[MIPS] Apply ASE information for the selected processor
[deliverable/binutils-gdb.git] / gas / config / tc-mips.c
1 /* tc-mips.c -- assemble code for a MIPS chip.
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3 Contributed by the OSF and Ralph Campbell.
4 Written by Keith Knowles and Ralph Campbell, working independently.
5 Modified for ECOFF and R4000 support by Ian Lance Taylor of Cygnus
6 Support.
7
8 This file is part of GAS.
9
10 GAS is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GAS is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GAS; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
23 02110-1301, USA. */
24
25 #include "as.h"
26 #include "config.h"
27 #include "subsegs.h"
28 #include "safe-ctype.h"
29
30 #include "opcode/mips.h"
31 #include "itbl-ops.h"
32 #include "dwarf2dbg.h"
33 #include "dw2gencfi.h"
34
35 /* Check assumptions made in this file. */
36 typedef char static_assert1[sizeof (offsetT) < 8 ? -1 : 1];
37 typedef char static_assert2[sizeof (valueT) < 8 ? -1 : 1];
38
39 #ifdef DEBUG
40 #define DBG(x) printf x
41 #else
42 #define DBG(x)
43 #endif
44
45 #define streq(a, b) (strcmp (a, b) == 0)
46
47 #define SKIP_SPACE_TABS(S) \
48 do { while (*(S) == ' ' || *(S) == '\t') ++(S); } while (0)
49
50 /* Clean up namespace so we can include obj-elf.h too. */
51 static int mips_output_flavor (void);
52 static int mips_output_flavor (void) { return OUTPUT_FLAVOR; }
53 #undef OBJ_PROCESS_STAB
54 #undef OUTPUT_FLAVOR
55 #undef S_GET_ALIGN
56 #undef S_GET_SIZE
57 #undef S_SET_ALIGN
58 #undef S_SET_SIZE
59 #undef obj_frob_file
60 #undef obj_frob_file_after_relocs
61 #undef obj_frob_symbol
62 #undef obj_pop_insert
63 #undef obj_sec_sym_ok_for_reloc
64 #undef OBJ_COPY_SYMBOL_ATTRIBUTES
65
66 #include "obj-elf.h"
67 /* Fix any of them that we actually care about. */
68 #undef OUTPUT_FLAVOR
69 #define OUTPUT_FLAVOR mips_output_flavor()
70
71 #include "elf/mips.h"
72
73 #ifndef ECOFF_DEBUGGING
74 #define NO_ECOFF_DEBUGGING
75 #define ECOFF_DEBUGGING 0
76 #endif
77
78 int mips_flag_mdebug = -1;
79
80 /* Control generation of .pdr sections. Off by default on IRIX: the native
81 linker doesn't know about and discards them, but relocations against them
82 remain, leading to rld crashes. */
83 #ifdef TE_IRIX
84 int mips_flag_pdr = FALSE;
85 #else
86 int mips_flag_pdr = TRUE;
87 #endif
88
89 #include "ecoff.h"
90
91 static char *mips_regmask_frag;
92 static char *mips_flags_frag;
93
94 #define ZERO 0
95 #define ATREG 1
96 #define S0 16
97 #define S7 23
98 #define TREG 24
99 #define PIC_CALL_REG 25
100 #define KT0 26
101 #define KT1 27
102 #define GP 28
103 #define SP 29
104 #define FP 30
105 #define RA 31
106
107 #define ILLEGAL_REG (32)
108
109 #define AT mips_opts.at
110
111 extern int target_big_endian;
112
113 /* The name of the readonly data section. */
114 #define RDATA_SECTION_NAME ".rodata"
115
116 /* Ways in which an instruction can be "appended" to the output. */
117 enum append_method {
118 /* Just add it normally. */
119 APPEND_ADD,
120
121 /* Add it normally and then add a nop. */
122 APPEND_ADD_WITH_NOP,
123
124 /* Turn an instruction with a delay slot into a "compact" version. */
125 APPEND_ADD_COMPACT,
126
127 /* Insert the instruction before the last one. */
128 APPEND_SWAP
129 };
130
131 /* Information about an instruction, including its format, operands
132 and fixups. */
133 struct mips_cl_insn
134 {
135 /* The opcode's entry in mips_opcodes or mips16_opcodes. */
136 const struct mips_opcode *insn_mo;
137
138 /* The 16-bit or 32-bit bitstring of the instruction itself. This is
139 a copy of INSN_MO->match with the operands filled in. If we have
140 decided to use an extended MIPS16 instruction, this includes the
141 extension. */
142 unsigned long insn_opcode;
143
144 /* The name if this is an label. */
145 char label[16];
146
147 /* The target label name if this is an branch. */
148 char target[16];
149
150 /* The frag that contains the instruction. */
151 struct frag *frag;
152
153 /* The offset into FRAG of the first instruction byte. */
154 long where;
155
156 /* The relocs associated with the instruction, if any. */
157 fixS *fixp[3];
158
159 /* True if this entry cannot be moved from its current position. */
160 unsigned int fixed_p : 1;
161
162 /* True if this instruction occurred in a .set noreorder block. */
163 unsigned int noreorder_p : 1;
164
165 /* True for mips16 instructions that jump to an absolute address. */
166 unsigned int mips16_absolute_jump_p : 1;
167
168 /* True if this instruction is complete. */
169 unsigned int complete_p : 1;
170
171 /* True if this instruction is cleared from history by unconditional
172 branch. */
173 unsigned int cleared_p : 1;
174 };
175
176 /* The ABI to use. */
177 enum mips_abi_level
178 {
179 NO_ABI = 0,
180 O32_ABI,
181 O64_ABI,
182 N32_ABI,
183 N64_ABI,
184 EABI_ABI
185 };
186
187 /* MIPS ABI we are using for this output file. */
188 static enum mips_abi_level mips_abi = NO_ABI;
189
190 /* Whether or not we have code that can call pic code. */
191 int mips_abicalls = FALSE;
192
193 /* Whether or not we have code which can be put into a shared
194 library. */
195 static bfd_boolean mips_in_shared = TRUE;
196
197 /* This is the set of options which may be modified by the .set
198 pseudo-op. We use a struct so that .set push and .set pop are more
199 reliable. */
200
201 struct mips_set_options
202 {
203 /* MIPS ISA (Instruction Set Architecture) level. This is set to -1
204 if it has not been initialized. Changed by `.set mipsN', and the
205 -mipsN command line option, and the default CPU. */
206 int isa;
207 /* Enabled Application Specific Extensions (ASEs). Changed by `.set
208 <asename>', by command line options, and based on the default
209 architecture. */
210 int ase;
211 /* Whether we are assembling for the mips16 processor. 0 if we are
212 not, 1 if we are, and -1 if the value has not been initialized.
213 Changed by `.set mips16' and `.set nomips16', and the -mips16 and
214 -nomips16 command line options, and the default CPU. */
215 int mips16;
216 /* Whether we are assembling for the mipsMIPS ASE. 0 if we are not,
217 1 if we are, and -1 if the value has not been initialized. Changed
218 by `.set micromips' and `.set nomicromips', and the -mmicromips
219 and -mno-micromips command line options, and the default CPU. */
220 int micromips;
221 /* Non-zero if we should not reorder instructions. Changed by `.set
222 reorder' and `.set noreorder'. */
223 int noreorder;
224 /* Non-zero if we should not permit the register designated "assembler
225 temporary" to be used in instructions. The value is the register
226 number, normally $at ($1). Changed by `.set at=REG', `.set noat'
227 (same as `.set at=$0') and `.set at' (same as `.set at=$1'). */
228 unsigned int at;
229 /* Non-zero if we should warn when a macro instruction expands into
230 more than one machine instruction. Changed by `.set nomacro' and
231 `.set macro'. */
232 int warn_about_macros;
233 /* Non-zero if we should not move instructions. Changed by `.set
234 move', `.set volatile', `.set nomove', and `.set novolatile'. */
235 int nomove;
236 /* Non-zero if we should not optimize branches by moving the target
237 of the branch into the delay slot. Actually, we don't perform
238 this optimization anyhow. Changed by `.set bopt' and `.set
239 nobopt'. */
240 int nobopt;
241 /* Non-zero if we should not autoextend mips16 instructions.
242 Changed by `.set autoextend' and `.set noautoextend'. */
243 int noautoextend;
244 /* True if we should only emit 32-bit microMIPS instructions.
245 Changed by `.set insn32' and `.set noinsn32', and the -minsn32
246 and -mno-insn32 command line options. */
247 bfd_boolean insn32;
248 /* Restrict general purpose registers and floating point registers
249 to 32 bit. This is initially determined when -mgp32 or -mfp32
250 is passed but can changed if the assembler code uses .set mipsN. */
251 int gp;
252 int fp;
253 /* MIPS architecture (CPU) type. Changed by .set arch=FOO, the -march
254 command line option, and the default CPU. */
255 int arch;
256 /* True if ".set sym32" is in effect. */
257 bfd_boolean sym32;
258 /* True if floating-point operations are not allowed. Changed by .set
259 softfloat or .set hardfloat, by command line options -msoft-float or
260 -mhard-float. The default is false. */
261 bfd_boolean soft_float;
262
263 /* True if only single-precision floating-point operations are allowed.
264 Changed by .set singlefloat or .set doublefloat, command-line options
265 -msingle-float or -mdouble-float. The default is false. */
266 bfd_boolean single_float;
267
268 /* 1 if single-precision operations on odd-numbered registers are
269 allowed. */
270 int oddspreg;
271
272 /* The set of ASEs that should be enabled for the user specified
273 architecture. This cannot be inferred from 'arch' for all cores
274 as processors only have a unique 'arch' if they add architecture
275 specific instructions (UDI). */
276 int init_ase;
277 };
278
279 /* Specifies whether module level options have been checked yet. */
280 static bfd_boolean file_mips_opts_checked = FALSE;
281
282 /* Do we support nan2008? 0 if we don't, 1 if we do, and -1 if the
283 value has not been initialized. Changed by `.nan legacy' and
284 `.nan 2008', and the -mnan=legacy and -mnan=2008 command line
285 options, and the default CPU. */
286 static int mips_nan2008 = -1;
287
288 /* This is the struct we use to hold the module level set of options.
289 Note that we must set the isa field to ISA_UNKNOWN and the ASE, gp and
290 fp fields to -1 to indicate that they have not been initialized. */
291
292 static struct mips_set_options file_mips_opts =
293 {
294 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
295 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
296 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
297 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
298 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1,
299 /* init_ase */ 0
300 };
301
302 /* This is similar to file_mips_opts, but for the current set of options. */
303
304 static struct mips_set_options mips_opts =
305 {
306 /* isa */ ISA_UNKNOWN, /* ase */ 0, /* mips16 */ -1, /* micromips */ -1,
307 /* noreorder */ 0, /* at */ ATREG, /* warn_about_macros */ 0,
308 /* nomove */ 0, /* nobopt */ 0, /* noautoextend */ 0, /* insn32 */ FALSE,
309 /* gp */ -1, /* fp */ -1, /* arch */ CPU_UNKNOWN, /* sym32 */ FALSE,
310 /* soft_float */ FALSE, /* single_float */ FALSE, /* oddspreg */ -1,
311 /* init_ase */ 0
312 };
313
314 /* Which bits of file_ase were explicitly set or cleared by ASE options. */
315 static unsigned int file_ase_explicit;
316
317 /* These variables are filled in with the masks of registers used.
318 The object format code reads them and puts them in the appropriate
319 place. */
320 unsigned long mips_gprmask;
321 unsigned long mips_cprmask[4];
322
323 /* True if any MIPS16 code was produced. */
324 static int file_ase_mips16;
325
326 #define ISA_SUPPORTS_MIPS16E (mips_opts.isa == ISA_MIPS32 \
327 || mips_opts.isa == ISA_MIPS32R2 \
328 || mips_opts.isa == ISA_MIPS32R3 \
329 || mips_opts.isa == ISA_MIPS32R5 \
330 || mips_opts.isa == ISA_MIPS64 \
331 || mips_opts.isa == ISA_MIPS64R2 \
332 || mips_opts.isa == ISA_MIPS64R3 \
333 || mips_opts.isa == ISA_MIPS64R5)
334
335 /* True if any microMIPS code was produced. */
336 static int file_ase_micromips;
337
338 /* True if we want to create R_MIPS_JALR for jalr $25. */
339 #ifdef TE_IRIX
340 #define MIPS_JALR_HINT_P(EXPR) HAVE_NEWABI
341 #else
342 /* As a GNU extension, we use R_MIPS_JALR for o32 too. However,
343 because there's no place for any addend, the only acceptable
344 expression is a bare symbol. */
345 #define MIPS_JALR_HINT_P(EXPR) \
346 (!HAVE_IN_PLACE_ADDENDS \
347 || ((EXPR)->X_op == O_symbol && (EXPR)->X_add_number == 0))
348 #endif
349
350 /* The argument of the -march= flag. The architecture we are assembling. */
351 static const char *mips_arch_string;
352
353 /* The argument of the -mtune= flag. The architecture for which we
354 are optimizing. */
355 static int mips_tune = CPU_UNKNOWN;
356 static const char *mips_tune_string;
357
358 /* True when generating 32-bit code for a 64-bit processor. */
359 static int mips_32bitmode = 0;
360
361 /* True if the given ABI requires 32-bit registers. */
362 #define ABI_NEEDS_32BIT_REGS(ABI) ((ABI) == O32_ABI)
363
364 /* Likewise 64-bit registers. */
365 #define ABI_NEEDS_64BIT_REGS(ABI) \
366 ((ABI) == N32_ABI \
367 || (ABI) == N64_ABI \
368 || (ABI) == O64_ABI)
369
370 #define ISA_IS_R6(ISA) \
371 ((ISA) == ISA_MIPS32R6 \
372 || (ISA) == ISA_MIPS64R6)
373
374 /* Return true if ISA supports 64 bit wide gp registers. */
375 #define ISA_HAS_64BIT_REGS(ISA) \
376 ((ISA) == ISA_MIPS3 \
377 || (ISA) == ISA_MIPS4 \
378 || (ISA) == ISA_MIPS5 \
379 || (ISA) == ISA_MIPS64 \
380 || (ISA) == ISA_MIPS64R2 \
381 || (ISA) == ISA_MIPS64R3 \
382 || (ISA) == ISA_MIPS64R5 \
383 || (ISA) == ISA_MIPS64R6)
384
385 /* Return true if ISA supports 64 bit wide float registers. */
386 #define ISA_HAS_64BIT_FPRS(ISA) \
387 ((ISA) == ISA_MIPS3 \
388 || (ISA) == ISA_MIPS4 \
389 || (ISA) == ISA_MIPS5 \
390 || (ISA) == ISA_MIPS32R2 \
391 || (ISA) == ISA_MIPS32R3 \
392 || (ISA) == ISA_MIPS32R5 \
393 || (ISA) == ISA_MIPS32R6 \
394 || (ISA) == ISA_MIPS64 \
395 || (ISA) == ISA_MIPS64R2 \
396 || (ISA) == ISA_MIPS64R3 \
397 || (ISA) == ISA_MIPS64R5 \
398 || (ISA) == ISA_MIPS64R6)
399
400 /* Return true if ISA supports 64-bit right rotate (dror et al.)
401 instructions. */
402 #define ISA_HAS_DROR(ISA) \
403 ((ISA) == ISA_MIPS64R2 \
404 || (ISA) == ISA_MIPS64R3 \
405 || (ISA) == ISA_MIPS64R5 \
406 || (ISA) == ISA_MIPS64R6 \
407 || (mips_opts.micromips \
408 && ISA_HAS_64BIT_REGS (ISA)) \
409 )
410
411 /* Return true if ISA supports 32-bit right rotate (ror et al.)
412 instructions. */
413 #define ISA_HAS_ROR(ISA) \
414 ((ISA) == ISA_MIPS32R2 \
415 || (ISA) == ISA_MIPS32R3 \
416 || (ISA) == ISA_MIPS32R5 \
417 || (ISA) == ISA_MIPS32R6 \
418 || (ISA) == ISA_MIPS64R2 \
419 || (ISA) == ISA_MIPS64R3 \
420 || (ISA) == ISA_MIPS64R5 \
421 || (ISA) == ISA_MIPS64R6 \
422 || (mips_opts.ase & ASE_SMARTMIPS) \
423 || mips_opts.micromips \
424 )
425
426 /* Return true if ISA supports single-precision floats in odd registers. */
427 #define ISA_HAS_ODD_SINGLE_FPR(ISA, CPU)\
428 (((ISA) == ISA_MIPS32 \
429 || (ISA) == ISA_MIPS32R2 \
430 || (ISA) == ISA_MIPS32R3 \
431 || (ISA) == ISA_MIPS32R5 \
432 || (ISA) == ISA_MIPS32R6 \
433 || (ISA) == ISA_MIPS64 \
434 || (ISA) == ISA_MIPS64R2 \
435 || (ISA) == ISA_MIPS64R3 \
436 || (ISA) == ISA_MIPS64R5 \
437 || (ISA) == ISA_MIPS64R6 \
438 || (CPU) == CPU_R5900) \
439 && ((CPU) != CPU_GS464 \
440 || (CPU) != CPU_GS464E \
441 || (CPU) != CPU_GS264E))
442
443 /* Return true if ISA supports move to/from high part of a 64-bit
444 floating-point register. */
445 #define ISA_HAS_MXHC1(ISA) \
446 ((ISA) == ISA_MIPS32R2 \
447 || (ISA) == ISA_MIPS32R3 \
448 || (ISA) == ISA_MIPS32R5 \
449 || (ISA) == ISA_MIPS32R6 \
450 || (ISA) == ISA_MIPS64R2 \
451 || (ISA) == ISA_MIPS64R3 \
452 || (ISA) == ISA_MIPS64R5 \
453 || (ISA) == ISA_MIPS64R6)
454
455 /* Return true if ISA supports legacy NAN. */
456 #define ISA_HAS_LEGACY_NAN(ISA) \
457 ((ISA) == ISA_MIPS1 \
458 || (ISA) == ISA_MIPS2 \
459 || (ISA) == ISA_MIPS3 \
460 || (ISA) == ISA_MIPS4 \
461 || (ISA) == ISA_MIPS5 \
462 || (ISA) == ISA_MIPS32 \
463 || (ISA) == ISA_MIPS32R2 \
464 || (ISA) == ISA_MIPS32R3 \
465 || (ISA) == ISA_MIPS32R5 \
466 || (ISA) == ISA_MIPS64 \
467 || (ISA) == ISA_MIPS64R2 \
468 || (ISA) == ISA_MIPS64R3 \
469 || (ISA) == ISA_MIPS64R5)
470
471 #define GPR_SIZE \
472 (mips_opts.gp == 64 && !ISA_HAS_64BIT_REGS (mips_opts.isa) \
473 ? 32 \
474 : mips_opts.gp)
475
476 #define FPR_SIZE \
477 (mips_opts.fp == 64 && !ISA_HAS_64BIT_FPRS (mips_opts.isa) \
478 ? 32 \
479 : mips_opts.fp)
480
481 #define HAVE_NEWABI (mips_abi == N32_ABI || mips_abi == N64_ABI)
482
483 #define HAVE_64BIT_OBJECTS (mips_abi == N64_ABI)
484
485 /* True if relocations are stored in-place. */
486 #define HAVE_IN_PLACE_ADDENDS (!HAVE_NEWABI)
487
488 /* The ABI-derived address size. */
489 #define HAVE_64BIT_ADDRESSES \
490 (GPR_SIZE == 64 && (mips_abi == EABI_ABI || mips_abi == N64_ABI))
491 #define HAVE_32BIT_ADDRESSES (!HAVE_64BIT_ADDRESSES)
492
493 /* The size of symbolic constants (i.e., expressions of the form
494 "SYMBOL" or "SYMBOL + OFFSET"). */
495 #define HAVE_32BIT_SYMBOLS \
496 (HAVE_32BIT_ADDRESSES || !HAVE_64BIT_OBJECTS || mips_opts.sym32)
497 #define HAVE_64BIT_SYMBOLS (!HAVE_32BIT_SYMBOLS)
498
499 /* Addresses are loaded in different ways, depending on the address size
500 in use. The n32 ABI Documentation also mandates the use of additions
501 with overflow checking, but existing implementations don't follow it. */
502 #define ADDRESS_ADD_INSN \
503 (HAVE_32BIT_ADDRESSES ? "addu" : "daddu")
504
505 #define ADDRESS_ADDI_INSN \
506 (HAVE_32BIT_ADDRESSES ? "addiu" : "daddiu")
507
508 #define ADDRESS_LOAD_INSN \
509 (HAVE_32BIT_ADDRESSES ? "lw" : "ld")
510
511 #define ADDRESS_STORE_INSN \
512 (HAVE_32BIT_ADDRESSES ? "sw" : "sd")
513
514 /* Return true if the given CPU supports the MIPS16 ASE. */
515 #define CPU_HAS_MIPS16(cpu) \
516 (strncmp (TARGET_CPU, "mips16", sizeof ("mips16") - 1) == 0 \
517 || strncmp (TARGET_CANONICAL, "mips-lsi-elf", sizeof ("mips-lsi-elf") - 1) == 0)
518
519 /* Return true if the given CPU supports the microMIPS ASE. */
520 #define CPU_HAS_MICROMIPS(cpu) 0
521
522 /* True if CPU has a dror instruction. */
523 #define CPU_HAS_DROR(CPU) ((CPU) == CPU_VR5400 || (CPU) == CPU_VR5500)
524
525 /* True if CPU has a ror instruction. */
526 #define CPU_HAS_ROR(CPU) CPU_HAS_DROR (CPU)
527
528 /* True if CPU is in the Octeon family. */
529 #define CPU_IS_OCTEON(CPU) ((CPU) == CPU_OCTEON || (CPU) == CPU_OCTEONP \
530 || (CPU) == CPU_OCTEON2 || (CPU) == CPU_OCTEON3)
531
532 /* True if CPU has seq/sne and seqi/snei instructions. */
533 #define CPU_HAS_SEQ(CPU) (CPU_IS_OCTEON (CPU))
534
535 /* True, if CPU has support for ldc1 and sdc1. */
536 #define CPU_HAS_LDC1_SDC1(CPU) \
537 ((mips_opts.isa != ISA_MIPS1) && ((CPU) != CPU_R5900))
538
539 /* True if mflo and mfhi can be immediately followed by instructions
540 which write to the HI and LO registers.
541
542 According to MIPS specifications, MIPS ISAs I, II, and III need
543 (at least) two instructions between the reads of HI/LO and
544 instructions which write them, and later ISAs do not. Contradicting
545 the MIPS specifications, some MIPS IV processor user manuals (e.g.
546 the UM for the NEC Vr5000) document needing the instructions between
547 HI/LO reads and writes, as well. Therefore, we declare only MIPS32,
548 MIPS64 and later ISAs to have the interlocks, plus any specific
549 earlier-ISA CPUs for which CPU documentation declares that the
550 instructions are really interlocked. */
551 #define hilo_interlocks \
552 (mips_opts.isa == ISA_MIPS32 \
553 || mips_opts.isa == ISA_MIPS32R2 \
554 || mips_opts.isa == ISA_MIPS32R3 \
555 || mips_opts.isa == ISA_MIPS32R5 \
556 || mips_opts.isa == ISA_MIPS32R6 \
557 || mips_opts.isa == ISA_MIPS64 \
558 || mips_opts.isa == ISA_MIPS64R2 \
559 || mips_opts.isa == ISA_MIPS64R3 \
560 || mips_opts.isa == ISA_MIPS64R5 \
561 || mips_opts.isa == ISA_MIPS64R6 \
562 || mips_opts.arch == CPU_R4010 \
563 || mips_opts.arch == CPU_R5900 \
564 || mips_opts.arch == CPU_R10000 \
565 || mips_opts.arch == CPU_R12000 \
566 || mips_opts.arch == CPU_R14000 \
567 || mips_opts.arch == CPU_R16000 \
568 || mips_opts.arch == CPU_RM7000 \
569 || mips_opts.arch == CPU_VR5500 \
570 || mips_opts.micromips \
571 )
572
573 /* Whether the processor uses hardware interlocks to protect reads
574 from the GPRs after they are loaded from memory, and thus does not
575 require nops to be inserted. This applies to instructions marked
576 INSN_LOAD_MEMORY. These nops are only required at MIPS ISA
577 level I and microMIPS mode instructions are always interlocked. */
578 #define gpr_interlocks \
579 (mips_opts.isa != ISA_MIPS1 \
580 || mips_opts.arch == CPU_R3900 \
581 || mips_opts.arch == CPU_R5900 \
582 || mips_opts.micromips \
583 )
584
585 /* Whether the processor uses hardware interlocks to avoid delays
586 required by coprocessor instructions, and thus does not require
587 nops to be inserted. This applies to instructions marked
588 INSN_LOAD_COPROC, INSN_COPROC_MOVE, and to delays between
589 instructions marked INSN_WRITE_COND_CODE and ones marked
590 INSN_READ_COND_CODE. These nops are only required at MIPS ISA
591 levels I, II, and III and microMIPS mode instructions are always
592 interlocked. */
593 /* Itbl support may require additional care here. */
594 #define cop_interlocks \
595 ((mips_opts.isa != ISA_MIPS1 \
596 && mips_opts.isa != ISA_MIPS2 \
597 && mips_opts.isa != ISA_MIPS3) \
598 || mips_opts.arch == CPU_R4300 \
599 || mips_opts.micromips \
600 )
601
602 /* Whether the processor uses hardware interlocks to protect reads
603 from coprocessor registers after they are loaded from memory, and
604 thus does not require nops to be inserted. This applies to
605 instructions marked INSN_COPROC_MEMORY_DELAY. These nops are only
606 requires at MIPS ISA level I and microMIPS mode instructions are
607 always interlocked. */
608 #define cop_mem_interlocks \
609 (mips_opts.isa != ISA_MIPS1 \
610 || mips_opts.micromips \
611 )
612
613 /* Is this a mfhi or mflo instruction? */
614 #define MF_HILO_INSN(PINFO) \
615 ((PINFO & INSN_READ_HI) || (PINFO & INSN_READ_LO))
616
617 /* Whether code compression (either of the MIPS16 or the microMIPS ASEs)
618 has been selected. This implies, in particular, that addresses of text
619 labels have their LSB set. */
620 #define HAVE_CODE_COMPRESSION \
621 ((mips_opts.mips16 | mips_opts.micromips) != 0)
622
623 /* The minimum and maximum signed values that can be stored in a GPR. */
624 #define GPR_SMAX ((offsetT) (((valueT) 1 << (GPR_SIZE - 1)) - 1))
625 #define GPR_SMIN (-GPR_SMAX - 1)
626
627 /* MIPS PIC level. */
628
629 enum mips_pic_level mips_pic;
630
631 /* 1 if we should generate 32 bit offsets from the $gp register in
632 SVR4_PIC mode. Currently has no meaning in other modes. */
633 static int mips_big_got = 0;
634
635 /* 1 if trap instructions should used for overflow rather than break
636 instructions. */
637 static int mips_trap = 0;
638
639 /* 1 if double width floating point constants should not be constructed
640 by assembling two single width halves into two single width floating
641 point registers which just happen to alias the double width destination
642 register. On some architectures this aliasing can be disabled by a bit
643 in the status register, and the setting of this bit cannot be determined
644 automatically at assemble time. */
645 static int mips_disable_float_construction;
646
647 /* Non-zero if any .set noreorder directives were used. */
648
649 static int mips_any_noreorder;
650
651 /* Non-zero if nops should be inserted when the register referenced in
652 an mfhi/mflo instruction is read in the next two instructions. */
653 static int mips_7000_hilo_fix;
654
655 /* The size of objects in the small data section. */
656 static unsigned int g_switch_value = 8;
657 /* Whether the -G option was used. */
658 static int g_switch_seen = 0;
659
660 #define N_RMASK 0xc4
661 #define N_VFP 0xd4
662
663 /* If we can determine in advance that GP optimization won't be
664 possible, we can skip the relaxation stuff that tries to produce
665 GP-relative references. This makes delay slot optimization work
666 better.
667
668 This function can only provide a guess, but it seems to work for
669 gcc output. It needs to guess right for gcc, otherwise gcc
670 will put what it thinks is a GP-relative instruction in a branch
671 delay slot.
672
673 I don't know if a fix is needed for the SVR4_PIC mode. I've only
674 fixed it for the non-PIC mode. KR 95/04/07 */
675 static int nopic_need_relax (symbolS *, int);
676
677 /* Handle of the OPCODE hash table. */
678 static struct hash_control *op_hash = NULL;
679
680 /* The opcode hash table we use for the mips16. */
681 static struct hash_control *mips16_op_hash = NULL;
682
683 /* The opcode hash table we use for the microMIPS ASE. */
684 static struct hash_control *micromips_op_hash = NULL;
685
686 /* This array holds the chars that always start a comment. If the
687 pre-processor is disabled, these aren't very useful. */
688 const char comment_chars[] = "#";
689
690 /* This array holds the chars that only start a comment at the beginning of
691 a line. If the line seems to have the form '# 123 filename'
692 .line and .file directives will appear in the pre-processed output. */
693 /* Note that input_file.c hand checks for '#' at the beginning of the
694 first line of the input file. This is because the compiler outputs
695 #NO_APP at the beginning of its output. */
696 /* Also note that C style comments are always supported. */
697 const char line_comment_chars[] = "#";
698
699 /* This array holds machine specific line separator characters. */
700 const char line_separator_chars[] = ";";
701
702 /* Chars that can be used to separate mant from exp in floating point nums. */
703 const char EXP_CHARS[] = "eE";
704
705 /* Chars that mean this number is a floating point constant.
706 As in 0f12.456
707 or 0d1.2345e12. */
708 const char FLT_CHARS[] = "rRsSfFdDxXpP";
709
710 /* Also be aware that MAXIMUM_NUMBER_OF_CHARS_FOR_FLOAT may have to be
711 changed in read.c . Ideally it shouldn't have to know about it at all,
712 but nothing is ideal around here. */
713
714 /* Types of printf format used for instruction-related error messages.
715 "I" means int ("%d") and "S" means string ("%s"). */
716 enum mips_insn_error_format
717 {
718 ERR_FMT_PLAIN,
719 ERR_FMT_I,
720 ERR_FMT_SS,
721 };
722
723 /* Information about an error that was found while assembling the current
724 instruction. */
725 struct mips_insn_error
726 {
727 /* We sometimes need to match an instruction against more than one
728 opcode table entry. Errors found during this matching are reported
729 against a particular syntactic argument rather than against the
730 instruction as a whole. We grade these messages so that errors
731 against argument N have a greater priority than an error against
732 any argument < N, since the former implies that arguments up to N
733 were acceptable and that the opcode entry was therefore a closer match.
734 If several matches report an error against the same argument,
735 we only use that error if it is the same in all cases.
736
737 min_argnum is the minimum argument number for which an error message
738 should be accepted. It is 0 if MSG is against the instruction as
739 a whole. */
740 int min_argnum;
741
742 /* The printf()-style message, including its format and arguments. */
743 enum mips_insn_error_format format;
744 const char *msg;
745 union
746 {
747 int i;
748 const char *ss[2];
749 } u;
750 };
751
752 /* The error that should be reported for the current instruction. */
753 static struct mips_insn_error insn_error;
754
755 static int auto_align = 1;
756
757 /* When outputting SVR4 PIC code, the assembler needs to know the
758 offset in the stack frame from which to restore the $gp register.
759 This is set by the .cprestore pseudo-op, and saved in this
760 variable. */
761 static offsetT mips_cprestore_offset = -1;
762
763 /* Similar for NewABI PIC code, where $gp is callee-saved. NewABI has some
764 more optimizations, it can use a register value instead of a memory-saved
765 offset and even an other register than $gp as global pointer. */
766 static offsetT mips_cpreturn_offset = -1;
767 static int mips_cpreturn_register = -1;
768 static int mips_gp_register = GP;
769 static int mips_gprel_offset = 0;
770
771 /* Whether mips_cprestore_offset has been set in the current function
772 (or whether it has already been warned about, if not). */
773 static int mips_cprestore_valid = 0;
774
775 /* This is the register which holds the stack frame, as set by the
776 .frame pseudo-op. This is needed to implement .cprestore. */
777 static int mips_frame_reg = SP;
778
779 /* Whether mips_frame_reg has been set in the current function
780 (or whether it has already been warned about, if not). */
781 static int mips_frame_reg_valid = 0;
782
783 /* To output NOP instructions correctly, we need to keep information
784 about the previous two instructions. */
785
786 /* Whether we are optimizing. The default value of 2 means to remove
787 unneeded NOPs and swap branch instructions when possible. A value
788 of 1 means to not swap branches. A value of 0 means to always
789 insert NOPs. */
790 static int mips_optimize = 2;
791
792 /* Debugging level. -g sets this to 2. -gN sets this to N. -g0 is
793 equivalent to seeing no -g option at all. */
794 static int mips_debug = 0;
795
796 /* The maximum number of NOPs needed to avoid the VR4130 mflo/mfhi errata. */
797 #define MAX_VR4130_NOPS 4
798
799 /* The maximum number of NOPs needed to fill delay slots. */
800 #define MAX_DELAY_NOPS 2
801
802 /* The maximum number of NOPs needed for any purpose. */
803 #define MAX_NOPS 4
804
805 /* The maximum range of context length of ll/sc. */
806 #define MAX_LLSC_RANGE 20
807
808 /* A list of previous instructions, with index 0 being the most recent.
809 We need to look back MAX_NOPS instructions when filling delay slots
810 or working around processor errata. We need to look back one
811 instruction further if we're thinking about using history[0] to
812 fill a branch delay slot. */
813 static struct mips_cl_insn history[1 + MAX_NOPS + MAX_LLSC_RANGE];
814
815 /* Arrays of operands for each instruction. */
816 #define MAX_OPERANDS 6
817 struct mips_operand_array
818 {
819 const struct mips_operand *operand[MAX_OPERANDS];
820 };
821 static struct mips_operand_array *mips_operands;
822 static struct mips_operand_array *mips16_operands;
823 static struct mips_operand_array *micromips_operands;
824
825 /* Nop instructions used by emit_nop. */
826 static struct mips_cl_insn nop_insn;
827 static struct mips_cl_insn mips16_nop_insn;
828 static struct mips_cl_insn micromips_nop16_insn;
829 static struct mips_cl_insn micromips_nop32_insn;
830
831 /* Sync instructions used by insert sync. */
832 static struct mips_cl_insn sync_insn;
833
834 /* The appropriate nop for the current mode. */
835 #define NOP_INSN (mips_opts.mips16 \
836 ? &mips16_nop_insn \
837 : (mips_opts.micromips \
838 ? (mips_opts.insn32 \
839 ? &micromips_nop32_insn \
840 : &micromips_nop16_insn) \
841 : &nop_insn))
842
843 /* The size of NOP_INSN in bytes. */
844 #define NOP_INSN_SIZE ((mips_opts.mips16 \
845 || (mips_opts.micromips && !mips_opts.insn32)) \
846 ? 2 : 4)
847
848 /* If this is set, it points to a frag holding nop instructions which
849 were inserted before the start of a noreorder section. If those
850 nops turn out to be unnecessary, the size of the frag can be
851 decreased. */
852 static fragS *prev_nop_frag;
853
854 /* The number of nop instructions we created in prev_nop_frag. */
855 static int prev_nop_frag_holds;
856
857 /* The number of nop instructions that we know we need in
858 prev_nop_frag. */
859 static int prev_nop_frag_required;
860
861 /* The number of instructions we've seen since prev_nop_frag. */
862 static int prev_nop_frag_since;
863
864 /* Relocations against symbols are sometimes done in two parts, with a HI
865 relocation and a LO relocation. Each relocation has only 16 bits of
866 space to store an addend. This means that in order for the linker to
867 handle carries correctly, it must be able to locate both the HI and
868 the LO relocation. This means that the relocations must appear in
869 order in the relocation table.
870
871 In order to implement this, we keep track of each unmatched HI
872 relocation. We then sort them so that they immediately precede the
873 corresponding LO relocation. */
874
875 struct mips_hi_fixup
876 {
877 /* Next HI fixup. */
878 struct mips_hi_fixup *next;
879 /* This fixup. */
880 fixS *fixp;
881 /* The section this fixup is in. */
882 segT seg;
883 };
884
885 /* The list of unmatched HI relocs. */
886
887 static struct mips_hi_fixup *mips_hi_fixup_list;
888
889 /* The frag containing the last explicit relocation operator.
890 Null if explicit relocations have not been used. */
891
892 static fragS *prev_reloc_op_frag;
893
894 /* Map mips16 register numbers to normal MIPS register numbers. */
895
896 static const unsigned int mips16_to_32_reg_map[] =
897 {
898 16, 17, 2, 3, 4, 5, 6, 7
899 };
900
901 /* Map microMIPS register numbers to normal MIPS register numbers. */
902
903 #define micromips_to_32_reg_d_map mips16_to_32_reg_map
904
905 /* The microMIPS registers with type h. */
906 static const unsigned int micromips_to_32_reg_h_map1[] =
907 {
908 5, 5, 6, 4, 4, 4, 4, 4
909 };
910 static const unsigned int micromips_to_32_reg_h_map2[] =
911 {
912 6, 7, 7, 21, 22, 5, 6, 7
913 };
914
915 /* The microMIPS registers with type m. */
916 static const unsigned int micromips_to_32_reg_m_map[] =
917 {
918 0, 17, 2, 3, 16, 18, 19, 20
919 };
920
921 #define micromips_to_32_reg_n_map micromips_to_32_reg_m_map
922
923 /* Classifies the kind of instructions we're interested in when
924 implementing -mfix-vr4120. */
925 enum fix_vr4120_class
926 {
927 FIX_VR4120_MACC,
928 FIX_VR4120_DMACC,
929 FIX_VR4120_MULT,
930 FIX_VR4120_DMULT,
931 FIX_VR4120_DIV,
932 FIX_VR4120_MTHILO,
933 NUM_FIX_VR4120_CLASSES
934 };
935
936 /* ...likewise -mfix-loongson2f-jump. */
937 static bfd_boolean mips_fix_loongson2f_jump;
938
939 /* ...likewise -mfix-loongson2f-nop. */
940 static bfd_boolean mips_fix_loongson2f_nop;
941
942 /* True if -mfix-loongson2f-nop or -mfix-loongson2f-jump passed. */
943 static bfd_boolean mips_fix_loongson2f;
944
945 /* Given two FIX_VR4120_* values X and Y, bit Y of element X is set if
946 there must be at least one other instruction between an instruction
947 of type X and an instruction of type Y. */
948 static unsigned int vr4120_conflicts[NUM_FIX_VR4120_CLASSES];
949
950 /* True if -mfix-vr4120 is in force. */
951 static int mips_fix_vr4120;
952
953 /* ...likewise -mfix-vr4130. */
954 static int mips_fix_vr4130;
955
956 /* ...likewise -mfix-24k. */
957 static int mips_fix_24k;
958
959 /* ...likewise -mfix-rm7000 */
960 static int mips_fix_rm7000;
961
962 /* ...likewise -mfix-cn63xxp1 */
963 static bfd_boolean mips_fix_cn63xxp1;
964
965 /* ...likewise -mfix-r5900 */
966 static bfd_boolean mips_fix_r5900;
967 static bfd_boolean mips_fix_r5900_explicit;
968
969 /* ...likewise -mfix-loongson3-llsc. */
970 static bfd_boolean mips_fix_loongson3_llsc = DEFAULT_MIPS_FIX_LOONGSON3_LLSC;
971
972 /* We don't relax branches by default, since this causes us to expand
973 `la .l2 - .l1' if there's a branch between .l1 and .l2, because we
974 fail to compute the offset before expanding the macro to the most
975 efficient expansion. */
976
977 static int mips_relax_branch;
978
979 /* TRUE if checks are suppressed for invalid branches between ISA modes.
980 Needed for broken assembly produced by some GCC versions and some
981 sloppy code out there, where branches to data labels are present. */
982 static bfd_boolean mips_ignore_branch_isa;
983 \f
984 /* The expansion of many macros depends on the type of symbol that
985 they refer to. For example, when generating position-dependent code,
986 a macro that refers to a symbol may have two different expansions,
987 one which uses GP-relative addresses and one which uses absolute
988 addresses. When generating SVR4-style PIC, a macro may have
989 different expansions for local and global symbols.
990
991 We handle these situations by generating both sequences and putting
992 them in variant frags. In position-dependent code, the first sequence
993 will be the GP-relative one and the second sequence will be the
994 absolute one. In SVR4 PIC, the first sequence will be for global
995 symbols and the second will be for local symbols.
996
997 The frag's "subtype" is RELAX_ENCODE (FIRST, SECOND), where FIRST and
998 SECOND are the lengths of the two sequences in bytes. These fields
999 can be extracted using RELAX_FIRST() and RELAX_SECOND(). In addition,
1000 the subtype has the following flags:
1001
1002 RELAX_PIC
1003 Set if generating PIC code.
1004
1005 RELAX_USE_SECOND
1006 Set if it has been decided that we should use the second
1007 sequence instead of the first.
1008
1009 RELAX_SECOND_LONGER
1010 Set in the first variant frag if the macro's second implementation
1011 is longer than its first. This refers to the macro as a whole,
1012 not an individual relaxation.
1013
1014 RELAX_NOMACRO
1015 Set in the first variant frag if the macro appeared in a .set nomacro
1016 block and if one alternative requires a warning but the other does not.
1017
1018 RELAX_DELAY_SLOT
1019 Like RELAX_NOMACRO, but indicates that the macro appears in a branch
1020 delay slot.
1021
1022 RELAX_DELAY_SLOT_16BIT
1023 Like RELAX_DELAY_SLOT, but indicates that the delay slot requires a
1024 16-bit instruction.
1025
1026 RELAX_DELAY_SLOT_SIZE_FIRST
1027 Like RELAX_DELAY_SLOT, but indicates that the first implementation of
1028 the macro is of the wrong size for the branch delay slot.
1029
1030 RELAX_DELAY_SLOT_SIZE_SECOND
1031 Like RELAX_DELAY_SLOT, but indicates that the second implementation of
1032 the macro is of the wrong size for the branch delay slot.
1033
1034 The frag's "opcode" points to the first fixup for relaxable code.
1035
1036 Relaxable macros are generated using a sequence such as:
1037
1038 relax_start (SYMBOL);
1039 ... generate first expansion ...
1040 relax_switch ();
1041 ... generate second expansion ...
1042 relax_end ();
1043
1044 The code and fixups for the unwanted alternative are discarded
1045 by md_convert_frag. */
1046 #define RELAX_ENCODE(FIRST, SECOND, PIC) \
1047 (((FIRST) << 8) | (SECOND) | ((PIC) ? 0x10000 : 0))
1048
1049 #define RELAX_FIRST(X) (((X) >> 8) & 0xff)
1050 #define RELAX_SECOND(X) ((X) & 0xff)
1051 #define RELAX_PIC(X) (((X) & 0x10000) != 0)
1052 #define RELAX_USE_SECOND 0x20000
1053 #define RELAX_SECOND_LONGER 0x40000
1054 #define RELAX_NOMACRO 0x80000
1055 #define RELAX_DELAY_SLOT 0x100000
1056 #define RELAX_DELAY_SLOT_16BIT 0x200000
1057 #define RELAX_DELAY_SLOT_SIZE_FIRST 0x400000
1058 #define RELAX_DELAY_SLOT_SIZE_SECOND 0x800000
1059
1060 /* Branch without likely bit. If label is out of range, we turn:
1061
1062 beq reg1, reg2, label
1063 delay slot
1064
1065 into
1066
1067 bne reg1, reg2, 0f
1068 nop
1069 j label
1070 0: delay slot
1071
1072 with the following opcode replacements:
1073
1074 beq <-> bne
1075 blez <-> bgtz
1076 bltz <-> bgez
1077 bc1f <-> bc1t
1078
1079 bltzal <-> bgezal (with jal label instead of j label)
1080
1081 Even though keeping the delay slot instruction in the delay slot of
1082 the branch would be more efficient, it would be very tricky to do
1083 correctly, because we'd have to introduce a variable frag *after*
1084 the delay slot instruction, and expand that instead. Let's do it
1085 the easy way for now, even if the branch-not-taken case now costs
1086 one additional instruction. Out-of-range branches are not supposed
1087 to be common, anyway.
1088
1089 Branch likely. If label is out of range, we turn:
1090
1091 beql reg1, reg2, label
1092 delay slot (annulled if branch not taken)
1093
1094 into
1095
1096 beql reg1, reg2, 1f
1097 nop
1098 beql $0, $0, 2f
1099 nop
1100 1: j[al] label
1101 delay slot (executed only if branch taken)
1102 2:
1103
1104 It would be possible to generate a shorter sequence by losing the
1105 likely bit, generating something like:
1106
1107 bne reg1, reg2, 0f
1108 nop
1109 j[al] label
1110 delay slot (executed only if branch taken)
1111 0:
1112
1113 beql -> bne
1114 bnel -> beq
1115 blezl -> bgtz
1116 bgtzl -> blez
1117 bltzl -> bgez
1118 bgezl -> bltz
1119 bc1fl -> bc1t
1120 bc1tl -> bc1f
1121
1122 bltzall -> bgezal (with jal label instead of j label)
1123 bgezall -> bltzal (ditto)
1124
1125
1126 but it's not clear that it would actually improve performance. */
1127 #define RELAX_BRANCH_ENCODE(at, pic, \
1128 uncond, likely, link, toofar) \
1129 ((relax_substateT) \
1130 (0xc0000000 \
1131 | ((at) & 0x1f) \
1132 | ((pic) ? 0x20 : 0) \
1133 | ((toofar) ? 0x40 : 0) \
1134 | ((link) ? 0x80 : 0) \
1135 | ((likely) ? 0x100 : 0) \
1136 | ((uncond) ? 0x200 : 0)))
1137 #define RELAX_BRANCH_P(i) (((i) & 0xf0000000) == 0xc0000000)
1138 #define RELAX_BRANCH_UNCOND(i) (((i) & 0x200) != 0)
1139 #define RELAX_BRANCH_LIKELY(i) (((i) & 0x100) != 0)
1140 #define RELAX_BRANCH_LINK(i) (((i) & 0x80) != 0)
1141 #define RELAX_BRANCH_TOOFAR(i) (((i) & 0x40) != 0)
1142 #define RELAX_BRANCH_PIC(i) (((i) & 0x20) != 0)
1143 #define RELAX_BRANCH_AT(i) ((i) & 0x1f)
1144
1145 /* For mips16 code, we use an entirely different form of relaxation.
1146 mips16 supports two versions of most instructions which take
1147 immediate values: a small one which takes some small value, and a
1148 larger one which takes a 16 bit value. Since branches also follow
1149 this pattern, relaxing these values is required.
1150
1151 We can assemble both mips16 and normal MIPS code in a single
1152 object. Therefore, we need to support this type of relaxation at
1153 the same time that we support the relaxation described above. We
1154 use the high bit of the subtype field to distinguish these cases.
1155
1156 The information we store for this type of relaxation is the
1157 argument code found in the opcode file for this relocation, whether
1158 the user explicitly requested a small or extended form, and whether
1159 the relocation is in a jump or jal delay slot. That tells us the
1160 size of the value, and how it should be stored. We also store
1161 whether the fragment is considered to be extended or not. We also
1162 store whether this is known to be a branch to a different section,
1163 whether we have tried to relax this frag yet, and whether we have
1164 ever extended a PC relative fragment because of a shift count. */
1165 #define RELAX_MIPS16_ENCODE(type, e2, pic, sym32, nomacro, \
1166 small, ext, \
1167 dslot, jal_dslot) \
1168 (0x80000000 \
1169 | ((type) & 0xff) \
1170 | ((e2) ? 0x100 : 0) \
1171 | ((pic) ? 0x200 : 0) \
1172 | ((sym32) ? 0x400 : 0) \
1173 | ((nomacro) ? 0x800 : 0) \
1174 | ((small) ? 0x1000 : 0) \
1175 | ((ext) ? 0x2000 : 0) \
1176 | ((dslot) ? 0x4000 : 0) \
1177 | ((jal_dslot) ? 0x8000 : 0))
1178
1179 #define RELAX_MIPS16_P(i) (((i) & 0xc0000000) == 0x80000000)
1180 #define RELAX_MIPS16_TYPE(i) ((i) & 0xff)
1181 #define RELAX_MIPS16_E2(i) (((i) & 0x100) != 0)
1182 #define RELAX_MIPS16_PIC(i) (((i) & 0x200) != 0)
1183 #define RELAX_MIPS16_SYM32(i) (((i) & 0x400) != 0)
1184 #define RELAX_MIPS16_NOMACRO(i) (((i) & 0x800) != 0)
1185 #define RELAX_MIPS16_USER_SMALL(i) (((i) & 0x1000) != 0)
1186 #define RELAX_MIPS16_USER_EXT(i) (((i) & 0x2000) != 0)
1187 #define RELAX_MIPS16_DSLOT(i) (((i) & 0x4000) != 0)
1188 #define RELAX_MIPS16_JAL_DSLOT(i) (((i) & 0x8000) != 0)
1189
1190 #define RELAX_MIPS16_EXTENDED(i) (((i) & 0x10000) != 0)
1191 #define RELAX_MIPS16_MARK_EXTENDED(i) ((i) | 0x10000)
1192 #define RELAX_MIPS16_CLEAR_EXTENDED(i) ((i) & ~0x10000)
1193 #define RELAX_MIPS16_ALWAYS_EXTENDED(i) (((i) & 0x20000) != 0)
1194 #define RELAX_MIPS16_MARK_ALWAYS_EXTENDED(i) ((i) | 0x20000)
1195 #define RELAX_MIPS16_CLEAR_ALWAYS_EXTENDED(i) ((i) & ~0x20000)
1196 #define RELAX_MIPS16_MACRO(i) (((i) & 0x40000) != 0)
1197 #define RELAX_MIPS16_MARK_MACRO(i) ((i) | 0x40000)
1198 #define RELAX_MIPS16_CLEAR_MACRO(i) ((i) & ~0x40000)
1199
1200 /* For microMIPS code, we use relaxation similar to one we use for
1201 MIPS16 code. Some instructions that take immediate values support
1202 two encodings: a small one which takes some small value, and a
1203 larger one which takes a 16 bit value. As some branches also follow
1204 this pattern, relaxing these values is required.
1205
1206 We can assemble both microMIPS and normal MIPS code in a single
1207 object. Therefore, we need to support this type of relaxation at
1208 the same time that we support the relaxation described above. We
1209 use one of the high bits of the subtype field to distinguish these
1210 cases.
1211
1212 The information we store for this type of relaxation is the argument
1213 code found in the opcode file for this relocation, the register
1214 selected as the assembler temporary, whether in the 32-bit
1215 instruction mode, whether the branch is unconditional, whether it is
1216 compact, whether there is no delay-slot instruction available to fill
1217 in, whether it stores the link address implicitly in $ra, whether
1218 relaxation of out-of-range 32-bit branches to a sequence of
1219 instructions is enabled, and whether the displacement of a branch is
1220 too large to fit as an immediate argument of a 16-bit and a 32-bit
1221 branch, respectively. */
1222 #define RELAX_MICROMIPS_ENCODE(type, at, insn32, pic, \
1223 uncond, compact, link, nods, \
1224 relax32, toofar16, toofar32) \
1225 (0x40000000 \
1226 | ((type) & 0xff) \
1227 | (((at) & 0x1f) << 8) \
1228 | ((insn32) ? 0x2000 : 0) \
1229 | ((pic) ? 0x4000 : 0) \
1230 | ((uncond) ? 0x8000 : 0) \
1231 | ((compact) ? 0x10000 : 0) \
1232 | ((link) ? 0x20000 : 0) \
1233 | ((nods) ? 0x40000 : 0) \
1234 | ((relax32) ? 0x80000 : 0) \
1235 | ((toofar16) ? 0x100000 : 0) \
1236 | ((toofar32) ? 0x200000 : 0))
1237 #define RELAX_MICROMIPS_P(i) (((i) & 0xc0000000) == 0x40000000)
1238 #define RELAX_MICROMIPS_TYPE(i) ((i) & 0xff)
1239 #define RELAX_MICROMIPS_AT(i) (((i) >> 8) & 0x1f)
1240 #define RELAX_MICROMIPS_INSN32(i) (((i) & 0x2000) != 0)
1241 #define RELAX_MICROMIPS_PIC(i) (((i) & 0x4000) != 0)
1242 #define RELAX_MICROMIPS_UNCOND(i) (((i) & 0x8000) != 0)
1243 #define RELAX_MICROMIPS_COMPACT(i) (((i) & 0x10000) != 0)
1244 #define RELAX_MICROMIPS_LINK(i) (((i) & 0x20000) != 0)
1245 #define RELAX_MICROMIPS_NODS(i) (((i) & 0x40000) != 0)
1246 #define RELAX_MICROMIPS_RELAX32(i) (((i) & 0x80000) != 0)
1247
1248 #define RELAX_MICROMIPS_TOOFAR16(i) (((i) & 0x100000) != 0)
1249 #define RELAX_MICROMIPS_MARK_TOOFAR16(i) ((i) | 0x100000)
1250 #define RELAX_MICROMIPS_CLEAR_TOOFAR16(i) ((i) & ~0x100000)
1251 #define RELAX_MICROMIPS_TOOFAR32(i) (((i) & 0x200000) != 0)
1252 #define RELAX_MICROMIPS_MARK_TOOFAR32(i) ((i) | 0x200000)
1253 #define RELAX_MICROMIPS_CLEAR_TOOFAR32(i) ((i) & ~0x200000)
1254
1255 /* Sign-extend 16-bit value X. */
1256 #define SEXT_16BIT(X) ((((X) + 0x8000) & 0xffff) - 0x8000)
1257
1258 /* Is the given value a sign-extended 32-bit value? */
1259 #define IS_SEXT_32BIT_NUM(x) \
1260 (((x) &~ (offsetT) 0x7fffffff) == 0 \
1261 || (((x) &~ (offsetT) 0x7fffffff) == ~ (offsetT) 0x7fffffff))
1262
1263 /* Is the given value a sign-extended 16-bit value? */
1264 #define IS_SEXT_16BIT_NUM(x) \
1265 (((x) &~ (offsetT) 0x7fff) == 0 \
1266 || (((x) &~ (offsetT) 0x7fff) == ~ (offsetT) 0x7fff))
1267
1268 /* Is the given value a sign-extended 12-bit value? */
1269 #define IS_SEXT_12BIT_NUM(x) \
1270 (((((x) & 0xfff) ^ 0x800LL) - 0x800LL) == (x))
1271
1272 /* Is the given value a sign-extended 9-bit value? */
1273 #define IS_SEXT_9BIT_NUM(x) \
1274 (((((x) & 0x1ff) ^ 0x100LL) - 0x100LL) == (x))
1275
1276 /* Is the given value a zero-extended 32-bit value? Or a negated one? */
1277 #define IS_ZEXT_32BIT_NUM(x) \
1278 (((x) &~ (offsetT) 0xffffffff) == 0 \
1279 || (((x) &~ (offsetT) 0xffffffff) == ~ (offsetT) 0xffffffff))
1280
1281 /* Extract bits MASK << SHIFT from STRUCT and shift them right
1282 SHIFT places. */
1283 #define EXTRACT_BITS(STRUCT, MASK, SHIFT) \
1284 (((STRUCT) >> (SHIFT)) & (MASK))
1285
1286 /* Extract the operand given by FIELD from mips_cl_insn INSN. */
1287 #define EXTRACT_OPERAND(MICROMIPS, FIELD, INSN) \
1288 (!(MICROMIPS) \
1289 ? EXTRACT_BITS ((INSN).insn_opcode, OP_MASK_##FIELD, OP_SH_##FIELD) \
1290 : EXTRACT_BITS ((INSN).insn_opcode, \
1291 MICROMIPSOP_MASK_##FIELD, MICROMIPSOP_SH_##FIELD))
1292 #define MIPS16_EXTRACT_OPERAND(FIELD, INSN) \
1293 EXTRACT_BITS ((INSN).insn_opcode, \
1294 MIPS16OP_MASK_##FIELD, \
1295 MIPS16OP_SH_##FIELD)
1296
1297 /* The MIPS16 EXTEND opcode, shifted left 16 places. */
1298 #define MIPS16_EXTEND (0xf000U << 16)
1299 \f
1300 /* Whether or not we are emitting a branch-likely macro. */
1301 static bfd_boolean emit_branch_likely_macro = FALSE;
1302
1303 /* Global variables used when generating relaxable macros. See the
1304 comment above RELAX_ENCODE for more details about how relaxation
1305 is used. */
1306 static struct {
1307 /* 0 if we're not emitting a relaxable macro.
1308 1 if we're emitting the first of the two relaxation alternatives.
1309 2 if we're emitting the second alternative. */
1310 int sequence;
1311
1312 /* The first relaxable fixup in the current frag. (In other words,
1313 the first fixup that refers to relaxable code.) */
1314 fixS *first_fixup;
1315
1316 /* sizes[0] says how many bytes of the first alternative are stored in
1317 the current frag. Likewise sizes[1] for the second alternative. */
1318 unsigned int sizes[2];
1319
1320 /* The symbol on which the choice of sequence depends. */
1321 symbolS *symbol;
1322 } mips_relax;
1323 \f
1324 /* Global variables used to decide whether a macro needs a warning. */
1325 static struct {
1326 /* True if the macro is in a branch delay slot. */
1327 bfd_boolean delay_slot_p;
1328
1329 /* Set to the length in bytes required if the macro is in a delay slot
1330 that requires a specific length of instruction, otherwise zero. */
1331 unsigned int delay_slot_length;
1332
1333 /* For relaxable macros, sizes[0] is the length of the first alternative
1334 in bytes and sizes[1] is the length of the second alternative.
1335 For non-relaxable macros, both elements give the length of the
1336 macro in bytes. */
1337 unsigned int sizes[2];
1338
1339 /* For relaxable macros, first_insn_sizes[0] is the length of the first
1340 instruction of the first alternative in bytes and first_insn_sizes[1]
1341 is the length of the first instruction of the second alternative.
1342 For non-relaxable macros, both elements give the length of the first
1343 instruction in bytes.
1344
1345 Set to zero if we haven't yet seen the first instruction. */
1346 unsigned int first_insn_sizes[2];
1347
1348 /* For relaxable macros, insns[0] is the number of instructions for the
1349 first alternative and insns[1] is the number of instructions for the
1350 second alternative.
1351
1352 For non-relaxable macros, both elements give the number of
1353 instructions for the macro. */
1354 unsigned int insns[2];
1355
1356 /* The first variant frag for this macro. */
1357 fragS *first_frag;
1358 } mips_macro_warning;
1359 \f
1360 /* Prototypes for static functions. */
1361
1362 enum mips_regclass { MIPS_GR_REG, MIPS_FP_REG, MIPS16_REG };
1363
1364 static void append_insn
1365 (struct mips_cl_insn *, expressionS *, bfd_reloc_code_real_type *,
1366 bfd_boolean expansionp);
1367 static void mips_no_prev_insn (void);
1368 static void macro_build (expressionS *, const char *, const char *, ...);
1369 static void mips16_macro_build
1370 (expressionS *, const char *, const char *, va_list *);
1371 static void load_register (int, expressionS *, int);
1372 static void macro_start (void);
1373 static void macro_end (void);
1374 static void macro (struct mips_cl_insn *ip, char *str);
1375 static void mips16_macro (struct mips_cl_insn * ip);
1376 static void mips_ip (char *str, struct mips_cl_insn * ip);
1377 static void mips16_ip (char *str, struct mips_cl_insn * ip);
1378 static unsigned long mips16_immed_extend (offsetT, unsigned int);
1379 static void mips16_immed
1380 (const char *, unsigned int, int, bfd_reloc_code_real_type, offsetT,
1381 unsigned int, unsigned long *);
1382 static size_t my_getSmallExpression
1383 (expressionS *, bfd_reloc_code_real_type *, char *);
1384 static void my_getExpression (expressionS *, char *);
1385 static void s_align (int);
1386 static void s_change_sec (int);
1387 static void s_change_section (int);
1388 static void s_cons (int);
1389 static void s_float_cons (int);
1390 static void s_mips_globl (int);
1391 static void s_option (int);
1392 static void s_mipsset (int);
1393 static void s_abicalls (int);
1394 static void s_cpload (int);
1395 static void s_cpsetup (int);
1396 static void s_cplocal (int);
1397 static void s_cprestore (int);
1398 static void s_cpreturn (int);
1399 static void s_dtprelword (int);
1400 static void s_dtpreldword (int);
1401 static void s_tprelword (int);
1402 static void s_tpreldword (int);
1403 static void s_gpvalue (int);
1404 static void s_gpword (int);
1405 static void s_gpdword (int);
1406 static void s_ehword (int);
1407 static void s_cpadd (int);
1408 static void s_insn (int);
1409 static void s_nan (int);
1410 static void s_module (int);
1411 static void s_mips_ent (int);
1412 static void s_mips_end (int);
1413 static void s_mips_frame (int);
1414 static void s_mips_mask (int reg_type);
1415 static void s_mips_stab (int);
1416 static void s_mips_weakext (int);
1417 static void s_mips_file (int);
1418 static void s_mips_loc (int);
1419 static bfd_boolean pic_need_relax (symbolS *);
1420 static int relaxed_branch_length (fragS *, asection *, int);
1421 static int relaxed_micromips_16bit_branch_length (fragS *, asection *, int);
1422 static int relaxed_micromips_32bit_branch_length (fragS *, asection *, int);
1423 static void file_mips_check_options (void);
1424
1425 /* Table and functions used to map between CPU/ISA names, and
1426 ISA levels, and CPU numbers. */
1427
1428 struct mips_cpu_info
1429 {
1430 const char *name; /* CPU or ISA name. */
1431 int flags; /* MIPS_CPU_* flags. */
1432 int ase; /* Set of ASEs implemented by the CPU. */
1433 int isa; /* ISA level. */
1434 int cpu; /* CPU number (default CPU if ISA). */
1435 };
1436
1437 #define MIPS_CPU_IS_ISA 0x0001 /* Is this an ISA? (If 0, a CPU.) */
1438
1439 static const struct mips_cpu_info *mips_parse_cpu (const char *, const char *);
1440 static const struct mips_cpu_info *mips_cpu_info_from_isa (int);
1441 static const struct mips_cpu_info *mips_cpu_info_from_arch (int);
1442 \f
1443 /* Command-line options. */
1444 const char *md_shortopts = "O::g::G:";
1445
1446 enum options
1447 {
1448 OPTION_MARCH = OPTION_MD_BASE,
1449 OPTION_MTUNE,
1450 OPTION_MIPS1,
1451 OPTION_MIPS2,
1452 OPTION_MIPS3,
1453 OPTION_MIPS4,
1454 OPTION_MIPS5,
1455 OPTION_MIPS32,
1456 OPTION_MIPS64,
1457 OPTION_MIPS32R2,
1458 OPTION_MIPS32R3,
1459 OPTION_MIPS32R5,
1460 OPTION_MIPS32R6,
1461 OPTION_MIPS64R2,
1462 OPTION_MIPS64R3,
1463 OPTION_MIPS64R5,
1464 OPTION_MIPS64R6,
1465 OPTION_MIPS16,
1466 OPTION_NO_MIPS16,
1467 OPTION_MIPS3D,
1468 OPTION_NO_MIPS3D,
1469 OPTION_MDMX,
1470 OPTION_NO_MDMX,
1471 OPTION_DSP,
1472 OPTION_NO_DSP,
1473 OPTION_MT,
1474 OPTION_NO_MT,
1475 OPTION_VIRT,
1476 OPTION_NO_VIRT,
1477 OPTION_MSA,
1478 OPTION_NO_MSA,
1479 OPTION_SMARTMIPS,
1480 OPTION_NO_SMARTMIPS,
1481 OPTION_DSPR2,
1482 OPTION_NO_DSPR2,
1483 OPTION_DSPR3,
1484 OPTION_NO_DSPR3,
1485 OPTION_EVA,
1486 OPTION_NO_EVA,
1487 OPTION_XPA,
1488 OPTION_NO_XPA,
1489 OPTION_MICROMIPS,
1490 OPTION_NO_MICROMIPS,
1491 OPTION_MCU,
1492 OPTION_NO_MCU,
1493 OPTION_MIPS16E2,
1494 OPTION_NO_MIPS16E2,
1495 OPTION_CRC,
1496 OPTION_NO_CRC,
1497 OPTION_M4650,
1498 OPTION_NO_M4650,
1499 OPTION_M4010,
1500 OPTION_NO_M4010,
1501 OPTION_M4100,
1502 OPTION_NO_M4100,
1503 OPTION_M3900,
1504 OPTION_NO_M3900,
1505 OPTION_M7000_HILO_FIX,
1506 OPTION_MNO_7000_HILO_FIX,
1507 OPTION_FIX_24K,
1508 OPTION_NO_FIX_24K,
1509 OPTION_FIX_RM7000,
1510 OPTION_NO_FIX_RM7000,
1511 OPTION_FIX_LOONGSON3_LLSC,
1512 OPTION_NO_FIX_LOONGSON3_LLSC,
1513 OPTION_FIX_LOONGSON2F_JUMP,
1514 OPTION_NO_FIX_LOONGSON2F_JUMP,
1515 OPTION_FIX_LOONGSON2F_NOP,
1516 OPTION_NO_FIX_LOONGSON2F_NOP,
1517 OPTION_FIX_VR4120,
1518 OPTION_NO_FIX_VR4120,
1519 OPTION_FIX_VR4130,
1520 OPTION_NO_FIX_VR4130,
1521 OPTION_FIX_CN63XXP1,
1522 OPTION_NO_FIX_CN63XXP1,
1523 OPTION_FIX_R5900,
1524 OPTION_NO_FIX_R5900,
1525 OPTION_TRAP,
1526 OPTION_BREAK,
1527 OPTION_EB,
1528 OPTION_EL,
1529 OPTION_FP32,
1530 OPTION_GP32,
1531 OPTION_CONSTRUCT_FLOATS,
1532 OPTION_NO_CONSTRUCT_FLOATS,
1533 OPTION_FP64,
1534 OPTION_FPXX,
1535 OPTION_GP64,
1536 OPTION_RELAX_BRANCH,
1537 OPTION_NO_RELAX_BRANCH,
1538 OPTION_IGNORE_BRANCH_ISA,
1539 OPTION_NO_IGNORE_BRANCH_ISA,
1540 OPTION_INSN32,
1541 OPTION_NO_INSN32,
1542 OPTION_MSHARED,
1543 OPTION_MNO_SHARED,
1544 OPTION_MSYM32,
1545 OPTION_MNO_SYM32,
1546 OPTION_SOFT_FLOAT,
1547 OPTION_HARD_FLOAT,
1548 OPTION_SINGLE_FLOAT,
1549 OPTION_DOUBLE_FLOAT,
1550 OPTION_32,
1551 OPTION_CALL_SHARED,
1552 OPTION_CALL_NONPIC,
1553 OPTION_NON_SHARED,
1554 OPTION_XGOT,
1555 OPTION_MABI,
1556 OPTION_N32,
1557 OPTION_64,
1558 OPTION_MDEBUG,
1559 OPTION_NO_MDEBUG,
1560 OPTION_PDR,
1561 OPTION_NO_PDR,
1562 OPTION_MVXWORKS_PIC,
1563 OPTION_NAN,
1564 OPTION_ODD_SPREG,
1565 OPTION_NO_ODD_SPREG,
1566 OPTION_GINV,
1567 OPTION_NO_GINV,
1568 OPTION_LOONGSON_MMI,
1569 OPTION_NO_LOONGSON_MMI,
1570 OPTION_LOONGSON_CAM,
1571 OPTION_NO_LOONGSON_CAM,
1572 OPTION_LOONGSON_EXT,
1573 OPTION_NO_LOONGSON_EXT,
1574 OPTION_LOONGSON_EXT2,
1575 OPTION_NO_LOONGSON_EXT2,
1576 OPTION_END_OF_ENUM
1577 };
1578
1579 struct option md_longopts[] =
1580 {
1581 /* Options which specify architecture. */
1582 {"march", required_argument, NULL, OPTION_MARCH},
1583 {"mtune", required_argument, NULL, OPTION_MTUNE},
1584 {"mips0", no_argument, NULL, OPTION_MIPS1},
1585 {"mips1", no_argument, NULL, OPTION_MIPS1},
1586 {"mips2", no_argument, NULL, OPTION_MIPS2},
1587 {"mips3", no_argument, NULL, OPTION_MIPS3},
1588 {"mips4", no_argument, NULL, OPTION_MIPS4},
1589 {"mips5", no_argument, NULL, OPTION_MIPS5},
1590 {"mips32", no_argument, NULL, OPTION_MIPS32},
1591 {"mips64", no_argument, NULL, OPTION_MIPS64},
1592 {"mips32r2", no_argument, NULL, OPTION_MIPS32R2},
1593 {"mips32r3", no_argument, NULL, OPTION_MIPS32R3},
1594 {"mips32r5", no_argument, NULL, OPTION_MIPS32R5},
1595 {"mips32r6", no_argument, NULL, OPTION_MIPS32R6},
1596 {"mips64r2", no_argument, NULL, OPTION_MIPS64R2},
1597 {"mips64r3", no_argument, NULL, OPTION_MIPS64R3},
1598 {"mips64r5", no_argument, NULL, OPTION_MIPS64R5},
1599 {"mips64r6", no_argument, NULL, OPTION_MIPS64R6},
1600
1601 /* Options which specify Application Specific Extensions (ASEs). */
1602 {"mips16", no_argument, NULL, OPTION_MIPS16},
1603 {"no-mips16", no_argument, NULL, OPTION_NO_MIPS16},
1604 {"mips3d", no_argument, NULL, OPTION_MIPS3D},
1605 {"no-mips3d", no_argument, NULL, OPTION_NO_MIPS3D},
1606 {"mdmx", no_argument, NULL, OPTION_MDMX},
1607 {"no-mdmx", no_argument, NULL, OPTION_NO_MDMX},
1608 {"mdsp", no_argument, NULL, OPTION_DSP},
1609 {"mno-dsp", no_argument, NULL, OPTION_NO_DSP},
1610 {"mmt", no_argument, NULL, OPTION_MT},
1611 {"mno-mt", no_argument, NULL, OPTION_NO_MT},
1612 {"msmartmips", no_argument, NULL, OPTION_SMARTMIPS},
1613 {"mno-smartmips", no_argument, NULL, OPTION_NO_SMARTMIPS},
1614 {"mdspr2", no_argument, NULL, OPTION_DSPR2},
1615 {"mno-dspr2", no_argument, NULL, OPTION_NO_DSPR2},
1616 {"mdspr3", no_argument, NULL, OPTION_DSPR3},
1617 {"mno-dspr3", no_argument, NULL, OPTION_NO_DSPR3},
1618 {"meva", no_argument, NULL, OPTION_EVA},
1619 {"mno-eva", no_argument, NULL, OPTION_NO_EVA},
1620 {"mmicromips", no_argument, NULL, OPTION_MICROMIPS},
1621 {"mno-micromips", no_argument, NULL, OPTION_NO_MICROMIPS},
1622 {"mmcu", no_argument, NULL, OPTION_MCU},
1623 {"mno-mcu", no_argument, NULL, OPTION_NO_MCU},
1624 {"mvirt", no_argument, NULL, OPTION_VIRT},
1625 {"mno-virt", no_argument, NULL, OPTION_NO_VIRT},
1626 {"mmsa", no_argument, NULL, OPTION_MSA},
1627 {"mno-msa", no_argument, NULL, OPTION_NO_MSA},
1628 {"mxpa", no_argument, NULL, OPTION_XPA},
1629 {"mno-xpa", no_argument, NULL, OPTION_NO_XPA},
1630 {"mmips16e2", no_argument, NULL, OPTION_MIPS16E2},
1631 {"mno-mips16e2", no_argument, NULL, OPTION_NO_MIPS16E2},
1632 {"mcrc", no_argument, NULL, OPTION_CRC},
1633 {"mno-crc", no_argument, NULL, OPTION_NO_CRC},
1634 {"mginv", no_argument, NULL, OPTION_GINV},
1635 {"mno-ginv", no_argument, NULL, OPTION_NO_GINV},
1636 {"mloongson-mmi", no_argument, NULL, OPTION_LOONGSON_MMI},
1637 {"mno-loongson-mmi", no_argument, NULL, OPTION_NO_LOONGSON_MMI},
1638 {"mloongson-cam", no_argument, NULL, OPTION_LOONGSON_CAM},
1639 {"mno-loongson-cam", no_argument, NULL, OPTION_NO_LOONGSON_CAM},
1640 {"mloongson-ext", no_argument, NULL, OPTION_LOONGSON_EXT},
1641 {"mno-loongson-ext", no_argument, NULL, OPTION_NO_LOONGSON_EXT},
1642 {"mloongson-ext2", no_argument, NULL, OPTION_LOONGSON_EXT2},
1643 {"mno-loongson-ext2", no_argument, NULL, OPTION_NO_LOONGSON_EXT2},
1644
1645 /* Old-style architecture options. Don't add more of these. */
1646 {"m4650", no_argument, NULL, OPTION_M4650},
1647 {"no-m4650", no_argument, NULL, OPTION_NO_M4650},
1648 {"m4010", no_argument, NULL, OPTION_M4010},
1649 {"no-m4010", no_argument, NULL, OPTION_NO_M4010},
1650 {"m4100", no_argument, NULL, OPTION_M4100},
1651 {"no-m4100", no_argument, NULL, OPTION_NO_M4100},
1652 {"m3900", no_argument, NULL, OPTION_M3900},
1653 {"no-m3900", no_argument, NULL, OPTION_NO_M3900},
1654
1655 /* Options which enable bug fixes. */
1656 {"mfix7000", no_argument, NULL, OPTION_M7000_HILO_FIX},
1657 {"no-fix-7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1658 {"mno-fix7000", no_argument, NULL, OPTION_MNO_7000_HILO_FIX},
1659 {"mfix-loongson3-llsc", no_argument, NULL, OPTION_FIX_LOONGSON3_LLSC},
1660 {"mno-fix-loongson3-llsc", no_argument, NULL, OPTION_NO_FIX_LOONGSON3_LLSC},
1661 {"mfix-loongson2f-jump", no_argument, NULL, OPTION_FIX_LOONGSON2F_JUMP},
1662 {"mno-fix-loongson2f-jump", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_JUMP},
1663 {"mfix-loongson2f-nop", no_argument, NULL, OPTION_FIX_LOONGSON2F_NOP},
1664 {"mno-fix-loongson2f-nop", no_argument, NULL, OPTION_NO_FIX_LOONGSON2F_NOP},
1665 {"mfix-vr4120", no_argument, NULL, OPTION_FIX_VR4120},
1666 {"mno-fix-vr4120", no_argument, NULL, OPTION_NO_FIX_VR4120},
1667 {"mfix-vr4130", no_argument, NULL, OPTION_FIX_VR4130},
1668 {"mno-fix-vr4130", no_argument, NULL, OPTION_NO_FIX_VR4130},
1669 {"mfix-24k", no_argument, NULL, OPTION_FIX_24K},
1670 {"mno-fix-24k", no_argument, NULL, OPTION_NO_FIX_24K},
1671 {"mfix-rm7000", no_argument, NULL, OPTION_FIX_RM7000},
1672 {"mno-fix-rm7000", no_argument, NULL, OPTION_NO_FIX_RM7000},
1673 {"mfix-cn63xxp1", no_argument, NULL, OPTION_FIX_CN63XXP1},
1674 {"mno-fix-cn63xxp1", no_argument, NULL, OPTION_NO_FIX_CN63XXP1},
1675 {"mfix-r5900", no_argument, NULL, OPTION_FIX_R5900},
1676 {"mno-fix-r5900", no_argument, NULL, OPTION_NO_FIX_R5900},
1677
1678 /* Miscellaneous options. */
1679 {"trap", no_argument, NULL, OPTION_TRAP},
1680 {"no-break", no_argument, NULL, OPTION_TRAP},
1681 {"break", no_argument, NULL, OPTION_BREAK},
1682 {"no-trap", no_argument, NULL, OPTION_BREAK},
1683 {"EB", no_argument, NULL, OPTION_EB},
1684 {"EL", no_argument, NULL, OPTION_EL},
1685 {"mfp32", no_argument, NULL, OPTION_FP32},
1686 {"mgp32", no_argument, NULL, OPTION_GP32},
1687 {"construct-floats", no_argument, NULL, OPTION_CONSTRUCT_FLOATS},
1688 {"no-construct-floats", no_argument, NULL, OPTION_NO_CONSTRUCT_FLOATS},
1689 {"mfp64", no_argument, NULL, OPTION_FP64},
1690 {"mfpxx", no_argument, NULL, OPTION_FPXX},
1691 {"mgp64", no_argument, NULL, OPTION_GP64},
1692 {"relax-branch", no_argument, NULL, OPTION_RELAX_BRANCH},
1693 {"no-relax-branch", no_argument, NULL, OPTION_NO_RELAX_BRANCH},
1694 {"mignore-branch-isa", no_argument, NULL, OPTION_IGNORE_BRANCH_ISA},
1695 {"mno-ignore-branch-isa", no_argument, NULL, OPTION_NO_IGNORE_BRANCH_ISA},
1696 {"minsn32", no_argument, NULL, OPTION_INSN32},
1697 {"mno-insn32", no_argument, NULL, OPTION_NO_INSN32},
1698 {"mshared", no_argument, NULL, OPTION_MSHARED},
1699 {"mno-shared", no_argument, NULL, OPTION_MNO_SHARED},
1700 {"msym32", no_argument, NULL, OPTION_MSYM32},
1701 {"mno-sym32", no_argument, NULL, OPTION_MNO_SYM32},
1702 {"msoft-float", no_argument, NULL, OPTION_SOFT_FLOAT},
1703 {"mhard-float", no_argument, NULL, OPTION_HARD_FLOAT},
1704 {"msingle-float", no_argument, NULL, OPTION_SINGLE_FLOAT},
1705 {"mdouble-float", no_argument, NULL, OPTION_DOUBLE_FLOAT},
1706 {"modd-spreg", no_argument, NULL, OPTION_ODD_SPREG},
1707 {"mno-odd-spreg", no_argument, NULL, OPTION_NO_ODD_SPREG},
1708
1709 /* Strictly speaking this next option is ELF specific,
1710 but we allow it for other ports as well in order to
1711 make testing easier. */
1712 {"32", no_argument, NULL, OPTION_32},
1713
1714 /* ELF-specific options. */
1715 {"KPIC", no_argument, NULL, OPTION_CALL_SHARED},
1716 {"call_shared", no_argument, NULL, OPTION_CALL_SHARED},
1717 {"call_nonpic", no_argument, NULL, OPTION_CALL_NONPIC},
1718 {"non_shared", no_argument, NULL, OPTION_NON_SHARED},
1719 {"xgot", no_argument, NULL, OPTION_XGOT},
1720 {"mabi", required_argument, NULL, OPTION_MABI},
1721 {"n32", no_argument, NULL, OPTION_N32},
1722 {"64", no_argument, NULL, OPTION_64},
1723 {"mdebug", no_argument, NULL, OPTION_MDEBUG},
1724 {"no-mdebug", no_argument, NULL, OPTION_NO_MDEBUG},
1725 {"mpdr", no_argument, NULL, OPTION_PDR},
1726 {"mno-pdr", no_argument, NULL, OPTION_NO_PDR},
1727 {"mvxworks-pic", no_argument, NULL, OPTION_MVXWORKS_PIC},
1728 {"mnan", required_argument, NULL, OPTION_NAN},
1729
1730 {NULL, no_argument, NULL, 0}
1731 };
1732 size_t md_longopts_size = sizeof (md_longopts);
1733 \f
1734 /* Information about either an Application Specific Extension or an
1735 optional architecture feature that, for simplicity, we treat in the
1736 same way as an ASE. */
1737 struct mips_ase
1738 {
1739 /* The name of the ASE, used in both the command-line and .set options. */
1740 const char *name;
1741
1742 /* The associated ASE_* flags. If the ASE is available on both 32-bit
1743 and 64-bit architectures, the flags here refer to the subset that
1744 is available on both. */
1745 unsigned int flags;
1746
1747 /* The ASE_* flag used for instructions that are available on 64-bit
1748 architectures but that are not included in FLAGS. */
1749 unsigned int flags64;
1750
1751 /* The command-line options that turn the ASE on and off. */
1752 int option_on;
1753 int option_off;
1754
1755 /* The minimum required architecture revisions for MIPS32, MIPS64,
1756 microMIPS32 and microMIPS64, or -1 if the extension isn't supported. */
1757 int mips32_rev;
1758 int mips64_rev;
1759 int micromips32_rev;
1760 int micromips64_rev;
1761
1762 /* The architecture where the ASE was removed or -1 if the extension has not
1763 been removed. */
1764 int rem_rev;
1765 };
1766
1767 /* A table of all supported ASEs. */
1768 static const struct mips_ase mips_ases[] = {
1769 { "dsp", ASE_DSP, ASE_DSP64,
1770 OPTION_DSP, OPTION_NO_DSP,
1771 2, 2, 2, 2,
1772 -1 },
1773
1774 { "dspr2", ASE_DSP | ASE_DSPR2, 0,
1775 OPTION_DSPR2, OPTION_NO_DSPR2,
1776 2, 2, 2, 2,
1777 -1 },
1778
1779 { "dspr3", ASE_DSP | ASE_DSPR2 | ASE_DSPR3, 0,
1780 OPTION_DSPR3, OPTION_NO_DSPR3,
1781 6, 6, -1, -1,
1782 -1 },
1783
1784 { "eva", ASE_EVA, 0,
1785 OPTION_EVA, OPTION_NO_EVA,
1786 2, 2, 2, 2,
1787 -1 },
1788
1789 { "mcu", ASE_MCU, 0,
1790 OPTION_MCU, OPTION_NO_MCU,
1791 2, 2, 2, 2,
1792 -1 },
1793
1794 /* Deprecated in MIPS64r5, but we don't implement that yet. */
1795 { "mdmx", ASE_MDMX, 0,
1796 OPTION_MDMX, OPTION_NO_MDMX,
1797 -1, 1, -1, -1,
1798 6 },
1799
1800 /* Requires 64-bit FPRs, so the minimum MIPS32 revision is 2. */
1801 { "mips3d", ASE_MIPS3D, 0,
1802 OPTION_MIPS3D, OPTION_NO_MIPS3D,
1803 2, 1, -1, -1,
1804 6 },
1805
1806 { "mt", ASE_MT, 0,
1807 OPTION_MT, OPTION_NO_MT,
1808 2, 2, -1, -1,
1809 -1 },
1810
1811 { "smartmips", ASE_SMARTMIPS, 0,
1812 OPTION_SMARTMIPS, OPTION_NO_SMARTMIPS,
1813 1, -1, -1, -1,
1814 6 },
1815
1816 { "virt", ASE_VIRT, ASE_VIRT64,
1817 OPTION_VIRT, OPTION_NO_VIRT,
1818 2, 2, 2, 2,
1819 -1 },
1820
1821 { "msa", ASE_MSA, ASE_MSA64,
1822 OPTION_MSA, OPTION_NO_MSA,
1823 2, 2, 2, 2,
1824 -1 },
1825
1826 { "xpa", ASE_XPA, 0,
1827 OPTION_XPA, OPTION_NO_XPA,
1828 2, 2, 2, 2,
1829 -1 },
1830
1831 { "mips16e2", ASE_MIPS16E2, 0,
1832 OPTION_MIPS16E2, OPTION_NO_MIPS16E2,
1833 2, 2, -1, -1,
1834 6 },
1835
1836 { "crc", ASE_CRC, ASE_CRC64,
1837 OPTION_CRC, OPTION_NO_CRC,
1838 6, 6, -1, -1,
1839 -1 },
1840
1841 { "ginv", ASE_GINV, 0,
1842 OPTION_GINV, OPTION_NO_GINV,
1843 6, 6, 6, 6,
1844 -1 },
1845
1846 { "loongson-mmi", ASE_LOONGSON_MMI, 0,
1847 OPTION_LOONGSON_MMI, OPTION_NO_LOONGSON_MMI,
1848 0, 0, -1, -1,
1849 -1 },
1850
1851 { "loongson-cam", ASE_LOONGSON_CAM, 0,
1852 OPTION_LOONGSON_CAM, OPTION_NO_LOONGSON_CAM,
1853 0, 0, -1, -1,
1854 -1 },
1855
1856 { "loongson-ext", ASE_LOONGSON_EXT, 0,
1857 OPTION_LOONGSON_EXT, OPTION_NO_LOONGSON_EXT,
1858 0, 0, -1, -1,
1859 -1 },
1860
1861 { "loongson-ext2", ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2, 0,
1862 OPTION_LOONGSON_EXT2, OPTION_NO_LOONGSON_EXT2,
1863 0, 0, -1, -1,
1864 -1 },
1865 };
1866
1867 /* The set of ASEs that require -mfp64. */
1868 #define FP64_ASES (ASE_MIPS3D | ASE_MDMX | ASE_MSA)
1869
1870 /* Groups of ASE_* flags that represent different revisions of an ASE. */
1871 static const unsigned int mips_ase_groups[] = {
1872 ASE_DSP | ASE_DSPR2 | ASE_DSPR3,
1873 ASE_LOONGSON_EXT | ASE_LOONGSON_EXT2
1874 };
1875 \f
1876 /* Pseudo-op table.
1877
1878 The following pseudo-ops from the Kane and Heinrich MIPS book
1879 should be defined here, but are currently unsupported: .alias,
1880 .galive, .gjaldef, .gjrlive, .livereg, .noalias.
1881
1882 The following pseudo-ops from the Kane and Heinrich MIPS book are
1883 specific to the type of debugging information being generated, and
1884 should be defined by the object format: .aent, .begin, .bend,
1885 .bgnb, .end, .endb, .ent, .fmask, .frame, .loc, .mask, .verstamp,
1886 .vreg.
1887
1888 The following pseudo-ops from the Kane and Heinrich MIPS book are
1889 not MIPS CPU specific, but are also not specific to the object file
1890 format. This file is probably the best place to define them, but
1891 they are not currently supported: .asm0, .endr, .lab, .struct. */
1892
1893 static const pseudo_typeS mips_pseudo_table[] =
1894 {
1895 /* MIPS specific pseudo-ops. */
1896 {"option", s_option, 0},
1897 {"set", s_mipsset, 0},
1898 {"rdata", s_change_sec, 'r'},
1899 {"sdata", s_change_sec, 's'},
1900 {"livereg", s_ignore, 0},
1901 {"abicalls", s_abicalls, 0},
1902 {"cpload", s_cpload, 0},
1903 {"cpsetup", s_cpsetup, 0},
1904 {"cplocal", s_cplocal, 0},
1905 {"cprestore", s_cprestore, 0},
1906 {"cpreturn", s_cpreturn, 0},
1907 {"dtprelword", s_dtprelword, 0},
1908 {"dtpreldword", s_dtpreldword, 0},
1909 {"tprelword", s_tprelword, 0},
1910 {"tpreldword", s_tpreldword, 0},
1911 {"gpvalue", s_gpvalue, 0},
1912 {"gpword", s_gpword, 0},
1913 {"gpdword", s_gpdword, 0},
1914 {"ehword", s_ehword, 0},
1915 {"cpadd", s_cpadd, 0},
1916 {"insn", s_insn, 0},
1917 {"nan", s_nan, 0},
1918 {"module", s_module, 0},
1919
1920 /* Relatively generic pseudo-ops that happen to be used on MIPS
1921 chips. */
1922 {"asciiz", stringer, 8 + 1},
1923 {"bss", s_change_sec, 'b'},
1924 {"err", s_err, 0},
1925 {"half", s_cons, 1},
1926 {"dword", s_cons, 3},
1927 {"weakext", s_mips_weakext, 0},
1928 {"origin", s_org, 0},
1929 {"repeat", s_rept, 0},
1930
1931 /* For MIPS this is non-standard, but we define it for consistency. */
1932 {"sbss", s_change_sec, 'B'},
1933
1934 /* These pseudo-ops are defined in read.c, but must be overridden
1935 here for one reason or another. */
1936 {"align", s_align, 0},
1937 {"byte", s_cons, 0},
1938 {"data", s_change_sec, 'd'},
1939 {"double", s_float_cons, 'd'},
1940 {"float", s_float_cons, 'f'},
1941 {"globl", s_mips_globl, 0},
1942 {"global", s_mips_globl, 0},
1943 {"hword", s_cons, 1},
1944 {"int", s_cons, 2},
1945 {"long", s_cons, 2},
1946 {"octa", s_cons, 4},
1947 {"quad", s_cons, 3},
1948 {"section", s_change_section, 0},
1949 {"short", s_cons, 1},
1950 {"single", s_float_cons, 'f'},
1951 {"stabd", s_mips_stab, 'd'},
1952 {"stabn", s_mips_stab, 'n'},
1953 {"stabs", s_mips_stab, 's'},
1954 {"text", s_change_sec, 't'},
1955 {"word", s_cons, 2},
1956
1957 { "extern", ecoff_directive_extern, 0},
1958
1959 { NULL, NULL, 0 },
1960 };
1961
1962 static const pseudo_typeS mips_nonecoff_pseudo_table[] =
1963 {
1964 /* These pseudo-ops should be defined by the object file format.
1965 However, a.out doesn't support them, so we have versions here. */
1966 {"aent", s_mips_ent, 1},
1967 {"bgnb", s_ignore, 0},
1968 {"end", s_mips_end, 0},
1969 {"endb", s_ignore, 0},
1970 {"ent", s_mips_ent, 0},
1971 {"file", s_mips_file, 0},
1972 {"fmask", s_mips_mask, 'F'},
1973 {"frame", s_mips_frame, 0},
1974 {"loc", s_mips_loc, 0},
1975 {"mask", s_mips_mask, 'R'},
1976 {"verstamp", s_ignore, 0},
1977 { NULL, NULL, 0 },
1978 };
1979
1980 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
1981 purpose of the `.dc.a' internal pseudo-op. */
1982
1983 int
1984 mips_address_bytes (void)
1985 {
1986 file_mips_check_options ();
1987 return HAVE_64BIT_ADDRESSES ? 8 : 4;
1988 }
1989
1990 extern void pop_insert (const pseudo_typeS *);
1991
1992 void
1993 mips_pop_insert (void)
1994 {
1995 pop_insert (mips_pseudo_table);
1996 if (! ECOFF_DEBUGGING)
1997 pop_insert (mips_nonecoff_pseudo_table);
1998 }
1999 \f
2000 /* Symbols labelling the current insn. */
2001
2002 struct insn_label_list
2003 {
2004 struct insn_label_list *next;
2005 symbolS *label;
2006 };
2007
2008 static struct insn_label_list *free_insn_labels;
2009 #define label_list tc_segment_info_data.labels
2010
2011 static void mips_clear_insn_labels (void);
2012 static void mips_mark_labels (void);
2013 static void mips_compressed_mark_labels (void);
2014
2015 static inline void
2016 mips_clear_insn_labels (void)
2017 {
2018 struct insn_label_list **pl;
2019 segment_info_type *si;
2020
2021 if (now_seg)
2022 {
2023 for (pl = &free_insn_labels; *pl != NULL; pl = &(*pl)->next)
2024 ;
2025
2026 si = seg_info (now_seg);
2027 *pl = si->label_list;
2028 si->label_list = NULL;
2029 }
2030 }
2031
2032 /* Mark instruction labels in MIPS16/microMIPS mode. */
2033
2034 static inline void
2035 mips_mark_labels (void)
2036 {
2037 if (HAVE_CODE_COMPRESSION)
2038 mips_compressed_mark_labels ();
2039 }
2040 \f
2041 static char *expr_end;
2042
2043 /* An expression in a macro instruction. This is set by mips_ip and
2044 mips16_ip and when populated is always an O_constant. */
2045
2046 static expressionS imm_expr;
2047
2048 /* The relocatable field in an instruction and the relocs associated
2049 with it. These variables are used for instructions like LUI and
2050 JAL as well as true offsets. They are also used for address
2051 operands in macros. */
2052
2053 static expressionS offset_expr;
2054 static bfd_reloc_code_real_type offset_reloc[3]
2055 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
2056
2057 /* This is set to the resulting size of the instruction to be produced
2058 by mips16_ip if an explicit extension is used or by mips_ip if an
2059 explicit size is supplied. */
2060
2061 static unsigned int forced_insn_length;
2062
2063 /* True if we are assembling an instruction. All dot symbols defined during
2064 this time should be treated as code labels. */
2065
2066 static bfd_boolean mips_assembling_insn;
2067
2068 /* The pdr segment for per procedure frame/regmask info. Not used for
2069 ECOFF debugging. */
2070
2071 static segT pdr_seg;
2072
2073 /* The default target format to use. */
2074
2075 #if defined (TE_FreeBSD)
2076 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips-freebsd"
2077 #elif defined (TE_TMIPS)
2078 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX "trad" ENDIAN "mips"
2079 #else
2080 #define ELF_TARGET(PREFIX, ENDIAN) PREFIX ENDIAN "mips"
2081 #endif
2082
2083 const char *
2084 mips_target_format (void)
2085 {
2086 switch (OUTPUT_FLAVOR)
2087 {
2088 case bfd_target_elf_flavour:
2089 #ifdef TE_VXWORKS
2090 if (!HAVE_64BIT_OBJECTS && !HAVE_NEWABI)
2091 return (target_big_endian
2092 ? "elf32-bigmips-vxworks"
2093 : "elf32-littlemips-vxworks");
2094 #endif
2095 return (target_big_endian
2096 ? (HAVE_64BIT_OBJECTS
2097 ? ELF_TARGET ("elf64-", "big")
2098 : (HAVE_NEWABI
2099 ? ELF_TARGET ("elf32-n", "big")
2100 : ELF_TARGET ("elf32-", "big")))
2101 : (HAVE_64BIT_OBJECTS
2102 ? ELF_TARGET ("elf64-", "little")
2103 : (HAVE_NEWABI
2104 ? ELF_TARGET ("elf32-n", "little")
2105 : ELF_TARGET ("elf32-", "little"))));
2106 default:
2107 abort ();
2108 return NULL;
2109 }
2110 }
2111
2112 /* Return the ISA revision that is currently in use, or 0 if we are
2113 generating code for MIPS V or below. */
2114
2115 static int
2116 mips_isa_rev (void)
2117 {
2118 if (mips_opts.isa == ISA_MIPS32R2 || mips_opts.isa == ISA_MIPS64R2)
2119 return 2;
2120
2121 if (mips_opts.isa == ISA_MIPS32R3 || mips_opts.isa == ISA_MIPS64R3)
2122 return 3;
2123
2124 if (mips_opts.isa == ISA_MIPS32R5 || mips_opts.isa == ISA_MIPS64R5)
2125 return 5;
2126
2127 if (mips_opts.isa == ISA_MIPS32R6 || mips_opts.isa == ISA_MIPS64R6)
2128 return 6;
2129
2130 /* microMIPS implies revision 2 or above. */
2131 if (mips_opts.micromips)
2132 return 2;
2133
2134 if (mips_opts.isa == ISA_MIPS32 || mips_opts.isa == ISA_MIPS64)
2135 return 1;
2136
2137 return 0;
2138 }
2139
2140 /* Return the mask of all ASEs that are revisions of those in FLAGS. */
2141
2142 static unsigned int
2143 mips_ase_mask (unsigned int flags)
2144 {
2145 unsigned int i;
2146
2147 for (i = 0; i < ARRAY_SIZE (mips_ase_groups); i++)
2148 if (flags & mips_ase_groups[i])
2149 flags |= mips_ase_groups[i];
2150 return flags;
2151 }
2152
2153 /* Check whether the current ISA supports ASE. Issue a warning if
2154 appropriate. */
2155
2156 static void
2157 mips_check_isa_supports_ase (const struct mips_ase *ase)
2158 {
2159 const char *base;
2160 int min_rev, size;
2161 static unsigned int warned_isa;
2162 static unsigned int warned_fp32;
2163
2164 if (ISA_HAS_64BIT_REGS (mips_opts.isa))
2165 min_rev = mips_opts.micromips ? ase->micromips64_rev : ase->mips64_rev;
2166 else
2167 min_rev = mips_opts.micromips ? ase->micromips32_rev : ase->mips32_rev;
2168 if ((min_rev < 0 || mips_isa_rev () < min_rev)
2169 && (warned_isa & ase->flags) != ase->flags)
2170 {
2171 warned_isa |= ase->flags;
2172 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2173 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2174 if (min_rev < 0)
2175 as_warn (_("the %d-bit %s architecture does not support the"
2176 " `%s' extension"), size, base, ase->name);
2177 else
2178 as_warn (_("the `%s' extension requires %s%d revision %d or greater"),
2179 ase->name, base, size, min_rev);
2180 }
2181 else if ((ase->rem_rev > 0 && mips_isa_rev () >= ase->rem_rev)
2182 && (warned_isa & ase->flags) != ase->flags)
2183 {
2184 warned_isa |= ase->flags;
2185 base = mips_opts.micromips ? "microMIPS" : "MIPS";
2186 size = ISA_HAS_64BIT_REGS (mips_opts.isa) ? 64 : 32;
2187 as_warn (_("the `%s' extension was removed in %s%d revision %d"),
2188 ase->name, base, size, ase->rem_rev);
2189 }
2190
2191 if ((ase->flags & FP64_ASES)
2192 && mips_opts.fp != 64
2193 && (warned_fp32 & ase->flags) != ase->flags)
2194 {
2195 warned_fp32 |= ase->flags;
2196 as_warn (_("the `%s' extension requires 64-bit FPRs"), ase->name);
2197 }
2198 }
2199
2200 /* Check all enabled ASEs to see whether they are supported by the
2201 chosen architecture. */
2202
2203 static void
2204 mips_check_isa_supports_ases (void)
2205 {
2206 unsigned int i, mask;
2207
2208 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2209 {
2210 mask = mips_ase_mask (mips_ases[i].flags);
2211 if ((mips_opts.ase & mask) == mips_ases[i].flags)
2212 mips_check_isa_supports_ase (&mips_ases[i]);
2213 }
2214 }
2215
2216 /* Set the state of ASE to ENABLED_P. Return the mask of ASE_* flags
2217 that were affected. */
2218
2219 static unsigned int
2220 mips_set_ase (const struct mips_ase *ase, struct mips_set_options *opts,
2221 bfd_boolean enabled_p)
2222 {
2223 unsigned int mask;
2224
2225 mask = mips_ase_mask (ase->flags);
2226 opts->ase &= ~mask;
2227
2228 /* Clear combination ASE flags, which need to be recalculated based on
2229 updated regular ASE settings. */
2230 opts->ase &= ~(ASE_MIPS16E2_MT | ASE_XPA_VIRT);
2231
2232 if (enabled_p)
2233 opts->ase |= ase->flags;
2234
2235 /* The Virtualization ASE has eXtended Physical Addressing (XPA)
2236 instructions which are only valid when both ASEs are enabled.
2237 This sets the ASE_XPA_VIRT flag when both ASEs are present. */
2238 if ((opts->ase & (ASE_XPA | ASE_VIRT)) == (ASE_XPA | ASE_VIRT))
2239 {
2240 opts->ase |= ASE_XPA_VIRT;
2241 mask |= ASE_XPA_VIRT;
2242 }
2243 if ((opts->ase & (ASE_MIPS16E2 | ASE_MT)) == (ASE_MIPS16E2 | ASE_MT))
2244 {
2245 opts->ase |= ASE_MIPS16E2_MT;
2246 mask |= ASE_MIPS16E2_MT;
2247 }
2248
2249 return mask;
2250 }
2251
2252 /* Return the ASE called NAME, or null if none. */
2253
2254 static const struct mips_ase *
2255 mips_lookup_ase (const char *name)
2256 {
2257 unsigned int i;
2258
2259 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
2260 if (strcmp (name, mips_ases[i].name) == 0)
2261 return &mips_ases[i];
2262 return NULL;
2263 }
2264
2265 /* Return the length of a microMIPS instruction in bytes. If bits of
2266 the mask beyond the low 16 are 0, then it is a 16-bit instruction,
2267 otherwise it is a 32-bit instruction. */
2268
2269 static inline unsigned int
2270 micromips_insn_length (const struct mips_opcode *mo)
2271 {
2272 return mips_opcode_32bit_p (mo) ? 4 : 2;
2273 }
2274
2275 /* Return the length of MIPS16 instruction OPCODE. */
2276
2277 static inline unsigned int
2278 mips16_opcode_length (unsigned long opcode)
2279 {
2280 return (opcode >> 16) == 0 ? 2 : 4;
2281 }
2282
2283 /* Return the length of instruction INSN. */
2284
2285 static inline unsigned int
2286 insn_length (const struct mips_cl_insn *insn)
2287 {
2288 if (mips_opts.micromips)
2289 return micromips_insn_length (insn->insn_mo);
2290 else if (mips_opts.mips16)
2291 return mips16_opcode_length (insn->insn_opcode);
2292 else
2293 return 4;
2294 }
2295
2296 /* Initialise INSN from opcode entry MO. Leave its position unspecified. */
2297
2298 static void
2299 create_insn (struct mips_cl_insn *insn, const struct mips_opcode *mo)
2300 {
2301 size_t i;
2302
2303 insn->insn_mo = mo;
2304 insn->insn_opcode = mo->match;
2305 insn->frag = NULL;
2306 insn->where = 0;
2307 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2308 insn->fixp[i] = NULL;
2309 insn->fixed_p = (mips_opts.noreorder > 0);
2310 insn->noreorder_p = (mips_opts.noreorder > 0);
2311 insn->mips16_absolute_jump_p = 0;
2312 insn->complete_p = 0;
2313 insn->cleared_p = 0;
2314 }
2315
2316 /* Get a list of all the operands in INSN. */
2317
2318 static const struct mips_operand_array *
2319 insn_operands (const struct mips_cl_insn *insn)
2320 {
2321 if (insn->insn_mo >= &mips_opcodes[0]
2322 && insn->insn_mo < &mips_opcodes[NUMOPCODES])
2323 return &mips_operands[insn->insn_mo - &mips_opcodes[0]];
2324
2325 if (insn->insn_mo >= &mips16_opcodes[0]
2326 && insn->insn_mo < &mips16_opcodes[bfd_mips16_num_opcodes])
2327 return &mips16_operands[insn->insn_mo - &mips16_opcodes[0]];
2328
2329 if (insn->insn_mo >= &micromips_opcodes[0]
2330 && insn->insn_mo < &micromips_opcodes[bfd_micromips_num_opcodes])
2331 return &micromips_operands[insn->insn_mo - &micromips_opcodes[0]];
2332
2333 abort ();
2334 }
2335
2336 /* Get a description of operand OPNO of INSN. */
2337
2338 static const struct mips_operand *
2339 insn_opno (const struct mips_cl_insn *insn, unsigned opno)
2340 {
2341 const struct mips_operand_array *operands;
2342
2343 operands = insn_operands (insn);
2344 if (opno >= MAX_OPERANDS || !operands->operand[opno])
2345 abort ();
2346 return operands->operand[opno];
2347 }
2348
2349 /* Install UVAL as the value of OPERAND in INSN. */
2350
2351 static inline void
2352 insn_insert_operand (struct mips_cl_insn *insn,
2353 const struct mips_operand *operand, unsigned int uval)
2354 {
2355 if (mips_opts.mips16
2356 && operand->type == OP_INT && operand->lsb == 0
2357 && mips_opcode_32bit_p (insn->insn_mo))
2358 insn->insn_opcode |= mips16_immed_extend (uval, operand->size);
2359 else
2360 insn->insn_opcode = mips_insert_operand (operand, insn->insn_opcode, uval);
2361 }
2362
2363 /* Extract the value of OPERAND from INSN. */
2364
2365 static inline unsigned
2366 insn_extract_operand (const struct mips_cl_insn *insn,
2367 const struct mips_operand *operand)
2368 {
2369 return mips_extract_operand (operand, insn->insn_opcode);
2370 }
2371
2372 /* Record the current MIPS16/microMIPS mode in now_seg. */
2373
2374 static void
2375 mips_record_compressed_mode (void)
2376 {
2377 segment_info_type *si;
2378
2379 si = seg_info (now_seg);
2380 if (si->tc_segment_info_data.mips16 != mips_opts.mips16)
2381 si->tc_segment_info_data.mips16 = mips_opts.mips16;
2382 if (si->tc_segment_info_data.micromips != mips_opts.micromips)
2383 si->tc_segment_info_data.micromips = mips_opts.micromips;
2384 }
2385
2386 /* Read a standard MIPS instruction from BUF. */
2387
2388 static unsigned long
2389 read_insn (char *buf)
2390 {
2391 if (target_big_endian)
2392 return bfd_getb32 ((bfd_byte *) buf);
2393 else
2394 return bfd_getl32 ((bfd_byte *) buf);
2395 }
2396
2397 /* Write standard MIPS instruction INSN to BUF. Return a pointer to
2398 the next byte. */
2399
2400 static char *
2401 write_insn (char *buf, unsigned int insn)
2402 {
2403 md_number_to_chars (buf, insn, 4);
2404 return buf + 4;
2405 }
2406
2407 /* Read a microMIPS or MIPS16 opcode from BUF, given that it
2408 has length LENGTH. */
2409
2410 static unsigned long
2411 read_compressed_insn (char *buf, unsigned int length)
2412 {
2413 unsigned long insn;
2414 unsigned int i;
2415
2416 insn = 0;
2417 for (i = 0; i < length; i += 2)
2418 {
2419 insn <<= 16;
2420 if (target_big_endian)
2421 insn |= bfd_getb16 ((char *) buf);
2422 else
2423 insn |= bfd_getl16 ((char *) buf);
2424 buf += 2;
2425 }
2426 return insn;
2427 }
2428
2429 /* Write microMIPS or MIPS16 instruction INSN to BUF, given that the
2430 instruction is LENGTH bytes long. Return a pointer to the next byte. */
2431
2432 static char *
2433 write_compressed_insn (char *buf, unsigned int insn, unsigned int length)
2434 {
2435 unsigned int i;
2436
2437 for (i = 0; i < length; i += 2)
2438 md_number_to_chars (buf + i, insn >> ((length - i - 2) * 8), 2);
2439 return buf + length;
2440 }
2441
2442 /* Install INSN at the location specified by its "frag" and "where" fields. */
2443
2444 static void
2445 install_insn (const struct mips_cl_insn *insn)
2446 {
2447 char *f = insn->frag->fr_literal + insn->where;
2448 if (HAVE_CODE_COMPRESSION)
2449 write_compressed_insn (f, insn->insn_opcode, insn_length (insn));
2450 else
2451 write_insn (f, insn->insn_opcode);
2452 mips_record_compressed_mode ();
2453 }
2454
2455 /* Move INSN to offset WHERE in FRAG. Adjust the fixups accordingly
2456 and install the opcode in the new location. */
2457
2458 static void
2459 move_insn (struct mips_cl_insn *insn, fragS *frag, long where)
2460 {
2461 size_t i;
2462
2463 insn->frag = frag;
2464 insn->where = where;
2465 for (i = 0; i < ARRAY_SIZE (insn->fixp); i++)
2466 if (insn->fixp[i] != NULL)
2467 {
2468 insn->fixp[i]->fx_frag = frag;
2469 insn->fixp[i]->fx_where = where;
2470 }
2471 install_insn (insn);
2472 }
2473
2474 /* Add INSN to the end of the output. */
2475
2476 static void
2477 add_fixed_insn (struct mips_cl_insn *insn)
2478 {
2479 char *f = frag_more (insn_length (insn));
2480 move_insn (insn, frag_now, f - frag_now->fr_literal);
2481 }
2482
2483 /* Start a variant frag and move INSN to the start of the variant part,
2484 marking it as fixed. The other arguments are as for frag_var. */
2485
2486 static void
2487 add_relaxed_insn (struct mips_cl_insn *insn, int max_chars, int var,
2488 relax_substateT subtype, symbolS *symbol, offsetT offset)
2489 {
2490 frag_grow (max_chars);
2491 move_insn (insn, frag_now, frag_more (0) - frag_now->fr_literal);
2492 insn->fixed_p = 1;
2493 frag_var (rs_machine_dependent, max_chars, var,
2494 subtype, symbol, offset, NULL);
2495 }
2496
2497 /* Insert N copies of INSN into the history buffer, starting at
2498 position FIRST. Neither FIRST nor N need to be clipped. */
2499
2500 static void
2501 insert_into_history (unsigned int first, unsigned int n,
2502 const struct mips_cl_insn *insn)
2503 {
2504 if (mips_relax.sequence != 2)
2505 {
2506 unsigned int i;
2507
2508 for (i = ARRAY_SIZE (history); i-- > first;)
2509 if (i >= first + n)
2510 history[i] = history[i - n];
2511 else
2512 history[i] = *insn;
2513 }
2514 }
2515
2516 /* Clear the error in insn_error. */
2517
2518 static void
2519 clear_insn_error (void)
2520 {
2521 memset (&insn_error, 0, sizeof (insn_error));
2522 }
2523
2524 /* Possibly record error message MSG for the current instruction.
2525 If the error is about a particular argument, ARGNUM is the 1-based
2526 number of that argument, otherwise it is 0. FORMAT is the format
2527 of MSG. Return true if MSG was used, false if the current message
2528 was kept. */
2529
2530 static bfd_boolean
2531 set_insn_error_format (int argnum, enum mips_insn_error_format format,
2532 const char *msg)
2533 {
2534 if (argnum == 0)
2535 {
2536 /* Give priority to errors against specific arguments, and to
2537 the first whole-instruction message. */
2538 if (insn_error.msg)
2539 return FALSE;
2540 }
2541 else
2542 {
2543 /* Keep insn_error if it is against a later argument. */
2544 if (argnum < insn_error.min_argnum)
2545 return FALSE;
2546
2547 /* If both errors are against the same argument but are different,
2548 give up on reporting a specific error for this argument.
2549 See the comment about mips_insn_error for details. */
2550 if (argnum == insn_error.min_argnum
2551 && insn_error.msg
2552 && strcmp (insn_error.msg, msg) != 0)
2553 {
2554 insn_error.msg = 0;
2555 insn_error.min_argnum += 1;
2556 return FALSE;
2557 }
2558 }
2559 insn_error.min_argnum = argnum;
2560 insn_error.format = format;
2561 insn_error.msg = msg;
2562 return TRUE;
2563 }
2564
2565 /* Record an instruction error with no % format fields. ARGNUM and MSG are
2566 as for set_insn_error_format. */
2567
2568 static void
2569 set_insn_error (int argnum, const char *msg)
2570 {
2571 set_insn_error_format (argnum, ERR_FMT_PLAIN, msg);
2572 }
2573
2574 /* Record an instruction error with one %d field I. ARGNUM and MSG are
2575 as for set_insn_error_format. */
2576
2577 static void
2578 set_insn_error_i (int argnum, const char *msg, int i)
2579 {
2580 if (set_insn_error_format (argnum, ERR_FMT_I, msg))
2581 insn_error.u.i = i;
2582 }
2583
2584 /* Record an instruction error with two %s fields S1 and S2. ARGNUM and MSG
2585 are as for set_insn_error_format. */
2586
2587 static void
2588 set_insn_error_ss (int argnum, const char *msg, const char *s1, const char *s2)
2589 {
2590 if (set_insn_error_format (argnum, ERR_FMT_SS, msg))
2591 {
2592 insn_error.u.ss[0] = s1;
2593 insn_error.u.ss[1] = s2;
2594 }
2595 }
2596
2597 /* Report the error in insn_error, which is against assembly code STR. */
2598
2599 static void
2600 report_insn_error (const char *str)
2601 {
2602 const char *msg = concat (insn_error.msg, " `%s'", NULL);
2603
2604 switch (insn_error.format)
2605 {
2606 case ERR_FMT_PLAIN:
2607 as_bad (msg, str);
2608 break;
2609
2610 case ERR_FMT_I:
2611 as_bad (msg, insn_error.u.i, str);
2612 break;
2613
2614 case ERR_FMT_SS:
2615 as_bad (msg, insn_error.u.ss[0], insn_error.u.ss[1], str);
2616 break;
2617 }
2618
2619 free ((char *) msg);
2620 }
2621
2622 /* Initialize vr4120_conflicts. There is a bit of duplication here:
2623 the idea is to make it obvious at a glance that each errata is
2624 included. */
2625
2626 static void
2627 init_vr4120_conflicts (void)
2628 {
2629 #define CONFLICT(FIRST, SECOND) \
2630 vr4120_conflicts[FIX_VR4120_##FIRST] |= 1 << FIX_VR4120_##SECOND
2631
2632 /* Errata 21 - [D]DIV[U] after [D]MACC */
2633 CONFLICT (MACC, DIV);
2634 CONFLICT (DMACC, DIV);
2635
2636 /* Errata 23 - Continuous DMULT[U]/DMACC instructions. */
2637 CONFLICT (DMULT, DMULT);
2638 CONFLICT (DMULT, DMACC);
2639 CONFLICT (DMACC, DMULT);
2640 CONFLICT (DMACC, DMACC);
2641
2642 /* Errata 24 - MT{LO,HI} after [D]MACC */
2643 CONFLICT (MACC, MTHILO);
2644 CONFLICT (DMACC, MTHILO);
2645
2646 /* VR4181A errata MD(1): "If a MULT, MULTU, DMULT or DMULTU
2647 instruction is executed immediately after a MACC or DMACC
2648 instruction, the result of [either instruction] is incorrect." */
2649 CONFLICT (MACC, MULT);
2650 CONFLICT (MACC, DMULT);
2651 CONFLICT (DMACC, MULT);
2652 CONFLICT (DMACC, DMULT);
2653
2654 /* VR4181A errata MD(4): "If a MACC or DMACC instruction is
2655 executed immediately after a DMULT, DMULTU, DIV, DIVU,
2656 DDIV or DDIVU instruction, the result of the MACC or
2657 DMACC instruction is incorrect.". */
2658 CONFLICT (DMULT, MACC);
2659 CONFLICT (DMULT, DMACC);
2660 CONFLICT (DIV, MACC);
2661 CONFLICT (DIV, DMACC);
2662
2663 #undef CONFLICT
2664 }
2665
2666 struct regname {
2667 const char *name;
2668 unsigned int num;
2669 };
2670
2671 #define RNUM_MASK 0x00000ff
2672 #define RTYPE_MASK 0x0ffff00
2673 #define RTYPE_NUM 0x0000100
2674 #define RTYPE_FPU 0x0000200
2675 #define RTYPE_FCC 0x0000400
2676 #define RTYPE_VEC 0x0000800
2677 #define RTYPE_GP 0x0001000
2678 #define RTYPE_CP0 0x0002000
2679 #define RTYPE_PC 0x0004000
2680 #define RTYPE_ACC 0x0008000
2681 #define RTYPE_CCC 0x0010000
2682 #define RTYPE_VI 0x0020000
2683 #define RTYPE_VF 0x0040000
2684 #define RTYPE_R5900_I 0x0080000
2685 #define RTYPE_R5900_Q 0x0100000
2686 #define RTYPE_R5900_R 0x0200000
2687 #define RTYPE_R5900_ACC 0x0400000
2688 #define RTYPE_MSA 0x0800000
2689 #define RWARN 0x8000000
2690
2691 #define GENERIC_REGISTER_NUMBERS \
2692 {"$0", RTYPE_NUM | 0}, \
2693 {"$1", RTYPE_NUM | 1}, \
2694 {"$2", RTYPE_NUM | 2}, \
2695 {"$3", RTYPE_NUM | 3}, \
2696 {"$4", RTYPE_NUM | 4}, \
2697 {"$5", RTYPE_NUM | 5}, \
2698 {"$6", RTYPE_NUM | 6}, \
2699 {"$7", RTYPE_NUM | 7}, \
2700 {"$8", RTYPE_NUM | 8}, \
2701 {"$9", RTYPE_NUM | 9}, \
2702 {"$10", RTYPE_NUM | 10}, \
2703 {"$11", RTYPE_NUM | 11}, \
2704 {"$12", RTYPE_NUM | 12}, \
2705 {"$13", RTYPE_NUM | 13}, \
2706 {"$14", RTYPE_NUM | 14}, \
2707 {"$15", RTYPE_NUM | 15}, \
2708 {"$16", RTYPE_NUM | 16}, \
2709 {"$17", RTYPE_NUM | 17}, \
2710 {"$18", RTYPE_NUM | 18}, \
2711 {"$19", RTYPE_NUM | 19}, \
2712 {"$20", RTYPE_NUM | 20}, \
2713 {"$21", RTYPE_NUM | 21}, \
2714 {"$22", RTYPE_NUM | 22}, \
2715 {"$23", RTYPE_NUM | 23}, \
2716 {"$24", RTYPE_NUM | 24}, \
2717 {"$25", RTYPE_NUM | 25}, \
2718 {"$26", RTYPE_NUM | 26}, \
2719 {"$27", RTYPE_NUM | 27}, \
2720 {"$28", RTYPE_NUM | 28}, \
2721 {"$29", RTYPE_NUM | 29}, \
2722 {"$30", RTYPE_NUM | 30}, \
2723 {"$31", RTYPE_NUM | 31}
2724
2725 #define FPU_REGISTER_NAMES \
2726 {"$f0", RTYPE_FPU | 0}, \
2727 {"$f1", RTYPE_FPU | 1}, \
2728 {"$f2", RTYPE_FPU | 2}, \
2729 {"$f3", RTYPE_FPU | 3}, \
2730 {"$f4", RTYPE_FPU | 4}, \
2731 {"$f5", RTYPE_FPU | 5}, \
2732 {"$f6", RTYPE_FPU | 6}, \
2733 {"$f7", RTYPE_FPU | 7}, \
2734 {"$f8", RTYPE_FPU | 8}, \
2735 {"$f9", RTYPE_FPU | 9}, \
2736 {"$f10", RTYPE_FPU | 10}, \
2737 {"$f11", RTYPE_FPU | 11}, \
2738 {"$f12", RTYPE_FPU | 12}, \
2739 {"$f13", RTYPE_FPU | 13}, \
2740 {"$f14", RTYPE_FPU | 14}, \
2741 {"$f15", RTYPE_FPU | 15}, \
2742 {"$f16", RTYPE_FPU | 16}, \
2743 {"$f17", RTYPE_FPU | 17}, \
2744 {"$f18", RTYPE_FPU | 18}, \
2745 {"$f19", RTYPE_FPU | 19}, \
2746 {"$f20", RTYPE_FPU | 20}, \
2747 {"$f21", RTYPE_FPU | 21}, \
2748 {"$f22", RTYPE_FPU | 22}, \
2749 {"$f23", RTYPE_FPU | 23}, \
2750 {"$f24", RTYPE_FPU | 24}, \
2751 {"$f25", RTYPE_FPU | 25}, \
2752 {"$f26", RTYPE_FPU | 26}, \
2753 {"$f27", RTYPE_FPU | 27}, \
2754 {"$f28", RTYPE_FPU | 28}, \
2755 {"$f29", RTYPE_FPU | 29}, \
2756 {"$f30", RTYPE_FPU | 30}, \
2757 {"$f31", RTYPE_FPU | 31}
2758
2759 #define FPU_CONDITION_CODE_NAMES \
2760 {"$fcc0", RTYPE_FCC | 0}, \
2761 {"$fcc1", RTYPE_FCC | 1}, \
2762 {"$fcc2", RTYPE_FCC | 2}, \
2763 {"$fcc3", RTYPE_FCC | 3}, \
2764 {"$fcc4", RTYPE_FCC | 4}, \
2765 {"$fcc5", RTYPE_FCC | 5}, \
2766 {"$fcc6", RTYPE_FCC | 6}, \
2767 {"$fcc7", RTYPE_FCC | 7}
2768
2769 #define COPROC_CONDITION_CODE_NAMES \
2770 {"$cc0", RTYPE_FCC | RTYPE_CCC | 0}, \
2771 {"$cc1", RTYPE_FCC | RTYPE_CCC | 1}, \
2772 {"$cc2", RTYPE_FCC | RTYPE_CCC | 2}, \
2773 {"$cc3", RTYPE_FCC | RTYPE_CCC | 3}, \
2774 {"$cc4", RTYPE_FCC | RTYPE_CCC | 4}, \
2775 {"$cc5", RTYPE_FCC | RTYPE_CCC | 5}, \
2776 {"$cc6", RTYPE_FCC | RTYPE_CCC | 6}, \
2777 {"$cc7", RTYPE_FCC | RTYPE_CCC | 7}
2778
2779 #define N32N64_SYMBOLIC_REGISTER_NAMES \
2780 {"$a4", RTYPE_GP | 8}, \
2781 {"$a5", RTYPE_GP | 9}, \
2782 {"$a6", RTYPE_GP | 10}, \
2783 {"$a7", RTYPE_GP | 11}, \
2784 {"$ta0", RTYPE_GP | 8}, /* alias for $a4 */ \
2785 {"$ta1", RTYPE_GP | 9}, /* alias for $a5 */ \
2786 {"$ta2", RTYPE_GP | 10}, /* alias for $a6 */ \
2787 {"$ta3", RTYPE_GP | 11}, /* alias for $a7 */ \
2788 {"$t0", RTYPE_GP | 12}, \
2789 {"$t1", RTYPE_GP | 13}, \
2790 {"$t2", RTYPE_GP | 14}, \
2791 {"$t3", RTYPE_GP | 15}
2792
2793 #define O32_SYMBOLIC_REGISTER_NAMES \
2794 {"$t0", RTYPE_GP | 8}, \
2795 {"$t1", RTYPE_GP | 9}, \
2796 {"$t2", RTYPE_GP | 10}, \
2797 {"$t3", RTYPE_GP | 11}, \
2798 {"$t4", RTYPE_GP | 12}, \
2799 {"$t5", RTYPE_GP | 13}, \
2800 {"$t6", RTYPE_GP | 14}, \
2801 {"$t7", RTYPE_GP | 15}, \
2802 {"$ta0", RTYPE_GP | 12}, /* alias for $t4 */ \
2803 {"$ta1", RTYPE_GP | 13}, /* alias for $t5 */ \
2804 {"$ta2", RTYPE_GP | 14}, /* alias for $t6 */ \
2805 {"$ta3", RTYPE_GP | 15} /* alias for $t7 */
2806
2807 /* Remaining symbolic register names. */
2808 #define SYMBOLIC_REGISTER_NAMES \
2809 {"$zero", RTYPE_GP | 0}, \
2810 {"$at", RTYPE_GP | 1}, \
2811 {"$AT", RTYPE_GP | 1}, \
2812 {"$v0", RTYPE_GP | 2}, \
2813 {"$v1", RTYPE_GP | 3}, \
2814 {"$a0", RTYPE_GP | 4}, \
2815 {"$a1", RTYPE_GP | 5}, \
2816 {"$a2", RTYPE_GP | 6}, \
2817 {"$a3", RTYPE_GP | 7}, \
2818 {"$s0", RTYPE_GP | 16}, \
2819 {"$s1", RTYPE_GP | 17}, \
2820 {"$s2", RTYPE_GP | 18}, \
2821 {"$s3", RTYPE_GP | 19}, \
2822 {"$s4", RTYPE_GP | 20}, \
2823 {"$s5", RTYPE_GP | 21}, \
2824 {"$s6", RTYPE_GP | 22}, \
2825 {"$s7", RTYPE_GP | 23}, \
2826 {"$t8", RTYPE_GP | 24}, \
2827 {"$t9", RTYPE_GP | 25}, \
2828 {"$k0", RTYPE_GP | 26}, \
2829 {"$kt0", RTYPE_GP | 26}, \
2830 {"$k1", RTYPE_GP | 27}, \
2831 {"$kt1", RTYPE_GP | 27}, \
2832 {"$gp", RTYPE_GP | 28}, \
2833 {"$sp", RTYPE_GP | 29}, \
2834 {"$s8", RTYPE_GP | 30}, \
2835 {"$fp", RTYPE_GP | 30}, \
2836 {"$ra", RTYPE_GP | 31}
2837
2838 #define MIPS16_SPECIAL_REGISTER_NAMES \
2839 {"$pc", RTYPE_PC | 0}
2840
2841 #define MDMX_VECTOR_REGISTER_NAMES \
2842 /* {"$v0", RTYPE_VEC | 0}, Clash with REG 2 above. */ \
2843 /* {"$v1", RTYPE_VEC | 1}, Clash with REG 3 above. */ \
2844 {"$v2", RTYPE_VEC | 2}, \
2845 {"$v3", RTYPE_VEC | 3}, \
2846 {"$v4", RTYPE_VEC | 4}, \
2847 {"$v5", RTYPE_VEC | 5}, \
2848 {"$v6", RTYPE_VEC | 6}, \
2849 {"$v7", RTYPE_VEC | 7}, \
2850 {"$v8", RTYPE_VEC | 8}, \
2851 {"$v9", RTYPE_VEC | 9}, \
2852 {"$v10", RTYPE_VEC | 10}, \
2853 {"$v11", RTYPE_VEC | 11}, \
2854 {"$v12", RTYPE_VEC | 12}, \
2855 {"$v13", RTYPE_VEC | 13}, \
2856 {"$v14", RTYPE_VEC | 14}, \
2857 {"$v15", RTYPE_VEC | 15}, \
2858 {"$v16", RTYPE_VEC | 16}, \
2859 {"$v17", RTYPE_VEC | 17}, \
2860 {"$v18", RTYPE_VEC | 18}, \
2861 {"$v19", RTYPE_VEC | 19}, \
2862 {"$v20", RTYPE_VEC | 20}, \
2863 {"$v21", RTYPE_VEC | 21}, \
2864 {"$v22", RTYPE_VEC | 22}, \
2865 {"$v23", RTYPE_VEC | 23}, \
2866 {"$v24", RTYPE_VEC | 24}, \
2867 {"$v25", RTYPE_VEC | 25}, \
2868 {"$v26", RTYPE_VEC | 26}, \
2869 {"$v27", RTYPE_VEC | 27}, \
2870 {"$v28", RTYPE_VEC | 28}, \
2871 {"$v29", RTYPE_VEC | 29}, \
2872 {"$v30", RTYPE_VEC | 30}, \
2873 {"$v31", RTYPE_VEC | 31}
2874
2875 #define R5900_I_NAMES \
2876 {"$I", RTYPE_R5900_I | 0}
2877
2878 #define R5900_Q_NAMES \
2879 {"$Q", RTYPE_R5900_Q | 0}
2880
2881 #define R5900_R_NAMES \
2882 {"$R", RTYPE_R5900_R | 0}
2883
2884 #define R5900_ACC_NAMES \
2885 {"$ACC", RTYPE_R5900_ACC | 0 }
2886
2887 #define MIPS_DSP_ACCUMULATOR_NAMES \
2888 {"$ac0", RTYPE_ACC | 0}, \
2889 {"$ac1", RTYPE_ACC | 1}, \
2890 {"$ac2", RTYPE_ACC | 2}, \
2891 {"$ac3", RTYPE_ACC | 3}
2892
2893 static const struct regname reg_names[] = {
2894 GENERIC_REGISTER_NUMBERS,
2895 FPU_REGISTER_NAMES,
2896 FPU_CONDITION_CODE_NAMES,
2897 COPROC_CONDITION_CODE_NAMES,
2898
2899 /* The $txx registers depends on the abi,
2900 these will be added later into the symbol table from
2901 one of the tables below once mips_abi is set after
2902 parsing of arguments from the command line. */
2903 SYMBOLIC_REGISTER_NAMES,
2904
2905 MIPS16_SPECIAL_REGISTER_NAMES,
2906 MDMX_VECTOR_REGISTER_NAMES,
2907 R5900_I_NAMES,
2908 R5900_Q_NAMES,
2909 R5900_R_NAMES,
2910 R5900_ACC_NAMES,
2911 MIPS_DSP_ACCUMULATOR_NAMES,
2912 {0, 0}
2913 };
2914
2915 static const struct regname reg_names_o32[] = {
2916 O32_SYMBOLIC_REGISTER_NAMES,
2917 {0, 0}
2918 };
2919
2920 static const struct regname reg_names_n32n64[] = {
2921 N32N64_SYMBOLIC_REGISTER_NAMES,
2922 {0, 0}
2923 };
2924
2925 /* Register symbols $v0 and $v1 map to GPRs 2 and 3, but they can also be
2926 interpreted as vector registers 0 and 1. If SYMVAL is the value of one
2927 of these register symbols, return the associated vector register,
2928 otherwise return SYMVAL itself. */
2929
2930 static unsigned int
2931 mips_prefer_vec_regno (unsigned int symval)
2932 {
2933 if ((symval & -2) == (RTYPE_GP | 2))
2934 return RTYPE_VEC | (symval & 1);
2935 return symval;
2936 }
2937
2938 /* Return true if string [S, E) is a valid register name, storing its
2939 symbol value in *SYMVAL_PTR if so. */
2940
2941 static bfd_boolean
2942 mips_parse_register_1 (char *s, char *e, unsigned int *symval_ptr)
2943 {
2944 char save_c;
2945 symbolS *symbol;
2946
2947 /* Terminate name. */
2948 save_c = *e;
2949 *e = '\0';
2950
2951 /* Look up the name. */
2952 symbol = symbol_find (s);
2953 *e = save_c;
2954
2955 if (!symbol || S_GET_SEGMENT (symbol) != reg_section)
2956 return FALSE;
2957
2958 *symval_ptr = S_GET_VALUE (symbol);
2959 return TRUE;
2960 }
2961
2962 /* Return true if the string at *SPTR is a valid register name. Allow it
2963 to have a VU0-style channel suffix of the form x?y?z?w? if CHANNELS_PTR
2964 is nonnull.
2965
2966 When returning true, move *SPTR past the register, store the
2967 register's symbol value in *SYMVAL_PTR and the channel mask in
2968 *CHANNELS_PTR (if nonnull). The symbol value includes the register
2969 number (RNUM_MASK) and register type (RTYPE_MASK). The channel mask
2970 is a 4-bit value of the form XYZW and is 0 if no suffix was given. */
2971
2972 static bfd_boolean
2973 mips_parse_register (char **sptr, unsigned int *symval_ptr,
2974 unsigned int *channels_ptr)
2975 {
2976 char *s, *e, *m;
2977 const char *q;
2978 unsigned int channels, symval, bit;
2979
2980 /* Find end of name. */
2981 s = e = *sptr;
2982 if (is_name_beginner (*e))
2983 ++e;
2984 while (is_part_of_name (*e))
2985 ++e;
2986
2987 channels = 0;
2988 if (!mips_parse_register_1 (s, e, &symval))
2989 {
2990 if (!channels_ptr)
2991 return FALSE;
2992
2993 /* Eat characters from the end of the string that are valid
2994 channel suffixes. The preceding register must be $ACC or
2995 end with a digit, so there is no ambiguity. */
2996 bit = 1;
2997 m = e;
2998 for (q = "wzyx"; *q; q++, bit <<= 1)
2999 if (m > s && m[-1] == *q)
3000 {
3001 --m;
3002 channels |= bit;
3003 }
3004
3005 if (channels == 0
3006 || !mips_parse_register_1 (s, m, &symval)
3007 || (symval & (RTYPE_VI | RTYPE_VF | RTYPE_R5900_ACC)) == 0)
3008 return FALSE;
3009 }
3010
3011 *sptr = e;
3012 *symval_ptr = symval;
3013 if (channels_ptr)
3014 *channels_ptr = channels;
3015 return TRUE;
3016 }
3017
3018 /* Check if SPTR points at a valid register specifier according to TYPES.
3019 If so, then return 1, advance S to consume the specifier and store
3020 the register's number in REGNOP, otherwise return 0. */
3021
3022 static int
3023 reg_lookup (char **s, unsigned int types, unsigned int *regnop)
3024 {
3025 unsigned int regno;
3026
3027 if (mips_parse_register (s, &regno, NULL))
3028 {
3029 if (types & RTYPE_VEC)
3030 regno = mips_prefer_vec_regno (regno);
3031 if (regno & types)
3032 regno &= RNUM_MASK;
3033 else
3034 regno = ~0;
3035 }
3036 else
3037 {
3038 if (types & RWARN)
3039 as_warn (_("unrecognized register name `%s'"), *s);
3040 regno = ~0;
3041 }
3042 if (regnop)
3043 *regnop = regno;
3044 return regno <= RNUM_MASK;
3045 }
3046
3047 /* Parse a VU0 "x?y?z?w?" channel mask at S and store the associated
3048 mask in *CHANNELS. Return a pointer to the first unconsumed character. */
3049
3050 static char *
3051 mips_parse_vu0_channels (char *s, unsigned int *channels)
3052 {
3053 unsigned int i;
3054
3055 *channels = 0;
3056 for (i = 0; i < 4; i++)
3057 if (*s == "xyzw"[i])
3058 {
3059 *channels |= 1 << (3 - i);
3060 ++s;
3061 }
3062 return s;
3063 }
3064
3065 /* Token types for parsed operand lists. */
3066 enum mips_operand_token_type {
3067 /* A plain register, e.g. $f2. */
3068 OT_REG,
3069
3070 /* A 4-bit XYZW channel mask. */
3071 OT_CHANNELS,
3072
3073 /* A constant vector index, e.g. [1]. */
3074 OT_INTEGER_INDEX,
3075
3076 /* A register vector index, e.g. [$2]. */
3077 OT_REG_INDEX,
3078
3079 /* A continuous range of registers, e.g. $s0-$s4. */
3080 OT_REG_RANGE,
3081
3082 /* A (possibly relocated) expression. */
3083 OT_INTEGER,
3084
3085 /* A floating-point value. */
3086 OT_FLOAT,
3087
3088 /* A single character. This can be '(', ')' or ',', but '(' only appears
3089 before OT_REGs. */
3090 OT_CHAR,
3091
3092 /* A doubled character, either "--" or "++". */
3093 OT_DOUBLE_CHAR,
3094
3095 /* The end of the operand list. */
3096 OT_END
3097 };
3098
3099 /* A parsed operand token. */
3100 struct mips_operand_token
3101 {
3102 /* The type of token. */
3103 enum mips_operand_token_type type;
3104 union
3105 {
3106 /* The register symbol value for an OT_REG or OT_REG_INDEX. */
3107 unsigned int regno;
3108
3109 /* The 4-bit channel mask for an OT_CHANNEL_SUFFIX. */
3110 unsigned int channels;
3111
3112 /* The integer value of an OT_INTEGER_INDEX. */
3113 addressT index;
3114
3115 /* The two register symbol values involved in an OT_REG_RANGE. */
3116 struct {
3117 unsigned int regno1;
3118 unsigned int regno2;
3119 } reg_range;
3120
3121 /* The value of an OT_INTEGER. The value is represented as an
3122 expression and the relocation operators that were applied to
3123 that expression. The reloc entries are BFD_RELOC_UNUSED if no
3124 relocation operators were used. */
3125 struct {
3126 expressionS value;
3127 bfd_reloc_code_real_type relocs[3];
3128 } integer;
3129
3130 /* The binary data for an OT_FLOAT constant, and the number of bytes
3131 in the constant. */
3132 struct {
3133 unsigned char data[8];
3134 int length;
3135 } flt;
3136
3137 /* The character represented by an OT_CHAR or OT_DOUBLE_CHAR. */
3138 char ch;
3139 } u;
3140 };
3141
3142 /* An obstack used to construct lists of mips_operand_tokens. */
3143 static struct obstack mips_operand_tokens;
3144
3145 /* Give TOKEN type TYPE and add it to mips_operand_tokens. */
3146
3147 static void
3148 mips_add_token (struct mips_operand_token *token,
3149 enum mips_operand_token_type type)
3150 {
3151 token->type = type;
3152 obstack_grow (&mips_operand_tokens, token, sizeof (*token));
3153 }
3154
3155 /* Check whether S is '(' followed by a register name. Add OT_CHAR
3156 and OT_REG tokens for them if so, and return a pointer to the first
3157 unconsumed character. Return null otherwise. */
3158
3159 static char *
3160 mips_parse_base_start (char *s)
3161 {
3162 struct mips_operand_token token;
3163 unsigned int regno, channels;
3164 bfd_boolean decrement_p;
3165
3166 if (*s != '(')
3167 return 0;
3168
3169 ++s;
3170 SKIP_SPACE_TABS (s);
3171
3172 /* Only match "--" as part of a base expression. In other contexts "--X"
3173 is a double negative. */
3174 decrement_p = (s[0] == '-' && s[1] == '-');
3175 if (decrement_p)
3176 {
3177 s += 2;
3178 SKIP_SPACE_TABS (s);
3179 }
3180
3181 /* Allow a channel specifier because that leads to better error messages
3182 than treating something like "$vf0x++" as an expression. */
3183 if (!mips_parse_register (&s, &regno, &channels))
3184 return 0;
3185
3186 token.u.ch = '(';
3187 mips_add_token (&token, OT_CHAR);
3188
3189 if (decrement_p)
3190 {
3191 token.u.ch = '-';
3192 mips_add_token (&token, OT_DOUBLE_CHAR);
3193 }
3194
3195 token.u.regno = regno;
3196 mips_add_token (&token, OT_REG);
3197
3198 if (channels)
3199 {
3200 token.u.channels = channels;
3201 mips_add_token (&token, OT_CHANNELS);
3202 }
3203
3204 /* For consistency, only match "++" as part of base expressions too. */
3205 SKIP_SPACE_TABS (s);
3206 if (s[0] == '+' && s[1] == '+')
3207 {
3208 s += 2;
3209 token.u.ch = '+';
3210 mips_add_token (&token, OT_DOUBLE_CHAR);
3211 }
3212
3213 return s;
3214 }
3215
3216 /* Parse one or more tokens from S. Return a pointer to the first
3217 unconsumed character on success. Return null if an error was found
3218 and store the error text in insn_error. FLOAT_FORMAT is as for
3219 mips_parse_arguments. */
3220
3221 static char *
3222 mips_parse_argument_token (char *s, char float_format)
3223 {
3224 char *end, *save_in;
3225 const char *err;
3226 unsigned int regno1, regno2, channels;
3227 struct mips_operand_token token;
3228
3229 /* First look for "($reg", since we want to treat that as an
3230 OT_CHAR and OT_REG rather than an expression. */
3231 end = mips_parse_base_start (s);
3232 if (end)
3233 return end;
3234
3235 /* Handle other characters that end up as OT_CHARs. */
3236 if (*s == ')' || *s == ',')
3237 {
3238 token.u.ch = *s;
3239 mips_add_token (&token, OT_CHAR);
3240 ++s;
3241 return s;
3242 }
3243
3244 /* Handle tokens that start with a register. */
3245 if (mips_parse_register (&s, &regno1, &channels))
3246 {
3247 if (channels)
3248 {
3249 /* A register and a VU0 channel suffix. */
3250 token.u.regno = regno1;
3251 mips_add_token (&token, OT_REG);
3252
3253 token.u.channels = channels;
3254 mips_add_token (&token, OT_CHANNELS);
3255 return s;
3256 }
3257
3258 SKIP_SPACE_TABS (s);
3259 if (*s == '-')
3260 {
3261 /* A register range. */
3262 ++s;
3263 SKIP_SPACE_TABS (s);
3264 if (!mips_parse_register (&s, &regno2, NULL))
3265 {
3266 set_insn_error (0, _("invalid register range"));
3267 return 0;
3268 }
3269
3270 token.u.reg_range.regno1 = regno1;
3271 token.u.reg_range.regno2 = regno2;
3272 mips_add_token (&token, OT_REG_RANGE);
3273 return s;
3274 }
3275
3276 /* Add the register itself. */
3277 token.u.regno = regno1;
3278 mips_add_token (&token, OT_REG);
3279
3280 /* Check for a vector index. */
3281 if (*s == '[')
3282 {
3283 ++s;
3284 SKIP_SPACE_TABS (s);
3285 if (mips_parse_register (&s, &token.u.regno, NULL))
3286 mips_add_token (&token, OT_REG_INDEX);
3287 else
3288 {
3289 expressionS element;
3290
3291 my_getExpression (&element, s);
3292 if (element.X_op != O_constant)
3293 {
3294 set_insn_error (0, _("vector element must be constant"));
3295 return 0;
3296 }
3297 s = expr_end;
3298 token.u.index = element.X_add_number;
3299 mips_add_token (&token, OT_INTEGER_INDEX);
3300 }
3301 SKIP_SPACE_TABS (s);
3302 if (*s != ']')
3303 {
3304 set_insn_error (0, _("missing `]'"));
3305 return 0;
3306 }
3307 ++s;
3308 }
3309 return s;
3310 }
3311
3312 if (float_format)
3313 {
3314 /* First try to treat expressions as floats. */
3315 save_in = input_line_pointer;
3316 input_line_pointer = s;
3317 err = md_atof (float_format, (char *) token.u.flt.data,
3318 &token.u.flt.length);
3319 end = input_line_pointer;
3320 input_line_pointer = save_in;
3321 if (err && *err)
3322 {
3323 set_insn_error (0, err);
3324 return 0;
3325 }
3326 if (s != end)
3327 {
3328 mips_add_token (&token, OT_FLOAT);
3329 return end;
3330 }
3331 }
3332
3333 /* Treat everything else as an integer expression. */
3334 token.u.integer.relocs[0] = BFD_RELOC_UNUSED;
3335 token.u.integer.relocs[1] = BFD_RELOC_UNUSED;
3336 token.u.integer.relocs[2] = BFD_RELOC_UNUSED;
3337 my_getSmallExpression (&token.u.integer.value, token.u.integer.relocs, s);
3338 s = expr_end;
3339 mips_add_token (&token, OT_INTEGER);
3340 return s;
3341 }
3342
3343 /* S points to the operand list for an instruction. FLOAT_FORMAT is 'f'
3344 if expressions should be treated as 32-bit floating-point constants,
3345 'd' if they should be treated as 64-bit floating-point constants,
3346 or 0 if they should be treated as integer expressions (the usual case).
3347
3348 Return a list of tokens on success, otherwise return 0. The caller
3349 must obstack_free the list after use. */
3350
3351 static struct mips_operand_token *
3352 mips_parse_arguments (char *s, char float_format)
3353 {
3354 struct mips_operand_token token;
3355
3356 SKIP_SPACE_TABS (s);
3357 while (*s)
3358 {
3359 s = mips_parse_argument_token (s, float_format);
3360 if (!s)
3361 {
3362 obstack_free (&mips_operand_tokens,
3363 obstack_finish (&mips_operand_tokens));
3364 return 0;
3365 }
3366 SKIP_SPACE_TABS (s);
3367 }
3368 mips_add_token (&token, OT_END);
3369 return (struct mips_operand_token *) obstack_finish (&mips_operand_tokens);
3370 }
3371
3372 /* Return TRUE if opcode MO is valid on the currently selected ISA, ASE
3373 and architecture. Use is_opcode_valid_16 for MIPS16 opcodes. */
3374
3375 static bfd_boolean
3376 is_opcode_valid (const struct mips_opcode *mo)
3377 {
3378 int isa = mips_opts.isa;
3379 int ase = mips_opts.ase;
3380 int fp_s, fp_d;
3381 unsigned int i;
3382
3383 if (ISA_HAS_64BIT_REGS (isa))
3384 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3385 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3386 ase |= mips_ases[i].flags64;
3387
3388 if (!opcode_is_member (mo, isa, ase, mips_opts.arch))
3389 return FALSE;
3390
3391 /* Check whether the instruction or macro requires single-precision or
3392 double-precision floating-point support. Note that this information is
3393 stored differently in the opcode table for insns and macros. */
3394 if (mo->pinfo == INSN_MACRO)
3395 {
3396 fp_s = mo->pinfo2 & INSN2_M_FP_S;
3397 fp_d = mo->pinfo2 & INSN2_M_FP_D;
3398 }
3399 else
3400 {
3401 fp_s = mo->pinfo & FP_S;
3402 fp_d = mo->pinfo & FP_D;
3403 }
3404
3405 if (fp_d && (mips_opts.soft_float || mips_opts.single_float))
3406 return FALSE;
3407
3408 if (fp_s && mips_opts.soft_float)
3409 return FALSE;
3410
3411 return TRUE;
3412 }
3413
3414 /* Return TRUE if the MIPS16 opcode MO is valid on the currently
3415 selected ISA and architecture. */
3416
3417 static bfd_boolean
3418 is_opcode_valid_16 (const struct mips_opcode *mo)
3419 {
3420 int isa = mips_opts.isa;
3421 int ase = mips_opts.ase;
3422 unsigned int i;
3423
3424 if (ISA_HAS_64BIT_REGS (isa))
3425 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
3426 if ((ase & mips_ases[i].flags) == mips_ases[i].flags)
3427 ase |= mips_ases[i].flags64;
3428
3429 return opcode_is_member (mo, isa, ase, mips_opts.arch);
3430 }
3431
3432 /* Return TRUE if the size of the microMIPS opcode MO matches one
3433 explicitly requested. Always TRUE in the standard MIPS mode.
3434 Use is_size_valid_16 for MIPS16 opcodes. */
3435
3436 static bfd_boolean
3437 is_size_valid (const struct mips_opcode *mo)
3438 {
3439 if (!mips_opts.micromips)
3440 return TRUE;
3441
3442 if (mips_opts.insn32)
3443 {
3444 if (mo->pinfo != INSN_MACRO && micromips_insn_length (mo) != 4)
3445 return FALSE;
3446 if ((mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0)
3447 return FALSE;
3448 }
3449 if (!forced_insn_length)
3450 return TRUE;
3451 if (mo->pinfo == INSN_MACRO)
3452 return FALSE;
3453 return forced_insn_length == micromips_insn_length (mo);
3454 }
3455
3456 /* Return TRUE if the size of the MIPS16 opcode MO matches one
3457 explicitly requested. */
3458
3459 static bfd_boolean
3460 is_size_valid_16 (const struct mips_opcode *mo)
3461 {
3462 if (!forced_insn_length)
3463 return TRUE;
3464 if (mo->pinfo == INSN_MACRO)
3465 return FALSE;
3466 if (forced_insn_length == 2 && mips_opcode_32bit_p (mo))
3467 return FALSE;
3468 if (forced_insn_length == 4 && (mo->pinfo2 & INSN2_SHORT_ONLY))
3469 return FALSE;
3470 return TRUE;
3471 }
3472
3473 /* Return TRUE if the microMIPS opcode MO is valid for the delay slot
3474 of the preceding instruction. Always TRUE in the standard MIPS mode.
3475
3476 We don't accept macros in 16-bit delay slots to avoid a case where
3477 a macro expansion fails because it relies on a preceding 32-bit real
3478 instruction to have matched and does not handle the operands correctly.
3479 The only macros that may expand to 16-bit instructions are JAL that
3480 cannot be placed in a delay slot anyway, and corner cases of BALIGN
3481 and BGT (that likewise cannot be placed in a delay slot) that decay to
3482 a NOP. In all these cases the macros precede any corresponding real
3483 instruction definitions in the opcode table, so they will match in the
3484 second pass where the size of the delay slot is ignored and therefore
3485 produce correct code. */
3486
3487 static bfd_boolean
3488 is_delay_slot_valid (const struct mips_opcode *mo)
3489 {
3490 if (!mips_opts.micromips)
3491 return TRUE;
3492
3493 if (mo->pinfo == INSN_MACRO)
3494 return (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) == 0;
3495 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
3496 && micromips_insn_length (mo) != 4)
3497 return FALSE;
3498 if ((history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
3499 && micromips_insn_length (mo) != 2)
3500 return FALSE;
3501
3502 return TRUE;
3503 }
3504
3505 /* For consistency checking, verify that all bits of OPCODE are specified
3506 either by the match/mask part of the instruction definition, or by the
3507 operand list. Also build up a list of operands in OPERANDS.
3508
3509 INSN_BITS says which bits of the instruction are significant.
3510 If OPCODE is a standard or microMIPS instruction, DECODE_OPERAND
3511 provides the mips_operand description of each operand. DECODE_OPERAND
3512 is null for MIPS16 instructions. */
3513
3514 static int
3515 validate_mips_insn (const struct mips_opcode *opcode,
3516 unsigned long insn_bits,
3517 const struct mips_operand *(*decode_operand) (const char *),
3518 struct mips_operand_array *operands)
3519 {
3520 const char *s;
3521 unsigned long used_bits, doubled, undefined, opno, mask;
3522 const struct mips_operand *operand;
3523
3524 mask = (opcode->pinfo == INSN_MACRO ? 0 : opcode->mask);
3525 if ((mask & opcode->match) != opcode->match)
3526 {
3527 as_bad (_("internal: bad mips opcode (mask error): %s %s"),
3528 opcode->name, opcode->args);
3529 return 0;
3530 }
3531 used_bits = 0;
3532 opno = 0;
3533 if (opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX)
3534 used_bits = mips_insert_operand (&mips_vu0_channel_mask, used_bits, -1);
3535 for (s = opcode->args; *s; ++s)
3536 switch (*s)
3537 {
3538 case ',':
3539 case '(':
3540 case ')':
3541 break;
3542
3543 case '#':
3544 s++;
3545 break;
3546
3547 default:
3548 if (!decode_operand)
3549 operand = decode_mips16_operand (*s, mips_opcode_32bit_p (opcode));
3550 else
3551 operand = decode_operand (s);
3552 if (!operand && opcode->pinfo != INSN_MACRO)
3553 {
3554 as_bad (_("internal: unknown operand type: %s %s"),
3555 opcode->name, opcode->args);
3556 return 0;
3557 }
3558 gas_assert (opno < MAX_OPERANDS);
3559 operands->operand[opno] = operand;
3560 if (!decode_operand && operand
3561 && operand->type == OP_INT && operand->lsb == 0
3562 && mips_opcode_32bit_p (opcode))
3563 used_bits |= mips16_immed_extend (-1, operand->size);
3564 else if (operand && operand->type != OP_VU0_MATCH_SUFFIX)
3565 {
3566 used_bits = mips_insert_operand (operand, used_bits, -1);
3567 if (operand->type == OP_MDMX_IMM_REG)
3568 /* Bit 5 is the format selector (OB vs QH). The opcode table
3569 has separate entries for each format. */
3570 used_bits &= ~(1 << (operand->lsb + 5));
3571 if (operand->type == OP_ENTRY_EXIT_LIST)
3572 used_bits &= ~(mask & 0x700);
3573 /* interAptiv MR2 SAVE/RESTORE instructions have a discontiguous
3574 operand field that cannot be fully described with LSB/SIZE. */
3575 if (operand->type == OP_SAVE_RESTORE_LIST && operand->lsb == 6)
3576 used_bits &= ~0x6000;
3577 }
3578 /* Skip prefix characters. */
3579 if (decode_operand && (*s == '+' || *s == 'm' || *s == '-'))
3580 ++s;
3581 opno += 1;
3582 break;
3583 }
3584 doubled = used_bits & mask & insn_bits;
3585 if (doubled)
3586 {
3587 as_bad (_("internal: bad mips opcode (bits 0x%08lx doubly defined):"
3588 " %s %s"), doubled, opcode->name, opcode->args);
3589 return 0;
3590 }
3591 used_bits |= mask;
3592 undefined = ~used_bits & insn_bits;
3593 if (opcode->pinfo != INSN_MACRO && undefined)
3594 {
3595 as_bad (_("internal: bad mips opcode (bits 0x%08lx undefined): %s %s"),
3596 undefined, opcode->name, opcode->args);
3597 return 0;
3598 }
3599 used_bits &= ~insn_bits;
3600 if (used_bits)
3601 {
3602 as_bad (_("internal: bad mips opcode (bits 0x%08lx defined): %s %s"),
3603 used_bits, opcode->name, opcode->args);
3604 return 0;
3605 }
3606 return 1;
3607 }
3608
3609 /* The MIPS16 version of validate_mips_insn. */
3610
3611 static int
3612 validate_mips16_insn (const struct mips_opcode *opcode,
3613 struct mips_operand_array *operands)
3614 {
3615 unsigned long insn_bits = mips_opcode_32bit_p (opcode) ? 0xffffffff : 0xffff;
3616
3617 return validate_mips_insn (opcode, insn_bits, 0, operands);
3618 }
3619
3620 /* The microMIPS version of validate_mips_insn. */
3621
3622 static int
3623 validate_micromips_insn (const struct mips_opcode *opc,
3624 struct mips_operand_array *operands)
3625 {
3626 unsigned long insn_bits;
3627 unsigned long major;
3628 unsigned int length;
3629
3630 if (opc->pinfo == INSN_MACRO)
3631 return validate_mips_insn (opc, 0xffffffff, decode_micromips_operand,
3632 operands);
3633
3634 length = micromips_insn_length (opc);
3635 if (length != 2 && length != 4)
3636 {
3637 as_bad (_("internal error: bad microMIPS opcode (incorrect length: %u): "
3638 "%s %s"), length, opc->name, opc->args);
3639 return 0;
3640 }
3641 major = opc->match >> (10 + 8 * (length - 2));
3642 if ((length == 2 && (major & 7) != 1 && (major & 6) != 2)
3643 || (length == 4 && (major & 7) != 0 && (major & 4) != 4))
3644 {
3645 as_bad (_("internal error: bad microMIPS opcode "
3646 "(opcode/length mismatch): %s %s"), opc->name, opc->args);
3647 return 0;
3648 }
3649
3650 /* Shift piecewise to avoid an overflow where unsigned long is 32-bit. */
3651 insn_bits = 1 << 4 * length;
3652 insn_bits <<= 4 * length;
3653 insn_bits -= 1;
3654 return validate_mips_insn (opc, insn_bits, decode_micromips_operand,
3655 operands);
3656 }
3657
3658 /* This function is called once, at assembler startup time. It should set up
3659 all the tables, etc. that the MD part of the assembler will need. */
3660
3661 void
3662 md_begin (void)
3663 {
3664 const char *retval = NULL;
3665 int i = 0;
3666 int broken = 0;
3667
3668 if (mips_pic != NO_PIC)
3669 {
3670 if (g_switch_seen && g_switch_value != 0)
3671 as_bad (_("-G may not be used in position-independent code"));
3672 g_switch_value = 0;
3673 }
3674 else if (mips_abicalls)
3675 {
3676 if (g_switch_seen && g_switch_value != 0)
3677 as_bad (_("-G may not be used with abicalls"));
3678 g_switch_value = 0;
3679 }
3680
3681 if (! bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
3682 as_warn (_("could not set architecture and machine"));
3683
3684 op_hash = hash_new ();
3685
3686 mips_operands = XCNEWVEC (struct mips_operand_array, NUMOPCODES);
3687 for (i = 0; i < NUMOPCODES;)
3688 {
3689 const char *name = mips_opcodes[i].name;
3690
3691 retval = hash_insert (op_hash, name, (void *) &mips_opcodes[i]);
3692 if (retval != NULL)
3693 {
3694 fprintf (stderr, _("internal error: can't hash `%s': %s\n"),
3695 mips_opcodes[i].name, retval);
3696 /* Probably a memory allocation problem? Give up now. */
3697 as_fatal (_("broken assembler, no assembly attempted"));
3698 }
3699 do
3700 {
3701 if (!validate_mips_insn (&mips_opcodes[i], 0xffffffff,
3702 decode_mips_operand, &mips_operands[i]))
3703 broken = 1;
3704
3705 if (nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3706 {
3707 create_insn (&nop_insn, mips_opcodes + i);
3708 if (mips_fix_loongson2f_nop)
3709 nop_insn.insn_opcode = LOONGSON2F_NOP_INSN;
3710 nop_insn.fixed_p = 1;
3711 }
3712
3713 if (sync_insn.insn_mo == NULL && strcmp (name, "sync") == 0)
3714 create_insn (&sync_insn, mips_opcodes + i);
3715
3716 ++i;
3717 }
3718 while ((i < NUMOPCODES) && !strcmp (mips_opcodes[i].name, name));
3719 }
3720
3721 mips16_op_hash = hash_new ();
3722 mips16_operands = XCNEWVEC (struct mips_operand_array,
3723 bfd_mips16_num_opcodes);
3724
3725 i = 0;
3726 while (i < bfd_mips16_num_opcodes)
3727 {
3728 const char *name = mips16_opcodes[i].name;
3729
3730 retval = hash_insert (mips16_op_hash, name, (void *) &mips16_opcodes[i]);
3731 if (retval != NULL)
3732 as_fatal (_("internal: can't hash `%s': %s"),
3733 mips16_opcodes[i].name, retval);
3734 do
3735 {
3736 if (!validate_mips16_insn (&mips16_opcodes[i], &mips16_operands[i]))
3737 broken = 1;
3738 if (mips16_nop_insn.insn_mo == NULL && strcmp (name, "nop") == 0)
3739 {
3740 create_insn (&mips16_nop_insn, mips16_opcodes + i);
3741 mips16_nop_insn.fixed_p = 1;
3742 }
3743 ++i;
3744 }
3745 while (i < bfd_mips16_num_opcodes
3746 && strcmp (mips16_opcodes[i].name, name) == 0);
3747 }
3748
3749 micromips_op_hash = hash_new ();
3750 micromips_operands = XCNEWVEC (struct mips_operand_array,
3751 bfd_micromips_num_opcodes);
3752
3753 i = 0;
3754 while (i < bfd_micromips_num_opcodes)
3755 {
3756 const char *name = micromips_opcodes[i].name;
3757
3758 retval = hash_insert (micromips_op_hash, name,
3759 (void *) &micromips_opcodes[i]);
3760 if (retval != NULL)
3761 as_fatal (_("internal: can't hash `%s': %s"),
3762 micromips_opcodes[i].name, retval);
3763 do
3764 {
3765 struct mips_cl_insn *micromips_nop_insn;
3766
3767 if (!validate_micromips_insn (&micromips_opcodes[i],
3768 &micromips_operands[i]))
3769 broken = 1;
3770
3771 if (micromips_opcodes[i].pinfo != INSN_MACRO)
3772 {
3773 if (micromips_insn_length (micromips_opcodes + i) == 2)
3774 micromips_nop_insn = &micromips_nop16_insn;
3775 else if (micromips_insn_length (micromips_opcodes + i) == 4)
3776 micromips_nop_insn = &micromips_nop32_insn;
3777 else
3778 continue;
3779
3780 if (micromips_nop_insn->insn_mo == NULL
3781 && strcmp (name, "nop") == 0)
3782 {
3783 create_insn (micromips_nop_insn, micromips_opcodes + i);
3784 micromips_nop_insn->fixed_p = 1;
3785 }
3786 }
3787 }
3788 while (++i < bfd_micromips_num_opcodes
3789 && strcmp (micromips_opcodes[i].name, name) == 0);
3790 }
3791
3792 if (broken)
3793 as_fatal (_("broken assembler, no assembly attempted"));
3794
3795 /* We add all the general register names to the symbol table. This
3796 helps us detect invalid uses of them. */
3797 for (i = 0; reg_names[i].name; i++)
3798 symbol_table_insert (symbol_new (reg_names[i].name, reg_section,
3799 reg_names[i].num, /* & RNUM_MASK, */
3800 &zero_address_frag));
3801 if (HAVE_NEWABI)
3802 for (i = 0; reg_names_n32n64[i].name; i++)
3803 symbol_table_insert (symbol_new (reg_names_n32n64[i].name, reg_section,
3804 reg_names_n32n64[i].num, /* & RNUM_MASK, */
3805 &zero_address_frag));
3806 else
3807 for (i = 0; reg_names_o32[i].name; i++)
3808 symbol_table_insert (symbol_new (reg_names_o32[i].name, reg_section,
3809 reg_names_o32[i].num, /* & RNUM_MASK, */
3810 &zero_address_frag));
3811
3812 for (i = 0; i < 32; i++)
3813 {
3814 char regname[6];
3815
3816 /* R5900 VU0 floating-point register. */
3817 sprintf (regname, "$vf%d", i);
3818 symbol_table_insert (symbol_new (regname, reg_section,
3819 RTYPE_VF | i, &zero_address_frag));
3820
3821 /* R5900 VU0 integer register. */
3822 sprintf (regname, "$vi%d", i);
3823 symbol_table_insert (symbol_new (regname, reg_section,
3824 RTYPE_VI | i, &zero_address_frag));
3825
3826 /* MSA register. */
3827 sprintf (regname, "$w%d", i);
3828 symbol_table_insert (symbol_new (regname, reg_section,
3829 RTYPE_MSA | i, &zero_address_frag));
3830 }
3831
3832 obstack_init (&mips_operand_tokens);
3833
3834 mips_no_prev_insn ();
3835
3836 mips_gprmask = 0;
3837 mips_cprmask[0] = 0;
3838 mips_cprmask[1] = 0;
3839 mips_cprmask[2] = 0;
3840 mips_cprmask[3] = 0;
3841
3842 /* set the default alignment for the text section (2**2) */
3843 record_alignment (text_section, 2);
3844
3845 bfd_set_gp_size (stdoutput, g_switch_value);
3846
3847 /* On a native system other than VxWorks, sections must be aligned
3848 to 16 byte boundaries. When configured for an embedded ELF
3849 target, we don't bother. */
3850 if (strncmp (TARGET_OS, "elf", 3) != 0
3851 && strncmp (TARGET_OS, "vxworks", 7) != 0)
3852 {
3853 (void) bfd_set_section_alignment (stdoutput, text_section, 4);
3854 (void) bfd_set_section_alignment (stdoutput, data_section, 4);
3855 (void) bfd_set_section_alignment (stdoutput, bss_section, 4);
3856 }
3857
3858 /* Create a .reginfo section for register masks and a .mdebug
3859 section for debugging information. */
3860 {
3861 segT seg;
3862 subsegT subseg;
3863 flagword flags;
3864 segT sec;
3865
3866 seg = now_seg;
3867 subseg = now_subseg;
3868
3869 /* The ABI says this section should be loaded so that the
3870 running program can access it. However, we don't load it
3871 if we are configured for an embedded target. */
3872 flags = SEC_READONLY | SEC_DATA;
3873 if (strncmp (TARGET_OS, "elf", 3) != 0)
3874 flags |= SEC_ALLOC | SEC_LOAD;
3875
3876 if (mips_abi != N64_ABI)
3877 {
3878 sec = subseg_new (".reginfo", (subsegT) 0);
3879
3880 bfd_set_section_flags (stdoutput, sec, flags);
3881 bfd_set_section_alignment (stdoutput, sec, HAVE_NEWABI ? 3 : 2);
3882
3883 mips_regmask_frag = frag_more (sizeof (Elf32_External_RegInfo));
3884 }
3885 else
3886 {
3887 /* The 64-bit ABI uses a .MIPS.options section rather than
3888 .reginfo section. */
3889 sec = subseg_new (".MIPS.options", (subsegT) 0);
3890 bfd_set_section_flags (stdoutput, sec, flags);
3891 bfd_set_section_alignment (stdoutput, sec, 3);
3892
3893 /* Set up the option header. */
3894 {
3895 Elf_Internal_Options opthdr;
3896 char *f;
3897
3898 opthdr.kind = ODK_REGINFO;
3899 opthdr.size = (sizeof (Elf_External_Options)
3900 + sizeof (Elf64_External_RegInfo));
3901 opthdr.section = 0;
3902 opthdr.info = 0;
3903 f = frag_more (sizeof (Elf_External_Options));
3904 bfd_mips_elf_swap_options_out (stdoutput, &opthdr,
3905 (Elf_External_Options *) f);
3906
3907 mips_regmask_frag = frag_more (sizeof (Elf64_External_RegInfo));
3908 }
3909 }
3910
3911 sec = subseg_new (".MIPS.abiflags", (subsegT) 0);
3912 bfd_set_section_flags (stdoutput, sec,
3913 SEC_READONLY | SEC_DATA | SEC_ALLOC | SEC_LOAD);
3914 bfd_set_section_alignment (stdoutput, sec, 3);
3915 mips_flags_frag = frag_more (sizeof (Elf_External_ABIFlags_v0));
3916
3917 if (ECOFF_DEBUGGING)
3918 {
3919 sec = subseg_new (".mdebug", (subsegT) 0);
3920 (void) bfd_set_section_flags (stdoutput, sec,
3921 SEC_HAS_CONTENTS | SEC_READONLY);
3922 (void) bfd_set_section_alignment (stdoutput, sec, 2);
3923 }
3924 else if (mips_flag_pdr)
3925 {
3926 pdr_seg = subseg_new (".pdr", (subsegT) 0);
3927 (void) bfd_set_section_flags (stdoutput, pdr_seg,
3928 SEC_READONLY | SEC_RELOC
3929 | SEC_DEBUGGING);
3930 (void) bfd_set_section_alignment (stdoutput, pdr_seg, 2);
3931 }
3932
3933 subseg_set (seg, subseg);
3934 }
3935
3936 if (mips_fix_vr4120)
3937 init_vr4120_conflicts ();
3938 }
3939
3940 static inline void
3941 fpabi_incompatible_with (int fpabi, const char *what)
3942 {
3943 as_warn (_(".gnu_attribute %d,%d is incompatible with `%s'"),
3944 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3945 }
3946
3947 static inline void
3948 fpabi_requires (int fpabi, const char *what)
3949 {
3950 as_warn (_(".gnu_attribute %d,%d requires `%s'"),
3951 Tag_GNU_MIPS_ABI_FP, fpabi, what);
3952 }
3953
3954 /* Check -mabi and register sizes against the specified FP ABI. */
3955 static void
3956 check_fpabi (int fpabi)
3957 {
3958 switch (fpabi)
3959 {
3960 case Val_GNU_MIPS_ABI_FP_DOUBLE:
3961 if (file_mips_opts.soft_float)
3962 fpabi_incompatible_with (fpabi, "softfloat");
3963 else if (file_mips_opts.single_float)
3964 fpabi_incompatible_with (fpabi, "singlefloat");
3965 if (file_mips_opts.gp == 64 && file_mips_opts.fp == 32)
3966 fpabi_incompatible_with (fpabi, "gp=64 fp=32");
3967 else if (file_mips_opts.gp == 32 && file_mips_opts.fp == 64)
3968 fpabi_incompatible_with (fpabi, "gp=32 fp=64");
3969 break;
3970
3971 case Val_GNU_MIPS_ABI_FP_XX:
3972 if (mips_abi != O32_ABI)
3973 fpabi_requires (fpabi, "-mabi=32");
3974 else if (file_mips_opts.soft_float)
3975 fpabi_incompatible_with (fpabi, "softfloat");
3976 else if (file_mips_opts.single_float)
3977 fpabi_incompatible_with (fpabi, "singlefloat");
3978 else if (file_mips_opts.fp != 0)
3979 fpabi_requires (fpabi, "fp=xx");
3980 break;
3981
3982 case Val_GNU_MIPS_ABI_FP_64A:
3983 case Val_GNU_MIPS_ABI_FP_64:
3984 if (mips_abi != O32_ABI)
3985 fpabi_requires (fpabi, "-mabi=32");
3986 else if (file_mips_opts.soft_float)
3987 fpabi_incompatible_with (fpabi, "softfloat");
3988 else if (file_mips_opts.single_float)
3989 fpabi_incompatible_with (fpabi, "singlefloat");
3990 else if (file_mips_opts.fp != 64)
3991 fpabi_requires (fpabi, "fp=64");
3992 else if (fpabi == Val_GNU_MIPS_ABI_FP_64 && !file_mips_opts.oddspreg)
3993 fpabi_incompatible_with (fpabi, "nooddspreg");
3994 else if (fpabi == Val_GNU_MIPS_ABI_FP_64A && file_mips_opts.oddspreg)
3995 fpabi_requires (fpabi, "nooddspreg");
3996 break;
3997
3998 case Val_GNU_MIPS_ABI_FP_SINGLE:
3999 if (file_mips_opts.soft_float)
4000 fpabi_incompatible_with (fpabi, "softfloat");
4001 else if (!file_mips_opts.single_float)
4002 fpabi_requires (fpabi, "singlefloat");
4003 break;
4004
4005 case Val_GNU_MIPS_ABI_FP_SOFT:
4006 if (!file_mips_opts.soft_float)
4007 fpabi_requires (fpabi, "softfloat");
4008 break;
4009
4010 case Val_GNU_MIPS_ABI_FP_OLD_64:
4011 as_warn (_(".gnu_attribute %d,%d is no longer supported"),
4012 Tag_GNU_MIPS_ABI_FP, fpabi);
4013 break;
4014
4015 case Val_GNU_MIPS_ABI_FP_NAN2008:
4016 /* Silently ignore compatibility value. */
4017 break;
4018
4019 default:
4020 as_warn (_(".gnu_attribute %d,%d is not a recognized"
4021 " floating-point ABI"), Tag_GNU_MIPS_ABI_FP, fpabi);
4022 break;
4023 }
4024 }
4025
4026 /* Perform consistency checks on the current options. */
4027
4028 static void
4029 mips_check_options (struct mips_set_options *opts, bfd_boolean abi_checks)
4030 {
4031 /* Check the size of integer registers agrees with the ABI and ISA. */
4032 if (opts->gp == 64 && !ISA_HAS_64BIT_REGS (opts->isa))
4033 as_bad (_("`gp=64' used with a 32-bit processor"));
4034 else if (abi_checks
4035 && opts->gp == 32 && ABI_NEEDS_64BIT_REGS (mips_abi))
4036 as_bad (_("`gp=32' used with a 64-bit ABI"));
4037 else if (abi_checks
4038 && opts->gp == 64 && ABI_NEEDS_32BIT_REGS (mips_abi))
4039 as_bad (_("`gp=64' used with a 32-bit ABI"));
4040
4041 /* Check the size of the float registers agrees with the ABI and ISA. */
4042 switch (opts->fp)
4043 {
4044 case 0:
4045 if (!CPU_HAS_LDC1_SDC1 (opts->arch))
4046 as_bad (_("`fp=xx' used with a cpu lacking ldc1/sdc1 instructions"));
4047 else if (opts->single_float == 1)
4048 as_bad (_("`fp=xx' cannot be used with `singlefloat'"));
4049 break;
4050 case 64:
4051 if (!ISA_HAS_64BIT_FPRS (opts->isa))
4052 as_bad (_("`fp=64' used with a 32-bit fpu"));
4053 else if (abi_checks
4054 && ABI_NEEDS_32BIT_REGS (mips_abi)
4055 && !ISA_HAS_MXHC1 (opts->isa))
4056 as_warn (_("`fp=64' used with a 32-bit ABI"));
4057 break;
4058 case 32:
4059 if (abi_checks
4060 && ABI_NEEDS_64BIT_REGS (mips_abi))
4061 as_warn (_("`fp=32' used with a 64-bit ABI"));
4062 if (ISA_IS_R6 (opts->isa) && opts->single_float == 0)
4063 as_bad (_("`fp=32' used with a MIPS R6 cpu"));
4064 break;
4065 default:
4066 as_bad (_("Unknown size of floating point registers"));
4067 break;
4068 }
4069
4070 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !opts->oddspreg)
4071 as_bad (_("`nooddspreg` cannot be used with a 64-bit ABI"));
4072
4073 if (opts->micromips == 1 && opts->mips16 == 1)
4074 as_bad (_("`%s' cannot be used with `%s'"), "mips16", "micromips");
4075 else if (ISA_IS_R6 (opts->isa)
4076 && (opts->micromips == 1
4077 || opts->mips16 == 1))
4078 as_fatal (_("`%s' cannot be used with `%s'"),
4079 opts->micromips ? "micromips" : "mips16",
4080 mips_cpu_info_from_isa (opts->isa)->name);
4081
4082 if (ISA_IS_R6 (opts->isa) && mips_relax_branch)
4083 as_fatal (_("branch relaxation is not supported in `%s'"),
4084 mips_cpu_info_from_isa (opts->isa)->name);
4085 }
4086
4087 /* Perform consistency checks on the module level options exactly once.
4088 This is a deferred check that happens:
4089 at the first .set directive
4090 or, at the first pseudo op that generates code (inc .dc.a)
4091 or, at the first instruction
4092 or, at the end. */
4093
4094 static void
4095 file_mips_check_options (void)
4096 {
4097 if (file_mips_opts_checked)
4098 return;
4099
4100 /* The following code determines the register size.
4101 Similar code was added to GCC 3.3 (see override_options() in
4102 config/mips/mips.c). The GAS and GCC code should be kept in sync
4103 as much as possible. */
4104
4105 if (file_mips_opts.gp < 0)
4106 {
4107 /* Infer the integer register size from the ABI and processor.
4108 Restrict ourselves to 32-bit registers if that's all the
4109 processor has, or if the ABI cannot handle 64-bit registers. */
4110 file_mips_opts.gp = (ABI_NEEDS_32BIT_REGS (mips_abi)
4111 || !ISA_HAS_64BIT_REGS (file_mips_opts.isa))
4112 ? 32 : 64;
4113 }
4114
4115 if (file_mips_opts.fp < 0)
4116 {
4117 /* No user specified float register size.
4118 ??? GAS treats single-float processors as though they had 64-bit
4119 float registers (although it complains when double-precision
4120 instructions are used). As things stand, saying they have 32-bit
4121 registers would lead to spurious "register must be even" messages.
4122 So here we assume float registers are never smaller than the
4123 integer ones. */
4124 if (file_mips_opts.gp == 64)
4125 /* 64-bit integer registers implies 64-bit float registers. */
4126 file_mips_opts.fp = 64;
4127 else if ((file_mips_opts.ase & FP64_ASES)
4128 && ISA_HAS_64BIT_FPRS (file_mips_opts.isa))
4129 /* Handle ASEs that require 64-bit float registers, if possible. */
4130 file_mips_opts.fp = 64;
4131 else if (ISA_IS_R6 (mips_opts.isa))
4132 /* R6 implies 64-bit float registers. */
4133 file_mips_opts.fp = 64;
4134 else
4135 /* 32-bit float registers. */
4136 file_mips_opts.fp = 32;
4137 }
4138
4139 /* Disable operations on odd-numbered floating-point registers by default
4140 when using the FPXX ABI. */
4141 if (file_mips_opts.oddspreg < 0)
4142 {
4143 if (file_mips_opts.fp == 0)
4144 file_mips_opts.oddspreg = 0;
4145 else
4146 file_mips_opts.oddspreg = 1;
4147 }
4148
4149 /* End of GCC-shared inference code. */
4150
4151 /* This flag is set when we have a 64-bit capable CPU but use only
4152 32-bit wide registers. Note that EABI does not use it. */
4153 if (ISA_HAS_64BIT_REGS (file_mips_opts.isa)
4154 && ((mips_abi == NO_ABI && file_mips_opts.gp == 32)
4155 || mips_abi == O32_ABI))
4156 mips_32bitmode = 1;
4157
4158 if (file_mips_opts.isa == ISA_MIPS1 && mips_trap)
4159 as_bad (_("trap exception not supported at ISA 1"));
4160
4161 /* If the selected architecture includes support for ASEs, enable
4162 generation of code for them. */
4163 if (file_mips_opts.mips16 == -1)
4164 file_mips_opts.mips16 = (CPU_HAS_MIPS16 (file_mips_opts.arch)) ? 1 : 0;
4165 if (file_mips_opts.micromips == -1)
4166 file_mips_opts.micromips = (CPU_HAS_MICROMIPS (file_mips_opts.arch))
4167 ? 1 : 0;
4168
4169 if (mips_nan2008 == -1)
4170 mips_nan2008 = (ISA_HAS_LEGACY_NAN (file_mips_opts.isa)) ? 0 : 1;
4171 else if (!ISA_HAS_LEGACY_NAN (file_mips_opts.isa) && mips_nan2008 == 0)
4172 as_fatal (_("`%s' does not support legacy NaN"),
4173 mips_cpu_info_from_arch (file_mips_opts.arch)->name);
4174
4175 /* Some ASEs require 64-bit FPRs, so -mfp32 should stop those ASEs from
4176 being selected implicitly. */
4177 if (file_mips_opts.fp != 64)
4178 file_ase_explicit |= ASE_MIPS3D | ASE_MDMX | ASE_MSA;
4179
4180 /* If the user didn't explicitly select or deselect a particular ASE,
4181 use the default setting for the CPU. */
4182 file_mips_opts.ase |= (file_mips_opts.init_ase & ~file_ase_explicit);
4183
4184 /* Set up the current options. These may change throughout assembly. */
4185 mips_opts = file_mips_opts;
4186
4187 mips_check_isa_supports_ases ();
4188 mips_check_options (&file_mips_opts, TRUE);
4189 file_mips_opts_checked = TRUE;
4190
4191 if (!bfd_set_arch_mach (stdoutput, bfd_arch_mips, file_mips_opts.arch))
4192 as_warn (_("could not set architecture and machine"));
4193 }
4194
4195 void
4196 md_assemble (char *str)
4197 {
4198 struct mips_cl_insn insn;
4199 bfd_reloc_code_real_type unused_reloc[3]
4200 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
4201
4202 file_mips_check_options ();
4203
4204 imm_expr.X_op = O_absent;
4205 offset_expr.X_op = O_absent;
4206 offset_reloc[0] = BFD_RELOC_UNUSED;
4207 offset_reloc[1] = BFD_RELOC_UNUSED;
4208 offset_reloc[2] = BFD_RELOC_UNUSED;
4209
4210 mips_mark_labels ();
4211 mips_assembling_insn = TRUE;
4212 clear_insn_error ();
4213
4214 if (mips_opts.mips16)
4215 mips16_ip (str, &insn);
4216 else
4217 {
4218 mips_ip (str, &insn);
4219 DBG ((_("returned from mips_ip(%s) insn_opcode = 0x%x\n"),
4220 str, insn.insn_opcode));
4221 }
4222
4223 if (insn_error.msg)
4224 report_insn_error (str);
4225 else if (insn.insn_mo->pinfo == INSN_MACRO)
4226 {
4227 macro_start ();
4228 if (mips_opts.mips16)
4229 mips16_macro (&insn);
4230 else
4231 macro (&insn, str);
4232 macro_end ();
4233 }
4234 else
4235 {
4236 if (offset_expr.X_op != O_absent)
4237 append_insn (&insn, &offset_expr, offset_reloc, FALSE);
4238 else
4239 append_insn (&insn, NULL, unused_reloc, FALSE);
4240 }
4241
4242 mips_assembling_insn = FALSE;
4243 }
4244
4245 /* Convenience functions for abstracting away the differences between
4246 MIPS16 and non-MIPS16 relocations. */
4247
4248 static inline bfd_boolean
4249 mips16_reloc_p (bfd_reloc_code_real_type reloc)
4250 {
4251 switch (reloc)
4252 {
4253 case BFD_RELOC_MIPS16_JMP:
4254 case BFD_RELOC_MIPS16_GPREL:
4255 case BFD_RELOC_MIPS16_GOT16:
4256 case BFD_RELOC_MIPS16_CALL16:
4257 case BFD_RELOC_MIPS16_HI16_S:
4258 case BFD_RELOC_MIPS16_HI16:
4259 case BFD_RELOC_MIPS16_LO16:
4260 case BFD_RELOC_MIPS16_16_PCREL_S1:
4261 return TRUE;
4262
4263 default:
4264 return FALSE;
4265 }
4266 }
4267
4268 static inline bfd_boolean
4269 micromips_reloc_p (bfd_reloc_code_real_type reloc)
4270 {
4271 switch (reloc)
4272 {
4273 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4274 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4275 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4276 case BFD_RELOC_MICROMIPS_GPREL16:
4277 case BFD_RELOC_MICROMIPS_JMP:
4278 case BFD_RELOC_MICROMIPS_HI16:
4279 case BFD_RELOC_MICROMIPS_HI16_S:
4280 case BFD_RELOC_MICROMIPS_LO16:
4281 case BFD_RELOC_MICROMIPS_LITERAL:
4282 case BFD_RELOC_MICROMIPS_GOT16:
4283 case BFD_RELOC_MICROMIPS_CALL16:
4284 case BFD_RELOC_MICROMIPS_GOT_HI16:
4285 case BFD_RELOC_MICROMIPS_GOT_LO16:
4286 case BFD_RELOC_MICROMIPS_CALL_HI16:
4287 case BFD_RELOC_MICROMIPS_CALL_LO16:
4288 case BFD_RELOC_MICROMIPS_SUB:
4289 case BFD_RELOC_MICROMIPS_GOT_PAGE:
4290 case BFD_RELOC_MICROMIPS_GOT_OFST:
4291 case BFD_RELOC_MICROMIPS_GOT_DISP:
4292 case BFD_RELOC_MICROMIPS_HIGHEST:
4293 case BFD_RELOC_MICROMIPS_HIGHER:
4294 case BFD_RELOC_MICROMIPS_SCN_DISP:
4295 case BFD_RELOC_MICROMIPS_JALR:
4296 return TRUE;
4297
4298 default:
4299 return FALSE;
4300 }
4301 }
4302
4303 static inline bfd_boolean
4304 jmp_reloc_p (bfd_reloc_code_real_type reloc)
4305 {
4306 return reloc == BFD_RELOC_MIPS_JMP || reloc == BFD_RELOC_MICROMIPS_JMP;
4307 }
4308
4309 static inline bfd_boolean
4310 b_reloc_p (bfd_reloc_code_real_type reloc)
4311 {
4312 return (reloc == BFD_RELOC_MIPS_26_PCREL_S2
4313 || reloc == BFD_RELOC_MIPS_21_PCREL_S2
4314 || reloc == BFD_RELOC_16_PCREL_S2
4315 || reloc == BFD_RELOC_MIPS16_16_PCREL_S1
4316 || reloc == BFD_RELOC_MICROMIPS_16_PCREL_S1
4317 || reloc == BFD_RELOC_MICROMIPS_10_PCREL_S1
4318 || reloc == BFD_RELOC_MICROMIPS_7_PCREL_S1);
4319 }
4320
4321 static inline bfd_boolean
4322 got16_reloc_p (bfd_reloc_code_real_type reloc)
4323 {
4324 return (reloc == BFD_RELOC_MIPS_GOT16 || reloc == BFD_RELOC_MIPS16_GOT16
4325 || reloc == BFD_RELOC_MICROMIPS_GOT16);
4326 }
4327
4328 static inline bfd_boolean
4329 hi16_reloc_p (bfd_reloc_code_real_type reloc)
4330 {
4331 return (reloc == BFD_RELOC_HI16_S || reloc == BFD_RELOC_MIPS16_HI16_S
4332 || reloc == BFD_RELOC_MICROMIPS_HI16_S);
4333 }
4334
4335 static inline bfd_boolean
4336 lo16_reloc_p (bfd_reloc_code_real_type reloc)
4337 {
4338 return (reloc == BFD_RELOC_LO16 || reloc == BFD_RELOC_MIPS16_LO16
4339 || reloc == BFD_RELOC_MICROMIPS_LO16);
4340 }
4341
4342 static inline bfd_boolean
4343 jalr_reloc_p (bfd_reloc_code_real_type reloc)
4344 {
4345 return reloc == BFD_RELOC_MIPS_JALR || reloc == BFD_RELOC_MICROMIPS_JALR;
4346 }
4347
4348 static inline bfd_boolean
4349 gprel16_reloc_p (bfd_reloc_code_real_type reloc)
4350 {
4351 return (reloc == BFD_RELOC_GPREL16 || reloc == BFD_RELOC_MIPS16_GPREL
4352 || reloc == BFD_RELOC_MICROMIPS_GPREL16);
4353 }
4354
4355 /* Return true if RELOC is a PC-relative relocation that does not have
4356 full address range. */
4357
4358 static inline bfd_boolean
4359 limited_pcrel_reloc_p (bfd_reloc_code_real_type reloc)
4360 {
4361 switch (reloc)
4362 {
4363 case BFD_RELOC_16_PCREL_S2:
4364 case BFD_RELOC_MIPS16_16_PCREL_S1:
4365 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
4366 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
4367 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
4368 case BFD_RELOC_MIPS_21_PCREL_S2:
4369 case BFD_RELOC_MIPS_26_PCREL_S2:
4370 case BFD_RELOC_MIPS_18_PCREL_S3:
4371 case BFD_RELOC_MIPS_19_PCREL_S2:
4372 return TRUE;
4373
4374 case BFD_RELOC_32_PCREL:
4375 case BFD_RELOC_HI16_S_PCREL:
4376 case BFD_RELOC_LO16_PCREL:
4377 return HAVE_64BIT_ADDRESSES;
4378
4379 default:
4380 return FALSE;
4381 }
4382 }
4383
4384 /* Return true if the given relocation might need a matching %lo().
4385 This is only "might" because SVR4 R_MIPS_GOT16 relocations only
4386 need a matching %lo() when applied to local symbols. */
4387
4388 static inline bfd_boolean
4389 reloc_needs_lo_p (bfd_reloc_code_real_type reloc)
4390 {
4391 return (HAVE_IN_PLACE_ADDENDS
4392 && (hi16_reloc_p (reloc)
4393 /* VxWorks R_MIPS_GOT16 relocs never need a matching %lo();
4394 all GOT16 relocations evaluate to "G". */
4395 || (got16_reloc_p (reloc) && mips_pic != VXWORKS_PIC)));
4396 }
4397
4398 /* Return the type of %lo() reloc needed by RELOC, given that
4399 reloc_needs_lo_p. */
4400
4401 static inline bfd_reloc_code_real_type
4402 matching_lo_reloc (bfd_reloc_code_real_type reloc)
4403 {
4404 return (mips16_reloc_p (reloc) ? BFD_RELOC_MIPS16_LO16
4405 : (micromips_reloc_p (reloc) ? BFD_RELOC_MICROMIPS_LO16
4406 : BFD_RELOC_LO16));
4407 }
4408
4409 /* Return true if the given fixup is followed by a matching R_MIPS_LO16
4410 relocation. */
4411
4412 static inline bfd_boolean
4413 fixup_has_matching_lo_p (fixS *fixp)
4414 {
4415 return (fixp->fx_next != NULL
4416 && fixp->fx_next->fx_r_type == matching_lo_reloc (fixp->fx_r_type)
4417 && fixp->fx_addsy == fixp->fx_next->fx_addsy
4418 && fixp->fx_offset == fixp->fx_next->fx_offset);
4419 }
4420
4421 /* Move all labels in LABELS to the current insertion point. TEXT_P
4422 says whether the labels refer to text or data. */
4423
4424 static void
4425 mips_move_labels (struct insn_label_list *labels, bfd_boolean text_p)
4426 {
4427 struct insn_label_list *l;
4428 valueT val;
4429
4430 for (l = labels; l != NULL; l = l->next)
4431 {
4432 gas_assert (S_GET_SEGMENT (l->label) == now_seg);
4433 symbol_set_frag (l->label, frag_now);
4434 val = (valueT) frag_now_fix ();
4435 /* MIPS16/microMIPS text labels are stored as odd. */
4436 if (text_p && HAVE_CODE_COMPRESSION)
4437 ++val;
4438 S_SET_VALUE (l->label, val);
4439 }
4440 }
4441
4442 /* Move all labels in insn_labels to the current insertion point
4443 and treat them as text labels. */
4444
4445 static void
4446 mips_move_text_labels (void)
4447 {
4448 mips_move_labels (seg_info (now_seg)->label_list, TRUE);
4449 }
4450
4451 /* Duplicate the test for LINK_ONCE sections as in `adjust_reloc_syms'. */
4452
4453 static bfd_boolean
4454 s_is_linkonce (symbolS *sym, segT from_seg)
4455 {
4456 bfd_boolean linkonce = FALSE;
4457 segT symseg = S_GET_SEGMENT (sym);
4458
4459 if (symseg != from_seg && !S_IS_LOCAL (sym))
4460 {
4461 if ((bfd_get_section_flags (stdoutput, symseg) & SEC_LINK_ONCE))
4462 linkonce = TRUE;
4463 /* The GNU toolchain uses an extension for ELF: a section
4464 beginning with the magic string .gnu.linkonce is a
4465 linkonce section. */
4466 if (strncmp (segment_name (symseg), ".gnu.linkonce",
4467 sizeof ".gnu.linkonce" - 1) == 0)
4468 linkonce = TRUE;
4469 }
4470 return linkonce;
4471 }
4472
4473 /* Mark MIPS16 or microMIPS instruction label LABEL. This permits the
4474 linker to handle them specially, such as generating jalx instructions
4475 when needed. We also make them odd for the duration of the assembly,
4476 in order to generate the right sort of code. We will make them even
4477 in the adjust_symtab routine, while leaving them marked. This is
4478 convenient for the debugger and the disassembler. The linker knows
4479 to make them odd again. */
4480
4481 static void
4482 mips_compressed_mark_label (symbolS *label)
4483 {
4484 gas_assert (HAVE_CODE_COMPRESSION);
4485
4486 if (mips_opts.mips16)
4487 S_SET_OTHER (label, ELF_ST_SET_MIPS16 (S_GET_OTHER (label)));
4488 else
4489 S_SET_OTHER (label, ELF_ST_SET_MICROMIPS (S_GET_OTHER (label)));
4490 if ((S_GET_VALUE (label) & 1) == 0
4491 /* Don't adjust the address if the label is global or weak, or
4492 in a link-once section, since we'll be emitting symbol reloc
4493 references to it which will be patched up by the linker, and
4494 the final value of the symbol may or may not be MIPS16/microMIPS. */
4495 && !S_IS_WEAK (label)
4496 && !S_IS_EXTERNAL (label)
4497 && !s_is_linkonce (label, now_seg))
4498 S_SET_VALUE (label, S_GET_VALUE (label) | 1);
4499 }
4500
4501 /* Mark preceding MIPS16 or microMIPS instruction labels. */
4502
4503 static void
4504 mips_compressed_mark_labels (void)
4505 {
4506 struct insn_label_list *l;
4507
4508 for (l = seg_info (now_seg)->label_list; l != NULL; l = l->next)
4509 mips_compressed_mark_label (l->label);
4510 }
4511
4512 /* End the current frag. Make it a variant frag and record the
4513 relaxation info. */
4514
4515 static void
4516 relax_close_frag (void)
4517 {
4518 mips_macro_warning.first_frag = frag_now;
4519 frag_var (rs_machine_dependent, 0, 0,
4520 RELAX_ENCODE (mips_relax.sizes[0], mips_relax.sizes[1],
4521 mips_pic != NO_PIC),
4522 mips_relax.symbol, 0, (char *) mips_relax.first_fixup);
4523
4524 memset (&mips_relax.sizes, 0, sizeof (mips_relax.sizes));
4525 mips_relax.first_fixup = 0;
4526 }
4527
4528 /* Start a new relaxation sequence whose expansion depends on SYMBOL.
4529 See the comment above RELAX_ENCODE for more details. */
4530
4531 static void
4532 relax_start (symbolS *symbol)
4533 {
4534 gas_assert (mips_relax.sequence == 0);
4535 mips_relax.sequence = 1;
4536 mips_relax.symbol = symbol;
4537 }
4538
4539 /* Start generating the second version of a relaxable sequence.
4540 See the comment above RELAX_ENCODE for more details. */
4541
4542 static void
4543 relax_switch (void)
4544 {
4545 gas_assert (mips_relax.sequence == 1);
4546 mips_relax.sequence = 2;
4547 }
4548
4549 /* End the current relaxable sequence. */
4550
4551 static void
4552 relax_end (void)
4553 {
4554 gas_assert (mips_relax.sequence == 2);
4555 relax_close_frag ();
4556 mips_relax.sequence = 0;
4557 }
4558
4559 /* Return true if IP is a delayed branch or jump. */
4560
4561 static inline bfd_boolean
4562 delayed_branch_p (const struct mips_cl_insn *ip)
4563 {
4564 return (ip->insn_mo->pinfo & (INSN_UNCOND_BRANCH_DELAY
4565 | INSN_COND_BRANCH_DELAY
4566 | INSN_COND_BRANCH_LIKELY)) != 0;
4567 }
4568
4569 /* Return true if IP is a compact branch or jump. */
4570
4571 static inline bfd_boolean
4572 compact_branch_p (const struct mips_cl_insn *ip)
4573 {
4574 return (ip->insn_mo->pinfo2 & (INSN2_UNCOND_BRANCH
4575 | INSN2_COND_BRANCH)) != 0;
4576 }
4577
4578 /* Return true if IP is an unconditional branch or jump. */
4579
4580 static inline bfd_boolean
4581 uncond_branch_p (const struct mips_cl_insn *ip)
4582 {
4583 return ((ip->insn_mo->pinfo & INSN_UNCOND_BRANCH_DELAY) != 0
4584 || (ip->insn_mo->pinfo2 & INSN2_UNCOND_BRANCH) != 0);
4585 }
4586
4587 /* Return true if IP is a branch-likely instruction. */
4588
4589 static inline bfd_boolean
4590 branch_likely_p (const struct mips_cl_insn *ip)
4591 {
4592 return (ip->insn_mo->pinfo & INSN_COND_BRANCH_LIKELY) != 0;
4593 }
4594
4595 /* Return the type of nop that should be used to fill the delay slot
4596 of delayed branch IP. */
4597
4598 static struct mips_cl_insn *
4599 get_delay_slot_nop (const struct mips_cl_insn *ip)
4600 {
4601 if (mips_opts.micromips
4602 && (ip->insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
4603 return &micromips_nop32_insn;
4604 return NOP_INSN;
4605 }
4606
4607 /* Return a mask that has bit N set if OPCODE reads the register(s)
4608 in operand N. */
4609
4610 static unsigned int
4611 insn_read_mask (const struct mips_opcode *opcode)
4612 {
4613 return (opcode->pinfo & INSN_READ_ALL) >> INSN_READ_SHIFT;
4614 }
4615
4616 /* Return a mask that has bit N set if OPCODE writes to the register(s)
4617 in operand N. */
4618
4619 static unsigned int
4620 insn_write_mask (const struct mips_opcode *opcode)
4621 {
4622 return (opcode->pinfo & INSN_WRITE_ALL) >> INSN_WRITE_SHIFT;
4623 }
4624
4625 /* Return a mask of the registers specified by operand OPERAND of INSN.
4626 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4627 is set. */
4628
4629 static unsigned int
4630 operand_reg_mask (const struct mips_cl_insn *insn,
4631 const struct mips_operand *operand,
4632 unsigned int type_mask)
4633 {
4634 unsigned int uval, vsel;
4635
4636 switch (operand->type)
4637 {
4638 case OP_INT:
4639 case OP_MAPPED_INT:
4640 case OP_MSB:
4641 case OP_PCREL:
4642 case OP_PERF_REG:
4643 case OP_ADDIUSP_INT:
4644 case OP_ENTRY_EXIT_LIST:
4645 case OP_REPEAT_DEST_REG:
4646 case OP_REPEAT_PREV_REG:
4647 case OP_PC:
4648 case OP_VU0_SUFFIX:
4649 case OP_VU0_MATCH_SUFFIX:
4650 case OP_IMM_INDEX:
4651 abort ();
4652
4653 case OP_REG28:
4654 return 1 << 28;
4655
4656 case OP_REG:
4657 case OP_OPTIONAL_REG:
4658 {
4659 const struct mips_reg_operand *reg_op;
4660
4661 reg_op = (const struct mips_reg_operand *) operand;
4662 if (!(type_mask & (1 << reg_op->reg_type)))
4663 return 0;
4664 uval = insn_extract_operand (insn, operand);
4665 return 1 << mips_decode_reg_operand (reg_op, uval);
4666 }
4667
4668 case OP_REG_PAIR:
4669 {
4670 const struct mips_reg_pair_operand *pair_op;
4671
4672 pair_op = (const struct mips_reg_pair_operand *) operand;
4673 if (!(type_mask & (1 << pair_op->reg_type)))
4674 return 0;
4675 uval = insn_extract_operand (insn, operand);
4676 return (1 << pair_op->reg1_map[uval]) | (1 << pair_op->reg2_map[uval]);
4677 }
4678
4679 case OP_CLO_CLZ_DEST:
4680 if (!(type_mask & (1 << OP_REG_GP)))
4681 return 0;
4682 uval = insn_extract_operand (insn, operand);
4683 return (1 << (uval & 31)) | (1 << (uval >> 5));
4684
4685 case OP_SAME_RS_RT:
4686 if (!(type_mask & (1 << OP_REG_GP)))
4687 return 0;
4688 uval = insn_extract_operand (insn, operand);
4689 gas_assert ((uval & 31) == (uval >> 5));
4690 return 1 << (uval & 31);
4691
4692 case OP_CHECK_PREV:
4693 case OP_NON_ZERO_REG:
4694 if (!(type_mask & (1 << OP_REG_GP)))
4695 return 0;
4696 uval = insn_extract_operand (insn, operand);
4697 return 1 << (uval & 31);
4698
4699 case OP_LWM_SWM_LIST:
4700 abort ();
4701
4702 case OP_SAVE_RESTORE_LIST:
4703 abort ();
4704
4705 case OP_MDMX_IMM_REG:
4706 if (!(type_mask & (1 << OP_REG_VEC)))
4707 return 0;
4708 uval = insn_extract_operand (insn, operand);
4709 vsel = uval >> 5;
4710 if ((vsel & 0x18) == 0x18)
4711 return 0;
4712 return 1 << (uval & 31);
4713
4714 case OP_REG_INDEX:
4715 if (!(type_mask & (1 << OP_REG_GP)))
4716 return 0;
4717 return 1 << insn_extract_operand (insn, operand);
4718 }
4719 abort ();
4720 }
4721
4722 /* Return a mask of the registers specified by operands OPNO_MASK of INSN,
4723 where bit N of OPNO_MASK is set if operand N should be included.
4724 Ignore registers of type OP_REG_<t> unless bit OP_REG_<t> of TYPE_MASK
4725 is set. */
4726
4727 static unsigned int
4728 insn_reg_mask (const struct mips_cl_insn *insn,
4729 unsigned int type_mask, unsigned int opno_mask)
4730 {
4731 unsigned int opno, reg_mask;
4732
4733 opno = 0;
4734 reg_mask = 0;
4735 while (opno_mask != 0)
4736 {
4737 if (opno_mask & 1)
4738 reg_mask |= operand_reg_mask (insn, insn_opno (insn, opno), type_mask);
4739 opno_mask >>= 1;
4740 opno += 1;
4741 }
4742 return reg_mask;
4743 }
4744
4745 /* Return the mask of core registers that IP reads. */
4746
4747 static unsigned int
4748 gpr_read_mask (const struct mips_cl_insn *ip)
4749 {
4750 unsigned long pinfo, pinfo2;
4751 unsigned int mask;
4752
4753 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_read_mask (ip->insn_mo));
4754 pinfo = ip->insn_mo->pinfo;
4755 pinfo2 = ip->insn_mo->pinfo2;
4756 if (pinfo & INSN_UDI)
4757 {
4758 /* UDI instructions have traditionally been assumed to read RS
4759 and RT. */
4760 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RT, *ip);
4761 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RS, *ip);
4762 }
4763 if (pinfo & INSN_READ_GPR_24)
4764 mask |= 1 << 24;
4765 if (pinfo2 & INSN2_READ_GPR_16)
4766 mask |= 1 << 16;
4767 if (pinfo2 & INSN2_READ_SP)
4768 mask |= 1 << SP;
4769 if (pinfo2 & INSN2_READ_GPR_31)
4770 mask |= 1 << 31;
4771 /* Don't include register 0. */
4772 return mask & ~1;
4773 }
4774
4775 /* Return the mask of core registers that IP writes. */
4776
4777 static unsigned int
4778 gpr_write_mask (const struct mips_cl_insn *ip)
4779 {
4780 unsigned long pinfo, pinfo2;
4781 unsigned int mask;
4782
4783 mask = insn_reg_mask (ip, 1 << OP_REG_GP, insn_write_mask (ip->insn_mo));
4784 pinfo = ip->insn_mo->pinfo;
4785 pinfo2 = ip->insn_mo->pinfo2;
4786 if (pinfo & INSN_WRITE_GPR_24)
4787 mask |= 1 << 24;
4788 if (pinfo & INSN_WRITE_GPR_31)
4789 mask |= 1 << 31;
4790 if (pinfo & INSN_UDI)
4791 /* UDI instructions have traditionally been assumed to write to RD. */
4792 mask |= 1 << EXTRACT_OPERAND (mips_opts.micromips, RD, *ip);
4793 if (pinfo2 & INSN2_WRITE_SP)
4794 mask |= 1 << SP;
4795 /* Don't include register 0. */
4796 return mask & ~1;
4797 }
4798
4799 /* Return the mask of floating-point registers that IP reads. */
4800
4801 static unsigned int
4802 fpr_read_mask (const struct mips_cl_insn *ip)
4803 {
4804 unsigned long pinfo;
4805 unsigned int mask;
4806
4807 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4808 | (1 << OP_REG_MSA)),
4809 insn_read_mask (ip->insn_mo));
4810 pinfo = ip->insn_mo->pinfo;
4811 /* Conservatively treat all operands to an FP_D instruction are doubles.
4812 (This is overly pessimistic for things like cvt.d.s.) */
4813 if (FPR_SIZE != 64 && (pinfo & FP_D))
4814 mask |= mask << 1;
4815 return mask;
4816 }
4817
4818 /* Return the mask of floating-point registers that IP writes. */
4819
4820 static unsigned int
4821 fpr_write_mask (const struct mips_cl_insn *ip)
4822 {
4823 unsigned long pinfo;
4824 unsigned int mask;
4825
4826 mask = insn_reg_mask (ip, ((1 << OP_REG_FP) | (1 << OP_REG_VEC)
4827 | (1 << OP_REG_MSA)),
4828 insn_write_mask (ip->insn_mo));
4829 pinfo = ip->insn_mo->pinfo;
4830 /* Conservatively treat all operands to an FP_D instruction are doubles.
4831 (This is overly pessimistic for things like cvt.s.d.) */
4832 if (FPR_SIZE != 64 && (pinfo & FP_D))
4833 mask |= mask << 1;
4834 return mask;
4835 }
4836
4837 /* Operand OPNUM of INSN is an odd-numbered floating-point register.
4838 Check whether that is allowed. */
4839
4840 static bfd_boolean
4841 mips_oddfpreg_ok (const struct mips_opcode *insn, int opnum)
4842 {
4843 const char *s = insn->name;
4844 bfd_boolean oddspreg = (ISA_HAS_ODD_SINGLE_FPR (mips_opts.isa, mips_opts.arch)
4845 || FPR_SIZE == 64)
4846 && mips_opts.oddspreg;
4847
4848 if (insn->pinfo == INSN_MACRO)
4849 /* Let a macro pass, we'll catch it later when it is expanded. */
4850 return TRUE;
4851
4852 /* Single-precision coprocessor loads and moves are OK for 32-bit registers,
4853 otherwise it depends on oddspreg. */
4854 if ((insn->pinfo & FP_S)
4855 && (insn->pinfo & (INSN_LOAD_MEMORY | INSN_STORE_MEMORY
4856 | INSN_LOAD_COPROC | INSN_COPROC_MOVE)))
4857 return FPR_SIZE == 32 || oddspreg;
4858
4859 /* Allow odd registers for single-precision ops and double-precision if the
4860 floating-point registers are 64-bit wide. */
4861 switch (insn->pinfo & (FP_S | FP_D))
4862 {
4863 case FP_S:
4864 case 0:
4865 return oddspreg;
4866 case FP_D:
4867 return FPR_SIZE == 64;
4868 default:
4869 break;
4870 }
4871
4872 /* Cvt.w.x and cvt.x.w allow an odd register for a 'w' or 's' operand. */
4873 s = strchr (insn->name, '.');
4874 if (s != NULL && opnum == 2)
4875 s = strchr (s + 1, '.');
4876 if (s != NULL && (s[1] == 'w' || s[1] == 's'))
4877 return oddspreg;
4878
4879 return FPR_SIZE == 64;
4880 }
4881
4882 /* Information about an instruction argument that we're trying to match. */
4883 struct mips_arg_info
4884 {
4885 /* The instruction so far. */
4886 struct mips_cl_insn *insn;
4887
4888 /* The first unconsumed operand token. */
4889 struct mips_operand_token *token;
4890
4891 /* The 1-based operand number, in terms of insn->insn_mo->args. */
4892 int opnum;
4893
4894 /* The 1-based argument number, for error reporting. This does not
4895 count elided optional registers, etc.. */
4896 int argnum;
4897
4898 /* The last OP_REG operand seen, or ILLEGAL_REG if none. */
4899 unsigned int last_regno;
4900
4901 /* If the first operand was an OP_REG, this is the register that it
4902 specified, otherwise it is ILLEGAL_REG. */
4903 unsigned int dest_regno;
4904
4905 /* The value of the last OP_INT operand. Only used for OP_MSB,
4906 where it gives the lsb position. */
4907 unsigned int last_op_int;
4908
4909 /* If true, match routines should assume that no later instruction
4910 alternative matches and should therefore be as accommodating as
4911 possible. Match routines should not report errors if something
4912 is only invalid for !LAX_MATCH. */
4913 bfd_boolean lax_match;
4914
4915 /* True if a reference to the current AT register was seen. */
4916 bfd_boolean seen_at;
4917 };
4918
4919 /* Record that the argument is out of range. */
4920
4921 static void
4922 match_out_of_range (struct mips_arg_info *arg)
4923 {
4924 set_insn_error_i (arg->argnum, _("operand %d out of range"), arg->argnum);
4925 }
4926
4927 /* Record that the argument isn't constant but needs to be. */
4928
4929 static void
4930 match_not_constant (struct mips_arg_info *arg)
4931 {
4932 set_insn_error_i (arg->argnum, _("operand %d must be constant"),
4933 arg->argnum);
4934 }
4935
4936 /* Try to match an OT_CHAR token for character CH. Consume the token
4937 and return true on success, otherwise return false. */
4938
4939 static bfd_boolean
4940 match_char (struct mips_arg_info *arg, char ch)
4941 {
4942 if (arg->token->type == OT_CHAR && arg->token->u.ch == ch)
4943 {
4944 ++arg->token;
4945 if (ch == ',')
4946 arg->argnum += 1;
4947 return TRUE;
4948 }
4949 return FALSE;
4950 }
4951
4952 /* Try to get an expression from the next tokens in ARG. Consume the
4953 tokens and return true on success, storing the expression value in
4954 VALUE and relocation types in R. */
4955
4956 static bfd_boolean
4957 match_expression (struct mips_arg_info *arg, expressionS *value,
4958 bfd_reloc_code_real_type *r)
4959 {
4960 /* If the next token is a '(' that was parsed as being part of a base
4961 expression, assume we have an elided offset. The later match will fail
4962 if this turns out to be wrong. */
4963 if (arg->token->type == OT_CHAR && arg->token->u.ch == '(')
4964 {
4965 value->X_op = O_constant;
4966 value->X_add_number = 0;
4967 r[0] = r[1] = r[2] = BFD_RELOC_UNUSED;
4968 return TRUE;
4969 }
4970
4971 /* Reject register-based expressions such as "0+$2" and "(($2))".
4972 For plain registers the default error seems more appropriate. */
4973 if (arg->token->type == OT_INTEGER
4974 && arg->token->u.integer.value.X_op == O_register)
4975 {
4976 set_insn_error (arg->argnum, _("register value used as expression"));
4977 return FALSE;
4978 }
4979
4980 if (arg->token->type == OT_INTEGER)
4981 {
4982 *value = arg->token->u.integer.value;
4983 memcpy (r, arg->token->u.integer.relocs, 3 * sizeof (*r));
4984 ++arg->token;
4985 return TRUE;
4986 }
4987
4988 set_insn_error_i
4989 (arg->argnum, _("operand %d must be an immediate expression"),
4990 arg->argnum);
4991 return FALSE;
4992 }
4993
4994 /* Try to get a constant expression from the next tokens in ARG. Consume
4995 the tokens and return true on success, storing the constant value
4996 in *VALUE. */
4997
4998 static bfd_boolean
4999 match_const_int (struct mips_arg_info *arg, offsetT *value)
5000 {
5001 expressionS ex;
5002 bfd_reloc_code_real_type r[3];
5003
5004 if (!match_expression (arg, &ex, r))
5005 return FALSE;
5006
5007 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_constant)
5008 *value = ex.X_add_number;
5009 else
5010 {
5011 if (r[0] == BFD_RELOC_UNUSED && ex.X_op == O_big)
5012 match_out_of_range (arg);
5013 else
5014 match_not_constant (arg);
5015 return FALSE;
5016 }
5017 return TRUE;
5018 }
5019
5020 /* Return the RTYPE_* flags for a register operand of type TYPE that
5021 appears in instruction OPCODE. */
5022
5023 static unsigned int
5024 convert_reg_type (const struct mips_opcode *opcode,
5025 enum mips_reg_operand_type type)
5026 {
5027 switch (type)
5028 {
5029 case OP_REG_GP:
5030 return RTYPE_NUM | RTYPE_GP;
5031
5032 case OP_REG_FP:
5033 /* Allow vector register names for MDMX if the instruction is a 64-bit
5034 FPR load, store or move (including moves to and from GPRs). */
5035 if ((mips_opts.ase & ASE_MDMX)
5036 && (opcode->pinfo & FP_D)
5037 && (opcode->pinfo & (INSN_COPROC_MOVE
5038 | INSN_COPROC_MEMORY_DELAY
5039 | INSN_LOAD_COPROC
5040 | INSN_LOAD_MEMORY
5041 | INSN_STORE_MEMORY)))
5042 return RTYPE_FPU | RTYPE_VEC;
5043 return RTYPE_FPU;
5044
5045 case OP_REG_CCC:
5046 if (opcode->pinfo & (FP_D | FP_S))
5047 return RTYPE_CCC | RTYPE_FCC;
5048 return RTYPE_CCC;
5049
5050 case OP_REG_VEC:
5051 if (opcode->membership & INSN_5400)
5052 return RTYPE_FPU;
5053 return RTYPE_FPU | RTYPE_VEC;
5054
5055 case OP_REG_ACC:
5056 return RTYPE_ACC;
5057
5058 case OP_REG_COPRO:
5059 if (opcode->name[strlen (opcode->name) - 1] == '0')
5060 return RTYPE_NUM | RTYPE_CP0;
5061 return RTYPE_NUM;
5062
5063 case OP_REG_HW:
5064 return RTYPE_NUM;
5065
5066 case OP_REG_VI:
5067 return RTYPE_NUM | RTYPE_VI;
5068
5069 case OP_REG_VF:
5070 return RTYPE_NUM | RTYPE_VF;
5071
5072 case OP_REG_R5900_I:
5073 return RTYPE_R5900_I;
5074
5075 case OP_REG_R5900_Q:
5076 return RTYPE_R5900_Q;
5077
5078 case OP_REG_R5900_R:
5079 return RTYPE_R5900_R;
5080
5081 case OP_REG_R5900_ACC:
5082 return RTYPE_R5900_ACC;
5083
5084 case OP_REG_MSA:
5085 return RTYPE_MSA;
5086
5087 case OP_REG_MSA_CTRL:
5088 return RTYPE_NUM;
5089 }
5090 abort ();
5091 }
5092
5093 /* ARG is register REGNO, of type TYPE. Warn about any dubious registers. */
5094
5095 static void
5096 check_regno (struct mips_arg_info *arg,
5097 enum mips_reg_operand_type type, unsigned int regno)
5098 {
5099 if (AT && type == OP_REG_GP && regno == AT)
5100 arg->seen_at = TRUE;
5101
5102 if (type == OP_REG_FP
5103 && (regno & 1) != 0
5104 && !mips_oddfpreg_ok (arg->insn->insn_mo, arg->opnum))
5105 {
5106 /* This was a warning prior to introducing O32 FPXX and FP64 support
5107 so maintain a warning for FP32 but raise an error for the new
5108 cases. */
5109 if (FPR_SIZE == 32)
5110 as_warn (_("float register should be even, was %d"), regno);
5111 else
5112 as_bad (_("float register should be even, was %d"), regno);
5113 }
5114
5115 if (type == OP_REG_CCC)
5116 {
5117 const char *name;
5118 size_t length;
5119
5120 name = arg->insn->insn_mo->name;
5121 length = strlen (name);
5122 if ((regno & 1) != 0
5123 && ((length >= 3 && strcmp (name + length - 3, ".ps") == 0)
5124 || (length >= 5 && strncmp (name + length - 5, "any2", 4) == 0)))
5125 as_warn (_("condition code register should be even for %s, was %d"),
5126 name, regno);
5127
5128 if ((regno & 3) != 0
5129 && (length >= 5 && strncmp (name + length - 5, "any4", 4) == 0))
5130 as_warn (_("condition code register should be 0 or 4 for %s, was %d"),
5131 name, regno);
5132 }
5133 }
5134
5135 /* ARG is a register with symbol value SYMVAL. Try to interpret it as
5136 a register of type TYPE. Return true on success, storing the register
5137 number in *REGNO and warning about any dubious uses. */
5138
5139 static bfd_boolean
5140 match_regno (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5141 unsigned int symval, unsigned int *regno)
5142 {
5143 if (type == OP_REG_VEC)
5144 symval = mips_prefer_vec_regno (symval);
5145 if (!(symval & convert_reg_type (arg->insn->insn_mo, type)))
5146 return FALSE;
5147
5148 *regno = symval & RNUM_MASK;
5149 check_regno (arg, type, *regno);
5150 return TRUE;
5151 }
5152
5153 /* Try to interpret the next token in ARG as a register of type TYPE.
5154 Consume the token and return true on success, storing the register
5155 number in *REGNO. Return false on failure. */
5156
5157 static bfd_boolean
5158 match_reg (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5159 unsigned int *regno)
5160 {
5161 if (arg->token->type == OT_REG
5162 && match_regno (arg, type, arg->token->u.regno, regno))
5163 {
5164 ++arg->token;
5165 return TRUE;
5166 }
5167 return FALSE;
5168 }
5169
5170 /* Try to interpret the next token in ARG as a range of registers of type TYPE.
5171 Consume the token and return true on success, storing the register numbers
5172 in *REGNO1 and *REGNO2. Return false on failure. */
5173
5174 static bfd_boolean
5175 match_reg_range (struct mips_arg_info *arg, enum mips_reg_operand_type type,
5176 unsigned int *regno1, unsigned int *regno2)
5177 {
5178 if (match_reg (arg, type, regno1))
5179 {
5180 *regno2 = *regno1;
5181 return TRUE;
5182 }
5183 if (arg->token->type == OT_REG_RANGE
5184 && match_regno (arg, type, arg->token->u.reg_range.regno1, regno1)
5185 && match_regno (arg, type, arg->token->u.reg_range.regno2, regno2)
5186 && *regno1 <= *regno2)
5187 {
5188 ++arg->token;
5189 return TRUE;
5190 }
5191 return FALSE;
5192 }
5193
5194 /* OP_INT matcher. */
5195
5196 static bfd_boolean
5197 match_int_operand (struct mips_arg_info *arg,
5198 const struct mips_operand *operand_base)
5199 {
5200 const struct mips_int_operand *operand;
5201 unsigned int uval;
5202 int min_val, max_val, factor;
5203 offsetT sval;
5204
5205 operand = (const struct mips_int_operand *) operand_base;
5206 factor = 1 << operand->shift;
5207 min_val = mips_int_operand_min (operand);
5208 max_val = mips_int_operand_max (operand);
5209
5210 if (operand_base->lsb == 0
5211 && operand_base->size == 16
5212 && operand->shift == 0
5213 && operand->bias == 0
5214 && (operand->max_val == 32767 || operand->max_val == 65535))
5215 {
5216 /* The operand can be relocated. */
5217 if (!match_expression (arg, &offset_expr, offset_reloc))
5218 return FALSE;
5219
5220 if (offset_expr.X_op == O_big)
5221 {
5222 match_out_of_range (arg);
5223 return FALSE;
5224 }
5225
5226 if (offset_reloc[0] != BFD_RELOC_UNUSED)
5227 /* Relocation operators were used. Accept the argument and
5228 leave the relocation value in offset_expr and offset_relocs
5229 for the caller to process. */
5230 return TRUE;
5231
5232 if (offset_expr.X_op != O_constant)
5233 {
5234 /* Accept non-constant operands if no later alternative matches,
5235 leaving it for the caller to process. */
5236 if (!arg->lax_match)
5237 {
5238 match_not_constant (arg);
5239 return FALSE;
5240 }
5241 offset_reloc[0] = BFD_RELOC_LO16;
5242 return TRUE;
5243 }
5244
5245 /* Clear the global state; we're going to install the operand
5246 ourselves. */
5247 sval = offset_expr.X_add_number;
5248 offset_expr.X_op = O_absent;
5249
5250 /* For compatibility with older assemblers, we accept
5251 0x8000-0xffff as signed 16-bit numbers when only
5252 signed numbers are allowed. */
5253 if (sval > max_val)
5254 {
5255 max_val = ((1 << operand_base->size) - 1) << operand->shift;
5256 if (!arg->lax_match && sval <= max_val)
5257 {
5258 match_out_of_range (arg);
5259 return FALSE;
5260 }
5261 }
5262 }
5263 else
5264 {
5265 if (!match_const_int (arg, &sval))
5266 return FALSE;
5267 }
5268
5269 arg->last_op_int = sval;
5270
5271 if (sval < min_val || sval > max_val || sval % factor)
5272 {
5273 match_out_of_range (arg);
5274 return FALSE;
5275 }
5276
5277 uval = (unsigned int) sval >> operand->shift;
5278 uval -= operand->bias;
5279
5280 /* Handle -mfix-cn63xxp1. */
5281 if (arg->opnum == 1
5282 && mips_fix_cn63xxp1
5283 && !mips_opts.micromips
5284 && strcmp ("pref", arg->insn->insn_mo->name) == 0)
5285 switch (uval)
5286 {
5287 case 5:
5288 case 25:
5289 case 26:
5290 case 27:
5291 case 28:
5292 case 29:
5293 case 30:
5294 case 31:
5295 /* These are ok. */
5296 break;
5297
5298 default:
5299 /* The rest must be changed to 28. */
5300 uval = 28;
5301 break;
5302 }
5303
5304 insn_insert_operand (arg->insn, operand_base, uval);
5305 return TRUE;
5306 }
5307
5308 /* OP_MAPPED_INT matcher. */
5309
5310 static bfd_boolean
5311 match_mapped_int_operand (struct mips_arg_info *arg,
5312 const struct mips_operand *operand_base)
5313 {
5314 const struct mips_mapped_int_operand *operand;
5315 unsigned int uval, num_vals;
5316 offsetT sval;
5317
5318 operand = (const struct mips_mapped_int_operand *) operand_base;
5319 if (!match_const_int (arg, &sval))
5320 return FALSE;
5321
5322 num_vals = 1 << operand_base->size;
5323 for (uval = 0; uval < num_vals; uval++)
5324 if (operand->int_map[uval] == sval)
5325 break;
5326 if (uval == num_vals)
5327 {
5328 match_out_of_range (arg);
5329 return FALSE;
5330 }
5331
5332 insn_insert_operand (arg->insn, operand_base, uval);
5333 return TRUE;
5334 }
5335
5336 /* OP_MSB matcher. */
5337
5338 static bfd_boolean
5339 match_msb_operand (struct mips_arg_info *arg,
5340 const struct mips_operand *operand_base)
5341 {
5342 const struct mips_msb_operand *operand;
5343 int min_val, max_val, max_high;
5344 offsetT size, sval, high;
5345
5346 operand = (const struct mips_msb_operand *) operand_base;
5347 min_val = operand->bias;
5348 max_val = min_val + (1 << operand_base->size) - 1;
5349 max_high = operand->opsize;
5350
5351 if (!match_const_int (arg, &size))
5352 return FALSE;
5353
5354 high = size + arg->last_op_int;
5355 sval = operand->add_lsb ? high : size;
5356
5357 if (size < 0 || high > max_high || sval < min_val || sval > max_val)
5358 {
5359 match_out_of_range (arg);
5360 return FALSE;
5361 }
5362 insn_insert_operand (arg->insn, operand_base, sval - min_val);
5363 return TRUE;
5364 }
5365
5366 /* OP_REG matcher. */
5367
5368 static bfd_boolean
5369 match_reg_operand (struct mips_arg_info *arg,
5370 const struct mips_operand *operand_base)
5371 {
5372 const struct mips_reg_operand *operand;
5373 unsigned int regno, uval, num_vals;
5374
5375 operand = (const struct mips_reg_operand *) operand_base;
5376 if (!match_reg (arg, operand->reg_type, &regno))
5377 return FALSE;
5378
5379 if (operand->reg_map)
5380 {
5381 num_vals = 1 << operand->root.size;
5382 for (uval = 0; uval < num_vals; uval++)
5383 if (operand->reg_map[uval] == regno)
5384 break;
5385 if (num_vals == uval)
5386 return FALSE;
5387 }
5388 else
5389 uval = regno;
5390
5391 arg->last_regno = regno;
5392 if (arg->opnum == 1)
5393 arg->dest_regno = regno;
5394 insn_insert_operand (arg->insn, operand_base, uval);
5395 return TRUE;
5396 }
5397
5398 /* OP_REG_PAIR matcher. */
5399
5400 static bfd_boolean
5401 match_reg_pair_operand (struct mips_arg_info *arg,
5402 const struct mips_operand *operand_base)
5403 {
5404 const struct mips_reg_pair_operand *operand;
5405 unsigned int regno1, regno2, uval, num_vals;
5406
5407 operand = (const struct mips_reg_pair_operand *) operand_base;
5408 if (!match_reg (arg, operand->reg_type, &regno1)
5409 || !match_char (arg, ',')
5410 || !match_reg (arg, operand->reg_type, &regno2))
5411 return FALSE;
5412
5413 num_vals = 1 << operand_base->size;
5414 for (uval = 0; uval < num_vals; uval++)
5415 if (operand->reg1_map[uval] == regno1 && operand->reg2_map[uval] == regno2)
5416 break;
5417 if (uval == num_vals)
5418 return FALSE;
5419
5420 insn_insert_operand (arg->insn, operand_base, uval);
5421 return TRUE;
5422 }
5423
5424 /* OP_PCREL matcher. The caller chooses the relocation type. */
5425
5426 static bfd_boolean
5427 match_pcrel_operand (struct mips_arg_info *arg)
5428 {
5429 bfd_reloc_code_real_type r[3];
5430
5431 return match_expression (arg, &offset_expr, r) && r[0] == BFD_RELOC_UNUSED;
5432 }
5433
5434 /* OP_PERF_REG matcher. */
5435
5436 static bfd_boolean
5437 match_perf_reg_operand (struct mips_arg_info *arg,
5438 const struct mips_operand *operand)
5439 {
5440 offsetT sval;
5441
5442 if (!match_const_int (arg, &sval))
5443 return FALSE;
5444
5445 if (sval != 0
5446 && (sval != 1
5447 || (mips_opts.arch == CPU_R5900
5448 && (strcmp (arg->insn->insn_mo->name, "mfps") == 0
5449 || strcmp (arg->insn->insn_mo->name, "mtps") == 0))))
5450 {
5451 set_insn_error (arg->argnum, _("invalid performance register"));
5452 return FALSE;
5453 }
5454
5455 insn_insert_operand (arg->insn, operand, sval);
5456 return TRUE;
5457 }
5458
5459 /* OP_ADDIUSP matcher. */
5460
5461 static bfd_boolean
5462 match_addiusp_operand (struct mips_arg_info *arg,
5463 const struct mips_operand *operand)
5464 {
5465 offsetT sval;
5466 unsigned int uval;
5467
5468 if (!match_const_int (arg, &sval))
5469 return FALSE;
5470
5471 if (sval % 4)
5472 {
5473 match_out_of_range (arg);
5474 return FALSE;
5475 }
5476
5477 sval /= 4;
5478 if (!(sval >= -258 && sval <= 257) || (sval >= -2 && sval <= 1))
5479 {
5480 match_out_of_range (arg);
5481 return FALSE;
5482 }
5483
5484 uval = (unsigned int) sval;
5485 uval = ((uval >> 1) & ~0xff) | (uval & 0xff);
5486 insn_insert_operand (arg->insn, operand, uval);
5487 return TRUE;
5488 }
5489
5490 /* OP_CLO_CLZ_DEST matcher. */
5491
5492 static bfd_boolean
5493 match_clo_clz_dest_operand (struct mips_arg_info *arg,
5494 const struct mips_operand *operand)
5495 {
5496 unsigned int regno;
5497
5498 if (!match_reg (arg, OP_REG_GP, &regno))
5499 return FALSE;
5500
5501 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5502 return TRUE;
5503 }
5504
5505 /* OP_CHECK_PREV matcher. */
5506
5507 static bfd_boolean
5508 match_check_prev_operand (struct mips_arg_info *arg,
5509 const struct mips_operand *operand_base)
5510 {
5511 const struct mips_check_prev_operand *operand;
5512 unsigned int regno;
5513
5514 operand = (const struct mips_check_prev_operand *) operand_base;
5515
5516 if (!match_reg (arg, OP_REG_GP, &regno))
5517 return FALSE;
5518
5519 if (!operand->zero_ok && regno == 0)
5520 return FALSE;
5521
5522 if ((operand->less_than_ok && regno < arg->last_regno)
5523 || (operand->greater_than_ok && regno > arg->last_regno)
5524 || (operand->equal_ok && regno == arg->last_regno))
5525 {
5526 arg->last_regno = regno;
5527 insn_insert_operand (arg->insn, operand_base, regno);
5528 return TRUE;
5529 }
5530
5531 return FALSE;
5532 }
5533
5534 /* OP_SAME_RS_RT matcher. */
5535
5536 static bfd_boolean
5537 match_same_rs_rt_operand (struct mips_arg_info *arg,
5538 const struct mips_operand *operand)
5539 {
5540 unsigned int regno;
5541
5542 if (!match_reg (arg, OP_REG_GP, &regno))
5543 return FALSE;
5544
5545 if (regno == 0)
5546 {
5547 set_insn_error (arg->argnum, _("the source register must not be $0"));
5548 return FALSE;
5549 }
5550
5551 arg->last_regno = regno;
5552
5553 insn_insert_operand (arg->insn, operand, regno | (regno << 5));
5554 return TRUE;
5555 }
5556
5557 /* OP_LWM_SWM_LIST matcher. */
5558
5559 static bfd_boolean
5560 match_lwm_swm_list_operand (struct mips_arg_info *arg,
5561 const struct mips_operand *operand)
5562 {
5563 unsigned int reglist, sregs, ra, regno1, regno2;
5564 struct mips_arg_info reset;
5565
5566 reglist = 0;
5567 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5568 return FALSE;
5569 do
5570 {
5571 if (regno2 == FP && regno1 >= S0 && regno1 <= S7)
5572 {
5573 reglist |= 1 << FP;
5574 regno2 = S7;
5575 }
5576 reglist |= ((1U << regno2 << 1) - 1) & -(1U << regno1);
5577 reset = *arg;
5578 }
5579 while (match_char (arg, ',')
5580 && match_reg_range (arg, OP_REG_GP, &regno1, &regno2));
5581 *arg = reset;
5582
5583 if (operand->size == 2)
5584 {
5585 /* The list must include both ra and s0-sN, for 0 <= N <= 3. E.g.:
5586
5587 s0, ra
5588 s0, s1, ra, s2, s3
5589 s0-s2, ra
5590
5591 and any permutations of these. */
5592 if ((reglist & 0xfff1ffff) != 0x80010000)
5593 return FALSE;
5594
5595 sregs = (reglist >> 17) & 7;
5596 ra = 0;
5597 }
5598 else
5599 {
5600 /* The list must include at least one of ra and s0-sN,
5601 for 0 <= N <= 8. (Note that there is a gap between s7 and s8,
5602 which are $23 and $30 respectively.) E.g.:
5603
5604 ra
5605 s0
5606 ra, s0, s1, s2
5607 s0-s8
5608 s0-s5, ra
5609
5610 and any permutations of these. */
5611 if ((reglist & 0x3f00ffff) != 0)
5612 return FALSE;
5613
5614 ra = (reglist >> 27) & 0x10;
5615 sregs = ((reglist >> 22) & 0x100) | ((reglist >> 16) & 0xff);
5616 }
5617 sregs += 1;
5618 if ((sregs & -sregs) != sregs)
5619 return FALSE;
5620
5621 insn_insert_operand (arg->insn, operand, (ffs (sregs) - 1) | ra);
5622 return TRUE;
5623 }
5624
5625 /* OP_ENTRY_EXIT_LIST matcher. */
5626
5627 static unsigned int
5628 match_entry_exit_operand (struct mips_arg_info *arg,
5629 const struct mips_operand *operand)
5630 {
5631 unsigned int mask;
5632 bfd_boolean is_exit;
5633
5634 /* The format is the same for both ENTRY and EXIT, but the constraints
5635 are different. */
5636 is_exit = strcmp (arg->insn->insn_mo->name, "exit") == 0;
5637 mask = (is_exit ? 7 << 3 : 0);
5638 do
5639 {
5640 unsigned int regno1, regno2;
5641 bfd_boolean is_freg;
5642
5643 if (match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5644 is_freg = FALSE;
5645 else if (match_reg_range (arg, OP_REG_FP, &regno1, &regno2))
5646 is_freg = TRUE;
5647 else
5648 return FALSE;
5649
5650 if (is_exit && is_freg && regno1 == 0 && regno2 < 2)
5651 {
5652 mask &= ~(7 << 3);
5653 mask |= (5 + regno2) << 3;
5654 }
5655 else if (!is_exit && regno1 == 4 && regno2 >= 4 && regno2 <= 7)
5656 mask |= (regno2 - 3) << 3;
5657 else if (regno1 == 16 && regno2 >= 16 && regno2 <= 17)
5658 mask |= (regno2 - 15) << 1;
5659 else if (regno1 == RA && regno2 == RA)
5660 mask |= 1;
5661 else
5662 return FALSE;
5663 }
5664 while (match_char (arg, ','));
5665
5666 insn_insert_operand (arg->insn, operand, mask);
5667 return TRUE;
5668 }
5669
5670 /* Encode regular MIPS SAVE/RESTORE instruction operands according to
5671 the argument register mask AMASK, the number of static registers
5672 saved NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5673 respectively, and the frame size FRAME_SIZE. */
5674
5675 static unsigned int
5676 mips_encode_save_restore (unsigned int amask, unsigned int nsreg,
5677 unsigned int ra, unsigned int s0, unsigned int s1,
5678 unsigned int frame_size)
5679 {
5680 return ((nsreg << 23) | ((frame_size & 0xf0) << 15) | (amask << 15)
5681 | (ra << 12) | (s0 << 11) | (s1 << 10) | ((frame_size & 0xf) << 6));
5682 }
5683
5684 /* Encode MIPS16 SAVE/RESTORE instruction operands according to the
5685 argument register mask AMASK, the number of static registers saved
5686 NSREG, the $ra, $s0 and $s1 register specifiers RA, S0 and S1
5687 respectively, and the frame size FRAME_SIZE. */
5688
5689 static unsigned int
5690 mips16_encode_save_restore (unsigned int amask, unsigned int nsreg,
5691 unsigned int ra, unsigned int s0, unsigned int s1,
5692 unsigned int frame_size)
5693 {
5694 unsigned int args;
5695
5696 args = (ra << 6) | (s0 << 5) | (s1 << 4) | (frame_size & 0xf);
5697 if (nsreg || amask || frame_size == 0 || frame_size > 16)
5698 args |= (MIPS16_EXTEND | (nsreg << 24) | (amask << 16)
5699 | ((frame_size & 0xf0) << 16));
5700 return args;
5701 }
5702
5703 /* OP_SAVE_RESTORE_LIST matcher. */
5704
5705 static bfd_boolean
5706 match_save_restore_list_operand (struct mips_arg_info *arg)
5707 {
5708 unsigned int opcode, args, statics, sregs;
5709 unsigned int num_frame_sizes, num_args, num_statics, num_sregs;
5710 unsigned int arg_mask, ra, s0, s1;
5711 offsetT frame_size;
5712
5713 opcode = arg->insn->insn_opcode;
5714 frame_size = 0;
5715 num_frame_sizes = 0;
5716 args = 0;
5717 statics = 0;
5718 sregs = 0;
5719 ra = 0;
5720 s0 = 0;
5721 s1 = 0;
5722 do
5723 {
5724 unsigned int regno1, regno2;
5725
5726 if (arg->token->type == OT_INTEGER)
5727 {
5728 /* Handle the frame size. */
5729 if (!match_const_int (arg, &frame_size))
5730 return FALSE;
5731 num_frame_sizes += 1;
5732 }
5733 else
5734 {
5735 if (!match_reg_range (arg, OP_REG_GP, &regno1, &regno2))
5736 return FALSE;
5737
5738 while (regno1 <= regno2)
5739 {
5740 if (regno1 >= 4 && regno1 <= 7)
5741 {
5742 if (num_frame_sizes == 0)
5743 /* args $a0-$a3 */
5744 args |= 1 << (regno1 - 4);
5745 else
5746 /* statics $a0-$a3 */
5747 statics |= 1 << (regno1 - 4);
5748 }
5749 else if (regno1 >= 16 && regno1 <= 23)
5750 /* $s0-$s7 */
5751 sregs |= 1 << (regno1 - 16);
5752 else if (regno1 == 30)
5753 /* $s8 */
5754 sregs |= 1 << 8;
5755 else if (regno1 == 31)
5756 /* Add $ra to insn. */
5757 ra = 1;
5758 else
5759 return FALSE;
5760 regno1 += 1;
5761 if (regno1 == 24)
5762 regno1 = 30;
5763 }
5764 }
5765 }
5766 while (match_char (arg, ','));
5767
5768 /* Encode args/statics combination. */
5769 if (args & statics)
5770 return FALSE;
5771 else if (args == 0xf)
5772 /* All $a0-$a3 are args. */
5773 arg_mask = MIPS_SVRS_ALL_ARGS;
5774 else if (statics == 0xf)
5775 /* All $a0-$a3 are statics. */
5776 arg_mask = MIPS_SVRS_ALL_STATICS;
5777 else
5778 {
5779 /* Count arg registers. */
5780 num_args = 0;
5781 while (args & 0x1)
5782 {
5783 args >>= 1;
5784 num_args += 1;
5785 }
5786 if (args != 0)
5787 return FALSE;
5788
5789 /* Count static registers. */
5790 num_statics = 0;
5791 while (statics & 0x8)
5792 {
5793 statics = (statics << 1) & 0xf;
5794 num_statics += 1;
5795 }
5796 if (statics != 0)
5797 return FALSE;
5798
5799 /* Encode args/statics. */
5800 arg_mask = (num_args << 2) | num_statics;
5801 }
5802
5803 /* Encode $s0/$s1. */
5804 if (sregs & (1 << 0)) /* $s0 */
5805 s0 = 1;
5806 if (sregs & (1 << 1)) /* $s1 */
5807 s1 = 1;
5808 sregs >>= 2;
5809
5810 /* Encode $s2-$s8. */
5811 num_sregs = 0;
5812 while (sregs & 1)
5813 {
5814 sregs >>= 1;
5815 num_sregs += 1;
5816 }
5817 if (sregs != 0)
5818 return FALSE;
5819
5820 /* Encode frame size. */
5821 if (num_frame_sizes == 0)
5822 {
5823 set_insn_error (arg->argnum, _("missing frame size"));
5824 return FALSE;
5825 }
5826 if (num_frame_sizes > 1)
5827 {
5828 set_insn_error (arg->argnum, _("frame size specified twice"));
5829 return FALSE;
5830 }
5831 if ((frame_size & 7) != 0 || frame_size < 0 || frame_size > 0xff * 8)
5832 {
5833 set_insn_error (arg->argnum, _("invalid frame size"));
5834 return FALSE;
5835 }
5836 frame_size /= 8;
5837
5838 /* Finally build the instruction. */
5839 if (mips_opts.mips16)
5840 opcode |= mips16_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5841 frame_size);
5842 else if (!mips_opts.micromips)
5843 opcode |= mips_encode_save_restore (arg_mask, num_sregs, ra, s0, s1,
5844 frame_size);
5845 else
5846 abort ();
5847
5848 arg->insn->insn_opcode = opcode;
5849 return TRUE;
5850 }
5851
5852 /* OP_MDMX_IMM_REG matcher. */
5853
5854 static bfd_boolean
5855 match_mdmx_imm_reg_operand (struct mips_arg_info *arg,
5856 const struct mips_operand *operand)
5857 {
5858 unsigned int regno, uval;
5859 bfd_boolean is_qh;
5860 const struct mips_opcode *opcode;
5861
5862 /* The mips_opcode records whether this is an octobyte or quadhalf
5863 instruction. Start out with that bit in place. */
5864 opcode = arg->insn->insn_mo;
5865 uval = mips_extract_operand (operand, opcode->match);
5866 is_qh = (uval != 0);
5867
5868 if (arg->token->type == OT_REG)
5869 {
5870 if ((opcode->membership & INSN_5400)
5871 && strcmp (opcode->name, "rzu.ob") == 0)
5872 {
5873 set_insn_error_i (arg->argnum, _("operand %d must be an immediate"),
5874 arg->argnum);
5875 return FALSE;
5876 }
5877
5878 if (!match_regno (arg, OP_REG_VEC, arg->token->u.regno, &regno))
5879 return FALSE;
5880 ++arg->token;
5881
5882 /* Check whether this is a vector register or a broadcast of
5883 a single element. */
5884 if (arg->token->type == OT_INTEGER_INDEX)
5885 {
5886 if (arg->token->u.index > (is_qh ? 3 : 7))
5887 {
5888 set_insn_error (arg->argnum, _("invalid element selector"));
5889 return FALSE;
5890 }
5891 uval |= arg->token->u.index << (is_qh ? 2 : 1) << 5;
5892 ++arg->token;
5893 }
5894 else
5895 {
5896 /* A full vector. */
5897 if ((opcode->membership & INSN_5400)
5898 && (strcmp (opcode->name, "sll.ob") == 0
5899 || strcmp (opcode->name, "srl.ob") == 0))
5900 {
5901 set_insn_error_i (arg->argnum, _("operand %d must be scalar"),
5902 arg->argnum);
5903 return FALSE;
5904 }
5905
5906 if (is_qh)
5907 uval |= MDMX_FMTSEL_VEC_QH << 5;
5908 else
5909 uval |= MDMX_FMTSEL_VEC_OB << 5;
5910 }
5911 uval |= regno;
5912 }
5913 else
5914 {
5915 offsetT sval;
5916
5917 if (!match_const_int (arg, &sval))
5918 return FALSE;
5919 if (sval < 0 || sval > 31)
5920 {
5921 match_out_of_range (arg);
5922 return FALSE;
5923 }
5924 uval |= (sval & 31);
5925 if (is_qh)
5926 uval |= MDMX_FMTSEL_IMM_QH << 5;
5927 else
5928 uval |= MDMX_FMTSEL_IMM_OB << 5;
5929 }
5930 insn_insert_operand (arg->insn, operand, uval);
5931 return TRUE;
5932 }
5933
5934 /* OP_IMM_INDEX matcher. */
5935
5936 static bfd_boolean
5937 match_imm_index_operand (struct mips_arg_info *arg,
5938 const struct mips_operand *operand)
5939 {
5940 unsigned int max_val;
5941
5942 if (arg->token->type != OT_INTEGER_INDEX)
5943 return FALSE;
5944
5945 max_val = (1 << operand->size) - 1;
5946 if (arg->token->u.index > max_val)
5947 {
5948 match_out_of_range (arg);
5949 return FALSE;
5950 }
5951 insn_insert_operand (arg->insn, operand, arg->token->u.index);
5952 ++arg->token;
5953 return TRUE;
5954 }
5955
5956 /* OP_REG_INDEX matcher. */
5957
5958 static bfd_boolean
5959 match_reg_index_operand (struct mips_arg_info *arg,
5960 const struct mips_operand *operand)
5961 {
5962 unsigned int regno;
5963
5964 if (arg->token->type != OT_REG_INDEX)
5965 return FALSE;
5966
5967 if (!match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno))
5968 return FALSE;
5969
5970 insn_insert_operand (arg->insn, operand, regno);
5971 ++arg->token;
5972 return TRUE;
5973 }
5974
5975 /* OP_PC matcher. */
5976
5977 static bfd_boolean
5978 match_pc_operand (struct mips_arg_info *arg)
5979 {
5980 if (arg->token->type == OT_REG && (arg->token->u.regno & RTYPE_PC))
5981 {
5982 ++arg->token;
5983 return TRUE;
5984 }
5985 return FALSE;
5986 }
5987
5988 /* OP_REG28 matcher. */
5989
5990 static bfd_boolean
5991 match_reg28_operand (struct mips_arg_info *arg)
5992 {
5993 unsigned int regno;
5994
5995 if (arg->token->type == OT_REG
5996 && match_regno (arg, OP_REG_GP, arg->token->u.regno, &regno)
5997 && regno == GP)
5998 {
5999 ++arg->token;
6000 return TRUE;
6001 }
6002 return FALSE;
6003 }
6004
6005 /* OP_NON_ZERO_REG matcher. */
6006
6007 static bfd_boolean
6008 match_non_zero_reg_operand (struct mips_arg_info *arg,
6009 const struct mips_operand *operand)
6010 {
6011 unsigned int regno;
6012
6013 if (!match_reg (arg, OP_REG_GP, &regno))
6014 return FALSE;
6015
6016 if (regno == 0)
6017 return FALSE;
6018
6019 arg->last_regno = regno;
6020 insn_insert_operand (arg->insn, operand, regno);
6021 return TRUE;
6022 }
6023
6024 /* OP_REPEAT_DEST_REG and OP_REPEAT_PREV_REG matcher. OTHER_REGNO is the
6025 register that we need to match. */
6026
6027 static bfd_boolean
6028 match_tied_reg_operand (struct mips_arg_info *arg, unsigned int other_regno)
6029 {
6030 unsigned int regno;
6031
6032 return match_reg (arg, OP_REG_GP, &regno) && regno == other_regno;
6033 }
6034
6035 /* Try to match a floating-point constant from ARG for LI.S or LI.D.
6036 LENGTH is the length of the value in bytes (4 for float, 8 for double)
6037 and USING_GPRS says whether the destination is a GPR rather than an FPR.
6038
6039 Return the constant in IMM and OFFSET as follows:
6040
6041 - If the constant should be loaded via memory, set IMM to O_absent and
6042 OFFSET to the memory address.
6043
6044 - Otherwise, if the constant should be loaded into two 32-bit registers,
6045 set IMM to the O_constant to load into the high register and OFFSET
6046 to the corresponding value for the low register.
6047
6048 - Otherwise, set IMM to the full O_constant and set OFFSET to O_absent.
6049
6050 These constants only appear as the last operand in an instruction,
6051 and every instruction that accepts them in any variant accepts them
6052 in all variants. This means we don't have to worry about backing out
6053 any changes if the instruction does not match. We just match
6054 unconditionally and report an error if the constant is invalid. */
6055
6056 static bfd_boolean
6057 match_float_constant (struct mips_arg_info *arg, expressionS *imm,
6058 expressionS *offset, int length, bfd_boolean using_gprs)
6059 {
6060 char *p;
6061 segT seg, new_seg;
6062 subsegT subseg;
6063 const char *newname;
6064 unsigned char *data;
6065
6066 /* Where the constant is placed is based on how the MIPS assembler
6067 does things:
6068
6069 length == 4 && using_gprs -- immediate value only
6070 length == 8 && using_gprs -- .rdata or immediate value
6071 length == 4 && !using_gprs -- .lit4 or immediate value
6072 length == 8 && !using_gprs -- .lit8 or immediate value
6073
6074 The .lit4 and .lit8 sections are only used if permitted by the
6075 -G argument. */
6076 if (arg->token->type != OT_FLOAT)
6077 {
6078 set_insn_error (arg->argnum, _("floating-point expression required"));
6079 return FALSE;
6080 }
6081
6082 gas_assert (arg->token->u.flt.length == length);
6083 data = arg->token->u.flt.data;
6084 ++arg->token;
6085
6086 /* Handle 32-bit constants for which an immediate value is best. */
6087 if (length == 4
6088 && (using_gprs
6089 || g_switch_value < 4
6090 || (data[0] == 0 && data[1] == 0)
6091 || (data[2] == 0 && data[3] == 0)))
6092 {
6093 imm->X_op = O_constant;
6094 if (!target_big_endian)
6095 imm->X_add_number = bfd_getl32 (data);
6096 else
6097 imm->X_add_number = bfd_getb32 (data);
6098 offset->X_op = O_absent;
6099 return TRUE;
6100 }
6101
6102 /* Handle 64-bit constants for which an immediate value is best. */
6103 if (length == 8
6104 && !mips_disable_float_construction
6105 /* Constants can only be constructed in GPRs and copied to FPRs if the
6106 GPRs are at least as wide as the FPRs or MTHC1 is available.
6107 Unlike most tests for 32-bit floating-point registers this check
6108 specifically looks for GPR_SIZE == 32 as the FPXX ABI does not
6109 permit 64-bit moves without MXHC1.
6110 Force the constant into memory otherwise. */
6111 && (using_gprs
6112 || GPR_SIZE == 64
6113 || ISA_HAS_MXHC1 (mips_opts.isa)
6114 || FPR_SIZE == 32)
6115 && ((data[0] == 0 && data[1] == 0)
6116 || (data[2] == 0 && data[3] == 0))
6117 && ((data[4] == 0 && data[5] == 0)
6118 || (data[6] == 0 && data[7] == 0)))
6119 {
6120 /* The value is simple enough to load with a couple of instructions.
6121 If using 32-bit registers, set IMM to the high order 32 bits and
6122 OFFSET to the low order 32 bits. Otherwise, set IMM to the entire
6123 64 bit constant. */
6124 if (GPR_SIZE == 32 || (!using_gprs && FPR_SIZE != 64))
6125 {
6126 imm->X_op = O_constant;
6127 offset->X_op = O_constant;
6128 if (!target_big_endian)
6129 {
6130 imm->X_add_number = bfd_getl32 (data + 4);
6131 offset->X_add_number = bfd_getl32 (data);
6132 }
6133 else
6134 {
6135 imm->X_add_number = bfd_getb32 (data);
6136 offset->X_add_number = bfd_getb32 (data + 4);
6137 }
6138 if (offset->X_add_number == 0)
6139 offset->X_op = O_absent;
6140 }
6141 else
6142 {
6143 imm->X_op = O_constant;
6144 if (!target_big_endian)
6145 imm->X_add_number = bfd_getl64 (data);
6146 else
6147 imm->X_add_number = bfd_getb64 (data);
6148 offset->X_op = O_absent;
6149 }
6150 return TRUE;
6151 }
6152
6153 /* Switch to the right section. */
6154 seg = now_seg;
6155 subseg = now_subseg;
6156 if (length == 4)
6157 {
6158 gas_assert (!using_gprs && g_switch_value >= 4);
6159 newname = ".lit4";
6160 }
6161 else
6162 {
6163 if (using_gprs || g_switch_value < 8)
6164 newname = RDATA_SECTION_NAME;
6165 else
6166 newname = ".lit8";
6167 }
6168
6169 new_seg = subseg_new (newname, (subsegT) 0);
6170 bfd_set_section_flags (stdoutput, new_seg,
6171 SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_DATA);
6172 frag_align (length == 4 ? 2 : 3, 0, 0);
6173 if (strncmp (TARGET_OS, "elf", 3) != 0)
6174 record_alignment (new_seg, 4);
6175 else
6176 record_alignment (new_seg, length == 4 ? 2 : 3);
6177 if (seg == now_seg)
6178 as_bad (_("cannot use `%s' in this section"), arg->insn->insn_mo->name);
6179
6180 /* Set the argument to the current address in the section. */
6181 imm->X_op = O_absent;
6182 offset->X_op = O_symbol;
6183 offset->X_add_symbol = symbol_temp_new_now ();
6184 offset->X_add_number = 0;
6185
6186 /* Put the floating point number into the section. */
6187 p = frag_more (length);
6188 memcpy (p, data, length);
6189
6190 /* Switch back to the original section. */
6191 subseg_set (seg, subseg);
6192 return TRUE;
6193 }
6194
6195 /* OP_VU0_SUFFIX and OP_VU0_MATCH_SUFFIX matcher; MATCH_P selects between
6196 them. */
6197
6198 static bfd_boolean
6199 match_vu0_suffix_operand (struct mips_arg_info *arg,
6200 const struct mips_operand *operand,
6201 bfd_boolean match_p)
6202 {
6203 unsigned int uval;
6204
6205 /* The operand can be an XYZW mask or a single 2-bit channel index
6206 (with X being 0). */
6207 gas_assert (operand->size == 2 || operand->size == 4);
6208
6209 /* The suffix can be omitted when it is already part of the opcode. */
6210 if (arg->token->type != OT_CHANNELS)
6211 return match_p;
6212
6213 uval = arg->token->u.channels;
6214 if (operand->size == 2)
6215 {
6216 /* Check that a single bit is set and convert it into a 2-bit index. */
6217 if ((uval & -uval) != uval)
6218 return FALSE;
6219 uval = 4 - ffs (uval);
6220 }
6221
6222 if (match_p && insn_extract_operand (arg->insn, operand) != uval)
6223 return FALSE;
6224
6225 ++arg->token;
6226 if (!match_p)
6227 insn_insert_operand (arg->insn, operand, uval);
6228 return TRUE;
6229 }
6230
6231 /* Try to match a token from ARG against OPERAND. Consume the token
6232 and return true on success, otherwise return false. */
6233
6234 static bfd_boolean
6235 match_operand (struct mips_arg_info *arg,
6236 const struct mips_operand *operand)
6237 {
6238 switch (operand->type)
6239 {
6240 case OP_INT:
6241 return match_int_operand (arg, operand);
6242
6243 case OP_MAPPED_INT:
6244 return match_mapped_int_operand (arg, operand);
6245
6246 case OP_MSB:
6247 return match_msb_operand (arg, operand);
6248
6249 case OP_REG:
6250 case OP_OPTIONAL_REG:
6251 return match_reg_operand (arg, operand);
6252
6253 case OP_REG_PAIR:
6254 return match_reg_pair_operand (arg, operand);
6255
6256 case OP_PCREL:
6257 return match_pcrel_operand (arg);
6258
6259 case OP_PERF_REG:
6260 return match_perf_reg_operand (arg, operand);
6261
6262 case OP_ADDIUSP_INT:
6263 return match_addiusp_operand (arg, operand);
6264
6265 case OP_CLO_CLZ_DEST:
6266 return match_clo_clz_dest_operand (arg, operand);
6267
6268 case OP_LWM_SWM_LIST:
6269 return match_lwm_swm_list_operand (arg, operand);
6270
6271 case OP_ENTRY_EXIT_LIST:
6272 return match_entry_exit_operand (arg, operand);
6273
6274 case OP_SAVE_RESTORE_LIST:
6275 return match_save_restore_list_operand (arg);
6276
6277 case OP_MDMX_IMM_REG:
6278 return match_mdmx_imm_reg_operand (arg, operand);
6279
6280 case OP_REPEAT_DEST_REG:
6281 return match_tied_reg_operand (arg, arg->dest_regno);
6282
6283 case OP_REPEAT_PREV_REG:
6284 return match_tied_reg_operand (arg, arg->last_regno);
6285
6286 case OP_PC:
6287 return match_pc_operand (arg);
6288
6289 case OP_REG28:
6290 return match_reg28_operand (arg);
6291
6292 case OP_VU0_SUFFIX:
6293 return match_vu0_suffix_operand (arg, operand, FALSE);
6294
6295 case OP_VU0_MATCH_SUFFIX:
6296 return match_vu0_suffix_operand (arg, operand, TRUE);
6297
6298 case OP_IMM_INDEX:
6299 return match_imm_index_operand (arg, operand);
6300
6301 case OP_REG_INDEX:
6302 return match_reg_index_operand (arg, operand);
6303
6304 case OP_SAME_RS_RT:
6305 return match_same_rs_rt_operand (arg, operand);
6306
6307 case OP_CHECK_PREV:
6308 return match_check_prev_operand (arg, operand);
6309
6310 case OP_NON_ZERO_REG:
6311 return match_non_zero_reg_operand (arg, operand);
6312 }
6313 abort ();
6314 }
6315
6316 /* ARG is the state after successfully matching an instruction.
6317 Issue any queued-up warnings. */
6318
6319 static void
6320 check_completed_insn (struct mips_arg_info *arg)
6321 {
6322 if (arg->seen_at)
6323 {
6324 if (AT == ATREG)
6325 as_warn (_("used $at without \".set noat\""));
6326 else
6327 as_warn (_("used $%u with \".set at=$%u\""), AT, AT);
6328 }
6329 }
6330
6331 /* Return true if modifying general-purpose register REG needs a delay. */
6332
6333 static bfd_boolean
6334 reg_needs_delay (unsigned int reg)
6335 {
6336 unsigned long prev_pinfo;
6337
6338 prev_pinfo = history[0].insn_mo->pinfo;
6339 if (!mips_opts.noreorder
6340 && (((prev_pinfo & INSN_LOAD_MEMORY) && !gpr_interlocks)
6341 || ((prev_pinfo & INSN_LOAD_COPROC) && !cop_interlocks))
6342 && (gpr_write_mask (&history[0]) & (1 << reg)))
6343 return TRUE;
6344
6345 return FALSE;
6346 }
6347
6348 /* Classify an instruction according to the FIX_VR4120_* enumeration.
6349 Return NUM_FIX_VR4120_CLASSES if the instruction isn't affected
6350 by VR4120 errata. */
6351
6352 static unsigned int
6353 classify_vr4120_insn (const char *name)
6354 {
6355 if (strncmp (name, "macc", 4) == 0)
6356 return FIX_VR4120_MACC;
6357 if (strncmp (name, "dmacc", 5) == 0)
6358 return FIX_VR4120_DMACC;
6359 if (strncmp (name, "mult", 4) == 0)
6360 return FIX_VR4120_MULT;
6361 if (strncmp (name, "dmult", 5) == 0)
6362 return FIX_VR4120_DMULT;
6363 if (strstr (name, "div"))
6364 return FIX_VR4120_DIV;
6365 if (strcmp (name, "mtlo") == 0 || strcmp (name, "mthi") == 0)
6366 return FIX_VR4120_MTHILO;
6367 return NUM_FIX_VR4120_CLASSES;
6368 }
6369
6370 #define INSN_ERET 0x42000018
6371 #define INSN_DERET 0x4200001f
6372 #define INSN_DMULT 0x1c
6373 #define INSN_DMULTU 0x1d
6374
6375 /* Return the number of instructions that must separate INSN1 and INSN2,
6376 where INSN1 is the earlier instruction. Return the worst-case value
6377 for any INSN2 if INSN2 is null. */
6378
6379 static unsigned int
6380 insns_between (const struct mips_cl_insn *insn1,
6381 const struct mips_cl_insn *insn2)
6382 {
6383 unsigned long pinfo1, pinfo2;
6384 unsigned int mask;
6385
6386 /* If INFO2 is null, pessimistically assume that all flags are set for
6387 the second instruction. */
6388 pinfo1 = insn1->insn_mo->pinfo;
6389 pinfo2 = insn2 ? insn2->insn_mo->pinfo : ~0U;
6390
6391 /* For most targets, write-after-read dependencies on the HI and LO
6392 registers must be separated by at least two instructions. */
6393 if (!hilo_interlocks)
6394 {
6395 if ((pinfo1 & INSN_READ_LO) && (pinfo2 & INSN_WRITE_LO))
6396 return 2;
6397 if ((pinfo1 & INSN_READ_HI) && (pinfo2 & INSN_WRITE_HI))
6398 return 2;
6399 }
6400
6401 /* If we're working around r7000 errata, there must be two instructions
6402 between an mfhi or mflo and any instruction that uses the result. */
6403 if (mips_7000_hilo_fix
6404 && !mips_opts.micromips
6405 && MF_HILO_INSN (pinfo1)
6406 && (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1))))
6407 return 2;
6408
6409 /* If we're working around 24K errata, one instruction is required
6410 if an ERET or DERET is followed by a branch instruction. */
6411 if (mips_fix_24k && !mips_opts.micromips)
6412 {
6413 if (insn1->insn_opcode == INSN_ERET
6414 || insn1->insn_opcode == INSN_DERET)
6415 {
6416 if (insn2 == NULL
6417 || insn2->insn_opcode == INSN_ERET
6418 || insn2->insn_opcode == INSN_DERET
6419 || delayed_branch_p (insn2))
6420 return 1;
6421 }
6422 }
6423
6424 /* If we're working around PMC RM7000 errata, there must be three
6425 nops between a dmult and a load instruction. */
6426 if (mips_fix_rm7000 && !mips_opts.micromips)
6427 {
6428 if ((insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULT
6429 || (insn1->insn_opcode & insn1->insn_mo->mask) == INSN_DMULTU)
6430 {
6431 if (pinfo2 & INSN_LOAD_MEMORY)
6432 return 3;
6433 }
6434 }
6435
6436 /* If working around VR4120 errata, check for combinations that need
6437 a single intervening instruction. */
6438 if (mips_fix_vr4120 && !mips_opts.micromips)
6439 {
6440 unsigned int class1, class2;
6441
6442 class1 = classify_vr4120_insn (insn1->insn_mo->name);
6443 if (class1 != NUM_FIX_VR4120_CLASSES && vr4120_conflicts[class1] != 0)
6444 {
6445 if (insn2 == NULL)
6446 return 1;
6447 class2 = classify_vr4120_insn (insn2->insn_mo->name);
6448 if (vr4120_conflicts[class1] & (1 << class2))
6449 return 1;
6450 }
6451 }
6452
6453 if (!HAVE_CODE_COMPRESSION)
6454 {
6455 /* Check for GPR or coprocessor load delays. All such delays
6456 are on the RT register. */
6457 /* Itbl support may require additional care here. */
6458 if ((!gpr_interlocks && (pinfo1 & INSN_LOAD_MEMORY))
6459 || (!cop_interlocks && (pinfo1 & INSN_LOAD_COPROC)))
6460 {
6461 if (insn2 == NULL || (gpr_read_mask (insn2) & gpr_write_mask (insn1)))
6462 return 1;
6463 }
6464
6465 /* Check for generic coprocessor hazards.
6466
6467 This case is not handled very well. There is no special
6468 knowledge of CP0 handling, and the coprocessors other than
6469 the floating point unit are not distinguished at all. */
6470 /* Itbl support may require additional care here. FIXME!
6471 Need to modify this to include knowledge about
6472 user specified delays! */
6473 else if ((!cop_interlocks && (pinfo1 & INSN_COPROC_MOVE))
6474 || (!cop_mem_interlocks && (pinfo1 & INSN_COPROC_MEMORY_DELAY)))
6475 {
6476 /* Handle cases where INSN1 writes to a known general coprocessor
6477 register. There must be a one instruction delay before INSN2
6478 if INSN2 reads that register, otherwise no delay is needed. */
6479 mask = fpr_write_mask (insn1);
6480 if (mask != 0)
6481 {
6482 if (!insn2 || (mask & fpr_read_mask (insn2)) != 0)
6483 return 1;
6484 }
6485 else
6486 {
6487 /* Read-after-write dependencies on the control registers
6488 require a two-instruction gap. */
6489 if ((pinfo1 & INSN_WRITE_COND_CODE)
6490 && (pinfo2 & INSN_READ_COND_CODE))
6491 return 2;
6492
6493 /* We don't know exactly what INSN1 does. If INSN2 is
6494 also a coprocessor instruction, assume there must be
6495 a one instruction gap. */
6496 if (pinfo2 & INSN_COP)
6497 return 1;
6498 }
6499 }
6500
6501 /* Check for read-after-write dependencies on the coprocessor
6502 control registers in cases where INSN1 does not need a general
6503 coprocessor delay. This means that INSN1 is a floating point
6504 comparison instruction. */
6505 /* Itbl support may require additional care here. */
6506 else if (!cop_interlocks
6507 && (pinfo1 & INSN_WRITE_COND_CODE)
6508 && (pinfo2 & INSN_READ_COND_CODE))
6509 return 1;
6510 }
6511
6512 /* Forbidden slots can not contain Control Transfer Instructions (CTIs)
6513 CTIs include all branches and jumps, nal, eret, eretnc, deret, wait
6514 and pause. */
6515 if ((insn1->insn_mo->pinfo2 & INSN2_FORBIDDEN_SLOT)
6516 && ((pinfo2 & INSN_NO_DELAY_SLOT)
6517 || (insn2 && delayed_branch_p (insn2))))
6518 return 1;
6519
6520 return 0;
6521 }
6522
6523 /* Return the number of nops that would be needed to work around the
6524 VR4130 mflo/mfhi errata if instruction INSN immediately followed
6525 the MAX_VR4130_NOPS instructions described by HIST. Ignore hazards
6526 that are contained within the first IGNORE instructions of HIST. */
6527
6528 static int
6529 nops_for_vr4130 (int ignore, const struct mips_cl_insn *hist,
6530 const struct mips_cl_insn *insn)
6531 {
6532 int i, j;
6533 unsigned int mask;
6534
6535 /* Check if the instruction writes to HI or LO. MTHI and MTLO
6536 are not affected by the errata. */
6537 if (insn != 0
6538 && ((insn->insn_mo->pinfo & (INSN_WRITE_HI | INSN_WRITE_LO)) == 0
6539 || strcmp (insn->insn_mo->name, "mtlo") == 0
6540 || strcmp (insn->insn_mo->name, "mthi") == 0))
6541 return 0;
6542
6543 /* Search for the first MFLO or MFHI. */
6544 for (i = 0; i < MAX_VR4130_NOPS; i++)
6545 if (MF_HILO_INSN (hist[i].insn_mo->pinfo))
6546 {
6547 /* Extract the destination register. */
6548 mask = gpr_write_mask (&hist[i]);
6549
6550 /* No nops are needed if INSN reads that register. */
6551 if (insn != NULL && (gpr_read_mask (insn) & mask) != 0)
6552 return 0;
6553
6554 /* ...or if any of the intervening instructions do. */
6555 for (j = 0; j < i; j++)
6556 if (gpr_read_mask (&hist[j]) & mask)
6557 return 0;
6558
6559 if (i >= ignore)
6560 return MAX_VR4130_NOPS - i;
6561 }
6562 return 0;
6563 }
6564
6565 #define BASE_REG_EQ(INSN1, INSN2) \
6566 ((((INSN1) >> OP_SH_RS) & OP_MASK_RS) \
6567 == (((INSN2) >> OP_SH_RS) & OP_MASK_RS))
6568
6569 /* Return the minimum alignment for this store instruction. */
6570
6571 static int
6572 fix_24k_align_to (const struct mips_opcode *mo)
6573 {
6574 if (strcmp (mo->name, "sh") == 0)
6575 return 2;
6576
6577 if (strcmp (mo->name, "swc1") == 0
6578 || strcmp (mo->name, "swc2") == 0
6579 || strcmp (mo->name, "sw") == 0
6580 || strcmp (mo->name, "sc") == 0
6581 || strcmp (mo->name, "s.s") == 0)
6582 return 4;
6583
6584 if (strcmp (mo->name, "sdc1") == 0
6585 || strcmp (mo->name, "sdc2") == 0
6586 || strcmp (mo->name, "s.d") == 0)
6587 return 8;
6588
6589 /* sb, swl, swr */
6590 return 1;
6591 }
6592
6593 struct fix_24k_store_info
6594 {
6595 /* Immediate offset, if any, for this store instruction. */
6596 short off;
6597 /* Alignment required by this store instruction. */
6598 int align_to;
6599 /* True for register offsets. */
6600 int register_offset;
6601 };
6602
6603 /* Comparison function used by qsort. */
6604
6605 static int
6606 fix_24k_sort (const void *a, const void *b)
6607 {
6608 const struct fix_24k_store_info *pos1 = a;
6609 const struct fix_24k_store_info *pos2 = b;
6610
6611 return (pos1->off - pos2->off);
6612 }
6613
6614 /* INSN is a store instruction. Try to record the store information
6615 in STINFO. Return false if the information isn't known. */
6616
6617 static bfd_boolean
6618 fix_24k_record_store_info (struct fix_24k_store_info *stinfo,
6619 const struct mips_cl_insn *insn)
6620 {
6621 /* The instruction must have a known offset. */
6622 if (!insn->complete_p || !strstr (insn->insn_mo->args, "o("))
6623 return FALSE;
6624
6625 stinfo->off = (insn->insn_opcode >> OP_SH_IMMEDIATE) & OP_MASK_IMMEDIATE;
6626 stinfo->align_to = fix_24k_align_to (insn->insn_mo);
6627 return TRUE;
6628 }
6629
6630 /* Return the number of nops that would be needed to work around the 24k
6631 "lost data on stores during refill" errata if instruction INSN
6632 immediately followed the 2 instructions described by HIST.
6633 Ignore hazards that are contained within the first IGNORE
6634 instructions of HIST.
6635
6636 Problem: The FSB (fetch store buffer) acts as an intermediate buffer
6637 for the data cache refills and store data. The following describes
6638 the scenario where the store data could be lost.
6639
6640 * A data cache miss, due to either a load or a store, causing fill
6641 data to be supplied by the memory subsystem
6642 * The first three doublewords of fill data are returned and written
6643 into the cache
6644 * A sequence of four stores occurs in consecutive cycles around the
6645 final doubleword of the fill:
6646 * Store A
6647 * Store B
6648 * Store C
6649 * Zero, One or more instructions
6650 * Store D
6651
6652 The four stores A-D must be to different doublewords of the line that
6653 is being filled. The fourth instruction in the sequence above permits
6654 the fill of the final doubleword to be transferred from the FSB into
6655 the cache. In the sequence above, the stores may be either integer
6656 (sb, sh, sw, swr, swl, sc) or coprocessor (swc1/swc2, sdc1/sdc2,
6657 swxc1, sdxc1, suxc1) stores, as long as the four stores are to
6658 different doublewords on the line. If the floating point unit is
6659 running in 1:2 mode, it is not possible to create the sequence above
6660 using only floating point store instructions.
6661
6662 In this case, the cache line being filled is incorrectly marked
6663 invalid, thereby losing the data from any store to the line that
6664 occurs between the original miss and the completion of the five
6665 cycle sequence shown above.
6666
6667 The workarounds are:
6668
6669 * Run the data cache in write-through mode.
6670 * Insert a non-store instruction between
6671 Store A and Store B or Store B and Store C. */
6672
6673 static int
6674 nops_for_24k (int ignore, const struct mips_cl_insn *hist,
6675 const struct mips_cl_insn *insn)
6676 {
6677 struct fix_24k_store_info pos[3];
6678 int align, i, base_offset;
6679
6680 if (ignore >= 2)
6681 return 0;
6682
6683 /* If the previous instruction wasn't a store, there's nothing to
6684 worry about. */
6685 if ((hist[0].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6686 return 0;
6687
6688 /* If the instructions after the previous one are unknown, we have
6689 to assume the worst. */
6690 if (!insn)
6691 return 1;
6692
6693 /* Check whether we are dealing with three consecutive stores. */
6694 if ((insn->insn_mo->pinfo & INSN_STORE_MEMORY) == 0
6695 || (hist[1].insn_mo->pinfo & INSN_STORE_MEMORY) == 0)
6696 return 0;
6697
6698 /* If we don't know the relationship between the store addresses,
6699 assume the worst. */
6700 if (!BASE_REG_EQ (insn->insn_opcode, hist[0].insn_opcode)
6701 || !BASE_REG_EQ (insn->insn_opcode, hist[1].insn_opcode))
6702 return 1;
6703
6704 if (!fix_24k_record_store_info (&pos[0], insn)
6705 || !fix_24k_record_store_info (&pos[1], &hist[0])
6706 || !fix_24k_record_store_info (&pos[2], &hist[1]))
6707 return 1;
6708
6709 qsort (&pos, 3, sizeof (struct fix_24k_store_info), fix_24k_sort);
6710
6711 /* Pick a value of ALIGN and X such that all offsets are adjusted by
6712 X bytes and such that the base register + X is known to be aligned
6713 to align bytes. */
6714
6715 if (((insn->insn_opcode >> OP_SH_RS) & OP_MASK_RS) == SP)
6716 align = 8;
6717 else
6718 {
6719 align = pos[0].align_to;
6720 base_offset = pos[0].off;
6721 for (i = 1; i < 3; i++)
6722 if (align < pos[i].align_to)
6723 {
6724 align = pos[i].align_to;
6725 base_offset = pos[i].off;
6726 }
6727 for (i = 0; i < 3; i++)
6728 pos[i].off -= base_offset;
6729 }
6730
6731 pos[0].off &= ~align + 1;
6732 pos[1].off &= ~align + 1;
6733 pos[2].off &= ~align + 1;
6734
6735 /* If any two stores write to the same chunk, they also write to the
6736 same doubleword. The offsets are still sorted at this point. */
6737 if (pos[0].off == pos[1].off || pos[1].off == pos[2].off)
6738 return 0;
6739
6740 /* A range of at least 9 bytes is needed for the stores to be in
6741 non-overlapping doublewords. */
6742 if (pos[2].off - pos[0].off <= 8)
6743 return 0;
6744
6745 if (pos[2].off - pos[1].off >= 24
6746 || pos[1].off - pos[0].off >= 24
6747 || pos[2].off - pos[0].off >= 32)
6748 return 0;
6749
6750 return 1;
6751 }
6752
6753 /* Return the number of nops that would be needed if instruction INSN
6754 immediately followed the MAX_NOPS instructions given by HIST,
6755 where HIST[0] is the most recent instruction. Ignore hazards
6756 between INSN and the first IGNORE instructions in HIST.
6757
6758 If INSN is null, return the worse-case number of nops for any
6759 instruction. */
6760
6761 static int
6762 nops_for_insn (int ignore, const struct mips_cl_insn *hist,
6763 const struct mips_cl_insn *insn)
6764 {
6765 int i, nops, tmp_nops;
6766
6767 nops = 0;
6768 for (i = ignore; i < MAX_DELAY_NOPS; i++)
6769 {
6770 tmp_nops = insns_between (hist + i, insn) - i;
6771 if (tmp_nops > nops)
6772 nops = tmp_nops;
6773 }
6774
6775 if (mips_fix_vr4130 && !mips_opts.micromips)
6776 {
6777 tmp_nops = nops_for_vr4130 (ignore, hist, insn);
6778 if (tmp_nops > nops)
6779 nops = tmp_nops;
6780 }
6781
6782 if (mips_fix_24k && !mips_opts.micromips)
6783 {
6784 tmp_nops = nops_for_24k (ignore, hist, insn);
6785 if (tmp_nops > nops)
6786 nops = tmp_nops;
6787 }
6788
6789 return nops;
6790 }
6791
6792 /* The variable arguments provide NUM_INSNS extra instructions that
6793 might be added to HIST. Return the largest number of nops that
6794 would be needed after the extended sequence, ignoring hazards
6795 in the first IGNORE instructions. */
6796
6797 static int
6798 nops_for_sequence (int num_insns, int ignore,
6799 const struct mips_cl_insn *hist, ...)
6800 {
6801 va_list args;
6802 struct mips_cl_insn buffer[MAX_NOPS];
6803 struct mips_cl_insn *cursor;
6804 int nops;
6805
6806 va_start (args, hist);
6807 cursor = buffer + num_insns;
6808 memcpy (cursor, hist, (MAX_NOPS - num_insns) * sizeof (*cursor));
6809 while (cursor > buffer)
6810 *--cursor = *va_arg (args, const struct mips_cl_insn *);
6811
6812 nops = nops_for_insn (ignore, buffer, NULL);
6813 va_end (args);
6814 return nops;
6815 }
6816
6817 /* Like nops_for_insn, but if INSN is a branch, take into account the
6818 worst-case delay for the branch target. */
6819
6820 static int
6821 nops_for_insn_or_target (int ignore, const struct mips_cl_insn *hist,
6822 const struct mips_cl_insn *insn)
6823 {
6824 int nops, tmp_nops;
6825
6826 nops = nops_for_insn (ignore, hist, insn);
6827 if (delayed_branch_p (insn))
6828 {
6829 tmp_nops = nops_for_sequence (2, ignore ? ignore + 2 : 0,
6830 hist, insn, get_delay_slot_nop (insn));
6831 if (tmp_nops > nops)
6832 nops = tmp_nops;
6833 }
6834 else if (compact_branch_p (insn))
6835 {
6836 tmp_nops = nops_for_sequence (1, ignore ? ignore + 1 : 0, hist, insn);
6837 if (tmp_nops > nops)
6838 nops = tmp_nops;
6839 }
6840 return nops;
6841 }
6842
6843 /* Fix NOP issue: Replace nops by "or at,at,zero". */
6844
6845 static void
6846 fix_loongson2f_nop (struct mips_cl_insn * ip)
6847 {
6848 gas_assert (!HAVE_CODE_COMPRESSION);
6849 if (strcmp (ip->insn_mo->name, "nop") == 0)
6850 ip->insn_opcode = LOONGSON2F_NOP_INSN;
6851 }
6852
6853 /* Fix Jump Issue: Eliminate instruction fetch from outside 256M region
6854 jr target pc &= 'hffff_ffff_cfff_ffff. */
6855
6856 static void
6857 fix_loongson2f_jump (struct mips_cl_insn * ip)
6858 {
6859 gas_assert (!HAVE_CODE_COMPRESSION);
6860 if (strcmp (ip->insn_mo->name, "j") == 0
6861 || strcmp (ip->insn_mo->name, "jr") == 0
6862 || strcmp (ip->insn_mo->name, "jalr") == 0)
6863 {
6864 int sreg;
6865 expressionS ep;
6866
6867 if (! mips_opts.at)
6868 return;
6869
6870 sreg = EXTRACT_OPERAND (0, RS, *ip);
6871 if (sreg == ZERO || sreg == KT0 || sreg == KT1 || sreg == ATREG)
6872 return;
6873
6874 ep.X_op = O_constant;
6875 ep.X_add_number = 0xcfff0000;
6876 macro_build (&ep, "lui", "t,u", ATREG, BFD_RELOC_HI16);
6877 ep.X_add_number = 0xffff;
6878 macro_build (&ep, "ori", "t,r,i", ATREG, ATREG, BFD_RELOC_LO16);
6879 macro_build (NULL, "and", "d,v,t", sreg, sreg, ATREG);
6880 }
6881 }
6882
6883 static void
6884 fix_loongson2f (struct mips_cl_insn * ip)
6885 {
6886 if (mips_fix_loongson2f_nop)
6887 fix_loongson2f_nop (ip);
6888
6889 if (mips_fix_loongson2f_jump)
6890 fix_loongson2f_jump (ip);
6891 }
6892
6893 /* Fix loongson3 llsc errata: Insert sync before ll/lld. */
6894
6895 static void
6896 fix_loongson3_llsc (struct mips_cl_insn * ip)
6897 {
6898 gas_assert (!HAVE_CODE_COMPRESSION);
6899
6900 /* If is an local label and the insn is not sync,
6901 look forward that whether an branch between ll/sc jump to here
6902 if so, insert a sync. */
6903 if (seg_info (now_seg)->label_list
6904 && S_IS_LOCAL (seg_info (now_seg)->label_list->label)
6905 && (strcmp (ip->insn_mo->name, "sync") != 0))
6906 {
6907 const char *label_name = S_GET_NAME (seg_info (now_seg)->label_list->label);
6908 unsigned long lookback = ARRAY_SIZE (history);
6909 unsigned long i;
6910
6911 for (i = 0; i < lookback; i++)
6912 {
6913 if (streq (history[i].insn_mo->name, "ll")
6914 || streq (history[i].insn_mo->name, "lld"))
6915 break;
6916
6917 if (streq (history[i].insn_mo->name, "sc")
6918 || streq (history[i].insn_mo->name, "scd"))
6919 {
6920 unsigned long j;
6921
6922 for (j = i + 1; j < lookback; j++)
6923 {
6924 if (streq (history[i].insn_mo->name, "ll")
6925 || streq (history[i].insn_mo->name, "lld"))
6926 break;
6927
6928 if (delayed_branch_p (&history[j]))
6929 {
6930 if (streq (history[j].target, label_name))
6931 {
6932 add_fixed_insn (&sync_insn);
6933 insert_into_history (0, 1, &sync_insn);
6934 i = lookback;
6935 break;
6936 }
6937 }
6938 }
6939 }
6940 }
6941 }
6942 /* If we find a sc, we look forward to look for an branch insn,
6943 and see whether it jump back and out of ll/sc. */
6944 else if (streq(ip->insn_mo->name, "sc") || streq(ip->insn_mo->name, "scd"))
6945 {
6946 unsigned long lookback = ARRAY_SIZE (history) - 1;
6947 unsigned long i;
6948
6949 for (i = 0; i < lookback; i++)
6950 {
6951 if (streq (history[i].insn_mo->name, "ll")
6952 || streq (history[i].insn_mo->name, "lld"))
6953 break;
6954
6955 if (delayed_branch_p (&history[i]))
6956 {
6957 unsigned long j;
6958
6959 for (j = i + 1; j < lookback; j++)
6960 {
6961 if (streq (history[j].insn_mo->name, "ll")
6962 || streq (history[i].insn_mo->name, "lld"))
6963 break;
6964 }
6965
6966 for (; j < lookback; j++)
6967 {
6968 if (history[j].label[0] != '\0'
6969 && streq (history[j].label, history[i].target)
6970 && strcmp (history[j+1].insn_mo->name, "sync") != 0)
6971 {
6972 add_fixed_insn (&sync_insn);
6973 insert_into_history (++j, 1, &sync_insn);
6974 }
6975 }
6976 }
6977 }
6978 }
6979
6980 /* Skip if there is a sync before ll/lld. */
6981 if ((strcmp (ip->insn_mo->name, "ll") == 0
6982 || strcmp (ip->insn_mo->name, "lld") == 0)
6983 && (strcmp (history[0].insn_mo->name, "sync") != 0))
6984 {
6985 add_fixed_insn (&sync_insn);
6986 insert_into_history (0, 1, &sync_insn);
6987 }
6988 }
6989
6990 /* IP is a branch that has a delay slot, and we need to fill it
6991 automatically. Return true if we can do that by swapping IP
6992 with the previous instruction.
6993 ADDRESS_EXPR is an operand of the instruction to be used with
6994 RELOC_TYPE. */
6995
6996 static bfd_boolean
6997 can_swap_branch_p (struct mips_cl_insn *ip, expressionS *address_expr,
6998 bfd_reloc_code_real_type *reloc_type)
6999 {
7000 unsigned long pinfo, pinfo2, prev_pinfo, prev_pinfo2;
7001 unsigned int gpr_read, gpr_write, prev_gpr_read, prev_gpr_write;
7002 unsigned int fpr_read, prev_fpr_write;
7003
7004 /* -O2 and above is required for this optimization. */
7005 if (mips_optimize < 2)
7006 return FALSE;
7007
7008 /* If we have seen .set volatile or .set nomove, don't optimize. */
7009 if (mips_opts.nomove)
7010 return FALSE;
7011
7012 /* We can't swap if the previous instruction's position is fixed. */
7013 if (history[0].fixed_p)
7014 return FALSE;
7015
7016 /* If the previous previous insn was in a .set noreorder, we can't
7017 swap. Actually, the MIPS assembler will swap in this situation.
7018 However, gcc configured -with-gnu-as will generate code like
7019
7020 .set noreorder
7021 lw $4,XXX
7022 .set reorder
7023 INSN
7024 bne $4,$0,foo
7025
7026 in which we can not swap the bne and INSN. If gcc is not configured
7027 -with-gnu-as, it does not output the .set pseudo-ops. */
7028 if (history[1].noreorder_p)
7029 return FALSE;
7030
7031 /* If the previous instruction had a fixup in mips16 mode, we can not swap.
7032 This means that the previous instruction was a 4-byte one anyhow. */
7033 if (mips_opts.mips16 && history[0].fixp[0])
7034 return FALSE;
7035
7036 /* If the branch is itself the target of a branch, we can not swap.
7037 We cheat on this; all we check for is whether there is a label on
7038 this instruction. If there are any branches to anything other than
7039 a label, users must use .set noreorder. */
7040 if (seg_info (now_seg)->label_list)
7041 return FALSE;
7042
7043 /* If the previous instruction is in a variant frag other than this
7044 branch's one, we cannot do the swap. This does not apply to
7045 MIPS16 code, which uses variant frags for different purposes. */
7046 if (!mips_opts.mips16
7047 && history[0].frag
7048 && history[0].frag->fr_type == rs_machine_dependent)
7049 return FALSE;
7050
7051 /* We do not swap with instructions that cannot architecturally
7052 be placed in a branch delay slot, such as SYNC or ERET. We
7053 also refrain from swapping with a trap instruction, since it
7054 complicates trap handlers to have the trap instruction be in
7055 a delay slot. */
7056 prev_pinfo = history[0].insn_mo->pinfo;
7057 if (prev_pinfo & INSN_NO_DELAY_SLOT)
7058 return FALSE;
7059
7060 /* Check for conflicts between the branch and the instructions
7061 before the candidate delay slot. */
7062 if (nops_for_insn (0, history + 1, ip) > 0)
7063 return FALSE;
7064
7065 /* Check for conflicts between the swapped sequence and the
7066 target of the branch. */
7067 if (nops_for_sequence (2, 0, history + 1, ip, history) > 0)
7068 return FALSE;
7069
7070 /* If the branch reads a register that the previous
7071 instruction sets, we can not swap. */
7072 gpr_read = gpr_read_mask (ip);
7073 prev_gpr_write = gpr_write_mask (&history[0]);
7074 if (gpr_read & prev_gpr_write)
7075 return FALSE;
7076
7077 fpr_read = fpr_read_mask (ip);
7078 prev_fpr_write = fpr_write_mask (&history[0]);
7079 if (fpr_read & prev_fpr_write)
7080 return FALSE;
7081
7082 /* If the branch writes a register that the previous
7083 instruction sets, we can not swap. */
7084 gpr_write = gpr_write_mask (ip);
7085 if (gpr_write & prev_gpr_write)
7086 return FALSE;
7087
7088 /* If the branch writes a register that the previous
7089 instruction reads, we can not swap. */
7090 prev_gpr_read = gpr_read_mask (&history[0]);
7091 if (gpr_write & prev_gpr_read)
7092 return FALSE;
7093
7094 /* If one instruction sets a condition code and the
7095 other one uses a condition code, we can not swap. */
7096 pinfo = ip->insn_mo->pinfo;
7097 if ((pinfo & INSN_READ_COND_CODE)
7098 && (prev_pinfo & INSN_WRITE_COND_CODE))
7099 return FALSE;
7100 if ((pinfo & INSN_WRITE_COND_CODE)
7101 && (prev_pinfo & INSN_READ_COND_CODE))
7102 return FALSE;
7103
7104 /* If the previous instruction uses the PC, we can not swap. */
7105 prev_pinfo2 = history[0].insn_mo->pinfo2;
7106 if (prev_pinfo2 & INSN2_READ_PC)
7107 return FALSE;
7108
7109 /* If the previous instruction has an incorrect size for a fixed
7110 branch delay slot in microMIPS mode, we cannot swap. */
7111 pinfo2 = ip->insn_mo->pinfo2;
7112 if (mips_opts.micromips
7113 && (pinfo2 & INSN2_BRANCH_DELAY_16BIT)
7114 && insn_length (history) != 2)
7115 return FALSE;
7116 if (mips_opts.micromips
7117 && (pinfo2 & INSN2_BRANCH_DELAY_32BIT)
7118 && insn_length (history) != 4)
7119 return FALSE;
7120
7121 /* On the R5900 short loops need to be fixed by inserting a NOP in the
7122 branch delay slot.
7123
7124 The short loop bug under certain conditions causes loops to execute
7125 only once or twice. We must ensure that the assembler never
7126 generates loops that satisfy all of the following conditions:
7127
7128 - a loop consists of less than or equal to six instructions
7129 (including the branch delay slot);
7130 - a loop contains only one conditional branch instruction at the end
7131 of the loop;
7132 - a loop does not contain any other branch or jump instructions;
7133 - a branch delay slot of the loop is not NOP (EE 2.9 or later).
7134
7135 We need to do this because of a hardware bug in the R5900 chip. */
7136 if (mips_fix_r5900
7137 /* Check if instruction has a parameter, ignore "j $31". */
7138 && (address_expr != NULL)
7139 /* Parameter must be 16 bit. */
7140 && (*reloc_type == BFD_RELOC_16_PCREL_S2)
7141 /* Branch to same segment. */
7142 && (S_GET_SEGMENT (address_expr->X_add_symbol) == now_seg)
7143 /* Branch to same code fragment. */
7144 && (symbol_get_frag (address_expr->X_add_symbol) == frag_now)
7145 /* Can only calculate branch offset if value is known. */
7146 && symbol_constant_p (address_expr->X_add_symbol)
7147 /* Check if branch is really conditional. */
7148 && !((ip->insn_opcode & 0xffff0000) == 0x10000000 /* beq $0,$0 */
7149 || (ip->insn_opcode & 0xffff0000) == 0x04010000 /* bgez $0 */
7150 || (ip->insn_opcode & 0xffff0000) == 0x04110000)) /* bgezal $0 */
7151 {
7152 int distance;
7153 /* Check if loop is shorter than or equal to 6 instructions
7154 including branch and delay slot. */
7155 distance = frag_now_fix () - S_GET_VALUE (address_expr->X_add_symbol);
7156 if (distance <= 20)
7157 {
7158 int i;
7159 int rv;
7160
7161 rv = FALSE;
7162 /* When the loop includes branches or jumps,
7163 it is not a short loop. */
7164 for (i = 0; i < (distance / 4); i++)
7165 {
7166 if ((history[i].cleared_p)
7167 || delayed_branch_p (&history[i]))
7168 {
7169 rv = TRUE;
7170 break;
7171 }
7172 }
7173 if (!rv)
7174 {
7175 /* Insert nop after branch to fix short loop. */
7176 return FALSE;
7177 }
7178 }
7179 }
7180
7181 return TRUE;
7182 }
7183
7184 /* Decide how we should add IP to the instruction stream.
7185 ADDRESS_EXPR is an operand of the instruction to be used with
7186 RELOC_TYPE. */
7187
7188 static enum append_method
7189 get_append_method (struct mips_cl_insn *ip, expressionS *address_expr,
7190 bfd_reloc_code_real_type *reloc_type)
7191 {
7192 /* The relaxed version of a macro sequence must be inherently
7193 hazard-free. */
7194 if (mips_relax.sequence == 2)
7195 return APPEND_ADD;
7196
7197 /* We must not dabble with instructions in a ".set noreorder" block. */
7198 if (mips_opts.noreorder)
7199 return APPEND_ADD;
7200
7201 /* Otherwise, it's our responsibility to fill branch delay slots. */
7202 if (delayed_branch_p (ip))
7203 {
7204 if (!branch_likely_p (ip)
7205 && can_swap_branch_p (ip, address_expr, reloc_type))
7206 return APPEND_SWAP;
7207
7208 if (mips_opts.mips16
7209 && ISA_SUPPORTS_MIPS16E
7210 && gpr_read_mask (ip) != 0)
7211 return APPEND_ADD_COMPACT;
7212
7213 if (mips_opts.micromips
7214 && ((ip->insn_opcode & 0xffe0) == 0x4580
7215 || (!forced_insn_length
7216 && ((ip->insn_opcode & 0xfc00) == 0xcc00
7217 || (ip->insn_opcode & 0xdc00) == 0x8c00))
7218 || (ip->insn_opcode & 0xdfe00000) == 0x94000000
7219 || (ip->insn_opcode & 0xdc1f0000) == 0x94000000))
7220 return APPEND_ADD_COMPACT;
7221
7222 return APPEND_ADD_WITH_NOP;
7223 }
7224
7225 return APPEND_ADD;
7226 }
7227
7228 /* IP is an instruction whose opcode we have just changed, END points
7229 to the end of the opcode table processed. Point IP->insn_mo to the
7230 new opcode's definition. */
7231
7232 static void
7233 find_altered_opcode (struct mips_cl_insn *ip, const struct mips_opcode *end)
7234 {
7235 const struct mips_opcode *mo;
7236
7237 for (mo = ip->insn_mo; mo < end; mo++)
7238 if (mo->pinfo != INSN_MACRO
7239 && (ip->insn_opcode & mo->mask) == mo->match)
7240 {
7241 ip->insn_mo = mo;
7242 return;
7243 }
7244 abort ();
7245 }
7246
7247 /* IP is a MIPS16 instruction whose opcode we have just changed.
7248 Point IP->insn_mo to the new opcode's definition. */
7249
7250 static void
7251 find_altered_mips16_opcode (struct mips_cl_insn *ip)
7252 {
7253 find_altered_opcode (ip, &mips16_opcodes[bfd_mips16_num_opcodes]);
7254 }
7255
7256 /* IP is a microMIPS instruction whose opcode we have just changed.
7257 Point IP->insn_mo to the new opcode's definition. */
7258
7259 static void
7260 find_altered_micromips_opcode (struct mips_cl_insn *ip)
7261 {
7262 find_altered_opcode (ip, &micromips_opcodes[bfd_micromips_num_opcodes]);
7263 }
7264
7265 /* For microMIPS macros, we need to generate a local number label
7266 as the target of branches. */
7267 #define MICROMIPS_LABEL_CHAR '\037'
7268 static unsigned long micromips_target_label;
7269 static char micromips_target_name[32];
7270
7271 static char *
7272 micromips_label_name (void)
7273 {
7274 char *p = micromips_target_name;
7275 char symbol_name_temporary[24];
7276 unsigned long l;
7277 int i;
7278
7279 if (*p)
7280 return p;
7281
7282 i = 0;
7283 l = micromips_target_label;
7284 #ifdef LOCAL_LABEL_PREFIX
7285 *p++ = LOCAL_LABEL_PREFIX;
7286 #endif
7287 *p++ = 'L';
7288 *p++ = MICROMIPS_LABEL_CHAR;
7289 do
7290 {
7291 symbol_name_temporary[i++] = l % 10 + '0';
7292 l /= 10;
7293 }
7294 while (l != 0);
7295 while (i > 0)
7296 *p++ = symbol_name_temporary[--i];
7297 *p = '\0';
7298
7299 return micromips_target_name;
7300 }
7301
7302 static void
7303 micromips_label_expr (expressionS *label_expr)
7304 {
7305 label_expr->X_op = O_symbol;
7306 label_expr->X_add_symbol = symbol_find_or_make (micromips_label_name ());
7307 label_expr->X_add_number = 0;
7308 }
7309
7310 static void
7311 micromips_label_inc (void)
7312 {
7313 micromips_target_label++;
7314 *micromips_target_name = '\0';
7315 }
7316
7317 static void
7318 micromips_add_label (void)
7319 {
7320 symbolS *s;
7321
7322 s = colon (micromips_label_name ());
7323 micromips_label_inc ();
7324 S_SET_OTHER (s, ELF_ST_SET_MICROMIPS (S_GET_OTHER (s)));
7325 }
7326
7327 /* If assembling microMIPS code, then return the microMIPS reloc
7328 corresponding to the requested one if any. Otherwise return
7329 the reloc unchanged. */
7330
7331 static bfd_reloc_code_real_type
7332 micromips_map_reloc (bfd_reloc_code_real_type reloc)
7333 {
7334 static const bfd_reloc_code_real_type relocs[][2] =
7335 {
7336 /* Keep sorted incrementally by the left-hand key. */
7337 { BFD_RELOC_16_PCREL_S2, BFD_RELOC_MICROMIPS_16_PCREL_S1 },
7338 { BFD_RELOC_GPREL16, BFD_RELOC_MICROMIPS_GPREL16 },
7339 { BFD_RELOC_MIPS_JMP, BFD_RELOC_MICROMIPS_JMP },
7340 { BFD_RELOC_HI16, BFD_RELOC_MICROMIPS_HI16 },
7341 { BFD_RELOC_HI16_S, BFD_RELOC_MICROMIPS_HI16_S },
7342 { BFD_RELOC_LO16, BFD_RELOC_MICROMIPS_LO16 },
7343 { BFD_RELOC_MIPS_LITERAL, BFD_RELOC_MICROMIPS_LITERAL },
7344 { BFD_RELOC_MIPS_GOT16, BFD_RELOC_MICROMIPS_GOT16 },
7345 { BFD_RELOC_MIPS_CALL16, BFD_RELOC_MICROMIPS_CALL16 },
7346 { BFD_RELOC_MIPS_GOT_HI16, BFD_RELOC_MICROMIPS_GOT_HI16 },
7347 { BFD_RELOC_MIPS_GOT_LO16, BFD_RELOC_MICROMIPS_GOT_LO16 },
7348 { BFD_RELOC_MIPS_CALL_HI16, BFD_RELOC_MICROMIPS_CALL_HI16 },
7349 { BFD_RELOC_MIPS_CALL_LO16, BFD_RELOC_MICROMIPS_CALL_LO16 },
7350 { BFD_RELOC_MIPS_SUB, BFD_RELOC_MICROMIPS_SUB },
7351 { BFD_RELOC_MIPS_GOT_PAGE, BFD_RELOC_MICROMIPS_GOT_PAGE },
7352 { BFD_RELOC_MIPS_GOT_OFST, BFD_RELOC_MICROMIPS_GOT_OFST },
7353 { BFD_RELOC_MIPS_GOT_DISP, BFD_RELOC_MICROMIPS_GOT_DISP },
7354 { BFD_RELOC_MIPS_HIGHEST, BFD_RELOC_MICROMIPS_HIGHEST },
7355 { BFD_RELOC_MIPS_HIGHER, BFD_RELOC_MICROMIPS_HIGHER },
7356 { BFD_RELOC_MIPS_SCN_DISP, BFD_RELOC_MICROMIPS_SCN_DISP },
7357 { BFD_RELOC_MIPS_TLS_GD, BFD_RELOC_MICROMIPS_TLS_GD },
7358 { BFD_RELOC_MIPS_TLS_LDM, BFD_RELOC_MICROMIPS_TLS_LDM },
7359 { BFD_RELOC_MIPS_TLS_DTPREL_HI16, BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16 },
7360 { BFD_RELOC_MIPS_TLS_DTPREL_LO16, BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16 },
7361 { BFD_RELOC_MIPS_TLS_GOTTPREL, BFD_RELOC_MICROMIPS_TLS_GOTTPREL },
7362 { BFD_RELOC_MIPS_TLS_TPREL_HI16, BFD_RELOC_MICROMIPS_TLS_TPREL_HI16 },
7363 { BFD_RELOC_MIPS_TLS_TPREL_LO16, BFD_RELOC_MICROMIPS_TLS_TPREL_LO16 }
7364 };
7365 bfd_reloc_code_real_type r;
7366 size_t i;
7367
7368 if (!mips_opts.micromips)
7369 return reloc;
7370 for (i = 0; i < ARRAY_SIZE (relocs); i++)
7371 {
7372 r = relocs[i][0];
7373 if (r > reloc)
7374 return reloc;
7375 if (r == reloc)
7376 return relocs[i][1];
7377 }
7378 return reloc;
7379 }
7380
7381 /* Try to resolve relocation RELOC against constant OPERAND at assembly time.
7382 Return true on success, storing the resolved value in RESULT. */
7383
7384 static bfd_boolean
7385 calculate_reloc (bfd_reloc_code_real_type reloc, offsetT operand,
7386 offsetT *result)
7387 {
7388 switch (reloc)
7389 {
7390 case BFD_RELOC_MIPS_HIGHEST:
7391 case BFD_RELOC_MICROMIPS_HIGHEST:
7392 *result = ((operand + 0x800080008000ull) >> 48) & 0xffff;
7393 return TRUE;
7394
7395 case BFD_RELOC_MIPS_HIGHER:
7396 case BFD_RELOC_MICROMIPS_HIGHER:
7397 *result = ((operand + 0x80008000ull) >> 32) & 0xffff;
7398 return TRUE;
7399
7400 case BFD_RELOC_HI16_S:
7401 case BFD_RELOC_HI16_S_PCREL:
7402 case BFD_RELOC_MICROMIPS_HI16_S:
7403 case BFD_RELOC_MIPS16_HI16_S:
7404 *result = ((operand + 0x8000) >> 16) & 0xffff;
7405 return TRUE;
7406
7407 case BFD_RELOC_HI16:
7408 case BFD_RELOC_MICROMIPS_HI16:
7409 case BFD_RELOC_MIPS16_HI16:
7410 *result = (operand >> 16) & 0xffff;
7411 return TRUE;
7412
7413 case BFD_RELOC_LO16:
7414 case BFD_RELOC_LO16_PCREL:
7415 case BFD_RELOC_MICROMIPS_LO16:
7416 case BFD_RELOC_MIPS16_LO16:
7417 *result = operand & 0xffff;
7418 return TRUE;
7419
7420 case BFD_RELOC_UNUSED:
7421 *result = operand;
7422 return TRUE;
7423
7424 default:
7425 return FALSE;
7426 }
7427 }
7428
7429 /* Output an instruction. IP is the instruction information.
7430 ADDRESS_EXPR is an operand of the instruction to be used with
7431 RELOC_TYPE. EXPANSIONP is true if the instruction is part of
7432 a macro expansion. */
7433
7434 static void
7435 append_insn (struct mips_cl_insn *ip, expressionS *address_expr,
7436 bfd_reloc_code_real_type *reloc_type, bfd_boolean expansionp)
7437 {
7438 unsigned long prev_pinfo2, pinfo;
7439 bfd_boolean relaxed_branch = FALSE;
7440 enum append_method method;
7441 bfd_boolean relax32;
7442 int branch_disp;
7443
7444 if (mips_fix_loongson2f && !HAVE_CODE_COMPRESSION)
7445 fix_loongson2f (ip);
7446
7447 ip->target[0] = '\0';
7448 if (offset_expr.X_op == O_symbol)
7449 strncpy (ip->target, S_GET_NAME (offset_expr.X_add_symbol), 15);
7450 ip->label[0] = '\0';
7451 if (seg_info (now_seg)->label_list)
7452 strncpy (ip->label, S_GET_NAME (seg_info (now_seg)->label_list->label), 15);
7453 if (mips_fix_loongson3_llsc && !HAVE_CODE_COMPRESSION)
7454 fix_loongson3_llsc (ip);
7455
7456 file_ase_mips16 |= mips_opts.mips16;
7457 file_ase_micromips |= mips_opts.micromips;
7458
7459 prev_pinfo2 = history[0].insn_mo->pinfo2;
7460 pinfo = ip->insn_mo->pinfo;
7461
7462 /* Don't raise alarm about `nods' frags as they'll fill in the right
7463 kind of nop in relaxation if required. */
7464 if (mips_opts.micromips
7465 && !expansionp
7466 && !(history[0].frag
7467 && history[0].frag->fr_type == rs_machine_dependent
7468 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
7469 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
7470 && (((prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0
7471 && micromips_insn_length (ip->insn_mo) != 2)
7472 || ((prev_pinfo2 & INSN2_BRANCH_DELAY_32BIT) != 0
7473 && micromips_insn_length (ip->insn_mo) != 4)))
7474 as_warn (_("wrong size instruction in a %u-bit branch delay slot"),
7475 (prev_pinfo2 & INSN2_BRANCH_DELAY_16BIT) != 0 ? 16 : 32);
7476
7477 if (address_expr == NULL)
7478 ip->complete_p = 1;
7479 else if (reloc_type[0] <= BFD_RELOC_UNUSED
7480 && reloc_type[1] == BFD_RELOC_UNUSED
7481 && reloc_type[2] == BFD_RELOC_UNUSED
7482 && address_expr->X_op == O_constant)
7483 {
7484 switch (*reloc_type)
7485 {
7486 case BFD_RELOC_MIPS_JMP:
7487 {
7488 int shift;
7489
7490 /* Shift is 2, unusually, for microMIPS JALX. */
7491 shift = (mips_opts.micromips
7492 && strcmp (ip->insn_mo->name, "jalx") != 0) ? 1 : 2;
7493 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7494 as_bad (_("jump to misaligned address (0x%lx)"),
7495 (unsigned long) address_expr->X_add_number);
7496 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7497 & 0x3ffffff);
7498 ip->complete_p = 1;
7499 }
7500 break;
7501
7502 case BFD_RELOC_MIPS16_JMP:
7503 if ((address_expr->X_add_number & 3) != 0)
7504 as_bad (_("jump to misaligned address (0x%lx)"),
7505 (unsigned long) address_expr->X_add_number);
7506 ip->insn_opcode |=
7507 (((address_expr->X_add_number & 0x7c0000) << 3)
7508 | ((address_expr->X_add_number & 0xf800000) >> 7)
7509 | ((address_expr->X_add_number & 0x3fffc) >> 2));
7510 ip->complete_p = 1;
7511 break;
7512
7513 case BFD_RELOC_16_PCREL_S2:
7514 {
7515 int shift;
7516
7517 shift = mips_opts.micromips ? 1 : 2;
7518 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7519 as_bad (_("branch to misaligned address (0x%lx)"),
7520 (unsigned long) address_expr->X_add_number);
7521 if (!mips_relax_branch)
7522 {
7523 if ((address_expr->X_add_number + (1 << (shift + 15)))
7524 & ~((1 << (shift + 16)) - 1))
7525 as_bad (_("branch address range overflow (0x%lx)"),
7526 (unsigned long) address_expr->X_add_number);
7527 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7528 & 0xffff);
7529 }
7530 }
7531 break;
7532
7533 case BFD_RELOC_MIPS_21_PCREL_S2:
7534 {
7535 int shift;
7536
7537 shift = 2;
7538 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7539 as_bad (_("branch to misaligned address (0x%lx)"),
7540 (unsigned long) address_expr->X_add_number);
7541 if ((address_expr->X_add_number + (1 << (shift + 20)))
7542 & ~((1 << (shift + 21)) - 1))
7543 as_bad (_("branch address range overflow (0x%lx)"),
7544 (unsigned long) address_expr->X_add_number);
7545 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7546 & 0x1fffff);
7547 }
7548 break;
7549
7550 case BFD_RELOC_MIPS_26_PCREL_S2:
7551 {
7552 int shift;
7553
7554 shift = 2;
7555 if ((address_expr->X_add_number & ((1 << shift) - 1)) != 0)
7556 as_bad (_("branch to misaligned address (0x%lx)"),
7557 (unsigned long) address_expr->X_add_number);
7558 if ((address_expr->X_add_number + (1 << (shift + 25)))
7559 & ~((1 << (shift + 26)) - 1))
7560 as_bad (_("branch address range overflow (0x%lx)"),
7561 (unsigned long) address_expr->X_add_number);
7562 ip->insn_opcode |= ((address_expr->X_add_number >> shift)
7563 & 0x3ffffff);
7564 }
7565 break;
7566
7567 default:
7568 {
7569 offsetT value;
7570
7571 if (calculate_reloc (*reloc_type, address_expr->X_add_number,
7572 &value))
7573 {
7574 ip->insn_opcode |= value & 0xffff;
7575 ip->complete_p = 1;
7576 }
7577 }
7578 break;
7579 }
7580 }
7581
7582 if (mips_relax.sequence != 2 && !mips_opts.noreorder)
7583 {
7584 /* There are a lot of optimizations we could do that we don't.
7585 In particular, we do not, in general, reorder instructions.
7586 If you use gcc with optimization, it will reorder
7587 instructions and generally do much more optimization then we
7588 do here; repeating all that work in the assembler would only
7589 benefit hand written assembly code, and does not seem worth
7590 it. */
7591 int nops = (mips_optimize == 0
7592 ? nops_for_insn (0, history, NULL)
7593 : nops_for_insn_or_target (0, history, ip));
7594 if (nops > 0)
7595 {
7596 fragS *old_frag;
7597 unsigned long old_frag_offset;
7598 int i;
7599
7600 old_frag = frag_now;
7601 old_frag_offset = frag_now_fix ();
7602
7603 for (i = 0; i < nops; i++)
7604 add_fixed_insn (NOP_INSN);
7605 insert_into_history (0, nops, NOP_INSN);
7606
7607 if (listing)
7608 {
7609 listing_prev_line ();
7610 /* We may be at the start of a variant frag. In case we
7611 are, make sure there is enough space for the frag
7612 after the frags created by listing_prev_line. The
7613 argument to frag_grow here must be at least as large
7614 as the argument to all other calls to frag_grow in
7615 this file. We don't have to worry about being in the
7616 middle of a variant frag, because the variants insert
7617 all needed nop instructions themselves. */
7618 frag_grow (40);
7619 }
7620
7621 mips_move_text_labels ();
7622
7623 #ifndef NO_ECOFF_DEBUGGING
7624 if (ECOFF_DEBUGGING)
7625 ecoff_fix_loc (old_frag, old_frag_offset);
7626 #endif
7627 }
7628 }
7629 else if (mips_relax.sequence != 2 && prev_nop_frag != NULL)
7630 {
7631 int nops;
7632
7633 /* Work out how many nops in prev_nop_frag are needed by IP,
7634 ignoring hazards generated by the first prev_nop_frag_since
7635 instructions. */
7636 nops = nops_for_insn_or_target (prev_nop_frag_since, history, ip);
7637 gas_assert (nops <= prev_nop_frag_holds);
7638
7639 /* Enforce NOPS as a minimum. */
7640 if (nops > prev_nop_frag_required)
7641 prev_nop_frag_required = nops;
7642
7643 if (prev_nop_frag_holds == prev_nop_frag_required)
7644 {
7645 /* Settle for the current number of nops. Update the history
7646 accordingly (for the benefit of any future .set reorder code). */
7647 prev_nop_frag = NULL;
7648 insert_into_history (prev_nop_frag_since,
7649 prev_nop_frag_holds, NOP_INSN);
7650 }
7651 else
7652 {
7653 /* Allow this instruction to replace one of the nops that was
7654 tentatively added to prev_nop_frag. */
7655 prev_nop_frag->fr_fix -= NOP_INSN_SIZE;
7656 prev_nop_frag_holds--;
7657 prev_nop_frag_since++;
7658 }
7659 }
7660
7661 method = get_append_method (ip, address_expr, reloc_type);
7662 branch_disp = method == APPEND_SWAP ? insn_length (history) : 0;
7663
7664 dwarf2_emit_insn (0);
7665 /* We want MIPS16 and microMIPS debug info to use ISA-encoded addresses,
7666 so "move" the instruction address accordingly.
7667
7668 Also, it doesn't seem appropriate for the assembler to reorder .loc
7669 entries. If this instruction is a branch that we are going to swap
7670 with the previous instruction, the two instructions should be
7671 treated as a unit, and the debug information for both instructions
7672 should refer to the start of the branch sequence. Using the
7673 current position is certainly wrong when swapping a 32-bit branch
7674 and a 16-bit delay slot, since the current position would then be
7675 in the middle of a branch. */
7676 dwarf2_move_insn ((HAVE_CODE_COMPRESSION ? 1 : 0) - branch_disp);
7677
7678 relax32 = (mips_relax_branch
7679 /* Don't try branch relaxation within .set nomacro, or within
7680 .set noat if we use $at for PIC computations. If it turns
7681 out that the branch was out-of-range, we'll get an error. */
7682 && !mips_opts.warn_about_macros
7683 && (mips_opts.at || mips_pic == NO_PIC)
7684 /* Don't relax BPOSGE32/64 or BC1ANY2T/F and BC1ANY4T/F
7685 as they have no complementing branches. */
7686 && !(ip->insn_mo->ase & (ASE_MIPS3D | ASE_DSP64 | ASE_DSP)));
7687
7688 if (!HAVE_CODE_COMPRESSION
7689 && address_expr
7690 && relax32
7691 && *reloc_type == BFD_RELOC_16_PCREL_S2
7692 && delayed_branch_p (ip))
7693 {
7694 relaxed_branch = TRUE;
7695 add_relaxed_insn (ip, (relaxed_branch_length
7696 (NULL, NULL,
7697 uncond_branch_p (ip) ? -1
7698 : branch_likely_p (ip) ? 1
7699 : 0)), 4,
7700 RELAX_BRANCH_ENCODE
7701 (AT, mips_pic != NO_PIC,
7702 uncond_branch_p (ip),
7703 branch_likely_p (ip),
7704 pinfo & INSN_WRITE_GPR_31,
7705 0),
7706 address_expr->X_add_symbol,
7707 address_expr->X_add_number);
7708 *reloc_type = BFD_RELOC_UNUSED;
7709 }
7710 else if (mips_opts.micromips
7711 && address_expr
7712 && ((relax32 && *reloc_type == BFD_RELOC_16_PCREL_S2)
7713 || *reloc_type > BFD_RELOC_UNUSED)
7714 && (delayed_branch_p (ip) || compact_branch_p (ip))
7715 /* Don't try branch relaxation when users specify
7716 16-bit/32-bit instructions. */
7717 && !forced_insn_length)
7718 {
7719 bfd_boolean relax16 = (method != APPEND_ADD_COMPACT
7720 && *reloc_type > BFD_RELOC_UNUSED);
7721 int type = relax16 ? *reloc_type - BFD_RELOC_UNUSED : 0;
7722 int uncond = uncond_branch_p (ip) ? -1 : 0;
7723 int compact = compact_branch_p (ip) || method == APPEND_ADD_COMPACT;
7724 int nods = method == APPEND_ADD_WITH_NOP;
7725 int al = pinfo & INSN_WRITE_GPR_31;
7726 int length32 = nods ? 8 : 4;
7727
7728 gas_assert (address_expr != NULL);
7729 gas_assert (!mips_relax.sequence);
7730
7731 relaxed_branch = TRUE;
7732 if (nods)
7733 method = APPEND_ADD;
7734 if (relax32)
7735 length32 = relaxed_micromips_32bit_branch_length (NULL, NULL, uncond);
7736 add_relaxed_insn (ip, length32, relax16 ? 2 : 4,
7737 RELAX_MICROMIPS_ENCODE (type, AT, mips_opts.insn32,
7738 mips_pic != NO_PIC,
7739 uncond, compact, al, nods,
7740 relax32, 0, 0),
7741 address_expr->X_add_symbol,
7742 address_expr->X_add_number);
7743 *reloc_type = BFD_RELOC_UNUSED;
7744 }
7745 else if (mips_opts.mips16 && *reloc_type > BFD_RELOC_UNUSED)
7746 {
7747 bfd_boolean require_unextended;
7748 bfd_boolean require_extended;
7749 symbolS *symbol;
7750 offsetT offset;
7751
7752 if (forced_insn_length != 0)
7753 {
7754 require_unextended = forced_insn_length == 2;
7755 require_extended = forced_insn_length == 4;
7756 }
7757 else
7758 {
7759 require_unextended = (mips_opts.noautoextend
7760 && !mips_opcode_32bit_p (ip->insn_mo));
7761 require_extended = 0;
7762 }
7763
7764 /* We need to set up a variant frag. */
7765 gas_assert (address_expr != NULL);
7766 /* Pass any `O_symbol' expression unchanged as an `expr_section'
7767 symbol created by `make_expr_symbol' may not get a necessary
7768 external relocation produced. */
7769 if (address_expr->X_op == O_symbol)
7770 {
7771 symbol = address_expr->X_add_symbol;
7772 offset = address_expr->X_add_number;
7773 }
7774 else
7775 {
7776 symbol = make_expr_symbol (address_expr);
7777 symbol_append (symbol, symbol_lastP, &symbol_rootP, &symbol_lastP);
7778 offset = 0;
7779 }
7780 add_relaxed_insn (ip, 12, 0,
7781 RELAX_MIPS16_ENCODE
7782 (*reloc_type - BFD_RELOC_UNUSED,
7783 mips_opts.ase & ASE_MIPS16E2,
7784 mips_pic != NO_PIC,
7785 HAVE_32BIT_SYMBOLS,
7786 mips_opts.warn_about_macros,
7787 require_unextended, require_extended,
7788 delayed_branch_p (&history[0]),
7789 history[0].mips16_absolute_jump_p),
7790 symbol, offset);
7791 }
7792 else if (mips_opts.mips16 && insn_length (ip) == 2)
7793 {
7794 if (!delayed_branch_p (ip))
7795 /* Make sure there is enough room to swap this instruction with
7796 a following jump instruction. */
7797 frag_grow (6);
7798 add_fixed_insn (ip);
7799 }
7800 else
7801 {
7802 if (mips_opts.mips16
7803 && mips_opts.noreorder
7804 && delayed_branch_p (&history[0]))
7805 as_warn (_("extended instruction in delay slot"));
7806
7807 if (mips_relax.sequence)
7808 {
7809 /* If we've reached the end of this frag, turn it into a variant
7810 frag and record the information for the instructions we've
7811 written so far. */
7812 if (frag_room () < 4)
7813 relax_close_frag ();
7814 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (ip);
7815 }
7816
7817 if (mips_relax.sequence != 2)
7818 {
7819 if (mips_macro_warning.first_insn_sizes[0] == 0)
7820 mips_macro_warning.first_insn_sizes[0] = insn_length (ip);
7821 mips_macro_warning.sizes[0] += insn_length (ip);
7822 mips_macro_warning.insns[0]++;
7823 }
7824 if (mips_relax.sequence != 1)
7825 {
7826 if (mips_macro_warning.first_insn_sizes[1] == 0)
7827 mips_macro_warning.first_insn_sizes[1] = insn_length (ip);
7828 mips_macro_warning.sizes[1] += insn_length (ip);
7829 mips_macro_warning.insns[1]++;
7830 }
7831
7832 if (mips_opts.mips16)
7833 {
7834 ip->fixed_p = 1;
7835 ip->mips16_absolute_jump_p = (*reloc_type == BFD_RELOC_MIPS16_JMP);
7836 }
7837 add_fixed_insn (ip);
7838 }
7839
7840 if (!ip->complete_p && *reloc_type < BFD_RELOC_UNUSED)
7841 {
7842 bfd_reloc_code_real_type final_type[3];
7843 reloc_howto_type *howto0;
7844 reloc_howto_type *howto;
7845 int i;
7846
7847 /* Perform any necessary conversion to microMIPS relocations
7848 and find out how many relocations there actually are. */
7849 for (i = 0; i < 3 && reloc_type[i] != BFD_RELOC_UNUSED; i++)
7850 final_type[i] = micromips_map_reloc (reloc_type[i]);
7851
7852 /* In a compound relocation, it is the final (outermost)
7853 operator that determines the relocated field. */
7854 howto = howto0 = bfd_reloc_type_lookup (stdoutput, final_type[i - 1]);
7855 if (!howto)
7856 abort ();
7857
7858 if (i > 1)
7859 howto0 = bfd_reloc_type_lookup (stdoutput, final_type[0]);
7860 ip->fixp[0] = fix_new_exp (ip->frag, ip->where,
7861 bfd_get_reloc_size (howto),
7862 address_expr,
7863 howto0 && howto0->pc_relative,
7864 final_type[0]);
7865 /* Record non-PIC mode in `fx_tcbit2' for `md_apply_fix'. */
7866 ip->fixp[0]->fx_tcbit2 = mips_pic == NO_PIC;
7867
7868 /* Tag symbols that have a R_MIPS16_26 relocation against them. */
7869 if (final_type[0] == BFD_RELOC_MIPS16_JMP && ip->fixp[0]->fx_addsy)
7870 *symbol_get_tc (ip->fixp[0]->fx_addsy) = 1;
7871
7872 /* These relocations can have an addend that won't fit in
7873 4 octets for 64bit assembly. */
7874 if (GPR_SIZE == 64
7875 && ! howto->partial_inplace
7876 && (reloc_type[0] == BFD_RELOC_16
7877 || reloc_type[0] == BFD_RELOC_32
7878 || reloc_type[0] == BFD_RELOC_MIPS_JMP
7879 || reloc_type[0] == BFD_RELOC_GPREL16
7880 || reloc_type[0] == BFD_RELOC_MIPS_LITERAL
7881 || reloc_type[0] == BFD_RELOC_GPREL32
7882 || reloc_type[0] == BFD_RELOC_64
7883 || reloc_type[0] == BFD_RELOC_CTOR
7884 || reloc_type[0] == BFD_RELOC_MIPS_SUB
7885 || reloc_type[0] == BFD_RELOC_MIPS_HIGHEST
7886 || reloc_type[0] == BFD_RELOC_MIPS_HIGHER
7887 || reloc_type[0] == BFD_RELOC_MIPS_SCN_DISP
7888 || reloc_type[0] == BFD_RELOC_MIPS_REL16
7889 || reloc_type[0] == BFD_RELOC_MIPS_RELGOT
7890 || reloc_type[0] == BFD_RELOC_MIPS16_GPREL
7891 || hi16_reloc_p (reloc_type[0])
7892 || lo16_reloc_p (reloc_type[0])))
7893 ip->fixp[0]->fx_no_overflow = 1;
7894
7895 /* These relocations can have an addend that won't fit in 2 octets. */
7896 if (reloc_type[0] == BFD_RELOC_MICROMIPS_7_PCREL_S1
7897 || reloc_type[0] == BFD_RELOC_MICROMIPS_10_PCREL_S1)
7898 ip->fixp[0]->fx_no_overflow = 1;
7899
7900 if (mips_relax.sequence)
7901 {
7902 if (mips_relax.first_fixup == 0)
7903 mips_relax.first_fixup = ip->fixp[0];
7904 }
7905 else if (reloc_needs_lo_p (*reloc_type))
7906 {
7907 struct mips_hi_fixup *hi_fixup;
7908
7909 /* Reuse the last entry if it already has a matching %lo. */
7910 hi_fixup = mips_hi_fixup_list;
7911 if (hi_fixup == 0
7912 || !fixup_has_matching_lo_p (hi_fixup->fixp))
7913 {
7914 hi_fixup = XNEW (struct mips_hi_fixup);
7915 hi_fixup->next = mips_hi_fixup_list;
7916 mips_hi_fixup_list = hi_fixup;
7917 }
7918 hi_fixup->fixp = ip->fixp[0];
7919 hi_fixup->seg = now_seg;
7920 }
7921
7922 /* Add fixups for the second and third relocations, if given.
7923 Note that the ABI allows the second relocation to be
7924 against RSS_UNDEF, RSS_GP, RSS_GP0 or RSS_LOC. At the
7925 moment we only use RSS_UNDEF, but we could add support
7926 for the others if it ever becomes necessary. */
7927 for (i = 1; i < 3; i++)
7928 if (reloc_type[i] != BFD_RELOC_UNUSED)
7929 {
7930 ip->fixp[i] = fix_new (ip->frag, ip->where,
7931 ip->fixp[0]->fx_size, NULL, 0,
7932 FALSE, final_type[i]);
7933
7934 /* Use fx_tcbit to mark compound relocs. */
7935 ip->fixp[0]->fx_tcbit = 1;
7936 ip->fixp[i]->fx_tcbit = 1;
7937 }
7938 }
7939
7940 /* Update the register mask information. */
7941 mips_gprmask |= gpr_read_mask (ip) | gpr_write_mask (ip);
7942 mips_cprmask[1] |= fpr_read_mask (ip) | fpr_write_mask (ip);
7943
7944 switch (method)
7945 {
7946 case APPEND_ADD:
7947 insert_into_history (0, 1, ip);
7948 break;
7949
7950 case APPEND_ADD_WITH_NOP:
7951 {
7952 struct mips_cl_insn *nop;
7953
7954 insert_into_history (0, 1, ip);
7955 nop = get_delay_slot_nop (ip);
7956 add_fixed_insn (nop);
7957 insert_into_history (0, 1, nop);
7958 if (mips_relax.sequence)
7959 mips_relax.sizes[mips_relax.sequence - 1] += insn_length (nop);
7960 }
7961 break;
7962
7963 case APPEND_ADD_COMPACT:
7964 /* Convert MIPS16 jr/jalr into a "compact" jump. */
7965 if (mips_opts.mips16)
7966 {
7967 ip->insn_opcode |= 0x0080;
7968 find_altered_mips16_opcode (ip);
7969 }
7970 /* Convert microMIPS instructions. */
7971 else if (mips_opts.micromips)
7972 {
7973 /* jr16->jrc */
7974 if ((ip->insn_opcode & 0xffe0) == 0x4580)
7975 ip->insn_opcode |= 0x0020;
7976 /* b16->bc */
7977 else if ((ip->insn_opcode & 0xfc00) == 0xcc00)
7978 ip->insn_opcode = 0x40e00000;
7979 /* beqz16->beqzc, bnez16->bnezc */
7980 else if ((ip->insn_opcode & 0xdc00) == 0x8c00)
7981 {
7982 unsigned long regno;
7983
7984 regno = ip->insn_opcode >> MICROMIPSOP_SH_MD;
7985 regno &= MICROMIPSOP_MASK_MD;
7986 regno = micromips_to_32_reg_d_map[regno];
7987 ip->insn_opcode = (((ip->insn_opcode << 9) & 0x00400000)
7988 | (regno << MICROMIPSOP_SH_RS)
7989 | 0x40a00000) ^ 0x00400000;
7990 }
7991 /* beqz->beqzc, bnez->bnezc */
7992 else if ((ip->insn_opcode & 0xdfe00000) == 0x94000000)
7993 ip->insn_opcode = ((ip->insn_opcode & 0x001f0000)
7994 | ((ip->insn_opcode >> 7) & 0x00400000)
7995 | 0x40a00000) ^ 0x00400000;
7996 /* beq $0->beqzc, bne $0->bnezc */
7997 else if ((ip->insn_opcode & 0xdc1f0000) == 0x94000000)
7998 ip->insn_opcode = (((ip->insn_opcode >>
7999 (MICROMIPSOP_SH_RT - MICROMIPSOP_SH_RS))
8000 & (MICROMIPSOP_MASK_RS << MICROMIPSOP_SH_RS))
8001 | ((ip->insn_opcode >> 7) & 0x00400000)
8002 | 0x40a00000) ^ 0x00400000;
8003 else
8004 abort ();
8005 find_altered_micromips_opcode (ip);
8006 }
8007 else
8008 abort ();
8009 install_insn (ip);
8010 insert_into_history (0, 1, ip);
8011 break;
8012
8013 case APPEND_SWAP:
8014 {
8015 struct mips_cl_insn delay = history[0];
8016
8017 if (relaxed_branch || delay.frag != ip->frag)
8018 {
8019 /* Add the delay slot instruction to the end of the
8020 current frag and shrink the fixed part of the
8021 original frag. If the branch occupies the tail of
8022 the latter, move it backwards to cover the gap. */
8023 delay.frag->fr_fix -= branch_disp;
8024 if (delay.frag == ip->frag)
8025 move_insn (ip, ip->frag, ip->where - branch_disp);
8026 add_fixed_insn (&delay);
8027 }
8028 else
8029 {
8030 /* If this is not a relaxed branch and we are in the
8031 same frag, then just swap the instructions. */
8032 move_insn (ip, delay.frag, delay.where);
8033 move_insn (&delay, ip->frag, ip->where + insn_length (ip));
8034 }
8035 history[0] = *ip;
8036 delay.fixed_p = 1;
8037 insert_into_history (0, 1, &delay);
8038 }
8039 break;
8040 }
8041
8042 /* If we have just completed an unconditional branch, clear the history. */
8043 if ((delayed_branch_p (&history[1]) && uncond_branch_p (&history[1]))
8044 || (compact_branch_p (&history[0]) && uncond_branch_p (&history[0])))
8045 {
8046 unsigned int i;
8047
8048 mips_no_prev_insn ();
8049
8050 for (i = 0; i < ARRAY_SIZE (history); i++)
8051 history[i].cleared_p = 1;
8052 }
8053
8054 /* We need to emit a label at the end of branch-likely macros. */
8055 if (emit_branch_likely_macro)
8056 {
8057 emit_branch_likely_macro = FALSE;
8058 micromips_add_label ();
8059 }
8060
8061 /* We just output an insn, so the next one doesn't have a label. */
8062 mips_clear_insn_labels ();
8063 }
8064
8065 /* Forget that there was any previous instruction or label.
8066 When BRANCH is true, the branch history is also flushed. */
8067
8068 static void
8069 mips_no_prev_insn (void)
8070 {
8071 prev_nop_frag = NULL;
8072 insert_into_history (0, ARRAY_SIZE (history), NOP_INSN);
8073 mips_clear_insn_labels ();
8074 }
8075
8076 /* This function must be called before we emit something other than
8077 instructions. It is like mips_no_prev_insn except that it inserts
8078 any NOPS that might be needed by previous instructions. */
8079
8080 void
8081 mips_emit_delays (void)
8082 {
8083 if (! mips_opts.noreorder)
8084 {
8085 int nops = nops_for_insn (0, history, NULL);
8086 if (nops > 0)
8087 {
8088 while (nops-- > 0)
8089 add_fixed_insn (NOP_INSN);
8090 mips_move_text_labels ();
8091 }
8092 }
8093 mips_no_prev_insn ();
8094 }
8095
8096 /* Start a (possibly nested) noreorder block. */
8097
8098 static void
8099 start_noreorder (void)
8100 {
8101 if (mips_opts.noreorder == 0)
8102 {
8103 unsigned int i;
8104 int nops;
8105
8106 /* None of the instructions before the .set noreorder can be moved. */
8107 for (i = 0; i < ARRAY_SIZE (history); i++)
8108 history[i].fixed_p = 1;
8109
8110 /* Insert any nops that might be needed between the .set noreorder
8111 block and the previous instructions. We will later remove any
8112 nops that turn out not to be needed. */
8113 nops = nops_for_insn (0, history, NULL);
8114 if (nops > 0)
8115 {
8116 if (mips_optimize != 0)
8117 {
8118 /* Record the frag which holds the nop instructions, so
8119 that we can remove them if we don't need them. */
8120 frag_grow (nops * NOP_INSN_SIZE);
8121 prev_nop_frag = frag_now;
8122 prev_nop_frag_holds = nops;
8123 prev_nop_frag_required = 0;
8124 prev_nop_frag_since = 0;
8125 }
8126
8127 for (; nops > 0; --nops)
8128 add_fixed_insn (NOP_INSN);
8129
8130 /* Move on to a new frag, so that it is safe to simply
8131 decrease the size of prev_nop_frag. */
8132 frag_wane (frag_now);
8133 frag_new (0);
8134 mips_move_text_labels ();
8135 }
8136 mips_mark_labels ();
8137 mips_clear_insn_labels ();
8138 }
8139 mips_opts.noreorder++;
8140 mips_any_noreorder = 1;
8141 }
8142
8143 /* End a nested noreorder block. */
8144
8145 static void
8146 end_noreorder (void)
8147 {
8148 mips_opts.noreorder--;
8149 if (mips_opts.noreorder == 0 && prev_nop_frag != NULL)
8150 {
8151 /* Commit to inserting prev_nop_frag_required nops and go back to
8152 handling nop insertion the .set reorder way. */
8153 prev_nop_frag->fr_fix -= ((prev_nop_frag_holds - prev_nop_frag_required)
8154 * NOP_INSN_SIZE);
8155 insert_into_history (prev_nop_frag_since,
8156 prev_nop_frag_required, NOP_INSN);
8157 prev_nop_frag = NULL;
8158 }
8159 }
8160
8161 /* Sign-extend 32-bit mode constants that have bit 31 set and all
8162 higher bits unset. */
8163
8164 static void
8165 normalize_constant_expr (expressionS *ex)
8166 {
8167 if (ex->X_op == O_constant
8168 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8169 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8170 - 0x80000000);
8171 }
8172
8173 /* Sign-extend 32-bit mode address offsets that have bit 31 set and
8174 all higher bits unset. */
8175
8176 static void
8177 normalize_address_expr (expressionS *ex)
8178 {
8179 if (((ex->X_op == O_constant && HAVE_32BIT_ADDRESSES)
8180 || (ex->X_op == O_symbol && HAVE_32BIT_SYMBOLS))
8181 && IS_ZEXT_32BIT_NUM (ex->X_add_number))
8182 ex->X_add_number = (((ex->X_add_number & 0xffffffff) ^ 0x80000000)
8183 - 0x80000000);
8184 }
8185
8186 /* Try to match TOKENS against OPCODE, storing the result in INSN.
8187 Return true if the match was successful.
8188
8189 OPCODE_EXTRA is a value that should be ORed into the opcode
8190 (used for VU0 channel suffixes, etc.). MORE_ALTS is true if
8191 there are more alternatives after OPCODE and SOFT_MATCH is
8192 as for mips_arg_info. */
8193
8194 static bfd_boolean
8195 match_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8196 struct mips_operand_token *tokens, unsigned int opcode_extra,
8197 bfd_boolean lax_match, bfd_boolean complete_p)
8198 {
8199 const char *args;
8200 struct mips_arg_info arg;
8201 const struct mips_operand *operand;
8202 char c;
8203
8204 imm_expr.X_op = O_absent;
8205 offset_expr.X_op = O_absent;
8206 offset_reloc[0] = BFD_RELOC_UNUSED;
8207 offset_reloc[1] = BFD_RELOC_UNUSED;
8208 offset_reloc[2] = BFD_RELOC_UNUSED;
8209
8210 create_insn (insn, opcode);
8211 /* When no opcode suffix is specified, assume ".xyzw". */
8212 if ((opcode->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0 && opcode_extra == 0)
8213 insn->insn_opcode |= 0xf << mips_vu0_channel_mask.lsb;
8214 else
8215 insn->insn_opcode |= opcode_extra;
8216 memset (&arg, 0, sizeof (arg));
8217 arg.insn = insn;
8218 arg.token = tokens;
8219 arg.argnum = 1;
8220 arg.last_regno = ILLEGAL_REG;
8221 arg.dest_regno = ILLEGAL_REG;
8222 arg.lax_match = lax_match;
8223 for (args = opcode->args;; ++args)
8224 {
8225 if (arg.token->type == OT_END)
8226 {
8227 /* Handle unary instructions in which only one operand is given.
8228 The source is then the same as the destination. */
8229 if (arg.opnum == 1 && *args == ',')
8230 {
8231 operand = (mips_opts.micromips
8232 ? decode_micromips_operand (args + 1)
8233 : decode_mips_operand (args + 1));
8234 if (operand && mips_optional_operand_p (operand))
8235 {
8236 arg.token = tokens;
8237 arg.argnum = 1;
8238 continue;
8239 }
8240 }
8241
8242 /* Treat elided base registers as $0. */
8243 if (strcmp (args, "(b)") == 0)
8244 args += 3;
8245
8246 if (args[0] == '+')
8247 switch (args[1])
8248 {
8249 case 'K':
8250 case 'N':
8251 /* The register suffix is optional. */
8252 args += 2;
8253 break;
8254 }
8255
8256 /* Fail the match if there were too few operands. */
8257 if (*args)
8258 return FALSE;
8259
8260 /* Successful match. */
8261 if (!complete_p)
8262 return TRUE;
8263 clear_insn_error ();
8264 if (arg.dest_regno == arg.last_regno
8265 && strncmp (insn->insn_mo->name, "jalr", 4) == 0)
8266 {
8267 if (arg.opnum == 2)
8268 set_insn_error
8269 (0, _("source and destination must be different"));
8270 else if (arg.last_regno == 31)
8271 set_insn_error
8272 (0, _("a destination register must be supplied"));
8273 }
8274 else if (arg.last_regno == 31
8275 && (strncmp (insn->insn_mo->name, "bltzal", 6) == 0
8276 || strncmp (insn->insn_mo->name, "bgezal", 6) == 0))
8277 set_insn_error (0, _("the source register must not be $31"));
8278 check_completed_insn (&arg);
8279 return TRUE;
8280 }
8281
8282 /* Fail the match if the line has too many operands. */
8283 if (*args == 0)
8284 return FALSE;
8285
8286 /* Handle characters that need to match exactly. */
8287 if (*args == '(' || *args == ')' || *args == ',')
8288 {
8289 if (match_char (&arg, *args))
8290 continue;
8291 return FALSE;
8292 }
8293 if (*args == '#')
8294 {
8295 ++args;
8296 if (arg.token->type == OT_DOUBLE_CHAR
8297 && arg.token->u.ch == *args)
8298 {
8299 ++arg.token;
8300 continue;
8301 }
8302 return FALSE;
8303 }
8304
8305 /* Handle special macro operands. Work out the properties of
8306 other operands. */
8307 arg.opnum += 1;
8308 switch (*args)
8309 {
8310 case '-':
8311 switch (args[1])
8312 {
8313 case 'A':
8314 *offset_reloc = BFD_RELOC_MIPS_19_PCREL_S2;
8315 break;
8316
8317 case 'B':
8318 *offset_reloc = BFD_RELOC_MIPS_18_PCREL_S3;
8319 break;
8320 }
8321 break;
8322
8323 case '+':
8324 switch (args[1])
8325 {
8326 case 'i':
8327 *offset_reloc = BFD_RELOC_MIPS_JMP;
8328 break;
8329
8330 case '\'':
8331 *offset_reloc = BFD_RELOC_MIPS_26_PCREL_S2;
8332 break;
8333
8334 case '\"':
8335 *offset_reloc = BFD_RELOC_MIPS_21_PCREL_S2;
8336 break;
8337 }
8338 break;
8339
8340 case 'I':
8341 if (!match_const_int (&arg, &imm_expr.X_add_number))
8342 return FALSE;
8343 imm_expr.X_op = O_constant;
8344 if (GPR_SIZE == 32)
8345 normalize_constant_expr (&imm_expr);
8346 continue;
8347
8348 case 'A':
8349 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8350 {
8351 /* Assume that the offset has been elided and that what
8352 we saw was a base register. The match will fail later
8353 if that assumption turns out to be wrong. */
8354 offset_expr.X_op = O_constant;
8355 offset_expr.X_add_number = 0;
8356 }
8357 else
8358 {
8359 if (!match_expression (&arg, &offset_expr, offset_reloc))
8360 return FALSE;
8361 normalize_address_expr (&offset_expr);
8362 }
8363 continue;
8364
8365 case 'F':
8366 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8367 8, TRUE))
8368 return FALSE;
8369 continue;
8370
8371 case 'L':
8372 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8373 8, FALSE))
8374 return FALSE;
8375 continue;
8376
8377 case 'f':
8378 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8379 4, TRUE))
8380 return FALSE;
8381 continue;
8382
8383 case 'l':
8384 if (!match_float_constant (&arg, &imm_expr, &offset_expr,
8385 4, FALSE))
8386 return FALSE;
8387 continue;
8388
8389 case 'p':
8390 *offset_reloc = BFD_RELOC_16_PCREL_S2;
8391 break;
8392
8393 case 'a':
8394 *offset_reloc = BFD_RELOC_MIPS_JMP;
8395 break;
8396
8397 case 'm':
8398 gas_assert (mips_opts.micromips);
8399 c = args[1];
8400 switch (c)
8401 {
8402 case 'D':
8403 case 'E':
8404 if (!forced_insn_length)
8405 *offset_reloc = (int) BFD_RELOC_UNUSED + c;
8406 else if (c == 'D')
8407 *offset_reloc = BFD_RELOC_MICROMIPS_10_PCREL_S1;
8408 else
8409 *offset_reloc = BFD_RELOC_MICROMIPS_7_PCREL_S1;
8410 break;
8411 }
8412 break;
8413 }
8414
8415 operand = (mips_opts.micromips
8416 ? decode_micromips_operand (args)
8417 : decode_mips_operand (args));
8418 if (!operand)
8419 abort ();
8420
8421 /* Skip prefixes. */
8422 if (*args == '+' || *args == 'm' || *args == '-')
8423 args++;
8424
8425 if (mips_optional_operand_p (operand)
8426 && args[1] == ','
8427 && (arg.token[0].type != OT_REG
8428 || arg.token[1].type == OT_END))
8429 {
8430 /* Assume that the register has been elided and is the
8431 same as the first operand. */
8432 arg.token = tokens;
8433 arg.argnum = 1;
8434 }
8435
8436 if (!match_operand (&arg, operand))
8437 return FALSE;
8438 }
8439 }
8440
8441 /* Like match_insn, but for MIPS16. */
8442
8443 static bfd_boolean
8444 match_mips16_insn (struct mips_cl_insn *insn, const struct mips_opcode *opcode,
8445 struct mips_operand_token *tokens)
8446 {
8447 const char *args;
8448 const struct mips_operand *operand;
8449 const struct mips_operand *ext_operand;
8450 bfd_boolean pcrel = FALSE;
8451 int required_insn_length;
8452 struct mips_arg_info arg;
8453 int relax_char;
8454
8455 if (forced_insn_length)
8456 required_insn_length = forced_insn_length;
8457 else if (mips_opts.noautoextend && !mips_opcode_32bit_p (opcode))
8458 required_insn_length = 2;
8459 else
8460 required_insn_length = 0;
8461
8462 create_insn (insn, opcode);
8463 imm_expr.X_op = O_absent;
8464 offset_expr.X_op = O_absent;
8465 offset_reloc[0] = BFD_RELOC_UNUSED;
8466 offset_reloc[1] = BFD_RELOC_UNUSED;
8467 offset_reloc[2] = BFD_RELOC_UNUSED;
8468 relax_char = 0;
8469
8470 memset (&arg, 0, sizeof (arg));
8471 arg.insn = insn;
8472 arg.token = tokens;
8473 arg.argnum = 1;
8474 arg.last_regno = ILLEGAL_REG;
8475 arg.dest_regno = ILLEGAL_REG;
8476 relax_char = 0;
8477 for (args = opcode->args;; ++args)
8478 {
8479 int c;
8480
8481 if (arg.token->type == OT_END)
8482 {
8483 offsetT value;
8484
8485 /* Handle unary instructions in which only one operand is given.
8486 The source is then the same as the destination. */
8487 if (arg.opnum == 1 && *args == ',')
8488 {
8489 operand = decode_mips16_operand (args[1], FALSE);
8490 if (operand && mips_optional_operand_p (operand))
8491 {
8492 arg.token = tokens;
8493 arg.argnum = 1;
8494 continue;
8495 }
8496 }
8497
8498 /* Fail the match if there were too few operands. */
8499 if (*args)
8500 return FALSE;
8501
8502 /* Successful match. Stuff the immediate value in now, if
8503 we can. */
8504 clear_insn_error ();
8505 if (opcode->pinfo == INSN_MACRO)
8506 {
8507 gas_assert (relax_char == 0 || relax_char == 'p');
8508 gas_assert (*offset_reloc == BFD_RELOC_UNUSED);
8509 }
8510 else if (relax_char
8511 && offset_expr.X_op == O_constant
8512 && !pcrel
8513 && calculate_reloc (*offset_reloc,
8514 offset_expr.X_add_number,
8515 &value))
8516 {
8517 mips16_immed (NULL, 0, relax_char, *offset_reloc, value,
8518 required_insn_length, &insn->insn_opcode);
8519 offset_expr.X_op = O_absent;
8520 *offset_reloc = BFD_RELOC_UNUSED;
8521 }
8522 else if (relax_char && *offset_reloc != BFD_RELOC_UNUSED)
8523 {
8524 if (required_insn_length == 2)
8525 set_insn_error (0, _("invalid unextended operand value"));
8526 else if (!mips_opcode_32bit_p (opcode))
8527 {
8528 forced_insn_length = 4;
8529 insn->insn_opcode |= MIPS16_EXTEND;
8530 }
8531 }
8532 else if (relax_char)
8533 *offset_reloc = (int) BFD_RELOC_UNUSED + relax_char;
8534
8535 check_completed_insn (&arg);
8536 return TRUE;
8537 }
8538
8539 /* Fail the match if the line has too many operands. */
8540 if (*args == 0)
8541 return FALSE;
8542
8543 /* Handle characters that need to match exactly. */
8544 if (*args == '(' || *args == ')' || *args == ',')
8545 {
8546 if (match_char (&arg, *args))
8547 continue;
8548 return FALSE;
8549 }
8550
8551 arg.opnum += 1;
8552 c = *args;
8553 switch (c)
8554 {
8555 case 'p':
8556 case 'q':
8557 case 'A':
8558 case 'B':
8559 case 'E':
8560 case 'V':
8561 case 'u':
8562 relax_char = c;
8563 break;
8564
8565 case 'I':
8566 if (!match_const_int (&arg, &imm_expr.X_add_number))
8567 return FALSE;
8568 imm_expr.X_op = O_constant;
8569 if (GPR_SIZE == 32)
8570 normalize_constant_expr (&imm_expr);
8571 continue;
8572
8573 case 'a':
8574 case 'i':
8575 *offset_reloc = BFD_RELOC_MIPS16_JMP;
8576 break;
8577 }
8578
8579 operand = decode_mips16_operand (c, mips_opcode_32bit_p (opcode));
8580 if (!operand)
8581 abort ();
8582
8583 if (operand->type == OP_PCREL)
8584 pcrel = TRUE;
8585 else
8586 {
8587 ext_operand = decode_mips16_operand (c, TRUE);
8588 if (operand != ext_operand)
8589 {
8590 if (arg.token->type == OT_CHAR && arg.token->u.ch == '(')
8591 {
8592 offset_expr.X_op = O_constant;
8593 offset_expr.X_add_number = 0;
8594 relax_char = c;
8595 continue;
8596 }
8597
8598 if (!match_expression (&arg, &offset_expr, offset_reloc))
8599 return FALSE;
8600
8601 /* '8' is used for SLTI(U) and has traditionally not
8602 been allowed to take relocation operators. */
8603 if (offset_reloc[0] != BFD_RELOC_UNUSED
8604 && (ext_operand->size != 16 || c == '8'))
8605 {
8606 match_not_constant (&arg);
8607 return FALSE;
8608 }
8609
8610 if (offset_expr.X_op == O_big)
8611 {
8612 match_out_of_range (&arg);
8613 return FALSE;
8614 }
8615
8616 relax_char = c;
8617 continue;
8618 }
8619 }
8620
8621 if (mips_optional_operand_p (operand)
8622 && args[1] == ','
8623 && (arg.token[0].type != OT_REG
8624 || arg.token[1].type == OT_END))
8625 {
8626 /* Assume that the register has been elided and is the
8627 same as the first operand. */
8628 arg.token = tokens;
8629 arg.argnum = 1;
8630 }
8631
8632 if (!match_operand (&arg, operand))
8633 return FALSE;
8634 }
8635 }
8636
8637 /* Record that the current instruction is invalid for the current ISA. */
8638
8639 static void
8640 match_invalid_for_isa (void)
8641 {
8642 set_insn_error_ss
8643 (0, _("opcode not supported on this processor: %s (%s)"),
8644 mips_cpu_info_from_arch (mips_opts.arch)->name,
8645 mips_cpu_info_from_isa (mips_opts.isa)->name);
8646 }
8647
8648 /* Try to match TOKENS against a series of opcode entries, starting at FIRST.
8649 Return true if a definite match or failure was found, storing any match
8650 in INSN. OPCODE_EXTRA is a value that should be ORed into the opcode
8651 (to handle things like VU0 suffixes). LAX_MATCH is true if we have already
8652 tried and failed to match under normal conditions and now want to try a
8653 more relaxed match. */
8654
8655 static bfd_boolean
8656 match_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8657 const struct mips_opcode *past, struct mips_operand_token *tokens,
8658 int opcode_extra, bfd_boolean lax_match)
8659 {
8660 const struct mips_opcode *opcode;
8661 const struct mips_opcode *invalid_delay_slot;
8662 bfd_boolean seen_valid_for_isa, seen_valid_for_size;
8663
8664 /* Search for a match, ignoring alternatives that don't satisfy the
8665 current ISA or forced_length. */
8666 invalid_delay_slot = 0;
8667 seen_valid_for_isa = FALSE;
8668 seen_valid_for_size = FALSE;
8669 opcode = first;
8670 do
8671 {
8672 gas_assert (strcmp (opcode->name, first->name) == 0);
8673 if (is_opcode_valid (opcode))
8674 {
8675 seen_valid_for_isa = TRUE;
8676 if (is_size_valid (opcode))
8677 {
8678 bfd_boolean delay_slot_ok;
8679
8680 seen_valid_for_size = TRUE;
8681 delay_slot_ok = is_delay_slot_valid (opcode);
8682 if (match_insn (insn, opcode, tokens, opcode_extra,
8683 lax_match, delay_slot_ok))
8684 {
8685 if (!delay_slot_ok)
8686 {
8687 if (!invalid_delay_slot)
8688 invalid_delay_slot = opcode;
8689 }
8690 else
8691 return TRUE;
8692 }
8693 }
8694 }
8695 ++opcode;
8696 }
8697 while (opcode < past && strcmp (opcode->name, first->name) == 0);
8698
8699 /* If the only matches we found had the wrong length for the delay slot,
8700 pick the first such match. We'll issue an appropriate warning later. */
8701 if (invalid_delay_slot)
8702 {
8703 if (match_insn (insn, invalid_delay_slot, tokens, opcode_extra,
8704 lax_match, TRUE))
8705 return TRUE;
8706 abort ();
8707 }
8708
8709 /* Handle the case where we didn't try to match an instruction because
8710 all the alternatives were incompatible with the current ISA. */
8711 if (!seen_valid_for_isa)
8712 {
8713 match_invalid_for_isa ();
8714 return TRUE;
8715 }
8716
8717 /* Handle the case where we didn't try to match an instruction because
8718 all the alternatives were of the wrong size. */
8719 if (!seen_valid_for_size)
8720 {
8721 if (mips_opts.insn32)
8722 set_insn_error (0, _("opcode not supported in the `insn32' mode"));
8723 else
8724 set_insn_error_i
8725 (0, _("unrecognized %d-bit version of microMIPS opcode"),
8726 8 * forced_insn_length);
8727 return TRUE;
8728 }
8729
8730 return FALSE;
8731 }
8732
8733 /* Like match_insns, but for MIPS16. */
8734
8735 static bfd_boolean
8736 match_mips16_insns (struct mips_cl_insn *insn, const struct mips_opcode *first,
8737 struct mips_operand_token *tokens)
8738 {
8739 const struct mips_opcode *opcode;
8740 bfd_boolean seen_valid_for_isa;
8741 bfd_boolean seen_valid_for_size;
8742
8743 /* Search for a match, ignoring alternatives that don't satisfy the
8744 current ISA. There are no separate entries for extended forms so
8745 we deal with forced_length later. */
8746 seen_valid_for_isa = FALSE;
8747 seen_valid_for_size = FALSE;
8748 opcode = first;
8749 do
8750 {
8751 gas_assert (strcmp (opcode->name, first->name) == 0);
8752 if (is_opcode_valid_16 (opcode))
8753 {
8754 seen_valid_for_isa = TRUE;
8755 if (is_size_valid_16 (opcode))
8756 {
8757 seen_valid_for_size = TRUE;
8758 if (match_mips16_insn (insn, opcode, tokens))
8759 return TRUE;
8760 }
8761 }
8762 ++opcode;
8763 }
8764 while (opcode < &mips16_opcodes[bfd_mips16_num_opcodes]
8765 && strcmp (opcode->name, first->name) == 0);
8766
8767 /* Handle the case where we didn't try to match an instruction because
8768 all the alternatives were incompatible with the current ISA. */
8769 if (!seen_valid_for_isa)
8770 {
8771 match_invalid_for_isa ();
8772 return TRUE;
8773 }
8774
8775 /* Handle the case where we didn't try to match an instruction because
8776 all the alternatives were of the wrong size. */
8777 if (!seen_valid_for_size)
8778 {
8779 if (forced_insn_length == 2)
8780 set_insn_error
8781 (0, _("unrecognized unextended version of MIPS16 opcode"));
8782 else
8783 set_insn_error
8784 (0, _("unrecognized extended version of MIPS16 opcode"));
8785 return TRUE;
8786 }
8787
8788 return FALSE;
8789 }
8790
8791 /* Set up global variables for the start of a new macro. */
8792
8793 static void
8794 macro_start (void)
8795 {
8796 memset (&mips_macro_warning.sizes, 0, sizeof (mips_macro_warning.sizes));
8797 memset (&mips_macro_warning.first_insn_sizes, 0,
8798 sizeof (mips_macro_warning.first_insn_sizes));
8799 memset (&mips_macro_warning.insns, 0, sizeof (mips_macro_warning.insns));
8800 mips_macro_warning.delay_slot_p = (mips_opts.noreorder
8801 && delayed_branch_p (&history[0]));
8802 if (history[0].frag
8803 && history[0].frag->fr_type == rs_machine_dependent
8804 && RELAX_MICROMIPS_P (history[0].frag->fr_subtype)
8805 && RELAX_MICROMIPS_NODS (history[0].frag->fr_subtype))
8806 mips_macro_warning.delay_slot_length = 0;
8807 else
8808 switch (history[0].insn_mo->pinfo2
8809 & (INSN2_BRANCH_DELAY_32BIT | INSN2_BRANCH_DELAY_16BIT))
8810 {
8811 case INSN2_BRANCH_DELAY_32BIT:
8812 mips_macro_warning.delay_slot_length = 4;
8813 break;
8814 case INSN2_BRANCH_DELAY_16BIT:
8815 mips_macro_warning.delay_slot_length = 2;
8816 break;
8817 default:
8818 mips_macro_warning.delay_slot_length = 0;
8819 break;
8820 }
8821 mips_macro_warning.first_frag = NULL;
8822 }
8823
8824 /* Given that a macro is longer than one instruction or of the wrong size,
8825 return the appropriate warning for it. Return null if no warning is
8826 needed. SUBTYPE is a bitmask of RELAX_DELAY_SLOT, RELAX_DELAY_SLOT_16BIT,
8827 RELAX_DELAY_SLOT_SIZE_FIRST, RELAX_DELAY_SLOT_SIZE_SECOND,
8828 and RELAX_NOMACRO. */
8829
8830 static const char *
8831 macro_warning (relax_substateT subtype)
8832 {
8833 if (subtype & RELAX_DELAY_SLOT)
8834 return _("macro instruction expanded into multiple instructions"
8835 " in a branch delay slot");
8836 else if (subtype & RELAX_NOMACRO)
8837 return _("macro instruction expanded into multiple instructions");
8838 else if (subtype & (RELAX_DELAY_SLOT_SIZE_FIRST
8839 | RELAX_DELAY_SLOT_SIZE_SECOND))
8840 return ((subtype & RELAX_DELAY_SLOT_16BIT)
8841 ? _("macro instruction expanded into a wrong size instruction"
8842 " in a 16-bit branch delay slot")
8843 : _("macro instruction expanded into a wrong size instruction"
8844 " in a 32-bit branch delay slot"));
8845 else
8846 return 0;
8847 }
8848
8849 /* Finish up a macro. Emit warnings as appropriate. */
8850
8851 static void
8852 macro_end (void)
8853 {
8854 /* Relaxation warning flags. */
8855 relax_substateT subtype = 0;
8856
8857 /* Check delay slot size requirements. */
8858 if (mips_macro_warning.delay_slot_length == 2)
8859 subtype |= RELAX_DELAY_SLOT_16BIT;
8860 if (mips_macro_warning.delay_slot_length != 0)
8861 {
8862 if (mips_macro_warning.delay_slot_length
8863 != mips_macro_warning.first_insn_sizes[0])
8864 subtype |= RELAX_DELAY_SLOT_SIZE_FIRST;
8865 if (mips_macro_warning.delay_slot_length
8866 != mips_macro_warning.first_insn_sizes[1])
8867 subtype |= RELAX_DELAY_SLOT_SIZE_SECOND;
8868 }
8869
8870 /* Check instruction count requirements. */
8871 if (mips_macro_warning.insns[0] > 1 || mips_macro_warning.insns[1] > 1)
8872 {
8873 if (mips_macro_warning.insns[1] > mips_macro_warning.insns[0])
8874 subtype |= RELAX_SECOND_LONGER;
8875 if (mips_opts.warn_about_macros)
8876 subtype |= RELAX_NOMACRO;
8877 if (mips_macro_warning.delay_slot_p)
8878 subtype |= RELAX_DELAY_SLOT;
8879 }
8880
8881 /* If both alternatives fail to fill a delay slot correctly,
8882 emit the warning now. */
8883 if ((subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0
8884 && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0)
8885 {
8886 relax_substateT s;
8887 const char *msg;
8888
8889 s = subtype & (RELAX_DELAY_SLOT_16BIT
8890 | RELAX_DELAY_SLOT_SIZE_FIRST
8891 | RELAX_DELAY_SLOT_SIZE_SECOND);
8892 msg = macro_warning (s);
8893 if (msg != NULL)
8894 as_warn ("%s", msg);
8895 subtype &= ~s;
8896 }
8897
8898 /* If both implementations are longer than 1 instruction, then emit the
8899 warning now. */
8900 if (mips_macro_warning.insns[0] > 1 && mips_macro_warning.insns[1] > 1)
8901 {
8902 relax_substateT s;
8903 const char *msg;
8904
8905 s = subtype & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT);
8906 msg = macro_warning (s);
8907 if (msg != NULL)
8908 as_warn ("%s", msg);
8909 subtype &= ~s;
8910 }
8911
8912 /* If any flags still set, then one implementation might need a warning
8913 and the other either will need one of a different kind or none at all.
8914 Pass any remaining flags over to relaxation. */
8915 if (mips_macro_warning.first_frag != NULL)
8916 mips_macro_warning.first_frag->fr_subtype |= subtype;
8917 }
8918
8919 /* Instruction operand formats used in macros that vary between
8920 standard MIPS and microMIPS code. */
8921
8922 static const char * const brk_fmt[2][2] = { { "c", "c" }, { "mF", "c" } };
8923 static const char * const cop12_fmt[2] = { "E,o(b)", "E,~(b)" };
8924 static const char * const jalr_fmt[2] = { "d,s", "t,s" };
8925 static const char * const lui_fmt[2] = { "t,u", "s,u" };
8926 static const char * const mem12_fmt[2] = { "t,o(b)", "t,~(b)" };
8927 static const char * const mfhl_fmt[2][2] = { { "d", "d" }, { "mj", "s" } };
8928 static const char * const shft_fmt[2] = { "d,w,<", "t,r,<" };
8929 static const char * const trap_fmt[2] = { "s,t,q", "s,t,|" };
8930
8931 #define BRK_FMT (brk_fmt[mips_opts.micromips][mips_opts.insn32])
8932 #define COP12_FMT (ISA_IS_R6 (mips_opts.isa) ? "E,+:(d)" \
8933 : cop12_fmt[mips_opts.micromips])
8934 #define JALR_FMT (jalr_fmt[mips_opts.micromips])
8935 #define LUI_FMT (lui_fmt[mips_opts.micromips])
8936 #define MEM12_FMT (mem12_fmt[mips_opts.micromips])
8937 #define LL_SC_FMT (ISA_IS_R6 (mips_opts.isa) ? "t,+j(b)" \
8938 : mem12_fmt[mips_opts.micromips])
8939 #define MFHL_FMT (mfhl_fmt[mips_opts.micromips][mips_opts.insn32])
8940 #define SHFT_FMT (shft_fmt[mips_opts.micromips])
8941 #define TRAP_FMT (trap_fmt[mips_opts.micromips])
8942
8943 /* Read a macro's relocation codes from *ARGS and store them in *R.
8944 The first argument in *ARGS will be either the code for a single
8945 relocation or -1 followed by the three codes that make up a
8946 composite relocation. */
8947
8948 static void
8949 macro_read_relocs (va_list *args, bfd_reloc_code_real_type *r)
8950 {
8951 int i, next;
8952
8953 next = va_arg (*args, int);
8954 if (next >= 0)
8955 r[0] = (bfd_reloc_code_real_type) next;
8956 else
8957 {
8958 for (i = 0; i < 3; i++)
8959 r[i] = (bfd_reloc_code_real_type) va_arg (*args, int);
8960 /* This function is only used for 16-bit relocation fields.
8961 To make the macro code simpler, treat an unrelocated value
8962 in the same way as BFD_RELOC_LO16. */
8963 if (r[0] == BFD_RELOC_UNUSED)
8964 r[0] = BFD_RELOC_LO16;
8965 }
8966 }
8967
8968 /* Build an instruction created by a macro expansion. This is passed
8969 a pointer to the count of instructions created so far, an
8970 expression, the name of the instruction to build, an operand format
8971 string, and corresponding arguments. */
8972
8973 static void
8974 macro_build (expressionS *ep, const char *name, const char *fmt, ...)
8975 {
8976 const struct mips_opcode *mo = NULL;
8977 bfd_reloc_code_real_type r[3];
8978 const struct mips_opcode *amo;
8979 const struct mips_operand *operand;
8980 struct hash_control *hash;
8981 struct mips_cl_insn insn;
8982 va_list args;
8983 unsigned int uval;
8984
8985 va_start (args, fmt);
8986
8987 if (mips_opts.mips16)
8988 {
8989 mips16_macro_build (ep, name, fmt, &args);
8990 va_end (args);
8991 return;
8992 }
8993
8994 r[0] = BFD_RELOC_UNUSED;
8995 r[1] = BFD_RELOC_UNUSED;
8996 r[2] = BFD_RELOC_UNUSED;
8997 hash = mips_opts.micromips ? micromips_op_hash : op_hash;
8998 amo = (struct mips_opcode *) hash_find (hash, name);
8999 gas_assert (amo);
9000 gas_assert (strcmp (name, amo->name) == 0);
9001
9002 do
9003 {
9004 /* Search until we get a match for NAME. It is assumed here that
9005 macros will never generate MDMX, MIPS-3D, or MT instructions.
9006 We try to match an instruction that fulfills the branch delay
9007 slot instruction length requirement (if any) of the previous
9008 instruction. While doing this we record the first instruction
9009 seen that matches all the other conditions and use it anyway
9010 if the requirement cannot be met; we will issue an appropriate
9011 warning later on. */
9012 if (strcmp (fmt, amo->args) == 0
9013 && amo->pinfo != INSN_MACRO
9014 && is_opcode_valid (amo)
9015 && is_size_valid (amo))
9016 {
9017 if (is_delay_slot_valid (amo))
9018 {
9019 mo = amo;
9020 break;
9021 }
9022 else if (!mo)
9023 mo = amo;
9024 }
9025
9026 ++amo;
9027 gas_assert (amo->name);
9028 }
9029 while (strcmp (name, amo->name) == 0);
9030
9031 gas_assert (mo);
9032 create_insn (&insn, mo);
9033 for (; *fmt; ++fmt)
9034 {
9035 switch (*fmt)
9036 {
9037 case ',':
9038 case '(':
9039 case ')':
9040 case 'z':
9041 break;
9042
9043 case 'i':
9044 case 'j':
9045 macro_read_relocs (&args, r);
9046 gas_assert (*r == BFD_RELOC_GPREL16
9047 || *r == BFD_RELOC_MIPS_HIGHER
9048 || *r == BFD_RELOC_HI16_S
9049 || *r == BFD_RELOC_LO16
9050 || *r == BFD_RELOC_MIPS_GOT_OFST
9051 || (mips_opts.micromips
9052 && (*r == BFD_RELOC_16
9053 || *r == BFD_RELOC_MIPS_GOT16
9054 || *r == BFD_RELOC_MIPS_CALL16
9055 || *r == BFD_RELOC_MIPS_GOT_HI16
9056 || *r == BFD_RELOC_MIPS_GOT_LO16
9057 || *r == BFD_RELOC_MIPS_CALL_HI16
9058 || *r == BFD_RELOC_MIPS_CALL_LO16
9059 || *r == BFD_RELOC_MIPS_SUB
9060 || *r == BFD_RELOC_MIPS_GOT_PAGE
9061 || *r == BFD_RELOC_MIPS_HIGHEST
9062 || *r == BFD_RELOC_MIPS_GOT_DISP
9063 || *r == BFD_RELOC_MIPS_TLS_GD
9064 || *r == BFD_RELOC_MIPS_TLS_LDM
9065 || *r == BFD_RELOC_MIPS_TLS_DTPREL_HI16
9066 || *r == BFD_RELOC_MIPS_TLS_DTPREL_LO16
9067 || *r == BFD_RELOC_MIPS_TLS_GOTTPREL
9068 || *r == BFD_RELOC_MIPS_TLS_TPREL_HI16
9069 || *r == BFD_RELOC_MIPS_TLS_TPREL_LO16)));
9070 break;
9071
9072 case 'o':
9073 macro_read_relocs (&args, r);
9074 break;
9075
9076 case 'u':
9077 macro_read_relocs (&args, r);
9078 gas_assert (ep != NULL
9079 && (ep->X_op == O_constant
9080 || (ep->X_op == O_symbol
9081 && (*r == BFD_RELOC_MIPS_HIGHEST
9082 || *r == BFD_RELOC_HI16_S
9083 || *r == BFD_RELOC_HI16
9084 || *r == BFD_RELOC_GPREL16
9085 || *r == BFD_RELOC_MIPS_GOT_HI16
9086 || *r == BFD_RELOC_MIPS_CALL_HI16))));
9087 break;
9088
9089 case 'p':
9090 gas_assert (ep != NULL);
9091
9092 /*
9093 * This allows macro() to pass an immediate expression for
9094 * creating short branches without creating a symbol.
9095 *
9096 * We don't allow branch relaxation for these branches, as
9097 * they should only appear in ".set nomacro" anyway.
9098 */
9099 if (ep->X_op == O_constant)
9100 {
9101 /* For microMIPS we always use relocations for branches.
9102 So we should not resolve immediate values. */
9103 gas_assert (!mips_opts.micromips);
9104
9105 if ((ep->X_add_number & 3) != 0)
9106 as_bad (_("branch to misaligned address (0x%lx)"),
9107 (unsigned long) ep->X_add_number);
9108 if ((ep->X_add_number + 0x20000) & ~0x3ffff)
9109 as_bad (_("branch address range overflow (0x%lx)"),
9110 (unsigned long) ep->X_add_number);
9111 insn.insn_opcode |= (ep->X_add_number >> 2) & 0xffff;
9112 ep = NULL;
9113 }
9114 else
9115 *r = BFD_RELOC_16_PCREL_S2;
9116 break;
9117
9118 case 'a':
9119 gas_assert (ep != NULL);
9120 *r = BFD_RELOC_MIPS_JMP;
9121 break;
9122
9123 default:
9124 operand = (mips_opts.micromips
9125 ? decode_micromips_operand (fmt)
9126 : decode_mips_operand (fmt));
9127 if (!operand)
9128 abort ();
9129
9130 uval = va_arg (args, int);
9131 if (operand->type == OP_CLO_CLZ_DEST)
9132 uval |= (uval << 5);
9133 insn_insert_operand (&insn, operand, uval);
9134
9135 if (*fmt == '+' || *fmt == 'm' || *fmt == '-')
9136 ++fmt;
9137 break;
9138 }
9139 }
9140 va_end (args);
9141 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
9142
9143 append_insn (&insn, ep, r, TRUE);
9144 }
9145
9146 static void
9147 mips16_macro_build (expressionS *ep, const char *name, const char *fmt,
9148 va_list *args)
9149 {
9150 struct mips_opcode *mo;
9151 struct mips_cl_insn insn;
9152 const struct mips_operand *operand;
9153 bfd_reloc_code_real_type r[3]
9154 = {BFD_RELOC_UNUSED, BFD_RELOC_UNUSED, BFD_RELOC_UNUSED};
9155
9156 mo = (struct mips_opcode *) hash_find (mips16_op_hash, name);
9157 gas_assert (mo);
9158 gas_assert (strcmp (name, mo->name) == 0);
9159
9160 while (strcmp (fmt, mo->args) != 0 || mo->pinfo == INSN_MACRO)
9161 {
9162 ++mo;
9163 gas_assert (mo->name);
9164 gas_assert (strcmp (name, mo->name) == 0);
9165 }
9166
9167 create_insn (&insn, mo);
9168 for (; *fmt; ++fmt)
9169 {
9170 int c;
9171
9172 c = *fmt;
9173 switch (c)
9174 {
9175 case ',':
9176 case '(':
9177 case ')':
9178 break;
9179
9180 case '.':
9181 case 'S':
9182 case 'P':
9183 case 'R':
9184 break;
9185
9186 case '<':
9187 case '5':
9188 case 'F':
9189 case 'H':
9190 case 'W':
9191 case 'D':
9192 case 'j':
9193 case '8':
9194 case 'V':
9195 case 'C':
9196 case 'U':
9197 case 'k':
9198 case 'K':
9199 case 'p':
9200 case 'q':
9201 {
9202 offsetT value;
9203
9204 gas_assert (ep != NULL);
9205
9206 if (ep->X_op != O_constant)
9207 *r = (int) BFD_RELOC_UNUSED + c;
9208 else if (calculate_reloc (*r, ep->X_add_number, &value))
9209 {
9210 mips16_immed (NULL, 0, c, *r, value, 0, &insn.insn_opcode);
9211 ep = NULL;
9212 *r = BFD_RELOC_UNUSED;
9213 }
9214 }
9215 break;
9216
9217 default:
9218 operand = decode_mips16_operand (c, FALSE);
9219 if (!operand)
9220 abort ();
9221
9222 insn_insert_operand (&insn, operand, va_arg (*args, int));
9223 break;
9224 }
9225 }
9226
9227 gas_assert (*r == BFD_RELOC_UNUSED ? ep == NULL : ep != NULL);
9228
9229 append_insn (&insn, ep, r, TRUE);
9230 }
9231
9232 /*
9233 * Generate a "jalr" instruction with a relocation hint to the called
9234 * function. This occurs in NewABI PIC code.
9235 */
9236 static void
9237 macro_build_jalr (expressionS *ep, int cprestore)
9238 {
9239 static const bfd_reloc_code_real_type jalr_relocs[2]
9240 = { BFD_RELOC_MIPS_JALR, BFD_RELOC_MICROMIPS_JALR };
9241 bfd_reloc_code_real_type jalr_reloc = jalr_relocs[mips_opts.micromips];
9242 const char *jalr;
9243 char *f = NULL;
9244
9245 if (MIPS_JALR_HINT_P (ep))
9246 {
9247 frag_grow (8);
9248 f = frag_more (0);
9249 }
9250 if (mips_opts.micromips)
9251 {
9252 jalr = ((mips_opts.noreorder && !cprestore) || mips_opts.insn32
9253 ? "jalr" : "jalrs");
9254 if (MIPS_JALR_HINT_P (ep)
9255 || mips_opts.insn32
9256 || (history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9257 macro_build (NULL, jalr, "t,s", RA, PIC_CALL_REG);
9258 else
9259 macro_build (NULL, jalr, "mj", PIC_CALL_REG);
9260 }
9261 else
9262 macro_build (NULL, "jalr", "d,s", RA, PIC_CALL_REG);
9263 if (MIPS_JALR_HINT_P (ep))
9264 fix_new_exp (frag_now, f - frag_now->fr_literal, 4, ep, FALSE, jalr_reloc);
9265 }
9266
9267 /*
9268 * Generate a "lui" instruction.
9269 */
9270 static void
9271 macro_build_lui (expressionS *ep, int regnum)
9272 {
9273 gas_assert (! mips_opts.mips16);
9274
9275 if (ep->X_op != O_constant)
9276 {
9277 gas_assert (ep->X_op == O_symbol);
9278 /* _gp_disp is a special case, used from s_cpload.
9279 __gnu_local_gp is used if mips_no_shared. */
9280 gas_assert (mips_pic == NO_PIC
9281 || (! HAVE_NEWABI
9282 && strcmp (S_GET_NAME (ep->X_add_symbol), "_gp_disp") == 0)
9283 || (! mips_in_shared
9284 && strcmp (S_GET_NAME (ep->X_add_symbol),
9285 "__gnu_local_gp") == 0));
9286 }
9287
9288 macro_build (ep, "lui", LUI_FMT, regnum, BFD_RELOC_HI16_S);
9289 }
9290
9291 /* Generate a sequence of instructions to do a load or store from a constant
9292 offset off of a base register (breg) into/from a target register (treg),
9293 using AT if necessary. */
9294 static void
9295 macro_build_ldst_constoffset (expressionS *ep, const char *op,
9296 int treg, int breg, int dbl)
9297 {
9298 gas_assert (ep->X_op == O_constant);
9299
9300 /* Sign-extending 32-bit constants makes their handling easier. */
9301 if (!dbl)
9302 normalize_constant_expr (ep);
9303
9304 /* Right now, this routine can only handle signed 32-bit constants. */
9305 if (! IS_SEXT_32BIT_NUM(ep->X_add_number + 0x8000))
9306 as_warn (_("operand overflow"));
9307
9308 if (IS_SEXT_16BIT_NUM(ep->X_add_number))
9309 {
9310 /* Signed 16-bit offset will fit in the op. Easy! */
9311 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, breg);
9312 }
9313 else
9314 {
9315 /* 32-bit offset, need multiple instructions and AT, like:
9316 lui $tempreg,const_hi (BFD_RELOC_HI16_S)
9317 addu $tempreg,$tempreg,$breg
9318 <op> $treg,const_lo($tempreg) (BFD_RELOC_LO16)
9319 to handle the complete offset. */
9320 macro_build_lui (ep, AT);
9321 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, AT, breg);
9322 macro_build (ep, op, "t,o(b)", treg, BFD_RELOC_LO16, AT);
9323
9324 if (!mips_opts.at)
9325 as_bad (_("macro used $at after \".set noat\""));
9326 }
9327 }
9328
9329 /* set_at()
9330 * Generates code to set the $at register to true (one)
9331 * if reg is less than the immediate expression.
9332 */
9333 static void
9334 set_at (int reg, int unsignedp)
9335 {
9336 if (imm_expr.X_add_number >= -0x8000
9337 && imm_expr.X_add_number < 0x8000)
9338 macro_build (&imm_expr, unsignedp ? "sltiu" : "slti", "t,r,j",
9339 AT, reg, BFD_RELOC_LO16);
9340 else
9341 {
9342 load_register (AT, &imm_expr, GPR_SIZE == 64);
9343 macro_build (NULL, unsignedp ? "sltu" : "slt", "d,v,t", AT, reg, AT);
9344 }
9345 }
9346
9347 /* Count the leading zeroes by performing a binary chop. This is a
9348 bulky bit of source, but performance is a LOT better for the
9349 majority of values than a simple loop to count the bits:
9350 for (lcnt = 0; (lcnt < 32); lcnt++)
9351 if ((v) & (1 << (31 - lcnt)))
9352 break;
9353 However it is not code size friendly, and the gain will drop a bit
9354 on certain cached systems.
9355 */
9356 #define COUNT_TOP_ZEROES(v) \
9357 (((v) & ~0xffff) == 0 \
9358 ? ((v) & ~0xff) == 0 \
9359 ? ((v) & ~0xf) == 0 \
9360 ? ((v) & ~0x3) == 0 \
9361 ? ((v) & ~0x1) == 0 \
9362 ? !(v) \
9363 ? 32 \
9364 : 31 \
9365 : 30 \
9366 : ((v) & ~0x7) == 0 \
9367 ? 29 \
9368 : 28 \
9369 : ((v) & ~0x3f) == 0 \
9370 ? ((v) & ~0x1f) == 0 \
9371 ? 27 \
9372 : 26 \
9373 : ((v) & ~0x7f) == 0 \
9374 ? 25 \
9375 : 24 \
9376 : ((v) & ~0xfff) == 0 \
9377 ? ((v) & ~0x3ff) == 0 \
9378 ? ((v) & ~0x1ff) == 0 \
9379 ? 23 \
9380 : 22 \
9381 : ((v) & ~0x7ff) == 0 \
9382 ? 21 \
9383 : 20 \
9384 : ((v) & ~0x3fff) == 0 \
9385 ? ((v) & ~0x1fff) == 0 \
9386 ? 19 \
9387 : 18 \
9388 : ((v) & ~0x7fff) == 0 \
9389 ? 17 \
9390 : 16 \
9391 : ((v) & ~0xffffff) == 0 \
9392 ? ((v) & ~0xfffff) == 0 \
9393 ? ((v) & ~0x3ffff) == 0 \
9394 ? ((v) & ~0x1ffff) == 0 \
9395 ? 15 \
9396 : 14 \
9397 : ((v) & ~0x7ffff) == 0 \
9398 ? 13 \
9399 : 12 \
9400 : ((v) & ~0x3fffff) == 0 \
9401 ? ((v) & ~0x1fffff) == 0 \
9402 ? 11 \
9403 : 10 \
9404 : ((v) & ~0x7fffff) == 0 \
9405 ? 9 \
9406 : 8 \
9407 : ((v) & ~0xfffffff) == 0 \
9408 ? ((v) & ~0x3ffffff) == 0 \
9409 ? ((v) & ~0x1ffffff) == 0 \
9410 ? 7 \
9411 : 6 \
9412 : ((v) & ~0x7ffffff) == 0 \
9413 ? 5 \
9414 : 4 \
9415 : ((v) & ~0x3fffffff) == 0 \
9416 ? ((v) & ~0x1fffffff) == 0 \
9417 ? 3 \
9418 : 2 \
9419 : ((v) & ~0x7fffffff) == 0 \
9420 ? 1 \
9421 : 0)
9422
9423 /* load_register()
9424 * This routine generates the least number of instructions necessary to load
9425 * an absolute expression value into a register.
9426 */
9427 static void
9428 load_register (int reg, expressionS *ep, int dbl)
9429 {
9430 int freg;
9431 expressionS hi32, lo32;
9432
9433 if (ep->X_op != O_big)
9434 {
9435 gas_assert (ep->X_op == O_constant);
9436
9437 /* Sign-extending 32-bit constants makes their handling easier. */
9438 if (!dbl)
9439 normalize_constant_expr (ep);
9440
9441 if (IS_SEXT_16BIT_NUM (ep->X_add_number))
9442 {
9443 /* We can handle 16 bit signed values with an addiu to
9444 $zero. No need to ever use daddiu here, since $zero and
9445 the result are always correct in 32 bit mode. */
9446 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9447 return;
9448 }
9449 else if (ep->X_add_number >= 0 && ep->X_add_number < 0x10000)
9450 {
9451 /* We can handle 16 bit unsigned values with an ori to
9452 $zero. */
9453 macro_build (ep, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9454 return;
9455 }
9456 else if ((IS_SEXT_32BIT_NUM (ep->X_add_number)))
9457 {
9458 /* 32 bit values require an lui. */
9459 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9460 if ((ep->X_add_number & 0xffff) != 0)
9461 macro_build (ep, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9462 return;
9463 }
9464 }
9465
9466 /* The value is larger than 32 bits. */
9467
9468 if (!dbl || GPR_SIZE == 32)
9469 {
9470 char value[32];
9471
9472 sprintf_vma (value, ep->X_add_number);
9473 as_bad (_("number (0x%s) larger than 32 bits"), value);
9474 macro_build (ep, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9475 return;
9476 }
9477
9478 if (ep->X_op != O_big)
9479 {
9480 hi32 = *ep;
9481 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9482 hi32.X_add_number = (valueT) hi32.X_add_number >> 16;
9483 hi32.X_add_number &= 0xffffffff;
9484 lo32 = *ep;
9485 lo32.X_add_number &= 0xffffffff;
9486 }
9487 else
9488 {
9489 gas_assert (ep->X_add_number > 2);
9490 if (ep->X_add_number == 3)
9491 generic_bignum[3] = 0;
9492 else if (ep->X_add_number > 4)
9493 as_bad (_("number larger than 64 bits"));
9494 lo32.X_op = O_constant;
9495 lo32.X_add_number = generic_bignum[0] + (generic_bignum[1] << 16);
9496 hi32.X_op = O_constant;
9497 hi32.X_add_number = generic_bignum[2] + (generic_bignum[3] << 16);
9498 }
9499
9500 if (hi32.X_add_number == 0)
9501 freg = 0;
9502 else
9503 {
9504 int shift, bit;
9505 unsigned long hi, lo;
9506
9507 if (hi32.X_add_number == (offsetT) 0xffffffff)
9508 {
9509 if ((lo32.X_add_number & 0xffff8000) == 0xffff8000)
9510 {
9511 macro_build (&lo32, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9512 return;
9513 }
9514 if (lo32.X_add_number & 0x80000000)
9515 {
9516 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9517 if (lo32.X_add_number & 0xffff)
9518 macro_build (&lo32, "ori", "t,r,i", reg, reg, BFD_RELOC_LO16);
9519 return;
9520 }
9521 }
9522
9523 /* Check for 16bit shifted constant. We know that hi32 is
9524 non-zero, so start the mask on the first bit of the hi32
9525 value. */
9526 shift = 17;
9527 do
9528 {
9529 unsigned long himask, lomask;
9530
9531 if (shift < 32)
9532 {
9533 himask = 0xffff >> (32 - shift);
9534 lomask = (0xffff << shift) & 0xffffffff;
9535 }
9536 else
9537 {
9538 himask = 0xffff << (shift - 32);
9539 lomask = 0;
9540 }
9541 if ((hi32.X_add_number & ~(offsetT) himask) == 0
9542 && (lo32.X_add_number & ~(offsetT) lomask) == 0)
9543 {
9544 expressionS tmp;
9545
9546 tmp.X_op = O_constant;
9547 if (shift < 32)
9548 tmp.X_add_number = ((hi32.X_add_number << (32 - shift))
9549 | (lo32.X_add_number >> shift));
9550 else
9551 tmp.X_add_number = hi32.X_add_number >> (shift - 32);
9552 macro_build (&tmp, "ori", "t,r,i", reg, 0, BFD_RELOC_LO16);
9553 macro_build (NULL, (shift >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9554 reg, reg, (shift >= 32) ? shift - 32 : shift);
9555 return;
9556 }
9557 ++shift;
9558 }
9559 while (shift <= (64 - 16));
9560
9561 /* Find the bit number of the lowest one bit, and store the
9562 shifted value in hi/lo. */
9563 hi = (unsigned long) (hi32.X_add_number & 0xffffffff);
9564 lo = (unsigned long) (lo32.X_add_number & 0xffffffff);
9565 if (lo != 0)
9566 {
9567 bit = 0;
9568 while ((lo & 1) == 0)
9569 {
9570 lo >>= 1;
9571 ++bit;
9572 }
9573 lo |= (hi & (((unsigned long) 1 << bit) - 1)) << (32 - bit);
9574 hi >>= bit;
9575 }
9576 else
9577 {
9578 bit = 32;
9579 while ((hi & 1) == 0)
9580 {
9581 hi >>= 1;
9582 ++bit;
9583 }
9584 lo = hi;
9585 hi = 0;
9586 }
9587
9588 /* Optimize if the shifted value is a (power of 2) - 1. */
9589 if ((hi == 0 && ((lo + 1) & lo) == 0)
9590 || (lo == 0xffffffff && ((hi + 1) & hi) == 0))
9591 {
9592 shift = COUNT_TOP_ZEROES ((unsigned int) hi32.X_add_number);
9593 if (shift != 0)
9594 {
9595 expressionS tmp;
9596
9597 /* This instruction will set the register to be all
9598 ones. */
9599 tmp.X_op = O_constant;
9600 tmp.X_add_number = (offsetT) -1;
9601 macro_build (&tmp, "addiu", "t,r,j", reg, 0, BFD_RELOC_LO16);
9602 if (bit != 0)
9603 {
9604 bit += shift;
9605 macro_build (NULL, (bit >= 32) ? "dsll32" : "dsll", SHFT_FMT,
9606 reg, reg, (bit >= 32) ? bit - 32 : bit);
9607 }
9608 macro_build (NULL, (shift >= 32) ? "dsrl32" : "dsrl", SHFT_FMT,
9609 reg, reg, (shift >= 32) ? shift - 32 : shift);
9610 return;
9611 }
9612 }
9613
9614 /* Sign extend hi32 before calling load_register, because we can
9615 generally get better code when we load a sign extended value. */
9616 if ((hi32.X_add_number & 0x80000000) != 0)
9617 hi32.X_add_number |= ~(offsetT) 0xffffffff;
9618 load_register (reg, &hi32, 0);
9619 freg = reg;
9620 }
9621 if ((lo32.X_add_number & 0xffff0000) == 0)
9622 {
9623 if (freg != 0)
9624 {
9625 macro_build (NULL, "dsll32", SHFT_FMT, reg, freg, 0);
9626 freg = reg;
9627 }
9628 }
9629 else
9630 {
9631 expressionS mid16;
9632
9633 if ((freg == 0) && (lo32.X_add_number == (offsetT) 0xffffffff))
9634 {
9635 macro_build (&lo32, "lui", LUI_FMT, reg, BFD_RELOC_HI16);
9636 macro_build (NULL, "dsrl32", SHFT_FMT, reg, reg, 0);
9637 return;
9638 }
9639
9640 if (freg != 0)
9641 {
9642 macro_build (NULL, "dsll", SHFT_FMT, reg, freg, 16);
9643 freg = reg;
9644 }
9645 mid16 = lo32;
9646 mid16.X_add_number >>= 16;
9647 macro_build (&mid16, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9648 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9649 freg = reg;
9650 }
9651 if ((lo32.X_add_number & 0xffff) != 0)
9652 macro_build (&lo32, "ori", "t,r,i", reg, freg, BFD_RELOC_LO16);
9653 }
9654
9655 static inline void
9656 load_delay_nop (void)
9657 {
9658 if (!gpr_interlocks)
9659 macro_build (NULL, "nop", "");
9660 }
9661
9662 /* Load an address into a register. */
9663
9664 static void
9665 load_address (int reg, expressionS *ep, int *used_at)
9666 {
9667 if (ep->X_op != O_constant
9668 && ep->X_op != O_symbol)
9669 {
9670 as_bad (_("expression too complex"));
9671 ep->X_op = O_constant;
9672 }
9673
9674 if (ep->X_op == O_constant)
9675 {
9676 load_register (reg, ep, HAVE_64BIT_ADDRESSES);
9677 return;
9678 }
9679
9680 if (mips_pic == NO_PIC)
9681 {
9682 /* If this is a reference to a GP relative symbol, we want
9683 addiu $reg,$gp,<sym> (BFD_RELOC_GPREL16)
9684 Otherwise we want
9685 lui $reg,<sym> (BFD_RELOC_HI16_S)
9686 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9687 If we have an addend, we always use the latter form.
9688
9689 With 64bit address space and a usable $at we want
9690 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9691 lui $at,<sym> (BFD_RELOC_HI16_S)
9692 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9693 daddiu $at,<sym> (BFD_RELOC_LO16)
9694 dsll32 $reg,0
9695 daddu $reg,$reg,$at
9696
9697 If $at is already in use, we use a path which is suboptimal
9698 on superscalar processors.
9699 lui $reg,<sym> (BFD_RELOC_MIPS_HIGHEST)
9700 daddiu $reg,<sym> (BFD_RELOC_MIPS_HIGHER)
9701 dsll $reg,16
9702 daddiu $reg,<sym> (BFD_RELOC_HI16_S)
9703 dsll $reg,16
9704 daddiu $reg,<sym> (BFD_RELOC_LO16)
9705
9706 For GP relative symbols in 64bit address space we can use
9707 the same sequence as in 32bit address space. */
9708 if (HAVE_64BIT_SYMBOLS)
9709 {
9710 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9711 && !nopic_need_relax (ep->X_add_symbol, 1))
9712 {
9713 relax_start (ep->X_add_symbol);
9714 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9715 mips_gp_register, BFD_RELOC_GPREL16);
9716 relax_switch ();
9717 }
9718
9719 if (*used_at == 0 && mips_opts.at)
9720 {
9721 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9722 macro_build (ep, "lui", LUI_FMT, AT, BFD_RELOC_HI16_S);
9723 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9724 BFD_RELOC_MIPS_HIGHER);
9725 macro_build (ep, "daddiu", "t,r,j", AT, AT, BFD_RELOC_LO16);
9726 macro_build (NULL, "dsll32", SHFT_FMT, reg, reg, 0);
9727 macro_build (NULL, "daddu", "d,v,t", reg, reg, AT);
9728 *used_at = 1;
9729 }
9730 else
9731 {
9732 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_HIGHEST);
9733 macro_build (ep, "daddiu", "t,r,j", reg, reg,
9734 BFD_RELOC_MIPS_HIGHER);
9735 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9736 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_HI16_S);
9737 macro_build (NULL, "dsll", SHFT_FMT, reg, reg, 16);
9738 macro_build (ep, "daddiu", "t,r,j", reg, reg, BFD_RELOC_LO16);
9739 }
9740
9741 if (mips_relax.sequence)
9742 relax_end ();
9743 }
9744 else
9745 {
9746 if ((valueT) ep->X_add_number <= MAX_GPREL_OFFSET
9747 && !nopic_need_relax (ep->X_add_symbol, 1))
9748 {
9749 relax_start (ep->X_add_symbol);
9750 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg,
9751 mips_gp_register, BFD_RELOC_GPREL16);
9752 relax_switch ();
9753 }
9754 macro_build_lui (ep, reg);
9755 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j",
9756 reg, reg, BFD_RELOC_LO16);
9757 if (mips_relax.sequence)
9758 relax_end ();
9759 }
9760 }
9761 else if (!mips_big_got)
9762 {
9763 expressionS ex;
9764
9765 /* If this is a reference to an external symbol, we want
9766 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9767 Otherwise we want
9768 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9769 nop
9770 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9771 If there is a constant, it must be added in after.
9772
9773 If we have NewABI, we want
9774 lw $reg,<sym+cst>($gp) (BFD_RELOC_MIPS_GOT_DISP)
9775 unless we're referencing a global symbol with a non-zero
9776 offset, in which case cst must be added separately. */
9777 if (HAVE_NEWABI)
9778 {
9779 if (ep->X_add_number)
9780 {
9781 ex.X_add_number = ep->X_add_number;
9782 ep->X_add_number = 0;
9783 relax_start (ep->X_add_symbol);
9784 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9785 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9786 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9787 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9788 ex.X_op = O_constant;
9789 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9790 reg, reg, BFD_RELOC_LO16);
9791 ep->X_add_number = ex.X_add_number;
9792 relax_switch ();
9793 }
9794 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9795 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
9796 if (mips_relax.sequence)
9797 relax_end ();
9798 }
9799 else
9800 {
9801 ex.X_add_number = ep->X_add_number;
9802 ep->X_add_number = 0;
9803 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9804 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9805 load_delay_nop ();
9806 relax_start (ep->X_add_symbol);
9807 relax_switch ();
9808 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9809 BFD_RELOC_LO16);
9810 relax_end ();
9811
9812 if (ex.X_add_number != 0)
9813 {
9814 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9815 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9816 ex.X_op = O_constant;
9817 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j",
9818 reg, reg, BFD_RELOC_LO16);
9819 }
9820 }
9821 }
9822 else if (mips_big_got)
9823 {
9824 expressionS ex;
9825
9826 /* This is the large GOT case. If this is a reference to an
9827 external symbol, we want
9828 lui $reg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
9829 addu $reg,$reg,$gp
9830 lw $reg,<sym>($reg) (BFD_RELOC_MIPS_GOT_LO16)
9831
9832 Otherwise, for a reference to a local symbol in old ABI, we want
9833 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
9834 nop
9835 addiu $reg,$reg,<sym> (BFD_RELOC_LO16)
9836 If there is a constant, it must be added in after.
9837
9838 In the NewABI, for local symbols, with or without offsets, we want:
9839 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
9840 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
9841 */
9842 if (HAVE_NEWABI)
9843 {
9844 ex.X_add_number = ep->X_add_number;
9845 ep->X_add_number = 0;
9846 relax_start (ep->X_add_symbol);
9847 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9848 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9849 reg, reg, mips_gp_register);
9850 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9851 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9852 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9853 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9854 else if (ex.X_add_number)
9855 {
9856 ex.X_op = O_constant;
9857 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9858 BFD_RELOC_LO16);
9859 }
9860
9861 ep->X_add_number = ex.X_add_number;
9862 relax_switch ();
9863 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9864 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
9865 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9866 BFD_RELOC_MIPS_GOT_OFST);
9867 relax_end ();
9868 }
9869 else
9870 {
9871 ex.X_add_number = ep->X_add_number;
9872 ep->X_add_number = 0;
9873 relax_start (ep->X_add_symbol);
9874 macro_build (ep, "lui", LUI_FMT, reg, BFD_RELOC_MIPS_GOT_HI16);
9875 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
9876 reg, reg, mips_gp_register);
9877 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)",
9878 reg, BFD_RELOC_MIPS_GOT_LO16, reg);
9879 relax_switch ();
9880 if (reg_needs_delay (mips_gp_register))
9881 {
9882 /* We need a nop before loading from $gp. This special
9883 check is required because the lui which starts the main
9884 instruction stream does not refer to $gp, and so will not
9885 insert the nop which may be required. */
9886 macro_build (NULL, "nop", "");
9887 }
9888 macro_build (ep, ADDRESS_LOAD_INSN, "t,o(b)", reg,
9889 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9890 load_delay_nop ();
9891 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9892 BFD_RELOC_LO16);
9893 relax_end ();
9894
9895 if (ex.X_add_number != 0)
9896 {
9897 if (ex.X_add_number < -0x8000 || ex.X_add_number >= 0x8000)
9898 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
9899 ex.X_op = O_constant;
9900 macro_build (&ex, ADDRESS_ADDI_INSN, "t,r,j", reg, reg,
9901 BFD_RELOC_LO16);
9902 }
9903 }
9904 }
9905 else
9906 abort ();
9907
9908 if (!mips_opts.at && *used_at == 1)
9909 as_bad (_("macro used $at after \".set noat\""));
9910 }
9911
9912 /* Move the contents of register SOURCE into register DEST. */
9913
9914 static void
9915 move_register (int dest, int source)
9916 {
9917 /* Prefer to use a 16-bit microMIPS instruction unless the previous
9918 instruction specifically requires a 32-bit one. */
9919 if (mips_opts.micromips
9920 && !mips_opts.insn32
9921 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
9922 macro_build (NULL, "move", "mp,mj", dest, source);
9923 else
9924 macro_build (NULL, "or", "d,v,t", dest, source, 0);
9925 }
9926
9927 /* Emit an SVR4 PIC sequence to load address LOCAL into DEST, where
9928 LOCAL is the sum of a symbol and a 16-bit or 32-bit displacement.
9929 The two alternatives are:
9930
9931 Global symbol Local symbol
9932 ------------- ------------
9933 lw DEST,%got(SYMBOL) lw DEST,%got(SYMBOL + OFFSET)
9934 ... ...
9935 addiu DEST,DEST,OFFSET addiu DEST,DEST,%lo(SYMBOL + OFFSET)
9936
9937 load_got_offset emits the first instruction and add_got_offset
9938 emits the second for a 16-bit offset or add_got_offset_hilo emits
9939 a sequence to add a 32-bit offset using a scratch register. */
9940
9941 static void
9942 load_got_offset (int dest, expressionS *local)
9943 {
9944 expressionS global;
9945
9946 global = *local;
9947 global.X_add_number = 0;
9948
9949 relax_start (local->X_add_symbol);
9950 macro_build (&global, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9951 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9952 relax_switch ();
9953 macro_build (local, ADDRESS_LOAD_INSN, "t,o(b)", dest,
9954 BFD_RELOC_MIPS_GOT16, mips_gp_register);
9955 relax_end ();
9956 }
9957
9958 static void
9959 add_got_offset (int dest, expressionS *local)
9960 {
9961 expressionS global;
9962
9963 global.X_op = O_constant;
9964 global.X_op_symbol = NULL;
9965 global.X_add_symbol = NULL;
9966 global.X_add_number = local->X_add_number;
9967
9968 relax_start (local->X_add_symbol);
9969 macro_build (&global, ADDRESS_ADDI_INSN, "t,r,j",
9970 dest, dest, BFD_RELOC_LO16);
9971 relax_switch ();
9972 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", dest, dest, BFD_RELOC_LO16);
9973 relax_end ();
9974 }
9975
9976 static void
9977 add_got_offset_hilo (int dest, expressionS *local, int tmp)
9978 {
9979 expressionS global;
9980 int hold_mips_optimize;
9981
9982 global.X_op = O_constant;
9983 global.X_op_symbol = NULL;
9984 global.X_add_symbol = NULL;
9985 global.X_add_number = local->X_add_number;
9986
9987 relax_start (local->X_add_symbol);
9988 load_register (tmp, &global, HAVE_64BIT_ADDRESSES);
9989 relax_switch ();
9990 /* Set mips_optimize around the lui instruction to avoid
9991 inserting an unnecessary nop after the lw. */
9992 hold_mips_optimize = mips_optimize;
9993 mips_optimize = 2;
9994 macro_build_lui (&global, tmp);
9995 mips_optimize = hold_mips_optimize;
9996 macro_build (local, ADDRESS_ADDI_INSN, "t,r,j", tmp, tmp, BFD_RELOC_LO16);
9997 relax_end ();
9998
9999 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dest, dest, tmp);
10000 }
10001
10002 /* Emit a sequence of instructions to emulate a branch likely operation.
10003 BR is an ordinary branch corresponding to one to be emulated. BRNEG
10004 is its complementing branch with the original condition negated.
10005 CALL is set if the original branch specified the link operation.
10006 EP, FMT, SREG and TREG specify the usual macro_build() parameters.
10007
10008 Code like this is produced in the noreorder mode:
10009
10010 BRNEG <args>, 1f
10011 nop
10012 b <sym>
10013 delay slot (executed only if branch taken)
10014 1:
10015
10016 or, if CALL is set:
10017
10018 BRNEG <args>, 1f
10019 nop
10020 bal <sym>
10021 delay slot (executed only if branch taken)
10022 1:
10023
10024 In the reorder mode the delay slot would be filled with a nop anyway,
10025 so code produced is simply:
10026
10027 BR <args>, <sym>
10028 nop
10029
10030 This function is used when producing code for the microMIPS ASE that
10031 does not implement branch likely instructions in hardware. */
10032
10033 static void
10034 macro_build_branch_likely (const char *br, const char *brneg,
10035 int call, expressionS *ep, const char *fmt,
10036 unsigned int sreg, unsigned int treg)
10037 {
10038 int noreorder = mips_opts.noreorder;
10039 expressionS expr1;
10040
10041 gas_assert (mips_opts.micromips);
10042 start_noreorder ();
10043 if (noreorder)
10044 {
10045 micromips_label_expr (&expr1);
10046 macro_build (&expr1, brneg, fmt, sreg, treg);
10047 macro_build (NULL, "nop", "");
10048 macro_build (ep, call ? "bal" : "b", "p");
10049
10050 /* Set to true so that append_insn adds a label. */
10051 emit_branch_likely_macro = TRUE;
10052 }
10053 else
10054 {
10055 macro_build (ep, br, fmt, sreg, treg);
10056 macro_build (NULL, "nop", "");
10057 }
10058 end_noreorder ();
10059 }
10060
10061 /* Emit a coprocessor branch-likely macro specified by TYPE, using CC as
10062 the condition code tested. EP specifies the branch target. */
10063
10064 static void
10065 macro_build_branch_ccl (int type, expressionS *ep, unsigned int cc)
10066 {
10067 const int call = 0;
10068 const char *brneg;
10069 const char *br;
10070
10071 switch (type)
10072 {
10073 case M_BC1FL:
10074 br = "bc1f";
10075 brneg = "bc1t";
10076 break;
10077 case M_BC1TL:
10078 br = "bc1t";
10079 brneg = "bc1f";
10080 break;
10081 case M_BC2FL:
10082 br = "bc2f";
10083 brneg = "bc2t";
10084 break;
10085 case M_BC2TL:
10086 br = "bc2t";
10087 brneg = "bc2f";
10088 break;
10089 default:
10090 abort ();
10091 }
10092 macro_build_branch_likely (br, brneg, call, ep, "N,p", cc, ZERO);
10093 }
10094
10095 /* Emit a two-argument branch macro specified by TYPE, using SREG as
10096 the register tested. EP specifies the branch target. */
10097
10098 static void
10099 macro_build_branch_rs (int type, expressionS *ep, unsigned int sreg)
10100 {
10101 const char *brneg = NULL;
10102 const char *br;
10103 int call = 0;
10104
10105 switch (type)
10106 {
10107 case M_BGEZ:
10108 br = "bgez";
10109 break;
10110 case M_BGEZL:
10111 br = mips_opts.micromips ? "bgez" : "bgezl";
10112 brneg = "bltz";
10113 break;
10114 case M_BGEZALL:
10115 gas_assert (mips_opts.micromips);
10116 br = mips_opts.insn32 ? "bgezal" : "bgezals";
10117 brneg = "bltz";
10118 call = 1;
10119 break;
10120 case M_BGTZ:
10121 br = "bgtz";
10122 break;
10123 case M_BGTZL:
10124 br = mips_opts.micromips ? "bgtz" : "bgtzl";
10125 brneg = "blez";
10126 break;
10127 case M_BLEZ:
10128 br = "blez";
10129 break;
10130 case M_BLEZL:
10131 br = mips_opts.micromips ? "blez" : "blezl";
10132 brneg = "bgtz";
10133 break;
10134 case M_BLTZ:
10135 br = "bltz";
10136 break;
10137 case M_BLTZL:
10138 br = mips_opts.micromips ? "bltz" : "bltzl";
10139 brneg = "bgez";
10140 break;
10141 case M_BLTZALL:
10142 gas_assert (mips_opts.micromips);
10143 br = mips_opts.insn32 ? "bltzal" : "bltzals";
10144 brneg = "bgez";
10145 call = 1;
10146 break;
10147 default:
10148 abort ();
10149 }
10150 if (mips_opts.micromips && brneg)
10151 macro_build_branch_likely (br, brneg, call, ep, "s,p", sreg, ZERO);
10152 else
10153 macro_build (ep, br, "s,p", sreg);
10154 }
10155
10156 /* Emit a three-argument branch macro specified by TYPE, using SREG and
10157 TREG as the registers tested. EP specifies the branch target. */
10158
10159 static void
10160 macro_build_branch_rsrt (int type, expressionS *ep,
10161 unsigned int sreg, unsigned int treg)
10162 {
10163 const char *brneg = NULL;
10164 const int call = 0;
10165 const char *br;
10166
10167 switch (type)
10168 {
10169 case M_BEQ:
10170 case M_BEQ_I:
10171 br = "beq";
10172 break;
10173 case M_BEQL:
10174 case M_BEQL_I:
10175 br = mips_opts.micromips ? "beq" : "beql";
10176 brneg = "bne";
10177 break;
10178 case M_BNE:
10179 case M_BNE_I:
10180 br = "bne";
10181 break;
10182 case M_BNEL:
10183 case M_BNEL_I:
10184 br = mips_opts.micromips ? "bne" : "bnel";
10185 brneg = "beq";
10186 break;
10187 default:
10188 abort ();
10189 }
10190 if (mips_opts.micromips && brneg)
10191 macro_build_branch_likely (br, brneg, call, ep, "s,t,p", sreg, treg);
10192 else
10193 macro_build (ep, br, "s,t,p", sreg, treg);
10194 }
10195
10196 /* Return the high part that should be loaded in order to make the low
10197 part of VALUE accessible using an offset of OFFBITS bits. */
10198
10199 static offsetT
10200 offset_high_part (offsetT value, unsigned int offbits)
10201 {
10202 offsetT bias;
10203 addressT low_mask;
10204
10205 if (offbits == 0)
10206 return value;
10207 bias = 1 << (offbits - 1);
10208 low_mask = bias * 2 - 1;
10209 return (value + bias) & ~low_mask;
10210 }
10211
10212 /* Return true if the value stored in offset_expr and offset_reloc
10213 fits into a signed offset of OFFBITS bits. RANGE is the maximum
10214 amount that the caller wants to add without inducing overflow
10215 and ALIGN is the known alignment of the value in bytes. */
10216
10217 static bfd_boolean
10218 small_offset_p (unsigned int range, unsigned int align, unsigned int offbits)
10219 {
10220 if (offbits == 16)
10221 {
10222 /* Accept any relocation operator if overflow isn't a concern. */
10223 if (range < align && *offset_reloc != BFD_RELOC_UNUSED)
10224 return TRUE;
10225
10226 /* These relocations are guaranteed not to overflow in correct links. */
10227 if (*offset_reloc == BFD_RELOC_MIPS_LITERAL
10228 || gprel16_reloc_p (*offset_reloc))
10229 return TRUE;
10230 }
10231 if (offset_expr.X_op == O_constant
10232 && offset_high_part (offset_expr.X_add_number, offbits) == 0
10233 && offset_high_part (offset_expr.X_add_number + range, offbits) == 0)
10234 return TRUE;
10235 return FALSE;
10236 }
10237
10238 /*
10239 * Build macros
10240 * This routine implements the seemingly endless macro or synthesized
10241 * instructions and addressing modes in the mips assembly language. Many
10242 * of these macros are simple and are similar to each other. These could
10243 * probably be handled by some kind of table or grammar approach instead of
10244 * this verbose method. Others are not simple macros but are more like
10245 * optimizing code generation.
10246 * One interesting optimization is when several store macros appear
10247 * consecutively that would load AT with the upper half of the same address.
10248 * The ensuing load upper instructions are omitted. This implies some kind
10249 * of global optimization. We currently only optimize within a single macro.
10250 * For many of the load and store macros if the address is specified as a
10251 * constant expression in the first 64k of memory (ie ld $2,0x4000c) we
10252 * first load register 'at' with zero and use it as the base register. The
10253 * mips assembler simply uses register $zero. Just one tiny optimization
10254 * we're missing.
10255 */
10256 static void
10257 macro (struct mips_cl_insn *ip, char *str)
10258 {
10259 const struct mips_operand_array *operands;
10260 unsigned int breg, i;
10261 unsigned int tempreg;
10262 int mask;
10263 int used_at = 0;
10264 expressionS label_expr;
10265 expressionS expr1;
10266 expressionS *ep;
10267 const char *s;
10268 const char *s2;
10269 const char *fmt;
10270 int likely = 0;
10271 int coproc = 0;
10272 int offbits = 16;
10273 int call = 0;
10274 int jals = 0;
10275 int dbl = 0;
10276 int imm = 0;
10277 int ust = 0;
10278 int lp = 0;
10279 bfd_boolean large_offset;
10280 int off;
10281 int hold_mips_optimize;
10282 unsigned int align;
10283 unsigned int op[MAX_OPERANDS];
10284
10285 gas_assert (! mips_opts.mips16);
10286
10287 operands = insn_operands (ip);
10288 for (i = 0; i < MAX_OPERANDS; i++)
10289 if (operands->operand[i])
10290 op[i] = insn_extract_operand (ip, operands->operand[i]);
10291 else
10292 op[i] = -1;
10293
10294 mask = ip->insn_mo->mask;
10295
10296 label_expr.X_op = O_constant;
10297 label_expr.X_op_symbol = NULL;
10298 label_expr.X_add_symbol = NULL;
10299 label_expr.X_add_number = 0;
10300
10301 expr1.X_op = O_constant;
10302 expr1.X_op_symbol = NULL;
10303 expr1.X_add_symbol = NULL;
10304 expr1.X_add_number = 1;
10305 align = 1;
10306
10307 switch (mask)
10308 {
10309 case M_DABS:
10310 dbl = 1;
10311 /* Fall through. */
10312 case M_ABS:
10313 /* bgez $a0,1f
10314 move v0,$a0
10315 sub v0,$zero,$a0
10316 1:
10317 */
10318
10319 start_noreorder ();
10320
10321 if (mips_opts.micromips)
10322 micromips_label_expr (&label_expr);
10323 else
10324 label_expr.X_add_number = 8;
10325 macro_build (&label_expr, "bgez", "s,p", op[1]);
10326 if (op[0] == op[1])
10327 macro_build (NULL, "nop", "");
10328 else
10329 move_register (op[0], op[1]);
10330 macro_build (NULL, dbl ? "dsub" : "sub", "d,v,t", op[0], 0, op[1]);
10331 if (mips_opts.micromips)
10332 micromips_add_label ();
10333
10334 end_noreorder ();
10335 break;
10336
10337 case M_ADD_I:
10338 s = "addi";
10339 s2 = "add";
10340 goto do_addi;
10341 case M_ADDU_I:
10342 s = "addiu";
10343 s2 = "addu";
10344 goto do_addi;
10345 case M_DADD_I:
10346 dbl = 1;
10347 s = "daddi";
10348 s2 = "dadd";
10349 if (!mips_opts.micromips)
10350 goto do_addi;
10351 if (imm_expr.X_add_number >= -0x200
10352 && imm_expr.X_add_number < 0x200)
10353 {
10354 macro_build (NULL, s, "t,r,.", op[0], op[1],
10355 (int) imm_expr.X_add_number);
10356 break;
10357 }
10358 goto do_addi_i;
10359 case M_DADDU_I:
10360 dbl = 1;
10361 s = "daddiu";
10362 s2 = "daddu";
10363 do_addi:
10364 if (imm_expr.X_add_number >= -0x8000
10365 && imm_expr.X_add_number < 0x8000)
10366 {
10367 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
10368 break;
10369 }
10370 do_addi_i:
10371 used_at = 1;
10372 load_register (AT, &imm_expr, dbl);
10373 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10374 break;
10375
10376 case M_AND_I:
10377 s = "andi";
10378 s2 = "and";
10379 goto do_bit;
10380 case M_OR_I:
10381 s = "ori";
10382 s2 = "or";
10383 goto do_bit;
10384 case M_NOR_I:
10385 s = "";
10386 s2 = "nor";
10387 goto do_bit;
10388 case M_XOR_I:
10389 s = "xori";
10390 s2 = "xor";
10391 do_bit:
10392 if (imm_expr.X_add_number >= 0
10393 && imm_expr.X_add_number < 0x10000)
10394 {
10395 if (mask != M_NOR_I)
10396 macro_build (&imm_expr, s, "t,r,i", op[0], op[1], BFD_RELOC_LO16);
10397 else
10398 {
10399 macro_build (&imm_expr, "ori", "t,r,i",
10400 op[0], op[1], BFD_RELOC_LO16);
10401 macro_build (NULL, "nor", "d,v,t", op[0], op[0], 0);
10402 }
10403 break;
10404 }
10405
10406 used_at = 1;
10407 load_register (AT, &imm_expr, GPR_SIZE == 64);
10408 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
10409 break;
10410
10411 case M_BALIGN:
10412 switch (imm_expr.X_add_number)
10413 {
10414 case 0:
10415 macro_build (NULL, "nop", "");
10416 break;
10417 case 2:
10418 macro_build (NULL, "packrl.ph", "d,s,t", op[0], op[0], op[1]);
10419 break;
10420 case 1:
10421 case 3:
10422 macro_build (NULL, "balign", "t,s,2", op[0], op[1],
10423 (int) imm_expr.X_add_number);
10424 break;
10425 default:
10426 as_bad (_("BALIGN immediate not 0, 1, 2 or 3 (%lu)"),
10427 (unsigned long) imm_expr.X_add_number);
10428 break;
10429 }
10430 break;
10431
10432 case M_BC1FL:
10433 case M_BC1TL:
10434 case M_BC2FL:
10435 case M_BC2TL:
10436 gas_assert (mips_opts.micromips);
10437 macro_build_branch_ccl (mask, &offset_expr,
10438 EXTRACT_OPERAND (1, BCC, *ip));
10439 break;
10440
10441 case M_BEQ_I:
10442 case M_BEQL_I:
10443 case M_BNE_I:
10444 case M_BNEL_I:
10445 if (imm_expr.X_add_number == 0)
10446 op[1] = 0;
10447 else
10448 {
10449 op[1] = AT;
10450 used_at = 1;
10451 load_register (op[1], &imm_expr, GPR_SIZE == 64);
10452 }
10453 /* Fall through. */
10454 case M_BEQL:
10455 case M_BNEL:
10456 macro_build_branch_rsrt (mask, &offset_expr, op[0], op[1]);
10457 break;
10458
10459 case M_BGEL:
10460 likely = 1;
10461 /* Fall through. */
10462 case M_BGE:
10463 if (op[1] == 0)
10464 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[0]);
10465 else if (op[0] == 0)
10466 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[1]);
10467 else
10468 {
10469 used_at = 1;
10470 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10471 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10472 &offset_expr, AT, ZERO);
10473 }
10474 break;
10475
10476 case M_BGEZL:
10477 case M_BGEZALL:
10478 case M_BGTZL:
10479 case M_BLEZL:
10480 case M_BLTZL:
10481 case M_BLTZALL:
10482 macro_build_branch_rs (mask, &offset_expr, op[0]);
10483 break;
10484
10485 case M_BGTL_I:
10486 likely = 1;
10487 /* Fall through. */
10488 case M_BGT_I:
10489 /* Check for > max integer. */
10490 if (imm_expr.X_add_number >= GPR_SMAX)
10491 {
10492 do_false:
10493 /* Result is always false. */
10494 if (! likely)
10495 macro_build (NULL, "nop", "");
10496 else
10497 macro_build_branch_rsrt (M_BNEL, &offset_expr, ZERO, ZERO);
10498 break;
10499 }
10500 ++imm_expr.X_add_number;
10501 /* Fall through. */
10502 case M_BGE_I:
10503 case M_BGEL_I:
10504 if (mask == M_BGEL_I)
10505 likely = 1;
10506 if (imm_expr.X_add_number == 0)
10507 {
10508 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ,
10509 &offset_expr, op[0]);
10510 break;
10511 }
10512 if (imm_expr.X_add_number == 1)
10513 {
10514 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ,
10515 &offset_expr, op[0]);
10516 break;
10517 }
10518 if (imm_expr.X_add_number <= GPR_SMIN)
10519 {
10520 do_true:
10521 /* Result is always true. */
10522 as_warn (_("branch %s is always true"), ip->insn_mo->name);
10523 macro_build (&offset_expr, "b", "p");
10524 break;
10525 }
10526 used_at = 1;
10527 set_at (op[0], 0);
10528 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10529 &offset_expr, AT, ZERO);
10530 break;
10531
10532 case M_BGEUL:
10533 likely = 1;
10534 /* Fall through. */
10535 case M_BGEU:
10536 if (op[1] == 0)
10537 goto do_true;
10538 else if (op[0] == 0)
10539 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10540 &offset_expr, ZERO, op[1]);
10541 else
10542 {
10543 used_at = 1;
10544 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10545 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10546 &offset_expr, AT, ZERO);
10547 }
10548 break;
10549
10550 case M_BGTUL_I:
10551 likely = 1;
10552 /* Fall through. */
10553 case M_BGTU_I:
10554 if (op[0] == 0
10555 || (GPR_SIZE == 32
10556 && imm_expr.X_add_number == -1))
10557 goto do_false;
10558 ++imm_expr.X_add_number;
10559 /* Fall through. */
10560 case M_BGEU_I:
10561 case M_BGEUL_I:
10562 if (mask == M_BGEUL_I)
10563 likely = 1;
10564 if (imm_expr.X_add_number == 0)
10565 goto do_true;
10566 else if (imm_expr.X_add_number == 1)
10567 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10568 &offset_expr, op[0], ZERO);
10569 else
10570 {
10571 used_at = 1;
10572 set_at (op[0], 1);
10573 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10574 &offset_expr, AT, ZERO);
10575 }
10576 break;
10577
10578 case M_BGTL:
10579 likely = 1;
10580 /* Fall through. */
10581 case M_BGT:
10582 if (op[1] == 0)
10583 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[0]);
10584 else if (op[0] == 0)
10585 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[1]);
10586 else
10587 {
10588 used_at = 1;
10589 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10590 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10591 &offset_expr, AT, ZERO);
10592 }
10593 break;
10594
10595 case M_BGTUL:
10596 likely = 1;
10597 /* Fall through. */
10598 case M_BGTU:
10599 if (op[1] == 0)
10600 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10601 &offset_expr, op[0], ZERO);
10602 else if (op[0] == 0)
10603 goto do_false;
10604 else
10605 {
10606 used_at = 1;
10607 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10608 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10609 &offset_expr, AT, ZERO);
10610 }
10611 break;
10612
10613 case M_BLEL:
10614 likely = 1;
10615 /* Fall through. */
10616 case M_BLE:
10617 if (op[1] == 0)
10618 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10619 else if (op[0] == 0)
10620 macro_build_branch_rs (likely ? M_BGEZL : M_BGEZ, &offset_expr, op[1]);
10621 else
10622 {
10623 used_at = 1;
10624 macro_build (NULL, "slt", "d,v,t", AT, op[1], op[0]);
10625 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10626 &offset_expr, AT, ZERO);
10627 }
10628 break;
10629
10630 case M_BLEL_I:
10631 likely = 1;
10632 /* Fall through. */
10633 case M_BLE_I:
10634 if (imm_expr.X_add_number >= GPR_SMAX)
10635 goto do_true;
10636 ++imm_expr.X_add_number;
10637 /* Fall through. */
10638 case M_BLT_I:
10639 case M_BLTL_I:
10640 if (mask == M_BLTL_I)
10641 likely = 1;
10642 if (imm_expr.X_add_number == 0)
10643 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10644 else if (imm_expr.X_add_number == 1)
10645 macro_build_branch_rs (likely ? M_BLEZL : M_BLEZ, &offset_expr, op[0]);
10646 else
10647 {
10648 used_at = 1;
10649 set_at (op[0], 0);
10650 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10651 &offset_expr, AT, ZERO);
10652 }
10653 break;
10654
10655 case M_BLEUL:
10656 likely = 1;
10657 /* Fall through. */
10658 case M_BLEU:
10659 if (op[1] == 0)
10660 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10661 &offset_expr, op[0], ZERO);
10662 else if (op[0] == 0)
10663 goto do_true;
10664 else
10665 {
10666 used_at = 1;
10667 macro_build (NULL, "sltu", "d,v,t", AT, op[1], op[0]);
10668 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10669 &offset_expr, AT, ZERO);
10670 }
10671 break;
10672
10673 case M_BLEUL_I:
10674 likely = 1;
10675 /* Fall through. */
10676 case M_BLEU_I:
10677 if (op[0] == 0
10678 || (GPR_SIZE == 32
10679 && imm_expr.X_add_number == -1))
10680 goto do_true;
10681 ++imm_expr.X_add_number;
10682 /* Fall through. */
10683 case M_BLTU_I:
10684 case M_BLTUL_I:
10685 if (mask == M_BLTUL_I)
10686 likely = 1;
10687 if (imm_expr.X_add_number == 0)
10688 goto do_false;
10689 else if (imm_expr.X_add_number == 1)
10690 macro_build_branch_rsrt (likely ? M_BEQL : M_BEQ,
10691 &offset_expr, op[0], ZERO);
10692 else
10693 {
10694 used_at = 1;
10695 set_at (op[0], 1);
10696 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10697 &offset_expr, AT, ZERO);
10698 }
10699 break;
10700
10701 case M_BLTL:
10702 likely = 1;
10703 /* Fall through. */
10704 case M_BLT:
10705 if (op[1] == 0)
10706 macro_build_branch_rs (likely ? M_BLTZL : M_BLTZ, &offset_expr, op[0]);
10707 else if (op[0] == 0)
10708 macro_build_branch_rs (likely ? M_BGTZL : M_BGTZ, &offset_expr, op[1]);
10709 else
10710 {
10711 used_at = 1;
10712 macro_build (NULL, "slt", "d,v,t", AT, op[0], op[1]);
10713 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10714 &offset_expr, AT, ZERO);
10715 }
10716 break;
10717
10718 case M_BLTUL:
10719 likely = 1;
10720 /* Fall through. */
10721 case M_BLTU:
10722 if (op[1] == 0)
10723 goto do_false;
10724 else if (op[0] == 0)
10725 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10726 &offset_expr, ZERO, op[1]);
10727 else
10728 {
10729 used_at = 1;
10730 macro_build (NULL, "sltu", "d,v,t", AT, op[0], op[1]);
10731 macro_build_branch_rsrt (likely ? M_BNEL : M_BNE,
10732 &offset_expr, AT, ZERO);
10733 }
10734 break;
10735
10736 case M_DDIV_3:
10737 dbl = 1;
10738 /* Fall through. */
10739 case M_DIV_3:
10740 s = "mflo";
10741 goto do_div3;
10742 case M_DREM_3:
10743 dbl = 1;
10744 /* Fall through. */
10745 case M_REM_3:
10746 s = "mfhi";
10747 do_div3:
10748 if (op[2] == 0)
10749 {
10750 as_warn (_("divide by zero"));
10751 if (mips_trap)
10752 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10753 else
10754 macro_build (NULL, "break", BRK_FMT, 7);
10755 break;
10756 }
10757
10758 start_noreorder ();
10759 if (mips_trap)
10760 {
10761 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10762 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10763 }
10764 else
10765 {
10766 if (mips_opts.micromips)
10767 micromips_label_expr (&label_expr);
10768 else
10769 label_expr.X_add_number = 8;
10770 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10771 macro_build (NULL, dbl ? "ddiv" : "div", "z,s,t", op[1], op[2]);
10772 macro_build (NULL, "break", BRK_FMT, 7);
10773 if (mips_opts.micromips)
10774 micromips_add_label ();
10775 }
10776 expr1.X_add_number = -1;
10777 used_at = 1;
10778 load_register (AT, &expr1, dbl);
10779 if (mips_opts.micromips)
10780 micromips_label_expr (&label_expr);
10781 else
10782 label_expr.X_add_number = mips_trap ? (dbl ? 12 : 8) : (dbl ? 20 : 16);
10783 macro_build (&label_expr, "bne", "s,t,p", op[2], AT);
10784 if (dbl)
10785 {
10786 expr1.X_add_number = 1;
10787 load_register (AT, &expr1, dbl);
10788 macro_build (NULL, "dsll32", SHFT_FMT, AT, AT, 31);
10789 }
10790 else
10791 {
10792 expr1.X_add_number = 0x80000000;
10793 macro_build (&expr1, "lui", LUI_FMT, AT, BFD_RELOC_HI16);
10794 }
10795 if (mips_trap)
10796 {
10797 macro_build (NULL, "teq", TRAP_FMT, op[1], AT, 6);
10798 /* We want to close the noreorder block as soon as possible, so
10799 that later insns are available for delay slot filling. */
10800 end_noreorder ();
10801 }
10802 else
10803 {
10804 if (mips_opts.micromips)
10805 micromips_label_expr (&label_expr);
10806 else
10807 label_expr.X_add_number = 8;
10808 macro_build (&label_expr, "bne", "s,t,p", op[1], AT);
10809 macro_build (NULL, "nop", "");
10810
10811 /* We want to close the noreorder block as soon as possible, so
10812 that later insns are available for delay slot filling. */
10813 end_noreorder ();
10814
10815 macro_build (NULL, "break", BRK_FMT, 6);
10816 }
10817 if (mips_opts.micromips)
10818 micromips_add_label ();
10819 macro_build (NULL, s, MFHL_FMT, op[0]);
10820 break;
10821
10822 case M_DIV_3I:
10823 s = "div";
10824 s2 = "mflo";
10825 goto do_divi;
10826 case M_DIVU_3I:
10827 s = "divu";
10828 s2 = "mflo";
10829 goto do_divi;
10830 case M_REM_3I:
10831 s = "div";
10832 s2 = "mfhi";
10833 goto do_divi;
10834 case M_REMU_3I:
10835 s = "divu";
10836 s2 = "mfhi";
10837 goto do_divi;
10838 case M_DDIV_3I:
10839 dbl = 1;
10840 s = "ddiv";
10841 s2 = "mflo";
10842 goto do_divi;
10843 case M_DDIVU_3I:
10844 dbl = 1;
10845 s = "ddivu";
10846 s2 = "mflo";
10847 goto do_divi;
10848 case M_DREM_3I:
10849 dbl = 1;
10850 s = "ddiv";
10851 s2 = "mfhi";
10852 goto do_divi;
10853 case M_DREMU_3I:
10854 dbl = 1;
10855 s = "ddivu";
10856 s2 = "mfhi";
10857 do_divi:
10858 if (imm_expr.X_add_number == 0)
10859 {
10860 as_warn (_("divide by zero"));
10861 if (mips_trap)
10862 macro_build (NULL, "teq", TRAP_FMT, ZERO, ZERO, 7);
10863 else
10864 macro_build (NULL, "break", BRK_FMT, 7);
10865 break;
10866 }
10867 if (imm_expr.X_add_number == 1)
10868 {
10869 if (strcmp (s2, "mflo") == 0)
10870 move_register (op[0], op[1]);
10871 else
10872 move_register (op[0], ZERO);
10873 break;
10874 }
10875 if (imm_expr.X_add_number == -1 && s[strlen (s) - 1] != 'u')
10876 {
10877 if (strcmp (s2, "mflo") == 0)
10878 macro_build (NULL, dbl ? "dneg" : "neg", "d,w", op[0], op[1]);
10879 else
10880 move_register (op[0], ZERO);
10881 break;
10882 }
10883
10884 used_at = 1;
10885 load_register (AT, &imm_expr, dbl);
10886 macro_build (NULL, s, "z,s,t", op[1], AT);
10887 macro_build (NULL, s2, MFHL_FMT, op[0]);
10888 break;
10889
10890 case M_DIVU_3:
10891 s = "divu";
10892 s2 = "mflo";
10893 goto do_divu3;
10894 case M_REMU_3:
10895 s = "divu";
10896 s2 = "mfhi";
10897 goto do_divu3;
10898 case M_DDIVU_3:
10899 s = "ddivu";
10900 s2 = "mflo";
10901 goto do_divu3;
10902 case M_DREMU_3:
10903 s = "ddivu";
10904 s2 = "mfhi";
10905 do_divu3:
10906 start_noreorder ();
10907 if (mips_trap)
10908 {
10909 macro_build (NULL, "teq", TRAP_FMT, op[2], ZERO, 7);
10910 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10911 /* We want to close the noreorder block as soon as possible, so
10912 that later insns are available for delay slot filling. */
10913 end_noreorder ();
10914 }
10915 else
10916 {
10917 if (mips_opts.micromips)
10918 micromips_label_expr (&label_expr);
10919 else
10920 label_expr.X_add_number = 8;
10921 macro_build (&label_expr, "bne", "s,t,p", op[2], ZERO);
10922 macro_build (NULL, s, "z,s,t", op[1], op[2]);
10923
10924 /* We want to close the noreorder block as soon as possible, so
10925 that later insns are available for delay slot filling. */
10926 end_noreorder ();
10927 macro_build (NULL, "break", BRK_FMT, 7);
10928 if (mips_opts.micromips)
10929 micromips_add_label ();
10930 }
10931 macro_build (NULL, s2, MFHL_FMT, op[0]);
10932 break;
10933
10934 case M_DLCA_AB:
10935 dbl = 1;
10936 /* Fall through. */
10937 case M_LCA_AB:
10938 call = 1;
10939 goto do_la;
10940 case M_DLA_AB:
10941 dbl = 1;
10942 /* Fall through. */
10943 case M_LA_AB:
10944 do_la:
10945 /* Load the address of a symbol into a register. If breg is not
10946 zero, we then add a base register to it. */
10947
10948 breg = op[2];
10949 if (dbl && GPR_SIZE == 32)
10950 as_warn (_("dla used to load 32-bit register; recommend using la "
10951 "instead"));
10952
10953 if (!dbl && HAVE_64BIT_OBJECTS)
10954 as_warn (_("la used to load 64-bit address; recommend using dla "
10955 "instead"));
10956
10957 if (small_offset_p (0, align, 16))
10958 {
10959 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", op[0], breg,
10960 -1, offset_reloc[0], offset_reloc[1], offset_reloc[2]);
10961 break;
10962 }
10963
10964 if (mips_opts.at && (op[0] == breg))
10965 {
10966 tempreg = AT;
10967 used_at = 1;
10968 }
10969 else
10970 tempreg = op[0];
10971
10972 if (offset_expr.X_op != O_symbol
10973 && offset_expr.X_op != O_constant)
10974 {
10975 as_bad (_("expression too complex"));
10976 offset_expr.X_op = O_constant;
10977 }
10978
10979 if (offset_expr.X_op == O_constant)
10980 load_register (tempreg, &offset_expr, HAVE_64BIT_ADDRESSES);
10981 else if (mips_pic == NO_PIC)
10982 {
10983 /* If this is a reference to a GP relative symbol, we want
10984 addiu $tempreg,$gp,<sym> (BFD_RELOC_GPREL16)
10985 Otherwise we want
10986 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
10987 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
10988 If we have a constant, we need two instructions anyhow,
10989 so we may as well always use the latter form.
10990
10991 With 64bit address space and a usable $at we want
10992 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
10993 lui $at,<sym> (BFD_RELOC_HI16_S)
10994 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
10995 daddiu $at,<sym> (BFD_RELOC_LO16)
10996 dsll32 $tempreg,0
10997 daddu $tempreg,$tempreg,$at
10998
10999 If $at is already in use, we use a path which is suboptimal
11000 on superscalar processors.
11001 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
11002 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
11003 dsll $tempreg,16
11004 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
11005 dsll $tempreg,16
11006 daddiu $tempreg,<sym> (BFD_RELOC_LO16)
11007
11008 For GP relative symbols in 64bit address space we can use
11009 the same sequence as in 32bit address space. */
11010 if (HAVE_64BIT_SYMBOLS)
11011 {
11012 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11013 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11014 {
11015 relax_start (offset_expr.X_add_symbol);
11016 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11017 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
11018 relax_switch ();
11019 }
11020
11021 if (used_at == 0 && mips_opts.at)
11022 {
11023 macro_build (&offset_expr, "lui", LUI_FMT,
11024 tempreg, BFD_RELOC_MIPS_HIGHEST);
11025 macro_build (&offset_expr, "lui", LUI_FMT,
11026 AT, BFD_RELOC_HI16_S);
11027 macro_build (&offset_expr, "daddiu", "t,r,j",
11028 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
11029 macro_build (&offset_expr, "daddiu", "t,r,j",
11030 AT, AT, BFD_RELOC_LO16);
11031 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
11032 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
11033 used_at = 1;
11034 }
11035 else
11036 {
11037 macro_build (&offset_expr, "lui", LUI_FMT,
11038 tempreg, BFD_RELOC_MIPS_HIGHEST);
11039 macro_build (&offset_expr, "daddiu", "t,r,j",
11040 tempreg, tempreg, BFD_RELOC_MIPS_HIGHER);
11041 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11042 macro_build (&offset_expr, "daddiu", "t,r,j",
11043 tempreg, tempreg, BFD_RELOC_HI16_S);
11044 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
11045 macro_build (&offset_expr, "daddiu", "t,r,j",
11046 tempreg, tempreg, BFD_RELOC_LO16);
11047 }
11048
11049 if (mips_relax.sequence)
11050 relax_end ();
11051 }
11052 else
11053 {
11054 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
11055 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
11056 {
11057 relax_start (offset_expr.X_add_symbol);
11058 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11059 tempreg, mips_gp_register, BFD_RELOC_GPREL16);
11060 relax_switch ();
11061 }
11062 if (!IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
11063 as_bad (_("offset too large"));
11064 macro_build_lui (&offset_expr, tempreg);
11065 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11066 tempreg, tempreg, BFD_RELOC_LO16);
11067 if (mips_relax.sequence)
11068 relax_end ();
11069 }
11070 }
11071 else if (!mips_big_got && !HAVE_NEWABI)
11072 {
11073 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11074
11075 /* If this is a reference to an external symbol, and there
11076 is no constant, we want
11077 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11078 or for lca or if tempreg is PIC_CALL_REG
11079 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11080 For a local symbol, we want
11081 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11082 nop
11083 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11084
11085 If we have a small constant, and this is a reference to
11086 an external symbol, we want
11087 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11088 nop
11089 addiu $tempreg,$tempreg,<constant>
11090 For a local symbol, we want the same instruction
11091 sequence, but we output a BFD_RELOC_LO16 reloc on the
11092 addiu instruction.
11093
11094 If we have a large constant, and this is a reference to
11095 an external symbol, we want
11096 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11097 lui $at,<hiconstant>
11098 addiu $at,$at,<loconstant>
11099 addu $tempreg,$tempreg,$at
11100 For a local symbol, we want the same instruction
11101 sequence, but we output a BFD_RELOC_LO16 reloc on the
11102 addiu instruction.
11103 */
11104
11105 if (offset_expr.X_add_number == 0)
11106 {
11107 if (mips_pic == SVR4_PIC
11108 && breg == 0
11109 && (call || tempreg == PIC_CALL_REG))
11110 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL16;
11111
11112 relax_start (offset_expr.X_add_symbol);
11113 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11114 lw_reloc_type, mips_gp_register);
11115 if (breg != 0)
11116 {
11117 /* We're going to put in an addu instruction using
11118 tempreg, so we may as well insert the nop right
11119 now. */
11120 load_delay_nop ();
11121 }
11122 relax_switch ();
11123 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11124 tempreg, BFD_RELOC_MIPS_GOT16, mips_gp_register);
11125 load_delay_nop ();
11126 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11127 tempreg, tempreg, BFD_RELOC_LO16);
11128 relax_end ();
11129 /* FIXME: If breg == 0, and the next instruction uses
11130 $tempreg, then if this variant case is used an extra
11131 nop will be generated. */
11132 }
11133 else if (offset_expr.X_add_number >= -0x8000
11134 && offset_expr.X_add_number < 0x8000)
11135 {
11136 load_got_offset (tempreg, &offset_expr);
11137 load_delay_nop ();
11138 add_got_offset (tempreg, &offset_expr);
11139 }
11140 else
11141 {
11142 expr1.X_add_number = offset_expr.X_add_number;
11143 offset_expr.X_add_number =
11144 SEXT_16BIT (offset_expr.X_add_number);
11145 load_got_offset (tempreg, &offset_expr);
11146 offset_expr.X_add_number = expr1.X_add_number;
11147 /* If we are going to add in a base register, and the
11148 target register and the base register are the same,
11149 then we are using AT as a temporary register. Since
11150 we want to load the constant into AT, we add our
11151 current AT (from the global offset table) and the
11152 register into the register now, and pretend we were
11153 not using a base register. */
11154 if (breg == op[0])
11155 {
11156 load_delay_nop ();
11157 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11158 op[0], AT, breg);
11159 breg = 0;
11160 tempreg = op[0];
11161 }
11162 add_got_offset_hilo (tempreg, &offset_expr, AT);
11163 used_at = 1;
11164 }
11165 }
11166 else if (!mips_big_got && HAVE_NEWABI)
11167 {
11168 int add_breg_early = 0;
11169
11170 /* If this is a reference to an external, and there is no
11171 constant, or local symbol (*), with or without a
11172 constant, we want
11173 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11174 or for lca or if tempreg is PIC_CALL_REG
11175 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11176
11177 If we have a small constant, and this is a reference to
11178 an external symbol, we want
11179 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11180 addiu $tempreg,$tempreg,<constant>
11181
11182 If we have a large constant, and this is a reference to
11183 an external symbol, we want
11184 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_DISP)
11185 lui $at,<hiconstant>
11186 addiu $at,$at,<loconstant>
11187 addu $tempreg,$tempreg,$at
11188
11189 (*) Other assemblers seem to prefer GOT_PAGE/GOT_OFST for
11190 local symbols, even though it introduces an additional
11191 instruction. */
11192
11193 if (offset_expr.X_add_number)
11194 {
11195 expr1.X_add_number = offset_expr.X_add_number;
11196 offset_expr.X_add_number = 0;
11197
11198 relax_start (offset_expr.X_add_symbol);
11199 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11200 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11201
11202 if (expr1.X_add_number >= -0x8000
11203 && expr1.X_add_number < 0x8000)
11204 {
11205 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11206 tempreg, tempreg, BFD_RELOC_LO16);
11207 }
11208 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11209 {
11210 unsigned int dreg;
11211
11212 /* If we are going to add in a base register, and the
11213 target register and the base register are the same,
11214 then we are using AT as a temporary register. Since
11215 we want to load the constant into AT, we add our
11216 current AT (from the global offset table) and the
11217 register into the register now, and pretend we were
11218 not using a base register. */
11219 if (breg != op[0])
11220 dreg = tempreg;
11221 else
11222 {
11223 gas_assert (tempreg == AT);
11224 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11225 op[0], AT, breg);
11226 dreg = op[0];
11227 add_breg_early = 1;
11228 }
11229
11230 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11231 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11232 dreg, dreg, AT);
11233
11234 used_at = 1;
11235 }
11236 else
11237 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11238
11239 relax_switch ();
11240 offset_expr.X_add_number = expr1.X_add_number;
11241
11242 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11243 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11244 if (add_breg_early)
11245 {
11246 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11247 op[0], tempreg, breg);
11248 breg = 0;
11249 tempreg = op[0];
11250 }
11251 relax_end ();
11252 }
11253 else if (breg == 0 && (call || tempreg == PIC_CALL_REG))
11254 {
11255 relax_start (offset_expr.X_add_symbol);
11256 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11257 BFD_RELOC_MIPS_CALL16, mips_gp_register);
11258 relax_switch ();
11259 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11260 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11261 relax_end ();
11262 }
11263 else
11264 {
11265 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11266 BFD_RELOC_MIPS_GOT_DISP, mips_gp_register);
11267 }
11268 }
11269 else if (mips_big_got && !HAVE_NEWABI)
11270 {
11271 int gpdelay;
11272 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11273 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11274 int local_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
11275
11276 /* This is the large GOT case. If this is a reference to an
11277 external symbol, and there is no constant, we want
11278 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11279 addu $tempreg,$tempreg,$gp
11280 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11281 or for lca or if tempreg is PIC_CALL_REG
11282 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11283 addu $tempreg,$tempreg,$gp
11284 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11285 For a local symbol, we want
11286 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11287 nop
11288 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
11289
11290 If we have a small constant, and this is a reference to
11291 an external symbol, we want
11292 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11293 addu $tempreg,$tempreg,$gp
11294 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11295 nop
11296 addiu $tempreg,$tempreg,<constant>
11297 For a local symbol, we want
11298 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11299 nop
11300 addiu $tempreg,$tempreg,<constant> (BFD_RELOC_LO16)
11301
11302 If we have a large constant, and this is a reference to
11303 an external symbol, we want
11304 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11305 addu $tempreg,$tempreg,$gp
11306 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11307 lui $at,<hiconstant>
11308 addiu $at,$at,<loconstant>
11309 addu $tempreg,$tempreg,$at
11310 For a local symbol, we want
11311 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11312 lui $at,<hiconstant>
11313 addiu $at,$at,<loconstant> (BFD_RELOC_LO16)
11314 addu $tempreg,$tempreg,$at
11315 */
11316
11317 expr1.X_add_number = offset_expr.X_add_number;
11318 offset_expr.X_add_number = 0;
11319 relax_start (offset_expr.X_add_symbol);
11320 gpdelay = reg_needs_delay (mips_gp_register);
11321 if (expr1.X_add_number == 0 && breg == 0
11322 && (call || tempreg == PIC_CALL_REG))
11323 {
11324 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11325 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11326 }
11327 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11328 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11329 tempreg, tempreg, mips_gp_register);
11330 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11331 tempreg, lw_reloc_type, tempreg);
11332 if (expr1.X_add_number == 0)
11333 {
11334 if (breg != 0)
11335 {
11336 /* We're going to put in an addu instruction using
11337 tempreg, so we may as well insert the nop right
11338 now. */
11339 load_delay_nop ();
11340 }
11341 }
11342 else if (expr1.X_add_number >= -0x8000
11343 && expr1.X_add_number < 0x8000)
11344 {
11345 load_delay_nop ();
11346 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11347 tempreg, tempreg, BFD_RELOC_LO16);
11348 }
11349 else
11350 {
11351 unsigned int dreg;
11352
11353 /* If we are going to add in a base register, and the
11354 target register and the base register are the same,
11355 then we are using AT as a temporary register. Since
11356 we want to load the constant into AT, we add our
11357 current AT (from the global offset table) and the
11358 register into the register now, and pretend we were
11359 not using a base register. */
11360 if (breg != op[0])
11361 dreg = tempreg;
11362 else
11363 {
11364 gas_assert (tempreg == AT);
11365 load_delay_nop ();
11366 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11367 op[0], AT, breg);
11368 dreg = op[0];
11369 }
11370
11371 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11372 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11373
11374 used_at = 1;
11375 }
11376 offset_expr.X_add_number = SEXT_16BIT (expr1.X_add_number);
11377 relax_switch ();
11378
11379 if (gpdelay)
11380 {
11381 /* This is needed because this instruction uses $gp, but
11382 the first instruction on the main stream does not. */
11383 macro_build (NULL, "nop", "");
11384 }
11385
11386 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11387 local_reloc_type, mips_gp_register);
11388 if (expr1.X_add_number >= -0x8000
11389 && expr1.X_add_number < 0x8000)
11390 {
11391 load_delay_nop ();
11392 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11393 tempreg, tempreg, BFD_RELOC_LO16);
11394 /* FIXME: If add_number is 0, and there was no base
11395 register, the external symbol case ended with a load,
11396 so if the symbol turns out to not be external, and
11397 the next instruction uses tempreg, an unnecessary nop
11398 will be inserted. */
11399 }
11400 else
11401 {
11402 if (breg == op[0])
11403 {
11404 /* We must add in the base register now, as in the
11405 external symbol case. */
11406 gas_assert (tempreg == AT);
11407 load_delay_nop ();
11408 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11409 op[0], AT, breg);
11410 tempreg = op[0];
11411 /* We set breg to 0 because we have arranged to add
11412 it in in both cases. */
11413 breg = 0;
11414 }
11415
11416 macro_build_lui (&expr1, AT);
11417 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11418 AT, AT, BFD_RELOC_LO16);
11419 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11420 tempreg, tempreg, AT);
11421 used_at = 1;
11422 }
11423 relax_end ();
11424 }
11425 else if (mips_big_got && HAVE_NEWABI)
11426 {
11427 int lui_reloc_type = (int) BFD_RELOC_MIPS_GOT_HI16;
11428 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT_LO16;
11429 int add_breg_early = 0;
11430
11431 /* This is the large GOT case. If this is a reference to an
11432 external symbol, and there is no constant, we want
11433 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11434 add $tempreg,$tempreg,$gp
11435 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11436 or for lca or if tempreg is PIC_CALL_REG
11437 lui $tempreg,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11438 add $tempreg,$tempreg,$gp
11439 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_CALL_LO16)
11440
11441 If we have a small constant, and this is a reference to
11442 an external symbol, we want
11443 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11444 add $tempreg,$tempreg,$gp
11445 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11446 addi $tempreg,$tempreg,<constant>
11447
11448 If we have a large constant, and this is a reference to
11449 an external symbol, we want
11450 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
11451 addu $tempreg,$tempreg,$gp
11452 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
11453 lui $at,<hiconstant>
11454 addi $at,$at,<loconstant>
11455 add $tempreg,$tempreg,$at
11456
11457 If we have NewABI, and we know it's a local symbol, we want
11458 lw $reg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
11459 addiu $reg,$reg,<sym> (BFD_RELOC_MIPS_GOT_OFST)
11460 otherwise we have to resort to GOT_HI16/GOT_LO16. */
11461
11462 relax_start (offset_expr.X_add_symbol);
11463
11464 expr1.X_add_number = offset_expr.X_add_number;
11465 offset_expr.X_add_number = 0;
11466
11467 if (expr1.X_add_number == 0 && breg == 0
11468 && (call || tempreg == PIC_CALL_REG))
11469 {
11470 lui_reloc_type = (int) BFD_RELOC_MIPS_CALL_HI16;
11471 lw_reloc_type = (int) BFD_RELOC_MIPS_CALL_LO16;
11472 }
11473 macro_build (&offset_expr, "lui", LUI_FMT, tempreg, lui_reloc_type);
11474 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11475 tempreg, tempreg, mips_gp_register);
11476 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11477 tempreg, lw_reloc_type, tempreg);
11478
11479 if (expr1.X_add_number == 0)
11480 ;
11481 else if (expr1.X_add_number >= -0x8000
11482 && expr1.X_add_number < 0x8000)
11483 {
11484 macro_build (&expr1, ADDRESS_ADDI_INSN, "t,r,j",
11485 tempreg, tempreg, BFD_RELOC_LO16);
11486 }
11487 else if (IS_SEXT_32BIT_NUM (expr1.X_add_number + 0x8000))
11488 {
11489 unsigned int dreg;
11490
11491 /* If we are going to add in a base register, and the
11492 target register and the base register are the same,
11493 then we are using AT as a temporary register. Since
11494 we want to load the constant into AT, we add our
11495 current AT (from the global offset table) and the
11496 register into the register now, and pretend we were
11497 not using a base register. */
11498 if (breg != op[0])
11499 dreg = tempreg;
11500 else
11501 {
11502 gas_assert (tempreg == AT);
11503 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11504 op[0], AT, breg);
11505 dreg = op[0];
11506 add_breg_early = 1;
11507 }
11508
11509 load_register (AT, &expr1, HAVE_64BIT_ADDRESSES);
11510 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", dreg, dreg, AT);
11511
11512 used_at = 1;
11513 }
11514 else
11515 as_bad (_("PIC code offset overflow (max 32 signed bits)"));
11516
11517 relax_switch ();
11518 offset_expr.X_add_number = expr1.X_add_number;
11519 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
11520 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
11521 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
11522 tempreg, BFD_RELOC_MIPS_GOT_OFST);
11523 if (add_breg_early)
11524 {
11525 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
11526 op[0], tempreg, breg);
11527 breg = 0;
11528 tempreg = op[0];
11529 }
11530 relax_end ();
11531 }
11532 else
11533 abort ();
11534
11535 if (breg != 0)
11536 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", op[0], tempreg, breg);
11537 break;
11538
11539 case M_MSGSND:
11540 gas_assert (!mips_opts.micromips);
11541 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x01);
11542 break;
11543
11544 case M_MSGLD:
11545 gas_assert (!mips_opts.micromips);
11546 macro_build (NULL, "c2", "C", 0x02);
11547 break;
11548
11549 case M_MSGLD_T:
11550 gas_assert (!mips_opts.micromips);
11551 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x02);
11552 break;
11553
11554 case M_MSGWAIT:
11555 gas_assert (!mips_opts.micromips);
11556 macro_build (NULL, "c2", "C", 3);
11557 break;
11558
11559 case M_MSGWAIT_T:
11560 gas_assert (!mips_opts.micromips);
11561 macro_build (NULL, "c2", "C", (op[0] << 16) | 0x03);
11562 break;
11563
11564 case M_J_A:
11565 /* The j instruction may not be used in PIC code, since it
11566 requires an absolute address. We convert it to a b
11567 instruction. */
11568 if (mips_pic == NO_PIC)
11569 macro_build (&offset_expr, "j", "a");
11570 else
11571 macro_build (&offset_expr, "b", "p");
11572 break;
11573
11574 /* The jal instructions must be handled as macros because when
11575 generating PIC code they expand to multi-instruction
11576 sequences. Normally they are simple instructions. */
11577 case M_JALS_1:
11578 op[1] = op[0];
11579 op[0] = RA;
11580 /* Fall through. */
11581 case M_JALS_2:
11582 gas_assert (mips_opts.micromips);
11583 if (mips_opts.insn32)
11584 {
11585 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11586 break;
11587 }
11588 jals = 1;
11589 goto jal;
11590 case M_JAL_1:
11591 op[1] = op[0];
11592 op[0] = RA;
11593 /* Fall through. */
11594 case M_JAL_2:
11595 jal:
11596 if (mips_pic == NO_PIC)
11597 {
11598 s = jals ? "jalrs" : "jalr";
11599 if (mips_opts.micromips
11600 && !mips_opts.insn32
11601 && op[0] == RA
11602 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11603 macro_build (NULL, s, "mj", op[1]);
11604 else
11605 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11606 }
11607 else
11608 {
11609 int cprestore = (mips_pic == SVR4_PIC && !HAVE_NEWABI
11610 && mips_cprestore_offset >= 0);
11611
11612 if (op[1] != PIC_CALL_REG)
11613 as_warn (_("MIPS PIC call to register other than $25"));
11614
11615 s = ((mips_opts.micromips
11616 && !mips_opts.insn32
11617 && (!mips_opts.noreorder || cprestore))
11618 ? "jalrs" : "jalr");
11619 if (mips_opts.micromips
11620 && !mips_opts.insn32
11621 && op[0] == RA
11622 && !(history[0].insn_mo->pinfo2 & INSN2_BRANCH_DELAY_32BIT))
11623 macro_build (NULL, s, "mj", op[1]);
11624 else
11625 macro_build (NULL, s, JALR_FMT, op[0], op[1]);
11626 if (mips_pic == SVR4_PIC && !HAVE_NEWABI)
11627 {
11628 if (mips_cprestore_offset < 0)
11629 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11630 else
11631 {
11632 if (!mips_frame_reg_valid)
11633 {
11634 as_warn (_("no .frame pseudo-op used in PIC code"));
11635 /* Quiet this warning. */
11636 mips_frame_reg_valid = 1;
11637 }
11638 if (!mips_cprestore_valid)
11639 {
11640 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11641 /* Quiet this warning. */
11642 mips_cprestore_valid = 1;
11643 }
11644 if (mips_opts.noreorder)
11645 macro_build (NULL, "nop", "");
11646 expr1.X_add_number = mips_cprestore_offset;
11647 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11648 mips_gp_register,
11649 mips_frame_reg,
11650 HAVE_64BIT_ADDRESSES);
11651 }
11652 }
11653 }
11654
11655 break;
11656
11657 case M_JALS_A:
11658 gas_assert (mips_opts.micromips);
11659 if (mips_opts.insn32)
11660 {
11661 as_bad (_("opcode not supported in the `insn32' mode `%s'"), str);
11662 break;
11663 }
11664 jals = 1;
11665 /* Fall through. */
11666 case M_JAL_A:
11667 if (mips_pic == NO_PIC)
11668 macro_build (&offset_expr, jals ? "jals" : "jal", "a");
11669 else if (mips_pic == SVR4_PIC)
11670 {
11671 /* If this is a reference to an external symbol, and we are
11672 using a small GOT, we want
11673 lw $25,<sym>($gp) (BFD_RELOC_MIPS_CALL16)
11674 nop
11675 jalr $ra,$25
11676 nop
11677 lw $gp,cprestore($sp)
11678 The cprestore value is set using the .cprestore
11679 pseudo-op. If we are using a big GOT, we want
11680 lui $25,<sym> (BFD_RELOC_MIPS_CALL_HI16)
11681 addu $25,$25,$gp
11682 lw $25,<sym>($25) (BFD_RELOC_MIPS_CALL_LO16)
11683 nop
11684 jalr $ra,$25
11685 nop
11686 lw $gp,cprestore($sp)
11687 If the symbol is not external, we want
11688 lw $25,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
11689 nop
11690 addiu $25,$25,<sym> (BFD_RELOC_LO16)
11691 jalr $ra,$25
11692 nop
11693 lw $gp,cprestore($sp)
11694
11695 For NewABI, we use the same CALL16 or CALL_HI16/CALL_LO16
11696 sequences above, minus nops, unless the symbol is local,
11697 which enables us to use GOT_PAGE/GOT_OFST (big got) or
11698 GOT_DISP. */
11699 if (HAVE_NEWABI)
11700 {
11701 if (!mips_big_got)
11702 {
11703 relax_start (offset_expr.X_add_symbol);
11704 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11705 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11706 mips_gp_register);
11707 relax_switch ();
11708 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11709 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_DISP,
11710 mips_gp_register);
11711 relax_end ();
11712 }
11713 else
11714 {
11715 relax_start (offset_expr.X_add_symbol);
11716 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11717 BFD_RELOC_MIPS_CALL_HI16);
11718 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11719 PIC_CALL_REG, mips_gp_register);
11720 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11721 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11722 PIC_CALL_REG);
11723 relax_switch ();
11724 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11725 PIC_CALL_REG, BFD_RELOC_MIPS_GOT_PAGE,
11726 mips_gp_register);
11727 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11728 PIC_CALL_REG, PIC_CALL_REG,
11729 BFD_RELOC_MIPS_GOT_OFST);
11730 relax_end ();
11731 }
11732
11733 macro_build_jalr (&offset_expr, 0);
11734 }
11735 else
11736 {
11737 relax_start (offset_expr.X_add_symbol);
11738 if (!mips_big_got)
11739 {
11740 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11741 PIC_CALL_REG, BFD_RELOC_MIPS_CALL16,
11742 mips_gp_register);
11743 load_delay_nop ();
11744 relax_switch ();
11745 }
11746 else
11747 {
11748 int gpdelay;
11749
11750 gpdelay = reg_needs_delay (mips_gp_register);
11751 macro_build (&offset_expr, "lui", LUI_FMT, PIC_CALL_REG,
11752 BFD_RELOC_MIPS_CALL_HI16);
11753 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", PIC_CALL_REG,
11754 PIC_CALL_REG, mips_gp_register);
11755 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11756 PIC_CALL_REG, BFD_RELOC_MIPS_CALL_LO16,
11757 PIC_CALL_REG);
11758 load_delay_nop ();
11759 relax_switch ();
11760 if (gpdelay)
11761 macro_build (NULL, "nop", "");
11762 }
11763 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
11764 PIC_CALL_REG, BFD_RELOC_MIPS_GOT16,
11765 mips_gp_register);
11766 load_delay_nop ();
11767 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
11768 PIC_CALL_REG, PIC_CALL_REG, BFD_RELOC_LO16);
11769 relax_end ();
11770 macro_build_jalr (&offset_expr, mips_cprestore_offset >= 0);
11771
11772 if (mips_cprestore_offset < 0)
11773 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11774 else
11775 {
11776 if (!mips_frame_reg_valid)
11777 {
11778 as_warn (_("no .frame pseudo-op used in PIC code"));
11779 /* Quiet this warning. */
11780 mips_frame_reg_valid = 1;
11781 }
11782 if (!mips_cprestore_valid)
11783 {
11784 as_warn (_("no .cprestore pseudo-op used in PIC code"));
11785 /* Quiet this warning. */
11786 mips_cprestore_valid = 1;
11787 }
11788 if (mips_opts.noreorder)
11789 macro_build (NULL, "nop", "");
11790 expr1.X_add_number = mips_cprestore_offset;
11791 macro_build_ldst_constoffset (&expr1, ADDRESS_LOAD_INSN,
11792 mips_gp_register,
11793 mips_frame_reg,
11794 HAVE_64BIT_ADDRESSES);
11795 }
11796 }
11797 }
11798 else if (mips_pic == VXWORKS_PIC)
11799 as_bad (_("non-PIC jump used in PIC library"));
11800 else
11801 abort ();
11802
11803 break;
11804
11805 case M_LBUE_AB:
11806 s = "lbue";
11807 fmt = "t,+j(b)";
11808 offbits = 9;
11809 goto ld_st;
11810 case M_LHUE_AB:
11811 s = "lhue";
11812 fmt = "t,+j(b)";
11813 offbits = 9;
11814 goto ld_st;
11815 case M_LBE_AB:
11816 s = "lbe";
11817 fmt = "t,+j(b)";
11818 offbits = 9;
11819 goto ld_st;
11820 case M_LHE_AB:
11821 s = "lhe";
11822 fmt = "t,+j(b)";
11823 offbits = 9;
11824 goto ld_st;
11825 case M_LLE_AB:
11826 s = "lle";
11827 fmt = "t,+j(b)";
11828 offbits = 9;
11829 goto ld_st;
11830 case M_LWE_AB:
11831 s = "lwe";
11832 fmt = "t,+j(b)";
11833 offbits = 9;
11834 goto ld_st;
11835 case M_LWLE_AB:
11836 s = "lwle";
11837 fmt = "t,+j(b)";
11838 offbits = 9;
11839 goto ld_st;
11840 case M_LWRE_AB:
11841 s = "lwre";
11842 fmt = "t,+j(b)";
11843 offbits = 9;
11844 goto ld_st;
11845 case M_SBE_AB:
11846 s = "sbe";
11847 fmt = "t,+j(b)";
11848 offbits = 9;
11849 goto ld_st;
11850 case M_SCE_AB:
11851 s = "sce";
11852 fmt = "t,+j(b)";
11853 offbits = 9;
11854 goto ld_st;
11855 case M_SHE_AB:
11856 s = "she";
11857 fmt = "t,+j(b)";
11858 offbits = 9;
11859 goto ld_st;
11860 case M_SWE_AB:
11861 s = "swe";
11862 fmt = "t,+j(b)";
11863 offbits = 9;
11864 goto ld_st;
11865 case M_SWLE_AB:
11866 s = "swle";
11867 fmt = "t,+j(b)";
11868 offbits = 9;
11869 goto ld_st;
11870 case M_SWRE_AB:
11871 s = "swre";
11872 fmt = "t,+j(b)";
11873 offbits = 9;
11874 goto ld_st;
11875 case M_ACLR_AB:
11876 s = "aclr";
11877 fmt = "\\,~(b)";
11878 offbits = 12;
11879 goto ld_st;
11880 case M_ASET_AB:
11881 s = "aset";
11882 fmt = "\\,~(b)";
11883 offbits = 12;
11884 goto ld_st;
11885 case M_LB_AB:
11886 s = "lb";
11887 fmt = "t,o(b)";
11888 goto ld;
11889 case M_LBU_AB:
11890 s = "lbu";
11891 fmt = "t,o(b)";
11892 goto ld;
11893 case M_LH_AB:
11894 s = "lh";
11895 fmt = "t,o(b)";
11896 goto ld;
11897 case M_LHU_AB:
11898 s = "lhu";
11899 fmt = "t,o(b)";
11900 goto ld;
11901 case M_LW_AB:
11902 s = "lw";
11903 fmt = "t,o(b)";
11904 goto ld;
11905 case M_LWC0_AB:
11906 gas_assert (!mips_opts.micromips);
11907 s = "lwc0";
11908 fmt = "E,o(b)";
11909 /* Itbl support may require additional care here. */
11910 coproc = 1;
11911 goto ld_st;
11912 case M_LWC1_AB:
11913 s = "lwc1";
11914 fmt = "T,o(b)";
11915 /* Itbl support may require additional care here. */
11916 coproc = 1;
11917 goto ld_st;
11918 case M_LWC2_AB:
11919 s = "lwc2";
11920 fmt = COP12_FMT;
11921 offbits = (mips_opts.micromips ? 12
11922 : ISA_IS_R6 (mips_opts.isa) ? 11
11923 : 16);
11924 /* Itbl support may require additional care here. */
11925 coproc = 1;
11926 goto ld_st;
11927 case M_LWC3_AB:
11928 gas_assert (!mips_opts.micromips);
11929 s = "lwc3";
11930 fmt = "E,o(b)";
11931 /* Itbl support may require additional care here. */
11932 coproc = 1;
11933 goto ld_st;
11934 case M_LWL_AB:
11935 s = "lwl";
11936 fmt = MEM12_FMT;
11937 offbits = (mips_opts.micromips ? 12 : 16);
11938 goto ld_st;
11939 case M_LWR_AB:
11940 s = "lwr";
11941 fmt = MEM12_FMT;
11942 offbits = (mips_opts.micromips ? 12 : 16);
11943 goto ld_st;
11944 case M_LDC1_AB:
11945 s = "ldc1";
11946 fmt = "T,o(b)";
11947 /* Itbl support may require additional care here. */
11948 coproc = 1;
11949 goto ld_st;
11950 case M_LDC2_AB:
11951 s = "ldc2";
11952 fmt = COP12_FMT;
11953 offbits = (mips_opts.micromips ? 12
11954 : ISA_IS_R6 (mips_opts.isa) ? 11
11955 : 16);
11956 /* Itbl support may require additional care here. */
11957 coproc = 1;
11958 goto ld_st;
11959 case M_LQC2_AB:
11960 s = "lqc2";
11961 fmt = "+7,o(b)";
11962 /* Itbl support may require additional care here. */
11963 coproc = 1;
11964 goto ld_st;
11965 case M_LDC3_AB:
11966 s = "ldc3";
11967 fmt = "E,o(b)";
11968 /* Itbl support may require additional care here. */
11969 coproc = 1;
11970 goto ld_st;
11971 case M_LDL_AB:
11972 s = "ldl";
11973 fmt = MEM12_FMT;
11974 offbits = (mips_opts.micromips ? 12 : 16);
11975 goto ld_st;
11976 case M_LDR_AB:
11977 s = "ldr";
11978 fmt = MEM12_FMT;
11979 offbits = (mips_opts.micromips ? 12 : 16);
11980 goto ld_st;
11981 case M_LL_AB:
11982 s = "ll";
11983 fmt = LL_SC_FMT;
11984 offbits = (mips_opts.micromips ? 12
11985 : ISA_IS_R6 (mips_opts.isa) ? 9
11986 : 16);
11987 goto ld;
11988 case M_LLD_AB:
11989 s = "lld";
11990 fmt = LL_SC_FMT;
11991 offbits = (mips_opts.micromips ? 12
11992 : ISA_IS_R6 (mips_opts.isa) ? 9
11993 : 16);
11994 goto ld;
11995 case M_LWU_AB:
11996 s = "lwu";
11997 fmt = MEM12_FMT;
11998 offbits = (mips_opts.micromips ? 12 : 16);
11999 goto ld;
12000 case M_LWP_AB:
12001 gas_assert (mips_opts.micromips);
12002 s = "lwp";
12003 fmt = "t,~(b)";
12004 offbits = 12;
12005 lp = 1;
12006 goto ld;
12007 case M_LDP_AB:
12008 gas_assert (mips_opts.micromips);
12009 s = "ldp";
12010 fmt = "t,~(b)";
12011 offbits = 12;
12012 lp = 1;
12013 goto ld;
12014 case M_LWM_AB:
12015 gas_assert (mips_opts.micromips);
12016 s = "lwm";
12017 fmt = "n,~(b)";
12018 offbits = 12;
12019 goto ld_st;
12020 case M_LDM_AB:
12021 gas_assert (mips_opts.micromips);
12022 s = "ldm";
12023 fmt = "n,~(b)";
12024 offbits = 12;
12025 goto ld_st;
12026
12027 ld:
12028 /* We don't want to use $0 as tempreg. */
12029 if (op[2] == op[0] + lp || op[0] + lp == ZERO)
12030 goto ld_st;
12031 else
12032 tempreg = op[0] + lp;
12033 goto ld_noat;
12034
12035 case M_SB_AB:
12036 s = "sb";
12037 fmt = "t,o(b)";
12038 goto ld_st;
12039 case M_SH_AB:
12040 s = "sh";
12041 fmt = "t,o(b)";
12042 goto ld_st;
12043 case M_SW_AB:
12044 s = "sw";
12045 fmt = "t,o(b)";
12046 goto ld_st;
12047 case M_SWC0_AB:
12048 gas_assert (!mips_opts.micromips);
12049 s = "swc0";
12050 fmt = "E,o(b)";
12051 /* Itbl support may require additional care here. */
12052 coproc = 1;
12053 goto ld_st;
12054 case M_SWC1_AB:
12055 s = "swc1";
12056 fmt = "T,o(b)";
12057 /* Itbl support may require additional care here. */
12058 coproc = 1;
12059 goto ld_st;
12060 case M_SWC2_AB:
12061 s = "swc2";
12062 fmt = COP12_FMT;
12063 offbits = (mips_opts.micromips ? 12
12064 : ISA_IS_R6 (mips_opts.isa) ? 11
12065 : 16);
12066 /* Itbl support may require additional care here. */
12067 coproc = 1;
12068 goto ld_st;
12069 case M_SWC3_AB:
12070 gas_assert (!mips_opts.micromips);
12071 s = "swc3";
12072 fmt = "E,o(b)";
12073 /* Itbl support may require additional care here. */
12074 coproc = 1;
12075 goto ld_st;
12076 case M_SWL_AB:
12077 s = "swl";
12078 fmt = MEM12_FMT;
12079 offbits = (mips_opts.micromips ? 12 : 16);
12080 goto ld_st;
12081 case M_SWR_AB:
12082 s = "swr";
12083 fmt = MEM12_FMT;
12084 offbits = (mips_opts.micromips ? 12 : 16);
12085 goto ld_st;
12086 case M_SC_AB:
12087 s = "sc";
12088 fmt = LL_SC_FMT;
12089 offbits = (mips_opts.micromips ? 12
12090 : ISA_IS_R6 (mips_opts.isa) ? 9
12091 : 16);
12092 goto ld_st;
12093 case M_SCD_AB:
12094 s = "scd";
12095 fmt = LL_SC_FMT;
12096 offbits = (mips_opts.micromips ? 12
12097 : ISA_IS_R6 (mips_opts.isa) ? 9
12098 : 16);
12099 goto ld_st;
12100 case M_CACHE_AB:
12101 s = "cache";
12102 fmt = (mips_opts.micromips ? "k,~(b)"
12103 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
12104 : "k,o(b)");
12105 offbits = (mips_opts.micromips ? 12
12106 : ISA_IS_R6 (mips_opts.isa) ? 9
12107 : 16);
12108 goto ld_st;
12109 case M_CACHEE_AB:
12110 s = "cachee";
12111 fmt = "k,+j(b)";
12112 offbits = 9;
12113 goto ld_st;
12114 case M_PREF_AB:
12115 s = "pref";
12116 fmt = (mips_opts.micromips ? "k,~(b)"
12117 : ISA_IS_R6 (mips_opts.isa) ? "k,+j(b)"
12118 : "k,o(b)");
12119 offbits = (mips_opts.micromips ? 12
12120 : ISA_IS_R6 (mips_opts.isa) ? 9
12121 : 16);
12122 goto ld_st;
12123 case M_PREFE_AB:
12124 s = "prefe";
12125 fmt = "k,+j(b)";
12126 offbits = 9;
12127 goto ld_st;
12128 case M_SDC1_AB:
12129 s = "sdc1";
12130 fmt = "T,o(b)";
12131 coproc = 1;
12132 /* Itbl support may require additional care here. */
12133 goto ld_st;
12134 case M_SDC2_AB:
12135 s = "sdc2";
12136 fmt = COP12_FMT;
12137 offbits = (mips_opts.micromips ? 12
12138 : ISA_IS_R6 (mips_opts.isa) ? 11
12139 : 16);
12140 /* Itbl support may require additional care here. */
12141 coproc = 1;
12142 goto ld_st;
12143 case M_SQC2_AB:
12144 s = "sqc2";
12145 fmt = "+7,o(b)";
12146 /* Itbl support may require additional care here. */
12147 coproc = 1;
12148 goto ld_st;
12149 case M_SDC3_AB:
12150 gas_assert (!mips_opts.micromips);
12151 s = "sdc3";
12152 fmt = "E,o(b)";
12153 /* Itbl support may require additional care here. */
12154 coproc = 1;
12155 goto ld_st;
12156 case M_SDL_AB:
12157 s = "sdl";
12158 fmt = MEM12_FMT;
12159 offbits = (mips_opts.micromips ? 12 : 16);
12160 goto ld_st;
12161 case M_SDR_AB:
12162 s = "sdr";
12163 fmt = MEM12_FMT;
12164 offbits = (mips_opts.micromips ? 12 : 16);
12165 goto ld_st;
12166 case M_SWP_AB:
12167 gas_assert (mips_opts.micromips);
12168 s = "swp";
12169 fmt = "t,~(b)";
12170 offbits = 12;
12171 goto ld_st;
12172 case M_SDP_AB:
12173 gas_assert (mips_opts.micromips);
12174 s = "sdp";
12175 fmt = "t,~(b)";
12176 offbits = 12;
12177 goto ld_st;
12178 case M_SWM_AB:
12179 gas_assert (mips_opts.micromips);
12180 s = "swm";
12181 fmt = "n,~(b)";
12182 offbits = 12;
12183 goto ld_st;
12184 case M_SDM_AB:
12185 gas_assert (mips_opts.micromips);
12186 s = "sdm";
12187 fmt = "n,~(b)";
12188 offbits = 12;
12189
12190 ld_st:
12191 tempreg = AT;
12192 ld_noat:
12193 breg = op[2];
12194 if (small_offset_p (0, align, 16))
12195 {
12196 /* The first case exists for M_LD_AB and M_SD_AB, which are
12197 macros for o32 but which should act like normal instructions
12198 otherwise. */
12199 if (offbits == 16)
12200 macro_build (&offset_expr, s, fmt, op[0], -1, offset_reloc[0],
12201 offset_reloc[1], offset_reloc[2], breg);
12202 else if (small_offset_p (0, align, offbits))
12203 {
12204 if (offbits == 0)
12205 macro_build (NULL, s, fmt, op[0], breg);
12206 else
12207 macro_build (NULL, s, fmt, op[0],
12208 (int) offset_expr.X_add_number, breg);
12209 }
12210 else
12211 {
12212 if (tempreg == AT)
12213 used_at = 1;
12214 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j",
12215 tempreg, breg, -1, offset_reloc[0],
12216 offset_reloc[1], offset_reloc[2]);
12217 if (offbits == 0)
12218 macro_build (NULL, s, fmt, op[0], tempreg);
12219 else
12220 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12221 }
12222 break;
12223 }
12224
12225 if (tempreg == AT)
12226 used_at = 1;
12227
12228 if (offset_expr.X_op != O_constant
12229 && offset_expr.X_op != O_symbol)
12230 {
12231 as_bad (_("expression too complex"));
12232 offset_expr.X_op = O_constant;
12233 }
12234
12235 if (HAVE_32BIT_ADDRESSES
12236 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12237 {
12238 char value [32];
12239
12240 sprintf_vma (value, offset_expr.X_add_number);
12241 as_bad (_("number (0x%s) larger than 32 bits"), value);
12242 }
12243
12244 /* A constant expression in PIC code can be handled just as it
12245 is in non PIC code. */
12246 if (offset_expr.X_op == O_constant)
12247 {
12248 expr1.X_add_number = offset_high_part (offset_expr.X_add_number,
12249 offbits == 0 ? 16 : offbits);
12250 offset_expr.X_add_number -= expr1.X_add_number;
12251
12252 load_register (tempreg, &expr1, HAVE_64BIT_ADDRESSES);
12253 if (breg != 0)
12254 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12255 tempreg, tempreg, breg);
12256 if (offbits == 0)
12257 {
12258 if (offset_expr.X_add_number != 0)
12259 macro_build (&offset_expr, ADDRESS_ADDI_INSN,
12260 "t,r,j", tempreg, tempreg, BFD_RELOC_LO16);
12261 macro_build (NULL, s, fmt, op[0], tempreg);
12262 }
12263 else if (offbits == 16)
12264 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12265 else
12266 macro_build (NULL, s, fmt, op[0],
12267 (int) offset_expr.X_add_number, tempreg);
12268 }
12269 else if (offbits != 16)
12270 {
12271 /* The offset field is too narrow to be used for a low-part
12272 relocation, so load the whole address into the auxiliary
12273 register. */
12274 load_address (tempreg, &offset_expr, &used_at);
12275 if (breg != 0)
12276 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12277 tempreg, tempreg, breg);
12278 if (offbits == 0)
12279 macro_build (NULL, s, fmt, op[0], tempreg);
12280 else
12281 macro_build (NULL, s, fmt, op[0], 0, tempreg);
12282 }
12283 else if (mips_pic == NO_PIC)
12284 {
12285 /* If this is a reference to a GP relative symbol, and there
12286 is no base register, we want
12287 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12288 Otherwise, if there is no base register, we want
12289 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12290 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12291 If we have a constant, we need two instructions anyhow,
12292 so we always use the latter form.
12293
12294 If we have a base register, and this is a reference to a
12295 GP relative symbol, we want
12296 addu $tempreg,$breg,$gp
12297 <op> op[0],<sym>($tempreg) (BFD_RELOC_GPREL16)
12298 Otherwise we want
12299 lui $tempreg,<sym> (BFD_RELOC_HI16_S)
12300 addu $tempreg,$tempreg,$breg
12301 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12302 With a constant we always use the latter case.
12303
12304 With 64bit address space and no base register and $at usable,
12305 we want
12306 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12307 lui $at,<sym> (BFD_RELOC_HI16_S)
12308 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12309 dsll32 $tempreg,0
12310 daddu $tempreg,$at
12311 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12312 If we have a base register, we want
12313 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12314 lui $at,<sym> (BFD_RELOC_HI16_S)
12315 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12316 daddu $at,$breg
12317 dsll32 $tempreg,0
12318 daddu $tempreg,$at
12319 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12320
12321 Without $at we can't generate the optimal path for superscalar
12322 processors here since this would require two temporary registers.
12323 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12324 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12325 dsll $tempreg,16
12326 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12327 dsll $tempreg,16
12328 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12329 If we have a base register, we want
12330 lui $tempreg,<sym> (BFD_RELOC_MIPS_HIGHEST)
12331 daddiu $tempreg,<sym> (BFD_RELOC_MIPS_HIGHER)
12332 dsll $tempreg,16
12333 daddiu $tempreg,<sym> (BFD_RELOC_HI16_S)
12334 dsll $tempreg,16
12335 daddu $tempreg,$tempreg,$breg
12336 <op> op[0],<sym>($tempreg) (BFD_RELOC_LO16)
12337
12338 For GP relative symbols in 64bit address space we can use
12339 the same sequence as in 32bit address space. */
12340 if (HAVE_64BIT_SYMBOLS)
12341 {
12342 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12343 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12344 {
12345 relax_start (offset_expr.X_add_symbol);
12346 if (breg == 0)
12347 {
12348 macro_build (&offset_expr, s, fmt, op[0],
12349 BFD_RELOC_GPREL16, mips_gp_register);
12350 }
12351 else
12352 {
12353 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12354 tempreg, breg, mips_gp_register);
12355 macro_build (&offset_expr, s, fmt, op[0],
12356 BFD_RELOC_GPREL16, tempreg);
12357 }
12358 relax_switch ();
12359 }
12360
12361 if (used_at == 0 && mips_opts.at)
12362 {
12363 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12364 BFD_RELOC_MIPS_HIGHEST);
12365 macro_build (&offset_expr, "lui", LUI_FMT, AT,
12366 BFD_RELOC_HI16_S);
12367 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12368 tempreg, BFD_RELOC_MIPS_HIGHER);
12369 if (breg != 0)
12370 macro_build (NULL, "daddu", "d,v,t", AT, AT, breg);
12371 macro_build (NULL, "dsll32", SHFT_FMT, tempreg, tempreg, 0);
12372 macro_build (NULL, "daddu", "d,v,t", tempreg, tempreg, AT);
12373 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_LO16,
12374 tempreg);
12375 used_at = 1;
12376 }
12377 else
12378 {
12379 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12380 BFD_RELOC_MIPS_HIGHEST);
12381 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12382 tempreg, BFD_RELOC_MIPS_HIGHER);
12383 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12384 macro_build (&offset_expr, "daddiu", "t,r,j", tempreg,
12385 tempreg, BFD_RELOC_HI16_S);
12386 macro_build (NULL, "dsll", SHFT_FMT, tempreg, tempreg, 16);
12387 if (breg != 0)
12388 macro_build (NULL, "daddu", "d,v,t",
12389 tempreg, tempreg, breg);
12390 macro_build (&offset_expr, s, fmt, op[0],
12391 BFD_RELOC_LO16, tempreg);
12392 }
12393
12394 if (mips_relax.sequence)
12395 relax_end ();
12396 break;
12397 }
12398
12399 if (breg == 0)
12400 {
12401 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12402 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12403 {
12404 relax_start (offset_expr.X_add_symbol);
12405 macro_build (&offset_expr, s, fmt, op[0], BFD_RELOC_GPREL16,
12406 mips_gp_register);
12407 relax_switch ();
12408 }
12409 macro_build_lui (&offset_expr, tempreg);
12410 macro_build (&offset_expr, s, fmt, op[0],
12411 BFD_RELOC_LO16, tempreg);
12412 if (mips_relax.sequence)
12413 relax_end ();
12414 }
12415 else
12416 {
12417 if ((valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12418 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12419 {
12420 relax_start (offset_expr.X_add_symbol);
12421 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12422 tempreg, breg, mips_gp_register);
12423 macro_build (&offset_expr, s, fmt, op[0],
12424 BFD_RELOC_GPREL16, tempreg);
12425 relax_switch ();
12426 }
12427 macro_build_lui (&offset_expr, tempreg);
12428 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12429 tempreg, tempreg, breg);
12430 macro_build (&offset_expr, s, fmt, op[0],
12431 BFD_RELOC_LO16, tempreg);
12432 if (mips_relax.sequence)
12433 relax_end ();
12434 }
12435 }
12436 else if (!mips_big_got)
12437 {
12438 int lw_reloc_type = (int) BFD_RELOC_MIPS_GOT16;
12439
12440 /* If this is a reference to an external symbol, we want
12441 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12442 nop
12443 <op> op[0],0($tempreg)
12444 Otherwise we want
12445 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12446 nop
12447 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12448 <op> op[0],0($tempreg)
12449
12450 For NewABI, we want
12451 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12452 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST)
12453
12454 If there is a base register, we add it to $tempreg before
12455 the <op>. If there is a constant, we stick it in the
12456 <op> instruction. We don't handle constants larger than
12457 16 bits, because we have no way to load the upper 16 bits
12458 (actually, we could handle them for the subset of cases
12459 in which we are not using $at). */
12460 gas_assert (offset_expr.X_op == O_symbol);
12461 if (HAVE_NEWABI)
12462 {
12463 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12464 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12465 if (breg != 0)
12466 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12467 tempreg, tempreg, breg);
12468 macro_build (&offset_expr, s, fmt, op[0],
12469 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12470 break;
12471 }
12472 expr1.X_add_number = offset_expr.X_add_number;
12473 offset_expr.X_add_number = 0;
12474 if (expr1.X_add_number < -0x8000
12475 || expr1.X_add_number >= 0x8000)
12476 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12477 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12478 lw_reloc_type, mips_gp_register);
12479 load_delay_nop ();
12480 relax_start (offset_expr.X_add_symbol);
12481 relax_switch ();
12482 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12483 tempreg, BFD_RELOC_LO16);
12484 relax_end ();
12485 if (breg != 0)
12486 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12487 tempreg, tempreg, breg);
12488 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12489 }
12490 else if (mips_big_got && !HAVE_NEWABI)
12491 {
12492 int gpdelay;
12493
12494 /* If this is a reference to an external symbol, we want
12495 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12496 addu $tempreg,$tempreg,$gp
12497 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12498 <op> op[0],0($tempreg)
12499 Otherwise we want
12500 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12501 nop
12502 addiu $tempreg,$tempreg,<sym> (BFD_RELOC_LO16)
12503 <op> op[0],0($tempreg)
12504 If there is a base register, we add it to $tempreg before
12505 the <op>. If there is a constant, we stick it in the
12506 <op> instruction. We don't handle constants larger than
12507 16 bits, because we have no way to load the upper 16 bits
12508 (actually, we could handle them for the subset of cases
12509 in which we are not using $at). */
12510 gas_assert (offset_expr.X_op == O_symbol);
12511 expr1.X_add_number = offset_expr.X_add_number;
12512 offset_expr.X_add_number = 0;
12513 if (expr1.X_add_number < -0x8000
12514 || expr1.X_add_number >= 0x8000)
12515 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12516 gpdelay = reg_needs_delay (mips_gp_register);
12517 relax_start (offset_expr.X_add_symbol);
12518 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12519 BFD_RELOC_MIPS_GOT_HI16);
12520 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12521 mips_gp_register);
12522 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12523 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12524 relax_switch ();
12525 if (gpdelay)
12526 macro_build (NULL, "nop", "");
12527 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12528 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12529 load_delay_nop ();
12530 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", tempreg,
12531 tempreg, BFD_RELOC_LO16);
12532 relax_end ();
12533
12534 if (breg != 0)
12535 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12536 tempreg, tempreg, breg);
12537 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12538 }
12539 else if (mips_big_got && HAVE_NEWABI)
12540 {
12541 /* If this is a reference to an external symbol, we want
12542 lui $tempreg,<sym> (BFD_RELOC_MIPS_GOT_HI16)
12543 add $tempreg,$tempreg,$gp
12544 lw $tempreg,<sym>($tempreg) (BFD_RELOC_MIPS_GOT_LO16)
12545 <op> op[0],<ofst>($tempreg)
12546 Otherwise, for local symbols, we want:
12547 lw $tempreg,<sym>($gp) (BFD_RELOC_MIPS_GOT_PAGE)
12548 <op> op[0],<sym>($tempreg) (BFD_RELOC_MIPS_GOT_OFST) */
12549 gas_assert (offset_expr.X_op == O_symbol);
12550 expr1.X_add_number = offset_expr.X_add_number;
12551 offset_expr.X_add_number = 0;
12552 if (expr1.X_add_number < -0x8000
12553 || expr1.X_add_number >= 0x8000)
12554 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12555 relax_start (offset_expr.X_add_symbol);
12556 macro_build (&offset_expr, "lui", LUI_FMT, tempreg,
12557 BFD_RELOC_MIPS_GOT_HI16);
12558 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", tempreg, tempreg,
12559 mips_gp_register);
12560 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12561 BFD_RELOC_MIPS_GOT_LO16, tempreg);
12562 if (breg != 0)
12563 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12564 tempreg, tempreg, breg);
12565 macro_build (&expr1, s, fmt, op[0], BFD_RELOC_LO16, tempreg);
12566
12567 relax_switch ();
12568 offset_expr.X_add_number = expr1.X_add_number;
12569 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", tempreg,
12570 BFD_RELOC_MIPS_GOT_PAGE, mips_gp_register);
12571 if (breg != 0)
12572 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12573 tempreg, tempreg, breg);
12574 macro_build (&offset_expr, s, fmt, op[0],
12575 BFD_RELOC_MIPS_GOT_OFST, tempreg);
12576 relax_end ();
12577 }
12578 else
12579 abort ();
12580
12581 break;
12582
12583 case M_JRADDIUSP:
12584 gas_assert (mips_opts.micromips);
12585 gas_assert (mips_opts.insn32);
12586 start_noreorder ();
12587 macro_build (NULL, "jr", "s", RA);
12588 expr1.X_add_number = op[0] << 2;
12589 macro_build (&expr1, "addiu", "t,r,j", SP, SP, BFD_RELOC_LO16);
12590 end_noreorder ();
12591 break;
12592
12593 case M_JRC:
12594 gas_assert (mips_opts.micromips);
12595 gas_assert (mips_opts.insn32);
12596 macro_build (NULL, "jr", "s", op[0]);
12597 if (mips_opts.noreorder)
12598 macro_build (NULL, "nop", "");
12599 break;
12600
12601 case M_LI:
12602 case M_LI_S:
12603 load_register (op[0], &imm_expr, 0);
12604 break;
12605
12606 case M_DLI:
12607 load_register (op[0], &imm_expr, 1);
12608 break;
12609
12610 case M_LI_SS:
12611 if (imm_expr.X_op == O_constant)
12612 {
12613 used_at = 1;
12614 load_register (AT, &imm_expr, 0);
12615 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12616 break;
12617 }
12618 else
12619 {
12620 gas_assert (imm_expr.X_op == O_absent
12621 && offset_expr.X_op == O_symbol
12622 && strcmp (segment_name (S_GET_SEGMENT
12623 (offset_expr.X_add_symbol)),
12624 ".lit4") == 0
12625 && offset_expr.X_add_number == 0);
12626 macro_build (&offset_expr, "lwc1", "T,o(b)", op[0],
12627 BFD_RELOC_MIPS_LITERAL, mips_gp_register);
12628 break;
12629 }
12630
12631 case M_LI_D:
12632 /* Check if we have a constant in IMM_EXPR. If the GPRs are 64 bits
12633 wide, IMM_EXPR is the entire value. Otherwise IMM_EXPR is the high
12634 order 32 bits of the value and the low order 32 bits are either
12635 zero or in OFFSET_EXPR. */
12636 if (imm_expr.X_op == O_constant)
12637 {
12638 if (GPR_SIZE == 64)
12639 load_register (op[0], &imm_expr, 1);
12640 else
12641 {
12642 int hreg, lreg;
12643
12644 if (target_big_endian)
12645 {
12646 hreg = op[0];
12647 lreg = op[0] + 1;
12648 }
12649 else
12650 {
12651 hreg = op[0] + 1;
12652 lreg = op[0];
12653 }
12654
12655 if (hreg <= 31)
12656 load_register (hreg, &imm_expr, 0);
12657 if (lreg <= 31)
12658 {
12659 if (offset_expr.X_op == O_absent)
12660 move_register (lreg, 0);
12661 else
12662 {
12663 gas_assert (offset_expr.X_op == O_constant);
12664 load_register (lreg, &offset_expr, 0);
12665 }
12666 }
12667 }
12668 break;
12669 }
12670 gas_assert (imm_expr.X_op == O_absent);
12671
12672 /* We know that sym is in the .rdata section. First we get the
12673 upper 16 bits of the address. */
12674 if (mips_pic == NO_PIC)
12675 {
12676 macro_build_lui (&offset_expr, AT);
12677 used_at = 1;
12678 }
12679 else
12680 {
12681 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12682 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12683 used_at = 1;
12684 }
12685
12686 /* Now we load the register(s). */
12687 if (GPR_SIZE == 64)
12688 {
12689 used_at = 1;
12690 macro_build (&offset_expr, "ld", "t,o(b)", op[0],
12691 BFD_RELOC_LO16, AT);
12692 }
12693 else
12694 {
12695 used_at = 1;
12696 macro_build (&offset_expr, "lw", "t,o(b)", op[0],
12697 BFD_RELOC_LO16, AT);
12698 if (op[0] != RA)
12699 {
12700 /* FIXME: How in the world do we deal with the possible
12701 overflow here? */
12702 offset_expr.X_add_number += 4;
12703 macro_build (&offset_expr, "lw", "t,o(b)",
12704 op[0] + 1, BFD_RELOC_LO16, AT);
12705 }
12706 }
12707 break;
12708
12709 case M_LI_DD:
12710 /* Check if we have a constant in IMM_EXPR. If the FPRs are 64 bits
12711 wide, IMM_EXPR is the entire value and the GPRs are known to be 64
12712 bits wide as well. Otherwise IMM_EXPR is the high order 32 bits of
12713 the value and the low order 32 bits are either zero or in
12714 OFFSET_EXPR. */
12715 if (imm_expr.X_op == O_constant)
12716 {
12717 used_at = 1;
12718 load_register (AT, &imm_expr, FPR_SIZE == 64);
12719 if (FPR_SIZE == 64 && GPR_SIZE == 64)
12720 macro_build (NULL, "dmtc1", "t,S", AT, op[0]);
12721 else
12722 {
12723 if (ISA_HAS_MXHC1 (mips_opts.isa))
12724 macro_build (NULL, "mthc1", "t,G", AT, op[0]);
12725 else if (FPR_SIZE != 32)
12726 as_bad (_("Unable to generate `%s' compliant code "
12727 "without mthc1"),
12728 (FPR_SIZE == 64) ? "fp64" : "fpxx");
12729 else
12730 macro_build (NULL, "mtc1", "t,G", AT, op[0] + 1);
12731 if (offset_expr.X_op == O_absent)
12732 macro_build (NULL, "mtc1", "t,G", 0, op[0]);
12733 else
12734 {
12735 gas_assert (offset_expr.X_op == O_constant);
12736 load_register (AT, &offset_expr, 0);
12737 macro_build (NULL, "mtc1", "t,G", AT, op[0]);
12738 }
12739 }
12740 break;
12741 }
12742
12743 gas_assert (imm_expr.X_op == O_absent
12744 && offset_expr.X_op == O_symbol
12745 && offset_expr.X_add_number == 0);
12746 s = segment_name (S_GET_SEGMENT (offset_expr.X_add_symbol));
12747 if (strcmp (s, ".lit8") == 0)
12748 {
12749 op[2] = mips_gp_register;
12750 offset_reloc[0] = BFD_RELOC_MIPS_LITERAL;
12751 offset_reloc[1] = BFD_RELOC_UNUSED;
12752 offset_reloc[2] = BFD_RELOC_UNUSED;
12753 }
12754 else
12755 {
12756 gas_assert (strcmp (s, RDATA_SECTION_NAME) == 0);
12757 used_at = 1;
12758 if (mips_pic != NO_PIC)
12759 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
12760 BFD_RELOC_MIPS_GOT16, mips_gp_register);
12761 else
12762 {
12763 /* FIXME: This won't work for a 64 bit address. */
12764 macro_build_lui (&offset_expr, AT);
12765 }
12766
12767 op[2] = AT;
12768 offset_reloc[0] = BFD_RELOC_LO16;
12769 offset_reloc[1] = BFD_RELOC_UNUSED;
12770 offset_reloc[2] = BFD_RELOC_UNUSED;
12771 }
12772 align = 8;
12773 /* Fall through. */
12774
12775 case M_L_DAB:
12776 /* The MIPS assembler seems to check for X_add_number not
12777 being double aligned and generating:
12778 lui at,%hi(foo+1)
12779 addu at,at,v1
12780 addiu at,at,%lo(foo+1)
12781 lwc1 f2,0(at)
12782 lwc1 f3,4(at)
12783 But, the resulting address is the same after relocation so why
12784 generate the extra instruction? */
12785 /* Itbl support may require additional care here. */
12786 coproc = 1;
12787 fmt = "T,o(b)";
12788 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12789 {
12790 s = "ldc1";
12791 goto ld_st;
12792 }
12793 s = "lwc1";
12794 goto ldd_std;
12795
12796 case M_S_DAB:
12797 gas_assert (!mips_opts.micromips);
12798 /* Itbl support may require additional care here. */
12799 coproc = 1;
12800 fmt = "T,o(b)";
12801 if (CPU_HAS_LDC1_SDC1 (mips_opts.arch))
12802 {
12803 s = "sdc1";
12804 goto ld_st;
12805 }
12806 s = "swc1";
12807 goto ldd_std;
12808
12809 case M_LQ_AB:
12810 fmt = "t,o(b)";
12811 s = "lq";
12812 goto ld;
12813
12814 case M_SQ_AB:
12815 fmt = "t,o(b)";
12816 s = "sq";
12817 goto ld_st;
12818
12819 case M_LD_AB:
12820 fmt = "t,o(b)";
12821 if (GPR_SIZE == 64)
12822 {
12823 s = "ld";
12824 goto ld;
12825 }
12826 s = "lw";
12827 goto ldd_std;
12828
12829 case M_SD_AB:
12830 fmt = "t,o(b)";
12831 if (GPR_SIZE == 64)
12832 {
12833 s = "sd";
12834 goto ld_st;
12835 }
12836 s = "sw";
12837
12838 ldd_std:
12839 /* Even on a big endian machine $fn comes before $fn+1. We have
12840 to adjust when loading from memory. We set coproc if we must
12841 load $fn+1 first. */
12842 /* Itbl support may require additional care here. */
12843 if (!target_big_endian)
12844 coproc = 0;
12845
12846 breg = op[2];
12847 if (small_offset_p (0, align, 16))
12848 {
12849 ep = &offset_expr;
12850 if (!small_offset_p (4, align, 16))
12851 {
12852 macro_build (&offset_expr, ADDRESS_ADDI_INSN, "t,r,j", AT, breg,
12853 -1, offset_reloc[0], offset_reloc[1],
12854 offset_reloc[2]);
12855 expr1.X_add_number = 0;
12856 ep = &expr1;
12857 breg = AT;
12858 used_at = 1;
12859 offset_reloc[0] = BFD_RELOC_LO16;
12860 offset_reloc[1] = BFD_RELOC_UNUSED;
12861 offset_reloc[2] = BFD_RELOC_UNUSED;
12862 }
12863 if (strcmp (s, "lw") == 0 && op[0] == breg)
12864 {
12865 ep->X_add_number += 4;
12866 macro_build (ep, s, fmt, op[0] + 1, -1, offset_reloc[0],
12867 offset_reloc[1], offset_reloc[2], breg);
12868 ep->X_add_number -= 4;
12869 macro_build (ep, s, fmt, op[0], -1, offset_reloc[0],
12870 offset_reloc[1], offset_reloc[2], breg);
12871 }
12872 else
12873 {
12874 macro_build (ep, s, fmt, coproc ? op[0] + 1 : op[0], -1,
12875 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12876 breg);
12877 ep->X_add_number += 4;
12878 macro_build (ep, s, fmt, coproc ? op[0] : op[0] + 1, -1,
12879 offset_reloc[0], offset_reloc[1], offset_reloc[2],
12880 breg);
12881 }
12882 break;
12883 }
12884
12885 if (offset_expr.X_op != O_symbol
12886 && offset_expr.X_op != O_constant)
12887 {
12888 as_bad (_("expression too complex"));
12889 offset_expr.X_op = O_constant;
12890 }
12891
12892 if (HAVE_32BIT_ADDRESSES
12893 && !IS_SEXT_32BIT_NUM (offset_expr.X_add_number))
12894 {
12895 char value [32];
12896
12897 sprintf_vma (value, offset_expr.X_add_number);
12898 as_bad (_("number (0x%s) larger than 32 bits"), value);
12899 }
12900
12901 if (mips_pic == NO_PIC || offset_expr.X_op == O_constant)
12902 {
12903 /* If this is a reference to a GP relative symbol, we want
12904 <op> op[0],<sym>($gp) (BFD_RELOC_GPREL16)
12905 <op> op[0]+1,<sym>+4($gp) (BFD_RELOC_GPREL16)
12906 If we have a base register, we use this
12907 addu $at,$breg,$gp
12908 <op> op[0],<sym>($at) (BFD_RELOC_GPREL16)
12909 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_GPREL16)
12910 If this is not a GP relative symbol, we want
12911 lui $at,<sym> (BFD_RELOC_HI16_S)
12912 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12913 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12914 If there is a base register, we add it to $at after the
12915 lui instruction. If there is a constant, we always use
12916 the last case. */
12917 if (offset_expr.X_op == O_symbol
12918 && (valueT) offset_expr.X_add_number <= MAX_GPREL_OFFSET
12919 && !nopic_need_relax (offset_expr.X_add_symbol, 1))
12920 {
12921 relax_start (offset_expr.X_add_symbol);
12922 if (breg == 0)
12923 {
12924 tempreg = mips_gp_register;
12925 }
12926 else
12927 {
12928 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
12929 AT, breg, mips_gp_register);
12930 tempreg = AT;
12931 used_at = 1;
12932 }
12933
12934 /* Itbl support may require additional care here. */
12935 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12936 BFD_RELOC_GPREL16, tempreg);
12937 offset_expr.X_add_number += 4;
12938
12939 /* Set mips_optimize to 2 to avoid inserting an
12940 undesired nop. */
12941 hold_mips_optimize = mips_optimize;
12942 mips_optimize = 2;
12943 /* Itbl support may require additional care here. */
12944 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12945 BFD_RELOC_GPREL16, tempreg);
12946 mips_optimize = hold_mips_optimize;
12947
12948 relax_switch ();
12949
12950 offset_expr.X_add_number -= 4;
12951 }
12952 used_at = 1;
12953 if (offset_high_part (offset_expr.X_add_number, 16)
12954 != offset_high_part (offset_expr.X_add_number + 4, 16))
12955 {
12956 load_address (AT, &offset_expr, &used_at);
12957 offset_expr.X_op = O_constant;
12958 offset_expr.X_add_number = 0;
12959 }
12960 else
12961 macro_build_lui (&offset_expr, AT);
12962 if (breg != 0)
12963 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12964 /* Itbl support may require additional care here. */
12965 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
12966 BFD_RELOC_LO16, AT);
12967 /* FIXME: How do we handle overflow here? */
12968 offset_expr.X_add_number += 4;
12969 /* Itbl support may require additional care here. */
12970 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
12971 BFD_RELOC_LO16, AT);
12972 if (mips_relax.sequence)
12973 relax_end ();
12974 }
12975 else if (!mips_big_got)
12976 {
12977 /* If this is a reference to an external symbol, we want
12978 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12979 nop
12980 <op> op[0],0($at)
12981 <op> op[0]+1,4($at)
12982 Otherwise we want
12983 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
12984 nop
12985 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
12986 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
12987 If there is a base register we add it to $at before the
12988 lwc1 instructions. If there is a constant we include it
12989 in the lwc1 instructions. */
12990 used_at = 1;
12991 expr1.X_add_number = offset_expr.X_add_number;
12992 if (expr1.X_add_number < -0x8000
12993 || expr1.X_add_number >= 0x8000 - 4)
12994 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
12995 load_got_offset (AT, &offset_expr);
12996 load_delay_nop ();
12997 if (breg != 0)
12998 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
12999
13000 /* Set mips_optimize to 2 to avoid inserting an undesired
13001 nop. */
13002 hold_mips_optimize = mips_optimize;
13003 mips_optimize = 2;
13004
13005 /* Itbl support may require additional care here. */
13006 relax_start (offset_expr.X_add_symbol);
13007 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
13008 BFD_RELOC_LO16, AT);
13009 expr1.X_add_number += 4;
13010 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
13011 BFD_RELOC_LO16, AT);
13012 relax_switch ();
13013 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
13014 BFD_RELOC_LO16, AT);
13015 offset_expr.X_add_number += 4;
13016 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
13017 BFD_RELOC_LO16, AT);
13018 relax_end ();
13019
13020 mips_optimize = hold_mips_optimize;
13021 }
13022 else if (mips_big_got)
13023 {
13024 int gpdelay;
13025
13026 /* If this is a reference to an external symbol, we want
13027 lui $at,<sym> (BFD_RELOC_MIPS_GOT_HI16)
13028 addu $at,$at,$gp
13029 lw $at,<sym>($at) (BFD_RELOC_MIPS_GOT_LO16)
13030 nop
13031 <op> op[0],0($at)
13032 <op> op[0]+1,4($at)
13033 Otherwise we want
13034 lw $at,<sym>($gp) (BFD_RELOC_MIPS_GOT16)
13035 nop
13036 <op> op[0],<sym>($at) (BFD_RELOC_LO16)
13037 <op> op[0]+1,<sym>+4($at) (BFD_RELOC_LO16)
13038 If there is a base register we add it to $at before the
13039 lwc1 instructions. If there is a constant we include it
13040 in the lwc1 instructions. */
13041 used_at = 1;
13042 expr1.X_add_number = offset_expr.X_add_number;
13043 offset_expr.X_add_number = 0;
13044 if (expr1.X_add_number < -0x8000
13045 || expr1.X_add_number >= 0x8000 - 4)
13046 as_bad (_("PIC code offset overflow (max 16 signed bits)"));
13047 gpdelay = reg_needs_delay (mips_gp_register);
13048 relax_start (offset_expr.X_add_symbol);
13049 macro_build (&offset_expr, "lui", LUI_FMT,
13050 AT, BFD_RELOC_MIPS_GOT_HI16);
13051 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13052 AT, AT, mips_gp_register);
13053 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)",
13054 AT, BFD_RELOC_MIPS_GOT_LO16, AT);
13055 load_delay_nop ();
13056 if (breg != 0)
13057 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
13058 /* Itbl support may require additional care here. */
13059 macro_build (&expr1, s, fmt, coproc ? op[0] + 1 : op[0],
13060 BFD_RELOC_LO16, AT);
13061 expr1.X_add_number += 4;
13062
13063 /* Set mips_optimize to 2 to avoid inserting an undesired
13064 nop. */
13065 hold_mips_optimize = mips_optimize;
13066 mips_optimize = 2;
13067 /* Itbl support may require additional care here. */
13068 macro_build (&expr1, s, fmt, coproc ? op[0] : op[0] + 1,
13069 BFD_RELOC_LO16, AT);
13070 mips_optimize = hold_mips_optimize;
13071 expr1.X_add_number -= 4;
13072
13073 relax_switch ();
13074 offset_expr.X_add_number = expr1.X_add_number;
13075 if (gpdelay)
13076 macro_build (NULL, "nop", "");
13077 macro_build (&offset_expr, ADDRESS_LOAD_INSN, "t,o(b)", AT,
13078 BFD_RELOC_MIPS_GOT16, mips_gp_register);
13079 load_delay_nop ();
13080 if (breg != 0)
13081 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", AT, breg, AT);
13082 /* Itbl support may require additional care here. */
13083 macro_build (&offset_expr, s, fmt, coproc ? op[0] + 1 : op[0],
13084 BFD_RELOC_LO16, AT);
13085 offset_expr.X_add_number += 4;
13086
13087 /* Set mips_optimize to 2 to avoid inserting an undesired
13088 nop. */
13089 hold_mips_optimize = mips_optimize;
13090 mips_optimize = 2;
13091 /* Itbl support may require additional care here. */
13092 macro_build (&offset_expr, s, fmt, coproc ? op[0] : op[0] + 1,
13093 BFD_RELOC_LO16, AT);
13094 mips_optimize = hold_mips_optimize;
13095 relax_end ();
13096 }
13097 else
13098 abort ();
13099
13100 break;
13101
13102 case M_SAA_AB:
13103 s = "saa";
13104 goto saa_saad;
13105 case M_SAAD_AB:
13106 s = "saad";
13107 saa_saad:
13108 gas_assert (!mips_opts.micromips);
13109 offbits = 0;
13110 fmt = "t,(b)";
13111 goto ld_st;
13112
13113 /* New code added to support COPZ instructions.
13114 This code builds table entries out of the macros in mip_opcodes.
13115 R4000 uses interlocks to handle coproc delays.
13116 Other chips (like the R3000) require nops to be inserted for delays.
13117
13118 FIXME: Currently, we require that the user handle delays.
13119 In order to fill delay slots for non-interlocked chips,
13120 we must have a way to specify delays based on the coprocessor.
13121 Eg. 4 cycles if load coproc reg from memory, 1 if in cache, etc.
13122 What are the side-effects of the cop instruction?
13123 What cache support might we have and what are its effects?
13124 Both coprocessor & memory require delays. how long???
13125 What registers are read/set/modified?
13126
13127 If an itbl is provided to interpret cop instructions,
13128 this knowledge can be encoded in the itbl spec. */
13129
13130 case M_COP0:
13131 s = "c0";
13132 goto copz;
13133 case M_COP1:
13134 s = "c1";
13135 goto copz;
13136 case M_COP2:
13137 s = "c2";
13138 goto copz;
13139 case M_COP3:
13140 s = "c3";
13141 copz:
13142 gas_assert (!mips_opts.micromips);
13143 /* For now we just do C (same as Cz). The parameter will be
13144 stored in insn_opcode by mips_ip. */
13145 macro_build (NULL, s, "C", (int) ip->insn_opcode);
13146 break;
13147
13148 case M_MOVE:
13149 move_register (op[0], op[1]);
13150 break;
13151
13152 case M_MOVEP:
13153 gas_assert (mips_opts.micromips);
13154 gas_assert (mips_opts.insn32);
13155 move_register (micromips_to_32_reg_h_map1[op[0]],
13156 micromips_to_32_reg_m_map[op[1]]);
13157 move_register (micromips_to_32_reg_h_map2[op[0]],
13158 micromips_to_32_reg_n_map[op[2]]);
13159 break;
13160
13161 case M_DMUL:
13162 dbl = 1;
13163 /* Fall through. */
13164 case M_MUL:
13165 if (mips_opts.arch == CPU_R5900)
13166 macro_build (NULL, dbl ? "dmultu" : "multu", "d,s,t", op[0], op[1],
13167 op[2]);
13168 else
13169 {
13170 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t", op[1], op[2]);
13171 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13172 }
13173 break;
13174
13175 case M_DMUL_I:
13176 dbl = 1;
13177 /* Fall through. */
13178 case M_MUL_I:
13179 /* The MIPS assembler some times generates shifts and adds. I'm
13180 not trying to be that fancy. GCC should do this for us
13181 anyway. */
13182 used_at = 1;
13183 load_register (AT, &imm_expr, dbl);
13184 macro_build (NULL, dbl ? "dmult" : "mult", "s,t", op[1], AT);
13185 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13186 break;
13187
13188 case M_DMULO_I:
13189 dbl = 1;
13190 /* Fall through. */
13191 case M_MULO_I:
13192 imm = 1;
13193 goto do_mulo;
13194
13195 case M_DMULO:
13196 dbl = 1;
13197 /* Fall through. */
13198 case M_MULO:
13199 do_mulo:
13200 start_noreorder ();
13201 used_at = 1;
13202 if (imm)
13203 load_register (AT, &imm_expr, dbl);
13204 macro_build (NULL, dbl ? "dmult" : "mult", "s,t",
13205 op[1], imm ? AT : op[2]);
13206 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13207 macro_build (NULL, dbl ? "dsra32" : "sra", SHFT_FMT, op[0], op[0], 31);
13208 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13209 if (mips_trap)
13210 macro_build (NULL, "tne", TRAP_FMT, op[0], AT, 6);
13211 else
13212 {
13213 if (mips_opts.micromips)
13214 micromips_label_expr (&label_expr);
13215 else
13216 label_expr.X_add_number = 8;
13217 macro_build (&label_expr, "beq", "s,t,p", op[0], AT);
13218 macro_build (NULL, "nop", "");
13219 macro_build (NULL, "break", BRK_FMT, 6);
13220 if (mips_opts.micromips)
13221 micromips_add_label ();
13222 }
13223 end_noreorder ();
13224 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13225 break;
13226
13227 case M_DMULOU_I:
13228 dbl = 1;
13229 /* Fall through. */
13230 case M_MULOU_I:
13231 imm = 1;
13232 goto do_mulou;
13233
13234 case M_DMULOU:
13235 dbl = 1;
13236 /* Fall through. */
13237 case M_MULOU:
13238 do_mulou:
13239 start_noreorder ();
13240 used_at = 1;
13241 if (imm)
13242 load_register (AT, &imm_expr, dbl);
13243 macro_build (NULL, dbl ? "dmultu" : "multu", "s,t",
13244 op[1], imm ? AT : op[2]);
13245 macro_build (NULL, "mfhi", MFHL_FMT, AT);
13246 macro_build (NULL, "mflo", MFHL_FMT, op[0]);
13247 if (mips_trap)
13248 macro_build (NULL, "tne", TRAP_FMT, AT, ZERO, 6);
13249 else
13250 {
13251 if (mips_opts.micromips)
13252 micromips_label_expr (&label_expr);
13253 else
13254 label_expr.X_add_number = 8;
13255 macro_build (&label_expr, "beq", "s,t,p", AT, ZERO);
13256 macro_build (NULL, "nop", "");
13257 macro_build (NULL, "break", BRK_FMT, 6);
13258 if (mips_opts.micromips)
13259 micromips_add_label ();
13260 }
13261 end_noreorder ();
13262 break;
13263
13264 case M_DROL:
13265 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13266 {
13267 if (op[0] == op[1])
13268 {
13269 tempreg = AT;
13270 used_at = 1;
13271 }
13272 else
13273 tempreg = op[0];
13274 macro_build (NULL, "dnegu", "d,w", tempreg, op[2]);
13275 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], tempreg);
13276 break;
13277 }
13278 used_at = 1;
13279 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13280 macro_build (NULL, "dsrlv", "d,t,s", AT, op[1], AT);
13281 macro_build (NULL, "dsllv", "d,t,s", op[0], op[1], op[2]);
13282 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13283 break;
13284
13285 case M_ROL:
13286 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13287 {
13288 if (op[0] == op[1])
13289 {
13290 tempreg = AT;
13291 used_at = 1;
13292 }
13293 else
13294 tempreg = op[0];
13295 macro_build (NULL, "negu", "d,w", tempreg, op[2]);
13296 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], tempreg);
13297 break;
13298 }
13299 used_at = 1;
13300 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13301 macro_build (NULL, "srlv", "d,t,s", AT, op[1], AT);
13302 macro_build (NULL, "sllv", "d,t,s", op[0], op[1], op[2]);
13303 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13304 break;
13305
13306 case M_DROL_I:
13307 {
13308 unsigned int rot;
13309 const char *l;
13310 const char *rr;
13311
13312 rot = imm_expr.X_add_number & 0x3f;
13313 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13314 {
13315 rot = (64 - rot) & 0x3f;
13316 if (rot >= 32)
13317 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13318 else
13319 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13320 break;
13321 }
13322 if (rot == 0)
13323 {
13324 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13325 break;
13326 }
13327 l = (rot < 0x20) ? "dsll" : "dsll32";
13328 rr = ((0x40 - rot) < 0x20) ? "dsrl" : "dsrl32";
13329 rot &= 0x1f;
13330 used_at = 1;
13331 macro_build (NULL, l, SHFT_FMT, AT, op[1], rot);
13332 macro_build (NULL, rr, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13333 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13334 }
13335 break;
13336
13337 case M_ROL_I:
13338 {
13339 unsigned int rot;
13340
13341 rot = imm_expr.X_add_number & 0x1f;
13342 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13343 {
13344 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1],
13345 (32 - rot) & 0x1f);
13346 break;
13347 }
13348 if (rot == 0)
13349 {
13350 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13351 break;
13352 }
13353 used_at = 1;
13354 macro_build (NULL, "sll", SHFT_FMT, AT, op[1], rot);
13355 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13356 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13357 }
13358 break;
13359
13360 case M_DROR:
13361 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13362 {
13363 macro_build (NULL, "drorv", "d,t,s", op[0], op[1], op[2]);
13364 break;
13365 }
13366 used_at = 1;
13367 macro_build (NULL, "dsubu", "d,v,t", AT, ZERO, op[2]);
13368 macro_build (NULL, "dsllv", "d,t,s", AT, op[1], AT);
13369 macro_build (NULL, "dsrlv", "d,t,s", op[0], op[1], op[2]);
13370 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13371 break;
13372
13373 case M_ROR:
13374 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13375 {
13376 macro_build (NULL, "rorv", "d,t,s", op[0], op[1], op[2]);
13377 break;
13378 }
13379 used_at = 1;
13380 macro_build (NULL, "subu", "d,v,t", AT, ZERO, op[2]);
13381 macro_build (NULL, "sllv", "d,t,s", AT, op[1], AT);
13382 macro_build (NULL, "srlv", "d,t,s", op[0], op[1], op[2]);
13383 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13384 break;
13385
13386 case M_DROR_I:
13387 {
13388 unsigned int rot;
13389 const char *l;
13390 const char *rr;
13391
13392 rot = imm_expr.X_add_number & 0x3f;
13393 if (ISA_HAS_DROR (mips_opts.isa) || CPU_HAS_DROR (mips_opts.arch))
13394 {
13395 if (rot >= 32)
13396 macro_build (NULL, "dror32", SHFT_FMT, op[0], op[1], rot - 32);
13397 else
13398 macro_build (NULL, "dror", SHFT_FMT, op[0], op[1], rot);
13399 break;
13400 }
13401 if (rot == 0)
13402 {
13403 macro_build (NULL, "dsrl", SHFT_FMT, op[0], op[1], 0);
13404 break;
13405 }
13406 rr = (rot < 0x20) ? "dsrl" : "dsrl32";
13407 l = ((0x40 - rot) < 0x20) ? "dsll" : "dsll32";
13408 rot &= 0x1f;
13409 used_at = 1;
13410 macro_build (NULL, rr, SHFT_FMT, AT, op[1], rot);
13411 macro_build (NULL, l, SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13412 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13413 }
13414 break;
13415
13416 case M_ROR_I:
13417 {
13418 unsigned int rot;
13419
13420 rot = imm_expr.X_add_number & 0x1f;
13421 if (ISA_HAS_ROR (mips_opts.isa) || CPU_HAS_ROR (mips_opts.arch))
13422 {
13423 macro_build (NULL, "ror", SHFT_FMT, op[0], op[1], rot);
13424 break;
13425 }
13426 if (rot == 0)
13427 {
13428 macro_build (NULL, "srl", SHFT_FMT, op[0], op[1], 0);
13429 break;
13430 }
13431 used_at = 1;
13432 macro_build (NULL, "srl", SHFT_FMT, AT, op[1], rot);
13433 macro_build (NULL, "sll", SHFT_FMT, op[0], op[1], (0x20 - rot) & 0x1f);
13434 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13435 }
13436 break;
13437
13438 case M_SEQ:
13439 if (op[1] == 0)
13440 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[2], BFD_RELOC_LO16);
13441 else if (op[2] == 0)
13442 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13443 else
13444 {
13445 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13446 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13447 }
13448 break;
13449
13450 case M_SEQ_I:
13451 if (imm_expr.X_add_number == 0)
13452 {
13453 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13454 break;
13455 }
13456 if (op[1] == 0)
13457 {
13458 as_warn (_("instruction %s: result is always false"),
13459 ip->insn_mo->name);
13460 move_register (op[0], 0);
13461 break;
13462 }
13463 if (CPU_HAS_SEQ (mips_opts.arch)
13464 && -512 <= imm_expr.X_add_number
13465 && imm_expr.X_add_number < 512)
13466 {
13467 macro_build (NULL, "seqi", "t,r,+Q", op[0], op[1],
13468 (int) imm_expr.X_add_number);
13469 break;
13470 }
13471 if (imm_expr.X_add_number >= 0
13472 && imm_expr.X_add_number < 0x10000)
13473 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1], BFD_RELOC_LO16);
13474 else if (imm_expr.X_add_number > -0x8000
13475 && imm_expr.X_add_number < 0)
13476 {
13477 imm_expr.X_add_number = -imm_expr.X_add_number;
13478 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13479 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13480 }
13481 else if (CPU_HAS_SEQ (mips_opts.arch))
13482 {
13483 used_at = 1;
13484 load_register (AT, &imm_expr, GPR_SIZE == 64);
13485 macro_build (NULL, "seq", "d,v,t", op[0], op[1], AT);
13486 break;
13487 }
13488 else
13489 {
13490 load_register (AT, &imm_expr, GPR_SIZE == 64);
13491 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13492 used_at = 1;
13493 }
13494 macro_build (&expr1, "sltiu", "t,r,j", op[0], op[0], BFD_RELOC_LO16);
13495 break;
13496
13497 case M_SGE: /* X >= Y <==> not (X < Y) */
13498 s = "slt";
13499 goto sge;
13500 case M_SGEU:
13501 s = "sltu";
13502 sge:
13503 macro_build (NULL, s, "d,v,t", op[0], op[1], op[2]);
13504 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13505 break;
13506
13507 case M_SGE_I: /* X >= I <==> not (X < I). */
13508 case M_SGEU_I:
13509 if (imm_expr.X_add_number >= -0x8000
13510 && imm_expr.X_add_number < 0x8000)
13511 macro_build (&imm_expr, mask == M_SGE_I ? "slti" : "sltiu", "t,r,j",
13512 op[0], op[1], BFD_RELOC_LO16);
13513 else
13514 {
13515 load_register (AT, &imm_expr, GPR_SIZE == 64);
13516 macro_build (NULL, mask == M_SGE_I ? "slt" : "sltu", "d,v,t",
13517 op[0], op[1], AT);
13518 used_at = 1;
13519 }
13520 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13521 break;
13522
13523 case M_SGT: /* X > Y <==> Y < X. */
13524 s = "slt";
13525 goto sgt;
13526 case M_SGTU:
13527 s = "sltu";
13528 sgt:
13529 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13530 break;
13531
13532 case M_SGT_I: /* X > I <==> I < X. */
13533 s = "slt";
13534 goto sgti;
13535 case M_SGTU_I:
13536 s = "sltu";
13537 sgti:
13538 used_at = 1;
13539 load_register (AT, &imm_expr, GPR_SIZE == 64);
13540 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13541 break;
13542
13543 case M_SLE: /* X <= Y <==> Y >= X <==> not (Y < X). */
13544 s = "slt";
13545 goto sle;
13546 case M_SLEU:
13547 s = "sltu";
13548 sle:
13549 macro_build (NULL, s, "d,v,t", op[0], op[2], op[1]);
13550 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13551 break;
13552
13553 case M_SLE_I: /* X <= I <==> I >= X <==> not (I < X) */
13554 s = "slt";
13555 goto slei;
13556 case M_SLEU_I:
13557 s = "sltu";
13558 slei:
13559 used_at = 1;
13560 load_register (AT, &imm_expr, GPR_SIZE == 64);
13561 macro_build (NULL, s, "d,v,t", op[0], AT, op[1]);
13562 macro_build (&expr1, "xori", "t,r,i", op[0], op[0], BFD_RELOC_LO16);
13563 break;
13564
13565 case M_SLT_I:
13566 if (imm_expr.X_add_number >= -0x8000
13567 && imm_expr.X_add_number < 0x8000)
13568 {
13569 macro_build (&imm_expr, "slti", "t,r,j", op[0], op[1],
13570 BFD_RELOC_LO16);
13571 break;
13572 }
13573 used_at = 1;
13574 load_register (AT, &imm_expr, GPR_SIZE == 64);
13575 macro_build (NULL, "slt", "d,v,t", op[0], op[1], AT);
13576 break;
13577
13578 case M_SLTU_I:
13579 if (imm_expr.X_add_number >= -0x8000
13580 && imm_expr.X_add_number < 0x8000)
13581 {
13582 macro_build (&imm_expr, "sltiu", "t,r,j", op[0], op[1],
13583 BFD_RELOC_LO16);
13584 break;
13585 }
13586 used_at = 1;
13587 load_register (AT, &imm_expr, GPR_SIZE == 64);
13588 macro_build (NULL, "sltu", "d,v,t", op[0], op[1], AT);
13589 break;
13590
13591 case M_SNE:
13592 if (op[1] == 0)
13593 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[2]);
13594 else if (op[2] == 0)
13595 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13596 else
13597 {
13598 macro_build (NULL, "xor", "d,v,t", op[0], op[1], op[2]);
13599 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13600 }
13601 break;
13602
13603 case M_SNE_I:
13604 if (imm_expr.X_add_number == 0)
13605 {
13606 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[1]);
13607 break;
13608 }
13609 if (op[1] == 0)
13610 {
13611 as_warn (_("instruction %s: result is always true"),
13612 ip->insn_mo->name);
13613 macro_build (&expr1, GPR_SIZE == 32 ? "addiu" : "daddiu", "t,r,j",
13614 op[0], 0, BFD_RELOC_LO16);
13615 break;
13616 }
13617 if (CPU_HAS_SEQ (mips_opts.arch)
13618 && -512 <= imm_expr.X_add_number
13619 && imm_expr.X_add_number < 512)
13620 {
13621 macro_build (NULL, "snei", "t,r,+Q", op[0], op[1],
13622 (int) imm_expr.X_add_number);
13623 break;
13624 }
13625 if (imm_expr.X_add_number >= 0
13626 && imm_expr.X_add_number < 0x10000)
13627 {
13628 macro_build (&imm_expr, "xori", "t,r,i", op[0], op[1],
13629 BFD_RELOC_LO16);
13630 }
13631 else if (imm_expr.X_add_number > -0x8000
13632 && imm_expr.X_add_number < 0)
13633 {
13634 imm_expr.X_add_number = -imm_expr.X_add_number;
13635 macro_build (&imm_expr, GPR_SIZE == 32 ? "addiu" : "daddiu",
13636 "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13637 }
13638 else if (CPU_HAS_SEQ (mips_opts.arch))
13639 {
13640 used_at = 1;
13641 load_register (AT, &imm_expr, GPR_SIZE == 64);
13642 macro_build (NULL, "sne", "d,v,t", op[0], op[1], AT);
13643 break;
13644 }
13645 else
13646 {
13647 load_register (AT, &imm_expr, GPR_SIZE == 64);
13648 macro_build (NULL, "xor", "d,v,t", op[0], op[1], AT);
13649 used_at = 1;
13650 }
13651 macro_build (NULL, "sltu", "d,v,t", op[0], 0, op[0]);
13652 break;
13653
13654 case M_SUB_I:
13655 s = "addi";
13656 s2 = "sub";
13657 goto do_subi;
13658 case M_SUBU_I:
13659 s = "addiu";
13660 s2 = "subu";
13661 goto do_subi;
13662 case M_DSUB_I:
13663 dbl = 1;
13664 s = "daddi";
13665 s2 = "dsub";
13666 if (!mips_opts.micromips)
13667 goto do_subi;
13668 if (imm_expr.X_add_number > -0x200
13669 && imm_expr.X_add_number <= 0x200)
13670 {
13671 macro_build (NULL, s, "t,r,.", op[0], op[1],
13672 (int) -imm_expr.X_add_number);
13673 break;
13674 }
13675 goto do_subi_i;
13676 case M_DSUBU_I:
13677 dbl = 1;
13678 s = "daddiu";
13679 s2 = "dsubu";
13680 do_subi:
13681 if (imm_expr.X_add_number > -0x8000
13682 && imm_expr.X_add_number <= 0x8000)
13683 {
13684 imm_expr.X_add_number = -imm_expr.X_add_number;
13685 macro_build (&imm_expr, s, "t,r,j", op[0], op[1], BFD_RELOC_LO16);
13686 break;
13687 }
13688 do_subi_i:
13689 used_at = 1;
13690 load_register (AT, &imm_expr, dbl);
13691 macro_build (NULL, s2, "d,v,t", op[0], op[1], AT);
13692 break;
13693
13694 case M_TEQ_I:
13695 s = "teq";
13696 goto trap;
13697 case M_TGE_I:
13698 s = "tge";
13699 goto trap;
13700 case M_TGEU_I:
13701 s = "tgeu";
13702 goto trap;
13703 case M_TLT_I:
13704 s = "tlt";
13705 goto trap;
13706 case M_TLTU_I:
13707 s = "tltu";
13708 goto trap;
13709 case M_TNE_I:
13710 s = "tne";
13711 trap:
13712 used_at = 1;
13713 load_register (AT, &imm_expr, GPR_SIZE == 64);
13714 macro_build (NULL, s, "s,t", op[0], AT);
13715 break;
13716
13717 case M_TRUNCWS:
13718 case M_TRUNCWD:
13719 gas_assert (!mips_opts.micromips);
13720 gas_assert (mips_opts.isa == ISA_MIPS1);
13721 used_at = 1;
13722
13723 /*
13724 * Is the double cfc1 instruction a bug in the mips assembler;
13725 * or is there a reason for it?
13726 */
13727 start_noreorder ();
13728 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13729 macro_build (NULL, "cfc1", "t,G", op[2], RA);
13730 macro_build (NULL, "nop", "");
13731 expr1.X_add_number = 3;
13732 macro_build (&expr1, "ori", "t,r,i", AT, op[2], BFD_RELOC_LO16);
13733 expr1.X_add_number = 2;
13734 macro_build (&expr1, "xori", "t,r,i", AT, AT, BFD_RELOC_LO16);
13735 macro_build (NULL, "ctc1", "t,G", AT, RA);
13736 macro_build (NULL, "nop", "");
13737 macro_build (NULL, mask == M_TRUNCWD ? "cvt.w.d" : "cvt.w.s", "D,S",
13738 op[0], op[1]);
13739 macro_build (NULL, "ctc1", "t,G", op[2], RA);
13740 macro_build (NULL, "nop", "");
13741 end_noreorder ();
13742 break;
13743
13744 case M_ULH_AB:
13745 s = "lb";
13746 s2 = "lbu";
13747 off = 1;
13748 goto uld_st;
13749 case M_ULHU_AB:
13750 s = "lbu";
13751 s2 = "lbu";
13752 off = 1;
13753 goto uld_st;
13754 case M_ULW_AB:
13755 s = "lwl";
13756 s2 = "lwr";
13757 offbits = (mips_opts.micromips ? 12 : 16);
13758 off = 3;
13759 goto uld_st;
13760 case M_ULD_AB:
13761 s = "ldl";
13762 s2 = "ldr";
13763 offbits = (mips_opts.micromips ? 12 : 16);
13764 off = 7;
13765 goto uld_st;
13766 case M_USH_AB:
13767 s = "sb";
13768 s2 = "sb";
13769 off = 1;
13770 ust = 1;
13771 goto uld_st;
13772 case M_USW_AB:
13773 s = "swl";
13774 s2 = "swr";
13775 offbits = (mips_opts.micromips ? 12 : 16);
13776 off = 3;
13777 ust = 1;
13778 goto uld_st;
13779 case M_USD_AB:
13780 s = "sdl";
13781 s2 = "sdr";
13782 offbits = (mips_opts.micromips ? 12 : 16);
13783 off = 7;
13784 ust = 1;
13785
13786 uld_st:
13787 breg = op[2];
13788 large_offset = !small_offset_p (off, align, offbits);
13789 ep = &offset_expr;
13790 expr1.X_add_number = 0;
13791 if (large_offset)
13792 {
13793 used_at = 1;
13794 tempreg = AT;
13795 if (small_offset_p (0, align, 16))
13796 macro_build (ep, ADDRESS_ADDI_INSN, "t,r,j", tempreg, breg, -1,
13797 offset_reloc[0], offset_reloc[1], offset_reloc[2]);
13798 else
13799 {
13800 load_address (tempreg, ep, &used_at);
13801 if (breg != 0)
13802 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t",
13803 tempreg, tempreg, breg);
13804 }
13805 offset_reloc[0] = BFD_RELOC_LO16;
13806 offset_reloc[1] = BFD_RELOC_UNUSED;
13807 offset_reloc[2] = BFD_RELOC_UNUSED;
13808 breg = tempreg;
13809 tempreg = op[0];
13810 ep = &expr1;
13811 }
13812 else if (!ust && op[0] == breg)
13813 {
13814 used_at = 1;
13815 tempreg = AT;
13816 }
13817 else
13818 tempreg = op[0];
13819
13820 if (off == 1)
13821 goto ulh_sh;
13822
13823 if (!target_big_endian)
13824 ep->X_add_number += off;
13825 if (offbits == 12)
13826 macro_build (NULL, s, "t,~(b)", tempreg, (int) ep->X_add_number, breg);
13827 else
13828 macro_build (ep, s, "t,o(b)", tempreg, -1,
13829 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13830
13831 if (!target_big_endian)
13832 ep->X_add_number -= off;
13833 else
13834 ep->X_add_number += off;
13835 if (offbits == 12)
13836 macro_build (NULL, s2, "t,~(b)",
13837 tempreg, (int) ep->X_add_number, breg);
13838 else
13839 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13840 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13841
13842 /* If necessary, move the result in tempreg to the final destination. */
13843 if (!ust && op[0] != tempreg)
13844 {
13845 /* Protect second load's delay slot. */
13846 load_delay_nop ();
13847 move_register (op[0], tempreg);
13848 }
13849 break;
13850
13851 ulh_sh:
13852 used_at = 1;
13853 if (target_big_endian == ust)
13854 ep->X_add_number += off;
13855 tempreg = ust || large_offset ? op[0] : AT;
13856 macro_build (ep, s, "t,o(b)", tempreg, -1,
13857 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13858
13859 /* For halfword transfers we need a temporary register to shuffle
13860 bytes. Unfortunately for M_USH_A we have none available before
13861 the next store as AT holds the base address. We deal with this
13862 case by clobbering TREG and then restoring it as with ULH. */
13863 tempreg = ust == large_offset ? op[0] : AT;
13864 if (ust)
13865 macro_build (NULL, "srl", SHFT_FMT, tempreg, op[0], 8);
13866
13867 if (target_big_endian == ust)
13868 ep->X_add_number -= off;
13869 else
13870 ep->X_add_number += off;
13871 macro_build (ep, s2, "t,o(b)", tempreg, -1,
13872 offset_reloc[0], offset_reloc[1], offset_reloc[2], breg);
13873
13874 /* For M_USH_A re-retrieve the LSB. */
13875 if (ust && large_offset)
13876 {
13877 if (target_big_endian)
13878 ep->X_add_number += off;
13879 else
13880 ep->X_add_number -= off;
13881 macro_build (&expr1, "lbu", "t,o(b)", AT, -1,
13882 offset_reloc[0], offset_reloc[1], offset_reloc[2], AT);
13883 }
13884 /* For ULH and M_USH_A OR the LSB in. */
13885 if (!ust || large_offset)
13886 {
13887 tempreg = !large_offset ? AT : op[0];
13888 macro_build (NULL, "sll", SHFT_FMT, tempreg, tempreg, 8);
13889 macro_build (NULL, "or", "d,v,t", op[0], op[0], AT);
13890 }
13891 break;
13892
13893 default:
13894 /* FIXME: Check if this is one of the itbl macros, since they
13895 are added dynamically. */
13896 as_bad (_("macro %s not implemented yet"), ip->insn_mo->name);
13897 break;
13898 }
13899 if (!mips_opts.at && used_at)
13900 as_bad (_("macro used $at after \".set noat\""));
13901 }
13902
13903 /* Implement macros in mips16 mode. */
13904
13905 static void
13906 mips16_macro (struct mips_cl_insn *ip)
13907 {
13908 const struct mips_operand_array *operands;
13909 int mask;
13910 int tmp;
13911 expressionS expr1;
13912 int dbl;
13913 const char *s, *s2, *s3;
13914 unsigned int op[MAX_OPERANDS];
13915 unsigned int i;
13916
13917 mask = ip->insn_mo->mask;
13918
13919 operands = insn_operands (ip);
13920 for (i = 0; i < MAX_OPERANDS; i++)
13921 if (operands->operand[i])
13922 op[i] = insn_extract_operand (ip, operands->operand[i]);
13923 else
13924 op[i] = -1;
13925
13926 expr1.X_op = O_constant;
13927 expr1.X_op_symbol = NULL;
13928 expr1.X_add_symbol = NULL;
13929 expr1.X_add_number = 1;
13930
13931 dbl = 0;
13932
13933 switch (mask)
13934 {
13935 default:
13936 abort ();
13937
13938 case M_DDIV_3:
13939 dbl = 1;
13940 /* Fall through. */
13941 case M_DIV_3:
13942 s = "mflo";
13943 goto do_div3;
13944 case M_DREM_3:
13945 dbl = 1;
13946 /* Fall through. */
13947 case M_REM_3:
13948 s = "mfhi";
13949 do_div3:
13950 start_noreorder ();
13951 macro_build (NULL, dbl ? "ddiv" : "div", ".,x,y", op[1], op[2]);
13952 expr1.X_add_number = 2;
13953 macro_build (&expr1, "bnez", "x,p", op[2]);
13954 macro_build (NULL, "break", "6", 7);
13955
13956 /* FIXME: The normal code checks for of -1 / -0x80000000 here,
13957 since that causes an overflow. We should do that as well,
13958 but I don't see how to do the comparisons without a temporary
13959 register. */
13960 end_noreorder ();
13961 macro_build (NULL, s, "x", op[0]);
13962 break;
13963
13964 case M_DIVU_3:
13965 s = "divu";
13966 s2 = "mflo";
13967 goto do_divu3;
13968 case M_REMU_3:
13969 s = "divu";
13970 s2 = "mfhi";
13971 goto do_divu3;
13972 case M_DDIVU_3:
13973 s = "ddivu";
13974 s2 = "mflo";
13975 goto do_divu3;
13976 case M_DREMU_3:
13977 s = "ddivu";
13978 s2 = "mfhi";
13979 do_divu3:
13980 start_noreorder ();
13981 macro_build (NULL, s, ".,x,y", op[1], op[2]);
13982 expr1.X_add_number = 2;
13983 macro_build (&expr1, "bnez", "x,p", op[2]);
13984 macro_build (NULL, "break", "6", 7);
13985 end_noreorder ();
13986 macro_build (NULL, s2, "x", op[0]);
13987 break;
13988
13989 case M_DMUL:
13990 dbl = 1;
13991 /* Fall through. */
13992 case M_MUL:
13993 macro_build (NULL, dbl ? "dmultu" : "multu", "x,y", op[1], op[2]);
13994 macro_build (NULL, "mflo", "x", op[0]);
13995 break;
13996
13997 case M_DSUBU_I:
13998 dbl = 1;
13999 goto do_subu;
14000 case M_SUBU_I:
14001 do_subu:
14002 imm_expr.X_add_number = -imm_expr.X_add_number;
14003 macro_build (&imm_expr, dbl ? "daddiu" : "addiu", "y,x,F", op[0], op[1]);
14004 break;
14005
14006 case M_SUBU_I_2:
14007 imm_expr.X_add_number = -imm_expr.X_add_number;
14008 macro_build (&imm_expr, "addiu", "x,k", op[0]);
14009 break;
14010
14011 case M_DSUBU_I_2:
14012 imm_expr.X_add_number = -imm_expr.X_add_number;
14013 macro_build (&imm_expr, "daddiu", "y,j", op[0]);
14014 break;
14015
14016 case M_BEQ:
14017 s = "cmp";
14018 s2 = "bteqz";
14019 goto do_branch;
14020 case M_BNE:
14021 s = "cmp";
14022 s2 = "btnez";
14023 goto do_branch;
14024 case M_BLT:
14025 s = "slt";
14026 s2 = "btnez";
14027 goto do_branch;
14028 case M_BLTU:
14029 s = "sltu";
14030 s2 = "btnez";
14031 goto do_branch;
14032 case M_BLE:
14033 s = "slt";
14034 s2 = "bteqz";
14035 goto do_reverse_branch;
14036 case M_BLEU:
14037 s = "sltu";
14038 s2 = "bteqz";
14039 goto do_reverse_branch;
14040 case M_BGE:
14041 s = "slt";
14042 s2 = "bteqz";
14043 goto do_branch;
14044 case M_BGEU:
14045 s = "sltu";
14046 s2 = "bteqz";
14047 goto do_branch;
14048 case M_BGT:
14049 s = "slt";
14050 s2 = "btnez";
14051 goto do_reverse_branch;
14052 case M_BGTU:
14053 s = "sltu";
14054 s2 = "btnez";
14055
14056 do_reverse_branch:
14057 tmp = op[1];
14058 op[1] = op[0];
14059 op[0] = tmp;
14060
14061 do_branch:
14062 macro_build (NULL, s, "x,y", op[0], op[1]);
14063 macro_build (&offset_expr, s2, "p");
14064 break;
14065
14066 case M_BEQ_I:
14067 s = "cmpi";
14068 s2 = "bteqz";
14069 s3 = "x,U";
14070 goto do_branch_i;
14071 case M_BNE_I:
14072 s = "cmpi";
14073 s2 = "btnez";
14074 s3 = "x,U";
14075 goto do_branch_i;
14076 case M_BLT_I:
14077 s = "slti";
14078 s2 = "btnez";
14079 s3 = "x,8";
14080 goto do_branch_i;
14081 case M_BLTU_I:
14082 s = "sltiu";
14083 s2 = "btnez";
14084 s3 = "x,8";
14085 goto do_branch_i;
14086 case M_BLE_I:
14087 s = "slti";
14088 s2 = "btnez";
14089 s3 = "x,8";
14090 goto do_addone_branch_i;
14091 case M_BLEU_I:
14092 s = "sltiu";
14093 s2 = "btnez";
14094 s3 = "x,8";
14095 goto do_addone_branch_i;
14096 case M_BGE_I:
14097 s = "slti";
14098 s2 = "bteqz";
14099 s3 = "x,8";
14100 goto do_branch_i;
14101 case M_BGEU_I:
14102 s = "sltiu";
14103 s2 = "bteqz";
14104 s3 = "x,8";
14105 goto do_branch_i;
14106 case M_BGT_I:
14107 s = "slti";
14108 s2 = "bteqz";
14109 s3 = "x,8";
14110 goto do_addone_branch_i;
14111 case M_BGTU_I:
14112 s = "sltiu";
14113 s2 = "bteqz";
14114 s3 = "x,8";
14115
14116 do_addone_branch_i:
14117 ++imm_expr.X_add_number;
14118
14119 do_branch_i:
14120 macro_build (&imm_expr, s, s3, op[0]);
14121 macro_build (&offset_expr, s2, "p");
14122 break;
14123
14124 case M_ABS:
14125 expr1.X_add_number = 0;
14126 macro_build (&expr1, "slti", "x,8", op[1]);
14127 if (op[0] != op[1])
14128 macro_build (NULL, "move", "y,X", op[0], mips16_to_32_reg_map[op[1]]);
14129 expr1.X_add_number = 2;
14130 macro_build (&expr1, "bteqz", "p");
14131 macro_build (NULL, "neg", "x,w", op[0], op[0]);
14132 break;
14133 }
14134 }
14135
14136 /* Look up instruction [START, START + LENGTH) in HASH. Record any extra
14137 opcode bits in *OPCODE_EXTRA. */
14138
14139 static struct mips_opcode *
14140 mips_lookup_insn (struct hash_control *hash, const char *start,
14141 ssize_t length, unsigned int *opcode_extra)
14142 {
14143 char *name, *dot, *p;
14144 unsigned int mask, suffix;
14145 ssize_t opend;
14146 struct mips_opcode *insn;
14147
14148 /* Make a copy of the instruction so that we can fiddle with it. */
14149 name = xstrndup (start, length);
14150
14151 /* Look up the instruction as-is. */
14152 insn = (struct mips_opcode *) hash_find (hash, name);
14153 if (insn)
14154 goto end;
14155
14156 dot = strchr (name, '.');
14157 if (dot && dot[1])
14158 {
14159 /* Try to interpret the text after the dot as a VU0 channel suffix. */
14160 p = mips_parse_vu0_channels (dot + 1, &mask);
14161 if (*p == 0 && mask != 0)
14162 {
14163 *dot = 0;
14164 insn = (struct mips_opcode *) hash_find (hash, name);
14165 *dot = '.';
14166 if (insn && (insn->pinfo2 & INSN2_VU0_CHANNEL_SUFFIX) != 0)
14167 {
14168 *opcode_extra |= mask << mips_vu0_channel_mask.lsb;
14169 goto end;
14170 }
14171 }
14172 }
14173
14174 if (mips_opts.micromips)
14175 {
14176 /* See if there's an instruction size override suffix,
14177 either `16' or `32', at the end of the mnemonic proper,
14178 that defines the operation, i.e. before the first `.'
14179 character if any. Strip it and retry. */
14180 opend = dot != NULL ? dot - name : length;
14181 if (opend >= 3 && name[opend - 2] == '1' && name[opend - 1] == '6')
14182 suffix = 2;
14183 else if (name[opend - 2] == '3' && name[opend - 1] == '2')
14184 suffix = 4;
14185 else
14186 suffix = 0;
14187 if (suffix)
14188 {
14189 memmove (name + opend - 2, name + opend, length - opend + 1);
14190 insn = (struct mips_opcode *) hash_find (hash, name);
14191 if (insn)
14192 {
14193 forced_insn_length = suffix;
14194 goto end;
14195 }
14196 }
14197 }
14198
14199 insn = NULL;
14200 end:
14201 free (name);
14202 return insn;
14203 }
14204
14205 /* Assemble an instruction into its binary format. If the instruction
14206 is a macro, set imm_expr and offset_expr to the values associated
14207 with "I" and "A" operands respectively. Otherwise store the value
14208 of the relocatable field (if any) in offset_expr. In both cases
14209 set offset_reloc to the relocation operators applied to offset_expr. */
14210
14211 static void
14212 mips_ip (char *str, struct mips_cl_insn *insn)
14213 {
14214 const struct mips_opcode *first, *past;
14215 struct hash_control *hash;
14216 char format;
14217 size_t end;
14218 struct mips_operand_token *tokens;
14219 unsigned int opcode_extra;
14220
14221 if (mips_opts.micromips)
14222 {
14223 hash = micromips_op_hash;
14224 past = &micromips_opcodes[bfd_micromips_num_opcodes];
14225 }
14226 else
14227 {
14228 hash = op_hash;
14229 past = &mips_opcodes[NUMOPCODES];
14230 }
14231 forced_insn_length = 0;
14232 opcode_extra = 0;
14233
14234 /* We first try to match an instruction up to a space or to the end. */
14235 for (end = 0; str[end] != '\0' && !ISSPACE (str[end]); end++)
14236 continue;
14237
14238 first = mips_lookup_insn (hash, str, end, &opcode_extra);
14239 if (first == NULL)
14240 {
14241 set_insn_error (0, _("unrecognized opcode"));
14242 return;
14243 }
14244
14245 if (strcmp (first->name, "li.s") == 0)
14246 format = 'f';
14247 else if (strcmp (first->name, "li.d") == 0)
14248 format = 'd';
14249 else
14250 format = 0;
14251 tokens = mips_parse_arguments (str + end, format);
14252 if (!tokens)
14253 return;
14254
14255 if (!match_insns (insn, first, past, tokens, opcode_extra, FALSE)
14256 && !match_insns (insn, first, past, tokens, opcode_extra, TRUE))
14257 set_insn_error (0, _("invalid operands"));
14258
14259 obstack_free (&mips_operand_tokens, tokens);
14260 }
14261
14262 /* As for mips_ip, but used when assembling MIPS16 code.
14263 Also set forced_insn_length to the resulting instruction size in
14264 bytes if the user explicitly requested a small or extended instruction. */
14265
14266 static void
14267 mips16_ip (char *str, struct mips_cl_insn *insn)
14268 {
14269 char *end, *s, c;
14270 struct mips_opcode *first;
14271 struct mips_operand_token *tokens;
14272 unsigned int l;
14273
14274 for (s = str; *s != '\0' && *s != '.' && *s != ' '; ++s)
14275 ;
14276 end = s;
14277 c = *end;
14278
14279 l = 0;
14280 switch (c)
14281 {
14282 case '\0':
14283 break;
14284
14285 case ' ':
14286 s++;
14287 break;
14288
14289 case '.':
14290 s++;
14291 if (*s == 't')
14292 {
14293 l = 2;
14294 s++;
14295 }
14296 else if (*s == 'e')
14297 {
14298 l = 4;
14299 s++;
14300 }
14301 if (*s == '\0')
14302 break;
14303 else if (*s++ == ' ')
14304 break;
14305 set_insn_error (0, _("unrecognized opcode"));
14306 return;
14307 }
14308 forced_insn_length = l;
14309
14310 *end = 0;
14311 first = (struct mips_opcode *) hash_find (mips16_op_hash, str);
14312 *end = c;
14313
14314 if (!first)
14315 {
14316 set_insn_error (0, _("unrecognized opcode"));
14317 return;
14318 }
14319
14320 tokens = mips_parse_arguments (s, 0);
14321 if (!tokens)
14322 return;
14323
14324 if (!match_mips16_insns (insn, first, tokens))
14325 set_insn_error (0, _("invalid operands"));
14326
14327 obstack_free (&mips_operand_tokens, tokens);
14328 }
14329
14330 /* Marshal immediate value VAL for an extended MIPS16 instruction.
14331 NBITS is the number of significant bits in VAL. */
14332
14333 static unsigned long
14334 mips16_immed_extend (offsetT val, unsigned int nbits)
14335 {
14336 int extval;
14337
14338 extval = 0;
14339 val &= (1U << nbits) - 1;
14340 if (nbits == 16 || nbits == 9)
14341 {
14342 extval = ((val >> 11) & 0x1f) | (val & 0x7e0);
14343 val &= 0x1f;
14344 }
14345 else if (nbits == 15)
14346 {
14347 extval = ((val >> 11) & 0xf) | (val & 0x7f0);
14348 val &= 0xf;
14349 }
14350 else if (nbits == 6)
14351 {
14352 extval = ((val & 0x1f) << 6) | (val & 0x20);
14353 val = 0;
14354 }
14355 return (extval << 16) | val;
14356 }
14357
14358 /* Like decode_mips16_operand, but require the operand to be defined and
14359 require it to be an integer. */
14360
14361 static const struct mips_int_operand *
14362 mips16_immed_operand (int type, bfd_boolean extended_p)
14363 {
14364 const struct mips_operand *operand;
14365
14366 operand = decode_mips16_operand (type, extended_p);
14367 if (!operand || (operand->type != OP_INT && operand->type != OP_PCREL))
14368 abort ();
14369 return (const struct mips_int_operand *) operand;
14370 }
14371
14372 /* Return true if SVAL fits OPERAND. RELOC is as for mips16_immed. */
14373
14374 static bfd_boolean
14375 mips16_immed_in_range_p (const struct mips_int_operand *operand,
14376 bfd_reloc_code_real_type reloc, offsetT sval)
14377 {
14378 int min_val, max_val;
14379
14380 min_val = mips_int_operand_min (operand);
14381 max_val = mips_int_operand_max (operand);
14382 if (reloc != BFD_RELOC_UNUSED)
14383 {
14384 if (min_val < 0)
14385 sval = SEXT_16BIT (sval);
14386 else
14387 sval &= 0xffff;
14388 }
14389
14390 return (sval >= min_val
14391 && sval <= max_val
14392 && (sval & ((1 << operand->shift) - 1)) == 0);
14393 }
14394
14395 /* Install immediate value VAL into MIPS16 instruction *INSN,
14396 extending it if necessary. The instruction in *INSN may
14397 already be extended.
14398
14399 RELOC is the relocation that produced VAL, or BFD_RELOC_UNUSED
14400 if none. In the former case, VAL is a 16-bit number with no
14401 defined signedness.
14402
14403 TYPE is the type of the immediate field. USER_INSN_LENGTH
14404 is the length that the user requested, or 0 if none. */
14405
14406 static void
14407 mips16_immed (const char *file, unsigned int line, int type,
14408 bfd_reloc_code_real_type reloc, offsetT val,
14409 unsigned int user_insn_length, unsigned long *insn)
14410 {
14411 const struct mips_int_operand *operand;
14412 unsigned int uval, length;
14413
14414 operand = mips16_immed_operand (type, FALSE);
14415 if (!mips16_immed_in_range_p (operand, reloc, val))
14416 {
14417 /* We need an extended instruction. */
14418 if (user_insn_length == 2)
14419 as_bad_where (file, line, _("invalid unextended operand value"));
14420 else
14421 *insn |= MIPS16_EXTEND;
14422 }
14423 else if (user_insn_length == 4)
14424 {
14425 /* The operand doesn't force an unextended instruction to be extended.
14426 Warn if the user wanted an extended instruction anyway. */
14427 *insn |= MIPS16_EXTEND;
14428 as_warn_where (file, line,
14429 _("extended operand requested but not required"));
14430 }
14431
14432 length = mips16_opcode_length (*insn);
14433 if (length == 4)
14434 {
14435 operand = mips16_immed_operand (type, TRUE);
14436 if (!mips16_immed_in_range_p (operand, reloc, val))
14437 as_bad_where (file, line,
14438 _("operand value out of range for instruction"));
14439 }
14440 uval = ((unsigned int) val >> operand->shift) - operand->bias;
14441 if (length == 2 || operand->root.lsb != 0)
14442 *insn = mips_insert_operand (&operand->root, *insn, uval);
14443 else
14444 *insn |= mips16_immed_extend (uval, operand->root.size);
14445 }
14446 \f
14447 struct percent_op_match
14448 {
14449 const char *str;
14450 bfd_reloc_code_real_type reloc;
14451 };
14452
14453 static const struct percent_op_match mips_percent_op[] =
14454 {
14455 {"%lo", BFD_RELOC_LO16},
14456 {"%call_hi", BFD_RELOC_MIPS_CALL_HI16},
14457 {"%call_lo", BFD_RELOC_MIPS_CALL_LO16},
14458 {"%call16", BFD_RELOC_MIPS_CALL16},
14459 {"%got_disp", BFD_RELOC_MIPS_GOT_DISP},
14460 {"%got_page", BFD_RELOC_MIPS_GOT_PAGE},
14461 {"%got_ofst", BFD_RELOC_MIPS_GOT_OFST},
14462 {"%got_hi", BFD_RELOC_MIPS_GOT_HI16},
14463 {"%got_lo", BFD_RELOC_MIPS_GOT_LO16},
14464 {"%got", BFD_RELOC_MIPS_GOT16},
14465 {"%gp_rel", BFD_RELOC_GPREL16},
14466 {"%gprel", BFD_RELOC_GPREL16},
14467 {"%half", BFD_RELOC_16},
14468 {"%highest", BFD_RELOC_MIPS_HIGHEST},
14469 {"%higher", BFD_RELOC_MIPS_HIGHER},
14470 {"%neg", BFD_RELOC_MIPS_SUB},
14471 {"%tlsgd", BFD_RELOC_MIPS_TLS_GD},
14472 {"%tlsldm", BFD_RELOC_MIPS_TLS_LDM},
14473 {"%dtprel_hi", BFD_RELOC_MIPS_TLS_DTPREL_HI16},
14474 {"%dtprel_lo", BFD_RELOC_MIPS_TLS_DTPREL_LO16},
14475 {"%tprel_hi", BFD_RELOC_MIPS_TLS_TPREL_HI16},
14476 {"%tprel_lo", BFD_RELOC_MIPS_TLS_TPREL_LO16},
14477 {"%gottprel", BFD_RELOC_MIPS_TLS_GOTTPREL},
14478 {"%hi", BFD_RELOC_HI16_S},
14479 {"%pcrel_hi", BFD_RELOC_HI16_S_PCREL},
14480 {"%pcrel_lo", BFD_RELOC_LO16_PCREL}
14481 };
14482
14483 static const struct percent_op_match mips16_percent_op[] =
14484 {
14485 {"%lo", BFD_RELOC_MIPS16_LO16},
14486 {"%gp_rel", BFD_RELOC_MIPS16_GPREL},
14487 {"%gprel", BFD_RELOC_MIPS16_GPREL},
14488 {"%got", BFD_RELOC_MIPS16_GOT16},
14489 {"%call16", BFD_RELOC_MIPS16_CALL16},
14490 {"%hi", BFD_RELOC_MIPS16_HI16_S},
14491 {"%tlsgd", BFD_RELOC_MIPS16_TLS_GD},
14492 {"%tlsldm", BFD_RELOC_MIPS16_TLS_LDM},
14493 {"%dtprel_hi", BFD_RELOC_MIPS16_TLS_DTPREL_HI16},
14494 {"%dtprel_lo", BFD_RELOC_MIPS16_TLS_DTPREL_LO16},
14495 {"%tprel_hi", BFD_RELOC_MIPS16_TLS_TPREL_HI16},
14496 {"%tprel_lo", BFD_RELOC_MIPS16_TLS_TPREL_LO16},
14497 {"%gottprel", BFD_RELOC_MIPS16_TLS_GOTTPREL}
14498 };
14499
14500
14501 /* Return true if *STR points to a relocation operator. When returning true,
14502 move *STR over the operator and store its relocation code in *RELOC.
14503 Leave both *STR and *RELOC alone when returning false. */
14504
14505 static bfd_boolean
14506 parse_relocation (char **str, bfd_reloc_code_real_type *reloc)
14507 {
14508 const struct percent_op_match *percent_op;
14509 size_t limit, i;
14510
14511 if (mips_opts.mips16)
14512 {
14513 percent_op = mips16_percent_op;
14514 limit = ARRAY_SIZE (mips16_percent_op);
14515 }
14516 else
14517 {
14518 percent_op = mips_percent_op;
14519 limit = ARRAY_SIZE (mips_percent_op);
14520 }
14521
14522 for (i = 0; i < limit; i++)
14523 if (strncasecmp (*str, percent_op[i].str, strlen (percent_op[i].str)) == 0)
14524 {
14525 int len = strlen (percent_op[i].str);
14526
14527 if (!ISSPACE ((*str)[len]) && (*str)[len] != '(')
14528 continue;
14529
14530 *str += strlen (percent_op[i].str);
14531 *reloc = percent_op[i].reloc;
14532
14533 /* Check whether the output BFD supports this relocation.
14534 If not, issue an error and fall back on something safe. */
14535 if (!bfd_reloc_type_lookup (stdoutput, percent_op[i].reloc))
14536 {
14537 as_bad (_("relocation %s isn't supported by the current ABI"),
14538 percent_op[i].str);
14539 *reloc = BFD_RELOC_UNUSED;
14540 }
14541 return TRUE;
14542 }
14543 return FALSE;
14544 }
14545
14546
14547 /* Parse string STR as a 16-bit relocatable operand. Store the
14548 expression in *EP and the relocations in the array starting
14549 at RELOC. Return the number of relocation operators used.
14550
14551 On exit, EXPR_END points to the first character after the expression. */
14552
14553 static size_t
14554 my_getSmallExpression (expressionS *ep, bfd_reloc_code_real_type *reloc,
14555 char *str)
14556 {
14557 bfd_reloc_code_real_type reversed_reloc[3];
14558 size_t reloc_index, i;
14559 int crux_depth, str_depth;
14560 char *crux;
14561
14562 /* Search for the start of the main expression, recoding relocations
14563 in REVERSED_RELOC. End the loop with CRUX pointing to the start
14564 of the main expression and with CRUX_DEPTH containing the number
14565 of open brackets at that point. */
14566 reloc_index = -1;
14567 str_depth = 0;
14568 do
14569 {
14570 reloc_index++;
14571 crux = str;
14572 crux_depth = str_depth;
14573
14574 /* Skip over whitespace and brackets, keeping count of the number
14575 of brackets. */
14576 while (*str == ' ' || *str == '\t' || *str == '(')
14577 if (*str++ == '(')
14578 str_depth++;
14579 }
14580 while (*str == '%'
14581 && reloc_index < (HAVE_NEWABI ? 3 : 1)
14582 && parse_relocation (&str, &reversed_reloc[reloc_index]));
14583
14584 my_getExpression (ep, crux);
14585 str = expr_end;
14586
14587 /* Match every open bracket. */
14588 while (crux_depth > 0 && (*str == ')' || *str == ' ' || *str == '\t'))
14589 if (*str++ == ')')
14590 crux_depth--;
14591
14592 if (crux_depth > 0)
14593 as_bad (_("unclosed '('"));
14594
14595 expr_end = str;
14596
14597 if (reloc_index != 0)
14598 {
14599 prev_reloc_op_frag = frag_now;
14600 for (i = 0; i < reloc_index; i++)
14601 reloc[i] = reversed_reloc[reloc_index - 1 - i];
14602 }
14603
14604 return reloc_index;
14605 }
14606
14607 static void
14608 my_getExpression (expressionS *ep, char *str)
14609 {
14610 char *save_in;
14611
14612 save_in = input_line_pointer;
14613 input_line_pointer = str;
14614 expression (ep);
14615 expr_end = input_line_pointer;
14616 input_line_pointer = save_in;
14617 }
14618
14619 const char *
14620 md_atof (int type, char *litP, int *sizeP)
14621 {
14622 return ieee_md_atof (type, litP, sizeP, target_big_endian);
14623 }
14624
14625 void
14626 md_number_to_chars (char *buf, valueT val, int n)
14627 {
14628 if (target_big_endian)
14629 number_to_chars_bigendian (buf, val, n);
14630 else
14631 number_to_chars_littleendian (buf, val, n);
14632 }
14633 \f
14634 static int support_64bit_objects(void)
14635 {
14636 const char **list, **l;
14637 int yes;
14638
14639 list = bfd_target_list ();
14640 for (l = list; *l != NULL; l++)
14641 if (strcmp (*l, ELF_TARGET ("elf64-", "big")) == 0
14642 || strcmp (*l, ELF_TARGET ("elf64-", "little")) == 0)
14643 break;
14644 yes = (*l != NULL);
14645 free (list);
14646 return yes;
14647 }
14648
14649 /* Set STRING_PTR (either &mips_arch_string or &mips_tune_string) to
14650 NEW_VALUE. Warn if another value was already specified. Note:
14651 we have to defer parsing the -march and -mtune arguments in order
14652 to handle 'from-abi' correctly, since the ABI might be specified
14653 in a later argument. */
14654
14655 static void
14656 mips_set_option_string (const char **string_ptr, const char *new_value)
14657 {
14658 if (*string_ptr != 0 && strcasecmp (*string_ptr, new_value) != 0)
14659 as_warn (_("a different %s was already specified, is now %s"),
14660 string_ptr == &mips_arch_string ? "-march" : "-mtune",
14661 new_value);
14662
14663 *string_ptr = new_value;
14664 }
14665
14666 int
14667 md_parse_option (int c, const char *arg)
14668 {
14669 unsigned int i;
14670
14671 for (i = 0; i < ARRAY_SIZE (mips_ases); i++)
14672 if (c == mips_ases[i].option_on || c == mips_ases[i].option_off)
14673 {
14674 file_ase_explicit |= mips_set_ase (&mips_ases[i], &file_mips_opts,
14675 c == mips_ases[i].option_on);
14676 return 1;
14677 }
14678
14679 switch (c)
14680 {
14681 case OPTION_CONSTRUCT_FLOATS:
14682 mips_disable_float_construction = 0;
14683 break;
14684
14685 case OPTION_NO_CONSTRUCT_FLOATS:
14686 mips_disable_float_construction = 1;
14687 break;
14688
14689 case OPTION_TRAP:
14690 mips_trap = 1;
14691 break;
14692
14693 case OPTION_BREAK:
14694 mips_trap = 0;
14695 break;
14696
14697 case OPTION_EB:
14698 target_big_endian = 1;
14699 break;
14700
14701 case OPTION_EL:
14702 target_big_endian = 0;
14703 break;
14704
14705 case 'O':
14706 if (arg == NULL)
14707 mips_optimize = 1;
14708 else if (arg[0] == '0')
14709 mips_optimize = 0;
14710 else if (arg[0] == '1')
14711 mips_optimize = 1;
14712 else
14713 mips_optimize = 2;
14714 break;
14715
14716 case 'g':
14717 if (arg == NULL)
14718 mips_debug = 2;
14719 else
14720 mips_debug = atoi (arg);
14721 break;
14722
14723 case OPTION_MIPS1:
14724 file_mips_opts.isa = ISA_MIPS1;
14725 break;
14726
14727 case OPTION_MIPS2:
14728 file_mips_opts.isa = ISA_MIPS2;
14729 break;
14730
14731 case OPTION_MIPS3:
14732 file_mips_opts.isa = ISA_MIPS3;
14733 break;
14734
14735 case OPTION_MIPS4:
14736 file_mips_opts.isa = ISA_MIPS4;
14737 break;
14738
14739 case OPTION_MIPS5:
14740 file_mips_opts.isa = ISA_MIPS5;
14741 break;
14742
14743 case OPTION_MIPS32:
14744 file_mips_opts.isa = ISA_MIPS32;
14745 break;
14746
14747 case OPTION_MIPS32R2:
14748 file_mips_opts.isa = ISA_MIPS32R2;
14749 break;
14750
14751 case OPTION_MIPS32R3:
14752 file_mips_opts.isa = ISA_MIPS32R3;
14753 break;
14754
14755 case OPTION_MIPS32R5:
14756 file_mips_opts.isa = ISA_MIPS32R5;
14757 break;
14758
14759 case OPTION_MIPS32R6:
14760 file_mips_opts.isa = ISA_MIPS32R6;
14761 break;
14762
14763 case OPTION_MIPS64R2:
14764 file_mips_opts.isa = ISA_MIPS64R2;
14765 break;
14766
14767 case OPTION_MIPS64R3:
14768 file_mips_opts.isa = ISA_MIPS64R3;
14769 break;
14770
14771 case OPTION_MIPS64R5:
14772 file_mips_opts.isa = ISA_MIPS64R5;
14773 break;
14774
14775 case OPTION_MIPS64R6:
14776 file_mips_opts.isa = ISA_MIPS64R6;
14777 break;
14778
14779 case OPTION_MIPS64:
14780 file_mips_opts.isa = ISA_MIPS64;
14781 break;
14782
14783 case OPTION_MTUNE:
14784 mips_set_option_string (&mips_tune_string, arg);
14785 break;
14786
14787 case OPTION_MARCH:
14788 mips_set_option_string (&mips_arch_string, arg);
14789 break;
14790
14791 case OPTION_M4650:
14792 mips_set_option_string (&mips_arch_string, "4650");
14793 mips_set_option_string (&mips_tune_string, "4650");
14794 break;
14795
14796 case OPTION_NO_M4650:
14797 break;
14798
14799 case OPTION_M4010:
14800 mips_set_option_string (&mips_arch_string, "4010");
14801 mips_set_option_string (&mips_tune_string, "4010");
14802 break;
14803
14804 case OPTION_NO_M4010:
14805 break;
14806
14807 case OPTION_M4100:
14808 mips_set_option_string (&mips_arch_string, "4100");
14809 mips_set_option_string (&mips_tune_string, "4100");
14810 break;
14811
14812 case OPTION_NO_M4100:
14813 break;
14814
14815 case OPTION_M3900:
14816 mips_set_option_string (&mips_arch_string, "3900");
14817 mips_set_option_string (&mips_tune_string, "3900");
14818 break;
14819
14820 case OPTION_NO_M3900:
14821 break;
14822
14823 case OPTION_MICROMIPS:
14824 if (file_mips_opts.mips16 == 1)
14825 {
14826 as_bad (_("-mmicromips cannot be used with -mips16"));
14827 return 0;
14828 }
14829 file_mips_opts.micromips = 1;
14830 mips_no_prev_insn ();
14831 break;
14832
14833 case OPTION_NO_MICROMIPS:
14834 file_mips_opts.micromips = 0;
14835 mips_no_prev_insn ();
14836 break;
14837
14838 case OPTION_MIPS16:
14839 if (file_mips_opts.micromips == 1)
14840 {
14841 as_bad (_("-mips16 cannot be used with -micromips"));
14842 return 0;
14843 }
14844 file_mips_opts.mips16 = 1;
14845 mips_no_prev_insn ();
14846 break;
14847
14848 case OPTION_NO_MIPS16:
14849 file_mips_opts.mips16 = 0;
14850 mips_no_prev_insn ();
14851 break;
14852
14853 case OPTION_FIX_24K:
14854 mips_fix_24k = 1;
14855 break;
14856
14857 case OPTION_NO_FIX_24K:
14858 mips_fix_24k = 0;
14859 break;
14860
14861 case OPTION_FIX_RM7000:
14862 mips_fix_rm7000 = 1;
14863 break;
14864
14865 case OPTION_NO_FIX_RM7000:
14866 mips_fix_rm7000 = 0;
14867 break;
14868
14869 case OPTION_FIX_LOONGSON3_LLSC:
14870 mips_fix_loongson3_llsc = TRUE;
14871 break;
14872
14873 case OPTION_NO_FIX_LOONGSON3_LLSC:
14874 mips_fix_loongson3_llsc = FALSE;
14875 break;
14876
14877 case OPTION_FIX_LOONGSON2F_JUMP:
14878 mips_fix_loongson2f_jump = TRUE;
14879 break;
14880
14881 case OPTION_NO_FIX_LOONGSON2F_JUMP:
14882 mips_fix_loongson2f_jump = FALSE;
14883 break;
14884
14885 case OPTION_FIX_LOONGSON2F_NOP:
14886 mips_fix_loongson2f_nop = TRUE;
14887 break;
14888
14889 case OPTION_NO_FIX_LOONGSON2F_NOP:
14890 mips_fix_loongson2f_nop = FALSE;
14891 break;
14892
14893 case OPTION_FIX_VR4120:
14894 mips_fix_vr4120 = 1;
14895 break;
14896
14897 case OPTION_NO_FIX_VR4120:
14898 mips_fix_vr4120 = 0;
14899 break;
14900
14901 case OPTION_FIX_VR4130:
14902 mips_fix_vr4130 = 1;
14903 break;
14904
14905 case OPTION_NO_FIX_VR4130:
14906 mips_fix_vr4130 = 0;
14907 break;
14908
14909 case OPTION_FIX_CN63XXP1:
14910 mips_fix_cn63xxp1 = TRUE;
14911 break;
14912
14913 case OPTION_NO_FIX_CN63XXP1:
14914 mips_fix_cn63xxp1 = FALSE;
14915 break;
14916
14917 case OPTION_FIX_R5900:
14918 mips_fix_r5900 = TRUE;
14919 mips_fix_r5900_explicit = TRUE;
14920 break;
14921
14922 case OPTION_NO_FIX_R5900:
14923 mips_fix_r5900 = FALSE;
14924 mips_fix_r5900_explicit = TRUE;
14925 break;
14926
14927 case OPTION_RELAX_BRANCH:
14928 mips_relax_branch = 1;
14929 break;
14930
14931 case OPTION_NO_RELAX_BRANCH:
14932 mips_relax_branch = 0;
14933 break;
14934
14935 case OPTION_IGNORE_BRANCH_ISA:
14936 mips_ignore_branch_isa = TRUE;
14937 break;
14938
14939 case OPTION_NO_IGNORE_BRANCH_ISA:
14940 mips_ignore_branch_isa = FALSE;
14941 break;
14942
14943 case OPTION_INSN32:
14944 file_mips_opts.insn32 = TRUE;
14945 break;
14946
14947 case OPTION_NO_INSN32:
14948 file_mips_opts.insn32 = FALSE;
14949 break;
14950
14951 case OPTION_MSHARED:
14952 mips_in_shared = TRUE;
14953 break;
14954
14955 case OPTION_MNO_SHARED:
14956 mips_in_shared = FALSE;
14957 break;
14958
14959 case OPTION_MSYM32:
14960 file_mips_opts.sym32 = TRUE;
14961 break;
14962
14963 case OPTION_MNO_SYM32:
14964 file_mips_opts.sym32 = FALSE;
14965 break;
14966
14967 /* When generating ELF code, we permit -KPIC and -call_shared to
14968 select SVR4_PIC, and -non_shared to select no PIC. This is
14969 intended to be compatible with Irix 5. */
14970 case OPTION_CALL_SHARED:
14971 mips_pic = SVR4_PIC;
14972 mips_abicalls = TRUE;
14973 break;
14974
14975 case OPTION_CALL_NONPIC:
14976 mips_pic = NO_PIC;
14977 mips_abicalls = TRUE;
14978 break;
14979
14980 case OPTION_NON_SHARED:
14981 mips_pic = NO_PIC;
14982 mips_abicalls = FALSE;
14983 break;
14984
14985 /* The -xgot option tells the assembler to use 32 bit offsets
14986 when accessing the got in SVR4_PIC mode. It is for Irix
14987 compatibility. */
14988 case OPTION_XGOT:
14989 mips_big_got = 1;
14990 break;
14991
14992 case 'G':
14993 g_switch_value = atoi (arg);
14994 g_switch_seen = 1;
14995 break;
14996
14997 /* The -32, -n32 and -64 options are shortcuts for -mabi=32, -mabi=n32
14998 and -mabi=64. */
14999 case OPTION_32:
15000 mips_abi = O32_ABI;
15001 break;
15002
15003 case OPTION_N32:
15004 mips_abi = N32_ABI;
15005 break;
15006
15007 case OPTION_64:
15008 mips_abi = N64_ABI;
15009 if (!support_64bit_objects())
15010 as_fatal (_("no compiled in support for 64 bit object file format"));
15011 break;
15012
15013 case OPTION_GP32:
15014 file_mips_opts.gp = 32;
15015 break;
15016
15017 case OPTION_GP64:
15018 file_mips_opts.gp = 64;
15019 break;
15020
15021 case OPTION_FP32:
15022 file_mips_opts.fp = 32;
15023 break;
15024
15025 case OPTION_FPXX:
15026 file_mips_opts.fp = 0;
15027 break;
15028
15029 case OPTION_FP64:
15030 file_mips_opts.fp = 64;
15031 break;
15032
15033 case OPTION_ODD_SPREG:
15034 file_mips_opts.oddspreg = 1;
15035 break;
15036
15037 case OPTION_NO_ODD_SPREG:
15038 file_mips_opts.oddspreg = 0;
15039 break;
15040
15041 case OPTION_SINGLE_FLOAT:
15042 file_mips_opts.single_float = 1;
15043 break;
15044
15045 case OPTION_DOUBLE_FLOAT:
15046 file_mips_opts.single_float = 0;
15047 break;
15048
15049 case OPTION_SOFT_FLOAT:
15050 file_mips_opts.soft_float = 1;
15051 break;
15052
15053 case OPTION_HARD_FLOAT:
15054 file_mips_opts.soft_float = 0;
15055 break;
15056
15057 case OPTION_MABI:
15058 if (strcmp (arg, "32") == 0)
15059 mips_abi = O32_ABI;
15060 else if (strcmp (arg, "o64") == 0)
15061 mips_abi = O64_ABI;
15062 else if (strcmp (arg, "n32") == 0)
15063 mips_abi = N32_ABI;
15064 else if (strcmp (arg, "64") == 0)
15065 {
15066 mips_abi = N64_ABI;
15067 if (! support_64bit_objects())
15068 as_fatal (_("no compiled in support for 64 bit object file "
15069 "format"));
15070 }
15071 else if (strcmp (arg, "eabi") == 0)
15072 mips_abi = EABI_ABI;
15073 else
15074 {
15075 as_fatal (_("invalid abi -mabi=%s"), arg);
15076 return 0;
15077 }
15078 break;
15079
15080 case OPTION_M7000_HILO_FIX:
15081 mips_7000_hilo_fix = TRUE;
15082 break;
15083
15084 case OPTION_MNO_7000_HILO_FIX:
15085 mips_7000_hilo_fix = FALSE;
15086 break;
15087
15088 case OPTION_MDEBUG:
15089 mips_flag_mdebug = TRUE;
15090 break;
15091
15092 case OPTION_NO_MDEBUG:
15093 mips_flag_mdebug = FALSE;
15094 break;
15095
15096 case OPTION_PDR:
15097 mips_flag_pdr = TRUE;
15098 break;
15099
15100 case OPTION_NO_PDR:
15101 mips_flag_pdr = FALSE;
15102 break;
15103
15104 case OPTION_MVXWORKS_PIC:
15105 mips_pic = VXWORKS_PIC;
15106 break;
15107
15108 case OPTION_NAN:
15109 if (strcmp (arg, "2008") == 0)
15110 mips_nan2008 = 1;
15111 else if (strcmp (arg, "legacy") == 0)
15112 mips_nan2008 = 0;
15113 else
15114 {
15115 as_fatal (_("invalid NaN setting -mnan=%s"), arg);
15116 return 0;
15117 }
15118 break;
15119
15120 default:
15121 return 0;
15122 }
15123
15124 mips_fix_loongson2f = mips_fix_loongson2f_nop || mips_fix_loongson2f_jump;
15125
15126 return 1;
15127 }
15128 \f
15129 /* Set up globals to tune for the ISA or processor described by INFO. */
15130
15131 static void
15132 mips_set_tune (const struct mips_cpu_info *info)
15133 {
15134 if (info != 0)
15135 mips_tune = info->cpu;
15136 }
15137
15138
15139 void
15140 mips_after_parse_args (void)
15141 {
15142 const struct mips_cpu_info *arch_info = 0;
15143 const struct mips_cpu_info *tune_info = 0;
15144
15145 /* GP relative stuff not working for PE. */
15146 if (strncmp (TARGET_OS, "pe", 2) == 0)
15147 {
15148 if (g_switch_seen && g_switch_value != 0)
15149 as_bad (_("-G not supported in this configuration"));
15150 g_switch_value = 0;
15151 }
15152
15153 if (mips_abi == NO_ABI)
15154 mips_abi = MIPS_DEFAULT_ABI;
15155
15156 /* The following code determines the architecture.
15157 Similar code was added to GCC 3.3 (see override_options() in
15158 config/mips/mips.c). The GAS and GCC code should be kept in sync
15159 as much as possible. */
15160
15161 if (mips_arch_string != 0)
15162 arch_info = mips_parse_cpu ("-march", mips_arch_string);
15163
15164 if (file_mips_opts.isa != ISA_UNKNOWN)
15165 {
15166 /* Handle -mipsN. At this point, file_mips_opts.isa contains the
15167 ISA level specified by -mipsN, while arch_info->isa contains
15168 the -march selection (if any). */
15169 if (arch_info != 0)
15170 {
15171 /* -march takes precedence over -mipsN, since it is more descriptive.
15172 There's no harm in specifying both as long as the ISA levels
15173 are the same. */
15174 if (file_mips_opts.isa != arch_info->isa)
15175 as_bad (_("-%s conflicts with the other architecture options,"
15176 " which imply -%s"),
15177 mips_cpu_info_from_isa (file_mips_opts.isa)->name,
15178 mips_cpu_info_from_isa (arch_info->isa)->name);
15179 }
15180 else
15181 arch_info = mips_cpu_info_from_isa (file_mips_opts.isa);
15182 }
15183
15184 if (arch_info == 0)
15185 {
15186 arch_info = mips_parse_cpu ("default CPU", MIPS_CPU_STRING_DEFAULT);
15187 gas_assert (arch_info);
15188 }
15189
15190 if (ABI_NEEDS_64BIT_REGS (mips_abi) && !ISA_HAS_64BIT_REGS (arch_info->isa))
15191 as_bad (_("-march=%s is not compatible with the selected ABI"),
15192 arch_info->name);
15193
15194 file_mips_opts.arch = arch_info->cpu;
15195 file_mips_opts.isa = arch_info->isa;
15196 file_mips_opts.init_ase = arch_info->ase;
15197
15198 /* Set up initial mips_opts state. */
15199 mips_opts = file_mips_opts;
15200
15201 /* For the R5900 default to `-mfix-r5900' unless the user told otherwise. */
15202 if (!mips_fix_r5900_explicit)
15203 mips_fix_r5900 = file_mips_opts.arch == CPU_R5900;
15204
15205 /* The register size inference code is now placed in
15206 file_mips_check_options. */
15207
15208 /* Optimize for file_mips_opts.arch, unless -mtune selects a different
15209 processor. */
15210 if (mips_tune_string != 0)
15211 tune_info = mips_parse_cpu ("-mtune", mips_tune_string);
15212
15213 if (tune_info == 0)
15214 mips_set_tune (arch_info);
15215 else
15216 mips_set_tune (tune_info);
15217
15218 if (mips_flag_mdebug < 0)
15219 mips_flag_mdebug = 0;
15220 }
15221 \f
15222 void
15223 mips_init_after_args (void)
15224 {
15225 /* Initialize opcodes. */
15226 bfd_mips_num_opcodes = bfd_mips_num_builtin_opcodes;
15227 mips_opcodes = (struct mips_opcode *) mips_builtin_opcodes;
15228 }
15229
15230 long
15231 md_pcrel_from (fixS *fixP)
15232 {
15233 valueT addr = fixP->fx_where + fixP->fx_frag->fr_address;
15234
15235 switch (fixP->fx_r_type)
15236 {
15237 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15238 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15239 /* Return the address of the delay slot. */
15240 return addr + 2;
15241
15242 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15243 case BFD_RELOC_MICROMIPS_JMP:
15244 case BFD_RELOC_MIPS16_16_PCREL_S1:
15245 case BFD_RELOC_16_PCREL_S2:
15246 case BFD_RELOC_MIPS_21_PCREL_S2:
15247 case BFD_RELOC_MIPS_26_PCREL_S2:
15248 case BFD_RELOC_MIPS_JMP:
15249 /* Return the address of the delay slot. */
15250 return addr + 4;
15251
15252 case BFD_RELOC_MIPS_18_PCREL_S3:
15253 /* Return the aligned address of the doubleword containing
15254 the instruction. */
15255 return addr & ~7;
15256
15257 default:
15258 return addr;
15259 }
15260 }
15261
15262 /* This is called before the symbol table is processed. In order to
15263 work with gcc when using mips-tfile, we must keep all local labels.
15264 However, in other cases, we want to discard them. If we were
15265 called with -g, but we didn't see any debugging information, it may
15266 mean that gcc is smuggling debugging information through to
15267 mips-tfile, in which case we must generate all local labels. */
15268
15269 void
15270 mips_frob_file_before_adjust (void)
15271 {
15272 #ifndef NO_ECOFF_DEBUGGING
15273 if (ECOFF_DEBUGGING
15274 && mips_debug != 0
15275 && ! ecoff_debugging_seen)
15276 flag_keep_locals = 1;
15277 #endif
15278 }
15279
15280 /* Sort any unmatched HI16 and GOT16 relocs so that they immediately precede
15281 the corresponding LO16 reloc. This is called before md_apply_fix and
15282 tc_gen_reloc. Unmatched relocs can only be generated by use of explicit
15283 relocation operators.
15284
15285 For our purposes, a %lo() expression matches a %got() or %hi()
15286 expression if:
15287
15288 (a) it refers to the same symbol; and
15289 (b) the offset applied in the %lo() expression is no lower than
15290 the offset applied in the %got() or %hi().
15291
15292 (b) allows us to cope with code like:
15293
15294 lui $4,%hi(foo)
15295 lh $4,%lo(foo+2)($4)
15296
15297 ...which is legal on RELA targets, and has a well-defined behaviour
15298 if the user knows that adding 2 to "foo" will not induce a carry to
15299 the high 16 bits.
15300
15301 When several %lo()s match a particular %got() or %hi(), we use the
15302 following rules to distinguish them:
15303
15304 (1) %lo()s with smaller offsets are a better match than %lo()s with
15305 higher offsets.
15306
15307 (2) %lo()s with no matching %got() or %hi() are better than those
15308 that already have a matching %got() or %hi().
15309
15310 (3) later %lo()s are better than earlier %lo()s.
15311
15312 These rules are applied in order.
15313
15314 (1) means, among other things, that %lo()s with identical offsets are
15315 chosen if they exist.
15316
15317 (2) means that we won't associate several high-part relocations with
15318 the same low-part relocation unless there's no alternative. Having
15319 several high parts for the same low part is a GNU extension; this rule
15320 allows careful users to avoid it.
15321
15322 (3) is purely cosmetic. mips_hi_fixup_list is is in reverse order,
15323 with the last high-part relocation being at the front of the list.
15324 It therefore makes sense to choose the last matching low-part
15325 relocation, all other things being equal. It's also easier
15326 to code that way. */
15327
15328 void
15329 mips_frob_file (void)
15330 {
15331 struct mips_hi_fixup *l;
15332 bfd_reloc_code_real_type looking_for_rtype = BFD_RELOC_UNUSED;
15333
15334 for (l = mips_hi_fixup_list; l != NULL; l = l->next)
15335 {
15336 segment_info_type *seginfo;
15337 bfd_boolean matched_lo_p;
15338 fixS **hi_pos, **lo_pos, **pos;
15339
15340 gas_assert (reloc_needs_lo_p (l->fixp->fx_r_type));
15341
15342 /* If a GOT16 relocation turns out to be against a global symbol,
15343 there isn't supposed to be a matching LO. Ignore %gots against
15344 constants; we'll report an error for those later. */
15345 if (got16_reloc_p (l->fixp->fx_r_type)
15346 && !(l->fixp->fx_addsy
15347 && pic_need_relax (l->fixp->fx_addsy)))
15348 continue;
15349
15350 /* Check quickly whether the next fixup happens to be a matching %lo. */
15351 if (fixup_has_matching_lo_p (l->fixp))
15352 continue;
15353
15354 seginfo = seg_info (l->seg);
15355
15356 /* Set HI_POS to the position of this relocation in the chain.
15357 Set LO_POS to the position of the chosen low-part relocation.
15358 MATCHED_LO_P is true on entry to the loop if *POS is a low-part
15359 relocation that matches an immediately-preceding high-part
15360 relocation. */
15361 hi_pos = NULL;
15362 lo_pos = NULL;
15363 matched_lo_p = FALSE;
15364 looking_for_rtype = matching_lo_reloc (l->fixp->fx_r_type);
15365
15366 for (pos = &seginfo->fix_root; *pos != NULL; pos = &(*pos)->fx_next)
15367 {
15368 if (*pos == l->fixp)
15369 hi_pos = pos;
15370
15371 if ((*pos)->fx_r_type == looking_for_rtype
15372 && symbol_same_p ((*pos)->fx_addsy, l->fixp->fx_addsy)
15373 && (*pos)->fx_offset >= l->fixp->fx_offset
15374 && (lo_pos == NULL
15375 || (*pos)->fx_offset < (*lo_pos)->fx_offset
15376 || (!matched_lo_p
15377 && (*pos)->fx_offset == (*lo_pos)->fx_offset)))
15378 lo_pos = pos;
15379
15380 matched_lo_p = (reloc_needs_lo_p ((*pos)->fx_r_type)
15381 && fixup_has_matching_lo_p (*pos));
15382 }
15383
15384 /* If we found a match, remove the high-part relocation from its
15385 current position and insert it before the low-part relocation.
15386 Make the offsets match so that fixup_has_matching_lo_p()
15387 will return true.
15388
15389 We don't warn about unmatched high-part relocations since some
15390 versions of gcc have been known to emit dead "lui ...%hi(...)"
15391 instructions. */
15392 if (lo_pos != NULL)
15393 {
15394 l->fixp->fx_offset = (*lo_pos)->fx_offset;
15395 if (l->fixp->fx_next != *lo_pos)
15396 {
15397 *hi_pos = l->fixp->fx_next;
15398 l->fixp->fx_next = *lo_pos;
15399 *lo_pos = l->fixp;
15400 }
15401 }
15402 }
15403 }
15404
15405 int
15406 mips_force_relocation (fixS *fixp)
15407 {
15408 if (generic_force_reloc (fixp))
15409 return 1;
15410
15411 /* We want to keep BFD_RELOC_MICROMIPS_*_PCREL_S1 relocation,
15412 so that the linker relaxation can update targets. */
15413 if (fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
15414 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
15415 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1)
15416 return 1;
15417
15418 /* We want to keep BFD_RELOC_16_PCREL_S2 BFD_RELOC_MIPS_21_PCREL_S2
15419 and BFD_RELOC_MIPS_26_PCREL_S2 relocations against MIPS16 and
15420 microMIPS symbols so that we can do cross-mode branch diagnostics
15421 and BAL to JALX conversion by the linker. */
15422 if ((fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15423 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15424 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2)
15425 && fixp->fx_addsy
15426 && ELF_ST_IS_COMPRESSED (S_GET_OTHER (fixp->fx_addsy)))
15427 return 1;
15428
15429 /* We want all PC-relative relocations to be kept for R6 relaxation. */
15430 if (ISA_IS_R6 (file_mips_opts.isa)
15431 && (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
15432 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
15433 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
15434 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
15435 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
15436 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
15437 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL))
15438 return 1;
15439
15440 return 0;
15441 }
15442
15443 /* Implement TC_FORCE_RELOCATION_ABS. */
15444
15445 bfd_boolean
15446 mips_force_relocation_abs (fixS *fixp)
15447 {
15448 if (generic_force_reloc (fixp))
15449 return TRUE;
15450
15451 /* These relocations do not have enough bits in the in-place addend
15452 to hold an arbitrary absolute section's offset. */
15453 if (HAVE_IN_PLACE_ADDENDS && limited_pcrel_reloc_p (fixp->fx_r_type))
15454 return TRUE;
15455
15456 return FALSE;
15457 }
15458
15459 /* Read the instruction associated with RELOC from BUF. */
15460
15461 static unsigned int
15462 read_reloc_insn (char *buf, bfd_reloc_code_real_type reloc)
15463 {
15464 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15465 return read_compressed_insn (buf, 4);
15466 else
15467 return read_insn (buf);
15468 }
15469
15470 /* Write instruction INSN to BUF, given that it has been relocated
15471 by RELOC. */
15472
15473 static void
15474 write_reloc_insn (char *buf, bfd_reloc_code_real_type reloc,
15475 unsigned long insn)
15476 {
15477 if (mips16_reloc_p (reloc) || micromips_reloc_p (reloc))
15478 write_compressed_insn (buf, insn, 4);
15479 else
15480 write_insn (buf, insn);
15481 }
15482
15483 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15484 to a symbol in another ISA mode, which cannot be converted to JALX. */
15485
15486 static bfd_boolean
15487 fix_bad_cross_mode_jump_p (fixS *fixP)
15488 {
15489 unsigned long opcode;
15490 int other;
15491 char *buf;
15492
15493 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15494 return FALSE;
15495
15496 other = S_GET_OTHER (fixP->fx_addsy);
15497 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15498 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15499 switch (fixP->fx_r_type)
15500 {
15501 case BFD_RELOC_MIPS_JMP:
15502 return opcode != 0x1d && opcode != 0x03 && ELF_ST_IS_COMPRESSED (other);
15503 case BFD_RELOC_MICROMIPS_JMP:
15504 return opcode != 0x3c && opcode != 0x3d && !ELF_ST_IS_MICROMIPS (other);
15505 default:
15506 return FALSE;
15507 }
15508 }
15509
15510 /* Return TRUE if the instruction pointed to by FIXP is an invalid JALX
15511 jump to a symbol in the same ISA mode. */
15512
15513 static bfd_boolean
15514 fix_bad_same_mode_jalx_p (fixS *fixP)
15515 {
15516 unsigned long opcode;
15517 int other;
15518 char *buf;
15519
15520 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15521 return FALSE;
15522
15523 other = S_GET_OTHER (fixP->fx_addsy);
15524 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15525 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 26;
15526 switch (fixP->fx_r_type)
15527 {
15528 case BFD_RELOC_MIPS_JMP:
15529 return opcode == 0x1d && !ELF_ST_IS_COMPRESSED (other);
15530 case BFD_RELOC_MIPS16_JMP:
15531 return opcode == 0x07 && ELF_ST_IS_COMPRESSED (other);
15532 case BFD_RELOC_MICROMIPS_JMP:
15533 return opcode == 0x3c && ELF_ST_IS_COMPRESSED (other);
15534 default:
15535 return FALSE;
15536 }
15537 }
15538
15539 /* Return TRUE if the instruction pointed to by FIXP is an invalid jump
15540 to a symbol whose value plus addend is not aligned according to the
15541 ultimate (after linker relaxation) jump instruction's immediate field
15542 requirement, either to (1 << SHIFT), or, for jumps from microMIPS to
15543 regular MIPS code, to (1 << 2). */
15544
15545 static bfd_boolean
15546 fix_bad_misaligned_jump_p (fixS *fixP, int shift)
15547 {
15548 bfd_boolean micro_to_mips_p;
15549 valueT val;
15550 int other;
15551
15552 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15553 return FALSE;
15554
15555 other = S_GET_OTHER (fixP->fx_addsy);
15556 val = S_GET_VALUE (fixP->fx_addsy) | ELF_ST_IS_COMPRESSED (other);
15557 val += fixP->fx_offset;
15558 micro_to_mips_p = (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15559 && !ELF_ST_IS_MICROMIPS (other));
15560 return ((val & ((1 << (micro_to_mips_p ? 2 : shift)) - 1))
15561 != ELF_ST_IS_COMPRESSED (other));
15562 }
15563
15564 /* Return TRUE if the instruction pointed to by FIXP is an invalid branch
15565 to a symbol whose annotation indicates another ISA mode. For absolute
15566 symbols check the ISA bit instead.
15567
15568 We accept BFD_RELOC_16_PCREL_S2 relocations against MIPS16 and microMIPS
15569 symbols or BFD_RELOC_MICROMIPS_16_PCREL_S1 relocations against regular
15570 MIPS symbols and associated with BAL instructions as these instructions
15571 may be converted to JALX by the linker. */
15572
15573 static bfd_boolean
15574 fix_bad_cross_mode_branch_p (fixS *fixP)
15575 {
15576 bfd_boolean absolute_p;
15577 unsigned long opcode;
15578 asection *symsec;
15579 valueT val;
15580 int other;
15581 char *buf;
15582
15583 if (mips_ignore_branch_isa)
15584 return FALSE;
15585
15586 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15587 return FALSE;
15588
15589 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15590 absolute_p = bfd_is_abs_section (symsec);
15591
15592 val = S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset;
15593 other = S_GET_OTHER (fixP->fx_addsy);
15594
15595 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15596 opcode = read_reloc_insn (buf, fixP->fx_r_type) >> 16;
15597 switch (fixP->fx_r_type)
15598 {
15599 case BFD_RELOC_16_PCREL_S2:
15600 return ((absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other))
15601 && opcode != 0x0411);
15602 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15603 return ((absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other))
15604 && opcode != 0x4060);
15605 case BFD_RELOC_MIPS_21_PCREL_S2:
15606 case BFD_RELOC_MIPS_26_PCREL_S2:
15607 return absolute_p ? val & 1 : ELF_ST_IS_COMPRESSED (other);
15608 case BFD_RELOC_MIPS16_16_PCREL_S1:
15609 return absolute_p ? !(val & 1) : !ELF_ST_IS_MIPS16 (other);
15610 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15611 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15612 return absolute_p ? !(val & 1) : !ELF_ST_IS_MICROMIPS (other);
15613 default:
15614 abort ();
15615 }
15616 }
15617
15618 /* Return TRUE if the symbol plus addend associated with a regular MIPS
15619 branch instruction pointed to by FIXP is not aligned according to the
15620 branch instruction's immediate field requirement. We need the addend
15621 to preserve the ISA bit and also the sum must not have bit 2 set. We
15622 must explicitly OR in the ISA bit from symbol annotation as the bit
15623 won't be set in the symbol's value then. */
15624
15625 static bfd_boolean
15626 fix_bad_misaligned_branch_p (fixS *fixP)
15627 {
15628 bfd_boolean absolute_p;
15629 asection *symsec;
15630 valueT isa_bit;
15631 valueT val;
15632 valueT off;
15633 int other;
15634
15635 if (!fixP->fx_addsy || S_FORCE_RELOC (fixP->fx_addsy, TRUE))
15636 return FALSE;
15637
15638 symsec = S_GET_SEGMENT (fixP->fx_addsy);
15639 absolute_p = bfd_is_abs_section (symsec);
15640
15641 val = S_GET_VALUE (fixP->fx_addsy);
15642 other = S_GET_OTHER (fixP->fx_addsy);
15643 off = fixP->fx_offset;
15644
15645 isa_bit = absolute_p ? (val + off) & 1 : ELF_ST_IS_COMPRESSED (other);
15646 val |= ELF_ST_IS_COMPRESSED (other);
15647 val += off;
15648 return (val & 0x3) != isa_bit;
15649 }
15650
15651 /* Make the necessary checks on a regular MIPS branch pointed to by FIXP
15652 and its calculated value VAL. */
15653
15654 static void
15655 fix_validate_branch (fixS *fixP, valueT val)
15656 {
15657 if (fixP->fx_done && (val & 0x3) != 0)
15658 as_bad_where (fixP->fx_file, fixP->fx_line,
15659 _("branch to misaligned address (0x%lx)"),
15660 (long) (val + md_pcrel_from (fixP)));
15661 else if (fix_bad_cross_mode_branch_p (fixP))
15662 as_bad_where (fixP->fx_file, fixP->fx_line,
15663 _("branch to a symbol in another ISA mode"));
15664 else if (fix_bad_misaligned_branch_p (fixP))
15665 as_bad_where (fixP->fx_file, fixP->fx_line,
15666 _("branch to misaligned address (0x%lx)"),
15667 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
15668 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x3) != 0)
15669 as_bad_where (fixP->fx_file, fixP->fx_line,
15670 _("cannot encode misaligned addend "
15671 "in the relocatable field (0x%lx)"),
15672 (long) fixP->fx_offset);
15673 }
15674
15675 /* Apply a fixup to the object file. */
15676
15677 void
15678 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
15679 {
15680 char *buf;
15681 unsigned long insn;
15682 reloc_howto_type *howto;
15683
15684 if (fixP->fx_pcrel)
15685 switch (fixP->fx_r_type)
15686 {
15687 case BFD_RELOC_16_PCREL_S2:
15688 case BFD_RELOC_MIPS16_16_PCREL_S1:
15689 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
15690 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
15691 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
15692 case BFD_RELOC_32_PCREL:
15693 case BFD_RELOC_MIPS_21_PCREL_S2:
15694 case BFD_RELOC_MIPS_26_PCREL_S2:
15695 case BFD_RELOC_MIPS_18_PCREL_S3:
15696 case BFD_RELOC_MIPS_19_PCREL_S2:
15697 case BFD_RELOC_HI16_S_PCREL:
15698 case BFD_RELOC_LO16_PCREL:
15699 break;
15700
15701 case BFD_RELOC_32:
15702 fixP->fx_r_type = BFD_RELOC_32_PCREL;
15703 break;
15704
15705 default:
15706 as_bad_where (fixP->fx_file, fixP->fx_line,
15707 _("PC-relative reference to a different section"));
15708 break;
15709 }
15710
15711 /* Handle BFD_RELOC_8, since it's easy. Punt on other bfd relocations
15712 that have no MIPS ELF equivalent. */
15713 if (fixP->fx_r_type != BFD_RELOC_8)
15714 {
15715 howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type);
15716 if (!howto)
15717 return;
15718 }
15719
15720 gas_assert (fixP->fx_size == 2
15721 || fixP->fx_size == 4
15722 || fixP->fx_r_type == BFD_RELOC_8
15723 || fixP->fx_r_type == BFD_RELOC_16
15724 || fixP->fx_r_type == BFD_RELOC_64
15725 || fixP->fx_r_type == BFD_RELOC_CTOR
15726 || fixP->fx_r_type == BFD_RELOC_MIPS_SUB
15727 || fixP->fx_r_type == BFD_RELOC_MICROMIPS_SUB
15728 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
15729 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY
15730 || fixP->fx_r_type == BFD_RELOC_MIPS_TLS_DTPREL64
15731 || fixP->fx_r_type == BFD_RELOC_NONE);
15732
15733 buf = fixP->fx_frag->fr_literal + fixP->fx_where;
15734
15735 /* Don't treat parts of a composite relocation as done. There are two
15736 reasons for this:
15737
15738 (1) The second and third parts will be against 0 (RSS_UNDEF) but
15739 should nevertheless be emitted if the first part is.
15740
15741 (2) In normal usage, composite relocations are never assembly-time
15742 constants. The easiest way of dealing with the pathological
15743 exceptions is to generate a relocation against STN_UNDEF and
15744 leave everything up to the linker. */
15745 if (fixP->fx_addsy == NULL && !fixP->fx_pcrel && fixP->fx_tcbit == 0)
15746 fixP->fx_done = 1;
15747
15748 switch (fixP->fx_r_type)
15749 {
15750 case BFD_RELOC_MIPS_TLS_GD:
15751 case BFD_RELOC_MIPS_TLS_LDM:
15752 case BFD_RELOC_MIPS_TLS_DTPREL32:
15753 case BFD_RELOC_MIPS_TLS_DTPREL64:
15754 case BFD_RELOC_MIPS_TLS_DTPREL_HI16:
15755 case BFD_RELOC_MIPS_TLS_DTPREL_LO16:
15756 case BFD_RELOC_MIPS_TLS_GOTTPREL:
15757 case BFD_RELOC_MIPS_TLS_TPREL32:
15758 case BFD_RELOC_MIPS_TLS_TPREL64:
15759 case BFD_RELOC_MIPS_TLS_TPREL_HI16:
15760 case BFD_RELOC_MIPS_TLS_TPREL_LO16:
15761 case BFD_RELOC_MICROMIPS_TLS_GD:
15762 case BFD_RELOC_MICROMIPS_TLS_LDM:
15763 case BFD_RELOC_MICROMIPS_TLS_DTPREL_HI16:
15764 case BFD_RELOC_MICROMIPS_TLS_DTPREL_LO16:
15765 case BFD_RELOC_MICROMIPS_TLS_GOTTPREL:
15766 case BFD_RELOC_MICROMIPS_TLS_TPREL_HI16:
15767 case BFD_RELOC_MICROMIPS_TLS_TPREL_LO16:
15768 case BFD_RELOC_MIPS16_TLS_GD:
15769 case BFD_RELOC_MIPS16_TLS_LDM:
15770 case BFD_RELOC_MIPS16_TLS_DTPREL_HI16:
15771 case BFD_RELOC_MIPS16_TLS_DTPREL_LO16:
15772 case BFD_RELOC_MIPS16_TLS_GOTTPREL:
15773 case BFD_RELOC_MIPS16_TLS_TPREL_HI16:
15774 case BFD_RELOC_MIPS16_TLS_TPREL_LO16:
15775 if (fixP->fx_addsy)
15776 S_SET_THREAD_LOCAL (fixP->fx_addsy);
15777 else
15778 as_bad_where (fixP->fx_file, fixP->fx_line,
15779 _("TLS relocation against a constant"));
15780 break;
15781
15782 case BFD_RELOC_MIPS_JMP:
15783 case BFD_RELOC_MIPS16_JMP:
15784 case BFD_RELOC_MICROMIPS_JMP:
15785 {
15786 int shift;
15787
15788 gas_assert (!fixP->fx_done);
15789
15790 /* Shift is 2, unusually, for microMIPS JALX. */
15791 if (fixP->fx_r_type == BFD_RELOC_MICROMIPS_JMP
15792 && (read_compressed_insn (buf, 4) >> 26) != 0x3c)
15793 shift = 1;
15794 else
15795 shift = 2;
15796
15797 if (fix_bad_cross_mode_jump_p (fixP))
15798 as_bad_where (fixP->fx_file, fixP->fx_line,
15799 _("jump to a symbol in another ISA mode"));
15800 else if (fix_bad_same_mode_jalx_p (fixP))
15801 as_bad_where (fixP->fx_file, fixP->fx_line,
15802 _("JALX to a symbol in the same ISA mode"));
15803 else if (fix_bad_misaligned_jump_p (fixP, shift))
15804 as_bad_where (fixP->fx_file, fixP->fx_line,
15805 _("jump to misaligned address (0x%lx)"),
15806 (long) (S_GET_VALUE (fixP->fx_addsy)
15807 + fixP->fx_offset));
15808 else if (HAVE_IN_PLACE_ADDENDS
15809 && (fixP->fx_offset & ((1 << shift) - 1)) != 0)
15810 as_bad_where (fixP->fx_file, fixP->fx_line,
15811 _("cannot encode misaligned addend "
15812 "in the relocatable field (0x%lx)"),
15813 (long) fixP->fx_offset);
15814 }
15815 /* Fall through. */
15816
15817 case BFD_RELOC_MIPS_SHIFT5:
15818 case BFD_RELOC_MIPS_SHIFT6:
15819 case BFD_RELOC_MIPS_GOT_DISP:
15820 case BFD_RELOC_MIPS_GOT_PAGE:
15821 case BFD_RELOC_MIPS_GOT_OFST:
15822 case BFD_RELOC_MIPS_SUB:
15823 case BFD_RELOC_MIPS_INSERT_A:
15824 case BFD_RELOC_MIPS_INSERT_B:
15825 case BFD_RELOC_MIPS_DELETE:
15826 case BFD_RELOC_MIPS_HIGHEST:
15827 case BFD_RELOC_MIPS_HIGHER:
15828 case BFD_RELOC_MIPS_SCN_DISP:
15829 case BFD_RELOC_MIPS_REL16:
15830 case BFD_RELOC_MIPS_RELGOT:
15831 case BFD_RELOC_MIPS_JALR:
15832 case BFD_RELOC_HI16:
15833 case BFD_RELOC_HI16_S:
15834 case BFD_RELOC_LO16:
15835 case BFD_RELOC_GPREL16:
15836 case BFD_RELOC_MIPS_LITERAL:
15837 case BFD_RELOC_MIPS_CALL16:
15838 case BFD_RELOC_MIPS_GOT16:
15839 case BFD_RELOC_GPREL32:
15840 case BFD_RELOC_MIPS_GOT_HI16:
15841 case BFD_RELOC_MIPS_GOT_LO16:
15842 case BFD_RELOC_MIPS_CALL_HI16:
15843 case BFD_RELOC_MIPS_CALL_LO16:
15844 case BFD_RELOC_HI16_S_PCREL:
15845 case BFD_RELOC_LO16_PCREL:
15846 case BFD_RELOC_MIPS16_GPREL:
15847 case BFD_RELOC_MIPS16_GOT16:
15848 case BFD_RELOC_MIPS16_CALL16:
15849 case BFD_RELOC_MIPS16_HI16:
15850 case BFD_RELOC_MIPS16_HI16_S:
15851 case BFD_RELOC_MIPS16_LO16:
15852 case BFD_RELOC_MICROMIPS_GOT_DISP:
15853 case BFD_RELOC_MICROMIPS_GOT_PAGE:
15854 case BFD_RELOC_MICROMIPS_GOT_OFST:
15855 case BFD_RELOC_MICROMIPS_SUB:
15856 case BFD_RELOC_MICROMIPS_HIGHEST:
15857 case BFD_RELOC_MICROMIPS_HIGHER:
15858 case BFD_RELOC_MICROMIPS_SCN_DISP:
15859 case BFD_RELOC_MICROMIPS_JALR:
15860 case BFD_RELOC_MICROMIPS_HI16:
15861 case BFD_RELOC_MICROMIPS_HI16_S:
15862 case BFD_RELOC_MICROMIPS_LO16:
15863 case BFD_RELOC_MICROMIPS_GPREL16:
15864 case BFD_RELOC_MICROMIPS_LITERAL:
15865 case BFD_RELOC_MICROMIPS_CALL16:
15866 case BFD_RELOC_MICROMIPS_GOT16:
15867 case BFD_RELOC_MICROMIPS_GOT_HI16:
15868 case BFD_RELOC_MICROMIPS_GOT_LO16:
15869 case BFD_RELOC_MICROMIPS_CALL_HI16:
15870 case BFD_RELOC_MICROMIPS_CALL_LO16:
15871 case BFD_RELOC_MIPS_EH:
15872 if (fixP->fx_done)
15873 {
15874 offsetT value;
15875
15876 if (calculate_reloc (fixP->fx_r_type, *valP, &value))
15877 {
15878 insn = read_reloc_insn (buf, fixP->fx_r_type);
15879 if (mips16_reloc_p (fixP->fx_r_type))
15880 insn |= mips16_immed_extend (value, 16);
15881 else
15882 insn |= (value & 0xffff);
15883 write_reloc_insn (buf, fixP->fx_r_type, insn);
15884 }
15885 else
15886 as_bad_where (fixP->fx_file, fixP->fx_line,
15887 _("unsupported constant in relocation"));
15888 }
15889 break;
15890
15891 case BFD_RELOC_64:
15892 /* This is handled like BFD_RELOC_32, but we output a sign
15893 extended value if we are only 32 bits. */
15894 if (fixP->fx_done)
15895 {
15896 if (8 <= sizeof (valueT))
15897 md_number_to_chars (buf, *valP, 8);
15898 else
15899 {
15900 valueT hiv;
15901
15902 if ((*valP & 0x80000000) != 0)
15903 hiv = 0xffffffff;
15904 else
15905 hiv = 0;
15906 md_number_to_chars (buf + (target_big_endian ? 4 : 0), *valP, 4);
15907 md_number_to_chars (buf + (target_big_endian ? 0 : 4), hiv, 4);
15908 }
15909 }
15910 break;
15911
15912 case BFD_RELOC_RVA:
15913 case BFD_RELOC_32:
15914 case BFD_RELOC_32_PCREL:
15915 case BFD_RELOC_16:
15916 case BFD_RELOC_8:
15917 /* If we are deleting this reloc entry, we must fill in the
15918 value now. This can happen if we have a .word which is not
15919 resolved when it appears but is later defined. */
15920 if (fixP->fx_done)
15921 md_number_to_chars (buf, *valP, fixP->fx_size);
15922 break;
15923
15924 case BFD_RELOC_MIPS_21_PCREL_S2:
15925 fix_validate_branch (fixP, *valP);
15926 if (!fixP->fx_done)
15927 break;
15928
15929 if (*valP + 0x400000 <= 0x7fffff)
15930 {
15931 insn = read_insn (buf);
15932 insn |= (*valP >> 2) & 0x1fffff;
15933 write_insn (buf, insn);
15934 }
15935 else
15936 as_bad_where (fixP->fx_file, fixP->fx_line,
15937 _("branch out of range"));
15938 break;
15939
15940 case BFD_RELOC_MIPS_26_PCREL_S2:
15941 fix_validate_branch (fixP, *valP);
15942 if (!fixP->fx_done)
15943 break;
15944
15945 if (*valP + 0x8000000 <= 0xfffffff)
15946 {
15947 insn = read_insn (buf);
15948 insn |= (*valP >> 2) & 0x3ffffff;
15949 write_insn (buf, insn);
15950 }
15951 else
15952 as_bad_where (fixP->fx_file, fixP->fx_line,
15953 _("branch out of range"));
15954 break;
15955
15956 case BFD_RELOC_MIPS_18_PCREL_S3:
15957 if (fixP->fx_addsy && (S_GET_VALUE (fixP->fx_addsy) & 0x7) != 0)
15958 as_bad_where (fixP->fx_file, fixP->fx_line,
15959 _("PC-relative access using misaligned symbol (%lx)"),
15960 (long) S_GET_VALUE (fixP->fx_addsy));
15961 if ((fixP->fx_offset & 0x7) != 0)
15962 as_bad_where (fixP->fx_file, fixP->fx_line,
15963 _("PC-relative access using misaligned offset (%lx)"),
15964 (long) fixP->fx_offset);
15965 if (!fixP->fx_done)
15966 break;
15967
15968 if (*valP + 0x100000 <= 0x1fffff)
15969 {
15970 insn = read_insn (buf);
15971 insn |= (*valP >> 3) & 0x3ffff;
15972 write_insn (buf, insn);
15973 }
15974 else
15975 as_bad_where (fixP->fx_file, fixP->fx_line,
15976 _("PC-relative access out of range"));
15977 break;
15978
15979 case BFD_RELOC_MIPS_19_PCREL_S2:
15980 if ((*valP & 0x3) != 0)
15981 as_bad_where (fixP->fx_file, fixP->fx_line,
15982 _("PC-relative access to misaligned address (%lx)"),
15983 (long) *valP);
15984 if (!fixP->fx_done)
15985 break;
15986
15987 if (*valP + 0x100000 <= 0x1fffff)
15988 {
15989 insn = read_insn (buf);
15990 insn |= (*valP >> 2) & 0x7ffff;
15991 write_insn (buf, insn);
15992 }
15993 else
15994 as_bad_where (fixP->fx_file, fixP->fx_line,
15995 _("PC-relative access out of range"));
15996 break;
15997
15998 case BFD_RELOC_16_PCREL_S2:
15999 fix_validate_branch (fixP, *valP);
16000
16001 /* We need to save the bits in the instruction since fixup_segment()
16002 might be deleting the relocation entry (i.e., a branch within
16003 the current segment). */
16004 if (! fixP->fx_done)
16005 break;
16006
16007 /* Update old instruction data. */
16008 insn = read_insn (buf);
16009
16010 if (*valP + 0x20000 <= 0x3ffff)
16011 {
16012 insn |= (*valP >> 2) & 0xffff;
16013 write_insn (buf, insn);
16014 }
16015 else if (fixP->fx_tcbit2
16016 && fixP->fx_done
16017 && fixP->fx_frag->fr_address >= text_section->vma
16018 && (fixP->fx_frag->fr_address
16019 < text_section->vma + bfd_get_section_size (text_section))
16020 && ((insn & 0xffff0000) == 0x10000000 /* beq $0,$0 */
16021 || (insn & 0xffff0000) == 0x04010000 /* bgez $0 */
16022 || (insn & 0xffff0000) == 0x04110000)) /* bgezal $0 */
16023 {
16024 /* The branch offset is too large. If this is an
16025 unconditional branch, and we are not generating PIC code,
16026 we can convert it to an absolute jump instruction. */
16027 if ((insn & 0xffff0000) == 0x04110000) /* bgezal $0 */
16028 insn = 0x0c000000; /* jal */
16029 else
16030 insn = 0x08000000; /* j */
16031 fixP->fx_r_type = BFD_RELOC_MIPS_JMP;
16032 fixP->fx_done = 0;
16033 fixP->fx_addsy = section_symbol (text_section);
16034 *valP += md_pcrel_from (fixP);
16035 write_insn (buf, insn);
16036 }
16037 else
16038 {
16039 /* If we got here, we have branch-relaxation disabled,
16040 and there's nothing we can do to fix this instruction
16041 without turning it into a longer sequence. */
16042 as_bad_where (fixP->fx_file, fixP->fx_line,
16043 _("branch out of range"));
16044 }
16045 break;
16046
16047 case BFD_RELOC_MIPS16_16_PCREL_S1:
16048 case BFD_RELOC_MICROMIPS_7_PCREL_S1:
16049 case BFD_RELOC_MICROMIPS_10_PCREL_S1:
16050 case BFD_RELOC_MICROMIPS_16_PCREL_S1:
16051 gas_assert (!fixP->fx_done);
16052 if (fix_bad_cross_mode_branch_p (fixP))
16053 as_bad_where (fixP->fx_file, fixP->fx_line,
16054 _("branch to a symbol in another ISA mode"));
16055 else if (fixP->fx_addsy
16056 && !S_FORCE_RELOC (fixP->fx_addsy, TRUE)
16057 && !bfd_is_abs_section (S_GET_SEGMENT (fixP->fx_addsy))
16058 && (fixP->fx_offset & 0x1) != 0)
16059 as_bad_where (fixP->fx_file, fixP->fx_line,
16060 _("branch to misaligned address (0x%lx)"),
16061 (long) (S_GET_VALUE (fixP->fx_addsy) + fixP->fx_offset));
16062 else if (HAVE_IN_PLACE_ADDENDS && (fixP->fx_offset & 0x1) != 0)
16063 as_bad_where (fixP->fx_file, fixP->fx_line,
16064 _("cannot encode misaligned addend "
16065 "in the relocatable field (0x%lx)"),
16066 (long) fixP->fx_offset);
16067 break;
16068
16069 case BFD_RELOC_VTABLE_INHERIT:
16070 fixP->fx_done = 0;
16071 if (fixP->fx_addsy
16072 && !S_IS_DEFINED (fixP->fx_addsy)
16073 && !S_IS_WEAK (fixP->fx_addsy))
16074 S_SET_WEAK (fixP->fx_addsy);
16075 break;
16076
16077 case BFD_RELOC_NONE:
16078 case BFD_RELOC_VTABLE_ENTRY:
16079 fixP->fx_done = 0;
16080 break;
16081
16082 default:
16083 abort ();
16084 }
16085
16086 /* Remember value for tc_gen_reloc. */
16087 fixP->fx_addnumber = *valP;
16088 }
16089
16090 static symbolS *
16091 get_symbol (void)
16092 {
16093 int c;
16094 char *name;
16095 symbolS *p;
16096
16097 c = get_symbol_name (&name);
16098 p = (symbolS *) symbol_find_or_make (name);
16099 (void) restore_line_pointer (c);
16100 return p;
16101 }
16102
16103 /* Align the current frag to a given power of two. If a particular
16104 fill byte should be used, FILL points to an integer that contains
16105 that byte, otherwise FILL is null.
16106
16107 This function used to have the comment:
16108
16109 The MIPS assembler also automatically adjusts any preceding label.
16110
16111 The implementation therefore applied the adjustment to a maximum of
16112 one label. However, other label adjustments are applied to batches
16113 of labels, and adjusting just one caused problems when new labels
16114 were added for the sake of debugging or unwind information.
16115 We therefore adjust all preceding labels (given as LABELS) instead. */
16116
16117 static void
16118 mips_align (int to, int *fill, struct insn_label_list *labels)
16119 {
16120 mips_emit_delays ();
16121 mips_record_compressed_mode ();
16122 if (fill == NULL && subseg_text_p (now_seg))
16123 frag_align_code (to, 0);
16124 else
16125 frag_align (to, fill ? *fill : 0, 0);
16126 record_alignment (now_seg, to);
16127 mips_move_labels (labels, FALSE);
16128 }
16129
16130 /* Align to a given power of two. .align 0 turns off the automatic
16131 alignment used by the data creating pseudo-ops. */
16132
16133 static void
16134 s_align (int x ATTRIBUTE_UNUSED)
16135 {
16136 int temp, fill_value, *fill_ptr;
16137 long max_alignment = 28;
16138
16139 /* o Note that the assembler pulls down any immediately preceding label
16140 to the aligned address.
16141 o It's not documented but auto alignment is reinstated by
16142 a .align pseudo instruction.
16143 o Note also that after auto alignment is turned off the mips assembler
16144 issues an error on attempt to assemble an improperly aligned data item.
16145 We don't. */
16146
16147 temp = get_absolute_expression ();
16148 if (temp > max_alignment)
16149 as_bad (_("alignment too large, %d assumed"), temp = max_alignment);
16150 else if (temp < 0)
16151 {
16152 as_warn (_("alignment negative, 0 assumed"));
16153 temp = 0;
16154 }
16155 if (*input_line_pointer == ',')
16156 {
16157 ++input_line_pointer;
16158 fill_value = get_absolute_expression ();
16159 fill_ptr = &fill_value;
16160 }
16161 else
16162 fill_ptr = 0;
16163 if (temp)
16164 {
16165 segment_info_type *si = seg_info (now_seg);
16166 struct insn_label_list *l = si->label_list;
16167 /* Auto alignment should be switched on by next section change. */
16168 auto_align = 1;
16169 mips_align (temp, fill_ptr, l);
16170 }
16171 else
16172 {
16173 auto_align = 0;
16174 }
16175
16176 demand_empty_rest_of_line ();
16177 }
16178
16179 static void
16180 s_change_sec (int sec)
16181 {
16182 segT seg;
16183
16184 /* The ELF backend needs to know that we are changing sections, so
16185 that .previous works correctly. We could do something like check
16186 for an obj_section_change_hook macro, but that might be confusing
16187 as it would not be appropriate to use it in the section changing
16188 functions in read.c, since obj-elf.c intercepts those. FIXME:
16189 This should be cleaner, somehow. */
16190 obj_elf_section_change_hook ();
16191
16192 mips_emit_delays ();
16193
16194 switch (sec)
16195 {
16196 case 't':
16197 s_text (0);
16198 break;
16199 case 'd':
16200 s_data (0);
16201 break;
16202 case 'b':
16203 subseg_set (bss_section, (subsegT) get_absolute_expression ());
16204 demand_empty_rest_of_line ();
16205 break;
16206
16207 case 'r':
16208 seg = subseg_new (RDATA_SECTION_NAME,
16209 (subsegT) get_absolute_expression ());
16210 bfd_set_section_flags (stdoutput, seg, (SEC_ALLOC | SEC_LOAD
16211 | SEC_READONLY | SEC_RELOC
16212 | SEC_DATA));
16213 if (strncmp (TARGET_OS, "elf", 3) != 0)
16214 record_alignment (seg, 4);
16215 demand_empty_rest_of_line ();
16216 break;
16217
16218 case 's':
16219 seg = subseg_new (".sdata", (subsegT) get_absolute_expression ());
16220 bfd_set_section_flags (stdoutput, seg,
16221 SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_DATA);
16222 if (strncmp (TARGET_OS, "elf", 3) != 0)
16223 record_alignment (seg, 4);
16224 demand_empty_rest_of_line ();
16225 break;
16226
16227 case 'B':
16228 seg = subseg_new (".sbss", (subsegT) get_absolute_expression ());
16229 bfd_set_section_flags (stdoutput, seg, SEC_ALLOC);
16230 if (strncmp (TARGET_OS, "elf", 3) != 0)
16231 record_alignment (seg, 4);
16232 demand_empty_rest_of_line ();
16233 break;
16234 }
16235
16236 auto_align = 1;
16237 }
16238
16239 void
16240 s_change_section (int ignore ATTRIBUTE_UNUSED)
16241 {
16242 char *saved_ilp;
16243 char *section_name;
16244 char c, endc;
16245 char next_c = 0;
16246 int section_type;
16247 int section_flag;
16248 int section_entry_size;
16249 int section_alignment;
16250
16251 saved_ilp = input_line_pointer;
16252 endc = get_symbol_name (&section_name);
16253 c = (endc == '"' ? input_line_pointer[1] : endc);
16254 if (c)
16255 next_c = input_line_pointer [(endc == '"' ? 2 : 1)];
16256
16257 /* Do we have .section Name<,"flags">? */
16258 if (c != ',' || (c == ',' && next_c == '"'))
16259 {
16260 /* Just after name is now '\0'. */
16261 (void) restore_line_pointer (endc);
16262 input_line_pointer = saved_ilp;
16263 obj_elf_section (ignore);
16264 return;
16265 }
16266
16267 section_name = xstrdup (section_name);
16268 c = restore_line_pointer (endc);
16269
16270 input_line_pointer++;
16271
16272 /* Do we have .section Name<,type><,flag><,entry_size><,alignment> */
16273 if (c == ',')
16274 section_type = get_absolute_expression ();
16275 else
16276 section_type = 0;
16277
16278 if (*input_line_pointer++ == ',')
16279 section_flag = get_absolute_expression ();
16280 else
16281 section_flag = 0;
16282
16283 if (*input_line_pointer++ == ',')
16284 section_entry_size = get_absolute_expression ();
16285 else
16286 section_entry_size = 0;
16287
16288 if (*input_line_pointer++ == ',')
16289 section_alignment = get_absolute_expression ();
16290 else
16291 section_alignment = 0;
16292
16293 /* FIXME: really ignore? */
16294 (void) section_alignment;
16295
16296 /* When using the generic form of .section (as implemented by obj-elf.c),
16297 there's no way to set the section type to SHT_MIPS_DWARF. Users have
16298 traditionally had to fall back on the more common @progbits instead.
16299
16300 There's nothing really harmful in this, since bfd will correct
16301 SHT_PROGBITS to SHT_MIPS_DWARF before writing out the file. But it
16302 means that, for backwards compatibility, the special_section entries
16303 for dwarf sections must use SHT_PROGBITS rather than SHT_MIPS_DWARF.
16304
16305 Even so, we shouldn't force users of the MIPS .section syntax to
16306 incorrectly label the sections as SHT_PROGBITS. The best compromise
16307 seems to be to map SHT_MIPS_DWARF to SHT_PROGBITS before calling the
16308 generic type-checking code. */
16309 if (section_type == SHT_MIPS_DWARF)
16310 section_type = SHT_PROGBITS;
16311
16312 obj_elf_change_section (section_name, section_type, 0, section_flag,
16313 section_entry_size, 0, 0, 0);
16314
16315 if (now_seg->name != section_name)
16316 free (section_name);
16317 }
16318
16319 void
16320 mips_enable_auto_align (void)
16321 {
16322 auto_align = 1;
16323 }
16324
16325 static void
16326 s_cons (int log_size)
16327 {
16328 segment_info_type *si = seg_info (now_seg);
16329 struct insn_label_list *l = si->label_list;
16330
16331 mips_emit_delays ();
16332 if (log_size > 0 && auto_align)
16333 mips_align (log_size, 0, l);
16334 cons (1 << log_size);
16335 mips_clear_insn_labels ();
16336 }
16337
16338 static void
16339 s_float_cons (int type)
16340 {
16341 segment_info_type *si = seg_info (now_seg);
16342 struct insn_label_list *l = si->label_list;
16343
16344 mips_emit_delays ();
16345
16346 if (auto_align)
16347 {
16348 if (type == 'd')
16349 mips_align (3, 0, l);
16350 else
16351 mips_align (2, 0, l);
16352 }
16353
16354 float_cons (type);
16355 mips_clear_insn_labels ();
16356 }
16357
16358 /* Handle .globl. We need to override it because on Irix 5 you are
16359 permitted to say
16360 .globl foo .text
16361 where foo is an undefined symbol, to mean that foo should be
16362 considered to be the address of a function. */
16363
16364 static void
16365 s_mips_globl (int x ATTRIBUTE_UNUSED)
16366 {
16367 char *name;
16368 int c;
16369 symbolS *symbolP;
16370 flagword flag;
16371
16372 do
16373 {
16374 c = get_symbol_name (&name);
16375 symbolP = symbol_find_or_make (name);
16376 S_SET_EXTERNAL (symbolP);
16377
16378 *input_line_pointer = c;
16379 SKIP_WHITESPACE_AFTER_NAME ();
16380
16381 /* On Irix 5, every global symbol that is not explicitly labelled as
16382 being a function is apparently labelled as being an object. */
16383 flag = BSF_OBJECT;
16384
16385 if (!is_end_of_line[(unsigned char) *input_line_pointer]
16386 && (*input_line_pointer != ','))
16387 {
16388 char *secname;
16389 asection *sec;
16390
16391 c = get_symbol_name (&secname);
16392 sec = bfd_get_section_by_name (stdoutput, secname);
16393 if (sec == NULL)
16394 as_bad (_("%s: no such section"), secname);
16395 (void) restore_line_pointer (c);
16396
16397 if (sec != NULL && (sec->flags & SEC_CODE) != 0)
16398 flag = BSF_FUNCTION;
16399 }
16400
16401 symbol_get_bfdsym (symbolP)->flags |= flag;
16402
16403 c = *input_line_pointer;
16404 if (c == ',')
16405 {
16406 input_line_pointer++;
16407 SKIP_WHITESPACE ();
16408 if (is_end_of_line[(unsigned char) *input_line_pointer])
16409 c = '\n';
16410 }
16411 }
16412 while (c == ',');
16413
16414 demand_empty_rest_of_line ();
16415 }
16416
16417 static void
16418 s_option (int x ATTRIBUTE_UNUSED)
16419 {
16420 char *opt;
16421 char c;
16422
16423 c = get_symbol_name (&opt);
16424
16425 if (*opt == 'O')
16426 {
16427 /* FIXME: What does this mean? */
16428 }
16429 else if (strncmp (opt, "pic", 3) == 0 && ISDIGIT (opt[3]) && opt[4] == '\0')
16430 {
16431 int i;
16432
16433 i = atoi (opt + 3);
16434 if (i != 0 && i != 2)
16435 as_bad (_(".option pic%d not supported"), i);
16436 else if (mips_pic == VXWORKS_PIC)
16437 as_bad (_(".option pic%d not supported in VxWorks PIC mode"), i);
16438 else if (i == 0)
16439 mips_pic = NO_PIC;
16440 else if (i == 2)
16441 {
16442 mips_pic = SVR4_PIC;
16443 mips_abicalls = TRUE;
16444 }
16445
16446 if (mips_pic == SVR4_PIC)
16447 {
16448 if (g_switch_seen && g_switch_value != 0)
16449 as_warn (_("-G may not be used with SVR4 PIC code"));
16450 g_switch_value = 0;
16451 bfd_set_gp_size (stdoutput, 0);
16452 }
16453 }
16454 else
16455 as_warn (_("unrecognized option \"%s\""), opt);
16456
16457 (void) restore_line_pointer (c);
16458 demand_empty_rest_of_line ();
16459 }
16460
16461 /* This structure is used to hold a stack of .set values. */
16462
16463 struct mips_option_stack
16464 {
16465 struct mips_option_stack *next;
16466 struct mips_set_options options;
16467 };
16468
16469 static struct mips_option_stack *mips_opts_stack;
16470
16471 /* Return status for .set/.module option handling. */
16472
16473 enum code_option_type
16474 {
16475 /* Unrecognized option. */
16476 OPTION_TYPE_BAD = -1,
16477
16478 /* Ordinary option. */
16479 OPTION_TYPE_NORMAL,
16480
16481 /* ISA changing option. */
16482 OPTION_TYPE_ISA
16483 };
16484
16485 /* Handle common .set/.module options. Return status indicating option
16486 type. */
16487
16488 static enum code_option_type
16489 parse_code_option (char * name)
16490 {
16491 bfd_boolean isa_set = FALSE;
16492 const struct mips_ase *ase;
16493
16494 if (strncmp (name, "at=", 3) == 0)
16495 {
16496 char *s = name + 3;
16497
16498 if (!reg_lookup (&s, RTYPE_NUM | RTYPE_GP, &mips_opts.at))
16499 as_bad (_("unrecognized register name `%s'"), s);
16500 }
16501 else if (strcmp (name, "at") == 0)
16502 mips_opts.at = ATREG;
16503 else if (strcmp (name, "noat") == 0)
16504 mips_opts.at = ZERO;
16505 else if (strcmp (name, "move") == 0 || strcmp (name, "novolatile") == 0)
16506 mips_opts.nomove = 0;
16507 else if (strcmp (name, "nomove") == 0 || strcmp (name, "volatile") == 0)
16508 mips_opts.nomove = 1;
16509 else if (strcmp (name, "bopt") == 0)
16510 mips_opts.nobopt = 0;
16511 else if (strcmp (name, "nobopt") == 0)
16512 mips_opts.nobopt = 1;
16513 else if (strcmp (name, "gp=32") == 0)
16514 mips_opts.gp = 32;
16515 else if (strcmp (name, "gp=64") == 0)
16516 mips_opts.gp = 64;
16517 else if (strcmp (name, "fp=32") == 0)
16518 mips_opts.fp = 32;
16519 else if (strcmp (name, "fp=xx") == 0)
16520 mips_opts.fp = 0;
16521 else if (strcmp (name, "fp=64") == 0)
16522 mips_opts.fp = 64;
16523 else if (strcmp (name, "softfloat") == 0)
16524 mips_opts.soft_float = 1;
16525 else if (strcmp (name, "hardfloat") == 0)
16526 mips_opts.soft_float = 0;
16527 else if (strcmp (name, "singlefloat") == 0)
16528 mips_opts.single_float = 1;
16529 else if (strcmp (name, "doublefloat") == 0)
16530 mips_opts.single_float = 0;
16531 else if (strcmp (name, "nooddspreg") == 0)
16532 mips_opts.oddspreg = 0;
16533 else if (strcmp (name, "oddspreg") == 0)
16534 mips_opts.oddspreg = 1;
16535 else if (strcmp (name, "mips16") == 0
16536 || strcmp (name, "MIPS-16") == 0)
16537 mips_opts.mips16 = 1;
16538 else if (strcmp (name, "nomips16") == 0
16539 || strcmp (name, "noMIPS-16") == 0)
16540 mips_opts.mips16 = 0;
16541 else if (strcmp (name, "micromips") == 0)
16542 mips_opts.micromips = 1;
16543 else if (strcmp (name, "nomicromips") == 0)
16544 mips_opts.micromips = 0;
16545 else if (name[0] == 'n'
16546 && name[1] == 'o'
16547 && (ase = mips_lookup_ase (name + 2)))
16548 mips_set_ase (ase, &mips_opts, FALSE);
16549 else if ((ase = mips_lookup_ase (name)))
16550 mips_set_ase (ase, &mips_opts, TRUE);
16551 else if (strncmp (name, "mips", 4) == 0 || strncmp (name, "arch=", 5) == 0)
16552 {
16553 /* Permit the user to change the ISA and architecture on the fly.
16554 Needless to say, misuse can cause serious problems. */
16555 if (strncmp (name, "arch=", 5) == 0)
16556 {
16557 const struct mips_cpu_info *p;
16558
16559 p = mips_parse_cpu ("internal use", name + 5);
16560 if (!p)
16561 as_bad (_("unknown architecture %s"), name + 5);
16562 else
16563 {
16564 mips_opts.arch = p->cpu;
16565 mips_opts.isa = p->isa;
16566 isa_set = TRUE;
16567 mips_opts.init_ase = p->ase;
16568 }
16569 }
16570 else if (strncmp (name, "mips", 4) == 0)
16571 {
16572 const struct mips_cpu_info *p;
16573
16574 p = mips_parse_cpu ("internal use", name);
16575 if (!p)
16576 as_bad (_("unknown ISA level %s"), name + 4);
16577 else
16578 {
16579 mips_opts.arch = p->cpu;
16580 mips_opts.isa = p->isa;
16581 isa_set = TRUE;
16582 mips_opts.init_ase = p->ase;
16583 }
16584 }
16585 else
16586 as_bad (_("unknown ISA or architecture %s"), name);
16587 }
16588 else if (strcmp (name, "autoextend") == 0)
16589 mips_opts.noautoextend = 0;
16590 else if (strcmp (name, "noautoextend") == 0)
16591 mips_opts.noautoextend = 1;
16592 else if (strcmp (name, "insn32") == 0)
16593 mips_opts.insn32 = TRUE;
16594 else if (strcmp (name, "noinsn32") == 0)
16595 mips_opts.insn32 = FALSE;
16596 else if (strcmp (name, "sym32") == 0)
16597 mips_opts.sym32 = TRUE;
16598 else if (strcmp (name, "nosym32") == 0)
16599 mips_opts.sym32 = FALSE;
16600 else
16601 return OPTION_TYPE_BAD;
16602
16603 return isa_set ? OPTION_TYPE_ISA : OPTION_TYPE_NORMAL;
16604 }
16605
16606 /* Handle the .set pseudo-op. */
16607
16608 static void
16609 s_mipsset (int x ATTRIBUTE_UNUSED)
16610 {
16611 enum code_option_type type = OPTION_TYPE_NORMAL;
16612 char *name = input_line_pointer, ch;
16613
16614 file_mips_check_options ();
16615
16616 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16617 ++input_line_pointer;
16618 ch = *input_line_pointer;
16619 *input_line_pointer = '\0';
16620
16621 if (strchr (name, ','))
16622 {
16623 /* Generic ".set" directive; use the generic handler. */
16624 *input_line_pointer = ch;
16625 input_line_pointer = name;
16626 s_set (0);
16627 return;
16628 }
16629
16630 if (strcmp (name, "reorder") == 0)
16631 {
16632 if (mips_opts.noreorder)
16633 end_noreorder ();
16634 }
16635 else if (strcmp (name, "noreorder") == 0)
16636 {
16637 if (!mips_opts.noreorder)
16638 start_noreorder ();
16639 }
16640 else if (strcmp (name, "macro") == 0)
16641 mips_opts.warn_about_macros = 0;
16642 else if (strcmp (name, "nomacro") == 0)
16643 {
16644 if (mips_opts.noreorder == 0)
16645 as_bad (_("`noreorder' must be set before `nomacro'"));
16646 mips_opts.warn_about_macros = 1;
16647 }
16648 else if (strcmp (name, "gp=default") == 0)
16649 mips_opts.gp = file_mips_opts.gp;
16650 else if (strcmp (name, "fp=default") == 0)
16651 mips_opts.fp = file_mips_opts.fp;
16652 else if (strcmp (name, "mips0") == 0 || strcmp (name, "arch=default") == 0)
16653 {
16654 mips_opts.isa = file_mips_opts.isa;
16655 mips_opts.arch = file_mips_opts.arch;
16656 mips_opts.init_ase = file_mips_opts.init_ase;
16657 mips_opts.gp = file_mips_opts.gp;
16658 mips_opts.fp = file_mips_opts.fp;
16659 }
16660 else if (strcmp (name, "push") == 0)
16661 {
16662 struct mips_option_stack *s;
16663
16664 s = XNEW (struct mips_option_stack);
16665 s->next = mips_opts_stack;
16666 s->options = mips_opts;
16667 mips_opts_stack = s;
16668 }
16669 else if (strcmp (name, "pop") == 0)
16670 {
16671 struct mips_option_stack *s;
16672
16673 s = mips_opts_stack;
16674 if (s == NULL)
16675 as_bad (_(".set pop with no .set push"));
16676 else
16677 {
16678 /* If we're changing the reorder mode we need to handle
16679 delay slots correctly. */
16680 if (s->options.noreorder && ! mips_opts.noreorder)
16681 start_noreorder ();
16682 else if (! s->options.noreorder && mips_opts.noreorder)
16683 end_noreorder ();
16684
16685 mips_opts = s->options;
16686 mips_opts_stack = s->next;
16687 free (s);
16688 }
16689 }
16690 else
16691 {
16692 type = parse_code_option (name);
16693 if (type == OPTION_TYPE_BAD)
16694 as_warn (_("tried to set unrecognized symbol: %s\n"), name);
16695 }
16696
16697 /* The use of .set [arch|cpu]= historically 'fixes' the width of gp and fp
16698 registers based on what is supported by the arch/cpu. */
16699 if (type == OPTION_TYPE_ISA)
16700 {
16701 switch (mips_opts.isa)
16702 {
16703 case 0:
16704 break;
16705 case ISA_MIPS1:
16706 /* MIPS I cannot support FPXX. */
16707 mips_opts.fp = 32;
16708 /* fall-through. */
16709 case ISA_MIPS2:
16710 case ISA_MIPS32:
16711 case ISA_MIPS32R2:
16712 case ISA_MIPS32R3:
16713 case ISA_MIPS32R5:
16714 mips_opts.gp = 32;
16715 if (mips_opts.fp != 0)
16716 mips_opts.fp = 32;
16717 break;
16718 case ISA_MIPS32R6:
16719 mips_opts.gp = 32;
16720 mips_opts.fp = 64;
16721 break;
16722 case ISA_MIPS3:
16723 case ISA_MIPS4:
16724 case ISA_MIPS5:
16725 case ISA_MIPS64:
16726 case ISA_MIPS64R2:
16727 case ISA_MIPS64R3:
16728 case ISA_MIPS64R5:
16729 case ISA_MIPS64R6:
16730 mips_opts.gp = 64;
16731 if (mips_opts.fp != 0)
16732 {
16733 if (mips_opts.arch == CPU_R5900)
16734 mips_opts.fp = 32;
16735 else
16736 mips_opts.fp = 64;
16737 }
16738 break;
16739 default:
16740 as_bad (_("unknown ISA level %s"), name + 4);
16741 break;
16742 }
16743 }
16744
16745 mips_check_options (&mips_opts, FALSE);
16746
16747 mips_check_isa_supports_ases ();
16748 *input_line_pointer = ch;
16749 demand_empty_rest_of_line ();
16750 }
16751
16752 /* Handle the .module pseudo-op. */
16753
16754 static void
16755 s_module (int ignore ATTRIBUTE_UNUSED)
16756 {
16757 char *name = input_line_pointer, ch;
16758
16759 while (!is_end_of_line[(unsigned char) *input_line_pointer])
16760 ++input_line_pointer;
16761 ch = *input_line_pointer;
16762 *input_line_pointer = '\0';
16763
16764 if (!file_mips_opts_checked)
16765 {
16766 if (parse_code_option (name) == OPTION_TYPE_BAD)
16767 as_bad (_(".module used with unrecognized symbol: %s\n"), name);
16768
16769 /* Update module level settings from mips_opts. */
16770 file_mips_opts = mips_opts;
16771 }
16772 else
16773 as_bad (_(".module is not permitted after generating code"));
16774
16775 *input_line_pointer = ch;
16776 demand_empty_rest_of_line ();
16777 }
16778
16779 /* Handle the .abicalls pseudo-op. I believe this is equivalent to
16780 .option pic2. It means to generate SVR4 PIC calls. */
16781
16782 static void
16783 s_abicalls (int ignore ATTRIBUTE_UNUSED)
16784 {
16785 mips_pic = SVR4_PIC;
16786 mips_abicalls = TRUE;
16787
16788 if (g_switch_seen && g_switch_value != 0)
16789 as_warn (_("-G may not be used with SVR4 PIC code"));
16790 g_switch_value = 0;
16791
16792 bfd_set_gp_size (stdoutput, 0);
16793 demand_empty_rest_of_line ();
16794 }
16795
16796 /* Handle the .cpload pseudo-op. This is used when generating SVR4
16797 PIC code. It sets the $gp register for the function based on the
16798 function address, which is in the register named in the argument.
16799 This uses a relocation against _gp_disp, which is handled specially
16800 by the linker. The result is:
16801 lui $gp,%hi(_gp_disp)
16802 addiu $gp,$gp,%lo(_gp_disp)
16803 addu $gp,$gp,.cpload argument
16804 The .cpload argument is normally $25 == $t9.
16805
16806 The -mno-shared option changes this to:
16807 lui $gp,%hi(__gnu_local_gp)
16808 addiu $gp,$gp,%lo(__gnu_local_gp)
16809 and the argument is ignored. This saves an instruction, but the
16810 resulting code is not position independent; it uses an absolute
16811 address for __gnu_local_gp. Thus code assembled with -mno-shared
16812 can go into an ordinary executable, but not into a shared library. */
16813
16814 static void
16815 s_cpload (int ignore ATTRIBUTE_UNUSED)
16816 {
16817 expressionS ex;
16818 int reg;
16819 int in_shared;
16820
16821 file_mips_check_options ();
16822
16823 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
16824 .cpload is ignored. */
16825 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
16826 {
16827 s_ignore (0);
16828 return;
16829 }
16830
16831 if (mips_opts.mips16)
16832 {
16833 as_bad (_("%s not supported in MIPS16 mode"), ".cpload");
16834 ignore_rest_of_line ();
16835 return;
16836 }
16837
16838 /* .cpload should be in a .set noreorder section. */
16839 if (mips_opts.noreorder == 0)
16840 as_warn (_(".cpload not in noreorder section"));
16841
16842 reg = tc_get_register (0);
16843
16844 /* If we need to produce a 64-bit address, we are better off using
16845 the default instruction sequence. */
16846 in_shared = mips_in_shared || HAVE_64BIT_SYMBOLS;
16847
16848 ex.X_op = O_symbol;
16849 ex.X_add_symbol = symbol_find_or_make (in_shared ? "_gp_disp" :
16850 "__gnu_local_gp");
16851 ex.X_op_symbol = NULL;
16852 ex.X_add_number = 0;
16853
16854 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16855 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16856
16857 mips_mark_labels ();
16858 mips_assembling_insn = TRUE;
16859
16860 macro_start ();
16861 macro_build_lui (&ex, mips_gp_register);
16862 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16863 mips_gp_register, BFD_RELOC_LO16);
16864 if (in_shared)
16865 macro_build (NULL, "addu", "d,v,t", mips_gp_register,
16866 mips_gp_register, reg);
16867 macro_end ();
16868
16869 mips_assembling_insn = FALSE;
16870 demand_empty_rest_of_line ();
16871 }
16872
16873 /* Handle the .cpsetup pseudo-op defined for NewABI PIC code. The syntax is:
16874 .cpsetup $reg1, offset|$reg2, label
16875
16876 If offset is given, this results in:
16877 sd $gp, offset($sp)
16878 lui $gp, %hi(%neg(%gp_rel(label)))
16879 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16880 daddu $gp, $gp, $reg1
16881
16882 If $reg2 is given, this results in:
16883 or $reg2, $gp, $0
16884 lui $gp, %hi(%neg(%gp_rel(label)))
16885 addiu $gp, $gp, %lo(%neg(%gp_rel(label)))
16886 daddu $gp, $gp, $reg1
16887 $reg1 is normally $25 == $t9.
16888
16889 The -mno-shared option replaces the last three instructions with
16890 lui $gp,%hi(_gp)
16891 addiu $gp,$gp,%lo(_gp) */
16892
16893 static void
16894 s_cpsetup (int ignore ATTRIBUTE_UNUSED)
16895 {
16896 expressionS ex_off;
16897 expressionS ex_sym;
16898 int reg1;
16899
16900 file_mips_check_options ();
16901
16902 /* If we are not generating SVR4 PIC code, .cpsetup is ignored.
16903 We also need NewABI support. */
16904 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
16905 {
16906 s_ignore (0);
16907 return;
16908 }
16909
16910 if (mips_opts.mips16)
16911 {
16912 as_bad (_("%s not supported in MIPS16 mode"), ".cpsetup");
16913 ignore_rest_of_line ();
16914 return;
16915 }
16916
16917 reg1 = tc_get_register (0);
16918 SKIP_WHITESPACE ();
16919 if (*input_line_pointer != ',')
16920 {
16921 as_bad (_("missing argument separator ',' for .cpsetup"));
16922 return;
16923 }
16924 else
16925 ++input_line_pointer;
16926 SKIP_WHITESPACE ();
16927 if (*input_line_pointer == '$')
16928 {
16929 mips_cpreturn_register = tc_get_register (0);
16930 mips_cpreturn_offset = -1;
16931 }
16932 else
16933 {
16934 mips_cpreturn_offset = get_absolute_expression ();
16935 mips_cpreturn_register = -1;
16936 }
16937 SKIP_WHITESPACE ();
16938 if (*input_line_pointer != ',')
16939 {
16940 as_bad (_("missing argument separator ',' for .cpsetup"));
16941 return;
16942 }
16943 else
16944 ++input_line_pointer;
16945 SKIP_WHITESPACE ();
16946 expression (&ex_sym);
16947
16948 mips_mark_labels ();
16949 mips_assembling_insn = TRUE;
16950
16951 macro_start ();
16952 if (mips_cpreturn_register == -1)
16953 {
16954 ex_off.X_op = O_constant;
16955 ex_off.X_add_symbol = NULL;
16956 ex_off.X_op_symbol = NULL;
16957 ex_off.X_add_number = mips_cpreturn_offset;
16958
16959 macro_build (&ex_off, "sd", "t,o(b)", mips_gp_register,
16960 BFD_RELOC_LO16, SP);
16961 }
16962 else
16963 move_register (mips_cpreturn_register, mips_gp_register);
16964
16965 if (mips_in_shared || HAVE_64BIT_SYMBOLS)
16966 {
16967 macro_build (&ex_sym, "lui", LUI_FMT, mips_gp_register,
16968 -1, BFD_RELOC_GPREL16, BFD_RELOC_MIPS_SUB,
16969 BFD_RELOC_HI16_S);
16970
16971 macro_build (&ex_sym, "addiu", "t,r,j", mips_gp_register,
16972 mips_gp_register, -1, BFD_RELOC_GPREL16,
16973 BFD_RELOC_MIPS_SUB, BFD_RELOC_LO16);
16974
16975 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", mips_gp_register,
16976 mips_gp_register, reg1);
16977 }
16978 else
16979 {
16980 expressionS ex;
16981
16982 ex.X_op = O_symbol;
16983 ex.X_add_symbol = symbol_find_or_make ("__gnu_local_gp");
16984 ex.X_op_symbol = NULL;
16985 ex.X_add_number = 0;
16986
16987 /* In ELF, this symbol is implicitly an STT_OBJECT symbol. */
16988 symbol_get_bfdsym (ex.X_add_symbol)->flags |= BSF_OBJECT;
16989
16990 macro_build_lui (&ex, mips_gp_register);
16991 macro_build (&ex, "addiu", "t,r,j", mips_gp_register,
16992 mips_gp_register, BFD_RELOC_LO16);
16993 }
16994
16995 macro_end ();
16996
16997 mips_assembling_insn = FALSE;
16998 demand_empty_rest_of_line ();
16999 }
17000
17001 static void
17002 s_cplocal (int ignore ATTRIBUTE_UNUSED)
17003 {
17004 file_mips_check_options ();
17005
17006 /* If we are not generating SVR4 PIC code, or if this is not NewABI code,
17007 .cplocal is ignored. */
17008 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17009 {
17010 s_ignore (0);
17011 return;
17012 }
17013
17014 if (mips_opts.mips16)
17015 {
17016 as_bad (_("%s not supported in MIPS16 mode"), ".cplocal");
17017 ignore_rest_of_line ();
17018 return;
17019 }
17020
17021 mips_gp_register = tc_get_register (0);
17022 demand_empty_rest_of_line ();
17023 }
17024
17025 /* Handle the .cprestore pseudo-op. This stores $gp into a given
17026 offset from $sp. The offset is remembered, and after making a PIC
17027 call $gp is restored from that location. */
17028
17029 static void
17030 s_cprestore (int ignore ATTRIBUTE_UNUSED)
17031 {
17032 expressionS ex;
17033
17034 file_mips_check_options ();
17035
17036 /* If we are not generating SVR4 PIC code, or if this is NewABI code,
17037 .cprestore is ignored. */
17038 if (mips_pic != SVR4_PIC || HAVE_NEWABI)
17039 {
17040 s_ignore (0);
17041 return;
17042 }
17043
17044 if (mips_opts.mips16)
17045 {
17046 as_bad (_("%s not supported in MIPS16 mode"), ".cprestore");
17047 ignore_rest_of_line ();
17048 return;
17049 }
17050
17051 mips_cprestore_offset = get_absolute_expression ();
17052 mips_cprestore_valid = 1;
17053
17054 ex.X_op = O_constant;
17055 ex.X_add_symbol = NULL;
17056 ex.X_op_symbol = NULL;
17057 ex.X_add_number = mips_cprestore_offset;
17058
17059 mips_mark_labels ();
17060 mips_assembling_insn = TRUE;
17061
17062 macro_start ();
17063 macro_build_ldst_constoffset (&ex, ADDRESS_STORE_INSN, mips_gp_register,
17064 SP, HAVE_64BIT_ADDRESSES);
17065 macro_end ();
17066
17067 mips_assembling_insn = FALSE;
17068 demand_empty_rest_of_line ();
17069 }
17070
17071 /* Handle the .cpreturn pseudo-op defined for NewABI PIC code. If an offset
17072 was given in the preceding .cpsetup, it results in:
17073 ld $gp, offset($sp)
17074
17075 If a register $reg2 was given there, it results in:
17076 or $gp, $reg2, $0 */
17077
17078 static void
17079 s_cpreturn (int ignore ATTRIBUTE_UNUSED)
17080 {
17081 expressionS ex;
17082
17083 file_mips_check_options ();
17084
17085 /* If we are not generating SVR4 PIC code, .cpreturn is ignored.
17086 We also need NewABI support. */
17087 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17088 {
17089 s_ignore (0);
17090 return;
17091 }
17092
17093 if (mips_opts.mips16)
17094 {
17095 as_bad (_("%s not supported in MIPS16 mode"), ".cpreturn");
17096 ignore_rest_of_line ();
17097 return;
17098 }
17099
17100 mips_mark_labels ();
17101 mips_assembling_insn = TRUE;
17102
17103 macro_start ();
17104 if (mips_cpreturn_register == -1)
17105 {
17106 ex.X_op = O_constant;
17107 ex.X_add_symbol = NULL;
17108 ex.X_op_symbol = NULL;
17109 ex.X_add_number = mips_cpreturn_offset;
17110
17111 macro_build (&ex, "ld", "t,o(b)", mips_gp_register, BFD_RELOC_LO16, SP);
17112 }
17113 else
17114 move_register (mips_gp_register, mips_cpreturn_register);
17115
17116 macro_end ();
17117
17118 mips_assembling_insn = FALSE;
17119 demand_empty_rest_of_line ();
17120 }
17121
17122 /* Handle a .dtprelword, .dtpreldword, .tprelword, or .tpreldword
17123 pseudo-op; DIRSTR says which. The pseudo-op generates a BYTES-size
17124 DTP- or TP-relative relocation of type RTYPE, for use in either DWARF
17125 debug information or MIPS16 TLS. */
17126
17127 static void
17128 s_tls_rel_directive (const size_t bytes, const char *dirstr,
17129 bfd_reloc_code_real_type rtype)
17130 {
17131 expressionS ex;
17132 char *p;
17133
17134 expression (&ex);
17135
17136 if (ex.X_op != O_symbol)
17137 {
17138 as_bad (_("unsupported use of %s"), dirstr);
17139 ignore_rest_of_line ();
17140 }
17141
17142 p = frag_more (bytes);
17143 md_number_to_chars (p, 0, bytes);
17144 fix_new_exp (frag_now, p - frag_now->fr_literal, bytes, &ex, FALSE, rtype);
17145 demand_empty_rest_of_line ();
17146 mips_clear_insn_labels ();
17147 }
17148
17149 /* Handle .dtprelword. */
17150
17151 static void
17152 s_dtprelword (int ignore ATTRIBUTE_UNUSED)
17153 {
17154 s_tls_rel_directive (4, ".dtprelword", BFD_RELOC_MIPS_TLS_DTPREL32);
17155 }
17156
17157 /* Handle .dtpreldword. */
17158
17159 static void
17160 s_dtpreldword (int ignore ATTRIBUTE_UNUSED)
17161 {
17162 s_tls_rel_directive (8, ".dtpreldword", BFD_RELOC_MIPS_TLS_DTPREL64);
17163 }
17164
17165 /* Handle .tprelword. */
17166
17167 static void
17168 s_tprelword (int ignore ATTRIBUTE_UNUSED)
17169 {
17170 s_tls_rel_directive (4, ".tprelword", BFD_RELOC_MIPS_TLS_TPREL32);
17171 }
17172
17173 /* Handle .tpreldword. */
17174
17175 static void
17176 s_tpreldword (int ignore ATTRIBUTE_UNUSED)
17177 {
17178 s_tls_rel_directive (8, ".tpreldword", BFD_RELOC_MIPS_TLS_TPREL64);
17179 }
17180
17181 /* Handle the .gpvalue pseudo-op. This is used when generating NewABI PIC
17182 code. It sets the offset to use in gp_rel relocations. */
17183
17184 static void
17185 s_gpvalue (int ignore ATTRIBUTE_UNUSED)
17186 {
17187 /* If we are not generating SVR4 PIC code, .gpvalue is ignored.
17188 We also need NewABI support. */
17189 if (mips_pic != SVR4_PIC || ! HAVE_NEWABI)
17190 {
17191 s_ignore (0);
17192 return;
17193 }
17194
17195 mips_gprel_offset = get_absolute_expression ();
17196
17197 demand_empty_rest_of_line ();
17198 }
17199
17200 /* Handle the .gpword pseudo-op. This is used when generating PIC
17201 code. It generates a 32 bit GP relative reloc. */
17202
17203 static void
17204 s_gpword (int ignore ATTRIBUTE_UNUSED)
17205 {
17206 segment_info_type *si;
17207 struct insn_label_list *l;
17208 expressionS ex;
17209 char *p;
17210
17211 /* When not generating PIC code, this is treated as .word. */
17212 if (mips_pic != SVR4_PIC)
17213 {
17214 s_cons (2);
17215 return;
17216 }
17217
17218 si = seg_info (now_seg);
17219 l = si->label_list;
17220 mips_emit_delays ();
17221 if (auto_align)
17222 mips_align (2, 0, l);
17223
17224 expression (&ex);
17225 mips_clear_insn_labels ();
17226
17227 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17228 {
17229 as_bad (_("unsupported use of .gpword"));
17230 ignore_rest_of_line ();
17231 }
17232
17233 p = frag_more (4);
17234 md_number_to_chars (p, 0, 4);
17235 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17236 BFD_RELOC_GPREL32);
17237
17238 demand_empty_rest_of_line ();
17239 }
17240
17241 static void
17242 s_gpdword (int ignore ATTRIBUTE_UNUSED)
17243 {
17244 segment_info_type *si;
17245 struct insn_label_list *l;
17246 expressionS ex;
17247 char *p;
17248
17249 /* When not generating PIC code, this is treated as .dword. */
17250 if (mips_pic != SVR4_PIC)
17251 {
17252 s_cons (3);
17253 return;
17254 }
17255
17256 si = seg_info (now_seg);
17257 l = si->label_list;
17258 mips_emit_delays ();
17259 if (auto_align)
17260 mips_align (3, 0, l);
17261
17262 expression (&ex);
17263 mips_clear_insn_labels ();
17264
17265 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17266 {
17267 as_bad (_("unsupported use of .gpdword"));
17268 ignore_rest_of_line ();
17269 }
17270
17271 p = frag_more (8);
17272 md_number_to_chars (p, 0, 8);
17273 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17274 BFD_RELOC_GPREL32)->fx_tcbit = 1;
17275
17276 /* GPREL32 composed with 64 gives a 64-bit GP offset. */
17277 fix_new (frag_now, p - frag_now->fr_literal, 8, NULL, 0,
17278 FALSE, BFD_RELOC_64)->fx_tcbit = 1;
17279
17280 demand_empty_rest_of_line ();
17281 }
17282
17283 /* Handle the .ehword pseudo-op. This is used when generating unwinding
17284 tables. It generates a R_MIPS_EH reloc. */
17285
17286 static void
17287 s_ehword (int ignore ATTRIBUTE_UNUSED)
17288 {
17289 expressionS ex;
17290 char *p;
17291
17292 mips_emit_delays ();
17293
17294 expression (&ex);
17295 mips_clear_insn_labels ();
17296
17297 if (ex.X_op != O_symbol || ex.X_add_number != 0)
17298 {
17299 as_bad (_("unsupported use of .ehword"));
17300 ignore_rest_of_line ();
17301 }
17302
17303 p = frag_more (4);
17304 md_number_to_chars (p, 0, 4);
17305 fix_new_exp (frag_now, p - frag_now->fr_literal, 4, &ex, FALSE,
17306 BFD_RELOC_32_PCREL);
17307
17308 demand_empty_rest_of_line ();
17309 }
17310
17311 /* Handle the .cpadd pseudo-op. This is used when dealing with switch
17312 tables in SVR4 PIC code. */
17313
17314 static void
17315 s_cpadd (int ignore ATTRIBUTE_UNUSED)
17316 {
17317 int reg;
17318
17319 file_mips_check_options ();
17320
17321 /* This is ignored when not generating SVR4 PIC code. */
17322 if (mips_pic != SVR4_PIC)
17323 {
17324 s_ignore (0);
17325 return;
17326 }
17327
17328 mips_mark_labels ();
17329 mips_assembling_insn = TRUE;
17330
17331 /* Add $gp to the register named as an argument. */
17332 macro_start ();
17333 reg = tc_get_register (0);
17334 macro_build (NULL, ADDRESS_ADD_INSN, "d,v,t", reg, reg, mips_gp_register);
17335 macro_end ();
17336
17337 mips_assembling_insn = FALSE;
17338 demand_empty_rest_of_line ();
17339 }
17340
17341 /* Handle the .insn pseudo-op. This marks instruction labels in
17342 mips16/micromips mode. This permits the linker to handle them specially,
17343 such as generating jalx instructions when needed. We also make
17344 them odd for the duration of the assembly, in order to generate the
17345 right sort of code. We will make them even in the adjust_symtab
17346 routine, while leaving them marked. This is convenient for the
17347 debugger and the disassembler. The linker knows to make them odd
17348 again. */
17349
17350 static void
17351 s_insn (int ignore ATTRIBUTE_UNUSED)
17352 {
17353 file_mips_check_options ();
17354 file_ase_mips16 |= mips_opts.mips16;
17355 file_ase_micromips |= mips_opts.micromips;
17356
17357 mips_mark_labels ();
17358
17359 demand_empty_rest_of_line ();
17360 }
17361
17362 /* Handle the .nan pseudo-op. */
17363
17364 static void
17365 s_nan (int ignore ATTRIBUTE_UNUSED)
17366 {
17367 static const char str_legacy[] = "legacy";
17368 static const char str_2008[] = "2008";
17369 size_t i;
17370
17371 for (i = 0; !is_end_of_line[(unsigned char) input_line_pointer[i]]; i++);
17372
17373 if (i == sizeof (str_2008) - 1
17374 && memcmp (input_line_pointer, str_2008, i) == 0)
17375 mips_nan2008 = 1;
17376 else if (i == sizeof (str_legacy) - 1
17377 && memcmp (input_line_pointer, str_legacy, i) == 0)
17378 {
17379 if (ISA_HAS_LEGACY_NAN (file_mips_opts.isa))
17380 mips_nan2008 = 0;
17381 else
17382 as_bad (_("`%s' does not support legacy NaN"),
17383 mips_cpu_info_from_isa (file_mips_opts.isa)->name);
17384 }
17385 else
17386 as_bad (_("bad .nan directive"));
17387
17388 input_line_pointer += i;
17389 demand_empty_rest_of_line ();
17390 }
17391
17392 /* Handle a .stab[snd] directive. Ideally these directives would be
17393 implemented in a transparent way, so that removing them would not
17394 have any effect on the generated instructions. However, s_stab
17395 internally changes the section, so in practice we need to decide
17396 now whether the preceding label marks compressed code. We do not
17397 support changing the compression mode of a label after a .stab*
17398 directive, such as in:
17399
17400 foo:
17401 .stabs ...
17402 .set mips16
17403
17404 so the current mode wins. */
17405
17406 static void
17407 s_mips_stab (int type)
17408 {
17409 file_mips_check_options ();
17410 mips_mark_labels ();
17411 s_stab (type);
17412 }
17413
17414 /* Handle the .weakext pseudo-op as defined in Kane and Heinrich. */
17415
17416 static void
17417 s_mips_weakext (int ignore ATTRIBUTE_UNUSED)
17418 {
17419 char *name;
17420 int c;
17421 symbolS *symbolP;
17422 expressionS exp;
17423
17424 c = get_symbol_name (&name);
17425 symbolP = symbol_find_or_make (name);
17426 S_SET_WEAK (symbolP);
17427 *input_line_pointer = c;
17428
17429 SKIP_WHITESPACE_AFTER_NAME ();
17430
17431 if (! is_end_of_line[(unsigned char) *input_line_pointer])
17432 {
17433 if (S_IS_DEFINED (symbolP))
17434 {
17435 as_bad (_("ignoring attempt to redefine symbol %s"),
17436 S_GET_NAME (symbolP));
17437 ignore_rest_of_line ();
17438 return;
17439 }
17440
17441 if (*input_line_pointer == ',')
17442 {
17443 ++input_line_pointer;
17444 SKIP_WHITESPACE ();
17445 }
17446
17447 expression (&exp);
17448 if (exp.X_op != O_symbol)
17449 {
17450 as_bad (_("bad .weakext directive"));
17451 ignore_rest_of_line ();
17452 return;
17453 }
17454 symbol_set_value_expression (symbolP, &exp);
17455 }
17456
17457 demand_empty_rest_of_line ();
17458 }
17459
17460 /* Parse a register string into a number. Called from the ECOFF code
17461 to parse .frame. The argument is non-zero if this is the frame
17462 register, so that we can record it in mips_frame_reg. */
17463
17464 int
17465 tc_get_register (int frame)
17466 {
17467 unsigned int reg;
17468
17469 SKIP_WHITESPACE ();
17470 if (! reg_lookup (&input_line_pointer, RWARN | RTYPE_NUM | RTYPE_GP, &reg))
17471 reg = 0;
17472 if (frame)
17473 {
17474 mips_frame_reg = reg != 0 ? reg : SP;
17475 mips_frame_reg_valid = 1;
17476 mips_cprestore_valid = 0;
17477 }
17478 return reg;
17479 }
17480
17481 valueT
17482 md_section_align (asection *seg, valueT addr)
17483 {
17484 int align = bfd_get_section_alignment (stdoutput, seg);
17485
17486 /* We don't need to align ELF sections to the full alignment.
17487 However, Irix 5 may prefer that we align them at least to a 16
17488 byte boundary. We don't bother to align the sections if we
17489 are targeted for an embedded system. */
17490 if (strncmp (TARGET_OS, "elf", 3) == 0)
17491 return addr;
17492 if (align > 4)
17493 align = 4;
17494
17495 return ((addr + (1 << align) - 1) & -(1 << align));
17496 }
17497
17498 /* Utility routine, called from above as well. If called while the
17499 input file is still being read, it's only an approximation. (For
17500 example, a symbol may later become defined which appeared to be
17501 undefined earlier.) */
17502
17503 static int
17504 nopic_need_relax (symbolS *sym, int before_relaxing)
17505 {
17506 if (sym == 0)
17507 return 0;
17508
17509 if (g_switch_value > 0)
17510 {
17511 const char *symname;
17512 int change;
17513
17514 /* Find out whether this symbol can be referenced off the $gp
17515 register. It can be if it is smaller than the -G size or if
17516 it is in the .sdata or .sbss section. Certain symbols can
17517 not be referenced off the $gp, although it appears as though
17518 they can. */
17519 symname = S_GET_NAME (sym);
17520 if (symname != (const char *) NULL
17521 && (strcmp (symname, "eprol") == 0
17522 || strcmp (symname, "etext") == 0
17523 || strcmp (symname, "_gp") == 0
17524 || strcmp (symname, "edata") == 0
17525 || strcmp (symname, "_fbss") == 0
17526 || strcmp (symname, "_fdata") == 0
17527 || strcmp (symname, "_ftext") == 0
17528 || strcmp (symname, "end") == 0
17529 || strcmp (symname, "_gp_disp") == 0))
17530 change = 1;
17531 else if ((! S_IS_DEFINED (sym) || S_IS_COMMON (sym))
17532 && (0
17533 #ifndef NO_ECOFF_DEBUGGING
17534 || (symbol_get_obj (sym)->ecoff_extern_size != 0
17535 && (symbol_get_obj (sym)->ecoff_extern_size
17536 <= g_switch_value))
17537 #endif
17538 /* We must defer this decision until after the whole
17539 file has been read, since there might be a .extern
17540 after the first use of this symbol. */
17541 || (before_relaxing
17542 #ifndef NO_ECOFF_DEBUGGING
17543 && symbol_get_obj (sym)->ecoff_extern_size == 0
17544 #endif
17545 && S_GET_VALUE (sym) == 0)
17546 || (S_GET_VALUE (sym) != 0
17547 && S_GET_VALUE (sym) <= g_switch_value)))
17548 change = 0;
17549 else
17550 {
17551 const char *segname;
17552
17553 segname = segment_name (S_GET_SEGMENT (sym));
17554 gas_assert (strcmp (segname, ".lit8") != 0
17555 && strcmp (segname, ".lit4") != 0);
17556 change = (strcmp (segname, ".sdata") != 0
17557 && strcmp (segname, ".sbss") != 0
17558 && strncmp (segname, ".sdata.", 7) != 0
17559 && strncmp (segname, ".sbss.", 6) != 0
17560 && strncmp (segname, ".gnu.linkonce.sb.", 17) != 0
17561 && strncmp (segname, ".gnu.linkonce.s.", 16) != 0);
17562 }
17563 return change;
17564 }
17565 else
17566 /* We are not optimizing for the $gp register. */
17567 return 1;
17568 }
17569
17570
17571 /* Return true if the given symbol should be considered local for SVR4 PIC. */
17572
17573 static bfd_boolean
17574 pic_need_relax (symbolS *sym)
17575 {
17576 asection *symsec;
17577
17578 /* Handle the case of a symbol equated to another symbol. */
17579 while (symbol_equated_reloc_p (sym))
17580 {
17581 symbolS *n;
17582
17583 /* It's possible to get a loop here in a badly written program. */
17584 n = symbol_get_value_expression (sym)->X_add_symbol;
17585 if (n == sym)
17586 break;
17587 sym = n;
17588 }
17589
17590 if (symbol_section_p (sym))
17591 return TRUE;
17592
17593 symsec = S_GET_SEGMENT (sym);
17594
17595 /* This must duplicate the test in adjust_reloc_syms. */
17596 return (!bfd_is_und_section (symsec)
17597 && !bfd_is_abs_section (symsec)
17598 && !bfd_is_com_section (symsec)
17599 /* A global or weak symbol is treated as external. */
17600 && (!S_IS_WEAK (sym) && !S_IS_EXTERNAL (sym)));
17601 }
17602 \f
17603 /* Given a MIPS16 variant frag FRAGP and PC-relative operand PCREL_OP
17604 convert a section-relative value VAL to the equivalent PC-relative
17605 value. */
17606
17607 static offsetT
17608 mips16_pcrel_val (fragS *fragp, const struct mips_pcrel_operand *pcrel_op,
17609 offsetT val, long stretch)
17610 {
17611 fragS *sym_frag;
17612 addressT addr;
17613
17614 gas_assert (pcrel_op->root.root.type == OP_PCREL);
17615
17616 sym_frag = symbol_get_frag (fragp->fr_symbol);
17617
17618 /* If the relax_marker of the symbol fragment differs from the
17619 relax_marker of this fragment, we have not yet adjusted the
17620 symbol fragment fr_address. We want to add in STRETCH in
17621 order to get a better estimate of the address. This
17622 particularly matters because of the shift bits. */
17623 if (stretch != 0 && sym_frag->relax_marker != fragp->relax_marker)
17624 {
17625 fragS *f;
17626
17627 /* Adjust stretch for any alignment frag. Note that if have
17628 been expanding the earlier code, the symbol may be
17629 defined in what appears to be an earlier frag. FIXME:
17630 This doesn't handle the fr_subtype field, which specifies
17631 a maximum number of bytes to skip when doing an
17632 alignment. */
17633 for (f = fragp; f != NULL && f != sym_frag; f = f->fr_next)
17634 {
17635 if (f->fr_type == rs_align || f->fr_type == rs_align_code)
17636 {
17637 if (stretch < 0)
17638 stretch = -(-stretch & ~((1 << (int) f->fr_offset) - 1));
17639 else
17640 stretch &= ~((1 << (int) f->fr_offset) - 1);
17641 if (stretch == 0)
17642 break;
17643 }
17644 }
17645 if (f != NULL)
17646 val += stretch;
17647 }
17648
17649 addr = fragp->fr_address + fragp->fr_fix;
17650
17651 /* The base address rules are complicated. The base address of
17652 a branch is the following instruction. The base address of a
17653 PC relative load or add is the instruction itself, but if it
17654 is in a delay slot (in which case it can not be extended) use
17655 the address of the instruction whose delay slot it is in. */
17656 if (pcrel_op->include_isa_bit)
17657 {
17658 addr += 2;
17659
17660 /* If we are currently assuming that this frag should be
17661 extended, then the current address is two bytes higher. */
17662 if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17663 addr += 2;
17664
17665 /* Ignore the low bit in the target, since it will be set
17666 for a text label. */
17667 val &= -2;
17668 }
17669 else if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype))
17670 addr -= 4;
17671 else if (RELAX_MIPS16_DSLOT (fragp->fr_subtype))
17672 addr -= 2;
17673
17674 val -= addr & -(1 << pcrel_op->align_log2);
17675
17676 return val;
17677 }
17678
17679 /* Given a mips16 variant frag FRAGP, return non-zero if it needs an
17680 extended opcode. SEC is the section the frag is in. */
17681
17682 static int
17683 mips16_extended_frag (fragS *fragp, asection *sec, long stretch)
17684 {
17685 const struct mips_int_operand *operand;
17686 offsetT val;
17687 segT symsec;
17688 int type;
17689
17690 if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
17691 return 0;
17692 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17693 return 1;
17694
17695 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17696 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17697 operand = mips16_immed_operand (type, FALSE);
17698 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
17699 || (operand->root.type == OP_PCREL
17700 ? sec != symsec
17701 : !bfd_is_abs_section (symsec)))
17702 return 1;
17703
17704 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17705
17706 if (operand->root.type == OP_PCREL)
17707 {
17708 const struct mips_pcrel_operand *pcrel_op;
17709 offsetT maxtiny;
17710
17711 if (RELAX_MIPS16_ALWAYS_EXTENDED (fragp->fr_subtype))
17712 return 1;
17713
17714 pcrel_op = (const struct mips_pcrel_operand *) operand;
17715 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17716
17717 /* If any of the shifted bits are set, we must use an extended
17718 opcode. If the address depends on the size of this
17719 instruction, this can lead to a loop, so we arrange to always
17720 use an extended opcode. */
17721 if ((val & ((1 << operand->shift) - 1)) != 0)
17722 {
17723 fragp->fr_subtype =
17724 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17725 return 1;
17726 }
17727
17728 /* If we are about to mark a frag as extended because the value
17729 is precisely the next value above maxtiny, then there is a
17730 chance of an infinite loop as in the following code:
17731 la $4,foo
17732 .skip 1020
17733 .align 2
17734 foo:
17735 In this case when the la is extended, foo is 0x3fc bytes
17736 away, so the la can be shrunk, but then foo is 0x400 away, so
17737 the la must be extended. To avoid this loop, we mark the
17738 frag as extended if it was small, and is about to become
17739 extended with the next value above maxtiny. */
17740 maxtiny = mips_int_operand_max (operand);
17741 if (val == maxtiny + (1 << operand->shift)
17742 && ! RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
17743 {
17744 fragp->fr_subtype =
17745 RELAX_MIPS16_MARK_ALWAYS_EXTENDED (fragp->fr_subtype);
17746 return 1;
17747 }
17748 }
17749
17750 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17751 }
17752
17753 /* Given a MIPS16 variant frag FRAGP, return non-zero if it needs
17754 macro expansion. SEC is the section the frag is in. We only
17755 support PC-relative instructions (LA, DLA, LW, LD) here, in
17756 non-PIC code using 32-bit addressing. */
17757
17758 static int
17759 mips16_macro_frag (fragS *fragp, asection *sec, long stretch)
17760 {
17761 const struct mips_pcrel_operand *pcrel_op;
17762 const struct mips_int_operand *operand;
17763 offsetT val;
17764 segT symsec;
17765 int type;
17766
17767 gas_assert (!RELAX_MIPS16_USER_SMALL (fragp->fr_subtype));
17768
17769 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
17770 return 0;
17771 if (!RELAX_MIPS16_SYM32 (fragp->fr_subtype))
17772 return 0;
17773
17774 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
17775 switch (type)
17776 {
17777 case 'A':
17778 case 'B':
17779 case 'E':
17780 symsec = S_GET_SEGMENT (fragp->fr_symbol);
17781 if (bfd_is_abs_section (symsec))
17782 return 1;
17783 if (RELAX_MIPS16_PIC (fragp->fr_subtype))
17784 return 0;
17785 if (S_FORCE_RELOC (fragp->fr_symbol, TRUE) || sec != symsec)
17786 return 1;
17787
17788 operand = mips16_immed_operand (type, TRUE);
17789 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17790 pcrel_op = (const struct mips_pcrel_operand *) operand;
17791 val = mips16_pcrel_val (fragp, pcrel_op, val, stretch);
17792
17793 return !mips16_immed_in_range_p (operand, BFD_RELOC_UNUSED, val);
17794
17795 default:
17796 return 0;
17797 }
17798 }
17799
17800 /* Compute the length of a branch sequence, and adjust the
17801 RELAX_BRANCH_TOOFAR bit accordingly. If FRAGP is NULL, the
17802 worst-case length is computed, with UPDATE being used to indicate
17803 whether an unconditional (-1), branch-likely (+1) or regular (0)
17804 branch is to be computed. */
17805 static int
17806 relaxed_branch_length (fragS *fragp, asection *sec, int update)
17807 {
17808 bfd_boolean toofar;
17809 int length;
17810
17811 if (fragp
17812 && S_IS_DEFINED (fragp->fr_symbol)
17813 && !S_IS_WEAK (fragp->fr_symbol)
17814 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17815 {
17816 addressT addr;
17817 offsetT val;
17818
17819 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17820
17821 addr = fragp->fr_address + fragp->fr_fix + 4;
17822
17823 val -= addr;
17824
17825 toofar = val < - (0x8000 << 2) || val >= (0x8000 << 2);
17826 }
17827 else
17828 /* If the symbol is not defined or it's in a different segment,
17829 we emit the long sequence. */
17830 toofar = TRUE;
17831
17832 if (fragp && update && toofar != RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
17833 fragp->fr_subtype
17834 = RELAX_BRANCH_ENCODE (RELAX_BRANCH_AT (fragp->fr_subtype),
17835 RELAX_BRANCH_PIC (fragp->fr_subtype),
17836 RELAX_BRANCH_UNCOND (fragp->fr_subtype),
17837 RELAX_BRANCH_LIKELY (fragp->fr_subtype),
17838 RELAX_BRANCH_LINK (fragp->fr_subtype),
17839 toofar);
17840
17841 length = 4;
17842 if (toofar)
17843 {
17844 if (fragp ? RELAX_BRANCH_LIKELY (fragp->fr_subtype) : (update > 0))
17845 length += 8;
17846
17847 if (!fragp || RELAX_BRANCH_PIC (fragp->fr_subtype))
17848 {
17849 /* Additional space for PIC loading of target address. */
17850 length += 8;
17851 if (mips_opts.isa == ISA_MIPS1)
17852 /* Additional space for $at-stabilizing nop. */
17853 length += 4;
17854 }
17855
17856 /* If branch is conditional. */
17857 if (fragp ? !RELAX_BRANCH_UNCOND (fragp->fr_subtype) : (update >= 0))
17858 length += 8;
17859 }
17860
17861 return length;
17862 }
17863
17864 /* Get a FRAG's branch instruction delay slot size, either from the
17865 short-delay-slot bit of a branch-and-link instruction if AL is TRUE,
17866 or SHORT_INSN_SIZE otherwise. */
17867
17868 static int
17869 frag_branch_delay_slot_size (fragS *fragp, bfd_boolean al, int short_insn_size)
17870 {
17871 char *buf = fragp->fr_literal + fragp->fr_fix;
17872
17873 if (al)
17874 return (read_compressed_insn (buf, 4) & 0x02000000) ? 2 : 4;
17875 else
17876 return short_insn_size;
17877 }
17878
17879 /* Compute the length of a branch sequence, and adjust the
17880 RELAX_MICROMIPS_TOOFAR32 bit accordingly. If FRAGP is NULL, the
17881 worst-case length is computed, with UPDATE being used to indicate
17882 whether an unconditional (-1), or regular (0) branch is to be
17883 computed. */
17884
17885 static int
17886 relaxed_micromips_32bit_branch_length (fragS *fragp, asection *sec, int update)
17887 {
17888 bfd_boolean insn32 = TRUE;
17889 bfd_boolean nods = TRUE;
17890 bfd_boolean pic = TRUE;
17891 bfd_boolean al = TRUE;
17892 int short_insn_size;
17893 bfd_boolean toofar;
17894 int length;
17895
17896 if (fragp)
17897 {
17898 insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
17899 nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
17900 pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
17901 al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
17902 }
17903 short_insn_size = insn32 ? 4 : 2;
17904
17905 if (fragp
17906 && S_IS_DEFINED (fragp->fr_symbol)
17907 && !S_IS_WEAK (fragp->fr_symbol)
17908 && sec == S_GET_SEGMENT (fragp->fr_symbol))
17909 {
17910 addressT addr;
17911 offsetT val;
17912
17913 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
17914 /* Ignore the low bit in the target, since it will be set
17915 for a text label. */
17916 if ((val & 1) != 0)
17917 --val;
17918
17919 addr = fragp->fr_address + fragp->fr_fix + 4;
17920
17921 val -= addr;
17922
17923 toofar = val < - (0x8000 << 1) || val >= (0x8000 << 1);
17924 }
17925 else
17926 /* If the symbol is not defined or it's in a different segment,
17927 we emit the long sequence. */
17928 toofar = TRUE;
17929
17930 if (fragp && update
17931 && toofar != RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
17932 fragp->fr_subtype = (toofar
17933 ? RELAX_MICROMIPS_MARK_TOOFAR32 (fragp->fr_subtype)
17934 : RELAX_MICROMIPS_CLEAR_TOOFAR32 (fragp->fr_subtype));
17935
17936 length = 4;
17937 if (toofar)
17938 {
17939 bfd_boolean compact_known = fragp != NULL;
17940 bfd_boolean compact = FALSE;
17941 bfd_boolean uncond;
17942
17943 if (fragp)
17944 {
17945 compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
17946 uncond = RELAX_MICROMIPS_UNCOND (fragp->fr_subtype);
17947 }
17948 else
17949 uncond = update < 0;
17950
17951 /* If label is out of range, we turn branch <br>:
17952
17953 <br> label # 4 bytes
17954 0:
17955
17956 into:
17957
17958 j label # 4 bytes
17959 nop # 2/4 bytes if
17960 # compact && (!PIC || insn32)
17961 0:
17962 */
17963 if ((!pic || insn32) && (!compact_known || compact))
17964 length += short_insn_size;
17965
17966 /* If assembling PIC code, we further turn:
17967
17968 j label # 4 bytes
17969
17970 into:
17971
17972 lw/ld at, %got(label)(gp) # 4 bytes
17973 d/addiu at, %lo(label) # 4 bytes
17974 jr/c at # 2/4 bytes
17975 */
17976 if (pic)
17977 length += 4 + short_insn_size;
17978
17979 /* Add an extra nop if the jump has no compact form and we need
17980 to fill the delay slot. */
17981 if ((!pic || al) && nods)
17982 length += (fragp
17983 ? frag_branch_delay_slot_size (fragp, al, short_insn_size)
17984 : short_insn_size);
17985
17986 /* If branch <br> is conditional, we prepend negated branch <brneg>:
17987
17988 <brneg> 0f # 4 bytes
17989 nop # 2/4 bytes if !compact
17990 */
17991 if (!uncond)
17992 length += (compact_known && compact) ? 4 : 4 + short_insn_size;
17993 }
17994 else if (nods)
17995 {
17996 /* Add an extra nop to fill the delay slot. */
17997 gas_assert (fragp);
17998 length += frag_branch_delay_slot_size (fragp, al, short_insn_size);
17999 }
18000
18001 return length;
18002 }
18003
18004 /* Compute the length of a branch, and adjust the RELAX_MICROMIPS_TOOFAR16
18005 bit accordingly. */
18006
18007 static int
18008 relaxed_micromips_16bit_branch_length (fragS *fragp, asection *sec, int update)
18009 {
18010 bfd_boolean toofar;
18011
18012 if (fragp
18013 && S_IS_DEFINED (fragp->fr_symbol)
18014 && !S_IS_WEAK (fragp->fr_symbol)
18015 && sec == S_GET_SEGMENT (fragp->fr_symbol))
18016 {
18017 addressT addr;
18018 offsetT val;
18019 int type;
18020
18021 val = S_GET_VALUE (fragp->fr_symbol) + fragp->fr_offset;
18022 /* Ignore the low bit in the target, since it will be set
18023 for a text label. */
18024 if ((val & 1) != 0)
18025 --val;
18026
18027 /* Assume this is a 2-byte branch. */
18028 addr = fragp->fr_address + fragp->fr_fix + 2;
18029
18030 /* We try to avoid the infinite loop by not adding 2 more bytes for
18031 long branches. */
18032
18033 val -= addr;
18034
18035 type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18036 if (type == 'D')
18037 toofar = val < - (0x200 << 1) || val >= (0x200 << 1);
18038 else if (type == 'E')
18039 toofar = val < - (0x40 << 1) || val >= (0x40 << 1);
18040 else
18041 abort ();
18042 }
18043 else
18044 /* If the symbol is not defined or it's in a different segment,
18045 we emit a normal 32-bit branch. */
18046 toofar = TRUE;
18047
18048 if (fragp && update
18049 && toofar != RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18050 fragp->fr_subtype
18051 = toofar ? RELAX_MICROMIPS_MARK_TOOFAR16 (fragp->fr_subtype)
18052 : RELAX_MICROMIPS_CLEAR_TOOFAR16 (fragp->fr_subtype);
18053
18054 if (toofar)
18055 return 4;
18056
18057 return 2;
18058 }
18059
18060 /* Estimate the size of a frag before relaxing. Unless this is the
18061 mips16, we are not really relaxing here, and the final size is
18062 encoded in the subtype information. For the mips16, we have to
18063 decide whether we are using an extended opcode or not. */
18064
18065 int
18066 md_estimate_size_before_relax (fragS *fragp, asection *segtype)
18067 {
18068 int change;
18069
18070 if (RELAX_BRANCH_P (fragp->fr_subtype))
18071 {
18072
18073 fragp->fr_var = relaxed_branch_length (fragp, segtype, FALSE);
18074
18075 return fragp->fr_var;
18076 }
18077
18078 if (RELAX_MIPS16_P (fragp->fr_subtype))
18079 {
18080 /* We don't want to modify the EXTENDED bit here; it might get us
18081 into infinite loops. We change it only in mips_relax_frag(). */
18082 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18083 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 8 : 12;
18084 else
18085 return RELAX_MIPS16_EXTENDED (fragp->fr_subtype) ? 4 : 2;
18086 }
18087
18088 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18089 {
18090 int length = 4;
18091
18092 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18093 length = relaxed_micromips_16bit_branch_length (fragp, segtype, FALSE);
18094 if (length == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18095 length = relaxed_micromips_32bit_branch_length (fragp, segtype, FALSE);
18096 fragp->fr_var = length;
18097
18098 return length;
18099 }
18100
18101 if (mips_pic == VXWORKS_PIC)
18102 /* For vxworks, GOT16 relocations never have a corresponding LO16. */
18103 change = 0;
18104 else if (RELAX_PIC (fragp->fr_subtype))
18105 change = pic_need_relax (fragp->fr_symbol);
18106 else
18107 change = nopic_need_relax (fragp->fr_symbol, 0);
18108
18109 if (change)
18110 {
18111 fragp->fr_subtype |= RELAX_USE_SECOND;
18112 return -RELAX_FIRST (fragp->fr_subtype);
18113 }
18114 else
18115 return -RELAX_SECOND (fragp->fr_subtype);
18116 }
18117
18118 /* This is called to see whether a reloc against a defined symbol
18119 should be converted into a reloc against a section. */
18120
18121 int
18122 mips_fix_adjustable (fixS *fixp)
18123 {
18124 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
18125 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18126 return 0;
18127
18128 if (fixp->fx_addsy == NULL)
18129 return 1;
18130
18131 /* Allow relocs used for EH tables. */
18132 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
18133 return 1;
18134
18135 /* If symbol SYM is in a mergeable section, relocations of the form
18136 SYM + 0 can usually be made section-relative. The mergeable data
18137 is then identified by the section offset rather than by the symbol.
18138
18139 However, if we're generating REL LO16 relocations, the offset is split
18140 between the LO16 and partnering high part relocation. The linker will
18141 need to recalculate the complete offset in order to correctly identify
18142 the merge data.
18143
18144 The linker has traditionally not looked for the partnering high part
18145 relocation, and has thus allowed orphaned R_MIPS_LO16 relocations to be
18146 placed anywhere. Rather than break backwards compatibility by changing
18147 this, it seems better not to force the issue, and instead keep the
18148 original symbol. This will work with either linker behavior. */
18149 if ((lo16_reloc_p (fixp->fx_r_type)
18150 || reloc_needs_lo_p (fixp->fx_r_type))
18151 && HAVE_IN_PLACE_ADDENDS
18152 && (S_GET_SEGMENT (fixp->fx_addsy)->flags & SEC_MERGE) != 0)
18153 return 0;
18154
18155 /* There is no place to store an in-place offset for JALR relocations. */
18156 if (jalr_reloc_p (fixp->fx_r_type) && HAVE_IN_PLACE_ADDENDS)
18157 return 0;
18158
18159 /* Likewise an in-range offset of limited PC-relative relocations may
18160 overflow the in-place relocatable field if recalculated against the
18161 start address of the symbol's containing section.
18162
18163 Also, PC relative relocations for MIPS R6 need to be symbol rather than
18164 section relative to allow linker relaxations to be performed later on. */
18165 if (limited_pcrel_reloc_p (fixp->fx_r_type)
18166 && (HAVE_IN_PLACE_ADDENDS || ISA_IS_R6 (file_mips_opts.isa)))
18167 return 0;
18168
18169 /* R_MIPS16_26 relocations against non-MIPS16 functions might resolve
18170 to a floating-point stub. The same is true for non-R_MIPS16_26
18171 relocations against MIPS16 functions; in this case, the stub becomes
18172 the function's canonical address.
18173
18174 Floating-point stubs are stored in unique .mips16.call.* or
18175 .mips16.fn.* sections. If a stub T for function F is in section S,
18176 the first relocation in section S must be against F; this is how the
18177 linker determines the target function. All relocations that might
18178 resolve to T must also be against F. We therefore have the following
18179 restrictions, which are given in an intentionally-redundant way:
18180
18181 1. We cannot reduce R_MIPS16_26 relocations against non-MIPS16
18182 symbols.
18183
18184 2. We cannot reduce a stub's relocations against non-MIPS16 symbols
18185 if that stub might be used.
18186
18187 3. We cannot reduce non-R_MIPS16_26 relocations against MIPS16
18188 symbols.
18189
18190 4. We cannot reduce a stub's relocations against MIPS16 symbols if
18191 that stub might be used.
18192
18193 There is a further restriction:
18194
18195 5. We cannot reduce jump relocations (R_MIPS_26, R_MIPS16_26 or
18196 R_MICROMIPS_26_S1) or branch relocations (R_MIPS_PC26_S2,
18197 R_MIPS_PC21_S2, R_MIPS_PC16, R_MIPS16_PC16_S1,
18198 R_MICROMIPS_PC16_S1, R_MICROMIPS_PC10_S1 or R_MICROMIPS_PC7_S1)
18199 against MIPS16 or microMIPS symbols because we need to keep the
18200 MIPS16 or microMIPS symbol for the purpose of mode mismatch
18201 detection and JAL or BAL to JALX instruction conversion in the
18202 linker.
18203
18204 For simplicity, we deal with (3)-(4) by not reducing _any_ relocation
18205 against a MIPS16 symbol. We deal with (5) by additionally leaving
18206 alone any jump and branch relocations against a microMIPS symbol.
18207
18208 We deal with (1)-(2) by saying that, if there's a R_MIPS16_26
18209 relocation against some symbol R, no relocation against R may be
18210 reduced. (Note that this deals with (2) as well as (1) because
18211 relocations against global symbols will never be reduced on ELF
18212 targets.) This approach is a little simpler than trying to detect
18213 stub sections, and gives the "all or nothing" per-symbol consistency
18214 that we have for MIPS16 symbols. */
18215 if (fixp->fx_subsy == NULL
18216 && (ELF_ST_IS_MIPS16 (S_GET_OTHER (fixp->fx_addsy))
18217 || (ELF_ST_IS_MICROMIPS (S_GET_OTHER (fixp->fx_addsy))
18218 && (jmp_reloc_p (fixp->fx_r_type)
18219 || b_reloc_p (fixp->fx_r_type)))
18220 || *symbol_get_tc (fixp->fx_addsy)))
18221 return 0;
18222
18223 return 1;
18224 }
18225
18226 /* Translate internal representation of relocation info to BFD target
18227 format. */
18228
18229 arelent **
18230 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
18231 {
18232 static arelent *retval[4];
18233 arelent *reloc;
18234 bfd_reloc_code_real_type code;
18235
18236 memset (retval, 0, sizeof(retval));
18237 reloc = retval[0] = XCNEW (arelent);
18238 reloc->sym_ptr_ptr = XNEW (asymbol *);
18239 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
18240 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
18241
18242 if (fixp->fx_pcrel)
18243 {
18244 gas_assert (fixp->fx_r_type == BFD_RELOC_16_PCREL_S2
18245 || fixp->fx_r_type == BFD_RELOC_MIPS16_16_PCREL_S1
18246 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_7_PCREL_S1
18247 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_10_PCREL_S1
18248 || fixp->fx_r_type == BFD_RELOC_MICROMIPS_16_PCREL_S1
18249 || fixp->fx_r_type == BFD_RELOC_32_PCREL
18250 || fixp->fx_r_type == BFD_RELOC_MIPS_21_PCREL_S2
18251 || fixp->fx_r_type == BFD_RELOC_MIPS_26_PCREL_S2
18252 || fixp->fx_r_type == BFD_RELOC_MIPS_18_PCREL_S3
18253 || fixp->fx_r_type == BFD_RELOC_MIPS_19_PCREL_S2
18254 || fixp->fx_r_type == BFD_RELOC_HI16_S_PCREL
18255 || fixp->fx_r_type == BFD_RELOC_LO16_PCREL);
18256
18257 /* At this point, fx_addnumber is "symbol offset - pcrel address".
18258 Relocations want only the symbol offset. */
18259 switch (fixp->fx_r_type)
18260 {
18261 case BFD_RELOC_MIPS_18_PCREL_S3:
18262 reloc->addend = fixp->fx_addnumber + (reloc->address & ~7);
18263 break;
18264 default:
18265 reloc->addend = fixp->fx_addnumber + reloc->address;
18266 break;
18267 }
18268 }
18269 else if (HAVE_IN_PLACE_ADDENDS
18270 && fixp->fx_r_type == BFD_RELOC_MICROMIPS_JMP
18271 && (read_compressed_insn (fixp->fx_frag->fr_literal
18272 + fixp->fx_where, 4) >> 26) == 0x3c)
18273 {
18274 /* Shift is 2, unusually, for microMIPS JALX. Adjust the in-place
18275 addend accordingly. */
18276 reloc->addend = fixp->fx_addnumber >> 1;
18277 }
18278 else
18279 reloc->addend = fixp->fx_addnumber;
18280
18281 /* Since the old MIPS ELF ABI uses Rel instead of Rela, encode the vtable
18282 entry to be used in the relocation's section offset. */
18283 if (! HAVE_NEWABI && fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
18284 {
18285 reloc->address = reloc->addend;
18286 reloc->addend = 0;
18287 }
18288
18289 code = fixp->fx_r_type;
18290
18291 reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
18292 if (reloc->howto == NULL)
18293 {
18294 as_bad_where (fixp->fx_file, fixp->fx_line,
18295 _("cannot represent %s relocation in this object file"
18296 " format"),
18297 bfd_get_reloc_code_name (code));
18298 retval[0] = NULL;
18299 }
18300
18301 return retval;
18302 }
18303
18304 /* Relax a machine dependent frag. This returns the amount by which
18305 the current size of the frag should change. */
18306
18307 int
18308 mips_relax_frag (asection *sec, fragS *fragp, long stretch)
18309 {
18310 if (RELAX_BRANCH_P (fragp->fr_subtype))
18311 {
18312 offsetT old_var = fragp->fr_var;
18313
18314 fragp->fr_var = relaxed_branch_length (fragp, sec, TRUE);
18315
18316 return fragp->fr_var - old_var;
18317 }
18318
18319 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18320 {
18321 offsetT old_var = fragp->fr_var;
18322 offsetT new_var = 4;
18323
18324 if (RELAX_MICROMIPS_TYPE (fragp->fr_subtype) != 0)
18325 new_var = relaxed_micromips_16bit_branch_length (fragp, sec, TRUE);
18326 if (new_var == 4 && RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype))
18327 new_var = relaxed_micromips_32bit_branch_length (fragp, sec, TRUE);
18328 fragp->fr_var = new_var;
18329
18330 return new_var - old_var;
18331 }
18332
18333 if (! RELAX_MIPS16_P (fragp->fr_subtype))
18334 return 0;
18335
18336 if (!mips16_extended_frag (fragp, sec, stretch))
18337 {
18338 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18339 {
18340 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18341 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -6 : -10;
18342 }
18343 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18344 {
18345 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18346 return -2;
18347 }
18348 else
18349 return 0;
18350 }
18351 else if (!mips16_macro_frag (fragp, sec, stretch))
18352 {
18353 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18354 {
18355 fragp->fr_subtype = RELAX_MIPS16_CLEAR_MACRO (fragp->fr_subtype);
18356 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18357 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? -4 : -8;
18358 }
18359 else if (!RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18360 {
18361 fragp->fr_subtype = RELAX_MIPS16_MARK_EXTENDED (fragp->fr_subtype);
18362 return 2;
18363 }
18364 else
18365 return 0;
18366 }
18367 else
18368 {
18369 if (RELAX_MIPS16_MACRO (fragp->fr_subtype))
18370 return 0;
18371 else if (RELAX_MIPS16_EXTENDED (fragp->fr_subtype))
18372 {
18373 fragp->fr_subtype = RELAX_MIPS16_CLEAR_EXTENDED (fragp->fr_subtype);
18374 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18375 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 4 : 8;
18376 }
18377 else
18378 {
18379 fragp->fr_subtype = RELAX_MIPS16_MARK_MACRO (fragp->fr_subtype);
18380 return RELAX_MIPS16_E2 (fragp->fr_subtype) ? 6 : 10;
18381 }
18382 }
18383
18384 return 0;
18385 }
18386
18387 /* Convert a machine dependent frag. */
18388
18389 void
18390 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT asec, fragS *fragp)
18391 {
18392 if (RELAX_BRANCH_P (fragp->fr_subtype))
18393 {
18394 char *buf;
18395 unsigned long insn;
18396 fixS *fixp;
18397
18398 buf = fragp->fr_literal + fragp->fr_fix;
18399 insn = read_insn (buf);
18400
18401 if (!RELAX_BRANCH_TOOFAR (fragp->fr_subtype))
18402 {
18403 /* We generate a fixup instead of applying it right now
18404 because, if there are linker relaxations, we're going to
18405 need the relocations. */
18406 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18407 fragp->fr_symbol, fragp->fr_offset,
18408 TRUE, BFD_RELOC_16_PCREL_S2);
18409 fixp->fx_file = fragp->fr_file;
18410 fixp->fx_line = fragp->fr_line;
18411
18412 buf = write_insn (buf, insn);
18413 }
18414 else
18415 {
18416 int i;
18417
18418 as_warn_where (fragp->fr_file, fragp->fr_line,
18419 _("relaxed out-of-range branch into a jump"));
18420
18421 if (RELAX_BRANCH_UNCOND (fragp->fr_subtype))
18422 goto uncond;
18423
18424 if (!RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18425 {
18426 /* Reverse the branch. */
18427 switch ((insn >> 28) & 0xf)
18428 {
18429 case 4:
18430 if ((insn & 0xff000000) == 0x47000000
18431 || (insn & 0xff600000) == 0x45600000)
18432 {
18433 /* BZ.df/BNZ.df, BZ.V/BNZ.V can have the condition
18434 reversed by tweaking bit 23. */
18435 insn ^= 0x00800000;
18436 }
18437 else
18438 {
18439 /* bc[0-3][tf]l? instructions can have the condition
18440 reversed by tweaking a single TF bit, and their
18441 opcodes all have 0x4???????. */
18442 gas_assert ((insn & 0xf3e00000) == 0x41000000);
18443 insn ^= 0x00010000;
18444 }
18445 break;
18446
18447 case 0:
18448 /* bltz 0x04000000 bgez 0x04010000
18449 bltzal 0x04100000 bgezal 0x04110000 */
18450 gas_assert ((insn & 0xfc0e0000) == 0x04000000);
18451 insn ^= 0x00010000;
18452 break;
18453
18454 case 1:
18455 /* beq 0x10000000 bne 0x14000000
18456 blez 0x18000000 bgtz 0x1c000000 */
18457 insn ^= 0x04000000;
18458 break;
18459
18460 default:
18461 abort ();
18462 }
18463 }
18464
18465 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18466 {
18467 /* Clear the and-link bit. */
18468 gas_assert ((insn & 0xfc1c0000) == 0x04100000);
18469
18470 /* bltzal 0x04100000 bgezal 0x04110000
18471 bltzall 0x04120000 bgezall 0x04130000 */
18472 insn &= ~0x00100000;
18473 }
18474
18475 /* Branch over the branch (if the branch was likely) or the
18476 full jump (not likely case). Compute the offset from the
18477 current instruction to branch to. */
18478 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18479 i = 16;
18480 else
18481 {
18482 /* How many bytes in instructions we've already emitted? */
18483 i = buf - fragp->fr_literal - fragp->fr_fix;
18484 /* How many bytes in instructions from here to the end? */
18485 i = fragp->fr_var - i;
18486 }
18487 /* Convert to instruction count. */
18488 i >>= 2;
18489 /* Branch counts from the next instruction. */
18490 i--;
18491 insn |= i;
18492 /* Branch over the jump. */
18493 buf = write_insn (buf, insn);
18494
18495 /* nop */
18496 buf = write_insn (buf, 0);
18497
18498 if (RELAX_BRANCH_LIKELY (fragp->fr_subtype))
18499 {
18500 /* beql $0, $0, 2f */
18501 insn = 0x50000000;
18502 /* Compute the PC offset from the current instruction to
18503 the end of the variable frag. */
18504 /* How many bytes in instructions we've already emitted? */
18505 i = buf - fragp->fr_literal - fragp->fr_fix;
18506 /* How many bytes in instructions from here to the end? */
18507 i = fragp->fr_var - i;
18508 /* Convert to instruction count. */
18509 i >>= 2;
18510 /* Don't decrement i, because we want to branch over the
18511 delay slot. */
18512 insn |= i;
18513
18514 buf = write_insn (buf, insn);
18515 buf = write_insn (buf, 0);
18516 }
18517
18518 uncond:
18519 if (!RELAX_BRANCH_PIC (fragp->fr_subtype))
18520 {
18521 /* j or jal. */
18522 insn = (RELAX_BRANCH_LINK (fragp->fr_subtype)
18523 ? 0x0c000000 : 0x08000000);
18524
18525 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18526 fragp->fr_symbol, fragp->fr_offset,
18527 FALSE, BFD_RELOC_MIPS_JMP);
18528 fixp->fx_file = fragp->fr_file;
18529 fixp->fx_line = fragp->fr_line;
18530
18531 buf = write_insn (buf, insn);
18532 }
18533 else
18534 {
18535 unsigned long at = RELAX_BRANCH_AT (fragp->fr_subtype);
18536
18537 /* lw/ld $at, <sym>($gp) R_MIPS_GOT16 */
18538 insn = HAVE_64BIT_ADDRESSES ? 0xdf800000 : 0x8f800000;
18539 insn |= at << OP_SH_RT;
18540
18541 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18542 fragp->fr_symbol, fragp->fr_offset,
18543 FALSE, BFD_RELOC_MIPS_GOT16);
18544 fixp->fx_file = fragp->fr_file;
18545 fixp->fx_line = fragp->fr_line;
18546
18547 buf = write_insn (buf, insn);
18548
18549 if (mips_opts.isa == ISA_MIPS1)
18550 /* nop */
18551 buf = write_insn (buf, 0);
18552
18553 /* d/addiu $at, $at, <sym> R_MIPS_LO16 */
18554 insn = HAVE_64BIT_ADDRESSES ? 0x64000000 : 0x24000000;
18555 insn |= at << OP_SH_RS | at << OP_SH_RT;
18556
18557 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18558 fragp->fr_symbol, fragp->fr_offset,
18559 FALSE, BFD_RELOC_LO16);
18560 fixp->fx_file = fragp->fr_file;
18561 fixp->fx_line = fragp->fr_line;
18562
18563 buf = write_insn (buf, insn);
18564
18565 /* j(al)r $at. */
18566 if (RELAX_BRANCH_LINK (fragp->fr_subtype))
18567 insn = 0x0000f809;
18568 else
18569 insn = 0x00000008;
18570 insn |= at << OP_SH_RS;
18571
18572 buf = write_insn (buf, insn);
18573 }
18574 }
18575
18576 fragp->fr_fix += fragp->fr_var;
18577 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18578 return;
18579 }
18580
18581 /* Relax microMIPS branches. */
18582 if (RELAX_MICROMIPS_P (fragp->fr_subtype))
18583 {
18584 char *buf = fragp->fr_literal + fragp->fr_fix;
18585 bfd_boolean compact = RELAX_MICROMIPS_COMPACT (fragp->fr_subtype);
18586 bfd_boolean insn32 = RELAX_MICROMIPS_INSN32 (fragp->fr_subtype);
18587 bfd_boolean nods = RELAX_MICROMIPS_NODS (fragp->fr_subtype);
18588 bfd_boolean pic = RELAX_MICROMIPS_PIC (fragp->fr_subtype);
18589 bfd_boolean al = RELAX_MICROMIPS_LINK (fragp->fr_subtype);
18590 int type = RELAX_MICROMIPS_TYPE (fragp->fr_subtype);
18591 bfd_boolean short_ds;
18592 unsigned long insn;
18593 fixS *fixp;
18594
18595 fragp->fr_fix += fragp->fr_var;
18596
18597 /* Handle 16-bit branches that fit or are forced to fit. */
18598 if (type != 0 && !RELAX_MICROMIPS_TOOFAR16 (fragp->fr_subtype))
18599 {
18600 /* We generate a fixup instead of applying it right now,
18601 because if there is linker relaxation, we're going to
18602 need the relocations. */
18603 switch (type)
18604 {
18605 case 'D':
18606 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18607 fragp->fr_symbol, fragp->fr_offset,
18608 TRUE, BFD_RELOC_MICROMIPS_10_PCREL_S1);
18609 break;
18610 case 'E':
18611 fixp = fix_new (fragp, buf - fragp->fr_literal, 2,
18612 fragp->fr_symbol, fragp->fr_offset,
18613 TRUE, BFD_RELOC_MICROMIPS_7_PCREL_S1);
18614 break;
18615 default:
18616 abort ();
18617 }
18618
18619 fixp->fx_file = fragp->fr_file;
18620 fixp->fx_line = fragp->fr_line;
18621
18622 /* These relocations can have an addend that won't fit in
18623 2 octets. */
18624 fixp->fx_no_overflow = 1;
18625
18626 return;
18627 }
18628
18629 /* Handle 32-bit branches that fit or are forced to fit. */
18630 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18631 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18632 {
18633 /* We generate a fixup instead of applying it right now,
18634 because if there is linker relaxation, we're going to
18635 need the relocations. */
18636 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18637 fragp->fr_symbol, fragp->fr_offset,
18638 TRUE, BFD_RELOC_MICROMIPS_16_PCREL_S1);
18639 fixp->fx_file = fragp->fr_file;
18640 fixp->fx_line = fragp->fr_line;
18641
18642 if (type == 0)
18643 {
18644 insn = read_compressed_insn (buf, 4);
18645 buf += 4;
18646
18647 if (nods)
18648 {
18649 /* Check the short-delay-slot bit. */
18650 if (!al || (insn & 0x02000000) != 0)
18651 buf = write_compressed_insn (buf, 0x0c00, 2);
18652 else
18653 buf = write_compressed_insn (buf, 0x00000000, 4);
18654 }
18655
18656 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18657 return;
18658 }
18659 }
18660
18661 /* Relax 16-bit branches to 32-bit branches. */
18662 if (type != 0)
18663 {
18664 insn = read_compressed_insn (buf, 2);
18665
18666 if ((insn & 0xfc00) == 0xcc00) /* b16 */
18667 insn = 0x94000000; /* beq */
18668 else if ((insn & 0xdc00) == 0x8c00) /* beqz16/bnez16 */
18669 {
18670 unsigned long regno;
18671
18672 regno = (insn >> MICROMIPSOP_SH_MD) & MICROMIPSOP_MASK_MD;
18673 regno = micromips_to_32_reg_d_map [regno];
18674 insn = ((insn & 0x2000) << 16) | 0x94000000; /* beq/bne */
18675 insn |= regno << MICROMIPSOP_SH_RS;
18676 }
18677 else
18678 abort ();
18679
18680 /* Nothing else to do, just write it out. */
18681 if (!RELAX_MICROMIPS_RELAX32 (fragp->fr_subtype)
18682 || !RELAX_MICROMIPS_TOOFAR32 (fragp->fr_subtype))
18683 {
18684 buf = write_compressed_insn (buf, insn, 4);
18685 if (nods)
18686 buf = write_compressed_insn (buf, 0x0c00, 2);
18687 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18688 return;
18689 }
18690 }
18691 else
18692 insn = read_compressed_insn (buf, 4);
18693
18694 /* Relax 32-bit branches to a sequence of instructions. */
18695 as_warn_where (fragp->fr_file, fragp->fr_line,
18696 _("relaxed out-of-range branch into a jump"));
18697
18698 /* Set the short-delay-slot bit. */
18699 short_ds = !al || (insn & 0x02000000) != 0;
18700
18701 if (!RELAX_MICROMIPS_UNCOND (fragp->fr_subtype))
18702 {
18703 symbolS *l;
18704
18705 /* Reverse the branch. */
18706 if ((insn & 0xfc000000) == 0x94000000 /* beq */
18707 || (insn & 0xfc000000) == 0xb4000000) /* bne */
18708 insn ^= 0x20000000;
18709 else if ((insn & 0xffe00000) == 0x40000000 /* bltz */
18710 || (insn & 0xffe00000) == 0x40400000 /* bgez */
18711 || (insn & 0xffe00000) == 0x40800000 /* blez */
18712 || (insn & 0xffe00000) == 0x40c00000 /* bgtz */
18713 || (insn & 0xffe00000) == 0x40a00000 /* bnezc */
18714 || (insn & 0xffe00000) == 0x40e00000 /* beqzc */
18715 || (insn & 0xffe00000) == 0x40200000 /* bltzal */
18716 || (insn & 0xffe00000) == 0x40600000 /* bgezal */
18717 || (insn & 0xffe00000) == 0x42200000 /* bltzals */
18718 || (insn & 0xffe00000) == 0x42600000) /* bgezals */
18719 insn ^= 0x00400000;
18720 else if ((insn & 0xffe30000) == 0x43800000 /* bc1f */
18721 || (insn & 0xffe30000) == 0x43a00000 /* bc1t */
18722 || (insn & 0xffe30000) == 0x42800000 /* bc2f */
18723 || (insn & 0xffe30000) == 0x42a00000) /* bc2t */
18724 insn ^= 0x00200000;
18725 else if ((insn & 0xff000000) == 0x83000000 /* BZ.df
18726 BNZ.df */
18727 || (insn & 0xff600000) == 0x81600000) /* BZ.V
18728 BNZ.V */
18729 insn ^= 0x00800000;
18730 else
18731 abort ();
18732
18733 if (al)
18734 {
18735 /* Clear the and-link and short-delay-slot bits. */
18736 gas_assert ((insn & 0xfda00000) == 0x40200000);
18737
18738 /* bltzal 0x40200000 bgezal 0x40600000 */
18739 /* bltzals 0x42200000 bgezals 0x42600000 */
18740 insn &= ~0x02200000;
18741 }
18742
18743 /* Make a label at the end for use with the branch. */
18744 l = symbol_new (micromips_label_name (), asec, fragp->fr_fix, fragp);
18745 micromips_label_inc ();
18746 S_SET_OTHER (l, ELF_ST_SET_MICROMIPS (S_GET_OTHER (l)));
18747
18748 /* Refer to it. */
18749 fixp = fix_new (fragp, buf - fragp->fr_literal, 4, l, 0, TRUE,
18750 BFD_RELOC_MICROMIPS_16_PCREL_S1);
18751 fixp->fx_file = fragp->fr_file;
18752 fixp->fx_line = fragp->fr_line;
18753
18754 /* Branch over the jump. */
18755 buf = write_compressed_insn (buf, insn, 4);
18756
18757 if (!compact)
18758 {
18759 /* nop */
18760 if (insn32)
18761 buf = write_compressed_insn (buf, 0x00000000, 4);
18762 else
18763 buf = write_compressed_insn (buf, 0x0c00, 2);
18764 }
18765 }
18766
18767 if (!pic)
18768 {
18769 unsigned long jal = (short_ds || nods
18770 ? 0x74000000 : 0xf4000000); /* jal/s */
18771
18772 /* j/jal/jals <sym> R_MICROMIPS_26_S1 */
18773 insn = al ? jal : 0xd4000000;
18774
18775 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18776 fragp->fr_symbol, fragp->fr_offset,
18777 FALSE, BFD_RELOC_MICROMIPS_JMP);
18778 fixp->fx_file = fragp->fr_file;
18779 fixp->fx_line = fragp->fr_line;
18780
18781 buf = write_compressed_insn (buf, insn, 4);
18782
18783 if (compact || nods)
18784 {
18785 /* nop */
18786 if (insn32)
18787 buf = write_compressed_insn (buf, 0x00000000, 4);
18788 else
18789 buf = write_compressed_insn (buf, 0x0c00, 2);
18790 }
18791 }
18792 else
18793 {
18794 unsigned long at = RELAX_MICROMIPS_AT (fragp->fr_subtype);
18795
18796 /* lw/ld $at, <sym>($gp) R_MICROMIPS_GOT16 */
18797 insn = HAVE_64BIT_ADDRESSES ? 0xdc1c0000 : 0xfc1c0000;
18798 insn |= at << MICROMIPSOP_SH_RT;
18799
18800 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18801 fragp->fr_symbol, fragp->fr_offset,
18802 FALSE, BFD_RELOC_MICROMIPS_GOT16);
18803 fixp->fx_file = fragp->fr_file;
18804 fixp->fx_line = fragp->fr_line;
18805
18806 buf = write_compressed_insn (buf, insn, 4);
18807
18808 /* d/addiu $at, $at, <sym> R_MICROMIPS_LO16 */
18809 insn = HAVE_64BIT_ADDRESSES ? 0x5c000000 : 0x30000000;
18810 insn |= at << MICROMIPSOP_SH_RT | at << MICROMIPSOP_SH_RS;
18811
18812 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18813 fragp->fr_symbol, fragp->fr_offset,
18814 FALSE, BFD_RELOC_MICROMIPS_LO16);
18815 fixp->fx_file = fragp->fr_file;
18816 fixp->fx_line = fragp->fr_line;
18817
18818 buf = write_compressed_insn (buf, insn, 4);
18819
18820 if (insn32)
18821 {
18822 /* jr/jalr $at */
18823 insn = 0x00000f3c | (al ? RA : ZERO) << MICROMIPSOP_SH_RT;
18824 insn |= at << MICROMIPSOP_SH_RS;
18825
18826 buf = write_compressed_insn (buf, insn, 4);
18827
18828 if (compact || nods)
18829 /* nop */
18830 buf = write_compressed_insn (buf, 0x00000000, 4);
18831 }
18832 else
18833 {
18834 /* jr/jrc/jalr/jalrs $at */
18835 unsigned long jalr = short_ds ? 0x45e0 : 0x45c0; /* jalr/s */
18836 unsigned long jr = compact || nods ? 0x45a0 : 0x4580; /* jr/c */
18837
18838 insn = al ? jalr : jr;
18839 insn |= at << MICROMIPSOP_SH_MJ;
18840
18841 buf = write_compressed_insn (buf, insn, 2);
18842 if (al && nods)
18843 {
18844 /* nop */
18845 if (short_ds)
18846 buf = write_compressed_insn (buf, 0x0c00, 2);
18847 else
18848 buf = write_compressed_insn (buf, 0x00000000, 4);
18849 }
18850 }
18851 }
18852
18853 gas_assert (buf == fragp->fr_literal + fragp->fr_fix);
18854 return;
18855 }
18856
18857 if (RELAX_MIPS16_P (fragp->fr_subtype))
18858 {
18859 int type;
18860 const struct mips_int_operand *operand;
18861 offsetT val;
18862 char *buf;
18863 unsigned int user_length;
18864 bfd_boolean need_reloc;
18865 unsigned long insn;
18866 bfd_boolean mac;
18867 bfd_boolean ext;
18868 segT symsec;
18869
18870 type = RELAX_MIPS16_TYPE (fragp->fr_subtype);
18871 operand = mips16_immed_operand (type, FALSE);
18872
18873 mac = RELAX_MIPS16_MACRO (fragp->fr_subtype);
18874 ext = RELAX_MIPS16_EXTENDED (fragp->fr_subtype);
18875 val = resolve_symbol_value (fragp->fr_symbol) + fragp->fr_offset;
18876
18877 symsec = S_GET_SEGMENT (fragp->fr_symbol);
18878 need_reloc = (S_FORCE_RELOC (fragp->fr_symbol, TRUE)
18879 || (operand->root.type == OP_PCREL && !mac
18880 ? asec != symsec
18881 : !bfd_is_abs_section (symsec)));
18882
18883 if (operand->root.type == OP_PCREL && !mac)
18884 {
18885 const struct mips_pcrel_operand *pcrel_op;
18886
18887 pcrel_op = (const struct mips_pcrel_operand *) operand;
18888
18889 if (pcrel_op->include_isa_bit && !need_reloc)
18890 {
18891 if (!mips_ignore_branch_isa
18892 && !ELF_ST_IS_MIPS16 (S_GET_OTHER (fragp->fr_symbol)))
18893 as_bad_where (fragp->fr_file, fragp->fr_line,
18894 _("branch to a symbol in another ISA mode"));
18895 else if ((fragp->fr_offset & 0x1) != 0)
18896 as_bad_where (fragp->fr_file, fragp->fr_line,
18897 _("branch to misaligned address (0x%lx)"),
18898 (long) val);
18899 }
18900
18901 val = mips16_pcrel_val (fragp, pcrel_op, val, 0);
18902
18903 /* Make sure the section winds up with the alignment we have
18904 assumed. */
18905 if (operand->shift > 0)
18906 record_alignment (asec, operand->shift);
18907 }
18908
18909 if (RELAX_MIPS16_JAL_DSLOT (fragp->fr_subtype)
18910 || RELAX_MIPS16_DSLOT (fragp->fr_subtype))
18911 {
18912 if (mac)
18913 as_warn_where (fragp->fr_file, fragp->fr_line,
18914 _("macro instruction expanded into multiple "
18915 "instructions in a branch delay slot"));
18916 else if (ext)
18917 as_warn_where (fragp->fr_file, fragp->fr_line,
18918 _("extended instruction in a branch delay slot"));
18919 }
18920 else if (RELAX_MIPS16_NOMACRO (fragp->fr_subtype) && mac)
18921 as_warn_where (fragp->fr_file, fragp->fr_line,
18922 _("macro instruction expanded into multiple "
18923 "instructions"));
18924
18925 buf = fragp->fr_literal + fragp->fr_fix;
18926
18927 insn = read_compressed_insn (buf, 2);
18928 if (ext)
18929 insn |= MIPS16_EXTEND;
18930
18931 if (RELAX_MIPS16_USER_EXT (fragp->fr_subtype))
18932 user_length = 4;
18933 else if (RELAX_MIPS16_USER_SMALL (fragp->fr_subtype))
18934 user_length = 2;
18935 else
18936 user_length = 0;
18937
18938 if (mac)
18939 {
18940 unsigned long reg;
18941 unsigned long new;
18942 unsigned long op;
18943 bfd_boolean e2;
18944
18945 gas_assert (type == 'A' || type == 'B' || type == 'E');
18946 gas_assert (RELAX_MIPS16_SYM32 (fragp->fr_subtype));
18947
18948 e2 = RELAX_MIPS16_E2 (fragp->fr_subtype);
18949
18950 if (need_reloc)
18951 {
18952 fixS *fixp;
18953
18954 gas_assert (!RELAX_MIPS16_PIC (fragp->fr_subtype));
18955
18956 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
18957 fragp->fr_symbol, fragp->fr_offset,
18958 FALSE, BFD_RELOC_MIPS16_HI16_S);
18959 fixp->fx_file = fragp->fr_file;
18960 fixp->fx_line = fragp->fr_line;
18961
18962 fixp = fix_new (fragp, buf - fragp->fr_literal + (e2 ? 4 : 8), 4,
18963 fragp->fr_symbol, fragp->fr_offset,
18964 FALSE, BFD_RELOC_MIPS16_LO16);
18965 fixp->fx_file = fragp->fr_file;
18966 fixp->fx_line = fragp->fr_line;
18967
18968 val = 0;
18969 }
18970
18971 switch (insn & 0xf800)
18972 {
18973 case 0x0800: /* ADDIU */
18974 reg = (insn >> 8) & 0x7;
18975 op = 0xf0004800 | (reg << 8);
18976 break;
18977 case 0xb000: /* LW */
18978 reg = (insn >> 8) & 0x7;
18979 op = 0xf0009800 | (reg << 8) | (reg << 5);
18980 break;
18981 case 0xf800: /* I64 */
18982 reg = (insn >> 5) & 0x7;
18983 switch (insn & 0x0700)
18984 {
18985 case 0x0400: /* LD */
18986 op = 0xf0003800 | (reg << 8) | (reg << 5);
18987 break;
18988 case 0x0600: /* DADDIU */
18989 op = 0xf000fd00 | (reg << 5);
18990 break;
18991 default:
18992 abort ();
18993 }
18994 break;
18995 default:
18996 abort ();
18997 }
18998
18999 new = (e2 ? 0xf0006820 : 0xf0006800) | (reg << 8); /* LUI/LI */
19000 new |= mips16_immed_extend ((val + 0x8000) >> 16, 16);
19001 buf = write_compressed_insn (buf, new, 4);
19002 if (!e2)
19003 {
19004 new = 0xf4003000 | (reg << 8) | (reg << 5); /* SLL */
19005 buf = write_compressed_insn (buf, new, 4);
19006 }
19007 op |= mips16_immed_extend (val, 16);
19008 buf = write_compressed_insn (buf, op, 4);
19009
19010 fragp->fr_fix += e2 ? 8 : 12;
19011 }
19012 else
19013 {
19014 unsigned int length = ext ? 4 : 2;
19015
19016 if (need_reloc)
19017 {
19018 bfd_reloc_code_real_type reloc = BFD_RELOC_NONE;
19019 fixS *fixp;
19020
19021 switch (type)
19022 {
19023 case 'p':
19024 case 'q':
19025 reloc = BFD_RELOC_MIPS16_16_PCREL_S1;
19026 break;
19027 default:
19028 break;
19029 }
19030 if (mac || reloc == BFD_RELOC_NONE)
19031 as_bad_where (fragp->fr_file, fragp->fr_line,
19032 _("unsupported relocation"));
19033 else if (ext)
19034 {
19035 fixp = fix_new (fragp, buf - fragp->fr_literal, 4,
19036 fragp->fr_symbol, fragp->fr_offset,
19037 TRUE, reloc);
19038 fixp->fx_file = fragp->fr_file;
19039 fixp->fx_line = fragp->fr_line;
19040 }
19041 else
19042 as_bad_where (fragp->fr_file, fragp->fr_line,
19043 _("invalid unextended operand value"));
19044 }
19045 else
19046 mips16_immed (fragp->fr_file, fragp->fr_line, type,
19047 BFD_RELOC_UNUSED, val, user_length, &insn);
19048
19049 gas_assert (mips16_opcode_length (insn) == length);
19050 write_compressed_insn (buf, insn, length);
19051 fragp->fr_fix += length;
19052 }
19053 }
19054 else
19055 {
19056 relax_substateT subtype = fragp->fr_subtype;
19057 bfd_boolean second_longer = (subtype & RELAX_SECOND_LONGER) != 0;
19058 bfd_boolean use_second = (subtype & RELAX_USE_SECOND) != 0;
19059 int first, second;
19060 fixS *fixp;
19061
19062 first = RELAX_FIRST (subtype);
19063 second = RELAX_SECOND (subtype);
19064 fixp = (fixS *) fragp->fr_opcode;
19065
19066 /* If the delay slot chosen does not match the size of the instruction,
19067 then emit a warning. */
19068 if ((!use_second && (subtype & RELAX_DELAY_SLOT_SIZE_FIRST) != 0)
19069 || (use_second && (subtype & RELAX_DELAY_SLOT_SIZE_SECOND) != 0))
19070 {
19071 relax_substateT s;
19072 const char *msg;
19073
19074 s = subtype & (RELAX_DELAY_SLOT_16BIT
19075 | RELAX_DELAY_SLOT_SIZE_FIRST
19076 | RELAX_DELAY_SLOT_SIZE_SECOND);
19077 msg = macro_warning (s);
19078 if (msg != NULL)
19079 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
19080 subtype &= ~s;
19081 }
19082
19083 /* Possibly emit a warning if we've chosen the longer option. */
19084 if (use_second == second_longer)
19085 {
19086 relax_substateT s;
19087 const char *msg;
19088
19089 s = (subtype
19090 & (RELAX_SECOND_LONGER | RELAX_NOMACRO | RELAX_DELAY_SLOT));
19091 msg = macro_warning (s);
19092 if (msg != NULL)
19093 as_warn_where (fragp->fr_file, fragp->fr_line, "%s", msg);
19094 subtype &= ~s;
19095 }
19096
19097 /* Go through all the fixups for the first sequence. Disable them
19098 (by marking them as done) if we're going to use the second
19099 sequence instead. */
19100 while (fixp
19101 && fixp->fx_frag == fragp
19102 && fixp->fx_where < fragp->fr_fix - second)
19103 {
19104 if (subtype & RELAX_USE_SECOND)
19105 fixp->fx_done = 1;
19106 fixp = fixp->fx_next;
19107 }
19108
19109 /* Go through the fixups for the second sequence. Disable them if
19110 we're going to use the first sequence, otherwise adjust their
19111 addresses to account for the relaxation. */
19112 while (fixp && fixp->fx_frag == fragp)
19113 {
19114 if (subtype & RELAX_USE_SECOND)
19115 fixp->fx_where -= first;
19116 else
19117 fixp->fx_done = 1;
19118 fixp = fixp->fx_next;
19119 }
19120
19121 /* Now modify the frag contents. */
19122 if (subtype & RELAX_USE_SECOND)
19123 {
19124 char *start;
19125
19126 start = fragp->fr_literal + fragp->fr_fix - first - second;
19127 memmove (start, start + first, second);
19128 fragp->fr_fix -= first;
19129 }
19130 else
19131 fragp->fr_fix -= second;
19132 }
19133 }
19134
19135 /* This function is called after the relocs have been generated.
19136 We've been storing mips16 text labels as odd. Here we convert them
19137 back to even for the convenience of the debugger. */
19138
19139 void
19140 mips_frob_file_after_relocs (void)
19141 {
19142 asymbol **syms;
19143 unsigned int count, i;
19144
19145 syms = bfd_get_outsymbols (stdoutput);
19146 count = bfd_get_symcount (stdoutput);
19147 for (i = 0; i < count; i++, syms++)
19148 if (ELF_ST_IS_COMPRESSED (elf_symbol (*syms)->internal_elf_sym.st_other)
19149 && ((*syms)->value & 1) != 0)
19150 {
19151 (*syms)->value &= ~1;
19152 /* If the symbol has an odd size, it was probably computed
19153 incorrectly, so adjust that as well. */
19154 if ((elf_symbol (*syms)->internal_elf_sym.st_size & 1) != 0)
19155 ++elf_symbol (*syms)->internal_elf_sym.st_size;
19156 }
19157 }
19158
19159 /* This function is called whenever a label is defined, including fake
19160 labels instantiated off the dot special symbol. It is used when
19161 handling branch delays; if a branch has a label, we assume we cannot
19162 move it. This also bumps the value of the symbol by 1 in compressed
19163 code. */
19164
19165 static void
19166 mips_record_label (symbolS *sym)
19167 {
19168 segment_info_type *si = seg_info (now_seg);
19169 struct insn_label_list *l;
19170
19171 if (free_insn_labels == NULL)
19172 l = XNEW (struct insn_label_list);
19173 else
19174 {
19175 l = free_insn_labels;
19176 free_insn_labels = l->next;
19177 }
19178
19179 l->label = sym;
19180 l->next = si->label_list;
19181 si->label_list = l;
19182 }
19183
19184 /* This function is called as tc_frob_label() whenever a label is defined
19185 and adds a DWARF-2 record we only want for true labels. */
19186
19187 void
19188 mips_define_label (symbolS *sym)
19189 {
19190 mips_record_label (sym);
19191 dwarf2_emit_label (sym);
19192 }
19193
19194 /* This function is called by tc_new_dot_label whenever a new dot symbol
19195 is defined. */
19196
19197 void
19198 mips_add_dot_label (symbolS *sym)
19199 {
19200 mips_record_label (sym);
19201 if (mips_assembling_insn && HAVE_CODE_COMPRESSION)
19202 mips_compressed_mark_label (sym);
19203 }
19204 \f
19205 /* Converting ASE flags from internal to .MIPS.abiflags values. */
19206 static unsigned int
19207 mips_convert_ase_flags (int ase)
19208 {
19209 unsigned int ext_ases = 0;
19210
19211 if (ase & ASE_DSP)
19212 ext_ases |= AFL_ASE_DSP;
19213 if (ase & ASE_DSPR2)
19214 ext_ases |= AFL_ASE_DSPR2;
19215 if (ase & ASE_DSPR3)
19216 ext_ases |= AFL_ASE_DSPR3;
19217 if (ase & ASE_EVA)
19218 ext_ases |= AFL_ASE_EVA;
19219 if (ase & ASE_MCU)
19220 ext_ases |= AFL_ASE_MCU;
19221 if (ase & ASE_MDMX)
19222 ext_ases |= AFL_ASE_MDMX;
19223 if (ase & ASE_MIPS3D)
19224 ext_ases |= AFL_ASE_MIPS3D;
19225 if (ase & ASE_MT)
19226 ext_ases |= AFL_ASE_MT;
19227 if (ase & ASE_SMARTMIPS)
19228 ext_ases |= AFL_ASE_SMARTMIPS;
19229 if (ase & ASE_VIRT)
19230 ext_ases |= AFL_ASE_VIRT;
19231 if (ase & ASE_MSA)
19232 ext_ases |= AFL_ASE_MSA;
19233 if (ase & ASE_XPA)
19234 ext_ases |= AFL_ASE_XPA;
19235 if (ase & ASE_MIPS16E2)
19236 ext_ases |= file_ase_mips16 ? AFL_ASE_MIPS16E2 : 0;
19237 if (ase & ASE_CRC)
19238 ext_ases |= AFL_ASE_CRC;
19239 if (ase & ASE_GINV)
19240 ext_ases |= AFL_ASE_GINV;
19241 if (ase & ASE_LOONGSON_MMI)
19242 ext_ases |= AFL_ASE_LOONGSON_MMI;
19243 if (ase & ASE_LOONGSON_CAM)
19244 ext_ases |= AFL_ASE_LOONGSON_CAM;
19245 if (ase & ASE_LOONGSON_EXT)
19246 ext_ases |= AFL_ASE_LOONGSON_EXT;
19247 if (ase & ASE_LOONGSON_EXT2)
19248 ext_ases |= AFL_ASE_LOONGSON_EXT2;
19249
19250 return ext_ases;
19251 }
19252 /* Some special processing for a MIPS ELF file. */
19253
19254 void
19255 mips_elf_final_processing (void)
19256 {
19257 int fpabi;
19258 Elf_Internal_ABIFlags_v0 flags;
19259
19260 flags.version = 0;
19261 flags.isa_rev = 0;
19262 switch (file_mips_opts.isa)
19263 {
19264 case INSN_ISA1:
19265 flags.isa_level = 1;
19266 break;
19267 case INSN_ISA2:
19268 flags.isa_level = 2;
19269 break;
19270 case INSN_ISA3:
19271 flags.isa_level = 3;
19272 break;
19273 case INSN_ISA4:
19274 flags.isa_level = 4;
19275 break;
19276 case INSN_ISA5:
19277 flags.isa_level = 5;
19278 break;
19279 case INSN_ISA32:
19280 flags.isa_level = 32;
19281 flags.isa_rev = 1;
19282 break;
19283 case INSN_ISA32R2:
19284 flags.isa_level = 32;
19285 flags.isa_rev = 2;
19286 break;
19287 case INSN_ISA32R3:
19288 flags.isa_level = 32;
19289 flags.isa_rev = 3;
19290 break;
19291 case INSN_ISA32R5:
19292 flags.isa_level = 32;
19293 flags.isa_rev = 5;
19294 break;
19295 case INSN_ISA32R6:
19296 flags.isa_level = 32;
19297 flags.isa_rev = 6;
19298 break;
19299 case INSN_ISA64:
19300 flags.isa_level = 64;
19301 flags.isa_rev = 1;
19302 break;
19303 case INSN_ISA64R2:
19304 flags.isa_level = 64;
19305 flags.isa_rev = 2;
19306 break;
19307 case INSN_ISA64R3:
19308 flags.isa_level = 64;
19309 flags.isa_rev = 3;
19310 break;
19311 case INSN_ISA64R5:
19312 flags.isa_level = 64;
19313 flags.isa_rev = 5;
19314 break;
19315 case INSN_ISA64R6:
19316 flags.isa_level = 64;
19317 flags.isa_rev = 6;
19318 break;
19319 }
19320
19321 flags.gpr_size = file_mips_opts.gp == 32 ? AFL_REG_32 : AFL_REG_64;
19322 flags.cpr1_size = file_mips_opts.soft_float ? AFL_REG_NONE
19323 : (file_mips_opts.ase & ASE_MSA) ? AFL_REG_128
19324 : (file_mips_opts.fp == 64) ? AFL_REG_64
19325 : AFL_REG_32;
19326 flags.cpr2_size = AFL_REG_NONE;
19327 flags.fp_abi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19328 Tag_GNU_MIPS_ABI_FP);
19329 flags.isa_ext = bfd_mips_isa_ext (stdoutput);
19330 flags.ases = mips_convert_ase_flags (file_mips_opts.ase);
19331 if (file_ase_mips16)
19332 flags.ases |= AFL_ASE_MIPS16;
19333 if (file_ase_micromips)
19334 flags.ases |= AFL_ASE_MICROMIPS;
19335 flags.flags1 = 0;
19336 if ((ISA_HAS_ODD_SINGLE_FPR (file_mips_opts.isa, file_mips_opts.arch)
19337 || file_mips_opts.fp == 64)
19338 && file_mips_opts.oddspreg)
19339 flags.flags1 |= AFL_FLAGS1_ODDSPREG;
19340 flags.flags2 = 0;
19341
19342 bfd_mips_elf_swap_abiflags_v0_out (stdoutput, &flags,
19343 ((Elf_External_ABIFlags_v0 *)
19344 mips_flags_frag));
19345
19346 /* Write out the register information. */
19347 if (mips_abi != N64_ABI)
19348 {
19349 Elf32_RegInfo s;
19350
19351 s.ri_gprmask = mips_gprmask;
19352 s.ri_cprmask[0] = mips_cprmask[0];
19353 s.ri_cprmask[1] = mips_cprmask[1];
19354 s.ri_cprmask[2] = mips_cprmask[2];
19355 s.ri_cprmask[3] = mips_cprmask[3];
19356 /* The gp_value field is set by the MIPS ELF backend. */
19357
19358 bfd_mips_elf32_swap_reginfo_out (stdoutput, &s,
19359 ((Elf32_External_RegInfo *)
19360 mips_regmask_frag));
19361 }
19362 else
19363 {
19364 Elf64_Internal_RegInfo s;
19365
19366 s.ri_gprmask = mips_gprmask;
19367 s.ri_pad = 0;
19368 s.ri_cprmask[0] = mips_cprmask[0];
19369 s.ri_cprmask[1] = mips_cprmask[1];
19370 s.ri_cprmask[2] = mips_cprmask[2];
19371 s.ri_cprmask[3] = mips_cprmask[3];
19372 /* The gp_value field is set by the MIPS ELF backend. */
19373
19374 bfd_mips_elf64_swap_reginfo_out (stdoutput, &s,
19375 ((Elf64_External_RegInfo *)
19376 mips_regmask_frag));
19377 }
19378
19379 /* Set the MIPS ELF flag bits. FIXME: There should probably be some
19380 sort of BFD interface for this. */
19381 if (mips_any_noreorder)
19382 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NOREORDER;
19383 if (mips_pic != NO_PIC)
19384 {
19385 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_PIC;
19386 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19387 }
19388 if (mips_abicalls)
19389 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_CPIC;
19390
19391 /* Set MIPS ELF flags for ASEs. Note that not all ASEs have flags
19392 defined at present; this might need to change in future. */
19393 if (file_ase_mips16)
19394 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_M16;
19395 if (file_ase_micromips)
19396 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MICROMIPS;
19397 if (file_mips_opts.ase & ASE_MDMX)
19398 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_ARCH_ASE_MDMX;
19399
19400 /* Set the MIPS ELF ABI flags. */
19401 if (mips_abi == O32_ABI && USE_E_MIPS_ABI_O32)
19402 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O32;
19403 else if (mips_abi == O64_ABI)
19404 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_O64;
19405 else if (mips_abi == EABI_ABI)
19406 {
19407 if (file_mips_opts.gp == 64)
19408 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI64;
19409 else
19410 elf_elfheader (stdoutput)->e_flags |= E_MIPS_ABI_EABI32;
19411 }
19412
19413 /* Nothing to do for N32_ABI or N64_ABI. */
19414
19415 if (mips_32bitmode)
19416 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_32BITMODE;
19417
19418 if (mips_nan2008 == 1)
19419 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_NAN2008;
19420
19421 /* 32 bit code with 64 bit FP registers. */
19422 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
19423 Tag_GNU_MIPS_ABI_FP);
19424 if (fpabi == Val_GNU_MIPS_ABI_FP_OLD_64)
19425 elf_elfheader (stdoutput)->e_flags |= EF_MIPS_FP64;
19426 }
19427 \f
19428 typedef struct proc {
19429 symbolS *func_sym;
19430 symbolS *func_end_sym;
19431 unsigned long reg_mask;
19432 unsigned long reg_offset;
19433 unsigned long fpreg_mask;
19434 unsigned long fpreg_offset;
19435 unsigned long frame_offset;
19436 unsigned long frame_reg;
19437 unsigned long pc_reg;
19438 } procS;
19439
19440 static procS cur_proc;
19441 static procS *cur_proc_ptr;
19442 static int numprocs;
19443
19444 /* Implement NOP_OPCODE. We encode a MIPS16 nop as "1", a microMIPS nop
19445 as "2", and a normal nop as "0". */
19446
19447 #define NOP_OPCODE_MIPS 0
19448 #define NOP_OPCODE_MIPS16 1
19449 #define NOP_OPCODE_MICROMIPS 2
19450
19451 char
19452 mips_nop_opcode (void)
19453 {
19454 if (seg_info (now_seg)->tc_segment_info_data.micromips)
19455 return NOP_OPCODE_MICROMIPS;
19456 else if (seg_info (now_seg)->tc_segment_info_data.mips16)
19457 return NOP_OPCODE_MIPS16;
19458 else
19459 return NOP_OPCODE_MIPS;
19460 }
19461
19462 /* Fill in an rs_align_code fragment. Unlike elsewhere we want to use
19463 32-bit microMIPS NOPs here (if applicable). */
19464
19465 void
19466 mips_handle_align (fragS *fragp)
19467 {
19468 char nop_opcode;
19469 char *p;
19470 int bytes, size, excess;
19471 valueT opcode;
19472
19473 if (fragp->fr_type != rs_align_code)
19474 return;
19475
19476 p = fragp->fr_literal + fragp->fr_fix;
19477 nop_opcode = *p;
19478 switch (nop_opcode)
19479 {
19480 case NOP_OPCODE_MICROMIPS:
19481 opcode = micromips_nop32_insn.insn_opcode;
19482 size = 4;
19483 break;
19484 case NOP_OPCODE_MIPS16:
19485 opcode = mips16_nop_insn.insn_opcode;
19486 size = 2;
19487 break;
19488 case NOP_OPCODE_MIPS:
19489 default:
19490 opcode = nop_insn.insn_opcode;
19491 size = 4;
19492 break;
19493 }
19494
19495 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
19496 excess = bytes % size;
19497
19498 /* Handle the leading part if we're not inserting a whole number of
19499 instructions, and make it the end of the fixed part of the frag.
19500 Try to fit in a short microMIPS NOP if applicable and possible,
19501 and use zeroes otherwise. */
19502 gas_assert (excess < 4);
19503 fragp->fr_fix += excess;
19504 switch (excess)
19505 {
19506 case 3:
19507 *p++ = '\0';
19508 /* Fall through. */
19509 case 2:
19510 if (nop_opcode == NOP_OPCODE_MICROMIPS && !mips_opts.insn32)
19511 {
19512 p = write_compressed_insn (p, micromips_nop16_insn.insn_opcode, 2);
19513 break;
19514 }
19515 *p++ = '\0';
19516 /* Fall through. */
19517 case 1:
19518 *p++ = '\0';
19519 /* Fall through. */
19520 case 0:
19521 break;
19522 }
19523
19524 md_number_to_chars (p, opcode, size);
19525 fragp->fr_var = size;
19526 }
19527
19528 static long
19529 get_number (void)
19530 {
19531 int negative = 0;
19532 long val = 0;
19533
19534 if (*input_line_pointer == '-')
19535 {
19536 ++input_line_pointer;
19537 negative = 1;
19538 }
19539 if (!ISDIGIT (*input_line_pointer))
19540 as_bad (_("expected simple number"));
19541 if (input_line_pointer[0] == '0')
19542 {
19543 if (input_line_pointer[1] == 'x')
19544 {
19545 input_line_pointer += 2;
19546 while (ISXDIGIT (*input_line_pointer))
19547 {
19548 val <<= 4;
19549 val |= hex_value (*input_line_pointer++);
19550 }
19551 return negative ? -val : val;
19552 }
19553 else
19554 {
19555 ++input_line_pointer;
19556 while (ISDIGIT (*input_line_pointer))
19557 {
19558 val <<= 3;
19559 val |= *input_line_pointer++ - '0';
19560 }
19561 return negative ? -val : val;
19562 }
19563 }
19564 if (!ISDIGIT (*input_line_pointer))
19565 {
19566 printf (_(" *input_line_pointer == '%c' 0x%02x\n"),
19567 *input_line_pointer, *input_line_pointer);
19568 as_warn (_("invalid number"));
19569 return -1;
19570 }
19571 while (ISDIGIT (*input_line_pointer))
19572 {
19573 val *= 10;
19574 val += *input_line_pointer++ - '0';
19575 }
19576 return negative ? -val : val;
19577 }
19578
19579 /* The .file directive; just like the usual .file directive, but there
19580 is an initial number which is the ECOFF file index. In the non-ECOFF
19581 case .file implies DWARF-2. */
19582
19583 static void
19584 s_mips_file (int x ATTRIBUTE_UNUSED)
19585 {
19586 static int first_file_directive = 0;
19587
19588 if (ECOFF_DEBUGGING)
19589 {
19590 get_number ();
19591 s_app_file (0);
19592 }
19593 else
19594 {
19595 char *filename;
19596
19597 filename = dwarf2_directive_filename ();
19598
19599 /* Versions of GCC up to 3.1 start files with a ".file"
19600 directive even for stabs output. Make sure that this
19601 ".file" is handled. Note that you need a version of GCC
19602 after 3.1 in order to support DWARF-2 on MIPS. */
19603 if (filename != NULL && ! first_file_directive)
19604 {
19605 (void) new_logical_line (filename, -1);
19606 s_app_file_string (filename, 0);
19607 }
19608 first_file_directive = 1;
19609 }
19610 }
19611
19612 /* The .loc directive, implying DWARF-2. */
19613
19614 static void
19615 s_mips_loc (int x ATTRIBUTE_UNUSED)
19616 {
19617 if (!ECOFF_DEBUGGING)
19618 dwarf2_directive_loc (0);
19619 }
19620
19621 /* The .end directive. */
19622
19623 static void
19624 s_mips_end (int x ATTRIBUTE_UNUSED)
19625 {
19626 symbolS *p;
19627
19628 /* Following functions need their own .frame and .cprestore directives. */
19629 mips_frame_reg_valid = 0;
19630 mips_cprestore_valid = 0;
19631
19632 if (!is_end_of_line[(unsigned char) *input_line_pointer])
19633 {
19634 p = get_symbol ();
19635 demand_empty_rest_of_line ();
19636 }
19637 else
19638 p = NULL;
19639
19640 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19641 as_warn (_(".end not in text section"));
19642
19643 if (!cur_proc_ptr)
19644 {
19645 as_warn (_(".end directive without a preceding .ent directive"));
19646 demand_empty_rest_of_line ();
19647 return;
19648 }
19649
19650 if (p != NULL)
19651 {
19652 gas_assert (S_GET_NAME (p));
19653 if (strcmp (S_GET_NAME (p), S_GET_NAME (cur_proc_ptr->func_sym)))
19654 as_warn (_(".end symbol does not match .ent symbol"));
19655
19656 if (debug_type == DEBUG_STABS)
19657 stabs_generate_asm_endfunc (S_GET_NAME (p),
19658 S_GET_NAME (p));
19659 }
19660 else
19661 as_warn (_(".end directive missing or unknown symbol"));
19662
19663 /* Create an expression to calculate the size of the function. */
19664 if (p && cur_proc_ptr)
19665 {
19666 OBJ_SYMFIELD_TYPE *obj = symbol_get_obj (p);
19667 expressionS *exp = XNEW (expressionS);
19668
19669 obj->size = exp;
19670 exp->X_op = O_subtract;
19671 exp->X_add_symbol = symbol_temp_new_now ();
19672 exp->X_op_symbol = p;
19673 exp->X_add_number = 0;
19674
19675 cur_proc_ptr->func_end_sym = exp->X_add_symbol;
19676 }
19677
19678 #ifdef md_flush_pending_output
19679 md_flush_pending_output ();
19680 #endif
19681
19682 /* Generate a .pdr section. */
19683 if (!ECOFF_DEBUGGING && mips_flag_pdr)
19684 {
19685 segT saved_seg = now_seg;
19686 subsegT saved_subseg = now_subseg;
19687 expressionS exp;
19688 char *fragp;
19689
19690 gas_assert (pdr_seg);
19691 subseg_set (pdr_seg, 0);
19692
19693 /* Write the symbol. */
19694 exp.X_op = O_symbol;
19695 exp.X_add_symbol = p;
19696 exp.X_add_number = 0;
19697 emit_expr (&exp, 4);
19698
19699 fragp = frag_more (7 * 4);
19700
19701 md_number_to_chars (fragp, cur_proc_ptr->reg_mask, 4);
19702 md_number_to_chars (fragp + 4, cur_proc_ptr->reg_offset, 4);
19703 md_number_to_chars (fragp + 8, cur_proc_ptr->fpreg_mask, 4);
19704 md_number_to_chars (fragp + 12, cur_proc_ptr->fpreg_offset, 4);
19705 md_number_to_chars (fragp + 16, cur_proc_ptr->frame_offset, 4);
19706 md_number_to_chars (fragp + 20, cur_proc_ptr->frame_reg, 4);
19707 md_number_to_chars (fragp + 24, cur_proc_ptr->pc_reg, 4);
19708
19709 subseg_set (saved_seg, saved_subseg);
19710 }
19711
19712 cur_proc_ptr = NULL;
19713 }
19714
19715 /* The .aent and .ent directives. */
19716
19717 static void
19718 s_mips_ent (int aent)
19719 {
19720 symbolS *symbolP;
19721
19722 symbolP = get_symbol ();
19723 if (*input_line_pointer == ',')
19724 ++input_line_pointer;
19725 SKIP_WHITESPACE ();
19726 if (ISDIGIT (*input_line_pointer)
19727 || *input_line_pointer == '-')
19728 get_number ();
19729
19730 if ((bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) == 0)
19731 as_warn (_(".ent or .aent not in text section"));
19732
19733 if (!aent && cur_proc_ptr)
19734 as_warn (_("missing .end"));
19735
19736 if (!aent)
19737 {
19738 /* This function needs its own .frame and .cprestore directives. */
19739 mips_frame_reg_valid = 0;
19740 mips_cprestore_valid = 0;
19741
19742 cur_proc_ptr = &cur_proc;
19743 memset (cur_proc_ptr, '\0', sizeof (procS));
19744
19745 cur_proc_ptr->func_sym = symbolP;
19746
19747 ++numprocs;
19748
19749 if (debug_type == DEBUG_STABS)
19750 stabs_generate_asm_func (S_GET_NAME (symbolP),
19751 S_GET_NAME (symbolP));
19752 }
19753
19754 symbol_get_bfdsym (symbolP)->flags |= BSF_FUNCTION;
19755
19756 demand_empty_rest_of_line ();
19757 }
19758
19759 /* The .frame directive. If the mdebug section is present (IRIX 5 native)
19760 then ecoff.c (ecoff_directive_frame) is used. For embedded targets,
19761 s_mips_frame is used so that we can set the PDR information correctly.
19762 We can't use the ecoff routines because they make reference to the ecoff
19763 symbol table (in the mdebug section). */
19764
19765 static void
19766 s_mips_frame (int ignore ATTRIBUTE_UNUSED)
19767 {
19768 if (ECOFF_DEBUGGING)
19769 s_ignore (ignore);
19770 else
19771 {
19772 long val;
19773
19774 if (cur_proc_ptr == (procS *) NULL)
19775 {
19776 as_warn (_(".frame outside of .ent"));
19777 demand_empty_rest_of_line ();
19778 return;
19779 }
19780
19781 cur_proc_ptr->frame_reg = tc_get_register (1);
19782
19783 SKIP_WHITESPACE ();
19784 if (*input_line_pointer++ != ','
19785 || get_absolute_expression_and_terminator (&val) != ',')
19786 {
19787 as_warn (_("bad .frame directive"));
19788 --input_line_pointer;
19789 demand_empty_rest_of_line ();
19790 return;
19791 }
19792
19793 cur_proc_ptr->frame_offset = val;
19794 cur_proc_ptr->pc_reg = tc_get_register (0);
19795
19796 demand_empty_rest_of_line ();
19797 }
19798 }
19799
19800 /* The .fmask and .mask directives. If the mdebug section is present
19801 (IRIX 5 native) then ecoff.c (ecoff_directive_mask) is used. For
19802 embedded targets, s_mips_mask is used so that we can set the PDR
19803 information correctly. We can't use the ecoff routines because they
19804 make reference to the ecoff symbol table (in the mdebug section). */
19805
19806 static void
19807 s_mips_mask (int reg_type)
19808 {
19809 if (ECOFF_DEBUGGING)
19810 s_ignore (reg_type);
19811 else
19812 {
19813 long mask, off;
19814
19815 if (cur_proc_ptr == (procS *) NULL)
19816 {
19817 as_warn (_(".mask/.fmask outside of .ent"));
19818 demand_empty_rest_of_line ();
19819 return;
19820 }
19821
19822 if (get_absolute_expression_and_terminator (&mask) != ',')
19823 {
19824 as_warn (_("bad .mask/.fmask directive"));
19825 --input_line_pointer;
19826 demand_empty_rest_of_line ();
19827 return;
19828 }
19829
19830 off = get_absolute_expression ();
19831
19832 if (reg_type == 'F')
19833 {
19834 cur_proc_ptr->fpreg_mask = mask;
19835 cur_proc_ptr->fpreg_offset = off;
19836 }
19837 else
19838 {
19839 cur_proc_ptr->reg_mask = mask;
19840 cur_proc_ptr->reg_offset = off;
19841 }
19842
19843 demand_empty_rest_of_line ();
19844 }
19845 }
19846
19847 /* A table describing all the processors gas knows about. Names are
19848 matched in the order listed.
19849
19850 To ease comparison, please keep this table in the same order as
19851 gcc's mips_cpu_info_table[]. */
19852 static const struct mips_cpu_info mips_cpu_info_table[] =
19853 {
19854 /* Entries for generic ISAs. */
19855 { "mips1", MIPS_CPU_IS_ISA, 0, ISA_MIPS1, CPU_R3000 },
19856 { "mips2", MIPS_CPU_IS_ISA, 0, ISA_MIPS2, CPU_R6000 },
19857 { "mips3", MIPS_CPU_IS_ISA, 0, ISA_MIPS3, CPU_R4000 },
19858 { "mips4", MIPS_CPU_IS_ISA, 0, ISA_MIPS4, CPU_R8000 },
19859 { "mips5", MIPS_CPU_IS_ISA, 0, ISA_MIPS5, CPU_MIPS5 },
19860 { "mips32", MIPS_CPU_IS_ISA, 0, ISA_MIPS32, CPU_MIPS32 },
19861 { "mips32r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19862 { "mips32r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R3, CPU_MIPS32R3 },
19863 { "mips32r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R5, CPU_MIPS32R5 },
19864 { "mips32r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS32R6, CPU_MIPS32R6 },
19865 { "mips64", MIPS_CPU_IS_ISA, 0, ISA_MIPS64, CPU_MIPS64 },
19866 { "mips64r2", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R2, CPU_MIPS64R2 },
19867 { "mips64r3", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R3, CPU_MIPS64R3 },
19868 { "mips64r5", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R5, CPU_MIPS64R5 },
19869 { "mips64r6", MIPS_CPU_IS_ISA, 0, ISA_MIPS64R6, CPU_MIPS64R6 },
19870
19871 /* MIPS I */
19872 { "r3000", 0, 0, ISA_MIPS1, CPU_R3000 },
19873 { "r2000", 0, 0, ISA_MIPS1, CPU_R3000 },
19874 { "r3900", 0, 0, ISA_MIPS1, CPU_R3900 },
19875
19876 /* MIPS II */
19877 { "r6000", 0, 0, ISA_MIPS2, CPU_R6000 },
19878
19879 /* MIPS III */
19880 { "r4000", 0, 0, ISA_MIPS3, CPU_R4000 },
19881 { "r4010", 0, 0, ISA_MIPS2, CPU_R4010 },
19882 { "vr4100", 0, 0, ISA_MIPS3, CPU_VR4100 },
19883 { "vr4111", 0, 0, ISA_MIPS3, CPU_R4111 },
19884 { "vr4120", 0, 0, ISA_MIPS3, CPU_VR4120 },
19885 { "vr4130", 0, 0, ISA_MIPS3, CPU_VR4120 },
19886 { "vr4181", 0, 0, ISA_MIPS3, CPU_R4111 },
19887 { "vr4300", 0, 0, ISA_MIPS3, CPU_R4300 },
19888 { "r4400", 0, 0, ISA_MIPS3, CPU_R4400 },
19889 { "r4600", 0, 0, ISA_MIPS3, CPU_R4600 },
19890 { "orion", 0, 0, ISA_MIPS3, CPU_R4600 },
19891 { "r4650", 0, 0, ISA_MIPS3, CPU_R4650 },
19892 { "r5900", 0, 0, ISA_MIPS3, CPU_R5900 },
19893 /* ST Microelectronics Loongson 2E and 2F cores. */
19894 { "loongson2e", 0, 0, ISA_MIPS3, CPU_LOONGSON_2E },
19895 { "loongson2f", 0, ASE_LOONGSON_MMI, ISA_MIPS3, CPU_LOONGSON_2F },
19896
19897 /* MIPS IV */
19898 { "r8000", 0, 0, ISA_MIPS4, CPU_R8000 },
19899 { "r10000", 0, 0, ISA_MIPS4, CPU_R10000 },
19900 { "r12000", 0, 0, ISA_MIPS4, CPU_R12000 },
19901 { "r14000", 0, 0, ISA_MIPS4, CPU_R14000 },
19902 { "r16000", 0, 0, ISA_MIPS4, CPU_R16000 },
19903 { "vr5000", 0, 0, ISA_MIPS4, CPU_R5000 },
19904 { "vr5400", 0, 0, ISA_MIPS4, CPU_VR5400 },
19905 { "vr5500", 0, 0, ISA_MIPS4, CPU_VR5500 },
19906 { "rm5200", 0, 0, ISA_MIPS4, CPU_R5000 },
19907 { "rm5230", 0, 0, ISA_MIPS4, CPU_R5000 },
19908 { "rm5231", 0, 0, ISA_MIPS4, CPU_R5000 },
19909 { "rm5261", 0, 0, ISA_MIPS4, CPU_R5000 },
19910 { "rm5721", 0, 0, ISA_MIPS4, CPU_R5000 },
19911 { "rm7000", 0, 0, ISA_MIPS4, CPU_RM7000 },
19912 { "rm9000", 0, 0, ISA_MIPS4, CPU_RM9000 },
19913
19914 /* MIPS 32 */
19915 { "4kc", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19916 { "4km", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19917 { "4kp", 0, 0, ISA_MIPS32, CPU_MIPS32 },
19918 { "4ksc", 0, ASE_SMARTMIPS, ISA_MIPS32, CPU_MIPS32 },
19919
19920 /* MIPS 32 Release 2 */
19921 { "4kec", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19922 { "4kem", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19923 { "4kep", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19924 { "4ksd", 0, ASE_SMARTMIPS, ISA_MIPS32R2, CPU_MIPS32R2 },
19925 { "m4k", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19926 { "m4kp", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19927 { "m14k", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19928 { "m14kc", 0, ASE_MCU, ISA_MIPS32R2, CPU_MIPS32R2 },
19929 { "m14ke", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19930 ISA_MIPS32R2, CPU_MIPS32R2 },
19931 { "m14kec", 0, ASE_DSP | ASE_DSPR2 | ASE_MCU,
19932 ISA_MIPS32R2, CPU_MIPS32R2 },
19933 { "24kc", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19934 { "24kf2_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19935 { "24kf", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19936 { "24kf1_1", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19937 /* Deprecated forms of the above. */
19938 { "24kfx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19939 { "24kx", 0, 0, ISA_MIPS32R2, CPU_MIPS32R2 },
19940 /* 24KE is a 24K with DSP ASE, other ASEs are optional. */
19941 { "24kec", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19942 { "24kef2_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19943 { "24kef", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19944 { "24kef1_1", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19945 /* Deprecated forms of the above. */
19946 { "24kefx", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19947 { "24kex", 0, ASE_DSP, ISA_MIPS32R2, CPU_MIPS32R2 },
19948 /* 34K is a 24K with DSP and MT ASE, other ASEs are optional. */
19949 { "34kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19950 { "34kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19951 { "34kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19952 { "34kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19953 /* Deprecated forms of the above. */
19954 { "34kfx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19955 { "34kx", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19956 /* 34Kn is a 34kc without DSP. */
19957 { "34kn", 0, ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19958 /* 74K with DSP and DSPR2 ASE, other ASEs are optional. */
19959 { "74kc", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19960 { "74kf2_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19961 { "74kf", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19962 { "74kf1_1", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19963 { "74kf3_2", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19964 /* Deprecated forms of the above. */
19965 { "74kfx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19966 { "74kx", 0, ASE_DSP | ASE_DSPR2, ISA_MIPS32R2, CPU_MIPS32R2 },
19967 /* 1004K cores are multiprocessor versions of the 34K. */
19968 { "1004kc", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19969 { "1004kf2_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19970 { "1004kf", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19971 { "1004kf1_1", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19972 /* interaptiv is the new name for 1004kf. */
19973 { "interaptiv", 0, ASE_DSP | ASE_MT, ISA_MIPS32R2, CPU_MIPS32R2 },
19974 { "interaptiv-mr2", 0,
19975 ASE_DSP | ASE_EVA | ASE_MT | ASE_MIPS16E2 | ASE_MIPS16E2_MT,
19976 ISA_MIPS32R3, CPU_INTERAPTIV_MR2 },
19977 /* M5100 family. */
19978 { "m5100", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19979 { "m5101", 0, ASE_MCU, ISA_MIPS32R5, CPU_MIPS32R5 },
19980 /* P5600 with EVA and Virtualization ASEs, other ASEs are optional. */
19981 { "p5600", 0, ASE_VIRT | ASE_EVA | ASE_XPA, ISA_MIPS32R5, CPU_MIPS32R5 },
19982
19983 /* MIPS 64 */
19984 { "5kc", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19985 { "5kf", 0, 0, ISA_MIPS64, CPU_MIPS64 },
19986 { "20kc", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19987 { "25kf", 0, ASE_MIPS3D, ISA_MIPS64, CPU_MIPS64 },
19988
19989 /* Broadcom SB-1 CPU core. */
19990 { "sb1", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19991 /* Broadcom SB-1A CPU core. */
19992 { "sb1a", 0, ASE_MIPS3D | ASE_MDMX, ISA_MIPS64, CPU_SB1 },
19993
19994 /* MIPS 64 Release 2. */
19995 /* Loongson CPU core. */
19996 /* -march=loongson3a is an alias of -march=gs464 for compatibility. */
19997 { "loongson3a", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
19998 ISA_MIPS64R2, CPU_GS464 },
19999 { "gs464", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT,
20000 ISA_MIPS64R2, CPU_GS464 },
20001 { "gs464e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
20002 | ASE_LOONGSON_EXT2, ISA_MIPS64R2, CPU_GS464E },
20003 { "gs264e", 0, ASE_LOONGSON_MMI | ASE_LOONGSON_CAM | ASE_LOONGSON_EXT
20004 | ASE_LOONGSON_EXT2 | ASE_MSA | ASE_MSA64, ISA_MIPS64R2, CPU_GS264E },
20005
20006 /* Cavium Networks Octeon CPU core. */
20007 { "octeon", 0, 0, ISA_MIPS64R2, CPU_OCTEON },
20008 { "octeon+", 0, 0, ISA_MIPS64R2, CPU_OCTEONP },
20009 { "octeon2", 0, 0, ISA_MIPS64R2, CPU_OCTEON2 },
20010 { "octeon3", 0, ASE_VIRT | ASE_VIRT64, ISA_MIPS64R5, CPU_OCTEON3 },
20011
20012 /* RMI Xlr */
20013 { "xlr", 0, 0, ISA_MIPS64, CPU_XLR },
20014
20015 /* Broadcom XLP.
20016 XLP is mostly like XLR, with the prominent exception that it is
20017 MIPS64R2 rather than MIPS64. */
20018 { "xlp", 0, 0, ISA_MIPS64R2, CPU_XLR },
20019
20020 /* MIPS 64 Release 6. */
20021 { "i6400", 0, ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
20022 { "p6600", 0, ASE_VIRT | ASE_MSA, ISA_MIPS64R6, CPU_MIPS64R6},
20023
20024 /* End marker. */
20025 { NULL, 0, 0, 0, 0 }
20026 };
20027
20028
20029 /* Return true if GIVEN is the same as CANONICAL, or if it is CANONICAL
20030 with a final "000" replaced by "k". Ignore case.
20031
20032 Note: this function is shared between GCC and GAS. */
20033
20034 static bfd_boolean
20035 mips_strict_matching_cpu_name_p (const char *canonical, const char *given)
20036 {
20037 while (*given != 0 && TOLOWER (*given) == TOLOWER (*canonical))
20038 given++, canonical++;
20039
20040 return ((*given == 0 && *canonical == 0)
20041 || (strcmp (canonical, "000") == 0 && strcasecmp (given, "k") == 0));
20042 }
20043
20044
20045 /* Return true if GIVEN matches CANONICAL, where GIVEN is a user-supplied
20046 CPU name. We've traditionally allowed a lot of variation here.
20047
20048 Note: this function is shared between GCC and GAS. */
20049
20050 static bfd_boolean
20051 mips_matching_cpu_name_p (const char *canonical, const char *given)
20052 {
20053 /* First see if the name matches exactly, or with a final "000"
20054 turned into "k". */
20055 if (mips_strict_matching_cpu_name_p (canonical, given))
20056 return TRUE;
20057
20058 /* If not, try comparing based on numerical designation alone.
20059 See if GIVEN is an unadorned number, or 'r' followed by a number. */
20060 if (TOLOWER (*given) == 'r')
20061 given++;
20062 if (!ISDIGIT (*given))
20063 return FALSE;
20064
20065 /* Skip over some well-known prefixes in the canonical name,
20066 hoping to find a number there too. */
20067 if (TOLOWER (canonical[0]) == 'v' && TOLOWER (canonical[1]) == 'r')
20068 canonical += 2;
20069 else if (TOLOWER (canonical[0]) == 'r' && TOLOWER (canonical[1]) == 'm')
20070 canonical += 2;
20071 else if (TOLOWER (canonical[0]) == 'r')
20072 canonical += 1;
20073
20074 return mips_strict_matching_cpu_name_p (canonical, given);
20075 }
20076
20077
20078 /* Parse an option that takes the name of a processor as its argument.
20079 OPTION is the name of the option and CPU_STRING is the argument.
20080 Return the corresponding processor enumeration if the CPU_STRING is
20081 recognized, otherwise report an error and return null.
20082
20083 A similar function exists in GCC. */
20084
20085 static const struct mips_cpu_info *
20086 mips_parse_cpu (const char *option, const char *cpu_string)
20087 {
20088 const struct mips_cpu_info *p;
20089
20090 /* 'from-abi' selects the most compatible architecture for the given
20091 ABI: MIPS I for 32-bit ABIs and MIPS III for 64-bit ABIs. For the
20092 EABIs, we have to decide whether we're using the 32-bit or 64-bit
20093 version. Look first at the -mgp options, if given, otherwise base
20094 the choice on MIPS_DEFAULT_64BIT.
20095
20096 Treat NO_ABI like the EABIs. One reason to do this is that the
20097 plain 'mips' and 'mips64' configs have 'from-abi' as their default
20098 architecture. This code picks MIPS I for 'mips' and MIPS III for
20099 'mips64', just as we did in the days before 'from-abi'. */
20100 if (strcasecmp (cpu_string, "from-abi") == 0)
20101 {
20102 if (ABI_NEEDS_32BIT_REGS (mips_abi))
20103 return mips_cpu_info_from_isa (ISA_MIPS1);
20104
20105 if (ABI_NEEDS_64BIT_REGS (mips_abi))
20106 return mips_cpu_info_from_isa (ISA_MIPS3);
20107
20108 if (file_mips_opts.gp >= 0)
20109 return mips_cpu_info_from_isa (file_mips_opts.gp == 32
20110 ? ISA_MIPS1 : ISA_MIPS3);
20111
20112 return mips_cpu_info_from_isa (MIPS_DEFAULT_64BIT
20113 ? ISA_MIPS3
20114 : ISA_MIPS1);
20115 }
20116
20117 /* 'default' has traditionally been a no-op. Probably not very useful. */
20118 if (strcasecmp (cpu_string, "default") == 0)
20119 return 0;
20120
20121 for (p = mips_cpu_info_table; p->name != 0; p++)
20122 if (mips_matching_cpu_name_p (p->name, cpu_string))
20123 return p;
20124
20125 as_bad (_("bad value (%s) for %s"), cpu_string, option);
20126 return 0;
20127 }
20128
20129 /* Return the canonical processor information for ISA (a member of the
20130 ISA_MIPS* enumeration). */
20131
20132 static const struct mips_cpu_info *
20133 mips_cpu_info_from_isa (int isa)
20134 {
20135 int i;
20136
20137 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20138 if ((mips_cpu_info_table[i].flags & MIPS_CPU_IS_ISA)
20139 && isa == mips_cpu_info_table[i].isa)
20140 return (&mips_cpu_info_table[i]);
20141
20142 return NULL;
20143 }
20144
20145 static const struct mips_cpu_info *
20146 mips_cpu_info_from_arch (int arch)
20147 {
20148 int i;
20149
20150 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20151 if (arch == mips_cpu_info_table[i].cpu)
20152 return (&mips_cpu_info_table[i]);
20153
20154 return NULL;
20155 }
20156 \f
20157 static void
20158 show (FILE *stream, const char *string, int *col_p, int *first_p)
20159 {
20160 if (*first_p)
20161 {
20162 fprintf (stream, "%24s", "");
20163 *col_p = 24;
20164 }
20165 else
20166 {
20167 fprintf (stream, ", ");
20168 *col_p += 2;
20169 }
20170
20171 if (*col_p + strlen (string) > 72)
20172 {
20173 fprintf (stream, "\n%24s", "");
20174 *col_p = 24;
20175 }
20176
20177 fprintf (stream, "%s", string);
20178 *col_p += strlen (string);
20179
20180 *first_p = 0;
20181 }
20182
20183 void
20184 md_show_usage (FILE *stream)
20185 {
20186 int column, first;
20187 size_t i;
20188
20189 fprintf (stream, _("\
20190 MIPS options:\n\
20191 -EB generate big endian output\n\
20192 -EL generate little endian output\n\
20193 -g, -g2 do not remove unneeded NOPs or swap branches\n\
20194 -G NUM allow referencing objects up to NUM bytes\n\
20195 implicitly with the gp register [default 8]\n"));
20196 fprintf (stream, _("\
20197 -mips1 generate MIPS ISA I instructions\n\
20198 -mips2 generate MIPS ISA II instructions\n\
20199 -mips3 generate MIPS ISA III instructions\n\
20200 -mips4 generate MIPS ISA IV instructions\n\
20201 -mips5 generate MIPS ISA V instructions\n\
20202 -mips32 generate MIPS32 ISA instructions\n\
20203 -mips32r2 generate MIPS32 release 2 ISA instructions\n\
20204 -mips32r3 generate MIPS32 release 3 ISA instructions\n\
20205 -mips32r5 generate MIPS32 release 5 ISA instructions\n\
20206 -mips32r6 generate MIPS32 release 6 ISA instructions\n\
20207 -mips64 generate MIPS64 ISA instructions\n\
20208 -mips64r2 generate MIPS64 release 2 ISA instructions\n\
20209 -mips64r3 generate MIPS64 release 3 ISA instructions\n\
20210 -mips64r5 generate MIPS64 release 5 ISA instructions\n\
20211 -mips64r6 generate MIPS64 release 6 ISA instructions\n\
20212 -march=CPU/-mtune=CPU generate code/schedule for CPU, where CPU is one of:\n"));
20213
20214 first = 1;
20215
20216 for (i = 0; mips_cpu_info_table[i].name != NULL; i++)
20217 show (stream, mips_cpu_info_table[i].name, &column, &first);
20218 show (stream, "from-abi", &column, &first);
20219 fputc ('\n', stream);
20220
20221 fprintf (stream, _("\
20222 -mCPU equivalent to -march=CPU -mtune=CPU. Deprecated.\n\
20223 -no-mCPU don't generate code specific to CPU.\n\
20224 For -mCPU and -no-mCPU, CPU must be one of:\n"));
20225
20226 first = 1;
20227
20228 show (stream, "3900", &column, &first);
20229 show (stream, "4010", &column, &first);
20230 show (stream, "4100", &column, &first);
20231 show (stream, "4650", &column, &first);
20232 fputc ('\n', stream);
20233
20234 fprintf (stream, _("\
20235 -mips16 generate mips16 instructions\n\
20236 -no-mips16 do not generate mips16 instructions\n"));
20237 fprintf (stream, _("\
20238 -mmips16e2 generate MIPS16e2 instructions\n\
20239 -mno-mips16e2 do not generate MIPS16e2 instructions\n"));
20240 fprintf (stream, _("\
20241 -mmicromips generate microMIPS instructions\n\
20242 -mno-micromips do not generate microMIPS instructions\n"));
20243 fprintf (stream, _("\
20244 -msmartmips generate smartmips instructions\n\
20245 -mno-smartmips do not generate smartmips instructions\n"));
20246 fprintf (stream, _("\
20247 -mdsp generate DSP instructions\n\
20248 -mno-dsp do not generate DSP instructions\n"));
20249 fprintf (stream, _("\
20250 -mdspr2 generate DSP R2 instructions\n\
20251 -mno-dspr2 do not generate DSP R2 instructions\n"));
20252 fprintf (stream, _("\
20253 -mdspr3 generate DSP R3 instructions\n\
20254 -mno-dspr3 do not generate DSP R3 instructions\n"));
20255 fprintf (stream, _("\
20256 -mmt generate MT instructions\n\
20257 -mno-mt do not generate MT instructions\n"));
20258 fprintf (stream, _("\
20259 -mmcu generate MCU instructions\n\
20260 -mno-mcu do not generate MCU instructions\n"));
20261 fprintf (stream, _("\
20262 -mmsa generate MSA instructions\n\
20263 -mno-msa do not generate MSA instructions\n"));
20264 fprintf (stream, _("\
20265 -mxpa generate eXtended Physical Address (XPA) instructions\n\
20266 -mno-xpa do not generate eXtended Physical Address (XPA) instructions\n"));
20267 fprintf (stream, _("\
20268 -mvirt generate Virtualization instructions\n\
20269 -mno-virt do not generate Virtualization instructions\n"));
20270 fprintf (stream, _("\
20271 -mcrc generate CRC instructions\n\
20272 -mno-crc do not generate CRC instructions\n"));
20273 fprintf (stream, _("\
20274 -mginv generate Global INValidate (GINV) instructions\n\
20275 -mno-ginv do not generate Global INValidate instructions\n"));
20276 fprintf (stream, _("\
20277 -mloongson-mmi generate Loongson MultiMedia extensions Instructions (MMI) instructions\n\
20278 -mno-loongson-mmi do not generate Loongson MultiMedia extensions Instructions\n"));
20279 fprintf (stream, _("\
20280 -mloongson-cam generate Loongson Content Address Memory (CAM) instructions\n\
20281 -mno-loongson-cam do not generate Loongson Content Address Memory Instructions\n"));
20282 fprintf (stream, _("\
20283 -mloongson-ext generate Loongson EXTensions (EXT) instructions\n\
20284 -mno-loongson-ext do not generate Loongson EXTensions Instructions\n"));
20285 fprintf (stream, _("\
20286 -mloongson-ext2 generate Loongson EXTensions R2 (EXT2) instructions\n\
20287 -mno-loongson-ext2 do not generate Loongson EXTensions R2 Instructions\n"));
20288 fprintf (stream, _("\
20289 -minsn32 only generate 32-bit microMIPS instructions\n\
20290 -mno-insn32 generate all microMIPS instructions\n"));
20291 #if DEFAULT_MIPS_FIX_LOONGSON3_LLSC
20292 fprintf (stream, _("\
20293 -mfix-loongson3-llsc work around Loongson3 LL/SC errata, default\n\
20294 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n"));
20295 #else
20296 fprintf (stream, _("\
20297 -mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20298 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata, default\n"));
20299 #endif
20300 fprintf (stream, _("\
20301 -mfix-loongson2f-jump work around Loongson2F JUMP instructions\n\
20302 -mfix-loongson2f-nop work around Loongson2F NOP errata\n\
20303 -mfix-loongson3-llsc work around Loongson3 LL/SC errata\n\
20304 -mno-fix-loongson3-llsc disable work around Loongson3 LL/SC errata\n\
20305 -mfix-vr4120 work around certain VR4120 errata\n\
20306 -mfix-vr4130 work around VR4130 mflo/mfhi errata\n\
20307 -mfix-24k insert a nop after ERET and DERET instructions\n\
20308 -mfix-cn63xxp1 work around CN63XXP1 PREF errata\n\
20309 -mfix-r5900 work around R5900 short loop errata\n\
20310 -mgp32 use 32-bit GPRs, regardless of the chosen ISA\n\
20311 -mfp32 use 32-bit FPRs, regardless of the chosen ISA\n\
20312 -msym32 assume all symbols have 32-bit values\n\
20313 -O0 do not remove unneeded NOPs, do not swap branches\n\
20314 -O, -O1 remove unneeded NOPs, do not swap branches\n\
20315 -O2 remove unneeded NOPs and swap branches\n\
20316 --trap, --no-break trap exception on div by 0 and mult overflow\n\
20317 --break, --no-trap break exception on div by 0 and mult overflow\n"));
20318 fprintf (stream, _("\
20319 -mhard-float allow floating-point instructions\n\
20320 -msoft-float do not allow floating-point instructions\n\
20321 -msingle-float only allow 32-bit floating-point operations\n\
20322 -mdouble-float allow 32-bit and 64-bit floating-point operations\n\
20323 --[no-]construct-floats [dis]allow floating point values to be constructed\n\
20324 --[no-]relax-branch [dis]allow out-of-range branches to be relaxed\n\
20325 -mignore-branch-isa accept invalid branches requiring an ISA mode switch\n\
20326 -mno-ignore-branch-isa reject invalid branches requiring an ISA mode switch\n\
20327 -mnan=ENCODING select an IEEE 754 NaN encoding convention, either of:\n"));
20328
20329 first = 1;
20330
20331 show (stream, "legacy", &column, &first);
20332 show (stream, "2008", &column, &first);
20333
20334 fputc ('\n', stream);
20335
20336 fprintf (stream, _("\
20337 -KPIC, -call_shared generate SVR4 position independent code\n\
20338 -call_nonpic generate non-PIC code that can operate with DSOs\n\
20339 -mvxworks-pic generate VxWorks position independent code\n\
20340 -non_shared do not generate code that can operate with DSOs\n\
20341 -xgot assume a 32 bit GOT\n\
20342 -mpdr, -mno-pdr enable/disable creation of .pdr sections\n\
20343 -mshared, -mno-shared disable/enable .cpload optimization for\n\
20344 position dependent (non shared) code\n\
20345 -mabi=ABI create ABI conformant object file for:\n"));
20346
20347 first = 1;
20348
20349 show (stream, "32", &column, &first);
20350 show (stream, "o64", &column, &first);
20351 show (stream, "n32", &column, &first);
20352 show (stream, "64", &column, &first);
20353 show (stream, "eabi", &column, &first);
20354
20355 fputc ('\n', stream);
20356
20357 fprintf (stream, _("\
20358 -32 create o32 ABI object file%s\n"),
20359 MIPS_DEFAULT_ABI == O32_ABI ? _(" (default)") : "");
20360 fprintf (stream, _("\
20361 -n32 create n32 ABI object file%s\n"),
20362 MIPS_DEFAULT_ABI == N32_ABI ? _(" (default)") : "");
20363 fprintf (stream, _("\
20364 -64 create 64 ABI object file%s\n"),
20365 MIPS_DEFAULT_ABI == N64_ABI ? _(" (default)") : "");
20366 }
20367
20368 #ifdef TE_IRIX
20369 enum dwarf2_format
20370 mips_dwarf2_format (asection *sec ATTRIBUTE_UNUSED)
20371 {
20372 if (HAVE_64BIT_SYMBOLS)
20373 return dwarf2_format_64bit_irix;
20374 else
20375 return dwarf2_format_32bit;
20376 }
20377 #endif
20378
20379 int
20380 mips_dwarf2_addr_size (void)
20381 {
20382 if (HAVE_64BIT_OBJECTS)
20383 return 8;
20384 else
20385 return 4;
20386 }
20387
20388 /* Standard calling conventions leave the CFA at SP on entry. */
20389 void
20390 mips_cfi_frame_initial_instructions (void)
20391 {
20392 cfi_add_CFA_def_cfa_register (SP);
20393 }
20394
20395 int
20396 tc_mips_regname_to_dw2regnum (char *regname)
20397 {
20398 unsigned int regnum = -1;
20399 unsigned int reg;
20400
20401 if (reg_lookup (&regname, RTYPE_GP | RTYPE_NUM, &reg))
20402 regnum = reg;
20403
20404 return regnum;
20405 }
20406
20407 /* Implement CONVERT_SYMBOLIC_ATTRIBUTE.
20408 Given a symbolic attribute NAME, return the proper integer value.
20409 Returns -1 if the attribute is not known. */
20410
20411 int
20412 mips_convert_symbolic_attribute (const char *name)
20413 {
20414 static const struct
20415 {
20416 const char * name;
20417 const int tag;
20418 }
20419 attribute_table[] =
20420 {
20421 #define T(tag) {#tag, tag}
20422 T (Tag_GNU_MIPS_ABI_FP),
20423 T (Tag_GNU_MIPS_ABI_MSA),
20424 #undef T
20425 };
20426 unsigned int i;
20427
20428 if (name == NULL)
20429 return -1;
20430
20431 for (i = 0; i < ARRAY_SIZE (attribute_table); i++)
20432 if (streq (name, attribute_table[i].name))
20433 return attribute_table[i].tag;
20434
20435 return -1;
20436 }
20437
20438 void
20439 md_mips_end (void)
20440 {
20441 int fpabi = Val_GNU_MIPS_ABI_FP_ANY;
20442
20443 mips_emit_delays ();
20444 if (cur_proc_ptr)
20445 as_warn (_("missing .end at end of assembly"));
20446
20447 /* Just in case no code was emitted, do the consistency check. */
20448 file_mips_check_options ();
20449
20450 /* Set a floating-point ABI if the user did not. */
20451 if (obj_elf_seen_attribute (OBJ_ATTR_GNU, Tag_GNU_MIPS_ABI_FP))
20452 {
20453 /* Perform consistency checks on the floating-point ABI. */
20454 fpabi = bfd_elf_get_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20455 Tag_GNU_MIPS_ABI_FP);
20456 if (fpabi != Val_GNU_MIPS_ABI_FP_ANY)
20457 check_fpabi (fpabi);
20458 }
20459 else
20460 {
20461 /* Soft-float gets precedence over single-float, the two options should
20462 not be used together so this should not matter. */
20463 if (file_mips_opts.soft_float == 1)
20464 fpabi = Val_GNU_MIPS_ABI_FP_SOFT;
20465 /* Single-float gets precedence over all double_float cases. */
20466 else if (file_mips_opts.single_float == 1)
20467 fpabi = Val_GNU_MIPS_ABI_FP_SINGLE;
20468 else
20469 {
20470 switch (file_mips_opts.fp)
20471 {
20472 case 32:
20473 if (file_mips_opts.gp == 32)
20474 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20475 break;
20476 case 0:
20477 fpabi = Val_GNU_MIPS_ABI_FP_XX;
20478 break;
20479 case 64:
20480 if (file_mips_opts.gp == 32 && !file_mips_opts.oddspreg)
20481 fpabi = Val_GNU_MIPS_ABI_FP_64A;
20482 else if (file_mips_opts.gp == 32)
20483 fpabi = Val_GNU_MIPS_ABI_FP_64;
20484 else
20485 fpabi = Val_GNU_MIPS_ABI_FP_DOUBLE;
20486 break;
20487 }
20488 }
20489
20490 bfd_elf_add_obj_attr_int (stdoutput, OBJ_ATTR_GNU,
20491 Tag_GNU_MIPS_ABI_FP, fpabi);
20492 }
20493 }
20494
20495 /* Returns the relocation type required for a particular CFI encoding. */
20496
20497 bfd_reloc_code_real_type
20498 mips_cfi_reloc_for_encoding (int encoding)
20499 {
20500 if (encoding == (DW_EH_PE_sdata4 | DW_EH_PE_pcrel))
20501 return BFD_RELOC_32_PCREL;
20502 else return BFD_RELOC_NONE;
20503 }
This page took 0.474259 seconds and 5 git commands to generate.