2009-08-04 Sandra Loosemore <sandra@codesourcery.com>
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by the OSF and Ralph Campbell.
5 Written by Keith Knowles and Ralph Campbell, working independently.
6 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
7 Support.
8
9 This file is part of GAS.
10
11 GAS is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GAS is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GAS; see the file COPYING. If not, write to the Free
23 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
24 02110-1301, USA. */
25
26 #include "as.h"
27 #include "config.h"
28 #include "subsegs.h"
29 #include "safe-ctype.h"
30
31 #include "opcode/mips.h"
32 #include "itbl-ops.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35
36 #ifdef DEBUG
37 #define DBG(x) printf x
38 #else
39 #define DBG(x)
40 #endif
41
42 #ifdef OBJ_MAYBE_ELF
43 /* Clean up namespace so we can include obj-elf.h too. */
44 static int mips_output_flavor (void);
45 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
46 #undef OBJ_PROCESS_STAB
47 #undef OUTPUT_FLAVOR
48 #undef S_GET_ALIGN
49 #undef S_GET_SIZE
50 #undef S_SET_ALIGN
51 #undef S_SET_SIZE
52 #undef obj_frob_file
53 #undef obj_frob_file_after_relocs
54 #undef obj_frob_symbol
55 #undef obj_pop_insert
56 #undef obj_sec_sym_ok_for_reloc
57 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
58
59 #include "obj-elf.h"
60 /* Fix any of them that we actually care about. */
61 #undef OUTPUT_FLAVOR
62 #define OUTPUT_FLAVOR mips_output_flavor()
63 #endif
64
65 #if defined (OBJ_ELF)
66 #include "elf/mips.h"
67 #endif
68
69 #ifndef ECOFF_DEBUGGING
70 #define NO_ECOFF_DEBUGGING
71 #define ECOFF_DEBUGGING 0
72 #endif
73
74 int mips_flag_mdebug = -1;
75
76 /* Control generation of .pdr sections. Off by default on IRIX: the native
77 linker doesn't know about and discards them, but relocations against them
78 remain, leading to rld crashes. */
79 #ifdef TE_IRIX
80 int mips_flag_pdr = FALSE;
81 #else
82 int mips_flag_pdr = TRUE;
83 #endif
84
85 #include "ecoff.h"
86
87 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
88 static char *mips_regmask_frag;
89 #endif
90
91 #define ZERO 0
92 #define ATREG 1
93 #define TREG 24
94 #define PIC_CALL_REG 25
95 #define KT0 26
96 #define KT1 27
97 #define GP 28
98 #define SP 29
99 #define FP 30
100 #define RA 31
101
102 #define ILLEGAL_REG (32)
103
104 #define AT mips_opts.at
105
106 /* Allow override of standard little-endian ECOFF format. */
107
108 #ifndef ECOFF_LITTLE_FORMAT
109 #define ECOFF_LITTLE_FORMAT "ecoff-littlemips"
110 #endif
111
112 extern int target_big_endian;
113
114 /* The name of the readonly data section. */
115 #define RDATA_SECTION_NAME (OUTPUT_FLAVOR == bfd_target_ecoff_flavour \
116 ? ".rdata" \
117 : OUTPUT_FLAVOR == bfd_target_coff_flavour \
118 ? ".rdata" \
119 : OUTPUT_FLAVOR == bfd_target_elf_flavour \
120 ? ".rodata" \
121 : (abort (), ""))
122
123 /* Information about an instruction, including its format, operands
124 and fixups. */
125 struct mips_cl_insn
126 {
127 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
128 const struct mips_opcode *insn_mo;
129
130 /* True if this is a mips16 instruction and if we want the extended
131 form of INSN_MO. */
132 bfd_boolean use_extend;
133
134 /* The 16-bit extension instruction to use when USE_EXTEND is true. */
135 unsigned short extend;
136
137 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
138 a copy of INSN_MO->match with the operands filled in. */
139 unsigned long insn_opcode;
140
141 /* The frag that contains the instruction. */
142 struct frag *frag;
143
144 /* The offset into FRAG of the first instruction byte. */
145 long where;
146
147 /* The relocs associated with the instruction, if any. */
148 fixS *fixp[3];
149
150 /* True if this entry cannot be moved from its current position. */
151 unsigned int fixed_p : 1;
152
153 /* True if this instruction occurred in a .set noreorder block. */
154 unsigned int noreorder_p : 1;
155
156 /* True for mips16 instructions that jump to an absolute address. */
157 unsigned int mips16_absolute_jump_p : 1;
158 };
159
160 /* The ABI to use. */
161 enum mips_abi_level
162 {
163 NO_ABI = 0,
164 O32_ABI,
165 O64_ABI,
166 N32_ABI,
167 N64_ABI,
168 EABI_ABI
169 };
170
171 /* MIPS ABI we are using for this output file. */
172 static enum mips_abi_level mips_abi = NO_ABI;
173
174 /* Whether or not we have code that can call pic code. */
175 int mips_abicalls = FALSE;
176
177 /* Whether or not we have code which can be put into a shared
178 library. */
179 static bfd_boolean mips_in_shared = TRUE;
180
181 /* This is the set of options which may be modified by the .set
182 pseudo-op. We use a struct so that .set push and .set pop are more
183 reliable. */
184
185 struct mips_set_options
186 {
187 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
188 if it has not been initialized. Changed by `.set mipsN', and the
189 -mipsN command line option, and the default CPU. */
190 int isa;
191 /* Enabled Application Specific Extensions (ASEs). These are set to -1
192 if they have not been initialized. Changed by `.set <asename>', by
193 command line options, and based on the default architecture. */
194 int ase_mips3d;
195 int ase_mdmx;
196 int ase_smartmips;
197 int ase_dsp;
198 int ase_dspr2;
199 int ase_mt;
200 /* Whether we are assembling for the mips16 processor. 0 if we are
201 not, 1 if we are, and -1 if the value has not been initialized.
202 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
203 -nomips16 command line options, and the default CPU. */
204 int mips16;
205 /* Non-zero if we should not reorder instructions. Changed by `.set
206 reorder' and `.set noreorder'. */
207 int noreorder;
208 /* Non-zero if we should not permit the register designated "assembler
209 temporary" to be used in instructions. The value is the register
210 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
211 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
212 unsigned int at;
213 /* Non-zero if we should warn when a macro instruction expands into
214 more than one machine instruction. Changed by `.set nomacro' and
215 `.set macro'. */
216 int warn_about_macros;
217 /* Non-zero if we should not move instructions. Changed by `.set
218 move', `.set volatile', `.set nomove', and `.set novolatile'. */
219 int nomove;
220 /* Non-zero if we should not optimize branches by moving the target
221 of the branch into the delay slot. Actually, we don't perform
222 this optimization anyhow. Changed by `.set bopt' and `.set
223 nobopt'. */
224 int nobopt;
225 /* Non-zero if we should not autoextend mips16 instructions.
226 Changed by `.set autoextend' and `.set noautoextend'. */
227 int noautoextend;
228 /* Restrict general purpose registers and floating point registers
229 to 32 bit. This is initially determined when -mgp32 or -mfp32
230 is passed but can changed if the assembler code uses .set mipsN. */
231 int gp32;
232 int fp32;
233 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
234 command line option, and the default CPU. */
235 int arch;
236 /* True if ".set sym32" is in effect. */
237 bfd_boolean sym32;
238 /* True if floating-point operations are not allowed. Changed by .set
239 softfloat or .set hardfloat, by command line options -msoft-float or
240 -mhard-float. The default is false. */
241 bfd_boolean soft_float;
242
243 /* True if only single-precision floating-point operations are allowed.
244 Changed by .set singlefloat or .set doublefloat, command-line options
245 -msingle-float or -mdouble-float. The default is false. */
246 bfd_boolean single_float;
247 };
248
249 /* This is the struct we use to hold the current set of options. Note
250 that we must set the isa field to ISA_UNKNOWN and the ASE fields to
251 -1 to indicate that they have not been initialized. */
252
253 /* True if -mgp32 was passed. */
254 static int file_mips_gp32 = -1;
255
256 /* True if -mfp32 was passed. */
257 static int file_mips_fp32 = -1;
258
259 /* 1 if -msoft-float, 0 if -mhard-float. The default is 0. */
260 static int file_mips_soft_float = 0;
261
262 /* 1 if -msingle-float, 0 if -mdouble-float. The default is 0. */
263 static int file_mips_single_float = 0;
264
265 static struct mips_set_options mips_opts =
266 {
267 /* isa */ ISA_UNKNOWN, /* ase_mips3d */ -1, /* ase_mdmx */ -1,
268 /* ase_smartmips */ 0, /* ase_dsp */ -1, /* ase_dspr2 */ -1, /* ase_mt */ -1,
269 /* mips16 */ -1, /* noreorder */ 0, /* at */ ATREG,
270 /* warn_about_macros */ 0, /* nomove */ 0, /* nobopt */ 0,
271 /* noautoextend */ 0, /* gp32 */ 0, /* fp32 */ 0, /* arch */ CPU_UNKNOWN,
272 /* sym32 */ FALSE, /* soft_float */ FALSE, /* single_float */ FALSE
273 };
274
275 /* These variables are filled in with the masks of registers used.
276 The object format code reads them and puts them in the appropriate
277 place. */
278 unsigned long mips_gprmask;
279 unsigned long mips_cprmask[4];
280
281 /* MIPS ISA we are using for this output file. */
282 static int file_mips_isa = ISA_UNKNOWN;
283
284 /* True if -mips16 was passed or implied by arguments passed on the
285 command line (e.g., by -march). */
286 static int file_ase_mips16;
287
288 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
289 || mips_opts.isa == ISA_MIPS32R2 \
290 || mips_opts.isa == ISA_MIPS64 \
291 || mips_opts.isa == ISA_MIPS64R2)
292
293 /* True if -mips3d was passed or implied by arguments passed on the
294 command line (e.g., by -march). */
295 static int file_ase_mips3d;
296
297 /* True if -mdmx was passed or implied by arguments passed on the
298 command line (e.g., by -march). */
299 static int file_ase_mdmx;
300
301 /* True if -msmartmips was passed or implied by arguments passed on the
302 command line (e.g., by -march). */
303 static int file_ase_smartmips;
304
305 #define ISA_SUPPORTS_SMARTMIPS (mips_opts.isa == ISA_MIPS32 \
306 || mips_opts.isa == ISA_MIPS32R2)
307
308 /* True if -mdsp was passed or implied by arguments passed on the
309 command line (e.g., by -march). */
310 static int file_ase_dsp;
311
312 #define ISA_SUPPORTS_DSP_ASE (mips_opts.isa == ISA_MIPS32R2 \
313 || mips_opts.isa == ISA_MIPS64R2)
314
315 #define ISA_SUPPORTS_DSP64_ASE (mips_opts.isa == ISA_MIPS64R2)
316
317 /* True if -mdspr2 was passed or implied by arguments passed on the
318 command line (e.g., by -march). */
319 static int file_ase_dspr2;
320
321 #define ISA_SUPPORTS_DSPR2_ASE (mips_opts.isa == ISA_MIPS32R2 \
322 || mips_opts.isa == ISA_MIPS64R2)
323
324 /* True if -mmt was passed or implied by arguments passed on the
325 command line (e.g., by -march). */
326 static int file_ase_mt;
327
328 #define ISA_SUPPORTS_MT_ASE (mips_opts.isa == ISA_MIPS32R2 \
329 || mips_opts.isa == ISA_MIPS64R2)
330
331 /* The argument of the -march= flag. The architecture we are assembling. */
332 static int file_mips_arch = CPU_UNKNOWN;
333 static const char *mips_arch_string;
334
335 /* The argument of the -mtune= flag. The architecture for which we
336 are optimizing. */
337 static int mips_tune = CPU_UNKNOWN;
338 static const char *mips_tune_string;
339
340 /* True when generating 32-bit code for a 64-bit processor. */
341 static int mips_32bitmode = 0;
342
343 /* True if the given ABI requires 32-bit registers. */
344 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
345
346 /* Likewise 64-bit registers. */
347 #define ABI_NEEDS_64BIT_REGS(ABI) \
348 ((ABI) == N32_ABI \
349 || (ABI) == N64_ABI \
350 || (ABI) == O64_ABI)
351
352 /* Return true if ISA supports 64 bit wide gp registers. */
353 #define ISA_HAS_64BIT_REGS(ISA) \
354 ((ISA) == ISA_MIPS3 \
355 || (ISA) == ISA_MIPS4 \
356 || (ISA) == ISA_MIPS5 \
357 || (ISA) == ISA_MIPS64 \
358 || (ISA) == ISA_MIPS64R2)
359
360 /* Return true if ISA supports 64 bit wide float registers. */
361 #define ISA_HAS_64BIT_FPRS(ISA) \
362 ((ISA) == ISA_MIPS3 \
363 || (ISA) == ISA_MIPS4 \
364 || (ISA) == ISA_MIPS5 \
365 || (ISA) == ISA_MIPS32R2 \
366 || (ISA) == ISA_MIPS64 \
367 || (ISA) == ISA_MIPS64R2)
368
369 /* Return true if ISA supports 64-bit right rotate (dror et al.)
370 instructions. */
371 #define ISA_HAS_DROR(ISA) \
372 ((ISA) == ISA_MIPS64R2)
373
374 /* Return true if ISA supports 32-bit right rotate (ror et al.)
375 instructions. */
376 #define ISA_HAS_ROR(ISA) \
377 ((ISA) == ISA_MIPS32R2 \
378 || (ISA) == ISA_MIPS64R2 \
379 || mips_opts.ase_smartmips)
380
381 /* Return true if ISA supports single-precision floats in odd registers. */
382 #define ISA_HAS_ODD_SINGLE_FPR(ISA) \
383 ((ISA) == ISA_MIPS32 \
384 || (ISA) == ISA_MIPS32R2 \
385 || (ISA) == ISA_MIPS64 \
386 || (ISA) == ISA_MIPS64R2)
387
388 /* Return true if ISA supports move to/from high part of a 64-bit
389 floating-point register. */
390 #define ISA_HAS_MXHC1(ISA) \
391 ((ISA) == ISA_MIPS32R2 \
392 || (ISA) == ISA_MIPS64R2)
393
394 #define HAVE_32BIT_GPRS \
395 (mips_opts.gp32 || !ISA_HAS_64BIT_REGS (mips_opts.isa))
396
397 #define HAVE_32BIT_FPRS \
398 (mips_opts.fp32 || !ISA_HAS_64BIT_FPRS (mips_opts.isa))
399
400 #define HAVE_64BIT_GPRS (!HAVE_32BIT_GPRS)
401 #define HAVE_64BIT_FPRS (!HAVE_32BIT_FPRS)
402
403 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
404
405 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
406
407 /* True if relocations are stored in-place. */
408 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
409
410 /* The ABI-derived address size. */
411 #define HAVE_64BIT_ADDRESSES \
412 (HAVE_64BIT_GPRS && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
413 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
414
415 /* The size of symbolic constants (i.e., expressions of the form
416 "SYMBOL" or "SYMBOL + OFFSET"). */
417 #define HAVE_32BIT_SYMBOLS \
418 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
419 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
420
421 /* Addresses are loaded in different ways, depending on the address size
422 in use. The n32 ABI Documentation also mandates the use of additions
423 with overflow checking, but existing implementations don't follow it. */
424 #define ADDRESS_ADD_INSN \
425 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
426
427 #define ADDRESS_ADDI_INSN \
428 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
429
430 #define ADDRESS_LOAD_INSN \
431 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
432
433 #define ADDRESS_STORE_INSN \
434 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
435
436 /* Return true if the given CPU supports the MIPS16 ASE. */
437 #define CPU_HAS_MIPS16(cpu) \
438 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
439 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
440
441 /* True if CPU has a dror instruction. */
442 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
443
444 /* True if CPU has a ror instruction. */
445 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
446
447 /* True if CPU has seq/sne and seqi/snei instructions. */
448 #define CPU_HAS_SEQ(CPU) ((CPU) == CPU_OCTEON)
449
450 /* True if CPU does not implement the all the coprocessor insns. For these
451 CPUs only those COP insns are accepted that are explicitly marked to be
452 available on the CPU. ISA membership for COP insns is ignored. */
453 #define NO_ISA_COP(CPU) ((CPU) == CPU_OCTEON)
454
455 /* True if mflo and mfhi can be immediately followed by instructions
456 which write to the HI and LO registers.
457
458 According to MIPS specifications, MIPS ISAs I, II, and III need
459 (at least) two instructions between the reads of HI/LO and
460 instructions which write them, and later ISAs do not. Contradicting
461 the MIPS specifications, some MIPS IV processor user manuals (e.g.
462 the UM for the NEC Vr5000) document needing the instructions between
463 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
464 MIPS64 and later ISAs to have the interlocks, plus any specific
465 earlier-ISA CPUs for which CPU documentation declares that the
466 instructions are really interlocked. */
467 #define hilo_interlocks \
468 (mips_opts.isa == ISA_MIPS32 \
469 || mips_opts.isa == ISA_MIPS32R2 \
470 || mips_opts.isa == ISA_MIPS64 \
471 || mips_opts.isa == ISA_MIPS64R2 \
472 || mips_opts.arch == CPU_R4010 \
473 || mips_opts.arch == CPU_R10000 \
474 || mips_opts.arch == CPU_R12000 \
475 || mips_opts.arch == CPU_R14000 \
476 || mips_opts.arch == CPU_R16000 \
477 || mips_opts.arch == CPU_RM7000 \
478 || mips_opts.arch == CPU_VR5500 \
479 )
480
481 /* Whether the processor uses hardware interlocks to protect reads
482 from the GPRs after they are loaded from memory, and thus does not
483 require nops to be inserted. This applies to instructions marked
484 INSN_LOAD_MEMORY_DELAY. These nops are only required at MIPS ISA
485 level I. */
486 #define gpr_interlocks \
487 (mips_opts.isa != ISA_MIPS1 \
488 || mips_opts.arch == CPU_R3900)
489
490 /* Whether the processor uses hardware interlocks to avoid delays
491 required by coprocessor instructions, and thus does not require
492 nops to be inserted. This applies to instructions marked
493 INSN_LOAD_COPROC_DELAY, INSN_COPROC_MOVE_DELAY, and to delays
494 between instructions marked INSN_WRITE_COND_CODE and ones marked
495 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
496 levels I, II, and III. */
497 /* Itbl support may require additional care here. */
498 #define cop_interlocks \
499 ((mips_opts.isa != ISA_MIPS1 \
500 && mips_opts.isa != ISA_MIPS2 \
501 && mips_opts.isa != ISA_MIPS3) \
502 || mips_opts.arch == CPU_R4300 \
503 )
504
505 /* Whether the processor uses hardware interlocks to protect reads
506 from coprocessor registers after they are loaded from memory, and
507 thus does not require nops to be inserted. This applies to
508 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
509 requires at MIPS ISA level I. */
510 #define cop_mem_interlocks (mips_opts.isa != ISA_MIPS1)
511
512 /* Is this a mfhi or mflo instruction? */
513 #define MF_HILO_INSN(PINFO) \
514 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
515
516 /* Returns true for a (non floating-point) coprocessor instruction. Reading
517 or writing the condition code is only possible on the coprocessors and
518 these insns are not marked with INSN_COP. Thus for these insns use the
519 condition-code flags. */
520 #define COP_INSN(PINFO) \
521 (PINFO != INSN_MACRO \
522 && ((PINFO) & (FP_S | FP_D)) == 0 \
523 && ((PINFO) & (INSN_COP | INSN_READ_COND_CODE | INSN_WRITE_COND_CODE)))
524
525 /* MIPS PIC level. */
526
527 enum mips_pic_level mips_pic;
528
529 /* 1 if we should generate 32 bit offsets from the $gp register in
530 SVR4_PIC mode. Currently has no meaning in other modes. */
531 static int mips_big_got = 0;
532
533 /* 1 if trap instructions should used for overflow rather than break
534 instructions. */
535 static int mips_trap = 0;
536
537 /* 1 if double width floating point constants should not be constructed
538 by assembling two single width halves into two single width floating
539 point registers which just happen to alias the double width destination
540 register. On some architectures this aliasing can be disabled by a bit
541 in the status register, and the setting of this bit cannot be determined
542 automatically at assemble time. */
543 static int mips_disable_float_construction;
544
545 /* Non-zero if any .set noreorder directives were used. */
546
547 static int mips_any_noreorder;
548
549 /* Non-zero if nops should be inserted when the register referenced in
550 an mfhi/mflo instruction is read in the next two instructions. */
551 static int mips_7000_hilo_fix;
552
553 /* The size of objects in the small data section. */
554 static unsigned int g_switch_value = 8;
555 /* Whether the -G option was used. */
556 static int g_switch_seen = 0;
557
558 #define N_RMASK 0xc4
559 #define N_VFP 0xd4
560
561 /* If we can determine in advance that GP optimization won't be
562 possible, we can skip the relaxation stuff that tries to produce
563 GP-relative references. This makes delay slot optimization work
564 better.
565
566 This function can only provide a guess, but it seems to work for
567 gcc output. It needs to guess right for gcc, otherwise gcc
568 will put what it thinks is a GP-relative instruction in a branch
569 delay slot.
570
571 I don't know if a fix is needed for the SVR4_PIC mode. I've only
572 fixed it for the non-PIC mode. KR 95/04/07 */
573 static int nopic_need_relax (symbolS *, int);
574
575 /* handle of the OPCODE hash table */
576 static struct hash_control *op_hash = NULL;
577
578 /* The opcode hash table we use for the mips16. */
579 static struct hash_control *mips16_op_hash = NULL;
580
581 /* This array holds the chars that always start a comment. If the
582 pre-processor is disabled, these aren't very useful */
583 const char comment_chars[] = "#";
584
585 /* This array holds the chars that only start a comment at the beginning of
586 a line. If the line seems to have the form '# 123 filename'
587 .line and .file directives will appear in the pre-processed output */
588 /* Note that input_file.c hand checks for '#' at the beginning of the
589 first line of the input file. This is because the compiler outputs
590 #NO_APP at the beginning of its output. */
591 /* Also note that C style comments are always supported. */
592 const char line_comment_chars[] = "#";
593
594 /* This array holds machine specific line separator characters. */
595 const char line_separator_chars[] = ";";
596
597 /* Chars that can be used to separate mant from exp in floating point nums */
598 const char EXP_CHARS[] = "eE";
599
600 /* Chars that mean this number is a floating point constant */
601 /* As in 0f12.456 */
602 /* or 0d1.2345e12 */
603 const char FLT_CHARS[] = "rRsSfFdDxXpP";
604
605 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
606 changed in read.c . Ideally it shouldn't have to know about it at all,
607 but nothing is ideal around here.
608 */
609
610 static char *insn_error;
611
612 static int auto_align = 1;
613
614 /* When outputting SVR4 PIC code, the assembler needs to know the
615 offset in the stack frame from which to restore the $gp register.
616 This is set by the .cprestore pseudo-op, and saved in this
617 variable. */
618 static offsetT mips_cprestore_offset = -1;
619
620 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
621 more optimizations, it can use a register value instead of a memory-saved
622 offset and even an other register than $gp as global pointer. */
623 static offsetT mips_cpreturn_offset = -1;
624 static int mips_cpreturn_register = -1;
625 static int mips_gp_register = GP;
626 static int mips_gprel_offset = 0;
627
628 /* Whether mips_cprestore_offset has been set in the current function
629 (or whether it has already been warned about, if not). */
630 static int mips_cprestore_valid = 0;
631
632 /* This is the register which holds the stack frame, as set by the
633 .frame pseudo-op. This is needed to implement .cprestore. */
634 static int mips_frame_reg = SP;
635
636 /* Whether mips_frame_reg has been set in the current function
637 (or whether it has already been warned about, if not). */
638 static int mips_frame_reg_valid = 0;
639
640 /* To output NOP instructions correctly, we need to keep information
641 about the previous two instructions. */
642
643 /* Whether we are optimizing. The default value of 2 means to remove
644 unneeded NOPs and swap branch instructions when possible. A value
645 of 1 means to not swap branches. A value of 0 means to always
646 insert NOPs. */
647 static int mips_optimize = 2;
648
649 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
650 equivalent to seeing no -g option at all. */
651 static int mips_debug = 0;
652
653 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
654 #define MAX_VR4130_NOPS 4
655
656 /* The maximum number of NOPs needed to fill delay slots. */
657 #define MAX_DELAY_NOPS 2
658
659 /* The maximum number of NOPs needed for any purpose. */
660 #define MAX_NOPS 4
661
662 /* A list of previous instructions, with index 0 being the most recent.
663 We need to look back MAX_NOPS instructions when filling delay slots
664 or working around processor errata. We need to look back one
665 instruction further if we're thinking about using history[0] to
666 fill a branch delay slot. */
667 static struct mips_cl_insn history[1 + MAX_NOPS];
668
669 /* Nop instructions used by emit_nop. */
670 static struct mips_cl_insn nop_insn, mips16_nop_insn;
671
672 /* The appropriate nop for the current mode. */
673 #define NOP_INSN (mips_opts.mips16 ? &mips16_nop_insn : &nop_insn)
674
675 /* If this is set, it points to a frag holding nop instructions which
676 were inserted before the start of a noreorder section. If those
677 nops turn out to be unnecessary, the size of the frag can be
678 decreased. */
679 static fragS *prev_nop_frag;
680
681 /* The number of nop instructions we created in prev_nop_frag. */
682 static int prev_nop_frag_holds;
683
684 /* The number of nop instructions that we know we need in
685 prev_nop_frag. */
686 static int prev_nop_frag_required;
687
688 /* The number of instructions we've seen since prev_nop_frag. */
689 static int prev_nop_frag_since;
690
691 /* For ECOFF and ELF, relocations against symbols are done in two
692 parts, with a HI relocation and a LO relocation. Each relocation
693 has only 16 bits of space to store an addend. This means that in
694 order for the linker to handle carries correctly, it must be able
695 to locate both the HI and the LO relocation. This means that the
696 relocations must appear in order in the relocation table.
697
698 In order to implement this, we keep track of each unmatched HI
699 relocation. We then sort them so that they immediately precede the
700 corresponding LO relocation. */
701
702 struct mips_hi_fixup
703 {
704 /* Next HI fixup. */
705 struct mips_hi_fixup *next;
706 /* This fixup. */
707 fixS *fixp;
708 /* The section this fixup is in. */
709 segT seg;
710 };
711
712 /* The list of unmatched HI relocs. */
713
714 static struct mips_hi_fixup *mips_hi_fixup_list;
715
716 /* The frag containing the last explicit relocation operator.
717 Null if explicit relocations have not been used. */
718
719 static fragS *prev_reloc_op_frag;
720
721 /* Map normal MIPS register numbers to mips16 register numbers. */
722
723 #define X ILLEGAL_REG
724 static const int mips32_to_16_reg_map[] =
725 {
726 X, X, 2, 3, 4, 5, 6, 7,
727 X, X, X, X, X, X, X, X,
728 0, 1, X, X, X, X, X, X,
729 X, X, X, X, X, X, X, X
730 };
731 #undef X
732
733 /* Map mips16 register numbers to normal MIPS register numbers. */
734
735 static const unsigned int mips16_to_32_reg_map[] =
736 {
737 16, 17, 2, 3, 4, 5, 6, 7
738 };
739
740 /* Classifies the kind of instructions we're interested in when
741 implementing -mfix-vr4120. */
742 enum fix_vr4120_class {
743 FIX_VR4120_MACC,
744 FIX_VR4120_DMACC,
745 FIX_VR4120_MULT,
746 FIX_VR4120_DMULT,
747 FIX_VR4120_DIV,
748 FIX_VR4120_MTHILO,
749 NUM_FIX_VR4120_CLASSES
750 };
751
752 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
753 there must be at least one other instruction between an instruction
754 of type X and an instruction of type Y. */
755 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
756
757 /* True if -mfix-vr4120 is in force. */
758 static int mips_fix_vr4120;
759
760 /* ...likewise -mfix-vr4130. */
761 static int mips_fix_vr4130;
762
763 /* ...likewise -mfix-24k. */
764 static int mips_fix_24k;
765
766 /* We don't relax branches by default, since this causes us to expand
767 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
768 fail to compute the offset before expanding the macro to the most
769 efficient expansion. */
770
771 static int mips_relax_branch;
772 \f
773 /* The expansion of many macros depends on the type of symbol that
774 they refer to. For example, when generating position-dependent code,
775 a macro that refers to a symbol may have two different expansions,
776 one which uses GP-relative addresses and one which uses absolute
777 addresses. When generating SVR4-style PIC, a macro may have
778 different expansions for local and global symbols.
779
780 We handle these situations by generating both sequences and putting
781 them in variant frags. In position-dependent code, the first sequence
782 will be the GP-relative one and the second sequence will be the
783 absolute one. In SVR4 PIC, the first sequence will be for global
784 symbols and the second will be for local symbols.
785
786 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
787 SECOND are the lengths of the two sequences in bytes. These fields
788 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
789 the subtype has the following flags:
790
791 RELAX_USE_SECOND
792 Set if it has been decided that we should use the second
793 sequence instead of the first.
794
795 RELAX_SECOND_LONGER
796 Set in the first variant frag if the macro's second implementation
797 is longer than its first. This refers to the macro as a whole,
798 not an individual relaxation.
799
800 RELAX_NOMACRO
801 Set in the first variant frag if the macro appeared in a .set nomacro
802 block and if one alternative requires a warning but the other does not.
803
804 RELAX_DELAY_SLOT
805 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
806 delay slot.
807
808 The frag's "opcode" points to the first fixup for relaxable code.
809
810 Relaxable macros are generated using a sequence such as:
811
812 relax_start (SYMBOL);
813 ... generate first expansion ...
814 relax_switch ();
815 ... generate second expansion ...
816 relax_end ();
817
818 The code and fixups for the unwanted alternative are discarded
819 by md_convert_frag. */
820 #define RELAX_ENCODE(FIRST, SECOND) (((FIRST) << 8) | (SECOND))
821
822 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
823 #define RELAX_SECOND(X) ((X) & 0xff)
824 #define RELAX_USE_SECOND 0x10000
825 #define RELAX_SECOND_LONGER 0x20000
826 #define RELAX_NOMACRO 0x40000
827 #define RELAX_DELAY_SLOT 0x80000
828
829 /* Branch without likely bit. If label is out of range, we turn:
830
831 beq reg1, reg2, label
832 delay slot
833
834 into
835
836 bne reg1, reg2, 0f
837 nop
838 j label
839 0: delay slot
840
841 with the following opcode replacements:
842
843 beq <-> bne
844 blez <-> bgtz
845 bltz <-> bgez
846 bc1f <-> bc1t
847
848 bltzal <-> bgezal (with jal label instead of j label)
849
850 Even though keeping the delay slot instruction in the delay slot of
851 the branch would be more efficient, it would be very tricky to do
852 correctly, because we'd have to introduce a variable frag *after*
853 the delay slot instruction, and expand that instead. Let's do it
854 the easy way for now, even if the branch-not-taken case now costs
855 one additional instruction. Out-of-range branches are not supposed
856 to be common, anyway.
857
858 Branch likely. If label is out of range, we turn:
859
860 beql reg1, reg2, label
861 delay slot (annulled if branch not taken)
862
863 into
864
865 beql reg1, reg2, 1f
866 nop
867 beql $0, $0, 2f
868 nop
869 1: j[al] label
870 delay slot (executed only if branch taken)
871 2:
872
873 It would be possible to generate a shorter sequence by losing the
874 likely bit, generating something like:
875
876 bne reg1, reg2, 0f
877 nop
878 j[al] label
879 delay slot (executed only if branch taken)
880 0:
881
882 beql -> bne
883 bnel -> beq
884 blezl -> bgtz
885 bgtzl -> blez
886 bltzl -> bgez
887 bgezl -> bltz
888 bc1fl -> bc1t
889 bc1tl -> bc1f
890
891 bltzall -> bgezal (with jal label instead of j label)
892 bgezall -> bltzal (ditto)
893
894
895 but it's not clear that it would actually improve performance. */
896 #define RELAX_BRANCH_ENCODE(uncond, likely, link, toofar) \
897 ((relax_substateT) \
898 (0xc0000000 \
899 | ((toofar) ? 1 : 0) \
900 | ((link) ? 2 : 0) \
901 | ((likely) ? 4 : 0) \
902 | ((uncond) ? 8 : 0)))
903 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
904 #define RELAX_BRANCH_UNCOND(i) (((i) & 8) != 0)
905 #define RELAX_BRANCH_LIKELY(i) (((i) & 4) != 0)
906 #define RELAX_BRANCH_LINK(i) (((i) & 2) != 0)
907 #define RELAX_BRANCH_TOOFAR(i) (((i) & 1) != 0)
908
909 /* For mips16 code, we use an entirely different form of relaxation.
910 mips16 supports two versions of most instructions which take
911 immediate values: a small one which takes some small value, and a
912 larger one which takes a 16 bit value. Since branches also follow
913 this pattern, relaxing these values is required.
914
915 We can assemble both mips16 and normal MIPS code in a single
916 object. Therefore, we need to support this type of relaxation at
917 the same time that we support the relaxation described above. We
918 use the high bit of the subtype field to distinguish these cases.
919
920 The information we store for this type of relaxation is the
921 argument code found in the opcode file for this relocation, whether
922 the user explicitly requested a small or extended form, and whether
923 the relocation is in a jump or jal delay slot. That tells us the
924 size of the value, and how it should be stored. We also store
925 whether the fragment is considered to be extended or not. We also
926 store whether this is known to be a branch to a different section,
927 whether we have tried to relax this frag yet, and whether we have
928 ever extended a PC relative fragment because of a shift count. */
929 #define RELAX_MIPS16_ENCODE(type, small, ext, dslot, jal_dslot) \
930 (0x80000000 \
931 | ((type) & 0xff) \
932 | ((small) ? 0x100 : 0) \
933 | ((ext) ? 0x200 : 0) \
934 | ((dslot) ? 0x400 : 0) \
935 | ((jal_dslot) ? 0x800 : 0))
936 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
937 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
938 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x100) != 0)
939 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x200) != 0)
940 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x400) != 0)
941 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x800) != 0)
942 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x1000) != 0)
943 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x1000)
944 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) &~ 0x1000)
945 #define RELAX_MIPS16_LONG_BRANCH(i) (((i) & 0x2000) != 0)
946 #define RELAX_MIPS16_MARK_LONG_BRANCH(i) ((i) | 0x2000)
947 #define RELAX_MIPS16_CLEAR_LONG_BRANCH(i) ((i) &~ 0x2000)
948
949 /* Is the given value a sign-extended 32-bit value? */
950 #define IS_SEXT_32BIT_NUM(x) \
951 (((x) &~ (offsetT) 0x7fffffff) == 0 \
952 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
953
954 /* Is the given value a sign-extended 16-bit value? */
955 #define IS_SEXT_16BIT_NUM(x) \
956 (((x) &~ (offsetT) 0x7fff) == 0 \
957 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
958
959 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
960 #define IS_ZEXT_32BIT_NUM(x) \
961 (((x) &~ (offsetT) 0xffffffff) == 0 \
962 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
963
964 /* Replace bits MASK << SHIFT of STRUCT with the equivalent bits in
965 VALUE << SHIFT. VALUE is evaluated exactly once. */
966 #define INSERT_BITS(STRUCT, VALUE, MASK, SHIFT) \
967 (STRUCT) = (((STRUCT) & ~((MASK) << (SHIFT))) \
968 | (((VALUE) & (MASK)) << (SHIFT)))
969
970 /* Extract bits MASK << SHIFT from STRUCT and shift them right
971 SHIFT places. */
972 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
973 (((STRUCT) >> (SHIFT)) & (MASK))
974
975 /* Change INSN's opcode so that the operand given by FIELD has value VALUE.
976 INSN is a mips_cl_insn structure and VALUE is evaluated exactly once.
977
978 include/opcode/mips.h specifies operand fields using the macros
979 OP_MASK_<FIELD> and OP_SH_<FIELD>. The MIPS16 equivalents start
980 with "MIPS16OP" instead of "OP". */
981 #define INSERT_OPERAND(FIELD, INSN, VALUE) \
982 INSERT_BITS ((INSN).insn_opcode, VALUE, OP_MASK_##FIELD, OP_SH_##FIELD)
983 #define MIPS16_INSERT_OPERAND(FIELD, INSN, VALUE) \
984 INSERT_BITS ((INSN).insn_opcode, VALUE, \
985 MIPS16OP_MASK_##FIELD, MIPS16OP_SH_##FIELD)
986
987 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
988 #define EXTRACT_OPERAND(FIELD, INSN) \
989 EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD)
990 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
991 EXTRACT_BITS ((INSN).insn_opcode, \
992 MIPS16OP_MASK_##FIELD, \
993 MIPS16OP_SH_##FIELD)
994 \f
995 /* Global variables used when generating relaxable macros. See the
996 comment above RELAX_ENCODE for more details about how relaxation
997 is used. */
998 static struct {
999 /* 0 if we're not emitting a relaxable macro.
1000 1 if we're emitting the first of the two relaxation alternatives.
1001 2 if we're emitting the second alternative. */
1002 int sequence;
1003
1004 /* The first relaxable fixup in the current frag. (In other words,
1005 the first fixup that refers to relaxable code.) */
1006 fixS *first_fixup;
1007
1008 /* sizes[0] says how many bytes of the first alternative are stored in
1009 the current frag. Likewise sizes[1] for the second alternative. */
1010 unsigned int sizes[2];
1011
1012 /* The symbol on which the choice of sequence depends. */
1013 symbolS *symbol;
1014 } mips_relax;
1015 \f
1016 /* Global variables used to decide whether a macro needs a warning. */
1017 static struct {
1018 /* True if the macro is in a branch delay slot. */
1019 bfd_boolean delay_slot_p;
1020
1021 /* For relaxable macros, sizes[0] is the length of the first alternative
1022 in bytes and sizes[1] is the length of the second alternative.
1023 For non-relaxable macros, both elements give the length of the
1024 macro in bytes. */
1025 unsigned int sizes[2];
1026
1027 /* The first variant frag for this macro. */
1028 fragS *first_frag;
1029 } mips_macro_warning;
1030 \f
1031 /* Prototypes for static functions. */
1032
1033 #define internalError() \
1034 as_fatal (_("internal Error, line %d, %s"), __LINE__, __FILE__)
1035
1036 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1037
1038 static void append_insn
1039 (struct mips_cl_insn *ip, expressionS *p, bfd_reloc_code_real_type *r);
1040 static void mips_no_prev_insn (void);
1041 static void mips16_macro_build
1042 (expressionS *, const char *, const char *, va_list);
1043 static void load_register (int, expressionS *, int);
1044 static void macro_start (void);
1045 static void macro_end (void);
1046 static void macro (struct mips_cl_insn * ip);
1047 static void mips16_macro (struct mips_cl_insn * ip);
1048 #ifdef LOSING_COMPILER
1049 static void macro2 (struct mips_cl_insn * ip);
1050 #endif
1051 static void mips_ip (char *str, struct mips_cl_insn * ip);
1052 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1053 static void mips16_immed
1054 (char *, unsigned int, int, offsetT, bfd_boolean, bfd_boolean, bfd_boolean,
1055 unsigned long *, bfd_boolean *, unsigned short *);
1056 static size_t my_getSmallExpression
1057 (expressionS *, bfd_reloc_code_real_type *, char *);
1058 static void my_getExpression (expressionS *, char *);
1059 static void s_align (int);
1060 static void s_change_sec (int);
1061 static void s_change_section (int);
1062 static void s_cons (int);
1063 static void s_float_cons (int);
1064 static void s_mips_globl (int);
1065 static void s_option (int);
1066 static void s_mipsset (int);
1067 static void s_abicalls (int);
1068 static void s_cpload (int);
1069 static void s_cpsetup (int);
1070 static void s_cplocal (int);
1071 static void s_cprestore (int);
1072 static void s_cpreturn (int);
1073 static void s_dtprelword (int);
1074 static void s_dtpreldword (int);
1075 static void s_gpvalue (int);
1076 static void s_gpword (int);
1077 static void s_gpdword (int);
1078 static void s_cpadd (int);
1079 static void s_insn (int);
1080 static void md_obj_begin (void);
1081 static void md_obj_end (void);
1082 static void s_mips_ent (int);
1083 static void s_mips_end (int);
1084 static void s_mips_frame (int);
1085 static void s_mips_mask (int reg_type);
1086 static void s_mips_stab (int);
1087 static void s_mips_weakext (int);
1088 static void s_mips_file (int);
1089 static void s_mips_loc (int);
1090 static bfd_boolean pic_need_relax (symbolS *, asection *);
1091 static int relaxed_branch_length (fragS *, asection *, int);
1092 static int validate_mips_insn (const struct mips_opcode *);
1093
1094 /* Table and functions used to map between CPU/ISA names, and
1095 ISA levels, and CPU numbers. */
1096
1097 struct mips_cpu_info
1098 {
1099 const char *name; /* CPU or ISA name. */
1100 int flags; /* ASEs available, or ISA flag. */
1101 int isa; /* ISA level. */
1102 int cpu; /* CPU number (default CPU if ISA). */
1103 };
1104
1105 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1106 #define MIPS_CPU_ASE_SMARTMIPS 0x0002 /* CPU implements SmartMIPS ASE */
1107 #define MIPS_CPU_ASE_DSP 0x0004 /* CPU implements DSP ASE */
1108 #define MIPS_CPU_ASE_MT 0x0008 /* CPU implements MT ASE */
1109 #define MIPS_CPU_ASE_MIPS3D 0x0010 /* CPU implements MIPS-3D ASE */
1110 #define MIPS_CPU_ASE_MDMX 0x0020 /* CPU implements MDMX ASE */
1111 #define MIPS_CPU_ASE_DSPR2 0x0040 /* CPU implements DSP R2 ASE */
1112
1113 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1114 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1115 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1116 \f
1117 /* Pseudo-op table.
1118
1119 The following pseudo-ops from the Kane and Heinrich MIPS book
1120 should be defined here, but are currently unsupported: .alias,
1121 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1122
1123 The following pseudo-ops from the Kane and Heinrich MIPS book are
1124 specific to the type of debugging information being generated, and
1125 should be defined by the object format: .aent, .begin, .bend,
1126 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1127 .vreg.
1128
1129 The following pseudo-ops from the Kane and Heinrich MIPS book are
1130 not MIPS CPU specific, but are also not specific to the object file
1131 format. This file is probably the best place to define them, but
1132 they are not currently supported: .asm0, .endr, .lab, .struct. */
1133
1134 static const pseudo_typeS mips_pseudo_table[] =
1135 {
1136 /* MIPS specific pseudo-ops. */
1137 {"option", s_option, 0},
1138 {"set", s_mipsset, 0},
1139 {"rdata", s_change_sec, 'r'},
1140 {"sdata", s_change_sec, 's'},
1141 {"livereg", s_ignore, 0},
1142 {"abicalls", s_abicalls, 0},
1143 {"cpload", s_cpload, 0},
1144 {"cpsetup", s_cpsetup, 0},
1145 {"cplocal", s_cplocal, 0},
1146 {"cprestore", s_cprestore, 0},
1147 {"cpreturn", s_cpreturn, 0},
1148 {"dtprelword", s_dtprelword, 0},
1149 {"dtpreldword", s_dtpreldword, 0},
1150 {"gpvalue", s_gpvalue, 0},
1151 {"gpword", s_gpword, 0},
1152 {"gpdword", s_gpdword, 0},
1153 {"cpadd", s_cpadd, 0},
1154 {"insn", s_insn, 0},
1155
1156 /* Relatively generic pseudo-ops that happen to be used on MIPS
1157 chips. */
1158 {"asciiz", stringer, 8 + 1},
1159 {"bss", s_change_sec, 'b'},
1160 {"err", s_err, 0},
1161 {"half", s_cons, 1},
1162 {"dword", s_cons, 3},
1163 {"weakext", s_mips_weakext, 0},
1164 {"origin", s_org, 0},
1165 {"repeat", s_rept, 0},
1166
1167 /* These pseudo-ops are defined in read.c, but must be overridden
1168 here for one reason or another. */
1169 {"align", s_align, 0},
1170 {"byte", s_cons, 0},
1171 {"data", s_change_sec, 'd'},
1172 {"double", s_float_cons, 'd'},
1173 {"float", s_float_cons, 'f'},
1174 {"globl", s_mips_globl, 0},
1175 {"global", s_mips_globl, 0},
1176 {"hword", s_cons, 1},
1177 {"int", s_cons, 2},
1178 {"long", s_cons, 2},
1179 {"octa", s_cons, 4},
1180 {"quad", s_cons, 3},
1181 {"section", s_change_section, 0},
1182 {"short", s_cons, 1},
1183 {"single", s_float_cons, 'f'},
1184 {"stabn", s_mips_stab, 'n'},
1185 {"text", s_change_sec, 't'},
1186 {"word", s_cons, 2},
1187
1188 { "extern", ecoff_directive_extern, 0},
1189
1190 { NULL, NULL, 0 },
1191 };
1192
1193 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1194 {
1195 /* These pseudo-ops should be defined by the object file format.
1196 However, a.out doesn't support them, so we have versions here. */
1197 {"aent", s_mips_ent, 1},
1198 {"bgnb", s_ignore, 0},
1199 {"end", s_mips_end, 0},
1200 {"endb", s_ignore, 0},
1201 {"ent", s_mips_ent, 0},
1202 {"file", s_mips_file, 0},
1203 {"fmask", s_mips_mask, 'F'},
1204 {"frame", s_mips_frame, 0},
1205 {"loc", s_mips_loc, 0},
1206 {"mask", s_mips_mask, 'R'},
1207 {"verstamp", s_ignore, 0},
1208 { NULL, NULL, 0 },
1209 };
1210
1211 extern void pop_insert (const pseudo_typeS *);
1212
1213 void
1214 mips_pop_insert (void)
1215 {
1216 pop_insert (mips_pseudo_table);
1217 if (! ECOFF_DEBUGGING)
1218 pop_insert (mips_nonecoff_pseudo_table);
1219 }
1220 \f
1221 /* Symbols labelling the current insn. */
1222
1223 struct insn_label_list
1224 {
1225 struct insn_label_list *next;
1226 symbolS *label;
1227 };
1228
1229 static struct insn_label_list *free_insn_labels;
1230 #define label_list tc_segment_info_data.labels
1231
1232 static void mips_clear_insn_labels (void);
1233
1234 static inline void
1235 mips_clear_insn_labels (void)
1236 {
1237 register struct insn_label_list **pl;
1238 segment_info_type *si;
1239
1240 if (now_seg)
1241 {
1242 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
1243 ;
1244
1245 si = seg_info (now_seg);
1246 *pl = si->label_list;
1247 si->label_list = NULL;
1248 }
1249 }
1250
1251 \f
1252 static char *expr_end;
1253
1254 /* Expressions which appear in instructions. These are set by
1255 mips_ip. */
1256
1257 static expressionS imm_expr;
1258 static expressionS imm2_expr;
1259 static expressionS offset_expr;
1260
1261 /* Relocs associated with imm_expr and offset_expr. */
1262
1263 static bfd_reloc_code_real_type imm_reloc[3]
1264 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1265 static bfd_reloc_code_real_type offset_reloc[3]
1266 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
1267
1268 /* These are set by mips16_ip if an explicit extension is used. */
1269
1270 static bfd_boolean mips16_small, mips16_ext;
1271
1272 #ifdef OBJ_ELF
1273 /* The pdr segment for per procedure frame/regmask info. Not used for
1274 ECOFF debugging. */
1275
1276 static segT pdr_seg;
1277 #endif
1278
1279 /* The default target format to use. */
1280
1281 const char *
1282 mips_target_format (void)
1283 {
1284 switch (OUTPUT_FLAVOR)
1285 {
1286 case bfd_target_ecoff_flavour:
1287 return target_big_endian ? "ecoff-bigmips" : ECOFF_LITTLE_FORMAT;
1288 case bfd_target_coff_flavour:
1289 return "pe-mips";
1290 case bfd_target_elf_flavour:
1291 #ifdef TE_VXWORKS
1292 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
1293 return (target_big_endian
1294 ? "elf32-bigmips-vxworks"
1295 : "elf32-littlemips-vxworks");
1296 #endif
1297 #ifdef TE_TMIPS
1298 /* This is traditional mips. */
1299 return (target_big_endian
1300 ? (HAVE_64BIT_OBJECTS
1301 ? "elf64-tradbigmips"
1302 : (HAVE_NEWABI
1303 ? "elf32-ntradbigmips" : "elf32-tradbigmips"))
1304 : (HAVE_64BIT_OBJECTS
1305 ? "elf64-tradlittlemips"
1306 : (HAVE_NEWABI
1307 ? "elf32-ntradlittlemips" : "elf32-tradlittlemips")));
1308 #else
1309 return (target_big_endian
1310 ? (HAVE_64BIT_OBJECTS
1311 ? "elf64-bigmips"
1312 : (HAVE_NEWABI
1313 ? "elf32-nbigmips" : "elf32-bigmips"))
1314 : (HAVE_64BIT_OBJECTS
1315 ? "elf64-littlemips"
1316 : (HAVE_NEWABI
1317 ? "elf32-nlittlemips" : "elf32-littlemips")));
1318 #endif
1319 default:
1320 abort ();
1321 return NULL;
1322 }
1323 }
1324
1325 /* Return the length of instruction INSN. */
1326
1327 static inline unsigned int
1328 insn_length (const struct mips_cl_insn *insn)
1329 {
1330 if (!mips_opts.mips16)
1331 return 4;
1332 return insn->mips16_absolute_jump_p || insn->use_extend ? 4 : 2;
1333 }
1334
1335 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
1336
1337 static void
1338 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
1339 {
1340 size_t i;
1341
1342 insn->insn_mo = mo;
1343 insn->use_extend = FALSE;
1344 insn->extend = 0;
1345 insn->insn_opcode = mo->match;
1346 insn->frag = NULL;
1347 insn->where = 0;
1348 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1349 insn->fixp[i] = NULL;
1350 insn->fixed_p = (mips_opts.noreorder > 0);
1351 insn->noreorder_p = (mips_opts.noreorder > 0);
1352 insn->mips16_absolute_jump_p = 0;
1353 }
1354
1355 /* Record the current MIPS16 mode in now_seg. */
1356
1357 static void
1358 mips_record_mips16_mode (void)
1359 {
1360 segment_info_type *si;
1361
1362 si = seg_info (now_seg);
1363 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
1364 si->tc_segment_info_data.mips16 = mips_opts.mips16;
1365 }
1366
1367 /* Install INSN at the location specified by its "frag" and "where" fields. */
1368
1369 static void
1370 install_insn (const struct mips_cl_insn *insn)
1371 {
1372 char *f = insn->frag->fr_literal + insn->where;
1373 if (!mips_opts.mips16)
1374 md_number_to_chars (f, insn->insn_opcode, 4);
1375 else if (insn->mips16_absolute_jump_p)
1376 {
1377 md_number_to_chars (f, insn->insn_opcode >> 16, 2);
1378 md_number_to_chars (f + 2, insn->insn_opcode & 0xffff, 2);
1379 }
1380 else
1381 {
1382 if (insn->use_extend)
1383 {
1384 md_number_to_chars (f, 0xf000 | insn->extend, 2);
1385 f += 2;
1386 }
1387 md_number_to_chars (f, insn->insn_opcode, 2);
1388 }
1389 mips_record_mips16_mode ();
1390 }
1391
1392 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
1393 and install the opcode in the new location. */
1394
1395 static void
1396 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
1397 {
1398 size_t i;
1399
1400 insn->frag = frag;
1401 insn->where = where;
1402 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
1403 if (insn->fixp[i] != NULL)
1404 {
1405 insn->fixp[i]->fx_frag = frag;
1406 insn->fixp[i]->fx_where = where;
1407 }
1408 install_insn (insn);
1409 }
1410
1411 /* Add INSN to the end of the output. */
1412
1413 static void
1414 add_fixed_insn (struct mips_cl_insn *insn)
1415 {
1416 char *f = frag_more (insn_length (insn));
1417 move_insn (insn, frag_now, f - frag_now->fr_literal);
1418 }
1419
1420 /* Start a variant frag and move INSN to the start of the variant part,
1421 marking it as fixed. The other arguments are as for frag_var. */
1422
1423 static void
1424 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
1425 relax_substateT subtype, symbolS *symbol, offsetT offset)
1426 {
1427 frag_grow (max_chars);
1428 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
1429 insn->fixed_p = 1;
1430 frag_var (rs_machine_dependent, max_chars, var,
1431 subtype, symbol, offset, NULL);
1432 }
1433
1434 /* Insert N copies of INSN into the history buffer, starting at
1435 position FIRST. Neither FIRST nor N need to be clipped. */
1436
1437 static void
1438 insert_into_history (unsigned int first, unsigned int n,
1439 const struct mips_cl_insn *insn)
1440 {
1441 if (mips_relax.sequence != 2)
1442 {
1443 unsigned int i;
1444
1445 for (i = ARRAY_SIZE (history); i-- > first;)
1446 if (i >= first + n)
1447 history[i] = history[i - n];
1448 else
1449 history[i] = *insn;
1450 }
1451 }
1452
1453 /* Emit a nop instruction, recording it in the history buffer. */
1454
1455 static void
1456 emit_nop (void)
1457 {
1458 add_fixed_insn (NOP_INSN);
1459 insert_into_history (0, 1, NOP_INSN);
1460 }
1461
1462 /* Initialize vr4120_conflicts. There is a bit of duplication here:
1463 the idea is to make it obvious at a glance that each errata is
1464 included. */
1465
1466 static void
1467 init_vr4120_conflicts (void)
1468 {
1469 #define CONFLICT(FIRST, SECOND) \
1470 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
1471
1472 /* Errata 21 - [D]DIV[U] after [D]MACC */
1473 CONFLICT (MACC, DIV);
1474 CONFLICT (DMACC, DIV);
1475
1476 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
1477 CONFLICT (DMULT, DMULT);
1478 CONFLICT (DMULT, DMACC);
1479 CONFLICT (DMACC, DMULT);
1480 CONFLICT (DMACC, DMACC);
1481
1482 /* Errata 24 - MT{LO,HI} after [D]MACC */
1483 CONFLICT (MACC, MTHILO);
1484 CONFLICT (DMACC, MTHILO);
1485
1486 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
1487 instruction is executed immediately after a MACC or DMACC
1488 instruction, the result of [either instruction] is incorrect." */
1489 CONFLICT (MACC, MULT);
1490 CONFLICT (MACC, DMULT);
1491 CONFLICT (DMACC, MULT);
1492 CONFLICT (DMACC, DMULT);
1493
1494 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
1495 executed immediately after a DMULT, DMULTU, DIV, DIVU,
1496 DDIV or DDIVU instruction, the result of the MACC or
1497 DMACC instruction is incorrect.". */
1498 CONFLICT (DMULT, MACC);
1499 CONFLICT (DMULT, DMACC);
1500 CONFLICT (DIV, MACC);
1501 CONFLICT (DIV, DMACC);
1502
1503 #undef CONFLICT
1504 }
1505
1506 struct regname {
1507 const char *name;
1508 unsigned int num;
1509 };
1510
1511 #define RTYPE_MASK 0x1ff00
1512 #define RTYPE_NUM 0x00100
1513 #define RTYPE_FPU 0x00200
1514 #define RTYPE_FCC 0x00400
1515 #define RTYPE_VEC 0x00800
1516 #define RTYPE_GP 0x01000
1517 #define RTYPE_CP0 0x02000
1518 #define RTYPE_PC 0x04000
1519 #define RTYPE_ACC 0x08000
1520 #define RTYPE_CCC 0x10000
1521 #define RNUM_MASK 0x000ff
1522 #define RWARN 0x80000
1523
1524 #define GENERIC_REGISTER_NUMBERS \
1525 {"$0", RTYPE_NUM | 0}, \
1526 {"$1", RTYPE_NUM | 1}, \
1527 {"$2", RTYPE_NUM | 2}, \
1528 {"$3", RTYPE_NUM | 3}, \
1529 {"$4", RTYPE_NUM | 4}, \
1530 {"$5", RTYPE_NUM | 5}, \
1531 {"$6", RTYPE_NUM | 6}, \
1532 {"$7", RTYPE_NUM | 7}, \
1533 {"$8", RTYPE_NUM | 8}, \
1534 {"$9", RTYPE_NUM | 9}, \
1535 {"$10", RTYPE_NUM | 10}, \
1536 {"$11", RTYPE_NUM | 11}, \
1537 {"$12", RTYPE_NUM | 12}, \
1538 {"$13", RTYPE_NUM | 13}, \
1539 {"$14", RTYPE_NUM | 14}, \
1540 {"$15", RTYPE_NUM | 15}, \
1541 {"$16", RTYPE_NUM | 16}, \
1542 {"$17", RTYPE_NUM | 17}, \
1543 {"$18", RTYPE_NUM | 18}, \
1544 {"$19", RTYPE_NUM | 19}, \
1545 {"$20", RTYPE_NUM | 20}, \
1546 {"$21", RTYPE_NUM | 21}, \
1547 {"$22", RTYPE_NUM | 22}, \
1548 {"$23", RTYPE_NUM | 23}, \
1549 {"$24", RTYPE_NUM | 24}, \
1550 {"$25", RTYPE_NUM | 25}, \
1551 {"$26", RTYPE_NUM | 26}, \
1552 {"$27", RTYPE_NUM | 27}, \
1553 {"$28", RTYPE_NUM | 28}, \
1554 {"$29", RTYPE_NUM | 29}, \
1555 {"$30", RTYPE_NUM | 30}, \
1556 {"$31", RTYPE_NUM | 31}
1557
1558 #define FPU_REGISTER_NAMES \
1559 {"$f0", RTYPE_FPU | 0}, \
1560 {"$f1", RTYPE_FPU | 1}, \
1561 {"$f2", RTYPE_FPU | 2}, \
1562 {"$f3", RTYPE_FPU | 3}, \
1563 {"$f4", RTYPE_FPU | 4}, \
1564 {"$f5", RTYPE_FPU | 5}, \
1565 {"$f6", RTYPE_FPU | 6}, \
1566 {"$f7", RTYPE_FPU | 7}, \
1567 {"$f8", RTYPE_FPU | 8}, \
1568 {"$f9", RTYPE_FPU | 9}, \
1569 {"$f10", RTYPE_FPU | 10}, \
1570 {"$f11", RTYPE_FPU | 11}, \
1571 {"$f12", RTYPE_FPU | 12}, \
1572 {"$f13", RTYPE_FPU | 13}, \
1573 {"$f14", RTYPE_FPU | 14}, \
1574 {"$f15", RTYPE_FPU | 15}, \
1575 {"$f16", RTYPE_FPU | 16}, \
1576 {"$f17", RTYPE_FPU | 17}, \
1577 {"$f18", RTYPE_FPU | 18}, \
1578 {"$f19", RTYPE_FPU | 19}, \
1579 {"$f20", RTYPE_FPU | 20}, \
1580 {"$f21", RTYPE_FPU | 21}, \
1581 {"$f22", RTYPE_FPU | 22}, \
1582 {"$f23", RTYPE_FPU | 23}, \
1583 {"$f24", RTYPE_FPU | 24}, \
1584 {"$f25", RTYPE_FPU | 25}, \
1585 {"$f26", RTYPE_FPU | 26}, \
1586 {"$f27", RTYPE_FPU | 27}, \
1587 {"$f28", RTYPE_FPU | 28}, \
1588 {"$f29", RTYPE_FPU | 29}, \
1589 {"$f30", RTYPE_FPU | 30}, \
1590 {"$f31", RTYPE_FPU | 31}
1591
1592 #define FPU_CONDITION_CODE_NAMES \
1593 {"$fcc0", RTYPE_FCC | 0}, \
1594 {"$fcc1", RTYPE_FCC | 1}, \
1595 {"$fcc2", RTYPE_FCC | 2}, \
1596 {"$fcc3", RTYPE_FCC | 3}, \
1597 {"$fcc4", RTYPE_FCC | 4}, \
1598 {"$fcc5", RTYPE_FCC | 5}, \
1599 {"$fcc6", RTYPE_FCC | 6}, \
1600 {"$fcc7", RTYPE_FCC | 7}
1601
1602 #define COPROC_CONDITION_CODE_NAMES \
1603 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
1604 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
1605 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
1606 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
1607 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
1608 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
1609 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
1610 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
1611
1612 #define N32N64_SYMBOLIC_REGISTER_NAMES \
1613 {"$a4", RTYPE_GP | 8}, \
1614 {"$a5", RTYPE_GP | 9}, \
1615 {"$a6", RTYPE_GP | 10}, \
1616 {"$a7", RTYPE_GP | 11}, \
1617 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
1618 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
1619 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
1620 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
1621 {"$t0", RTYPE_GP | 12}, \
1622 {"$t1", RTYPE_GP | 13}, \
1623 {"$t2", RTYPE_GP | 14}, \
1624 {"$t3", RTYPE_GP | 15}
1625
1626 #define O32_SYMBOLIC_REGISTER_NAMES \
1627 {"$t0", RTYPE_GP | 8}, \
1628 {"$t1", RTYPE_GP | 9}, \
1629 {"$t2", RTYPE_GP | 10}, \
1630 {"$t3", RTYPE_GP | 11}, \
1631 {"$t4", RTYPE_GP | 12}, \
1632 {"$t5", RTYPE_GP | 13}, \
1633 {"$t6", RTYPE_GP | 14}, \
1634 {"$t7", RTYPE_GP | 15}, \
1635 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
1636 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
1637 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
1638 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
1639
1640 /* Remaining symbolic register names */
1641 #define SYMBOLIC_REGISTER_NAMES \
1642 {"$zero", RTYPE_GP | 0}, \
1643 {"$at", RTYPE_GP | 1}, \
1644 {"$AT", RTYPE_GP | 1}, \
1645 {"$v0", RTYPE_GP | 2}, \
1646 {"$v1", RTYPE_GP | 3}, \
1647 {"$a0", RTYPE_GP | 4}, \
1648 {"$a1", RTYPE_GP | 5}, \
1649 {"$a2", RTYPE_GP | 6}, \
1650 {"$a3", RTYPE_GP | 7}, \
1651 {"$s0", RTYPE_GP | 16}, \
1652 {"$s1", RTYPE_GP | 17}, \
1653 {"$s2", RTYPE_GP | 18}, \
1654 {"$s3", RTYPE_GP | 19}, \
1655 {"$s4", RTYPE_GP | 20}, \
1656 {"$s5", RTYPE_GP | 21}, \
1657 {"$s6", RTYPE_GP | 22}, \
1658 {"$s7", RTYPE_GP | 23}, \
1659 {"$t8", RTYPE_GP | 24}, \
1660 {"$t9", RTYPE_GP | 25}, \
1661 {"$k0", RTYPE_GP | 26}, \
1662 {"$kt0", RTYPE_GP | 26}, \
1663 {"$k1", RTYPE_GP | 27}, \
1664 {"$kt1", RTYPE_GP | 27}, \
1665 {"$gp", RTYPE_GP | 28}, \
1666 {"$sp", RTYPE_GP | 29}, \
1667 {"$s8", RTYPE_GP | 30}, \
1668 {"$fp", RTYPE_GP | 30}, \
1669 {"$ra", RTYPE_GP | 31}
1670
1671 #define MIPS16_SPECIAL_REGISTER_NAMES \
1672 {"$pc", RTYPE_PC | 0}
1673
1674 #define MDMX_VECTOR_REGISTER_NAMES \
1675 /* {"$v0", RTYPE_VEC | 0}, clash with REG 2 above */ \
1676 /* {"$v1", RTYPE_VEC | 1}, clash with REG 3 above */ \
1677 {"$v2", RTYPE_VEC | 2}, \
1678 {"$v3", RTYPE_VEC | 3}, \
1679 {"$v4", RTYPE_VEC | 4}, \
1680 {"$v5", RTYPE_VEC | 5}, \
1681 {"$v6", RTYPE_VEC | 6}, \
1682 {"$v7", RTYPE_VEC | 7}, \
1683 {"$v8", RTYPE_VEC | 8}, \
1684 {"$v9", RTYPE_VEC | 9}, \
1685 {"$v10", RTYPE_VEC | 10}, \
1686 {"$v11", RTYPE_VEC | 11}, \
1687 {"$v12", RTYPE_VEC | 12}, \
1688 {"$v13", RTYPE_VEC | 13}, \
1689 {"$v14", RTYPE_VEC | 14}, \
1690 {"$v15", RTYPE_VEC | 15}, \
1691 {"$v16", RTYPE_VEC | 16}, \
1692 {"$v17", RTYPE_VEC | 17}, \
1693 {"$v18", RTYPE_VEC | 18}, \
1694 {"$v19", RTYPE_VEC | 19}, \
1695 {"$v20", RTYPE_VEC | 20}, \
1696 {"$v21", RTYPE_VEC | 21}, \
1697 {"$v22", RTYPE_VEC | 22}, \
1698 {"$v23", RTYPE_VEC | 23}, \
1699 {"$v24", RTYPE_VEC | 24}, \
1700 {"$v25", RTYPE_VEC | 25}, \
1701 {"$v26", RTYPE_VEC | 26}, \
1702 {"$v27", RTYPE_VEC | 27}, \
1703 {"$v28", RTYPE_VEC | 28}, \
1704 {"$v29", RTYPE_VEC | 29}, \
1705 {"$v30", RTYPE_VEC | 30}, \
1706 {"$v31", RTYPE_VEC | 31}
1707
1708 #define MIPS_DSP_ACCUMULATOR_NAMES \
1709 {"$ac0", RTYPE_ACC | 0}, \
1710 {"$ac1", RTYPE_ACC | 1}, \
1711 {"$ac2", RTYPE_ACC | 2}, \
1712 {"$ac3", RTYPE_ACC | 3}
1713
1714 static const struct regname reg_names[] = {
1715 GENERIC_REGISTER_NUMBERS,
1716 FPU_REGISTER_NAMES,
1717 FPU_CONDITION_CODE_NAMES,
1718 COPROC_CONDITION_CODE_NAMES,
1719
1720 /* The $txx registers depends on the abi,
1721 these will be added later into the symbol table from
1722 one of the tables below once mips_abi is set after
1723 parsing of arguments from the command line. */
1724 SYMBOLIC_REGISTER_NAMES,
1725
1726 MIPS16_SPECIAL_REGISTER_NAMES,
1727 MDMX_VECTOR_REGISTER_NAMES,
1728 MIPS_DSP_ACCUMULATOR_NAMES,
1729 {0, 0}
1730 };
1731
1732 static const struct regname reg_names_o32[] = {
1733 O32_SYMBOLIC_REGISTER_NAMES,
1734 {0, 0}
1735 };
1736
1737 static const struct regname reg_names_n32n64[] = {
1738 N32N64_SYMBOLIC_REGISTER_NAMES,
1739 {0, 0}
1740 };
1741
1742 static int
1743 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
1744 {
1745 symbolS *symbolP;
1746 char *e;
1747 char save_c;
1748 int reg = -1;
1749
1750 /* Find end of name. */
1751 e = *s;
1752 if (is_name_beginner (*e))
1753 ++e;
1754 while (is_part_of_name (*e))
1755 ++e;
1756
1757 /* Terminate name. */
1758 save_c = *e;
1759 *e = '\0';
1760
1761 /* Look for a register symbol. */
1762 if ((symbolP = symbol_find (*s)) && S_GET_SEGMENT (symbolP) == reg_section)
1763 {
1764 int r = S_GET_VALUE (symbolP);
1765 if (r & types)
1766 reg = r & RNUM_MASK;
1767 else if ((types & RTYPE_VEC) && (r & ~1) == (RTYPE_GP | 2))
1768 /* Convert GP reg $v0/1 to MDMX reg $v0/1! */
1769 reg = (r & RNUM_MASK) - 2;
1770 }
1771 /* Else see if this is a register defined in an itbl entry. */
1772 else if ((types & RTYPE_GP) && itbl_have_entries)
1773 {
1774 char *n = *s;
1775 unsigned long r;
1776
1777 if (*n == '$')
1778 ++n;
1779 if (itbl_get_reg_val (n, &r))
1780 reg = r & RNUM_MASK;
1781 }
1782
1783 /* Advance to next token if a register was recognised. */
1784 if (reg >= 0)
1785 *s = e;
1786 else if (types & RWARN)
1787 as_warn (_("Unrecognized register name `%s'"), *s);
1788
1789 *e = save_c;
1790 if (regnop)
1791 *regnop = reg;
1792 return reg >= 0;
1793 }
1794
1795 /* Return TRUE if opcode MO is valid on the currently selected ISA and
1796 architecture. If EXPANSIONP is TRUE then this check is done while
1797 expanding a macro. Use is_opcode_valid_16 for MIPS16 opcodes. */
1798
1799 static bfd_boolean
1800 is_opcode_valid (const struct mips_opcode *mo, bfd_boolean expansionp)
1801 {
1802 int isa = mips_opts.isa;
1803 int fp_s, fp_d;
1804
1805 if (mips_opts.ase_mdmx)
1806 isa |= INSN_MDMX;
1807 if (mips_opts.ase_dsp)
1808 isa |= INSN_DSP;
1809 if (mips_opts.ase_dsp && ISA_SUPPORTS_DSP64_ASE)
1810 isa |= INSN_DSP64;
1811 if (mips_opts.ase_dspr2)
1812 isa |= INSN_DSPR2;
1813 if (mips_opts.ase_mt)
1814 isa |= INSN_MT;
1815 if (mips_opts.ase_mips3d)
1816 isa |= INSN_MIPS3D;
1817 if (mips_opts.ase_smartmips)
1818 isa |= INSN_SMARTMIPS;
1819
1820 /* For user code we don't check for mips_opts.mips16 since we want
1821 to allow jalx if -mips16 was specified on the command line. */
1822 if (expansionp ? mips_opts.mips16 : file_ase_mips16)
1823 isa |= INSN_MIPS16;
1824
1825 /* Don't accept instructions based on the ISA if the CPU does not implement
1826 all the coprocessor insns. */
1827 if (NO_ISA_COP (mips_opts.arch)
1828 && COP_INSN (mo->pinfo))
1829 isa = 0;
1830
1831 if (!OPCODE_IS_MEMBER (mo, isa, mips_opts.arch))
1832 return FALSE;
1833
1834 /* Check whether the instruction or macro requires single-precision or
1835 double-precision floating-point support. Note that this information is
1836 stored differently in the opcode table for insns and macros. */
1837 if (mo->pinfo == INSN_MACRO)
1838 {
1839 fp_s = mo->pinfo2 & INSN2_M_FP_S;
1840 fp_d = mo->pinfo2 & INSN2_M_FP_D;
1841 }
1842 else
1843 {
1844 fp_s = mo->pinfo & FP_S;
1845 fp_d = mo->pinfo & FP_D;
1846 }
1847
1848 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
1849 return FALSE;
1850
1851 if (fp_s && mips_opts.soft_float)
1852 return FALSE;
1853
1854 return TRUE;
1855 }
1856
1857 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
1858 selected ISA and architecture. */
1859
1860 static bfd_boolean
1861 is_opcode_valid_16 (const struct mips_opcode *mo)
1862 {
1863 return OPCODE_IS_MEMBER (mo, mips_opts.isa, mips_opts.arch) ? TRUE : FALSE;
1864 }
1865
1866 /* This function is called once, at assembler startup time. It should set up
1867 all the tables, etc. that the MD part of the assembler will need. */
1868
1869 void
1870 md_begin (void)
1871 {
1872 const char *retval = NULL;
1873 int i = 0;
1874 int broken = 0;
1875
1876 if (mips_pic != NO_PIC)
1877 {
1878 if (g_switch_seen && g_switch_value != 0)
1879 as_bad (_("-G may not be used in position-independent code"));
1880 g_switch_value = 0;
1881 }
1882
1883 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_arch))
1884 as_warn (_("Could not set architecture and machine"));
1885
1886 op_hash = hash_new ();
1887
1888 for (i = 0; i < NUMOPCODES;)
1889 {
1890 const char *name = mips_opcodes[i].name;
1891
1892 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
1893 if (retval != NULL)
1894 {
1895 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
1896 mips_opcodes[i].name, retval);
1897 /* Probably a memory allocation problem? Give up now. */
1898 as_fatal (_("Broken assembler. No assembly attempted."));
1899 }
1900 do
1901 {
1902 if (mips_opcodes[i].pinfo != INSN_MACRO)
1903 {
1904 if (!validate_mips_insn (&mips_opcodes[i]))
1905 broken = 1;
1906 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1907 {
1908 create_insn (&nop_insn, mips_opcodes + i);
1909 nop_insn.fixed_p = 1;
1910 }
1911 }
1912 ++i;
1913 }
1914 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
1915 }
1916
1917 mips16_op_hash = hash_new ();
1918
1919 i = 0;
1920 while (i < bfd_mips16_num_opcodes)
1921 {
1922 const char *name = mips16_opcodes[i].name;
1923
1924 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
1925 if (retval != NULL)
1926 as_fatal (_("internal: can't hash `%s': %s"),
1927 mips16_opcodes[i].name, retval);
1928 do
1929 {
1930 if (mips16_opcodes[i].pinfo != INSN_MACRO
1931 && ((mips16_opcodes[i].match & mips16_opcodes[i].mask)
1932 != mips16_opcodes[i].match))
1933 {
1934 fprintf (stderr, _("internal error: bad mips16 opcode: %s %s\n"),
1935 mips16_opcodes[i].name, mips16_opcodes[i].args);
1936 broken = 1;
1937 }
1938 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
1939 {
1940 create_insn (&mips16_nop_insn, mips16_opcodes + i);
1941 mips16_nop_insn.fixed_p = 1;
1942 }
1943 ++i;
1944 }
1945 while (i < bfd_mips16_num_opcodes
1946 && strcmp (mips16_opcodes[i].name, name) == 0);
1947 }
1948
1949 if (broken)
1950 as_fatal (_("Broken assembler. No assembly attempted."));
1951
1952 /* We add all the general register names to the symbol table. This
1953 helps us detect invalid uses of them. */
1954 for (i = 0; reg_names[i].name; i++)
1955 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
1956 reg_names[i].num, /* & RNUM_MASK, */
1957 &zero_address_frag));
1958 if (HAVE_NEWABI)
1959 for (i = 0; reg_names_n32n64[i].name; i++)
1960 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
1961 reg_names_n32n64[i].num, /* & RNUM_MASK, */
1962 &zero_address_frag));
1963 else
1964 for (i = 0; reg_names_o32[i].name; i++)
1965 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
1966 reg_names_o32[i].num, /* & RNUM_MASK, */
1967 &zero_address_frag));
1968
1969 mips_no_prev_insn ();
1970
1971 mips_gprmask = 0;
1972 mips_cprmask[0] = 0;
1973 mips_cprmask[1] = 0;
1974 mips_cprmask[2] = 0;
1975 mips_cprmask[3] = 0;
1976
1977 /* set the default alignment for the text section (2**2) */
1978 record_alignment (text_section, 2);
1979
1980 bfd_set_gp_size (stdoutput, g_switch_value);
1981
1982 #ifdef OBJ_ELF
1983 if (IS_ELF)
1984 {
1985 /* On a native system other than VxWorks, sections must be aligned
1986 to 16 byte boundaries. When configured for an embedded ELF
1987 target, we don't bother. */
1988 if (strncmp (TARGET_OS, "elf", 3) != 0
1989 && strncmp (TARGET_OS, "vxworks", 7) != 0)
1990 {
1991 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
1992 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
1993 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
1994 }
1995
1996 /* Create a .reginfo section for register masks and a .mdebug
1997 section for debugging information. */
1998 {
1999 segT seg;
2000 subsegT subseg;
2001 flagword flags;
2002 segT sec;
2003
2004 seg = now_seg;
2005 subseg = now_subseg;
2006
2007 /* The ABI says this section should be loaded so that the
2008 running program can access it. However, we don't load it
2009 if we are configured for an embedded target */
2010 flags = SEC_READONLY | SEC_DATA;
2011 if (strncmp (TARGET_OS, "elf", 3) != 0)
2012 flags |= SEC_ALLOC | SEC_LOAD;
2013
2014 if (mips_abi != N64_ABI)
2015 {
2016 sec = subseg_new (".reginfo", (subsegT) 0);
2017
2018 bfd_set_section_flags (stdoutput, sec, flags);
2019 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
2020
2021 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
2022 }
2023 else
2024 {
2025 /* The 64-bit ABI uses a .MIPS.options section rather than
2026 .reginfo section. */
2027 sec = subseg_new (".MIPS.options", (subsegT) 0);
2028 bfd_set_section_flags (stdoutput, sec, flags);
2029 bfd_set_section_alignment (stdoutput, sec, 3);
2030
2031 /* Set up the option header. */
2032 {
2033 Elf_Internal_Options opthdr;
2034 char *f;
2035
2036 opthdr.kind = ODK_REGINFO;
2037 opthdr.size = (sizeof (Elf_External_Options)
2038 + sizeof (Elf64_External_RegInfo));
2039 opthdr.section = 0;
2040 opthdr.info = 0;
2041 f = frag_more (sizeof (Elf_External_Options));
2042 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
2043 (Elf_External_Options *) f);
2044
2045 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
2046 }
2047 }
2048
2049 if (ECOFF_DEBUGGING)
2050 {
2051 sec = subseg_new (".mdebug", (subsegT) 0);
2052 (void) bfd_set_section_flags (stdoutput, sec,
2053 SEC_HAS_CONTENTS | SEC_READONLY);
2054 (void) bfd_set_section_alignment (stdoutput, sec, 2);
2055 }
2056 else if (mips_flag_pdr)
2057 {
2058 pdr_seg = subseg_new (".pdr", (subsegT) 0);
2059 (void) bfd_set_section_flags (stdoutput, pdr_seg,
2060 SEC_READONLY | SEC_RELOC
2061 | SEC_DEBUGGING);
2062 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
2063 }
2064
2065 subseg_set (seg, subseg);
2066 }
2067 }
2068 #endif /* OBJ_ELF */
2069
2070 if (! ECOFF_DEBUGGING)
2071 md_obj_begin ();
2072
2073 if (mips_fix_vr4120)
2074 init_vr4120_conflicts ();
2075 }
2076
2077 void
2078 md_mips_end (void)
2079 {
2080 if (! ECOFF_DEBUGGING)
2081 md_obj_end ();
2082 }
2083
2084 void
2085 md_assemble (char *str)
2086 {
2087 struct mips_cl_insn insn;
2088 bfd_reloc_code_real_type unused_reloc[3]
2089 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2090
2091 imm_expr.X_op = O_absent;
2092 imm2_expr.X_op = O_absent;
2093 offset_expr.X_op = O_absent;
2094 imm_reloc[0] = BFD_RELOC_UNUSED;
2095 imm_reloc[1] = BFD_RELOC_UNUSED;
2096 imm_reloc[2] = BFD_RELOC_UNUSED;
2097 offset_reloc[0] = BFD_RELOC_UNUSED;
2098 offset_reloc[1] = BFD_RELOC_UNUSED;
2099 offset_reloc[2] = BFD_RELOC_UNUSED;
2100
2101 if (mips_opts.mips16)
2102 mips16_ip (str, &insn);
2103 else
2104 {
2105 mips_ip (str, &insn);
2106 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
2107 str, insn.insn_opcode));
2108 }
2109
2110 if (insn_error)
2111 {
2112 as_bad ("%s `%s'", insn_error, str);
2113 return;
2114 }
2115
2116 if (insn.insn_mo->pinfo == INSN_MACRO)
2117 {
2118 macro_start ();
2119 if (mips_opts.mips16)
2120 mips16_macro (&insn);
2121 else
2122 macro (&insn);
2123 macro_end ();
2124 }
2125 else
2126 {
2127 if (imm_expr.X_op != O_absent)
2128 append_insn (&insn, &imm_expr, imm_reloc);
2129 else if (offset_expr.X_op != O_absent)
2130 append_insn (&insn, &offset_expr, offset_reloc);
2131 else
2132 append_insn (&insn, NULL, unused_reloc);
2133 }
2134 }
2135
2136 /* Convenience functions for abstracting away the differences between
2137 MIPS16 and non-MIPS16 relocations. */
2138
2139 static inline bfd_boolean
2140 mips16_reloc_p (bfd_reloc_code_real_type reloc)
2141 {
2142 switch (reloc)
2143 {
2144 case BFD_RELOC_MIPS16_JMP:
2145 case BFD_RELOC_MIPS16_GPREL:
2146 case BFD_RELOC_MIPS16_GOT16:
2147 case BFD_RELOC_MIPS16_CALL16:
2148 case BFD_RELOC_MIPS16_HI16_S:
2149 case BFD_RELOC_MIPS16_HI16:
2150 case BFD_RELOC_MIPS16_LO16:
2151 return TRUE;
2152
2153 default:
2154 return FALSE;
2155 }
2156 }
2157
2158 static inline bfd_boolean
2159 got16_reloc_p (bfd_reloc_code_real_type reloc)
2160 {
2161 return reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16;
2162 }
2163
2164 static inline bfd_boolean
2165 hi16_reloc_p (bfd_reloc_code_real_type reloc)
2166 {
2167 return reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S;
2168 }
2169
2170 static inline bfd_boolean
2171 lo16_reloc_p (bfd_reloc_code_real_type reloc)
2172 {
2173 return reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16;
2174 }
2175
2176 /* Return true if the given relocation might need a matching %lo().
2177 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
2178 need a matching %lo() when applied to local symbols. */
2179
2180 static inline bfd_boolean
2181 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
2182 {
2183 return (HAVE_IN_PLACE_ADDENDS
2184 && (hi16_reloc_p (reloc)
2185 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
2186 all GOT16 relocations evaluate to "G". */
2187 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
2188 }
2189
2190 /* Return the type of %lo() reloc needed by RELOC, given that
2191 reloc_needs_lo_p. */
2192
2193 static inline bfd_reloc_code_real_type
2194 matching_lo_reloc (bfd_reloc_code_real_type reloc)
2195 {
2196 return mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16 : BFD_RELOC_LO16;
2197 }
2198
2199 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
2200 relocation. */
2201
2202 static inline bfd_boolean
2203 fixup_has_matching_lo_p (fixS *fixp)
2204 {
2205 return (fixp->fx_next != NULL
2206 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
2207 && fixp->fx_addsy == fixp->fx_next->fx_addsy
2208 && fixp->fx_offset == fixp->fx_next->fx_offset);
2209 }
2210
2211 /* See whether instruction IP reads register REG. CLASS is the type
2212 of register. */
2213
2214 static int
2215 insn_uses_reg (const struct mips_cl_insn *ip, unsigned int reg,
2216 enum mips_regclass class)
2217 {
2218 if (class == MIPS16_REG)
2219 {
2220 gas_assert (mips_opts.mips16);
2221 reg = mips16_to_32_reg_map[reg];
2222 class = MIPS_GR_REG;
2223 }
2224
2225 /* Don't report on general register ZERO, since it never changes. */
2226 if (class == MIPS_GR_REG && reg == ZERO)
2227 return 0;
2228
2229 if (class == MIPS_FP_REG)
2230 {
2231 gas_assert (! mips_opts.mips16);
2232 /* If we are called with either $f0 or $f1, we must check $f0.
2233 This is not optimal, because it will introduce an unnecessary
2234 NOP between "lwc1 $f0" and "swc1 $f1". To fix this we would
2235 need to distinguish reading both $f0 and $f1 or just one of
2236 them. Note that we don't have to check the other way,
2237 because there is no instruction that sets both $f0 and $f1
2238 and requires a delay. */
2239 if ((ip->insn_mo->pinfo & INSN_READ_FPR_S)
2240 && ((EXTRACT_OPERAND (FS, *ip) & ~(unsigned) 1)
2241 == (reg &~ (unsigned) 1)))
2242 return 1;
2243 if ((ip->insn_mo->pinfo & INSN_READ_FPR_T)
2244 && ((EXTRACT_OPERAND (FT, *ip) & ~(unsigned) 1)
2245 == (reg &~ (unsigned) 1)))
2246 return 1;
2247 }
2248 else if (! mips_opts.mips16)
2249 {
2250 if ((ip->insn_mo->pinfo & INSN_READ_GPR_S)
2251 && EXTRACT_OPERAND (RS, *ip) == reg)
2252 return 1;
2253 if ((ip->insn_mo->pinfo & INSN_READ_GPR_T)
2254 && EXTRACT_OPERAND (RT, *ip) == reg)
2255 return 1;
2256 }
2257 else
2258 {
2259 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_X)
2260 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, *ip)] == reg)
2261 return 1;
2262 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Y)
2263 && mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RY, *ip)] == reg)
2264 return 1;
2265 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_Z)
2266 && (mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip)]
2267 == reg))
2268 return 1;
2269 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_T) && reg == TREG)
2270 return 1;
2271 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_SP) && reg == SP)
2272 return 1;
2273 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_31) && reg == RA)
2274 return 1;
2275 if ((ip->insn_mo->pinfo & MIPS16_INSN_READ_GPR_X)
2276 && MIPS16_EXTRACT_OPERAND (REGR32, *ip) == reg)
2277 return 1;
2278 }
2279
2280 return 0;
2281 }
2282
2283 /* This function returns true if modifying a register requires a
2284 delay. */
2285
2286 static int
2287 reg_needs_delay (unsigned int reg)
2288 {
2289 unsigned long prev_pinfo;
2290
2291 prev_pinfo = history[0].insn_mo->pinfo;
2292 if (! mips_opts.noreorder
2293 && (((prev_pinfo & INSN_LOAD_MEMORY_DELAY)
2294 && ! gpr_interlocks)
2295 || ((prev_pinfo & INSN_LOAD_COPROC_DELAY)
2296 && ! cop_interlocks)))
2297 {
2298 /* A load from a coprocessor or from memory. All load delays
2299 delay the use of general register rt for one instruction. */
2300 /* Itbl support may require additional care here. */
2301 know (prev_pinfo & INSN_WRITE_GPR_T);
2302 if (reg == EXTRACT_OPERAND (RT, history[0]))
2303 return 1;
2304 }
2305
2306 return 0;
2307 }
2308
2309 /* Move all labels in insn_labels to the current insertion point. */
2310
2311 static void
2312 mips_move_labels (void)
2313 {
2314 segment_info_type *si = seg_info (now_seg);
2315 struct insn_label_list *l;
2316 valueT val;
2317
2318 for (l = si->label_list; l != NULL; l = l->next)
2319 {
2320 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
2321 symbol_set_frag (l->label, frag_now);
2322 val = (valueT) frag_now_fix ();
2323 /* mips16 text labels are stored as odd. */
2324 if (mips_opts.mips16)
2325 ++val;
2326 S_SET_VALUE (l->label, val);
2327 }
2328 }
2329
2330 static bfd_boolean
2331 s_is_linkonce (symbolS *sym, segT from_seg)
2332 {
2333 bfd_boolean linkonce = FALSE;
2334 segT symseg = S_GET_SEGMENT (sym);
2335
2336 if (symseg != from_seg && !S_IS_LOCAL (sym))
2337 {
2338 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
2339 linkonce = TRUE;
2340 #ifdef OBJ_ELF
2341 /* The GNU toolchain uses an extension for ELF: a section
2342 beginning with the magic string .gnu.linkonce is a
2343 linkonce section. */
2344 if (strncmp (segment_name (symseg), ".gnu.linkonce",
2345 sizeof ".gnu.linkonce" - 1) == 0)
2346 linkonce = TRUE;
2347 #endif
2348 }
2349 return linkonce;
2350 }
2351
2352 /* Mark instruction labels in mips16 mode. This permits the linker to
2353 handle them specially, such as generating jalx instructions when
2354 needed. We also make them odd for the duration of the assembly, in
2355 order to generate the right sort of code. We will make them even
2356 in the adjust_symtab routine, while leaving them marked. This is
2357 convenient for the debugger and the disassembler. The linker knows
2358 to make them odd again. */
2359
2360 static void
2361 mips16_mark_labels (void)
2362 {
2363 segment_info_type *si = seg_info (now_seg);
2364 struct insn_label_list *l;
2365
2366 if (!mips_opts.mips16)
2367 return;
2368
2369 for (l = si->label_list; l != NULL; l = l->next)
2370 {
2371 symbolS *label = l->label;
2372
2373 #if defined(OBJ_ELF) || defined(OBJ_MAYBE_ELF)
2374 if (IS_ELF)
2375 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
2376 #endif
2377 if ((S_GET_VALUE (label) & 1) == 0
2378 /* Don't adjust the address if the label is global or weak, or
2379 in a link-once section, since we'll be emitting symbol reloc
2380 references to it which will be patched up by the linker, and
2381 the final value of the symbol may or may not be MIPS16. */
2382 && ! S_IS_WEAK (label)
2383 && ! S_IS_EXTERNAL (label)
2384 && ! s_is_linkonce (label, now_seg))
2385 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
2386 }
2387 }
2388
2389 /* End the current frag. Make it a variant frag and record the
2390 relaxation info. */
2391
2392 static void
2393 relax_close_frag (void)
2394 {
2395 mips_macro_warning.first_frag = frag_now;
2396 frag_var (rs_machine_dependent, 0, 0,
2397 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1]),
2398 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
2399
2400 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
2401 mips_relax.first_fixup = 0;
2402 }
2403
2404 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
2405 See the comment above RELAX_ENCODE for more details. */
2406
2407 static void
2408 relax_start (symbolS *symbol)
2409 {
2410 gas_assert (mips_relax.sequence == 0);
2411 mips_relax.sequence = 1;
2412 mips_relax.symbol = symbol;
2413 }
2414
2415 /* Start generating the second version of a relaxable sequence.
2416 See the comment above RELAX_ENCODE for more details. */
2417
2418 static void
2419 relax_switch (void)
2420 {
2421 gas_assert (mips_relax.sequence == 1);
2422 mips_relax.sequence = 2;
2423 }
2424
2425 /* End the current relaxable sequence. */
2426
2427 static void
2428 relax_end (void)
2429 {
2430 gas_assert (mips_relax.sequence == 2);
2431 relax_close_frag ();
2432 mips_relax.sequence = 0;
2433 }
2434
2435 /* Classify an instruction according to the FIX_VR4120_* enumeration.
2436 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
2437 by VR4120 errata. */
2438
2439 static unsigned int
2440 classify_vr4120_insn (const char *name)
2441 {
2442 if (strncmp (name, "macc", 4) == 0)
2443 return FIX_VR4120_MACC;
2444 if (strncmp (name, "dmacc", 5) == 0)
2445 return FIX_VR4120_DMACC;
2446 if (strncmp (name, "mult", 4) == 0)
2447 return FIX_VR4120_MULT;
2448 if (strncmp (name, "dmult", 5) == 0)
2449 return FIX_VR4120_DMULT;
2450 if (strstr (name, "div"))
2451 return FIX_VR4120_DIV;
2452 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
2453 return FIX_VR4120_MTHILO;
2454 return NUM_FIX_VR4120_CLASSES;
2455 }
2456
2457 #define INSN_ERET 0x42000018
2458 #define INSN_DERET 0x4200001f
2459
2460 /* Return the number of instructions that must separate INSN1 and INSN2,
2461 where INSN1 is the earlier instruction. Return the worst-case value
2462 for any INSN2 if INSN2 is null. */
2463
2464 static unsigned int
2465 insns_between (const struct mips_cl_insn *insn1,
2466 const struct mips_cl_insn *insn2)
2467 {
2468 unsigned long pinfo1, pinfo2;
2469
2470 /* This function needs to know which pinfo flags are set for INSN2
2471 and which registers INSN2 uses. The former is stored in PINFO2 and
2472 the latter is tested via INSN2_USES_REG. If INSN2 is null, PINFO2
2473 will have every flag set and INSN2_USES_REG will always return true. */
2474 pinfo1 = insn1->insn_mo->pinfo;
2475 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
2476
2477 #define INSN2_USES_REG(REG, CLASS) \
2478 (insn2 == NULL || insn_uses_reg (insn2, REG, CLASS))
2479
2480 /* For most targets, write-after-read dependencies on the HI and LO
2481 registers must be separated by at least two instructions. */
2482 if (!hilo_interlocks)
2483 {
2484 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
2485 return 2;
2486 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
2487 return 2;
2488 }
2489
2490 /* If we're working around r7000 errata, there must be two instructions
2491 between an mfhi or mflo and any instruction that uses the result. */
2492 if (mips_7000_hilo_fix
2493 && MF_HILO_INSN (pinfo1)
2494 && INSN2_USES_REG (EXTRACT_OPERAND (RD, *insn1), MIPS_GR_REG))
2495 return 2;
2496
2497 /* If we're working around 24K errata, one instruction is required
2498 if an ERET or DERET is followed by a branch instruction. */
2499 if (mips_fix_24k)
2500 {
2501 if (insn1->insn_opcode == INSN_ERET
2502 || insn1->insn_opcode == INSN_DERET)
2503 {
2504 if (insn2 == NULL
2505 || insn2->insn_opcode == INSN_ERET
2506 || insn2->insn_opcode == INSN_DERET
2507 || (insn2->insn_mo->pinfo
2508 & (INSN_UNCOND_BRANCH_DELAY
2509 | INSN_COND_BRANCH_DELAY
2510 | INSN_COND_BRANCH_LIKELY)) != 0)
2511 return 1;
2512 }
2513 }
2514
2515 /* If working around VR4120 errata, check for combinations that need
2516 a single intervening instruction. */
2517 if (mips_fix_vr4120)
2518 {
2519 unsigned int class1, class2;
2520
2521 class1 = classify_vr4120_insn (insn1->insn_mo->name);
2522 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
2523 {
2524 if (insn2 == NULL)
2525 return 1;
2526 class2 = classify_vr4120_insn (insn2->insn_mo->name);
2527 if (vr4120_conflicts[class1] & (1 << class2))
2528 return 1;
2529 }
2530 }
2531
2532 if (!mips_opts.mips16)
2533 {
2534 /* Check for GPR or coprocessor load delays. All such delays
2535 are on the RT register. */
2536 /* Itbl support may require additional care here. */
2537 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY_DELAY))
2538 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC_DELAY)))
2539 {
2540 know (pinfo1 & INSN_WRITE_GPR_T);
2541 if (INSN2_USES_REG (EXTRACT_OPERAND (RT, *insn1), MIPS_GR_REG))
2542 return 1;
2543 }
2544
2545 /* Check for generic coprocessor hazards.
2546
2547 This case is not handled very well. There is no special
2548 knowledge of CP0 handling, and the coprocessors other than
2549 the floating point unit are not distinguished at all. */
2550 /* Itbl support may require additional care here. FIXME!
2551 Need to modify this to include knowledge about
2552 user specified delays! */
2553 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE_DELAY))
2554 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
2555 {
2556 /* Handle cases where INSN1 writes to a known general coprocessor
2557 register. There must be a one instruction delay before INSN2
2558 if INSN2 reads that register, otherwise no delay is needed. */
2559 if (pinfo1 & INSN_WRITE_FPR_T)
2560 {
2561 if (INSN2_USES_REG (EXTRACT_OPERAND (FT, *insn1), MIPS_FP_REG))
2562 return 1;
2563 }
2564 else if (pinfo1 & INSN_WRITE_FPR_S)
2565 {
2566 if (INSN2_USES_REG (EXTRACT_OPERAND (FS, *insn1), MIPS_FP_REG))
2567 return 1;
2568 }
2569 else
2570 {
2571 /* Read-after-write dependencies on the control registers
2572 require a two-instruction gap. */
2573 if ((pinfo1 & INSN_WRITE_COND_CODE)
2574 && (pinfo2 & INSN_READ_COND_CODE))
2575 return 2;
2576
2577 /* We don't know exactly what INSN1 does. If INSN2 is
2578 also a coprocessor instruction, assume there must be
2579 a one instruction gap. */
2580 if (pinfo2 & INSN_COP)
2581 return 1;
2582 }
2583 }
2584
2585 /* Check for read-after-write dependencies on the coprocessor
2586 control registers in cases where INSN1 does not need a general
2587 coprocessor delay. This means that INSN1 is a floating point
2588 comparison instruction. */
2589 /* Itbl support may require additional care here. */
2590 else if (!cop_interlocks
2591 && (pinfo1 & INSN_WRITE_COND_CODE)
2592 && (pinfo2 & INSN_READ_COND_CODE))
2593 return 1;
2594 }
2595
2596 #undef INSN2_USES_REG
2597
2598 return 0;
2599 }
2600
2601 /* Return the number of nops that would be needed to work around the
2602 VR4130 mflo/mfhi errata if instruction INSN immediately followed
2603 the MAX_VR4130_NOPS instructions described by HISTORY. */
2604
2605 static int
2606 nops_for_vr4130 (const struct mips_cl_insn *history,
2607 const struct mips_cl_insn *insn)
2608 {
2609 int i, j, reg;
2610
2611 /* Check if the instruction writes to HI or LO. MTHI and MTLO
2612 are not affected by the errata. */
2613 if (insn != 0
2614 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
2615 || strcmp (insn->insn_mo->name, "mtlo") == 0
2616 || strcmp (insn->insn_mo->name, "mthi") == 0))
2617 return 0;
2618
2619 /* Search for the first MFLO or MFHI. */
2620 for (i = 0; i < MAX_VR4130_NOPS; i++)
2621 if (MF_HILO_INSN (history[i].insn_mo->pinfo))
2622 {
2623 /* Extract the destination register. */
2624 if (mips_opts.mips16)
2625 reg = mips16_to_32_reg_map[MIPS16_EXTRACT_OPERAND (RX, history[i])];
2626 else
2627 reg = EXTRACT_OPERAND (RD, history[i]);
2628
2629 /* No nops are needed if INSN reads that register. */
2630 if (insn != NULL && insn_uses_reg (insn, reg, MIPS_GR_REG))
2631 return 0;
2632
2633 /* ...or if any of the intervening instructions do. */
2634 for (j = 0; j < i; j++)
2635 if (insn_uses_reg (&history[j], reg, MIPS_GR_REG))
2636 return 0;
2637
2638 return MAX_VR4130_NOPS - i;
2639 }
2640 return 0;
2641 }
2642
2643 /* Return the number of nops that would be needed if instruction INSN
2644 immediately followed the MAX_NOPS instructions given by HISTORY,
2645 where HISTORY[0] is the most recent instruction. If INSN is null,
2646 return the worse-case number of nops for any instruction. */
2647
2648 static int
2649 nops_for_insn (const struct mips_cl_insn *history,
2650 const struct mips_cl_insn *insn)
2651 {
2652 int i, nops, tmp_nops;
2653
2654 nops = 0;
2655 for (i = 0; i < MAX_DELAY_NOPS; i++)
2656 {
2657 tmp_nops = insns_between (history + i, insn) - i;
2658 if (tmp_nops > nops)
2659 nops = tmp_nops;
2660 }
2661
2662 if (mips_fix_vr4130)
2663 {
2664 tmp_nops = nops_for_vr4130 (history, insn);
2665 if (tmp_nops > nops)
2666 nops = tmp_nops;
2667 }
2668
2669 return nops;
2670 }
2671
2672 /* The variable arguments provide NUM_INSNS extra instructions that
2673 might be added to HISTORY. Return the largest number of nops that
2674 would be needed after the extended sequence. */
2675
2676 static int
2677 nops_for_sequence (int num_insns, const struct mips_cl_insn *history, ...)
2678 {
2679 va_list args;
2680 struct mips_cl_insn buffer[MAX_NOPS];
2681 struct mips_cl_insn *cursor;
2682 int nops;
2683
2684 va_start (args, history);
2685 cursor = buffer + num_insns;
2686 memcpy (cursor, history, (MAX_NOPS - num_insns) * sizeof (*cursor));
2687 while (cursor > buffer)
2688 *--cursor = *va_arg (args, const struct mips_cl_insn *);
2689
2690 nops = nops_for_insn (buffer, NULL);
2691 va_end (args);
2692 return nops;
2693 }
2694
2695 /* Like nops_for_insn, but if INSN is a branch, take into account the
2696 worst-case delay for the branch target. */
2697
2698 static int
2699 nops_for_insn_or_target (const struct mips_cl_insn *history,
2700 const struct mips_cl_insn *insn)
2701 {
2702 int nops, tmp_nops;
2703
2704 nops = nops_for_insn (history, insn);
2705 if (insn->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
2706 | INSN_COND_BRANCH_DELAY
2707 | INSN_COND_BRANCH_LIKELY))
2708 {
2709 tmp_nops = nops_for_sequence (2, history, insn, NOP_INSN);
2710 if (tmp_nops > nops)
2711 nops = tmp_nops;
2712 }
2713 else if (mips_opts.mips16 && (insn->insn_mo->pinfo & MIPS16_INSN_BRANCH))
2714 {
2715 tmp_nops = nops_for_sequence (1, history, insn);
2716 if (tmp_nops > nops)
2717 nops = tmp_nops;
2718 }
2719 return nops;
2720 }
2721
2722 /* Output an instruction. IP is the instruction information.
2723 ADDRESS_EXPR is an operand of the instruction to be used with
2724 RELOC_TYPE. */
2725
2726 static void
2727 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
2728 bfd_reloc_code_real_type *reloc_type)
2729 {
2730 unsigned long prev_pinfo, pinfo;
2731 relax_stateT prev_insn_frag_type = 0;
2732 bfd_boolean relaxed_branch = FALSE;
2733 segment_info_type *si = seg_info (now_seg);
2734
2735 /* Mark instruction labels in mips16 mode. */
2736 mips16_mark_labels ();
2737
2738 prev_pinfo = history[0].insn_mo->pinfo;
2739 pinfo = ip->insn_mo->pinfo;
2740
2741 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
2742 {
2743 /* There are a lot of optimizations we could do that we don't.
2744 In particular, we do not, in general, reorder instructions.
2745 If you use gcc with optimization, it will reorder
2746 instructions and generally do much more optimization then we
2747 do here; repeating all that work in the assembler would only
2748 benefit hand written assembly code, and does not seem worth
2749 it. */
2750 int nops = (mips_optimize == 0
2751 ? nops_for_insn (history, NULL)
2752 : nops_for_insn_or_target (history, ip));
2753 if (nops > 0)
2754 {
2755 fragS *old_frag;
2756 unsigned long old_frag_offset;
2757 int i;
2758
2759 old_frag = frag_now;
2760 old_frag_offset = frag_now_fix ();
2761
2762 for (i = 0; i < nops; i++)
2763 emit_nop ();
2764
2765 if (listing)
2766 {
2767 listing_prev_line ();
2768 /* We may be at the start of a variant frag. In case we
2769 are, make sure there is enough space for the frag
2770 after the frags created by listing_prev_line. The
2771 argument to frag_grow here must be at least as large
2772 as the argument to all other calls to frag_grow in
2773 this file. We don't have to worry about being in the
2774 middle of a variant frag, because the variants insert
2775 all needed nop instructions themselves. */
2776 frag_grow (40);
2777 }
2778
2779 mips_move_labels ();
2780
2781 #ifndef NO_ECOFF_DEBUGGING
2782 if (ECOFF_DEBUGGING)
2783 ecoff_fix_loc (old_frag, old_frag_offset);
2784 #endif
2785 }
2786 }
2787 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
2788 {
2789 /* Work out how many nops in prev_nop_frag are needed by IP. */
2790 int nops = nops_for_insn_or_target (history, ip);
2791 gas_assert (nops <= prev_nop_frag_holds);
2792
2793 /* Enforce NOPS as a minimum. */
2794 if (nops > prev_nop_frag_required)
2795 prev_nop_frag_required = nops;
2796
2797 if (prev_nop_frag_holds == prev_nop_frag_required)
2798 {
2799 /* Settle for the current number of nops. Update the history
2800 accordingly (for the benefit of any future .set reorder code). */
2801 prev_nop_frag = NULL;
2802 insert_into_history (prev_nop_frag_since,
2803 prev_nop_frag_holds, NOP_INSN);
2804 }
2805 else
2806 {
2807 /* Allow this instruction to replace one of the nops that was
2808 tentatively added to prev_nop_frag. */
2809 prev_nop_frag->fr_fix -= mips_opts.mips16 ? 2 : 4;
2810 prev_nop_frag_holds--;
2811 prev_nop_frag_since++;
2812 }
2813 }
2814
2815 #ifdef OBJ_ELF
2816 /* The value passed to dwarf2_emit_insn is the distance between
2817 the beginning of the current instruction and the address that
2818 should be recorded in the debug tables. For MIPS16 debug info
2819 we want to use ISA-encoded addresses, so we pass -1 for an
2820 address higher by one than the current. */
2821 dwarf2_emit_insn (mips_opts.mips16 ? -1 : 0);
2822 #endif
2823
2824 /* Record the frag type before frag_var. */
2825 if (history[0].frag)
2826 prev_insn_frag_type = history[0].frag->fr_type;
2827
2828 if (address_expr
2829 && *reloc_type == BFD_RELOC_16_PCREL_S2
2830 && (pinfo & INSN_UNCOND_BRANCH_DELAY || pinfo & INSN_COND_BRANCH_DELAY
2831 || pinfo & INSN_COND_BRANCH_LIKELY)
2832 && mips_relax_branch
2833 /* Don't try branch relaxation within .set nomacro, or within
2834 .set noat if we use $at for PIC computations. If it turns
2835 out that the branch was out-of-range, we'll get an error. */
2836 && !mips_opts.warn_about_macros
2837 && (mips_opts.at || mips_pic == NO_PIC)
2838 && !mips_opts.mips16)
2839 {
2840 relaxed_branch = TRUE;
2841 add_relaxed_insn (ip, (relaxed_branch_length
2842 (NULL, NULL,
2843 (pinfo & INSN_UNCOND_BRANCH_DELAY) ? -1
2844 : (pinfo & INSN_COND_BRANCH_LIKELY) ? 1
2845 : 0)), 4,
2846 RELAX_BRANCH_ENCODE
2847 (pinfo & INSN_UNCOND_BRANCH_DELAY,
2848 pinfo & INSN_COND_BRANCH_LIKELY,
2849 pinfo & INSN_WRITE_GPR_31,
2850 0),
2851 address_expr->X_add_symbol,
2852 address_expr->X_add_number);
2853 *reloc_type = BFD_RELOC_UNUSED;
2854 }
2855 else if (*reloc_type > BFD_RELOC_UNUSED)
2856 {
2857 /* We need to set up a variant frag. */
2858 gas_assert (mips_opts.mips16 && address_expr != NULL);
2859 add_relaxed_insn (ip, 4, 0,
2860 RELAX_MIPS16_ENCODE
2861 (*reloc_type - BFD_RELOC_UNUSED,
2862 mips16_small, mips16_ext,
2863 prev_pinfo & INSN_UNCOND_BRANCH_DELAY,
2864 history[0].mips16_absolute_jump_p),
2865 make_expr_symbol (address_expr), 0);
2866 }
2867 else if (mips_opts.mips16
2868 && ! ip->use_extend
2869 && *reloc_type != BFD_RELOC_MIPS16_JMP)
2870 {
2871 if ((pinfo & INSN_UNCOND_BRANCH_DELAY) == 0)
2872 /* Make sure there is enough room to swap this instruction with
2873 a following jump instruction. */
2874 frag_grow (6);
2875 add_fixed_insn (ip);
2876 }
2877 else
2878 {
2879 if (mips_opts.mips16
2880 && mips_opts.noreorder
2881 && (prev_pinfo & INSN_UNCOND_BRANCH_DELAY) != 0)
2882 as_warn (_("extended instruction in delay slot"));
2883
2884 if (mips_relax.sequence)
2885 {
2886 /* If we've reached the end of this frag, turn it into a variant
2887 frag and record the information for the instructions we've
2888 written so far. */
2889 if (frag_room () < 4)
2890 relax_close_frag ();
2891 mips_relax.sizes[mips_relax.sequence - 1] += 4;
2892 }
2893
2894 if (mips_relax.sequence != 2)
2895 mips_macro_warning.sizes[0] += 4;
2896 if (mips_relax.sequence != 1)
2897 mips_macro_warning.sizes[1] += 4;
2898
2899 if (mips_opts.mips16)
2900 {
2901 ip->fixed_p = 1;
2902 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
2903 }
2904 add_fixed_insn (ip);
2905 }
2906
2907 if (address_expr != NULL && *reloc_type <= BFD_RELOC_UNUSED)
2908 {
2909 if (address_expr->X_op == O_constant)
2910 {
2911 unsigned int tmp;
2912
2913 switch (*reloc_type)
2914 {
2915 case BFD_RELOC_32:
2916 ip->insn_opcode |= address_expr->X_add_number;
2917 break;
2918
2919 case BFD_RELOC_MIPS_HIGHEST:
2920 tmp = (address_expr->X_add_number + 0x800080008000ull) >> 48;
2921 ip->insn_opcode |= tmp & 0xffff;
2922 break;
2923
2924 case BFD_RELOC_MIPS_HIGHER:
2925 tmp = (address_expr->X_add_number + 0x80008000ull) >> 32;
2926 ip->insn_opcode |= tmp & 0xffff;
2927 break;
2928
2929 case BFD_RELOC_HI16_S:
2930 tmp = (address_expr->X_add_number + 0x8000) >> 16;
2931 ip->insn_opcode |= tmp & 0xffff;
2932 break;
2933
2934 case BFD_RELOC_HI16:
2935 ip->insn_opcode |= (address_expr->X_add_number >> 16) & 0xffff;
2936 break;
2937
2938 case BFD_RELOC_UNUSED:
2939 case BFD_RELOC_LO16:
2940 case BFD_RELOC_MIPS_GOT_DISP:
2941 ip->insn_opcode |= address_expr->X_add_number & 0xffff;
2942 break;
2943
2944 case BFD_RELOC_MIPS_JMP:
2945 if ((address_expr->X_add_number & 3) != 0)
2946 as_bad (_("jump to misaligned address (0x%lx)"),
2947 (unsigned long) address_expr->X_add_number);
2948 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0x3ffffff;
2949 break;
2950
2951 case BFD_RELOC_MIPS16_JMP:
2952 if ((address_expr->X_add_number & 3) != 0)
2953 as_bad (_("jump to misaligned address (0x%lx)"),
2954 (unsigned long) address_expr->X_add_number);
2955 ip->insn_opcode |=
2956 (((address_expr->X_add_number & 0x7c0000) << 3)
2957 | ((address_expr->X_add_number & 0xf800000) >> 7)
2958 | ((address_expr->X_add_number & 0x3fffc) >> 2));
2959 break;
2960
2961 case BFD_RELOC_16_PCREL_S2:
2962 if ((address_expr->X_add_number & 3) != 0)
2963 as_bad (_("branch to misaligned address (0x%lx)"),
2964 (unsigned long) address_expr->X_add_number);
2965 if (mips_relax_branch)
2966 goto need_reloc;
2967 if ((address_expr->X_add_number + 0x20000) & ~0x3ffff)
2968 as_bad (_("branch address range overflow (0x%lx)"),
2969 (unsigned long) address_expr->X_add_number);
2970 ip->insn_opcode |= (address_expr->X_add_number >> 2) & 0xffff;
2971 break;
2972
2973 default:
2974 internalError ();
2975 }
2976 }
2977 else if (*reloc_type < BFD_RELOC_UNUSED)
2978 need_reloc:
2979 {
2980 reloc_howto_type *howto;
2981 int i;
2982
2983 /* In a compound relocation, it is the final (outermost)
2984 operator that determines the relocated field. */
2985 for (i = 1; i < 3; i++)
2986 if (reloc_type[i] == BFD_RELOC_UNUSED)
2987 break;
2988
2989 howto = bfd_reloc_type_lookup (stdoutput, reloc_type[i - 1]);
2990 if (howto == NULL)
2991 {
2992 /* To reproduce this failure try assembling gas/testsuites/
2993 gas/mips/mips16-intermix.s with a mips-ecoff targeted
2994 assembler. */
2995 as_bad (_("Unsupported MIPS relocation number %d"), reloc_type[i - 1]);
2996 howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_16);
2997 }
2998
2999 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
3000 bfd_get_reloc_size (howto),
3001 address_expr,
3002 reloc_type[0] == BFD_RELOC_16_PCREL_S2,
3003 reloc_type[0]);
3004
3005 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
3006 if (reloc_type[0] == BFD_RELOC_MIPS16_JMP
3007 && ip->fixp[0]->fx_addsy)
3008 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
3009
3010 /* These relocations can have an addend that won't fit in
3011 4 octets for 64bit assembly. */
3012 if (HAVE_64BIT_GPRS
3013 && ! howto->partial_inplace
3014 && (reloc_type[0] == BFD_RELOC_16
3015 || reloc_type[0] == BFD_RELOC_32
3016 || reloc_type[0] == BFD_RELOC_MIPS_JMP
3017 || reloc_type[0] == BFD_RELOC_GPREL16
3018 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
3019 || reloc_type[0] == BFD_RELOC_GPREL32
3020 || reloc_type[0] == BFD_RELOC_64
3021 || reloc_type[0] == BFD_RELOC_CTOR
3022 || reloc_type[0] == BFD_RELOC_MIPS_SUB
3023 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
3024 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
3025 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
3026 || reloc_type[0] == BFD_RELOC_MIPS_REL16
3027 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
3028 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
3029 || hi16_reloc_p (reloc_type[0])
3030 || lo16_reloc_p (reloc_type[0])))
3031 ip->fixp[0]->fx_no_overflow = 1;
3032
3033 if (mips_relax.sequence)
3034 {
3035 if (mips_relax.first_fixup == 0)
3036 mips_relax.first_fixup = ip->fixp[0];
3037 }
3038 else if (reloc_needs_lo_p (*reloc_type))
3039 {
3040 struct mips_hi_fixup *hi_fixup;
3041
3042 /* Reuse the last entry if it already has a matching %lo. */
3043 hi_fixup = mips_hi_fixup_list;
3044 if (hi_fixup == 0
3045 || !fixup_has_matching_lo_p (hi_fixup->fixp))
3046 {
3047 hi_fixup = ((struct mips_hi_fixup *)
3048 xmalloc (sizeof (struct mips_hi_fixup)));
3049 hi_fixup->next = mips_hi_fixup_list;
3050 mips_hi_fixup_list = hi_fixup;
3051 }
3052 hi_fixup->fixp = ip->fixp[0];
3053 hi_fixup->seg = now_seg;
3054 }
3055
3056 /* Add fixups for the second and third relocations, if given.
3057 Note that the ABI allows the second relocation to be
3058 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
3059 moment we only use RSS_UNDEF, but we could add support
3060 for the others if it ever becomes necessary. */
3061 for (i = 1; i < 3; i++)
3062 if (reloc_type[i] != BFD_RELOC_UNUSED)
3063 {
3064 ip->fixp[i] = fix_new (ip->frag, ip->where,
3065 ip->fixp[0]->fx_size, NULL, 0,
3066 FALSE, reloc_type[i]);
3067
3068 /* Use fx_tcbit to mark compound relocs. */
3069 ip->fixp[0]->fx_tcbit = 1;
3070 ip->fixp[i]->fx_tcbit = 1;
3071 }
3072 }
3073 }
3074 install_insn (ip);
3075
3076 /* Update the register mask information. */
3077 if (! mips_opts.mips16)
3078 {
3079 if (pinfo & INSN_WRITE_GPR_D)
3080 mips_gprmask |= 1 << EXTRACT_OPERAND (RD, *ip);
3081 if ((pinfo & (INSN_WRITE_GPR_T | INSN_READ_GPR_T)) != 0)
3082 mips_gprmask |= 1 << EXTRACT_OPERAND (RT, *ip);
3083 if (pinfo & INSN_READ_GPR_S)
3084 mips_gprmask |= 1 << EXTRACT_OPERAND (RS, *ip);
3085 if (pinfo & INSN_WRITE_GPR_31)
3086 mips_gprmask |= 1 << RA;
3087 if (pinfo & INSN_WRITE_FPR_D)
3088 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FD, *ip);
3089 if ((pinfo & (INSN_WRITE_FPR_S | INSN_READ_FPR_S)) != 0)
3090 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FS, *ip);
3091 if ((pinfo & (INSN_WRITE_FPR_T | INSN_READ_FPR_T)) != 0)
3092 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FT, *ip);
3093 if ((pinfo & INSN_READ_FPR_R) != 0)
3094 mips_cprmask[1] |= 1 << EXTRACT_OPERAND (FR, *ip);
3095 if (pinfo & INSN_COP)
3096 {
3097 /* We don't keep enough information to sort these cases out.
3098 The itbl support does keep this information however, although
3099 we currently don't support itbl fprmats as part of the cop
3100 instruction. May want to add this support in the future. */
3101 }
3102 /* Never set the bit for $0, which is always zero. */
3103 mips_gprmask &= ~1 << 0;
3104 }
3105 else
3106 {
3107 if (pinfo & (MIPS16_INSN_WRITE_X | MIPS16_INSN_READ_X))
3108 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RX, *ip);
3109 if (pinfo & (MIPS16_INSN_WRITE_Y | MIPS16_INSN_READ_Y))
3110 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RY, *ip);
3111 if (pinfo & MIPS16_INSN_WRITE_Z)
3112 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (RZ, *ip);
3113 if (pinfo & (MIPS16_INSN_WRITE_T | MIPS16_INSN_READ_T))
3114 mips_gprmask |= 1 << TREG;
3115 if (pinfo & (MIPS16_INSN_WRITE_SP | MIPS16_INSN_READ_SP))
3116 mips_gprmask |= 1 << SP;
3117 if (pinfo & (MIPS16_INSN_WRITE_31 | MIPS16_INSN_READ_31))
3118 mips_gprmask |= 1 << RA;
3119 if (pinfo & MIPS16_INSN_WRITE_GPR_Y)
3120 mips_gprmask |= 1 << MIPS16OP_EXTRACT_REG32R (ip->insn_opcode);
3121 if (pinfo & MIPS16_INSN_READ_Z)
3122 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (MOVE32Z, *ip);
3123 if (pinfo & MIPS16_INSN_READ_GPR_X)
3124 mips_gprmask |= 1 << MIPS16_EXTRACT_OPERAND (REGR32, *ip);
3125 }
3126
3127 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
3128 {
3129 /* Filling the branch delay slot is more complex. We try to
3130 switch the branch with the previous instruction, which we can
3131 do if the previous instruction does not set up a condition
3132 that the branch tests and if the branch is not itself the
3133 target of any branch. */
3134 if ((pinfo & INSN_UNCOND_BRANCH_DELAY)
3135 || (pinfo & INSN_COND_BRANCH_DELAY))
3136 {
3137 if (mips_optimize < 2
3138 /* If we have seen .set volatile or .set nomove, don't
3139 optimize. */
3140 || mips_opts.nomove != 0
3141 /* We can't swap if the previous instruction's position
3142 is fixed. */
3143 || history[0].fixed_p
3144 /* If the previous previous insn was in a .set
3145 noreorder, we can't swap. Actually, the MIPS
3146 assembler will swap in this situation. However, gcc
3147 configured -with-gnu-as will generate code like
3148 .set noreorder
3149 lw $4,XXX
3150 .set reorder
3151 INSN
3152 bne $4,$0,foo
3153 in which we can not swap the bne and INSN. If gcc is
3154 not configured -with-gnu-as, it does not output the
3155 .set pseudo-ops. */
3156 || history[1].noreorder_p
3157 /* If the branch is itself the target of a branch, we
3158 can not swap. We cheat on this; all we check for is
3159 whether there is a label on this instruction. If
3160 there are any branches to anything other than a
3161 label, users must use .set noreorder. */
3162 || si->label_list != NULL
3163 /* If the previous instruction is in a variant frag
3164 other than this branch's one, we cannot do the swap.
3165 This does not apply to the mips16, which uses variant
3166 frags for different purposes. */
3167 || (! mips_opts.mips16
3168 && prev_insn_frag_type == rs_machine_dependent)
3169 /* Check for conflicts between the branch and the instructions
3170 before the candidate delay slot. */
3171 || nops_for_insn (history + 1, ip) > 0
3172 /* Check for conflicts between the swapped sequence and the
3173 target of the branch. */
3174 || nops_for_sequence (2, history + 1, ip, history) > 0
3175 /* We do not swap with a trap instruction, since it
3176 complicates trap handlers to have the trap
3177 instruction be in a delay slot. */
3178 || (prev_pinfo & INSN_TRAP)
3179 /* If the branch reads a register that the previous
3180 instruction sets, we can not swap. */
3181 || (! mips_opts.mips16
3182 && (prev_pinfo & INSN_WRITE_GPR_T)
3183 && insn_uses_reg (ip, EXTRACT_OPERAND (RT, history[0]),
3184 MIPS_GR_REG))
3185 || (! mips_opts.mips16
3186 && (prev_pinfo & INSN_WRITE_GPR_D)
3187 && insn_uses_reg (ip, EXTRACT_OPERAND (RD, history[0]),
3188 MIPS_GR_REG))
3189 || (mips_opts.mips16
3190 && (((prev_pinfo & MIPS16_INSN_WRITE_X)
3191 && (insn_uses_reg
3192 (ip, MIPS16_EXTRACT_OPERAND (RX, history[0]),
3193 MIPS16_REG)))
3194 || ((prev_pinfo & MIPS16_INSN_WRITE_Y)
3195 && (insn_uses_reg
3196 (ip, MIPS16_EXTRACT_OPERAND (RY, history[0]),
3197 MIPS16_REG)))
3198 || ((prev_pinfo & MIPS16_INSN_WRITE_Z)
3199 && (insn_uses_reg
3200 (ip, MIPS16_EXTRACT_OPERAND (RZ, history[0]),
3201 MIPS16_REG)))
3202 || ((prev_pinfo & MIPS16_INSN_WRITE_T)
3203 && insn_uses_reg (ip, TREG, MIPS_GR_REG))
3204 || ((prev_pinfo & MIPS16_INSN_WRITE_31)
3205 && insn_uses_reg (ip, RA, MIPS_GR_REG))
3206 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3207 && insn_uses_reg (ip,
3208 MIPS16OP_EXTRACT_REG32R
3209 (history[0].insn_opcode),
3210 MIPS_GR_REG))))
3211 /* If the branch writes a register that the previous
3212 instruction sets, we can not swap (we know that
3213 branches write only to RD or to $31). */
3214 || (! mips_opts.mips16
3215 && (prev_pinfo & INSN_WRITE_GPR_T)
3216 && (((pinfo & INSN_WRITE_GPR_D)
3217 && (EXTRACT_OPERAND (RT, history[0])
3218 == EXTRACT_OPERAND (RD, *ip)))
3219 || ((pinfo & INSN_WRITE_GPR_31)
3220 && EXTRACT_OPERAND (RT, history[0]) == RA)))
3221 || (! mips_opts.mips16
3222 && (prev_pinfo & INSN_WRITE_GPR_D)
3223 && (((pinfo & INSN_WRITE_GPR_D)
3224 && (EXTRACT_OPERAND (RD, history[0])
3225 == EXTRACT_OPERAND (RD, *ip)))
3226 || ((pinfo & INSN_WRITE_GPR_31)
3227 && EXTRACT_OPERAND (RD, history[0]) == RA)))
3228 || (mips_opts.mips16
3229 && (pinfo & MIPS16_INSN_WRITE_31)
3230 && ((prev_pinfo & MIPS16_INSN_WRITE_31)
3231 || ((prev_pinfo & MIPS16_INSN_WRITE_GPR_Y)
3232 && (MIPS16OP_EXTRACT_REG32R (history[0].insn_opcode)
3233 == RA))))
3234 /* If the branch writes a register that the previous
3235 instruction reads, we can not swap (we know that
3236 branches only write to RD or to $31). */
3237 || (! mips_opts.mips16
3238 && (pinfo & INSN_WRITE_GPR_D)
3239 && insn_uses_reg (&history[0],
3240 EXTRACT_OPERAND (RD, *ip),
3241 MIPS_GR_REG))
3242 || (! mips_opts.mips16
3243 && (pinfo & INSN_WRITE_GPR_31)
3244 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3245 || (mips_opts.mips16
3246 && (pinfo & MIPS16_INSN_WRITE_31)
3247 && insn_uses_reg (&history[0], RA, MIPS_GR_REG))
3248 /* If one instruction sets a condition code and the
3249 other one uses a condition code, we can not swap. */
3250 || ((pinfo & INSN_READ_COND_CODE)
3251 && (prev_pinfo & INSN_WRITE_COND_CODE))
3252 || ((pinfo & INSN_WRITE_COND_CODE)
3253 && (prev_pinfo & INSN_READ_COND_CODE))
3254 /* If the previous instruction uses the PC, we can not
3255 swap. */
3256 || (mips_opts.mips16
3257 && (prev_pinfo & MIPS16_INSN_READ_PC))
3258 /* If the previous instruction had a fixup in mips16
3259 mode, we can not swap. This normally means that the
3260 previous instruction was a 4 byte branch anyhow. */
3261 || (mips_opts.mips16 && history[0].fixp[0])
3262 /* If the previous instruction is a sync, sync.l, or
3263 sync.p, we can not swap. */
3264 || (prev_pinfo & INSN_SYNC)
3265 /* If the previous instruction is an ERET or
3266 DERET, avoid the swap. */
3267 || (history[0].insn_opcode == INSN_ERET)
3268 || (history[0].insn_opcode == INSN_DERET))
3269 {
3270 if (mips_opts.mips16
3271 && (pinfo & INSN_UNCOND_BRANCH_DELAY)
3272 && (pinfo & (MIPS16_INSN_READ_X | MIPS16_INSN_READ_31))
3273 && ISA_SUPPORTS_MIPS16E)
3274 {
3275 /* Convert MIPS16 jr/jalr into a "compact" jump. */
3276 ip->insn_opcode |= 0x0080;
3277 install_insn (ip);
3278 insert_into_history (0, 1, ip);
3279 }
3280 else
3281 {
3282 /* We could do even better for unconditional branches to
3283 portions of this object file; we could pick up the
3284 instruction at the destination, put it in the delay
3285 slot, and bump the destination address. */
3286 insert_into_history (0, 1, ip);
3287 emit_nop ();
3288 }
3289
3290 if (mips_relax.sequence)
3291 mips_relax.sizes[mips_relax.sequence - 1] += 4;
3292 }
3293 else
3294 {
3295 /* It looks like we can actually do the swap. */
3296 struct mips_cl_insn delay = history[0];
3297 if (mips_opts.mips16)
3298 {
3299 know (delay.frag == ip->frag);
3300 move_insn (ip, delay.frag, delay.where);
3301 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
3302 }
3303 else if (relaxed_branch)
3304 {
3305 /* Add the delay slot instruction to the end of the
3306 current frag and shrink the fixed part of the
3307 original frag. If the branch occupies the tail of
3308 the latter, move it backwards to cover the gap. */
3309 delay.frag->fr_fix -= 4;
3310 if (delay.frag == ip->frag)
3311 move_insn (ip, ip->frag, ip->where - 4);
3312 add_fixed_insn (&delay);
3313 }
3314 else
3315 {
3316 move_insn (&delay, ip->frag, ip->where);
3317 move_insn (ip, history[0].frag, history[0].where);
3318 }
3319 history[0] = *ip;
3320 delay.fixed_p = 1;
3321 insert_into_history (0, 1, &delay);
3322 }
3323
3324 /* If that was an unconditional branch, forget the previous
3325 insn information. */
3326 if (pinfo & INSN_UNCOND_BRANCH_DELAY)
3327 {
3328 mips_no_prev_insn ();
3329 }
3330 }
3331 else if (pinfo & INSN_COND_BRANCH_LIKELY)
3332 {
3333 /* We don't yet optimize a branch likely. What we should do
3334 is look at the target, copy the instruction found there
3335 into the delay slot, and increment the branch to jump to
3336 the next instruction. */
3337 insert_into_history (0, 1, ip);
3338 emit_nop ();
3339 }
3340 else
3341 insert_into_history (0, 1, ip);
3342 }
3343 else
3344 insert_into_history (0, 1, ip);
3345
3346 /* We just output an insn, so the next one doesn't have a label. */
3347 mips_clear_insn_labels ();
3348 }
3349
3350 /* Forget that there was any previous instruction or label. */
3351
3352 static void
3353 mips_no_prev_insn (void)
3354 {
3355 prev_nop_frag = NULL;
3356 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
3357 mips_clear_insn_labels ();
3358 }
3359
3360 /* This function must be called before we emit something other than
3361 instructions. It is like mips_no_prev_insn except that it inserts
3362 any NOPS that might be needed by previous instructions. */
3363
3364 void
3365 mips_emit_delays (void)
3366 {
3367 if (! mips_opts.noreorder)
3368 {
3369 int nops = nops_for_insn (history, NULL);
3370 if (nops > 0)
3371 {
3372 while (nops-- > 0)
3373 add_fixed_insn (NOP_INSN);
3374 mips_move_labels ();
3375 }
3376 }
3377 mips_no_prev_insn ();
3378 }
3379
3380 /* Start a (possibly nested) noreorder block. */
3381
3382 static void
3383 start_noreorder (void)
3384 {
3385 if (mips_opts.noreorder == 0)
3386 {
3387 unsigned int i;
3388 int nops;
3389
3390 /* None of the instructions before the .set noreorder can be moved. */
3391 for (i = 0; i < ARRAY_SIZE (history); i++)
3392 history[i].fixed_p = 1;
3393
3394 /* Insert any nops that might be needed between the .set noreorder
3395 block and the previous instructions. We will later remove any
3396 nops that turn out not to be needed. */
3397 nops = nops_for_insn (history, NULL);
3398 if (nops > 0)
3399 {
3400 if (mips_optimize != 0)
3401 {
3402 /* Record the frag which holds the nop instructions, so
3403 that we can remove them if we don't need them. */
3404 frag_grow (mips_opts.mips16 ? nops * 2 : nops * 4);
3405 prev_nop_frag = frag_now;
3406 prev_nop_frag_holds = nops;
3407 prev_nop_frag_required = 0;
3408 prev_nop_frag_since = 0;
3409 }
3410
3411 for (; nops > 0; --nops)
3412 add_fixed_insn (NOP_INSN);
3413
3414 /* Move on to a new frag, so that it is safe to simply
3415 decrease the size of prev_nop_frag. */
3416 frag_wane (frag_now);
3417 frag_new (0);
3418 mips_move_labels ();
3419 }
3420 mips16_mark_labels ();
3421 mips_clear_insn_labels ();
3422 }
3423 mips_opts.noreorder++;
3424 mips_any_noreorder = 1;
3425 }
3426
3427 /* End a nested noreorder block. */
3428
3429 static void
3430 end_noreorder (void)
3431 {
3432
3433 mips_opts.noreorder--;
3434 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
3435 {
3436 /* Commit to inserting prev_nop_frag_required nops and go back to
3437 handling nop insertion the .set reorder way. */
3438 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
3439 * (mips_opts.mips16 ? 2 : 4));
3440 insert_into_history (prev_nop_frag_since,
3441 prev_nop_frag_required, NOP_INSN);
3442 prev_nop_frag = NULL;
3443 }
3444 }
3445
3446 /* Set up global variables for the start of a new macro. */
3447
3448 static void
3449 macro_start (void)
3450 {
3451 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
3452 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
3453 && (history[0].insn_mo->pinfo
3454 & (INSN_UNCOND_BRANCH_DELAY
3455 | INSN_COND_BRANCH_DELAY
3456 | INSN_COND_BRANCH_LIKELY)) != 0);
3457 }
3458
3459 /* Given that a macro is longer than 4 bytes, return the appropriate warning
3460 for it. Return null if no warning is needed. SUBTYPE is a bitmask of
3461 RELAX_DELAY_SLOT and RELAX_NOMACRO. */
3462
3463 static const char *
3464 macro_warning (relax_substateT subtype)
3465 {
3466 if (subtype & RELAX_DELAY_SLOT)
3467 return _("Macro instruction expanded into multiple instructions"
3468 " in a branch delay slot");
3469 else if (subtype & RELAX_NOMACRO)
3470 return _("Macro instruction expanded into multiple instructions");
3471 else
3472 return 0;
3473 }
3474
3475 /* Finish up a macro. Emit warnings as appropriate. */
3476
3477 static void
3478 macro_end (void)
3479 {
3480 if (mips_macro_warning.sizes[0] > 4 || mips_macro_warning.sizes[1] > 4)
3481 {
3482 relax_substateT subtype;
3483
3484 /* Set up the relaxation warning flags. */
3485 subtype = 0;
3486 if (mips_macro_warning.sizes[1] > mips_macro_warning.sizes[0])
3487 subtype |= RELAX_SECOND_LONGER;
3488 if (mips_opts.warn_about_macros)
3489 subtype |= RELAX_NOMACRO;
3490 if (mips_macro_warning.delay_slot_p)
3491 subtype |= RELAX_DELAY_SLOT;
3492
3493 if (mips_macro_warning.sizes[0] > 4 && mips_macro_warning.sizes[1] > 4)
3494 {
3495 /* Either the macro has a single implementation or both
3496 implementations are longer than 4 bytes. Emit the
3497 warning now. */
3498 const char *msg = macro_warning (subtype);
3499 if (msg != 0)
3500 as_warn ("%s", msg);
3501 }
3502 else
3503 {
3504 /* One implementation might need a warning but the other
3505 definitely doesn't. */
3506 mips_macro_warning.first_frag->fr_subtype |= subtype;
3507 }
3508 }
3509 }
3510
3511 /* Read a macro's relocation codes from *ARGS and store them in *R.
3512 The first argument in *ARGS will be either the code for a single
3513 relocation or -1 followed by the three codes that make up a
3514 composite relocation. */
3515
3516 static void
3517 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
3518 {
3519 int i, next;
3520
3521 next = va_arg (*args, int);
3522 if (next >= 0)
3523 r[0] = (bfd_reloc_code_real_type) next;
3524 else
3525 for (i = 0; i < 3; i++)
3526 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
3527 }
3528
3529 /* Build an instruction created by a macro expansion. This is passed
3530 a pointer to the count of instructions created so far, an
3531 expression, the name of the instruction to build, an operand format
3532 string, and corresponding arguments. */
3533
3534 static void
3535 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
3536 {
3537 const struct mips_opcode *mo;
3538 struct mips_cl_insn insn;
3539 bfd_reloc_code_real_type r[3];
3540 va_list args;
3541
3542 va_start (args, fmt);
3543
3544 if (mips_opts.mips16)
3545 {
3546 mips16_macro_build (ep, name, fmt, args);
3547 va_end (args);
3548 return;
3549 }
3550
3551 r[0] = BFD_RELOC_UNUSED;
3552 r[1] = BFD_RELOC_UNUSED;
3553 r[2] = BFD_RELOC_UNUSED;
3554 mo = (struct mips_opcode *) hash_find (op_hash, name);
3555 gas_assert (mo);
3556 gas_assert (strcmp (name, mo->name) == 0);
3557
3558 while (1)
3559 {
3560 /* Search until we get a match for NAME. It is assumed here that
3561 macros will never generate MDMX, MIPS-3D, or MT instructions. */
3562 if (strcmp (fmt, mo->args) == 0
3563 && mo->pinfo != INSN_MACRO
3564 && is_opcode_valid (mo, TRUE))
3565 break;
3566
3567 ++mo;
3568 gas_assert (mo->name);
3569 gas_assert (strcmp (name, mo->name) == 0);
3570 }
3571
3572 create_insn (&insn, mo);
3573 for (;;)
3574 {
3575 switch (*fmt++)
3576 {
3577 case '\0':
3578 break;
3579
3580 case ',':
3581 case '(':
3582 case ')':
3583 continue;
3584
3585 case '+':
3586 switch (*fmt++)
3587 {
3588 case 'A':
3589 case 'E':
3590 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3591 continue;
3592
3593 case 'B':
3594 case 'F':
3595 /* Note that in the macro case, these arguments are already
3596 in MSB form. (When handling the instruction in the
3597 non-macro case, these arguments are sizes from which
3598 MSB values must be calculated.) */
3599 INSERT_OPERAND (INSMSB, insn, va_arg (args, int));
3600 continue;
3601
3602 case 'C':
3603 case 'G':
3604 case 'H':
3605 /* Note that in the macro case, these arguments are already
3606 in MSBD form. (When handling the instruction in the
3607 non-macro case, these arguments are sizes from which
3608 MSBD values must be calculated.) */
3609 INSERT_OPERAND (EXTMSBD, insn, va_arg (args, int));
3610 continue;
3611
3612 case 'Q':
3613 INSERT_OPERAND (SEQI, insn, va_arg (args, int));
3614 continue;
3615
3616 default:
3617 internalError ();
3618 }
3619 continue;
3620
3621 case '2':
3622 INSERT_OPERAND (BP, insn, va_arg (args, int));
3623 continue;
3624
3625 case 't':
3626 case 'w':
3627 case 'E':
3628 INSERT_OPERAND (RT, insn, va_arg (args, int));
3629 continue;
3630
3631 case 'c':
3632 INSERT_OPERAND (CODE, insn, va_arg (args, int));
3633 continue;
3634
3635 case 'T':
3636 case 'W':
3637 INSERT_OPERAND (FT, insn, va_arg (args, int));
3638 continue;
3639
3640 case 'd':
3641 case 'G':
3642 case 'K':
3643 INSERT_OPERAND (RD, insn, va_arg (args, int));
3644 continue;
3645
3646 case 'U':
3647 {
3648 int tmp = va_arg (args, int);
3649
3650 INSERT_OPERAND (RT, insn, tmp);
3651 INSERT_OPERAND (RD, insn, tmp);
3652 continue;
3653 }
3654
3655 case 'V':
3656 case 'S':
3657 INSERT_OPERAND (FS, insn, va_arg (args, int));
3658 continue;
3659
3660 case 'z':
3661 continue;
3662
3663 case '<':
3664 INSERT_OPERAND (SHAMT, insn, va_arg (args, int));
3665 continue;
3666
3667 case 'D':
3668 INSERT_OPERAND (FD, insn, va_arg (args, int));
3669 continue;
3670
3671 case 'B':
3672 INSERT_OPERAND (CODE20, insn, va_arg (args, int));
3673 continue;
3674
3675 case 'J':
3676 INSERT_OPERAND (CODE19, insn, va_arg (args, int));
3677 continue;
3678
3679 case 'q':
3680 INSERT_OPERAND (CODE2, insn, va_arg (args, int));
3681 continue;
3682
3683 case 'b':
3684 case 's':
3685 case 'r':
3686 case 'v':
3687 INSERT_OPERAND (RS, insn, va_arg (args, int));
3688 continue;
3689
3690 case 'i':
3691 case 'j':
3692 case 'o':
3693 macro_read_relocs (&args, r);
3694 gas_assert (*r == BFD_RELOC_GPREL16
3695 || *r == BFD_RELOC_MIPS_LITERAL
3696 || *r == BFD_RELOC_MIPS_HIGHER
3697 || *r == BFD_RELOC_HI16_S
3698 || *r == BFD_RELOC_LO16
3699 || *r == BFD_RELOC_MIPS_GOT16
3700 || *r == BFD_RELOC_MIPS_CALL16
3701 || *r == BFD_RELOC_MIPS_GOT_DISP
3702 || *r == BFD_RELOC_MIPS_GOT_PAGE
3703 || *r == BFD_RELOC_MIPS_GOT_OFST
3704 || *r == BFD_RELOC_MIPS_GOT_LO16
3705 || *r == BFD_RELOC_MIPS_CALL_LO16);
3706 continue;
3707
3708 case 'u':
3709 macro_read_relocs (&args, r);
3710 gas_assert (ep != NULL
3711 && (ep->X_op == O_constant
3712 || (ep->X_op == O_symbol
3713 && (*r == BFD_RELOC_MIPS_HIGHEST
3714 || *r == BFD_RELOC_HI16_S
3715 || *r == BFD_RELOC_HI16
3716 || *r == BFD_RELOC_GPREL16
3717 || *r == BFD_RELOC_MIPS_GOT_HI16
3718 || *r == BFD_RELOC_MIPS_CALL_HI16))));
3719 continue;
3720
3721 case 'p':
3722 gas_assert (ep != NULL);
3723
3724 /*
3725 * This allows macro() to pass an immediate expression for
3726 * creating short branches without creating a symbol.
3727 *
3728 * We don't allow branch relaxation for these branches, as
3729 * they should only appear in ".set nomacro" anyway.
3730 */
3731 if (ep->X_op == O_constant)
3732 {
3733 if ((ep->X_add_number & 3) != 0)
3734 as_bad (_("branch to misaligned address (0x%lx)"),
3735 (unsigned long) ep->X_add_number);
3736 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
3737 as_bad (_("branch address range overflow (0x%lx)"),
3738 (unsigned long) ep->X_add_number);
3739 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
3740 ep = NULL;
3741 }
3742 else
3743 *r = BFD_RELOC_16_PCREL_S2;
3744 continue;
3745
3746 case 'a':
3747 gas_assert (ep != NULL);
3748 *r = BFD_RELOC_MIPS_JMP;
3749 continue;
3750
3751 case 'C':
3752 INSERT_OPERAND (COPZ, insn, va_arg (args, unsigned long));
3753 continue;
3754
3755 case 'k':
3756 INSERT_OPERAND (CACHE, insn, va_arg (args, unsigned long));
3757 continue;
3758
3759 default:
3760 internalError ();
3761 }
3762 break;
3763 }
3764 va_end (args);
3765 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3766
3767 append_insn (&insn, ep, r);
3768 }
3769
3770 static void
3771 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
3772 va_list args)
3773 {
3774 struct mips_opcode *mo;
3775 struct mips_cl_insn insn;
3776 bfd_reloc_code_real_type r[3]
3777 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3778
3779 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
3780 gas_assert (mo);
3781 gas_assert (strcmp (name, mo->name) == 0);
3782
3783 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
3784 {
3785 ++mo;
3786 gas_assert (mo->name);
3787 gas_assert (strcmp (name, mo->name) == 0);
3788 }
3789
3790 create_insn (&insn, mo);
3791 for (;;)
3792 {
3793 int c;
3794
3795 c = *fmt++;
3796 switch (c)
3797 {
3798 case '\0':
3799 break;
3800
3801 case ',':
3802 case '(':
3803 case ')':
3804 continue;
3805
3806 case 'y':
3807 case 'w':
3808 MIPS16_INSERT_OPERAND (RY, insn, va_arg (args, int));
3809 continue;
3810
3811 case 'x':
3812 case 'v':
3813 MIPS16_INSERT_OPERAND (RX, insn, va_arg (args, int));
3814 continue;
3815
3816 case 'z':
3817 MIPS16_INSERT_OPERAND (RZ, insn, va_arg (args, int));
3818 continue;
3819
3820 case 'Z':
3821 MIPS16_INSERT_OPERAND (MOVE32Z, insn, va_arg (args, int));
3822 continue;
3823
3824 case '0':
3825 case 'S':
3826 case 'P':
3827 case 'R':
3828 continue;
3829
3830 case 'X':
3831 MIPS16_INSERT_OPERAND (REGR32, insn, va_arg (args, int));
3832 continue;
3833
3834 case 'Y':
3835 {
3836 int regno;
3837
3838 regno = va_arg (args, int);
3839 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
3840 MIPS16_INSERT_OPERAND (REG32R, insn, regno);
3841 }
3842 continue;
3843
3844 case '<':
3845 case '>':
3846 case '4':
3847 case '5':
3848 case 'H':
3849 case 'W':
3850 case 'D':
3851 case 'j':
3852 case '8':
3853 case 'V':
3854 case 'C':
3855 case 'U':
3856 case 'k':
3857 case 'K':
3858 case 'p':
3859 case 'q':
3860 {
3861 gas_assert (ep != NULL);
3862
3863 if (ep->X_op != O_constant)
3864 *r = (int) BFD_RELOC_UNUSED + c;
3865 else
3866 {
3867 mips16_immed (NULL, 0, c, ep->X_add_number, FALSE, FALSE,
3868 FALSE, &insn.insn_opcode, &insn.use_extend,
3869 &insn.extend);
3870 ep = NULL;
3871 *r = BFD_RELOC_UNUSED;
3872 }
3873 }
3874 continue;
3875
3876 case '6':
3877 MIPS16_INSERT_OPERAND (IMM6, insn, va_arg (args, int));
3878 continue;
3879 }
3880
3881 break;
3882 }
3883
3884 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
3885
3886 append_insn (&insn, ep, r);
3887 }
3888
3889 /*
3890 * Sign-extend 32-bit mode constants that have bit 31 set and all
3891 * higher bits unset.
3892 */
3893 static void
3894 normalize_constant_expr (expressionS *ex)
3895 {
3896 if (ex->X_op == O_constant
3897 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3898 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3899 - 0x80000000);
3900 }
3901
3902 /*
3903 * Sign-extend 32-bit mode address offsets that have bit 31 set and
3904 * all higher bits unset.
3905 */
3906 static void
3907 normalize_address_expr (expressionS *ex)
3908 {
3909 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
3910 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
3911 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
3912 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
3913 - 0x80000000);
3914 }
3915
3916 /*
3917 * Generate a "jalr" instruction with a relocation hint to the called
3918 * function. This occurs in NewABI PIC code.
3919 */
3920 static void
3921 macro_build_jalr (expressionS *ep)
3922 {
3923 char *f = NULL;
3924
3925 if (HAVE_NEWABI)
3926 {
3927 frag_grow (8);
3928 f = frag_more (0);
3929 }
3930 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
3931 if (HAVE_NEWABI)
3932 fix_new_exp (frag_now, f - frag_now->fr_literal,
3933 4, ep, FALSE, BFD_RELOC_MIPS_JALR);
3934 }
3935
3936 /*
3937 * Generate a "lui" instruction.
3938 */
3939 static void
3940 macro_build_lui (expressionS *ep, int regnum)
3941 {
3942 expressionS high_expr;
3943 const struct mips_opcode *mo;
3944 struct mips_cl_insn insn;
3945 bfd_reloc_code_real_type r[3]
3946 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
3947 const char *name = "lui";
3948 const char *fmt = "t,u";
3949
3950 gas_assert (! mips_opts.mips16);
3951
3952 high_expr = *ep;
3953
3954 if (high_expr.X_op == O_constant)
3955 {
3956 /* We can compute the instruction now without a relocation entry. */
3957 high_expr.X_add_number = ((high_expr.X_add_number + 0x8000)
3958 >> 16) & 0xffff;
3959 *r = BFD_RELOC_UNUSED;
3960 }
3961 else
3962 {
3963 gas_assert (ep->X_op == O_symbol);
3964 /* _gp_disp is a special case, used from s_cpload.
3965 __gnu_local_gp is used if mips_no_shared. */
3966 gas_assert (mips_pic == NO_PIC
3967 || (! HAVE_NEWABI
3968 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
3969 || (! mips_in_shared
3970 && strcmp (S_GET_NAME (ep->X_add_symbol),
3971 "__gnu_local_gp") == 0));
3972 *r = BFD_RELOC_HI16_S;
3973 }
3974
3975 mo = hash_find (op_hash, name);
3976 gas_assert (strcmp (name, mo->name) == 0);
3977 gas_assert (strcmp (fmt, mo->args) == 0);
3978 create_insn (&insn, mo);
3979
3980 insn.insn_opcode = insn.insn_mo->match;
3981 INSERT_OPERAND (RT, insn, regnum);
3982 if (*r == BFD_RELOC_UNUSED)
3983 {
3984 insn.insn_opcode |= high_expr.X_add_number;
3985 append_insn (&insn, NULL, r);
3986 }
3987 else
3988 append_insn (&insn, &high_expr, r);
3989 }
3990
3991 /* Generate a sequence of instructions to do a load or store from a constant
3992 offset off of a base register (breg) into/from a target register (treg),
3993 using AT if necessary. */
3994 static void
3995 macro_build_ldst_constoffset (expressionS *ep, const char *op,
3996 int treg, int breg, int dbl)
3997 {
3998 gas_assert (ep->X_op == O_constant);
3999
4000 /* Sign-extending 32-bit constants makes their handling easier. */
4001 if (!dbl)
4002 normalize_constant_expr (ep);
4003
4004 /* Right now, this routine can only handle signed 32-bit constants. */
4005 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
4006 as_warn (_("operand overflow"));
4007
4008 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
4009 {
4010 /* Signed 16-bit offset will fit in the op. Easy! */
4011 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
4012 }
4013 else
4014 {
4015 /* 32-bit offset, need multiple instructions and AT, like:
4016 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
4017 addu $tempreg,$tempreg,$breg
4018 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
4019 to handle the complete offset. */
4020 macro_build_lui (ep, AT);
4021 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
4022 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
4023
4024 if (!mips_opts.at)
4025 as_bad (_("Macro used $at after \".set noat\""));
4026 }
4027 }
4028
4029 /* set_at()
4030 * Generates code to set the $at register to true (one)
4031 * if reg is less than the immediate expression.
4032 */
4033 static void
4034 set_at (int reg, int unsignedp)
4035 {
4036 if (imm_expr.X_op == O_constant
4037 && imm_expr.X_add_number >= -0x8000
4038 && imm_expr.X_add_number < 0x8000)
4039 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
4040 AT, reg, BFD_RELOC_LO16);
4041 else
4042 {
4043 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4044 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
4045 }
4046 }
4047
4048 /* Warn if an expression is not a constant. */
4049
4050 static void
4051 check_absolute_expr (struct mips_cl_insn *ip, expressionS *ex)
4052 {
4053 if (ex->X_op == O_big)
4054 as_bad (_("unsupported large constant"));
4055 else if (ex->X_op != O_constant)
4056 as_bad (_("Instruction %s requires absolute expression"),
4057 ip->insn_mo->name);
4058
4059 if (HAVE_32BIT_GPRS)
4060 normalize_constant_expr (ex);
4061 }
4062
4063 /* Count the leading zeroes by performing a binary chop. This is a
4064 bulky bit of source, but performance is a LOT better for the
4065 majority of values than a simple loop to count the bits:
4066 for (lcnt = 0; (lcnt < 32); lcnt++)
4067 if ((v) & (1 << (31 - lcnt)))
4068 break;
4069 However it is not code size friendly, and the gain will drop a bit
4070 on certain cached systems.
4071 */
4072 #define COUNT_TOP_ZEROES(v) \
4073 (((v) & ~0xffff) == 0 \
4074 ? ((v) & ~0xff) == 0 \
4075 ? ((v) & ~0xf) == 0 \
4076 ? ((v) & ~0x3) == 0 \
4077 ? ((v) & ~0x1) == 0 \
4078 ? !(v) \
4079 ? 32 \
4080 : 31 \
4081 : 30 \
4082 : ((v) & ~0x7) == 0 \
4083 ? 29 \
4084 : 28 \
4085 : ((v) & ~0x3f) == 0 \
4086 ? ((v) & ~0x1f) == 0 \
4087 ? 27 \
4088 : 26 \
4089 : ((v) & ~0x7f) == 0 \
4090 ? 25 \
4091 : 24 \
4092 : ((v) & ~0xfff) == 0 \
4093 ? ((v) & ~0x3ff) == 0 \
4094 ? ((v) & ~0x1ff) == 0 \
4095 ? 23 \
4096 : 22 \
4097 : ((v) & ~0x7ff) == 0 \
4098 ? 21 \
4099 : 20 \
4100 : ((v) & ~0x3fff) == 0 \
4101 ? ((v) & ~0x1fff) == 0 \
4102 ? 19 \
4103 : 18 \
4104 : ((v) & ~0x7fff) == 0 \
4105 ? 17 \
4106 : 16 \
4107 : ((v) & ~0xffffff) == 0 \
4108 ? ((v) & ~0xfffff) == 0 \
4109 ? ((v) & ~0x3ffff) == 0 \
4110 ? ((v) & ~0x1ffff) == 0 \
4111 ? 15 \
4112 : 14 \
4113 : ((v) & ~0x7ffff) == 0 \
4114 ? 13 \
4115 : 12 \
4116 : ((v) & ~0x3fffff) == 0 \
4117 ? ((v) & ~0x1fffff) == 0 \
4118 ? 11 \
4119 : 10 \
4120 : ((v) & ~0x7fffff) == 0 \
4121 ? 9 \
4122 : 8 \
4123 : ((v) & ~0xfffffff) == 0 \
4124 ? ((v) & ~0x3ffffff) == 0 \
4125 ? ((v) & ~0x1ffffff) == 0 \
4126 ? 7 \
4127 : 6 \
4128 : ((v) & ~0x7ffffff) == 0 \
4129 ? 5 \
4130 : 4 \
4131 : ((v) & ~0x3fffffff) == 0 \
4132 ? ((v) & ~0x1fffffff) == 0 \
4133 ? 3 \
4134 : 2 \
4135 : ((v) & ~0x7fffffff) == 0 \
4136 ? 1 \
4137 : 0)
4138
4139 /* load_register()
4140 * This routine generates the least number of instructions necessary to load
4141 * an absolute expression value into a register.
4142 */
4143 static void
4144 load_register (int reg, expressionS *ep, int dbl)
4145 {
4146 int freg;
4147 expressionS hi32, lo32;
4148
4149 if (ep->X_op != O_big)
4150 {
4151 gas_assert (ep->X_op == O_constant);
4152
4153 /* Sign-extending 32-bit constants makes their handling easier. */
4154 if (!dbl)
4155 normalize_constant_expr (ep);
4156
4157 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
4158 {
4159 /* We can handle 16 bit signed values with an addiu to
4160 $zero. No need to ever use daddiu here, since $zero and
4161 the result are always correct in 32 bit mode. */
4162 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4163 return;
4164 }
4165 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
4166 {
4167 /* We can handle 16 bit unsigned values with an ori to
4168 $zero. */
4169 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4170 return;
4171 }
4172 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
4173 {
4174 /* 32 bit values require an lui. */
4175 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_HI16);
4176 if ((ep->X_add_number & 0xffff) != 0)
4177 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4178 return;
4179 }
4180 }
4181
4182 /* The value is larger than 32 bits. */
4183
4184 if (!dbl || HAVE_32BIT_GPRS)
4185 {
4186 char value[32];
4187
4188 sprintf_vma (value, ep->X_add_number);
4189 as_bad (_("Number (0x%s) larger than 32 bits"), value);
4190 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4191 return;
4192 }
4193
4194 if (ep->X_op != O_big)
4195 {
4196 hi32 = *ep;
4197 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4198 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
4199 hi32.X_add_number &= 0xffffffff;
4200 lo32 = *ep;
4201 lo32.X_add_number &= 0xffffffff;
4202 }
4203 else
4204 {
4205 gas_assert (ep->X_add_number > 2);
4206 if (ep->X_add_number == 3)
4207 generic_bignum[3] = 0;
4208 else if (ep->X_add_number > 4)
4209 as_bad (_("Number larger than 64 bits"));
4210 lo32.X_op = O_constant;
4211 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
4212 hi32.X_op = O_constant;
4213 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
4214 }
4215
4216 if (hi32.X_add_number == 0)
4217 freg = 0;
4218 else
4219 {
4220 int shift, bit;
4221 unsigned long hi, lo;
4222
4223 if (hi32.X_add_number == (offsetT) 0xffffffff)
4224 {
4225 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
4226 {
4227 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4228 return;
4229 }
4230 if (lo32.X_add_number & 0x80000000)
4231 {
4232 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4233 if (lo32.X_add_number & 0xffff)
4234 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
4235 return;
4236 }
4237 }
4238
4239 /* Check for 16bit shifted constant. We know that hi32 is
4240 non-zero, so start the mask on the first bit of the hi32
4241 value. */
4242 shift = 17;
4243 do
4244 {
4245 unsigned long himask, lomask;
4246
4247 if (shift < 32)
4248 {
4249 himask = 0xffff >> (32 - shift);
4250 lomask = (0xffff << shift) & 0xffffffff;
4251 }
4252 else
4253 {
4254 himask = 0xffff << (shift - 32);
4255 lomask = 0;
4256 }
4257 if ((hi32.X_add_number & ~(offsetT) himask) == 0
4258 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
4259 {
4260 expressionS tmp;
4261
4262 tmp.X_op = O_constant;
4263 if (shift < 32)
4264 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
4265 | (lo32.X_add_number >> shift));
4266 else
4267 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
4268 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
4269 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", "d,w,<",
4270 reg, reg, (shift >= 32) ? shift - 32 : shift);
4271 return;
4272 }
4273 ++shift;
4274 }
4275 while (shift <= (64 - 16));
4276
4277 /* Find the bit number of the lowest one bit, and store the
4278 shifted value in hi/lo. */
4279 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
4280 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
4281 if (lo != 0)
4282 {
4283 bit = 0;
4284 while ((lo & 1) == 0)
4285 {
4286 lo >>= 1;
4287 ++bit;
4288 }
4289 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
4290 hi >>= bit;
4291 }
4292 else
4293 {
4294 bit = 32;
4295 while ((hi & 1) == 0)
4296 {
4297 hi >>= 1;
4298 ++bit;
4299 }
4300 lo = hi;
4301 hi = 0;
4302 }
4303
4304 /* Optimize if the shifted value is a (power of 2) - 1. */
4305 if ((hi == 0 && ((lo + 1) & lo) == 0)
4306 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
4307 {
4308 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
4309 if (shift != 0)
4310 {
4311 expressionS tmp;
4312
4313 /* This instruction will set the register to be all
4314 ones. */
4315 tmp.X_op = O_constant;
4316 tmp.X_add_number = (offsetT) -1;
4317 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
4318 if (bit != 0)
4319 {
4320 bit += shift;
4321 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", "d,w,<",
4322 reg, reg, (bit >= 32) ? bit - 32 : bit);
4323 }
4324 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", "d,w,<",
4325 reg, reg, (shift >= 32) ? shift - 32 : shift);
4326 return;
4327 }
4328 }
4329
4330 /* Sign extend hi32 before calling load_register, because we can
4331 generally get better code when we load a sign extended value. */
4332 if ((hi32.X_add_number & 0x80000000) != 0)
4333 hi32.X_add_number |= ~(offsetT) 0xffffffff;
4334 load_register (reg, &hi32, 0);
4335 freg = reg;
4336 }
4337 if ((lo32.X_add_number & 0xffff0000) == 0)
4338 {
4339 if (freg != 0)
4340 {
4341 macro_build (NULL, "dsll32", "d,w,<", reg, freg, 0);
4342 freg = reg;
4343 }
4344 }
4345 else
4346 {
4347 expressionS mid16;
4348
4349 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
4350 {
4351 macro_build (&lo32, "lui", "t,u", reg, BFD_RELOC_HI16);
4352 macro_build (NULL, "dsrl32", "d,w,<", reg, reg, 0);
4353 return;
4354 }
4355
4356 if (freg != 0)
4357 {
4358 macro_build (NULL, "dsll", "d,w,<", reg, freg, 16);
4359 freg = reg;
4360 }
4361 mid16 = lo32;
4362 mid16.X_add_number >>= 16;
4363 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4364 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4365 freg = reg;
4366 }
4367 if ((lo32.X_add_number & 0xffff) != 0)
4368 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
4369 }
4370
4371 static inline void
4372 load_delay_nop (void)
4373 {
4374 if (!gpr_interlocks)
4375 macro_build (NULL, "nop", "");
4376 }
4377
4378 /* Load an address into a register. */
4379
4380 static void
4381 load_address (int reg, expressionS *ep, int *used_at)
4382 {
4383 if (ep->X_op != O_constant
4384 && ep->X_op != O_symbol)
4385 {
4386 as_bad (_("expression too complex"));
4387 ep->X_op = O_constant;
4388 }
4389
4390 if (ep->X_op == O_constant)
4391 {
4392 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
4393 return;
4394 }
4395
4396 if (mips_pic == NO_PIC)
4397 {
4398 /* If this is a reference to a GP relative symbol, we want
4399 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
4400 Otherwise we want
4401 lui $reg,<sym> (BFD_RELOC_HI16_S)
4402 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4403 If we have an addend, we always use the latter form.
4404
4405 With 64bit address space and a usable $at we want
4406 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4407 lui $at,<sym> (BFD_RELOC_HI16_S)
4408 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4409 daddiu $at,<sym> (BFD_RELOC_LO16)
4410 dsll32 $reg,0
4411 daddu $reg,$reg,$at
4412
4413 If $at is already in use, we use a path which is suboptimal
4414 on superscalar processors.
4415 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
4416 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
4417 dsll $reg,16
4418 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
4419 dsll $reg,16
4420 daddiu $reg,<sym> (BFD_RELOC_LO16)
4421
4422 For GP relative symbols in 64bit address space we can use
4423 the same sequence as in 32bit address space. */
4424 if (HAVE_64BIT_SYMBOLS)
4425 {
4426 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4427 && !nopic_need_relax (ep->X_add_symbol, 1))
4428 {
4429 relax_start (ep->X_add_symbol);
4430 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4431 mips_gp_register, BFD_RELOC_GPREL16);
4432 relax_switch ();
4433 }
4434
4435 if (*used_at == 0 && mips_opts.at)
4436 {
4437 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4438 macro_build (ep, "lui", "t,u", AT, BFD_RELOC_HI16_S);
4439 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4440 BFD_RELOC_MIPS_HIGHER);
4441 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
4442 macro_build (NULL, "dsll32", "d,w,<", reg, reg, 0);
4443 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
4444 *used_at = 1;
4445 }
4446 else
4447 {
4448 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_HIGHEST);
4449 macro_build (ep, "daddiu", "t,r,j", reg, reg,
4450 BFD_RELOC_MIPS_HIGHER);
4451 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4452 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
4453 macro_build (NULL, "dsll", "d,w,<", reg, reg, 16);
4454 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
4455 }
4456
4457 if (mips_relax.sequence)
4458 relax_end ();
4459 }
4460 else
4461 {
4462 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
4463 && !nopic_need_relax (ep->X_add_symbol, 1))
4464 {
4465 relax_start (ep->X_add_symbol);
4466 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
4467 mips_gp_register, BFD_RELOC_GPREL16);
4468 relax_switch ();
4469 }
4470 macro_build_lui (ep, reg);
4471 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
4472 reg, reg, BFD_RELOC_LO16);
4473 if (mips_relax.sequence)
4474 relax_end ();
4475 }
4476 }
4477 else if (!mips_big_got)
4478 {
4479 expressionS ex;
4480
4481 /* If this is a reference to an external symbol, we want
4482 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4483 Otherwise we want
4484 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4485 nop
4486 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4487 If there is a constant, it must be added in after.
4488
4489 If we have NewABI, we want
4490 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
4491 unless we're referencing a global symbol with a non-zero
4492 offset, in which case cst must be added separately. */
4493 if (HAVE_NEWABI)
4494 {
4495 if (ep->X_add_number)
4496 {
4497 ex.X_add_number = ep->X_add_number;
4498 ep->X_add_number = 0;
4499 relax_start (ep->X_add_symbol);
4500 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4501 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4502 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4503 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4504 ex.X_op = O_constant;
4505 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4506 reg, reg, BFD_RELOC_LO16);
4507 ep->X_add_number = ex.X_add_number;
4508 relax_switch ();
4509 }
4510 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4511 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
4512 if (mips_relax.sequence)
4513 relax_end ();
4514 }
4515 else
4516 {
4517 ex.X_add_number = ep->X_add_number;
4518 ep->X_add_number = 0;
4519 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4520 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4521 load_delay_nop ();
4522 relax_start (ep->X_add_symbol);
4523 relax_switch ();
4524 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4525 BFD_RELOC_LO16);
4526 relax_end ();
4527
4528 if (ex.X_add_number != 0)
4529 {
4530 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4531 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4532 ex.X_op = O_constant;
4533 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
4534 reg, reg, BFD_RELOC_LO16);
4535 }
4536 }
4537 }
4538 else if (mips_big_got)
4539 {
4540 expressionS ex;
4541
4542 /* This is the large GOT case. If this is a reference to an
4543 external symbol, we want
4544 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
4545 addu $reg,$reg,$gp
4546 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
4547
4548 Otherwise, for a reference to a local symbol in old ABI, we want
4549 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
4550 nop
4551 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
4552 If there is a constant, it must be added in after.
4553
4554 In the NewABI, for local symbols, with or without offsets, we want:
4555 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
4556 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
4557 */
4558 if (HAVE_NEWABI)
4559 {
4560 ex.X_add_number = ep->X_add_number;
4561 ep->X_add_number = 0;
4562 relax_start (ep->X_add_symbol);
4563 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4564 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4565 reg, reg, mips_gp_register);
4566 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4567 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4568 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4569 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4570 else if (ex.X_add_number)
4571 {
4572 ex.X_op = O_constant;
4573 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4574 BFD_RELOC_LO16);
4575 }
4576
4577 ep->X_add_number = ex.X_add_number;
4578 relax_switch ();
4579 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4580 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
4581 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4582 BFD_RELOC_MIPS_GOT_OFST);
4583 relax_end ();
4584 }
4585 else
4586 {
4587 ex.X_add_number = ep->X_add_number;
4588 ep->X_add_number = 0;
4589 relax_start (ep->X_add_symbol);
4590 macro_build (ep, "lui", "t,u", reg, BFD_RELOC_MIPS_GOT_HI16);
4591 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
4592 reg, reg, mips_gp_register);
4593 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
4594 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
4595 relax_switch ();
4596 if (reg_needs_delay (mips_gp_register))
4597 {
4598 /* We need a nop before loading from $gp. This special
4599 check is required because the lui which starts the main
4600 instruction stream does not refer to $gp, and so will not
4601 insert the nop which may be required. */
4602 macro_build (NULL, "nop", "");
4603 }
4604 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
4605 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4606 load_delay_nop ();
4607 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4608 BFD_RELOC_LO16);
4609 relax_end ();
4610
4611 if (ex.X_add_number != 0)
4612 {
4613 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
4614 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
4615 ex.X_op = O_constant;
4616 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
4617 BFD_RELOC_LO16);
4618 }
4619 }
4620 }
4621 else
4622 abort ();
4623
4624 if (!mips_opts.at && *used_at == 1)
4625 as_bad (_("Macro used $at after \".set noat\""));
4626 }
4627
4628 /* Move the contents of register SOURCE into register DEST. */
4629
4630 static void
4631 move_register (int dest, int source)
4632 {
4633 macro_build (NULL, HAVE_32BIT_GPRS ? "addu" : "daddu", "d,v,t",
4634 dest, source, 0);
4635 }
4636
4637 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
4638 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
4639 The two alternatives are:
4640
4641 Global symbol Local sybmol
4642 ------------- ------------
4643 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
4644 ... ...
4645 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
4646
4647 load_got_offset emits the first instruction and add_got_offset
4648 emits the second for a 16-bit offset or add_got_offset_hilo emits
4649 a sequence to add a 32-bit offset using a scratch register. */
4650
4651 static void
4652 load_got_offset (int dest, expressionS *local)
4653 {
4654 expressionS global;
4655
4656 global = *local;
4657 global.X_add_number = 0;
4658
4659 relax_start (local->X_add_symbol);
4660 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4661 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4662 relax_switch ();
4663 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
4664 BFD_RELOC_MIPS_GOT16, mips_gp_register);
4665 relax_end ();
4666 }
4667
4668 static void
4669 add_got_offset (int dest, expressionS *local)
4670 {
4671 expressionS global;
4672
4673 global.X_op = O_constant;
4674 global.X_op_symbol = NULL;
4675 global.X_add_symbol = NULL;
4676 global.X_add_number = local->X_add_number;
4677
4678 relax_start (local->X_add_symbol);
4679 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
4680 dest, dest, BFD_RELOC_LO16);
4681 relax_switch ();
4682 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
4683 relax_end ();
4684 }
4685
4686 static void
4687 add_got_offset_hilo (int dest, expressionS *local, int tmp)
4688 {
4689 expressionS global;
4690 int hold_mips_optimize;
4691
4692 global.X_op = O_constant;
4693 global.X_op_symbol = NULL;
4694 global.X_add_symbol = NULL;
4695 global.X_add_number = local->X_add_number;
4696
4697 relax_start (local->X_add_symbol);
4698 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
4699 relax_switch ();
4700 /* Set mips_optimize around the lui instruction to avoid
4701 inserting an unnecessary nop after the lw. */
4702 hold_mips_optimize = mips_optimize;
4703 mips_optimize = 2;
4704 macro_build_lui (&global, tmp);
4705 mips_optimize = hold_mips_optimize;
4706 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
4707 relax_end ();
4708
4709 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
4710 }
4711
4712 /*
4713 * Build macros
4714 * This routine implements the seemingly endless macro or synthesized
4715 * instructions and addressing modes in the mips assembly language. Many
4716 * of these macros are simple and are similar to each other. These could
4717 * probably be handled by some kind of table or grammar approach instead of
4718 * this verbose method. Others are not simple macros but are more like
4719 * optimizing code generation.
4720 * One interesting optimization is when several store macros appear
4721 * consecutively that would load AT with the upper half of the same address.
4722 * The ensuing load upper instructions are ommited. This implies some kind
4723 * of global optimization. We currently only optimize within a single macro.
4724 * For many of the load and store macros if the address is specified as a
4725 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
4726 * first load register 'at' with zero and use it as the base register. The
4727 * mips assembler simply uses register $zero. Just one tiny optimization
4728 * we're missing.
4729 */
4730 static void
4731 macro (struct mips_cl_insn *ip)
4732 {
4733 unsigned int treg, sreg, dreg, breg;
4734 unsigned int tempreg;
4735 int mask;
4736 int used_at = 0;
4737 expressionS expr1;
4738 const char *s;
4739 const char *s2;
4740 const char *fmt;
4741 int likely = 0;
4742 int dbl = 0;
4743 int coproc = 0;
4744 int lr = 0;
4745 int imm = 0;
4746 int call = 0;
4747 int off;
4748 offsetT maxnum;
4749 bfd_reloc_code_real_type r;
4750 int hold_mips_optimize;
4751
4752 gas_assert (! mips_opts.mips16);
4753
4754 treg = (ip->insn_opcode >> 16) & 0x1f;
4755 dreg = (ip->insn_opcode >> 11) & 0x1f;
4756 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
4757 mask = ip->insn_mo->mask;
4758
4759 expr1.X_op = O_constant;
4760 expr1.X_op_symbol = NULL;
4761 expr1.X_add_symbol = NULL;
4762 expr1.X_add_number = 1;
4763
4764 switch (mask)
4765 {
4766 case M_DABS:
4767 dbl = 1;
4768 case M_ABS:
4769 /* bgez $a0,.+12
4770 move v0,$a0
4771 sub v0,$zero,$a0
4772 */
4773
4774 start_noreorder ();
4775
4776 expr1.X_add_number = 8;
4777 macro_build (&expr1, "bgez", "s,p", sreg);
4778 if (dreg == sreg)
4779 macro_build (NULL, "nop", "", 0);
4780 else
4781 move_register (dreg, sreg);
4782 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, 0, sreg);
4783
4784 end_noreorder ();
4785 break;
4786
4787 case M_ADD_I:
4788 s = "addi";
4789 s2 = "add";
4790 goto do_addi;
4791 case M_ADDU_I:
4792 s = "addiu";
4793 s2 = "addu";
4794 goto do_addi;
4795 case M_DADD_I:
4796 dbl = 1;
4797 s = "daddi";
4798 s2 = "dadd";
4799 goto do_addi;
4800 case M_DADDU_I:
4801 dbl = 1;
4802 s = "daddiu";
4803 s2 = "daddu";
4804 do_addi:
4805 if (imm_expr.X_op == O_constant
4806 && imm_expr.X_add_number >= -0x8000
4807 && imm_expr.X_add_number < 0x8000)
4808 {
4809 macro_build (&imm_expr, s, "t,r,j", treg, sreg, BFD_RELOC_LO16);
4810 break;
4811 }
4812 used_at = 1;
4813 load_register (AT, &imm_expr, dbl);
4814 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4815 break;
4816
4817 case M_AND_I:
4818 s = "andi";
4819 s2 = "and";
4820 goto do_bit;
4821 case M_OR_I:
4822 s = "ori";
4823 s2 = "or";
4824 goto do_bit;
4825 case M_NOR_I:
4826 s = "";
4827 s2 = "nor";
4828 goto do_bit;
4829 case M_XOR_I:
4830 s = "xori";
4831 s2 = "xor";
4832 do_bit:
4833 if (imm_expr.X_op == O_constant
4834 && imm_expr.X_add_number >= 0
4835 && imm_expr.X_add_number < 0x10000)
4836 {
4837 if (mask != M_NOR_I)
4838 macro_build (&imm_expr, s, "t,r,i", treg, sreg, BFD_RELOC_LO16);
4839 else
4840 {
4841 macro_build (&imm_expr, "ori", "t,r,i",
4842 treg, sreg, BFD_RELOC_LO16);
4843 macro_build (NULL, "nor", "d,v,t", treg, treg, 0);
4844 }
4845 break;
4846 }
4847
4848 used_at = 1;
4849 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4850 macro_build (NULL, s2, "d,v,t", treg, sreg, AT);
4851 break;
4852
4853 case M_BALIGN:
4854 switch (imm_expr.X_add_number)
4855 {
4856 case 0:
4857 macro_build (NULL, "nop", "");
4858 break;
4859 case 2:
4860 macro_build (NULL, "packrl.ph", "d,s,t", treg, treg, sreg);
4861 break;
4862 default:
4863 macro_build (NULL, "balign", "t,s,2", treg, sreg,
4864 (int)imm_expr.X_add_number);
4865 break;
4866 }
4867 break;
4868
4869 case M_BEQ_I:
4870 s = "beq";
4871 goto beq_i;
4872 case M_BEQL_I:
4873 s = "beql";
4874 likely = 1;
4875 goto beq_i;
4876 case M_BNE_I:
4877 s = "bne";
4878 goto beq_i;
4879 case M_BNEL_I:
4880 s = "bnel";
4881 likely = 1;
4882 beq_i:
4883 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4884 {
4885 macro_build (&offset_expr, s, "s,t,p", sreg, 0);
4886 break;
4887 }
4888 used_at = 1;
4889 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
4890 macro_build (&offset_expr, s, "s,t,p", sreg, AT);
4891 break;
4892
4893 case M_BGEL:
4894 likely = 1;
4895 case M_BGE:
4896 if (treg == 0)
4897 {
4898 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4899 break;
4900 }
4901 if (sreg == 0)
4902 {
4903 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", treg);
4904 break;
4905 }
4906 used_at = 1;
4907 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
4908 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4909 break;
4910
4911 case M_BGTL_I:
4912 likely = 1;
4913 case M_BGT_I:
4914 /* check for > max integer */
4915 maxnum = 0x7fffffff;
4916 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4917 {
4918 maxnum <<= 16;
4919 maxnum |= 0xffff;
4920 maxnum <<= 16;
4921 maxnum |= 0xffff;
4922 }
4923 if (imm_expr.X_op == O_constant
4924 && imm_expr.X_add_number >= maxnum
4925 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4926 {
4927 do_false:
4928 /* result is always false */
4929 if (! likely)
4930 macro_build (NULL, "nop", "", 0);
4931 else
4932 macro_build (&offset_expr, "bnel", "s,t,p", 0, 0);
4933 break;
4934 }
4935 if (imm_expr.X_op != O_constant)
4936 as_bad (_("Unsupported large constant"));
4937 ++imm_expr.X_add_number;
4938 /* FALLTHROUGH */
4939 case M_BGE_I:
4940 case M_BGEL_I:
4941 if (mask == M_BGEL_I)
4942 likely = 1;
4943 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
4944 {
4945 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", sreg);
4946 break;
4947 }
4948 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
4949 {
4950 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
4951 break;
4952 }
4953 maxnum = 0x7fffffff;
4954 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
4955 {
4956 maxnum <<= 16;
4957 maxnum |= 0xffff;
4958 maxnum <<= 16;
4959 maxnum |= 0xffff;
4960 }
4961 maxnum = - maxnum - 1;
4962 if (imm_expr.X_op == O_constant
4963 && imm_expr.X_add_number <= maxnum
4964 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
4965 {
4966 do_true:
4967 /* result is always true */
4968 as_warn (_("Branch %s is always true"), ip->insn_mo->name);
4969 macro_build (&offset_expr, "b", "p");
4970 break;
4971 }
4972 used_at = 1;
4973 set_at (sreg, 0);
4974 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4975 break;
4976
4977 case M_BGEUL:
4978 likely = 1;
4979 case M_BGEU:
4980 if (treg == 0)
4981 goto do_true;
4982 if (sreg == 0)
4983 {
4984 macro_build (&offset_expr, likely ? "beql" : "beq",
4985 "s,t,p", 0, treg);
4986 break;
4987 }
4988 used_at = 1;
4989 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
4990 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
4991 break;
4992
4993 case M_BGTUL_I:
4994 likely = 1;
4995 case M_BGTU_I:
4996 if (sreg == 0
4997 || (HAVE_32BIT_GPRS
4998 && imm_expr.X_op == O_constant
4999 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5000 goto do_false;
5001 if (imm_expr.X_op != O_constant)
5002 as_bad (_("Unsupported large constant"));
5003 ++imm_expr.X_add_number;
5004 /* FALLTHROUGH */
5005 case M_BGEU_I:
5006 case M_BGEUL_I:
5007 if (mask == M_BGEUL_I)
5008 likely = 1;
5009 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5010 goto do_true;
5011 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5012 {
5013 macro_build (&offset_expr, likely ? "bnel" : "bne",
5014 "s,t,p", sreg, 0);
5015 break;
5016 }
5017 used_at = 1;
5018 set_at (sreg, 1);
5019 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5020 break;
5021
5022 case M_BGTL:
5023 likely = 1;
5024 case M_BGT:
5025 if (treg == 0)
5026 {
5027 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", sreg);
5028 break;
5029 }
5030 if (sreg == 0)
5031 {
5032 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", treg);
5033 break;
5034 }
5035 used_at = 1;
5036 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5037 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5038 break;
5039
5040 case M_BGTUL:
5041 likely = 1;
5042 case M_BGTU:
5043 if (treg == 0)
5044 {
5045 macro_build (&offset_expr, likely ? "bnel" : "bne",
5046 "s,t,p", sreg, 0);
5047 break;
5048 }
5049 if (sreg == 0)
5050 goto do_false;
5051 used_at = 1;
5052 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5053 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5054 break;
5055
5056 case M_BLEL:
5057 likely = 1;
5058 case M_BLE:
5059 if (treg == 0)
5060 {
5061 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5062 break;
5063 }
5064 if (sreg == 0)
5065 {
5066 macro_build (&offset_expr, likely ? "bgezl" : "bgez", "s,p", treg);
5067 break;
5068 }
5069 used_at = 1;
5070 macro_build (NULL, "slt", "d,v,t", AT, treg, sreg);
5071 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5072 break;
5073
5074 case M_BLEL_I:
5075 likely = 1;
5076 case M_BLE_I:
5077 maxnum = 0x7fffffff;
5078 if (HAVE_64BIT_GPRS && sizeof (maxnum) > 4)
5079 {
5080 maxnum <<= 16;
5081 maxnum |= 0xffff;
5082 maxnum <<= 16;
5083 maxnum |= 0xffff;
5084 }
5085 if (imm_expr.X_op == O_constant
5086 && imm_expr.X_add_number >= maxnum
5087 && (HAVE_32BIT_GPRS || sizeof (maxnum) > 4))
5088 goto do_true;
5089 if (imm_expr.X_op != O_constant)
5090 as_bad (_("Unsupported large constant"));
5091 ++imm_expr.X_add_number;
5092 /* FALLTHROUGH */
5093 case M_BLT_I:
5094 case M_BLTL_I:
5095 if (mask == M_BLTL_I)
5096 likely = 1;
5097 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5098 {
5099 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5100 break;
5101 }
5102 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5103 {
5104 macro_build (&offset_expr, likely ? "blezl" : "blez", "s,p", sreg);
5105 break;
5106 }
5107 used_at = 1;
5108 set_at (sreg, 0);
5109 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5110 break;
5111
5112 case M_BLEUL:
5113 likely = 1;
5114 case M_BLEU:
5115 if (treg == 0)
5116 {
5117 macro_build (&offset_expr, likely ? "beql" : "beq",
5118 "s,t,p", sreg, 0);
5119 break;
5120 }
5121 if (sreg == 0)
5122 goto do_true;
5123 used_at = 1;
5124 macro_build (NULL, "sltu", "d,v,t", AT, treg, sreg);
5125 macro_build (&offset_expr, likely ? "beql" : "beq", "s,t,p", AT, 0);
5126 break;
5127
5128 case M_BLEUL_I:
5129 likely = 1;
5130 case M_BLEU_I:
5131 if (sreg == 0
5132 || (HAVE_32BIT_GPRS
5133 && imm_expr.X_op == O_constant
5134 && imm_expr.X_add_number == (offsetT) 0xffffffff))
5135 goto do_true;
5136 if (imm_expr.X_op != O_constant)
5137 as_bad (_("Unsupported large constant"));
5138 ++imm_expr.X_add_number;
5139 /* FALLTHROUGH */
5140 case M_BLTU_I:
5141 case M_BLTUL_I:
5142 if (mask == M_BLTUL_I)
5143 likely = 1;
5144 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5145 goto do_false;
5146 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5147 {
5148 macro_build (&offset_expr, likely ? "beql" : "beq",
5149 "s,t,p", sreg, 0);
5150 break;
5151 }
5152 used_at = 1;
5153 set_at (sreg, 1);
5154 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5155 break;
5156
5157 case M_BLTL:
5158 likely = 1;
5159 case M_BLT:
5160 if (treg == 0)
5161 {
5162 macro_build (&offset_expr, likely ? "bltzl" : "bltz", "s,p", sreg);
5163 break;
5164 }
5165 if (sreg == 0)
5166 {
5167 macro_build (&offset_expr, likely ? "bgtzl" : "bgtz", "s,p", treg);
5168 break;
5169 }
5170 used_at = 1;
5171 macro_build (NULL, "slt", "d,v,t", AT, sreg, treg);
5172 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5173 break;
5174
5175 case M_BLTUL:
5176 likely = 1;
5177 case M_BLTU:
5178 if (treg == 0)
5179 goto do_false;
5180 if (sreg == 0)
5181 {
5182 macro_build (&offset_expr, likely ? "bnel" : "bne",
5183 "s,t,p", 0, treg);
5184 break;
5185 }
5186 used_at = 1;
5187 macro_build (NULL, "sltu", "d,v,t", AT, sreg, treg);
5188 macro_build (&offset_expr, likely ? "bnel" : "bne", "s,t,p", AT, 0);
5189 break;
5190
5191 case M_DEXT:
5192 {
5193 unsigned long pos;
5194 unsigned long size;
5195
5196 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5197 {
5198 as_bad (_("Unsupported large constant"));
5199 pos = size = 1;
5200 }
5201 else
5202 {
5203 pos = (unsigned long) imm_expr.X_add_number;
5204 size = (unsigned long) imm2_expr.X_add_number;
5205 }
5206
5207 if (pos > 63)
5208 {
5209 as_bad (_("Improper position (%lu)"), pos);
5210 pos = 1;
5211 }
5212 if (size == 0 || size > 64
5213 || (pos + size - 1) > 63)
5214 {
5215 as_bad (_("Improper extract size (%lu, position %lu)"),
5216 size, pos);
5217 size = 1;
5218 }
5219
5220 if (size <= 32 && pos < 32)
5221 {
5222 s = "dext";
5223 fmt = "t,r,+A,+C";
5224 }
5225 else if (size <= 32)
5226 {
5227 s = "dextu";
5228 fmt = "t,r,+E,+H";
5229 }
5230 else
5231 {
5232 s = "dextm";
5233 fmt = "t,r,+A,+G";
5234 }
5235 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, pos, size - 1);
5236 }
5237 break;
5238
5239 case M_DINS:
5240 {
5241 unsigned long pos;
5242 unsigned long size;
5243
5244 if (imm_expr.X_op != O_constant || imm2_expr.X_op != O_constant)
5245 {
5246 as_bad (_("Unsupported large constant"));
5247 pos = size = 1;
5248 }
5249 else
5250 {
5251 pos = (unsigned long) imm_expr.X_add_number;
5252 size = (unsigned long) imm2_expr.X_add_number;
5253 }
5254
5255 if (pos > 63)
5256 {
5257 as_bad (_("Improper position (%lu)"), pos);
5258 pos = 1;
5259 }
5260 if (size == 0 || size > 64
5261 || (pos + size - 1) > 63)
5262 {
5263 as_bad (_("Improper insert size (%lu, position %lu)"),
5264 size, pos);
5265 size = 1;
5266 }
5267
5268 if (pos < 32 && (pos + size - 1) < 32)
5269 {
5270 s = "dins";
5271 fmt = "t,r,+A,+B";
5272 }
5273 else if (pos >= 32)
5274 {
5275 s = "dinsu";
5276 fmt = "t,r,+E,+F";
5277 }
5278 else
5279 {
5280 s = "dinsm";
5281 fmt = "t,r,+A,+F";
5282 }
5283 macro_build ((expressionS *) NULL, s, fmt, treg, sreg, (int) pos,
5284 (int) (pos + size - 1));
5285 }
5286 break;
5287
5288 case M_DDIV_3:
5289 dbl = 1;
5290 case M_DIV_3:
5291 s = "mflo";
5292 goto do_div3;
5293 case M_DREM_3:
5294 dbl = 1;
5295 case M_REM_3:
5296 s = "mfhi";
5297 do_div3:
5298 if (treg == 0)
5299 {
5300 as_warn (_("Divide by zero."));
5301 if (mips_trap)
5302 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5303 else
5304 macro_build (NULL, "break", "c", 7);
5305 break;
5306 }
5307
5308 start_noreorder ();
5309 if (mips_trap)
5310 {
5311 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5312 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5313 }
5314 else
5315 {
5316 expr1.X_add_number = 8;
5317 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5318 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", sreg, treg);
5319 macro_build (NULL, "break", "c", 7);
5320 }
5321 expr1.X_add_number = -1;
5322 used_at = 1;
5323 load_register (AT, &expr1, dbl);
5324 expr1.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
5325 macro_build (&expr1, "bne", "s,t,p", treg, AT);
5326 if (dbl)
5327 {
5328 expr1.X_add_number = 1;
5329 load_register (AT, &expr1, dbl);
5330 macro_build (NULL, "dsll32", "d,w,<", AT, AT, 31);
5331 }
5332 else
5333 {
5334 expr1.X_add_number = 0x80000000;
5335 macro_build (&expr1, "lui", "t,u", AT, BFD_RELOC_HI16);
5336 }
5337 if (mips_trap)
5338 {
5339 macro_build (NULL, "teq", "s,t,q", sreg, AT, 6);
5340 /* We want to close the noreorder block as soon as possible, so
5341 that later insns are available for delay slot filling. */
5342 end_noreorder ();
5343 }
5344 else
5345 {
5346 expr1.X_add_number = 8;
5347 macro_build (&expr1, "bne", "s,t,p", sreg, AT);
5348 macro_build (NULL, "nop", "", 0);
5349
5350 /* We want to close the noreorder block as soon as possible, so
5351 that later insns are available for delay slot filling. */
5352 end_noreorder ();
5353
5354 macro_build (NULL, "break", "c", 6);
5355 }
5356 macro_build (NULL, s, "d", dreg);
5357 break;
5358
5359 case M_DIV_3I:
5360 s = "div";
5361 s2 = "mflo";
5362 goto do_divi;
5363 case M_DIVU_3I:
5364 s = "divu";
5365 s2 = "mflo";
5366 goto do_divi;
5367 case M_REM_3I:
5368 s = "div";
5369 s2 = "mfhi";
5370 goto do_divi;
5371 case M_REMU_3I:
5372 s = "divu";
5373 s2 = "mfhi";
5374 goto do_divi;
5375 case M_DDIV_3I:
5376 dbl = 1;
5377 s = "ddiv";
5378 s2 = "mflo";
5379 goto do_divi;
5380 case M_DDIVU_3I:
5381 dbl = 1;
5382 s = "ddivu";
5383 s2 = "mflo";
5384 goto do_divi;
5385 case M_DREM_3I:
5386 dbl = 1;
5387 s = "ddiv";
5388 s2 = "mfhi";
5389 goto do_divi;
5390 case M_DREMU_3I:
5391 dbl = 1;
5392 s = "ddivu";
5393 s2 = "mfhi";
5394 do_divi:
5395 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
5396 {
5397 as_warn (_("Divide by zero."));
5398 if (mips_trap)
5399 macro_build (NULL, "teq", "s,t,q", 0, 0, 7);
5400 else
5401 macro_build (NULL, "break", "c", 7);
5402 break;
5403 }
5404 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 1)
5405 {
5406 if (strcmp (s2, "mflo") == 0)
5407 move_register (dreg, sreg);
5408 else
5409 move_register (dreg, 0);
5410 break;
5411 }
5412 if (imm_expr.X_op == O_constant
5413 && imm_expr.X_add_number == -1
5414 && s[strlen (s) - 1] != 'u')
5415 {
5416 if (strcmp (s2, "mflo") == 0)
5417 {
5418 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", dreg, sreg);
5419 }
5420 else
5421 move_register (dreg, 0);
5422 break;
5423 }
5424
5425 used_at = 1;
5426 load_register (AT, &imm_expr, dbl);
5427 macro_build (NULL, s, "z,s,t", sreg, AT);
5428 macro_build (NULL, s2, "d", dreg);
5429 break;
5430
5431 case M_DIVU_3:
5432 s = "divu";
5433 s2 = "mflo";
5434 goto do_divu3;
5435 case M_REMU_3:
5436 s = "divu";
5437 s2 = "mfhi";
5438 goto do_divu3;
5439 case M_DDIVU_3:
5440 s = "ddivu";
5441 s2 = "mflo";
5442 goto do_divu3;
5443 case M_DREMU_3:
5444 s = "ddivu";
5445 s2 = "mfhi";
5446 do_divu3:
5447 start_noreorder ();
5448 if (mips_trap)
5449 {
5450 macro_build (NULL, "teq", "s,t,q", treg, 0, 7);
5451 macro_build (NULL, s, "z,s,t", sreg, treg);
5452 /* We want to close the noreorder block as soon as possible, so
5453 that later insns are available for delay slot filling. */
5454 end_noreorder ();
5455 }
5456 else
5457 {
5458 expr1.X_add_number = 8;
5459 macro_build (&expr1, "bne", "s,t,p", treg, 0);
5460 macro_build (NULL, s, "z,s,t", sreg, treg);
5461
5462 /* We want to close the noreorder block as soon as possible, so
5463 that later insns are available for delay slot filling. */
5464 end_noreorder ();
5465 macro_build (NULL, "break", "c", 7);
5466 }
5467 macro_build (NULL, s2, "d", dreg);
5468 break;
5469
5470 case M_DLCA_AB:
5471 dbl = 1;
5472 case M_LCA_AB:
5473 call = 1;
5474 goto do_la;
5475 case M_DLA_AB:
5476 dbl = 1;
5477 case M_LA_AB:
5478 do_la:
5479 /* Load the address of a symbol into a register. If breg is not
5480 zero, we then add a base register to it. */
5481
5482 if (dbl && HAVE_32BIT_GPRS)
5483 as_warn (_("dla used to load 32-bit register"));
5484
5485 if (! dbl && HAVE_64BIT_OBJECTS)
5486 as_warn (_("la used to load 64-bit address"));
5487
5488 if (offset_expr.X_op == O_constant
5489 && offset_expr.X_add_number >= -0x8000
5490 && offset_expr.X_add_number < 0x8000)
5491 {
5492 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
5493 "t,r,j", treg, sreg, BFD_RELOC_LO16);
5494 break;
5495 }
5496
5497 if (mips_opts.at && (treg == breg))
5498 {
5499 tempreg = AT;
5500 used_at = 1;
5501 }
5502 else
5503 {
5504 tempreg = treg;
5505 }
5506
5507 if (offset_expr.X_op != O_symbol
5508 && offset_expr.X_op != O_constant)
5509 {
5510 as_bad (_("expression too complex"));
5511 offset_expr.X_op = O_constant;
5512 }
5513
5514 if (offset_expr.X_op == O_constant)
5515 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
5516 else if (mips_pic == NO_PIC)
5517 {
5518 /* If this is a reference to a GP relative symbol, we want
5519 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
5520 Otherwise we want
5521 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
5522 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5523 If we have a constant, we need two instructions anyhow,
5524 so we may as well always use the latter form.
5525
5526 With 64bit address space and a usable $at we want
5527 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5528 lui $at,<sym> (BFD_RELOC_HI16_S)
5529 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5530 daddiu $at,<sym> (BFD_RELOC_LO16)
5531 dsll32 $tempreg,0
5532 daddu $tempreg,$tempreg,$at
5533
5534 If $at is already in use, we use a path which is suboptimal
5535 on superscalar processors.
5536 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
5537 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
5538 dsll $tempreg,16
5539 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
5540 dsll $tempreg,16
5541 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
5542
5543 For GP relative symbols in 64bit address space we can use
5544 the same sequence as in 32bit address space. */
5545 if (HAVE_64BIT_SYMBOLS)
5546 {
5547 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5548 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5549 {
5550 relax_start (offset_expr.X_add_symbol);
5551 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5552 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5553 relax_switch ();
5554 }
5555
5556 if (used_at == 0 && mips_opts.at)
5557 {
5558 macro_build (&offset_expr, "lui", "t,u",
5559 tempreg, BFD_RELOC_MIPS_HIGHEST);
5560 macro_build (&offset_expr, "lui", "t,u",
5561 AT, BFD_RELOC_HI16_S);
5562 macro_build (&offset_expr, "daddiu", "t,r,j",
5563 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5564 macro_build (&offset_expr, "daddiu", "t,r,j",
5565 AT, AT, BFD_RELOC_LO16);
5566 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
5567 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
5568 used_at = 1;
5569 }
5570 else
5571 {
5572 macro_build (&offset_expr, "lui", "t,u",
5573 tempreg, BFD_RELOC_MIPS_HIGHEST);
5574 macro_build (&offset_expr, "daddiu", "t,r,j",
5575 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
5576 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5577 macro_build (&offset_expr, "daddiu", "t,r,j",
5578 tempreg, tempreg, BFD_RELOC_HI16_S);
5579 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
5580 macro_build (&offset_expr, "daddiu", "t,r,j",
5581 tempreg, tempreg, BFD_RELOC_LO16);
5582 }
5583
5584 if (mips_relax.sequence)
5585 relax_end ();
5586 }
5587 else
5588 {
5589 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
5590 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
5591 {
5592 relax_start (offset_expr.X_add_symbol);
5593 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5594 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
5595 relax_switch ();
5596 }
5597 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
5598 as_bad (_("offset too large"));
5599 macro_build_lui (&offset_expr, tempreg);
5600 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5601 tempreg, tempreg, BFD_RELOC_LO16);
5602 if (mips_relax.sequence)
5603 relax_end ();
5604 }
5605 }
5606 else if (!mips_big_got && !HAVE_NEWABI)
5607 {
5608 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5609
5610 /* If this is a reference to an external symbol, and there
5611 is no constant, we want
5612 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5613 or for lca or if tempreg is PIC_CALL_REG
5614 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5615 For a local symbol, we want
5616 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5617 nop
5618 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5619
5620 If we have a small constant, and this is a reference to
5621 an external symbol, we want
5622 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5623 nop
5624 addiu $tempreg,$tempreg,<constant>
5625 For a local symbol, we want the same instruction
5626 sequence, but we output a BFD_RELOC_LO16 reloc on the
5627 addiu instruction.
5628
5629 If we have a large constant, and this is a reference to
5630 an external symbol, we want
5631 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5632 lui $at,<hiconstant>
5633 addiu $at,$at,<loconstant>
5634 addu $tempreg,$tempreg,$at
5635 For a local symbol, we want the same instruction
5636 sequence, but we output a BFD_RELOC_LO16 reloc on the
5637 addiu instruction.
5638 */
5639
5640 if (offset_expr.X_add_number == 0)
5641 {
5642 if (mips_pic == SVR4_PIC
5643 && breg == 0
5644 && (call || tempreg == PIC_CALL_REG))
5645 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
5646
5647 relax_start (offset_expr.X_add_symbol);
5648 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5649 lw_reloc_type, mips_gp_register);
5650 if (breg != 0)
5651 {
5652 /* We're going to put in an addu instruction using
5653 tempreg, so we may as well insert the nop right
5654 now. */
5655 load_delay_nop ();
5656 }
5657 relax_switch ();
5658 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5659 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
5660 load_delay_nop ();
5661 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5662 tempreg, tempreg, BFD_RELOC_LO16);
5663 relax_end ();
5664 /* FIXME: If breg == 0, and the next instruction uses
5665 $tempreg, then if this variant case is used an extra
5666 nop will be generated. */
5667 }
5668 else if (offset_expr.X_add_number >= -0x8000
5669 && offset_expr.X_add_number < 0x8000)
5670 {
5671 load_got_offset (tempreg, &offset_expr);
5672 load_delay_nop ();
5673 add_got_offset (tempreg, &offset_expr);
5674 }
5675 else
5676 {
5677 expr1.X_add_number = offset_expr.X_add_number;
5678 offset_expr.X_add_number =
5679 ((offset_expr.X_add_number + 0x8000) & 0xffff) - 0x8000;
5680 load_got_offset (tempreg, &offset_expr);
5681 offset_expr.X_add_number = expr1.X_add_number;
5682 /* If we are going to add in a base register, and the
5683 target register and the base register are the same,
5684 then we are using AT as a temporary register. Since
5685 we want to load the constant into AT, we add our
5686 current AT (from the global offset table) and the
5687 register into the register now, and pretend we were
5688 not using a base register. */
5689 if (breg == treg)
5690 {
5691 load_delay_nop ();
5692 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5693 treg, AT, breg);
5694 breg = 0;
5695 tempreg = treg;
5696 }
5697 add_got_offset_hilo (tempreg, &offset_expr, AT);
5698 used_at = 1;
5699 }
5700 }
5701 else if (!mips_big_got && HAVE_NEWABI)
5702 {
5703 int add_breg_early = 0;
5704
5705 /* If this is a reference to an external, and there is no
5706 constant, or local symbol (*), with or without a
5707 constant, we want
5708 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5709 or for lca or if tempreg is PIC_CALL_REG
5710 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
5711
5712 If we have a small constant, and this is a reference to
5713 an external symbol, we want
5714 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5715 addiu $tempreg,$tempreg,<constant>
5716
5717 If we have a large constant, and this is a reference to
5718 an external symbol, we want
5719 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
5720 lui $at,<hiconstant>
5721 addiu $at,$at,<loconstant>
5722 addu $tempreg,$tempreg,$at
5723
5724 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
5725 local symbols, even though it introduces an additional
5726 instruction. */
5727
5728 if (offset_expr.X_add_number)
5729 {
5730 expr1.X_add_number = offset_expr.X_add_number;
5731 offset_expr.X_add_number = 0;
5732
5733 relax_start (offset_expr.X_add_symbol);
5734 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5735 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5736
5737 if (expr1.X_add_number >= -0x8000
5738 && expr1.X_add_number < 0x8000)
5739 {
5740 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5741 tempreg, tempreg, BFD_RELOC_LO16);
5742 }
5743 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
5744 {
5745 int dreg;
5746
5747 /* If we are going to add in a base register, and the
5748 target register and the base register are the same,
5749 then we are using AT as a temporary register. Since
5750 we want to load the constant into AT, we add our
5751 current AT (from the global offset table) and the
5752 register into the register now, and pretend we were
5753 not using a base register. */
5754 if (breg != treg)
5755 dreg = tempreg;
5756 else
5757 {
5758 gas_assert (tempreg == AT);
5759 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5760 treg, AT, breg);
5761 dreg = treg;
5762 add_breg_early = 1;
5763 }
5764
5765 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5766 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5767 dreg, dreg, AT);
5768
5769 used_at = 1;
5770 }
5771 else
5772 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
5773
5774 relax_switch ();
5775 offset_expr.X_add_number = expr1.X_add_number;
5776
5777 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5778 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5779 if (add_breg_early)
5780 {
5781 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5782 treg, tempreg, breg);
5783 breg = 0;
5784 tempreg = treg;
5785 }
5786 relax_end ();
5787 }
5788 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
5789 {
5790 relax_start (offset_expr.X_add_symbol);
5791 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5792 BFD_RELOC_MIPS_CALL16, mips_gp_register);
5793 relax_switch ();
5794 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5795 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5796 relax_end ();
5797 }
5798 else
5799 {
5800 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5801 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
5802 }
5803 }
5804 else if (mips_big_got && !HAVE_NEWABI)
5805 {
5806 int gpdelay;
5807 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5808 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5809 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
5810
5811 /* This is the large GOT case. If this is a reference to an
5812 external symbol, and there is no constant, we want
5813 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5814 addu $tempreg,$tempreg,$gp
5815 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5816 or for lca or if tempreg is PIC_CALL_REG
5817 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5818 addu $tempreg,$tempreg,$gp
5819 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5820 For a local symbol, we want
5821 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5822 nop
5823 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
5824
5825 If we have a small constant, and this is a reference to
5826 an external symbol, we want
5827 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5828 addu $tempreg,$tempreg,$gp
5829 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5830 nop
5831 addiu $tempreg,$tempreg,<constant>
5832 For a local symbol, we want
5833 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5834 nop
5835 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
5836
5837 If we have a large constant, and this is a reference to
5838 an external symbol, we want
5839 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5840 addu $tempreg,$tempreg,$gp
5841 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5842 lui $at,<hiconstant>
5843 addiu $at,$at,<loconstant>
5844 addu $tempreg,$tempreg,$at
5845 For a local symbol, we want
5846 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
5847 lui $at,<hiconstant>
5848 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
5849 addu $tempreg,$tempreg,$at
5850 */
5851
5852 expr1.X_add_number = offset_expr.X_add_number;
5853 offset_expr.X_add_number = 0;
5854 relax_start (offset_expr.X_add_symbol);
5855 gpdelay = reg_needs_delay (mips_gp_register);
5856 if (expr1.X_add_number == 0 && breg == 0
5857 && (call || tempreg == PIC_CALL_REG))
5858 {
5859 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
5860 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
5861 }
5862 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
5863 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5864 tempreg, tempreg, mips_gp_register);
5865 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
5866 tempreg, lw_reloc_type, tempreg);
5867 if (expr1.X_add_number == 0)
5868 {
5869 if (breg != 0)
5870 {
5871 /* We're going to put in an addu instruction using
5872 tempreg, so we may as well insert the nop right
5873 now. */
5874 load_delay_nop ();
5875 }
5876 }
5877 else if (expr1.X_add_number >= -0x8000
5878 && expr1.X_add_number < 0x8000)
5879 {
5880 load_delay_nop ();
5881 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
5882 tempreg, tempreg, BFD_RELOC_LO16);
5883 }
5884 else
5885 {
5886 int dreg;
5887
5888 /* If we are going to add in a base register, and the
5889 target register and the base register are the same,
5890 then we are using AT as a temporary register. Since
5891 we want to load the constant into AT, we add our
5892 current AT (from the global offset table) and the
5893 register into the register now, and pretend we were
5894 not using a base register. */
5895 if (breg != treg)
5896 dreg = tempreg;
5897 else
5898 {
5899 gas_assert (tempreg == AT);
5900 load_delay_nop ();
5901 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5902 treg, AT, breg);
5903 dreg = treg;
5904 }
5905
5906 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
5907 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
5908
5909 used_at = 1;
5910 }
5911 offset_expr.X_add_number =
5912 ((expr1.X_add_number + 0x8000) & 0xffff) - 0x8000;
5913 relax_switch ();
5914
5915 if (gpdelay)
5916 {
5917 /* This is needed because this instruction uses $gp, but
5918 the first instruction on the main stream does not. */
5919 macro_build (NULL, "nop", "");
5920 }
5921
5922 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
5923 local_reloc_type, mips_gp_register);
5924 if (expr1.X_add_number >= -0x8000
5925 && expr1.X_add_number < 0x8000)
5926 {
5927 load_delay_nop ();
5928 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5929 tempreg, tempreg, BFD_RELOC_LO16);
5930 /* FIXME: If add_number is 0, and there was no base
5931 register, the external symbol case ended with a load,
5932 so if the symbol turns out to not be external, and
5933 the next instruction uses tempreg, an unnecessary nop
5934 will be inserted. */
5935 }
5936 else
5937 {
5938 if (breg == treg)
5939 {
5940 /* We must add in the base register now, as in the
5941 external symbol case. */
5942 gas_assert (tempreg == AT);
5943 load_delay_nop ();
5944 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5945 treg, AT, breg);
5946 tempreg = treg;
5947 /* We set breg to 0 because we have arranged to add
5948 it in in both cases. */
5949 breg = 0;
5950 }
5951
5952 macro_build_lui (&expr1, AT);
5953 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
5954 AT, AT, BFD_RELOC_LO16);
5955 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
5956 tempreg, tempreg, AT);
5957 used_at = 1;
5958 }
5959 relax_end ();
5960 }
5961 else if (mips_big_got && HAVE_NEWABI)
5962 {
5963 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
5964 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
5965 int add_breg_early = 0;
5966
5967 /* This is the large GOT case. If this is a reference to an
5968 external symbol, and there is no constant, we want
5969 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5970 add $tempreg,$tempreg,$gp
5971 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5972 or for lca or if tempreg is PIC_CALL_REG
5973 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
5974 add $tempreg,$tempreg,$gp
5975 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
5976
5977 If we have a small constant, and this is a reference to
5978 an external symbol, we want
5979 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5980 add $tempreg,$tempreg,$gp
5981 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5982 addi $tempreg,$tempreg,<constant>
5983
5984 If we have a large constant, and this is a reference to
5985 an external symbol, we want
5986 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
5987 addu $tempreg,$tempreg,$gp
5988 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
5989 lui $at,<hiconstant>
5990 addi $at,$at,<loconstant>
5991 add $tempreg,$tempreg,$at
5992
5993 If we have NewABI, and we know it's a local symbol, we want
5994 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
5995 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
5996 otherwise we have to resort to GOT_HI16/GOT_LO16. */
5997
5998 relax_start (offset_expr.X_add_symbol);
5999
6000 expr1.X_add_number = offset_expr.X_add_number;
6001 offset_expr.X_add_number = 0;
6002
6003 if (expr1.X_add_number == 0 && breg == 0
6004 && (call || tempreg == PIC_CALL_REG))
6005 {
6006 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
6007 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
6008 }
6009 macro_build (&offset_expr, "lui", "t,u", tempreg, lui_reloc_type);
6010 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6011 tempreg, tempreg, mips_gp_register);
6012 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6013 tempreg, lw_reloc_type, tempreg);
6014
6015 if (expr1.X_add_number == 0)
6016 ;
6017 else if (expr1.X_add_number >= -0x8000
6018 && expr1.X_add_number < 0x8000)
6019 {
6020 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
6021 tempreg, tempreg, BFD_RELOC_LO16);
6022 }
6023 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
6024 {
6025 int dreg;
6026
6027 /* If we are going to add in a base register, and the
6028 target register and the base register are the same,
6029 then we are using AT as a temporary register. Since
6030 we want to load the constant into AT, we add our
6031 current AT (from the global offset table) and the
6032 register into the register now, and pretend we were
6033 not using a base register. */
6034 if (breg != treg)
6035 dreg = tempreg;
6036 else
6037 {
6038 gas_assert (tempreg == AT);
6039 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6040 treg, AT, breg);
6041 dreg = treg;
6042 add_breg_early = 1;
6043 }
6044
6045 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
6046 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
6047
6048 used_at = 1;
6049 }
6050 else
6051 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
6052
6053 relax_switch ();
6054 offset_expr.X_add_number = expr1.X_add_number;
6055 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6056 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6057 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6058 tempreg, BFD_RELOC_MIPS_GOT_OFST);
6059 if (add_breg_early)
6060 {
6061 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6062 treg, tempreg, breg);
6063 breg = 0;
6064 tempreg = treg;
6065 }
6066 relax_end ();
6067 }
6068 else
6069 abort ();
6070
6071 if (breg != 0)
6072 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", treg, tempreg, breg);
6073 break;
6074
6075 case M_MSGSND:
6076 {
6077 unsigned long temp = (treg << 16) | (0x01);
6078 macro_build (NULL, "c2", "C", temp);
6079 }
6080 /* AT is not used, just return */
6081 return;
6082
6083 case M_MSGLD:
6084 {
6085 unsigned long temp = (0x02);
6086 macro_build (NULL, "c2", "C", temp);
6087 }
6088 /* AT is not used, just return */
6089 return;
6090
6091 case M_MSGLD_T:
6092 {
6093 unsigned long temp = (treg << 16) | (0x02);
6094 macro_build (NULL, "c2", "C", temp);
6095 }
6096 /* AT is not used, just return */
6097 return;
6098
6099 case M_MSGWAIT:
6100 macro_build (NULL, "c2", "C", 3);
6101 /* AT is not used, just return */
6102 return;
6103
6104 case M_MSGWAIT_T:
6105 {
6106 unsigned long temp = (treg << 16) | 0x03;
6107 macro_build (NULL, "c2", "C", temp);
6108 }
6109 /* AT is not used, just return */
6110 return;
6111
6112 case M_J_A:
6113 /* The j instruction may not be used in PIC code, since it
6114 requires an absolute address. We convert it to a b
6115 instruction. */
6116 if (mips_pic == NO_PIC)
6117 macro_build (&offset_expr, "j", "a");
6118 else
6119 macro_build (&offset_expr, "b", "p");
6120 break;
6121
6122 /* The jal instructions must be handled as macros because when
6123 generating PIC code they expand to multi-instruction
6124 sequences. Normally they are simple instructions. */
6125 case M_JAL_1:
6126 dreg = RA;
6127 /* Fall through. */
6128 case M_JAL_2:
6129 if (mips_pic == NO_PIC)
6130 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6131 else
6132 {
6133 if (sreg != PIC_CALL_REG)
6134 as_warn (_("MIPS PIC call to register other than $25"));
6135
6136 macro_build (NULL, "jalr", "d,s", dreg, sreg);
6137 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
6138 {
6139 if (mips_cprestore_offset < 0)
6140 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6141 else
6142 {
6143 if (! mips_frame_reg_valid)
6144 {
6145 as_warn (_("No .frame pseudo-op used in PIC code"));
6146 /* Quiet this warning. */
6147 mips_frame_reg_valid = 1;
6148 }
6149 if (! mips_cprestore_valid)
6150 {
6151 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6152 /* Quiet this warning. */
6153 mips_cprestore_valid = 1;
6154 }
6155 expr1.X_add_number = mips_cprestore_offset;
6156 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6157 mips_gp_register,
6158 mips_frame_reg,
6159 HAVE_64BIT_ADDRESSES);
6160 }
6161 }
6162 }
6163
6164 break;
6165
6166 case M_JAL_A:
6167 if (mips_pic == NO_PIC)
6168 macro_build (&offset_expr, "jal", "a");
6169 else if (mips_pic == SVR4_PIC)
6170 {
6171 /* If this is a reference to an external symbol, and we are
6172 using a small GOT, we want
6173 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
6174 nop
6175 jalr $ra,$25
6176 nop
6177 lw $gp,cprestore($sp)
6178 The cprestore value is set using the .cprestore
6179 pseudo-op. If we are using a big GOT, we want
6180 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
6181 addu $25,$25,$gp
6182 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
6183 nop
6184 jalr $ra,$25
6185 nop
6186 lw $gp,cprestore($sp)
6187 If the symbol is not external, we want
6188 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6189 nop
6190 addiu $25,$25,<sym> (BFD_RELOC_LO16)
6191 jalr $ra,$25
6192 nop
6193 lw $gp,cprestore($sp)
6194
6195 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
6196 sequences above, minus nops, unless the symbol is local,
6197 which enables us to use GOT_PAGE/GOT_OFST (big got) or
6198 GOT_DISP. */
6199 if (HAVE_NEWABI)
6200 {
6201 if (! mips_big_got)
6202 {
6203 relax_start (offset_expr.X_add_symbol);
6204 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6205 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6206 mips_gp_register);
6207 relax_switch ();
6208 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6209 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
6210 mips_gp_register);
6211 relax_end ();
6212 }
6213 else
6214 {
6215 relax_start (offset_expr.X_add_symbol);
6216 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6217 BFD_RELOC_MIPS_CALL_HI16);
6218 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6219 PIC_CALL_REG, mips_gp_register);
6220 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6221 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6222 PIC_CALL_REG);
6223 relax_switch ();
6224 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6225 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
6226 mips_gp_register);
6227 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6228 PIC_CALL_REG, PIC_CALL_REG,
6229 BFD_RELOC_MIPS_GOT_OFST);
6230 relax_end ();
6231 }
6232
6233 macro_build_jalr (&offset_expr);
6234 }
6235 else
6236 {
6237 relax_start (offset_expr.X_add_symbol);
6238 if (! mips_big_got)
6239 {
6240 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6241 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
6242 mips_gp_register);
6243 load_delay_nop ();
6244 relax_switch ();
6245 }
6246 else
6247 {
6248 int gpdelay;
6249
6250 gpdelay = reg_needs_delay (mips_gp_register);
6251 macro_build (&offset_expr, "lui", "t,u", PIC_CALL_REG,
6252 BFD_RELOC_MIPS_CALL_HI16);
6253 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
6254 PIC_CALL_REG, mips_gp_register);
6255 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6256 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
6257 PIC_CALL_REG);
6258 load_delay_nop ();
6259 relax_switch ();
6260 if (gpdelay)
6261 macro_build (NULL, "nop", "");
6262 }
6263 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
6264 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
6265 mips_gp_register);
6266 load_delay_nop ();
6267 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
6268 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
6269 relax_end ();
6270 macro_build_jalr (&offset_expr);
6271
6272 if (mips_cprestore_offset < 0)
6273 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6274 else
6275 {
6276 if (! mips_frame_reg_valid)
6277 {
6278 as_warn (_("No .frame pseudo-op used in PIC code"));
6279 /* Quiet this warning. */
6280 mips_frame_reg_valid = 1;
6281 }
6282 if (! mips_cprestore_valid)
6283 {
6284 as_warn (_("No .cprestore pseudo-op used in PIC code"));
6285 /* Quiet this warning. */
6286 mips_cprestore_valid = 1;
6287 }
6288 if (mips_opts.noreorder)
6289 macro_build (NULL, "nop", "");
6290 expr1.X_add_number = mips_cprestore_offset;
6291 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
6292 mips_gp_register,
6293 mips_frame_reg,
6294 HAVE_64BIT_ADDRESSES);
6295 }
6296 }
6297 }
6298 else if (mips_pic == VXWORKS_PIC)
6299 as_bad (_("Non-PIC jump used in PIC library"));
6300 else
6301 abort ();
6302
6303 break;
6304
6305 case M_LB_AB:
6306 s = "lb";
6307 goto ld;
6308 case M_LBU_AB:
6309 s = "lbu";
6310 goto ld;
6311 case M_LH_AB:
6312 s = "lh";
6313 goto ld;
6314 case M_LHU_AB:
6315 s = "lhu";
6316 goto ld;
6317 case M_LW_AB:
6318 s = "lw";
6319 goto ld;
6320 case M_LWC0_AB:
6321 s = "lwc0";
6322 /* Itbl support may require additional care here. */
6323 coproc = 1;
6324 goto ld;
6325 case M_LWC1_AB:
6326 s = "lwc1";
6327 /* Itbl support may require additional care here. */
6328 coproc = 1;
6329 goto ld;
6330 case M_LWC2_AB:
6331 s = "lwc2";
6332 /* Itbl support may require additional care here. */
6333 coproc = 1;
6334 goto ld;
6335 case M_LWC3_AB:
6336 s = "lwc3";
6337 /* Itbl support may require additional care here. */
6338 coproc = 1;
6339 goto ld;
6340 case M_LWL_AB:
6341 s = "lwl";
6342 lr = 1;
6343 goto ld;
6344 case M_LWR_AB:
6345 s = "lwr";
6346 lr = 1;
6347 goto ld;
6348 case M_LDC1_AB:
6349 s = "ldc1";
6350 /* Itbl support may require additional care here. */
6351 coproc = 1;
6352 goto ld;
6353 case M_LDC2_AB:
6354 s = "ldc2";
6355 /* Itbl support may require additional care here. */
6356 coproc = 1;
6357 goto ld;
6358 case M_LDC3_AB:
6359 s = "ldc3";
6360 /* Itbl support may require additional care here. */
6361 coproc = 1;
6362 goto ld;
6363 case M_LDL_AB:
6364 s = "ldl";
6365 lr = 1;
6366 goto ld;
6367 case M_LDR_AB:
6368 s = "ldr";
6369 lr = 1;
6370 goto ld;
6371 case M_LL_AB:
6372 s = "ll";
6373 goto ld;
6374 case M_LLD_AB:
6375 s = "lld";
6376 goto ld;
6377 case M_LWU_AB:
6378 s = "lwu";
6379 ld:
6380 if (breg == treg || coproc || lr)
6381 {
6382 tempreg = AT;
6383 used_at = 1;
6384 }
6385 else
6386 {
6387 tempreg = treg;
6388 }
6389 goto ld_st;
6390 case M_SB_AB:
6391 s = "sb";
6392 goto st;
6393 case M_SH_AB:
6394 s = "sh";
6395 goto st;
6396 case M_SW_AB:
6397 s = "sw";
6398 goto st;
6399 case M_SWC0_AB:
6400 s = "swc0";
6401 /* Itbl support may require additional care here. */
6402 coproc = 1;
6403 goto st;
6404 case M_SWC1_AB:
6405 s = "swc1";
6406 /* Itbl support may require additional care here. */
6407 coproc = 1;
6408 goto st;
6409 case M_SWC2_AB:
6410 s = "swc2";
6411 /* Itbl support may require additional care here. */
6412 coproc = 1;
6413 goto st;
6414 case M_SWC3_AB:
6415 s = "swc3";
6416 /* Itbl support may require additional care here. */
6417 coproc = 1;
6418 goto st;
6419 case M_SWL_AB:
6420 s = "swl";
6421 goto st;
6422 case M_SWR_AB:
6423 s = "swr";
6424 goto st;
6425 case M_SC_AB:
6426 s = "sc";
6427 goto st;
6428 case M_SCD_AB:
6429 s = "scd";
6430 goto st;
6431 case M_CACHE_AB:
6432 s = "cache";
6433 goto st;
6434 case M_SDC1_AB:
6435 s = "sdc1";
6436 coproc = 1;
6437 /* Itbl support may require additional care here. */
6438 goto st;
6439 case M_SDC2_AB:
6440 s = "sdc2";
6441 /* Itbl support may require additional care here. */
6442 coproc = 1;
6443 goto st;
6444 case M_SDC3_AB:
6445 s = "sdc3";
6446 /* Itbl support may require additional care here. */
6447 coproc = 1;
6448 goto st;
6449 case M_SDL_AB:
6450 s = "sdl";
6451 goto st;
6452 case M_SDR_AB:
6453 s = "sdr";
6454 st:
6455 tempreg = AT;
6456 used_at = 1;
6457 ld_st:
6458 if (coproc
6459 && NO_ISA_COP (mips_opts.arch)
6460 && (ip->insn_mo->pinfo2 & (INSN2_M_FP_S | INSN2_M_FP_D)) == 0)
6461 {
6462 as_bad (_("opcode not supported on this processor: %s"),
6463 mips_cpu_info_from_arch (mips_opts.arch)->name);
6464 break;
6465 }
6466
6467 /* Itbl support may require additional care here. */
6468 if (mask == M_LWC1_AB
6469 || mask == M_SWC1_AB
6470 || mask == M_LDC1_AB
6471 || mask == M_SDC1_AB
6472 || mask == M_L_DAB
6473 || mask == M_S_DAB)
6474 fmt = "T,o(b)";
6475 else if (mask == M_CACHE_AB)
6476 fmt = "k,o(b)";
6477 else if (coproc)
6478 fmt = "E,o(b)";
6479 else
6480 fmt = "t,o(b)";
6481
6482 if (offset_expr.X_op != O_constant
6483 && offset_expr.X_op != O_symbol)
6484 {
6485 as_bad (_("expression too complex"));
6486 offset_expr.X_op = O_constant;
6487 }
6488
6489 if (HAVE_32BIT_ADDRESSES
6490 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
6491 {
6492 char value [32];
6493
6494 sprintf_vma (value, offset_expr.X_add_number);
6495 as_bad (_("Number (0x%s) larger than 32 bits"), value);
6496 }
6497
6498 /* A constant expression in PIC code can be handled just as it
6499 is in non PIC code. */
6500 if (offset_expr.X_op == O_constant)
6501 {
6502 expr1.X_add_number = ((offset_expr.X_add_number + 0x8000)
6503 & ~(bfd_vma) 0xffff);
6504 normalize_address_expr (&expr1);
6505 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
6506 if (breg != 0)
6507 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6508 tempreg, tempreg, breg);
6509 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6510 }
6511 else if (mips_pic == NO_PIC)
6512 {
6513 /* If this is a reference to a GP relative symbol, and there
6514 is no base register, we want
6515 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
6516 Otherwise, if there is no base register, we want
6517 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6518 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6519 If we have a constant, we need two instructions anyhow,
6520 so we always use the latter form.
6521
6522 If we have a base register, and this is a reference to a
6523 GP relative symbol, we want
6524 addu $tempreg,$breg,$gp
6525 <op> $treg,<sym>($tempreg) (BFD_RELOC_GPREL16)
6526 Otherwise we want
6527 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
6528 addu $tempreg,$tempreg,$breg
6529 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6530 With a constant we always use the latter case.
6531
6532 With 64bit address space and no base register and $at usable,
6533 we want
6534 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6535 lui $at,<sym> (BFD_RELOC_HI16_S)
6536 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6537 dsll32 $tempreg,0
6538 daddu $tempreg,$at
6539 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6540 If we have a base register, we want
6541 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6542 lui $at,<sym> (BFD_RELOC_HI16_S)
6543 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6544 daddu $at,$breg
6545 dsll32 $tempreg,0
6546 daddu $tempreg,$at
6547 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6548
6549 Without $at we can't generate the optimal path for superscalar
6550 processors here since this would require two temporary registers.
6551 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6552 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6553 dsll $tempreg,16
6554 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6555 dsll $tempreg,16
6556 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6557 If we have a base register, we want
6558 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
6559 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
6560 dsll $tempreg,16
6561 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
6562 dsll $tempreg,16
6563 daddu $tempreg,$tempreg,$breg
6564 <op> $treg,<sym>($tempreg) (BFD_RELOC_LO16)
6565
6566 For GP relative symbols in 64bit address space we can use
6567 the same sequence as in 32bit address space. */
6568 if (HAVE_64BIT_SYMBOLS)
6569 {
6570 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6571 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6572 {
6573 relax_start (offset_expr.X_add_symbol);
6574 if (breg == 0)
6575 {
6576 macro_build (&offset_expr, s, fmt, treg,
6577 BFD_RELOC_GPREL16, mips_gp_register);
6578 }
6579 else
6580 {
6581 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6582 tempreg, breg, mips_gp_register);
6583 macro_build (&offset_expr, s, fmt, treg,
6584 BFD_RELOC_GPREL16, tempreg);
6585 }
6586 relax_switch ();
6587 }
6588
6589 if (used_at == 0 && mips_opts.at)
6590 {
6591 macro_build (&offset_expr, "lui", "t,u", tempreg,
6592 BFD_RELOC_MIPS_HIGHEST);
6593 macro_build (&offset_expr, "lui", "t,u", AT,
6594 BFD_RELOC_HI16_S);
6595 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6596 tempreg, BFD_RELOC_MIPS_HIGHER);
6597 if (breg != 0)
6598 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
6599 macro_build (NULL, "dsll32", "d,w,<", tempreg, tempreg, 0);
6600 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
6601 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_LO16,
6602 tempreg);
6603 used_at = 1;
6604 }
6605 else
6606 {
6607 macro_build (&offset_expr, "lui", "t,u", tempreg,
6608 BFD_RELOC_MIPS_HIGHEST);
6609 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6610 tempreg, BFD_RELOC_MIPS_HIGHER);
6611 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6612 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
6613 tempreg, BFD_RELOC_HI16_S);
6614 macro_build (NULL, "dsll", "d,w,<", tempreg, tempreg, 16);
6615 if (breg != 0)
6616 macro_build (NULL, "daddu", "d,v,t",
6617 tempreg, tempreg, breg);
6618 macro_build (&offset_expr, s, fmt, treg,
6619 BFD_RELOC_LO16, tempreg);
6620 }
6621
6622 if (mips_relax.sequence)
6623 relax_end ();
6624 break;
6625 }
6626
6627 if (breg == 0)
6628 {
6629 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6630 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6631 {
6632 relax_start (offset_expr.X_add_symbol);
6633 macro_build (&offset_expr, s, fmt, treg, BFD_RELOC_GPREL16,
6634 mips_gp_register);
6635 relax_switch ();
6636 }
6637 macro_build_lui (&offset_expr, tempreg);
6638 macro_build (&offset_expr, s, fmt, treg,
6639 BFD_RELOC_LO16, tempreg);
6640 if (mips_relax.sequence)
6641 relax_end ();
6642 }
6643 else
6644 {
6645 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
6646 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
6647 {
6648 relax_start (offset_expr.X_add_symbol);
6649 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6650 tempreg, breg, mips_gp_register);
6651 macro_build (&offset_expr, s, fmt, treg,
6652 BFD_RELOC_GPREL16, tempreg);
6653 relax_switch ();
6654 }
6655 macro_build_lui (&offset_expr, tempreg);
6656 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6657 tempreg, tempreg, breg);
6658 macro_build (&offset_expr, s, fmt, treg,
6659 BFD_RELOC_LO16, tempreg);
6660 if (mips_relax.sequence)
6661 relax_end ();
6662 }
6663 }
6664 else if (!mips_big_got)
6665 {
6666 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
6667
6668 /* If this is a reference to an external symbol, we want
6669 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6670 nop
6671 <op> $treg,0($tempreg)
6672 Otherwise we want
6673 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6674 nop
6675 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6676 <op> $treg,0($tempreg)
6677
6678 For NewABI, we want
6679 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6680 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
6681
6682 If there is a base register, we add it to $tempreg before
6683 the <op>. If there is a constant, we stick it in the
6684 <op> instruction. We don't handle constants larger than
6685 16 bits, because we have no way to load the upper 16 bits
6686 (actually, we could handle them for the subset of cases
6687 in which we are not using $at). */
6688 gas_assert (offset_expr.X_op == O_symbol);
6689 if (HAVE_NEWABI)
6690 {
6691 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6692 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6693 if (breg != 0)
6694 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6695 tempreg, tempreg, breg);
6696 macro_build (&offset_expr, s, fmt, treg,
6697 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6698 break;
6699 }
6700 expr1.X_add_number = offset_expr.X_add_number;
6701 offset_expr.X_add_number = 0;
6702 if (expr1.X_add_number < -0x8000
6703 || expr1.X_add_number >= 0x8000)
6704 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6705 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6706 lw_reloc_type, mips_gp_register);
6707 load_delay_nop ();
6708 relax_start (offset_expr.X_add_symbol);
6709 relax_switch ();
6710 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6711 tempreg, BFD_RELOC_LO16);
6712 relax_end ();
6713 if (breg != 0)
6714 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6715 tempreg, tempreg, breg);
6716 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6717 }
6718 else if (mips_big_got && !HAVE_NEWABI)
6719 {
6720 int gpdelay;
6721
6722 /* If this is a reference to an external symbol, we want
6723 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6724 addu $tempreg,$tempreg,$gp
6725 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6726 <op> $treg,0($tempreg)
6727 Otherwise we want
6728 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
6729 nop
6730 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
6731 <op> $treg,0($tempreg)
6732 If there is a base register, we add it to $tempreg before
6733 the <op>. If there is a constant, we stick it in the
6734 <op> instruction. We don't handle constants larger than
6735 16 bits, because we have no way to load the upper 16 bits
6736 (actually, we could handle them for the subset of cases
6737 in which we are not using $at). */
6738 gas_assert (offset_expr.X_op == O_symbol);
6739 expr1.X_add_number = offset_expr.X_add_number;
6740 offset_expr.X_add_number = 0;
6741 if (expr1.X_add_number < -0x8000
6742 || expr1.X_add_number >= 0x8000)
6743 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6744 gpdelay = reg_needs_delay (mips_gp_register);
6745 relax_start (offset_expr.X_add_symbol);
6746 macro_build (&offset_expr, "lui", "t,u", tempreg,
6747 BFD_RELOC_MIPS_GOT_HI16);
6748 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6749 mips_gp_register);
6750 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6751 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6752 relax_switch ();
6753 if (gpdelay)
6754 macro_build (NULL, "nop", "");
6755 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6756 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6757 load_delay_nop ();
6758 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
6759 tempreg, BFD_RELOC_LO16);
6760 relax_end ();
6761
6762 if (breg != 0)
6763 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6764 tempreg, tempreg, breg);
6765 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6766 }
6767 else if (mips_big_got && HAVE_NEWABI)
6768 {
6769 /* If this is a reference to an external symbol, we want
6770 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
6771 add $tempreg,$tempreg,$gp
6772 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
6773 <op> $treg,<ofst>($tempreg)
6774 Otherwise, for local symbols, we want:
6775 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
6776 <op> $treg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
6777 gas_assert (offset_expr.X_op == O_symbol);
6778 expr1.X_add_number = offset_expr.X_add_number;
6779 offset_expr.X_add_number = 0;
6780 if (expr1.X_add_number < -0x8000
6781 || expr1.X_add_number >= 0x8000)
6782 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
6783 relax_start (offset_expr.X_add_symbol);
6784 macro_build (&offset_expr, "lui", "t,u", tempreg,
6785 BFD_RELOC_MIPS_GOT_HI16);
6786 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
6787 mips_gp_register);
6788 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6789 BFD_RELOC_MIPS_GOT_LO16, tempreg);
6790 if (breg != 0)
6791 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6792 tempreg, tempreg, breg);
6793 macro_build (&expr1, s, fmt, treg, BFD_RELOC_LO16, tempreg);
6794
6795 relax_switch ();
6796 offset_expr.X_add_number = expr1.X_add_number;
6797 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
6798 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
6799 if (breg != 0)
6800 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
6801 tempreg, tempreg, breg);
6802 macro_build (&offset_expr, s, fmt, treg,
6803 BFD_RELOC_MIPS_GOT_OFST, tempreg);
6804 relax_end ();
6805 }
6806 else
6807 abort ();
6808
6809 break;
6810
6811 case M_LI:
6812 case M_LI_S:
6813 load_register (treg, &imm_expr, 0);
6814 break;
6815
6816 case M_DLI:
6817 load_register (treg, &imm_expr, 1);
6818 break;
6819
6820 case M_LI_SS:
6821 if (imm_expr.X_op == O_constant)
6822 {
6823 used_at = 1;
6824 load_register (AT, &imm_expr, 0);
6825 macro_build (NULL, "mtc1", "t,G", AT, treg);
6826 break;
6827 }
6828 else
6829 {
6830 gas_assert (offset_expr.X_op == O_symbol
6831 && strcmp (segment_name (S_GET_SEGMENT
6832 (offset_expr.X_add_symbol)),
6833 ".lit4") == 0
6834 && offset_expr.X_add_number == 0);
6835 macro_build (&offset_expr, "lwc1", "T,o(b)", treg,
6836 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6837 break;
6838 }
6839
6840 case M_LI_D:
6841 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
6842 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
6843 order 32 bits of the value and the low order 32 bits are either
6844 zero or in OFFSET_EXPR. */
6845 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6846 {
6847 if (HAVE_64BIT_GPRS)
6848 load_register (treg, &imm_expr, 1);
6849 else
6850 {
6851 int hreg, lreg;
6852
6853 if (target_big_endian)
6854 {
6855 hreg = treg;
6856 lreg = treg + 1;
6857 }
6858 else
6859 {
6860 hreg = treg + 1;
6861 lreg = treg;
6862 }
6863
6864 if (hreg <= 31)
6865 load_register (hreg, &imm_expr, 0);
6866 if (lreg <= 31)
6867 {
6868 if (offset_expr.X_op == O_absent)
6869 move_register (lreg, 0);
6870 else
6871 {
6872 gas_assert (offset_expr.X_op == O_constant);
6873 load_register (lreg, &offset_expr, 0);
6874 }
6875 }
6876 }
6877 break;
6878 }
6879
6880 /* We know that sym is in the .rdata section. First we get the
6881 upper 16 bits of the address. */
6882 if (mips_pic == NO_PIC)
6883 {
6884 macro_build_lui (&offset_expr, AT);
6885 used_at = 1;
6886 }
6887 else
6888 {
6889 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6890 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6891 used_at = 1;
6892 }
6893
6894 /* Now we load the register(s). */
6895 if (HAVE_64BIT_GPRS)
6896 {
6897 used_at = 1;
6898 macro_build (&offset_expr, "ld", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6899 }
6900 else
6901 {
6902 used_at = 1;
6903 macro_build (&offset_expr, "lw", "t,o(b)", treg, BFD_RELOC_LO16, AT);
6904 if (treg != RA)
6905 {
6906 /* FIXME: How in the world do we deal with the possible
6907 overflow here? */
6908 offset_expr.X_add_number += 4;
6909 macro_build (&offset_expr, "lw", "t,o(b)",
6910 treg + 1, BFD_RELOC_LO16, AT);
6911 }
6912 }
6913 break;
6914
6915 case M_LI_DD:
6916 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
6917 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
6918 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
6919 the value and the low order 32 bits are either zero or in
6920 OFFSET_EXPR. */
6921 if (imm_expr.X_op == O_constant || imm_expr.X_op == O_big)
6922 {
6923 used_at = 1;
6924 load_register (AT, &imm_expr, HAVE_64BIT_FPRS);
6925 if (HAVE_64BIT_FPRS)
6926 {
6927 gas_assert (HAVE_64BIT_GPRS);
6928 macro_build (NULL, "dmtc1", "t,S", AT, treg);
6929 }
6930 else
6931 {
6932 macro_build (NULL, "mtc1", "t,G", AT, treg + 1);
6933 if (offset_expr.X_op == O_absent)
6934 macro_build (NULL, "mtc1", "t,G", 0, treg);
6935 else
6936 {
6937 gas_assert (offset_expr.X_op == O_constant);
6938 load_register (AT, &offset_expr, 0);
6939 macro_build (NULL, "mtc1", "t,G", AT, treg);
6940 }
6941 }
6942 break;
6943 }
6944
6945 gas_assert (offset_expr.X_op == O_symbol
6946 && offset_expr.X_add_number == 0);
6947 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
6948 if (strcmp (s, ".lit8") == 0)
6949 {
6950 if (mips_opts.isa != ISA_MIPS1)
6951 {
6952 macro_build (&offset_expr, "ldc1", "T,o(b)", treg,
6953 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
6954 break;
6955 }
6956 breg = mips_gp_register;
6957 r = BFD_RELOC_MIPS_LITERAL;
6958 goto dob;
6959 }
6960 else
6961 {
6962 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
6963 used_at = 1;
6964 if (mips_pic != NO_PIC)
6965 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
6966 BFD_RELOC_MIPS_GOT16, mips_gp_register);
6967 else
6968 {
6969 /* FIXME: This won't work for a 64 bit address. */
6970 macro_build_lui (&offset_expr, AT);
6971 }
6972
6973 if (mips_opts.isa != ISA_MIPS1)
6974 {
6975 macro_build (&offset_expr, "ldc1", "T,o(b)",
6976 treg, BFD_RELOC_LO16, AT);
6977 break;
6978 }
6979 breg = AT;
6980 r = BFD_RELOC_LO16;
6981 goto dob;
6982 }
6983
6984 case M_L_DOB:
6985 /* Even on a big endian machine $fn comes before $fn+1. We have
6986 to adjust when loading from memory. */
6987 r = BFD_RELOC_LO16;
6988 dob:
6989 gas_assert (mips_opts.isa == ISA_MIPS1);
6990 macro_build (&offset_expr, "lwc1", "T,o(b)",
6991 target_big_endian ? treg + 1 : treg, r, breg);
6992 /* FIXME: A possible overflow which I don't know how to deal
6993 with. */
6994 offset_expr.X_add_number += 4;
6995 macro_build (&offset_expr, "lwc1", "T,o(b)",
6996 target_big_endian ? treg : treg + 1, r, breg);
6997 break;
6998
6999 case M_L_DAB:
7000 /*
7001 * The MIPS assembler seems to check for X_add_number not
7002 * being double aligned and generating:
7003 * lui at,%hi(foo+1)
7004 * addu at,at,v1
7005 * addiu at,at,%lo(foo+1)
7006 * lwc1 f2,0(at)
7007 * lwc1 f3,4(at)
7008 * But, the resulting address is the same after relocation so why
7009 * generate the extra instruction?
7010 */
7011 /* Itbl support may require additional care here. */
7012 coproc = 1;
7013 if (mips_opts.isa != ISA_MIPS1)
7014 {
7015 s = "ldc1";
7016 goto ld;
7017 }
7018
7019 s = "lwc1";
7020 fmt = "T,o(b)";
7021 goto ldd_std;
7022
7023 case M_S_DAB:
7024 if (mips_opts.isa != ISA_MIPS1)
7025 {
7026 s = "sdc1";
7027 goto st;
7028 }
7029
7030 s = "swc1";
7031 fmt = "T,o(b)";
7032 /* Itbl support may require additional care here. */
7033 coproc = 1;
7034 goto ldd_std;
7035
7036 case M_LD_AB:
7037 if (HAVE_64BIT_GPRS)
7038 {
7039 s = "ld";
7040 goto ld;
7041 }
7042
7043 s = "lw";
7044 fmt = "t,o(b)";
7045 goto ldd_std;
7046
7047 case M_SD_AB:
7048 if (HAVE_64BIT_GPRS)
7049 {
7050 s = "sd";
7051 goto st;
7052 }
7053
7054 s = "sw";
7055 fmt = "t,o(b)";
7056
7057 ldd_std:
7058 if (offset_expr.X_op != O_symbol
7059 && offset_expr.X_op != O_constant)
7060 {
7061 as_bad (_("expression too complex"));
7062 offset_expr.X_op = O_constant;
7063 }
7064
7065 if (HAVE_32BIT_ADDRESSES
7066 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
7067 {
7068 char value [32];
7069
7070 sprintf_vma (value, offset_expr.X_add_number);
7071 as_bad (_("Number (0x%s) larger than 32 bits"), value);
7072 }
7073
7074 /* Even on a big endian machine $fn comes before $fn+1. We have
7075 to adjust when loading from memory. We set coproc if we must
7076 load $fn+1 first. */
7077 /* Itbl support may require additional care here. */
7078 if (! target_big_endian)
7079 coproc = 0;
7080
7081 if (mips_pic == NO_PIC
7082 || offset_expr.X_op == O_constant)
7083 {
7084 /* If this is a reference to a GP relative symbol, we want
7085 <op> $treg,<sym>($gp) (BFD_RELOC_GPREL16)
7086 <op> $treg+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
7087 If we have a base register, we use this
7088 addu $at,$breg,$gp
7089 <op> $treg,<sym>($at) (BFD_RELOC_GPREL16)
7090 <op> $treg+1,<sym>+4($at) (BFD_RELOC_GPREL16)
7091 If this is not a GP relative symbol, we want
7092 lui $at,<sym> (BFD_RELOC_HI16_S)
7093 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7094 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7095 If there is a base register, we add it to $at after the
7096 lui instruction. If there is a constant, we always use
7097 the last case. */
7098 if (offset_expr.X_op == O_symbol
7099 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
7100 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
7101 {
7102 relax_start (offset_expr.X_add_symbol);
7103 if (breg == 0)
7104 {
7105 tempreg = mips_gp_register;
7106 }
7107 else
7108 {
7109 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7110 AT, breg, mips_gp_register);
7111 tempreg = AT;
7112 used_at = 1;
7113 }
7114
7115 /* Itbl support may require additional care here. */
7116 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7117 BFD_RELOC_GPREL16, tempreg);
7118 offset_expr.X_add_number += 4;
7119
7120 /* Set mips_optimize to 2 to avoid inserting an
7121 undesired nop. */
7122 hold_mips_optimize = mips_optimize;
7123 mips_optimize = 2;
7124 /* Itbl support may require additional care here. */
7125 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7126 BFD_RELOC_GPREL16, tempreg);
7127 mips_optimize = hold_mips_optimize;
7128
7129 relax_switch ();
7130
7131 /* We just generated two relocs. When tc_gen_reloc
7132 handles this case, it will skip the first reloc and
7133 handle the second. The second reloc already has an
7134 extra addend of 4, which we added above. We must
7135 subtract it out, and then subtract another 4 to make
7136 the first reloc come out right. The second reloc
7137 will come out right because we are going to add 4 to
7138 offset_expr when we build its instruction below.
7139
7140 If we have a symbol, then we don't want to include
7141 the offset, because it will wind up being included
7142 when we generate the reloc. */
7143
7144 if (offset_expr.X_op == O_constant)
7145 offset_expr.X_add_number -= 8;
7146 else
7147 {
7148 offset_expr.X_add_number = -4;
7149 offset_expr.X_op = O_constant;
7150 }
7151 }
7152 used_at = 1;
7153 macro_build_lui (&offset_expr, AT);
7154 if (breg != 0)
7155 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7156 /* Itbl support may require additional care here. */
7157 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7158 BFD_RELOC_LO16, AT);
7159 /* FIXME: How do we handle overflow here? */
7160 offset_expr.X_add_number += 4;
7161 /* Itbl support may require additional care here. */
7162 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7163 BFD_RELOC_LO16, AT);
7164 if (mips_relax.sequence)
7165 relax_end ();
7166 }
7167 else if (!mips_big_got)
7168 {
7169 /* If this is a reference to an external symbol, we want
7170 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7171 nop
7172 <op> $treg,0($at)
7173 <op> $treg+1,4($at)
7174 Otherwise we want
7175 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7176 nop
7177 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7178 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7179 If there is a base register we add it to $at before the
7180 lwc1 instructions. If there is a constant we include it
7181 in the lwc1 instructions. */
7182 used_at = 1;
7183 expr1.X_add_number = offset_expr.X_add_number;
7184 if (expr1.X_add_number < -0x8000
7185 || expr1.X_add_number >= 0x8000 - 4)
7186 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7187 load_got_offset (AT, &offset_expr);
7188 load_delay_nop ();
7189 if (breg != 0)
7190 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7191
7192 /* Set mips_optimize to 2 to avoid inserting an undesired
7193 nop. */
7194 hold_mips_optimize = mips_optimize;
7195 mips_optimize = 2;
7196
7197 /* Itbl support may require additional care here. */
7198 relax_start (offset_expr.X_add_symbol);
7199 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7200 BFD_RELOC_LO16, AT);
7201 expr1.X_add_number += 4;
7202 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7203 BFD_RELOC_LO16, AT);
7204 relax_switch ();
7205 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7206 BFD_RELOC_LO16, AT);
7207 offset_expr.X_add_number += 4;
7208 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7209 BFD_RELOC_LO16, AT);
7210 relax_end ();
7211
7212 mips_optimize = hold_mips_optimize;
7213 }
7214 else if (mips_big_got)
7215 {
7216 int gpdelay;
7217
7218 /* If this is a reference to an external symbol, we want
7219 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
7220 addu $at,$at,$gp
7221 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
7222 nop
7223 <op> $treg,0($at)
7224 <op> $treg+1,4($at)
7225 Otherwise we want
7226 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
7227 nop
7228 <op> $treg,<sym>($at) (BFD_RELOC_LO16)
7229 <op> $treg+1,<sym>+4($at) (BFD_RELOC_LO16)
7230 If there is a base register we add it to $at before the
7231 lwc1 instructions. If there is a constant we include it
7232 in the lwc1 instructions. */
7233 used_at = 1;
7234 expr1.X_add_number = offset_expr.X_add_number;
7235 offset_expr.X_add_number = 0;
7236 if (expr1.X_add_number < -0x8000
7237 || expr1.X_add_number >= 0x8000 - 4)
7238 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
7239 gpdelay = reg_needs_delay (mips_gp_register);
7240 relax_start (offset_expr.X_add_symbol);
7241 macro_build (&offset_expr, "lui", "t,u",
7242 AT, BFD_RELOC_MIPS_GOT_HI16);
7243 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
7244 AT, AT, mips_gp_register);
7245 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
7246 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
7247 load_delay_nop ();
7248 if (breg != 0)
7249 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7250 /* Itbl support may require additional care here. */
7251 macro_build (&expr1, s, fmt, coproc ? treg + 1 : treg,
7252 BFD_RELOC_LO16, AT);
7253 expr1.X_add_number += 4;
7254
7255 /* Set mips_optimize to 2 to avoid inserting an undesired
7256 nop. */
7257 hold_mips_optimize = mips_optimize;
7258 mips_optimize = 2;
7259 /* Itbl support may require additional care here. */
7260 macro_build (&expr1, s, fmt, coproc ? treg : treg + 1,
7261 BFD_RELOC_LO16, AT);
7262 mips_optimize = hold_mips_optimize;
7263 expr1.X_add_number -= 4;
7264
7265 relax_switch ();
7266 offset_expr.X_add_number = expr1.X_add_number;
7267 if (gpdelay)
7268 macro_build (NULL, "nop", "");
7269 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
7270 BFD_RELOC_MIPS_GOT16, mips_gp_register);
7271 load_delay_nop ();
7272 if (breg != 0)
7273 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
7274 /* Itbl support may require additional care here. */
7275 macro_build (&offset_expr, s, fmt, coproc ? treg + 1 : treg,
7276 BFD_RELOC_LO16, AT);
7277 offset_expr.X_add_number += 4;
7278
7279 /* Set mips_optimize to 2 to avoid inserting an undesired
7280 nop. */
7281 hold_mips_optimize = mips_optimize;
7282 mips_optimize = 2;
7283 /* Itbl support may require additional care here. */
7284 macro_build (&offset_expr, s, fmt, coproc ? treg : treg + 1,
7285 BFD_RELOC_LO16, AT);
7286 mips_optimize = hold_mips_optimize;
7287 relax_end ();
7288 }
7289 else
7290 abort ();
7291
7292 break;
7293
7294 case M_LD_OB:
7295 s = "lw";
7296 goto sd_ob;
7297 case M_SD_OB:
7298 s = "sw";
7299 sd_ob:
7300 gas_assert (HAVE_32BIT_ADDRESSES);
7301 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
7302 offset_expr.X_add_number += 4;
7303 macro_build (&offset_expr, s, "t,o(b)", treg + 1, BFD_RELOC_LO16, breg);
7304 break;
7305
7306 /* New code added to support COPZ instructions.
7307 This code builds table entries out of the macros in mip_opcodes.
7308 R4000 uses interlocks to handle coproc delays.
7309 Other chips (like the R3000) require nops to be inserted for delays.
7310
7311 FIXME: Currently, we require that the user handle delays.
7312 In order to fill delay slots for non-interlocked chips,
7313 we must have a way to specify delays based on the coprocessor.
7314 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
7315 What are the side-effects of the cop instruction?
7316 What cache support might we have and what are its effects?
7317 Both coprocessor & memory require delays. how long???
7318 What registers are read/set/modified?
7319
7320 If an itbl is provided to interpret cop instructions,
7321 this knowledge can be encoded in the itbl spec. */
7322
7323 case M_COP0:
7324 s = "c0";
7325 goto copz;
7326 case M_COP1:
7327 s = "c1";
7328 goto copz;
7329 case M_COP2:
7330 s = "c2";
7331 goto copz;
7332 case M_COP3:
7333 s = "c3";
7334 copz:
7335 if (NO_ISA_COP (mips_opts.arch)
7336 && (ip->insn_mo->pinfo2 & INSN2_M_FP_S) == 0)
7337 {
7338 as_bad (_("opcode not supported on this processor: %s"),
7339 mips_cpu_info_from_arch (mips_opts.arch)->name);
7340 break;
7341 }
7342
7343 /* For now we just do C (same as Cz). The parameter will be
7344 stored in insn_opcode by mips_ip. */
7345 macro_build (NULL, s, "C", ip->insn_opcode);
7346 break;
7347
7348 case M_MOVE:
7349 move_register (dreg, sreg);
7350 break;
7351
7352 #ifdef LOSING_COMPILER
7353 default:
7354 /* Try and see if this is a new itbl instruction.
7355 This code builds table entries out of the macros in mip_opcodes.
7356 FIXME: For now we just assemble the expression and pass it's
7357 value along as a 32-bit immediate.
7358 We may want to have the assembler assemble this value,
7359 so that we gain the assembler's knowledge of delay slots,
7360 symbols, etc.
7361 Would it be more efficient to use mask (id) here? */
7362 if (itbl_have_entries
7363 && (immed_expr = itbl_assemble (ip->insn_mo->name, "")))
7364 {
7365 s = ip->insn_mo->name;
7366 s2 = "cop3";
7367 coproc = ITBL_DECODE_PNUM (immed_expr);;
7368 macro_build (&immed_expr, s, "C");
7369 break;
7370 }
7371 macro2 (ip);
7372 break;
7373 }
7374 if (!mips_opts.at && used_at)
7375 as_bad (_("Macro used $at after \".set noat\""));
7376 }
7377
7378 static void
7379 macro2 (struct mips_cl_insn *ip)
7380 {
7381 unsigned int treg, sreg, dreg, breg;
7382 unsigned int tempreg;
7383 int mask;
7384 int used_at;
7385 expressionS expr1;
7386 const char *s;
7387 const char *s2;
7388 const char *fmt;
7389 int likely = 0;
7390 int dbl = 0;
7391 int coproc = 0;
7392 int lr = 0;
7393 int imm = 0;
7394 int off;
7395 offsetT maxnum;
7396 bfd_reloc_code_real_type r;
7397
7398 treg = (ip->insn_opcode >> 16) & 0x1f;
7399 dreg = (ip->insn_opcode >> 11) & 0x1f;
7400 sreg = breg = (ip->insn_opcode >> 21) & 0x1f;
7401 mask = ip->insn_mo->mask;
7402
7403 expr1.X_op = O_constant;
7404 expr1.X_op_symbol = NULL;
7405 expr1.X_add_symbol = NULL;
7406 expr1.X_add_number = 1;
7407
7408 switch (mask)
7409 {
7410 #endif /* LOSING_COMPILER */
7411
7412 case M_DMUL:
7413 dbl = 1;
7414 case M_MUL:
7415 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", sreg, treg);
7416 macro_build (NULL, "mflo", "d", dreg);
7417 break;
7418
7419 case M_DMUL_I:
7420 dbl = 1;
7421 case M_MUL_I:
7422 /* The MIPS assembler some times generates shifts and adds. I'm
7423 not trying to be that fancy. GCC should do this for us
7424 anyway. */
7425 used_at = 1;
7426 load_register (AT, &imm_expr, dbl);
7427 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, AT);
7428 macro_build (NULL, "mflo", "d", dreg);
7429 break;
7430
7431 case M_DMULO_I:
7432 dbl = 1;
7433 case M_MULO_I:
7434 imm = 1;
7435 goto do_mulo;
7436
7437 case M_DMULO:
7438 dbl = 1;
7439 case M_MULO:
7440 do_mulo:
7441 start_noreorder ();
7442 used_at = 1;
7443 if (imm)
7444 load_register (AT, &imm_expr, dbl);
7445 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", sreg, imm ? AT : treg);
7446 macro_build (NULL, "mflo", "d", dreg);
7447 macro_build (NULL, dbl ? "dsra32" : "sra", "d,w,<", dreg, dreg, RA);
7448 macro_build (NULL, "mfhi", "d", AT);
7449 if (mips_trap)
7450 macro_build (NULL, "tne", "s,t,q", dreg, AT, 6);
7451 else
7452 {
7453 expr1.X_add_number = 8;
7454 macro_build (&expr1, "beq", "s,t,p", dreg, AT);
7455 macro_build (NULL, "nop", "", 0);
7456 macro_build (NULL, "break", "c", 6);
7457 }
7458 end_noreorder ();
7459 macro_build (NULL, "mflo", "d", dreg);
7460 break;
7461
7462 case M_DMULOU_I:
7463 dbl = 1;
7464 case M_MULOU_I:
7465 imm = 1;
7466 goto do_mulou;
7467
7468 case M_DMULOU:
7469 dbl = 1;
7470 case M_MULOU:
7471 do_mulou:
7472 start_noreorder ();
7473 used_at = 1;
7474 if (imm)
7475 load_register (AT, &imm_expr, dbl);
7476 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
7477 sreg, imm ? AT : treg);
7478 macro_build (NULL, "mfhi", "d", AT);
7479 macro_build (NULL, "mflo", "d", dreg);
7480 if (mips_trap)
7481 macro_build (NULL, "tne", "s,t,q", AT, 0, 6);
7482 else
7483 {
7484 expr1.X_add_number = 8;
7485 macro_build (&expr1, "beq", "s,t,p", AT, 0);
7486 macro_build (NULL, "nop", "", 0);
7487 macro_build (NULL, "break", "c", 6);
7488 }
7489 end_noreorder ();
7490 break;
7491
7492 case M_DROL:
7493 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7494 {
7495 if (dreg == sreg)
7496 {
7497 tempreg = AT;
7498 used_at = 1;
7499 }
7500 else
7501 {
7502 tempreg = dreg;
7503 }
7504 macro_build (NULL, "dnegu", "d,w", tempreg, treg);
7505 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, tempreg);
7506 break;
7507 }
7508 used_at = 1;
7509 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7510 macro_build (NULL, "dsrlv", "d,t,s", AT, sreg, AT);
7511 macro_build (NULL, "dsllv", "d,t,s", dreg, sreg, treg);
7512 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7513 break;
7514
7515 case M_ROL:
7516 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7517 {
7518 if (dreg == sreg)
7519 {
7520 tempreg = AT;
7521 used_at = 1;
7522 }
7523 else
7524 {
7525 tempreg = dreg;
7526 }
7527 macro_build (NULL, "negu", "d,w", tempreg, treg);
7528 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, tempreg);
7529 break;
7530 }
7531 used_at = 1;
7532 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7533 macro_build (NULL, "srlv", "d,t,s", AT, sreg, AT);
7534 macro_build (NULL, "sllv", "d,t,s", dreg, sreg, treg);
7535 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7536 break;
7537
7538 case M_DROL_I:
7539 {
7540 unsigned int rot;
7541 char *l, *r;
7542
7543 if (imm_expr.X_op != O_constant)
7544 as_bad (_("Improper rotate count"));
7545 rot = imm_expr.X_add_number & 0x3f;
7546 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7547 {
7548 rot = (64 - rot) & 0x3f;
7549 if (rot >= 32)
7550 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7551 else
7552 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7553 break;
7554 }
7555 if (rot == 0)
7556 {
7557 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7558 break;
7559 }
7560 l = (rot < 0x20) ? "dsll" : "dsll32";
7561 r = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
7562 rot &= 0x1f;
7563 used_at = 1;
7564 macro_build (NULL, l, "d,w,<", AT, sreg, rot);
7565 macro_build (NULL, r, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7566 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7567 }
7568 break;
7569
7570 case M_ROL_I:
7571 {
7572 unsigned int rot;
7573
7574 if (imm_expr.X_op != O_constant)
7575 as_bad (_("Improper rotate count"));
7576 rot = imm_expr.X_add_number & 0x1f;
7577 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7578 {
7579 macro_build (NULL, "ror", "d,w,<", dreg, sreg, (32 - rot) & 0x1f);
7580 break;
7581 }
7582 if (rot == 0)
7583 {
7584 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7585 break;
7586 }
7587 used_at = 1;
7588 macro_build (NULL, "sll", "d,w,<", AT, sreg, rot);
7589 macro_build (NULL, "srl", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7590 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7591 }
7592 break;
7593
7594 case M_DROR:
7595 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7596 {
7597 macro_build (NULL, "drorv", "d,t,s", dreg, sreg, treg);
7598 break;
7599 }
7600 used_at = 1;
7601 macro_build (NULL, "dsubu", "d,v,t", AT, 0, treg);
7602 macro_build (NULL, "dsllv", "d,t,s", AT, sreg, AT);
7603 macro_build (NULL, "dsrlv", "d,t,s", dreg, sreg, treg);
7604 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7605 break;
7606
7607 case M_ROR:
7608 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7609 {
7610 macro_build (NULL, "rorv", "d,t,s", dreg, sreg, treg);
7611 break;
7612 }
7613 used_at = 1;
7614 macro_build (NULL, "subu", "d,v,t", AT, 0, treg);
7615 macro_build (NULL, "sllv", "d,t,s", AT, sreg, AT);
7616 macro_build (NULL, "srlv", "d,t,s", dreg, sreg, treg);
7617 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7618 break;
7619
7620 case M_DROR_I:
7621 {
7622 unsigned int rot;
7623 char *l, *r;
7624
7625 if (imm_expr.X_op != O_constant)
7626 as_bad (_("Improper rotate count"));
7627 rot = imm_expr.X_add_number & 0x3f;
7628 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
7629 {
7630 if (rot >= 32)
7631 macro_build (NULL, "dror32", "d,w,<", dreg, sreg, rot - 32);
7632 else
7633 macro_build (NULL, "dror", "d,w,<", dreg, sreg, rot);
7634 break;
7635 }
7636 if (rot == 0)
7637 {
7638 macro_build (NULL, "dsrl", "d,w,<", dreg, sreg, 0);
7639 break;
7640 }
7641 r = (rot < 0x20) ? "dsrl" : "dsrl32";
7642 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
7643 rot &= 0x1f;
7644 used_at = 1;
7645 macro_build (NULL, r, "d,w,<", AT, sreg, rot);
7646 macro_build (NULL, l, "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7647 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7648 }
7649 break;
7650
7651 case M_ROR_I:
7652 {
7653 unsigned int rot;
7654
7655 if (imm_expr.X_op != O_constant)
7656 as_bad (_("Improper rotate count"));
7657 rot = imm_expr.X_add_number & 0x1f;
7658 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
7659 {
7660 macro_build (NULL, "ror", "d,w,<", dreg, sreg, rot);
7661 break;
7662 }
7663 if (rot == 0)
7664 {
7665 macro_build (NULL, "srl", "d,w,<", dreg, sreg, 0);
7666 break;
7667 }
7668 used_at = 1;
7669 macro_build (NULL, "srl", "d,w,<", AT, sreg, rot);
7670 macro_build (NULL, "sll", "d,w,<", dreg, sreg, (0x20 - rot) & 0x1f);
7671 macro_build (NULL, "or", "d,v,t", dreg, dreg, AT);
7672 }
7673 break;
7674
7675 case M_S_DOB:
7676 gas_assert (mips_opts.isa == ISA_MIPS1);
7677 /* Even on a big endian machine $fn comes before $fn+1. We have
7678 to adjust when storing to memory. */
7679 macro_build (&offset_expr, "swc1", "T,o(b)",
7680 target_big_endian ? treg + 1 : treg, BFD_RELOC_LO16, breg);
7681 offset_expr.X_add_number += 4;
7682 macro_build (&offset_expr, "swc1", "T,o(b)",
7683 target_big_endian ? treg : treg + 1, BFD_RELOC_LO16, breg);
7684 break;
7685
7686 case M_SEQ:
7687 if (sreg == 0)
7688 macro_build (&expr1, "sltiu", "t,r,j", dreg, treg, BFD_RELOC_LO16);
7689 else if (treg == 0)
7690 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7691 else
7692 {
7693 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7694 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7695 }
7696 break;
7697
7698 case M_SEQ_I:
7699 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7700 {
7701 macro_build (&expr1, "sltiu", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7702 break;
7703 }
7704 if (sreg == 0)
7705 {
7706 as_warn (_("Instruction %s: result is always false"),
7707 ip->insn_mo->name);
7708 move_register (dreg, 0);
7709 break;
7710 }
7711 if (CPU_HAS_SEQ (mips_opts.arch)
7712 && -512 <= imm_expr.X_add_number
7713 && imm_expr.X_add_number < 512)
7714 {
7715 macro_build (NULL, "seqi", "t,r,+Q", dreg, sreg,
7716 (int) imm_expr.X_add_number);
7717 break;
7718 }
7719 if (imm_expr.X_op == O_constant
7720 && imm_expr.X_add_number >= 0
7721 && imm_expr.X_add_number < 0x10000)
7722 {
7723 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7724 }
7725 else if (imm_expr.X_op == O_constant
7726 && imm_expr.X_add_number > -0x8000
7727 && imm_expr.X_add_number < 0)
7728 {
7729 imm_expr.X_add_number = -imm_expr.X_add_number;
7730 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7731 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7732 }
7733 else if (CPU_HAS_SEQ (mips_opts.arch))
7734 {
7735 used_at = 1;
7736 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7737 macro_build (NULL, "seq", "d,v,t", dreg, sreg, AT);
7738 break;
7739 }
7740 else
7741 {
7742 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7743 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7744 used_at = 1;
7745 }
7746 macro_build (&expr1, "sltiu", "t,r,j", dreg, dreg, BFD_RELOC_LO16);
7747 break;
7748
7749 case M_SGE: /* sreg >= treg <==> not (sreg < treg) */
7750 s = "slt";
7751 goto sge;
7752 case M_SGEU:
7753 s = "sltu";
7754 sge:
7755 macro_build (NULL, s, "d,v,t", dreg, sreg, treg);
7756 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7757 break;
7758
7759 case M_SGE_I: /* sreg >= I <==> not (sreg < I) */
7760 case M_SGEU_I:
7761 if (imm_expr.X_op == O_constant
7762 && imm_expr.X_add_number >= -0x8000
7763 && imm_expr.X_add_number < 0x8000)
7764 {
7765 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
7766 dreg, sreg, BFD_RELOC_LO16);
7767 }
7768 else
7769 {
7770 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7771 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
7772 dreg, sreg, AT);
7773 used_at = 1;
7774 }
7775 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7776 break;
7777
7778 case M_SGT: /* sreg > treg <==> treg < sreg */
7779 s = "slt";
7780 goto sgt;
7781 case M_SGTU:
7782 s = "sltu";
7783 sgt:
7784 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7785 break;
7786
7787 case M_SGT_I: /* sreg > I <==> I < sreg */
7788 s = "slt";
7789 goto sgti;
7790 case M_SGTU_I:
7791 s = "sltu";
7792 sgti:
7793 used_at = 1;
7794 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7795 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7796 break;
7797
7798 case M_SLE: /* sreg <= treg <==> treg >= sreg <==> not (treg < sreg) */
7799 s = "slt";
7800 goto sle;
7801 case M_SLEU:
7802 s = "sltu";
7803 sle:
7804 macro_build (NULL, s, "d,v,t", dreg, treg, sreg);
7805 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7806 break;
7807
7808 case M_SLE_I: /* sreg <= I <==> I >= sreg <==> not (I < sreg) */
7809 s = "slt";
7810 goto slei;
7811 case M_SLEU_I:
7812 s = "sltu";
7813 slei:
7814 used_at = 1;
7815 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7816 macro_build (NULL, s, "d,v,t", dreg, AT, sreg);
7817 macro_build (&expr1, "xori", "t,r,i", dreg, dreg, BFD_RELOC_LO16);
7818 break;
7819
7820 case M_SLT_I:
7821 if (imm_expr.X_op == O_constant
7822 && imm_expr.X_add_number >= -0x8000
7823 && imm_expr.X_add_number < 0x8000)
7824 {
7825 macro_build (&imm_expr, "slti", "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7826 break;
7827 }
7828 used_at = 1;
7829 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7830 macro_build (NULL, "slt", "d,v,t", dreg, sreg, AT);
7831 break;
7832
7833 case M_SLTU_I:
7834 if (imm_expr.X_op == O_constant
7835 && imm_expr.X_add_number >= -0x8000
7836 && imm_expr.X_add_number < 0x8000)
7837 {
7838 macro_build (&imm_expr, "sltiu", "t,r,j", dreg, sreg,
7839 BFD_RELOC_LO16);
7840 break;
7841 }
7842 used_at = 1;
7843 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7844 macro_build (NULL, "sltu", "d,v,t", dreg, sreg, AT);
7845 break;
7846
7847 case M_SNE:
7848 if (sreg == 0)
7849 macro_build (NULL, "sltu", "d,v,t", dreg, 0, treg);
7850 else if (treg == 0)
7851 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7852 else
7853 {
7854 macro_build (NULL, "xor", "d,v,t", dreg, sreg, treg);
7855 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7856 }
7857 break;
7858
7859 case M_SNE_I:
7860 if (imm_expr.X_op == O_constant && imm_expr.X_add_number == 0)
7861 {
7862 macro_build (NULL, "sltu", "d,v,t", dreg, 0, sreg);
7863 break;
7864 }
7865 if (sreg == 0)
7866 {
7867 as_warn (_("Instruction %s: result is always true"),
7868 ip->insn_mo->name);
7869 macro_build (&expr1, HAVE_32BIT_GPRS ? "addiu" : "daddiu", "t,r,j",
7870 dreg, 0, BFD_RELOC_LO16);
7871 break;
7872 }
7873 if (CPU_HAS_SEQ (mips_opts.arch)
7874 && -512 <= imm_expr.X_add_number
7875 && imm_expr.X_add_number < 512)
7876 {
7877 macro_build (NULL, "snei", "t,r,+Q", dreg, sreg,
7878 (int) imm_expr.X_add_number);
7879 break;
7880 }
7881 if (imm_expr.X_op == O_constant
7882 && imm_expr.X_add_number >= 0
7883 && imm_expr.X_add_number < 0x10000)
7884 {
7885 macro_build (&imm_expr, "xori", "t,r,i", dreg, sreg, BFD_RELOC_LO16);
7886 }
7887 else if (imm_expr.X_op == O_constant
7888 && imm_expr.X_add_number > -0x8000
7889 && imm_expr.X_add_number < 0)
7890 {
7891 imm_expr.X_add_number = -imm_expr.X_add_number;
7892 macro_build (&imm_expr, HAVE_32BIT_GPRS ? "addiu" : "daddiu",
7893 "t,r,j", dreg, sreg, BFD_RELOC_LO16);
7894 }
7895 else if (CPU_HAS_SEQ (mips_opts.arch))
7896 {
7897 used_at = 1;
7898 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7899 macro_build (NULL, "sne", "d,v,t", dreg, sreg, AT);
7900 break;
7901 }
7902 else
7903 {
7904 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7905 macro_build (NULL, "xor", "d,v,t", dreg, sreg, AT);
7906 used_at = 1;
7907 }
7908 macro_build (NULL, "sltu", "d,v,t", dreg, 0, dreg);
7909 break;
7910
7911 case M_DSUB_I:
7912 dbl = 1;
7913 case M_SUB_I:
7914 if (imm_expr.X_op == O_constant
7915 && imm_expr.X_add_number > -0x8000
7916 && imm_expr.X_add_number <= 0x8000)
7917 {
7918 imm_expr.X_add_number = -imm_expr.X_add_number;
7919 macro_build (&imm_expr, dbl ? "daddi" : "addi", "t,r,j",
7920 dreg, sreg, BFD_RELOC_LO16);
7921 break;
7922 }
7923 used_at = 1;
7924 load_register (AT, &imm_expr, dbl);
7925 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", dreg, sreg, AT);
7926 break;
7927
7928 case M_DSUBU_I:
7929 dbl = 1;
7930 case M_SUBU_I:
7931 if (imm_expr.X_op == O_constant
7932 && imm_expr.X_add_number > -0x8000
7933 && imm_expr.X_add_number <= 0x8000)
7934 {
7935 imm_expr.X_add_number = -imm_expr.X_add_number;
7936 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "t,r,j",
7937 dreg, sreg, BFD_RELOC_LO16);
7938 break;
7939 }
7940 used_at = 1;
7941 load_register (AT, &imm_expr, dbl);
7942 macro_build (NULL, dbl ? "dsubu" : "subu", "d,v,t", dreg, sreg, AT);
7943 break;
7944
7945 case M_TEQ_I:
7946 s = "teq";
7947 goto trap;
7948 case M_TGE_I:
7949 s = "tge";
7950 goto trap;
7951 case M_TGEU_I:
7952 s = "tgeu";
7953 goto trap;
7954 case M_TLT_I:
7955 s = "tlt";
7956 goto trap;
7957 case M_TLTU_I:
7958 s = "tltu";
7959 goto trap;
7960 case M_TNE_I:
7961 s = "tne";
7962 trap:
7963 used_at = 1;
7964 load_register (AT, &imm_expr, HAVE_64BIT_GPRS);
7965 macro_build (NULL, s, "s,t", sreg, AT);
7966 break;
7967
7968 case M_TRUNCWS:
7969 case M_TRUNCWD:
7970 gas_assert (mips_opts.isa == ISA_MIPS1);
7971 used_at = 1;
7972 sreg = (ip->insn_opcode >> 11) & 0x1f; /* floating reg */
7973 dreg = (ip->insn_opcode >> 06) & 0x1f; /* floating reg */
7974
7975 /*
7976 * Is the double cfc1 instruction a bug in the mips assembler;
7977 * or is there a reason for it?
7978 */
7979 start_noreorder ();
7980 macro_build (NULL, "cfc1", "t,G", treg, RA);
7981 macro_build (NULL, "cfc1", "t,G", treg, RA);
7982 macro_build (NULL, "nop", "");
7983 expr1.X_add_number = 3;
7984 macro_build (&expr1, "ori", "t,r,i", AT, treg, BFD_RELOC_LO16);
7985 expr1.X_add_number = 2;
7986 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
7987 macro_build (NULL, "ctc1", "t,G", AT, RA);
7988 macro_build (NULL, "nop", "");
7989 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
7990 dreg, sreg);
7991 macro_build (NULL, "ctc1", "t,G", treg, RA);
7992 macro_build (NULL, "nop", "");
7993 end_noreorder ();
7994 break;
7995
7996 case M_ULH:
7997 s = "lb";
7998 goto ulh;
7999 case M_ULHU:
8000 s = "lbu";
8001 ulh:
8002 used_at = 1;
8003 if (offset_expr.X_add_number >= 0x7fff)
8004 as_bad (_("operand overflow"));
8005 if (! target_big_endian)
8006 ++offset_expr.X_add_number;
8007 macro_build (&offset_expr, s, "t,o(b)", AT, BFD_RELOC_LO16, breg);
8008 if (! target_big_endian)
8009 --offset_expr.X_add_number;
8010 else
8011 ++offset_expr.X_add_number;
8012 macro_build (&offset_expr, "lbu", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8013 macro_build (NULL, "sll", "d,w,<", AT, AT, 8);
8014 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8015 break;
8016
8017 case M_ULD:
8018 s = "ldl";
8019 s2 = "ldr";
8020 off = 7;
8021 goto ulw;
8022 case M_ULW:
8023 s = "lwl";
8024 s2 = "lwr";
8025 off = 3;
8026 ulw:
8027 if (offset_expr.X_add_number >= 0x8000 - off)
8028 as_bad (_("operand overflow"));
8029 if (treg != breg)
8030 tempreg = treg;
8031 else
8032 {
8033 used_at = 1;
8034 tempreg = AT;
8035 }
8036 if (! target_big_endian)
8037 offset_expr.X_add_number += off;
8038 macro_build (&offset_expr, s, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8039 if (! target_big_endian)
8040 offset_expr.X_add_number -= off;
8041 else
8042 offset_expr.X_add_number += off;
8043 macro_build (&offset_expr, s2, "t,o(b)", tempreg, BFD_RELOC_LO16, breg);
8044
8045 /* If necessary, move the result in tempreg the final destination. */
8046 if (treg == tempreg)
8047 break;
8048 /* Protect second load's delay slot. */
8049 load_delay_nop ();
8050 move_register (treg, tempreg);
8051 break;
8052
8053 case M_ULD_A:
8054 s = "ldl";
8055 s2 = "ldr";
8056 off = 7;
8057 goto ulwa;
8058 case M_ULW_A:
8059 s = "lwl";
8060 s2 = "lwr";
8061 off = 3;
8062 ulwa:
8063 used_at = 1;
8064 load_address (AT, &offset_expr, &used_at);
8065 if (breg != 0)
8066 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8067 if (! target_big_endian)
8068 expr1.X_add_number = off;
8069 else
8070 expr1.X_add_number = 0;
8071 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8072 if (! target_big_endian)
8073 expr1.X_add_number = 0;
8074 else
8075 expr1.X_add_number = off;
8076 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8077 break;
8078
8079 case M_ULH_A:
8080 case M_ULHU_A:
8081 used_at = 1;
8082 load_address (AT, &offset_expr, &used_at);
8083 if (breg != 0)
8084 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8085 if (target_big_endian)
8086 expr1.X_add_number = 0;
8087 macro_build (&expr1, mask == M_ULH_A ? "lb" : "lbu", "t,o(b)",
8088 treg, BFD_RELOC_LO16, AT);
8089 if (target_big_endian)
8090 expr1.X_add_number = 1;
8091 else
8092 expr1.X_add_number = 0;
8093 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8094 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8095 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8096 break;
8097
8098 case M_USH:
8099 used_at = 1;
8100 if (offset_expr.X_add_number >= 0x7fff)
8101 as_bad (_("operand overflow"));
8102 if (target_big_endian)
8103 ++offset_expr.X_add_number;
8104 macro_build (&offset_expr, "sb", "t,o(b)", treg, BFD_RELOC_LO16, breg);
8105 macro_build (NULL, "srl", "d,w,<", AT, treg, 8);
8106 if (target_big_endian)
8107 --offset_expr.X_add_number;
8108 else
8109 ++offset_expr.X_add_number;
8110 macro_build (&offset_expr, "sb", "t,o(b)", AT, BFD_RELOC_LO16, breg);
8111 break;
8112
8113 case M_USD:
8114 s = "sdl";
8115 s2 = "sdr";
8116 off = 7;
8117 goto usw;
8118 case M_USW:
8119 s = "swl";
8120 s2 = "swr";
8121 off = 3;
8122 usw:
8123 if (offset_expr.X_add_number >= 0x8000 - off)
8124 as_bad (_("operand overflow"));
8125 if (! target_big_endian)
8126 offset_expr.X_add_number += off;
8127 macro_build (&offset_expr, s, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8128 if (! target_big_endian)
8129 offset_expr.X_add_number -= off;
8130 else
8131 offset_expr.X_add_number += off;
8132 macro_build (&offset_expr, s2, "t,o(b)", treg, BFD_RELOC_LO16, breg);
8133 break;
8134
8135 case M_USD_A:
8136 s = "sdl";
8137 s2 = "sdr";
8138 off = 7;
8139 goto uswa;
8140 case M_USW_A:
8141 s = "swl";
8142 s2 = "swr";
8143 off = 3;
8144 uswa:
8145 used_at = 1;
8146 load_address (AT, &offset_expr, &used_at);
8147 if (breg != 0)
8148 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8149 if (! target_big_endian)
8150 expr1.X_add_number = off;
8151 else
8152 expr1.X_add_number = 0;
8153 macro_build (&expr1, s, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8154 if (! target_big_endian)
8155 expr1.X_add_number = 0;
8156 else
8157 expr1.X_add_number = off;
8158 macro_build (&expr1, s2, "t,o(b)", treg, BFD_RELOC_LO16, AT);
8159 break;
8160
8161 case M_USH_A:
8162 used_at = 1;
8163 load_address (AT, &offset_expr, &used_at);
8164 if (breg != 0)
8165 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
8166 if (! target_big_endian)
8167 expr1.X_add_number = 0;
8168 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8169 macro_build (NULL, "srl", "d,w,<", treg, treg, 8);
8170 if (! target_big_endian)
8171 expr1.X_add_number = 1;
8172 else
8173 expr1.X_add_number = 0;
8174 macro_build (&expr1, "sb", "t,o(b)", treg, BFD_RELOC_LO16, AT);
8175 if (! target_big_endian)
8176 expr1.X_add_number = 0;
8177 else
8178 expr1.X_add_number = 1;
8179 macro_build (&expr1, "lbu", "t,o(b)", AT, BFD_RELOC_LO16, AT);
8180 macro_build (NULL, "sll", "d,w,<", treg, treg, 8);
8181 macro_build (NULL, "or", "d,v,t", treg, treg, AT);
8182 break;
8183
8184 default:
8185 /* FIXME: Check if this is one of the itbl macros, since they
8186 are added dynamically. */
8187 as_bad (_("Macro %s not implemented yet"), ip->insn_mo->name);
8188 break;
8189 }
8190 if (!mips_opts.at && used_at)
8191 as_bad (_("Macro used $at after \".set noat\""));
8192 }
8193
8194 /* Implement macros in mips16 mode. */
8195
8196 static void
8197 mips16_macro (struct mips_cl_insn *ip)
8198 {
8199 int mask;
8200 int xreg, yreg, zreg, tmp;
8201 expressionS expr1;
8202 int dbl;
8203 const char *s, *s2, *s3;
8204
8205 mask = ip->insn_mo->mask;
8206
8207 xreg = MIPS16_EXTRACT_OPERAND (RX, *ip);
8208 yreg = MIPS16_EXTRACT_OPERAND (RY, *ip);
8209 zreg = MIPS16_EXTRACT_OPERAND (RZ, *ip);
8210
8211 expr1.X_op = O_constant;
8212 expr1.X_op_symbol = NULL;
8213 expr1.X_add_symbol = NULL;
8214 expr1.X_add_number = 1;
8215
8216 dbl = 0;
8217
8218 switch (mask)
8219 {
8220 default:
8221 internalError ();
8222
8223 case M_DDIV_3:
8224 dbl = 1;
8225 case M_DIV_3:
8226 s = "mflo";
8227 goto do_div3;
8228 case M_DREM_3:
8229 dbl = 1;
8230 case M_REM_3:
8231 s = "mfhi";
8232 do_div3:
8233 start_noreorder ();
8234 macro_build (NULL, dbl ? "ddiv" : "div", "0,x,y", xreg, yreg);
8235 expr1.X_add_number = 2;
8236 macro_build (&expr1, "bnez", "x,p", yreg);
8237 macro_build (NULL, "break", "6", 7);
8238
8239 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
8240 since that causes an overflow. We should do that as well,
8241 but I don't see how to do the comparisons without a temporary
8242 register. */
8243 end_noreorder ();
8244 macro_build (NULL, s, "x", zreg);
8245 break;
8246
8247 case M_DIVU_3:
8248 s = "divu";
8249 s2 = "mflo";
8250 goto do_divu3;
8251 case M_REMU_3:
8252 s = "divu";
8253 s2 = "mfhi";
8254 goto do_divu3;
8255 case M_DDIVU_3:
8256 s = "ddivu";
8257 s2 = "mflo";
8258 goto do_divu3;
8259 case M_DREMU_3:
8260 s = "ddivu";
8261 s2 = "mfhi";
8262 do_divu3:
8263 start_noreorder ();
8264 macro_build (NULL, s, "0,x,y", xreg, yreg);
8265 expr1.X_add_number = 2;
8266 macro_build (&expr1, "bnez", "x,p", yreg);
8267 macro_build (NULL, "break", "6", 7);
8268 end_noreorder ();
8269 macro_build (NULL, s2, "x", zreg);
8270 break;
8271
8272 case M_DMUL:
8273 dbl = 1;
8274 case M_MUL:
8275 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", xreg, yreg);
8276 macro_build (NULL, "mflo", "x", zreg);
8277 break;
8278
8279 case M_DSUBU_I:
8280 dbl = 1;
8281 goto do_subu;
8282 case M_SUBU_I:
8283 do_subu:
8284 if (imm_expr.X_op != O_constant)
8285 as_bad (_("Unsupported large constant"));
8286 imm_expr.X_add_number = -imm_expr.X_add_number;
8287 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,4", yreg, xreg);
8288 break;
8289
8290 case M_SUBU_I_2:
8291 if (imm_expr.X_op != O_constant)
8292 as_bad (_("Unsupported large constant"));
8293 imm_expr.X_add_number = -imm_expr.X_add_number;
8294 macro_build (&imm_expr, "addiu", "x,k", xreg);
8295 break;
8296
8297 case M_DSUBU_I_2:
8298 if (imm_expr.X_op != O_constant)
8299 as_bad (_("Unsupported large constant"));
8300 imm_expr.X_add_number = -imm_expr.X_add_number;
8301 macro_build (&imm_expr, "daddiu", "y,j", yreg);
8302 break;
8303
8304 case M_BEQ:
8305 s = "cmp";
8306 s2 = "bteqz";
8307 goto do_branch;
8308 case M_BNE:
8309 s = "cmp";
8310 s2 = "btnez";
8311 goto do_branch;
8312 case M_BLT:
8313 s = "slt";
8314 s2 = "btnez";
8315 goto do_branch;
8316 case M_BLTU:
8317 s = "sltu";
8318 s2 = "btnez";
8319 goto do_branch;
8320 case M_BLE:
8321 s = "slt";
8322 s2 = "bteqz";
8323 goto do_reverse_branch;
8324 case M_BLEU:
8325 s = "sltu";
8326 s2 = "bteqz";
8327 goto do_reverse_branch;
8328 case M_BGE:
8329 s = "slt";
8330 s2 = "bteqz";
8331 goto do_branch;
8332 case M_BGEU:
8333 s = "sltu";
8334 s2 = "bteqz";
8335 goto do_branch;
8336 case M_BGT:
8337 s = "slt";
8338 s2 = "btnez";
8339 goto do_reverse_branch;
8340 case M_BGTU:
8341 s = "sltu";
8342 s2 = "btnez";
8343
8344 do_reverse_branch:
8345 tmp = xreg;
8346 xreg = yreg;
8347 yreg = tmp;
8348
8349 do_branch:
8350 macro_build (NULL, s, "x,y", xreg, yreg);
8351 macro_build (&offset_expr, s2, "p");
8352 break;
8353
8354 case M_BEQ_I:
8355 s = "cmpi";
8356 s2 = "bteqz";
8357 s3 = "x,U";
8358 goto do_branch_i;
8359 case M_BNE_I:
8360 s = "cmpi";
8361 s2 = "btnez";
8362 s3 = "x,U";
8363 goto do_branch_i;
8364 case M_BLT_I:
8365 s = "slti";
8366 s2 = "btnez";
8367 s3 = "x,8";
8368 goto do_branch_i;
8369 case M_BLTU_I:
8370 s = "sltiu";
8371 s2 = "btnez";
8372 s3 = "x,8";
8373 goto do_branch_i;
8374 case M_BLE_I:
8375 s = "slti";
8376 s2 = "btnez";
8377 s3 = "x,8";
8378 goto do_addone_branch_i;
8379 case M_BLEU_I:
8380 s = "sltiu";
8381 s2 = "btnez";
8382 s3 = "x,8";
8383 goto do_addone_branch_i;
8384 case M_BGE_I:
8385 s = "slti";
8386 s2 = "bteqz";
8387 s3 = "x,8";
8388 goto do_branch_i;
8389 case M_BGEU_I:
8390 s = "sltiu";
8391 s2 = "bteqz";
8392 s3 = "x,8";
8393 goto do_branch_i;
8394 case M_BGT_I:
8395 s = "slti";
8396 s2 = "bteqz";
8397 s3 = "x,8";
8398 goto do_addone_branch_i;
8399 case M_BGTU_I:
8400 s = "sltiu";
8401 s2 = "bteqz";
8402 s3 = "x,8";
8403
8404 do_addone_branch_i:
8405 if (imm_expr.X_op != O_constant)
8406 as_bad (_("Unsupported large constant"));
8407 ++imm_expr.X_add_number;
8408
8409 do_branch_i:
8410 macro_build (&imm_expr, s, s3, xreg);
8411 macro_build (&offset_expr, s2, "p");
8412 break;
8413
8414 case M_ABS:
8415 expr1.X_add_number = 0;
8416 macro_build (&expr1, "slti", "x,8", yreg);
8417 if (xreg != yreg)
8418 move_register (xreg, yreg);
8419 expr1.X_add_number = 2;
8420 macro_build (&expr1, "bteqz", "p");
8421 macro_build (NULL, "neg", "x,w", xreg, xreg);
8422 }
8423 }
8424
8425 /* For consistency checking, verify that all bits are specified either
8426 by the match/mask part of the instruction definition, or by the
8427 operand list. */
8428 static int
8429 validate_mips_insn (const struct mips_opcode *opc)
8430 {
8431 const char *p = opc->args;
8432 char c;
8433 unsigned long used_bits = opc->mask;
8434
8435 if ((used_bits & opc->match) != opc->match)
8436 {
8437 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
8438 opc->name, opc->args);
8439 return 0;
8440 }
8441 #define USE_BITS(mask,shift) (used_bits |= ((mask) << (shift)))
8442 while (*p)
8443 switch (c = *p++)
8444 {
8445 case ',': break;
8446 case '(': break;
8447 case ')': break;
8448 case '+':
8449 switch (c = *p++)
8450 {
8451 case '1': USE_BITS (OP_MASK_UDI1, OP_SH_UDI1); break;
8452 case '2': USE_BITS (OP_MASK_UDI2, OP_SH_UDI2); break;
8453 case '3': USE_BITS (OP_MASK_UDI3, OP_SH_UDI3); break;
8454 case '4': USE_BITS (OP_MASK_UDI4, OP_SH_UDI4); break;
8455 case 'A': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8456 case 'B': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8457 case 'C': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8458 case 'D': USE_BITS (OP_MASK_RD, OP_SH_RD);
8459 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8460 case 'E': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8461 case 'F': USE_BITS (OP_MASK_INSMSB, OP_SH_INSMSB); break;
8462 case 'G': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8463 case 'H': USE_BITS (OP_MASK_EXTMSBD, OP_SH_EXTMSBD); break;
8464 case 'I': break;
8465 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8466 case 'T': USE_BITS (OP_MASK_RT, OP_SH_RT);
8467 USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8468 case 'x': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8469 case 'X': USE_BITS (OP_MASK_BBITIND, OP_SH_BBITIND); break;
8470 case 'p': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8471 case 'P': USE_BITS (OP_MASK_CINSPOS, OP_SH_CINSPOS); break;
8472 case 'Q': USE_BITS (OP_MASK_SEQI, OP_SH_SEQI); break;
8473 case 's': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8474 case 'S': USE_BITS (OP_MASK_CINSLM1, OP_SH_CINSLM1); break;
8475
8476 default:
8477 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
8478 c, opc->name, opc->args);
8479 return 0;
8480 }
8481 break;
8482 case '<': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8483 case '>': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8484 case 'A': break;
8485 case 'B': USE_BITS (OP_MASK_CODE20, OP_SH_CODE20); break;
8486 case 'C': USE_BITS (OP_MASK_COPZ, OP_SH_COPZ); break;
8487 case 'D': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8488 case 'E': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8489 case 'F': break;
8490 case 'G': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8491 case 'H': USE_BITS (OP_MASK_SEL, OP_SH_SEL); break;
8492 case 'I': break;
8493 case 'J': USE_BITS (OP_MASK_CODE19, OP_SH_CODE19); break;
8494 case 'K': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8495 case 'L': break;
8496 case 'M': USE_BITS (OP_MASK_CCC, OP_SH_CCC); break;
8497 case 'N': USE_BITS (OP_MASK_BCC, OP_SH_BCC); break;
8498 case 'O': USE_BITS (OP_MASK_ALN, OP_SH_ALN); break;
8499 case 'Q': USE_BITS (OP_MASK_VSEL, OP_SH_VSEL);
8500 USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8501 case 'R': USE_BITS (OP_MASK_FR, OP_SH_FR); break;
8502 case 'S': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8503 case 'T': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8504 case 'V': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8505 case 'W': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8506 case 'X': USE_BITS (OP_MASK_FD, OP_SH_FD); break;
8507 case 'Y': USE_BITS (OP_MASK_FS, OP_SH_FS); break;
8508 case 'Z': USE_BITS (OP_MASK_FT, OP_SH_FT); break;
8509 case 'a': USE_BITS (OP_MASK_TARGET, OP_SH_TARGET); break;
8510 case 'b': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8511 case 'c': USE_BITS (OP_MASK_CODE, OP_SH_CODE); break;
8512 case 'd': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8513 case 'f': break;
8514 case 'h': USE_BITS (OP_MASK_PREFX, OP_SH_PREFX); break;
8515 case 'i': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8516 case 'j': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8517 case 'k': USE_BITS (OP_MASK_CACHE, OP_SH_CACHE); break;
8518 case 'l': break;
8519 case 'o': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8520 case 'p': USE_BITS (OP_MASK_DELTA, OP_SH_DELTA); break;
8521 case 'q': USE_BITS (OP_MASK_CODE2, OP_SH_CODE2); break;
8522 case 'r': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8523 case 's': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8524 case 't': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8525 case 'u': USE_BITS (OP_MASK_IMMEDIATE, OP_SH_IMMEDIATE); break;
8526 case 'v': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8527 case 'w': USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8528 case 'x': break;
8529 case 'z': break;
8530 case 'P': USE_BITS (OP_MASK_PERFREG, OP_SH_PERFREG); break;
8531 case 'U': USE_BITS (OP_MASK_RD, OP_SH_RD);
8532 USE_BITS (OP_MASK_RT, OP_SH_RT); break;
8533 case 'e': USE_BITS (OP_MASK_VECBYTE, OP_SH_VECBYTE); break;
8534 case '%': USE_BITS (OP_MASK_VECALIGN, OP_SH_VECALIGN); break;
8535 case '[': break;
8536 case ']': break;
8537 case '1': USE_BITS (OP_MASK_SHAMT, OP_SH_SHAMT); break;
8538 case '2': USE_BITS (OP_MASK_BP, OP_SH_BP); break;
8539 case '3': USE_BITS (OP_MASK_SA3, OP_SH_SA3); break;
8540 case '4': USE_BITS (OP_MASK_SA4, OP_SH_SA4); break;
8541 case '5': USE_BITS (OP_MASK_IMM8, OP_SH_IMM8); break;
8542 case '6': USE_BITS (OP_MASK_RS, OP_SH_RS); break;
8543 case '7': USE_BITS (OP_MASK_DSPACC, OP_SH_DSPACC); break;
8544 case '8': USE_BITS (OP_MASK_WRDSP, OP_SH_WRDSP); break;
8545 case '9': USE_BITS (OP_MASK_DSPACC_S, OP_SH_DSPACC_S);break;
8546 case '0': USE_BITS (OP_MASK_DSPSFT, OP_SH_DSPSFT); break;
8547 case '\'': USE_BITS (OP_MASK_RDDSP, OP_SH_RDDSP); break;
8548 case ':': USE_BITS (OP_MASK_DSPSFT_7, OP_SH_DSPSFT_7);break;
8549 case '@': USE_BITS (OP_MASK_IMM10, OP_SH_IMM10); break;
8550 case '!': USE_BITS (OP_MASK_MT_U, OP_SH_MT_U); break;
8551 case '$': USE_BITS (OP_MASK_MT_H, OP_SH_MT_H); break;
8552 case '*': USE_BITS (OP_MASK_MTACC_T, OP_SH_MTACC_T); break;
8553 case '&': USE_BITS (OP_MASK_MTACC_D, OP_SH_MTACC_D); break;
8554 case 'g': USE_BITS (OP_MASK_RD, OP_SH_RD); break;
8555 default:
8556 as_bad (_("internal: bad mips opcode (unknown operand type `%c'): %s %s"),
8557 c, opc->name, opc->args);
8558 return 0;
8559 }
8560 #undef USE_BITS
8561 if (used_bits != 0xffffffff)
8562 {
8563 as_bad (_("internal: bad mips opcode (bits 0x%lx undefined): %s %s"),
8564 ~used_bits & 0xffffffff, opc->name, opc->args);
8565 return 0;
8566 }
8567 return 1;
8568 }
8569
8570 /* UDI immediates. */
8571 struct mips_immed {
8572 char type;
8573 unsigned int shift;
8574 unsigned long mask;
8575 const char * desc;
8576 };
8577
8578 static const struct mips_immed mips_immed[] = {
8579 { '1', OP_SH_UDI1, OP_MASK_UDI1, 0},
8580 { '2', OP_SH_UDI2, OP_MASK_UDI2, 0},
8581 { '3', OP_SH_UDI3, OP_MASK_UDI3, 0},
8582 { '4', OP_SH_UDI4, OP_MASK_UDI4, 0},
8583 { 0,0,0,0 }
8584 };
8585
8586 /* Check whether an odd floating-point register is allowed. */
8587 static int
8588 mips_oddfpreg_ok (const struct mips_opcode *insn, int argnum)
8589 {
8590 const char *s = insn->name;
8591
8592 if (insn->pinfo == INSN_MACRO)
8593 /* Let a macro pass, we'll catch it later when it is expanded. */
8594 return 1;
8595
8596 if (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa))
8597 {
8598 /* Allow odd registers for single-precision ops. */
8599 switch (insn->pinfo & (FP_S | FP_D))
8600 {
8601 case FP_S:
8602 case 0:
8603 return 1; /* both single precision - ok */
8604 case FP_D:
8605 return 0; /* both double precision - fail */
8606 default:
8607 break;
8608 }
8609
8610 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
8611 s = strchr (insn->name, '.');
8612 if (argnum == 2)
8613 s = s != NULL ? strchr (s + 1, '.') : NULL;
8614 return (s != NULL && (s[1] == 'w' || s[1] == 's'));
8615 }
8616
8617 /* Single-precision coprocessor loads and moves are OK too. */
8618 if ((insn->pinfo & FP_S)
8619 && (insn->pinfo & (INSN_COPROC_MEMORY_DELAY | INSN_STORE_MEMORY
8620 | INSN_LOAD_COPROC_DELAY | INSN_COPROC_MOVE_DELAY)))
8621 return 1;
8622
8623 return 0;
8624 }
8625
8626 /* This routine assembles an instruction into its binary format. As a
8627 side effect, it sets one of the global variables imm_reloc or
8628 offset_reloc to the type of relocation to do if one of the operands
8629 is an address expression. */
8630
8631 static void
8632 mips_ip (char *str, struct mips_cl_insn *ip)
8633 {
8634 char *s;
8635 const char *args;
8636 char c = 0;
8637 struct mips_opcode *insn;
8638 char *argsStart;
8639 unsigned int regno;
8640 unsigned int lastregno = 0;
8641 unsigned int lastpos = 0;
8642 unsigned int limlo, limhi;
8643 char *s_reset;
8644 char save_c = 0;
8645 offsetT min_range, max_range;
8646 int argnum;
8647 unsigned int rtype;
8648
8649 insn_error = NULL;
8650
8651 /* If the instruction contains a '.', we first try to match an instruction
8652 including the '.'. Then we try again without the '.'. */
8653 insn = NULL;
8654 for (s = str; *s != '\0' && !ISSPACE (*s); ++s)
8655 continue;
8656
8657 /* If we stopped on whitespace, then replace the whitespace with null for
8658 the call to hash_find. Save the character we replaced just in case we
8659 have to re-parse the instruction. */
8660 if (ISSPACE (*s))
8661 {
8662 save_c = *s;
8663 *s++ = '\0';
8664 }
8665
8666 insn = (struct mips_opcode *) hash_find (op_hash, str);
8667
8668 /* If we didn't find the instruction in the opcode table, try again, but
8669 this time with just the instruction up to, but not including the
8670 first '.'. */
8671 if (insn == NULL)
8672 {
8673 /* Restore the character we overwrite above (if any). */
8674 if (save_c)
8675 *(--s) = save_c;
8676
8677 /* Scan up to the first '.' or whitespace. */
8678 for (s = str;
8679 *s != '\0' && *s != '.' && !ISSPACE (*s);
8680 ++s)
8681 continue;
8682
8683 /* If we did not find a '.', then we can quit now. */
8684 if (*s != '.')
8685 {
8686 insn_error = _("unrecognized opcode");
8687 return;
8688 }
8689
8690 /* Lookup the instruction in the hash table. */
8691 *s++ = '\0';
8692 if ((insn = (struct mips_opcode *) hash_find (op_hash, str)) == NULL)
8693 {
8694 insn_error = _("unrecognized opcode");
8695 return;
8696 }
8697 }
8698
8699 argsStart = s;
8700 for (;;)
8701 {
8702 bfd_boolean ok;
8703
8704 gas_assert (strcmp (insn->name, str) == 0);
8705
8706 ok = is_opcode_valid (insn, FALSE);
8707 if (! ok)
8708 {
8709 if (insn + 1 < &mips_opcodes[NUMOPCODES]
8710 && strcmp (insn->name, insn[1].name) == 0)
8711 {
8712 ++insn;
8713 continue;
8714 }
8715 else
8716 {
8717 if (!insn_error)
8718 {
8719 static char buf[100];
8720 sprintf (buf,
8721 _("opcode not supported on this processor: %s (%s)"),
8722 mips_cpu_info_from_arch (mips_opts.arch)->name,
8723 mips_cpu_info_from_isa (mips_opts.isa)->name);
8724 insn_error = buf;
8725 }
8726 if (save_c)
8727 *(--s) = save_c;
8728 return;
8729 }
8730 }
8731
8732 create_insn (ip, insn);
8733 insn_error = NULL;
8734 argnum = 1;
8735 lastregno = 0xffffffff;
8736 for (args = insn->args;; ++args)
8737 {
8738 int is_mdmx;
8739
8740 s += strspn (s, " \t");
8741 is_mdmx = 0;
8742 switch (*args)
8743 {
8744 case '\0': /* end of args */
8745 if (*s == '\0')
8746 return;
8747 break;
8748
8749 case '2': /* dsp 2-bit unsigned immediate in bit 11 */
8750 my_getExpression (&imm_expr, s);
8751 check_absolute_expr (ip, &imm_expr);
8752 if ((unsigned long) imm_expr.X_add_number != 1
8753 && (unsigned long) imm_expr.X_add_number != 3)
8754 {
8755 as_bad (_("BALIGN immediate not 1 or 3 (%lu)"),
8756 (unsigned long) imm_expr.X_add_number);
8757 }
8758 INSERT_OPERAND (BP, *ip, imm_expr.X_add_number);
8759 imm_expr.X_op = O_absent;
8760 s = expr_end;
8761 continue;
8762
8763 case '3': /* dsp 3-bit unsigned immediate in bit 21 */
8764 my_getExpression (&imm_expr, s);
8765 check_absolute_expr (ip, &imm_expr);
8766 if (imm_expr.X_add_number & ~OP_MASK_SA3)
8767 {
8768 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8769 OP_MASK_SA3, (unsigned long) imm_expr.X_add_number);
8770 }
8771 INSERT_OPERAND (SA3, *ip, imm_expr.X_add_number);
8772 imm_expr.X_op = O_absent;
8773 s = expr_end;
8774 continue;
8775
8776 case '4': /* dsp 4-bit unsigned immediate in bit 21 */
8777 my_getExpression (&imm_expr, s);
8778 check_absolute_expr (ip, &imm_expr);
8779 if (imm_expr.X_add_number & ~OP_MASK_SA4)
8780 {
8781 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8782 OP_MASK_SA4, (unsigned long) imm_expr.X_add_number);
8783 }
8784 INSERT_OPERAND (SA4, *ip, imm_expr.X_add_number);
8785 imm_expr.X_op = O_absent;
8786 s = expr_end;
8787 continue;
8788
8789 case '5': /* dsp 8-bit unsigned immediate in bit 16 */
8790 my_getExpression (&imm_expr, s);
8791 check_absolute_expr (ip, &imm_expr);
8792 if (imm_expr.X_add_number & ~OP_MASK_IMM8)
8793 {
8794 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8795 OP_MASK_IMM8, (unsigned long) imm_expr.X_add_number);
8796 }
8797 INSERT_OPERAND (IMM8, *ip, imm_expr.X_add_number);
8798 imm_expr.X_op = O_absent;
8799 s = expr_end;
8800 continue;
8801
8802 case '6': /* dsp 5-bit unsigned immediate in bit 21 */
8803 my_getExpression (&imm_expr, s);
8804 check_absolute_expr (ip, &imm_expr);
8805 if (imm_expr.X_add_number & ~OP_MASK_RS)
8806 {
8807 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8808 OP_MASK_RS, (unsigned long) imm_expr.X_add_number);
8809 }
8810 INSERT_OPERAND (RS, *ip, imm_expr.X_add_number);
8811 imm_expr.X_op = O_absent;
8812 s = expr_end;
8813 continue;
8814
8815 case '7': /* four dsp accumulators in bits 11,12 */
8816 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8817 s[3] >= '0' && s[3] <= '3')
8818 {
8819 regno = s[3] - '0';
8820 s += 4;
8821 INSERT_OPERAND (DSPACC, *ip, regno);
8822 continue;
8823 }
8824 else
8825 as_bad (_("Invalid dsp acc register"));
8826 break;
8827
8828 case '8': /* dsp 6-bit unsigned immediate in bit 11 */
8829 my_getExpression (&imm_expr, s);
8830 check_absolute_expr (ip, &imm_expr);
8831 if (imm_expr.X_add_number & ~OP_MASK_WRDSP)
8832 {
8833 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8834 OP_MASK_WRDSP,
8835 (unsigned long) imm_expr.X_add_number);
8836 }
8837 INSERT_OPERAND (WRDSP, *ip, imm_expr.X_add_number);
8838 imm_expr.X_op = O_absent;
8839 s = expr_end;
8840 continue;
8841
8842 case '9': /* four dsp accumulators in bits 21,22 */
8843 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8844 s[3] >= '0' && s[3] <= '3')
8845 {
8846 regno = s[3] - '0';
8847 s += 4;
8848 INSERT_OPERAND (DSPACC_S, *ip, regno);
8849 continue;
8850 }
8851 else
8852 as_bad (_("Invalid dsp acc register"));
8853 break;
8854
8855 case '0': /* dsp 6-bit signed immediate in bit 20 */
8856 my_getExpression (&imm_expr, s);
8857 check_absolute_expr (ip, &imm_expr);
8858 min_range = -((OP_MASK_DSPSFT + 1) >> 1);
8859 max_range = ((OP_MASK_DSPSFT + 1) >> 1) - 1;
8860 if (imm_expr.X_add_number < min_range ||
8861 imm_expr.X_add_number > max_range)
8862 {
8863 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8864 (long) min_range, (long) max_range,
8865 (long) imm_expr.X_add_number);
8866 }
8867 INSERT_OPERAND (DSPSFT, *ip, imm_expr.X_add_number);
8868 imm_expr.X_op = O_absent;
8869 s = expr_end;
8870 continue;
8871
8872 case '\'': /* dsp 6-bit unsigned immediate in bit 16 */
8873 my_getExpression (&imm_expr, s);
8874 check_absolute_expr (ip, &imm_expr);
8875 if (imm_expr.X_add_number & ~OP_MASK_RDDSP)
8876 {
8877 as_bad (_("DSP immediate not in range 0..%d (%lu)"),
8878 OP_MASK_RDDSP,
8879 (unsigned long) imm_expr.X_add_number);
8880 }
8881 INSERT_OPERAND (RDDSP, *ip, imm_expr.X_add_number);
8882 imm_expr.X_op = O_absent;
8883 s = expr_end;
8884 continue;
8885
8886 case ':': /* dsp 7-bit signed immediate in bit 19 */
8887 my_getExpression (&imm_expr, s);
8888 check_absolute_expr (ip, &imm_expr);
8889 min_range = -((OP_MASK_DSPSFT_7 + 1) >> 1);
8890 max_range = ((OP_MASK_DSPSFT_7 + 1) >> 1) - 1;
8891 if (imm_expr.X_add_number < min_range ||
8892 imm_expr.X_add_number > max_range)
8893 {
8894 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8895 (long) min_range, (long) max_range,
8896 (long) imm_expr.X_add_number);
8897 }
8898 INSERT_OPERAND (DSPSFT_7, *ip, imm_expr.X_add_number);
8899 imm_expr.X_op = O_absent;
8900 s = expr_end;
8901 continue;
8902
8903 case '@': /* dsp 10-bit signed immediate in bit 16 */
8904 my_getExpression (&imm_expr, s);
8905 check_absolute_expr (ip, &imm_expr);
8906 min_range = -((OP_MASK_IMM10 + 1) >> 1);
8907 max_range = ((OP_MASK_IMM10 + 1) >> 1) - 1;
8908 if (imm_expr.X_add_number < min_range ||
8909 imm_expr.X_add_number > max_range)
8910 {
8911 as_bad (_("DSP immediate not in range %ld..%ld (%ld)"),
8912 (long) min_range, (long) max_range,
8913 (long) imm_expr.X_add_number);
8914 }
8915 INSERT_OPERAND (IMM10, *ip, imm_expr.X_add_number);
8916 imm_expr.X_op = O_absent;
8917 s = expr_end;
8918 continue;
8919
8920 case '!': /* MT usermode flag bit. */
8921 my_getExpression (&imm_expr, s);
8922 check_absolute_expr (ip, &imm_expr);
8923 if (imm_expr.X_add_number & ~OP_MASK_MT_U)
8924 as_bad (_("MT usermode bit not 0 or 1 (%lu)"),
8925 (unsigned long) imm_expr.X_add_number);
8926 INSERT_OPERAND (MT_U, *ip, imm_expr.X_add_number);
8927 imm_expr.X_op = O_absent;
8928 s = expr_end;
8929 continue;
8930
8931 case '$': /* MT load high flag bit. */
8932 my_getExpression (&imm_expr, s);
8933 check_absolute_expr (ip, &imm_expr);
8934 if (imm_expr.X_add_number & ~OP_MASK_MT_H)
8935 as_bad (_("MT load high bit not 0 or 1 (%lu)"),
8936 (unsigned long) imm_expr.X_add_number);
8937 INSERT_OPERAND (MT_H, *ip, imm_expr.X_add_number);
8938 imm_expr.X_op = O_absent;
8939 s = expr_end;
8940 continue;
8941
8942 case '*': /* four dsp accumulators in bits 18,19 */
8943 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8944 s[3] >= '0' && s[3] <= '3')
8945 {
8946 regno = s[3] - '0';
8947 s += 4;
8948 INSERT_OPERAND (MTACC_T, *ip, regno);
8949 continue;
8950 }
8951 else
8952 as_bad (_("Invalid dsp/smartmips acc register"));
8953 break;
8954
8955 case '&': /* four dsp accumulators in bits 13,14 */
8956 if (s[0] == '$' && s[1] == 'a' && s[2] == 'c' &&
8957 s[3] >= '0' && s[3] <= '3')
8958 {
8959 regno = s[3] - '0';
8960 s += 4;
8961 INSERT_OPERAND (MTACC_D, *ip, regno);
8962 continue;
8963 }
8964 else
8965 as_bad (_("Invalid dsp/smartmips acc register"));
8966 break;
8967
8968 case ',':
8969 ++argnum;
8970 if (*s++ == *args)
8971 continue;
8972 s--;
8973 switch (*++args)
8974 {
8975 case 'r':
8976 case 'v':
8977 INSERT_OPERAND (RS, *ip, lastregno);
8978 continue;
8979
8980 case 'w':
8981 INSERT_OPERAND (RT, *ip, lastregno);
8982 continue;
8983
8984 case 'W':
8985 INSERT_OPERAND (FT, *ip, lastregno);
8986 continue;
8987
8988 case 'V':
8989 INSERT_OPERAND (FS, *ip, lastregno);
8990 continue;
8991 }
8992 break;
8993
8994 case '(':
8995 /* Handle optional base register.
8996 Either the base register is omitted or
8997 we must have a left paren. */
8998 /* This is dependent on the next operand specifier
8999 is a base register specification. */
9000 gas_assert (args[1] == 'b' || args[1] == '5'
9001 || args[1] == '-' || args[1] == '4');
9002 if (*s == '\0')
9003 return;
9004
9005 case ')': /* these must match exactly */
9006 case '[':
9007 case ']':
9008 if (*s++ == *args)
9009 continue;
9010 break;
9011
9012 case '+': /* Opcode extension character. */
9013 switch (*++args)
9014 {
9015 case '1': /* UDI immediates. */
9016 case '2':
9017 case '3':
9018 case '4':
9019 {
9020 const struct mips_immed *imm = mips_immed;
9021
9022 while (imm->type && imm->type != *args)
9023 ++imm;
9024 if (! imm->type)
9025 internalError ();
9026 my_getExpression (&imm_expr, s);
9027 check_absolute_expr (ip, &imm_expr);
9028 if ((unsigned long) imm_expr.X_add_number & ~imm->mask)
9029 {
9030 as_warn (_("Illegal %s number (%lu, 0x%lx)"),
9031 imm->desc ? imm->desc : ip->insn_mo->name,
9032 (unsigned long) imm_expr.X_add_number,
9033 (unsigned long) imm_expr.X_add_number);
9034 imm_expr.X_add_number &= imm->mask;
9035 }
9036 ip->insn_opcode |= ((unsigned long) imm_expr.X_add_number
9037 << imm->shift);
9038 imm_expr.X_op = O_absent;
9039 s = expr_end;
9040 }
9041 continue;
9042
9043 case 'A': /* ins/ext position, becomes LSB. */
9044 limlo = 0;
9045 limhi = 31;
9046 goto do_lsb;
9047 case 'E':
9048 limlo = 32;
9049 limhi = 63;
9050 goto do_lsb;
9051 do_lsb:
9052 my_getExpression (&imm_expr, s);
9053 check_absolute_expr (ip, &imm_expr);
9054 if ((unsigned long) imm_expr.X_add_number < limlo
9055 || (unsigned long) imm_expr.X_add_number > limhi)
9056 {
9057 as_bad (_("Improper position (%lu)"),
9058 (unsigned long) imm_expr.X_add_number);
9059 imm_expr.X_add_number = limlo;
9060 }
9061 lastpos = imm_expr.X_add_number;
9062 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9063 imm_expr.X_op = O_absent;
9064 s = expr_end;
9065 continue;
9066
9067 case 'B': /* ins size, becomes MSB. */
9068 limlo = 1;
9069 limhi = 32;
9070 goto do_msb;
9071 case 'F':
9072 limlo = 33;
9073 limhi = 64;
9074 goto do_msb;
9075 do_msb:
9076 my_getExpression (&imm_expr, s);
9077 check_absolute_expr (ip, &imm_expr);
9078 /* Check for negative input so that small negative numbers
9079 will not succeed incorrectly. The checks against
9080 (pos+size) transitively check "size" itself,
9081 assuming that "pos" is reasonable. */
9082 if ((long) imm_expr.X_add_number < 0
9083 || ((unsigned long) imm_expr.X_add_number
9084 + lastpos) < limlo
9085 || ((unsigned long) imm_expr.X_add_number
9086 + lastpos) > limhi)
9087 {
9088 as_bad (_("Improper insert size (%lu, position %lu)"),
9089 (unsigned long) imm_expr.X_add_number,
9090 (unsigned long) lastpos);
9091 imm_expr.X_add_number = limlo - lastpos;
9092 }
9093 INSERT_OPERAND (INSMSB, *ip,
9094 lastpos + imm_expr.X_add_number - 1);
9095 imm_expr.X_op = O_absent;
9096 s = expr_end;
9097 continue;
9098
9099 case 'C': /* ext size, becomes MSBD. */
9100 limlo = 1;
9101 limhi = 32;
9102 goto do_msbd;
9103 case 'G':
9104 limlo = 33;
9105 limhi = 64;
9106 goto do_msbd;
9107 case 'H':
9108 limlo = 33;
9109 limhi = 64;
9110 goto do_msbd;
9111 do_msbd:
9112 my_getExpression (&imm_expr, s);
9113 check_absolute_expr (ip, &imm_expr);
9114 /* Check for negative input so that small negative numbers
9115 will not succeed incorrectly. The checks against
9116 (pos+size) transitively check "size" itself,
9117 assuming that "pos" is reasonable. */
9118 if ((long) imm_expr.X_add_number < 0
9119 || ((unsigned long) imm_expr.X_add_number
9120 + lastpos) < limlo
9121 || ((unsigned long) imm_expr.X_add_number
9122 + lastpos) > limhi)
9123 {
9124 as_bad (_("Improper extract size (%lu, position %lu)"),
9125 (unsigned long) imm_expr.X_add_number,
9126 (unsigned long) lastpos);
9127 imm_expr.X_add_number = limlo - lastpos;
9128 }
9129 INSERT_OPERAND (EXTMSBD, *ip, imm_expr.X_add_number - 1);
9130 imm_expr.X_op = O_absent;
9131 s = expr_end;
9132 continue;
9133
9134 case 'D':
9135 /* +D is for disassembly only; never match. */
9136 break;
9137
9138 case 'I':
9139 /* "+I" is like "I", except that imm2_expr is used. */
9140 my_getExpression (&imm2_expr, s);
9141 if (imm2_expr.X_op != O_big
9142 && imm2_expr.X_op != O_constant)
9143 insn_error = _("absolute expression required");
9144 if (HAVE_32BIT_GPRS)
9145 normalize_constant_expr (&imm2_expr);
9146 s = expr_end;
9147 continue;
9148
9149 case 'T': /* Coprocessor register. */
9150 /* +T is for disassembly only; never match. */
9151 break;
9152
9153 case 't': /* Coprocessor register number. */
9154 if (s[0] == '$' && ISDIGIT (s[1]))
9155 {
9156 ++s;
9157 regno = 0;
9158 do
9159 {
9160 regno *= 10;
9161 regno += *s - '0';
9162 ++s;
9163 }
9164 while (ISDIGIT (*s));
9165 if (regno > 31)
9166 as_bad (_("Invalid register number (%d)"), regno);
9167 else
9168 {
9169 INSERT_OPERAND (RT, *ip, regno);
9170 continue;
9171 }
9172 }
9173 else
9174 as_bad (_("Invalid coprocessor 0 register number"));
9175 break;
9176
9177 case 'x':
9178 /* bbit[01] and bbit[01]32 bit index. Give error if index
9179 is not in the valid range. */
9180 my_getExpression (&imm_expr, s);
9181 check_absolute_expr (ip, &imm_expr);
9182 if ((unsigned) imm_expr.X_add_number > 31)
9183 {
9184 as_bad (_("Improper bit index (%lu)"),
9185 (unsigned long) imm_expr.X_add_number);
9186 imm_expr.X_add_number = 0;
9187 }
9188 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number);
9189 imm_expr.X_op = O_absent;
9190 s = expr_end;
9191 continue;
9192
9193 case 'X':
9194 /* bbit[01] bit index when bbit is used but we generate
9195 bbit[01]32 because the index is over 32. Move to the
9196 next candidate if index is not in the valid range. */
9197 my_getExpression (&imm_expr, s);
9198 check_absolute_expr (ip, &imm_expr);
9199 if ((unsigned) imm_expr.X_add_number < 32
9200 || (unsigned) imm_expr.X_add_number > 63)
9201 break;
9202 INSERT_OPERAND (BBITIND, *ip, imm_expr.X_add_number - 32);
9203 imm_expr.X_op = O_absent;
9204 s = expr_end;
9205 continue;
9206
9207 case 'p':
9208 /* cins, cins32, exts and exts32 position field. Give error
9209 if it's not in the valid range. */
9210 my_getExpression (&imm_expr, s);
9211 check_absolute_expr (ip, &imm_expr);
9212 if ((unsigned) imm_expr.X_add_number > 31)
9213 {
9214 as_bad (_("Improper position (%lu)"),
9215 (unsigned long) imm_expr.X_add_number);
9216 imm_expr.X_add_number = 0;
9217 }
9218 /* Make the pos explicit to simplify +S. */
9219 lastpos = imm_expr.X_add_number + 32;
9220 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number);
9221 imm_expr.X_op = O_absent;
9222 s = expr_end;
9223 continue;
9224
9225 case 'P':
9226 /* cins, cins32, exts and exts32 position field. Move to
9227 the next candidate if it's not in the valid range. */
9228 my_getExpression (&imm_expr, s);
9229 check_absolute_expr (ip, &imm_expr);
9230 if ((unsigned) imm_expr.X_add_number < 32
9231 || (unsigned) imm_expr.X_add_number > 63)
9232 break;
9233 lastpos = imm_expr.X_add_number;
9234 INSERT_OPERAND (CINSPOS, *ip, imm_expr.X_add_number - 32);
9235 imm_expr.X_op = O_absent;
9236 s = expr_end;
9237 continue;
9238
9239 case 's':
9240 /* cins and exts length-minus-one field. */
9241 my_getExpression (&imm_expr, s);
9242 check_absolute_expr (ip, &imm_expr);
9243 if ((unsigned long) imm_expr.X_add_number > 31)
9244 {
9245 as_bad (_("Improper size (%lu)"),
9246 (unsigned long) imm_expr.X_add_number);
9247 imm_expr.X_add_number = 0;
9248 }
9249 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9250 imm_expr.X_op = O_absent;
9251 s = expr_end;
9252 continue;
9253
9254 case 'S':
9255 /* cins32/exts32 and cins/exts aliasing cint32/exts32
9256 length-minus-one field. */
9257 my_getExpression (&imm_expr, s);
9258 check_absolute_expr (ip, &imm_expr);
9259 if ((long) imm_expr.X_add_number < 0
9260 || (unsigned long) imm_expr.X_add_number + lastpos > 63)
9261 {
9262 as_bad (_("Improper size (%lu)"),
9263 (unsigned long) imm_expr.X_add_number);
9264 imm_expr.X_add_number = 0;
9265 }
9266 INSERT_OPERAND (CINSLM1, *ip, imm_expr.X_add_number);
9267 imm_expr.X_op = O_absent;
9268 s = expr_end;
9269 continue;
9270
9271 case 'Q':
9272 /* seqi/snei immediate field. */
9273 my_getExpression (&imm_expr, s);
9274 check_absolute_expr (ip, &imm_expr);
9275 if ((long) imm_expr.X_add_number < -512
9276 || (long) imm_expr.X_add_number >= 512)
9277 {
9278 as_bad (_("Improper immediate (%ld)"),
9279 (long) imm_expr.X_add_number);
9280 imm_expr.X_add_number = 0;
9281 }
9282 INSERT_OPERAND (SEQI, *ip, imm_expr.X_add_number);
9283 imm_expr.X_op = O_absent;
9284 s = expr_end;
9285 continue;
9286
9287 default:
9288 as_bad (_("internal: bad mips opcode (unknown extension operand type `+%c'): %s %s"),
9289 *args, insn->name, insn->args);
9290 /* Further processing is fruitless. */
9291 return;
9292 }
9293 break;
9294
9295 case '<': /* must be at least one digit */
9296 /*
9297 * According to the manual, if the shift amount is greater
9298 * than 31 or less than 0, then the shift amount should be
9299 * mod 32. In reality the mips assembler issues an error.
9300 * We issue a warning and mask out all but the low 5 bits.
9301 */
9302 my_getExpression (&imm_expr, s);
9303 check_absolute_expr (ip, &imm_expr);
9304 if ((unsigned long) imm_expr.X_add_number > 31)
9305 as_warn (_("Improper shift amount (%lu)"),
9306 (unsigned long) imm_expr.X_add_number);
9307 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9308 imm_expr.X_op = O_absent;
9309 s = expr_end;
9310 continue;
9311
9312 case '>': /* shift amount minus 32 */
9313 my_getExpression (&imm_expr, s);
9314 check_absolute_expr (ip, &imm_expr);
9315 if ((unsigned long) imm_expr.X_add_number < 32
9316 || (unsigned long) imm_expr.X_add_number > 63)
9317 break;
9318 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number - 32);
9319 imm_expr.X_op = O_absent;
9320 s = expr_end;
9321 continue;
9322
9323 case 'k': /* cache code */
9324 case 'h': /* prefx code */
9325 case '1': /* sync type */
9326 my_getExpression (&imm_expr, s);
9327 check_absolute_expr (ip, &imm_expr);
9328 if ((unsigned long) imm_expr.X_add_number > 31)
9329 as_warn (_("Invalid value for `%s' (%lu)"),
9330 ip->insn_mo->name,
9331 (unsigned long) imm_expr.X_add_number);
9332 if (*args == 'k')
9333 INSERT_OPERAND (CACHE, *ip, imm_expr.X_add_number);
9334 else if (*args == 'h')
9335 INSERT_OPERAND (PREFX, *ip, imm_expr.X_add_number);
9336 else
9337 INSERT_OPERAND (SHAMT, *ip, imm_expr.X_add_number);
9338 imm_expr.X_op = O_absent;
9339 s = expr_end;
9340 continue;
9341
9342 case 'c': /* break code */
9343 my_getExpression (&imm_expr, s);
9344 check_absolute_expr (ip, &imm_expr);
9345 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE)
9346 as_warn (_("Code for %s not in range 0..1023 (%lu)"),
9347 ip->insn_mo->name,
9348 (unsigned long) imm_expr.X_add_number);
9349 INSERT_OPERAND (CODE, *ip, imm_expr.X_add_number);
9350 imm_expr.X_op = O_absent;
9351 s = expr_end;
9352 continue;
9353
9354 case 'q': /* lower break code */
9355 my_getExpression (&imm_expr, s);
9356 check_absolute_expr (ip, &imm_expr);
9357 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE2)
9358 as_warn (_("Lower code for %s not in range 0..1023 (%lu)"),
9359 ip->insn_mo->name,
9360 (unsigned long) imm_expr.X_add_number);
9361 INSERT_OPERAND (CODE2, *ip, imm_expr.X_add_number);
9362 imm_expr.X_op = O_absent;
9363 s = expr_end;
9364 continue;
9365
9366 case 'B': /* 20-bit syscall/break code. */
9367 my_getExpression (&imm_expr, s);
9368 check_absolute_expr (ip, &imm_expr);
9369 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE20)
9370 as_warn (_("Code for %s not in range 0..1048575 (%lu)"),
9371 ip->insn_mo->name,
9372 (unsigned long) imm_expr.X_add_number);
9373 INSERT_OPERAND (CODE20, *ip, imm_expr.X_add_number);
9374 imm_expr.X_op = O_absent;
9375 s = expr_end;
9376 continue;
9377
9378 case 'C': /* Coprocessor code */
9379 my_getExpression (&imm_expr, s);
9380 check_absolute_expr (ip, &imm_expr);
9381 if ((unsigned long) imm_expr.X_add_number > OP_MASK_COPZ)
9382 {
9383 as_warn (_("Coproccesor code > 25 bits (%lu)"),
9384 (unsigned long) imm_expr.X_add_number);
9385 imm_expr.X_add_number &= OP_MASK_COPZ;
9386 }
9387 INSERT_OPERAND (COPZ, *ip, imm_expr.X_add_number);
9388 imm_expr.X_op = O_absent;
9389 s = expr_end;
9390 continue;
9391
9392 case 'J': /* 19-bit wait code. */
9393 my_getExpression (&imm_expr, s);
9394 check_absolute_expr (ip, &imm_expr);
9395 if ((unsigned long) imm_expr.X_add_number > OP_MASK_CODE19)
9396 {
9397 as_warn (_("Illegal 19-bit code (%lu)"),
9398 (unsigned long) imm_expr.X_add_number);
9399 imm_expr.X_add_number &= OP_MASK_CODE19;
9400 }
9401 INSERT_OPERAND (CODE19, *ip, imm_expr.X_add_number);
9402 imm_expr.X_op = O_absent;
9403 s = expr_end;
9404 continue;
9405
9406 case 'P': /* Performance register. */
9407 my_getExpression (&imm_expr, s);
9408 check_absolute_expr (ip, &imm_expr);
9409 if (imm_expr.X_add_number != 0 && imm_expr.X_add_number != 1)
9410 as_warn (_("Invalid performance register (%lu)"),
9411 (unsigned long) imm_expr.X_add_number);
9412 INSERT_OPERAND (PERFREG, *ip, imm_expr.X_add_number);
9413 imm_expr.X_op = O_absent;
9414 s = expr_end;
9415 continue;
9416
9417 case 'G': /* Coprocessor destination register. */
9418 if (((ip->insn_opcode >> OP_SH_OP) & OP_MASK_OP) == OP_OP_COP0)
9419 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_CP0, &regno);
9420 else
9421 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9422 INSERT_OPERAND (RD, *ip, regno);
9423 if (ok)
9424 {
9425 lastregno = regno;
9426 continue;
9427 }
9428 else
9429 break;
9430
9431 case 'b': /* base register */
9432 case 'd': /* destination register */
9433 case 's': /* source register */
9434 case 't': /* target register */
9435 case 'r': /* both target and source */
9436 case 'v': /* both dest and source */
9437 case 'w': /* both dest and target */
9438 case 'E': /* coprocessor target register */
9439 case 'K': /* 'rdhwr' destination register */
9440 case 'x': /* ignore register name */
9441 case 'z': /* must be zero register */
9442 case 'U': /* destination register (clo/clz). */
9443 case 'g': /* coprocessor destination register */
9444 s_reset = s;
9445 if (*args == 'E' || *args == 'K')
9446 ok = reg_lookup (&s, RTYPE_NUM, &regno);
9447 else
9448 {
9449 ok = reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno);
9450 if (regno == AT && mips_opts.at)
9451 {
9452 if (mips_opts.at == ATREG)
9453 as_warn (_("used $at without \".set noat\""));
9454 else
9455 as_warn (_("used $%u with \".set at=$%u\""),
9456 regno, mips_opts.at);
9457 }
9458 }
9459 if (ok)
9460 {
9461 c = *args;
9462 if (*s == ' ')
9463 ++s;
9464 if (args[1] != *s)
9465 {
9466 if (c == 'r' || c == 'v' || c == 'w')
9467 {
9468 regno = lastregno;
9469 s = s_reset;
9470 ++args;
9471 }
9472 }
9473 /* 'z' only matches $0. */
9474 if (c == 'z' && regno != 0)
9475 break;
9476
9477 if (c == 's' && !strncmp (ip->insn_mo->name, "jalr", 4))
9478 {
9479 if (regno == lastregno)
9480 {
9481 insn_error = _("source and destination must be different");
9482 continue;
9483 }
9484 if (regno == 31 && lastregno == 0xffffffff)
9485 {
9486 insn_error = _("a destination register must be supplied");
9487 continue;
9488 }
9489 }
9490 /* Now that we have assembled one operand, we use the args string
9491 * to figure out where it goes in the instruction. */
9492 switch (c)
9493 {
9494 case 'r':
9495 case 's':
9496 case 'v':
9497 case 'b':
9498 INSERT_OPERAND (RS, *ip, regno);
9499 break;
9500 case 'd':
9501 case 'G':
9502 case 'K':
9503 case 'g':
9504 INSERT_OPERAND (RD, *ip, regno);
9505 break;
9506 case 'U':
9507 INSERT_OPERAND (RD, *ip, regno);
9508 INSERT_OPERAND (RT, *ip, regno);
9509 break;
9510 case 'w':
9511 case 't':
9512 case 'E':
9513 INSERT_OPERAND (RT, *ip, regno);
9514 break;
9515 case 'x':
9516 /* This case exists because on the r3000 trunc
9517 expands into a macro which requires a gp
9518 register. On the r6000 or r4000 it is
9519 assembled into a single instruction which
9520 ignores the register. Thus the insn version
9521 is MIPS_ISA2 and uses 'x', and the macro
9522 version is MIPS_ISA1 and uses 't'. */
9523 break;
9524 case 'z':
9525 /* This case is for the div instruction, which
9526 acts differently if the destination argument
9527 is $0. This only matches $0, and is checked
9528 outside the switch. */
9529 break;
9530 case 'D':
9531 /* Itbl operand; not yet implemented. FIXME ?? */
9532 break;
9533 /* What about all other operands like 'i', which
9534 can be specified in the opcode table? */
9535 }
9536 lastregno = regno;
9537 continue;
9538 }
9539 switch (*args++)
9540 {
9541 case 'r':
9542 case 'v':
9543 INSERT_OPERAND (RS, *ip, lastregno);
9544 continue;
9545 case 'w':
9546 INSERT_OPERAND (RT, *ip, lastregno);
9547 continue;
9548 }
9549 break;
9550
9551 case 'O': /* MDMX alignment immediate constant. */
9552 my_getExpression (&imm_expr, s);
9553 check_absolute_expr (ip, &imm_expr);
9554 if ((unsigned long) imm_expr.X_add_number > OP_MASK_ALN)
9555 as_warn (_("Improper align amount (%ld), using low bits"),
9556 (long) imm_expr.X_add_number);
9557 INSERT_OPERAND (ALN, *ip, imm_expr.X_add_number);
9558 imm_expr.X_op = O_absent;
9559 s = expr_end;
9560 continue;
9561
9562 case 'Q': /* MDMX vector, element sel, or const. */
9563 if (s[0] != '$')
9564 {
9565 /* MDMX Immediate. */
9566 my_getExpression (&imm_expr, s);
9567 check_absolute_expr (ip, &imm_expr);
9568 if ((unsigned long) imm_expr.X_add_number > OP_MASK_FT)
9569 as_warn (_("Invalid MDMX Immediate (%ld)"),
9570 (long) imm_expr.X_add_number);
9571 INSERT_OPERAND (FT, *ip, imm_expr.X_add_number);
9572 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9573 ip->insn_opcode |= MDMX_FMTSEL_IMM_QH << OP_SH_VSEL;
9574 else
9575 ip->insn_opcode |= MDMX_FMTSEL_IMM_OB << OP_SH_VSEL;
9576 imm_expr.X_op = O_absent;
9577 s = expr_end;
9578 continue;
9579 }
9580 /* Not MDMX Immediate. Fall through. */
9581 case 'X': /* MDMX destination register. */
9582 case 'Y': /* MDMX source register. */
9583 case 'Z': /* MDMX target register. */
9584 is_mdmx = 1;
9585 case 'D': /* floating point destination register */
9586 case 'S': /* floating point source register */
9587 case 'T': /* floating point target register */
9588 case 'R': /* floating point source register */
9589 case 'V':
9590 case 'W':
9591 rtype = RTYPE_FPU;
9592 if (is_mdmx
9593 || (mips_opts.ase_mdmx
9594 && (ip->insn_mo->pinfo & FP_D)
9595 && (ip->insn_mo->pinfo & (INSN_COPROC_MOVE_DELAY
9596 | INSN_COPROC_MEMORY_DELAY
9597 | INSN_LOAD_COPROC_DELAY
9598 | INSN_LOAD_MEMORY_DELAY
9599 | INSN_STORE_MEMORY))))
9600 rtype |= RTYPE_VEC;
9601 s_reset = s;
9602 if (reg_lookup (&s, rtype, &regno))
9603 {
9604 if ((regno & 1) != 0
9605 && HAVE_32BIT_FPRS
9606 && ! mips_oddfpreg_ok (ip->insn_mo, argnum))
9607 as_warn (_("Float register should be even, was %d"),
9608 regno);
9609
9610 c = *args;
9611 if (*s == ' ')
9612 ++s;
9613 if (args[1] != *s)
9614 {
9615 if (c == 'V' || c == 'W')
9616 {
9617 regno = lastregno;
9618 s = s_reset;
9619 ++args;
9620 }
9621 }
9622 switch (c)
9623 {
9624 case 'D':
9625 case 'X':
9626 INSERT_OPERAND (FD, *ip, regno);
9627 break;
9628 case 'V':
9629 case 'S':
9630 case 'Y':
9631 INSERT_OPERAND (FS, *ip, regno);
9632 break;
9633 case 'Q':
9634 /* This is like 'Z', but also needs to fix the MDMX
9635 vector/scalar select bits. Note that the
9636 scalar immediate case is handled above. */
9637 if (*s == '[')
9638 {
9639 int is_qh = (ip->insn_opcode & (1 << OP_SH_VSEL));
9640 int max_el = (is_qh ? 3 : 7);
9641 s++;
9642 my_getExpression(&imm_expr, s);
9643 check_absolute_expr (ip, &imm_expr);
9644 s = expr_end;
9645 if (imm_expr.X_add_number > max_el)
9646 as_bad (_("Bad element selector %ld"),
9647 (long) imm_expr.X_add_number);
9648 imm_expr.X_add_number &= max_el;
9649 ip->insn_opcode |= (imm_expr.X_add_number
9650 << (OP_SH_VSEL +
9651 (is_qh ? 2 : 1)));
9652 imm_expr.X_op = O_absent;
9653 if (*s != ']')
9654 as_warn (_("Expecting ']' found '%s'"), s);
9655 else
9656 s++;
9657 }
9658 else
9659 {
9660 if (ip->insn_opcode & (OP_MASK_VSEL << OP_SH_VSEL))
9661 ip->insn_opcode |= (MDMX_FMTSEL_VEC_QH
9662 << OP_SH_VSEL);
9663 else
9664 ip->insn_opcode |= (MDMX_FMTSEL_VEC_OB <<
9665 OP_SH_VSEL);
9666 }
9667 /* Fall through */
9668 case 'W':
9669 case 'T':
9670 case 'Z':
9671 INSERT_OPERAND (FT, *ip, regno);
9672 break;
9673 case 'R':
9674 INSERT_OPERAND (FR, *ip, regno);
9675 break;
9676 }
9677 lastregno = regno;
9678 continue;
9679 }
9680
9681 switch (*args++)
9682 {
9683 case 'V':
9684 INSERT_OPERAND (FS, *ip, lastregno);
9685 continue;
9686 case 'W':
9687 INSERT_OPERAND (FT, *ip, lastregno);
9688 continue;
9689 }
9690 break;
9691
9692 case 'I':
9693 my_getExpression (&imm_expr, s);
9694 if (imm_expr.X_op != O_big
9695 && imm_expr.X_op != O_constant)
9696 insn_error = _("absolute expression required");
9697 if (HAVE_32BIT_GPRS)
9698 normalize_constant_expr (&imm_expr);
9699 s = expr_end;
9700 continue;
9701
9702 case 'A':
9703 my_getExpression (&offset_expr, s);
9704 normalize_address_expr (&offset_expr);
9705 *imm_reloc = BFD_RELOC_32;
9706 s = expr_end;
9707 continue;
9708
9709 case 'F':
9710 case 'L':
9711 case 'f':
9712 case 'l':
9713 {
9714 int f64;
9715 int using_gprs;
9716 char *save_in;
9717 char *err;
9718 unsigned char temp[8];
9719 int len;
9720 unsigned int length;
9721 segT seg;
9722 subsegT subseg;
9723 char *p;
9724
9725 /* These only appear as the last operand in an
9726 instruction, and every instruction that accepts
9727 them in any variant accepts them in all variants.
9728 This means we don't have to worry about backing out
9729 any changes if the instruction does not match.
9730
9731 The difference between them is the size of the
9732 floating point constant and where it goes. For 'F'
9733 and 'L' the constant is 64 bits; for 'f' and 'l' it
9734 is 32 bits. Where the constant is placed is based
9735 on how the MIPS assembler does things:
9736 F -- .rdata
9737 L -- .lit8
9738 f -- immediate value
9739 l -- .lit4
9740
9741 The .lit4 and .lit8 sections are only used if
9742 permitted by the -G argument.
9743
9744 The code below needs to know whether the target register
9745 is 32 or 64 bits wide. It relies on the fact 'f' and
9746 'F' are used with GPR-based instructions and 'l' and
9747 'L' are used with FPR-based instructions. */
9748
9749 f64 = *args == 'F' || *args == 'L';
9750 using_gprs = *args == 'F' || *args == 'f';
9751
9752 save_in = input_line_pointer;
9753 input_line_pointer = s;
9754 err = md_atof (f64 ? 'd' : 'f', (char *) temp, &len);
9755 length = len;
9756 s = input_line_pointer;
9757 input_line_pointer = save_in;
9758 if (err != NULL && *err != '\0')
9759 {
9760 as_bad (_("Bad floating point constant: %s"), err);
9761 memset (temp, '\0', sizeof temp);
9762 length = f64 ? 8 : 4;
9763 }
9764
9765 gas_assert (length == (unsigned) (f64 ? 8 : 4));
9766
9767 if (*args == 'f'
9768 || (*args == 'l'
9769 && (g_switch_value < 4
9770 || (temp[0] == 0 && temp[1] == 0)
9771 || (temp[2] == 0 && temp[3] == 0))))
9772 {
9773 imm_expr.X_op = O_constant;
9774 if (! target_big_endian)
9775 imm_expr.X_add_number = bfd_getl32 (temp);
9776 else
9777 imm_expr.X_add_number = bfd_getb32 (temp);
9778 }
9779 else if (length > 4
9780 && ! mips_disable_float_construction
9781 /* Constants can only be constructed in GPRs and
9782 copied to FPRs if the GPRs are at least as wide
9783 as the FPRs. Force the constant into memory if
9784 we are using 64-bit FPRs but the GPRs are only
9785 32 bits wide. */
9786 && (using_gprs
9787 || ! (HAVE_64BIT_FPRS && HAVE_32BIT_GPRS))
9788 && ((temp[0] == 0 && temp[1] == 0)
9789 || (temp[2] == 0 && temp[3] == 0))
9790 && ((temp[4] == 0 && temp[5] == 0)
9791 || (temp[6] == 0 && temp[7] == 0)))
9792 {
9793 /* The value is simple enough to load with a couple of
9794 instructions. If using 32-bit registers, set
9795 imm_expr to the high order 32 bits and offset_expr to
9796 the low order 32 bits. Otherwise, set imm_expr to
9797 the entire 64 bit constant. */
9798 if (using_gprs ? HAVE_32BIT_GPRS : HAVE_32BIT_FPRS)
9799 {
9800 imm_expr.X_op = O_constant;
9801 offset_expr.X_op = O_constant;
9802 if (! target_big_endian)
9803 {
9804 imm_expr.X_add_number = bfd_getl32 (temp + 4);
9805 offset_expr.X_add_number = bfd_getl32 (temp);
9806 }
9807 else
9808 {
9809 imm_expr.X_add_number = bfd_getb32 (temp);
9810 offset_expr.X_add_number = bfd_getb32 (temp + 4);
9811 }
9812 if (offset_expr.X_add_number == 0)
9813 offset_expr.X_op = O_absent;
9814 }
9815 else if (sizeof (imm_expr.X_add_number) > 4)
9816 {
9817 imm_expr.X_op = O_constant;
9818 if (! target_big_endian)
9819 imm_expr.X_add_number = bfd_getl64 (temp);
9820 else
9821 imm_expr.X_add_number = bfd_getb64 (temp);
9822 }
9823 else
9824 {
9825 imm_expr.X_op = O_big;
9826 imm_expr.X_add_number = 4;
9827 if (! target_big_endian)
9828 {
9829 generic_bignum[0] = bfd_getl16 (temp);
9830 generic_bignum[1] = bfd_getl16 (temp + 2);
9831 generic_bignum[2] = bfd_getl16 (temp + 4);
9832 generic_bignum[3] = bfd_getl16 (temp + 6);
9833 }
9834 else
9835 {
9836 generic_bignum[0] = bfd_getb16 (temp + 6);
9837 generic_bignum[1] = bfd_getb16 (temp + 4);
9838 generic_bignum[2] = bfd_getb16 (temp + 2);
9839 generic_bignum[3] = bfd_getb16 (temp);
9840 }
9841 }
9842 }
9843 else
9844 {
9845 const char *newname;
9846 segT new_seg;
9847
9848 /* Switch to the right section. */
9849 seg = now_seg;
9850 subseg = now_subseg;
9851 switch (*args)
9852 {
9853 default: /* unused default case avoids warnings. */
9854 case 'L':
9855 newname = RDATA_SECTION_NAME;
9856 if (g_switch_value >= 8)
9857 newname = ".lit8";
9858 break;
9859 case 'F':
9860 newname = RDATA_SECTION_NAME;
9861 break;
9862 case 'l':
9863 gas_assert (g_switch_value >= 4);
9864 newname = ".lit4";
9865 break;
9866 }
9867 new_seg = subseg_new (newname, (subsegT) 0);
9868 if (IS_ELF)
9869 bfd_set_section_flags (stdoutput, new_seg,
9870 (SEC_ALLOC
9871 | SEC_LOAD
9872 | SEC_READONLY
9873 | SEC_DATA));
9874 frag_align (*args == 'l' ? 2 : 3, 0, 0);
9875 if (IS_ELF && strncmp (TARGET_OS, "elf", 3) != 0)
9876 record_alignment (new_seg, 4);
9877 else
9878 record_alignment (new_seg, *args == 'l' ? 2 : 3);
9879 if (seg == now_seg)
9880 as_bad (_("Can't use floating point insn in this section"));
9881
9882 /* Set the argument to the current address in the
9883 section. */
9884 offset_expr.X_op = O_symbol;
9885 offset_expr.X_add_symbol =
9886 symbol_new ("L0\001", now_seg,
9887 (valueT) frag_now_fix (), frag_now);
9888 offset_expr.X_add_number = 0;
9889
9890 /* Put the floating point number into the section. */
9891 p = frag_more ((int) length);
9892 memcpy (p, temp, length);
9893
9894 /* Switch back to the original section. */
9895 subseg_set (seg, subseg);
9896 }
9897 }
9898 continue;
9899
9900 case 'i': /* 16 bit unsigned immediate */
9901 case 'j': /* 16 bit signed immediate */
9902 *imm_reloc = BFD_RELOC_LO16;
9903 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0)
9904 {
9905 int more;
9906 offsetT minval, maxval;
9907
9908 more = (insn + 1 < &mips_opcodes[NUMOPCODES]
9909 && strcmp (insn->name, insn[1].name) == 0);
9910
9911 /* If the expression was written as an unsigned number,
9912 only treat it as signed if there are no more
9913 alternatives. */
9914 if (more
9915 && *args == 'j'
9916 && sizeof (imm_expr.X_add_number) <= 4
9917 && imm_expr.X_op == O_constant
9918 && imm_expr.X_add_number < 0
9919 && imm_expr.X_unsigned
9920 && HAVE_64BIT_GPRS)
9921 break;
9922
9923 /* For compatibility with older assemblers, we accept
9924 0x8000-0xffff as signed 16-bit numbers when only
9925 signed numbers are allowed. */
9926 if (*args == 'i')
9927 minval = 0, maxval = 0xffff;
9928 else if (more)
9929 minval = -0x8000, maxval = 0x7fff;
9930 else
9931 minval = -0x8000, maxval = 0xffff;
9932
9933 if (imm_expr.X_op != O_constant
9934 || imm_expr.X_add_number < minval
9935 || imm_expr.X_add_number > maxval)
9936 {
9937 if (more)
9938 break;
9939 if (imm_expr.X_op == O_constant
9940 || imm_expr.X_op == O_big)
9941 as_bad (_("expression out of range"));
9942 }
9943 }
9944 s = expr_end;
9945 continue;
9946
9947 case 'o': /* 16 bit offset */
9948 /* Check whether there is only a single bracketed expression
9949 left. If so, it must be the base register and the
9950 constant must be zero. */
9951 if (*s == '(' && strchr (s + 1, '(') == 0)
9952 {
9953 offset_expr.X_op = O_constant;
9954 offset_expr.X_add_number = 0;
9955 continue;
9956 }
9957
9958 /* If this value won't fit into a 16 bit offset, then go
9959 find a macro that will generate the 32 bit offset
9960 code pattern. */
9961 if (my_getSmallExpression (&offset_expr, offset_reloc, s) == 0
9962 && (offset_expr.X_op != O_constant
9963 || offset_expr.X_add_number >= 0x8000
9964 || offset_expr.X_add_number < -0x8000))
9965 break;
9966
9967 s = expr_end;
9968 continue;
9969
9970 case 'p': /* pc relative offset */
9971 *offset_reloc = BFD_RELOC_16_PCREL_S2;
9972 my_getExpression (&offset_expr, s);
9973 s = expr_end;
9974 continue;
9975
9976 case 'u': /* upper 16 bits */
9977 if (my_getSmallExpression (&imm_expr, imm_reloc, s) == 0
9978 && imm_expr.X_op == O_constant
9979 && (imm_expr.X_add_number < 0
9980 || imm_expr.X_add_number >= 0x10000))
9981 as_bad (_("lui expression not in range 0..65535"));
9982 s = expr_end;
9983 continue;
9984
9985 case 'a': /* 26 bit address */
9986 my_getExpression (&offset_expr, s);
9987 s = expr_end;
9988 *offset_reloc = BFD_RELOC_MIPS_JMP;
9989 continue;
9990
9991 case 'N': /* 3 bit branch condition code */
9992 case 'M': /* 3 bit compare condition code */
9993 rtype = RTYPE_CCC;
9994 if (ip->insn_mo->pinfo & (FP_D| FP_S))
9995 rtype |= RTYPE_FCC;
9996 if (!reg_lookup (&s, rtype, &regno))
9997 break;
9998 if ((strcmp(str + strlen(str) - 3, ".ps") == 0
9999 || strcmp(str + strlen(str) - 5, "any2f") == 0
10000 || strcmp(str + strlen(str) - 5, "any2t") == 0)
10001 && (regno & 1) != 0)
10002 as_warn (_("Condition code register should be even for %s, was %d"),
10003 str, regno);
10004 if ((strcmp(str + strlen(str) - 5, "any4f") == 0
10005 || strcmp(str + strlen(str) - 5, "any4t") == 0)
10006 && (regno & 3) != 0)
10007 as_warn (_("Condition code register should be 0 or 4 for %s, was %d"),
10008 str, regno);
10009 if (*args == 'N')
10010 INSERT_OPERAND (BCC, *ip, regno);
10011 else
10012 INSERT_OPERAND (CCC, *ip, regno);
10013 continue;
10014
10015 case 'H':
10016 if (s[0] == '0' && (s[1] == 'x' || s[1] == 'X'))
10017 s += 2;
10018 if (ISDIGIT (*s))
10019 {
10020 c = 0;
10021 do
10022 {
10023 c *= 10;
10024 c += *s - '0';
10025 ++s;
10026 }
10027 while (ISDIGIT (*s));
10028 }
10029 else
10030 c = 8; /* Invalid sel value. */
10031
10032 if (c > 7)
10033 as_bad (_("invalid coprocessor sub-selection value (0-7)"));
10034 ip->insn_opcode |= c;
10035 continue;
10036
10037 case 'e':
10038 /* Must be at least one digit. */
10039 my_getExpression (&imm_expr, s);
10040 check_absolute_expr (ip, &imm_expr);
10041
10042 if ((unsigned long) imm_expr.X_add_number
10043 > (unsigned long) OP_MASK_VECBYTE)
10044 {
10045 as_bad (_("bad byte vector index (%ld)"),
10046 (long) imm_expr.X_add_number);
10047 imm_expr.X_add_number = 0;
10048 }
10049
10050 INSERT_OPERAND (VECBYTE, *ip, imm_expr.X_add_number);
10051 imm_expr.X_op = O_absent;
10052 s = expr_end;
10053 continue;
10054
10055 case '%':
10056 my_getExpression (&imm_expr, s);
10057 check_absolute_expr (ip, &imm_expr);
10058
10059 if ((unsigned long) imm_expr.X_add_number
10060 > (unsigned long) OP_MASK_VECALIGN)
10061 {
10062 as_bad (_("bad byte vector index (%ld)"),
10063 (long) imm_expr.X_add_number);
10064 imm_expr.X_add_number = 0;
10065 }
10066
10067 INSERT_OPERAND (VECALIGN, *ip, imm_expr.X_add_number);
10068 imm_expr.X_op = O_absent;
10069 s = expr_end;
10070 continue;
10071
10072 default:
10073 as_bad (_("bad char = '%c'\n"), *args);
10074 internalError ();
10075 }
10076 break;
10077 }
10078 /* Args don't match. */
10079 if (insn + 1 < &mips_opcodes[NUMOPCODES] &&
10080 !strcmp (insn->name, insn[1].name))
10081 {
10082 ++insn;
10083 s = argsStart;
10084 insn_error = _("illegal operands");
10085 continue;
10086 }
10087 if (save_c)
10088 *(--argsStart) = save_c;
10089 insn_error = _("illegal operands");
10090 return;
10091 }
10092 }
10093
10094 #define SKIP_SPACE_TABS(S) { while (*(S) == ' ' || *(S) == '\t') ++(S); }
10095
10096 /* This routine assembles an instruction into its binary format when
10097 assembling for the mips16. As a side effect, it sets one of the
10098 global variables imm_reloc or offset_reloc to the type of
10099 relocation to do if one of the operands is an address expression.
10100 It also sets mips16_small and mips16_ext if the user explicitly
10101 requested a small or extended instruction. */
10102
10103 static void
10104 mips16_ip (char *str, struct mips_cl_insn *ip)
10105 {
10106 char *s;
10107 const char *args;
10108 struct mips_opcode *insn;
10109 char *argsstart;
10110 unsigned int regno;
10111 unsigned int lastregno = 0;
10112 char *s_reset;
10113 size_t i;
10114
10115 insn_error = NULL;
10116
10117 mips16_small = FALSE;
10118 mips16_ext = FALSE;
10119
10120 for (s = str; ISLOWER (*s); ++s)
10121 ;
10122 switch (*s)
10123 {
10124 case '\0':
10125 break;
10126
10127 case ' ':
10128 *s++ = '\0';
10129 break;
10130
10131 case '.':
10132 if (s[1] == 't' && s[2] == ' ')
10133 {
10134 *s = '\0';
10135 mips16_small = TRUE;
10136 s += 3;
10137 break;
10138 }
10139 else if (s[1] == 'e' && s[2] == ' ')
10140 {
10141 *s = '\0';
10142 mips16_ext = TRUE;
10143 s += 3;
10144 break;
10145 }
10146 /* Fall through. */
10147 default:
10148 insn_error = _("unknown opcode");
10149 return;
10150 }
10151
10152 if (mips_opts.noautoextend && ! mips16_ext)
10153 mips16_small = TRUE;
10154
10155 if ((insn = (struct mips_opcode *) hash_find (mips16_op_hash, str)) == NULL)
10156 {
10157 insn_error = _("unrecognized opcode");
10158 return;
10159 }
10160
10161 argsstart = s;
10162 for (;;)
10163 {
10164 bfd_boolean ok;
10165
10166 gas_assert (strcmp (insn->name, str) == 0);
10167
10168 ok = is_opcode_valid_16 (insn);
10169 if (! ok)
10170 {
10171 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes]
10172 && strcmp (insn->name, insn[1].name) == 0)
10173 {
10174 ++insn;
10175 continue;
10176 }
10177 else
10178 {
10179 if (!insn_error)
10180 {
10181 static char buf[100];
10182 sprintf (buf,
10183 _("opcode not supported on this processor: %s (%s)"),
10184 mips_cpu_info_from_arch (mips_opts.arch)->name,
10185 mips_cpu_info_from_isa (mips_opts.isa)->name);
10186 insn_error = buf;
10187 }
10188 return;
10189 }
10190 }
10191
10192 create_insn (ip, insn);
10193 imm_expr.X_op = O_absent;
10194 imm_reloc[0] = BFD_RELOC_UNUSED;
10195 imm_reloc[1] = BFD_RELOC_UNUSED;
10196 imm_reloc[2] = BFD_RELOC_UNUSED;
10197 imm2_expr.X_op = O_absent;
10198 offset_expr.X_op = O_absent;
10199 offset_reloc[0] = BFD_RELOC_UNUSED;
10200 offset_reloc[1] = BFD_RELOC_UNUSED;
10201 offset_reloc[2] = BFD_RELOC_UNUSED;
10202 for (args = insn->args; 1; ++args)
10203 {
10204 int c;
10205
10206 if (*s == ' ')
10207 ++s;
10208
10209 /* In this switch statement we call break if we did not find
10210 a match, continue if we did find a match, or return if we
10211 are done. */
10212
10213 c = *args;
10214 switch (c)
10215 {
10216 case '\0':
10217 if (*s == '\0')
10218 {
10219 /* Stuff the immediate value in now, if we can. */
10220 if (imm_expr.X_op == O_constant
10221 && *imm_reloc > BFD_RELOC_UNUSED
10222 && *imm_reloc != BFD_RELOC_MIPS16_GOT16
10223 && *imm_reloc != BFD_RELOC_MIPS16_CALL16
10224 && insn->pinfo != INSN_MACRO)
10225 {
10226 valueT tmp;
10227
10228 switch (*offset_reloc)
10229 {
10230 case BFD_RELOC_MIPS16_HI16_S:
10231 tmp = (imm_expr.X_add_number + 0x8000) >> 16;
10232 break;
10233
10234 case BFD_RELOC_MIPS16_HI16:
10235 tmp = imm_expr.X_add_number >> 16;
10236 break;
10237
10238 case BFD_RELOC_MIPS16_LO16:
10239 tmp = ((imm_expr.X_add_number + 0x8000) & 0xffff)
10240 - 0x8000;
10241 break;
10242
10243 case BFD_RELOC_UNUSED:
10244 tmp = imm_expr.X_add_number;
10245 break;
10246
10247 default:
10248 internalError ();
10249 }
10250 *offset_reloc = BFD_RELOC_UNUSED;
10251
10252 mips16_immed (NULL, 0, *imm_reloc - BFD_RELOC_UNUSED,
10253 tmp, TRUE, mips16_small,
10254 mips16_ext, &ip->insn_opcode,
10255 &ip->use_extend, &ip->extend);
10256 imm_expr.X_op = O_absent;
10257 *imm_reloc = BFD_RELOC_UNUSED;
10258 }
10259
10260 return;
10261 }
10262 break;
10263
10264 case ',':
10265 if (*s++ == c)
10266 continue;
10267 s--;
10268 switch (*++args)
10269 {
10270 case 'v':
10271 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10272 continue;
10273 case 'w':
10274 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10275 continue;
10276 }
10277 break;
10278
10279 case '(':
10280 case ')':
10281 if (*s++ == c)
10282 continue;
10283 break;
10284
10285 case 'v':
10286 case 'w':
10287 if (s[0] != '$')
10288 {
10289 if (c == 'v')
10290 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10291 else
10292 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10293 ++args;
10294 continue;
10295 }
10296 /* Fall through. */
10297 case 'x':
10298 case 'y':
10299 case 'z':
10300 case 'Z':
10301 case '0':
10302 case 'S':
10303 case 'R':
10304 case 'X':
10305 case 'Y':
10306 s_reset = s;
10307 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &regno))
10308 {
10309 if (c == 'v' || c == 'w')
10310 {
10311 if (c == 'v')
10312 MIPS16_INSERT_OPERAND (RX, *ip, lastregno);
10313 else
10314 MIPS16_INSERT_OPERAND (RY, *ip, lastregno);
10315 ++args;
10316 continue;
10317 }
10318 break;
10319 }
10320
10321 if (*s == ' ')
10322 ++s;
10323 if (args[1] != *s)
10324 {
10325 if (c == 'v' || c == 'w')
10326 {
10327 regno = mips16_to_32_reg_map[lastregno];
10328 s = s_reset;
10329 ++args;
10330 }
10331 }
10332
10333 switch (c)
10334 {
10335 case 'x':
10336 case 'y':
10337 case 'z':
10338 case 'v':
10339 case 'w':
10340 case 'Z':
10341 regno = mips32_to_16_reg_map[regno];
10342 break;
10343
10344 case '0':
10345 if (regno != 0)
10346 regno = ILLEGAL_REG;
10347 break;
10348
10349 case 'S':
10350 if (regno != SP)
10351 regno = ILLEGAL_REG;
10352 break;
10353
10354 case 'R':
10355 if (regno != RA)
10356 regno = ILLEGAL_REG;
10357 break;
10358
10359 case 'X':
10360 case 'Y':
10361 if (regno == AT && mips_opts.at)
10362 {
10363 if (mips_opts.at == ATREG)
10364 as_warn (_("used $at without \".set noat\""));
10365 else
10366 as_warn (_("used $%u with \".set at=$%u\""),
10367 regno, mips_opts.at);
10368 }
10369 break;
10370
10371 default:
10372 internalError ();
10373 }
10374
10375 if (regno == ILLEGAL_REG)
10376 break;
10377
10378 switch (c)
10379 {
10380 case 'x':
10381 case 'v':
10382 MIPS16_INSERT_OPERAND (RX, *ip, regno);
10383 break;
10384 case 'y':
10385 case 'w':
10386 MIPS16_INSERT_OPERAND (RY, *ip, regno);
10387 break;
10388 case 'z':
10389 MIPS16_INSERT_OPERAND (RZ, *ip, regno);
10390 break;
10391 case 'Z':
10392 MIPS16_INSERT_OPERAND (MOVE32Z, *ip, regno);
10393 case '0':
10394 case 'S':
10395 case 'R':
10396 break;
10397 case 'X':
10398 MIPS16_INSERT_OPERAND (REGR32, *ip, regno);
10399 break;
10400 case 'Y':
10401 regno = ((regno & 7) << 2) | ((regno & 0x18) >> 3);
10402 MIPS16_INSERT_OPERAND (REG32R, *ip, regno);
10403 break;
10404 default:
10405 internalError ();
10406 }
10407
10408 lastregno = regno;
10409 continue;
10410
10411 case 'P':
10412 if (strncmp (s, "$pc", 3) == 0)
10413 {
10414 s += 3;
10415 continue;
10416 }
10417 break;
10418
10419 case '5':
10420 case 'H':
10421 case 'W':
10422 case 'D':
10423 case 'j':
10424 case 'V':
10425 case 'C':
10426 case 'U':
10427 case 'k':
10428 case 'K':
10429 i = my_getSmallExpression (&imm_expr, imm_reloc, s);
10430 if (i > 0)
10431 {
10432 if (imm_expr.X_op != O_constant)
10433 {
10434 mips16_ext = TRUE;
10435 ip->use_extend = TRUE;
10436 ip->extend = 0;
10437 }
10438 else
10439 {
10440 /* We need to relax this instruction. */
10441 *offset_reloc = *imm_reloc;
10442 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10443 }
10444 s = expr_end;
10445 continue;
10446 }
10447 *imm_reloc = BFD_RELOC_UNUSED;
10448 /* Fall through. */
10449 case '<':
10450 case '>':
10451 case '[':
10452 case ']':
10453 case '4':
10454 case '8':
10455 my_getExpression (&imm_expr, s);
10456 if (imm_expr.X_op == O_register)
10457 {
10458 /* What we thought was an expression turned out to
10459 be a register. */
10460
10461 if (s[0] == '(' && args[1] == '(')
10462 {
10463 /* It looks like the expression was omitted
10464 before a register indirection, which means
10465 that the expression is implicitly zero. We
10466 still set up imm_expr, so that we handle
10467 explicit extensions correctly. */
10468 imm_expr.X_op = O_constant;
10469 imm_expr.X_add_number = 0;
10470 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10471 continue;
10472 }
10473
10474 break;
10475 }
10476
10477 /* We need to relax this instruction. */
10478 *imm_reloc = (int) BFD_RELOC_UNUSED + c;
10479 s = expr_end;
10480 continue;
10481
10482 case 'p':
10483 case 'q':
10484 case 'A':
10485 case 'B':
10486 case 'E':
10487 /* We use offset_reloc rather than imm_reloc for the PC
10488 relative operands. This lets macros with both
10489 immediate and address operands work correctly. */
10490 my_getExpression (&offset_expr, s);
10491
10492 if (offset_expr.X_op == O_register)
10493 break;
10494
10495 /* We need to relax this instruction. */
10496 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
10497 s = expr_end;
10498 continue;
10499
10500 case '6': /* break code */
10501 my_getExpression (&imm_expr, s);
10502 check_absolute_expr (ip, &imm_expr);
10503 if ((unsigned long) imm_expr.X_add_number > 63)
10504 as_warn (_("Invalid value for `%s' (%lu)"),
10505 ip->insn_mo->name,
10506 (unsigned long) imm_expr.X_add_number);
10507 MIPS16_INSERT_OPERAND (IMM6, *ip, imm_expr.X_add_number);
10508 imm_expr.X_op = O_absent;
10509 s = expr_end;
10510 continue;
10511
10512 case 'a': /* 26 bit address */
10513 my_getExpression (&offset_expr, s);
10514 s = expr_end;
10515 *offset_reloc = BFD_RELOC_MIPS16_JMP;
10516 ip->insn_opcode <<= 16;
10517 continue;
10518
10519 case 'l': /* register list for entry macro */
10520 case 'L': /* register list for exit macro */
10521 {
10522 int mask;
10523
10524 if (c == 'l')
10525 mask = 0;
10526 else
10527 mask = 7 << 3;
10528 while (*s != '\0')
10529 {
10530 unsigned int freg, reg1, reg2;
10531
10532 while (*s == ' ' || *s == ',')
10533 ++s;
10534 if (reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10535 freg = 0;
10536 else if (reg_lookup (&s, RTYPE_FPU, &reg1))
10537 freg = 1;
10538 else
10539 {
10540 as_bad (_("can't parse register list"));
10541 break;
10542 }
10543 if (*s == ' ')
10544 ++s;
10545 if (*s != '-')
10546 reg2 = reg1;
10547 else
10548 {
10549 ++s;
10550 if (!reg_lookup (&s, freg ? RTYPE_FPU
10551 : (RTYPE_GP | RTYPE_NUM), &reg2))
10552 {
10553 as_bad (_("invalid register list"));
10554 break;
10555 }
10556 }
10557 if (freg && reg1 == 0 && reg2 == 0 && c == 'L')
10558 {
10559 mask &= ~ (7 << 3);
10560 mask |= 5 << 3;
10561 }
10562 else if (freg && reg1 == 0 && reg2 == 1 && c == 'L')
10563 {
10564 mask &= ~ (7 << 3);
10565 mask |= 6 << 3;
10566 }
10567 else if (reg1 == 4 && reg2 >= 4 && reg2 <= 7 && c != 'L')
10568 mask |= (reg2 - 3) << 3;
10569 else if (reg1 == 16 && reg2 >= 16 && reg2 <= 17)
10570 mask |= (reg2 - 15) << 1;
10571 else if (reg1 == RA && reg2 == RA)
10572 mask |= 1;
10573 else
10574 {
10575 as_bad (_("invalid register list"));
10576 break;
10577 }
10578 }
10579 /* The mask is filled in in the opcode table for the
10580 benefit of the disassembler. We remove it before
10581 applying the actual mask. */
10582 ip->insn_opcode &= ~ ((7 << 3) << MIPS16OP_SH_IMM6);
10583 ip->insn_opcode |= mask << MIPS16OP_SH_IMM6;
10584 }
10585 continue;
10586
10587 case 'm': /* Register list for save insn. */
10588 case 'M': /* Register list for restore insn. */
10589 {
10590 int opcode = 0;
10591 int framesz = 0, seen_framesz = 0;
10592 int args = 0, statics = 0, sregs = 0;
10593
10594 while (*s != '\0')
10595 {
10596 unsigned int reg1, reg2;
10597
10598 SKIP_SPACE_TABS (s);
10599 while (*s == ',')
10600 ++s;
10601 SKIP_SPACE_TABS (s);
10602
10603 my_getExpression (&imm_expr, s);
10604 if (imm_expr.X_op == O_constant)
10605 {
10606 /* Handle the frame size. */
10607 if (seen_framesz)
10608 {
10609 as_bad (_("more than one frame size in list"));
10610 break;
10611 }
10612 seen_framesz = 1;
10613 framesz = imm_expr.X_add_number;
10614 imm_expr.X_op = O_absent;
10615 s = expr_end;
10616 continue;
10617 }
10618
10619 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg1))
10620 {
10621 as_bad (_("can't parse register list"));
10622 break;
10623 }
10624
10625 while (*s == ' ')
10626 ++s;
10627
10628 if (*s != '-')
10629 reg2 = reg1;
10630 else
10631 {
10632 ++s;
10633 if (! reg_lookup (&s, RTYPE_GP | RTYPE_NUM, &reg2)
10634 || reg2 < reg1)
10635 {
10636 as_bad (_("can't parse register list"));
10637 break;
10638 }
10639 }
10640
10641 while (reg1 <= reg2)
10642 {
10643 if (reg1 >= 4 && reg1 <= 7)
10644 {
10645 if (!seen_framesz)
10646 /* args $a0-$a3 */
10647 args |= 1 << (reg1 - 4);
10648 else
10649 /* statics $a0-$a3 */
10650 statics |= 1 << (reg1 - 4);
10651 }
10652 else if ((reg1 >= 16 && reg1 <= 23) || reg1 == 30)
10653 {
10654 /* $s0-$s8 */
10655 sregs |= 1 << ((reg1 == 30) ? 8 : (reg1 - 16));
10656 }
10657 else if (reg1 == 31)
10658 {
10659 /* Add $ra to insn. */
10660 opcode |= 0x40;
10661 }
10662 else
10663 {
10664 as_bad (_("unexpected register in list"));
10665 break;
10666 }
10667 if (++reg1 == 24)
10668 reg1 = 30;
10669 }
10670 }
10671
10672 /* Encode args/statics combination. */
10673 if (args & statics)
10674 as_bad (_("arg/static registers overlap"));
10675 else if (args == 0xf)
10676 /* All $a0-$a3 are args. */
10677 opcode |= MIPS16_ALL_ARGS << 16;
10678 else if (statics == 0xf)
10679 /* All $a0-$a3 are statics. */
10680 opcode |= MIPS16_ALL_STATICS << 16;
10681 else
10682 {
10683 int narg = 0, nstat = 0;
10684
10685 /* Count arg registers. */
10686 while (args & 0x1)
10687 {
10688 args >>= 1;
10689 narg++;
10690 }
10691 if (args != 0)
10692 as_bad (_("invalid arg register list"));
10693
10694 /* Count static registers. */
10695 while (statics & 0x8)
10696 {
10697 statics = (statics << 1) & 0xf;
10698 nstat++;
10699 }
10700 if (statics != 0)
10701 as_bad (_("invalid static register list"));
10702
10703 /* Encode args/statics. */
10704 opcode |= ((narg << 2) | nstat) << 16;
10705 }
10706
10707 /* Encode $s0/$s1. */
10708 if (sregs & (1 << 0)) /* $s0 */
10709 opcode |= 0x20;
10710 if (sregs & (1 << 1)) /* $s1 */
10711 opcode |= 0x10;
10712 sregs >>= 2;
10713
10714 if (sregs != 0)
10715 {
10716 /* Count regs $s2-$s8. */
10717 int nsreg = 0;
10718 while (sregs & 1)
10719 {
10720 sregs >>= 1;
10721 nsreg++;
10722 }
10723 if (sregs != 0)
10724 as_bad (_("invalid static register list"));
10725 /* Encode $s2-$s8. */
10726 opcode |= nsreg << 24;
10727 }
10728
10729 /* Encode frame size. */
10730 if (!seen_framesz)
10731 as_bad (_("missing frame size"));
10732 else if ((framesz & 7) != 0 || framesz < 0
10733 || framesz > 0xff * 8)
10734 as_bad (_("invalid frame size"));
10735 else if (framesz != 128 || (opcode >> 16) != 0)
10736 {
10737 framesz /= 8;
10738 opcode |= (((framesz & 0xf0) << 16)
10739 | (framesz & 0x0f));
10740 }
10741
10742 /* Finally build the instruction. */
10743 if ((opcode >> 16) != 0 || framesz == 0)
10744 {
10745 ip->use_extend = TRUE;
10746 ip->extend = opcode >> 16;
10747 }
10748 ip->insn_opcode |= opcode & 0x7f;
10749 }
10750 continue;
10751
10752 case 'e': /* extend code */
10753 my_getExpression (&imm_expr, s);
10754 check_absolute_expr (ip, &imm_expr);
10755 if ((unsigned long) imm_expr.X_add_number > 0x7ff)
10756 {
10757 as_warn (_("Invalid value for `%s' (%lu)"),
10758 ip->insn_mo->name,
10759 (unsigned long) imm_expr.X_add_number);
10760 imm_expr.X_add_number &= 0x7ff;
10761 }
10762 ip->insn_opcode |= imm_expr.X_add_number;
10763 imm_expr.X_op = O_absent;
10764 s = expr_end;
10765 continue;
10766
10767 default:
10768 internalError ();
10769 }
10770 break;
10771 }
10772
10773 /* Args don't match. */
10774 if (insn + 1 < &mips16_opcodes[bfd_mips16_num_opcodes] &&
10775 strcmp (insn->name, insn[1].name) == 0)
10776 {
10777 ++insn;
10778 s = argsstart;
10779 continue;
10780 }
10781
10782 insn_error = _("illegal operands");
10783
10784 return;
10785 }
10786 }
10787
10788 /* This structure holds information we know about a mips16 immediate
10789 argument type. */
10790
10791 struct mips16_immed_operand
10792 {
10793 /* The type code used in the argument string in the opcode table. */
10794 int type;
10795 /* The number of bits in the short form of the opcode. */
10796 int nbits;
10797 /* The number of bits in the extended form of the opcode. */
10798 int extbits;
10799 /* The amount by which the short form is shifted when it is used;
10800 for example, the sw instruction has a shift count of 2. */
10801 int shift;
10802 /* The amount by which the short form is shifted when it is stored
10803 into the instruction code. */
10804 int op_shift;
10805 /* Non-zero if the short form is unsigned. */
10806 int unsp;
10807 /* Non-zero if the extended form is unsigned. */
10808 int extu;
10809 /* Non-zero if the value is PC relative. */
10810 int pcrel;
10811 };
10812
10813 /* The mips16 immediate operand types. */
10814
10815 static const struct mips16_immed_operand mips16_immed_operands[] =
10816 {
10817 { '<', 3, 5, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10818 { '>', 3, 5, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10819 { '[', 3, 6, 0, MIPS16OP_SH_RZ, 1, 1, 0 },
10820 { ']', 3, 6, 0, MIPS16OP_SH_RX, 1, 1, 0 },
10821 { '4', 4, 15, 0, MIPS16OP_SH_IMM4, 0, 0, 0 },
10822 { '5', 5, 16, 0, MIPS16OP_SH_IMM5, 1, 0, 0 },
10823 { 'H', 5, 16, 1, MIPS16OP_SH_IMM5, 1, 0, 0 },
10824 { 'W', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 0 },
10825 { 'D', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 0 },
10826 { 'j', 5, 16, 0, MIPS16OP_SH_IMM5, 0, 0, 0 },
10827 { '8', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 0, 0 },
10828 { 'V', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 0 },
10829 { 'C', 8, 16, 3, MIPS16OP_SH_IMM8, 1, 0, 0 },
10830 { 'U', 8, 16, 0, MIPS16OP_SH_IMM8, 1, 1, 0 },
10831 { 'k', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 0 },
10832 { 'K', 8, 16, 3, MIPS16OP_SH_IMM8, 0, 0, 0 },
10833 { 'p', 8, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10834 { 'q', 11, 16, 0, MIPS16OP_SH_IMM8, 0, 0, 1 },
10835 { 'A', 8, 16, 2, MIPS16OP_SH_IMM8, 1, 0, 1 },
10836 { 'B', 5, 16, 3, MIPS16OP_SH_IMM5, 1, 0, 1 },
10837 { 'E', 5, 16, 2, MIPS16OP_SH_IMM5, 1, 0, 1 }
10838 };
10839
10840 #define MIPS16_NUM_IMMED \
10841 (sizeof mips16_immed_operands / sizeof mips16_immed_operands[0])
10842
10843 /* Handle a mips16 instruction with an immediate value. This or's the
10844 small immediate value into *INSN. It sets *USE_EXTEND to indicate
10845 whether an extended value is needed; if one is needed, it sets
10846 *EXTEND to the value. The argument type is TYPE. The value is VAL.
10847 If SMALL is true, an unextended opcode was explicitly requested.
10848 If EXT is true, an extended opcode was explicitly requested. If
10849 WARN is true, warn if EXT does not match reality. */
10850
10851 static void
10852 mips16_immed (char *file, unsigned int line, int type, offsetT val,
10853 bfd_boolean warn, bfd_boolean small, bfd_boolean ext,
10854 unsigned long *insn, bfd_boolean *use_extend,
10855 unsigned short *extend)
10856 {
10857 const struct mips16_immed_operand *op;
10858 int mintiny, maxtiny;
10859 bfd_boolean needext;
10860
10861 op = mips16_immed_operands;
10862 while (op->type != type)
10863 {
10864 ++op;
10865 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
10866 }
10867
10868 if (op->unsp)
10869 {
10870 if (type == '<' || type == '>' || type == '[' || type == ']')
10871 {
10872 mintiny = 1;
10873 maxtiny = 1 << op->nbits;
10874 }
10875 else
10876 {
10877 mintiny = 0;
10878 maxtiny = (1 << op->nbits) - 1;
10879 }
10880 }
10881 else
10882 {
10883 mintiny = - (1 << (op->nbits - 1));
10884 maxtiny = (1 << (op->nbits - 1)) - 1;
10885 }
10886
10887 /* Branch offsets have an implicit 0 in the lowest bit. */
10888 if (type == 'p' || type == 'q')
10889 val /= 2;
10890
10891 if ((val & ((1 << op->shift) - 1)) != 0
10892 || val < (mintiny << op->shift)
10893 || val > (maxtiny << op->shift))
10894 needext = TRUE;
10895 else
10896 needext = FALSE;
10897
10898 if (warn && ext && ! needext)
10899 as_warn_where (file, line,
10900 _("extended operand requested but not required"));
10901 if (small && needext)
10902 as_bad_where (file, line, _("invalid unextended operand value"));
10903
10904 if (small || (! ext && ! needext))
10905 {
10906 int insnval;
10907
10908 *use_extend = FALSE;
10909 insnval = ((val >> op->shift) & ((1 << op->nbits) - 1));
10910 insnval <<= op->op_shift;
10911 *insn |= insnval;
10912 }
10913 else
10914 {
10915 long minext, maxext;
10916 int extval;
10917
10918 if (op->extu)
10919 {
10920 minext = 0;
10921 maxext = (1 << op->extbits) - 1;
10922 }
10923 else
10924 {
10925 minext = - (1 << (op->extbits - 1));
10926 maxext = (1 << (op->extbits - 1)) - 1;
10927 }
10928 if (val < minext || val > maxext)
10929 as_bad_where (file, line,
10930 _("operand value out of range for instruction"));
10931
10932 *use_extend = TRUE;
10933 if (op->extbits == 16)
10934 {
10935 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
10936 val &= 0x1f;
10937 }
10938 else if (op->extbits == 15)
10939 {
10940 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
10941 val &= 0xf;
10942 }
10943 else
10944 {
10945 extval = ((val & 0x1f) << 6) | (val & 0x20);
10946 val = 0;
10947 }
10948
10949 *extend = (unsigned short) extval;
10950 *insn |= val;
10951 }
10952 }
10953 \f
10954 struct percent_op_match
10955 {
10956 const char *str;
10957 bfd_reloc_code_real_type reloc;
10958 };
10959
10960 static const struct percent_op_match mips_percent_op[] =
10961 {
10962 {"%lo", BFD_RELOC_LO16},
10963 #ifdef OBJ_ELF
10964 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
10965 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
10966 {"%call16", BFD_RELOC_MIPS_CALL16},
10967 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
10968 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
10969 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
10970 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
10971 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
10972 {"%got", BFD_RELOC_MIPS_GOT16},
10973 {"%gp_rel", BFD_RELOC_GPREL16},
10974 {"%half", BFD_RELOC_16},
10975 {"%highest", BFD_RELOC_MIPS_HIGHEST},
10976 {"%higher", BFD_RELOC_MIPS_HIGHER},
10977 {"%neg", BFD_RELOC_MIPS_SUB},
10978 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
10979 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
10980 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
10981 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
10982 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
10983 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
10984 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
10985 #endif
10986 {"%hi", BFD_RELOC_HI16_S}
10987 };
10988
10989 static const struct percent_op_match mips16_percent_op[] =
10990 {
10991 {"%lo", BFD_RELOC_MIPS16_LO16},
10992 {"%gprel", BFD_RELOC_MIPS16_GPREL},
10993 {"%got", BFD_RELOC_MIPS16_GOT16},
10994 {"%call16", BFD_RELOC_MIPS16_CALL16},
10995 {"%hi", BFD_RELOC_MIPS16_HI16_S}
10996 };
10997
10998
10999 /* Return true if *STR points to a relocation operator. When returning true,
11000 move *STR over the operator and store its relocation code in *RELOC.
11001 Leave both *STR and *RELOC alone when returning false. */
11002
11003 static bfd_boolean
11004 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
11005 {
11006 const struct percent_op_match *percent_op;
11007 size_t limit, i;
11008
11009 if (mips_opts.mips16)
11010 {
11011 percent_op = mips16_percent_op;
11012 limit = ARRAY_SIZE (mips16_percent_op);
11013 }
11014 else
11015 {
11016 percent_op = mips_percent_op;
11017 limit = ARRAY_SIZE (mips_percent_op);
11018 }
11019
11020 for (i = 0; i < limit; i++)
11021 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
11022 {
11023 int len = strlen (percent_op[i].str);
11024
11025 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
11026 continue;
11027
11028 *str += strlen (percent_op[i].str);
11029 *reloc = percent_op[i].reloc;
11030
11031 /* Check whether the output BFD supports this relocation.
11032 If not, issue an error and fall back on something safe. */
11033 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
11034 {
11035 as_bad (_("relocation %s isn't supported by the current ABI"),
11036 percent_op[i].str);
11037 *reloc = BFD_RELOC_UNUSED;
11038 }
11039 return TRUE;
11040 }
11041 return FALSE;
11042 }
11043
11044
11045 /* Parse string STR as a 16-bit relocatable operand. Store the
11046 expression in *EP and the relocations in the array starting
11047 at RELOC. Return the number of relocation operators used.
11048
11049 On exit, EXPR_END points to the first character after the expression. */
11050
11051 static size_t
11052 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
11053 char *str)
11054 {
11055 bfd_reloc_code_real_type reversed_reloc[3];
11056 size_t reloc_index, i;
11057 int crux_depth, str_depth;
11058 char *crux;
11059
11060 /* Search for the start of the main expression, recoding relocations
11061 in REVERSED_RELOC. End the loop with CRUX pointing to the start
11062 of the main expression and with CRUX_DEPTH containing the number
11063 of open brackets at that point. */
11064 reloc_index = -1;
11065 str_depth = 0;
11066 do
11067 {
11068 reloc_index++;
11069 crux = str;
11070 crux_depth = str_depth;
11071
11072 /* Skip over whitespace and brackets, keeping count of the number
11073 of brackets. */
11074 while (*str == ' ' || *str == '\t' || *str == '(')
11075 if (*str++ == '(')
11076 str_depth++;
11077 }
11078 while (*str == '%'
11079 && reloc_index < (HAVE_NEWABI ? 3 : 1)
11080 && parse_relocation (&str, &reversed_reloc[reloc_index]));
11081
11082 my_getExpression (ep, crux);
11083 str = expr_end;
11084
11085 /* Match every open bracket. */
11086 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
11087 if (*str++ == ')')
11088 crux_depth--;
11089
11090 if (crux_depth > 0)
11091 as_bad (_("unclosed '('"));
11092
11093 expr_end = str;
11094
11095 if (reloc_index != 0)
11096 {
11097 prev_reloc_op_frag = frag_now;
11098 for (i = 0; i < reloc_index; i++)
11099 reloc[i] = reversed_reloc[reloc_index - 1 - i];
11100 }
11101
11102 return reloc_index;
11103 }
11104
11105 static void
11106 my_getExpression (expressionS *ep, char *str)
11107 {
11108 char *save_in;
11109 valueT val;
11110
11111 save_in = input_line_pointer;
11112 input_line_pointer = str;
11113 expression (ep);
11114 expr_end = input_line_pointer;
11115 input_line_pointer = save_in;
11116
11117 /* If we are in mips16 mode, and this is an expression based on `.',
11118 then we bump the value of the symbol by 1 since that is how other
11119 text symbols are handled. We don't bother to handle complex
11120 expressions, just `.' plus or minus a constant. */
11121 if (mips_opts.mips16
11122 && ep->X_op == O_symbol
11123 && strcmp (S_GET_NAME (ep->X_add_symbol), FAKE_LABEL_NAME) == 0
11124 && S_GET_SEGMENT (ep->X_add_symbol) == now_seg
11125 && symbol_get_frag (ep->X_add_symbol) == frag_now
11126 && symbol_constant_p (ep->X_add_symbol)
11127 && (val = S_GET_VALUE (ep->X_add_symbol)) == frag_now_fix ())
11128 S_SET_VALUE (ep->X_add_symbol, val + 1);
11129 }
11130
11131 char *
11132 md_atof (int type, char *litP, int *sizeP)
11133 {
11134 return ieee_md_atof (type, litP, sizeP, target_big_endian);
11135 }
11136
11137 void
11138 md_number_to_chars (char *buf, valueT val, int n)
11139 {
11140 if (target_big_endian)
11141 number_to_chars_bigendian (buf, val, n);
11142 else
11143 number_to_chars_littleendian (buf, val, n);
11144 }
11145 \f
11146 #ifdef OBJ_ELF
11147 static int support_64bit_objects(void)
11148 {
11149 const char **list, **l;
11150 int yes;
11151
11152 list = bfd_target_list ();
11153 for (l = list; *l != NULL; l++)
11154 #ifdef TE_TMIPS
11155 /* This is traditional mips */
11156 if (strcmp (*l, "elf64-tradbigmips") == 0
11157 || strcmp (*l, "elf64-tradlittlemips") == 0)
11158 #else
11159 if (strcmp (*l, "elf64-bigmips") == 0
11160 || strcmp (*l, "elf64-littlemips") == 0)
11161 #endif
11162 break;
11163 yes = (*l != NULL);
11164 free (list);
11165 return yes;
11166 }
11167 #endif /* OBJ_ELF */
11168
11169 const char *md_shortopts = "O::g::G:";
11170
11171 enum options
11172 {
11173 OPTION_MARCH = OPTION_MD_BASE,
11174 OPTION_MTUNE,
11175 OPTION_MIPS1,
11176 OPTION_MIPS2,
11177 OPTION_MIPS3,
11178 OPTION_MIPS4,
11179 OPTION_MIPS5,
11180 OPTION_MIPS32,
11181 OPTION_MIPS64,
11182 OPTION_MIPS32R2,
11183 OPTION_MIPS64R2,
11184 OPTION_MIPS16,
11185 OPTION_NO_MIPS16,
11186 OPTION_MIPS3D,
11187 OPTION_NO_MIPS3D,
11188 OPTION_MDMX,
11189 OPTION_NO_MDMX,
11190 OPTION_DSP,
11191 OPTION_NO_DSP,
11192 OPTION_MT,
11193 OPTION_NO_MT,
11194 OPTION_SMARTMIPS,
11195 OPTION_NO_SMARTMIPS,
11196 OPTION_DSPR2,
11197 OPTION_NO_DSPR2,
11198 OPTION_COMPAT_ARCH_BASE,
11199 OPTION_M4650,
11200 OPTION_NO_M4650,
11201 OPTION_M4010,
11202 OPTION_NO_M4010,
11203 OPTION_M4100,
11204 OPTION_NO_M4100,
11205 OPTION_M3900,
11206 OPTION_NO_M3900,
11207 OPTION_M7000_HILO_FIX,
11208 OPTION_MNO_7000_HILO_FIX,
11209 OPTION_FIX_24K,
11210 OPTION_NO_FIX_24K,
11211 OPTION_FIX_VR4120,
11212 OPTION_NO_FIX_VR4120,
11213 OPTION_FIX_VR4130,
11214 OPTION_NO_FIX_VR4130,
11215 OPTION_TRAP,
11216 OPTION_BREAK,
11217 OPTION_EB,
11218 OPTION_EL,
11219 OPTION_FP32,
11220 OPTION_GP32,
11221 OPTION_CONSTRUCT_FLOATS,
11222 OPTION_NO_CONSTRUCT_FLOATS,
11223 OPTION_FP64,
11224 OPTION_GP64,
11225 OPTION_RELAX_BRANCH,
11226 OPTION_NO_RELAX_BRANCH,
11227 OPTION_MSHARED,
11228 OPTION_MNO_SHARED,
11229 OPTION_MSYM32,
11230 OPTION_MNO_SYM32,
11231 OPTION_SOFT_FLOAT,
11232 OPTION_HARD_FLOAT,
11233 OPTION_SINGLE_FLOAT,
11234 OPTION_DOUBLE_FLOAT,
11235 OPTION_32,
11236 #ifdef OBJ_ELF
11237 OPTION_CALL_SHARED,
11238 OPTION_CALL_NONPIC,
11239 OPTION_NON_SHARED,
11240 OPTION_XGOT,
11241 OPTION_MABI,
11242 OPTION_N32,
11243 OPTION_64,
11244 OPTION_MDEBUG,
11245 OPTION_NO_MDEBUG,
11246 OPTION_PDR,
11247 OPTION_NO_PDR,
11248 OPTION_MVXWORKS_PIC,
11249 #endif /* OBJ_ELF */
11250 OPTION_END_OF_ENUM
11251 };
11252
11253 struct option md_longopts[] =
11254 {
11255 /* Options which specify architecture. */
11256 {"march", required_argument, NULL, OPTION_MARCH},
11257 {"mtune", required_argument, NULL, OPTION_MTUNE},
11258 {"mips0", no_argument, NULL, OPTION_MIPS1},
11259 {"mips1", no_argument, NULL, OPTION_MIPS1},
11260 {"mips2", no_argument, NULL, OPTION_MIPS2},
11261 {"mips3", no_argument, NULL, OPTION_MIPS3},
11262 {"mips4", no_argument, NULL, OPTION_MIPS4},
11263 {"mips5", no_argument, NULL, OPTION_MIPS5},
11264 {"mips32", no_argument, NULL, OPTION_MIPS32},
11265 {"mips64", no_argument, NULL, OPTION_MIPS64},
11266 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
11267 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
11268
11269 /* Options which specify Application Specific Extensions (ASEs). */
11270 {"mips16", no_argument, NULL, OPTION_MIPS16},
11271 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
11272 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
11273 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
11274 {"mdmx", no_argument, NULL, OPTION_MDMX},
11275 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
11276 {"mdsp", no_argument, NULL, OPTION_DSP},
11277 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
11278 {"mmt", no_argument, NULL, OPTION_MT},
11279 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
11280 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
11281 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
11282 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
11283 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
11284
11285 /* Old-style architecture options. Don't add more of these. */
11286 {"m4650", no_argument, NULL, OPTION_M4650},
11287 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
11288 {"m4010", no_argument, NULL, OPTION_M4010},
11289 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
11290 {"m4100", no_argument, NULL, OPTION_M4100},
11291 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
11292 {"m3900", no_argument, NULL, OPTION_M3900},
11293 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
11294
11295 /* Options which enable bug fixes. */
11296 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
11297 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11298 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
11299 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
11300 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
11301 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
11302 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
11303 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
11304 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
11305
11306 /* Miscellaneous options. */
11307 {"trap", no_argument, NULL, OPTION_TRAP},
11308 {"no-break", no_argument, NULL, OPTION_TRAP},
11309 {"break", no_argument, NULL, OPTION_BREAK},
11310 {"no-trap", no_argument, NULL, OPTION_BREAK},
11311 {"EB", no_argument, NULL, OPTION_EB},
11312 {"EL", no_argument, NULL, OPTION_EL},
11313 {"mfp32", no_argument, NULL, OPTION_FP32},
11314 {"mgp32", no_argument, NULL, OPTION_GP32},
11315 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
11316 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
11317 {"mfp64", no_argument, NULL, OPTION_FP64},
11318 {"mgp64", no_argument, NULL, OPTION_GP64},
11319 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
11320 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
11321 {"mshared", no_argument, NULL, OPTION_MSHARED},
11322 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
11323 {"msym32", no_argument, NULL, OPTION_MSYM32},
11324 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
11325 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
11326 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
11327 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
11328 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
11329
11330 /* Strictly speaking this next option is ELF specific,
11331 but we allow it for other ports as well in order to
11332 make testing easier. */
11333 {"32", no_argument, NULL, OPTION_32},
11334
11335 /* ELF-specific options. */
11336 #ifdef OBJ_ELF
11337 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
11338 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
11339 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
11340 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
11341 {"xgot", no_argument, NULL, OPTION_XGOT},
11342 {"mabi", required_argument, NULL, OPTION_MABI},
11343 {"n32", no_argument, NULL, OPTION_N32},
11344 {"64", no_argument, NULL, OPTION_64},
11345 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
11346 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
11347 {"mpdr", no_argument, NULL, OPTION_PDR},
11348 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
11349 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
11350 #endif /* OBJ_ELF */
11351
11352 {NULL, no_argument, NULL, 0}
11353 };
11354 size_t md_longopts_size = sizeof (md_longopts);
11355
11356 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
11357 NEW_VALUE. Warn if another value was already specified. Note:
11358 we have to defer parsing the -march and -mtune arguments in order
11359 to handle 'from-abi' correctly, since the ABI might be specified
11360 in a later argument. */
11361
11362 static void
11363 mips_set_option_string (const char **string_ptr, const char *new_value)
11364 {
11365 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
11366 as_warn (_("A different %s was already specified, is now %s"),
11367 string_ptr == &mips_arch_string ? "-march" : "-mtune",
11368 new_value);
11369
11370 *string_ptr = new_value;
11371 }
11372
11373 int
11374 md_parse_option (int c, char *arg)
11375 {
11376 switch (c)
11377 {
11378 case OPTION_CONSTRUCT_FLOATS:
11379 mips_disable_float_construction = 0;
11380 break;
11381
11382 case OPTION_NO_CONSTRUCT_FLOATS:
11383 mips_disable_float_construction = 1;
11384 break;
11385
11386 case OPTION_TRAP:
11387 mips_trap = 1;
11388 break;
11389
11390 case OPTION_BREAK:
11391 mips_trap = 0;
11392 break;
11393
11394 case OPTION_EB:
11395 target_big_endian = 1;
11396 break;
11397
11398 case OPTION_EL:
11399 target_big_endian = 0;
11400 break;
11401
11402 case 'O':
11403 if (arg == NULL)
11404 mips_optimize = 1;
11405 else if (arg[0] == '0')
11406 mips_optimize = 0;
11407 else if (arg[0] == '1')
11408 mips_optimize = 1;
11409 else
11410 mips_optimize = 2;
11411 break;
11412
11413 case 'g':
11414 if (arg == NULL)
11415 mips_debug = 2;
11416 else
11417 mips_debug = atoi (arg);
11418 break;
11419
11420 case OPTION_MIPS1:
11421 file_mips_isa = ISA_MIPS1;
11422 break;
11423
11424 case OPTION_MIPS2:
11425 file_mips_isa = ISA_MIPS2;
11426 break;
11427
11428 case OPTION_MIPS3:
11429 file_mips_isa = ISA_MIPS3;
11430 break;
11431
11432 case OPTION_MIPS4:
11433 file_mips_isa = ISA_MIPS4;
11434 break;
11435
11436 case OPTION_MIPS5:
11437 file_mips_isa = ISA_MIPS5;
11438 break;
11439
11440 case OPTION_MIPS32:
11441 file_mips_isa = ISA_MIPS32;
11442 break;
11443
11444 case OPTION_MIPS32R2:
11445 file_mips_isa = ISA_MIPS32R2;
11446 break;
11447
11448 case OPTION_MIPS64R2:
11449 file_mips_isa = ISA_MIPS64R2;
11450 break;
11451
11452 case OPTION_MIPS64:
11453 file_mips_isa = ISA_MIPS64;
11454 break;
11455
11456 case OPTION_MTUNE:
11457 mips_set_option_string (&mips_tune_string, arg);
11458 break;
11459
11460 case OPTION_MARCH:
11461 mips_set_option_string (&mips_arch_string, arg);
11462 break;
11463
11464 case OPTION_M4650:
11465 mips_set_option_string (&mips_arch_string, "4650");
11466 mips_set_option_string (&mips_tune_string, "4650");
11467 break;
11468
11469 case OPTION_NO_M4650:
11470 break;
11471
11472 case OPTION_M4010:
11473 mips_set_option_string (&mips_arch_string, "4010");
11474 mips_set_option_string (&mips_tune_string, "4010");
11475 break;
11476
11477 case OPTION_NO_M4010:
11478 break;
11479
11480 case OPTION_M4100:
11481 mips_set_option_string (&mips_arch_string, "4100");
11482 mips_set_option_string (&mips_tune_string, "4100");
11483 break;
11484
11485 case OPTION_NO_M4100:
11486 break;
11487
11488 case OPTION_M3900:
11489 mips_set_option_string (&mips_arch_string, "3900");
11490 mips_set_option_string (&mips_tune_string, "3900");
11491 break;
11492
11493 case OPTION_NO_M3900:
11494 break;
11495
11496 case OPTION_MDMX:
11497 mips_opts.ase_mdmx = 1;
11498 break;
11499
11500 case OPTION_NO_MDMX:
11501 mips_opts.ase_mdmx = 0;
11502 break;
11503
11504 case OPTION_DSP:
11505 mips_opts.ase_dsp = 1;
11506 mips_opts.ase_dspr2 = 0;
11507 break;
11508
11509 case OPTION_NO_DSP:
11510 mips_opts.ase_dsp = 0;
11511 mips_opts.ase_dspr2 = 0;
11512 break;
11513
11514 case OPTION_DSPR2:
11515 mips_opts.ase_dspr2 = 1;
11516 mips_opts.ase_dsp = 1;
11517 break;
11518
11519 case OPTION_NO_DSPR2:
11520 mips_opts.ase_dspr2 = 0;
11521 mips_opts.ase_dsp = 0;
11522 break;
11523
11524 case OPTION_MT:
11525 mips_opts.ase_mt = 1;
11526 break;
11527
11528 case OPTION_NO_MT:
11529 mips_opts.ase_mt = 0;
11530 break;
11531
11532 case OPTION_MIPS16:
11533 mips_opts.mips16 = 1;
11534 mips_no_prev_insn ();
11535 break;
11536
11537 case OPTION_NO_MIPS16:
11538 mips_opts.mips16 = 0;
11539 mips_no_prev_insn ();
11540 break;
11541
11542 case OPTION_MIPS3D:
11543 mips_opts.ase_mips3d = 1;
11544 break;
11545
11546 case OPTION_NO_MIPS3D:
11547 mips_opts.ase_mips3d = 0;
11548 break;
11549
11550 case OPTION_SMARTMIPS:
11551 mips_opts.ase_smartmips = 1;
11552 break;
11553
11554 case OPTION_NO_SMARTMIPS:
11555 mips_opts.ase_smartmips = 0;
11556 break;
11557
11558 case OPTION_FIX_24K:
11559 mips_fix_24k = 1;
11560 break;
11561
11562 case OPTION_NO_FIX_24K:
11563 mips_fix_24k = 0;
11564 break;
11565
11566 case OPTION_FIX_VR4120:
11567 mips_fix_vr4120 = 1;
11568 break;
11569
11570 case OPTION_NO_FIX_VR4120:
11571 mips_fix_vr4120 = 0;
11572 break;
11573
11574 case OPTION_FIX_VR4130:
11575 mips_fix_vr4130 = 1;
11576 break;
11577
11578 case OPTION_NO_FIX_VR4130:
11579 mips_fix_vr4130 = 0;
11580 break;
11581
11582 case OPTION_RELAX_BRANCH:
11583 mips_relax_branch = 1;
11584 break;
11585
11586 case OPTION_NO_RELAX_BRANCH:
11587 mips_relax_branch = 0;
11588 break;
11589
11590 case OPTION_MSHARED:
11591 mips_in_shared = TRUE;
11592 break;
11593
11594 case OPTION_MNO_SHARED:
11595 mips_in_shared = FALSE;
11596 break;
11597
11598 case OPTION_MSYM32:
11599 mips_opts.sym32 = TRUE;
11600 break;
11601
11602 case OPTION_MNO_SYM32:
11603 mips_opts.sym32 = FALSE;
11604 break;
11605
11606 #ifdef OBJ_ELF
11607 /* When generating ELF code, we permit -KPIC and -call_shared to
11608 select SVR4_PIC, and -non_shared to select no PIC. This is
11609 intended to be compatible with Irix 5. */
11610 case OPTION_CALL_SHARED:
11611 if (!IS_ELF)
11612 {
11613 as_bad (_("-call_shared is supported only for ELF format"));
11614 return 0;
11615 }
11616 mips_pic = SVR4_PIC;
11617 mips_abicalls = TRUE;
11618 break;
11619
11620 case OPTION_CALL_NONPIC:
11621 if (!IS_ELF)
11622 {
11623 as_bad (_("-call_nonpic is supported only for ELF format"));
11624 return 0;
11625 }
11626 mips_pic = NO_PIC;
11627 mips_abicalls = TRUE;
11628 break;
11629
11630 case OPTION_NON_SHARED:
11631 if (!IS_ELF)
11632 {
11633 as_bad (_("-non_shared is supported only for ELF format"));
11634 return 0;
11635 }
11636 mips_pic = NO_PIC;
11637 mips_abicalls = FALSE;
11638 break;
11639
11640 /* The -xgot option tells the assembler to use 32 bit offsets
11641 when accessing the got in SVR4_PIC mode. It is for Irix
11642 compatibility. */
11643 case OPTION_XGOT:
11644 mips_big_got = 1;
11645 break;
11646 #endif /* OBJ_ELF */
11647
11648 case 'G':
11649 g_switch_value = atoi (arg);
11650 g_switch_seen = 1;
11651 break;
11652
11653 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
11654 and -mabi=64. */
11655 case OPTION_32:
11656 if (IS_ELF)
11657 mips_abi = O32_ABI;
11658 /* We silently ignore -32 for non-ELF targets. This greatly
11659 simplifies the construction of the MIPS GAS test cases. */
11660 break;
11661
11662 #ifdef OBJ_ELF
11663 case OPTION_N32:
11664 if (!IS_ELF)
11665 {
11666 as_bad (_("-n32 is supported for ELF format only"));
11667 return 0;
11668 }
11669 mips_abi = N32_ABI;
11670 break;
11671
11672 case OPTION_64:
11673 if (!IS_ELF)
11674 {
11675 as_bad (_("-64 is supported for ELF format only"));
11676 return 0;
11677 }
11678 mips_abi = N64_ABI;
11679 if (!support_64bit_objects())
11680 as_fatal (_("No compiled in support for 64 bit object file format"));
11681 break;
11682 #endif /* OBJ_ELF */
11683
11684 case OPTION_GP32:
11685 file_mips_gp32 = 1;
11686 break;
11687
11688 case OPTION_GP64:
11689 file_mips_gp32 = 0;
11690 break;
11691
11692 case OPTION_FP32:
11693 file_mips_fp32 = 1;
11694 break;
11695
11696 case OPTION_FP64:
11697 file_mips_fp32 = 0;
11698 break;
11699
11700 case OPTION_SINGLE_FLOAT:
11701 file_mips_single_float = 1;
11702 break;
11703
11704 case OPTION_DOUBLE_FLOAT:
11705 file_mips_single_float = 0;
11706 break;
11707
11708 case OPTION_SOFT_FLOAT:
11709 file_mips_soft_float = 1;
11710 break;
11711
11712 case OPTION_HARD_FLOAT:
11713 file_mips_soft_float = 0;
11714 break;
11715
11716 #ifdef OBJ_ELF
11717 case OPTION_MABI:
11718 if (!IS_ELF)
11719 {
11720 as_bad (_("-mabi is supported for ELF format only"));
11721 return 0;
11722 }
11723 if (strcmp (arg, "32") == 0)
11724 mips_abi = O32_ABI;
11725 else if (strcmp (arg, "o64") == 0)
11726 mips_abi = O64_ABI;
11727 else if (strcmp (arg, "n32") == 0)
11728 mips_abi = N32_ABI;
11729 else if (strcmp (arg, "64") == 0)
11730 {
11731 mips_abi = N64_ABI;
11732 if (! support_64bit_objects())
11733 as_fatal (_("No compiled in support for 64 bit object file "
11734 "format"));
11735 }
11736 else if (strcmp (arg, "eabi") == 0)
11737 mips_abi = EABI_ABI;
11738 else
11739 {
11740 as_fatal (_("invalid abi -mabi=%s"), arg);
11741 return 0;
11742 }
11743 break;
11744 #endif /* OBJ_ELF */
11745
11746 case OPTION_M7000_HILO_FIX:
11747 mips_7000_hilo_fix = TRUE;
11748 break;
11749
11750 case OPTION_MNO_7000_HILO_FIX:
11751 mips_7000_hilo_fix = FALSE;
11752 break;
11753
11754 #ifdef OBJ_ELF
11755 case OPTION_MDEBUG:
11756 mips_flag_mdebug = TRUE;
11757 break;
11758
11759 case OPTION_NO_MDEBUG:
11760 mips_flag_mdebug = FALSE;
11761 break;
11762
11763 case OPTION_PDR:
11764 mips_flag_pdr = TRUE;
11765 break;
11766
11767 case OPTION_NO_PDR:
11768 mips_flag_pdr = FALSE;
11769 break;
11770
11771 case OPTION_MVXWORKS_PIC:
11772 mips_pic = VXWORKS_PIC;
11773 break;
11774 #endif /* OBJ_ELF */
11775
11776 default:
11777 return 0;
11778 }
11779
11780 return 1;
11781 }
11782 \f
11783 /* Set up globals to generate code for the ISA or processor
11784 described by INFO. */
11785
11786 static void
11787 mips_set_architecture (const struct mips_cpu_info *info)
11788 {
11789 if (info != 0)
11790 {
11791 file_mips_arch = info->cpu;
11792 mips_opts.arch = info->cpu;
11793 mips_opts.isa = info->isa;
11794 }
11795 }
11796
11797
11798 /* Likewise for tuning. */
11799
11800 static void
11801 mips_set_tune (const struct mips_cpu_info *info)
11802 {
11803 if (info != 0)
11804 mips_tune = info->cpu;
11805 }
11806
11807
11808 void
11809 mips_after_parse_args (void)
11810 {
11811 const struct mips_cpu_info *arch_info = 0;
11812 const struct mips_cpu_info *tune_info = 0;
11813
11814 /* GP relative stuff not working for PE */
11815 if (strncmp (TARGET_OS, "pe", 2) == 0)
11816 {
11817 if (g_switch_seen && g_switch_value != 0)
11818 as_bad (_("-G not supported in this configuration."));
11819 g_switch_value = 0;
11820 }
11821
11822 if (mips_abi == NO_ABI)
11823 mips_abi = MIPS_DEFAULT_ABI;
11824
11825 /* The following code determines the architecture and register size.
11826 Similar code was added to GCC 3.3 (see override_options() in
11827 config/mips/mips.c). The GAS and GCC code should be kept in sync
11828 as much as possible. */
11829
11830 if (mips_arch_string != 0)
11831 arch_info = mips_parse_cpu ("-march", mips_arch_string);
11832
11833 if (file_mips_isa != ISA_UNKNOWN)
11834 {
11835 /* Handle -mipsN. At this point, file_mips_isa contains the
11836 ISA level specified by -mipsN, while arch_info->isa contains
11837 the -march selection (if any). */
11838 if (arch_info != 0)
11839 {
11840 /* -march takes precedence over -mipsN, since it is more descriptive.
11841 There's no harm in specifying both as long as the ISA levels
11842 are the same. */
11843 if (file_mips_isa != arch_info->isa)
11844 as_bad (_("-%s conflicts with the other architecture options, which imply -%s"),
11845 mips_cpu_info_from_isa (file_mips_isa)->name,
11846 mips_cpu_info_from_isa (arch_info->isa)->name);
11847 }
11848 else
11849 arch_info = mips_cpu_info_from_isa (file_mips_isa);
11850 }
11851
11852 if (arch_info == 0)
11853 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
11854
11855 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
11856 as_bad (_("-march=%s is not compatible with the selected ABI"),
11857 arch_info->name);
11858
11859 mips_set_architecture (arch_info);
11860
11861 /* Optimize for file_mips_arch, unless -mtune selects a different processor. */
11862 if (mips_tune_string != 0)
11863 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
11864
11865 if (tune_info == 0)
11866 mips_set_tune (arch_info);
11867 else
11868 mips_set_tune (tune_info);
11869
11870 if (file_mips_gp32 >= 0)
11871 {
11872 /* The user specified the size of the integer registers. Make sure
11873 it agrees with the ABI and ISA. */
11874 if (file_mips_gp32 == 0 && !ISA_HAS_64BIT_REGS (mips_opts.isa))
11875 as_bad (_("-mgp64 used with a 32-bit processor"));
11876 else if (file_mips_gp32 == 1 && ABI_NEEDS_64BIT_REGS (mips_abi))
11877 as_bad (_("-mgp32 used with a 64-bit ABI"));
11878 else if (file_mips_gp32 == 0 && ABI_NEEDS_32BIT_REGS (mips_abi))
11879 as_bad (_("-mgp64 used with a 32-bit ABI"));
11880 }
11881 else
11882 {
11883 /* Infer the integer register size from the ABI and processor.
11884 Restrict ourselves to 32-bit registers if that's all the
11885 processor has, or if the ABI cannot handle 64-bit registers. */
11886 file_mips_gp32 = (ABI_NEEDS_32BIT_REGS (mips_abi)
11887 || !ISA_HAS_64BIT_REGS (mips_opts.isa));
11888 }
11889
11890 switch (file_mips_fp32)
11891 {
11892 default:
11893 case -1:
11894 /* No user specified float register size.
11895 ??? GAS treats single-float processors as though they had 64-bit
11896 float registers (although it complains when double-precision
11897 instructions are used). As things stand, saying they have 32-bit
11898 registers would lead to spurious "register must be even" messages.
11899 So here we assume float registers are never smaller than the
11900 integer ones. */
11901 if (file_mips_gp32 == 0)
11902 /* 64-bit integer registers implies 64-bit float registers. */
11903 file_mips_fp32 = 0;
11904 else if ((mips_opts.ase_mips3d > 0 || mips_opts.ase_mdmx > 0)
11905 && ISA_HAS_64BIT_FPRS (mips_opts.isa))
11906 /* -mips3d and -mdmx imply 64-bit float registers, if possible. */
11907 file_mips_fp32 = 0;
11908 else
11909 /* 32-bit float registers. */
11910 file_mips_fp32 = 1;
11911 break;
11912
11913 /* The user specified the size of the float registers. Check if it
11914 agrees with the ABI and ISA. */
11915 case 0:
11916 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
11917 as_bad (_("-mfp64 used with a 32-bit fpu"));
11918 else if (ABI_NEEDS_32BIT_REGS (mips_abi)
11919 && !ISA_HAS_MXHC1 (mips_opts.isa))
11920 as_warn (_("-mfp64 used with a 32-bit ABI"));
11921 break;
11922 case 1:
11923 if (ABI_NEEDS_64BIT_REGS (mips_abi))
11924 as_warn (_("-mfp32 used with a 64-bit ABI"));
11925 break;
11926 }
11927
11928 /* End of GCC-shared inference code. */
11929
11930 /* This flag is set when we have a 64-bit capable CPU but use only
11931 32-bit wide registers. Note that EABI does not use it. */
11932 if (ISA_HAS_64BIT_REGS (mips_opts.isa)
11933 && ((mips_abi == NO_ABI && file_mips_gp32 == 1)
11934 || mips_abi == O32_ABI))
11935 mips_32bitmode = 1;
11936
11937 if (mips_opts.isa == ISA_MIPS1 && mips_trap)
11938 as_bad (_("trap exception not supported at ISA 1"));
11939
11940 /* If the selected architecture includes support for ASEs, enable
11941 generation of code for them. */
11942 if (mips_opts.mips16 == -1)
11943 mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_arch)) ? 1 : 0;
11944 if (mips_opts.ase_mips3d == -1)
11945 mips_opts.ase_mips3d = ((arch_info->flags & MIPS_CPU_ASE_MIPS3D)
11946 && file_mips_fp32 == 0) ? 1 : 0;
11947 if (mips_opts.ase_mips3d && file_mips_fp32 == 1)
11948 as_bad (_("-mfp32 used with -mips3d"));
11949
11950 if (mips_opts.ase_mdmx == -1)
11951 mips_opts.ase_mdmx = ((arch_info->flags & MIPS_CPU_ASE_MDMX)
11952 && file_mips_fp32 == 0) ? 1 : 0;
11953 if (mips_opts.ase_mdmx && file_mips_fp32 == 1)
11954 as_bad (_("-mfp32 used with -mdmx"));
11955
11956 if (mips_opts.ase_smartmips == -1)
11957 mips_opts.ase_smartmips = (arch_info->flags & MIPS_CPU_ASE_SMARTMIPS) ? 1 : 0;
11958 if (mips_opts.ase_smartmips && !ISA_SUPPORTS_SMARTMIPS)
11959 as_warn (_("%s ISA does not support SmartMIPS"),
11960 mips_cpu_info_from_isa (mips_opts.isa)->name);
11961
11962 if (mips_opts.ase_dsp == -1)
11963 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
11964 if (mips_opts.ase_dsp && !ISA_SUPPORTS_DSP_ASE)
11965 as_warn (_("%s ISA does not support DSP ASE"),
11966 mips_cpu_info_from_isa (mips_opts.isa)->name);
11967
11968 if (mips_opts.ase_dspr2 == -1)
11969 {
11970 mips_opts.ase_dspr2 = (arch_info->flags & MIPS_CPU_ASE_DSPR2) ? 1 : 0;
11971 mips_opts.ase_dsp = (arch_info->flags & MIPS_CPU_ASE_DSP) ? 1 : 0;
11972 }
11973 if (mips_opts.ase_dspr2 && !ISA_SUPPORTS_DSPR2_ASE)
11974 as_warn (_("%s ISA does not support DSP R2 ASE"),
11975 mips_cpu_info_from_isa (mips_opts.isa)->name);
11976
11977 if (mips_opts.ase_mt == -1)
11978 mips_opts.ase_mt = (arch_info->flags & MIPS_CPU_ASE_MT) ? 1 : 0;
11979 if (mips_opts.ase_mt && !ISA_SUPPORTS_MT_ASE)
11980 as_warn (_("%s ISA does not support MT ASE"),
11981 mips_cpu_info_from_isa (mips_opts.isa)->name);
11982
11983 file_mips_isa = mips_opts.isa;
11984 file_ase_mips16 = mips_opts.mips16;
11985 file_ase_mips3d = mips_opts.ase_mips3d;
11986 file_ase_mdmx = mips_opts.ase_mdmx;
11987 file_ase_smartmips = mips_opts.ase_smartmips;
11988 file_ase_dsp = mips_opts.ase_dsp;
11989 file_ase_dspr2 = mips_opts.ase_dspr2;
11990 file_ase_mt = mips_opts.ase_mt;
11991 mips_opts.gp32 = file_mips_gp32;
11992 mips_opts.fp32 = file_mips_fp32;
11993 mips_opts.soft_float = file_mips_soft_float;
11994 mips_opts.single_float = file_mips_single_float;
11995
11996 if (mips_flag_mdebug < 0)
11997 {
11998 #ifdef OBJ_MAYBE_ECOFF
11999 if (OUTPUT_FLAVOR == bfd_target_ecoff_flavour)
12000 mips_flag_mdebug = 1;
12001 else
12002 #endif /* OBJ_MAYBE_ECOFF */
12003 mips_flag_mdebug = 0;
12004 }
12005 }
12006 \f
12007 void
12008 mips_init_after_args (void)
12009 {
12010 /* initialize opcodes */
12011 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
12012 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
12013 }
12014
12015 long
12016 md_pcrel_from (fixS *fixP)
12017 {
12018 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
12019 switch (fixP->fx_r_type)
12020 {
12021 case BFD_RELOC_16_PCREL_S2:
12022 case BFD_RELOC_MIPS_JMP:
12023 /* Return the address of the delay slot. */
12024 return addr + 4;
12025 default:
12026 /* We have no relocation type for PC relative MIPS16 instructions. */
12027 if (fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != now_seg)
12028 as_bad_where (fixP->fx_file, fixP->fx_line,
12029 _("PC relative MIPS16 instruction references a different section"));
12030 return addr;
12031 }
12032 }
12033
12034 /* This is called before the symbol table is processed. In order to
12035 work with gcc when using mips-tfile, we must keep all local labels.
12036 However, in other cases, we want to discard them. If we were
12037 called with -g, but we didn't see any debugging information, it may
12038 mean that gcc is smuggling debugging information through to
12039 mips-tfile, in which case we must generate all local labels. */
12040
12041 void
12042 mips_frob_file_before_adjust (void)
12043 {
12044 #ifndef NO_ECOFF_DEBUGGING
12045 if (ECOFF_DEBUGGING
12046 && mips_debug != 0
12047 && ! ecoff_debugging_seen)
12048 flag_keep_locals = 1;
12049 #endif
12050 }
12051
12052 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
12053 the corresponding LO16 reloc. This is called before md_apply_fix and
12054 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
12055 relocation operators.
12056
12057 For our purposes, a %lo() expression matches a %got() or %hi()
12058 expression if:
12059
12060 (a) it refers to the same symbol; and
12061 (b) the offset applied in the %lo() expression is no lower than
12062 the offset applied in the %got() or %hi().
12063
12064 (b) allows us to cope with code like:
12065
12066 lui $4,%hi(foo)
12067 lh $4,%lo(foo+2)($4)
12068
12069 ...which is legal on RELA targets, and has a well-defined behaviour
12070 if the user knows that adding 2 to "foo" will not induce a carry to
12071 the high 16 bits.
12072
12073 When several %lo()s match a particular %got() or %hi(), we use the
12074 following rules to distinguish them:
12075
12076 (1) %lo()s with smaller offsets are a better match than %lo()s with
12077 higher offsets.
12078
12079 (2) %lo()s with no matching %got() or %hi() are better than those
12080 that already have a matching %got() or %hi().
12081
12082 (3) later %lo()s are better than earlier %lo()s.
12083
12084 These rules are applied in order.
12085
12086 (1) means, among other things, that %lo()s with identical offsets are
12087 chosen if they exist.
12088
12089 (2) means that we won't associate several high-part relocations with
12090 the same low-part relocation unless there's no alternative. Having
12091 several high parts for the same low part is a GNU extension; this rule
12092 allows careful users to avoid it.
12093
12094 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
12095 with the last high-part relocation being at the front of the list.
12096 It therefore makes sense to choose the last matching low-part
12097 relocation, all other things being equal. It's also easier
12098 to code that way. */
12099
12100 void
12101 mips_frob_file (void)
12102 {
12103 struct mips_hi_fixup *l;
12104 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
12105
12106 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
12107 {
12108 segment_info_type *seginfo;
12109 bfd_boolean matched_lo_p;
12110 fixS **hi_pos, **lo_pos, **pos;
12111
12112 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
12113
12114 /* If a GOT16 relocation turns out to be against a global symbol,
12115 there isn't supposed to be a matching LO. */
12116 if (got16_reloc_p (l->fixp->fx_r_type)
12117 && !pic_need_relax (l->fixp->fx_addsy, l->seg))
12118 continue;
12119
12120 /* Check quickly whether the next fixup happens to be a matching %lo. */
12121 if (fixup_has_matching_lo_p (l->fixp))
12122 continue;
12123
12124 seginfo = seg_info (l->seg);
12125
12126 /* Set HI_POS to the position of this relocation in the chain.
12127 Set LO_POS to the position of the chosen low-part relocation.
12128 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
12129 relocation that matches an immediately-preceding high-part
12130 relocation. */
12131 hi_pos = NULL;
12132 lo_pos = NULL;
12133 matched_lo_p = FALSE;
12134 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
12135
12136 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
12137 {
12138 if (*pos == l->fixp)
12139 hi_pos = pos;
12140
12141 if ((*pos)->fx_r_type == looking_for_rtype
12142 && (*pos)->fx_addsy == l->fixp->fx_addsy
12143 && (*pos)->fx_offset >= l->fixp->fx_offset
12144 && (lo_pos == NULL
12145 || (*pos)->fx_offset < (*lo_pos)->fx_offset
12146 || (!matched_lo_p
12147 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
12148 lo_pos = pos;
12149
12150 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
12151 && fixup_has_matching_lo_p (*pos));
12152 }
12153
12154 /* If we found a match, remove the high-part relocation from its
12155 current position and insert it before the low-part relocation.
12156 Make the offsets match so that fixup_has_matching_lo_p()
12157 will return true.
12158
12159 We don't warn about unmatched high-part relocations since some
12160 versions of gcc have been known to emit dead "lui ...%hi(...)"
12161 instructions. */
12162 if (lo_pos != NULL)
12163 {
12164 l->fixp->fx_offset = (*lo_pos)->fx_offset;
12165 if (l->fixp->fx_next != *lo_pos)
12166 {
12167 *hi_pos = l->fixp->fx_next;
12168 l->fixp->fx_next = *lo_pos;
12169 *lo_pos = l->fixp;
12170 }
12171 }
12172 }
12173 }
12174
12175 /* We may have combined relocations without symbols in the N32/N64 ABI.
12176 We have to prevent gas from dropping them. */
12177
12178 int
12179 mips_force_relocation (fixS *fixp)
12180 {
12181 if (generic_force_reloc (fixp))
12182 return 1;
12183
12184 if (HAVE_NEWABI
12185 && S_GET_SEGMENT (fixp->fx_addsy) == bfd_abs_section_ptr
12186 && (fixp->fx_r_type == BFD_RELOC_MIPS_SUB
12187 || hi16_reloc_p (fixp->fx_r_type)
12188 || lo16_reloc_p (fixp->fx_r_type)))
12189 return 1;
12190
12191 return 0;
12192 }
12193
12194 /* Apply a fixup to the object file. */
12195
12196 void
12197 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12198 {
12199 bfd_byte *buf;
12200 long insn;
12201 reloc_howto_type *howto;
12202
12203 /* We ignore generic BFD relocations we don't know about. */
12204 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
12205 if (! howto)
12206 return;
12207
12208 gas_assert (fixP->fx_size == 4
12209 || fixP->fx_r_type == BFD_RELOC_16
12210 || fixP->fx_r_type == BFD_RELOC_64
12211 || fixP->fx_r_type == BFD_RELOC_CTOR
12212 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
12213 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
12214 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
12215 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64);
12216
12217 buf = (bfd_byte *) (fixP->fx_frag->fr_literal + fixP->fx_where);
12218
12219 gas_assert (!fixP->fx_pcrel || fixP->fx_r_type == BFD_RELOC_16_PCREL_S2);
12220
12221 /* Don't treat parts of a composite relocation as done. There are two
12222 reasons for this:
12223
12224 (1) The second and third parts will be against 0 (RSS_UNDEF) but
12225 should nevertheless be emitted if the first part is.
12226
12227 (2) In normal usage, composite relocations are never assembly-time
12228 constants. The easiest way of dealing with the pathological
12229 exceptions is to generate a relocation against STN_UNDEF and
12230 leave everything up to the linker. */
12231 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
12232 fixP->fx_done = 1;
12233
12234 switch (fixP->fx_r_type)
12235 {
12236 case BFD_RELOC_MIPS_TLS_GD:
12237 case BFD_RELOC_MIPS_TLS_LDM:
12238 case BFD_RELOC_MIPS_TLS_DTPREL32:
12239 case BFD_RELOC_MIPS_TLS_DTPREL64:
12240 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
12241 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
12242 case BFD_RELOC_MIPS_TLS_GOTTPREL:
12243 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
12244 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
12245 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12246 /* fall through */
12247
12248 case BFD_RELOC_MIPS_JMP:
12249 case BFD_RELOC_MIPS_SHIFT5:
12250 case BFD_RELOC_MIPS_SHIFT6:
12251 case BFD_RELOC_MIPS_GOT_DISP:
12252 case BFD_RELOC_MIPS_GOT_PAGE:
12253 case BFD_RELOC_MIPS_GOT_OFST:
12254 case BFD_RELOC_MIPS_SUB:
12255 case BFD_RELOC_MIPS_INSERT_A:
12256 case BFD_RELOC_MIPS_INSERT_B:
12257 case BFD_RELOC_MIPS_DELETE:
12258 case BFD_RELOC_MIPS_HIGHEST:
12259 case BFD_RELOC_MIPS_HIGHER:
12260 case BFD_RELOC_MIPS_SCN_DISP:
12261 case BFD_RELOC_MIPS_REL16:
12262 case BFD_RELOC_MIPS_RELGOT:
12263 case BFD_RELOC_MIPS_JALR:
12264 case BFD_RELOC_HI16:
12265 case BFD_RELOC_HI16_S:
12266 case BFD_RELOC_GPREL16:
12267 case BFD_RELOC_MIPS_LITERAL:
12268 case BFD_RELOC_MIPS_CALL16:
12269 case BFD_RELOC_MIPS_GOT16:
12270 case BFD_RELOC_GPREL32:
12271 case BFD_RELOC_MIPS_GOT_HI16:
12272 case BFD_RELOC_MIPS_GOT_LO16:
12273 case BFD_RELOC_MIPS_CALL_HI16:
12274 case BFD_RELOC_MIPS_CALL_LO16:
12275 case BFD_RELOC_MIPS16_GPREL:
12276 case BFD_RELOC_MIPS16_GOT16:
12277 case BFD_RELOC_MIPS16_CALL16:
12278 case BFD_RELOC_MIPS16_HI16:
12279 case BFD_RELOC_MIPS16_HI16_S:
12280 case BFD_RELOC_MIPS16_JMP:
12281 /* Nothing needed to do. The value comes from the reloc entry. */
12282 break;
12283
12284 case BFD_RELOC_64:
12285 /* This is handled like BFD_RELOC_32, but we output a sign
12286 extended value if we are only 32 bits. */
12287 if (fixP->fx_done)
12288 {
12289 if (8 <= sizeof (valueT))
12290 md_number_to_chars ((char *) buf, *valP, 8);
12291 else
12292 {
12293 valueT hiv;
12294
12295 if ((*valP & 0x80000000) != 0)
12296 hiv = 0xffffffff;
12297 else
12298 hiv = 0;
12299 md_number_to_chars ((char *)(buf + (target_big_endian ? 4 : 0)),
12300 *valP, 4);
12301 md_number_to_chars ((char *)(buf + (target_big_endian ? 0 : 4)),
12302 hiv, 4);
12303 }
12304 }
12305 break;
12306
12307 case BFD_RELOC_RVA:
12308 case BFD_RELOC_32:
12309 case BFD_RELOC_16:
12310 /* If we are deleting this reloc entry, we must fill in the
12311 value now. This can happen if we have a .word which is not
12312 resolved when it appears but is later defined. */
12313 if (fixP->fx_done)
12314 md_number_to_chars ((char *) buf, *valP, fixP->fx_size);
12315 break;
12316
12317 case BFD_RELOC_LO16:
12318 case BFD_RELOC_MIPS16_LO16:
12319 /* FIXME: Now that embedded-PIC is gone, some of this code/comment
12320 may be safe to remove, but if so it's not obvious. */
12321 /* When handling an embedded PIC switch statement, we can wind
12322 up deleting a LO16 reloc. See the 'o' case in mips_ip. */
12323 if (fixP->fx_done)
12324 {
12325 if (*valP + 0x8000 > 0xffff)
12326 as_bad_where (fixP->fx_file, fixP->fx_line,
12327 _("relocation overflow"));
12328 if (target_big_endian)
12329 buf += 2;
12330 md_number_to_chars ((char *) buf, *valP, 2);
12331 }
12332 break;
12333
12334 case BFD_RELOC_16_PCREL_S2:
12335 if ((*valP & 0x3) != 0)
12336 as_bad_where (fixP->fx_file, fixP->fx_line,
12337 _("Branch to misaligned address (%lx)"), (long) *valP);
12338
12339 /* We need to save the bits in the instruction since fixup_segment()
12340 might be deleting the relocation entry (i.e., a branch within
12341 the current segment). */
12342 if (! fixP->fx_done)
12343 break;
12344
12345 /* Update old instruction data. */
12346 if (target_big_endian)
12347 insn = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
12348 else
12349 insn = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
12350
12351 if (*valP + 0x20000 <= 0x3ffff)
12352 {
12353 insn |= (*valP >> 2) & 0xffff;
12354 md_number_to_chars ((char *) buf, insn, 4);
12355 }
12356 else if (mips_pic == NO_PIC
12357 && fixP->fx_done
12358 && fixP->fx_frag->fr_address >= text_section->vma
12359 && (fixP->fx_frag->fr_address
12360 < text_section->vma + bfd_get_section_size (text_section))
12361 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
12362 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
12363 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
12364 {
12365 /* The branch offset is too large. If this is an
12366 unconditional branch, and we are not generating PIC code,
12367 we can convert it to an absolute jump instruction. */
12368 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
12369 insn = 0x0c000000; /* jal */
12370 else
12371 insn = 0x08000000; /* j */
12372 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
12373 fixP->fx_done = 0;
12374 fixP->fx_addsy = section_symbol (text_section);
12375 *valP += md_pcrel_from (fixP);
12376 md_number_to_chars ((char *) buf, insn, 4);
12377 }
12378 else
12379 {
12380 /* If we got here, we have branch-relaxation disabled,
12381 and there's nothing we can do to fix this instruction
12382 without turning it into a longer sequence. */
12383 as_bad_where (fixP->fx_file, fixP->fx_line,
12384 _("Branch out of range"));
12385 }
12386 break;
12387
12388 case BFD_RELOC_VTABLE_INHERIT:
12389 fixP->fx_done = 0;
12390 if (fixP->fx_addsy
12391 && !S_IS_DEFINED (fixP->fx_addsy)
12392 && !S_IS_WEAK (fixP->fx_addsy))
12393 S_SET_WEAK (fixP->fx_addsy);
12394 break;
12395
12396 case BFD_RELOC_VTABLE_ENTRY:
12397 fixP->fx_done = 0;
12398 break;
12399
12400 default:
12401 internalError ();
12402 }
12403
12404 /* Remember value for tc_gen_reloc. */
12405 fixP->fx_addnumber = *valP;
12406 }
12407
12408 static symbolS *
12409 get_symbol (void)
12410 {
12411 int c;
12412 char *name;
12413 symbolS *p;
12414
12415 name = input_line_pointer;
12416 c = get_symbol_end ();
12417 p = (symbolS *) symbol_find_or_make (name);
12418 *input_line_pointer = c;
12419 return p;
12420 }
12421
12422 /* Align the current frag to a given power of two. If a particular
12423 fill byte should be used, FILL points to an integer that contains
12424 that byte, otherwise FILL is null.
12425
12426 The MIPS assembler also automatically adjusts any preceding
12427 label. */
12428
12429 static void
12430 mips_align (int to, int *fill, symbolS *label)
12431 {
12432 mips_emit_delays ();
12433 mips_record_mips16_mode ();
12434 if (fill == NULL && subseg_text_p (now_seg))
12435 frag_align_code (to, 0);
12436 else
12437 frag_align (to, fill ? *fill : 0, 0);
12438 record_alignment (now_seg, to);
12439 if (label != NULL)
12440 {
12441 gas_assert (S_GET_SEGMENT (label) == now_seg);
12442 symbol_set_frag (label, frag_now);
12443 S_SET_VALUE (label, (valueT) frag_now_fix ());
12444 }
12445 }
12446
12447 /* Align to a given power of two. .align 0 turns off the automatic
12448 alignment used by the data creating pseudo-ops. */
12449
12450 static void
12451 s_align (int x ATTRIBUTE_UNUSED)
12452 {
12453 int temp, fill_value, *fill_ptr;
12454 long max_alignment = 28;
12455
12456 /* o Note that the assembler pulls down any immediately preceding label
12457 to the aligned address.
12458 o It's not documented but auto alignment is reinstated by
12459 a .align pseudo instruction.
12460 o Note also that after auto alignment is turned off the mips assembler
12461 issues an error on attempt to assemble an improperly aligned data item.
12462 We don't. */
12463
12464 temp = get_absolute_expression ();
12465 if (temp > max_alignment)
12466 as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
12467 else if (temp < 0)
12468 {
12469 as_warn (_("Alignment negative: 0 assumed."));
12470 temp = 0;
12471 }
12472 if (*input_line_pointer == ',')
12473 {
12474 ++input_line_pointer;
12475 fill_value = get_absolute_expression ();
12476 fill_ptr = &fill_value;
12477 }
12478 else
12479 fill_ptr = 0;
12480 if (temp)
12481 {
12482 segment_info_type *si = seg_info (now_seg);
12483 struct insn_label_list *l = si->label_list;
12484 /* Auto alignment should be switched on by next section change. */
12485 auto_align = 1;
12486 mips_align (temp, fill_ptr, l != NULL ? l->label : NULL);
12487 }
12488 else
12489 {
12490 auto_align = 0;
12491 }
12492
12493 demand_empty_rest_of_line ();
12494 }
12495
12496 static void
12497 s_change_sec (int sec)
12498 {
12499 segT seg;
12500
12501 #ifdef OBJ_ELF
12502 /* The ELF backend needs to know that we are changing sections, so
12503 that .previous works correctly. We could do something like check
12504 for an obj_section_change_hook macro, but that might be confusing
12505 as it would not be appropriate to use it in the section changing
12506 functions in read.c, since obj-elf.c intercepts those. FIXME:
12507 This should be cleaner, somehow. */
12508 if (IS_ELF)
12509 obj_elf_section_change_hook ();
12510 #endif
12511
12512 mips_emit_delays ();
12513
12514 switch (sec)
12515 {
12516 case 't':
12517 s_text (0);
12518 break;
12519 case 'd':
12520 s_data (0);
12521 break;
12522 case 'b':
12523 subseg_set (bss_section, (subsegT) get_absolute_expression ());
12524 demand_empty_rest_of_line ();
12525 break;
12526
12527 case 'r':
12528 seg = subseg_new (RDATA_SECTION_NAME,
12529 (subsegT) get_absolute_expression ());
12530 if (IS_ELF)
12531 {
12532 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
12533 | SEC_READONLY | SEC_RELOC
12534 | SEC_DATA));
12535 if (strncmp (TARGET_OS, "elf", 3) != 0)
12536 record_alignment (seg, 4);
12537 }
12538 demand_empty_rest_of_line ();
12539 break;
12540
12541 case 's':
12542 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
12543 if (IS_ELF)
12544 {
12545 bfd_set_section_flags (stdoutput, seg,
12546 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
12547 if (strncmp (TARGET_OS, "elf", 3) != 0)
12548 record_alignment (seg, 4);
12549 }
12550 demand_empty_rest_of_line ();
12551 break;
12552 }
12553
12554 auto_align = 1;
12555 }
12556
12557 void
12558 s_change_section (int ignore ATTRIBUTE_UNUSED)
12559 {
12560 #ifdef OBJ_ELF
12561 char *section_name;
12562 char c;
12563 char next_c = 0;
12564 int section_type;
12565 int section_flag;
12566 int section_entry_size;
12567 int section_alignment;
12568
12569 if (!IS_ELF)
12570 return;
12571
12572 section_name = input_line_pointer;
12573 c = get_symbol_end ();
12574 if (c)
12575 next_c = *(input_line_pointer + 1);
12576
12577 /* Do we have .section Name<,"flags">? */
12578 if (c != ',' || (c == ',' && next_c == '"'))
12579 {
12580 /* just after name is now '\0'. */
12581 *input_line_pointer = c;
12582 input_line_pointer = section_name;
12583 obj_elf_section (ignore);
12584 return;
12585 }
12586 input_line_pointer++;
12587
12588 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
12589 if (c == ',')
12590 section_type = get_absolute_expression ();
12591 else
12592 section_type = 0;
12593 if (*input_line_pointer++ == ',')
12594 section_flag = get_absolute_expression ();
12595 else
12596 section_flag = 0;
12597 if (*input_line_pointer++ == ',')
12598 section_entry_size = get_absolute_expression ();
12599 else
12600 section_entry_size = 0;
12601 if (*input_line_pointer++ == ',')
12602 section_alignment = get_absolute_expression ();
12603 else
12604 section_alignment = 0;
12605
12606 section_name = xstrdup (section_name);
12607
12608 /* When using the generic form of .section (as implemented by obj-elf.c),
12609 there's no way to set the section type to SHT_MIPS_DWARF. Users have
12610 traditionally had to fall back on the more common @progbits instead.
12611
12612 There's nothing really harmful in this, since bfd will correct
12613 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
12614 means that, for backwards compatibility, the special_section entries
12615 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
12616
12617 Even so, we shouldn't force users of the MIPS .section syntax to
12618 incorrectly label the sections as SHT_PROGBITS. The best compromise
12619 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
12620 generic type-checking code. */
12621 if (section_type == SHT_MIPS_DWARF)
12622 section_type = SHT_PROGBITS;
12623
12624 obj_elf_change_section (section_name, section_type, section_flag,
12625 section_entry_size, 0, 0, 0);
12626
12627 if (now_seg->name != section_name)
12628 free (section_name);
12629 #endif /* OBJ_ELF */
12630 }
12631
12632 void
12633 mips_enable_auto_align (void)
12634 {
12635 auto_align = 1;
12636 }
12637
12638 static void
12639 s_cons (int log_size)
12640 {
12641 segment_info_type *si = seg_info (now_seg);
12642 struct insn_label_list *l = si->label_list;
12643 symbolS *label;
12644
12645 label = l != NULL ? l->label : NULL;
12646 mips_emit_delays ();
12647 if (log_size > 0 && auto_align)
12648 mips_align (log_size, 0, label);
12649 mips_clear_insn_labels ();
12650 cons (1 << log_size);
12651 }
12652
12653 static void
12654 s_float_cons (int type)
12655 {
12656 segment_info_type *si = seg_info (now_seg);
12657 struct insn_label_list *l = si->label_list;
12658 symbolS *label;
12659
12660 label = l != NULL ? l->label : NULL;
12661
12662 mips_emit_delays ();
12663
12664 if (auto_align)
12665 {
12666 if (type == 'd')
12667 mips_align (3, 0, label);
12668 else
12669 mips_align (2, 0, label);
12670 }
12671
12672 mips_clear_insn_labels ();
12673
12674 float_cons (type);
12675 }
12676
12677 /* Handle .globl. We need to override it because on Irix 5 you are
12678 permitted to say
12679 .globl foo .text
12680 where foo is an undefined symbol, to mean that foo should be
12681 considered to be the address of a function. */
12682
12683 static void
12684 s_mips_globl (int x ATTRIBUTE_UNUSED)
12685 {
12686 char *name;
12687 int c;
12688 symbolS *symbolP;
12689 flagword flag;
12690
12691 do
12692 {
12693 name = input_line_pointer;
12694 c = get_symbol_end ();
12695 symbolP = symbol_find_or_make (name);
12696 S_SET_EXTERNAL (symbolP);
12697
12698 *input_line_pointer = c;
12699 SKIP_WHITESPACE ();
12700
12701 /* On Irix 5, every global symbol that is not explicitly labelled as
12702 being a function is apparently labelled as being an object. */
12703 flag = BSF_OBJECT;
12704
12705 if (!is_end_of_line[(unsigned char) *input_line_pointer]
12706 && (*input_line_pointer != ','))
12707 {
12708 char *secname;
12709 asection *sec;
12710
12711 secname = input_line_pointer;
12712 c = get_symbol_end ();
12713 sec = bfd_get_section_by_name (stdoutput, secname);
12714 if (sec == NULL)
12715 as_bad (_("%s: no such section"), secname);
12716 *input_line_pointer = c;
12717
12718 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
12719 flag = BSF_FUNCTION;
12720 }
12721
12722 symbol_get_bfdsym (symbolP)->flags |= flag;
12723
12724 c = *input_line_pointer;
12725 if (c == ',')
12726 {
12727 input_line_pointer++;
12728 SKIP_WHITESPACE ();
12729 if (is_end_of_line[(unsigned char) *input_line_pointer])
12730 c = '\n';
12731 }
12732 }
12733 while (c == ',');
12734
12735 demand_empty_rest_of_line ();
12736 }
12737
12738 static void
12739 s_option (int x ATTRIBUTE_UNUSED)
12740 {
12741 char *opt;
12742 char c;
12743
12744 opt = input_line_pointer;
12745 c = get_symbol_end ();
12746
12747 if (*opt == 'O')
12748 {
12749 /* FIXME: What does this mean? */
12750 }
12751 else if (strncmp (opt, "pic", 3) == 0)
12752 {
12753 int i;
12754
12755 i = atoi (opt + 3);
12756 if (i == 0)
12757 mips_pic = NO_PIC;
12758 else if (i == 2)
12759 {
12760 mips_pic = SVR4_PIC;
12761 mips_abicalls = TRUE;
12762 }
12763 else
12764 as_bad (_(".option pic%d not supported"), i);
12765
12766 if (mips_pic == SVR4_PIC)
12767 {
12768 if (g_switch_seen && g_switch_value != 0)
12769 as_warn (_("-G may not be used with SVR4 PIC code"));
12770 g_switch_value = 0;
12771 bfd_set_gp_size (stdoutput, 0);
12772 }
12773 }
12774 else
12775 as_warn (_("Unrecognized option \"%s\""), opt);
12776
12777 *input_line_pointer = c;
12778 demand_empty_rest_of_line ();
12779 }
12780
12781 /* This structure is used to hold a stack of .set values. */
12782
12783 struct mips_option_stack
12784 {
12785 struct mips_option_stack *next;
12786 struct mips_set_options options;
12787 };
12788
12789 static struct mips_option_stack *mips_opts_stack;
12790
12791 /* Handle the .set pseudo-op. */
12792
12793 static void
12794 s_mipsset (int x ATTRIBUTE_UNUSED)
12795 {
12796 char *name = input_line_pointer, ch;
12797
12798 while (!is_end_of_line[(unsigned char) *input_line_pointer])
12799 ++input_line_pointer;
12800 ch = *input_line_pointer;
12801 *input_line_pointer = '\0';
12802
12803 if (strcmp (name, "reorder") == 0)
12804 {
12805 if (mips_opts.noreorder)
12806 end_noreorder ();
12807 }
12808 else if (strcmp (name, "noreorder") == 0)
12809 {
12810 if (!mips_opts.noreorder)
12811 start_noreorder ();
12812 }
12813 else if (strncmp (name, "at=", 3) == 0)
12814 {
12815 char *s = name + 3;
12816
12817 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
12818 as_bad (_("Unrecognized register name `%s'"), s);
12819 }
12820 else if (strcmp (name, "at") == 0)
12821 {
12822 mips_opts.at = ATREG;
12823 }
12824 else if (strcmp (name, "noat") == 0)
12825 {
12826 mips_opts.at = ZERO;
12827 }
12828 else if (strcmp (name, "macro") == 0)
12829 {
12830 mips_opts.warn_about_macros = 0;
12831 }
12832 else if (strcmp (name, "nomacro") == 0)
12833 {
12834 if (mips_opts.noreorder == 0)
12835 as_bad (_("`noreorder' must be set before `nomacro'"));
12836 mips_opts.warn_about_macros = 1;
12837 }
12838 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
12839 {
12840 mips_opts.nomove = 0;
12841 }
12842 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
12843 {
12844 mips_opts.nomove = 1;
12845 }
12846 else if (strcmp (name, "bopt") == 0)
12847 {
12848 mips_opts.nobopt = 0;
12849 }
12850 else if (strcmp (name, "nobopt") == 0)
12851 {
12852 mips_opts.nobopt = 1;
12853 }
12854 else if (strcmp (name, "gp=default") == 0)
12855 mips_opts.gp32 = file_mips_gp32;
12856 else if (strcmp (name, "gp=32") == 0)
12857 mips_opts.gp32 = 1;
12858 else if (strcmp (name, "gp=64") == 0)
12859 {
12860 if (!ISA_HAS_64BIT_REGS (mips_opts.isa))
12861 as_warn (_("%s isa does not support 64-bit registers"),
12862 mips_cpu_info_from_isa (mips_opts.isa)->name);
12863 mips_opts.gp32 = 0;
12864 }
12865 else if (strcmp (name, "fp=default") == 0)
12866 mips_opts.fp32 = file_mips_fp32;
12867 else if (strcmp (name, "fp=32") == 0)
12868 mips_opts.fp32 = 1;
12869 else if (strcmp (name, "fp=64") == 0)
12870 {
12871 if (!ISA_HAS_64BIT_FPRS (mips_opts.isa))
12872 as_warn (_("%s isa does not support 64-bit floating point registers"),
12873 mips_cpu_info_from_isa (mips_opts.isa)->name);
12874 mips_opts.fp32 = 0;
12875 }
12876 else if (strcmp (name, "softfloat") == 0)
12877 mips_opts.soft_float = 1;
12878 else if (strcmp (name, "hardfloat") == 0)
12879 mips_opts.soft_float = 0;
12880 else if (strcmp (name, "singlefloat") == 0)
12881 mips_opts.single_float = 1;
12882 else if (strcmp (name, "doublefloat") == 0)
12883 mips_opts.single_float = 0;
12884 else if (strcmp (name, "mips16") == 0
12885 || strcmp (name, "MIPS-16") == 0)
12886 mips_opts.mips16 = 1;
12887 else if (strcmp (name, "nomips16") == 0
12888 || strcmp (name, "noMIPS-16") == 0)
12889 mips_opts.mips16 = 0;
12890 else if (strcmp (name, "smartmips") == 0)
12891 {
12892 if (!ISA_SUPPORTS_SMARTMIPS)
12893 as_warn (_("%s ISA does not support SmartMIPS ASE"),
12894 mips_cpu_info_from_isa (mips_opts.isa)->name);
12895 mips_opts.ase_smartmips = 1;
12896 }
12897 else if (strcmp (name, "nosmartmips") == 0)
12898 mips_opts.ase_smartmips = 0;
12899 else if (strcmp (name, "mips3d") == 0)
12900 mips_opts.ase_mips3d = 1;
12901 else if (strcmp (name, "nomips3d") == 0)
12902 mips_opts.ase_mips3d = 0;
12903 else if (strcmp (name, "mdmx") == 0)
12904 mips_opts.ase_mdmx = 1;
12905 else if (strcmp (name, "nomdmx") == 0)
12906 mips_opts.ase_mdmx = 0;
12907 else if (strcmp (name, "dsp") == 0)
12908 {
12909 if (!ISA_SUPPORTS_DSP_ASE)
12910 as_warn (_("%s ISA does not support DSP ASE"),
12911 mips_cpu_info_from_isa (mips_opts.isa)->name);
12912 mips_opts.ase_dsp = 1;
12913 mips_opts.ase_dspr2 = 0;
12914 }
12915 else if (strcmp (name, "nodsp") == 0)
12916 {
12917 mips_opts.ase_dsp = 0;
12918 mips_opts.ase_dspr2 = 0;
12919 }
12920 else if (strcmp (name, "dspr2") == 0)
12921 {
12922 if (!ISA_SUPPORTS_DSPR2_ASE)
12923 as_warn (_("%s ISA does not support DSP R2 ASE"),
12924 mips_cpu_info_from_isa (mips_opts.isa)->name);
12925 mips_opts.ase_dspr2 = 1;
12926 mips_opts.ase_dsp = 1;
12927 }
12928 else if (strcmp (name, "nodspr2") == 0)
12929 {
12930 mips_opts.ase_dspr2 = 0;
12931 mips_opts.ase_dsp = 0;
12932 }
12933 else if (strcmp (name, "mt") == 0)
12934 {
12935 if (!ISA_SUPPORTS_MT_ASE)
12936 as_warn (_("%s ISA does not support MT ASE"),
12937 mips_cpu_info_from_isa (mips_opts.isa)->name);
12938 mips_opts.ase_mt = 1;
12939 }
12940 else if (strcmp (name, "nomt") == 0)
12941 mips_opts.ase_mt = 0;
12942 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
12943 {
12944 int reset = 0;
12945
12946 /* Permit the user to change the ISA and architecture on the fly.
12947 Needless to say, misuse can cause serious problems. */
12948 if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
12949 {
12950 reset = 1;
12951 mips_opts.isa = file_mips_isa;
12952 mips_opts.arch = file_mips_arch;
12953 }
12954 else if (strncmp (name, "arch=", 5) == 0)
12955 {
12956 const struct mips_cpu_info *p;
12957
12958 p = mips_parse_cpu("internal use", name + 5);
12959 if (!p)
12960 as_bad (_("unknown architecture %s"), name + 5);
12961 else
12962 {
12963 mips_opts.arch = p->cpu;
12964 mips_opts.isa = p->isa;
12965 }
12966 }
12967 else if (strncmp (name, "mips", 4) == 0)
12968 {
12969 const struct mips_cpu_info *p;
12970
12971 p = mips_parse_cpu("internal use", name);
12972 if (!p)
12973 as_bad (_("unknown ISA level %s"), name + 4);
12974 else
12975 {
12976 mips_opts.arch = p->cpu;
12977 mips_opts.isa = p->isa;
12978 }
12979 }
12980 else
12981 as_bad (_("unknown ISA or architecture %s"), name);
12982
12983 switch (mips_opts.isa)
12984 {
12985 case 0:
12986 break;
12987 case ISA_MIPS1:
12988 case ISA_MIPS2:
12989 case ISA_MIPS32:
12990 case ISA_MIPS32R2:
12991 mips_opts.gp32 = 1;
12992 mips_opts.fp32 = 1;
12993 break;
12994 case ISA_MIPS3:
12995 case ISA_MIPS4:
12996 case ISA_MIPS5:
12997 case ISA_MIPS64:
12998 case ISA_MIPS64R2:
12999 mips_opts.gp32 = 0;
13000 mips_opts.fp32 = 0;
13001 break;
13002 default:
13003 as_bad (_("unknown ISA level %s"), name + 4);
13004 break;
13005 }
13006 if (reset)
13007 {
13008 mips_opts.gp32 = file_mips_gp32;
13009 mips_opts.fp32 = file_mips_fp32;
13010 }
13011 }
13012 else if (strcmp (name, "autoextend") == 0)
13013 mips_opts.noautoextend = 0;
13014 else if (strcmp (name, "noautoextend") == 0)
13015 mips_opts.noautoextend = 1;
13016 else if (strcmp (name, "push") == 0)
13017 {
13018 struct mips_option_stack *s;
13019
13020 s = (struct mips_option_stack *) xmalloc (sizeof *s);
13021 s->next = mips_opts_stack;
13022 s->options = mips_opts;
13023 mips_opts_stack = s;
13024 }
13025 else if (strcmp (name, "pop") == 0)
13026 {
13027 struct mips_option_stack *s;
13028
13029 s = mips_opts_stack;
13030 if (s == NULL)
13031 as_bad (_(".set pop with no .set push"));
13032 else
13033 {
13034 /* If we're changing the reorder mode we need to handle
13035 delay slots correctly. */
13036 if (s->options.noreorder && ! mips_opts.noreorder)
13037 start_noreorder ();
13038 else if (! s->options.noreorder && mips_opts.noreorder)
13039 end_noreorder ();
13040
13041 mips_opts = s->options;
13042 mips_opts_stack = s->next;
13043 free (s);
13044 }
13045 }
13046 else if (strcmp (name, "sym32") == 0)
13047 mips_opts.sym32 = TRUE;
13048 else if (strcmp (name, "nosym32") == 0)
13049 mips_opts.sym32 = FALSE;
13050 else if (strchr (name, ','))
13051 {
13052 /* Generic ".set" directive; use the generic handler. */
13053 *input_line_pointer = ch;
13054 input_line_pointer = name;
13055 s_set (0);
13056 return;
13057 }
13058 else
13059 {
13060 as_warn (_("Tried to set unrecognized symbol: %s\n"), name);
13061 }
13062 *input_line_pointer = ch;
13063 demand_empty_rest_of_line ();
13064 }
13065
13066 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
13067 .option pic2. It means to generate SVR4 PIC calls. */
13068
13069 static void
13070 s_abicalls (int ignore ATTRIBUTE_UNUSED)
13071 {
13072 mips_pic = SVR4_PIC;
13073 mips_abicalls = TRUE;
13074
13075 if (g_switch_seen && g_switch_value != 0)
13076 as_warn (_("-G may not be used with SVR4 PIC code"));
13077 g_switch_value = 0;
13078
13079 bfd_set_gp_size (stdoutput, 0);
13080 demand_empty_rest_of_line ();
13081 }
13082
13083 /* Handle the .cpload pseudo-op. This is used when generating SVR4
13084 PIC code. It sets the $gp register for the function based on the
13085 function address, which is in the register named in the argument.
13086 This uses a relocation against _gp_disp, which is handled specially
13087 by the linker. The result is:
13088 lui $gp,%hi(_gp_disp)
13089 addiu $gp,$gp,%lo(_gp_disp)
13090 addu $gp,$gp,.cpload argument
13091 The .cpload argument is normally $25 == $t9.
13092
13093 The -mno-shared option changes this to:
13094 lui $gp,%hi(__gnu_local_gp)
13095 addiu $gp,$gp,%lo(__gnu_local_gp)
13096 and the argument is ignored. This saves an instruction, but the
13097 resulting code is not position independent; it uses an absolute
13098 address for __gnu_local_gp. Thus code assembled with -mno-shared
13099 can go into an ordinary executable, but not into a shared library. */
13100
13101 static void
13102 s_cpload (int ignore ATTRIBUTE_UNUSED)
13103 {
13104 expressionS ex;
13105 int reg;
13106 int in_shared;
13107
13108 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13109 .cpload is ignored. */
13110 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13111 {
13112 s_ignore (0);
13113 return;
13114 }
13115
13116 /* .cpload should be in a .set noreorder section. */
13117 if (mips_opts.noreorder == 0)
13118 as_warn (_(".cpload not in noreorder section"));
13119
13120 reg = tc_get_register (0);
13121
13122 /* If we need to produce a 64-bit address, we are better off using
13123 the default instruction sequence. */
13124 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
13125
13126 ex.X_op = O_symbol;
13127 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
13128 "__gnu_local_gp");
13129 ex.X_op_symbol = NULL;
13130 ex.X_add_number = 0;
13131
13132 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13133 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13134
13135 macro_start ();
13136 macro_build_lui (&ex, mips_gp_register);
13137 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13138 mips_gp_register, BFD_RELOC_LO16);
13139 if (in_shared)
13140 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
13141 mips_gp_register, reg);
13142 macro_end ();
13143
13144 demand_empty_rest_of_line ();
13145 }
13146
13147 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
13148 .cpsetup $reg1, offset|$reg2, label
13149
13150 If offset is given, this results in:
13151 sd $gp, offset($sp)
13152 lui $gp, %hi(%neg(%gp_rel(label)))
13153 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13154 daddu $gp, $gp, $reg1
13155
13156 If $reg2 is given, this results in:
13157 daddu $reg2, $gp, $0
13158 lui $gp, %hi(%neg(%gp_rel(label)))
13159 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
13160 daddu $gp, $gp, $reg1
13161 $reg1 is normally $25 == $t9.
13162
13163 The -mno-shared option replaces the last three instructions with
13164 lui $gp,%hi(_gp)
13165 addiu $gp,$gp,%lo(_gp) */
13166
13167 static void
13168 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
13169 {
13170 expressionS ex_off;
13171 expressionS ex_sym;
13172 int reg1;
13173
13174 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
13175 We also need NewABI support. */
13176 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13177 {
13178 s_ignore (0);
13179 return;
13180 }
13181
13182 reg1 = tc_get_register (0);
13183 SKIP_WHITESPACE ();
13184 if (*input_line_pointer != ',')
13185 {
13186 as_bad (_("missing argument separator ',' for .cpsetup"));
13187 return;
13188 }
13189 else
13190 ++input_line_pointer;
13191 SKIP_WHITESPACE ();
13192 if (*input_line_pointer == '$')
13193 {
13194 mips_cpreturn_register = tc_get_register (0);
13195 mips_cpreturn_offset = -1;
13196 }
13197 else
13198 {
13199 mips_cpreturn_offset = get_absolute_expression ();
13200 mips_cpreturn_register = -1;
13201 }
13202 SKIP_WHITESPACE ();
13203 if (*input_line_pointer != ',')
13204 {
13205 as_bad (_("missing argument separator ',' for .cpsetup"));
13206 return;
13207 }
13208 else
13209 ++input_line_pointer;
13210 SKIP_WHITESPACE ();
13211 expression (&ex_sym);
13212
13213 macro_start ();
13214 if (mips_cpreturn_register == -1)
13215 {
13216 ex_off.X_op = O_constant;
13217 ex_off.X_add_symbol = NULL;
13218 ex_off.X_op_symbol = NULL;
13219 ex_off.X_add_number = mips_cpreturn_offset;
13220
13221 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
13222 BFD_RELOC_LO16, SP);
13223 }
13224 else
13225 macro_build (NULL, "daddu", "d,v,t", mips_cpreturn_register,
13226 mips_gp_register, 0);
13227
13228 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
13229 {
13230 macro_build (&ex_sym, "lui", "t,u", mips_gp_register,
13231 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
13232 BFD_RELOC_HI16_S);
13233
13234 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
13235 mips_gp_register, -1, BFD_RELOC_GPREL16,
13236 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
13237
13238 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
13239 mips_gp_register, reg1);
13240 }
13241 else
13242 {
13243 expressionS ex;
13244
13245 ex.X_op = O_symbol;
13246 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
13247 ex.X_op_symbol = NULL;
13248 ex.X_add_number = 0;
13249
13250 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
13251 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
13252
13253 macro_build_lui (&ex, mips_gp_register);
13254 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
13255 mips_gp_register, BFD_RELOC_LO16);
13256 }
13257
13258 macro_end ();
13259
13260 demand_empty_rest_of_line ();
13261 }
13262
13263 static void
13264 s_cplocal (int ignore ATTRIBUTE_UNUSED)
13265 {
13266 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
13267 .cplocal is ignored. */
13268 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13269 {
13270 s_ignore (0);
13271 return;
13272 }
13273
13274 mips_gp_register = tc_get_register (0);
13275 demand_empty_rest_of_line ();
13276 }
13277
13278 /* Handle the .cprestore pseudo-op. This stores $gp into a given
13279 offset from $sp. The offset is remembered, and after making a PIC
13280 call $gp is restored from that location. */
13281
13282 static void
13283 s_cprestore (int ignore ATTRIBUTE_UNUSED)
13284 {
13285 expressionS ex;
13286
13287 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
13288 .cprestore is ignored. */
13289 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
13290 {
13291 s_ignore (0);
13292 return;
13293 }
13294
13295 mips_cprestore_offset = get_absolute_expression ();
13296 mips_cprestore_valid = 1;
13297
13298 ex.X_op = O_constant;
13299 ex.X_add_symbol = NULL;
13300 ex.X_op_symbol = NULL;
13301 ex.X_add_number = mips_cprestore_offset;
13302
13303 macro_start ();
13304 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
13305 SP, HAVE_64BIT_ADDRESSES);
13306 macro_end ();
13307
13308 demand_empty_rest_of_line ();
13309 }
13310
13311 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
13312 was given in the preceding .cpsetup, it results in:
13313 ld $gp, offset($sp)
13314
13315 If a register $reg2 was given there, it results in:
13316 daddu $gp, $reg2, $0 */
13317
13318 static void
13319 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
13320 {
13321 expressionS ex;
13322
13323 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
13324 We also need NewABI support. */
13325 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13326 {
13327 s_ignore (0);
13328 return;
13329 }
13330
13331 macro_start ();
13332 if (mips_cpreturn_register == -1)
13333 {
13334 ex.X_op = O_constant;
13335 ex.X_add_symbol = NULL;
13336 ex.X_op_symbol = NULL;
13337 ex.X_add_number = mips_cpreturn_offset;
13338
13339 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
13340 }
13341 else
13342 macro_build (NULL, "daddu", "d,v,t", mips_gp_register,
13343 mips_cpreturn_register, 0);
13344 macro_end ();
13345
13346 demand_empty_rest_of_line ();
13347 }
13348
13349 /* Handle the .dtprelword and .dtpreldword pseudo-ops. They generate
13350 a 32-bit or 64-bit DTP-relative relocation (BYTES says which) for
13351 use in DWARF debug information. */
13352
13353 static void
13354 s_dtprel_internal (size_t bytes)
13355 {
13356 expressionS ex;
13357 char *p;
13358
13359 expression (&ex);
13360
13361 if (ex.X_op != O_symbol)
13362 {
13363 as_bad (_("Unsupported use of %s"), (bytes == 8
13364 ? ".dtpreldword"
13365 : ".dtprelword"));
13366 ignore_rest_of_line ();
13367 }
13368
13369 p = frag_more (bytes);
13370 md_number_to_chars (p, 0, bytes);
13371 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE,
13372 (bytes == 8
13373 ? BFD_RELOC_MIPS_TLS_DTPREL64
13374 : BFD_RELOC_MIPS_TLS_DTPREL32));
13375
13376 demand_empty_rest_of_line ();
13377 }
13378
13379 /* Handle .dtprelword. */
13380
13381 static void
13382 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
13383 {
13384 s_dtprel_internal (4);
13385 }
13386
13387 /* Handle .dtpreldword. */
13388
13389 static void
13390 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
13391 {
13392 s_dtprel_internal (8);
13393 }
13394
13395 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
13396 code. It sets the offset to use in gp_rel relocations. */
13397
13398 static void
13399 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
13400 {
13401 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
13402 We also need NewABI support. */
13403 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
13404 {
13405 s_ignore (0);
13406 return;
13407 }
13408
13409 mips_gprel_offset = get_absolute_expression ();
13410
13411 demand_empty_rest_of_line ();
13412 }
13413
13414 /* Handle the .gpword pseudo-op. This is used when generating PIC
13415 code. It generates a 32 bit GP relative reloc. */
13416
13417 static void
13418 s_gpword (int ignore ATTRIBUTE_UNUSED)
13419 {
13420 segment_info_type *si;
13421 struct insn_label_list *l;
13422 symbolS *label;
13423 expressionS ex;
13424 char *p;
13425
13426 /* When not generating PIC code, this is treated as .word. */
13427 if (mips_pic != SVR4_PIC)
13428 {
13429 s_cons (2);
13430 return;
13431 }
13432
13433 si = seg_info (now_seg);
13434 l = si->label_list;
13435 label = l != NULL ? l->label : NULL;
13436 mips_emit_delays ();
13437 if (auto_align)
13438 mips_align (2, 0, label);
13439 mips_clear_insn_labels ();
13440
13441 expression (&ex);
13442
13443 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13444 {
13445 as_bad (_("Unsupported use of .gpword"));
13446 ignore_rest_of_line ();
13447 }
13448
13449 p = frag_more (4);
13450 md_number_to_chars (p, 0, 4);
13451 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13452 BFD_RELOC_GPREL32);
13453
13454 demand_empty_rest_of_line ();
13455 }
13456
13457 static void
13458 s_gpdword (int ignore ATTRIBUTE_UNUSED)
13459 {
13460 segment_info_type *si;
13461 struct insn_label_list *l;
13462 symbolS *label;
13463 expressionS ex;
13464 char *p;
13465
13466 /* When not generating PIC code, this is treated as .dword. */
13467 if (mips_pic != SVR4_PIC)
13468 {
13469 s_cons (3);
13470 return;
13471 }
13472
13473 si = seg_info (now_seg);
13474 l = si->label_list;
13475 label = l != NULL ? l->label : NULL;
13476 mips_emit_delays ();
13477 if (auto_align)
13478 mips_align (3, 0, label);
13479 mips_clear_insn_labels ();
13480
13481 expression (&ex);
13482
13483 if (ex.X_op != O_symbol || ex.X_add_number != 0)
13484 {
13485 as_bad (_("Unsupported use of .gpdword"));
13486 ignore_rest_of_line ();
13487 }
13488
13489 p = frag_more (8);
13490 md_number_to_chars (p, 0, 8);
13491 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
13492 BFD_RELOC_GPREL32)->fx_tcbit = 1;
13493
13494 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
13495 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
13496 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
13497
13498 demand_empty_rest_of_line ();
13499 }
13500
13501 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
13502 tables in SVR4 PIC code. */
13503
13504 static void
13505 s_cpadd (int ignore ATTRIBUTE_UNUSED)
13506 {
13507 int reg;
13508
13509 /* This is ignored when not generating SVR4 PIC code. */
13510 if (mips_pic != SVR4_PIC)
13511 {
13512 s_ignore (0);
13513 return;
13514 }
13515
13516 /* Add $gp to the register named as an argument. */
13517 macro_start ();
13518 reg = tc_get_register (0);
13519 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
13520 macro_end ();
13521
13522 demand_empty_rest_of_line ();
13523 }
13524
13525 /* Handle the .insn pseudo-op. This marks instruction labels in
13526 mips16 mode. This permits the linker to handle them specially,
13527 such as generating jalx instructions when needed. We also make
13528 them odd for the duration of the assembly, in order to generate the
13529 right sort of code. We will make them even in the adjust_symtab
13530 routine, while leaving them marked. This is convenient for the
13531 debugger and the disassembler. The linker knows to make them odd
13532 again. */
13533
13534 static void
13535 s_insn (int ignore ATTRIBUTE_UNUSED)
13536 {
13537 mips16_mark_labels ();
13538
13539 demand_empty_rest_of_line ();
13540 }
13541
13542 /* Handle a .stabn directive. We need these in order to mark a label
13543 as being a mips16 text label correctly. Sometimes the compiler
13544 will emit a label, followed by a .stabn, and then switch sections.
13545 If the label and .stabn are in mips16 mode, then the label is
13546 really a mips16 text label. */
13547
13548 static void
13549 s_mips_stab (int type)
13550 {
13551 if (type == 'n')
13552 mips16_mark_labels ();
13553
13554 s_stab (type);
13555 }
13556
13557 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
13558
13559 static void
13560 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
13561 {
13562 char *name;
13563 int c;
13564 symbolS *symbolP;
13565 expressionS exp;
13566
13567 name = input_line_pointer;
13568 c = get_symbol_end ();
13569 symbolP = symbol_find_or_make (name);
13570 S_SET_WEAK (symbolP);
13571 *input_line_pointer = c;
13572
13573 SKIP_WHITESPACE ();
13574
13575 if (! is_end_of_line[(unsigned char) *input_line_pointer])
13576 {
13577 if (S_IS_DEFINED (symbolP))
13578 {
13579 as_bad (_("ignoring attempt to redefine symbol %s"),
13580 S_GET_NAME (symbolP));
13581 ignore_rest_of_line ();
13582 return;
13583 }
13584
13585 if (*input_line_pointer == ',')
13586 {
13587 ++input_line_pointer;
13588 SKIP_WHITESPACE ();
13589 }
13590
13591 expression (&exp);
13592 if (exp.X_op != O_symbol)
13593 {
13594 as_bad (_("bad .weakext directive"));
13595 ignore_rest_of_line ();
13596 return;
13597 }
13598 symbol_set_value_expression (symbolP, &exp);
13599 }
13600
13601 demand_empty_rest_of_line ();
13602 }
13603
13604 /* Parse a register string into a number. Called from the ECOFF code
13605 to parse .frame. The argument is non-zero if this is the frame
13606 register, so that we can record it in mips_frame_reg. */
13607
13608 int
13609 tc_get_register (int frame)
13610 {
13611 unsigned int reg;
13612
13613 SKIP_WHITESPACE ();
13614 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
13615 reg = 0;
13616 if (frame)
13617 {
13618 mips_frame_reg = reg != 0 ? reg : SP;
13619 mips_frame_reg_valid = 1;
13620 mips_cprestore_valid = 0;
13621 }
13622 return reg;
13623 }
13624
13625 valueT
13626 md_section_align (asection *seg, valueT addr)
13627 {
13628 int align = bfd_get_section_alignment (stdoutput, seg);
13629
13630 if (IS_ELF)
13631 {
13632 /* We don't need to align ELF sections to the full alignment.
13633 However, Irix 5 may prefer that we align them at least to a 16
13634 byte boundary. We don't bother to align the sections if we
13635 are targeted for an embedded system. */
13636 if (strncmp (TARGET_OS, "elf", 3) == 0)
13637 return addr;
13638 if (align > 4)
13639 align = 4;
13640 }
13641
13642 return ((addr + (1 << align) - 1) & (-1 << align));
13643 }
13644
13645 /* Utility routine, called from above as well. If called while the
13646 input file is still being read, it's only an approximation. (For
13647 example, a symbol may later become defined which appeared to be
13648 undefined earlier.) */
13649
13650 static int
13651 nopic_need_relax (symbolS *sym, int before_relaxing)
13652 {
13653 if (sym == 0)
13654 return 0;
13655
13656 if (g_switch_value > 0)
13657 {
13658 const char *symname;
13659 int change;
13660
13661 /* Find out whether this symbol can be referenced off the $gp
13662 register. It can be if it is smaller than the -G size or if
13663 it is in the .sdata or .sbss section. Certain symbols can
13664 not be referenced off the $gp, although it appears as though
13665 they can. */
13666 symname = S_GET_NAME (sym);
13667 if (symname != (const char *) NULL
13668 && (strcmp (symname, "eprol") == 0
13669 || strcmp (symname, "etext") == 0
13670 || strcmp (symname, "_gp") == 0
13671 || strcmp (symname, "edata") == 0
13672 || strcmp (symname, "_fbss") == 0
13673 || strcmp (symname, "_fdata") == 0
13674 || strcmp (symname, "_ftext") == 0
13675 || strcmp (symname, "end") == 0
13676 || strcmp (symname, "_gp_disp") == 0))
13677 change = 1;
13678 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
13679 && (0
13680 #ifndef NO_ECOFF_DEBUGGING
13681 || (symbol_get_obj (sym)->ecoff_extern_size != 0
13682 && (symbol_get_obj (sym)->ecoff_extern_size
13683 <= g_switch_value))
13684 #endif
13685 /* We must defer this decision until after the whole
13686 file has been read, since there might be a .extern
13687 after the first use of this symbol. */
13688 || (before_relaxing
13689 #ifndef NO_ECOFF_DEBUGGING
13690 && symbol_get_obj (sym)->ecoff_extern_size == 0
13691 #endif
13692 && S_GET_VALUE (sym) == 0)
13693 || (S_GET_VALUE (sym) != 0
13694 && S_GET_VALUE (sym) <= g_switch_value)))
13695 change = 0;
13696 else
13697 {
13698 const char *segname;
13699
13700 segname = segment_name (S_GET_SEGMENT (sym));
13701 gas_assert (strcmp (segname, ".lit8") != 0
13702 && strcmp (segname, ".lit4") != 0);
13703 change = (strcmp (segname, ".sdata") != 0
13704 && strcmp (segname, ".sbss") != 0
13705 && strncmp (segname, ".sdata.", 7) != 0
13706 && strncmp (segname, ".sbss.", 6) != 0
13707 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
13708 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
13709 }
13710 return change;
13711 }
13712 else
13713 /* We are not optimizing for the $gp register. */
13714 return 1;
13715 }
13716
13717
13718 /* Return true if the given symbol should be considered local for SVR4 PIC. */
13719
13720 static bfd_boolean
13721 pic_need_relax (symbolS *sym, asection *segtype)
13722 {
13723 asection *symsec;
13724
13725 /* Handle the case of a symbol equated to another symbol. */
13726 while (symbol_equated_reloc_p (sym))
13727 {
13728 symbolS *n;
13729
13730 /* It's possible to get a loop here in a badly written program. */
13731 n = symbol_get_value_expression (sym)->X_add_symbol;
13732 if (n == sym)
13733 break;
13734 sym = n;
13735 }
13736
13737 if (symbol_section_p (sym))
13738 return TRUE;
13739
13740 symsec = S_GET_SEGMENT (sym);
13741
13742 /* This must duplicate the test in adjust_reloc_syms. */
13743 return (symsec != &bfd_und_section
13744 && symsec != &bfd_abs_section
13745 && !bfd_is_com_section (symsec)
13746 && !s_is_linkonce (sym, segtype)
13747 #ifdef OBJ_ELF
13748 /* A global or weak symbol is treated as external. */
13749 && (!IS_ELF || (! S_IS_WEAK (sym) && ! S_IS_EXTERNAL (sym)))
13750 #endif
13751 );
13752 }
13753
13754
13755 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
13756 extended opcode. SEC is the section the frag is in. */
13757
13758 static int
13759 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
13760 {
13761 int type;
13762 const struct mips16_immed_operand *op;
13763 offsetT val;
13764 int mintiny, maxtiny;
13765 segT symsec;
13766 fragS *sym_frag;
13767
13768 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
13769 return 0;
13770 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
13771 return 1;
13772
13773 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
13774 op = mips16_immed_operands;
13775 while (op->type != type)
13776 {
13777 ++op;
13778 gas_assert (op < mips16_immed_operands + MIPS16_NUM_IMMED);
13779 }
13780
13781 if (op->unsp)
13782 {
13783 if (type == '<' || type == '>' || type == '[' || type == ']')
13784 {
13785 mintiny = 1;
13786 maxtiny = 1 << op->nbits;
13787 }
13788 else
13789 {
13790 mintiny = 0;
13791 maxtiny = (1 << op->nbits) - 1;
13792 }
13793 }
13794 else
13795 {
13796 mintiny = - (1 << (op->nbits - 1));
13797 maxtiny = (1 << (op->nbits - 1)) - 1;
13798 }
13799
13800 sym_frag = symbol_get_frag (fragp->fr_symbol);
13801 val = S_GET_VALUE (fragp->fr_symbol);
13802 symsec = S_GET_SEGMENT (fragp->fr_symbol);
13803
13804 if (op->pcrel)
13805 {
13806 addressT addr;
13807
13808 /* We won't have the section when we are called from
13809 mips_relax_frag. However, we will always have been called
13810 from md_estimate_size_before_relax first. If this is a
13811 branch to a different section, we mark it as such. If SEC is
13812 NULL, and the frag is not marked, then it must be a branch to
13813 the same section. */
13814 if (sec == NULL)
13815 {
13816 if (RELAX_MIPS16_LONG_BRANCH (fragp->fr_subtype))
13817 return 1;
13818 }
13819 else
13820 {
13821 /* Must have been called from md_estimate_size_before_relax. */
13822 if (symsec != sec)
13823 {
13824 fragp->fr_subtype =
13825 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13826
13827 /* FIXME: We should support this, and let the linker
13828 catch branches and loads that are out of range. */
13829 as_bad_where (fragp->fr_file, fragp->fr_line,
13830 _("unsupported PC relative reference to different section"));
13831
13832 return 1;
13833 }
13834 if (fragp != sym_frag && sym_frag->fr_address == 0)
13835 /* Assume non-extended on the first relaxation pass.
13836 The address we have calculated will be bogus if this is
13837 a forward branch to another frag, as the forward frag
13838 will have fr_address == 0. */
13839 return 0;
13840 }
13841
13842 /* In this case, we know for sure that the symbol fragment is in
13843 the same section. If the relax_marker of the symbol fragment
13844 differs from the relax_marker of this fragment, we have not
13845 yet adjusted the symbol fragment fr_address. We want to add
13846 in STRETCH in order to get a better estimate of the address.
13847 This particularly matters because of the shift bits. */
13848 if (stretch != 0
13849 && sym_frag->relax_marker != fragp->relax_marker)
13850 {
13851 fragS *f;
13852
13853 /* Adjust stretch for any alignment frag. Note that if have
13854 been expanding the earlier code, the symbol may be
13855 defined in what appears to be an earlier frag. FIXME:
13856 This doesn't handle the fr_subtype field, which specifies
13857 a maximum number of bytes to skip when doing an
13858 alignment. */
13859 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
13860 {
13861 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
13862 {
13863 if (stretch < 0)
13864 stretch = - ((- stretch)
13865 & ~ ((1 << (int) f->fr_offset) - 1));
13866 else
13867 stretch &= ~ ((1 << (int) f->fr_offset) - 1);
13868 if (stretch == 0)
13869 break;
13870 }
13871 }
13872 if (f != NULL)
13873 val += stretch;
13874 }
13875
13876 addr = fragp->fr_address + fragp->fr_fix;
13877
13878 /* The base address rules are complicated. The base address of
13879 a branch is the following instruction. The base address of a
13880 PC relative load or add is the instruction itself, but if it
13881 is in a delay slot (in which case it can not be extended) use
13882 the address of the instruction whose delay slot it is in. */
13883 if (type == 'p' || type == 'q')
13884 {
13885 addr += 2;
13886
13887 /* If we are currently assuming that this frag should be
13888 extended, then, the current address is two bytes
13889 higher. */
13890 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
13891 addr += 2;
13892
13893 /* Ignore the low bit in the target, since it will be set
13894 for a text label. */
13895 if ((val & 1) != 0)
13896 --val;
13897 }
13898 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
13899 addr -= 4;
13900 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
13901 addr -= 2;
13902
13903 val -= addr & ~ ((1 << op->shift) - 1);
13904
13905 /* Branch offsets have an implicit 0 in the lowest bit. */
13906 if (type == 'p' || type == 'q')
13907 val /= 2;
13908
13909 /* If any of the shifted bits are set, we must use an extended
13910 opcode. If the address depends on the size of this
13911 instruction, this can lead to a loop, so we arrange to always
13912 use an extended opcode. We only check this when we are in
13913 the main relaxation loop, when SEC is NULL. */
13914 if ((val & ((1 << op->shift) - 1)) != 0 && sec == NULL)
13915 {
13916 fragp->fr_subtype =
13917 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13918 return 1;
13919 }
13920
13921 /* If we are about to mark a frag as extended because the value
13922 is precisely maxtiny + 1, then there is a chance of an
13923 infinite loop as in the following code:
13924 la $4,foo
13925 .skip 1020
13926 .align 2
13927 foo:
13928 In this case when the la is extended, foo is 0x3fc bytes
13929 away, so the la can be shrunk, but then foo is 0x400 away, so
13930 the la must be extended. To avoid this loop, we mark the
13931 frag as extended if it was small, and is about to become
13932 extended with a value of maxtiny + 1. */
13933 if (val == ((maxtiny + 1) << op->shift)
13934 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype)
13935 && sec == NULL)
13936 {
13937 fragp->fr_subtype =
13938 RELAX_MIPS16_MARK_LONG_BRANCH (fragp->fr_subtype);
13939 return 1;
13940 }
13941 }
13942 else if (symsec != absolute_section && sec != NULL)
13943 as_bad_where (fragp->fr_file, fragp->fr_line, _("unsupported relocation"));
13944
13945 if ((val & ((1 << op->shift) - 1)) != 0
13946 || val < (mintiny << op->shift)
13947 || val > (maxtiny << op->shift))
13948 return 1;
13949 else
13950 return 0;
13951 }
13952
13953 /* Compute the length of a branch sequence, and adjust the
13954 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
13955 worst-case length is computed, with UPDATE being used to indicate
13956 whether an unconditional (-1), branch-likely (+1) or regular (0)
13957 branch is to be computed. */
13958 static int
13959 relaxed_branch_length (fragS *fragp, asection *sec, int update)
13960 {
13961 bfd_boolean toofar;
13962 int length;
13963
13964 if (fragp
13965 && S_IS_DEFINED (fragp->fr_symbol)
13966 && sec == S_GET_SEGMENT (fragp->fr_symbol))
13967 {
13968 addressT addr;
13969 offsetT val;
13970
13971 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
13972
13973 addr = fragp->fr_address + fragp->fr_fix + 4;
13974
13975 val -= addr;
13976
13977 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
13978 }
13979 else if (fragp)
13980 /* If the symbol is not defined or it's in a different segment,
13981 assume the user knows what's going on and emit a short
13982 branch. */
13983 toofar = FALSE;
13984 else
13985 toofar = TRUE;
13986
13987 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
13988 fragp->fr_subtype
13989 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_UNCOND (fragp->fr_subtype),
13990 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
13991 RELAX_BRANCH_LINK (fragp->fr_subtype),
13992 toofar);
13993
13994 length = 4;
13995 if (toofar)
13996 {
13997 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
13998 length += 8;
13999
14000 if (mips_pic != NO_PIC)
14001 {
14002 /* Additional space for PIC loading of target address. */
14003 length += 8;
14004 if (mips_opts.isa == ISA_MIPS1)
14005 /* Additional space for $at-stabilizing nop. */
14006 length += 4;
14007 }
14008
14009 /* If branch is conditional. */
14010 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
14011 length += 8;
14012 }
14013
14014 return length;
14015 }
14016
14017 /* Estimate the size of a frag before relaxing. Unless this is the
14018 mips16, we are not really relaxing here, and the final size is
14019 encoded in the subtype information. For the mips16, we have to
14020 decide whether we are using an extended opcode or not. */
14021
14022 int
14023 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
14024 {
14025 int change;
14026
14027 if (RELAX_BRANCH_P (fragp->fr_subtype))
14028 {
14029
14030 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
14031
14032 return fragp->fr_var;
14033 }
14034
14035 if (RELAX_MIPS16_P (fragp->fr_subtype))
14036 /* We don't want to modify the EXTENDED bit here; it might get us
14037 into infinite loops. We change it only in mips_relax_frag(). */
14038 return (RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2);
14039
14040 if (mips_pic == NO_PIC)
14041 change = nopic_need_relax (fragp->fr_symbol, 0);
14042 else if (mips_pic == SVR4_PIC)
14043 change = pic_need_relax (fragp->fr_symbol, segtype);
14044 else if (mips_pic == VXWORKS_PIC)
14045 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
14046 change = 0;
14047 else
14048 abort ();
14049
14050 if (change)
14051 {
14052 fragp->fr_subtype |= RELAX_USE_SECOND;
14053 return -RELAX_FIRST (fragp->fr_subtype);
14054 }
14055 else
14056 return -RELAX_SECOND (fragp->fr_subtype);
14057 }
14058
14059 /* This is called to see whether a reloc against a defined symbol
14060 should be converted into a reloc against a section. */
14061
14062 int
14063 mips_fix_adjustable (fixS *fixp)
14064 {
14065 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
14066 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14067 return 0;
14068
14069 if (fixp->fx_addsy == NULL)
14070 return 1;
14071
14072 /* If symbol SYM is in a mergeable section, relocations of the form
14073 SYM + 0 can usually be made section-relative. The mergeable data
14074 is then identified by the section offset rather than by the symbol.
14075
14076 However, if we're generating REL LO16 relocations, the offset is split
14077 between the LO16 and parterning high part relocation. The linker will
14078 need to recalculate the complete offset in order to correctly identify
14079 the merge data.
14080
14081 The linker has traditionally not looked for the parterning high part
14082 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
14083 placed anywhere. Rather than break backwards compatibility by changing
14084 this, it seems better not to force the issue, and instead keep the
14085 original symbol. This will work with either linker behavior. */
14086 if ((lo16_reloc_p (fixp->fx_r_type)
14087 || reloc_needs_lo_p (fixp->fx_r_type))
14088 && HAVE_IN_PLACE_ADDENDS
14089 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
14090 return 0;
14091
14092 #ifdef OBJ_ELF
14093 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
14094 to a floating-point stub. The same is true for non-R_MIPS16_26
14095 relocations against MIPS16 functions; in this case, the stub becomes
14096 the function's canonical address.
14097
14098 Floating-point stubs are stored in unique .mips16.call.* or
14099 .mips16.fn.* sections. If a stub T for function F is in section S,
14100 the first relocation in section S must be against F; this is how the
14101 linker determines the target function. All relocations that might
14102 resolve to T must also be against F. We therefore have the following
14103 restrictions, which are given in an intentionally-redundant way:
14104
14105 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
14106 symbols.
14107
14108 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
14109 if that stub might be used.
14110
14111 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
14112 symbols.
14113
14114 4. We cannot reduce a stub's relocations against MIPS16 symbols if
14115 that stub might be used.
14116
14117 There is a further restriction:
14118
14119 5. We cannot reduce R_MIPS16_26 relocations against MIPS16 symbols
14120 on targets with in-place addends; the relocation field cannot
14121 encode the low bit.
14122
14123 For simplicity, we deal with (3)-(5) by not reducing _any_ relocation
14124 against a MIPS16 symbol.
14125
14126 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
14127 relocation against some symbol R, no relocation against R may be
14128 reduced. (Note that this deals with (2) as well as (1) because
14129 relocations against global symbols will never be reduced on ELF
14130 targets.) This approach is a little simpler than trying to detect
14131 stub sections, and gives the "all or nothing" per-symbol consistency
14132 that we have for MIPS16 symbols. */
14133 if (IS_ELF
14134 && fixp->fx_subsy == NULL
14135 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
14136 || *symbol_get_tc (fixp->fx_addsy)))
14137 return 0;
14138 #endif
14139
14140 return 1;
14141 }
14142
14143 /* Translate internal representation of relocation info to BFD target
14144 format. */
14145
14146 arelent **
14147 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14148 {
14149 static arelent *retval[4];
14150 arelent *reloc;
14151 bfd_reloc_code_real_type code;
14152
14153 memset (retval, 0, sizeof(retval));
14154 reloc = retval[0] = (arelent *) xcalloc (1, sizeof (arelent));
14155 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
14156 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14157 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
14158
14159 if (fixp->fx_pcrel)
14160 {
14161 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2);
14162
14163 /* At this point, fx_addnumber is "symbol offset - pcrel address".
14164 Relocations want only the symbol offset. */
14165 reloc->addend = fixp->fx_addnumber + reloc->address;
14166 if (!IS_ELF)
14167 {
14168 /* A gruesome hack which is a result of the gruesome gas
14169 reloc handling. What's worse, for COFF (as opposed to
14170 ECOFF), we might need yet another copy of reloc->address.
14171 See bfd_install_relocation. */
14172 reloc->addend += reloc->address;
14173 }
14174 }
14175 else
14176 reloc->addend = fixp->fx_addnumber;
14177
14178 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
14179 entry to be used in the relocation's section offset. */
14180 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14181 {
14182 reloc->address = reloc->addend;
14183 reloc->addend = 0;
14184 }
14185
14186 code = fixp->fx_r_type;
14187
14188 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
14189 if (reloc->howto == NULL)
14190 {
14191 as_bad_where (fixp->fx_file, fixp->fx_line,
14192 _("Can not represent %s relocation in this object file format"),
14193 bfd_get_reloc_code_name (code));
14194 retval[0] = NULL;
14195 }
14196
14197 return retval;
14198 }
14199
14200 /* Relax a machine dependent frag. This returns the amount by which
14201 the current size of the frag should change. */
14202
14203 int
14204 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
14205 {
14206 if (RELAX_BRANCH_P (fragp->fr_subtype))
14207 {
14208 offsetT old_var = fragp->fr_var;
14209
14210 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
14211
14212 return fragp->fr_var - old_var;
14213 }
14214
14215 if (! RELAX_MIPS16_P (fragp->fr_subtype))
14216 return 0;
14217
14218 if (mips16_extended_frag (fragp, NULL, stretch))
14219 {
14220 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14221 return 0;
14222 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
14223 return 2;
14224 }
14225 else
14226 {
14227 if (! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14228 return 0;
14229 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
14230 return -2;
14231 }
14232
14233 return 0;
14234 }
14235
14236 /* Convert a machine dependent frag. */
14237
14238 void
14239 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
14240 {
14241 if (RELAX_BRANCH_P (fragp->fr_subtype))
14242 {
14243 bfd_byte *buf;
14244 unsigned long insn;
14245 expressionS exp;
14246 fixS *fixp;
14247
14248 buf = (bfd_byte *)fragp->fr_literal + fragp->fr_fix;
14249
14250 if (target_big_endian)
14251 insn = bfd_getb32 (buf);
14252 else
14253 insn = bfd_getl32 (buf);
14254
14255 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
14256 {
14257 /* We generate a fixup instead of applying it right now
14258 because, if there are linker relaxations, we're going to
14259 need the relocations. */
14260 exp.X_op = O_symbol;
14261 exp.X_add_symbol = fragp->fr_symbol;
14262 exp.X_add_number = fragp->fr_offset;
14263
14264 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14265 4, &exp, TRUE, BFD_RELOC_16_PCREL_S2);
14266 fixp->fx_file = fragp->fr_file;
14267 fixp->fx_line = fragp->fr_line;
14268
14269 md_number_to_chars ((char *) buf, insn, 4);
14270 buf += 4;
14271 }
14272 else
14273 {
14274 int i;
14275
14276 as_warn_where (fragp->fr_file, fragp->fr_line,
14277 _("relaxed out-of-range branch into a jump"));
14278
14279 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
14280 goto uncond;
14281
14282 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14283 {
14284 /* Reverse the branch. */
14285 switch ((insn >> 28) & 0xf)
14286 {
14287 case 4:
14288 /* bc[0-3][tf]l? and bc1any[24][ft] instructions can
14289 have the condition reversed by tweaking a single
14290 bit, and their opcodes all have 0x4???????. */
14291 gas_assert ((insn & 0xf1000000) == 0x41000000);
14292 insn ^= 0x00010000;
14293 break;
14294
14295 case 0:
14296 /* bltz 0x04000000 bgez 0x04010000
14297 bltzal 0x04100000 bgezal 0x04110000 */
14298 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
14299 insn ^= 0x00010000;
14300 break;
14301
14302 case 1:
14303 /* beq 0x10000000 bne 0x14000000
14304 blez 0x18000000 bgtz 0x1c000000 */
14305 insn ^= 0x04000000;
14306 break;
14307
14308 default:
14309 abort ();
14310 }
14311 }
14312
14313 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14314 {
14315 /* Clear the and-link bit. */
14316 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
14317
14318 /* bltzal 0x04100000 bgezal 0x04110000
14319 bltzall 0x04120000 bgezall 0x04130000 */
14320 insn &= ~0x00100000;
14321 }
14322
14323 /* Branch over the branch (if the branch was likely) or the
14324 full jump (not likely case). Compute the offset from the
14325 current instruction to branch to. */
14326 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14327 i = 16;
14328 else
14329 {
14330 /* How many bytes in instructions we've already emitted? */
14331 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14332 /* How many bytes in instructions from here to the end? */
14333 i = fragp->fr_var - i;
14334 }
14335 /* Convert to instruction count. */
14336 i >>= 2;
14337 /* Branch counts from the next instruction. */
14338 i--;
14339 insn |= i;
14340 /* Branch over the jump. */
14341 md_number_to_chars ((char *) buf, insn, 4);
14342 buf += 4;
14343
14344 /* nop */
14345 md_number_to_chars ((char *) buf, 0, 4);
14346 buf += 4;
14347
14348 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
14349 {
14350 /* beql $0, $0, 2f */
14351 insn = 0x50000000;
14352 /* Compute the PC offset from the current instruction to
14353 the end of the variable frag. */
14354 /* How many bytes in instructions we've already emitted? */
14355 i = buf - (bfd_byte *)fragp->fr_literal - fragp->fr_fix;
14356 /* How many bytes in instructions from here to the end? */
14357 i = fragp->fr_var - i;
14358 /* Convert to instruction count. */
14359 i >>= 2;
14360 /* Don't decrement i, because we want to branch over the
14361 delay slot. */
14362
14363 insn |= i;
14364 md_number_to_chars ((char *) buf, insn, 4);
14365 buf += 4;
14366
14367 md_number_to_chars ((char *) buf, 0, 4);
14368 buf += 4;
14369 }
14370
14371 uncond:
14372 if (mips_pic == NO_PIC)
14373 {
14374 /* j or jal. */
14375 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
14376 ? 0x0c000000 : 0x08000000);
14377 exp.X_op = O_symbol;
14378 exp.X_add_symbol = fragp->fr_symbol;
14379 exp.X_add_number = fragp->fr_offset;
14380
14381 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14382 4, &exp, FALSE, BFD_RELOC_MIPS_JMP);
14383 fixp->fx_file = fragp->fr_file;
14384 fixp->fx_line = fragp->fr_line;
14385
14386 md_number_to_chars ((char *) buf, insn, 4);
14387 buf += 4;
14388 }
14389 else
14390 {
14391 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
14392 insn = HAVE_64BIT_ADDRESSES ? 0xdf810000 : 0x8f810000;
14393 exp.X_op = O_symbol;
14394 exp.X_add_symbol = fragp->fr_symbol;
14395 exp.X_add_number = fragp->fr_offset;
14396
14397 if (fragp->fr_offset)
14398 {
14399 exp.X_add_symbol = make_expr_symbol (&exp);
14400 exp.X_add_number = 0;
14401 }
14402
14403 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14404 4, &exp, FALSE, BFD_RELOC_MIPS_GOT16);
14405 fixp->fx_file = fragp->fr_file;
14406 fixp->fx_line = fragp->fr_line;
14407
14408 md_number_to_chars ((char *) buf, insn, 4);
14409 buf += 4;
14410
14411 if (mips_opts.isa == ISA_MIPS1)
14412 {
14413 /* nop */
14414 md_number_to_chars ((char *) buf, 0, 4);
14415 buf += 4;
14416 }
14417
14418 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
14419 insn = HAVE_64BIT_ADDRESSES ? 0x64210000 : 0x24210000;
14420
14421 fixp = fix_new_exp (fragp, buf - (bfd_byte *)fragp->fr_literal,
14422 4, &exp, FALSE, BFD_RELOC_LO16);
14423 fixp->fx_file = fragp->fr_file;
14424 fixp->fx_line = fragp->fr_line;
14425
14426 md_number_to_chars ((char *) buf, insn, 4);
14427 buf += 4;
14428
14429 /* j(al)r $at. */
14430 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
14431 insn = 0x0020f809;
14432 else
14433 insn = 0x00200008;
14434
14435 md_number_to_chars ((char *) buf, insn, 4);
14436 buf += 4;
14437 }
14438 }
14439
14440 gas_assert (buf == (bfd_byte *)fragp->fr_literal
14441 + fragp->fr_fix + fragp->fr_var);
14442
14443 fragp->fr_fix += fragp->fr_var;
14444
14445 return;
14446 }
14447
14448 if (RELAX_MIPS16_P (fragp->fr_subtype))
14449 {
14450 int type;
14451 const struct mips16_immed_operand *op;
14452 bfd_boolean small, ext;
14453 offsetT val;
14454 bfd_byte *buf;
14455 unsigned long insn;
14456 bfd_boolean use_extend;
14457 unsigned short extend;
14458
14459 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
14460 op = mips16_immed_operands;
14461 while (op->type != type)
14462 ++op;
14463
14464 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
14465 {
14466 small = FALSE;
14467 ext = TRUE;
14468 }
14469 else
14470 {
14471 small = TRUE;
14472 ext = FALSE;
14473 }
14474
14475 resolve_symbol_value (fragp->fr_symbol);
14476 val = S_GET_VALUE (fragp->fr_symbol);
14477 if (op->pcrel)
14478 {
14479 addressT addr;
14480
14481 addr = fragp->fr_address + fragp->fr_fix;
14482
14483 /* The rules for the base address of a PC relative reloc are
14484 complicated; see mips16_extended_frag. */
14485 if (type == 'p' || type == 'q')
14486 {
14487 addr += 2;
14488 if (ext)
14489 addr += 2;
14490 /* Ignore the low bit in the target, since it will be
14491 set for a text label. */
14492 if ((val & 1) != 0)
14493 --val;
14494 }
14495 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
14496 addr -= 4;
14497 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
14498 addr -= 2;
14499
14500 addr &= ~ (addressT) ((1 << op->shift) - 1);
14501 val -= addr;
14502
14503 /* Make sure the section winds up with the alignment we have
14504 assumed. */
14505 if (op->shift > 0)
14506 record_alignment (asec, op->shift);
14507 }
14508
14509 if (ext
14510 && (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
14511 || RELAX_MIPS16_DSLOT (fragp->fr_subtype)))
14512 as_warn_where (fragp->fr_file, fragp->fr_line,
14513 _("extended instruction in delay slot"));
14514
14515 buf = (bfd_byte *) (fragp->fr_literal + fragp->fr_fix);
14516
14517 if (target_big_endian)
14518 insn = bfd_getb16 (buf);
14519 else
14520 insn = bfd_getl16 (buf);
14521
14522 mips16_immed (fragp->fr_file, fragp->fr_line, type, val,
14523 RELAX_MIPS16_USER_EXT (fragp->fr_subtype),
14524 small, ext, &insn, &use_extend, &extend);
14525
14526 if (use_extend)
14527 {
14528 md_number_to_chars ((char *) buf, 0xf000 | extend, 2);
14529 fragp->fr_fix += 2;
14530 buf += 2;
14531 }
14532
14533 md_number_to_chars ((char *) buf, insn, 2);
14534 fragp->fr_fix += 2;
14535 buf += 2;
14536 }
14537 else
14538 {
14539 int first, second;
14540 fixS *fixp;
14541
14542 first = RELAX_FIRST (fragp->fr_subtype);
14543 second = RELAX_SECOND (fragp->fr_subtype);
14544 fixp = (fixS *) fragp->fr_opcode;
14545
14546 /* Possibly emit a warning if we've chosen the longer option. */
14547 if (((fragp->fr_subtype & RELAX_USE_SECOND) != 0)
14548 == ((fragp->fr_subtype & RELAX_SECOND_LONGER) != 0))
14549 {
14550 const char *msg = macro_warning (fragp->fr_subtype);
14551 if (msg != 0)
14552 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
14553 }
14554
14555 /* Go through all the fixups for the first sequence. Disable them
14556 (by marking them as done) if we're going to use the second
14557 sequence instead. */
14558 while (fixp
14559 && fixp->fx_frag == fragp
14560 && fixp->fx_where < fragp->fr_fix - second)
14561 {
14562 if (fragp->fr_subtype & RELAX_USE_SECOND)
14563 fixp->fx_done = 1;
14564 fixp = fixp->fx_next;
14565 }
14566
14567 /* Go through the fixups for the second sequence. Disable them if
14568 we're going to use the first sequence, otherwise adjust their
14569 addresses to account for the relaxation. */
14570 while (fixp && fixp->fx_frag == fragp)
14571 {
14572 if (fragp->fr_subtype & RELAX_USE_SECOND)
14573 fixp->fx_where -= first;
14574 else
14575 fixp->fx_done = 1;
14576 fixp = fixp->fx_next;
14577 }
14578
14579 /* Now modify the frag contents. */
14580 if (fragp->fr_subtype & RELAX_USE_SECOND)
14581 {
14582 char *start;
14583
14584 start = fragp->fr_literal + fragp->fr_fix - first - second;
14585 memmove (start, start + first, second);
14586 fragp->fr_fix -= first;
14587 }
14588 else
14589 fragp->fr_fix -= second;
14590 }
14591 }
14592
14593 #ifdef OBJ_ELF
14594
14595 /* This function is called after the relocs have been generated.
14596 We've been storing mips16 text labels as odd. Here we convert them
14597 back to even for the convenience of the debugger. */
14598
14599 void
14600 mips_frob_file_after_relocs (void)
14601 {
14602 asymbol **syms;
14603 unsigned int count, i;
14604
14605 if (!IS_ELF)
14606 return;
14607
14608 syms = bfd_get_outsymbols (stdoutput);
14609 count = bfd_get_symcount (stdoutput);
14610 for (i = 0; i < count; i++, syms++)
14611 {
14612 if (ELF_ST_IS_MIPS16 (elf_symbol (*syms)->internal_elf_sym.st_other)
14613 && ((*syms)->value & 1) != 0)
14614 {
14615 (*syms)->value &= ~1;
14616 /* If the symbol has an odd size, it was probably computed
14617 incorrectly, so adjust that as well. */
14618 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
14619 ++elf_symbol (*syms)->internal_elf_sym.st_size;
14620 }
14621 }
14622 }
14623
14624 #endif
14625
14626 /* This function is called whenever a label is defined. It is used
14627 when handling branch delays; if a branch has a label, we assume we
14628 can not move it. */
14629
14630 void
14631 mips_define_label (symbolS *sym)
14632 {
14633 segment_info_type *si = seg_info (now_seg);
14634 struct insn_label_list *l;
14635
14636 if (free_insn_labels == NULL)
14637 l = (struct insn_label_list *) xmalloc (sizeof *l);
14638 else
14639 {
14640 l = free_insn_labels;
14641 free_insn_labels = l->next;
14642 }
14643
14644 l->label = sym;
14645 l->next = si->label_list;
14646 si->label_list = l;
14647
14648 #ifdef OBJ_ELF
14649 dwarf2_emit_label (sym);
14650 #endif
14651 }
14652 \f
14653 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14654
14655 /* Some special processing for a MIPS ELF file. */
14656
14657 void
14658 mips_elf_final_processing (void)
14659 {
14660 /* Write out the register information. */
14661 if (mips_abi != N64_ABI)
14662 {
14663 Elf32_RegInfo s;
14664
14665 s.ri_gprmask = mips_gprmask;
14666 s.ri_cprmask[0] = mips_cprmask[0];
14667 s.ri_cprmask[1] = mips_cprmask[1];
14668 s.ri_cprmask[2] = mips_cprmask[2];
14669 s.ri_cprmask[3] = mips_cprmask[3];
14670 /* The gp_value field is set by the MIPS ELF backend. */
14671
14672 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
14673 ((Elf32_External_RegInfo *)
14674 mips_regmask_frag));
14675 }
14676 else
14677 {
14678 Elf64_Internal_RegInfo s;
14679
14680 s.ri_gprmask = mips_gprmask;
14681 s.ri_pad = 0;
14682 s.ri_cprmask[0] = mips_cprmask[0];
14683 s.ri_cprmask[1] = mips_cprmask[1];
14684 s.ri_cprmask[2] = mips_cprmask[2];
14685 s.ri_cprmask[3] = mips_cprmask[3];
14686 /* The gp_value field is set by the MIPS ELF backend. */
14687
14688 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
14689 ((Elf64_External_RegInfo *)
14690 mips_regmask_frag));
14691 }
14692
14693 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
14694 sort of BFD interface for this. */
14695 if (mips_any_noreorder)
14696 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
14697 if (mips_pic != NO_PIC)
14698 {
14699 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
14700 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14701 }
14702 if (mips_abicalls)
14703 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
14704
14705 /* Set MIPS ELF flags for ASEs. */
14706 /* We may need to define a new flag for DSP ASE, and set this flag when
14707 file_ase_dsp is true. */
14708 /* Same for DSP R2. */
14709 /* We may need to define a new flag for MT ASE, and set this flag when
14710 file_ase_mt is true. */
14711 if (file_ase_mips16)
14712 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
14713 #if 0 /* XXX FIXME */
14714 if (file_ase_mips3d)
14715 elf_elfheader (stdoutput)->e_flags |= ???;
14716 #endif
14717 if (file_ase_mdmx)
14718 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
14719
14720 /* Set the MIPS ELF ABI flags. */
14721 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
14722 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
14723 else if (mips_abi == O64_ABI)
14724 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
14725 else if (mips_abi == EABI_ABI)
14726 {
14727 if (!file_mips_gp32)
14728 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
14729 else
14730 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
14731 }
14732 else if (mips_abi == N32_ABI)
14733 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ABI2;
14734
14735 /* Nothing to do for N64_ABI. */
14736
14737 if (mips_32bitmode)
14738 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
14739
14740 #if 0 /* XXX FIXME */
14741 /* 32 bit code with 64 bit FP registers. */
14742 if (!file_mips_fp32 && ABI_NEEDS_32BIT_REGS (mips_abi))
14743 elf_elfheader (stdoutput)->e_flags |= ???;
14744 #endif
14745 }
14746
14747 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
14748 \f
14749 typedef struct proc {
14750 symbolS *func_sym;
14751 symbolS *func_end_sym;
14752 unsigned long reg_mask;
14753 unsigned long reg_offset;
14754 unsigned long fpreg_mask;
14755 unsigned long fpreg_offset;
14756 unsigned long frame_offset;
14757 unsigned long frame_reg;
14758 unsigned long pc_reg;
14759 } procS;
14760
14761 static procS cur_proc;
14762 static procS *cur_proc_ptr;
14763 static int numprocs;
14764
14765 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1" and a normal
14766 nop as "0". */
14767
14768 char
14769 mips_nop_opcode (void)
14770 {
14771 return seg_info (now_seg)->tc_segment_info_data.mips16;
14772 }
14773
14774 /* Fill in an rs_align_code fragment. This only needs to do something
14775 for MIPS16 code, where 0 is not a nop. */
14776
14777 void
14778 mips_handle_align (fragS *fragp)
14779 {
14780 char *p;
14781
14782 if (fragp->fr_type != rs_align_code)
14783 return;
14784
14785 p = fragp->fr_literal + fragp->fr_fix;
14786 if (*p)
14787 {
14788 int bytes;
14789
14790 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
14791 if (bytes & 1)
14792 {
14793 *p++ = 0;
14794 fragp->fr_fix++;
14795 }
14796 md_number_to_chars (p, mips16_nop_insn.insn_opcode, 2);
14797 fragp->fr_var = 2;
14798 }
14799 }
14800
14801 static void
14802 md_obj_begin (void)
14803 {
14804 }
14805
14806 static void
14807 md_obj_end (void)
14808 {
14809 /* Check for premature end, nesting errors, etc. */
14810 if (cur_proc_ptr)
14811 as_warn (_("missing .end at end of assembly"));
14812 }
14813
14814 static long
14815 get_number (void)
14816 {
14817 int negative = 0;
14818 long val = 0;
14819
14820 if (*input_line_pointer == '-')
14821 {
14822 ++input_line_pointer;
14823 negative = 1;
14824 }
14825 if (!ISDIGIT (*input_line_pointer))
14826 as_bad (_("expected simple number"));
14827 if (input_line_pointer[0] == '0')
14828 {
14829 if (input_line_pointer[1] == 'x')
14830 {
14831 input_line_pointer += 2;
14832 while (ISXDIGIT (*input_line_pointer))
14833 {
14834 val <<= 4;
14835 val |= hex_value (*input_line_pointer++);
14836 }
14837 return negative ? -val : val;
14838 }
14839 else
14840 {
14841 ++input_line_pointer;
14842 while (ISDIGIT (*input_line_pointer))
14843 {
14844 val <<= 3;
14845 val |= *input_line_pointer++ - '0';
14846 }
14847 return negative ? -val : val;
14848 }
14849 }
14850 if (!ISDIGIT (*input_line_pointer))
14851 {
14852 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
14853 *input_line_pointer, *input_line_pointer);
14854 as_warn (_("invalid number"));
14855 return -1;
14856 }
14857 while (ISDIGIT (*input_line_pointer))
14858 {
14859 val *= 10;
14860 val += *input_line_pointer++ - '0';
14861 }
14862 return negative ? -val : val;
14863 }
14864
14865 /* The .file directive; just like the usual .file directive, but there
14866 is an initial number which is the ECOFF file index. In the non-ECOFF
14867 case .file implies DWARF-2. */
14868
14869 static void
14870 s_mips_file (int x ATTRIBUTE_UNUSED)
14871 {
14872 static int first_file_directive = 0;
14873
14874 if (ECOFF_DEBUGGING)
14875 {
14876 get_number ();
14877 s_app_file (0);
14878 }
14879 else
14880 {
14881 char *filename;
14882
14883 filename = dwarf2_directive_file (0);
14884
14885 /* Versions of GCC up to 3.1 start files with a ".file"
14886 directive even for stabs output. Make sure that this
14887 ".file" is handled. Note that you need a version of GCC
14888 after 3.1 in order to support DWARF-2 on MIPS. */
14889 if (filename != NULL && ! first_file_directive)
14890 {
14891 (void) new_logical_line (filename, -1);
14892 s_app_file_string (filename, 0);
14893 }
14894 first_file_directive = 1;
14895 }
14896 }
14897
14898 /* The .loc directive, implying DWARF-2. */
14899
14900 static void
14901 s_mips_loc (int x ATTRIBUTE_UNUSED)
14902 {
14903 if (!ECOFF_DEBUGGING)
14904 dwarf2_directive_loc (0);
14905 }
14906
14907 /* The .end directive. */
14908
14909 static void
14910 s_mips_end (int x ATTRIBUTE_UNUSED)
14911 {
14912 symbolS *p;
14913
14914 /* Following functions need their own .frame and .cprestore directives. */
14915 mips_frame_reg_valid = 0;
14916 mips_cprestore_valid = 0;
14917
14918 if (!is_end_of_line[(unsigned char) *input_line_pointer])
14919 {
14920 p = get_symbol ();
14921 demand_empty_rest_of_line ();
14922 }
14923 else
14924 p = NULL;
14925
14926 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
14927 as_warn (_(".end not in text section"));
14928
14929 if (!cur_proc_ptr)
14930 {
14931 as_warn (_(".end directive without a preceding .ent directive."));
14932 demand_empty_rest_of_line ();
14933 return;
14934 }
14935
14936 if (p != NULL)
14937 {
14938 gas_assert (S_GET_NAME (p));
14939 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
14940 as_warn (_(".end symbol does not match .ent symbol."));
14941
14942 if (debug_type == DEBUG_STABS)
14943 stabs_generate_asm_endfunc (S_GET_NAME (p),
14944 S_GET_NAME (p));
14945 }
14946 else
14947 as_warn (_(".end directive missing or unknown symbol"));
14948
14949 #ifdef OBJ_ELF
14950 /* Create an expression to calculate the size of the function. */
14951 if (p && cur_proc_ptr)
14952 {
14953 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
14954 expressionS *exp = xmalloc (sizeof (expressionS));
14955
14956 obj->size = exp;
14957 exp->X_op = O_subtract;
14958 exp->X_add_symbol = symbol_temp_new_now ();
14959 exp->X_op_symbol = p;
14960 exp->X_add_number = 0;
14961
14962 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
14963 }
14964
14965 /* Generate a .pdr section. */
14966 if (IS_ELF && !ECOFF_DEBUGGING && mips_flag_pdr)
14967 {
14968 segT saved_seg = now_seg;
14969 subsegT saved_subseg = now_subseg;
14970 valueT dot;
14971 expressionS exp;
14972 char *fragp;
14973
14974 dot = frag_now_fix ();
14975
14976 #ifdef md_flush_pending_output
14977 md_flush_pending_output ();
14978 #endif
14979
14980 gas_assert (pdr_seg);
14981 subseg_set (pdr_seg, 0);
14982
14983 /* Write the symbol. */
14984 exp.X_op = O_symbol;
14985 exp.X_add_symbol = p;
14986 exp.X_add_number = 0;
14987 emit_expr (&exp, 4);
14988
14989 fragp = frag_more (7 * 4);
14990
14991 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
14992 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
14993 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
14994 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
14995 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
14996 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
14997 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
14998
14999 subseg_set (saved_seg, saved_subseg);
15000 }
15001 #endif /* OBJ_ELF */
15002
15003 cur_proc_ptr = NULL;
15004 }
15005
15006 /* The .aent and .ent directives. */
15007
15008 static void
15009 s_mips_ent (int aent)
15010 {
15011 symbolS *symbolP;
15012
15013 symbolP = get_symbol ();
15014 if (*input_line_pointer == ',')
15015 ++input_line_pointer;
15016 SKIP_WHITESPACE ();
15017 if (ISDIGIT (*input_line_pointer)
15018 || *input_line_pointer == '-')
15019 get_number ();
15020
15021 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
15022 as_warn (_(".ent or .aent not in text section."));
15023
15024 if (!aent && cur_proc_ptr)
15025 as_warn (_("missing .end"));
15026
15027 if (!aent)
15028 {
15029 /* This function needs its own .frame and .cprestore directives. */
15030 mips_frame_reg_valid = 0;
15031 mips_cprestore_valid = 0;
15032
15033 cur_proc_ptr = &cur_proc;
15034 memset (cur_proc_ptr, '\0', sizeof (procS));
15035
15036 cur_proc_ptr->func_sym = symbolP;
15037
15038 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
15039
15040 ++numprocs;
15041
15042 if (debug_type == DEBUG_STABS)
15043 stabs_generate_asm_func (S_GET_NAME (symbolP),
15044 S_GET_NAME (symbolP));
15045 }
15046
15047 demand_empty_rest_of_line ();
15048 }
15049
15050 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
15051 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
15052 s_mips_frame is used so that we can set the PDR information correctly.
15053 We can't use the ecoff routines because they make reference to the ecoff
15054 symbol table (in the mdebug section). */
15055
15056 static void
15057 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
15058 {
15059 #ifdef OBJ_ELF
15060 if (IS_ELF && !ECOFF_DEBUGGING)
15061 {
15062 long val;
15063
15064 if (cur_proc_ptr == (procS *) NULL)
15065 {
15066 as_warn (_(".frame outside of .ent"));
15067 demand_empty_rest_of_line ();
15068 return;
15069 }
15070
15071 cur_proc_ptr->frame_reg = tc_get_register (1);
15072
15073 SKIP_WHITESPACE ();
15074 if (*input_line_pointer++ != ','
15075 || get_absolute_expression_and_terminator (&val) != ',')
15076 {
15077 as_warn (_("Bad .frame directive"));
15078 --input_line_pointer;
15079 demand_empty_rest_of_line ();
15080 return;
15081 }
15082
15083 cur_proc_ptr->frame_offset = val;
15084 cur_proc_ptr->pc_reg = tc_get_register (0);
15085
15086 demand_empty_rest_of_line ();
15087 }
15088 else
15089 #endif /* OBJ_ELF */
15090 s_ignore (ignore);
15091 }
15092
15093 /* The .fmask and .mask directives. If the mdebug section is present
15094 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
15095 embedded targets, s_mips_mask is used so that we can set the PDR
15096 information correctly. We can't use the ecoff routines because they
15097 make reference to the ecoff symbol table (in the mdebug section). */
15098
15099 static void
15100 s_mips_mask (int reg_type)
15101 {
15102 #ifdef OBJ_ELF
15103 if (IS_ELF && !ECOFF_DEBUGGING)
15104 {
15105 long mask, off;
15106
15107 if (cur_proc_ptr == (procS *) NULL)
15108 {
15109 as_warn (_(".mask/.fmask outside of .ent"));
15110 demand_empty_rest_of_line ();
15111 return;
15112 }
15113
15114 if (get_absolute_expression_and_terminator (&mask) != ',')
15115 {
15116 as_warn (_("Bad .mask/.fmask directive"));
15117 --input_line_pointer;
15118 demand_empty_rest_of_line ();
15119 return;
15120 }
15121
15122 off = get_absolute_expression ();
15123
15124 if (reg_type == 'F')
15125 {
15126 cur_proc_ptr->fpreg_mask = mask;
15127 cur_proc_ptr->fpreg_offset = off;
15128 }
15129 else
15130 {
15131 cur_proc_ptr->reg_mask = mask;
15132 cur_proc_ptr->reg_offset = off;
15133 }
15134
15135 demand_empty_rest_of_line ();
15136 }
15137 else
15138 #endif /* OBJ_ELF */
15139 s_ignore (reg_type);
15140 }
15141
15142 /* A table describing all the processors gas knows about. Names are
15143 matched in the order listed.
15144
15145 To ease comparison, please keep this table in the same order as
15146 gcc's mips_cpu_info_table[]. */
15147 static const struct mips_cpu_info mips_cpu_info_table[] =
15148 {
15149 /* Entries for generic ISAs */
15150 { "mips1", MIPS_CPU_IS_ISA, ISA_MIPS1, CPU_R3000 },
15151 { "mips2", MIPS_CPU_IS_ISA, ISA_MIPS2, CPU_R6000 },
15152 { "mips3", MIPS_CPU_IS_ISA, ISA_MIPS3, CPU_R4000 },
15153 { "mips4", MIPS_CPU_IS_ISA, ISA_MIPS4, CPU_R8000 },
15154 { "mips5", MIPS_CPU_IS_ISA, ISA_MIPS5, CPU_MIPS5 },
15155 { "mips32", MIPS_CPU_IS_ISA, ISA_MIPS32, CPU_MIPS32 },
15156 { "mips32r2", MIPS_CPU_IS_ISA, ISA_MIPS32R2, CPU_MIPS32R2 },
15157 { "mips64", MIPS_CPU_IS_ISA, ISA_MIPS64, CPU_MIPS64 },
15158 { "mips64r2", MIPS_CPU_IS_ISA, ISA_MIPS64R2, CPU_MIPS64R2 },
15159
15160 /* MIPS I */
15161 { "r3000", 0, ISA_MIPS1, CPU_R3000 },
15162 { "r2000", 0, ISA_MIPS1, CPU_R3000 },
15163 { "r3900", 0, ISA_MIPS1, CPU_R3900 },
15164
15165 /* MIPS II */
15166 { "r6000", 0, ISA_MIPS2, CPU_R6000 },
15167
15168 /* MIPS III */
15169 { "r4000", 0, ISA_MIPS3, CPU_R4000 },
15170 { "r4010", 0, ISA_MIPS2, CPU_R4010 },
15171 { "vr4100", 0, ISA_MIPS3, CPU_VR4100 },
15172 { "vr4111", 0, ISA_MIPS3, CPU_R4111 },
15173 { "vr4120", 0, ISA_MIPS3, CPU_VR4120 },
15174 { "vr4130", 0, ISA_MIPS3, CPU_VR4120 },
15175 { "vr4181", 0, ISA_MIPS3, CPU_R4111 },
15176 { "vr4300", 0, ISA_MIPS3, CPU_R4300 },
15177 { "r4400", 0, ISA_MIPS3, CPU_R4400 },
15178 { "r4600", 0, ISA_MIPS3, CPU_R4600 },
15179 { "orion", 0, ISA_MIPS3, CPU_R4600 },
15180 { "r4650", 0, ISA_MIPS3, CPU_R4650 },
15181 /* ST Microelectronics Loongson 2E and 2F cores */
15182 { "loongson2e", 0, ISA_MIPS3, CPU_LOONGSON_2E },
15183 { "loongson2f", 0, ISA_MIPS3, CPU_LOONGSON_2F },
15184
15185 /* MIPS IV */
15186 { "r8000", 0, ISA_MIPS4, CPU_R8000 },
15187 { "r10000", 0, ISA_MIPS4, CPU_R10000 },
15188 { "r12000", 0, ISA_MIPS4, CPU_R12000 },
15189 { "r14000", 0, ISA_MIPS4, CPU_R14000 },
15190 { "r16000", 0, ISA_MIPS4, CPU_R16000 },
15191 { "vr5000", 0, ISA_MIPS4, CPU_R5000 },
15192 { "vr5400", 0, ISA_MIPS4, CPU_VR5400 },
15193 { "vr5500", 0, ISA_MIPS4, CPU_VR5500 },
15194 { "rm5200", 0, ISA_MIPS4, CPU_R5000 },
15195 { "rm5230", 0, ISA_MIPS4, CPU_R5000 },
15196 { "rm5231", 0, ISA_MIPS4, CPU_R5000 },
15197 { "rm5261", 0, ISA_MIPS4, CPU_R5000 },
15198 { "rm5721", 0, ISA_MIPS4, CPU_R5000 },
15199 { "rm7000", 0, ISA_MIPS4, CPU_RM7000 },
15200 { "rm9000", 0, ISA_MIPS4, CPU_RM9000 },
15201
15202 /* MIPS 32 */
15203 { "4kc", 0, ISA_MIPS32, CPU_MIPS32 },
15204 { "4km", 0, ISA_MIPS32, CPU_MIPS32 },
15205 { "4kp", 0, ISA_MIPS32, CPU_MIPS32 },
15206 { "4ksc", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
15207
15208 /* MIPS 32 Release 2 */
15209 { "4kec", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15210 { "4kem", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15211 { "4kep", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15212 { "4ksd", MIPS_CPU_ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
15213 { "m4k", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15214 { "m4kp", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15215 { "24kc", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15216 { "24kf2_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15217 { "24kf", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15218 { "24kf1_1", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15219 /* Deprecated forms of the above. */
15220 { "24kfx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15221 { "24kx", 0, ISA_MIPS32R2, CPU_MIPS32R2 },
15222 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
15223 { "24kec", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15224 { "24kef2_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15225 { "24kef", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15226 { "24kef1_1", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15227 /* Deprecated forms of the above. */
15228 { "24kefx", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15229 { "24kex", MIPS_CPU_ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
15230 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
15231 { "34kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15232 ISA_MIPS32R2, CPU_MIPS32R2 },
15233 { "34kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15234 ISA_MIPS32R2, CPU_MIPS32R2 },
15235 { "34kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15236 ISA_MIPS32R2, CPU_MIPS32R2 },
15237 { "34kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15238 ISA_MIPS32R2, CPU_MIPS32R2 },
15239 /* Deprecated forms of the above. */
15240 { "34kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15241 ISA_MIPS32R2, CPU_MIPS32R2 },
15242 { "34kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15243 ISA_MIPS32R2, CPU_MIPS32R2 },
15244 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
15245 { "74kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15246 ISA_MIPS32R2, CPU_MIPS32R2 },
15247 { "74kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15248 ISA_MIPS32R2, CPU_MIPS32R2 },
15249 { "74kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15250 ISA_MIPS32R2, CPU_MIPS32R2 },
15251 { "74kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15252 ISA_MIPS32R2, CPU_MIPS32R2 },
15253 { "74kf3_2", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15254 ISA_MIPS32R2, CPU_MIPS32R2 },
15255 /* Deprecated forms of the above. */
15256 { "74kfx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15257 ISA_MIPS32R2, CPU_MIPS32R2 },
15258 { "74kx", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_DSPR2,
15259 ISA_MIPS32R2, CPU_MIPS32R2 },
15260 /* 1004K cores are multiprocessor versions of the 34K. */
15261 { "1004kc", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15262 ISA_MIPS32R2, CPU_MIPS32R2 },
15263 { "1004kf2_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15264 ISA_MIPS32R2, CPU_MIPS32R2 },
15265 { "1004kf", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15266 ISA_MIPS32R2, CPU_MIPS32R2 },
15267 { "1004kf1_1", MIPS_CPU_ASE_DSP | MIPS_CPU_ASE_MT,
15268 ISA_MIPS32R2, CPU_MIPS32R2 },
15269
15270 /* MIPS 64 */
15271 { "5kc", 0, ISA_MIPS64, CPU_MIPS64 },
15272 { "5kf", 0, ISA_MIPS64, CPU_MIPS64 },
15273 { "20kc", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15274 { "25kf", MIPS_CPU_ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
15275
15276 /* Broadcom SB-1 CPU core */
15277 { "sb1", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15278 ISA_MIPS64, CPU_SB1 },
15279 /* Broadcom SB-1A CPU core */
15280 { "sb1a", MIPS_CPU_ASE_MIPS3D | MIPS_CPU_ASE_MDMX,
15281 ISA_MIPS64, CPU_SB1 },
15282
15283 /* MIPS 64 Release 2 */
15284
15285 /* Cavium Networks Octeon CPU core */
15286 { "octeon", 0, ISA_MIPS64R2, CPU_OCTEON },
15287
15288 /* RMI Xlr */
15289 { "xlr", 0, ISA_MIPS64, CPU_XLR },
15290
15291 /* End marker */
15292 { NULL, 0, 0, 0 }
15293 };
15294
15295
15296 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
15297 with a final "000" replaced by "k". Ignore case.
15298
15299 Note: this function is shared between GCC and GAS. */
15300
15301 static bfd_boolean
15302 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
15303 {
15304 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
15305 given++, canonical++;
15306
15307 return ((*given == 0 && *canonical == 0)
15308 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
15309 }
15310
15311
15312 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
15313 CPU name. We've traditionally allowed a lot of variation here.
15314
15315 Note: this function is shared between GCC and GAS. */
15316
15317 static bfd_boolean
15318 mips_matching_cpu_name_p (const char *canonical, const char *given)
15319 {
15320 /* First see if the name matches exactly, or with a final "000"
15321 turned into "k". */
15322 if (mips_strict_matching_cpu_name_p (canonical, given))
15323 return TRUE;
15324
15325 /* If not, try comparing based on numerical designation alone.
15326 See if GIVEN is an unadorned number, or 'r' followed by a number. */
15327 if (TOLOWER (*given) == 'r')
15328 given++;
15329 if (!ISDIGIT (*given))
15330 return FALSE;
15331
15332 /* Skip over some well-known prefixes in the canonical name,
15333 hoping to find a number there too. */
15334 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
15335 canonical += 2;
15336 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
15337 canonical += 2;
15338 else if (TOLOWER (canonical[0]) == 'r')
15339 canonical += 1;
15340
15341 return mips_strict_matching_cpu_name_p (canonical, given);
15342 }
15343
15344
15345 /* Parse an option that takes the name of a processor as its argument.
15346 OPTION is the name of the option and CPU_STRING is the argument.
15347 Return the corresponding processor enumeration if the CPU_STRING is
15348 recognized, otherwise report an error and return null.
15349
15350 A similar function exists in GCC. */
15351
15352 static const struct mips_cpu_info *
15353 mips_parse_cpu (const char *option, const char *cpu_string)
15354 {
15355 const struct mips_cpu_info *p;
15356
15357 /* 'from-abi' selects the most compatible architecture for the given
15358 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
15359 EABIs, we have to decide whether we're using the 32-bit or 64-bit
15360 version. Look first at the -mgp options, if given, otherwise base
15361 the choice on MIPS_DEFAULT_64BIT.
15362
15363 Treat NO_ABI like the EABIs. One reason to do this is that the
15364 plain 'mips' and 'mips64' configs have 'from-abi' as their default
15365 architecture. This code picks MIPS I for 'mips' and MIPS III for
15366 'mips64', just as we did in the days before 'from-abi'. */
15367 if (strcasecmp (cpu_string, "from-abi") == 0)
15368 {
15369 if (ABI_NEEDS_32BIT_REGS (mips_abi))
15370 return mips_cpu_info_from_isa (ISA_MIPS1);
15371
15372 if (ABI_NEEDS_64BIT_REGS (mips_abi))
15373 return mips_cpu_info_from_isa (ISA_MIPS3);
15374
15375 if (file_mips_gp32 >= 0)
15376 return mips_cpu_info_from_isa (file_mips_gp32 ? ISA_MIPS1 : ISA_MIPS3);
15377
15378 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
15379 ? ISA_MIPS3
15380 : ISA_MIPS1);
15381 }
15382
15383 /* 'default' has traditionally been a no-op. Probably not very useful. */
15384 if (strcasecmp (cpu_string, "default") == 0)
15385 return 0;
15386
15387 for (p = mips_cpu_info_table; p->name != 0; p++)
15388 if (mips_matching_cpu_name_p (p->name, cpu_string))
15389 return p;
15390
15391 as_bad (_("Bad value (%s) for %s"), cpu_string, option);
15392 return 0;
15393 }
15394
15395 /* Return the canonical processor information for ISA (a member of the
15396 ISA_MIPS* enumeration). */
15397
15398 static const struct mips_cpu_info *
15399 mips_cpu_info_from_isa (int isa)
15400 {
15401 int i;
15402
15403 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15404 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
15405 && isa == mips_cpu_info_table[i].isa)
15406 return (&mips_cpu_info_table[i]);
15407
15408 return NULL;
15409 }
15410
15411 static const struct mips_cpu_info *
15412 mips_cpu_info_from_arch (int arch)
15413 {
15414 int i;
15415
15416 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15417 if (arch == mips_cpu_info_table[i].cpu)
15418 return (&mips_cpu_info_table[i]);
15419
15420 return NULL;
15421 }
15422 \f
15423 static void
15424 show (FILE *stream, const char *string, int *col_p, int *first_p)
15425 {
15426 if (*first_p)
15427 {
15428 fprintf (stream, "%24s", "");
15429 *col_p = 24;
15430 }
15431 else
15432 {
15433 fprintf (stream, ", ");
15434 *col_p += 2;
15435 }
15436
15437 if (*col_p + strlen (string) > 72)
15438 {
15439 fprintf (stream, "\n%24s", "");
15440 *col_p = 24;
15441 }
15442
15443 fprintf (stream, "%s", string);
15444 *col_p += strlen (string);
15445
15446 *first_p = 0;
15447 }
15448
15449 void
15450 md_show_usage (FILE *stream)
15451 {
15452 int column, first;
15453 size_t i;
15454
15455 fprintf (stream, _("\
15456 MIPS options:\n\
15457 -EB generate big endian output\n\
15458 -EL generate little endian output\n\
15459 -g, -g2 do not remove unneeded NOPs or swap branches\n\
15460 -G NUM allow referencing objects up to NUM bytes\n\
15461 implicitly with the gp register [default 8]\n"));
15462 fprintf (stream, _("\
15463 -mips1 generate MIPS ISA I instructions\n\
15464 -mips2 generate MIPS ISA II instructions\n\
15465 -mips3 generate MIPS ISA III instructions\n\
15466 -mips4 generate MIPS ISA IV instructions\n\
15467 -mips5 generate MIPS ISA V instructions\n\
15468 -mips32 generate MIPS32 ISA instructions\n\
15469 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
15470 -mips64 generate MIPS64 ISA instructions\n\
15471 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
15472 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
15473
15474 first = 1;
15475
15476 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
15477 show (stream, mips_cpu_info_table[i].name, &column, &first);
15478 show (stream, "from-abi", &column, &first);
15479 fputc ('\n', stream);
15480
15481 fprintf (stream, _("\
15482 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
15483 -no-mCPU don't generate code specific to CPU.\n\
15484 For -mCPU and -no-mCPU, CPU must be one of:\n"));
15485
15486 first = 1;
15487
15488 show (stream, "3900", &column, &first);
15489 show (stream, "4010", &column, &first);
15490 show (stream, "4100", &column, &first);
15491 show (stream, "4650", &column, &first);
15492 fputc ('\n', stream);
15493
15494 fprintf (stream, _("\
15495 -mips16 generate mips16 instructions\n\
15496 -no-mips16 do not generate mips16 instructions\n"));
15497 fprintf (stream, _("\
15498 -msmartmips generate smartmips instructions\n\
15499 -mno-smartmips do not generate smartmips instructions\n"));
15500 fprintf (stream, _("\
15501 -mdsp generate DSP instructions\n\
15502 -mno-dsp do not generate DSP instructions\n"));
15503 fprintf (stream, _("\
15504 -mdspr2 generate DSP R2 instructions\n\
15505 -mno-dspr2 do not generate DSP R2 instructions\n"));
15506 fprintf (stream, _("\
15507 -mmt generate MT instructions\n\
15508 -mno-mt do not generate MT instructions\n"));
15509 fprintf (stream, _("\
15510 -mfix-vr4120 work around certain VR4120 errata\n\
15511 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
15512 -mfix-24k insert a nop after ERET and DERET instructions\n\
15513 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
15514 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
15515 -msym32 assume all symbols have 32-bit values\n\
15516 -O0 remove unneeded NOPs, do not swap branches\n\
15517 -O remove unneeded NOPs and swap branches\n\
15518 --trap, --no-break trap exception on div by 0 and mult overflow\n\
15519 --break, --no-trap break exception on div by 0 and mult overflow\n"));
15520 fprintf (stream, _("\
15521 -mhard-float allow floating-point instructions\n\
15522 -msoft-float do not allow floating-point instructions\n\
15523 -msingle-float only allow 32-bit floating-point operations\n\
15524 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
15525 --[no-]construct-floats [dis]allow floating point values to be constructed\n"
15526 ));
15527 #ifdef OBJ_ELF
15528 fprintf (stream, _("\
15529 -KPIC, -call_shared generate SVR4 position independent code\n\
15530 -call_nonpic generate non-PIC code that can operate with DSOs\n\
15531 -mvxworks-pic generate VxWorks position independent code\n\
15532 -non_shared do not generate code that can operate with DSOs\n\
15533 -xgot assume a 32 bit GOT\n\
15534 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
15535 -mshared, -mno-shared disable/enable .cpload optimization for\n\
15536 position dependent (non shared) code\n\
15537 -mabi=ABI create ABI conformant object file for:\n"));
15538
15539 first = 1;
15540
15541 show (stream, "32", &column, &first);
15542 show (stream, "o64", &column, &first);
15543 show (stream, "n32", &column, &first);
15544 show (stream, "64", &column, &first);
15545 show (stream, "eabi", &column, &first);
15546
15547 fputc ('\n', stream);
15548
15549 fprintf (stream, _("\
15550 -32 create o32 ABI object file (default)\n\
15551 -n32 create n32 ABI object file\n\
15552 -64 create 64 ABI object file\n"));
15553 #endif
15554 }
15555
15556 enum dwarf2_format
15557 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
15558 {
15559 if (HAVE_64BIT_SYMBOLS)
15560 {
15561 #ifdef TE_IRIX
15562 return dwarf2_format_64bit_irix;
15563 #else
15564 return dwarf2_format_64bit;
15565 #endif
15566 }
15567 else
15568 return dwarf2_format_32bit;
15569 }
15570
15571 int
15572 mips_dwarf2_addr_size (void)
15573 {
15574 if (HAVE_64BIT_OBJECTS)
15575 return 8;
15576 else
15577 return 4;
15578 }
15579
15580 /* Standard calling conventions leave the CFA at SP on entry. */
15581 void
15582 mips_cfi_frame_initial_instructions (void)
15583 {
15584 cfi_add_CFA_def_cfa_register (SP);
15585 }
15586
15587 int
15588 tc_mips_regname_to_dw2regnum (char *regname)
15589 {
15590 unsigned int regnum = -1;
15591 unsigned int reg;
15592
15593 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
15594 regnum = reg;
15595
15596 return regnum;
15597 }
This page took 0.330979 seconds and 5 git commands to generate.