision until after the whole
17141 file has been read, since there might be a .extern
17142 after the first use of this symbol. */
17143 || (before_relaxing
17144 #ifndef NO_ECOFF_DEBUGGING
17145 && symbol_get_obj (sym)->ecoff_extern_size == 0
17146 #endif
17147 && S_GET_VALUE (sym) == 0)
17148 || (S_GET_VALUE (sym) != 0
17149 && S_GET_VALUE (sym) <= g_switch_value)))
17150 change = 0;
17151 else
17152 {
17153 const char *segname;
17154
17155 segname = segment_name (S_GET_SEGMENT (sym));
17156 gas_assert (strcmp (segname, ".lit8") != 0
17157 && strcmp (segname, ".lit4") != 0);
17158 change = (strcmp (segname, ".sdata") != 0
17159 && strcmp (segname, ".sbss") != 0
17160 && strncmp (segname, ".sdata.", 7) != 0
17161 && strncmp (segname, ".sbss.", 6) != 0
17162 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17163 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17164 }
17165 return change;
17166 }
17167 else
17168 /* We are not optimizing for the $gp register. */
17169 return 1;
17170 }
17171
17172
17173 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17174
17175 static bfd_boolean
17176 pic_need_relax (symbolS *sym)
17177 {
17178 asection *symsec;
17179
17180 /* Handle the case of a symbol equated to another symbol. */
17181 while (symbol_equated_reloc_p (sym))
17182 {
17183 symbolS *n;
17184
17185 /* It's possible to get a loop here in a badly written program. */
17186 n = symbol_get_value_expression (sym)->X_add_symbol;
17187 if (n == sym)
17188 break;
17189 sym = n;
17190 }
17191
17192 if (symbol_section_p (sym))
17193 return TRUE;
17194
17195 symsec = S_GET_SEGMENT (sym);
17196
17197 /* This must duplicate the test in adjust_reloc_syms. */
17198 return (!bfd_is_und_section (symsec)
17199 && !bfd_is_abs_section (symsec)
17200 && !bfd_is_com_section (symsec)
17201 /* A global or weak symbol is treated as external. */
17202 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17203 }
17204 \f
17205 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17206 convert a section-relative value VAL to the equivalent PC-relative
17207 value. */
17208
17209 static offsetT
17210 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17211 offsetT val, long stretch)
17212 {
17213 fragS *sym_frag;
17214 addressT addr;
17215
17216 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17217
17218 sym_frag = symbol_get_frag (fragp->fr_symbol);
17219
17220 /* If the relax_marker of the symbol fragment differs from the
17221 relax_marker of this fragment, we have not yet adjusted the
17222 symbol fragment fr_address. We want to add in STRETCH in
17223 order to get a better estimate of the address. This
17224 particularly matters because of the shift bits. */
17225 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17226 {
17227 fragS *f;
17228
17229 /* Adjust stretch for any alignment frag. Note that if have
17230 been expanding the earlier code, the symbol may be
17231 defined in what appears to be an earlier frag. FIXME:
17232 This doesn't handle the fr_subtype field, which specifies
17233 a maximum number of bytes to skip when doing an
17234 alignment. */
17235 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17236 {
17237 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17238 {
17239 if (stretch < 0)
17240 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17241 else
17242 stretch &= ~((1 << (int) f->fr_offset) - 1);
17243 if (stretch == 0)
17244 break;
17245 }
17246 }
17247 if (f != NULL)
17248 val += stretch;
17249 }
17250
17251 addr = fragp->fr_address + fragp->fr_fix;
17252
17253 /* The base address rules are complicated. The base address of
17254 a branch is the following instruction. The base address of a
17255 PC relative load or add is the instruction itself, but if it
17256 is in a delay slot (in which case it can not be extended) use
17257 the address of the instruction whose delay slot it is in. */
17258 if (pcrel_op->include_isa_bit)
17259 {
17260 addr += 2;
17261
17262 /* If we are currently assuming that this frag should be
17263 extended, then the current address is two bytes higher. */
17264 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17265 addr += 2;
17266
17267 /* Ignore the low bit in the target, since it will be set
17268 for a text label. */
17269 val &= -2;
17270 }
17271 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17272 addr -= 4;
17273 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17274 addr -= 2;
17275
17276 val -= addr & -(1 << pcrel_op->align_log2);
17277
17278 return val;
17279 }
17280
17281 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17282 extended opcode. SEC is the section the frag is in. */
17283
17284 static int
17285 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17286 {
17287 const struct mips_int_operand *operand;
17288 offsetT val;
17289 segT symsec;
17290 int type;
17291
17292 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17293 return 0;
17294 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17295 return 1;
17296
17297 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17298 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17299 operand = mips16_immed_operand (type, FALSE);
17300 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17301 || (operand->root.type == OP_PCREL
17302 ? sec != symsec
17303 : !bfd_is_abs_section (symsec)))
17304 return 1;
17305
17306 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17307
17308 if (operand->root.type == OP_PCREL)
17309 {
17310 const struct mips_pcrel_operand *pcrel_op;
17311 offsetT maxtiny;
17312
17313 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17314 return 1;
17315
17316 pcrel_op = (const struct mips_pcrel_operand *) operand;
17317 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17318
17319 /* If any of the shifted bits are set, we must use an extended
17320 opcode. If the address depends on the size of this
17321 instruction, this can lead to a loop, so we arrange to always
17322 use an extended opcode. */
17323 if ((val & ((1 << operand->shift) - 1)) != 0)
17324 {
17325 fragp->fr_subtype =
17326 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17327 return 1;
17328 }
17329
17330 /* If we are about to mark a frag as extended because the value
17331 is precisely the next value above maxtiny, then there is a
17332 chance of an infinite loop as in the following code:
17333 la $4,foo
17334 .skip 1020
17335 .align 2
17336 foo:
17337 In this case when the la is extended, foo is 0x3fc bytes
17338 away, so the la can be shrunk, but then foo is 0x400 away, so
17339 the la must be extended. To avoid this loop, we mark the
17340 frag as extended if it was small, and is about to become
17341 extended with the next value above maxtiny. */
17342 maxtiny = mips_int_operand_max (operand);
17343 if (val == maxtiny + (1 << operand->shift)
17344 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17345 {
17346 fragp->fr_subtype =
17347 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17348 return 1;
17349 }
17350 }
17351
17352 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17353 }
17354
17355 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17356 macro expansion. SEC is the section the frag is in. We only
17357 support PC-relative instructions (LA, DLA, LW, LD) here, in
17358 non-PIC code using 32-bit addressing. */
17359
17360 static int
17361 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17362 {
17363 const struct mips_pcrel_operand *pcrel_op;
17364 const struct mips_int_operand *operand;
17365 offsetT val;
17366 segT symsec;
17367 int type;
17368
17369 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17370
17371 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17372 return 0;
17373 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17374 return 0;
17375
17376 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17377 switch (type)
17378 {
17379 case 'A':
17380 case 'B':
17381 case 'E':
17382 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17383 if (bfd_is_abs_section (symsec))
17384 return 1;
17385 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17386 return 0;
17387 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17388 return 1;
17389
17390 operand = mips16_immed_operand (type, TRUE);
17391 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17392 pcrel_op = (const struct mips_pcrel_operand *) operand;
17393 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17394
17395 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17396
17397 default:
17398 return 0;
17399 }
17400 }
17401
17402 /* Compute the length of a branch sequence, and adjust the
17403 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17404 worst-case length is computed, with UPDATE being used to indicate
17405 whether an unconditional (-1), branch-likely (+1) or regular (0)
17406 branch is to be computed. */
17407 static int
17408 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17409 {
17410 bfd_boolean toofar;
17411 int length;
17412
17413 if (fragp
17414 && S_IS_DEFINED (fragp->fr_symbol)
17415 && !S_IS_WEAK (fragp->fr_symbol)
17416 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17417 {
17418 addressT addr;
17419 offsetT val;
17420
17421 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17422
17423 addr = fragp->fr_address + fragp->fr_fix + 4;
17424
17425 val -= addr;
17426
17427 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17428 }
17429 else
17430 /* If the symbol is not defined or it's in a different segment,
17431 we emit the long sequence. */
17432 toofar = TRUE;
17433
17434 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17435 fragp->fr_subtype
17436 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17437 RELAX_BRANCH_PIC (fragp->fr_subtype),
17438 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17439 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17440 RELAX_BRANCH_LINK (fragp->fr_subtype),
17441 toofar);
17442
17443 length = 4;
17444 if (toofar)
17445 {
17446 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17447 length += 8;
17448
17449 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17450 {
17451 /* Additional space for PIC loading of target address. */
17452 length += 8;
17453 if (mips_opts.isa == ISA_MIPS1)
17454 /* Additional space for $at-stabilizing nop. */
17455 length += 4;
17456 }
17457
17458 /* If branch is conditional. */
17459 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17460 length += 8;
17461 }
17462
17463 return length;
17464 }
17465
17466 /* Get a FRAG's branch instruction delay slot size, either from the
17467 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17468 or SHORT_INSN_SIZE otherwise. */
17469
17470 static int
17471 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17472 {
17473 char *buf = fragp->fr_literal + fragp->fr_fix;
17474
17475 if (al)
17476 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17477 else
17478 return short_insn_size;
17479 }
17480
17481 /* Compute the length of a branch sequence, and adjust the
17482 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17483 worst-case length is computed, with UPDATE being used to indicate
17484 whether an unconditional (-1), or regular (0) branch is to be
17485 computed. */
17486
17487 static int
17488 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17489 {
17490 bfd_boolean insn32 = TRUE;
17491 bfd_boolean nods = TRUE;
17492 bfd_boolean pic = TRUE;
17493 bfd_boolean al = TRUE;
17494 int short_insn_size;
17495 bfd_boolean toofar;
17496 int length;
17497
17498 if (fragp)
17499 {
17500 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17501 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17502 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
17503 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17504 }
17505 short_insn_size = insn32 ? 4 : 2;
17506
17507 if (fragp
17508 && S_IS_DEFINED (fragp->fr_symbol)
17509 && !S_IS_WEAK (fragp->fr_symbol)
17510 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17511 {
17512 addressT addr;
17513 offsetT val;
17514
17515 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17516 /* Ignore the low bit in the target, since it will be set
17517 for a text label. */
17518 if ((val & 1) != 0)
17519 --val;
17520
17521 addr = fragp->fr_address + fragp->fr_fix + 4;
17522
17523 val -= addr;
17524
17525 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17526 }
17527 else
17528 /* If the symbol is not defined or it's in a different segment,
17529 we emit the long sequence. */
17530 toofar = TRUE;
17531
17532 if (fragp && update
17533 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17534 fragp->fr_subtype = (toofar
17535 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17536 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17537
17538 length = 4;
17539 if (toofar)
17540 {
17541 bfd_boolean compact_known = fragp != NULL;
17542 bfd_boolean compact = FALSE;
17543 bfd_boolean uncond;
17544
17545 if (fragp)
17546 {
17547 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17548 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17549 }
17550 else
17551 uncond = update < 0;
17552
17553 /* If label is out of range, we turn branch <br>:
17554
17555 <br> label # 4 bytes
17556 0:
17557
17558 into:
17559
17560 j label # 4 bytes
17561 nop # 2/4 bytes if
17562 # compact && (!PIC || insn32)
17563 0:
17564 */
17565 if ((!pic || insn32) && (!compact_known || compact))
17566 length += short_insn_size;
17567
17568 /* If assembling PIC code, we further turn:
17569
17570 j label # 4 bytes
17571
17572 into:
17573
17574 lw/ld at, %got(label)(gp) # 4 bytes
17575 d/addiu at, %lo(label) # 4 bytes
17576 jr/c at # 2/4 bytes
17577 */
17578 if (pic)
17579 length += 4 + short_insn_size;
17580
17581 /* Add an extra nop if the jump has no compact form and we need
17582 to fill the delay slot. */
17583 if ((!pic || al) && nods)
17584 length += (fragp
17585 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17586 : short_insn_size);
17587
17588 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17589
17590 <brneg> 0f # 4 bytes
17591 nop # 2/4 bytes if !compact
17592 */
17593 if (!uncond)
17594 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17595 }
17596 else if (nods)
17597 {
17598 /* Add an extra nop to fill the delay slot. */
17599 gas_assert (fragp);
17600 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17601 }
17602
17603 return length;
17604 }
17605
17606 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
17607 bit accordingly. */
17608
17609 static int
17610 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
17611 {
17612 bfd_boolean toofar;
17613
17614 if (fragp
17615 && S_IS_DEFINED (fragp->fr_symbol)
17616 && !S_IS_WEAK (fragp->fr_symbol)
17617 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17618 {
17619 addressT addr;
17620 offsetT val;
17621 int type;
17622
17623 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17624 /* Ignore the low bit in the target, since it will be set
17625 for a text label. */
17626 if ((val & 1) != 0)
17627 --val;
17628
17629 /* Assume this is a 2-byte branch. */
17630 addr = fragp->fr_address + fragp->fr_fix + 2;
17631
17632 /* We try to avoid the infinite loop by not adding 2 more bytes for
17633 long branches. */
17634
17635 val -= addr;
17636
17637 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
17638 if (type == 'D')
17639 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
17640 else if (type == 'E')
17641 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
17642 else
17643 abort ();
17644 }
17645 else
17646 /* If the symbol is not defined or it's in a different segment,
17647 we emit a normal 32-bit branch. */
17648 toofar = TRUE;
17649
17650 if (fragp && update
17651 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
17652 fragp->fr_subtype
17653 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
17654 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
17655
17656 if (toofar)
17657 return 4;
17658
17659 return 2;
17660 }
17661
17662 /* Estimate the size of a frag before relaxing. Unless this is the
17663 mips16, we are not really relaxing here, and the final size is
17664 encoded in the subtype information. For the mips16, we have to
17665 decide whether we are using an extended opcode or not. */
17666
17667 int
17668 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
17669 {
17670 int change;
17671
17672 if (RELAX_BRANCH_P (fragp->fr_subtype))
17673 {
17674
17675 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
17676
17677 return fragp->fr_var;
17678 }
17679
17680 if (RELAX_MIPS16_P (fragp->fr_subtype))
17681 {
17682 /* We don't want to modify the EXTENDED bit here; it might get us
17683 into infinite loops. We change it only in mips_relax_frag(). */
17684 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17685 return 12;
17686 else
17687 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
17688 }
17689
17690 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17691 {
17692 int length = 4;
17693
17694 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17695 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
17696 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17697 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
17698 fragp->fr_var = length;
17699
17700 return length;
17701 }
17702
17703 if (mips_pic == VXWORKS_PIC)
17704 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
17705 change = 0;
17706 else if (RELAX_PIC (fragp->fr_subtype))
17707 change = pic_need_relax (fragp->fr_symbol);
17708 else
17709 change = nopic_need_relax (fragp->fr_symbol, 0);
17710
17711 if (change)
17712 {
17713 fragp->fr_subtype |= RELAX_USE_SECOND;
17714 return -RELAX_FIRST (fragp->fr_subtype);
17715 }
17716 else
17717 return -RELAX_SECOND (fragp->fr_subtype);
17718 }
17719
17720 /* This is called to see whether a reloc against a defined symbol
17721 should be converted into a reloc against a section. */
17722
17723 int
17724 mips_fix_adjustable (fixS *fixp)
17725 {
17726 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
17727 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17728 return 0;
17729
17730 if (fixp->fx_addsy == NULL)
17731 return 1;
17732
17733 /* Allow relocs used for EH tables. */
17734 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
17735 return 1;
17736
17737 /* If symbol SYM is in a mergeable section, relocations of the form
17738 SYM + 0 can usually be made section-relative. The mergeable data
17739 is then identified by the section offset rather than by the symbol.
17740
17741 However, if we're generating REL LO16 relocations, the offset is split
17742 between the LO16 and partnering high part relocation. The linker will
17743 need to recalculate the complete offset in order to correctly identify
17744 the merge data.
17745
17746 The linker has traditionally not looked for the partnering high part
17747 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
17748 placed anywhere. Rather than break backwards compatibility by changing
17749 this, it seems better not to force the issue, and instead keep the
17750 original symbol. This will work with either linker behavior. */
17751 if ((lo16_reloc_p (fixp->fx_r_type)
17752 || reloc_needs_lo_p (fixp->fx_r_type))
17753 && HAVE_IN_PLACE_ADDENDS
17754 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
17755 return 0;
17756
17757 /* There is no place to store an in-place offset for JALR relocations. */
17758 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
17759 return 0;
17760
17761 /* Likewise an in-range offset of limited PC-relative relocations may
17762 overflow the in-place relocatable field if recalculated against the
17763 start address of the symbol's containing section.
17764
17765 Also, PC relative relocations for MIPS R6 need to be symbol rather than
17766 section relative to allow linker relaxations to be performed later on. */
17767 if (limited_pcrel_reloc_p (fixp->fx_r_type)
17768 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
17769 return 0;
17770
17771 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
17772 to a floating-point stub. The same is true for non-R_MIPS16_26
17773 relocations against MIPS16 functions; in this case, the stub becomes
17774 the function's canonical address.
17775
17776 Floating-point stubs are stored in unique .mips16.call.* or
17777 .mips16.fn.* sections. If a stub T for function F is in section S,
17778 the first relocation in section S must be against F; this is how the
17779 linker determines the target function. All relocations that might
17780 resolve to T must also be against F. We therefore have the following
17781 restrictions, which are given in an intentionally-redundant way:
17782
17783 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
17784 symbols.
17785
17786 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
17787 if that stub might be used.
17788
17789 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
17790 symbols.
17791
17792 4. We cannot reduce a stub's relocations against MIPS16 symbols if
17793 that stub might be used.
17794
17795 There is a further restriction:
17796
17797 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
17798 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
17799 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
17800 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
17801 against MIPS16 or microMIPS symbols because we need to keep the
17802 MIPS16 or microMIPS symbol for the purpose of mode mismatch
17803 detection and JAL or BAL to JALX instruction conversion in the
17804 linker.
17805
17806 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
17807 against a MIPS16 symbol. We deal with (5) by additionally leaving
17808 alone any jump and branch relocations against a microMIPS symbol.
17809
17810 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
17811 relocation against some symbol R, no relocation against R may be
17812 reduced. (Note that this deals with (2) as well as (1) because
17813 relocations against global symbols will never be reduced on ELF
17814 targets.) This approach is a little simpler than trying to detect
17815 stub sections, and gives the "all or nothing" per-symbol consistency
17816 that we have for MIPS16 symbols. */
17817 if (fixp->fx_subsy == NULL
17818 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
17819 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
17820 && (jmp_reloc_p (fixp->fx_r_type)
17821 || b_reloc_p (fixp->fx_r_type)))
17822 || *symbol_get_tc (fixp->fx_addsy)))
17823 return 0;
17824
17825 return 1;
17826 }
17827
17828 /* Translate internal representation of relocation info to BFD target
17829 format. */
17830
17831 arelent **
17832 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
17833 {
17834 static arelent *retval[4];
17835 arelent *reloc;
17836 bfd_reloc_code_real_type code;
17837
17838 memset (retval, 0, sizeof(retval));
17839 reloc = retval[0] = XCNEW (arelent);
17840 reloc->sym_ptr_ptr = XNEW (asymbol *);
17841 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
17842 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
17843
17844 if (fixp->fx_pcrel)
17845 {
17846 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
17847 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
17848 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
17849 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
17850 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
17851 || fixp->fx_r_type == BFD_RELOC_32_PCREL
17852 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
17853 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
17854 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
17855 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
17856 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
17857 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
17858
17859 /* At this point, fx_addnumber is "symbol offset - pcrel address".
17860 Relocations want only the symbol offset. */
17861 switch (fixp->fx_r_type)
17862 {
17863 case BFD_RELOC_MIPS_18_PCREL_S3:
17864 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
17865 break;
17866 default:
17867 reloc->addend = fixp->fx_addnumber + reloc->address;
17868 break;
17869 }
17870 }
17871 else if (HAVE_IN_PLACE_ADDENDS
17872 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
17873 && (read_compressed_insn (fixp->fx_frag->fr_literal
17874 + fixp->fx_where, 4) >> 26) == 0x3c)
17875 {
17876 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
17877 addend accordingly. */
17878 reloc->addend = fixp->fx_addnumber >> 1;
17879 }
17880 else
17881 reloc->addend = fixp->fx_addnumber;
17882
17883 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
17884 entry to be used in the relocation's section offset. */
17885 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
17886 {
17887 reloc->address = reloc->addend;
17888 reloc->addend = 0;
17889 }
17890
17891 code = fixp->fx_r_type;
17892
17893 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
17894 if (reloc->howto == NULL)
17895 {
17896 as_bad_where (fixp->fx_file, fixp->fx_line,
17897 _("cannot represent %s relocation in this object file"
17898 " format"),
17899 bfd_get_reloc_code_name (code));
17900 retval[0] = NULL;
17901 }
17902
17903 return retval;
17904 }
17905
17906 /* Relax a machine dependent frag. This returns the amount by which
17907 the current size of the frag should change. */
17908
17909 int
17910 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
17911 {
17912 if (RELAX_BRANCH_P (fragp->fr_subtype))
17913 {
17914 offsetT old_var = fragp->fr_var;
17915
17916 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
17917
17918 return fragp->fr_var - old_var;
17919 }
17920
17921 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
17922 {
17923 offsetT old_var = fragp->fr_var;
17924 offsetT new_var = 4;
17925
17926 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
17927 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
17928 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
17929 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
17930 fragp->fr_var = new_var;
17931
17932 return new_var - old_var;
17933 }
17934
17935 if (! RELAX_MIPS16_P (fragp->fr_subtype))
17936 return 0;
17937
17938 if (!mips16_extended_frag (fragp, sec, stretch))
17939 {
17940 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17941 {
17942 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
17943 return -10;
17944 }
17945 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17946 {
17947 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17948 return -2;
17949 }
17950 else
17951 return 0;
17952 }
17953 else if (!mips16_macro_frag (fragp, sec, stretch))
17954 {
17955 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17956 {
17957 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
17958 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17959 return -8;
17960 }
17961 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17962 {
17963 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
17964 return 2;
17965 }
17966 else
17967 return 0;
17968 }
17969 else
17970 {
17971 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
17972 return 0;
17973 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17974 {
17975 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
17976 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
17977 return 8;
17978 }
17979 else
17980 {
17981 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
17982 return 10;
17983 }
17984 }
17985
17986 return 0;
17987 }
17988
17989 /* Convert a machine dependent frag. */
17990
17991 void
17992 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
17993 {
17994 if (RELAX_BRANCH_P (fragp->fr_subtype))
17995 {
17996 char *buf;
17997 unsigned long insn;
17998 expressionS exp;
17999 fixS *fixp;
18000
18001 buf = fragp->fr_literal + fragp->fr_fix;
18002 insn = read_insn (buf);
18003
18004 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18005 {
18006 /* We generate a fixup instead of applying it right now
18007 because, if there are linker relaxations, we're going to
18008 need the relocations. */
18009 exp.X_op = O_symbol;
18010 exp.X_add_symbol = fragp->fr_symbol;
18011 exp.X_add_number = fragp->fr_offset;
18012
18013 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18014 BFD_RELOC_16_PCREL_S2);
18015 fixp->fx_file = fragp->fr_file;
18016 fixp->fx_line = fragp->fr_line;
18017
18018 buf = write_insn (buf, insn);
18019 }
18020 else
18021 {
18022 int i;
18023
18024 as_warn_where (fragp->fr_file, fragp->fr_line,
18025 _("relaxed out-of-range branch into a jump"));
18026
18027 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18028 goto uncond;
18029
18030 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18031 {
18032 /* Reverse the branch. */
18033 switch ((insn >> 28) & 0xf)
18034 {
18035 case 4:
18036 if ((insn & 0xff000000) == 0x47000000
18037 || (insn & 0xff600000) == 0x45600000)
18038 {
18039 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18040 reversed by tweaking bit 23. */
18041 insn ^= 0x00800000;
18042 }
18043 else
18044 {
18045 /* bc[0-3][tf]l? instructions can have the condition
18046 reversed by tweaking a single TF bit, and their
18047 opcodes all have 0x4???????. */
18048 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18049 insn ^= 0x00010000;
18050 }
18051 break;
18052
18053 case 0:
18054 /* bltz 0x04000000 bgez 0x04010000
18055 bltzal 0x04100000 bgezal 0x04110000 */
18056 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18057 insn ^= 0x00010000;
18058 break;
18059
18060 case 1:
18061 /* beq 0x10000000 bne 0x14000000
18062 blez 0x18000000 bgtz 0x1c000000 */
18063 insn ^= 0x04000000;
18064 break;
18065
18066 default:
18067 abort ();
18068 }
18069 }
18070
18071 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18072 {
18073 /* Clear the and-link bit. */
18074 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18075
18076 /* bltzal 0x04100000 bgezal 0x04110000
18077 bltzall 0x04120000 bgezall 0x04130000 */
18078 insn &= ~0x00100000;
18079 }
18080
18081 /* Branch over the branch (if the branch was likely) or the
18082 full jump (not likely case). Compute the offset from the
18083 current instruction to branch to. */
18084 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18085 i = 16;
18086 else
18087 {
18088 /* How many bytes in instructions we've already emitted? */
18089 i = buf - fragp->fr_literal - fragp->fr_fix;
18090 /* How many bytes in instructions from here to the end? */
18091 i = fragp->fr_var - i;
18092 }
18093 /* Convert to instruction count. */
18094 i >>= 2;
18095 /* Branch counts from the next instruction. */
18096 i--;
18097 insn |= i;
18098 /* Branch over the jump. */
18099 buf = write_insn (buf, insn);
18100
18101 /* nop */
18102 buf = write_insn (buf, 0);
18103
18104 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18105 {
18106 /* beql $0, $0, 2f */
18107 insn = 0x50000000;
18108 /* Compute the PC offset from the current instruction to
18109 the end of the variable frag. */
18110 /* How many bytes in instructions we've already emitted? */
18111 i = buf - fragp->fr_literal - fragp->fr_fix;
18112 /* How many bytes in instructions from here to the end? */
18113 i = fragp->fr_var - i;
18114 /* Convert to instruction count. */
18115 i >>= 2;
18116 /* Don't decrement i, because we want to branch over the
18117 delay slot. */
18118 insn |= i;
18119
18120 buf = write_insn (buf, insn);
18121 buf = write_insn (buf, 0);
18122 }
18123
18124 uncond:
18125 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18126 {
18127 /* j or jal. */
18128 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18129 ? 0x0c000000 : 0x08000000);
18130 exp.X_op = O_symbol;
18131 exp.X_add_symbol = fragp->fr_symbol;
18132 exp.X_add_number = fragp->fr_offset;
18133
18134 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18135 FALSE, BFD_RELOC_MIPS_JMP);
18136 fixp->fx_file = fragp->fr_file;
18137 fixp->fx_line = fragp->fr_line;
18138
18139 buf = write_insn (buf, insn);
18140 }
18141 else
18142 {
18143 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18144
18145 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18146 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18147 insn |= at << OP_SH_RT;
18148 exp.X_op = O_symbol;
18149 exp.X_add_symbol = fragp->fr_symbol;
18150 exp.X_add_number = fragp->fr_offset;
18151
18152 if (fragp->fr_offset)
18153 {
18154 exp.X_add_symbol = make_expr_symbol (&exp);
18155 exp.X_add_number = 0;
18156 }
18157
18158 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18159 FALSE, BFD_RELOC_MIPS_GOT16);
18160 fixp->fx_file = fragp->fr_file;
18161 fixp->fx_line = fragp->fr_line;
18162
18163 buf = write_insn (buf, insn);
18164
18165 if (mips_opts.isa == ISA_MIPS1)
18166 /* nop */
18167 buf = write_insn (buf, 0);
18168
18169 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18170 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18171 insn |= at << OP_SH_RS | at << OP_SH_RT;
18172
18173 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18174 FALSE, BFD_RELOC_LO16);
18175 fixp->fx_file = fragp->fr_file;
18176 fixp->fx_line = fragp->fr_line;
18177
18178 buf = write_insn (buf, insn);
18179
18180 /* j(al)r $at. */
18181 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18182 insn = 0x0000f809;
18183 else
18184 insn = 0x00000008;
18185 insn |= at << OP_SH_RS;
18186
18187 buf = write_insn (buf, insn);
18188 }
18189 }
18190
18191 fragp->fr_fix += fragp->fr_var;
18192 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18193 return;
18194 }
18195
18196 /* Relax microMIPS branches. */
18197 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18198 {
18199 char *buf = fragp->fr_literal + fragp->fr_fix;
18200 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18201 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18202 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18203 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18204 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18205 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18206 bfd_boolean short_ds;
18207 unsigned long insn;
18208 expressionS exp;
18209 fixS *fixp;
18210
18211 exp.X_op = O_symbol;
18212 exp.X_add_symbol = fragp->fr_symbol;
18213 exp.X_add_number = fragp->fr_offset;
18214
18215 fragp->fr_fix += fragp->fr_var;
18216
18217 /* Handle 16-bit branches that fit or are forced to fit. */
18218 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18219 {
18220 /* We generate a fixup instead of applying it right now,
18221 because if there is linker relaxation, we're going to
18222 need the relocations. */
18223 if (type == 'D')
18224 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18225 BFD_RELOC_MICROMIPS_10_PCREL_S1);
18226 else if (type == 'E')
18227 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 2, &exp, TRUE,
18228 BFD_RELOC_MICROMIPS_7_PCREL_S1);
18229 else
18230 abort ();
18231
18232 fixp->fx_file = fragp->fr_file;
18233 fixp->fx_line = fragp->fr_line;
18234
18235 /* These relocations can have an addend that won't fit in
18236 2 octets. */
18237 fixp->fx_no_overflow = 1;
18238
18239 return;
18240 }
18241
18242 /* Handle 32-bit branches that fit or are forced to fit. */
18243 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18244 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18245 {
18246 /* We generate a fixup instead of applying it right now,
18247 because if there is linker relaxation, we're going to
18248 need the relocations. */
18249 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, TRUE,
18250 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18251 fixp->fx_file = fragp->fr_file;
18252 fixp->fx_line = fragp->fr_line;
18253
18254 if (type == 0)
18255 {
18256 insn = read_compressed_insn (buf, 4);
18257 buf += 4;
18258
18259 if (nods)
18260 {
18261 /* Check the short-delay-slot bit. */
18262 if (!al || (insn & 0x02000000) != 0)
18263 buf = write_compressed_insn (buf, 0x0c00, 2);
18264 else
18265 buf = write_compressed_insn (buf, 0x00000000, 4);
18266 }
18267
18268 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18269 return;
18270 }
18271 }
18272
18273 /* Relax 16-bit branches to 32-bit branches. */
18274 if (type != 0)
18275 {
18276 insn = read_compressed_insn (buf, 2);
18277
18278 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18279 insn = 0x94000000; /* beq */
18280 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18281 {
18282 unsigned long regno;
18283
18284 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18285 regno = micromips_to_32_reg_d_map [regno];
18286 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18287 insn |= regno << MICROMIPSOP_SH_RS;
18288 }
18289 else
18290 abort ();
18291
18292 /* Nothing else to do, just write it out. */
18293 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18294 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18295 {
18296 buf = write_compressed_insn (buf, insn, 4);
18297 if (nods)
18298 buf = write_compressed_insn (buf, 0x0c00, 2);
18299 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18300 return;
18301 }
18302 }
18303 else
18304 insn = read_compressed_insn (buf, 4);
18305
18306 /* Relax 32-bit branches to a sequence of instructions. */
18307 as_warn_where (fragp->fr_file, fragp->fr_line,
18308 _("relaxed out-of-range branch into a jump"));
18309
18310 /* Set the short-delay-slot bit. */
18311 short_ds = !al || (insn & 0x02000000) != 0;
18312
18313 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18314 {
18315 symbolS *l;
18316
18317 /* Reverse the branch. */
18318 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18319 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18320 insn ^= 0x20000000;
18321 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18322 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18323 || (insn & 0xffe00000) == 0x40800000 /* blez */
18324 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18325 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18326 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18327 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18328 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18329 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18330 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18331 insn ^= 0x00400000;
18332 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18333 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18334 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18335 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18336 insn ^= 0x00200000;
18337 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18338 BNZ.df */
18339 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18340 BNZ.V */
18341 insn ^= 0x00800000;
18342 else
18343 abort ();
18344
18345 if (al)
18346 {
18347 /* Clear the and-link and short-delay-slot bits. */
18348 gas_assert ((insn & 0xfda00000) == 0x40200000);
18349
18350 /* bltzal 0x40200000 bgezal 0x40600000 */
18351 /* bltzals 0x42200000 bgezals 0x42600000 */
18352 insn &= ~0x02200000;
18353 }
18354
18355 /* Make a label at the end for use with the branch. */
18356 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18357 micromips_label_inc ();
18358 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18359
18360 /* Refer to it. */
18361 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18362 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18363 fixp->fx_file = fragp->fr_file;
18364 fixp->fx_line = fragp->fr_line;
18365
18366 /* Branch over the jump. */
18367 buf = write_compressed_insn (buf, insn, 4);
18368
18369 if (!compact)
18370 {
18371 /* nop */
18372 if (insn32)
18373 buf = write_compressed_insn (buf, 0x00000000, 4);
18374 else
18375 buf = write_compressed_insn (buf, 0x0c00, 2);
18376 }
18377 }
18378
18379 if (!pic)
18380 {
18381 unsigned long jal = (short_ds || nods
18382 ? 0x74000000 : 0xf4000000); /* jal/s */
18383
18384 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18385 insn = al ? jal : 0xd4000000;
18386
18387 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18388 BFD_RELOC_MICROMIPS_JMP);
18389 fixp->fx_file = fragp->fr_file;
18390 fixp->fx_line = fragp->fr_line;
18391
18392 buf = write_compressed_insn (buf, insn, 4);
18393
18394 if (compact || nods)
18395 {
18396 /* nop */
18397 if (insn32)
18398 buf = write_compressed_insn (buf, 0x00000000, 4);
18399 else
18400 buf = write_compressed_insn (buf, 0x0c00, 2);
18401 }
18402 }
18403 else
18404 {
18405 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18406
18407 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18408 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18409 insn |= at << MICROMIPSOP_SH_RT;
18410
18411 if (exp.X_add_number)
18412 {
18413 exp.X_add_symbol = make_expr_symbol (&exp);
18414 exp.X_add_number = 0;
18415 }
18416
18417 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18418 BFD_RELOC_MICROMIPS_GOT16);
18419 fixp->fx_file = fragp->fr_file;
18420 fixp->fx_line = fragp->fr_line;
18421
18422 buf = write_compressed_insn (buf, insn, 4);
18423
18424 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18425 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18426 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18427
18428 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp, FALSE,
18429 BFD_RELOC_MICROMIPS_LO16);
18430 fixp->fx_file = fragp->fr_file;
18431 fixp->fx_line = fragp->fr_line;
18432
18433 buf = write_compressed_insn (buf, insn, 4);
18434
18435 if (insn32)
18436 {
18437 /* jr/jalr $at */
18438 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18439 insn |= at << MICROMIPSOP_SH_RS;
18440
18441 buf = write_compressed_insn (buf, insn, 4);
18442
18443 if (compact || nods)
18444 /* nop */
18445 buf = write_compressed_insn (buf, 0x00000000, 4);
18446 }
18447 else
18448 {
18449 /* jr/jrc/jalr/jalrs $at */
18450 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18451 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18452
18453 insn = al ? jalr : jr;
18454 insn |= at << MICROMIPSOP_SH_MJ;
18455
18456 buf = write_compressed_insn (buf, insn, 2);
18457 if (al && nods)
18458 {
18459 /* nop */
18460 if (short_ds)
18461 buf = write_compressed_insn (buf, 0x0c00, 2);
18462 else
18463 buf = write_compressed_insn (buf, 0x00000000, 4);
18464 }
18465 }
18466 }
18467
18468 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18469 return;
18470 }
18471
18472 if (RELAX_MIPS16_P (fragp->fr_subtype))
18473 {
18474 int type;
18475 const struct mips_int_operand *operand;
18476 offsetT val;
18477 char *buf;
18478 unsigned int user_length;
18479 bfd_boolean need_reloc;
18480 unsigned long insn;
18481 bfd_boolean mac;
18482 bfd_boolean ext;
18483 segT symsec;
18484
18485 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18486 operand = mips16_immed_operand (type, FALSE);
18487
18488 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
18489 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18490 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18491
18492 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18493 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18494 || (operand->root.type == OP_PCREL && !mac
18495 ? asec != symsec
18496 : !bfd_is_abs_section (symsec)));
18497
18498 if (operand->root.type == OP_PCREL && !mac)
18499 {
18500 const struct mips_pcrel_operand *pcrel_op;
18501
18502 pcrel_op = (const struct mips_pcrel_operand *) operand;
18503
18504 if (pcrel_op->include_isa_bit && !need_reloc)
18505 {
18506 if (!ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18507 as_bad_where (fragp->fr_file, fragp->fr_line,
18508 _("branch to a symbol in another ISA mode"));
18509 else if ((fragp->fr_offset & 0x1) != 0)
18510 as_bad_where (fragp->fr_file, fragp->fr_line,
18511 _("branch to misaligned address (0x%lx)"),
18512 (long) val);
18513 }
18514
18515 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
18516
18517 /* Make sure the section winds up with the alignment we have
18518 assumed. */
18519 if (operand->shift > 0)
18520 record_alignment (asec, operand->shift);
18521 }
18522
18523 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18524 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18525 {
18526 if (mac)
18527 as_warn_where (fragp->fr_file, fragp->fr_line,
18528 _("macro instruction expanded into multiple "
18529 "instructions in a branch delay slot"));
18530 else if (ext)
18531 as_warn_where (fragp->fr_file, fragp->fr_line,
18532 _("extended instruction in a branch delay slot"));
18533 }
18534 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
18535 as_warn_where (fragp->fr_file, fragp->fr_line,
18536 _("macro instruction expanded into multiple "
18537 "instructions"));
18538
18539 buf = fragp->fr_literal + fragp->fr_fix;
18540
18541 insn = read_compressed_insn (buf, 2);
18542 if (ext)
18543 insn |= MIPS16_EXTEND;
18544
18545 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18546 user_length = 4;
18547 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18548 user_length = 2;
18549 else
18550 user_length = 0;
18551
18552 if (mac)
18553 {
18554 unsigned long reg;
18555 unsigned long new;
18556 unsigned long op;
18557
18558 gas_assert (type == 'A' || type == 'B' || type == 'E');
18559 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
18560
18561 if (need_reloc)
18562 {
18563 fixS *fixp;
18564
18565 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18566
18567 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18568 fragp->fr_symbol, fragp->fr_offset,
18569 FALSE, BFD_RELOC_MIPS16_HI16_S);
18570 fixp->fx_file = fragp->fr_file;
18571 fixp->fx_line = fragp->fr_line;
18572
18573 fixp = fix_new (fragp, buf - fragp->fr_literal + 8, 4,
18574 fragp->fr_symbol, fragp->fr_offset,
18575 FALSE, BFD_RELOC_MIPS16_LO16);
18576 fixp->fx_file = fragp->fr_file;
18577 fixp->fx_line = fragp->fr_line;
18578
18579 val = 0;
18580 }
18581
18582 switch (insn & 0xf800)
18583 {
18584 case 0x0800: /* ADDIU */
18585 reg = (insn >> 8) & 0x7;
18586 op = 0xf0004800 | (reg << 8);
18587 break;
18588 case 0xb000: /* LW */
18589 reg = (insn >> 8) & 0x7;
18590 op = 0xf0009800 | (reg << 8) | (reg << 5);
18591 break;
18592 case 0xf800: /* I64 */
18593 reg = (insn >> 5) & 0x7;
18594 switch (insn & 0x0700)
18595 {
18596 case 0x0400: /* LD */
18597 op = 0xf0003800 | (reg << 8) | (reg << 5);
18598 break;
18599 case 0x0600: /* DADDIU */
18600 op = 0xf000fd00 | (reg << 5);
18601 break;
18602 default:
18603 abort ();
18604 }
18605 break;
18606 default:
18607 abort ();
18608 }
18609
18610 new = 0xf0006800 | (reg << 8); /* LI */
18611 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
18612 buf = write_compressed_insn (buf, new, 4);
18613 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
18614 buf = write_compressed_insn (buf, new, 4);
18615 op |= mips16_immed_extend (val, 16);
18616 buf = write_compressed_insn (buf, op, 4);
18617
18618 fragp->fr_fix += 12;
18619 }
18620 else
18621 {
18622 unsigned int length = ext ? 4 : 2;
18623
18624 if (need_reloc)
18625 {
18626 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
18627 expressionS exp;
18628 fixS *fixp;
18629
18630 switch (type)
18631 {
18632 case 'p':
18633 case 'q':
18634 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
18635 break;
18636 default:
18637 break;
18638 }
18639 if (mac || reloc == BFD_RELOC_NONE)
18640 as_bad_where (fragp->fr_file, fragp->fr_line,
18641 _("unsupported relocation"));
18642 else if (ext)
18643 {
18644 exp.X_op = O_symbol;
18645 exp.X_add_symbol = fragp->fr_symbol;
18646 exp.X_add_number = fragp->fr_offset;
18647
18648 fixp = fix_new_exp (fragp, buf - fragp->fr_literal, 4, &exp,
18649 TRUE, reloc);
18650
18651 fixp->fx_file = fragp->fr_file;
18652 fixp->fx_line = fragp->fr_line;
18653 }
18654 else
18655 as_bad_where (fragp->fr_file, fragp->fr_line,
18656 _("invalid unextended operand value"));
18657 }
18658 else
18659 mips16_immed (fragp->fr_file, fragp->fr_line, type,
18660 BFD_RELOC_UNUSED, val, user_length, &insn);
18661
18662 gas_assert (mips16_opcode_length (insn) == length);
18663 write_compressed_insn (buf, insn, length);
18664 fragp->fr_fix += length;
18665 }
18666 }
18667 else
18668 {
18669 relax_substateT subtype = fragp->fr_subtype;
18670 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
18671 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
18672 int first, second;
18673 fixS *fixp;
18674
18675 first = RELAX_FIRST (subtype);
18676 second = RELAX_SECOND (subtype);
18677 fixp = (fixS *) fragp->fr_opcode;
18678
18679 /* If the delay slot chosen does not match the size of the instruction,
18680 then emit a warning. */
18681 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
18682 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
18683 {
18684 relax_substateT s;
18685 const char *msg;
18686
18687 s = subtype & (RELAX_DELAY_SLOT_16BIT
18688 | RELAX_DELAY_SLOT_SIZE_FIRST
18689 | RELAX_DELAY_SLOT_SIZE_SECOND);
18690 msg = macro_warning (s);
18691 if (msg != NULL)
18692 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18693 subtype &= ~s;
18694 }
18695
18696 /* Possibly emit a warning if we've chosen the longer option. */
18697 if (use_second == second_longer)
18698 {
18699 relax_substateT s;
18700 const char *msg;
18701
18702 s = (subtype
18703 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
18704 msg = macro_warning (s);
18705 if (msg != NULL)
18706 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
18707 subtype &= ~s;
18708 }
18709
18710 /* Go through all the fixups for the first sequence. Disable them
18711 (by marking them as done) if we're going to use the second
18712 sequence instead. */
18713 while (fixp
18714 && fixp->fx_frag == fragp
18715 && fixp->fx_where < fragp->fr_fix - second)
18716 {
18717 if (subtype & RELAX_USE_SECOND)
18718 fixp->fx_done = 1;
18719 fixp = fixp->fx_next;
18720 }
18721
18722 /* Go through the fixups for the second sequence. Disable them if
18723 we're going to use the first sequence, otherwise adjust their
18724 addresses to account for the relaxation. */
18725 while (fixp && fixp->fx_frag == fragp)
18726 {
18727 if (subtype & RELAX_USE_SECOND)
18728 fixp->fx_where -= first;
18729 else
18730 fixp->fx_done = 1;
18731 fixp = fixp->fx_next;
18732 }
18733
18734 /* Now modify the frag contents. */
18735 if (subtype & RELAX_USE_SECOND)
18736 {
18737 char *start;
18738
18739 start = fragp->fr_literal + fragp->fr_fix - first - second;
18740 memmove (start, start + first, second);
18741 fragp->fr_fix -= first;
18742 }
18743 else
18744 fragp->fr_fix -= second;
18745 }
18746 }
18747
18748 /* This function is called after the relocs have been generated.
18749 We've been storing mips16 text labels as odd. Here we convert them
18750 back to even for the convenience of the debugger. */
18751
18752 void
18753 mips_frob_file_after_relocs (void)
18754 {
18755 asymbol **syms;
18756 unsigned int count, i;
18757
18758 syms = bfd_get_outsymbols (stdoutput);
18759 count = bfd_get_symcount (stdoutput);
18760 for (i = 0; i < count; i++, syms++)
18761 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
18762 && ((*syms)->value & 1) != 0)
18763 {
18764 (*syms)->value &= ~1;
18765 /* If the symbol has an odd size, it was probably computed
18766 incorrectly, so adjust that as well. */
18767 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
18768 ++elf_symbol (*syms)->internal_elf_sym.st_size;
18769 }
18770 }
18771
18772 /* This function is called whenever a label is defined, including fake
18773 labels instantiated off the dot special symbol. It is used when
18774 handling branch delays; if a branch has a label, we assume we cannot
18775 move it. This also bumps the value of the symbol by 1 in compressed
18776 code. */
18777
18778 static void
18779 mips_record_label (symbolS *sym)
18780 {
18781 segment_info_type *si = seg_info (now_seg);
18782 struct insn_label_list *l;
18783
18784 if (free_insn_labels == NULL)
18785 l = XNEW (struct insn_label_list);
18786 else
18787 {
18788 l = free_insn_labels;
18789 free_insn_labels = l->next;
18790 }
18791
18792 l->label = sym;
18793 l->next = si->label_list;
18794 si->label_list = l;
18795 }
18796
18797 /* This function is called as tc_frob_label() whenever a label is defined
18798 and adds a DWARF-2 record we only want for true labels. */
18799
18800 void
18801 mips_define_label (symbolS *sym)
18802 {
18803 mips_record_label (sym);
18804 dwarf2_emit_label (sym);
18805 }
18806
18807 /* This function is called by tc_new_dot_label whenever a new dot symbol
18808 is defined. */
18809
18810 void
18811 mips_add_dot_label (symbolS *sym)
18812 {
18813 mips_record_label (sym);
18814 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
18815 mips_compressed_mark_label (sym);
18816 }
18817 \f
18818 /* Converting ASE flags from internal to .MIPS.abiflags values. */
18819 static unsigned int
18820 mips_convert_ase_flags (int ase)
18821 {
18822 unsigned int ext_ases = 0;
18823
18824 if (ase & ASE_DSP)
18825 ext_ases |= AFL_ASE_DSP;
18826 if (ase & ASE_DSPR2)
18827 ext_ases |= AFL_ASE_DSPR2;
18828 if (ase & ASE_DSPR3)
18829 ext_ases |= AFL_ASE_DSPR3;
18830 if (ase & ASE_EVA)
18831 ext_ases |= AFL_ASE_EVA;
18832 if (ase & ASE_MCU)
18833 ext_ases |= AFL_ASE_MCU;
18834 if (ase & ASE_MDMX)
18835 ext_ases |= AFL_ASE_MDMX;
18836 if (ase & ASE_MIPS3D)
18837 ext_ases |= AFL_ASE_MIPS3D;
18838 if (ase & ASE_MT)
18839 ext_ases |= AFL_ASE_MT;
18840 if (ase & ASE_SMARTMIPS)
18841 ext_ases |= AFL_ASE_SMARTMIPS;
18842 if (ase & ASE_VIRT)
18843 ext_ases |= AFL_ASE_VIRT;
18844 if (ase & ASE_MSA)
18845 ext_ases |= AFL_ASE_MSA;
18846 if (ase & ASE_XPA)
18847 ext_ases |= AFL_ASE_XPA;
18848
18849 return ext_ases;
18850 }
18851 /* Some special processing for a MIPS ELF file. */
18852
18853 void
18854 mips_elf_final_processing (void)
18855 {
18856 int fpabi;
18857 Elf_Internal_ABIFlags_v0 flags;
18858
18859 flags.version = 0;
18860 flags.isa_rev = 0;
18861 switch (file_mips_opts.isa)
18862 {
18863 case INSN_ISA1:
18864 flags.isa_level = 1;
18865 break;
18866 case INSN_ISA2:
18867 flags.isa_level = 2;
18868 break;
18869 case INSN_ISA3:
18870 flags.isa_level = 3;
18871 break;
18872 case INSN_ISA4:
18873 flags.isa_level = 4;
18874 break;
18875 case INSN_ISA5:
18876 flags.isa_level = 5;
18877 break;
18878 case INSN_ISA32:
18879 flags.isa_level = 32;
18880 flags.isa_rev = 1;
18881 break;
18882 case INSN_ISA32R2:
18883 flags.isa_level = 32;
18884 flags.isa_rev = 2;
18885 break;
18886 case INSN_ISA32R3:
18887 flags.isa_level = 32;
18888 flags.isa_rev = 3;
18889 break;
18890 case INSN_ISA32R5:
18891 flags.isa_level = 32;
18892 flags.isa_rev = 5;
18893 break;
18894 case INSN_ISA32R6:
18895 flags.isa_level = 32;
18896 flags.isa_rev = 6;
18897 break;
18898 case INSN_ISA64:
18899 flags.isa_level = 64;
18900 flags.isa_rev = 1;
18901 break;
18902 case INSN_ISA64R2:
18903 flags.isa_level = 64;
18904 flags.isa_rev = 2;
18905 break;
18906 case INSN_ISA64R3:
18907 flags.isa_level = 64;
18908 flags.isa_rev = 3;
18909 break;
18910 case INSN_ISA64R5:
18911 flags.isa_level = 64;
18912 flags.isa_rev = 5;
18913 break;
18914 case INSN_ISA64R6:
18915 flags.isa_level = 64;
18916 flags.isa_rev = 6;
18917 break;
18918 }
18919
18920 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
18921 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
18922 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
18923 : (file_mips_opts.fp == 64) ? AFL_REG_64
18924 : AFL_REG_32;
18925 flags.cpr2_size = AFL_REG_NONE;
18926 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
18927 Tag_GNU_MIPS_ABI_FP);
18928 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
18929 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
18930 if (file_ase_mips16)
18931 flags.ases |= AFL_ASE_MIPS16;
18932 if (file_ase_micromips)
18933 flags.ases |= AFL_ASE_MICROMIPS;
18934 flags.flags1 = 0;
18935 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
18936 || file_mips_opts.fp == 64)
18937 && file_mips_opts.oddspreg)
18938 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
18939 flags.flags2 = 0;
18940
18941 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
18942 ((Elf_External_ABIFlags_v0 *)
18943 mips_flags_frag));
18944
18945 /* Write out the register information. */
18946 if (mips_abi != N64_ABI)
18947 {
18948 Elf32_RegInfo s;
18949
18950 s.ri_gprmask = mips_gprmask;
18951 s.ri_cprmask[0] = mips_cprmask[0];
18952 s.ri_cprmask[1] = mips_cprmask[1];
18953 s.ri_cprmask[2] = mips_cprmask[2];
18954 s.ri_cprmask[3] = mips_cprmask[3];
18955 /* The gp_value field is set by the MIPS ELF backend. */
18956
18957 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
18958 ((Elf32_External_RegInfo *)
18959 mips_regmask_frag));
18960 }
18961 else
18962 {
18963 Elf64_Internal_RegInfo s;
18964
18965 s.ri_gprmask = mips_gprmask;
18966 s.ri_pad = 0;
18967 s.ri_cprmask[0] = mips_cprmask[0];
18968 s.ri_cprmask[1] = mips_cprmask[1];
18969 s.ri_cprmask[2] = mips_cprmask[2];
18970 s.ri_cprmask[3] = mips_cprmask[3];
18971 /* The gp_value field is set by the MIPS ELF backend. */
18972
18973 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
18974 ((Elf64_External_RegInfo *)
18975 mips_regmask_frag));
18976 }
18977
18978 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
18979 sort of BFD interface for this. */
18980 if (mips_any_noreorder)
18981 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
18982 if (mips_pic != NO_PIC)
18983 {
18984 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
18985 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18986 }
18987 if (mips_abicalls)
18988 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
18989
18990 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
18991 defined at present; this might need to change in future. */
18992 if (file_ase_mips16)
18993 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
18994 if (file_ase_micromips)
18995 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
18996 if (file_mips_opts.ase & ASE_MDMX)
18997 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
18998
18999 /* Set the MIPS ELF ABI flags. */
19000 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
19001 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
19002 else if (mips_abi == O64_ABI)
19003 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
19004 else if (mips_abi == EABI_ABI)
19005 {
19006 if (file_mips_opts.gp == 64)
19007 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19008 else
19009 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19010 }
19011 else if (mips_abi == N32_ABI)
19012 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
19013
19014 /* Nothing to do for N64_ABI. */
19015
19016 if (mips_32bitmode)
19017 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19018
19019 if (mips_nan2008 == 1)
19020 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19021
19022 /* 32 bit code with 64 bit FP registers. */
19023 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19024 Tag_GNU_MIPS_ABI_FP);
19025 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19026 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19027 }
19028 \f
19029 typedef struct proc {
19030 symbolS *func_sym;
19031 symbolS *func_end_sym;
19032 unsigned long reg_mask;
19033 unsigned long reg_offset;
19034 unsigned long fpreg_mask;
19035 unsigned long fpreg_offset;
19036 unsigned long frame_offset;
19037 unsigned long frame_reg;
19038 unsigned long pc_reg;
19039 } procS;
19040
19041 static procS cur_proc;
19042 static procS *cur_proc_ptr;
19043 static int numprocs;
19044
19045 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19046 as "2", and a normal nop as "0". */
19047
19048 #define NOP_OPCODE_MIPS 0
19049 #define NOP_OPCODE_MIPS16 1
19050 #define NOP_OPCODE_MICROMIPS 2
19051
19052 char
19053 mips_nop_opcode (void)
19054 {
19055 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19056 return NOP_OPCODE_MICROMIPS;
19057 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19058 return NOP_OPCODE_MIPS16;
19059 else
19060 return NOP_OPCODE_MIPS;
19061 }
19062
19063 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19064 32-bit microMIPS NOPs here (if applicable). */
19065
19066 void
19067 mips_handle_align (fragS *fragp)
19068 {
19069 char nop_opcode;
19070 char *p;
19071 int bytes, size, excess;
19072 valueT opcode;
19073
19074 if (fragp->fr_type != rs_align_code)
19075 return;
19076
19077 p = fragp->fr_literal + fragp->fr_fix;
19078 nop_opcode = *p;
19079 switch (nop_opcode)
19080 {
19081 case NOP_OPCODE_MICROMIPS:
19082 opcode = micromips_nop32_insn.insn_opcode;
19083 size = 4;
19084 break;
19085 case NOP_OPCODE_MIPS16:
19086 opcode = mips16_nop_insn.insn_opcode;
19087 size = 2;
19088 break;
19089 case NOP_OPCODE_MIPS:
19090 default:
19091 opcode = nop_insn.insn_opcode;
19092 size = 4;
19093 break;
19094 }
19095
19096 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19097 excess = bytes % size;
19098
19099 /* Handle the leading part if we're not inserting a whole number of
19100 instructions, and make it the end of the fixed part of the frag.
19101 Try to fit in a short microMIPS NOP if applicable and possible,
19102 and use zeroes otherwise. */
19103 gas_assert (excess < 4);
19104 fragp->fr_fix += excess;
19105 switch (excess)
19106 {
19107 case 3:
19108 *p++ = '\0';
19109 /* Fall through. */
19110 case 2:
19111 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19112 {
19113 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19114 break;
19115 }
19116 *p++ = '\0';
19117 /* Fall through. */
19118 case 1:
19119 *p++ = '\0';
19120 /* Fall through. */
19121 case 0:
19122 break;
19123 }
19124
19125 md_number_to_chars (p, opcode, size);
19126 fragp->fr_var = size;
19127 }
19128
19129 static long
19130 get_number (void)
19131 {
19132 int negative = 0;
19133 long val = 0;
19134
19135 if (*input_line_pointer == '-')
19136 {
19137 ++input_line_pointer;
19138 negative = 1;
19139 }
19140 if (!ISDIGIT (*input_line_pointer))
19141 as_bad (_("expected simple number"));
19142 if (input_line_pointer[0] == '0')
19143 {
19144 if (input_line_pointer[1] == 'x')
19145 {
19146 input_line_pointer += 2;
19147 while (ISXDIGIT (*input_line_pointer))
19148 {
19149 val <<= 4;
19150 val |= hex_value (*input_line_pointer++);
19151 }
19152 return negative ? -val : val;
19153 }
19154 else
19155 {
19156 ++input_line_pointer;
19157 while (ISDIGIT (*input_line_pointer))
19158 {
19159 val <<= 3;
19160 val |= *input_line_pointer++ - '0';
19161 }
19162 return negative ? -val : val;
19163 }
19164 }
19165 if (!ISDIGIT (*input_line_pointer))
19166 {
19167 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19168 *input_line_pointer, *input_line_pointer);
19169 as_warn (_("invalid number"));
19170 return -1;
19171 }
19172 while (ISDIGIT (*input_line_pointer))
19173 {
19174 val *= 10;
19175 val += *input_line_pointer++ - '0';
19176 }
19177 return negative ? -val : val;
19178 }
19179
19180 /* The .file directive; just like the usual .file directive, but there
19181 is an initial number which is the ECOFF file index. In the non-ECOFF
19182 case .file implies DWARF-2. */
19183
19184 static void
19185 s_mips_file (int x ATTRIBUTE_UNUSED)
19186 {
19187 static int first_file_directive = 0;
19188
19189 if (ECOFF_DEBUGGING)
19190 {
19191 get_number ();
19192 s_app_file (0);
19193 }
19194 else
19195 {
19196 char *filename;
19197
19198 filename = dwarf2_directive_file (0);
19199
19200 /* Versions of GCC up to 3.1 start files with a ".file"
19201 directive even for stabs output. Make sure that this
19202 ".file" is handled. Note that you need a version of GCC
19203 after 3.1 in order to support DWARF-2 on MIPS. */
19204 if (filename != NULL && ! first_file_directive)
19205 {
19206 (void) new_logical_line (filename, -1);
19207 s_app_file_string (filename, 0);
19208 }
19209 first_file_directive = 1;
19210 }
19211 }
19212
19213 /* The .loc directive, implying DWARF-2. */
19214
19215 static void
19216 s_mips_loc (int x ATTRIBUTE_UNUSED)
19217 {
19218 if (!ECOFF_DEBUGGING)
19219 dwarf2_directive_loc (0);
19220 }
19221
19222 /* The .end directive. */
19223
19224 static void
19225 s_mips_end (int x ATTRIBUTE_UNUSED)
19226 {
19227 symbolS *p;
19228
19229 /* Following functions need their own .frame and .cprestore directives. */
19230 mips_frame_reg_valid = 0;
19231 mips_cprestore_valid = 0;
19232
19233 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19234 {
19235 p = get_symbol ();
19236 demand_empty_rest_of_line ();
19237 }
19238 else
19239 p = NULL;
19240
19241 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19242 as_warn (_(".end not in text section"));
19243
19244 if (!cur_proc_ptr)
19245 {
19246 as_warn (_(".end directive without a preceding .ent directive"));
19247 demand_empty_rest_of_line ();
19248 return;
19249 }
19250
19251 if (p != NULL)
19252 {
19253 gas_assert (S_GET_NAME (p));
19254 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19255 as_warn (_(".end symbol does not match .ent symbol"));
19256
19257 if (debug_type == DEBUG_STABS)
19258 stabs_generate_asm_endfunc (S_GET_NAME (p),
19259 S_GET_NAME (p));
19260 }
19261 else
19262 as_warn (_(".end directive missing or unknown symbol"));
19263
19264 /* Create an expression to calculate the size of the function. */
19265 if (p && cur_proc_ptr)
19266 {
19267 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19268 expressionS *exp = XNEW (expressionS);
19269
19270 obj->size = exp;
19271 exp->X_op = O_subtract;
19272 exp->X_add_symbol = symbol_temp_new_now ();
19273 exp->X_op_symbol = p;
19274 exp->X_add_number = 0;
19275
19276 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19277 }
19278
19279 #ifdef md_flush_pending_output
19280 md_flush_pending_output ();
19281 #endif
19282
19283 /* Generate a .pdr section. */
19284 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19285 {
19286 segT saved_seg = now_seg;
19287 subsegT saved_subseg = now_subseg;
19288 expressionS exp;
19289 char *fragp;
19290
19291 gas_assert (pdr_seg);
19292 subseg_set (pdr_seg, 0);
19293
19294 /* Write the symbol. */
19295 exp.X_op = O_symbol;
19296 exp.X_add_symbol = p;
19297 exp.X_add_number = 0;
19298 emit_expr (&exp, 4);
19299
19300 fragp = frag_more (7 * 4);
19301
19302 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19303 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19304 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19305 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19306 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19307 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19308 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19309
19310 subseg_set (saved_seg, saved_subseg);
19311 }
19312
19313 cur_proc_ptr = NULL;
19314 }
19315
19316 /* The .aent and .ent directives. */
19317
19318 static void
19319 s_mips_ent (int aent)
19320 {
19321 symbolS *symbolP;
19322
19323 symbolP = get_symbol ();
19324 if (*input_line_pointer == ',')
19325 ++input_line_pointer;
19326 SKIP_WHITESPACE ();
19327 if (ISDIGIT (*input_line_pointer)
19328 || *input_line_pointer == '-')
19329 get_number ();
19330
19331 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19332 as_warn (_(".ent or .aent not in text section"));
19333
19334 if (!aent && cur_proc_ptr)
19335 as_warn (_("missing .end"));
19336
19337 if (!aent)
19338 {
19339 /* This function needs its own .frame and .cprestore directives. */
19340 mips_frame_reg_valid = 0;
19341 mips_cprestore_valid = 0;
19342
19343 cur_proc_ptr = &cur_proc;
19344 memset (cur_proc_ptr, '\0', sizeof (procS));
19345
19346 cur_proc_ptr->func_sym = symbolP;
19347
19348 ++numprocs;
19349
19350 if (debug_type == DEBUG_STABS)
19351 stabs_generate_asm_func (S_GET_NAME (symbolP),
19352 S_GET_NAME (symbolP));
19353 }
19354
19355 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19356
19357 demand_empty_rest_of_line ();
19358 }
19359
19360 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19361 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19362 s_mips_frame is used so that we can set the PDR information correctly.
19363 We can't use the ecoff routines because they make reference to the ecoff
19364 symbol table (in the mdebug section). */
19365
19366 static void
19367 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19368 {
19369 if (ECOFF_DEBUGGING)
19370 s_ignore (ignore);
19371 else
19372 {
19373 long val;
19374
19375 if (cur_proc_ptr == (procS *) NULL)
19376 {
19377 as_warn (_(".frame outside of .ent"));
19378 demand_empty_rest_of_line ();
19379 return;
19380 }
19381
19382 cur_proc_ptr->frame_reg = tc_get_register (1);
19383
19384 SKIP_WHITESPACE ();
19385 if (*input_line_pointer++ != ','
19386 || get_absolute_expression_and_terminator (&val) != ',')
19387 {
19388 as_warn (_("bad .frame directive"));
19389 --input_line_pointer;
19390 demand_empty_rest_of_line ();
19391 return;
19392 }
19393
19394 cur_proc_ptr->frame_offset = val;
19395 cur_proc_ptr->pc_reg = tc_get_register (0);
19396
19397 demand_empty_rest_of_line ();
19398 }
19399 }
19400
19401 /* The .fmask and .mask directives. If the mdebug section is present
19402 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19403 embedded targets, s_mips_mask is used so that we can set the PDR
19404 information correctly. We can't use the ecoff routines because they
19405 make reference to the ecoff symbol table (in the mdebug section). */
19406
19407 static void
19408 s_mips_mask (int reg_type)
19409 {
19410 if (ECOFF_DEBUGGING)
19411 s_ignore (reg_type);
19412 else
19413 {
19414 long mask, off;
19415
19416 if (cur_proc_ptr == (procS *) NULL)
19417 {
19418 as_warn (_(".mask/.fmask outside of .ent"));
19419 demand_empty_rest_of_line ();
19420 return;
19421 }
19422
19423 if (get_absolute_expression_and_terminator (&mask) != ',')
19424 {
19425 as_warn (_("bad .mask/.fmask directive"));
19426 --input_line_pointer;
19427 demand_empty_rest_of_line ();
19428 return;
19429 }
19430
19431 off = get_absolute_expression ();
19432
19433 if (reg_type == 'F')
19434 {
19435 cur_proc_ptr->fpreg_mask = mask;
19436 cur_proc_ptr->fpreg_offset = off;
19437 }
19438 else
19439 {
19440 cur_proc_ptr->reg_mask = mask;
19441 cur_proc_ptr->reg_offset = off;
19442 }
19443
19444 demand_empty_rest_of_line ();
19445 }
19446 }
19447
19448 /* A table describing all the processors gas knows about. Names are
19449 matched in the order listed.
19450
19451 To ease comparison, please keep this table in the same order as
19452 gcc's mips_cpu_info_table[]. */
19453 static const struct mips_cpu_info mips_cpu_info_table[] =
19454 {
19455 /* Entries for generic ISAs */
19456 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19457 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19458 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19459 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19460 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19461 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19462 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19463 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19464 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19465 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19466 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19467 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19468 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19469 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19470 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19471
19472 /* MIPS I */
19473 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19474 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19475 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19476
19477 /* MIPS II */
19478 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19479
19480 /* MIPS III */
19481 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19482 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19483 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19484 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19485 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19486 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19487 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19488 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19489 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19490 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19491 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19492 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19493 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19494 /* ST Microelectronics Loongson 2E and 2F cores */
19495 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19496 { "loongson2f", 0, 0, ISA_MIPS3, CPU_LOONGSON_2F },
19497
19498 /* MIPS IV */
19499 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19500 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19501 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19502 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19503 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19504 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19505 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19506 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19507 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19508 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19509 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19510 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19511 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19512 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19513 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19514
19515 /* MIPS 32 */
19516 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19517 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19518 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19519 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19520
19521 /* MIPS 32 Release 2 */
19522 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19523 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19524 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19525 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19526 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19527 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19528 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19529 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19530 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19531 ISA_MIPS32R2, CPU_MIPS32R2 },
19532 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19533 ISA_MIPS32R2, CPU_MIPS32R2 },
19534 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19535 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19536 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19537 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19538 /* Deprecated forms of the above. */
19539 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19540 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19541 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19542 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19543 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19544 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19545 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19546 /* Deprecated forms of the above. */
19547 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19548 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19549 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19550 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19551 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19552 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19553 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19554 /* Deprecated forms of the above. */
19555 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19556 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19557 /* 34Kn is a 34kc without DSP. */
19558 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19559 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19560 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19561 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19562 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19563 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19564 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19565 /* Deprecated forms of the above. */
19566 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19567 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19568 /* 1004K cores are multiprocessor versions of the 34K. */
19569 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19570 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19571 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19572 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19573 /* interaptiv is the new name for 1004kf */
19574 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19575 /* M5100 family */
19576 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19577 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19578 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19579 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19580
19581 /* MIPS 64 */
19582 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19583 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19584 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19585 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19586
19587 /* Broadcom SB-1 CPU core */
19588 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19589 /* Broadcom SB-1A CPU core */
19590 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19591
19592 { "loongson3a", 0, 0, ISA_MIPS64R2, CPU_LOONGSON_3A },
19593
19594 /* MIPS 64 Release 2 */
19595
19596 /* Cavium Networks Octeon CPU core */
19597 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
19598 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
19599 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
19600 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
19601
19602 /* RMI Xlr */
19603 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
19604
19605 /* Broadcom XLP.
19606 XLP is mostly like XLR, with the prominent exception that it is
19607 MIPS64R2 rather than MIPS64. */
19608 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
19609
19610 /* MIPS 64 Release 6 */
19611 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19612 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
19613
19614 /* End marker */
19615 { NULL, 0, 0, 0, 0 }
19616 };
19617
19618
19619 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
19620 with a final "000" replaced by "k". Ignore case.
19621
19622 Note: this function is shared between GCC and GAS. */
19623
19624 static bfd_boolean
19625 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
19626 {
19627 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
19628 given++, canonical++;
19629
19630 return ((*given == 0 && *canonical == 0)
19631 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
19632 }
19633
19634
19635 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
19636 CPU name. We've traditionally allowed a lot of variation here.
19637
19638 Note: this function is shared between GCC and GAS. */
19639
19640 static bfd_boolean
19641 mips_matching_cpu_name_p (const char *canonical, const char *given)
19642 {
19643 /* First see if the name matches exactly, or with a final "000"
19644 turned into "k". */
19645 if (mips_strict_matching_cpu_name_p (canonical, given))
19646 return TRUE;
19647
19648 /* If not, try comparing based on numerical designation alone.
19649 See if GIVEN is an unadorned number, or 'r' followed by a number. */
19650 if (TOLOWER (*given) == 'r')
19651 given++;
19652 if (!ISDIGIT (*given))
19653 return FALSE;
19654
19655 /* Skip over some well-known prefixes in the canonical name,
19656 hoping to find a number there too. */
19657 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
19658 canonical += 2;
19659 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
19660 canonical += 2;
19661 else if (TOLOWER (canonical[0]) == 'r')
19662 canonical += 1;
19663
19664 return mips_strict_matching_cpu_name_p (canonical, given);
19665 }
19666
19667
19668 /* Parse an option that takes the name of a processor as its argument.
19669 OPTION is the name of the option and CPU_STRING is the argument.
19670 Return the corresponding processor enumeration if the CPU_STRING is
19671 recognized, otherwise report an error and return null.
19672
19673 A similar function exists in GCC. */
19674
19675 static const struct mips_cpu_info *
19676 mips_parse_cpu (const char *option, const char *cpu_string)
19677 {
19678 const struct mips_cpu_info *p;
19679
19680 /* 'from-abi' selects the most compatible architecture for the given
19681 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
19682 EABIs, we have to decide whether we're using the 32-bit or 64-bit
19683 version. Look first at the -mgp options, if given, otherwise base
19684 the choice on MIPS_DEFAULT_64BIT.
19685
19686 Treat NO_ABI like the EABIs. One reason to do this is that the
19687 plain 'mips' and 'mips64' configs have 'from-abi' as their default
19688 architecture. This code picks MIPS I for 'mips' and MIPS III for
19689 'mips64', just as we did in the days before 'from-abi'. */
19690 if (strcasecmp (cpu_string, "from-abi") == 0)
19691 {
19692 if (ABI_NEEDS_32BIT_REGS (mips_abi))
19693 return mips_cpu_info_from_isa (ISA_MIPS1);
19694
19695 if (ABI_NEEDS_64BIT_REGS (mips_abi))
19696 return mips_cpu_info_from_isa (ISA_MIPS3);
19697
19698 if (file_mips_opts.gp >= 0)
19699 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
19700 ? ISA_MIPS1 : ISA_MIPS3);
19701
19702 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
19703 ? ISA_MIPS3
19704 : ISA_MIPS1);
19705 }
19706
19707 /* 'default' has traditionally been a no-op. Probably not very useful. */
19708 if (strcasecmp (cpu_string, "default") == 0)
19709 return 0;
19710
19711 for (p = mips_cpu_info_table; p->name != 0; p++)
19712 if (mips_matching_cpu_name_p (p->name, cpu_string))
19713 return p;
19714
19715 as_bad (_("bad value (%s) for %s"), cpu_string, option);
19716 return 0;
19717 }
19718
19719 /* Return the canonical processor information for ISA (a member of the
19720 ISA_MIPS* enumeration). */
19721
19722 static const struct mips_cpu_info *
19723 mips_cpu_info_from_isa (int isa)
19724 {
19725 int i;
19726
19727 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19728 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
19729 && isa == mips_cpu_info_table[i].isa)
19730 return (&mips_cpu_info_table[i]);
19731
19732 return NULL;
19733 }
19734
19735 static const struct mips_cpu_info *
19736 mips_cpu_info_from_arch (int arch)
19737 {
19738 int i;
19739
19740 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19741 if (arch == mips_cpu_info_table[i].cpu)
19742 return (&mips_cpu_info_table[i]);
19743
19744 return NULL;
19745 }
19746 \f
19747 static void
19748 show (FILE *stream, const char *string, int *col_p, int *first_p)
19749 {
19750 if (*first_p)
19751 {
19752 fprintf (stream, "%24s", "");
19753 *col_p = 24;
19754 }
19755 else
19756 {
19757 fprintf (stream, ", ");
19758 *col_p += 2;
19759 }
19760
19761 if (*col_p + strlen (string) > 72)
19762 {
19763 fprintf (stream, "\n%24s", "");
19764 *col_p = 24;
19765 }
19766
19767 fprintf (stream, "%s", string);
19768 *col_p += strlen (string);
19769
19770 *first_p = 0;
19771 }
19772
19773 void
19774 md_show_usage (FILE *stream)
19775 {
19776 int column, first;
19777 size_t i;
19778
19779 fprintf (stream, _("\
19780 MIPS options:\n\
19781 -EB generate big endian output\n\
19782 -EL generate little endian output\n\
19783 -g, -g2 do not remove unneeded NOPs or swap branches\n\
19784 -G NUM allow referencing objects up to NUM bytes\n\
19785 implicitly with the gp register [default 8]\n"));
19786 fprintf (stream, _("\
19787 -mips1 generate MIPS ISA I instructions\n\
19788 -mips2 generate MIPS ISA II instructions\n\
19789 -mips3 generate MIPS ISA III instructions\n\
19790 -mips4 generate MIPS ISA IV instructions\n\
19791 -mips5 generate MIPS ISA V instructions\n\
19792 -mips32 generate MIPS32 ISA instructions\n\
19793 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
19794 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
19795 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
19796 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
19797 -mips64 generate MIPS64 ISA instructions\n\
19798 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
19799 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
19800 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
19801 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
19802 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
19803
19804 first = 1;
19805
19806 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
19807 show (stream, mips_cpu_info_table[i].name, &column, &first);
19808 show (stream, "from-abi", &column, &first);
19809 fputc ('\n', stream);
19810
19811 fprintf (stream, _("\
19812 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
19813 -no-mCPU don't generate code specific to CPU.\n\
19814 For -mCPU and -no-mCPU, CPU must be one of:\n"));
19815
19816 first = 1;
19817
19818 show (stream, "3900", &column, &first);
19819 show (stream, "4010", &column, &first);
19820 show (stream, "4100", &column, &first);
19821 show (stream, "4650", &column, &first);
19822 fputc ('\n', stream);
19823
19824 fprintf (stream, _("\
19825 -mips16 generate mips16 instructions\n\
19826 -no-mips16 do not generate mips16 instructions\n"));
19827 fprintf (stream, _("\
19828 -mmicromips generate microMIPS instructions\n\
19829 -mno-micromips do not generate microMIPS instructions\n"));
19830 fprintf (stream, _("\
19831 -msmartmips generate smartmips instructions\n\
19832 -mno-smartmips do not generate smartmips instructions\n"));
19833 fprintf (stream, _("\
19834 -mdsp generate DSP instructions\n\
19835 -mno-dsp do not generate DSP instructions\n"));
19836 fprintf (stream, _("\
19837 -mdspr2 generate DSP R2 instructions\n\
19838 -mno-dspr2 do not generate DSP R2 instructions\n"));
19839 fprintf (stream, _("\
19840 -mdspr3 generate DSP R3 instructions\n\
19841 -mno-dspr3 do not generate DSP R3 instructions\n"));
19842 fprintf (stream, _("\
19843 -mmt generate MT instructions\n\
19844 -mno-mt do not generate MT instructions\n"));
19845 fprintf (stream, _("\
19846 -mmcu generate MCU instructions\n\
19847 -mno-mcu do not generate MCU instructions\n"));
19848 fprintf (stream, _("\
19849 -mmsa generate MSA instructions\n\
19850 -mno-msa do not generate MSA instructions\n"));
19851 fprintf (stream, _("\
19852 -mxpa generate eXtended Physical Address (XPA) instructions\n\
19853 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
19854 fprintf (stream, _("\
19855 -mvirt generate Virtualization instructions\n\
19856 -mno-virt do not generate Virtualization instructions\n"));
19857 fprintf (stream, _("\
19858 -minsn32 only generate 32-bit microMIPS instructions\n\
19859 -mno-insn32 generate all microMIPS instructions\n"));
19860 fprintf (stream, _("\
19861 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
19862 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
19863 -mfix-vr4120 work around certain VR4120 errata\n\
19864 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
19865 -mfix-24k insert a nop after ERET and DERET instructions\n\
19866 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
19867 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
19868 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
19869 -msym32 assume all symbols have 32-bit values\n\
19870 -O0 remove unneeded NOPs, do not swap branches\n\
19871 -O remove unneeded NOPs and swap branches\n\
19872 --trap, --no-break trap exception on div by 0 and mult overflow\n\
19873 --break, --no-trap break exception on div by 0 and mult overflow\n"));
19874 fprintf (stream, _("\
19875 -mhard-float allow floating-point instructions\n\
19876 -msoft-float do not allow floating-point instructions\n\
19877 -msingle-float only allow 32-bit floating-point operations\n\
19878 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
19879 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
19880 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
19881 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
19882 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
19883 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
19884
19885 first = 1;
19886
19887 show (stream, "legacy", &column, &first);
19888 show (stream, "2008", &column, &first);
19889
19890 fputc ('\n', stream);
19891
19892 fprintf (stream, _("\
19893 -KPIC, -call_shared generate SVR4 position independent code\n\
19894 -call_nonpic generate non-PIC code that can operate with DSOs\n\
19895 -mvxworks-pic generate VxWorks position independent code\n\
19896 -non_shared do not generate code that can operate with DSOs\n\
19897 -xgot assume a 32 bit GOT\n\
19898 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
19899 -mshared, -mno-shared disable/enable .cpload optimization for\n\
19900 position dependent (non shared) code\n\
19901 -mabi=ABI create ABI conformant object file for:\n"));
19902
19903 first = 1;
19904
19905 show (stream, "32", &column, &first);
19906 show (stream, "o64", &column, &first);
19907 show (stream, "n32", &column, &first);
19908 show (stream, "64", &column, &first);
19909 show (stream, "eabi", &column, &first);
19910
19911 fputc ('\n', stream);
19912
19913 fprintf (stream, _("\
19914 -32 create o32 ABI object file (default)\n\
19915 -n32 create n32 ABI object file\n\
19916 -64 create 64 ABI object file\n"));
19917 }
19918
19919 #ifdef TE_IRIX
19920 enum dwarf2_format
19921 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
19922 {
19923 if (HAVE_64BIT_SYMBOLS)
19924 return dwarf2_format_64bit_irix;
19925 else
19926 return dwarf2_format_32bit;
19927 }
19928 #endif
19929
19930 int
19931 mips_dwarf2_addr_size (void)
19932 {
19933 if (HAVE_64BIT_OBJECTS)
19934 return 8;
19935 else
19936 return 4;
19937 }
19938
19939 /* Standard calling conventions leave the CFA at SP on entry. */
19940 void
19941 mips_cfi_frame_initial_instructions (void)
19942 {
19943 cfi_add_CFA_def_cfa_register (SP);
19944 }
19945
19946 int
19947 tc_mips_regname_to_dw2regnum (char *regname)
19948 {
19949 unsigned int regnum = -1;
19950 unsigned int reg;
19951
19952 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
19953 regnum = reg;
19954
19955 return regnum;
19956 }
19957
19958 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
19959 Given a symbolic attribute NAME, return the proper integer value.
19960 Returns -1 if the attribute is not known. */
19961
19962 int
19963 mips_convert_symbolic_attribute (const char *name)
19964 {
19965 static const struct
19966 {
19967 const char * name;
19968 const int tag;
19969 }
19970 attribute_table[] =
19971 {
19972 #define T(tag) {#tag, tag}
19973 T (Tag_GNU_MIPS_ABI_FP),
19974 T (Tag_GNU_MIPS_ABI_MSA),
19975 #undef T
19976 };
19977 unsigned int i;
19978
19979 if (name == NULL)
19980 return -1;
19981
19982 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
19983 if (streq (name, attribute_table[i].name))
19984 return attribute_table[i].tag;
19985
19986 return -1;
19987 }
19988
19989 void
19990 md_mips_end (void)
19991 {
19992 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
19993
19994 mips_emit_delays ();
19995 if (cur_proc_ptr)
19996 as_warn (_("missing .end at end of assembly"));
19997
19998 /* Just in case no code was emitted, do the consistency check. */
19999 file_mips_check_options ();
20000
20001 /* Set a floating-point ABI if the user did not. */
20002 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20003 {
20004 /* Perform consistency checks on the floating-point ABI. */
20005 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20006 Tag_GNU_MIPS_ABI_FP);
20007 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20008 check_fpabi (fpabi);
20009 }
20010 else
20011 {
20012 /* Soft-float gets precedence over single-float, the two options should
20013 not be used together so this should not matter. */
20014 if (file_mips_opts.soft_float == 1)
20015 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20016 /* Single-float gets precedence over all double_float cases. */
20017 else if (file_mips_opts.single_float == 1)
20018 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20019 else
20020 {
20021 switch (file_mips_opts.fp)
20022 {
20023 case 32:
20024 if (file_mips_opts.gp == 32)
20025 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20026 break;
20027 case 0:
20028 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20029 break;
20030 case 64:
20031 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20032 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20033 else if (file_mips_opts.gp == 32)
20034 fpabi = Val_GNU_MIPS_ABI_FP_64;
20035 else
20036 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20037 break;
20038 }
20039 }
20040
20041 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20042 Tag_GNU_MIPS_ABI_FP, fpabi);
20043 }
20044 }
20045
20046 /* Returns the relocation type required for a particular CFI encoding. */
20047
20048 bfd_reloc_code_real_type
20049 mips_cfi_reloc_for_encoding (int encoding)
20050 {
20051 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20052 return BFD_RELOC_32_PCREL;
20053 else return BFD_RELOC_NONE;
20054 }
This page took 0.669819 seconds and 5 git commands to generate.